
THÈSE DE DOCTORAT DE
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Chapter 1

Introduction

1.1 Industrial context

Trading is a search problem: buyers and sellers of financial assets must find a counterpart

to trade the quantity they desire at a price that seems fair to them [77]. Financial

markets are the place where supply and demand for financial instruments meet. We say

that markets are liquid if participants are able to trade when they want to and without

incurring excessive trading costs. One of the main roles of the financial industry is to

facilitate access for liquidity to investors, the fundamental drivers of supply and demand

of assets. Two intermediaries help investors to accomplish their goals:

• Brokers: acting on behalf of investors by buying (or selling) their orders on the

market. They try to meet a contractual benchmark price which measures execution

performance. Brokers make their profits through commissions.

• Market-Makers (or dealers): acting as the counterpart for brokers, they are simul-

taneously buyers and sellers of assets. They make profit by buying at a lower price

than the price they sell at or by receiving incentives in order to animate markets.

We say that brokers consume liquidity whereas market-makers provide liquidity.

Because of advances in information technologies, computational performances and the

fact that the market has become essentially electronic; financial agents rely today on the

use of automated strategies (i.e. algorithmic trading) to control costs, manage risks and

interact with markets [89]. Thus, technology has become the business bottom-line of the

financial industry; whose raison d’être is the optimal allocation of liquidity.

The present study provides focuses on algorithmic trading for European equities from

the point of view of a sell-side firm (i.e. brokers and dealers selling services to investors).

The following section provides the necessary background in order to understand how

equity markets and their auction mechanisms work. In addition, we present the types of

problems confronted by practitioners. In this way, we will be able to put our technical

9



10 CHAPTER 1. INTRODUCTION

results in perspective thus demonstrating the need for a quantitative approach in this

field, such as that elaborated in this study.

1.1.1 Market microstructure

Traditionally, most equity trading was centralized in the local primary exchanges (Eu-

ronext Paris, London Stock Exchange, Deutsche Börse, etc). Because of technology, glob-

alization and increasing competition, regulators have been led to liberalize the exchange-

markets, giving participants the choice among different exchanges, each one with its own

matching rules, fee-schemes and degrees of transparency [102]. This is called market frag-

mentation. As concerns Europe, this regulation initially took place in 2007 under the

name of Markets in Financial Instrument Directive, or MiFID [47].

Figure 1.1: Organization of European equity-markets before MiFID took place in 2007

(left figure) then a few years after MiFID (right figure).

For our purposes, we will pay attention to the following classes of venues as they

represent the main places where equity trading is performed today:

• Primary Exchange: Traditional exchanges being the main place for trading before

MiFID. They are essentially pre-trade transparent, meaning that the information

about the existing liquidity is available to participants before they trade. They are

still the main places to trade and they fulfill special roles like serving as reference

for prices for other type of exchanges, for example dark-pools (see below).

• Multilateral Trading Facilities (or MTFs): Places directly competing with primary-

exchanges as the trading services they offer and their trading mechanism are roughly

the same. In the case of European stocks the main MTFs are Chi-X, BATS and

Turquoise. They account for around 20%-30% of the total market share.

• Dark Pools: Exchanges that do not provide pre-trade transparency; this means

they do not communicate about their available liquidity. The value provided by

dark-pools is to allow investors to execute large orders avoiding information leakage

or being gamed by opportunistic agents, for example high-frequency traders.
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Figure 1.2: Evolution of the market share for the larger European MTFs trading the

main indexes. The remaining is mostly concentrated on the primary exchange.

1.1.2 Auction mechanisms

It is not only the long-term supply/demand forces (i.e. investors) which drive the evo-

lution of prices, but also how market-makers, brokers and other players interact on ex-

changes. They also influence the process of price formation [26, 27, 75, 96]. The auction

mechanism is the set of matching rules that defines how this interaction is carried out.

For primary exchanges, two main auction phases exist during the trading day: fixing

auctions (orders are matched after being accumulated on a book during a certain period)

and continuous auctions (orders are matched continuously as they appear on the market).

Most of the volume is traded during the continuous phase (indeed, besides exceptional

situations, fixing auctions only happens at the very beginning and at the end of the day).

Here, we focus solely on the mechanics of continuous auctions.

The limit-order book

The virtual place where offer meets demand during a continuous auction is called limit-

order book. This is the way of functioning for primary-exchanges and MTFs. There are

two main ways to send trading intentions to the order book in order to buy or sell assets:

• Market orders: The agent specifies a quantity (to buy or sell) to be immediately

executed. i.e. the agent consumes liquidity at the (best) available price.

• Limit orders: The agent specifies a quantity and the price to trade. Then she waits

until a market order arrives as counterpart at this price. Limit orders tend to

improve execution prices. However, as a downside, the agent bears the risk of never

getting a counterpart and hence executing at a worse price in the future.

We say that market orders are aggressive trades while limit orders are passive. If a

participant who sends a limit order is no longer interested in keeping that order in the

book he can cancel his order before it gets executed.
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The order book can be divided into two different sides: the bid-side (passive buyers)

and the ask-side (passive sellers). The highest proposed bid-price is called best-bid and

the lowest proposed ask-price is called best-ask. By design, the best bid-price is always

lower than the best ask-price. If were not the case, a trade would have already occurred

(i.e. the seller would have already matched the buyer).

The difference between the best-ask and the best-bid is called bid-ask spread, and it

is one of the main indicators to measure liquidity. We also define the mid-price as the

average between the best-bid and the best-ask (in practice, there is no definition for ‘the

price’ of an asset; when people talk about price, they usually refer to the mid-price or to

the price of the last trade). Another important concept is the market-depth defined as

the available liquidity in the order book. Bid-ask spread and market-depth are the two

main measures of how much the consumption of liquidity costs.

There are some important practical features to be taken into account when dealing

with limit order books:

• The minimal unit of price is called the tick size. The difference between two prices

of a given asset cannot be smaller than 1 tick.

• Orders arrive at random times in the order book. In particular, mid-price changes

occur at random times in a discrete way.

• On the equity market, limit orders are executed first by price priority, then, for

orders at the same price level, by time priority.

Thus, the short-term (intraday) price formation process is mainly driven by the way in

which different agents choose their strategies (that is, their trading algorithms) to trade

liquidity in the order book, and also by the different features of the auction mechanisms

on a given exchange. In the long-term, investors’ objectives are prominent. Thus, classical

measures such as volatility or trend, should be taken with caution as their interpretation

necessarily depends on a particular time-scale (milliseconds, day, years etc.).

Figure 1.3: Graphical representation of the Limit Order Book.
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Dark liquidity-pools

The other important marketplaces involved in the price-formation process, outside the

limit-order book, are the dark-liquidity pools. As previously mentioned, dark pools are

venues without pre-trade transparency, i.e. in which it is possible to send large orders that

can only be discovered by someone trading as counterpart. The price at which orders are

matched in the dark pool correspond to the current mid-price in the primary exchange.

Thus, dark pools do not directly participate in the price formation process, even if they

indirectly participate by attracting part of the liquidity from lit exchanges (exchanges

with visible liquidity e.g. primary and MTFs) hence reducing their market-depth.

High-frequency trading

Besides algorithmic trading, another by-product of recent technological advances has been

what it is called high-frequency trading (HFT) [12, 25, 31, 50, 117, 86, 112], a style of

trading (mostly opportunistic), accounting for a large share of the liquidity in the market,

in which the strategies are short-term and based on sophisticated statistical models or on

structural advantages. HFT relies on technology, speed and fast data processing when

accessing electronic markets (e.g. taking advantage of latency by being close to the

exchange or by earning liquidity-provision rebates). After the flash crash (figure below)

and because of its reputation of introducing toxic liquidity into the market, HFT is source

of controversy (detailed analysis of HFT exceeds the scope of the present study).

Figure 1.4: On May 6th, in 2010, the Dow Jones index experienced a fall of more than

10% in just few minutes. One of the amplification factors that motivated this phe-

nomenon was the chain-reaction of different automated-trading algorithms on related

families of assets. This event raised several regulatory questions.
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1.1.3 Optimal trading

One of the main consequences of the evolution in trading automation is the increasing

need for a quantitative approach to its analysis and optimization. Optimal trading refers

to the design of trading strategies and tactics by means of quantitative methods. This is

particularly important for strategies whose performance is measured on a statistical basis

(e.g. algorithmic trading). The following is an overview of optimal trading in the context

of the two main areas of concern for the present study: brokerage and market-making.

Brokerage

After investors and brokers agree on a benchmark to measure execution performance,

brokers face the problem of controlling all the transaction costs related to the liquidation

of large orders. Among these costs, market impact (i.e. fluctuations in stock price and

changes in supply and demand, caused by the execution of a trading strategy) deserves

particular attention as it represents the part of transaction costs more prone to optimiza-

tion. In order to reduce market impact, brokers split their parent orders into small chunks

(child orders) which are executed throughout the day. Their goal becomes to find the

optimal rate at which to liquidate the order: if too fast, they face higher market-impact

costs; if too slow, they risk market prices moving in an unfavorable direction, resulting in

a worse-than-expected execution price at the end of the day.

Two problems emerge at this point, a strategic one, meaning, how to define the right

trading rate in order to meet the benchmark constraints, and a tactical one, meaning,

how to interact with the market in order to execute the strategy at the lowest cost.

The mathematical framework to solve this problem will be discussed in the next

section. What it is important to understand here is: once the benchmark and the market-

impact model are defined, the optimization gives as a result an optimal scheduling (i.e.

the strategy layer) represented by a trading curve defining the liquidation pace during

the day. To decide this optimal pace, practitioners take as input the benchmark, their

proprietary market impact model and intraday volatility patterns as well as the intraday

volume patterns, among other parameters [24, 87, 88, 90, 91, 103, 104, 105].

It remains now to solve the problem of interacting with the market (tactical layer) in

order to execute these smaller orders in a given span of time. Two main problems arise

at this stage which can impact the performance of the trading algorithm:

• Order placement : choice between consuming liquidity immediately and sending

passive orders at an specified price. The more aggressive the order placement,

the faster the execution; the more passive, the better the price, but with some

uncertainty regarding the execution.

• Order routing : Two aspects should be considered: first of all, choosing if the order

will be sent to a dark pool or to a lit exchange (e.g. primary or MTF). Secondly,

how to trade in each venue, i.e. to take into account the execution probabilities,

spreads and fee-schemes of each one of the exchanges.
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Market-Making

Market-makers provide liquidity to the market by simultaneously proposing buying and

selling (passive) orders [116, 81]. In order for their activity to be profitable, the price at

which they propose to buy has to be lower than the price at which they propose to sell.

The gap between both prices is called market-marker’s spread (not to be confused with

bid-ask spread). The risk they bear is to have an unbalanced inventory if only one side of

their trade is executed (ideally, they would end the day with no inventory). In order to

accomplish their goals, market-makers continuously update the prices at which they post

their buying and selling orders during the trading day. The way they choose their prices

(their spreads and position with respect to the mid-price) is subject to several trade-offs:

• Probability of execution and spread : Varying the spread can have both positive and

negative effects on the profits made by the market-maker. Indeed, profit increases

as the spread becomes larger, however, larger spreads represent prices that are less

appealing for aggressive traders, thus inducing a smaller probability of execution.

• Inventory risk, prices and spread : The market-maker centers his quotes around

prices that increase the probability that execution will occur on the side on which

he has an excess of inventory. The impact of an unbalanced inventory is more

pronounced as the day ends, as he needs his inventory to vanish more rapidly. The

spread also plays a second order effect in the inventory risk, as executing too many

orders increases the variance of the inventory, inducing another source of risk.

• Adverse selection: an important concern for market-makers involves cases in which

an opportunistic trader, with more accurate information about the price than the

market-maker, buys (or sells) shares knowing that the price will increase (or de-

crease). This creates inventory unbalance for the market maker, who will be forced

to re-balance it in the future at an unfavorable price; this is called adverse selection.

• Rebates: market-makers have a supplementary incentive to trade (and to propose

closer spreads) because they are paid by the exchange as liquidity providers. This

is one of the main sources of (high-frequency) market-makers’ profits.

Final remarks

It should be mentioned that, in the practice of implementation of trading strategies and

tactics, three separate stages are involved [92]:

• Pre-trade estimation of costs: calibrate the market-impact model by using historical

data and estimate the cost of trading through backtests .

• Control of the execution process: real-time control of the algorithm interacting with

exchanges taking into account current market conditions [14].

• Transaction cost analysis: ex-post performance analysis through a breakdown of

the different costs affecting the resulting strategy’s PnL.
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1.2 Models for price and liquidity

In the next three sections we highlight the reasoning behind the modeling choices made in

this dissertation, in particular to introduce the Avellaneda-Stoikov model, and also give a

brief presentation of the state-of-art in quantitative trading from the point of view of our

research. This step is important not only to situate this work within the academic litera-

ture on the subject but also to underscore the project’s relevance for the financial industry.

We also present two approaches that can be used in order to solve the multistage optimiza-

tion problems resulting from the modeling, in particular, dynamic-programming (through

the HJB equation) and on-line learning (through stochastic approximation methods).

1.2.1 Descriptive and statistical modeling

The main difference between the quantitative models used in algorithmic-trading and

the models used in the classical areas of mathematical finance (e.g. portfolio theory,

derivatives pricing etc.) is that, in the case of algorithmic-trading, not only the price

process needs to be modeled, but also the liquidity (i.e. the order book) and the impact

of our own strategy as it affects supply and demand (market impact). Moreover, the

different features of price and liquidity for short time-horizons such as the tick-size, the

spread, order book depth, price-impact and the discrete arrival of orders, should be taken

into account as their effects are no more secondary.

Several approaches to include microstructure aspects in the quantitative models have

been proposed in the literature in recent years [1, 32]. One way to classify the different

models of price and liquidity is to consider their granularity when modeling the price. In

that view, microstructure-noise models [6, 124, 125, 127, 136], the coarser in granularity,

take as a starting point a diffusive price in which microstructure effects are added as noise.

These models were originally devised for statistical purposes (estimation of volatility using

high-frequency data); finer-granularity models devised for the same purposes are studied

in [15] by modeling the price as a difference of Hawkes processes in such a way that the

statistical local and asymptotic behaviors can be characterized using spectral analysis.

Another way to look at price and liquidity is to take as a starting point the finer-

granularity mechanics of the order book, studying the behavior of the price, liquidity and

other market quantities as the macroscopic resultants of the microscopic interplay of limit

and market orders. In this direction, we can count the zero-intelligence models [53, 132,

43], allowing us to obtain statistical relations between macroscopic quantities by taking as

a starting point the intensities of the different events arising in the order book (seen as an

array of queues). The drawback of these models is that, even if they are interesting from

theoretical and simulation viewpoints, they are difficult to handle if we are interested in

a simple mathematical characterization for the asymptotics of the price and the market

impact. Approaches still relying on the order book dynamics, but limiting the focus only

to the first levels (or using a continuous representation of liquidity), can provide closed-

form relations between microscopic and macroscopic quantities [40, 82, 106]. Approaches

aiming for the asymptotic behavior of a complete order book are in [2].
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Finally, we can mention the econophysics approach, which attempts to devise micro-

scopic model so that the resulting behavior for macroscopic quantities is consistent with

observations of large sets of data [51, 110, 52, 74, 29]. The caveat with all the models just

mentioned is that they were originally devised to solve problems such as parameter esti-

mation, or simply describe mechanically the relations between price and liquidity. These

goals are not necessarily in line with the optimization of the trading process which is more

focused on the analysis of the impact of trades on price, the probabilities of capturing

liquidity and measuring price-risk. Besides some articles in econophysics which study the

relation between orders and their market-impact [30, 133, 135], this class of models does

not take as a main point of view an algorithm, so they do not naturally integrate the

logic of a trading algorithm.

1.2.2 Market-impact models for trading

As mentioned above, one of the most important aspects of modeling of algorithmic trading

strategies is to take into account the impact of the algorithm on the dynamics of supply

and demand (and hence the price at which the algorithms buy or sell). This effect is

called market impact and it can be mechanical (movement of the price due to the volume

of our orders) or informational (changes in the underlying supply/demand views on the

price). The following is a survey of the two main families of models of price and liquidity

that take this factor into account: resilience models and black-box models.

Resilience models

This family of models, inspired by the works of Obizhaeva and Wang [115] and Gatheral

[62], models the impact of trades in the order book by considering that a trade first

moves the price by the mechanical liquidity consumption, before the order book reacts by

re-filling again (this is called resilience). Modeling this resiliency of the book allows for

optimal-trading solutions. This line of research has been explored by Alfonsi et al. in [7].

They model the shape of the order book and derive from it market-impact functions. The

latter is interesting from a theoretical point of view as it yields non-arbitrage relationships

characterizing prices and liquidity. However, from a trading perspective these models are

difficult to calibrate by using the available data.

Black-box models

A more pragmatic line of research has been opened by the seminal article of Almgren and

Chriss [10] and its follow-up [8, 9, 11]. They introduce a discrete black-box model for

market-impact which make it possible to obtain the optimal solution of the trading prob-

lem via classical optimization techniques (variational calculus in the continuous version

and stochastic control in the adaptive case). The advantage is that the impact is char-

acterized by a small-dimensional set of parameters which are calibrated from real-data.

This makes the model flexible, adaptive for practical applications and easily generalizable.
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By following this framework, we obtain an optimal scheduling curve that traders

should follow throughout the day in order to meet the benchmark. This optimal schedul-

ing curve is obtained by balancing the trade-off between market impact and market

risk after defining a risk-aversion parameter. This framework, intended originally for

implementation-shortfall, can be applied to a larger range of benchmarks. This approach

has three main advantages:

• Defining an optimal scheduling curve naturally separates the problem of splitting the

parent-order into child-orders from the micro-structural aspects of trading (interac-

tion with the order book or a dark pool). It simplifies the modeling, the resolution of

the problem as well as the computational design of the trading algorithm (strategy

versus tactic).

• It is mathematically solvable and can be adapted to more complicated problems

(e.g. traders with views on the price, varying volatility, varying liquidity, different

market-impact functions etc.)

• It is flexible as the model is represented by parameters that can be computed from

real data without needing too much granularity in the data-set (performing regres-

sions to obtain the market-impact parameter is sufficient), by contrast with models

relying on the detailed behavior of the order book.

1.2.3 Trading in limit-order books

Models such as the Almgren-Chris model make it possible to solve the strategic layer

of the algorithm, however the granularity of the model is not fine enough to take into

account microstructure effect. In order to optimize the interaction with the limit-order

book or with a dark pool (i.e. the tactic) we need to model how liquidity is captured as

a function of the posting of orders in the book (keeping in mind that we still want to

keep control over issues related to price-risk, i.e. volatility and asymptotic behavior of

the price). In the present study we are concerned with this kind of tactical problems in

the cases of optimal liquidation and high-frequency market-making.

High-frequency market-making

From a mathematical point of view, the market making problem corresponds to the choice

of optimal quotes (i.e. the bid and ask prices) throughout the trading session, in order

to optimize a given utility function, taking into account the cash and inventory dynamics

of the trader. To provide a good model, we need to take into account two features of the

prices:

• The probability of getting orders executed as a function of where they are posted

by the market-maker.

• Measuring market-risk (i.e. cost of liquidating the inventory at an unfavorable price

at the end of the day).
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A successful approach to treating this problem (and that will be detailed in the next

section) is that of Avellaneda and Stoikov [13], which proposes an innovative optimization

framework when trading in a limit order book. In their approach, rooted in a paper

by Ho and Stoll [80], the market is modeled using a reference price or fair price St
following a Brownian motion with standard deviation σ, and the arrival of a buy or sell

liquidity-consuming order at a distance δ from the reference price St by a point process

with intensity A exp(−kδ), A and k being two positive real constants which characterize

statistically the liquidity of the stock.

Since the publication of Avellaneda-Stoikov’s article, other authors have analyzed

market-making models in a similar way. We can cite here studies by Guéant et al. [65]

which fully solved the Avellaneda-Stoikov problem, hence obtaining a detailed analysis

of the solutions. Other contributions, for example Cartea et al. [33], which extend the

model to different utility functions, more sophisticated market dynamics and switching

regimes among other approaches. In a similar line, [73] studies the problem of trading

with limit and market orders, whereas in [72] the same authors treat the problem of

pro-rata limit-order books.

Optimal liquidation tactics

The literature on optimal liquidation with limit-orders is very close to market-making as

we can consider that liquidation, at a tactical level, is a one-sided market-making (i.e.

we propose limit orders just in one side of the spread). Two papers in particular have

pioneered research in this field, one by Guéant et al. [64] and one by Bayraktar et al.

[18]. The modeling is roughly the same as in Avellaneda-Stoikov’s approach.

Further advances in that line of research were proposed by Guéant et al. [63] by

continuing the study of the problem of optimal liquidation with limit orders in the case

of more general shapes for the intensity function (taken as exponential in the original

model), then introducing research in two new areas. First, optimal liquidation as a pricing

problem [71, 67, 66] in which brokers propose a guaranteed benchmark to clients and the

strategy is to meet this benchmark at lower risk (similar to the Black-Scholes framework

for derivatives). Second, studying liquidation from the point of view of complex products,

such as derivatives or ASR [68, 69, 70], in order to study how transaction costs impact

the optimal hedging strategy.

A third direction of research, which we will treat in the last two chapters of this disser-

tation, was proposed by Laruelle et al. [101] which, taking as a starting point a modified

version of the Avellaneda-Stoikov model, solves the problem by a stochastic approxima-

tion approach which is not based on the (backwards) dynamic-programming principle but

in a (forward) trial-and-error optimization. This approach is original as it provides an

iterative way to look at the optimization of trading tactics which is more flexible in terms

of defining price dynamics and the prior knowledge of the model-parameters than in the

HJB approach.
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Trading in dark-pools

Trading in dark-pools is closed to trading in limit-order books since the routing across

liquidity venues is done in terms of the overall algorithmic framework, at the same level

as tactical liquidation problems. This topic has been treated less in the literature and it

goes beyond the scope of this dissertation. Among the work in this field, we can mention

Kratz and Schöneborn [94] and Laruelle et al. [100].

1.3 Avellaneda-Stoikov model

As mentioned before, the Avellaneda-Stoikov model [13] is a successful attempt at a

mathematically tractable model that integrates simultaneously price and the liquidity

from the perspective of a trading algorithm which liquidates orders passively in the order

book. The model, originally intended for high-frequency market-making has been studied

in [65] and extended to the case of optimal liquidation with limit orders [64]. We present

this model as it will be central in all of the following chapters in this dissertation. The

main goal of the Avellaneda-Stoikov model is to consider, in a unified framework, the two

aspects that are important for an algorithm interacting with the order book: controlling

the short-term probability of execution (for a market maker, the spread and, for a broker,

how passive an order can be), as well as the price-risk (measured by the volatility of

long-term price movements) when liquidating the remaining inventory.

1.3.1 The reference price

The first brick of the model is to consider a reference price St (for example the mid-price)

evolving as a Brownian motion (a reasonable hypothesis as we will consider primarily

short time horizons):

dSt = σdWt. (1.1)

In practice, the specific choice of what the ‘reference price’ means has to be thought

from the point of view of the applications. We are not trying to find some ideal ‘fair price’;

the reference price is just the reference point to which we will measure the distance where

we place orders in the order book. So, this reference price will usually be a sampling of the

mid-price (for market-making) or the best-opposite price (for optimal liquidation). The

main features we ask for the reference price is to have a volatility that serves as a proxy

for market risk (in the context of liquidation at the end of a period) and a calibration of

the liquidity parameters (see below) consistent with the model.

1.3.2 View on liquidity

In order to model the liquidity, the idea is to consider that if we place a passive order at

a distance δ from the reference price, it will get executed with a probability given by the

intensity:

λ(δ) = Ae−kδ. (1.2)
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By an abuse of terminology, we mean that the probability for such an order to be

executed between t and t+ dt is equal to Ae−kδdt up to the second order, independently

of the past.

In particular, a trader who continuously posts orders (for example selling) at distances

δt from the reference price will execute a flow given by the compound Poisson process

(N
(δt)
t )t≥0 with compensator process:

Λt =

∫ T

0

Ae−kδtdt. (1.3)

So, for orders set at the ask, the realized gain of the trader evolves following the

evolution equation

dXt = (St + δt)dN
(δt)
t . (1.4)

For orders set at the bid, the quantity of inventory bought is given by:

dXt = (St − δt)dN (δt)
t . (1.5)

Depending on the application (market-making or optimal liquidation), we can define

the payoff by using the final values of XT , ST and the inventory at the end of the trading

session. We will begin by using a CARA utility function.

The in-depth discussion about the mathematical formulation of the model (formal

relation between price and liquidity) will be made in each of the chapters as their specifics

are slightly different depending on the optimization model.

1.3.3 Advantages of the model

First, liquidity (i.e. the order book) appears as a blackbox -like statistical model with low-

dimensionality; the parameters of the model are estimated from real-time data under the

hypothesis that these parameters characterize intraday features of the stock liquidity on

a given exchange. Secondly, the price-process behaves as a Brownian motion which keeps

consistency with classical models. Finally, the functions involved in the model allow

a straightforward analysis, and even closed formulas, when approaching the problem

through optimization techniques (e.g. stochastic control or stochastic approximation).

Several advantages plead in favor of this approach: dealing with a low-dimensional

statistical-model where liquidity capturing is viewed through a blackbox makes this ap-

proach flexible. It can be adapted to any kind of market regime if we update often enough

the parameter estimation. Moreover, it highlights the fact that our point of view is the

trading algorithm and a focus on what concerns its performance; it is not an attempt to

describe, in general, the processes arising in the market.

Another advantage is that a simple stylized model providing explicit numerical meth-

ods, or even closed formulas, makes it possible to perform a comparative static analysis;

that is understanding the dependency between the different parameters of the model and

its relations with the optimal solution. Also it suggests clues and heuristics to perform
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the mathematical (and numerical) analysis in more complex settings. Finally it helps to

achieve a qualitative understanding of the solution before its numerical computation.

Last but not least, the use of parametric models and functional representations leading

to explicit methods and solutions is helpful as far as implementation is concerned. The

flow in a financial firm involves several people with different kinds of backgrounds and

technical skills. A quantitative model where intuitions can be communicated along the

different modules (IT, statisticians, quants, etc) working at the development of an algo-

rithm allows a faster deployment than a more sophisticated model that probably cannot

be implemented, due to its inability to be internally communicated inside the firm.

1.4 Optimization approaches

Once a mathematical model for prices and liquidity is defined, we are in a position to

define the optimization problem to be solved. In this dissertation we will focus on two

situations: tactics for algorithmic-brokerage and high-frequency market-making. In both

cases the structure of the problem is roughly the same:

1. The goal of the tactic is to find the optimal price at which to passively post a given

volume in the limit-order book, with the aim of providing or capturing liquidity.

2. The optimal quotes are updated throughout the day in successive steps (or contin-

uously), taking into account both our increasing knowledge of the market dynamics

and the state of our algorithm. Thus, the problem is said to be multistage.

3. The mathematical goal is to maximize a utility function depending on the dynamics

of the algorithm, which by interacting with the market, is subject to exogenous

random factors; these can represent risk (we know the statistical laws governing the

randomness) or, otherwise, when the statistical laws of the noise are not addressed,

we talk about uncertainty.

As we will see, two types of reasoning can be adopted in order to solve problems of

this kind: by backwards reasoning, using the dynamic-programming principle and, by

forward reasoning, leading to online-learning techniques.

1.4.1 Exploitation-versus-exploration problem

When solving multistage optimization problems in the presence of randomness, i.e. when

a given variable is updated at each stage in order to control some system with the aim of

optimizing its performance, two types of problems occur:

• Exploitation: finding a rule giving as output, at each moment, the next-stage opti-

mal action by using the information at hand.

• Exploration: learning the underlying nature of the randomness governing the system

by exploring the different states of the world while performing the actions.



1.4. OPTIMIZATION APPROACHES 23

As mentioned above, two ways of reasoning are possible to this end: a backwards and

a forwards one. In a nutshell, the idea of the backwards approach is to characterize the

randomness through a previously devised – parametric or non-parametric – statistical

model (estimated beforehand using information about past performances, via classical

inference techniques). Hence, the expectation of the function involved in the optimization

can be considered known (indeed, they can be calculated explicitly or obtained through

simulation). In this case we can define (e.g. by means of the dynamic-programming

principle) a deterministic equation for the running expectation of the (optimal) final

payoff. Doing so, we can directly apply the dynamic-programming principle which yields

a backward relation between the (optimal) expected final-payoff at one stage, in relation

to that of the preceding stage.

Note that in this approach, the function relating past information to future action

is deterministic, even if the trajectory of the system is not. The exploration phase is

performed before launching the algorithm and the optimization methodology only tackles

the exploitation problem. This is a situation similar to option-pricing where the control

of the system (i.e. the ∆ of the portfolio) can be obtained by means of a PDE.

On the other hand, in the forward approach, the exploration and exploitation problems

are solved simultaneously during the run-time of the algorithm, i.e. there is no a priori

specification about the laws (or the parameters) driving the randomness of the system:

historical data do not totally define, beforehand, our view of the dynamics of the system.

Thus, the optimal control of the system is chosen in an iterative way. It is updated by

two factors: first, the current state of the system, and second, the innovations (incoming

information). In this case, the downside is that it is more difficult to have, from the

beginning, an overall picture of the system until the end of the strategy; the function

relating past information to future choices is identified on-line. In this approach the

dynamics of the algorithm choosing actions based on past information is stochastic.

It is clear that the best approach depends on the nature of the system; for a system

in which the laws of nature are similar across the days, the backward approach is more

suitable as an on-line exploration phase is less prioritary. However, when the uncertainty

in the system has a different nature from day to day, a more adaptive approach is needed

and it is more suitable to use online-learning techniques. Ideally, we would like to combine

both approaches as is the goal in some approaches for reinforcement learning [84] or

dynamic policy programming [4], but this goes beyond the scope of this work.

In the next subsections, we give a brief introduction to the rationale behind the math-

ematical techniques we will use in the following chapters. These are, for the backward

approach, the HJB equation, and for the forward approach, online learning.

1.4.2 Dynamic-programming and the HJB equation

The dynamic-programming principle, developed in Bellman’s seminal work [19] (see also

[128]) is one of the most influential results in Mathematics in the 20th century and relies

on the simple observation that the optimal strategy for a multistage problem with N + 1
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stages, starting at a point x ∈ X (X being the state-space) can be decomposed in two

parts: (1) the next step and (2) a new multistage problem, with N stages starting at a

point y ∈ X (which is the state of the system after applying the optimal control during

the first stage). This idea is the core of the backward approach.

Assume, for example, a discrete, deterministic dynamic system which evolves accord-

ing to the equation

xn+1 = xn + f(n, xn, un), n ∈ {0, . . . , N}, xn ∈ Rd, un ∈ Rp.

where un is our control strategy at time n.

Let us consider that the goal of our control problem is to minimize a cost function of

the form:

C(x0, (un)) = φ(xN ) +
N−1∑
n=0

R(n, xn, un).

The problem can be seen as a classical optimization problem where we want to find

u ∈ R(N+1)m. However, if N and m are large, the problem will suffer from the curse of

dimensionality. The idea proposed by Bellman is to define a backward recursive procedure

to tackle the problem in a way where the numerical complexity grows only linearly in

the number of steps. The key point is to represent the control problem (of dimension

R(N+1)m) as a recursion of N+1 simpler problems defined on Rm. This has the advantage

of making the numerical problem more tractable. It also gives us qualitative ideas about

the structure of the solutions. To understand how the principle works, the key element

to introduce is the optimal cost-to-go function:

J(n, xn) = min
(uk)k=n,...,N−1

[
φ(xN ) +

N−1∑
k=n

R(k, xk, uk)

]
.

This function represents the optimal value of the cost function if we consider that the

problem starts at time n with the system being in the state xn.

We can easily verify the relationship:

J(N, x) = φ(x)

J(n, x) = min
u∈Rp

[R(n, x, u) + J(n+ 1, x+ f(n, x, u))] .

The dynamic programming algorithm works in the following way:

• Step 1: We set the final condition J(N, x) = φ(x).

• Step 2: We compute (by backward induction on n)

u∗n(x) = argmin [R(n, x, u) + J(n+ 1, x+ f(n, x, u))]

J(n, x) = min [R(n, x, u∗n(x)) + J(n+ 1, x+ f(n, x, u∗n(x)))]
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• Step 3: Using the initial condition we get: x∗n+1 = x∗n+f(n, x∗n, u
∗
n) and the optimal

control is u∗n = u∗n(x∗n).

A virtue of the dynamic programming principle is that the framework works in the

very same way even if the system has a stochastic evolution. For example, when the

controlled system dynamics follows an Itô diffusion of the form:

dXs = b(Xs, us)ds+ σ(Xs, us)dWs

and the performance criterion is defined by:

J(X,α) = E

[∫ T

0

f(Xt, ut)dt+ g(XT )

]
.

The cost-to-go function (also called value function) is defined by:

J(t, x, α) = inf
u∈A

E

[∫ T

t

f
(
Xt,x
s , us

)
ds+ g

(
Xt,x
T , us

)]
.

The process Xt,x
s represents a diffusion that follows the dynamics given by the above

SDE starting from x at time t.

By virtue of the Itô formula we have (informally):

E[dJ(t,Xt, α)] = ∂tJ(t,Xt, α)dt+ ∂xJ(t,Xt, α)b(Xt, t)dt+
1

2
σ2(Xt, t)∂xxJ(t,Xt, α)dt.

Hence, the backward recursion leads to the Hamilton-Jacobi-Bellman equation:

(HJB) − ∂tJ(t, x) = inf
u∈f

[
R(t, x, u) + b(x, u, t)∂xJ(x, t) +

1

2
σ2(x, u, t)∂xxJ(x, t)

]
.

It is important to notice that the infimum over the cost-to-go function is taken over

the space of admissible controls (infinite dimensional). The infimum in the HJB equation

is taken over R. The extension to processes incorporating jumps (which we will use in

chapters 2 and 3) follows the same logic. Mathematical details of this theory are beyond

the scope of this work and can be found in [54, 126, 17, 134].

