N
N

N

HAL

open science

Echantillonnage compressé le long de trajectoires
physiquement plausibles en IRM
Nicolas Chauffert

» To cite this version:

Nicolas Chauffert. Echantillonnage compressé le long de trajectoires physiquement plausibles en IRM.
Traitement du signal et de I'image [eess.SP]. Université Paris Sud - Paris XI, 2015. Frangais. NNT:

2015PA112234 . tel-01265504

HAL Id: tel-01265504
https://theses.hal.science/tel-01265504
Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01265504
https://hal.archives-ouvertes.fr

ah STiT2

Comprendre le monde
construire l'avenir®

UNIVERSITE PARIS-SUD

ECOLE DOCTORALE : Sciences et Technologie de I’Information, des

Télécommunications et des Systémes

Equipe PARIETAL, INRIA Saclay
CEA / DSV / I’BM / NeuroSpin

DISCIPLINE : Physique

THESE DE DOCTORAT
soutenue le 28,/09/2015

par

Nicolas CHAUFFERT

ECHANTILLONNAGE COMPRESSE LE LONG DE TRAJECTOIRES

PHYSIQUEMENT PLAUSIBLES EN IRM

Directeur de thése : Philippe CIUCIU Directeur de Recherche (CEA /NeuroSpin)
Encadrant : Pierre WEISS Chargé de Recherche (ITAV Toulouse)
Composition du jury :
Rapporteurs : Laurent JACQUES Professeur (Université catholique de Louvain)

Gabriel PEYRE Directeur de Recherche (Université Paris-Dauphine)
Ezaminateurs : Ali MOHAMMAD-DJAFARI Directeur de Recherche (Université Paris-Sud)

Justin HALDAR Assistant Professor (University of Southern California)

Simon MASNOU Professeur (Université Lyon 1)






Contents

Contents

1

Introduction

1.1 L’imagerie par Résonance Magnétique . . . . . . . ... ... ... ...
1.2 Introduction a la théorie de I’échantillonnage compressif . . . . . . . . ..
1.3 L’échantillonnage compressif en IRM : principes et limites actuelles. . . .
1.4 Contributions . . . . . . ...
1.5 Organisation . . . . . . ... L e
1.6 Organization and contributions . . . . . . . .. ... ... ...

Variable density sampling with continuous trajectories

2.1 Introduction . . . . . . . ...
2.2 Variable density sampling and its theoretical foundations . . . . . . . . ..
2.3 Variable density samplers along continuous curves . . . . . . . . ... ...
2.4 Travelling salesman-based VDS . . . . . .. .. ... ... ... ...
2.5 Experimental resultsin MRI . . . . . . . ... ... ... 0.
2.6 Discussion and perspectives . . . . .. .. ... Lo

A new concentration inequality

3.1 Introduction . . . . . . . . . . . e
3.2 Preliminaries . . . . . . . . ..
3.3 Proof of propositions 3.1 and 3.2 . . . . . ... .. ... ... ... ... .
3.4 Application to drunk man sampling . . . . . . ... ... .. oL

A projection algorithm for gradient waveforms design

4.1 Introduction . . . . . . . . . L
4.2 Design of k-space trajectories using physical gradient waveforms. . . . . .
4.3 Control of the sampling density . . . . . . ... .. ... .. .. ......
4.4 Finding feasible waveforms using convex optimization . . . . . . . . . . ..
4.5 Numerical experiments . . . . . . . . . ... o
4.6 Discussion . . . . .. ..o e
4.7 Conclusion . . . . . . ..o e
4.8 Additionnal simulations on 3D angiography . . . . ... ... ... ...

A projection method on measures sets

5.1 Imntroduction . . . . . . . . . L
5.2 Notation and preliminaries . . . . . . . .. ... Lo
5.3 Mathematical analysis . . . . . . ... . Lo

11
17
20
23
24

27
28
31
38
43
46
02

65
65
69
71
75

81
82
84
87
91
94
100
102
107



5.4 Numerical resolution . . . . . . . . . .

5.5 Application to continuous line drawing . . . . . . . . .. .. ... ... ..

5.6 Results

5.7 Conclusion . . . . . . . e

6 On the generation of sampling schemes for MRI

6.1 Introduction . . . . . . . . . .

6.2 Acquisition and reconstruction in MRI . . . . . ... ... ... .. ....

6.3 Theoretical foundations of variable density sampling . . . ... ... ...

6.4 Generation of sampling schemes by projection . . . . . .. ... ... ...

6.5 Numerical implementation . . . . . . . . . ... ...

6.6 Results

6.7 Conclusion . . . . . . . ..

7 Résumé des chapitres

Bibliography

ii

147
147
150
156
161
164
169
177

185

195



Remerciements

Mes premiers remerciements s’adressent tout naturellement & mes directeurs de thése.
Tout d’abord, & mon directeur « officiel », Philippe Ciuciu. Merci de m’avoir accueilli
a NeuroSpin et initié au monde de la recherche, alors que j’étais encore en M2. Merci
de m’avoir inculqué la rigueur et de m’avoir montré a quel point il est possible d’étre

perfectionniste dans le travail. Merci également pour ta patience et ton aide au quotidien.

Merci a Pierre Weiss de m’avoir guidé dans ce travail malgré la distance. Ton enthou-
siasme sans limite m’a beaucoup boosté durant ces trois années. Merci pour ces petits
séjours a Toulouse qui ont été forts agréables, grace également & la présence d’Alice et
d’Anouk.

Cela dit, je ne regrette pas de t’avoir traité de fou! devant des millions de téléspectateurs,

il fallait bien que la France le sache !

F1GURE 1: Pierre Weiss au journal de 20h de France 2

Merci aux collegues de NeuroSpin pour leur gentillesse et leur disponibilité. Je suis
heureux d’avoir pu passer trois ans dans des conditions de travail exceptionnelles, d’un
open-space un peu frai I’hiver mais trés convivial, au confort d’un bureau chauffé sous la
protection d’Edouard. J’en profite pour remercier tout particuliérement Aina, Michael
et Philippe (une fois de plus) pour m’avoir soulagé du poids de la logistique a I'approche

de la soutenance ! Merci également a Claire et Paul pour leur accueil dans la ville rose.

Je m’attaque désormais a la partie la plus délicate : remercier famille et amis sans en
oublier. Je remercie tout d’abord mes parents et ma sceur qui ont toujours été 1la pour

me pousser & étudier. Je leur dois cette curiosité qui m’a aidé durant ma thése.

'le lecteur intéressé pourra s’en rendre compte en visionnant le reportage http://www.francetvinfo.
fr/replay-jt/france-2/20-heures/jt-de-20h-du-mardi-3-fevrier-2015_808731.html.

iii


 http://www.francetvinfo.fr/replay-jt/france-2/20-heures/jt-de-20h-du-mardi-3-fevrier-2015_808731.html 
 http://www.francetvinfo.fr/replay-jt/france-2/20-heures/jt-de-20h-du-mardi-3-fevrier-2015_808731.html 

Je remercie également mes amis et collégues du club d’athlétisme de Palaiseau. Les
entrainements du mardi et du jeudi soir ont été d’un grand secours pour me vider la
téte quand celle-ci était occupée par une démonstration truffée d’erreurs, ou par un
code qui ne faisait pas ce qui était prévu... Merci donc & eux de m’avoir soutenu, &
commencer par Laurent et Nicolas (dans Iordre d’obtention du doctorat) pour m’avoir
mis la pression aprés leurs soutenances parfaites, et & Clément, Vincent, aux Marie(s),
a Seb, Denis, Antoine, Fifi, Rachou(ille), Guirec, Julie, Suzanne et Michael, pour avoir

enchanté entrainements, stages ou vacances.

Une petite pensée pour mes amis de prépas : Martin — pas de discrimination méme si
tu n’as pas fait de thése, Jack — merci de m’avoir prété des cours d’agreg top niveau,
mais je ne comprends pas, ¢a a moins bien marché pour moi ! - et Eline — tu peux me

rappeler la date de ta soutenance 7

Au moment de finir d’écrire et de penser aux festivités, je tiens a rassurer Boubou qu’on

va bient6t aller boire une petite biére. Ou deux.

Merci aussi aux copains du lycée, Ludo, Thibault, Xavier et Agathe (ainsi qu’a Marjorie

et Caro), que de chemin depuis les années & Nerval !

Merci enfin & Marie, d’avoir été a mes cotés durant ces trois années, et de m’avoir toujours

soutenu dans ces moments exigeants. A moi de te renvoyer I'ascenseur cette année !

v



For english readers

This manuscript is supposed to be written in French. However, most of this PhD work is
based on research papers, which are all written in English. Hence, except the background
on magnetic resonance imaging and compressed sensing that were written for the French

readership, English readers should look at this mansuscript by sequentially reading:

e The summary of this work on page vii.
e The organization and contributions of this thesis on page 24.

e Chapters 2 to 6.



Résumé

L’imagerie par résonance magnétique (IRM) est une technique d’imagerie non invasive
et non ionisante qui permet d’imager et de discriminer les tissus mous grace & une bonne
sensibilité de contraste issue de la variation de paramétres physiques (Tq, T9, densité
de protons) spécifique a chaque tissu. Les données sont acquises dans Pespace-k, corre-
spondant aux fréquences spatiales de 'image. Des contraintes physiques et matérielles
contraignent le mode de fonctionnement des gradients de champ magnétique utilisés pour
acquérir les données. Ainsi, ces derniéres sont obtenues séquentiellement le long de tra-
jectoires assez réguliéres (dérivée et dérivée seconde bornées). En conséquence, la durée

d’acquisition augmente avec la résolution recherchée de 'image.

Accélérer 'acquisition des données est crucial pour réduire la durée d’examen et ainsi
ameéliorer le confort du sujet, diminuer les cotits, limiter les distorsions dans I'image (e.g.,
dues au mouvement), ou encore augmenter la résolution temporelle en IRM fonctionnelle.
I’échantillonnage compressif permet de sous-échantillonner 1’espace-k, et de reconstruire
une image de bonne qualité en utilisant une hypothése de parcimonie de 'image dans

une base d’ondelettes.

Les théories d’échantillonnage compressif s’adaptent mal & 'IRM, méme si certaines
heuristiques ont permis d’obtenir des résultats prometteurs. Les problémes rencontrés en
IRM pour Papplication de cette théorie sont i) d’une part, les bases d’acquisition (Fourier)
et de représentation (ondelettes) sont cohérentes ; et ii) les schémas actuellement couverts
par la théorie sont composés de mesures isolées, incompatibles avec 1’échantillonnage

continu le long de segments ou de courbes.

Cette theése vise a développer une théorie de 1’échantillonnage compressif applicable &
I'IRM et & d’autres modalités. D’une part, nous proposons une théorie d’échantillonnage
& densité variable pour répondre au premier point. Les échantillons les plus informadtifs
ont une probabilité plus élevée d’étre mesurés. D’autre part, nous proposons des schémas
et concevons des trajectoires qui vérifient les contraintes d’acquisition tout en parcourant

I’espace-k avec la densité prescrite dans la théorie de I’échantillonnage & densité variable.

Ce second point étant complexe, il est abordé par une séquence de contributions in-
dépendantes. D’abord, nous proposons des schémas d’échantillonnage & densité vari-
ables le long de courbes continues (marche aléatoire, voyageur de commerce). Ensuite,
nous proposons un algorithme de projection sur ’espace des contraintes qui renvoie la
courbe physiquement plausible la plus proche d’une courbe donnée (e.g., une solution
du voyageur de commerce). Nous donnons enfin un algorithme de projection sur des
espaces de mesures qui permet de trouver la projection d'une distribution quelconque

sur l'espace des mesures porté par les courbes admissibles. Ainsi, la courbe obtenue est

vi



physiquement admissible et réalise un échantillonnage & densité variable. Les résultats
de reconstruction obtenus en simulation & partir de cette méthode dépassent ceux asso-
ciées aux trajectoires d’acquisition utilisées classiquement (spirale, radiale) de plusieurs
décibels (de l'ordre de 3 dB) et permettent d’envisager une implémentation prochaine a

7 Tesla notamment dans le contexte de I'imagerie anatomique haute résolution.

Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive and non-ionizing imaging tech-
nique that provides images of body tissues, using the contrast sensitivity coming from
the magnetic parameters (T1, T and proton density). Data are acquired in the k-space,
corresponding to spatial Fourier frequencies. Because of physical constraints, the dis-
placement in the k-space is subject to kinematic constraints. Indeed, magnetic field
gradients and their temporal derivative are upper bounded. Hence, the scanning time

increases with the image resolution.

Decreasing scanning time is crucial to improve patient comfort, decrease exam costs,
limit the image distortions (eg, created by the patient movement), or decrease temporal
resolution in functionnal MRI. Reducing scanning time can be addressed by Compressed
Sensing (CS) theory. The latter is a technique that guarantees the perfect recovery of
an image from undersampled data in k-space, by assuming that the image is sparse in a

wavelet basis.

Unfortunately, CS theory cannot be directly cast to the MRI setting. The reasons are:
i) acquisition (Fourier) and representation (wavelets) bases are coherent and ii) sampling
schemes obtained using CS theorems are composed of isolated measurements and cannot
be realistically implemented by magnetic field gradients: the sampling is usually per-
formed along continuous or more regular curves. However, heuristic application of CS in

MRI has provided promising results.

In this thesis, we aim to develop theoretical tools to apply CS to MRI and other modal-
ities. On the one hand, we propose a variable density sampling theory to answer the
first inpediment. The more the sample contains information, the more it is likely to be
drawn. On the other hand, we propose sampling schemes and design sampling trajec-
tories that fulfill acquisition constraints, while traversing the k-space with the sampling

density advocated by the theory.

The second point is complex and is thus addressed step by step. First, we propose
continuous sampling schemes based on random walks and on travelling salesman (TSP)

problem. Then, we propose a projection algorithm onto the space of constraints that

vii



returns the closest feasible curve of an input curve (eg, a TSP solution). Finally, we
provide an algorithm to project a measure onto a set of measures carried by parameter-
izations. In particular, if this set is the one carried by admissible curves, the algorithm
returns a curve which sampling density is close to the measure to project. This designs
an admissible variable density sampler. The reconstruction results obtained in simula-
tions using this strategy outperform existing acquisition trajectories (spiral, radial) by
about 3 dB. They permit to envision a future implementation on a real 7 T scanner soon,

notably in the context of high resolution anatomical imaging.
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Chapter 1

Introduction

L’'Imagerie par Résonance Magnétique (IRM) est une technique d’imagerie non-invasive
et non ionisante, qui permet d’imager certaines grandeurs physiques a l'intérieur d’un
objet, comme la densité de protons par exemple. Un scanner (Fig. 1.1(a)) est util-
isé et permet d’obtenir un signal & deux ou trois dimensions que 1’on représente sous
forme d’image (Fig. 1.1(b)). Nous commengons par présenter briévement les principes
d’acquisition d’images par IRM dans la section 1.1. Nous présentons ensuite quelques
notions de Compressed Sensing (CS) (section 1.2, et montrons comment cette théorie
d’échantillonnage peut s’appliquer a 'IRM (section 1.3. Cette partie a pour but de don-
ner les motivations principales de cette thése, et & en fixer les hypothéses de travail.
Enfin nous résumons les contributions qui composent le manuscrit et présentons son

organisation (sections 1.4 et 1.5).

FIGURE 1.1: Tllustration d’un scanner IRM (a), et exemple d’image obtenue sur un
cerveau humain (b)
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1.1 L’imagerie par Résonance Magnétique

Nous donnons ici une description trés schématique du fonctionnement de 'IRM. Le

lecteur intéressé par plus de détails pourra se référer & (Liang and Lauterbur, 2000).

1.1.1 Principes de résonance magnétique

Le principe de résonance magnétique a été décrit dans les années 1940 (Bloch, 1946)
(Purcell et al., 1946) 11 repose sur le fait que certains noyaux (I’hydrogéne, le phospore,
le sodium) possédent une propriété quantique appelée spin. Cette grandeur peut étre
interprétée comme le résultat du mouvement de rotation du noyau autour de son axe. On
la note généralement [i. En ’absence de champ magnétique extérieur, I'orientation des
moments [i est répartie aléatoirement au sein d’un échantillon, et ’aimantation globale

est nulle : M =5 7i=0.

Les noyaux en présence d’un champ magnétique

En présence d’un champ magnétique ]§0, les spins tendent & s’aligner « parallélement »
(faible énergie) ou « anti-parallélement » (haute énergie) a la direction du champ magné-
tique. La différence d’énergie AFE est proportionnelle a I'intensité du champ magnétique
]§0:

AE = +|By| (L1)

oil v est le rapport gyromagnétique, et dépend du noyau (y = 2,675 s~L.T~! pour le
noyau d’hydrogéne). La statistique de Boltzmann donne le ratio entre le nombre de

noyaux a haute énergie N~ et a basse énergie N7:

NT _ -aB/ksT

N+t
ot kp est la constante de Boltzmann (1,38 x 10723 J.JK™1) et T est la température
du systéme. Par exemple, pour le noyau d’hydrogéne & température ambiante dans un
champ magnétique de 1 Tesla (T), si NT = 1000000, alors N~ = 1000006.

Précisément, les spins ne sont exactement alignés a By, mais réalisent un mouvement
de précession a la fréquence wy = v|Bg| (fréquence de Larmor) autour de ce vecteur
(Fig. 1.2)(b). Les phases dans ce mouvement étant aléatoires, la magnétisation globale

My au sein d’un échantillon est paralléle & By, comme l'illustre la Fig. 1.2(c).
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FIGURE 1.2: Tllustration du moment magnétique dans un échantillon (a). Les spins
précessent autour de I’axe de By avec une phase aléatoire (b). L’aimantation macro-
scopique est dirigée selon Bg. (Image tirée de (Poole, 2007)).

La magnétisation M étant négligeable devant ]§0, il faut « basculer » ce moment magné-
tique dans le plan transversal pour pouvoir mesurer M(). Une impulsion radio-fréquence

est alors utilisée.

Les impulsions radio-fréquence

Nous considérons désormais un modéle macroscopique, ol I'aimantation macroscopique
M suit un mouvement de précession a la pulsation wy autour de Bo. L’application d’un
champ magnétique ]§1 oscillant & la pulsation w, = wg dans le plan transversal provoque
un phénoméne de résonance et bascule 'aimantation M dans le plan transversal suivant
une trajectoire d’hélice (Fig. 1.3). A 1 T, pour le noyau d’hydrogéne, cela représente
une fréquence de 42,58 MHz, ce qui correspond & une onde radio-fréquence (RF): ]§1 est

ainsi également impulsion radio-fréquence.

FIGURE 1.3: Evolution de la magnétisation macroscopique M sous I’application

d’une d’une onde électro-magnétique a la fréquence de résonance. (a) Evolution de

'aimantation dans un repére fixe. (b) Evolution de ’aimantation dans un repére tour-
nant avec B;. Image tirée de (Poole, 2007).

L’effet de I'impulsion radio-fréquence est double : d’une part 'aimantation longitudinale

M, est diminuée & cause du phénomeéne de bascule. D’un point de vue quantique, I’apport
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d’énergie par I'onde fait passer des spins de basse & haute énergie. D’autre part, dans le
plan orthogonal, I'aimantation M, augmente car les spins précessent autour de ]§1 sl

se crée alors un moment magnétique résultant dans cette direction.

Le phénoméne de relaxation

—

Lorsque l'impulsion radio-fréquence Bp s’arréte, 'aimantation macroscopique M re-
tourne dans sa position d’équilibre en suivant une trajectoire hélicoidale. Le retour

a I'équilibre se fait via deux phénomeénes indépendants:

o La relaxation longitudinale. Les spins retournent dans leur état d’équilibre : cela
provoque la repousse de 'aimantation longitudinale M,. La vitesse de repousse
dépend du parameétre 77 qui traduit U'interaction des spins avec leur environnement.

Précisément:
M, = My (1 — exp(—t/T1))

ol T7 est le temps nécessaire a la récupération de 63% de 'aimantation longitudi-

nale.

e La relazation transversale. En ’absence du champ radio-fréquence, les spins vont
a nouveau se déphaser. Le moment résultant dans le plan orthogonal va alors

diminuer : c’est la relaxation spin-spin. Précisément :
Mayy(t) = Myy(0) exp(—t/T3).

Le temps T, représente le temps pour que la magnétisation transverse retombe

a 37% de la magnétisation initiale. En pratique, a cause des inhomogénéités du

champ By, la vitesse de décroissance est plus rapide et régie par le parameétre 15 .
1

1 1
La relation entre T et T35 est : = — 4+ 77 ol = vA By, ou ABj est la
2

;3 Ty T
différence d’intensité locale de 'intensité du champ Bo.

A ce stade, nous n’avons considéré que des grandeurs moyennes au sein d’'un échantil-
lon. L’objectif de I'imagerie par résonance magnétique est d’effectuer des cartes de ces
grandeurs. En effet, les différents paramétres (71, T5) sont spécifiques des tissus et per-
mettent une représentation de ’'objet comme dans la Fig. 1.1(b). Des grandeurs typiques

sont fournies dans le tableau 1.1.
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TABLE 1.1: Exemples de valeurs de paramétres 77 et 75 en ms dans le cerveau a 1,5
et 3 Tesla. Etude tirée de (Stanisz et al., 2005).

‘ matiére blanche matiére grise ‘

T, 37T) 1100 1500
T, (3 T) 60 70
Ty (15 T) 800 1100
Ty (1,5 T) 80 95

Le signal IRM

Le champ magnétique M, est mesuré par une antenne réceptrice. Puisque le vecteur de
magnétisation oscille autour de ’axe de By a la pulsation wg et décroit a la vitesse Ty a

cause de la relaxation transversale, le signal S(t) a la forme présentée Fig. 1.4.

T-:,pl'.
21
n .
. _ rﬂ]h
1 :| I-IF I TN o ST
| iiuili s
1k

FIGURE 1.4: Signal S(t) avec 'enveloppe de la décroissance exponentielle en Ty, Image
tirée de (Poole, 2007).

1.1.2 Utilisation en imagerie

Pour réaliser des images & partir des propriétés magnétiques de la matiere, il faut localiser
spatialement le signal de résonance magnétique. Pour cela, des gradients de champ
magnétique sont utilisés. Il s’agit d’un champ magnétique supplémentaire, orienté selon
I'axe de By et d’intensité G(7) = (z - Ga,y - Gy,z-G,) ou T = (x,y,2) (Fig. 1.5). Les

quantités G, Gy et G, sont des grandeurs scalaires qui peuvent varier dans le temps.

Placons le temps t = 0 a la fin de 'impulsion radio-fréquence. Le moment magnétique
M, est alors non nul et oscille autour de I'axe de ]§0 & la pulsation wg. En ajoutant un
gradient additionnel, la pulsation du mouvement autour de By est w(7, ) = wo +vG(t).7

et dépend donc de la position du point dans I'objet. Pour simplifier, négligeons 'effet
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FIGURE 1.5: [Illustration des gradients de champ magnétique. a) G, b) Gy, ¢) G..
(Image tirée de (Poole, 2007)).

de relaxation du signal. Le signal dS émis par un élément de volume dV en 7 est donné

par:

t
dS(7,t) o p(T) exp <z/ w(T, t’)dt’) dv,
0

ou p(7) est la densité de noyaux en 7. L’antenne réceptrice mesure la somme du signal

sur tout le volume, c’est & dire:

S(t) / o(7) exp (z /0 Lol t’)dt’) dadydz

Apreés démodulation par wy, le signal obtenu S’ est:

S'(t) o / p(7) exp (m / t F.@(t’)dt’) dzdydz

0
Soit maintenant k(t) = —y fg G(t)dt'. Alors Péquation précédente s'écrit:

S'(t) o /p(f") exp (—i FE(t)) dzdydz

Cette équation relie le signal a la transformée de Fourier de l'objet p(7) a la fréquence
spatiale E(t) Cette relation est centrale et indique que les acquisitions en imagerie par
résonance magnétique se font dans l'espace de Fourier des fréquences spatiales (appelé

ici espace-k).

1.1.3 Exemple de trajectoires d’acquisition en TIRM
La sélection de coupe

Les gradients présentés ci-dessus sont appliqués dés la fin de U'impulsion radio-fréquence.

Une technique classique comnsiste a appliquer un gradient dans une direction pendant
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Iimpulsion RF. Cela permet de faire dépendre linéairement la fréquence de résonance
dans une direction, et donc d’exciter uniquement une coupe de noyaux dans l'objet.

Ainsi, une acquisition IRM peut étre réalisée en 2D ou en 3D.

Exemple de séquences

On appelle répétition ’ensemble des données collectées aprés une impulsion RF. En
théorie, une image IRM peut étre acquise en mesurant 1’espace-k avec une répétition.
Ce type de séquence est utilisée principalement en imagerie fonctionnelle (IRMf) ou la
résolution temporelle est trés importante. Cependant, cela ne permet pas d’obtenir des
images de bonne résolution spatiale et crée des artefacts. En effet, le signal décroit assez
rapidement (cf Tab 1.1), et une trajectoire trop longue est sensible a cette relaxation.
De plus, la vitesse de déplacement dans I'espace-k est limitée par les contraintes de la
machine sur la valeur du gradient (Gax) et sa dérivée (limitée par le slew-rate Spax). Ces
deux éléments limitent le nombre de mesures par répétition. En IRM, il est donc commun
d’avoir recours a plusieurs répétitions. Une technique d’acquisition treés classique consiste

a acquérir ’espace-k ligne par ligne (Fig. 1.6).

a) b)
o

RF -
6.\ .
G, :
G—p
s —+— -

_— 2

[if2] 3 [ 4 4

FIGURE 1.6: Chronogramme de séquence d’acquisition de I’espace-k ligne par ligne (a)
et parcours correspondant dans l’espace-k. Phase 1: excitation d’une seule coupe a
I’aide du gradient G, et 'impulsion RF. Phase 2: déplacement sur le bord gauche de
Pespace-k (en vert dans le schéma (b)). Phase 3: Déplacement latéral dans ’espace-k
et acquisitions. Le vecteur de gradient est proportionnel & la vitesse de déplacement
dans l’espace-k. Par exemple, en phase 3, G, > 0,G, = 0,G,; = 0 correspond & un
mouvement rectiligne de la gauche vers la droite de ’espace-k. (Image tirée de (Poole,
2007)).

Au cours de cette thése, nous comparons réguliérement nos trajectoires d’acquisition
aux trajectoires EPI (Echo-planar imaging) et spirales qui permettent un parcours de
I'espace-k au cours d’une seule répétition. Plusieurs répétitions peuvent toutefois etre

utilisées (en entrelacant les trajectoires) pour augmenter la qualité de I'image (meilleure
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résolution, meilleur rapport signal-sur-bruit...). Ces trajectoires sont présentées en fig-

ures 1.7 et 1.8.

a) b) kyt
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FIGURE 1.7: Chronogramme de la séquence EPI (acquisition de I’espace-k ligne par

ligne en une répétition) (a) et parcours correspondant dans ’espace-k. Phase 1: excita-

tion d’une seule coupe a I'aide du gradient G, et 'impulsion RF. Phase 2: déplacement

sur un coin de l’espace-k (en vert dans le schéma (b)). Phase 3: Déplacement dans

’espace-k et acquisitions. A nouveau, le gradient G, permet de se déplacer latérale-

ment dans l'espace-k, alors que les décalages verticaux sont réalisées par de petites
impulsions (blips) selon G,. (Image tirée de (Poole, 2007)).

(1]2] 3 |

FIGURE 1.8: Chronogramme de la séquence spirale (a) et parcours correspondant dans
Pespace-k. (Image tirée de (Poole, 2007)).

Pondération

La présentation de I'imagerie par résonance magnétique faite ici est loin d’étre exhaustive.
L’objectif est de donner les clés au lecteur pour comprendre les contributions de ce travail.
Mentionnons toutefois qu’en IRM, il est possible d’obtenir plusieurs types d’informations,
a savoir des cartes dépendant d’'un parametre parmile 77, Ty, T3, et la densité de protons.
Pour cela, il suffit de faire varier les parameétres d’acquisition TR (le temps entre deux

répétitions, variant de 500 a 1500 ms) et TE (temps d’écho: le temps entre 'impulsion RF
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et la mesure du signal de quelques ms & 100 ms). Des images avec différentes pondérations

sont présentées Fig. 1.9.

T,-weighted T,-weighted PD-weighted

FIGURE 1.9: Exemple d’images IRM avec des pondérations en 73 a gauche (TE et TR
courts), T» au centre (TR et TE longs), et en densité de proton & droite (TR longs et
TE courts).

Une image pondérée T; est obtenue en appliquant des TR courts. En effet, d’une
excitation a la suivante, le signal disponible sera proportionnel 4 la repousse longitudinale
du signal & la fin de la répétition précédente, et dépendra donc T7. Un TE court évite
un trop grand déphasage dans le plan orthogonal & By et empéche que le signal dépende
de Ts.

Rappelons qu’aprés une excitation RF, les protons perdent la cohérence de leur phase
dans leur mouvement de rotation dans le plan orthogonal & ]§0. Cette perte de cohérence
est due a l'interaction spin-spin (décroissance T») et aux inhomogonéités locales de champ
magnétique (75). Une image pondérée T3 est simplement obtenue en considérant des
longs TR (la repousse est compléte et ne dépend plus de T1). Pour obtenir une image
pondérée T5, on utilise que le déphase dii aux inhomogénéités de ]:3;0 est réversible. En
effet, soit ¢ = 0 le temps a la fin de 'impulsion RF. Aprés celle-ci, les spins se déphasent
car leur vitesse de rotation dépend de la fréquence de Larmor locale. A t = TE /2,
on applique une impulsion RF deux fois plus longue (la rotation est alors de 180°) qui
renverse les spins. Les spins les plus rapides sont désormais en retard sur les spins les
plus lents. A t = T'E, les spins se réalignent et Ueffet des inhomogonéités du champ ]§0
sont annulés. Cette séquence s’appelle écho de spin et permet de réaliser une image

pondérée Ts (en considérant des TR longs pour éviter la dépendance en T).

Une alternative aux séquences écho de spin sont les séquence & écho de gradient. Aprés
I'excitation RF, des gradients de champ magnétique sont appliqués et déphasent le signal.
Le signal est alors maximal lorsque les gradient symétriques ont été joués (le déphasage
dit aux gradients est alors annulé). Par exemple, dans la Fig. 1.6, pour chaque impulsion
RF, I’écho est obtenu au milieu de la phase 3, i.e., au milieu de la ligne acquise, car le

gradient déphasage du au gradient de lecture G, est compensé a ce moment-la (c’est le
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temps d’écho d’une séquence écho de gradient). Dans cette thése, nous considérerons des
séquences & écho de gradient, méme si nous ne cherchons pas particuliérement a mesurer

I’écho, car celui correspondrait & un passage par le centre de 'espace-k.

L’avantage des séquences écho de gradients est qu’il est possible de basculer I’aimantation
d’un angle o <90°. Le signal disponible ainsi que le rapport signal-sur-bruit sont plus
faibles. L’avantage est que la durée d’attente pour la repousse du signal est plus faible.

On a donc un compromis entre rapport signal-sur-bruit et TR.

1.1.4 Les limites de ’'IRM
Un compromis résolution spatiale-résolution temporelle

Le nombre de données nécessaire a collecter dans 'espace-k est lié & la résolution a
laquelle on souhaite reconstruire l'image : c’est le théoréme de Shannon (Mallat, 1999).
Cependant, la collecte des données prend du temps car la vitesse de déplacement dans
I’espace-k est limitée par les paramétres des gradients. Accélérer 'acquisition en IRM est
un challenge crucial car cela permet d’augmenter le confort du patient (environnement
bruyant et exigu), et peut permettre de diminuer les cotits dans un contexte clinique.
De plus, cela peut permettre d’augmenter la résolution temporelle en imagerie fonction-
nelle En IRMf de repos, réduire le TR permet de réduire les effets du mouvement du
patient, ou d’éviter les artefacts de repliement (TR < 1 8). En IRMf d’activation (i.e.,
le sujet doit effectuer une tache pendant l’acquisition), réduire le TR permet de mieux
estimer la fonction de réponse hémodynamique, qui correspond a la réponse impulsion-
nelle du couplage neuro-vasculaire (Ciuciu et al., 2003). Une meilleure estimation de cette
fonction permet de recouvrer des activations plus fines dans certaines régions cérébrales
impliquées dans les taches a réaliser par le sujet au cours d’un paradigme (Handwerker
et al., 2004; Badillo et al., 2013). A temps d’acquisition fix¢, la problématique réciproque

est d’améliorer la qualité et la résolution de I'image.

A trés haut champ' (|Bo| > 7T), le rapport signal-sur-bruit (SNR) est accru dans les
images (le signal disponible est plus fort, et on a la formule SNR o [Bol). II est donc
possible d’augmenter la résolution spatiale. Ainsi I’ensemble des fréquences & mesurer
dans 'espace-k est plus conséquent, et fait exploser le temps d’acquisition. Par exemple
Pacquisition de données d’une partie de cerveau a la résolution 300um isotrope (image

de 640 x 640 x 192 pixels) a nécessité 1 heure et 20 minutes d’acquisition.

!Le centre d’acquisition NeuroSpin posséde un scanner clinique de 7 T et attend un scanner de 11.7 T
pour février 2016: une premiére mondiale !
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Méthodes existantes pour accélérer 1’acquisition.

L’imagerie parallele (IRMp) a été la premiére méthode proposée pour accélérer ’acquisi-
tion IRM (Sodickson and Manning, 1997; Pruessmann et al., 1999; Griswold et al., 2002)
et consiste & utiliser plusieurs antennes pour la réception du signal. Ainsi chacune mesure
une partie de I'image, qui est finalement reconstruite par une reconstitution de l’espace-
k (méthode GRAPPA) (Sodickson and Manning, 1997; Griswold et al., 2002), ou par
une reconstruction directe dans le domaine image (méthode SENSE) (Pruessmann et al.,
1999). L’utilisation de la redondance d’information collectée permet de réduire le nombre
de mesures et donc d’accélérer les acquisitions. D’autres techniques proposent d’acquérir
simultanément plusieurs coupes en IRMf avec une séquence EPI (Feinberg et al., 2010),
et permettent d’acquérir des volumes d’image en moins d’une seconde contre 2 & 4 en

imagerie fonctionnelle classique.

Dans cette thése, nous développons des méthodes qui permettent d’accélérer I’acquisition
d’images IRM en échantillonnant 'espace-k, et en utilisant des informations a priori sur
I'image & reconstruire. Les méthodes utilisées dans cette thése se basent sur la théorie
du Compressed Sensing (ou échantillonnage compressif) introduit dans la communauté
de 'IRM par (Lustig et al., 2008). Ces techniques peuvent étre combinées avec I'IRMp.
Cependant, dans ce travail, nous nous sommes limités & 'imagerie « classique », i.e,
avec une seule antenne. L’impact de 'utilisation de plusieurs antennes sur les stratégies

d’échantillonnage est illustré par exemple dans (Florescu et al., 2014).

1.2 Introduction a la théorie de I’échantillonnage compressif

Dans cette thése, nous traiterons des images discrétes, ¢’est a dire définies sur une grille
finie de pixels. Nous les noterons souvent sous forme d’un vecteur de R™ ou n est
le nombre de pixels. En imagerie par résonance magnétique, comme dans beaucoup
d’autres d’autres systémes, le signal est observé via un ensemble de mesures linéaires
(e.g., des coeflicients de Fourier en IRM). Ainsi, il existe un vecteur y € R™ et une

matrice A € R™*"™ tels que I’ensemble des mesures s’écrive:
y= Az

Si la matrice A est inversible (en particulier m = n), la reconstruction du signal se
fait en inversant la matrice A. Par exemple, en imagerie par résonance magnétique,
lorsque les mesures se font sur une grille Cartésienne, 'image s’obtient par transformée
de Fourier inverse. L’échantillonnage compressif s’intéresse au cas ol m < n, ce que

nous supposerons désormais.
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1.2.1 Parcimonie et incohérence : les clés du Compressed Sensing

Lorsque m < n, 'ensemble des solutions de I'équation y = Ax est infini. Pour pouvoir
retrouver z & partir de y, il faut donc avoir d’autres informations sur le vecteur x. Une
hypothése généralement formulée est que x est parcimonieux (resp. compressible), c’est
a dire qu'il peut étre représenté (resp. approché) par un vecteur de R™ contenant s
coefficients non nuls, avec s < n. C’est le cas notamment des signaux sonores via la
représentation de Fourier a fenétre, ou des images dans des bases d’ondelettes (le format
de compression JPEG-2000 utilise une telle représentation). Ainsi, quitte & modifier la
matrice A, on suppose que z est parcimonieux. Une formulation naturelle pour retrouver

x est le probléme:

arg min |z|o
y=Az
ou |z]p est la pseudo-norme qui compte le nombre de coefficients non-nuls de z. Cepen-
dant, ce probléme est NP-complet, et ne peut étre résolu pour des problémes de taille in-
téressante. On considére généralement le probléme convexe suivant, qui permet d’obtenir

des signaux parcimonieux également :

arg min ||z (1.2)
y=Az

n
ou [[zi = |zl-
i=1

Les premiers résultats de Compressed Sensing (Candés et al., 2006a; Candés, 2008;
Donoho, 2006), donnent des garanties de reconstructions reposant sur la propriété RIP :
Restricted Isometry Property. Une matrice A vérifie la condition RIP g’il existe d5 > 0

tel que, quelque soit x s-parcimonieux :
(1 =)zl < [[Azll2 < (1 4 0)||z]l2- (1.3)

Cette condition permet d’obtenir le résultat suivant (Candes, 2008) :

Theorem 1.1. Si 63, < V2 — 1, alors = est l'unique solution de (1.2).

Ce résultat est uniforme au sens ou si cette propriété est vérifiée pour A, alors tous
les vecteurs s-parcimonieux pourront étre reconstruits exactement. Les inconvénients
de cette approche sont multiples. A part pour des matrices trés spécifiques (matrices
aléatoires a entrées indépendentes identiquement distribuées (i.i.d). par exemple) ne
correspondant pas a des systémes physiques, la constante RIP ne peut pas étre calculée.

De plus, la condition RIP est trés restrictive car elle garantit la reconstruction de tous
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les signaux s-parcimonieux. Or, dans les applications, ’objectif est de reconstruire un
seul signal. On peut donc espérer obtenir des conditions de reconstruction exacte bien

moins restrictives que le RIP.

Des résultats de reconstruction non uniformes (i.e., valables pour un signal x donné)
sont apparus plus récemment (Rauhut, 2010; Candés and Plan, 2011). Considérons une

matrice orthogonale

ay
Ay = :
ap,
et construisons A de la fagon suivante :
*
ay,
A= : )
*
@,
ou les entiers {Ji,...,J,} sont tirés de maniére i.i.d. et uniformément dans ’ensemble

{1,...n}. Alors, un résultat typique s’écrit :

Theorem 1.2. Soit x un vecteur s-parcimonieux. St le nombre de mesures m vérifie:

m>=C-s- <n max ||ak||go> -log (n) (1.4)
n

1<k<n

ot C' est une constante universelle, alors x est l'unique minimiseur de (1.2) avec proba-

bilité 1 — 7.

Ce théoréme est riche en enseignements car il fait intervenir deux grandeurs cruciales de
la théorie de I’échantillonnage compressif. D’une part, le nombre de mesures nécessaires
m est proportionnel a la parcimonie s. Comme expliqué précédemment, sans information
a priort, il aurait fallu m = n mesures, alors que si s < n, on peut espérer reconstruire
le signal & partir de m < n mesures. L’autre grandeur cruciale est la cohérence k(Ap) =
n - max |lax||%. La cohérence est comprise entre 1 et n pour des matrices orthogonale.
IIKKN
Pour la transformée de Fourier discréte F, k(F) = 1, ce qui est un cas optimal. Un des
pire cas est 'identité car k(I,,) = n. La cohérence mesure comment un atome de la base
dans laquelle le signal est parcimonieux s’« étale » dans la base d’acquisition. Mieux

I’énergie de ces atomes est répartie dans la base d’acquisition, plus une mesure fournit

d’information sur le signal.

En imagerie par résonance magnétique, la matrice Ag est égale & F*W ou U est la matrice

d’une transformée en ondelettes orthogonale inverse. Dans ces conditions, k(Ag) = O(n),
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ce qui rend les résultats d’échantillonnage compressif non applicables en IRM : c’est la

« barriére de la cohérence » (Adcock et al., 2013).

1.2.2 Casser la « barriére de la cohérence »

La cohérence k est un critére global sur les bases de représentation et d’acquisition. Beau-
coup de matrices ont ainsi une distribution de |a;||2, trés hétérogéne, comme c’est le cas
de la matrice F*W¥ en IRM2. Un exemple pathologique est introduit dans le papier (Bigot

et al., 2013) ou les auteurs considérent la matrice :

1 0
Ay = .
0 anl

Cette matrice vérifie k(Ap) = 1. Dans ce cas, le théoréme 1.2 n’est pas intéressant
car le nombre de mesures doit étre O(n). Cependant, en mesurant la premiére com-
posante du signal de maniére déterministe et les autres échantillons de maniére aléatoire,
le théoréme 1.2 assure la reconstruction dés que m > 1+ C s 25 - log <%) avec
probabilité 1 — n. Un échantillonnage déterministe des échantillons correspondant aux
grandes valeurs de ||a;||%, est une maniére simple de casser la barriére de cohérence. Une

formalisation de cette technique est donnée par le théoréme 2.9 page 36.

