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Semi-simplicité des représentations /-adiques et applications
aux variétés de Shimura

Résumé

On étudie dans un cadre abstrait des criteres de semi-simplicité pour des représen-
tations f-adiques de groupes profinis. On applique les résultats obtenus pour montrer
que les relations d’Eichler-Shimura généralisées entrainent la semi-simplicité de certaines
représentations galoisiennes non triviales qui apparaissent dans la cohomologie des variétés
de Shimura unitaires. Les résultats les plus intéressants sont obtenus pour les variétés de
Shimura unitaires de signature (n,0)® x (n —1,1)? x (1,n — 1)¢ x (0,n)%

Mots-clefs

Variétés de Shimura, groupes unitaires, relations d’Eichler-Shimura, représentations
galoisiennes, critéres de semi-simplicité, représentations induites.

Abstract

We prove several abstract criteria for semi-simplicity of /-adic representations of profi-
nite groups. As an application, we show that generalised Eichler-Shimura relations imply
the semi-simplicity of a non-trivial subspace of middle cohomology of unitary Shimura va-
rieties. The most complete results are obtained for unitary Shimura varieties of signature
(n,0)* x (n —1,1)% x (1,n — 1)¢ x (0,n)%.

Keywords

Shimura varieties, unitary groups, Eichler-Shimura relations, Galois representations,
semi-simplicity criteria, induced representations.
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Introduction

We begin to state, in an abstract context, semi-simplicity criteria for finite-dimensional
representations of (profinite) groups, then we switch to the geometric context, where we
construct the abstract objects apprearing before, and use our results to prove the semi-
simplicity of certain Galois representations appearing in middle cohomology of unitary
Shimura varieties.

0.1 Algebraic part

For an endomorphism u of a finite-dimensional vector space over a field k, the charac-
teristic polynomial of u will be denoted by P,(X) € k[X].
Fori=1,...,7 let p; : T' — Autg(W;) be an irreducible finite-dimensional representation
of a group I" with coefficients in a field k, and let p : T' — Auty (V') be a finite-dimensional
representation such that

VgeTl, Pye.cp)gplg) =0. (1)

In [Nek], Nekovar considers the following two questions:
(Q1) Under condition (1), is it true that

PEC((pr®...®p)"m)* (2)

for some integer m > 17
Note that p1 ® ... ® p, is automatically semi-simple if k£ has characteristic zero.

(Q2) If (2) holds, under what additional assumptions is p semi-simple?

Boston, Lenstra and Ribet [BLRI1|] showed that both questions (Q1) and (Q2) have
positive answers if = 1 and p; is a two-dimensional absolutely irreducible representation
of I'. Their result states that p is isomorphic to a direct sum of copies of p;.

Dimitrov [Dim05, Lemma 6.5] considered a variant of question (Q1) for certain two-
dimensional representations p1,...,p, : I' — GLo(Fy).

Emerton and Gee [EG12] showed that for » = 1, (Q1) has a positive answer for cer-
tain higher-dimensional representations p; which have a sufficiently large image. More
precisely, their result states that if p is irreducible, and p;p is irreducible of dimension n
such that for some subfield &’ of k, SL,, (k") C p1(I") C k*GLy(k’), then under assumption
(1), p1 is isomorphic to p.

We consider questions (Q1) and (Q2) for continuous representations of a profinite
group I" with coefficients in Q,.
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Using abstract results on Lie algebra representations, Nekovar shows that (Q1) has a
positive answer if the images of p; are sufficiently large, more precisely if the following
assumption holds:

(A1) Each W; is a direct sum of simple modules for the Q,-Lie algebra Q, - Lie(p;(T")),
where each of these simple modules is one-dimensional or minuscule;

and that (Q2) has a positive answer under the following two assumptions:
(A2) The restriction of each p; to any open subgroup of I' is irreducible.

(A3) The image of p contains sufficiently many semi-simple elements. More precisely,
there exists a dense subset ¥ C I' such that for each g € 3, p(g) is a semi-simple
element of Aut@é(V).

In the case where for i = 1,...,r, p; is isomorphic to an induction IndIEn (o), with T,

a normal subgroup of I' such that I'/T,, = (0) ~ Z/nZ, and a; : T, — Q, a character,
(Q1) has a positive answer [Nek|. Assumption (A2) does not hold in this case, however
(Q2) has a positive answer under (A3) and the additional assumption:

(A4) n is a prime number.

Variants of (1) and (A3): The condition (1) on the characteristic polynomial is satisfied
if there exists a dense subset ¥ C I' with the following property:

(P) For each g € X, there exist pairwise commuting elements uy, ..., u, € Aut@e(V) such
that p(g) =w1...up and Vi=1,...,7, P, g (u;) =0;

and assumption (A3) holds if in the previous property, the polynomials P, 4 (X) are
without multiple roots.

In our context, the morphisms u; appear naturally as partial Frobenius morphisms, the
relations P, 4)(u;) = 0 are generalisation of Eichler-Shimura relations, and the fact that
P,,(9)(X) are without multiple roots is a consequence of the following assumption on the
Lie algebras g; = Lie(p;(T")):

(A5) Fori=1,...,r, a Cartan subalgebra of g; acts on W; without multiplicities.

In the case where p; ~ Indf. (o), the fact that the P,,(¢)(X) are without multiple
roots is a consequence of the following assumption on the characters o;:
(A6) Fori=1,...,7and j =1,...,n — 1, the character ai/a;’j is of infinite order.

In the present work, we give three main improvements to [Nek].

Abstract results

e First, we prove the semi-simplicity of p independently of (Q1). More precisely, we
show that under assumptions (P), (A2) and (A5), the semi-simplicity of p holds.
(c.f. Theorem [1] of the outline).

e Second, we generalise the case of induced characters to several normal cyclic sub-
groups I'y,...,['s of ', where for i = 1,...,s, j =1,...,m (here r = sm), I'/T; = (0;) ~
Z/pZ with p a prime number, ao;; : I'; — @Z is a character of I';, and p;; ~ IndR_ ().
More precisely, denoting 'y N ... N T by Ty, we show that if [I" : T'y] = p®, then (Q2) has
a positive answer under (a variant of) (A3), also implied by (P) and (A6).

(Q1) has a positive answer in the case s = 1 [Nek]. The case s > 1 is not proven yet.
(c.f. Theorem [2| and Proposition [1| of the outline).
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e Third, we show that when r = 1, we can merely assume that [[" : T'y] is a power
of a prime number. More precisely, we show that if » = 1 and [[" : T';] = p¥ for p a
prime number and v an integer, then under assumption (A6), (Q1) and (Q2) have positive
answers. This is a generalisation of the case v =1 in [Nek].
(c.f. Theorem (3| of the outline).

0.2 (Geometric part

The representation p

~

Let (G, Z") be a pure Shimura datum, and for an open compact subgroup K C G(Q),

A

where Q is the ring of finite adéles of QQ, consider the analytic Shimura variety
Shic (G, 2) = G(Q)\ (2 x (G(Q)/K)).

Baily and Borel [BB66] proved that Sh} is the analytic space attached to a quasi-
projective complex algebraic variety Shy. This algebraic variety is defined over a number
field E, the reflex field of the Shimura datum (Shimura, Deligne, Milne, Shih and Borovoi).

A complex algebraic representation & : Gc — GL(Vg) whose restriction to the center
satisfies appropriate conditions gives rise, for K C G(@) sufficiently small, to a locally
constant sheaf Z; of complex vector spaces on the analytic Shimura variety S h;? (G, Z).
We will assume that the derived group G is anisotropic over Q. We fix a prime number

¢ and an isomorphism C ~ Q, and we consider the Q,-vector space

Hiy o=l Hy(Shic 05T, L) < lin (B, 22,
K K

where the subscript ¢ denotes the base change from C to Q,. Matsushima’s formula [BWQ0),
VII 5.2], combined with several cohomology theories, leads to the following decomposition

of the f-adic étale cohomology as a representation of G(Q) x I'g, indexed by irreducible

~

representations 7> of G(Q):

1y = @ (r 0 Vi),

o0

where 7°° comes from an irreducible automorphic representation m = mo, @7 of G(Ag) =
G(R) x G(Q). The canonical action of I' := Gal(Q/FE) on H, induces a continuous Q-
linear action of 'y on the space V¥(7*). Our main objects of interest will the Galois

representations V(7°°), which will be denoted by p:
p:I'p — Aut@é(vi(w“’))

and we will be interested in studying the semi-simplicity of such representations.

We will consider algebraic groups G' of the form G'= Rp+ g(H ), where R denotes the
restriction of scalars; F'T is a totally real field of degree r, whose 7 infinite primes '™ — R
are denoted vy, ...,v,; and H is a reductive algebraic group over F'", defined by means
of a finite-dimensional simple Q-algebra B with positive involution * of the second kind,
and with centre F', a CM field of degree two over F'™. The group H will be defined in a
way that

GR ~ H GU(ai, bl),

i=1
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where a; + b; = n > 2. In this case, G¢ ~ (GL(n)c X Gy, c)", and we have an explicit
description of irreducible representations £ : Go¢ — GL(V) and of the representations
p1,- .., pr defined in the next paragraph.

The representations py,...,p,

The irreducible automorphic representations m of G(Ag) considered in our results are
those who admit a "very weak base change' (which we will define in detail in Chapter
3). Roughly speaking, we consider representations m to which we can attach irreducible
automorphic representations (II, ¥) of GL,(Ap)x A} satisfying certain conditions. Thanks
to a big industry based on the work of Clozel, Harris, Taylor, Labesse and many other
mathematicians, we can attach to II a Galois representation [HT01, VII 1.9], [CH13]

P Gal(Q/F) — GL,(Qy)

which will play an important role in the sequel, since it allows us to define the represen-
tations p1, ..., pr appearing, in an abstract sense, in Chapters 1-2. More precisely, for
1=1,...,r, p; will be - up to a Tate twist - of the form

pi="((N"ry,)@rl,),

where p, , is a character attached to i, which appears because of the factors G, ¢ in
Gc, and o; : F — C is a fixed embedding inducing v; on F'". The superscript o; in the
previous formula denotes the conjugation, i.e. the left composition of a representation by

the interior automorphism associated to o, L

The relation between p and py,...,p,

The last ingredient of this part, leading us to study semi-simplicity criteria for repre-
sentations of profinite groups over Q; in an abstract context, is a known generalisation of
the Eichler-Shimura relations for modular curves to some Shimura varieties, also known by
congruence relations, conjectured by Blasius and Rogawski [BR94], and proved separately
by Wedhorn [Wed00] and Moonen [Moo04] in some cases. It states that the Frobenius
correspondence on étale cohomology of the Shimura variety is a root of a Hecke polynomial
defined starting from the Shimura datum (G, Z").

Recall that p denotes the Galois representation V*(7>) of I'g in which we are interested,
possibly after restriction to a suitably chosen open subgroup I' C I'g. In our context, the
generalised Eichler-Shimura relations will be translated by identities

Plo1@..0)(9)(P(9)) = 0

for g in a dense subset of I'. This is condition (1) in Section which is implied by
assumption (P) where, as mentioned before, the morphisms u; will be given by partial
Frobenius morphisms. We now understand better the motivation behind the abstract
context, and are ready to combine both algebraic and geometric parts (c.f. Theorem 4| of
the outline) to prove, in favourable cases, the semi-simplicity of the representation p.
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0.3 Outline

0.3.1 Chapter 1

Let ' be a profinite group, V, Wy, ..., W, non-zero vector spaces of finite dimension
over Qp, and p: T — Aut@Z(V), pi: T — Aut@[(Wi) continuous representations of I'. Let
g = Lie(p(T")) and for each i = 1,...,r, let g; = Lie(p;(T")) and §; = g; ®q, Q;-
After showing some results on Lie algebras and Lie algebra representations, we exhibit
criteria for the semi-simplicity of p, independently of whether property (2) holds or not.
Theorem 1. With the previous notations, assume that:

1. For each i =1,...,r, the restriction of p; to any open subgroup of I' is irreducible.
(This implies that §; is a reductive Lie algebra and each element of its center acts
on W; by a scalar).

2. For each i = 1,...,7, a fived Cartan subalgebra b, C g, acts on W; without mul-
tiplicities (that is the weight subspaces of W; with respect to the action of b; are
one-dimensional).

3. There exists a dense subset > C T' such that for each g € X, there exist pair-
wise commuting elements uy,...,u, € Aut@z(V) satisfying p(g) = u1...u, and
P g(ui) =0¢ End@e(V), Vi=1,...,r.

Then p is semi-simple.

0.3.2 Chapter 2

Let I" be a profinite group, and p : I' — Aut@z(V) be a continuous finite-dimensional
representation of I'. Fori=1,...,s,j=1,...,m, let I'; <" be an open normal subgroup
such that T'/T; = (0;) ~ Z/pZ with p a prime number, a;; : I; — @, be a continuous
character of I';, and p;; = IndR(aij) be the induced representation. Let I'o =T'1N...NT,
and denote by pr: I' — I'/T'y the canonical projection.

Theorem 2. With the previous notations, assume that:

1. There erist dense subsets Yo C T'g and ¥1 C pr-Y(oy...04) such that p(g) is a
semi-simple element of Aut@e(‘/) for each g € 3o U Y.

2. There ezists an open subgroup U C I such that pr(U) =T'/Ty and p*|y is isomorphic

S m
to a subrepresentation of (Q Q pi;)|g" for an integer n > 1.
i=1j=1

S
3. The canonical injection T'/Ty — [[T/T; ~ (Z/pZ)* is an isomorphism.
=1
Then p is semi-simple.

Proposition 1. Assume that:

1. There exists a dense subset X2 C I' such that for each g € %, there exist sm pairwise
commuting elements (wij)i=1, s, j=1,..m N Aut@l(V) such that

p(9) =TT ITwi
i=1j=1
and P, (g)(uij) =0,V (i,7) € [1,s] x [1,m].

k
2.V (i,4,k) € [1,s] x [1,m] x [1,p — 1], the character ozij/oz?ji is of infinite order.
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S
3. The canonical injection T'/Tg — [IT'/T; ~ (Z/pZ)® is an isomorphism.
i=1

Then
1. Assumption (1) of the previous theorem holds.

2. If s =1, assumption (2) of the previous theorem holds (hence p is semi-simple).

The case r = 1. Let I'; be an open normal subgroup of I" such that I'/T'y = (o) ~ Z/nZ,
with n = p¥. Let o : I} — Q, be a continuous character of I'; and p; = Ind?l(a) be the
induced representation.

Theorem 3. With the previous notations, assume that:
1. There exists a dense subset X2 C I' such that P, (5(p(g)) =0 for all g € 3.

2. For eachi=1,...,n—1, the character oz/oz"i is of infinite order.
Then

1. There exist dense subsets X C I'y and X1 C pr='(o) such that p(g) is a semi-simple
element of Aut@e(V) for each g € ¥ U X;.

2. There exists an open subgroup U C T satisfying pr(U) = T'/T1 such that ply is
isomorphic to a subrepresentation of (p1|y)®™ for an integer m > 1.

3. p is semi-simple.

0.3.3 Chapter 3

Let F*, F, B be as in Section To define our algebraic group H over F'T, we need to
consider a finitely generated non-zero left B-module V', with a non-degenerate F*-bilinear,
x-Hermitian form. This data defines an involution # on Endp+ (V') which restricts to an
involution # on C':= Endp(V) (details in Section [3.2.1)).

We define the algebraic group H by setting, for any F*-algebra S, H(S) equal to the set
of f € (C ®p+ S)* such that ff# € S*, and we let G = Rp+ o(H).

Let £ : Gc — GL(V¢) be an irreducible algebraic representation (of integral weight
in the sense of Definition which gives rise to Z¢ as in Section and 7 be an
irreducible automorphic representation of G(Ag) which admits a very weak base change
as in Section [0.2]

Theorem 4. In the situation described above, assume that a variant of the generalised
Eichler-Shimura relations holds, in the same sense of the variant (P) of relation (1) of
Section [01. Then

1. If the Galois representation py, : I'p — GL,(Qy) attached to 11 is irreducible and
not induced from a proper subgroup of U'r, and if Gg has only signatures (n,0), (n —
1,1),(1,n — 1) or (0,n), then V#™Sh) (720 js semi-simple.

2. If the Qp-Lie algebra § = Q, - Lie(p, ,(T'r)) C gl(n,Q,) contains sl(n,Qy), then

v dim(Sh) (290 s semi-simple.

Remark: Assuming an analogue of condition (2) of Section we also prove some
semi-simplicity criteria in the case where p;, is induced from a proper subgroup of I'p.
To do this, we will need some of the abstract results exhibited in Chapter 2.



Chapter 1

Representations of profinite
groups and semi-simplicity criteria

1.1 Preliminaries and notations

1.1.1 Split semi-simple Lie algebras

Let g be a split semi-simple Lie algebra over a field £ O Q, fix a Cartan subalgebra
bCg.
1. We have the root decomposition of g

g=ho P,

aER

where
g% ={z €g| [h,z] = a(h)z, Yh € b},

R ={aebh” {0} g* #0}.

2. The set R is called the root system of g, and the subspaces g are called the root

subspaces. The root lattice is Q = > Za C h*.
aER

3. For a root o, let a¥ denote the corresponding co-root. Let RY be the set of co-roots.

4. Denote by (, ) : hxbh* — k the duality pairing. For any root a, we have (o, a) = 2,
and (RY,R) C Z.

5. Given a root «, there is a reflection s, of h* defined by

sa(u) =u — (o, u)a.

It verifies so(R) C R.

6. Let W be the Weyl group of the root system. It is generated by the reflections s,
for a € R, with the relations

si =id and 548880 = S,,(3), Va,B € R.
7. A choice of a Weyl chamber C' C §* is equivalent to a decomposition R = R, L R_
where

Ry ={acR|{(a",u) >0V ucC}

is the set of positive roots, and R_ = — R is the set of negative roots.
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8. The decomposition R = Ry U R_ gives a decomposition

g=n_ohdn, where ng = @ga.
aER+

9. Denote by P C bh* the lattice of integral weights, given by
P={)eb*| \NaY)€ZV ac R}
Define the set of dominant weights

P++:PQ6CP+:PQ ZQ;OCM,

ac€R4

where C' is the closure of C. Let Q. = Py NQ and Q4 = Py, NQ.

