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Introduction

Soient K un corps de nombres et A/K une variété abélienne dont nous notons g la dimension.
Pour tout nombre premier ¢ et tout entier positif n, notons A[¢"] C A(K) le groupe des points de
torsion de A dont 'ordre divise . Comme A est définie sur K, I'action naturelle du groupe de
Galois absolu Gal(K/K) sur A(K) stabilise A[f"] en tant que ensemble, ce qui nous fournit une

représentation continue
pen : Gal(K/K) — Aut (A[("]) .

C’est a ces représentations galoisiennes, et a leur variantes ¢-adiques que nous rappellerons dans
un instant, que l'on s’intéresse dans toute la suite. Remarquons que le corps K(A[("]) obtenu en
adjoignant a K les coordonnées des points de A[¢"] est une extension galoisienne de K : il est alors
clair sur la définition que I'image Gyn de pgn s’identifie au groupe de Galois de K (A[¢"]) sur K. De
plus, il est bien connu que — K étant de caractéristique 0 — le groupe A[¢"] est un Z/¢"Z-module
libre de rang 2g.

Pour /¢ fixé, les groupes finis A[¢"] forment un systéme projectif pour lequel les morphismes de
transition sont donnés par la multiplication par £ : la limite inverse de ce systéeme est appelée
le module de Tate ¢-adique de A, souvent noté TyA. Comme chaque cran fini A[¢"] est libre de
rang 2g sur Z/{"Z, on voit aisément que TyA est un Zg-module libre de rang 2g, et nous serons
trés souvent amenés a fixer une Zg-base de TyA, ce qui nous permettra d’écrire certaines égalités
“en coordonnées”. Remarquons des a présent que la construction du module de Tate s’applique
également a tout groupe ¢-divisible, et on peut notamment considérer le module de Tate du groupe

multiplicatif G,,, un objet qui sera utile par la suite.
Il n’est pas difficile de vérifier que les représentations (pg), quand n varie, forment a leur tour un
systeme projectif, dont la limite pyo est donc une application continue

pe : Gal(K/K) — Aut(T,A)
qui est traditionnellement appelée la représentation £-adique associée a A et dont nous désignons
I'image par Gye.

Les représentations py ainsi construites jouent un role tres important dans la théorie des nombres
contemporaine : il suffira par exemple de rappeler que la premiere preuve de la conjecture de
Mordell, donnée par Faltings dans les années ’80 [26], repose tres fortement sur leur étude, et

qu’elles interviennent dans la preuve du dernier théoreme de Fermat [142] [132].

Rappelons dés maintenant une des propriétés fondamentales des représentations pye, dont on fera

un usage extensif par la suite : si on désigne par AV la duale de A, il existe sur Ty(A) x Ty(A") une

x1
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forme bilinéaire non-dégénérée (-, -), dite accouplement de Weil, prenant ses valeurs dans le groupe

m  fien (K) = Ty G,, et Galois-équivariante, au sens ol on a 1’égalité
{pe==(9)v; pee (g)w) = xe(9) - (v, w)
pour tout v € Ty(A),w € Ty(AY) et tout g € Gal(K/K).

Quand la variété A est présentée comme une jacobienne (notamment, si elle est une courbe elliptique)
on dispose de plus d’une polarisation principale canonique, a savoir un K-isomorphisme f entre A et
AV, et Paccouplement de Weil peut alors se réinterpréter comme une forme non-dégénérée, bilinéaire,

antisymétrique et Galois-équivariante sur Ty A que notons encore (-, -) :

Ty(A) x Ty(A) 5 1A x 1,47 220 1,6, (1)

L’existence d’une telle forme antisymétrique fait que 'image de pyc est contenue dans le groupe
des similitudes symplectiques de la forme (-, -), groupe que nous notons GSp (74, (-, -)), ou méme
simplement GSp (TyA), voire encore GSpa,(Zy) si le choix d'une Z-base de TyA a été fait.

Dans le cas général, le choix d'une K-polarisation quelconque f : A — AV induit une forme
Ty(A) x Ty(A) — TyG,, comme en (1) : pour tout premier ¢ ne divisant pas le degré de f on a
TyA = T,AV, d’oll encore une inclusion Gy C GSpQg(Zg), alors que pour les premiers divisant
deg f on a seulement Gy C GSpy,(Qy).

Finalement, sur toutes ces questions on peut aussi prendre un point de vue adélique, ce qui nous
amene trés naturellement & introduire la représentation adélique associée a A, & savoir le produit

des py~ pour tous les premiers £ :

poo : Gal(K/K) L2 T Aut(T4). 2)
l

Pour mieux préciser le cadre dans lequel se situe ce travail il est aussi indispensable de rappeler la
conjecture de Mumford-Tate (cf. la conjecture 1 ci-apres). Pour comprendre comment cette conjec-
ture apparait de maniere naturelle a partir de la philosophie motivique de Grothendieck, remarquons
d’abord que, pour chaque premier ¢, le module de Tate Ty A peut s’identifier au dual de Hét (A?, Zg),
ce qui nous permet d’interpréter les représentations pge comme étant données par ’action natu-
relle de Gal(K/K) sur le H' étale de A. Or la philosophie motivique prédit que la cohomologie
étale n’est que une incarnation d’une cohomologie universelle, qui admet aussi une réalisation (de
Betti) comme cohomologie habituelle de ’espace topologique A(C). On va donc examiner quelques
propriétés de cette cohomologie, qui dans le cas d’une variété abélienne possede une description par-
ticulierement simple : comme A(C) est topologiquement un tore, la formule de Kiinneth implique
que algebre de cohomologie H® (A(C),Z) est canoniquement isomorphe a 'algebre extérieure sur
H'(A(C),Z) = H1(A(C),Z)V, et d’apres la théorie classique (qui remonte essentiellement & Rie-
mann) le sous-réseau Hy(A(C),Z) de l'espace vectoriel complexe Hq(A(C),C) décrit complétement
la variété abélienne complexe A(C). D’autre part, comme toute variété abélienne est en particulier
projective, et donc Kahlerienne, la théorie de Hodge nous donne des renseignements plus précis sur
cette cohomologie : on dispose en effet d'une décomposition canonique
H" (A(C),C) = € H",

ptg=n
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ou HP? est donné par HPY = HP (A(C),Q9) et respecte HP4 = H?P. Par définition, cela signifie
que le Q-espace vectoriel H"(A(C),Q) est une structure de Hodge (pure de poids n). D’apres la
description des structures de Hodge donnée par Deligne [23], on sait que une structure de Hodge

sur le Q-espace vectoriel V est équivalent a la donnée d’un morphisme de groupes algébriques

h:S— GLy,,

ol S := Resc/gr (Gm,c) est le “tore de Deligne”, et Vg désigne le R-espace vectoriel V' ®g R. La
Q-fermeture de Zariski de I'image de h est alors appelée le groupe de Mumford-Tate de la structure
de Hodge V. Dans le cas des variétés abéliennes, la formule de Kiinneth susmentionnée fait que la
décomposition de Hodge de H"(A(C),C) s’obtient & partir de celle de H!(A(C),C), et il est donc
spécialement intéressant d’étudier cette derniere structure de Hodge (de poids 1).

Soit donc A une variété abélienne définie sur corps K, de caractéristique 0 et finiment engendré sur
son corps premier. Pour tout plongement o de K dans C on obtient une variété abélienne complexe
A, = A x, C, et on définit le groupe de Mumford-Tate de A (noté MT(A)) comme le groupe de
Mumford-Tate de la structure de Hodge H! (4,(C), Q). Grace au fait que tous les cycles de Hodge
sont absolument de Hodge (23, Theorem 2.11]), cette définition ne dépend pas de o, de sorte que si
A est définie sur un corps K de type fini sur Q (notamment un corps de nombres) on peut parler du
groupe de Mumford-Tate de A sans spécifier un plongement de K dans C. Remarquons aussi que
MT(A) est un objet purement géométrique, et en particulier invariant par extension du corps de
base K ; de plus, il ne dépend que de la C-classe d’isogénie de A, car en effet la méme propriété est
vraie pour H!(A(C),Q). Finalement, il n’est pas difficile de voir que le groupe MT(A) est contenu

dans GSpy, ¢ : en effet, toute polarisation ¢ : A — AV induit une forme bilinéaire alternée
H'(A(C),Q) x H'(A(C),Q) “% H'(A(C),Q) x H'(4Y(C),Q) - Q

qui est une polarisation au sens des structures de Hodge, et il est bien connu que cela entraine 'inclu-
sion MT(A) C GSpy, . Par ailleurs, remarquons que la dualité de Poincaré nous permet d’identifier
H1(A(C),Q) avec HY(A(C),Q)Y, ce qui induit une Q-structure de Hodge sur Hy(A(C),Q) dont le
groupe de Mumford-Tate coincide avec celui de H!(A(C), Q).

Revenons maintenant a nos représentations galoisiennes; on suppose & nouveau que A est définie
sur un corps de nombres K. D’apres le théoréme de comparaison en cohomologie étale, on dispose

d’un isomorphisme
H'(A(C),Q) ® Q; = H};, (A, Qo)

qui s’étend d’ailleurs a toute ’algebre de cohomologie, a savoir on dispose plus généralement d’iso-

morphismes
H, (Ag, Q) = A°H, (Ag, Qo) = A*H' (A(C),Q) ® Q.

On est alors amené & comparer MT(A) — défini en termes de la réalisation Betti de A — avec un
objet correspondant sur le c6té galoisien : c’est dans cet esprit qu’on définit le groupe de monodromie
l-adique de A, souvent noté Gy(A), comme la Qy-cloture de Zariski dans GL7, ()20, de 'image de
la représentation py introduite en (2). Le lecteur averti pourrait maintenant remarquer une légere
asymétrie dans nos définitions, car Ty(A) ® Qy s’identifie plutét au dual de H'(A(C),Q) ® Qy :

toutefois, cet asymétrie disparait lorsque on remarque que — comme on ’a déja rappelé — le groupe
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de Mumford-Tate de H(A(C),Q) et celui de H;(A(C),Q) peuvent étre identifiés. Finalement,
l’isomorphisme canonique H1(A(C),Q) ® Q; = Ty(A) ® Qp nous permet, par extension des scalaires
a Qg, de considérer MT(A) xg Q¢ comme un sous-groupe de GL7,(4)gq,- Il est alors tres tentant de
conjecturer que 'on devrait avoir Gy(A) = MT(A) xg Qq en tant que sous-groupes de GL7,(4)20,,
mais cette conjecture naive est fausse : en effet, le groupe Gy(A) n’est pas connexe en général, alors
que le groupe MT(A) est connexe par définition. Toutefois, un célebre théoreme de Serre ([121, §
2.2.3]) nous assure que — quitte a remplacer K par une extension finie — on peut garantir que Gy(A)
est connexe pour tout £; de plus, il est clair que remplacer K par une extension finie ne change pas
la composante neutre Gy(A)? (car tout sous-groupe fermé de Gy d’indice fini est automatiquement
dense dans Gy(A)? pour la topologie de Zariski). Ce cercle d’idées apporta Mumford et Tate [84] &

formuler la célebre conjecture :

Conjecture 1. (Mumford-Tate) Pour tout corps de nombres K et toute variété abélienne A/K on
a l’égalité gg(A)O = MT(A) XQ @g.

Beaucoup de progres ont été faits en direction de cette conjecture, mais dans le cas général elle
reste encore largement ouverte. Le résultat le plus général a ce propos a été prouvé par Borovoi
[14], Deligne [23, Exp. 1, 2.9, 2.11], et Pjateckii-Sapiro [100], qui montrent

Théoreme 2. Pour toute variété abélienne A sur un corps de mombres et tout premier £ on a
gg(A)O g MT(A) XQ @g.

A la lumiere de ce théoréeme on voit que la partie encore ouverte de la conjecture de Mumford-
Tate revient essentiellement a dire que 'image Gy de la représentation py est “aussi grosse que
possible”, a savoir suffisamment grosse pour que sa fermeture de Zariski coincide avec MT(A) xqQy :
pour cette raison on désigne souvent les résultats dans cette veine par le nom de “théoremes de
I'image ouverte”.

D’apres les travaux de plusieurs mathématiciens (notamment Serre, Pink, Ribet, Chi, Tanke’ev,
Banaszak, Gajda, Krasori, Hall...) on connait des tels résultats pour des nombreuses classes de
variétés abéliennes : sans prétendre a ’exhaustivité, rappelons ici que la conjecture de Mumford-
Tate a été prouvé pour les variétés A de dimension impaire satisfaisant a End(A) = Z (Serre [118]),
pour les variétés satisfaisant a Endz(A) = Z et dont la dimension est en dehors d’un ensemble de
densité zéro (Pink [98]), pour les variétés de type CM (Shimura-Taniyama [126], Pohlmann [101],
Serre-Tate [124]) et pour les variétés dénommées “de type GLg” (Ribet [109]).

On peut aussi donner des résultats qui font intervenir un invariant plus fin que la simple dimension,
a savoir la dimension relative. Rappelons que si A est une variété abélienne géométriquement simple,
alors I'algebre End(A) ® Q est un corps gauche D (de plus, il s’agit d’une algebre admettant une
involution positive), dont le centre est un corps de nombres E. On distingue alors le type de A selon
le type de lalgebre D dans la classification donnée par Albert [1] [2], et on définit la dimension

relative (qui est toujours un nombre entier) par la formule

dim A .
—i— si A est de type I, IT ou III
dim 1él(A) = [E:Qly/[D:E]

_2dimA g A st de type IV.

[E:Q]+\/[D:E)’

A titre d’exemple on a alors le résultat suivant :
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Théoréme 3. (Banaszak, Gajda, Krason [6]) La conjecture de Mumford-Tate est vraie pour toute

variété abélienne simple de type I ou II et de dimension relative impaire.

Bien que ces résultats soient tres satisfaisants du point de vue de la conjecture de Mumford-Tate, ils
ne répondent pas a la question de décrire précisément les images Gy~ des représentations ps~ : la
propriété d’étre ouvert est invariante par passage a un sous-groupe d’indice fini, donc ces théorémes
ne fournissent pas un renseignement tres précis sur Gyoo lui-méme.

Dans certains cas particuliers on dispose toutefois d’une description de Gy, du moins pour /¢
suffisamment grand. Par exemple, dans son cours au College de France de 1986 Serre a prouvé le

théoreme suivant :

Théoréme 4. Soit A/K une variété abélienne de dimension 2, 6, ou un nombre impair. Suppo-
sons que Endi(A) = Z : alors limage G« de la représentation adélique po est ouverte dans le
produit restreint [y GSpagim 4(Qe). En particulier, il existe un entier Lo(A, K) tel que pour tout
£>lo(A, K) on a Gy = GSpyy(Zy).

Ce théoreme, qui généralise un résultat précédent concernant les courbes elliptiques ([116]), n’est

malheureusement pas effectif : la preuve ne fournit aucune indication sur la valeur de ¢y(A/K).

L’extension engendrée par un point de torsion

Les différents théoréemes de I'image ouverte permettent aussi d’étudier la question suivante :

Probléme 5. Soit A/K une variété abélienne et P € Auors(K) un point de torsion d’ordre N. Quel
est la relation entre le degré [K(P) : K| et l'ordre N ?

Ce genre de question apparait naturellement par exemple dans certains probléemes de type Manin-
Mumford relatif (cf. [74], pour ne donner qu'un exemple), et est bien sir trés intéressant en soi,

surtout en relation avec la conjecture nommeée “de la torsion uniforme” :

Conjecture 6. Soient K un corps de nombres et g un entier positif. Existe-t-elle une constante

C(K,g) telle que pour toute variété abélienne A définie sur K et de dimension g on a

|Ators(K)| S C(K79)7

Plusieurs mathématiciens se sont occupés de différentes variantes du probleme 5; notamment, en

utilisant la théorie de la transcendance, Bertrand [9] a prouvé

Théoréme 7. Soit A/K une variété abélienne de dimension g sur un corps de nombres K. Alors
pour tout € > 0 il existe une constante C(A, K,€) telle que, pour tout point P € Ayns(K) d’ordre
N, on a [K(P) : K] > C(A, K,e)NYt9te) Lo constante C(A, K, ) est ici effective en fonction

de € et des équations définissant A.

D’apres le travaux de Serre on sait toutefois qu'un tel résultat est relativement loin d’étre optimal,

comme il le montre le théoréme suivant :



Introduction xvi

Théoréme 8. ([118]) Soit A/K une variété abélienne sur un corps de nombres K. Supposons que
aucun facteur géométriquement simple de Az n’est de type CM : alors pour tout € > 0 il existe une
constante C(A, K, ) telle que, pour tout point P € Ayrs(K) d’ordre N, on a

[K(P): K] >C(A K,e)N*~=.

Si Azz a un facteur avec multiplication complexe, alors le méme énoncé reste vrai quitte a remplacer

2—¢cparl—e.

L’approche de Serre repose sur 1’étude des représentations pgo, mais est une fois de plus ineffectif, au
sens ou étant donnés des équations pour A la preuve du théoréeme 8 ne fournit aucune indication sur
la valeur de C(A, K, ¢). Une exception est constituée par les variétés avec multiplication complexe,
pour lesquelles Silverberg [128] — en s’appuyant sur les travaux fondamentaux de Shimura-Taniyama

[126] et Serre-Tate [124] — a montré le résultat suivant, qui a de plus l'avantage d’étre uniforme en

A:

Théoréme 9. Soient K un corps de nombres et g un entier positif. Pour tout € > 0 il existe
une constante effective C(K,g,e) avec la propriété suivante : pour toute variété abélienne AJK

de dimension g avec multiplication complexe, et pour tout point P € Auops(K) d’ordre N, on a

[K(P): K] > C(K, g,e)N'~¢.

Tous ces problemes admettent évidemment des variantes, également intéressantes, qui concernent
par exemple 'extension engendrée par tous les points de N-torsion d’une variété A. Une petite
réflexion montre que ces variantes reviennent essentiellement a une reformulation dans ces termes
de résultats du type “image ouverte” ; on mentionne & ce propos un théoréeme de Ribet [110], qui

donne un tel résultat pour les variétés CM :

Théoréme 10. Soit A/K une variété abélienne de type CM. Il existe des constantes positives
C1,Cy, dépendantes de A et de K, et un entier r > 0, également dépendant de A, tels que pour tout
N entier positif on a

Ci1N"w(N)" < [K(A[N]): K] < CaN"w(N)",

ot w(N) est le nombre de facteurs premiers distincts de N.

Remarquons que aussi ce résultat est non-effectif en ce qui concerne les constantes Cq et Cs.

Finalement, le méme genre de techniques permet aussi d’étudier une question complémentaire a
celles indiquées ci-dessus : si A/K est encore une fois une variété abélienne fixée, on peut essayer
de comprendre comment varie le groupe de torsion Aios(K’) lorsque 1'on fait varier K’ parmi les
extensions finies de K. C’est le but des récents travaux de Hindry et Ratazzi [38] [39] [40], qui

introduisent 'invariant suivant :

Définition 11. Soit K un corps de nombres et A/K une variété abélienne. On pose

Y(A)=inf{z >0 |3C >0 VK'/K finie, |Ayos(K')|<CIK : K]"}.

En s’appuyant sur des résultats du type “image ouverte”, Hindry et Ratazzi calculent 'invariant

7(A) pour des nombreuses classes des variété abéliennes; toute forme effective des théoremes de
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I'image ouverte permettrait en particulier de mieux comprendre la nature de la constante C, et
plus généralement toute nouvelle instance (méme non effective) de la conjecture de Mumford-Tate
permettrait sans doute d’élargir la classe des variétés abéliennes pour lesquelles on sait déterminer

cet exposant optimal y(A).

Questions d’effectivité

Les résultats sur les représentations galoisiennes rappelés aux paragraphes précédents montrent tres
clairement une tendance assez générale : méme si on a beaucoup de renseignements qualitatifs sur
les images Gy~ des représentations pye, presque aucun d’entre eux n’est effectif. Dans cette these
on se propose notamment de donner des versions effectives de certains des énoncés mentionnés aux
paragraphes précédents : concretement, il s’agit de donner des valeurs pour les différentes bornes
qui aient une dépendance aussi simple que possible en les données A et K. D’apres les travaux de
Faltings [26], on posséde un moyen canonique de mesurer la complexité arithmétique d’une variété
abélienne : sa hauteur (de Faltings) stable h(A). On sait de plus que — pour tout corps K fixé et
tout B € R — il n'y a que un nombre fini de variétés abéliennes A/K de hauteur bornée par B :
il est donc évident que les différentes bornes apparaissant dans les différents théoremes de I'image
ouverte doivent pouvoir s’exprimer en fonction de h(A). On doit également choisir une mesure de
complexité pour les corps de nombres K : traditionnellement, on utilise & cet effet le discriminant
Ak /g, mais on verra que trés souvent le degré [K : Q] sera un invariant suffisant pour caractériser
la dépendance en K. Nous tenons a souligner des maintenant que nos résultats faisant apparaitre
la hauteur de Faltings de A ont une dépendance en h(A) qui est polynomiale, et qu’il en va de
méme pour la dépendance en [K : Q] : ceci est rendu possible par I'utilisation d’une forme explicite
trés précise du théoreme dit “d’isogénie”, originairement prouvé dans une forme non effective par
Faltings [26] et ensuite redémontré de fagon effective par Masser et Wiistholz grace a des techniques
de théorie de la transcendance [70] [72] [73]. La version de ce théoréme que nous utilisons ici est
plutot due & Gaudron et Rémond [28]; pour énoncer leur résultat, nous introduisons la définition

suivante :

Définition 12. On pose

210 3
b(d, g, h) == ((14g)6492dmax {1,h,log d})

Plusieurs de nos résultats s’exprimeront a l’aide de la fonction b(d, g, h). Avec cette notation, I'un

des théoremes principaux de [28] s’énonce ainsi :

Théoréme 13. Soit A/K une variété abélienne de dimension g. Pour toute variété abélienne
A* définie sur K qui est K-isogéne a A, il existe une K-isogénie A* — A de degré borné par
b([K : Q] g, h(A)).

Contenu de la these

Les résultats rappelés dans les paragraphes précédents nous amenent a considérer des questions que

I’on peut grossierement distinguer en trois catégories :



Introduction xviii

1. image ouverte : montrer que Gy(A)? = MT(A) xg Q¢ pour des nouvelles classes de variétés

abéliennes.

2. effectivité pour ¢ suffisamment grand : étant donné une variété abélienne A/K, donner une
borne effective ¢y = ¢y(A/K) telle que, pour tout ¢ > {y, on sait décrire explicitement le

groupe Gyeo.

3. effectivité (-adique et adélique : étant donné A/K et un premier /¢, calculer une borne ¢(A/ K, ()
sur les indices [Gp(A)(Zy¢) : Gyoo] €t [[[,Ge(A)(Zy) : Gool, si ce dernier est fini.

Dans cette these nous présentons quelques résultats originaux en direction des questions 1, 2 et 3
ci-dessus. Les différents chapitres sont rédigés sous la forme d’articles essentiellement indépendants

les uns des autres; ainsi, le lecteur remarquera que certaines parties des introductions sont répétées.

La premiere (et plus longue) partie de la these est consacrée au probleme de rendre complétement
effectifs les théoremes du type “image ouverte” pour les variétés abéliennes, explicitant aussi toutes
les constantes qui interviennent.

Nous traitons d’abord (dans le chapitre 1) le cas des courbes elliptiques n’ayant pas de multiplication
complexe. Précisément, en passant par un résultat de structure pour certains algebres de Lie entieres
(& coefficients dans Zy), nous montrons notamment des versions effectives des théorémes 4 et 8 pour

g=1:
Théoréme 14. Soit E/K une courbe elliptique sans CM. On a
GLZ(%) ! Poo (Gal(F/K))] <Cp-[K: @]CQ -max {1, h(F),log|K : Q]}202 ,

ot C1 = exp(6 - 1029527 et Cy = 4.9 - 10%0.
Si P € Eyors(K) est un point de torsion d’ordre N on a

K (P): K] > (¢(2) - [QLa(Z) : poc (Gal(K/K))]) - N2

La preuve de ces résultats répose sur le théoreme d’isogénie, combiné avec une extension de la
théorie des algebres de Lie entieéres die a Pink [97]. Rappelons briévement cette construction. Soit
A un anneau semi-local, et soit I 'intersection de tous les idéaux maximaux de A. On suppose que
Panneau A est complet pour la topologie I-adique, et que A/I est annulé par un premier p, Supposé
impair. La théorie de Pink montre alors qu’il a une corréspondence bijective et fonctorielle entre les
sous-groupes pro-p de SLa(A) et les couples (L,A), ot L est une sous-algebre de Lie de sly 4 qui
vérifie Np>oL"™ = {0} et tr(L-L)-L C L, et A est un sous-ensemble fermé de L/[L, L] qui respecte
certaines propriétés additionnelles. De plus, si (L, A) est le couple qui corréspond au groupe G,
alors la connaissance de L est suffisante a déterminer le sous-groupe dérivé de G.

On aimerait pouvoir étudier 'image de Galois par I'intermédiaire de cette correspondence : en effet,
caractériser les sous-algebres de Lie de slp 7, est essentiellement un probléme d’algebre linéaire, donc
rélativament facile, alors que travailler directement avec les sous-groupes de SLy(Z) est (a priori)
bien plus compliqué. Malheuresement, la théorie de Pink n’est pas suffisante pour nos applications,

pour trois raisons différentes :

1. elle ne s’applique qu’aux sous-groupes de SLy(Z), alors que I'image de Galois est un sous-
groupe de GLa(Zy) ;
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2. elle ne s’étend pas au cas p = 2;

3. son domaine d’applicabilité est limité aux sous-groupes de SLa(Z;) qui sont de plus pro-¢, ce

qui en général n’est pas le cas pour nos groupes Gy=.

Le premier probleme n’est pas tres difficile & contourner en considérant le groupe dérivé de Gy (qui
est automatiquement un sous-groupe de SLa(Zy)), mais les autres deux obstacles sont plus sérieux.
Il y a également une solution rélativement simple (mais pas compleétement satisfaisante) pour le
troisieme probleme : si on remplace le corps K par une extension convenable, on peut toujours
supposer que — pour un premier ¢ fixé — le groupe Gy est un groupe pro-£. Malheuresement, le
degré de cette extension varie en général avec £, et cela se traduirait par un résultat final qui n’est
pas polynomiale en la hauteur de E.

Nous résolvons complétement les problemes 2 et 3 par les résultats suivants, qui peuvent étre
considérés comme une éxtension de la théorie de Pink dans le cas ot 'anneau A est Z, (ou p est

n’importe quel nombre premier, y compris p = 2).

Théoréme 15. Soit £ un nombre premier impair (resp. £ = 2). Pour tout sous-groupe fermé G de
GL2(Zy) (resp. pour tout sous-groupe fermé dont la réduction modulo 2 est triviale si ¢ = 2), soit
L(G) le Zy-sous-module de sla(Z¢) engendré par ’ensemble {g - @ -1d ‘ g€ G}.

Soit H un sous-groupe fermé de GLo(Zy). Il existe un sous-groupe Hy de H, d’indice au plus 2/
(resp. un sous-groupe d’indice au plus 192 ayant de plus une réduction triviale modulo 2, quand
0 =2), tel que l'on a l'implication suivante pour tout entier positif s : si L(H1) contient (*sly(Zy),

alors Hi contient

By(4s) := {g € SLa(Z¢) | g=1d  (mod *)} (resp. Ba(6s) pour £ =2).

Remarquons que le résultat pour ¢ = 2 est completement indépendant des résultats de Pink. Si-
gnalons également que nous construisons des exemples qui montrent qu’on ne peut pas éviter de

remplacer H par un sous-groupe, de sorte que la forme de ce résultat est essentiellement optimale.

Dans le chapitre 2 nous étendons ensuite la méthode et les résultats du chapitre précédent au cas

d’un produit arbitraire de courbes elliptiques sans multiplication complexe :

Théoreme 16. Soit n > 2 et soient En, ..., E, des courbes elliptiques définies sur un corps de
nombres K, deux & deux non isogénes sur K. Supposons que End(E;) = Z pouri=1,...,n, et
notons Goo limage de Gal(K /K) dans

[T Aut(Te(EL)) x -+ x Aut(Ty(En)) € GLo(Z)".
)4

Soit y 1= 10'3, 6§ := expexpexp(13), et H = max {1, log[K : Q],max; h(E;)}. Le groupe Goo a indice
au plus

5n(n—1) . ([K . Q] . HQ)'Y”(nfl)

dans

A= {(xl,...,xn) € GLQ(Z)” } det z; = det z; Vi,j}.
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La preuve de ce théoreme nécessite d’une étude assez fine de certains sous-groupes fermés de
GL2(Zg)™. 11 s’agit d’une exténsion ultérieure des résultats de Pink au cas ou lanneau de base
est Z7 ; méme si le résultat pour n = 2 nous suffirait, nous traitons le cas d’un n arbitraire dans le

chapitre 8.

Dans le chapitre 3 nous commencons a considérer certains cas de dimension supérieure : nous y
étudions notamment les représentations ps~ associées a des surfaces abéliennes A géométriquement
simples. Rappelons que — selon 'arithmétique de ’algebre des endomorphismes de A — on distingue
4 types de surfaces : génériques (Endy(A) = Z), & multiplication réelle (End;(A) est un ordre dans
un corps quadratique réel), a multiplication quaternionique (End;(A) est un ordre dans une algebre
de quaternions sur QQ), et & multiplication complexe. Comme les variétés CM (sans restriction sur la
dimension) feront I'objet du successif chapitre 5, nous nous restreignons ici aux trois premiers cas,
pour lesquels nous donnons une description des groupes Gy~ pour £ suffisamment grand explicite.

Notamment, pour le cas générique nous prouvons :

Théoréeme 17. Soit A/K une surface abélienne telle que Endz(A) = Z. Soit £ un premier qui
n’est pas divisible par aucune place de mauvaise réduction de A. Si £ est non ramifié dans K et est
strictement plus grand que b(2 - 1920[K : Q], 4, 2h(A))'/4, alors G = GSp,(Zy).

Pour le cas de la multiplication réelle nous nous placons dans le cadre plus général des variétés
de type GLq, considérées par exemple par Ribet dans sa these [109] : pour des telles variétés nous

montrons

Théoréme 18. Soit A/K une variété abélienne de dimension g telle que End=(A) est un ordre
dans un corps totalement réel E de degré g sur Q. Supposons que tous les endomorphismes de A
sont définis sur K. Soit £ un nombre premier non ramifié dans K - E et strictement plus grand que
b(2[K : Q],2dim(A),2h(A))/? et b(A/K)9. On a

Gy = {x € GLy (0E®Zg) ‘ det@Em GZ;}.

Finalement, nous avons un résultat du méme type aussi pour le cas de la multiplication quaternio-

nique :

Théoréme 19. Soit A/K une surface abélienne telle que R = Endg(A) est un ordre dans une
algébre de quaternions (indéfinie) et soit A le discriminant de R. Supposons que tous les en-
domorphismes de A sont définis sur K. Soit £ un nombre premier strictement plus grand que
b(2[K : Ql,4,2h(A))/2, qui ne divise pas A, et qui est non ramifié dans K. On a Gy = (R® Zy)*.

Faisons quelques remarques sur les outils impliqués dans la preuve de ces trois théorémes concernant
les surfaces abéliennes. Un des ingrédients essentiels pour la preuve du théoréme 17 est une analyse
des sousgroupes propres maximaux de GSp,(Fy). On peut grossierement classifier ces sousgroupes

en trois catégories :

e sous-groupes géométriques, qui préservent certaines structures additionnelles sur le Fy-espace
vectoriel A[/] : tombent dans cette catégorie par exemple les sous-groupes qui stabilisent une
droite ou bien un plan de F} & A[/], aussi bien que les sous-groupes dont 'action sur A[¢] est

semi-linéaire par rapport & une certaine structure de F2-espace vectoriel de A[/];
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e sous-groupes finis (dont 'image projective est de cardinal borné indépendamment de ¢) : il
s’agit de “petits” groupes finis qui admettent un plongement dans PGSp,(F;) pour des fa-
milles infinies de premiers ¢. Par exemple, certains groupes finis admettant une représentation
symplectique irréductible de dimension 4 (sur C) sont de ce type, car une telle représentation

peut étre réalisée sur IFy pour tout premier ¢ qui satisfait a certaines conditions de congruence;

e sous-groupes dont I'image projective est conjuguée a I'image de la représentation symplectique
PGLQ(FE) — PGSp4(Fg).

Pour montrer le résultat voulu il suffit de prouver que, si ¢ est suffisamment grand, l'image de
Galois dans Aut A[¢] n’est pas contenue dans aucun sous-groupe propre maximal de GSp,(Fy). 11
s’agit alors de montrer que chacun des trois cas précédents ne peut pas se produire quand ¢ est
suffisamment grand. On traite les cas géométriques grace au théoreme d’isogénie, que ’on applique
a plusieurs réprises a la variété A, aussi bien qu’a certaines variétés abéliennes auxiliares construites
a partir de A.

On peut également traiter le cas des petits groupes finis a ’aide du théoréme d’isogénie, et c’est 'ap-
proche qu’on suit dans ce chapitre. Remarquons toutefois que dans le chapitre 4 nous développons
une méthode plus fine, qui montre que ce cas ne peut pas se produire lorsque £ est plus grand qu’une
certaine borne qui est essentiellement uniforme en la variété A. Finalement, le cas le plus difficile
est celui des sous-groupes associés a la représentation PGLg(F,) — PGSp,(F,). Pour montrer que
de tels sousgroupes ne peuvent pas contenir 'image de Galois, on applique des résultats profonds,
dis a Raynaud, qui décrivent laction sur A[¢] du groupe d’inertie associé a une place de K de
caractéristique £. Le résultat souhaité est alors obtenu en comparant la description de cette action

avec les propriétés de la représentation PGLa(IFy) — PGSp,(Fy).

Le chapitre 4 est consacré a ’étude effective des représentations associées aux variétés de dimension
impaire. La preuve donnée par Serre de son théoréme 4 ne se préte pas directement a étre rendue
effective, et nous sommes obligés de prendre un chemin assez différent. Apres avoir rappelé une
classification grossiere des sous-groupes maximaux de GSpgg(Fg), nous exploitons les propriétés des
représentations des groupes finis de type Lie pour montrer que si 'image de Galois est petite par
rapport a GSpQQ(IFg), alors en fait elle est contenue dans I'image d’une certaine représentation qui
est algébrique (et définie en caractéristique 0). Nous pouvons alors disposer de toutes les techniques
classiques de théorie des représentations, et nous prouvons que cette situation ne peut se produire
que dans de cas tres particuliers.

Cela ne nous conduit pas a une preuve effective du théoreme 4 en toute dimension, mais nous
obtenons quand méme un résultat effectif quitte & imposer des restrictions additionnelles sur la
dimension g. Le cas le plus favorable est celui de la dimension 3, pour lequel nous avons le résultat

suivant :

Théoréme 20. Soit A/K une variété abélienne de dimension 3 telle que End(A) = Z. Notons
Ng/K le conducteur naif de AJ/K, a savoir le produit des idéaux premiers de Ok auxquels A a

mauvaise réduction, et supposons que les points de 7-torsion de A sont tous définis sur K.
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e Si I’Hypothese de Riemann Généralisée est vraie, on a ’égalité Gy = GSpg(Ze) pour tout

premier £ non ramifié dans K et strictement plus grand que (2¢)*8, ou

q=0b(A%?/K;3)® (log |Ag gl +1og N /g (NX/K»Q .
e Inconditionnellement, la méme conclusion est vraie avec
q = exp (cb(AQ/K;S)B (log |Ak| +log Nk g (NQ/K))2> ,
ot ¢ est une constante absolue et effective.

Nous obtenons également des résultats pour une infinité d’autres dimensions, mais la borne corréspondante
n’est pas completement explicite en fonction de la variété A.

Nous considérons finalement un exemple concret (la Jacobienne J d’une courbe hyperelliptique

de genre 3 sur Q) qui ne peut pas étre traité par les méthodes existantes, et pour lequel nous

déterminons explicitement une borne by(J/Q) telle que I'action de Galois est maximale pour tout

£>bo(J/Q).

Dans le chapitre 5 nous nous focalisons sur les variétés géométriquement simples admettant mul-
tiplication complexe. Nous établissons une version effective du théoreme 10 pour N une puissance
de nombre premier, et nous montrons notamment que dans ce cas les constantes C1, Cy y apparais-
sant peuvent étre choisies indépendamment de A. Une version simplifiée du résultat principal de ce

chapitre s’énonce ainsi :

Théoréme 21. Soit K un corps de nombres et A/ K une variété abélienne de dimension g, admet-
tant multiplication complexe sur K par un ordre d’un corps CM qu’on note E. Soit v le rang du
groupe de Mumford-Tate de A et £ un premier plus grand que \/2 - g! et non ramifié dans E- K. Soit

i le nombre de racines de l'unité en E et h(K) le nombre de classe de K. On a lencadrement :
1

4pV/g!

En fait, les résultats du chapitre 5 s’appliquent & tout nombre premier ¢, mais les formules qu’on

< [K(AJE") : K] < gu h(K) - 0.

obtient sont moins simples a écrire. La preuve du théoreme 21 répose sur plusieurs outils : d’abord
bien stur la théorie de la multiplication complexe, développée par Shimura-Taniyama et étendue par
WEeil, Serre et Tate, puis des arguments de théorie du corps de classes, et finalement une étude des
isogénies entre tores définis sur des corps locaux, faite a la fois par des méthodes de cohomologie
galoisienne et de géométrie différentielle p-adique.

Nous traitons avec plus de détail le cas des courbes elliptiques CM, pour lesquelles nous montrons

le résultat adélique suivant, qui fournit une description tres précise de I'image G :

Théoréme 22. Soit E/K une courbe elliptique telle que Ends(F) est un ordre dans le corps qua-

dratique imaginaire F. Notons ps : Gal(K/K) — HAut TyE la représentation adélique associée
¢
a E et Goo son image. Pour tout premier ¢ notons ensuite Cy le groupe (Op ®ZZ)X, considéré

comme sous-groupe de Autz, (Op @ Zy) = GL2(Zy) = At TYE, et N(Cy) le normalisateur de Cy
dans GLa(Zy).



Introduction xx1ii

1. Supposons que F' C K : alors G est inclus dans [, Cy, et lindice [[[,Cy: Goo] est borné
par 3[K : Q]. De plus, l’égalité Gy = Cy est vérifiée pour tout £ non ramifié dans K et de

bonne réduction pour E.

2. Supposons que F € K : alors G est inclus dans [, N(Cy) mais pas dans [[, Cy, et lindice
[[I; N(Cy) : Gs] n'est pas fini. L’intersection Hoo = Goo N[, Cr a indice 2 dans Gu, et
Vindice [[[,Cr : Hxo| est borné par 6[K : Q]. Finalement on a Gy = N(Cy) pour tout £ non

ramifié dans K - F' et de bonne réduction pour E.

Si de plus on suppose que linvariant j de E n’est pas égal a 0 ni a 1728, alors les constantes 3 and

6 des parties (1) et (2) peuvent étre remplacées par 1 et 2 respectivement.

Toujours dans le chapitre 5, nous entamons aussi une étude assez approfondie du groupe de
Mumford-Tate des variétés CM, qui — comme il est bien connu — est un tore dans ce cas. La
difficulté principale est ici celle de comprendre le groupe des Zg-points d’'un Q-tore ayant mauvaise
réduction en ¢ : sous I’hypothese que MT(A) soit de dimension dim A + 1, ce qui est bien le cas
générique pour une variété CM, nous pouvons effectuer des calculs locaux qui conduisent a des

bornes essentiellement optimales pour les degrés [K(A[("]) : K] :

Théoréme 23. Soit A/K une variété abélienne géometriquement simple de dimension g, admettant
multiplication complexe (sur K ) par le corps CM E. Soit MT(A) le groupe de Mumford-Tate de A

et r son rang.

1. Sif est non ramifié en E on a ’encadrement suivant :
(I=1/0)""" < |MT(A)(Z/"Z)| < (1 +1/0) ",
2. Supposons r = g+ 1. Alors pour tout premier £ # 2 et tout n > 1 on a
(1 —1/0)9F1 . pl9+Dn < | MT(A)(Z/Z)| < 29 (14 1/¢)9 1 glatbm,

et pour{=2etn>1ona

1
922g+3

St n < | MT(A)(Z/2"7)| < 349 . olg+)n

Ce résultat est particulierement intéressant pour les variétés CM de dimension au plus 3, car toute

telle variété respecte automatiquement I’hypothese rg MT(A) = dim(A) + 1.

Dans la deuxieme partie de la theése nous quittons le domaine de ’effectivité pour nous tourner vers
des questions de nature plus qualitative.

Dans le chapitre 6 nous développons des techniques qui permettent d’étudier les groupes algébriques
Ge(A x B) associés a un produit A x B de deux variétés abéliennes, et nous donnons une condi-
tion suffisante pour que les groupes Gy(A), G;(B) déterminent le groupe Gy(A x B). Nos résultats

s’expriment plus aisément a ’aide de 'objet suivant :

Définition 24. Soit A/K une variété abélienne, ¢ un nombre premier, et G,(A) le groupe de

monodromie algébrique associé & A/K. Nous posons H¢(A) := (Ge(A) N SLTZ(A)®QZ)O-

Notre condition suffisante s’énonce alors ainsi (pour le cas d’un corps de définition de caractéristique

zéro : nous traitons aussi le cas d’un corps de définition quelconque) :



Introduction XX1V

Théoréme 25. Soit K un corps finiment engendré de caractéristique zéro, soient Ay et As deux
variétés abéliennes sur K, et soit £ un nombre premier. Pour ¢ = 1,2 soit b; l’algebre de Lie de

He(A;). Supposons les conditions suivantes vérifiées :

1. pouri=1,2 lalgébre b; est semisimple (on a donc b; @ Q; 2 b1 & - D b;p,, 0o chaque b; ;

est simple) ;

2. pour i = 1,2, il existe une décomposition Vy(A;) @ Qp = Vii @ -+ @ Vin, telle que 'action de
hi@Qr b1 B Bhip, sur Vi1 @& Vin, se fait composante par composante, et b, ; agit
de fagon fidéle sur V; ; ;

3. pour tout choiz de (i, j) et (7', j') distincts tels qu’il existe un isomorphisme ¢ : b, j — by jr, il
existe une représentation irréductible W de b; ; telle que tous les sous-modules simples de V; ;
et de p* (Vi/,j/) (considérés comme représentations de b; ;) sont isomorphes a W, et le plus

haut poids qui définit W est stable sous l’action de tous les automorphismes de b; ;.
Alors on a soit Homp=(Ay, Az) # 0, soit He(Ar x Ag) = He(Ar) x He(Az).

Meéme si les hypotheses de ce résultat sont assez techniques, elles sont tout de méme tres souvent
vérifiées, et nous déduisons de ce théoreme plusieurs criteres facilement applicables qui donnent des
conditions suffisantes pour que I’égalité Ho(A; x Ag) = H(A1) x He(Az) soit vérifide.

Par exemple, nous montrons comme un résultat d’Ichikawa [44], prouvé initialement pour les struc-

tures de Hodge, peut étre transposé au cadre galoisien :

Théoréme 26. Soit K un corps finiment engendré de caractéristique zéro et soient A;,A;-’ (pour
i=1,....,netj=1,...,m) des K-variétés abéliennes absolument simples, de dimension relative
impaire, et deuz a deux non isogénes sur K. Supposons que chaque Al est de type I, IT ou Il au sens
de la classification d’Albert, alors que chaque A}’ est de type IV. Soit finalement A une K-variété

abélienne qui est K-isogéne a [, A} x [[j2, A7. On a alors
Mo (A) =[] He (A5 < He [ [ AT
i=1 Jj=1

Nous appliquons ensuite ce théoreme, et plus généralement les méthodes de ce chapitre, pour prouver
que la conjecture de Mumford-Tate est vraie pour toute variété abélienne de dimension au plus 5
dont tous les facteurs géométriquement simples vérifient eux-mémes Mumford-Tate. Cela compléte
un résultat précédent de Moonen et Zarhin [81], qui déterminent les classes de Hodge sur de telles

variétés abéliennes non simples.

On étudie enfin une question soulevée naturellement par les travaux de Hindry et Ratazzi [38]
[39] [40]. Dans leur étude des extensions engendrées par les sous-groupes de torsion d’une variété
abélienne, les deux auteurs introduisent deux variantes (“forte” et “faible”) d’une propriété qu’ils
appellent (), et ils montrent que les deux variantes sont satisfaites par certaines (amples) classes
de variétés abéliennes. Rappelons ici leur définitions. Si A/K est une variété abélienne, le choix

d’une polarisation induit, pour tout ¢ et tout n, un accouplement (de Weil)

e . A[Zn] X A[gn] — en.
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Fixons maintenant un sous-groupe fini H de A[¢*°]. Comme H est fini, il est en particulier d’exposant
fini, d’ot1 un entier m tel que H C A[¢{™]. Comme 'accouplement de Weil est Galois-équivariant,
on voit immédiatement que le groupe de racines de I'unité e;m (H x H) est contenu dans K(H).
Grossierement, on dit que A respecte la propriété (u) forte si toute racine de 'unité ¢™-ieme dans
K(H) est dans I'image de eym (H x H) :

Définition 27. Soit A/K une variété abélienne (avec une K-polarisation fixée). Posons

dn >0, dP,Q € H d’ordre ™, tels que

my(H) = max< k ‘ .
em (P, Q) engendre pip

On dit que A/K respecte la propriété p forte par rapport a la polarisation fixée s'il existe une

constante C' (dépendant de A et K, mais pas de £) telle que pour tout premier ¢, et pour tout

sous-groupe fini H de A[¢*°], on a I'encadrement

é (K (pgmyn) = K] < [K(H) N K (pge)] < O [K (pgmyany) : K7

Par ailleurs, il est facile de voir que cette définition ne dépend pas de la polarisation choisie : une
variété abélienne respecte la propriété (u) forte pour une certaine polarisation si et seulement si elle
la respecte pour toute polarisation. On peut également considérer une version un peu affaiblie de

cette propriété, a savoir

Définition 28. Soit A/K une variété abélienne (avec une K-polarisation fixée). On dit que A/K
respecte la propriété u faible par rapport a la polarisation fixée s’il existe une constante C' (dépendant
de A et K, mais pas de ¢) telle que pour tout premier ¢, et pour tout sousgroupe fini H de A[¢°],

on a ’encadrement

é K () K < [K(H) O K ()] < C[K (uge) < K]

pour un certain n qui peut dépendre de £ et de H.

L’intérét de ces propriétés est lié, comme le montrent Hindry et Ratazzi, a I’étude asymptotique
du nombre des points de torsion de A(F), ou A/K est une variété abélienne fixée et F' parcourt
les extensions finies de K. Plus précisement, ces conditions (u) — forte et faible — apparaissent de

maniere naturelle lorsque 'on cherche & calculer I'invariant y(A/K) suivant :

3C € R : pour toute extension finie F//K }

YA/K) = int {x > 0] on a |A(F)or| < C[F : KJ*

Dans le chapitre 7 nous prouvons que la version faible de la propriété (u) est vraie pour toute
variété abélienne qui vérifie la conjecture de Mumford-Tate, et on montre que un célebre exemple

di & Mumford [85] fournit un contre-exemple & la propriété (u) forte dans le cas général, méme si

on suppose que notre variété abélienne a un anneau d’endomorphismes trivial.






Introduction

In this thesis we consider various classes of problems concerning Galois representations attached to
abelian varieties, with a particular emphasis on the question of obtaining effective results. To fix
the notation, our objects of interest are abelian varieties A defined over number fields K, and the

associated families of Galois representations
pe : Gal(K/K) — Aut T A,

where Ty(A) denotes as usual the ¢-adic Tate module of A. We denote by Gy the image of pyoo
and by Gy the Q-algebraic group obtained by taking the Zariski closure of Gy in GL7,(4)gq,. We
consider three different aspects of the study of the py’s:

1. determination of G, for non-simple A.

2. horizontal situation: certain combinations of conditions on Endg(A) and dim A imply that
Gy~ is of a specific form when ¢ is large enough; for example, when dim A is either 2 or
an odd number and Endy(A) = Z, then it is known by work of Serre [116] [118] [121] that
Gyoo = GSpy gim 4(Zg) for all £ large enough. For some such cases we quantify what “large

enough” means in terms of A and K.

3. vertical situation: for a given A/K and a given prime ¢ consider the Z-closure Gz, of Gy~ in
GL7,4. The group G is of finite index in Gz,(Z;), and in some cases we can give an explicit

upper bound on the index [Gz, (Zy) : Gyeo].

When A is an elliptic curve (with or without CM) both parts (2) and (3) can be carried out
successfully, and we actually obtain adelic results, which take into account all representations pgec
at the same time. Since we are chiefly concerned with the problem of giving effective descriptions of
the groups Gy, what we want to do is bound the complexity of the representations Gy in terms
of the arithmetic complexity of A: thanks to the work of Faltings [26], we dispose of a canonical
measure of complexity for A, its semistable Faltings height h(A), and it is in terms of h(A) that
we express our results. Works of Raynaud [105], Masser and Wiistholz [72] [70], and Gaudron and
Rémond [28] make it possible to effectively describe the isogeny class of A, and we extract from this

information finer data about the groups Gye~.

Concerning the determination of G, we prove that some numerical conditions on the dimensions of
the abelian varieties A, B allow us to compute G;(A x B) in terms of Gy(A) and G,(B), recovering in
this context analogous results that were already known for the Hodge groups of non-simple abelian

varieties. As an application, we show that our criterion implies the truth of the Mumford-Tate

xxvii
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conjecture for non-simple abelian varieties of dimension at most 5, assuming that each geometrically
simple factor satisfies the conjecture (recall that Mumford-Tate is known to hold for absolutely
simple abelian varieties of dimension at most 3 and for most absolutely simple abelian fourfolds).
To show such statements we mainly use techniques issued from representation theory, as pioneered
by Serre, Ribet [111][109] and Zarhin [152], combined with results of Larsen and Pink [59] [58] on
the structure of the Lie algebra of G,.

A prototypical example of result in the horizontal setting is the following description of the groups

Gy~ attached to abelian surfaces:

Theorem 1. There is an explicit polynomial function f(d, h) with the following property. Let A/ K
be an abelian surface with End(A) = 7Z, and let £ be a rational prime that is not divisible by any
place of bad reduction of A and does not ramify in K. If ¢ > f([K : Q],h(A)), then Gyo = GSpy(Zy).

We also prove similar results for (geometrically simple) surfaces with arbitrary endomorphism rings,
for abelian varieties of GLo-type, and for geometrically simple threefolds A with Endz(A) = Z; we
also establish weaker results in the same vein for some abelian varieties of higher (odd) dimension
satisfying Endz(A) = Z. The techniques involved are in a sense more sophisticated than the ones
used to treat the algebraic groups Gy: the main issue is the need to work with representations in
positive characteristic, and a combination of classical representation theory in characteristic zero
with the methods of finite group theory (especially Aschbacher’s classification of maximal subgroups
of classical finite groups) is necessary to treat such problems. Group-theoretical methods alone,
however, do not suffice: on the more arithmetical side we also need to rely on Chebotarev’s density
theorem and on results of Raynaud [104] that describe the action of inertia on the Galois modules
AlL).

The vertical situation is the most delicate one. Zywina [156] was the first to obtain adelic results
for non-CM elliptic curves, but his approach was limited to the field Q, and his bound not completely
effective; by contrast, in this thesis we obtain fully explicit results for (products of) non-CM elliptic
curves over any number field. Specifically, for a single elliptic curve we prove the following version

of Serre’s celebrated open image theorem:

Theorem 2. Let E/K be an elliptic curve that does not admit complex multiplication. Denote by

poo : Gal(K/K) — [ [ Aut Ty(A) = GLy(Z)
¢

the adelic representation attached to E. The inequality
(GLo(2) : poe (Gal(R/K)) | < C1 - [K : Q% - max {1, h(E), log[ K : Q>
holds, where C1 = exp(6 - 102%%7) and Cy = 4.9 - 1010,

By refining the same idea through a more in-depth study of the combinatorics of subgroups of
GL2(Z¢)™ we are then able to extend this result to cover the case of arbitrary products of elliptic
curves without complex multiplication. The main technical tool underlying these results is a con-
struction, due to Pink [97], that allows for a classification of pro-¢ subgroups of SLa(Zy) in terms

of linear data, encoded in the form of certain Lie algebras with coefficients in Z,. However, Pink’s
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construction is not flexible enough for our purposes, and we need to extend his results in various
directions, circumventing for example the difficulties arising from the fact that his approach cannot
be made to work for the prime ¢ = 2. Once our extended construction is in place for GLa(Zy)
and GLo(Z¢)?, the general case of an arbitrary product of copies of GLa(Z) follows by applying an

integral version of the Goursat-Ribet lemma.

The one case in which the vertical situation is relatively well-understood is that of abelian varieties
admitting complex multiplication. Mainly thanks to work of Ribet [110], relying on previous funda-
mental contributions of Shimura-Taniyama and Serre-Tate, in the CM case estimates are available
for the degrees over K of the division fields K (A[¢"]), but such estimates are not completely ef-
fective, and in fact it is not entirely clear what their dependence on A should be. Relying by and
large on the approach of Ribet, but combining it with techniques issued from Galois cohomology
(and even with some p-adic differential geometry), we can make such estimates effective and show
in particular that they can be made essentially uniform in the variety, the only relevant information
being the rank of the Mumford-Tate group of A. A rough but easily-stated version of this result

reads as follows:

Theorem 3. Let K be a number field and A/K be an abelian variety of dimension g admitting
complex multiplication over K by an order in the CM field E. Denote by p be the number of roots
of unity contained in E and by h(K) the class number of K. Let r be the rank of the Mumford-Tate

group of A and £ > /2 - g! be a prime unramified in E - K. The following inequality holds:

0 < [K(A[M) : K] < gﬂ () - e

1
4p/g!

Finally, in a slightly different direction, exploiting again methods coming from the representation
theory of algebraic groups (in positive characteristic), we explore a rather peculiar phenomenon
which does not seem to have been noticed before. Specifically, if H is a finite subgroup of A[¢*°],
we show that while the degree of K (H) N K (ue~) over K is essentially a power of ¢ (up to bounded
factors), it is not true that this power of ¢ is determined by the knowledge of the image of the Weil
pairing H X H — py. As shown by Hindry and Ratazzi [38] [39], this fact has a bearing on the

study of the extensions of K generated by torsion points of A.






Chapter 1

Adelic bounds for representations

arising from elliptic curves

1.1 Introduction

We are interested in studying Galois representations attached (via ¢-adic Tate modules) to elliptic
curves E defined over an arbitrary number field K and without complex multiplication, i.e. such
that Endz(FE) = Z. Let us recall briefly the setting and fix some notation: the action of Gal(K /K)
on the torsion points of E gives rise to a family of representations (indexed by the rational primes
9

pe : Gal (K/K) — GL(Ty(E)),

where Ty(FE) denotes the ¢-adic Tate module of E. As Ty(FE) is a free module of rank 2 over Zy it

is convenient to fix bases and regard these representations as morphisms
pPr - Gal (F/K) — GLQ(Z@),

and it is the image Gy of these maps that we aim to study. It is also natural to encode all these

representations in a single ‘adelic’ map
poo : Gal (K/K) — GLy(Z),

whose components are the py and whose image we denote Go. By a theorem of Serre ([116, §4,
Théoreme 3]) G is open in GLQ(z), and the purpose of the present study is to show that the
adelic index [GLQ(z) : Gl is in fact bounded by an explicit function depending only on the stable
Faltings height h(E) of E and on the degree of K over Q, generalizing and making completely

explicit a result proved by Zywina [156] in the special case K = Q. More precisely we show:

Theorem 1.1.1. Let E/K be an elliptic curve that does not admit complex multiplication. The

inequality
GLa(Z) : pos (Gal(F/K))} < - [K Q- max {1, h(E),log[K : Q]}*"
holds, where 1 = exp(1021483) and o = 2.4 - 10%°,

Remark 1.1.2. We actually prove a more precise result (theorem 1.9.1), from which the present

bound follows through elementary estimates. The large constants appearing in this theorem have a

1
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very strong dependence on those of theorem 1.2.1; unpublished results that Eric Gaudron and Gaél
Rémond have been kind enough to share with the author show that the statement can be improved

to
|GL(Z) : poo (Gal(R/K) | < 73 (IK : Q] - max {1, h(E), log[K : Q]})"
with the much better constants vy3 = exp (1.9 . 1010) and 4 = 12395, cf. remark 1.9.4.

As an easy corollary we also get:

Corollary 1.1.3. Let E/K be an elliptic curve that does not admit complex multiplication. There
exists a constant y(E/K) with the following property: for every x € Eios(K) (of order denoted
N(x)) the inequality

[K(2) : K] > v(E/K)N ()*

holds. We can take v(E/K) = (C [GLQ( )t poo (Gal( K/K))])_l, which can be explicitly

bounded thanks to the main theorem.

Remark 1.1.4. This corollary (with the same proof, but with a non-effective y(E/K)) follows directly
from the aforementioned theorem of Serre ([116, §4, Théoréme 3]). The exponent 2 for N(z) is best
possible, as is easily seen from the proof by taking N = ¢, a prime large enough that Gy = GL2(Zy).
It should also be pointed out that for a general (possibly CM) elliptic curve Masser ([67, p. 262])

proves an inequality of the form

, / - N(z)
[K(z) : K] > v (K)h(E) 3/2w7

where 7/(K) is an effectively computable (but non-explicit) constant that only depends on [K : Q].

We briefly sketch the proof strategy, highlighting differences and similarities between our approach
and that of [156]. By a technique due to Masser and Wiistholz (cf. [71], [72] and [68]), and which is
by now standard, it is possible to give a bound on the largest prime ¢ for which the representation
modulo / is not surjective; an argument of Serre then shows that (for £ > 5) this implies full ¢-adic
surjectivity. This eliminates all the primes larger than a computable bound (actually, of all those
that do not divide a quantity that can be bounded explicitly in terms of E). We then have to deal
with the case of non-surjective reduction, that is, with a finite number of ‘small’ primes.

In [156] these small primes are treated using two different techniques. All but a finite number of them
are dealt with by studying a family of Lie algebras attached to Gy; this analysis is greatly simplified
by the fact that the reduction modulo ¢ of Gy is not contained in a Borel subgroup of GLy(Fy), a
result depending on the hard theorem of Mazur on cyclic /-isogenies. The remaining primes belong
to an explicit list (again given by Mazur’s results), and are treated by an application of Faltings’
theorem to certain modular curves. This approach, however, has two important drawbacks. On the
one hand, effective results on cyclic isogenies do not seem — at present — to be available for arbitrary
number fields, so the use of Mazur’s theorem is a severe obstacle in generalizing this technique to
number fields larger than Q. On the other hand, and perhaps more importantly, the use of Faltings’
theorem is a major hindrance to effectivity, since making the result explicit for a given number field
K would require understanding the K-points of a very large number of modular curves, a task that

currently seems to be far beyond our reach.
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While we do not introduce any new ideas in the treatment of the large primes, relying by and
large on the methods of Masser-Wiistholz, we do put forward a different approach for the small
primes that allows us to bypass both the difficulties mentioned above. With respect to [156], the
price to pay to avoid the use of Mazur’s theorem is a more involved analysis of the Lie algebras
associated with subgroups of GL2(Zy), which is done here without using a congruence filtration, but
dealing instead with all the orders at the same time; this approach seems to be more natural, and
proves more suitable for generalization to arbitrary number fields. We also avoid the use of Faltings’
theorem entirely. This too comes at a cost, namely replacing uniform bounds with functions of the
Faltings height of the elliptic curve, but it has the advantage of giving a completely explicit result,
which does not depend on the (potentially very complicated) arithmetic of the K-rational points

on the modular curves.

The organization of the present chapter reflects the steps alluded to above: in section 1.2 we recall
an explicit form of the isogeny theorem (as proved by Gaudron and Rémond in [28] building on the
work of Masser and Wiistholz) and an idea of Masser that will help improve many of the subsequent
estimates by replacing an inequality with a divisibility condition. In sections 3 through 6 we prove
the necessary results on the relation between Lie algebras and closed subgroups of GLa(Zy); the
main technical tool we use to show that the Galois image is large is the following theorem, which
is proved in sections 1.4 (for odd ¢) and 1.5 (for ¢ = 2):

Theorem 1.1.5. Let ¢ be an odd prime (resp. £ = 2). For every closed subgroup G of GLa(Zy)
(resp. every closed subgroup whose reduction modulo 2 is trivial if £ = 2) define L(G) to be the
Zy-span of {g — @ -Id ‘ ge G}.

Let H be a closed subgroup of GLa(Z¢). There is a closed subgroup Hi of H, of index at most 24
(resp. with trivial reduction modulo 2 and of index at most 192 for ¢ = 2), such that the following

implication holds for all positive integers s: if L(Hy) contains (°sly(Zy), then Hy itself contains

By(4s) = {g € SLa(Z¢) | g=1d  (mod 548)} (resp. Ba(6s) for £ =2).

The methods of these sections are then applied in section 1.7 to get bounds valid for every prime £
(cf. theorem 1.7.5, which might have some independent interest), while section 1.8 deals with the
large primes through the aforementioned ideas of Masser and Wiistholz. Finally, in section 1.9 we

put it all together to get the adelic estimate.

1.2 Preliminaries on isogeny bounds

The main tool that makes all the effective estimates possible is a very explicit isogeny-type theorem
taken from [28], which builds on the seminal work of Masser and Wiistholz (cf. [70] and [72]). To
state it we will need some notation: we let a(g) = 2'%> and define, for any abelian variety A/K of

dimension g,

b([K . QLQ, h(A)) = ((149)6492 [K : Q] max (h(A),log[K : (@]7 1)2)“(9)

Theorem 1.2.1. (/28] Théoréme 1.4; cf. also the section ‘Cas elliptique’ ) Let K be a number field

and A, A* be two abelian K -varieties of dimension g. If A, A* are isogenous over K, then there
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exists a K-isogeny A* — A whose degree is bounded by b([K : Q],dim(A), h(A)). If E is an elliptic
curve without complex multiplication over K, then the same holds with b([K : Q],dim(A), h(A))
replaced by

108K : Q] max (h(E),log[K : Q],1)*.

Remark 1.2.2. As the notation suggests, the three arguments of b will always be the degree of a
number field K, the dimension g of an abelian variety A/K and its stable Faltings height h(A).

Remark 1.2.3. Unpublished results of Gaudron and Rémond show that if A is the N-th power of
an elliptic curve E/K and A* is K-isogenous to A, then a K-isogeny A* — A exists whose degree
does not exceed 1013V [K : Q2N max (h(E),log[K : Q],1)*.

The following theorem follows easily from the arguments in Masser’s paper [68]; however, since it is

never stated explicitly in the form we need, in the interest of completeness we include a short proof.

Theorem 1.2.4. (Masser) Suppose that A/K is an abelian variety that is isomorphic over K to
a product AT' x ... x ASr

on . where Ay,..., Ay are simple over K, mutually non-isogenous over K,

and have trivial endomorphism ring over K. Let b € R be a constant with the following property:
for every K-abelian variety A* isogenous to A over K there exists an isogeny ¢ : A* — A with
degvyp < b. Then there exists an integer by < b with the following property: for every K-abelian
variety A* isogenous to A over K there exists an isogeny g : A* — A with deg vy ‘ bo.-

Proof. We take the notation of [68], which we briefly recall. Let m be a positive integer and G
be a Gal(K/K)-submodule of A[m]. For every K-endomorphism 7 of A we denote by ker,, 7 the

intersection ker 7 N A[m]; we also define
fm(G) := min [ker,,, 7 : G],

where the minimum is taken over all 7 in Endg(A) with G C ker,, 7. By [68, Lemma 3.3] we
have f,,(G) < b for every positive integer m and every Galois submodule G of A[m]. We set
bo := max,, ¢ fm(G), where the maximum is taken over all positive integers m and all Galois
submodules G of A[m]: clearly we have by < b. Now if A* is a K-abelian variety that is K-
isogenous to A over K, then by [68, Lemma 4.1] there exists a K-isogeny ¢ : A* — A such that
deg v ’ bo, and this establishes the theorem. Notice that in order to apply [68, Lemma 4.1] we need
i(Endg(A)) =1 (in the notation of [68]), which can be deduced as in [68, p. 185, proof of Theorem
2. O

We will denote by by(K, A) the minimal by with the property of the above theorem; in particular
bo(K,A) < b([K : Q],h(A),dim(A)). Consider now by(K’, A) as K’ ranges over the finite exten-
sions of K of degree bounded by d. On one hand, by(K, A) divides by(K’, A); on the other hand
bo(K', A) < b(d[K : Q],h(A),dim(A)) stays bounded, and therefore the number

. — /
bO(K’ A, d) - [KlCII(I]lSdbO(K 7A)

is finite. The function by(K, A;d) is studied in [68], Theorem D, mostly through the following

elementary lemma:
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Lemma 1.2.5. ([68, Lemma 7.1]) Let X,Y > 1 be real numbers and B be a family of natural
numbers. Suppose that for every positive integer t and every subset A of B with |A| =t we have
lem(A) < XY?. The least common multiple of the elements of B is then finite, and does not exceed
4¢Y X 1+108(C) " yhere e = exp(1).

By adapting Masser’s argument to the function b(d[K : Q],h(A),dim(A)) at our disposal it is

immediate to prove:

Proposition 1.2.6. If A is of dimension g > 1 and satisfies the hypotheses of the previous theorem,
then

bQ(K, A; d) < 4exp(1).(d(1+logd)2)a(9)b([K : Q],dim(A),h(A))1+a(g)(log(d)+2log(1+10gd))'

If E is an elliptic curve without complex multiplication over K, then the number bo(K, E;d) is
bounded by

1+2log d+2log(1+log d)
4P 1oz (1013 Q}Qmax(h(E),log[K:Q],12) seTTEETEe

Proof. We can clearly assume d > 2. We apply the lemma to B = {by(K’, A)}[K’:K}gd- Choose t
elements of B, corresponding to extensions K1, ..., K; of K, and set L = K7 --- K;. We claim that

max {log(d'[K : Q]),1} < (1 + log(d))" max {1,log[K : Q]}.
Indeed the right hand side is clearly at least 1, so it suffices to show the inequality
log(d) + logK : Q] < (1 + log(d))" max {1, log[K : Q};
as log(d) > 0, we have (1 + log(d))* > 1+ tlog(d) by Bernoulli’s inequality, and the claim follows.
We thus see that lem(bo(K71, A),...,bo(K, A)) divides
bo(L, A) < b([L : Q],dim(A), h(A))
< b(d'[K : @, dim(4), h(4))

< (a1 +108?) ") b([K - O], dim(A), h(4)),
so we can apply the above lemma with
X = b([K : Q],dim(A), h(A)), ¥ = (d(1 + log d)?)*"?

to get the desired conclusion. The second statement is proved in the same way using the corres-

ponding improved bound for elliptic curves. O

Remark 1.2.7. We are only going to use the function by(K, A;d) for bounded values of d (in fact,
d < 24), so the essential feature of the previous proposition is to show that, under this constraint,
bo(K, A;d) is bounded by a polynomial in b([K : Q],dim(A), h(A)).