Une seconde méthode pour casser la barriére de cohérence est de réaliser un échantil-
lonnage a densité variable : les échantillons les plus cohérents (ce sont les seuls qui
contiennent l'information de certains atomes de la bases de représentation) sont plus
importants et doivent étre tirés avec une plus grande probabilité (Krahmer and Ward,
2014; Puy et al., 2011; Chauffert et al., 2014a). Précisément, le théoréme suivant, prouvé
dans (Rauhut, 2010; Candés and Plan, 2011) permet de déterminer une distribution « op-

timale » qui justifie ’échantillonnage & densité variable:

Theorem 1.3. Soit © un vecteur s-parcimonieux et m la distribution définie par

I3

T = —=f7— .
> i1 a3

Si A est construite en tirant m lignes de Ay suivant 7, et si

n
n
m>Cos |3 a2 -log()
=1 1

Zvoir la figure 2.3(b-c) page 38
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ot C' est une constante universelle, alors x est ['unique minimiseur de (1.2) avec proba-

bilité 1 — 1.

Ce théoréme semble plus applicable a I'TRM car on peut montrer 37 ||a; 12, = O(log(n))
(Krahmer and Ward, 2014). Ainsi, le nombre de mesures nécessaires pour reconstruire
une image IRM est O(slog(n)?), dans le cas oi A = F*W¥. Cependant, pour une image
de taille 256 x 256, log(n)? ~ 123, ce qui rend le résultat peu intéressant. En effet,
C > 1, et si s est de I'ordre de 0,2 - n (ce qui correspond a une bonne approximation de

I'image), le nombre de mesures m dépasse n...

En pratique, le théoréme 1.3 est utilisé pour donner une idée sur la stratégie d’échantillonnage
dans le cadre de simulations d’échantillonnage pour 'IRM, et un nombre de mesures de
l'ordre de m = 0,2 -n permet une trés bonne reconstruction de I'image, méme si les con-
ditions requises par le théoréme sont loin d’étre remplies ! Une réponse & ce phénoméne
est donnée dans (Adcock et al., 2013). L’hypothése effectuée jusqu’a présent est la parci-
monie du signal IRM. Or le signal posséde une structure, sa parcimonie est différente

dans chaque sous-bande de sa décomposition en ondelettes (Fig. 1.10).

FIGURE 1.10: Décomposition d’une image de cerveau dans une base d’ondelettes.

Les auteurs de (Adcock et al., 2013) mettent en évidence l'importance de la structure
de la parcimonie par le flip test. Sur des schémas classiques dans le cadre de I'TRM par
exemple, leur conclusion est que si les coefficients non nuls sont permutés (le vecteur z
est renversé), alors la reconstruction ne fonctionne plus (en particulier, la matrice A en

IRM ne vérifie pas la condition RIP).

La parcimonie dans une base d’ondelettes croit avec la résolution (Fig. 1.10). Des ré-
sultats faisant intervenir la structure de la parcimonie sont apparus récemment (Boyer
et al., 2015a; Adcock et al., 2013). Le nombre de mesures nécessaires est alors plus
faible que celui donné par le théoréme 1.3, et la distribution d’échantillonnage est légére-
ment différente. Elle est plus importante au centre, car ce sont les basses fréquences qui

contiennent lessentiel de I'information du signal.
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Dans cette thése, nous nous sommes limités & des tirages selon la distribution fixée par
le théoréme 1.3, ou méme selon des distributions heuristiques. La plupart des méthodes
présentées dans cette thése sont génériques et s’adaptent & n’importe quelle distribution

d’échantillonnage.

1.2.3 Remarques

e Dans les systémes physiques, les données observées sont souvent contaminées par
du bruit. En imagerie par résonance magnétique, celui-ci provient de I'agitation
thermique a l'intérieur de 'objet a imager, ainsi que des appareil électroniques.
Celui-ci peut étre modélisé en premiéere approximation par un bruit blanc gaussien
additif (Aja-Fernandez and Tristan-Vega, 2013). L’acquisition peut alors étre mod-

élisée par ’équation:
y=Ax+n

ol Ny i N(0,1?), 1 < i < m. Les résultats de reconstruction présentés précédem-
ment sont stables par rapport au bruit, et également par rapport a I’approximation
du signal par un signal s-parcimonieux, si celui-ci est seulement compressible. Preé-

cisément, la méthode de reconstruction est modifiée en :
1 9
arg min g [|y — Az[|3 + Allz]:. (1.5)
z

Alors, avec le méme nombre de mesures que dans le théoréme 1.3, et en prenant

A =10-1n-log+/n, la reconstruction est stable au sens oi :

= zlly  [sTog(m)
o el R LRy RS
o~ 2| ( Ty e

ou z* est la solution de (1.5), et x4 est le vecteur s-parcimonieux formé des s plus

grandes composantes de x en valeur absolue (Candés and Plan, 2011).

e Dans cette thése, nous nous limitons & des reconstructions dans des bases d’ondelettes
orthogonales. Cependant, en pratique, il est possible d’obtenir des meilleures re-
constructions qu’avec le probléme 1.5, qui crée des artefacts d’ondelettes. Des
méthodes reposant sur des ondelettes redondantes ou utilisant une pénalisation par
variation totale ont été proposées (Block et al., 2007; Boyer et al., 2012; Florescu
et al., 2014). Des garanties semblables aux théoréme 1.3 commencent & apparaitre
dans le cas de bases redondantes (Poon, 2015b) et pour des régularisations par

variation totale (Poon, 2015a).
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1.3 L’échantillonnage compressif en IRM : principes et lim-

ites actuelles.

La théorie de I’échantillonnage compressif a été rapidement introduite dans la commu-
nauté IRM (Lustig et al., 2007). Avant de discuter des résultats existants, rappelons les

contraintes d’échantillonnage en IRM.

Les contraintes d’échantillonnage en IRM

Le déplacement dans ’espace-k s’effectue grace aux gradients de champ magnétique
G(t) : k(t) = —y-G(t). Ceux-ci étant créés par des courants dans trois bobines (chacune
créant un champ magnétique dans une direction), ils sont limités en intensité, et leur

dérivée est également bornée:
IGO] < Gmaxs  IGO)] < Smax, V€ [0,7], (1.6)

ou T est le temps d’acquisition le long de la trajectoire k(t). La norme utilisée est soit
la norme || - ||2, soit la norme || - ||, suivant si le courant dans chacune des trois bobines
est issu d’un méme générateur ou non. Une trajectoire d’acquisition dans ’espace-k doit

donc appartenir & ’ensemble suivant :
Sr={s:10,T] = R [[5()]| <7 Gmax, [3(®)[| <7 Smax,Vt € [0,T]} . (1.7)

De plus, les gradients sont appliqués apres la fin de 'excitation RF, ce qui impose s(0) =
0. Si le temps de répétition est fixé, on peut également supposer s(k - TR) = 0, i.e., la
trajectoire repart du centre de 'espace-k tous les TR. Nous pouvons donc considérer
un ensemble de contraintes affines A. Une trajectoire IRM est jouable si elle vérifie les
contraintes cinématiques, i.e., € Sr, et si elle vérifie les contraintes affines, i.e., € A,

dépendantes de la séquence.

L’application de I’échantillonnage compressif en IRM

La premiére utilisation de I’échantillonnage compressif en IRM (Lustig et al., 2007) a
cherché & adapter directement les résultats du type du théoréme 1.2. Les auteurs ont
proposé d’utiliser un échantillonnage a densité variable de maniére heuristique. Cepen-
dant, les schémas obtenus a partir de tirages i.i.d. (Fig. 1.11(a)) ne sont pas faisables
en 2D car ils ne sont méme pas sur une courbe continue, et n’ont donc aucune chance

d’appartenir & Sy. La solution proposée est de parcourir l'espace-k le long de lignes
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paralléles dans la troisiéme dimension (Fig. 1.11(b)), en effectuant plusieurs répétitions.
En ce sens, cette stratégie d’acquisition est trés proche de celle proposée en Fig. 1.6,

s’avére donc réalisable en pratique, et trés simple & mettre en ceuvre.

(b)
f_//////
A

FIGURE 1.11: Schéma d’échantillonnage aléatoire 2D proposé dans (Lustig et al.,
2007) (a). Acquisition selon la troisiéme direction (direction de lecture) (b).

Les trajectoires ainsi obtenues sont physiquement réalisables, mais ne relévent plus de la
théorie de I’échantillonnage compressif. De nouvelles théories sont apparues a posteri-
ori (Bigot et al., 2013; Boyer et al., 2015a) pour décrire une théorie de I’échantillonnage
par « blocs de mesures » (par exemple, des lignes), mais les lignes paralléles sont loin

d’étre optimales selon cette théorie.

D’autres méthodes utilisent une pré-modulation du signal pendant 'impulsion RF pour
diminuer la cohérence entre les bases d’acquisition (qui n’est plus la transformée de
Fourier) et la base de représentation. Cette méthode appelée spread spectrum a été
introduite dans (Puy et al., 2012a; Haldar et al., 2011). L’objectif de ces tentatives est
de se rapprocher de la théorie de ’échantillonnage compressif. L’inconvénient est que la
structure du signal est détruite, et en particulier, il n’est plus possible de promouvoir les

basses fréquences qui contiennent I'information du signal.

Trajectoires d’échantillonnage en IRM

Bien avant la théorie de ’échantillonnage compressif, des trajectoires d’acquisitions par-
tielles de I'espace-k sont apparues pour accélérer les acquisitions IRM. Les deux grands
types de trajectoires utilisés pour sous-échantillonner I'espace-k en IRM sont les trajec-
toires spirales (Spielman et al., 1995; Tsai and Nishimura, 2000; Kim et al., 2003; Park
et al., 2005) et radiales (Feng et al., 2014). Ces trajectoires sont facile & implémenter et
vérifient les contraintes, ce qui explique leur succés. D’autres types de trajectoires sont
également rencontrées dans la littérature : des spirales bruitées (Lustig et al., 2007), des

trajectoires en rosette (Noll, 1997), des trajectoires 3D hélicoidales (Shu et al., 2006)...
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Ces méthodes n’ont pas de justification théorique mais sont facile & implémenter sur
des scanners et permettent d’acquérir des images d’assez bonne qualité. Cependant, les
théories de I’échantillonnage laissent penser qu’un sous-échantillonnage plus important
de l'espace-k, et donc un gain en temps d’acquisition est possible. Les premiéres justifi-
cations théoriques concernant des trajectoires continues (radiales, spirales, et courbes de
Hilbert) ont reposé sur un calcul de la cohérence mutuelle (Willett, 2011)3. Récemment,
une série d’articles (Polak et al., 2012a; Bigot et al., 2013; Boyer et al., 2014) a généralisé
les résultats d’échantillonnage compressif pour des ensemble de mesures fixés a ’avance.
L’idée est de se donner un ensemble de courbes admissible (dans St) et de faire un tirage
i.i.d. parmi ces courbes, selon une distribution qui peut étre calculée explicitement. Ceci
permet de réaliser un échantillonnage physiquement plausible, mais n’est pas générique
car il dépend d’un choix a priori d’'un ensemble de courbes. Toutefois, cette approche
généralise les schémas radiaux et spirales, car il est possible d’inclure des segments par-
tant du centre de ’espace-k ainsi que des trajectoires spirales dans 'ensemble des courbes

que 'on se donne.

D’autres travaux ont tenté de générer des trajectoires d’échantillonnage dont l'objectif
est de mesurer une grille suffisamment fine de ’espace d’acquisition afin de vérifier le
critere de Shannon (Unnikrishnan and Vetterli, 2013; Grochenig et al., 2014) lorsque le

signal est & bande limitée.

Problématique

Les expériences d’échantillonnage compressé en deux dimensions (Knoll et al., 2011;
Chauffert et al., 2013b) ont montré que la densité d’échantillonnage est cruciale pour
obtenir des bons résultats de reconstruction. L’approche classique qui consiste & ef-
fectuer un tirage aléatoire en deux dimension et de mesurer dans la troisiéme direction
comme présenté Fig. 1.11(b) est sous-optimale, car dans la troisiéme direction, la den-
sité d’échantillonnage est uniforme. Or, en deux dimensions, les meilleures densités
d’échantillonnage sont denses au centre, et décroissent lorsque 1’on s’éloigne du centre.
Nous montrerons qu’en trois dimensions également, les densités & décroissance radiale
permettent d’obtenir les meilleurs résultats de reconstruction, et donc que ’approche

classique est sous-optimale.

L’objectif de cette thése est donc le suivant: [modifier|

Comment, & temps d’acquisition ou & nombre de mesures fixé, réaliser le

schéma d’échantillonnage physiquement admissible ?

3Le papier contenait des erreurs corrigées dans (Willett., 2011)
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1.4 Contributions

Les contributions présentées dans cette thése sont les suivantes:

e Dans le Chapitre 2, nous reformulons les théorémes d’échantillonnage compressif
de (Rauhut, 2010; Candés and Plan, 2011) a la maniére du théoréme 1.3, de maniére
& définir une distribution optimale dépendant des bases d’acquisition et de représen-
tation (Fig. 1.12(a)). Comme expliqué précédemment, un échantillonnage a densité
variable permet de casser la « barriére de la cohérence ». Nous introduisons une sec-
onde méthode pour casser cette barriére reposant sur ’échantillonnage déterministe
des basses fréquences de 'espace-k (Théoréme 2.9) illustré Fig. 1.12(b). La densité

d’échantillonnage optimale est enfin comparée & des distributions heuristiques sur

des simulations en 2D.

(b)

FIGURE 1.12: Distribution 7 optimale (a) et schéma d’échantillonnage déterministe
des basses fréquences correspondant aux grandes valeurs de ||a;||%, pour diminuer la
cohérence (b).

e Nous définissons un p-échantillonneur & densité variable comme une trajectoire dont
la mesure empirique (ou mesure d’occupation) converge vers p quand le longueur
de la trajectoire converge vers I'infini. Nous en donnons deux exemples. Le premier
est fondé sur des marches aléatoires (Fig. 1.13(a)). Nous introduisons une inégalité
de concentration nouvelle pour une chaine de Markov & valeurs dans les matrices

Hermitiennes (chapitre 3). Celle-ci permet de déduire un résultat d’échantillonnage
n
5
compressif ot le nombre de mesures est O | — - Z lla;j||% - log(6n/n) |, ot € est le
€
i=1

trou spectral de la chaine de Markov. Le second est la solution d’un probléme de
voyageur de commerce (Fig. 1.13(b)) et nous relions la distribution selon laquelle
les « villes » sont tirées et la distribution de la courbe reliant ces points. Le message
mis en avant par ces deux approches est qu’en plus de la densité d’échantillonnage,

le temps de mélange des processus d’échantillonnage est crucial.
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FIGURE 1.13: Exemple d’échantillonneurs & densité variable reposant sur des marches
aléatoires (a) et sur la solution d’un probléme de voyageur de commerce (b).

FIGURE 1.14: Exemple de projection d’une trajectoire non physiquement plausible
(la courbe bleue parcourue a vitesse constante). En rouge, la solution du probléme de
projection sur Sp.

e Les trajectoires continues n’étant pas physiquement jouables par un scanner, nous
développons un algorithme de projection sur 'ensemble (convexe) des contraintes

(chapitre 4). Une illustration sur un exemple synthétique est donné dans la Fig. 1.14.

e En s’appuyant sur l'algorithme précédent, nous proposons un nouvel algorithme de
projection sur des espaces de mesures. Le cas intéressant pour 'IRM est I'espace
des mesures portées par des courbes admissibles. Nous donnons des illustrations
pour des espaces de mesures plus généraux. En particulier, si la mesure que 'on
projette est proportionnelle aux niveaux de gris d’une image, il est possible de
la représenter par une mesure portée par une courbe, et donc de représenter une

image par une courbe (Fig. 1.15) !

e Cet algorithme de projection permet dans le cas de 'IRM de réaliser des sché-
mas d’échantillonnage & densité variable par des courbes admissibles (Fig. 1.16).
Les résultats de reconstruction correspondant permettent de dépasser les schémas

classiques (spirale, radial) de 3 dB au minimum en termes de SNR.
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FIGURE 1.15: Représentation de Mona Lisa par un élément de Sy.

FIGURE 1.16: Projection d’une densité cible & décroissance radiale sur I’ensemble des
mesures portées par des courbes de Sy (a). Zoom sur les basses fréquences (b).
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1.5 Organisation

I’organisation de cette thése sur articles suit les 4 travaux suivants:

e Variable Density Sampling with Continuous Trajectories. N Chauffert, P Ciuciu,
J Kahn, P Weiss. SIAM Journal on Imaging Sciences 7 (4), 1962-1992.

e A projection algorithm for gradient waveforms design in Magnetic Resonance Imag-
ing. N. Chauffert, P. Weiss, J. Kahn and P. Ciuciu, en révision a IEEE Trans. on
Medical Imaging en juin 2015.

e A projection method on measures sets. N. Chauffert, P. Ciuciu, J. Kahn and P.

Weiss, soumis en 2015 & Constructive Approximation.

e On the generation of sampling schemes for Magnetic Resonance Imaging. C. Boyer,

N. Chauffert, J. Kahn, P. Ciuciu, Pierre Weiss (article soumis prochainement).

Dans le chapitre 2, nous définissons la notion d’échantillonneur & densité variable. Dans
le cadre de mesures isolées, cela correspond au théoréme 1.3 évoqué précédemment.
Nous proposons des échantillonneurs & densité variable continus, et montrons que les
caractéristiques importantes des schémas d’échantillonnage sont la densité cible d’une
part, et la vitesse de recouvrement de I'espace-k d’autre part. Dans le cas des schémas
continus reposant sur des marches aléatoires, la quantité qui gouverne la vitesse de
recouvrement est le trou spectral: plus il est grand, plus 'espace est parcouru rapidement.
Nous introduisons également des schémas d’échantillonnage reposant sur des solutions
du voyageurs de commerce qui fournissent de meilleurs résultats en reconstruction, car

le processus recouvre plus rapidement ’espace que les marches aléatoires.

Dans le chapitre 3, nous prouvons une inégalité de concentration pour une chaine de
Markov & valeurs dans les matrices Hermitiennes. Cela permet de donner un résultat

d’échantillonnage compressif pour un échantillonnage le long d’une marche aléatoire.

Les schémas continus proposés dans le chapitre 2 ne sont toutefois pas implémentables
sur des scanners IRM. Par exemple, pour les schémas solution du voyageur de commerce,
le parcours de la trajectoire & vitesse constante comporte des singularités au voisinage des
« villes ». Le seul parcours implémentable impose que les gradients soient nuls & chacun
de ces points critique. Cela induit un temps d’acquisition extrément long d’une part,
et la densité est grandement modifiée d’autre part. Dans le chapitre 4, nous proposons
un algorithme de projection d’une trajectoire qui peut étre irréaliste (e.g., un parcours
a vitesse constante de la solution du probléme de voyageur de commerce) sur I'ensemble

des contraintes. Un algorithme de descente de gradient proximal accéléré est utilisé pour
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résoudre ce probléme. Les caractéristiques des trajectoires obtenues présentent de bonnes
propriétés pour ’échantillonnage: le temps d’acquisition est fixé et 1’écart & la densité

d’échantillonnage de la courbe initiale est faible.

Dans le chapitre 5, nous proposons un algorithme de projection sur un espace de mesures
portés par des paramétrisations quelconques. Nous montrons que ce probléme généralise
le probléme de stippling (représentation d’une image en niveau de gris par des disques
noirs sur fond blanc). Ceci correspond au cas de la projection sur des mesures portées
par des mesures de Dirac. En ajoutant des contraintes sur les paramétrisations, nous
pouvons considérer des projections sur des mesures portées par des trajectoires avec
différents types de contraintes (sur la vitesse ou I'accélération, en norme £1, fo ou fu...).

En particulier, il est possible de projeter sur des mesures portées par des courbes de Sp.

Dans le chapitre 6, nous appliquons cet algorithme pour projeter des mesures d’échantillon-
nage 2D utilisées en IRM (& décroissance radiale des basses vers les hautes fréquences).
La projection sur des mesures isolées (portées par des mesures de Dirac) donne des
meilleurs résultats de reconstruction que 1’échantillonnage reposant sur le tirage i.i.d.
des échantillons. De méme, nous montrons que la projections sur des mesures portées
par Sy donne des meilleurs résultats de reconstruction que les schémas classique (ra-
dial et spiral). Enfin, la projection sur des espaces portés par des segments donne des

meilleurs résultats que 1’échantillonnage radial.

1.6 Organization and contributions

Compressed Sensing theory cannot be used directly in MRI for two reasons. First, the
incoherence property between the acquisition (Fourier) and sparsifying (Wavelet) basis
is not fulfilled. This is the “coherence barrier" (Adcock et al., 2013). Second, most
of Compressed Sensing schemes are obtained by drawing randomly and independently
the samples (Rauhut, 2010; Candés and Plan, 2011), leading to a sampling scheme of
isolated points. Magnetic field gradients impose kinematics constraints on the k-space
sampling trajectory (the set Sp defined in Eq. (1.7)). To date, the application of CS
to MRI consists of drawing randomly sample locations in a 2D plane according to CS
theory, and then acquiring the MR signal along the third (readout) direction (Fig. 1.11).
This strategy is sub-optimal from a CS point of view because the sampling density is
constant in the readout direction, whereas according to CS theory, the sampling density

should decrease from low to high frequencies.

In Chapter 2, we show that a deterministic sampling of the k-space center combined

with an i.i.d. drawing can break the “coherence barrier” and that an optimal sampling
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density can be introduced to theoretically reduce the number of samples to be acquired
while allowing perfect recovery (Fig. 1.12(a)). We show that sampling strategies based
on empirical sampling distributions can provide better reconstruction results in CS-MRI,
since the signal structure is not taken into account in the model: the signal is supposed
to be sparse, although no prior knowledge is considered on the locations of non-zero
coefficients. We define a wariable density sampler (VDS) as a process which empirical
distribution converges towards a target distribution. This definition encompasses both
the previous i.i.d. drawing and continuous sampling procedures. Continuity is a nec-
essary condition for a sampling trajectory to belong to Sy. We give two examples of
continuous VDS: random walks and Travelling-Salesman Problem-based (Fig. 1.13(a)
and (b)). From these two examples, we illustrate two crucial properties of a VDS: its

empirical distribution and its mixing time, i.e., the time to cover the k-space.

Chapter 3 is dedicated to introducing a new Hermitian matrix-valued concentration in-
equality. This inequality is the cornerstone to prove that if the samples are acquired along
a Markov chain, the required number of measurements to ensure exacte reconstruction

n
S

is O o Z |aj||% - log(6n/n) |, where ¢ is the spectral gap of the chain.
j=1

To sum up, in Chapter 2, we described continuous sampling trajectories, which do not
belong to St in general. Next, in Chapter 4, we introduce a projection algorithm that
projects an initial parameterization onto the set Sp. This method provides admissi-
ble gradient waveforms to traverse a curve that is close to the initial parameterization.
Compared to existing reparameterization methods (Hargreaves et al., 2004; Lustig et al.,
2008), the main difference of our algorithm is that the curve support is no longer con-
strained. The consequence is that the sampling density is better preserved compared to
clagsical reparameterization techniques, and the sampling time is user-defined and thus
generally shorter than the one provided by existing methods. An illustration of the pro-
jection algorithm is given in Fig. 1.14: the input curve is shown in blue and its projection

onto the set Sy is depicted in red.

In Chapter 5, we develop an algorithm to design a VDS that fulfills the kinematics con-
straints. The proposed algorithm is actually more generic than the one we push forward
in the previous chapter: it allows to project a density p (e.g., the target distribution =
defined in Fig. 1.12(a)) onto a set of measures My. We give necessary and sufficient
conditions on a sequence of sets (M) yen such that the solution of the projection prob-
lem converges to p. In addition, we provide an algorithm to find an approximation of the
solution of the measure-projection algorithm for measures carried by parameterizations.

Such measures encompasses sums of Dirac and measures carried by (discrete) curves with
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kinematics constraints (e.g. € Sp). This algorithm is generic enough to be deployed be-
yond the MRI field. For instance, if p is a grayscale image, the solution to the projection
problem gives a representation with isolated dots (sum of Dirac) called stippling, or with
a continuous trajectory (continuous line drawing). To illustrate this point, Mona Lisa is

represented by an element of St in Fig. 1.15.

In Chapter 6, we apply this algorithm to design admissible sampling curves in MRI.
On retrospective CS simulations, we show that our approach improves reconstruction
results compared to spiral or radial sampling. The sampling schemes obtained with this
method fulfill the two requirements described in Chapter 2, namely the sampling density
with a variable profile and the fast mixing time to cover the k-space sufficiently well. A
sampling pattern obtained with this method is provided Fig. 1.16(a) and (b): zoom on
the low frequencies. We conducted numerical experiments on image sizes of 256 x 256
and 2048 x 2048.



Chapter 2

Variable density sampling with

continuous trajectories

This chapter is based on (Chauffert et al., 2014a).

Abstract

Reducing acquisition time is a crucial challenge for many imaging techniques. Com-
pressed Sensing (CS) theory offers an appealing framework to address this issue since it
provides theoretical guarantees on the reconstruction of sparse signals by projection on a
low dimensional linear subspace. In this paper, we focus on a setting where the imaging
device allows to sense a fixed set of measurements. We first discuss the choice of an
optimal sampling subspace allowing perfect reconstruction of sparse signals. Its design
relies on the random drawing of independent measurements. We discuss how to select
the drawing distribution and show that a mixed strategy involving partial deterministic
sampling and independent drawings can help breaking the so-called “coherence barrier”.
Unfortunately, independent random sampling is irrelevant for many acquisition devices
owing to acquisition constraints. To overcome this limitation, the notion of Variable Den-
sity Samplers (VDS) is introduced and defined as a stochastic process with a prescribed
limit empirical measure. It encompasses samplers based on independent measurements
or continuous curves. The latter are crucial to extend CS results to actual applications.
We propose two original approaches to design continuous VDS, one based on random
walks over the acquisition space, and one based on Traveling Salesman Problem. Follow-

ing theoretical considerations and retrospective CS simulations in magnetic resonance

27
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imaging, we intend to highlight the key properties of a VDS to ensure accurate sparse

reconstructions, namely its limit empirical measure and its mixing time!.

2.1 Introduction

Variable density sampling is a technique that is extensively used in various sensing de-
vices such as magnetic resonance imaging (MRI), in order to shorten scanning time. It
consists in measuring only a small number of random projections of a signal/image on
elements of a basis drawn according to a given density. For instance, in MRI where
measurements consist of Fourier (or more generally k-space) coefficients, it is common
to sample the Fourier plane center more densely than the high frequencies. The image
is then reconstructed from this incomplete information by dedicated signal processing
methods. To the best of our knowledge, variable density sampling has been proposed
first in the MRI context by (Spielman et al., 1995) where spiral trajectories were pushed
forward. Hereafter, it has been used in this application (see e.g. (Tsai and Nishimura,
2000; Kim et al., 2003; Park et al., 2005) to quote a few), but also in other applications
such as holography (Rivenson et al., 2010; Marim et al., 2010). This technique can hardly
be avoided in specific imaging techniques such as radio interferometry or tomographic
modalities (e.g., X-ray) where sensing is made along fixed sets of measurements (Wiaux
et al., 2009; Sidky et al., 2006).

In the early days of its development, variable density sampling was merely an efficient
heuristic to shorten acquisition time. It has recently found a partial justification in the
Compressed Sensing (CS) literature. Even though this theory is not yet mature enough
to fully explain the practical success of variable density sampling, CS provides good hints
on how to choose the measurements (i.e., the density), how the signal/image should be
reconstructed and why it works. Let us now recall a typical result emanating from the CS
literature for orthogonal systems. A vector z € C" is said s-sparse if it contains at most
s non-zero entries. Denote by a;, ¢ € {1,...,n} the sensing vectors and by y; = (a;, z)
the possible measurements. Typical CS results state that if the signal (or image) x is
ajy
s-sparse and if A = | : | satisfies an incoherence property (defined in the sequel), then

*

an

m = O(slog(n)®) measurements chosen randomly among the elements of y = Ax are
enough to ensure perfect reconstruction of . The constant a > 0 depends on additional
properties on z and A. The set of actual measurements is denoted 2 C {1,...,n} and

Aq is the matrix formed by selecting a subset of rows of A in ). The reconstruction of x

'Part of this work is based on the conference proceedings: (Chauffert et al., 2013b; Chauffert et al.,
2013a; Chauffert et al., 2013c).
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knowing yq = Aqz is guaranteed if it results from solving the following ¢; minimization

problem:

min ||z]|; subject to Aqz =yq. (2.1)
zeCn

Until recent works (Rauhut, 2010; Juditsky et al., 2011; Candés and Plan, 2011), no
general theory for selecting the rows was available. In the latter, the authors have
proposed to construct Aq by drawing m rows of A at random according to a discrete
probability distribution or density p = (p1, ..., pn). The choice of an optimal distribution
p is an active field of research (see e.g. (Chauffert et al., 2013b; Krahmer and Ward,
2014; Adcock et al., 2013)) that remains open in many regards.

Drawing independent rows of A is interesting from a theoretical perspective, however
it has little practical relevance since standard acquisition devices come with acquisition
constraints. For instance, in MRI, the coefficients are acquired along piece-wise contin-
uwous curves on the k-space. The first paper performing variable density sampling in
MRI (Spielman et al., 1995) has fulfilled this constraint by considering spiral sampling
trajectories. The standard reference about CS-MRI (Lustig et al., 2007) has proposed to
sample the MRI signal along parallel lines in the 3D k-space. Though spirals and lines
can be implemented easily on a scanner, it is likely that more general trajectories could

provide better reconstruction results, or save more scanning time.

The main objective of this paper is to propose new strategies to sample a signal along
more general continuous curves. Although continuity is often not sufficient for practical
implementation on actual scanner, we believe that it is a first important step towards
more physically plausible compressed sampling paradigms. As far as we know, this
research avenue is relatively new. The problem was first discussed in (Willett., 2011)
and some heuristics were proposed. The recent contributions (Polak et al., 2012b; Bigot
et al., 2013) have provided theoretical guarantees when sampling is performed along fixed
sets of measurements (e.g. straight lines in the Fourier plane), but have not addressed

generic continuous sampling curves yet.

The contributions of this paper are threefold. First, we bring a well mathematically
grounded definition of wvariable density samplers and provide various examples. Second,
we discuss how the sampling density should be chosen in practice. This discussion
mostly relies on variations around the theorems provided in (Rauhut, 2010; Candeés
and Plan, 2011). In particular, we justify the deterministic sampling of a set of highly
coherent vectors to overcome the so-called “coherence barrier”. In the MRI case, this
amounts to deterministically sampling the k-space center. Our third and maybe most

impacting contribution is to provide practical examples of variable density samplers along
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continuous curves and to derive some of their theoretical properties. These samplers are
defined as parametrized random curves that asymptotically fit a target distribution (e.g.
the one shown in Fig. 2.1 (a)). More specifically, we first propose a local sampler based
on random walks over the acquisition space (see Fig. 2.1 (b)). Second, we introduce a
global sampler based on the solution of a Travelling Salesman Problem amongst randomly
drawn “cities” (see Fig. 2.1 (c)). In both cases, we investigate the resulting density. To
finish with, we illustrate the proposed sampling schemes on 2D and 3D MRI simulations.
The reconstruction results provided by the proposed techniques show that the PSNR can
be substantially improved compared to existing strategies proposed e.g. in (Lustig et al.,
2007). Our theoretical results and numerical experiments on retrospective CS show that
two key features of variable density samplers are the limit of their empirical measure

and their mixing properties.

FIGURE 2.1: (a): Target distribution m. Continuous random trajectories reaching
distribution 7 based on Markov chains (b) and on a TSP solution (c).

The rest of this paper is organized as follows. First, we introduce a precise definition of
a variable density sampler (VDS) and recall CS results in the special case of independent
drawings. Then, we give a closed form expression for the optimal distribution depending
on the sensing matrix A, and justify that a partial deterministic sampling may provide
better reconstruction guarantees. Hereafter, in Sections 2.3 and 2.4, we introduce two
strategies to design continuous trajectories over the acquisition space. We show that the
corresponding sampling distributions converge to a target distribution when the curve
length tends to infinity. Finally, we demonstrate on simulation results that our TSP-
based approach is promising in the MRI context (Section 2.5) since it outperforms its
competing alternatives either in terms of PSNR at fixed sampling rate, or in terms of

acceleration factor at fixed PSNR.
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Notation
The main definitions used throughout the paper are defined in Tab. 2.1.
TABLE 2.1: General notation used in the paper.
Notation Definition Domain
n Acquisition and signal space dimensions N
m Number of measurements N
5 R=n/m Sampling ratio Q
k2 A Full orthogonal acquisition matrix Cnxn
A Q Set, of measurements {1,...,n}™
é Aq Matrix formed with the rows of A corresponding to indexes belonging to C™*™
qé T Sparse signal c™
§ s Number of non zero coefficients of x N
p1
An {p= ; ,OépiéLZ?:lpi:l} R™
Pn
Il £1 norm defined for z € C" by ||z||1 = >0 |2l
I loo Loo norm defined for z € C" by ||z|lcc = maxi<i<n |2l
£ g (ke (Zz : ; 2 3
RS = (k ) or | ky Fourier frequencies R4 or R
E Fr d-dimensional discrete Fourier transform on an n pixels image Cnxn
,f v, d-dimensional inverse discrete Wavelet transform on an image of n pixels Cnxn
QE: F» and ¥, are denoted F* and ¥ if no ambiguity
= A measurable space which is typically {1,...,n} or [0,1]%
H The unit cube [0, 1]¢
p A probability measure defined on =
p(f) = / B f(z) dp(z), for f continuous and bounded R
A[0,1] Thein:besgue measure on the interval [0, 1]
8 X = (Xn)nen* A time-homogeneous Markov chain on the state space {1,...,n} {1,...n}V
> P = (Pjj)1<4,j<n the transition matrix: Pj; :=P(X) = j| X1 =1),Vk > 1 RX"
Ai(P) The ordered eigenvalues of P: 1= (P) > ... > \p(P) > —1 [—1,1]
e(P) =1— X2(P), the spectral gap of P [-1,1]
F A set of points C H HN
C(F) The shortest Hamiltonian path (TSP) amongst points of set F CH
T(F,H) The length of C/(F) Ry
T(F,R) For any set RC H, T(F,R) :=T(FNR,H) Ry

2.2 Variable density sampling and its theoretical founda-

tions

To the best of our knowledge, there is currently no rigorous definition of variable density

sampling. Hence, to fill this gap, we provide a precise definition below.
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Definition 2.1. Let p be a probability measure defined on a measurable space =. A
stochastic process X = {X;}ien or X = {X;}icr, on state space Z is called a p-variable
density sampler if its empirical measure (or occupation measure) weakly converges to p

almost surely, that is:

1

=|

N
Y fX)=p(f)  as
=1

or

T
f(Xpdt = p(f)  as.

Nl
e\

=0

for all continuous bounded f.

Example 2.1. In the case where X = (X;);en s a discrete time stochastic process with

discrete state space = = {1,...,n}, definition 2.1 can be slightly simplified. Let us set

N
1
ZJN =N Zle:j' The random variable ZJN represents the proportion of points that
=1

fall on position j. Let p denote a discrete probability distribution function. Using these
notations, X is a p-variable density sampler if:

lim ZJN = pj a.s.
N—+400

In particular, if (X;)ien are i.i.d. samples drawn from p, then X is a p-variable density
sampler. This simple example is the most commonly encountered in the compressed

sensing literature and we will review its properties in paragraph 2.2.1.

Example 2.2. More generally, drawing independent random variables according to dis-
tribution p is a VDS if the space = is second countable, owing to the strong law of large

numbers.

Example 2.3. An irreducible aperiodic Markov chain on a finite sample space is a VDS

for its stationary distribution (or invariant measure); see Section 2.3.3.

Example 2.4. In the deterministic case, for a dynamical system, definition 2.1 closely
corresponds to the ergodic hypothesis, that is time averages are equal to expectations over

space. We discuss an ezample that makes use of the TSP solution in section 2.4.

The following proposition directly relates the VDS concept to the time spent by the pro-
cess in a part of the space, as an immediate consequence of the porte-manteau lemma (see
e.g. (Billingsley, 2009)).

Proposition 2.2. Let p denote a Borel measure defined on a set =. Let B C = be a

measurable set. Let X : Ry — = (resp. X : N — Z) be a stochastic process. Let
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denote the Lebesque measure on R. Define p'(B) = +u({s € [0,t], X(s) € B}) (resp.

py(B) =150, 1x(en). Then, the following two propositions are equivalent:

(1) X is a p-VDS
(i) Almost surely, VB C = a Borel set with p(0B) =0,
. t _
Jm px(B)=p(B)  as.

(resp.) lim u%(B) = p(B) a.s.

n—-+oo

Remark 2.3. Definition 2.1 is a generic definition that encompasses both discrete and
continuous time and discrete and continuous state space since = can be any measurable
space. In particular, the recent CS framework on orthogonal systems (Rauhut, 2010;
Candes and Plan, 2011) falls within this definition.

Definition 2.1 does not encompass some useful sampling strategies. We propose a def-
inition of a generalized VDS, which encompasses stochastic processes indexed over a

bounded time set.

Definition 2.4. A sequence {{Xt(n)}ggthn}neN is a generalized p-VDS if the sequence

of occupation measures converges to p almost surely, that is:

I
7 &A= () as.
n Jt=0
Remark 2.5. Let (Xi)ier be a VDS, and (T},)nen be any positive sequence such that
T, — oo. Then the sequence defined by Xt(n) = X; for 0 <t < T, is a generalized VDS.

Example 2.5. Let = = R?, and consider r : [0,1] — R a strictly increasing smooth

function. We denote by r—% : [r(0),r(1)] — R its inverse function and by r=1 the

1

derivative of 1. Consider a sequence of spiral trajectories sy : [0, N] — R? defined by

t cos(2mt) ‘ , T
sy(t) = r(—) . Then sy is a generalized VDS for the distribution p defined
sin(27t)

’"il(m) if r(0) <22 +y2<r(l)

p(z,y) = 2m f,:ilr)(o) r=1(p)pdp

0 otherwise

A simple justification is that the time spent by the spiral in the infinitesimal ring {(x,y) €
—1 .
R% p < Va2 +y2 <p+dp}is frr_l((p’;+dp) dt ocr=1(p).
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2.2.1 Theoretical foundations - Independent VDS

CS theories provide strong theoretical foundations of VDS based on independent draw-
ings. In this paragraph, we recall a typical result that motivates independent drawing
in the ¢1 recovery context (Rauhut, 2010; Foucart and Rauhut, 2013; Candés and Plan,
2011; Krahmer and Ward, 2014; Chauffert et al., 2013b; Bigot et al., 2013; Adcock et al.,
2013). Using the notation defined in the introduction, let us give a slightly modified
version of (Rauhut, 2010, Theorem 4.2).

Theorem 2.6. Let p = (p1,...,pn) denote a probability distribution on {1,...,n} and
Q C {1,...,n} denote a random set obtained by m independent drawings with respect
to distribution p. Let S € {1,...,n} be an arbitrary set of cardinality s. Let x be an
s-sparse vector with support S such that the signs of its non-zero entries is a Rademacher

or Steinhaus sequence®. Define:

llax 3
K(A,p) ;= max —= 2.2
( p) ke{l..n} Dk ( )
Assume that:
AL
m > CK(A,p)sln® | — (2.3)
n

where C' =~ 26.25 is a constant. Then, with probability 1 — n, vector x is the unique

solution of the {1 minimization problem (2.1).

Remark 2.7. Candes and Plan have stated stronger results in the case of real matrices
in (Candés and Plan, 2011). Namely, the number of necessary measurements was de-
creased to O(slog(n)), with lower constants and without any assumption on the vector
signs. Their results have been derived using the so-called “golfing scheme” proposed
in (Gross, 2011). It is likely that these results could be extended to the complex case,
however it would not change the optimal distribution which is the main point of this

paper. We thus decided to stick to Theorem 2.6.

The choice of an accurate distribution p is crucial since it directly impacts the number of
measurements required. In the MRI community, a lot of heuristics have been proposed so
far to identify the best sampling distribution. In the seminal paper on CS-MRI (Lustig
et al., 2007), Lustig et al have proposed to sample the k-space using a density that
polynomially decays towards high frequencies. More recently, Knoll et al have generalized
this approach by inferring the best exponent from MRI image databases (Knoll et al.,
2011). It is actually easy to derive the theoretically optimal distribution, i.e. the one

2A Rademacher (resp. Steinhaus) random variable is uniformly distributed on {—1;1} (resp. on the
torus {z € C; |z| = 1}).
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that minimizes the right hand-side in (2.3) as shown in Proposition 2.8, introduced
in (Chauffert et al., 2013b).

