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Résumé

Cette thèse propose une étude mathématique des stratégies de vaccination.

La partie I présente le cadre mathématique, notamment le modèle à compartiments Susceptible -Infected -Recovered.

La partie II aborde les techniques mathématiques de type contrôle optimal employées afin de trouver une stratégie optimale de vaccination au niveau de la société. Ceci se fait en minimisant le coût de la société. Nous montrons que la fonction valeur associée peut avoir une régularité plus faible que celle attendue dans la littérature. Enfin, nous appliquons les résultats à la vaccination contre la coqueluche.

La partie III présente un modèle où le coût est défini au niveau de l'individu. Nous reformulons le problème comme un équilibre de Nash et comparons le coût obtenu avec celui de la stratégie sociétale. Une application à la grippe A(H1N1) indique la présence de perceptions différentes liées à la vaccination.

La partie IV propose une implémentation numérique directe des stratégies présentées.
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Introduction

La vaccination est une politique de santé publique souvent invoquée pour lutter contre la propagation d'une épidémie. Pour la mettre en oeuvre, il est nécessaire d'anticiper le nombre de personnes à vacciner, le calendrier de vaccination et de prévoir le financement pour atteindre l'objectif fixé. Cet objectif peut émaner d'une planification voulant minimiser le coût subi par la société. Ainsi, on cherchera à diminuer le nombre d'infectés afin d'endiguer la propagation de la maladie; dans ce cas les risques individuels encourus par la vaccination apparaissent alors comme secondaires. Lorsque la vaccination est facultative ou que les risques liés au vaccin sont perçus comme importants, l'objectif visé par le planificateur ne semble plus rejoindre l'intérêt individuel. Ce dernier s'exprime par l'acceptation ou non de participer à l'effort social. L'individu peut ne pas suivre les consignes données par le planificateur, les jugeant inopportunes à son niveau. Apparaissent ainsi des polémiques qui induisent une couverture vaccinale finale bien inférieure à la couverture attendue par les autorités publiques.

Situé au sein de cette problématique, ce document propose une étude en quatre parties. La première partie expose les outils mathématiques mobilisés en épidémiologie sous la forme d'une introduction rapide et que le lecteur déjà familier avec ce domaine peut omettre. Le modèle Susceptible -Infected -Recovered (SIR) qui est au centre de nos travaux est présenté dans la section 1.1 puis une revue succincte et non exhaustive de différents modèles existant apparaissent en sections 1.2 et 1.3. La vaccination dans le cadre du modèle SIR fait l'objet du chapitre 2 contenant la présentation du modèle utilisé par la suite (section 2.1) et sa justification mathématique (section 2.2). Le chapitre 3 présente dans un cadre mathématique rigoureux l'approche de contrôle optimal, nécessaire à la compréhension de la partie II. Enfin, une présentation de la théorie des jeux, qui sera utilisée en partie III est proposée dans le chapitre 4. vaccination, cherche à minimiser, via une approche de contrôle optimal, le coût total que subi la société. Pour cela, sa stratégie minimise la fonctionnelle de coût qui additionne le coût lié aux personnes infectées et le coût de la vaccination. Sa décision précise le nombre total de personnes susceptibles à vacciner durant l'épidémie pendant le temps où la vaccination sera recommandée. La section 1 revient sur l'explication du problème et l'état de l'art, la section 2 présente le cadre mathématique employé. Pour illustrer le modèle, plusieurs applications numériques sont fournies dans la section 3. La section 4 expose les résultats théoriques obtenus en résumant les stratégies optimales en fonction des paramètres du modèle. Une application à un cas réel est proposée dans la section 5 à travers l'étude de la vaccination des adultes contre la coqueluche via deux approches: la première en terme de DALY évités, la seconde avec le rapport coût / efficacité. Le lecteur intéressé par les preuves théoriques des résultats utilisés pourra consulter les sections 7 à 11.

La partie III présente un modèle dont le but est de décrire comment les individus décident de se faire vacciner ou non. La fonctionnelle de coût est alors celle d'un individu, qui prend en compte, avec ou sans facteur d'actualisation, la probabilité d'infection d'un individu et sa propension à se faire vacciner. Il cherche, à l'aide de techniques dites de jeux à champ moyen, à optimiser sa fonctionnelle de coût par son choix de se faire ou non vacciner. L'état de l'art de cette modélisation est détaillé dans la section 1. Les résultats théoriques sont proposés dans la section 2 pour le cas sans facteur d'actualisation et dans la section 3 pour le cas avec un facteur strictement positif et une vitesse de vaccination infinie. L'application des résultats à la grippe A (H1N1) de 2009/2010 est proposée dans la section 4. La section 5 discute les résultats et les limites du modèle. Les preuves théoriques des résultats interprétés sont disponibles dans les sections 6 à 12.

Partie I Modélisation des épidémies: quelques outils mathématiques

Résumé:

Dans cette première partie, nous présentons les outils nécessaires à la compréhension des travaux présentés dans les parties suivantes. Pour ce faire, nous introduisons les modèles mathématiques à compartiments pour la modélisation des épidémies (sections 1.1, 1.2 et 1.3), et plus particulièrement le modèle SIR (section 1.1) à la base de nos travaux. Ensuite, nous abordons le modèle avec vaccination SIRV (section 2.1) et ses propriétés (section 2.2). Les notions liées au contrôle optimal font l'objet du chapitre 3, et une introduction à la théorie des jeux est présente dans le chapitre 4. Le chapitre 4 est clos par l'exposition du cadre dit des jeux à champ moyen qui font intervenir un nombre infini d'agents.

Chapitre 1 Modélisation mathématique des épidémies

L'étude de la propagation d'une maladie infectieuse, par contagion, à un grand nombre de personnes d'une région, est rendue possible par le recensement des malades, ce qui permet de suivre l'évolution de ces derniers dans la population. Par exemple au quatorzième siècle en Europe, la peste bubonique tua plus de 25 millions de personnes, sur une population d'environ 100 millions. On peut également citer d'autre épidémies historiques pour lesquelles nous avons des estimations, comme le typhus en Russie pendant les années 1918 à 1921 ou la grippe de 1919 qui tua, en 12 mois, plus de 20 millions de personnes à travers le monde. Toutes témoignent de l'importance de la considération des épidémies dans la vie et l'évolution d'une population.

La modélisation épidémiologique repose principalement sur les modèles dits à compartiments. Il s'agit de diviser la population en plusieurs classes, selon leur rapport à la maladie.

Ce chapitre présente le modèle SIR, puis succinctement quelques autres modèles à compartiments et se base sur les livres [START_REF] Britton | Essential mathematical biology[END_REF][START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF][START_REF] Brauer | Mathematical models in population biology and epidemiology[END_REF][START_REF] Anderson | Infectious Diseases of Humans Dynamics and Control[END_REF][START_REF] Manfredi | Modeling the interplay between human behavior and the spread of infectious diseases[END_REF][START_REF] Daley | Epidemic modelling: an introduction[END_REF]24] que le lecteur intéressé par d'autre modèles est invité à consulter. • Susceptible (S), cette classe regroupe les personnes susceptibles de contracter la maladie;

• Infected (I): il s'agit des personnes étant capables de transmettre la maladie, que des symptômes soient visibles ou non;

• Recovered (R): cette dernière classe représente les personnes ayant eu la maladie, n'étant plus capables ni de la transmettre ni de la contracter à nouveau.

La définition de la classe R peut être différente selon les cas. Par exemple, dans un modèle où l'isolation des malades est possible, la classe R peut contenir aussi bien les personnes guéries ou décédées que les personnes infectieuses isolées, qui ne sont donc plus en capacité de transmettre la maladie mais qui ne sont pas encore guéries. Dans nos travaux, la classe R correspond à la première définition donnée.

Ce modèle suppose que la durée de la maladie est suffisamment faible devant la durée de vie pour pouvoir négliger les naissances et les décès dans la population, c'est pourquoi la population est constante. Par ailleurs, dans la version classique de ce modèle, tous les individus sont identiques. Les paramètres utilisés sont (S 0 , I 0 , R 0 ) = (0.75, 0.0025, 0.2475), γ = 36.5, β = 73, T = 1 an. Le code utilisé est disponible dans la section 1 de l'annexe B page 175.

Un paramètre important dans la modélisation d'une épidémie est le taux de reproduction de base, R 0 , qui représente le nombre d'individus qu'une personne infectieuse pourra infecter tant qu'elle restera infectieuse dans une population saine. Intuitivement, si R 0 < 1 alors un individu qui devient infecté en infectera en moyenne moins d'un, donc la maladie disparaîtra de la population. A l'inverse, si R 0 > 1 alors la maladie se propagera dans la population. Dans le modèle SIR, le taux de reproduction de base est R 0 = β/γ.

Si seul R(t) est connu et représente la proportion de cas recensés qui sont guéris ou isolés, alors cette information permet d'obtenir une estimation de 1.1. Le modèle Susceptible-Infected-Recovered (SIR) I en utilisant une autre forme de l'équation (I-1c) à savoir I(t) = 1 γ dR dt . Bien que le paramètre γ soit généralement inconnu, une estimation est possible en utilisant qu'en moyenne une personne reste dans la classe I 1/γ unités de temps.

Notation 1. Pour tous les modèles présentés, nous noterons S ∞ = lim t→∞ S(t) et I ∞ = lim t→∞ I(t) .

Étude des solutions Existence et unicité

Pour prouver l'existence et l'unicité de la solution du système différentiel guidant un système SIR, nous commençons par rappeler le problème général ẋ(t) = f (t, x(t)) avec x(t 0 ) = x 0 et f : R + × R n → R n . Nous rappelons le théorème de Cauchy-Lipschitz, tel que présenté dans [START_REF] Khalil | Nonlinear Systems[END_REF].

Théorème 1.1.1. Soit f (t, x) une fonction continue par morceaux par rapport à t et satisfaisant:

||f (t, x) -f (t, y)|| ≤ L||x -y|| ∀x, y ∈ R n , ∀t ∈ [t 0 , t 1 ]. (I-2)
Alors l'équation ẋ(t) = f (t, x(t)) avec x(t 0 ) = x 0 admet une unique solution pour t ∈ [t 0 , t 1 ].

La fonction f SIR (t, x) associée au modèle SIR est définie de R + ×[0, 1] 3 → [0, 1] 3 par f (t, x) = (-βx 1 x 2 , βx 1 x 2γx 2 , γx 2 ).

La fonction f SIR (t, x) est Lipschitzienne par rapport à sa seconde variable. En effet, comme dans R n (et en particulier pour n = 3) toutes les normes sont équivalentes, montrons-le pour la norme 1, sans chercher la plus faible constante:

||f SIR (t, x) -f SIR (t, y)|| 1 ≤   β(y 1 y 2 -x 1 x 2 ) β(x 1 x 2 -y 1 y 2 ) -γ(x 2 -y 2 ) γ(x 2 -y 2 )   1 ≤ 2β|x 1 x 2 -y 1 y 2 | + 2γ|x 2 -y 2 | ≤ 10β(|x 1 -y 1 | + |x 2 -y 2 |) + 2γ|x 2 -y 2 | ≤ 10(β + γ)(|x 1 -y 1 | + |x 2 -y 2 |) ≤ 10(β + γ)||x -y|| 1 .
Par ailleurs, la fonction f SIR est continue par morceaux en t (car pas de dépendance directe) donc d'après le théorème de Cauchy Lipschitz 1.1.1, le modèle SIR défini par le système d'équations (I-1) admet une unique solution sur R + . Il est également possible de montrer que la fonction f SIRµ (voir partie 1.2.4 page 16 pour l'interprétation de cette fonction) définie sur R + ×[0, 1] 3 → [0, 1] 3 par f SIRµ = (µ(1x 1 )βx 1 x 2 , βx 1 x 2γx 2µx 2 , γx 2µx 3 ) est Lipschitzienne. Cela permet de donner un sens au système (I-8) page [START_REF] Behncke | Optimal control of deterministic epidemics[END_REF].

Propriétés des trajectoires

De par son expression, le modèle SIR suppose que la période d'infection suit une loi exponentielle. Autrement dit, la probabilité d'être toujours infecté après τ unités de temps est e -γτ . Le temps moyen d'infection est donc bien ∞ 0 e -γτ dτ = 1/γ. Remarque 1. R 0 est le nombre théorique de cas secondaires par cas primaire dans une population entièrement saine. Sachant qu'il y a une proportion β de contaminés pendant 1/γ unité de temps par une personne, il vient que

R 0 = β γ .
La fonction t → S(t) est une fonction monotone, décroissante. A contrario, la fonction t → R(t) est monotone croissante, de 0 jusqu'à R ∞ qui représente la taille totale de l'épidémie. La fonction t → I(t) est dans un premier temps croissante jusqu'à l'instant t * tel que dI dt (t * ) = 0 soit d'après l'équation (I-1b), S(t * ) = γ/β. Donc si S(0) est plus grand que γ/β, c'est à l'instant t * que la fonction I atteint son maximum, sinon la fonction I est strictement décroissante donc atteint son maximum en I(0). 

dI(t) dt = γ βS(t) -1 dS(t) dt .
Puis en intégrant: Ce qui donne après intégration entre 0 et t: En notant δ le paramètre qui régit le passage E → I, le système d'équations différentielles associé à un tel modèle et au point initial (S 0 , E 0 , I 0 , R 0 ) est: système associé à un tel modèle et au point initial (S 0 , I 0 , R 0 ) est: A l'aide du théorème de stabilité de Lyapounov [START_REF] Khalil | Nonlinear Systems[END_REF], nous avons le résultat de convergence suivant: Théorème 1.2.1. Soit (S(t), I(t), R(t)) suivant un modèle SIRS. Alors:

I(t) -I(0) = γ/β [
dS(t) dt = -βS(t)I(t), S(0) = S 0 , (I-5a) dE(t) dt = βS(t)I(t) -δE(t), E(0) = E 0 , (I-5b) dI(t) dt = δE(t) -γI(t), I(0) = I 0 , (I-5c) dR(t) dt = γI(t), R ( 
dS(t) dt = δR(t) -βS(t)I(t), S(0) = S 0 , (I-6a) dI(t) dt = βS(t)I(t) -γI(t), I(0) = I 0 , (I-6b) dR(t) dt = γI(t) -δR(t), R ( 
• pour R 0 < 1, S ∞ = 0 ou I ∞ = 0,
• pour R 0 > 1, le système convergera vers l'état endémique: Dans ce cas, l'évolution de la population partant de (S 0 , I 0 ) est définie par le système d'équations différentielles suivant: Théorème 1.2.2. Soit S(t) et I(t) la solution du système (I-7a). Alors:

(S ∞ , I ∞ , R ∞ ) = γ β , δ β β -δ δ + γ , γ β β -δ δ + γ .

Le modèle SIS avec effet démographique

dS(t) dt = µ(1 -S(t)) -βS(t)I(t) + γI(t), S(0) = S 0 , (I-7a) dI(t) dt = βS(t)I(t) -(γ + µ)I(t), I ( 
• pour R 0 ≤ 1, I ∞ = 0 (équilibre avec éradication de la maladie)

• pour R 0 > 1, le système SIS converge vers l'état endemique: 

(S ∞ , I ∞ , R ∞ ) = µ + γ β , 1 - µ + γ β .

SIR avec effet démographique

Pour modéliser des maladies présentes sur une longue période, il est important de pouvoir prendre en compte l'effet démographique de la population à travers des naissances et des décès. Pour cela, le modèle SIR peut être généralisé avec la prise en compte des naissances dans la classe S à un taux µ et de décès dans chaque classe à un taux proportionnel µ, ce qui conserve l'hypothèse de population constante. La référence [24] propose une approche où le taux de natalité et de décès sont différenciés et donc où la population n'est plus constante.

La figure I.11 présente le schéma d'évolution du modèle partant du point initial (S 0 , I 0 , R 0 ) qui se traduit par le système d'équations différentielles ordinaires suivant:

dS(t) dt = µ(1 -S(t)) -βS(t)I(t), S(0) = S 0 , (I-8a) dI(t) dt = βS(t)I(t) -γI(t) -µI(t), I(0) = I 0 , (I-8b) dR(t) dt = γI(t) -µR(t), R(0) = R 0 . (I-8c) Dans ce cas, R 0 = β µ+γ .
Théorème 1.2.3. Soit (S(t), I(t), R(t)) la solution du système I-8.

• Si R 0 ≤ 1 alors I ∞ = 0 (équilibre avec éradication de la maladie); 

• Si R 0 > 1 alors (S ∞ , I ∞ , R ∞ ) = µ + γ β , µ µ + γ 1 - µ + γ β , γ µ + γ 1 - µ + γ β .
Un exemple d'évolution de ce type de modèle est donné dans la figure I.12. 

Un double SEIR

Afin de prendre en compte une caractéristique distinctive dans une population, il est possible de différencier le modèle (SIR, SEIR ou un autre précédemment présenté) par type de personne. Par exemple, pour différencier l'évolution de la propagation d'une maladie suivant un modèle SEIR pour deux classes d'âge, il est possible de combiner deux modèles SEIR. Nous exposons ici le modèle simplifié utilisé dans [START_REF] Galvani | Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum[END_REF]. Un autre exemple de modèle avec différenciation est présenté dans la partie 3.5.

Autres modèles déterministes à compartiments

Nous allons diviser la population en deux classes: la classe A regroupe les personnes de moins de 65 ans, et la classe B ceux de 65 ans et plus. Chaque classe est divisée en 4 compartiments, correspondant au modèle SEIR (voir 1.2.1), ce qui permet d'obtenir, pour le point initial (S A 0 ,

I A 0 , E A 0 , R A 0 , S B 0 , I B 0 , E B 0 , R B 0 ), le système suivant (j ∈ {A, B}): dS j (t) dt = -λ j S j (t), S j (0) = S j 0 , (I-9a) dE j (t) dt = λ j S j (t) -δE j (t), E j (0) = E j 0 , (I-9b) dI j (t) dt = δE j (t) -γI j (t), I j (0) = I j 0 , (I-9c) dR j (t) dt = γI j (t), R j (0) = R j 0 . (I-9d)
Avec cette approche, la taille de la population reste constante tout comme la répartition de la population dans les classes A et B, l'indépendance de j pour les paramètres δ et γ exprime que le temps d'incubation et de guérison ne sont pas différenciés en fonction de l'âge, contrairement au taux de contamination λ j . C'est avec ce dernier que l'interaction des deux classes est faite:

λ j = a j (β A I A (t) + β B I B (t))
. Dans [START_REF] Galvani | Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum[END_REF], il est utilisé un contact β j dépendant du temps que nous avons choisi de simplifier (voir la partie 1.2.6 pour l'expression de β j (t)). L'expression de λ j reflète que chaque classe peut être contaminée par les personnes de sa classe mais aussi de l'autre classe, le terme a j indique la capacité à contracter la maladie. Par exemple, si a A > a B cela indique que les personnes de la classe A attrapent plus la maladie que les personnes de la classe B à situation identique. La figure I.13 présente l'évolution d'un tel modèle, en présentant l'évolution de la population par classe. Cette méthode permet de différencier la population selon son âge (ou suivant un autre critère) mais lorsqu'il faut en prendre un nombre important (voir continu) il vaut mieux avoir recours à d'autres méthodes, voir la section 1.2.7. 

(S A (0), E A (0), I A (0), R A (0), S B (0), E B (0), I B (0), R B (0)) = (0.

Contact non homogène

Dans les parties précédentes, nous avons présenté des modèles où l'interaction est proportionnelle au nombre d'infectés et de susceptibles. D'autre possibilités peuvent être considérées en écrivant le modèle de la façon suivante:

dS(t) dt = -f (S(t), I(t)), S(0) = S 0 , (I-10a) dI(t) dt = f (S(t), I(t)) -γI(t), I(0) = I 0 , (I-10b) dR(t) dt = γI(t), R(0) = R 0 . (I-10c)
Ici, f (x, y) est une fonction satisfaisant les contraintes: f (x, y) = 0 pour x = 0 ou y = 0, f (x, y) > 0 pour x, y > 0, et ∂f dx > 0, ∂f dy > 0 pour x, y > 0.

L'interaction entre la classe des susceptibles et des infectés est généralement représentée par une action de masse βxy. Une autre approche est de supposer que les personnes de la classe R n'interfèrent plus dans le contact entre infectés et susceptibles, donc de diviser ce taux par la population concernée restante, c'est-à-dire prendre f (x, y) = βxy/(x+y). Pour refléter le caractère 1.2. Autres modèles déterministes à compartiments périodique de la maladie, il peut être utilisé un taux dépendant du temps, tel que β(t) = m + bsin(2πt) où m représente la moyenne des infections et b l'amplitude (voir [START_REF] Galvani | Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum[END_REF]). Il est également possible de considérer un taux de transmission f (x, y) = xy p (1 + αy q ) -1 avec p > 0, α ≥ 0 et q > 0. Cette forme est une généralisation de la forme précédente (p = 1, α = 0) et de plusieurs autres présentes dans la littérature, voir [START_REF] Hethcote | Some epidemiological models with nonlinear incidence[END_REF], [24], [START_REF] Brauer | Mathematical models in population biology and epidemiology[END_REF] et [START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF] pour plus d'informations.

Structuration par âge

Outre l'adaptation du coefficient de transmission, il est également possible de travailler sur la structuration par âge de la population, comme [START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF] ou [START_REF] Britton | Essential mathematical biology[END_REF]. Cette approche peut s'utiliser quand le coefficient de transmission dépend de l'âge, comme pour la rougeole. De plus, l'âge d'infection peut être important, par exemple pour les maladies plus sévères à certains âges qu'à d'autres. Nous présentons ici une possibilité de modélisation en utilisant des densités de probabilités.

Pour cela, nous introduisons plusieurs notations:

• s(t, a): densité de susceptibles d'âge a au temps t,

• i(t, a): densité d'infectés d'âge a au temps t,

• r(t, a): densité de personnes qui ont été malades d'âge a au temps t,

• n(t, a) = s(t, a) + i(t, a) + r(t, a): proportion de personnes d'âge a au temps t dans la population.

Nous utilisons toujours les lettres majuscules S, I et R pour décrire le nombre total de susceptibles, infectés et guéris (par exemple S(t) = (I-11c)

Modèle stochastique

Les modèles présentés dans les parties 1.1 et 1.2 sont déterministes, mais plusieurs approches stochastiques sont également possibles.

Cette partie reprend la présentation de [START_REF] Allen | An introduction to stochastic processes with applications to biology[END_REF] et [24]; d'autres approches sont disponibles dans [START_REF] Andersson | Stochastic epidemic models and their statistical analysis[END_REF] et [START_REF] Wilkinson | Stochastic modelling for systems biology[END_REF]. Les fonctions S(t), I(t) et R(t) étant dans cette partie des variables aléatoires, elles sont notées S(t), I(t) et R(t).

Chaîne de Markov à temps discret

Dans cette partie, nous supposons que l'horizon de temps est discrétisé: t ∈ {0, ∆t, 2∆t, . . . } . Comme précisé ci-dessus, les classes S(t), I(t) et R(t) prennent des valeurs discrètes comprises entre 1 et N .

a. Le modèle SIS stochastique

Afin d'expliquer le principe de modèle stochastique, nous commençons par présenter la version stochastique du modèle SIS avec effet démographique 1.3. Modèle stochastique basé sur l'approche de [24] et [START_REF] Andersson | Stochastic epidemic models and their statistical analysis[END_REF].

Le modèle SIS est caractérisé par une seule variable aléatoire I(t) car S(t) = N -I(t).

Soit {I(t)} ∞ t=0 le processus stochastique associé à la fonction de probabilité p i (t

) = P[I(t) = i] pour i = 1, • • • , N , Σ N i=0 p i (t) = 1, p i (t) ≥ 0 ∀i, t. Notons p(t) = (p 0 (t), • • • , p N (t)
) le vecteur de probabilité associé à I(t).

La propriété de Markov est respectée si:

P[I(t + ∆t)|I(0), I(∆t), • • • , I(t)] = P[I(t + ∆t)|I(t)].
Cette propriété indique que la valeur future de I dépend uniquement de la valeur actuelle, et non de la trajectoire empruntée pour l'atteindre. L'état actuel t et futur t + ∆t sont liés par la probabilité de transition

p j,i (t + ∆t, t) = P[I(t + ∆t) = j|I(t) = i]
qui ne dépend pas de t, le processus est alors dit homogène en temps. Cette propriété s'explique par le côté autonome du modèle déterministe, c'est pourquoi nous notons simplement p j,i (∆t).

Afin de réduire le nombre de transitions possibles nous supposons qu'en ∆t unités de temps, le nombre d'infectés ne peut varier qu'au plus d'un: si

I(t) = i, alors I(t + ∆(t)) ne peut être égal qu'à i -1, i ou i + 1.
Autrement dit, soit il y a une nouvelle naissance dans la classe I (i → i + 1), une nouvelle infection (i → i + 1), un décès dans la classe I (i → i -1), une guérison (i → i -1) ou rien (i → i) dans un intervalle de ∆t unité de temps.

Si cette hypothèse ne peut être respectée, il faut adapter la probabilité de transition en ajoutant i -2, i + 2, . . . Dans le cas simple où seulement les trois transitions présentées sont possibles, la probabilité de transition doit tenir compte du fait que chaque naissance d'un susceptible doit s'accompagner d'un décès pour garder la taille constante de la population. Afin de simplifier les notations et de lier le processus SIS à un processus de naissances et décès, nous introduisons la probabilité de transition pour une nouvelle infection ou naissance b(i)∆t et celle d'un décès ou d'une guérison d(i)∆t. La probabilité de transition est alors décrite par:

p j,i (∆t) =          b(i)∆t, si j = i + 1, d(i)∆t, si j = i -1, 1 -[b(i) + d(i)] ∆t, si j = i, 0, si j = i -1, i, i + 1. (I-12) Ici b(i) = βi(N -i)/N et d(i) = (µ + β)i.
La somme des trois transitions est égale à 1 car tous les changements possibles durant l'intervalle de temps ∆t sont décrits. Pour assurer que ces probabilités de transition appartiennent bien à l'intervalle [0, 1] il faut choisir ∆t tel que max

i∈{1,...,N } {[b(i) + d(i)] ∆t} ≤ 1.
En utilisant la propriété de Markov ainsi que la probabilité de transition (I-12) la probabilité p i (t + ∆t) peut être exprimée à l'aide de la probabilité en t:

p i (t+∆t) = p i-1 (t)b(i-1)∆t+p i (t)[1-(b(i)+d(i))]∆t+p i+1 (t)d(i+1)∆t pour i = 1, ..., N avec b(i) = βi(N -i)/N et d(i) = (β + µ)i.
Cette expression permet de former une matrice de transition où l'élément à la ligne j et à la colonne i correspond à la probabilité de transition p ji (∆t). Cette matrice P (∆t) tridiagonale de taille (N + 1) × (N + 1) a la forme suivante:

             1 d(1)∆t 0 • • • 0 0 0 1 -(b + d)(1)∆t d(2)∆t • • • 0 0 0 b(1)∆t 1 -(b + d)(2)∆t • • • 0 0 0 0 b(2)∆t • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 • • • d(N -1)∆ 0 0 0 0 • • • 1 -(b + d)(N -1)∆t d(N )∆t 0 0 0 • • • b(N -1)∆t 1 -d(N )∆t              avec la notation (b + d)(i) = [b(i) + d(i)] pour i = 1, ..., N .
La matrice P (∆t) est une matrice stochastique car la somme de chaque colonne est égale à 1. Par ailleurs, seul l'état 0 est absorbant, les N autres étant transitifs.

Pour un vecteur p(0) donné, nous pouvons maintenant écrire: p(∆t) = P (∆t)p(0). Ce processus a la propriété de Markov et est homogène en temps.

La probabilité de transition est définie par:

p (s+k,i+j) (∆t) = P[(∆S, ∆I) = (k, j)|(S(t), I(t)) = (s, i)],
où ∆S = S(t + ∆t) -S(t). Comme pour le modèle SIS, ∆t est choisi suffisamment petit pour qu'il ne puisse y avoir au maximum qu'un changement d'une unité dans chaque classe et que la probabilité de transition suivante reste dans l'intervalle [0, 1]:

p (s+k,i+j) (∆t) =                    βis/N ∆t, si (k, j) = (-1, 1), γi∆t, si (k, j) = (0, -1), µi∆t, si (k, j) = (1, -1), µ(N -s -i)∆t, si (k, j) = (1, 0), 1 -[βis/N + γi + µ(N -s)] ∆t, si (k, j) = (0, 0), 0,
sinon.

(I-13)

Modèle stochastique

Il est possible, en utilisant la propriété de Markov, d'écrire la probabilité de transition en t + ∆t en fonction de celle en t:

p (s,i) (t + ∆t) = p (s+1,i-1) (t) β N (i -1)(s + 1)∆t + p (s,i+1) (t)γ(i + 1)∆t + p (s-1,i+1) (t)b(i + 1)∆t + p (s-1,i) (t)b(N -s + 1 -i)∆t + p (s,i) (t) 1 - β N is + γi + b(N -s) .
Cette probabilité de transition peut aussi être vue comme la solution d'une équation différentielle ordinaire, voir [START_REF] Allen | An introduction to stochastic processes with applications to biology[END_REF] Pour ce faire, nous introduisons la variable aléatoire M k (t) qui décrit l'état dans lequel est l'agent k. Elle peut valoir "Susceptible" (si l'individu est dans la classe "Susceptible"), "Infected" (si l'individu est dans la classe "Infected") ou bien "Recovered" (si l'individu est dans la classe "Recovered"). Comme tous les agents sont identiques, la dépendance en k ne sera plus écrite. A la variable aléatoire M est associée s(t) = P[M (t) = "Susceptible"] et i(t) = P[M (t) = "Inf ected"] représentant respectivement la probabilité que l'individu se trouve dans la classe "Susceptible" et dans la classe "Infected".

Nous utilisons le taux de transmission du modèle SIR, et la chaîne de Markov suivante: (voir l'annexe A page 171 pour une introduction aux chaînes de Markov en temps continu)

P[M (t + ∆t) = "Recovered"|M (t) = "Inf ected"] = γ∆t + o(∆t), P[M (t + ∆t) = "Inf ected"|M (t) = "Susceptible"] = βI(t)∆t + o(∆t). (I-14)
Par le principe du système complet d'événements, pour ∆t fixé, nous avons:

P[M (t + ∆t) = "Susceptible", M (t) = "Susceptible"] = P[M (t) = "Susceptible"] -P[M (t + ∆t) = "Inf ected", M (t) = "Susceptible"] -P[M (t + ∆t) = "Recovered", M (t) = "Susceptible"].
Nous obtenons alors:

P[M (t + ∆t) = "Susceptible", M (t) = "Susceptible"] = s(t) -P[M (t + ∆t) = "Inf ected"|M (t) = "Susceptible"] × P[M (t) = "Susceptible"] + o(∆t). Donc s(t + ∆t) -s(t) = -s(t)βI(t)∆t + o(∆t).
Ce qui, pour ∆t → 0 donne:

ds(t) dt = -βs(t)I(t) di(t) dt = βs(t)I(t) -γi(t).
(I-15) Donc si i(0) = I(0) et s(0) = S(0) alors i(t) = I(t) et s(t) = S(t) pour tout t ≥ 0, ce qui montre que la chaîne de Markov (I-14) est cohérente avec le système SIR (I-1). En particulier ceci montre que S(t) ne dépend pas de l'aléa des trajectoires individuelles de chaque individu et est bien une variable déterministe; d'autres outils techniques qui peuvent être invoquées ici pour obtenir la même indépendance sont les résultats de type "loi du zéro un" de Hewitt-Savage / Kolmogorov [START_REF] Shiryaev | Probability[END_REF].

Chapitre 2 Vaccination

L'un des principaux buts de la modélisation des épidémies est de donner une explication rationnelle à la politique proposée pour contrôler la propagation d'une épidémie. Dans certains cas, les données disponibles ne sont pas suffisantes mais les politiques peuvent se baser sur des mesures qualitatives, comme pour le VIH en Afrique, car les modélisations de propagation peuvent donner une idée sur la politique la plus appropriée. Cette politique peut constituer en l'éducation, l'immunisation des susceptibles, le dépistage et la quarantaine, comme détaillés dans [START_REF] Daley | Epidemic modelling: an introduction[END_REF] et [24]. En terme de modélisation à l'aide du modèle SIR (voir partie 1.1), l'éducation, le dépistage et la quarantaine consistent à faire varier le taux de transmission (le β) ainsi que de diminuer le temps avant guérison (augmenter le γ), pour obtenir R 0 < 1 et donc éteindre l'épidémie. L'immunisation cherche à diminuer le S(0) car si S(0) est inférieur à γ/β alors le nombre d'infectés ne fait que décroître.

La vaccination étant un choix individuel, elle peut être refusée, c'est pourquoi la volonté de vaccination individuelle doit être prise en compte [START_REF] Manfredi | Modeling the interplay between human behavior and the spread of infectious diseases[END_REF]; des questions au sujet de celle-ci ont connu un regain d'intérêt depuis la grippe A H1N1 de 2009 -2010 voir par exemple [START_REF] Caille-Brillet | Trends in influenza vaccination behaviours -results from the copanflu cohort, france, 2006 to 2011[END_REF] et [START_REF] Peretti-Watel | Dramatic change in public attitudes towards vaccination during the 2009 influenza A(H1N1) pandemic in france[END_REF].

Tous les modèles présentés dans le chapitre 1 peuvent introduire une vaccination, par exemple [START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF] propose une approche pour un modèle structuré par âge et [START_REF] Brauer | Mathematical models in population biology and epidemiology[END_REF] dédouble les classes pour différencier les personnes vaccinées. Dans cette partie, nous présentons un modèle SIRV tel qu'utilisé dans les prochains chapitres. 

Modèle de vaccination

La vaccination est un moyen de diminuer le nombre de susceptibles au cours du temps. Dans notre approche, seules les personnes susceptibles sont vaccinables. La proportion de personnes vaccinées jusqu'au moment t est notée V (t), avec V (0 -) = 0. La notation 0 -est nécessaire car V n'est pas nécessairement continue en 0, c'est pourquoi nous écrivons le modèle en privilégiant une notation différentielle générale (dV (t) sera une mesure positive). Nous considérons le système suivant:

dS(t) = -βS(t)I(t)dt -dV (t), S(0 -) = S 0 -, (I-16a) dI(t) = (βS(t) -γ)I(t)dt, I(0 -) = I 0 -, (I-16b) dR(t) = γI(t)dt + dV (t), R(0 -) = R 0 -, (I-16c) dV (t) = t 0 - dV (τ ), V (0 -) = 0. (I-16d)
La modélisation de la vaccination peut être réalisée à l'aide de différentes approches. Si dV (t) = λ(t)S(t)dt alors λ∆t représente la probabilité individuelle de vaccination entre [t, t + ∆t] avec λ(t) ∈ [0, λ max ], mais elle peut aussi prendre des valeurs arbitrairement grandes pour certains types de vaccination. Par ailleurs, la vaccination peut être modélisée en utilisant la vitesse de vaccination: dV (t) = u(t)dt avec u(t) ∈ [0, u max ] où u max représente la capacité maximale de vaccination. Pour rester cohérent avec l'approche de probabilité individuelle, il faut que λ(t) soit inférieur à u(t)/S(t).

Dans le cas général, dV (t) est une mesure positive sur [0, ∞]. En particulier, V peut inclure un nombre dénombrable de masses de Dirac. Une masse de Dirac dans dV se manifeste par une discontinuité de V (t) et permet de modéliser une situation où une proportion non négligeable de la population peut être vaccinée instantanément.

La proportion d'individus vaccinés jusqu'au temps t est t 0 -dV (s); comme V est positive, c'est une intégrale croissante par rapport à t. Cela implique que V est à variation bornée et permet de donner un sens au système différentiel (I-16) (voir partie 2.2).