Also notice that, if A = E? is the square of an elliptic curve E/K, then using the improved version

of theorem 1.2.1 mentioned in remark 1.2.3 we get

1+4log d+4log(1+log d)
bO (K, Ez,d) < 4exp(1).d4(1+logd)4 ( 026[K @]4 max (h(E),lOg[K . QL 1)4) g g g

We record all these facts together as a theorem for later use:

Theorem 1.2.8. Suppose A/K is an abelian variety, isomorphic over K to a product of simple

abelian varieties, each having trivial endomorphism ring over K. There exists a positive integer
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bo(K, A), not exceeding b([K : Q],dim(A), h(A)), with the following property: if A* is isogenous to
A over K, then there exists an isogeny A* — A, defined over K, whose degree divides by(K, A).
Furthermore, for every fixed d the function

bo(K, A;d) = lemgr.g)<q bo(K', A)
exists and is bounded by a polynomial in b([K : Q],dim(A), h(A)).

1.3 Group theory for GLy(Z)

Let ¢ be any rational prime. The subject of the following four sections is the study of certain Lie
algebras associated with closed subgroups of GLo(Z,); the construction we present is inspired by
Pink’s paper [97], but we will have to extend his results in various directions: in particular, our
statements apply to GLa(Z,) (and not just to SLa(Zy)), to any ¢, including 2, and to arbitrary (not
necessarily pro-¢) subgroups. The present section contains a few necessary, although elementary,

preliminaries on congruence subgroups, and introduces the relevant objects and notations.

1.3.1 Congruence subgroups of SLy(Zy)
We aim to study the structure of the congruence subgroups of SLa(Zy), which we denote
By(n) = {z € SLa(Zy) |z =1d (mod (")} .

Notation. We let vy be the standard discrete valuation of Z; and set v = v4(2) (namely v = 0
1

if £ # 2 and v = 1 otherwise). We also let (i) denote the generalized binomial coefficient

1 k-1 1
> 1 1
(2) (2 — z) and define v/1 + t to be the formal power series g ( )tk.
=0

_ 1 2
k k! 4 k
i= k>0

The first piece of information we need is the following description of a generating set for By(n):

Lemma 1.3.1. For n > 1 the group By(n) is generated by the elements

10 1 b 1 0
Lo — Ry = and D, = [ € X

for a, b, c ranging over £"Z,.

T X
Proof. Let x = < 1 12) be an element of By(n). Since z1; = 1 (mod ¢), it is in particular a
T21 T22
x
unit, so @ = — =2 has valuation ve(a) = vyg(xe1) > m, ie. a € £"Zy. Next we compute
11
x x
Lo — ™ 12 :
0 azxio+ 22
x
we are thus reduced to the case 97 = 0. Under this hypothesis, and choosing b = —E, it is easily

11
seen that xRy € By(n) is diagonal, and since every diagonal matrix in By(n) is by definition of the

form D, for some ¢ € {"Z; we are done. ]
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We will also need a description of the derived subgroup of By(n); in order to prove the relevant
result, we first need a simple-minded lemma on valuations that will actually come in handy in many

instances:

Lemma 1.3.2. Let x € Zy. We have:

1
1. For £ =2 and vo(x) > 3 the series \/1+x = Z (;) z* converges to the only solution \ of
k>0
the equation \> = 1+x that satisfies A = 1 (mod 4). The inequality va(v/1+ x—1) > va(x)—1

holds.

1
2. For 0 # 2 and vy(x) > 0 the series /1 +x = Z <]2€> z* converges to the only solution \ of
k>0
the equation \? = 1+ x that satisfies X\ = 1 (mod ¢). The equality v,(v/1+x — 1) = vy(x)

holds.

Proof. For { = 2 we have

o ((i)) . ((1/2)(—1/2)..]%(!—(% - 3)/2)) (k) > 2%,

while for any other prime

v ((i)) - <Iﬁ(2¢ - 1)) (k) > (k) > —K_le.

=1

Convergence of the series is then immediate in both cases, and the identity of power series
2

Z(i)t’“ =1+t

k>0
1

implies that, for every z such that the series converges, Zkzo (lf;)mk is indeed a solution to the
equation \2 =1+ z.

1
Let now ¢ = 2. Note that in the series expansion v1+z—1=>,-, <Z> z¥ all the terms, except

perhaps the first one, have valuation at least
(va(x) —2) -2 > vo(x) — 1;

as for the first term, it is simply 7, so it has exact valuation v3(x) — 1 and we are done; a similar
argument works for ¢ # 2, except now vy (%) = vg(z). The congruence /14 z =1 (mod 4) (resp.

modulo ¢) now follows. O

Lemma 1.3.3. Forn > 1 the derived subgroup of By(n) contains By(2n + 2v).

1 b
Proof. Take Ry, = <0 1> with b= 0 (mod £2"*+2¥) and set 3 = ¢". By the above lemma 1 +% has

a square root y congruent to 1 modulo ¢ that automatically satisfies y =1 (mod £"), so

M:(y O>and]\7:<1 ﬁ)
0 0 1

< =
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both belong to By(n). It is immediate to compute

MNM - IN-! = 1 5(1/2—1) _ 1 b
0 1 0 1)’

so Ry is an element of By(n)’. Similar identities also show that, for every a = 0 (mod 22""2V), the

0
derived subgroup By(n)’ contains = Lo. To finish the proof (using lemma 1.3.1) we now
a

just need to show that By(n)’ contains D, for every ¢ = 0 (mod ¢£2**2?). This is done through an

p
c+1

identity similar to the above, namely we set

M—( e ? )andN—(

—C

BvV14c V1+e

™o

1 0
and compute that MNMIN~! = ( ;rc 1 > = D.. The only thing left to check is that M
T+e
and N actually belong to By(n), which is easily done by observing that v/1+ ¢ =1 (mod ¢") by

the series expansion and that vy ) >2n+2v—n > n. O

—c
BV1+ec
To conclude this paragraph we describe a finite set of generators for the congruence subgroups of
SLQ (Zg)i
10
Lemma 1.3.4. Let a,u € Zo and L, = nE Let G be a closed subgroup of SLo(Z2). If L, € G,
a
1

then G also contains Lq,, =
au

0 1 b
1). Similarly, if G contains Ry = (0 1), then it also contains

1

1 0
Ry for every w € Zo. Finally, if c = 0 (mod 4) and G contains D, = e ), then G
T+c

contains D, for every u € Zs.
Let s be an integer no less than 2. If a,b,c € 4Zy are such that max {va(a),v2(b),v2(c)} < s, and if
G contains Lq, Ry and D, then G contains Ba(s).

Proof. We show that the set W consisting of the w in Zs such that Lg, belongs to G is a closed

subgroup of Zg containing 1. Indeed, Law, Law, = Lq( y by an immediate direct calculation, so

w1+w2
in particular L} = L_,,; furthermore 1 € W by hypothesis, and if w,, is a sequence of elements
of W converging to w, then {Lgyy,, } € G converges to Lgy, and since G is closed Lyg,, itself belongs
to G, so w € W. It follows that W is closed and contains the integers, and since Z is dense in Zo
we get W = Zso as claimed. Given that u +— Ry, is a group morphism the same proof also works
for the family Rp,. The situation with the family D,, is slightly different, in that u — D, is not a
group morphism; however, if w € Zs, then we see that
(D) = ((1 P )
I+a®

is well-defined and belongs to G (indeed this is trivially true for w € Z, and then we just need argue
by continuity). As ¢ = 0 (mod 4) we also have the identity (1 + ¢)* = exp(wlog(1l + ¢)), since

all the involved power series converge: more precisely, for any + in 4Zs the series 2]0,11(_1)#1777



Chapter 1. Adelic bounds for elliptic curves 9

converges and defines log(1 + ), and since the inequality va(y/) — v2(j) > v2(7) holds for every

log(1+7)
log(1+c)

in Zs, so we can consider (1 4 ¢)" = exp(wlog(1l + ¢)) = exp(log(1 + v)) = 1 + v and therefore for

exists

j > 2 we have va(log(14+7)) = v2(v) > 2. Suppose now that va(y) > va(c): then w =

any such vy the matrix D, belongs to G. The last statement is now an immediate consequence of
lemma 1.3.1. O

1.3.2 Lie algebras attached to subgroups of GLy(Z;)

Our study of the groups Gy will go through suitable integral Lie algebras, for which we introduce

the following definition:

Definition 1.3.5. Let A be a commutative ring. A Lie algebra over A is a finitely presented
A-module M together with a bracket [-,] : M x M — M that is A-bilinear, antisymmetric and
satisfies the Jacobi identity. For any A, the module sly(A) = {M € Ms(A) | tr(M) =0} endowed
with the usual commutator is a Lie algebra over A. The same is true for gly(A), the set of all 2 x 2

matrices with coefficients in A.

We restrict our attention to the case A = Zy, and try to understand closed subgroups G of GLy(Zy)
by means of a surrogate of the usual Lie algebra construction. In order to do so, we introduce the

following definitions, inspired by those of [97]:
Definition 1.3.6. Let G be a closed subgroup of GLo(Zy); if £ = 2, suppose that the image of G
in GLg(F2) is trivial. We set
0: G — sla (Zy)
g = g-— %tr(g) -Id.
Note that this definition makes sense even for ¢ = 2, since by hypothesis the 2-adic valuation of the

trace of ¢ is at least 1.

Definition 1.3.7. The special Lie algebra of GG, denoted L(G) (or simply L if no confusion can
arise), is the closed subgroup of sla(Z,) topologically generated by ©(G). We further define C(G),
or simply C, as the closed subgroup of Z, topologically generated by all the traces tr(zy) for z,y
in L(G).

Remark 1.3.8. 1. L(G) is indeed a Lie algebra because of the identity
[0(2), 0(y)] = O(zy) — O(y).
2. If G is a subgroup of H then L(G) is contained in L(H).

3. C'is a Zy-module: indeed it is a Z-module, and the action of Z is continuous for the f-adic

topology, so it extends to an action of Z; since C' is closed. Therefore C' is an ideal of Z,.

The key importance of L(G), at least for odd ¢, lies in the following result:

Theorem 1.3.9. (/97, Theorem 3.3]) Let £ be an odd prime and G be a pro-¢ subgroup of SLa(Zy).
Set Ly = [L(G), L(G)] and

Hy = {.’L‘ € SLQ(Z() ‘ @(ZE) S Lg,tr(m) —2€ C(G)} .

Then Hy is the derived subgroup of G.
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On the other hand, for £ = 2 the property of © that will be crucial for our study of L is the following

approximate addition formula:

Lemma 1.3.10. (/97, Formula 1.3]) For every gi,g2 € GLa(Zy), if £ # 2 (respectively for every
gi,92 € {a: € GL2(Z2) ‘ tr(z) =0 (mod 2)}, for £ =2), the following identity holds:

2(0(g192) — O©(g91) — O(92)) = [O(g1),O(g2)] + (tr(g1) — 2) O(g2) + (tr(g2) — 2) O(g1).

In what follows we will often want to recover partial information on G from information about the
reduction of G modulo various powers of ¢. It is thus convenient to use the following notation:
Notation. We denote by G(¢") the image of the reduction map G — GLa(Z/¢"Z). We also let
be the projection map G — G(¥).

We now record a simple fact about modules over DVRs we will need later:

Lemma 1.3.11. Let A be a DVR, n a positive integer, M a subset of A™ and N = (M) the
submodule of A" generated by M. Denote by mp the projection A™ — A on the k-th component.
1<j<i<m C A with

the following property: if we define inductively t1 = x1 and t; = x; — X045t for i > 2, then

There exist a basis x1,...,xm of N consisting of elements of M and scalars (o4j)

7 (s — Xjcio4tj) = 0 for every 1 <k <1 <i<m. Thet; are again a basis of N.

Proof. We proceed by induction on n. The case n = 1 is easy: M is just a subset of A, and the claim

is that the ideal generated by M can also be generated by a single element of M, which is clear.

Consider now a subset M of A"t!. Let v be the discrete valuation of A; the set { v(m (z ’ reM }
consists of non-negative integers, therefore it admits a minimum k;. Take x1 to be any element of
m1(m)

M such that v(m(x1)) = k1. For every element m € M we can form f(m)=m — x1, which

7T1(I'1)

is again an element of A" since by definition of z; we have mi(x1) | m1(m). It is clear enough
that w1 (f(m)) = 0 for all m € M. Therefore f(M) is a subset of {0} & A", and it is also apparent
that the module generated by z; and f(M) is again N. Apply the induction hypothesis to f(M)
(thought of as a subset of A™). It yields a basis f(22),..., f(zm) of f(M), scalars (7ij)o<; i<
and a sequence ug = f(z2),u; = f(x;) — Z2§j<i Tijuj, such that 7 (f(x;) — Ya<jcimijuj) = 0 for
2 <k <l<i<m. Wealso have m(f(x;) — Yao<j«mijuj) = 0 if we view the u; as elements
of A"*1 Tt is now enough to show that, with this choice of the z;, it is possible to find scalars

05,1 < j <i < m, in such a way that ¢; = u; for ¢ > 2, and this we prove again by induction. By

.. m1(x2 m1(T2 .
definition uy = f(z2) = z9 — ¥$1, so we can take o917 = (w2) . Assuming we have proved the
] 1 (1‘1) T (xl)
result up to level ¢, then, we have
1 xz—l—l
Uit1 = f(zip1) — E Tijllj = Tig1 = E Tijtjs
2<j<itl 1(z1) 2<j<it1

T (Tit1)

T (331)
As for the last statement, observe that the matrix giving the transformation from the x; to the t;

and we simply need to take 0411 = and o0;; = T;j.

is unitriangular, hence invertible. O
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1.3.3 Subgroups of GLy(Z,),SLy(Z,), and their reduction modulo ¢

In view of the next sections it is convenient to recall some well-known facts about the subgroups of
GLy(Fy), starting with the following definition:

Definition 1.3.12. A subgroup J of GLy(F/) is said to be:

e split Cartan, if J is conjugated to the subgroup of diagonal matrices. In this case the order

of J is prime to £.

e nonsplit Cartan, if there exists a subalgebra A of Ms(F,) that is a field and such that

b
E) e GLQ(]FZ)}, where

a

J = A*. The order of J is prime to £, and J is conjugated to { (Z

€ is a fixed quadratic nonresidue.

e the normalizer of a split (resp. nonsplit) Cartan, if there exists a split (resp. nonsplit)
Cartan subgroup C such that J is the normalizer of C. The index [J : C] is 2, and ¢ does not
divide the order of J (unless ¢ = 2).

e Borel, if J is conjugated to the subgroup of upper-triangular matrices. In this case J has a

1 =
unique ¢-Sylow, consisting of the matrices of the form ) .

e exceptional, if the projective image P.J of J in PGLy(F,) is isomorphic to either Ay, Sy or
As, in which case the order of P.J is either 12, 24 or 60.

The above classes essentially exhaust all the subgroups of GLy(Fy). More precisely we have:

Theorem 1.3.13. (Dickson’s classification, cf. [116]) Let £ be a prime number and J be a subgroup
of GLa(Fy). Then we have:

e if ¢ divides the order of J, then either J contains SLa(IFy) or it is contained in a Borel subgroup;

e if ¢ does not divide the order of J, then J is contained in a (split or nonsplit) Cartan subgroup,

in the normalizer of one, or in an exceptional group.

As subgroups of SLa(Fy) are in particular subgroups of GLo(Fy), the above classification also covers
all subgroups of SLa(FFy). Cartan subgroups of SLa(F,) are cyclic (both in the split and nonsplit

case).

The next lemma can be proved by direct inspection of the group structure of A4, Sy and As, and

will help us quantify how far exceptional subgroups are from being abelian:

Lemma 1.3.14. The groups Ay and Sy have abelian subgroups of order N if and only if 1 < N < 4.
The group As has abelian subgroups of order N if and only if 1 < N <5.

The following lemma, due to Serre, will prove extremely useful in showing that Gy = GL2(Z) using

only information about the reduction of Gy modulo ¢:
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Lemma 1.3.15. Let £ > 5 be a prime and G be a closed subgroup of SLa(Zy). Suppose that the
image of G in SLa(Fy) is equal to SLa(Fy): then G = SLy(Zy). Similarly, if H is a closed subgroup
of GLa(Z¢) whose image in GLa(Fy) contains SLa(Fy), then H' = SLa(Zy).

Proof. The first statement is [119, IV-23, Lemma 3|. For the second, consider the closed subgroup
H' of SLy(Zy). Since by assumption we have ¢ > 3, the finite group SLy(F) is perfect, so the image
of H' in SLy(FFy) contains SLa(FFy)" = SLa(FFy). It then follows from the first part of the lemma that
H' = SLy(Zy) as claimed. O

The following definition will prove useful to translate statements about subgroups of SLa(Zy) into

analogous results for subgroups of GL2(Z/) and vice versa:

Definition 1.3.16. Let G be a closed subgroup of GLa(Z¢) (resp. GLa(Fy)). The saturation of
G, denoted Sat(G), is the group generated in GLga(Zy) (resp. GL3(F¢)) by G and Z; - Id (resp.
F, -1d). The group G is said to be saturated if G = Sat(G). We also denote by G9e*=1 the group
G N SLa(Zy) (resp. G N SLa(Fy)).

Lemma 1.3.17. The following hold:

1. For every closed subgroup G of GLa(Zy) the groups G and Sat(G) have the same derived

subgroup and the same special Lie algebra.

2. The two associations G +— G=1 and H ~ Sat(H) are mutually inverse bijections between
the sets

Gi turated
Gg= {G subgroup of GLo(Zy) 18 sarurated, }

det(g) is a square for every g in G
and
H = {H subgroup of SLa(Z) | —1d € H}.

For every G in G the groups G and GI°*=' have the same derived subgroup and the same

special Lie algebra.

3. The map G — Sat(G) commutes with reducing modulo ¢, i.e.
(Sat(@)) (£) = Sat(G(¥)).
If ¢ is odd and G is saturated we also have G(£)=1 = Gdet=1(y).

Proof. 1. The statement is obvious for the derived subgroup. As for the special Lie algebra, let A\g
be any element of Sat(G), where A € Z, and g € G. As L(G) is a Zy-module, O(Ag) = AO(g)
belongs to L(G), hence L(Sat(G)) C L(G). The other inclusion is trivial.

2. The first statement is immediate to check since the determinant of any homothety is a square;
the other follows by writing G' = Sat(H) and applying (1) to (Sat(H))%*=! = H and Sat(H).

3. This is clear for the saturation. For G + G9°=! note that G(£)4*=1 contains G4°=1(¢),
so we need to show the opposite inclusion. Take any matrix [g] in G(£)¢*=!. By definition

[g] is the reduction of a certain ¢ € G whose determinant is 1 modulo ¢. As ¢ is odd and
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det(g) is congruent to 1 modulo £ we can apply lemma 1.3.2 and write det(g) = A2, where
A = /1+ (det(g) — 1) is congruent to 1 modulo ¢. As G is saturated, it contains A~'1d,

hence also A~!g, whose determinant is 1 by construction. Furthermore, as A = 1 (mod ¢),

the two matrices A~'g and g are congruent modulo ¢. We have thus found an element of G
of determinant 1 that maps to [g], so GI*=! — G (£)4*=1 is surjective.
O

Finally, since we will be mainly concerned with the pro-£ part of our groups, we will find it useful

to give this object a name:

Notation. If G is a closed subgroup of SLy(Z;) we write N(G) for its maximal normal subgroup
that is a pro-¢ group.
The following lemma shows that N(G) is well-defined and gives a description of it:

Lemma 1.3.18. Let G be a closed subgroup of SLo(Zg) and w: G — G(¢) the projection modulo £:

then G admits a unique maximal normal pro-f subgroup N(G), which can be described as follows.

1. If G(¢) is of order prime to {, then N(G) =kerm and G({) = N(GC;)

2. If the order of G(¢) is divisible by ¢, and furthermore G({) is contained in a Borel subgroup,
then N(G) is the inverse image in G of the unique £-Sylow S of G(¥).

3. If G(¢) is all of SLa(Fy), then N(G) = ker and G(¢) = N(GG)
Proof. Let N be a pro-¢ normal subgroup of G. The image 7w(N) is a normal pro-¢ subgroup of
G(0), hence it is trivial in cases (1) and (3) and it is either trivial or the unique ¢-Sylow of G(¢) in
case (2). In cases (1) and (3) it follows that N C ker, and since ker 7 is pro-{ we see that kerm
is the unique maximal normal pro-¢ subgroup of G. In case (2), let S be the unique ¢-Sylow of
G(0). Tt is clear that N is contained in 7~!(S), which on the other hand is pro-¢ and normal in G.

Indeed, by choosing an appropriate (triangular) basis for G(¢) we can define

G — G(0) — Fj

a b
g ~  a,
(0 1/@)

whose kernel is exactly 7= 1(S). O

1.4 Recovering G from L(G), when ¢ is odd

Our purpose in this section (for ¢ # 2) and the next (for ¢ = 2) is to prove results that yield
information on G from analogous information on L(G). The statements we are aiming for are the

following;:

Theorem 1.4.1. Let £ be an odd prime and G a closed subgroup of SLa(Zy).

1. Suppose that G({) is contained in a Cartan or Borel subgroup, and that |G/N(G)| # 4. Then

the following implication holds for all positive integers s:
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(*) if L(G) contains ¢°sl(Zy), then L(N(G)) contains (**sly(Zy).

2. Without any assumption on G, there is a closed subgroup H of G that satisfies [G : H] < 12
and the conditions in (1) (so H has property (*)).

Theorem 1.4.2. Let ¢ be an odd prime, and G a closed subgroup of GLia(Zy).
1. Suppose that G satisfies the two conditions:

(a) det(g) is a square in Z; for every g € G;
(b) Sat(G)4et=1 satisfies the hypotheses of theorem 1.4.1 (1).

Then the following implication holds for all positive integers s:
(xx) if L(G) contains €°sly(Zy), then G' contains By(4s).

2. Without any assumption on G, either G' = SLa(Zy) or there is a closed subgroup H of G that
satisfies both |G : H| < 24 and the conditions in (1) (so H has property (%x)).

Remark 1.4.3. Condition (b) can be made more explicit using the description of the maximal
normal pro-¢ subgroup given in lemma 1.3.18. The conditions on G can translated into conditions
on (Sat(G))%*=1(¢): this group should be cyclic or have order divisible by ¢ and be contained in
a Borel subgroup of GLa(FF,). In the first case we require |(Sat(G))4*=1(¢)| # 4; in the second
case we need [Sat(G)¥=1(¢)/S| # 4, where S is the unique (-Sylow of Sat(G)*=!(¢). With this
description, it is clear that condition (b) is true if Sat(G)¢*=1(¢) contained in a Borel or Cartan

subgroup and has order not divisible by 4.

Let us remark that the statements numbered (2) in the above theorems require a case by case
analysis, which will be carried out in section 1.4.6 for theorem 1.4.2 (the proof of theorem 1.4.1 (2)
is perfectly analogous). In the same section we will also show that part (1) of theorem 1.4.2 can be
reduced to the corresponding statement in theorem 1.4.1, so the core of the problem lies in proving
the result for SLo(Zy). Before delving into the details of the proof (that involves a certain amount
of calculations) we describe the general idea, which is on the contrary quite simple. The following
paragraph should only be considered as outlining the main ideas, without any pretense of formality.
If G is as in theorem 1.4.1 (1), then G/N(G) is cyclic, and we can fix a generator [g] € G/N(G)
that lifts to a certain ¢ € G. Denote by ¢ the operator z + g 'zg: then ¢ acts on G and,
since it fixes Id, also on L(G). Furthermore it preserves L(N(G)) C L(G) by normality of N(G)
in G, and obviously it fixes O(g). If we were working over Q, instead of Z;, we would have a
decomposition L(G) = (O(g)) & M, where M is a p-stable subspace of dimension 2, and the
projection operator p : L(G) — M could be expressed as a polynomial in ¢. We would also expect
M to consist of elements coming from N(G), because (O(g)) is simply the special Lie algebra of
(g); this would provide us with many nontrivial elements in L(N(G)). We would finally deduce
the equality L(N(G)) = sl2(Qp) by exploiting the fact that L(N(G)) is a Lie algebra of dimension

at least 2 that is also stable under ¢. This point of view also suggests that we cannot expect the
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theorem to hold when G(¢) is exceptional: if G/N(G) is a simple group, then we expect the special
Lie algebra of G not to be solvable, and since the only non-solvable subalgebra of sly(Qy) is sl2(Qy)
itself, L(G) should be very large even if N(G) is very small.

In what follows we prove (1) of theorem 1.4.1 first when |G/N(G)| = 2 and then in case G(¢) is
respectively contained in a split Cartan, Borel, or nonsplit Cartan subgroup; we then discuss the
optimality of the statement, showing through examples that it cannot be extended to the exceptional
case and that ¢2° cannot be replaced by anything smaller. Finally, in section 1.4.6 we finish the

proof of theorem 1.4.2.

Notation. For x € L(G) we set m;;(x) = x;;, the coeflicient in the i-th row and j-th column of the

matrix representation of x in sly(Z¢). The maps m;; are obviously linear and continuous.

1.4.1 The case |G/N(G)| =2

Suppose first that G(¢) is contained in a Cartan subgroup, so that G/N(G) = G(¢). The only
nontrivial element x in G(¢) satisfies the relations 22 = Id and det(x) = 1, so it must be —Id. It
follows that G contains an element g of the form —Id +¢A for a certain A € My(Z;). Considering

the sequence
g"" = (—1d+A)" = —1d+O (")

and given that G is closed we see that —Id is in G. Next observe that for every h € G either h
or —h belongs to N(G). If g1, g2, g3 are elements of G such that ©(g;1),0(g2),O(g3) is a basis for
L(G), then on the one hand for each i either g; or —g; belongs to N(G), and on the other hand
©(—gi) = —6(g:), so L(G) = L(N(G)) and the claim follows.

Next suppose G(¢) is contained in a Borel subgroup. We can assume that the order of G(¢) is
divisible by ¢, for otherwise G(¢) is cyclic and we are back in the previous case. The canonical
projection G — G/N(G) factors as

G — G(¢) — F[
a b
g = a,
(0 1/a>
b

-1
so if G/N(G) has order 2 we can find in G(¢) an element of the form 0 1) . Taking the ¢-th

power of this element shows that G(¢) contains — Id and we conclude as above.

1.4.2 The split Cartan case

Suppose that G(¢) is contained in a split Cartan, so that, by choosing a suitable basis, we can
assume that G(¢) is contained in the subgroup of diagonal matrices of SLo(F/). Fix an element
g € G such that [g] € G({) is a generator. By assumption the order of [g] is not 4, and by the
previous paragraph we can assume it is not 2; furthermore it is not divisible by ¢. The minimal
polynomial of [g] is then separable, and [g] has two distinct eigenvalues in F/*. It follows that g can

be diagonalized over Z; (its characteristic polynomial splits by Hensel’s lemma), and we can choose

0
a basis in which g = <g Va) where a is an f-adic unit. Note that our assumption that |G(¢)]
a
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does not divide 4 implies in particular that a* #Z 1 (mod £). A fortiori ¢ does not divide a® — 1, so

a’—1

0
the diagonal coefficients of O(g) = 25 W21
T 2a

) are f-adic units. The following lemma allows
us to choose a basis of L(G) containing ©(g):

Lemma 1.4.4. Suppose g € G is such that ©(g) is not zero modulo £. The algebra L(G) admits a
basis of the form ©(g),0(g2),0(g3), where g2, g3 are in G.

Proof. Recall that L(G) is of rank 3 since it contains ¢*sly(Z,). Start by choosing g1, 92,93 € G
such that ©(g1),0(g2),0(gs3) is a basis for L(G). As O(g) is not zero modulo ¢, from an equality

of the form
3
O(g) = > XiO(g:)
i=1
we deduce that at least one of the A; is an f-adic unit, and we can assume without loss of generality
that it is A;. But then
O(g1) = A7 (B(g) — A20(g2) — A30(g3)) ,

and we can replace g; with g. O

Recall that we denote by ¢ the endomorphism of sly(Z) given by z + g~ 'xg. We now prove that
L(N(G)) is p-stable and, more generally, describe the p-stable subalgebras of sls(Zy).

Lemma 1.4.5. Let ¢ be an odd prime, G a closed subgroup of GLa(Z¢), N a normal closed subgroup
of G and g an element of G. The special Lie algebra L(N) is stable under ¢.

Proof. As ©(N) generates L(N) it is enough to prove that ¢ stabilizes O(N). Let x = ©(n) for a

certain n € N: then

_ _ tr(n _ tr g_lng _
g lrg=g"" (n—é)ld>g=g 1719—(2)10129(9 ‘ng),
and this last element is in ©(NN) since N is normal in G. O

Lemma 1.4.6. Let s be a non-negative integer. Let L be a @-stable Lie subalgebra of slao(Zg) and
11, T12, T21, Y11, Y12, Y21 be elements of Zy with ve(x21) < s and ve(y12) < s. If L contains both
Tl T12

l = and ly = v e , then it contains all of (**sly(Zy).
r21 —T11 Y21 —Yu

Proof. Consider first the case x12 = y21 = 0. We compute

11 0
e(lh) = ( ) > :
a~r21 —I11

z 0 0 0

so L contains | 1 -l = ) , where by our hypothesis on a the valuation
a“~ro1 —I11 (CL - 1)56‘21 0

(a® = Dy

of the bottom-left coefficient is at most s. Analogously, L contains 0

) , and since it

is a Lie algebra it also contains the commutator

[(0 (a2 - 1)y12) < 0 0)] _ <(a2 - 1)230213/12 0 )
0 0 "\(a2 =Dz 0 0 —(a® = 1)%ay12)
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whose diagonal coefficients have valuation at most 2s. This establishes the lemma in case x12 and
yo1 are both zero, since the three elements we have found generate £23sl5(7Z;). The general case is
then reduced to the previous one by replacing [y, lo with

a*o(ly) — Iy = ((a2 ~ Yz 0 >

(a4 — 1).1‘21 —(a2 — 1):611
and a~2p(l3) — I3, and noticing that since by assumption £ { a* — 1 we have vy((a* —1)x21) = vo(221)
and ve((a™* — 1)y12) = ve(y12)- O

We know from lemma 1.4.5 that L(N(G)) is ¢-stable, so in order to apply lemma 1.4.6 to L(N(G))
we just need to find two elements l1,ls in L(N(G)) with the property that v, o ma1(l1) < s and
vg o m2(l2) < s. Since the values of the diagonal coefficients do not matter for the application of
this lemma we will simply write x for any diagonal coefficient appearing from now on. In particular

we write g2, g3, 0(g2), ©(g3) in coordinates as follows:

(@) (%)
* g * g
9i = ( () 12) a@(gi) = ( (@) 12) .
go1 ¥ o1 ¥

As [g] generates G(¢), for i = 2,3 there exist k; € N such that [g;] = [g]*, or equivalently such that
g %ig;i € N(G). Since O(g),0(g2),O(g3) generate £*sl5(Z;), but the off-diagonal coefficients of ©(g)
vanish, we can choose two indices i1, 72 € {2, 3} such that vpoms;(©(g;,)) < s and vom12(0(gs,)) < s.
On the other hand, L(N(G)) contains

—ki ) « a=Fi g
O(qFi ) =0 a A 1 _ ‘ 12 ’
(97"9i) << 0 aki él) * akigéll) *

+ki i an f-adic unit. The f-adic valuation of the off-diagonal coefficients of ©(g~*ig;) is then

where a
the same as that of the corresponding coefficients of ©(g;), and we find two elements I; = O (g %1 g;)
and Iy = ©(g 2 g;,) that satisfy v o a1 (l1) < s and vy omia(la) < s as required. We can now apply
lemma 1.4.6 with (L,g,l1,l2) = (L(N(G)),q,0(¢gi,),0(gi,)) and deduce that L(N(G)) contains
(%3515(Zy), as claimed.

1.4.3 The Borel case

Suppose G(¥) is included in a Borel subgroup. If the order of G(¥) is prime to ¢, then G(¢) is in fact
contained in a split Cartan subgroup, and we are reduced to the previous case. We can therefore
assume without loss of generality that the order of G(¢) is divisible by £. In this case we know that
N(G) is the inverse image in G of the unique ¢-Sylow of G(¢), and that the canonical projection
G — G/N(QG) factors as

G — G(0) — FJ

a b
g = a.
(0 1/a>

Let H be the image of this map. The group H is cyclic and we can assume that its order does not
divide 4: it is not 4 by hypothesis and if it is 1 or 2 we are done. Let g be any inverse image in G
of a generator of H. The matrix representing g can be diagonalized over Z; since the characteristic

polynomial of [g] € G(¥) is separable, and the same exact argument as in the previous paragraph
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shows that we can choose a basis of L(G) of the form ©(g), ©(g2),©(g3). By definition of H we see
that for i = 2,3 there is an integer k; such that [g;] = [¢]* in G/N(G), and the rest of the proof is

identical to that of the previous paragraph.

1.4.4 The nonsplit Cartan case

Suppose now that G(¢) is contained in a nonsplit Cartan subgroup. Fix a g € G such that [g]
[a]  [be]
o] la]

modulo £. In order to put g into a standard form we need the following elementary lemma, which

generates G(¢). We know that [g] is of the form (

) , where [¢] is a fixed quadratic nonresidue

is an {-adic analogue of the Jordan canonical form over the reals.

Lemma 1.4.7. Up to a choice of basis of Z%, the matrixz representing g can be chosen to be of the

b
form (Z 6) for certain a,b, e lifting [a], [b], [e], and where moreover a,b are (-adic units.
a

Proof. The characteristic polynomial of [g] splits over Fy [ [5]], so by Hensel’s lemma the char-
acteristic polynomial of g splits over Zy [\/g]. The two eigenvalues of ¢ in Z;[/¢] are of the form
a + by/e for certain a,b € Z; (the notation is coherent: since the eigenvalues of [g] are simply the
projections of the eigenvalues of g, the elements a,b map to [a], [b] modulo ¢, respectively).

By definition of eigenvalue we can find a vector vy € Zy[y/€]? such that gvy = (a + by/E)v.
Normalize v in such a way that at least one of its coordinates is an ¢f-adic unit, write v, = w+z./e

for certain w,z € Z? and set v_ = w — z,/e. As g has its coefficients in Z,, the vector v_ is an

2
eigenvector for g, associated with the eigenvalue a —b+/z. The projections of v in (]Fg [ [s]]) are

therefore nonzero eigenvectors of [g] corresponding to different eigenvalues, hence they are linearly

vitv_ 7 — Vi—V_
2 2/

w,z lie in Z? they are a fortiori independent modulo ¢. The matrix (z | w) is then invertible modulo

independent. It follows that w = are independent modulo ¢Z[y/¢], and since

¢, so it lies in GL2(Zy) and can be used as base-change matrix. It is now straightforward to check

a be
that in this basis the element g is represented by the matrix . Finally notice that a and b
a

are units: if [b] = 0 or [a] = 0 it is easy to check that the order of G(¢) divides 4, contradicting the

assumptions. ]
We can also assume that G contains — Id, since replacing G with G- {4 1d} alters neither the derived

subgroup nor the special Lie algebra of G. By lemma 1.4.4 the algebra L(G) admits a basis of the
form O(g),0(g2),O(g3), where g is as above and g2, g3 are in G. We write in coordinates

Y11—Y22
Y11 Y12 3 Y12
g2 = 7@(92) = _ )
<y21 y22> ya -G

211 —Z
_ (A om2) gy Aoz 212
93 = ,O(g3) = z11—222 | °
Zo1 222 zgp M2
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1.4.4.1 Projection operators, p-stable subalgebras

Recall that ¢ denotes  — ¢ 'zg. Following our general strategy we now describe projection

operators associated with the action of ¢ and ¢-stable subalgebras of sly(Zy).

—F —cF
Lemma 1.4.8. Let E,F € Zy. If the matriz ( 5 ; ) belongs to L(N(G)), then L(N(QG))

—F 0 -F 0 0 —eF 0 —eF
, , , and .
R e e IR P

Proof. We know from lemma 1.4.5 that L(N(G)) is ¢-stable, so the identity

%ab <<,0< —EF —;E ) B (a2+526) ( —EF —;E )) _ ( —;E —;EF ) (1.1)

—eFE —¢F
shows that ; gE is in L(N(G)). At least one of F//E and E/F is an ¢-adic integer,
£

and we can assume it is F//E (the other case being perfectly analogous). In particular we have
ve(F') > ve(E). It follows that L(N(G)) contains

F (-F —¢E —cE —eF\ (£ 0
E\E F F e ) 0o P
If v (F) > vo(E) we have vy(e E? — F?) = 2vy(E), while if vy(F) = v(F) we can write
F =B B = gueE),

also contains

where ¢,~ are not zero modulo ¢. In this second case we have e E? — F2 = (2v(E) (572 — CQ), and
(e7* — ¢?) does not vanish modulo ¢ since [¢] is not a square in ). Hence vy(e E* — F?) = 2v,(E)
holds in any case, and (due to the denominator E) we have found in L(N(G)) a matrix whose
off-diagonal coefficients vanish and whose diagonal coefficients have the same valuation as E. By
the stability of L(N(G)) under multiplication by ¢-adic units we have thus proved that L(N(G))

0
contains A Identity (1.1) applied to this element shows that L(N(G)) also contains

0 —eF —-F 0
( 5 (g] >, hence by difference ( 0 F) is in L(N(G)) as well. Applying equation (1.1) to

0 —eF
this last matrix we finally deduce that L(N(G)) also contains <F (E) ) : O

—F —¢F
Lemma 1.4.9. Let E, F be elements of Zy satisfying min {vy(F),v(E)} < s. If ( 5 ; >

belongs to L(N(G)), then L(N(G)) contains (**sly(Zy).

Proof. Suppose vy(F) < s, the other case being similar. The special Lie algebra L(N(G)) con-

) -F 0 0 —eF ) ) ) ,
tains , by the previous lemma, so (given that ve(F') < s) it also contains

F F

1 0 0 —
I (0 1) , £° (1 (j) . Taking the commutator of these two elements yields another element of
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/8 0 —¢ s 1 0 _ e 0 2e¢ '

1 0 0 -1 2 0
1€28 0 2 - 0 —¢ _ s 0 0 ,
2 2 0 10 2 0

it is immediately checked that L(N(G)) contains a basis of £*%sl3(Z;) as desired. O

L(N(G)), namely

Finally, since

1.4.4.2 The case when g9,93 ¢ N(G).

Let us assume for now that ¢; ¢ N(G) and —g; € N(G) for i = 2,3. We will deal later with the
case when some of these elements already belong to N(G). Given that by hypothesis L(G) contains

03sl9(Zy) we must have a representation

4 (O _1> —;Aze(gz)

for certain scalars \1, A2, A3 € Z,;. However, the diagonal coefficients of ©(g) vanish, therefore there
exists an index ¢ € {2,3} such that v; o m11(0(¢;)) < s. Renumbering g2, g3 if necessary we can

assume 7 = 2. In coordinates, the condition vy o 711(0(g2)) < s becomes vy(y11 — y22) < s.

Now since [g] generates G(£) there is an integer k such that [g] =%

= [g2] in G(¢); in other words,
both gog* and gFgy are trivial modulo ¢ and therefore belong to N(G). It is immediate to check

c

d
that the matrix ¢* is of the form 8) for certain ¢,d € Zy. Now if d is 0 modulo ¢, then

c
(since ¢ —ed? =1 (mod /)) we have ¢ = +1 (mod /), so either go or —go reduces to the identity

modulo ¢ and is therefore in N(G), contradicting our assumption. Hence d is an ¢-adic unit. We

c de Y11 Y12 Y11 Y12 c de
94 = y, g5 = .
d c Y21 Y22 Y21 Y22 d c

By construction g4 and g5 are elements of N(G), whence O(g4), O(gs5) are elements of L(N(G)). In

then introduce

particular L(NN(G)) contains their difference

©(g4) = O(g5) =94 — g5 = ( ~dlue —eyn) de(Zyn + uz) ) ,

d(yi1 —ye2)  d(y12 — ey21)
where (given that d, e are f-adic units) vy o m21(0(g4) — O(g5)) < s and vy o m2(O(g4) — O(g5)) < s.

Applying lemma 1.4.9 to the element ©(g4) — ©(g5) we have just constructed we therefore deduce
L(N(G)) D (?$515(Zy) as desired.

1.4.4.3 The case when one generator belongs to N(G).

x x
Let z = ( M 2 ) denote any element of sly(Zy). It is easy to check that
T21 —T11

1 T12 — €T 2ex11
— ((3+4 4eb?)(pz — x) — r—1x)) = ,
5 )z — z) = p(pz — x)) ( o w4 e )
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12 — ET21 261’11

and furthermore if x belongs to L(N(G)), then
—2z11 —zi2 +Exn

) is in L(N(Q)) as
well.

Suppose now that either g, or —gs (resp. gs or —g3) belongs to N(G). Since O(—g;) = —6O(g;) we

can assume that go (resp. g3) itself belongs to N(G). Take (a:n 12 ) 4 he O(2) (resp. O(gs)).
Tro1 —XT11
Subtracting @@(gl) from ©(go) we get (xgl T12 — €T21

b

> € L(G), and since we know that
—x11

- m21(O(g2))
b

m21(0(g3))

O(g2) b

O(g1), O(g3) — O(g1)

0

1 01
together span ¢° (O 1> @ 0 (0 O), we see that at least one among the coefficients of the

€]
matrix ©(g2) — 7m(l)(512))®(gl) = 0O(g2) — %@(91) must have valuation at most s, that is
— 2
min {vg(x11),v¢(x12 — ex21)} < s. We now apply lemma 1.4.9 to 12 T e s
—2r11 —T12 + €x21

which is in L(N(G)), to deduce L(N(G)) 2 ¢*$sl3(Zy), and we are done.

1.4.5 Optimality

The following examples show that it is neither possible to extend theorem 1.4.2 to the exceptional

case nor to improve the exponent 2s.

Proposition 1.4.10. Let ¢ be a prime = 1 (mod 4). For everyt > 1 there exists a closed subgroup
G of SLa(Zy) whose special Lie algebra is slo(Zg) and whose mazimal pro-€ subgroup is contained
in By(t).

Proof. Notice that the following six elements form a finite subgroup H of PSLy(Z]])

o) G G o) 65

and that H is isomorphic to S3: indeed, it is the group of permutations of {0,1,00} C P! (Z]i]).
The inverse image H of H in SLo(Z[i]) is therefore a finite group of cardinality 12. Now since
¢ = 1 (mod 4) there is a square root of —1 in Zy, so Z[i] < Z; and H < SLg(Z). Consider
G = H - By(t) C SLy(Z). It is clear that By(t) is normal in G. Since % is isomorphic to a
quotient of H (and therefore has order prime to ¢), the subgroup By(t) is clearly the maximal pro-¢

subgroup of G. Furthermore, the special Lie algebra of G contains the three elements

() G A )

that are readily checked to be a basis of sla(Zy). O

On the other hand, the following example shows that there exist subgroups of SLy(Z,) such that
L(G) contains ¢*sly(Z;), but L(N(G)) only contains ¢**sly(Z). Fix s > 1, an integer N > 4 and

a prime £ congruent to 1 modulo N; then Z? contains a primitive N-th root of unity a, and we
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0 0 1 00 1 0
let g = “ . The module M = ¢¢ SS¥A @ 03 is a Lie subalgebra of
0 1/a 00 10 0 -1

sla(Zy), so by Theorem 3.4 of [97]
H = {x € SLy(Z) | tr(z) =2 (mod (%), 0(z) € M}

is a pro-¢ group with special Lie algebra M. Let G be the group generated by g and H. Up to

1 0
units O(g) is 0 1), so L(G) contains all of ¢*sly(Z;). On the other hand, H is normal in G:

one simply needs to check that g~'Mg = M, and this is obvious from the equality

T
1 frn T2 oz R
g 9= 2 .
To1 —T11 a~r21 —IT11

Finally, H is maximal among the pro-¢ subgroups of G, since G/H is a quotient of (g) = Z/NZ,
hence of order prime to £. Therefore N(G) = H and L(N(G)) = L(H) = M contains £'sly(Z,) only
for t > 2s.

1.4.6 Proof of theorem 1.4.2

We now prove (1) of theorem 1.4.2 by reducing it to the corresponding statement in theorem 1.4.1.
As G and Sat(G) have the same special Lie algebra and derived subgroup we can assume G = Sat(G).
As G is saturated and satisfies the condition on the determinant, we know from lemma 1.3.17 that
G = Sat(H) for H = G'*=1. By the same lemma we also have L(H) = L(G) and G’ = H'. By
assumption H satisfies the hypotheses of theorem 1.4.1 (1), so H has property (x). As L(G) = L(H)
contains (*sly(Z) we deduce that Lo = L(N(H)) contains £2%sly(Zy), and since N(H) is a pro-f
group we can apply theorem 1.3.9 to it. In order to do so we need to estimate C(N(H)) = tr (Lo - Lo)
and [Lg, Lo]. Note that

(1 0 (1 0 s
C(N(H)) > tr (ﬁ (o _1> (2 <0 _1>> = 20%,

so given that ¢ is odd we have C(Lg) D (2¢*%) = (¢*%). Likewise,
(Lo, Lo) 2 [(**slo(Zy), (%515(Z)] = €¥¥515(Zy),
so the derived subgroup of N(H) (which is clearly included in H' = G') is
N(H) = {z € SLa(Zy) | tra =2 € C(N(H)),O(x) € [Lo, Lo} ,
and by the above it contains
{x € SLy(Zy) ’ trz =2 (mod ¢*),0(z)=0 (mod (45)} D By(4s),
which concludes the proof of (1).

We are now left with the task of proving (2). Consider first the map
7y Z

~Y

Z2 " 2L
and let G be its kernel: then [G : G1] < 2, so we can replace G with G and assume that the

condition on the determinant is satisfied. We are reduced to showing that, under this hypothesis,
either G' = SLg(Zy) or there exists a subgroup H of index at most 12 that satisfies the right

det

G=1Z; —
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conditions on Sat(H)4°*=!, For notational simplicity we let 7 denote the projection map G — G(¥).

We now distinguish cases according to ¢ and G(¢) (cf. theorem 1.3.13):

- if £ > 5 and G(¢) contains SLy(F), then it follows from lemma 1.3.15 that G’ = SLy(Zy).

- if £ = 3 we let S denote either a 3-Sylow of G(3), if the order of G(3) is a multiple of 3, or the trivial
group {Id}, if it is not. Notice that G(3) is a subgroup of {g € GLo(FF3) ‘ det(g) is a Square}, which
has order 24, so the index [G(3) : S] is at most 8. We set H = 7 1(S). It is clear that [G : H] <8,
and H satisfies the conditions in (1) by remark 1.4.3, because (Sat H)¢*=1(3) is either {£1d} or a
group of order 6.

- if G(¢) is exceptional, then by lemma 1.3.14 there exists a cyclic subgroup B of PG(¢) with
[PG(?) : B] < 12: such a B can be taken to have order 3 (resp. 5) if PG(¥) is isomorphic to Ay or
S4 (resp. to As). Fix a generator [b] of B and let £ be the composition G — G(¢) — PG(¢). We set
H := ¢71(B); it is clear that [G : H] < 12. Let now b € G(£) be an element that maps to [b] in B,
and let m be the (odd) order of [b]. We know that det b is a square in F;, hence there exists a A € F
such that det(Ab) = 1. Notice now that (Ab)" is a homothety (it projects to the trivial element
in PG(¢)) and has determinant 1, so it is either Id or —Id; replacing A by —X if necessary, we can
assume that (Ab)™ = —1Id. By construction, every element in (Sat(H)I*=1) (¢) = Sat(H (¢))4°*=!
can be written as £(Ab)” for some n € N and for some choice of sign. Now using the fact that
(Ab)™ = —1Id we see that (Sat(H)°*=1) (¢) is cyclic, generated by Ab: since the order of Ab is either
6 or 10, H satisfies the conditions in (1) by remark 1.4.3.

- if G(¥) is contained in a (split or nonsplit) Cartan subgroup then the same is true for the group
(Sat(G)4°=1) (€). If (Sat(G)*=1) (¢) does not have order 4 we are done, so suppose it does. Then

PG(¢) has at most 4 elements, and we can take
H =ker (G — G(¢) - PG(0)) :

this H has index at most 4 in G, and H(¢) has trivial image in PGLy(F,), so H(¢) is contained in
the homotheties subgroup of GLg(F,). Therefore (Sat(H))=1(¢) = Sat(H (¢))%*=! = {+1d} and
H satisfies the conditions in (1).

- if G(¢) is contained in the normalizer of a (split or nonsplit) Cartan subgroup C, but not in C
itself, then G has a subgroup G of index 2 whose image modulo ¢ is contained in C, and we are
reduced to the Cartan case.

- if G(¢) is contained in a Borel subgroup, then the same is true for Sat(G)%*=!(¢). To ease the
notation we set G = Sat(G)*=!. We can also assume that ¢ divides the order of G(¢) (hence that
of G2(¢) as well), for otherwise we are back to the (split) Cartan case. Now if |Ga/N(G2)| # 4 we
can set H = G; if, on the contrary, |G2/N(G2)| = 4 we consider the group morphism

T: G — G(0) — Ff
g - [g1=<§ b) - afe.

Every g € G is of the form Agy for suitable A € Z, and g» € G2, and since 7(A\g2) = 7(g2) we
deduce 7(G) = 7(G2). On the other hand, when restricted to Ga the function 7 becomes

g lg) = (0 1;)) -,
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a b
0 1/a
Hence 7 factors through the quotient Ga/N(G2) and we have |7(G)| = |7(G2)| ’ 4. We take H
to be the kernel of 7. Then it is clear that [G : H| divides 4, and we claim that H satisfies the
conditions in (1). To check this last claim, notice first that H(¢) is a subgroup of G(¥), so it is
~ G/kerm _ G . . icul
= Hkerr — HO) particular
a b

c
in H () satisfies a/c = 1 by construction, so the intersection Sat(H (¢))NSLy(Fy) consists of matrices

and as we have already remarked g — [g] = ( > +— a is the quotient map Gy — G2/N(G2).

contained in a Borel subgroup. We also have kerm C H, so G/H

[G(¢) : H(¢)] divides 4, and therefore the order of H(¢) is divisible by ¢. Finally, any matrix

b
(g ) with @ = ¢ and ac = 1, so a = ¢ = £1. This implies that the quotient of Sat(H)*=1(¢) by
c

its £-Sylow has at most 2 elements, and since this quotient is exactly Sat(H)4°*=! /N (Sat(H)d*=1)
the result follows. O

Remark 1.4.11. For future applications, we remark that the same proof shows that the inequality
[G : H] < 24 appearing in theorem 1.4.2 (2) can be replaced by the condition [G : H] | 48, and even
by [G : H] | 24 if in addition G satisfies det(G) C Z;>.

1.5 Recovering G from L(G), when ( = 2

We now consider closed subgroups of GL2(Zs2), and endeavour to show results akin to those of the

previous section. For GLa(Zs2) the statement is as follows:
Theorem 1.5.1. Let G be a closed subgroup of GLa(Zz2).

1. Suppose that G(4) is trivial and det(G) =1 (mod 8). The following implication holds for all
positive integers n: if L(G) contains 2™sly(Z3), then the derived subgroup G’ of G contains
the principal congruence subgroup Ba(12n 4 2).

2. Without any assumption on G, the subgroup
H = ker(G — G(4)) Nker (G S G W (Z/8Z)X>
satisfies [G : H] <2-96 = 192 and the conditions in (1).

Note that (2) is immediate: the order of GL2(Z/4Z) is 96, and once we demand that G(4) is trivial
the determinant modulo 8 can only take two different values. As in the previous section, the core
of the problem lies in understanding the subgroups of SLa(Zs2), so until the very last paragraph of
this section the letter G will denote a closed subgroup of SLg(Z2). In view of the result we want
to prove, we will also enforce the assumption that G has trivial reduction modulo 4; indeed in this

context the relevant statement is:

Theorem 1.5.2. Let G be a closed subgroup of SLa(Z2) whose reduction modulo 4 is trivial, and
let s be an integer no less than 2. If L(G) contains 2°sl3(Zs), then G contains Ba(6s).

The idea of the proof is quite simple: despite the fact there is in general no reason why O(G) should

be a group under addition, we will show that for every pair z,y of elements of ©(G) it is possible
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to find an element that is reasonably close to x +y and that lies again in ©(G). The error term will
turn out to be quadratic in  and y, which is not quite good enough by itself, since a correction of
this order of magnitude could still be large enough to destroy any useful information about x + y;
the technical step needed to make the argument work is that of multiplying all the elements we have
to deal with by a power of 2 large enough that the quadratic error term becomes negligible with
respect to the linear part. The rest of the proof is really just careful bookkeeping of the correction
terms appearing in the various addition formulas. We shall continue using the notation from the

previous section:

Notation. For z € L := L(G) we set m;;(x) = x;;, the coefficient in the i-th row and j-th column
of the matrix representation of z in sly(Zg). The maps m;; are linear and continuous.

We start with a compactness lemma. Our arguments only yield (arbitrarily good) approximations
of elements of ©(G), and we need to know that this is enough to show that the matrices we are

approximating actually belong to O(G).

Lemma 1.5.3. Let G be a closed subgroup of SLa(Zy), g be an element of G, and e > 2. Suppose
that ©(g) = 0 (mod 2°): then tr(g) — 2 is divisible by 22¢. Moreover ©71 : O(G) N 22sly(Z2) — G

is well defined and continuous, and the intersection ©(G) N 22sly(Zs) is compact.

b t
Proof. Write O(g) = (a ) and g = r;g) Id4+06(g). As G is a subgroup of SLy(Z2), we have
c —a

the identity

1 = det g = det <tr(29) Id +@(g)> = <tr(29)>2 —a? — be.

Furthermore G (hence g) is trivial modulo 4 by assumption, so an immediate calculation shows that

1 =det(g) = 1+ (tr(g) — 2) (mod 8). It follows that @ is the unique solution to the equation

t o [1/2 :
A2 = 1+4a?+ be that is congruent to 1 modulo 4, hence (9) =V1+a?+bc= g ( / ) (a®+bc)?
- J
7=0

2
by lemma 1.3.2. Given that a® +bc =0 (mod 2%¢) and 2e > 3, using again lemma 1.3.2 we find

vs (tr(g) — 2) = s <2 <trég) - 1>) — 1+ v (\/m— 1) > %e.

The case e = 2 of the above computation shows that every = € 225l3(Zy) admits exactly one inverse

image in SLg(Zy) that reduces to the identity modulo 4, so © : By(2) — 225l5(Zy) is a continuous

bijection: we have just described the (two-sided) inverse, so we only need to check that the image of
d b

B(2) under © does indeed land in 225ly(Z3). We have to show that if g = ( ) is any element
c e

d—e

b
of B(2), then ©(g) = | 2 o_q | has all its coefficients divisible by 4. This is obvious for b and
c

2
c. For the diagonal ones, note that de — bc = 1, so de = 1 (mod 8) and hence d = e (mod 8) and

42¢ =0 (mod 4) as required. Observe now that a® + bc = & tr (6(g)?), so we can write

O lz)=x+4/1+ %tr(zz) -1d,

which is manifestly continuous. Therefore © establishes a homeomorphism between B2(2) and
225[2(Z2).
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In particular, we have a well-defined and continuous map ©~! : O(G) N 2%sl(Z3) — G, and we
finally deduce that the intersection ©(G) N 22sly(Z2) = O(G N By(2)) is compact, since this is true
for G N By(2) and © is continuous. O

The core of the proof of theorem 1.5.2 is contained in the following lemma:

Lemma 1.5.4. Let ey, ex be integers not less than 2 and x1,xo be elements of O(G). Suppose that
z1 =0 (mod 2°) and z2 = 0 (mod 2°?): then O(G) contains an element y congruent to x1 + x2
modulo 2¢1F¢2=1 If, furthermore, both x1 and xo are in upper-triangular form, then we can find

such a y having the same property.

Proof. Write 1 = ©(g1), 2 = ©(g2) and set y = ©(g192). Applying lemma 1.3.10 we find
2(y — w1 — 2) = w1, 32] + (tx(g1) — 2)22 + (tr(g2) — 2)1.

Consider the 2-adic valuation of the various terms on the right. The commutator [z1, z2] is clearly
0 modulo 2¢17¢2. We also have tr(g;) — 2 =0 (mod 22¢1) and tr(g2) — 2 =0 (mod 22¢?) by lemma
1.5.3, so the last two terms are divisible respectively by 22¢1+€2 and 2¢1+2¢2 It follows that the
right hand side of this equality is zero modulo 2¢17¢2 and dividing by 2 we get the first statement
in the lemma.

For the last claim simply note that if x1, o are upper-triangular then the same is true for all of the

error terms, so y = x1 + o2 + (triangular error terms) is indeed triangular. O

As a first application, we show that the image of O is stable under multiplication by 2 (up to units):

Lemma 1.5.5. Let x € ©(G) and m € N. There exists a unit X\ € Z5 such that X - 2™z again
belongs to O(G).

Proof. Clearly there is nothing to prove for m = 0, so let us start with the case m = 1. Write
x = O(g) for a certain g € G. By our assumptions on G, the trace of ¢ is congruent to 2 modulo
4,80 A\ = # is a unit in Zo. We can therefore form § = %g, which certainly exists as a matrix in
GL2(Zs), even though it does not necessarily belong to G. Our choice of § is made so as to ensure

tr(g) = 2, so the formula given in lemma 1.3.10 (applied with g; = g2 = g) yields
2(0(3%) — 09 - 0(9) =[0(3),0(9)] + (tr(g) — 2) ©(3) + (tr(7) — 2) O(9),

where the right hand side vanishes. We deduce ©(3?) = 20(g), and it is now immediate to check
that ©(g?) = X - 20(g), whence the claim for m = 1. An immediate induction then proves the

general case. O

We now take the first step towards understanding the structure of ©(G), namely showing that a
suitable basis of L can be found inside ©(G). Note that L, being open, is automatically of rank 3.

Lemma 1.5.6. There exist a basis {x1,z2,23} C O(G) of L and scalars 621, 731, 032 € Za with

the following properties: mo1(xe — d2121) = 0, mo1 (23 — G3121) = 0 and

mo1(z3 — 03121 — 032(x2 — 02121)) = ™11 (23 — 3121 — F32(T2 — G2121)) = 0.
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Remark 1.5.7. The slightly awkward equations appearing in the statement of this lemma actually
have a simple interpretation: they mean it is possible to subtract a suitable multiple of 1 from -
and 3 so as to make them upper-triangular, and that it is then further possible to subtract one of
the matrices thus obtained from the other so as to leave it with only one nonzero coefficient (in the

top right corner).

Proof. This is immediate from lemma 1.3.11, which can be applied identifying sly(Z2) = Z3 via

a b
( > — (c,a,b). Note that with this identification the three canonical projections Zg’ — Zo
c —a
become 791,711 and mg respectively, and the vanishing conditions in the statement become exactly

those of lemma 1.3.11. OJ

As previously mentioned, in order to make the quadratic error terms appearing in lemma 1.5.4

negligible we need to work with matrices that are highly divisible by 2:

Lemma 1.5.8. Let z1,22,23 be a basis of L. There exist elements y1,y2,y3 € O(G) and units
A, A2, A3 € Z5 such that y; = \; - 2450, for i = 1,2,3; in particular yi,y2,y3 are zero modulo 2*%,

and the module generated by y1,va,y3 over Zs contains 25%sly(Zs).

Proof. Everything is obvious (by lemma 1.5.5) except perhaps the last statement. Note that
Y1, y2,y3 differ from 2%z, 2% x5, 2% 23 only by multiplication by units, so these two sets gener-
ate over Zo the same module M. But the x; generate L O 2%sly(Zs), hence M = 245, contains
25%515(Zs). O

Notation. Let z1, z2, x3 be a basis of L as in lemma 1.5.6, and let y1, 2, y3 be the elements given by
lemma 1.5.8 when applied to z1,x2,x3. The properties of the z; become corresponding properties

of the y;:

e There is a scalar 091 € Zy such that

b b
Yo — 0921 Y1 = ) e sly(Zs);
0 —bn

e there are scalars 031, 039 such that

Yz — 031Y1 = du Gz
0 —dn

0 c
Y3 — 031y1 — 032(y2 — 021 - Y1) = ( (1)2> € sly(Zy).

To ease the notation a little we set

b b 0
t]_ =y = ail a2 ,t2 _ 11 12 and t3 _ C12 )
a1 —aii 0 —b1 0 O

It is clear that {t1,t2,t3} and {y1, y2,y3} generate the same module M over Zs, so in particular M

contains 2%%5ly(Zs).

Lemma 1.5.9. The 2-adic valuations of as1,b11 and c12 do not exceed 5s.
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0
Proof. We can express (255

O> as a Zo-linear combination of 1, to, t3,

0 O
(255 0) = Aty + Aoto + Agts,

for a suitable choice of A1, A2, A3 in Zy. Comparing the bottom-left coefficients we find Ajas; = 2°%,

s0 v2(ag1) < 5s as claimed.
5s 0 253
The same argument, applied to the representation of 0 o5s (resp. 0 0 ) as a combin-

ation of t1,to,t3, gives b11]2% (resp. c12|2°%) and finishes the proof of the lemma. O

For future reference, and since it is easy to lose track of all the notation, we record here two facts

we will need later:

Remark 1.5.10. We have o33 = b and va(di12 — o32b12) = va(c12) < 5s.
1

We now further our investigation of the approximate additive structure of ©(G). Since essentially

d11
1

all of the arguments are based on sequences of approximations the following notation will turn out

to be very useful.

Notation. We write a = b+ O (2") if a = b (mod 2").

Lemma 1.5.11. Let aj,ay € O(G) N 2%sly(Zsy) and € € Zo. Then O(G) contains an element z
congruent to a; — Eas modulo 28571, If moreover a1, as are upper triangular then z can be chosen

to have the same property.

Proof. We construct a sequence (zp),,> of elements of ©(G) and a sequence (§,),,>( of elements of
Zy satistying &, = & + O(2") and
zn = a1 — &pao + O (285_1) .

We can take zp = a1 and & = 0. Given z,,§, we proceed as follows. If we let w, = va(&, — &),
then w, > n by the induction hypothesis, and by lemma 1.5.5 we can find a unit A, such that
2Wn )\, a4z also belongs to O(G). Note that both z, and 2%»\,as are zero modulo 2%, Apply lemma
1.54 to (x1,m2) = (2n,2"" Apagz): it yields the existence of an element z,41 of ©(G) of the form
Zn + 2% Apas + O (285—1). We take &,11 = (&, — 2V \y); let us check that &,41, 241 have the right
properties. Clearly

Zp+l = Zn + 2¥n \pa9 + O (285—1) =a; — (gn _ 2wn)\n)a2 +0 (285—1) )

On the other hand the definition of w,, implies that &, — & = 2*» - u,, where p, is a unit, so

v2 (§nt1 — &) = v2 ((§n — 29" An) — §)
= 0a(2Y" -y, — 29 - Ny)
:wn+v2(ﬂn_)‘n) > wp+12n+1,
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since pn, An are both units and therefore odd. To conclude the proof it is simply enough to take
z = 2g8s—1: indeed
a1 — €ay — 2851 = a1 — ag — (a1 — &gs—1a2 + O (2%°71))
= (&8s—1 — §az + O (2%7)
—0 (28571)
as required. The proof in the upper-triangular case goes through completely unchanged, simply

using the corresponding second part of lemma 1.5.4. O

The above lemma is still not sufficient, since it cannot guarantee that we will ever find a matrix with
a coefficient that vanishes exactly. This last remaining obstacle is overcome through the following

result:

Lemma 1.5.12. Let a1,as € O(G) N 2%s1y(Zy) and & € Zy. Suppose that for a certain pair (i,7)
the (i,7)-th coefficient of a1 — Eaa vanishes while v o mij(az) < 5s: then ©(G) contains an element
z whose (i,7)-th coefficient is zero and that is congruent to ay — Eas modulo 27~ 1. If, furthermore,

ay,az are upper-triangular, then this z can be chosen to be upper-triangular as well (while still
satisfying mi;(z) = 0).

Proof. Let zy be the element whose existence is guaranteed by lemma 1.5.11 when applied to a1, a9, &.

We propose to build a sequence (zy,),>0 of elements of O(G) satisfying the following conditions:
1. zpi1 = 2, (mod 2771, and therefore z, = 20 = 0 (mod 2%);

2. the sequence w, = vy o m;j(z,) is monotonically strictly increasing; in particular we have
wn, > wo > 8s — 1.

Suppose we have constructed z,,w, and let k = vy o m;;(a2) < 5s. By lemma 1.5.5 we can find
a unit A such that 2% \ay also belongs to ©(G) (note that w, > 8s —1 > 55 > k). We know
that z, = 0 (mod 2%%) and 2" *X\ay = 0 (mod 2% ~*+4%) (note that as = 0 (mod 2%%)). Apply
lemma 1.5.4 to (21, 22) = (2n, 2% *Xag): it yields the existence of an element z,,1 of O(G) that is
congruent to z, + 297 % Xay modulo 2(4sFwn—k)+ds—1

We can write m;;(2,,) = 29y, and m;;(a2) = 2%¢ with p,, € € Z5, so
v 0 i (2n + 2w”7k)\a2) =9 (2" uy, + oun—kok . EN) = wp, + va(pn + EN),

and since u,, £ and A are all odd the last term is at least w, + 1. As k is at most 5s by hypothesis

we deduce
W1 = V2 0 Mij(Zn+1)
= U2 O Tjj (zn + 2k Ngy + O <2(45+wn*/€)+4371))
> min {vg o Tyj <zn + 27”"—’“)@2) .85 — 14w, — k}
> Wp.

As 2% FX\ay = 0 (mod 2@»~*+4%) the difference 2,41 — 2, is zero modulo 2*»~*  hence a fortiori

modulo 275~ since w,, > wy > 8s — 1.



Chapter 1. Adelic bounds for elliptic curves 30

Lemma 1.5.3 says that ©(G) N 22sl3(Zy) is compact, so z, admits a subsequence converging to a
certain z € ©(G). By continuity of 7;; it is immediate to check that m;;(2) = 0, and since every
zp is congruent modulo 257! to zy the same is true for z. Given that zq is congruent to a; — &as
modulo 281, the last assertion follows.

Finally, the upper-triangular case is immediate, since it is clear from the construction that if a1, as

are upper-triangular then the same is true for all the approximations z,. O

The result we were really aiming for follows at once:

Proposition 1.5.13. Let G be a closed subgroup of SLa(Zs) whose reduction modulo 2 is trivial, and
let s be an integer no less than 2. If L(G) contains 2°sl3(Zs), then ©(G) contains both an element

0 fir 0
th
of the form (O s

Proof. We apply lemma 1.5.12 to a1 = y2, aza = y1, & = 0921, (i,7) = (2,1); the hypotheses are

1

0 , where va(f11) < 6s.