Proposition 2.8. Denote by K*(A) := miAn K(A,p).
pG n

(i) the optimal distribution ™ € A,, that minimizes K(A,p) is:

|3

Z?:l lai]|2,

=

(ii) K*(A) = K(A,m) =3 %

Proof. (i) Taking p = 7, we get K(A,m) = > | |la;|%. Now assume that ¢ # m,
since Y 1 gk = > p_y T = 1, 3j € {1,...,n} such that ¢; < m;. Then K(A,q) >
lajll2/a; > llajll2%/m = > llaill% = K(A, 7). So, m is the distribution that
minimizes K(A,p).

(ii) This equality is a consequence of 7’s definition.

The theoretical optimal distribution only depends on the acquisition matrix, i.e. on the
acquisition and sparsifying bases. For instance, if we measure some Fourier frequencies
of a sparse signal in the time domain (a sum of diracs), we should sample the frequencies
according to a uniform distribution, since |la;||cc = 1/4/n for all 1 < i < n. In this
case, K*(F) = 1 and the number of measurements m is proportional to s, which is in

accordance with the seminal paper by Candeés et al. (Candeés et al., 2006a).

Independent drawings in MRI

In the MRI case, the images are usually assumed sparse (or at least compressible) in a
wavelet basis, while the acquisition is performed in the Fourier space. In this setting, the
acquisition matrix can be written as A = F*W. In that case, the opfimal distribution
only depends on the choice of the wavelet basis. The optimal distributions in 2D and 3D
are depicted in Fig. 2.2(a)-(b), respectively if we assume that the MR images are sparse

in the Symmlet basis with 3 decomposition levels in the wavelet transform.

Let us mention that similar distributions have been proposed in the literature. First, an
alternative to independent drawing was proposed by Puy et al. (Puy et al., 2011). Their

approach consists in selecting or not a frequency by drawing a Bernoulli random variable.
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(a) (b)

FIGURE 2.2: Optimal distribution 7 for a Symmlet-10 tranform in 2D (a) and a
maximal projection of the optimal distribution in 3D (b).

Its parameter is determined by minimizing a quantity that slightly differs from K (A, p).
Second, Krahmer and Ward (Krahmer and Ward, 2014) tried to unify theoretical results
and empirical observations in the MRI framework. For Haar wavelets, they have shown
that a polynomial distribution on the 2D k-space which varies as 1/(k? 4 k7) is close to
the optimal solution since it verifies K(A,p) = O(log(n)). Our numerical experiments

have confirmed that a decay as a power of 2 is near optimal in 2D.

In the next section, we improve the existing theories by showing that a deterministic
sampling of highly coherent vectors (i.e. those satisfying ||a;[|%, > 1) may decrease the
total number of required measurements. In MRI, this amounts to fully sampling the low

frequencies, which exactly matches what has been done heuristically hitherto.

2.2.2 Mixing deterministic and independent samplings

In a recent work (Chauffert et al., 2013b), we observed and partially justified the fact
that a deterministic sampling of the low frequencies in MRI could drastically improve re-
construction quality. The following theorem proven in Appendix 1 provides a theoretical

justification to this approach.

Theorem 2.9. Let S € {1,...,n} be a set of cardinality s. Let x be an s-sparse vector
with support S such that the signs of its non-zero entries is a Rademacher or Steinhaus

sequence. Define the acquisition set Q C {1,...n} as the union of:

(i) a deterministic set Qq of cardinality m;.
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(i) a random set Qg obtained by ma independent drawing according to distribution p

defined on {1...n}\ Q.
Denote m =mq +ma, Qf ={1,...,n}\ Q1 and let @ = Q1 UQy. Assume that:

6
m = m + C.K(Agg,p)sln2 <:> (2.5)

i[5

iE{l,...,n}\Ql Di
ity 1 —n, vector x is the unique solution of the {1 minimization problem (2.1).

where C = T7/3 is a constant, and K(Aqc,p) = . Then, with probabil-

This result implies that there exists an optimal partition between deterministically and
randomly selected samples, which is moreover easy to compute. For example, consider

the optimal distribution p; o [la;[|Z,, then K*(Aqe) = Z llai||%. If the mea-
ie{l,...n}\
surement matrix contains rows with large values of ||a; ||, we notice from inequality (2.5)

that these frequencies should be sampled deterministically, whereas the rest of the mea-
surements should be obtained from independent drawings. This simple idea is another
way of overcoming the so-called coherence barrier (Krahmer and Ward, 2014; Adcock
et al., 2013).

A striking example raised in (Bigot et al., 2013) is the following. Assume that A =

1 0
(0 - ) The assumed optimal independent sampling strategy would consist in

indepegd;n‘cly drawing the rows with distribution p; = 1/2 and p;, = 1/v/n — 1 for k > 2.
According to Theorem 2.6, the number of required measurements is 2C's In? (%") The
alternative approach proposed in Theorem 2.9 basically performs a deterministic drawing
of the first row combined with an independent uniform drawing over the remaining rows.
In total, this scheme requires 1+C's In? <%”) measurenients and thus reduces the number
of measurements by almost a factor 2. Note that the same gain would be obtained by

using independent drawings with rejection.

Mixed deterministic and independent sampling in MRI

In our experiments, we will consider wavelet transforms with three decomposition levels
and the Symmlet basis with 10 vanishing moments. Fig. 2.3(a)-(b) shows the modulus of
A’s entries with a specific reordering in (b) according to decaying values of ||a;||co. This
decay is illustrated in Fig. 2.3(c). We observe that a typical acquisition matrix in MRI

shows large differences between its ||a;||o values. More Precisely, there is a small number



38 Chapter 2 Variable density sampling with continuous trajectories

of rows with a large infinite norm, sticking perfectly to the framework of Theorem 2.9.
This observation justifies the use of a partial deterministic k-space sampling, which had
already been used in (Lustig et al., 2007; Chauffert et al., 2013b). In Fig. 2.3(d), the

set {2 is depicted for a fixed number of deterministic samples m1, by selecting the rows

with the largest infinite norms.

(a)

FIGURE 2.3: (a): Absolute magnitudes of A for a 2D Symmlet basis with 10 vanishing

moments and 3 levels of decomposition. (b): same quantities as in (a) but sorted by

decaying ||ai||e (i-e. by decreasing order). (c): decay of ||a;||o- (d): Set €y depicted
in the 2D k-space.

Hereafter, the strategy we adopt is driven by the previous remarks. All our sampling
schemes are performed according to Theorem. 2.9: a deterministic part is sampled, and
a VDS is performed on the rest of the acquisition space (e.g. the high frequencies in
MRI).

2.3 Variable density samplers along continuous curves

2.3.1 Why independent drawing can be irrelevant

In many imaging applications, the number of samples is of secondary importance com-
pared to the time spent to collect the samples. A typical example is MRI, where the
important variable to control is the scanning time. It depends on the total length of the
pathway used to visit the k-space rather than the number of collected samples. MRI is
not an exception and many other acquisition devices have to meet such physical con-
straints amongst which are scanning probe microscopes, ultrasound imaging, ecosystem
monitoring, radio-interferometry or sampling using vehicles subject to kinematic con-
straints (Willett., 2011). In these conditions, measuring isolated points is not relevant
and existing practical CS approaches consist in designing parametrized curves perform-

ing a variable density sampling. In what follows, we first review existing variable density
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sampling approaches based on continuous curves. Then, we propose two original con-
tributions and analyze some of their theoretical properties. We mostly concentrate on
continuity of the trajectory which is not sufficient for implementability in many applica-
tions. For instance, in MRI the actual requirement for a trajectory to be implementable

is piecewise smoothness. More realistic constraints are discussed in Section 2.6.

2.3.2 A short review of samplers along continuous trajectories

The prototypical variable density samplers in MRI were based on spiral trajectories (Spiel-
man et al., 1995). Similar works investigating different shapes and densities from a
heuristic point of view were proposed in (Tsai and Nishimura, 2000; Kim et al., 2003;
Park et al., 2005). The first reference to compressed sensing appeared in the seminal
paper (Lustig et al., 2007). In this work, Lustig et al have proposed to perform inde-
pendent drawings in a 2D plane (defined by the partition and phase encoding directions)
and sample continuously along the orthogonal direction to design piecewise continuous
schemes in the 3D k-space (see Fig. 2.4). These authors have also suggested to make
use of randomly perturbed spirals. The main advantage of these schemes lies in their
simplicity of practical implementation since they only require minor modifications of

classical MRI acquisition sequences.

FIGURE 2.4: Classical CS-MRI strategy. (a): 2D independent sampling according to
a distribution 7. (b): measurements performed in the orthogonal readout direction.

Recent papers (Polak et al., 2012a; Bigot et al., 2013; Boyer et al., 2014) have generalized
CS results from independent drawing of isolated measurements to independent drawings
of blocks of measurements. In these contributions, the blocks can be chosen arbitrarily
and may thus represent continuous trajectories. Interestingly, these authors have pro-
vided closed form expressions for the optimal distribution on the block set. Nevertheless,

this distribution is very challenging to compute in large scale problems. Moreover, the
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restriction to sets of admissible blocks reduces the versatility of many devices such as

MRI and can therefore impact the image reconstruction quality.

In many applications the length of the sampling trajectory is more critical than the num-
ber of acquired samples, therefore, finding the shortest pathway amongst random points
drawn independently has been studied as a way of designing continuous trajectories (Wil-
lett., 2011; Wang et al., 2012). Since this problem is NP-hard, one usually resorts to a
TSP solver to get a reasonable suboptimal trajectory. To the best of our knowledge, the
only practical results obtained using the TSP were given by Wang et al (Wang et al.,
2012). In this work, the authors did not investigate the relationship between the initial
sample locations and the empirical measure of the TSP curve. In Section 2.4, it is shown

that this relationship is crucial to make efficient TSP-based sampling schemes.

In what follows, we first introduce an original sampler based on random walks on the ac-
quisition space and then analyse its asymptotic properties. Our theoretical investigations
together with practical experiments allows us to show that the VDS mixing properties
play a central role to control its efficiency. This then motivates the need for more global
VDS schemes.

2.3.3 Random walks on the acquisition space

Perhaps the simplest way to transform independent random drawings into continuous
random curves congists in performing random walks on the acquisition space. Here, we
discuss this approach and provide a brief analysis of its practical performance in the
discrete setting. Through both experimental and theoretical results, we show that this
technique is doomed to fail. However, we believe that this theoretical analysis provides

a deep insight on what VDS properties characterize its performance.

Let us consider a time-homogeneous Markov chain X = (X,,),en on the set {1,...,n}
and its transition matrix denoted P € R™ ™. If X possesses a stationary distribution,
i.e. a row vector p € R” such that p = pP then, by definition, X is a p-variable density

sampler.

2.3.3.1 Construction of the transition matrix P

A classical way to design a transition kernel ensuring that (i) p is the stationary dis-
tribution of the chain and (ii) the trajectory defined by the chain is continuous, is the
Metropolis algorithm (Hastings, 1970). For a pixel/voxel position i in the 2D /3D ac-
quisition space, let us define by N (i) C {1,...,n} its neighbourhood, i.e. the set of

possible measurement locations allowed when staying on position i. Let |[A(7)| denote
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the cardinal of N(i) and define the proposal kernel P* as P}; = |N'(i)|7'0;enri)- The

Metropolis algorithm proceeds as follows:

1. from state 4, draw a state ¢* with respect to the distribution P7 ..

2. accept the new state ¢* with probability:

Otherwise stay in state i.

The transition matrix P can then be defined by P; ; = q(i, j)P;j for i # j. The diagonal
is defined in a such a way that P is a stochastic matrix. It is easy to check that p is an
invariant distribution for this chain®. It is worth noticing that if the chain is irreducible
positive recurrent (which is fulfilled if the graph is connected and the distribution p

positive), the ergodic theorem ensures that X is a p-VDS.

Unfortunately, trajectories designed by this technique leave huge parts of the acquisition
space unexplored (see Fig. 2.5 (a)). To circumvent this problem, we may allow the
chain to jump to independent locations over the acquisition space. Let P be the Markov

kernel corresponding to independent drawing with respect to p, i.e. P;; = p; for all

1 <4,7 < n. Define:
PY=(1-aP+aP VO<a<l. (2.7)

Then the Markov chain associated with P(©) corresponds to a continuous random walk,
while the Markov chain associated with P(®) o > 0 has a nonzero jump probability.

This means that the trajectory is composed of continuous parts of average length 1/c.

2.3.3.2 Example

In Fig. 2.5, we show illustrations in the 2D MRI context where the discrete k-space is
of size 64 x 64. On this domain, we set a distribution p which matches distribution =
in Fig. 2.2 (a). We perform a random walk on the acquisition space until 10% of the
coefficients are selected. In Fig. 2.5(a), we set & = 0 whereas o = 0.1 in Fig. 2.5(b). As
expected, a = 0 leads to a sampling pattern where large parts of the k-space are left

unvisited. The phenomenon is partially corrected using a nonzero value of a.

3If the neighboring system is such that the corresponding graph is connected, then the invariant
distribution is unique.
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(a)

FIGURE 2.5: Example of sampling trajectories in 2D MRI. (a) (resp. (b)): 2D sampling
scheme of the k-space with & = 0 (resp. a = 0.1). Drawings are performed until 10%
of the coefficients are selected (m = 0.1n).

Remark 2.10. Performing N iterations of the Metropolis algorithm requires O(N) com-
putations leading to a fast sampling scheme design procedure. In our experiments, we
iterate the algorithm until m different measurements are probed. Therefore, the num-
ber of iterations N required increases non linearly with respect to m, and can be time
consuming especially when R = m/n is close to 1. This is not a tough limitation of the

method since the sampling scheme is computed off-line.

2.3.3.3 Compressed sensing results

Let us assume® that P(X; = i) = p; and that X; is drawn using P as a transition matrix.
The following result provides theoretical guarantees about the performance of the VDS
X:

Proposition 2.11 (see (Chauffert et al., 2013c)). Let Q := X1,..., X, C {1,...,n}

denote a set of m indexes selected using the Markov chain X.
Then, with probability 1 —n, if

m > E(ls))KQ(A,p)SQ log(2n2 /1), (2.8)

every s-sparse signal x is the unique solution of the {1 minimization problem.

The proof of this proposition is given in Appendix 2. Before going further, some remarks

may be useful to explain this theoretical result.

*By making this assumption, there is no burn-in period and the chain X converges more rapidly to
its stationary distribution p.
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Remark 2.12. Since the constant K2(A,p) appears in Eq. (2.8), the optimal sampling

distribution using Markov chains is also distribution 7, as proven in Proposition 2.8.

Remark 2.13. In contrast to Theorem 2.6, Proposition 2.11 provides uniform results, i.e.

results that hold for all s-sparse vectors.

Remark 2.14. Ineq. 2.8 suffers from the so-called quadratick bottleneck (i.e. an O(s?log(n))
bound). It is likely that this bound can be improved to O(slog(n)) by developing new

concentration inequalities on matrix-valued Markov chains.?

Remark 2.15. More importantly, it seems however unlikely to avoid the spectral gap
O(1/e(P)) using the standard mechanisms for proving compressed sensing results. In-
deed, all concentration inequalities obtained so far on Markov chains (see e.g. (Lezaud,
1998; Kargin, 2007; Paulin, 2012a)) depend on 1/e(P). The spectral gap satisfies
0 < ¢(P) < 1 and corresponds to mixing properties of the chain. The closer the spec-
tral gap to 1, the fastest ergodicity is achieved. Roughly speaking, if |i — j| > 1/€(P)
then X; and X; are almost independent random variables. Unfortunately, the spectral
gap usually depends on the dimension n (Diaconis and Stroock, 1991). In our exam-
ple, it can be shown using Cheeger’s inequality that ¢(P) = O (nfé) if the stationary
distribution 7 is uniform (see Appendix 3). This basically means that the number of
measurements necessary to accurately reconstruct « could be as large as O(sn'/%log(n)),
which strongly limits the interest of this CS approach. The only way to lower this number
consists in frequently jumping since Weyl’s theorem (Horn and Johnson, 1991) ensures
that e(P(®) > a.

To sum up, the main drawback of random walks lies in their inability to cover the
acquisition space quickly since they are based on local considerations. Keeping this in
mind, it makes sense to focus on more global displacement strategies that allow a faster
exploration of the whole acquisition domain. In the next section, we thus introduce this
global sampling alternative based on T'SP-solver. Our main contribution is the derivation
of the link between a prescribed a priori sampling density and the distribution of samples

located on the TSP solution so as to eventually get a VDS.

2.4 Travelling salesman-based VDS

In order to design continuous trajectories, we may think of picking points at random and
join them using a travelling salesman problem (TSP) solver. Hereafter, we show how
to draw the initial points in order to reach a target distribution p. In this section, the

probability distribution p is assumed to be a density.

®In chapter 3, we provide an improvement of the theorem that breaks the quadratick bottleneck (see
proposition 3.11, page 76).
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2.4.1 Introduction

The naive idea would consist in drawing some points according to the distribution p and
joining them using a TSP solver. Unfortunately, the trajectory which results from joining
all samples does not fit the distribution p, as shown in Fig. 2.6(b)-(d). To bring evidence
to this observation, we performed a Monte Carlo study, where we drew one thousand
sampling schemes, each one designed by solving the TSP on a set of independent random
samples. We notice in Fig. 2.6 (d) that the empirical distribution of the points along the
TSP curve, hereafter termed the final distribution, departs from the original distribution
p. A simple intuition can be given to explain this discrepancy between the initial and
final distributions in a d-dimensional acquisition space. Consider a small subset of the
acquisition space w. In w, the number of points is proportional to p. The typical distance
between two neighbors in w is then proportional to p~/4. Therefore, the local length of
the trajectory in w is proportional to pp~ /% = p!'=1/4 £ p_ In what follows, we will show
that the empirical measure of the TSP solution converges to a measure proportional to

pl1/d,

2.4.2 Definitions

We shall work on the hypercube H = [0,1]¢ with d > 2. In what follows, {z;}; -
denotes a sequence of points in the hypercube H, independently drawn from a density

p:H+— Ry, The set of the first N points is denoted Xy = {x;}; y-

Using the definitions introduced in Tab. 2.1, we introduce vy : [0,1] — H the function
that parameterizes C(Xy) by moving along it at constant speed T'(Xx,H). Then, the

distribution of the TSP solution reads as follows:

Definition 2.16. The distribution of the TSP solution is denoted Py and defined, for
any Borelian B in H by:

Pyn(B) = Ao (W81 (B)) -

Remark 2.17. The distribution PN is defined for fixed X . It makes no reference to the

stochastic component of X .

Remark 2.18. A more intuitive definition of Py can be given if we introduce other
tools. TFor a subset w C H, we denote the length of C(Xy) Nw as T),(Xn,H) =
T(Xn,H)Py(w). Using this definition, it follows that:

~ . ﬂw(XNa%)

Pr(w) = g (2.9)
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Then Py (w) is the relative length of the curve inside w.

2.4.3 Main results
Our main theoretical result introduced in (Chauffert et al., 2013a) reads as follows:
pld=1)/d

Sy P ()

on H. Then almost surely with respect to the law p®N of the random points sequence

Theorem 2.19. Define the density p = where p is a density defined

{z;i}ien+ in H, the distribution Py converges in distribution to p:

P95 -, (2.10)

The proof of the theorem is given in Appendix 4.
Remark 2.20. The T'SP solution does not define as such a VDS, since the underlying

process is finite in time. Nevertheless, since Py is the occupation measure of vy, the

following result holds:
Corollary 2.21. (yN)Nen 18 a generalized p VDS.

Remark 2.22. The theorem indicates that if we want to reach distribution p in 2D, we
have to draw the initial points with respect to a distribution proportional to p?, and
to p¥/2 in 3D. Akin to the previous Monte Carlo study illustrating the behavior of the
naive approach in Fig. 2.6 (top row), we repeated the same procedure after having taken
this result into account. The results are presented in Fig. 2.6(e)-(g), in which it is shown
that the final distribution now closely matches the original one (compare Fig. 2.6(g) with
Fig. 2.6(a)).

Remark 2.23. Contrarily to the Markov chain approach for which we derived compressed
sensing results in Proposition 2.11, the TSP approach proposed here is mostly heuristic
and based on the idea that the TSP solution curve covers the space rapidly. An argument
supporting this idea is the fact that in 2D, the TSP curve C'(Xy) does not self-intersect.

This property is clearly lacking for random walks.

Remark 2.24. One of the drawback of this approach is the TSP’s NP-hardness. We
believe that this is not a real problem. Indeed, there now exist very efficient approximate
solvers such as the Concorde solver (Applegate et al., 2006). It finds an approximate
solution with 10° cities from a few seconds to a few hours depending on the required
accuracy of the solution. The computational time of the approximate solution is not
a real limitation since the computation is done off-line from the acquisition procedure.

Moreover, many solvers are actually designed in such a way that their solution also fulfil
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FIGURE 2.6: Illustration of the TSP-based sampling scheme to reach distribution 7.

(a): distribution 7. (b) (resp. (e)): independent drawing of points from distribution 7

(resp. o 72). (c) (resp (f)): solution of the TSP amongst points of (b) (resp. (e)) . (d)

and (g): Monte Carlo study: average scheme over one thousand drawings of sampling
schemes, with the same color scale as in (a).

Theorem. 2.19. For example, in 2D, to reach a sampling factor of R =5 on a 256 x 256
image, one need N ~ 10* cities, and an approximate solution is obtained in 142s. In 3D,
for a 256 x 256 x 256 image, N ~ 9 10° and an approximate solution is obtained in about
4 hours. In each case the solutions seem to be correctly approximated. In particular

they do not self-intersect in 2D.

2.5 Experimental results in MRI

In this section, we focus on the reconstruction results by minimizing the ¢; problem (2.1)

with a simple MRI model: A = F*®¥  where ¥ denote the inverse Symmlet-10 trans-

6

form®. The solution is computed using Douglas-Rachford’s algorithm (Combettes and

Pesquet, 2011). We consider an MR image of size 256 x 256 x 256 as a reference, and
perform reconstruction for different discrete sampling strategies. Every sampling scheme

was regridded using a nearest neighbour approach to avoid data interpolation.”

5We focused on ¢, reconstruction since it is central in the CS theory. The reconstruction quality can
be improved by considering more a priori knowledge on the image. Moreover we considered a simple MRI
model, but our method can be extended to parallel MRI (Pruessmann et al., 1999), or spread-spectrum
techniques (Haldar et al., 2011; Puy et al., 2012a).

"We provide Matlab codes to reproduce the proposed experiments here:
http: //chauffertn.free.fr/codes.html
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2.5.1 2D-MRI

In 2D, we focused on a single slice of the MR image and considered its discrete Fourier
transform as the set of possible measurements. First, we found the best made a com-
parison of independent drawings with respect to various distributions in order to find
heuristically the best sampling density. Then we explored the performance of the two
proposed methods to design continuous schemes: random walks and Travelling Sales-
man Problem. We also compared our solution to classical MRI sampling schemes. In
every sampling schemes, the number of measurements is the same and equals 20% of
the number of pixels in the image, so that the sampling factor R is equal to 5. In cases
where the sampling strategy is based on randomness (VDS, random walks, TSP...), we
performed a Monte Carlo study by generating 100 sampling patterns for each variable

density sampler.

2.5.1.1 Variable density sampling using independent drawings

Here, we assessed the impact of changing the sampling distribution using independent
drawings. In all experiments, we sampled the Fourier space center deterministically as

shown on Figure 2.7.

TABLE 2.2: Quality of reconstruction results in terms of PSNR, for 2D sampling with
variable density independent drawings.

polynomial decay: (k2 + k)~ %/
d=1|d=2|d=3|d=4|d=5|d=
mean PSNR (dB) | 35.6 | 36.4 | 36.4 | 36.3 | 36.0 | 355 | 35.2
std dev. <01]<01|<01]<01]<01|<01]<0.1

Table 2.2 shows that the theoretically-driven optimal distribution 7 is outperformed
by the best heuristics. Amongst the latter, the distribution leading to the best re-
construction quality decays as 1/|k|?, which is the distribution used by Krahmer and
Ward (Krahmer and Ward, 2014) as an approximation of = for Haar wavelets. The stan-
dard deviation of the PSNR is negligible compared to the mean values and for a given
distribution, each reconstrucion PSNR equals its average value at the precision used in
Tab. 2.2.

2.5.1.2 Continuous VDS

In this part we compared various variable density samplers:



48 Chapter 2 Variable density sampling with continuous trajectories

e Random walks with a stationary distribution proportional to 1/|k|? and different

average chain lengths of 1/a,
e TSP-based sampling with distributions proportional to 1/|k|? and T,

e (lassical MRI sampling strategies such as spiral, radial and radial with random

angles. The choice of the spiral follows Example 2.5: the spiral is parameterized

cosf

by s :[0,7] — R% 6+ r(0/T) ( > where r(t) := %, so as the

sin 0

spiral density decays as 1/|k|%.

The sampling schemes are presented in Fig. 2.7 and the reconstruction results in Tab. 2.3.

(d)

FIGURE 2.7: 2D continuous sampling schemes based on random walks with o = .1 (a),

a = .01 (b), « =.001 (c), and based on TSP solutions with distributions proportional

to 7 (d) and to 1/]k|? (e). Classical sampling schemes: spiral (f), radial (g) and radial
with random angles (h).

TABLE 2.3: Quality of reconstruction results in terms of PSNR for continuous sampling
trajectories.

Markovian drawing (a) || TSP sampling ival | radial radial
0.1 0.0 0001 | ocr | oc1/k[Z] P | Y% random
mean PSNR | 35.7 | 34.6 33.5 35.6 36.1 35.6 34.1 33.1
std dev. 0.1 | 0.3 0.6 0.1 0.1 0.4
max value 36.0 | 35.1 34.8 35.9 36.2 34.0

in Fig. 2.7: | (a) | (b) (¢) (d) () (f) (8) (h)
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As predicted by the theory, the shorter the chains the better the reconstructions. The
optimal case corresponds to chains of length 1 (o = 1) i.e. corresponding to indepen-
dent VDS. When the chain is too long, large k-space areas are left unexplored, and the

reconstruction quality decreases.

Besides, the use of a target distribution proportional to 1/|k|? instead of 7 for TSP-based

schemes provides slightly better reconstruction results.

We also considered more classical sampling scheme. We observe that the spiral scheme
and the proposed ones provide more accurate reconstruction results than radial schemes.
We believe that the main reason underlying these different behaviors is closely related
to the sampling rate decay from low to high frequencies, which is proportional to 1/|k]|

for radial schemes.

2.5.2 3D-MRI

Since VDS based on Markov chains have shown rather poor reconstruction results com-
pared to the TSP-based sampling schemes in 2D simulations, we only focus on comparing
TSP-based sampling schemes to classical CS sampling schemes. Moreover, the compu-
tational load to treat 3D images being much higher than in 2D, we only perform one
drawing per sampling scheme in the following experiments. Experiments in 2D suggest
that the reconstruction quality is not really impacted by the realization of a particular
sampling scheme, except for drawing with Markov chains or with radial with random

angles, which are not considered in our 3D experiments.

2.5.2.1 Variable density sampling using independent drawings

The first step of the TSP-based approach is to identify a relevant target distribution.
For doing so, we consider independent drawings as already done in 2D. The results are
summarized in Tab. 2.4. In this experiment, we still use a number of measurements equal
to 20% of the total amount (R = 5).

TABLE 2.4: Quality of reconstruction results in terms of PSNR for sampling schemes

based on 3D variable density independent drawings, with densities oc 1/k% and 7, and
with 20% of measured samples.

d 1 2 3 4 T
PSNR (dB) | 44.78 | 45.01 | 44.56 | 44.03 || 42.94
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The best reconstruction result is achieved with d = 2 and not the theoretically optimal
distribution 7. This illustrates the importance of departing from the sole sparsity hy-
pothesis under which we constructed w. Natural signals have a much richer structure.
For instance wavelet coefficients tend to become sparser as the resolution levels increase,
and this feature should be accounted for to derive optimal sampling densities for natural

images (see Section 2.6.)

2.5.2.2 Efficiency of the TSP sampling based strategy

Let us now compare the reconstruction results using the TSP based method and the
method proposed in the original CS-MRI paper (Lustig et al., 2007). These two sampling
strategies are depicted in Fig. 2.8. For 2D independent drawings, we used the distribution
providing the best reconstruction results in 2D, i.e. proportional to 1/|k|?>. The TSP-
based schemes were designed by drawing city locations independently with respect to a
distribution proportional to p%. According to Theorem 2.19 this is the correct way to
reach distribution p after joining the cities with constant speed along the TSP solution
path. The experiments were performed with p = 7 (see Fig. 2.2 (b)), and p o< 1/|k|?, since
the latter yielded the best reconstruction results in the 3D independent VDS framework.
We also compared these two continous schemes to 3D independent drawings with respect

to a distribution proportional to 1/|k[?.

Reconstruction results with an sampling rate R = 8.8 are presented in Fig. 2.10, with a
zoom on the cerebellum. The reconstruction quality using the proposed sampling scheme
is better than the one obtained from classical CS acquisition and contains less artifacts.
In particular, the branches of the cerebellum are observable with our proposed sampling
scheme only. At higher sampling rate, we still observe less artifacts with the proposed
schemes, as depicted in Fig. 2.11 with a sampling rate R = 14.9. Moreover, Fig. 2.9 shows
that our proposed method outperforms the method proposed in (Lustig et al., 2007) by
up to 2dB. If one aims at reaching a fixed PSNR, we can increase r by more than 50%
using the TSP based strategy. In other words, we could expect a substantial decrease of
scanning time by using more advanced sampling strategies than those proposed until to

now.

The two different choices of the target density 7 and o 1/|k|? provide similar results. This
is a bit surprising since 3D independent VDS with these two probability distributions
provide very different reconstruction results (see Tab. 2.4). A potential explanation
for that behavior is that the TSP tends to “smooth out” the target distribution. An
independent drawing would collect very few Fourier coefficients in the blue zones of

Fig. 2.2, notably the vertical and horizontal lines crossing the Fourier plane center.
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(a) (b) k.

k. K
ky

k. Ko
ky

FiGure 2.8: Compared sampling strategies in 3D-MRI. Top: 2D independent drawing

sampling schemes designed by a planar independent drawing and measurements in

the orthogonal readout direction. Bottom: 3D TSP-based sampling scheme. Left:

Schematic representation of the 3D sampling scheme. Right: Representations of 4
parallel slices.

Sampling these zones seems to be of utmost importance since they contain high energy

coefficients. The TSP approach tends to sample these zones by crossing the lines.

Perhaps the most interesting fact is that Fig. 2.9 shows that the TSP based sampling
schemes provide results that are similar to independent drawings up to important sam-
pling rates such as 20. We thus believe that the TSP solution proposed in this paper is
near optimal since it provides results similar to unconstrained acquisition schemes. The

price to be paid by integrating continuity constraints is thus almost null.
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- = =Indep. drawing ||

— TSP (m)

— TSP (1/[k[*)
Parallel lines

PSNR (dB)

10 20 30 40 50

FIGURE 2.9: Quality of 3D reconstructed images in terms of PSNR as a function of
sampling rates R for various sampling strategies: independent drawings with respect
to distribution o 1/|k|? (dashed blue line), TSP-based sampling with target densities
7 (black line) and o 1/|k|? (red line), and parallel lines with 2D independent drawing
with respect to o 1/|k|? distribution (green line) as depicted in Fig. 2.8[Top row].

2.6 Discussion and perspectives

In this paper, we investigated the use of variable density sampling along continuous tra-
jectories. Our first contribution was to provide a well-grounded mathematical definition
of p-variable density samplers (VDS) as stochastic processes with a prescribed limit em-
pirical measure p. We identified through both theoretical and experimental results two
key features characterizing their efficiency: their empirical measure as well as their
mixing properties. We showed that VDS based on random walks were doomed to fail
since they were unable to quickly cover the whole acquisition space. This led us to pro-
pose a two-step alternative that consists first of drawing random points independently
and then joining them using a Travelling Salesman Problem solver. In contrast to what
has been proposed in the literature so far, we paid attention to the manner the points
have to be drawn so as to reach a prescribed empirical measure. Strikingly, our numerical
results suggest that the proposed approach yields reconstruction results that are nearly
equivalent to independent drawings. This suggests that adding continuity constraints to

the sampling schemes might not be so harmful to derive CS results.
We believe that the proposed work opens many perspectives as outlined in what follows.

How to select the target density? We recalled existing theoretical results to address

this point in Section 2.2 and showed that deterministic sampling could reduce the total
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FIGURE 2.10: Reconstruction results for R = 8.8 for various sampling strategies.

Top row: TSP-based sampling schemes (PSNR=42.1 dB). Bottom row: 2D random

drawing and acquisitions along parallel lines (PSNR=40.1 dB). Sagital view (left) and
zoom on the cerebellum (right).

number of required measurements. The analysis we performed closely followed the proofs
proposed in (Rauhut, 2010; Candés and Plan, 2011) and was based solely on sparsity
hypotheses on the signal/image to be reconstructed. The numerical experiments we
performed indicate that heuristic densities still outperform the theoretical optimal ones.
This suggests that the optimality critera used so far to derive target sampling densities
does not account for the whole structure of the sought signal /image. Although sparsity
is a key feature that characterizes natural signals/images, we believe that introducing
stronger knowledge like structured sparsity might contribute to derive a new class of

optimal densities that would compete with heuristic densities.

To the best of our knowledge, the recent paper (Adcock et al., 2013) is the first contribu-
tion that addresses the design of sampling schemes by accounting for a simple structured

sparsity hypothesis. The latter assumes that wavelet coefficients become sparser as the
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FIGURE 2.11: Reconstruction results for R = 14.9 for various sampling strategies.
Left: TSP-based sampling schemes (PSNR=39.8 dB). Right: 2D random drawing
and acquisitions along parallel lines (PSNR=38.3 dB).

resolution increases. The main conclusion of the authors is the same as that of Theo-
rem 2.9 even though it is based on different arguments: the low frequencies of a signal

should be sampled deterministically.

Finally, let us notice that the best empirical convex reconstruction techniques do not rely
on the resolution of a simple £! problem such as (2.1). They are based on regularization
with redundant frames and total variation for instance (Boyer et al., 2012). The signal
model, the target density and the reconstruction algorithm should clearly be considered

simultaneously to make a substantial leap on reconstruction guarantees.

What VDS properties govern their practical efficiency? In Section 2.3, it was
shown that the key feature characterizing random walks efficiency was the mixing prop-
erties of the associated stochastic transition matrix. In order to derive CS results using
generic random sets rather than point processes or random walks, it seems important to

us to find an equivalent notion of mixing properties.

How to generate VDS with higher degrees of regularity? This is probably the
most important question from a practical point of view. We showed that the TSP based
VDS outperformed more conventional sampling strategies by substantial acceleration
factors for a given PSNR value or recovers 3D images at an improved PSNR for a given
acceleration factor. However, this approach may not really be appealing for many appli-
cations: continuity is actually not a sufficient condition for making acquisition sequences
implementable on devices like MRI scanners or robot motion where additional kinematic

constraints such as bounded first (gradients) and second (slew rate) derivatives should
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be taken into account. Papers such as (Lustig et al., 2008) derive time-optimal wave-
forms to cross a given curve using optimal control. By using this approach, it can be
shown that the angular points on the TSP trajectory have to be visited with a zero
speed. This strongly impacts the scanning time and the distribution of the parametrized
curve. The simplest strategy to reduce scanning time would thus consist in smoothing
the TSP trajectory, however this approach dramatically changes the target distribution
which was shown to be a key feature of the method. The key element to prove our TSP
Theorem 2.19 was the famous Beardwood, Halton and Hammersley theorem (Beardwood
et al., 1959). To the best of our knowledge, extending this result to smooth trajectories
remains an open question®. Recent progresses in that direction were obtained in recent
papers such as (Le Ny et al., 2012), but they do not provide sufficient guarantees to
extend Theorem 2.19. Answering this question is beyond the scope of this paper. We
believe that the work (Teuber et al., 2011) based on attraction and repulsion potentials

opens an appealing research avenue for solving this issue.

Appendix 1 - proof of Theorem 2.9

For a symmetric matrix M, we denote by Amax(M) its largest eigenvalue and by ||M||
the largest eigenvalue modulus. The crucial step to obtain Theorem 2.9 is Proposition
2.25 below. The rest of the proof is the same as the one proposed in (Rauhut, 2010) and
we refer the interested reader to (Rauhut, 2010, Section 7.3) for further details.

Proposition 2.25. Let Q = Q1UQ C {1,...,n} be a set constructed as in Theorem 2.9.
Define
- a; if i €
a; = o
ai/pi ifie{l...n}\ Q.

and

ag, (1)

Q1(m1)

B>
Il

—

e Cmm, (2.11)

mz 4Q2(1)

\/%—Z&QQ(W)

8To be precise, many crucial properties of the length of the shortest path used to derive asymptotic
results are lost. The most important one is subadditivity (Steele, 1981).
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Then for all § € [0, 3):

r(lava

2
> 5) < 2sexp <—énj2(528> .
2

where AS € C™*5 is the matriz composed of the s columns of A belonging to S. C = 7/3

18 a constant.

The proof of this proposition relies heavily on the matrix Bernstein inequality below
(Tropp, 2012).

Proposition 2.26 (Matrix Bernstein inequality). Let Zy, be a finite sequence of indepen-

dent, random, self-adjoint matrices in C¥9. Assume that each random matriz satisfies
E(Z;) =0 and Amax(Zr) < R a.s.

Denote 0 = HZE(Z%)H Then, for allt > 0
k

(I > ) < e 2

We are now ready to prove Proposition 2.25.

Proof. For any vector v € C", denote by v € C® the vector composed of the entries
of v belonging to S C {1,...,n}. Consider the random sequence Xi,...,X,,, where
X; =j € {1...n}\ @ with probability p;, and denote by g the set {X1,... X, }.
Denote by My := } ;o aSaS Consider the matrices Z; := M; —|—aS S* —I;. According
to Eq. (2.11), we get by construction:

L
]692

Since I, = Y27, afa”, we notice that Vi € {1,...,ma} (i) E(Zx,) = 0, (ii) E(a?} a;q(*) =

i=1"

Is — M;. Moreover, we have (iii) 0 < Iy — M; < I and (iv) 0 X M; < I;.

Using the identity (a f*) = HaSH2 24 S* and the fact that ||a7|| < v/s]/@f]eo, we get

E((a i@ *fgz) ) = K2s(Is — M) using ( ) We can then proceed as follows using points
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(iil) to (iv):

E(Z%,) = Mji-2M, + I, +E((a%,a3")?) + 2ME(a3,a%’) — 2E(a%,ay’)
< M2 —2M; + I, + K3s(I, — My) + 2M; (I, — M) — 2(I, — M)
= —(I,—M)?+ K3s(I, — M;)
< K3sl,.

ma2
Then || Y E(Z%,)|| < maK3s.

i=1
By noticing that &%di’: — I, X Zx, < dX ag(*, we obtain ||Zx,|| < K3s. Finally, by
applying Bernstein inequality to the sequence of matrices Zx,,...Zy,,,, we derive for
all t > 0:

IP’(H Z ZH > t) < 2sexp | — t*/2
: == moK3s + K3st/3) "

JEQ2

Plugging ¢ := t/mg, and noticing that 6 < 1/2 = 2(1 4+ 6/3) < 2(1 +6/3) < 7/3, the

announced result is shown. O

Appendix 2 - proof of Proposition 2.11

Our approach relies on the following perfect recovery condition introduced in (Juditsky
and Nemirovski, 2011):

Proposition 2.27 ((Juditsky and Nemirovski, 2011)). If Aq € R™*"™ satisfies

Ag)= min ||I,-YTA < —,
Y(Ag) = min |l 2lls < 5

all s-sparse signals x € R™ are recovered ezactly by solving the {1 minimization prob-

lem (2.1).

We noted [|A|loc the maximal modulus of all the entries of A. This can be seen as an
alternative to the mutual coherence (Donoho, 2006). We limit our proof to the real case

but it could be extended to the complex case using a slightly different proof.

We aim at finding Y € R™*", such that ||, — YT Aqlloo < i, for a given positive integer
s, where Agq is the sensing matrix defined in Proposition 2.11. Following (Juditsky et al.,
2011), we set ©; = a%f and use the decomposition I, = ATA = Yo pi®;. We
consider a realization of the Markov chain Xi,...,X,, , with X; ~pand X; ~ Px
for ¢ > 1. Let us denote W,,, = % >, Ox,. Then W, may be written as Y Aq.

i—1,
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Lemma 2.28. V0 <t <1,

m 26
P11y = Wil > ) <l + e o (7150 (2.12)

Before proving the lemma, let first recall a concentration inequality for finite-state
Markov chains (Lezaud, 1998).