En toute généralité, la notation S(0 -) est la plus rigoureuse, car elle fait la distinction entre la valeur initiale S(0 -) et sa limite à droite ( lim ǫ→0 ǫ>0 S(ǫ) = S(0 + )). Dans ce cas, S(0) sera égale à S(0 + ), c'est cette notation qui sera utilisée dans la partie III. Néanmoins, dans la partie II, pour simplifier les notations on notera toujours S(0 + ) la limite à droite S(0 + ) = lim ǫ→0 ǫ>0 S(ǫ) mais (exceptionnellement pour t = 0) S(0) sera la valeur initiale S 0 -. 

Existence et unicité pour le modèle SIRV

|F (x)| ≤ C(1 + |x|) et |G(x)| ≤ C(1 + |x|).
(I-17)

Soit u : [0, T ] → R une fonction mesurable bornée et u (v) : [0, T ] → R, v ≥ 1 une suite de fonctions absolument continues, uniformément bornées et telle que, pour v → +∞:

u (v) (0) → u(0), u (v) (T ) → u(T ), ||u (v) -u|| L 1 → 0. (I-18)
Soit t → x v (t) la solution de Carathéodory de:

ẋv = F (x v ) + G(x v ) • u(v) , x(0) = x ∈ R n . (I-19)
Soit t → x(t) la solution généralisée (voir [26, Section 10-2]) de:

ẋ = F (x) + G(x) • u, x(0) = x ∈ R n . (I-20)
Alors, pour v → ∞, nous avons : 

x v (T ) → x(T ) et T 0 |x v (t) -x(t)
Preuve. Soit F (x) = (-βx 1 x 2 , (βx 1 -γ)x 2 , γx 2 ) qui est au moins deux fois continument dérivable sur [0, 1] 3 et Lipschitz (voir 1.1.2), G(x) = (-1, 0, 1). La fonction V (t) = t 0 -dV (s) est une fonction croissante, bornée car V (∞) ≤ 1. Donc V satisfait les conditions du théorème 2.2.1.

Chapitre 3

Contrôle optimal

Afin de résoudre le problème de contrôle optimal, nous auront besoin d'utiliser les solutions de viscosité, introduites par M.G Crandall et P.L Lions en 1981 pour les équations d'Hamilton-Jacobi du premier ordre. Dans un premier temps, nous présentons le principe de la programmation dynamique, puis les solutions de viscosité que nous appliquons à l'équation d'Hamilton-Jacobi-Bellman pour terminer par le principe de Pontryagin. Le lecteur cherchant des détails particuliers sur les solutions de viscosité ou le contrôle optimal peut consulter les livres [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF], [10] ou [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] dont cette partie est extraite.

Programmation dynamique

Nous présentons ici la version avec facteur d'actualisation, comme exposée dans [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], [10] ou encore [START_REF] Bonnans | Commande et optimisation de systèmes dynamiques[END_REF]. Voir le livre [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF] pour une approche où cette hypothèse est relâchée.

Considérons le système décrit par l'équation différentielle ordinaire suivante: Nous définissons maintenant la fonction valeur de ce problème:

ẏ(t) = f (y(t), u(t)) pour t > 0, y(0) = x ∈ R n , (I-23) où f est une application continue de R n × U dans R n ,
Définition 3.1.1. v(x) = inf u∈U J(x, u(•)). (I-25)
Nous pouvons à présent exposer le principe de la programmation dynamique: Théorème 3.1.1. Sous les hypothèses (H1), (H2), (I-24) et λ > 0, la fonction valeur v satisfait, pour tout T > 0:

v(x) = inf u∈U T 0 l(y(t), u(t))e -λt dt + v(y(T ))e -λT .
(I-26)

Solutions de viscosité

Dans cette section, Ω représente un ouvert de R n . Nous présentons la définition de solution de viscosité pour les équations d'Hamilton-Jacobi du première ordre puis pour les équations d'Hamilton-Jacobi-Bellman. Tout d'abord, nous donnons la définition des super différentielles et sousdifférentielles d'une fonction u : Ω → R. Définition 3.2.1. L'ensemble des super différentielles de u au point x est donné par:

D + u(x) = p ∈ R n ; lim sup y→x u(y) -u(x) -p • (y -x) |y -x| . (I-27)
De même, l'ensemble des sous différentielles de u au point x est:

D -u(x) = p ∈ R n ; lim inf y→x u(y) -u(x) -p • (y -x) |y -x| . (I-28)
En terme d'interprétation graphique, un vecteur p ∈ R n appartient à D + u(x) si l'hyperplan y → u(x) + p • (yx) est tangent par le dessus au graphique de u au point x.

Le lemme 3.2.1 donne une caractérisation très utile des sous et super différentielles. Nous suivons la même démonstration que [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF].

Preuve. Soit p ∈ D + u(x). Alors il existe δ > 0 et une fonction σ : [0, ∞[ → R continue, croissante avec σ(0) = 0, telle que, pour |y -x| < δ: u(y) ≤ u(x) + p • (y -x) + σ(|y -x|)|y -x|. (I-29)
Soit la fonction dérivable ρ définie par:

ρ(r) = r 0 σ(t)dt.
Alors, ρ(0) = ρ ′ (0) = 0 et ρ(2r) ≥ σ(r)r.

Par conséquent, la fonction:

ϕ(y) =u(x) + p • (y -x) + ρ(2|y -x|), (I-30) est C 1 (Ω) et satisfait ϕ(x) = u(x), ∇ϕ(x) = p.
De plus, pour |y -x| < δ nous avons en utilisant (I-29) et (I-30):

u(y) -ϕ(y) = σ(|y -x|)|y -x| -ρ(2|y -x|) ≤ 0 = u(x) -ϕ(x).
D'où la différence uϕ atteint un maximum local au point x.

Pour prouver la réciproque, supposons maintenant que ∇ϕ(x) = p et uϕ atteint un maximum local en x. Alors:

lim sup y→x u(y) -u(x) -p • (y -x) |y -x| ≤ lim sup y→x ϕ(y) -ϕ(x) -p • (y -x) |y -x| = 0,
(I-31) ce qui complète la preuve de (i).

Unicité des solutions d'équation de type HJ

Remarque 5. Si u est différentiable, alors D + u(x) = D -u(x) = {∇u(x)}. En effet, si u est différentiable en x, alors ∇u(x) ∈ D + u(x). Par ailleurs, si ϕ ∈ C 1 est telle que uϕ atteint un maximum local en x, alors ∇ϕ(x) = ∇u(x), donc D + u(x) ne peut contenir d'autre vecteur que ∇u(x).

Dans un premier temps, nous utilisons l'équation d'Hamilton-Jacobi du premier ordre: 

F (x, u(x), ∇u(x)) = 0, (I-32) où F : Ω × R × R n → R
F (x, u(x), p) ≥ 0 pour tout x ∈ Ω, p ∈ D -u(x). (I-34)
On dit alors que u est une solution de viscosité de (I-32) s'il s'agit d'une sous et super solution au sens des viscosités. Si l'équation dépend du temps, nous pouvons par exemple considérer l'équation (I-35), où ∇ϕ représente le gradient de ϕ par rapport à x:

ϕ t (t, x) + H(t, x, ∇ϕ) = 0, (I-35) avec H : [0, T ] × R n × R n → R et ϕ(0, x) = ϕ(x), x ∈ R n .
En utilisant le lemme 3. Dans cette partie, nous revenons sur l'équation (I-32). Pour montrer l'unicité, nous posons deux hypothèses pour nous mettre dans le cadre traité dans [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF].

(H1) Pour tout R > 0 il existe γ R > 0 tel que: ii. Soit x 0 ∈ Ω, comme il s'agit d'un maximum de uv alors ∇u(x 0 ) = ∇v(x 0 ). Or u est super solution de (I-32), donc F (x 0 , u(x 0 ), ∇u(x 0 )) ≤ 0, 3.3. Unicité des solutions d'équation de type HJ de même pour v qui est sous solution:

F (x, u, p) -F (x, v, p) ≥ γ R (u -v), pour tout x ∈ Ω, -R ≤ v ≤ u ≤ R et p ∈ R n ( ∀ 0 < R < +∞). (H2) |F (x, u, p)-F (y, u, p)| ≤ m R (|x-y|(1+|p|)) où m R (t) → 0 pour t → 0, x, y ∈ Ω, -R ≤ u ≤ R , et p ∈ R n ( ∀0 < R < +∞).
F (x 0 , v(x 0 ), ∇v(x 0 )) ≥ 0.
En soustrayant et en utilisant l'égalité des gradients, nous obtenons:

F (x 0 , u(x 0 ), ∇u(x 0 )) -F (x 0 , v(x 0 ), ∇u(x 0 )) ≤ 0. Si R = max(||u|| ∞ , ||v|| ∞ ), γ = γ R par (H1) nous avons: γ(u(x 0 ) -v(x 0 )) ≤ F (x 0 , u(x 0 ), ∇u(x 0 )) -F (x 0 , v(x 0 ), ∇u(x 0 )) ≤ 0
ce qui permet de conclure puisque γ > 0.

2. Revenons maintenant au cas général, nous conservons les valeurs de R et γ précédemment introduites et nous ajoutons m = m R . Supposons toujours par l'absurde que M > 0. Procédons à la technique du dédoublement de variables avec la fonction test:

ψ ǫ (x, y) = u(x) -v(y) - |x -y| 2 ǫ 2 , ∀x, y ∈ Ω, et notons M ǫ son maximum.
Dans un premier temps, nous montrons quelques propriétés concernant les points (x ǫ , y ǫ ) qui nous seront utiles pour la suite, et permettent de montrer que pour ǫ assez petit, (x ǫ , y ǫ ) ∈ Ω 2 .

2.a. Comme (x ǫ , y ǫ ) est un maximum de la fonction ψ ǫ , nous avons, pour x, y ∈ Ω, ψ(x, y) ≤ ψ(x ǫ , y ǫ ) = M ǫ et en particulier pour y = x: u(x)v(x) ≤ M ǫ ; ce qui donne

M ≤ M ǫ ,
en prenant le maximum sur x.

De même, comme u et v sont bornées, nous avons également:

M ≤ u(x ǫ ) -v(y ǫ ) - |x ǫ -y ǫ | 2 ǫ 2 ≤ 2R - |x ǫ -y ǫ | ǫ 2 .
En utilisant l'hypothèse que M > 0, nous en déduisons |xǫ-yǫ| 2

ǫ 2 ≤ 2R c'est-à-dire: |x ǫ -y ǫ | ≤ √ 2Rǫ. (I-39)
Nous introduisons le module de continuité m v de v, qui peut se définir par:

m v (t) = sup |x-y|≤t |v(x) -v(y)|.
Comme v est une fonction uniformément continue sur le compact Ω, m v (t) → 0 pour t → 0. Par ailleurs, en utilisant la positivité du terme de pénalisation et la définition de M :

M ≤ M ǫ = u(x ǫ ) -v(y ǫ ) - |x ǫ -y ǫ | 2 ǫ 2 ≤ u(x ǫ ) -v(x ǫ ) + m v (|x ǫ -y ǫ |). (I-40)
En combinant avec le résultat de (I-39), nous obtenons:

M ≤ M ǫ ≤ M + m v ( √ 2Rǫ), ce qui montre que M ǫ → M quand ǫ → 0.
De plus, comme x ǫ et y ǫ sont un maximum de ψ ǫ , ψ ǫ (x ǫ , y ǫ ) ≥ ψ ǫ (x ǫ , x ǫ ) ce qui se réécrit sous la forme:

|xǫ-yǫ| 2 ǫ 2 ≤ v(y ǫ ) -v(x ǫ ). Par l'uniforme conti- nuité de v avec (I-39), nous en déduisons que |xǫ-yǫ| 2 ǫ 2 → 0 quand ǫ → 0.
Enfin, supposons, par exemple, que x ǫ appartient à ∂Ω, alors:

u(x ǫ ) -v(y ǫ ) ≤ u(x ǫ ) -v(x ǫ ) + m v (|x ǫ -y ǫ |) ≤ m v ( √ 2Rǫ),
car u ≤ v par hypothèse sur ∂Ω. Mais u(x ǫ )v(y ǫ ) converge vers M > 0 donc il y a contradiction pour ǫ suffisamment petit. Le raisonnement est analogue pour y ǫ . Par conséquent, (x ǫ , y ǫ ) ∈ Ω 2 pour ǫ suffisamment faible. 2.b. La fonction:

x → u(x) -v(y ǫ ) + |x -y ǫ | 2 ǫ 2 := u(x) -φ(x),
atteint son maximum au point x ǫ . Or u est sous solution de (I-32) et φ est régulière donc:

F x ǫ , u(x ǫ ), 2(x ǫ -y ǫ ) ǫ 2 ≤ 0. (I-41)
De même, la fonction: 

y → v(y) -u(x ǫ ) + |x ǫ -y| 2 ǫ 2 := v(y) -η(y), 3 
F y ǫ , v(x ǫ ), 2(x ǫ -y ǫ ) ǫ 2 ≥ 0. (I-42)
Pour alléger les expressions à suivre, nous notons p ǫ = 2(xǫ-yǫ)

ǫ 2
. Après soustraction de (I-42) à (I-41) et en faisant apparaître le terme F (x ǫ , v(y ǫ ), p ǫ ) nous obtenons:

F (x ǫ , u(x ǫ ), p ǫ ) -F (x ǫ , v(y ǫ ), p ǫ ) ≤ F (y ǫ , v(x ǫ ), p ǫ ) -F (x ǫ , v(y ǫ ), p ǫ ) .
Puis nous appliquons (H1) au membre de gauche et (H2) au membre de droite pour obtenir:

γ(u(x ǫ ) -v(y ǫ )) ≤ m(|x ǫ -y ǫ |(1 + |p ǫ |)) et en reprenant la définition de M ǫ : γM ǫ ≤ m |x ǫ -y ǫ | + 2|x ǫ -y ǫ | 2 ǫ 2 -γ |x ǫ -y ǫ | 2 ǫ 2 (I-43)
Pour aboutir à une contradiction, nous utilisons que pour ǫ → 0, le terme de droite dans (I-43) tend vers 0 et que M ǫ → M .

Équation d'Hamilton-Jacobi du premier ordre avec dépendance en temps

Par une méthode similaire présente dans [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF], nous allons montrer l'unicité de solution pour l'équation (I-35) sous les hypothèses suivantes: -35). Si u(0, x) ≤ v(0, x) pour tout x ∈ R n , alors:

(H3) La fonction H : [0, T ] × R n × R n satisfait
u(t, x) ≤ v(t, x) pour tout (t, x) ∈ [0, T ] × R n . (I-46)
Avant de prouver le théorème, nous avons besoin du lemme suivant, assurant la continuité aux bords: 

φ t (T, x 0 ) + H(T, x 0 , ∇φ(T, x 0 )) ≤ 0. (I-47)
Preuve. Nous pouvons supposer que (T, x 0 ) est un maximum local strict pour uφ. Pour ǫ > 0, considérons la fonction suivante:

φ ǫ (t, x) = φ(t, x) + ǫ T -t . Chaque fonction u -φ ǫ va donc admettre un maximum local au point (t ǫ , x ǫ ) avec t ǫ < T et (t ǫ , x ǫ ) → (T, x 0 ) quand ǫ → 0 + . Comme u est une sous solution, nous avons: φ t + H(t ǫ , x ǫ , ∇φ(t ǫ , x ǫ )) ≤ 0. En utilisant que φ t = φ ǫ,t -ǫ (T -t) 2
, ∇φ = ∇φ-ǫ dans l'expression précédente, nous obtenons (I-47) en faisant ǫ → 0 + . Nous présentons maintenant la preuve du théorème 3.3.2.

Preuve. 1. Si (I-46) n'est pas satisfaite, il existe λ > 0 telle que:

sup{u(t, x) -v(t, x) -2λt} = σ > 0.
(I-48) Soit (t 0 , x 0 ) le point où le supremum est atteint. Si u et v sont différentiables en ce point, alors ∇u(t 0 , x 0 ) = ∇v(t 0 , x 0 ) et par définition des sous et super solutions:

u t (t 0 , x 0 ) + H(t 0 , x 0 , ∇u) ≤ 0, v t (t 0 , x 0 ) + H(t 0 , x 0 , ∇u) ≥ 0.
Ce qui, en soustrayant les deux expressions, donne

u t (t 0 , x 0 ) -v t (t 0 , x 0 ) ≤ 0 alors que u t (t 0 , x 0 ) -v t (t 0 , x 0 ) -2λ ≥ 0 ce qui est impossible. 2.
Pour généraliser ce résultat, nous introduisons la fonction de pénalisation suivante:

Φ ǫ (t, x, s, y) = u(t, x) -v(s, y) -λ(t + s) -ǫ(|x| 2 + |y| 2 ) - 1 ǫ 2 (|t -s| 2 + |x -y| 2 ).
(I-49)

Unicité des solutions d'équation de type HJ

Grâce au terme de pénalisation, Φ ǫ atteint un maximum global en un point

(t ǫ , x ǫ , s ǫ , y ǫ ) ∈ (]0, T ] × R n ) 2 . Pour ǫ > 0 assez petit, nous avons Φ ǫ (t ǫ , x ǫ , s ǫ , y ǫ ) ≥ max t,x Φ ǫ (t, x, t, x) ≥ σ/2.
3. Observons maintenant que la fonction:

(t, x) →u(t, x) -v(s ǫ , y ǫ ) + λ(t + s ǫ ) + ǫ(|x| 2 + |y ǫ | 2 ) + 1 ǫ 2 (|t -s ǫ | 2 + |x -y ǫ | 2 ) :=u(t, x) -φ(t, x), atteint son maximum au point (t ǫ , x ǫ ). Comme u est sous-solution et φ est C 1 , nous avons: λ + 2 ǫ 2 |t ǫ -s ǫ | + H t ǫ , x ǫ , 2(x ǫ -y ǫ ) ǫ 2 + 2ǫx ǫ ≤ 0. (I-50)
Dans le cas où t ǫ = T , le résultat découle du lemme 3.3.3.

De même, la fonction:

(s, y) →v(s, y) 

-u(t ǫ , x ǫ ) -λ(t ǫ + s) -ǫ(|x ǫ | 2 + |y| 2 ) - 1 ǫ 2 (|t ǫ -s| 2 + |x ǫ -y| 2 ) :=v(s, y) -ψ(s, y), atteint son minimum au point (s ǫ , y ǫ ). Comme v est super-solution et ψ est C 1 , nous avons: -λ + 2 ǫ 2 |t ǫ -s ǫ | + H s ǫ , y ǫ , 2(x ǫ -y ǫ ) ǫ 2 -2ǫy ǫ ≥ 0. (I-51)
2λ ≤ H t ǫ , x ǫ , 2(x ǫ -y ǫ ) ǫ 2 + 2ǫx ǫ -H s ǫ , y ǫ , 2(x ǫ -y ǫ ) ǫ 2 -2ǫy ǫ (I-52) ≤ Cǫ(|x ǫ | + |y ǫ |) + C(|t ǫ -s ǫ | + |x ǫ -y ǫ |) 1 + |x ǫ -y ǫ | ǫ 2 + ǫ(|x ǫ | + |y ǫ | .
Pour terminer la preuve, il suffit de montrer que le terme de droite dans (I-52) tend vers 0 quand ǫ → 0.

5.

Comme u et v sont uniformément bornées, le terme de pénalisation ne doit pas avoir des bornes dépendantes de ǫ, par conséquent:

|x ǫ |, |y ǫ | ≤ C ′ √ ǫ et |t ǫ -s ǫ |, |x ǫ -y ǫ | ≤ C ′ ǫ, (I-53) pour une constante C ′ . Cela implique ǫ(x ǫ | + |y ǫ |) ≤ 2C ′ √ ǫ. (I-54)
Pour obtenir une borne utile pour le terme |xǫ-yǫ| ǫ 2 , nous remarquons que

Φ(t ǫ , x ǫ , s ǫ , y ǫ ) ≥ Φ(t ǫ , x ǫ , t ǫ , x ǫ ), c'est-à-dire: 1 ǫ 2 |t ǫ -s ǫ | 2 + |x ǫ -y ǫ | 2 ≤ v(t ǫ , x ǫ ) -v(s ǫ , y ǫ ) + λ(t ǫ + s ǫ ) + ǫ(|x ǫ | 2 + |y ǫ | 2 ).
(I-55) Comme v est uniformément continue, le terme de droite tend vers 0 quand ǫ → 0 + et par comparaison le terme de gauche aussi.

Par conséquent, le terme de droite de (I-52) tend vers 0, ce qui est contradictoire avec λ > 0.

Démonstration de l'unicité

Le résultat de comparaison donne un résultat d'unicité dès que l'équation est associée à une condition aux bords de type Dirichlet:

u = ϕ sur ∂Ω. (I-56)
En effet, si u 1 et u 2 sont deux solutions de (I-32) page 36 et (I-56) dans Ω, en particulier u 1 est une sous solution et u 2 une sur solution. D'après (I-56), u 1 = u 2 = ϕ sur ∂Ω donc en appliquant le théorème 3.3.1 page 37 il vient que u 1 ≤ u 2 sur Ω. En échangeant le rôle de u 1 et u 2 , nous obtenons l'inégalité inverse, et donc l'égalité u 1 = u 2 sur Ω.

Le raisonnement est identique pour prouver l'unicité des solutions de l'équation (I-35).

Équation Hamilton-Jacobi-Bellman pour un problème de contrôle optimal

Dans cette partie, nous illustrons les solutions de viscosité à travers la résolution d'un problème de minimisation. Nous reprenons le contexte, le théorème et la démonstration présentés dans le livre [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF].

Équation Hamilton-Jacobi-Bellman pour un problème de contrôle optimal

Soit le système d'évolution suivant:

ẋ(t) = f (x(t), u(t)) avec x(s) = y ∈ R n , (I-57) où u(t) ∈ U et t ∈ [s, T ] avec U ∈ R m l'ensemble compact des valeurs admissibles et f : R n × U → R n est une fonction continue telle que, pour une certaine constante C: |f (x, u)| ≤ C, |f (x, u) -f (y, u)| ≤ C|x -y| pour tout x, y, ∈ R n , u ∈ U.
(I-58) Nous cherchons à minimiser le coût J défini par:

J(s, y, u) = T s L(x(t), u(t))dt + ψ(x(T )).
(I-59)

Nous supposons que L et ψ sont des fonctions continues définies respectivement sur R n × U à valeurs dans R et de R n à valeurs dans R.

Par ailleurs, L et ψ respectent les bornes suivantes: -

|L(x, u)| ≤ C; |ψ(x)| ≤ C, (I-60) |L(x, u) -L(y, u)| ≤ C|x -y|; |ψ(x, u) -ψ(y, u)| ≤ C|x -y|, ( 
[V t + H(x, ∇V )] = 0 avec (t, x) ∈ ]0, T [×R n , (I-65) avec la condition terminale V (T, x) = ψ(x), x ∈ R N .
Remarque 6. Dans la démonstration, nous admettrons que la fonction valeur est bornée, uniformément continue et lipschitzienne. Le lecteur intéressé par cette démonstration est invité à consulter la preuve du lemme 8.6.2 (page 187 à 189) du livre [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF], la démonstration présentée étant également extraite de ce livre.

Preuve. Pour montrer que V est une solution de viscosité de (I-65), nous allons montrer qu'il s'agit d'une sous solution et d'une sur solution. Pour ce faire, nous notons ϕ une fonction

C 1 (]0, T [×R n ).
1. Montrons que V est sous solution. Pour ce faire, nous allons prouver que si Vϕ atteint un maximum local au point (t 0 , x 0 ) ∈]0, T [×R n alors:

ϕ t (t 0 , x 0 ) + min w∈U [∇ϕ(t 0 , x 0 ) • f (x 0 , w) + L(x 0 , w)] ≥ 0. (I-66)
Dans cette partie, nous supposons que ϕ est telle que

V (t 0 , x 0 ) = ϕ(t 0 , x 0 ) et V (t, x) ≤ ϕ(t, x) pour tout t, x dans un voisinage de t 0 , x 0 .
Nous raisonnons maintenant par l'absurde: si (I-66) n'est pas vérifiée, alors il existe w ∈ U et θ > 0 tels que:

ϕ t (t 0 , x 0 ) + ∇ϕ(t 0 , x 0 ) • f (x 0 , w) + L(x 0 , w) ≤ -θ. (I-67)
Par continuité, (I-67) implique, pour δ > 0, |t -

t 0 | ≤ δ et |x -x 0 | ≤ C: ϕ t (t, x) + ∇ϕ(t, x) • f (x, w) + L(x, w) ≤ -θ. (I-68)
Soit x(t) la solution de ẋ(t) = f (x(t), w) avec x(t 0 ) = x 0 , c'est-à-dire avec le contrôle constant égal à w. Alors nous avons:

V (t 0 + δ, x(t 0 + δ)) -V (t 0 , x 0 ) ≤ ϕ(t 0 + δ, x(t 0 + δ)) -ϕ(t 0 , x 0 ) = t 0 +δ t 0 d dt ϕ(t, x(t))dt = t 0 +δ t 0 [ϕ t (t, x(t)) + ∇ϕ(t, x(t)) • f (x(t), w)] dt ≤ - t 0 +δ t 0 L(x(t), w)dt -θδ en utilisant (I-68). Autrement dit, V (t 0 , x 0 ) ≤ t 0 +δ t 0 L(x(t), w)dt -θδ + V (t 0 + δ, x(t 0 + δ)
) ce qui est contradictoire avec le principe de programmation dynamique (voir la 3.5. Principe de Pontryagin partie 3.1), donc (I-66) est vérifiée.

2. Montrons que V est sur solution. Pour ce faire, nous allons prouver que si Vϕ atteint un minimum local au point (t 0 , x 0 ) ∈]0, T [×R n alors:

ϕ t (t 0 , x 0 ) + min w∈U [∇ϕ(t 0 , x 0 ) • f (x 0 , w) + L(x 0 , w)] ≤ 0. (I-69)
De la même façon que précédemment, nous supposons que ϕ est telle que

V (t 0 , x 0 ) = ϕ(t 0 , x 0 ) et V (t, x) ≥ ϕ(t, x) pour tout t, x dans un voisinage de t 0 , x 0 .
Nous raisonnons une nouvelle fois par l'absurde: si (I-69) n'est pas vérifiée, il existe θ > 0 telle que, pour tout contrôle w ∈ U ,

ϕ t (t 0 , x 0 ) + ∇ϕ(t 0 , x 0 ) • f (x 0 , w) + L(x 0 , w) ≥ θ. (I-70) Ce qui donne, par continuité pour δ > 0, |t -t 0 | ≤ δ et |x -x 0 | ≤ C, ϕ t (t, x) + ∇ϕ(t, x) • f (x, w) ≥ θ -L(x, w). (I-71)
Prenons maintenant un contrôle arbitraire, dans l'ensemble des contrôles admissibles, et notons x(t) la trajectoire associée. Nous avons alors:

V (t 0 + δ, x(t 0 + δ)) -V (t 0 , x 0 ) ≥ ϕ(t 0 + δ, x(t 0 + δ)) -ϕ(t 0 , x 0 ) = t 0 +δ t 0 d dt ϕ(t, x(t))dt = t 0 +δ t 0 [ϕ t (t, x(t)) + ∇ϕ(t, x(t)) • f (x(t), u(t))] dt ≥ t 0 +δ t 0 θ -L(x(t), u(t))dt en utilisant (I-71).
Pour tous les contrôles u(•) nous avons:

V (t 0 + δ, x(t 0 + δ)) + t 0 +δ t 0 L(x(t), u(t))dt ≥ V (t 0 , x 0 ) + θδ. (I-72)
En prenant l'infinimum sur les contrôles admissibles du côté gauche de cette dernière équation, nous avons que cet infinimum est strictement plus grand que V (t 0 , x 0 ). Or, d'après le principe de programmation dynamique (voir partie 3.1), cet infinimum devrait être exactement V (t 0 , x 0 ), donc (I-69) est vérifiée.

L'unicité se démontre à l'aide d'un théorème de comparaison, similaire au théorème 3.3.1 démontré.

Principe de Pontryagin

Dans cette partie, nous présentons le principe de Pontryagin de façon similaire à [10] dans le cas d'horizon de temps fini. Des exemples et plus de détails sont également disponibles dans les livres [START_REF] Bressan | Introduction to the mathematical theory of control[END_REF] et [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF]. Ensuite, nous illustrons ce principe à l'aide d'un exemple étudié dans [START_REF] Rodrigues | Optimal control of a dengue epidemic model with vaccination[END_REF].

Pour énoncer le principe de Pontryagin, nous allons considérer le problème dit "de Mayer" en horizon fini. Soit le système différentiel suivant: Nous voulons minimiser la fonction de coût suivante:

y ′ (t) = f (y(t), u(t)), y(0) = x 0 ∈ R n , (I-73) avec f : R n × U → R n différentiable
J(T, x, u) = g(y(T, u)), (I-74) où g ∈ C 1 (R n ) et y(t, u) est la solution de (I-73) partant de x 0 = x ∈ R n .
Notons U l'ensemble des contrôles admissibles, c'est-à-dire

U = {u : [0, T ] → U, u mesurable}.
La fonction valeur associée à ce problème est:

v(x, t) = inf u∈U J(x, t, u).
Théorème 3.5.1. Soit u * ∈ A un contrôle donnant la trajectoire optimale y(•, u * ) et p la solution du système adjoint:

p ′ (t) = -p(t)∇f (y * (t), u * (t)) 0 < t < T, p(T ) = ∇g(y * (T )). (I-75) Alors: -p(t) • f (y * (t), u * (t)) = max a∈U {-p(t) • f (y(t), a)} = H(y(t), p(t)), v t (y(t), T -t) = p(t) • f (y(t), u(t)) = -H(y(t), p(t)), où l'hamiltonien est H(x, q) = sup u∈U {-q • f (x, u)}.

Principe de Pontryagin

Remarque 7. Soit la fonctionnelle de coût du problème de Bolza:

J(T, x, u) = T 0 l(y(s, u), u)ds, (I-76)
avec l une fonction continue de R n × U à valeur dans R et telle qu'il existe un module w l et une constante M telle que:

|l(x, u) -l(y, a)| ≤ w l (|x -y|) et |l(x, u)| ≤ M ∀x, y, R n , u ∈ U. (I-77)
Alors le problème de Bolza peut être mis sous la forme d'un problème de Mayer en ajoutant une variable réelle y n+1 au vecteur y avec la dynamique:

y n+1 (t) = l(y(t), u(t)), y n+1 (0) = 0. (I-78)
Pour illustrer l'utilisation de ce principe, considérons le modèle SIR-ASI présenté dans [START_REF] Rodrigues | Optimal control of a dengue epidemic model with vaccination[END_REF]. Cet article propose un modèle de propagation de la dengue dans une population humaine en prenant en compte que le seul moyen de propagation est la piqûre d'un moustique contaminé. Pour ce faire, il faut considérer les deux populations de façon distincte: les hôtes, qui sont répartis en 3 compartiments (suivant un modèle type SIR) et les vecteurs (moustiques) avec également trois compartiments. Plus précisément, les classes utilisées sont les suivantes:

• S h : nombre d'hôtes susceptibles,

• I h : nombre d'hôtes infectés, • R h : nombre d'hôtes guéris,
• A m : nombre de moustiques en phase aquatique c'est-à-dire au stade larvaire et nymphal,

• S m : nombre de moustiques adultes susceptibles,

• I m : nombre de moustiques adultes infectés.

Pour modéliser l'interaction entre ces différentes classes, nous utilisons les paramètres suivants:

• N h = S h + I h + R h : nombre total d'hôtes considérés,
• µ h : taux de natalité et de décès des hôtes,

• µ m : taux de mortalité des moustiques adultes,

• µ A : taux de mortalité des moustiques en phase aquatique,

• B: nombre moyen de piqûres par jour d'un moustique adulte,

• β mh : probabilité qu'un moustique infecte un humain lors d'une piqûre,

• β hm : probabilité qu'un humain infecté transmette la maladie au moustique qui le pique,

• ϕ: nombre d'oeufs déposés par jour par un moustique adulte,

• 1/γ h : temps moyen d'infection des humains,

• 1/η A : temps moyen pour qu'un moustique devienne adulte,

• u(t): couverture vaccinale des hôtes susceptibles à l'instant t (c'est la variable de contrôle),

• σ: inefficacité du vaccin (si σ = 0 le vaccin est parfaitement efficace, si σ = 1, le vaccin n'a pas d'effet),

• k: proportion de moustiques par rapport au nombre d'humains à l'instant initial.

Le modèle s'écrit alors:

                       dS h dt = µ h N h -Bβ mh Im N h + µ h + u S h + σuR h , S h (0) = S h 0 , dI h dt = Bβ mh Im N h S h -(γ h + µ h )I h , I h (0) = I h 0 , dR h dt = γ h I h + uS h -(σu + µ h ) R h , R h (0) = R h 0 , dAm dt = ϕ 1 -Am kN h (S m + I m ) -(η A + µ A ) A m , A m (0) = A m 0 , dSm dt = η A A m -Bβ hm I h N h + µ m S m , S m (0) = S m 0 , dIm dt = Bβ hm I h N h S m -µ m I m , I m (0) = I m 0 .
(I-79)

En notant r I le coût unitaire d'une personne infectée et r V le coût lié au vaccin, nous cherchons à minimiser la fonctionnelle de coût suivante: 

min u∈U J(x, u) = T 0 r I I h (t) 2 + r V u(t) 2 dt, (I-80)
U = {u : [0, T ] → [0, 1], u mesurable}.
Pour utiliser le théorème 3.5.1 nous utilisons la remarque 7 en ajoutant la variable Y suivant la dynamique :

dY dt (t) = r I I h (t) 2 + r V u(t) 2 , Y (0) = 0. (I-81)
Notons p i (t) les variables adjointes, avec i = 1, . . . , 7 et x(t) le vecteur des états. L'hamiltonien de ce problème est alors:

H(x(t), p(t), u(t)) = -p 1 µ h N h -Bβ mh I m N h + µ h + u S h + σuR h -p 2 Bβ mh I m N h S h -(γ h + µ h ) I h -p 3 [γ h I h + uS h -(σu + µ h ) R h ] -p 4 ϕ 1 - A m kN h (S m + I m ) -(η A + µ A ) A m -p 5 η A A m -Bβ hm I h N h + µ m S m -p 6 Bβ hm I h N h S m -µ m I m + r I I 2 h + r V u 2 -p 7 r I I h (t) 2 + r V u(t) 2 . (I-82)
En utilisant le théorème 3.5.1 à travers cette égalité:

H (x * (t), p * (t), u * (t)) = min u∈[0,1] H (x * (t), p * (t), u) , (I-83)
pour calculer u tel que ∂H ∂u = 0 et en prenant en compte que u ∈ [0, 1] nous obtenons:

u * = min 1, max 0, (p 1 -p 3 ) (S h -σR h ) 2r V p 7 . (I-84)
Cela permet d'obtenir l'équation de l'état adjoint en utilisant l'équation p ′ i (t) = ∂H ∂x i qui est une réécriture de (I-75):

                             dp 1 dt = (p 1 -p 2 ) Bβ mh Im N h + p 1 µ h + (p 1 -p 3 )u, dp 2 dt = -2r I I h + p 2 (γ h + µ h ) -p 3 γ h + (p 5 -p 6 ) Bβ hm Sm N h , dp 3 dt = -p 1 σu + p 3 (µ h + σu), dp 4 dt = p 4 (ϕ Sm+Im kN h + η A + µ A ) -p 5 η A , dp 5 dt = -p 4 ϕ 1 -Am kN h + (p 5 -p 6 )Bβ hm I h N h + p 5 µ m , dp 6 dt = (p 1 -p 2 ) Bβ mh S h N h -p 4 ϕ 1 -Am kN h + p 6 µ m dp 7 dt = 0. avec condition terminale p i (T ) = 0 pour i ∈ {1, . . . 6} et p 7 (T ) = 1, cela permet d'obtenir p 7 (t) = 1 pour tout t dans [0, T ].