1.1.2 Representations of split semi-simple Lie algebras

1. Let g be a split semi-simple Lie algebra, and let V be a finite-dimensional represen-
tation of g. We have a decomposition of V', called the weight decomposition with

respect to the action of b,
V= P Vi),

acP(V)

where

V(a)={veV|hv=a(h)v,Vh € b}
P(V) ={a b’ V(a) #0}.

2. P(V) is the set of weights of V', and is contained in P; V(«) is the weight subspace.
Note that the roots of g are the weights of its adjoint representation.

3. A non-zero representation V of g is called a highest weight representation if it is
generated by a vector v € V(A) such that ny - v = 0. In this case, v is called the
highest weight vector, and A the highest weight of V.

In other words, a highest weight vector of V is a non-zero vector which is both an
eigenvalue for the action of fh and in the kernel of g* for all & € R,..

4. For a highest weight representation V', of highest weight A, P(V) C A — Q.

5. Every finite-dimensional irreducible representation of g is a highest weight represen-
tation.

1.2 Some Lie algebra properties

Definition 1.2.1. Let ¥V and W be finite-dimensional vector spaces over a field of char-
acteristic zero, and let f : V — W be a polynomial application. f is said to be dominant
if f(V) is dense in W for the Zariski topology.

Definition 1.2.2. Let g be a Lie algebra over k. We call elementary automorphism group
and denote by Aut.(g) the subgroup of Aut(g) generated by the elements e*s% with adgx
nilpotent.

Lemma 1.2.1. [Bou72, Ch.VII, §3, Ezercise 15] Let k be an algebraically closed field of
characteristic zero, g a Lie algebra over k, i a Cartan subalgebra of g and A a subset of
g. Suppose that A is Zariski dense in g and stable by Aut.(g); then AN is Zariski dense
nb.
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Proof. Let X be the Zariski closure in h of ANhand U = h~ X. If U # (), then it is
a dense subset for the Zariski topology on h. Let {c,..., o} be the root system of g
corresponding to h, and consider the map

F: hxgx...xg*» — g
(h,x1,...,2p) —  e2dom1 ... adeTppy

Let B := F(U xg* x...xg"). Since F is a dominant polynomial application [Bou72} Ch.
VII, §3, n°2, Lemma 2], it follows that B contains a non-empty open subset of g [Bou72,
Ch. VII, App. I, Proposition 3]. On the other hand, B C g ~ A, which contradicts the
fact that A is dense in g. Hence U = () and AN b is dense in b. O

Proposition 1.2.1. [Bou72, Ch.VII, §3, Exercise 16] Let k be an algebraically closed
field of characteristic zero, V' a finite-dimensional k-vector space and g C gl(V) a Lie
subalgebra. Suppose that the set of semi-simple elements of g is Zariski dense in g; then
the Cartan subalgebras of g are commutative and consist of semi-simple elements.

Proof. Let A denote the set of semi-simple elements of g. If € g is nilpotent, and y € g,
then

eadgx(y) — . Y- e

by [Bou72, Ch. VII, §3, n°1, Lemma 1]. This implies that if y is semi-simple, then e*ds?(y)
is also semi-simple. It follows that A is stable under ¢s% hence it is stable under Aut,(g).
This means that A satisfies the assumptions of the previous lemma, which implies that
for a Cartan subalgebra b of g, AN b is dense in h. For x € ANb, adgz is semi-simple,
and adyx is nilpotent, so [ANh, h] = 0, hence AN b is a subset of the centralizer Cy(h) of
h, and since it is dense in b, then h C Cy(h), which means that b is commutative.

AN consists of diagonalisable elements, and since it is commutative, then all its elements
can be diagonalized simultaneously. This remains true in the subalgebra of gl(V') generated
by A NY, which coincides with b, because A Nb is dense in h. It follows directly that the
elements of h are semi-simple. O

Definition 1.2.3. [Bou72, Ch. VII, §5, Definition 1] Let V' be a finite-dimensional vector
space over a field k of characteristic zero, and g C gl(V) a Lie subalgebra. We say that
g is a decomposable linear Lie algebra if both the semi-simple and the nilpotent part of
every element of g belong to g.

Proposition 1.2.2. Let g C gl(V') be a Lie subalgebra.

1. If g is decomposable, then there exists a Lie subalgebra m C g, reductive in gl(V'),
such that g = m X ny(g), where ny(g) is the set of all elements of the radical of g
that are nilpotent in gl(V').

2. The following are equivalent:
(a) g is decomposable;
(b) each Cartan subalgebra of g is decomposable;
(c) a Cartan subalgebra of g is decomposable.

3. Let X C g be a subset generating g as a k-Lie algebra. Suppose that every element
of X is either semi-simple or nilpotent; then g is decomposable.

Proof.
1. [Bou72, Ch. VII, §5, Proposition 7].
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2. [Bou72, Ch. VII, §5, Theorem 2].
3. [Bou72, Ch. VII, §5, Theorem 1].
O

Proposition 1.2.3. [Nek] Let g1,...,gm be simple Lie algebras of finite dimension over
a field k D Q. Let g C g1 X ... X @, be a Lie subalgebra such thatV i =1,...,r, pi(g) = g,
where p; : g1 X ... X gm — @; @S the canonical surjection. Then there exist:

— a partition of I ={1,...,m}: I =1 U...UI,,

— for each j € J={1,...,n}, a Lie algebra g\¥,

— for each j € J and each i € I;, an isomorphism of Lie algebras fj; : a9 =5 g, such

that

o= Im (Hg(j) 10 (g(j))]j LTI [Mei = Hgi) :

jed jeJ jeJ icl; i€l
, N
where A = (Aj)jey, each Aj : gl — (g(J)) * is the diagonal map, and f = (fj)jets

N/
each fj (g(J)) g 11 gi whose components are (fji)icr, -
1ely

Proof. Let n C g be an abelian ideal, then V i = 1,...,m, p;(n) is an abelian ideal of g;,
hence p;(n) = 0, which implies that n = 0, hence g is semi-simple. Write g = g x. .. x g™
with g() simple Lie algebras. For j € J = {1,...,n}, set

I ={iel pi(g(j)) # 0} = {i € I| p; induces an isomorphism f;; : g(j) = g}
Then I; # 0 and if j # j" and i € [; N I, then ¥V (X, X’) € g x g0,
[£5i(X), f:(X)] = pi([X, X']) = pi(0) = 0

since X and X’ commute. This implies that [g;, g;] = 0 which is impossible because g; is
n

simple. It follows that I; N I; = (), and since I = |J I}, then Iy,..., I, form a partition of
j=1

1. The rest follows from the previous discussion. O

Proposition 1.2.4. [Nek] Let g1, ..., gm be finite-dimensional reductive Lie algebras over

an algebraically closed field k D Q. For each i € {1,...,m}, let M; be a non-zero simple
g;-module of finite dimension. Let g C g1 X ... X g be a Lie subalgebra such that ¥V i €
{1,...,m}, pi(g) = gi- Then:
— g 1is reductive: g = 3(g) ® Zg,
— each element of 3(g) acts on M = M; X ... X M,, by a scalar,
— there exists a Cartan subalgebra b C g such that all weights of b occurring in the
g-module M lie in one coset of the root lattice of (g,h).

Proof. For each i, we have g; = 3(g;) ® Zg;, with Zg; semi-simple. Writing each Zg; =
m;

I1 9 as a product of simple Lie algebras, and applying the previous proposition to
ti=1

m m. Mg
D9 C H.@gi = H HGi,tiy
i=1 i=1 t;=1

where each g;;, is a simple Lie algebra, we deduce that Zg is semi-simple, hence g is
reductive and g = 3(g) ® Zg. Since M; is a simple g;-module, then by Schur’s lemma, each
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element of 3(g;) = pi(3(g)) acts on M; by a scalar, the same holds for the action of each
element of 3(g) on M.

Again, by applying Proposition to the latter decomposition of Zg into a product of
simple Lie algebras g;;, and the corresponding set

1= {(Z,tz)’ 1€ {1,.. . ,m} and t; € {1,...,mi}},
we have simple Lie algebras g(j) and, for each (i,t;) € I, an isomorphism of Lie algebras
Fiin 189 > gi,

and we can identify Z2g with ] g via
Jje€J

Zg =Im (Hg(j) - H (g(j))lj — H H Git: = H givtz‘)

jeJ jeJ JE€J (i,t;)€l; (i,t;)el

For each i € {1,...,m}, write M; = éEMm where M;;, is a simple g;¢,-module, and for
each (i,t;) € I}, let
Nig, = f;(i,ti)(Miyti)
be the corresponding simple g/)-module. The identification 2g = ] g\¥) implies that the
Jje€J
2g-module M is isomorphic to &JM (@) where
j€

M) — ® Nig,.
(’iﬂfi)elj

For each j € J, denote by pr; : g — g\ the canonical projection; and let h@) be a
Cartan subalgebra of g(j), Nit; € b(j)* the highest weight N; ;. Since N;; is a simple
g¥-module (in particular, it is a highest weight representation of g()), then all weights
of h\1)* occurring in Ny, lie in A; 4, + QU) where QU) is the root lattice of (g\9), h0)).

Let i := [T 59, this is a Cartan subalgebra of Zg, and
jeJ

A=) N
jGJ(i,ti)

is a weight §’. It follows from the previous discussion and the identification

g ® )
(

eJ
J i,ti)elj

that all weights of b’ occurring in M lie in the coset A+ @ of the root lattice Q of (Zg,b’)
which satisfies pr;(Q) = QU for each j € J.

Finally, since g = 3(g) ® Zg and 3(g) acts on M by a scalar, it follows that all weights of
the Cartan subalgebra h := 3(g) © b’ of g lie in one coset of the root lattice of (g,5). [



1.3. REPRESENTATIONS OF PROFINITE GROUPS OVER Q 22

1.3 Representations of profinite groups over Q,

Let T be a profinite group, V' a non-zero vector space of finite dimension over Q,, and
p: ' — Aut@(V) a continuous representation; then p(I") is a compact Lie group of finite
dimension over Qy, and its Lie algebra g := Lie(p(I")) C End@(V) is a Qp-Lie algebra of
finite dimension.
Let § = g ®g, Q; be the Q,-Lie algebra obtained by scalar extension, and Q, - g be the
Qy-vector subspace of End@e(V) generated by g. It is a Qy-Lie algebra, and we have a

canonical surjection § — Q, - g. A Cartan subalgebra of g will be denoted by default b.

Proposition 1.3.1. Let I' be a profinite group, V a non-zero vector space of finite di-
mension over Q, and p: I' — Aut@(V) a continuous representation. Let g = Lie(p(I)).
The following properties are equivalent:

1. p is semi-simple.
2. There exists an open subgroup U C T' such that p|y is semi-simple.

3.V is a semi-simple g-module.

Proof. We will prove that (1) < (2) and (1) < (3). Note that (1) = (2) is obvious.

(2) = (1): First, U being an open subgroup for the profinite topology, it is of finite
index, let m = [I' : U], and X be a set of coset representatives for U in I'.
Let W be a subrepresentation of p, it is in particular a subrepresentation of p|y;, hence
there exists W' such that V. = W @ W' as U-representations. Let w : V' — W be the
projection on W, and ¢ : V' — W defined by

_ 1 1
go—mZx .

The fact that 7 is an U-homomorphism implies that ¢ is independent of the choice of
coset representatives X.
Forgel,

1 _ 1 C1h— _

go=—> g 'tz =—> (zg7 ") trag g = pyg
m m
zeX zeX

Hence ¢ is a ['-homomorphism, and it verifies ¢ o j = id, where j : W < V is the in-
culsion. This means that V = W& Ker(y) as I-representations; therefore p is semi-simple.

(1) & (3): It is enough to see that for a subspace W C V, W is invariant under p(T") if
and only if it is invariant under g. This is a result of [Bou72, Ch. III, §6, n°5 cor. 1]. O

Corollary 1.3.1. The semi-simplification p* of p satisfies p*|u = (p|v)*, for any open
subgroup U C T.

Proposition 1.3.2. Let g be a split reductive finite-dimensional Lie algebra over Qy, and
fix a Cartan subalgebra by C g. Let M be a finite direct sum of finite tensor products of
one-dimensional g-modules, and N # 0 be a simple g-module such that each weight of b
occurring in N occurs in M. Then N is isomorphic to a submodule of M.

Proof. Write b = 3(g) @ b’ where ’ is a Cartan subalgebra of Zg. The Lie algebra Zg
acts trivially on each one-dimensional g-module, hence it acts trivially on M, which means
that M is a representation of g/Zg ~ 3(g), and each weight of §’ occurring in M is zero.
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Our assumption implies then that each weight of §’ occurring in N is zero, hence N is also
a representation of the abelian Lie algebra 3(g), which means that NV is a one-dimensional
submodule of M (as 3(g)-modules, and hence as g-modules). O

Proposition 1.3.3. Let I' be a profinite group, V,W1i,..., W, non-zero vector spaces
of finite dimension over Qp, and p : I' — Aut@g(V), pi : ' — Aut@z(Wi) continuous
representations. Let g = Lie(p(T')) and for i =1,...,r, g; = Lie(p;(T")). Suppose that:

1. Each W; is a direct sum of one-dimensional g;-modules.

2. There exist an open subgroup IT' C T' and a dense subset ¥ C I" (for the profinite
topology), such that

VgeX, Pus.ap)gplg)=D0.

Then there exists an open subgroup U C I such that p**|y = (p|v)*® is isomorphic to a
subrepresentation of (p1 ® ... ® p,)|F™ for an integer m > 1.

Proof. By Proposition we can assume that IV = T'. By continuity, assumption (2)
implies then that

Vgerl, P(p1®...®pr)(g) (p(g)) =0.

As p* is semi-simple, it is enough to consider any of its simple submodules, hence we
can assume that p is irreducible. After shrinking T' if necessary, we can assume that the
restriction of p to each open subgroup of I' is irreducible, hence that V is a simple g-
module.

Fori=1,...,r,g; C End@z(Wi), hence @; acts faithfully on W;, and by assumption (1),
it follows that g; is abelian. Since V is a faithful representation of g, the simple action of
g on V factors through Q, - g, which is then a reductive Lie algebra over Q,. Let

pO:pleB...@pr:F%Aut@e(Wo)

where Wy = W1 @ ... ® W,.. Assumption (2) implies that V g € Ker(pg), (p(g) — 1) =0
where N = dim(W; ® ... ® W,.), hence the Lie ideal a = Q, - Lie(p(Ker(pg))) C Q; - g
consists of nilpotent elements, and by [Bou72, Ch. I, §4, n°2, Cor. 3|, it is a nilpotent Lie
ideal. Since Q- g is reductive, a = 0. It follows that p(Ker(pg)) is a finite subgroup of
Aut@Z(V) consisting of unipotent elements, hence it is trivial, since in characteristic zero,
a non-identity unipotent element has infinite order.

The inclusion Ker(pg) C Ker(p) yields a canonical surjection f : go = Lie(pp(I")) — g. Let
fg—9—+Q-gcC End@(V) be the map induced by f. We consider V' and all W; as
irreducible representations of the abelian Lie algebra gy C g; X ... X @,.

Assumption (2), together with the fact that go is Zariski dense in g, imply that

VX = (Xl . ,Xr) S ﬁo C ﬁl X ... X g’r’ P(Xl,...,X,«)|W1®...®Wr(f(X)) = 0,
where (X1,..., X, )actson W1 ®...W, by Y 1®...010X;®1®...®1. It follows that
i

an eigenvalue of f(X) for its action on V is an eigenvalue of (X7,...,X,) for its action
on W1 ®...® W,. This means that each weight of the abelian Lie algebra g, occurring
in V occurs in Wi ® ... ® W,.. By Proposition the gp-module V is isomorphic to
a submodule of W] ® ... ® W,.. This is equivalent to the existence of an open subgroup
U C I' such that p|y is isomorphic to a subrepresentation of (p1 ® ... ® p,)|v. O
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Two elementary lemmas

Lemma 1.3.1. Let k be a field and u1, ..., u, be pairwise commuting endomorphisms of a
k-vector space V' such that¥ i =1,...,r, there exists A; € M, (k) satisfying Pa,(u;) = 0.
Then Pa,g. A, (u1...u,) =0.

Proof. By induction, it suffices to prove the lemma for » = 2. By Schur’s unitary tri-
angularization theorem, for ¢ = 1,2, there exist unitary matrices U; € M, (k) such that
UZ-AiUi_1 = T; is upper triangular. Then

(U1 @ Uz) (A1 @ Ag) (U1 @ Up) ™' = (h A1UT Y @ (U AU ) =T @ Ty

is upper triangular. Let Aj,..., Ay, (resp. pi,...,Hn,) be the eigenvalues of A; (resp.
Ag) counting multiplicities, then A1,..., \,, (resp. pi,...,n,) are the main diagonal of
Ty (resp. T5). Since the ning products (Aiftj)i=1,...n1, j=1,....n, are the main diagonal of
Ty ® Ty (which is similar to A; ® Ag), then (Aigtj)i=1,...n,, j=1,...,n, are the eigenvalues of
A1 ® Ay. It remains to show that for ui, us € Endg(V), if ujug = uguy, then

ni n2 ni n2

’
[T =) = [[(uz — ) =0 = ][] (wruz — Xipsy) = 0.
=1 j=1 i=1j=1

This is a direct consequence of the following lemma:;: O

Lemma 1.3.2. Let k be a field, and consider the ring R = k[X,Y, (Xi)i, (15);] with vari-
ables X, Y, ()\i>i:1,...,m; (Mj)jzl,...,n- Then

TTTC = das € (T2, TT0r - )
i=1j=1 i=1 j=1

where for f,g € R, (f,g) denotes the ideal generated by f and g.
Proof. For simplicity, for k=1,...,mand [ =1,...,n, set

k l

kol
fr=T1X = N), g =110 =), ha =[] JT(XY = Xiy).