1.4.3 Stochastic approximation and on-line learning

Stochastic approximation is the theory behind our forward approach. The idea is to

represent the optimal control as a Markov process where the stochastic part is a function

of the incoming new information so that the current control is updated in order to converge

to the optimal control, which can be represented as the zero of a critical point of a function

writen as h(θ) = E[H(θ, Y )], where h is difficult to compute but H(θ, Y ) can be simulated

(or observed after the application of the control θ) at a reasonable cost.
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Simply put, if θn represents the current control, we would like to devise a dynamical

system (also known as stochastic algorithm) reading

θn+1︸︷︷︸
new value

= θn︸︷︷︸
old value

− γn+1︸ ︷︷ ︸
step (weight)

× H(θn,

innovation︷ ︸︸ ︷
Yn+1 )︸ ︷︷ ︸

correction using incoming information

, (1.6)

in such a way that this sequence is converging to the target value we are looking for.

A caveat must be stated at this point: in order to implement this kind of approach we

do not need to specify the stochastic dynamics of innovations. However it is important

that these innovations are i.i.d., stationary and ergodic. Throughout this work we will

focus in the i.i.d. situation, however there are more general results on the convergence

of stochastic algorithms, e.g. the works of Laruelle [99] (averaging innovations) and the

work of Schreck et al. [131] (innovations are allowed to be controlled Markov chains).

Because this powerful class of methods are less known in the financial community, we

explore them in more detail in chapter 5.

1.5 Outline and contributions

The goal of this work is to expand the Avellaneda-Stoikov model, originally devised for

market-making, in different directions. We also study the model from different angles, dis-

cussing along the way issues that are interesting from a mathematical and practical stand-

point. We also want to highlight throughout this work the two optimization paradigms

(dynamic programming vs. online learning), the importance of black-box models which

make it possible to characterize the market via a small set of parameters estimated on-line

and the importance of mathematical results that not only provide ‘a number’ as a result

but also provide closed formulas in some important cases which permit the study of the

nature of the solutions, comparative statics and approximations.

Concretely, this dissertation is structured as follows:

• The next chapter provides a full resolution of the Avellaneda-Stoikov problem in its

original setting by formulating via the dynamic programming principle, a non-linear

HJB equation characterizing the market-maker optimal quotes. We show that we

can transform by a non-trivial change of variable the non-linear PDE into a linear

system of ODE. This allows us to provide an in-depth analysis of the optimal quotes,

asymptotic solutions and comparative statics. We also extend the analysis to more

involved situations like a price dynamics with a trend or adverse selection effects.

We conclude by illustrating backtests of the algorithm’s implementation.

• Chapter 3 provides an original result, not only from the point of view of mathematics

but also one of the first quantitative models of optimal liquidation through limit-

orders. The idea is to take as starting point the results from chapter 2 and consider

optimal-liquidation with passive orders as a one-sided market-making. Again, the
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solutions via a similar change of variable allow a complete analysis of the solutions.

Results from chapter 2 and 3 have been published in [64, 65].

• In chapter 4, we study the problem from a different angle. We are concerned with

the interpretation and the calibration of the model by using real data. We provide

a mathematical analysis of the convergence and the efficiency of two estimators for

the intensity of the Poisson process N (δt). One of the estimators we will present

takes as input data the waiting time until execution. This is interesting to study

execution probabilities, not only in our context but also in situations where liquidity

is dark so that we can only observe our own deals. We provide examples from real

data comparing the parameters of the model to different market quantities, showing

that the Avellaneda-Stoikov model is a good representation of liquidity and prices.

• In the last two chapters (5 and 6), we study the optimization problem in algorithmic

trading (with market-making as guiding problem) from the point of view of stochas-

tic approximation as an alternative (or complement) to the dynamic programming

approach. First, in chapter 5, we give a overview of the main mathematical results

from the theory of recursive stochastic algorithm for optimization problems. Then,

in chapter 6, we start from a modified version of the Avellaneda-Stoikov model

like in the work of Laruelle et al. [101] in order to find the market-maker optimal

quotes. In this chapter we emphasize the closed formulas obtained in the Brownian

situation, then we use it as a benchmark case to understand the method.

Throughout this study, we focus on how to integrate the model with practical applica-

tions and test the results on both numerical simulations and real data. We conclude with

a discussion on possible areas for future research as well as providing the bibliographical

references in the final pages of this study.
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Chapter 2

Dynamic Programming

Approach to Market-Making

2.1 Introduction

In this chapter we present an optimization framework for market-making based on the

theory of stochastic-control (through the dynamic programing principle in the form of

the Hamilton-Jacobi-Bellman equation). This approach was originally introduced by Ho

and Stoll [80] and formalized mathematically by Avellaneda and Stoikov in their seminal

paper [13]. The idea is to represent the stock’s reference price by a process St following a

centered Brownian motion with standard deviation σ and to consider the distances to this

price as controls which are updated throughout the day in order to maximize an utility

function. This version of the dynamic programming principle defines an non-linear PDE

for the value function, which allows us to characterize the optimal quotes.

We will show, by using a non-trivial change of variables, that the Hamilton-Jacobi-

Bellman equations associated to the problem boil down to a system of linear ordinary

differential equations. This change of variables (i) simplifies the computation of a solution

since numerical approximation of the PDE is now unnecessary, and (ii) allows to study

the asymptotic behavior of the optimal quotes. In addition, we use results from spectral

analysis to provide an approximation of the optimal quotes in closed-form and provide a

comparative-statics analysis. All these results were presented in [65].

We start this chapter by providing a description of the model, the associated stochastic-

control problem and we introduce our change of variables, leading to the analytical

solution of the HJB equation. The latter allows to study the asymptotic behavior of

the optimal quotes, yielding good approximations in closed-form and this leading to a

comparative-statics analysis. We provide two generalizations of the model: (i) the intro-

duction of a drift in the price dynamics and (ii) the introduction of ‘passive’ market-impact

(that may also be regarded as adverse selection). At the end of the chapter we present

backtests of the model and the proof of the main mathematical results.

29
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2.2 Setup of the model

2.2.1 Price and liquidity

Let us fix a probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0 satisfying the

usual conditions. We assume that all random variables and stochastic processes are

defined on (Ω,F , (Ft)t≥0,P).

We consider a high-frequency market maker operating on a single stock. We suppose

that the mid-price of this stock, or more generally a reference price of the stock, moves

as an arithmetic Brownian motion:

dSt = σdWt.

The market maker under consideration will continuously propose bid and ask prices

denoted respectively Sbt and Sat and will hence buy and sell shares according to the rate

of arrival of market orders at the quoted prices. His inventory q, that is the (signed)

quantity of shares he holds, is given by

qt = N b
t −Na

t ,

where N b and Na are the point processes (independent of (Wt)t) giving the number of

shares the market maker respectively bought and sold (we assume that transactions are

of constant size, scaled to 1). Arrival rates obviously depend on the prices Sbt and Sat
quoted by the market maker and we assume, in accordance with the model proposed

by Avellaneda and Stoikov [13], that intensities λb and λa associated respectively to N b

and Na depend on the difference between the quoted prices and the reference price (i.e.

δbt = St − Sbt and δat = Sat − St) and are of the following form:

λb(δb) = Ae−kδ
b

= A exp(−k(s− sb)),
λa(δa) = Ae−kδ

a

= A exp(−k(sa − s)),

where A and k are positive constants that characterize the liquidity of the stock. In

particular, this specification means – for positive δb and δa – that the closer to the

reference price an order is posted, the faster it will be executed.

As a consequence of his trades, the market maker has an amount of cash evolving

according to the following dynamics:

dXt = (St + δat )dNa
t − (St − δbt )dN b

t .

To this original setting introduced by Avellaneda and Stoikov (itself following partially

Ho and Stoll [80]), we add a bound Q to the inventory that a market maker is authorized

to have. In other words, we assume that a market maker with inventory Q (Q > 0

depending in practice on risk limits) will never set a bid quote and symmetrically that a

market maker with inventory −Q, that is a short position of Q shares in the stock under

consideration, will never set an ask quote. This realistic restriction may be read as a risk

limit and allows to solve rigorously the problem.
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2.2.2 The objective function

Now, coming to the objective function, the market maker has a time horizon T and his

goal is to optimize the expected utility of his P&L at time T . In line with [13], we will

focus on CARA utility functions and we suppose that the market maker optimizes:

sup
(δat )t,(δbt )t∈A

E [− exp (−γ(XT + qTST ))]

where A is the set of predictable processes bounded from below, γ is the absolute risk

aversion coefficient characterizing the market maker, XT is the amount of cash at time T

and qTST is the evaluation of the (signed) remaining quantity of shares in the inventory

at time T (liquidation at the reference price ST
1).

2.3 Solution to the Avellaneda-Stoikov problem

2.3.1 Characterization of the optimal quotes

The optimization problem set up in the preceding section can be solved using the classical

tools of stochastic optimal control. The first step of our reasoning is therefore to introduce

the Hamilton-Jacobi-Bellman (HJB) equation associated to the problem. More exactly,

we introduce a system of Hamilton-Jacobi-Bellman partial differential equations which

consists of the following equations indexed by q ∈ {−Q, . . . , Q} for (t, s, x) ∈ [0, T ]× R2:

For |q| < Q:

∂tu(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
+ sup

δa
λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)] = 0.

For q = Q:

∂tu(t, x,Q, s) +
1

2
σ2∂2

ssu(t, x,Q, s)

+ sup
δa

λa(δa) [u(t, x+ s+ δa, Q− 1, s)− u(t, x,Q, s)] = 0.

For q = −Q:

∂tu(t, x,−Q, s) +
1

2
σ2∂2

ssu(t, x,−Q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb,−Q+ 1, s)− u(t, x,−Q, s)

]
= 0

with the final condition:

∀q ∈ {−Q, . . . , Q}, u(T, x, q, s) = − exp (−γ(x+ qs)) .

1Our results would be mutatis mutandis the same if we added a penalization term −b(|qT |) for the

shares remaining at time T . The rationale underlying this point is that price risk prevents the trader

from having important exposure to the stock. Hence, qt should naturally mean-revert around 0.
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To solve these equations we will use a change of variables based on two different ideas.

First, the choice of a CARA utility function allows to factor out the Mark-to-Market

value of the portfolio (x+ qs). Then, the exponential decay for the intensity functions λb

and λa allows to reduce the Hamilton-Jacobi-Bellman (HJB) equations associated to our

control problem to a linear system of ordinary differential equations:

Proposition 1 (Change of variables for (HJB)). Let us consider a family (vq)|q|≤Q of

positive functions solution of:

v̇q(t) = αq2vq(t)− η (vq−1(t) + vq+1(t)) , q ∈ {−Q+ 1, . . . , Q− 1}, (2.1)

v̇Q(t) = αQ2vQ(t)− ηvQ−1(t), (2.2)

v̇−Q(t) = αQ2v−Q(t)− ηv−Q+1(t) (2.3)

with ∀q ∈ {−Q, . . . , Q}, vq(T ) = 1, where α = k
2γσ

2 and η = A(1 + γ
k )−(1+ k

γ ).

Then, u(t, x, q, s) = − exp(−γ(x+ qs))vq(t)
− γk is solution of (HJB).

Then, the following proposition proves that there exists such a family of positive

functions:

Proposition 2 (Solution of the ordinary differential equations). Let us introduce the

matrix M defined by:

M =



αQ2 −η 0 · · · · · · · · · 0

−η α(Q− 1)2 −η 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 −η α(Q− 1)2 −η
0 · · · · · · · · · 0 −η αQ2


where α = k

2γσ
2 and η = A(1 + γ

k )−(1+ k
γ ).

Let us define

v(t) = (v−Q(t), v−Q+1(t), . . . , v0(t), . . . , vQ−1(t), vQ(t))′

= exp(−M(T − t))× (1, . . . , 1)′

Then, (vq)|q|≤Q is a family of positive functions solution of the system of ordinary differ-

ential equations of Proposition 1.

Using the above change of variables and a verification approach, we are now able to

solve the stochastic control problem, that is to find the value function of the problem and

the optimal quotes:
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Theorem 1 (Solution of the control problem). Let consider (vq)|q|≤Q as in Proposition 2.

Then u(t, x, q, s) = − exp(−γ(x+qs))vq(t)
− γk is the value function of the control prob-

lem.

Moreover, the optimal quotes are given by:

s− sb∗(t, q, s) = δb∗(t, q) =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
, q 6= Q

sa∗(t, q, s)− s = δa∗(t, q) =
1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
, q 6= −Q

and the resulting bid-ask spread quoted by the market maker is given by:

ψ∗(t, q) = −1

k
ln

(
vq+1(t)vq−1(t)

vq(t)2

)
+

2

γ
ln
(

1 +
γ

k

)
, |q| 6= Q

2.3.2 Asymptotic behavior and approximation of the optimal quotes

To exemplify our findings and in order to motivate the asymptotic approximations that

we shall provide, we plotted on Figure 2.1 and Figure 2.2 the behavior as a function of

time and the inventory of the optimal quotes. The resulting bid-ask spread quoted by

the market maker is plotted on Figure 2.3.

We clearly see that the optimal quotes are almost independent of t, as soon as t is far

from the terminal time T .
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Figure 2.1: Behavior of the optimal bid quotes with time and inventory. σ = 0.3 Tick ·
s−1/2, A = 0.9 s−1, k = 0.3 Tick−1, γ = 0.01 Tick−1, T = 600 s.
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Figure 2.2: Behavior of the optimal ask quotes with time and inventory. σ = 0.3 Tick ·
s−1/2, A = 0.9 s−1, k = 0.3 Tick−1, γ = 0.01 Tick−1, T = 600 s.
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Figure 2.3: Behavior of the resulting bid-ask spread with time and inventory. σ =

0.3 Tick · s−1/2, A = 0.9 s−1, k = 0.3 Tick−1, γ = 0.01 Tick−1, T = 600 s.

Theorem 2 (Asymptotics for the optimal quotes). The optimal quotes have asymptotic

limits

lim
T→+∞

δb∗(0, q) = δb∗∞(q)

lim
T→+∞

δa∗(0, q) = δa∗∞ (q)
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that can be expressed as:

δb∗∞(q) =
1

γ
ln
(

1 +
γ

k

)
+

1

k
ln

(
f0
q

f0
q+1

)
δa∗∞ (q) =

1

γ
ln
(

1 +
γ

k

)
+

1

k
ln

(
f0
q

f0
q−1

)

where f0 ∈ R2Q+1 is an eigenvector corresponding to the smallest eigenvalue of the matrix

M introduced in Proposition 2 and characterized (up to a multiplicative constant) by:

f0 ∈ argmin
f∈R2Q+1,‖f‖2=1

Q∑
q=−Q

αq2fq
2 + η

Q−1∑
q=−Q

(fq+1 − fq)2 + ηfQ
2 + ηf−Q

2.

The resulting bid-ask spread quoted by the market maker is asymptotically:

ψ∗∞(q) = −1

k
ln

(
f0
q+1f

0
q−1

f0
q

2

)
+

2

γ
ln
(

1 +
γ

k

)
.

The above result, along with the example of Figure 2.1, Figure 2.2 and Figure 2.3,

encourages to approximate the optimal quotes and the resulting bid-ask spread by their

asymptotic value. These asymptotic values depend on f0 and we shall provide a closed-

form approximation for f0.

The above characterization of f0 corresponds to an eigenvalue problem in R2Q+1 and

we propose to replace it by a similar eigenvalue problem in L2(R) for which a closed-form

solution can be computed. More precisely we replace the criterion

f0 ∈ argmin
f∈R2Q+1,‖f‖2=1

Q∑
q=−Q

αq2fq
2 + η

Q−1∑
q=−Q

(fq+1 − fq)2 + ηfQ
2 + ηf−Q

2

by the following criterion for f̃0 ∈ L2(R):

f̃0 ∈ argmin
‖f̃‖L2(R)=1

∫ +∞

−∞

(
αx2f̃(x)2 + ηf̃ ′(x)2

)
dx

The introduction of this new criterion is rooted to the following proposition which

provides (up to its sign) the expression for f̃0 in closed form:

Proposition 3. Let us consider

f̃0 ∈ argmin
‖f̃‖L2(R)=1

∫
R

(
αx2f̃(x)2 + ηf̃ ′(x)2

)
dx.

Then:

f̃0(x) = ± 1

π
1
4

(
α

η

) 1
8

exp

(
−1

2

√
α

η
x2

)
.

From the above proposition, we expect f0
q to behave, up to a multiplicative constant,

as exp
(
− 1

2

√
α
η q

2
)

. This heuristic viewpoint induces an approximation of the optimal

quotes and the resulting optimal bid-ask-spread:
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δb∗∞(q) ' 1

γ
ln
(

1 +
γ

k

)
+

1

2k

√
α

η
(2q + 1)

' 1

γ
ln
(

1 +
γ

k

)
+

2q + 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

.

δa∗∞ (q) ' 1

γ
ln
(

1 +
γ

k

)
− 1

2k

√
α

η
(2q − 1)

' 1

γ
ln
(

1 +
γ

k

)
− 2q − 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

.

ψ∗∞(q) ' 2

γ
ln
(

1 +
γ

k

)
+

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

.
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Figure 2.4: Asymptotic behavior of optimal bid quote (bold line). Approximation (dot-

ted line). Left: σ = 0.4Tick · s−1/2, A = 0.9s−1, k = 0.3Tick−1, γ = 0.01Tick−1,

T = 600s. Right: σ = 1.0Tick · s−1/2, A = 0.2s−1, k = 0.3Tick−1, γ = 0.01Tick−1,

T = 600s.

We exhibit on Figure 2.4 and Figure 2.5 the values of the optimal quotes, along with

their associated approximations. Empirically, these approximations for the quotes are

satisfactory in most cases and are always very good for small values of the inventory q. In

fact, even though f0 appears to be well approximated by the Gaussian approximation, we

cannot expect a very good fit for the quotes when q is large because we are approximating

expressions that depend on ratios of the form
f0
q

f0
q+1

or
f0
q

f0
q−1

.

2.3.3 The case of a trend in the price dynamics

So far, the reference price was supposed to be a Brownian motion. In what follows we

extend the model to the case of a trend in the price dynamics:

dSt = µdt+ σdWt.

In that case we have the following proposition (the proof is not repeated):
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Figure 2.5: Asymptotic behavior of optimal ask quote (bold line). Approximation (dot-

ted line). Left: σ = 0.4Tick·s−1/2, A = 0.s−1, k = 0.3Tick−1, γ = 0.01Tick−1, T = 600s.

Right: σ = 1.0Tick · s−1/2, A = 0.2s−1, k = 0.3Tick−1, γ = 0.01Tick−1, T = 600s.

Proposition 4 (Solution with a drift). Let us consider a family of functions (vq)|q|≤Q
solution of the linear system of ODEs that follows:

v̇q(t) = (αq2 − βq)vq(t)− η (vq−1(t) + vq+1(t)) , ∀q ∈ {−Q+ 1, . . . , Q− 1},(2.4)

v̇Q(t) = (αQ2 − βQ)vQ(t)− ηvQ−1(t), (2.5)

v̇−Q(t) = (αQ2 + βQ)v−Q(t)− ηv−Q+1(t), (2.6)

with ∀q ∈ {−Q, . . . , Q}, vq(T ) = 1, where α = k
2γσ

2, β = kµ and η = A(1 + γ
k )−(1+ k

γ ).

Then, u(t, x, q, s) = − exp(−γ(x + qs))vq(t)
− γk is the value function of the control

problem.

The optimal quotes are given by:

s− sb∗(t, q, s) = δb∗(t, q) =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
,

sa∗(t, q, s)− s = δa∗(t, q) =
1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
and the resulting bid-ask spread of the market maker is :

ψ∗(t, q) = −1

k
ln

(
vq+1(t)vq−1(t)

vq(t)2

)
+

2

γ
ln
(

1 +
γ

k

)
.

Moreover,

lim
T→+∞

δb∗(0, q) =
1

γ
ln
(

1 +
γ

k

)
+

1

k
ln

(
f0
q

f0
q+1

)
,

lim
T→+∞

δa∗(0, q) =
1

γ
ln
(

1 +
γ

k

)
+

1

k
ln

(
f0
q

f0
q−1

)
,
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lim
T→+∞

ψ∗(0, q) = −1

k
ln

(
f0
q+1f

0
q−1

f0
q

2

)
+

2

γ
ln
(

1 +
γ

k

)
.

where f0 is an eigenvector corresponding to the smallest eigenvalue of:

αQ2 − βQ −η 0 · · · · · · · · · 0

−η α(Q− 1)2 − β(Q− 1) −η 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 −η α(Q− 1)2 − β(Q− 1) −η
0 · · · · · · · · · 0 −η αQ2 − βQ


.

In addition to this theoretical result, we can consider an approximation similar to the

approximation used for the initial model with no drift. We then obtain the following

approximations for the optimal quotes and the bid-ask spread:

δb∗∞(q) ' 1

γ
ln
(

1 +
γ

k

)
+

[
− µ

γσ2
+

2q + 1

2

]√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

,

δa∗∞ (q) ' 1

γ
ln
(

1 +
γ

k

)
+

[
µ

γσ2
− 2q − 1

2

]√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

,

ψ∗∞(q) ' 2

γ
ln
(

1 +
γ

k

)
+

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

.

2.3.4 Comparative statics

We argued that the value of the optimal quotes was almost independent of t for t suf-

ficiently far from the terminal time T and we characterized the asymptotic value of the

optimal quotes. We also provided approximations for the asymptotic value of the optimal

quotes. The latter allows us to obtain good approximations about the influence of the

different parameters on the optimal quotes.

Dependence on σ2

The dependence of optimal quotes on σ2 depends on the sign of the inventory. More

precisely, we observe numerically, in accordance with the approximations, that:
∂δb∗∞
∂σ2 < 0,

∂δa∗∞
∂σ2 > 0, if q < 0,

∂δb∗∞
∂σ2 > 0,

∂δa∗∞
∂σ2 > 0, if q = 0,

∂δb∗∞
∂σ2 > 0,

∂δa∗∞
∂σ2 < 0, if q > 0.
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For the bid-ask spread, we obtain:

∂ψ∗∞
∂σ2

> 0.

An increase of σ2 increases inventory risk. Hence, to reduce this risk, a market maker

that has a long position will try to reduce his exposure and hence ask less for his stocks (to

get rid of some of them) and accept to buy at a lower price (to avoid buying new stocks).

Similarly, an algorithm with a short position tries to buy stocks, and hence increases its

bid quote, while avoiding short selling new stocks, and increasing its ask quote to that

purpose. Overall, due to the increase in price risk, the bid-ask spread widens as it is well

instanced in the case of a market maker with a flat position (this one wants indeed to

earn more per trade to compensate the increase in inventory risk).

Dependence on µ

The dependence of optimal quotes on the drift µ is straightforward and corresponds to

the intuition. If the agent expects the price to increase (resp. decrease) he will post

orders with higher (resp. lower) prices. Hence we have:

∂δb∗∞
∂µ

< 0,
∂δa∗∞
∂µ

> 0.

Dependence on A

Because of the form of the system of equations that defines v, the dependence on A must

be the exact opposite of the dependence on σ2:
∂δb∗∞
∂A > 0,

∂δa∗∞
∂A < 0, if q < 0,

∂δb∗∞
∂A < 0,

∂δa∗∞
∂A < 0, if q = 0,

∂δb∗∞
∂A < 0,

∂δa∗∞
∂A > 0, if q > 0.

For the bid-ask spread, we obtain:

∂ψ∗∞
∂A

< 0.

The rationale behind these results is that an increase of A reduces the inventory risk,

since it increases the frequency of trades and hence reduces the risk of being stuck with

a large inventory (in absolute value). For this reason, an increase in A should have the

same effect as a decrease in σ2.

Dependence on γ

Using the closed-form approximations, we see that the dependence on γ is ambiguous.

The market maker faces indeed two different risks that contribute to inventory risk: (i)

trades occur at random times and (ii) the reference price is stochastic. But if risk aversion
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increases, the market maker will mitigate the two risks: (i) he may set his quotes closer

to one another to reduce the randomness in execution and (ii) he may widen his spread to

reduce price risk. The tension between these two roles played by γ explains the different

behaviors we may observe on Figure 2.6 and Figure 2.7 for the bid-ask spread resulting

from the asymptotic optimal quotes:
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Figure 2.6: Bid-ask spread resulting from the asymptotic optimal quotes for different

inventories and different values for the risk aversion parameter γ. σ = 0.3 Tick · s−1/2,

A = 0.9 s−1, k = 0.3 Tick−1, T = 600 s.

Dependence on k

From the closed-form approximations, we expect δb∗∞ to be decreasing in k for q greater

than some negative threshold. Below this threshold, we expect it to be increasing. Sim-

ilarly, we expect δa∗∞ to be decreasing in k for q smaller than some positive threshold.

Above this threshold we expect it to be increasing.

Eventually, as far as the bid-ask spread is concerned, the closed-form approximations

indicate that the resulting bid-ask spread should be a decreasing function of k.

∂ψ∗∞
∂k

< 0.

In fact several effects are in interaction. On one hand, there is a “no-volatility” effect

that is completely orthogonal to any reasoning on the inventory risk: when k increases, in

a situation where δb and δa are positive, trades occur closer to the reference price St. For

this reason, and in absence of inventory risk, the optimal bid-ask spread has to shrink.

However, an increase in k also affects the inventory risk since it decreases the probability

to be executed (for δb, δa > 0). Hence, an increase in k is also, in some aspects, similar

to a decrease in A. These two effects explain the expected behavior.
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Figure 2.7: Bid-ask spread resulting from the asymptotic optimal quotes for different

inventories and different values for the risk aversion parameter γ. σ = 0.6 Tick · s−1/2,

A = 0.9 s−1, k = 0.9 Tick−1, T = 600 s.
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Figure 2.8: Asymptotic optimal bid quotes for different inventories and different values

of k. σ = 0.3 Tick · s−1/2, A = 0.9 s−1, γ = 0.01 Tick−1, T = 600 s.

Numerically, we observed that the “no-volatility” effect dominates for the values of

the inventory under consideration (see Figure 2.8 for the case of the bid quote2).

2The case of the ask quote is obviously similar.
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2.4 Including market-impact

Another extension of the model consists in introducing market impact. The simplest way

to proceed is to consider the following dynamics for the price:

dSt = σdWt + ξdNa
t − ξdN b

t , ξ > 0.

When a limit order on the bid side is filled, the reference price decreases. On the

contrary, when a limit order on the ask side is filled, the reference price increases. This is

in line with the classical modeling of market impact for market orders, ξ being a constant

since the limit orders posted by the market maker are all supposed to be of the same size.

Adverse selection is another way to interpret the interaction we consider between the

price process and the point processes modeling execution: trades on the bid side are often

followed by a price decrease and, conversely, trades on the ask side are often followed by

a price increase. In this framework, the problem can be solved using a change of variables

that is slightly more involved than the one presented above but the method is exactly the

same. We have the following result (the proof is not repeated):

Proposition 5 (Solution with market impact). Let us consider a family of functions

(vq)|q|≤Q solution of the linear system of ODEs that follows:

v̇q(t) = αq2vq(t)− ηe−
k
2 ξ (vq−1(t) + vq+1(t)) , ∀q ∈ {−Q+ 1, . . . , Q− 1},(2.7)

v̇Q(t) = αQ2vQ(t)− ηe− k2 ξvQ−1(t), (2.8)

v̇−Q(t) = αQ2v−Q(t)− ηe− k2 ξv−Q+1(t), (2.9)

with ∀q ∈ {−Q, . . . , Q}, vq(T ) = exp(− 1
2kξq

2), where α = k
2γσ

2 and η = A(1+ γ
k )−(1+ k

γ ).

Then, u(t, x, q, s) = − exp(−γ(x + qs + 1
2ξq

2))vq(t)
− γk is the value function of the

control problem and the optimal quotes are given by:

s− sb∗(t, q, s) = δb∗(t, q) =
1

k
ln

(
vq(t)

vq+1(t)

)
+
ξ

2
+

1

γ
ln
(

1 +
γ

k

)
sa∗(t, q, s)− s = δa∗(t, q) =

1

k
ln

(
vq(t)

vq−1(t)

)
+
ξ

2
+

1

γ
ln
(

1 +
γ

k

)
and the resulting bid-ask spread of the market maker is :

ψ∗(t, q) = −1

k
ln

(
vq+1(t)vq−1(t)

vq(t)2

)
+ ξ +

2

γ
ln
(

1 +
γ

k

)
.

Moreover,

lim
T→+∞

δb∗(0, q) =
1

γ
ln
(

1 +
γ

k

)
+
ξ

2
+

1

k
ln

(
f0
q

f0
q+1

)

lim
T→+∞

δa∗(0, q) =
1

γ
ln
(

1 +
γ

k

)
+
ξ

2
+

1

k
ln

(
f0
q

f0
q−1

)
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lim
T→+∞

ψ∗(0, q) = −1

k
ln

(
f0
q+1f

0
q−1

f0
q

2

)
+ ξ +

2

γ
ln
(

1 +
γ

k

)
where f0 is an eigenvector corresponding to the smallest eigenvalue of:

αQ2 −ηe− k2 ξ 0 · · · · · · · · · 0

−ηe− k2 ξ α(Q− 1)2 −ηe− k2 ξ 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 −ηe− k2 ξ α(Q− 1)2 −ηe− k2 ξ
0 · · · · · · · · · 0 −ηe− k2 ξ αQ2


.

In addition to this theoretical result, we can consider an approximation similar to the

approximation used for the initial model. We then obtain the following approximations

for the optimal quotes and the bid-ask spread:

δb∗∞(q) ' 1

γ
ln
(

1 +
γ

k

)
+
ξ

2
+

2q + 1

2
e
k
4 ξ

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

,

δa∗∞ (q) ' 1

γ
ln
(

1 +
γ

k

)
+
ξ

2
− 2q − 1

2
e
k
4 ξ

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

,

ψ∗∞(q) ' 2

γ
ln
(

1 +
γ

k

)
+ ξ + e

k
4 ξ

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

.

The market impact introduced above, has two effects on the optimal quotes. In the

absence of price risk, given the functional form of the execution intensities, the direct effect

of ξ is approximately to add ξ
2 the each optimal quote: the market maker approximately

maintains his profit per round trip on the market but the probability of occurrence of

a trade is reduced. This adverse selection effect has a side-effect linked to inventory

risk: since adverse selection gives the market maker an incentive to post orders deeper

in the book, it increases the risk of being stuck with a large inventory for a market

maker holding such an inventory. As a consequence, for a trader holding a positive (resp.

negative) inventory, there is a second effect inciting to buy and sell at lower (resp. higher)

prices. These two effects are clearly highlighted by the closed-form approximations:

δb∗∞(q) ' 1

γ
ln
(

1 +
γ

k

)
+

ξ

2︸︷︷︸
adverse selection

+
2q + 1

2
e
k
4 ξ︸︷︷︸

side−effect

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

,

δa∗∞ (q) ' 1

γ
ln
(

1 +
γ

k

)
+

ξ

2︸︷︷︸
adverse selection

−2q − 1

2
e
k
4 ξ︸︷︷︸

side−effect

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

.
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2.5 Backtests

Before using the above model on historical data, we need to discuss some features of the

model that need to be adapted before any backtest attempt.

First of all, the model is continuous in both time and space while the real control

problem is intrinsically discrete in space, because of the tick size, and in time, because

orders have a certain priority and changing position too often reduces the actual chance

to be reached by a market order. Hence, the model has to be reinterpreted in a discrete

way. In terms of prices, quotes must not be between two ticks and we decided to round

the optimal quotes to the nearest tick. In terms of time, an order of size ATS3 is sent

to the market and is not canceled nor modified for a given period of time ∆t, unless a

trade occurs and, though perhaps partially, fills the order. Now, when a trade occurs

and changes the inventory or when an order stayed in the order book for longer than

∆t, then the optimal quote is updated .Concerning the parameters, σ, A and k can be

calibrated on trade-by-trade limit order book data while γ has to be chosen; we decided

in our backtests to assign γ an arbitrary value for which the inventory stayed between

-10 and 10 during the day under consideration (the unit being the ATS).

Turning to the backtests, they were carried out with trade-by-trade data and we

assumed that our orders were entirely filled when a trade occurred at or above the ask

price quoted by the agent. Our goal here is just to exemplify the use of the model and we

considered the case of the French stock France Telecom on March 15th 2012. We first plot

the price of the stock France Telecom on March 15th 2012 on Figure 2.9, the evolution of

the inventory on Figure 2.10 and the associated P&L on Figure 2.11.
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Figure 2.9: Price of the stock France Telecom on 15/03/2012, from 10:00 to 16:00.

3ATS is the average trade size.
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Figure 2.10: Inventory (in ATS) when the strategy is used on France Telecom

(15/03/2012) from 10:00 to 16:00.
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Figure 2.11: P&L when the strategy is used on France Telecom (15/03/2012) from

10:00 to 16:00.

This P&L can be compared to the P&L of a naive trader (Figure 2.12) who only posts

orders at the first limit of the book on each side, whenever he is asked to post orders –

that is when one of his orders has been executed or after a period of time ∆t with no

execution. To understand the details of the strategy, we focused on a subperiod of 1 hour

and we plotted the state of the market along with the quotes of the market maker (Figure

2.13). Trades involving the market maker are signalled by a dot.



46CHAPTER 2. DYNAMIC PROGRAMMING APPROACH TO MARKET-MAKING

10:00 11:00 12:00 13:00 14:00 15:00 16:00
−600

−400

−200

0

200

400

600

800

Time

P
nL

 [i
n 

E
U

R
]

Figure 2.12: P&L of a naive market maker on France Telecom (15/03/2012) from 10:00

to 16:00.
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Figure 2.13: Details for the quotes and trades when the strategy is used on France

Telecom (15/03/2012). Thin lines represent the market while bold lines represent the

quotes of the market maker. Dotted lines are associated to the bid side while plain lines

are associated to the ask side. Black points represent trades in which the market maker

is involved.
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2.6 Conclusion

In this chapter we present a model for the optimal quotes of a market maker. Starting

from a model in line with Avellaneda and Stoikov [13] we introduce a change of variables

that allows to transform the HJB equation into a system of linear ODEs. This yields the

optimal quotes, characterize their asymptotic behavior and obtain comparative statics.