Chapitre 4

Théorie des jeux

Introduction générale

La première étude sous forme de jeux dans la littérature économique date du papier de Cournot, en 1838, suivie par d'autres papiers, comme celui de Bertrand (1883) et Edgeworth (1925). Ces travaux étudient les prix dans le cadre d'oligopole (peu de vendeurs et beaucoup de clients). En 1944 le début du cadre général de la théorie des jeux est posé dans le livre de John Von Neumann et Oskar Morgenstern intitulé "Theory of games and Behavior" [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF]. Ils proposent un cadre sous forme de jeux pour étudier, dans un jeux dit à somme nulle (aucun gain commun possible), deux joueurs cherchant à maximiser leur gain d'argent vis-à-vis de l'autre. John F. Nash a ensuite présenté, pour des jeux à somme non nulle, ce qui deviendra l'équilibre de Nash en 1949 dans l'article "Equilibrium Points in n-Person Games".

Cette partie présente une brève introduction à la théorie des jeux, disponible avec plus de détails et notions dans [START_REF] Fudenberg | Game theory[END_REF].

Nous nous intéressons surtout aux jeux statiques, c'est-à-dire qui se déroulent en une seule fois, à l'opposé des jeux itératifs qui eux se répètent. Dans notre cas, un jeu se défini à l'aide de trois éléments, formant sa structure:

• l'ensemble des joueurs i ∈ {1, . . . , N }, • l'ensemble S i des stratégies possibles pour chaque joueur (dites stratégies pures). Nous notons S = Π N i=1 S i . • les fonctions de payoff u i qui associent, pour chaque joueur, l'utilité de von Neumann-Morgenstern u i (s) pour chaque profil s = (s 1 , . . . , s N ) ∈ 

(M ), σ(M ), σ 1 (D)) tel que σ 1 (M )+σ(M )+σ 1 (D) = 1. Si le joueur 1 choisit de jouer σ 1 = ( 1 3 , 1 3 , 1 3 ) et le joueur 2 σ 2 = (0, 1 2 , 1 
2 ) alors:

u 1 (σ 1 , σ 2 ) = 1 3 (0•4+ 1 2 •5+ 1 2 •6)+ 1 3 (0•2+ 1 2 •8+ 1 2 •3)+ 1 3 (0•3+ 1 2 •9+ 1 2 •2) = 11 2 . De même u 2 (σ 1 , σ 2 ) = 27 6 .
Toujours sur le même exemple, décrivons d'une manière rationnelle le déroulement du jeu. Qu'importe ce que joue le joueur 1, la stratégie R est mieux que M . Sachant cela, le joueur 1 sait que le joueur 2 ne jouera jamais M . Dans ce cas, pour le joueur 1, la stratégie U est meilleure que la stratégie M ou D. Le joueur 2 sait alors que le joueur 1 va jouer U , donc il jouera L. Dans ce jeu, la stratégie M est strictement dominée et le processus d'élimination utilisé ci-dessus est appelé dominance itérative.

Nous présentons la définition formelle d'une stratégie dominée, pour cela nous noterons (s

′ i ; s -i ) la stratégie (s 1 , s 2 , . . . , s i-1 , s ′ i , s i+1 ).
Définition 4.1.2. Une stratégie pure s i est dite strictement dominée pour le joueur i s'il existe σ ′ i ∈ Σ i telle que:

u i (σ ′ i , s -i ) > u i (s i , s -i ) pour tout s -i ∈ S -i .
Pour donner une deuxième illustration au principe de la dominance itérative, considérons le dilemme du prisonnier.

Dans ce jeu, deux complices sont arrêtés pour un crime. La police manquant de preuve pour les inculper, a besoin du témoignage de l'un contre l'autre. La police sépare les deux suspects en les mettant dans deux cellules différentes pour qu'ils ne puissent pas communiquer et propose à chacun les choix suivants:

• s'il coopère et que son complice non, il sera libéré et touchera une récompense,

• si aucun des deux ne coopèrent, ils seront libérés tous les deux pour manque de preuve, mais aucune récompense ne sera versée,

• si les deux coopèrent, ils iront tous les deux en prison mais toucheront une récompense pour la dénonciation de l'autre.

Dans ce jeu, chaque joueur a le choix entre deux stratégies: coopérer (C) ou se taire (T ). Si les deux se taisent (T ) alors ils obtiennent 0 (pas de récompense, mais pas de prison). Si un coopère (C) mais l'autre pas, alors celui qui coopère obtient 2 et l'autre -1. Enfin, si les deux coopèrent, ils obtiennent 1. La figure I.2 présente la matrice de payoff de ce jeu. Malheureusement beaucoup de jeux ayant un intérêt économique n'ont pas de stratégie dominante. Afin de pallier à ce problème, J. Nash a proposé un concept d'équilibre qui porte son nom. Définition 4.1.3. Pour un jeu fini, un équilibre de Nash est un ensemble de stratégies mixtes tel que la stratégie de chaque joueur est la réponse optimale aux autres stratégies. Formellement, la stratégie mixte σ * est un équilibre de Nash si, pour tout joueur i,

u i (σ * i , σ * -i ) ≥ u i (σ i , σ * -i ) pour tout σ i ∈ Σ i ∀i. (I-86)
Une stratégie pure est un pure équilibre de Nash si elle satisfait la même condition.

Remarque 9. La condition (I-86) est équivalente à:

u i (σ * i , σ * -i ) ≥ u i (s i , σ * -i ) pour tout s i ∈ S i ∀i. (I-87)
Dans l'exemple du jeu I.1, le seul équilibre de Nash pur est (U, L), alors que pour le dilemme du prisonnier, les stratégies (C, C) et (D, D) sont deux équilibres de Nash pures. Cependant, un équilibre de Nash pure n'existe pas toujours, comme cela est le cas dans le jeu du haut ou bas. Ce jeu, à deux joueurs, consiste à leur demander d'annoncer, en même temps, haut ou bas. S'il répondent la même chose, alors le joueur 1 gagne 1 centime et le joueur Tous les jeux finis n'admettent pas d'équilibre de Nash pure, c'est pourquoi les stratégies mixtes sont utiles. Euclidien (de dimension finie),

H B H 1, -1 -1,1 B -1, 1 1, -1
• r(σ) est non vide pour tout σ,

• r(σ) est convexe pour tout σ, alors r admet un point fixe.

En général, le théorème 4.1.2 est utilisé de la manière suivante: à chaque joueur i est associé r i qui, pour chaque σ ∈ Σ donne les stratégies σ i qui maximisent le payoff du joueur i quand les autres joueurs jouent σ -i . Avec cette approche, r i ne dépend que de σ -i et pas de σ i , mais nous conservons quand même la dépendance en σ i de r i car nous allons chercher un point fixe à cette fonction. Soit r le produit cartésien des r i . Un point fixe σ de r est par définition un σ tel que σ ∈ r(σ), de sorte que pour chaque joueur, σ i ∈ r i (σ). Ainsi un point fixe de r est un équilibre de Nash. Reprenons l'exemple I.3 afin de trouver un équilibre de Nash mixte. Pour cela, il suffit de trouver les probabilités qui permettent que chacun des joueurs soit indifférent entre choisir H ou B. Soit x la probabilité que le joueur 1 joue H, alors si le joueur 2 joue H, il gagne 

-1•x+1•(1-x) et s'il joue B il gagne 1 • x + (-1) • (1 -x).

Jeux à champ moyen (Mean Field Games)

La théorie des jeux à champ moyen (Mean Fiel Games en anglais, abrévié MFG) a été introduite de manière indépendante par Lasry-Lions [START_REF] Lasry | Jeux à champ moyen. II: Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Jeux à champ moyen. I: Le cas stationnaire[END_REF][START_REF] Lasry | Mean field games[END_REF] et Huang-Caines-Malhamé [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the nash certainty equivalence principle[END_REF][START_REF] Huang | Large-population costcoupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ǫ-Nash equilibria[END_REF][START_REF] Huang | An invariance principle in large population stochastic dynamic games[END_REF]. Plusieurs travaux sont déjà issus de cette théorie, comme [START_REF] Buckdahn | Mean-field backward stochastic differential equations and related partial differential equations[END_REF], [START_REF] Andersson | A maximum principle for SDEs of mean-field type[END_REF], [START_REF] Carmona | Probabilistic analysis of mean-field games[END_REF] et [START_REF] Bensoussan | Linear-quadratic time-inconsistent mean field games[END_REF].

Les jeux à champ moyen concernent les situations où il y a une infinité de joueurs aussi dits agents identiques avec un comportement commun et rationnel. Chaque agent doit résoudre un problème de contrôle tenant compte de l'équation de l'état des autres agents. L'équation de l'état de l'ensemble des autres joueurs peut donc influencer directement l'agent, mais la réciproque n'est pas admise: un agent ne peut pas, à lui seul, influencer tous les autres. En d'autres termes, l'agent doit solutionner un problème de contrôle; l'ensemble des actions des autres est un paramètre de son problème.

Un premier apport de la théorie est de constater qu'il est mathématiquement rigoureux de représenter les autres agents seulement par une loi de probabilité (dépendante du temps) définie sur l'ensemble des états possibles. Comme chaque agent résout son problème d'optimisation la question de l'existence de l'équilibre apparaît naturellement: est-il vrai que la loi de probabilité prise comme paramètre par chaque agent est la même que la loi de probabilité générée par les réactions optimales des agents.

Pour mieux comprendre cet outil, nous introduisons le cadre mathématique historique avec une incertitude brownienne et un nombre infini d'états tel que présenté dans [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF], puis un cadre proche de notre situation avec un nombre fini d'états introduit dans [START_REF] Guéant | Existence and uniqueness result for mean field games with congestion effect on graphs[END_REF] et [START_REF] Gomes | Continuous time finite state mean field games[END_REF].

Nombre infini d'états et incertitude brownienne

Soit l'espace de probabilité (Ω, A, P ) et la filtration F générée par un processus de Wiener standard w(t) à n dimensions.

L'espace des états x est tout R n , et l'espace des valeurs admissibles du contrôle v est R d . Nous considérons les fonctions mesurables suivantes:

g(x, m, v) : R n × L 1 (R n ) × R d → R n ; σ(x) : R n → R n×n ; f (x, m, v) : R n × L 1 (R n ) × R d → R; h(x, m) : R n × L 1 (R n ) → R. (I-88)
Ces fonctions dépendent du temps, mais pour alléger les notations cette dépendance ne sera pas explicitée. Nous supposons que les deux fonctions σ(x) et σ -1 (x) sont bornées.

L'argument m représente la loi de probabilité des agents, qui pour des raisons pratiques, est représenté comme une densité de probabilités, m(t) ∈ C(0, T ; L 1 (R d )). Chaque agent situé en "x" peut agir à travers un contrôle en feedback sous la forme v(x, t) (fonction mesurable de R n × (0, T ) → R d que nous écrivons simplement v(x)).

L'état de l'agent en "x" vérifie le système d'équations différentielles suivant:

dx = g(x(t), m(t), v(x(t)))dt + σ(x(t))dw(t), x(0) = x 0 . (I-89)
Nous supposons que g, σ, f et h sont différentiables par rapport à x et v. Cela permet, si le feedback est lipschitzien, de garantir l'unicité du système (I-91) adaptée à la filtration F. L'état initial est une variable aléatoire, notée x 0 , indépendante du processus de Wiener, qui a une densité de probabilité donnée par m 0 . La fonction m(t) agit comme un paramètre et nous supposons que m(0) = m 0 . A la pair (v(•), m(•)) nous associons la fonction objectif suivante:

J(v(•), m(•)) = E T 0 f (x(t), m(t), v(x(t)))dt + h(x(T ), m(T )) . (I-90)
Pour que cette fonction soit bien définie, il suffit par exemple que:

• g soit linéairement croissante par rapport à x et v,

• f et g soient à croissance quadratique par rapport à x et v. 

dx = g(x(t), m(t), v(x(t)))dt + σ(x(t))dw(t), x(0) = x 0 . (I-91)
alors m(t) est la distribution de probabilité de x, ∀t ∈ [0, T ] et:

J(v(•), m(•)) ≤ J(v(•), m(•)) ∀v(•).

Nombre fini d'états

L'approche de la section précédente n'est pas directement applicable à notre situation. En effet, dans notre cas l'ensemble d'états est fini, par exemple dans le modèle SIR avec vaccination, l'état "x" d'un agent appartient à l'ensemble {"Susceptible", "Infected", "Recovered", "Vaccinated" }. Des adaptations de la théorie MFG au cas d'un nombre fini d'états ont été proposées dans deux travaux récents [START_REF] Gomes | Continuous time finite state mean field games[END_REF][START_REF] Guéant | Existence and uniqueness result for mean field games with congestion effect on graphs[END_REF]. Dans ces contributions, les agents peuvent appartenir à un nombre fini d'états {e 1 , . . . , e N }. En notant X j la proportion d'agents dans l'état j et β ji le taux de transition entre l'état j et l'état i, la loi de probabilité totale (X 1 , . . . , X N ) satisfait:

dX ǫ i dt = N j=1 X j β ji . En particulier, N i=1 X i = 1.
Lorsque l'individu est dans l'état i il peut exercer certaines actions α j pour changer son état pour l'état j. A chaque état e i l'agent associe un coût C(i;

(X i ) N i=1 ; (α j ) N j=1
). L'agent optimise alors l'espérance de son coût total entre le temps initial 0 et final T . Bien que ces travaux se situent dans un cadre très proche du notre (voir partie III) ils utilisent des hypothèses qui ne sont pas satisfaites dans notre cas (en particulier la super-linéarité de C(i; X; α) par rapport à α) ainsi que d'autres hypothèses techniques permettant de montrer l'unicité et l'équilibre.

Partie II Vaccination globale optimale dans un modèle SIR : propriétés de la fonction valeur et application à une analyse coût-efficacité

Résumé: Dans cette partie, nous étudions la vaccination optimale dans le cadre d'un modèle SIR. Il s'agît d'un travail publié dans Mathematical Biosciences [START_REF] Laguzet | Global optimal vaccination in the SIR model: Properties of the value function and application to costeffectiveness analysis[END_REF]. Le but est de minimiser le coût subi par l'ensemble de la société à cause de la maladie en ayant recours à la vaccination des personnes susceptibles. Cette question est formulée comme un problème de contrôle optimal et nous montrons que la fonction valeur est l'unique solution de viscosité de l'équation d'Hamilton-Jacobi-Bellman associée. Cela permet d'obtenir la meilleure stratégie de vaccination. En contradiction avec la littérature existante, nous montrons que la fonction valeur n'est pas toujours régulière (dans certain cas, seulement lipschitzienne) et que les politiques de vaccinations optimales ne sont pas toujours uniques. Par ailleurs, nous analysons rigoureusement la situation où la vaccination peut être instantanée par rapport à l'évolution de la maladie et nous identifions les solutions globales.

Plusieurs applications numériques illustrent les résultats théoriques. De plus, nous considérons la vaccination contre la coqueluche pour les adultes via deux approches: dans un premier temps, en terme de DALY évités avec présence d'effets secondaires liés au vaccin; et dans un second temps avec une approche dite de rapport coût / efficacité [START_REF] Phillips | Guidelines for cost-effectiveness analysis of vector control[END_REF].

Les parties 1 à 6 concentrent l'aspect applicatif, et les parties 7 à 11 donnent l'approche théorique.
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Global optimal vaccination in the SIR model: properties of the value function and application to cost-effectiveness analysis

Abstract: This work focuses on optimal vaccination policies for an Susceptible -Infected -Recovered (SIR) model; the impact of the disease is minimized with respect to the vaccination strategy. The problem is formulated as an optimal control problem and we show that the value function is the unique viscosity solution of an Hamilton -Jacobi -Bellman (HJB) equation. This allows to find the best vaccination policy. At odds with existing literature, it is seen that the value function is not always smooth (sometimes only Lipschitz) and the optimal vaccination policies are not unique. Moreover we rigorously analyze the situation when vaccination can be modeled as instantaneous (with respect to the time evolution of the epidemic) and identify the global optimum solutions. Numerical applications illustrate the theoretical results. In addition the pertussis vaccination in adults is considered from two perspectives: first the maximization of DALY averted in presence of vaccine side-effects; then the impact of the herd immunity on the cost-effectiveness analysis is discussed on a concrete example. Keywords: optimal vaccination, SIR model, vaccination region, herd immunity and cost-effectiveness, 1 Outline of the paper

Background on vaccination strategies

The mathematical modelling of the spread of an infection disease allows to propose control strategies to decrease the cost of the epidemic. Among such control strategies we focus in this work on the vaccination. A vaccination policy indicates when and how many people should be vaccinated in order to minimize the overall impact of the epidemic. We consider here a cost that sums the cost of the infected individuals and the cost to vaccinate the individuals (see formula (II-3) below for the mathematical definition). We also apply the same methodology to cost-effectiveness analysis in the context of a constrained public health budget.

State of the art and motivation

The mathematical analysis of the cost, as a function of the vaccination policy, allows one to obtain an optimal vaccination strategy. Consider the epidemic in Figure II.1 (see caption for the detail of the parameters) where the abscissa represents the number of the susceptible in the population, and the ordinate the proportion of infected people. In the literature several proposals for the best vaccination strategy are presented (see for example [2,[START_REF] Behncke | Optimal control of deterministic epidemics[END_REF][START_REF] Morton | On the optimal control of a deterministic epidemic[END_REF][START_REF] Piunovskiy | An explicit optimal intervention policy for a deterministic epidemic model[END_REF]); however previous works operated under specific assumptions on the value function (see below) and consequently did not always select the best vaccination policy.

For instance, as we illustrate in Figure II.1 the solution available in the literature is, in some cases, not optimal. The two curves represent two scenarios for an epidemic starting for an initial point X 0 . The solid curve represents the epidemic evolution when there is no vaccination (the state of the art solution for this set of parameters) and the dashed curve plots the epidemic evolution when there is some partial vaccination. The partial vaccination is seen to outperform the no vaccination policy.

For further information see the literature review in Section 2.4.

Methodology and results

Prompted by this remark we look in this work into the details of the calculation of the best vaccination strategy (using the technique of the "viscosity solutions") and note that all previous works used a specific assumption which is not always true; we explain precisely when the assumption is correct (and thus the previous works identified correctly the optimal vaccination policy) and when it is not (and in this case we describe the best vaccination policy).

Structure of the paper

The paper is organized as follows: in the next section we describe the mathematical model (section 2.1), the admissible vaccination policies (section 2.2), introduce some notations in section 2.3 and give an overview of the contributions from the literature in section 2.4; finally we present some technical obstacles in section 2.5.

In section 3 several applications of the theoretical results (proved in sections 10 and 11) are presented. A summary of the numerical procedure to find the best vaccination strategy is the object of section 4.

Then in section 5 we consider two applications to the optimal pertussis vaccination in adults. Finally, conclusions are the object of section 6. ) for the meaning of the parameters r I and r V and Section 2.2 for u max ). The solid curve represents the epidemic evolution when there is no vaccination (which is the state of the art solution, see [2,[START_REF] Morton | On the optimal control of a deterministic epidemic[END_REF][START_REF] Piunovskiy | An explicit optimal intervention policy for a deterministic epidemic model[END_REF]) and the dashed curve plots the epidemic evolution when there is some partial vaccination. The cost for the first trajectory is 0.51 and for the second is 0.49.

2 Model, notations and first remarks

The model

In order to model the evolution of an epidemic, we use an SIR (Susceptible -Infected -Recovered) compartment model (cf., [START_REF] Anderson | Infectious Diseases of Humans Dynamics and Control[END_REF][START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF][START_REF] Anderson | Mathematical models of transmission and control[END_REF] for additional details). We seek to optimize the cost of the vaccination policy; to this end denote by V (t) the proportion of people vaccinated by the time t (of course lim t→∞ V (t) ≤ 1); we consider vaccines that confer lifetime immunity so that V is an increasing function. The evolution of the disease is described by the following equations: Here X 1 , X 2 , X 3 , X 4 are the proportion of people in the "susceptible" respectively "infectious", "recovered" and "vaccinated" classes. Initially X 1 (0) + X 2 (0) + X 3 (0) = 1 and X 4 (0) = 0 (but X 4 need not be continuous in 0). See figure II.2 for a graphical view of system (II-1). Note that (II-1) implies

           dX 1 (t) = -βX 1 (t)X 2 (t)dt -dV (t), X 1 (0) = X 10 , dX 2 (t) = βX 1 (t)X 2 (t) -γX 2 (t) dt, X 2 (0) = X 20 , dX 3 (t) = γX 2 (t)dt, X 3 (0) = X 30 , X 4 (t) = t 0 dV, X 4 (0) = 0.
X 1 (t) + X 2 (t) + X 3 (t) + X 4 (t) = 1, ∀t ≥ 0.
Here β is the transmission rate of the disease, V is the control to be optimized and γ is the recovery rate.

We denote r V the unitary cost associated with vaccination including the cost of the vaccine and all possible side-effects and r I the unitary cost incurred by infected persons. To simplify the presentation we suppose that costs are expressed in money and postpone to Section 5 the more realistic and interesting situations when costs are expressed as medical conditions.

The cost of the disease is independent of the classes X 3 and X 4 (but dependent on the control V (t)), so we can restrict ourselves to the evolution of X 1 and X 2 . From now on a vector X will only be supposed to have two coordinates X 1 and X 2 . Denoting:

Ω = {X = (X 1 , X 2 ) ∈ R 2 | X 1 , X 2 > 0, X 1 + X 2 < 1}, (II-2)
we will work under the constraints

X ∈ Ω. We introduce Φ Y,dV (t) = (Φ Y,dV 1 (t), Φ Y,dV 2 (t))
to denote, at time t ≥ 0, the solution of the system (II-1) starting at point X(0) = Y and with control dV ; in addition Z = Φ Y,dV (•) (-t) means Y = Φ Z,dV (t-•) (t) (the reverse system has a well defined mathematical meaning). To ease notations, when the measure dV is absolutely continuous with respect to the canonical Lebesgue measure dt on [0, ∞[ i.e., when dV can be written dV = u(t)dt we will also write Φ Y,u(t) (t) instead of Φ Y,u(t)dt (t) (and the same for the components Φ The cost of the disease is:

J(Y, dV ) = ∞ 0 r I βΦ Y,dV 1 (t)Φ Y,dV 2 (t)dt + ∞ 0 r V dV (t). (II-3)
Moreover we will use the following notation J 0 (Y ) = J(Y, 0); note that J 0 (Y ) is a cost proportional with the number of people infected in absence of vaccination. This number will be denoted

ζ(Y ) thus J 0 (Y ) = r I ζ(Y ) (see proof section 7 for the properties of ζ). Remark 2. Equation (II-1) implies Φ X,dV 2 (∞) = Φ X,dV 2 (0) + ∞ 0 dΦ X,dV 2 (t) = Φ X,dV 2 (0) + ∞ 0 βΦ X,dV 1 (t)Φ X,dV 2 (t) -γΦ X,dV 2 (t) dt (II-4) Thus, since Φ X,dV 2 (∞) = 0: ∞ 0 r I βΦ X,dV 1 (t)Φ X,dV 2 (t)dt = ∞ 0 r I γΦ X,dV 2 (t)dt -Φ X,dV 2 (0). (II-5)
This allows to conclude that the cost functional

J d (Y, dV ) = ∞ 0 r d I Φ Y,dV 2 (t)dt + ∞ 0 r V dV (t) (II-6) with r d I = r I γ satisfies J d (Y, dV ) = J(Y, dV ) + Y 2 .
(II-7)

Both J d and J will thus have same optimal strategies (because their difference is independent of the strategy dV ). Here r d I can be seen as the unitary cost of infection per unit time.

The admissible vaccination policies

Vaccination policy dV can be modeled in different ways. Note that the proportion t 0 dV (s) of individuals vaccinated up to time "t" is increasing and t 0 dV (s) ≤ 1, ∀t ≥ 0; therefore V is a bounded variation function and dV (t) is a positive measure on [0, ∞[; this is the most general class of 2. Model, notations and first remarks vaccination strategies. A restrictive class of vaccination policies will also be considered (see also the literature review in Section 2.4 below) where the speed of vaccination is bounded; in this case dV (t) = u(t)dt with u(t) ∈ [0, u max ]. Generic results (see e.g., [10]) suggest that considering controls with bounded speed is not restrictive because the general situation is obtained in the limit u max → ∞. We will rigorously prove this assertion in proof section 11 and will work with the restricted class of vaccination policies until then.

We can write system (II-1) as:

d     X 1 X 2 X 3 X 4     =     -βX 1 X 2 βX 1 X 2 -γX 2 γX 2 0     dt +     -1 0 0 1     dV (t). (II-8) Recall that (X 1 , X 2 , X 3 , X 4 ) → (-βX 1 X 2 , βX 1 X 2 -γX 2 , γX 2 , 0)
T and (X 1 , X 2 , X 3 , X 4 ) → (-1, 0, 0, 1) T are Lipschitz functions, and V is a bounded variation function.

Then using the theoretical results in [26, Section 10, Thm. 10.2.3] it is possible to conclude that (II-8) has a solution and the solution depends smoothly on the initial data and the control V (in L 1 norm).

Let us make clear how a mathematical object such as V can be translated into vaccination policies for the unbounded case. Take for instance the trajectory Φ Y,dV (t) driven by the control (here δ t=0 is the Dirac mass in t = 0):

dV (t) =        Y 1 2 δ t=0 , t = 0 (II-9a) 0.10, t ∈]0, 0.5[ (II-9b) 0, t ≥ 0.5. (II-9c)
This means that half of the initial susceptible population Y 1 is vaccinated (instantaneously) at the onset t = 0. Then vaccination is pursued with speed of 10% percent per unit time till time t = 0.5; then no vaccination occurs. In particular this means that 50 + 0.5 × 10 = 55 percent of the population is vaccinated in all. Note that the trajectory Φ Y,dV (t) is not continuous since Φ Y,dV 1 (0 + ) = Φ Y,dV 1 (0)/2. This trajectory can be seen as the limit when ǫ → 0 of the trajectories Φ Y,dVǫ (t) corresponding to the following vaccination policies:

dV ǫ (t) =        Y 1 2ǫ , t ∈ [0, ǫ] (II-10a) 0.10, t ∈]ǫ, 0.5[ (II-10b) 0, t ≥ 0.5.
(II-10c)
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Notations and first remarks

We introduce the function

f : Ω × R → R 2 : (X, u) ∈ Ω × R → f (X, u) = (-βX 1 X 2 -u, βX 1 X 2 -γX 2 ) ∈ R 2 . (II-11) Note that f (•, u) is a Lipschitz function with Lipschitz constant L f inde- pendent of the second argument, i.e., f (Y, u) -f (Z, u) ≤ L f Y -Z , ∀ Y, Z ∈ Ω.
(II-12)

In order to define the admissible controls we consider a point Y ∈ Ω; for u max < ∞ we define:

U umax Y = u : [0, ∞[→ [0, u max ] u measurable, Φ Y,u(•) (t) ∈ Ω, ∀t ≥ 0 .
(II-13) When u max = ∞ we define:

U ∞ Y = {dV positive measure on [0, ∞[ ∞ 0 dV ≤ Y 1 ≤ 1, Φ Y,dV (t) ∈ Ω, ∀t ≥ 0 . (II-14)
Irrespective of whether u max is bounded or not the set U umax Y is a closed subset of the set of (finite, positive) measures on [0, ∞[. Note that for any Y ∈ Ω and any u max : 0 ∈ U umax Y .

To make notations easier we will not write the dependence of U umax Y with respect to Y or u max and only denote, when there is no ambiguity, by U Y or U the set of admissible controls.

For u max < ∞ we define the Hamiltonian H umax : Ω × R 2 → R as:

H umax (X, p) = min w∈[0,umax] [p • f (X, w) + r I βX 1 X 2 + r V w] (II-15) = -u max (p 1 -r V ) + + βX 1 X 2 (r I + p 2 -p 1 ) -γX 2 p 2 . (II-16)
When u max = ∞ the previous definition is to be replaced by

H ∞ : Ω × R 2 → R: H ∞ (X, p) = min {r V -p 1 , βX 1 X 2 (r I + p 2 -p 1 ) -γX 2 p 2 } .
(II-17)

The value function V umax : Ω → R is (for any u max be it bounded or not):

V umax (Y ) = inf u∈U umax Y J(Y, u).
(II-18)

Model, notations and first remarks

Any u such that J(Y, u) = V umax (Y ) is called an optimal strategy for Y ; it is not necessarily unique. However it has been proved in [START_REF] Behncke | Optimal control of deterministic epidemics[END_REF] that if u max < ∞ at least one optimal strategy exists in the set U umax Y and has the form u = u max 1 [0,θ(Y )] with θ(Y ) ≥ 0. In fact since the total proportion of people susceptible to be vaccinated is at most 1 then θ(Y ) ≤ T max := 1/u max . From now on we fix θ : Ω → [0, ∞[ to be a function (whose existence is guaranteed by the above mentioned result) such that u max 1 [0,θ(Y )] is an optimal strategy for Y .

We introduce the following notations:

• A = ( γ β , 0) ∈ R 2 , • Γ 1 = {(X 1 , X 2 ) ∈ Ω | X 1 + X 2 = 1}, • Γ I = {(X 1 , X 2 ) ∈ Ω | X 1 = 0}, • Γ S = {(X 1 , X 2 ) ∈ Ω | X 2 = 0}, • Γ OA = {(X 1 , X 2 ) ∈ Γ S | 0 ≤ X 1 ≤ γ β }, • Γ A1 = {(X 1 , X 2 ) ∈ Γ S | γ β ≤ X 1 ≤ 1}.
Note that when γ/β > 1: A / ∈ Ω, Γ OA = Γ S and Γ A1 = ∅. Proof. Choose u = 0 then

V umax (X) ≤ J(X, 0) = J 0 (X) ≤ r I X 1 ≤ r I , ∀X ∈ Ω. (II-19) Note that J(X, u) = 0 ∀X ∈ Γ I , ∀u ∈ U X ; using (II-19) we obtain V umax (X) = 0 ∀u max ∈ [0, ∞],
∀X ∈ Γ I and the continuity on Γ I . To set the value on Γ OA note that when X is such that X 1 < γ/β then Φ X,0 2 (t) tends exponentially to zero. Therefore: J(X n , 0) → 0 when X n → X ∈ Γ OA .

Literature review

Many epidemic models have been proposed in order to describe epidemic propagation (see [START_REF] Anderson | Infectious Diseases of Humans Dynamics and Control[END_REF][START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF][START_REF] Anderson | Mathematical models of transmission and control[END_REF] for details). These models can be adapted in order to help controlling the propagation; several control options are available such as isolating infected people or immunizing susceptible people (see also [START_REF] Sethi | Optimal control of some simple deterministic epidemic models[END_REF][START_REF] Behncke | Optimal control of deterministic epidemics[END_REF][START_REF] Hansen | Optimal control of epidemics with limited resources[END_REF] which propose combinations of these two methods). In this work we only analyze control policies that consist in the vaccination of susceptibles (immunization). The vaccination is assumed to confer lifetime (i.e., irreversible) immunity. In the context of immunization, several facts can affect the decisions of vaccination. Reference [START_REF] Funk | Modelling the influence of human behaviour on the spread of infectious diseases: a review[END_REF] discusses this problem in general, [START_REF] Bauch | Imitation dynamics predict vaccinating behaviour[END_REF] proposes an approach taking the individual point of view, and [START_REF] Shim | The influence of altruism on influenza vaccination decisions[END_REF] introduces an extension also using game theory.

The present work is on the contrary only concerned with finding an optimal vaccination strategy. Several studies have already considered this approach recasting it as an optimal control problem.

Historically one of the first to consider this problem, Abakuks explores two alternatives: in [2] a restrictive class of vaccination policies which allows at any time to immunize either all or none of the susceptible (therefore optimal policy immunizes either at once or never); in [1] the author considers policies which at any time during the course of the epidemic allow to immunize any number of the susceptible.

Abakuks proves the existence of an immunization region: within this region it is best to vaccinate with maximum effort and outside it is optimal to do nothing. The result is only obtained for u max = ∞; moreover the proof only applies to vaccination policies dV that are finite sums of Dirac masses and it is not indicated how the value function V ∞ (assumed to be continuous) behaves in the limit when Dirac masses accumulate near a point or when such masses converge to a general measure on [0, ∞[.

Model, notations and first remarks

In another work (see [START_REF] Hethcote | Optimal vaccination schedules in a deterministic epidemic model[END_REF]) Hethcote considers a similar problem under additional constraints on the total proportion of the population affected and the maximum number of infected at the peak; the vaccination policies are taken to be stepwise constant functions and the cost of vaccination piecewise quadratic in the number of people vaccinated. He shows that the optimal strategy will be piecewise constant, with at most a single point of discontinuity.

In a similar work [START_REF] Morton | On the optimal control of a deterministic epidemic[END_REF] authors consider u max = 1 and define the class of admissible policies to contain function with only isolated discontinuities. They show that the optimal strategy has a single point of discontinuity and introduce the concept of vaccination border. To do this, they assume that the value function V umax is C 1 (Ω) which, as it will be seen in the following, is not always the case (it depends on the specific choice of parameters β, γ, u max , r V , r I ).

In [START_REF] Sethi | Optimal control of some simple deterministic epidemic models[END_REF] authors set u max < ∞ for a finite horizon framework T < ∞ and work under the additional presence of a damping term e -rt in the cost functional which reads:

T 0 e -rt r V u(t) + r I Φ X,u(t) 2
(t) dt; moreover the infected are supposed to pay an infection cost per unit time up to the time T and nobody recovers before time T , i.e., with our notations γ = 0. They use the maximum principle to characterize the optimal policies which turn out to be of bang-bang type with only one switch.

In [START_REF] Ledzewicz | On optimal singular controls for a general SIR-model with vaccination and treatment[END_REF] the existence and local optimality of singular controls is investigated and using the Maximum Principle it is shown that the optimal vaccination schedule can be singular. This corresponds to our limit u max → ∞. However no information is obtained on the regularity of the value function.

In the references described so far the authors focused on the optimal strategy without studying the properties of the value function. Using a similar model and an approach via optimal control [START_REF] Piunovskiy | An explicit optimal intervention policy for a deterministic epidemic model[END_REF] finds, via a Bellman equation, that the strategy is type bang-bang (only values 0 and u max are taken). However they assume that the cost function is C 1 (Ω); finally, the results in the case where u max → ∞ are extrapolated and they assume that the optimal strategy is bang-bang. As such the optimal policies are sometimes at odd with results in the stochastic case.

In a recent work H. Behncke (see [START_REF] Behncke | Optimal control of deterministic epidemics[END_REF]) proves, without using that value function is C 1 (Ω), that at least one optimal strategy for the trajectory starting at X ∈ Ω is of the form u max 1 [0,θ(X)] , θ(X) ≥ 0, ∀X ∈ Ω. Although this information is very useful it does not allow to conclude on the regularity of the value function. As an illustration, we plot two situations: with parameters in figure II.4 the function θ(X) is C 1 (Ω) while with parameters in figure II.5 the function θ(X) is discontinuous.
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Finally, without specifically entering in the context of epidemiology but using a general optimal control framework and the concept of viscosity solution the reference [START_REF] Soner | Optimal control with state-space constraint[END_REF] analyzes the properties of the value function in the situation when a discount factor is present.

Considering the previous works several questions arise:

1. For which set of parameters (β, γ, u max , r V , r I ) is the value function V umax of class C 1 (Ω) and when is it less regular; note that if the value function V umax is not C 1 some vaccination strategies derived under the C 1 hypothesis will not be globally optimal.

2. Are the optimal strategies unique ?

3. What happens when u max = ∞ (i.e., when vaccination is fast with respect to the epidemic propagation).

Our work answers these questions. In particular we show that value function is not always C 1 , the optimal strategies not always unique and prove rigorously what happens in the limit u max → ∞. Right: representation as level lines. We observe that θ is regular.
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Specific mathematical difficulties of the problem

The approach proposed in this work faces specific technical difficulties among which:

3. Applications ). We observe that θ is discontinuous.
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• There do not exist natural boundary conditions to set on some parts of the frontier (Γ 1 and Γ A1 ). This will become problematic when proving the uniqueness of the solution of the associated HJB equation. See section 10.3 for the technique used to mitigate this difficulty.