=1 j=1 i=1j=1

We have to show then that Ay, € (fm, gn). We proceed by double induction.
Assume first that m = 1.
We proceed by induction on n: the result is true for n = 1 since

hip = XY =X = (X = M)Y + MY =) =Y fi +Mg1 € {fi,q)-
Suppose it is true for n — 1, then it holds for n since
hin = (XY = Mpn)han—1 € (f1, (Y — pn))-(f1, gn—1) C (f1,9n)-

Hence the result holds for m = 1 (and n arbitrary).
We now proceed by induction on m. Suppose the result is true for m — 1, then it holds
for m since

hmn - hm—l,n (ﬁ(XY - Amﬂ])) € <fm—17.gn>-<(X - )\m)vgn> C <f77hgn>'

=1
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1.4 Semi-simplicity criteria - Main result

Theorem 1.4.1. Let I" be a profinite group, V, W1, ..., W, non-zero vector spaces of finite
dimension over Qg, and p : T — Aut@g(V), pi: I — Aut@e(Wi) continuous representations
of I'. Let g = Lie(p(T")) and for each i =1,...,r, let g; = Lie(p;(T")). Suppose that

1. For each i =1,...,7, the restriction of p; to any open subgroup of I' is irreducible.
This implies that g; is a reductive Lie algebra and each element of its center acts on
Wi by a scalar.

2. For each i = 1,...,r, a fived Cartan subalgebra b; C §; acts on W; without multi-
plicities (i.e., the weight subspaces of W; with respect to the action of b; are one-
dimensional).

3. There exist an open subgroup I" C T and a dense subset 3 C I such that for each
g € %, there exist pairwise commuting elements uy,...,u, € Aut@(V) satisfying

p(g) = w1 ...uy and P,y (u;) =0 € Bndg (V),Vi=1,....r.

Then p is semi-simple.

1.4.1 Steps of the proof and preliminaries

As before, we can assume that I' = I". Thanks to Lemma assumption (3) implies
that Vg € ¥ C T, P, 0..0p)(9)(p(g)) =0 in End@é(V). By continuity, this implies

V9 ET, Pl.apis(pls) =0 € Endg, (V). (L.1)

As before, let pog = p1 @ ... D p, and go = Lie(po(T)).

We will proceed in five steps. Our strategy is based on [Nek, Theorem 2.6].

1. There exist an open subgroup I'g C I" and a dense subset ¥y C I'y (for the profinite
topology) such that for each g € X, p(g) is a semi-simple element of Aut@l(V).

2. Q- g C gl(V) is a decomposable linear Lie algebra. We write Q, - g = m x 1, where
n:=ny(Q,-g) and m C Qg a Lie subalgebra, reductive in gl(V') (as in Proposition
1.2.9(1)).

m acts semi-simply on V, and there exists a flag {0} =V SV, C --- C Vo, =V
of Qg - g-submodules such that @ acts trivially (and m semi-simply) on gr(V) :=

GalVi/Vi—L

3. For a Cartan subalgebra b, C g, all weights of by occurring in W’ =We...eW,
lie in one coset of the root lattice of (gy,by); and each weight of h, occurring in
gr(V) occurs in W'.

4. For a Cartan subalgebra b C m, all weights of h occuring in gr(V) lie in one coset of
the root lattice of (m,b).

5. [Nek, Theorem 2.6] applies, which means that 1 = 0, m = Q, - g is a reductive Lie
algebra and V is a semi-simple g-module.
1.4.2 Proof of the theorem

First step: We show that there exist an open subgroup I'y C I" and a dense subset
Yo C Iy (for the profinite topology) such that for each g € Xy, p(g) is a semi-simple
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element of Autg, (V).

For each i = 1,...,r, denote by m; the dimension of W, and write

WZ' = @Wz(aw)
j=1

where (aj)j=1,.. m, are the weights of b, occurring in W;, and the W (aj;) are the weight
spaces, which are one-dimensional by assumption (2). For each j = 1,...,m;, fix a genera-
tor wy; of Wj(aj). Then the action of H; € b, on W;, with respect to the basis (Wij)j=1,....ms
of W;, is given by the diagonal matrix whose m; diagonal terms are a1 (H;), . .., Qim, (H;).
Let

JAVES End@e (Wz) — Qg
be the polynomial function given by the discriminant of the characteristic polynomial. For

each i, fix H; € b, such that oy (H;) # oy (H;) for all j # 5" in [1,m;]. Then A;(H;) # 0,
and

(Hi,... H,) € (o (A7@)))
=1

which is then a non-empty open subset of gj, and hence is Zariski dense in g,. Its inter-
section U with g is a dense Zariski open in gg. Let I'g C I' be an open subgroup such
that the exponential map go — po(I") induces a homeomorphism

exp : exp” ! (po(T0)) — po(To)-

Let Ty = expt(p, (o)), then

Uo = (polr,) ™ (exp(To N U))

is open and dense in I'g. For each dense subset ¥ C I', ¥y := X N Uy is dense in 'y and
the polynomials P, ;) (X) are without multiple roots for each g € ¥, by definition of U
(hence of Up).

In particular, taking ¥ as in assumption (3), for each g € ¥, p(g) = uq ... u, with u;
pairwise commuting elements of Aut@e(V), and each u; is annihilated by the polynomial
P,,(9)(X), which does not have multiple roots, hence each u; is a semi-simple element of
Aut@(V), and so is their product p(g).

Second step: We show that Q- g C gl(V) is a decomposable linear Lie algebra.

By the first step, the set of elements of Q, - g that are semi-simple in End@é(V) is

Zariski dense in Q- g. It follows, thanks to Proposition that the Cartan subalgebras
of Q- g consist of semi-simple elements, hence they are decomposable (by Proposition
1.2.2{(3) applied to Cartan subalgebras of Q- g), and so is Q; - g (by Proposition M(Z))
We write then Q, - g = m x 7, where 1 := ny(Q, - g) and m C Q- g a Lie subalgebra,
reductive in gl(V') (as in Proposition [1.2.2)1)).

Since m is a reductive Lie algebra in gl(V'), the restriction to m of the adjoint repre-
sentation of gl(V') is then semi-simple [Bou72, Ch. I, §6, n°6, Cor. 1], and each element
of the center 3(m) acts semi-simply on V', hence V' is a semi-simple m-module.

Since 7 is a nilpotent Lie algebra, there exists a flag {0} =V C Vi C--- C Vo C Vo=V
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R S
of Q; - g-submodules such that n acts trivially on gr(V) := @V;/V;_1. For example, take
i=1
Vo={0},and Vi;;1 ={veV|n.-vCV;}.

Third step: We show that for a Cartan subalgebra by C g, all weights of by occurring
in W =W, ®...®W, lie in one coset of the root lattice of (g, hy); and each weight of
by occurring in gr(V) occurs in W’.

We have go C g1 X ... X g, with p;(go) = ¢i, where p; : g1 X ... X g, — g; is the
canonical surjection. The previous inclusion induces

GoCoL X... X9,
with pi(go) = ;-

Let s = Lie(p*s(I")) C Endg, (gr(V)). The semi-simple action of g on gr(V') factors
through Qy - 5, hence gr(V) is a faithful, semi-simple, finite-dimensional representation of
Qy - 5 which is then a reductive Lie algebra over Q.

Asin Proposition the property implies that ¥ g € Ker(po), (p(g)—1)3m0"") =
0, which means in particular that the Lie ideal a = Q, - Lie(p®(Ker(po))) C Q, - 5 consists
of nilpotent elements, hence is a nilpotent Lie ideal, and therefore a = 0 because Qy - 5 is
reductive. This means that p*(Ker(pg)) is a finite subgroup of Autg, (gr(V)) consisting of
unipotent elements, hence it is trivial.
The inclusion Ker(pg) C Ker(p®) yields a surjection

£+ g0 = Lie(po(I")) — Lie(p™ (")) = s.

Assumption (1) implies that for each i = 1,...,r, W; is a simple g;-module, hence we
can apply Proposition to gg C 91 X ... X g, and the W;’s. We get an isomorphism

h:gx . x g = 95,

where each g is a simple Qy-Lie algebra. Fix Cartan subalgebras h@ < g and by C 9o
such that h,N Zg, = h(h(l) X .o X f](t)). This is a Cartan subalgebra of Zg,; Proposition
implies that all weights of b, occurring in the gy-module W’ lie in one coset Ao + Qo
of the root lattice Qo of (g, hy)-

Denote by f : gy — 5 the surjection induced by f. In particular, gr(V) is a gy,-module.
T
Each X = (X1,...,X;) €9y Cg; X ... xgractson Wby Y1®..9190X,01®...01,
i=1
which means that W’ is a §y-module. The property (1.1 implies that

¥ X €, Paw(F(X)) =0 € Endg (gr(V).

The previous property applied to elements X € b, implies that each weight of b, occurring
in gr(V) occurs in W’.

Fourth step: We show that for a Cartan subalgebra h C m, all weights of h occuring
in gr(V) lie in one coset of the root lattice of (m,b).
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The Lie algebra g, being reductive, its adjoint representation is semi-simple, hence its

Lie ideal Ker(f) has a supplementary Lie ideal a, and g, identifies with Ker(f) x a. This
implies that a ~ g,/Ker(f) ~ Im(f) =5, hence

9o = Ker(f) x 5.

Let pri; and pro be the projections

pr1 : gy — Ker(f) pro gy — 5.
It follows that by is of the form o
bo = by x by
where by, = pri(hy) C Ker(f) and b, = pra(hy) C 5 are Cartan subalgebras. The same
decomposition of the duals implies that we can decompose A\g € ES into

(A1, A2) € by x b5

Let Q1 = pr1(Qo), Q2 = pr2(Qo) the corresponding root lattices of (Ker(f),h;) and (3, by),
respectively.

We have then the following:

« is a weight of by occurring in gr(V) = prj(a) = (0,a) occurs in gr(V) as a weight of b,

occurs in W' as a weight of b,

lies in Ag + Qg

2 o liesin Mg + Q2.

The implications (1) and (4) are obvious, using the projection pro; and the implications
(2) and (3) are direct consequences of the third step. We deduce that all weights of by
occurring in gr(V') belong to Az + Q2.

Finally, the action of 5 on gr(V) factors through t := Im(Q, - g — Endg, (gr(V)))

which is a quotient of the reductive Lie algebra (Q, - g)/n ~ m. Denoting by h C m a Car-

tan subalgebra of m corresponding to by C 5 (i.e. fi1(h) = f2(bs) where 5 LA t S m),

we deduce that the weights of h occuring in gr(V') lie in one coset of the root lattice of
(m,h) (since the weights of b, occuring in gr(V) lie in one coset of the root lattice of
(5,b5), as proved before).

B Fifth step: We check that [Nek, Theorem 2.6] applies for the Q,-Lie subalgebra
Qy-gC End@e(V).

Recall the assumptions of [Nekl Theorem 2.6]:
(H1-ZAR) Q,-g contains a Zariski dense set of elements that are semi-simple in Endg, (V).
(H2) for m as in the second step, all weights of a Cartan subalgebra h C m occuring in
gr(V) lie in one coset of the root lattice of (m,h).

By the first step, the set of elements of Q, - g that are semi-simple in End@(V) is

Zariski dense in Q, - g, which means that (H1-ZAR) holds. The fourth step implies that
(H2) holds. Hence [Nek, Theorem 2.6] applies, it follows that 1 =0, Q,- g =m and V is
a semi-simple Q, - g-module.



Chapter 2

The case of induced characters

2.1 Some properties of induced representations

For i = 1,2, let G; be a group, H;, K; two subgroups of G;, m; a representation of H;,
and p; a representation of GG;. We have the following properties:

1

2
3.
4

. If H1<Gj, there is a natural right action of G1/H; on the set of isomorphism classes

If G1 = G2, p1 ® p2 = (p1 X p2)|a(@y xG,)> Where A denotes the diagonal.
Ind% (m) X Indgz (mg) =~ Ind%fgg (m K mg).
P ® Ind% (1) =~ Indgll (Resgi (p1) @ m1).

of representations of Hy. Let pr : G; — G1/H; be the canonical projection. The
action is given by

D (h) = 1 (ghg™Y), VgeGy, he H.

. If W is the representation space of 71, then the representation space of Ind% (71) is

given by
{f:Gr— W] f(hg) =m(h)f(g) V h € Hi, ¥V g€ G},

and the action of G on Indfﬁ (m1) is (g1 - f)(g9) = f(gg1).

. Mackey’s restriction formula:

G
Resgl1 (Indj}! (1)) ~ @ Indﬁhg_lm{1 (m9),
g€K1\G1/H1

where 7{ is the representation of gH;g~! N K7 given by 7f(z) = 7 (g 'xg), and
K, \ G1/H, is the set of double cosets K1gH; for g € G;.

If Hy is abelian and of finite index in (1, then every irreducible representation of
(31 is a subrepresentation of Imdgl1 (B) for some character 3 of Hj.
Let S be the stabilizer of 3 under the action of G1/H;, and set Hg = pr—1(9) C Gy,

then the decomposition of Ind% (B) into irreducible representations is

Indi: (5) = Pnd(y, (5)
B

where /3 runs through all characters 8 of H, 5 such that B lgr, =08
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2.2 Semi-simplicity criteria - Main result

Notations. Let I' be a profinite group and p : I' — Aut@[(V) a continuous finite-
dimensional representation of I'. For i = 1,...,s, j = 1,...,m, let I'; <T" be an open
normal subgroup such that T'/T; = (0;) ~ Z/pZ with p a prime number, a;; : T; — Q,
a continuous character of I';, and p;; = IndR(aij) the induced representation. For i =
1,...,s, let &; be a lift of g; in I'. Set

s
FO = mFZ
i=1

and denote by pr: I' — I'/Ty the canonical projection.
Let J =(1,...,1) € (Z/pZ)*, and for I = (i1,...,is) € (Z/pZ)*, set

Gr=a. .. 6?‘ el and o7 =pr(a7) € T'/T,

where Vk=1,....,s, i € [0,p — 1] is the representative of iy.

The following theorem is a generalisation of a result of [Nek| where the case s = 1 is
studied.

Theorem 2.2.1. In the situation described above, assume that:

1. There exist dense subsets Yo C T'g and ¥1 C pr—1(oy) such that p(g) is a semi-simple
element of Aut@z(V) for each g € Yo U X;.

2. There exists an open subgroup U C T' such that pr(U) =T'/Ty and p*|y is isomorphic

s m

to a subrepresentation of (Q Q@ pij) %n for an integer n > 1.

i=15=1
S

3. The canonical injection T'/Ty — [[T/T; ~ (Z/pZ)® is an isomorphism.
i=1

Then p is semi-simple.

2.2.1 Steps of the proof and preliminaries

We will proceed in five steps:

1. We reduce to the case where p sits in an exact sequence of representations
0—I(B) —p—1I(a) — 0

for suitable characters o and 8 of T'y, where for a character «, I(a) denotes the
induced representation Indll:o ().

2. We identify the representation spaces I(«) and I(f) with @S. After choosing a
splitting of the previous exact sequence of vector spaces, an element g € I' acts on

V by a matrix
_ (m(9) clg)m(g)
p(g)_<77209 97719>’

where 77 and 7, denote the representations I(«) and I(f3), respectively, and ¢ €
ZYT,Hom(I(a),1(8))) is a l-cocycle. Then we make explicit the characteristic
polynomials of 77; and 7o for elements of I' of the form hé; for h € Ty.

3. We show that for h € Iy acting trivially on I(«) @ I(3), the main diagonal of ¢(h)
vanishes.
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4. We show that for h as in the previous step, c¢(h) = 0.

5. The exact sequence of representations in the first step splits, which means that
p~1I(a)® I(B) and hence p is semi-simple.

Lemma 2.2.1 (elementary). Let K be a field and A = (A;;) € M, (K) be a monomial
matriz, that is a matriz whose only non-zero entries are A; ;) for some permutation
T € &,. Let O4,...,0, denote the orbits of T, and set n; the cardinality of O;. Then the
characteristic polynomial of A is

Pax)=1] (Xm - 11 Aj,r(j)) :
=1

J€O0;

Lemma 2.2.2 (elementary). Let A = (A;;), B = (Byj) € GLy(K) be monomial matrices
with the same associated permutation T € &y, and let C = (Cy5) € My (K). Forl € Z,
denote by (A');; the entries of A', then for 1 >0,

-1
AT 1),T 7 [ .:Tli
(4 = § oo 7T =T

0 if j # ' (4)
and
=1 - - 1/ -
g = ([peomea)  #1=70)
0 if i #7(j)
Let D be the matriz A\CB™!, then fori,j=1,...,n,

-1

Dij=1]]

ko Bk () rE 1)

Ark(iyrt16) i)
T(2)T ] *

Lemma 2.2.3 (Sah’s lemma). Let G be a group, M a G-module and g in the center of
G. Then HY(G, M) is killed by the endomorphism x + gx —x of M. In particular, if this
endomorphism is an automorphism, then H'(G, M) = 0.

Lemma 2.2.4. Let M be a module of finite length over a ring R such that any subquotient
of M of length 2 is a semi-simple R-module, then M is a semi-simple R-module.

Proof. We will proceed by induction on the length [ of M. If [ = 1, there is nothing to
prove. Assume that [ > 2 and the lemma is proved for R-modules of length < [. Let
N C M be a simple non-zero R-submodule. Consider a Jordan-Holder series 0 C N C
My C --- C My =M of M, then 0 C My/N C --- C M;/N is a Jordan-Holder series of
M/N. This means that M/N has length [ — 1, hence it is a semi-simple R-module, by
induction. We write M/N = N1 @ --- @ N;_1 with each N; a simple R-module.

Fix i =0,...,0 — 1 and denote by M* the kernel of the projection

M — M/N — PN;.
i#i

Then M? is a subquotient of M of length 2, since it sits in an exact sequence

0— N — M'— N; — 0.
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It follows, thanks to our assumption, that M’ is a semi-simple R-module, which means
1
that its class in Extp(N;, N) is zero. As a result, the class of M in

Exty(M/N,N) = Exty <@ Ni,N) = P Exty(N;, N)
A A

is also zero, hence M ~ M /N @ N as R-modules, and M is a semi-simple R-module.
O

Lemma 2.2.5. Let k be a field of characteristic zero, and V be a k-vector space of di-
mension 2n over k. Let f € Endi(V') such that, with respect to a fized basis of V over k,

f acts by a matriz
D A

where D = diag(dy, ..., dy) is a diagonal matriz, and A = (a;j)i; € My(k).