Potential extensions of this work are the generalization of the model to any intensity

function (see Guéant et al. [63]) and the quantitative modeling of “passive market impact”

(i.e. the perturbations of the price process due to liquidity provision).

Appendix: Proofs of the results

Proof of Proposition 1, Proposition 2 and Theorem 1:

Let us consider a family (vq)|q|≤Q of positive functions solution of the system of ODEs

introduced in Proposition 1 and let us define u(t, x, q, s) = − exp (−γ(x+ qs)) vq(t)
− γk .

Then:

∂tu+
1

2
σ2∂2

ssu = −γ
k

v̇q(t)

vq(t)
u+

γ2σ2

2
q2u.

Now, concerning the hamiltonian parts, we have for the bid part (q 6= Q):

sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]

= sup
δb
Ae−kδ

b

u(t, x, q, s)

[
exp(−γδb)

(
vq+1(t)

vq(t)

)− γk
− 1

]
.

The first order condition of this problem corresponds to a maximum (because u is

negative) and writes:

(k + γ) exp(−γδb∗)
(
vq+1(t)

vq(t)

)− γk
= k.

Hence:

δb∗ =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
and

sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
= − γ

k + γ
A exp(−kδb∗)u(t, x, q, s)

= − γA

k + γ

(
1 +

γ

k

)− kγ vq+1(t)

vq(t)
u(t, x, q, s).
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Similarly, the maximizer for the ask part (for q 6= −Q) is:

δa∗ =
1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
and

sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= − γ

k + γ
A exp(−kδa∗)u(t, x, q, s) = − γA

k + γ

(
1 +

γ

k

)− kγ vq−1(t)

vq(t)
u(t, x, q, s).

Hence, putting the terms altogether we get for |q| < Q:

∂tu(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
+ sup

δa
λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= −γ
k

v̇q(t)

vq(t)
u+

γ2σ2

2
q2u− γA

k + γ

(
1 +

γ

k

) k
γ

[
vq+1(t)

vq(t)
+
vq−1(t)

vq(t)

]
u

= −γ
k

u

vq(t)

[
v̇q(t)−

kγσ2

2
q2vq(t) +A

(
1 +

γ

k

)−(1+ k
γ )

(vq+1(t) + vq−1(t))

]
= 0.

For q = −Q we have:

∂tu(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
= −γ

k

v̇q(t)

vq(t)
u+

γ2σ2

2
q2u− γA

k + γ

(
1 +

γ

k

) k
γ vq+1(t)

vq(t)
u

= −γ
k

u

vq(t)

[
v̇q(t)−

kγσ2

2
q2vq(t) +A

(
1 +

γ

k

)−(1+ k
γ )
vq+1(t)

]
= 0.

Similarly, for q = Q we have:

∂tu(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δa

λa(δa) [u(t, x− s+ δa, q + 1, s)− u(t, x, q, s)]

= −γ
k

v̇q(t)

vq(t)
u+

γ2σ2

2
q2u− γA

k + γ

(
1 +

γ

k

) k
γ vq−1(t)

vq(t)
u

= −γ
k

u

vq(t)

[
v̇q(t)−

kγσ2

2
q2vq(t) +A

(
1 +

γ

k

)−(1+ k
γ )
vq−1(t)

]
= 0.
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Now, noticing that the terminal condition for vq is consistent with the terminal con-

dition for u, we get that u verifies (HJB) and this proves Proposition 1.

The positivity of the functions (vq)|q|≤Q was essential in the definition of u. Hence

we need to prove that the solution to the above linear system of ordinary differential

equations v(t) = exp(−M(T − t)) × (1, . . . , 1)′ (where M is given in Proposition 2),

defines a family (vq)|q|≤Q of positive functions.

In fact, we are going to prove that:

∀t ∈ [0, T ],∀q ∈ {−Q, . . . , Q}, vq(t) ≥ e−(αQ2−η)(T−t).

If this was not true, then there would exist ε > 0 such that:

min
t∈[0,T ],|q|≤Q

e−2η(T−t)
(
vq(t)− e−(αQ2−η)(T−t)

)
+ ε(T − t) < 0.

But this minimum is achieved at some point (t∗, q∗) with t∗ < T and hence:

d

dt
e−2η(T−t)

(
vq∗(t)− e−(αQ2−η)(T−t)

)∣∣∣
t=t∗
≥ ε.

This gives:

2ηe−2η(T−t∗)
(
vq∗(t

∗)− e−(αQ2−η)(T−t∗)
)

+e−2η(T−t∗)
(
v′q∗(t

∗)− (αQ2 − η)e−(αQ2−η)(T−t∗)
)
≥ ε.

Hence:

2ηvq∗(t
∗) + v′q∗(t

∗)− (η + αQ2)e−(αQ2−η)(T−t∗) ≥ εe2η(T−t∗).

Now, if |q∗| < Q, this gives:

αq∗2vq∗(t
∗)− η(vq∗+1(t∗)− 2vq∗(t

∗) + vq∗−1(t∗))

−(η + αQ2)e−(αQ2−η)(T−t∗) ≥ εe2η(T−t∗).

Thus:

αq∗2
(
vq∗(t

∗)− e−(αQ2−η)(T−t∗)
)
− η(vq∗+1(t∗)− 2vq∗(t

∗) + vq∗−1(t∗))

−(η + α(Q2 − q∗2))e−(αQ2−η)(T−t∗) ≥ εe2η(T−t∗).

All the terms on the left hand side are nonpositive by definition of (t∗, q∗) and this

gives a contradiction.

If q∗ = Q, we have:

(αQ2 + η)vQ(t∗)− η(vQ−1(t∗)− vQ(t∗))− (η + αQ2)e−(αQ2−η)(T−t∗) ≥ εe2η(T−t∗).
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Thus:

−η(vQ−1(t∗)− vQ(t∗)) + (η + αQ2)
(
vQ(t∗)− e−(αQ2−η)(T−t∗)

)
≥ εe2η(T−t∗).

All the terms on the left hand side are nonpositive by definition of (t∗, q∗) = (t∗, Q)

and this gives a contradiction.

Similarly, if q∗ = −Q, we have:

(αQ2 + η)v−Q(t∗)− η(v−Q+1(t∗)− vQ(t∗))− (η + αQ2)e−(αQ2−η)(T−t∗) ≥ εe2η(T−t∗)

−η(v−Q+1(t∗)− v−Q(t∗)) + (η + αQ2)
(
v−Q(t∗)− e−(αQ2−η)(T−t∗)

)
≥ εe2η(T−t∗)

All the terms on the left hand side are nonpositive by definition of (t∗, q∗) = (t∗,−Q)

and this gives a contradiction.

As a consequence, vq(t) ≥ e−(αQ2−η)(T−t) > 0 and this completes the proof of Propo-

sition 2.

Combining the above results, we see that u, as defined in Theorem 1, is a solution of

(HJB). Then, we are going to use a verification argument to prove that u is the value

function of the optimal control problem under consideration and prove subsequently that

the optimal controls are as given in Theorem 1.

Let us consider processes (νb) and (νa) ∈ A. Let t ∈ [0, T ) and let us consider the

following processes for τ ∈ [t, T ]:

dSt,sτ = σdWτ , St,st = s,

dXt,x,ν
τ = (Sτ + νaτ )dNa

τ − (Sτ − νbτ )dN b
τ , Xt,x,ν

t = x,

dqt,q,ντ = dN b
τ − dNa

τ , qt,q,νt = q.

where the point process N b has intensity (λbτ )τ with λbτ = Ae−kν
b
τ 1qτ−<Q and where the

point process Na has intensity (λaτ )τ with λaτ = Ae−kν
a
τ 1qτ−>−Q

4.

Now, since u is smooth, let us write Itô’s formula for u, between t and tn where

tn = T ∧ inf{τ > t, |Sτ − s| ≥ n or |Na
τ −Na

t | ≥ n or |N b
τ −N b

t | ≥ n} (n ∈ N):

u(tn, X
t,x,ν
tn− , qt,q,νtn− , S

t,s
tn ) = u(t, x, q, s)

+

∫ tn

t

(
∂τu(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ ) +
σ2

2
∂2
ssu(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )

)
dτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− + St,sτ + νaτ , q
t,q,ν
τ− − 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
λaτdτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− − St,sτ + νbτ , q
t,q,ν
τ− + 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
λbτdτ

+

∫ tn

t

σ∂su(τ,Xt,x,ν
τ− , qt,q,ντ− , St,sτ )dWτ

4These intensities are bounded since νb and νa are bounded from below.
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+

∫ tn

t

(
u(τ,Xt,x,ν

τ− + St,sτ + νaτ , q
t,q,ν
τ− − 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
dMa

τ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− − St,sτ + νbτ , q
t,q,ν
τ− + 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
dM b

τ

where M b and Ma are the compensated processes associated respectively to N b and Na

for the intensity processes (λbτ )τ and (λaτ )τ .

Now, because each vq is continuous and positive on a compact set, it has a positive

lower bound and vqτ (τ)−
γ
k is bounded along the trajectory, independently of the trajec-

tory. Also, because νb and νa are bounded from below, and because of the definition

of tn, all the terms in the above stochastic integrals are bounded and, local martingales

being in fact martingales, we have:

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]

= u(t, x, q, s)

+E
[∫ tn

t

(
∂τu(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ ) +
σ2

2
∂2
ssu(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )

)
dτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− + St,sτ + νaτ , q
t,q,ν
τ− − 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
λaτdτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− − St,sτ + νbτ , q
t,q,ν
τ− + 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
λbτdτ

]
Using the fact that u solves (HJB), we then have that

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]
≤ u(t, x, q, s)

with equality when the controls are taken equal the maximizers of the hamiltonians (these

controls being in A because v is bounded and has a positive lower bound).

Now, if we prove that

lim
n→∞

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]

= E
[
u(T,Xt,x,ν

T , qt,q,νT , St,sT )
]

we will have that for all controls in A:

E
[
− exp

(
−γ(Xt,x,ν

T + qt,q,νT St,sT )
)]

= E
[
u(T,Xt,x,ν

T , qt,q,νT , St,sT )
]
≤ u(t, x, q, s)

with equality for νbt = δb∗(t, qt−) and νat = δa∗(t, qt−). Hence:

sup
(νat )t,(νbt )t∈A

E
[
− exp

(
−γ(Xt,x,ν

T + qt,q,νT St,sT )
)]

= u(t, x, q, s)

= E
[
− exp

(
−γ(Xt,x,δ∗

T + qt,q,δ
∗

T St,sT )
)]

and this will give the result.

It remains to prove that

lim
n→∞

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]

= E
[
u(T,Xt,x,ν

T , qt,q,νT , St,sT )
]
.
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First, we have, almost surely, that u(tn, X
t,x,ν
tn− , qt,q,νtn− , S

t,s
tn ) tends towards u(T,Xt,x,ν

T− , qt,q,νT− , St,sT ).

Then, in order to prove that the sequence is uniformly integrable we will bound it in L2.

However, because of the uniform lower bound on v already used early, it is sufficient to

bound exp(−γ(Xt,x,ν
tn− + qt,q,νtn− S

t,s
tn )) in L2.

But,

Xt,x,ν
tn− + qt,q,νtn− S

t,s
tn =

∫ tn

t

νaτ dN
a
τ +

∫ tn

t

νbτdN
b
τ + σ

∫ tn

t

qt,q,ντ dWτ

≥ −‖νa−‖∞Na
T − ‖νb−‖∞N b

T + σ

∫ tn

t

qt,q,ντ dWτ .

Hence

E
[
exp(−2γ(Xt,x,ν

tn− + qt,q,νtn− S
t,s
tn ))

]
≤ E

[
exp

(
2γ‖νa−‖∞Na

T

)
exp

(
2γ‖νa−‖∞N b

T

)
exp

(
−2γσ

∫ tn

t

qt,q,ντ dWτ

)]
≤ E

[
exp

(
6γ‖νa−‖∞Na

T

)] 1
3 E
[
exp

(
6γ‖νb−‖∞N b

T

)] 1
3

×E
[
exp

(
−6γσ

∫ tn

t

qt,q,ντ dWτ

)] 1
3

.

Now, since the intensity of each point process is bounded, the point processes have a

Laplace transform and the first two terms of the product are finite (and independent of

n). Concerning the third term, because |qt,q,ντ | is bounded by Q, we know (for instance

applying Girsanov’s theorem) that:

E
[
exp

(
−6γσ

∫ tn

t

qt,q,ντ dWτ

)] 1
3

≤ E
[
exp

(
3γ2σ2(tn − t)Q2

)] 1
3

≤ exp
(
γ2σ2Q2T

)
.

Hence, the sequence is bounded in L2, then uniformly integrable and we have:

lim
n→∞

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]

= E
[
u(T,Xt,x,ν

T− , qt,q,νT− , St,sT )
]

= E
[
u(T,Xt,x,ν

T , qt,q,νT , St,sT )
]
.

We have proved that u is the value function and that δb∗ and δa∗ are optimal controls.
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Proof of Theorem 2:

Let us first consider the matrix M + 2ηI. This matrix is symmetric and it is therefore

diagonalizable. Its smallest eigenvalue λ is characterized by:

λ = inf
x∈R2Q+1\{0}

x′(M + 2ηI)x

x′x

and the associated eigenvectors x 6= 0 are characterized by:

λ =
x′(M + 2ηI)x

x′x

It is straightforward to see that:

x′(M + 2ηI)x =

Q∑
q=−Q

αq2xq
2 + η

Q−1∑
q=−Q

(xq+1 − xq)2 + ηxQ
2 + ηx−Q

2

Hence, if x is an eigenvector of M + 2ηI associated to λ:

λ ≤ |x|′(M + 2ηI)|x|
|x|′|x|

=
1

|x|′|x|

 Q∑
q=−Q

αq2|xq|2 + η

Q−1∑
q=−Q

(|xq+1| − |xq|)2 + η|xQ|2 + η|x−Q|2


≤ 1

|x|′|x|

 Q∑
q=−Q

αq2|xq|2 + η

Q−1∑
q=−Q

(xq+1 − xq)2 + η|xQ|2 + η|x−Q|2
 = λ.

This proves that |x| (componentwise) is also an eigenvector and that necessarily xq+1

and xq are of the same sign (i.e. xqxq+1 ≥ 0).

Now, let x ≥ 0 (componentwise) be an eigenvector of M + 2ηI associated to λ.

If for some q with |q| < Q we have xq = 0 then:

0 = λxq = αq2xq − η(xq+1 − 2xq + xq−1) = −η(xq+1 + xq−1) ≤ 0

Hence, because x ≥ 0, both xq+1 and xq−1 are equal to 0. By immediate induction

x = 0 and this yields a contradiction.

Now, if xQ = 0, then 0 = λxQ = αQ2xQ− η(−2xQ +xQ−1) = −ηxQ−1 ≤ 0 and hence

xQ−1 = 0. Then, by the preceding reasoning we obtain a contradiction.

Similarly if x−Q = 0, then 0 = λx−Q = αQ2x−Q− η(x−Q+1− 2x−Q) = −ηx−Q+1 ≤ 0

and hence x−Q+1 = 0. Then, as above, we obtain a contradiction.
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This proves that any eigenvector x ≥ 0 of M+2ηI associated to λ verifies in fact x > 0.

Now, if the eigenvalue λ was not simple, there would exist two eigenvectors x and y

of M + 2ηI associated to λ such that |x|′y = 0. Hence, y must have positive coordinates

and negative coordinates and since yqyq+1 ≥ 0, we know that there must exist q such

that yq = 0. However, this contradicts our preceding point since |y| ≥ 0 should also be an

eigenvector of M+2ηI associated to λ and it cannot have therefore coordinates equal to 0.

As a conclusion, the eigenspace of M + 2ηI associated to λ is spanned by a vector

f0 > 0 and we scaled its R2Q+1-norm to 1.

Now, because M is a symmetric matrix, we can write v(0) = exp(−MT )× (1, . . . , 1)′

as:

vq(0) =

2Q∑
i=0

exp(−λiT )〈gi, (1, . . . , 1)′〉giq, ∀q ∈ {−Q, . . . , Q}

where λ0 ≤ λ1 ≤ . . . ≤ λ2Q are the eigenvalues of M (in increasing order and repeated

if necessary) and (gi)i an associated orthonormal basis of eigenvectors. Clearly, we can

take g0 = f0. Then, both f0
q and 〈f0, (1, . . . , 1)′〉 are positive and hence different from

zero. As a consequence:

vq(0) ∼T→+∞ exp(−λ0T )〈f0, (1, . . . , 1)′〉f0
q , ∀q ∈ {−Q, . . . , Q}

Then, using the expressions for the optimal quotes, we get:

lim
T→+∞

δb∗(0, q) =
1

γ
ln
(

1 +
γ

k

)
+

1

k
ln

(
f0
q

f0
q+1

)

lim
T→+∞

δa∗(0, q) =
1

γ
ln
(

1 +
γ

k

)
+

1

k
ln

(
f0
q

f0
q−1

)
Turning to the characterization of f0 stated in Theorem 2, we just need to write the

Rayleigh ratio associated to the smallest eigenvalue of M + 2ηI:

f0 ∈ argmin
f∈R2Q+1,‖f‖2=1

f ′(M + 2ηI)f

Equivalently:

f0 ∈ argmin
f∈R2Q+1,‖f‖2=1

Q∑
q=−Q

αq2fq
2 + η

Q−1∑
q=−Q

(fq+1 − fq)2 + ηfQ
2 + ηf−Q

2
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Proof of Proposition 3:

Let us first introduce H = {u ∈ L1
loc(R)/x 7→ xu(x) ∈ L2(R) and u′ ∈ L2(R)}.

H equipped with the norm ‖u‖H =
√∫

R (αx2u(x)2 + ηu′(x)2) dx is an Hilbert space.

Step 1 : H ⊂ L2(R) with continuous injection.

Let us consider u ∈ H and ε > 0.

We have: ∫
R\[−ε,ε]

u(x)2dx ≤ 1

ε2

∫
R\[−ε,ε]

x2u(x)2dx < +∞.

Hence because u′ ∈ L2(R), we have u ∈ H1(R \ [−ε, ε]) with a constant Cε independent

of u such that ‖u‖H1(R\[−ε,ε]) ≤ Cε‖u‖H . In particular u is continuous on R∗.
Now, if ε = 1, ∀x ∈ (0, 1), u(x) = u(1) −

∫ 1

x
u′(t)dt and then |u(x)| ≤ |u(1)| +√

1− x‖u′‖L2((0,1)).

Because the injection of H1((1,+∞)) in C([1,+∞)) is continuous, we know that there

exists a constant C independent of u such that |u(1)| ≤ C‖u‖H1((1,+∞)). Hence, there

exists a constant C ′ such that |u(1)| ≤ C ′‖u‖H and eventually a constant C ′′ such that

‖u‖L∞((0,1)) ≤ C ′′‖u‖H . Similarly, we obtain ‖u‖L∞((−1,0)) ≤ C ′′‖u‖H .

Combining the above inequalities we obtain a new constant K so that ‖u‖L2(R) ≤
K‖u‖H .

A consequence of this first step is that H ⊂ H1(R) ⊂ C(R).

Step 2 : The injection H ↪→ L2(R) is compact.

Let us consider a sequence (un)n of functions in H with supn ‖un‖H < +∞.

Because H ⊂ H1(R), ∀m ∈ N∗, we can extract from (un)n a sequence that converges

in L2((−m,m)). Using then a diagonal extraction, there exists a subsequence of (un)n,

still denoted (un)n, and a function u ∈ L2
loc(R) such that un(x)→ u(x) for almost every

x ∈ R and un → u in the L2
loc(R) sense.

Now, by Fatou’s lemma:∫
R
x2u(x)2dx ≤ lim inf

n→∞

∫
R
x2un(x)2dx ≤ supn ‖un‖2H

α
.

Hence, there exists a constant C such that ∀m ∈ N∗:

∫
R
|u(x)− un(x)|2dx ≤

∫ m

−m
|u(x)− un(x)|2dx+

1

m2

∫
R\[−m,m]

x2|u(x)− un(x)|2dx

≤
∫ m

−m
|u(x)− un(x)|2dx+

C

m2
.

Hence lim supn→∞
∫
R |u(x)− un(x)|2dx ≤ C

m2 .
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Sending m to +∞ we get:

lim sup
n→∞

∫
R
|u(x)− un(x)|2dx = 0.

Hence (un)n converges towards u in the L2(R) sense.

Now, we consider the equation −ηu′′(x) + αx2u(x) = f(x) for f ∈ L2(R) and we

define u = Lf the weak solution of this equation, i.e.:

∀v ∈ H,
∫
R

(
αx2u(x)v(x) + ηu′(x)v′(x)

)
dx =

∫
R
f(x)v(x)dx.

Step 3 : L : L2(R) → L2(R) is a well defined linear operator, compact, positive and

self-adjoint.

For f ∈ L2(R), v ∈ H 7→
∫
R f(x)v(x)dx is a continuous linear form on H because the

injection H ↪→ L2(R) is continuous. Hence, by Lax-Milgram or Riesz’s representation

theorem, there exists a unique u ∈ H weak solution of the above equation and L is a well

defined linear operator.

Now, ‖Lf‖2H = 〈f, Lf〉 ≤ ‖f‖L2(R)‖Lf‖L2(R). Hence, since the injection H ↪→ L2(R)

is continuous, there exists a constant C such that ‖Lf‖2H ≤ C‖f‖L2(R)‖Lf‖H , which in

turn gives ‖Lf‖H ≤ C‖f‖L2(R). Since the injection H ↪→ L2(R) is compact, we obtain

that L is a compact operator.

L is a positive operator because 〈f, Lf〉 = ‖Lf‖2H ≥ 0.

Eventually, L is self-adjoint because ∀f, g ∈ L2(R):

〈f, Lg〉 =

∫
R

(
αx2Lf(x)Lg(x) + η(Lf)′(x)(Lg)′(x)

)
dx

=

∫
R

(
αx2Lg(x)Lf(x) + η(Lg)′(x)(Lf)′(x)

)
dx = 〈g, Lf〉

Now, using the spectral decomposition of L and classical results on Rayleigh ratios we

know that the eigenfunctions f corresponding to the largest eigenvalue λ0 of L satisfy:

1

λ0
=
‖f‖H
‖f‖L2(R)

= inf
g∈H\{0}

‖g‖H
‖g‖L2(R)

.

Hence, our problem boils down to proving that the largest eigenvalue of L is simple

and that g : x 7→ exp
(
− 1

2

√
α
η x

2
)

is an eigenfunction corresponding to this eigenvalue (it

is straightforward that g ∈ H).

Step 4 : Any positive eigenfunction corresponds to the largest eigenvalue of L.

By definition of ‖ · ‖H , ∀f ∈ H, ‖|f |‖H‖|f |‖L2(R)
= ‖f‖H
‖f‖L2(R)

. Hence, if f is an eigenfunction of

L corresponding to the eigenvalue λ0, then |f | is also an eigenfunction of L corresponding

to the eigenvalue λ0. Now, if f̃ is an eigenfunction of L corresponding to an eigenvalue
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λ 6= λ0, 〈|f |, f̃〉 = 0. Therefore f̃ cannot be positive.

Step 5 : g spans the eigenspace corresponding to the largest eigenvalue of L.

Differentiating g twice, we get g′′(x) = −
√

α
η g(x) + α

η x
2g(x).

Hence −ηg′′(x) + αx2g(x) =
√
αηg(x) and g is a positive eigenfunction, necessarily asso-

ciated to the eigenvalue λ0 that is therefore equal to 1√
αη .

Now, if we look for an eigenfunction f ∈ C∞(R) ∩H – because any eigenfunction of

L is in C∞(R) – we can look for f of the form f = gh. This gives:

0 = −ηf ′′(x) + αx2f(x)−√αηf(x)

= −η (g′′(x)h(x) + 2g′(x)h′(x) + g(x)h′′(x)) + αx2g(x)h(x)−√αηg(x)h(x).

Hence:

0 = 2g′(x)h′(x) + g(x)h′′(x) = −2x

√
α

η
g(x)h′(x) + g(x)h′′(x)

⇒ h′′(x) = 2x

√
α

η
h′(x)

⇒ ∃K1, h′(x) = K1 exp

(√
α

η
x2

)
⇒ ∃K1,K2, h(x) = K1

∫ x

0

exp

(√
α

η
t2
)
dt+K2

⇒ ∃K1,K2, f(x) = K1g(x)

∫ x

0

exp

(√
α

η
t2
)
dt+K2g(x).

Now,

g(x)

∫ x

0

exp

(√
α

η
t2
)
dt ≥ exp

(
−1

2

√
α

η
x2

)∫ x

x√
2

exp

(√
α

η
t2
)
dt

≥ x
(

1− 1√
2

)
.

Hence, for f to be in H, we must have K1 = 0. Thus, g spans the eigenspace

corresponding to the largest eigenvalue of L and Proposition 3 is proved.
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Chapter 3

Application: Optimal

Liquidation with Limit-Orders

3.1 Introduction

This chapter addresses portfolio liquidation using a new angle. Instead of focusing only on

the scheduling aspect like Almgren and Chriss in [10], or only on the liquidity-consuming

orders like Obizhaeva and Wang in [115], we link the optimal trade-schedule to the price

of the limit orders that have to be sent to the limit order book to optimally liquidate

a portfolio. The idea is to use our results from the precedent chapter, and consider the

optimal-liquidation problem as a one-sided market-making. From a practical standpoint

this approach is not necessarily contradictory with optimal-scheduling, and it can be seen

as representing the tactical part (interaction with the market), while optimal-scheduling

represent the strategic part (intraday pace in order to meet the benchmark). We want

to emphasize that this work was, to our knowledge (and in parallel by Bayraktar and

Ludkovski [18] in a risk-neutral model) the first attempt to solve the liquidation problem

through limit-orders published in the literature. The result was published in the article

in collaboration with O. Guéant and C-A. Lehalle [64].

In our framework (inspired from the Avellaneda-Stoikov model), the flow of trades

“hitting” a passive order at a distance δat from a reference price St – modeled by a

Brownian motion – follows an adapted point process of intensity A exp(−kδat ). It means

that the further away from the “fair price” an order is posted, the less transactions it will

obtain. In practice, if the limit order price is far above the best ask price, the trading

gain may be high but execution is far from being guaranteed and the broker is exposed to

the risk of a price decrease. On the contrary, if the limit order price is near the best ask

price, or even reduces the market bid-ask spread, gains will be small but the probability of

execution will be higher, resulting in faster trading and less price risk. As in the precedent

chapter, by defining a HJB equation and then a suitable change of variable, we obtain

analytical formulas enabling an in-depth analysis of the solutions.

59
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The remainder of this chapter is organized as follows. We start by presenting the

setting of the model and its main hypotheses. Then, via a change of variables, we solve

the HJB partial differential equation arising from the control problem. We study three

special cases: (i) the time-asymptotic case, (ii) the absence of price risk and the risk-

neutral case, and (iii) a limiting case in which the trader has a large incentive to liquidate

before the end. These special cases provide simple closed-form formulae allowing us

to better understand the forces at stake. As in the market-making situation, we carry

out comparative statics and discuss the way optimal strategies depend on the model

parameters. Finally we show how our approach can be used in practice for optimal

liquidation, both on a long period of time, to solve the entire liquidation problem, and on

slices of 5 minutes, when one wants to follow a predetermined trading curve. We provide

the proof of the main mathematical results at the very end of the chapter.

3.2 Setup of the model

Let us fix a probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0 satisfying the

usual conditions. We assume that all random variables and stochastic processes are

defined on (Ω,F , (Ft)t≥0,P).

We consider a trader who has to liquidate a portfolio containing a large quantity q0 of

a given stock. We suppose that the reference price of the stock (which can be considered

the mid-price or the best bid quote for example) moves as a brownian motion with a drift:

dSt = µdt+ σdWt.

The trader under consideration will continuously propose an ask quote1 denoted Sat =

St + δat and will hence sell shares according to the rate of arrival of aggressive orders at

the prices he quotes.

His inventory q, that is the quantity he holds, is given by qt = q0 −Na
t where Na is

the jump process counting the number of shares he sold2. We assume that jumps are of

unitary size and it is important to notice that 1 share may be understood as 1 bunch of

shares, each bunch being of the same size. Arrival rates obviously depend on the price Sat
quoted by the trader and we assume that intensity λa associated to Na is of the following

form:

λa(δa) = A exp(−kδa) = A exp(−k(sa − s)).

This means that the lower the order price, the faster it will be executed.

Thus, the trader has an amount of cash whose dynamics is given by:

dXt = (St + δat )dNa
t .

1In what follows, we will often call δat the quote instead of Sat .
2Once the whole portfolio is liquidated, we assume that the trader remains inactive.
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The trader has a time horizon T to liquidate the portfolio and his goal is to optimize

the expected utility of his P&L at time T . We will focus on CARA utility functions and

we suppose that the trader optimizes:

sup
(δat )t∈A

E [− exp (−γ(XT + qT (ST − b)))]

where A is the set of predictable processes on [0,T], bounded from below, where γ is the

absolute risk aversion characterizing the trader, where XT is the amount of cash at time

T , where qT is the remaining quantity of shares in the inventory at time T and where b

is a cost (per share) one has to incur to liquidate the remaining quantity at time T .

3.3 Optimal quotes

3.3.1 Hamilton-Jacobi-Bellman equation

The optimization problem set up in the preceding section can be solved using classical

Bellman tools. To this purpose, we introduce the Hamilton-Jacobi-Bellman equation

associated to the optimization problem, where u is an unknown function that is going to

be the value function of the control problem:

(HJB) ∂tu(t, x, q, s) + µ∂su(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)] = 0

with the final condition:

u(T, x, q, s) = − exp (−γ(x+ q(s− b)))

and the boundary condition:

u(t, x, 0, s) = − exp (−γx)

To solve the Hamilton-Jacobi-Belmann equation, we will use a change of variables

that transforms the PDEs in a system of linear ODEs.

Proposition 1 (A system of linear ODEs). Let us consider a family of functions (wq)q∈N
solution of the linear system of ODEs (S) that follows:

∀q ∈ N, ẇq(t) = (αq2 − βq)wq(t)− ηwq−1(t)

with wq(T ) = e−kqb and w0 = 1, where α = k
2γσ

2, β = kµ and η = A(1 + γ
k )−(1+ k

γ ).

Then u(t, x, q, s) = − exp(−γ(x+ qs))wq(t)
− γk is solution of (HJB).
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The change of variables used in the proposition above is based on two different ideas.

First, the choice of a CARA utility function allows to factor out the Mark-to-Market

value of the portfolio (x + qs). Then, the exponential decay for the intensity allows to

introduce wq(t) and to end up with a linear system of ODEs.

Now, using this system of ODEs, we can find the optimal quotes through a verification

theorem:

Theorem 1 (Verification theorem and optimal quotes). Let us consider the solution w

of the system (S) of Proposition 1.

Then, u(t, x, q, s) = − exp(−γ(x+qs))wq(t)
− γk is the value function of the control problem

and the optimal ask quote can be expressed as:

δa∗(t, q) =
1

k
ln

(
wq(t)

wq−1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
3.3.2 Numerical example

Proposition 1 and Theorem 1 provide a way to solve the Hamilton-Jacobi-Bellman equa-

tion and to derive the optimal quotes for a trader willing to liquidate a portfolio. To

exemplify these results, we compute the optimal quotes when a quantity q = 6 has to be

sold within 5 minutes (Figure 3.1).
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q = 3
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Figure 3.1: Optimal strategy δa∗(t, q) (in Ticks) for an agent willing to sell a quantity

up to q = 6 within 5 minutes (µ = 0 (Tick.s−1), σ = 0.3 (Tick.s−
1
2 ), A = 0.1 (s−1),

k = 0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick))
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We clearly see that the optimal quotes depend on inventory in a monotonic way.

Indeed, a trader with a lot of shares to liquidate need to trade fast to reduce price risk

and will therefore propose a low price. On the contrary a trader with only a few shares in

his portfolio may be willing to benefit from a trading opportunity and will send an order

with a higher price because the risk he bears allows him to trade more slowly.

Now, coming to the time-dependence of the quotes, a trader with a given number of

shares will, ceteris paribus, lower his quotes as the time horizon gets closer, except near

the final time T because a certain maximum discount b is guaranteed. At the limit, when

t is close to the time horizon T , the optimal quotes tend to the same value that depend

on the liquidation cost b: δa∗(T, q) = −b+ 1
γ ln

(
1 + γ

k

)
.

As on the first figure, negative quotes may appear. They appear when the quantity to

liquidate is large compared to the remaining time, especially when (i) there is a real need

to liquidate before time T because the liquidation cost b is high and/or (ii) when risk

aversion and volatility are high, because price risk is then an important consideration.

When this happens, it means that there is a need to reduce the number of shares at hand.

In that case, a model involving both limit orders and market orders would be better

suited. Also, if we consider the above optimal strategy on a longer time window (see

Figure 3.2), we see that optimal quotes have an asymptotic behavior as the time horizon

increases. The associated limiting case will be studied in the next section.

Finally, the average number of shares at each point in time, called trading curve by

analogy with the deterministic trading curves of Almgren and Chriss, can be obtained by

Monte-Carlo simulations as exemplified on Figure 3.3 when the trader uses the optimal

strategy. In particular, because b = 3, the trader has a weak incentive to liquidate strictly

before time T and there are cases for which liquidation is not complete before time T .

This is the reason why we do not have E[qT ] = 0 on Figure 3.3. We will study below the

limiting case b→ +∞ that “forces” liquidation before time T .

3.4 Special cases

The above equations can be solved explicitly for w and hence for the optimal quotes using

the above verification theorem. However, the resulting closed-form expressions are not

really tractable and do not provide any intuition on the behavior of the optimal quotes.