• The state X is restricted to Ω while the controls e.g., in the form dV = udt, u ∈ [0, u max ] can drive it outside this domain.

• The cost function J(X 0 , dV ) has no damping term e -rt , so we need to work in infinite horizon. This is a problem when trying to obtain Lipschitz regularity for the value function. See section 10.2.

• In general, a convenient hypothesis (cf. also [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]) to prove the uniqueness of the viscosity solution of F(x, F (x), ∇F (x)) = 0 is that the Hamiltonian F is strictly monotone in the second argument. But here our Hamiltonians do not depend on this argument.

• In general optimal controls are unique (and the value function differentiable). Here this is not the case (cf. figure II.6) which hints that value function has regularity defects.
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X 1 1 1 X 2 O Figure II.6:
A typical example of non-unique optimal vaccination strategy: the solid trajectory corresponds to zero vaccination while the dashed trajectory corresponds to vaccination in the colored region followed by non vaccination. But both trajectories lead to the same, minimal, cost. In this case we expect the value function to not be of class C 1 . Non uniqueness appears when the trajectory with zero vaccination does not enter the vaccination region while the trajectory with maximal vaccination enters it. See subsections 10.4, 10.5, 11.3 and 11.4 for details.

In this section we apply the theoretical results obtained in proof sections 10 and 11 to several values of the parameters describing the epidemic propagation and vaccination policies. We refer to the proof sections for all notations used. with r ≤ r V /r I . Our starting point X 0 is in the white domain. The theoretical result states that the optimal strategy is to not vaccinate at all. To illustrate this choice we compare numerically in figure II.7 the no vaccination strategy with a partial vaccination strategy. As expected the no vaccination policy is better; this result is consistent with the existing literature.
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Figure II.7: Two trajectories of an SIR evolution starting from X 0 = (0.3, 0.05) with β = 73, γ = 36.5, u max = 10, r I = 1 and r V = 0.5. The grey region is the vaccination region while the white region is the no vaccination domain. We are in the situation r V < r crit V,umax r I and the optimal strategy corresponds to the dashed curve with a cost equal to 0.05. The solid curve is an example of a partial vaccination strategy with cost 0.15.

3.2 A non classical situation: β = 73, γ = 36.5, u max = 10, r I = 1, r V = 1.5, X 0 = (0.7, 0.01)

The parameters β, γ, u max are the same as in the previous section therefore r crit V,umax is the same. But here r V > r crit V,umax r I , situation treated in Theorem 10.7. Although the theoretical results gives, as before, a precise description of the vaccination and no vaccination region, we advocate here an even simpler approach: compute first the cost of a no vaccination strategy starting from X 0 , denoted J n . Compute then the cost of a strategy that vaccinates with maximum intensity (here u max ) from the initial time until the time θ where such that ∂ 

X 1 ζ(X(θ)) ≤ r V /r I and f (X(θ)), u max ), ∇∂ X 1 ζ(X(θ)) ≤ 0; denote by J v this cost. Compare the two values: if J n ≤ J v the
0 f (X, u max ), ∇∂ X1 ζ(X)
Figure II.8: Left: Two trajectories of an SIR evolution starts on X 0 = (0.78, 0.005) with β = 73, γ = 36.5, u max = 10, r I = 1 and r V = 1.5. The cost for the solid trajectory is J n = 0.49 and for the vaccination strategy (dashed) is J v = 0.48. Right: In order to decide when the dashed trajectory stops vaccinating we compute ∂

X 1 ζ(X(t)) and f (X(t)), u max ), ∇∂ X 1 ζ(X(t)) ; we plot ∂ X 1 ζ(X(t)
) and the reference value r V /r I (left axis of the plot) and f (X(t)), u max ), ∇∂ X 1 ζ(X(t)) and the reference value 0 (right axis of the plot). Vaccination stops at X 1 = 0.62 when ∂ X 1 ζ(X(t)) ≤ r V /r I and f (X(t)), u max ), ∇∂ X 1 ζ(X(t)) ≤ 0.

Instantaneous vaccination

: β = 73, γ = 36.5, u max = ∞, r I = 1, r V = 1.
5, X 0 = (0.7, 0.01) and X 0 = (0.8, 0.009)

We now illustrate the case u max = ∞ in figures II.9 and II.10. Using equation (II-98) we find X crit ∞ = (0.57, 0.43) and computing

∂ X 1 ζ(X crit
∞ ) allows to obtain r crit V,∞ = 1.0284. We are therefore in the situation r V > r crit V,umax r I , treated in Theorem 11.5. The parametric equations of the frontier between vaccination and no vaccination are given in equations (II-106) and (II-107) (for Γ crit sub ) and (II-108) (for Γ crit super ). We plot both curves.

In both figures, the light gray region is the region delimited by the level line L ∂ X 1 ζ r V /r I and the dark gray region is the additional vaccination region (not appearing in the literature, with borders Γ crit super and L

∂ X 1 ζ r V /r I \ Γ crit sub
). The union of those two regions is the vaccination region. 

Applications

In figure II.9 the initial point is in the vaccination region with border L ∂ X 1 ζ r V /r I . The solid path corresponds to total vaccination, and the dashed path is partial vaccination (until trajectory exits the vaccination area). The theoretical result in proof section 11.4 states that the total vaccination cost will be larger than that of partial vaccination, which is verified numerically (see the figure).

The figure II.10 illustrates a situation when X 0 is in the vaccination region (but outside the region delimited by L ∂ X 1 ζ r V /r I ). This case is not correctly treated in the existing literature. We see in the figure that the optimal vaccination is a partial vaccination. 

Summary of optimal strategies

The previous sections show that the domain Ω is decomposed in two disjoint regions: a vaccination region and a no vaccination region. The optimal policy is to vaccinate (only) when the dynamics X(t) is in the vaccination region. In principle in order to find precisely the vaccination domain one has to solve the associated HJB equation. But, in this situation, we can build a simpler algorithm to compute the optimal vaccination policy. This algorithm is described below. It uses as inputs the values β, γ, u max , r I , r V , X 0 .

We recall that the function ζ and its derivatives are easily computed as indicated in proof section 7.

1. When u max < ∞:

(a) If r V /r I ≥ 2 the optimal vaccination policy is to not vaccinate. The overall cost is r I ζ(X 0 ).

(b) Otherwise, using equation (II-60), compute x * then X crit umax = (x * , 1x * ) and r crit V,umax using equation (II-61

). i. If r V ≤ r crit V,umax r I then compute ∂ X 1 ζ(X 0 ). A. If ∂ X 1 ζ(X 0 ) ≤ r V /r I
the optimal vaccination policy is to not vaccinate. The overall cost is r I ζ(X 0 ). B. Otherwise the optimal vaccination policy is to vaccinate: solve numerically equation (II-1) with dV = u max dt and 4. Applications

monitor ∂ X 1 ζ(X(t)); at the time θ when ∂ X 1 ζ(X(θ)) = r V /r I stop vaccination. ii. If r V > r crit
V,umax r I then compute first r I ζ(X 0 ) and denote J n = r I ζ(X 0 ) (the cost of the no vaccination policy). Also solve numerically equation (II-1) with dV = u max dt and monitor

∂ X 1 ζ(X(t)) and f (X(t), u max ), ∇∂ X 1 ζ(X(t)) ; at the first time θ when ∂ X 1 ζ(X(θ)) ≤ r V /r I and f (X(θ), u max ), ∇∂ X 1 ζ(X(θ)) ≤ 0 stop vaccination. Denote J v this cost.
Compare J n and J v and decide which cost is the best and adopt the corresponding vaccination policy.

When u max = ∞:

(a) If r V /r I ≥ 2 the optimal vaccination policy is to not vaccinate.

The overall cost is r I ζ(X 0 ).

(b) Otherwise, using equation (II-98), compute

x * then X crit ∞ = (x * , 1- x * ) and r crit V,umax (from ∂ X 1 ζ(X crit ∞ )). i. If r V ≤ r crit V,umax r I then compute ∂ X 1 ζ(X 0 ). A. If ∂ X 1 ζ(X 0 ) ≤ r V /r I
the optimal vaccination policy is to not vaccinate. The overall cost is r I ζ(X 0 ). B. Otherwise the optimal vaccination policy is to vaccinate: find numerically (using (II-31)) the quantity ∆ such that ∂ X 1 ζ(X 0 -(∆, 0)) = r V /r I . Vaccinate ∆ percent of individuals and then stop vaccination. The optimum cost is ∆r

V + r I ζ(X 0 -(∆, 0)). ii. If r V > r crit
V,umax r I then compute r I ζ(X 0 ) and denote J n = r I ζ(X 0 ) (the cost of the no vaccination policy). Also find numerically (using (II-31)) the quantity ∆ such that ∂

X 1 ζ(X 0 - (∆, 0)) = r V /r I and ∂ 2 X 1 X 1 ζ(X 0 -(∆, 0)) ≥ 0.
Vaccinate ∆ percent of individuals and then stop vaccination; denote

J v = ∆r V + r I ζ(X 0 -(∆, 0)
). Compare J n and J v and decide which cost is the best and adopt the corresponding vaccination policy.

Remark 4. In all situations the algorithm above solves at most once the evolution equation (II-1).

Finally, Remark 2 shows that the cost functional in equation (II-6) has the same optimal strategies and vaccination regions.
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• when u max < ∞: previous contributions take the vaccination region to be {Y

∈ Ω | ∂ X 1 ζ(Y ) ≥ r V /r I } while our definition is different for r V ∈ [r crit V,umax r I , 2r I ].
The strategies here will lead to lower costs.

• when u max = ∞: we do not ask full vaccination but only vaccinate the minimum proportion that allows to reach the frontier of the vaccination region.

Pertussis vaccination in adults: maximization of DALYs averted and cost-effectiveness

In this section we explain how the theoretical results apply to additional situations. We explore first a situation when the vaccine has known sideeffects. Then we present an application to cost-effectiveness analysis.

When the vaccine has known side effects or when the illness generates severe medical conditions, money alone cannot be the only decision dimension. In this situation other techniques have to be employed. Following works in the literature we use the Quality Adjusted Life Year (QALY) and Disability-Adjusted Life Year (DALY) scales that measure the disease burden; see [START_REF] Zeckhauser | Where now for saving lives?[END_REF][START_REF] Sassi | Calculating QALYs, comparing QALY and DALY calculations[END_REF][START_REF] Anand | Disability-adjusted life years: a critical review[END_REF] and related literature for an introduction and criticism.

In the QALY scale each health state is given an utility between 1 (one year of perfect health) and 0 (death). Each individual has a number of QALY equivalent to its life expectancy in perfect health. A medical condition can reduce both the life expectancy and the quality of life and in general the QALY will combine the expected length of life and quality of life. The effect of any illness is therefore to reduce the QALY of an individual. The goal of a treatment is to increase QALY.

The DALY scale, on the contrary, measures the disease burden as disability, with 0 being no disability (perfect health) and 1 (a full year of life lost). The DALY is usually computed for an entire population and takes into account the average life expectancy at age of death in years. The goal of a health policy is to reduce the DALYs at the level of the population. DALY was introduced and is the scale of choice of the World Health Organization (WHO), see [START_REF] Christopher | Global mortality, disability, and the contribution of risk factors: Global burden of disease study[END_REF][START_REF] Murray | Global comparative assessments in the health sector : disease burden, expenditures and intervention packages[END_REF][START_REF] Edejer | Making Choices in Health: WHO Guide to Cost-effectiveness Analysis, volume 1 of Making Choices in Health: WHO Guide to Cost-effectiveness Analysis[END_REF].

Although both scales are similar, in general slight differences in numerical values are expected for a given health policy. 

Pertussis vaccination in adults: maximization of DALYs averted and cost-effectiveness

Optimal vaccination in presence of vaccine sideeffects

We consider here an application to the optimal vaccination of pertussis with a vaccine that has identified side effects, see [START_REF] Of Medicine | Adverse effects of pertussis and rubella vaccines : a report of the Committee to Review the Adverse Consequences of Pertussis and Rubella Vaccines[END_REF][Chapters 1,4,5,6] and [START_REF] Lee | Cost effectiveness of pertussis vaccination in adults[END_REF]. We focus more specifically on the combined tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine (Tdap). The vaccine side effects for adults and associated induced utility (or disabilities) are taken from [START_REF] Lee | Cost effectiveness of pertussis vaccination in adults[END_REF] and reproduced in Table 5.1 together with the same information for the disease. Note that it is assumed that there are no deaths among adults due to pertussis (see arguments in the references for further discussion).

To summarize, the (average) DALYs induced by the vaccine are r V = 3.2605 100 ′ 000 and the DALYs of the disease are r I = 3511 100 ′ 000 . As a remark, the illness seems to be ≃ 1000 times less desirable than the vaccine.

The goal is to find a vaccination strategy that minimizes the overall DALY burden, which is equivalent to minimizing functional J in equation (II-3).

As an illustration we consider an outbreak of pertussis. The generally admitted propagation parameters are γ = 1/21, R 0 = β/γ = 15.7 (thus β = 0.75), see for instance [START_REF] Anderson | Directly transmitted infections diseases: control by vaccination[END_REF][pages 1055-1056] and [START_REF] Hethcote | The mathematics of infectious diseases[END_REF][pages 640-641].

Consider now an epidemic starting from a pool of 100 infected individuals in a susceptible population of 65 Millions individuals among which 10% are susceptible. Thus X 10 = 0.1 and X 20 = 100/(6.5 * 10 7 ) = 1.54 * 10 -6 .

We consider first that the vaccination can be implemented very fast which, with our notations, means u max = ∞. Using the theoretical results of previ-Partie II. Vaccination globale optimale dans un modèle SIR : propriétés de la fonction valeur et application à une analyse coût-efficacité 83

ous sections it appears that it is optimal to vaccinate 4.657% percent of the population. At the end of the vaccination there is still 5.343% ≤ 1/R 0 = 6.36% percent of the population susceptible.

If on the contrary u max = 0.12, it is optimal to vaccinate until the susceptible population is 5.344%. In this case 4.656% percent (Susceptible) have been vaccinated and 5.987 * 10 -5 % percent were infected before vaccination stopped.

In both cases vaccination avoids 142708 DALY.

Cost-effectiveness analysis

A different perspective in vaccination programs arises when a vaccine without notable side effects (but an economic cost, expressed in $) is to be compared with other possible public health programs. In this case the money allocated to the vaccine campaign cannot be allocated to other projects. The optimal vaccination is found through a cost-effectiveness analysis, adapted below to our SIR model. We emphasize that what follows is a simple deterministic description and in practice additional tools, related to societal parameters and uncertainties have to be taken into account. Suppose that the available public health budget is B $ and that other projects spend ρ$ in order to avert one DALY. The goal is to find the optimal vaccination policy which, combined with all other health programs, maximize the total DALY averted for the given budget B $ . As above, r I will be the DALY lost by an infected individual and r Q V to be the (economic) cost of implementing one vaccine; the total DALYs averted with budget B $ including vaccination with policy dV are:

J Q (Y, dV ) = 1 ρ B $ - ∞ 0 r Q V dV (t) +r I ζ(Y ) - ∞ 0 βΦ Y,dV 1 (t)Φ Y,dV 2 (t)dt .
(II-20) Algebraic manipulations indicate that the maximization of J Q is equivalent to the minimization of the cost functional J in equation (II-3) if we set r V = r Q V /ρ. Note that in this case both r I and r V are expressed in DALY (not $).

As an application we consider again the pertussis vaccination for adults as an addition to the traditional multi-valent vaccines administered during the childhood.

Although no consensus for the value of ρ exists, the World Health Organization, through its CHOICE program (see [START_REF] Edejer | Making Choices in Health: WHO Guide to Cost-effectiveness Analysis, volume 1 of Making Choices in Health: WHO Guide to Cost-effectiveness Analysis[END_REF][START_REF] Shillcutt | Cost effectiveness in low-and middle-income countries[END_REF][START_REF] Evans | Evaluation of current strategies and future priorities for improving health in developing countries[END_REF]) considers that for a country with a Gross Domestic Product (GDP) per capita of g$, a public health project is considered cost-efficient when it saves at least one DALY 6. Conclusion for each g$ invested. Many countries in the African "low income" zone have g around 400$ (United Nations 2013 data: Ethiopia, Madagascar,...). We set the threshold at ρ = 400$ per DALY averted. For the cost of the implementation of the vaccine we follow [START_REF] Mills | Disease Control Priorities in Developing Countries (2nd Edition)[END_REF][Chapter 2, page 44 and Table 20.4 page 400] and set r Q V = 20$ (a mean value). Parameters r I , β, γ are maintained as before.

Susceptibles are set initially to X 10 = 15% and the proportion of Infected class X 20 = 0.001%. Note that we are here in the super-critical region r V /r I = 1.42 ≥ r crit V,∞ . When the vaccination can be implemented very fast (u max = ∞) the theoretical results indicate that it is optimal to vaccinate 8.576% percent of the population. At the end of the vaccination there is still 6.424% percent of the population susceptible. For every million individuals in the population 696 DALYs are averted.

Note that the initial point is precisely in a region where previous analyses in the literature would conclude that optimal strategy is no vaccination.

At the end of the vaccination period the epidemic is still not contained because 6.424% > 1/R 0 = 6.36%. Why does the vaccination stops while the epidemic still expands ? To understand this, consider first the quotient r Q V /r I = 569.63 which is above the threshold value ρ = 400. This means that vaccination, seen as "treatment", is not cost-effective. But vaccination, even at high costs, can reduce the propagation of the epidemic, creating herd immunity and saving more than the vaccinated individual. As such, when the epidemic is large in size, vaccination becomes, temporarily, more costefficient than other public health programs. This is precisely what happens here. On the contrary, when the Susceptible approach 1/R 0 the vaccination creates less herd immunity and its cost becomes a limitation.

The figure II.11 illustrates the optimal vaccination policy in terms of classical cost-effectiveness analysis. For each vaccination level x% two criterions are plotted: the marginal cost per marginal DALY averted x →

r Q V r I ∂ X 1 ζ(X 10 -x,X 20
) and the cumulative cost per DALY averted

x → r Q V x r I (ζ(X 10 ,X 20 )-ζ(X 10 -x,X 20 ))
. In this very particular setting, both costs are initially above the threshold ρ. The theoretical result guarantees that, if the available budget is large enough to traverse the initial, "above the threshold" region, both curves will be below the threshold ρ at the end of the vaccination. In fact the vaccination stops when the marginal cost reaches ρ the second time.
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x → r Q V x r I (ζ(X 10 ,X 20 )-ζ(X 10 -x,X 20 )) . Dotted line: the marginal cost per marginal DALY averted x → r Q V r I ∂ X 1 ζ(X 10 -x,X 20 ) .

Conclusion

We analyze in this work the optimal vaccination policy in a SIR model. The theoretical results allow one to compute the global optimum without imposing any smoothness hypothesis; from the technical point of view we show that the value function is the unique solution of a Hamilton-Jacobi-Bellman equation. As previous studies indicate, the Susceptible-Infected plane is divided in two regions: one vaccination region and one non-vaccination region. This partition is proven to be globally optimal.

Several applications are considered: first some toy examples when the costs are expressed as economic values. Then we consider pertussis vaccination in adults when the vaccine has side-effects and the optimal policy maximizes the DALYs averted. A final application, still in the framework of pertussis vaccination in adults, considers the optimal vaccination with constraints on the public health budget. The theoretical results are particularly relevant in this situation not adequately considered in the literature: the performance of a vaccination policy does not only depend on the marginal cost per DALY averted, but also on the long term herd immunity effects created. The model is able to predict when the long term effects will offset the initial expense to the point that makes vaccination cost-effective.

Proof section 7 Properties of the number of infected people without vaccination

We recall some properties of the number of infected people in absence of vaccination. The reader can also consult [2,1]. Consider the model without control:

     dX 1 (t) dt = -βX 1 (t)X 2 (t), dX 2 (t) dt = βX 1 (t)X 2 (t) -γX 2 (t), dX 3 (t) dt = γX 2 (t).
(II-21)

Lemma 7.1. The size ζ of an epidemic without vaccination starting at Φ X,0 (0) = X = (X 1 , X 2 ) is the unique solution in [0, X 1 [ of the equation:

1 - ζ X 1 = e -β γ (X 2 +ζ) . (II-22)
Moreover ζ(X) > X 1 -γ β , ∀X ∈ Ω and ζ ∈ C 1 (Ω). Remark 5. Although ζ depends on X, when there is no ambiguity, we will just write ζ.

Proof. Denote X ∞ 1 = lim t→∞ Φ X,0 1 (t), X ∞ 2 = lim t→∞ Φ X,0 2 (t).
Straightforward computations allow to prove that:

Φ X,0 1 (t) = X 1 e -β γ (1-Φ X,0 1 (t)-Φ X,0 2 (t)) . (II-23) Or X ∞ 2 = 0 thus X ∞ 1 = X 1 e -β γ (X 1 +X 2 -X ∞ 1 ) . Using that ζ = X 1 -X ∞ 1 we obtain equation (II-22). Let F (y, X 1 , X 2 ) = e -β γ (y+X 2 ) -(1 -y X 1 ) defined on [0, X 1 ] × Ω. Since F (0, X 1 , X 2 ) = e -β γ X 2 -1 ≤ 0 and F (X 1 , X 1 , X 2 ) = e -β γ (X 1 +X 2 )
> 0 the equation (in y) F (y, X 1 , X 2 ) = 0 has at least a solution in [0, X 1 [; thus equation (II-22) has at least a solution in [0, X 1 [.
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Moreover ∂F ∂y (y, X 1 , X 2 ) = -β γ e -β γ (y+X 2 ) + 1 X 1 . Since y ≤ X 1 ≤ 1 and X 1 + X 2 ≤ 1 we obtain ∂F ∂y (y, X 1 , X 2 ) ≥ -β γ e -β γ + 1 > 0 (because 1 > ze -z for any z > 0); therefore F (•, X 1 , X 2 ) is strictly increasing in y and the solution ζ is unique.

If

X 1 ≤ γ β since ζ ≥ 0 we obtain immediately ζ ≥ X 1 -γ β . If on the contrary X 1 ≥ γ β (thus in particular γ βX 1 ∈]0, 1]
) we obtain:

F (X 1 - γ β , X 1 , X 2 ) = e -β γ (X 1 -γ β +X 2 ) -(1 - X 1 -γ β X 1 ) ≤ e -β γ (X 1 -γ β ) - γ βX 1 ≤ 0 (II-24)
where for the last inequality we used that e 1-1/zz ≤ 0 for any 

z = γ βX 1 ∈ ]0, 1]. Therefore the solution ζ is in [(X 1 -γ/β) + , X 1 [. When X belongs to the open set Ω then same arguments show that the inequality ζ > (X 1 -γ/β) is strict.
∂ζ ∂X 1 = ζ X 1 1 + β γ (ζ -X 1 )
, (II-25)

∂ζ ∂X 2 = γ/β ζ -X 1 + γ/β -1, (II-26) ∂ 2 ζ ∂X 2 1 = - γ β ζ(ζ -2X 1 + 2γ/β)(ζ -X 1 ) X 2 1 (ζ -X 1 + γ/β) 3 , (II-27) ∂ 2 ζ ∂X 1 ∂X 2 = ∂ 2 ζ ∂X 2 ∂X 1 = γ β (X 1 -γ/β)(ζ -X 1 ) X 1 (ζ -X 1 + γ/β) 3 .
(II-28)

Note that since ζ > X 1 -γ β all fractions are well defined and ζ is even C 2 (Ω).

Properties of the trajectories

Proof. We have to prove that:

f (X, 0), ∇∂ X 1 J 0 (X) < 0. (II-29)
Using the expression of ζ, we have:

J 0 (X) = ∞ 0 r I X 1 (τ )X 2 (τ )dτ = r I ζ(X).
Equation (II-29) can thus be rewritten as follows:

f (X, 0), ∇∂ X 1 ζ < 0. (II-30)
Using equations (II-27) and (II-28), this gives after some computations:

X 1 ζ -X 1 + γ β 2 > 0 which is always true because X 1 is strictly positive and ζ = X 1 -γ β . Lemma 8.2. For all Y ∈ Γ 1 ∪ Γ A1 the trajectory Φ Y,u (t) is incoming in Ω ∀u ∈ U Y .
Proof. For Γ 1 , the scalar product with the incoming normal is positive:

f (X, u), (-1, -1) = γX 2 + u ≥ 0 ∀u ∈ [0, u max ].
For Γ A1 :

f (X, u), (0, 1) = X 2 (βX 1 -γ) ≥ 0 ∀u ∈ [0, u max ]. Lemma 8.3. J 0 is C 1 (Ω).
Proof. Since J 0 = r I ζ the conclusion follows from Lemma 7.1.

Lemma 8.4. For all X ∈ Ω, we have ∂ζ ∂X 1 (X) ≤ 2. Therefore 0

≤ ∂J 0 ∂X 1 (X) ≤ 2r I ∀X ∈ Ω. Proof. Using expression in (II-25), to prove ∂ X 1 ζ ≤ 2, we just have to show that ζ ≥ 2X 1 (X 1 -γ β ) 2X 1 -γ β .
For that, we take same notation and result as in the proof of the Lemma 7.1 so X 1 ≥ γ β and we denote ξ =

2X 1 (X 1 -γ β ) 2X 1 -γ β . We have to prove that F (ξ, X 1 , X 2 ) ≤ 0.
With these notations, we have

F (ξ, X 1 , X 2 ) = e -γ β (ξ+X 2 ) - γ β 2X 1 -γ β . If we note z = β γ ξ, we obtain, e -z-γ β X 2 -(z + √ z 2 + 1). As e -z-γ β X 2 ≤ e -z ≤ 1 z+ √ z 2 +1 , this proves that F (ξ, X 1 , X 2 ) ≤ 0.
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Lemma 8.5. The level lines defined by L

∂ X 1 ζ r = {(X 1 , X 2 ) ∈ Ω | ∂ζ ∂X 1 (X) = r} have the parametric equation: 1 - 1 -β γ X 1 1 r -β γ X 1 = e -β γ X 1 1- β γ X 1 1 r - β γ X 1 +X 2 .
(II-31)

and have point A = ( γ β , 0) as limit (but A / ∈ L

∂ X 1 ζ r V /r I ). Proof. If X = (X 1 , X 2 ) ∈ L ∂ X 1 ζ r using the definition of L ∂ X 1 ζ r
and (II-28) we have:

ζ = X 1 1 -β γ X 1 1 r -β γ X 1 . (II-32)
Then, we replace in (II-22) to obtain the parametric equation. Note that

∇ X ζ is not defined at A. The level line L ∂ X 1 ζ 0 is Γ OA and the level line L ∂ X 1 ζ 1 is {X ∈ Ω | X 1 = γ β }. Suppose r / ∈ {0, 1}, then for any X ∈ L ∂ X 1 ζ r we have ∂ζ ∂X 1 (X) = 0. The level line L ∂ X 1 ζ r
is regular in the neighborhood of any X = (X 1 , X 2 ) ∈ Ω. Indeed if ∂ζ ∂X 1 (X) = r by the implicit function Theorem in the neighborhood of X there exists a curve X 2 = X 2 (X 1 ) such that ∂ζ ∂X 1 X 1 , X 2 (X 1 ) = r. Moreover, by the same Theorem X 2 (X 1 ) is C 1 locally. Thus the level line L ∂ X 1 ζ r is regular around any point in Ω. As such it does not have self-intersections either. In addition for any r ∈ [0, 2] since lim

X 1 → γ β - ∂ζ ∂X 1 (X 1 , 0) = 0 and lim X 1 → γ β + ∂ζ ∂X 1 (X 1 , 0) = 2 by continuity we obtain that L ∂ X 1 ζ r
will be as close to A as wanted thus A is an extremity of L ∂ X 1 ζ r (but does not belong to it).

An introduction to viscosity solutions

This section is largely based on classical works such as [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], [10], [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] [START_REF] Soner | Optimal control with state-space constraint[END_REF]. We refer the reader to these works for additional details. 

D + ξ(x) = p ∈ R n ; lim sup y→x ξ(y) -ξ(x) -p • (y -x) |y -x| ≤ 0 . (II-33)
Similarly, the set of sub-differentials of ξ at a point x ∈ O is:

D -ξ(x) = p ∈ R n ; lim inf y→x ξ(y) -ξ(x) -p • (y -x) |y -x| ≥ 0 . (II-34)
In the following, we consider the first order partial differential equation: (II-37)

F(x, ξ(x), ∇ξ(x)) = 0, (II-35) defined on an open set O ∈ R n . Here, F : O × R n × R n → R
Finally, we call ξ a viscosity solution of (II-35) if it is both a supersolution and a subsolution in the viscosity sense.

Remark 7. For each particular problem we explicitly specify the boundary conditions.

10 Bounded vaccination speed (u max < ∞)

In this section we assume that u max < ∞. Proof. We first prove that for a fixed control u and time t the function

{Y ∈ Ω | u ∈ U Y } ∋ Y → Φ Y,u (t),
is Lipschitz with the Lipschitz constant independent of u. We write:

|| d dt Φ Y,u (t) - d dt Φ Z,u (t)|| = ||f (Φ Y,u (t), u) -f (Φ Z,u (t), u)|| ≤ L f ||Φ Y,u (t) -Φ Z,u (t)||,
where L f is the constant in equation (II-12). Then:

d dt ||Φ Y,u (t) -Φ Z,u (t)|| 2 ≤ 2L f ||Φ Y,u (t) -Φ Z,u (t)|| 2 . (II-38)
Using the Gronwall Lemma and taking the square root, we obtain:

||Φ Y,u (t) -Φ Z,u (t)|| ≤ ||Y -Z||e L f Tmax . Fix Y, Z ∈ Ω and denote by u Y = u max • 1 [0,θ(Y )
] one optimal control of the trajectory leaving from Y . Then if u Y ∈ U Z and u Z ∈ U Y we can obtain the following estimates:

V umax (Z) ≤ J(Z, u Y ) ≤ Tmax 0 r I βΦ Z,u Y 1 (t)Φ Z,u Y 2 (t) + r V u Y (t)dt + J 0 (Φ Z,u Y (T max )) ≤ Tmax 0 r I βΦ Y,u Y 1 (t)Φ Y,u Y 2 (t) + r V u Y (t)dt + J 0 (Φ Y,u Y (T max )) +C u Y ,Tmax Y -Z = V umax (Y ) + C u Y ,Tmax Y -Z . Note that u Y is member of the compact set {u : [0, ∞] → R | u = u max 1 [0,θ] , θ ≤ T max }.
Thus the constant C u Y ,Tmax only depends on T max (and not on Y or Z). Changing the roles of Y and Z we obtain the reverse inequality thus the conclusion.

If

u Y / ∈ U Z or u Z / ∈ U Y , suppose, to fix notations, that u Y / ∈ U Z ; since u Y = u max • 1 [0,θ(Y )] then u Y / ∈ U Z implies θ(Y ) > θ(Z) thus u Z ∈ U Y . Take η ∈ [θ(Z), θ(Y )] to be the maximum value such that u max 1 [0,η] ∈ U Z ∩ U Y .
The maximality implies Φ Z,umax1 [0,η] (η) ∈ Γ I . Using Lipschitz estimates for Φ •,umax1 [0,η] (t) we obtain as above:

V umax (Z) ≤ J(Z, u max 1 [0,η] ) ≤ C Tmax ( Y -Z ) + V umax (Φ Z,umax1 [0,η] (η)) +V umax (Y ) -V umax (Φ Y,umax1 [0,η] (η)) ≤ V umax (Y ) + C Tmax ( Y -Z ) + 0
where we used the fact that X ∈ Γ I implies V umax (X) = 0 and that V umax is positive. From now on we continue as above and obtain the Lipschitz property for Y and Z.

Since V umax is a Lipschitz function on Ω with bounded Lipschitz constant it admits a unique Lipschitz extension over Ω. 

(P)                    Find F : Ω → R such that F is Lipschitz on Ω, (II-39a) -H umax (X, ∇F (X)) = 0, X ∈ Ω, (II-39b) F (X) = 0 on Γ OA , (II-39c) F (X) = 0 on Γ I , (II-39d) -H umax (X, ∇F (X)) = 0 on Γ 1 .
(

II-39e)

Remark 8. There is no boundary condition on Γ A1 .

Remark 9. See proof section 9 for an introduction to viscosity solutions.

Proof. Using Lemma 9.1 and Definition 9.2 we first show that V umax is a subsolution of (II-39) then we will show it is also a supersolution.

Step 1. Let Y ∈ Ω and ϕ ∈ C 1 (Ω) such that V umax (Y )ϕ(Y ) attains a local maximum at Y . So for Z in a neighborhood of Y :

V umax (Y ) -V umax (Z) ≥ ϕ(Y ) -ϕ(Z).
(II-40)

We will prove that:

-H umax (Y, ∇ϕ(Y )) ≤ 0. (II-41)
This is equivalent to:

-u max (∂ X 1 ϕ(Y ) -r V ) + + βY 1 Y 2 (r I + ∂ X 2 ϕ(Y ) -∂ X 1 ϕ(Y )) -γY 2 ∂ X 2 ϕ(Y ) ≥ 0. (II-42)
Assume that it is not the case. Then there exists, by continuity, a value w ∈ [0, u max ] (see Remark 10 page 95 below) and a constant κ > 0 such that in a neighborhood of Y : (II-40) we obtain:

w(r V -∂ X 1 ϕ(Φ Y,u (•))) + βΦ Y,u 1 (•)Φ Y,u 2 (•)(r I + ∂ X 2 ϕ(Φ Y,u (•)) -∂ X 1 ϕ(Φ Y,u (•))) -γΦ Y,u 2 (•)∂ X 2 ϕ(Φ Y,u (•)) ≤ -κ
V umax (Z 0 ) -V umax (Y ) ≤ ϕ(Z 0 ) -ϕ(Y ) = δ 0 d dt ϕ(Φ Y,w (t))dt (II-44) ≤ δ 0 ∇ϕ(Φ Y,w (t)), f (Φ Y,w (t), w) dt ≤ δ 0 -κ -βΦ Y,w 1 (t)Φ Y,w 2 (t)r I -wr V dt ≤ -δκ - δ 0 βΦ Y,w 1 (t)Φ Y,w 2 (t)r I + wr V dt. (II-45)
Or, by the definition of the optimality of V umax in Y :

V umax (Y ) ≤ δ 0 r I βΦ Y,w 1 (t)Φ Y,w 2 (t) + r V wdt + V umax (Z 0 ) V umax (Y ) -V umax (Z 0 ) ≤ δ 0 r I βΦ Y,w 1 (t)Φ Y,w 2 (t) + r V wdt,
by summing the inequality we get 0 < -κδ, which is absurd. Therefore using Lemma 9.1 we obtain:

-H umax (X, ∇V umax (X)) ≤ 0 for all X ∈ Ω.

To prove (II-39e) we use proof section 8 where we prove that trajectories Φ Y,u (•) with Y ∈ Γ 1 are strictly entering the domain Ω for all w ∈ [0, u max ]. For this reason when Y ∈ Γ 1 Φ Y,w (t) / ∈ Γ 1 for t ∈]0, δ]. Moreover, we choose ϕ such that ϕ is C(Ω) and C 1 (Ω). These arguments allow to prove equation (II-45) from equation (II-44). Moreover the same proof can be used for all X ∈ Γ 1 and we obtain:

-H umax (X, ∇V umax (X)) ≤ 0 for all X ∈ Γ 1 .
By Lemma 2.1, we have that V umax is bounded on Ω and by Theorem 10.1 V umax is a Lipschitz function. By definition of V umax we have V umax (X) = 0 on Γ I and Γ OA . So V umax is a subsolution of (II-39).

Step 2. Now we prove that V umax is a supersolution of (II-39).