2) , where vo(¢12) < bs, and one of the form

satisfied since y; = yo = 0 (mod 2%%) and vy o mo1(y1) < 5s by lemma 1.5.9. It follows that
by b

) where we have lN)ij = b;; (mod 27571) for every
—b11

O(G) contains a matrix b of the form

1 <4,j < 2; in particular, va(by1) < 5s.

The same lemma, applied to a; = y3,a2 = y; and { = o031, implies that O(G) contains a matrix d

dy d N
. 12 , where for every i, j we have d;; = d;; (mod 27°~1); in particular,

of the form
—di1

1)2(6{11) Z min {78 — 1, Ug(du)} Z 1)2(()11) = 1)2(7711).
Now since vg(dll) > 02(611) we can find a scalar ¢ such that

- - (dy d by b
d—ch= 11 12 ¢ 1 b2 ) _ 0 e ,
0 —di1 0 —b11 0O O

so applying once again lemma 1.5.12 (more precisely, the version for triangular matrices) we find
0 e

that ©(G) contains a certain matrix é = 0 ) where €12 = e12 (mod 27571). Observe now
that
5 7s—1
¢ = @ _ di1 + 0O (2 s ) — @ +0 <273717v2(b11)> _ @ +0 (22571)
by b +0(@2™ 1Y) b 11 7
so upon multiplying by bia, which is divisible by 2%, we obtain the congruence (512 = b12

duy
g b11
(mod 268_1). Since furthermore b1y = byo (mod 2%5~1) we deduce Cl;lg = b—nblg (mod 268_1). But
11
then the inequality vs (c12) < 5s (cf. remark 1.5.10) implies
vo(E12) = v2 (€12 + O (27571))
() (Cle — (b2 + 0 (275_1))

d
va | di2 — ﬁbm +0 (265_1)>

2 (12 +0 (271))

v
Hs.

IN
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The existence of the diagonal element is now almost immediate: indeed, we can apply once more

lemma 1.5.12 to the difference

o by bio _28512 0 e _ by 0
0 —bn ez \0 0 0 —bn/)’

the hypotheses being satisfied since clearly 255 = 0 (mod 2°%) and v3(€é12) < 5s for what we have just

0 by 0
seen. It follows that ©(G) contains a matrix <f11 ; ) congruent to 2° ( o ) modulo
—J1i —bn

27s=1 and this is enough to deduce

U2(f11) = 02(28611 +0 (278_1)) =S+ Uz(bn) < 6s.

We are now ready for the proof of theorem 1.5.2:

Proof of theorem 1.5.2. With all the preliminaries in place this is now quite easy: by proposition

0 &
1.5.13 we know that ©(G) contains an element of the form 0 6(1)2>, where v2(¢12) < 5s, and by
1 &
the explicit description of ©~! (lemma 1.5.3) this element must come from R, = ( Cl2> e q.

0
Similarly, if we let f denote the diagonal element <f11 f ), then
—J11

—1 . fll 0 11‘ .
o (f)—(0 _f11>+ L+ 5tr(f?) 1d

1 0
is an operator of the form D, = ( te 1 ) , where

c+1
va(c) = vo (fn-i- 1+;tr(f2)—1>

= v (fn +0 (22”2(f11)_1>>
= v9(f11) < 6s.

Observe now that replacing G with G?, the group { gt | geiG } endowed with the obvious product
gt g5 = (g2g1)t, simply exchanges L(G) for L(G)?, so if L(G) contains the (symmetric) set 25515 (Zs),
then the same is true for L(G*). Thus G contains Ryss and G contains Lyss. We have just shown
that G contains L, R, and D, for certain a, b, ¢ of valuation at most 6s, so it follows from lemma
1.3.4 that G contains Ba2(6s). O

Remark 1.5.14. The above result should be thought of as an analogue of theorem 1.3.9 for £ = 2,
even though the present result is actually much weaker. It would of course be interesting to have
a complete classification result for pro-2 groups purely in terms of Lie algebras, but as pointed out
in [97] the problem seems to be substantially harder than for ¢ # 2.

It is now easy to deduce theorem 1.5.1 (1):
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Proof. The proof follows closely that of theorem 1.4.2 (1): we can replace G first by H = G- (1+8Zs)
and then by Hy = H N SLy(Zs) without altering L(G) nor G’, so we are reduced to working with
subgroups of SLy(Zsy). Note now that n > 2 since by hypothesis every element in G' (and hence in
Hj) has its off-diagonal coefficients divisible by 4. Theorem 1.5.2 then guarantees that Hy contains
By(6n), so G' = H|, contains By(12n + 2) because of lemma 1.3.3. O

1.6 Lie algebras modulo ¢

Fix any prime number ¢ and let L be a topologically open and closed, Z-Lie subalgebra of sly(Zy).
The same arguments of the previous section, namely an application of lemma 1.3.11, yield the

existence of a basis of L of the form

ain a2 bir b2 0 ci2
€1 = , L2 = y L3 = .
a1 —ai 0 —by1 0 0
Definition 1.6.1. A basis of this form will be called a reduced basis.

There is clearly no uniqueness of such an object, but in what follows we will just assume that the

choice of a reduced basis has been made.

Notation. We let k(L), or simply k, denote the number min,,cy, vo(ms1), where ma; is the bottom-
left coefficient of m in the standard matrix representation of elements of sly(Z;). Furthermore, for
every positive n we denote by L (¢") be the image of the mod-¢" reduction map 7, : L — slo(Z/0"7Z);
clearly L (¢") is a Lie algebra over Z/("Z.

Remark 1.6.2. It is apparent from the very definition of a reduced basis that k(L) = v¢(ag1). Also
notice that, by definition, the images of 1, x9, x5 in L (£™) generate it as a (Z/¢"Z)-module.

The following statement allows us to deduce properties of G(¢") from corresponding properties of
L(m):

Proposition 1.6.3. Suppose L as above is obtained as O(G) for a certain closed subgroup G of
GL2(Zy) (whose reduction modulo 2 is trivial if £ = 2). For every integer m > 1 let G({™) be the
image of G in GLo(Z/0™Z), and let jp, = ‘{z €{1,2,3} ‘ x; 20 (mod Em)}‘ (that is, exactly jm,
among 1, x2 and x3 are nonzero modulo £™ ). For everyn > 1 the following are the only possibilities
(recall that v = vy(2)):

e jn is at most 1 and G(L™) is abelian.

e j, =2 and either jo, = 3 or G(E"_k(L)H_Q”) s contained in the subgroup of upper-triangular

matrices (up to a change of coordinates in GLa(Zy)).
e j, =3 and L contains €”+2k(L)_15[2(Zg).
Remark 1.6.4. The exponent n + 2k(L) — 1 is best possible: fix integers £k > 0, n > 1 and let L

be the Lie algeb d Z dule) b (P = (e 0
e the Lie algebra generated (as a Zy-module) by x; = o1 , Ty = 0 gkt |

0 Enfl
and x3 = ( 0 0 ) Then clearly k(L) = k, j,(L) = 3, and it is easy to check that n + 2k — 1

is the smallest exponent s such that ¢*sly(Z) is contained in L.
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Proof. Assume first j, < 1. It is clear that every element of G(¢"") can we written as AId +m,, for
some A\ € Z/"Z and m,, € L (¢™). Now L is generated by x1,x2,x3, so in turn every m,, is of the
form 7, (u121 + pexs + puszs), and since at most one of m,(z1), 7y (x2), Ty (x3) is non-zero we can
find an [, € L (¢™) such that, for every m,, there exists a scalar y € Z/{"Z with m,, = pl,. It
follows that every element of G(¢™) can be written as A Id 4+, for suitable A, u, and since Id and

l,, commute our claim follows.

Next consider the case j, = 2. We can safely assume that ja,, = 2, for otherwise we are done (notice
that jo, > j, = 2). Under this assumption, it is clear that for ¢ = 1,2,3 we have m,(z;) = 0 if and
only if ma,(x;) = 0. Suppose first m,(z1) = 0, so that k(L) > 1. Then G(¢™) is a subset of

207 -1d+Z )07 - 7w (x2) + Z /0L - 70 (x3),

L)+1—27j)’ since

and Id, 7, (), 7, (x3) are upper-triangular matrices, so G(£") — hence also G/(£"~*(
k(L) > 1 —is in triangular form.

Suppose next m,(x1) # 0. Assume that m,(x3) = 0 (the other case being analogous, as we are only
going to use that xs is upper triangular). L is a Lie algebra, hence so is L (62”); furthermore, every
element in L (¢2") is a combination of 7, (1), mon(22) with coefficients in Z/¢*"Z. In particular,
there exist &, & € Z/¢?"Z such that

—a21biz 4(a11b12 — a12b11)>

[z1, 2] — 2b1121 + 201122 =
0 a21b12

= Gay + &ag  (mod £27).

Matching the bottom-left coefficients we find &1az; = 0 (mod £2"), so, using ve(az1) = k(L), we

immediately deduce £ = 0 (mod 62"*’“@)). Reducing the above congruence modulo £2" (L) we
then have the relations

—agbiz = a1y (mod £2nk(L)

21012 = &2b11 ( ) (1.2)
4(&11b12 — alzbn) = §2b12 (mod an_k(L)).
b
We now introduce the vector y = 2162 € Z?. An immediate calculation shows that this is an
—2011

exact eigenvector for xo (associated with the eigenvalue —bi1), and on the other hand it is also an

approximate eigenvector for 21, in the sense that 2z; -y = (§2 — 2a11) y (mod €2n—k(L)). Indeed,
a1 a2 2b12 2a11b12 — 4a12b11
2r1 -y = = )
as1 —aii —4b11 2a21b12 + 4a11b11

and using (1.2) we find
2a11b12 — 4a12b11
2:51 cY =
2a21b12 + 4a11b11

_ [ 2a11bi2 + &bz — danbia
—2&2b11 + 4a11b11
= (& —2a11)y  (mod (2—RL))

as claimed.
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Now if ¢ # 2 we immediately deduce z1 -y = (% - a11> y (mod ¢2"—*()) If, on the other hand,
¢ = 2, then we would like to prove that v2(£2) > 1 in order to be able to divide by 2. Observe that
y is not zero modulo 2"*1, since its coordinates are (up to a factor of 2) the entries of z2, which we
have assumed not to reduce to zero in L (2").

Let o = min {v2(2b11),v2(ba1)} < n and reduce the last congruence modulo 22!, Then we have
221 -y =1 - (2y) =0 (mod 29M1), s0 (& —2a11)y = 0 (mod 29T1), which implies that & is even
(that is to say, v2(£2) > 1), for otherwise multiplying by A — 2a1; would be invertible modulo 2%+1
and we would find y = 0 (mod 2%*!), contradicting the definition of a. It follows that we can

indeed divide the above congruence by 2 to get
2 _k(L)—
Ty = <§2 - a11> y (mod 22nR)~1),
Equivalently, the following congruence holds for every prime ¢:

Ty = <§22 — a11> y  (mod ¢#nkL)—vy,

Note now that it is in fact true for every ¢ that y is not zero modulo "1V (its coordinates are, up
to a factor of 2, the entries of x5, which we have assumed not to reduce to zero modulo ¢").

Let again o = min {vy(2b11), ve(b21)} <n — 1+ v and set § = £~%y. Dividing by ¢* the congruence
T Y = (%2 — all) y (mod EQn_k(L)_“) we get x1 -y = (%2 — a11> ¥ (mod E”_k(L)“_Q“), where

Y= <?{1) is a vector at least one of whose coordinates is an ¢-adic unit. Assume by symmetry
Y2
U1

that v¢(g1) = 0 and introduce the base-change matrix P = <~
Y2

0
): this is then an element of

GL2(Zy), since its determinant g; is not divisible by /.

An element of G(¢*F(E)+1-2v) will be of the form g = AId+p1x1 + pez2, so by construction
conjugating G via P puts G(¢*~FE)+1-2v) in upper-triangular form. Indeed, the first column of x;
(for © = 1,2) in the coordinates defined by P is given by

1
P*lxiP (O) = P*lxi = pL ((&2/2 . a11),7j + Enfk(L)+172vw)
1
— (62/2 — a/ll) <0> + Kn—k’(L)-'rl—Q’UP—lw

= (§/2 —an) (;) (mod (kL) +1-20)

where w is a suitable vector in Z2 (that vanishes for i = 2).

Finally, suppose j, = 3. Then we have in particular m,(x3) # 0, so vs(c12) < n —1. As L is a Lie
algebra, we see that it contains

—a21c12 0
x4 = [x1,23] — 201123 = 0 ,
a1c12
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whose diagonal entries have valuation at most vg(ag1) + ve(c12) < k(L) + (n — 1). Furthermore, L

also contains the linear combination

2 — DTy £”+k(L)—1a11x4 B E"-He(L)—laleg _ < 0 0) |
a1c12 c12 gtk =1g,0 0
. . R =gy, (R, o . .
notice that the coefficients ———— and —————= have positive f-adic valuation by what
we have already shown, and tha?tlﬁgvaluation of thfa%nly non-zero coefficient of x5 is n+2k(L) — 1.
Setting
0 1 1 0 0 0
oo G 8) - ()
we see that L contains the three elements x3 = c1251, T4 = —a91c1282, T5 = €"+k(L)*1a2133. By

what we have already proved we have
max {W(clg), ve(—ag1c12), vy (E”Jrk(L)*lagl)} =n+2k(L) -1,

so the Zg-module generated by 3, x4, x5 contains £n+2k(L)_15[Q(Z[), and a fortiori so does L. [

Corollary 1.6.5. Let G be a closed subgroup of GLa(Zyg) satisfying property (xx) of theorem 1.4.2
(resp. G(4) = {Id} and det(G) =1 (mod 8) if ¢ = 2). Then for every positive integer n > k(L(QG))
at least one of the following holds:

1. G(L™) is abelian.

2. G(ﬂ”_k(L(G))H_Q”) is contained in the subgroup of upper-triangular matrices (up to a change
of coordinates in GLa(Zy)).

3. G' contains the principal congruence subgroup
By(16n — 4) = (Id +£'""*gl,(Zy)) N SLa(Ze),

if £ is odd, and it contains Bo(48n — 10), if £ = 2.

Proof. To ease the notation set L = L(G). Consider L (¢") and distinguish cases depending on jj,
as in the statement of the previous proposition. If j, < 1 we are in case (1) and we are done. If
jn > 2 we begin by proving that either (2) holds or L contains ¢4~ 1sly(Zy).
If j, = 2 and j2, = 2, then we are in situation (2) by the previous proposition. If, on the other
hand, j, = 2 and j3, = 3, then (again by proposition 1.6.3) we have

LD €2n+2k(L)—15[2(Z€) ) €4n_15[2(Z€)
since n > k(L). Finally, for j, = 3 the proposition yields directly

L D 2R =Lg10(7,) D 037 sl (Zy).

In all cases, property (xx) (resp. theorem 1.5.1 (1) for £ = 2) now implies that G’ contains B;(16n—4)
(resp. Ba(48n — 10)) as claimed. O
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1.7 Application to Galois groups

We now plan to apply the above machinery to the Galois representations attached to an elliptic
curve. Let therefore K be a number field and E an elliptic curve over K without (potential) complex

multiplication.

Notation. / is any rational prime, n a positive integer and G, the image of Gal(K/K) inside

Aut Ty(E) = GL2(Zy). As before, v is 0 or 1 according to whether ¢ is respectively odd or even.

If ¢ is odd (resp. ¢ = 2), then by theorem 1.4.2 (resp. theorem 1.5.1) we know that either G,
contains a subgroup Hy satisfying [Gy : Hy| < 24 (respectively [Gy : Hy] < 192 for ¢ = 2) and the
hypotheses of corollary 1.6.5, or otherwise G, = SLa(Zy). In this second case we put H; = Gy.

We also denote Ky the extension of K fixed by Hy. The degree [Ky : K] is then bounded by 24,
for odd ¢, and 2 - | GLo(Z/4Z)| = 2 - 96, for £ = 2. For a fixed ¢, upon replacing K with K, we
are reduced to the case where Gy satisfies the hypotheses of corollary 1.6.5. In order to apply this
result we want to have numerical criteria to exclude the ‘bad’ cases (1) and (2). These numerical
bounds form the subject of lemma 1.7.1 and proposition 1.7.4 below, whose proofs are inspired by
the arguments of [71] and [69].

Lemma 1.7.1. Suppose E/K does not admit potential complex multiplication. If {" t bo(K, E) the

group G¢(£™) cannot be put in triangular form.

Proof. Suppose that G¢(¢") is contained (up to a change of basis) in the group of upper-triangular
matrices. The subgroup I' of E[¢"] given (in the coordinates in which G,(¢") is triangular) by

= {(2) oczea)

is Gal(K /K)-stable, hence defined over K. Consider then E* = E/T" and the natural projection
m: E — E* of degree [I'| = . By theorem 1.2.8 we also have an isogeny E* — FE of degree b,
with b ‘ bo(K, E). Composing the two we get an endomorphism of F that kills I', and therefore

1
corresponds (since 0 is annihilated by ¢") to multiplication by a certain ¢"d, d € 7Z. Taking
degrees we get £ b= |['|-b=d*(*, so (" | b and (" | by(K, E). O

Corollary 1.7.2. Let L be the special Lie algebra of Gy (supposing that G¢(2) is trivial if £ = 2).
The inequality k(L) < vy(bo(K, E)) holds, so that in particular ¢5(F) | bo(K, E).

Proof. Let t = vy(bo(K, E)). If by contradiction we had k(L) > ¢+ 1, then L (¢/*') would be
triangular, and therefore so would be G,(¢**') C Z/¢'"*'Z - 1d +L (¢'*1), which is absurd, since
(1 b (K E). O

Corollary 1.7.3. If (" t bo(K, E) the group G¢(£"™) does not consist entirely of scalar matrices. In

particular this is true for G’g(ﬁ”f(bo(K’E»H).

Using this last corollary we find:

Proposition 1.7.4. If >" does not divide by(K, E)*bo(K, E x E) the group G,(¢") is not abelian.
In particular, the group Gy(£) is not abelian if £ does not divide by(K, E)bo(K, E x E).
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Proof. For the sake of simplicity set d = by(K, E). By the previous corollary, there is an o € Gy

) is not a scalar matrix. Suppose now that G(¢") is abelian. Consider

whose image modulo £+«
the subgroup I' = {(z, a(z)) | z € E[("]} C E x Ej this is defined over K, since for any vy € G4({")
we have v - (z,a(z)) = (v 2,7 - a(x)) = (v x,a(y - z)) as G¢(£™) is commutative. We can
therefore form the quotient K-variety E* = (E x E) /I', which comes equipped with a natural
isogeny E x E — E* of degree |I'| = E[¢"] = ¢?"; on the other hand, theorem 1.2.8 yields the
existence of a K-isogeny E* — E X E of degree b ‘ bo(K,E x E). Composing the two we obtain
an endomorphism ¢ of E x E, which (given that F does not admit complex multiplication) can be
represented as a 2 x 2 matrix e

€21 €22
Now since 9 kills I' we must have ej1x 4 ejpa(z) = 0 and eg1x + egea(z) = 0 for every x € E[¢"].

> with coefficients in Z and nonzero determinant.

Let n = min {ve(e;;)} and suppose by contradiction n < n — ve(d). For the sake of simplicity, let us
assume this minimum is attained for ejs (the other cases being completely analogous: the situation
is manifestly symmetric in the index ¢, and to show that it is symmetric in j it is enough to compose

with a1, which is again a non-scalar matrix). Dividing the equation ej12 + ejpa(x) = 0 by £7 we

get
e, e - .
mx—kwa(az)_o (mod ¢"™") Vx € E[0"],
whence
e, c12 — =
£77$+ €’7 alz) =0 VYzre E[("],

e
where now ﬁ is invertible modulo £"~", being relatively prime to £. Multiplying by the inverse of

%, then, we find that

e e\ ! e
Oz(gc):—?7 <£7) x Yx e E[",

i.e. a is a scalar modulo ¢"~". By definition of «, this implies £*~" ‘ d, son—mn < v(d), a
€11 €12

€21 €22

2
e | [det [ ) ) = deg(y) = be2n,
€21 €22

so (2ng—4ve(d) | b and ¢*" | 2Dy (K, E x E) | d*bo(K,E x E). The second assertion follows
immediately from the fact that ¢ is prime. O

contradiction. It follows that ¢2n¢—2ve(d) ‘ o ‘ det ( ) Squaring this last divisibility we

find

With these results at hand it is now immediate to deduce the following theorem, where we use the

notation introduced at the beginning of this section and the symbol By(n) of section 1.3.

Theorem 1.7.5. Let £ be a prime and set D(£) = bo(Ky, E)%bo(Ky, E x E). Let n be a positive
integer. Suppose that """ does not divide D({): then H, contains By(16n —4), for odd ¢, and it
contains B2(48n — 10), for £ = 2.

Proof. By the discussion at the beginning of this section there are two possibilities: if the derived

subgroup Gj is all of SLa(Z,) then the conclusion is obvious since Hy = Gy; if this is not the case,
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then Hy satisfies the hypotheses of corollary 1.6.5. Note that the image of Gal(K,/Kj) in Aut T;(E)
is exactly Hy by construction. We wish to apply corollary 1.6.5 to G = Hy, assuming that "7
does not divide D(?).

Since ¢*(L) ‘ bo(Ky, E) by corollary 1.7.2, we deduce r—k(L)—v t bo(Ky, E)*bo(Ky, E x E), and a
fortiori ¢n~F+1=2v 4 b0 (K, F)*by(Ky, E x E). Lemma 1.7.1 then implies that G(¢7~*(L)+1-2v)
cannot be put in triangular form, and on the other hand ¢"~? { by(Ky, E)°bo(Ky, E x E) implies
that 2" does not divide by(Ky, E)*bo(Ky, E x E), so G({") is not abelian (thanks to proposition
1.7.4). It then follows from corollary 1.6.5 that G’ = H contains the principal congruence subgroup
Be(16n — 4) (resp. By(48n — 10) for ¢ = 2). O

Corollary 1.7.6. Let D(c0) = bo(K, E;120)%b0(K, E x E;120) and £ be an odd prime. If " does
not divide D(00), then H) contains By(16n — 4).
Proof. As [K;: K] < 120 we find that

D(€) = bo(Ky, E)°bo(Ky, E x E) | bo(K, E;120)°bo(K, E x E;120) = D(c0),
so the result follows from the theorem since ¢" { D(oo) implies " { D(¥). O
Corollary 1.7.7. Notation as above. The index [SLa(Zg) : (H;NB.(1))] can be written as the product
| SLa(Fy)|B(€), where for £ # 2 the number B({) is a power of £ dividing £33 - D(£)*8 (respectively
B(2) is a power of 2 dividing 22°° D(2)144).
Proof. We can write the index [SLy(Z¢) : (H; N By(1))] as

[SLa(Ze) : Be(1)] - [Be(1) = (Hy N By(1))] = | SLa(Fe)| - [Be(1) = (Hy N Be(1))],
so we just need to prove that B(¢) = [By(1) : (H) N By(1))] divides ¢33D(¢)*® (and the analogous
statement for ¢ = 2). Notice that since By(1) is a pro-£ group the number B(¥) is a power of £.
Choose n such that ¢~ H D(¢): then ¢"1=?  D(¢), and therefore the above theorem implies

that H contains By(16(n + 1) —4) C Be(1) (resp. B2(48(n + 1) — 10) for £ = 2): the index of
Be(16(n + 1) — 4) in By(1) is 3160 +1=5) 56 we get

[Bo(1) : (Hy N Be(1))] | 487433 | ¢33 . D(0)**
for ¢ # 2, and likewise we have
[Bg(l) . (Hé N Bg(l))] ’ 23(48(n—1)+85) ‘ 2255D(2)144

for ¢ = 2. O

1.8 The determinant and the large primes

We now turn to studying the determinant of the adelic representation and the behaviour at the

very large primes.

Proposition 1.8.1. The index

2" - [[ det pe(Gal(K/ K))
¢
is bounded by [K : Q).
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Proof. The Weil pairing induces an identification of the determinant Gal(K/K) 2% Gy det, 7y

with Gal(K /K) X Z; , where x; denotes the (-adic cyclotomic character; by Galois theory we have
Hdet pe (Gal(K/K)) = ng (Gal(K/K)) = Gal (K (o) /K) -
¢ ¢

Let F = KNQ (1so): it is a finite Galois extension of Q. As Q (puso) is Galois over Q, the restriction
map Gal (K (peo) /K) — Gal (Q (poo) /F') is well-defined and induces an isomorphism. Therefore

2*: [ [ xe(Gal(R/K)) | = [Gal (Q (1eo) /Q) : Gal (Q(j1cc) /F)]
l

as claimed. O

We will also need a surjectivity result (on SLg) modulo ¢ for every ¢ sufficiently large: as previously

mentioned, these are essentially the ideas of [71] and [68], in turn inspired by those of Serre.
Lemma 1.8.2. If (1 by(K, E x E;2)by(K, E;60) then the group G¢({) contains SLa(Fy).

Proof. Let ¢ be a prime for which G;(¢) does not contain SLa(IFy) and let, for the sake of clarity,
G = Gy({¢). By theorem 1.3.13, if G does not contain SLa(F,), then the following are the only

possibilities:

1. G is contained in a Borel subgroup of GLo(F;): by definition, such a subgroup fixes a line,
therefore ¢ | by(K, E) by lemma 1.7.1.

2. G is contained in the normalizer of a Cartan subgroup of GLa(F,): let C be this Cartan sub-
group and N its normalizer. By Dickson’s classification C has index 2 in IV, so the morphism
Gal(K/K) - G — % — % induces a quadratic character of Gal(K/K), whose kernel
corresponds to a certain field K’ satisfying [K’ : K] < |[N/C| = 2. By construction, the image

of Gal(K'/K') in Aut (E[{]) is contained in C, so applying proposition 1.7.4 to Exs we get
14 ‘ bo(K', Ebo(K',E x E) } bo(K, E;2)by(K, E x E;2).
Notice that this also covers the case of G being contained in a Cartan subgroup.

3. The projectivization PG of GG is a finite group of order at most 60: we essentially copy the
previous argument. Let H = PG; then we have a morphism

F, G
X
¢

whose kernel defines an extension K” of K with [K” : K| = |H| < 60 and such that the image

of the representation of Gal (K”/K") on E[(] is contained in F,: lemma 1.7.1 then yields

0| bo(K", E) | bo(K, E; 60).

Gal(K/K) — G — =H

It is then apparent that the lemma is true with the condition
01 bo(K, E)oo(K, E x E)bo(K, E;2)b(K, E x E;2)bo(K, E; 60);
however, since

bo(K,E) | bo(K, E;2) | bo(K, E;60), bo(K,E x E) | bo(K,E x E;2),
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and since £ is prime, we see that ¢ divides
bo(K, E)bo(K, E x E)by(K, E;2)by(K, E x E;2)by(K, E;60)

if and only if it divides b(K, E x E;2)by(K, E;60), which finishes the proof. O

Corollary 1.8.3. Let ¥ =30 bo(K, E x E;2)by(K, E;60). If L1V, then G is all of SLa(Zy).

Proof. The previous lemma implies that Gy(¢) contains SLy(F,), and by hypothesis ¢ is strictly

larger than 3, so the corollary follows from lemma 1.3.15. O

1.9 The adelic index and some consequences

We have thus acquired a good understanding of the f-adic representation for every prime ¢, and
we are now left with the task of bounding the overall index of the full adelic representation. The

statement we are aiming for is:

Theorem 1.9.1. Let E/K be an elliptic curve without complex multiplication with stable Faltings
height h(E). Let poo : Gal(K /K) — GLg (2) be the adelic Galois representation associated with E,

and set
U =2-3-5-by(K,E x E;2)by(K, E;60), D(c0)=bo(K,FE;24)°by(K,E x E;24);
let moreover K9 be as in section 1.7 and
D(2) = by(Ka, E)°by(Ko, E x E).
With this notation we have
[GLy (Z) : poo Gal(K/K)] < [K : Q] - 222 D(2)™** - rad(¥)% - D(00)*,
where rad(V) = HE 1s the product of the primes dividing .
0w
The strategy of proof, which essentially goes back to Serre, is to pass to a suitable extension of
K over which the adelic representation decomposes as a direct product and then use the previous
bounds. For this we will need some preliminaries. If L is any number field, we let Leye = L (ioo)
be its maximal cyclotomic extension. From the exact sequence
SLy(Z) GLa(Z) Zx
o —

Gal (K /Koy) oo (Gal(K/K))  detopes (Gal(K/K))

we see that [GLy(Z) : pos (Gal(K/K))] equals
[Z* : det ope, (Gal(K/K))] - [SLa(Z) : poo (Gal (K/Keye) )],

where the first term is bounded by [K : Q] thanks to proposition 1.8.1. It thus remains to understand
the term [SLg(i) ! poo (Gal (K /Kgyc))]. Let P be the (finite) set consisting of 2,3,5, and the prime
numbers ¢ for which Gy does not contain SLy(Zy), and let F' be the field generated over K by

U E[l]. Tt is clear that
LepP

[SLa(Z) : poo (Gal (K /Keye))] < [SLa(Z) : poo (Gal (K / Feye) ).
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Notation. We set S = po (Gal (K /Fey.)) C SLQ(Z) = [[,SL2(Z;) and let Sp be the projection of
S on SLa(Zy).

The core of the argument is contained in the following proposition.

Proposition 1.9.2. Let B({) be as in corollary 1.7.7 and D(2) be as in the statement of theorem
1.9.1. The following hold:

]. S: HZSE'

2. For £ € P, { + 2, we have
[SLa(Zy) = Se] | [SL2(F0)| - B(£);

for £ =2 we have

[SLa(Zs) : S5] < 2*8D(2)".
3. For { ¢ P the equality Sy = SLa (Zy¢) holds.

Proof. (1) This would follow from [123, Théoréme 1], but since we do not need the added generality
and the proof is quite short we include it here for the reader’s convenience.

Regard S as a closed subgroup of [[,S¢ C [[,SLa(Z¢) = SLy(Z). For each finite set of primes B,
let pp: S — Sp = [[scpS¢ be the canonical projection. We plan to show that for every such B
containing P we have pp(S) = Sp. Indeed let us consider the case B = P first. Our choice of F'
implies that Sy = py(Gal(F/F)) is a pro-£ group for every £ € P: the group Sy has trivial reduction
modulo ¢ by construction, and therefore Sy admits the usual congruence filtration by the kernels
of the reductions modulo ¢* for varying k. Now a pro-£ group is obviously pro-nilpotent, so pp(S)
is pro-nilpotent as well and therefore it is the product of its pro-Sylow subgroups (which are just
the Sy). To treat the general case we recall some terminology from [119]. Following Serre, we say
that a finite simple group > occurs in the profinite group Y if there exist a closed subgroup Y7 of Y
and an open normal subgroup Ys of Y] such that ¥ 2 Y;/Ys. We also write Occ(Y) for the set of
isomorphism classes of finite simple non abelian groups occurring in Y. From [119, IV-25] we read
the following description of the sets Occ(GL2(Z))):

o Occ(GL2(Zp)) = 0 for p = 2,3;

o Occ(GLy(Zs)) = {As};

e Occ(GLy(Zy)) = {PSLy(F,), As} for p = +1 (mod 5), p > 5;
e Occ(GLy(Zy)) = {PSLy(F,)} for p = £2 (mod 5), p > 5.

Let B be a finite set of primes containing P and satisfying pp(S) = Sp, and fix a prime ¢y ¢ B.
We claim that ppue(S) = Spuge)- Notice first that PSLa(Fy,) occurs in Sy, and therefore in
PBU{L}(5); set Ny, = ker (pBU{go}(S) — pB(S)). From the exact sequence

1 = Ny, = ppufe}(S) = pB(S) = 1 (1.3)

we see that Occ (pBU{gO}(S)) = Occ(pB(S)) U OCC(N@O). On the other hand, the only finite non-
abelian simple groups that can occur in pgp(S) are A5 and groups of the form PSLy(Fy) for £ # £y, so
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PSLa(Fy,) does not occur in pp(.S) (notice that PSLa(Fy,) 2 As since ¢p # 5), and therefore it must
occur in Ny,. Denote by Ny, the image of Ny, in SLa(Fy,). The kernel of Ny, — SLa(Fy, ) is a pro-£o
group, so Occ (Ngo) equals Occ (m) and therefore Ny, projects surjectively onto PSLy(IFy, ). Hence
we have Ny, = SLa(Fy,) by [119, IV-23, Lemma 2], and by lemma 1.3.15 this implies Ny, = SLa(Zy,):
by (1.3) we then have ppu}(S) = pB(S) X SL2(Z¢,) as claimed. By induction, the equality
pp(S) = Sp holds for any finite set of primes B containing P, and since S is profinite we deduce
that S =[], Se.

(2) The group Sy is the kernel of the projection map (Gy N SLa (Zy)) — SLa(Fy); as such, it contains
the intersection H; N By(1) (notation as in section 1.7), so we just need to invoke corollary 1.7.7 to

have
[SLa(Zg) : Se] | [SL2(Ze) : (HyN Be(1))] | | SL2(Fe)|B(¢)

as claimed. On the other hand, for £ = 2 the group Hy is a subgroup of py(Gal (K /K (E[4]))), while
Sy is po(Gal (K /Keye(E[2]))), so Sy is larger than H) N By(1) and we can again use the bound of

corollary 1.7.7, which now reads

[SL(Zs) : So] < 2%9°D(2)M4| SLy ()| < 2258 D(2)4.

(3) As £ ¢ P we know that p,(Gal(K/K)) contains SLa(Zy), so the group PSLy(FFy) occurs in
pe(Gal(K /K)). Consider the Galois group Gal(F/K): it is by construction a subquotient of
[I,ep GL2 (Zy), so the only groups that can occur in it are those in (J,cp Occ(GL2 (Zy)), and
in particular PSLy(F,) does not occur in Gal(F/K). Now py(Gal(K/K)) is an extension of a quo-
tient of Gal(F/K) by p; (Gal (K/F)), so PSLy(F;) occurs in p; (Gal (K/F)), and furthermore
7, (Gal (?/F)) is an extension of an abelian group by py (Gal (F/Fcyc)), so PSLy(Fy) also oc-
curs in py (Gal (?/Fcyc)) = Sy: reasoning as in (1), we then see that Sy projects surjectively onto
PSLa(Fy), and therefore Sy = SLa(Zy). O

The proof of theorem 1.9.1 is now immediate:

Proof of theorem 1.9.1. We have already seen that the index [GLQ(Z) : poo (Gal(K /K ))} equals
[Z% : det opes Gal(K/K)] - [SLa(Z) : po (Gal (K/Keyc))]. Now the first factor in this product is
at most [K : Q], while the second is bounded by [SLa(Z) : SJ; it follows that the adelic index is
bounded by

K :Q]-[SLa(Z) : 8] < [K : Q] [][SLa(Z) : Si]
LeP

(K :Q]- H[SL2(Z€) : Sy (1.4)
i
<[K:Q]-2%*- D@ [ ISLFo)l- [ B,
00,042 00,042
where we have used the fact that £{ ¥ = ¢ ¢ P. We now observe that by construction for all odd
primes ¢ we have vy(D(00)) = ve(D(()), so by corollary 1.7.7 the quantity [ [,y .0 B(¢) divides

H 633€48U¢(D(K)) ‘ H g33£4811g(D(oo))7
0,042 0,042

IN
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33
which in turn divides (%) - D(00)*8. Combining this fact with equation (1.4) and the trivial
bound | SLy(Fy)| < 3 we find that the adelic index is at most

[K:Q]-2*®.D@)" | [ €] rad(®)* . D(c0)*,
L)W 042

which in turn is less than [K : Q] - 2222. D(2)!4* . rad(¥)30 - D(00)*®, whence the theorem. O

Using the estimates of proposition 1.2.6 to bound ¥, D(2) and D(co) we get:

Corollary 1.9.3. (Theorem 1.1.1) Let E/K be an elliptic curve that does not admit complex

multiplication. The inequality
GLy(Z) : poo (Gal(F/K))} <m-[K:Q? max{1,h(E),log[K : Q]}*”

holds, where 1 = exp(1021483) and ~; = 2.4 - 1010,

Remark 1.9.4. With some work, the techniques used in [62] (cf. especially Theorem 4.2 of op. cit.)
could be used to improve the above bound on V¥; unfortunately, the same methods do not seem
to be easily applicable to bound D(c0). Notice that our estimates for ¥ and D(oc0) are essentially
of the same order of magnitude, so using a finer bound for ¥ without changing the one for D(c0)
would only yield a minor improvement of the final result.

On the other hand, it is easy to see that using the improved version of the isogeny theorem mentioned

in remarks 1.2.3 and 1.2.7 one can prove
|GL(Z) : pos (Gal(R/K) | < 73 (IK : Q] - max {1, h(E), log[K : Q]})"
with v3 = exp (1.9 . 1010) and 4 = 12395.

1.9.1 The field generated by a torsion point

As an easy consequence of our main result we can also prove:

Corollary 1.1.3. Let E/K be an elliptic curve that does not admit complex multiplication. There
exists a constant (E/K) with the following property: for every © € Eiows(K) (of order denoted
N(z)) the inequality

[K(z) : K] > y(E/K)N(x)?

holds. We can take v(E/K) = <C [GLQ( )t poo (Gal( K/K))])_l, which can be explicitly

bounded thanks to the main theorem.

Proof. For any such = set N = N(z) and choose a point y € E[N] such that (x,y) is a basis of
E[N] as (Z/NZ)-module. Let G(N) be the image of Gal(K /K) inside Aut E[N], which we identify
with GL2(Z/NZ) via the basis (z,y). We have a tower of extensions K(E[N])/K(x)/K, where
K (E[N]) is Galois over K and therefore over K (z). The Galois groups of these extensions are given
— essentially by definition — by

Gal(K(E[N))/K) = G(N), Gal(K(E[N))/K(z)) = Stab(z),
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where Stab(z) = {0 € G(N) | o(z) = z}. It follows that
[K(E[N]): K] _ |G(N)
[K(EIN]) : K(x)]  [Stab(z)[’

[K(z): K] =

and furthermore it is easy to check that
1

N3p(N) 1- =
IGL2(Z/NZ)| ’ };Iv< p >
[GL2(Z/NZ) : G(N)]  [GLa(Z/NZ) : G(N)]

On the other hand, the stabilizer of z in G(N) is contained in the stabilizer of = in GL2(Z/NZ),

which is simply
1
{ <0 Z) |la € Z/NZ, be (Z/NZ)X} ,

so [Stab(x)| < |Z/NZ| - ‘(Z/NZ)X‘ = Np(N). Finally, the index of G(N) inside GLo(Z/NZ) is
certainly not larger than the index of G, inside Gl (2) Putting everything together we obtain

N3] <1 - plQ> No(N) ] (1 - 12)

|G(N)| =

: p
|V p prime
K(z): K] = L > = :
) K] [GL2(Z/NZ) : G(N)] - [Stab(z)| = N@(N) - [GLa(Z) : Goo)
. 1 1
and the corollary follows by remarking that H <1 — p2> = @ O

p prime



Chapter 2

Products of Elliptic Curves

2.1 Introduction

In this work we prove an explicit, adelic surjectivity result for the Galois representation attached
to a product of pairwise non-isogenous, non-CM elliptic curves, extending the result of chapter 1.

Our main theorem is as follows:

Theorem 2.1.1. Let Eq,...,E,, n > 2, be elliptic curves defined over a number field K, pairwise
not isogenous over K. Suppose that End(E;) = Z fori=1,...,n, and denote by G the image
of Gal(K/K) inside

TTTAut(Tu(E:) € GLy(Z)".

=1 ¢
Set v := 10'3,§ := expexpexp(13), and let H = max{1,log[K : Q],max; h(E;)}, where h(E;)
denotes the stable Faltings height of E;. The group Goo has index at most

5n(n—1) . ([K . Q] . H2)7n(n—1)
m

A= {(xl, ceeyp) € GLQ(Z)” } det z; = det z;; Vz’,j}.

Remark 2.1.2. Note that the compatibility of the Weil pairing with the action of Galois forces G
to be contained in A. Also note that the statements we actually prove (lemma 2.7.3 and theorem
2.7.5 below) are slightly more precise, and immediately imply theorem 2.1.1 by proposition 2.2.5
and elementary estimates.
It should be noted that it has been known since the work of Serre and Masser-Wiistholz (cf. [71],

Main Theorem and Proposition 1) that the isogeny theorem (section 2.2 below) gives an effective

bound ¢y on the largest prime £ for which the image of the representation
Gal(K/K) — Aut(Ty(Ey % ... x Ey))

does not contain SLgy(Z,)™. As it was in chapter 1, the main difficulty here lies in controlling the
image of the representation modulo powers of primes smaller than £j.

The proof of theorem 2.1.1 is somewhat technical, so before fiddling with the details we describe
the main ideas behind it. The general framework is the same as that of the proof of the non-

effective open image theorem for such a product (cf. for example [108, Theorem 3.5]), with the

45
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added difficulties that naturally arise when trying to actually compute the index. In particular,
when writing ‘of finite index’ or ‘open’ in the sketch that follows we tacitly imply that the index in
question is explicitly computable in terms of the data. In those instances when the need will arise

to actually quantify indices, it will be useful to work with the following ‘standard’ open subgroups:

Definition 2.1.3. For a prime ¢ and a positive integer s we let By(s) be the open subgroup of
SLa(Zy) given by

{ €SLy(Z¢) | =1d (mod ¢°)} .

We also set By(0) = SLa(Zy), and for non-negative integers ki, ..., k, we denote by By(k1,. .., kn)
the open subgroup [[7_; Be(k;) of SLa(Ze)".

Let us now describe the proof method proper.

It is not hard to see that it is enough to consider the intersection G, N SLa(Z¢)™, because the
determinant of G, agrees with the cyclotomic character and is therefore well understood. A short
argument then shows that it is enough to consider products Eq7 X E involving only two factors:
this is done by proving that a subgroup of SLa(Z;)"™ whose projection on any pair of factors is of
finite index is itself of finite (and explicitly bounded) index. This step will be carried out in section
2.3 below, and should be thought of as the ‘integral’ version of [109, Lemma on p. 790].

With this result at hand we are thus reduced to dealing with subgroups G of SLa(Zy) x SLa(Zy)
whose projections on either factor are of finite index in SLa(Zy). Note that the fact that this index
is finite is the open image theorem for a single elliptic curve, which was proved by Serre in [116]
and made explicit in chapter 1. We wish to show that G is of (explicitly bounded) finite index in
SL2(Zy¢)?, that is, we want to exhibit a ¢ such that G contains By(t,t): this clearly comes down to
proving that the two kernels K; = ker (G KLY SLQ(Z[)), when identified with subgroups of SLa(Zy),
are of (explicitly bounded) finite index. By symmetry, we just need to deal with Kj.

In section 2.4 we linearize the problem by reducing it to the study of certain Zy-Lie algebras. We
also give the statements of two technical results whose proof, being rather lengthy, is deferred to
chapter 8; while the results themselves are more complicated, the methods used to show them do
not differ much from those of chapter 1, where the case of a single elliptic curve is treated.

A simple lemma, again given in section 2.4, further reduces the problem of finding an integer ¢ such
that By(t) is contained in K to the (easier) question of finding a ¢ such that Kj(¢'), the reduction
modulo ¢ of K7, is nontrivial. We exploit here the fact that mo(G) (the projection of G on the
second factor SLo(Zy)) acts by conjugation on K7, the latter being a normal subgroup of G: we
prove that a group whose reduction modulo £ is nontrivial and that is stable under conjugation
by a finite-index subgroup of SL2(Z,) must itself be of finite index in SLg(Z,). This reduction step
is made simpler by the fact that we can work with Lie algebras instead of treating directly the
corresponding groups (which might be quite complicated).

Next we ask what happens if we suppose that the smallest integer ¢ such that Kj(¢!) is nontrivial
is in fact very large. The conclusion is that the Lie algebra of G looks ‘very much like’ the graph of
a Lie algebra morphism sly(Z;) — sl2(Zy), namely it induces an actual Lie algebra morphism when
regarded modulo ¢V for a very large N (depending on t). Following for example the approach of
Ribet (cf. the theorems on p. 795 of [109]), we would like to know that all such morphisms are
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‘inner’, that is, they are given by conjugation by a certain matrix: it turns out that this is also true
in our context, even though the result is a little more complicated to state (cf. section 2.5).

In section 2.6 we then deal with the case of two elliptic curves, applying the aforementioned results
to deduce an open image theorem for each prime £. It is then an easy matter to deduce, in section

2.7, the desired adelic result for any finite product.

Notation. Throughout the whole chapter, the prime 2 plays a rather special role, and special care
is needed to treat it. In order to give uniform statements that hold for every prime we put v = 0

or 1 according to whether the prime ¢ we are working with is odd or equals 2, that is we set

0, if £ is odd
v=1y(2) =
1, otherwise.

We will also consistently use the following notations:
e Gy, to denote the image of Gal(K/K) in Aut Ty(E1) x --- x Aut Ty(Ey);

e G(I™), where G is a closed subgroup of a certain GLy(Z)*, to denote the reduction of G
modulo ", that is to say its image in GLy(Z/"7Z)*;

e N(G), to denote the largest normal pro-¢ subgroup of G;

e (', to denote the topological closure of the commutator subgroup.

2.2 Preliminaries on isogeny bounds

The main tool that makes all the effective estimates possible is the isogeny theorem of Masser and
Wiistholz [70] [72], which we employ in the explicit version proved in [28]. We need some notation:

we let a(g) = 2'%3 and define, for any abelian variety A/K of dimension g,
b(A/K) = b(K : @], 9, h(A)) = ((149)7" [K : Q] max ((A), log[K : Q],1)°)

Theorem 2.2.1. (/28, Théoréme 1.4]) Let K be a number field and A, A* be two Abelian K-
varieties of dimension g. If A, A* are isogenous over K, then there exists a K-isogeny A* — A

whose degree is bounded by b([K : Q],dim(A), h(A)).

a(g)

Remark 2.2.2. As the notation suggests, the three arguments of b will always be the degree of a
number field K, the dimension g of an Abelian variety A/K and its stable Faltings height h(A).

In [68] (cf. especially lemma 3.4) Masser shows the following:

Theorem 2.2.3. (Masser) Suppose that A/K is an Abelian variety that is isomorphic over K to
a product AS' x ... x A%, where each A; is simple and has trivial endomorphism ring over K.
Suppose furthermore that for every A* isogenous to A over K we can find an isogeny A* — A of
degree bounded by b for a certain constant b. Then there exists an integer by < b such that we can

always choose a K-isogeny A* — A of degree dividing bg.
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We will denote by by(A/K) the minimal by with the property of the above theorem; in particular
bo(A/K) < b(A/K). Consider now by(A/K’) as K’ ranges through all the finite extensions of
K of degree bounded by d. On one hand, by(A/K) divides by(A/K") ([68], p.190); on the other
bo(A/K') < b(d[K : Q],h(A),dim(A)) stays bounded, and therefore the number

lemgr. g1<q bo(A/K”)

exists and is finite. We give this function a name:

Definition 2.2.4. Suppose A/K is a product of simple varieties with absolutely trivial endomorph-

ism ring. Then we define

bo(A/K;d) = lemygr. j<q bo(A/K).

The function bg(A/K;d) is studied in [68, Theorem D]. Adapting the argument given by Masser to
the form of the function b(d[K : Q], h(A),dim(A)) at our disposal it is immediate to prove:

Proposition 2.2.5. (proposition 1.2.6) If A/K is as in the previous definition and of dimension
g, then

bo(A/K; d) < b(A/K;d) := 420 (@0+10ad)* Dy (1. ) dim(A), h(A))!+e(0) loa(d(1+ogd)?)

2.3 An integral Goursat-Ribet lemma for SLy(Z/)

As anticipated, we show that a (necessary and) sufficient condition for a subgroup of SLy(Z/)™ to
be open is that all its projections on pairs of factors SLa(Z,)? are themselves open. This will follow

rather easily from the following elementary lemma (whose easy verification we omit):

Lemma 2.3.1. Let s1,s2 be non-negative integers (with s1,s2 > 2 if £ = 2 and s1,s2 > 1 if
¢ =3). The commutator group [By(s1), Be(s2)] contains By(s1+s2+v), and the iterated commutator
[--[  Be(s1),Be(s2) |, Be(s3)], -, Be(sn)] contains By(s1 + -+ sp + (n — 1)v).

(n—1) times

Lemma 2.3.2. Let n be a positive integer, G a closed subgroup of [[;—, SL2(Z¢), and ; the pro-
jection from G on the i-th factor. Suppose that, for every i # j, the group (m; x mj) (G) contains
Byi(sij, si5) for a certain non-negative integer s;; (with si; > 2 if £ =2 and s;; > 1 if £ = 3): then
G contains [[;, Be (Zj# sij + (n — 1)1)).

Proof. Clearly by the symmetry of the problem it is enough to show that G contains

{Id} x -+ x {Td} x By [ D> snj+ (n— 1o
i#n
By lemma 2.3.1, for any g in By (Z#n Spj + (n — 1)U) there exist elements y; in By(sp;) (for i
between 1 and n — 1) such that g can be written as [---[[y1,92],93], - ,yn—1]. By hypothesis we
can find x1,...,2,-1 € G such that m;(z;) = Id and 7m,(x;) = y; for all i between 1 and n — 1.

Consider now the iterated commutator

g= [ e [[x17x2]7$3]7"' 71’”—1} :
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this is a product of elements of G, and therefore it is itself an element of G. For ¢ < n — 1, the i-th

component of g is trivial, since

mi(g) = [+ [+ [[mi@1), miw2)], miws)], - - mil)], - -+ s mi(@n 1))
1d
= [ [ llmi(), mize)], mi(ws)), -+, 1d], - - mi@n—1))]
=1d.
On the other hand, our choice of yi,...,y,—1 ensures that 7,(g) = [ - [[y1,v2] ,¥3], ** , Yn—-1] = 9.

We have thus shown that (1,1,...,1,9) = g is an element of G for any choice of g in

By ZSU +(n—-1pv|,
J#n
and repeating the argument for the other projections gives the required result. O
Corollary 2.3.3. Let G be a closed subgroup of [[;-, SLQ(Z) with n > 2. For every pair of indices
i # 4 let SU9) be a subgroup of SLQ(Z)2 with the following properties:

o the projection of G on the direct factor SLa(Z) x SLa(Z) corresponding to the pair of indices
(i,7) contains S(ivj);

o S09) decomposes as a direct product [, prime Séi’j) C I1,SL2(Z)?;
e for almost every £, the group Séi’j) is all of SLa(Zy) x SLo(Zy);

e for every prime { such that Séi’j) # SLa(Zy¢) x SLa(Zy) there exists an integer fe(i’j) such that
S,Si’j) = Bg(ff(i’j),fe(i’j)) (if ¢ = 2 we demand that fQ(i’j) > 2, while if £ = 3 we impose the
condition féi’j) >1).

Denote by ™) the index of SU9) in SLy(Z) x SLy(Z) and ¢ = I]Za%xc(i’j). The index of G in
[T, SL2(Z) is strictly less than
(8¢(@) DD,

Proof. Let ¢ > 3 be a prime. If Séi’j) = SLo(Z)? for all (i, j), then the previous lemma applies (with
sij = 0 for every pair of indices (7,7)) and shows that [[,_; SL2(Z,) is contained in G. Suppose on
the other hand that either £ < 3 or for at least one pair (i, j) we have Séi’j) # SLo(Z¢) xSLa(Zg). The
previous lemma tells us that the projection of G on the direct factor [/, SLa(Z¢) of ], SL2(Z)

contains

ST - Do, Y f (- 1w

i#1 i#n
Notice that the index of this group in ] ; SL2(Z,) is at most

n

H <€32j#f§i’”+3(n71)v> o3n(n—1)v HHES o

i=1 i=1 j#i
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betnow P = {2,314 {€ ‘ SURE Sé@j) # SLa(Zy) % SL2(Z£)}- By what we have just seen,
[H SLQ(Z) G| < 93n(n—1) H HHEBfZ(i,j)'
k=1

(EP i=1 j#i
- i 2
On the other hand, note that the index of Sél’]) in SLo(Zg) x SLa(Zy) is at least o5 (ZZEQI) ,
so the above product is bounded by

oo T 507 (o))

LeP i<y

EQ n(n—1) .
<] (o) TITT stz 5]
L

1<jLeP
< 93nn=1)¢(g)n(n=1) T 0)
1<)
< 93n(n=1)¢(g)n(n=1) n(n=1)/2,

2.4 Lie subalgebras of sly(Z,)" and some Pink-type results

Let us briefly recall the construction (essentially due to Pink) of the Z,-Lie algebra associated with
a subgroup of GLa(Zy)™:

Definition 2.4.1. (cf. [97]) Let ¢ be a prime. Define maps ©,, as follows:
On: GLa(Zg)" — D, sha(Ze)
(91, 9n) — (91— 32tx(91),--- 90 — 3 tr(gn)) -
If G is a closed subgroup of GLa(Zy)™ (resp. of Ba(2,...,2) in case { = 2), define L(G) C sly(Zy)"
to be the Zs-span of ©,,(G). We call L(G) the Lie algebra of G.

The crucial importance of this construction lies in the fact that it allows us to linearize the problem
of showing that a certain subgroup of GLa(Z;)"™ contains an open neighbourhood of the identity:

indeed, we have the following two results, for whose proof we refer the reader to chapter 8.

Theorem 2.4.2. Let £ > 2 be a prime number and G be a closed subgroup of GLa(Z¢) x GLa(Zy).
Let G1, Gy be the two projections of G on the two factors GLa(Zy), and let ni,ny be positive integers
such that G; contains By(n;) for i = 1,2. Suppose furthermore that for every (g1,g92) € G we have
det(g1) = det(g2). At least one of the following holds:

e G contains By(20 max{ni,na}, 20 max{ni, na})
o there exists a subgroup T of G, of index dividing 2 - 482, with the following properties:

— if L(T) contains (*sly(Zy) @ (*slo(Zy) for a certain integer k, then T contains By(p,p),

where
p = 2k + max {2k + 4,8n1,8na} .

We call this property (x).



Chapter 2. Products of elliptic curves 51

— for any (t1,t2) in T, if both [t1] and [ta] are multiples of the identity, then they are equal.

Theorem 2.4.3. Let G be a closed subgroup of GLa(Za) x GLa(Zs) whose projection modulo 4 is
trivial. Denote by G1,G2 the two projections of G on the factors GLa(Z2), and let ny > 4,n9 > 4
be integers such that G; contains Ba(n;). Suppose furthermore that for every (g1,g2) € G we have
det(g1) = det(g2). If L(G) contains 2Fsly(Zs) @ 2¥sla(Za) for a certain k > 2, then G contains

By(12(k + 12ng 4 5ny + 13) + 1,12(k + 12n; + 5ng + 13) + 1).

Finally, the following easy lemma characterizes conjugation-stable subalgebras of sly(Zy):

Lemma 2.4.4. (Lemma 8.2.1) Let ¢ be a prime number, t a non-negative integer, and W C sly(Zy)
a Lie subalgebra that does not reduce to zero modulo £'71 and that is stable under conjugation by
By(s), where s > 0 is at least 2 if £ = 2 and at least 1 if ¢ =3 or 5 (no conditions are necessary if
¢ >17). The open set (174514515 (Zy) is contained in W.

2.5 The automorphisms of sly(Z,) are inner

We will obtain in this section a description of the automorphisms of sly(Z;) showing that they are
all inner, in a suitable sense. In order to establish the required result we first need a few simple

preliminaries, starting with the following well-known version of Hensel’s lemma:

Lemma 2.5.1. Let p(x) € Z¢[x] be a monic polynomial and let o be an element of Zy. Suppose
that ve(p(a)) > 2ve(p'(0)): then p(x) admits a root & such that ve(a — &) > ve(p(a)) — ve(p'(a)).

The main tool we will use to produce approximate roots of polynomials is the following lemma:

Lemma 2.5.2. Let ¢ be a prime number, n > 1,m > 1, g € End (Z}") and py(t) the characteristic
polynomial of g. Let furthermore X\ € Zg, w € Zj* be such that gw = Aw (mod ¢"). Suppose that at

least one of the coordinates of w has £-adic valuation at most a: then pg(A) =0 (mod £"~%).

Proof. Denote by (g — A1d)* the adjugate matrix of (¢ — AId), that is the unique operator such
that (¢ — ANId)*(g — AId) = det(g — AId) - Id. Multiplying (¢ — AId)w = 0 (mod ¢™) on the left by
(g — A1d)* we obtain det(g — A1Id) - Idw = 0 (mod ¢"), and by considering the coordinate of w of
smallest valuation we have py(\) = det(g — AId) =0 (mod ¢"~%) as claimed. O

An immediate computation also shows:

Lemma 2.5.3. Let g € sly (Zg). The linear operator C, := |g, -] from sly (Zy) to itself has eigenvalues
0,+2u, where £ are the eigenvalues of g, so pe,(t) = t(t? — 4p?).

Combining the previous results we obtain the following lemma, which will be very useful for our

purposes:

Lemma 2.5.4. Let g be an element of sla (Zy), w be a vector in ZE, and B be the minimal valuation
of the coefficients of w. Suppose gw = Aw (mod £"). Then either g has an eigenvalue v such that
ve(v — X) > vp(AN) + 3 or else (B is at least n — 2(2 + vp(N)).
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Proof. Let £ be the eigenvalues of g. From lemma 2.5.2 we deduce that vs(py(X)) > n — f;
notice further that py(t) = t* — p?, so pj(t) = 2t. Suppose that 5 < n — 2(2 4 vg(})): then
n—f>2(2+ () > 2ve(py(A)), and by Hensel’s lemma pg(t) has a root v such that
vy = ) = v (N) — e (N) = — B — v — e(A) 2 vy(\) + 3.
O

We now come to the central result of this section, which as anticipated is essentially a description
of the Lie algebra automorphisms of (the finite quotients of) sly(Zy).
Notation. For the remainder of this section, in order to make notation lighter, when a is a positive

integer we write = y 4+ O(a) for =y (mod ¢%).

Proposition 2.5.5. Let L; be a subalgebra of sla(Zy) and n > 1,s > 0 be integers. Suppose that
Ly contains (°sly(Zy) and that ¢ : Ly — sla(Zy) is a linear map such that

(%) [p(a),o(b)] = ¢([a,b]) (mod £") Va,b € (°sla(Zy).

S G ) R O RS G )

and let a be the minimal integer such that x,y are both nonzero modulo (T,
Suppose that n > « + 10s + 5v + 6. There exists a matric M € My (Zy), at least one of whose

coefficients is nonzero modulo £, and such that for every w € (Zg)2 and every g1 € L1 we have

M(g1-w) = lg1) - M(w) (mod ¢7~0~6-4-0), (2.1)

Define

Furthermore, det(M) does not vanish modulo (****, and for every g1 in Ly we have
tr (80(91)2) =tr (g%) (mod ¢~ 10s=5v=6)
and

80(91) = MglM_l (mod En—a—105—5v—6)7 M_lgo(gl)M =q (mod en—a—lOs—Sv—ﬁ)

Remark 2.5.6. The reader might wonder whether it is really necessary for the three parameters n, a
and s to all appear in equation (2.1). The answer is yes. This is apparent for n, if the result is
to say something nontrivial about ¢. Consider next the limiting case where ¢ = 0 (i.e. a goes to
infinity): this map satisfies the hypotheses in the proposition for every n, but it is easy to realize

that (independently of n) the equality
M(g1-w) = @(g1) - M(w) =0 (mod £V)

can only hold for bounded N; of course a similar conclusion holds if « stays finite, but is very large.
Finally, choose an n and any linear map ¢ and suppose s is sent to infinity. For s large enough, the
condition in the proposition will become void, since both sides of the equality will automatically be
0 modulo ¢™: but then we cannot hope to deduce anything meaningful about ¢, so that s, too, has
to appear in the conclusion.

The question of whether the dependence on the parameters is optimal, on the other hand, is far

more complicated, and there is almost certainly room for improvement.
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Here again let us say a few words about the method of proof before starting with the technical
details. To simplify matters, consider the algebra L = sl3(Qy). Proving that every automorphism
of L is inner basically boils down to showing that the only 2-dimensional representation of sly(Qy)
is the standard one, a result which is usually proved through the ‘highest weight vector’ machinery:
one shows that it is possible to choose an eigenvector v for h that is killed by z, and then describes
its full orbit under the action of x,y, h. More precisely, one shows that yv is an eigenvector for h,
that zyv is proportional to v, and that y?v = 0.

The proof that follows mimics this very argument by producing a vector vy, by definition an
eigenvector for h, which plays the role of the highest weight vector, and subsequently finding its
orbit under the action of A, x,y. The main difficulty lies probably in the initial step, where we need
to prove that the eigenvalues of h lie in Z; and are of a certain shape. Once this is done, most of
the proof looks very much like the one for sl(Qy), with the additional complication that we have

to keep track of valuations along the way.

Proof. Denote by Cj, the linear endomorphism of sly(Zg) = Z3 given by taking the commutator with
h. It is clear that

Crh(z)=lh,z] = ¢ [ﬂs- <(1) _01> AR (8 ;)] =9 (268 A (8 é)) = 20°z  (mod "),

so x is an (approximate) eigenvector of Cj, associated with the (approximate) eigenvalue 2¢°. Lemma
2.5.2 yields

pc, (2¢°) =0 (mod £"7%).

If we let 4 denote the eigenvalues of h, then pe (t) = (t? — 4p?) + 2t, and evaluating at 2¢° we
find
bey, (26°)
203
To estimate the ¢-adic valuation of this last expression simply observe that
v bc,, (268)
2

e, (20°) = 4(0% — 1) + 80% = + 8¢%,

):vg(pch(%s))—vg@)—sZn—a—v—s>3v+25,

SO vy <p’ch (2€s)> = v (80*) = 3v + 2s. By Hensel’s lemma (lemma 2.5.1), pc, () admits a root
A\ € Zy such that

ve(A = 20°) > wy(pe, (2€°)) — ve(pg, (2€°)) > n—a — 25 — 3v > 25 + 1.

Note that A cannot be zero, because clearly vy(0 — 2¢%) = v + s is strictly smaller than v,(A — 2¢9).
It follows that X is one of the other two roots of pc, (t), namely +24, and hence

tu = :I:% (2° +0(n—a—2s—3v)) =£L°(14+ O(n —a—3s — 4v)).

To sum up, the two eigenvalues of h belong to Z, and are of the form £¢°+O(n —a —2s—4v) (and
in particular of the form +¢° + O(s + 4)). Let p4 be the one of the form ¢ + O(n — o — 2s — 4v)
and vy € Z? a corresponding eigenvector, normalized in such a way that at least one of the two
coordinates is an f-adic unit. Set furthermore v_ = yv,.

As anticipated, our next objective is to describe the action of z,y,h on vi. We expect v4 to be

annihilated by « and v_ to be an eigenvector for h that is annihilated by y: of course this is not
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going to be exactly true at all orders, but only up to a certain error term that depends on n, o and
s. Let 8 be the minimal valuation of the coordinates of xwvy: this is a number we want to show to
be large.

The idea is that if zvy were not very close to zero, then it would be an eigenvector of h associated

with an eigenvalue that A does not possess. Note that
h(zvy) = [h,x]vy + zhoy = (20° + py)zvy  (mod £7),

so by lemma 2.5.4 either h has an eigenvalue £ such that vg(€ — (u4 +20%)) > 34+vp(py +20%) > s+3
or B> n—2(2+ v(py + 2¢°)). Note now that we cannot be in the first case: indeed h would
have an eigenvalue of the form 3¢° + O(s 4+ 3), but we have already seen that the eigenvalues
of h are +¢° + O(s + 4), contradiction. Hence we are in the second situation, and furthermore
ve(p4 +20°) < s+ 1: hence f > n —2(2 4+ vg(puy + 20°)) > n — 2s — 6, and by definition of 3 this

means zv; =0 (mod ¢*~2(5+3)). Next we compute

hv_ = hyvy
= [h7 y]v-i- + yhU+
= —20° - yvq + vy) +0(n
yut + y(putvy) (n) (2.2)
— (s — 260+ O(n)
=(—+0n—a—2s—4v))v_
=—lv_+0(n—a—2s—4v),
TU_ = YUy
= [z,yJvy +yavy
=lhvy +0(n —2(s+3
+ ( ( ) (2.3)

= vy +0(n—2(s +3))
=0 +0n—a—2s—4v))vy +0(n—2(s+3))
=00, +0(n—a—2(s+3));
this settles the question of the action of h and = on v_. We are left with showing that v_ is
(approximately) killed by y:
h-yv_ = [h,ylv_ + yhv_
=20 yu_ +y((—£°)+ O(n —a—2s — 4v))v_ 4+ O(n)
= =3yv_+O(n — a — 2s — 4v),
so that yv_ is an (approximate) eigenvector of h, associated with the (approximate) eigenvalue
—3¢%. Let v be minimal among the valuations of the coefficients of yv_. Apply lemma 2.5.4: either
y>n—a—2s—4v—2(2+ v(—30%)) > n—a—4s —4v — 6 or h has an eigenvalue v satisfying
ve(v+30°%) > vy(—30°) +3 > s+ 3. This second possibility contradicts what we have already proven

on the eigenvalues of h, hence v > n — a — 4s — 4v — 6, that is to say yv— = O(n — a — 4s — 4v — 6).

En—a—4s—4v—6

Putting it all together, we have proved that up to an error of order we have

vy =0, yuy =v_, hvy = Loy, zv_ = 0*%vy, yo_ =0, hv_ = —v_.
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- 01 00 1 0 -
Write T (resp. y, h) for ¢¢ 0 0) (resp. ¢° ) , 08 ( >) and consider the matrix M whose

0 0 -1
columns are given by (*v; and v_. The above relations may be stated more compactly as
NIT = N, NI = yNT, N = hil (2.4)

modulo ¢"~@45=4v=6 " T 6t § be minimal among the valuations of the coefficients of M: by con-
struction, at least one of the coordinates of vy is an f-adic unit, so 6 < s. Set M = ¢79M.
Dividing equations (2.4) by £° we see that M satisfies analogous equations up to error terms of
order n — a — 5s — 4v — 6, and by construction at least one of the coefficients of M is an f-adic unit.
Let now g be any element of Lj. The matrix £°g belongs to ¢*sly(Z), so it is a linear combination
of Z,7, h with coefficients in Z,. Write £°g = MZ + \o7 + A3h. We have
Mg = M({g)

= M(MT + A2 + Ash)

= (Mx + Xy + A\3h)M + O(n — a — 5s — 4v — 6)

=p(lPg)M + O(n — a — 5s — 4v — 6)

=Lp(g)M +O(n — a — 5s — 4v — 6),
so that dividing by ¢* we deduce Mg = ¢(g)M + O(n — o — 6s — 4v — 6) for every g € Ly, which is

the first statement in the proposition.
Let us now turn to the statement concerning the determinant. We can assume that v is normalized

1 b -
so that vy = ( ) We also write v_ = (d) It is clear that ve(det M) < vp(det M), and that
c

~ 1 b 10
det M = £°det Mk so let us consider D := vy | det a) Suppose by contradiction
c c

D > 3s + v; by definition of the determinant we have d = bc + O(D), which implies

b b
() ) v

Applying h to both sides of this equality and using equation (2.2) we get
p—v_ 4+ O(n —a—2s —4v) = hv_ = h(bvy + O(D)) = busvy + O(D).
Comparing the first coordinate of these vectors we deduce
bu— =bus +O(min{D,n — o — 25 — 4v}),
hence
p— = pg + O(min{D — vy(b),n — o — 2s — dv — ve(b) }). (2.5)

Note now that since d = be + O(D) we have vy(d) > min {vg(b), D}. Moreover, we see by equation

(2.3) that zv_ = ¢*v, +O(n —a —2(s+3)), and since the right hand side does not vanish modulo
2s

025+ (since n —a — 2(s +3) > 25+ 1 and £*v, = ) we deduce that min {vy(b),v¢(d)} < 2s.