Proposition 2.29. Let (P,p) be an irreducible and reversible Markov chain on a finite
set G of size n with transition matriz P and stationary distribution p. Let f : G — R
be such that >0 1 pifi = 0, |flle <1 and 0 < Y0, f2p; < b?. Then, for any initial

distribution q, any positive integer m and all 0 <t < 1,

P 21000 > ) < Nyewp (g ey )

where Ny = (Z?Zl(%)Zpi)l/Q and g is given by g(z) = 3(vV1+z — (1 — 2/2)).
Now, we can prove Lemma 2.28

Proof. By applying Proposition 2.29 to a function f and then to its opposite — f, we get:

e(P)

5 Ngexp

mt?e(P)
<_4b2(1 + g(5t/b2)))'

1 m
P(‘m;f(Xi) p t) < 2
Then we set f(X;) = (I, — Ox,)"/K(A,p) as real-valued function. Recall that p
satisfies Y ;| pi f(X;) = 0. Since ||f]joc < 1, b=1and ¢t < 1, we deduce 1+ g(5t) < 3.
Moreover, since the initial distribution is p, ¢; = p;, Vi and thus IV, = 1. Finally, resorting

to a union bound enables us to extend our result for the (a, b)th entry to the whole infinite

norm of the n x n matrix I,, — Wy, (2.12). O

Finally, set s € N* and n € (0,1). If m satisfies Ineq. (2.8), then

1
]P)<||In_ Hm||c>o> 92 > <77'
S

In other words, with probability at least 1 — 1), every s-sparse signal can be recovered by
¢, minimization (2.1).
Remark 2.30. It is straightforward to derive a similar result to Theorem 2.9 and thus to

justify that a partial deterministic sampling reduces the total number of measurements

required for perfect recovery.
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Appendix 3 - proof of Remark 2.15

In this part, we prove that for a random walk with uniform stationary distribution p,
e(P) = O(n*%). We use geometric bounds known as Cheeger’s inequality in (Diaconis
and Stroock, 1991) and Conductance Bounds in (Jerrum and Sinclair, 1989; Brémaud,
1999). Let us recall a useful result concerning finite state space irreducible reversible

transition matrices P.

The capacity of a set B C {1,...,n} is defined as p(B) := ), pp(i) and the ergodic
flow out of B is defined by F(B) := 3 ;cp jcpe P(i)P;;. The conductance of the pair

(P,p) is:

o(P) := i%f (i((g)), 0<|B|<n, p(B)< ;) :

Then the following result holds (see (Jerrum and Sinclair, 1989) and (Brémaud, 1999,
Theorem 4.3)):

Proposition 2.31.

1/d ¢ N is even and construct a finite graph with n nodes representing

Now, assume that n
a Euclidean grid of the unit hypercube of dimension d. Assume that the vertices of the
graph at one grid point are the 2d nearest nodes, with periodic boundary conditions (the
graph can be seen as a d-dimensional torus). Assume that the transition probability
is uniform over the neighbors, thus the stationary distribution is also the uniform one.

This graph is depicted in Fig. 2.12|Left], with d = 2.

Let B be the halved graph defined by the hyperplane parallel to an axis of the grid and
including its center, so that p(B) = 1/2. An illustration is given in 2D in Fig. 2.12[Right].
Since we assumed periodic boundary conditions, the number of nodes belonging to B
and having a neighbor in B¢ is 2n(¢1/4 Each of these nodes have 2d neighbors, but
only one belonging to B¢. Since the stationary distribution is equal to 1/n on each node,

the ergodic flow is 2n(d=1/d( 5)- It follows that e(P) < %nfé.

1
n



60 Chapter 2 Variable density sampling with continuous trajectories

FIGURE 2.12: Tllustration of the proof of Remark 2.15 in dimension 2. Left: regular
grid with n = y/nx+/n nodes. Right: Graph partitioning in B and B¢ with p(B) = 1/2.

Appendix 4 - proof of Theorem 2.19

Let h € N. The set H = [0, 1] will be partitioned in A congruent hypercubes (w;)ses of
edge length 1/h. The following proposition is central to obtain the proof:

Proposition 2.32. Almost surely, for all w; in {wi}i<;<pa-

i Pr(wi) = plwi) (2.13)
d-1)/d
s o
— fH STz p®-qa.s. .

The strategy consists in proving that T}, (Xy,H) tends asymptotically to T'(Xn,w;).
The estimation of each term can then be obtained by applying the asymptotic result of

Beardwood, Halton and Hammersley (Beardwood et al., 1959; Steele, 1981):

Theorem 2.33. If R is a Lebesque-measurable set in R? such that the boundary OR has
zero measure, and {y;}ien+, with Yy = {yi};cn 5 a sequence of i.i.d. points from a
density p supported on R, then, almost surely,

1 T, R)
Nooso N(d-1)/d

_ 8(d) /R p@D/4( ) dz. (2.15)

where B(d) depends on the dimension d only.

To show Prop.2.32, we need to introduce the boundary T'SP. For a set of points F’ and an
area R, we denote by Tp(F, R) its length on the set F’ N R. The boundary TSP is defined

as the shortest Hamiltonian tour on F' N R for the metric obtained from the Euclidean
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metric by the quotient of the boundary of R, that is d(a,b) = 0 if a,b € OR. Informally,
it matches the original TSP while being allowed to travel along the boundary for free.

We refer to (Frieze and Yukich, 2002) for a complete description of this concept.

We shall use a set of classical results on TSP and boundary TSP, that may be found in
the survey books (Frieze and Yukich, 2002) and (Yukich, 1998).

Lemma 2.34. Let F denote a set of n points in H.

1. The boundary TSP is superadditive, that is, if R1 and Ry have disjoint interiors.

TB(F, Ry U Rg) > TB(F, Rl) + TB(F, RQ) (216)

2. The boundary TSP is a lower bound on the TSP, both globally and on subsets. If
Ry C Ry:

T(F,R) > Ts(F, R) (2.17)
,T\Rz (F7 Rl) P TB(F7 RQ) (218)

3. The boundary TSP approzimates well the TSP (Yukich, 1998, Lemma 3.7)):

IT(F,H) — Tp(F,H)| = O(nld=2/d=1), (2.19)

4. The TSP in H is well-approzimated by the sum of TSPs in a grid of h® congruent
hypercubes (Frieze and Yukich, 2002, Eq. (33)).

hd
T(F,H) - > T(F,w)| = O(n4=2/(@=1) (2.20)
=1

We now have all the ingredients to prove the main results.
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Proof of Proposition 2.32.

(2.16)

ZTB(XNaWi) < Tp(Xn,H)

icl
(2.17) hd

< T(XN7H):ZT|M(XN7H)
i1

(2.20) 2
< Y T(Xy,wi) + O(NE@D/ (@)
i=1

Let N; be the number of points of X in w;.
Since N; < N, we may use the bound (2.19) to get:

T(Xy, w; To(Xy. w;
lim 7( NoWi) lim (X, wi)

Nooo N(d-1)/d _NQWW. (221)

Using the fact that there are only finitely many w;, the following equalities hold almost

surely:

d d
Y Te(Xn, wi) _ 3 S T(X N, w;)

e e R e S R}y
d
(220) 1 Z?:l z—iwz(XNa%)
T Noee | N(-D/d

Since the boundary TSP is a lower bound (cf. Egs. (2.18)-(2.17)) to both local and global
TSPs, the above equality ensures that:

v sy il e vy (2.22)
T, (Xn, H
— lim Ljus (XN, ) ®Nas Vi,

N-ooo N(d=1)/d

Finally, by the law of large numbers, almost surely N;/N — p(w;) = fwi p(x)dx. The law
of any point z; conditioned on being in w; has density p/p(w;). By applying Theorem
2.33 to the hypercubes w; and H we thus get:

. T(Xn,wi) (d—1)/d ®N ,
Nl_lffoo N@Hd - B(d) /wlp(:v) dx p¥h-a.s, Vi.
and
. T(Xn,H) (d—1)/d ®N -
Nl_lffoo N@D/d B(d) /Hp(:n) dx p¥h-a.s, Vi.

Combining this result with Eqs. (2.22) and (2.9) yields Proposition 2.32. O



Chapter 2 Variable density sampling with continuous trajectories 63

Proof of Theorem 2.19. Let ¢ > 0 and h be an integer such that vdh~¢ < e. Then any

two points in w; are at distance less than e.

Using Theorem 2.32 and the fact that there is a finite number of w;, almost surely, we

get:

limpy 400 Z?:dl Py (wi) — ﬁ(wi)) = 0. Hence, for any N large enough, there is a coupling
K of Py and p such that both corresponding random variables are in the same w; with
probability 1—¢. Let A C H be a Borelian. The coupling satisfies Py (A4) = K(A®H) and
p(A) = K(H®A). Define the e-neighborhood by A* ={X e H|3Y € A, | X-Y]| < e}.
Then, we have: Py(A) = K(AQH) = K{AQHIN{|X —Y|<e}) + K{A®H}N
{|IX =Y]| > ¢e}). It follows that:

Py(A) S K(A® A)+ K(X —Y| > ¢)
SKH®A®) +e=p(A%) +e.

This exactly matches the definition of convergence in the Prokhorov metric, which implies

convergence in distribution. O
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Chapter 3

A new concentration inequality

In this chapter, we introduce a new concentration inequality on the largest eigenvalue
of the sum of zero-mean Hermitian matrix-valued Markov chain. This result generalizes
the existing scalar concentration inequalities for Markov chains, as well as the case of
sum of independent matrices, the dependencies being encoded by the spectral gap of the
chain. We give an application in Compressed Sensing when the sampling is based on

random walks that improves the proposition 2.11 page 42.

3.1 Introduction

We consider a finite graph G with IV vertices and an irreducible and reversible Markov
chain (X,,) on this graph. Let f be a matrix-valued mapping from G to H?, the set of
Hermitian matrices of size d x d. If = denotes the stationary distribution of the chain, we
expect that n=1 Y7 | f(X;) converges to 7f = > yeg T(y) f(y). Here, we are interested
in controlling the deviation from the mean, i.e., the largest eigenvalue A\pax of the partial

sum process in the case where 7 f = 0. Our concentration result reads:

Proposition 3.1 (Bennett’s inequality for matrix-valued Markov chains). Let X1,..., X,
be an irreducible and reversible Markov chain and denote by P its transition matriz with

stationary distribution m and spectral gap €. Assume that X1 ~ q and that:

S oaw)f(y) =0 and Amax(f(y)) <R, Yy €G. (3.1)

yeg

Define the variance parameters:

0% := Amax Zw(y)f(y)2 . and ol=n-o?
yeg

65
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Then, for allt > 0,

n ) 0-2 .
P (xmax (Z f(Xn) > t> <d-sw®) oo (o () G2
=1

n

where h(z) = (1 + x)log(1l + ).

A more common inequality is Bernstein’s one. It is a direct consequence of Proposi-

tion 3.1.

Proposition 3.2 (Bernstein’s inequality for matrix-valued Markov chains). With the

same hypothesis as in Prop 3.1, for all t > 0:

& qi et?
P (/\max (; f(Xi)> > t> <d- sup(ﬁ—i) - exp <_4‘7%+2Rt5/3> . (3.3)

To the best of our knowledge, there is no such concentration inequality in the literature.
Existing results consider either a sum of scalar-valued (or vector-valued) variables defined
over a Markov chain, or a sum of independent Hermitian matrices. The contribution of
this work is thus a generalization of these inequalities to matrix-valued Markov chains.

Let us start by discussing the accuracy of our result introduced in Proposition 3.2.

3.1.1 Existing concentration results on real-valued Markov chains

One of the first results of this type was proven by Lezaud (Lezaud, 1998). We notice
that the quantities involved in his result were really similar to our results introduced in
Propositions 3.1 and 3.2. For a real mapping f : G — R, such that |f(y)| < RVy € G
and 7f = 0, he showed that for all £ > 0:

- . et?
P(; F(&:) > t) <N, eXp(_4nb2(1 n g(5t/nb2R)))’

2

where g is given by g(z) = %(\/m — (1 -2/2), Ny = Zﬁ(y)q(y)

= T2
Zyeg 7(y)f(y)?, and € denotes the spectral gap of the chain. This concentration results
is based on Kato’s theory on perturbation operator (Kato, 1976). Lezaud improved the
concentrations results obtained by Gillman (Gillman, 1993) and Dinwoodie (Dinwoodie,
1995) that also used tools from operator perturbation theory. Kargin (Kargin, 2007)

uses Kato’s theory to prove a concentration inequality for vector-valued Markov chains.
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Using a different approach based on Marton coupling, Paulin (Paulin, 2012a) proved
Hoeffding and Bernstein inequalities using the more intuitive notion of mixing time

instead of spectral properties of P. Mixing time is defined as

tmix(n) = min {t supdpy (Pl(z,-), m) < 7]} ,
z€eQ

where dpy is the total variation distance, and P!(x,-) is the distribution of the chain

starting from z with transition matrix P at time ¢t. He proved also that the mixing time

tmix(n) is an upper bound of 1/¢ times a constant that depends on the precision of the

mixing time. His Bernstein inequality reads:

nt?/7!

P(; f(Xi) > t) < eXp<—m)>

where V =E (Zfil f(XZ-)Q), and 7

¢ i = tmix(1/4). In (Paulin, 2012a), the author shows
that the mixing time is the natural quantity governing the speed of convergence. The
framework is more general since it encompasses continuous and discrete, such as homo-
geneous and non-homogeneous chains (in particular, the last formula is valid even if the
chain is not homogeneous). Finally, let us mention that Joulin and Ollivier (Joulin et al.,
2010) obtained concentration inequalities for Lipschtiz functions with bounds depending
on the Ricci curvature of the chain. The Ricci curvature is smaller than the spectral gap
for reversible chains, providing weaker concentration bounds (see also (Paulin, 2014)).
One of the motivation of this method is that there is no dependency on the initial ditri-

bution, i.e., one can start from any location of the state space.

3.1.2 Sum of independent Hermitian matrices.

First works on matrix-valued concentration inequalities relied on the matrix Laplace
transform for matrices, introduced by Ahlswede and Winter (Ahlswede and Winter,
2002). They extended Bernstein’s method developed for the sum of independent scalar
variables to the set of Hermitian matrices. Their result was then used in (Oliveira, 2009;

Tropp, 2012) in the following form:

P(Amax(; Xk) > t) < ggg{e_etEtr exp(Q;Xk)}, vt > 0.

where X are Hermitian random matrices. The first impediment of this method is that
the so-called moment generating function [E exp (6? >k Xk) is not equal to E[ [, exp (HXk)

as in the scalar case since matrices do not commute in general. An alternative is to use
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Golden-Thompson inequality (Golden, 1965; Thompson, 1965) that states
trexp (6(X1 + X2)) < trexp(6X;) exp(6X2),

but this inequality cannot be generalized to more than two matrices. Therefore, in
the original papers (Ahlswede and Winter, 2002; Vershynin, 2009; Gross, 2011), the
Golden-Thompson inequality was used within iterative methods to obtain concentration
inequalities.

Further developments (Tropp, 2012; Oliveira, 2009) used more powerful tools based on
Hermitian matrix properties. For example, using Lieb’s theorem (Lieb, 1973), Tropp (Tropp,
2012) obtained the following concentration inequality, for a sequence of i.i.d. random

Hermitian matrices (Yx)1<r<n such that E(MY;, = 0 and Apax(Y) < R almost surely:

P ( Ao vi|l>t) <d- v ). 3.4
( <; ’“) ) eXp( 20,%+2Rt/3> (3-4)

where 02 = Amax (3, EY?)!. The inequality obtained by Oliveira (Oliveira, 2009)
only differs by weaker constants. Note that o2 is the norm of the sum of variances,
whereas original Ahlswede and Winter’s method (Ahlswede and Winter, 2002; Vershynin,
2009; Gross, 2011) involved the sum of variance norms, that is in general larger (see the
discussion in (Tropp, 2012, Section 1.1)). In our context, since E(™ f(X;) = o2 does
not depend on 4, hence these two variance parameters are equal. In an independent

framework (corresponding to € = 1), our result reads:

n t2
P <)\max (; f(Xz)> > t) g d- €xXp <_40%—|-2]%t/3> ) (35)

that is similar to the stat-of-art, except that the constants are different (our bound is
slightly weaker because of the 40, term, instead of 20, in (3.4)).

Finally, let us mention that a new technique for proving concentration inequality has
recently emerged, based on a matrix generalization of Stein’s method of exchangeable
pairs (Paulin, 2012b; Paulin et al., 2013; Mackey et al., 2014). A similar Bernstein
concentration inequality is obtained with this method (Mackey et al., 2014, Corollary
5.2). In addition, this technique permits to introduce weak dependencies between random

variables.

'Here Amayx is equivalent to the spectral norm, since the matrix is positive.
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3.1.3 Chapter overview

In the next section, we introduce the background that will be used to prove propo-
sitions 3.1 and 3.2. We introduce the notation of the paper, such as technical tools
about Kronecker product. We also recall crucial properties on Hermitian matrices and
on Markov chains that are the two key concepts hereafter. Then, section 3.3 contains

the proof of our main results (prop. 3.1 and 3.2).

3.2 Preliminaries

3.2.1 General notation

We denote by (e;)1<i<n the canonical basis of CV, and by (fi)1<i<d the canonical basis
of CZ. For vectors ¢,7 € RV, we denote by Q = diag(qi,...,qn) = diag(q) and II =
diag(r) the diagonal matrices in RN*N. We define 1 € R the vector containing ones.
We denote by F' € RV ?*Nd the Hermitian block-diagonal matrix diag(f(g1),. .., f(9n5)),
where g1,...gn are the vertices of G. Let us recall some properties of the Kronecker

product:

Proposition 3.3. If A € C"™*" gnd B € CP*?, we denote A® B € C™P*™1 the matriz:

anB - ain,B
amB - amnB
The Kronecker product satisfies the following properties:
1. If A, B,C, D are four matrices and if the sizes are compatible,
(A® B)(C® D) = (AC) ® (BD)

2. (A® B)* = A* ® B*

3. If A € RP*P and B € R*? are two hermitian matrices, and if (A1,...,p) and
(1, ..., pq) are the eigenvalues (with multiplicity) of A and B, A ® B is also
Hermitian and diagonalizable with eigenvalues (N; - pj, 1 <i < p,1<j<q)

For notation compacity, we also denote:

e P=PRI;ec CNIXNd and I =1 ® I; € CNdxN-d.
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PIIId Plgfd PlNId 1 ~Id 0 0

Pglld PQQId P2NId 0 T -Id 0
P= . I = .

Py11q Pyn1g 0 N - 1g

ec,=ep,®I; € CN4 Wealsodenote 1l =1®I[; e CV™ andr =7®1I; €
CN~d><d'

(CN~d

Finally, we equip the complex Hilbert space with the Hermitian product (-,-)iz

defined by (z,y)n = 2*Ily and the complex Hilbert space CN with the Hermitian product
<'7 '>H defined by <‘T7y>1_[ = ‘T*Hy

3.2.2 The set of Hermitian matrices.

We denote the real vector space of Hermitian matrices by H? := {X € C™*", X* = X},
where X* denote the conjugate transpose of X. The eigenvalues of a matrix X € H? are
real and we denote by Amax(X) (resp. Amin(X)) its largest (resp. smallest) eigenvalue.
tr denote the trace operator of a matrix. For X1, Xy € Hd, we say that X; =< Xy if the

eigenvalues of X9 — X7 are positive.

First, let us recall the following lemma,

Lemma 3.4. For all A, B € H? such that A < B, tr(A) < tr(B).

The following lemma was proposed by Tropp (Tropp, 2012) to bound the exponential of

a zero-mean random matrix in expectation:

Lemma 3.5. VM € H? a random matriz, such that Apax(M) < 1, and EM = 0:
Ee?™ < exp (g(@)E(M2)) Vo >0

where g(0) = (¢! — 6 —1).

This lemma is crucial to obtain sharp bounds in the final concentration inequality. For
comparison, Oliveira (Oliveira, 2009) used the weaker bound : e < I;+ M + M?. This

explains that he obtained a larger bound in his Bernstein concentration inequality.
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We now recall properties that hold for any random matrices. Let M be a measurable

matrix. The definition of the expectation implies that

trEM = EtrM (3.6)
EM* = (EM)* (3.7)

3.2.3 Background on Markov chains

E(™) will denote the expectation relative to the invariant distribution, whereas E(™) will
denote the expectation with respect to the initial distribution. We denote by [E; the

conditional expectation E[-|X;].

Since P defines a reversible Markov chain (i.e., such that IIP = PTTI), its eigenvalues
are real and its eigenvectors are orthogonal for the scalar product (-, )11 defined in sec-
tion 3.2.1 (since MzPI "z is a symmetric matrix, see (Brémaud, 1999) for details). We

order the eigenvalues as follows:
1= M>X2>2...2 Ay > —1. (3.8)

The inequality A; > Ao comes from the irreducibility of the chain. 1 spans the eigenspace

associated with the eigenvalue 1. € := 1 — X5 is the spectral gap of the chain.

3.3 Proof of propositions 3.1 and 3.2

3.3.1 The Laplace transform method

The matrix Laplace transform is crucial in many proofs of matrix valued concentration
inequalities. It was introduced by Ahlswede and Winter (Ahlswede and Winter, 2002),
and a different proof is provided in (Oliveira, 2010; Tropp, 2012).

Lemma 3.6 (Matrix Laplace transform). For all random matriz M € H:

P(Auax (M) > t) < inf{e " Etrexp(0)1) }, ¥t > 0.

The term E(™tr exp (GM ) is called matrix moment generating function since the moments

of the random matrix M can be obtained by successive derivations and evaluations in
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zero. In our case, Lemma 3.6 ensures that:

P <Amax (Z f(X,)) > t) < gg%{e*‘)tmrexp(ez f(Xi))}. (3.9)
=1

i=1

Now, the quantity to control is the matrix moment generating function (mgf):

Etrexp(HZf(Xi)) (3.10)
i=1

The outline of the proof is classical (Tropp, 2012; Oliveira, 2009). We first use the
Ahlswede and Winter transform to express our problem as the bounding of the trace
of an exponential matrix (the mgf in Eq. (3.10)). Then, we try to find a relationship
between the expectations E(™ and E, that is to say, how the expectation will change
if the initial value Xy is drawn from law 7 or law ¢. Following (Tropp, 2012), we
bound the moment generating function with only the second-order moment by resorting
to lemma 3.5. Finally, the main difficulty of the proof is to bound this second-order
moment in a Markov chain framework. We propose an upper-bound of this term that

relies on the spectral properties of the chain.

3.3.2 Influence of the initial distribution

In this section, we are looking for a relation between E(™ and E. By definition,

Etrexp(0)  f(Xi) = > trexp (02f<xi)> q(XﬁHP(XH,Xi),

here the summation is taken over all the possible trajectories Xq, ..., X, of the chain.

Hence, we set

Z tr exp <QZf(Xi)> q(X1) HP(XZ'—LXz‘)

X17'~~7Xn

< Sup(&) > trexp (92f(Xi)) =(x0) [ P(Xia, X3)

X1, Xn i=1 i=2

Then, it comes the following lemma:
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Lemma 3.7.

n n

Etrexp(@Zf(Xi)) < Sup(%)}E(W)treXp(GZf(Xi)) (3.11)

i=1 v i=1

This bound involves sup(fr—i), that also appear in the final results 3.1 and 3.2. For
comparison, in the context of sum of scalar valued Markov chains, Lezaud (Lezaud,
1998) introduced an f3-norm of ¢/7, instead of this {s-norm. In (Paulin, 2012a), the
author succeeded in removing this dependency from the concentration inequality. Finally
notice that this term appear through a log term when we want to compute confidence

intervals.

3.3.3 Control of the mgf with the second-order moment

Thanks to the previous section, we have to control the mgf E(™tr exp(@ Sy f(Xi)),
which corresponds to the expectation of a Markov chain generated with X; ~ 7 and

with transition matrix P.

By lemmas 3.4 and 3.5, and using that trace and E(™) commute, we have, for all 6 > 0:

n n n 2
EMtrexp(0 | f(Xi)) = trE™ exp(0 ) (X)) < trexp | g(0)E™ (Z f(Xz-)>
i=1 i=1 =1

(3.12)

3.3.4 Control of second-order moment

In what follows, the main novelty of our result is exposed. It is largely based on matrix

2
n
manipulations. We aim at controlling the term E(™ <Z f (Xl)> . First let us develop
i=1

the square:

n 2 n n
E() (Z f(X@')> =Y ) EW (f(X0)£(X5)) (3.13)

i=1 i=1 j=1

Let us introduce two crucial lemmas, proven in Appendices 1 and 2.

Lemma 3.8. Forall 1 <1,5 <n,

E™ (f(X:)f(X;)) = 1T FIPV I F1.
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Lemma 3.9. Forallk >0
1TFIIPFF1 < )\s - 0% - 1y,

where o is the second largest eigenvalue of P, and where

02 = Amax Zﬂ-(y)f(y)2

yeg

Using these two lemmas we are now able to bound the second-order moment:

Proposition 3.10.

n 2
E™ <Z f(X») <2 g, (3.14)

where

0121 :n'U:n')\maX Zﬂ-(y)f(y)2

yeg
Proof. Let us write the sum in Eq. (3.13) as:
n 2 n A n n
E™ (Z f(Xi>> =Y D ED G X))+ Y EP (F(X) (X))
i=1 i=1 j=1 i=1 j=i+1

Thanks to lemmas 3.8 and 3.9, we have

i i-1
SUE® (F(X0)F(X)) 2D Mo? - I
=1 k=0

1- !
< o? . )2\2 g
1
= 021 W Iq
Similarly,
n o
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Then, by summation, we have that

3.3.5 End of the proof

Now, we can use the different lemmas to control the mgf. Starting from Eq. (3.10), we

have:

P (Amax <Z f(X’L)> = t) < ggg{e_etEtr exp(e Z f(X’L)>}
=1 =1

n

qi\ . —Otm (7
< sup(ﬂ'—i) é&f){e E™r exp (0 ;:1 f(XZ))} (lemma 3.7)
n 2
iy, —0t () 4
< =
< Sup(m) égg{e trexp | g(0)E (;_1 f(Xl)) } (lemma 3.5)
Qi . 202 "
<d- Ll — L Z0n
<d sup(m ) égg{exp ( 0t + g(0) 6 )} (proposition 3.10)

Following (Tropp, 2012), we notice that the minimal value is reached for § = log(1 +
te/(202). Let us define h by h(x) = (1 + 2)log(1 + ), it comes that:

F <)‘ma" (Z ﬂXi)) Z t> <d- sup(%) - exp (— 2(;7% -h (;)) .
i=1 2

Proposition 3.1 is obtained with a normalization by R. Finally, Corollary 3.2 is a conse-

x2/2
T52/3 for x > 0.

quence of Bennett’s bound since h(x) >

3.4 Application to drunk man sampling

In this section, we prove a new Compressed Sensing result, for a sampling scheme based
on a random walk on the acquisition space. A CS result was proven in theorem 2.11

page 42. The number of measurements needed to reconstruct any s-sparse vector was

2
O (iK*Q(A) log(2n2/n)>, where ¢ is the spectral gap of the chain associated to the
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random walk. This bound suffers from the quadratick bottleneck (s term). This is a
major drawback of this bound, since the number of measurements required to guarantee
reconstruction is linear in s in clagsical CS results in the independent framework. Here
we prove that the bound can be improved to O <§K*2(A) 10g(6n/n)> in a non-uniform
framework. In particular, the bound is tight in thé5 independent framework, where e = 1.
The inequality introduced in proposition 3.2 is the cornerstone to prove the following

result, using the notation of chapter 2:

Proposition 3.11. Let x be an s-sparse random vector such that the signs of its nonzero
entries is a Rademacher or Steinhaus sequence. Let Q0 = Xq,..., Xy, denote a set of
m indezes selected using a Markov chain of transition kernel P with gap € and mw its
stationary distribution. Assume that X1 ~ 7. Let Aq be the matriz obtained by selecting
the m lines of A belonging to the set Q). Then, if

14
m>— - K**(A)-s-log? (671) ,
3¢ n

with probability 1 —n, x is the unique solution of the {1 problem (2.1)

The proof of proposition follows the proof in (Rauhut, 2010). The main difference is that
the (Rauhut, 2010, Theorem 7.3) is replaced by:

Proposition 3.12. Let 0 < < % Then, with probability at least
1 mée
—sexp | — e A
LK*2(A)s
the matriz Aq satisfies

1
| anan -1 <
m

Proof. Notice that AfAq = >" a x;a,- The proposition is a direct consequence of
proposition 3.2 with f :i € {1,...,n} — aa} — I,. O

A more general CS result could be obtained, without the hypothesis on the sign of the
non-zero entries of z. Actually, it is possible to improve the result by resorting to the
so-called golfing scheme technique (Gross, 2011; Candés and Plan, 2011). However,
such a proof require other concentration inequalities on sums of vectors with Markovian

dependencies, and existing concentration results (Kargin, 2007) should be improved.
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Appendix 1 - Proof of lemma 3.8

In this lemma, we aim at showing that E™[f(X;)f(X;)] = 1TFIPV—IF1. First, we

consider the case j > i. We notice that

EM[f(X) f(X;)] = EME™,[£(X;) f(X;)]
=E™ [f(Xi)E(W)i[f(Xj)H

Let us show that E(”)i[f(Xj)] = gﬁiﬂj_"Fl for 0 <7 < j, where X is the vertex number
reached by the chain after i iterations. For a fixed j, let us denote by (P;) the assertion:

EM;[f(X;)] = ek, P/ 'FL. (P)

Let us show that (P;) is true for all i < j. (P;) is true, and we assume that (P;) is true

for a fixed i. Let us show that (P;_1) is also true.

N
ET 1 [f(X)] =D Px,, kEM[F(X;)]X; = K]

ol
—_

I
WE

ek,  Peyef PIT'F1

B
Il

1
— j—i41
= QXZ-ABJ F1.

Indeed, e%ilPekgf = e%ilpekeg ® I4. Using that Z,ivzl ekeg = Iy and the linearity

of ®, it comes that Z]kvzl e%ilPekg{ = g%ilﬂ, finishing the proof by induction.

Now, notice that f(X;) = g%iFgXi. It comes that

FX)ET[f(X))] = ek, Fex, ek, P/ F1
= ey, FPFL,

because of the block-diagonal structure of F'. Finally, E(W)Q§i = (EME Yol =" 01,

(3

Since 77 = 17Tl and I; = I; - Iy, it comes from Prop 3.3 (1) that E(e% = 17TI. The

k3

final formula is obtained by noticing that II and F' commute.



78 Chapter 3 A new concentration inequality

Now, if 7 < ¢, we can write:

E [f(X0) f(X5)] = B [£(X0)* £(X;)"]
= E™ [(£(X)F(X:)]
= (BE™ (x5 £(x0)]) Eq. (3.7))
=1"rupiirL,

since P*II = IIP.

Appendix 2 - Proof of lemma 3.9

First, we notice that 02 = Amax (lTFHFl), or again, that 17FIOF1 < 02 - 1. Hence,
we aim at showing that 1TFIOPrFF1 < )\lngFﬂFl. Now, we can write:

1"FIP"F1 — N1TFIFL = 1" FII(P* — A5 In.g)F1

Since the chain is reversible, the matrix lTFﬂ(Bk — )\IQ“IN.d)Fl is Hermitian of size
d. In order to show that it is a negative matrix, we fix a € C% and we show that
a*1TFI(P* — NsIn.4)Fla < 0.

Since P is self-adjoint for (-, )11, there exists (u;)1<i<n an orthogonal basis of CV such

that Pu; = A\ju;, where \;s are sorted in decreasing order as in Eq. (3.8). In particular

(A1,u1) = (1,1). Hence, {u; ® f;,1 <i < N,1 < j < d} is an orthogonal basis of CN¢
for (-,-)m, and we have:

N

(1@ fi, Fla)u = ) (m;f(gj)a)i

J=1
0,
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since Z;V:o 7jf(gj) = 0. Therefore, there is a sequence of complex numbers (o;)2<i<N,1<j<d

such that Fla = sz\iz E?:l aiju; @ fj. We notice that

N d
CL]_TFH( )\kINd)F]-a_<Zzal]uz®f]a(Pk—)\l§INd ZZa”uz®fJ>
i=2 j=1 =2 j=1
N d
<ZZCXUUZ®fJ, AgIN)®IdZZaijui®fj>
=2 j=1 =2 j=1 I
N d ;
= <Zzgz]uz®fpzza2g )\k Ak)”z@f]>
=2 j=1 1=2 j=1 I
N 11
zzza?j()\f_)‘g)
i=2 j=1
<0.

In other words, 17 FII(P* — M5Tn.4)F1 < 0.






Chapter 4

A projection algorithm for gradient
waveforms design in Magnetic

Resonance Imaging

This chapter is based on (Chauffert et al., 2014b).

Collecting the maximal amount of useful information in a given scanning time is a major
concern in Magnetic Resonance Imaging (MRI) to speed up image acquisition. The
hardware constraints (gradient magnitude, slew rate, ...), physical distortions (e.g., off-
resonance effects) and sampling theorems (Shannon, compressed sensing) must be taken
into account simultaneously, which makes this problem extremely challenging. To date,
the main approach to design gradient waveform has consisted of selecting an initial
shape (e.g. spiral, radial lines, ...) and then traversing it as fast as possible. In this paper,
we propose an alternative solution: instead of reparameterizing an initial trajectory,
we propose to project it onto the convex set of admissible curves. This method has
various advantages. First, it better preserves the density of the input curve which is
critical in sampling theory. Second, it allows to smooth high curvature areas making
the acquisition time shorter in some cases. We develop an efficient iterative algorithm
based on convex programming and propose comparisons between the two approaches. For
piecewise linear trajectories, our approach generates a gain of scanning time ranging from
20% (echo planar imaging) to 300% (travelling salesman problem) without degrading
image quality in terms of signal-to-noise ratio (SNR). For smoother trajectories such as
spirals, our method better preserves the sampling density of the input curve, making the
sampling pattern relevant for compressed sensing, contrarily to the reparameterization

based approaches.

81
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4.1 Introduction

The advent of new hardware and sampling theories (e.g., Compressed Sensing or CS)
provide unprecedented opportunities to reduce acquisition times in MRI. The design of
gradient waveforms minimizing the acquisition time while providing enough information
to reconstruct distortion-free images is however an important challenge. Ideally, these
two concerns (sampling scheme and gradient waveform design) should be addressed si-
multaneously, but current theoretical results in sampling theories (either Shannon-based
or CS-based) do not permit to incorporate complex physical constraints like the starting
position or the traversal speed in k-space, despite recent progresses (Chauffert et al.,
2014a; Boyer et al., 2015a; Unnikrishnan and Vetterli, 2013; Grochenig et al., 2014)

To date, the most widespread technique therefore consists of designing gradient wave-
forms sequentially: a first step aims to find the trajectory support or at least control
points, and a second step essentially builds the gradient waveforms to traverse this sup-
port or linking these control points. The first step either relies on Shannon sampling
theorem (Unnikrishnan and Vetterli, 2013; Grochenig et al., 2014) or on the concept of
variable density sampling (VDS) (Puy et al., 2011; Krahmer and Ward, 2014; Chauffert
et al., 2014a). In Shannon theory, the samples located in the k-space should lie on a
Cartesian grid with a sufficiently small grid step size. A typical instance of such schemes
is the echo planar imaging (EPI) trajectory. The wealth of trajectories in VDS is con-
stantly increasing and becomes more and more anchored in theory. It initially started
with spirals (Gurney et al., 2006; Pipe and Zwart, 2014) and was progressively enriched
with different patterns such as parallel or radial lines (Lustig et al., 2007; Feng et al.,
2014), noisy spirals (Lustig et al., 2005), Rosette trajectories (Noll, 1997), shell trajecto-
ries (Shu et al., 2006), ... The second step is currently solved by using reparameterization:
the goal is to find a feasible waveform traversing the support in the minimum amount
of time. This problem can be solved using optimal control (Lustig et al., 2008), convex
optimization (Simonetti et al., 1993; Hargreaves et al., 2004), or optimal interpolation of
k-space control points (Davids et al., 2015). These simple principles however suffer from
potentially severe drawbacks. First, reparameterizing the curve changes the density of
samples along the curve. This density is now known to be a key aspect in CS (Puy et al.,
2011; Chauffert et al., 2014a; Krahmer and Ward, 2014; Adcock et al., 2013), since it di-
rectly impacts the number of required measurements to ensure exact recovery (noiseless
case) or accurate (noisy case) reconstruction. Second, the challenge of rapid acquisitions
is to reduce the scanning time (echo train duration) and limit geometric distortions in-
duced by inhomogeneities of the static magnetic field (By) by covering the k-space as
fast as possible. The perfect fit to any arbitrary curve (support constraint) may be time

consuming, especially in the high curvature parts of the trajectory. In particular, the
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time to traverse piecewise linear trajectories (Chauffert et al., 2014a; Chauffert et al.,
2013a; Chauffert et al., 2013c; Wang et al., 2012; Willett., 2011) may become too long.
Indeed, the magnetic field gradients have to be set to zero at each singular point of such
trajectory. To overcome these two limitations, new gradient waveform design methods

have to be pushed forward.

4.1.1 Contributions

In this paper, we propose an alternative to reparameterization based on a convex opti-
mization formulation. Given any parameterized curve, our algorithm returns the closest
curve that fulfills the gradient constraints. The main advantages of the proposed ap-
proach are the following: i) the time to traverse the k-space is fixed enabling to find the
closest curve in a given time, ii) the distance between the input and output curves is
the quantity to be minimized ensuring a low deviation to the original sampling distribu-
tion, iii) it is flexible enough to handle additional hardware constraints (e.g., trajectory
starting from the k-space center, different kinematic constraints,...) in the same frame-
work. We propose an efficient first order dual algorithm to solve the resulting problem
and provide theoretical guarantees in terms of convergence rate. We also demonstrate
through theory and numerical experiments that the distortion to the initial density is
minimized compared to the reparameterization approach. We eventually illustrate the

performances of our approach on simulations.

4.1.2 Paper organization

In Section 4.2, we review the formulation of MRI acquisition, by recalling the gradient
constraints and introducing the projection problem. Then, in Section 4.3, it is shown
that curves generated by the proposed strategy (initial parameterization followed by the
projection onto the set of physical constraints) may be used to design MRI sampling
schemes with locally variable densities. In Section 4.4, we provide an optimization al-
gorithm to solve the projection problem, and estimate its rate of convergence. Next,
the behavior of our algorithm is illustrated in Section 4.5 on three complementary cases:
one popular sampling scheme, namely EPI trajectory and two VDS strategies (travelling
salesman problem or TSP-based curves and spirals), yet advertising the usefulness of the
proposed approach for practical MRI applications. The pros and cons of our method are

discussed in Section 4.6 and concluding remarks are drawn in Section 4.7.
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4.2 Design of k-space trajectories using physical gradient

waveforms.

In this section, we recall the standard modeling of the acquisition constraints in MRI (Har-
greaves et al., 2004; Lustig et al., 2008). We justify the lack of accuracy of current
reparameterization methods in the VDS context, and motivate the introduction of a new

projection algorithm that preserves the sampling density.

4.2.1 Sampling in MRI

In MRI, images are sampled in the k-space domain along parameterized curves s :
[0,7] — R? where d € {2,3} denotes the image dimensions. The i-th coordinate of
s is denoted s;. Let u : R? — C denote a d dimensional image and @ be its Fourier
transform. Given an image u, a curve s : [0, 7] — R? and a sampling step At, the image
u shall be reconstructed using the set!:

E(u,s) = {ﬁ(s(jAt)),O <j< {;J } . (4.1)

4.2.2 Gradient constraints

The gradient waveform associated with a curve s is defined by g(t) = v~ '5(¢), where
~ denotes the gyro-magnetic ratio (Hargreaves et al., 2004). The gradient waveforms
being obtained by energizing orthogonal gradient coils with electric currents, they are

submitted to hardware constraints.

4.2.2.1 Kinematic constraints

Due to physical but also safety (i.e. avoid nerve stimulation) constraints, the electric
currents passing through gradient coils have a bounded amplitude and cannot vary too

rapidly (slew rate). Mathematically, these constraints read:

HgH < Gmax and ||gH < Smax

'For ease of presentation, we assume that the values of u in the k-space correspond to its Fourier
transform and we neglect distortions occurring in MRI such as noise. We also neglect the energy decay
due to signal relaxation.
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where ||-|| denotes either the /*°-norm defined by || f||cc := max sup |fi(t)|, or the £>°2-

1<i<d 40,17
d
1
norm defined by || f|locc2 := sup (Z |fi(#)|?)2. These constraints might be Rotation
tel0, 7] ;=
Invariant (RIV) if || - || = || - ||cc,2 or Rotation Variant (RV) if || - || = || - ||, depending

on whether each gradient coil is energized independently from others or not. The set of

kinematic constraints is denoted S:
2 d . .
8= {s e (€0, 1))", I3ll < o, 3] < B (4:2)

where a = YGpax and 8 = vSmax-

4.2.2.2 Additional affine constraints
Specific MRI acquisitions may require additional constraints, such as:

e Imposing that the trajectory starts from the k-space center (i.e., s(0) = 0) to save
time and avoid blips. The end-point can also be specified by s(T') = sp, if sy can

be reached during travel time 7.

e In the context of multi-shot MRI acquisition, several radio-frequency pulses are
necessary to cover the whole k-space. Hence, it makes sense to enforce the trajec-
tory to start from the k-space center at every TR (repetition time)?: s(m-TR) =

0,0<m< |#5].

e In addition to starting from the k-space center, one could impose the initial speed

as for instance: $(0) = 0.

e To avoid artifacts due to flow motion in the object of interest, gradient moment
nulling (GMN) techniques have been introduced in (Majewski et al., 2010) for spin

or gradient echo sequences. In terms of constraints, nulling the i** moment reads
TE

t'g(t)dt = 0, where TE denotes the echo time. For example, cancelling the

t=0
first-order moment compensates the motion of spins moving with constant speed.