Three special cases are now considered for which simpler closed-form formulae can be

derived. We start with the limiting behavior of the quotes when the time horizon T tends

to infinity. We then consider a case in which there is no price risk and a case where the

agent is risk-neutral to both price risk and non-execution risk. We finally consider, by

analogy with the classical literature, the behavior of the solution as the liquidation cost b

increases. All these special cases allow to comment on the role of the parameters, before

we carry out comparative statics in the next section.
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Figure 3.3: Trading curve for an agent willing to sell a quantity of shares q = 6 within

5 minutes (µ = 0 (Tick.s−1), σ = 0.3 (Tick.s−
1
2 ), A = 0.1 (s−1), k = 0.3 (Tick−1),

γ = 0.05 (Tick−1) and b = 3 (Tick))
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3.4.1 Asymptotic behavior as T → +∞
We have seen on Figure 3.2 that the optimal quotes seem to exhibit an asymptotic be-

havior. We are in fact going to prove that δa∗(0, q) tends to a limit as the time horizon

T tends to infinity, when the inequality µ < 1
2γσ

2 is satisfied3.

Proposition 2 (Asymptotic behavior of the optimal quotes). Let us suppose that4 µ <
1
2γσ

2.

Let us consider the solution w of the system (S) of Proposition 2.1. Then:

lim
T→+∞

wq(0) =
ηq

q!

q∏
j=1

1

αj − β

The resulting asymptotic behavior for the optimal ask quote of Theorem 2.2 is:

lim
T→+∞

δa∗(0, q) =
1

k
ln

(
A

1 + γ
k

1

αq2 − βq

)
=

1

k
ln

(
A

k + γ

1
1
2γσ

2q2 − µq

)
This first closed-form formula deserves a few comments. First of all, the asymptotic

quote is obviously a decreasing function of the number of shares in the portfolio.

Coming to the parameters, we can analyze how the asymptotic quote depends on µ,

σ, A, k, and γ.

As µ increases, the trader increases his asymptotic quote to slow down the execution

process and benefit from the price increase. As far as volatility is concerned, an increase

in σ corresponds to an increase in price risk and this provides the trader with an incentive

to speed up the execution process. Therefore, it is natural that the asymptotic quote is

a decreasing function of σ. Now, as A increases, the asymptotic quote increases. This

result is natural because if the rate of arrival of liquidity-consuming orders increases, the

trader is more likely to liquidate his shares faster and posting deeper into the book allows

for larger profits. Coming to k, the result depends on the sign of the asymptotic quote. If

the asymptotic quote is positive – this is the only interesting case since we shall not use

our model when market orders are required from the start5 –, then the asymptotic quote

is a decreasing function of k. The mechanism at play is the same as for A: a decrease in

k increases the probability to be executed at a given price (when δa > 06) and this gives

an incentive to post orders deeper into the order book. Finally, the asymptotic quote

decreases as the risk aversion increases. An increase in risk aversion forces indeed the

trader to reduce both price risk and non-execution risk and this leads to posting orders

with lower prices.

One also has to notice that the asymptotic quote does not depend on the liquidation

cost b.
3In particular, when µ = 0, this means that the result is true as soon as γ > 0 (and σ > 0). As we

will see below, there is no asymptotic value in the risk-neutral case.
4This condition is the same as α > β.
5In all cases, increasing k brings the asymptotic quote closer to 0.
6The issue surrounding negative quotes is that k 7→ Ae−kδ

a
is a decreasing function for δa > 0 and

an increasing function for δa < 0. Subsequently, the intuition we have about k in the usual case δa > 0

is reversed for negative quotes.
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3.4.2 Absence of price risk and risk-neutrality

The above result on asymptotic behavior does not apply when µ = σ = 0. We now

concentrate on this case in which there is no drift (µ = 0) and no volatility (σ = 0). In

this case, the trader bears no price risk because σ = 0 and the only risk he faces is linked

to the non-execution of his orders.

We now derive tractable formulae for w and for the optimal quotes:

Proposition 3 (The no-drift/no-volatility case). Assume that σ = 0 and that there is

no drift (µ = 0).

Let us define:

wq(t) =

q∑
j=0

ηj

j!
e−kb(q−j)(T − t)j

Then w defines a solution of the system (S) and the optimal quote is:

δa∗(t, q) = −b+
1

k
ln

(
1 +

ηq

q! (T − t)q∑q−1
j=0

ηj

j! e
−kb(q−j)(T − t)j

)
+

1

γ
ln
(

1 +
γ

k

)

In this no-drift/no-volatility case, the optimal quote still is an increasing function of

A and a decreasing function of γ7. If the above closed-form formula does not shed any

particular light on the dependence on k, it highlights the role played by the liquidation

cost b. Differentiating the above formula with respect to b, we indeed get a negative sign

and therefore that optimal quote is a decreasing function of b. Since b is the cost to

pay for each share remaining at time T , an increase in b gives an incentive to speed up

execution and hence to lower the quotes.

We also see that the optimal quote is bounded from below by −b+ 1
γ ln

(
1 + γ

k

)
. Since

execution is guaranteed at price s− b at time T , it is in particular natural in the absence

of price risk, that quotes never go below −b.
Now, if one wants to remove risk aversion with respect to both price risk and non-

execution risk, one can consider the limit of the above solution when γ tends to 08.

One then obtains:

δa∗(t, q) = −b+
1

k
ln

(
1 +

Aq

eqq! (T − t)q∑q−1
j=0

Aj

ejj!e
−kb(q−j)(T − t)j

)
+

1

k

and this is the result of Bayraktar and Ludkovski [18] in the case b = 0, because they do

not consider any liquidation cost. In particular, the optimal quote of [18] does not con-

verge to a limit value as T tends to +∞, but rather increases with no upper bound. This

is an important difference between the risk-neutral case and our risk-adverse framework.

7Recall that η = A(1 + γ
k

)
−(1+ k

γ
)
.

8The same result holds if one sends γ to 0 for any value of the volatility parameter σ.
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3.4.3 Limiting behavior as b→ +∞
Let us now consider the limiting case b → +∞. Sending b to infinity corresponds to a

situation in which a very high incentive is given to the trader for complete liquidation

before time T . If we look at the Almgren-Chriss-like literature on optimal execution,

the authors are often assuming that qT = 09. Hence, if one writes the value functions

associated to most liquidity-consuming optimal strategies, it turns out that they are equal

to−∞ at the time horizon T except when the inventory is equal to nought (hence b = +∞,

in our framework). However, here, due to the uncertainty on execution, we cannot write

a well-defined control problem when b is equal to +∞. Rather, we are interested in the

limiting behavior when b → +∞, i.e. when the incentive to liquidate before time T is

large.

By analogy with the initial literature on optimal liquidation [10], we can also have

some limiting results on the trading curve.

Hereafter we denote wb,q(t) the solution of the system (S) for a given liquidation

cost b, δa∗b (t, q) the associated optimal quote and qb,t the resulting process modeling the

number of stocks in the portfolio.

Proposition 4 (Form of the solutions, trading intensity and trading curve). The limiting

solution limb→+∞ wb,q(t) is of the form Aqvq(t) where v does not depend on A.

The limit of the trading intensity limb→+∞Ae−kδ
a∗
b does not depend on A.

Consequently, the trading curve Vb(t) := E[qb,t] verifies that V (t) = limb→+∞ Vb(t) is

independent of A.

More results can be obtained in the no-volatility case:

Proposition 5 (no-volatility case, b → +∞). Assume that σ = 0 and consider first the

case µ 6= 0. We have:

lim
b→+∞

wb,q(t) =
ηq

q!

(
eβ(T−t) − 1

β

)q
The limit of the optimal quote is:

δa∗∞ (t, q) = lim
b→+∞

δa∗b (t, q) =
1

k
ln

(
A

1 + γ
k

1

q

eβ(T−t) − 1

β

)

The limit of the associated trading curve is V (t) = q0

(
1−e−β(T−t)

1−e−βT
)1+ γ

k

.

9The authors most often consider target problems in which the target can always be attained.
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Now, in the no-volatility/no-drift case (σ = µ = 0), similar results can be obtained,

either directly or sending µ to 0 in the above formulae:

lim
b→+∞

wb,q(t) =
ηq

q!
(T − t)q

The limit of the optimal quote is given by:

δa∗∞ (t, q) = lim
b→+∞

δa∗b (t, q) =
1

k
ln

(
A

1 + γ
k

1

q
(T − t)

)

The limit of the associated trading curve is V (t) = q0

(
1− t

T

)1+ γ
k .

This third limiting case confirms the monotonicity results we discussed above: the

optimal quote is an increasing function of A and µ10 and it is a decreasing function of

γ (and of the number of shares). Concerning the shape of the trading curve, the role

played by the risk aversion parameter γ is the same as in Almgren-Chriss: an increase in

γ forces the trader to speed up the execution process and therefore steepens the slope of

the trading curve. The role of µ is also interesting because a positive trend goes against

the naturally convex shape of the trading curve. Since a trader slows down the execution

process to benefit from a positive trend, there is a trade-off between positive trend on

one hand and price risk on the other, and the trading curve may turn out to be concave

when the upward trend is sufficiently important to compensate the effect of risk aversion.

Coming to k, this third limiting case is particularly interesting because there is no

lower bound to the optimal quotes and we have seen above that the occurrence of negative

quotes was a problem to interpret the parameter k. Hence, the limiting case b → +∞
appears to be a worst case.

In normal circumstances, we expect the optimal quote to be a decreasing function of

k. However, straightforward computations give (in the no-drift case) that

dδa∗∞ (t, q)

dk
= −1

k
δa∗∞ (t, q) +

1

k2

γ

γ + k
.

The sign of this expression being negative if and only if δa∗∞ (t, q) is above a certain

positive threshold, the dependence on k may be reversed even for positive (but low) quotes.

In the case of the asymptotic (and constant) quote discussed above, the threshold was 0.

Here, in the dynamic case under consideration, the high probability of negative optimal

quotes in the future may break the monotonicity on k and that is the reason why the

threshold is positive.

Although this limiting case is rather extreme, it illustrates well the issues of the model

when execution is too slow and would ideally require market orders. It is noteworthy

that in the comparative statics we carry out in the next section, the usual monotonicity

property is only broken for extreme values of the parameters. Also, in most reasonable

cases we considered in practice, the quotes were decreasing in k.

10Recall that β = kµ.
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3.5 Comparative statics

We discussed above the role played by the different parameters in particular limiting

cases. We now consider the general case and carry out comparative statics on optimal

quotes. The tables we obtain confirm the intuitions we developed in the preceding section.

Influence of the drift µ:

As far as the drift is concerned, quotes are naturally increasing with µ. If indeed

the trader expects the price to move down, he is going to send orders at low prices to

be executed fast and to reduce the impact of the decrease in price on the P&L. On the

contrary, if he expects the price to rise, he is going to post orders deeper in the book in

order to slow down execution and benefit from the price increase. This is well exemplified

by Table 3.1.

q µ = −0.01 (Tick.s−1) µ = 0 (Tick.s−1) µ = 0.01 (Tick.s−1)

1 9.2252 10.6095 12.2329

2 6.581 7.8737 9.3921

3 4.92 6.1299 7.5507

4 3.6732 4.8082 6.1391

5 2.6607 3.728 4.9765

6 1.8012 2.8073 3.9806

Table 3.1: Dependence on µ of δa∗(0, q) with T = 5 (minutes), σ = 0.3 (Tick.s−
1
2 ),

A = 0.1 (s−1), k = 0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

Influence of the volatility σ:

Now, coming to volatility, the optimal quotes depend on σ in a monotonic way. If

there is an increase in volatility, then price risk increases. In order to reduce this ad-

ditional price risk the trader will send orders at lower price. This is what we observe

numerically on Table 3.2.

q σ = 0 (Tick.s−
1
2 ) σ = 0.3 (Tick.s−

1
2 ) σ = 0.6 (Tick.s−

1
2 )

1 10.9538 10.6095 9.6493

2 8.6482 7.8737 6.0262

3 7.3019 6.1299 3.6874

4 6.3486 4.8082 1.9455

5 5.6109 3.728 0.55671

6 5.0097 2.8073 -0.59773

Table 3.2: Dependence on σ of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), A =

0.1 (s−1), k = 0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick)
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Influence of the intensity scale parameter A:

Now, coming to A, we observe numerically, and as expected, that the optimal quote is

an increasing function of A (see Table 3.3). If A increases, the probability to be executed

indeed increases and the trader will then increase his quotes to obtain transactions at

higher prices.

q A = 0.05 (s−1) A = 0.1 (s−1) A = 0.15 (s−1)

1 8.4128 10.6095 11.9222

2 5.6704 7.8737 9.1898

3 3.9199 6.1299 7.4491

4 2.5917 4.8082 6.1302

5 1.5051 3.728 5.0525

6 0.57851 2.8073 4.1341

Table 3.3: Dependence on A of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ =

0.3 (Tick.s−
1
2 ), k = 0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

Influence of the intensity shape parameter k:

Now, as far as k is concerned, the dependence of the optimal quote on k is ambiguous

because the interpretation of k depends on the optimal quote itself. An increase in k

should correspond indeed to a decrease in the probability to be executed at a given price

in most cases the model is used. However, due to the exponential form of the execution

intensity, the very possibility to use negative quotes may reverse the reasoning (see the

discussions in section 4 for the asymptotic quotes and in the extreme case b→ +∞).

In the first case we consider, which only leads to positive optimal quotes, an increase

in k forces the trader to decrease the price of the orders he sends to the market, as

exemplified by Table 3.4. However, if price risk is really important (high volatility and/or

large quantity to liquidate) the optimal quotes may be negative and, in that case, the role

of k is reversed. This is the case when σ takes (unrealistically) high values, as exemplified

on Table 3.5.

q k = 0.2 (Tick−1) k = 0.3 (Tick−1) k = 0.4 (Tick−1)

1 15.8107 10.6095 7.941

2 11.9076 7.8737 5.7972

3 9.4656 6.1299 4.4144

4 7.6334 4.8082 3.3618

5 6.1436 3.728 2.5011

6 4.8761 2.8073 1.7688

Table 3.4: Dependence on k of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ =

0.3 (Tick.s−
1
2 ), A = 0.1 (s−1), γ = 0.05 (Tick−1) and b = 3 (Tick)
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q k = 0.2 (Tick−1) k = 0.3 (Tick−1) k = 0.4 (Tick−1)

1 2.8768 0.79631 -0.031056

2 -4.0547 -3.8247 -3.4968

3 -8.1093 -6.5278 -5.5241

4 -10.9861 -8.4457 -6.9625

5 -13.2176 -9.9333 -8.0782

6 -15.0408 -11.1488 -8.9899

Table 3.5: Dependence on k of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ =

3 (Tick.s−
1
2 ), A = 0.1 (s−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

Influence of the liquidation cost b:

Finally, the influence of the liquidation cost b is straightforward. If b increases, then

the need to sell strictly before time T is increased because the value of any remaining

share at time T decreases. Hence, the optimal quotes must be decreasing in b and this is

what we observe on Table 3.6.

q b = 0 (Tick) b = 3 (Tick) b = 20 (Tick)

1 10.7743 10.6095 10.4924

2 8.0304 7.8737 7.7685

3 6.278 6.1299 6.0353

4 4.9477 4.8082 4.7229

5 3.859 3.728 3.6509

6 2.9301 2.8073 2.7374

Table 3.6: Dependence on b of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ =

3 (Tick.s−
1
2 ), A = 0.1 (s−1), k = 0.3 (Tick−1) and γ = 0.05 (Tick−1)

Influence of the risk aversion γ:

Turning to the risk aversion parameter γ, two effects are at stake that go in the same

direction. The risk aversion is indeed common for both price risk and non-execution

risk. Hence if risk aversion increases, the trader will try to reduce both price risk and

non-execution risk, thus selling at lower price. We indeed see on Table 3.7 that optimal

quotes are decreasing in γ.

The next table highlights the importance of risk aversion for the optimal liquidation

problem. When the number of shares to liquidate is not too small, we indeed see that the

optimal quotes depend strongly on γ. In particular, our reference case γ = 0.05 is really

different from the case γ = 0.01 and therefore very different from the risk-neutral case of

[18].
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q γ = 0.01 (Tick−1) γ = 0.05 (Tick−1) γ = 0.5 (Tick−1)

1 11.2809 10.6095 9.84

2 8.8826 7.8737 6.7461

3 7.4447 6.1299 4.7262

4 6.4008 4.8082 3.189

5 5.5735 3.728 1.9384

6 4.8835 2.8073 0.88139

Table 3.7: Dependence on γ of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ =

3 (Tick.s−
1
2 ), A = 0.1 (s−1), k = 0.3 (Tick−1), and b = 3 (Tick)

3.6 Historical simulations

Before using the above model in reality, we need to discuss some features of the model

that need to be adapted before any backtest is possible.

First of all, the model is continuous in both time and space while the real control

problem under consideration is intrinsically discrete in space, because of the tick size,

and discrete in time, because orders have a certain priority and changing position too

often reduces the actual chance to be reached by a market order. Hence, the model has

to be reinterpreted in a discrete way. In terms of prices, quotes must not be between

two ticks and we decided to round the optimal quotes to the nearest tick11. In terms of

time, an order is sent to the market and is not canceled nor modified for a given period

of time ∆t, unless a trade occurs and, though perhaps partially, fills the order. Now,

when a trade occurs and changes the inventory or when an order stayed in the order book

for longer than ∆t, then the optimal quote is updated and, if necessary, a new order is

inserted.

Now, concerning the parameters, σ, A and k can be calibrated on trade-by-trade limit

order book data while γ has to be chosen. Thus, we simply chose to calibrate A and k

from real data (see next chapter). As far as γ is concerned, a choice based on a Value at

Risk limit is possible but requires the use of Monte-Carlo simulations. We decided in our

backtests to assign γ a value that makes the first quote δa∗ equal to 1 for typical values

of A and k.

Turning to the backtests, they were carried out with trade-by-trade data and we as-

sumed that our orders were entirely filled when a trade occurred at or above the ask price

quoted by the agent. Our goal here is just to provide examples in various situations and,

to exemplify the practical use of this model, we carried out several backtests12 on the

French stock AXA, either on very short periods (slices of 5 minutes) or on slightly longer

periods of a few hours. Armed with our experience of the model, we believe that it is

particularly suited to optimize liquidation within slices of a global trading curve, be it a

TWAP, a VWAP, or an Implementation Shortfall trading curve.

11We also, alternatively, randomized the choice with probabilities that depend on the respective

proximity to the neighboring quotes.
12No drift in prices is assumed in the strategy used for backtesting.
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The first two examples (Figures 3.4 and 3.5) consist in liquidating a quantity of shares

equal to 3 times the ATS13. The periods have been chosen to capture the behavior in both

bullish and bearish markets.
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Figure 3.4: Backtest example on AXA (November 5th 2010). The strategy is used to

sell a quantity of shares equal to 3 times the ATS within 5 minutes. Top: quotes of the

trader (bold line), market best bid and ask quotes (thin lines). Trades are represented

by dots. Bottom left: evolution of the inventory. Bottom right: cash at hand.

On Figure 3.4, we see that the first order is executed after 50 seconds. Then, since the

trader has only 2 times the ATS left in his inventory, he sends an order at a higher price.

Since the market price moves up, the second order is executed in the next 30 seconds, in

advance on the average schedule. This is the reason why the trader places a new order

far above the best ask. Since this order is not executed within the time window ∆t, it

13In the backtests we do not deal with quantity and priority issues in the order books and supposed

that our orders were always entirely filled.
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is canceled and new orders are successively inserted with lower prices. The last trade

happens less than 1 minute before the end of the period. Overall, on this example, the

strategy works far better than a market order (even ignoring execution costs).

On Figure 3.5, we see the use of the strategy in a bearish period. The first order is

executed rapidly and since the market price goes down, the trader’s last orders are only

executed at the end of the period when prices of orders are lowered substantially as it

becomes urgent to sell. Practically, this obviously raises the question of linking a trend

detector to these optimal liquidation algorithms.
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Figure 3.5: Backtest example on AXA (November 5th 2010). The strategy is used to

sell a quantity of shares equal to 3 times the ATS within 5 minutes. Top: quotes of the

trader (bold line), market best bid and ask quotes (thin lines). Trades are represented

by dots. Bottom left: evolution of the inventory. Bottom right: cash at hand.
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Finally, the model can also be used on longer periods and we exhibit the use of the

algorithm on a period of two hours, to sell a quantity of shares equal to 20 times the ATS,

representing here around 5% of the volume during that period (Figure 3.6).
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Figure 3.6: Backtest example on AXA (November 8th 2010). The strategy is used to

sell a quantity of shares equal to 20 times the ATS within 2 hours. Top: quotes of the

trader (bold line), market best bid and ask quotes (thin lines). Trades are represented

by dots. Bottom left: evolution of the inventory. Bottom right: cash at hand.
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3.7 Conclusion

As claimed in the introduction, this work is, to authors’ knowledge, the first proposal to

optimize the trade scheduling of large orders with small passive orders when price risk and

non-execution risk are taken into account. The classical approach to optimal liquidation,

following the Almgren-Chriss framework, consisted in a trade-off between price risk and

execution cost/market impact. In the case of liquidity-providing orders, this trade-off

disappears but a new risk is borne by the agent: non-execution risk.

The problem is then a new stochastic control problem and an innovative change of

variables allows to reduce the 4-variable Hamilton-Jacobi-Bellman equation to a system

of linear ordinary differential equations. Practically, the optimal quote can therefore be

found in two steps: (1) solve a linear system of ODEs, (2) deduce the optimal price of

the order to be sent to the market.

We studied various limiting cases that allowed to find the asymptotic behavior of the

optimal strategy and to find the result obtained in parallel by Bayraktar and Ludkovski

[18], taking the risk-neutral limit. This also allowed us to confirm our intuition about the

role played by the parameters.

Numerical experiments and backtests have been carried out and the results are promis-

ing. However, two possible improvements are worth the discussion.

First, no explicit model of what could be called “passive market impact” (i.e. the

perturbations of the price formation process by liquidity provision) is used here. Inter-

estingly, Jaimungal, Cartea and Ricci [33] recently introduced market impact in a similar

model, the market impact occurring when execution takes place. We may consider intro-

ducing a similar effect in future versions of the model. Also, thanks to very promising

and recent studies of the multi-dimensional point processes governing the arrival of orders

(see for instance the link between the imbalance in the order flow and the moves of the

price studied in [40] or [42], or interesting properties of Hawkes-like models in [15]), we

can hope for obtaining new models with passive market impact in the near future. The

authors will try to embed them into the HJB framework used here.

Second, the separation of the variables (x, s) and (t, q) is a property associated to

the use of a CARA utility function and to the brownian dynamic of the price and is

independent of the exponential decay for the arrival of orders. An on-going work aims at

generalizing the above model to a general function λa(·) using this separation of variables.
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Appendix: Proofs of the results

Proposition 1 and Theorem 1

Proof. First, let us remark that a solution (wq)q of (S) exists and is unique and that,

by immediate induction, its components are strictly positive for all times. Then, let us

introduce u(t, x, q, s) = − exp (−γ(x+ qs))wq(t)
− γk .

We have:

∂tu+ µ∂su+
1

2
σ2∂2

ssu = −γ
k

ẇq(t)

wq(t)
u− γqµu+

γ2σ2

2
q2u

Now, concerning the non-local part of the equation, we have:

sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= sup
δa

Ae−kδ
a

u(t, x, q, s)

[
exp (−γδa)

(
wq−1(t)

wq(t)

)− γk
− 1

]
The first order condition of this problem corresponds to a maximum and writes:

(k + γ) exp (−γδa)

(
wq−1(t)

wq(t)

)− γk
= k

Hence we introduce the candidate δa∗ for the optimal control:

δa∗ =
1

k
ln

(
wq(t)

wq−1(t)

)
+

1

γ
ln
(

1 +
γ

k

)
and

sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= − γ

k + γ
A exp(−kδa∗)u(t, x, q, s)

= −A γ

k + γ

(
1 +

γ

k

)− kγ wq−1(t)

wq(t)
u(t, x, q, s)

Hence, putting the three terms together we get:

∂tu(t, x, q, s) + µ∂su(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= −γ
k

ẇq(t)

wq(t)
u− γµqu+

γ2σ2

2
q2u−A γ

k + γ

(
1 +

γ

k

)− kγ wq−1(t)

wq(t)
u

= −γ
k

u

wq(t)

[
ẇq(t) + kµqwq(t)−

kγσ2

2
q2wq(t) +A

(
1 +

γ

k

)−(1+ k
γ )
wq−1(t)

]
= 0
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Now, noticing that the boundary and terminal conditions for wq are consistent with

the conditions on u, we get that u verifies (HJB).

Now, we need to verify that u is indeed the value function associated to the problem

and to prove that our candidate (δa∗t )t is indeed the optimal control. To that purpose,

let us consider a control ν ∈ A and let us consider the following processes for τ ∈ [t, T ]:

dSt,sτ = µdτ + σdWτ , St,st = s

dXt,x,ν
τ = (Sτ + ντ )dNa

τ , Xt,x,ν
t = x

dqt,q,ντ = −dNa
τ , qt,q,νt = q

where the point process has stochastic intensity (λτ )τ with λτ = Ae−kντ 1qτ−≥1
14.

Now, let us write It’s formula for u since u is smooth:

u(T,Xt,x,ν
T− , qt,q,νT− , St,sT ) = u(t, x, q, s)

+

∫ T

t

(
∂τu(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ ) + µ∂su(τ,Xt,x,ν
τ− , qt,q,ντ− , St,sτ ) +

σ2

2
∂2
ssu(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )

)
dτ

+

∫ T

t

(
u(τ,Xt,x,ν

τ− + St,sτ + ντ , q
t,q,ν
τ− − 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
λτdτ

+

∫ T

t

σ∂su(τ,Xt,x,ν
τ− , qt,q,ντ− , St,sτ )dWτ

+

∫ T

t

(
u(τ,Xt,x,ν

τ− + St,sτ + ντ , q
t,q,ν
τ− − 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
dMa

τ

where Ma is the compensated process associated to Na for the intensity process (λτ )τ .

Now, we have to ensure that the last two integrals consist of martingales so that their

mean is 0. To that purpose, let us notice that ∂su = −γqu and hence we just have to

prove that:

E

[∫ T

t

u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,sτ )2dτ

]
< +∞

E

[∫ T

t

∣∣u(τ,Xt,x,ν
τ− + St,sτ + ντ , q

t,q,ν
τ− − 1, St,sτ )

∣∣λτdτ] < +∞

and

E

[∫ T

t

∣∣u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,sτ )

∣∣λτdτ] < +∞

14This intensity being bounded since ν is bounded from below.
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Now, remember that the process qt,q,ν takes values between 0 and q and that t ∈ [0, T ].

Hence, ∃ε > 0, wq(t) > ε for the values of t and q under scrutiny and:

u(τ,Xt,x,ν
τ , qt,q,ντ , St,sτ )2 ≤ ε− 2γ

k exp
(
−2γ(Xt,x,ν

τ + qt,q,ντ St,sτ )
)

≤ ε− 2γ
k exp

(
−2γ(x− q‖ν−‖∞ + 2q inf

τ∈[t,T ]
St,sτ 1infτ∈[t,T ] S

t,s
τ <0)

)
≤ ε− 2γ

k exp
(
−2γ(x− q‖ν−‖∞)

)(
1 + exp

(
−2γq inf

τ∈[t,T ]
St,sτ

))
Hence:

E

[∫ T

t

u(τ,Xt,x,ν
τ , qt,q,ντ , St,sτ )2dτ

]
= E

[∫ T

t

u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,sτ )2dτ

]

≤ ε− 2γ
k exp

(
−2γ(x− q‖ν−‖∞)

)
(T − t)

(
1 + E

[
exp

(
−2γq inf

τ∈[t,T ]
St,sτ

)])
≤ ε− 2γ

k exp
(
−2γ(x− q‖ν−‖∞)

)
(T − t)

(
1 + E

[
exp

(
−2γq inf

τ∈[t,T ]
St,sτ

)])
≤ ε− 2γ

k exp
(
−2γ(x− q‖ν−‖∞)

)
(T − t)

(
1 + e−2γqsE

[
exp

(
2γqσ

√
T − t|Y |

)])
< +∞

where the last inequalities come from the reflection principle with Y ∼ N (0, 1) and the

fact that E
[
eC|Y |

]
< +∞ for any C ∈ R.

Now, the same argument works for the second and third integrals, noticing that ν is

bounded from below and that λ is bounded.

Hence, since we have, by construction15

∂τu(τ,Xt,x,ν
τ− , qt,q,ντ− , St,sτ ) + µ∂su(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ ) +
σ2

2
∂2
ssu(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )

+
(
u(τ,Xt,x,ν

τ− + St,sτ + νt, q
t,q,ν
τ− − 1, St,sτ )− u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,sτ )
)
λτ ≤ 0

we obtain that

E
[
u(T,Xt,x,ν

T , qt,q,νT , St,sT )
]

= E
[
u(T,Xt,x,ν

T− , qt,q,νT− , St,sT )
]
≤ u(t, x, q, s)

and this is true for all ν ∈ A. Since for ν = δa∗ we have an equality in the above inequality

we obtain that:

sup
ν∈A

E
[
u(T,Xt,x,ν

T , qt,q,νT , St,sT )
]
≤ u(t, x, q, s) = E

[
u(T,Xt,x,δa∗

T , qt,q,δ
a∗

T , St,sT )
]

This proves that u is the value function and that δa∗ is optimal.

15This inequality is also true when the portfolio is empty because of the boundary conditions.
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Proposition 2

Proof. We have that

∀q ∈ N, ẇq(t) = (αq2 − βq)wq(t)− ηwq−1(t)

Hence if we consider for a given Q ∈ N the vector w(t) =


w0(t)

w1(t)
...

wQ(t)

 we have that

w′(t) = Mw(t) where:

M =



0 0 · · · · · · · · · 0

−η α− β 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . −η α(Q− 1)2 − β(Q− 1) 0

0 · · · · · · 0 −η αQ2 − βQ



with w(T ) =


1

e−kb

...

e−kbQ

. Hence we know that, if we consider a basis (f0, . . . , fQ) of

eigenvectors (fj being associated to the eigenvalue αj2 − βj), there exists (c0, . . . , cQ) ∈
RQ+1 independent of T such that:

w(t) =

Q∑
j=0

cje
−(αj2−βj)(T−t)fj

Consequently, since we assumed that α > β, we have that w∞ := limT→+∞ w(0) =

c0f0. Now, w∞ is characterized by:

(αq2 − βq)w∞q = ηw∞q−1, q > 0 w∞0 = 1

As a consequence we have:

w∞q =
ηq

q!

q∏
j=1

1

αj − β

The resulting asymptotic behavior for the optimal ask quote is:

lim
T→+∞

δa∗(0, q) =
1

k
ln

(
A

1 + γ
k

1

αq2 − βq

)
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Proposition 3

Proof. The result of Proposition 3.2 is obtained by induction. For q = 0 the result is

obvious.

Now, if the result is true for some q we have that:

ẇq+1(t) = −
q∑
j=0

ηj+1

j!
e−kb(q−j)(T − t)j

Hence:

wq+1(t) = e−kb(q+1) +

q∑
j=0

ηj+1

(j + 1)!
e−kb(q−j)(T − t)j+1

wq+1(t) = e−kb(q+1) +

q+1∑
j=1

ηj

j!
e−kb(q−j+1)(T − t)j

wq+1(t) =

q+1∑
j=0

ηj

j!
e−kb(q+1−j)(T − t)j

This proves the results for w and then the result follows for the optimal quote.

Proposition 4

Proof. Because the solutions depend continuously on b, we can directly get interested in

the limiting equation:

∀q ∈ N, ẇq(t) = (αq2 − βq)wq(t)− ηwq−1(t)

with wq(T ) = 1q=0 and w0 = 1.

Then, if we define vq(t) = limb→+∞
wb,q(t)
Aq , v solves:

∀q ∈ N, v̇q(t) = (αq2 − βq)vq(t)− η̃vq−1(t)

with vq(T ) = 1q=0 and v0 = 1, where η̃ = η
A is independent of A.

Hence vq(t) is independent of A.

Now, for the trading intensity we have:

lim
b→+∞

A exp (−kδa∗b (t, q)) = lim
b→+∞

Awb,q−1(t)

wb,q(t)

(
1 +

γ

k

)− kγ
=

vq−1(t)

vq(t)

(
1 +

γ

k

)− kγ
and this does not depend on A.

Eventually, since the limit of the trading intensity does not depend on A, the resulting

trading curve does not depend on A either.
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Proposition 5

Proof. Using the preceding proposition, we can now reason in terms of v and look for a

solution of the form vq(t) = h(t)q

q! .

Then,

∀q ∈ N, v̇q(t) = −βqvq(t)− η̃vq−1(t), vq(T ) = 1q=0, v0 = 1

⇐⇒ h′(t) = −βh(t)− η̃ h(T ) = 0

Hence, if β = kµ 6= 0, the solution writes vq(t) = η̃q

q! ( exp(β(T−t))−1
β )q.

From Theorem 2.2, we obtain the limit of the optimal quote:

lim
b→+∞

δa∗b (t, q) =

(
1

k
ln

(
η

q

exp(β(T − t))− 1

β

)
+

1

γ
ln
(

1 +
γ

k

))
Using the expression for η̃, this can also be written:

1

k
ln

(
A

1 + γ
k

1

q

eβ(T−t) − 1

β

)
Now, the for the trading intensity we get:

lim
b→+∞

A exp (−kδa∗b (t, q)) =
(

1 +
γ

k

)
q

β

eβ(T−t) − 1

Hence, because the limit of the intensity is proportional to q, the limit V (t) of the

trading curve is characterized by the following ODE:

V ′(t) = −
(

1 +
γ

k

)
V (t)

β

eβ(T−t) − 1
, V (0) = q0

Solving this equation, we get:

V (t) = q0 exp

(
−
(

1 +
γ

k

)∫ t

0

β

eβ(T−s) − 1
ds

)
= q0 exp

(
−
(

1 +
γ

k

)∫ eβT

eβ(T−t)

1

ξ(ξ − 1)
dξ

)

= q0 exp

(
−
(

1 +
γ

k

)[
ln

(
1− 1

ξ

)]eβT
eβ(T−t)

)

= q0

(
1− e−β(T−t)

1− e−βT
)1+ γ

k

When β = 0 (i.e. µ = 0) we proceed in the same way or by a continuity argument.