If f is a semi-simple endomorphism of V', then the main diagonal of A vanishes.

Proof. The characteristic polynomial of F is Pp(X) = (X —d;)?...(X—d,)?. The minimal
polynomial of F' divides Prp(X) and is without multiple roots (since f is a semi-simple
endomorphism), hence it divides Q(X) = (X —d})--- (X — d,) where d},....,d}, are the
pairwise distinct d;’s, m < n. Hence, we have in Mo, (k),

(F —diIs,) - (F —d, I,) = 0.

Fori=1,...,m, set D; := D — d}I,, the previous equation is

0 D 0 Dn/ ~ \0 0)’

where .
*:ZDI"'Di—lADi—l-l"'Dm-
i=1
m
For | =1,...,n, the I** diagonal entry of the previous matrix * is ay [ (d; — d;) Since
j=1
d;.#dl
* = 0, we deduce that a;; = 0. ]

Corollary 2.2.1. Let k be a field of characteristic zero, V a k-vector space of dimension
2n over k, v € &, a permutation, and f, € Endi(V) such that, with respect to a fized
basis of V over k, f, acts by a matrix

D A
FV - (0 DV) ’
where D = diag(ds, . ..,dn), Dy = diag(dy,),-..,dym)) are diagonal matrices, and A =
(aij)ij € Mn (k).
If [, is semi-simple, then V I =1,...,n, a,,; = 0.
Proof. Let P, be the permutation matrix associated to v, i.e. the only non-zero entries of

P, are (P,); ) = 1, then D, = P, DP, 1. It suffices to apply the previous lemma to the
semi-simple endomorphism f given by

o (0 0N (1 0\ _ (L 0\ (D A\ (L 0)_(D 4R,
“\o r) "o r)"\or.)\on)\or/ "lo p)

O
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2.2.2 Proof of the theorem

First step: We reduce to the case where p sits in an exact sequence
0—If) —p—1I(a) —0
for suitable characters a and S of I'y.

7-th component
=~
For each i, fix a lift &; of o; in I" such that the image of &; is (0,...,0,1,0,...,0)
under the composite map

I' - T/Ty = [[T/Ti ~ (Z/pZ)°.
i=1

Set H := [[T, and for n € N denote by A(I'™) the diagonal of I'". For a fixed i = 1,...,s,

i=1
®Pz‘j =pi1 @ .. @ pim = (pir B ... B pin ) [ Ay
j=1
~ (Indg:mn (ail X...X azm)) |A(Fm)
A(T™ v Um
~ @IndAEF;n; ((aﬂl X...X Oéim)‘A(I‘Zm)>
~ @Indr Lagm),
where
v=(v1,...,0m,) € AI™)\T"/T}".
In other words, the direct sum is taken over the double cosets A(I'™)(v1, ..., vm)I'7"; and

Vhely, Vj=1,...,m, a](h)= oy hvj).
Note that the number of summands in the previous direct sum is p™~!, which is the
cardinality of the set A(I'") \ I'/T'/" of double cosets (or by a dimension argument).

S m
Hence @ @ pi; is of the form

i=1j=1
Qs =@ (@i -0
i=1j5=1 =
= @ (@ (o))
k =1
il olim
where x;, denotes a character of I'; of the form «;; ...«q;. . Note that there are ps(m=1)

summands in the previous direct sum.

On the other hand, for each k

®Indr Xik) (Indr1 (x1k) K ... X Indf, (Xsk)) |Aa(rs)

~ Indl;; (Xlk X...X Xsk)’A(FS)
~ @Indro Xlk . Xj:]zh‘o)a
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where v = (u1,...,us) € A(T*) \I'*/H, and V h € Ty, Vi = 1,...,s, x;i(h) =
X (u; P hug).
S
Since by assumption 3, [[': T'g] = [] [ : ;] = p®, then there is one summand in the pre-
i=1
vious direct sum (which is equivalent to the fact that, under assumption 3, A(I'*) \ I'*/H
is trivial); it follows that

S
®Ind11:i (xik) =~ Indll:o (X1k - - - XsklTo)-
i=1

Finally
S m
®®pij ~ @Ind?o (X1k - - - Xsklo)- (2.1)
i=1j=1 k
We are now ready to prove the first step. First, thanks to Proposition [1.3.1, we will
assume that U =T
The assumptions of the theorem are satisfied by any subquotient of V'; by Lemma

it is enough to treat the case where V is a Q,[I']-module of length 2, in other words, p sits
in an exact sequence of representations

0—Y —>p—X—0

S m
with X and Y irreducible subrepresentations of @ @ p;; (thanks to assumption 2). Hence
i=1j=1
there exist representations X’ and Y’ such that X @& X' = I(«a) and Y @ Y’ = I(f) where
I(«) and I(f) denote Ind?0 («) and Indgo(ﬁ) respectively, with

Q= Xik--- XsklTo and B=X11---Xsi|To (2.2)

for some indices k and | (which are fixed from now on), thanks to (2.1). Finally, after
replacing p by p® X' @ Y’, we can reduce to the case where

0—I(B) —p— I(ar) — 0.

Second step: We identify the representation spaces I(«) and I(3) with @?S and make
explicit their characteristic polynomials for particular elements in I'.

The representation space

(@) ={f:T — Qi f(hg) = a(h)f(g), VheTy, ¥VgeT}
is identified with @%/ PR @gs via
Ia) — @Y

f — (f(&I))IG(Z/pZ)S (2'3)

Let 71 and 72 denote the representations I(«) and I(f3), repectively. We will now make
explicit, with the previous identification of I(«) with @2’5, the action of elements h € Iy,
and the action of 65 € I' on I(a). In other words, we will write down the entries of 7;(h)
and 7m1(6) € Mys(Qy). The same will hold for 72, after replacing a by 8.

For h € Ty and I € (Z/pZ)*,

(m(h) - f)(G1) = f(G1h) = oI (h)f(51),
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hence an element h € T'y acts on I(«) by a diagonal matrix, whose diagonal entries are
m(h)ir = a” (h).
Recall that J = (1,...,1) € (Z/pZ)*,and 65 =61---6s € I'. For I € (Z/pZ)?,

(m(6s)- f)(61) = f(6165) = a(hr)f(Gr+7)

where hy € I'g is such that 6,6, = h,& Hence 65 acts on I(a) by a monomial matrix,

whose only non-zero entries are

I+J°

m(6.s)r,r+5 = a(hr).

After choosing a splitting x : I(a) — V of the previous exact sequence of vector spaces,
with the previous identification of I(a) and I(3) with @} , we may identify V with Q] @
Q) and assume that an element g € I' acts on V by a matrix

_ (m(9) clg)m(g)
p(g>_<77209 9771!])

where c is a map

¢:I'— Hom(I(«a),I(B)).
Writing down the relation p(gh) = p(g)p(h) for g,h € T', we see that

c(gh)m(g)m(h) = n2(g)e(h)ni(h) + c(g)m(g)m(h)

or equivalently
c(gh) = m(g)c(h)m(9)™" + clg) = g.c(h) + c(g)-
Hence ¢ € ZY(T', Hom(I(«),I(/3))) is a 1-cocycle attached to the splitting x.

Lemma 2.2.6. With the previous identifications, the characteristic polynomial of n(ho )
18
s—1

Py (hs)(X) = (XP = a((h61)"))"
Idem for Py, n5,)(X) after replacing o by 3.
Proof. For i =0,...,p— 1, let H; be the element of I'y given by

014iy0; = Hi01+(i+1)J'

For I € (Z/pZ)*, let Pr be the product of the entries of 71 (hé ;) corresponding to the orbit
of I under the bijection I — I+ J of (Z/pZ)®. Note that this is a permutation of (Z/pZ)*
of order p. It follows that the permutation associated to the monomial matrix 7; (&) (and
n1(hdy)), in the sense of Lemma is a product of p*~! disjoint p-cycles. We have

p—1
Pr:= 1] m(hé5)risrve1)0
=0
p—1 p—1
= I m®)ryizrvis [T mGr)rvisisarns
=0 =0

p—1 p—1
_ H aa[+u(h) H oz(Hi)
i=0 i=0



2.2. SEMI-SIMPLICITY CRITERIA - MAIN RESULT 36

A calculation shows that

[] (i) =a™(@) and ] a®(h) = a% (h)57).

Hence
P] = a"f((h&J)p).
Finally, recall that o = x1x ... xsk|r, Where for i = 1,...,s, x;x is a character of I';. Since
for i # j € [1, 5], 0; acts trivially on x,, since &; € I';j, then for I = (i1, ..., 1)
i
- - h - -
NG (h32)7) = X5 ((h37)7) = X7 (5)P) = sl (h60)P).
Hence

Pr = a((hés)P)

does not depend on I (which means that it remains the same for all the orbits of the
permutation associated to the monomial matrix 11 (hds)); and thanks to Lemma [2.2.1} we
deduce the characteristic polynomial of 7;((hd;)P).

O
Lemma 2.2.7. Pm(h&J)(X) = Pﬁz(hﬁ,J)(X)'
Proof. Thanks to (2.2)), we have
ﬁ 2 XZl > oj— 1
H |F0 - H( )‘Fo - H(% )|F07
=1 =1
where for each ¢ = 1,...,s, ¢; is a suitable character of I';; and the last equality holds

because, as before, V i # j € [1,s], o; acts trivially on ¢;. Note that (hG ;)P = h*ch,
where

h* = h(Gsh7Y) ... (55 Tha [ TP).
Hence

(B/a)((hG5)P) = (B/a)(h*&Y Hso‘” Yl (6h) =1,

since Vi =1,...,s, 07 (h*) = 97’1 (6%) = 1. It follows that Py, 45 ,)(X) = Py hs ) (X).
O

Third step: For h € Ty acting trivially on I(a) @ I(f), the main diagonal of c(h)
vanishes.

The previous lemma implies that V h € Iy,
~ s—1
Poins ) (X) = (XP — a((he5)P)*"" ",

hence

{g € pr '(0,)| plg) is semi-simple} = {g € pr™'(0)| p(g)" € Q; idy }
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and thanks to assumption 1, the previous set, which contains X1, is equal to pr=!(o).
In particular, 57 acts semi-simply on V and we can choose our Q-splitting x to be & -
equivariant, hence the attached cocycle ¢ satisfies ¢(67) = 0. It follows that

p—1
Vhely, 0=c((has)?)= Z h(fJ 2772 hO'J nl(h&J)_l. (2.4)
=0

The previous equation is equivalent, for each I,1I' € (Z/pZ)*, to

Z#J”/l ~e(h)ry1,1415 =0, (2.5)

where, as in Lemma [2.2.2]

-1 . -1 -1, (=
M2(hG 1) 11 hd I+ (k41)T m2(h) 14 kg 14k 02(60) 14k T+ (k41)
wllll = H = H

k=0 771(h5J)I’+kJ7I’+(k+1)J k=0 m(h>1'+kJ,I'+kJ k=0 771(5J)I’+I<:J7I’+(k+1)J

fyII’l(h) Krmn
Knowing that n1(h);; = a7 (h) and n2(h);;r = 877 (h), the equation ({2.5)) is equivalent to

p—1
Z’ylﬂl 11/1 h)I-i—lJI’—HJ =0, (2.6)

where 7, ,, is the character given by

5UI+(19—1)J

Vi T QI+ -1

-1
with v,,, = 1. Note that K , is of the form k]:[()ﬁ(hl)a(hp) for suitable elements

11’1

hr,hp € I'g. However, we only need to know that K , € @Z and is independent from h.

11’1
First case: a =
Assumption 1 implies that V h € Xg, p(h) is a semi-simple element of End@z(V). Since

_ (m(nh) c(h)m(h)
p(h) = < 10 nl(fll) )

is semi-simple, then Lemma implies that the main diagonal of ¢(h)n;(h), and hence
the main diagonal of ¢(h), vanish. By continuity, this remains true V h € T'g.

Second case: o # (8
Let hg,h; € Ty be such that hg acts trivially on I(«) @ I(f) and set ha = hohy; then
c(ha) = c¢(h1) + c¢(hg). Substracting the equation (2.6 for hy and hi, we get,

p—1

S K, (0 (h2)e(he) rrigr+10 = 7y, (h1)e(h1) r4,0410) = 0. (2.7)
1=0

Knowing that v, (h2) = 7,,,(hoh1) = 7v,,,(h1) and c(ha) = c(h1) + c(ho), we get from
equation (2.7)), in particular when I = I’,

V hi €T, Z’Ym (h1) K, c(ho) 141,140 = 0.
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For simplicity, we write «, instead of v,,,. Linear independence of the distinct characters
(7,)i=0,...p—1 (which we prove later in Lemma [2.2.8)) implies that for hg € I'g acting triv-
ially on I(«) @ I(f3), the main diagonal of ¢(hg) vanishes.

In both cases, for h € I'g acting trivially on I(«) @ I(3), the main diagonal of c¢(h)
vanishes.

Fourth step: For h € T'y acting trivially on I(«) ® I(3), c(h) = 0.

Fix Iy € (Z/pZ)®. Let o/ denote the character a’%o of Iy, and 7] denote the represen-
tation I(’). Hence there exists M € GLy:(Q,) such that

Vgel, ni(g) =Mm(gM™
Let ¢’ be the cocycle associated to the exact sequence
0— I(B) — p— I(cd) — 0.

The isomorphism I(«) ~ I(a’) depends on the lift of o7, in I'. For the lift 67, € T, this
isomorphism is given by
I(a) — I(a))
foo— 7
where f': T — Qy is defined by
f'(9)=f(6r9) VgerT.
Via our identification of I(«) (resp. I(a’)) with @?S, the matrix M is given by

(f'(1))1 = M(f(51))1-
For I € (Z/pZ)*,
f(61) = f(61,61) = f(h16111) = (1) f(G141,),

where hy € I'g is such that 67,67 = hror41,. Therefore, M is a monomial matrix whose
only non-zero entries are My i1, = a(hr) € @Z Note the the h;’s depend on the
isomorphism I(«) ~ I(a'), but the form of M (monomial matrix with only non-zero
entries M7 r41,) does not.
The cocycle ¢ is given by

d: T - Hom(I(a), I(B)) — Hom(I(a'),1(B))
where the right map is composition with M~!: I(a’) = I(«). Hence
VgeT, d(g)=clgM

Note that ¢(6;) = 0 implies that ¢/(55) = 0. Applying the third step for I(a/) ~
get for h € Ty acting trivially on (/) @ I(8) (equivalently on I(«) ® I(5)), V I,

0="C(h) = c(h)r1410(M ™) 1100 = c(h) 1,14 100(hr) 7"

Hence ¢(h)1 141, = 0. This is true V Iy € (Z/pZ)*, we deduce then that for h € I'y acting
trivially on I(«) @ I(5), c(h) = 0.

I(a), we



2.2. SEMI-SIMPLICITY CRITERIA - MAIN RESULT 39

Fifth step (End of the proof): Our exact sequence of representations splits.

Consider the I'-module Hom(I(«),(/3)), where the action of an element g € I' on
f € Hom(I(a),1(B)) is given by g - f = n2(g9)fm(g)~'. There is an isomorphism of
I'-modules

Hom(I(a), I(8)) = ()" @ I(B) = I(a” )@ I(B)~ @ 1(B/a’"),

I'e(Z/pZ)s

where the summand I(3/a°") corresponds to the matrices X € M,s(Q,) whose only
nonzero entries are Xy, for I € (Z/pZ)* . Let pyr denote the projection

pr : Hom(I(«), I(B)) — I(5/a°T")
which induces a projection, also denoted p;/, on the 1-cocycles:
pr : ZYI, Hom(I (), I(B))) — ZY(T, 1(3/a’1")).

Let ¢y denote the restriction of ¢ to I'yg. The previous step implies that py/(cp) lies in the
image of the inflation map

ZNAI(B/a%r)) = Z' (Do, 1(8/a1")),

where A is the image of p(I'g) in Aut((a) @ I(5)), which is an abelian profinite group.

First case: = "
The semi-simplicity of p(h) for h € ¥y implies, thanks to Corollary that py(c(h)) =
0. Hence, by continuity,

pr(co) = 0.

Second case: 3 # o’
The image Y of X under the endomorphism in Sah’s lemma (Lemma [2.2.3))

I(8/ar) — I(B/ar)
X ) Xm(h) - X

is given by

or
(ﬁ (h) —1> X L=I+T
YL = § \a”%(h)
0 otherwise
Since 8 # a°r’, the previous endomorphism is an automorphism. It follows, by Sah’s
lemma, that H'(A, I(3/a’1")) = 0.

In both cases, V I' € (Z/pZ)*, py/(co) =0 € HY (A, I(3/a°)). We recall the inflation-
restriction sequence

0 — H'(T/Ty, Hom(I(a), 1(8))70) ¥ H'(T, Hom(I(a), 1(8))) *¥ H'(To, Hom(I(«), I(5)))

By the previous discussion, the cohomology class of ¢ lies in
Ker(Res) ~ H'(I'/Ty, Hom(I(a), 1(8))')

which is trivial because Hom(I(c), I(3))'° is a Q-vector space and I'/T is finite. Hence
c=0¢€ HY(I',Hom(I(a),I(B))), and p ~ I(a) @ I(/3) is semi-simple.
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Lemma 2.2.8. When a # 3, for each I € (Z/pZ)*, the p characters (7,)i=o,...p—1 defined
in the third step by
! ﬂUH»(kfl)J

’Yl = ar
+(k—1)J
=19

are distinct.