Let Y ∈ Ω and ϕ ∈ C 1 (Ω) such that V umax (Y ) -ϕ(Y ) attains a local minimum at Y . So for Z in a neighborhood of Y : V umax (Y ) -ϕ(Y ) ≤ V umax (Z) -ϕ(Z). We will show that: -H umax (Y, ∇ϕ(Y )) ≥ 0 ∀ Y ∈ Ω .
Assume that it is not the case. Then there exists κ > 0 such that H umax (Y, ∇ϕ(Y )) > κ in a neighborhood of Y . So there exists (a small) δ > 0 such that for any u(t) ∈ [0, u max ]:

-u max (∂ X 1 ϕ(Φ Y,u (•)) -r V ) + + βΦ Y,u 1 (•)Φ Y,u 2 (•)(r I + ∂ X 2 ϕ(Φ Y,u (•)) -∂ X 1 ϕ(Φ Y,u (•))) -γΦ Y,u 2 (•)∂ X 2 ϕ(Φ Y,u (•)) > κ ∀t ≤ δ. (II-46) 94 10. Bounded vaccination speed (u max < ∞)
Let w be a control in U Y and Z 0 = Φ Y,w (δ) (for small δ any w ∈ [0, u max ] is in U Y ). Then:

V umax (Z 0 ) -V umax (Y ) ≥ ϕ(Z 0 ) -ϕ(Y ) = δ 0 ∇ϕ(Φ Y,w (t)), f (Φ Y,w (t), w) dt ≥ δκ + δ 0 u max (∂ X 1 ϕ(Φ Y,w (t)) -r V ) + -r I βΦ Y,w 1 (t)Φ Y,w 2 (t) -w∂ X 1 ϕ(Φ Y,w (t))dt ≥ δκ - δ 0 wr V + r I βΦ Y,w 1 (t)Φ Y,w 2 (t)dt + δ 0 u max (∂ X 1 ϕ(Φ Y,w (t)) -r V ) + -w(∂ X 1 ϕ(Φ Y,w (t)) -r V )dt ≥ δκ - δ 0 wr V + r I βΦ Y,w 1 (t)Φ Y,w 2 (t)dt.
(because

δ 0 u max (∂ X 1 ϕ(Φ Y,w (t)) -r V ) + -w(∂ X 1 ϕ(Φ Y,w (t)) -r V )dt ≥ 0 since w ∈ [0, u max ]).
So, for any w, we have:

V umax (Z 0 ) + δ 0 wr V + r I βΦ Y,w 1 (t)Φ Y,w 2 (t)dt ≥ V umax (Y ) + δκ. (II-47)
Taking the infimum with respect to w we obtain V umax (Y ) ≥ V umax (Y ) + κδ. This is absurd, therefore V umax is a supersolution on Ω.

For the same reasons as previously, we have -H umax (X, ∇V umax (X)) ≥ 0 on Γ 1 and V umax is a supersolution of equation (II-39).

Step 3. To summarize this proof, we showed that:

-by Theorem 10.1, V umax is a Lipschitz function, -V umax is both a subsolution and a supersolution of (II-39b) and (II-39e), -V umax (X) = 0 on Γ OA ∪ Γ I by definition of V umax . So V umax is a viscosity solution of the Hamilton-Jacobi-Bellman equation (II-39).

Partie II. Vaccination globale optimale dans un modèle SIR : propriétés de la fonction valeur et application à une analyse coût-efficacité [START_REF] Reluga | Evolving public perceptions and stability in vaccine uptake[END_REF] 10.3 Uniqueness of the solution of the HJB problem Theorem 10.3. Let F 1 be a subsolution of (II-39) and F 2 a supersolution. Then:

F 1 (X) ≤ F 2 (X) for all X ∈ Ω.
Remark 10. In the following, we will use that, for any

A 1 , B 1 , A 2 , B 2 ∈ R with min(A 1 , B 1 ) ≤ min(A 2 , B 2
) there exists ρ ≥ 0 such as:

A 1 + ρB 1 ≤ A 2 + ρB 2 .
Proof. Let B α ∈ Ω denote the point with coordinates (1α, α) and:

Γ ABα = (X 1 , X 2 ) ∈ Ω | X 2 > 0, β γ X 1 + γ -β + αβ αγ X 2 = 1 , Γ Bα1 = (X 1 , X 2 ) ∈ Ω | X 1 + X 2 = 1 , X 2 > α .
Let D α ⊂ Ω be the domain strictly bounded by Γ I , Γ OA , Γ ABα and Γ Bα1 , see figure II.12 for a graphical representation. When γ/β ≥ 1 the point A will lie outside Ω, we take D α = Ω, Γ ABα = ∅ and Γ Bα1 = Γ 1 . We prove in proof section 8 that for any X 0 ∈ ∂D α the trajectory Φ X 0 ,w (t) with w(t) ∈ [0, u max ] ∀t enters D α .

For X ∈ Γ Bα1 , X = (1, 0), the scalar product with the incoming normal is positive:

f (X, u), (-1, -1) = γX 2 + u > 0 ∀X ∈ Γ Bα1 , X = (1, 0), u ∈ [0, u max ]. 10. Bounded vaccination speed (u max < ∞)
For X ∈ Γ ABα , X = (1, 0), the relevant quantity is:

f (X, u), (- β γ , - γ -β + αβ γα ) = β γ (βX 1 X 2 + u) + γ -1 (βX 1 -γ) 2 > 0.
We now show the Theorem for F 1 and F 2 restricted to D α . To this end we make the change of variable introduce by Kružkov (see [10]), for X ∈ D α , W(X) = 1e -F (X) . Formally:

∇W(X) = ∇F(X)e -F (X) = ∇F(X)(1 -W(X)) (II-48) thus ∇F(X) = ∇W(X) (1-W(X))
. This motivates the introduction of the following Hamiltonian:

-u max ( p 1 1 -W(X) -r V ) + + βX 1 X 2 (r I + p 2 1 -W(X) - p 1 1 -W(X) ) -γX 2 p 2 1 -W(X)
.

(II-49)

Since 1 -W(X) will always be positive, for convenience, we conclude the demonstration using the Hamiltonian: Humax :

D α × [0, 1] × R 2 → R: Humax (X, W(X), p) = min w∈[0,umax] p • f (X, w) + (1 -W(X))(r I βX 1 X 2 + r V w) = -u max (p 1 -r V (1 -W(X))) + + βX 1 X 2 (r I (1 -W(X)) + p 2 -p 1 ) -γX 2 p 2 .
So we have to prove the following:

Lemma 10.1. Let the Hamilton-Jacobi-Bellman equation:

(PW)                    Find F : D α → R such that F is Lipschitz on D α , (II-50a) -Humax (X, F, ∇F (X)) = 0, ∀X ∈ D α , (II-50b) F (X) = 0 on Γ OA , (II-50c) F (X) = 0 on Γ I , (II-50d) -Humax (X, F (X), ∇F (X)) = 0 on Γ ABα ∪ Γ Bα1 . (II-50e)
If W 1 is a subsolution of (II-50) and W 2 a supersolution, then W 1 (X) ≤ W 2 (X) for all X ∈ D α .
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Proof. Suppose now that the Lemma is not true, then there exists σ > 0 such that: sup

x∈Dα [W 1 (x) -W 2 (x)] = σ > 0. (II-51) Consider Ψ ǫ (x, y) : D α → R defined by Ψ ǫ (x, y) = W 1 (x)-W 2 (y)-|x-y| 2 ǫ .
For any ǫ this function has a global maximum in (x ǫ , y ǫ ) and we have for ǫ small enough: Ψ ǫ (x ǫ , y ǫ ) ≥ σ/2 > 0. Since W 1 , W 2 are bounded we obtain also lim ǫ→0 |x ǫy ǫ | = 0.

In addition, consider the functions:

ϕ 1 (x) = W 2 (y ǫ ) + |x-y ǫ | 2 ǫ defined on Ω ϕ 1 = {x ∈ R * + | x + y ǫ < 1}, ϕ 2 (y) = W 1 (x ǫ ) -|x ǫ -y| 2 ǫ defined on Ω ϕ 2 = {y ∈ R * + | x ǫ + y < 1}.
These two functions are C 1 on Ω ϕ 1 and Ω ϕ 2 respectively. Then W 1 (x)ϕ 1 (x) reaches its maximum in x ǫ , ϕ 1 is C 1 (Ω ϕ 1 ) and W 1 is a subsolution of (II-50). Using the Lemma (9.1), we have:

-Humax x ǫ , W 1 (x ǫ ), 2(x ǫ -y ǫ ) ǫ ≤ 0. (II-52)
Similarly, using that the application y → W 2 (y)ϕ 2 (y) has its maximum in y ǫ , ϕ 2 is C 1 (Ω ϕ 2 ) and W 2 is a supersolution of (II-50), we have -Humax y ǫ , W 2 (y ǫ ), 2(x ǫ -y ǫ ) ǫ ≥ 0. Combining these two equations, we obtain:

-Humax x ǫ , W 1 (x ǫ ), 2(x ǫ -y ǫ ) ǫ ≤ -Humax y ǫ , W 2 (y ǫ ), 2(x ǫ -y ǫ ) ǫ .
(II-53) We use then Remark 10, with Humax written as:

Humax (X, W, p) = min (u max (r V (1 -W) -p 1 ) + βX 1 X 2 (r I (1 -W) +p 2 -p 1 ) -γX 2 p 2 , βX 1 X 2 (r I (1 -W) + p 2 -p 1 ) -γX 2 p 2 ) . (II-54)
So we obtain after few simplifications and factorisation (ρ is the constant given by Remark 10):

-u max r V (W 2 (y ǫ ) -W 1 (x ǫ )) + (1 + ρ) [β(-x ǫ 1 x ǫ 2 + y ǫ 1 y ǫ 2 )(r I -p ǫ 1 + p ǫ 2 ) -γp ǫ 2 (y ǫ 2 -x ǫ 2 )] -(1 + ρ)βr I [y ǫ 1 y ǫ 2 W 2 (y ǫ ) -x ǫ 1 x ǫ 2 W 1 (x ǫ )] ≤ 0. (II-55) Moreover, W 1 (x ǫ ) -W 2 (y ǫ ) ≤ Ψ ǫ (x ǫ , y ǫ ) ≤ W 1 (x ǫ ) -W 2 (y ǫ ) + |W 2 (x ǫ ) - W 2 (y ǫ )| -|x ǫ -y ǫ | 2 2ǫ . 10. Bounded vaccination speed (u max < ∞) Hence, 0 ≤ |W 2 (x ǫ ) -W 2 (y ǫ )| -|x ǫ -y ǫ | 2 2ǫ
. Since W 2 is uniformly continuous (as a continuous function on a compact) and lim ǫ→0 |x ǫy ǫ | = 0, we have:

lim ǫ→0 |x ǫ -y ǫ | 2 2ǫ = 0. (II-56) So, (-x ǫ 1 x ǫ 2 + y ǫ 1 y ǫ 2 )(-p ǫ 1 + p ǫ 2 ) = (-x ǫ 1 x ǫ 2 + x ǫ 1 y ǫ 2 -x ǫ 1 y ǫ 2 + y ǫ 1 y ǫ 2 ) 2 ǫ (-x ǫ 1 + y ǫ 1 + x ǫ 2 -y ǫ 2 ) = (-x ǫ 1 (x ǫ 2 -y ǫ 2 ) -y ǫ 2 (x ǫ 1 -y ǫ 2 )) 2 ǫ (-(x ǫ 1 -y ǫ 1 ) + x ǫ 2 -y ǫ 2 ) ≤ 2 ǫ (|x ǫ 1 | + |y ǫ 2 |)|x ǫ 2 -y ǫ 2 ||x ǫ 1 -y ǫ 1 | + 2 ǫ |x ǫ 1 ||x ǫ 2 -y ǫ 2 | 2 + 2 ǫ |y ǫ 2 ||x ǫ 1 -y ǫ 1 | 2 ≤ 4 ǫ |x ǫ 2 -y ǫ 2 ||x ǫ 1 -y ǫ 1 | + 2 ǫ |x ǫ 2 -y ǫ 2 | 2 + 2 ǫ |x ǫ 1 -y ǫ 1 | 2 .
Hence, lim ǫ→0 β|(-

x ǫ 1 x ǫ 2 + y ǫ 1 y ǫ 2 )(-p ǫ 1 + p ǫ 2 )| = 0.
Similarly, using (II-56), we have γp ǫ 2 (x ǫ 2y ǫ 2 ) = 0. After eventually extracting a subsequence (ǫ n ) n≥0 we can suppose that lim ǫn→0 x ǫn = lim ǫn→0 y ǫn = x. Note that x 1 = 0 or x 2 = 0 would imply x ∈ Γ OA ∪ Γ I thus W 1 (x) = W 2 (x) = 0 in contradiction with Ψ(x ǫ , y ǫ ) ≥ σ 2 and (II-56). Therefore x 1 = 0 and x 2 = 0.

We can therefore rewrite (II-55) as follows:

-

[(1 + ρ)r I βx 1 x 2 + u max r V ] [W 2 (x) -W 1 (x)] ≤ 0. (II-57)
Since r I , r V , β > 0, ρ ≥ 0 and x 1 = 0, x 2 = 0 this implies that:

W 2 (x) ≥ W 1 (x). (II-58)
On the other hand, for ǫ relatively small, we have W 1 (x ǫ ) ≥ W 2 (y ǫ ) + σ 2 . Passing to the limit, we get W 1 (x) > W 2 (x). This is in contradiction with (II-58) and ends the proof of the Lemma.

As W 1 ≤ W 2 on D α , we have also

F 1 ≤ F 2 on D α . When α → 0, we obtain F 1 ≤ F 2 on Ω.
This proof is also available for X ∈ Γ 1 . For Γ OA and Γ I , we just use the value of the function.

Theorem 10.4. The value function V umax is the unique solution of the HJB problem (II-39).
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Proof. Let F 1 and F 2 be two viscosity solutions of (II-39). Since F 1 is a subsolution and F 2 is a supersolution, we have, by Theorem 10.3 that F 1 ≤ F 2 on Ω. Interchanging the roles of F 1 and F 2 , we can conclude

F 2 ≤ F 1 . So F 1 = F 2
on Ω and therefore on Ω (by continuity). Thus the solution is unique. By Theorem 10.6 the value function V umax is the unique solution.

Solution candidate and its properties: the subcritical case

Theorem 10.4 implies that in order to find the value function it is enough to find a solution of the HJB equation (II-39). We expect the solution to lead to a partition of the domain into a vaccination region and a non-vaccination region. An important question concerns the regularity of the value function which at its turn is related to the uniqueness of the optimal strategy. The frontier of the vaccination region will be seen to be related to the level line L

∂ X 1 ζ r V /r I of ∂ X 1 ζ; see in proof section 8 the definition of L ∂ X 1 ζ r V /r I .
Thus we are about to ask a question similar to that in figure II.6: does L ∂ X 1 ζ r V /r I contain points that are entering the domain for control u max and exiting it for control 0. The level lines L ∂ X 1 ζ r V /r I that contain such points will lead to non unique optimal strategies (and non smooth value functions).

When γ/β < 1, for any u max < ∞ we introduce the critical point X crit umax which is the unique solution of the equations:

X ∈ Γ 1 f (X, u max ), ∇∂ X 1 ζ(X) = 0. (II-59)
The proof of existence and uniqueness of X crit umax is left as an exercise for the reader. One can use the description of the curve f (X, u max ), ∇∂ X 1 ζ(X) = 0 (see also the proof section 7 for formulaes involving ζ and its derivatives) to show that X crit umax = (x * , 1x * ) where x * is the solution of:

γ β -x * - γ β u max βx * (1 -x * ) + u max = x * e -β γ (1-x * )+(x * -γ β ) 1+ √ umax βx * (1-x * )+umax . (II-60)
Then the value r crit V,umax is defined as

r crit V,umax = ∂ X 1 ζ(X crit umax ).
(II-61)

10. Bounded vaccination speed (u max < ∞)

For γ/β ≥ 1 we set r crit V,umax = ∞. Note that in all situations r crit V,umax > 1. When r V < r crit V,umax r I we define a partition of Ω in two regions

Ω N V umax = {X ∈ Ω | ∂ X 1 ζ(X) < r V /r I } (II-62) Ω V umax = {X ∈ Ω | ∂ X 1 ζ(X) > r V /r I }. (II-63)
The level line L

∂ X 1 ζ r V /r I is situated on the common frontier ∂Ω N V umax ∩ ∂Ω V umax . For γ/β ≥ 1 it may happen that r V /r I is such that L ∂ X 1 ζ r V /r I ∩ Ω = ∅; then we take Ω V umax = ∅.
This can happen for relatively small values of r V /r I as illustrated in figure II.13.

Lemma 10.2. Any trajectory

Φ X 0 ,w (t) with X 0 ∈ ∂Ω N V umax ∩ ∂Ω V umax is such that Φ X 0 ,w (t) ∈ Ω N V
umax for all t > 0 and w ∈ U X 0 .

Proof. In order to prove that the trajectory Φ X 0 ,w (t) enters the domain Ω N V umax it is enough to prove that the tangent to the trajectory has strictly positive scalar product with the incoming normal at X 0 to Ω N V umax i.e.,

f (X 0 , w(0)), -∇∂ X 1 ζ(X 0 ) > 0, ∀X 0 ∈ ∂Ω N V umax ∩ ∂Ω V umax .
This follows (after some straightforward computations) from the definition of r crit V,umax and the monotonicity of the derivatives of ζ(•) as r crit V,umax is the smallest value r where the trajectory u = u max is tangent to the level line L

∂ X 1 ζ r (see in proof section 8 the definition of L ∂ X 1 ζ r ).
Introduce also the control u X 0 (t) taken to be u max as long as the trajectory Φ X 0 ,u X 0 (•) (t) obtained with this control u X 0 (t) remains in Ω V umax (and zero otherwise). It is a feedback control. Formally it is the solution of the equation:

u X 0 (t) = u max • 1 Φ X 0 ,u X 0 (•) (t)∈Ω V umax . (II-64)
The fact that such a solution exists is a consequence of the regularity of the boundary of Ω V umax and Lemma 10.2. Note that u X 0 (t) is of the form

u max • 1 [0,η] with η ≥ 0. Define the function Π r V ,r I umax : Ω → R by Π r V ,r I umax (X 0 ) = J(X 0 , u X 0 (•)).
(II-65)

Theorem 10.5. For r V < r crit V,umax r I :

1. Π r V ,r I umax Ω N V umax = J 0 = r I ζ;
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X 1 1 X 2 1 O A = (γ/β, 0) ∂ X1 ζ = 0. 25 
∂ X1 ζ = 0.5 ∂ X1 ζ = 0. 75 
∂ X1 ζ = 0.9 ∂ X1 ζ = 1 ∂ X1 ζ = 1.1 ∂ X1 ζ = 1.4 X 1 1 X 2 1 O ∂ X1 ζ = 0.15 ∂ X1 ζ = 0.25 ∂ X1 ζ = 0.35 ∂ X1 ζ = 0.45 Figure II.13: Illustration of level lines L ∂ X 1 ζ r of the function ∂ X 1 ζ for γ/β < 1 (left) and γ/β ≥ 1 (right). 2. Π r V ,r I umax Ω V umax
is the unique viscosity solution of the following problem:

(Pv)                Find F : Ω V umax → R such that F is Lipschitz on Ω V umax , (II-66a) -H vac,umax (X, ∇F (X)) = 0, X ∈ Ω V umax , (II-66b) F (X) = r I ζ(X), X ∈ Ω N V umax ∩ Ω V umax , (II-66c) -H vac,umax (X, ∇F (X)) = 0, X ∈ ∂Ω V umax \ (Ω N V umax ∩ Ω V umax ). (II-66d)
Here H vac,umax : Ω × R 2 → R is the Hamiltonian function:

H vac,umax (X, p) = f (X, u max ), (p 1 , p 2 ) + r I βX 1 X 2 -r V u max = -u max (p 1 -r V ) + βX 1 X 2 (r I + p 2 -p 1 ) -γX 2 p 2 .
(II-67)

3. Π r V ,r I umax ∈ C 1 (Ω); 4. Π r V ,r I
umax is a solution of the HJB equation (II-39).

Proof. We only consider in this proof the circumstance when γ/β < 1, because proof for γ/β ≥ 1 is similar to the proof for γ/β < 1.

Point 1: It is enough to show that a trajectory with initial point in Ω N V umax remains there forever. Considering the definition of the domains for any

X ∈ Ω V umax ∩ Ω N V umax = L ∂ X 1 ζ
r V /r I the tangent direction f (X, u) to the trajectory points strictly to the interior of Ω N V umax (for any u ∈ [0, u max ]); this follows from Lemma 10.2.

Bounded vaccination speed (u max < ∞)

Point 2: These properties of the function Π r V ,r I umax are obtained as in the proofs of Theorems 10.1 and 10.2 once we write Π r V ,r I umax as the "value function" of a trivial control problem where the control is taken in the one-element set {u max } until reaching the frontier Ω V umax ∩ Ω N V umax ; on the frontier the value is 1 on Ω (see proof section 7); in particular Π r V ,r I umax will be C 1 on Ω N V umax . For X ∈ Ω V umax we note that Π r V ,r I umax is the solution of a quasi-linear first order PDE (cf. point 2) and has boundary conditions

r I ζ(X) = J 0 (X). Point 3: The function ζ(X) is C
defined on a non-characteristic curve Ω N V umax ∩Ω V umax = L ∂ X 1 ζ r V /r I ; the curve is non- characteristic because on Ω N V umax ∩ Ω V umax we have f (X, u max ), ∂ X 1 ζ(X) = 0.
Another way to prove the result is to parametrize the boundary curve with a parameter α 1 and denote α 2 the time required to reach the curve. Using the regularity properties of the ODE the function is C 1 in parameters (α 1 , α 2 ) and the change of coordinates from X to (α 1 , α 2 ) is regular around each point in the interior of Ω V umax . Thus Π r V ,r I umax will be

C 1 on Ω V umax . It remains to be proved that Π r V ,r I umax is also C 1 around any point X ∈ L ∂ X 1 ζ r V /r I ∩ Ω; since Π r V ,r I umax Ω V umax and Π r V ,r I umax Ω N V umax
are both C 1 , the side gradients exist and it remains only to be proved that

∇Π r V ,r I umax Ω V umax (X) = ∇Π r V ,r I umax Ω N V umax (X), ∀X ∈ L ∂ X 1 ζ r V /r I .
Using continuity and C 1 properties and the fact that Π r V ,r

I umax Ω V umax and Π r V ,r I umax Ω N V umax
coincide on the common frontier it follows that the tangential derivatives along the frontier are the same. Let us prove that the directional derivative also coincide in the direction f (X, u max ), which can be written:

∇Π r V ,r I umax Ω V umax (X), f (X, u max ) = ∇Π r V ,r I umax Ω N V umax (X), f (X, u max ) . (II-68) But Π r V ,r I umax Ω V umax satisfies (II-66b) then ∇Π r V ,r I umax Ω V umax (X), f (X, u max ) = -r I βX 1 X 2 + r V u max = -H vac,umax (X, ∇Π r V ,r I umax Ω N V umax (X)) + ∇Π r V ,r I umax Ω N V umax (X), f (X, u max ) = ∇Π r V ,r I umax Ω N V umax (X), f (X, u max ) .
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We used above the fact that J 0 = r I ζ satisfies H vac,0 (X, ∇J 0 ) = 0 on Ω and that for X ∈ L ∂ X 1 ζ r V /r I we can add u max multiplied by the null term

r I ∂ X 1 ζ(X) -r V to H vac,0 (X, ∇J 0 ) to obtain H vac,umax (X, ∇J 0 ) = 0.
Note that the direction f (X, u max ) cannot be collinear with the tangent at X to the boundary L

∂ X 1 ζ r V /r I because for r V < r I r crit V,umax the definition of r crit
V,umax ensures that f (X, u max ) has non-zero scalar product with the normal ∇∂ X 1 ζ(X) to the boundary. From (II-68) and the coincidence of the tangential derivatives it follows that side gradients ∇Π r V ,r

I umax Ω V umax and ∇Π r V ,r I umax Ω N V umax coincide on the common boundary thus Π r V ,r I umax ∈ C 1 (Ω). Point 4:
Given what was already proved, it remains to show that

∂ X 1 Π r V ,r I umax (X) ≤ r V ∀X ∈ Ω N V umax , (II-69) ∂ X 1 Π r V ,r I umax (X) ≥ r V ∀X ∈ Ω V umax , (II-70) 
Equation (II-69) is a simple consequence of (II-62) and Point 1. For (II-70) we have to analyze in detail the function Π r V ,r I umax Ω N V umax , we will prove that in addition:

∂ X 2 Π r V ,r I umax (X) > 0 ∀X ∈ Ω V umax . (II-71) Consider X 0 ∈ L ∂ X 1 ζ r V /r I . We integrate ∂ X 1 Π r V ,r I umax on the characteristic curve Φ Y,umax (•) issued from Y ∈ Ω V
umax that reaches the frontier at time t > 0 and point X 0 which can be written: Φ Y,umax (t) = X 0 . Formally

∂ X 1 Π r V ,r I umax (Y ) = ∂ X 1 Π r V ,r I umax (X 0 ) - t 0 ∇∂ X 1 Π r V ,r I umax (Φ Y,umax (τ )), f (Φ Y,umax (τ ), u max ) dτ. (II-72)
From now on we will drop the notation Φ Y,umax (τ ) and only denote

(X 1 (τ ), X 2 (τ )) = X(τ ) = Φ Y,umax (τ ). Note that Π r V ,r I umax satisfies H vac,umax (X, ∇Π r V ,r I umax ) = 0 on Ω V umax i.e., ∇Π r V ,r I umax , f (X, u max ) + r I βX 1 X 2 + r V u max =
0 thus by differentiating formally with respect to X 1 one obtains:

∇∂ X 1 Π r V ,r I umax (X(τ )), f (X(τ ), u max ) = βX 2 (-r I -∂ X 1 Π r V ,r I umax + ∂ X 2 Π r V ,r I umax ).
But this latter quantity is integrable over [0, t] and after classical arguments we obtain that

t 0 ∇∂ X 1 Π r V ,r I umax (Φ Y,umax (τ )), f (Φ Y,umax (τ ), u max ) dτ is well de- fined and equals t 0 βX 2 (τ )(-r I -∂ X 1 Π r V ,r I umax + ∂ X 2 Π r V ,r I umax )(X(τ )
)dτ . Moreover using again the HJB equation satisfied by Π r V ,r I umax this term can be replaced by

t 0 1 X 1 (τ ) u max (∂ X 1 Π r V ,r I umax (X(τ )) -r V ) + γX 2 (τ )∂ X 2 Π r V ,r I umax (X(τ )) dτ.
10. Bounded vaccination speed (u max < ∞) Thus, we obtain

∂ X 1 Π r V ,r I umax (Y ) = ∂ X 1 Π r V ,r I umax (X 0 ) + t 0 1 X 1 (τ ) u max (∂ X 1 Π r V ,r I umax (X(τ )) -r V ) +γX 2 (τ )∂ X 2 Π r V ,r I umax (X(τ )) dτ. (II-73)
Similar computations allow to write:

∂ X 2 Π r V ,r I umax (Y ) = ∂ X 2 Π r V ,r I umax (X 0 ) + t 0 1 X 2 (τ ) u max (∂ X 1 Π r V ,r I umax (X(τ )) -r V ) dτ. (II-74) Since Π r V ,r I umax is C 1 it follows from the properties of ζ that ∂ X 1 Π r V ,r I umax (X 0 ) = r V and ∂ X 2 Π r V ,r I umax (X 0 ) > 0.
Combined with the identities (II-73)-(II-74) (and reasoning infinitesimally starting from X 0 along the characteristic) we obtain Theorem 10.6. For r V < r I r crit V,umax the function Π r V ,r I umax is the unique solution of the HJB equation (II-39) and Π r V ,r I umax = V umax . As a consequence in this case the value function V umax is in C 1 (Ω).

∂ X 1 Π r V ,r I umax (Y ) > r V and ∂ X 2 Π r V ,r I umax ( 
Proof. Theorem 10.5 proves that Π r V ,r I umax is a solution of (II-39). Furthermore, Theorem 10.4 assures the uniqueness of the solution. Then, V umax = Π r V ,r I umax .

Solution candidate and its properties: the supercritical case

We work here under the hypothesis r V ≥ r crit V,umax . In particular this implies γ/β < 1.

The simplest case is when r V ≥ 2r I and will be dealt with directly later in Theorem 10.9. On the contrary, the situation when r V ∈ [r crit V,umax r I , 2r I [ requires some more work. In this case the value function V umax will not be C 1 .

Define (see also figure II.14):

Γ crit sub = {P ∈ L ∂ X 1 ζ r V /r I | f (P, u max ), ∇∂ X 1 ζ(P ) ≤ 0}. (II-75)
Using the formulas for f and the derivatives of ζ one can prove with straightforward computations:

• L ∂ X 1 ζ r V /r I ⊂ {X ∈ Ω|X 1 > γ/β} (since r crit V,umax > 1); 
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• ∂ X 2 X 1 ζ(P ) < 0, ∀P ∈ L ∂ X 1 ζ r V /r I ; • Γ crit sub is connected; denote by P crit r V
the other extremity of the curve; then

f (P crit r V , u max ), ∇∂ X 1 ζ(P crit r V ) = 0; • ∀P ∈ L ∂ X 1 ζ r V /r I \ Γ crit sub , P 1 ≥ (P crit r V ) 1 ;
• the trajectories starting from points on the curve Γ crit sub enter the domain

{X ∈ Ω|∇∂ X 1 ζ(X) ≤ r V /r I } for any u ∈ [0, u max ];
• the trajectories starting from points in L

∂ X 1 ζ r V /r I \ Γ crit sub exit this domain for u = u max . For any Y ∈ Γ crit sub introduce t Y = sup t ≥ 0 J 0 (Y ) + r V tu max + t 0 r I βΦ Y,umax 1 (-τ )Φ Y,umax 2 (-τ )dτ ≤ J 0 (Φ Y,umax (-t)) . (II-76)
We note that the previous properties imply that t X 0 > 0; indeed, take Z = Φ Y,umax (-ǫ) for ǫ small enough; then integrating over the curve τ → Φ Z,umax (τ ) we obtain:

J 0 (Y ) = J 0 (Φ Z,umax (ǫ)) = J 0 (Z) (II-77) + ǫ 0 ∇J 0 (Φ Z,umax (τ )), f (Φ Z,umax (τ ), u max ) dτ. (II-78)
Developing the last term and using the HJB equation satisfied by J 0 we can write:

J 0 (Y ) = J 0 (Z) -r V tu max - t 0 r I βΦ Z,umax 1 (τ )Φ Z,umax 2 (τ ) +u max (∂ X 1 J 0 (Φ Z,umax (τ )) -r V ) dτ. (II-79)
The curve τ → Φ Z,umax (τ ) belongs to the domain where ǫ) satisfies the inequality in the equation (II-76) and as such we obtain t Y ≥ ǫ > 0.

∂ X 1 J 0 (Φ Z,umax (τ )) ≥ r V therefore Z = Φ Y,umax (-
We define a curve Γ crit super as:

Γ crit super = {Φ Y,umax (-t Y ) | Y ∈ Γ crit sub }. (II-80)
The curves Γ crit sub and Γ crit super define a domain that will be denoted Ω V umax ; set also Ω N V umax = Ω \ Ω V umax as illustrated in figure II.14. Lemma 10.3. The following inclusion holds:

{X ∈ Ω | ∂ X 1 ζ(X) ≥ r V /r I } ⊂ Ω V umax .
(II-81)

Therefore we also have:

Ω N V umax ⊂ {X ∈ Ω | ∂ X 1 ζ(X) ≤ r V /r I }. (II-82) Proof. Let Z ∈ {X ∈ Ω | ∂ X 1 ζ(X) ≥ r V /r I }
and consider the trajectory Φ Z,umax (t) starting from Z. This trajectory will exit this set at some point on the border L

∂ X 1 ζ
r V /r I , more precisely at some point of Γ crit sub (the direction tangent to the trajectory has to exit the domain, which is precisely the definition of Γ crit sub ). Denote this point Y = Φ Z,umax (τ * ). Using the same arguments as in the proof of t Y > 0 above and recalling that ∂ X 1 J 0 (Φ Z,umax (τ )) ≥ r V for all τ ≤ τ * we obtain t Y ≥ τ * and in particular Z ∈ Ω V umax .

Introduce the solution candidate Π r V ,r I umax : Ω → R defined by equation (II-65), but with the control u X 0 (•) defined in equation (II-64) depending on the newly defined set Ω V umax .
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1. Π r V ,r I umax (Y ) =          J 0 (Y ), if Y ∈ Ω N V umax (II-83a) r V t + t 0 r I βΦ Y,umax 1 (τ )Φ Y,umax 2 (τ )dτ + J 0 (Φ Y,umax (t)), if Y ∈ Ω V umax and Φ Y,umax (t) ∈ Γ crit sub ; (II-83b) 2. Π r V ,r I umax Ω V umax
is the unique viscosity solution of the following problem:

(Pv)                Find F : Ω V umax → R such that F is Lipschitz on Ω V umax , (II-84a) -H vac,umax (X, ∇F (X)) = 0, X ∈ Ω V umax , (II-84b) F (X) = r I ζ(X), X ∈ Ω N V umax ∩ Ω V umax , (II-84c) -H vac,umax (X, ∇F (X)) = 0, X ∈ ∂Ω V umax \ (Ω N V umax ∩ Ω V umax );(II-84d) 3. Π r V ,r I umax is Lipschitz on Ω;
4. Π r V ,r I umax is a solution of the HJB equation (II-39).

Proof. Much of the proof uses concepts already invoked in the proof of Theorem 10.5. We will only emphasize points that are specific to this situation. Point 1: A trajectory with initial point in Ω N V umax remains there forever therefore we conclude as above that Π r V ,r I umax Ω N V umax = J 0 = r I ζ; to prove the second property note that the function J satisfies

J(Y, u(•)) = t 0 r V u(τ )+r I βΦ Y,u 1 (τ )Φ Y,u 2 (τ )dτ +J(Φ Y,u(•) (t), u(•+t)). (II-85)
Thus the two definitions coincide as the control is u max on Ω V umax and 0 on Ω N V umax because once the trajectory reaches the frontier Γ crit sub of Ω N V umax it enters Ω N V umax and remains there. Point 2: The proof follows the same lines as point 2 in Theorem 10.5. Point 3: The definition of the domain Ω V umax and the previous point ensures that Π r V ,r I umax is continuous in points of the common boundary ∂Ω V umax ∩ ∂Ω N V umax thus it is continuous on Ω. It is also Lipschitz on Ω V umax and Ω N V umax with Lipschitz constants that are universally bounded, thus it is Lipschitz on Ω.

Moreover, as before, one can prove that Π r V ,r I umax is C 1 on Γ crit sub .

Instantaneous vaccination

Another alternative is to repeat the arguments used to prove that the value function is Lipschitz (here the control has the same structure: it has value u max from 0 to some finite time and then 0). Point 4: We have to prove (the analogues of) the equations (II-69) and (II-70).

Any trajectory from Z ∈ Ω V umax (for control u = u max 1 X∈Ω V umax ) will encounter Γ crit sub when exiting the domain Ω V umax . Together with the fact that Π r V ,r I umax is C 1 in Γ crit sub this allows to use identities (II-73)-(II-74) and obtain as above that

∂ X 1 Π r V ,r I umax (Y ) > r V and ∂ X 2 Π r V ,r I umax (Y ) > 0 for any Y ∈ Ω V umax ; then (II-70) follows.
To prove (II-69) use Lemma 10.3 and point 3 of this Theorem.