Chapter 4

Calibration issues

4.1 Introduction

In the last two chapters we took as a starting point the Avellaneda-Stoikov model in

both market-making and brokerage frameworks. Here we present a framework for its

calibration. As previously discussed, the model, introduced in [13] and expanded on

[65, 64, 101], successfully unifies in a unique model the SDE-driven nature of the dynamics

of long-term price movement and the point-process nature of the liquidity process. The

main feature of this model is to take as primary point of view a liquidity capturing

algorithm to control price-risk while choosing optimal quotes in real-time. In particular,

the goal of the model is not only to describe markets but to act as input for a trading

algorithm.

In a nutshell, the model is characterized by three parameters: σ, the volatility of the

price process, which allows the algorithm to quantify price risk, and two parameters ac-

counting for the liquidity: a parameter A related to the trading intensity and a parameter

k related to the market depth, the bid-ask spread and the order book shape.

Because of the statistical nature of the model, interpreting the different variables when

facing real-data is far from being a trivial issue; this is due to the fact that the model

does not give a mechanical tick-by-tick representation of the price formation process at

the order book level, but only an approximation through the model parameters.

In this chapter we study the calibration of the model by using Level I order book

data1, and the statistical issues concerning the parameter estimation. We will also apply

the framework on data from liquid European stocks, relating the parameters to physical

market quantities such as the spread, the market depth and the trading intensity.

The main results we will present are, first, a framework to calibrate the model by

using real data. We prove mathematical results related to the convergence and efficacy

of the estimators. Finally we present examples using real data by relating the model

parameters to other market metrics used by practitioners.

1Information about deals and liquidity at best bid/ask level.
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4.2 Model: interpretation and extensions

As said before and presented in previous chapters, the idea is to define a statistical

model where price dynamics and liquidity are decomposed into two different processes:

a continuous one for price, and a discrete one for liquidity. Mathematically, the model

considers two different objects, the reference price and the liquidity process.

The reference-price is modeled by a Brownian motion:

St − S0 = σWt, t ∈ [0, T ]. (4.1)

As for liquidity we proceed as follows: for an order placed at a price St ± δ, the

instantaneous probability for this order to be executed between t and t + dt is λ(δ)dt

where the intensity λ(δ) is given by:

λ(δ) = Ae−kδ, (4.2)

(here dt represents an infinitesimal lapse of time).

In order to interpret the model in the light of real-data, we will look at markets from

the point of view of a liquidity-capturing algorithm placing passive orders in order books

during a time window of length ∆T ≈ few seconds), then updating its orders throughout

the trading session, defined by the interval [0, T ]. In other words, in the model, the

order book (conditional to reference price and δ > 0) is a black-box characterized by the

parameters σ, k and A.

For instance, assume at time t that the algorithm posts passive orders at prices St+δ,

and that these orders remain unchanged over the whole time-window [t, t + ∆T ]. From

this point of view, the captured flow will be a Poisson variable with intensity:

Λ+(δ, t, t+ ∆T ) =

∫ t+∆T

t

Ae−kδ+k(Su−St)du. (4.3)

Symmetrically, for an order below the reference price at St − δ, the intensity of the

Poisson variable representing the captured flow is given by:

Λ−(δ, t, t+ ∆T ) =

∫ t+∆T

t

Ae−kδ−k(Su−St)du. (4.4)

In practice, the reference price St, t ∈ [0, T ], represents usually the mid-price (for

market-making problems) but it can also represent the best-opposite price (for optimal

liquidation). The required features we ask for a reference price are:

• To approximate the asymptotic behavior of the price (its volatility represents price

risk).

• It serves as reference point to place the orders (so, ideally, a price inside the spread).

• Parameters as ∆T are chosen such as the exponential form consistent with the actual

probabilities of observing trades at prices St ± δ over a time-window [t, t+ ∆T ].
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Before moving forward, it is important to notice that two processes are involved in the

model: the price S and a generalized Poisson-process with compensator Λ−(δ, t, t + s),

s ∈ [0,∆T ]. So, at a fixed time, the instantaneous probability of observing a trade at

distance δ from the reference price is independent of the reference price itself. However,

the total captured flow on s ∈ [0,∆T ] is indeed dependent upon the realized trajectory

of the reference price.

In fact, the captured flow depends indeed on the volatility, the trajectory of the price,

and moreover, the captured flow gives us partial information about the movement of

the reference price. In particular, our model, though symmetrical at its core, is not

contradictory with the empirical relationship that can be found between captured flow

and price imbalances. We will discuss this point at the end of this chapter.

Figure 4.1: Scheme of our interpretation of the Avellaneda-Stoikov model. The dark

diamonds represent trades. Captured liquidity are all those trades above the posted

price. The instantaneous probability of execution is a function of the running reference-

price (dashed line) and the posted price.

4.2.1 Extension to several types of price processes

At an instantaneous level, the reference price represents the part of the order flow dy-

namics that contains the information about the long-term price movements. It is natural

then, for practical trading purposes (hence, an interest in considering the price from the

point of view of its historical probability and not a risk-neutral one), to study more gen-

eral models than the Brownian case proposed above. This allows to consider situations

where the algorithm has views about future price movements (because of new information,

endogenous factors or economical factors).
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In this work, we will show that we can adapt the Avellaneda-Stoikov model to other

reference prices than a Brownian motion, for example: mean-reverting price or the pres-

ence of trends. These settings represent baseline market regimes that are important for

practitioners. At the same time, these regimes can be approximated mathematically

by simple expressions that are straightforward to handle (like linear trends or Ornstein-

Ulhenbeck processes).

From an economical standpoint, what justifies studying different regimes is that, de-

pending on information, expectations, liquidity, volatility or traders’ psychology, the price

trajectories can behave in different ways. For example:

• Mean-reverting prices (the prices get stabilized around a certain consolidated level

while market participants expect some news or the price sticks around a psycholog-

ical threshold).

• Trends (hedge-funds executing a trading algorithm after a good economical news).

• Diffusive behavior (uncertainty about the price as the main actors had already taken

their profits after a trend).

In terms of mathematical model, we will consider the following cases:

• Diffusive prices (modeled by a Brownian motion):

St = S0 + σWt, t ∈ [0, T ]. (4.5)

• Mean-reverting price (modeled by an Ornstein-Uhlembeck process):

St = S0 + σ

∫ t

0

e−θ(t−s)dWs, t ∈ [0, T ]. (4.6)

• Trends. Those can be added in three different ways:

1. A trend over a diffusive process:

St = S0 + µt+ σWt, t ∈ [0, T ]. (4.7)

2. A trend around a mean reverting process:

St = S0 + µt+ σ

∫ t

0

e−θ(t−s)dWs, t ∈ [0, T ]. (4.8)

3. As a mean-reverting process ‘converging’ to a fixed level µ:

St = S0 + µ(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs, t ∈ [0, T ]. (4.9)
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4.3 Calibration of parameters A and k

For simplicity, we will only focus here in the one-sided situation, i.e. optimal liquidation

with limit orders. Without loss generality, we consider an algorithm posting orders in the

ask-side (i.e. a selling algorithm).

Assume we know for each δ ∈ N and t ∈ [0, T ] the value for Λ(δ, t, t + ∆T ) :=

Λ+(δ, t, t+ ∆T ). We recall from (4.3)

Λ(δ, t, t+ ∆T ) =

∫ t+∆T

t

Ae−kδ+k(Su−St)du, (4.10)

which yields to

log (E [Λ(δ, t, t+ ∆T )]) = log(A)− kδ + log

(∫ t+∆T

t

E
[
ek(Su−St)

]
du

)
. (4.11)

With that in mind, we can define the following calibration procedure:

Definition 1. (Calibration of A and k) Let us consider a reference price process with

stationary increments and existing Laplace transform. So, we note

ϕ(k, ξ) = E
[
ek(Sξ−S0)

]
.

Let Λ̂(δ) be an estimate of E [Λ(δ, 0,∆T )], for δ ∈ {ν, . . . , imaxν} (ν is the tick-size).

Then the calibrated values of A and k correspond to the minimizer of

r(A, k) =

δmax∑
δ=1

(
log
(

Λ̂(δ)
)

+ kδ − log(A)− log

(∫ ∆T

0

ϕ(k, ξ)dξ

))2

.

For practical purposes this can be achieved by a least-squares approach.

Three problems need to be solved in order to successfully perform in the calibration:

• The computation of the quantity
∫∆T

0
ϕ(k, ξ)dξ for different price dynamics.

• The estimation of E [Λ(δ, 0,∆T )], for δ ∈ {1, . . . , δmax} (δ = iν).

• The estimation of the parameter involved in the evolution of the reference-price

process (e.g. the volatility σ).

Finally, the complete framework will be the following:

1. Estimation of the intensity Λ(δ) for each level δ: i.e. a distance δ-ticks from the

reference price.

2. Specify a theoretical model for the continuous version of the reference price (Brow-

nian, Ornstein-Ulhembeck, etc).

3. Estimate A and k using the computed values for Λ(δ) and the estimates for the

volatility σ.
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The following proposition provides formulas
∫∆T

0
ϕ(k, ξ)dξ for different types of price

processes. In the following sections we will study the estimation of Λ(δ) for different

values of δ and a brief survey on how to estimate the volatility σ.

We obtain the following result:

Proposition 6. (Formulas for
∫∆T

0
ϕ(k, ξ)dξ for different types of price-process)

1. Brownian diffusion: St − S0 = σWt.∫ ∆T

0

ϕ(k, ξ)dξ =
2

k2σ2

(
e
k2σ2∆T

2 − 1
)
.

2. Brownian diffusion with trend: St − S0 = µt+ σWt.∫ ∆T

0

ϕ(k, ξ)dξ =
1

kµ+ 1
2k

2σ2

(
e(kµ+ 1

2k
2σ2)∆T − 1

)
if kµ+

1

2
k2σ2 6= 0,∫ ∆T

0

ϕ(k, ξ)dξ = ∆T if kµ+
1

2
k2σ2 = 0.

3. Mean-reverting process: St − S0 = µ(1− e−θt) + σ
∫ t

0
e−θ(t−s)dWs.∫ ∆T

0

ϕ(k, ξ)dξ =

∫ ∆T

0

ekµ(1−e−θξ)e
k2σ2

2

(
1−e−2θξ

2θ

)
dξ.

4. Mean-reverting process with trend: St − S0 = µt+ σ
∫ t

0
e−θ(t−s)dWs.∫ ∆T

0

ϕ(k, ξ)dξ =

∫ ∆T

0

ekµξe
k2σ2

2

(
1−e−2θξ

2θ

)
dξ.

Proof. These results are obtained by straightforward computations:

• Brownian diffusion: It follows from a direct integration.∫ ∆T

0

ϕ(k, ξ)dξ =

∫ ∆T

0

E
(
ekσWξ

)
dξ =

2

k2σ2

(
e
k2σ2∆T

2 − 1
)
.

• Brownian diffusion with trend:∫ ∆T

0

ϕ(k, ξ)dξ =

∫ ∆T

0

ekµξE
(
ekσWξ

)
dξ =

∫ ∆T

0

e(kµ+ 1
2k

2σ2)ξdξ.

In the case kµ+ 1
2k

2σ2 = 0 we obtain
∫∆T

0
ϕ(k, ξ)dξ = ∆T ,

otherwise,

∫ ∆T

0

ϕ(k, ξ)dξ =
1

kµ+ 1
2k

2σ2

(
e(kµ+ 1

2k
2σ2)∆T − 1

)
.
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• Mean reverting process:∫ ∆T

0

ϕ(k, ξ)dξ =

∫ ∆T

0

ekµ(1−e−θξ)E
(
ekσ

∫ ξ
0
e−θ(ξ−s)dWs

)
dξ.

As
∫ ξ

0
e−θ(ξ−s)dWs is a Wiener integral, we obtain:

kσ

∫ ξ

0

e−θ(ξ−s)dWs ∼ N
(

0, k2σ2

(
1− e−2θξ

2θ

))
,

so that ∫ ∆T

0

ϕ(k, ξ)dξ =

∫ ∆T

0

ekµ(1−e−θξ)e
k2σ2

2

(
1−e−2θξ

2θ

)
dξ.

• Mean-reverting process with trend:

Using the last formula we obtain:∫ ∆T

0

ϕ(k, ξ)dξ =

∫ ∆T

0

ekµξe
k2σ2

2

(
1−e−2θξ

2θ

)
dξ.

4.4 Estimation of Λ(δ) for fixed δ

As mentioned above, the first step of the calibration is to compute the intensity of the

Poisson process defining the number of orders arriving at a distance δ from the price St in

an interval [t, t+ ∆T ]. Under the hypothesis that the events taking place in each interval

are independent from the events taking place on the next one, the problem reduces to

estimate the intensity of a Poisson process. Notice this is not true in the O-U situation and

heavily relies on the independent increments hypothesis, however results can be extended

in cases where auto-correlations decrease as a function of the time difference between two

events. Our results can be adapted as far as we remains in the Markov situation where

the law of the increment can be explicitly computed knowing the past.

There are two ways to interpret this problem:

• As an external observer: we take as data-set the observations of all the deals made

during the time window [(k − 1)∆T, k∆T [, for k ∈ {1, . . . , [ T∆T ]}, from historical

data. Here, we suppose that the probability of being executed at a distance δ that

we observe from the historical data (trades of other participants), is the same as if

we were participating in the market (i.e. our order does not influence the market

dynamics; this is a reasonable hypothesis for small passive orders).

• As a participant: we can only observe whether our order is executed or not. In

practice we observe one or zero executions. The most informative variable we have

at hand is the time we wait until execution. Other wise said we want to estimate

Λ(δ) from a set of observations Xn = τn ∧∆T , where τn is the time we wait until

execution when posting an order at a distance δ from the reference price (or ∆T if

the order is never executed).
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These two viewpoints define the two estimators for λ = Λ(δ): an estimator counting

the number of events, and another estimator computing the waiting time to get orders

executed. We analyze both in the following subsections.

4.4.1 Estimating the intensity by counting trades

A way to estimate the intensity for a fixed δ is simply to count how many deals are made

at that price level during the period. Under our assumptions, the number of trades over

the period [k∆T, (k + 1)∆T ] follows a Poisson distribution with intensity Λ(δ). Hence,

by using a sample X1, X2, . . . , Xn where Xk represents an observation of the number of

deals during the period. In such framework the natural estimator is simply to consider:

Λ̂n(δ) =
1

n

n∑
k=1

Xk.

This estimator is unbiased and, by the strong law of large numbers, it converges almost

surely towards Λ(δ). Moreover, by the CLT its asymptotic variance is Λ(δ).

4.4.2 Estimating the intensity by using the waiting times

The second, and more interesting, approach to estimate the intensity Λ̂ is to consider the

waiting-time until execution. This means, instead of observing the number of events, we

observe the set of variables min(τn, T ) where τn are exponential random variables with

parameter λ > 0 which we want to estimate (the relationship between µ, λ and T will be

explored further on) and T the size of the time window.

The advantage of this approach is that can also be implemented in situations where

the other trades on the exchange are not observable and we can only observe our trades.

Proposition 7. (Maximum likelihood estimator) Let τ1, . . . , τn be n i.i.d. exponential

random variables with parameter λ. Let Xn = min(τn, T ) for some T > 0. The maximum

likelihood estimator (MLE) for µ using (X1, . . . , Xn) is given by the formula:

λ̂n =

∑
1Xi<T∑
Xi

Proof. If we suppose that the times τn are exponentially distributed, λ∆T = Λ(δ, t, t +

∆T ) and a = ∆T the distribution function of each of this variables is given by:

f(x) = λe−λx1[0,a](x)dx+ e−λaδa(dx)

Let us consider the sample of (X1, . . . , Xn) such as Card{i|Xi = a} = k. The likeli-

hood function for this event is given by

L(λ;X1, . . . , Xn) = λn−k exp

(
−λ

n∑
i=1

Xi

)
.
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The maximum likelihood estimator for λ is

λ̂n =

∑n
i=1 1Xi<a∑n
i=1Xi

. (4.12)

Theorem 2. (A.s. convergence) The estimator λ̂n converges a.s. towards λ.

Proof. It follows from the strong law of large numbers

λ̂n =

∑n
i=1 1Xi<a∑n
i=1Xi

=
n−1

∑n
i=1 1Xi<a

n−1
∑n
i=1Xi

a.s.−→ P(X < a)

E(X)
= λ.

Proposition 8. (Bias) The estimator λ̂n is biased i.e. E
(
λ̂n

)
> λ.

Proof. By using a n-dimensional co-monotony principle2 (see [119, 118]) and Jensen’s

inequality we get:

E
(
λ̂n

)
≥ E

(
n∑
i=1

1Xi<a

)
E
(

1∑n
i=1Xi

)
≥ λ. (4.13)

Theorem 3. (Lp-convergence) The estimator λ̂ converges towards λ in Lp-norm.

Proof. Directly from propositions 4 and 5 and the fact that a.s. convergence and Lp-

bounded yields Lp convergence (by an uniform integrability argument).

Proposition 9. (Lp-bounds) The estimator λ̂ is Lp-bounded

Proof. This is a consequence of the next proposition.

Proposition 10. Let X be a positive random variable such as there exists a real constant

C > 0 such as P(X ≤ ε) ≤ Cε (in particular, this is the case for any positive random

variable with bounded density).

Let (Xn)n≥1 be an i.i.d. sequence with Xn having the same law as X, ∀n ≥ 1. Then,

the following inequality holds:

P

(
1

2n

2n∑
k=1

Xk ≤ ε
)
≤ Cn8nεn. (4.14)

Moreover, for every n ≥ 1, the inverse of the empirical mean satisfies for every p > 1

E

[(
2n∑2n
k=1Xk

)p]
≤ 2Cp8p, ∀n > p. (4.15)

2The multi-dimensional co-monotony principle states that if f(x1, . . . , xn) and g(x1, . . . , xn)

are both increasing (resp. decreasing) in each variable, and (Xn) a vector of independent random-

variables such as f(X), g(X) and f(X)g(X) are in L1 and not a.s. constant, then E(f(X)g(X)) >

E[f(X)]E[g(X)].
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Proof. If a sum of 2n positive terms is smaller than 2nθ, it means that at least the half

of the terms are smaller than 2θ. Hence:

P

(
1

2n

2n∑
k=1

Xk ≤ ε
)
≤
(

2n

n

)
P(X ≤ 2ε)n ≤

(
2n

n

)
Cn2nεn ≤ 8nCnεn.

First of all we have the identity

E

((
2n∑2n
k=1Xk

)p)
=

∫ +∞

1
a

yp−1P

(∑2n
k=1Xk

2n
≤ 1

y

)
dy.

We can decompose this integral into two intervals separated at y = 8C.

E

((
2n∑2n
k=1Xk

)p)
≤ 8pCp +

∫ +∞

8C

yp−1P

(∑2n
k=1Xk

2n
≤ 1

y

)
dy.

At this point we can use the first inequality to get for every n > p,

E

((
2n∑2n
k=1Xk

)p)
≤ 8pCp + 8nCn

∫ +∞

8C

1

yn−p+1
dy

= 8pCp + 8pCp
∫ +∞

1

1

zn−p+1
dz ≤ 2Cp8p

= 8pCp
(

1 +
1

n− p

)
.

The latter allows to easily prove that the estimator is bounded in the Lp norm. As a

immediate corollary we have the Lp convergence as we already shown that the estimator

converges almost surely.

Theorem 4. The estimator λ̂ is asymptotically normal. Indeed,

√
n(λ̂n − λ) −→ N

(
0,

λ2

1− e−λa
)
.

Proof. Let us write the quantity
√
n(λ̂n − λ).

√
n(λ̂n − λ) =

√
n

(∑n
i=1 1Xi<a∑n
i=1Xi

− λ
)

=
√
n

(∑n
i=1 (1Xi<a − λXi)∑n

i=1Xi

)
=

1√
n

∑n
i=1 (1Xi<a − λXi)

1
n

∑n
i=1Xi

.

The denominator converges almost-surely towards 1−e−λa
λ .
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The numerator converges, by the central-limit theorem, to a centered, normal random-

variable with variance:

s2 := E
[
(1X1<a − λX1)2

]
.

Straightforward calculations yield:

E[12
X1<a] = 1− e−λa

E[λ1X1<aX1] = 1− e−λa − λae−λa

E[λ2X2
1 ] = −2aλe−λa + 2(1− e−λa).

Which finally leads to:

s2 = 1− e−λa

We conclude the proof by applying the Slutsky theorem.

4.5 Estimation of the volatility σ

We briefly discuss the problem of estimating the parameter σ in the intraday case. This

problem is far from being trivial and has been widely studied in [15, 124, 136] is beyond

the scope of this work.

The main issue arising when estimating the volatility using price data sampled at a

high-frequency basis is that the classical volatility estimator, that is

σ̂2
n =

1

tn − t0

n∑
k=1

(Stk − Stk−1
)2,

does not converges to what we would like to (a proxy of price risk) as the noise due to

microstructure effects bias the estimator [136].

Several solutions have been proposed in the literature: sub-sampling, a composite

estimator using sub-sampling at different frequencies, modeling of the microstructure

noise or building the price by using Hawkes processes, among others. Because our interest

is to avoid using high-frequency oscillations in the computation of the volatility, for our

purposes, two approaches can be used: subsampling at a large enough frequency compared

with ∆T .

A second approach is to use the estimator proposed by Garman and Klass [60] (orig-

inally devised for volatility across different days) adapted to the case of a time window

of several minutes. The interest of this estimator is that it is based on the long-term

oscillations of the price. Such features are exactly what we want to measure (since the

local behavior of orders is contained in parameters A and k).
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4.6 Confronting the model to market data

4.6.1 Introduction

In this section our goal is to explore real market data with in mind to see whether the

parameters A and k can be related to the market quantities commonly used as measures

of liquidity (depth, bid-ask spread and trading intensity).

The idea is to compute the variablesA and k for a large number of stocks and for a large

number of days. If the model is capturing the market behavior, we expect (intuitively) to

obtain clear relationships between A and the trading intensity, on the one hand, between

k and the spread and the market depth on the other hand. We show in this section that

this hypothesis is satisfied. Thus, our model (and the way we interpret it) does capture

the features of the market behavior that we want to highlight.

In what follows, we present our methodology and results.

4.6.2 Data scope

Our dataset focuses on a set of 120 European liquid stocks (from the DJ STOXX 600)

between July 2012 and June 2013. We include Level I tick data, that is: price, volume and

time of each deal, and a snapshot of the corresponding sizes and prices for the best-bid

and best-ask levels.

Deal-data and order book data are not perfectly synchronized; this means in practice

that determining whether the initiator of a trade was a buyer or a seller is not trivial.

We compare the deal-price to best-bid and best-ask prices to decide whether a trade was

initiated by a buyer or a seller. Timestamps are not exact (our precision is around 200

ms), moreover, if an aggressive order takes liquidity from two different participants, then

two different trades are reported.

These noise sources emphasize the importance of a model based on a statistical ap-

proach over a tick-by-tick mechanical one.

4.6.3 Methodology

We consider T = 60s, we estimate Λ(δ) by using the waiting-times estimator (4.12) over

the whole day. We estimate k and A using a regression method. We suppose that the

underlying price is a Brownian diffusion.

4.6.4 Results I: k, depth and spread

In the model, the parameter k modulates the probability of being executed far from the

mid-price; a larger k means that it is unlikely to be executed if we place orders with large

δ, a smaller k means the opposite. Thus, intuitively, we expect the following:

• The larger (in Average Traded Sizes – ATS) the sizes on the first levels of the order

book are, the less likely for orders far away from the reference price to be executed

is. This means that large sizes should be characterized by large values of k.
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• The wider the bid-ask spread (in basis points) is, the more likely for orders to be

executed far away from the reference price (small k) is. This means, that we expect

an inverse relationship between bid-ask spread and k.

Relation between k and market depth.

The following figure shows that our intuition is correct; there is a positive relation between

the sizes on the first levels of the order book and our parameter k. By performing a linear

regression after a log-log transformation, we obtain k ∼ depthγ with γ ≈ 0.4.

Figure 4.2: Positive relationship between k and market depth. This means that a

higher value of k is representative of an order book where it is more difficult to observe

trades far from the reference price; this is consistent with the initial guess.

Relation between k and bid ask spread.

The following plot shows again that the intuition is correct; there is a negative relation

between the bid-ask spread (in ticks) and our parameter k. Indeed, by performing a

linear regression after a log-log transformation, we obtain k ∼ spread−γ with γ ≈ 0.4.
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Figure 4.3: Negative relationship between k and the spread. This means that a higher

value of k is representative of an order book with small spread, so trades tend to in-

crease near the reference price; this is consistent with intuition. A caveat has to be

made, as spreads gets narrower (close to one tick), this relation is no more valid as the

tick-size effects are prominent (in this case we expect that depth – and priority – are

the determinants of k).

k versus spread and depth

From the latter results it seems reasonable to consider now a relation of the form

k ∼
(
depth× spread−1

)γ
, γ ≈ 0.4.

4.6.5 Results II: A, intensity and volatility

The parameter A is related to the trading activity. Intuitively, we expect that A will be

positively related with the trading intensity. We also expect that A will be slightly related

to the volatility σ, however, we would like this relationship not to be very pronounced

since, in the model, A is supposed to capture the short term oscillations and σ to capture

the amplitude of price movement in the long run, regardless of the intensity.
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Figure 4.4: Data show that, as intuition predicts, k characterizes the market quantities

related with the probability of execution at different levels of δ (spread and depth).

Relation between A and trading intensity

Relation between A and volatility

4.6.6 Practical issues

Some issues remains to be discussed, among others, how integrating into the model vari-

ability of volume sizes, the time priority in the order book, and how to choose the time-

scale ∆T .

Variability of traded-sizes

The model supposes that the traded-sizes are unitary. This is not true in practice; traded-

sizes are variable, meaning that sometimes our orders can be only partially consumed.

When implementing the solution for the optimization-problem or when performing the

parameter estimation, there is not a unique obvious way to interpret this fact.

A way to conciliate variable-sizes and the model is to think in terms of average-

traded-sizes (ATS) as the unit of measurement for the volumes (thus, if we are using the

waiting-times method to estimate intensities, we compute the expected-time in order to

execute some fixed number of ATS). The caveat with this method is that traded volumes

have skewed distributions; taking the median is sometimes better than the average.
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Figure 4.5: Again, as intuition predicts, the parameter A is positively related to the

trading intensity.

Time priority

If two limit orders are at the same level in the order book we know that they will be

executed according to which order arrived at first in the order book. This feature is

statistically incorporated in the model through the parameter k.

Choice of ∆T

The parameter ∆T is chosen in order to decompose the microstructure effects from the

asymptotic behavior of the price. We also want this to be accomplished in a consistent

way with the exponential form for the probability of execution. Concretely, choosing a

∆T which is to small will create an overlap between the effects of A (trading intensity) and

σ: we will consider short term oscillations in the price as price risk, which is not desirable.

On the other hand, choosing a too large ∆T , will create an overlap between the effects

of k (probability of execute orders far from the reference price) and the volatility effects

(price movements are driven orders being executed far from the reference price).



4.6. CONFRONTING THE MODEL TO MARKET DATA 99

Figure 4.6: We do not find convincing evidence that volatility and A are related (in

practice the value of the parameter ∆T should be calibrated in a way that the relation-

ship between A and σ is as weak as possible, i.e. volatility measures price risk and it is

not contaminated with local oscillations due to trading intensity).

4.6.7 Volume imbalances and price movement

It can be argued that the model is not realistic as it is symmetric in terms of probability of

observing orders on both sides of the reference price, while real data show daily imbalances

that are in fact correlated with the price movements [93]. This is indeed an important

point to be considered for the interpretation of the Avellaneda-Stoikov model.

• If the model is interpreted in a naive ‘instantaneous’ way, i.e. by considering the

mid-price at each instant as the reference price and by simply understanding the

parameter k as a proxy of the spread and the time priority, we force a frontal

contradiction since empirical data show that there is a direct relationship between

volume imbalance and price movements.

• On the other hand, if we interpret the model in the way we did throughout this

chapter, there is no contradiction between the relation imbalance/price and the

symmetry of the model. This is due to the fact that of fixing the reference price

over a time window ∆T creates a dependency between the trajectory of the price

and the realized flow.
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Roughly speaking, the observed imbalance during a time window ∆T given the refer-

ence price, will be

I∆T =

∫∆T

0
ek(St−S0)dt−

∫∆T

0
e−k(St−S0)dt∫∆T

0
ek(St−S0)dt+

∫∆T

0
e−k(St−S0)dt

.

That is, the model, even if symmetric, naturally relates the observed imbalance with

the direction of the price.

4.7 Conclusion

In this chapter, we studied the Avellaneda-Stoikov model from the point of view of its

calibration by using real-data. Several issues where discussed: the interpretation of the

model, how to extend the model to a wider range of price dynamics, the calibration for

parameters A and k, an estimator of the intensity of a Poisson process by using the

waiting times and, finally, we confront the approach to real data and analyze the different

issues (volatility estimation, volume imbalances, clean the data) arising in practice.



Chapter 5

On-line Learning and

Stochastic Approximation

5.1 Introduction

In this chapter we will present the main results of the theory of stochastic approximation

that we will be used in the next chapter. We will principally focus on how stochastic

approximation plays a role in the design of recursive optimization algorithms in problems

where an agent faces uncertainty; this is particularly useful when the source of randomness

can be simulated numerically or obtained from a historical dataset. This is also a powerful

tool when we want to optimize, iteratively and in real-time, the behavior of a system; in

that case stochastic approximation methods are also known as on-line learning.

Designing recursive optimization algorithms through the theory of stochastic approxi-

mation is not a new phenomenon; a large part of the methods were devised and developed

early in the second half of the 20th century (Robbins and Monro [123], Kiefer and Wol-

fowitz [85]). Because we nowadays experience an increase in the availability and velocity

of data, computer speed but also because the performance of industrial and financial sys-

tems are mainly measured statistically, these methods adapt particularly well in today’s

real-life applications and are getting increasing attention from the industry.

In a nutshell, the idea of stochastic approximation is to find a value of interest (it

can be a parameter we want to estimate, the critical point of a function or the zero of a

vector field) in an iterative way by updating the ‘current best-guess’ with the new (noisy)

information arriving on a regular basis. This information can be a stream of real-time

data, historical data or a set of simulated data. Simply put, let θn represent the process

giving us the current best-guess: we would like to define a dynamical system (also known

as stochastic algorithm) reading

θn+1︸︷︷︸
new value

= θn︸︷︷︸
old value

− γn+1︸ ︷︷ ︸
step (weight)

× H(θn, Yn+1)︸ ︷︷ ︸
correction using incoming information

(5.1)
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in such a way that this sequence is converging towards the true ‘best-guess’ θ∗ we are

looking for. Mathematically, this means that if the incoming information Yn (or a trans-

formation of it) satisfies a stationary ergodic property, then θn converges towards θ∗. The

simplest setting is (Yn)n≥1 is i.i.d. In that sense, stochastic approximation can be seen

as a generalization of the law of large numbers (indeed, the law of large numbers can be

written recursively in the form of the equation (5.1)).

From a mathematical viewpoint, analyzing the convergence of this type of procedure

relies heavily upon both the theory of martingales and the theory of the stability of ODEs.

References on the mathematical theory can be found in the books by Duflo [49], Benveniste

et al. [22] and Kushner et al. [95]. Also, as we will show, the way these procedures are

designed is inspired by two deterministic methods widely known in numerical analysis:

the Newton-Rhapson zero-search procedure and the gradient-descent method.

5.2 Examples of stochastic algorithms

5.2.1 Recursive estimation of the average

For some applications, how to choose the function H(·, ·) appearing in equation (5.1)

emerges naturally from the nature of the problem. As an elementary example, we can

consider a recursive algorithm to compute the average of a stream of data (Yn)n≥0 with

Yn i.i.d. and in L1. Let us denote θn the estimated value at time n by the following

procedure: every time a new value arrives, we weight the current estimated value by

(1− γn) and we sum the new information, that is Yn+1, weighted by γn, γn ∈]0, 1[. Then

θn+1 = (1− γn)θn + γnYn+1. (5.2)

In this example, the function H(·, ·), from equation (5.1), correspond to:

H(θ, y) = θ − y. (5.3)

Indeed, equation (5.1) can be rewritten as

θn+1 = θn − γn(θn − Yn+1). (5.4)

Notice that, if γn is constant, this is equivalent to an exponential moving average, and

if γn = (n+ 1)−1, we are in the situation of the law of large numbers. Indeed, it is easy

to check that in that case the algorithm reads

θn =
1

n

n∑
k=1

Yk

.

Moreover, the convergence of θn towards θ∗ = E[Y1] can be also proved in the general

case
∑
n γn = +∞ and

∑
n γ

2
n < +∞, for γn > 0.
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5.2.2 The two-armed bandit algorithm

A more interesting example is to use stochastic approximation in order to continuously

learn how to optimally allocate a budget between two agents.

For instance, let us consider an investor hesitating between two ventures A and B. He

decides to invest a share θ of his total budget in venture A and (1− θ) in venture B, with

θ ∈ (0, 1). Every time venture A report a good result (e.g. a sale or a new client) the

investor re-allocates a share γ ∈ (0, 1) from venture B to the venture A (and vice-versa).

For example, we can imagine at time n = 0 the investor starts with an allocation θ0 = 1
2 .

Let us consider this quantity γ decreases as time advances (time is measured as the

number of total good-results reported for both the two ventures) because the opinion of

the investor becomes sounder so that he reduces the impact of the re-allocation. Thus,

the evolution of the share for the venture A evolves by the following equation

θn+1 = (1− γn+1)θn + γn+11An+1
.

where An is the event: the n+1 positive report was from venture A (or as an stochastic-

algorithm we can write θn+1 = θn − γn+1

(
θn − 1An+1

)
).

This is a probabilistic version of the so-called bandit-algorithm and its convergence

was studied in-depth in [97, 98]. It can be shown that under suitable conditions on γn
the algorithm always converges toward the best venture, regardless of initial conditions.