Proof. To compare the characters (7,);=0.... p—1, after replacing the pair (o, 8) by (a”~1, 37-1),
we can always reduce to compare, for | < p,

a7 . a7 and BRI ... [O0-DIT,

In other words, we have to show that

-1

[1B/e)™ #1

k=0
Since p is prime and [ < p then there exists an integer a such that al =1 mod p. Let N be
-1
such that al — 1 = pN. Suppose that [] (3/a)?*/ = 1. Then by applying o, successively
k=0

(a — 1) times to the previous identity, we get a identities

-1 2[—1 pN
H(ﬁ/a)akJ:17 H(/B/a)aszl, e, H (6/04)%‘]:1-
k=0 k=l k=(a—1)l

The product of the previous a products is then

pIN
[1(3/e)™ =1. (2.8)
k=0
Recall from the proof of Lemma [2.2.7| that 8/a = 1(g0;” Y|r, where g; is a character
Pl
of I';, hence
pl ® (57— (140540 1
J— J (ex
[13/0)™ =Tl e H o =
k=0 i=1

Combined with (2.8)), this gives that 8/« = 1, whence the contradiction.

2.3 Variant of the theorem

2.3.1 Variant of assumption (1)

We prove first that assumption (1) in Theorem is a consequence of other assump-
tions:

Proposition 2.3.1. In the situation of Section assume that :

1. There exists a dense subset X2 C I' such that for each g € %, there exist sm pairwise
commuting elements (wij)i=1, s, j=1,..m N Aut@l(V) such that

i

i=1j=1

and P, (g (uij) =0,V (i,7) € [1,s] x [1,m].
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k
2.V (i,4,k) € [1,8] x [1,m] x [1,p — 1], the character aij/a?ji is of infinite order.
S
3. The canonical injection T' /Ty — [IT/T; ~ (Z/pZ)* is an isomorphism.
i=1

Then there exist dense subsets Yo C T'g and X1 C pr—1(oy) such that p(g) is a semi-simple
element of Aut@Z(V) for each g € g U Xy.

Proof. First, for fixed 4, j, we exhibit a simplied form of the characteristic polynomial of
pij(hd ), as in Lemma After identifying the representation space Indll:l_ (a;) with

_ p
Qg = '@1QE - e; (particular case of 1) via
1=

IndR (Oéij ) — Qb

L
N O CARY (C/ )
the action of an element h € I'; on IndR_ (aj) is given by
k-1

Vk=1,...,p, h(ex) = afji (h)eg,

hence
p—1 o
Po(X) =1 (X o] (h)) .
k=0

In the previous formula, we will replace 0¥ by 0"}, since for @ # j, 6; € I';, hence acts
trivially on a;.
On the other hand, the action of 65 = &1 ...65 is given by

Hie, fork=1
Hiep_1 fork=2,...,p.

Gyex) = {

k—1

where H; = aij(&f_léJ), and for k =2,...,p, H, = a;}i (&;1&]).
In fact, for k=2,...,p,if fr € Indlzi(aij) corresponds to e € Q) under Indll:i () =~ QF,

ie. fr(@P ') =1and f(6})) =0V 1#k—1, then
(67 fo)(677%) = fu(677%60) = fulhaol ™) = cij(he) fr(6F71) = (cuij (i) fr1) (65 72)

where hy, € I'; is such that &f_Q&J = hkéf_l; and (G- fk)(&ﬁ) =0V 1[+#k—2. Hence for
k=2,....p,65- fr = ajj(hg) fr—1 = Hi fr—1.
Finally, since Hj ... H, = a;j(6%), and
p—1 ok
aing) H aijJ(h’> = a;;((ha)P),
k=0

we deduce that V h € T;,
Pihe ) (X) = XP — aij((hé 1)P).

For g € ¥ = ¥ Npr~!(oy) which is a dense subset of pr=!(cy), we have Vi = 1,...,s,
Vi=1,...,m,
0= P, (g)(uij) = uf; — aij((hd1)P).
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It follows that the minimal polynomial of each w;;, which divides X? — a;((hGs)P), does
not have multiple factors, hence each w;; is semi-simple, so is their product p(g).

k
On the other hand, V g € T, the assumption on the characters o;;/ a?f implies that for

all elements g in a suitable open dense subset I'{y C T, Pyit9) (X) has distinct roots, which

implies as before that p(g) is semi-simple V g € X9 = I'j; N ¥ which is a dense subset of
Ty. O

2.3.2 Special case s =1

We are now going to recall from [Nek] that if in Theorem we consider only one
open normal subgroup I'; <" (i.e. s = 1), then assumption (2) of Theorem is a
consequence of assumption (1) of Proposition Note that in this case assumption (3)
is trivial. More precisely, we are in the following context:

Let I" be a profinite group, and p : I' — Aut@e(V) be a continuous finite-dimensional
representation of I'. Let I'y <T' be an open normal subgroup such that I'/T"y ~ Z/pZ with
p a prime number. Fix a generator o. Denote by pr: I' — I'/T'; the canonical projection,
and by ¢ a lift of 0. For j =1,...,m, let a;j : I'y — @2( be a continuous character of I'y,
and p; = Indf., (o) be the induced representation.

Proposition 2.3.2. [Nek] With the notations above (here we do not need to know that
[T : T'1] is a prime number), assume that there exist an open subgroup I' C T' such that
pr(I") =T/T'1, and a dense subset & C I such that

Vgelx P(p1®...®pm)(g) (p(g)) =0. (2.9)

Then there exists an open subgroup U C TV such that pr(U) = T'/Ty and p®|y is isomorphic
to a subrepresentation of (p1 ® ... R pm) %n for an integer n > 1.

Proof. See [Nekl, Proposition 4.6]. O

Theorem 2.3.1. [Nek] In the situation of Section assume that
1. There ezist an open subgroup I" C T such that pr(I"") = T'/T'1, and a dense subset > C
I such that for each g € X, there exist m pairwise commuting elements uy, ..., Un
in Autg (V) such that p(9) =u1...upm and Py g(u;) =0,V j=1,...,m.
2. Y (j,k) € [1,m] x [1,p — 1], the character aj/a;’k is of infinite order.
Then
1. There exist dense subsets Yo C IV N Ty and X1 C IV N pr-t(o) such that p(g) is a
semi-simple element of Autg (V) for each g € Xo U ;.
2. There exists an open subgroup U C T' such that pr(U) =T /Ty and p*|y is isomor-
phic to a subrepresentation of (p1 ® ... pm) %n for an integer n > 1.
3. p is semi-simple.
Proof. We may assume that I' = I".
(1) It suffices to apply Proposition m

(2) By Lemma we have
VgEXD, Py om)g(rlg) =0,

hence Proposition [2.3.2] applies.
(3) Thanks to the previous steps, Theorem applies, hence p is semi-simple.
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2.4 Special case r =1

In this section we prove that for » = 1, under the assumptions of Theorem [2.3.1] if
we merely assume that I'/T'; is cyclic of order a power of a prime number p, then the
semi-simplicity of p holds; more precisely:

Let T" be a profinite group, and p : I' — Aut@Z(V) a continuous representation of T'.
Let I'; be an open normal subgroup of I' such that I'/I'; is cyclic of order n = p¥ with p
a prime number and v € N. Fix a generator o. Denote by pr : I' — I'/T'; the canonical
projection, and by & a lift of 0. Let o : I'1 — @; be a continuous character of I'y and
p1 = IndF1 () the induced representation.

The following theorem is a generalisation of a result of [Nek|, where the case v = 1 is
studied.
Theorem 2.4.1. In the situation described above, assume that
1. There exist an open subgroup I" C T' such that pr(I'") = T'/T'1, and a dense subset
¥ C T such that P, (4(p(g)) =0 for all g € X.
2. For eachi=1,...,n—1, the character oz/oz"i is of infinite order.
Then

1. There exist dense subsets Yo C I' N Ty and X1 C IV N pr-i(o) such that p(g) is
semi-simple for each g € Yo U ;.

2. There exists an open subgroup U C TV satisfying pr(U) = T'/T'1 such that ply is
isomorphic to a subrepresentation of (p1|uy)®™ for an integer m > 1.

3. p is semi-simple.

2.4.1 Steps of the proof and preliminaries
The proof of (1) and (2) is a particular case of Theorem To prove that p is
semi-simple, we proceed as in Theorem [2.2.1

1. We reduce to the case where p sits in an exact sequence of representations
0— (o) — p— I(a) — 0

2. We identify the representation space I(a) with @,, hence an element g € I" acts on

V by a matrix
_ (,(g) c(g)p1(9)
p(g) - ( 10 ! >

c€ ZYT',End(I(a))) is a 1-cocycle.
3. We show that for h € I'; acting trivially on I(«), the main diagonal of ¢(h) vanishes.
4. We show that for h as in the previous step, c(h) = 0.
5. The exact sequence of representations in the first step splits, which means that
p~I(a)® I(a) and hence p is semi-simple.

The steps 1,2,3,5 are a particular case of Section Note that in step 3, we are in the
first case, hence we do not need Lemma (where we used the fact that [I' : T'y] is a
prime number).

The rest of the proof is slightly different. More precisely, in step 4, we use our assumption
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that [I" : T';] is a power of a prime number p.

We begin with the following elementary lemma whose corollary will be useful later in
the proof.

Lemma 2.4.1. Let K be an algebraically closed field of characteristic zero and n = p be
a power of a prime number p, then for each j, k < n, there exist g € K[T| and r < n such
that

j Th -1 r n
(T7 —1). g=(T"—=1) mod (T" —1).
T-1
Proof. For m € N| define
s ST -1
T -1

The desired congruence is then equivalent to

fifrg = fr modfy.

Since ged(fj, fn) = (fged(jn)), We can assume that j and k divide n = p*. Then j | k or
k| j. Suppose that j | k, write k = jq, n = k¢’ = jqq', and let u, be a primitive n-th root
of unity, then ug (resp. ,u‘,?ﬂ/) is a primitive k-th (resp. j-th) root of unity, and

n—1 n—1
ged(f, fu/fr) =ged | I T —pd), T @ —pi) | =),
ailO:[qlq'] a;lj[i’]

hence there exists g € K[T] such that

fig =1 mod(fn/ fx)
so fjfrg = fr modf,. O

Corollary 2.4.1. Let a be a character of I'y such thatVi=1,...,n—1, a # a°'. Fiz
k€ [0,n—2], and for j € [0,n — 1], let x; be the character

Jj+k
Xj = Ha" )
i=j
Then the n characters xo, X1, ---, Xn—1 of I'1 are pairwise disctinct.

Proof. After shrinking I if necessary, we can assume that for each j =0,...,n—1, Im(x;)
is contained in 1 + Dy, where

Dy = {z € Q |z], < ¢~y

This is an additive subgroup of Z,, and 1 + D, is a multiplicative subgroup of Zy; the
(-adic logarithm induces an isomorphism of groups log, : 1 + Dy — Dj.

Suppose that there exist two indices j < j’ such that x; = x;s. After applying a suitable
power of o, we can reduce to the case where xo = x; for some index j € [1,n — 1].
Applying o successively to the previous identity, we get

Va=0,....,n—1,  Xa= Xatj-
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After taking the f-adic logarithm in the previous n identities, we get

a+k ) a+j+k )
VheT, Va=0,....n—1, > log(a” (h) = > log,(a” (h)). (2.10)
i=a i=a+j

For h € T'; and i > 0, set a; = log,(a” (h)), and let

S(h,T):=>_aT" € K[T|/(T" — 1) ~ K[(0)]
1>0

be the generating function associated to the sequence (a;);>0. Thanks to (2.10)), we have

Jj+k

(Ek: DY Ti) -S(h,T) = 0.
i=0 i=j

Equivalently

Tk+1 -1
T-1

Taking r as in the previous lemma (r depends on j and k, not on h € I'1), this means

that (T" —1)-S(h,T) =0 € K[T]/(T™ — 1), hence ag = a,, and V h € 'y, a(h) = o (h)

which contradicts the fact that o # o . O

(19 —1) -S(h,T) = 0.

2.4.2 Proof of the theorem

All we have to prove is the fourth step. We show that c(hg) = 0 for every hg € T';
which acts trivially on I(«). To do this, we write explicitly the equation ¢((hd)™) = 0 in
Endg, (I(a)) ~ M, (Qy). As before, since

Pyins)(X) = X" — a((h5)"),
then

{g € pr™'(0)| p(g) is semi-simple} = {g € pr~'(o)| p(g)" € Qp.idv },

and by density, the previous set is equal to pr=!(c). In particular, & acts semi-simply on
V,¢(6)=0,and ¥V h € T'1, p((hd)™) is a diagonal matrix, it follows that ¢((hd)™) = 0 in
M,,(Q,). More explicitly,

n—1
> pi(h&)'e(h)pi(he) ™ = 0. (2.11)
=0

The only non-zero terms of p1(hG) = (aij) are a; ;(;y where 7 is the n-cycle (1 2... n),

more precisely: '
aii+1 = Oéal_l (h) Vi<n,
ant  =a%" (h)a(é™).

Equation (2.11)) in M,,(Q,) is equivalent to the following equations, for i,5 = 1,..., n:

n—1
> v (B Kijie(h) oy = 0, (2.12)
1=0

where
1—1 O.r+i7 1
o

Yijl = HW

r=0
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with ;50 = 1, and Kj;j is either 1 or a(6™) or a(6")"!. Now fix hg € I'y which acts
trivially on I(«), and for hy € TI'1, let ha = hohi. We have then c¢(ha) = ¢(ho) + c(hy).
Then substracting equation (2.12)) for he and hy, we get ¥V hy € 'y,

n—1
Z 'Yijl(hl)Kile(hO)Tl(i)Tl(j) = 0. (2.13)
=0

For i # j, suppose that there exist [ < I’ in [0,n — 1] such that v;;; = ;7. This means
that

U'+i—2 Utj—2
T T
I | o’ = I l o 7
r=l+i—1 r=l+j—1

which is impossible, by Corollary
Hence, for i # j, the characters (viji)i=o,..,n—1 are distinct, and linear independence of
characters applied to equation (2.13)) implies that

Vi 7'5 j, C(h())q—l(i),q—l(j) =0.

Together with the previous step, this step implies that V hg € 'y acting trivially on I(«),
we have ¢(hg) = 0, which ends the proof.



Chapter 3

Applications to cohomology of
unitary Shimura varieties

3.1 Introduction

3.1.1 Shimura data

Let (G, Z) be a pure Shimura datum: G is a connected reductive group over Q and
Z is a G(R)-conjugacy class of morphisms h : S = R¢/r(Gm,c) — Gr satisfying the
minimal system of axioms (2.1.1.1)-(2.1.1.3) of [Del79]. The set 2" ~ G(R)/K}, where
K, is the stabilizer of a fixed base point h € 27, has a natural complex structure [Del79,
1.1.14], and its connected components are hermitian symmetric spaces. For example, for

G = GL(2)g and
h:m+iy+—><$ y),

we have K}, = SO(2)R} and 2" = C\ R.

~

For each open compact subgroup K C G(Q), the analytic Shimura variety
S (G, 2) = G\ (2 % (G(Q)/K))

is a complex analytic space (in fact, a complex manifold if K is small enough). Baily and
Borel [BB66] proved that S h;; is the analytic space attached to a quasi-projective complex
algebraic variety Shg. Theory of canonical models initiated by Shimura (and developed
by Deligne, Milne, Shih and Borovoi) shows that each Shg is defined over a number field
E = E(G, %), called the reflex field of the Shimura datum.

3.1.2 Cohomology groups attached to a local system - Known results

Let £ : Gc — GL(V¢) be an algebraic representation, where V¢ is a complex vector
space. If the restriction of £ to the center Z C G satisfies appropriate conditions ensuring
that £(Z(Q) N K) = {1} for small enough K, one can attach to £ a local system

Ze=G(Q\ (2 % (GQ)/K) x V)

of complex vector spaces on Shy (for K small enough).

~

The group G(Q) acts on the projective system {Sh} }x by right multiplication:

n

[g] : Shy — Sk 1pc,
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Combined with canonical morphisms [-g]* : £ — % (see [HT0I, II1.2]), this defines a

~

canonical left action of G(Q) on the analytic cohomology groups

H'(Sh™, %) = lim H'(Shy , Z).
K

One can describe the de Rham comp}ex of S h;? in purely group-theoretical term [BWO0O0,

VII 2.5] which yields a canonical G(Q)-equivariant isomorphism with relative Lie algebra
cohomology [BWO0O0), I

H'(SK™, %) & H'(g, Kn; C°(G(Q) \ G(Ag))o ® %), (3.1)

where g = Lie(G(R)) and Hy denotes the subspace of Kj,-finite vectors in a G(R)-module
H.

G(Q) acts on the space of functions {f : G(Q) \ G (Ag) — C} by right translations:
(g-/)d) = f(d'g). Given a character x : Z(Q) \ Z(Ag) — C*, fix a character xo :
G(Q) \ G(Ag) — R whose restriction to the center is equal to |x|, and define L*(G, x)
to be the set of measurable functions f : G(Q) \ G(Ag) — C such that

(a) Vz € Z(Ag), 2- [ = x(2)f
(b) the L%norm (with respect to the Haar measure dg on G(Ag)) is finite:

1£1P= X" (9)(9)Pdg < cx.
G(Q)Z(Ag)\G(Ag)

From now on, we will only consider the case where the derived group G is anisotropic
over @, so that each Sh;? is compact (and Shg is projective), all automorphic forms
on G(Ag) are cuspidal and each space L?(G,x) decomposes as a discrete Hilbert sum
D m(m)m (with finite multiplicities m(7)) of irreducible automorphic representations
s

T = Moo @ ™ of (g, Kp) x G(Q) with central characher x. Together with (3.1), this
leads to Matsushima’s formula [BW00, VII 5.2]

Hi(Shm,fg) = @ <7FOO X (@ m(ﬂ'oo & WOO)Hi(ga KpiToo @ g))) . (3'2)

T Too

Moreover, if £ is irreducible, then the only (finitely many) automorphic representations
7 contributing to are those for which H*(g, Kp; Too ® €) # 0 ("Ts is cohomological
in degree ¢ for {"). This condition implies that the central and infinitesimal characters of
Too coincide with those of the dual £ of ¢ ([BWO0, VII 6.1]).