?sc
Let us show that we also have v,(b) < 2s. Suppose that vs(b) > 2s + 1: then

ve(d) > min{v,(b), D} > min{2s +1,3s + v+ 1} > 25+ 1,
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which implies min {v;(b), v¢(d)} > 2s+1 and contradicts what we just proved. Therefore vy(b) < 2s,
hence equation (2.5) implies p— = py + O (D — 2s): notice that if the minimum in (2.5) were
attained for n — a — 2s — 4v — vy(b) > 3s + 1 we would have ¢* = —¢°* + O(3s + 2), a clear
contradiction. On the other hand, we know that ui = +¢° + O(s + 4), so the above equation
implies 205 + O(s +4) = O(D — 2s). Hence we have proved v;(20%) > D — 2s,i.e. D < 3s+w, a
contradiction. It follows, as claimed, that vy(det M) < vy(det M) = s+ D < 4s + v.

Next we prove the statement concerning traces. Let g be any element of Li. Setting, for the sake
of simplicity, N = n —a—6s—4v — 6, we have Mg = ¢(g)M + O(N), so (multiplying on the left by
the adjugate M* of M) we deduce det(M)g = M*p(g)M + O(N). Didiving through by det(M) we
have g = M ~1¢(g)M + O(N — (4s +v)); note that this equality would a priori only hold in slz(Qy),
but since both g and the error term are f-integral we necessarily also have M ~1p(g)M € sly(Zy).
Squaring and taking traces then yields tr (¢?) = tr [(M_lcp(g)M)Q} +O(N — (45 +v)), i.e.

tr (g2) =tr (@(9)2) + O(N — (4s +v))

as claimed. Finally, essentially the same argument shows the last two statements: we can multiply
the congruence Mg; = ¢(g1)M (mod V) on the right (resp. left) by M* and divide by det M to
get

MglM_1 =¢(g1) (mod KN_4S_”), g1 = M_lgo(gl)M (mod EN_4S_”).

2.6 Products of two curves

Let E1, s be two elliptic curves over K and ¢ be a prime number. To study the Galois representation
attached to E7 x s we are going to pass to a suitable extension of K over which the study of the Lie
algebra of Gy (the image of Gal(K /K) inside Aut Ty(E1) x Aut Ty(E2) = GLa(Zy)?) is sufficient to
yield information on Gy itself. Before doing this, however, we need to dispense with some necessary
preliminaries. Let Gy, G2 be the two projections of Gy onto the two factors GLa(Z;), and my,
mg be integers such that By(m;) is contained in Gy; for i = 1,2.

Suppose for the moment that ¢ is odd. We want to apply theorem 2.4.2, so for the whole section

(up until the very last proposition) we make the following
Assumption. If 7 is odd, Gy does not contain B, (20 max{m,ma}, 20 max{my, ma}).

Under this assumption, we define K, to be the extension of K associated with the following closed

subgroups of Gy:
ker (G — GLo(Z/8Z)?), if £ =2
Hy, if ¢ # 2,
where Hy is the group given by an application of theorem 2.4.2 under our assumption. Note that
the degree [K3 : K| is at most 32216 that is to say the order of
{(z,y) € GLy(Z/87)* | detz = dety},

whereas [K; : K| is uniformly bounded by 2 - 482 for ¢ # 2. Note that H, is by construction
the image of Gal(Ky/Ky) in Aut Ty(E1) x Aut Ty(E2) = GLa(Z)?; we write Hyq, Hyo for its two
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projections on the two factors GLa(Z;). Furthermore, we let n1,n2 be integers such that Hy;, Hy o
respectively contain By(nq), Be¢(nz2). Notice that if £ = 2 we have ny,ns > 2; on the other hand, for
¢ =3 or t we explicitly demand that nj,ns > 1 (the groups Hs and Hjs as constructed in chapter 8

will automatically satisfy this inequality).

Remark 2.6.1. Note that if mq, ms > 0 we can in fact take ny = mq,no = mo unless £ < 3: indeed
for primes ¢ > 5 the index of Hy in Gy is not divisible by ¢, so for any positive value of n the (pro-¢)

group By(n) is contained in Hy; if and only if it is contained in Gy;,.

Let L C slg(Zg)®? (vesp. L1,La C sla(Zg)) be the Lie algebra of Hy (resp. Hpi, Hps). Choose
a basis of L of the form (ai,b1), (az,b2), (as,bs), (0,y1), (0,y2), (0,y3). Such a basis clearly exists.
Since by our assumption Hy1 2 By(ni) we have Ly D {™sly(Zy).

Also note that (0,y1),(0,2),(0,y3) span a Lie-subalgebra: indeed [(0,¥;),(0,y;)] = (0, [y, y;])
must be a linear combination with Z,-coefficients of the basis elements; however, since a1, ao, ag
are linearly independent over Z;, we deduce that this commutator is a linear combination of
(0,91), (0,y2), (0,y3), so that these three elements do indeed span a Lie algebra, which we call Ls.
Note that L3 can equivalently be described as the kernel of the projection from L C sly(Zy) ®sl2(Zy)
to the first copy of sla(Zs). We shall interchangeably think of L as being a subaglebra of sly(Zy)
or of sla(Zy)®2, by identifying it with its projection on the second factor sl (Zy).

Lemma 2.6.2. L3 C sly(Zy) is stable under conjugation by Be(na).

Proof. For the proof we consider L3 as a subalgebra of sly(Z,)®2.
Take any element [ € Ljs: it is the limit of a certain sequence I, = Z?:l An,i©(gn,i) for certain
Gn,i € Hy. For any g € Bg(ng) there exists a certain h € Hy such that (h,g) is in Hy,. We have

(hyg) M (h kahg) 'O (gn.i)(h, g) = ZAmhg <m (92“)101> (h, g)

i=1

- ZTL:ATL,Z <(hvg)_1gn,i(hag) - tr((h’g)i gn,z(h,g>) Id>
i=1

2
= MniO((h.9) " gnilh.9) € (O(HL)),

so the sequence ((h, g) U (h, g))n>0 is in L, and by continuity of conjugation tends to the element
(h,g)~'(h, g) of L. Now if we write | = (I, 1?) = (0,1?®) we have

(h.g) 'R, g) = (h, )71 (0,1%))(h,9) = (0,97 "1Pg) € L,
and since L is exactly the sub-algebra given by the elements whose first coordinate vanishes the

claim is proved. O

Lemma 2.6.3. Fiz an integer t, and suppose that at least one among y1,y2,y3 s not zero modulo
0L then L contains 01472140515 (Z,).

Proof. Apply lemma 2.4.4 with s = ng (recalling that ny > 1 if £ = 3 or 5). O

Our task is therefore to bound the values of ¢ for which the y;’s all vanish modulo ¢¢. If at least

one among ¥1,y2,y3 does not vanish modulo £"2*! we are done, so we can assume without loss of
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generality that y; = 0 (mod ¢!) for a certain ¢t > no + 1. If this is the case, then none of by, bo, b3
can be zero modulo ¢!, for otherwise Ly could not contain "25(5(Zg). Even more, the b;’s must
generate ("2sly(Zy).

Denote by ¢ : L1 — Lo the only Z,-linear map sending a; to b; for ¢ = 1,2,3. For two indices j, k

write [a;,ax] = S35, ugj *)g;. There exist scalars I/-(j *) Such that
3
[(a‘]7b ak7bk’ Zﬂ(jk (Zz,bi) +ZV@'(JJ€)(O73/7§)7

and reducing the second coordinate of this equation modulo ¢ gives

3
[(a3), )] = Doy, b = 3w

= ¢ ([aj,ar]) (mod £').

We want to apply proposition 2.5.5 to ¢. We claim that, in the notation of that proposition, we
can take a < ng + my. Since by, b, by generate {"2sly(Zy), a linear combination \1by + A2ba + Azbs

vanishes modulo ¢"1172+1 only if A;, A2, A3 all vanish modulo ™ *!. Now since ay, as, a3 generate
01
(Msly(Zy) we can choose scalars Aj, A\g, A3 € Zy such that ¢™ (O 0) = A\ia1 + Aoas + A3as, and

clearly at least one among A1, A2, A3 is nonzero modulo ¢"1+1, Tt follows that

3
01
: (zm (o 0>> — o (\ar + Aaaz + Mgag) = S Aiby
=1

is nonzero modulo " +"2F! a5 claimed, and a perfectly analogous argument applies to the image

0 0
of /™ (1 0) . Also note that by construction of ¢ and by our assumption on ¢t we have

(I1,15) € L(Hy) = Iy = (1) (mod £).
Set T'=1t — 11n; — ng — 5v — 6. By proposition 2.5.5, there is a matrix M € Ma(Zy) such that:
L tri2 = tr(e(lh)?) = tri3 (mod (1) V(lIy,ls) € L(Hy);
2. for all (Iy,ls) € L(Hy) we have lp = M -1y - M~ (mod ¢T) and M~ -ly- M =1; (mod ¢T);
3. at least one of the coefficients of M is an /-adic unit.

Take any element (g1,¢92) € Hy. By our choice of Ky, we know that the determinant of ¢; is a square

in Zy, so we can choose a square root of det g; and write

(91, 92) = /det g1(g1, 95)

for a certain (¢, 95) € SLa(Z¢). The image (I1,l2) of (¢}, g5) via Oy differs from O2(g1,g2) by a
scalar multiple, so it lies again in L(Hy). By definition, there exists a pair (A1, A2) € ZZ such that

(91,95) = (A1, A2) - 1d + (In, la) (2.6)
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and we wish to show that A\ is congruent to A2 modulo a large power of £. We begin by discussing

the case of odd ¢. Squaring equation (2.6) we obtain
((91)7 (95)) = (O3 - 1A+ + 2201, A3 - 1A+ + 2ols).

1
Now the left hand side is simply ot o (g% , g%), an element of Hy up to scalar multiples. The image
et g1
of this matrix through O9 is then an element of L(H/), so applying 5 to the right hand side of the

previous equation we get
(©1(13) + 2X111, ©1(13) + 2Xals) € L(Hy), (2.7)
which implies
©1(13) +2Xalo = M (01(13) + 2\1)) M™! (mod ¢7)
and, using properties (1) and (2) above,
2\ily = M (2\1) M~1 = 2)\05  (mod ¢1).
If Iy has at least one coordinate not divisible by ¢, this last equation implies A\; = Ag (mod ¢7).

If not, then ¢, reduces modulo ¢ to a multiple of the identity (cf. equation (2.6)). Moreover, as

det(g)) = 1, we have in particular

tr (13
1= det(AaTd+l5) = A3 — — (22),
from which we find
2
Ao =+¢\/1+ tr(2lQ),

where the series converges since [y is trivial modulo ¢. Symmetrically we prove that either the

congruence A\; = Az (mod ¢7) holds or else /1 is trivial modulo ¢ and

2
Suppose then l1,ls to be both trivial modulo £. As tr (l%) = tr (l%) (mod ¢7), it follows that A
and A are congruent modulo ¢7 as long as A\; and Ay have the same reduction modulo £. But g, g4
reduce to diagonal matrices diag (\;, \;) in SLa(FFy), so A1 = Ay (mod ¢T) if and only if ¢/, gh have
the same reduction modulo ¢, and this is exactly one of the properties of H, given by theorem 2.4.2.
If, on the other hand, ¢ = 2, then [y, l5 vanish modulo 4 by construction and the same argument as
above shows that

2
A=+ 1+”(2li),¢_1,2. (2.8)

Given that 2); = tr (¢;) = 2 (mod 8) by our construction of Hy, it follows that \; = A2 =1 (mod 4),
so the sign in equation (2.8) must be a plus and \; = Ay (mod 27~2). Using this information in

equation (2.6) we have thus proved

Lemma 2.6.4. There exists a matrix M € My(Zy) such that, for every element (g1,g92) € Hy, the
congruence go = Mg M~ (mod £7=2%) holds.

Set now H := T — 2v and choose any w € E1[¢(f]: as (7w = 0, for every (g1, g2) € Hy; we have
Mgiw = Mg M *Mw = (goM + Ot ))w = goMw,
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so the subgroup

I' = {(w, Mw) € E1[t"] x E,[t"] | w € By [¢7]}
is defined over Ky: indeed for any (g1, ¢g2) € Hy we have

(91, 92) - (w, Mw) = (grw, g2Mw) = (qrw, Mg1w).

Thus the abelian variety A* = E; x Ey/T" is defined over Ky, and we have an isogeny E; x Fy — A*

of degree |E1[¢f]| = ¢2H; on the other hand, we also have an isogeny A* — Ej x E of degree b

dividing bo(E1 x Ea/Ky), and the composition of the two is an endomorphism of E; x Ej that kills
I'. Here we use the crucial fact that at least one of the coefficients of M is an f¢-adic unit to deduce
that the projection of I on Ej contains points of exact order £, so the endomorphism of E; x E»

€H€1 0

killing I" must be of the form He ) of degree e2e2¢*1. Tt follows that e2e2¢! = (2Hp,

e
hence 2H < vy(bo(E1 x E2/K/)) and 2t < U;(bo(El x Ey/Ky))+2(11n1+n2+7v+6). This inequality
is certainly not satisfied if we take t = LMJ 4+ 11n1 +ne + 7Tv + 7, so for this value of ¢
the Lie algebra L3 does not vanish modulo ¢¢. Lemma 2.6.3 then shows that L3 contains 0! Lslo(Zy),
where f; = L%XEQ/KZ))J + 11ng + 5ng + 11v + 7, and therefore L(H,) contains 0 @ ¢/1sl5(Zy).
Swapping the roles of Ey and Ey we deduce that L(H) contains £/sly(Z,) @ ¢/sl3(Z), where now

| we(bo(Er x E2/Ky))
r-| .

J + 16 max {ny,na} + 11v + 7.

Proposition 2.6.5. Let E1, Ey be elliptic curves over K that are not isogenous over K and do not
admit complex multiplication over K. Let ¢ be a prime number.

Suppose the image of Gal(K,/Ky) — Aut(Ty(E;)) contains By(n;) for i = 1,2 (where n; > 2 for
¢=2andn; >1 fort =3 or5). Let f be given by the formula above. If £ is odd, the image Gy of
Gal(K/K) — Aut(Ty(E1)) x Aut(Ty(E2)) contains B(4f +4) x Be(4f +4); if £ = 2, the image Go
of Gal(K /K) — Aut(T»(E1)) x Aut(Ty(Es)) contains

Bo(12(f + 17max{ni,n2} + 13) + 1, 12(f + 17max{n, no} + 13) + 1).

Proof. For £ = 2 the result follows at once from theorem 2.4.3. For odd ¢, and under the assumption
we made at the beginning of this section, the result similarly follows from property (x) of Hy given
in theorem 2.4.2 and the fact that clearly 2f + 4 > 8max{ni,n2}. On the other hand, if our

assumption is false, then G contains By (20 max{ni,n2},20 max{ni,na2}) (note that we can assume

my < ny, me < ng without loss of generality), which is stronger than what we are claiming. O

2.7 Conclusion

Consider again the case of two elliptic curves Ej, Fy defined over K, non-isogenous over K and
such that Endz(E;) = Z. Let P be the set of primes ¢ for which G does not contain SLa(Z¢)?.

Rewriting Proposition 1 of [71] in terms of the function by of definition 2.2.4 we get:

Lemma 2.7.1. Let £ be a prime. If £ does not divide the product
30bo(E1/K;60)bo (ET/K;2) bo(Ea/K;60)bo (E3/K;2) bo(Er x E2/K;2),

then £ is not in P.
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Proof. Lemma 1.8.2 implies that for a prime ¢ that does not divide

bo(E1/K;60)bo (E7/K;2) bo(Ea/K;60)by (E3/K;2)
both projections of G¢(¢) on the two factors GLa(Fy) contain SLa(F;). Under this hypothesis,
the proof of [71, Proposition 1] shows that G¢(¢) contains SL(F¢)? unless £2 | by(Ey x E2/K;?2).
Finally, a closed subgroup of GL2(Z)? whose projection modulo ¢ contains SLo(IF¢)? contains all of
SLo(Zy)?, if £ > 5 (this is well-known; see for example [113, Proposition 4.2]). O
Corollary 2.7.2. The inequality

[T ¢ < 30b0(E1/K;60)b0 (EF/K;2) bo(E2/K;60)bo (E5/K;2) bo(Ey x Ea/K;2)
LepP
holds.

Let now ¢ be a prime different from 2 and 3. For j = 1,2 set
Dj(00) = bo(Ej/K;120)°bo(E7 /K 2).
As { is odd, by corollary 1.7.6 we see that Gy ; contains
By (16vg(Dj(oo)) + 12) ,
hence the same is true for Hy ;, cf. remark 2.6.1. Therefore — in the notation of the previous section
— we can take n; = n;(¢) = 16v,(D;(c0)) + 12. On the other hand, for £ = 3 we apply theorem
1.7.5 directly to E;/K3 (notice that our present K33 satisfies the same hypotheses as the field noted

K3 in chapter 1) and see that we can take
n;j(3) = 16vs (bo(E/K3)°bo(E?/K3)) + 12 < 16v3(D;(0)) + 12;
similarly, for £ = 2 we can take n;(2) = 48v; (bO(Ej JK2)bo(E2/Kz) ) + 38,
Applying proposition 2.6.5 with these values of n; we get:
Lemma 2.7.3. Let ¢ be a prime. The group Gy contains Be(f(£), f(€)), where f(£) is given by
F(0) = 2v(bo(Er x Ep/K;2-48%)) + 2'%max {vy(D1(00)), ve(D2(00))} + 10°
for odd £ and
£(2) = 6v2(bo( By x Ez/K3)) + 10° max {va (bo(E;/K2)°bo(E2 /K3)) } + 10*
for £ =2.

Using the very same argument as in chapter 1 (paragraph 1.8), and some very crude estimates, we

deduce

Proposition 2.7.4. G, contains a subgroup S of the form S = [], S, where each S; coincides
with SLa(Z)? except for the finitely many primes that are in P, for which Sy = By(f({), f(£)). The
index of S in SLa(Z) is bounded by b(E; x Ey/K;2 - 48%)12000

We finally come to the adelic estimate for an arbitrary number of curves:

Theorem 2.7.5. Let Fy,...,E,, n > 2, be elliptic curves defined over K, pairwise non-isogenous
over K. Suppose that End(E;) =Z fori=1,...,n. Then G has index at most

(8¢ [ - Q) maxh (Br x By/K;2-482) P00
1#]
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m
{(wl, ceey ) € GLQ(Z)” ‘ det z; = det z; Vi,j} )

Proof. The exact sequence

) ot A
1—>GOODSL2(Z)”—>GOOH>ZX—> — -1
det opo Gal(K /K)
A
and the fact that — < [K : Q] (cf. proposition 1.8.1) show that it is enough to
det opo, Gal(K /K)

prove that the index of Goo N SLy(Z)" inside SLy(Z)" is bounded by
(SC2)™ ™) max b, x By /I 2 482)5900m0)
i#j
Set G = G N SLQ(Z). For every pair F;, E; of curves, we get from proposition 2.7.4 a subgroup
S(3) of
SLy(Z CHAut Ty (B xHAut Tu(E;))

that satisfies all the requirements of Corollary 2.3.3, and the theorem follows from this corollary
upon noticing that the index of S in SLy(Z)? is bounded by b(E; x E;/K;2 - 482)12000, O



Chapter 3

Abelian surfaces & GLo-varieties

3.1 Introduction

The purpose of this work is the study of Galois representations attached to abelian surfaces over
number fields. Throughout the chapter, the letters K and A will respectively denote a number field
and a 2-dimensional abelian variety (‘surface’) defined over K, and the letter ¢ will be reserved for
prime numbers. The representations we examine are those given by the natural action of Gal(K /K)
on the various Tate modules of A (denoted by T;(A)), and the problem we study is that of describing
the image Gy~ of Gal(K/K) in Aut (T;(A)).

In a sense that will be made precise shortly, we aim to show that this image is as large as it is
permitted by some ‘obvious’ constraints, as soon as ¢ exceeds a certain bound ¢y(A, K) that we
explicitly compute in terms of arithmetical invariants of K and of the semistable Faltings height of
A (denoted by h(A)). Note that this fact, in its qualitative form, has been known since the work
of Serre [118] and Ribet [109]: the novelty of the result we present here lies in its being completely
explicit. Indeed, to the best of the author’s knowledge, before the present work the only paper
dealing with the problem of explicit surjectivity results for Abelian surfaces was [48], that only
covered the case Endz(A) = Z. Unfortunately, the argument of [48] seems to contain a gap, for
in his case analysis the author does not include the subgroup of GSp,(F,) arising from the unique
4-dimensional symplectic representation of SLy (case 7 in theorem 3.3.2). This is essentially the
hardest case, and dealing with it requires nontrivial results of Raynaud on the structure of the
action of inertia.

Before stating our main result let us elaborate a little on the ‘obvious’ conditions that are imposed
on Gye. On the one hand, the compatibility of the Galois action with the Weil pairing (-, ) forces
Gy to be contained in the group of similitudes with respect to the bilinear form (-, -); on the other
hand, the action of Gal(K /K) is also compatible with the action of Endg (A), so that we also know
that Gy is contained in the centralizer of Endx (A) inside Aut(7y(A)).

This second condition leads naturally to classifying abelian surfaces according to the structure
of Endz(A). A study of those rings that appear as endomorphism rings of abelian surfaces (a
particular case of the so-called Albert classification, cf. for example [86, p. 203]) leads to the

conclusion that only five cases can arise:

63
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1. Type I, trivial endomorphisms: A is absolutely simple and End(A) = Z;

2. Type I, real multiplication: A is absolutely simple and Endz(A) is an order in a real quadratic
field;

3. Type II, quaternionic multiplication: A is absolutely simple and Endz(A) is an order in a

quaternion division algebra over Q;

4. Type IV, complex multiplication: A is absolutely simple and admits complex multiplication
by a quartic CM field;

5. Non-simple case: Ay is isogenous to the product of two elliptic curves.

We focus here on the first three possibilities. The case of complex multiplication (in arbitrary
dimension) is treated in chapter 5, and that of a product of an arbitrary number of elliptic curves
without complex multiplication is studied in chapter 2; combining these results, it should also be
possible to treat the case of a product of two elliptic curves E; x Fo, where F; admits complex

multiplication and Es does not.

3.1.1 Notation and statement of the result

We are interested in the Galois representations attached to A: the natural action of Gal(K /K) on

the Tate modules Ty(A) gives rise to a family of representations
pe : Gal(K /K) — GL(Ty(A))

which will be our main object of study. We will also need to consider the residual mod-£ represent-
ations, which we similarly denote by py : Gal(K/K) — GL(A[{]), and we write Gy~ (resp. Gy) for

the image of pyos (resp. py). Most of our estimates will be given in terms of the following function:

Definition 3.1.1. Let K be a number field and A be an abelian variety of dimension ¢ defined
over K. Let a(g) = 2'%3 and define

b(A/K) = b([K : Ql,g,h(4)) = ((149)°*" [K : Q) max (h(4), log[K : Q],1)*)

We are now ready to state our main results. Let A/K be an abelian surface, R be its endomorphism

a(g)

ring Endz(A), and ¢ be a rational prime.

Theorem 3.1.2. Suppose that R = Z. The equality Gy = GSp4(Z¢) holds for every prime £ that
is not divisible by any place of bad reduction of A, does not ramify in K, and is strictly larger than
b(4-1920[K : Q], 4,2h(A))Y2.

Remark 3.1.3. As it is remarked in chapter 4 (cf. especially remark 4.5.3), the good reduction
assumption can be weakened to the assumption that A has semistable reduction at least at one
place of K of characteristic £. Furthermore, by the techniques of that chapter, the bound can be
improved to b(4[K : Q],4,2h(A))"/*, cf. remark 3.3.20.

For the case of real multiplication, we treat the more general situation of abelian varieties of GLs-
type, namely those abelian varieties A/K such that Endz(A4) ® Q is a totally real number field

whose degree over Q equals dim A (such varieties were considered by Ribet in [109]):
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Theorem 3.1.4. Let A/K be an abelian variety of dimension g. Suppose that R = Endz(A) is
an order in a totally real field E of degree g over Q and that all endomorphisms of A are defined
over K. Let £ be a prime unramified both in K and in E and strictly larger than both b(A/K)9 and
b(2[K : Q],2dim(A), 2h(A))"/2: then we have

Gy = {JU € GLy (OE®Z3) ‘ detoEI € Z?}

The case of abelian surfaces with real multiplication then follows as an immediate consequence:

Corollary 3.1.5. Suppose that R is an order in a real quadratic field E and that all endomorphisms
of A are already defined over K. Let £ be a rational prime, unramified both in K and in E and
strictly larger than b(2[K : Q], 4, 2h(A))Y/2: then we have

G = {x € GL2 (O ® Zy) ’ deto, x € ZZX}.

Remark 3.1.6. When A is a surface, the group Hys~ := {:c € GL2 (O ® Zy) ‘ detp, x € Z?} ap-
pearing in this statement admits a concrete description as follows. When £ is split in ¥, Op ® Z; is
isomorphic to Zy @ Zy, and Hy~ = {(hl, ha) € GLa(Z¢)? ‘ det h; = det hg}. If, on the other hand, ¢
is inert in E, then Op ® Zy is a domain that contains a canonical copy of Z; (namely Z ® Zy), and
we have Hypo = {z € GLo(Op ® Zy) ‘ detz € Z; }, where now det is the usual determinant (since
Op ® Zy is a domain). More generally, if A is of dimension g, then

Hpo = (z3) € [[GL2(O)) | detzy, =detay, € Z] VYA, M| L},
A2

where the product runs over the places of E dividing .

Theorem 3.1.7. Suppose R is an order in an indefinite quaternion division algebra and let A be
the discriminant of R. Suppose furthermore that all endomorphisms of A are already defined over
K. If 0 is larger than b(2[K : Q],4,2h(A))'/2, does not divide A, and does not ramify in K, then
Gpoo = (R@Z[)X.

Remark 3.1.8. Note that in the case of real and quaternionic multiplication we demand that the
endomorphisms of A be defined over K, but this is not a severe restriction. Indeed, this condition
can be achieved by passing to a finite extension K’ of K, and when A is a surface it is known that
K'/K can be taken to be of degree at most 2 for the case of real multiplication ([129, Proposition
4.3]), and at most 12 for the quaternionic case ([25, Prop. 2.1]); more complicated (but still explicit)
bounds on the degree K'/K are also available in case A is of GLo-type, cf. again [129].

Replacing K with K’ corresponds to killing the group of connected components of Gy, i.e. to
demanding that the image of Galois be connected. Analogous results (with slightly different bounds)
could be stated without this assumption, at the cost of replacing Gy by its identity component in

the conclusion.

Before moving to the proofs of the three main statements a few more comments are in order.
Consider first the hypothesis that ¢ does not lie below any place of bad reduction of A: without any
assumption on A, this condition cannot be turned into an inequality only involving h(A). Indeed,

the set of primes dividing the places of bad reduction of A/K is not stable under extensions of
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scalars, so it cannot be controlled just in terms of the stable Faltings height: this is really an
arithmetical condition that is hard to avoid. On the plus side, the primes which fail to meet this
restriction are often easy to determine in practice, especially when A is explicitly given as the
Jacobian of a genus 2 curve.

Also note that in many intermediate lemmas we give estimates in terms of the best possible isogeny
bound (cf. section 3.2.2), thus avoiding to use the specific form of the function b(A/K). However,
in order to make the final results more readable, we have chosen to express them in a form that

only involves the function b; this also has the merit of giving completely explicit bounds.

Let us also briefly review previous work in the area. As already mentioned, Serre [118] proved that
for a large class of abelian varieties (that includes surfaces with End(A) = Z) there exists a number
01(A, K) such that Gyeo = GSpgqim 4(Z¢) for every ¢ larger than ¢;(A, K); his result, however, is
not effective, in the sense that the proof does not give any bound on ¢;(A, K). Similarly, Ribet
proved in [109] an open image result for abelian varieties of GLa-type that includes surfaces with
real multiplication as a particular case, but that is again non-effective. The case of quaternionic
multiplication was treated independently in [93] and in [45] by extending the techniques Serre used
to prove his celebrated open image theorem for elliptic curves in [116], but once again these results
were not effective. Finally, it is only fair to also mention the results of Dieulefait who, in [24],
gives sufficient conditions for the equality Gy = GSp,(Z¢) to hold at a prime ¢; the form of these
conditions, however, is again such that they do not yield a bound for the largest prime for which
the equality Gy = GSp,4(Zy) fails to hold. The treatment we give of case 7 of theorem 3.3.2, on the
other hand, has been inspired by Dieulefait’s paper.

To conclude this introduction let us give a brief overview of the organisation of the chapter and
of the proof methods. Theorems 3.1.2, 3.1.4, and 3.1.7 will be shown in sections 3.3, 3.4, and 3.5
respectively.

The main input for the proof in the case of trivial endomorphisms ring comes from group theory,
complemented by an application of some nontrivial results of Raynaud. After reducing the problem
to that of showing the equality Gy = GSp,(F,) for ¢ large enough, we recall the classification of
the maximal proper subgroups of GSp,(Fy) and proceed to show that each of them cannot occur
as the image of the Galois representation on A[/], at least for ¢ large enough. In most cases, this
follows from the so-called isogeny theorem of Masser and Wiistholz [70] [72] (theorem 3.2.2 below):
if the residual representation Gy is small, then the Galois module A[¢] (or A[¢] x A[{]) is nonsimple,
a fact that gives rise to isogenies of high degree, eventually contradicting the isogeny theorem for £
large enough. In some exceptional cases, however, the representations A[¢] and A[¢] x A[{] can be
irreducible even if Gy is comparatively very small, and it is to exclude this possibility that we need

to invoke Raynaud’s results.

For the case of real multiplication our method is quite different from the one of [109]: by appealing
more to group theory, we can completely avoid appealing to Chebotarev’s theorem, which would

be the main obstacle in making Ribet’s method effective.

Finally, a general philosophy suggests that — at the level of Galois representations — an abelian variety
of dimension 2g with quaternionic multiplication by an algebra with center L should behave as an

abelian variety of dimension g admitting multiplication by L, and indeed the case of section 3.5 turns
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out to be the easiest, the argument being very similar to that for elliptic curves without complex
multiplication. More precisely, the Tate module decomposes as two copies of a 2-dimensional Galois
representation, and we can apply techniques that are an essentially straightforward generalisation
of those employed to show analogous results for elliptic curves, and that go back to Serre [116] (cf.
also [71]).

Finally, in appendix 3.6 we show how to bound the index of Endz(A) in any order in which it is

contained, a result that is needed in the course of the proof of theorem 3.1.4.

3.2 Preliminaries

We collect in this section a number of results that are essentially well-known and that will form the
basis for all our further discussion. Specifically, we recall a few fundamental properties of Galois
representations attached to abelian varieties and an explicit form (due to Gaudron and Rémond) of
the so-called Isogeny Theorem, first proved by Masser and Wiistholz in a seminal series of papers,
cf. especially [70] and [72].

3.2.1 Weil pairing, the multiplier of the Galois action

Recall that the choice of a polarization on A equips the Tate module Ty(A) with the Weil pairing,

a skew-symmetric, Galois-equivariant form
() : Ty(A) x Ty(A) — Ze(1),

where Zy(1) is the 1-dimensional Galois module the action on which is given by the cyclotomic
character x, : Gal(K/K) — Z;. The Weil pairing is known to be nondegenerate on A[{] as soon
as £ does not divide the degree of any given K-polarization of A. Note now that the degree of a
minimal K-polarization on A is at most b(A/K) by [28, Théoreme 1.1]: since all the bounds given in
the main theorem are strictly larger than this number, for the proof of this theorem we can restrict
ourselves to only working with primes that do not divide the degree of a minimal polarization, and

for which the Weil pairing is nondegenerate. We will therefore work under the following

Assumption. For all the primes ¢ we work with, the Weil pairing is nondegenerate on A[/].

The fact that (-,-) is Galois-equivariant means that Gy~ is a subgroup of GSp(Ty(A), (-,-)), the
group of symplectic similitudes of T;(A) with respect to the Weil pairing, which we will also simply

denote GSp(Ty(A)). After a choice of basis we can then consider Gy (resp. Gy) as being a subgroup
of GSp,(Z) (resp. GSp, (Fr)).

Our main interest in the Weil pairing comes from its relationship with the determinant (or, more
precisely, the multiplier) of the Galois action. Let us describe the connection. The algebraic group
GSp, is not simple, a fact which often makes it much easier to work with its normal subgroup Sp,
instead. To describe the mutual relationship between these groups, note that in general, if (-,-) is
a skew-symmetric form, the multiplier of a symplectic similitude A is the only scalar v(A) such

that (Av, Aw) = v(A){v,w) for every v,w. The association A + v(A) is then a homomorphism,
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whose kernel is the group Sp((-,-)) of symplectic isometries. In the case of Gal(K/K) we have an

exact sequence
1 — Sp(Ty(A)) — GSp(Ty(A)) = L, — L) [xe(Gal(K/K)) — 1,

so that in order to prove that Gy is all of GSp(7Ty(A)) it suffices to prove that Gy contains
Sp(Ty(A)) and that Gy 5 Z is surjective, i.e. that Gal(K/K) % ZX is surjective. This last
condition is very easy to check, and in fact the following lemma is all we will need to pass from
results on Sp(7y(A)) to results on GSp(7y(A)).

Lemma 3.2.1. Suppose { does not ramify in K. Then Gal(K/K) X Z; is surjective.
In particular, if Gy (resp. Gy ) contains Sp(A[f]) (resp. Sp(T¢(A))) and £ does not divide the
discriminant of K, the equality Gy = GSp(A[l]) (resp. Gy = GSp(Ty(A))) holds.

Proof. The claim is equivalent to the fact that for all n > 1 the equality [K(um) : K] = (L")
holds. It suffices to show that K/Q and Q(uen)/Q are linearly disjoint, and since the latter is
Galois it suffices to show that they intersect trivially. Now L := K NQ(uen) is a subfield of K, so ¢
is unramified in L, and is a subfield of Q(pn ), so every prime different from ¢ is also unramified in
L. Tt follows that L is unramified everywhere, that is, L = Q as claimed. The second statement is

immediate. O

3.2.2 The isogeny theorem

For future reference we introduce here the main tool that will make all the explicit estimates
possible. The crucial result is the isogeny theorem of Masser and Wiistholz [70] [72], in the following

completely explicit form proved by Gaudron and Rémond :

Theorem 3.2.2. (Isogeny Theorem, [28, Theorem 1.4]) Let b(A/K) be as in definition 3.1.1. For
every abelian variety A* defined over K that is K-isogenous to A, there exists a K-isogeny A* — A
whose degree is bounded by b(A/K).

It is very likely that the function b(A/K) of definition 3.1.1 is not the best possible one. Let us
then introduce another function by(A/K), which is by definition the best possible isogeny bound:

Definition 3.2.3. For A/K an abelian variety, let bg(A/K) be the smallest natural number such
that, for every other abelian variety B/K that is K-isogenous to A, there exists a K-isogeny B — A
of degree at most bo(A/K). Also let bo(A/K;d) = max(gr.xj<abo(A/K’), where the maximum is

taken over the finite extensions of K of degree at most d.

It is clear that the isogeny theorem implies that bg(A/K) and by(A/K;d) are finite, and that
bo(A/K;d) < b(d[K : Q],dim A, h(A)). Whenever possible, we will state our results in terms of
bo instead of b. In some situations, however, in order to avoid cumbersome expressions involving

maxima we simply give bounds in terms of the function b.



Chapter 3. Abelian surfaces & GLo-varieties 69

3.3 Type I — Trivial endomorphisms

In this section we establish the surjectivity result under the assumption Endz(A) = Z. The
material is organized as follows: the first paragraph deals with classical results on the structure of
subgroups of GSp,(F), while in the second we collect information on the action of inertia that will
allow us to conclude that some exceptional subgroups of GSp,(Fy) cannot arise as images of Galois

representations. Theorem 3.1.2 easily follows, as shown in the last paragraph.

3.3.1 Group theory for GSp,(F)

We start by recalling a classical result describing subgroups of P Sp,(IFy) in terms of their action on

P3 (Fy). We will need a few definitions from classical projective geometry (cf. [41], p.7):

Definition 3.3.1. A hyperbolic (resp. elliptic) congruence is the set of all lines in P3(F,) that meet
two given skew lines, each defined over Fy (resp. two conjugate lines defined over Fyp2 but not over
[Fy). We call these two lines the axes of the congruence.

A parabolic congruence is the set of all lines tangent to a non-degenerate ruled quadric along one of
its rulings, forming a one-parameter family of flat pencils sharing one line, namely the ruling they

are tangent to. We call this line the axis of the congruence.

Mitchell proved in [78] the following classification (see also King’s article in [141] for a more modern

account of the result):

Theorem 3.3.2. Let { > 7. Every mazimal proper subgroup G of P Sp,(Fy) is of one of the following
types:

1. G stabilizes a point and a plane in P3(Fy);

2. G stabilizes a parabolic congruence;

3. G stabilizes a hyperbolic congruence;

4. G stabilizes an elliptic congruence;

5. G stabilizes a quadric and has a subgroup of index 2 isomorphic to GLa(Fy);
6. G stabilizes a quadric and has a subgroup of index 2 isomorphic to GUy(Fy);
7. G stabilizes a twisted cubic;

8. G has order at most 1920.

The following simple lemma partially reduces the study of GSp,(Fy) to the previous classification:

Lemma 3.3.3. Let { > 3 and G be a subgroup of GSp,(F¢) whose projective image PG contains
PSp,(Fy). Then G contains Spy(Fy).
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Proof. Consider the kernel G*=! of G = F, where v denotes the multiplier of a symplectic simil-

itude (cf. section 3.2.1). Suppose G¥=! is a proper subgroup of Sp,(FF;): then by [141, Theorem 2.8

on p. 36] the index [G : G¥~!] is at least £3. But if this is the case we have

| Spy(Fo)|
/3

contradiction. O

Gl =G w(G)] < (€ =1) <[PSpy(Fe)l,

It will prove useful to collate Mitchell’s classification with the description of the maximal subgroups
of Sp,(F¢) given in the spirit of Aschbacher’s theorem (cf. for example Tables 8.12 and 8.13 of [19]).
Among the geometrical classes introduced by Aschbacher we will only need to deal with Cy,Cs and
Cs. Recall that a subgroup G of Sp,(Fy) is said to be of class

e (q, if it stabilizes a totally singular or non-singular subspace;
e (o, if it stabilizes a direct sum decomposition of F? in subspaces of the same dimension;

e (s, if there exist a prime r and a subgroup of index r of G whose action on F;} is Fyr-linear

for a given Fyr-vector space structure on F%. More precisely, G is contained in
{A € Spy(Fy) | Jo € Gal (F¢r /Fy) : VA € Fpr Vo € F} A(w) = oc(N)Av},
and contains as a subgroup of index at most r the set

{A €G|VACFp,YoeF AQw) = )\AU} :

Let us consider what the various G’s in Mitchell’s list correspond to in an Aschbacher-type clas-
sification. Take G to be the maximal subgroup of Sp(4,F,) that lifts G. That the following
correspondence is indeed correct follows at once by comparing the indices of the various subgroups
in Aschbacher’s and Mitchell’s classification. Let us disregard case (8), which does not have much

geometrical content.

e (Cases 1 and 2 correspond to maximal parabolic groups stabilizing totally singular subspaces of
dimension 1 (the projective point) and 2 (the projective axis of the congruence) respectively,
so that G is of class C;. For case 2, note that every projectivity sends flat pencils to flat pencils
and intersections to intersections, so the axis of the congruence (which is the intersection of

all the pencils in the congruence) is sent to itself.

e Case 3 corresponds to a group of class Ce in Aschbacher’s classification. The same argument
as with the parabolic congruence shows that every element of G either fixes the axes of the
congruence or it interchanges them. Let H be the index-2 subgroup of those v € G that
fix both axes. These axes correspond to trivially-intersecting planes IIj,Ils in IF;}, and G is
contained in the stabilizer of the direct sum decomposition II;®Il,. The group H is isomorphic

to SLa(Fy) x SLa(FFy), where the two factors act separately on the two planes.

e (Case 4 concerns groups belonging to class C3, with » = 2: they admit a subgroup of index 2

isomorphic to SLa(F2), acting naturally on Ff 2 (Fj2)?.
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e (Case 5 corresponds again to class Co. This is most easily seen by giving an explicit realization

of the index-2 subgroup H of G- up to conjugation, we can take H to be

{(g (A?l)t> ac GLW},

so that (as it is immediate to check) H preserves the symmetric quadratic form whose matrix
0 Id

is Q = <Id 02). Note also that H is symplectic with respect to the standard form
2

Ids 0
of the decomposition of IF‘?‘ as direct sum of the two planes defined by the first (resp. last)

0 —-1Id .
( 2) . From this description it is immediate to see that G is contained in the stabilizer

two coordinates being 0.

e In case (6), G has a subgroup of index 2 that is compatible with an action of Fy2 on IFZ}, so by

definition it belongs to class Cs.

e Finally, groups pertaining to case (7) belong to the exceptional class S in Aschbacher’s clas-
sification. By [19], Table 8.13, such G’s are isomorphic to SLg(Fy).

From this analysis we deduce:

Lemma 3.3.4. Let G be a subgroup of GSp(4,Fy) such that G := PG is contained in P Sp,(Fy).

e If G is contained in a group of type (1), (2), (3) or (5) of Mitchell’s list, then G admits a

subgroup H of index at most 2 whose action on IF? 18 not irreducible.

e [f G is contained in a group of type (4) or (6) of Mitchell’s list, then G admits a subgroup H
of index at most 2 whose action on IF?‘ commutes with Fp2 (for a suitable structure of F;} as

Fy2-vector space).

e If G is contained in a group of type (8) then the subgroup of homotheties of G has index at
most 1920 (in G).

Proof. We just need to reduce the case of GSp,(F) to that of PSp,(F). Denote m : G — G the
quotient map. If G falls into case (1), (2), (3) or (5), then it admits a subgroup H of index at
most 2 that fixes a point or a line in P3(F,). This point (line) corresponds to a line (plane) in F}
that is fixed by any matrix in GL4(Fy) lifting an element of H. In particular this is true for every
element in the group H = 7~ '(H), which has index at most 2 in G (note that 7 is surjective, so
7 (G) s 7 (H)) = (G H)).

Next suppose G is contained in a group of type (4) or (6). Let 71 : Spy(Fy) — P Spy(Fy) be the
canonical projection and Gy = 7, *(G). The hypothesis G C PSp,(F,) implies that 71(G1) = (G):
every element of G lifts to an element of Sp,(F,). The group G; contains a subgroup H; of index
at most 2 that commutes with the action of Fp. Define H = 7~ (m;(H)). As before,

(G: H] = [n(G) : 7(H)] = [r1(Gy) : m(H1)] = [G1 : H] < 2,

and furthermore an element in H differs from an element in H; by a homothety, so H commutes

with Fy2 since this is true for H;.
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Finally, if G is of type (8) then the trivial group has index at most 1920 in G, so 7~ (Id) (which

consists entirely of homotheties) has index at most 1920 in G. O

To conclude this group-theoretic part we describe in some more detail the relationship between
subgroups of PSp,(Fy) and PGSp,(F,) and the structure of groups falling into case (7). We shall
need the following fact, which is well-known and can be found for example in [19] (Tables 8.13 and

8.14, column “Stabilizer”):

Lemma 3.3.5. Every mazimal subgroup of PGSp,(Fy) not containing PSp,(Fy) is an extension of
degree at most 2 of a proper mazximal subgroup of PSp,(Fy).

Definition 3.3.6. We shall say that a maximal subgroup G of PGSp,(F,) is of type n, with
1 < n <8, if G is an extension (of degree at most 2) of a maximal subgroup of PSp,(F,) of the

corresponding type.

For groups of type (7) we have the following precise description ([19, §5.3], especially Proposition
5.3.6); notice that the condition ¢ > 11 ensures the existence of maximal subgroups of PSp,(Fy) of
type (7), cf. [19, Table 8.13].

Lemma 3.3.7. Let £ > 11 be a prime, Go C PSp,(Fy) be a mazximal subgroup of type (7) and
G C PGSp,(Fy) a mazimal subgroup of PGSpy(F¢) containing Go as an index-2 subgroup. Then G is
isomorphic to PGLa(Fy), and for every g € G and for every v € GSp,(Fy) lifting g, the eigenvalues
of v can be written as pA}, uAIa, A1 A2, uA3, where A\ and Ay are the roots of a second-degree

polynomial with coefficients in Fy and p is an element of F.

Remark 3.3.8. This can also be deduced from completely abstract considerations: the unique irredu-
cible 4-dimensional representation of the algebraic group SLs is symplectic, so it gives an embedding
SLgy — Sp, with weights —3, —1,1,3. This representation extends to a map PGLy — PGSp,: it is
then not hard to see that this situation must correspond to case (7) above. The \;’s, i = 1,2, are

the eigenvalues of the 2 by 2 matrix corresponding to ~ in GLs.

3.3.2 The action of inertia

In this section [ denotes a prime of Ok of good reduction for A and Iy the tame inertia group at
[. Let £ be the rational prime below [ and e the absolute ramification index of [. We recall the

following well-known result of Raynaud:

Theorem 3.3.9. ([104, Corollaire 3.4.4]) Let V' be a simple Jordan-Hélder quotient of A[(] (as a
module over the inertia group at ). Suppose that V has dimension n over F,. The action of the

inertia group at | on A[l] factors through I;. Moreover, there exist integers ei, ..., ey, such that:
o V has a structure of Fyn-vector space
e the action of I on V' is given by a character ¢ : Iy — F,,

o =i .. .5, where @1, ..., are the fundamental characters of I; of level n
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o for everyi=1,...,n the inequality 0 < e; < e holds

In this section we only concern ourselves with the action of Iy on A[{]; in particular, by a Jordan-
Hélder quotient of A[¢] we implicitly mean “under the action of I;”.

Convention. There is of course a certain ambiguity in the numbering of the characters of level
n. We choose our numbering so that ¢; = (gpl)z'i_l for 7 = 1,...,n. Note that the norm, taken
from Fyn to Fy, of the character ¢; (hence of all characters of level n) is the unique fundamental
character of level 1. When ¢ is unramified in K, this fundamental character of level 1 is yy, the

cyclotomic character mod £.
Recall the following fact (a consequence of the definition of the fundamental characters):

Lemma 3.3.10. If ¢ : Iy — Fj, is any fundamental character of order n, then ¢ is surjective,

hence in particular its image is a cyclic group of order £™ — 1.

Corollary 3.3.11. Suppose £ is at least 5 and unramified in K, and let V' be an n-dimensional

Jordan-Hdélder quotient of A[l]. Then the following are the only possibilities:

e [ acts trivially
e [ acts through a fundamental character of order n

e [ acts through the product of two distinct fundamental characters of order n, where n > 3

(W) .. .cpr"(W) the
character giving the action of I} on W, where n is the dimension of W. The determinant of the

action of Iy on W' is the norm Ny, /g, (tpil(W) . ¢Z’E%)> = le(WH"'“Le"(W). Since the determinant

Proof. For any simple Jordan-Holder constituent W of A[f] denote by ¢y = ¢7

of the Galois action on A[/] is x7 by the properties of the Weil pairing, we must have
W)+-ten(W
H XZ1( ) en( )(

W Jordan-Holder
factor of A[(]

9) =x(9)* VgeI,

where the product is taken over a fixed Jordan-Holder filtration of A[¢] that contains V. Comparing
orders we deduce

> (er(W)+---+e,(W)) =2 (mod |x(I)]). (3.1)

W Jordan-Holder
factor of A[/]

Now since every e;(W) is at most 1 (as ¢ is unramified in K we have e;(W) < e(f) = 1) the left

hand side is at most Z dim(W') = 4, hence from the inequality 4 < ¢ — 1 = |x(I;)| (cf.

W Jordan-Holder
factor of A[/]

lemma 3.3.10) we deduce that the congruence of equation (3.1) must in fact be an equality, and

Yo (W) 4t en(W)) =2.

W Jordan-Hélder
factor of A[{]

In particular, taking again into account the fact that e;(V) < 1, the only possibilities for the
character giving the action of Iy on V are precisely those given in the statement. To see the
necessity of the condition n > 3 in the last case, note that for n = 1 there are no two distinct
fundamental characters and for n = 2 the product ¢1¢2 coincides with xy, so the action would

factor through F;* and the Jordan-Holder factor V' would not be simple. O
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Proposition 3.3.12. Under the hypotheses of the previous lemma, for every g € I; the multiset of

eigenvalues of pe(g) is one of the following (the superscript indicates the level of the characters):

1. el (968" (9), 8" (90057 (9). 5" (916" (9), 21 (91" ()}

2. {«p§3) 9)952(9), 057 (905 (9), 05 (9)01” (9), 1}

5. {o17 (9.4 (9). 7 (9), xelo) }

5. {cp?)(g),sog)(g)?xe(g), 1}

0. {Xf(g)v Xﬁ(g)a L, 1}

Proof. The multiset of eigenvalues of py(g) is the union of the multisets of values taken by the
characters that give the action on the simple Jordan-Hoélder factors of A[¢]. With this remark and
the previous lemma at hand the rest of the proof is just casework. The cases in the list correspond
to decompositions of A[¢] with simple Jordan-Hélder factors of dimensions respectively 4 (case 1),
3+1 (cases 2 and 3), 2+2 (case 4), 2+1+1 (case 5) and 1+1+1+1 (case 6).

Note that the multiset {<p§4)(9)90§,4)(9),90§4)(9)<p§4) (g),90§,4)(g)<p§4)(9),¢§4)(9)90§4)(9)}, which does

not appear in the above list, is actually the same as {9052) (9), gogz) (9), @52) (9), Lpgz) (g)} O

Remark 3.3.13. In cases 1 through 3 the inertia group I; contains at least one g such that the set
of eigenvalues of p¢(g) is contained neither in F; nor in ]FZQ: otherwise, the action of I; on each
Jordan-Holder quotient of A[{] would factor through Fj; and there would be no simple Jordan-

Holder quotient of dimension at least 3.

We deduce the following technical result which will come in handy later:

Proposition 3.3.14. Suppose ¢ is at least 11 and unramified in K: then PGy is not contained in
a group of type (7).

Proof. Suppose on the contrary that PGy is of type (7). By lemma 3.3.7, for any g € Gal(K/K)
the eigenvalues of py(g) are of the form { pa, pa?d, pad?, ,ud3} for certain a,d € FKXQ and p € F).
This applies in particular to the tame inertia group I: for every g in Ij, the eigenvalues of p;(g) lie

in IE‘ZQ, and — taken in some order A1, Az, A3, Ay — they satisfy the system of equations
MAL = Aads, Aods = A3, Mg = AJ. (3.2)

We will now go through all the cases listed in proposition 3.3.12 and see that (for a suitably chosen
g € Iy) there is no way to renumber the multiset of eigenvalues of py(g) in such a way that the three
equations above are all satisfied together, a contradiction that shows the result. Remark 3.3.13
implies that cases 1 through 3 do not happen (since we have just seen that the eigenvalues of every
pe(g) are in Fj). Next we consider case 6. Note that the condition £ > 11 implies that the order
of xy is at least 10 (by lemma 3.3.10), so there exists a g € I; with x,(g) # +1. Consider equations
(3.2) for this specific g. If either Ay or A3 is 1, then one of the last two equations reads x¢(g)% = 1
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with d = 1 or 2, which contradicts x,(g) # 1,—1. But if neither Ay nor Az is 1 then the only
possibility is Ay = Ay = 1, Ay = A3 = x¢(g), which violates all of the three equations.

Likewise, in case 4 we can choose a g € I; such that cp(12) (g) is of order £? —1, and — independently of

. . . . @), \\? @, \2 ..
the numbering of the eigenvalues — from equations (3.2) we obtain (gol (g)) = ( 5 (g)) , which

¢ 2(6-1)
using g0g2) = (@&2)) implies (gogz) (g)) =1, a contradiction.

Finally, if we are in case 5, then taking the norm from Fj2 to Fy of the three equations (3.2) we find
that for all g € I there exists a positive integer d < 3 such that x¢(g)¢ = 1, which again contradicts
the fact that x,(;) has order at least 10. O

Remark 3.3.15. In chapter 4 we study in greater generality those maximal subgroups of GSpgg(Fg)
whose projective image is isomorphic to either PSLo(FFy) or PGLy(Fy), deducing results similar to
proposition 3.3.14 that hold in arbitrary dimension. The method of chapter 4 also requires much

less casework.

3.3.3 The surjectivity result

We are almost ready to prove theorem 3.1.2. The ingredients we are still missing are two isogeny
estimates, which form the subject of lemmas 3.3.17 and 3.3.18 below, and the following result due

to Serre:

Lemma 3.3.16. Let n be a positive integer, £ > 5 be a prime, and H be a closed subgroup of
Span(Z¢) whose projection modulo € contains Spy,, (Fy): then H = Spy,, (Zy). Likewise, let G be a
closed subgroup of GSpy,,(Z¢) whose projection modulo £ contains Spy,, (F¢): then G’ = Spy,,(Zy).

Proof. The first statement is [120, Lemme 1 on p. 52]. The second part follows from applying the
first to G = H': indeed, the image modulo ¢ of H' contains the derived subgroup of Sp,,, (Fy), which
(since £ > 5) is again Sp,, (Fy), and the claim follows. O

Lemma 3.3.17. Let A/K be an abelian variety of dimension g with Endy(A) = Z, and let ¢ be a
prime strictly larger than bo(A x AJK)Y?9. The centralizer of Gy inside End(A[l]) is Fy.

Proof. Suppose that the centralizer of G, inside End(A[{]) is strictly larger than F, and choose
an « lying in this centralizer but not in F,. Consider the abelian variety B = A x A and the
subgroup of B given by I' = {(z, ax) | z € A[f]}. Note that T' is defined over K: indeed any
g € Gal(K/K) sends (x, ax) to (pe(g)x, pe(9)ax) = (pe(g)z, a(pe(g9)x)) € T (since a commutes with
all of py(Gal(K/K))).

Let B* = B/T', 7 : B — B* be the natural projection and ¢ : B* — B be an isogeny in the opposite
direction satisfying deg(¢) < bg(A x A/K). The isogeny ¢ o of B kills I', and on the other hand by

b
the hypothesis End-(A) = Z it is representable as a matrix “ d) with a, b, ¢, d € Z. By definition
c

we must have ax + bax = cx 4+ dax = 0 for every x € A[f]. Suppose that one among a,b,c,d is
not divisible by £ (and for the sake of simplicity let us assume it is b): then a(z) = —b~laz for

every = in A[(], which shows that « is multiplication by an element of F,, contradiction. Therefore

C

2g
b
a, b, c,d are all divisible by ¢, and the degree of 1 o 7, which is <det <a d)) , is divisible by ¢49.
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On the other hand, the degree of 7 is |I'| = |A[f]| = £?9, so we deduce 29 < bo(A x A/K), which
contradicts the hypothesis. O

Lemma 3.3.18. Let A/K be an abelian variety of dimension g with Endy(A) = Z, and let £ be a
prime strictly larger than by(A/K). The Gy-module A[f] is irreducible.

Proof. Let £ be such that A[¢] is not irreducible and let H be a nontrivial subspace of A[¢] stable
under the action of Gy. As H is a proper Fy-subspace of A[¢] = Fgg , its order divides ¢29~1. Consider
now the abelian variety A* = A/H, which is defined over K (since H is); we know that there exists
a nontrivial isogeny ¥ : A* — A of degree at most by(A/K). Let m : A — A* be the canonical
projection, of degree |H| (which divides 297 !), and consider the composition W o7 : A — A. By
the hypothesis End(A) = Z this composition must be multiplication by m for a certain nonzero
integer m. Comparing degrees we see that m?9 = deg(¥) deg(n) < by(A/K)¢?9~1, and on the other
hand ¥ o 7 kills H (since this is true even for 7 alone), so mH = 0. Every nonzero element of H
has order ¢, so m must be divisible by ¢, which implies 29 < bo(A/K)?971 ie. £ <bo(A/K). O

Theorem 3.3.19. Let A/K be an Abelian surface with End(A) = Z. Let £ be a rational prime
that is not below any place of bad reduction of A. Suppose that £ does not ramify in K and is strictly
larger than b(2 - 1920[K : Q], 4, 2h(A))Y*: then G = GSpy(Zy).

Proof. By lemma 3.2.1 we just need to show that Gy contains Sp,(Z¢), by lemma 3.3.16 it is
enough to prove that Gy contains Sp,(F,), and by lemma 3.3.3 we are reduced to showing that PG/
contains P Sp,(Fy). Suppose the contrary: then PGy is contained in a group of one of the types (1)
through (8) of definition 3.3.6; by proposition 3.3.14, type (7) is excluded. Let K, ; be the quadratic
extension of K defined by

— PG, >
ker | Gal(K/K) — PGy — ,
' ( (K/K) © 7 (PG N PSpa(Fy))

and let H, := py (Gal(m/Km)). By construction, PH, is a proper subgroup of PSpy(Fy): in
particular, PH, is contained in one of the groups in Mitchell’s list, and we have already excluded
case (7). Hence by lemma 3.3.4 there is a subgroup J; of H; of index at most 1920 that either
admits an invariant subspace in A[¢] or commutes with an action of Fy,2, and by Galois theory
Jy corresponds to a certain extension Kyo/K,; of degree at most 1920. This extension Ky has
the property that p,(Gal(K;2/Kp2)) = Jp either admits an invariant subspace or commutes with
an action of Fy2: but this contradicts lemma 3.3.18 or 3.3.17 respectively, where we can safely
replace the function by by the function b thanks to theorem 3.2.2. This contradiction establishes
the theorem. O

Remark 3.3.20. By the methods of chapter 4 (cf. proposition 4.6.5) we can give a uniform bound
on the largest prime for which G can be of type (8): this has the effect of improving the bound to
b(4[K : Ql,4,2h(A))"/*, and with some more effort to b(2[K : Q],4,2h(A))"/4.
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3.4 Type I — Real multiplication

We consider now the case of GLa-varieties, which includes abelian surfaces with real multiplication
as a special case. Recall that an abelian variety A is said to be of GLo-type when it is absolutely
simple and End(A) is an order in a totally real number field E of degree equal to dim A; we shall
assume that this action is defined over K. For every £ we put Oy = O ®z Z,, and if X is a place of
E we let Oy be the completion of O at \. We have O) = H/\\f Oy, where the product is over the
places of E dividing ¢. An implicit convention will always be in force, that if A is a place of E then

¢ denotes its residual characteristic.

Definition 3.4.1. Following Ribet’s paper [109] we say that a rational prime ¢ is good for A if it
does not divide the index [Of : R].

As [Og : R] is finite, all but finitely many primes are good for A. It is a general fact that [Of : R]
can be bounded in terms of K and h(A), cf. appendix 3.6. We obtain from proposition 3.6.5 the

following fact, which enables us to assume that all the primes we work with are good:

Proposition 3.4.2. The index [Of : End(A)] is bounded by b ([K : Q],dim A, h(A))5™ 4. In par-

ticular, any ¢ strictly larger than this quantity is good.

From now on we only consider good primes — this only excludes a finite, explicitly bounded number
of cases. Notice that in the case of surfaces, in view of the last proposition and of the obvious
inequality b(2[K : Q],2dim A4,2kh(A))/2 > b(|K : Q],dim A, h(A))?, all the primes considered in
corollary 3.1.5 are good for A. For any good prime ¢ we have Ry := RR Zy; = Op ® Zy, and

furthermore

Proposition 3.4.3. ([109], Proposition 2.2.1) If ¢ is good for A, then Ty(A) is a free Ry-module of

rank 2; equivalently, it is a free Op-module of rank 2.

When £ is good and A is a place of E of characteristic £ we put Th(A) = Ty(A) ®p, Ox: this
makes sense since Oy = R ® Zy. The Galois action on Ty(A) is Oy-linear, and we thus obtain

canonical decompositions Ty(A) = H T\(A); the Op-linear morphism pye then amounts to a family
Nl
of Oy-linear maps

pree 1 Gal(K /K ) — GL(T\(A)) 2 GLs (Oy) .

We also have isomorphisms Aut Ty(A) = GL2(Op ® Z¢) = [ ], GL2 (Ox), and we regard the (-adic
Galois representation on Ty(A) as a group morphism
pre : Gal(K /K) — [ [ GL2 (Oy) .
¢

It is also natural to consider A-adic residual representations:

Definition 3.4.4. If X\ is a place of E above a good prime ¢ we write G for the image of the
residual representation modulo A, namely the image of the map p) given by the composition

Gal(K/K) "5 [] GL2 (05) — GL2 (05) = GL2 (O2/A).
V4
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The determinant of py~ is easy to describe:

Lemma 3.4.5. (/109], Lemma 4.5.1) For every A dividing a good prime, the function
%et pre : Gal(K/K) — O
A

agrees with x, : Gal(K/K) — Zj, the (-adic cyclotomic character.

Observe that for a good prime ¢ the ¢-adic representation lands in Aute, (TyA). If we regard Zj
as being embedded in Oy by the fact that the latter is naturally a Zs-algebra, the determinant of
pe=(g) with respect to O is an element of Zj, and the previous result (combined with lemma 3.2.1)

gives

Lemma 3.4.6. If { is good and unramified in K then deto, : Gyoo — Zj is surjective.

3.4.1 The intersection Gy~ N SLy(Oy)

The key step in proving the surjectivity of the Galois representation for ¢ large enough lies in
understanding the intersection Gy N SL2(Oy). A remarkable simplification of the problem comes
from the fact that we can limit ourselves to studying the residual mod-¢ representation instead of
the full f-adic system: this is made possible by the following ‘lifting’ result, analogous to lemma
3.3.16.

Proposition 3.4.7. ([113], Proposition 4.2) Let O be the ring of integers of a number field E,
AL, A2, ..., A distinct primes of O above £ and H a closed subgroup of SLa(Oy,) X -+ x SLa(Oy,)
whose projection to SLa(Fy,) X -+ x SLa(Fy.) is surjective. If £ is unramified in E and £ > 5,
then H s all of SLa(Oy,) X -+ x SLa(Oy,). Under the same assumptions on £, if G is a closed
subgroup of GLa(Oy,) x - -+ x GL2(O,,) whose projection to GLa(Fy,) X --- x GLa(Fy,) contains
SLa(Fy,) X -+« x SLa(Fy,), then G' = SLa(O),) X -+ x SLa(Oy,.).

Recall that we only work with good primes: concretely, this means that all the statements to follow

have the implicit hypothesis that ¢ is good for A.

3.4.1.1 A little group theory

We briefly review some group-theoretic results we are going to use. One is the following sufficient

criterion for a group to be a direct product:

Lemma 3.4.8. ([109], Lemma 5.2.2) Let S1,...,Sk (k > 1) be finite groups with no nontrivial
abelian quotients. Let G be a subgroup of Si x --- x Si such that each projection G — S; x S
(1 <i<j<k)is surjective. Then G =51 X --- X S.

We will also need the following version of [71, Lemma 5.1]; note that even though our hypotheses

are slightly different from those of [71] the same proof works in our setting as well.
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Lemma 3.4.9. Let £ > 5 be a prime, F be a finite field of characteristic £, and
D = {(b,V') € GLy(F) x GLy(F) | det(b) = det(t') € F, } .
Let H be a subgroup of D whose projections on the two factors GLa(F) contain SLo(F). Then either

H contains SLa(IF) x SLy(F), or there exist an isomorphism f :V — V' a character x : H — {+1}
and a (field) automorphism o of F such that

HC {(b, V) € GL(V) x GL(V') ‘ v =x((b,b))o (fbf’l)}.
Finally we will need a description of the subgroups of GLa(FFys) for g > 1:

Theorem 3.4.10. (Dickson, [12, Theorem 3.4]) Let p be a prime number, 5 a positive integer,
q = p?, and G a subgroup of GLa(F,). Then, up to conjugacy in GLa(F,), one of the following

occurs:

1. G is cyclic;
2. G is a sub the Borel vy FY.yeF,p;
. G is a subgroup of the Borel group 0 - ‘ r,z €EFFyelFyp;

3. G contains (as a subgroup of index 2) a cyclic subgroup of order u, where u divides ¢*> — 1;
4. G contains (as a subgroup of index 2) a subgroup consisting entirely of diagonal matrices;

5a. p? > 3, and there is an o € Nsg dividing B such that G is generated by SLy(Fpe) and by a

scalar matriz V' ;

5b. pP > 3, and there exist an o dividing B, a generator € of F;ﬂ (as a multiplicative group), and
an element b € F;ﬁ, such that G is generated by SLa(Fpe ), a scalar matriz V', and the diagonal
matriz diag (b, be); the subgroup generated by SLa(Fpa) and V is of type 5a, and has index 2
n G;

6. G/{£1d} is isomorphic to Sq X %, Ay X % or S5 X %, where % is identified with the

subgroup generated by a scalar matriz in GL2(F,)/ {£1d}.

7. G is not of type (6), but G/ {£1d} contains Ay x Z as a subgroup of indezx 2, and Ay as a

subgroup with cyclic quotient group; u% is as in type (6) with u even.

Definition 3.4.11. In cases (5a) or (5b) the number « will be called the level of the group G.

3.4.1.2 Isogeny estimates

Our strategy for obtaining explicit estimates is a variant of the approach of [71] — cf. especially
lemmas 3.1, 3.2 of op. cit. To ease the notation, when X is a place of E we identify Oy /A with F, for
a suitable ¢ = ¢f. Also recall that we have introduced the residual representation G in definition
3.4.4.

Lemma 3.4.12. Suppose G, fizes a subspace I of dimension 1 of Fg. Then £ < by(A/K).
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Proof. T is fixed by G and therefore defined over K. Consider the K-variety A* = A/T", which
comes equipped with a natural isogeny 7 : A — A* of degree |T'| = |F,| = ¢/. Choose a K-isogeny
P A — A of degree b < by(A/K). The composition @ o w is an endomorphism of A, so by
hypothesis it is given by a certain e € End(A) C Op. Now, as e kills I" and Ann(T") = A, we must
have A | e (that is, e belongs to A, where we identify a place with its corresponding prime ideal). It
follows that d := deg(e) = Ng/q (e)? (for this equality cf. [11], Chapter 5, Corollary 1.3) is divisible
by NE/Q(/\)2, which is just |Fy|? = ¢2/. Comparing degrees we have 2/ ‘ d = bt so ¢4 divides b
which, in turn, is at most by(A/K). O

Similarly, an easy variant of the argument of lemma 3.3.17 gives

Lemma 3.4.13. Suppose G is commutative. Then (% < by (AQ/K).