Figure 5.1: Evolution of the bandit algorithm with different initial conditions. The x-

axis represent the number of iterations. The y-axis represents how much budget is allo-

cated to the best venture (here A).

In the two preceding examples, the update function arises heuristically from the na-

ture of the real-life problem, and a mathematical analysis would be intended just to

prove that the procedure converges towards the expected value. So is not always the

case: for some applications, the way in which the function H(·, ·) is defined is far from

being trivial. However, two deterministic methods will help us to know how to define
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the function H(·, ·), depending on the underlying application: these two methods are

the Newton-Rhapson method for zero-search and the gradient-descent method for opti-

mization problems, as mentioned above. We will see that several parallels can be drawn

between these deterministic methods and stochastic approximation; in terms of the shape

of the algorithm and, also, on how the proof of the convergence is structured.

5.2.3 The Robbins-Monro algorithm

Another example (in line with what follows in the next section) is to consider the following

zero-search procedure. Assume an input θ ∈ R creates a random output measured by

H(θ, Y ) where Y is a random variable and H is either a known function or observations

from real-data for which we only know the control we apply. Our goal is to find θ∗ such

as E[H(θ∗, Y )] = α, where h(·) := E[H(·, Y )] is increasing and unknown.

Let us recall that, when the function h(·) is known, we can find the solution of the

equation h(x) = α via the Newton-Rhapson algorithm which reads:

θn+1 = θn − γn+1 (h(θn)− α) .

The idea of the Robbins-Monro algorithm is to apply a similar procedure by taking,

instead of h, the continuous realization of the (unknown) function H(θ, Y ). This is, to

find θ∗ by applying the algorithm:

θn+1 = θn − γn+1(H(θn, Yn+1)− α), γn+1 ≥ 0.

It is important to note that this can be seen from two perspectives:

• We do not know the function H but we have access to the observations H(θn, Yn+1)

when we control the input (classical Robbins-Monro setting).

• We know the function H but we do not know the statistical laws driving the noise

other than qualitative properties such as i.i.d., stationary or being a controlled

Markov chain. This is the case most interesting for us, as in financial applications

we count with a parametric model of how the control affects the outcomes.

Again, it can be shown (by the techniques we will present in this chapter) that in a

wide range of situations, this procedure converges towards the target point.

5.2.4 Search of extrema in stochastic settings

A final example, and the most important for the purposes of this study, is the search

for the critical points of a function. Two situations are considered: when the function

is represented as the expectation of an expression that we can differentiate (stochastic

gradient), or when we want to search for the maximum of a function for which we only

have access via trial-and-error observations (Kiefer-Wolfowitz algorithm).
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Stochastic gradient

The goal is to find the minimum of a function of the form f(θ) = E [F (θ, Y )].

A widely used method in numerical analysis is the well-known gradient-descent algo-

rithm

θn+1 = θn − γn+1∇f(θn)

which converges towards the critical point of the function f , where f(θ) = E[F (θ, Y )].

The idea is to apply a similar procedure to the function F , i.e.

θn+1 = θn − γn+1∇θF (θn, Yn+1).

As we will show in this chapter, under certain conditions, this procedure converges

towards the target point. For us, this is the most interesting case as in general the goal

is usually to find the value which maximizes (or minimizes) a function defined by an

expectation.

The Kiefer-Wolfowitz algorithm

Let us consider, in the Robbins-Monro situation, an unknown function to which we apply

an input θ and obtain a noisy output F (θ, Y ). Instead of wanting to reach a given

level, we would like to maximize the average output when the function f(θ) = E[F (θ, Y )]

is concave. The difference between the procedure presented below and the stochastic

gradient is that, in the Kiefer-Wolfowitz situation we do not know the function, we only

observe its effects, and thus computing the local gradient is not possible.

Because in a concave framework, the maximization of a function amounts to finding

the zero of its gradient, the idea of the Kiefer-Wolfowitz algorithm is to apply the Robbins-

Monro procedure to a discrete version of the derivative, i.e. the algorithm reads

θn+1 = θn +
γn+1

2cn
(f(θn + cn, Yn+1)− f(θn − cn, Yn+1)) .

The convergence of this algorithm is studied in [85].

5.2.5 Caveat: convergence and implementation

When implementing stochastic algorithms as in the previous examples, usually there are

some differences between the hypothesis under which the theorem holds and the real life

scenario.

Constant-step algorithms

It is interesting in practical applications to define algorithms with constant step γn = γ.

The idea is to have an estimator that can take advantage of regime changes along the life

of the algorithm. This is similar to the case where a moving-average is preferred to the

estimator of the average in order to have an estimator take into account regime changes.

In this study we do not present the formal analysis of the convergence of constant-step

algorithm, however in the implementation of real-life processes it could be used.
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Ruppert-Polyak algorithm

As we will see in the following sections, asymptotically the fastest convergence speed

is reached through a Central Limit Theorem of the form in which the optimal variance

depends on the rate of decrease of the step-size.

When γn = Cn−a for an exponent 1
2 < a ≤ 1 it can be shown that the fastest

convergence is reached for a = 1. However, smallest values for a are interesting too as

they allow the algorithm to explore the space more during the early stages. The Ruppert-

Polyak approach (presented in the last section) is a way to get the best of two worlds:

fast asymptotic convergence and exploration of the space during early stages.

The idea is to implement the algorithm with step a < 1 but take as ‘solution’ for each

period the current average of the values taken by the stochastic algorithm. Indeed, it can

be proven that the sequence:

θ̄n =
1

n

n∑
k=1

θk

converges optimally towards the limit point of the algorithm (in terms of the associated

CLT). Details are provided in the last section of this chapter.

Dependence in the innovations

A strong assumption we carry throughout the mathematical results we will present in this

chapter, is that the innovations Yn in (5.1) are i.i.d. This is not always the case in real

applications as it is common to face problems in which the dynamics of the innovations

have dependence features. However, some of the results we will present are still valid in

this situation (see the works of Doukhan et al. [48] and, recently, Laruelle [99]). Results

also exist when the innovations are controlled Markov chains [131].

Algorithms with projections

Another (usual) situation in which the hypothesis of our results can differ from the real-

life context is in the case when the domain in which the solutions of the algorithm should

reside is a given set, and the dynamic of the algorithm should not explore points outside

this zone (e.g. an algorithm which is constrained to live in a surface).

To solve this kind of situation, variations can be derived from the form (5.1), by

projecting after each iteration the value of θn+1 on the set within which we want the

solution to reside. This kind of approach has been studied in [108, 39].

Choice of constants

The choice of constants in the stochastic algorithm can impact the variance obtained in

the CLT. It can be shown than for an algorithm of the form

θn+1 = θn − γn+1H(θn, Yn+1), γn =
c

n
,
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with h(θ) = E[H(θ, Y )], that the optimal speed of convergence is obtained, in the one-

dimensional case, for

c∗ =
1

h′(θ∗)

which leads to an asymptotic variance of

Var(H(θ∗, Z))

h′(θ∗)2
.

In order to control the step at the beginning of the learning procedure (when n is small

we can give too much weight to the initial information), we can use a second constant

b > 0 and choose as step

γn =
1

h′(θ∗)(b+ n)
.

This is mainly a theoretical result as in practice the value h′(θ∗) is usually unknown.

A better way to obtain an optimal convergence speed is through the Ruppert-Polyak

procedure.

5.3 Convergence of stochastic algorithms

5.3.1 Outline of the proofs

Roughly speaking, stochastic approximation can be presented as a probabilistic extension

of Newton-Rhapson-like zero search recursive procedures of the form

∀n ≥ 0, yn+1 = yn − γn+1h(yn), 0 < γn < γ0

where h : Rd → Rd is a continuous vector field satisfying a sub-linear growth assumption

at infinity.

Mean-reverting assumption

The convergence of this class of methods relies on a mean-reverting assumption. In one

dimension, this can be obtained by a nondecreasing assumption made on the function h,

or more simply by assuming that h(y)(y−y∗) > 0 for every y 6= y∗. In higher dimensions,

this assumption becomes 〈h(y), y − y∗〉 > 0 and will be extensively called upon in the

following pages.

More generally mean-reversion follows from the existence of a so-called Lyapunov

function. To introduce this notions, let us make a connection with Ordinary Differential

Equations.

The Lyapunov function

Let us consider the dynamical system ODEh ≡ ẏ = −h(y). A Lyapunov function for

ODEh is a function L : Rd → R+ such that any solution t 7→ x(t) of the equation satisfies
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that t 7→ L(x(t)) is nonincreasing as t increases. If L is differentiable this is mainly

equivalent to the condition 〈∇L, h〉 ≥ 0 since

d

dt
L(y(t)) = 〈∇L(y(t)), ẏ(t)〉 = −〈∇L, h〉(y(t))

If such a Lyapunov function does exist (which is not always the case), the system is

said to be dissipative.

The two frameworks

There are two situations regarding the role of the Lyapunov function on the analysis of

stochastic algorithms:

• The function L is identified a priori, for example in a stochastic-gradient procedure,

is the function itself we want to minimize which can be the Lyapunov function of

the system (the ODE being defined by its gradient – or proportional to its gradient).

• The function of interest h arises naturally from the problem (e.g. Robbins-Monro,

bandit algorithms, etc.) and one has to search for a Lyapunov function L (which

may not exist). This usually requires a deep understanding of the problem from a

dynamical point of view.

Martingale analysis

One method to prove the convergence of the stochastic approximation procedure (as we

will see in the next sections) is by studying the convergence of the sequence θn evaluated

on some function L serving as Lyapunov function. Using a super-martingale property, the

mean-reverting condition and a the divergence of the series γn, we prove the convergence

of the algorithm. This approach is essentially of a probabilistic nature.

The ODE method

Another way to prove the convergence (that will be called the ODE method) is by consid-

ering the algorithm as a perturbed version of the Euler method of the related ODE. The

idea is to prove, via topological and functional analysis arguments, that the limit points

of the dynamical system without the perturbation are the same as the limit points of the

stochastic algorithm.

5.3.2 Convergence of deterministic algorithms

Let us first consider the deterministic situation. In this case we take a vector field h :

Rd → Rd and its associated zero-search algorithm:

∀n ≥ 0, θn+1 = θn − γn+1h(θn), θ0 ∈ Rd, (5.5)

where γn is a (strictly) positive sequence.
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The next theorems shows that under a set of hypothesis, the convergence set of this

algorithm, is a point θ∗ such as h(θ∗) = 0.

Theorem 5. Assume h is continuous, increasing at a linear rate (i.e. |h(θ)| ≤ C(1−|θ|))
and satisfies the following mean-reversion condition:

〈h(θ), θ − θ∗〉 > 0. (5.6)

If furthermore γn satisfies

∀n ≥ 1, γn > 0,
∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞. (5.7)

then the algorithm (5.5) converges towards the only zero of h.

Proof. Because of equation (5.5), we have

|θn+1 − θ∗|2 = |θn − θ∗|2 − 2γn+1〈h(θn)|θn − θ∗〉+ γ2
n+1|h(θn)|2

= |θn − θ∗|2 − 2γn+1〈h(θn)|θn − θ∗〉+ Cγ2
n+1(1 + |θn − θ∗|2).

This implies that the sequence

sn =
|θn − θ∗|2 +

∑n
k=1 γk〈h(θk−1|θn − θ∗〉+ C

∑
k≥n+1 γ

2
k∏n

k=1(1− Cγ2
k)

is positive and decreasing, then, it converges towards a finite limit s∞. The latter implies

|θn − θ∗|2 → l∞ and
n∑
k=1

γk〈h(θk−1)|θk−1 − θ∗〉 < +∞.

As
∑
n≥1 γn = +∞ the second inequality yields

lim inf〈h(θn)|θn − θ∗〉 = 0.

There exists a subsequence θϕ(n) such that 〈h(θϕ(n))|θϕ(n) − θ∗〉 → 0. Up to a new

extraction there exists a subsequence θφ(n) such as θφ(n) → θ∗, since h is continuous.

Then |θφ(n) − θ∗|2 → 0 which implies that θn → θ∗.

In order to extend the idea to optimization algorithms, first notice that the precedent

scheme can be interpreted as finding the minimum of the function L : θ 7→ |θ − θ∗|2.

Theorem 6. Let us consider a function L : Rd → R+, L ∈ C1, ∇L Lipschitz, and

satisfying the following conditions controlling its growth:

|∇L|2 ≤ C(1 + L), (5.8)

lim
|θ|→+∞

L(θ) = +∞. (5.9)

If h is continouous with
√
L-linear growth, that is

|h| ≤ C
√

1 + L
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and satisfies the following mean-reversion condition:

〈∇L, h〉 > 0 on {h 6= 0}.

Then the algorithm converges towards the zero of h. If L is convex, then {∇L = 0} is

convex and the algorithm converges towards {∇L = 0}, that coincides with the argument

of the minimum of L.

In particular, we can take h = ∇L if our goal is to minimize L. In that case the

algorithm is called a gradient-descent method.

Proof. See [119].

5.3.3 Convergence through ODE analysis

A way to study recursive procedures is to relate equation (5.5) to the discrete-time approx-

imation of the ODE ≡ θ̇ = −h(θ). Indeed, if we set θ(Γn) = θn, where Γn = γ1 + . . .+γn,

n ≥ 1, then we have the equation

θn+1 − θn
γn+1

= −h(θn),

which correspond to an approximation of θ̇n, otherwise said, the algorithm can be seen

as the Euler scheme (with decreasing step) of the ODE.

Theorem 7. Let L : Rd → R+ essentially quadratic, i.e. such as L ∈ C1, ∇L Lipschitz,

|∇L|2 ≤ C(1 + L) and lim
|θ|→∞

L(θ) = +∞.

If h is continous such as |h| ≤ C
√

1 + L and θ 7→ 〈∇L, h〉 is non-negative and lower

semi-continuous, then, the set of limiting points of the sequence (θn)n≥0 denoted Θ∞, is

a connected component of {L = l∞} ∩ {〈∇L, h〉 = 0}.
Moreover, if h is continuous, then Θ∞ is a connected, compact subset, stable by both

ODEs θ̇ = −h(θ) and θ̇ = h(θ).1

Proof. By using the proof of the direct approach, we have:

• L(θn) −→ l∞ ∈ [0,∞[ then (θn)n≥0 is bounded and θn+1 − θn → 0.

• ∑ γn−1〈∇L, h〉(θn) < +∞.

Thus, the set of limit points Θ∞ of the sequence (θn)n≥0 is a connected, compact

subset of {L = l∞} ∩ {〈∇L, h〉 = 0} (as it is well-chained).

1If we suppose beforehand that (θn)n≥0 is bounded, then we can weaken the step condition to

γn → 0 and
∑

γn = +∞.
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Let us set:

θ
(0)
Γn

:= θn, θ
(0)
t := θ0 −

∫ t

0

h(θ(0)
s )ds

where, by linear interpolation, s := Γn on [Γn,Γn+1).

The idea of the proof is to study the asymptotic behavior starting from Γn as n→ +∞,

by taking time as continuous, i.e. instead of studying (θn)n≥0 we will be interested in the

sequence of functions

θ
(n)
t := θ

(0)
Γn+t, t ≥ 0.

Let K = {θn, n ≥ 1} ⊂ R+. This is a compact set and for every s, t ∈ [0, T ], s ≤ t,

|θ(n)
t − θ(n)

s | ≤
∫ Γn+t

Γn+s

|h(θ(0)
u )|du ≤ |t− s| sup

x∈K
|h(x)|.

Hence the sequence (θ(n)) is uniformly relatively-compact for the topology of the

uniform convergence on the compacts of R+ (noted UK) by the Arzela-Ascoli theorem.

Let θ∞ ∈ Θ∞, there exists a sub-sequence (ϕ(n))n≥1 such that

θϕ(n) −→ θ∞ and θϕ(n)
UK−→ θ(∞) with θ

(∞)
0 = θ∞.

On the other hand,∑
n≥1

γn+1〈∇L|h〉(θn) =

∫ ∞
0

〈∇L, h〉(θ(0)
t )dt < +∞

and ∫ ∞
0

〈∇L, h〉(θ(n)
t )dt =

∫ ∞
Γn

〈∇L, h〉(θ(0)
t )dt =

∑
k≥0

γk〈∇L, h〉(θk) −→ 0.

Hence, the lower semi-continuous condition and the Fatou lemma yields:

0 ≤
∫ ∞

0

〈∇L, h〉(θ(∞)
t )dt ≤

∫ ∞
0

lim inf〈∇L|h〉(θ(ϕ(n))
t )dt (5.10)

≤ lim inf

∫ ∞
0

〈∇L, h〉(θ(ϕ(n))
t )dt (5.11)

= 0. (5.12)

Thus,

〈∇L, h〉(θ∞t ) = 0 dt− a.e.

and hence, as 〈∇L, h〉 is lower semi-continuous.

〈∇L, h〉(θ∞) = 0.

We conclude that Θ∞ is a connected component of {L = l∞} ∩ {〈∇L, h〉 = 0}.
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If h is continuous, we conclude from

θ
(n)
t := θn −

∫ t

0

h(θ
(n)
s )ds, s := s+ Γn − Γn ≈ s

that every limit point of (θn) satisfies the ODE and take its values on the set Θ∞. Thus

Θ∞ is a connected, compact subset, invariant for the ODE θ̇ = −h(θ).

The case of θ̇ = h(θ) can be handled likewise by considering (θ
(n)
T−t)t∈[0,T ] for every

T > 0, for n large enough.

5.4 Convergence of stochastic algorithms

In this section we will outline the mathematical analysis of the convergence of stochastic

algorithms. We will focus on the Markov setting with i.i.d. innovations, that is, when

the algorithm has the form:

θn+1 = θn − γn+1H(θn, Yn+1), (5.13)

with (Yn)n∈N an i.i.d. sequence of µ-distributed Rq-valued random vectors defined on a

probability space (Ω,F ,P).

Roughly speaking, the analysis of the convergence of the algorithm is studied by

rewriting the equation (6.44) as:

θn+1 = θn − γn+1 ×

 h(θn)︸ ︷︷ ︸
deterministic drift

+ ∆Mn+1︸ ︷︷ ︸
martingale difference (noise)

 . (5.14)

Intuitively, we expect the effect of the deterministic drift to dominate the effect of the

noise so that the algorithm behaves like the deterministic procedure under consideration

in the former section. In particular, if we take for example γn = n−1, we will have on

the one hand that
∑
γn diverges, while the weighted sum of martingale differences is

expected to be controlled, since if we do the analogy with a i.i.d. noise, the variance

should be proportional to
∑
n γ

2
n.

5.4.1 Main theorem (Robbins-Zygmund)

In order to prove our main result, let us consider a random vector Y taking values in Rq

with distribution µ and a Borel function H : Rd × Rq → Rd.
Following what precedes, we introduce into our analysis the following function:

h : θ 7→ E [H(θ, Y )] . (5.15)

And, for this function to be well defined, we add the following condition:

∀θ ∈ Rd, E [|H(θ, Y )|] < +∞. (5.16)
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Theorem 8. (Robbins-Zygmund Lemma) Let us consider the following hypothesis.

1. Mean reverting assumption: There exists a continuously differentiable function L :

Rd → R+ satisfying:

〈∇L, h〉 ≥ 0. (5.17)

2. Hypothesis about the step-size:∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n <∞. (5.18)

Furthermore assume the following technical assumptions:

1. Controlled growth for L (quadratic at most):

|∇L|2 ≤ C(1 + L). (5.19)

2. Controlled growth for H (pseudo-linear):

∀θ ∈ Rd, ‖H(θ, Y )‖2 ≤ C
√

1 + L(θ). (5.20)

3. The initial condition θ0 : (Ω,F ,P)→ Rd is independent of (Yn)n≥1 and E[L(θ0)] <

+∞.

Then, the stochastic algorithm satisfies: θn − θn−1 → 0 (P-a.s. and in L2(P)), L(θn)

is L1(P)-bounded, L(θn)→ L∞ and∑
n≥1

γn〈∇L, h〉(θn−1) < +∞ (5.21)

Proof. Let us set Fn := σ(θ0, Y1, . . . , Yn), n ≥ 1, and to simplify the notations, ∆θn :=

θn − θn−1, n ≥ 1. By a first order Taylor-expansion on L we know that there exists

ξn+1 ∈ (θn, θn+1) (as geometrical interval) such as

L(θn+1) = L(θn) + 〈∇L(ξn+1)|∆θn+1〉
≤ L(θn) + 〈∇L(θn)|∆θn+1〉+ [∇L]Lip|∆θn+1|2

= L(θn)− γn+1〈∇L(θn)|H(θn, Yn+1)〉+ [∇L]Lipγ
2
n+1|H(θn, Yn+1)|2

= L(θn)− γn+1〈∇L(θn)|h(θn)〉 − γn+1〈∇L(θn)|∆Mn+1〉
+[∇L]Lipγ

2
n+1|H(θn, Yn+1)|2

where

∆Mn+1 = H(θn, Yn+1)− E [H(θn, Yn+1)] = H(θn, Yn+1)− h(θ).

Our goal is to show that ∆Mn+1 is an Fn-adapted martingale difference, belonging

to L2 and satisfying E[∆M2
n+1] ≤ C(1 + L(θn) for an appropriate constant C > 0.
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Let us notice that for every n ≥ 0, L(θn) ∈ L1(P) and H(θn, Yn+1) ∈ L2(P), this

comes from the latter inequality and from

E[〈∇L(θn)|H(θn, Yn+1)〉] ≤ 1

2

(
E[|∇L(θn)|2] + E[|H(θn, Yn+1)|2]

)
≤ C(1 + E[L(θn)]).

As θn is Fn-measurable and Yn+1 is independent of Fn, we have

E[H(θn, Yn+1)|Fn] = E[H(x, Y1)]|x=θn = h(θn).

Consequently, E[∆Mn+1|Fn] = 0. The inequality for E
[
|∆Mn+1|2|Fn

]
comes from

the fact that |∆Mn+1|2 ≤ 2
(
|H(θn, Yn+1)|2 + |h(θn)|2

)
and hypothesis (5.20).

We can deduce from the hypothesis made on the step size that we can find a constant

CL > 0 (Lipschitz constant) such as

Sn =
L(θn) +

∑n−1
k=0 γk+1〈∇L(θk)|h(θk)〉+ CL

∑
k≥n+1 γ

2
k

Πn
k=1(1 + CLγ2

k)

is a non-negative supermartingale starting at S0 = L(θ0) ∈ L1(P). This uses that

〈∇L|h〉 ≥ 0. The latter implies that Sn is converging a.s. toward an integrable r.v.

S∞. Consequently, by using that the tail of the series on γ2
n+1 converges toward zero, we

obtain

L(θn) +
n−1∑
k=0

γk+1〈∇L, h〉(θk) −→ S∞
∏

(1 + CLγ
2
n) ∈ L1(P).

The non-negative supermartingale (Sn) being L1(P)-bounded, we deduce likewise that

L(θn) is L1-bounded as

L(θn) ≤ Πn
k=1(1 + CLγ

2
k)Sn, n ≥ 0.

Owing to the mean-reversion assumption (which ensures that every term on the fol-

lowing series is positive), we deduce that∑
n≥0

γn+1〈∇L|h〉(θn) < +∞.

It follows that L(θn)→ L∞, which is integrable as (L(θn)) is L1-bounded. Finally,∑
n≥1

E(|∆θn|2) ≤
∑

γ2
nE[|H(θn−1, Yn)|2] ≤ C

∑
γ2
n(1 + E(L(θn−1))) < +∞.

Hence
∑
n≥1 E[|∆θn|2] ≤ +∞, which implies θn − θn−1 → 0 a.s.

5.4.2 Two important corollaries

The Robbins-Monro algorithm

Corollary 1. Assume that the mean function h of the algorithm is continuous and sat-

isfies

∀y ∈ Rd, y 6= y∗, 〈y − y∗, h(y)〉 > 0 (5.22)
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(which implies that {h = 0} = {y∗}). Suppose furthermore that Y0 ∈ L2(P) and that H

satisfies

∀y ∈ Rd, E
[
‖H(y, Z)‖2

]
≤ C(1 + ‖y‖2) (5.23)

If the step sequence γn satisfies the conditions of the Robbins-Zygmund lemma, we

have:

Yn → y∗, P− a.s. (5.24)

and in every Lp(P), p ∈ (0, 2].

Proof. The Robbins-Monro case, correspond to the Robbins-Zygmund lemma when the

Lyapunov function is given by L(θ) = 1
2 |θ − θ∗|2. It follows that

|θn − θ∗| → L∞ ∈ L1(P) and
∑
n≥1

γn〈θn − θ∗|h(θn−1)〉 < +∞ a.s.

Moreover, (|θn − θ∗|2)n≥1 is L1(P)-bounded.

Let ω ∈ Ω be such as (|θn(ω)− θ∗|2)n≥1 converges towards l∞(ω) ∈ R+ and∑
n≥1

γn〈θn−1(ω)− θ∗|h(θn−1(ω))〉 < +∞.

Because of the last inequality, we obtain

lim inf〈θn−1(ω)− θ∗|h(θn−1(ω))〉 = 0,

then, up to successive extractions, there exsists a subsequence ϕ(n) such that

〈θϕ(n)(ω)− θ∗|h(θϕ(n)(ω))〉 → 0 and θϕ(n)(ω)→ θ∞(ω), as n→∞.

As h is continuous, it follows that 〈θ∞(ω)−θ∗|h(θ∞(ω))〉 = 0, which implies θ∞(ω) =

θ∗ owing to (6.47). We conclude that l∞ = 0 so that

lim |θn(ω)− θ∗|2 = lim |θϕ(n)(ω)− θ∗|2 = 0.

The Lp-convergence, p ∈ (0, 2), follows from the fact that the sequences |θn− θ∗|p are

L2/p bounded, then, uniformly integrable. Consequently these sequences are L1 conver-

gent, and hence θn → θ∗ in Lp.

The stochastic-gradient algorithm

Corollary 2. Let L : Rd → R+ be a differentiable function satisfying ∇L Lipschitz

continuous and |∇L|2 ≤ C(1+L), lim|y|→∞ L(y) = +∞, and {∇L = 0} = {θ∗}. Assume

the mean function of the algorithm is given by h = ∇L and that H satisfies:

E(|H(y, Z)|2) ≤ C(1 + L(y)), ∀y ∈ Rd. (5.25)

Assume L(θ0) ∈ L1(P). Assume that the sequence γn satisfies the conditions of the

Robbins-Zygmund lemma.

Then L(y∗) = minR L and

θn → θ∗ a.s. (5.26)

and ‖∇L(θn)‖ converges to zero in every Lp(P), p ∈ (0, 2).
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Proof. In the case of the stochastic-gradient, we apply the Robbins-Zygmund lemma by

using L as Lyapunov function as naturally we have 〈∇L, h〉 = |∇L|2 ≥ 0. Consequently

L(θn)→ L∞ ∈ L1(P) and
∑
n≥1

γn|∇L(θn−1)|2 < +∞ a.s.

Let ω ∈ Ω be such as L(θn(ω))→ L∞(ω) ∈ R+,
∑
n≥1 γn|∇L(θn−1(ω))|2 < +∞ and

θn(ω) − θn−1(ω) → 0. The same argument as for the Robbins-Monro algorithm shows

that

lim inf |∇L(θn(ω))|2 = 0

and because of the convergence of L(θn(ω)) towards L∞(ω) and limL(θ) = +∞ as |θ| →
∞, we derive the boundedness of θn(ω). Thus, it exists a subsequence ϕω(n) such that

θϕω(n)(ω)→ θ∞(ω). Hence, by continuity of L and ∇L

∇L(θ∞(ω)) = 0 and L(θ∞(ω)) = L∞(ω).

Hence, ∇L(θ∞(ω)) = 0 implies θ∞(ω) = θ∗, then, L∞(ω) = L(θ∗). The function L

being positive, differentiable and converging towards +∞ for θ large enough, it implies

that L has an unique (global) minimum at θ∗. In particular, the only possible limit value

for θn(ω) is θ∗.

The convergence in Lp, p ∈ (0, 2), follows from the same uniform-integrability argu-

ment as in the proof for the Robbins-Monro algorithm.

5.5 The ODE method

Let us consider the following recursive algorithm defined on a filtered probability space

(Ω,A, (Fn)n≥0,P)

∀n ≥ n0, θn+1 = θn − γn+1h(θn) + γn+1(∆Mn+1 + rn+1)

where h : Rd → Rd is a continous locally Lipschitz function, θn0 is an Fn0-measurable,

finite, random vector and, for all n ≥ n0, ∆Mn+1 is an Fn-martingale increment and rn
is an Fn-adapted remainder term.

The following theorem emerges from the subtle liens between the asymptotic behavior

of stochastic algorithms and that of ODEs (see [20]).

Theorem 9. Assume that h is locally Lipschitz (or continuous) and that (θn)n≥1 is

bounded. Also assume that

rn
a.s.−→ 0 and sup

n≥n0

E
[
|∆Mn+1|2

∣∣Fn] < +∞ a.s., (5.27)

and that (γn)n≥1 satisfies ∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞. (5.28)
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Then, the limiting points of Θ∞ of (θn)n≥n0
is a.s. connected and compact, stable by

the flows of both

θ̇ = −h(θ) and θ̇ = h(θ).

Moreover, if θ∗ ∈ Θ∞ is the unique uniformly-stable2 equilibrium of the ODE

θ̇ = −h(θ),

then:

θn
a.s.−→ θ∗.

Proof. Let us rewrite the algorithm as follows:

θn = θ0 −
n∑
k=1

γk(h(θk−1)−∆Mk − rk).

The idea is to rewrite the algorithm in a continuous form by setting θ
(0)
Γn

= θn:

θ
(0)
t = θ0 −

∫ ∞
0

h(θ(0)
s )ds+

Nt∑
k=1

γk∆Mk +

Nt∑
k=1

γkrk,

where Nt = min{k ≥ 0|Γk+1 > t}.
For every n ≥ 0, we define the functions

θ
(n)
t = θ

(0)
Γn+t

= θn −
∫ Γn+t

Γn

h(θ(0)
s )ds+

N(Γn+t)∑
k=n+1

γk∆Mk +

N(Γn+t)∑
k=n+1

γkrk.

As L(θn) → L∞ ∈ L1(P), this implies that K∞(h) = supn |h(θn)| < +∞ a.s., we

always have ∣∣∣∣∣
∫ Γn+t

Γn

h(θ(0)
u )du−

∫ Γn+s

Γn

h(θ(0)
u )du

∣∣∣∣∣ ≤ K∞(h)|t− s|.

On one hand, by using (5.27) and (5.28), we know that
∑
n≥1 γn∆Mn converges a.s.

and by using the Cauchy property,

sup
m≥n

∣∣∣∣∣
m∑

k=n+1

γk∆Mk

∣∣∣∣∣ a.s.−→ 0 as n→∞.3

2For uniformly stable we understand supθ∈Θ∞ |θ(θ0, t)− θ∗| −→ 0 as t→ +∞.
3Indeed, the convergence of the martingale is not necessary, we just need

∑
γn = ∞ and γn → 0

and ∣∣∣∣∣∣
N(Γn+T )∑
k=n+1

γk∆Mk

∣∣∣∣∣∣ a.s.−→ 0, ∀T > 0.

These conditions are the result of the two following criteria

• supn≥0 E [|∆Mn+1|q ] < +∞ and
∑
γ1+q/2 < +∞ for q ≥ 2. (see [114])
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On the other hand

sup
t∈[0,T ]

∣∣∣∣∣∣
NΓn+t∑
k=n+1

γkrk

∣∣∣∣∣∣ ≤ max
k≥n
|rk|

NΓn+t∑
k=n+1

γk = max
k≥n
|rk|T a.s.−→ 0.

Hence, the sequence of functions (θ
(n)
t )t≥0 is UK relatively compact, and Θ∞ is a

connected, compact set. Moreover, as h is locally Lipschitz, Θ∞ is flow invariant.

If θ∗ ∈ Θ∞ is the unique stable equilibrium, then Θ∞ = {θ∗} yielding our result.

5.6 Rate of convergence: a CLT

In standard settings, stochastic algorithms converges to its target at a
√
γn rate. This

may suggest at a first glance to use rates of the form c
n for faster convergence rather than

c
nγ with 1

2 < γ < 1 . Moreover, it can be shown that the quantity Yn−y∗√
γn

converges in law

to a normal distribution N (0, αΣ) with Σ a dispersion matrix based on H(y∗, Z) and α

a real number satisfying some condition depending on the eigenvalues of Dh(y∗).

Theorem 10. (see [22]) Let θ∗ be a solution of {h = 0}. Let us suppose that the function

h is differentiable at the point θ∗ and that all the eigenvalues of Dh(θ∗) have a positive

real part. Assume there exists δ > 0 such as,

sup
n≥n0

E
[
|∆Mn+1|2+δ

∣∣Fn] < +∞ a.s.

and

E
[
∆Mn+1∆M t

n+1

∣∣Fn] a.s.−→ Γ

where Γ is a deterministic matrix, symmetric, positive.

Suppose that there exists ε > 0 such as

E
[
(n+ 1)|rn+1|21{|θn−θ∗|≤ε}

]
−→ 0.

Let us specify the following step sequence as follows:

∀n ≥ 1, γn =
α

n+ β
, α >

1

2Re(λmin)

where λmin is the eigenvalue of Dh(θ∗) with smaller real part.

• There exists λ > 0 such as, for all x ∈ Rd,

E
[
e〈x,∆Mn+1〉

∣∣∣Fn] ≤ eλ2 |x|2
and

∑
e−c/γn < +∞ for all c > 0 (see [95]). This framework includes the bounded random

variables owing to the Hoeffding inequality.
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Then, the a.s. convergence on the set {θn a.s.−→ θ∗} satisfies the following CLT

√
n(θn − θ∗) L−→ N (0, αΣ) (stably)

where

Σ :=

∫ ∞
0

(
e−(Dh(θ∗)−2−1α−1Id)u

)t
Γe−(Dh(θ∗)−2−1α−1Id)udu.