Theorem 10.8. For r V ∈ [r I r crit V,umax , 2r I [ the function Π r V ,r I umax (defined by equation (II-65) with the control u X 0 (•) defined in equation (II-64) depending on the set Ω V umax ) is the unique solution of the HJB equation (II-39) and

Π r V ,r I umax = V umax . The value function V umax is Lipschitz in Ω.
Proof. The Theorem 10.7 proves that Π r V ,r I umax is a solution of (II-39). Furthermore, Theorem 10.4 assures the uniqueness of the solution. Then, V umax = Π r V ,r I umax .

Theorem 10.9. For r V ≥ 2r I the function J 0 = r I ζ is the unique solution of the HJB equation (II-39) and V umax = J 0 . As a consequence in this case the value function V umax is in C 1 (Ω).

Proof. Straightforward computation and the results from Lemma 8.4 indicate that the derivative J 0 does not exceed 2r I and as such (∂ X 1 ζr V ) + = 0 and J 0 satisfies the required HJB equation.

Instantaneous vaccination

Recall that for u max = ∞ the value function is denoted as V ∞ ; also consult equation (II-17) for the definition of H ∞ . The following result connects the bounded and unbounded control problems (see also [10] pages 113-115 for generic related results):

Theorem 11.1. The sequence (V umax ) umax≥0 is decreasing and

lim umax→∞ V umax = V ∞ .
(II-86)

Moreover the convergence is uniform over compacts of Ω and V ∞ is Lipschitz over Ω.
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Proof. Since for any u 2 ≥ u 1 ≥ 0 we have the inclusion

U u 1 Y ⊂ U u 2 Y the sequence (V umax ) umax≥0 is decreasing. Therefore lim inf umax→∞ V umax ≥ V ∞ . Let Y ∈ Ω and (dV n ) n≥0 ⊂ U ∞ Y a sequence of strategies such that lim n→∞ J(Y, dV n ) = V ∞ (Y ).
For each n construct an approximating sequence of admissible strategies u n w ∈ U w Y such that lim

w→∞ u n w = dV n . Then V w (Y ) ≤ J(Y, u n w ) → J(Y, dV n ) thus lim sup w→∞ V w (Y ) ≤ J(Y, dV n ). Pass- ing once more to the limit n → ∞ we obtain lim sup w→∞ V w (Y ) ≤ V ∞ (Y ).
Then lim umax→∞ V umax = V ∞ . Since functions V umax are Lipschitz with Lipschitz constants independent of u max the limit V ∞ will be Lipschitz and the convergence will hold in a neighborhood of Y (thus uniformly over compacts of Ω).

HJB equation and value function

Theorem 11.2. The value function V ∞ is a viscosity solution of the Hamilton-Jacobi-Bellman equation:

(P)                    Find F : Ω → R such that F is Lipschitz on Ω, (II-87a) -H ∞ (X, ∇F (X)) = 0, X ∈ Ω, (II-87b) F (X) = 0 on Γ OA , (II-87c) F (X) = 0 on Γ I , (II-87d) -H ∞ (X, ∇F (X)) = 0 on Γ 1 .
(II-87e)

Proof. We will use the same arguments and notations as in the proof of the Theorem 10.2.

Step 1. First, we prove that V ∞ is a subsolution of (II-87b). We take the same notations and the same reasoning as in the case u max < ∞. So equation (II-42) becomes:

min {r V -p 1 , βY 1 Y 2 (r I + p 2 -p 1 ) -γY 2 p 2 } ≥ 0.
(II-88)

Suppose that there exists κ > 0 such that:

min {r V -p 1 , βY 1 Y 2 (r I + p 2 -p 1 ) -γY 2 p 2 } ≤ -κ.
Remark 10 page 95 assures that there exists ρ ≥ 0 such that:

ρ(r V -∂ X 1 ϕ(Y )) + βY 1 Y 2 (r I + ∂ X 2 ϕ(Y ) -∂ X 1 ϕ(Y ) -γY 2 ∂ X 2 ϕ(Y ) ≤ -κ.

Instantaneous vaccination

Note that for any given Y ∈ Ω V ∞ for u max large enough Y ∈ Ω V umax . Moreover for any Y ∈ Ω V umax and given u max the optimal strategies u umax Y converge (when u max → ∞) to a Dirac delta function ∆Y δ t=0 then:

V ∞ (Y ) = lim umax→∞ V umax (Y ) = lim umax→∞ J(Y, u umax Y ) = J(Y, ∆Y δ t=0 ) = Π r V ,r I ∞ (Y ). (II-110)
Therefore we proved the following:

Theorem 11.5. For r V ≥ r I r crit V,∞ the function Π r V ,r I ∞
is the unique solution of the HJB equation (II-87) and Π r V ,r I ∞ = V ∞ . In particular when r V ≥ 2r I :

V ∞ = J 0 ∈ C 1 (Ω) but when r V ∈]r I r crit V,∞ , 2r I [ the value function V ∞ is only Lipschitz.

Partie III

Vaccination individuelle vue comme un équilibre de Nash dans un modèle SIR Résumé: Dans cette partie, nous modélisons la décision individuelle de vaccination dans le cadre d'un modèle SIR. Il s'agit d'un article accepté pour publication dans Bulletin of Mathematical Biology [START_REF] Laguzet | Individual vaccination as Nash Equilibrium in a SIR Model with Application to the 2009-2010 Influenza A (H1N1) Epidemic in France[END_REF]. La vaccination contre les épidémies non récurrentes est rarement obligatoire mais reste le moyen le plus classique pour lutter contre la propagation de celles-ci. Cependant, des débats récents concernant l'innocuité des vaccins et de leurs risques par rapport au risque de la maladie elle-même ont conduit à l'échec des campagnes de vaccinations laissant apparaître un comportement motivé par l'intérêt individuel. Dans ce contexte, nous analysons si les individus peuvent parvenir à une décision donnant lieu à un équilibre avec le reste de la société. En utilisant les techniques dites de jeux à champ moyen, nous montrons qu'un tel équilibre existe et caractérise entièrement la meilleure stratégie de vaccination d'un individu (avec ou sans facteur d'actualisation). La stratégie individuelle lorsqu'il n'y a pas de facteur d'actualisation est comparée avec une stratégie basée uniquement sur l'optimisation pour la société: nous montrons que dans ce modèle, il existe un coût de l'anarchie non nul. Enfin, nous appliquons nos résultats à la campagne de vaccination contre la grippe A (H1N1) et remarquons qu'un groupe d'individus semble avoir arrêté de se vacciner à un niveau indiquant une perception pessimiste des risques du vaccin.

Les sections 2, 8, 9 et 10 considèrent le cas sans facteur d'actualisation, utilisé dans l'exemple de la grippe A H1N1 présenté dans la section 4. Au contraire les sections 3, 11 et 12 traitent du cas avec facteur d'actualisation et sans contrainte de vitesse de vaccination.
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Individual vaccination as Nash equilibrium in a SIR model Abstract:

The vaccination against ongoing epidemics is seldom compulsory but remains one of the most classical means to fight epidemic propagation. However recent debates concerning the innocuity of vaccines and their risk with respect to the risk of the epidemic itself lead to severe vaccination campaign failures and new mass behaviors appeared driven by individual self-interest.

Prompted by this context we analyze, in a Susceptible-Infected-Recovered (SIR) model, whether egocentric individuals can reach an equilibrium with the rest of the society. Using techniques from the "Mean Field Games" theory, we extend previous results and show that an equilibrium exists and characterizes completely the individual best vaccination strategy (with or without discounting). We also compare with a strategy based only on overall societal optimization and exhibit a situation with non-negative price of anarchy. Finally, we apply the theory to the 2009-2010 Influenza A (H1N1) vaccination campaign in France and hint that a group of individuals stopped vaccinating at levels that indicated a pessimistic perception of the risk of the vaccine.

Keywords: individual vaccination, mean field games, vaccine scares, SIR model, epidemic control, Nash equilibrium MSC: 49, 62P10, 92B05

Introduction

The vaccination, when available, is one of the most classical defense against an evolving epidemic. Theoretical works have been proposed to describe the optimal vaccination policy as function of the vaccine cost and epidemic dynamics and severity, see for instance [START_REF] Hethcote | Optimal vaccination schedules in a deterministic epidemic model[END_REF]2,[START_REF] Morton | On the optimal control of a deterministic epidemic[END_REF][START_REF] Sethi | Optimal control of some simple deterministic epidemic models[END_REF][START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF][START_REF] Laguzet | Global optimal vaccination in the SIR model: Properties of the value function and application to costeffectiveness analysis[END_REF]. The point of view of these initial studies is that of a benevolent planner that optimizes the overall societal welfare. However in most situations vaccination is not compulsory and people have the choice to vaccinate or not. For a number of childhood diseases (with no compulsory vaccination) a decay in the vaccination coverage has been observed in developed countries and debates over the danger of vaccines and their usefulness emerged. This suggested that the individual point of view has also to be taken into account: any individual may choose to vaccinate or not and the epidemic dynamics is influenced by 1. Introduction all these individual choices. The individual defines a cost r V incurred if he takes the vaccine and a cost r I incurred if infected; the costs can be expressed in terms of money, medical side effects or general morbidity. For a discussion on this topic refer to [START_REF] Zeckhauser | Where now for saving lives?[END_REF][START_REF] Anand | Disability-adjusted life years: a critical review[END_REF][START_REF] Sassi | Calculating QALYs, comparing QALY and DALY calculations[END_REF] and related literature on QALY/DALY measuring scales. The cost r I is to be weighted by the probability to be infected; it is immediate that when the epidemic is near extinction there is very low incentive to vaccinate (because the probability to be infected is small). Thus people stop vaccinating before the epidemic stops, which can cause in fact the epidemic to start again. In theory the situation can be highly unstable oscillating between no vaccination, followed by an epidemic outburst, then massive vaccination followed by epidemic near extinction and so on. An important question is the existence of a stable equilibrium and the impact on the vaccination coverage. Several works on this topic appeared as early as [START_REF] Fine | Individual versus public priorities in the determination of optimal vaccination policies[END_REF], [START_REF] Brito | Externalities and compulsary vaccinations[END_REF] and [START_REF] Geoffard | Disease eradication: Private versus public vaccination[END_REF] and ask the questions of disease eradication, market equilibrium and externalities in relationship with vaccination; recently [START_REF] Bauch | Group interest versus self-interest in smallpox vaccination policy[END_REF] (using a SEIR model) contributed to the renewal of interest on vaccination policies and individual decisions. In a subsequent paper, [START_REF] Bauch | Vaccination and the theory of games[END_REF] use a SIR model with vital dynamics to describe the propagation of a childhood disease; the individual choices converge to a suboptimal vaccine coverage. The vaccination strategy of the individual is of allor-nothing type and time-independent. Furthermore, [START_REF] Bauch | Imitation dynamics predict vaccinating behaviour[END_REF] proposes a learning process based on a "rule of thumb" to explain why and how the people vaccinate, resulting in a time-dependent vaccination strategy. The presence of a time-dependent optimal strategy is more realistic and an advance over the previous work but the model is dependent on a "rule of thumb" chosen a priori. This study was completed by [START_REF] Shim | The influence of altruism on influenza vaccination decisions[END_REF] where the departure from a 100% egocentric decision is investigated. [START_REF] Coelho | Dynamic modeling of vaccinating behavior as a function of individual beliefs[END_REF] and [START_REF] Codeço | Vaccinating in disease-free regions: a vaccine model with application to yellow fever[END_REF] also model the vaccination behavior and apply the results to the yellow fever scare in Brazil. [START_REF] Buonomo | Global stability of an SIR epidemic model with information dependent vaccination[END_REF] also introduces a feed-back mechanism but for a SEIR system.

In a very elegant approach, [START_REF] Francis | Optimal tax/subsidy combinations for the flu season[END_REF] studied a situation that matches very well our setting: the equilibrium in the SIR model. The authors study in addition the impact of taxes and subsidies and propose revenue-neutral health policies to encourage vaccination. Although the techniques are very intuitive, they do not explicitly introduce a cost functional for the individual and as such this approach has yet to be extended to general settings (for instance when using discounting). We present in Section 3 additional comments comparing the two approaches.

In another work [START_REF] Reluga | Evolving public perceptions and stability in vaccine uptake[END_REF] studied the impact of the perceptions of the relative risk between vaccine and epidemic; the authors used a SIR model with vital dynamics and also discussed the imitation dynamics. [START_REF] Galvani | Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum[END_REF] considers a double SIR periodic model of influenza with vaccination and two age groups (more Partie III. Vaccination individuelle vue comme un équilibre de Nash dans un modèle SIR 119 or less than 65 years). Vaccination is separated from dynamics and arrives once at the beginning of each season. The effect of the group dependent vaccination is analyzed. [START_REF] Cojocaru | Dynamics of vaccination strategies via projected dynamical systems[END_REF] and [START_REF] Cojocaru | Dynamic equilibria of group vaccination strategies in a heterogeneous population[END_REF][START_REF] Chen | A susceptible-infected epidemic model with voluntary vaccinations[END_REF] also consider the mathematical questions related to the presence of several groups having distinct epidemic characteristics.

Further contributions for models with vital dynamics include [START_REF] Onofrio | Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases[END_REF][START_REF] Onofrio | Fatal SIR diseases and rational exemption to vaccination[END_REF][START_REF] Reluga | A general approach for population games with application to vaccination[END_REF].

A review of the relationship between human behavior and epidemic dynamics is proposed by [START_REF] Funk | Modelling the influence of human behaviour on the spread of infectious diseases: a review[END_REF]. In particular the authors discuss the relationship between the timescales of the vaccination and epidemic dynamics, which is also the object of several contributions by [START_REF] Vardavas | Can influenza epidemics be prevented by voluntary vaccination?[END_REF][START_REF] Breban | Mean-field analysis of an inductive reasoning game: Application to influenza vaccination[END_REF]. [START_REF] Frederick | Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases[END_REF] discusses how the available information change the decisions made by an individual.

Even if realistic vaccination behavior is very likely to depend on the imitation and altruistic dynamics, there is a need to separate this part from the optimization of the cost-benefit ratio at the individual level.

A recent example of low individual vaccination is the 2009-10 influenza A (H1N1) epidemic. In this case the vaccine is only relevant for one epidemic season and therefore previous models do not describe accurately the dynamics. We compare in Table 6.2 the difference between the target coverage of the vaccines, as defined by the sanitary authorities, and the effective rate of vaccination obtained. In many European countries one order of magnitude separates the two. But today there is still need for theoretical guidance to explain this data with existing models. In particular we expect the optimal vaccination strategy to be time-dependent. We also want to identify the vaccination dynamics and propose a model that only takes into account the effect of the individual cost optimization; such a result can then help identify the impact of other effects: imitation, altruism.

Country

We prove the existence of an equilibrium between individual vaccination and an epidemic propagation described by a deterministic SIR-model (with 1. Introduction or without discounting). We compare the theoretical result with the optimal policy at the societal level and describe the differences between the two. Finally we apply the theoretical result to the Influenza A (H1N1) 2009-10 epidemic season in France and observe that people were not homogeneous in their perception of the r V /r I quotient: while some saw the vaccine as harmless, a non-negligible portion of the population saw the vaccine as potentially risky.

The model

We consider an epidemic spreading in a non-immune population; the dynamics of the epidemic follows a SIR model [START_REF] Anderson | Infectious Diseases of Humans Dynamics and Control[END_REF][START_REF] Diekmann | Mathematical epidemiology of infectious diseases[END_REF]. The epidemic is supposed to take place at a rapid time frame (several months up to 1-2 years) when compared with the demographic dynamics (births, deaths) and therefore the model does not take into account any vital dynamics.

The costs incurred by an infected individual (either in terms of monetary value or of medical condition) are the same for any individual and are denoted by r I . We also suppose that a vaccine giving lifelong immunity exists. Its cost r V is considered known by all the individuals and takes into account not only the economic price but also all possible side-effects of the vaccine. The people in the Susceptible class can choose to vaccinate or not (people in other classes cannot vaccinate).

The mathematical equation describing the SIR model with vaccination is:

dS(t) = -βS(t)I(t)dt -dU (t), S(0 -) = S 0 -, dI(t) = βS(t)I(t) -γI(t) dt, I(0 -) = I 0 -. (III-1)
Here dU (t) is the vaccination rate, S(t) is the proportion of individuals in the Susceptible class and I(t) is the proportion in the Infected class. The proportion of people in the Recovered class is t 0 -γI(τ )dτ and V (t) := t 0 -dU (τ ) is the proportion of people that vaccinated by the time t. The parameters β, γ and the initial conditions S 0 -and I 0 -are supposed known. Note that when vaccination is instantaneous the function S(t) may be discontinuous and its derivative is a measure because dU (t) only exists as a measure. We refer to the proof section 6 for the mathematical details.

Equations The non-vaccination strategy Π ∞ costs r I ϕ I (∞). Summing up the terms, the cost of the mixed strategy with CDF ϕ V (t), denoted J indi (ϕ V ), is:

J indi (ϕ V ) = (1 -ϕ V (∞))J pure (Π ∞ ) + ∞ 0 - J pure (Π t )dϕ V (t) = r I ϕ I (∞) + ∞ 0 - r V -r I ϕ I (∞) + (r I -r V )ϕ I (t) dϕ V (t).(III-4)
Alternative equivalent definitions have been proposed in the general context of timing games, see [60, page 118].

When a discount factor D > 0 is introduced, the discounted risk of infection is:

Φ I (t) = t 0 - e -Dτ dϕ I (τ ), Φ I (0 -) = 0.
(III-5)

The cost of pure strategies is for t ∈ [0, ∞[:

J D pure (Π t ) = r I Φ I (t) + e -Dt r V (1 -ϕ I (t)). (III-6)
In this case

J D pure (Π ∞ ) = r I Φ I (∞).
The the cost of the mixed strategy with CDF ϕ V (t) is:

J D indi (ϕ V ) = r I Φ I (∞) + ∞ 0 - r I (Φ I (t) -Φ I (∞)) + r V e -Dt (1 -ϕ I (t)) dϕ V (t).
(III-7) We work under the constraints (S, I) ∈ Ω, where Ω = {(S, I) ∈ R 2 | S, I > 0, S + I < 1}.

(III-8)

Recall that the global dynamics is an aggregation of individual dynamics. Therefore I(t) in Equation (III-1) is the same as in (III-16) and a compatibility relation has to exist between dU (t) (societal vaccination) and ϕ V (individual vaccination).

To make explicit this last compatibility requirement one has to investigate the relationship between the Markov chain of one individual and the evolution dynamics of the population; such an endeavor is beyond the scope of this work but has been explored in several papers starting with [START_REF] Kurtz | Solutions of ordinary differential equations as limits of pure jump Markov processes[END_REF], see also [START_REF] Sandholm | Population games and evolutionary dynamics. Economic Learning and Social Evolution[END_REF]] for an application to population dynamics. Further results very close to the setting of this work are given by [START_REF] Gomes | Continuous time finite state mean field games[END_REF][START_REF] Guéant | Existence and uniqueness result for mean field games with congestion effect on graphs[END_REF]. The conclusion is that the societal dynamics is compatible with the individual dynamics when:

dU (t) = dϕ V (t) 1 -ϕ V (t) S(t). (III-9)
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An intuitive understanding of this formula is the following: for a given individual, the probability that it is vaccinated at time t + ∆t provided that it was not vaccinated at time t equals ϕ V (t+∆t)-ϕ V (t) 1-ϕ V (t)

+ o(∆t) (see Equation (III-15) for a similar computation). At the same time, since individuals are all the same, the same probability has to be U (t+∆t)-U (t)

S(t)

+ o(∆t). Comparing the two in the limit ∆t → 0 we obtain the Equation (III-9).

Questions regarding the equilibrium

When everybody is vaccinating this collective behavior stops the epidemic. For a given individual that still has to make its own choice, the perceived benefit of vaccination is low because the risk associated with the epidemic is very low. Why should he vaccinate then ? The individual will therefore not act as everybody else.

On the contrary, when nobody vaccinates and the individual foresees a severe epidemic (because of lack of vaccination for instance), the individual is lead to vaccinate, therefore will not act as everybody else.

In both situations there is an incoherence between the overall, societal, dynamics and the individual self-interest. A legitimate question is whether an equilibrium scenario exists where the best vaccination policy of the individual and the vaccination policy of everybody else agree.

To illustrate this question consider The existence and uniqueness of the function θ opt I (θ G ) (for general societal vaccination strategies dU , not necessarily given in terms of vaccination time) is discussed in Section 2.1 and proof section 8 for D = 0 and Section 3 and proof section 12 for D > 0. As expected, for low θ G the curve θ opt I (θ G ) takes a large value while for large values of θ G the curve θ opt I (θ G ) takes small values. The equilibrium is when θ opt I (θ G ) = θ G . We therefore ask for the existence of a common point of the solid and dashed curves. The existence and uniqueness 2. Illustration of the theoretical results: the undiscounted case of an equilibrium is discussed in Section 2.2 and proof section 9 for D = 0 and Section 3 and proof section 12 for D > 0. Such questions have been given a firm mathematical ground since the introduction of the "Mean Field Games" theory in the pioneering works of [START_REF] Lasry | Jeux à champ moyen. II: Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Jeux à champ moyen. I: Le cas stationnaire[END_REF][START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the nash certainty equivalence principle[END_REF][START_REF] Huang | Nash equilibria for large-population linear stochastic systems of weakly coupled agents[END_REF] (see also [START_REF] Gomes | Continuous time finite state mean field games[END_REF][START_REF] Guéant | Existence and uniqueness result for mean field games with congestion effect on graphs[END_REF] for related aplications). 2 Illustration of the theoretical results: the undiscounted case

We consider in this Section the undiscounted case corresponding to D = 0.

Individual optimal strategy for arbitrary epidemic propagation

If the societal vaccination strategy dU is given, there exists an individual strategy ϕ V that minimizes the individual cost (III-4). The strategy is unique (except degenerate cases). The technical details concerning the existence, uniqueness and other properties of the optimal individual strategy are proved in the proof section 8. Here we only illustrate these results in a particular case.

The theoretical results tell us that, in order to find the optimal decision at time t, an individual has to calculate the quantity ϕ I (∞)-ϕ I (t) The trajectory (S(t), I(t)) of the system (III-1) with U = 0. Right: The decreasing dotted curve is t → ϕ I (∞)-ϕ I (t)

1-ϕ I (t) , the constant densely dashed line is the level r V /r I and the increasing dashed-dotted curve is the probability of vaccination over time.

Equilibrium strategies

In classical settings that disregard individual choices (see [2,[START_REF] Laguzet | Global optimal vaccination in the SIR model: Properties of the value function and application to costeffectiveness analysis[END_REF]) the cost for the society defined as:

J soc (S 0 -, I 0 -, U ) = ∞ 0 - r I S(t) dϕ I (t) 1 -ϕ I (t) + r V dU (t), (III-10)
is the only quantity of interest and is minimized. An optimal societal strategy can be found, which will be denoted from now on (OS). The strategy (OS) partitions the domain Ω into a region of vaccination and a region without vaccination. The frontier of the two regions is the curve: {(S, I) ∈ Ω |∂ S ζ(S, I) = r V /r I }. Remark 12. We recall that for any (S, I) ∈ Ω one can introduce the number ζ(S, I) of infected people (in absence of vaccination) for a trajectory starting in (S, I). In particular ζ is the solution of the following equation (see [2,1,[START_REF] Laguzet | Global optimal vaccination in the SIR model: Properties of the value function and application to costeffectiveness analysis[END_REF]):

1ζ(S, I)/S = e -β γ (I+ζ(S,I)) .

(III-11)

2. Illustration of the theoretical results: the undiscounted case

In our setting, the situation is not a simple optimization. Any individual optimizes its cost but the coherence of the model requires that the aggregation of individual optimal policies ϕ V result in the global vaccination policy dU . Therefore the situation is more adequately described by an equilibrium in the form of a fixed point property: a global vaccination dU gives optimal individual responses ϕ V which sum up to form a societal response dU ′ . The equilibrium is reached only when dU = dU ′ .

The first good news is that the results in proof section 9 show that an equilibrium always exists, i.e., even if the individuals are only driven by self-interest some vaccination level is conserved (and does not drop to zero). This is completely coherent with other results from the literature, see [START_REF] Bauch | Vaccination and the theory of games[END_REF] and related works.

The couple of optimal individual strategy and resulting societal strategy in equilibrium will be denoted from now on (EIS). The equilibrium (EIS) is also described as a partition of Ω into a region of vaccination and a region without vaccination. Individuals will vaccinate in the first region and stop vaccination upon reaching the boundary of the second region. The line that delimits the two regions is of equation:

{(S, I) ∈ Ω |I + (r V /r I )S + (γ/β) ln(1 -r V /r I ) = 0 } .
(III-12) Proposition 9.1 shows that the vaccination region of the (OS) strategy includes strictly the vaccination region of the (EIS) strategy.

Figure III.4 presents the comparison of the regions in Ω. The response of an individual to a given state (S, I) of the epidemic dynamics depends on the location of (S, I) in Ω. In the gray region the individual (in the (EIS) strategy) will vaccinate and also the (OG) strategy is to vaccinate. In the hashed region the individual (in the (EIS) strategy) will not vaccinate but the (OG) strategy is to vaccinate. In the white region the individual (in the (EIS) strategy) will not vaccinate and the (OS) strategy is to not vaccinate.

Therefore only the hashed region, enclosed by the curve ∂ S ζ(S, I) = r V /r I and the line I +(r V /r I )S +(γ/β) ln(1-r V /r I ) = 0, is conflictual, in the sense that the individual does not have incentive to vaccinate but the societal best decision is to vaccinate. In this region the individual will tend to free-ride on the vaccination of the rest of the society.

We illustrate in Figure III.5 the societal trajectories for three possible strategies in equilibrium, that is, satisfying the constraint (III-9) (but not all optimal at the individual level). The dashed curve with no label corresponds to no vaccination and the individual cost is 0.65. The second dashed curve corresponds to the (EIS) strategy: between point (S 0 -, I 0 -) and A, the individual vaccinates (dϕ V = u max /S(t)(1ϕ V (t))) and after point A, there is no vaccination (dϕ V = 0). The individual cost is 0.55. The third curve corresponds to the trajectory with vaccination coherent with the (OS) societal strategy: vaccination occurs between point (S 0 -, I 0 -) and B. The individual cost is 0.53.

A very counter-intuitive fact is that the individual cost for the (OS) strategy is lower than the cost of the (EIS) strategy. Is this not in contradiction with the fact that the (EIS) strategy is the optimal strategy for an individual ? How can be something better than the optimal ? In fact the equilibrium is a Nash equilibrium which is not globally optimal. Although everybody would be better off adopting the (OS) strategy this choice is not stable at the individual level. A new individual added to such a population has the incentive to vaccinate less, driving the equilibrium towards the (EIS) stable point. See also proof section 10 for the relation between the two costs.

In game theory such a circumstance is termed "price of anarchy".

Illustration of the theoretical results: the discounted case

We consider in this Section D > 0. Such a situation appears when individuals favor the present more than the future: when faced with two identical events, one in t > 0 years and one in the present, the event in the future is seen as less severe (or less beneficial) than the event in the future. The attenuation factor is by definition e -Dt . There is no general prescription on the precise numerical value to use for D because it is specific to the subjective behavior of the individuals in relationship with a given epidemic. Discounting has been also discussed in the context of the QALY/DALY scales (see [START_REF] Zeckhauser | Where now for saving lives?[END_REF][START_REF] Anand | Disability-adjusted life years: a critical review[END_REF][START_REF] Sassi | Calculating QALYs, comparing QALY and DALY calculations[END_REF]).

This situation features several important novelties. First, the optimal individual strategies are not based on the comparison between the infection risk and the vaccine cost. This approach, used profitably by [START_REF] Francis | Optimal tax/subsidy combinations for the flu season[END_REF] (see also [START_REF] Francis | Dynamic epidemiology and the market for vaccinations[END_REF]) is only valid when there are precisely two regions (a vaccination and a nonvaccination region) and the only pure strategies ever used are Π 0 and Π ∞ . Or, in general, it is impossible to know in advance the structure of the solution and therefore their approach needs to be extended, as shown in this work.

When D > 0, vaccinating in the future makes sense when I 0 -is small and S 0 -large because the infection risk is temporarily attenuated by the discount factor. The criterion is the difference between the quantity r V (1e -D∆t ) (gained from postponing vaccination ∆t units of time) and the increase in the risk of infection during the ∆t units of time. The correct solution requires proper consideration of the probability law ϕ V , see proof section 12 for details. A graphical illustration of this situation is given in r V e -Dt (1-ϕ I (t)) ; the initial value is 0.3897. The vaccination does not occur when the risk of infection reaches r V for the first time (at time t = 0.0048) nor at the maximum value of the infection risk (time t = 0.0425). vaccination region Ω n , a instantaneous vaccination region Ω i and a delayed vaccination region Ω d . The zone Ω d does not exist when D = 0 or D > 0 and r V /r I is large; however Ω d appears in the realistic situation when D > 0 and r V /r I is small. The Figure III.7 illustrates this partition.

When the initial point (S 0 -, I 0 -) ∈ Ω d the equilibrium is such that vaccination is not stable and will not be requested until the infection level I = I * has been reached (see proof section 11 for the definition of I * ).

An application to the Influenza A (H1N1) 2009/2010 epidemic in France

We apply in this Section the previous theoretical results to a practical situation. Recall that in our model individuals are all the same and are rational optimizing agents with perfect knowledge and foresight. Although this is never true in reality, the model may still prove useful in order to understand in what regards the reality is different from the model. In particular we will show here that it is unlikely that all individuals shared the same r V in the specific example chosen in this Section. The equilibrium dynamics is as follows: if (S 0 -, I 0 -) ∈ Ω n it will always remains there; if (S 0 -, I 0 -) ∈ Ω i partial vaccination will bring it to Ω n and total vaccination to the boundary S = 0; if (S 0 -, I 0 -) ∈ Ω d it will evolve to some point (S, I * ), then vaccinate till the point (S * , I * ) on the boundary of all three regions, then will evolve in the region Ω n . If on the contrary r V /r I = 0.6 we have Ω d = ∅; this situation is not illustrated here as it is similar to Figure III.4).

Epidemic context

The 2009/2010 Influenza A (H1N1) epidemic in France is a recent example of vaccination campaign that displays a large difference between the target, planned, vaccination coverage and the effective coverage obtained at the end of the campaign (see also [START_REF] Schwarzinger | Positive attitudes of french general practitioners towards A/H1N1 influenza-pandemic vaccination: A missed opportunity to increase vaccination uptakes in the general public?[END_REF]).

The 2009/2010 worldwide H1N1 epidemic spread through 213 countries and has been attributed 18156 deaths by 15/06/2010 (when epidemic was declared over by the WHO). In France the first cases appeared in May 2009 and 1334 severe forms were declared out of, approximately, 7.7 to 14.7 Millions people infected. The vaccination campaign in France was costly (around 500M EUR, although cost estimation vary) for a low efficiency of 8% coverage (to be compared with 24% in the US or 74% in Canada) although the target was set to 75%. During the French vaccination campaign some undesired neurological side-effects of the adjuvant present in the vaccines were under debate and known to the public. The campaign was designed in waves (people were called to the vaccine centers according to their risk status) and all vaccination centers were not 100% operational at once. Moreover the government mobilized additional medical personnel (military, medicine interns,...) latter during the epidemic propagation. The joint combination of these effects is that the maximum vaccination capacity was non-constant increasing from zero to some peak obtained by the end of 2009.

Data sources

The information concerning the vaccination capacities were available in the general news but no quantitative estimation is, up to our knowledge, available. However the actual cumulative vaccination curve was reported by [START_REF] Guthmann | Insufficient influenza A(H1N1) 2009 vaccination coverage in the global population and high risk groups during the 2009-2010 pandemic in France[END_REF] (up to the maximum coverage of 7.9%). The vaccine effectiveness coefficient was estimated by [START_REF] Valenciano | Estimates of pandemic influenza vaccine effectiveness in Europe, 2009-2010: Results of influenza monitoring vaccine effectiveness in Europe (I-MOVE) multicentre case-control study[END_REF] to be 71.9%. We set U in the model (III-1) to fit this data, see Figure III.8. In what concerns the size of the Infected class, the French "Sentinel" network (cf. [START_REF] Flahault | Virtual surveillance of communicable diseases: a 20year experience in France[END_REF]) reports the estimation of the number of infections per week starting from the beginning of the epidemic. Using the same data [START_REF] Valleron | Real-time comparative monitoring of the A/H1N1 pandemic in France[END_REF] compared the epidemic with seasonal epidemic dynamics. Finally [START_REF] Bone | Incidence of H1N1 2009 virus infection through the analysis of paired plasma specimens among blood donors, France[END_REF] measure seroconversion and obtain results on the number of people immunized at the end of the epidemics. All this data was used to estimate the curve I(t) in the model (III-1). The data obtained by the Sentinel network takes into ac- count the number of consultations in medical offices. However some infected persons are asymptomatic (but contribute to the propagation) and thus only some percentage of the infected individuals will consult a medical doctor. This percentage is difficult to evaluate; we follow [START_REF]Pandemic (H1N1) 2009 planning assumptions to end of may 2010 for EU-/EEA countries[END_REF] where this rate was estimated at 50%; thus to estimate the number of infections we set I(t) at twice the level reported by the Sentinel network.

The propagation parameters β and γ were chosen consistent with ranges from the literature (see [START_REF] Boëlle | Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review[END_REF]) although large confidence intervals were present, see for instance [START_REF] Carrat | Planning for the next influenza H1N1 season: a modelling study[END_REF]. We took R 0 = β/γ = 1.35. We fit γ in a very limited range, S 0 -in the range 0.8 to 0.95 (compatible with estimation concerning already immunized persons) and I 0 -. The parameters were optimized in order to reproduce the cumulative number of infections ∞ 0 -βS(t)I(t)dt and the peak of the epidemic. We obtained γ = 365/3.2, S 0 -= 0.84 and I 0 -= 2 × 10 -6 . The overall fit obtained is described in Figures III.8 and III.9. Given the large uncertainties surrounding the propagation parameters and the number of infections the fit is considered very satisfactory. Given the short time of propagation of the epidemic we took D = 0. Partie III. Vaccination individuelle vue comme un équilibre de Nash dans un modèle SIR 133

Methods

Once the overall dynamics (III-1) is given, there is still the quotient r V /r I to be estimated. Such an endeavor is very difficult because this is depending on the individuals' perception and very few data is available on the heterogeneity of this parameter within the population. Rather than using very uncertain data we preferred to see what the model says about the quotient r V /r I . On the vaccination intensity Figure III.8 (left) one can note that vaccination had a sharp increase up to week 50 -51 of 2009 followed by a sharp decrease. The decrease was not due to the capacity of vaccination centers. We interpret it as reflecting a perception of a low infection risk coupled with high vaccination risk, i.e., a high quotient r V /r I . We can compute the precise value of the quotient r V /r I compatible with our model. In Figure III.10 we plot three risk indicators: first of them is ϕ I (∞)-ϕ I (t)

1-ϕ I (t) , the second ζ(S(t),I(t))

S(t)

; the third is the quotient between the number of infections from t to ∞ divided by the number of susceptible people in t (which is the initial value S 0 - minus the total infections and vaccinations between 0 and t). Note that this last criterion is model free and can be computed from the vaccination coverage report and the Sentinel network data (weighted by the asymptomatic infected individuals rate).

We looked therefore at the level of the three criteria that were attained at the time when vaccination decreased. According to our model this level is an indication of the quotient r V /r I .

Results

An individual that stops vaccinating at the peak of the curve in Figure III.8 (left) will have r V /r I in the range 5% -10%. This is a huge value meaning that 1 out of 10 vaccinated people will develop side-effects as severe as the influenza A H1N1 itself. Such situations reflect probably a communication failure around the epidemic and the vaccines (infection risk, severity, vaccine side effects, need for a mass vaccination campaign, ...) rather than specific medical data about the risks involved. See also [START_REF] Brien | The determinants of 2009 pandemic A/H1N1 influenza vaccination: A systematic review[END_REF] for a discussion on the determinants of individual vaccination and [START_REF] Basu | Integrating epidemiology, psychology, and economics to achieve hpv vaccination targets[END_REF] for a related discussion concerning the controversial Human papillomavirus (HPV) vaccines.