3.4.1.3 Explicit bounds: split primes

In this section we consider those primes £ that split completely in E. The group H; of the following
definition is the natural candidate for the image of py, for £ > 0: it is the largest (connected) group
whose elements are simultaneously symplectic isometries for the Weil pairing and contained in the

centralizer of the action of F.

Definition 3.4.14. Let ¢ be a prime that splits completely in E. We set

Hy = (ha)ye € [ GL2(O/N) | det(hy,) = det(hy,) € F) VA1, Aol 3,
A2

where the product is over the places of F that divide £.
Lemma 3.4.15. For any split prime £, the group Gy is contained in Hy.

Proof. The determinant of every p) agrees with the cyclotomic character (lemma 3.4.5), so any two

hy’s will have the same determinant. ]

With this notation, the bound we obtain is as follows:

Theorem 3.4.16. Let A/K be an abelian variety whose endomorphism algebra End(A) ® Q is a
totally real number field E of degree equal to dim A. Suppose that the action of F is defined over
K. If ¢ is a prime that does not ramify in K, is completely split in E and is strictly larger than
b(2[K : Q],2dim(A), 2h(A))'/2, then the equality Gy = Hy holds.

To make the notation lighter we introduce the following definition:

Definition 3.4.17. Let A/K be an abelian variety. We set
M(A/K) = b(2[K : Q],2dim(A), 2h(A))"/2.

Lemma 3.4.18. If ¢ is a rational prime larger than M(A/K) and X is a place of E above ¢, then
the group Gy contains SL(2,Fy).
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Proof. Let £ be a prime for which G does not contain SL(2,F,) and recall that we identify O,/
with I, for a suitable ¢ = ¢/. By the Dickson classification (theorem 3.4.10; cf. also [116, §2]) we
know that if G does not contain SL(2,F,), then the following are the only possibilities:

(I) Gy is contained in a Borel subgroup of GL(2,F,): by definition, such a subgroup fixes a line,
therefore ¢ < b(A/K) by lemma 3.4.12.

(II) G is contained in a Cartan subgroup of GL(2,F,): then ¢* < b (A?/K) by lemma 3.4.13.

(III) Gy is contained in the normalizer of a Cartan subgroup of GL(2,F,): let C be this Cartan
subgroup and N its normalizer. By the Dickson classification, the index [N : C] is 2, so the
morphism

G N

GyNnC C

induces a quadratic character of Gal(K /K). The kernel of this character is associated with

a field extension K'/K that satisfies [K' : K] < |N/C| = 2. By construction, the image of

Gal(K’/K') in Aut (A[)]) is contained in C, so applying lemma 3.4.13 to Ax+ we see that £

is at most b (A2/K")"? < b(2[K : Q],2dim(A), 2h(A))V/2.

Ty - G\ —

(IV) The projective image PG of G is a finite group of order at most 60: by lemma 3.4.12 we have
¢ < b(A/K"), where K" is the field associated with the kernel of Gal(K/K) — G, — PG\.

It is clear that G\ does not fall in any of the previous cases — and therefore contains SLa(F,) —
as soon as £ is larger than max {b(A/K),b (AQ/K)l/Q,b(AQ/K’)l/Q,b(A/K”)}. It is immediate to
check that this maximum is at most M (A/K). O

Corollary 3.4.19. Let £ be a rational prime that is unramified in K, completely split in E and
strictly larger than M(A/K). The group Gy equals GL(2,TF,) for every place A of E dividing £.

The final piece we need to prove theorem 3.4.16 is the following lemma:

Lemma 3.4.20. If ¢ > M(A/K) is totally split in E and does not ramify in K, and A1, A2 are two
places of E dividing £, then the projection Gy N SL(A[{]) — SL(Fy,) x SL(Fy,) is surjective.

Proof. Let £ > M(A/K) be a rational prime that is totally split in £ and A1, A2 be places of E lying
over £. As SLy(Fy) does not have any nontrivial abelian quotients for ¢ > 5, lemma 3.4.8 implies
that

GeNSL(A[f]) = [ [ SLa(Fy)
At

if and only if for every pair of different places A1, A2 of E above ¢ the projection of Gy N SL(A[{]) to
SLa(Fy,) x SL(F),) is surjective. Let

D = {(b,V') € GL(F),) x GL(F),) | det(b) = det(t)},

and assume that Gy — D is not surjective (this is even more general than the statement we actually

need). We want to derive a contradiction. Let f,x be the morphisms given by lemma 3.4.9 when
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applied to the image of Gy in D (the hypotheses of this lemma are satisfied thanks to corollary
3.4.19). Assume first that x = 1. Let I" be the subgroup of A[¢] given by

(2,5,0,...,0) € ADa] x Ao x [ AR | v = f(=)

YV
AEAL 2

and let A* = A/T'. Denote by 7 the canonical projection A — A* and let ¢ be an isogeny A* — A,
of degree b bounded by b(A/K), as guaranteed by theorem 3.2.2. The composition pom: A — A
is given by a certain e € O, and it kills I'. In particular, e must be divisible by both A; and As.
Indeed, e acts on A[\] via e, the class of e in F,, and via ey, the class of e in F),, on A[Ag]. If
x € A[\] is any element of order ¢, then fz has the same property (since f is an isomorphism), so

(e1,e2) - (x, fr) = (e1,e2f(x)) vanishes if and only if both e; and es do. We deduce
' = Nijg(Mide)? | Nijgle)® = deg(e) = b- [T] = bf?,

so £ < bY? < b(A/K)'2. On the other hand, if x is not identically 1, then its kernel defines a
quadratic extension K’ of K for which x o py, = 1, therefore applying the same argument to K’ we
deduce ¢ < b(2[K : Q],dim(A), h(A))/2. Tt is immediate to check that this number is smaller than
M(A/K), and the lemma follows. O

The main result of this section is now well within our reach:

Proof. (of theorem 3.4.16) Let ¢ be completely split in E, unramified in K and larger than M(A/K).
By the previous lemma we have GyNSL(A[(]) = [T, , SL2(F), and by surjectivity of the determinant
(guaranteed by lemma 3.4.6) this means Gy = Hy. O

3.4.1.4 Explicit bounds: non-split primes

Let ¢ be a prime unramified in E, and write [ [}, A; for its factorization in Op. Our next aim is to
show that, for every \; lying above ¢, the group G, contains SLy(F},).

Assume that ¢ > M(A/K) > 5, so that by lemma 3.4.18 we know that every G, contains SLa(Fy).
We set ; = [F), : Fy], and notice that 0P is the order of the residue field at A. The assumption that
G, contains SLy(F,) immediately implies that G, must be of type (5a) or (5b) in the notation of
theorem 3.4.10. Suppose first G, is of type (5a), generated (up to conjugation) by SLg (Fye;) and
by a scalar matrix V' = p - Id. Since the determinant of any element in G, lies in F;* we know that
det V = p? is an element of Fy, hence V2 € GL2(Fy). In particular, G, contains as a subgroup of
index 2 the group generated by SLa (Fye;) and V2, which is a subgroup of GLsa (Fye;). Furthermore,
if Gy, is of type (5b), then it contains a group of type (5a) as a subgroup of index 2. We thus

deduce:

Lemma 3.4.21. Let { > M(A/K), so that Gy, is of type (5a) or (5b). Let oy be the level of G, .
There exists an extension K' of K, of degree at most 4, such that — up to conjugation — the image
of px, : Gal(K'/K') — GLg (Fy,) is contained in GLg (Fye;).

Our aim is to show that — at least for ¢ large enough — the level a; must necessarily equal 5;, the

degree [Fy, : Fy]:
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Lemma 3.4.22. Suppose that, up to conjugation in GLa(Fy,), the group Gy, contains SLa(IFy) and
is contained in GLg (Fya;) for some a; < Bi. Then £ < by(A/K)Y/2.

Proof. For every place A of E above ¢ we can identify A[A] with F3, and for the factor A[)\]
the hypothesis allows us to choose coordinates in such a way that the image of py, is contained

GL3 (Fye; ). Consider now the subspace of A[{] given by

D= (2x) € [JAN = []FS | 2x € (Feei)?,2a =0 for A A
Al Al
Notice that, by construction, I' contains torsion points whose annihilator in End(A) is exactly
(\i), for example the point whose coordinates (in our basis) are (1,0) along the A;-component.
Furthermore, the subgroup I is Galois-stable: indeed, for any g € Gal(K/K) and every (z,) € T,

we have
(pA(9) - 2A)x, = Pr.(9) - T, € Fla,,
since both the coefficients of the vector x), and those of the matrix py, (¢g) lie in Fye;. It follows that
the abelian variety A’ = A/T is defined over K, and there are isogenies m: A — A’ (the canonical
projection, of degree £2%i) and v : A’ — A (which can be chosen to be of degree at most by(A/K)).
Notice now that ¢ o 7 is an endomorphism e € O of A, and it kills a point whose annihilator is
(A). It follows that (A) | e, so the degree of 1 o 7 satisfies
2B — Ng/q ()\)2 ‘ Ng/g (6)2 ‘ deg(Yom) = 2% degp < Emibo(A/K),

hence (2 < (2(Fi=) < py(A/K). The lemma follows. O

Combining the previous two lemmas we find

Corollary 3.4.23. Let { > M(A/K) be a prime number and X be a place of E above £. The image
of the representation py : Gal(K/K) — GLa(Fy) contains SLa(F)).

Proof. By lemma 3.4.21 we know that G is of type (5a) or (5b) in the sense of theorem 3.4.10.
Let a; be the level of Gy; it is clear that it is enough to show a; = ;. By lemma 3.4.21, passing
to an extension K’ of K of degree at most 4 we can assume that (up to conjugation) the image
of py, : Gal(K/K) — Aut A[)\] is contained in GLg (Fgo). The corollary then follows from lemma
3.4.22 (applied to A/K’) and the obvious inequality M(A/K) > b(A/K")Y/2 > by(A/K')/2. O

Lemma 3.4.24. Let A1, A2 be two places of O above the prime £ > 5. Suppose that £ > M(A/K):
then the image of Gal(K/K) b G, X Gy, contains SLa(Fy,) x SLa(Fy,).

Proof. By corollary 3.4.23 G, contains SLa(FF),) for ¢ = 1,2. Let S be the image of G in Gy, X G),,
and for the sake of simplicity write S; = SLa(Fy,) for i = 1,2 and set S = SN (S; x S2). The claim
of the lemma amounts to saying that S' = S; x Sy. Suppose that this is not the case: then by
Goursat’s lemma there exist normal subgroups Ny, Ny (of Sy, S3 respectively) and an isomorphism
@ : S1/N1 — S3/Ns such that S' projects to the graph of ¢ in S;/Ny x S3/N,. Comparing the
orders of S1/N; and S2/Ns (or, more precisely, their valuations at ) easily gives Fy, = F,,. We
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can then deduce from lemma 3.4.9 the existence of an isomorphism f : Fil — F?\Q, of a character
x : 8 — {£1}, and of an automorphism o of Fy, = F,, such that g» = x((g1,92))o (fg1.f~') for all
(91,92) in S. Assume first that x = 1: then the subspace

[':={(x)) € HIF‘% = HA[)\] ‘ Ta, = 0(fxy,), Ty =0 for A # Ai, Ao
At At

is Galois invariant, so the abelian variety A* := A/T" is defined over K. Let 7 : A — A* be the
canonical projection and ¢ : A* — A be an isogeny of degree at most by(A/K). Since I' contains
points whose annihilator is (A1 A2), it follows that ¥ o =: e € O must be divisible by both A; and
A2. Hence if 5 denotes the common degree [Fy, : Fg] = [F, : F¢] we have

0% = Npjg (MA2)® < dege = deg (1 o ) = (27 deg1p < (*°by(A/K),

whence ¢ < bo(A/K)'/? < M(A/K). If, on the other hand, y is not the trivial character, then the
kernel of Gal(K/K) — Gy — S % {£1} defines an extension K’ of K of degree 2, and repeating
the same argument over K’ we find £ < bo(A/K;2)Y/? < M(A/K). O

We are now ready to prove theorem 3.1.4, whose statement we reproduce here for the reader’s

convenience:

Theorem 3.4.25. (Theorem 3.1.4) Let AJ/K be an abelian variety of dimension g. Suppose that
R = End(A) is an order in a totally real field E of degree g over Q (that is to say, A is of GLo-
type) and that all endomorphisms of A are defined over K. Let £ be a prime unramified both in K
and in E and strictly larger than both M (A/K) and b(A/K)9: we have

Gy = {x € GLy (0E®Zg) ‘ det@Em GZ;}.

Proof. By lemma 3.4.24, the inequality imposed on £ guarantees that for every pair of places A1, Ay
of E lying above ¢ the image of
Gal(K/K)

Pr1 XPrg
M TN

GLQ (FM) X GL2 (F)\Q)

contains SLa(Fy,) x SLa(Fy,). Since a group of the form SLg(F)) has no nontrivial abelian quo-
tients (we can clearly assume ¢ > 5), lemma 3.4.8 guarantees that Gy contains ]y, SL2(F),
and proposition 3.4.7 then implies that Gy contains SLo(Op ® Zg). Since furthermore the map
deto,ez, : G — 2 is surjective by lemma 3.4.6 (notice that ¢ is a good prime by proposition
3.4.2) we conclude that Go contains {z € GLy (Op ® Zy) | detp, x € Z; }, hence it is equal to
it. O
Remark 3.4.26. It is not hard to show that when ¢ is large enough we have M (A/K) < b(A/K)Y,
in fact, g > 33 suffices.

The case of abelian surfaces follows at once:

Corollary 3.4.27. (Corollary 3.1.5) Let A/K be an abelian surface. Suppose that R = End(A)
is an order in a real quadratic field E and that all endomorphisms of A are defined over K. Let ¢

be a rational prime, unramified both in K and in E and strictly larger than b(2[K : Q], 4, 2h(A))'/2:

then we have

Gy = {a; € GLy (OE(X)Zg) ‘ det@E.T EZZ(}.
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Proof. Tmmediate from the previous theorem and the (easy) inequality M(A/K) > b(A/K)?. O

3.5 Type II — Quaternionic multiplication

In this section we establish the surjectivity result when the endomorphism ring of A, Endz(A), is
an order R in an indefinite (division) quaternion algebra D over Q, and the action of R is defined
over K. We let A be the discriminant of R.

We start by recalling a result from [6], cf. in particular Theorem 5.4 and the remarks preceding it.

Theorem 3.5.1. Let ¢ be a prime not dividing A. Suppose that ¢ does not divide the degree of a
fized K -polarization of A. There exists a Gal(K /K)-equivariant isomorphism

Ty(A) = Wy @ Wieo,
where Wyse is a simple Gal(K /K)-module, free of rank 2 over Z,, equipped with a nondegenerate,
Gal(K /K)-equivariant bilinear form
<~, '>QM : Wgoo X Wgoo — Zg(l).

Notation. We write Wy for Wyee /{Wss. Tt is a Gal(K /K)-module, free of rank 2 over F,.
Choosing bases for Wy and W, we have:
Lemma 3.5.2. If ¢ does not divide A then Gy can be identified with a subgroup of GLa(Fy) (acting

on Ms(Fy) on the right), and similarly Gy can be identified with a subgroup of GLo(Zy) (acting on
Ms(Zy¢) on the right).

In the light of the above lemma, we can consider G as being a subgroup of GLg(FFy), acting on le

as two copies of the standard representation.

Lemma 3.5.3. Suppose { does not divide A and is larger than b(2[K : Q], 4, 2h(A))Y/2. The group
Gy contains SLa(Fy) under the above identification.

Proof. This is a very minor variant of lemmas 3.4.12 and 3.4.13, so we only sketch the proof. If
Gy does not contain SLy(Fy), then Dickson’s classification (theorem 3.4.10) implies that one of the
following holds:

e (i is contained in a Borel subgroup: we can find a line I' C W, that is stable under the action
of Gy. Applying an obvious variant of the argument of lemma 3.4.12 to the isogeny A — %
we find /2 < b(A/K).

e The projective image of Gy has cardinality at most 60: by replacing K with an extension of
degree at most 60 we are back to the previous case, and therefore £2 < b(60[K : Q], 2, h(A)).

e Up to replacing K with an extension K’ of degree at most 2, Gy is commutative, but does not
entirely consist of scalars (this case being covered by the first one). We can choose an o € Gy
which is not a scalar, and apply a variant the argument of lemma 3.4.13 to the isogeny given

by the natural projection from A x A to its quotient by the subgroup
{(z1,y1,22,y2) e W @ Wy @ W, & Wy = A[l] x A[{] | 23 = a1 } .

The conclusion is now ¢2 < b(A%/K') < b(2[K : Q],4,2h(A)).
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Comparing the various bounds thus obtained we see that b(2[K : Q],4,2h(A))"/? is much larger
than any of the others, thus establishing the lemma. ]

Lemma 3.5.4. Suppose { is a prime that does not divide A, so that R ® Z; = Mo(Zy). Suppose
furthermore that £ does not divide the degree of a fized K -polarization of A. For any g € Gal(K/K)
the determinant of pe(g), thought of as an element of GLa(Z¢) (and not of GSp(Ty(A))), is xe(g)-

Proof. This is the same argument as for elliptic curves. If we fix a basis e1,e2 of Wy and write

a b
( ) for the matrix representing the action of py~(g) in this basis, we obtain
c

xe(g){er, e2)oum = (pe=(g)er, pe(g)e2)um
= (aey + cez, ber + dea)oumr
= ad(e1, e2) + be(ea, e1)Qm
= (ad — be){e1, e2)

and since (e, e2)gnr does not vanish we obtain x,(g) = (ad — bc) = det py(g) as claimed. O

Theorem 3.5.5. Suppose that every endomorphism of A is defined over K. Suppose furthermore
that ¢ does not divide A, does not ramify in K, and is strictly larger than b(2[K : Q], 4, 2h(A))Y/2.
Then Gy = (R® Zg)™.

Proof. As b(2[K : Q],4,2h(A))Y? > b(A/K), by [28, Théoreéme 1] we see that ¢ does not divide the
degree of a minimal polarization of A, so by theorem 3.5.1 we have well-defined modules Wye, W,
and a nondegenerate bilinear form (-, ).

By lemma 3.5.3 the inequality imposed on ¢ guarantees that Gy contains SLo(FFy). It follows that
Gy is a closed subgroup of (R ®z Zy)™ = GLy(Z,) whose projection modulo ¢ contains SLo(IFy).
Since we certainly have ¢ > 5, it follows from lemma 3.3.16 that Gy~ contains SLa(Z;). On the other
hand, the previous lemma and the condition that ¢ is unramified in K ensure that det : Gyeo — ZZX
is onto, so Gy = GL2(Z) as claimed. O

Let us make a few closing remarks on this case. It is a general philosophy that — at the level of
Galois representations — a variety of dimension 2g with quaternionic multiplication by an algebra D
(whose center is the number field L) should behave like a variety of dimension g and endomorphism
algebra L. The proof we have just given shows that this philosophy is very much correct in the
case of surfaces, and indeed from lemma 3.5.3 onward this is virtually the same proof as for elliptic
curves (cf. for example [71]). Even more precisely, write the bound we obtained for a surface in
the form b(2[K : Q],2dim(A),2h(A))Y/?; for an elliptic curve E/K without (potential) complex
multiplication, the Galois representation is surjective onto GLga(Zy) for every prime ¢ that does not
ramify in K and is larger than b(2[K : Q],2dim E, 2h(E))Y/? (cf. [71]), which is formally the same
expression. On the other hand, the actual numerical dependence of the present result on the height
of A is much worse than the analogous one for elliptic curves, due to the strong dependence of the
function b([K : Q],dim A, h(A)) on the parameter dim A.
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Remark 3.5.6. In the light of this discussion, the reader might suspect that the methods of chapter
1 might be generalized to give results on the index of the adelic representation attached to A. We do
not attempt this here, for doing so would entail giving a classification of the integral Lie subalgebras
of any Zs-form of sly: indeed, such algebras appear when we try to study the precise structure of
Gy for those ¢’s that divide A. The task of classifying such algebras seems rather daunting, given
that the easier problem of studying the Qy-forms of sly is already highly nontrivial.

3.6 The index of the endomorphism ring

Let A/K be an absolutely simple abelian variety. Its endomorphism ring R = Endz(A) is an order
in a finite-dimensional division algebra D over QQ, and we are interested in giving a bound on the
index of R in any maximal order Op containing it. Note that when D is a field there is a unique
maximal order, which is just the usual ring of integers, but when D is not commutative the index
[Op : R] might a priori depend on the choice of Op. The following proposition shows that this is

not the case:

Proposition 3.6.1. Let L be a number field, D a central simple algebra over L and R an order
of D. Let Op be a maximal order in D containing R. The index [Op : R] does not depend on the
choice of Op.

Proof. Note first that any maximal order of D is stable under multiplication by Oy, (indeed if S
is a subring of D then the Op-module generated by S is again a subring of D), so the order R’
generated by R and Op, is again contained in Op. We have [Op : R] = [Op : R'|[R’ : R], and since
[R' : R] clearly does not depend on Op we can assume that R = R/, i.e. that R is an Op-order.

Under this additional a,ssumption we have
OD &® O[
OD/R ~ @ v

R®Op, ’
v finite place of L ©Cr

so that [Op : R] = [], finite place of .IOp ® O, : R,], where R, = R ® Or,,. It is then clear
that Op ® Op, is a maximal order in Op ® L,, and that it is enough to prove that at every finite
place the index [Op ® Or, : R,] is independent of the choice of Op. We are thus reduced to the

local complete case, so Theorem 17.3 of [107] applies to give that all maximal orders in Op ® L,
covol(Ry)

covol(Op ® O,y,)
the covolume is taken with respect to any Haar measure (on Op ® L,): as the Haar measure is

are conjugated. We now write the index [Op ® Or, : R,] as the ratio , where

invariant under conjugation, this quantity does not depend on Op. O

In order to simplify matters it is convenient to assume that all the endomorphisms of A are defined
over K. This condition is completely harmless, since it can be achieved at the expenses of a

controllable extension of K:

Lemma 3.6.2. ([129, Theorem 4.1]) There exists a number field K', with [K’ : K| bounded only
in terms of g = dim(A), such that all the endomorphisms of A are defined over K'. We can take
[K': K] <2-(99)%.
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From now on we will therefore assume that all the endomorphisms of A are already defined over
K. In order to get estimates in the case of noncommutative endomorphism algebras we will need
the following lemma, which is essentially [143, proposition 2.5.4]: even though the latter was stated

only for commutative endormorphism rings, the same proof works in the general case as well.

Lemma 3.6.3. Let D be a division algebra, R C S be orders in D and A/K be an abelian variety
with Endg(A) = R. There exists an abelian variety B/K, isogenous to A over K, such that
Endg(B) 2 S.

Corollary 3.6.4. Let A/K be an Abelian variety with endomorphism ring R, D = R® Q, and Op
any mazximal order containing R. Suppose that all the endomorphisms of A are defined over K.
There exists an Abelian variety A'/K and two isogenies e1 : A — A’ e : A' — A, defined over K,
such that End(A’) = Op and

max {deg(e1), deg(e2)} < b(A/K).

Proof. Lemma 3.6.3 shows the existence of a K-variety A’ having Op as its endomorphism ring, so
the claim follows from [28, Theorem 1.4] (which is a symmetric version of theorem 3.2.2, bounding

degrees of minimal isogenies both from A to A’ and from A’ to A). O

We can now deduce the desired bound on [Op : R]:
Proposition 3.6.5. The inequality [Op : R] < b(A/K)d™e(D) holds.

Proof. Let A’,e1,e5 be as in the above corollary. Consider the following linear map:
¢: End(4) — End(4) < End(A4)
e — g90e€e0¢€y,
where the second embedding is given by the fact that R = End(A) is an order in D and Op is a
maximal order containing R. Note that End(A) is endowed with a positive-definite quadratic form
given by the degree. We consider End(A) and End(A’) both as lattices inside D = End(4’) @z R,
and observe that the degree map extends naturally to a positive-definite quadratic form on Dg. This
makes Dg into an Euclidean space, which in particular comes equipped with a natural (Lebesgue,
say) measure. Denote r the dimension of Dy, which is also the dimension of D as a Q-vector space.

As deg(e; o eg) = deg(ey) - deg(ez) for any pair of isogenies between abelian varieties, we have
deg(p(e)) = deg(eg 0 e 0 1) = deg(ey) deg(ez) deg(e) < b(A/K)? deg(e).

Extend ¢ by linearity to an endomorphism (which we still denote by ¢) of Dg and fix a deg-
orthonormal basis 71, ...,7, of Dr. By construction ¢(Op) C R, so that we have the inequality

1 covol(R) covol (p(Op))  det(p)covol(Op)
Op: R] = covol(Op) = covol(Op) ~ covol(Op)

= det(p).

,

Write ¢(v;) = Zaiﬂj with a;; € R for the matrix representing ¢ in the basis of the v;’s. Let
j=1

A(-,+) be the bilinear form associated with deg. Using the inequality deg(p(e)) < b(A/K)?deg(e)

we deduce

deg | 3 aiy; | = deg(ip()) < b(A/K)* deg(n) = b(A/K)* Vi=1,....m,
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SO

BAJ/K? 2 M D ayy, Y awy | =Y aijaiud(yi, ) =Y a5 Vi=1,...r:
J k Ik J
equivalently, the L?-norm of each row of the matrix (a;;) is bounded by b(A/K). Hadamard’s
inequality then gives
[Op : B] < det(p) < [ ] llaill 2 < b(A/EK)",
i=1

which is the desired estimate. O






Chapter 4

Abelian threefolds, and a glimpse into

the higher-dimensional situation

4.1 Introduction

Let K be a number field and A be a K-abelian variety. The aim of the present chapter is to study
the Galois representations attached to A, under the assumption that End(A) is Z and g = dim A
is an odd number greater than or equal to 3. More precisely, we are interested in the family of

representations
pree = Gal(K /K) — Aut(Ty(A)) = GLag(Ze)

arising (after a choice of basis) from the /l-adic Tate modules of A. We shall also consider the

residual mod-¢ representations
pe Gal(F/K) — Aut(A[E]) = Gng(Fg),

and write Gyeo (resp. Gy) for the image of pgeo (resp. of py). Under our assumptions, it is known by
work of Serre [118] that for all £ large enough (with respect to A/K) the equality Gy = GSpg,(Ze)
holds. Our aim is to explicitly find a bound ¢y (depending on A and K) such that, for all primes
£ > {o, the representation pye is onto GSpy,(Zy).

For technical reasons we need to impose an additional constraint on the dimensions g we take into
account. We say that the odd number ¢ satisfies condition (x) if the following holds (cf. definition
4.3.13 for the notion of class-S subgroups):

let ¢ > % (29 + 1)129 be a prime number, and let G be a class-S maximal subgroup of GSpQg(IF'g)
such that soc(PG) is a simple group of Lie type: then soc(PG) = PSLa(Fy).

Remark 4.1.1. Condition (%), albeit very unnatural, is at least not too severe a restriction: indeed
we can show that the set £ of odd numbers g that fail to satisfy it has density zero (theorem 4.10.1).
Furthermore, as it will be clear from sections 4.10 and 4.11, there is an algorithmic procedure that
allows us to decide whether a certain g has property (%) or not: we use this procedure to show
that () holds for all odd numbers in the interval 3 < g < 100 with the exception of 7,55 and 63
(proposition 4.11.3). Finally, it is very likely that condition (*) is not necessary for our results to

hold, but we are for now unable to get rid of it.

91
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To state our results more compactly we introduce the following functions:

Definition 4.1.2. Let K be a number field and A/K be an abelian variety of dimension g. We let
a(g) = 2'%? and define

a(g)
b(A/K) = b(K : Q], g, h(A)) = ((149)7" [K : Q] max (h(A), loglK : Q. 1)?) ",
b(A/K;d) = b(d[K : Q], g, h(A)),
where h(A) is the stable Faltings height of A.
Our first result is the following explicit surjectivity theorem:

Theorem 4.1.3. Let A/K be an abelian variety of dimension g and Gy be the image of the natural
representation ppo : Gal(K/K) — Aut TyA. Suppose that:

1. Endg(A) = Z;
2. g > 3 is an odd number satisfying condition (x);

3. there exists a place v of K, of good reduction for A and with residue field of order q,, such that
the characteristic polynomial of the Frobenius at v acting on TyA has Galois group isomorphic
to (Z/2Z)9 x Sy.

The equality Gy = GSpy,(Z¢) holds for every prime £ unramified in K, strictly larger than
maX{(2qv)2g'g’, b(A/K; g"), b(Az/K;g)1/2g}7
and such that there is a place of K of residue characteristic £ at which A has semistable reduction.

Furthermore, the term b(A%/K; g)'/?9 can be omitted from the mazimum, if g > 19.

In practice, it is usually very easy to find a place v as in the statement of theorem 4.1.3 (see for
example the explicit calculation of section 4.12 and the remarks preceding lemma 4.7.6); however,
in order to have a completely effective result we also need to show that the number ¢, can be
effectively bounded a priori in terms of simple arithmetic invariants of A/K. While unfortunately

we cannot do this for arbitrary g, for simple abelian threefolds we prove:

Theorem 4.1.4. (Theorem 4.9.17) Let A/K be an abelian variety of dimension 3 such that
Endg(A) = Z. Denote by NX/K the naive conductor of AJ/K, that is, the product of the prime
ideals of Ok at which A has bad reduction, and suppose that A[7] is defined over K.

o Assume the Generalized Riemann Hypothesis: then the equality Gypo = GSpg(Z¢) holds for

every prime £ unramified in K and strictly larger than (2q)*%, where
2 8 0 2
g = b(A2/K:3) (1og|AK/Q\ +log Nic/g (NA/K)) .
e Unconditionally, the same conclusion holds with
2
q = exp (cb(A2/K; 3)8 (log|AK| + log Nk /q (N/O}/K)) ) ,

where ¢ is an absolute, effectively computable constant.
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Remark 4.1.5. The condition that the 7-torsion points of A are defined over K is not very restrictive,

for it can be met by simply replacing K by K(A[7]), cf. remark 4.9.18.

Remark 4.1.6. Unpublished work of Winckler [144] shows that ¢ can be taken to be 27175010.
Furthermore, if A/K is a semistable abelian variety, then log N q (Ng / K> is bounded above by
[K : Q] (coh(A) + c1) for certain constants cg,c; depending only on [K : Q] and on dim A: this
result is stated and proved in [37] (see especially Theorem 6.5 of op. cit.) for abelian varieties over
function fields, but the same proof works equally well also over number fields (for a detailed proof

in the number field case see also [96, Theorem 1.1]).

To conclude this introduction let us describe the organization of this chapter. After two sections
of preliminaries (§ 4.2 and 4.3) we study the various classes of maximal proper subgroups G of
GSpQg(IFg), showing that — at least for ¢ large enough — G, cannot be contained in any such G.
This occupies sections 4.4, 4.5, 4.6, and 4.7, each of which deals with a different kind of maximal
subgroup. Next in §4.8 we prove theorem 4.1.3, while section 4.9 contains a proof of theorem 4.1.4.
In sections 4.10 and 4.11 we use representation theory (both in positive characteristic and over C)
to show that property () is typical, in that it is true for a set of of density 1 which contains in
particular all the odd numbers up to 100 with the only exception of g = 7,55,63. Finally, section
4.12 contains an example of an abelian threefold for which the previous theorems enable us to
establish explicit surjectivity results.

We say a few more words on the techniques used in sections 4.4 through 4.7. Three classes of
maximal subgroups (traditionally dubbed “imprimitive”, “reducible”, and “field extension” cases)
are dealt with in section 4.4 as an almost immediate consequence of the isogeny theorem of Masser
and Wiistholz [72] [70] (the completely explicit version we employ being due to Gaudron and
Rémond [28]). Other maximal subgroups of GSp,,(IF¢) are closely related to the image of the 2g-
dimensional projective symplectic representation of PGL2(F,), and in section 4.5 we show that, for ¢
sufficiently large, Gy cannot be contained in such a subgroup: this is obtained by comparing purely
group-theoretical information with Raynaud’s description of the structure of A[{] as a module over
the inertia group at a place of characteristic £. The same results of Raynaud are also used in section
4.6 to eliminate the possibility of Gy being a small “exceptional” (or “constant”) group: we obtain
a lower bound on |PG/| that is linear in ¢ (and essentially uniform in A), which — combined with
results of Larsen-Pink and Collins — shows that the exceptional case does not arise for £ larger than
a certain explicit function of g. Finally, the hardest case is that of GG; being contained in a “tensor
product” subgroup. In §4.7 we show how, given a place v as in hypothesis (3) of theorem 4.1.3,
one can produce a finite set of integers whose divisors include all the primes for which Gy is of
tensor product type; this is inspired by an argument of Serre [120], but his use of the characteristic
polynomial of Fr, is almost completely replaced by a direct study of the multiplicative relations
satisfied by its roots. These relations also form the main object of interest in §4.9, where we
exploit their simple form and the manageable structure of the subgroups of GO3(F,) to show how,
if dim A = 3, a careful application of Chebotarev’s theorem yields an effective bound on the residual

characteristic of a place v with the desired properties.



Chapter 4. Abelian threefolds 94

4.2 Preliminaries

4.2.1 The isogeny theorem

The result that makes all the explicit estimates possible is the following theorem, due to Masser
and Wiistholz [70] [72] and made explicit by Gaudron and Rémond [28]:

Theorem 4.2.1. (Isogeny Theorem, [28, Theorem 1.4]) Let A/K be an abelian variety. For every
abelian variety A* defined over K that is K-isogenous to A, there exists a K-isogeny A* — A whose
degree is bounded by b(A/K) (cf. definition 4.1.2).

It is very likely that the function b(A/K) of definition 4.1.2 is not the best possible one. Let us
then introduce another function by(A/K), which is by definition the optimal isogeny bound:

Definition 4.2.2. Let A/K be an abelian variety. We denote by bo(A/K) the smallest natural
number such that, for every other abelian variety B/K that is K-isogenous to A, there exists a
K-isogeny B — A of degree at most bo(A/K). We set bo(A/K;d) = max(g.x)<qbo(A/K'), where

the maximum is taken over the finite extensions of K of degree at most d.

It is clear that the isogeny theorem implies that bo(A/K) and by(A/K;d) are finite, and that
bo(A/K;d) < b(d[K : Q],dim A, h(A)) =: b(A/K;d). Whenever possible, we will state our results
in terms of by instead of b; in some situations, however, in order to avoid cumbersome expressions

involving maxima we simply give bounds in terms of the function b.

4.2.2 Welil pairing, Serre’s lifting lemma

Let AV be the dual variety of A and let (-,-) denote the Weil pairing on A x AY. We also let
Zy(1) be the 1-dimensional Galois module the action on which is given by the cyclotomic character
x¢ : Gal(K/K) — Z. For any choice of a polarization ¢ : A — AV, the composition

Ty(A) x To(A) 24 Ty(A) x Ty(AY) 20 7,(1)

equips the Tate module Ty(A) with a Galois-equivariant, skew-symmetric form which we still denote
by (-,-) and call the Weil pairing on Ty(A). By Galois-equivariance of (-, -), every element h of the
group Gy preserves the form (-,-) up to multiplication by a scalar factor (called the multiplier of
h), so Gy is in fact contained in GSp(7;(A) ®z, Q, (-,-)), the group of symplectic similitudes of
Tv(A)®z,Q, with respect to (-, -). Notice that the multiplier of & need not be an ¢-adic unit, whence
the need to tensor by Qy. Suppose however that ¢ does not divide the degree of the polarization
¢: then id X induces an isomorphism between Ty(A) x Ty(A) and Ty(A) x Ty(AY), from which
one easily deduces that the multiplier of every h € Gy~ is an f-adic unit. It follows that (for these
primes) Gy is a subgroup of GSp(T;(A), (-, -)), so, after a choice of basis, we can consider Gy~ as
being a subgroup of GSpa,(Ze).

Fix now (once and for all) a polarization ¢ of A of minimal degree. By [28, Théoréme 1.1] we see
that degyp < b(A/K), so (since we only work with primes strictly larger than this quantity) we
can assume that Gy is a subgroup of GSPQQ(Zg). Moreover, for such values of ¢ the Weil pairing
is nondegenerate on A[/], so for all primes ¢ > b(A/K) the group Gy is a subgroup of GSpy,(Fy).
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Combining this remark with the following well-known lemma, originally due to Serre, will allow us

to only consider the residual mod-¢ representation p; instead of the full ¢-adic system pyeo:

Lemma 4.2.3. Let g be a positive integer, £ > 5 be a prime and G be a closed subgroup of Spo,(Zs).
Suppose that G surjects onto Spoy(Fe) by reduction modulo £: then G = Spo,(Zy). Likewise, let H
be a closed subgroup of GSpy,(Z¢) whose reduction modulo £ contains Spy,(Fe): then H' = Spo,(Zy).

Proof. The first statement is [120, Lemma 1 on p. 52], cf. also Theorem 1.3 in [136]. The second
part follows by applying the first to G = H' and noticing that the reduction modulo ¢ of H' contains
the derived subgroup of Spy,(IF¢) which, for £ > 5, is Spy () itself. O

Corollary 4.2.4. Let £ > b(A/K): then Gy is contained in GSpy,(Fy). Suppose £ does not ramify
in K: then Gal(K/K) X% Z; is surjective. In particular, if £ > b(A/K) does not ramify in K, the
inclusion Sp(A[(]) C Gy implies Gy = GSpy,(Zy).

We conclude this section of preliminaries by underlining once more our working assumption that
£ does not divide the degree of a minimal polarization: this is a minor technical point, but it is

necessary for all of our discussion to make sense.

Assumption 4.2.5. In all the statements to follow, we make the implicit hypothesis that the prime ¢
does not divide the degree of a minimal polarization of A. In particular, this allows us to identifty
Gy (resp. Gy) to a subgroup of GSpy,(Fy) (resp. GSpay(Zy)).

4.3 Maximal subgroups of GSp,,(F/)

Thanks to corollary 4.2.4 we see that in order to prove theorem 4.1.3 it is enough to show that
the equality Gy = GSPQg(FZ) holds all ¢ larger than a certain explicit bound. It is therefore not
surprising that we may need a description of the maximal (proper) subgroups of GSp,,(Fy): the
core of our argument will consist in showing that — for ¢ large enough — G4 cannot be contained in
any proper subgroup of GSp,, (), and hence it has to coincide with all of GSpy,(F,). The purpose
of this section is to introduce some notation and state theorem 4.3.14, which gives precisely such a
classification of the maximal subgroups of GSp,,(F¢). Our main references for this section are [19]
and [49].

4.3.1 Group theoretical preliminaries

We now lay down some definitions and recall facts from finite group theory that will be needed in

what follows.

Definition 4.3.1. Let G be a finite group. The socle of G, denoted soc(G), is the subgroup of G

generated by the non-trivial minimal normal subgroups of G.

Definition 4.3.2. A finite group G is said to be almost simple if its socle is a non-abelian simple
group. In this case, if we let S = soc(G), we have S < G < Aut(S5), and S is a normal subgroup of
G.

Lemma 4.3.3. An almost simple group G does not possess non-trivial normal solvable subgroups.



Chapter 4. Abelian threefolds 96

Proof. Suppose a nontrivial normal solvable subgroup exists. Then the collection of such subgroups
is nonempty, and there is a minimal normal subgroup Ny of G that is solvable (a subgroup of a
solvable group is itself solvable). The definition of soc(G) implies Ny C soc(G), and moreover Ny is
normal in soc(G) since it is normal in G. By simplicity of soc(G) this forces Ny = soc(G); however,

the latter is simple non-abelian, hence in particular not solvable, contradiction. ]

Lemma 4.3.4. An almost-simple group has a unique non-trivial minimal normal subgroup, which

coincides with its socle.

Proof. Let N be a non-trivial minimal normal subgroup. We have N <soc(G), and as the latter is
simple this forces N = soc(G). O

Definition 4.3.5. Let S be a finite group. The group Inn(S) of inner automorphisms of S is

the image of the map
S — Aut(S)

S = S
g <<pg 1).
s~ gsg

The group Inn(S) is a normal subgroup of Aut(.S). The quotient Aut(S)/Inn(S) is called the group
of outer automorphisms of G, and is denoted by Out(.5).

Definition 4.3.6. A group is said to be perfect if it equals its commutator subgroup. If H
is a finite group we denote by H the first perfect group contained in the derived series of H;
equivalently,
H* =(HY,
i>0

where H® = H and HO+) = [H®, HO)],
Lemma 4.3.7. If G is almost simple we have soc(G) = G°; in particular, soc(G) is perfect.

Proof. This follows immediately from the fact that the outer automorphism group of a simple group
is solvable ([19, Theorem 1.3.2]). O

4.3.2 Definition of the classical groups

We now recall various standard constructions that are frequently used in the theory of finite matrix
groups. Let F' be a finite field of characteristic different from 2 and n be an odd integer. The group

of orthogonal transformations of F" is
GO, (F) = {z € Mu(F) | 2’z =1d} .
We also define the special orthogonal group SO, (F) = {:1: € GO, (F) ‘ detx = 1} and the group
of orthogonal similarities
CGOR(F) = {x € My(F) | 3\ € F* such that z'z = AId} .
Remark 4.3.8. These definitions also make sense for even n: in this case, however, there are two

non-isomorphic groups preserving two non-equivalent quadratic forms on F". We shall not need to

deal with this case.
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We shall also need to consider the groups €, (F):

Definition 4.3.9. ([19, p. 29]) Let n > 3 be odd: the group €, (F) is the unique subgroup of
SO, (F) of index 2.

Remark 4.3.10. The group Q,(F) is usually introduced as the kernel of the so-called spinor norm
SO, (Fy) — {£1}; the precise definition of the spinor norm, however, is somewhat convoluted, while
the simpler definition 4.3.9 is perfectly suitable for our purposes. Also notice that for any finite
field F' of odd characteristic the groups PQs(F) and PSLy(F') are isomorphic, cf. [19, Proposition
1.10.1].

Let now n be any positive integer. The standard symplectic form on F?" is
(,-y: FxF?r 5 F
(v, w) = vt Jw,

where J := antidiag(1,...,1,—1,...,—1). We can then introduce the group of symplectic trans-
———— N——

n n
formations,

Spon(F) = {x € My (F) | 2'Jz = J},
and the group of symplectic similarities
GSpy, (F) = {# € Man(F) | 3\ € F* such that z'Jz = AJ} .

Let Vi, V3 be two vector spaces over F'. The Kronecker product of g; € GL(V}) and g, € GL(V32)
is the endomorphism g1 ® g2 of Vi ®p Vo which acts as (g1 ® g2)(v1 ® v2) = (g1v1) ® (gav2) on
decomposable elements, for all v; € V; and vy € V. If G and H are subgroups of GL,,(F'), GL,(F)
respectively, we write G ® H for the quotient of G x H by the equivalence relation

(a,b) ~ (c,d) if and only if there exists A € F* such that ¢ = Aa, d = A7 1b.

The group G® H is in a natural way a subgroup of GL,,,, (F’), the inclusion being given by identifying
(9,h) € Gx H/ ~ with g®h € GLy,,,(F): the definition of ~ ensures that this identification is well
defined ([19, Proposition 1.9.8]).

Finally, whenever G is a subgroup of a certain linear group GL,(F), we write PG for the image of
G in the quotient PGL,(F) := G;an(ﬁ:i) We break this convention only for the groups PSL, (F)
and PGL,, (F'), which in homage to the tradition will be denoted simply by PSL, (F) and PGL,,(F).

4.3.3 Maximal subgroups of GSp,, (F/)

We are now in a position to recall the classification of the maximal subgroups of GSp,,, (Fy). For
simplicity of exposition, and since this is the only case we will need, we assume from now on that
both n and ¢ are odd. Before stating the classification theorem we need to define some of the

Aschbacher classes; we start with the notion of m-decomposition:

Definition 4.3.11. Let £ be an odd prime and m > 2 be an integer. An m-decomposition of Ff“

is the data of m subspaces V1,...,V,, of IE‘%”, each of dimension %‘, such that

e the restriction of the standard symplectic form of F%” to V; is either nondegenerate for every

1=1,...,m, or trivial for every i =1,...,m;
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o F{" =@, Vi

We can now define the first four Aschbacher classes; as the precise definition of class Cs is somewhat
complicated (cf. [19, Definition 2.2.5]), we shall limit ourselves to giving the property that will be

crucial to us.
Definition 4.3.12. A subgroup G of GSp,,, (F) is said to be:
1. reducible, or of class Cy, if it stabilizes a linear subspace of F?";

2. imprimitive, or of class Co, if there exists an m-decomposition Vi,...,V,, which is stable
under the action of G (i.e. for all g € G and for all i = 1,...,m there exists a j € {1,...,m}
such that gV; C Vj);

3. a field extension subgroup, or of class Cs, if there exist a prime s dividing 2n, a structure
of Fys-vector space on F2". and a subgroup H of G of index s such that H acts on IE‘%"

preserving the [Fys-structure;

4. a tensor product subgroup, or of class Cy, if there is a decomposition IF‘%” = Vi ® Vs (where
Vi1, Vi are Fy-vector spaces) and for each g € G there exist g1 € GL(V7) and g2 € GL(V3) for
which g = g1 ® ¢o.

We shall also have to deal with the exceptional class S:

Definition 4.3.13. (cf. [19, Definition 2.1.3]) A subgroup H of GSp,, (F,) is said to be of class S
if and only if all of the following hold:

1. PH is almost simple;
2. H does not contain Sps,, (Fy);
3. H® acts absolutely irreducibly on F?”.

A general philosophy (cf. for example [118], especially §3, or [24, Remark 2.1]) predicts that groups
in class S should come in two different flavours. On one hand, there should exist finitely many
groups G, ..., Gy that embed in GSpy,(Fy) for infinite families of primes ¢; we shall refer to these
as constant groups. On the other hand, if G is an algebraic group over Z admitting an irreducible,
symplectic representation of dimension 2n, then the corresponding embedding G < GSpy,, 7 should
give rise — for almost all primes £ — to a maximal subgroup G(F¢) of GSp,,(F¢). We shall refer
to groups arising in this way as groups of Lie type. We do not turn these notions into precise
definitions, but it will be clear from sections 4.6 and 4.10 that there are indeed two different kinds

of class-S subgroups, and that they need to be treated in different ways.

We are now finally ready to state the following classification theorem, essentially due to Aschbacher
(but see also [49] and [19]):

Theorem 4.3.14. (Aschbacher [5]) Let n be an odd integer, £ be an odd prime, and G be a mazimal
proper subgroup of GSps,, (Fy) not containing Sps,,(F¢). Then one of the following holds:
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~

. G is of class Cy;

S}

. G is of class Co, stabilizing an m-decomposition for some m > 2 dividing 2n;

o

G is of class C3 for some prime s dividing 2n;

. G is of class C4, and more precisely G is isomorphic to GSpsy,, (F¢) @ CGOy (Fy), where m
and t > 3 are integers such that 2mt = 2n (we call (m,t) the type of G);

B

5. G is of class S.

The proof of theorem 4.1.3 essentially consists in going through the list provided by theorem 4.3.14
to show that, for ¢ large enough, GGy cannot be contained in any proper maximal subgroup of
GSpo,(F¢), and therefore the equality Gy = GSpa,(Fy) must hold.

4.4 Reducible, imprimitive and field extension cases

Recall from the introduction that we denote by A/K an abelian variety of dimension g with
End#(A) = Z, and by G, the image of the representation py : Gal(K/K) — Aut A[¢]. At least for
¢ > b(A/K) we know from corollary 4.2.4 that Gy C GSpy,(Fy). Suppose now that G does not
contain Spy,(Fy): then Gy is contained in one of the maximal subgroups listed in theorem 4.3.14.
The following proposition shows that cases 1 through 3 of that theorem cannot arise for ¢ large

enough:

Proposition 4.4.1. Let G be a maximal proper subgroup of GSpQQ(IFg). Suppose G is
1. reducible: then £ < by(A/K).
2. imprimitive: then ¢ < bo(A/K;g!).
3. a field extension subgroup: then < by(A?/K;g)'/%9.

Proof. Replacing K with an extension of degree at most g! or g in cases 2 and 3, we can assume
that Gy stabilizes a subspace (cases 1 and 2), or that its centralizer is strictly larger than F;* (case
3). The claim then follows from lemmas 3.3.17 and 3.3.18. O

4.5 Groups of Lie type with socle PSLy(F/)

We now consider maximal class-S subgroups G of GSp,,, (F¢) that satisfy soc(PG) = PSLy(Fy).
There are two reasons why we single out this case: on one hand, it is not hard to construct (for all
n and most ¢) an explicit family of maximal subgroups of GSps,, (F/) having this shape, so this is
clearly a case we need to treat; on the other hand, as we shall show in section 4.10, for most values
of n this is in fact the only kind of class-S subgroup of Lie type of GSp,,, (F¢).

To see how such subgroups with socle PSLy(Fy) arise, denote by V; := IF‘% the definining repres-
entation of either GLg(FFy) or SLo(Fy), and consider, for every positive integer n, the (2n — 1)-th

symmetric power of Vi, which we denote by Va,_1; it is a symplectic representation of GLy(Fy)
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or SLy(Fy) respectively. Moreover, for ¢ > 2n this representation is absolutely irreducible ([19,
Proposition 5.3.6 (i)]), hence its image gives rise to a maximal class-S subgroup of GSp,,,(F/) with
socle PSLy(F,). We denote by

Oon—1 : GLQ(F@) — GSp(V2n—1) = GSan(Ff)

the representation thus obtained, and by Sa,—1 the image of GLa(Fy) in GSp,,,(F/). As the following

lemma shows, the group Ss,_1 is the only one we need to consider:

Lemma 4.5.1. ([19, Proposition 5.3.6 (i)]) Let £ > 2n be a prime number and let G be a mazimal
class-S subgroup of GSpy,,(F¢) such that soc PG = PSLy(Fy). Then (up to conjugation in GSp,y,, (Fr))
we have PG = PSy,_1.

We now turn to the application to abelian varieties. Suppose once more that A/K is an abelian
variety of dimension g with Endy(A) = Z, and suppose that for some prime ¢ > 2g the group
Gy is contained in a maximal class-S subgroup G of GSp,,(Fy) with projective socle PSLa(IFy).
By the previous lemma, we can assume PG = PSy,_1. In this situation, the assumption Gy C G
implies that for every h € G there exist a scalar A € F,* and an element M € GLy(FF,) such that
h = X-094—1(M). In particular, the eigenvalues of h are given by the (multi)set

A1 j=0,...,2g -1}, (4.1)

where u,v are the eigenvalues of M. Notice that the eigenvalues of M lie either in Fy or in its
(unique) quadratic extension, hence all eigenvalues of h are elements of Fyp2. We shall now show
that (for ¢ large enough) this description of the eigenvalues of h contradicts what is known about
the representation p; restricted to the inertia at ¢. More precisely, let [ be a place of K above the
prime £, let I; C Gal(K/K) be the inertia group at [, and write If for the tame inertia group at
[. Under a semistability hypothesis, the action of I; on A[/] factors through If, and is described by

the following theorem of Raynaud:

Theorem 4.5.2. ([104, Corollaire 3.4.4]) Suppose A has semistable reduction at [: then the wild
inertia subgroup of I acts trivially on A[l], so the action of I factors through If. Let V be a
Jordan-Hélder quotient of A[l] for the action of It. Suppose V is of dimension n over Fy, and let

e be the ramification index of | over £. There exist integers ey, ..., e, such that:
o VV has a structure of Fyn-vector space;
e the action of It on 'V is given by a character 1 : I[t —F.;
o =l ... ., where p1,...,pn are the fundamental characters of I} of level n;
o for everyi=1,...,n the inequality 0 < e; < e holds.

Remark 4.5.3. Raynaud’s theorem is usually stated for places of good reduction. However, as it was
shown in [61, Lemma 4.9], the extension to the semistable case follows easily upon applying results
of Grothendieck [30].
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Remark 4.5.4. By construction the fundamental characters of level n are surjective morphisms
It — F},. Moreover, the norm of a fundamental character of level n (taken from Fem to Fy) is
the unique fundamental character of level 1. If furthermore [ is unramified in K, then this unique

character of level 1 is xy, the cyclotomic character mod £.

Notation. For the rest of this section we suppose that £ is a prime for which there exists a place [

of K of characteristic £ at which A has either good or bad semistable reduction.

Let now Wi,..., Wy be the sequence of Jordan-Holder quotients of A[¢] under the action of I}, and
1, ..., be the corresponding characters as in Raynaud’s theorem. Also write n; = dim W; and

suppose, for the rest of the section, that ¢ is unramified in K.
Lemma 4.5.5. Every n; s at most 2.

Proof. Let W be any simple Jordan-Hélder quotient of A[¢] and let 1 be the associated character.
Suppose that the image of 1 is contained in F;k for a certain k > 1, and let ¢ be a generator
of Gal (Fy/Fy). Since the action of If on W can be diagonalized over Fy, we can find a vector
v € W®p,F e that is a common eigenvector for the action of If. The Fj-vector subspace of W @, F

o*~1v is by construction o-stable, hence it descends to a Fy-subspace W’ of

spanned by v, ov,...,
W, and it is clear by construction that W’ is also stable under the action of If. As W is irreducible
and W' is nontrivial we must have W’ = W, and since dim W’ < k we have dim W < k. In our
situation, we have already remarked that all the eigenvalues of every element of Gy lie in [Fy2, hence
in particular the same is true for the eigenvalues of the action of I[t. It follows that the image of
1 is entirely contained in Fj2, and the previous argument shows that W is of dimension at most

2. O

In view of Raynaud’s theorem and of the previous lemma, the only characters through which I, [t can
act on A[l] are the fundamental characters of level 1 and 2, along with the trivial character. Denote
by mq (resp. m1,ms) the number of Jordan-Holder quotients of A[¢] on which If acts trivially (resp.
through x, through one of the fundamental characters of level 2). As A[{] is of dimension 2g, the

dimensions of its simple Jordan-Holder quotients must add up to 2g, and so we have
mgy + my + 2meo = 2g. (4.2)

These three numbers also satisfy another numerical relation:
Lemma 4.5.6. Suppose £ > g+ 1 is unramified in K: then mg = mq.

Proof. Notice that since ¢ is unramified in K the exponents e; in Raynaud’s theorem are all either
0 or 1. Write 1, p2 = ¢f for the two fundamental characters of level 2. If W is a simple Jordan-
Holder quotient of A[/] of dimension 2, the action of z € If on W has eigenvalues ¢1(z) and ¢2(z),
hence its determinant is o1 (x)p2(z) = x¢(z). On the other hand, the determinant of the action on
1-dimensional simple quotients is either 1 (if the action is trivial) or x,(x) (if the action is through
x¢). It follows that

xe(z)? = det (pe(x) : A[f] — A[{]) = Hdet (pe(x) : Wi — W) = xo()™ xe(2)™  Va € I,
W;
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m

Le. x,
must have (¢ — 1) | m1 +mg — g. However, |m; 4+ mg — g| < g by equation (4.2), and since £ —1 > g

1HM279 = 1 on I{. Since ¢ is unramified in K, the order of the image of xy is £ — 1, hence we

by assumption the only possibility is m; + mg = g. Together with mg + mq + 2mgy = 2g this yields

mg = mq as claimed. ]

The next step is to show that in fact there are no inertia invariants if ¢ is sufficiently large with

respect to g:
Lemma 4.5.7. Suppose g > 3. If £ > g(2g — 1) + 1 is unramified in K, then mg = 0.

Proof. The previous lemmas imply that m; + ms = g > 3, hence we have max {mi,ma} > 2.
Suppose by contradiction that mg > 1. By definition of mg, m; and mg, for every z € I} the ei-
genvalues of pg(z) are {1, x¢(z), ¢1(2), ¢1(2)"}, with multiplicities given respectively by mqg, m1,ms
and ma. On the other hand, we know from (4.1) that the eigenvalues of p;(x) can be written as
{)\/ﬂul"*l*j ‘ 7=0,...,29 — 1} for some A € F)* and p,v € IFEXQ. Now for all z € I} the operator
pe(x) admits an eigenvalue of multiplicity at least 2 (since max {mj,ma} > 2) and it also has 1
among its eigenvalues (since mgy > 1): thus there exist two indices 0 < j; < j2 < 2g — 1 (depending
on x) such that A\p/tv29=1771 = \p72p2971772 and an index 0 < j3 < 2g — 1 (depending on z, and
not necessarily distinct from j1, j2) such that Ap/312971=73 = 1. These equations can be rewritten

as
(ufopr =1
A\ = H—j3,/j3—29+1 _ (M/V)—jsyl—Qg_
On the other hand, the fact that det ps(x) = x¢(x)? yields

2g—1

Ye(z)? = det py(z) = H (App2n13) = /\29(/“/)292—g7 (4.3)
j=0
and upon replacing A by (p1/v) 311729 we get xo(x)? = (u/v)929~17233) | Finally, raising both sides
of this equation to the (j; — j2)-th power and using (u/v)1 =72 = 1 we find
Xe(m)g(h—h) _ (M/V)g(jl—j2)(2g—1—2j3) =1,

which proves in particular that ord x¢(z) < g(j2 — j1) < g(2¢g — 1) for all z € If. But since ¢ is
unramified in K the image of | It is a cyclic group of order £/ —1 > g(2g—1): taking an z € I{ such

that x,(z) generates x,(I}) gives a contradiction, which shows that we must in fact have mg = 0. O

We have thus proved that for £ > g(2g — 1) + 1 we necessarily have mg = m; = 0 and mg = g. It

remains to show that this is impossible as well:
Lemma 4.5.8. Suppose £ > 2g is unramified in K : then we cannot have ma = g.

Proof. The proof is very similar to that of the previous lemma, so we keep the same notation. Let
x be any element of [ [t The assumption mg = g implies (by an obvious pigeonhole argument) that
we can find two indices 0 < j; < jo < 29— 1 such that jo —j; < 2 and A\pd 2971700 = \pd2p29— 172,
which implies (u/v)72771 = 1 and therefore /v = £1. Moreover there exists an index 0 < j < 2g—1

such that A\p/v297 177 = 1 (z), hence A9 = oy (2)?9029(1729), Equation (4.3) now implies

Xe(x)? = N9 (uv)? P97 = o1 ()9 (/v)?PI7Y = £ (),
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whence, using x,(z) = ¢1(2)p2(x) = 1(2)!, we see that ¢1(2)9¢~1) = £1 for all = € If. This
implies that the cyclic group ¢1(If) has order at most 2g(¢ — 1), but on the other hand (since ¢
is unramified in K) we know that |<p1(I[t)‘ = (2 — 1. This implies £ + 1 < 2g, contrary to our

assumptions. ]
Putting together the last three lemmas we have

Proposition 4.5.9. Suppose ¢ > 2g(g — 1) + 1 is a prime unramified in K and such that there is
at least one place | of K of characteristic £ at which A has semistable reduction. Then G, cannot
be contained in a mazximal class-S subgroup G of GSpay(F¢) with soc PG = PSLy(Fy).

4.6 Constant groups in class S

The analysis of the constant subgroups of GSp,,(F¢) is greatly simplified by the following theorems

of Larsen-Pink and Collins:

Theorem 4.6.1. (Larsen-Pink [60, Theorem 0.2]) For every positive integer n there exists a con-
stant J'(n) with the following property: any finite subgroup T' of GL, (k) over any field k possesses
normal subgroups I's C I's C I'y such that

(a) [T :T41] < J'(n);

(b) either T'y =Ty, or p := char(k) is positive and I'1 /Ty is a direct product of finite simple groups

of Lie type in characteristic p;
(c) T'y/T's is abelian, of order not divisible by char(k);
(d) either T's = {1}, or p := char(k) is positive and T's is a p-group.

(n+2), ifn>T71 S
Theorem 4.6.2. ([22, Theorem A]) One can take J'(n) = , which is
n*(n+2), ifn<T71
also optimal for n > T1. Furthermore, if in the previous theorem we restrict to fields k such that
(n+1) ifn>71
chark t (n + 1)(n + 2), then one can replace J'(n) by J(n) :=
n*(n+2), ifn<T7l
Remark 4.6.3. Collin’s theorem is in fact more precise and gives the optimal value of J'(n) also for
n < 71. Using this improved bound would not change our final result (theorem 4.1.3), and we have

therefore chosen to use the simpler expression given above.

Theorem 4.6.1 immediately implies:

Proposition 4.6.4. Let (,g be such that £ { (2g+1)(29+2). Suppose G C GSpy,(Fy) is a mazimal
subgroup of class S and satisfies PG| > J(2g): then the socle of PG is a simple group of Lie type

in characteristic £.
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Proof. Apply theorem 4.6.1 to G. Notice first that I's is trivial: indeed, I's is a solvable normal
subgroup of G, so PI'5 is a solvable normal subgroup of PG, which is almost-simple since G is of class
S. It follows from lemma 4.3.3 that PI'5 is trivial, so I's is a subgroup of the group of homotheties in
GLoy(F¢), which has order prime to ¢, hence I's = {1} as claimed. The same argument now shows
that I'y C IF‘Z -1d, for otherwise PT'y would be an abelian (in particular solvable) normal subgroup
of PG. This implies in particular that I'; and I's commute, and that P(T';T's) = PT';. Notice that
PT"; cannot be trivial, for otherwise we would have |PG| < J(2n)|P(T'1)| = J(2n), contradicting the
hypothesis; hence PI'; is a nontrivial normal subgroup of PG, so it contains soc(G). On the other
hand, the fact that 'y consists entirely of homotheties implies that P’y is a quotient of I'y /T,
hence in particular a direct product of finite simple groups of Lie type in characteristic /. Lemma
4.3.7 now implies that soc PG = (I';/T'2)™ is of Lie type in characteristic . O

Proposition 4.6.5. Let ¢ be a prime such that there is a place | of K of residual characteristic £
at which A has either good or bad semistable reduction. If £ is unramified in K and not less than
g+ 2, then |PGy| > € — 1.

Proof. We take the notation of section 4.5; in particular, we let W7,..., W) be the simple Jordan-
Holder quotients of A[¢] under the action of the inertia group I; (or equivalently, of the tame inertia
group If), and 11, ...,¥ be the characters associated with the W;’s by Raynaud’s theorem 4.5.2.
Let N be the order of |PGy|, and notice that for every y € Gy the projective image of y¥ is trivial,
that is, vV is a multiple of the identity, and in particular has a unique eigenvalue of multiplicity 2g.
Since for x € If the eigenvalues of py(z) are given by the Galois conjugates of the various ¢;(x),

this implies that for all 7,57 =1, ..., k, for all integers ¢ > 0, and for all x € I; we have
i)™ = ()N (4.4)

We now distinguish three cases:

1. At least one of the W;’s is of dimension > 2: without loss of generality, we can assume that
n = dim W is at least 2. Let v be the associated character. By Raynaud’s theorem, there
are integers €y, . ..,e,—1 € {0, 1} such that ¢ = 4,022201 eiéi, where ¢ is a fundamental character
of level n. Note that we cannot have e; = 1 for ¢ = 0,...,n — 1, for otherwise we would have
1 = xy¢, which contradicts the fact that Wi is of dimension n > 1 (cf. the proof of lemma
4.5.5). In particular, since for all integers ¢ > 0 the character 4,0” is a Galois conjugate of @,
replacing ¢ with cpgt for a suitable ¢t we can assume that e,_1 = 0 (notice that replacing ¢
with ¢° has the effect of permuting cyclically the integers e;, at least one of which is zero).
Now ¢ has exact order £ — 1, so ¢ = @ZEZJ ei" has order at least

E:_: 1 S E"n_—21' _ (e —})(ﬁ— 1) > (0—1),
dico @l X (et —1)
that is to say, there is an = € If such that () has order at least (¢ — 1). Consider now
equation (4.4) for this specific x, for ¢; = 1; = ¢ and for t = 1: it gives ¢(x) DN =1, s0
¥ (x) has order at most (£ —1)-N. Thus we obtain ({—1)-N > ¢({—1), thatis N > ¢ >{(—1

as claimed.
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2. All the W;’s are of dimension 1, for at least one index ¢ we have 1; = 1, and for at least one
index j we have 1; = x,: then for all z € I! we have ¢;(z)N = ;(z)V, that is, y,(2)V =1
for all x € I[t. As x¢ has exact order £ — 1, this implies N > ¢ — 1.

3. All the W;’s are of dimension 1 and all characters 1); are equal to each other (and in particular
are either all trivial or all equal to the cyclotomic character x,): in this case there are exactly

k = 2¢g simple Jordan-Hoélder quotients, and from the equality

2g . .
1, if ¢; = 1 for every i
Xe()? = det py(z) = [ [ i) =
i=1 xe(m)?9, if 9; = x, for every i

we find x(z)? =1 for all z € I{, which contradicts the fact that the order of y;is ¢ —1 > g.
O

Corollary 4.6.6. Let £ > J(2g) + 2 be a prime unramified in K. Suppose that there exists a place
[ of K, of residual characteristic ¢, at which A has semistable reduction: then |PGy| > J(2g).

Remark 4.6.7. Proposition 4.6.4 should be interpreted as saying that the order of the constant
groups appearing as maximal subgroups of PGSpy,(F¢) is bounded by J(2g) (for large enough g,
equality is attained by the natural 2g-dimensional representation of Ssg41). Corollary 4.6.6 then
amounts to saying that for £ > J(2¢g) + 1 (and under a suitable semistability hypothesis) the action

of Galois cannot factor through a constant group of class S.

4.7 The tensor product case I

We are now left with the task of showing that, for ¢ large enough, the group Gy cannot be contained
in a tensor product subgroup of GSpy,(FF;). Let us briefly explain the key idea behind the proof,
which goes back to Serre (cf. [120]). If Gy is contained in a tensor product subgroup, this forces
the eigenvalues of any x € Gy to satisfy a number of additional multiplicative relations that do not
hold for a sufficiently generic element of GSpy,(F¢): we will therefore be able to show that Gy is not
contained in a tensor product subgroup as soon as we have at our disposal an element of Gy whose
eigenvalues do not satisfy any multiplicative relations except for the “obvious” ones. We shall look
for such an element among those of the form py(Fr,), where Fr, is a Frobenius element associated
with a place v of K: since the eigenvalues of p;(Fr,) are independent of ¢, if for a certain prime ¢y
the eigenvalues of py, (Fr,) do not satisfy these additional relations, then the same is true for the
eigenvalues of py(Fr,) for all but finitely many primes ¢. This will be enough to conclude that, for
¢ large enough, Gy is not contained in a tensor product subgroup.