3.1.3 Towards the algebraic context - Motivation

We now switch to the algebraic context. Denote by Q C C the algebraic closure of Q in
C. Fix a prime number ¢ and an isomorphism C = Q,. For every algebraic or geometric
object defined over a subfield of C, we use the subscript ¢ to denote its base change to Q.
For a subfield k C Q, let Ty, = Gal(Q/k) be its absolute Galois group.
Recall that each Shi (G, Z") is an algebraic variety defined over the reflex field E =
E(G, %) c Q c C. Moreover, each ¢ as in Section gives rise (for K small enough)

1. In the general case, one considers the intersection cohomology groups of the Baily-Borel compactifi-
cation. Similar results are expected. [BB66], [Mor10]
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to a lisse Qp-sheaf % ¢ on Shy. ([HTOI II1.2]).
The comparison isomorphism between Betti and étale cohomology groups gives a G(Q)-
equivariant isomorphism

e o= lim Hiy (Shi ©p Q, Zeg) — i H'(Shi, %) = H' (SR, L)y
K K

Combined with (3.2)), this yields a decomposition

Hiy = P (7= 0 Vi) (3.3)

oo

~

indexed by irreducible representations 7> of G(Q), in which

dim@Vi(ﬂ'oo) = Zm(woo ® 1) - dimcH' (g, Kp; Moo @ £).

(T = Too ® ™ automorphic representation of G(Ag)).

Moreover, the canonical action of 'y on H!, induces a continuous Q,-linear action of I'g
on V*(m®). One of the main goals of the subject is to determine the Galois representation
V(7).

There is a big industry (based on pioneering works of Thara, Langlands and Kottwitz)
devoted to computing the alternating sum of traces

S (-1 (Fr(u)|vi(7r°°)) (3.4)

i>0

for all but finitely many primes v of F.

Thanks to the Cebotarev density theorem, the knowledge of these traces is equivalent
to the knowledge of the virtual representation

> (V)]

>0

in the Grothendieck group Go(Q,[['g]).

The calculation of requires a large machinery: a group-theoretical description of
points over F,, of canonical integral models of Sh; this gives rise, via the Lefschetz for-
mula, to an expression for in terms of suitable (twisted) orbital integrals; stabilization
of this expression using the fundamental lemma and other results of the formalism of sta-
ble trace formula; decomposition of the result in terms of automorphic representations of
various endoscopy groups of G.

Note that this method gives information about the semi-simplification of V#(7°°), not
about the Galois representations Vi(7) themselves.

Nekovar [Nek| observed that in certain simple, but non-trivial cases (when G = B>, for
a quaternion algebra B over a totally real number field), a much more pedestrian approach
shows that the representations Vi(7>°) are, in fact, semi-simple. His method combined
generalised Eichler-Shimura relations for partial Frobenius morphisms with certain ab-
stract semi-simplicity crietria. Some of his general machinery was generalised in Chapters
1-2. We now show that under suitable assumptions, these results imply the semi-simplicity
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of certain Vi(7>) occurring in middle cohomology of suitable unitary Shimura varieties
(=essentially PEL Shimura varieties of type (A)) for which

G(R) = [[ GU(av, by)

(ay + by =n > 2). Our assumptions ((Al) and (A2)) will be formulated in an axiomatic
way. This will clarify both the strength and the limitations of the method.

Note that the semi-simplicity of V¢(7°°) is predicted by general geometric conjectures
("the category of pure motives is semi-simple"). For example, if (G, 2") is a PEL Shimura
datum, then H!,(Shx®pQ, % ¢) is a direct summand of HY(A™®£Q, Q,)(n), for suitable
k,m,n (above, A™ is the m-fold fiber product of the universal abelian variety A over Shy,
(see [HTOL, I11.2]), and A™ is a smooth projective variety over E).

3.2 Unitary groups

3.2.1 Definition of G and G*

Suppose we are given the following data:

e a finite-dimensional simple Q-algebra B

e a Q-linear positive involution * : B — B (V b # 0, Trpg,q(bb*) > 0).
The center F' = Z(B) is a number field and *|r is a positive involution on F. Let
Ft = F*=14 je. the subfield of F fixed by the involution .
Assume that F'™ # F.
This implies that F' is a CM field with maximal totally real subfield F'*. The non-trivial
automorphism of F//F* (and of C/R) will be denoted by c¢. Moreover, for every embedding
o:F — C, the map * ® idg is a positive involution on

B®F+,UR = B®F’UC ~ MN((C),

hence is conjugate, by [Kot92] Lemma 2.11], to the standard involution M ~— M on
Mp(C).

The additional data are given by:
e a finitely generated non-zero left B-module V'

e a non-degenerate alternating F'T-bilinear form
(,):VxV—F"

satisfying (bx,y) = (z,b*y), Vx,y € V, b€ B.
This defines an involution # on Endp: (V) given by (f(x),y) = (x, f#*(y)). Let C =
Endp(V), which is a simple algebra of center F, and # restricts to an involution on C
such that #|r = *|r. Define a reductive algebraic group H = GSp,(V,(, )) = GU(C,#)
over F'*: for every F*-algebra S,

H(S)={f € (Cop+ S)*| v(f) = [/ € 5%}
={fe(Cep:+ 8)*|Fv(f) €S Va,yeVap: S (f(x), f(y)) =v(f)z,y)}

The multiplier v : H — G, p+ is a morphism of algebraic groups. If S is an F-algebra,
then ([HTO01, 1.6])

C®p+ S=(COp+ F)@p S =(C®FS) x (CQpy, S)
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and # X id interchanges the two factors, thus
H(S)={f = (x,\(@") )|z € (Car8*, A=v(f) € $*}.
In other words, we obtain isomorphisms

a: H(S) =5 (CopS)” x 8%

alf) > (can(),v(/) 3
where can(f) is the image of f € (C ®p+ S)* in (C ®p 5)*; and
a:H®p+ F = C* X Gpp (3.6)

The group G = Rp+ g(H) does not give rise to a PEL Shimura variety, it has too big
a center. We must pass to a subgroup G* C G defined by a cartesian diagram

G* G

| ’

Gm,@ - RF*/Q(Gm,FJF)

For every Q-algebra R,
G'(R)={fe(CoR)*|Iv(f) e R"; Va,y e VR, (f(z),f(y)a=r(f)z,y)o}

where (, )o = (Trp+/g)o(, ): VxV —Q.

The final piece of data is given by a CM type ® of F': for each infinite prime v|oco of
F*, we fix an embedding o, : F' — C inducing v.
Recall that Q C C, which means that we identify o, with an embedding o, : F — Q.
The choice of ® induces isomorphisms

BogR=[[(B®p+,R)=[[(B®Fqs C) =[] Mn(C)

v]oo v]oo v]oo

and V®@gR = HU‘OO(V QF+ p R), hence, by Morita equivalence, V' Qp+, R 5 CN @c Wy,

1
where n := dim¢(W,) = Wdimpr (V), and B ®p+, R acts on the first factor CV. Note
that
Cop+ R [[ C@p+ Ff ~ [[ Ma(C).
v]oo v]oo

The skew-symmetric form (, ) ®id on V ®p+ , R comes from one on W), which can be
written as the imaginary part of a hermitian pairing ( , ) : W, x W,, — C, of signature
(ay, by), with a, + b, = n. If we replace o, by @, then (ay,b,) is replaced by (b, ay).

It follows that
Gr > [[ GU(av,by), G = G(]] Ulaw, b))

v]oo v]oo
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3.2.2 Unitary Shimura data

The above data define canonical Shimura data (G, Z") and (G*, 2™*) arising from the
morphism
h:S= R(C/R(Gm,(C) — G[E C Gg
given by
h(z) = (21a,:Z1b, ) yjoc -
Here, v(h(z)) = 2Z.
The induced cocharacter p = pp (= h(z,1)) is given by

Mo Gm,(C — G(H U(ava bfu))(c = (H GL(”)(C) X Gm,C?
v]oo v]oo
1(z) = (o T, Jojoos 2) -
-1

The weight morphism wt: Gp,g — S, wt(t) = t
howt:tm (t7 In)yjoo-

, composed with A is equal to

The morphism h defines a Hodge decomposition V ®gC = V=109 Vv0-linto B ®q R-
submodules, with VP4 = {z| V z, h(z)x = z7PZ %x}. In concrete terms,

Y10 X @ ((CN)% @ (@N)bv) :

v]oo

with BegR = @ My (C) acting by the standard action (resp. by its complex conjugate)

v]oo

on CV (resp. @N).

The reflex field £ = E(G, &) = E(G*, Z™*) is the field of definition of the isomorphism
class of the complex representation of B on V~19: it is the number field generated by the
coefficients of the polynomial

det(Xia1 + ... + Xyau| V1) € C[X, ..., X{]

for any basis ajq,...,a: of B over Q. Explicitly,

E=Q (Z(avav(ﬂ) + bvav(ﬁ))‘ RS F) C F9 cQcC.

v]oo

For example, if the signature is parallel, i.e. if V v, (ay,b,) = (a,b), then

ifa=5
E=0 (-0 o@ ser|={" |
the reflex field of the CM type ® of F' if a # b

v|oo

The inclusion of the Shimura data (G*, 27*) — (G, Z") induces an isomorphism on the
connected components containing (h, 1) (after passing to the projective limit over all open

~ ~

compact subgroups K* C G*(Q) and K C G(Q)):
Sh(G*, 27%)" = Sh(G, 2)°. (3.7)

This is a special case of [Del79 2.1.8]; see [Nek| for an explicit argument in a slightly
different context.
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3.2.3 Representations of G¢

We are now going to describe irreducible algebraic representations & of G¢ giving
rise to local systems on Shi (G, Z") (for small enough K). Recall from Section an
isomorphism

a: Ge = H (GL(n)(c X Gm@)

v]oo
(its conjugacy class depends on the fixed CM type ®). This means that

§=E£®&; where {= ®¢ and § = <|X>§o,v

v]joo™

with §U an irreducible algebraic representation of GL(n)c, and &, : Gyc — Gpc a
character. In concrete terms, the highest weight of &, is

mi,v

diag(t1,...,tn) — tq U s

for (m1y > ... > myy) € (Z™)4, and & (t) = t"0v; mo, € Z.

The restriction of £ to the center of G¢ can be described as follows. We have Zp =
Rp/p+(Gmr) and Zg = Rpjg(Gm,r). There is a natural algebraic subgroup Zaf =
Rp+o(Gyp p+) C Zg and the inclusion (Z¢)c < Gc is given by

H (Gm,(c — GL(”)(C X Gm,(C)

v|oo

where for each v, the map is given by t + (¢ - I,,?).
In particular, the restriction of (& ,&o,v) to the component at v of (Z&)e 5 Lo Gm,c is
equal to t — & (- I,)€0.0(t?) =t~ - id, where

n
—Wy = 2Myg, + Z My € Z.

i=1

Definition 3.2.1. We say that the representation £ has integral weight w € Z if V v|oo
in F'™, w, = w.

Proposition 3.2.1. The following properties are equivalent:

1. & has integral weight w € Z

2. the morphism G, r vtk Gr -, GL(Vg) is given by t — t* - id

3. £(Za(Q)N K) = {1}, for all small enough open compact subgroups K C G(Q).

Proof. Note that Zg(Q) = F*, which means that for small enough K, Z5(Q) N K is
contained in the group of totally positive units of F'* (and has finite index in them). For
every such a unit u, {(u) = []joo 0v(w)"”, which means that { vanishes on Z¢(Q) N K if
and only if all w, coincide. O

As a result, we can attach to every § = @y with integral weight w € Z a local system
% of complex vector spaces on Shy, (G, Z") (resp. a lisse Q-sheaf %, on Shi (G, Z)),
if K is small enough.
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If U ¢ G(Q) is the subgroup stabilising the subset Sh(G*, 2°*) C Sh(G, Z°), then (3.7)
above implies that

Sh(G, X) ~ Sh(G*, 27*) xy G(Q).

In particular, there is an isomorphism of G(Q) x I'g-modules

Hi(Sh(G, ) @5 Q, %) ~ndS Y HL(SWG*, 27%) 01 Q, L) (3.8)

As a result, semi-simplicity of various constituents of the L.H.S. will imply the same for
the R.H.S.

Note that one can construct £ ¢|gp(G+,2+) in terms of the universal abelian scheme over
the PEL Shimura variety Sh(G*, 27*), as in [HT01) II1.2]. This implies that the sheaf
Z¢4 is pure of weight w[F™ : Q.

3.3 Weak transfer from GU to GL(n) x GL(1)

There is a close relation between automorphic representations = of G(Ag) = H(Ap+)
and suitably self-dual automorphic representations (II, ) of GL, (Ar) x A% = Hy AF) =
Go(Ag), where

H(] = GL(n)F X Gm,F7 GO = RF/Q(HO)-

Very strong results in this direction were proved in [Clo91], [Clo93], [Lab99], [HLO4],
[LS90], [HTO01) VI. 2.1] for unitary groups of a special kind. We need instead a very weak
form of this base change, but without additional assumptions on the group H.

In fact, in [loc. cit.] one establishes a base change from G(Ag) to (C ®p Ap)* x A%,
which is then transferred to Go(Ag) via the generalised Jacquet-Langlands correspon-
dance.

Recall from (3.5)) the isomorphism (for S an F-algebra)
a:H(S) = (C®pS)* xS*.

In the special case when S = ST ®@p+ F for an F"-algebra ST, the "complex conjugation"
c=1idg+ ® ¢: H(S) — H(S) corresponds, via «, to the map

(C®p+ ST x (ST@p+ F)* — (C®p+ ST x (ST @p+ F)* (3.9)
(4 , b — (c(d)(AF)TE (b)) '

Note that, for ST = R @g F© = [y Fif = RIMETR) the choice of the CM type

® = {0,} of F gives an isomorphism

v]oo

St@p+ F=R@F — [[ F5, =C®g F'

v]oo

under which id ® ¢ corresponds to ¢ ® id.
As a result, we obtain from ® and « isomorphisms

G®QC2 H(H®F+F)®F,UU(C ~ H(QX XGm,F)XF,aU(C ~ H(GL(n)FXGm,F)®F,UU(C-

v]oo v]oo v]oo
Moreover,

Go®g C ~ H ((GL(n)r X Gy F) ®F, Cx (GL(n)F X Gy F) @F,co, C) .

v]oo
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Let £ : Gc — GL(Vg) be an irreducible algebraic representation of integral weight
w € Z in the sense of Definition [3:2.1] It induces representations:

- & G(C) — GL(Ve),

- &1 G(C) =5 G(O) <5 GL(V),

~ & ®&p: Go(C) — GL(Ve ® V)

Recall that Zg = RF/FJr(Gm,F); ZG = RF/Q(Gm,F), ZGO = RF/Q(Gm,F X ijp).

Definition 3.3.1. Let 7 be an irreducible automorphic representation of G(Ag) = H(Ap+)
such that 7 is cohomological (in some degree) for £&. We say that an irreducible auto-
morphic representation (I, 1) of Go(Ag) = GL,(Ap) x Aj is a very weak base change of
m if
1. (s, %eo) is cohomological (in some degree) for &¢ @ &¢.
2. 11 is self-dual: ITV ~ IIC.
3. For all but finitely many finite primes z of F* at which F/F* and C are split
(so x = yy in F'), the local representation m, of H(F, ) = H(F,) is isomorphic, via
a: H(Fy)) = (CopFy)* X F) ~ GL,(F,)xF,* = Hy(F,), to the local representation
(IL, )y of Ho(Fy).
In fact, (II,) should have the following additional properties, but we are not going
to use them
4. The central characters of m and II satisfy w, = ¢ and w, = ¢¥°/9.
5. An appropriate relation between , and I, if 2 is inert in F//FT and y is the unique
prime of F' above z (for all but finitely many z).

Let us make some comments on the conditions (1)-(3) and their consistency with (4)
(cf [HTOT, VI 2.1]).

e Firstly, {c corresponds, via «, to { ® &y, where § is an irreducible algebraic represen-
tation of (C ®p+ R)* ~ GL,(F ®g R) =~ [[,j0c GLn(C), and & is an algebraic character
of (F ®g R)™ =[], C*. If we denote by

v]oo

we : H(CX — C*
v]oo

the central character of £, then we obtain from that
Ec(A,b) = Ec(e(b) (A7), e(b)) = E(c(b)(AT) " Héo(e(b)) = E((AT) 1) (we&o) (b).

Thus, & corresponds to §# ® wZ&C), where é#(A) = £((A#)71). As the involution # on

each factor GL,(F,,) = GL,(C) is conjugate to the standard involution A — 'A, we
have £# = (£)V. To sum up,

§c = £ ® &, &= (€)Y ®w£§(§-

e Secondly, the fact that 7, is £&-cohomological implies that w;; = we. | Ze(r)- However,

the maps Zg(R) < Zg(C) —% [Ty1a0(C* x C*) are given by

v|oo(

(F 2] R)X = 1_‘[11|oo(c>< — Hv|oo((c>< x (CX) — 1_[11\00((:>< X CX)
z (2,2)
(21, 22) L (21, 2122)

2. Moreover, we will use (3) only for z of degree one, when F;f = Qp,), where p(z) is the residue
characteristic of F.
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which implies that we(2,%) = we(2)&0(2%), hence w = wgﬁogo

* Thirdly, (IToo, Yoo ) being &c ® Ep-cohomological is equivalent to the fact that Iy, is
£ ® (£")V-cohomological and

vl = wiboly (= (i) ™). (3.10)

Wroy = Voo and wy = 15 /1hoo, in line with (4).

The first condition implies that w;olo = wg(wg)_l = Yoo /P Thus (1) implies that

e Finally, in the situation of (3), the isomorphism GL,,(F, )><FX Hy(F,) ~ H(F;}) ~
Hy(Fy) is given by (A,b) — (b(A#)~L1b), where A# = J YAJ~! and b > b is the iso-
mophism F, — Fy induced by ¢ : F — F. We require the representation 7, to be
isomorphic to both (I, ), and (II,%)y;. These two conditions are consistent if we admit
that w, = Y /4, since the representation

(A,b) = (I, )5 (b(A) 71, B) = (w0 )g(0)TIy(J AT )
of Ho(Fy) = GLu(Fy) x F,* will be isomorphic to

(A,B) = (wp v )y TIH(AT") = (wy )y (0) (ITy)" (A) = (I, wy) )y (A,b) = (IT, 1), (A, b).