In other terms, ∀A ∈ F and ∀f ∈ Cb(Rd,R)

E
[
1A∩{θk→θ∗}f(

√
n(θn − θ∗)

]
→ E

[
1A∩{θk→θ∗}f(

√
αΣZ)

]
, Z ∼ L(0; Id).

5.7 Averaging principle (Ruppert-Polyak)

The idea of the averaging principle is to smoothen the trajectory of a convergent stochastic-

algorithm by considering the average of all past values rather than just the last computed

value. We do so, in the context of an algorithm with slowly decreasing step (see below).

The advantage of this method is to obtain the best of the two world in terms of

‘exploration’ during the first stages of the algorithm (as the step is slowly decreasing),

and an optimal convergence rate asymptotically (effect of the averaging).

In practice, let us consider (γn)n≥1 of the form

γn ∼
(

α

β + n

)a
, n ≥ 1, a ∈ (1/2, 1).

Then, one implements the standard procedure

θn+1 = θn − γn+1H(θn, Yn+1)

and sets

θ̄n :=
θ0 + . . .+ θn−1

n
.

Under natural assumptions (see [120]), we can show that for the different situations

we studied before (stochastic gradient, Robbins-Monro algorithm) we have

θ̄
a.s.−→ θ∗

where θ∗ is the target of the algorithm.

Moreover
√
n(θ̄n − θ∗) L−→ N (0,Σ∗min), as n→ +∞,

where Σ∗min is the smallest possible asymptotic variance matrix. Thus, if d = 1,

Σ∗min =
Var(H(θ∗, Z))

h′(θ∗)2
.
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Theorem 11. (see [45]) We place ourselves on a probability space (Ω,F ,P).

Let us consider the following stochastic algorithm:

θn+1 = θn − γn+1 (h(θ) + ∆Mn+1)

where h : Rd → R is a Borel function, continuous at its only zero θ∗, and satisfying

∀θ ∈ Rd, h(θ) = Dh(θ∗)(θ − θ∗) +O(|θ − θ∗|2)

where all the eigenvalues of Dh(θ∗) have a positive real part.

Moreover, assume that there exists a real constant C > 0 such that

E[∆Mn+1|Fn]1{|θn−θ∗|<C} = 0 a.s.

and that there exists an exponent δ > 0 such as

E
[
∆Mn+1(∆Mn+1)t

∣∣Fn] a.s.−→ 1{|θn−θ∗|≤C}Γ ∈ S(d,R),

sup
n

E
[
|∆Mn+1|2+δ

∣∣Fn]1{|θn−θ∗|≤C} < +∞, a.s..

Then, if γn = cn−α, n ≥ 1, 1/2 < α < 1, the sequence of empirical means

θ̄n =
θ0 + . . .+ θn−1

n

satisfies a central limit-theorem with optimal variance

E
[
1{θna.s.−→θ∗}f

(√
n(θ̄n − θ∗)

)] L−stably−→ E
[
1{θna.s.−→θ∗}f(U)

]
, ∀A ∈ F , ∀f ∈ Cb(Rd,R).

where

U ∼ N (0, Dh(θ∗)−1ΓDh(θ∗)).



Chapter 6

Stochastic approximation

approach for market-making

6.1 Introduction

In this chapter, we propose an optimization framework for market-making in a limit-

order book, based on the theory of stochastic approximation. We consider a discrete-

time variant of the Avellaneda-Stoikov model [13] similar to its developent in the article

of Laruelle, Lehalle and Pagès [101] in the context of optimal liquidation tactics. The

idea is to take advantage of the iterative nature of the process of updating bid and ask

quotes in order to make the algorithm optimize its strategy on a trial-and-error basis

(i.e. on-line learning). An advantage of this approach is that the exploration of the

system by the algorithm is performed in run-time, so explicit specifications of the price

dynamics are not necessary, as is the case in the stochastic-control approach [65]. As

it will be discussed, the rationale of our method can be extended to a wider class of

algorithmic-trading tactical problems other than market-making.

One of the main problems in algorithmic and high-frequency trading, is the optimiza-

tion of tactics whose main role is to interact with the limit-order book, during a short

lapse of time, in order to perform a basic task: this can be the optimal posting of a

child order in the order book, routing an order across different liquidity pools or a high-

frequency market-maker posting bid and ask quotes during a couple of seconds. Among

the main features of these tactics is that they are short lived, have a straightforward goal

and they are repeated several times during the trading session. Moreover, most of the

performance of algorithmic trading tactics depends, not necessarily in financial aspects

(e.g. asset-valuation) but in microstructural factors (e.g. auction mechanics, tick-size,

short-term liquidity, etc.). Another important aspect is that the performance of these

tactics is measured on a statistical basis, as their execution is systematic and, their use,

intensive.

A large number of contributions have been published in the recent years in the field

121
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of optimizing algorithmic-trading tactics. After the seminal paper of Avellaneda and

Stoikov [13] several others have extended its approach (e.g. [18, 64] for optimal liquidation

with limit orders and [33, 65] for market-making). However, most of the approaches to

analyze these problems have been through the lenses of stochastic-control techniques,

which demand to define explicitly the statistical laws governing the price dynamics. The

latter makes the model less flexible for applications, where we would like the algorithm

learn by itself in order to adapt to the nature of the forces driving the price and liquidity

(which at the intraday scale can evolve through different market regimes difficult to

anticipate).

Here, we aim to take advantage of the iterative nature of the trading process at short

time-scales by proposing an on-line learning framework to analyze the market-making

problem (which can be extended to more general trading tactics) based on the theory of

stochastic approximation [22, 49]. We follow a similar path that [101] (in the context of

optimal liquidation) by considering a modified version of the Avellaneda-Stoikov model

[13].

Hence, throughout this work we consider a market-maker trading in an electronic

limit order book. In a nutshell, the goal of a market maker is to provide liquidity by

setting quotes at the bid and the ask sides of the order book. Each time one side of a

bid/ask pair gets executed, the market-maker earns the price-difference between these

two orders. Thus, the market-maker’s algorithm would like to maximize the number

of pairs of buy/sell trades executed, at the larger possible spreads and by holding the

smallest possible inventory at the end of the trading session. Hence, the market-maker

faces the following trade-off: it is expected that a large spread means a lower probability

of execution while a narrower spread will mean a lower gain for each executed trade. On

the other hand, if the trading algorithm only executes its orders on one side (because

of price movements, for example), then its inventory moves away from zero, bearing the

risk to eventually having to execute those shares at the end of the trading session at a

worst price. The latter motivates the algorithm to center its orders around a ‘fair price’

in order to keep the inventory close to zero. Moreover, the more orders are executed, the

larger the risk of ending the period with a large unbalanced inventory (variance effect),

inducing still another trade-off.

From a modeling standpoint, one iteration of a market-making tactic can be seen

as interacting with a black-box to which we apply, as input, the controls δa and δb
(representing the positions in the order-book where to place orders with respect to some

reference price) then, obtaining as output the variables Na and Nb (depending on the

controls and exogenous variables) representing the liquidity captured at each side of the

spread during a time window of length ∆T (representing the duration for one iteration

of the algorithm).

At the end of each iteration the payoff is represented by a random variable

Ξ(δa, δb) = Π(Na(δa, ξ), Nb(δb, ξ), ξ)

where the ξ represent the exogenous variables influencing the payoff (e.g. price, spread).
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In practice, ξ can both be a finite or an infinite dimensional random variable, and it

is modeled in a way that it represents an innovation i.e. the part of the exogenous

variables such as its realizations can be considered to be i.i.d. (or stationary ergodic or

weakly dependent), which are the kind of property allowing the optimization procedure

presented below, to converge. For example, instead of considering ξ being the price, from

a modeling perspective it will be more convenient to consider it to be the price returns.

Here we will want to maximize the expectation E [Ξ(δa, δb)]. The question is, how, in

order to find the solutions δ∗ = (δ∗a, δ
∗
b ), to exploit the iterative features of the algorithm

(e.g. using errors as feedback) and, at the same time, to propose an adaptive framework

less depending on an accurate modeling of the market-dynamics.

Our setting naturally joins the framework of stochastic approximation; where we define

recursive procedures converging to the critical point of functions represented in the form

of an expectation h(δ) = E[H(δ, ξ)], δ ∈ Rd, in cases when h cannot be computed, but

where H(δ, ξ) and its derivatives can be evaluated at a reasonable cost and the random

variable ξ can be simulated or obtained from a real-time data-stream (in the real-time case

we call the procedure on-line learning). For our problem, we define H(δa, δb, ξ) := E[Ξ|ξ].
In order to maximize h(·), a probabilistic extension of the gradient method, namely

δn+1 = δn + γn+1∇δH(δn, ξn), ξn ∼ ξ. (6.1)

can be shown to converge towards the optimal value δ∗ = (δ∗a, δ
∗
b ).

As mentioned before, the advantage of the approach introduced and analyzed in this

chapter, is its flexibility not only to approach problems where the price follows a Brownian

diffusion (key hypothesis in the stochastic control approach) but also to much more general

situations where the algorithm continuously extracts information from its environment

without needing to further specify its dynamics. Moreover, the recursive aspect makes the

procedure naturally adaptive and easily implementable. Notice also, that this framework

can be generalized to other types of trading tactics (e.g. dark-pool trading, execution,

routing to lit venues. See the works of Laruelle et al. [101, 100]), which can be seen as

iterative problems where we control δ ∈ Rd, getting as output a ‘liquidity captured’ vector

N ∈ Rp, usually this N is represented by a vector of Poisson variables. Generically, the

goal of a trading tactic is to maximize the expectation of a given functional of N .

In this study we can look at stochastic approximation from two standpoints: first as

a numerical procedure, in the sense that the innovation in the algorithm is a simulated

random variable, and secondly, as a learning procedure in which the innovations are

the observations of real-time data (or a historical data-set). We can also consider two

different situations, depending on the way the market-maker valuates the inventory (mark-

to-market or by adding a penalization function for the inventory). We will give an special

focus on computing closed formulas in the case the price is Brownian, this is useful for

several reasons: (i) exhibits numerical results (ii) highlights the relation between the

different parameters and the solution and (iii) this can be used to compute ‘first guesses’

at the optimal solution and set them as a starting point for an algorithm working in a

general case. The next section by introduces the model and the optimization problem.
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6.2 Problem setting

6.2.1 Optimization problem

Let place ourselves on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P). We split the

trading day [0, T ] into N periods of ∆T seconds each. The n-th period correspond to

the time-interval [(n − 1)∆T, n∆T ]. We consider a market-making algorithm updating

its bid and ask quotes at the beginning of each period. It posts its quotes at respective

distances δ
(n−1)
a and δ

(n−1)
b around a reference price S(n−1)∆T fixed at the beginning of

the ∆T -seconds period (this can be the mid-price at time (n− 1)∆T , for instance). The

orders remain unchanged until the end of the period.

Let us note N
(n)
b and N

(n)
a the respective number of orders the market-maker executes

at the bid and at the ask during this n-th period. The realized payoff of the market-maker

during this period is given by the following random-variable:

Ξn = N (n)
a

(
S(n−1)T + δ(n−1)

a

)
︸ ︷︷ ︸

sold

−N (n)
b

(
S(n−1)T − δ(n−1)

b

)
︸ ︷︷ ︸

bought

+
(
N

(n)
b −N (n)

a

)
SnT︸ ︷︷ ︸

inventory valuation

.

We introduce for each time period, the running price return

Y
(n)
t = S(n−1)∆T+t − S(n−1)∆T , t ∈ [0,∆T ].

In particular Y
(n)
∆T = SnT − S(n−1)T .

Now, let us introduce the variables

N (n) = N
(n)
b +N (n)

a and Q(n) = N
(n)
b −N (n)

a .

Also, we define the market-maker’ half-spread as

ψ(n) =
δ

(n)
a + δ

(n)
b

2

and an off-center factor θ(n) such as

θ(n) =
δ

(n)
a − δ(n)

b

2
.

The latter variables have an intuitive interpretation: N (n) represents the total number

of trades executed by the market-maker and Q(n) is the increase of inventory over the

period [(n− 1)∆T, n∆T ].

In our new variables, the realized payoff of the market-maker is given by:

Ξn = ψ(n)N (n) −
(
θ(n) − Y (n)

∆T

)
Q(n).

The goal of the market-maker is to maximize the expectation of this quantity.



6.2. PROBLEM SETTING 125

6.2.2 The one-period problem

Notice that if we suppose that the law of Y (n) (and N (n) and Qn) does not depends

on S(n−1)∆T , we can always think in terms of a one-period problem as the function to

maximize is always the same. i.e.

max
ψ≥0,θ∈R

π(ψ, θ) := E [Ξ1] . (6.2)

In this study, for the sake of putting the modeling forward, we focus on this indepen-

dent price-increments situation leading to a one-period problem.

However, it is important to keep in mind that these hypothesis can be weakened and

interpreted as an approximation for more general cases, namely, when price increments

are stationnary, weakly dependent or in an ergodic setting in which we want to optimize

the sum of future payoffs (from an asymptotic point of view).

In what follows, it will be interesting to consider the payoff conditioned to the tra-

jectory of the price (as it represents an exogenous factor). Hence, for a function yt,

t ∈ [0,∆T ] , let us define:

Π(ψ, θ, (yt)t∈[0,∆T ]) = Ey [Ξn] . (6.3)

In particular π(ψ, θ) = E [Π(ψ, θ, Y )], with Y ∼ Y (1)
∆T .

6.2.3 Stochastic-gradient method

The goal of the market maker is to maximize the expectation of the function E [Π(ψ, θ, Y )].

In a concave setting, this is equivalent of finding the zero of∇π(ψ, θ) = ∇ψ,θE [Π(ψ, θ, Y )].

After showing that the solution of this zero-searching problem is unique, we can consider

applying the Robbins-Monro theorem, which states that the zero of ∇π, under a given

set of hypothesis, can be found through an algorithm of the form:

ψn+1 = ψn + γn+1∂ψΠ(ψn, θn, Yn+1) (6.4)

θn+1 = θn + γn+1∂θΠ(ψn, θn, Yn+1). (6.5)

We will see that in our setting one of the conditions of the Robbins-Monro theorem

will not be satisfied. Namely

E
[
|∇ψ,θΠ(ψ, θ, Y )|2

]
≤ C(1 + ψ2 + θ2)

however, by modifying the function by a multiplicative factor, as it is proposed in the

article by Lemaire and Pagès [109], we can show that a procedure of the form:

ψn+1 = ψn + γn+1ρ(ψn, θn)∂ψΠ(ψn, θn, Yn+1) (6.6)

θn+1 = θn + γn+1ρ(ψn, θn)∂θΠ(ψn, θn, Yn+1) (6.7)

converges towards the solution (i.e. the point (ψ∗, θ∗) solution of ∇π(ψ, θ) = 0).

Here ρ is a strictly positive function (to be defined), mainly intended to control the

behavior of the function Π for large values of θ.
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6.2.4 Relating price and liquidity

Thus far we have introduced the optimization problem regardless of the explicit relations

between price and liquidity. The interest of introducing a price dynamics is to relate

statistically the price with the captured liquidity, i.e. N and Q. The latter is related to

the fundamental relations between price direction and order imbalance for example.

In this chapter we will use the variation of the Avellaneda-Stoikov model as in [101].

We consider that, during a period t ∈ [0,∆T ] the probability to capture liquidity at

a distance δ from the reference price Yt is defined between t and t+ dt, up to the second

order, by the instantaneous intensity

λ(δ)dt = Ae−δkdt. (6.8)

and independent from the trajectory of Y .

Thus, the liquidity captured by an order placed at S0 ± δ, during [0,∆T ], given the

trajectory of the price is (yt)t≥0, will be Poisson random variables with intensities:

λ−(δb; (yt)t∈[0,∆T ]) =

∫ ∆T

0

Ae−k(δb+yt)dt (bought shares), (6.9)

λ+(δa; (yt)t∈[0,∆T ]) =

∫ ∆T

0

Ae−k(δa−yt)dt (sold shares). (6.10)

So, the captured liquidity N (a) and N (b) is modeled by Poisson random variables with

intensities given (respectively) by λ+ and λ−.

The latter can be seen in two ways: (i) simply define the intensities of the Poisson vari-

ables N (a) in that N (b) as functionals of the realized price and simply using the preceding

justification as a heuristic, or (ii) formally model how prices and liquidity are related in

continuous-time (i.e. thinking in terms of the generalized Poisson processes N
(a)
t and

N
(b)
t ). In the latter case we need to introduce a standard Poisson process (Nu)u≥0 in-

dependent of Y such that the orders we capture are given by Ñs which correspond to a

time change of N defined by ds = Ae−k(δ+Yu)du or via a thinning operation.

Again, in order to work with symmetric variables, we define for every y ∈ C([0,∆T ],R),

λ(ψ, θ; y) = λ− + λ+ = 2Ae−kψ
∫ ∆T

0

cosh(k(θ − yt))dt, (6.11)

µ(ψ, θ; y) = λ− − λ+ = 2Ae−kψ
∫ ∆T

0

sinh(k(θ − yt))dt. (6.12)

with λ− and λ+ defined in (6.9) and (6.10). In particular we have EY [N ] = λ and

EY [Q] = µ. Furthermore, because negative spreads do not make sense in our problem,

we suppose ψ ≥ 0 and θ ∈ R. Moreover, in practice it does not makes sense to have

passive bid quotes on the ask side (and vice-versa), which means we look for solutions on

|θ| < C + ψ, where C represents the half bid-ask spread (or an upper bound for it).
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In this way we have:

Π(ψ, θ;Y ) = ψλ(ψ, θ;Y )− (θ − Y∆T )µ(ψ, θ;Y ). (6.13)

Throughout this stutyd it will be interested in comparing with the situation when the

price is Brownian, where we can obtain closed formulas for the optimal quotes (see The-

orem below). This have several advantages: (i) exhibit numerical results (ii) understand

the relation between the different parameters and the solution and (iii) compute ’first

guesses of the optimal solution’ and set them as the starting point for an algorithm work-

ing on a general case. The following theorem gives the optimal quotes for the Brownian

situation:

Theorem 12. In the Brownian case, the optimal solution is given by1:

ψ∗ =
1

k

(
k2σ2∆T − 1 + e−

k2σ2∆T
2

1− e− k2σ2∆T
2

)
, (6.14)

θ∗ = 0. (6.15)

Proof. See Section 6.7.1.

6.3 Mark-to-Market inventory valuation

6.3.1 Introduction

First, we consider that no market-impact affecting the liquidation of the inventory. That

is, the conditional expectation of the profits, given the price trajectory, is defined by:

Π(ψ, θ;Y ) = ψλ(ψ, θ;Y )− (θ − Y∆T )µ(ψ, θ;Y ). (6.16)

while the function to maximize is defined by:

π(ψ, θ) = E [Π(ψ, θ;Y )] . (6.17)

Let us notice that in this case we can write the target function as

π(ψ, θ) = 2Ae−kψ(a(θ)ψ − b(θ)), (6.18)

where:

a(θ) = E

[∫ ∆T

0

cosh(k(θ − Yt))dt
]
, (6.19)

b(θ) = E

[
(θ − YT )

∫ ∆T

0

sinh(k(θ − Yt))dt
]
. (6.20)

1This result, as ∆T → 0, is consistent with the asymptotic solution in the article [65] in the case

γ → 0.



128CHAPTER 6. STOCHASTIC APPROXIMATION APPROACH FOR MARKET-MAKING

6.3.2 Existence and uniqueness of the solution

The next theorem states the existence and uniqueness of the maximum and in particular,

an unique solution for the equation ∇π(ψ, θ) = 0.

Theorem 13. The function π(ψ, θ) = e−kψ(ψa(θ)− b(θ)) has an unique maximum.

Proof. See Section 6.7.2.

With this result, we now need to compute the local derivatives of the function Π(ψ, θ;Y )

then verify is the conditions of the Robbins-Monro theorem are satisfied.

6.3.3 Stochastic gradient

In order to define the stochastic algorithm we start by computing the derivatives of the

function Π(ψ, θ; yt) with respect to ψ and θ.

Proposition 11. The gradient ∇ψ,θΠ(ψ, θ; yt) is given by the equation:(
∂
∂ψΠ(ψ, θ; yt)
∂
∂θΠ(ψ, θ; yt)

)
=

(
(1− kψ) k(θ − y∆T )

−k(θ − y∆T ) −(1− kψ)

)(
λ(ψ, θ; yt)

µ(ψ, θ; yt)

)
. (6.21)

Proof. See Section 6.7.3.

In order to prove the convergence of the stochastic algorithm, we modify the procedure,

as in [109], by multiplying the gradient by a factor ρ(ψ, θ) which help us to guarantee the

convergence of the modified stochastic gradient algorithm:

ψn+1 = ψn − γn+1ρ(ψn, θn)∂ψΠ(ψn, θn, Yn+1) (6.22)

θn+1 = θn − γn+1ρ(ψn, θn)∂θΠ(ψn, θn, Yn+1) (6.23)

Where ρ(ψ, θ) = e−k(|θ|−ψ).

Indeed the function ρ(ψ, θ)∇Π(ψ, θ, Y ) satisfies the condition of the Robbins-Monro

algorithm as it is proven in the following theorem.

Theorem 14. Let us consider the function ρ(ψ, θ) = e−k(|θ|−ψ), θ ∈ R, and, for a

i.i.d. sequence of random trajectories Yn+1 (with same law as Y ), the following recursive

algorithm:

ψn+1 = ψn + γn+1ρ(ψn, θn)∂ψΠ(ψn, θn, Yn+1)

θn+1 = θn + γn+1ρ(ψn, θn)∂θΠ(ψn, θn, Yn+1),

where ψ0 and θ0 are in L1(P),
∑
n γn = +∞ and

∑
n γ

2
n < +∞.



6.3. MARK-TO-MARKET INVENTORY VALUATION 129

Consider also the following technical conditions

E

[
Y 2
T

∫ ∆T

0

e2k|Yt|dt

]
< +∞,

E

[∫ ∆T

0

e2k|Yt|dt

]
< +∞.

Then, the recursive algorithm converges towards the point (ψ∗, θ∗) which correspond

to the maximum of π(ψ, θ) = E[Π(ψn, θn, Y )] (which is the unique solution of the equation

∇π = 0).

Proof. See Section 6.7.3.

A delicate issue that it has not been addressed up to this point is that the inno-

vation is an infinite dimensional object (trajectory of the reference price), while in the

Robbins-Monro theorem (see the proof of the last theorem) is set up for finite dimensional

innovations. Fortunately, this is not a serious issue as in fact the algorithm only depends

on the innovation through a finite dimensional functional of the trajectory (indeed, the

innovation is a 3-dimensional object, after a change of variable).

Theorem 15. The function Π(ψ, µ, Y ) only depends on the stochastic process (Y )t∈[0,T ]

through the one-dimensional random variables YT and:

bk =
1

2
log

(∫ T

0

ekYtdt

∫ T

0

e−kYtdt

)
, (6.24)

ρk =
1

2
log

(∫ T
0
e−kYtdt∫ T

0
ekYtdt

)
. (6.25)

Moreover, we have the formulas

λ(ψ, θ) = 2Ae−kψ+bk cosh(kθ + ρk), (6.26)

µ(ψ, θ) = 2Ae−kψ+bk sinh(kθ + ρk). (6.27)

Proof. See Section 6.7.3.
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6.4 Numerical examples

6.4.1 Numerical example: Brownian case

We implement the stochastic optimization algorithm in the Brownian case and compare

with the explicit solutions we just found. We consider an algorithm with projections in

order to be always searching for the solution in the region where the payoff is expected

to be positive.

Shape of the function to maximize

We set the following values for the models parameters

T = 30, σ = 1.2, A = 0.9, k = 0.3.

The maximum is reached at:

ψ∗ = 2.52024± 10−6, θ∗ = 0.0

The following figure shows a heatmap of the function:

Figure 6.1: Heatmap of the target function in the Brownian situation (the abscissa cor-

respond to θ and the ordinate correspond to ψ).

Three previous results has been helpful to reduce the computing cost:

• Separating variables on the representation of the function

• The innovations are in reality a three-dimensional variable

• Recognizing the admissible region (outside the admissible region the function has a

very steeped derivative, creating numerical problems)
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6.4.2 Stochastic algorithm

We apply the stochastic algorithm taking as initial point (8, 1) and step 0.3× n−1.

Figure 6.2: Example of the stochastic algorithm converging towards the solution.

Wider steps and Ruppert-Polyak

Figure 6.3: Convergence of the algorithm with exponent 0.6.
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Figure 6.4: Convergence of the algorithm with exponent 0.6 in the Ruppert-Polyak sit-

uation.

Algorithm freeze-up

In the examples we just saw, the constant C = 0.3 was chosen manually by looking at

previous numerical experimentation. One problem we can experience in practice, when

the algorithm has a O(n−1) step, is that the algorithm freezes-up, that is, it starts to

take too much iterations to converge as the step is gets too small for a large n.

The following figure shows how the algorithm freezes-up if we set C = 0.1.

Figure 6.5: Example of a situation when the algorithm freezes up.
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One of the advantages of the Ruppert-Polyak approach is that the algorithm gets the

best of two worlds: it explores the environment on early stages in order to get closer to

the solution, then the averaging improves the convergence once the algorithm is near the

solution.

The following figure shows the algorithm with step Cn−6 (black path) and the Ruppert-

Polyak averaged algorithm (blue path).

Figure 6.6: Ruppert-Polyak avoids the freeze-up situation.

6.5 Penalizing the inventory

In order to understand the reasons for penalizing the inventory, it is interesting to make

a parallel with the stochastic-control approach as in [65].

6.5.1 Relation to the stochastic-control approach

A key hypothesis in our model is that the incoming information have a stationary dynam-

ics and the function to maximize is the same at each iteration. We have already mentioned

the advantages of this approach (e.g. adaptability, model-free) however it has the weak-

ness of not having a view on the whole strategy (i.e. inventory risk) which is the strong

point on the stochastic-control approach [65] as it is based on the dynamic-programming

principle.

However, as it is mentioned in the papers [64, 65] the solutions of the Hamilton-Jacobi-

Bellman equation solving the optimal quotes in market-making and optimal liquidation

are close to those of the asymptotic regime if we are not close to the end of the trading

session. Otherwise said, the hypothesis of stationary innovations is not a constraining

one as in the stochastic-control situation; we are solving the ‘asymptotic problem’.
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Moreover, if we try to apply the dynamic-programming approach on our discrete

version of the Avellaneda-Stoikov problem it is easy to see that the utility function we

consider in our forward approach correspond to the situation when in the dynamic pro-

gramming problem there is no risk-aversion (i.e. the market-maker just wants to maximize

the PnL).

Otherwise said, the dynamic programming approach solves the inventory risk problem

while the on-line learning approach focuses on adapting to changing market dynamics and

eventually adverse selection. Adding penalization function on the remaining inventory has

as goal add this ’inventory risk’ dimension to the problem.

6.5.2 Changes in the structures of the target-function

So far, we have been valuating the inventory at the end of each period mark-to-market.

In practice, when liquidating a given quantity in the market, agents incur in liquidation

costs. Let us Φ(·) be the cost of liquidating a remaining inventory Q. We suppose Φ(·)
positive, even and convex. Thus, we define:

κ(λ, µ) = EY [Φ (Q)] . (6.28)

The function to be maximized becomes

π(ψ, θ) = E [ψλ− (θ − YT )µ− κ(λ, µ)] . (6.29)

When we add liquidation costs the dependency in λ and µ is no longer linear. Indeed,

in most of the interesting situations there is no closed formula for κ(λ, µ).

There are two ways of thinking about the penalization in this context:

• Quantifying costs as if we were liquidating the inventory at the end of each period (to

penalize the market-maker payoff), in this way, liquidation costs represent bid-ask

spread costs and market impact costs. In that way we set:

Φ(Q) = C|Q|︸ ︷︷ ︸
bid−ask spread

+ γ|Q|1+α︸ ︷︷ ︸
market impact

, 0 ≤ α < 1. (6.30)

An important situation is Φ(Q) = C|Q| (i.e. γ = 0) as it represents the case where

the only cost is the bid-ask spread, quantified by the real number C > 0. Another

situation of interest is Φ(Q) = CQ2 as it provides a case where we can obtain a

closed formula for κ(λ, µ). We will look at these two situations in further detail.

• The other way, is to think that the penalization term in the inventory represents

a function quantifying costs from the point of view of an (external) algorithm,

controlling the inventory risk of the overall strategy. In other words, even though

we are considering the ‘one-period’ problem, in practice the penalization function

may be evolving over time (e.g. at a lower frequency than the refreshing of the

algorithm).
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For example, we can think that early in the trading session we value the inventory

in a mark-to-market way, but as we are near the end of the day, we increase the

weight we give to the penalization term.

For practical purposes we will address only the first situation here. However we will

study general formulas for the expectation of liquidation costs, which can be useful

in further studies in this case.

6.5.3 Outline of the stochastic algorithm

The idea is to apply the same recursive optimization procedure than in the precedent

section, that is (some variation) of an algorithm of the form:

ψn+1 = ψn + γn+1∂ψΠ(ψn+1, θn+1, Y ) (6.31)

θn+1 = θn + γn+1∂θΠ(ψn+1, θn+1, Y ) (6.32)

The following formula allows to easily compute the derivatives of liquidation costs

when Φ(·) is even and Φ(0) = 0.

Proposition 12.

∂λE(Φ(Q)) =
1

2
(E(Φ(Q+ 1))− 2E(Φ(Q+ 1)) + E(Φ(Q− 1))) (6.33)

∂µE(Φ(Q)) =
1

2
(E(Φ(Q− 1))− E(Φ(Q+ 1))) (6.34)

Proof. See Section 6.7.4.

6.5.4 Closed-formulas for the expectation

The following theorem provides useful closed formulas for EY [Φ(Q)]:

Theorem 16. Let λ, µ and ε be defined by:

λ(ψ, θ;Y ) = 2Ae−kψ
∫ T

0

cosh(k(θ − Yt))dt, (6.35)

µ(ψ, θ;Y ) = 2Ae−kψ
∫ T

0

sinh(k(θ − Yt))dt, (6.36)

ε(θ;Y ) :=
λ(ψ, θ;Y )

µ(ψ, θ;Y )
=

∫ T
0

sinh(k(θ − Yt))dt∫ T
0

cosh(k(θ − Yt))dt
. (6.37)

Then, the following formulas hold:

EY [Q2] = λ+ λ2ε2,

EY [|Q|] =

∫ λ

0

e−sI0
(
s
√

1− ε2
)
ds

+ 2|ε|
∞∑
n=1

sinh

(
n

2
log

(
1 + |ε|
1− |ε|

))∫ λ

0

e−sIn
(
s
√

1− ε2
)
ds,
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where In(·) denotes the modified Bessel function of order n (see [5]).

More generally, for Φ(·) even, increasing on R+ and Φ(0) = 0, we have:

EY [Φ(Q)] = Φ(1)

∫ λ

0

e−sI0
(
s
√

1− ε2
)
ds

+ 2
∞∑
n=1

D2Φ(n) cosh

(
n

2
log

(
1 + |ε|
1− |ε|

))∫ λ

0

e−sIn
(
s
√

1− ε2
)
ds

+ 2|ε|
∞∑
n=1

DΦ(n) sinh

(
n

2
log

(
1 + |ε|
1− |ε|

))∫ λ

0

e−sIn
(
s
√

1− ε2
)
ds.

Where, for n ∈ Z, we defined:

D2Φ(n) =
Φ(n+ 1)− 2Φ(n) + Φ(n− 1)

2
,

DΦ(n) =
Φ(n+ 1)− Φ(n− 1)

2
.

Proof. See Section 6.7.4.

6.5.5 Bounds for liquidation costs

Upper bound for the liquidation-costs

Conditionally to Y we can place ourselves in the case where λ(ψ, θ;Y ) and µ(ψ, θ;Y ) are

considered as constant. As Q is always an integer, we get:

E(Φ(Q)) ≤ (C + γ)E(Q2) = (C + γ)(λ+ µ2)

Lower bound for the liquidation-costs

The first lower bound follows Jensen inequality: E(Φ(Q)) ≥ Φ(µ). However, this bound

is not very useful when µ = 0. A better bound can be obtained by observing the following

two facts:

• Conditional to N the variable Q can be writen as Q = 2B −N where B follows a

binomial law with parameters (N, p).

• Secondly we use the fact that Φ(Q) ≥ (C + γ)|Q|; We want to find a lower bound

for E[|Q|].
Proposition 13. We have

E(|Q|) ≥ λ

2
√

2(λ+ 1)
≥ 1

4
min

(
λ,
√
λ
)
.

Leading to:

E(Φ(Q)) ≥
(
C + γ

4

)
min

(
λ,
√
λ
)
.

Proof. See Section 6.7.4.
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6.5.6 Existence of a minimum

As in the mark-to-market case, we want to show first that for a fixed θ there is a unique

ψ where E[Π(ψ, θ;Y )] has its maximum; in fact, we can show that this is true every time

the function κ has the following form:

κ(λ, µ) =
J∑
j=1

λjgj

(µ
λ

)
, gj

(µ
λ

)
≥ 0

Proposition 14. If the conditional expectation of the liquidation costs is characterized

by the function

κ(λ, µ) =
J∑
j=1

λjgj

(µ
λ

)
, gj (x) ≥ 0,∀x ∈ R.

Then, for any fixed θ0 such as a(θ0) ≥ b(θ0) we can find an unique ψθ0 maximizing

E[π(ψ, θ0;Y )].

Proof. See Section 6.7.4.

6.6 Conclusion

In this chapter we provided a framework, based on the theory of stochastic approximation,

for solving the problem of a market-maker participating on an electronic limit-order book.

The idea is to take advantage of the iterative nature of trading tactics when proceeding

algorithmically, on a high-frequency basis and when the performances are measured sta-

tistically. The advantage of our framework is that it is devised for the type of situations

where we aim for a model-free approach in which the algorithm extract information from

the environment during its execution, i.e. more adapted to the case of a liquid stock in

which the velocity of order-book data allows the algorithm a rapid learning.

The mathematical proofs of the convergence of our learning algorithm are based on

the Robbins-Monro theorem, and its formal development is provided in the next section

as well as results guaranteeing that the problem is well-posed, i.e. it exists a solution,

and this solution is unique.