We split the analysis of tensor product subgroups in two parts: in the present section we show that,
given such a “generic” Frobenius element, we can indeed give an explicit bound on the largest prime
¢ for which Gy can be contained in a tensor product subgroup; then, in section 4.9, we shall show

how, when g = 3, Chebotarev’s density theorem enables us to find a suitable Frobenius element.

To carry out both parts of this program we shall need to study Frobenius elements and their

eigenvalues in some detail. We let Q2 denote the set of finite places of K, and for each v € Qg
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we write p, for the residual characteristic and g, for the cardinality of the residue field at v. We
also write Fr, € Gal(K/K) for a Frobenius element at v. If v is a place of K of good reduction
for A, the characteristic polynomial of pye (Fr,) does not depend on ¢ (as long as v 1 £), and will
be denoted by f,(x) € Z[z]. We shall write u1,..., 2, for the roots of f,(x) in Q, and call these
algebraic integers the eigenvalues of Fr,,.

The splitting field of f,(z) is a Galois extension of Q which we call F(v). If £ is a prime not lying
below v, let [ be any prime of F(v) lying above ¢, and let F| be the residue field at [. Since the
w;’s are algebraic integers, it makes sense to consider their reductions modulo [, which are elements
of EX which we will denote by fi1, ..., i2q4; clearly these fz;’s can also be identified with the roots
in Fy of the characteristic polynomial of py(Fr,). When speaking of the roots %, ..., iz, of the
characteristic polynomial of py(Fr,) we shall always implicitly assume that this identification has

been made.

Lemma 4.7.1. The splitting field F(v) of the characteristic polynomial f,(x) of Fr, has Galois
group isomorphic to a subgroup of (Z/27) x Sy, so it has degree at most 29g! over Q.

Proof. Immediate from the relation %9 f,, (qvx_l) = ¢i f»(x), which in turn follows from pye (Fry)

being an element of GSpy,(Z) for any sufficiently large prime ¢ and from the Weil conjectures. [J
We shall need the following basic facts from group theory, whose proof is completely straightforward:
Lemma 4.7.2. Let m,n be positive integers.

1. Let ¢ > 3 be a prime. The groups Spo,, (F¢)®SO02p+1(F¢) and Spy,, (Fr) @ GOy, 41(Fy) coincide.

2. Let F be a field not of characteristic 2 and h be an element of SOg2p+1(F'). The multiset ¥ of
etgenvalues of h can be written as {ﬁl, ey By l,ﬂfl, e ,,8;1} for certain By,...,B, € Fr.

3. Suppose m,n are odd and let g = mn. Let G be a maximal subgroup of GSPQg(IF[) of
tensor product type (m,n), that is, G = GSps,,(F¢) @ CGO,(F¢). For every h € G, the
eigenvalues of h can be written as {/\iﬁj,)\i,)\ib’;l ‘ i=1,...,2m, j=1,..., "T_l} for cer-

. .=
taln)\l,...,)\gm,ﬁl,...,,@an ZTLF@ .

We now start investigating the multiplicative relations satisfied by the eigenvalues of an operator
lying in a tensor product subgroup. Even though in general there may be additional relations, by
part (3) of the previous lemma we already know a large number of equations these eigenvalues must

satisfy; to state them more concisely, we introduce the following definition:

Definition 4.7.3. We let V,,,;, be the affine scheme cut in A%g (with variables z1, .. ., 2o, and 5, yij

forizl,...,2mandj:1,...,”7_1)bytheequations

:c,-jyij:zf forizl,...,Qmandj:1,...,”T71
2Ty = ZiThj fori,k‘zl,...,Zmandj:1,...,”7_1
2Yij = ZilYkj f01rz',l’<::1,...,2mandjzl,...,"7_1

We denote v = (2,245, ¥:;) a point in A%g and let elements o € Sz, act on Aég by permuting

the coordinates in the natural way. For every o € Sp, we also consider the scheme V7 defined
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by {v € Aég ‘ o(v) € an}. We also let Py, be a set of homogeneous binomials of degree 2 with

coefficients in {£1} that generate the ideal of V.7 : it is clear by the definition of V' that such
m (n—1)/2

polynomials exist. Finally, we let U7, be the open subscheme of V7 . over which H Z H TiYij
i=1  j=1

is invertible (note that this condition is invariant under the action of Sy, ), and to ease the notation

we set Upy, 1= Uld

Lemma 4.7.4. Let F be a field. For a 2g-tuple (w1, ...,wsy) of elements of F'* the following are

equivalent:
1. there exists a permutation o € Say such that (w1, ..., way) € US,, (F);

2. there exist Ai,...,Aom, B1,...,Bn=1 € F* such that wy, ..., way equal (in some order) the 2g
2

numbers )\i,/\iﬁjj-ﬂ fori=1,....2mandj=1,..., %L,

Proof. Notice that both conditions are invariant under the action of Sa4, so we consider the state-

ment up to permutation of the coordinates. Assume first that (2) holds: then we obtain a point of

Upn(F') by setting, for i = 1,...,2m and j = 1,...,"7_1,
Zi = N
Tij = NifBj
Yij = NiBj L
Conversely, starting from a point (w1, ..., wsq) in US,,(F) as in (1), the invariance of the statement

under permutations allows us to assume that ¢ = id, and we get a decomposition as in (2) by

setting \; = z; for i = 1,...,2m and f; = x1j/2 forjzl,...,”T_l. O

Proposition 4.7.5. Let v be a place of good reduction of A and m,n be integers such that mn = g
(with n > 3). Let (g1, .., f2g) be the eigenvalues of Fr, and suppose that
(15 1129) € | Ui (@)
O'ESQg
Then for every ¢ that is strictly larger than (2¢,)F Y the element py(Fr,) does not lie in a tensor
product subgroup of GSpy,(F¢) of type (m,n). In particular, for any such £ the group Gy is not
contained in a tensor product subgroup of type (m,n).
29
Proof. Since clearly H,ui # 0, the fact that (u1,...,u2g) does not belong to U7, (@) for any o

i=1
is equivalent to the fact that for every o € Sy, there is a p? € Pg,, (cf. definition 4.7.3) such

that ap = 7 (1, - - ., p2g) is nonzero; recall that p” is a homogeneous binomial of degree 2 with
coefficients in {£1}. Since the p;’s are algebraic integers, so are the ap; furthermore, every ag
belongs to F(v), the splitting field of f,(x). Finally, the absolute value of every Galois conjugate of
every ji; is qi/ 2 80 lag| < 2¢, under any embedding of F'(v) in C: putting everything together we
see that, for every fixed o, the set of numbers {ag = Nr(v)/0 (ag ) | pE P,fm} consists of integers

of absolute value at most (2qv)[F (@):Q | not all equal to zero. Suppose now by contradiction that
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pe(Fry) lies in a tensor product subgroup of type (m,n). By lemma 4.7.2, the eigenvalues fig, . . . , fizg
of pe(Fr,) can be written as

- -1
{)\i,)\i-ﬁj,)\i-ﬁj1’i=1,...,2m,j:1,...,n }

2

for some elements \;, [37 of EX, and by lemma 4.7.4 there is a permutation o such that (fg, .. ., fizg)
defines a point of Ug,,(F¢). This implies that (for this specific choice of ¢) all the numbers aJ reduce
to 0 in [y, and since the a7 are integers this amounts to saying that ¢ divides all the a7 (for p € Py,,,)-
However, we have seen that there is at least one polynomial p € Py, for which aj is nonzero, so
(| ag implies £ < |ag| < (2,)F®):Q: this clearly contradicts our choice of ¢, and the proposition is

proved. O

Serre has proved [120, p. 49| that places v as in the statement of the proposition do exist, and
in fact a slight modification of his argument shows that they have density 1. On the other hand,
the following lemma gives an easily testable (sufficient) criterion to decide whether or not a place v

satisfies the hypotheses of the previous proposition:

Lemma 4.7.6. Let v be a place of K of good reduction for A such that the Galois group of f,(z) is
the full Weyl group Wy := (Z/2Z)? x Sq. Let (p1,. .., p2g) be the eigenvalues of Fr,. Then for any

choice of positive integers (m,n) with n > 3 and mn = g the point (u1, ..., tag) does not belong to
UO’ESQQ U’gm(@)'

Proof. Let s,(x) € Z[x] be the squarefree part of f,(z) and s be its degree. Like f,(z), the
polynomial s, (z) satisfies 2°s,(q/z) = ¢°/?s,(x), so its Galois group is a subgroup of (Z/27)° x Si:
as the splitting fields of s,(z) and f,(z) coincide, we must have s = g, that is, the u;’s are all
distinct.

Let now A,v1,v9 be any three distinct eigenvalues of Fr,. We shall show that we cannot have
A? = 119, hence in particular no permutation of the y;’s can define a point of U, (Q) (recall that
one of the equations defining U,y,,, is z% = r11y11). Suppose by contradiction that A2 = v11s. Up to
renumbering the p;’s, the action of W, on the set {y1, ..., 1ag} has the following property: for every
o € W, and for every pair of indices i, j, we have o(p;) = p; if and only if o(pogr1—i) = pog+1—j-
We call pog41—; the conjugate of p;. Suppose first that 1o is not the conjugate of v, nor of A:
then there exists a ¢ € W, which fixes both v; and A, but such that o(12) # va2. Applying o
to the equality A2 = v115 we find A2 = v10(1s), which is a contradiction since o(v2) # vo. Next
suppose that vy is the conjugate of \: then vy is not the conjugate of A\, nor of vy (since \, v, v
are all distinct), and we can just repeat the same argument with 5 replaced by v;. Finally, assume
v1,v9 are conjugate to each other (hence not to A), and denote by S the stabilizer of vy, v in W,:
since g > 3, the orbit of A under the action of S has order at least 4, hence in particular there is
a o € S such that o()\) # £\. Applying this ¢ to the equation A\*> = vy leads once more to a

contradiction. O

4.8 Proof of theorem 4.1.3

It is clear that the prime £ is larger than g(2g—1)+1 (cf. proposition 4.5.9), than (2g+41)(2g+2) (cf.
proposition 4.6.4), than J(2g) + 1 (cf. corollary 4.6.6) and than 3 (2g + 1)'% (the bound appearing
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in property (x)). By corollary 4.2.4 we see that it is enough to show that G contains Spy,(Fy), so
suppose this is not the case: G/ is then contained in one of the maximal subgroups of GSpy,(F,)
listed in theorem 4.3.14. Let us go through this list. Given the inequalities imposed on ¢, proposition
4.4.1 implies that cases 1 through 3 cannot happen. Likewise proposition 4.7.5 (which can be applied
thanks to lemma 4.7.6) implies that case 4 cannot arise, so we are left with considering the case of
Gy being contained in a maximal subgroup G of class S. If soc PG is of Lie type in characteristic
¢, then property (*) implies that soc PG = PSLy(Fy), which by proposition 4.5.9 cannot happen for
¢> g(2g — 1)+ 1. If, on the contrary, soc PG is not of Lie type in characteristic ¢, then proposition
4.6.4 implies that PG is of order at most J(2¢g), which is impossible by corollary 4.6.6. Finally, it
is clear from the explicit expressions of b([K : Q], g, h(A)) that the function b(g!- [K : Q], g, h(A))
grows faster than b([K : Q],2g,2h(A))"/29, and it is easy to check that for ¢ > 19 the inequality
b(A/K;g!) > b(A%/K; g)'/?9 holds for any K and any A. O

Remark 4.8.1. Notice that all that is used about v is that Fr, satisfies the hypothesis of proposition

4.7.5 for all pairs (m,n) such that mn = g; we shall need this fact in the next section.

4.9 The tensor product case 11

In this section we show that, when dim(A) = 3, a place v satisfying the hypothesis of proposition
4.7.5 can be found whose residue characteristic is bounded explicitly in terms of simple arithmetical
invariants of A/K. This will be achieved through an application of Chebotarev’s theorem, but
we shall first need a certain number of preliminaries. We continue using the notation of §4.7; in
particular, if v is a finite place of K we denote by p, (resp. ¢,) the characteristic (resp. the

cardinality) of the residue field at v. We also introduce the set

Q‘;} = {v € Qg ‘ A has good reduction at v and v has degree 1 over Q} .

Most of what we do in this section could be generalized to some extent to other values of g: for
example, all results up to corollary 4.9.11 can easily be extended to cover the case of an arbitrary
(odd) prime dimension, and it is only the proof of proposition 4.9.12 that depends on the assumption
dim A = 3, since it relies on the particularly simple subgroup structure of CGO3(F,). Trying to
generalize this result to other ¢ > 5, one is faced with problems akin to those that forced us
to impose condition (x) on the dimension g: the group GLa(F/) ® CGOg4(Fy) contains families of
maximal proper subgroups of Lie type which we cannot exclude by simply looking at the action of
inertia on A[/].

Comparing our arguments with those used by Serre [121] to prove his open image theorem for abelian
varieties of odd dimension with Endz(A4) = Z, it is easy to realize that a major stumbling block in
our approach is the fact that there is no clear analogue of Sen’s theorem [114] for representations
over [Fy: indeed, Sen’s theorem strongly depends on the completeness of C,, and it is not even clear

what a modulo-¢ analogue of this theorem should look like.

4.9.1 Decompositions of the eigenvalues of Fr,

We start with two easy lemmas, which do not depend on the assumption dim A = 3:



Chapter 4. Abelian threefolds 110

Lemma 4.9.1. Let N be a positive integer no less than 3. Suppose all the torsion points of A of
order N are defined over K, and let v be any place of K of good reduction for A and not dividing

N. The group generated by the eigenvalues of Fr, does not contain any nontrivial root of unity.

Proof. Let pu1,. .., fag be the eigenvalues of Fr,. Looking at the action of Fr, on A[N] we see that
each of them (hence every element of the group they generate) is congruent to 1 modulo N, but as

it is well known there are no nontrivial roots of unity congruent to 1 modulo N when N > 3. [

Lemma 4.9.2. Let N be a positive integer no less than 2g + 1. Suppose all the torsion points of
A of order N are defined over K, and let v be a place in QIA}. If p, does not divide N and is larger
than (2g)?, then p, does not divide tr Fr,,.

Proof. On the one hand Gal(K/K) acts trivially on A[N], so trFr, cannot be zero since it is
congruent to 2g modulo N. On the other hand, the Weil conjectures imply that | tr Fr, | does not

exceed 2g - pil,/ 2, so if p, divides |trFr, | # 0 we must have p, < 2g - pql,/ 2, which is equivalent to
po < (29)% O

We now specialize to the case dim A = 3. Notice that all tensor product subgroups of GSpg(Fy) are
of type (1, 3), that is, up to conjugation they can be identified with the group GLo(FFy) @ CGO3(Fy).
The following proposition imposes stringent restrictions on a Frobenius whose eigenvalues define a
point of U;3(Q):

Proposition 4.9.3. Let N be an integer no less than 2g +1 = 7. Suppose all the torsion points of
A of order N are defined over K and let v be a place of K that satisfies:

e vC Q‘;} and p, > max {N, (29)2};

e the eigenvalues (pi, ..., pag) of Fr, define a point of U0652g Uf5(Q), i.e. Fry, does not satisfy
the hypothesis of proposition 4.7.5.

Then at least one of the following holds:

1. there exist algebraic integers Ay, Ao such that the eigenvalues of Fr, are given by A1 and Aq,

both with multiplicity g = 3;

2. for any choice of elements A1, Ao, B of Q™ such that the multisets {)\Zﬂ,)\i, Nt ‘ 1= 1,2}
and {1, ..., pag} coincide, the algebraic number A1 + A2 is not an integer (at least one valid
choice of \i, B exists by lemma 4.7.4).

Proof. Notice first that, by lemma 4.9.2, the residue characteristic p, does not divide the (nonzero)
integer tr Fr,. Let now A1, A2 and (8 be algebraic numbers such that the eigenvalues of Fr, are A1, Ao
and \;B8T! for i = 1,2. As the eigenvalues of Fr, are algebraic integers, this implies in particular
that A1, Ao are algebraic integers. If A\; + A9 is not an integer for any choice of A;, 8 we are done,
hence (without loss of generality) we can work under the additional assumption that A\; + Ay is an
integer. We are thus reduced to showing that 5 = 1: this we shall do by proving that 5 is a root
of unity, and then applying lemma 4.9.1. Let w be any place of Q. Suppose first that the residual
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characteristic of w is not p,: the Weil conjectures imply that the eigenvalues of Fr, are units away
from p,, hence ord,, (A\;3) = ord,(\;3~!) = 0, which immediately gives ord,,(3) = 0.

Suppose now that the residual characteristic of w is p,. As trFr, # 0 can also be written as
(A1 + N2) (1 + 6+ Bil) we see that A1 + Ao is nonzero. If ord,()\;) is positive for ¢ = 1,2, then
ordy, (3°; i) is positive as well and therefore (since A; + A2 is an integer) we see that p, divides
A1 + A\2. However, the Weil conjectures also imply that [\ + o] < 2,/pv, which — combined with
the fact that A\; + A2 is nonzero — gives a contradiction for p, > 5 (and our assumptions entail in
particular p, > (2g)? = 36), so without loss of generality we can assume ord,(\;) = 0. Now since

A1 and A\;f~! are algebraic integers they both have non-negative valuation at w, so we have
0 < ordy (A B) = ordy(B), 0 < ord,(A\ 7)) = —ordy(B),

and therefore ord,, () = 0. It follows that the algebraic number 5 has zero valuation at all places

of Q and is therefore a root of unity; by lemma 4.9.1, this implies 5 = 1. O

We now proceed to give a sufficient criterion for case (2) of the previous proposition not to happen.
The criterion is not new, and can be deduced for example from [21, Sublemmas 5.2.3 and 5.2.4];
however, given that our setting is slightly different and the statement itself differs from Chi’s, we
reproduce the argument in full for the reader’s convenience. Before discussing the criterion itself

we set up some notation.

Definition 4.9.4. We say that a Frobenius element Fr, is of tensor product type if the multiset

A of eigenvalues of Fr, can be written as
A={N, N |i=1,2}

for some choice of A;, 5 in @X. When this is the case, we write ¥ (resp. A) for the multiset {1, ﬁﬂ}
(resp. {A\1,\2}), and we also write symbolically A = A - .

Remark 4.9.5. A priori, the eigenvalues of Fr, could admit more than one decomposition as in
the previous definition. We shall be careful to distinguish those statements that hold for any such
decomposition from those that hold for a fized decomposition. Also notice that lemma 4.7.4 amounts

to saying that a Frobenius Fr, is of tensor product type if and only if its eigenvalues define a point

Of UUESgg Uf—3 (@)

We now introduce a weak notion of multiplicative independence for the eigenvalues of a Frobenius

Fr, of tensor product type. Fix sets A and ¥ as in definition 4.9.4, and consider the equation
(2191)* = (w2h) (31)3) (4.5)

in unknowns 1,292,235 € A and 1,199,035 € V. Notice that this equation admits two obvious
families of solutions: if we take 71 = xy = w3, the equation reduces to ¥ = 191h3, which for all
) € ¥ admits the solutions 12 = -1 ~! and 1% = ¢ - ¢; if no other solution exists, we say that the

eigenvalues of Fr, are weakly independent. More precisely, we give the following definition:

Definition 4.9.6. We say that the eigenvalues of Fr, are weakly independent (with respect to

a given decomposition of A = A - ¥) if the following two conditions hold:

1. the eigenvalues of Fr, are all distinct;
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2. if (21, 29, 23,11, Y2,13) € A3 x U3 is a solution to equation (4.5), then z1 = x5 = 3 and there
exists ¢ € ¥ such that either (¢1,¢27¢3) = (L %wil) or (wlaw% 77/}3) = (wv Tﬂﬂﬁ)

A first useful feature of the notion of weak independence is that it entails unicity of the decomposition
A=A V.

Lemma 4.9.7. Suppose that Fr, is of tensor product type and that its eigenvalues are weakly
independent with respect to a certain decomposition A = A-U: then A1 + Ao is an integer, and for
any decomposition A = N - W' of A we have N' = A and ¥ = V',

Proof. We start by describing a property that characterizes A1, A2 among the elements of A. For

every v € A we consider the map

X

T, A —
o

>, <l

Claim. We have |T,(A) N A| > g = 3 if and only if v belongs to A.
Proof of claim. The “if” part is trivial: if v = \;, then it is clear that T),(\;¢0) € A for all ¢ € U;
as T, is injective, this gives |¥| = 3 elements in the intersection T, (A) N A.
Conversely, suppose that [T (A) N A| > 3 for a certain v € A. Write v = 14y with 21 € A,y € ¥
and suppose ¥ # 1. Let x2102 € A be such that T, (xz212) € A. By definition, this implies the
existence of x3 € A, 3 € U that satisfy

(z191)?

T2ths

and since the eigenvalues are weakly independent we have x5 = x1 and ¥ = 17 (since ¥; # 1).

= $3¢37

Hence we see that A9 is the only eigenvalue § of Fr, such that T’,(6) belongs to A, contradicting
the fact that |T,(A)NA| > g = 3.

Notice now that A; and Ao, being eigenvalues of Fr,, are algebraic integers, so in order to show
that A1 + Ao is an integer it suffices to prove that it is a rational number, i.e. that the set {A1, A2}
is Gal(Q/Q)-invariant. By the previous characterization of A1, Ay it then suffices to show that for
every o € Gal(Q/Q) we have |T,(5,)(A) NA| > g =3, and this follows from

‘TU()\Z,)(A) N A‘ = ‘TU()\i)(O'(A)) ﬂo‘(A)’ = ‘T)\Z(A) N A| >g=3,

where we have used the equality o(A) = A (the set A is Gal(Q/Q)-stable since the characteristic
polynomial of Fr, has integral coefficients).

Moreover, the characterization we have given of A1, Ao does not use the decomposition of A we have
fixed, hence it uniquely determines the values of A1, Ay in any possible decomposition A = A’ - ¥/,
We show that the set ¥ is uniquely determined as well. Let A = A - ¥’ be any decomposition of
A, with ¥/ = {1, (ﬁ’)il}, and suppose that 5/ # S+, By definition, 1 = A3 is an element of A,
hence it can be written as u = \;¢)’ for some ¢’ € ¥’ and some i € {1,2}. As the eigenvalues of Fr,
are all distinct we necessarily have ¢’ # 1; furthermore, if we had ¢ = 1 we would also have ¢/ = 3,
a contradiction, so (replacing 8 by (8')~! if necessary) we must in fact have u = A\23’. It follows

2
that 3’ is equal to %5 and hence A also contains A\’ = %B, which in turn must be of the form

A for some k € {1,2} and ¢ € ¥. Thus we find that % = A\t is a solution to equation (4.5),

so by definition of weak independence we must have A\ = Ao, which is absurd since the eigenvalues
of Fr, are all distinct. The contradiction shows that 5’ = 3, that is, ¥/ = U. O
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We also need a version of definition 4.9.6 for operators acting on F?g :

Definition 4.9.8. Let h be an element of GLa,(F,). If the multiset Ay of eigenvalues of h in EX
can be written as Ay - Uy, where Ay = {A1, A2} and ¥, = {l,ﬁil} for some A\;, 8 € EX, we say
that h is of tensor product type (modulo ¢). If furthermore the elements of A, are all distinct,
and the equality (z111)? = (z2102)(w3th3) with z; € Ag,1p; € ¥, implies 71 = 29 = x3 and either
(Y1, 09,v3) = (1,9, %=1 or (11,12, 13) = (¥, %, ) for some 1 € ¥y, then we say that h has weakly

independent eigenvalues modulo /.

As the proof of lemma 4.9.7 does not use any particular features of the field Q, the same argument

also shows:

Lemma 4.9.9. Suppose h € GSpQQ(IF'g) s of tensor product type and has weakly independent ei-

genvalues modulo £: then the decomposition Ay = Wy - Ay is unique.

Lemma 4.9.10. Let v be a place in Qf‘(. Suppose that Fr, is of tensor product type and £ is a
prime different from py,: then pe(Fry) is of tensor product type. If furthermore pe(Fr,) has weakly
independent eigenvalues modulo ¢ (for some, hence for any, decomposition of Ay as Ay - ¥y), then
Fr, has weakly independent eigenvalues as well. In particular, the decomposition A = A -V of the

eigenvalues of Fr, is unique, and it satisfies A1 + Ao € Z.

Proof. The first statement is clear: a decomposition of the eigevanlues of Fr, induces an analogous
decomposition of the eigenvalues of py(Fr,). As for the second part, notice first that by assumption
the eigenvalues of py(Fr,) are distinct, hence the eigenvalues of Fr, are a fortiori distinct, and there
is a unique way to lift an eigenvalue of py(Fr,) to an eigenvalue of Fr,. Denote by A (resp. Ay) the
set of eigenvalues of Fr, (resp. of pys(Fr,)); by assumption, there exists a decomposition A = A - U,
which induces an analogous decomposition Ay = Ay - Vy. The multiset A does not contain elements
with multiplicity greater than 1, so the map

Ax¥T — A

(Ay) = A
is a bijection: equivalently, for every eigenvalue 0 of Fr,,, in the given decomposition A -V there exist
unique A € A and ¥ € ¥ such that § = A - 1. Repeating the same argument modulo ¢ we find that
UxA—>A— A — Uy x Apis a bijection. Consider now the equation

(z1391) = (wat)2) (z3103)

with z; € A and v¢; € ¥. Reducing modulo ¢ and using the weak independence of the eigenvalues
of p¢(Fr,) we see that x1 = xo = z3 (as elements of Ay), and either ¥y = 19 = 93 or ¥; = 1
and 1y = wgl (as elements of W;). Using the fact that ¥ x A — U, x Ay is a bijection we then
conclude that we also have x1 = z9 = z3 as elements of A, and that (11,12, 13) is either of the form
(1,7,9~1) or of the form (1,, %) for some 1 € ¥. The remaining statements follow immediately

from lemma 4.9.7. O

We finally come to the result which will allow us to find Frobenius elements not of tensor product

type:
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Corollary 4.9.11. Let N be an integer no less than 2g + 1 = 7. Suppose that all the torsion
points of A of order N are defined over K, and let v € Q’;} satisfy p, > max{N, (2g)?}. Suppose
furthermore that for some prime € different from p, the image pe(Fry) is of tensor product type and

has weakly independent eigenvalues modulo £. Then Fr, is not of tensor product type.

Proof. Suppose Fr,, is of tensor product type: then it satisfies the assumptions of lemma 4.9.10, so
in the (unique) decomposition of its eigenvalues as A - ¥ we must have A; + Ay € Z. Furthermore,
the eigenvalues of Fr, are all distinct (since this is true when they are regarded modulo ¢). On the
other hand, Fr, also satisfies the hypotheses of proposition 4.9.3, hence one of the two conclusions
of that proposition must hold: but this is absurd by what we just proved, and the contradiction

shows the result. O

We now just need to find a Frobenius Fr, as in the previous corollary: this will be achieved by an
application of Chebotarev’s theorem, for which we need one more lower bound on Gy (recall that

the group Q3(FF,) was introduced in definition 4.3.9):

Proposition 4.9.12. Suppose that the 7-torsion of A is defined over K: then for all primes £
unramified in K and strictly larger than b(A?/K;3)'/6 we have Gy D SLa(Fy) @ Q3 (Fy).

Proof. This is very similar to what we did in the previous sections, so we keep details to a minimum.
Notice first that we can assume that (up to conjugation) Gy is contained in GLa(F/) ® CGO3 (Fy),
for otherwise the proof of theorem 4.1.3 shows that G, contains all of Spg(F,). Also notice that
the group GLy(Fy) ® CGO3 (Fy) admits well-defined projections 7o, w3 to PGL2(Fy) and PCGO3(Fy)
respectively. Also notice that the tensor product structure implies that if either projection stabilizes
a subspace (respectively in F? or in F?), then the same is true for all of Gy: indeed, if W is a point
of P (]F?) (i.e. a line in IE‘%) stable under the action of ma(Gy), then W & F? is a proper subspace
of F? stable under the action of Gy, and the same argument applies to 73 as well. In particular,
proposition 4.4.1 implies that neither projection stabilizes a linear subspace. We now show that the

two projections are in fact surjective.

Surjectivity on PQ3(Fy) = PSLy(F,). From [19, Table 8.7] we see that the maximal subgroups of
PCGO3(F,) that do not contain PQ3 either stabilize a linear subspace or have order at most 120.
We have already excluded the first case, and the second case is easily treated as well: replacing K
with the extension defined by ker (Gal(K/K) — Gy — PCGO3(F,)) we are back to the case of a
group stabilizing a linear subspace, hence this case cannot happen for £ in our range (since we have
in particular ¢ > bo(A/K;120)).

Remark 4.9.13. Notice that although PQs3(F;) and PSLo(F;) are isomorphic as abstract groups,
the representation structure of their respective natural modules is very different: in particular, the

non-split Cartan subgroups are of class C3 in PSLa(F;) but of class C; in PQ3(Fy).

(Almost) surjectivity on PSLy(Fy). We read from [19, Table 8.1] that the maximal subgroups
of PGL2(F,) that do not contain PSLy(F,) and do not stabilize a linear subspace either contain a
normal abelian subgroup of index at most 2, or have order at most 120. The second case is excluded
by the same argument as in the previous paragraph, so the image Hy of Gy in PGLy(Fy) contains

either PSLy(Fy) or an abelian subgroup Cs of index at most 2; furthermore, in the latter case there
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is no loss of generality in assuming that |Cy| > 60 (for otherwise Hy has order at most 120, which

is excluded).

Surjectivity on both factors. Let Hy = my(Gy), H3 = m3(Gy). We consider the image of Gy
in PGLy(Fy) x PCGO3(Fy): it is a group H C Hs x Hj that projects surjectively on the factors
H,, H3. We also know that Hs contains PQs3(F,). Suppose by contradiction that Hs contains an
abelian subgroup Cs of index at most 2 and replace K with its (at most) quadratic extension K’
defined by ker (Gal(F/K) — Gy — Hy — HQ/CQ). This has the effect of replacing Hy with Co;
at the same time Hj gets replaced by a subgroup Cs of index at most 2, and since PQ3(Fy) does
not have subgroups of index 2 we see that C5 O PQ3(F,). Finally, Gy is replaced by a subgroup
G of index at most 2, and likewise H gets replaced by a subgroup C' of index at most 2, which
satisfies C' C Cy x C3 and projects surjectively on both Cy and C5. Let now N3 := ker (C' — C3)
and Ny := ker (C' — C3), considered as subgroups of C3, Cy respectively. By Goursat’s lemma we
know that the quotients C3/N3 and Co/Na are isomorphic, and in particular abelian (as Cy is).
Since the group PCGOs3 (F) is almost simple with socle PQs3(Fy), it is clear that N3 contains all of
PQ3(Fy), so the quotient C3/N3 has order at most 2. Hence Ny has in turn index at most 2 in Cy,
and therefore there is a nontrivial element « in Ny (recall that |C2| > 60). By definition of Nj, this
« projects to the identity in C5, so any element & € Gy lifting « is central in Gy. In particular,
the centralizer of Gy in Aut A[/] is larger than Fy, and by lemma 3.3.17 this is a contradiction for ¢
larger than b(A%/K')'/% a quantity which is smaller than b(A2?/K;3)'/6.

Gy contains SLy(F/) ® Q3(Fy). Notice that it is enough to show that H (the image of my X 73)
contains PSLy(IFy) x PQ3(Fy). Indeed, if this is the case, then for every T3 € PSLa(F,) we can find
an x € Gy with me(x) = T3 and w3(z) = Id, that is Gy contains a certain x that can be written
as r = x9 ® Id for some zo € GLa(F) lifting T3. Consider now the subgroup of GLa(F,) given by
{a: € GLo(F)) ’ r®Id e Gg}! by what we just said, this group projects surjectively onto PSLa(Fy),
hence it contains all of SLa(Fy). It follows that G, contains SLg(F,) ® {Id}, and by the same
argument applied to 73 we also have {Id} ® Q3(F;) C Gy, which implies Gy O SLo(FFy) @ Q3(Fy) as
claimed.

So let again Hy = mo(Gy) and Hs = 7w3(Gy), where we now know that Hy (resp. Hs) contains
PSLa(Fy) (resp. PQs(Fy)). Let Na, N3 be the kernels of H — Hs, H — Hj respectively, considered
as subgroups of Hs, H3, and recall that by Goursat’s lemma the image of H in Hy/No x H3/Nj
is the graph of an isomorphism Hs/Ny = H3/N3. Now Nj is a normal subgroup of Hs, so either
it contains all of PSLy(F,) or it is trivial: in the former case we have |H3/N3| = |Ha/Na| < 2,
which clearly implies that N3 contains PQs(F,) and H contains Ny x N3 O PSLy(Fy) x PQs(Fy)
as claimed. On the other hand, if Ny is the trivial group then H is the graph of an isomorphism
H; — Hj; up to conjugation, such an isomorphism is necessarily the 3-dimensional orthogonal
projective representation of either PGLa(Fy) or PSLa(Fy), according to whether Hy is PGLy(Fy)
or PSLy(FFy). For simplicity of exposition suppose that Hy = PSLy(F); the argument is perfectly
analogous if Hy = PGLy(Fy). Let o2 be the second symmetric power of the standard representation
of SLa(Fy) (which is also the unique 3-dimensional orthogonal representation of SLa(FFy)), and recall
that if + € SLa(Fy) has eigenvalues A1, A2, then oo(z) has eigenvalues A2, A\j A2, \3. Now since

o9(—1d) is trivial o9 fits into a diagram
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SLy(F;) —2— CGO3(Fy)

PSLy(F,) - 5,7 PCGO3 (Fe),

and we have just seen that all h € H C Hy x Hs can be written as (mw(z),Poa(n(z))) for some
x € SLa(Fy); furthermore, the commutativity of the diagram gives h = (7(z),m(o2(x))). Now let
g2 ® g3 be an element of Gy (with g2 € GL2(Fy),g93 € CGO3(Fy)), mapping in H to a certain
h = (w(x),m(02(x))): by definition of H, this implies that there are scalars o, 13 € F; such that
g2 = vox and g3 = v309(x). If we denote A1, A2 the eigenvalues of 2 we thus see that the eigenvalues
of go® g3 are given by the pairwise products of {voA1, 2} and {r3A}, v3A1 Aa, v3A3}; finally letting

1 = vov3, we have proved that the eigenvalues of any g2 ® g3 € Gy can be written as
{pAr, pho} - {AT, Aida, A3} = { AT, pAT A2, pALAS, AT Ao, pA1AS, A3 } (4.6)

for some pu € IF'Z and A, Ao € F;z. It is clear that the we arrive at the same conclusion also if
Hy = PGLy(Fy). To conclude the proof we just need to show that the decomposition of eigenvalues
given by (4.6) leads to a contradiction for ¢ large enough, and this can easily be done by the
arguments of section 4.5. We give some detail.

Note first that, since we assume that A[7] is defined over K, a theorem of Raynaud [31, Proposition
4.7] implies that A has semistable reduction at all places of characteristic different from 7. In
particular, if we let [ be any place of K of characteristic £, then A has either good or bad semistable
reduction at [, so we can apply theorem 4.5.2. Let Wy, ..., Wi be the simple Jordan-Holder quotients
of A[/] under the action of I; (or equivalently, of If). The argument of lemma 4.5.5 implies that every
Wi is of dimension at most 2; let mg (resp. mj,ma) denote the number of simple Jordan-Holder
quotients with trivial action of I} (resp. with action given by x¢, by a fundamental character of
level 2). Equation (4.2) and lemma 4.5.6 still hold in our present context, and a slight variant of
lemma 4.5.7 shows that my = 0 for £ unramified in K and larger than 7; thus we want to exclude
the case mo = 3. As in the proof of lemma 4.5.8, one sees that the assumption ms = 3 implies
A1 = £Xg; on the other hand, for any given x € I} there is a fundamental character of level 2, call
it ¢, such that uA} = p(z). Since x¢(z)? = det pg(z) = ub(A\1A2)? we conclude that for all z € If

we have
Xe(@)® = P (A A2)™® = p(2) 2 (A2/M1)"® = o(2)"?,

whence for all 2 € I? there is a fundamental character ¢ of level 2 such that p®*+D=12(z) = 1. As
lo(I7)] = €2 — 1 for both fundamental characters of level 2 this is absurd for £ > 7. O

Finally, a simple combinatorial argument shows:

Lemma 4.9.14. For ¢ > 101 the groups Spg (F¢) and SLa(F;) ® Q3 (Fy) contain elements of tensor
product type with weakly independent eigenvalues (modulo £).

There are certainly many ways to prove this easy fact, but for the sake of completeness we include

a detailed proof:
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Proof. Fix a square root i € Fy2 of —1 and an element a € F,* of multiplicative order at least 5. Let
I be the multiplicative group {c+di | (c,d) € F7, ¢*+d? = 1}, which is isomorphic to either F, or
ker (Norm : Fj;, — F°) according to whether or not —1 is a square modulo /. Notice that if v is an
element of T', then the pair (¢, d) is uniquely determined by the equations ¢+ di =, ¢ —di = 1/~.

We can then consider the injective group morphism

o I — SLo (F@) & SOg(]Fg)
c
. a 0
y=c+di — JVZ—< _1>® —d ¢ 0],
0 a

0
which, since SLa(F¢) ® Q3(Fy) has index 2 in SLy(F) ® SO3(Fy), maps 2I" into SLa(F,) @ Q3(Fy).
Since |o(2T)| = |2T'| > 5_71, the lemma will follow if we show that the image of o contains no more

than 50 < 6_71 operators whose eigenvalues are not weakly independent.

It is clear by construction that the eigenvalues of o, are given by the pairwise products of A = {a™'}
and ¥ = {1,7*1}, so 0. has weakly independent eigenvalues if and only if all the solutions to the
equation (a51751)2 = a®27%2 . %3~% with ej € {£1},9; € {0,£1} are given by 1 = €2 = €3 and
either §; = do = 63 or 41 = 0 and do = —d3. Equivalently, o, has weakly independent eigenvalues if
and only if the equation o = ~™ with m € {0,£2,+4} and n € {0,1,2,3,4} has only the trivial
solution m = n = 0. Notice that (independently of ) there are no nontrivial solutions with n = 0,
because |m/| is at most 4 while a has order at least 5. On the other hand, for fixed a, for each
pair (m,n) € {0,£2,£4} x {1,...,4} the equation a™ = ™ has at most n solutions 3, so in total
there are at most 5 x (1 + 2+ 3+ 4) = 50 triplets (8, m,n) of solutions to the equation a" = ™.
In particular, if v is different from any of these (at most 50) f’s, then o, has weakly independent

eigenvalues, and by what we already remarked this finishes the proof. O

4.9.2 Chebotarev bounds

For the proof of theorem 4.1.4 we need one last ingredient, namely an effective version of the
Chebotarev density theorem. Lagarias and Odlyzko proved such a result in [53], but their estimate
involved a non-explicit constant (which was however effectively computable in principle); their
bound was subsequently improved by (Esterlé, who also computed the constant (cf. [92] and [117,
§2.5]). To state (Esterlé’s result we fix some notation. We let as usual K be a number field, and
denote by Ak its absolute discriminant; we also write S for a finite subset of Qx (the set of finite

places of K). To simplify the formulas that follow it is also useful to introduce the function

N-[K:Q]
A" (K, S, N) = |Ag Y <N~ Hpil/N> ,

vES

where N is a positive integer, and express the bounds we obtain in terms of the quantity
B(K,S,N)=170-(log A*(K,S, N))2.

Theorem 4.9.15. (Effective Chebotarev under GRH, [92]) Assume the Generalized Riemann Hy-
pothesis. Let L/K be a Galois extension of number fields of degree at most N and let S be a set of
finite places of K containing the ones the ramify in L. For every conjugacy class C' of Gal(L/K)
there is a place v of K satisfying:
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1. v is of degree 1 over Q and does not belong to S;
2. the image of Fr, in Gal(L/K) lies in C;
3. py < B(K,S,N).

Remark 4.9.16. Lagarias and Odlyzko also proved a version of theorem 4.9.15 which does not depend
on the Generalized Riemann Hypothesis: more precisely, they showed that the same conclusion
holds at the cost of replacing B(K,S, N) by A*(K, S, N)¢, where ¢ is an absolute and effectively
computable constant. Unpublished work of Winckler [144] shows that one can take ¢ = 27175010.

We can finally prove theorem 4.1.4, whose statement we reproduce here for the reader’s convenience:

Theorem 4.9.17. (Theorem 4.1.4) Let A/K be an abelian variety of dimension 3 such that
End(A) = Z. Denote by Ng/K the naive conductor of AJ/K, that is, the product of the prime
ideals of Ok at which A has bad reduction, and suppose that A[7] is defined over K.

o Assume the Generalized Riemann Hypothesis: then the equality Gypo = GSpg(Z¢) holds for

every prime £ unramified in K and strictly larger than (2q)*%, where
q=b(A?/K;3)® (1og |Ag /gl +log Nk /g (Ng/K))2-
o Unconditionally, the same conclusion holds with
q = exp (cb(AZ/K;?,)S (log |Ak|+1log Nk /g <N2/K)>2> |
where ¢ is an absolute, effectively computable constant.

Proof. Let £y be the smallest prime larger than b(A%/K;3)'/6; by Bertrand’s postulate we have
o < 2b(A?/K;3)'/5. Let L denote the field K(A[fg]). By construction the Galois group Gal (L/K)
is just Gy,, and by proposition 4.9.12 we know that Gy, contains SLa(FFy) ® Q3(F,) and hence, by
lemma 4.9.14, an operator of tensor product type with weakly independent eigenvalues. Let C' be

the conjugacy class of this operator and set

S = {v € Ok ‘ Dy < (29)2 = 36 or A has bad reduction at v} U {v € Ok } Dy = Eo}
and N = [L : K]. Clearly N < |GSpg(Fy,)| < €32 < 222b(A2%/K;3)'Y/? and

()l e

ves p<37 v of bad reduction
< log Ni/g(N3G, k) + [K : Q] (26.1 + log £9)
< logNK/Q(Ng/K) + %[K : Qlogb(A?*/K; 3).
We obtain a (rough) bound on A*(K, S, N) of the form
log A*(K,S,N) < N (log |Ax| + [K : Q] log N+

+IE 5 Qlog N0 + 31K+ Qllogb(4%/:3)) )
1

< A’ (log x| +log Nicjo (V) ).
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where on the last line we have used the fact (a deep theorem of Fontaine and Abrashkin) that
there are no abelian varieties over Q having good reduction everywhere, and therefore the term
log [Ak| + log Nk g (NS/K) is always at least log2. We now see from theorem 4.9.15 that there

exists a place v of K of degree one, satisfying
max{(29)?, 0o} < p» < 70 (log A*(K,S,N))* = ¢

and such that Fr, maps to the conjugacy class C' in Gal(L/K) = Gy,. By corollary 4.9.11, Fr, is
not of tensor product type, and by construction A has good reduction at v (recall that v € 5). In
particular, we can use this place v to apply theorem 4.1.3 (cf. remark 4.8.1), and the conclusion
follows because (2¢)*® is much larger than either b(A2?/K;3)'/6 or b(A/K;3).

Finally, if we do not assume the Generalized Riemann Hypothesis, we get the desired conclusion by

applying the unconditional version of the effective Chebotarev theorem, cf. remark 4.9.16. O

Remark 4.9.18. The assumption that A[7] is defined over K is not a serious restriction. Let A/K)
be any abelian threefold with absolutely trivial endomorphism ring and let K be the field Ko(A[7]).
Clearly if for some prime ¢ the representation péK) : Gal(K/K) — GSp(A[f]) is surjective, then
the same is true for the representation péKO) : Gal(Ko/Ko) — GSp(A[f]), so it suffices to give an
effective bound £y such that péK) is surjective for £ > fy. Let Sy C Q, be the set of places of bad
reduction of A. The degree N of the extension K /Ky is bounded by N := | GLg(F7)|, and it ramifies
at most at the places of Sy and at those of characteristic 7; set S = Sp U {v € Qk, ‘ Dy = 7}. It

follows from [117, Proposition 5] that

, NIK:Q] NIK:Q]
We can then apply theorem 4.9.17 to A/K to get an effective bound ¢y as above, without needing
A[7] to be defined over K.

4.10 Class-S subgroups of Lie type

In view of the result of proposition 4.6.4 we are interested in the question of whether, for a fixed
value of n, the group GSp,,, (IF¢) actually contains any class-S subgroup with simple socle of Lie type
(in characteristic £). We have already remarked in section 4.5 that GSp,,, (Fy) contains maximal
class-S subgroups with socle PSLy(Fy) for all n and almost all ¢; our purpose is to show that in

fact, for most n’s and £’s, all the maximal class-S subgroups of GSp,,,(Fy) of Lie type have socle
PSLo(Fy):

Theorem 4.10.1. Set
there exist a prime £ > $(2n + 1)'*" and a mazimal
E=SneN,n odd | class-S subgroup G of GSps,,(F¢) such that soc(PQG)
is of Lie type in characteristic ¢ and soc(PG) # PSLy(Fy)

and let e(x) = ‘{n eé& ‘ n < x}| be the associated counting function. Then for all € > 0 we have
e(z) = O(x?/3+2); in particular, € has density zero.

The proof of this result will take a rather lengthy detour through representation theory: in the next

few sections we shall show how to turn the problem at hand into a question about algebraic groups
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in positive characteristic, and subsequently reduce this question to a statement about algebraic
groups in characteristic 0, which can then be handled by the methods of [32]. From now on, we

assume £ # 2, 3, so as to avoid the pathologies associated with the finite Suzuki and Ree groups.

4.10.1 Preliminaries on algebraic groups and root systems

Let G be a simple, simply connected algebraic group of rank r over an algebraically closed field.
We fix a maximal torus T of G and write A = Z" for its character group and {aq,..., .} for its
simple roots. The vector space A ® R is in a natural way an Euclidean space, and we write (-, -) for
its inner product.

If « is an element of A (in particular, if it is a root) we write oV for (O%O;), and define the fun-

damental weights wi,...,w, as being the dual basis of «; with respect to (-,-). By definition,
they satisfy (wl, ) = 5”, and they are a Z-basis of A (this comes from the fact that G is simply
(-,-) : A x A — Z given by
2(A, a)
(a,0)’

which allows us to recast the duality between fundamental weights and simple roots in the compact

connected). It is also convenient to introduce the map

Aa):=(\a’) =

form (w;, a;) = d;;. Notice that we take the convention that (-,-) be linear in its first argument. A
weight A € A will be said to be dominant if (A, ;) > 0 for all i = 1,...,r; equivalently, if it is
an integral combination of the fundamental weights w; with non-negative coefficients. We denote
AT the cone of dominant weights. We can introduce a partial ordering (both on A and on A™) by
declaring that a weight A is larger than a weight u (in symbols, A > ) if and only if A — p can be
written as a sum of simple roots with non-negative coefficients.

We also write A for the set of all roots of G, and AT for the subset of positive roots, i.e. those that
can be written as integral linear combinations of the «;’s with non-negative coefficients; we have
|A| = 2|AT|. We define the Weyl vector § by the formula § = $ > A+ «, and recall ([42, §13.3,
Lemma A]) that 6 = >\, w;.

The Coxeter number of G is defined to be the ratio h :=
simple root systems it is known that h does not exceed 4r (and is in fact at most 2r as long as
r>9).

The Cartan matrix of a root system (relative to a given choice of simple roots) is the r x r matrix

+
@ = 2'% L By the classification of

whose (i, j)-th entry is given by C;; = (o, o). Writing a simple root «; as a combination of the
fundamental weights, a; = Z;Zl bjw;, and applying the linear map (-, ax) to both sides of this
equation we obtain Cj; = b, so the Cartan matrix is the base-change matrix expressing the simple
roots in terms of the fundamental weights. Moreover, C enjoys the following property, which can

be gleaned from a direct inspection of tables I through IX of Bourbaki [17]:
Lemma 4.10.2. The matriz C — 21d has non-positive entries and its diagonal coefficients vanish.

Finally, recall that the Weyl group of G, denoted by W(G), is the subgroup of GL(A ® R)
generated by the reflections along the simple roots «a;, and that the same definition can also be
used to introduce a notion of Weyl group for not necessarily irreducible root systems and for not
necessarily connected Dynkin diagrams. If A (resp. D) is a root system (resp. the associated

Dynkin diagram) we write W(A) = W(D) for the corresponding Weyl group.
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We conclude this section of preliminaries with a simple lemma which is certainly well-known to

experts, but for which we could not find any reference in the literature:

Lemma 4.10.3. Suppose G is of rank r and let A\ € A be a nonzero weight. The orbit of A under
the Weyl group of G contains at least r + 1 distinct weights.

Proof. Let D be the Dynkin diagram associated with the root system of GG. By the orbit-stabilizer
lemma it is enough to show that the stabilizer of A has index at least r + 1 in W(D). Since every
weight is W (D)-conjugated to a dominant weight, there is no loss of generality in assuming that \
is dominant. In this case, the stabilizer of A is known to be generated by those reflections s, along
simple roots such that s,A = A ([42, §10.3B]). Since the stabilizer of A is clearly not the full Weyl
group W(D), there is at least one simple root 3 whose associated reflection does not stabilize .
The stabilizer of X is then identified to a subgroup of the group generated by s, for all simple roots
« # f3; notice that the group generated by {sa ‘ « a simple root, o # B} is isomorphic to the Weyl
group of the Dynkin diagram obtained from D by erasing the node corresponding to 5. We thus
obtain the following procedure for determining a lower bound on the index of Stab(\) in W(D):
we consider the Dynkin diagram D and all the (quite possibly non-connected) diagrams Dy, ..., D,
which we can obtain from D by erasing exactly one node. We then compute the Weyl groups W (D)
associated with each of these diagrams and the indices |W(D)/W (D;)|: the smallest such index is
a lower bound for the index |WW(D)/Stab(A)|. The lemma now follows from a straightforward, if
somewhat tedious, examination of the connected Dynkin diagrams and of table 4.1. As an example,
let us do this for root systems of type A,, which give the smallest possible index. Removing the i-th
node (¢ = 1,...,r) from the Dynkin diagram for A, leads to the Dynkin diagram for the root system
A; 1 X Ar_;, where by Ag x A,_1 and A,_1 x Ay we simply mean A,_;. The Weyl group of this

root system is S; X S,_;11, whose index in the Weyl group of A, is % = (rtl) >r+1. O
Root system | Order of the Weyl group

A, (n+1)!

B, 2"n)

Ch 2"n)

D, 2n—lp)

FEg 72 - 6!

Er 72 - 8!

FEg 192 - 10!

Fy 1152

Go 12

TABLE 4.1: Order of Weyl groups

4.10.2 Representation theory of finite simple groups of Lie type

This paragraph is essentially taken from [65], which will be our main reference for this section;
further information can be found in [20], Chapter 1 (especially sections 1.17-1.19). Let G be a finite

twisted or non-twisted simple Chevalley group in characteristic £ # 2,3 (that is, a finite simple
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group of Lie type of characteristic different from 2 and 3; in particular, not a Suzuki or a Ree
group). We shall describe shortly the main algebraic data associated with G, but before doing so

we need to define Frobenius maps:

Definition 4.10.4. Let k be an algebraically closed field of characteristic £ > 0, and let ¢ = ¢¢
(where e is a positive integer). The ¢-Frobenius map of GL,(k), denoted Fy, is the automorphism
of GL, (k) that raises all coefficients of a matrix to the g-th power. Let G be a linear algebraic
group over k. A standard Frobenius map is a group morphism F' : G(k) — G(k) such that, for
some embedding ¢ : G(k) — GLj, (k) and for some g = ¢°, the identity ¢«(F'(g)) = F,4(t(g)) holds for
every g € G(k). Finally, a group morphism G(k) — G(k) is a Frobenius map (or endomorphism)

if some power of it is a standard Frobenius map.

It is known that to a group G as above we can attach a connected reductive simple algebraic group
G over F; of simply connected type and a Frobenius endomorphism F of G with the following
property: denoting by G the group {g € G(Fy) ‘ F(g) = g} of fixed points of F', and by Z the
center of G¥, we have G = GF /Z. Furthermore, G is the universal covering group (also known as

the universal perfect central extension) of G, see [29] and the references therein.

Remark 4.10.5. It is further known that the Frobenius endomorphism F' is completely characterised
by the choice of an automorphism of the Dynkin diagram of G together with a real number ¢ which,
in our setting, is an integral power of £. We include this number ¢ among the data associated with

G, it will appear for example in the statements of theorem 4.10.6 and in the proof of lemma 4.10.24.

In this situation, we shall call G the algebraic group associated with G, and we shall indifferently
speak of the rank of G, of G, or of G; likewise, we shall say that G, G¥, or G, is of type A, (resp.
B,,C,,...) if the root system of G is.

Our interest in this construction comes from the fact that projective representations of G in charac-
teristic £ are the same as linear representations of G¥' in characteristic ¢ ([131, pp. 76-77, items (ix)
and (x)]), which in turn can be constructed by restricting algebraic representations of the algebraic
group G to G, as we now describe. Let G be of rank 7, denote by At the cone of its dominant
weights (with respect to a given maximal torus), and write wy,...,w, for the fundamental ones;
for any given dominant weight A € AT, the irreducible Fy[G]-module with highest weight A will be
denoted by L()). The relationship between representations of G!" and algebraic representations of

G is nicely described by the following theorem of Steinberg:

Theorem 4.10.6. (Steinberg [130]) Let G, GY and q be as above (with the restriction that the
characteristic be different from 2,3). Define

Ag={awi+ - +aw |0<a <g—1for1<i<r}.
The restrictions of the G-modules L(\) with A € A4 to G form a set of pairwise inequivalent
representatives of all equivalence classes of irreducible F,[G¥]-modules.
4.10.3 Some structure theorems

In this section we recall further results that describe more finely the structure of the simple modules

L(\). It is useful to introduce the notion of (m-)restricted weights:
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Definition 4.10.7. Let G,GY be as above and m be a positive integer. A dominant weight

A =awi+...+aw,. € AT is said to be m-restricted if for every i = 1,...,7r we have 0 < a; < m—1.

Definition 4.10.8. Let F be an automorphism of a group G and p : G — Aut(V) be a represent-
ation of G. The twist of p by F is the representation ¥ p given by Fp(g) = p(F(g)) for all g € G.

Note that twisting the representation does not change its image, nor its dimension.

The field automorphism = — z¢ of F; can be used to construct a canonical endomorphism of the
algebraic group G, called the ‘standard Frobenius map’ and denoted by Fy ([43, §2.7]).
The following theorem elucidates the importance of ¢-restricted weights and their interactions with

Frobenius twists:

Theorem 4.10.9. (Steinberg’s twisted tensor product theorem [130]) If L is a G-module, let L®
be the module obtained by twisting the G-action on L by Fg. If Mg, ..., Ay are L-restricted weights,
then

Lo+ A1 4 ...+ 0"\n) 2 LX) @ LA @ -+ @ L(Apm) ™.

Theorems 4.10.6 and 4.10.9 are all we need to describe representations over F,. However, to deal
with groups with socle PSLy(q), where ¢ is a power of ¢ different from ¢, it is not enough to work
over [y, but we shall need to know when a representation over F, can be defined over a smaller

field. We make this notion more precise in the following definition:

Definition 4.10.10. Let G be a finite group, K a field, and p : G — GL,(K) a representation
of G over K. We say that p can be defined over a field k C K if there exists a representation
pr : G — GLy, (k) such that the representation

G 25 GL,(k) — GL,(K)

is isomorphic to p over K.

The fields of definition of modular representations of finite groups of Lie type are very well under-
stood (cf. [19, Theorem 5.1.13]). Here we just need the simplest case, namely a criterion to decide

whether a representation can be defined over Fy:

Proposition 4.10.11. Let ¢ # 2,3. Write the number q associated with G¥' (cf. remark 4.10.5)
as L¢. Let M be an irreducible module for G¥', and write M as a tensor product ®?_3 MZ-(Z) as in

1=

theorem 4.10.9: M can be defined over the field Fy if and only if M; = M; for all i,j.

Proof. This follows at once from the proof of [19, Theorem 5.1.13]. More specifically, by [19, Corol-
lary 1.8.14] M can be defined over Fy if and only if it is stabilized by the Frobenius automorphism
Fpy, and on the other hand by definition F{ is the identity of G¥, so M is isomorphic to MM if and
only if ®f;& Mi(i) = ®f;é Mi(i)l, where M_1 = M,_;. Since the representation of theorem 4.10.9
is unique, this implies M; 1 & M; for i =0,...,e — 1. O

Corollary 4.10.12. Let ¢ = (¢ be the invariant attached to GF', and let M be an absolutely
irreducible Fy-module for G whose dimension n is not a perfect power. Then e =1, that is, ¢ = £.
In particular, this holds if n =2 (mod 4).
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Proof. Let M := M ® F; and X\ be the associated dominant g-restricted weight. We can write
A= Ef;ol ¢')\;, where each )\; is (-restricted. By theorem 4.10.9 we have M = ®f;01 L(X\)@, and
since by assumption M can be descended to I, the previous proposition gives L(\;) = L();) for all
i,7. It follows that n = dim(Ly) = (dim L()Ag))¢, which is incompatible with e > 1. Finally notice
that no integer n = 2 (mod 4) can be a perfect power, because any power of an even number is
divisible by 4. O

4.10.4 Weyl modules

We briefly recall the most basic properties of the so-called Weyl modules; for more information,
cf. [43, §3.1]. For any A € AT there is a certain ZG-module V(\)z such that

e the module L()\) is a quotient of V()\)z ®z Fy;

e for a complex, simply connected, simple Lie group G¢ with the same root system as G, the
CG-module V(\)¢ := V(A)z ®z C is the unique irreducible module of highest weight .

Definition 4.10.13. We call V (\)z®7F, the Weyl module associated with A. It is a F;[G]-module
which we will denote by V().

The celebrated Weyl dimension formula gives the dimension of V/(\):

Theorem 4.10.14. (Weyl) For all dominant weights X we have

[Toca+ A +6,a)
[Toear (A @) 7

dimg, V/(A) = dim¢ V(A)¢ =
where § = 33 car =D w;.

4.10.4.1 Sufficient condition for the equality V(\) = L()\)

In general, it can very well happen that dimg; L() is strictly smaller than dimg; V(A). The following
theorem gives interesting information about the action of G on Weyl modules, which we shall use

to deduce sufficient conditions for V' (\) and L(X) to be isomorphic.

Theorem 4.10.15. (Wong, [147, (2D)], [43, §5.9]) If X is a q-restricted, dominant weight, the
Weyl module V (\) is indecomposable (but not necessarily irreducible) upon restriction to GF. In

particular, it is also indecomposable under the action of G.

Since V'(A) has highest weight A by construction, V' (\) admits a unique G-simple quotient that is
the unique irreducible representation of G with highest weight A; that is to say, L()) is the unique
simple quotient of V(\). We shall now see that, under suitable assumptions on the dimension of
V(A) and on ¢, we must in fact have V(A) = L(A). The key result we need is the following theorem
of McNinch (which builds on previous work of Jantzen, [46]).

Theorem 4.10.16. ([76]) Let k be an algebraically closed field of characteristic £ > 7, and suppose
that the root system of G is not of type Ay. Let furthermore V be a module over k|GY] such that
dimg V < 20: then V is completely reducible.
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Corollary 4.10.17. Suppose G is not of Lie type Ay. If A is a dominant and g-restricted weight,
¢ is at least 7, and dim V' (X) < 2¢, then L(\) =2 V(A).

Proof. Notice that an indecomposable and completely reducible module is simple. Hence in par-
ticular V()) is GF-simple by the combination of the previous theorems, and since L()) is a simple

(nonzero) quotient of V' (\) the two must coincide. O

4.10.4.2 The case V() # L(\)

When L(\) does not coincide with V() its precise structure is still quite mysterious and forms
the subject of a rich body of work. For our applications, however, we shall just need to know
that the dimension of L(\) grows reasonably quickly when the coefficients a; in the representation

A =) a;w; go to infinity. To prove such an estimate we shall need the following theorem of Premet:

Theorem 4.10.18. (Premet, [102]) Let G be a simple, simply connected algebraic group in char-
acteristic £. If the root system of G has different root lengths we assume that £ # 2, and if G is of
type Go we also assume that £ # 3. Let X be an £-restricted dominant weight. The set of weights of
the irreducible G-module L(\) is the union of the W (G)-orbits of dominant weights p that satisfy
w= A

The next lemma provides a lower bound on dim L(A). The result is almost identical to [33, Lemma
2.3], which is however only stated and proved for root systems of type A,. As it turns out, a very

small modification of the proof given in [33] yields a uniform bound for all root systems.

-
Lemma 4.10.19. Let A\ = Z ajw; € AT be an l-restricted weight. Then

i=1

dimL\) > N(A) == 1+ (r + 1) {H (L%J + 1) - 1}

Proof. Fix r integers x1,...,x, with 0 < x; < L%J Set v := Y z;a; and let Cj; be the Cartan
matrix of the relevant root system. By lemma 4.10.2, we have o; = 2w; — >, |Cjj|w; since all

off-diagonals coefficients of the Cartan matrix are non-positive. It follows that the coefficient of

T T
S LT S DA
i=1 i=1 j#i
T
along w;, call it b;, is at most 2x; < a;. Hence p: =\ —~ = Z(ai — b;)w; is a linear combination
i=1
of fundamental weights with non-negative coefficients, hence it is a dominant weight. On the other

hand, it is clear that A > u, since A — p =y is by construction a combination of simple roots with

non-negative coefficients.

,
There are H ([%J + 1) possible choices for the integers x;, so the module V() contains at least
i=1

,
H (L%J + 1) different dominant weights, at most one of which is the zero weight. Consider now
1=

the orbits of the nonzero dominant weights under the Weyl group. Each orbit consists entirely of

weights of V(A), and contains exactly one dominant weight. In particular, two orbits do not intersect
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(for otherwise we would find two Weyl-conjugated dominant weights); moreover, by lemma 4.10.3
every nontrivial weight has orbit of length at least » + 1. We have thus found at least
T
Q;
1 ([3]+1)-1;-
+(r+1){H S| +1) -1 =N
=1
distinct weights in V' (A). Premet’s theorem 4.10.18 implies that these weights all appear in L(\),

which is therefore of dimension at least N(\), as claimed. O
We derive in particular the following lower bound on dim L(\):

Proposition 4.10.20. Let n > 2 be a positive integer, and suppose that r, the rank of G, satisfies
2<r< min{n, \/6n}. If X\ =", aw; € AT is an (-restricted weight such that Y ;_ a; > 2n,
then dim L(\) > 2n.

Proof. The previous lemma gives dim L(A) > N(A) > 1+ (r+1) (3 Y.I_; a; — %) , where the second
inequality is an equality if all but one of the a;’s are equal to 1, and the remaining one is odd. It
is straightforward to check that, for 7 < n, the number 1 + (r +1) (3 37_; a; — ) is not smaller
than 2n + 1. O

4.10.5 Lifting to characteristic zero

The purpose of this section is to show that, when the characteristic ¢ is large enough (compared to
n), the representation theory of subgroups of GSp,,,(Fy) is equivalent to the representation theory of
certain corresponding (algebraic) groups in characteristic zero. In order to do so, we need to ensure
that the equality L(A) = V() holds for all the A’s of interest, and in view of corollary 4.10.17 it is
enough to know that the dimension of V() is less than 2¢. The following lemma provides an upper

bound on the dimension of Weyl modules:

Lemma 4.10.21. Fix a positive integer n. Consider all simply connected, simple algebraic groups
G over Fy of rank at least 2 and at most min {\/@,n} For each such G (of rank r), consider
the collection of all dominant, (-restricted weights X = Y., ajw; such that > ;_, a; < 2n and the
corresponding Weyl modules V (X). For every such V(\) we have

dim V()\) < (2n 4 1)™".
Proof. Take a group G (of rank r) and a weight A as in the statement of the lemma. Notice that

any positive root v can be represented as o = E;Zl bjaj, where the b; are non-negative integers; a

simple computation (using the fact that 6 = >, ; w;) gives
<>\,O¢> = Zaibia <57 OZ> = ija
i=1 j=1
\a)

so the ratio X is bounded above by maxa; <>, ; a;. By Weyl’s dimension formula we have

IIaEA+(5+—A7Q)
IIaGA+(67a)

[T (1+5a)

acAt

dimV(\) =
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combining this formula, the arithmetic-geometric inequality and the bound %zg <> 16 < 2n

we deduce

2aea+(1+ Zai)>m | < (2n+ 1)

dimV(\) < ( A

Finally, since the Coxeter number h does not exceed 4r, we have |[AT| = % < 2r? < 12n, and thus
dim V(\) < (2n 4 1)™" as claimed. O

The following proposition gives the desired lift to characteristic zero, assuming that ¢ is large enough

with respect to n:

Proposition 4.10.22. Let n be an odd integer and £ a prime not smaller than %(Qn +1)¥27, Then
for all groups of the form G (where rank(G) < min {v6n,n}), and for all absolutely irreducible

representations V of G over Fy of dimension 2n, there exist

e a simple, simply connected, complex Lie group G¢c with the same Lie algebra (hence in par-

ticular the same rank) as G;
e a complex, irreducible representation Vi of Gc such that dime Ve = 2n.

Proof. Let G, G and V be as in the statement, and let 7 be the rank of G. By corollary 4.10.12 we
have ¢ = ¢, and by theorem 4.10.6 V ® I, is of the form L()) for a g-restricted (hence (-restricted)
weight \. Write A as ), a;w;, and notice that >_._; a; < 2n, for otherwise dim V' = dim L()\) > 2n
by proposition 4.10.20, a contradiction. Lemma 4.10.21 then gives dim V(A\) < (2n + 1)!2" < 2/,
which by corollary 4.10.17 implies L(A) = V(). Now if G is the unique simple, simply connected,
complex Lie group with the same root system as G, then V(\)z ®z C is exactly the (irreducible,
complex) representation associated with the dominant weight Y. ; a;w; of Gc, and the result
follows. O

4.10.6 Zero-density estimate in characteristic zero

We have now essentially turned our problem into a question about the representation theory of

certain complex Lie groups, for which we have the following zero-density estimate:

Proposition 4.10.23. Let C' be any positive real number. Set
there exists a simple, simply connected, complex Lie group G
Ec = nGN‘ of rank r, with 2 <r < Cy/n,

admitting an irreducible representation on C"

and let ec(z) = ‘{n €& ’ n < m}‘ be the associated counting function. Then for all € > 0 we have
ec(x) = O(x?/3+); in particular, £ has density zero.

Proof. Fix € > 0. Let £ be the collection of all (isomorphism classes of) complex, simple, simply
connected Lie groups of rank at least 2, and let £, be the subset of those having rank at most C'y/z.
All the groups in £ have Coxeter number at least 3: the only Lie algebra with Coxeter number 2
is Ay, which we have excluded. Also note that |£,| = O(x'/?): there are at most 5 Lie algebras of

any fixed rank.
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Following [56], for a complex, simple, simply connected Lie group G we denote by R, (G) the number
of isomorphism classes of irreducible representations of G of dimension at most x. It follows from
[56, Theorem 5.1] that for every G' € £ we have R,(G) = O(x%/3+%).