Each of these constraints can be modelled by an affine relationship. Hereafter, the set of

affine constraints is denoted by A:
A= {s [0, 7] = R, A(s) = v} ,

where v is a vector of parameters in R? (p is the number of additional constraints) and

A is a linear mapping from the curves space to R?.

2 corresponding to the delivery of every radio-frequency pulse.
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A sampling trajectory s : [0, 7] — R? will be said to be admissible if it belongs to the set
SNA. In what follows, we assume that this set is non-empty, i.e. SNA # (). Moreover, we
assume, without loss of generality, that the linear constraints are independent (otherwise

some could be removed).

4.2.3 Finding an optimal reparameterization

The traditional approach to design an admissible curve s € S given an arbitrary curve
c:[0,T] — R? consists of finding a reparameterization p such that s = c o p satisfies the
physical constraints while minimizing the acquisition time. This problem can be cast as

follows:
Thep = min 7" such that Ip: [0,7] — [0,T], cop € S. (4.3)

It can be solved efficiently using optimal control (Lustig et al., 2008) or convex optimiza-
tion (Hargreaves et al., 2004). The resulting solution s = cop has the same support as c.
This method however suffers from an important drawback when used in the CS frame-
work: it does not provide any control on the density of samples along the curve. For
example, for a given curve support shown in Fig. 4.1(a), we illustrate the new parameter-
ization (keeping the same support) and the corresponding magnetic field gradients (see
Fig. 4.1(b) for a discretization of the curve and (c) for the gradient profile). We notice
that the new parameterized curve has to stop at every angular point of the trajectory,
yielding more time spent by the curve in the neighbourhood of these points (and more
points in the discretization of the curve in Fig. 4.1(b)). This phenomenon is likely to

modify the sampling distribution, as illustrated in Section 4.3.

The next part is dedicated to introducing an alternative method relaxing the constraint

of keeping the same support as c.

4.2.4 Projection onto the set of constraints

Here, we propose to find the projection of the given input curve ¢ onto the set of admis-

sible curves S:

1 1

s* : = argmin—d>(s, ¢) = argmin=|s — c||3 (4.4)
seSNA seSNA 2

where d?(s,c) = |ls — c||3 = fio |ls(t) — c(t)||3dt. This method presents important

differences compared to the above mentioned optimal control approach: i) the solution

s* and ¢ have different support (see Fig. 4.1(d)) unless ¢ is admissible; ii) the sets
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composed of the discretization of ¢ and s* at a given sampling rate are close to each
other (Fig. 4.1(e)); iii) the acquisition time T is fixed and equal to that of the input curve
c¢. Time to traverse a curve is generally different from optimal reparameterization. In

particular for piecewise linear curves, it is generally lower (see Fig. 4.1(f) where T' < Tgep)-

(@) , o)

FIGURE 4.1: Comparison of two methods to design gradient waveforms. Top row:
Optimal control-based parameterization (Lustig et al., 2008). (a): input curve support.
(b): discrete representation of the optimal reparameterization of the curve in S. (c):
corresponding gradient waveforms (g,, g,). Dashed lines correspond to 0 and + /- Gax.
Bottom row: Illustration of the projection algorithm. (d): same input curve c as in
(a) parameterized at maximal speed, and the support of the projected curve s* onto
S. (e): discrete representation of the input and projected curves. (f): corresponding
gradient waveforms (g,, g,) with the same time scale as in (c): the time to traverse the
s* is 89% shorter.

In the next section, we explain why the empirical distribution of the samples along the
projected curve is closer to that of points lying on the input curve. Also, we illustrate

how the parameterization can distort the sampling distribution.

4.3 Control of the sampling density

Recent works have emphasized the importance of the sampling density (Chauffert et al.,
2014a; Puy et al., 2011; Krahmer and Ward, 2014; Adcock et al., 2013) in the CS-MRI
framework, i.e. in an attempt to reduce the amount of acquired data while preserving
image quality at the reconstruction step. The choice of an accurate sampling distribution
is crucial since it directly impacts the number of required measurements (Rauhut, 2010).

In this paper, we will denote by 7 a distribution defined over the k-space K. The profile
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of this distribution can be obtained by theoretical arguments (Chauffert et al., 2014a;
Puy et al., 2011; Krahmer and Ward, 2014; Adcock et al., 2013) leading to distributions

as the one depicted in Fig. 4.2(a). Some heuristic distributions (e.g., radial) are known

to perform well in CS-MRI experiments (Fig. 4.2(b)). A comparison between these two
approaches can be found in (Chauffert et al., 2013b).

(a)

4

x 10

(b) ﬂ

FIGURE 4.2: Examples of 2D sampling distribution. (a): optimal distribution for a
Symmlet transform (Puy et al., 2011; Chauffert et al., 2014a). (b): radial distribution
advocated in (Krahmer and Ward, 2014; Chauffert et al., 2014a): p(k) o 1/|k|?.

However, designing a trajectory that performs sampling according to a fixed distribution
while satisfying gradient constraints is really challenging and has not been addressed so

far. The classical approach consists of:

1. Finding an input curve (admissible or not) ¢ with good distribution; We provide

various strategies to achieve this step in Appendix 4.7.

2. Estimating the fastest reparameterization of ¢ that belongs to the set of constraints.
In this paper, we suggest to replace the second step by:

2’) Estimating s* the projection of ¢ onto the set of constraints, by solving Eq. (4.4).
We show that step 2’) is preferable to step 2) since it better preserves the sampling
density (or empirical measure). We begin by showing it through a theoretical study in

paragraph 4.3.1 and then validate it through numerical experiments in paragraph 4.3.2.

The reader not interested by theoretical arguments can go directly to Subsection 4.3.2.

4.3.1 Theoretical study of the density control

To formalize the notion of density, we need to introduce the definition of the empirical

distribution of a curve.
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Definition 4.1 (Empirical measure of a curve). Let A denote the Lebesgue measure and
AT = % denote the Lebesgue measure normalized on the interval [0,7]. The empirical

measure of a curve s : [0,T] — K C R? is defined for any measurable set w of K as:

Py(w) = Ap(s Hw)).

This definition means that the mass of a set w is proportional to the time spent by the

curve in w.

To measure the distortion between an input curve and the projected one, we need to
design a distance between measures. In this work, we propose to use the Wasserstein

distance W5 defined hereafter:

Definition 4.2 (Wasserstein distance Ws). Let M be a domain of R? and P(M) be the
set of measures over M. For p,v € P(M), Wa is defined as:

1

Watn) = (_int [ lle = slBdoten))’ (15)

ell(p,v)

where IT C P(M x M) denote the set of measures over M x M with marginals p and v

on the first and second factors, respectively.

Wy is a distance over P(M) (see e.g., (Villani, 2008)). Intuitively, if 4 and v are seen
as mountains, the distance is the minimum cost of moving the mountains of p into the
mountains of v, where the cost is the fs-distance of transportation multiplied by the mass
moved. Hence, the coupling o encodes the deformation map to turn one distribution (u)

into the other (v).

Let us now analyze the distortion between the empirical distribution of the projected
curve P« and the target distribution 7. Since Ws is a distance between measures, the

triangle inequality holds:

Wo(Ps«,m) < Wo(P,,m) + Wo(Ps+,P.) . (4.6)

Initial distortion  Projection distortion

The deviation is controlled by two terms: the initial distortion term Wo(P.,7) and the
projection distortion term Wa(Pg+, P.). The first term depends of the choice of the input
curve ¢. This choice is crucial but is out the scope of this paper since it is not directly
related to gradient waveform design. We still show in Appendix A that this term can be

controlled precisely in a few cases of interest (spiral, TSP).

We are now interested in controlling the Projection distortion term Wo(Ps+, P,). The

following proposition shows that the W5 distance between the empirical distributions of
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the input and output curves (c and s*, respectively) is controlled by the quantity d(s*, ¢)

to be minimized when solving Eq. (4.4).

Proposition 4.3. For any two curves s and c: [0,T] — R%:

Wo(Ps, P.) < d(s,c).

Proof. In terms of distributions, the quantity d(s, ¢) reads:

(s, ¢) = / o — y|3dosc(z,y) (4.7)
M x M

where o, . is the coupling between the empirical measures P; and P, defined for all couples
1 /T

of measure sets (w1,w2) € M? by 05 (w1, w2) = T Ly (8(2)) 1w, (c(t))dt, where 1,
t=0

denote the indicator function of w. The choice of this coupling is equivalent to choosing

the transformation map as the association of locations of ¢(t) and s(t) for every t. We

notice that the quantity to be minimized in Eq. (4.7) is an upper bound of Wa(Ps, P.)?,

with the specific coupling o . O

To sum up, solving the projection problem (4.4) and finding s* amounts to minimizing an
upper-bound of Wy(Ps+, ), the Wasserstein distance between the target density = and
the empirical distribution Ps«, if we neglect the influence of the initial parameterization c.
In some sense, our projection algorithm is therefore the best way to obtain a feasible curve
and to preserve the input curve empirical measure. As will be seen in the next paragraph,

densities are indeed much better preserved using projections than reparameterizations.

4.3.2 Numerical study of the density control

Next, we performed simulations to show that the sampling density is better preserved
using our algorithm compared to the optimal control approach. For doing so, we use
travelling salesman-based (TSP) sampling trajectories (Chauffert et al., 2013¢; Chauffert
et al., 2014a), which are an original way to design random trajectories which empirical
distribution is any target density 7 such as the one represented in Fig. 4.2(a). 10,000
such independent TSP were drawn and parameterized with arc-length: note that these
parameterizations are not admissible in general. Then, we sampled each trajectory at
constant rate At (as in Fig. 4.3 (top-row, left)), to form an histogram depicting the
empirical distribution shown in Fig. 4.3 (top-row, center). The latter was eventually
compared to 7 in Fig. 4.3 (top-row, right). It is worth noting that the error was actually

not close to zero, since the convergence result enounced in (Chauffert et al., 2014a) is
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asymptotic, i.e. when the length of the TSP curve tends to infinity whereas the latter

remains bounded in this experiment.

In Fig. 4.3 (second row), we show that the classical reparameterization technique (Lustig
et al., 2008) leads to a major distortion of the sampling density, because of its behavior on
the angular points already illustrated in Fig. 4.1(b). Then, we considered three constant
speed parameterizations and projected them onto the same set of constraints (Gpax = 40
mT.m™! and Spax = 150 mT.mfl.msfl). Among these three initial candidates, we
started by using an initial parameterization with low velocity (10 % of the maximal
speed YGmax With v = 42.576 MHz.T~! for proton imaging), which projection fits the
sampling density quite well. Then, we increased the velocity to progressively reach
50 % and even 100 % of the maximal speed. The distortion of the sampling density of
the projected curve increased, but remained negligible in contrast to what we observed
for the exact reparameterization. Hence, this example illustrates that starting from a
continuous trajectory whose an empirical sampling distribution is close to the target m,
our projection algorithm yields feasible gradient waveforms while sampling the k-space

along a discretized trajectory whose empirical density is close to 7 too.

4.4 Finding feasible waveforms using convex optimization

Since the set of constraints SN .A is convex, closed and non-empty, Problem (4.4) always
admits a unique solution. Even though S has a rather simple structure?, it is unlikely
that an explicit solution to Problem (4.4) can be found. In what follows, we thus propose

a numerical algorithm to compute the projection.

Problem discretization

A discrete-time curve s is defined as a vector in R™% where n is the number of time
points. Let s(i) € R? denote the curve location at time (i — 1)0t with 6t = % The

discrete-time derivative 3 € R™? is defined using first-order differences:

s(z’):{ 0 ifi=1,
(s(i) —s(i—1))/6t ifie{2,....n}

In the discrete setting, the first-order differential operator can be represented by a matrix
M € Rvdxnd o 5= Ms. We define the discrete second-order differential operator by
M — _M*M c Rn'dxnd.

3it is just a polytope when the ¢*°-norm is used.
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k-space trajectory Emp. distribution P 1P = mll2/||7|l2
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F1cURE 4.3: Tllustration of TSP trajectories traversed with arc-length parameter-

ization (top row), optimal control (second row) and with our projection algo-

rithm (rows 3-5). Columns represent the k-space trajectory (left), the empirical

distribution P (center) and the difference with the target distribution 7 shown in

Fig. 4.2(a) (right). At the bottom, the relative error |P — 7l||2/||7|l2 between the two
is reported.
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An efficient projection algorithm

The discrete primal problem we consider is the same as (4.4) except that all objects are

discretized. It reads:
i Sl — el (P)
min —||s — ¢||3,
s€SNA 2 2
where 8:={s € R"%, |Ms| < o, |Ms]|| < 8} with all norms discretized, and A are the
discrete counterparts of S and A, respectively. Next, the main idea is to take advantage
of the structure of the dual problem of P to design an efficient projection algorithm. The
following proposition specifies this dual problem and the primal-dual relationships.

Proposition 4.4. Let ||q||« := sup (s, q) denote the dual norm of || - ||. The following
[lsll<1

equality holds:

1 2
min -—||s —cl||5 = su F(q, —« . — 5 4.8
Jmin s — el W (q1,92) — allaill+ = Bllga|l (4.8)
where
o .. 1
F(qy,q5) = min(Ms, q1) + (Ms, q2) + =||s — c||3. (4.9)
scEA 2

Moreover, let (q7,q5) denote any minimizer of the dual problem (4.8), s* denote the
unique solution of the primal problem (P) and s*(q7,q5) denote the solution of the min-

imization problem (4.9). Then s* = s*(q71,4q5)-
Proof. The proof is given in Appendix B. O

The following proposition gives an explicit expression of s*(q7, g3).

Proposition 4.5. The minimizer

. o . 1
s*(qi,q5) = argmin(Ms, q;) + (Ms, o) + =||s — c|3
scA 2

15 given by
5%(qy,q9) =2+ AT (v — Az), (4.10)

where A € RPX™4 js g matriz encoding the affine constraints, and AT = A*(AA*)~!

denotes its pseudo-inverse*. In addition, z = ¢ — M*ql — M*qQ.

Proof. The proof is given in Appendix C. O

4Since the constraints are supposed to be linearly independent, AT is well-defined.
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Let us now analyse the smoothness properties of F.

Proposition 4.6. Function F(q;,q,) is concave differentiable with gradient given by

(4.11)

VP q0) = — <M8*(q1,q2)) .

MS*((h, qs)

Moreover, the gradient mapping VF is Lipschitz continuous with constant L = |HM*M+
M*M|||, where |||M||| denotes the spectral norm of M.

Proposition 4.6 is a direct application of (Nesterov, 2005, Theorem 1) (see also (Hiriart-
Urruty and Lemaréchal, 1996)). The dual problem (4.8) has a favorable structure for its
optimization: it is the sum of a differentiable convex function F(q,,q,) = —F(qy,q5)
and of a simple convex function G(q;,qy) = a||q;|l++5|gz2||«. The sum F+G can thus
be minimized efficiently using accelerated proximal gradient descents (Nesterov, 1983)

(see Algorithm 1 below).

Algorithm 1: Projection algorithm in the dual space
Input: ¢ € R™ a, 3 > 0, ny.
Output: & € R"? an approximation of the solution s*.
Initialize ¢ = (qgo), q(QO)) with qgo) =0fori=1,2. Set y© = q.
Set ¢ =1/L.
for k=1...n4 do
q*) = prox,(y* = — (v E(yE))
y) = qb) 4 %(q(k) — q(kfl))

return :é = S* (qgnlt)’ qgnm‘)) )

Moreover, by combining the convergence rate results of (Nesterov, 1983; Beck and
Teboulle, 2009b) and some convex analysis (see Appendix D), we obtain the following

convergence rate:

Theorem 4.7. Algorithm 1 ensures that the distance to the minimizer decreases as
O (72):
2L)q"” — g*|3

s - 573 < =

(4.12)

4.5 Numerical experiments

To compare our results with (Lustig et al., 2008), we used the same gradient con-

straints. In particular, the maximal gradient norm Gp.x was set to 40 mT.m~!, and
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the slew-rate Smax to 150 mT.m~'.ms™!.

tation Invariant (RIV). The image field of view (FOV) is assumed to be 20 c¢cm and

We assume that the constraints are Ro-

Kmax = N/(2- FOV) where N is the target spatial grid size for image reconstruction.
The sampling rate was fixed to At = 4 us except for spiral imaging. For the ease of tra-
jectory representation, we limit ourselves to 2D sampling curves, although our algorithm

encompasses the 3D setting.

The Matlab codes embedding the projection algorithm as well as the scripts to reproduce
the results depicted hereafter are available at http://chauffertn.free.fr/codes.html.
Hereafter, the supplementary affine constraints (e.g., nulling moments) are not taken
into account. However, they have been implemented in the code so that every end-user
can play with. Simulations were performed on a Linux Ubuntu (64 bits) workstation
with an Intel Xeon(R) CPU E5-2630 v2 @2.60GHz processor and 64 GB of RAM. The
computation time required to run the experiments range from 2 min. (EPI with 17,225
points) to 4 min. (TSP trajectory with 45,000 points) and the number of iterations of
Algorithm 1 to achieve convergence was 15,000, to satisfy ||(s*+1) — s())/s(®)|| < 1073,

To measure the impact of the proposed projection algorithm and compare it with the
optimal reparameterization, we also performed image reconstruction and computed image
quality in terms of Signal-to-Noise-Ratio (SNR). To this end, we performed simulations
by starting from a high-resolution N x N MRI phantom (N = 1024) depicted in Fig. 4.4.
Next, we massively undersampled its Fourier transform by the two competing sampling
strategies and analyzed image quality after non-Cartesian reconstruction. For the sake of
self-containedness, all investigated trajectories are depicted in Fig. 4.7 and quantitative
results corresponding traversal times and SNR of reconstructed images are reported in

Tab. 4.1. In what follows, we first discuss the results of our method in the context

FIGURE 4.4: MRI phantom of size N x N (N = 1024) used for the experiments.

of classical (piecewise linear) EPI trajectory. Then, we illustrate the behavior of our
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Standard EPI Projected EPI

FIGURE 4.5: Comparison between magnetic field gradients g = (g, g,) during the
first 5 ms for standard EPI trajectory (left) and projected EPI (right).

algorithm on two VDS: classical spiral (smooth) trajectories and TSP-based (piecewise

linear) trajectories.

4.5.1 EPI trajectories

EPI trajectories are a classical way of probing the k-space on a 2D-Cartesian grid. We
compared a standard EPI with ramp-sampling (a sample was measured every At from
t = 0 to Trep) on N = 128 lines, parameterized with optimal control and a trajectory
that traverses the k-space at constant speed (70% of the maximal gradient intensity),
projected onto & using our algorithm.

As shown in Fig. 4.7 (third row), the projected trajectory has a smaller support than
standard EPI. In particular, the resolution in the readout direction is slightly decreased.
However, the time to traverse k-space is shorter (7" = 68.9 ms) using our algorithm as
compared to the EPI trajectory (Trep = 89.6 ms). To provide a better insight on this ac-
celeration factor, we depict in Fig. 4.5 the first 5 ms of the gradient waveforms for the two
approaches. The corresponding acquired lines are colored in red in Fig. 4.7. While stan-
dard EPI is able to acquire 6.5 lines (Fig. 4.5-left) in this amount of time, the projected
trajectory achieves the extended coverage of 8.5 lines (Fig. 4.5-right). Indeed, gradient
blips are smoothed providing a substantial time reduction. In terms of image quality, we
observed that the degradation of resolution along one direction has no significant impact
since the SNR of reconstructed image is higher for the projected trajectory compared to
standard EPI (Tab. 4.1). Hence, in the EPI context, the projection algorithm allows us

to traverse the k-space faster without degrading the image quality.
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Input spiral Reparametrization Projection

FIGURE 4.6: Decay of the spiral for an input spiral with density m(k) oc 1/|k|?. His-
togram of the values r(¢) for input spiral (not admissible), optimal reparametrization,
and projection.

4.5.2 Spiral trajectories

The case of spiral trajectories is more tricky as explained below. For any radial density
7, there exists a spiral that performs k-space sampling according to 7. This trajectory is
parameterized by c(t) = r(t/T) exp(i2mné(t/T")) and thus controlled by its time-varying
modulus r(¢) and phase 6(t) and by the number of revolutions n € Ry over the fixed
traversal time 7. The relation between 7 and r(-) is given in Appendix A, Eq. (4.14),
hence the choice of r(-) determines 7, whereas 0(-) and n control the shape of the spiral.
For fixed T" and r(+), finding 6(-) and n such that the spiral is optimal in the sense that the
kinematics constraints S are saturated, is an open issue. Indeed, in the literature (Kim
et al., 2003), it has been shown that different types of gradient parameterizations may
yield different sampling patterns, hence various w. However, to the best of our knowl-
edge, the inverse problem which consists of inferring the parameterization from the target
density 7, has never been solved.

Here, we provide a partial solution that relies on two ingredients: first, setting the func-
tion r(-) according to (4.14) and second choosing a constant angular speed w such that
0(t) = wt. This approach actually remains suboptimal since considering a constant w im-
poses too low gradient magnitudes at the beginning of the trajectory (i.e. for the k-space
center). The pair (w,n) must satisfy the constraints in 8. For instance, to saturate the
magnitude gradient constraint one may choose (w,n) such that: 2mnwKpax = YGmax-
In our experiment, we adopted this strategy for the above defined Gax and the selected
Kmax (see Fig. 4.7). We also set T = 200 ms and At = 24 pus, in order to meet an
additional memory size constraint®. In Fig. 4.6, we illustrate how the sampling density
7(k) o< 1/|k|? is impacted after optimal control reparametrization whereas it is preserved
when applying our projection algorithm. The histogram peak associated with the repa-
rameterization is shifted to the right i.e. towards high frequencies meaning that the low

frequencies are undersampled. This is the direct consequence of using a too fast traversal

Sthe buffer size of the analog-to-digital converter is 8912 in standard MRI scanners.
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speed (see Fig. 4.7: the samples of the spiral are more spaced in the reparameterization
scenario). The traversal time of the spiral is indeed Tgep = 42 ms with reparametrization
and T after projection (Tab. 4.1). This also explains the significant difference of image
quality by almost 5 dB in favor of the projection approach.

On the contrary, if the initial parameterization is not admissible (w too large), we ob-
served that the output trajectory of the projection algorithm concentrates on concentric
circles corresponding to the maximal speed allowed by the gradient magnitude con-
straint (results not shown). In contrast, the optimal reparameterization is not impacted
since it only depends on the support of the spiral. Hence, the choice of the initial
parametrization is crucial for spiral imaging, and it seems that neither our algorithm nor
reparametrization technique provides a universal answer to the issue of spiral sampling

in MRI.

4.5.3 TSP sampling

In the same spirit of Fig. 4.3, we performed numerical experiments using a TSP tra-
jectory (Chauffert et al., 2014a; Chauffert et al., 2013c). To perform a comparison at
constant traversal time, we draw two sets of 4,500 and 45,000 “cities” in order to design
a short and a long trajectory (Fig. 4.7 top row-right). The short curve is traversed with
optimal reparameterization in a given time Trep = 160 ms (Fig. 4.7 middle row-right).
The longer curve is parameterized at constant speed such that T' = Tgep, that corre-
sponds to 25 % of the maximal speed YGmax. Then, this parameterization is projected
onto S (Fig. 4.7 last row).

We notice that for a fixed time, the curve obtained with our algorithm provides a larger
k-space coverage compared to optimal reparameterization. The main reason is that TSP
trajectories embody singular points that require the gradients to be set to zero for each
of them. Therefore, a sampling trajectory with singular points is time consuming. The
main advantage of our algorithm is that the trajectory can be smoothed around these
points, which saves a lot of acquisition time. In terms of image quality, the main con-
sequence is that our projection algorithm outperforms the reparameterization approach
by 3.2 dB.

This example demonstrates that existing methods do not permit to implement TSP-
based sequences in many MRI modalities (e.g., short T'E for a small number of “cities”),
since the time to collect data can be larger than any realistic repetition time (here,
the traversal time of the longer trajectory based on optimal reparameterization would
require 1.1 s). In contrast, our method enables traversal of such curves in a reasonable

time which can be tuned according to the image weighting (77, Ts or proton density).
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TABLE 4.1: Comparison between traversal time and reconstruction SNR, for optimal
reparameterization and projection

EPI Spiral TSP-based

Resolution 128 512 512
Optimal Thep (ms) | 89.6 424 180
reparam. SNR (dB) | 20.1 7.9 11.3
Projection T (ms) 68.9 200 180

SNR (dB) | 21.4 12.7 14.5

4.5.4 Nonlinear image reconstruction

To demonstrate the effectiveness of the proposed approach not only for gradient waveform
design but also for imaging, we performed nonlinear image reconstruction as prescribed
in the CS context (Candeés et al., 2006a; Lustig et al., 2007). Additionally, to fully take
advantage of the projection algorithm, our reconstruction scheme was non-Cartesian.
Hence, we used non-uniform Fourier transforms (Keiner et al., 2009) to compute the
k-space values out of the grid (on locations s(i),i = 1,...,n). For comparison purposes,
we started from a high resolution phantom wu (see Fig. 4.4) that was used to compute
the sets £(u, Srep) and E(u, Sproj). The latter are given by Eq. (4.1) where srep and Sproj
denote the optimal reparameterization and projected trajectory, respectively. Next, the

images were reconstructed using non-linear ¢; penalization, i.e.:

uw* = argmin | 3 (u— a)(s(0)) 13 + A @i (4.13)

“ i=1
where @ is a sparsifying transform (here Daubechies wavelets), A is a hyper-parameter,

and s is either Syep Or Sproj. The minimizer of (4.13) was computed using accelerated
proximal gradient descent ((Nesterov, 1983), FISTA (Beck and Teboulle, 2009b)). The

*
proj

N x N phantom where N ranged from 128 to 512 to compute SNR values in Tab. 4.1.

image solutions (uge, and ug,,;) were then compared to a low resolution version of the
On top of this, it is worth noting that we could still improve the SNR of reconstructed
images by resorting either to more redundant decompositions such as tight frames (Flo-
rescu et al., 2014) or even by learning dictionaries over which the image can be sparsely
decomposed (Huang et al., 2014). However, this aspect is beyond the scope of our current

proof of concept.
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EPI Spiral TSP-based
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FIGURE 4.7: Representation of input trajectory, optimal reparametrization and projec-
tion for EPI, spiral and TSP-based trajectories. The frame [—Kyax, Kmax)? is depicted
with various values of K., that depend on the reconstruction resolution.

4.6 Discussion

In this paper, it has been shown that our projection algorithm has potential interests
for smoothing sampling curves such as EPI or TSP-based trajectories. In this context,
our algorithm delivers physically plausible trajectories while drastically reducing the
traversal time and improving image quality. This is a direct consequence of its ability
to project any piecewise linear initial parameterization onto admissible trajectories with
different support. In applications such as functional MRI, this offers the opportunity
to shorten the echo train length and then to optimally select the effective echo time
so as to maximize the blood oxygenated level-dependent contrast (e.g., TE = 30 ms
at 3T). Finally, our method can be used in addition with other acceleration methods
such as parallel imaging (Pruessmann et al., 1999; Griswold et al., 2002) or simultaneous

multi-slice imaging technique (Feinberg et al., 2010).

Beyond this context, our projection method provides a more accurate control of the

sampling density as shown for variable density sampling on spirals. This has a positive
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impact on image reconstruction quality at the expense of longer traversal times. Set-
ting a fair trade-off between image quality and acquisition time is a usual concern in
MRI that may depend on the application at hand (e.g., static vs dynamic imaging).
Interestingly, our algorithm prescribes the acquisition time a priori what actually pro-
vides the practitioner with an effective control on such trade-off. As we illustrated on
TSP sampling, this acquisition time is tightly linked to sampling accuracy with respect
to the target density. Hence, our approach clearly compensates a major drawback of
reparametrization methods that do not offer such control: the traversal time can be too
fast hence an insufficient number of data are collected (spiral case), or too slow and not

implementable (TSP-based sampling case).

Usually in MRI acquisition, a number of trajectories are interleaved to provide enough
k-space samples. So far, we have not demonstrate the optimization of a set of interleaves
except that the segmentation of the trajectory can directly enter in our global optimiza-
tion problem through affine constraints if the interleaving sequence is thought of as a
way of crossing the k-space center at evenly spaced time intervals. More generally, we
can prove theoretically and practically that if the combination of two input trajectories
provides a good k-space coverage, the combination of the two projected curves admits
the same property. The theoretical argument comes from the following observation: if
we consider two interleaves c¢; and ¢y and apply our projection method by searching for
s1 and so from initial candidates ¢; and co respectively, we actually control an upper
bound of Wa(Ps,, Pe,) + Wa(Ps,, Pe,). Practical illustration of this property is available

in our Matlab toolbox.

On the other hand, our projection method has also limitations. In particular, the pro-
jected trajectory strongly depends on the initial parameterization. As we illustrated,
parameterizing a given initial curve at different speeds provides very different projected
trajectories. This clearly calls for extensions that might iterate until convergence between
the two key steps, namely approximating the target density and finding an admissible
trajectory from this approximation (Chauffert et al., 2015a). In such generalizations, the
first step can be seen as a density-consistency stage where the sampled k-space locations
might change from one iteration to the next to fit a target density. We believe that
this idea might become the most important aspect of our contribution in the future:
projections are one of the most basic tools from optimization and might serve in many

different contexts.
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4.7 Conclusion

We developed an algorithm to project any parameterized curve onto the set of curves
which can be implemented on actual MRI scanners. Our method is an alternative to the
existing gradient waveform design based on optimal control. The major advantages are
that: i) the sampling time is fixed which is crucial to adapt the proposed scheme to any
MR imaging modality; ii) the sampling density is close to the target one, as required by
compressed sensing theory; iii) the behavior of our algorithm is similar to the state-of-the
art for smooth trajectories, but it provides shorter k-space coverage when the trajectory

comprises numerous high curvature points, as illustrated in the TSP and EPI cases.
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Appendix 1 - Density deviation, control of WWs-distance.

In Section 4.3.1, we aim at controlling the Wasserstein distance Wa(Ps+, 7), where 7 is a
target fixed sampling distribution, and Ps is the empirical distribution of the projected
curve. We used the triangle inequlity (4.6) to bound this quantity by Wa(Ps«, P.) +
Ws(Pe, ). Here, we show that the quantity W (P, 7) can be as small as possible if ¢ is
Variable Density Sampler (VDS) (Chauffert et al., 2014a). First, we define the concept
of VDS, and then we provide two examples. Next, we show that if ¢ is a VDS, Wy (P, 7)
tends to 0 as the length of ¢ tends to infinity.

Definition of a VDS

First, we need to introduce the definition of weak convergence for measure:

Definition 4.8. A sequence of measures u, € P(K), the set of distributions defined

over K, is said to weakly converge to u if for any bounded continuous function ¢

/K 6 dpin(z) — /K 6(x)du(z).

We use the notation p, — p.
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According to (Chauffert et al., 2014a), a (generalized) m-VDS is a set of times T},, such
that 7,, — oo when n — oo, and a sequence of curves cp, : [0,7T,] — R? such that
P

er, — ™ when n tends to infinity. A consequence of the definition is that the relative

time spent by the curve in a part of the k-space is proportional to its density. Before

showing that this implies that WQ(PCTn ,7) tends to 0, we give two examples of VDS.

VDS examples

We give two examples to design continuous sampling trajectories that match a given dis-
tribution. The two examples we propose provide a sequence of curves, hence a sequence

of empirical measures that weakly converge to the target density.

Spiral sampling

The spiral-based variable density sampling is now classical in MRI (Spielman et al., 1995;
Kim et al., 2003). For example, let n € R be the number of revolutions, r : [0,1] — RT
a strictly increasing smooth function, and 6 : [0,1] — [0,27]. Denote by r~! the inverse
function of r. Define the spiral for ¢ € [0,n] by ¢, (t) = r(%) exp (z ‘n-0 (:1)) and
the target distribution 7 by:

VR r(0) < /22 <r(1)

7T(.73, y) = 2 f:((ol)) Til (p)pdp (414)
0 otherwise

then P, — m when n tends to infinity.

Travelling Salesman-based sampling

The idea of using the shortest path amongst a set of points (the “cities") to design
continuous trajectories with variable densities has been justified in (Chauffert et al.,
2013a; Chauffert et al., 2014a). Let us draw n k-space locations uniformly according to a
density ¢ define over the dD k-space (d = 2 or 3), and join them by the shortest path (the
Travelling Salesman solution). Then, denote by ¢, a constant-speed parameterization of

this curve. Define the density:

(-1

= [ 4@ (z)d(w)

™

Then P., — 7 when the number of cities n tends to infinity.
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These two sampling strategies are efficient to cover the k-space according to target distri-
butions, as depicted in Fig. 4.7(top row) where TSP (resp. spiral) is a VDS for distribu-
tion depicted in Fig. 4.2(a) (resp. (b)). For spiral sampling, the target distribution may
be any 2D radial distribution, whereas the Travelling salesman-based sampling enable

us to consider any 2D or 3D density.

Control of W, distance

Let us now assume without loss of generality that K = [—kmax, kmax]d.
Let us recall a central result about Wa (see e.g.,(Villani, 2008)):

Proposition 4.9. Let M C R, y € P(M) and p,, be a sequence of P(M). Then, if M

15 compact

fin = p = Wa(pin, p) =0
An immediate consequence of this proposition and of the compactness of K is the fol-
lowing proposition:

Proposition 4.10. Let (¢, )n>1 be a 7-VDS, and € > 0. Then, there exists n > 1 such
that cp, : 10,T,) — K fulfills:

To sum up, Proposition 4.10 ensures that we can find an input curve which empirical

distribution is as close to the target distribution 7 as we want.

Appendix 2 - Proof of Proposition 4.4

Definition 4.11 (indicator function). Let B C R"™. The indicator of B is denoted g
and defined by:

(z) 0 fxeB
1g(x) =
400 otherwise

Let us now recall a classical result of convex optimization (Hiriart-Urruty and Lemaréchal,
1996, P. 195):
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Proposition 4.12. Let B, = {x € R", ||z|| < a}. Then the following identity holds:

1B, () = sup (z,y) — ally|..
yeR?

Now, we can prove Proposition 4.4.
o1
min ~||s — |3
s€SNA 2

1 2 ' Y
= min L s — el + 1, (Vs) + 13, (V1)

1 :
:m1n§||s—cH§—l- sup  (Ms, q;) — af/qy ][«
sc A ql’q2€Rn»d

+(Ms, q3) — 2|«

= sup nmn 7HS - CH% + <S7M*q1> + <87 M*q2>
q17q2€Rn-d SGA 2

—allgill« = Bllgall«

1
The relationship between the primal and dual solutions reads s* = arg min 5“8 —c|l3 +
sE

(s, M*q}) + (s,M*q3). The sup and the min can be interverted at the third line, due to

standard theorems in convex analysis (see e.g. (Rockafellar, 1997, Theorem 31.3)).

Appendix 3 - Proof of Propositions 4.5

To show Proposition 4.5, first remark that

o ; 1
argmin(Ms, q,) + (Ms, g5) + 5”5 —c|3
seA

= agmin 5 |3 = (e — May ~ M'qy) .
Therefore, s*(qy, qs) is the orthogonal projection of z = ¢ — Mq; — M*q, onto \A. Since
A is not empty, AATv = v, and the set A = {s € R"? As = v} can be decomposed
as
A= ATv + ker(A).

The vector z — s*(qy, q5) is orthogonal to A, it therefore belongs to ker(A)+ = im(A*).
Hence s*(qq,q,) = z + A" for some A such that:

A(z+ A*X) = v.
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This leads to A = (AA*) (v — Az). We finally get
s°(q1,45) = 2+ A"(AA") (v - Az),

ending the proof.

Appendix 4 - Proof of theorem 4.7.

Let us first recall that the relative interior of a convex set C ri(C) is the interior of
C relative to the affine hull of C' (Hiriart-Urruty and Lemaréchal, 1996). The analysis
proposed to prove Theorem 4.7 closely follows ideas proposed in (Weiss et al., 2009;
Boyer et al., 2014; Beck and Teboulle, 2009b; Beck and Teboulle, 2014). We will need
two results. The first one is a duality result from (Boyer et al., 2014).

Proposition 4.13. Let f : R™ — R U {oo} and g : R — R U {oo} denote two closed
convez functions, and A € R™*™ denote a matriz. Assume that g is o-strongly convez
(Hiriart-Urruty and Lemaréchal, 1996) and that Ari(dom(f)) Nri(dom(g)) # 0.

Let p(x) = f(Ax)+g(x) and d(y) = —g*(A%y) — f*(y). Let x* be the unique minimizer

of p and y* be any minimizer of d.

Then g* s differentiable with % Lipschitz-continuous gradient. Moreover, by letting

x(y) = Vg*(-A"y):
2

l2(y) = 27|13 < ~(d(y) - d(y")).

The second ingredient is the standard convergence rate for accelerated proximal gradient
descents given in (Beck and Teboulle, 2009b, Theorem. 4.4).

Proposition 4.14. Under the same assumptions as Proposition 4.13, consider Algo-

rithm 2.

Algorithm 2: Accelerated proximal gradient descent
Input: g, € ri(dom(f*)) N Ari(dom(g*)) and n
Tnitialize Set £ = 1/, with L = AL
Set yo = qq. for k =1...n; do

q® = prox, ;. (y* =V + LAV g* (- AT yF—D))
L yF) = g + %(q(k) —q1)

2
Then |ly™¢) — y*|2 = O (HIA@I ) ‘
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To conclude, it suffices to set g(s) = 3|ls — |3, f(q1,92) =B, (q1) +B.(gs) and A =

M
(M) . By doing so, the projection problem rewrites min p(s) = f(A4s)+g(s). Its dual
seRnd
problem (4.8) can be rewritten more compactly as min  d(q) =g (—A%q) +
q=(q;,92) ER"4 xR
f*(q). Note that function g is 1-strongly convex. Therefore, Algorithm 2 can be used to
k%
L = |||A|||>. Tt then suffices to use Proposition 4.13 to obtain a convergence rate on the

minimize d, ensuring a convergence rate in O ( ) on the function values d(y*)), where

distance to the solution ||s*) — s*||2. This ends the proof of Theorem 4.7.

4.8 Additionnal simulations on 3D angiography

This section was published in the proceedings (Chauffert et al., 2015b) and shows the
behaviour of the projection algorithm on 3D TSP-based sampling trajectories and its

application to angiography.

In this part, we compare the time to traverse k-space along different trajectories using
gradients computed either by the standard optimal control approach or by our pro-
posed projection algorithm. For comparison between sampling schemes, we work on
retrospective CS, meaning that a full dataset has been acquired, and then a posteri-
ori downsampling is performed. We compare the reconstruction results in terms of peak
signal-to-noise ratio (PSNR) with respect to the acquisition time and to the “acceleration

factor”® r.

4.8.1 Experimental framework

Data acquisition. The initial experimental setup aimed at observing blood vessels of
living mice using an intraveinous injection of an iron oxide-based contrast agent (Mag-
netovibrio Blakemorei MV1). Because of natural elimination, it is necessary to speed
up acquisition to improve contrast and make easier post-processing such as angiography.
The experiments have been performed on a 17.2T preclinical scanner which physical

rotation-invariant constraints are, for all t € [0, T:
lg@®)|| <1 T.m™1 and lg(t)]| < 5.3 T.m~t.ms~L.

A FLASH sequence (Fast Low Angle SHot) has been used to reveal the T% contrast
induced by the injection of the contrast agent (TE/TR = 8/680 ms). The sequence was

repeated 12 times to improve the signal-to-noise ratio (SNR), leading to a total acquistion

6y quantifies the reduction of the number of measurements m. If the k-space is a grid of N pixels
r := N/m is commonly used in CS-MRI.
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time of 30 minutes to acquire the k-space slice by slice. The spatial resolution achieved
is 90x90x 180 pm?.

Hypothesis. The aim of this experiment is to prove that one can expect a large acquisi-
tion time reduction using partial k-space measurements. The time to traverse a sampling
curve is computed satisfying the gradient constraints. To achieve a fair comparison, let
us mention the additional hypothesis that our acquisitions are single-shot, meaning that
the partial k-space is acquired after a single RF pulse. We did not take echo and repeti-
tion times into account to ensure the recovery of a T5-weigthed image. We only compare
the time to traverse a curve using the gradients with their maximal intensity. We assume
that there is no error on the k-space sample locations. In practice we have to measure
the three magnetic field gradients that are actually played out by the scanner to correct
the trajectory and avoid distortions. We shall work on a discrete cartesian k-space, and
consider that a sample is measured if the sampling trajectory crosses the corresponding
cell of the k-space grid. Using this hypothesis, the estimated time to visit the 2D k-space

1s 110 ms.