Compatibility with the notation of Taylor, Harris and others [BLGGT14]
Definition 3.3.2. For 7 : F — C, we let

~mayp if 7 =0,
ary =

—Myo if 7 =coy, =0Ty,
and for 1 <i<mn,

Qr5 =

R

{mw- if =0,

—Myn+1—i if 7 =70,.

The representation ¢ ® (€)Y = Z, of GL,(F ®g C) = Go(C) ~ [I GL,(C) has
N B T:F—C

weight a = (ar;) € (Z”)glom(F’(C)’+ in the notation of [BLGGT14], hence II is of weight a
in the language of [BLGGT14].
The infinity type 1o of the character ¢ : AX/F* — C* is given by the formula (3.10).
As

(wg)v Sty ettt Men t*w*2mv,0’ 5071} St 0,

we see that
v (FeogR)* ~ [ FS =] C* — C*
v]oo v]oo

is given by

’_>H tv —w vaott mvo_Htva w—mv’o.

v]oo v|oo

Set
W] = (m0(00) — (w + M) (7)) € ZTmEO

v]oo



3.3.  WEAK TRANSFER FROM GU TO GL(n) x GL(1) 57

and define the algebraic Hecke character attached to v by
walg : A;(? — va walg(a) = 1/1(@)%0(%0)71.

It satisfies Yaigl(ror)x = 1, Yaiglpx @ a = al’l; and it takes values in Q@ C C*. The
corresponding f-adic Hecke character

A;‘/FX — @;7 at— walg(a)a;w}]

(each o : F— Q C C induces an embedding F' < Q, via the fixed isomorphism C ~ Q,,
hence a map F ® Q;, — Q) factors as

AXJF* BT 2L gy
The reciprocity map rec,, is normalised by letting uniformisers at finite primes of F' cor-
respond to geometric Frobenius elements.
The Galois representation py, ; attached to ¢ is pure of weight —w: if v { £ is a finite prime
of F' at which py, ¢ is unramified, then every eigenvalue o of py ¢(Fr(v)geom) is an algebraic

number such that [o(a)| = (Nv)~%/2, for every embedding ¢ : Q «— C.

Recall that our goal is an analysis of the semi-simplicity of the Galois representation
Vi(7®®) of I'p in the decomposition . The methods developed in [Nek] and in Chap-
ters 1 and 2 require us to impose the following fundemental assumption (which implies
that mo will be cohomological only in the medium degree i = dim(Sh)):

Assumption (A1l): 7 admits a very weak base change (II, %) in the sense of Defini-
tion [3.3.1] with II cuspidal.

This cuspidality condition implies, thanks to a collective effort of many mathematicians
(Clozel, Harris, Taylor, Labesse, Shin...), that there exists a Galois representation

P+ I'p — GLn(@E)v

which is compatible with II in a very strong sense ([CH13|], [BLGGT14]). We need the
following properties of p, ,:

~ Pp,, 1s semi-simple.

- pﬁ,e = p;,e(n - 1)

~ pp, is unramified at all finite primes y { £ of F' at which II is unramified.

— For all but finitely many finite primes y { £ of F'

n -1
Ly(Ha 5)_1 = Ly <pn,£7 5+ 2)
(equality in C[(Nv)~*] ~ Q[(Nv)~%]). We will need this only for y of degree one,
when Fy = Qp(y)'
For each embedding 7 : F < Q the restriction of p,, to T'r, = Gal(Q,/F;) is a
Hodge-Tate representation with n distinct Hodge-Tate weights (which can be made
explicit in terms of (ar;)1<i<n, but we do not need the exact formula).

3. In fact, p;; , is expected to be irreducible. Hopefully, this will be established in a foreseeable future,
but at present the irreducibility is known only if the weight of II is extremely regular and ¢ belongs to a
set of primes of density one ([BLGGTI4]). See also [CGI3] for irreducibility over FT.
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~ Pr, is pure of weight n — 1.

Proposition 3.3.1. 1. For every extension F'/F, the restriction py,|r,, is a direct
sum of distinct irreducible representations (without multiplicities).
2. Each irreducible constituent of py , is of the form Indll:i, (o), where F'/F is a finite
extension and o : Upr — G Ly, (Qy) is a representation for which olr,, is irreducible
for every finite extension F"/F"’.

3. Itis equivalent: py ,|r,, is irreducible for every finite extension F' /F (P, s "strongly
irreducible”) < py , is irreducible and py; , is not induced from a proper open subgroup
of I'p.

Proof.

L. py,lr,, is semi-simple (since p, is) and multiplicity free since the Hodge-Tate
weights at a fixed 7 : F' — Q, have no multiplicities.

2. see |[CG13| Lemma 4.3].

3. follows from (2).

O

Proposition 3.3.2. Let § = Q;- Lie(p, ,(T'r)) C gl(n,Q,) be the Qy-Lie algebra generated
by the Lie algebra of the image of py ,.

1. g s reductive and its center acts semi-simply on @?
2. It is equivalent: @? is an irreducible g-module < py , is strongly irreducible.

3. A Cartan subalgebra h C g acts on @? by n distinct weights (without multiplicities).

Proof. (1) and (2) are standard. For (3), Sen’s theory [Sen73, Theorem 1] implies that g
contains a semi-simple element whose eigenvalues are the n distinct Hodge-Tate weights of
Prelrp (for some 7: F < @), this element (being semi-simple) is contained in a Cartan
subalgebra h C g which then has the required property. ]

Remark: Property (3) was used in a crucial way in the construction of p;; , ([HTO01,
VII 1.8]).

Corollary 3.3.1. Denote by Std the standard representation of § C gl(n, Q) on Q.
1. b C § acts without multiplicities on \'Std for i =0,1,n — 1,n.
2. If § D sl(n,Qp) (which implies that § = gl(n,Qy), since det(py,) : Tp — Q) isa
character of infinite order), then b C g acts without multiplicities on the irreducible
representations \' Std for alli=0,...,n.

3.4 Expected properties of V!(7*)

A general conjecture describing the semi-simplification V?(7°)% of the Galois repre-
sentation V(7>°) of I'g in terms of 7 is described in [BR94], Conjecture 5.2]; we need only
the main "naive" building block appearing in the conjecture, given in below.
Consider a general pure Shimura datum (G, Z). A point h € 2 represented by a mor-
phism h : S — G gives rise to a cocharacter p = py, : Gp,c — Ge (u(2) = he(z, 1))
whose conjugacy class [u] depends only on 27, not on h. The set of conjugacy classes

of such cocharacters Hom (G, ¢, G¢)/int(G(C)) = Hom(G,, 5, Gg)/int(G(Q)) is the same
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over C and over Q. The Galois group I'g acts on the latter set and the stabiliser of [u] is
equal to (T'g)(y = L'r, where £ = E(G, 27) is the reflex field of (G, Z7).

One can view u (resp. p~') as a character of a maximal torus T of the dual group
G, positive with respect to a suitable Borel subgroup BoT (resp. B_> T) The com-
plex representation of G with highest weight u (resp. p~') with respect to B (resp. B_ )
can be extended in a canonical way to a representation 7, (resp. r_,) of the L-group
LG@p = G x T acting on the same space ([BR94, 5.1]).

If 7 is an irreducible automorphic representation of G(Ag) such that 7 is cohomo-
logical with respect to £ from Section [3.1.2] it is expected that one can attach to w a
semi-simple (-adic representation (possibly after modifying the center of G; see [BG14])

oy T'g — LGg:égNFQ

(with Gy = G @c Q) such that L(r o ©.08) = L(m,r,s — s.), for every irreducible
representation r of “G.
The composite ¢-adic representation

r w0, lry T — Gy x T — GLy,(Q) (3.11)

should be - up to a Tate twist - the main building blocklﬂ of Vi(r), at least in the case
when 7 is tempered.

In this case, one expects [BR94, Conjecture 5.2] Vi(7°)** to be a direct sum of Tate
twists of certain direct summands of (3.11]), with appropriate multiplicities. In the most
favourable case when 7 is not endoscopic, this boils down to the simplest possible relation

Ve £ (10 o lr) 2" (), (3.12)

for suitable m > 0 and j € Z.

A (still conjectural) generalisation of the Eichler-Shimura relation [BR94, §6] states
that a suitably renormalised characteristic polynomial of r_, o ¢_, |, kills Vi(r>®). For
compact PEL Shimura varieties, this is known after restriction to I'gr, for a suitable finite
extension F’ of F ([Wed00], [Moo04]).

The following example of 71, (see [BR94, 5.1(b)]) will be relevant for the subsequent
discussion. If Gg = GU(a,b), then G(C) ~ GL,(C) x C* (via ), and G ~ GL,(C) x
C*. The morphism h : S — Gg given by h(z) = (zl,,zI,) gives rise to hc(z,w) =
(21, wlp), zw) and p(z) = ((214, Iy), z). Therefore

p: (diag(t, ..., tn), to) = (t1- .. ta)to

(for the standard upper triangular Borel subgroup) and, for wg the longest element of the
Weyl group,
“o () (diag(ty, - tn),to) = (togr - tn) g

4. [BR94] and several other authors use 7, instead of r_,. This is compatible with the Galois action
on H° given by Deligne’s reciprocity law [Del79], but the sign in Deligne’s formula was corrected by Milne
in [Mil92, 1.10]. However, this issue of signs is not important for us, since if one changes —p to u, one
must replace 7 by a suitable twist of 7.




3.5. Back To GU(C,#) 60

It follows that

rulg = A"Std, ® Stdy

T—u|é\ = ((/\b Std,) ® (A" Stdn)*l) ® StdY = A?StdY @ StdY, (3.13)

where Std,, is the standard representation C™ of GL,,(C).

3.5 Back to GU(C,#)

We now specialise the previous general discussion to the group G = Rp+ /@(H ), where

H = GU(C,#) = GSp,(V,(, )) from Section We have “H = H x I'ps with I'p
acting trivially on H (since H is split over F', by ) AsTG =G x I'gp = Ind?ﬁ+ (*H),
it follows that the subgroup

L ={y€eTlg|Vov|cin Ft, yo,=0,} CT'g

acts trivially on G. This means that T_uoQ, .|r,, can be written in a very explicit form,
using (3.13)) and the fact that “G = Indll:fi+ (“H):

T'—p © 9077,5‘FE/ = ® o ((/\av Stdx ® Std\1/> © @w,e|FF) J

v]oo

where ¢_,|r, : Tr — GLn(Qy) X Q, and (®)p denotes, for any representation p : 'y —
GL(V,), the representation

T — T'r 2 GL(V,), (3.14)
where the left map is conjugation by &, !, for any lift 5, € g of oy, : F = Q, ie.

5v|F = Oy.
If assumption (A1) is satisfied, then ¢_,|r,. = (py,,p,,) and

roudry =@ (N o) 2 0),).

v]oo
In addition, 7 is cohomological only in medium degree i = dim(Sh) = > ay(n — ay);

and 7 is not endoscopic (since II is cuspidal), hence the expected relation (3.12) states
that

@m
Vdim(Sh)(ﬂ—OO)SS|FE 2 (@ Uv((/\ pnz) ®p¢€ tv)>) , (3.15)

v]oo

1
where t, := v (ay +1) — ayn is the Tate twist. The value of ¢, is obtained by comparing

the weights of both sides: V4m(5h) ¢ Fdim(Sh) js pure of weight dim(Sh) + [FT : Qu =
> (ay(n — ay) +w), while (A" p7,) ® p! , is pure of weight —a,(n — 1) +w.

v]oo

In order to simplify the notation, let us number the infinite primes of F*: {v1,...,v.},
where r = [F" : Q], and set

pi= (N pL,) @Y (1) : Ty — GLn, (@) (3.16)
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for 1 <4 < r, where n; is the dimension of p;; and

p = VAmGh) (7o) Dy GLy (@),

(3.17)

where M is the dimension of p. The expected relation (3.15]) then predicts that, for some
m > 0,

?
PP = (1 @...0p)"".

Proposition 3.5.1. Let F9% be the Galois closure of F. There exists a dense subset
Y C Tpgar such thatV g € 3, P, 0. .0p.)(9)(P(9) = 0.

Proof. ¥ is the set of geometric Frobenius elements Fr(p) for primes p that split completely
in F/Q and at which B and 7 are unramified. For such p, the group G is split over Q, and
the statement for g = Fr(p) is the generalised Eichler-Shimura relation proved in [Wed00],
Moo04] P} O

Assumption (A2): The dense subset ¥ C I'pgar defined in the proof of Proposition
has the following property: for each g € ¥, there exist pairwise commuting elements
uy, ..., ur € GLy(Qg) such that p(g) = uy...uy and Py gy (u;) =0V i=1,...,7.

The validity of Assumption (A2) will be explained in the following section.

3.6 Partial Frobenius morphisms and Assumption (A2)

3.6.1. In this section, we define an integral model of Shx and the partial Frobenius maps
on its special fiber (see [Rei97, 2.14] and [TX13] 2.3-2.8, 4.6] for special cases).

Let p be a prime number which splits completely in F/Q, and such that Bg, ~
[IM;(Qp). We also assume that 7, is unramified. Fix a #-stable Op+ ® Z-order
i

Op C B such that Op ® Z,, is a maximal order in By, and an Op+ ® Zy-stable lattice
A C Vg, which is self-dual under a suitable scalar multiple of ( , ); then K, = {g €
G(Qp) | g(A) = A} C G(Qp) and verifies K, ~ [[(GLn(Zyp) x Z,).

Moreover, the group G splits over Q, as Gg, ~ [[(GL(n)g, x Gm,q,), and V(7>)% £0
for K = K,K?, and KP C G(@(p)) small enough. Let v|p be the prime of E defined by a
fixed embedding Q — @p.

Fix a (finite) set {a;} of representatives of double cosets

(ﬁ‘-ﬁ(?))x = H(OF+ ® Z(p))j_ (67} (6;@)X

)

As above, fix a sufficiently small open compact subgroup KP of G(@(p)).

Consider a set-valued functor M,, x from the category of (say, locally noetherian)
schemes over O, which associates to a scheme S the set of isomorphism classes of quadru-
ples (A, ¢, A\, (n,u)), where

e Ais an object of (AV/S) ® Z(,y (an abelian scheme over S up to prime-to-p isogeny);

e \:A—Aisa Zp)-polarisation of degree prime to p;

5. They work with the PEL Shimura variety Sh(G*, 2°*), but this does not affect V*(7°°), by li
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e : Op — End(A) is a x-morphism (with respect to * on the LHS and the Rosati
involution attached to A on the RHS);

e for a fixed geometric point s of (every connected component of) S, (n,u) is a 71 (.S, s)-
invariant KP-level structure. By the latter we mean a KP-orbit of pairs (n,u), where

u € (ng’l)x and 77 : V @ QP = VP (A) is an Op ® QP)-linear isomorphism such that

the Weil pairing (, )y : Vg(p)(A) X Vs(p)(A) — Q) satisfies

(), n(y))x = Trp+ jglaiufz, y)).
An element g € KP acts on (n,u) by (n,u)g = (nog,uv(g)).

In addition, we require the Kottwitz determinant condition to hold.

An isomorphism between (A, ¢, A, (n,u)) and (A’,/, X', (1, /) is given by an isomorphism
f:A—= A'in (AV/S)®Z) such that A\ = FoNof, for="1of and (f,u) = (f on,u).
Note that the degree of A is determined by the above conditions. Moreover, (A, ¢, A, (1, u))
has no non-trivial automorphism if K? is small enough ([Rei97, 2.13]), which we assume,
from now on.
As in [Kot92] and [Rei97], it follows that M,, k is represented by a smooth quasi-
projective scheme over Of,, which will also be denoted by Mg, k.

The group of totally positive units O}X7+ 4 acts on My, i by the formula

e (A0, )\ (n,u) = (A, 1, ()N, (1, eu)).

If e = Npjpi(e') for ' € Op NKP C F* = Zg(Q) C G(Q®)), then multiplication by ¢(¢’)
on A defines an isomorphism

[L(EN] 2 (A, 1\, (n,u)) =L (A, 0, N\ (n,u)).

As a result, one obtains an action of a finite abelian group

A — O;+7+/NF/F+(OI>:<' ﬂ Kp)

on My, i. After replacing K” by a suitable open subgroup, the group A will act on M, g
freely by permuting its connected components; this is proved in [Kis10] in general and in
(3.6.7) below in the case when n is even. As a result, the quotient scheme M,, x /A exists
and is again quasi-projective over O, .

3.6.2. We are now going to define a map

Mo, k(C) — Shg(G, Z)(C) = G(Q\(Z x GQP))/KP x G(Qp)/K,)

(ITX13, 2.4], [Mil05, 6.3, 6.9]). Let (A, A, ¢, (n,u)) be a quadruple representing an element
of My, k(C). The group H = H;(A,Q) is a B-module via ¢ equipped with a skew-
hermitian pairing ( , )gx : H x H — F* such that Trps g o (, ) is attached to
A

The arguments in [Kot92, p.338, 339] show that the skew-hermitian modules H and V'
are locally isomorphic. The isomorphism of H ® Q; with V ® Q; for I # p, o follows from
the existence of 7. For [ = p, the Tate module T),(A) = Hi(A,Z,) C H® Q, is a self-dual
Op ® Z,-lattice, to which a variant of [Kot92, Lemma 7.2] applies. For [ = oo one applies
[Kot92, Lemma 4.2] (and the determinant condition).

The validity of the Hasse principle for G (see 3.6.5 below) implies that there is a B-
linear isomorphism a : H — V (which we fix) sending (, )z to a multiple of (, ) by an
non-zero element of F'*. This isomorphism is unique up to left multiplication by G(Q).




3.6. PARTIAL FROBENIUS MORPHISMS AND ASSUMPTION (A2) 63

The natural complex structure hy on H ® R = Lie(A) defines a complex structure
aha = (z+ aoha(z) ca™t) on V, hence a pure real Hodge structure of weight -1; this
Hodge structure lies in 2", thanks to [Kot92, Lemma 4.2].