We also studied the situation in which penalization costs are included in order to

control inventory risk (maybe the only weakness of the framework, compared to the

stochastic-control approach). We provided mathematical results on the analytical prop-

erties of the penalization cost function.

Among the possible future directions of research for this work are:

• Generalize the approach to a wider class of trading-tactics.

• Study in detail the relation with the approaches based on the dynamic programming

principle (i.e. obtain the best of two worlds in terms of on-line learning and inventory

control).



138CHAPTER 6. STOCHASTIC APPROXIMATION APPROACH FOR MARKET-MAKING

• Study stochastic algorithms in continuous time, not as a model approximation as in

the stochastic-control approach, but, for example, by updating quotes in Poissonian

time (as it is the natural way at which the algorithm aggregates information from

markets). In this case the optimal quotes can be seen as controls of a Poisson process

whose events update the control itself, so adding a source of self-reinforcement.

6.7 Proof of the main results

6.7.1 Closed formulas in the Brownian case

Proof of Theorem 12:

Let us start by defining

a(θ) = E

[∫ ∆T

0

cosh(k(θ − Yt))dt
]

b(θ) = E

[
(θ − YT )

∫ ∆T

0

sinh(k(θ − Yt))dt
]
.

The function to maximize can be writen as

π(ψ, θ) = 2Ae−kψ(ψa(θ)− b(θ)).

By classical calculus we can show that the maximum of this function satisfies

ψ =
1

k
+
b(θ)

a(θ)
,

which in the Brownian case can be explicitly computed, as it is shown below.

Proposition 15. If the reference price evolves following the stochastic differential equa-

tion dSt = σdWt, then we have the following closed formulas:

a(θ) =
2 cosh(kθ)

k2σ2

(
e
k2σ2∆T

2 − 1
)
,

b(θ) =
2θ sinh(kθ)

k2σ2

(
e
k2σ2∆T

2 − 1
)

+
2 cosh(kθ)

k3σ2

(
e
k2σ2∆T

2 (k2σ2∆T − 2) + 2
)
.

In particular, we have the identity

1

k
+
b(θ)

a(θ)
= θ tanh(kθ) +

1

k

(
k2σ2∆T − 1 + e−

k2σ2∆T
2

1− e− k2σ2∆T
2

)
> 0.
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Proof. Two types of integrals will appear in our computations:

I∆T (α) =

∫ ∆T

0

E
[
eαWt

]
dt and J∆T (α) =

∫ ∆T

0

E
[
Wte

αWt
]
dt.

Let us first compute IT (α).

I∆T (α) =

∫ ∆T

0

E
[
eαWt

]
dt

=

∫ ∆T

0

e
α2t
2 dt

=
2

α2

(
e
α2∆T

2 − 1
)
.

In order to compute J∆T (α), we realise that J∆T (α) = I ′∆T (α), this implies:

J∆T (α) =
2

α3

(
e
α2∆T

2 (α2∆T − 2) + 2
)
.

Three other identities will be used:

• If W is a Brownian motion, W and −W have same laws, this yields:

I∆T (−α) = I∆T (α).

• By the same token:

J∆T (−α) = −J∆T (α).

• Finally, because W has independent increments:∫ ∆T

0

E [W∆T f(Wt)] =

∫ ∆T

0

E [Wtf(Wt)] , ∀f ∈ C([0,∆T ])

Using the latter, we obtain:

a(θ) = E

[∫ ∆T

0

cosh(k(θ − σWt))dt

]

=
1

2

∫ ∆T

0

E
[
ekθe−kσWt + e−kθe+kσWt

]
dt

=
ekθI∆T (−kσ) + e−kθI∆T (kσ)

2
= cosh(kθ)I∆T (kσ)

and
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b(θ) = E

[
(θ − σW∆T )

∫ ∆T

0

sinh(k(θ − σWt))dt

]

= θE

[∫ ∆T

0

sinh(k(θ − σWt))dt

]
− σE

[
WT

∫ ∆T

0

sinh(k(θ − σWt))dt

]

= θk−1a′(θ)− σE
[∫ ∆T

0

Wt sinh(k(θ − σWt))dt

]

= θ sinh(kθ)I∆T (kσ)− σ
(
ekθ

2
J∆T (−kσ)− e−kθ

2
J∆T (kσ)

)
= θ sinh(kθ)I∆T (kσ) + σ cosh(kθ)J∆T (kσ).

By replacing the values of I∆T and J∆T we end the proof.

Proposition 16. (Brownian motion with trend) If Yt = µt+ σWt, we have

a(θ) =

∫ ∆T

0

e
k2σ2t

2 cosh(kθ − kµt)dt

b(θ) = (θ − µ∆T )

∫ ∆T

0

e
k2σ2t

2 sinh(kθ − kµt)dt

− σ2

k

∫ ∆T

0

te
k2σ2t

2 cosh(kθ − kµt)dt.

Proof. Same reasoning as in the no-trend situation.

6.7.2 Proof of existence and uniqueness

Before starting the proof of existence and uniqueness of the maximum for our target

function (i.e. Theorem 2). We introduce the following concept which will be key in the

proof.

Functional co-monotony

The functional co-monotony principle (see Pagès [118]) is the extension of the classi-

cal co-monotony principle for real-valued variables, to some stochastic processes such as

Brownian diffusion processes, Processes with independent increments, etc. The classic

co-monotony principle is stated as follows:

Proposition 17. Let X be a real-valued random variable and f, g : R→ R two monotone

functions sharing the same monotony property. Then, if f(X), g(X) and f(X)g(X) are

in L1(P), the following inequality holds:

E [f(X)g(X)] ≥ E [f(X)]E [g(X)] . (6.38)

The inequality holds as an inequality if and only if f(X) or g(X) are P-a.s. constant.
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In order to extend this idea to functional of stochastic processes, we need first define

an order relation between them. In that sense, we will consider that processes are random

variables taking values in a path vector subspace, and define a (partial) order by saying

that if α and β are two processes, then:

α ≤ β if ∀t ∈ [0,∆T ], α(t) ≤ β(t).

Hence, we say that a functional is monotone if it is non-decreasing or non-increasing

with the order relation defined above, and we will say that two functionals are co-

monotone if they share the same monotony.

We can state now a functional co-monotony principle for pathwise continuous Markov

processes that will be useful to prove various inequalities:

Theorem 17. (Functional co-monotonicity principle) Let X be a pathwise-continuous

Markov process, with a monotony preserving transition probabilities2. If F and G are two

real-valued co-monotone functionals, continuous on (C([0, T ],R),‖ · ‖sup)3, then:

E [F (X)G(X)] ≥ E[F (X)]E[G(X)]. (6.39)

Proposition 18. If (Yt)t∈[0,T ] satisfies the precedent conditions, we have:

E

[
(θ − Y∆T )

∫ ∆T

0

sinh(k(θ − Yt))dt
]
≥ (θ − E [Y∆T ])E

[∫ ∆T

0

sinh(k(θ − Yt))dt
]
.

Proof. This comes from the fact that the two functionals involved in the expectation:

F (X) = X∆T , G(X) =
∫∆T

0
sinh(kXt)dt, have same monotony.

Existence and uniqueness of the maximum

(We prove Theorem 13 by the following sequence of technical propositions.)

For the following propositions we will define

a(θ) = E

[∫ ∆T

0

cosh(k(θ − Yt))dt
]

(6.40)

b(θ) = E

[
(θ − YT )

∫ ∆T

0

sinh(k(θ − Yt))dt
]

(6.41)

c(θ) = E

[∫ ∆T

0

sinh(k(θ − Yt))dt
]

(6.42)

d(θ) = E

[
(θ − YT )

∫ ∆T

0

cosh(k(θ − Yt))dt
]

(6.43)

2This means, for every monotone function f : R → R, Pf is monotone with the same monotony

(here, Ps,t(x, dy) is the transition probability). In particular, so is the case for one-dimensional diffu-

sions satisfying the comparison theorem e.g. solutions to stochastic differential equations under strong

existence and uniqueness assumptions (See [122] for more details).
3For the space of càdlàg processes D([0, T ],R) we also consider this topology, which is coarser,

rather than the more classical Skorokhod J1-topology(see [118]).
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Proposition 19. The following assertions are true:

1. For every θ ∈ R, we have a(θ) > |c(θ)|.

2. c(θ) is strictly increasing, with limits

lim
θ→+∞

c(θ) = +∞ and lim
θ→−∞

c(θ) = −∞.

3. It exists a positive constant C satisfying

b(θ) > 0, ∀θ such as |θ| > C.

4. It exists two real constants C− and C+ such as

c(θ)b(θ) ≤ a(θ)b(θ), ∀θ ≥ C+

and

c(θ)b(θ) ≥ −a(θ)b(θ), ∀θ ≤ C−.

Proof. 1. It follows directly from Jensen inequality and that for every x ∈ R we have

cosh(x) ≥ | sinh(x)|.

2. It follows directly from the fact that c′(θ) ≥ k∆T > 0, for every θ ∈ R.

3. From the functional co-monotony principle we have

b(θ) ≥ (θ − E[YT ])c(θ).

Then, from a direct application of the second result of this proposition, we have that

it exists C ′ > 0 such as, for θ > C, both factors of the left are positive. Similarly,

it exists C ′′ > 0 such as, for θ < −C ′′, both factors of the left are negative. We

conclude our result by taking C = max(C ′, C ′′).

4. By a similar argument as in the last point, it exists C+ such that, for θ ≥ C+ both

c(θ) and b(θ) are positive, so we can use the first result in this proposition which

yields to c(θ)b(θ) ≤ a(θ)b(θ).

The second inequality follows in the same way. We know it exists C− such that,

for θ ≤ C− we have c(θ) negative and b(θ) positive, so we can use the first result in

this proposition which yields to c(θ)b(θ) ≥ −a(θ)b(θ).

Proposition 20. Let us define the function

f(θ) = b(θ)c(θ)− a(θ)d(θ).

The following assertions are true
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1. f(·) is strictly decreasing.

2. limθ→+∞ f(θ) < 0.

3. limθ→−∞ f(θ) > 0.

In particular, this implies that f(θ) = 0 has a unique solution.

Proof. 1. First of all, observe that a′(θ) = kc(θ), c′(θ) = ka(θ), b′(θ) = c(θ) + kd(θ)

and d′(θ) = a(θ) + kb(θ). This leads to

f ′(θ) = c2(θ)− a2(θ)

which is strictly negative, due to the first result in the precedent proposition.

Hence, f is strictly decreasing.

2. From the last result in the precedent proposition we have that if θ > C+ then

f(θ) = b(θ)c(θ)− a(θ)d(θ) ≤ a(θ)(b(θ)− d(θ)).

Otherwise said

f(θ) ≤ −a(θ)E

[
(θ − YT )

∫ ∆T

0

e−k(θ−Yt)dt

]
= −a(θ)e−kθE

[
(θ − YT )

∫ ∆T

0

ekYtdt

]

where the right side is negative for θ large enough.

3. From the last result in the precedent proposition we have that if θ < C− then

f(θ) = b(θ)c(θ)− a(θ)d(θ) ≥ −a(θ)(b(θ) + d(θ)).

Otherwise said

f(θ) ≥ −a(θ)E

[
(θ − YT )

∫ ∆T

0

ek(θ−Yt)dt

]
= −a(θ)ekθE

[
(θ − YT )

∫ ∆T

0

e−kYtdt

]

In this case, as −θ becomes large enough, the right side becomes positive.

Proposition 21. The function g defined by

g(θ) = a(θ) exp

(
−k b(θ)

a(θ)

)
, θ ∈ R,

has a unique maximum.
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Proof. We have

g′(θ) = k exp

(
−k b(θ)

a(θ)

)(
a′(θ)

(
1

k
+
b(θ)

a(θ)

)
− b′(θ)

)
,

which is equivalent to

g′(θ) = k2 exp

(
−k b(θ)

a(θ)

)(
c(θ)b(θ)− d(θ)a(θ)

a(θ)

)
.

Thus, the sign of g′(θ) is the same as the sign of f(θ) from the last proposition. Hence,

g′(θ) is strictly decreasing and has a unique point where it becomes zero. Otherwise said,

g is strictly concave and has a unique maximum.

Proposition 22. The function π(ψ, θ) = e−kψ(ψa(θ)− b(θ)) has an unique maximum.

Proof. First of all, if we fix θ. The maximum is achieved in

ψ∗(θ) =
1

k
+
b(θ)

a(θ)
.

The value of this maximum is given by

π(ψ∗(θ), θ) = k−1e−1e−k
b(θ)
a(θ) a(θ)

By the precedent proposition, it exists a unique θ∗ maximum of this function.

Thus, the maximum of π(ψ, θ) is achieved at the point (ψ∗(θ∗), θ∗).

6.7.3 Convergence of the stochastic algorithm

Before proving the convergence of the stochastic algorithm, we recall the hypothesis of

the Robbins-Monro theorem (see [119]) which is central to complete the proof.

The Robbins-Monro theorem

Let us consider an algorithm of the form

δn+1 = δn + γn+1H(δn, Yn+1), (6.44)

with (Yn)n∈N an i.i.d. sequence of ν-distributed Rq-valued random vectors defined on a

probability space (Ω,F ,P).

In order to prove our main result, let us consider a random vector Y taking values in

Rq with distribution ν and a Borel function H : Rd × Rq → Rd.
Following what precedes, we introduce into our analysis the following function:

h : δ 7→ E [H(δ, Y )] . (6.45)

And, for this function to be well defined, we add the following condition:

∀δ ∈ Rd, E [|H(δ, Y )|] < +∞. (6.46)
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Theorem 18. Assume that the mean function h of the algorithm is continuous and

satisfies

∀y ∈ Rd, δ 6= δ∗, 〈δ − δ∗, h(δ)〉 < 0 (6.47)

(which implies that {h = 0} = {δ∗}). Suppose furthermore that Y0 ∈ L2(P) and that H

satisfies

∀δ ∈ Rd, E
[
‖H(δ, Y )‖2

]
≤ C(1 + ‖δ‖2) (6.48)

If the step sequence γn satisfies
∑
n γn = +∞ and

∑
n γ

2
n < +∞, then:

δn → δ∗, P− a.s. (6.49)

and in every Lp(P), p ∈ (0, 2).

Computing the local gradient

Proof of Proposition 11:

Proof. By direct calculation we have:

∂

∂ψ
λ(ψ, θ; yt) = −kλ(ψ, θ; yt),

∂

∂ψ
µ(ψ, θ; yt) = −kµ(ψ, θ; yt),

∂

∂θ
λ(ψ, θ; yt) = kµ(ψ, θ; yt),

∂

∂θ
µ(ψ, θ; yt) = kλ(ψ, θ; yt).

which applied to

Π(ψ, θ;Y ) = ψλ(ψ, θ;Y )− (θ − Y∆T )µ(ψ, θ;Y ).

lead directly to the result we want.

Convergence of the stochastic algorithm

Proof of Theorem 14:

Proof. The main idea here is to apply the Robbins-Monro algorithm. However, as it was

said, we cannot apply it directly on the local gradient ∇ψ,θΠ(ψn, θn, Y ), because of its

behavior for larger values of θ. The latter makes impossible to obtain the Robbins-Monro

condition

E
[
‖∇ψ,θΠ(ψn, θn, Y )‖2

]
≤ C(1 + ψ2 + θ2).

However, by multiplying by the factor ρ(ψ, θ) = e−k(|θ|−ψ), which does not impact

the other Robbins-Monro conditions, does not changes the point to which the algorithm

converges and allow us to retrieve the inequality we are looking for. Moreover, the choice

of ρ(ψ, θ) is rather intuitive; it is based on the observation that the intensities λ and µ
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have terms with magnitudes cosh(kθ) and sinh(kθ) multiplied by a factor e−kψ, so our

choice of ρ(ψ, θ) is quite natural.

Because the function in the algorithm corresponds to the gradient of a well-behaved

function reaching a unique maximum, the only Robbins-Monro condition it remains to

prove in order to obtain the convergence of the algorithm, is to show it exists a real

constant C such as

E
[
‖ρ(ψ, θ)∇ψ,θΠ(ψ, θ, Y )‖2

]
≤ C(1 + ψ2 + θ2).

By straightforward computation and regrouping terms, we have

‖∇ψ,θΠ(ψ, θ, Y )‖2 = ‖(θ − YT )∇µ− ψ∇λ‖2 + λ2 + µ2

+ 2ψ(λ∂ψλ− µ∂θλ) + 2(θ − YT )(µ∂θµ− λ∂ψµ)

= ‖(θ − YT )∇µ− ψ∇λ‖2 + (λ2 + µ2)(1− 2kψ) + 4kλµ(θ − YT )

≤ k2(|θ − YT |2 + ψ2)(λ2 + µ2) + (λ2 + µ2)(1− 2kψ) + 4kλµ(θ − YT )

= (λ2 + µ2)(k2|θ − YT |2 + (1− kψ)2) + 4kλµ(θ − YT )

≤ 2λ2(k2|θ − YT |2 + (1− kψ)2 + 4k(θ − YT ))

≤ 2λ2(3k2|θ − YT |2 + (1− kψ)2 + 1)

≤ 12k2λ2(θ2 + ψ2 + k−2 + Y 2
T )

On the other hand, by Jensen inequality we have

λ2 ≤ 4A2e−2kψ

∫ ∆T

0

cosh2(k(θ − Yt))dt ≤ 4A2e−2kψ

∫ ∆T

0

e2k|θ|e2k|Yt|dt.

This leads to

‖∇ψ,θΠ(ψ, θ, Y )‖2 ≤ 48k2A2e2k(|θ|−ψ)(θ2 + ψ2 + k−2 + Y 2
T )

∫ ∆T

0

e2k|Yt|dt (6.50)

which is equivalent to

E
[
‖ρ(ψ, θ)∇ψ,θΠ(ψ, θ, Y )‖2

]
≤ 48k2A2E

[
(θ2 + ψ2 + k−2 + Y 2

T )

∫ ∆T

0

e2k|Yt|dt

]
(6.51)

≤ C(1 + θ2 + ψ2). (6.52)

with

C = 48k2A2E

[
(1 + k−2 + Y 2

T )

∫ ∆T

0

e2k|Yt|dt

]
which is bounded by hypothesis.

Hence the Robbins-Monro theorem can apply, which concludes the proof.
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Dimensionality reduction for the innovation

Proof of Theorem 15:

Proof. Besides the end-value YT , all the dependency in the process Y is contained in the

functions λ and µ (given by the equations (6.11) and (6.12)). To obtain our result, let us

rewrite the following integral:

∫ T

0

ek(θ−Yt)dt = ekθ

√√√√∫ T0 e−kYtdt∫ T
0
ekYtdt

√∫ T

0

e−kYtdt
∫ T

0

ekYtdt = ekθ+ρkebk . (6.53)

By the same argument, we have

∫ T

0

e−k(θ−Yt)dt = ekθ

√√√√ ∫ T
0
ekYtdt∫ T

0
e−kYtdt

√∫ T

0

e−kYtdt
∫ T

0

ekYtdt = e−kθ−ρkebk . (6.54)

The results follows by combining these quantities to obtain sinh(·) and cosh(·) as in

the formulas for λ and µ ((6.11) and (6.12)).

6.7.4 Penalizing the inventory

Derivatives for the penalization function

Proof of Proposition 12:

Proof. Conditional to λ and µ, the random variable Q is the difference of two independent

Poisson random-variables Nb and Na representing the liquidity capture at the bid and at

the ask respectively. The variable N , on the other hand, represent the sum of these two

variables. Because of the independence between Nb and Na we know that conditional to

N , the variable Q satisfies:

E [Φ(Q)|N ] = E [Φ(2B −N)|N ] , B ∼ Bin

(
N,

µ+ λ

2λ

)
.

Using that N is a Poisson variable with intensity λ we can write

E [Φ(Q)] =
∞∑
n=0

n∑
k=0

e−λ(λ+ µ)k(λ− µ)n−k

2nk!(n− k)!
Φ(2k − n) (6.55)

=
∞∑
n=0

n+1∑
k=0

e−λ(λ+ µ)k(λ− µ)n+1−k

2n+1k!(n+ 1− k)!
Φ(2k − n− 1) (6.56)

=
∞∑
n=0

n+1∑
k=0

e−λ(λ− µ)k(λ+ µ)n+1−k

2n+1k!(n+ 1− k)!
Φ(2k − n+ 1). (6.57)

The identity (6.56) arises from the hypothesis Φ(0) = 0. The identity (6.57) arises

just by inverting the order of summation.
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Let us note a = λ+ µ and b = λ− µ, from (6.56) we obtain

∂aE [Φ(Q)] =
1

2
E [Φ(Q− 1)]

and from (6.57)

∂bE [Φ(Q)] =
1

2
E [Φ(Q+ 1)] .

This leads to the following formulas

∂λE [Φ(Q)] =
1

2
E [Φ(Q+ 1)− Φ(Q) + Φ(Q− 1)] (6.58)

∂µE [Φ(Q)] =
1

2
E [Φ(Q− 1)− Φ(Q+ 1)] . (6.59)

Closed-formulas for the penalization function

Proof of Theorem 16:

Proof. First of all, the idea is to exploit the following two facts:

1. The dependency of EY [Φ(Q)] in the variables ψ and θ is totally contained on the

functions λ and µ.

2. Under the information provided by the process Y , the inventory is the difference of

two independent Poisson variables N+ and N− satisfying the following equations:

E[N− +N+] = λ, (6.60)

E[N− −N+] = µ. (6.61)

This implies that we just need to do the analysis considering λ and µ as constants;

the results can be immediately transferred to the case of the conditional expectation of

Φ(Q) under the information provided by Y .

Now, let us consider a auxiliary Markov process Qs = N
(1)
s − N (2)

s where N
(1)
s and

N
(2)
s are two independent homogeneous Poisson processes with intensities λ1 = 1+ε

2 and

λ2 = 1−ε
2 respectively. It is immediate that Q and Qλ have the same law, thus, for any

function Φ(·), the quantities E [Φ(Qλ)] and E [Φ(Q)] have the same value. To compute

E [Φ(Qλ)] is done by using the infinitesimal generator and Dynkin’s formula [83].

For q ∈ Z the infinitesimal generator of Qs is

AΦ(q) = −Φ(q) +

(
1 + ε

2

)
Φ(q + 1) +

(
1− ε

2

)
Φ(q − 1).

By the Dynkin’s formula we obtain:

E [Φ(Q)] = Φ(0) +

∫ λ

0

E
[
D2Φ(Qt)

]
dt+ ε

∫ λ

0

E [DΦ(Qt)] dt.
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Where

D2Φ(q) =
Φ(q + 1)− 2Φ(q) + Φ(q − 1)

2
,

DΦ(q) =
Φ(q + 1)− Φ(q − 1)

2
.

The next step is to evaluate expectations of random variables that are defined as the

difference between two Poisson random variables. Indeed, these kind of integer valued

random variable are said to follow a Skellam distribution with parameters λ1, λ2 > 0 if

they can be written as the difference of two independent Poisson random variables, N1

and N2, with respective parameters λ1 and λ2.

Let Qs follows a Skellam distribution (see [129]) with mean εs and variance s; the

support of Qs is the whole set Z. Elementary computations show that the distribution

of the variable Qs is defined by the following formula:

P (Q = |q|) = 2e−s cosh

(
q

2
log

(
1 + ε

1− ε

))
I|q|
(
s
√

1− ε2
)

, ∀q ∈ Z \ {0}(6.62)

P (Q = 0) = e−sI0
(
s
√

1− ε2
)
. (6.63)

At this point we just need to replace these values in the equations obtained through

the Dynkin’s formula and using the proprerties of function Φ (these are, even, increasing

in R+ and Φ(0) = 0 (in particular DΦ(q) = −DΦ(−q)).

Finally, the equation for E[|Q|] is obtained by replacing Φ(·) by | · |.

The formula for E[Q2] can be obtained by the same idea or by more elementary

computations using the properties of the mean and variance of Poisson random variables.

Other properties of the penalization function

Proof of Proposition 13:

Proof. Because of the symmetry of the function Φ(·) we can always suppose p ≤ 1/2.

In particular, we can consider a binomial random variable B̃ with parameters (N, 1/2)

which stochastically dominates B. This is easy to explicitly generate:

B =
N∑
k=1

1Uk≤p ≤
N∑
k=1

1Uk≤ 1
2

= B̃.

We obtain the following:

E(|2B −N |) = 2E
(∣∣∣∣B − N

2

∣∣∣∣) ≥ 2E
(∣∣∣∣B − N

2

∣∣∣∣1B̃≤N2
)
.
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By stochastic domination and symmetry of B̃ we obtain:

E(|2B −N |) ≥ 2E
(∣∣∣∣B̃ − N

2

∣∣∣∣1B̃≤N2
)

= E
(∣∣∣∣B̃ − N

2

∣∣∣∣) .
Moreover, we can use the following De Moivre’s result for the absolute deviation of

the Binomial distribution[44]:

E
(∣∣∣∣B̃ − N

2

∣∣∣∣) = 2−N
(

N

dN/2e

)
dN/2e.

At this point, we consider the following elementary inequality:

2−N
(

N

dN/2e

)
dN/2e ≥

√
N

2
√

2
.

Now let us take the expectation on N .

E(
√
N) ≥

∞∑
k=1

√
ke−λ

λk

k!
= λE

(
1√
N + 1

)
≥ λ√

λ+ 1
.

(The last inequality comes from Jensen inequality)

Proof of Proposition 14:

Proof. First of all, we have

∂ψπ(ψ, θ) = E

λ− kψλ− (θ − YT )µ+ k
J∑
j=1

jλj−1gj

(µ
λ

) (6.64)

We are interested in the solution of ∂ψπ(ψ, θ;Y ) = 0:

Ae−kψ(kψ − 1)a(θ) +Ae−kψb(θ)− k
J∑
j=1

je−k(j−1)ψcj(θ) = 0 (6.65)

Here cj(θ) = E
(
Aj−1gj

(
µ
λ

))
.

We can divide by e−kψ an re-arrange terms, this leads to

kψa(θ) + (b(θ)− a(θ)) = c1(θ) + k
J−1∑
j=1

(j + 1)Aje−kjψcj+1(θ) (6.66)

The left side is an increasing linear function starting from a negative point, the left

side a decreasing exponential starting from a positive point, so they intersect at some

point.



Chapter 7

Conclusion

In concluding the present study, we highlight in this chapter the main ideas that this

work was intended to convey, pointing to the main scientific contributions presented and,

finally, presenting some possible directions for future research.

7.1 Perspective of this study

Three ideas represent the main perspective of this study:

• The first idea we wanted to put forward is the decomposition of trading algorithms

into strategies and tactics. While strategies have a dominant financial rationale and

a larger time-horizon, the optimization logic (and the payoff) of a tactic is based

on microstructural aspects of the interaction of the market, and even on strategies

whose financial rationale is not the same, the tactics associated can be similar (this

is for example the case with market-making and optimal liquidation, which at the

tactical level obey the same kind of logic – i.e. a liquidity capturing algorithm

interacting with the order book in order to maximize a utility function).

• In this study we also wanted to put forward the use of black-box statistical models,

i.e. instead of modeling the order book in an exact way, we characterize liquidity

by a low-dimensional set of parameters which are estimated from data; this makes

the model more flexible. This is the case of the Avellaneda-Stoikov model which

permits a straightforward mathematical treatment of optimal trading problems (via

dynamic programming or on-line learning techniques).

• Finally, we compared two optimization approaches for the multistage type of prob-

lems we deal with throughout this study: the dynamic programming principle (bell-

man equation), model-based and with a backward induction method of reasoning,

and, on the other hand, on-line learning which tends to be more model-free and

allows the algorithm to learn from its interaction with the environment. Both ap-

proaches have advantages and disadvantages (e.g. in the case of market-making,
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dynamic programming is more natural for the control of the inventory whereas on-

line learning represents a trend-following manner of adapting to different market-

dynamics).

7.2 Scientific contributions

These are the main scientific contributions of this dissertation:

• First of all, the complete solution of the Avellaneda-Stoikov problem for market-

making in a limit order book (Chapter 2) by a non-trivial change of variables which

make it possible to transform the non-linear HJB equation into a linear system of

ODE, allowing in-detail study of the different properties of the optimal solution

(asymptotic solutions, comparative statics, numerical representations).

• Using the same result, we apply it to the case of optimal liquidation with limit

orders (regarded as a one-sided market-making situation), which, from a practi-

cal standpoint, was one of the first articles in the literature treating this problem

quantitatively. Again, as in the market-making situation, we provide an in-depth

analysis of the optimal solution.

• We provide an analysis for the calibration of the parametersA and k in the Avellaneda-

Stoikov model (Chapter 4) and the mathematical study of the estimators involved.

We also compare the estimated parameters with real data.

• After providing an introduction to stochastic approximation methods (Chapter 5),

we propose a new way to treat the market-making problem through a recursive

approximation procedure. This approach is more natural as trading tactics are

short-termed and repeated several times a day, and has the advantage of being less

constrained by the modeling of the price (as in the classical Avellaneda-Stoikov

model). Moreover, our approach can be extended to other classes of trading tactics

(optimal liquidation tactics and smart order routing, among others).

• Throughout this work we not only study the mathematical problems but we put

them into their industrial context in order to understand a range of issues, from

mathematical modeling to implementation. Backtests and calibration on real-data

were also presented.

7.3 Future directions

Several problems can be derived from our study. First of all, the more mundane ones

entail extending our results to cases with variable trading sizes, general shapes for the

liquidation function on Chapter 6 or applying the same ideas on other types of model

(e.g. De Larrard et al. [40]). In this section we want to discuss a more interesting class

of problems that, in the author’s opinion, would be the natural extension of this study.
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7.3.1 A general framework for algorithmic-trading tactics using

the stochastic approximation approach

The idea is to generalize the model we propose for market-making to a wider class of

trading tactics (optimal liquidation with limit orders, routing across lit and dark pools

etc.) by using stochastic approximation (as in Chapter 6) . Some advances in this

direction have already been proposed on [101, 100].

Roughly speaking, an algorithmic-trading tactic can be seen as a black-box controlled

by an input δ ∈ Rd and giving as output a vector N ∈ Rk representing the captured

liquidity during one iteration of the algorithm. The realized payoff at the end of each

iteration is given by a functional of N and ξ ∈ Rp (xi is representing exogenous process

that participates in the trader’s profit but that we cannot control – e.g. the price). We

write this functional by

Ξ = Π(N (δ), ξ)

and the trader’s goal is to solve

δ∗ = arg max
δ

E[Π(N (δ), ξ)].

Hence, the goal is to find δ∗ by a procedure of the form

δn+1 = δn − γn+1∇δEξn+1 [Π(N (δn), ξn+1)].

(Again, one iteration of the algorithm takes ∆T seconds and they are repeated [ T∆T ] times

during the trading session [0, T ].

Three ideas are important here:

• The explicit relation between price and liquidity is a choice that does not change the

fundamental form of the algorithm. We can go beyond variations of the Avellaneda-

Stoikov model. e.g. centering liquidity on the price at the end of each period, and

not depending on the whole trajectory of the price.

• δ is the control of the algorithm and this can represent not only the posting distance

on an order-book, but also where to post orders in different order books or even the

size of the order we send to each venue.

• The processes N will usually represent Poisson processes but as we are interested

in functional of N , it would be of interest to study processes with continuous distri-

butions approximating N . For example in the case of a market-maker’s inventory

(a difference of Poisson processes – i.e. a Skellam distribution) we can think in

Gaussian approximations which can lead to simpler formulas.

7.3.2 On-line learning through self-exciting point processes for

optimization algorithms in continuous time

An interesting approach that naturally emerges in this kind of optimization problem is

proceed entirely in a ‘point processes’ way. That is, instead of approximating market by
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a continuous diffusion (as in the stochastic control approach) or instead of splitting the

trading session in laps of fixed length ∆T , we fully use the point-process nature of events

in the learning procedure and make δ evolve as a continuous function of time, depending

on the behavior of the Poisson processes representing the captured liquidity.

Otherwise said, instead of studying the stochastic algorithms as the convergence of

a discrete Markov chain we are led to study the convergence of a Point process whose

intensity is controlled by a parameter δt which at the same time depends on the Poisson

process N (δt). i.e. the analysis of the convergence of the algorithm is related to the

convergence of a self-reinforcing point processes (this is closely related to the Hawkes

process theory).

Concretely, the optimal control δ will not be computed iteratively in a discrete-time

way, but in a continuous time way by a procedure that (informally) can be written as

δt+dt = δt +A(Nδt , δt)dt+ 〈B(Nδt , δt), dNt〉

In a way such as δt → δ∗, as t→∞.

7.3.3 Including a dynamic-programming logic (for inventory con-

trol) to the on-line learning algorithm

The idea is to take as a starting point the dynamic-programming principle applied to a

discrete version of the market-making problem (e.g. as in Chapter 6) in the case where the

valuation at the end of the [ T∆T ] periods is made by using an exponential utility function

(e.g. CARA investor).

The advantage of the CARA valuation is that it allows a useful product decomposition

when using the dynamic-programming principle. i.e. The Bellman equation will lead (for

example in a independent increments situation) to maximizing an exponential functional

of the variations of price, inventory and cash, and the current state of the inventory.

Hence, for each state of the inventory and time, the market-maker is lead to compute

the maximum of a functional which derives from the Bellman equation, the goal is to

make this functional the target function in the on-line learning approach.

With the case treated in this study, we were able to reduce to the one-period problem.

This would not be the case if the target function depended on the state of the algorithm

(inventory process).

A possible way to tackle this issue is to consider an array of stochastic algorithms

indexed by an integer value q ∈ Z such that the algorithm computing the sequence

(δ
(q)
n )n≥1 converges upon the optimal solution, given that at the beginning of the ∆T

period the inventory is equal to q. In this way, at the n-th iteration, if the inventory is

qn, we set our orders at a distance δ
(qn)
n . The feedback for this stage is used to update

all the values δ
(q)
n+1, for q ∈ Z and the orders for the next step will be posted at δ

(qn+1)
n+1 ,

where qn+1 represents the new value of the inventory.
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