Strategy. We used the TPS-based sampling method (Appendix 1) as input of our pro-
jection algorithm (see Fig. 4.8(b)), since it is a way of designing sampling trajectories
that match any sampling density w. The latter is central in CS-MRI since it impacts
the number of required measurements (Adcock et al., 2013; Krahmer and Ward, 2014;
Chauffert et al., 2014a). To compare our projection method to existing reparameteriza-
tion, the proposed sampling strategy is:

(1) Sample deterministically the k-space center as adviced in (Adcock et al., 2013; Chauf-
fert et al., 2013b; Chauffert et al., 2014a), using an EPI sequence (see Fig. 4.8(a)). The
scanning time can be estimated to 12 ms in 2D using optimal control.

(ii) Select a density 7 proportional to 1/|k|? as mentioned in (Krahmer and Ward, 2014;
Chauffert et al., 2014a). Draw independently points according to %7 and join them by
the shortest path to form a 7-VDS (Appendix 1).

(iii) Parameterize the TSP path at constant speed and project this parameterization onto
the set of gradient constraints, or (iii bis) Parameterize the TSP path using optimal
control (the exact solution can be computed explicitely).

(iv) Form the sampling curve, define a set € of the selected samples, mask the k-space
with €2, and reconstruct an image using #; minimization of the constrained problem. Let
F* denote the d-dimensional discrete Fourier transform and Fy, the matrix composed of
the lines corresponding to 2. Denote also by ® an inverse d-dimensional wavelet trans-

form (here a Symmlet transform). Then the reconstructed image is the solution of the
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problem:

¥ = Argmin H<I>71xH1 (4.15)

y=Fpa
An approximation of z* is computed using Douglas-Rachford algorithm (Combettes and
Pesquet, 2011). Solving the penalized form associated with (4.15) might be addressed
by competing algorithms (ADMM, 3MG); see (Florescu et al., 2014) for a recent com-
parison. The reconstruction results could be improved by resorting to non-Cartesian
reconstruction (Keiner et al., 2009), which would avoid the approximation related to the

projection onto the k-space grid.

4.8.2 Results

4.8.2.1 2D reconstructions

In this experiment, we considered a 2D k-space (d = 2) corresponding to an axial slice.
We considered five sampling strategies, depicted in Fig. 4.8(first row): a classical EPI
coverage used as reference (a); a TSP-based sampling trajectory parameterized using
optimal control (b); two projected TSP-based trajectories, one with the same number of
samples collected as in (b) (r = 11.2) (¢) and the other with the same scanning time as
in (b) (62 ms) (d); a variable density spiral trajectory for comparison purpose in terms

of time and sampling ratio (e).

As expected, the reconstruction results shown in Fig. 4.8(g,h) are really close, since
the number of collected samples is the same, and the sampling densities are similar.
However, in this comparison the gain in traversal time is significant (one half). In
contrast, the longer and smoothed TSP depicted in Fig. 4.8(d) allows us to improve image
reconstruction (1 dB gain) as illustrated by Fig. 4.8(i) while keeping the same acquisition
time as in Fig. 4.8(b). For comparison purposes, we implemented spiral acquisition which
consists of replacing steps (ii)-(iii) in the above mentioned sampling strategy by a spiral
with density proportional to 1/|k|?, projected onto the set of constraints. This strategy
doubles the acquisition time (118 ms compared to 62 ms) whereas the acceleration factor
was larger (r = 7.5 vs. r = 6.6). In this experimental context (regridding and variable
density spiral), the spiral is not appealing compared to EPI acquisition, since it is time

consuming and degrades the image quality.

In each of these reconstructions, the major vessels can be recovered, although the smallest
ones can only be seen for r < 8. Finally, the best compromise between acquisition
time and reconstruction quality is achieved using the specific combination of TSP-based

sampling and our projection algorithm onto the set of constraints shown in Fig. 4.8(d).
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Sampling schemes

Toc=110ms (r=1) Toc=62ms (r=11.2) T =30ms (r =11.2)

Reconstructed slices

Reference PSNR = 25.9 dB PSNR = 25.5 dB PSNR = 26.9 dB PSNR = 26.8 dB

FIcURE 4.8: Full k-space acquisition with an EPI sequence (a) and corresponding

reference image (f). Comparison between an exact parameterization of the TSP tra-

jectory (b) and projection from TSP trajectory onto the set of constraints (c),(d). In

experiments (b,c), the number of measured locations is fixed to 9% (r = 11.2), whereas

in (b,d), the time to traverse the curve is fixed to 62 ms. (e): Spiral trajectory with

full acquisition of the k-space center. (g-j): Reconstructed images corresponding to
sampling strategies (b-e) by solving Eq. (4.15).

4.8.2.2 3D angiography

Using the same method as in 2D, namely TSP-sampling and projection onto the set of
constraints, we reconstructed volumes from 3D k-space. In order to estimate the quality
of the reconstructions, we compared the angiograms computed from the 3D images using
Frangi filtering (Frangi et al., 1998). The results are shown in Fig. 4.9 for acceleration
factors r = 7.3 (Fig. 4.9(b,e)) and r = 17.4 (Fig. 4.9(c,f)) and compared to the angiogram
computed from the whole data.

Using the strategy described in Part 4.8.1 the time to traverse k-space would be 3.53 s
(full acquisition), 3.15s (r = 7.2) and 0.88 s (r = 17). The main drawback of TSP-based
sampling schemes is that the time reduction is not directly proportional to r, in contrast
to classical 2D downsampling and reading out along the third dimension. Nevertheless,
if the number of measurements is fixed, the TSP-based approach leads to more accurate
reconstruction results since the sampling scheme may fit any density (see Appendix 1).
Angiograms shown in Fig. 4.9 illustrate that one can reduce the travel time in the k-
space and still observe accurate microvascular structure. If r = 7.3, time reduction is
minor (about 10% less), but the computed angiogram is almost the same as the one
obtained with a complete k-space. It is interesting to notice that with a higher accel-
eration factor (r = 17.4), the acquisition time is reduced by 75%, but the computed

angiogram remains of good quality. The angiogram appears a bit noisier, especially
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in the pre-injection setting (Fig. 4.9(c)), but the post-injection image allows recovering

Willis polygon and most of the major vessels of the mouse brain (Fig. 4.9(f)).

Original (T = 3.53s) r =173 (T = 3.15s) r=17.4 (T = 0.88s)
(a)

pre-injection

PSNR=29.0 dB

(f)

post-injection

PSNR=25.5 dB PSNR=24.1 dB

FIGURE 4.9: Angiograms computed from full k-space pre-(a) and post-(d) injection
data. Angiograms computed from pre-(resp., post-) injection data for decimated k-
space with r=7.3 (b) and r=17.4 (c) (resp., (e) and (f)).






Chapter 5

A projection method on measures

sets

This chapter is based on (Chauffert et al., 2015a).

We consider the problem of projecting a probability measure 7 on a set My of Radon

measures. The projection is defined as a solution of the following variational problem:

Jnt (a3
where h € L?(Q) is a kernel,  C R? and  denotes the convolution operator. To
motivate and illustrate our study, we show that this problem arises naturally in various
practical image rendering problems such as stippling (representing an image with N
dots) or continuous line drawing (representing an image with a continuous line). We
provide a necessary and sufficient condition on the sequence (M y)yen that ensures weak
convergence of the projections (u})nen to m. We then provide a numerical algorithm
to solve a discretized version of the problem and show several illustrations related to

computer-assisted synthesis of artistic paintings/drawings.

5.1 Introduction

Digital Halftoning consists of representing a grayscale image with only black and white
tones (Ulichney, 1987). For example, a grayscale image can be approximated by a variable
distribution of black dots with over a white background. This technique, called stippling,
is the cornerstone of most printing digital inkjet devices. A stippling result is displayed
in Figure 5.1b. The lion in Figure 5.1a can be recognized from the dotted image shown

in Figure 5.1b. This is somehow surprising since the differences between the pixel values

113
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of the two images are far from fzero. One way to explain this phenomenon is to invoke
the multiresolution feature of the human visual system (Daugman, 1980; Pappas and
Neuhoff, 1999). Figures 5.1c and 5.1d are blurred versions of Figures 5.1a and 5.1b
respectively. These blurred images correspond to low-pass versions of the original ones

and are nearly impossible to distinguish.

FIGURE 5.1: Explanation of the stippling phenomenon. Images (a) and (b) are similar

while the norm of their difference is large. Figures (c) and (d) are obtained by convolving

(a) and (b) with a Gaussian of variance equal to 3 pixels. After convolution, the images
cannot be distinguished.

Assuming that the dots correspond to Dirac masses, this experiment suggests placing the

dots at locations pi,...,pn corresponding to the minimizer of the following variational
problem:
1 i
min hx|m——= 0p (5.1)
(PP ) EQN ( N ; ) )

where Q C R? denotes the image domain, d,, denotes the Dirac measure at point p; € R?

7 denotes the target probability measure (the lion) and h is a convolution kernel that
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should depend on the point spread function of the human visual system. By letting

=1

N
1
MQY) = {M =N ZCSp“ (pi)1<i<n € QN} (5.2)
denote the set of N-point measures, problem (5.1) rereads as a projection problem:

i [ o = wli3 - (5.3)
This variational problem is a prototypical example that motivates our study. As ex-
plained later, it is intimately related to recent works on image halftoning by means of
attraction-repulsion potentials proposed in (Schmaltz et al., 2010; Teuber et al., 2011;
Gwosdek et al., 2014). In references (Graf et al., 2012; Fornasier et al., 2013; Fornasier
and Hiitter, 2013) this principle is shown to have far reaching applications ranging from
numerical integration, quantum physics, economics (optimal location of service centers)

or biology (optimal population distributions).

In this paper, we extend this variational problem by replacing M(Q%") with an arbitrary
set of measures denoted M. In other words, we want to approximate a given measure 7
by another measure in the set Mpy. We develop an algorithm to perform this projection

in a general setting.

To motivate this extension, we consider a practical problem: how to perform continuous
line drawing with a computer? Continuous line drawing is a starting course in all art
cursus. It consists of drawing a picture without ever lifting the paintbrush from the page.
Figure 5.2 shows two drawings obtained with this technique. Apart from teaching, it is
used in marketing, quilting designs, steel wire sculptures, connect the dot puzzles,... A
few algorithms were already proposed in (Li and Mould, 2014; Xu and Kaplan, 2007;
Kaplan et al., 2005; Bosch and Herman, 2004; Wong and Takahashi, 2011). We propose
an original solution which consists of setting My as a space of pushforward measures

associated with sets of parameterized curves.

Apart from the two rendering applications discussed in this paper, this paper has poten-

tial for diverse applications in fields such as imaging, finance, biology,...

The remaining of this paper is structured as follows. We first describe the notation and
some preliminary remarks in Section 5.2. We propose a mathematical analysis of the
problem for generic sequences of measures spaces (M y)yen in Section 5.3. In particu-
lar, we give conditions on h ensuring that the mapping p +— ||k * u||2 defines a norm on
the space of signed measures and provide necessary and sufficient conditions on the se-
quence (M y)nen ensuring consistency of the projection problem. We propose a generic

numerical algorithm in Section 5.4 and derive some of its theoretical guarantees. In
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i

15

éﬁfﬁmﬂ K,

#

FIGURE 5.2: Two examples of continuous line drawing. (a) A sketch of Marylin Monroe

by Pierre Emmanuel Godet http://pagazine.com/ using a continuous line. A close

inspection reveals that the line represents objects and characters. (b) Meisje met de

Parel, Vermeer 1665, represented using a spiral with variable width. Realized by Chan
Hwee Chong http://www.behance.net/Hweechong.

Section 5.5, we study the particular problem of continuous line drawing from a math-
ematical perspective. Finally, we present some results in image rendering problems in

Section 5.6.

5.2 Notation and preliminaries

In this paper, we work on the measurable space (2, %), where Q = T¢ denotes the torus
T¢ = R?/Z%. An extension to other spaces such as R? or [0,1]? is feasible but requires
slight adaptations. Since drawing on a donut is impractical, we will set Q = [0, 1]¢ in the

numerical experiments.

The space of continuous functions on § is denoted C(Q2). The Sobolev space (W™P([0,T])),
where m € N, is the Banach space of d dimensional curves in € with derivatives up to
the m-th order in LP([0,T]). Let Ma denote the space of probability measures on 2, i.e.
the space of nonnegative Radon measures p on € such that p(2) = 1. Throughout the
paper m € Ma will denote a target measure. Let M denote the space of signed measures
on §) with bounded total variation, that is u = p4 — pu— where py and p_ are two finite

nonnegative Radon measures and ||p||7v = py(Q) + p—(Q) < oo.


http://pagazine.com/
http://www.behance.net/Hweechong
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Let h : © — R denote a continuous function. Let u € M denote an arbitrary finite

signed measure. The convolution product between h and p is defined for all x € £ by:

pehla) = [ o= y)duty) (5.4)
— u(h(z — )

In the Fourier space, the convolution (5.4) translates to, for all £ € Z? (see e.g., (Katznel-
son, 1968)):

—

o h(€) = a&)h(E),

where [ is the Fourier-Stieltjes series of u. The Fourier-Stieltjes series coefficients are
defined for all ¢ € Z¢ by:

(€)= [ e dufa),

We recall the Parseval formula:

| @pds = 3 [ie)

cezd

‘ 2

Let J : R — R denote a function and 9J its limiting-subdifferential (or simply sub-
differential) (Mordukhovich, 2006; Attouch et al., 2013). Let C' C R"™ denote a closed
subset. The indicator function of C' is denoted i and defined by

0 ifzeC,
ic(r) = {

+o00 otherwise.

The set of projections of a point g € R™ on C' is denoted Pg(xo) and defined by

Po(wo) = Argmin ||z — 3.
zeC
The notation Argmin stands for the whole set of minimizers while arg min denotes one
of the minimizers. Note that P is generally a point-to-set mapping except if C' is convex
closed, since the projection on a closed convex set is unique. The normal cone at x € R”
is denoted N (z). It is defined as the limiting-subdifferential of i at z. A critical point
of the function J + i¢ is a point z* that satisfies 0 € 9J(z*) + N¢(x*). This condition

is necessary (but not sufficient) for * to be a local minimizer of J + ic.
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5.3 Mathematical analysis

Let
Ni(p1) = |k - (5.5)

In this section, we study some basic properties of the following projection problem:

min N (7 — p), (5.6)

HEM N

where (Mpy)nen denotes an arbitrary sequence of measures sets in M.

5.3.1 Norm properties

We first study the properties of N} on the space M of signed measures with bounded
total variation. The following proposition shows that it is well defined provided that
h € C(Q).

Proposition 5.1. Let h € C(2) and u € M. Then h*u € L*(Q).

Proof. Tt suffices to remark that Vo € Q, |hx pu(z)| < ||pllrvh]eo < +00. Therefore,
hxp € L*®(8). Since € is bounded, h € L>(f2) implies that h € L?(£2). O

Remark 5.2. In fact, the result holds true for weaker hypotheses on h. If h € £L>(Q),

the set of bounded Borel measurable functions, h* u € L?(£2) since

o €9, e u(o)| < Il (sup )] ) < +oc.
xTE

Note that the L°°-norm is defined with an esssup while we used a sup in the above
expression. We stick to h € C(2) since this hypothesis is more usual when working with

Radon measures.

The following proposition gives a necessary and sufficient condition on h ensuring that

N, defines a norm on M.

Proposition 5.3. Let h € C(2). The mapping N}, defines a norm on M if and only if

all Fourier series coefficients h(§) are nonzero.

Proof. Let us assume that ﬁ(f) £ 0, V¢ € Z%. The triangle inequality and absolute
homogeneity hold trivially. Let us show that u # 0 = Njy(u) # 0. The Fourier series
of a nonzero signed measure p is nonzero, so that there is £ € Z¢ such that (¢) # 0.
According to our hypothesis h(€) # 0, hence m(f) # 0 and N (p) # 0.
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On the contrary, if there exists & € Z? such that ﬁ(&g) = 0. The non-zero measure

defined through its Fourier series by

0 otherwise

satisfies V(1) = 0 and belongs to M. O

From now on, owing to Proposition 5.3, we will systematically assume - sometimes with-
out mentioning - that k € C(Q) and that h(€) # 0, V€ € Z%. Finally, we show that N},

induces the weak topology on M. Let us first recall the definition of weak convergence.

Definition 5.4. A sequence of measures (uy)nen is said to weakly converge to u € M,
if
N—o00

lim /Q f(@)dpun () = /Q f(@)dp(z)

for all continuous functions f : 2 — R. The shorthand notation for weak convergence is

MNrN:;x
Proposition 5.5. Assume that h € C(Q) and that h(¢) # 0, V€ € Z%. Then for all
sequences (UN)NeN in M satisfying ||un||l7v < M < 400, VN € N,

li =0 < — 0.
NEEgOJV%(AUV) mN N—o0

Proof. Let (un) ey be a sequence of signed measures in M.

If uy — 0, then fin (&) = pun(e2™E)) — 0 for all € € Z9. Since |y (€)h(E)] < 2M|h(€)]
for all £ € Z% and Z 12Mh(€)[> < oo, dominated convergence yields that Aj(un) — 0.
gezd
Conversely, assume that N} (uy) — 0. Since the ux are bounded, there are subsequences
un, that converge weakly to a measure v that depends on the subsequence. We have
to prove that v = 0 for all such subsequences. Since NVj,(un) — 0, we have jin(§) — 0
for all ¢ € Z%. Therefore, (&) = 0, V& € Z%. This is equivalent to v = 0 (see e.g.
(Katznelson, 1968, p.36)), ending the proof. O]

5.3.2 Existence of solutions

The first important question one may ask is whether Problem (5.6) admits a solution or

not. Theorem 5.6 provides sufficient conditions for existence to hold.
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Proposition 5.6. If My is weakly compact, then Problem (5.6) admits at least a so-
lution. In particular, if My is weakly closed and bounded in TV-norm, Problem (5.6)

admits at least a solution.

Proof. Assume My is weakly compact. Consider a minimizing sequence u, € My.

By compacity, there is a 1 € My and a subsequence (fi, )xen such that p,, i 1
——+o00

By Proposition 5.5, N}, induces the weak topology on any TV-bounded set of signed

measures, so that lim N (7 — pg) = Np(m — ).
k—o0

Since closed balls in TV-norms are weakly compact, any weakly closed TV-bounded set

is weakly compact. O

A key concept that will appear in the continuous line drawing problem is that of push-
forward or empirical measure (Bogachev and Ruas, 2007) defined hereafter. Let (X, ~)
denote an arbitrary probability space. Given a function p : X — , the empirical

measure associated with p is denoted p,y. It is defined for any measurable set B by

py(B) =~(p~ ' (B)),

where v denotes the Lebesgue measure on the interval [0,1]. Intuitively, the quantity
p«y(B) represents the “time” spent by the function p in B. Note that p,y is a probability
measure since it is positive and p,y(2) = 1. Given a measure p of kind p = p.7, the

function p is called parameterization of p.

Let P denote a set of parameterizations p : X — Q and M(P) denote the associated set

of pushforward-measures:

M(P) = {p = p«v,p € P}.

In the rest of this paragraph we give sufficient conditions so that a projection on M (P)

exists. We first need the following proposition.

Proposition 5.7. Let (pn)nen denote a sequence in P that converges to p pointwise.

Then (PnyY)nen converges weakly to p.y.

Proof. Let f € C(2). Since 2 is compact, f is bounded. Hence dominated convergence
vields [y f(pn(z)) — f(p(2))dv(z) = 0. O

Proposition 5.8. Assume that P is compact for the topology of pointwise convergence.
Then there exists a minimizer to Problem (5.6) with My = M(P).

Proof. By Proposition 5.6 it is enough to show that M(P) is weakly compact. First,

M(P) is bounded in TV-norm since it is a subspace of probability measures. Consider a
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sequence (pp)nen in P such that the sequence (pn.7)nen weakly converges to a measure
. Since P is compact for the topology of pointwise convergence, there is a subsequence
(Pn,, Jken converging pointwise to p € P. By Proposition 5.7, the pushforward-measure
sy = p so that u € M(P) and P is weakly closed. O

5.3.3 Consistency

In this paragraph, we consider a sequence (M y)nen of weakly compact subsets of M.
By Proposition 5.6 there exists a minimizer p3 € My to Problem (5.6) for every N. We
provide a necessary and sufficient condition on (M x)yen for consistency, i.e. phy N:OO .
In the case of image rendering, it basically means that if IV is taken sufficiently large, the
projection pj and the target image 7 will be indistinguishable from a perceptual point

of view. The first result reads as follows.

Theorem 5.9. The following assertions are equivalent:

) For all me M N — .
i) Forallm A Ky T

i1) UnenMp is weakly dense in Ma.

Proof. We first prove ii) = 7). Assume that Uyen My is weakly dense in Ma. This
implies that, Vr € Ma, 3(un)ven € (MnN)nen such that uy NA 7. From Proposition
— 00
5.5, this is equivalent to A}im Niu(pn —m) = 0. Since p}y is the projection
—00

0 < Npy(puy —m) < Np(uny —m) — 0.

Proposition 5.5 implies that 3 — .
N—oo

The proof of i) = i) is straightforward by contraposition. Indeed, if Uyen My is not
weakly dense in M, there exists myp € Ma that can not be approximated weakly by

any sequence (uy)nven € (MnN)NeN- O

We now turn to the more ambitious goal of assessing the speed of convergence of p}; to
7. The most natural metric in our context is the minimized norm N, (u} — 7). However,
its analysis is easy in the Fourier domain, whereas all measures sets in this paper are
defined in the space domain. We therefore prefer to use another metrization of weak
convergence, given by the transportation distance. Moreover we will see in Theorem

5.11 that the transportation distance defined below dominates Nj,.
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Definition 5.10. The L' transportation distance, also known as Kantorovitch or Wasser-

stein distance, between two measures with same TV norm is given by:

Wilsv) = int [ flo =yl defi.)

where the infimum runs over all couplings of x4 and v, that is the measures ¢ on §2 x
with marginals satisfying ¢(A, Q) = u(A) and ¢(Q2, A) = v(A) for all Borelians A.

Equivalently, we may define the distance through the dual, that is the action on Lipschitz

functions:

Wip,v) = sup pu(f) —v(f). (5.7)
f:Lip(f)<1

We define the point-to-set distance as

Wi(Mpy,m) = ,ueilfl\/le Wi (p, ).

Obviously this distance satisfies:

Wi(Mpy,nm) <déy:= sup inf Wi(u,n). (5.8)
ﬂ'EMA HGMN

Theorem 5.11. Assume that h € C(S2) denote a Lipschitz continuous function with
Lipschitz constant L. Then

Ni(p = m) < LWy (p, ) (5.9)

and
./\/.h(,u}(\/ — 7T) S LW1(MN,7T) § L5N. (510)

Proof. Let 7, : h(-) — h(xz — -) denote the symmetrization and shift operator. Let us

first prove inequality (5.9):

Hh*(u—ﬂn%=/Q[h*<u—w><w>]2 dz
:/ u(rah) — w(reh)|? da
Q

< |QULPWE (p, ),

where we used the dual definition (5.7) of the Wasserstein distance to obtain the last

inequality.
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Let py denote a minimizer of ir/{/fl Wi(p, 7). If no minimizer exists we may take an
peMnN

e-solution with arbitrary small € instead. By definition of the projection puy;, we have:
My —m) < Np(py —m) < Wpn, ) < 6n. (5.11)

O

Even though the bound (5.10) is pessimistic in general, it provides some insight on which

sequences of measure spaces allow a fast weak convergence.

5.3.4 Application to image stippling

In order to illustrate the proposed theory, we first focus on the case of N-point measures
M(QN) defined in Eq. 5.2. This setting is the standard one considered for probability
quantization (see (Gruber, 2004; Kloeckner, 2012) for similar results). As mentioned
earlier; it has many applications including image stippling. Our main results read as

follows.

Theorem 5.12. Let h denote an L-Lipschitz kernel. The set of N-point measures
M(QN) satisfies the following inequalities:

5.12
TEMA HEM(OQN) 2 ( )

. vd !
oy = sup  inf Wl(uﬂr)<<+1 NUd_q

and

sup inf Npy(u—7m) <L (m + 1) ! (5.13)

TEMp HEM(QV) 2 NYd—1°

As a direct consequence, we get the following corollary.

Corollary 5.13. Let My = M(QY) denote the set of N-point measures. Then there

exist solutions py to the projection problem (5.6).

Moreover, for any L-Lipschitz kernel h € C(Q):
i) Wy s
ii) Ni(uy —m) = O (LN—é) .

Proof. We first evaluate the bound 0y defined in (5.8). To this end, for any given 7, we
construct an explicit sequence of measures po, ..., iy, the last of which is an N-point

measure approximating .
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Note that T can be thought of as the unit cube [0,1)?. It may therefore be partitioned
in C?% smaller cubes of edge length 1/C with C' = |[N'/¢|. We let (wi)1<i<ca denote the

small cubes and z; denote their center. We assume that the cubes are ordered in such a

way that w; and w;1 are contiguous.

Cd
We define po = Z m(w;)0z,. The measure pg satisfies
i=1
1 .
Wi (m, o) < 5 Sup Diameter(w;)
i

5

< le_Nl/dJ_l

S

1

ST NI
but is not an N-point measure since N7(w;) is not an integer.

To obtain an N-point measure, we recursively build p; as follows:

m(fay) = 5 [N (b))

m{zii1}) = 1 ({mig, 2}) — % [Np—1({z1})]

if 1 < (1/C)4 -1,
m{zi}) = a1 ({}) it o g {1+ 1}

We stop the process for [ = (1/C)% and let ji = H(1/cye- Notice that Nyy(z;) is an integer
for all 4 < [ and that y; is a probability measure for all [. Therefore i is an N-point

measure. Moreover:

1
Wi (g, 1) < NHM — T141|2
< 1
S N(NVd—1)

Since the transportation distance is a distance, we have the triangle inequality. Therefore:

N
Wi (m, i) < Wi, po) + > W1, ),
=1

_vd 1y ]
2 NY/d—1 '~ N(NVI—1)

Vd 1

The inequality (5.13) is a direct consequence of this result and Proposition 5.11.
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We now turn to the proof of Corollary 5.13. To prove the existence, first notice that
the projection problem (5.6) can be recast as (5.1). Let p = (p1,---,pn) € QY. The
mapping p +— Hh* (7r — % Zfil ‘5pi>

of minimizing a finite dimensional continuous function over a compact set. The existence

2
’2 is continuous. Problem (5.1) therefore consists

of a solution follows. Point ii) is a direct consequence of Theorem 5.11 and bound (5.13).

Point 1) is due to the fact that N}, metrizes weak convergence, see Proposition 5.5. [

5.4 Numerical resolution

In this section, we propose a generic numerical algorithm to solve the projection prob-
lem (5.6). We first draw a connection with the recent works on electrostatic halftoning
(Schmaltz et al., 2010; Teuber et al., 2011) in subsection 5.4.1. We establish a connec-
tion with Thomson’s problem (Thomson, 1904) in subsection 5.4.2. We then recall the
algorithm proposed in (Schmaltz et al., 2010; Teuber et al., 2011) when My is the set
of N-point measures. Finally, we extend this principle to arbitrary measures spaces and

provide some results on their theoretical performance in section 5.4.4.

5.4.1 Relationship to electrostatic-halftoning

In a recent series of papers (Schmaltz et al., 2010; Teuber et al., 2011; Grif et al.,
2012; Gwosdek et al., 2014), it was suggested to use electrostatic principles to perform
image halftoning. This technique was shown to produce results having a number of nice
properties such as few visual artifacts and state-of-the-art performance when convolved
with a Gaussian filter. Motivated by preliminary results in (Schmaltz et al., 2010),
the authors of (Teuber et al., 2011) proposed to choose the N points locations p =

(pi)i<i<n € QF as a solution of the following variational problem:

1 N N 1 N
i, 5ve 2 D Hs—p) = D | #@ = pydr(a), (5.14)

i=1 j=1
Repulsion potential Attraction potential
where H was initially defined as H(z) = — ||z||, in (Schmaltz et al., 2010; Teuber et al.,

2011) and then extended to a few other functions in (Graf et al., 2012). The attraction
potential tends to attract points towards the bright regions of the image (regions where
the measure 7 has a large mass) whereas the repulsion potential can be regarded as a

counter-balancing term that tends to maximize the distance between all pairs of points.

Proposition 5.14 below shows that this attraction-repulsion problem is actually equivalent

to the projection problem (5.6) on the set of N-point measures defined in (5.2). We let
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P* denote the set of solutions of (5.14) and M(P*)

={pu= % Zf\il Opr, p* € P*}. We
also let M* denote the set of solutions to problem (5.6).

Proposition 5.14. Let h € C(Q) denote a kernel such that |h|(€) > 0, V¢ € Z%. Define
H through its Fourier series by H(€) = |h|2(€). Then problems (5.6) and (5.14) yield

the same solutions set:

M* = M(PY).

Proof. First, note that since H and h are continuous both problems are well defined and

admit at least one solution. Let us first expand the L?-norm in (5.6):

(hox (=), hox (=)
(Hx(p—m),p—m)

((H % pty 1) — 2(H % i, )+ (H xem, 7).

1
Sl (=) =

NI RN —~=DN| -

Therefore

1 1
Argmin - [[hx (u — 7)||3 = Argmin o ((H % pt, ) — 2(H % s, 7)) .
HEMN 2 HEM N 2

To conclude, it suffices to remark that for a measure p of kind p = % lei 1 0p

3

5 () — 2(H x 1, )

1 N N 1 N
:szmpi—pj)—N;/QHu—pi)dw(x).

i=1 j=1
O

Remark 5.15. It is rather easy to show that a sufficient condition for h to be continuous
is that H € C3(Q) or H be Hélder continuous with exponent o > 2. These conditions

are however strong and exclude kernels such as H(z) = —||z|2.

From Remark 5.2, it is actually sufficient that h € £(Q) for N} to be well defined.
This leads to less stringent conditions on H. We do not discuss this possibility further

to keep the arguments simple.

Remark 5.16. Corollary 5.13 sheds light on the approximation quality of the minimizers
of attraction-repulsion functionals. Let us mention that consistency of problem (5.14) was
already studied in the recent papers (Graf et al., 2012; Fornasier et al., 2013; Fornasier
and Hiitter, 2013). To the best of our knowledge, Corollary 5.13 is stronger than existing

results since it yields a convergence rate and holds true under more general assumptions.
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Though formulations (5.6) and (5.14) are equivalent, we believe that the proposed one
(5.6) has some advantages: it is probably more intuitive, shows that the convolution ker-
nel h should be chosen depending on physical considerations and simplifies some parts
of the mathematical analysis such as consistency. However, the set of admissible mea-
sures M(QY) has a complex geometry and this formulation as such is hardly amenable
to numerical implementation. For instance, M(Q%) is not a vector space, since adding
two N-point measures usually leads to (2N)-point measures. On the other hand, the
attraction-repulsion formulation (5.14) is an optimization problem of a continuous func-
tion over the set QY. It therefore looks easier to handle numerically using non-linear
programming techniques. This is what we will implement in the next paragraphs follow-

ing previous works (Schmaltz et al., 2010; Teuber et al., 2011).

5.4.2 Link with Thomson’s problem

Before going further into the design of a numerical algorithm, let us first show that a
specific instance of problem (5.6) is equivalent to Thomson’s problem (Thomson, 1904).
This is a longstanding open problem in numerical optimization. It belongs to Smale’s
list of mathematical questions to solve for the XXIst century (Smale, 1998). A detailed
presentation of Thomson’s problem and its extensions is also proposed in (Hiriart-Urruty,
2009).

Let S = {p € R3,||p|l2 = 1} denote the unit 3-dimensional sphere. Thomson’s problem

may be enounced as follows:

1
Find pe Argmin

T (5.15)
(P1,- PN )ESN s [pi = pjll2

The term ), £ m represents the electrostatic potential energy of N electrons.
i Pj
Thomson’s problem therefore consists of finding the minimum energy configuration of NV

electrons on the sphere S.

To establish the connection between (5.6) and (5.15), it suffices to set H(z) = m,
Q=S and 7 =11in Eq. (5.14). By doing so, the attraction potential has the same value
whatever the points configuration and the repulsion potential exactly corresponds to the

electrostatic potential.

This simple remark shows that finding global minimizers looks too ambitious in general

and we will therefore concentrate on the search of local minimizers only.
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5.4.3 The case of N-point measures

In this section, we develop an algorithm specific to the projection on the set of N-
point measures defined in (5.2). This algorithm generates stippling results such as in
Fig. 5.1. In stippling, the measure is supported by a union of discs, i.e., a sum of diracs
convoluted with a disc indicator. We simply have to consider the image deconvoluted
with this disc indicator as 7 to include stippling in the framework of N-point measures.
We will generalize this algorithm to arbitrary sets of measures in the next section. We
assume without further mention that H (&) is real and positive for all £. This implies
that H is real and even. Moreover, Proposition 5.14 implies that problems (5.6) and
(5.14) yield the same solutions sets. We let p = (p1,...,pn) and set

N N N

) = 51 AR - > |G =pyix@).  (519)
F(p) G(p)

The projection problem therefore rereads as:

min J(p). 5.17
min J(p) (5.17)
For practical purposes, the integrals in é(p) first have to be replaced by numerical
quadratures. We let G(p) ~ G(p) denote the numerical approximation of G(p). This

approximation can be written as

N n
1
Glp) =« > wiH(x; - pi)mj,
i=1 j=1
where n is the number of discretization points z; and w; are weights that depend on the
integration rule. In particular, since we want to approximate integration with respect to

a probability measure, we require that

n
E ijj =1.
j=1

In our numerical experiments we use the rectangle rule. We may then take m; as the in-
tegral of m over the corresponding rectangle. After discretization, the projection problem
therefore rereads as:

min J(p) = F(r) - Glo). (5.18)
The following result (Attouch et al., 2013, Theorem 5.3) will be useful to design a con-

vergent algorithm. We refer to (Attouch et al., 2013) for a comprehensive introduction
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to the definition of Kurdyka-t.ojasiewicz functions and to its applications to algorithmic
analysis. In particular, we recall that semi-algebraic functions are Kurdyka-t.ojasiewicz
(Kurdyka, 1998).

Theorem 5.17. Let K : R" — R be C' function whose gradient is L-Lipschitz continuous

and let C' be a nonempty closed subset of R™. Being given € € (0, ﬁ) and a sequence of
stepsizes fy(k) such that € < 7(’“) < % — €&, we consider a sequence (x(k))keN that complies
with

+* D) ¢ p,, (x(k) _ »y(k)VK(l‘(k))> , with 0 € C (5.19)

If the function K + ic is a Kurdyka-Eojasiewicz function and if (x*)),ex is bounded,

then the sequence (x(k))keN converges to a critical point x* in C.

A consequence of this important result is the following.

Corollary 5.18. Assume that H is a C' semi-algebraic function with L-Lipschitz con-
tinuous gradient. Set 0 < v < 3% Then the following sequence converges to a critical

point of problem (5.18)

p*FHD € Pon (p(k) - 7VJ(P(k))) , with p¥ € V. (5.20)

If H is convex, 0 <y < g ensures convergence to a critical point.

Remark 5.19. The semi-algebraicity is useful to obtain convergence to a critical point. In
some cases it might however not be needed. For instance, in the case where C'is convex
and closed, it is straightforward to establish the decrease of the cost function assuming
only that V.J is Lipschitz. Nesterov in (Nesterov, 2013, Theorem 3) also provides a

convergence rate in O ( \/klﬁ) in terms of objective function values.

Proof. First notice that J is semi-algebraic as a finite sum of semi-algebraic functions.

Function .J is C! by Leibniz integral rule. Let ) denote the derivative with respect to

pr. Then, since H is even

OF(p) = —5 Z VH (p, — pi) (5.21)

and

1 n
hG(p) =~ > w;VH(x; — pr)m. (5.22)
j=1
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For any two sets of N points p() = (p,(fl))Kng, p? = (p(2)

N
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IVFG™) = VEG)3 = |0 F(01) - acr ()|
k=1
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??‘
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s
—_

= WHP1 —p® H%,

and
N 2
IVG ™) = VGE®)I3 = |aGe") - acr®)|
k=1
IRNIES m_ (2) 2
:N—ZHZw]ﬂ'j VH x) — VH(p, —ac))H2
k=1
1 N
N*Z(Zmenpk 1)’
=1
2 n
= (D wm ) I - 53
j=1
SE O
Finally,

VI (M) = VI(pP)]|
<[VF@M) = VE@ED)[|s + [VG(HWY) - VG (P2

2L 3L
2L W _ @y, = 3Ly m e
<(F+ N)H 2= lP™ =2l

Now, if we assume that H is convex and C? (this hypothesis is not necessary, but simplifies

the proof). Then F and G are also convex and C2. We let V2F denote the Hessian matrix
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of F. Given the previous inequalities, we have 0 < V2F < %Id and 0 < V%G < %Id.

Hence, the largest eigenvalue in magnitude of V?(F — G) is bounded above by %

Moreover, the sequence (z*)),cy is bounded since QY is bounded. O

5.4.4 A generic projection algorithm

We now turn to the problem of finding a solution of (5.6), where My denotes our
arbitrary measures set. In the previous paragraph, it was shown that critical points
of J + i~ could be obtained with a simple projected gradient algorithm under mild
assumtpions. Although this algorithm only yields critical points, they usually correspond
to point configurations that are visually pleasing after only a few hundreds of iterations.
For instance, the lion in Figure 5.1b was obtained after 200 iterations. Motivated by
this appealing numerical behavior, we propose to extend this algorithm to the following

abstract construction:
1. Approximate My by a subset A, of n-point measures.
2. Use the generic Algorithm (5.19) to obtain an approximate projection p on A,.
3. When possible, reconstruct an approximation uy € My of a projection pj using
-
To formalize the approximation step, we need the definition of Hausdorff distance:

Definition 5.20. The Hausdorfl distance between two subsets X and Y of a metric
space (M,d) is:

Hqa(X,Y) :=max < sup inf d(z,y),sup inf d(y,x) ;.
d(X,Y) {xegyey( y) sup inf (y )}

In words, two sets are close if any point in one set is close to at least a point in the other
set. In this paper, the relevant metric space is the space of signed measures M with the

norm Nj,. The corresponding Hausdorff distance is denoted Hp, .

The following proposition clarifies why controlling the Hausdorff distance is relevant to

design approximation sets A,.

Proposition 5.21. Let A, and My be two TV-bounded weakly closed sets of measures
such that Hpy, (An, M) < e. Let p be a projection on A,. Then there is a point
un € My such that Ni,(p), — pn) < € and Np(m — pn) < elr/{/fl Np(m — p) + 2e.

© N
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Corollary 5.22. If le Hn,, (An, M) = 0, then (1))nen converges weakly along a

subsequence to a solution py of Problem (5.6).

Proof. We first prove Proposition 5.21. Since A, and My are bounded weakly closed,
by Proposition 5.6, there exists at least one projection pu;, on A,, and one projection pj

on MN.

Moreover since A, and My are bounded weakly closed, they are also closed for N}, so
that the infimum in the Hausdorff distances are attained. Hence there exists u, € A,
such that My, (pn — ) < Ha, (An, M) < € and pn € My such that Ny (uy —pp) < e.

The proposition follows from the triangle inequality:

Ni(py =) < Np(py — pn) + Ni(py, — )
<&+ Np(pn — )
< e+ MNalpn — ) + Nu(py — )
< Np(uy — m) + 2e.

For the corollary, let us consider the sequence (i) )nen as n tends to infinity. Since all
Iy, are in Ma, which is weakly compact, we have a subsequence that converges to pk.
Since N}, is a metrization of weak convergence on My, this p is indeed a solution to

Problem (5.6):

Ni(pse —m) = lim N (py, — )

— inf ).
NEHAlANNh(W 1)

To conclude this section, we show that it is always possible to construct an approximation
set A, € M(Q") with a control on the Hausdorff distance to My. Let M$, denote an

e-enlargement of My w.r.t. the Nj-norm, i.e.:
My = Upyemy{p € Ma, Np(p — pn) < €} (5.23)
We may define an approximation set AS, as follows:

AS = M(Q™) N M. (5.24)

n
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For sufficient large n, this set is non-empty and can be rewritten as

1< _

A = {u = Z;%, with p = (pi)1<i<n € 7’5} ; (5.25)
1=

where the parameterization set Py, depends on My and e. With this discretization of

My at hand, one can then apply (at least formally) the following projected gradient

descent algorithm:

0 € Ppc (p) v (p®)), with p© € Py, (5.26)

The following proposition summarizes the main approximation result:

Proposition 5.23. Assume that h is L-Lipschitz. Set ¢ = (@ + 1) ﬁ and A, =
A, then
Hy, (Ap, My) = O (Lnﬂ/d) _

Proof. By construction, A,, satisfies

sup inf  Np(pn — pun) < e
pHn€AR HNEMN

Let uxn be an arbitrary measure in Mpy. By inequality (5.12), there exists u, € M(Q")
such that Ny, (s, — pn) < €. Therefore p, also belongs to AS. This shows that

sup  inf Np(pn — pn) <e.
.U/NGMN U‘ne-An

O

The approximation process proposed (5.24) is non-constructive in the does not induce
any explicit formula for PS. Moreover, P, can be an arbitrary set and the projection
on P{ might not be implementable. We will provide constructive approximations for

specific measures spaces in Section 5.5.