The composite map aon: V ® @(p) — V® @(7’) is given by an element g” € G((@(p)).

Finally, a(T,(A)) C V ® Q, is an Op ® Z,-lattice, self-dual up to a scalar. According
to [Kot92, Lemma 7.3] there exists g, € G(Q,) such that a(7,(A)) = gpA.

We assign to (A, A, ¢, (n,u)) the class [(aha,g?, gp)|k € Shr(G, Z")(C) of the triple
(aha, g7, gp)-

Proposition 3.6.3. The above formula defines a bijection

H(M%K((C)/A) — Shi (G, Z7)(C).

i

Proof. The map is well-defined: firstly, another choice of a results in left multiplication
by an element of G(Q). Secondly, replacing (n,u) by (no g,uv(g)) (g € KP) amounts to
multiplying ¢g” on the right by g. Thirdly, isomorphic quadruples have the same image.
Finally, the same holds for two quadruples related by the action of A.

The map is surjective: any h, € 2 defines a Hodge decomposition V @ C = V10 @
V.9~1. The subgroup VNg,A CV®Q, is a Zp)-lattice stable by Op and A = V0 v n
gp\ is an object of (AV/C) ® Z,y which is equipped with a canonical map ¢ : Op —
End(A) and for which the determinant condition holds. The group H = H;(A,Q) is
canonically identified with V; we let n = gP. Choose a Z,-polarisation A\ : A — A
compatible with Op for which g,A is self-dual; then (n(z),n(y))x = Trp+ g(cauiz,y))

for some i, ¢ € (Op+ ® Zy))3 and u € (Ogﬂ)x. It follows that the class of (z, ¢*, gp) is

equal to the image of (A,¢,c 1\, (n,u)).

The map is injective: assume that (A, ¢, A, (n,u)) (resp. (A, /N, (n/,u))) repre-
sents an element of M,, x(C) (resp. of My, k(C)) and that they have the same im-
age [(aha, 9", 9p)lx = [(a'har, g, 9,)]k in Shi(G, 27)(C). After changing o' : H' =
Hi(A',Q) = V if necessary, we can assume that aha = a’hs/; thus g? KP = ¢’ KP and
g;Kp = gpK,. The construction from the proof of surjectivity together with the fact that
a(Tp(A)) = d/(T(A")) yield an Op-linear isomorphism f : A — A" in (AV/C) ® Z,).
As a result, we can assume that A’ = A and // = +. Moreover, we can replace (n,u) by
(n,u)(gP) "¢, hence asume that i’ = 7. By definition,

(n(x),n(y))x = Trp+ jg(asulz, y))
and
(n(x),n(y))x = ' (@),7' (Y))x = Trp+ jglavu (2, y)),

which implies that X is a scalar multiple of A with the same Rosati involution; thus

N = e) for some ¢ € (Op+ ® Zy)s. In particular, eaju = ayu’, hence i = i’ and

e=u'/ueOp, 4~ This means that, after replacing (4, ¢, A, (n,u)) by € (A, 1, A\, (n,u)),

we can assume that A’ = A, /' =+, 7’ =n and N = A, but this implies that v/ = u. O

3.6.4. It follows that the quasi-projective Of,-scheme

Sk = [[(Ma, 5 /D)

i

is a model of Shi (G, Z").
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Our assumption that G, is anisotropic implies that Shi (G, Z7) is projective, hence
so is every My, Kk ®op, Ev. 1t follows from a general result of Lan [Lanlll Theorem. 4.6]
that M,, k itself is projective ([Kot92, p. 392]) in the case when C is a division algebra),
hence so is Sk.

3.6.5. The general results of Kisin [Kis10] imply that Sk is smooth over Op, whenever
K? is small enough. We give an elementary explanation of this fact in the case when
n = 2k is even, based on an analysis of geometric connected components.

Recall that the torus D = G /G4, can be described in terms of tori T = RF/@GW F
and T} = Rp+/9Gy, p+ as follows. The map “determinant” together with v induce an
isomorphism D — {(a,b) € T x T | Np/p+(a) = b"}.

If n = 2k +1 (vesp. if n = 2k), the map (a,b) > ab™" (resp. (a,b) — (ab™*,b)) defines
an isomorphism 3 : D — T (resp. § = (B1,v) : D — Ker(Np/p+ : T — Ty) x Ty).
Both tori T' Ty satisfy the Hasse principle (by Hilbert’s Theorem 90), hence so does D.
It follows that G also satisfies the Hasse principle ([Mil05, Lemma 8.20, 8.21]).

Deligne’s description of moShi (G, Z7)(C) quoted in [Mil05, Theorem. 5.17] applies in
our case. It yields, via 3, isomorphisms (depending on a choice of a connected component
of Z7)

10Shi (G, Z)(C) = (OF @ L)) \F P> /3(KP)
ifn=2k-+1 and

WoShK(G, %)(C) L) Ul(Kp) X UQ(Kp)
Ur(K?) = Ker(N : (Op®Zg)) < — (Op+ @Zg)) 5 ) \Ker(N : P> — FH0)%) /3, (KP)
Us(KP) = (Op+ @ L) S \F TP Ju(KP)

if n = 2k. In this case

70Ma, 1t (C) = UL(KP) x (OF))* /u(K?) = Ui (K?) x OF, /v(K),

m0(May,ic/A)(C) = Ur(EP) x O, \OF [v(K)

and the stabiliser in A of any connected component of M,, x(C) is equal to

Ao(K) = (0, NV(K)) [Np/p+ (05 N K)
(see [TX13] 2.3, 2.4] in the case of Hilbert modular varieties).

Proposition 3.6.6. [TX13| Lemma 2.5] After shrinking K? if necessary (i.e., after re-
placing K? by a suitable open subgroup) one can achieve Ay(K) = 0.

3.6.7. In particular, for a good choice of K? as in Proposition 3.6.6 the passage from
M,, k(C) to M,, k(C)/A amounts to identifying several connected components. As a
result, the action of A on the full scheme M,, i is free, the map My, x — Ma, k/A is
étale and My, /A (hence Sk) is smooth over O, .

3.6.8. Let Sp be the special fiber of the model Sk over the residue field k(v) = F, of
Op,. Fix a prime P | p of F*. We are going to describe explicitly the partial Frobenius
morphism ¢p : S5 — Sk in terms of the moduli problems defining the schemes M,
(the case of Hilbert modular varieties is treated in [TX, 4.6]).
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Fix a totally positive element ¢ € F'™ such that vp(c) = 1 and vp/(c) = 0 for all P’ | p,
P+ P.

Let S be a scheme over k(v) and let (A, ¢, A\,n,u) be a 5-tuple representing an element
a € My, k(S). Denote by Frp: A — A®) the relative Frobenius morphism. We define
A" = A/Ker(Fra)[P] and we denote by fp : A — A’ the quotient map. The formula
e = fpoX o fp defines a Zyy-polarisation X' : A" — A’. There is a canonical morphism
/' : Op — End(A’) induced by ¢ and fp. We let

op(A,t, A nu) = (A, N 7' o),

where ' = fpon and ca;u = ayu’. This recipe is compatible with the right KP-action on
the pairs (1, u), with isomorphisms and with the action of A. However, it depends on the
choice of c.

If we replace ¢ by ¢, then ¢ = ec with ¢ € O7, . and the 5-tuple (A", N, 7', u/) is

replaced by (A’,/,eN,n',eu’). This implies that the above formula gives rise to a well-
defined partial Frobenius morphism
P MaOZ,K/A — Maoi/,K/A7

hence to pp : Sj — Sk

The usual Frobenius morphism ¢ : S% — S% has a similar description, with A’
replaced by A®) and ¢ by p.

If P, P> | p are two distinct primes in F'* above p, then

wp; (A, 0 A, u) = (Af, 0, N5, u5)

and

PP O PP, (A7 LA, 7, u) = (Alv Lly )‘/7 "7/7 u/) =¥Po°PYPp (Av Ly A, m, u)’

where

A'= A/(Kex(Fra)[PiPa),  (frofp) (V) =cicod, 1 = fpofpon,  ccaiu=agu.

These formulas imply that [[pp, op = .

Validity of Assumption (A2)

Assumption (A2) is an abstract version of generalised Eichler-Shimura relations for
partial Frobenius morphisms. Let us give below some details following the appendix of
[Nek], where a detailed discussion of this topic following [Wed00] is included.

Let S D {¢, 00} be a finite set of primes of Q containing all primes at which F//Q, H and
7 are ramified. Let Qg D F9% be the maximal subextension of Q/Q which is unramified at
all rational primes not dividing elements of S. Recall that Q € E C E' ¢ F9% c Qg C Q.
We consider primes Pg of Qg not above S such that

Fro,/o(Ps) € Gal(Qg/F9).

Fix v|oo in F* and denote by

(p)=PsNZ, P =6,'PsN0Op, P,=P NOp+.
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Then p is a prime of Q that splits completely in F/Q, and P, is a prime of F'™ that splits
in F as P, = P,P..

The conjugacy class [u] of the cocharacter p, contains a cocharacter defined over @Q,,
which extends to a homomorphism p : Gy, z, — G, where G is a reductive model of G
over Z;, given by A. We fix such a ;1 and we let A = Ay ® Aq be the weight decomposition

of A with respect to p [Wed00k 5.1]. The decomposition A = [[ Ap defines, for each P|p
Plp

in F'*, a cocharacter up : vaoﬁ = Gmz, — Hp where Hp is a reductive model of
P
H®@p+ Fj{ over O pt = Zyp.
P
Let M = {g € G| g(A;) = A;} be the centraliser of ¢ in G, and L = M N K, where
M = M(Qp,). Let M_ = {m € M| m~'(A;) C A;}. We consider the Hecke algebra
H(M_,Q) which decomposes into tensor product

H(M_,Q) = @H(Mp_, Q).
Plp

Note that the argument behind considering H(M_, Q) instead of H (M, Q) is explained in
[Wed00), 1.4] (for considering H instead of H in the notations of [Wed00]).

ord

On the other hand, let p — Isogg, (resp. p — Isog%ks) denote the moduli space of
p-isogenies between abelian varieties (resp. ordinary abelian varieties) which are points
of Mg := [[M,, i, and let pr : Mg — Sk be the canonical map. Let Q[%] be the free

K
Q-vector space on the set of connected components of x. We define here another version
of the partial Frobenius maps, and the main ingredients are firstly the map

h:H(M_,Q) — Qp — Isog%g’ R Fp]

defined in [Nekl A4], analogously as in [Wed00, 5.8] by sending, up to a constant, the

characteristic function of a double coset LmL to the union of the connected components

on p — Isog%g classifying ordinary p-isogenies of type Lm/L in the sense analogous to

[Wed00, 5.3]; and secondly, the fact that p — Isog%rd @ F, is dense in p — Isogg» ® Fp,
provided the group G splits over Q,, as in [Wed00) §6], hence

Qlp — Isog%ﬂ @ F,] = Q[p — Isogy» @ Fp).

The previous data allows us to define [Nek, A5.2] the partial Frobenii at P (commuting
with each other) by

¢p =h(Lppp(p) " Lp)

whose product

¢ =[] er=nLup) L)
Plp

is the Frobenius isogeny, whose action on étale cohomology of Sk ® F,, corresponds to the
action of Fr(Pg).

For v;|oo in F'*', we consider the partial Frobenii ¢ p,, for P, primes of F T defined as
before. The elements u; in Assumption (A2) are given by the action of the various ¢p_
on the V(7*°)-component of

HY™(Sx @ Fp, L y) ~ HI™(Shx @5 Q, L) C HI™(My @5 Q, pr*(ZLey))
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and the set ¥ is {pr~!(Fr(Ps))} where pr : T pgar — Gal(Qg/F9%) is the canonical projec-
tion. The subset ¥ C I' gyt is dense by the Cebotarev density theorem, and the congruence
relations

Py, (ps))(ui) = 0 € End(V (7))
follow from [Nek, A5.10].

It remains to see that this version of the partial Frobenius maps is compatible with
the geometric pp defined in Section In fact, the correspondance h(Lu(p)~'L) (resp.
MLppup(p)~tLp)) on M3 is equal to the pullback by pr x pr of the graph of the Frobenius
@ : Sp — S% (resp. of the graph of the partial Frobenius ¢p : S% — S}) defined in
Section As a result, its action on étale cohomology of Mk @, leaves stable the image
under pr* of étale cohomology of Sk ® F, and its action on the latter coincides with the
action of ¢ ®id (resp. ¢p ®id) [Nek, A4.4].

3.7 Semi-simplicity of V(7*)

We are now ready to combine the previous discussion with the abstract results proved
in Chapters 1-2. In this section, suppose we are in the following situation:

3.7.0. Let G = Rp+,o(GU(C,#)) be as in Section Gr =~ [lyjo0 GU(ay, by), where
ay +by, =n > 2. Let £ : Gc — GL(Vg) be an irreducible algebraic representation of
integral weight in the sense of Definition Let 7 be an irreducible automorphic repre-
sentation satisfying (A1l). As explained at the end of Section assumption (A2) holds,
thanks to [Nek, A5.10]. Let (II,¢)) be a weak base change of 7 to GL,(Ar) x Aj.

Theorem 3.7.1. In the situation of 3.7.0:

1. If the Galois representation py, : I'r — GL,(Qy) attached to 11 is strongly irre-
ducible (i.e. it is irreducible and not induced from a proper subgroup of I'r), and
if Gr has only signatures (n,0), (n —1,1),(1,n — 1) or (0,n), then V @mSh) (7o) jg
semi-simple.

2. If the Qp-Lie algebra § = Q, - Lie(p, ,(T'r)) C gl(n,Q,) contains sl(n,Qy), then
v dim(Sh) (790) s semi-simple.

Proof. In either case, the assumptions of Theorem are satisfied for p|ngal and
PilT ga» thanks to (A2) and Corollary O

Remark: Note that (2) also follows from results of [Nek|, by a more indirect route:
[Nek, Proposition 3.10] implies that p**[r_ ., € (p1 ® ... ® p,)*™"|r_,, for some integer
m > 1, which means that [Nek, Theorem 3.12] applies, hence p = p**.

gal

In the following theorem, we consider a particular case of when p; , is not strongly
irreducible. More precisely, we study a case when p; , is induced by a character of a proper

open subgroup of I'r (see Proposition [3.3.1)).

Theorem 3.7.2. In the situation of 3.7.0, assume that n = p is prime, G has only
signature (1,p — 1) (i.e. (ap,by) = (LL,p—1)Vv:Ft—Q), F=FrQ(/—d), F*/Q is
a Galois extension, the CM type ® of F is induced from Q(v/—d), and the representation
Pr, U8 of the form

Pre = Ind?? ()

1
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where Fy is a Galois extension of ' of degree p, and x is a character of I', .

Fiz in To =g lifts 1 = id,72,..., 7 of the r elements of Gal(F/Q(v/—d)) ; and for
i=1,...,7r, let F; be the conjugate ~;(F1) of Fi. These conjugates are not necessarily
pasrwise distinct; we rearrange the indices so that Fy, ..., Fs are the pairwise distinct con-
jugates (s < r). Assume that F,..., Fs are totally linearly disjoint over F', in the sense
that F1 @p ... Qp Fs ~ Fy ... F§.

If p = V4m(Sh) (70} satisfies p** C (p1 @ ... ® p,)B® for some integer a > 1, then p is
semi-simple.

Proof. First, let us illustrate the situation with the following diagram of field extensions

s

Note that the fields F; do not depend on the choice of the lifts v;, since F' is a Galois
extension of Q(v/—d). The group Gal(F/Q(v—d)) ~ I'q /=3 /I'r acts on the set of Galois
extensions of F via lifts of its elements in FQ( V=) The integer s is then the cardinality

of the orbit of Fy under this action, hence it is a divisor of [F: Q(v/—=d)] = [FT : Q] =r.
Fori=1,...,r, let
1 xV =X
Xi :I'm,=7I'ry —Tn —Q

where the left map is conjugation by ;" ! In our situation, the representations p; defined

in (3.16)) become then
pi = Indgg (xi) ® py (1= p)

Since for i € {1,...,7}, the F;’s are not necessarily pairwise distinct (unless s = r),
we number the characters y; (resp. the representations p;) by double indices x;; (resp.
pij) in a way that for ¢ = 1,...,s, xi1,..., Xim are the characters defined on I'f;; hence
sm=r,andVi=1,...,8,Vj=1,...,m,

r r
pij = Indp? (xij) ® py (1 —p) = Indpy (Xi;)»

i

where X;j =Xij ® ,01\27@(1 —p)lr r,- These notations are coherent with those of Chapter 2.
Assumption (A2) tells us then that for each element g in the set X defined in Proposition

77777

p(g) = [T I1 wii

i=1j=1
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and P, (g (uij) =0, Vi, 3.

We show first that Proposition applies, in fact:

— Assumption (1) of Proposition [2.3.1] holds thanks to assumption (A2).

— Assumption (2) of Proposition @ holds since the Hodge-Tate weights of py ,[r,._
are distinct.

— Assumption (3) of Proposition is reflected by the fact that Fi, ..., Fy are totally
linearly disjoint over F', which means that Gal(Fy ... Fs/F) ~ [, Gal(F;/F).

The semi-simplicity of p is then a direct consequence of Theorem [2.2.1] in fact:
— Assumption (1) of Theorem [2.2.1] holds, thanks to Proposition

— Assumption (2) of Theorem [2.2.1| holds, by our hypothesis.

— Assumption (3) of Theorem [2.2.1 holds, as already mentioned.

Remarks: In the situation of Theorem [3.7.2]

1. If F1/Q(v/—d) is a Galois extension, then s = 1, which means that Theorem
[Nekl Theorem 4.7] applies and the semi-simplicity of p holds even if we do not
assume that p*5 C (p1 ® ... ® p,)P* for some a > 1.

2. If F* =Q, then r = 1 and F = Q(v/—d), which means that Theorem applies
and the semi-simplicity of p holds if we merely assume that [F} : F)| is a power of a
prime number.
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