Note also that vaccination did not stop completely at week 50-51 of 2009 but continued at detectable levels up to week 10 of 2010. An individual that stops vaccinating at week 10/2010 time has r V /r I < 1% (probably much less as the model cannot be more precise with available data). This is a more commonly accepted figure.

Therefore at least two groups with very heterogeneous perceptions of the 5. Discussion and conclusions vaccination risk were present: a first group very worried about vaccine risk and another group less pessimistic. We want to stress again that these results are highly dependent on the quality of the model and should be interpreted with care. Moreover the robustness of the results with respect to the input parameters γ, β, dU have also to be assessed in practice.

Discussion and conclusions

In the context of individual vaccination (as opposed to global, compulsory vaccination) we develop an equilibrium model that allows to quantify the relationship between the individual perception of vaccine side-effects and of the epidemic morbidity.

The first important result is that, even when individuals are only driven by self interest, such an equilibrium exists. Secondly we are able to characterize the individual decision. When there is no discounting the individual will vaccinate or not depending on his estimations of the infection risk compared with the cost of the vaccine. When discounting is taken into account the individual may choose to wait until epidemic risk rises and only then vaccinate.

The equilibrium is a Nash equilibrium with an infinity of players (as pioneered by [START_REF] Lasry | Jeux à champ moyen. II: Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Jeux à champ moyen. I: Le cas stationnaire[END_REF][START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the nash certainty equivalence principle[END_REF][START_REF] Huang | Nash equilibria for large-population linear stochastic systems of weakly coupled agents[END_REF]), which means in particular that it can have (and has) a non-null "price of anarchy". This means that self-interest, although stable from both individual-societal points of view, is not the best solution that can be obtained.

Finally, we apply the results to the Influenza A 2009/2010 vaccination campaign in France and see that, under the assumptions of the model, it is hinted that at least two distinct groups existed, one very pessimistic about vaccine side-effects and the other rather optimistic. This work has several limitations which usher the way for future developments; the parameters in Section 4 were calibrated in the following way: the reproduction number γ/β was taken in an interval centered around the parameters of seasonal influenza; on the contrary the initial number of Susceptibles (S 0 -) and Infected (I 0 -) was calibrated from data specific to this season. Parameters were optimized to fit the final number of Infected, Vaccinated and give a correct epidemic peak. However it is not certain that only one set of parameters is compatible with data and the robustness has to be investigated, in particular for epidemics which are different from historical data.

In addition, our hypothesis that r V is known may be a limitation in 

I (∞)-ϕ I (t) 1-ϕ I (t) , ζ(S(t),I(t)) S(t)
and the quotient between the infections in [t, ∞[ and the susceptibles in t (see text). By the time the first group of people stopped vaccination (week 50 -51 of 2009) there was still 5 -10% chance for an individual to contract the Influenza A. The individual that does not vaccinate at this point estimates the side effects of the vaccine to occur with frequency of about 5 -10%, which is considered a very large and pessimistic value. Individuals that stopped last (week 10 of 2010) had this figure down to less than 1% (probably much less given data uncertainties). Although the precise values may depend on the parameters we noticed that two distinct groups were found for a wide domain of parameters (compatible with data and with dU ).

Discussion and conclusions

general. Nevertheless, although vaccines are specific to each Influenza season, their risks are generally well understood and can be transferred from one season to another (but the vaccine immunity does not). For the specific case of Influenza A (H1N1) 2009-10 season in France it turns our that the vaccination arrived after several other European countries already started their vaccination programs; data from these earlier programs were largely discussed and even sparked important controversies in France concerning the vaccine side-effects. In general, when the risk r V is not known the model could be extended as in [START_REF] Bhattacharyya | Wait and see" vaccinating behaviour during a pandemic: A game theoretic analysis[END_REF] where the authors discuss the learning of r V parameter during the Influenza A (H1N1) 2009-10 epidemic season in North America.

Another limitation arises from the schedule of the vaccination campaign: people were assigned to risk groups and in principle, could not vaccinate without a written invitation received by mail (at a time corresponding to the risk group they belonged). However many centers were under-utilized by mid December 2009, see [43, page 26] and on the other hand almost 2.7 Millons on-the-spot invitations were issued to people that showed up for vaccination at their own initiative, see [51, page 95]. We conclude that absence of invitations did not prevent, by itself, voluntary vaccination at the end of 2009.

Proof section 6 On the societal and individual SIR model with vaccination

The mathematical description of the SIR model with vaccination has to take into account the possibility of instantaneous vaccination, which means that a non-negligible proportion of the total population can be vaccinated instantaneously at some time t. A first consequence is that S(0) can be strictly less than S 0 -(when some vaccination occurs at time 0). Recall that V (t) represents the proportion of people vaccinated by the time t. If, for instance, nobody vaccinates before time t * = 0.25 years (3 months) and 30% of the population vaccinates at time t * this means that V (t) is discontinuous at this point (see Figure III.11 for an illustration). In particular it is not derivable and neither will be S(t); as such it is not possible to use in Equation (III-1) the derivative dS(t)/dt. This explains why the equation is only written in the differential form: dS(t) = -βS(t)I(t)dt -dU (t). In this writing all objects have a well defined mathematical meaning: dU (t) is a positive measure which, for our example will be the Dirac mass 0.3δ t * . We refer to [START_REF] Bressan | Impulsive control systems with commutative vector fields[END_REF][START_REF] Maso | On systems of ordinary differential equations with measures as controls[END_REF][START_REF] Miller | The generalized solutions of nonlinear optimization problems with impulse control[END_REF][START_REF] Silva | Necessary conditions for optimal impulsive control problems[END_REF] for the mathematical properties of the solutions to such evolution equations. In the particular situation when U (t) has a jump at 0 we will have S 0

--S(0) = U (0) -U (0 -) = U (0).
In this dynamics all individuals are the same. Each individual is following a continuous time Markov dynamics jumping between the states Susceptible, Infected, Recovered and Vaccinated. Let M t be the state of one such individual at time t. The time of the jump from the Infected to the Recovered class is a exponential random variable of mean 1/γ. We write in terms of probabilities: 

P M t+∆t = Recovered M t = Inf ected = γ∆t + o(∆t
P M t+∆t = Inf ected M t = Susceptible = βI(t)∆t + o(∆t). (III-14)
On the other hand, denote by ϕ I (t) the probability of infection (in the absence of vaccination) during the time interval [0, t]. Then

P M t+∆t = Inf ected M t = Susceptible = P (M t+∆t = Inf ected, M t = Susceptible) P (M t = Susceptible) = ϕ I (t + ∆t) -ϕ I (t) 1 -ϕ I (t) = 1 1 -ϕ I (t) ϕ ′ I (t)∆t + o(∆t).
(III-15)

Passing to the limit ∆t → 0 in Equations (III-14) and (III-15) we obtain:

ϕ ′ I (t) = βI(t)(1 -ϕ I (t)), ϕ I (0 -) = 0. (III-16)
therefore ϕ I is given by formula (III-2). Note that since I(t) is continuous ϕ I is differentiable everywhere.

In particular, for an individual in the Susceptible class at time τ that does not vaccinate any more from that time on, the probability of infection after time τ is: Remark 13. Since ϕ I (∞) < 1 the cost J pure (Π ∞ ) is not the limit of the costs J pure (Π t ) (for t → ∞). On the contrary J D pure (Π ∞ ) = lim t→∞ J D pure (Π t ). 

Individual strategies

The simplest individual strategy is to vaccinate or not at some given time (provided he is still susceptible). Such a strategy is called a pure strategy. However pure strategies do not always have good theoretical properties and in his Nobel award winning work John Forbes Nash proved that on the contrary, any finite game admits equilibrium if mixed strategies are allowed. A mixed strategy is a probability law on the set of all pure strategies. With the notations of Section 1.1 the mixed strategy are probability laws on [0, ∞] with special meaning of values 0 (immediate vaccination) and ∞ (no vaccination). The CDF function ϕ V (t) is such that ϕ V (0 -) = 0 (no vaccination before time 0). Note that ϕ V is not necessary a continuous function (the discussion is very much similar to the one in proof section 6). In particular when the individual chooses the pure strategy Π t * then ϕ V is the Heaviside function H(•t * ). See the illustration in Figure III.12. It may also be necessary to impose some constraints. Suppose that global vaccination (at the society level) can only happen with the maximal rate of u max percent of population in a unit time. Then, with the notations in Equation (III-1): U (t + ∆t) -U (t) ≤ u max ∆t. Suppose now that all individuals want to vaccinate at the same time with the same ϕ V then the constraint above, coupled with (III-9), implies that ϕ V is differentiable in any t with S(t) > 0 and denoting f V (t) = umax S(t) :

∀t ≥ 0 with S(t) > 0 :

dϕ V (t) dt ≤ f V (t)(1 -ϕ V (t)). (III-19)
Another interpretation of the constraint is the following: when the number of people that want to vaccinate exceeds the capacity of the vaccination centers people will have to wait. In this model all individuals are the same (that is, have the same characteristics therefore same strategies) then the Partie IV Simulation numérique des stratégies de vaccination Résumé:

Dans cette partie, nous discutons l'implémentation numérique de la recherche de stratégies de vaccination à l'équilibre présentées dans les parties II et III. La section 1 explique l'implémentation pour la stratégie sociétale de la partie II et la section 2 présente une solution pour l'obtention de l'équilibre individuel de la partie III avec l'approche sans facteur d'actualisation. Pour chaque stratégie est présenté un algorithme de calcul ainsi qu'une proposition d'implémentation naïve à l'aide du logiciel Matlab (MATLAB R2010a, The MathWorks, Inc).

Introduction

La première implémentation numérique proposée (section 1) est celle de la stratégie minimisant le coût subi par l'intégralité de la société, la seconde (section 2) concerne la stratégie optimisant le coût individuel sans facteur d'actualisation. La troisième (section 3) expose le cas de la stratégie individuelle avec un taux d'actualisation D strictement positif et la vitesse de vaccination très grande. Dans les deux premières implémentations nous raisonnons point par point, c'est à dire que pour chaque point initial nous calculons la stratégie optimale à travers un temps d'arrêt (voir plus bas pour la définition du temps d'arrêt) et en déduisons les régions de vaccination. Pour la troisième implémentation numérique, nous utilisons une autre méthode qui raisonne directement sur les régions. Les deux premières stratégies peuvent se caractériser par un unique temps d'arrêt, ce qui n'est pas le cas pour la dernière implémentation où deux temps d'arrêts peuvent intervenir. Bien que nous n'utilisons pas la même méthode, l'approche point par point, plus rapide, reste possible pour le cas avec facteur d'actualisation, notre but étant seulement d'obtenir des informations sur le comportement numérique et pas optimiser le calcul des régions de vaccination.

Stratégie sociétale

Dans cette section, nous nous intéressons au calcul de la stratégie societale présentée dans la partie II. Nous cherchons, par une approche purement numérique, à obtenir les régions de vaccination et si possible, le coût total subi par la société.

Nous reprenons partiellement les notations de la partie II pour rappeler la situation considérée mais renvoyons à cette partie pour toutes les justifications théoriques. Le système guidant l'évolution SIR-V est: Le but de l'implémentation est, pour un point initial fixé, de calculer le temps θ qui minimise J(X, θ). L'algorithme de calcul de la stratégie optimale pour un point initial (S 0 , I 0 ) est l'algorithme 1. L'implémentation en langage de programmation Matlab est disponible dans le listing 7.1. Pour calculer le temps d'arrêt correspondant à l'équilibre, nous cherchons le point fixe de la fonction S par la méthode de dichotomie. Nous initialisation la stratégie globale à "aucune vaccination" (θ G = 0) puis nous calculons S(0). S'il n'y a pas de vaccination individuelle, alors l'équilibre est de ne pas 

Stratégie individuelle avec facteur d'actualisation

Nous allons maintenant présenter un algorithme permettant de trouver la stratégie individuelle avec un taux d'actualisation D strictement positif et une vitesse de vaccination infinie (concrètement, les valeurs de u max seront grandes par rapport aux autres paramètres, nous prenons u max ≥ 100 ce qui veut dire une capacité de vacciner toute la population susceptible du pays en seulement 3.65 jours). Nous rappelons la fonctionnelle de coût considérée:

J D indi (ϕ V ) = r I Φ I (∞) + ∞ 0 - r I (Φ I (t) -Φ I (∞)) + r V e -Dt (1 -ϕ I (t)) dϕ V (t).
(III-7) Et la fonction g utilisée: g(t) = r I (Φ I (t) -Φ I (∞)) + r V e -Dt (1ϕ I (t)).

(III-40)

Comme u max ≃ ∞, nous utilisons les résultats de la section 10 de la partie III indiquant que la stratégie peut être: pas de vaccination, vaccination immédiate, ou vaccination différée. Ici, nous ne raisonnons pas en terme de Remarque 12. L'algorithme que nous donnons dans cette partie s'applique uniquement au cas u max ≃ ∞. Dans le cas D > 0 et u max fini, nous perdons également que la représentation de la stratégie individuelle peut se faire à l'aide d'un unique temps d'arrêt puisqu'il peut y avoir une zone où il y a vaccination mais pas immédiatement, dans ce cas, il faut prendre en compte le temps de début et de fin de vaccination (voir la section 13 de la partie III pour plus de détails). 

Annexe A Chaîne de Markov en temps continu

Cette section s'inspire principalement des références [START_REF] Allen | An introduction to stochastic processes with applications to biology[END_REF] et [START_REF] Wilkinson | Stochastic modelling for systems biology[END_REF].

Le but de cette annexe est de justifier les équations de type: 

P[X(t + ∆t) = E i |X(t) = E j ] = f (∆t) + o(∆t), (V-
P[X(t n+1 ) = i n+1 |X(t 0 ) = i 0 , X(t 1 ) = i 1 , . . . , X(t n ) = i n ] = P[X t+1 = i n+1 | X(t n ) = i n ],
pour toutes les séquences de nombres réels tel que 0 ≤ t 0 < t 1 < • • • < t n < t n+1 .

Cette propriété signifie que la transition vers l'état i n+1 au temps t n+1 dépend seulement de l'état du processus au temps le plus récent t n , et ne dépend pas de l'historique de la trajectoire du processus. Chaque variable aléatoire X(t) a une distribution de probabilité {p i (t)} ∞ i=0 avec: p i (t) = P[X(t) = i].

Annexe

Nous notons p(t) = (p 0 (t), p 1 (t), . . . ) ′ le vecteur de probabilité et introduisons la probabilité de transition: p j,i (t, s) = P[X(t) = j | X(s) = i] , s < t pour i, j = 0, 1, . . . Définition 1.2. Si la probabilité de transition ne dépend pas explicitement de t ou s mais uniquement de la taille de l'intervalle ts, le processus est dit stationnaire ou homogène en temps. Dans le cas contraire, il s'agit de processus non stationnaire ou non homogène.

Dans la suite, X est supposé homogène, la probabilité de transition est donc, pour s < t: p j,i (t, s) = P[X(t) = j | X(s) = i] = P[X(ts) = j | X(0) = i] := p j,i (ts).

Cela permet d'introduire la matrice de transition P , définie par P (t) = (p j,i (t)). Elle satisfait p j,i ≥ 0 et:

∞ j=0 p j,i (t) = 1, (V-2)
car pour tout t ≥ 0, la probabilité qu'il y ait une transition depuis l'état i vers un autre état (qui peut toujours être i) dans l'intervalle [0, t] est égale à 1. La matrice P est une matrice stochastique pour tout t ≤ 0 car la somme de chaque colonne est égale à 1.

De plus, les transitions de probabilité sont solutions de l'équation de Chapman-Kolmogorov: ∞ k=0 p j,k (s)p k,i (t) = p j,i (t + s).

(V-3)

Soit sous forme de matrice: P (s)P (t) = P (s + t) pour tout s, t ∈ [0, ∞[. Soit I la matrice identité, nous avons alors P (0) = I car aucune transition ne peut avoir lieu dans un intervalle de temps nul. La matrice des taux de transition, Q est la dérivée de P par rapport à t au voisinage de t = 0: Cela permet d'obtenir la matrice de transition pour un temps infinitésimal : P (∆t) = I + Q∆t + o(∆t). Comme P est une matrice stochastique, cela implique plusieurs contraintes sur la matrice Q, par exemple ∞ j=0 q ji = 0 (voir ci-dessous équation (V-8)).

Q = d dt P ( 
Soit maintenant un temps t arbitraire, alors pour ∆t ≃ 0: (V-4)

d dt P ( 
2 Matrice génératrice Q

Les transitions de probabilité p j,i sont utilisées pour obtenir le taux de transition q j,i , les taux de transitions infinitésimaux forment la matrice génératrice infinitésimale. Cette matrice donne la relation entre les taux de variation de la probabilité de transition.

Supposons que les probabilités de transition p j,i (t) soient continues et différentiables pour t ≥ 0 et que, pour t = 0, p j,i (0) = 0 pour j = i et p i,i = 1. Soit q j,i définie par: q j,i = lim ∆t→0 + p j,i (∆t)p j,i (0) ∆t = lim ∆t→0 + p j,i (∆t) ∆t , i = j. (V-5) Donc q j,i ≥ 0 dès que p j,i (∆t) ≥ 0. De plus, définissons q i,i :

q i,i = lim ∆t→0 + p i,i (∆t) -1 ∆t . (V-6)
En utilisant l'équation (V-2) Σ ∞ j=0 p j,i (t) = 1 il vient que:

1 -p i,i (∆t) = ∞ j=0,j =i p j,i (∆t) = ∞ j=0,j =i [q j,i ∆t + o(∆t)]. (V-7)
On a alors:

q ii = lim ∆t→0 +
-∞ j=0,j =i q j,i ∆t + o(∆t) ∆t = -∞ j=0,j =i q j,i , (V-8) où il est supposé que ∞ j=0,j =i o(∆t) = o(∆). Cette égalité est vraie dans le cas d'une somme finie (c'est-à-dire pour les chaînes de Markov avec un nombre d'états fini). Dans le cas contraire, on peut montrer (voir [START_REF] Karlin | A second course in stochastic processes[END_REF]) que la
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 161 Le modèle Susceptible-Infected-Recovered (SIR) 1.1.1 Présentation du modèle Il s'agit du modèle proposé par Kermack et McKendrick en 1927 qui suppose que la population est divisée en trois classes distinctes: Le modèle Susceptible-Infected-Recovered (SIR)

Figure I. 1 :Figure I. 2 :

 12 Figure I.1: Schéma d'évolution du système SIR.

Figure I. 3 :Figure I. 4 :

 34 Figure I.3: Exemple d'évolution d'un modèle SIR par rapport au temps avec ajout des valeurs remarquables. Les paramètres utilisés sont (S 0 , I 0 , R 0 ) = (0.75, 0.0025, 0.2475), γ = 36.5, β = 73, T = 1 an; ici, t * = 0.24, S(t * ) = 0.504, I(t * ) = 0.0498 et R(t * ) = 0.4462.

RDéfinition 1 . 1 . 1 .Proposition 1 . 1 . 4 . 4 ) 1 . 2 .Figure I. 5 :

 1111144125 Figure I.5: Schéma d'évolution du modèle SEIR.

1 . 2 . 2 Figure I. 6 :Figure I. 7 :

 12267 Figure I.6: Exemple d'évolution par rapport au temps d'un modèle SEIR. Les paramètres utilisés sont (S 0 , E 0 , I 0 , R 0 ) = (0.5625, 0.0044, 0, 0.4331), γ = 27.4, β = 73 et δ = 45.6. Le code utilisé est disponible dans la section 2 de l'annexe B page 176. Susceptible Infected Recovered -βSIdt -γIdt -δRdt Figure I.7: Schéma d'évolution du modèle SIRS.

  0) = R 0 . (I-6c) 1.2. Autres modèles déterministes à compartiments Dans ce cas, R 0 = β γ ne change pas mais les fonctions S, I et R n'ont pas le même comportement que pour le modèle SIR, voir figure I.8 pour un exemple d'évolution par rapport au temps.

Figure I. 8 :

 8 Figure I.8: Exemple d'évolution par rapport au temps d'un modèle SIRS. Les paramètres utilisés sont (S 0 , I 0 , R 0 ) = (0.75, 0.0025, 0.2475), γ = 36.5, β = 73, δ = 1.38, T = 5 ans. Le code utilisé est disponible dans la section 3 de l'annexe B page 177.

  0) = I 0 . (I-7b) Par ailleurs, un exemple d'évolution est donné par la figure I.10. Pour ce modèle, R 0 = β µ+γ .

Figure I. 10 :

 10 Figure I.10: Exemple d'évolution par rapport au temps d'un modèle SIS avec naissances et décès. Les paramètres utilisés sont (S 0 , I 0 , R 0 ) = (0.95, 0.05, 0), γ = 36.5, β = 109.5, µ = 0.1, T = 1 an. Le code utilisé est disponible dans la section 4 de l'annexe B page 178.

Figure I. 12 :

 12 Figure I.12: Exemple d'évolution par rapport au temps d'un modèle SIR avec naissances et décès. Les paramètres utilisés sont (S 0 , I 0 , R 0 ) = (0.5, 0.005, 0.495), γ = 36.5, β = 109.5, µ = 0.1, T = 20 ans. Le code utilisé est disponible dans la section 5 de l'annexe B page 179.

  Figure I.13: Exemple d'évolution par rapport au temps d'un modèle SEIR avec deux classes d'âge. Les paramètres utilisés sont (S A (0), E A (0), I A (0), R A (0), S B (0), E B (0), I B (0), R B (0)) = (0.82, 0, 0.06, 0, 0.11, 0, 0.01, 0), a A = 6, β A = 8.86, a B = 3, β B = 4.43, δ = 91.25, γ = 73 et T = 1 an. Le code utilisé est disponible dans la section 6 de l'annexe B page 180.

∞

  0 s(t, a)da est la proportion totale de susceptibles dans la population globale) Nous introduisons également λ(i(t, a)), le coefficient de transmission pour la classe d'âge a au temps t. Dans les modèles précédents ce taux était λ(I) = βI, une généralisation simple donne λ(i(t, a)) = ∞ 0 β(a, ã)i(ã, t)dã avec β(a, ã) le taux de contact entre un susceptible d'âge a et un infectieux d'âge ã. Ici d(a) représente la densité des décès dans la classe a liée à l'âge, et c(a) les décès liés à la maladie. Enfin γ(a) est le paramètre qui décrit la guérison de la classe d'âge a. Nous obtenons alors, pour des densités connues s(0, a), i(0, a) r(0, a), l'évolution de la maladie dans la population avec le système d'équations suivant: ∂s ∂t (t, a) + ∂s ∂a (t, a) = -(λ(i(t, a)) + d(a))s(t, a), (I-11a) ∂i ∂t (t, a) + ∂i ∂t (t, a) = λ(i(t, a))s(t, a) -(γ(a) + c(a) + d(a))i(t, a), (I-11b) ∂r ∂t (t, a) + ∂r ∂a (t, a) = γ(a)i(t, a)d(a)r(t, a).

  Dans un premier temps, nous présentons le modèle SIS et SIR à l'aide d'une chaîne de Markov à temps discret. Cela suppose que les classes S, I et R sont le nombre de personnes dans chaque classes, c'est-à-dire prennent des valeurs discrètes, comprises entre 1 et N et non plus des proportions comme c'est le cas dans les parties 1.1 et 1.2. Enfin, nous relâchons cette hypothèse et faisons le lien entre la chaîne de Markov individuelle et les équations différentielles du modèle SIR.

Figure I. 14 :

 14 Figure I.14: Exemple d'évolution de la densité de probabilité du nombre d'infectés au cours du temps. Les paramètres utilisés sont β = 0.01, γ = 0.0025, µ = 0.0025, δ t = 0.01, N = 200, T = 2000 pas de temps. Le code utilisé est disponible dans la section 7 de l'annexe B page 182.

Figure I. 15 :

 15 Figure I.15: Exemple d'évolution de la densité de probabilité du nombre d'infectés pour T final. Les paramètres utilisés sont β = 0.01, γ = 0.0025, µ = 0.0025, ∆ t = 0.01, N = 200, T = 2000 pas de temps. Le code utilisé est le même que celui présenté dans la section 7 de l'annexe B page 182.
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Lemme 3 . 2 . 1 .

 321 Soit u ∈ C(Ω). Alors: (i) p ∈ D + u(x) si et seulement si il existe une fonction ϕ ∈ C 1 (Ω) telle que ∇ϕ(x) = p et uϕ atteint un maximum local en x . (ii) p ∈ D -u(x) si et seulement si il existe une fonction ϕ ∈ C 1 (Ω) telle que ∇ϕ(x) = p et uϕ atteint un minimum local en x.

3. 3 . 1

 31 Équation d'Hamilton-Jacobi du premier ordre.

Théorème 3 . 3 . 1 .Preuve. 1 .

 3311 Soient u, v ∈ C(Ω) respectivement super et sous solution de (I-32). Si u ≤ v sur δΩ alors, sous les hypothèses (H1) et (H2): u ≤ v sur Ω. (I-38) Le théorème est vérifié si nous montrons que M = max x∈Ω (u(x)v(x)) est négatif. Dans le cas classique où u et v sont C 1 alors le maximum est atteint en un point x 0 , il y a deux possibilités: i. Soit x 0 ∈ δΩ, alors u(x 0 ) ≤ v(x 0 ) par hypothèse et donc M est négatif.

Lemme 3 . 3 . 3 .

 333 Soit u une fonction continue sur [0, T ] × R n sous solution de (I-35) pour t ∈]0, T [. Si φ est une fonction C 1 tel que uφ atteint un maximum local en (T, x 0 ) alors:

4 .

 4 En soustrayant (I-51) à (I-50) et en utilisant (I-44) -(I-45), nous obtenons:

I- 61 )Définition 3 . 4 . 1 .Théorème 3 . 4 . 1 .

 61341341 pour tout x, y ∈ R n et u ∈ U . Enfin, nous notons U l'ensemble des contrôles admissibles: U = {u : R → R m mesurable, u(t) ∈ U pour tout t}. (I-62) La fonction valeur associée au système (I-57) et à la fonction de coût (I-59) est définie par: V (s, y) = inf u(•)∈U J(s, y, u). (I-63) Soit la fonction Hamiltonienne suivante: H(x, p) = min w∈U [p • f (x, w) + L(x, w)] . (I-64) Considérons la fonction valeur définie par (I-63) et (I-59) pour le système (I-57), alors sous les hypothèses (I-58), (I-60) et (I-61), V est l'unique solution de l'équation d'Hamilton-Jacobi-Bellman suivante:

50 3. 5 .

 505 Principe de Pontryagin avec U l'ensemble des contrôles admissibles, c'est-à-dire

4. 1 .Remarque 8 .Figure I. 1 :

 181 Figure I.1: Exemple de présentation de jeu à deux joueurs.

Figure I. 2 :

 2 Figure I.2: Matrice de payoff du dilemme du prisonnier.

Figure I. 3 :

 3 Figure I.3: Matrice du jeu du haut ou bas.

  Théorème 4.1.1. Tout jeu fini admet un équilibre de Nash mixte. La démonstration de ce théorème utilise le théorème de point fixe de Kakutani: Théorème 4.1.2. Soit r : Σ → P(Σ) une fonction à valeurs dans l'ensemble Σ. Si: • Σ est un compact, convexe et un sous ensemble non vide d'un espace

Définition 4 . 2 . 1 .

 421 Le problème de jeu à champ moyen consiste à trouver une pair (v, m(•)) telle que, en notant x la solution de:

1 X 2 Figure II. 1 :

 121 Figure II.1: Two trajectories of an epidemic evolution (corresponding to the SIR model in equations (II-1)) are presented. The epidemic starts from X 0 = (0.79, 0.0053). The parameters used are β = 73, γ = 36.5, u max = 100, r I = 1 and r V = 1.5 (see formula (II-3) for the meaning of the parameters r I and r V and Section 2.2 for u max ). The solid curve represents the epidemic evolution when there is no vaccination (which is the state of the art solution, see[2,[START_REF] Morton | On the optimal control of a deterministic epidemic[END_REF][START_REF] Piunovskiy | An explicit optimal intervention policy for a deterministic epidemic model[END_REF]) and the dashed curve plots the epidemic evolution when there is some partial vaccination. The cost for the first trajectory is 0.51 and for the second is 0.49.

(

  Figure II.2: Graphical illustration of the SIR-V model.

1 Figure II. 3 : 71 Lemma 2 . 1 .

 137121 Figure II.3: Boundary representation when γ β < 1 (left) and γ β ≥ 1 (right).

Figure II. 4 :

 4 Figure II.4: θ(X) for parameters u max = 100, r V = 0.5, r I = 1, β = 73, γ = 36.5. Left: Representation as 3D function. Right: representation as level lines. We observe that θ is regular.

Figure II. 5 :

 5 Figure II.5: θ(X) for parameters u max = 100, r V = 1.4, r I = 1, β = 73, γ = 36.5. Left: Representation as 3D function. Right: representation as level lines. In both cases we zoom on the discontinuity curve and plot Ω ∩ ([0.4, 1] × [0, 0.1]). We observe that θ is discontinuous.

3. 1 A

 1 classical situation: β = 73, γ = 36.5, u max = 10, r I = 1, r V = 0.5, X 0 = (0.3, 0.05) Here u max < ∞, we are thus in the situation described by proof section 10. Using equation (II-60) we obtain x * = 0.59 therefore X crit umax = (0.59, 0.41) and using equation (II-61) (and formulas involving ∂ X 1 ζ available in the proof section 7) we obtain r crit V,umax = 1.036. Therefore we are in the situation r V < r crit V,umax r I treated in Theorem 10.5. The Theorem instructs us to plot the level line L ∂ X 1 ζ r V /r I (whose equation as a curve is given in formula (II-31)). Plotting this curve (and zooming around the starting point X 0 ) we obtain the image in figure II.7: the grey area corresponds to points on level lines L ∂ X 1 ζ r with r ≥ r V /r I while in the white area are situated points on level lines L ∂ X 1 ζ r

78

 78 

1 X 2 Figure II. 9 :Remark 3 . 2 Figure II. 10 :

 1293210 Figure II.9: Two trajectories of an SIR evolution starts in X 0 = (0.7, 0.01) with β = 73, γ = 36.5, u max = ∞, r I = 1 and r V = 1.5. The solid curve corresponds to a trajectory with vaccination for all susceptible and the dashed trajectory with partial vaccination. The cost of the first strategy is 1.05 and the cost of the second strategy is 0.37.

Figure II. 11 :

 11 Figure II.11: Illustration of the cost-effectiveness criterions for u max = ∞. Solid line: the threshold ρ. Dashed line: the cumulative cost per DALY averted x →

Remark 6 .

 6 Thanks to (II-22) we obtain by the implicit function Theorem that ζ has continuous derivatives around any X ∈ Ω; we can calculate first and second partial derivatives of ζ with respect to X 1 and X 2 :

Definition 9 . 1 .

 91 Let ξ : O → R be a scalar function defined on an open set O ⊆ R n . The set of super-differentials of ξ at a point x ∈ O is:

  is a continuous (possibly nonlinear) function. Definition 9.2. A function ξ ∈ C(O) is a viscosity subsolution of (II-35) if F(x, ξ(x), p) ≤ 0 for every x ∈ O, p ∈ D + ξ(x). (II-36) Similarly, ξ ∈ C(O) is a viscosity supersolution of (II-35) if F(x, ξ(x), p) ≥ 0 for every x ∈ O, p ∈ D -ξ(x).

10. 1

 1 Properties of the value function Theorem 10.1. The value function V umax : Ω → R is a Lipschitz function in Ω. It can uniquely be extended to a Lipschitz function on Ω. Partie II. Vaccination globale optimale dans un modèle SIR : propriétés de la fonction valeur et application à une analyse coût-efficacité 91

10 .

 10 Bounded vaccination speed (u max < ∞) 10.2 The HJB equation and value function Theorem 10.2. The value function V umax is a viscosity solution of the Hamilton-Jacobi-Bellman (HJB) equation:

  , (II-43) for any u(t) ∈ [0, u max ]. Let u = w on the interval [0, δ] (since Y ∈ Ω, for a small δ > 0 u ∈ U Y ) and denote Z 0 = Φ Y,w (δ). Then, choosing Z = Z 0 in Partie II. Vaccination globale optimale dans un modèle SIR : propriétés de la fonction valeur et application à une analyse coût-efficacité 93

Figure II. 12 :

 12 Figure II.12: Boundary used in proof of the Theorem 10.3.

  Y ) > 0 and equations (II-71) and (II-70) follow.

10 .

 10 Figure II.14: Illustration of the construction of the domains Ω V umax and Ω N V umax . The solid curve is L ∂ X 1 ζ r V /r I . The dashed curves are Γ crit sub (from A to P crit r V ) and Γ crit super (from P crit r V ). The gray domain is Ω V umax .

  (III-1) only represent the overall, societal dynamics. At the microscopic level, the individual dynamics is modeled by a continuous time Markov chain with individual jumping between the Susceptible, Infected, Recovered and Vaccinated classes, as illustrated in Figure III.1. The jump from the Susceptible to the Vaccinated class depends on the willingness of 1. Introduction

  Figure III.2 corresponding to the model in Section 1.1. Vaccination is represented by a parameter indicated the time during which vaccination takes place. A low time indicates low vaccination level and a large time a high vaccination level. We plot a threedimensional surface of the cost J indi (θ I ) incurred by an individual which has the vaccination time θ I in a circumstance when the societal vaccination time is θ G . Note that, with an abuse of notation, we write θ G instead of dU = 1 [0,θ G ] u max dt and θ I instead of the solution of dϕ V (t) = (1ϕ V (t))1 [0,θ I ] u max /S(t)dt, see proof section 6 and 7. For any societal vaccination strategy represented by the parameter θ G the individual minimizes θ I → J indi (θ I ). The optimal value θ opt I of θ I as a function of θ G is represented as the solid bottom curve in the Figure III.2.

Figure III. 2 :

 2 Figure III.2: J indi (θ I ) for parameters β = 73, γ = 36.5, u max = 10, r I = 1, r V = 0.5 and D = 0. The solid bottom curve represent the optimal individual choice θ opt I (θ G ) and the dashed bottom curve is θ G = θ I .

Figure III. 3 :

 3 Figure III.3: The parameters used are (S 0 -, I 0 -) = (0.75, 0.1), β = 73, γ = 36.5, r I = 1, r V = 0.5, u max = 10 and constraint in Equation (III-19). Left:The trajectory (S(t), I(t)) of the system (III-1) with U = 0. Right: The decreasing dotted curve is t → ϕ I (∞)-ϕ I (t)1-ϕ I (t) , the constant densely dashed line is the level r V /r I and the increasing dashed-dotted curve is the probability of vaccination over time.
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 11 Partie III. Vaccination individuelle vue comme un équilibre de Nash dans un modèle SIR 127 S Individual

Figure III. 4 :

 4 Figure III.4: The representation of the domain Ω and its regions. Gray region: vaccination in the (OG) strategy and in the (EIS) strategy. Hashed region: vaccination in the (OG) strategy but not in the (EIS) strategy. White region: no vaccination in the (OG) strategy and no vaccination in the (EIS) strategy.