5.5 Application to continuous line drawing

In this section, we concentrate on the continuous line drawing problem described in the
introduction. We first construct a set of admissible measures Mp that is a natural
representative of artistic continuous line drawings. The index T represents the time

spent to draw the picture. We then show that using this set in problem (5.6) ensures
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existence of a solution and weak convergence of the minimizers ;7. to any m € Ma. We
finish by designing a numerical algorithm to solve the problem and analyze its theoretical

guarantees.

5.5.1 Problem formalization

Let us assume that an artist draws a picture with a pencil. The trajectory of the pencil
tip can be defined as a parameterized curve p : [0,7] — €. The body, elbow, arm
and hand are subject to non-trivial constraints (Marteniuk et al., 1987). The curve p
should therefore belong to some admissible parameterized curves set denoted Pr. In this
paper, we simply assume that Pr contains curves with bounded first and second order
derivatives in L7([0,7T]). More precisely, we consider the following sets of admissible

curves:
1. Curves with bounded speed:
Py = {pe W0, 7)), p(0,T]) €, [l < r },

where o is a positive real.

2. Curves with bounded first and second-order derivatives:

2 .
Pp = {p e (W2>([0.71))%, p([0,T]) € 2, [[plloc < a1,
Illoe < a2},
where a1 and a9 are positive reals. This set models rather accurately kinematic

constraints that are met in vehicles. It is obviously a rough approximation of arm

constraints.

3. The proposed theory and algorithm apply to a more general setting. For instance
they cover the case of curves with derivatives up to an arbitrary order bounded in
L1 with ¢ € [1,00]. We let

Pt = {p e (Wma([0,T]))", p(0.T]) € 2,
vie {1, mb, [P, < oi}

where (;)i=1..m are positive reals. This case will be treated only in the numerical

experiments to illustrate the variety of results that can be obtained in applications.

Note that all above mentionned sets are convex. The convexity property will help deriving

efficient numerical procedures.
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In the rest of this section, we consider the following projection problem:

inf  Np(p—m), (5.27)

neM(Pp?)
with a special emphasis on the set M (73;” ,00) since it best describes standard kinematic
constraints. This problem basically consists of finding the “best” way to represent a

picture in a given amount of time 7.

5.5.2 Existence and consistency

We first provide existence results using the results derived in Section 5.3 for ¢ = co.

Theorem 5.24. For any m € N*, Problem (5.27) admits at least one solution in
M (P

Proof. From Proposition 5.8, it suffices to show that P7"™ is compact for the topology

of pointwise convergence.

Let (pn)nen be a sequence in P;'}’OO that converges pointwise to p. Since p,, is in W™ its
(m—1)-th derivative is Lipschitz continuous. By definition of P>, the p%mfl) are both
uniformly bounded by «,;,—1 and «a,,-Lipschitz, hence equicontinuous. Next, by Ascoli’s

theorem, up to taking a subsequence, p,(lmfl) uniformly converges to a continuous pm=1),

(%)

Integrating yields that pyf — p@ uniformly for all i < m — 1, so that Hp(i)Hoo < o

for i < m — 1. Finally, a limit of L-Lipschitz functions is also L-Lipschitz, so that
Hp(m) HOO < Q. Hence p € P7"™, ending the proof. O
Let us now turn to weak convergence.

Theorem 5.25. Let T' be an arbitrary positive real. Let pu € M (P}n’oo) denote any
solution of Problem (5.27). Then, for any Lipschilz kernel h € C(Q):

7/) Hr T—o00 L
i) Nu(pp —m) =0 (T‘mu%)_
Proof. Let us counsider a function w : [0, 1] — R such that:

e The m-th derivative is bounded by a,,, that is Hu(m) HOO < oy

e For all integers i € {1,...,m — 1}, endpoint values are zero, that is u()(0) =
u(1) = 0.
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e Start point is zero, that is u(0) = 0.

e Endpoint is positive, that is u(1) = C > 0.

Let z and y in €, such that ||z —y|2 = Cr™, and let 7., be the unit vector from x to y.
Then, for r small enough, the function s[z,y] : ¢ — & + Toyu(L) belongs to P>, with
all its first (m — 1) derivatives zero at its endpoints. The condition r small enough is for

controlling the norm of the i-th derivatives for i < m — 1, which scale as ™.

Now, let us split Q = [0,1]¢ in N¢ small cubes w;. We may order them such that each
w; is adjacent to the next cube w;yr1. We write x; for the center of w;. We now build

functions s € P;"> by concatenating paths from z; to x;11 and waiting times in ;:

0=t <...<t?

1
22—t = =
vt (NC) ’

; if t!
s(t):{x 1 4

S[l‘i, l’prl](t — t?) if tZZ

1 2 1 2
Sti Sti §ti+1§"'§tNd:T7

S -

VAN VAN
~ o+
A IA
SIS

SR

1
i+1

3=

under the condition T > Ty == (N —1) (Nic) ', that is to say that we have enough

time to loop through all the cube centers.

Let now m € Ma. We may choose t? - t} < Tr(w;) for all i. Then, we may couple 7
and syyr with c(z;,w;) = @ Since the small cubes have radius vd/N and the big

one has radius vd, we obtain:

VIt tha
Wl(ﬂ', S*'YT) ZT + \/g Z 7

< Y=
— 2N &
i i<Nd
dT —-T T
_ VAT Ty | T
2N T T

In particular, taking N = Tm(drl)—l, we find that Wy (/\/l (7377?’00) ,7r) =0 (T_ m<dr1>—1>,
hence (Jp M (P7%°) is weakly dense in Ma.

5.5.3 Numerical resolution

We now turn to the numerical resolution of problem (5.27). We first discretize the
problem. We set At := % and define discrete curves s as vectors of RV'?. We let
(i) € R? denote the curve location at discrete time i, corresponding to the continuous

time 7At.
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We define D; : RV¢ — RN4 the discrete first order derivative operator, as follows:

(Dls)(l) _At{ s(i)—S(i_l) ifiE{Q,...,N}.

In what follows, D; denotes a discretization of the derivative operator of order i. In the

numerical experiments, we set Dy = —DJ]D;.

We define Py"?, a discretized version of P;"¢, as follows:

Py = {s € RV such that Vi € {1,... N}, s(i) € Q, (5.28)
and Vj € {1,...,m}, || D;s|lq < o} (5.29)

N-d q
Here, ||-||, is defined by: ||z]|, = (Z Hxiug> for g € [1,+00) and |[oc = max |zi[|2.

The measures set M(P;"?) can be approximated by the set of N-point measures M(Py"?).
From Corollary 5.22, it suffices to control the Hausdorff distance Hyy, (M (P£"?), M(Px"?)),
to ensure that the solution of the discrete problem (5.6) with My = M(Py?) is a good
approximation of problem (5.27). Unfortunately, the control of this distance is rather
technical and falls beyond the scope of this paper for general m and ¢. In the following

proposition, we therefore limit ourselves to the case m = 1, ¢ = oc.

Proposition 5.26. Hy, (M(P;), M(Py™)) <

=i

Ole

Proof. 1. Let us show that  sup inf  Wi(p, i) < ~

PEM(PL) REM(Py ™)
Let p e M(P%’OO) and denote by p € P%JOO a parameterization such that p = p.y.

N-1
1
Define g = N Z 5p(%). Then a parameterization of i is defined by s(i) =
i=0

p (4L). Moreover, for i € {2,... N}, |(D1s)(i)| = é p (g) —p (“_NUT>| -

iT

Yoyt < 2
/(z‘NDTp() S At

iT
1 L

At

N . 1,00
/(Vil)T [p(t)| dt < a1. Therefore s € Py~
G=yr

Let us consider the transportation map coupling the curve arcs between times

(i —1)% and i% and the Diracs at p (i%). Then

N1 T
s < s [0 -s(i-0g )|
=1 (-1 F<t<iy
< 041£~
N
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2. Let us fix p € M (P]{;OO> and let s € P]i;oo such that s,y = pu. We set p(0) = s(1),

and:

- W for t€]0. %]
p(t)= s(i)+ (a7 — 1) (s(i+ 1) —s(i)fpr t € ]%’ (i+]\17)T]

iefl,...N—1}

Since s € QY and Q is convex, p([0,T]) C 2. Moreover, p is continuous and

piecewise differentiable. Finally, for i € {1,...,N—1} and t € } %, (H]\l,)T} , p(t) =

ﬁ (s(i+1) —s(i)) = Di(s)(i). Therefore, ||p|lsc < a1, ensuring that p € 77%’00.

With the same coupling as above, we have Wi(py7y, s.y) < al%, which ends the
proof.

To end up, let us describe precisely a solver for the following variational problem:

inf  Np(p—m). (5.30)
;LEM(P;JOO)

We let M* denote the set of minimizers and P* denote the associated set of parameter-

1zations.

Algorithm 3: A projection algorithm on M (7711400).

Input:

m: target measure.

- N: a number of discretization points.

- s ¢ P]b’ooz initial parameterized curve.

- H: a semi-algebraic function with Lipschitz continuous gradient.

nit: number of iterations.

Output:
- s an approximation of a curve in P*.
- p = (s(M)) v an approximation of an element of M*.
for 0 < k < nit do
- Compute n®) = V.J(s())

- Set skt = Ppie (s(k) — Tn(k))
N
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Remark 5.27. The implementation of Algorithm 3 requires computing the gradients
(5.21) and (5.22) and computing a projection on P]{,’OO. Both problems are actually

non trivial.

The naive approach to compute the gradient of F' consists of using the explicit formula
(5.21). This approach is feasible only for a small amount of points N (less than 1000)
since its complexity is O (N 2). In our numerical experiments, we therefore resort to fast
summation algorithms (Potts and Steidl, 2003; Keiner et al., 2009) commonly used in
particles simulation. This part of the numerical analysis is described in (Teuber et al.,

2011) and we do not discuss it in this paper.

The set PJ{,’OO and more generally the sets Py"? are convex for ¢ € [1, c0]. Projections can
be computed using first-order iterative algorithms for convex functions. In our numerical
experiments, we use accelerated proximal gradient descents on the dual problem (Beck
and Teboulle, 2009a; Nesterov, 2013; Weiss et al., 2009). A precise description is given
in (Chauffert et al., 2014b).

5.6 Results

To illustrate the results, we focus on the continuous line drawing problem discussed
throughout the paper. It is performed using Algorithm 3. In the following experiments,
we set H as the opposite of a smoothed L?-norm. This is similar to what was proposed

in the original halftoning papers in (Schmaltz et al., 2010; Teuber et al., 2011).

5.6.1 Projection onto P>

In this part, we limit ourselves to the projection onto P]{,’OO as studied in the previous
section. In Figure 5.3, we show the evolution of the curve s*) across iterations, for
different choices of s(©). After 30,000 iterations, the evolution seems to be stabilized.
The cost function during the 400 first iterations is depicted in Figure 5.4 for the three

different initializations.

In Figure 5.5, we show the projection of the famous Girl with a Pearl Earring painting,
after 10, 000 iterations. To really see the precision of the algorithm, we advise the reader
to blink the eyes or to take a printed version of the paper away. From a close distance,

the curves or points are visible. From a long distance, only the painting appears.
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5.6.2 Projection onto Py’

We now counsider projections onto more general measure spaces, such as M (77;3 ’q), in
order to show that different measures spaces can be considered. In Fig. 5.6, we show
different behaviours for different m € {1,2} and ¢ € {1,2,00}. We also show a large

scale example with a picture of Marylin Monroe in Figure 5.7.

5.7 Conclusion

We analyzed the basic properties of a variational problem to project a target Radon
measure m on arbitrary measures sets Mpy. We then proposed a numerical algorithm to
find approximate solutions of this problem and gave several guarantees. An important
application covered by this algorithm is the projection on the set of N-point measures,
which is often called quantization and appears in many different areas such as finance,
imaging, biology,... To the best of our knowledge, the extension to arbitrary measures set
is new, and opens many interesting application perspectives. As examples in imaging,
let us mention open topics such as the detection of singularities (Aubert et al., 2005)
(e.g. curves in 3D images) and sparse spike deconvolution in dimension d (Duval and
Peyré, 2013).

To finish, let us mention an important open question. We provided necessary and
sufficient conditions on the sequence (My)nyen for the sequence of global minimizers
(1) Nen to weakly converge to wr. In practice, finding the global minimizer is impossible
and we can only expect finding critical points. One may therefore wonder whether all
sequences of critical points weakly converge to m. An interesting perspective to answer

this question is the use of mean-filed limits (Fornasier et al., 2013).
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FIGURE 5.3: Projection of the lion image onto PI{,’OO with N = 8,000. The figure
depicts s(*) with several values of the iterate k in Algorithm 3.
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FIGURE 5.4: Decay of the cost function J for the three experiments depicted in
Fig. 5.3. We represent log,,(J(k) — m) for k < 400 where m is the mimimal value of .J
during the first 30,000 iterations.
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FIGURE 5.5: Projection of Meisje met de Parel, Vermeer 1665, onto P;,’OO with NV =
150,000. The figure depicts s(19:990) obtained with Algorithm 3.
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FIGURE 5.6: Projection of the lion image onto Py"? with N = 8,000, and m € {1, 2}
and ¢ € {1,2,00}.
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Chapter 6

On the generation of sampling
schemes for magnetic resonance

1maging

Magnetic resonance imaging (MRI) is probably one of the most successful application
fields of compressed sensing. Despite recent advances, there is still a large discrepancy
between theories and actual applications. Overall, many important questions related
to sampling theory remain open. In this paper, we attack one of them: given a set of
sampling constraints (e.g. sampling Fourier coefficients along smooth curves), how to
optimally design a sampling pattern? We first derive three key aspects that should be
carefully designed by inspecting the literature, namely admissibility, limit of the empir-
ical measure and coverage speed. To fulfill them jointly, we then propose an original
approach which consists of projecting a probability distribution onto a set of admissible
measures. The proposed algorithm allows to handle arbitrary constraints and then auto-
matically generates efficient sampling patterns. In MRI, the images reconstructed with
the proposed approach have a significantly higher SNR (2-3 dB) than those reconstructed
using more standard sampling patterns (e.g. radial, spiral), both for mid and very high

resolution imaging.

6.1 Introduction

Magnetic resonance imaging (MRI) is one of the flagship applications of compressed
sensing (CS). The combination of CS and MRI initially appeared in (Lustig et al., 2007),
very shortly after the seminal CS papers (Candés and Tao, 2006; Candeés et al., 2006b;

Donoho, 2006). However, the way CS was initially implemented on real scanners strongly

147
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departed from theory. Despite having no solid theoretical foundations, it proved useful in

practice and triggered a massive interest both in the MRI and mathematics communities.

Since then, many researchers have tried improving the way CS-MRI is implemented.

These attempts can be divided into two distinct tracks:

e The first one consists of improving the incoherence of the sensing basis by using
techniques termed phase scrambling or spread spectrum and originally proposed
by (Haldar et al., 2011; Puy et al., 2012a). This can be implemented using specific
radio-frequency pulses (Haldar et al., 2011) or shim-coils (Puy et al., 2012a). A few
available theories support these techniques (Romberg, 2009; Puy et al., 2012b).

e The second one consists of keeping the sensing basis unchanged: images are ac-
quired by collecting Fourier samples and assuming sparsity in a wavelet basis. The
problem then reformulates as the design of new sampling patterns. Examples rang-
ing in this second category include patterns made of parallel lines (Lustig et al.,
2007), radial lines (Winkelmann et al., 2007), spirals (Nishimura et al., 1995), noisy
spirals (Lustig et al., 2005), Poisson disc sampling (Vasanawala et al., 2011), ... De-
spite recent progresses, solid theoretical foundations for those approaches are still

lacking.

To the best of our knowledge, and even though no report formally compared both ap-
proaches, the second is adopted more widely and provides a more efficient under-sampling
and thus a faster acquisition in practice. A few numerical simulations to illustrate this
fact were recently proposed in (Roman et al., 2014). In this paper, we will therefore

concentrate on the second approach.

Sampling patterns proposed in the literature may seem somewhat arbitrary. For instance,
even though existing theories recommand using completely random sampling patterns,
it is not clear that adding random perturbations to a spiral will improve its practical

efficiency.

Contributions. The first contribution of this paper is to provide a review of existing
theoretical CS results in Section 6.3. This review permits to establish general principles

for designing efficient sampling patterns.

The second and most significant contribution is to provide a constructive algorithm
that generates feasible sampling patterns complying with the proposed principles in
Sections 6.4-6.5. The main idea is to project a probability distribution onto a space

of admissible measures. The reader can look at the result on Figure 6.1 to get an idea
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FIGURE 6.1: A glance at our contribution: our algorithm generates a sampling pattern
complying with the MRI scanner constraints in which sampling locations consist of a
piece of text, namely How to sample me efficiently?.

of what the algorithm does: given an initial distribution (here a piece of text), the
algorithm finds a sampling pattern complying with physical constraints that best fits the
distribution. A few experiments led on low and high resolution images suggest that the

proposed sampling patterns significantly outperform more traditional approaches.

Related works. A few works in the literature address the problem of optimizing the

acquisition space coverage using computational techniques.

The works (Mir et al., 2004; Spiniak et al., 2005) propose an algorithm to cover the
whole k-space as fast as possible by using techniques used for missile guidance. This
idea departs from the proposed one since the objective of these authors was to satisfy

Shannon’s sampling theorem, meaning that the samples should cover the space uniformly.

In (Kumar Anand et al., 2008; Curtis and Anand, 2008), the authors have proposed to
synthetize random feasible trajectories using optimization techniques. Their idea was
to generate random control points uniformly distributed over the surface of a sphere.
They then searched for a feasible trajectory that passed close to them using second order

cone programming. Multiple random trajectories were then generated this way and a
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genetic algorithm was involved to select the most relevant ones so as to ensure a uniform
k-space coverage. This idea does not stem from a clear sampling theory and is based on

randomness, contrarily to the approach proposed in our paper.

Finally, a few authors (Seeger et al., 2010; Ravishankar and Bresler, 2011a; Liu et al.,
2012) have borrowed ideas from statistical design for generating efficient sampling tra-
jectories. In (Seeger et al., 2010), the key point is to fix a set of feasible trajectories (e.g.
pieces of spirals) and to select them iteratively by picking the one that brings the largest
amount of information at each step. Hence, finding the most meaningful trajectory
becomes computationnaly intensive and hardly compatible with a real-time acquisition.
The main contribution of (Ravishankar and Bresler, 2011a; Liu et al., 2012) is to propose
alternative approaches to reduce the computational burden, by working on training im-
ages. These adaptive approaches suffer from a few drawbacks. First, the whole versatility
of the MRI scanner is not exploited since fixed trajectories are imposed. Our formalism
does not impose such a restriction. Second, even though adaptivity to the sampled image
may seem appealing at the first glance, it still seems unclear whether this learning step
is really helpful (Arias-Castro et al., 2013). Last but not least, these approaches strongly
depart from existing sampling theories, while our contribution, though heuristic, is still

motivated by solid and very recently established theories.

Outline of the paper. We first briefly describe the way images are acquired and
reconstructed in MRI in Section 6.2. We then propose a short review of theoretical
compressed sensing results in Section 6.3. Section 6.4 describes the main idea of the
paper: we explain how the design of sampling patterns can be formulated as a measure
projection problem. We then develop a numerical algorithm to solve this projection
problem in Section 6.5. Finally, numerical experiments in a retrospective CS framework

are conducted in Section 6.6 and conclusions are drawn in Section 6.7.

6.2 Acquisition and reconstruction in MRI

In this section, we first recall how images are sampled in MRI. We then describe stan-
dard reconstruction methods based on least squares or £!-norm reconstructions using

regridding techniques or non-uniform fast Fourier transforms.

6.2.1 Acquisition in MRI

In MRI, images are usually sampled in the so-called k-space domain, which corresponds

to the 2D or 3D Fourier domain (Twieg, 1983). The acquisition domain can be slightly
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different (i) in the parallel MRI context where spatial sensitivity encoding associated with
the multiple channel coil introduces a convolution in k-space (Sodickson and Manning,
1997; Pruessmann et al., 1999) or (ii) when shim coils (e.g. phase scrambling/spread
spectrum) are involved (Maudsley, 1988; Haldar et al., 2011; Puy et al., 2012a). In this
paper, we focus on the Fourier domain, but the proposed ideas could be extended to

these other settings.

The samples lie along parameterized curves s : [0,T] — RY, where d € {2,3} denotes
the image dimensions. The i-th coordinate of s is denoted s;. Let u : R? — C denote
a d dimensional image and 4 be its Fourier transform. Given an image u, a curve
5:[0,T] — R% and a sampling period At, the image u shall be reconstructed from the

following dataset:

£ = {a(s(jAt)),O <j< {ATtJ } . (6.1)

In what follows, the scalar m = LA%J + 1 denotes the total number of collected samples.
Vector y with components y; = 4(s(jAt)) denotes the vector of measurements. In this
paper, we neglect typical distortions occurring in MRI such as noise, geometric distor-
tions, signal loss at tissue/air interfaces or off-resonance effects which would strongly
affect the dataset in Equation (6.1). We also neglect imprecisions in the trajectory due
to Eddy currents that induce gradient errors (Brodsky et al., 2009). These are very

important features that we plan to consider in forthcoming works.

The gradient waveform associated with a curve s is defined by g(t) = v~ 15(¢), where
v denotes the gyro-magnetic ratio (Hargreaves et al., 2004). The gradient waveform
is obtained by supplying electric power to gradient coils. This electric current has a
bounded amplitude and cannot vary too rapidly (slew rate). Mathematically, these

constraints read:

where || - || denotes either the ¢*°-norm defined by

= (T
11l fgf‘gdt:;g%]’fl()"

or the ¢°°2-norm defined by

d 3
[ flloc,2 :== sup ) .
te[0,7) ;

Additional affine constraints could be added depending on the targeted application (e.g.
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structural or functional imaging) and the chronogram of the sequence (i.e. the interplay
between the orthogonal gradients). For instance, s usually starts from the k-space center,
ie. s(0) = 0. Multiple sampling trajectories (or interleaves) starting from the origin
can be used to improve the signal-to-noise ratio: this typically leads to additional linear
constraints of type s(k-TR) = 0 for all k € N, where T'R is the time of repetition. Overall
these additional constraints can be summarized under the compact form A(s) = b where
A is a linear mapping and b is a fixed vector. We refer to (Hargreaves et al., 2004;

Chauffert et al., 2014b) for a more thorough discussion on these issues.

A sampling trajectory s : [0, 7] — R? will be said admissible if it belongs to the set:

Spi={s € ([0, 7)), 3| < . 3] < 8, A(s) = b} (6.2)

In addition to the above mentioned kinematics constraints, important considerations
regarding the MR signal acquisition have to be taken into account. The MR signal mea-
sures the amount of transversal relaxation, which exponentially decays as exp(—t/T3),
where Ty is the transverse relaxation parameter. At the same time, the longitudinal
relaxation begins to recover at a speed proportional to (1 —exp(—t/T1)) where T3 is the
longitudinal relaxation time. Both 77 and 7% are tissue specific. Two acquisition param-
eters (TE,TR) permit to generate different weighted images (see (Brown et al., 2014)
for details) depending on the choice for this pair. The echo-time T'E corresponds to the
timing where the echo is generated, hence where the signal level is maximal whereas
the TR parameter reflects the duration between two consecutive RF pulses. Here, we
will consider that the MR signal is available for about 200 ms. Therefore, the sampling
time along one 2D trajectory should not exceed 200 ms. This requires choosing a long
TFE of about 110 ms around which the readout of the signal will be performed by any
trajectory (eg, from 10 ms to 210 ms). From a physical point of view, our numerical
experiments will target Th-weighted (long TFE) imaging'. Hence, TR should be chosen
long too to unweight the contrast image from any longitudinal relaxation component.
This constraint is not stringent in practice since 3D imaging is performed by iterating
over slices. Hence, the T'R value for the whole volume corresponds to the number of

slices multiplied by 2D acquisition time.

The last supplementary constraint is the maximal number of samples that can be stored
in the buffer of the analogic-to-digital converter. This buffer length may depend on the

imaging device but here we set this constraint to 8192 samples per readout.

'To be more accurate, T5-weighted are obtained when involving gradient echo sequences.
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6.2.2 Reconstruction in MRI

Reconstruction of MRI images from k-space measurements & is an involved problem that
has been studied thoroughly. The main technical difficulties to solve it are (i) the fact
that k-space locations s(jAt) do not lie on a Cartesian grid, (ii) the ill-posedness of
the problem, (iii) the large image dimensions and (iv) an inaccurate knowledge of the
acquisition operator owing to magnetic field inhomogeneities, subject movements,... The
aim of this paragraph is to recall the main techniques developed so far to solve problems
(i), (ii) and (iii). Altough of primary importance for implementing new sampling designs

on scanners, we do not discuss problem (iv) since it is beyond the scope of this paper.

6.2.2.1 Regridding or nonuniform fast Fourier transforms

In practice, the locations of Fourier samples s(j - At) seldom lie on a Cartesian grid.
Standard discrete Fourier transforms can therefore not be used. To handle this situation,

two strategies have been devised: regridding or non-uniform Fourier transforms.

Regridding techniques (see eg (Jackson et al., 1991; O’sullivan, 1985)) are probably the
most widespread techniques. They consist of interpolating the information lying on
available arbitrary locations to positions lying on a Cartesian grid. The basic idea is to
convolve the non-uniform Fourier samples with a regularizing kernel (e.g. Kaiser-Bessel)

and to resample the result.

In this paper we will use a less common approach based on Non-Uniform Fast Fourier
transforms (NUFFT) (Knopp et al., 2007). This approach was actually shown to be
equivalent to regridding techniques with a Gaussian kernel (Sarty et al., 2001). It presents
the advantage of coming with good parallel implementations on multi-core or GPU ar-

chitectures (Keiner et al., 2009; Freiberger et al., 2013).

6.2.2.2 Regularization

In cases where the whole Fourier domain is sampled on a sufficiently fine Cartesian grid,
the reconstruction problem is well posed, in the sense that there exists a unique image
that explains the measurements. Moreover, this image can be reconstructed in a stable
manner by simply inverting the sensing matrix. This can be done using the fast Fourier

transform.

In contrast, when the samples are not located on a Cartesian grid and/or if each slice of
the image to be reconstructed contains more pixels than the number of collected samples,

the problem becomes ill-posed and a direct inversion of the sensing matrix is impossible.
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To solve it, various strategies have been developed. Some of them are briefly discussed

hereafter.

Regridding and inversion. One of the most standard techniques to reconstruct MRI
images consists of first regridding the non-uniform samples on a Cartesian grid and per-
forming an inverse Fast Fourier transform to recover an image. This technique provides
good results when the samples are sufficiently dense. It performs very poorly for strongly

undersampled data.

Reconstruction using least squares. To regularize the problem, another standard
technique consists of using least squares or Tikhonov regularization. Let S : C" — C™
denote the linear operator that maps the discrete image to its Fourier transform values
at locations s(j - At). Matrix-vector products with this operator can be computed us-
ing regridding techniques or NUFFT. The least squares formulation consists of finding
the minimizer of ||[Su — y||2, where u € C" denotes the discrete image to reconstruct.
Tikhonov regularization is then incorporated for minimizing the following penalized cri-
terion:

win ~[Su— y[3 + > [Dul?

ueRn» 2 2
where D is a matrix that defines the regularizer (e.g. identity or finite differences) and

A € Ry is the regularization parameter.

Both the least squares and Tikhonov regularization can be solved very efficiently using
simple (preconditioned) conjugate gradient descents. This feature explains their suc-
cess. It is however now well known that better results can be obtained using non-linear

programming.

Reconstruction using /'-norms. The theory of compressed sensing triggered a mas-
sive interest in the use of the sparsity promoting ¢/'-norm regularization. We will review
some of its theoretical guarantees in Section 6.3. The idea is to decompose the image
u on a basis or a frame ¥ € RP*™ where p > n denotes the number of atoms in the
frame. In matrix notation, the decomposition reads u = ¥x where x € RP denotes the
coeflicients of u in the frame. For a basis, p = n and the decomposition x is unique.
For a redundant frame (p > n) there is an infinity of decompositions in a frame. It
is well known that many bases or frames such as wavelets, curvelets or shearlets allow
compressing the information present in u, meaning that among all decompositions, there
exists at least one of kind u = ¥x such that most of the energy of x is concentrated in

a small number of nonzero coefficients.
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This observation motivated the introduction of the basis pursuit algorithm that consists
of solving:

min  ||x||;. (6.3)
xERP,STx=y

The use of the £!-norm is often justified as a convex relaxation of the £-counting function,
that counts the number of nonzero components in x. When the data y is degraded by
noise, the exact constraint S¥x = y is relaxed and transformed into a penalized data
consistency term. Then, the following quadratic programming problem has to be solved
instead:

. A )
min [|x[l; + 5 S¥x - yll2. (6.4)

Scalar A > 0 is a parameter that balances the quadratic data consistency term and the
regularization term. In this paper, we will mainly use this last formulation, since to the
best of our knowledge, it is the one associated with the strongest theoretical reconstruc-
tion guarantees. In all the paper, ¥ is defined as an orthogonal wavelet transform with

Daubechies wavelets and 4 vanishing moments. Therefore p = n.

Problem (6.4) can be solved by using various well documented techniques. In this paper
we will use an accelerated proximal gradient descent algorithm (aka FISTA) (Nesterov,
1983; Beck and Teboulle, 2009b).

More advanced reconstruction techniques. Finally, let us acknowledge that the
most efficient reconstruction strategies do not rely on a simple ¢'-minimization as de-
scribed in the last paragraph. More advanced regularizers are usually more effective. One
possibility is to use analysis prior as regularizers such as total variation (Block et al.,
2007). One of the most popular approaches currently consists of combining analysis and

synthesis priors. The idea is to use an objective function of type:
: A 2
min 7[|D®x|[; + [[x[1 + 5 [|S¥x — ylf3, (6.5)
xERP 2

where D is a matrix that may represent differential or time-frequency operators (Ma
et al., 2008; Boyer et al., 2012). Another recent trend consists of learning the repre-
sentation dictionary (i.e. W) rather than fixing it in advance (Ravishankar and Bresler,
2011b).

Overall, these methods provide more competitive alternatives to the simple ¢!-reconstruction
method (6.4). We do not use them in this paper for three reasons. First, solving the
optimization problems arising with such approaches is usually more computationally
demanding. Second, it is often hard to set the additional regularization parameters
properly, making numerical tests much more complicated. Finally, the most efficient

image reconstructors have so far few theoretical reconstruction guarantees.



156 Chapter 6 On the generation of sampling schemes for MRI

6.2.2.3 Wavelet crime

In this paper, we consider a discrete problem, meaning that we evaluate Fourier transform

values of a discrete signal.

On a real MRI scanner, the acquired data come from a continuous signal which is dis-
cretized by the analogous-to-digital converter. Many authors commit what is commonly
referred to as the wavelet crime: one implicitely assumes that the signal is discrete
whereas it is actually continuous (see (Strang and Nguyen, 1996)). This usually leads to
severe ringing artifacts in the reconstruction. Solutions to this problem have been pro-
posed in many works. We refer to eg (Guerquin-Kern et al., 2011; Adcock and Hansen,

2011) for a more thorough description of these methods.

6.2.2.4 Parallelization

One of the main difficulties in MRI image reconstruction lies in the high dimensionality
of images. This usually leads to very long computing times that may be incompatible
with clinical routine. Many authors recently made use of the progresses in computers

and multicore programming to accelerate their reconstructions.

Some are based on standard multi-core architectures using e.g. OpenMP (Murphy et al.,
2012; Chang and Ji, 2010). Others are based on the more recent GPU parallelization
(Smith et al., 2012).

In this paper, all the numerical experiments are based on the NUFFT3 package delivered
by Chemnitz university (Keiner et al., 2009). This library is natively parallel.

6.3 Theoretical foundations of variable density sampling

In this section, we briefly review the existing theoretical CS results. The conclusions of
this section motivate the main contribution of this work: the design of undersampling

patterns by measure projection.

6.3.1 The first compressed sensing results

Let us first describe the compressed sensing theory as it appeared in the seminal pa-

per (Candeés et al., 2006b) and more recently in (Candés and Plan, 2011). The authors
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consider an orthogonal matrix

They propose to construct a random sensing matrix as:

*
ay,
A= |,
aj
where the integers Ji € {1,...,n} are i.i.d. uniform random variables.

Knowing that y = Ax the authors propose to recover x by solving Problem (6.3). Let

X = argmin |x||;.
XERP Ax=y

Their main result in the noiseless case reads as follows:

Theorem 6.1. Assume thal x is s-sparse, i.e. thatl it contains al most s nonzero com-

ponents. If the number of measurements m satisfies:

m > Cs <n max ||ak|<2>o> log (ﬁ) )
€

1<k<n

where C' is a universal constant, then X = x with probability 1 — €.

Moreover, the authors show that if the measurements are noisy, i.e. y = Ax + b, where
b is a random perturbation, then the solution to the relaxed Problem (6.4) also provides

stable reconstruction results.

The coherence k(Ag) = n max |lax|/%, belongs to the interval [1,n]. In particular,
SRS

k(F) = 1 and k(I;) = n. In the favorable case of a Fourier transform, this theorem

indicates that only slog (%) measurements are enough to perfectly recover an arbitrary

s-sparse signal.

Even though this type of theorem got a huge impact in the literature, it is not applicable
to MRI. The natural transform Ag in MRI reads Ay = F*W, i.e. the product of Fourier
and wavelet transforms. In that case, one can show that xK(Ap) = O(n). Theorem 6.1 is

thus irrelevant in such a setting.
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6.3.2 The emergence of variable density sampling

In most practical applications, the transforms A are coherent. This is the case in MRI
and more generally in Fourier or space imaging. A simple technique to break the so-called
“coherence barrier” consists of drawing the coherent samples more often than the ones
with low coherence (Puy et al., 2011; Krahmer and Ward, 2014; Chauffert et al., 2014a).
Let us clarify this idea. Let w € A, denote the distribution of the i.i.d. random variables
Ji, 1.e. P(Jy =1) = m;. The following theorem (Chauffert et al., 2014a) justifies the use

of variable density sampling.

Theorem 6.2. Assume that x is s-sparse, i.e. that it contains at most s nonzero com-

ponents. Set
a2

T = —=n— 5
2= Nz

If the number of measurements satisfies

n

m>Cs | Y llayl% | tog ().

J=1

where C' is a universal constant, then X = x with probability 1 — €.

One can show that in the case of MRI, }°7_, ||a; |2, = O(log(n)). It is therefore possible
to reconstruct exactly an s-sparse image with O(slog(n)?) samples. Let us mention that
variable density sampling was the basis for the seminal paper on compressed sensing
MRI (Lustig et al., 2007). Theorem 6.2 is a first argument that supports that type of

technique.

6.3.3 Variable density sampling with structured sparsity

Theorem 6.2 is quite attractive from a theoretical point of view. A simple analysis
however suggests that it is still insufficient to justify the use of compressed sensing in
MRI. First, the constant appearing in the O is large. This may only be an artifact of
the proofs, but it is currently unknown how much it can be lowered. More importantly,
the term log(n)? that appears when using the Fourier-Wavelet pair cannot be improved
by using only variable density sampling arguments. Most often, the logarithmic terms
are disregarded and considered as negligible. It is however important to look at them
carefully, for instance log(1024 x 1024)? = 192. A method needing 192s samples to

reconstruct a 1024 x 1024 image is of little practical interest.
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A recent advance that seems very promising is proposed in (Adcock et al., 2013). The
authors show that it is possible to exploit a structured sparsity to obtain better recon-
struction guarantees. In the case of imaging, structured sparsity may mean that the
wavelet subbands become sparser as the scale increases. Let us provide a typical result
from this active field of research. This result is quite similar to (Adcock et al., 2013) and

comes from a recent preprint (Boyer et al., 2015b).

Let (24)o<j<s denote the wavelet subbands with J the number of decomposition levels.
Assume that x is supported on S C {1,...,n} with |S N Q;| = s;. This means that
x restricted to the subband (); is sj-sparse. This model is called sparsity by levels in

(Adcock et al., 2013). In such a setting, we can prove the following theorem.

Theorem 6.3. Assume that matriz Ag is the product of the Fourier and Haar Wavelet
matrices. Let j(k) denote the scale of index k, i.e. j(k)=j if k € Q;. Set

9~ (k) Zg:o 2= lik)—rl/2
- 2!

Tk

J J
with 7:222_|j_p|/23p.

7=0 p=0

Set
m > C~ylog(s)log <ﬁ> (6.6)
€

where C' is a universal constant.

Under the previous sparsity-by-level hypothesis X = x with probability 1 — €.

Note that contrarily to previous results, the drawing probability 7 in Theorem 6.3 ex-
plicitly depends on the sparsity structure. The number of measurements in Theorem 6.3
is always lower than that of Theorem 6.2, but the gain once again depends on the signal
support. At the price of extra technicalities (the weak-balancing property in (Adcock
et al., 2013)), the term log(s) in Equation (6.6) can also be discarded.

6.3.4 Variable density sampling with structured acquisition

Another element that was not considered in the seminal works on compressed sensing is
structured acquisition. In practice, sampling isolated measurements is not practical or
even feasible. In MRI, radio-interferometry, X-ray tomography and many other systems,
the samples have to lie on particular shapes or curves imposed by the physics of acquisi-
tion. The vast majority of compressed sampling schemes are based on heuristic sampling
patterns such as radial lines (Lauterbur et al., 1973; Winkelmann et al., 2007), spirals

(Spielman et al., 1995), noisy spirals (Vasanawala et al., 2011) or other exotic shapes.
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Even though they often perform well, until very recently there were missing theoretical

results that allow to justify their use in practice.

In the spirit of traditional Shannon’s sampling theorem, the papers (Unnikrishnan and
Vetterli, 2013; Grochenig et al., 2014) propose theoretical guarantees for the reconstruc-
tion of bandlimited functions from sets of measurements along lines or curves. These

results usually lead to sampling patterns that span the acquisition space uniformly.

Concomitantly to these developments, we have proposed a few results in (Bigot et al.,
2013; Chauffert et al., 2014a; Boyer et al., 2015b) to explain the success of structured
acquisitions by using sparsity assumptions on the signal to be reconstructed. These
results promoted variable density sampling strategies. In (Bigot et al., 2013; Boyer et al.,
2015b), theoretical guarantees were derived for block sampling strategies: instead of
probing isolated measurements, fixed groups of measurements are acquired, irrespective
of the structured sparsity assumptions. Still in these references, it is shown that only

specific sparsity patterns that depend on the acquisition constraints can be recovered.

In (Chauffert et al., 2014a), we proposed to sample signals using generic stochastic
processes. The conclusions of this work actually define the starting point of the present
paper. We first gave a mathematical definition of variable density samplers as sequences
of stochastic processes with a prescribed limit empirical measure, termed density. We
also showed through mathematical arguments and experimental validation that the key

features characterizing the efficiency of a variable density sampler are:

i) The density: the stochastic processes should cover the space non-uniformly accord-

ing to a certain density.

ii) The coverage speed: a sampler will be efficient only if it covers the space fast enough.
More precisely, we showed that the mixing time should be as low as possible. The
mixing time characterizes the speed at which the empirical measure converges to

its limit.

Since most readers may not be familiar with these concepts, we illustrate them in Figure
6.2. In this Figure, we constructed three different variable density samplers with a density
7 illustrated on Figure 6.2 (a). This density was defined as suggested by Theorem 6.2 by
setting 7y X ||ak||oo, where ay is the k-th row of the Fourier-Wavelet matrix A = F*¥.
The wavelet transforms was defined using Daubechies 4 filters. The sampling schemes in
Figure 6.2 (b,c,d) all cover the 256 x 256 grid non uniformly with 20% measurements.
For the sampling patterns (b) and (d), the samples density in a given region of space

looks like 7r. It is also the same for (c¢) with a little bit of imagination. This property of
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non uniform coverage is captured by the sampler’s density (more precisely, the limit of

the empirical measure), i.e. feature i).

It is pretty intuitive when looking at (b,c,d) that they are likely to have different effi-
ciencies. The samples in Figure 6.2(b) cover the space quite uniformly locally, while the
samplers in Figure 6.2(c)-(d) leave large portions of the space unexplored. Clearly, this
lack of information might result in unsatisfactory reconstruction results. This feature is
captured by the notion of coverage speed, i.e. feature ii). Let us mention that the so-
called poisson disc sampling (Bridson, 2007; Murphy et al., 2012), which is quite popular
in prospective compressed sensing MRI, is also based on the idea of covering the k-space

as fast as possible.