Furthermore, by [32, Corollary 3] we know that there exists a finite subset ¥. of £ (depending on
e), such that, for all G € L\ X, the inequality R;(G) < z° holds for every « > 1. Note that
in fact [32] deals with compact Lie groups, but as it is well known every simple complex simply
connected Lie group admits a unique compact real form which has the same representation theory

as the complex group, so the result holds in our setting as well. It is now clear that

)<Y R(G)= Y Ro(G)+ Y R(G)

GeLy GEL\Se Ges.
< ¥ s T o
GEL\e GeX.

_ O(.’L‘l/2+€) + O(x2/3+8) _ O($2/3+8).

4.10.7 Order estimates

We now invoke simple order estimates to show that if the finite simple group of Lie type H appears

as a class-S subgroup of GSp,,,(Fy), then its rank cannot exceed v/6n.

Lemma 4.10.24. Let L be a finite simple group of Lie type in characteristic £ # 2,3 and r be its
rank (i.e. the rank of the corresponding algebraic group): we have |L| > .

Proof. The group in question is characterized by a number ¢ (a integral power of ¢) and by the
family to which it belongs. For most families of simple Lie groups, the claim is easy to check by
direct inspection of the explicit formulas for the orders, so let us only check families A,(q) and
2A,(¢?), which are arguably the least trivial ones. In the two cases, the order is given by

qr(r+1)/2 r 7‘(7’+1)/

i+l _ i1y S grHIr+2)/2
(r+1,q—6)£[1<q c )_ (q+1 H

q

7“+1) oo 1
> T[(1--—=),
- q(q+1)iHl< qz“)

where e = +1 for A,(q) and € = —1 for 24, (¢?). On the other hand,

M s = 2 1
lo 1—¢ghH = log (1 —¢ 1) > gl e~ > =
gzl;[l( ) ; 5 ) ; ql¢g—1) = 10

q 2r 72 r2 T
———q" ¢ >q >
q(g+1)

claimed. O

The order of the group in question is thus at least exp(—1/10)

We now compare this lower bound with the following upper bound due to Liebeck:

Theorem 4.10.25. ([63, Main theorem/) Let n be a positive integer and H be a class-S subgroup
of GSpy,,(Fe). The order of PH s strictly smaller than max {£5", (2n + 2)!}.
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Since £" > (2n + 2)! for £ > 2n + 2 we also have:

Corollary 4.10.26. In the situation of the previous theorem, suppose £ > 2n + 2. Then the order

of PH is strictly smaller than (™.

Corollary 4.10.27. Let H be a class-S subgroup of GSp,,(Fy), with £ > 2n+ 2. Suppose soc(PH)
is simple of Lie type in characteristic £: then the rank of soc(PH) is less than v/6n.

Proof. Indeed, if r denotes the rank of soc(PH) we have |soc(PH)| > 0" by lemma 4.10.24 and
|soc(PH)| < €™ by corollary 4.10.26. O

4.10.8 Conclusion in positive characteristic

We are finally ready for the proof of theorem 4.10.1:

Proof. We can assume without loss of generality that n > 6, so that min {n, vV 6n} = v6n. We
claim that the set {Qn } neén> 6} is contained in the set £o of proposition 4.10.23 for C' = /3.

Indeed let n > 6 be an element of £: then we can find
e a prime ¢ > $(2n + 1)127;
e a finite group of Lie type in characteristic ¢, call it G¥', different from SLq(F);
e and an absolutely irreducible representation of G in characteristic £ of degree 2n.

Note that by corollary 4.10.12 we cannot have G¥" = SLs(q) for ¢ = £¢, e > 1. Let G be the simple,
simply connected algebraic group associated with G as in section 4.10.2. By corollary 4.10.27 we
have rank(G) < v/6n, and by what we just remarked we have rank(G) > 2.

We are now in the situation of proposition 4.10.22, so we find a simple, simply connected, complex
Lie group G, of rank lying in the interval [2,v/3 - v/2n], admitting an irreducible representation on
C?". By definition, this means that 2n € & (for C = v/3). In particular, the counting function e(x)
satisfies e(x) < ec(2x), and therefore it is O(x*/3+¢) for any positive € by proposition 4.10.23. [

4.11 Explicit determination of the small exceptional dimensions

In this section we determine all odd n < 100 with the following property: for at least one prime
¢ > 13, the group GSp,,, (Fy) contains a class-S subgroup H such that soc(PH) is of Lie type in
characteristic £ and different from PSLy(F,). In order to carry out explicit calculations, we need to
fix our convention for the simple roots, and since we are going to rely on the tables of [65] we adopt
the same numbering as in that paper, which we summarize in table 4.2 (note that this convention
does not agree with that of [17]).

We shall need some information about the duality properties of our representations; recall that the
Frobenius-Schur indicator of an irreducible representation is 41 if that representation is orthogonal,
—1 if it is symplectic, and 0 if it is not self-dual. Regarding the Frobenius-Schur indicator of the
modular representations we are interested in we have the following result of Steinberg ([131, Lemmas
78 and 79], but cf. also [65, §6.3]):
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G2 e
1 2

TABLE 4.2: Numbering of the simple roots

Theorem 4.11.1. Assume £ # 2. Write Z for the center of G(F;) and let A = > _; a;w; be a

q-restricted, dominant weight. Then

e if G is of type A,, or D, with odd r, or Es, then the representations L (Y :_; ajw;) and
L (Zgzl aT(i)wi), where the permutation T is given by the automorphism of order two of the

Dynkin diagram, are dual to each other. For any other G all representations L(\) are self-dual;

e there is an element h € Z, of order at most 2, such that every self-dual module L()\) is

symplectic if and only if h acts nontrivially on L()\).

It is then relatively easy to work out which representations L(\) are symplectic; notice however
that theorem 4.11.1 is quoted incorrectly in [65], and consequently the algorithm described in that
paper to decide whether L(\) is symplectic or orthogonal does not yield correct results (for example,
it implies the existence of symplectic representations of Spin(7,F,) for all sufficiently large primes
p, which is not the case). The following result can be deduced directly from theorem 4.11.1, but

follows more easily from an inspection of the proof of [133, Proposition 5.3]:

Corollary 4.11.2. Assume £ # 2,3. In the situation of the previous theorem, the representation

L(\) of the finite group of Lie type G is symplectic if and only if:

e Gis of type Ay, r =1 (mod 4), a; = ar41—; fori=1,...,r, and a(r41)/2 s odd, or
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e G is of type By, r = 1,2 (mod 4), and a1 is odd, or
o G is of type Cy, and a, + ar—o2 + ...+ Gpmod2 1S 0dd, or
e G is of type D, r =2 (mod 4), a1 + ag is odd, or

o (G is of type E7, and as + as + ay is odd.

Proposition 4.11.3. Let n < 100 be odd, £ > 17 and H be a class-S subgroup of GSp,,, (F¢) such
that the socle of PH 1is simple of Lie type in characteristic £. Then one of the following is true:

e up to conjugation, soc(PH) is the image of the (2n — 1)-th symmetric power of the standard
projective representation of PSLa(FFy);

e n is one of 7,55,63.
In particular, if g < 100 is an odd integer, g # 7,55,63, then g satisfies assumption (x).

Proof. Let G = soc(PH) and G¥', G, ¢ be the associated algebraic data as in section 4.10.2. If G is
of rank 1 (hence of type A;), then G is necessarily of the form PSLy(q) for a certain ¢ = ¢, and
the case e > 1 is excluded by corollary 4.10.12. The same corollary also implies that in any case
we have ¢ = £, hence we can assume that G is of rank at least 2. Since we know that PH acts
(absolutely) irreducibly on Py, (F;), we are just interested in irreducible representations of G’ that
is, representations of the form L(\) for a certain ¢-restricted A.

Thus we are looking for ¢-restricted, symplectic modules whose dimension is even, but not divisible
by 4: we shall do this by looking at the tables of [65] (to which we will refer by their number in that
paper), which contain a complete list of representations of degree at most 300 defined by weights
that are p-restricted for at least one prime p. By corollary 4.10.27 we see that we are only interested
in Lie groups of rank r < /600 < 25. By the previous corollary, groups of type Eg, Fg, F4, G2 do
not admit irreducible, symplectic representations. For groups of type E~ we look at representations
of even dimension: Table 6.52 shows that the smallest degree for such a representation is 912, which
certainly rules out the possibility that dim L(A) < 200. We can then focus on the infinite families

A, — D,, and we write A = Y., njw; for the decomposition of X along the fundamental weights.

e Type A, (r > 2): we just need to check those r’s that are congruent to 1 modulo 4, say
r = 4k + 1, and those weights A = 22:1 n;w; that satisfy n;, = ny41-; for ¢ = 1,...,r and
nok+1 = 1 (mod 2). Further restricting our attention to modules of dimension # 0 (mod 4),
it is easy to see directly from tables 6.6-6.21 that there are no such representations with
2<r<17.

For r > 21, Table 2 shows that there are no symplectic representations of dimension at most
200; indeed this table lists all irreducible representations of dimension up to 73/8 > 200, and

none of them meets the requirement that n(. 1)/ is odd.

e Type B,: since we are looking for symplectic representations, by the previous corollary we
must have n; odd. Taking into account the fact that the we only need consider modules
whose dimension is # 0 (mod 4), it is easy to see that no such representation exists for
r < 11. Moreover, Table 2 shows that when r > 12 there are no symplectic representations of

groups of type B, of degree not exceeding 3 > 200.
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e Type C,: the condition on the defining weight is now that n, + n,_o + ... be odd. We
find the family of (defining) representations with highest weight (0,0,...,1): these are of no
interest to us, since clearly the defining representation does not give rise to a group of class
S. Apart from these, we find symplectic representations of groups of type C3 in dimension
14 and 126 = 2 - 63, and of groups of type C5 in dimension 110 = 2 - 55. For r» > 12, Table 2
shows that (apart from the trivial and defining representations) the smallest possible degree

of a nontrivial irreducible representation is 2r2 — r — 2 > 200.

e Type D,: we need r =2 (mod 4) and n; +ng =1 (mod 2). No such representation (meeting
the conditions on the dimension) exists for » < 11, and for » > 12 we see from Table 2
that the smallest possible degree of an irreducible (nontrivial, symplectic) representation is
2r2 — 1 > 200.

O

4.12 A numerical example

In this short section we consider an explicit three-dimensional Jacobian and compute a bound
on the largest prime for which Gy can differ from GSpg(Fy). Zywina [157] has recently given
an example of a three-dimensional Jacobian having maximal (adelic) Galois action, his approach
consisting essentially in making effective a previous paper by Hall [34]. Effective results based
on Hall’s techniques have also been obtained in [3], where an algorithm is given to test whether
Gy = GSpQQ(IFg) for a given abelian variety and a fixed prime £. We recall that an abelian variety
A/K satisfies Hall’s condition if for some finite extension L of K and for some finite place v of
L the fiber at v of the Néron model of A/Op is semistable with toric-dimension equal to 1. Our
example is fabricated precisely so as not to satisfy this condition, and is therefore — to the author’s
knowledge — the first abelian threefold not of Hall type for which the equality Gy = GSpg(Fy) is

established for all primes larger than an explicit (albeit enormous) bound.

We now turn to the example itself. We take as abelian variety the Jacobian A of a genus 3

hyperelliptic curve C' over Q, given in an affine patch by the equation y? = g(x), with
g(z) = 2" — 2% — 525 + 4 + 523 — 2% — 52 + 3.

The polynomial g(x) has been found by referring to [50]. We shall prove that A has potentially
good reduction everywhere except at ¢ = 45427, and that the reduction of A/Q at ¢ is semistable
of toric dimension 2. Let us start by remarking that the discriminant of g(z) is ¢2, so C is smooth
(and A has good reduction) away from 2 and ¢. To study the exceptional places 2 and ¢ we shall

employ the intersection graph of a semistable model of C"

Definition 4.12.1. Let X be a semistable curve over an algebraically closed field K. The inter-
section graph I'(X) is the (multi)graph whose vertices are the irreducible components X; of X and
whose edges are the singular points of X/K: more precisely, a singular point x € X lying on X;

and X; defines an edge between X; and X (the case i = j is allowed).

Theorem 4.12.2. (15, §9.2, Ezample 8]) Let X be a semistable curve over a field K. The semi-
abelian variety Picg(/K has toric dimension equal to rank H' (T'(X%),Z).
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Notice now that
9(x) = (z +10504)*(z + 13963)* (z* + 419192” + 27613z + 35727) in Fy[x],

so the reduction of C at g is semistable of toric dimension 2: indeed, our model has only ordinary
double points as singularities, so the reduction is already semistable over Q,. Moreover, the curve
is irreducible over F, and admits exactly two singular points, so the intersection graph is topolo-
gically the wedge of two copies of S!, which shows that the toric dimension of the fiber at ¢ is
rank H'! (S Ly st Z) = 2. To study the reduction at 2 we shall need the following additional result:

Theorem 4.12.3. (/75, Lemma 3.2.1] and [106, Théoréme 1°]) Let K be a p-adic field with ring
of integers R and denote v, the corresponding p-adic valuation, extended to all of K. Let X be the
superelliptic curve given in the standard affine patch by the equation y? = [[,<;<,,(x — x;), where
every z; is in R and (m,p) = 1. Suppose furthermore that vy(x;) = v, (z; — xﬁ -0 for every pair

i # j. The intersection graph of the special fiber of the stable model X of X is a tree.

Take K to be the field generated over Q2 by the roots x; of g(x): then C/K satisfies the hypotheses
of theorem 4.12.3 for p = 2, because va ([[ zi) = v2(¢(0)) = 0 and

vy 1_[(acZ — ;) | = vao(discg(z)) = 0.
1#]

Since trees have trivial H', applying theorem 4.12.2 we see that Jac(C/Qs) acquires good reduction
over a finite extension of Q: as claimed, A has potentially good reduction at 2. It follows in
particular that A does not satisfy Hall’s condition (over Q, nor over any number field).

Next we check that the Galois group of g(x) is the full alternating group A7, so by [153, Theorem
2.1] we have End(A) = Z. We then compute with Magma [16] that the characteristic polynomial
of the Frobenius at 3 is f3(x) = 27 + 92° + 622 + 223 + 22* + 2° 4+ 25, which has Galois group
isomorphic to (Z/ 2Z)3 % S3. It is interesting to observe that the characteristic polynomial of Fr,, has
Galois group (Z/ 2Z)3 X S3 at least for all odd primes up to 53 with the only exception of p = 17:
a random Frobenius usually has the largest possible Galois group, so that the corresponding place
satisfies assumption (3) of theorem 4.1.3. Finally, we can use [95, Théoreme 2.4] to bound the
Faltings height of A: the minimal discriminant of X does not exceed the discriminant of our model
(namely 2'2¢?), and (in the notation of [95]) we can take e, = 0 to get an upper bound on hp(A).
Taking into account the normalization of the Faltings height used in [95] we easily find that hp(A)
does not exceed —2.511...

We now simply apply theorem 4.1.3 to A/Q and to the prime v = 3 to deduce that Gy = GSpg(Fy)
for all £ > exp (3.8 . 108) (notice that this bound is much larger than the prime of bad reduction q).

Remark 4.12.4. The method of proof of proposition 4.7.5 produces a finite list of nonzero integers
among whose prime divisors we can find all primes ¢ for which G/ is of tensor product type. Actually
carrying out these computations for Frs rules out the possibility that Gy is of tensor product type
for any ¢ > 5, and applying the same method to Frs shows that G3 is not of tensor product type

either.






Chapter 5

The CM case

5.1 Introduction and statement of the result

The aim of this work is to study the division fields of simple abelian varieties of CM type. Recall that
an abelian variety A, of dimension g and defined over a number field K, is said to admit (potential)
complex multiplication, or CM for short, if there is an embedding £ < End;(A4) ® Q, where £
is an étale Q-algebra of degree 2g. We shall very often restrict to the situation of A admitting
complex multiplication by E over K, by which we mean that Endg (A) is equal to Endz(A), and
of A being absolutely simple, or equivalently, of E being a number field (of degree 2g over Q). The
problem we discuss is that of estimating the degree [K(A[¢"]) : K], where /£ is a prime number and
K (A[f"]) is the field generated over K by the coordinates of the £"-torsion points of A in K. As we
shall see shortly, this is really a problem in the theory of Galois representations, and the seminal
contributions of Shimura-Taniyama [126] and Serre-Tate [124] provide us with powerful tools for
handling these representations in the CM case. Employing such tools, Silverberg studied in [128]
the extension of K generated by a single torsion point of A, while Ribet gave in [110] asymptotic
(non-effective) bounds on [K(A[("]) : K] as n — oo. Our first result can be seen as an explicit

version of the main theorem of [110]:

Theorem 5.1.1. Let K be a number field and A/K be an abelian variety of dimension g admitting
complex multiplication over K by an order in the CM field E. Denote by p be the number of roots
of unity contained in E and by h(K) the class number of K. Let r be the rank of the Mumford-Tate
group of A (cf. definition 5.2.10) and £ > \/2 - g! be a prime unramified in E - K. The following

inequality holds:
1

4p/g!

Even though theorem 5.1.1 gives a good idea of the actual order of magnitude of the degree

T < [K(A[M) s K] < gﬂ h(K) -

[K(A[(™]) : K], we can in fact prove much more precise results that apply to all primes ¢ and
which are most easily described in the language of Galois representations. Recall that for every /¢
and every n there is a natural continuous action of Gal(K/K) on A[("], giving rise to a represent-

ation

pen : Gal(K/K) — Aut(A[("]);

135
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the extension [K(A[¢"]) : K] is Galois, and its Galois group can be identified with the image Gyn of
pen. Taking the inverse limit of this system of representations gives rise to the f-adic representation
on the Tate module T;A,

pe : Gal(K /K) — Aut(T,A).

We denote by Gy the image of py« and remark that, for every n, the group Gy~ is clearly isomorphic
to the image of Gy through the canonical projection
T,A
T A
for simplicity of exposition, we fix once and for all a Zs-basis of TyA and consider Gy (resp. Gyn)

as a subgroup of GLgg(Zy) (resp. of GLoy(Z/("Z)).

We have thus reduced the problem of giving bounds on [K(A[¢"]) : K| to that of describing Gyn:
in trying to do so, it is natural to compare Gy with MT(A), the Mumford-Tate group of A (cf.
definition 5.2.10). By construction, MT(A) is an algebraic subtorus of GLg, which is only defined
over Q, so there is no obvious good definition for the group of its Z,-valued points. However,
Omno [94] has shown that there is in fact a good notion of MT(A)(Zy) (cf. definition 5.2.3), and
the Mumford-Tate conjecture [84, §4] — which is a theorem for CM abelian varieties ([101] and
[126]) — can be expressed by saying that, possibly after replacing K by a finite extension, Gy is a

Aut(T;A) — Aut ( > = Aut(A[e"]);

finite-index subgroup of MT(A)(Zy). For the sake of simplicity, assume for now that no extension
of the base field K is necessary to attain the condition Gy C MT(A)(Z¢) (our results do not
depend on this assumption). The problem of estimating the degree [K(A[¢"]) : K] is then reduced
to the study of two separate quantities: the order of the finite group MT(A)(Z/¢"Z) and the index
[MT(A)(Z¢) : Geee]-

We treat the first problem in two important situations: when ¢ is unramified in E (a rather simple
case, covered by lemma 5.2.5), and when the CM type of A is nondegenerate (theorem 5.6.1). Our

result can be stated as follows:

Theorem 5.1.2. Let A/K be an absolutely simple abelian variety of dimension g, admitting (po-
tential) complex multiplication by the CM field E. Denote by MT(A) the Mumford-Tate group of A

and let r be its rank.
1. If £ is unramified in E the following inequalities hold:
(I=1/0)"" < |MT(A)Z/"Z)| < (1 +1/0)" ",
2. Suppose r = g+ 1. For all primes £ # 2 and all n > 1 we have
(1 —1/0)9F1 . glatn < | MT(A)(Z/0"Z)] < 29 (14 1/¢)9 L glatn,
while for £ =2 and all n > 1 we have

1 1
.9lg+)n n 249 . olg+)n
S - 2070 < IMT(A)(2/2'7)| < 549 - 2000,

As for the index [MT(A)(Zy) : G|, our main result is as follows (cf. definition 5.2.9 for the notion

of reflex norm):

Theorem 5.1.3. (Theorem 5.5.5) Let A/K be an absolutely simple abelian variety of dimension g
admitting complex multiplication over K by the CM type (E,S), and let { be a prime number. If A
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has bad reduction at a place of K dividing £ let u* = |u(E)|, the number of roots of unity in E; if
on the contrary A has good reduction at all places of K of characteristic £ set u* = 1. Denote by
r the rank of MT(A) and by F the group of connected components of the kernel of the reflex norm
Tg+ — Tg, where E* is the reflex field of E. Then:

(1) The index [Gye : Gypo N MT(A)(Zy)] does not exceed |u(E)| - h(K), where h(K) is the class

number of K.
(2) We have [MT(A)(Zy) : Goo N MT(A)(Zy)] < p* - [K : E*] - |F|?".

(8) If ¢ is unramified in E and does not divide |F|, then the index [MT(A)(Zy) : G N MT(A)(Zy)]
divides p* - [K : E*] - |F|. If £ is also unramified in K, the bound can be improved to u* - |F)|.

Finally we have r < g+ 1 and |F| < f(r) < f(g+ 1), where

flz) = {2 <x11)(x+1)/gJ |

e Theorem 5.1.1 follows immediately upon combining theorems 5.1.2 and 5.1.3.

Remark 5.1.4. A few comments are in order:

e The assumption that the action of E is defined over K implies that the reflex field E* is
contained in K, see [55, Chap. 3, Theorem 1.1]. In particular, the degree [K : E*] makes

sense.

e The condition ¢ 1 |F| is certainly satisfied if £ > |F|: in particular, it is true for all primes

0> f(r).

e Since |F| is bounded by f(g + 1), the degree [K : E*| does not exceed [K : Q], and p* can
be controlled in terms of g alone (a trivial bound is for example pu* < 16¢2), we see that part
(2) of theorem 5.1.3 gives a universal bound on [MT(A)(Z) : Gge N MT(A)(Zy)] that only
depends on g and [K : Q).

e For small values of ¢g the function f(g + 1) takes reasonably small values: we have f(3) = 2,
F(4) =3, £(5) =6, £(6) = 14 and f(7) = 32.

In the special case of elliptic curves the Mumford-Tate group admits a particularly simple descrip-
tion, which leads to a very precise characterization of the corresponding Galois representation. Such
a description can already be found (in a non-effective form) in [116, Corollaire on p.302], and the

following result makes it completely explicit:

Theorem 5.1.5. (Theorem 5.6.6) Let A/K be an elliptic curve such that Endz=(A) is an order
in the imaginary quadratic field E. Denote by ps : Gal(K/K) — HAut Ty A the natural adelic

1
representation attached to A, and let G be its image. For every prime £ denote by Cy the group
(O ® Z)™, considered as a subgroup of Autz, (O ® Z;) = GLa(Z¢) = Aut T, A, and let N(Cy) be
the normalizer of Cy in GLa(Zy).
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1. Suppose that E C K: then G is contained in [[,Cy, and the index [[[,C;: Goo] does not
exceed 3[K : Q|. Moreover, the equality Gy = Cy holds for every prime ¢ unramified in K
and such that A has good reduction at all places of K of characteristic £.

2. Suppose that E ¢ K: then G is contained in [[, N(Cy) but not in [[,Cy, and the index
[[I; N(Cp) : G is not finite. The intersection Hoo = Goo N [[, C¢ has index 2 in G, and
the indez [[[,Cr : Hx] does not exceed 6[K : Q]. Moreover, the equality Gyo = N(Cy) holds
for every prime £ unramified in K - E and such that A has good reduction at all places of K

of characteristic £.

Finally, the constants 8 and 6 appearing in parts (1) and (2) respectively can be replaced by 1 and
2 if we further assume that the j-invariant of A is neither 0 nor 1728.

As a by-product of the proof of theorem 5.1.3 we also obtain the following proposition, which slightly
strengthens a result first proved by Banaszak, Gajda and Krasoni ([7, Theorem A]) by removing
both the assumption that the CM type of A is nondegenerate and the hypothesis that ¢ is completely
split in K.

Proposition 5.1.6. (Proposition 5.5.6) Let A/K be an absolutely simple abelian variety admitting
complex multiplication (over K ) by the CM field E, and let ¢ be a prime unramified in E. Let E*
be the reflex field of £ and suppose that A has good reduction at all places of K of characteristic £.

e The index [MT(A)(Fy) : Ge N MT(A)(Fy)] divides [K : E*] - |F|.
e If ¢ is also unramified in K, then [MT(A)(F,) : Ge N MT(A)(Fy)] divides |F|.

Let us conclude this introduction by giving a brief overview of the material in this chapter.

In section 5.2 we recall some fundamental notions about algebraic tori over (Q and their Z,-points;
this part also includes a brief account of the theory of abelian varieties of CM type and of their
Mumford-Tate groups. In section 5.3 we apply cohomological machinery to study the map induced
on Zg-points by algebraic maps between Q-tori with good reduction at £. With more effort, the
method could also give results in the bad reduction setting, but the argument would become quite
cumbersome and the result would not be very satisfactory for our purposes. To remedy this situ-
ation, in section 5.4 we treat the case of arbitrary reduction through a purely geometric argument
inspired by [134]; it should be pointed out, however, that — in the good reduction setting — the
cohomological approach gives much sharper bounds. In section 5.5 we recall a form of the Fun-
damental Theorem of Complex Multiplication, which gives a complete description of the Galois
representations attached to A, and apply it to deduce theorem 5.1.3. In section 5.6 we give bounds
on the order of MT(A)(Z/¢"Z) under the assumption that A is of nondegenerate type, i.e. that
rank MT(A) = dim A + 1. Finally, in the short section 5.7 we give a simple example that shows
that the optimal bound on ¢7rarkMT(4) / [K(A[f"]) : K] grows at least exponentially fast in g, so

that our bounds are not too far from the truth.
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5.2 Preliminaries on algebraic tori

Recall that over a perfect field k there is an equivalence of categories between algebraic tori and
finitely generated, torsion-free, continuous Gal(k/k)-modules: if T is a k-torus, the corresponding
Gal(k/k)-module is the group of characters T = Hom (TE7 ij). Also recall that this construction
extends to an equivalence between finitely generated, continuous Gal(k/k)-modules and k-group
schemes of multiplicative type; we will make use of this fact to study the kernel of the reflex norm.

We now introduce a family of Q-algebraic tori that will be especially relevant for us:
Definition 5.2.1. If E is any number field we set T = Resg/q(Gm,g)-

The torus T is of rank [E : Q], and it admits a very simple description in terms of characters: it is
the Q-torus that corresponds to the free module over the set Hom(E, Q), endowed with its natural
(right) Gal(Q/Q)-action.

Proposition 5.2.2. Let E be a number field. The torus Tg has good reduction at all the primes
not dividing disc(E).

Proof. By the Galois criterion ([88, Proposition 1.1]), T has good reduction at ¢ if and only if the
inertia group at (a place of Q over) ¢ acts trivially on 7/’; In the present case I/’;; is the free module
over Hom(FE, Q), so if we let L be the Galois closure of F in Q the action of Gal(Q/Q) on Tr factors
through its finite quotient Gal(L/Q). Now if a prime ¢ is unramified in F it is also unramified in L,
hence the inertia at ¢ has trivial image in Gal(L/Q) and Tg has good reduction at £, as claimed. [J

5.2.1 Points of tori with values in Z, and Z/("Z

We briefly discuss the various possible definitions for the group of Zy-valued points of a Q-torus;
our main reference for this section is [110, §2]. Let T be a Q-torus, not necessarily having good
reduction over ;. We fix a finite Galois extension L of Q, that splits 7', and we regard 7" as a I'-
module, where I' := Gal(L/Qy). Also notice that a character x € T can in particular be considered

as a homomorphism x : T'(L) — L*.

Definition 5.2.3. Following Ono ([94, §2]), we define T'(Zy) to be Homp (T, (9;), the group of I'-

equivariant morphisms (of abelian groups) of T in O . Equivalently, T'(Z) is the maximal compact
subgroup of T'(Qy).

If furthermore we suppose that 7" has good reduction, then it is known ([138, Theorem 2 on p.109])
that there exists a Zg-model T of T (that is, a commutative smooth group scheme over Spec(Zy)
whose generic fiber is T'). As pointed out in [110, Remark 2.2], in this case the Zs-points of T" in the
sense of Ono agree with the Zg-valued points of T, so that we are free to use whichever definition

we find more convenient. When a smooth model 7 exists we can also give the following definition:

Definition 5.2.4. If T has good reduction, the Z/¢"Z-points of T are the Z/¢"Z-valued points of
its smooth Zg-model T .
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We still need to discuss the meaning of T(Z/¢"7Z) when T does not have good reduction. The
construction in this case is again due to Ono. For n > 0, we define subgroups of T'(Q,) by the rule
T(1+0'Z) = {2 € T(@) | velx(@) 1) =n vxeT}.

We simply write T'(Z,) for the group corresponding to n = 0: it can be easily checked that this
definition agrees with our previous ones. We can now set T(Z/("Z) = T T(Z.)

(14 rZy)
when 7" has a smooth Z;-model T, the group T(Z/¢"Z) agrees with T (Z/¢"Z). Finally, when T is a

Q-torus we define T'(Z/¢"Z) to be the group of Z/¢"Z-points of T'® Q,. We conclude this discussion

with the following well-known lemma:

; once again,

Lemma 5.2.5. Let T/Qy have good reduction. For every positive integer n we have

(1 _ 1/£)dimT€ndimT < |T(Z/€TLZ)| < (1 + 1/£)dimT£ndimT.
Proof. A combination of Hensel’s lemma and [138, Theorem 2 on p.104]; for further details, we refer
the reader to [39, Lemme 2.1 and Proposition 2.2]. O
5.2.2 CM types and reflex norm

We briefly recall the notions of CM type, of reflex type, and of reflex norm; we refer the reader
to [110, §3] for further details. Let E be a CM field of degree 2¢g and E be its Galois closure in
Q, and write G, H for the Galois groups Gal(E/Q) and Gal(E/E) respectively. We denote by 7
the complex conjugation of C, or any of its restrictions, and we take the convention that the set
Hom(E, Q) be identified with the coset space H\G.

Lemma 5.2.6. The degree [E : Q| divides 29g!.

Proof. Let Ey be the maximal totally real subfield of E and a € Ey be such that E = Ey( /a).

Let Ep be the Galois closure of Ey and a; = a,...,a € Ey be the conjugates of a over QQ, where
k< [Ey: Q] =g. It is clear that E is generated over Ey by \/ai,...,\/ak, SO [E : Q] divides
[Eo: Q] -2%. As [Fy: Q) | 9! and k < g the lemma follows. O

Definition 5.2.7. A CM-type for the CM field E is a subset S of H\G such that SN 7(S) =0
and H\G = SUT(S).

Let S be a CM type for E and S be the inverse image of S in G, i.e. S = {g eG ‘ Hg e S}. We
set H' = {g eqG ‘ Sg = S’} and let E* be the fixed field of H'; we then set R = {s‘l } s € 3} and
let R be the image of R in H'\G = Hom (E*,@) It is not hard to check that R is a CM type for
E*.

Definition 5.2.8. The pair (E*, R) is called the reflex type of (E,S5).

Finally, a CM type (E,.S) is called simple if the equality
H:{geG\gS*:S}

holds. We are now ready to define the reflex norm:
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Definition 5.2.9. Let (E,S) be a CM type, E the Galois closure of £/Q and (E*, R) the reflex
type of (E,S). The reflex norm associated with (F,S) is the Q-morphism

Qs Te- = Tg
of algebraic tori given on characters by
Te -  Tj
9] = 2.crlrgl;

where [g] (resp. [rg]) is the embedding of E (resp. E*) in Q induced by the automorphism g €
Gal(E/Q) (resp. rg € Gal(E/Q)).

C(e.9)

5.2.3 The Mumford-Tate group

Our interest in the reflex norm stems from the fact that it allows us to define the Mumford-Tate
group of a CM abelian variety rather directly. Before doing so, however, we need to recall how one
associates a CM type with a CM abelian variety.

Let A/K be an absolutely simple abelian variety, admitting complex multiplication (over K) by
the field E/. The tangent space at the identity of A is a K-module and an E-module, and the two
actions are compatible: it follows that this tangent space is a (F ® K )-bimodule, so it decomposes
as TigAx = Hwe g FW where Fw is a 1-dimensional K-vector space on which E acts through the
embedding ¢ : ¥ — K. The set S of embeddings that appear in this decomposition can be shown
to be a CM type for E, and in this case we say that A admits complex multiplication by the CM
type (£,S). When furthermore we have Endg(A) = End;(A) we say that A admits complex
multiplication by (E, S) over K.

Definition 5.2.10. Let A/K be an absolutely simple abelian variety admitting complex multi-
plication (over K) by the CM type (FE,S), and let (E*, R) be the reflex type. We define the
Mumford-Tate torus MT(A) to be the image of the reflex norm ® g ) : T+ — Tk.

Remark 5.2.11. The Mumford-Tate group of A is in fact a purely geometric object — it can described
in terms of the Hodge structure associated with the complex abelian variety Ac. In particular, it

is insensitive to extensions of the base field K.

Remark 5.2.12. It is known that the rank of MT(A) is at most g + 1. When equality holds, the
CM type is said to be nondegenerate, and the Mumford-Tate group has a very simple description
in terms of E: if 7 denotes complex conjugation on F, for any Q-algebra B the B-points of MT(A)

are given by
MT(A)(B) = {z € (E®q B)* | 27(z) € B*}.

For all these facts see for example [110], Proposition 3.3 and the remarks following it.

5.2.4 The group of connected components of ker ® g

An object which will be crucial to our study is the kernel of the reflex norm ®(g g): in this short
subsection we establish a bound on the order of its group of components. The bound is ultimately a

consequence of Hadamard’s inequality, which is the main tool used to establish the following lemma:
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Lemma 5.2.13. Let A be a n x n integral matriz all of whose entries are in {0,1}. The following

inequality holds:
ldet A| < [27™(n 4 1)("+D/2],

Proof. Consider the matrix

2A

It is clear by definition that det B(A) = 2™ det(A). Consider the matrix H(A) obtained from
B(A) by subtracting the first row to each of the others. Clearly H(A) and B(A) have the same
determinant, and furthermore all the entries of H(A) are in {£1}. In particular, the L?-norm of
every row of H(A) is v/n + 1, so Hadamard’s inequality implies

|det A| = 27" |det B(A)| = 2™ |det H(A)| < 27"(n + 1)(*+D/2,
The claim then follows from the fact that det(A) is an integer. O]

Lemma 5.2.14. Let T : Z" — Z™ be a linear map, represented in the standard bases by a matriz
A all of whose entries are in {0,1}. Let Y be the image of T, denote by k the rank of Y, and
let Z be given by Z = {z ez ‘ dq € Z such that qz belongs to Y}. The quotient Z|Y , which is
isomorphic to the torsion part of Z™/Y , has order at most |27F(k + 1)(*:+1)/2],

Proof. The order of Z/Y is given by ged {det(Ak) | Aj is a minor of A of size k} . Lemma 5.2.13
ensures that the determinant of every minor of size k does not exceed |27%(k 4 1) +1/2] and the

lemma follows. ]

Proposition 5.2.15. Let C be the group of multiplicative type defined by the exact sequence
o
1—C — Tg- L’S)>MT(A)—>1

and let C be its character group. Suppose MT(A) has rank r. The torsion subgroup ofC’ has order
at most |277(r + 1)(rt1/2],

Proof. Let Y be the image of @’(E’S) : Ty — Tg- and

Z:{XETE*

dn € Z such that ny € Y} .

The torsion subgroup of C is isomorphic to Z/Y. Moreover, it is apparent from definition 5.2.9
that the matrix representing <I>E‘E s) in the natural bases of fE\*,TE has entries in {0,1}, so the

proposition follows from lemma 5.2.14. O

5.3 Cohomology and integral points of tori

The purpose of this section is to study the map induced on Z,-points by a surjection of tori over
Q¢. More precisely, we let T i> T"” — 1 be a surjection of Qg-algebraic tori, and we assume that T
has good reduction. We let T” be the kernel of 8, which is in general just a group of multiplicative

type (and not necessarily a torus), and write F' for the torsion subgroup of its character group 1.
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We also denote by a the rank of 7", so that we have an isomorphism of abelian groups T JF = 7°.
Finally, we fix a finite unramified Galois extension L of Q, that splits T', and we let I' denote the
Galois group of L over Q. It is also useful to introduce the following notation:

Notation. If n is any integer and ¢ is a prime we write |n|, for ¢=¢(") When M is a finite group
we also write | M|, for £=ve(IM1),

With this notation we shall show:
Proposition 5.3.1. The cokernel of T(Zy) N T"(Zy¢) has order dividing |F| - ]F];[L:Q"].

The proof is given below in §5.3.2, and relies mainly on the basic tools of Galois cohomology,

together with the following classical theorem of Nakayama (cf. for example [125, §2, Theorem 32]):
Theorem 5.3.2. Let A and B be modules over the finite group G. Assume that A is cohomologic-

ally trivial. In order for Hom(B, A) to be cohomologically trivial it is necessary and sufficient that
Ext!(B, A) be cohomologically trivial. In particular, if B is Z-free, then Hom(B, A) is cohomolo-

gically trivial.

5.3.1 Preliminaries on p-adic fields

The following two lemmas are certainly well-known, but for lack of an easily accessible reference we
prefer to include a short proof.

Lemma 5.3.3. Let L be a finite extension of Qp with ring of integers Oy, and let n be a positive

integer. The quotient Or,/O[" has order dividing n - \n|Z[L:QZ].

Proof. We regard all the involved groups as Z/nZ-modules with trivial action, and denote by h,
the associated Herbrand quotient, that is to say for every finite Z/nZ-module M we set

B /nz, M)
M) =\ Fz iz, 30

As (9%, the subgroup of principal units of Oy, has finite index in O (and the Herbrand quotient
is invariant by passage to finite-index subgroups), we have h,(OF) = h,(O}). On the other hand,
Oi contains a subgroup of finite index that is isomorphic to O, ([115, Chapitre XIV, prop. 10]), so
hn(OF) = hy(OF) = hyn(Or). Furthermore, HY(Z/nZ, 0} ) = Hom (Z/nZ, O} ) = Of [n] has order
dividing n, while H'(Z/nZ,Or) = Op[n] = 0. The lemma then follows easily because the quantity
( oL ’ = WM (Z/nZ, OF) - hy (OF) divides

Xn
OL

_0/nOr| ~[L:Q]
n-h,(Or) = nhl(Z/nZ,(’)L) =n-|n|, .

O

Lemma 5.3.4. Let F be a finite abelian group and L be a finite extension of Qp. Then | Ext!(F, O7)|
divides |F| - |F|£_[L:Q"].

7

d;Z

1 X\ ~~v 1 £ X ~ Oz/(
Ext (F,OL)_HExt <diZ70L) _Hozdi'

i

we have

Proof. Writing F' as @
i

The result follows from the previous lemma. ]
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5.3.2 Proof of proposition 5.3.1

Note that — since L/Qy is unramified — the group O; is a cohomologically trivial I'-module (cf. for
example [90, Prop. 7.1.2 (ii)]). As 7" and T" are free abelian groups, Nakayama’s theorem implies
in particular that Hom T, Of ) and Hom T , (’)}j) are cohomologically trivial ['-modules. We will

make extensive use of this fact. The character groups of T,T’, T” fit into an exact sequence
01" =T =T —0;
applying the functor Hom (—, (’)Z) gives another exact sequence
0 — Hom (T/, O;) — Hom (T (9;) — Hom (:ﬁ", (9;) — BExt! (:f/, o;) 0,
where the following Ext term vanishes since T is free. If we let
I := Image (Hom (T, (’)Z) — Hom (T", OZ)) ,
the previous sequence gives rise to the two exact sequences
0 — Hom (T’,Of) — Hom (T,Of) —1—0 (5.1)
and
0 I = Hom (77,05 ) = Bxt! (11,07 ) - 0. (5.2)

Writing as usual IT for H° (T, I), the long exact sequences in Galois cohomology associated with

equations (5.1) and (5.2) give

0 — Homp (T/, O;) = T(Zy) — I — H' (F,Hom (T', 0;)) -0, (5.3)
0— HY(D, 1) — H? (F,Hom (T/, og)) 0, (5.4)

and
0— IT — T"(Zy) — H° (r, Ext! (T/, o;)) — HY(T, 1) — 0, (5.5)

where we have used the fact that Hom (T , (’)f) and Hom <T ", (’)E) are cohomologically trivial.

Also notice that we have an exact sequence of I'-modules
0= F =T —-T'/F—0 (5.6)
where T’/F =~ 7% is free. We can then apply Hom (—, (’)Z) to (5.6) to get
0 — Hom (1'/F, 0 ) = Hom (77,0} ) — Hom (F,05) — 0,

and since Hom (T’ /F, (9;) is again cohomologically trivial by theorem 5.3.2 we deduce that for

every n > 1 we have canonical isomorphisms
H" (F,Hom (T/, Og)) = H™ (T, Hom (F, 0})). (5.7)
Straightforward manipulations of sequences (5.3) and (5.5) show that
ho (F,Extl (T/, oz)) ! (F,Hom (T/, O;))
RY(T, 1) ’

|coker (T(Z¢) — T"(Zy))| =
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For the sake of notational simplicity set M = Hom (F, O ). Using (5.4) and (5.7) we arrive at
ho (F,Extl (T/, OZ)) R (D, M)
R2(T, M) '

Observe now that the group I is cyclic (since it is the Galois group of an unramified extension) and

|coker (T(Zg) — T"(Zy))| = (5.8)

the module M is finite: as it is well-known, the Tate cohomology H" of a cyclic group with values
‘ﬁO(F,M)‘

in a finite module is 2-periodic in n. Moreover, the Herbrand quotient m equals 1 since M

yr

)

is finite, and therefore h?(I', M) = ‘f[o(F, M)‘ = h}(T', M) (for all these facts cf. for example [90,
§1.7]). Using this equality in (5.8) we finally find |coker (T(Z¢) — T"(Z¢))| = h° (F, Ext! (T/, o;))
Proposition 5.3.1 then follows from the fact that h° (F, Ext! (T ’ Of)) divides

‘Extl (T/,O;)‘ — |Ext! (z* & F,07)| = |[Ext! (F,07)|

and from lemma 5.3.4.

5.4 The cokernel of an isogeny, without the good reduction as-

sumption

Let T,T7" be Qp-tori and A : T — T’ be a Q-isogeny. We do not assume that 7' or T has
good reduction, and for the purposes of this section we define the Zs-points of a Qs-torus to be
the maximal compact subgroup of T(Qg) (cf. definition 5.2.3). Our aim is again to bound the
order of coker (T(Zg) 2 T’(Zg)), in terms of the degree m of A and of dim7T = dim7T" =: d.
Cohomological tools could again be used to investigate the problem, but we find that an entirely
different approach (through p-adic differential geometry) yields simpler and more effective proofs;

the method is inspired by [134], see especially lemma 4.4 in op. cit.

Proposition 5.4.1. Let T, T be Q;-tori of dimension d and X\ : T — T’ be an isogeny of degree m.
The order of coker (T(Zg) 2, T’(Zg)) is at most m - |m[€_d.

Proof. Notice first that A fits into a commutative diagram

and therefore it is enough to bound the cokernel of [m] : T'(Zy) — T'(Zy). Fix now a Haar measure

won T"(Qy), normalized in such a way that u(7"(Z)) = 1.

Consider the kernel K of [m] (as a subgroup of T"(Z;), not as a group scheme) and the quotient

S =T'(Zy)/K, and note that © : T"(Z;) — S is a covering map. We denote by ps the measure

on S given by ug(A4) = ﬁu (771(A)): it can also be interpreted as the measure induced on S

by the (Haar) volume form of T7"(Z,), which passes to the quotient since it is translation-invariant.
vol(T"(Zy)) 1

The volume of S (for the measure pg) is K[ = & and we have an /-adic analytic map

q:S — T'(Zy) such that the following diagram commutes:
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S
Clearly ¢ is an f-adic analytic embedding and we have Imageq = Image[m] =: I. We have the
following immediate equality:
1 1
vol(I) = —————vol (T"(Zy)) = ——r. 5.9
D= o ) = waym )

On the other hand, a simple computation in coordinates shows ¢*u = \m[? [s: we can parametrize
a neighbourhood of g € T'(Z;) by x — gexp(z) (for x varying in some small neighbourhood of
0 in the Lie algebra of T"(Qy)), and composing with 7 this also induces a parametrization of a
neighbourhood of 7(g) € S. In these coordinates the map ¢ is simply multiplication by m, so its
Jacobian determinant is |m|¢ and the change of variables formula for (-adic integration gives the

required result. This yields
1

vollt) = [dn= [ du= [ a0 = [ mlf dus = mlf o
I 4(S) s s K|

and comparing this equality with equation (5.9) gives
[m] 1 _ K]

cover (7'20) P4 120 )| = 122011 = s = i

Finally, it is clear that |K| < |T"(Qg)[m]| = m?, and this finishes the proof. O

5.5 Description of the Galois representation

Let A/K be an absolutely simple g-dimensional CM abelian variety admitting complex multiplica-
tion (over K) by the CM type (E, S). Let E be the Galois closure of E, denote by (E*, R) the reflex
type of (E,S), and let £ be a prime number. It is known that — since the action of F is defined over
K — the reflex field E* is contained in K ([55, Chap. 3, Theorem 1.1]), and by [124, Corollary 2 to

Theorem 5], the ¢-adic Galois representation attached to A can be viewed as a map
peoo Gal(F/K) — (EndK(A) & Ze)x — (OE (39 Z@)X .

We denote by Gy the image of pge. We now recall the description of pge coming from the
fundamental theorem of complex multiplication, and refer the reader to [110, §4] and [124] for
further details. Let Ix be the group of ideles of K. As (Op ® Z;)* is commutative, there is a

factorization

Ix HG&I(?/K)U’() - == (OE ®Zg)><

T Pyoo

Gal(K /K)

which (by class field theory) allows us to regard py~ as a map from Ix to (Op ® Zy)™. Let us
introduce some notation: we write u(E) for the group of roots of unity in F, and if v is a place of

K we write O, for the completion at v of the ring of integers of K. If v is furthermore finite we
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denote by p, its residual characteristic; we also let Qi be the set of all finite places of K. If F' is
a number field we denote by F) the algebra F' ® Qy, and for an idele a € Ix we write ay for the

component of a in Ky =2 H K,*. With this notation, the map p is described very precisely by
pu=_

the following theorem:

Theorem 5.5.1. ([124, Theorems 6, 10 and 11]) There exists a unique continuous homomorphism

e: Ix — E* such that, for all finite places v of K, the group e ((’)IX(U> is contained in p(E), and

-1
pe=(a) = £(a)®(p,s) (NKZ/EE* (ae))
for all a € Ix. If furthermore v € Q is a place of good reduction for A, then & (O;QU) 1s trivial.

We now consider the restriction of pp to K™ - [[,cq,
[89, Proposition 2.3]), this is the group of ideéles of H, the Hilbert class field of K. In terms of
Galois groups, this has the effect of restricting pr to Gal(H/H) C Gal(K/K), so it is clear that
pe (Gal(H/H)) is a subgroup of pge (Gal(K /K)) of index dividing h(K), the class number of K.

Now as pye factors through Gal(K/K) we see that pp (K*) is trivial, so we can just consider the

OIXQ;: as it is well-known (cf. for example

restriction of pp to [[,cq, Ok, We now remark that for an idele (ay) € [[,cq, Ok, theorem
5.5.1 implies

c@= ] cte)= J] ela)enb),

VEQK v:A has bad
reduction at v

whence J := kere N [[,cq, O, has index dividing |u(E)| in [[,cq, Ok, and likewise the

index of Jy := kere N [[,, Oy, in [T Oy, divides |u(FE)|. Furthermore, since the function
-1

a ®pg) (NKZ/EZ<G,@)> kills O, when p, # ¢, we have pgo(J) = pgoe(Jy). Also notice that,

upon restriction to Jy, the representation py~ coincides with the map

Yoo HOIXQ) — (Op ® Zy)™
vl

-1
a = Qg (NKZ/EZ(G)> 7
and that if A has good reduction at v, then pyeo and @y coincide on all of H Oy - For the sake

v|l
of notational simplicity let us then set

|u(E)], if A has bad reduction at
po= some place v of characteristic £
1, otherwise
We have proved:
Proposition 5.5.2. For all primes { the group Gy contains pge (Jg) as a subgroup of index

dividing |w(E)| - h(K). We have py(Jy) = oo (Jp), and if A has good reduction at all places v of
characteristic £ we have J;, = va OIXQ}. Finally,

Dpoo HOIX(’U 2 peoo (Jp) ‘/f. (5.10)
v|l
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We can now interpret ¢y as a map between algebraic tori: indeed, the norm Ng g« can be seen
as a morphism T — Tpg+, and va Oj , is nothing but Tk (Zg), so the map ¢y is simply the map
induced on Z,-points by

(®(5.5)) " © Nijp- : T — MT(A);

together with the previous proposition, this implies in particular that pge (Jy) = @ (Jy) is con-
tained in MT(A)(Zy), and that ¢ (Jy) has index at most p* in ppo (T (Z¢)). We thus want to
understand the composition

N *
T (Ze) —2%% Tru(Z4) 25 MT(A)(Zy),

where for simplicity of notation we write 1, for the base-change to Qy of the map (‘I>( E7S)(-))_l

Even though the extension K/E™ is in general non-abelian, the cokernel of N g+ can be understood

through class field theory:

Theorem 5.5.3. ([{, Theorem 7 on p. 161]) Let L/M be an extension of local fields, and let Ly, be

the largest abelian subextension of L/M. Then we have NpmL* = Np,/m (L:b), and the cokernel
MX

N Ix has order dividing [L : M].
L/M

Notice that the image of v, is open and MT(A)(Z,) is compact, hence the cokernel of
b+ T (Ze) % MT(A)(Z)

Tp«(Z
is finite; since furthermore by theorem 5.5.3 - (Z0) divides [K : E*] we find that
Niyp+ Tk (Ze))
g MT(4)(Z,) ‘
MT(A)(Zy) : ppe (Tr (Z divides [K : E*] - | ————5|. 5.11

Remark 5.5.4. When ¢ is unramified in K the local norm Tk (Z;) — Tg+(Z,) is surjective and the
factor [K : E*] can be omitted, cf. [115, Corollary to Proposition 3 of Chapter V].

It is clear that ¢, = @(573) and ® g g) have the same cokernel, so ultimately we just need to
compute the cokernel of the reflex norm. Denote by T the kernel of ®p,5) and write F for the
torsion of its character group 77. By proposition 5.2.15 we have |F| < [277(r + 1)"t1D/2] | where
r=dimIm @7y o) = rk MT(A) does not exceed g+1. Set now T' = T+ ® Q¢ and T" = MT(A)®Qy,
and let L be one of the fields appearing in the decomposition of £ ® Qy as a direct sum of fields:
L/Qy is then a finite Galois extension that splits 7' (recall that E is Galois and contains E*). If ¢
is unramified in E (hence in E) the extension L/Qy is itself unramified, so 7" has good reduction
over Qy; furthermore, [L : Q] | [E: Q] | 29 g! (cf. lemma 5.2.6).

@
Applying proposition 5.3.1 to the surjection of algebraic tori T' —E9 P we find that

P .
coker <TE*(Z£) —E9, MT(A)(Z@)‘ divides |F| - |F|; =, (5.12)

and the right hand side in turn divides |F| - |F|€_299!; we have thus almost completely established

the following result:

Theorem 5.5.5. (Theorem 5.1.3) Let A/K be an absolutely simple abelian variety of dimension g
admitting complex multiplication over K by the CM type (E,S), and let ¢ be a prime number. If A
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has bad reduction at a place of K dividing £ let u* = |u(E)|, the number of roots of unity in E; if
on the contrary A has good reduction at all places of K of characteristic £ set u* = 1. Denote by
r the rank of MT(A) and by F the group of connected components of the kernel of the reflex norm
Tg+ — Tg, where E* is the reflex field of E. Then:

(1) The index [Gyeo : Gygo N MT(A)(Zy)] does not exceed |u(E)| - h(K), where h(K) is the class

number of K.
(2) We have [MT(A)(Zy) : Ggo NMT(A)(Zy)] < p* - [K : E¥] - |F|".

(3) If ¢ is unramified in E and does not divide |F|, then the index [MT(A)(Zy) : Gyoo N MT(A)(Zy)]
divides p* - [K : E*| - |F|. If £ is also unramified in K, the bound can be improved to p* - |F|.

Finally we have r < g+ 1 and |F| < f(r) < f(g+ 1), where

f(z) = {2 (a:z: 1)(m+1)/2J |

Proof. We have already proved (1): the intersection Gy NMT(A)(Z¢) contains pyee (Jy) = pyoo (Jy),
and by proposition 5.5.2 the group ¢y (Jy) has index at most |p(E)| - h(K) in Gye. As for part

(2), the exact sequence
1 —>T/—>TE* ®Qg—>MT(A)®Qg—> 1

induces, by quotienting out by (7”)° (the connected component of the identity of 7"), the exact
sequence
Te- @ Q
(17)°
where F is a finite group scheme of order |F|. Proposition 5.4.1 implies
x?;i)((zf))) ‘ = |coker <’Tg : TE(}%OQK (Zy) — MT(A)(Z@) ‘
< | deg(7) [ MTA)| deg ()|, B M

— | |dimMT(A) F; dim MT(A)

1 F— "L MT(A) @ Qp — 1,

which, together with equations (5.10) and (5.11), gives the desired result. Finally, consider part
(3). As py=(Jy) is a subgroup of MT(A)(Z,) the index [MT(A)(Z¢) : Ggo NMT(A)(Zy)] divides
[MT(A)(Zy) : peee(Je)], and we can write

MUAED | e MDA @) o (T2 (by (5.10)
pe=<(Je)

| 1K < E7] - eoker ( : T (Ze) = MT(A)(Ze))| (by (5.11))
| w - [K B P R (by (5.12))
Since by assumption ¢ does not divide |F'| we conclude that [MT(A)(Zy) : Ggo "MT(A)(Zy)] divides

p* - [K : E*]-|F|. Finally, when ¢ is unramified in K the factor [K : E*] can be omitted, cf. remark
9.5.4. 0

Starting from equations (5.11) and (5.12) it is also easy to prove the following result, which might

have some independent interest:
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Proposition 5.5.6. (Proposition 5.1.6) Let A/K be an absolutely simple abelian variety admitting
complex multiplication (over K) by the CM field E, and let £ be a prime unramified in E. Let E*
be the reflex field of & and suppose that A has good reduction at all places of K of characteristic £.

e The index [MT(A)(F,) : Ge N MT(A)(Fy)] divides [K : E*] - |F|.
o If ¢ is also unramified in K, then [MT(A)(Fy) : Ge " MT(A)(Fy)] divides |F|.

Proof. By proposition 5.2.2 the hypothesis implies that Tg+ has good reduction at ¢, hence the
same is true for its quotient MT(A), which therefore defines a torus over Fy: in particular, the
group MT(A)(Fy) makes sense and its order is not divisible by ¢. On the other hand, the index of
G/MT(A)(F,) in MT(A)(Fy) divides [K : E*]-|F|-]F|;ggg! by proposition 5.5.2 and equations (5.11)
and (5.12), and since | MT(A)(F,)| is prime to ¢ we deduce that [MT(A)(Fy) : Gy N MT(A)(F)]
divides [K : E*] - |F| as claimed. The second part follows by the same argument and remark
5.5.4. O

5.6 The Mumford-Tate group in the nondegenerate case

In this section we consider CM abelian varieties A with nondegenerate CM type, that is to say we
assume that rank(MT(A)) = dim A + 1: this is the “generic” case, and it is also known that all
simple CM varieties of prime dimension have nondegenerate CM type (a result due to Ribet, cf.
[111]). In this situation we have the following bounds on the order of MT(A)(Z/{"Z):

Theorem 5.6.1. Suppose A is simple of nondegenerate CM type. For all primes £ # 2 and all

n > 1 we have
(1= 1/ (0¥ < | MT(A)(Z/07)| < 29 (14 1/ o,
while for £ =2 and all n > 1 we have

1 1
Colg+1)n n - Colg+1)n
92973 A < |MT(A)Z/2"Z)| < 249 249 .

The proof of this result will occupy sections 5.6.1 and 5.6.2, while in sections 5.6.3 and 5.6.4 we

discuss the special cases of elliptic curves and abelian surfaces.

5.6.1 The natural filtration on the norm-1 torus

Let ¢ # 2 be a rational prime, L be a finite extension of Q; and 7 be an involution of L. Denote L™
the fixed field of 7, so that L/L7 is a quadratic (Galois) extension. Fix a squarefree d € O~ such
that L =L" (\/ﬁ) and consider the (multiplicative) group

C={zcOf|a 7(x)=1}.

We write A for a uniformizer of L7, set e = e (L™ /Qy), and consider v, and vy as valuations on Q,
normalized so as to have vy(A) = 1 and vy(¢) = 1; in particular, vy = e - v,. We want to investigate
the structure of the filtration of C given by C(n) := {z € C | vx(z — 1) > n}. It is easy to see that

every x € C(1) can be represented as

=1+ 2du- \2T2 4+ 2uy - N1 TVVd
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with u,us € OF, and v € N subject to the condition
u(l + du - \2F2) = . (5.13)

Furthermore, for n > 1 we have an exact sequence of abelian groups

0 - Cn+1) — C(n) = 0OL/(\NOy,
rx—1
N [m}

where [-] denotes the class of an element of O, in the quotient Or,/(A\)Of. Let us describe the image

of a for n > 1. Clearly x € C'(n) implies v > n—1, and for v > n we have a(z) = 0; when v =n—1

we have a(z) = [uzv/d]. Notice now that we have an injection (of additive groups) C /\()D(LQTLT 1 S@L

induced by z — zv/d, and we claim that all points in the image of this embedding can be realized
as a(z) for some x € C(n). This is clear for the zero element, so let us consider an element of the

form [ugV/d] with uz € OF,. Consider the equation
t(1+A*"dt) = u3 (5.14)

in the variable t. By Hensel’s lemma, the discriminant A := 1 + 4u3\?"d is a square in Op-
(recall that n > 0). Let 1 + z be the square root of A that is congruent to 1 modulo A: then z

satisfies (1 + 2)2 = 1 + 4u3\?"d, from which we easily find v)(z) = 2n + v\(d). It follows that
-1+ \/Z _ z
24X 2dA

then set = 1+ 2du - A¥™ + 2uy - A™\/d: by construction z is an element of C(n), and it satisfies

o () = [ugV/d]. This shows that the image of o is in bijection with 1 )\()Q(LQ;T . Finally, essentially the

is a solution to equation (5.14) which is also a A-adic unit. We can

same argument can be repeated when £ = 2, except that Hensel’s lemma is now only applicable for

n > vy(2). We thus deduce the following lemma:

Lemma 5.6.2. Suppose ¢ # 2. For every n > 1, the quotient C(n)/C(n + 1) has order ‘(gﬁ .

For ¢ =2 the same conclusion holds for every n > vx(2).
The quotients C'(n)/C(n + 1) for small values of n are described by the following lemma:

Lemma 5.6.3. Let f be the inertia degree of L™ over Qq. Suppose first £ # 2: then the quotient
% has order either 201 or ¢f 4+ 1, with the first (resp. second) case happening exactly when L/L™
is ramified (resp. unramified). Suppose on the other hand that ¢ = 2 and n < vy(2): then the

quotient % has order at most 4.

Before giving a proof, recall the following

Definition 5.6.4. Let L be a finite extension of Q with ring of integers Oy, and residue field F. Let
7w : O — F be the canonical projection. The Teichmiiller lift is the unique group homomorphism
w : F* — OF such that, for all y € F*, the element w(y) € O is the unique solution to the

equation z/FI=1 = 1 satisfying 7 (z) = y.

Proof. Consider first the case of L/L™ being unramified (and ¢ # 2). Let 7 : O — F := ( )\()Q(LQL
be the canonical projection, and observe that F has order ¢2f. It is clear that 7 restricts to a map
C(0) — F*, and on the other hand = € C(0) maps to 1 if and only if vy(x — 1) > 0, i.e. if and

only if z € C(1): this implies that C'(0)/C(1) injects into F*. The involution 7 induces on F an
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automorphism 7, which is necessarily the unique nontrivial involution z 2. Letnowz € C (0).
By definition we have x - 7(x) = 1, hence 1 = 7(x) - n(7(z)) = w(z) - 7v(7(x)) = 7T(.1‘)£f+1, S0
C(0)/C(1) injects into the subgroup H of F* given by the roots of unity of order dividing ¢/ + 1.
The group H is of order ¢/ 41, and it is not hard to see that C'(0)/C/(1) surjects onto it: indeed for
every h € H we have w(h) € C(0), and by definition m(w(h)) = h. Suppose on the other hand that
L/L7 is ramified, so that L = L™(v/d) with vy(d) = 1. Again we see that C'(0)/C(1) injects into
Fx .= ((/\()975%) g (which however is not a field anymore), and the involution 7 acts on an element
[a + bVd] € (&?ﬁ)x, with a,b € Opr, by sending it to [a — bv/d]. Writing n(z) = [a + bVd],
the equation x7(x) = 1 implies [a? — db?] = 1, which in turn, since v)(d) = 1, means [a?] = 1 and
[a] = £1. This shows that C'(0)/C(1) injects into {£1} x TTLT, a set with 2 - ¢/ elements. On
the other hand, for any value of [+1 4 bv/d] € F*, the equation a? = 1 + db? (with fixed b, in the
variable a) admits solutions in Or- by Hensel’s lemma; the elements +a + bv/d € C(0) then satisfy
(+a + bVd) - 7(+a + bVd) = a® — db* = 1,

and on the other hand 7(%a + bv/d) = [£1 + bV/d], so C(0)/C(1) actually projects surjectively on

{41} x ~o&"—; this shows that |C'(0)/C(1)| = 2¢/ as claimed. The upper bound for ¢ = 2 likewise
follows from the fact that for any n > 0 the quotient C(n)/C(n + 1) injects into ()\(’))7{% O

5.6.2 The order of MT(A)(Z/("Z)

Let E be a CM field of degree 2¢g over Q and Tk be the associated algebraic torus, and let 7
denote complex conjugation on E. If A/K is an abelian variety with complex multiplication by the

nondegenerate CM type (E S), it is known that we have
MT(A)(B) = {z € (E®q B)* | #7(z) € B*} V Q-algebra B.
We can also consider the ‘norm 1’ (or Hodge) subtorus of MT(A) given as a functor by
Hg(A)(B {q: € (E®q B)* ‘ x7(z) = 1} YV Q-algebra B.

We aim to give bounds on the number of W—poin‘cs of MT(A), but it is easier to first consider
Hg(A). If we write E® Q; = [[;_; F; (a product of fields), we have

Hg(A)(Qg):{ (x1,... EHFX‘J/‘T }

We can renumber the F;’s in such a way that 7 acts by exchanging F5; 1 and Fy; fori=1,...,r
and it acts as an involution on F; for i =2r +1,...,s.

With this convention, a point (x1,..., %oy, Tori1,...,Ts) € Hle F is in Hg(A)(Qy) if and only if

xoi—1xe; =1 fori=1,...,r and z;7(x i):lfori:%—i—l , s, that is,
Hg( H{xz, 1€ Fy ) H {x; € Ff | air(2;) = 1} (5.15)
1=2r+1

The character groups of MT(A4)q, and of Hg(A)q, are quotients of T/E@, which in turn is generated
by the elements of the form (1, ..., Xs), where y; ranges over the embeddings of F; in Q. It follows
that a point x € Hg(A)(Qy) is in Hg(A)(Zy) if and only if for any choice of embeddings x; : F; < Qg
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we have x;i(7;) € O,,(,); as the property of being f-integral is Galois-invariant we deduce that a

necessary and sufficient condition is z; € O . Hence we find
7

He(A)(Zo) = [[ 05, , x I {m € O | wir(wi) = 1} ,
=1

1=2r+1

and a perfectly analogous argument shows that
T

Hg(A)(l + E”Zz) = H {x2i—1 S 0;21;1 ‘ Ug(xgi_l — 1) > n} X
=1

S
X H {xl € O;i ‘ ve(x; — 1) > n, x;7(;) = 1}.
1=2r+1
Write e; and f; for the ramification index and inertia degree of F; over Qy, and A; for a uniformizer
of F7 (i=2r+1,...,s). The order of ‘HgHg(%‘ is then given by

(A)(A+eZy)
T X S ;
Foi1 C(Z)(O)
Hg(A)(Z/Z)| = [ |+ e— [ : , 5.16
‘ g( )( / )’ 1 1+£n0F2i—1 i C(Z)(nel) ( )

where
cO (k) = {mz € Op |ua (@i —1) >k, @ - 7(23) = 1}

is the filtration we studied in the previous section for the field F; and the involution 7|f,. For
i=1,...,r let furthermore m; (resp. e;, f;) be a uniformizer (resp. the ramification index over Qy,
the inertia degree over Qy) of Fy;_1. We now compute the order of Hg(A)(Z/¢"7Z). Basic properties

X
Foi—1

of local fields show that TH0, has order
X ne; —1 ;
OF21'71 ) H 1+ (Wi?jOngfl _ (Ef’ o 1) . gfi(neifl)
1+7m0m,_, j=1 1+ (ﬂ-i)ﬁrlomel 7

while (for ¢ # 2) lemma 5.6.2 gives

cO) | _|cW)| | cWa) | _|CW(o) oFi(nei=1)

CO(ney)|  |COA)| |CO(ne)| |CW() '
Now notice that s — 2r does not exceed g: indeed [F; : F]] = 2 for every i = 2r + 1,..., 7, hence

s

20=[E®Qr: Q> Z [Fi : Q] > 2(s — 2r) as claimed. Applying lemma 5.6.3 we then deduce
i=2r+1
that the order of Hg(A)(Z/¢"Z) is at most

ﬁe"fm. H 2 (1+%) (efi)nei_l

i=1 1=2r+1

— 252rﬁgé"[f’¢:@z} f[ (1 —i—ﬁffi) (efi)nei
=1

1=2r+1

< 9572 (14 1) [ eznired
=1

< 29 (1+1/0)9 (97,



Chapter 5. The CM case 154

and at least
T

[ o - somb T (0 o)

ne;—1

i=1 i=2r+1
T S
>(1-1/0)"- Hgnfiei H pntiei
i=1 i=2r+1
S
(1—=1/0)" Hgg Qe H 03nIFiQ]
i=2r+1
> (L=1/6)7 - 477
moreover, if for at least one index i € {2r +1,..., s} the extension F;/F] is ramified, then we see
from lemma 5.6.3 that the lower bound can be improved to
|Heg(A)(Z/0"Z)| > 2(1 — 1/6)9 - 9™, (5.17)

To finish the proof of theorem 5.6.1 we shall use the following lemma:

Lemma 5.6.5. Consider the map
U Hg(A)(Z/"Z) x (Z/0"Z2)* — MT(A)(Z/"Z)
(h,m) — m~th.
If £ # 2, the group Im U has order equal to 5 |Hg(A)(Z/("Z)| x (1 —1/0)¢" and has index at most 2
in MT(A)(Z/"Z). Moreover, ¥ is surjective if and only if for all x € MT(A)(Z/"Z) the number
x7(x) is a square in (Z/"Z)™. On the other hand, for ¢ = 2 we have

e forn =1, the group Im VU has order equal to that of |Hg(A)(Z/2Z)| and V¥ is surjective;

o forn =2, the group Im ¥ has order equal to that of |Hg(A)(Z/AZ)| and Im ¥ has index either
1 or2in MT(A)(Z/AZ);

e forn >3, the group Im ¥ has order equal to 2"~3 - |Hg(A)(Z/2"Z)| and Im ¥ has index 1, 2
or4 in MT(A)(Z/2"Z);

Proof. Let us start with the case £ # 2. The kernel of v is given by the intersection of Hg(A)(Z/("Z)
and (Z/¢"Z)* inside MT(A)(Z/("Z), namely
{he@/ez) | hr(h) =1} = {h € (Z/"Z)* | h* =1} = {£1},

so Im ¥ has order
1

|ker U

(€ —1)m-t
2

| Hg(A)(Z/0"Z)| - (2)0"2) | = | Hg(A)(2/¢"2Z)]

as claimed.