128 3 .Figure III. 5 :

 35 Figure III.5: The dashed curve (without the point A) is with no vaccination (dU = 0) and has individual cost 0.68; the solid curve is with (OS) strategy and has individual cost 0.51; the dashed curve (with point A) is with the (EIS) strategy and has individual cost 0.54. The parameters used for the three trajectories are β = 73, γ = 36.5, u max = 10, r V = 0.5, r I = 1, S 0 -= 0.75, I 0 -= 0.1.

t

  Figure III.6: The parameters used are (S 0 -, I 0 -) = (0.9, 0.04), β = 73, γ = 36.5, r V = 0.4, r I = 1 and D = 10. Left: Evolution of the function g (see proof section 12). The optimal individual vaccination occurs at time τ * = 0.0329 (minimum of the function). Right: The risk of infection t → r I (Φ I (∞)-Φ I (t))

Figure III. 7 :

 7 Figure III.7:The partition of the domain Ω in three regions: Ω i (dotted, instantaneous vaccination), Ω n (white, no vaccination), Ω d (gray, delayed vaccination) for γ = 36.5,β = 73, r V /r I = 0.4 and D = 10. In this case Ω d = ∅. The equilibrium dynamics is as follows: if (S 0 -, I 0 -) ∈ Ω n it will always remains there; if (S 0 -, I 0 -) ∈ Ω i partial vaccination will bring it to Ω n and total vaccination to the boundary S = 0; if (S 0 -, I 0 -) ∈ Ω d it will evolve to some point (S, I * ), then vaccinate till the point (S * , I * ) on the boundary of all three regions, then will evolve in the region Ω n . If on the contrary r V /r I = 0.6 we have Ω d = ∅; this situation is not illustrated here as it is similar to Figure III.4).

Figure III. 8 :

 8 Figure III.8: Left: Fit of the cumulative vaccination in percents weighted by the effectiveness coefficient. The curve U (labeled "Model") and the curve in[START_REF] Guthmann | Insufficient influenza A(H1N1) 2009 vaccination coverage in the global population and high risk groups during the 2009-2010 pandemic in France[END_REF] (labeled "Data") cannot be distinguished. Right: Instantaneous vaccination dU , weighted by the effectiveness coefficient.

4 .Figure III. 9 :

 49 Figure III.9: Comparison between the Infected class as obtained from the Sentinel network and the one from the model in (III-1). Left: Infected class as function of time. The peak of the epidemic is well reproduced. Right: cumulative number of Infections. The overall number of infection (at the end of the epidemic) is well reproduced.

Figure III. 10 :

 10 Figure III.10: Using the dynamics in (III-1), fitted with our data, we plot three criterions: ϕ I (∞)-ϕ I (t) 1-ϕ I (t) , ζ(S(t),I(t))

  ϕ I (∞)ϕ I (τ ) 1ϕ I (τ ) . (III-17)We can prove, by direct computations, that dU = 0 on [τ, ∞[ implies:ϕ I (∞)ϕ I (τ ) 1ϕ I (τ ) = ζ(S(τ ), I(τ )) S(τ ) . (III-18) 

Figure III. 12 :

 12 Figure III.12: The individual cumulative probability of vaccination ϕ V (t) is an increasing, right continuous with left limits (càdlàg) function with ϕ V (0 -) = 0, ϕ V (∞) ≤ 1.

  dS(t) = -βS(t)I(t)dt -dV (t) (I-16a) dI(t) = (βS(t)I(t) -γI(t))dt (I-16b) dR(t) = γI(t)dt (I-16c) dV (t) = u max 1 [0,θ[ (t)dt. (I-16d)La dernière équation est justifiée par un résultat théorique de la partie II qui affirme que la vaccination est forcement au début avec intensité maximale. L'inconnue dans ce système est θ.Dans la suite, les contrôles seront uniquement différenciés par le temps d'arrêt de la vaccination θ. Par convention, θ = 0 signifie qu'il n'y a pas de où ζ est le nombre de personnes infectés pour un système sans vaccination (voir section 7 de la partie II page 86 par exemple). Ce nombre est solution de l'équation : 1 -ζ(S, I) S = e -β γ (I+ζ(S,I)) . (II-22)

Algorithm 1

 1 Calcul de la stratégie societale optimaleif S 0 + I 0 ≤ 1 then Calcul de la trajectoire sur [0, T ] avec dV (t) = u max dt et de vectJ(τ ) = τ 0 r I βΦ X,θ 1 (t)Φ X,θ 2 (t)dt + τ 0 r V dV (t) pour tout τ ∈ [0, T ]. for τ ∈ [0, T ] do vectCout(τ ) = vectJ(τ ) + ζ(Φ X,τ 1 (τ ), Φ X,τ 2 (τ )) end for StratOpt = min(vectCout) end ifComme le calcul du θ ne dépend pas d'un résultat précédemment calculé, le code Matlab est parallélisé pour gagner en temps d'exécution.

Figure IV. 1 :Figure IV. 2 :Algorithm 2

 122 Figure IV.1: Exemple du résultat obtenu à l'aide du code 7.1 avec comme paramètres γ = 36.5, β = 73, u max = 100, r I = 1 et r V = 0.5.

  1) = -beta * S * Infect -ug ; 16 res (2 ,1) = beta * S * Infect -gamma * Infect ; 17 res (3 ,1) = -beta * Infect * p_i ; 18 res (4 ,1) = r_i * beta * S * Infect + r_v * ug ; 19 end La figure IV.3 présente le θ I et le coût associé pour les mêmes paramètres que pour la figure IV.1. La troisième figure correspond au nombres d'itérations nécessaires à chaque point initial pour obtenir le θ I à 10 -10 près. Ces figures permettent de constater que la convergence s'effectue rapidement (en moins de 50 itérations pour les paramètres utilisés). En particulier sur chaque figure la région {X|θ(X) = 0} correspond à la région de non vaccination. Cette partition est conforme avec les résultats théoriques de la partie III.
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 33413 Figure IV.3: Exemple du résultat obtenu à l'aide du code 7.3 page 159 avec comme paramètres γ = 36.5, β = 73, u max = 10, r I = 1 et r V = 0.5.

1 X 2 Figure IV. 5 :

 125 Figure IV.5: Exemple du résultat obtenu à l'aide du code 7.5 page 7.5 avec comme paramètres γ = 36.5, β = 73, u max = 100, r I = 1 et r V = 0.4. La région bleue est celle sans vaccination (chiffre 1), la jaune avec vaccination immédiate (chiffre 2) et la rouge avec vaccination différée (chiffre 3). Haut gauche: Réponse individuelle obtenue si pas de vaccination globale. Haut droite: Réponse individuelle obtenue si la région de vaccination globale est la région jaune de l'image en haut à gauche. Bas gauche: Réponse individuelle obtenue si la région de vaccination globale est la région jaune de l'image en haut à droite.

  t)| t=0 = lim ∆t→0 P (∆t) -P (0) ∆t = lim ∆t→0 P (∆t) -I ∆t .
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  Dans le cas d'une maladie persistante dans le temps, la prise en compte de l'évolution de la population due aux naissances et aux décès est nécessaire. Pour ce faire, nous introduisons un taux de natalité µ égal au taux de décès pour conserver la taille de la population constante. Si la maladie ne donne pas d'immunité, alors les personnes qui ont été infectées redeviennent immédiatement susceptibles. L'approche la plus simple pour modéliser une telle propriété est d'utiliser un modèle SIS. Le schéma d'évolution est présenté dans la figure I.9.

		-γIdt	
	µdt	Susceptible	-βSIdt	Infected
		-µSdt		-µIdt

Figure I.9: Schéma d'évolution d'un modèle SIS avec naissances et décès. La flèche entrante dans la classe susceptible représente les naissances. Les flèches sortantes des classes Susceptible et Inf ected modélisent la mortalité.

  Un exemple numérique d'évolution de la densité de probabilité est donné dans la figure I.14. La figure I.15 présente la même densité pour T final, et montre qu'il y a une probabilité de 26% que la maladie ait disparu (0 individu infecté), et 74% pour qu'elle continue à se propager dans la population, avec 40 à 60 personnes infectées.

1.3. Modèle stochastique

Il s'ensuit par récurrence que p(t + ∆t) = P (∆t)p(t) = P n+1 (∆t)p(0) pour t = n∆t.

  .3. Unicité des solutions d'équation de type HJ atteint son minimum au point y ǫ . Or v est super solution de (I-32) et η est régulière donc:

  Vaccination globale optimale dans un modèle SIR : propriétés de la fonction valeur et application à une analyse coût-efficacité 67 Remark 1. Whereon the interval [0, ∞[ open at infinity. This simply means that ∞ is not an admissible value and no strategy can vaccinate at t = ∞; on the contrary instantaneous vaccination at t = 0 is possible.
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	and Φ	Y,u(t)dt 2	(t)).	Y,u(t)dt 1	(t)

  best strategy is to not vaccinate at all; otherwise the second strategy is the best. Numerical details are given in figure II.8. In this case the initial point was in the vaccination region; previous works (see discussion in section 2.4) indicated that this point is in the no vaccination Partie II. Vaccination globale optimale dans un modèle SIR : propriétés de la fonction valeur et application à une analyse coût-efficacité 77 region.
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Table 5 .

 5 1: The vaccine side effects for adults and disease health states parameters, from[START_REF] Lee | Cost effectiveness of pertussis vaccination in adults[END_REF]. The utility U of a given health state can be used to compute the disability D of the state by the formula D = 1 -U . The DALY contribution of a given state is computed by multiplying the duration with the disability of the state weighted by the probability of occurrence. For instance for local reaction one obtains 2% * (1 -0.95) * (7/365) = 1.9178 100 ′ 000 .

	Health	Utility	Probability of	Duration	contribution
	State		occurence	(in years)	to DALY
	Vaccine side effects	-	-	-	3.2605/100 ′ 000
	local reaction	0.95	2%	7/365	1.9178/100 ′ 000
	systemic reaction	0.93	1%	7/365	1.3425/100 ′ 000
	anaphylaxis	0.6	0.0001%	2/365	0.00021912/100 ′ 000
	Disease states	-	-	-	3511/100 ′ 000
	mild cough illness	0.9	38%	87/365	905.753/100 ′ 000
	moderate cough illness	0.85	21%	87/365	750.822/100 ′ 000
	severe cough illness	0.81	40%	87/365	1811.507/100 ′ 000
	pneumonia	0.82	1%	87/365	42.904/100 ′ 000

  -dU (τ ) is plotted. It has a discontinuity at time t * and is equal to H(•-t * ) with H(•) the Heaviside function. be infected during the time interval [t, t + ∆t] is βI(t)∆t + o(∆t), therefore
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	Figure III.11: Illustration of instantaneous vaccination of 30% percent of the t * population at time t * = 0.25. The function V (t) = 0
		).	(III-13)
	For a given individual in the Susceptible class at time t, the probability to

  1) où X est une chaîne de Markov et E i et E j des valeurs possibles de la chaîne. Soit {X(t) : t ∈ [0, ∞[ } un ensemble de variables aléatoires discrètes, prenant leurs valeurs dans un ensemble dénombrable Ω; l'indice du temps est continu, à valeur dans [0, ∞[. 1 Introduction aux chaînes de Markov à temps continu Définition 1.1. Le processus stochastique {X(t) : t ∈ [0, ∞)} est une chaîne de Markov en temps continu s'il satisfait la propriété de Markov, c'est-à-dire:

perd un centime. Si la réponse diffère, alors c'est le joueur 2 qui gagne le centime, et le joueur 1 qui le perd. La figure I.3 résume les payoffs.

Model, notations and first remarks

X 1 1 A = ( γ β , 0) X 2 1 O Γ A1 Γ I Γ 1 Γ OA • X 1 1 X 2

An application to the Influenza A (H1N1) 2009/2010 epidemic in France

L'implémentation utilisée présente l'avantage de n'avoir recours à aucun résultat théorique et permet de confronter les résultats pour des stratégies vaccinant uniquement au début. Les figures IV.1 et IV.2 présentent deux exemples de résultats obtenus avec le code 7.1 en représentant la valeur du θ G et le coût associé à cette stratégie. De plus, la figure IV.2 exhibe la discontinuité de θ G .En particulier sur chaque figure la région {X|θ(X) = 0} correspond à la région de non vaccination. Cette partition est conforme avec les résultats théoriques de la partie II.2 Stratégie individuelleDans cette partie, nous présentons un algorithme pour obtenir la stratégie individuelle optimale dont il est question dans la partie III. Nous considérons le cas d'une vitesse de vaccination u max finie mais remarquons que le cas u max = ∞ sera obtenu tout simplement en prenant des grandes valeurs

Stratégie individuelle avec facteur d'actualisation
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Instantaneous vaccination

Here, we choose the control ρ on the interval [0, δ] and for the same reasons as above, we obtain:

(II-89)

In particular, by the optimality of V ∞ on Y , we have:

(II-90)

And we can conclude as above that V ∞ is solution of equation (II-87).

Step 2. We prove that V ∞ is a supersolution of (II-87).

Using the same notations and reasoning as in the proof for u max < ∞ equation (II-46) becomes:

(II-91) In order to invalidate (II-91) we invalidate, in a neighborhood of Y :

(II-92) We obtain, as above:

Once again, we conclude as in the proof of the Theorem 10.2.
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11.2 Uniqueness of the solution of the HJB problem.

Theorem 11.3. Let F 1 a subsolution of (II-87) and F 2 a supersolution. Then: F 1 (X) ≤ F 2 (X) for all X ∈ Ω.

Proof. We use the same notation and reasoning as in the proof in Section 10.3. The Hamiltonian used here is:

(II-93) Equation (II-55) becomes:

And for the same reasons as in the proof for u max bounded we obtain instead of (II-57):

We can conclude as when u max is bounded.

A candidate value function: the sub-critical case

We introduce the critical point value r crit V,∞ :

(II-96)

We see (after some computations) that r crit V,∞ < ∞ for γ/β < 1 and r crit V,∞ = ∞ for γ/β ≥ 1. Note that in all situations r crit V,∞ > 1. We introduce the critical point X crit ∞ which is the unique solution of the following equation:

(II-97)

As in (II-60), we show that X crit ∞ = (x * , 1x * ) where x * is the solution of:

(II-98) 112 [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]. Instantaneous vaccination When r V < r crit V,∞ r I we define a partition of Ω in two regions

(II-100)

Note that r crit V,∞ = lim umax→∞ r crit V,umax and for u max large enough Ω V umax = Ω V ∞ (and Ω N V umax = Ω N V ∞ ). As before we can prove the following:

∞ for all t > 0 (dV ∈ U Y ). To any Y ∈ Ω associate the unique ∆Y ≥ 0 such that (Y 1 -∆Y, Y 2 ) ∈ L ∂ X 1 ζ r V /r I and define: Π r V ,r I ∞ (Y ) = J(Y, ∆Y δ t=0 ). If ∆Y does not exist then set ∆Y = 0 with the convention 0 × δ t=0 = 0. Note that ∆Y = 0 for any Y ∈ Ω N V umax and moreover:

(II-101) For u max large enough Π r V ,r I umax and Π r V ,r I ∞ coincide on Ω N V umax . Moreover since for any Y ∈ Ω V umax and given u max the optimal strategies u umax Y converge (when u max → ∞) to the Dirac delta function ∆Y δ t=0 then:

(II-102)

Therefore we proved the following:

Theorem 11.4. For r V < r I r crit V,∞ the function Π r V ,r I ∞ is the unique solution of the HJB equation (II-87) and Π r V ,r I ∞ = V ∞ . As a consequence in this case the value function V ∞ is in C 1 (Ω).

Proof. The proof is already above.

A direct proof also can be given; for instance suppose one wants to prove e.g., that -H ∞ (Y, ∇Π r V ,r I ∞ (Y )) = 0 for Y ∈ Ω. The mere definition of the domain Ω N V ∞ imply that r V -∂ X 1 J 0 ≥ 0 on this domain; on the other hand βX 1 X 2 (r We consider here the situation r V /r I ≥ r crit V,∞ ; note that this implies γ/β ≤ 1.

For any Y ∈ Γ crit sub define:

We define a curve Γ crit super as:

Remark 11. We can express Γ crit sub in a parametric form:

(II-107)

With these notations,

The curves Γ crit sub and Γ crit super define a domain that will be denoted

). If ∆Y does not exist then set ∆Y = 0 with the convention 0 × δ t=0 = 0. Note that ∆Y = 0 for any Y ∈ Ω N V ∞ and moreover:

(II- ) that it is better to represent the individual strategies as mixed strategies which are probability laws on the set of all pure strategies. We represent such a probability law by its CDF (cumulative distribution function) ϕ V with ϕ V (0 -) = 0; then ϕ V (t) represents the probability to choose a pure strategy in the interval [0, t]. When ϕ V (∞) = 1 this means that with probability 1ϕ V (∞) the individual never vaccinates. When ϕ V (0) > 0 then the individual vaccinates immediately with probability ϕ V (0)ϕ V (0 -) = ϕ V (0). When the vaccination capacity is limited by a constant u max > 0, the CDF ϕ V has to comply with the constraints given in equation (III-19).

Another useful mathematical object is the cumulative probability of infection in [0, t], denoted ϕ I (t):

Note that ϕ I (t) depends on S 0 -, I 0 -and U ; however to ease notations this dependence will not be written explicitly.

Given the epidemic dynamics (fully determined by S 0 -, I 0 -and U ) the individual can associate a cost, denoted J pure (•), to each pure strategy. For instance J pure (Π 0 ) = r V . For general t ∈ [0, ∞[ the cost of Π t is the sum of the cost of infection r I weighted by the probability ϕ I (t) that infection occurs before time t plus the cost of vaccination weighted by the probability 1ϕ I (t) that infection did not occurred before time t:

(III-3) 

and on the other hand is umax∆t S(t)

+ o(∆t); for ∆t → 0 we obtain the constraint

8 Proof of the properties of the individual optimal strategy: the undiscounted case

We set D = 0.

Theorem 8.1 (Case u max < ∞). Let U be a given societal policy in (III-1), increasing, U (t) ≤ 1, ∀t ≥ 0 and f V (t) = umax S(t) . Suppose that the set of admissible individual strategies is composed of all increasing functions ϕ V differentiable in any t with S(t) > 0 such that:

(III-21)

Then the individual optimal strategy ϕ * V that minimizes the cost in Equation (III-4) (with the system (III-1)) is:

with the notation

The parameter θ I is the unique solution of the equation:
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Proof. We use individual cost in the form in Equation (III-4). It may be noted that:

(III-24) Case a/ If r I ≤ r V , since ϕ I is an increasing function, the quantity in (III-24) is the sum of positive terms. The minimum attainable value is therefore zero and it obtained when dϕ

To minimize the cost, vaccination should not occur when the term to integrate against dϕ V (t) is positive therefore there is no

is a decreasing, continuous function from ϕ I (∞) to zero. To minimize the cost, the vaccination should appear right at the beginning and last until the boundary of the domain Ω is attained by the dynamics (III-1) or until time θ I , the unique solution of ϕ I (∞)-ϕ I (θ I ) 1-ϕ I (θ I ) = r V r I . Therefore in order to minimize the integral one has to set dϕ V = 0 on [θ I , ∞[ and vaccinate on [0, θ I [ with maximal values coming first. Taking into account the constraint (III-21) we obtain equation (III-22) (the constraint

The next results applies when the individual vaccination can be unbounded, i.e., dϕ V can contain Dirac masses. V that minimizes the cost (III-4) with the system (III-1) is:

9. Equilibrium strategy: the undiscounted case

where we used ϕ V (∞) ≤ 1 and r Vr I ϕ I (∞) ≤ 0. This gives a lower bound for the minimum. The bound is attained when both inequalities become equalities that is dϕ V (t) is the Dirac mass in 0. Case c/ The difference with the previous case is that the last term r Vr I ϕ I (∞) is 0. Therefore the last inequality is always satisfied. We obtain the conclusion.

Equilibrium strategy: the undiscounted case

We set D = 0. Theorem 9.1 (Case u max < ∞). Consider admissible individual strategies as in Theorem 8.1. Then:

starting from S 0 -, I 0 -with dU = u max dt at all times until S(t) = 0. Let θ umax (S 0 -, I 0 -) be the first time when this dynamics touches the ensemble of curves:

Then the unique equilibrium is:
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Proof. Case a/ If r V > r I then any optimal individual strategy is ϕ V = 0 and the compatibility relation (III-9) imply U = 0. Therefore the only possible equilibrium in this case is U = 0 = ϕ V . It is easy to see that this is effectively an equilibrium. If r V ≤ r I and ζ(S 0 -, I 0 -) ≤ (r V /r I )S 0 -, from Equations (III-18) and (III-26) it follows that an individual strategy that vaccinates cannot be optimal, thus ϕ V = 0. As before we obtain the unique equilibrium

any optimal individual strategy must satisfy (III-22). Therefore, from the compatibility relation (III-9) we obtain dU (t) = u max 1 [0,θ] (t) for some θ ≥ 0. We have to find θ such that θ is solution of (III-23) for dU (t) = u max 1 [0,θ] (t). This is a fixed point equation.

Let (S, I) be the solution of the system (III-1) with

.

(III-31)

Therefore, any θ that represents an equilibrium is also solution of the equation: [START_REF] Laguzet | Global optimal vaccination in the SIR model: Properties of the value function and application to costeffectiveness analysis[END_REF] for details and the expressions of the partial derivative of ζ).

Thus if (III-32) has a solution then this solution is unique. Therefore in any case at most one equilibrium exists. Under the hypothesis ζ(S 0 -, I 0 -) < r V r I S 0 -Equation (III-32) does have a solution so θ is also solution of Equation (III-30) and this is the equilibrium.

Relation between global and individual cost

then the unique equilibrium is dU = 0 and dϕ V = 0 (no vaccination).

b

Proof. Previous results indicate that in the unbounded case the individual optimal strategies are of the form dϕ V = ηδ 0 thus dU = ηS 0 -δ 0 . Moreover, let α = ηS 0 -and recall that S(0) = S(0 -)α = S 0 -α; moreover:

Similar arguments as in the proof of the Theorem 9.1 apply and allow to reach the conclusion.

Proposition 9.1. The vaccination region of the (OS) strategy contains the vaccination region of the (EIS) strategy.

Proof. In the (OS) strategy, the vaccination only stops if

r I and the conclusion follows.

10 Relation between global and individual cost Lemma 10.1. Let ϕ V and U satisfy Equation (III-9). Then the individual cost is the average of the global cost, that is:
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Proof. We can write:

By summing the Equations (III-34) and (III-35) we get:

where we used (1ϕ V (t))(1ϕ I (t)) = S(t)/S 0 -. Using Equation (III-16) and the definition of J soc (S 0 -, I 0 -, U ) in Equation (III-10), we obtain the result.

Corollary. The average cost per person with the (OS) strategy is lower than the average cost per person with the (EIS) strategy.

Proof. Denote by U G the (OG) strategy and ϕ G V its individual counterpart. Also denote by ϕ I V the individual strategy in the (EIS) equilibrium and U I its global counterpart. By the definition of the optimality of U G : J soc (S 0 -, I 0 -, U G ) ≤ J soc (S 0 -, I 0 -, U I ). From Lemma 10.1 after simplification by S 0 -we obtain:

11 Some properties of the discounted number of infected

In this Section and in proof section 12 we consider D > 0 and u max = ∞. Proof. Item 1: It is enough to prove that lim ǫ→0 ζ d (ǫ, I * )/ǫ ≤ r V /r I . Let (S(t), I(t)) be the evolution of the system without vaccination starting from the point (ǫ, I * ). From I ′ (t) = (βS(t)γ)I(t) we obtain

where, in the last inequality, we used that t 0 -e -γu du ≤ t. Item 2: It is enough to show that the tangent in (S * , I * ) to C r V /r I coincides with the direction (-βS * I * , βS * I * -γI * ) (the dynamics of the system without vaccination). It is standard to prove (see [START_REF] Laguzet | Global optimal vaccination in the SIR model: Properties of the value function and application to costeffectiveness analysis[END_REF]) that ζ d satisfies the following equation:

On the other hand the normal to the curve

reduces to (III-38) when I = I * .

12 Individual and equilibrium strategy with a discount factor and u max = ∞ Let g be the following function:
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The individual cost functional can then be written as:

(III-41)

Since I(t) is continuous with continuous derivative the same is true for g and g

Therefore the function g is increasing when I < I * and decreasing otherwise.

On the other hand I decreases to zero at ∞ and may remain superior to I * on a bounded time interval. As such, depending on (S 0 -, I 0 -) and U , the following possible behaviors can occur: -g(t) is decreasing from g(0) > 0 to g(∞) = 0 -g(t) is decreasing from g(0) to some value g(t 1 ), increases from g(t 1 ) to g(t 2 ) and then decreases from g(t 2 ) to g(∞) = 0.

The minimum of J D indi (ϕ V ) is realized as following:

A/ If g(t) > 0 for all t then ϕ V = 0 (never vaccinate).

B/ If inf t≥0 g(t) < 0 then the optimum is realized when dϕ V is a Dirac mass placed at the (unique) time τ * such that g(τ * ) = inf t≥0 g(t). In particular τ * < ∞.

C/ Otherwise there exists an unique τ * such that g(τ * ) = 0 and the optimal strategies are dϕ V = αδ τ * (δ τ * being the Dirac mass in τ * ), α ∈ [0, 1] arbitrary.

Remark 15. For the individual strategy described in item B/ it is optimal to delay vaccination to a latter time. Such a strategy is never encountered when D = 0, where vaccination occurs either at t = 0 or never. Proof. We will consider only the more involved situation when a point (S * , I * ) ∈ C r V /r I exists.

Recall that the evolution of the system without vaccination satisfies I + S -(γ/β) ln(S) = cst. Therefore the frontier of Ω d and Ω n is a trajectory of the system without vaccination. Let us consider the global vaccination strategy U given in this Theorem. This strategy does not vaccinate in domain Ω n , vaccinates (instantaneously) in domain Ω i and when the evolution starts in domain Ω d it waits to reach the line I = I * ; at that time it vaccinates until reaching the point (S * , I * ). This dynamics is illustrated in Figure III.7. In order to prove that this is effectively an equilibrium we still have to prove that the best individual policies ϕ V are coherent with U .

But the properties of the function g(t) show that g(t) is positive in Ω n : therefore for a starting point (S 0 -, I 0 -) ∈ Ω n the best individual strategy is to never vaccinate.

When the starting point (S 0 -, I 0 -) ∈ Ω i , the instantaneous vaccination makes it arrive at time 0 on the boundary Ω n and Ω i ; therefore g(0 -) = g(0) = 0. Optimal individual strategies are ηδ 0 with η ∈ [0, 1]; among those only one is coherent with U (the one described in item b/).

Finally, when the starting point (S 0 -, I 0 -) ∈ Ω d , the free (non-vaccination) evolution makes it arrive at some point (S(τ - * ), I * ). Then at time τ * it reaches the point (S * , I * ) thus g(τ * ) = g(τ - * ) = 0. But, before τ * the coordinate I was inferior to I * thus g(t) was decreasing to zero during this time. Then all ηδ τ * , η ∈ [0, 1] will be optimal strategies. Among those, only one value of η is compatible with U . Thus the strategies proposed in this Theorem are equilibrium strategies. Uniqueness is proved as in Theorems 8.1 and 8.2.
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Remark 16. For D > 0 and u max < ∞ we were not able to find an analytic expression for the domains Ω i , Ω n and Ω d . The individuals, being aware of the shortage of vaccines, will wait in line in advance to be vaccinated by the optimal time; it is possible to obtain the corresponding Hamilton-Jacobi-Bellmann equilibrium equation but the equation has to be solved numerically. for chaque point initial (S 0 , I 0 ) considéré do Initialisation θ G k = 0, critere Calcul de la trajectoire pour dV = 0 Calcul de θ I k solution de r if ( S0 + I0 <= 1) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Initia lisatio n de la recurrence : parametre = [ gamma , beta , umax , a0 , r_v , r_i ]; cmpk = 0; thetaGk = a0 ; SirInit = [ S0 , I0 , 1 ,0]; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Calcul de la trajectoire sans vaccination : [ delta , res_SIR ] = ode45 ( @ (t , x ) FctSIRindi (t ,x , parametre ) , deltaVoulu , SirInit , OptionsOde ) ; vectX1 = res_SIR (: ,1) ; vectX2 = res_SIR (: ,2) ; vectpi = res_SIR (: ,3) ; piend = vectpi ( end ) ; coutEpidemie = res_SIR ( end ,4) ; % Calcul du minimum pour la trajectoire sans vaccination if ( piend <= ( r_i -r_v ) / r_i ) fonctx = @ ( p ) r_i * piend -( r_i -r_v ) * vectpi ( round ( p ) ) ; IndiceMin_pi = round ( fzero ( fonctx , [1 length ( vectX1 ) ]) ) ; alpha_pi = isnan ( IndiceMin_pi ) * deltaVoulu (1) + (1 -isnan ( IndiceMin_pi ) ) * deltaVoulu ( IndiceMin_pi ) ; else IndiceMin_pi = 1; alpha_pi = deltaVoulu ( IndiceMin_pi ) ; end thetaIk = alpha_pi ; TailleInt = thetaIk -thetaGk ; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Debut de l ' iteration pour trouver le temps d arret individuel while (( TailleInt > critere ) && ( cmpk < kmax ) ) thetaGk1Tilde = ( thetaGk + thetaIk ) /2; % Calcul du point le plus proche dans deltaVoulu parametre (4) = thetaGk1Tilde ; % [ pasbesoin , IndiceMin_pi ]= min ( abs ( deltaVoulu -parametre (4) ) ) ; % Calcul de la trajectoire avec strategie globale de fixee : [ delta , res_SIR ] = ode45 ( @ (t , x ) FctSIRindi (t ,x , parametre ) , deltaVoulu , SirInit , OptionsOde ) ; vectX1 = res_SIR (: ,1) ; vectX2 = res_SIR (: ,2) ; vectpi = res_SIR (: ,3) ; piend = vectpi ( end ) ; coutEpidemie = res_SIR ( end ,4) ; % Calcul de la strategie individuelle if ( piend <= ( r_i -r_v ) / r_i ) fonctx = @ ( p ) r_i * piend -( r_i -r_v ) * vectpi ( round ( p ) ) ; IndiceMin_pi = round ( fzero ( fonctx , [1 length ( vectX1 ) ]) )

; alpha_pi = isnan ( IndiceMin_pi ) * deltaVoulu ( 1 Calcul de la trajectoire pour la stratégie globale fixée, Calcul de g(t) 

type vac = 3 else if g(0) ET min t∈[0,T ] (g(t)) < 0 then type vac = 4 end if end for Calcul région de vaccination R I obtenue if region vaccination non vide then R G = R I if les régions sont identiques then critere arret = vrai end if else critere arret = vrai end if end while Partie IV. Simulation numérique des stratégies de vaccination 167 I0 = vectI0 ( cmp_I0 ) ; if ( S0 + I0 <= 1) SirInit = [ S0 , I0 , 0 , 0 , 0 , 0]; [ delta , res_SIR ] = ode45 ( @ (t , x ) F c t S I R C o u t D i s c o u n t (t ,x , parametre , EnvConv ) , deltaVoulu , SirInit , OptionsOde ) ; vectX1 = res_SIR (: ,1) ; vectX2 = res_SIR (: ,2) ; vect_Phi = res_SIR (: ,6) ; vect_varphi_i = res_SIR (: ,3) ; % Calcul de la fonction g fctg_t = r_i *( vect_Phi -vect_Phi ( end ) ) + r_v * exp ( -discount * deltaVoulu ') .*(1 -vect_varphi_i ) ; derive_fctg_t = exp ( -discount * deltaVoulu ') .* (1 -vect_varphi_i ) .*(( r_i -r_v ) * beta * vectX2 -r_v * discount ) ; % Calcul de la zone d appartenance du point initial :

if ( min ( fctg_t ) > -10^( -6) ) % jamais de vaccination type_vac = 1; elseif ( fctg_t (1) < -10^( -6) ) % vaccination immediate type_vac = 2; elseif ( fctg_t (1) >= -10^( -6) ) % vaccination differee type_vac = 4; else type_vac = 100; end resTmp = [ S0 , I0 , type_vac , fctg_t (1) ]; resultat = [ resultat ; resTmp ]; end % fin boucle if end % fin boucle I0 end % fin boucle S0 % Calcul de la region de vaccination obtenue Zone_2 = resultat ( find ( resultat (: ,3) == 2) ,:) ; % Mise a jour de la reponse globale if ( size ( Zone_2 , 1) > 0) EnvConv = Zone_2 ( convhull ( Zone_2 (: ,1) , Zone_2 (: ,2) ) , 1:2) ; cont_algo = min ( resultat (: ,3) == resultat_old (: ,3) ) == 0 ; else cont_algo = 0; end % Affichage : tri = delaunay ( resultat (: ,1) , resultat (: ,2) ) ; figure , trisurf ( tri , resultat (: ,1) , resultat (: ,2) , resultat (: ,3) , ' facecolor ' , ' interp ') ; xlabel ( ' S0 ') ; ylabel ( ' I0 ') ; zlabel ( ' type de vac ') ; title ([ ' cmp algo = ' num2str ( cmp_algo ) ' discount = ' num2str ( discount ) ' umax = ' num2str ( umax ) ' beta = ' num2str ( beta ) ' gamma = ' num2str ( gamma ) ' rv = ' num2str ( r_v ) ]) resultat_old = resultat ; end % fin boucle while avec cmp_algo Listing 7.6: Fonction nécessaire au calcul des régions de l'équilibre du système

Annexe B Simulation Matlab

Dans cette partie, nous présentons les codes utilisés pour obtenir les figures du chapitre 1. Pour presque toutes les simulations, deux codes sont utilisés: le premier implémente la fonction du modèle reliant ẋ(t) à x(t) et le deuxième code initialise les variables et affiche les résultats.

Le temps par exemple la variable T est exprimé en années. La fonction M atlab utilisée est ode45 avec les spécificités suivantes: (3 , 4 , 1) , plot ( delta , vectS_A ) ; subplot (3 , 4 , 2) , plot ( delta , vectE_A ) ; subplot (3 , 4 , 3) , plot ( delta , vectI_A ) ; subplot (3 , 4 , 4) , plot ( delta , vectR_A ) ; subplot (3 , 4 , 5) , plot ( delta , vectS_B ) ; subplot (3 , 4 , 6) , plot ( delta , vectE_B ) ; subplot (3 , 4 , 7) , plot ( delta , vectI_B ) ; subplot (3 , 4 , 8) , plot ( delta , vectR_B ) ; Listing B.12: Implémentation de la fonction nécessaire au calcul d'une trajectoire d'un double modèle SEIR. % Remplissage de la matrice de transition % Methode 1 avec une boucle % matriceP = zeros ( N +1 , N +1) ; % matriceP est la matrice de transition % for i =2: N % matriceP (i , i ) = 1 -bt ( i ) -dt ( i ) ; % valeur de la diagonale p_ {i , i } % matriceP (i , i +1) = dt ( i +1) ; % valeur de la diagonale superieure p_ {i ,i -1} % matriceP ( i +1 , i ) = bt ( i ) ; % valeur de la diagonale inferieure p_ { i +1 , i } % end % % matriceP (1 ,1) = 1; % matriceP (1 ,2) = dt (2) ; % matriceP ( N +1 , N +1) = 1 -dt ( N +1) ; % Methode 2 en utilisant la forme tridiagonale de la matrice vect_diagonal = [1 , 1 -bt (2: end -1) -dt (2: end -1) , 1 -dt ( end ) ]; vect_supdiag = dt (2: end ) ; vect_sousdiag = bt (1: end -1) ; matriceP = diag ( vect_diagonal , 0) + diag ( vect_supdiag , 1) + diag ( vect_sousdiag , -1) ; % Calcul des vecteurs $p ( t +\ delta_t ) $ for t =1: Ntemps vect_p_tempo = matriceP * matrice_p (t ,:) '; matrice_p ( t +1 , :) = vect_p_tempo '; end % Affichage des graphiques : inter_temps = 100; % affichage tous les inter_temps points % Matrice qui sera affichee pmodif = matrice_p (1: inter_temps : end ,1: inter_N : end ) ; ti = linspace (0 , Ntemps , Ntemps / inter_temps +1) ; st = linspace (0 , N , N +1) ; mesh ( st , ti , pmodif ) ; xlabel ( ' Nombre d infectes ') ; ylabel ( ' Pas de temps ') ; zlabel ( ' Probabilite ') ; view (140 ,30) ; axis ([0 , N ,0 , Ntemps , 0 , 1]) ;