6.4 Generation of sampling schemes by projection

In this section, we describe the main idea of this paper. We propose a general principle

to construct samplers that comply with the three following rules:

o Admissibility: the sampler should be feasible, and therefore belong to a given set.
For instance in the case of MRI, it can be a set of straight lines or the set of curves
defined in Equation (6.2).

e Density: as mentioned earlier, a sampler should approximate a given density 7.

o Coverage speed: the sampler should cover the space as fast as possible.

This problem is probably more complex than it looks at first sight. In this section we will
first recall the notion of pushforward measure that is crucial to establish our algorithm.

We then present its overall principle.

Let us mention that this idea, the associated algorithm and some of its theoretical guar-
antees were presented in more detail in our recent preprint (Chauffert et al., 2015a) for

a completely different purpose, namely image stippling or continuous line drawing.

6.4.1 Pushforward measures

As can be seen in Figure 6.2, the density (a) is somehow similar to the sampling schemes
(b, ¢ and d). To make this statement more accurate, we resort to measure theory. Let
us introduce a few definitions. Here, we work on the space Q = [0,1]? where d = 2

denotes the space dimension. Extensions to other dimensions are straightforward. We
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equip 2 with the Borel algebra B. Let (X, X) be a measurable space, f : X —  denote a
measurable mapping and p : X — [0, +00] denote a measure. The pushforward measure

of p is denoted v defined by
v(B) = fup(B) = p(f~1(B)), VBEB.

The function f is called parameterization of v. Note that if y is a probability measure,
then v is also a probability measure. Let us now illustrate this concept with two concrete

examples.

Atomic measures. The set of m-points in Figure 6.2 (b) can be ordered and parame-
terized as a function f: {1,...,m} — Q, where f(i) = p; denotes the i-th point.
Set p as the normalized counting measure defined for any set I C {1,...,m} by
u(l) = % Let B € B, then f~1(B) is the set of indices of points in B. The

pushforward of p is therefore an atomic measure defined by

Measures supported on curves. Let s : [0,7] — € denote a parameterized curve.
Set p as the normalized Lebesgue measure on [0,7] defined for any interval I C
[0,T] by u(I) = % Then v(B) = s,u(B) measures the relative time spent by the

curve s in the set B.

Now, let P denote a set of admissible parameterizations. We let M(P) the set of push-

forward measures associated with elements of P:
M(P)={v = fiu, f€P}.

Depending on the context, p will be either the normalized counting measure or the
normalized Lebesgue measure. Hereafter, we will be particularly interested in exploring

3 different sets P which are particularly relevant in MRI.
Isolated points. The set of sums of m Dirac delta functions is:

M(Q™) = {y - ;iapi, pi € Q} . (6.7)
=1

This case is not feasible or useful in MRI, but it is commonly used in simulations.

It will therefore serve as a reference.
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Admissible curves for MRI. It corresponds to M(Sr), where St is defined by Equa-
tion (6.2). This case is the one that permits to exploit the full sampling potential
in MRI.

Lines of variable length. Finally, we propose to use N lines with variable lengths (or

crossed with variable speed at constant time). To this end, we define:
L={X:[0,1] = Q, Iz, z2) € V%, A(t) = (1 — t)x1 + tao, Vt € [0,1]}.

The associated set of measures is defined by:

N

1

M(ﬁN) = {V = N Z;(/\i)*u, A\ € ﬁ} s (68)
1=

where p is the Lebesgue measure on [0, 1]. This set of measures offers more versatil-

ity than the previous one and is quite simple to implement too. In this description,

we implicitly assume that lines of different lengths are traversed at different speeds

since the traversal time is fixed to 1.

6.4.2 Measuring distances between measures

Pushforward measures allow us to map a sampling pattern to the space of probability
measures Ma. The target distribution 7 also belongs to Ma. This mapping therefore
enables to perform quantitative comparisons by defining distances on Ma. Various dis-
tances exist to compare probability measures (e.g. total variation, Wasserstein distance,
...). In this work, motivated by our previous results in (Chauffert et al., 2015a), we
propose to construct a distance as follows. Let h :  — R denote a continuous function

with a Fourier series that does not vanish. The following mapping:
dist(m,v) = ||hx (7 — v)||3 (6.9)

defines a distance (or metric) on Ma. Moreover, we showed in (Chauffert et al., 2015a)
that it metrizes the weak convergence. Therefore, if 7 and v are sufficiently weakly close,

their distance will be small.

This measure is interesting numerically for at least two reasons. First, it has a simple
direct expression compared to more standard tools such as the Wasserstein distance.
Second, it is quadratic and this property will be exploited intensively in the numerical

algorithms.
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6.4.3 Design of sampling scheme as a projection problem

The distance on Ma being defined, we can construct a sampler by solving the following
variational problem:

in_dist 6.10
in dis (m,v) (6.10)

where P is the set of admissible parameterizations. In other words, we are looking for
the admissible measure v* that is the closest to the target measure m. This is therefore

a projection problem.

Let us mention that the mapping v +— dist(m, v) is a nice convex and smooth function.
However, for most parameterization sets P, the associated measure set M(P) is highly
nonconvex. This makes the resolution of Problem (6.10) very involved. In fact, in the
“simple case” P = Q™ Problem (6.10) corresponds to Smale’s 7th problem to solve for

the XXIst century (Smale, 1998).

6.5 Numerical implementation

In this section, we describe a numerical algorithm to solve Problem (6.10). Starting from

an initial user provided sampling pattern, the algorithm iteratively minimizes (6.9).

6.5.1 The attraction-repulsion formulation

In order to numerically solve Problem (6.9), we need to discretize it. It was shown in
(Chauffert et al., 2015a) that any measure set M(P) can be approximated by a subset
of p-point measures N, C M(QP) with an arbitrary precision. Precisely, it is possible to

control their Hausdorff distance defined by:

Haist (Np, M(P)) = max | sup inf dist(u,7), sup inf dist(p,7) | .
t(Np, M(P)) (WGNI,NEM(P) ( );LEM(P)”GNP (1, )

Moreover, the set A, can always be written as

12

Np: {lu:pz&qm forq:(ql)1§l§p€ Qp}a
i=1

where the parameterization set 9, depends on P. The abstract definition of Q, proposed

in (Chauffert et al., 2015a) is not constructive. Explicit constructions for the parama-

terizations considered hereafter are provided in the next section. Once an approximate
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space of parameterizations Q,, is constructed, Problem (6.9) can be replaced by

1
min 5 s (v = )3, (6.11)

where N, = M(Q,) is a suitable approximation of M(P). Then, by developing the

L?-norm, we may rewrite Problem (6.11) as follows:

' 1 P p p
min 52> H )= | He — a)ino). (6.12)

=1

J1(q) J2(q)

where H is defined in the Fourier domain by H(£) = [h|2(¢) for all ¢ € Z2. 1In this
paper, we consider a kernel H defined by H(x) = —||z||2. It is rather easy to check that
this kernel has a non-negative Fourier series and that it ensures rotation, translation and

scale invariance of the global minimizers of (6.12).

The functional (6.12) can be decomposed in two terms:

e The first one J; is a repulsion potential: it tends to maximize the distance between
all point pairs. It will ensure that no cluster of points emerges and therefore ensures

a good space coverage.

e The second one Jy is an attraction potential: it attracts the particles ¢; in the
regions of high density of . This term ensures that the solution of Problem (6.12)

will have an appropriate density.

Let us note that the attraction-repulsion functional (6.12) was initially proposed in
(Schmaltz et al., 2010; Teuber et al., 2011) as an alternative to Poisson disk sampling
(Bridson, 2007; Vasanawala et al., 2011). The idea we propose can therefore be consid-
ered as a generalization of Poisson disk sampling, allowing to handle arbitrary additional

constraints.

6.5.2 Projected gradient descents

The attraction-repulsion formulation (6.12) of the projection problem (6.10) is easily
amenable to a numerical resolution. Similarly to (Chauffert et al., 2015a), we propose
to use a projected gradient descent. We only describe it briefly hereafter and refer to
(Chauffert et al., 2015a) for its theoretical guarantees and more details. The algorithm

reads as follows:
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Algorithm 4: Projected gradient descent to solve the projection problem.
Input:

An initial parameterization ¢ € Q,

A number of iterations ng;.

Output:

An approximation ¢ of the solution ¢* of (6.12)
for k=1 to n; do

L g* ) e T, (q(k) —7V(J1 - J2)(q(k))) (6.13)

The step-size 7 should be selected depending on the regularity of the kernel h. Note
that Q, has no reason to be convex in general and the projection on Q, might therefore
not be unique. This explains the sign € instead of = in Equation (6.13). If 7 is well
chosen, this algorithm is shown to converge to critical points of (6.12) in (Chauffert et al.,
2015a). Let us finally mention that computing V.J; and V.Js is also a complicated issue
that requires the use of tools developed for particle simulations. In this work, we use the

parallelized non-uniform fast Fourier transform (Keiner et al., 2009; Teuber et al., 2011).

6.5.3 Discretization of the parameterization sets

In this section, we explicitly give the expressions of Q) and Ilg, for the measures sets

given in paragraph 6.4.1.

Isolated points. In the context of isolated points, @, = O, hence the projection Ilg,
is the identity on QP. The updating step in Algorithm 4 is then gD = k) — TV(J1 —
J2) (™).

Admissible curves for MRI. The projection in the case where P = Sy is the topic
of (Chauffert et al., 2014b). The discretization of an element of St is a vector of RP¢
where d is the space dimension and p is the number of points. Let s(i) denote the curve

T
location at time (i — 1)dt with 0t = 7 We define the first-order derivative by:
p —_

s,(i):{o ifi=1,
(s(i) —s(i—1))/5t ifie{2,...,p}h

In the discrete setting, the first-order differential operator can be represented by a matrix

M e RPOxPd jeo ¢ = Ms. We define the discrete second-order differential operator by
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M = —M*M e RP*Pd_The projection problem is:

g, (c) = arg min s — |3
[[Ms||<e
Ms||<p
This problem can be solved using an iterative algorithm, resorting to the dual formulation
of the problem (Chauffert et al., 2014b).

Lines of variable length. In this case, the admissible set is the set of measures

supported by N segments of variable length. Assuming that each segment is discretized

in k points, the total number of discretization points is p = kN and the set can be

written as follows

j—i—1
k—1

fori=1:k:kN andi<j<i+k},

Qp(ﬁN) ={qe Qde, q; = qi + (Gitk — Gi)

where 1: k : kN denotes the set {1,k+1,2k+1,..., (N — 1)k + 1}.

The projection onto this set can be explicitly computed, as presented in Algorithm 5.
For the sake of clarity, Algorithm 5 presents the projection onto the set of measures

supported only by one segment in two dimensions.
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Algorithm 5: Projection on Q,(L).
Input:

u : a vector of k points
Output:
q = a vector of Q,(L)

e Compute C = k(k* — 3k +2)/(6(k — 1)?)
e Compute D = k(2k? — 3k +1)/(6(k — 1)?)
e Compute 2" = (k — i)u; for 1 <i <k

e Compute :L'EQ) =@ —Du for1 <i<k

e Compute s(V) = Ele xl(l)

e Compute 52 = Zi?:l x§2)

e Evaluation of the end points

— g, = C/(C? — D?) (s — D/Cs?)
— q1 =1/C(s®) = Dqy)

e Place (¢j)a<i<k—1 uniformly distributed on [g1, gi]

6.5.4 Implementation details

Solving the projection problem (6.9) is computationally intensive. Hopefully, the design
of sampling patterns is performed offline and large computing times are therefore accept-
able. In practice, we used a workstation with 192 Gb of RAM and 32 Cores at 2.4 GHz.

All codes were multithreaded.

The computing times varied from 2 hours to generate the sampling schemes for low
resolution images proposed in Figure 6.5 up to 48 hours for the schemes adapted to very
high resolutions images in Figure 6.12. In practice, we used 4,000 iterations to generate
the sampling schemes with isolated measurements. For the sampling schemes composed
of lines or curves, we used a multi-resolution strategy: we first optimize a undersampled
curve and progressively oversampled it, thus reducing the number of iterations as the
resolution increases. We observed that this strategy provides improved results and speeds

up convergence.
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6.6 Results

In this section, we test the proposed ideas for reconstructing a 2D image (i.e. a slice) of
a brain phantom at 2 different resolutions on a field of view of 20 cin. In all experiments,

we used the analytical phantoms provided in (Guerquin-Kern et al., 2012).

The first image is of size 256 x 256, which corresponds to an isotropic resolution of
780 x 780 pum. This is a rather high but still feasible resolution for actual MRI scanners.
The second image size is 2048 x 2048, which corresponds to an isotropic resolution of
98 x 98 pm. The latter is really uncommon in the literature and is actually an important
challenge since it might allow us to uncover the meso-scale of brain organization. For
instance, (Fatterpekar et al., 2002) reported ex-vivo experiments on brains at a reso-
lution of 78 x 78 x 500 um allowing to much better understand the cytoarchitecture of
the human cortex. However, such spatial resolution cannot be achieved during in-vivo
experiments owing to the very long scanning times. For instance, the images used in
(Fatterpekar et al., 2002) took more than 14 scanning hours. Compressed sensing may
therefore play a key role in the future to push forward such resolutions, especially with
the emergence of ultra-high field MRI at 7T or even 11.7T in the near future. Moreover,
recent theoretical results (Roman et al., 2014) suggest that compressed sensing should

be used as a resolution enhancer rather than a time saver.

6.6.1 Constraints used in our experiments

To apply our projection algorithm, the kinematic constraints have to be specified. To
this end and in order to make our numerical experiments realistic, we used typical con-
straints met on real MRI scanners. The kinematic constraints imposed by MRI ac-
quisition are the gradient magnitude and slew-rate: here, we set Gpax = 40mT.m™!
and Spax = 150mT.m~'.ms~!. For proton imaging, v = 42.576 MHz.T~!, which al-
lows to compute @ = YGpax and B = ySmax in Equation (6.2). In addition to those
constraints, we imposed our trajectories to last less than 200 us? to keep a significant
amount of signal. This constraint is particularly relevant in the context of echo pla-
nar imaging (EPI) where a full 2D k-space plane is sampled from a single radio fre-
quency pulse. Indeed, in other classical acquisition scenarios (line-by-line sampling),
line-dependent radio-frequency pulses are delivered which means that a single trajectory

does not cover the complete 2D k-space but instead a single line only.

2Beyond this limit, the T3 relaxation decay makes the noise predominant.
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6.6.2 Empirical choice of the target density =

The theorems in Section 6.3 provide some general guidelines to design a reasonable
density. However, finding the best target density 7 is still an open issue depending on

the number of measurements, the sparsity basis and the signal’s structure.

In this paper, we therefore used an empirical method. The basic idea was to optimize
7 experimentally in the family of polynomially decaying densities of type 1/(|k| + 1)".
Those simple parametric densities have been used a lot in recent articles and have proved
their efficiency in practice. Note however that they increase fastly at the origin, leading
to high samples concentrations. Even though there is no formal proof of this fact, we
observed that such concentrations are deleterious. The basic reason is that they bring
more information than necessary for low frequencies, which in turn, reduces the number

of samples available for higher frequencies.

Given an initial discrete distribution 7, with a profile proportional to 1/(|k| + 1)", we

therefore constructed a truncated version 7, of m, defined by
7ty = min(A7,, 7) (6.14)

where A is chosen in such a way that ||7,[; = 1. The distribution 7, has all components

less than 7, and approximates 7.

In all our experiments, the threshold 7 is chosen in such a way that the expectation of the
number of samples in each pixel does not exceed 4 for an i.i.d. drawing. Assuming that
7 € R™ where n is the number of pixels in the image, it means that mr = 4, where m is

the number of drawn samples. An illustration of density (6.14) is given in Figure 6.3.

6.6.3 New sampling patterns
We designed sampling schemes with the proposed algorithm and compared them to the

state-of-the-art on the reconstructed brain phantom images. We compared 6 sampling

patterns identified by letters:

e Standard patterns:

— (a) Independent and identically distributed drawings according to a
prescribed density w. This is the pattern considered in most compressed
sensing theories. This pattern is not feasible in reasonable times, but serves

as a reference.
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FIGURE 6.2: A few variable density samplers. (a) density . (b) m-variable density
sampler with i.i.d. drawings. (c) m-variable density sampler with a Markov chain. (d)
m-variable density sampler with a traveling salesman problem solution.

1074 '
2.5 H _;Z .
| |
| |
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FIGURE 6.3: Action of the thresholding algorithm. The initial density 7, in dashed
line and its thresholded version 7, defined in (6.14) in solid line.
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— (b) Equispaced radial lines. This is another sampling pattern that is com-
monly used in MRI (Winkelmann et al., 2007). We consider that a spoke is a
line composed of n/2 samples, such that the distance between two samples is

the pixel size.

— (c¢) Spiral sampling. We consider a spiral with the chosen target density
7 (see (Chauffert et al., 2014b)), and reparameterize it to be admissible (Lustig
et al., 2008). We replicate and rotate it a few times, to obtain a pattern made

of interleaved spirals.

e Measure projection patterns:

— (d) Projection of 7 on the set of isolated measurements defined in
(6.7).

— (e) Projection of 7 on the set of lines with varying lengths. It is
denoted M(£") and defined in (6.8). Each line contains the same number of

samples n/2 as a radial spoke.

— (f) Projection of m on the set of admissible curves Sr, defined in

Equation (6.2).

6.6.3.1 Standard resolution imaging

In this section, we focus on the reconstruction of 256 x 256 images. We imposed each
trajectory to contain exactly 8192 k-space points, which corresponds to a typical value of
the maximal buffer size. We also fixed the sampling rate to At = 20 us. In practice, this
would ensure a high signal-to-noise (SNR) ratio. The trajectories length was therefore
164 ms. With this choice of At and the number of pixels for a given slice, a full acquisition
of the Cartesian k-space would take around 1.3 s using an EPI trajectory (the fastest full
k-space acquisition scheme). Since the MR signal is not available for that period given
the T3 decay, this means that at this spatial resolution, EPI is not feasible as such
and require a segmented acquisition strategy with 8 segments. The sampling patterns
introduced hereafter contain m = 16384 samples, i.e. 25% of the size of the Cartesian
grid. This also corresponds to 2 curves of 8192 samples, i.e. an acquisition of about
328 ms (i.e. 4 times faster than the EPI scenario). For this resolution, we found out that

the best decay 7 defined in Section 6.6.2 is n = 1.5.

Description of experiments. We compared the different sampling patterns described
above. To achieve a fair comparison, the number of samples (16384) and the sampling

rate (20 us) were fixed in each experiment wherever it was meaningful (i.e. except for
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FI1GURE 6.4: Axial slice of the phantom used in the experiments of size 256 x 256.
The left brain hemisphere is shown on the right: left is right.

ii.d. or isolated points). For the spiral experiment, we considered two interleaved spirals

traversed in 164 ms each.

Data were simulated using the phantom depicted in Figure 6.4. The inverse problem
used to reconstruct an image from simulated k-space data is Problem (6.4). Parameter A
parameter was selected by hand once for all so as to nearly reach the equality constraint

S¥x =y and to provide a visually satisfactory solution in less than 1,000 iterations.

Results. In Figure 6.6, we show the reconstruction results for the different sampling

schemes depicted in Figure 6.5. Let us summarize the main conclusions.

e First, we noticed that the two schemes composed of isolated measurements provided
rather satisfactory reconstruction results despite a few artifacts (17.7 and 18.3dB in
(a) and (d), respectively) with one fourth of the measurements. This is an appealing

result, but unfortunately the schemes cannot be implemented on a scanner.

e The repulsion between isolated samples in (d) improved the reconstruction result
slightly by 0.6 dB. This result tends to validate the interest for this strategy and

for a good coverage of the sampling space.

e (Classical sampling patterns were feasible and reduced the scanning times by a
factor 4, but provided results that may not be considered as sufficient by clinicians
(15.4dB for radial in (b) and 13.2dB for spirals in (c)). The reconstruction based
on radial lines induced many small artifacts while the reconstruction based on

spirals suffered from ringing.
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(e)

FIGURE 6.5: Classical sampling schemes (a-c) and sampling schemes obtained with the

proposed projection algorithm (d-f). Top row: (a): independent drawing; (b): radial

lines ; (c): spiral trajectory. Second row: zooms on the k-space centers. Third row:

(d): isolated points; (e): isolated lines of fixed length; (f): admissible curves for MRI.

Bottom row: zooms on the k-space center. Corresponding reconstruction results are
provided in Figure 6.6.
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(a) SNR=17.7dB (b) SNR=15.4dB (c) SNR=13.2dB

(d) SNR=18.3dB (e) SNR=18.0dB

FIGURE 6.6: Reconstruction results for the sampling patterns proposed in Figure 6.5
on the phantom (Figure 6.4). Left is right.

e (Quite unexpectedly, the new sampling patterns generated by our algorithm yielded
improved reconstruction results as compared to i.i.d. drawings. The latter sampling
scheme is often considered as the best existing undersampling strategy. This result
shows that adding complicated but realistic sampling constraints can still permit
to get competitive reconstruction results. In particular, the sampling pattern in
Figure 6.6(f) took only one fourth of the scanning time and yielded satisfactory

reconstructions.

6.6.3.2 Very high resolution imaging

Here, we focussed on the reconstruction of very high resolution (2048 x 2048) images.
We used the same constraints as before including the maximum duration of 200 ms per
trajectory. We decreased the sampling period down to At = 8 us which corresponds to
the minimal value of a clinical scanner. We no longer managed the buffer size constraint
as done in the previous section and performed experiments with 100,000 and 200,000
measurements. This corresponds to 2.4% and 4.8% of the total number of pixels in the

image respectively. This also corresponds to a total sampling duration of 0.8s or 1.6s,



176 Chapter 6 On the generation of sampling schemes for MRI

which again might be feasible on a real scanner considering a segmented acquisition

scheme, with 4 and 8 segments, respectively.

The radial lines were composed of 1024 equispaced measurements. The distance between
two measurements is 1 pixel. The spiral pattern was composed of 4 (resp. 8) rotated
versions of an initial spiral designed as described at the beginning of Section 6.6.3 for
100,000 (resp. 200,000) measurements. The line of varying lengths were all composed
of 512 samples. This corresponds to 196 lines for the 100,000 measurement experiments

and 391 lines for the 200,000 experiment.

We aimed at reconstructing the phantom in (Guerquin-Kern et al., 2012). We modified
it slightly by superimposing the high resolution text COGITO ERGO SUM to white matter
in the left frontal region (see Figure 6.7).

Similarly to the previous section, the sampling density was optimized experimentally
in the family of truncated, polynomially decaying densities of type 1/(|k| + 1)7. For
this resolution, the best decay was 7 = 2. The resulting patterns are shown at differ-
ent resolutions in Figures 6.8-6.9 for 100,000 measurements and Figures 6.11-6.12 for
200,000 measurements. For each scheme we reconstructed a 2048 x 2048 image by solving
Problem (6.4).

Let us summarize our main observations.

e The use of 200,000 measurements yielded significantly better reconstruction results
than 100,000 samples. However, the relative differences between the sampling
schemes did not vary between the two sampling ratios. In what follows, we therefore

draw conclusions that are valid for both.

e Similarly to the standard resolution experiment, sampling schemes made of i.i.d.

drawings significantly outperformed radial lines and spirals sampling.

e Radial lines performed particularily poorly. This was probably due to the fact
that for this resolution, the best sampling decay was n = 2, whereas we found
n = 1.5 for the standard resolution experiment. Note that radial lines have a slow
decay of order 1/|k|, which might explain the observed discrepancy. Also note that
the embedded text for radial reconstruction was readable, whereas it was not for
spiral sampling. Once again, this is very likely a consequence of the slower decay
for the sampling density. On the contrary, the cortex is not correctly recovered
by radial lines, while the reconstruction is acceptable for spirals. This experiment
thus suggests that the sampling density should depend on the relative importance

of low and high resolution details.
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e The repulsed isolated measurements scheme performed slightly better than i.i.d.

drawings, but not significantly so.

e Similarly to the previous section, the sampling schemes generated by our algorithm
performed significantly better than spiral and radial patterns. The gain ranged
from 1.7dB to 3.6dB which is significant, since they require the same scanning

time.

e In contrast to the previous section, we observed that the feasible sampling schemes
performed significantly worse than i.i.d. drawings in terms of SNR. A reason that
might explain this behavior was that At = 8 us for this resolution while we used
At = 20 us in the previous experiment. This means that the distance between
consecutive samples was more than twice smaller (harder constraint). It is also
important to realize that, although the differences between reconstructions were
strong in terms of SNR, the visual perceptual differences mainly rely on small

artifacts which do not severely degrade image analysis.

e The results obtained with 200,000 samples were of a high quality, despite the real-
istic sampling constraints added. This very positive result suggest that obtaining
2048 x 2048 images might be feasible in 1.6 s obly using a segmented acquisition (8
segments) scheme. This should be definitely deemed as a major advance for MRI.
Of course, these results were preliminary since we did not manage all degradations

appearing on actual scanners such as noise, Eddy currents ...

e Finally, it is possible to infer the gain in terms of scanning times using the proposed
approach by comparing Figure 6.10 and Figure 6.13. The SNR of the reconstructed
image with 4 admissible curves and 0.8 seconds is 20.7dB (see Figure 6.10 (f)).
To reach the same quality, radial lines and spirals need roughly twice as long (see
Figure 6.13 (b) and (c)). This result shows that the proposed ideas may reduce

the actual scanning times by a factor 2 compared to existing approaches.

6.7 Conclusion

This paper has provided an overview of existing compressed sensing results for MRI,
both from theoretical and practical points of view. We also proposed an original ap-
proach to design efficient sampling schemes complying with the physical constraints of
MRI scanners. Even though we focussed on standard anatomical MRI, the proposed
ideas could be used, with some adaptations, in nearly all MRI fields (functional imag-
ing, diffusion-weigted imaging, perfusion imaging, ...) and might have applications well

beyond.
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FIGURE 6.7: Axial slice of the brain phantom used in our 2048 x2048 images (left) with
a magnification on the left frontal area where the text has been superimposed (right).

The numerical procedure we proposed for generating sampling schemes was based on a
projection of sampling distributions onto a set of admissible measures using a taylored
dissimilarity measure. Even though computationally intensive, this algorithm was able
to solve very large scale problems and could be extended to 3D quite easily. Probably the
most promising result of this paper is practical: we showed through simulations that 1.6 s
using a multi-shot acquisition (8 segments) might be enough to reconstruct a very high
resolution slice of size 2048 x 2048. The validity of this result will be tested quite soon
on the 7T scanner of NeuroSpin to check whether this constitutes a major improvement
over existing sampling strategies which currently need a dozen of hours to reconstruct a

hundred slices at this spatial resolution.
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(a) SNR=23.0dB (b) SNR=16.1dB (c) SNR=19.0dB

(d) SNR=23.2dB (e) SNR=19.7dB (f) SNR=20.7dB

FIGURE 6.10: Very high resolution reconstructions using 100,000 samples (2.4% of the
number of pixels) and different sampling schemes. Letters correspond to Figures 6.8
6.9.
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zoom

FIGURE 6.12: Sampling schemes yielded by our algorithm and composed of 200,000
samples. (d): Isolated measurements. (e): Lines of variable length. (f): 8 feasible
curves in MRI.
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(a) SNR=26.7dB (b) SNR=20.6 dB (c) SNR=21.0dB

(d) SNR=27.0dB (e) SNR=22.9dB (f) SNR=23.5dB

FIGURE 6.13: Very high resolution reconstructions using 200,000 samples (4.8% of the
pixels number) and different sampling schemes. Letters correspond to Figures 6.11-6.12.



Chapter 7

Résumé des chapitres

Résumé du chapitre 2

Ce chapitre se repose sur Particle (Chauffert et al., 2014a). L objectif est ici de montrer
que 'application directe de I’échantillonnage compressif n’est pas possible en imagerie par
résonance magnétique. En effet, les bases de représentation et d’acquisition ne sont pas
incohérentes d’une part, et les schémas obtenus & partir de tirages i.i.d. comme décrits
par la théorie de I’échantillonnage compressif ne sont pas physiquement admissibles en
IRM d’autre part. Dans cet article, nous justifions que 1’échantillonnage déterministe
du centre de l'espace-k permet de répondre & la premiére question, et nous donnons
une expression de la distribution optimale m qui permet de réduire le nombre de mesures
nécessaires a la reconstruction exacte. Cette distribution, représentée Fig 7.1, vérifie m; o
llail|%,, ot a; est la i-éme ligne de la matrice A = F*W. D’autre part, nous définissons
la notion d’échantillonneur & densité variable. Cette notion s’adapte également aux
trajectoires continues qui sont une condition nécessaire (mais non suffisante) pour vérifier
les contraintes cinématiques sur la trajectoire imposés par les gradients de la machine.
Nous donnons deux stratégies pour générer des schémas continus & densité variable.

L’une est basée sur des marches aléatoires et 'autre sur une solution de voyageur de

F1GURE 7.1: Distribution optimale 7 pour la matrice A = F*W.

185
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commerce. Pour la premiére, nous donnons un résultat d’échantillonnage compressif qui
fait dépendre le nombre de mesures en 1/e(P) ou ¢(P) est le trou spectral de la chaine
de Markov associé a la marche aléatoire. Le résultat présenté ici peut étre amélioré,
cf. annexe 3. Des exemples de chaines de Markov sont donnés dans la Fig. 7.2. Dans
un second temps, nous relions la distribution de tirage des « villes » p du voyageur de
commerce & celle de la courbe ¢ par la relation ¢ pd%il ou d est la dimension. En
particulier, en 2D, il faut tirer les villes selon la distribution proportionnelle & 72 pour

obtenir un échantillonnage a la densité 7, comme illustré Fig. 7.3(a,b).

FIGURE 7.2: Schémas d’échantillonnage reposant sur des chaines de Markov de
longueur moyenne 10 (a) ou 1000 (b), et reconstruction d’images aprés échantillon-
nage selon les schémas (a) et (b).

Nous décrivons deux quantités centrales d’un processus a densité variable, & savoir :

e Sa densité cible. Nous montrons théoriquement et par des expériences numériques
que la densité doit décroitre des basses vers les hautes fréquences. En effet, les
vecteurs de la transformée en ondelettes et de la transformée de Fourier sont plus
cohérents aux basses fréquences (i.e., correspondent a des valeurs de ||a;||%, plus
grandes), et sont donc cruciaux car eux seuls contiennent les informations des coef-

ficients d’ondelettes d’approximation. D’autre part, la plupart des 'information de
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—,),

(c) PSNR=24,1 dB

FIGURE 7.3: Exemples de schémas d’échantillonnage reposant sur une solution du
voyageur de commerce dont les villes sont tirées selon 7 (a) et o< 72 (b), et reconstruction
des images aprés échantillonnage de l’espace-k selon les schémas (a) et (b).

I'image étant contenue dans les basses fréquences, ceci renforce I'intérét d’échantil-
lonner plus les basses fréquences. L’importance de la densité d’échantillonnage sur

les résultats de reconstruction est illustrée Fig. 7.3(c,d).

o Le temps de mélange. Cette grandeur mesure la vitesse de convergence de la
mesure empirique de la courbe vers la mesure cible. Dans le cas des marches
aléatoires, cette quantité vaut 1/e(P). Celle-ci représente également la rapidité
pour le processus & recouvrir I'espace. Le cas optimal est un tirage i.i.d. qui
correspond & €(P) = 1. Le succes des solutions du voyageur de commerce s’explique
par leur rapidité a couvrir rapidement ’espace, alors que les marches aléatoires
laissent de grandes zones de I’espace-k non explorées, ce qui explique les mauvais
résultats en reconstruction. Ceci est illustré dans la Fig. 7.2, ou plus les chaines

sont courtes, et plus le trou spectral est grand.

Résumé du chapitre 3

Dans ce chapitre, nous montrons une nouvelle inégalité de concentration pour des chaines

de Markov & valeurs dans les matrices Hermitiennes. Considérons G un graphe & N
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neeuds, et Xi,... X, une chaine de Markov définie sur ce graphe, dont ’évolution est
donnée par X; ~ ¢ et P est la matrice de transition. Soit 7 le vecteur de RY tel que
7T P = nT (7 est appelée distribution stationnaire de la chaine). Supposons enfin que la

chaine est réversible, c’est-a-dire que m; FP;; = m; Pj;.

Soit f une fonction de G & valeur dans H¢ := {M € C%¢ M* = M}. Supposons sans

perte de généralité que Z m(y)f(y) = 0, et notons R = sup Amax(f(y)). Alors :
= yeg

- q; et?
P <)\max <; f(X’L)> > t) <d- Sup(’/’Ti) - €xp <_40'721+2}%t6/3> . (71)

ou € est le trou spectral de la chaine, i.e., la différence de ses deux plus grandes valeurs

propres, et

02 := 1 Amax Z m(y) f(y)?

yeg

Cette inégalité est ensuite utilisée pour démontrer un résultat d’échantillonnage com-
pressif. Dans le cas d’'un échantillonnage le long d’une chaine de Markov comme décrit

dans le chapitre 2, le nombre de mesures nécessaires pour garantir la reconstruction est
n
S
ol|-- Z llaj||% - log(6n/n) |, ie, est plus grand que dans le cas i.i.d. d'un rapport 1/e,
€
Jj=1

car € < 1. Cette borne est cohérente car dans le cas i.i.d., e = 1.

Résumé du chapitre 4

Les résultats de ce chapitre reposent sur la soumission (Chauffert et al., 2014b). Dans le
chapitre 2, nous proposons des trajectoires d’échantillonnage continues. Les contraintes
physiques de 'TRM imposent que les dérivées premiére et seconde de la trajectoire soient

bornées, i.e., une courbe admissible doit appartenir & :
Sr={s:10,T] = R I5(t)| <7 Gumax: [|3)]| <7 Smax, Vt € [0,T]} .

Pour une trajectoire donnée, une premiére approche (Lustig et al., 2008; Hargreaves
et al., 2004) consiste a trouver la reparamétrisation optimale de la trajectoire. Nous

proposons ici une approche alternative qui consiste & projeter une courbe paramétrée
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initiale sur l’espace des contrainte St :

s* = argmin ||s — c[|3 :
SEST

Une illustration de la solution de ce probléme de projection est donné (Fig. 7.4)

?) , )

FIGURE 7.4: Exemple synthétique de la différence entre les deux approches :
reparamétrisation optimale et projection. Premiére ligne: Reparamétrisation op-
timale (Lustig et al., 2008). (a): paramétrisation initiale. (b): représentation discréte
de la reparamétrisation optimale de la courbe € Sp. (c): Gradients (g,.g,). Les
lignes pointillées correspondent & 0 and +/- Gupax. Deuxiéme ligne: Illustration
de l'algorithme de projection. (d): support de la courbe d’entrée ¢ de ’algorithme
paramétrisé a vitesse constante 7 - Guax et support de la projection s* sur S. (e):
représentation discréte de la courbe d’entrée et de la projection. (f): Gradients corre-
spondants (g,,g,) avec la méme échelle temporelle qu’en (c): le temps de parcours de

5* est plus court de 39%.

Les avantages de I’approche par projection sont multiples :

e Le temps de parcours est fixé a l'avance dans cette méthode (c’est le méme que

celui de la paramétrisation initiale), alors qu’il dépend de la trajectoire pour la

reparamétrisation optimale. En particulier, si la trajectoire comporte des parties

a forte courbure (et dans un cas extréme, des points anguleux comme dans une

trajectoire de voyageur de commerce ou EPI), la durée d’acquisition peut exploser

et rendre cette méthode inexploitable.

e La distribution empirique de la courbe projetée est « proche » de celle de la courbe

d’entrée.
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e (Cet algorithme de projection permet d’intégrer de nombreuses contraintes supplé-

mentaires qui jouent un role important en IRM (cf chapitre 5).

Nous présentons des résultats de reconstruction en 2D sur différents types de trajectoires :
EPI, spirale et solution du voyageur de commerce. Des exemples de reconstruction en 3D
pour des trajectoires de voyageur de commerce projetées sur I’ensemble des contraintes,

ainsi que des applications & "angiographie sont également fournies.

La solution du probléme de projection se calcule en écrivant le probléme de projection
dans l'espace dual ol le probléme a une structure favorable. Celui-ci s’écrit en effet
comme somme d'un terme convexe différentiable et d’'un terme convexe dont on sait

calculer opérateur proximal.

Résumé du chapitre 5

Dans ce chapitre, nous étudions un probléme de projection de mesures. Soit  C R? le
domaine de définition d’une mesure de probabilité 7 et A € L?() un noyau. Le probléme

de projection s’écrit:

inf ||hx(u— 7.2
L R (=)l (7.2)

ot * est 'opérateur de convolution et M est un ensemble de mesures. Pour illustrer ces
notions, nous considérons le cas ot h est un noyau gaussien, 7 est une image (Fig. 7.5(a))

et

N
1
My = {N 2%7 (pi)1<isn € QN}

ol 6§, est une mesure de Dirac en p;. Dans la Fig. 7.5(b), nous représentons la solution
du probléme de projection ot les mesures de Dirac sont représentées par un disque noir.

Les convolutions de 7 et la solution sont représentées en Fig. 7.5(c) et (d).

La convolution par un noyau gaussien permet la comparaison entre les images (a) et (b)
dont la différence est trés grande. Le filtre gaussien est représentatif du systéme visuel
humain et peut étre exagéré en regardant les images (a) et (b) de plus loin et en plissant
les yeux. Le probléme de représenter une image par des points est connu sous le nom de

stippling et est utilisé en imprimerie par exemple.

Dans ce chapitre, nous considérons des ensembles de mesures plus généraux que des
sommes de mesures de Dirac. Définissons une paramétrisation comme une fonction

p: X — Q et P un ensemble de paramétrisations. Alors nous pouvons définir M(P) =
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FIGURE 7.5: Tllustration du probléme de projection. Distribution 7 (a) et représenta-
tion de la solution du probléme (b). Représentation de la convolution par h.

{px7,p € P} l'ensemble des mesures portées par les paramétrisations de P, ou ~ est la
mesure de Lebesgue normalisée sur [0,7]. Un exemple de résultats théorique démontré
dans ce papier est que si Pp est un ensemble de courbes de [0,7] dans Q avec des
contraintes sur ses dérivées en norme infinie (e.g., sup [[p™||oo < o, 0 < k < N), alors si
wr est la solution du probléme (7.2) pour My = /t\/l(PT), pr converge faiblement vers

m quand T — oo.

Une application possible de ce résultat est la représentation d’images par une ligne con-

tinue (Fig. 7.6).
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FIGURE 7.6: Exemple de projection sur un ensemble de mesures portées par des
courbes.

Apres discrétisation, le critére & minimiser s’écrit comme différence de deux fonctions

convexes:

L NN L
prgglvzmZZH(]%—pj)—N;/QH(ﬂc—pi)dW(x)a

potentiel de répulsion potentiel d’attraction

ol Py est une discrétisation de Pr par N points et H est un noyau relié¢ & h par
H(€) = |h|2(¢). Un exemple de noyau possible est H(z) = —||z||2. En pratique, nous
utilisons une norme f2 avec une régularisation en 0 pour la rendre infiniment dérivable.
Ainsi les deux termes sont différentiables, et si nous supposons que Py est convexe, un
algorithme de descente de gradient projeté converge vers un point critique de la fonction
a minimiser. L’étape de projection sur I'ensemble des contraintes se fait en utilisant

I’algorithme présenté au chapitre précédent.

Résumé du chapitre 6

L’objectif de ce chapitre est d’appliquer les idées de projection de mesures dans le cas
de simulations pour I'TRM. Nous fixons une mesure empirique p qui fournit des résultats
de reconstruction satisfaisants dans le cadre de tirages i.i.d.. Nous effectuons ensuite des

projections de la mesure p sur différents espaces de mesures:
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e Des sommes de mesures de Dirac (Fig. 7.7(a)). Les schémas obtenus sont composés
de mesures isolées, et améliorent (légérement) les résultats de reconstruction par

rapport aux tirages i.i.d. (< 1 dB).

e Des mesures portées par des lignes de longueur variables (Fig. 7.7(b)). Ces tra-
jectoires ne sont pas toujours physiquement plausibles, car les contraintes sur la

vitesse ne sont pas prises en compte.

e Des mesures portées par des trajectoires de l’ensemble S (Fig. 7.7(c)). Cet ensem-
ble est le plus grand ensemble contenant les trajectoires physiquement plausibles

et exploite au maximum les capacités de la machine.

(a)

FIGURE 7.7: Exemple de schémas d’échantillonnage obtenus par projection de mesures
sur : (a): une somme de mesures de Dirac; (b): des mesures portées par des lignes; (c):
des mesures portées par des courbes admissibles de Sp.

Les schéma continus obtenus par projection de mesures (Fig. 7.7(b-c)) permettent d’obtenir
des résultats de reconstructions meilleurs que les stratégies classiques (spirales, radiales)

avec un gain de 'ordre de 2 & 3 dB.
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