As for the index of Im ¥, notice first that for every = m~'h € Im ¥ we have that z - 7(z) = m 2
is a square in (Z/¢"Z), so if ¥ is surjective we necessarily have z - 7(x) € (Z/¢"Z)*? for every
x € MT(A)(Z/¢"Z). Conversely, suppose that for every x in MT(A)(Z/¢"Z) the number z7(x) is
a square in (Z/("Z)*, say x7(x) = u(x)? with u(x) € (Z/f"Z)*. Then every x can be written
as ¢ = p(z) - 7oy and since —Es s in Hg(A)(Z/¢"7Z) this shows that x belongs to Im ¥, which is

therefore surjective.
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Finally, if there is a y € MT(A)(Z/¢"Z) such that y7(y) is not a square in (Z/¢"Z)*, then using
the fact that (Z/¢"Z)*? is of index 2 in (Z/"Z)* we easily see that for every 2 € MT(A)(Z/("Z)
either x or zy belongs to Im ¥, thus proving the remaining claim. The conclusion for £ = 2 follows
(z/2"7)*
(z/2n2)**
1, 2, or at least 3. O

by the same argument upon noticing that has order 1, 2, or 4, according to whether n is

Combining this last lemma with our previous estimates gives the desired upper bound
IMT(A)(Z/€"Z)| < 2 |Im V| = [Hg(A)(Z/0"Z)| x [(Z/¢"Z)"]
<29 (14 1/0)9 L platim,
As for the lower bound, suppose first that for at least one index i in the set {2r + 1,...,s} the

extension L;/L7 is ramified: then using the lower bound of equation (5.17) (which is conditional on
this hypothesis) we find

IMT(A)(Z/"Z)| = % Hg(A)(Z/0"Z)| x |(Z/0"Z)*| > (1 — 1/0)9+ gloDn,

Suppose on the other hand that L;/L7 is unramified for every i = 2r +1,...,s: then we claim that

map ¥ from lemma 5.6.5 is not surjective. Assuming this is the case, we have
1
IMT(A)(Z/€"Z)| > 2 x - x [Hg(A)(Z/E"Z)| x [(Z/e"z)*| > (1 - 1/0)9F glgTDn

which is what we want to show. We are thus reduced to proving that ¥ is not surjective, or
equivalently (by lemma 5.6.5), to showing that there is an x € MT(A)(Z/¢"Z) such that z7(z) is
not a square in (Z/¢"Z)*. By the same argument that leads to equations (5.15) and (5.16), we can
represent elements of MT(A)(Zy) as tuples

2r s
X X X
(T1y. ey Topy Topgly .oy TgyM) € | I Op X | | OFj X Ly,
i=1 j=2r+1

satisfying xo;—129; = m for ¢ = 1,...,r and z;7(z;) = m for j = 2r+1,...,s. Now if 2r = s
it is clear that MT(A)(Z¢/¢"7Z) contains elements x such that z7(x) is not a square (it suffices to
choose m € Z; which is not a square in Z/¢"Z and set x9;—1 = 1,x9; = m for i = 1,...,7), so
we can assume s > 2r. For j = 2r +1,...,s write Fj = Ffﬂ/d?) for some squarefree d; € (’);j
(recall that we assume Fj/F] to be unramified), and likewise write z; = a; + bj+/d; for some

aj,bj € OFJT. We claim that since F}/F ]-T is unramified every element m € ZZX can be represented

2 _
J

section C : {a® — d;b* = mc?} admits a point (ag, by, co) over the residue field of FT:

a square in F] we cannot have ¢y = 0, and since C is smooth the point (ag, by, ¢o) lifts to a point

(a,b,c) €C ((’) F]r), with ¢ a unit (since it does not reduce to 0 in the residue field). Dividing through

as a djb§ for some choice of a;,b; € (’)Fjr. To see this, notice that for fixed m and d; the conic

as dj; is not

by ¢? then yields (a/c)? — d;j(b/c)? = m as desired. Pick now a fixed non-square m € Z) and for
each j =2r+1,...,s fix a representation m = a?- — djb]z. Take furthermore x9;_1 = 1, x9; = m for
1=1,...,r.

The corresponding point @ = ((x;)i=1,...2r, (¥j)j=2r+1,...,s, ) of MT(A)(Z;) has the property that
z7(x) = m is not a square in Zy, and therefore the image of x in MT(A)(Z/¢"Z) has again the
property that z7(x) = [m] € (Z/¢"Z)™ is not a square. Combined with lemma 5.6.5, this shows

that W is not surjective in this case and concludes the proof of theorem 5.6.1 for £ # 2.
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Notice now that for £ = 2 the lower bound of theorem 5.6.1 is trivial for n < 2, so we can assume

n > 3. We then remark that (by equation (5.16)) Hg(A)(Z/2"7Z) has order at least

C®(e; +1)
C)(ne;)

s

ﬁ 9(n=1)[F2i—1:Qe] H

i=1 1=2r+1

Y

which (by the same argument as above, using the second part of lemma 5.6.2) in turn is at least

ﬁ2(n71)[F2¢711Q£} % f[ <2fi>(n_1)5i_1 > 2g(n72)‘
i=1 i=2r+1

Furthermore, taking into account the factor coming from the homotheties — namely (Z/2"Z)* — we

find | MT(A)(Z/2"Z)| > 200tD(=2)=1_ Finally, the upper bound for £ = 2 follows trivially from the

previous computations and from the second halves of lemmas 5.6.3 and 5.6.5.

5.6.3 Elliptic curves

When the CM abelian variety under consideration is an elliptic curve we can give a complete

description of the full adelic Galois representation:

Theorem 5.6.6. Let A/K be an elliptic curve such that Endy(A) is an order in the imaginary

quadratic field E. Denote by ps : Gal(K/K) — HAut T, A the natural adelic representation
¢
attached to A, and let Gy be its image. For every prime £ denote by Cy the group (Op ® Zy)™,

considered as a subgroup of Autz, (O ® Zy) = GLa(Z) = Aut Ty A, and let N(Cy) be the normalizer
of Cy in GLa(Zy).

1. Suppose that E C K: then G« is contained in [[,Cy, and the index [[[,C; : Go] does not
exceed 3[K : Q|. Moreover, the equality Gyo = Cy holds for every prime £ unramified in K
and such that A has good reduction at all places of K of characteristic £.

2. Suppose that E ¢ K: then G is contained in [[, N(Cy) but not in [[,Cy, and the index
[[I, N(Cy) : G is not finite. The intersection Hoo = Goo N [[, C¢ has index 2 in G, and
the index [[[,Cp : Hxo] does not exceed 6[K : Q]. Moreover, the equality Gy = N(Cy) holds
for every prime £ unramified in K - E and such that A has good reduction at all places of K

of characteristic £.

Finally, the constants 8 and 6 appearing in parts (1) and (2) respectively can be replaced by 1 and

2 if we further assume that the j-invariant of A is neither 0 nor 1728.
We start by recording the following consequence of theorem 5.5.5:

Corollary 5.6.7. Let A/K be an elliptic curve admitting complex multiplication (over K) by the
imaginary quadratic field E. The group Gy is contained in MT(A)(Zy) = Cy, and if A has good
reduction at all places of K of characteristic £ the index [MT(A)(Zq) : Gyeo] is at most [K : Q. If
in addition £ is also unramified in K we have Gy~ = (Op @ Z;)™.

Proof. Since E is quadratic, ¥ and E* coincide and the reflex norm is simply the identity T — Tg,
hence MT(A) = Tg and (in the notation of theorem 5.5.5) F' is the trivial group. In particular
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Te(Z¢) = (Op ®Zy)™" = Cy contains Gy by [124, Corollary 2 to Theorem 5] (cf. also [116,

): the claim on the index then follows from theorem 5.5.5 upon noticing that
[K : E*] = [K : E] = [K : Q]. Furthermore, if ¢ is unramified in K, then it is also unramified in
E, and the remaining assertion Gy = Cy = MT(A)(Zy) follows from part (3) of theorem 5.5.5. [

Corollaire on p. 302]

We shall also need some results concerning elliptic curves A/K that admit complex multiplication

over K but not over K. We start with the following easy properties of N (Cy):

Lemma 5.6.8. Cy is of index 2 in N(Cy). In particular, N(Cy) is generated by Cy and any element
in N(Cy)\ Cyp. Furthermore, if Hy is an open subgroup of Cy, then the normalizer of Hy in GLo(Zy)
is contained in N(Cp).

Proof. Fix w € O such that (1,w) is a Z-basis of Op. There exist ¢, d € Z such that w satisfies the

quadratic relation w? = cw + d. In the Zs-basis (1,w) of Op ® Zy, the group Cy is the subgroup of

bd
GL2(Z¢) given by the invertible matrices that can be written as “ ) for some a,b € Z;. We
a+ bc

thus see that Cy is given by the intersection of GLa(Z¢) with a 2-dimensional plane IT (that defined
by the equations z11 + cx21 = x22, x12 = dw21, where x;; is the coefficient on the i-th row and j-th
column). In particular, for an element g € GLg(Zy) the condition of normalizing Cy is equivalent
to that of stabilizing II. The latter is a Zariski-closed condition, and since any subgroup Hy of Cy
open in the f-adic topology is Zariski-dense in Il we see that if g normalizes Hy, then it stabilizes

II and hence it normalizes Cy. Finally, with the explicit description at hand it is immediate to see

1
that [N(Cy) : C¢] = 2, and that a nontrivial element of N(Cy) \ C; is given by (0 cl>' O
Lemma 5.6.9. Suppose A/K is an elliptic curve such that Endg (A) = Z but End(A) is an order
in an imaginary quadratic field E: then for every prime { the group Gy is contained in N(Cy).

Proof. The field K' = K - E is a quadratic extension of K over which all the endomorphisms of
A are defined, and the group Gl = py= (Gal(ﬁ/ K 1)) is a closed subgroup of Gy~ of index at
most 2 (hence in particular it is normal and open in Gy~). Let R = Endz(A). Since A admits
complex multiplication by R over K, we know by [116, §4.5, Corollaire] that G} is of finite index
in (R®Zg)*, which in turn is of finite index in C;. Thus the normalizer of G} is included in N(Cy)
by lemma 5.6.8, and since G} is normal in Gy we have Gy C N(Gje) C N(Cy) as claimed. O

Lemma 5.6.10. In the situation of the previous lemma, for all primes £ the group Gy has

nonempty intersection with N(Cy) \ Cy.

Proof. For all primes ¢ we have Gy« C N(Cy). On the other hand, we know by Faltings’ theorem
that the centralizer of Gy in End (7pA) ® Q equals Endg(A) ® Qp = Q. It follows that Gyeo
cannot be abelian, for otherwise its centralizer would contain all of Gy~ (which is not contained in

the homotheties Q): in particular, Gy must have nonempty intersection with N(Cy) \ Cy. O

We can now prove theorem 5.6.6:
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Proof. (of theorem 5.6.6) The proof is quite similar to that of theorem 5.5.5, the main differences
being that we need to treat all places at the same time and that the action of F needs not be
defined over K. Consider first case (1). The inclusion Gy C Cy is part of corollary 5.6.7, and
implies G C [[, G C [[,Ce. In particular, G is abelian, so class field theory allows us to

interpret poo as a map

IKL'%H@
V4

that is trivial on K*. As in the proof of theorem 5.5.5, since we are looking for a lower bound on
G no harm is done in replacing I by the group of ideles of the Hilbert class field of K; concretely,

this means considering the restriction of ps to H O ,» where Qg is the set of finite places of

vEQK
K. Recall from theorem 5.5.1 that the action of p on a finite idele a = (ay)veq, is given by

pOO(a) = 5(0’) (NKZ/EZ (azl))é prime
As in the proof of theorem 5.5.5, if we let u(E) be the group of roots of unity in £ we know that
kere is a subgroup of [[,cq, O, of index at most |u(F)|, and since F is a quadratic imaginary

field we have |u(E)| < 6. Therefore the image of po, has index at most | kere| < 6 in the image of
the map

Poo - HUGQK Or = (0@ Z)* =]],Ce
(@) = (NKE/EZ (af))f

given by taking local norms from K, to F,. Hence in particular we have

o selften )

and it suffices to show that

E[Ceilm%o] <[k B = 31K :

which follows from [4, Theorem 7 on p. 161] (the global field counterpart of theorem 5.5.3). The

remaining assertion of part (1) is exactly the content of corollary 5.6.7.

As for part (2), we have seen in lemmas 5.6.9 and 5.6.10 that in this case Gy is contained in
N(Cy), but not in Cy. If welet K! = K - E, then A admits complex multiplication by E over K, so
Poo (Gal(ﬁ/[(”) is contained in [, Cy by part (1). Since Gal(K1/K") has index 2 in Gal(K /K)
we must have Ho, = poo <Gal(ﬁ/K1)), so that the index [Gs : Hool is indeed 2 and applying
part (1) we find [[],Cs : Hoo] < 3[K!: Q] = 6K : Q]; moreover, the index [[], N(C¢) : Goo] is not
finite since the same is clearly true for the index [[[, N(C) : [, C¢]. Finally, if ¢ is unramified in
K we see from corollary 5.6.7 (applied to A/K*') that Gy contains all of Cy, and by lemma 5.6.10
we know that Gy also contains an element of N(Cy) \ Cy. The equality Gyee = N(Cy) then follows

from lemma 5.6.8.

As for the last assertion, notice that if we exclude elliptic curves with j-invariant equal to 0 or 1728
the field of complex multiplication F is neither Q(7) nor Q((3), so the only roots of unity in E are
+1. This implies that kere has index at most 2 in HUEQK O.f, and the same argument as above

shows that the constants 3 and 6 can indeed be replaced by 1 and 2. O
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Remark 5.6.11. The following simple example shows that the constants 3 and 6 appearing in the
statement of theorem 5.6.6 cannot be improved in general. We consider the elliptic curve A over
the field K = Q((3) given by the Weierstrass equation y> = 23 + 1. As it is clear, A has com-
plex multiplication (over K) by the full ring of integers of E = K. Moreover, all the 2-torsion
points of A are defined over K, so G5 has trivial reduction modulo 2. Hence G5 is a subgroup
of ker (Zz[(3]* — F2[(3]*), and its index in (O ® Z2)* = Zs[(3]* is divisible by [Fa[(3]*| = 3.
Likewise, the fact that the 3-torsion point with coordinates (0, 1) is defined over K shows that the
index of G3 in (O ® Z3)* is divisible by 2. Thus we conclude that the index of G in [[, C; is at
least 6 = 3[K : QJ, so that the constant 3 is indeed sharp. Finally, considering the Q-elliptic curve
given by the same Weierstrass equation shows the optimality of part (2): in this case Ho, is exactly
the image of the Galois representation attached to A/K, so we have [[[,C/ : Hx] = 6 by what we

just showed.

5.6.4 Abelian surfaces

An easy direct computation shows that when dim A = 2 the kernel of the reflex norm is always
connected, and therefore the group F' of theorem 5.5.5 is trivial. Since furthermore simple CM types

are automatically non-degenerate in dimension 2, combining theorems 5.5.5 and 5.6.1 we deduce:

Corollary 5.6.12. Let A/K be an absolutely simple abelian variety of dimension 2. Suppose that
A has CM over K by the field E and let £ be a prime number such that A has good reduction at
all places of K of characteristic £. The group Gy N MT(A)(Z¢) has index at most [K : E*| in

MT(A)(Z¢), hence we have [K(A[("]) : K| > [KlE*](l — 1/0303" for € # 2, while for { = 2

1
we have [K(A[2"]) : K| > WTJ’". Finally, if ¢ is unramified in K - E we even have
[K(A[("]) : K] > (1 —1/£)363",

5.7 A family of varieties with small 2-torsion fields

Let p > 3 be a prime number and K, be the cyclotomic field Q((,). We let C, be the unique
smooth K,-curve birational to y” = z(1 — x) and J(p) be its Jacobian, again over K,. It is clear
that C, admits an action of p,, so J(p) is a CM abelian variety, admitting complex multiplication
over K, by the full ring of integers of K. Notice furthermore that C), is birational to the curve
22 =wP+1/4

(Just set x = z 4+ 1/2, y = —w), so it is hyperelliptic of genus %. Direct inspection of the model
yP = x(1 — ) reveals that C) is smooth away from p, so J(p) has everywhere good reduction over
K, except perhaps at the unique place dividing p. The reflex field is K; = K. Let us compute the
CM type S of J(p): in the basis w; := wjdjw (j=0,..., %) of the space of differentials on C), the

. X
action of ¢, is given by [(,]*w; = ;,J,ij, hence the CM type, considered as a subset of (p%) , 1s

{1, e p%l} Equivalently,
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where (g) is the unique integer lying in the interval [0, p — 1] that is congruent to g modulo p. This
description shows that our CM type agrees with the type S described in [66], which by [66, Lemma
1] is nondegenerate (cf. also [52]): thus we have rank MT(A) = dim A+ 1 = %.

Let now fi,..., 83, be the roots of w? + 1/4 = 0 in Q, and let P, = (;,0) be the corresponding
points of C), (in the coordinates (w, z)). Finally, for i = 1,...,p let d; denote the divisor (F;) — (00).
It is known (see for example [10, §5.1]) that the 2-torsion of J(p) is an Fa-vector space of dimension
p — 1 spanned by the d;’s, which are only subject to the linear relation Y ©_, d; = [0]. It follows
that the 2-torsion field K,(J(p)[2]) = K, ({8i}) = K, ({’/m) has degree p over K, so for £ = 2
and n = 1 the ratio ("rankMT(A) [ TIC(A[¢"]) : K] is given by

grank MT(A) 9(p+1)/2 gdim J(p)+1
[K(UP)2): K] p  2dimJ(p)+ 1

which shows in particular that, as claimed in the introduction, the optimal bound on the quantity
grrankMT(A) /R(A[0"]) : K] grows at least exponentially in the dimension of A.




Chapter 6

On the /-adic Galois representations
attached to nonsimple abelian

varieties

6.1 Introduction

Let K be a field finitely generated over its prime subfield, and let A be an abelian variety over K.
The action of the absolute Galois group of K on the various Tate modules TyA (for ¢ # char K)
gives a (compatible) family of ¢-adic representations of the absolute Galois group of K, and most of
the relevant information is encoded neatly in a certain family of algebraic groups (denoted Hy(A)
in what follows, cf. definitions 6.2.5 and 6.5.5). It is thus very natural to try and understand the
Galois action on nonsimple varieties in terms of the groups Hy; the main results of this chapter
are several sufficient criteria for the equality Hy(A x B) = Hy(A) x Hy(B) to hold. We start by
discussing the case char K = 0, which is technically simpler, and prove for example the following

¢-adic version, and mild generalization, of a Hodge-theoretical result of Hazama [36]:

Theorem 6.4.1. Let K be a finitely generated field of characteristic zero, A1 and As be K-abelian
varieties, and £ be a prime number. For i = 1,2 let b; be the Lie algebra of Hy(A;). Suppose that
the following hold:

1. for i = 1,2, the algebra b; is semisimple, so that we can write h; @ Q¢ = b1 & -+ S hin,,

where every b; ; 1s simple;

2. fori=1,2, there exists a decomposition Vy(A;) @ Qp 2 Vi1 @ -+ @ Vi, such that the action
of h; ® Qp = hi1 @ Dbhip, on Vi1 @ - DV, y, is componentwise and b, ; acts faithfully on
‘/i,j;

3. for all distinct pairs (i,7) and (i/,j") for which there exists an isomorphism ¢ : b; ; — by
there is an irreducible b; j-representation W such that all simple b; ;-submodules of V; ; and
of ¢* (Vi/,j/) are isomorphic to W, and the highest weight defining W is stable under all

automorphisms of b; ;.

161
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Then either Hom?(Al,AQ) 75 0 or Hg(Al X Ag) = Hg(Al) X Hg(AQ).

From this theorem we deduce many easily applicable criteria, including for example the following

result on low-dimensional abelian varieties.

Corollary 6.4.5. Let K be a finitely generated subfield of C and A1,..., A, be absolutely simple
K -abelian varieties of dimension at most 2, pairwise non-isogenous over K. Let ki,..., k, be

positive integers and A be a K-abelian variety that is K -isogenous to I, Afl Then we have

Hy(A) =11, Hi(Ai), and the Mumford-Tate conjecture holds for A.

On the other hand, as the conditions in theorem 6.4.1 are often not easy to check, it would be
desirable to describe families of abelian varieties for which they are known to hold; in this direction
we prove a result inspired by a paper of Ichikawa [44], where a sufficient criterion is given for the
equality H(A x B) = H(A) x H(B) to hold for the Hodge groups of complex abelian varieties. The

criterion is expressed in terms of the relative dimensions of the factors:

Definition 6.1.1. Let K be any field and A be an absolutely simple K-abelian variety, so that
End%(A) = End(A) ®z Q is a division algebra, with center a number field £ (either totally real
or CM). The degree of End%(A) over E is a perfect square, which we write as d?; by type of A we
mean the type of End%(A) in the Albert classification. The relative dimension of A is then given
by

dl;nA, if A is of type I, 1I or III
reldim(A) = €
2 A
d;m , if A is of type IV
e

Note that d = 1 if A is of type I, and d = 2 if A is of type II or III.

A Ribet-style lemma (proved in section 6.3) that slightly generalizes results found in the literature,
combined with techniques due to Pink [98] and Larsen-Pink [57], allows us to prove the following
f-adic analogue of Ichikawa’s theorem, which has exactly the same form as the corresponding Hodge-

theoretical result:

Theorem 6.4.7. Let K be a finitely generated field of characteristic zero and A}, A7 (fori=1,...,n
andj =1,...,m) be absolutely simple K -abelian varieties of odd relative dimension that are pairwise
non-isogenous over K. Suppose every Al is of type I, II or III in the sense of Albert, and every A;’
is of type IV. Let A be a K -abelian variety that is K-isogenous to [[7_; Aj x [[jL; A7: then

Hg (A) = HH( (A;) X Hg HA;,
i=1 j=1

In section 6.5 we then discuss to which extent the previous results apply to finitely generated fields
of positive characteristic. It turns out that in this setting the most natural definition of Hy(A)
is different, and that some additional technical hypotheses must be added to our main results.
Theorems 6.5.7 and 6.5.9 are positive-characteristic versions of theorems 6.4.1 and 6.4.7 respectively;
they are slightly weaker than their characteristic-zero counterparts, but are still qualitatively very

similar.
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Finally, in section 6.6 we apply our results to nonsimple varieties of dimension at most 5 defined over
finitely generated subfields of C; by studying the product structure of H; we prove the Mumford-
Tate conjecture for most such varieties, and in all cases we are able to reproduce in the arithmetical
setting results obtained in [82] for their Hodge group. Note that [82] makes ample use of compactness
arguments (for real semisimple groups) that are not available in the ¢-adic context and thus need

to be replaced in our setting.

6.2 Preliminaries

6.2.1 Notation

Throughout the chapter the letter A will be reserved for an abelian variety defined over a field K,
which we suppose to be finitely generated (over its prime subfield). A field K will be said to be a
“finitely generated subfield of C” if it is finitely generated over Q and a distinguished embedding
o0 : K — C has been fixed. If A is an abelian variety defined over a finitely generated subfield of
C, we will write A¢ for the base-change of A to C along o; the symbol V(A) will then denote the
first homology group Hp (Ac(C),Q). We will also denote ¢ a prime number, and write Vy(A) for
Ty(A) ® Qp, where Ty(A) is as usual the ¢-adic Tate module of A.

If G is an algebraic group we shall write G for its derived subgroup, Z(G) for the connected
component of its center, and G for the connected component of the identity; when b is a reductive
Lie algebra we shall write h* for its semisimple part. Finally, if ¢ : g — b is a morphism of Lie

algebras and p : h — gl(V) is a representation of hj, we denote ¢*(V') the representation p o ¢ of g.

Definition 6.2.1. When b is a classical Lie algebra (i.e. of Lie type A;, By, C;, or Dy), we call
standard representation of §) the one coming from the defining representation of the correspond-

ing algebraic group. It is in all cases the representation with highest weight w; (in the notation of
Bourbaki [18, Planches I-1V]).

6.2.2 The Hodge group

We now briefly recall the notion of Hodge group of an abelian variety (defined over an arbitrary
subfield F of C), referring the reader to [79] for more details. To stress that F' need not be finitely
generated, we depart from our standard notation A and denote X an abelian variety defined over F;
we denote X¢ the base-change of X to C. The Q-vector space V(X) = H; (X¢(C),Q) is naturally
endowed with a Hodge structure of type (—1,0) & (0,—1), that is, a decomposition of C-vector
spaces V(X))@ C = V(X)W @ V(X)% ! such that V(X)-10 = V(X)0—1,

Let oo : Gppc = GL (V(X)c) be the unique cocharacter such that z € C* acts as multiplication
by z on V(X) 10 and trivially on V(X)%~!. The Mumford-Tate group of X is the Q-Zariski
closure of the image of jio, that is to say the smallest Q-algebraic subgroup MT(X) of GL(V (X))
such that ps factors through MT(X)c. It is not hard to show that MT(X) contains the torus of
homotheties in GL(V(X)).

Definition 6.2.2. The Hodge group of X is H(X) = (MT(X) N SL(V(X)))°.
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Remark 6.2.3. The group MT(X) can be recovered from the knowledge of H(X): indeed, MT(X)
is the almost-direct product of G,, and H(X) inside GL(V (X)), where G,, is the central torus of

homotheties.

It is well known that the group H(X) is connected and reductive, and that there is an isomorphism
End% (X) = End(V(X))HX), Moreover, if A is a polarization of X¢ and ¢ is the bilinear form
induced on V(X) by A, the group H(X) is contained in Sp(V (X), ¢). It is also easy to show that
when the F-abelian varieties X; and Xo are isogenous over C the groups H(X;) and H(X3) are
isomorphic, and that when X¢ has no simple factor of type IV the group H(X) is semisimple.

Finally, we also have some information on the behaviour of H(X) with respect to products:

Proposition 6.2.4. Let F' be a subfield of C and X1, Xo be abelian varieties defined over F. The
group H (X x X3) is contained in H(X1) x H(X3), and it projects surjectively on both factors.

Let X1,..., X}y be absolutely simple F-abelian varieties that are pairwise non-isogenous over C, and
let ni,...,ny be positive integers. The groups H(X{' x -+ x X;'*) and H(X; x -+ x Xy) are

isomorphic.

6.2.3 The groups H/(A)

Let now K be a finitely generated field of characteristic zero, A be an abelian variety defined over
K, and (¢ be a prime number; recall that we set Vy(A) = Ty(A) ® Q. The action of Gal (K/K)
on the torsion points of A induces a representation p; : Gal (K/K) — GL(Vy(A)) = GLadim 4(Q¢);
the Zariski closure of the image of p, is called the algebraic monodromy group at ¢, and is
denoted G¢(A). As in the Hodge-theoretical case, it is known that G¢(A) contains the homotheties
(Bogomolov [13]), so that G¢(A) is determined by its intersection with SL(V;(A)). This intersection

is our main object of study.

Definition 6.2.5. Let K be a finitely generated field of characteristic zero and A be a K-abelian
variety. We set Hy(A) = (G¢(A) N SL(Vy(A)))°.

Suppose now that we have fixed an embedding K — C, so that we can speak of the Hodge group
of A. The Mumford-Tate conjecture predicts that the group Hy(A) should be an ¢-adic analogue
of H(A), and the two groups are indeed known to share many important properties. It is clear by
definition that Hy(A) is connected; furthermore, by the comparison isomorphism of étale cohomology
we can write Vp(A) = V(A) ®g Q¢, and since V(A) is equipped with a bilinear form ¢ (induced by
a polarization) we obtain by extension of scalars a bilinear form ¢, on V;(A). It is then possible to
show that the inclusion Hy(A) C Sp(Vi(A), ¢r) holds.

Deeper properties of Hy(A) are intimately related to Tate’s conjecture for abelian varieties, and we

summarize them in the following theorem:

Theorem 6.2.6. (Faltings [26], [27]) Let K be a finitely generated field of characteristic zero, ¢ be

a prime number, and A, B be K-abelian varieties. Then Gy(A) is a reductive group, and we have
Homg, (¢, (axB) (Ve(A), Ve(B)) = Homg (A, B) ® Q.
In particular we have End(Vy(A))¢¢4) = Endg (A) @7 Q.
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Corollary 6.2.7. Let K be a finitely generated field of characteristic zero, A and B be abelian
varieties defined over K, £ be a prime number, and by be the Lie algebra of Hy(A x B). Suppose
Homy, (Vi(A),Vi(B)) # 0: then Homy(A, B) # 0.

Proof. There is a finite extension K’ of K such that the Zariski closure G of the image of the repres-
entation Gal (K'/K’) — Aut (Vy(A x B)) is connected. We want to show that Homg (A, B) # 0.
By the previous theorem it is enough to prove that Homg,g,) (Ve(A), Ve(B)) is nontrivial. As G
is connected, an element of Hom (V;(A), Vi(B)) is Gy-equivariant if and only if it is equivariant
for the action of the Lie algebra gy of Gy. On the other hand, we know there is an isomorphism
gr = by @& Qy, where the factor QQ; corresponds to the homotheties. Since any linear map commutes
with the action of the homotheties we have Homg, ] (Ve(A1), Vi(Az2)) = Homy, (Ve(A1), Ve(A2)),
and the latter space is nontrivial by hypothesis. Thus Homg (A1, A2), and a fortiori Homy (A1, Az),

are both nontrivial. O

Notice furthermore that the group Hy(A) is unchanged by finite extensions of the base field K, and
that if A, B are K-abelian varieties that are K-isogenous we have Hy(A) = Hy(B).

Moreover, H;(A) is semisimple when Az does not have any simple factor of type IV (the proof of
this fact being the same as for Hodge groups, cf. again [79], especially proposition 1.24), and it has

the same behaviour as H(A) with respect to products:

Proposition 6.2.8. Let K be a finitely generated field of characteristic zero and Ay, Ao be K-abelian
varieties. The group Hy(A1 X Ag) is contained in Hy(A1) x Hy(As2), and it projects surjectively on
both factors.

Let Ay, ..., Ay be absolutely simple K -abelian varieties that are pairwise non-isogenous over K,
and let ni, ..., ny be positive integers. The groups Hy(AT* x -+ x A*) and Hy(A; % --- X Ay) are
isomorphic.

We also have some information about the structure of V;(A) as a representation of Hy(A):

Theorem 6.2.9. (Pink, [98, Corollary 5.11]) Let K be a finitely generated field of characteristic
zero, A be a K-abelian variety, ¢ be a prime number, and he(A) be the Lie algebra of Hy(A). Write
he(A) @ Qp = c® DL, i, where ¢ is abelian and each b; is simple. Let W be a simple submodule
of Vo(A) ® Qq for the action of (he(A) @ Qp), decomposed as W = C ® Q' Wi, where each W; is

a simple module over by; and C' is a 1-dimensional representation of ¢. Then:

1. each b; is of classical type (i.e. of Lie type Ay, By, C; or Dy for somel);

2. if W; is nontrivial, then the highest weight of b; in W; is minuscule.

Remark 6.2.10. This theorem is stated in [98] only for number fields. The version for finitely

generated fields follows easily by a specialization argument (cf. also proposition 6.2.11 below).

For the reader’s convenience and future reference, we reproduce the full list of minuscule weights
for classical Lie algebras, as given for example in [18] (Chapter 8, Section 3 and Tables 1 and 2);
the last column of this table contains +1 if the corresponding representation is orthogonal, —1 if it

is symplectic, and 0 if it is not self-dual.
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Root system Minuscule weight Dimension Duality properties

. [+1
l+1 (—1),1f’l”:T
A(l>1) wr, 1 < <1 I+1
r 0,if r # ——
2
+1, if I =3,0 (mod 4)
> : ’ ’
B (l>2) wy 2 -1, if I =1,2 (mod 4)
Ci(1>3) w1 21 -1
w1 21 +1
D> 4) +1, if I =0 (mod 4)

Wi—1, W] 2i-1 —1, if I =2 (mod 4)
0, if I =1 (mod 2)

TABLE 6.1: Minuscule weights

6.2.4 Known results towards the Mumford-Tate conjecture

Let K be again a field finitely generated over Q, and A be an abelian variety over K. Fix any
embedding o : K — C, so that we can regard K as a subfield of C, and the Mumford-Tate and
Hodge groups of A are defined. The celebrated Mumford-Tate conjecture predicts that the equality
G(A)? = MT(A) ® Qp should hold for every prime ¢; equivalently, for every A and ¢ we should
have Hy(A) 2 H(A)® Q. Note that both sides of this equality are invariant under finite extensions
of K and isogenies: in particular, if A and B are K-abelian varieties that are K-isogenous, the
conjecture holds for A if and only if it holds for B.

Even though the general case of the conjecture is still wide open, many partial results have proven,
and we shall now recall a number of them that we will need in what follows. Let us start with the
following proposition, which allows a reduction of the problem to the case of K being a number
field:

Proposition 6.2.11. (Serre, Noot, [91, Proposition 1.3]) Let £ be a prime, K be a finitely generated
subfield of C and A be a K-abelian variety. There exist a number field L, a specialization B of A
over L, and identifications Hi(Ac(C),Q) = H1(Bc(C), Q) and Ty(A) = Ty(B) (compatible with the
comparison isomorphism in étale cohomology) such that MT(A) = MT(B) and G¢(A) = G(B)

under the given identifications.

This proposition implies in particular that most results which are known for number fields and
depend on a single prime ¢ automatically propagate to finitely generated subfields of C. This
applies to all the theorems we list in this section, some of which were originally stated only for

number fields.

Theorem 6.2.12. (Piatetskii-Shapiro, Borovoi, Deligne [23, I, Proposition 6.2]) Let K be a finitely
generated subfield of C and A be a K-abelian variety. For every prime { we have the inclusion

Gi(A)* CMT(A) ® Q.

Theorem 6.2.13. (Pink, [59, Theorem 4.3]) Let K be a finitely generated subfield of C and A be
a K-abelian variety. Suppose that the equality rk(H (A)) = rk(Hy(A)) holds for one prime £: then
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Hy(A) = H(A) @ Qp holds for every prime €. In particular, if the Mumford-Tate conjecture holds

for one prime, then it holds for every prime.

Theorem 6.2.14. (Vasiu, [137, Theorem 1.3.1]; cf. also Ullmo-Yafaev, [135, Corollary 2.11]) Let
K be a finitely generated subfield of C and A be a K-abelian variety. For every prime £ we have
Z(Hi(A)) = Z(H(A)) ® Q. In particular, the Mumford-Tate conjecture is true for CM abelian

varieties.

Remark 6.2.15. The CM case of the Mumford-Tate conjecture was first proved by Pohlmann [101].

The following proposition follows immediately upon combining the previous three theorems:

Proposition 6.2.16. Let K be a finitely generated subfield of C and A be a K-abelian variety.
Suppose that for one prime number ¢ we have rk(H (A)3") < rk(Hy(A)): then the Mumford- Tate
conjecture holds for A. The same is true if (for some prime £) we have rk H(A) < rk H;(A).

In a different direction, many results are known for absolutely simple abelian varieties of specific

dimensions:

Theorem 6.2.17. (Serre, [119]) The Mumford-Tate conjecture is true for elliptic curves (over
finitely generated subfields of C).

Theorem 6.2.18. (Tanke’ev, Ribet, [112, Theorems 1, 2 and 3]) The Mumford-Tate conjecture is
true for absolutely simple abelian varieties of prime dimension (over finitely generated subfields of

C).

Theorem 6.2.19. (Moonen, Zarhin, [80]) Let K be a finitely generated subfield of C and A be
an absolutely simple K-abelian variety of dimension 4. If End(A) # Z, then the Mumford-Tate
conjecture holds for A. If Endg(A) = Z, then either for all primes { we have Hy(A) = Spg g, and
Mumford-Tate holds for A, or else for all ¢ the group Hy(A) is a Qq-form of SL3.

Remark 6.2.20. The preprint [155] announces a proof of the Mumford-Tate conjecture for absolutely
simple abelian fourfolds A with Endz(A) = Z. In what follows we shall not need this fact, whose
only effect would be to slightly simplify the statement of proposition 6.6.2.

There are some common elements to the proofs of all the dimension-specific results we just listed,
and we shall try to capture them in definition 6.2.22 below. We now try to motivate this definition.
As the group Hy(A) is reductive and connected, most of its structure is encoded by the Q-Lie
algebra hy(A) = Lie(Hy(A)); extending scalars to Qy, the Lie algebra hy(A) ® Q; can be written
as ¢ ® ;- b;, with ¢ abelian and each h; simple. The proofs of theorems 6.2.17 and 6.2.18 yield

information about the structure of this Lie algebra:

Proposition 6.2.21. Let K be a finitely generated subfield of C and A/K be an absolutely simple
abelian variety whose dimension is either 1 or a prime number. Fix a prime ¢ and let hy(A) be the
Lie algebra of Hy(A). Suppose A is not of type IV. Then the following hold:

e the Lie algebra hy(A) ® Qp admits a decomposition b1 @ - - - © b, where each simple factor b;
is of Lie type sp;. for some k;
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e foreachi=1,...,n there exists a (not necessarily simple) hi-module W; such that V,(A) ® Qp
is isomorphic to W1 @ - - - ®W,,, the action of )1 ... B0, on W1 & - - - @ W, is componentwise,
and §; acts faithfully on W;;

e cvery module W is a direct sum of copies of the standard representation of b; (cf. definition
6.2.1).

Trying to isolate the essential features of this proposition, and taking into account theorem 6.2.9,

we are led to the following definition:

Definition 6.2.22. Let K be a finitely generated field of characteristic zero, A/K be an abelian
variety, and hy(A) be the Lie algebra of Hy(A). We can write hy(A) @ Qy = ¢ Dby @ --- @ by, where
¢ is abelian and each factor b; is simple and (by theorem 6.2.9) of classical type. We say that A
is of general Lefschetz type if it is absolutely simple, not of type IV, and for every prime ¢ the
following hold:

1. for each i = 1,...,n there exists a (not necessarily simple) h;-module W; such that V;(4)®Q,
is isomorphic to W1 @ --- & W,,, where the action of h1 & ... ® b, on W1 d --- & W, is

componentwise, and h; acts faithfully on W;;

2. if the simple Lie algebra b; is of Lie type A;, the rank [ is odd and W; is a direct sum of copies
!
of /\# Std, where Std is the standard representation of b; (cf. definition 6.2.1);

3. if the simple algebra b; is of Lie type B, the module Wj is a direct sum of copies of the (spinor)
representation defined by the highest weight w; (in the notation of [18, Planches I-IV]);

4. if the simple algebra b; is of Lie type Cj or D;, the module W; is a direct sum of copies of the

standard representation of f;.

Remark 6.2.23. As proved in [87, Lemma 2.3], when A is a complex abelian variety of type I or II
the action of the Lefschetz group of A on V(A) ® C has precisely this structure.

Several instances of this situation have been studied, for example in a series of papers by Banaszak,

Gajda and Krason. Among various other results, for abelian varieties of type I and II they prove:

Theorem 6.2.24. (Theorems 6.9 and 7.12 of [6]) Let K be a finitely generated subfield of C and
A/K be an absolutely simple abelian variety of type I or II. Suppose that h = reldim(A) is odd: then
for every prime { the simple factors of Hy(A)®@Qy are of type Spsy,. Furthermore, the Mumford-Tate
conjecture holds for A.

Remark 6.2.25. 1t is clear from the proof of [6, Lemma 4.13] that any variety as in the previous
statement is of general Lefschetz type. Moreover, the result also holds for A = 2: this is not stated
explicitly in [6], but follows essentially from the same proof (cf. also [21, Theorem 8.5], which covers

the case of abelian fourfolds of relative dimension 2).

Another paper by the same authors, [8], deals with varieties of type III:
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Proposition 6.2.26. Let K be a finitely generated subfield of C and A/K be an absolutely simple
abelian variety of type III. Suppose that h = reldim(A) is odd: then for every ¢ the simple factors of
(Lie Hy(A)) ® Qg are either of type sogy, or of type sl 1, where [ + 1 is a power of 2. Furthermore,
A is of general Lefschetz type.

Remark 6.2.27. Note that the authors of [8] claim a stronger statement, namely the fact that the
simple factors of Hy(A) ® Q can only be of type SOg; and that, under the same hypotheses,
Mumford-Tate holds for A. The proof of [8, Lemma 4.13], however, fails to take into account the
minuscule orthogonal representations whose dimension is congruent to 2 modulo 4 (those corres-
ponding to algebras of type sl;1 acting on AT Std, when [ > 3 and [ + 1 is a power of 2); as a
result, the statements of [8, Theorems 4.19 and 5.11] need to be amended as we did in proposition
6.2.26.

6.3 Preliminary lemmas

We now start proving some lemmas on algebraic groups and Lie algebras we will repeatedly need

throughout the chapter.

Lemma 6.3.1. Let G — G1 X G2 be an inclusion of algebraic groups over a field of characteristic
zero. Suppose that G, Gy and Go are reductive and connected, and that the projections of G on Gy

and Go are surjective. If tk G equals rk(G1) + 1k(G2), then the inclusion is an isomorphism.

Proof. We show that GG is open and closed in G1 X G5. It is closed because every algebraic subgroup
is, and it is open since G and G; x G2 have the same Lie algebra by [35, Lemma 3.1]. O]

Lemma 6.3.2. Let G be a Q-simple algebraic group. If G is semisimple and the number of simple
factors of G@ is at most 3, then there is a set of primes L of positive density such that for every /¢
in L the group Gq, is simple.

Proof. Let n be the number of simple factors of G@; if n = 1 there is nothing to prove, so we can
assume 7 is 2 or 3. The permutation action of Gal (@/ Q) on the simple factors of G@ determines
a map p : Gal (@/ Q) — Sy, and the assumption that G is Q-simple implies that the image of
p is a transitive subgroup of S,. As n < 3, we see that the image of p contains an n-cycle g.
By the Chebotarev density theorem there exists a set of primes L of positive density such that
) (Gal (@/ Qg)) contains g; in particular, for any such ¢ the group Gal (@/ Qg) acts transitively on
the simple factors of G@, so G, is Q¢-simple. O

Lemma 6.3.3. Let K be a finitely generated subfield of C and A, B be K -abelian varieties. Suppose
B is CM and H(A x B) = H(A) x H(B). Then we have Hy(A x B) = Hy(A) x Hy(B) for every

prime L.

Proof. Using the hypothesis and applying theorem 6.2.14 twice we find

rk Z (Hy (A x B)) =tk Z (H (A x B))
=1k Z (H (A)) + 1k Z (H (B))
=1k Z (Hy (A)) + 1k Z (H, (B)).
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Furthermore, as Hy(B) is a torus, the canonical projection Hy(A x B) — Hy(A) induces an isogeny
Hy(A x B)% = Hy(A)%" hence tk Hy(A x B)9" = rk Hy(A)4°". Putting these facts together we
get tk Hy(A x B) = rk Hy(A) + rk Hy(B), so the inclusion Hy(A x B) — Hy(A) x Hy(B) is an

isomorphism by lemma 6.3.1. O

The next lemma is certainly well-known to experts (a somewhat similar statement is for example
[116, Théoreme 7], which deals with the case of elliptic curves), but for lack of an accessible reference

we include a short proof:

Lemma 6.3.4. Let K be a finitely generated subfield of C and A, B be K -abelian varieties. Suppose
B is of CM type and Ay has no simple factor of type IV. Then we have H(Ax B) = H(A) x H(B),
and for every prime £ we also have Hy(A x B) = Hy(A) x Hy(B).

Proof. The same proof works for both the Hodge group and the group Hy, so let us only treat the
former. The canonical projections H(A x B) — H(A) and H(A x B) — H(B) induce isogenies
H(A x B)%r = H(A) and Z(H(A x B)) = Z(H(B)), so we have

rk H(Ax B) =tk H(Ax B)%" +1k Z(H(A x B)) =tk H(A)%" + 1k Z(H(B)) = rk H(A) +rk H(B)

and we conclude by lemma 6.3.1. 0

Lemma 6.3.5. Let K be a finitely generated subfield of C and A, B be K-abelian varieties. Suppose
that Mumford-Tate holds for A, and that B is CM. Then Mumford-Tate holds for A x B.

Proof. Let £ be a prime number. As in the previous lemma we have rk Hy(A x B)9" = rk Hy(A)der
and tk H(A x B)% = rk H(A)%". Since the Mumford-Tate conjecture holds for A, we deduce
rk Hy(A x B)" = vk Hy(A)4" = 1k H(A)4" = 1k H(A x B)%" and the lemma follows from pro-
position 6.2.16. O

Lemma 6.3.6. Let K be a finitely generated subfield of C and A1,..., A, be K-abelian varieties.
Suppose that Mumford-Tate holds for every A;, and that the equality Hy ([];—; Ai) = [, He(A;)
holds for a given prime €. Then the Mumford-Tate conjecture holds for [];_, Ai.

Proof. The hypothesis implies
rk Hy (H Ai> = Zrk Hy(A;) = Zrk H(A;)) >rkH (H Ai) )
i=1 i=1 i=1 i=1

and the lemma follows from proposition 6.2.16. O

One of the most important ingredients in our proofs is the following lemma, part of which is
originally due to Ribet. The statement we give here is close in spirit to [80, Lemma 2.14], but our

version is even more general.

Lemma 6.3.7. Let C be an algebraically closed field of characteristic zero and Vi,...,V,, be finite-
dimensional C-vector spaces. Let gl(V;) be the Lie algebra of endomorphisms of V; and let g be a
Lie subalgebra of gi(V1) @ --- @ gl(V;,). For each i =1,--- ,n let m : @, gl(V;) — gl(V;) be the
i-th projection and let g; = m;(g). Suppose that each g; is a simple Lie algebra and that one of the

following conditions holds:
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(a) For every pair of distinct indices i,j the projection m; ® m; : g — g; B g; is onto.
(b) For all indices i # j for which there is an isomorphism ¢ : g; — g; we have the following:

1. there is an irreducible g;-representation W such that all simple g;-submodules of V; and
of ¢* (V;) are isomorphic to W, and the highest weight defining W is stable under all

automorphisms of g;;

2. let I = {k‘ e{l,...,n} | g = gi}; the equality Endg (@ke] Vk) = [1ie; Endg, Vi holds.

n
Then g = @gj.
j=1

Remark 6.3.8. As inner automorphisms preserve every highest weight, in condition (bl) one only
needs to check the action of the outer automorphisms (which are finite in number, up to inner
automorphisms, since they correspond to automorphisms of the Dynkin diagram). In particular,

our conditions (b) generalize those given in [80, Lemma 2.14].

Proof. The fact that (a) implies the desired equality is classical, cf. the Lemma on pages 790-791
of [109]. Thus it suffices to show that (b) implies (a). Let us fix a pair (i,7) and consider the
projection m; @ m; 1 g — g; © g;. Let h be the image of this projection and £ be ker (h — g;).
Since £ can be identified to an ideal of g; (which is simple), we either have € = g;, in which case
h = g; @ g; as required, or € = {0}, in which case b is the graph of an isomorphism g; = g;; it is
this latter possibility that we need to exclude. If g; and g; are not isomorphic there is nothing to
prove, so let us assume g; = g;, and suppose by contradiction that b is the graph of an isomorphism
0 :g; = g;. Let p; : gi — gl(Vi) and p; : g; — gl(V}) be the tautological representations of g;, g;.
By assumption (bl), the simple g;-subrepresentations of p; and p;o¢ are isomorphic, so there exists
a nonzero morphism of g;-representations x;; : V; — V;. Equivalently, x;; is h-equivariant (recall
that b is the graph of ¢). Setting I = {k: e{l,...,n} ‘ gr = gi}, the map

U P Vi — P Vi

kel kel
(vi1"") Ui ’..."Uilll) —> (0,...’ X’Lj(vl) ’...,O)
factor v; factor v;

then belongs to End, (@ke I Vk), but does not send every factor to itself, so it is not an element of
[I:c; Endg, (Vi). This contradicts condition (b2), so g — g; © g; must be onto, and therefore (b)

implies (a) as required. O

Proposition 6.3.9. Let K be a finitely generated field of characteristic zero, A, B be K-abelian
varieties and £ be a prime number. Suppose at least one among Hy(A) and Hy(B) is semisimple,
and no simple factor of Lie(Hy(A))* ® Qq is isomorphic to a simple factor of Lie(Hy(B))* @ Qp:
then Hy(A x B) = Hy(A) x Hy(B).

Proof. Up to interchanging A and B we can assume that Hy(A) is semisimple: the projection
Hy(A x B) — Hy(B) then induces an isogeny Z(Hy(A x B)) = Z(Hy(B)).
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Next consider the semisimple ranks. Let b, h4 and hp be the Lie algebras Lie(Hy(A x B))* @ Qy,
Lie(Hy(A)) ® Qg and Lie(Hy(B))* ® Qq respectively.
Write by 2 g1 ® - P gn and bp = gpt1 B - - - D Gntm, With every g; simple. We can consider b
as a subalgebra of B, g; ® D)., 9+, that projects surjectively onto @i, g; and B gn+;. In
particular, h projects surjectively onto each simple factor g;.
Let us show that all the double projections ) — g; ® g; are onto. If 4, j are both at most n (or i,
are both at least n + 1) this is trivial, so we can assume ¢ < n < j. But then by assumption g; and
g; are nonisomorphic, so by the same argument as in the proof of lemma 6.3.7 the projection must
be surjective. Lemma 6.3.7 now gives h = h4 @ hp, thus implying rkh =rkhs +rkbhp. In terms of
groups this leads to
rk Hy(A x B) = rk Hy(A x B)%" +rk Z(H;(A x B))
= rk Hy(A)%" + rk Hy(B) + rk Z(H,y(B))
=rk Hy(A) + rk Hy(B),

and we conclude by lemma 6.3.1. O

6.4 Sufficient conditions for H, to decompose as a product

6.4.1 An /-adic analogue of a theorem of Hazama

We are now ready to prove the following ¢-adic analogue (and mild generalization) of a Hodge-

theoretical result of Hazama ([36, Proposition 1.8]):

Theorem 6.4.1. Let K be a finitely generated field of characteristic zero, A1 and As be K-abelian
varieties, and £ be a prime number. For i = 1,2 let b; be the Lie algebra of Hy(A;). Suppose that
the following hold:

1. for i = 1,2, the algebra b, is semisimple, so that we can write h; @ Q¢ = b1 © -+ D bin,,

where every b; ; is simple;

2. fori=1,2, there exists a decomposition Vy(A;) @ Qp 2 V;1 @ - @® V; , such that the action
of h; @ Qp & Hi1 @ - @ bhip, on Vi1 @ @ Vi, is componentwise and b, ; acts faithfully on
Vigs

3. for all distinct pairs (i,7) and (i',7") for which there exists an isomorphism ¢ : b;; — by
there is an irreducible b; j-representation W such that all simple b; j-submodules of V; ; and
of ¢* (V;/J/) are isomorphic to W, and the highest weight defining W is stable under all

automorphisms of b; ;.
Then either Hom?(Al,Ag) 75 0 or Hg(Al X AQ) = Hg(Al) X H[(AQ).

Remark 6.4.2. Condition 3, as W is fixed under all automorphisms of g; ; (hence of g/ j/), is actually

independent of the choice of .
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Proof. Let b be the Lie algebra of Hy(A; x Az). We shall try to apply lemma 6.3.7 to the inclusion
h®Q — (b1 @ h2) ® Qy, and distinguish cases according to whether hypothesis (b2) is satisfied or
not. Observe that h ® Qy is a subalgebra of

(b1 @ b2) ® Q = @@f)u C@@QI

i=1 j=1 i=1 j=1
whose projection on each factor gl(V; ;) is isomorphic to b; ;, hence simple. Moreover, hypothesis
3 of this theorem implies condition (bl) of lemma 6.3.7. Suppose now that (b2) holds as well:
then h ® Q; = (b1 @ ha) ® Qp, hence in particular tkh = rk by + rkbhs, and lemma 6.3.1 implies
Hy(A; x Ay) =2 Hy(A1) x Hy(Ag). Suppose on the other hand that (b2) fails: then there exists a

nontrivial endomorphism ¢ in

@@V’] \ @@Endbw 7]

=1 j=1 =1 j=1
Since the action of h; ® Q; on Vy(A4;) ® Qp = @?’:1 Vi; is componentwise for i = 1,2, it is clear
that ¢ does not belong to Endy, (@?;1 Vl,j) x {0}, nor to {0} x Endy, (@;ﬁl VQ,]’). Thus, up to
exchanging the roles of A1 and Aj if necessary, the map ¢ induces an (h® Qy)-equivariant morphism
from 7L, V1,; to @}2, Va2 ;: this implies that the space

Homy (Vi1, Vi2) ® Qp & Homy .- (Ve ® Qo, Vio @ Q)

is nontrivial. In particular, Homy (V;(A1), Vy(A2)) # 0, and therefore Homy-(A1, A2) is nontrivial
by corollary 6.2.7. O

Remark 6.4.3. We now check to what extent the theorem can be applied to varieties A of general
Lefschetz type. It is clear that conditions 1 and 2 are satisfied, so let us discuss condition 3. Let
b be a simple constituent of Lie Hy(A) ® Q. By definition, the simple h-submodules of V;(A4) ® Q,

are all isomorphic to a single representation W. Let us distinguish cases according to the type of b:

e if b is of Lie type A;, then W is defined by the highest weight w1 (recall that [ is odd by
2
assumption), and is therefore stable under the unique nontrivial automorphism of the Dynkin

diagram of A;: condition 3 is satisfied;

e if b is of Lie type B; or Cj, the Dynkin diagram does not have any nontrivial automorphisms,
hence all automorphisms of h are inner and fix the highest weight of W: condition 3 is again
satisfied;

e finally, if b is of Lie type D; the module W is defined by the highest weight w;. As long as
[ # 4, the Dynkin diagram of D; has a unique nontrivial automorphism, and it is immediate
to check that this automorphism fixes wq: condition 3 is satisfied once more. Note however
that for [ = 4 the Dynkin diagram has additional (triality) automorphisms, and that these do

not fix wq, so condition 3 fails in this case.

Thus we conclude that every abelian variety A of general Lefschetz type satisfies the hypotheses of
the previous theorem unless Lie Hy(A) ® Q, has a simple factor of Lie type Dy.
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Corollary 6.4.4. Let K be a finitely generated subfield of C and A1,..., A, be absolutely simple
abelian varieties defined over K, pairwise non-isogenous over K. Suppose that no A; is of type IV,
and that the dimension of each A; is either 2 or an odd number. Let ki, ..., k, be positive integers

and A be a K-abelian variety that is K-isogenous to | Afl Then we have an isomorphism
Hy(A) =TI, Hi(Ai), and the Mumford-Tate conjecture holds for A.

Proof. The Albert classification implies that every A; is of type I or II (recall that in characteristic
zero there is no absolutely simple abelian surface of type III). As the three abelian varieties [ ;" , A?i,
[T, A; and A all have the same Hodge group and the same groups Hy, there is no loss of generality
in assuming that k; = --- = k, = 1 and that A =[] | A;. The fact that Hy(A; x --- x A,) and
Hy(Ay) x ---x Hy(A,,) are isomorphic then follows by induction from theorem 6.4.1, the hypotheses
being satisfied thanks to theorem 6.2.24 (and the remark following it). Lemma 6.3.6 then implies
that Mumford-Tate holds for A; x --- x A,. O

Corollary 6.4.5. Let K be a finitely generated subfield of C and Ay, ..., A, be absolutely simple
K -abelian varieties of dimension at most 2, pairwise non-isogenous over K. Let ki,..., k, be

positive integers and A be a K-abelian variety that is K -isogenous to I, Af’ Then we have
Hy(A) =TI, Hi(Ai), and the Mumford-Tate conjecture holds for A.

Remark 6.4.6. Such a result is in a sense the best possible. There is an example — due to Shioda
[127] — of an absolutely simple threefold Y of CM type and a CM elliptic curve E such that
H(Y x E) # H(Y) x H(E). By the Mumford-Tate conjecture in the CM case, this also means
Hy(Y x E) # Hy(Y) x Hy(F) (note that Y and E, being CM, can be defined over a number field).

Proof. As in the previous proof, we can assume k; = --- = k,, = 1 and replace A by [[\"; A;. By
lemma 6.3.6, Mumford-Tate for A would follow from the isomorphism Hy (A) = [[i, H¢(A;), so
let us prove the latter. Up to renumbering, we can also assume that Aj,..., A,, are of type I or
IT and Apyy1, ..., A, are of type IV (since there are no absolutely simple abelian varieties of type
IIT of dimension at most 2). The classification of elliptic curves and simple surfaces implies that
Amity.o.,Apare CM. Let A’ = Ay x---x Ay and A” = A1 X -+ X Ay, As A” is CM and A’ has
no simple factor of type IV, lemma 6.3.4 gives Hy(A" x A”) = Hy(A") x Hy(A"”). Tt thus suffices to
prove the result when either A’ or A” is trivial. If A” is trivial the claim follows from corollary 6.4.4,
so we can assume A’ is trivial, in which case we have to show Hy ([[;; 4;) = [[;~, Hi(A4;) under
the additional assumption that every A; is CM. Appealing to the Mumford-Tate conjecture in the
CM case, it is enough to show the corresponding statement for Hodge groups, which is exactly the
content of [103, Theorem 3.15]. O

6.4.2 A criterion in terms of relative dimensions

As promised in the introduction, we have the following f-adic analogue of a theorem proved by
Ichikawa in [44]:

Theorem 6.4.7. Let K be a finitely generated field of characteristic zero and A, A}’ (fori=1,...,n

andj =1,...,m) be absolutely simple K -abelian varieties of odd relative dimension that are pairwise
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non-isogenous over K. Suppose every Al is of type I, II or III in the sense of Albert, and every A;’
is of type IV. Let A be a K-abelian variety that is K-isogenous to [ [l A} x [Tj2, A7 then

A) = HHZ (A}) x Hy H Al
i=1 j=1

For the proof of this theorem we shall need the following result:

Proposition 6.4.8. Let K be a finitely generated field of characteristic zero, AJ/K be an absolutely
simple abelian variety of odd relative dimension and £ be a prime number. Write Lie(Hy(A)) ® Qp

as cd b D--- Db, where ¢ is abelian and every by; is simple. Then
1. if A is of type I, II or III, then A satisfies all the hypotheses of theorem 6.4.1;
2. if A is of type IV, then the algebras b; are of type A;, where I + 1 is not a power of 2.

Proof. Let A be of type I, II or III. Then A is of general Lefschetz type by theorem 6.2.24 and
proposition 6.2.26, and again by proposition 6.2.26 the simple factors of Lie (H;(A)) ® Q; of ortho-
gonal type are of the form sos9;, with h odd, so none of them is of Lie type D4. Hence A satisfies
the hypotheses of theorem 6.4.1 by remark 6.4.3.

Let now A be of type IV. Let E be the center of the simple algebra End%(A); set e = [E': Q] and
d? = [End%(A) : E} We are first going to show the desired property for those primes that split
in F, and then extend the result to all primes through an interpolation argument based on the
techniques of [57]. Suppose therefore that ¢ is totally split in E. From the equality £ ® Q, = QLE:Q]

we get

Endo ) ®Qp = @ M4(Qp),

so Schur’s lemma implies

where each W, is simple of dimension - dimgy; (W( ) ® Q) = reldim(A). The action of Hy(A) on
Ve(A) is faithful, so for every i = 1,...,n there exists a 0 : E — C (depending on i) such that
the action of b; is nontrivial on W,. Note that dim(W,) is odd. Let W, 2 Z; ® --- ® Z,, be the
decomposition of W, with respect to the action of h; & - - - ® b,; the module Z; is thus a nontrivial
minuscule representation of h; of odd dimension: since every minuscule module over an algebra of
type By, Cy, Dy is of even dimension (cf. table 1), we deduce that b; is of type A; for a certain .
Furthermore, [ + 1 cannot be a power of 2, since in that case every irreducible minuscule module

over A is of even dimension. This shows our claim when ¢ is totally split.

Let us now consider the general case. Let £ be any prime, and p be a fixed prime that splits
completely in F. Let ®, be the root system of (Gg( ) ® Qg)der, and let <I>0 be the subset of &,
)der Note that

<I>2 = &,, since ®, only involves root systems of type A; (and such root systems do not possess

given by those roots that are short in their respective simple factors of (Gg( ) ® Qy

long roots). It is a theorem of Serre that the formal characters of the various G¢(A), for varying
¢, are all equal (see [98, Corollary 3.8]), and from [57, §4] (see also pp. 212-213 of [98]) we know
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that the formal character completely determines @2. Hence we have @2 = <I>g = @le Ay, for
a certain k and for integers n; such that no n; + 1 is a power of 2; in particular, no n; equals
1. Write now ®, = €;_, R;, where each R; is a simple root system. It is easy to see that
AZO = Ay, Bl0 =1[A, C’lo = D; and Dl0 = Dy, so the equality

k
P - o)) - DR
i=1 j=1

implies — by uniqueness of the decomposition in simple root systems — that every root system R;
is either of type A; or By, (for some [,m). On the other hand, if one R; were of type B,,, then the
right hand side of the above equality would contain BY, = mA;, but no root system of type A; can
appear on the left hand side by what we have already shown. This implies that every R; is of type
A; (for some 1), and the uniqueness of the decomposition shows that » = k and (up to renumbering
the indices) R; = A,,. Hence the root system of G¢(A)% is the same as that of Gp(A)%", and in
particular all the simple algebras h; are of Lie type A;, where [ + 1 is not a power of 2. O

Proof. (of Theorem 6.4.7) There is no loss of generality in assuming that A = A’ x A”, where

m

Al = ﬁA;, A" =TT 45
=1

j=1
Thanks to the previous proposition, theorem 6.4.1 and an immediate induction imply that Hy(A")
is isomorphic to []i_; He(A}). Thus it is enough to show that Hy(A) = Hy(A’) x Hy(A”), and this
follows from proposition 6.3.9: by the results of section 6.2.4, the simple factors of Lie (Hy(A’)) ® Q,
are either of type so, sp or sl;1; (with [ + 1 a power of 2), whereas by the previous proposition the
simple factors of Lie (H(A"”)%") ® Qq are of type sl;41 (with [+ 1 not a power of 2). O

Remark 6.4.9. Notice that, as the rank of Hy(A) is independent of ¢, knowing that part (2) of
proposition 6.4.8 holds for some prime ¢ would in fact be enough to prove theorem 6.4.7. Though
a weaker version of the proposition would be easier to show (since it would not require the second
part of the proof provided), we have preferred to give and employ the result in its stronger form

(applying to all primes), which we believe has some merit in itself.

6.5 Results in positive characteristic

We now discuss the situation of K being a field of positive characteristic, finitely generated over
its prime field, and we restrict ourselves to the primes £ # char K. If A is a K-abelian variety, we

denote Gy(A) the Zariski closure of the natural Galois representation
pe: Gal (K®/K) — Aut (T;(A)),

where K® is now a fixed separable closure of K.

The main difficulty in translating the results of the previous sections to this context is that if we
define Hy(A) as (G¢(A) NSL(Vz(A)))?, then this group might not capture any information about
A at all. The crucial problem is the failure of Bogomolov’s theorem in positive characteristic: for
general abelian varieties A/K, it is not true that Gy(A) contains the torus of homotheties, and
therefore the intersection Gy(A) N SL(V;(A)) may very well be finite.
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Remark 6.5.1. A simple example of this phenomenon is given by an ordinary elliptic curve E over
a finite field ;. Let Fr,; be the Frobenius automorphism of F,; the image of p, is generated by the
image g of Fry, and as it is well known we have det py(g) = ¢. Looking at the Lie algebra of G¢(E),
it follows easily that this group is 1-dimensional and that Hy(FE) is the trivial group, so that no
information about E can be recovered from Hy(E). This problem is studied in [154], where more
examples of this situation are given.

However, Zarhin has proved that a statement akin to Bogomolov’s theorem holds in positive char-
acteristic if we restrict ourselves to a certain (large) class of abelian varieties; more precisely, we

have the following result:

Theorem 6.5.2. ([150], Theorem 2 and Corollary 1) Let K be a finitely generated field of positive
characteristic and A be a K-abelian variety. Let ¢ be a prime different from char(K). There exist
a semisimple Lie algebra by and a 1-dimensional Lie algebra ¢ such that Lie Go(A) = ¢ @ b.

If furthermore no simple factor of Az is of type IV in the sense of Albert, then ¢ = Qg - Id is the
Lie algebra of the torus of homotheties.

Remark 6.5.3. Zarhin’s theorem is a rather direct consequence of the reductivity of G¢(A) and of
Tate’s conjecture on homomorphisms. At the time of [150], these two facts had only been established
(by Zarhin himself, cf. [148] and [149]) under the assumption that char K is greater than 2, but
Mori [83] has subsequently lifted this restriction.

Remark 6.5.4. Let K be a finitely generated field of positive characteristic and E1, Fo be two elliptic
curves over K. Assume Endy(E;) and End(E;) are imaginary quadratic fields, and Ey, Eo are
not isogenous over K. As Ej x Ey is CM, the group G¢(E; x E3) is abelian and therefore — by
Zarhin’s theorem — of dimension 1: this is in stark contrast with what happens in characteristic
zero, where Hy(E1 x E9) = Hy(E1) x Hy(FE3) is of dimension 2. In particular, we cannot hope for
an analogue of corollary 6.4.5 to hold in positive characteristic.

In view of Zarhin’s theorem and of the previous remarks, the most natural definition for Hy(A) in

positive characteristic seems to be the following:

Definition 6.5.5. Let K be a finitely generated field of characteristic p > 0. For every prime ¢
different from p we set Hy(A) = (GZ(A)O)der.

Remark 6.5.6. When the characteristic of K is positive, Zarhin’s theorem implies that G(A)%" is
of codimension 1 in Gy(A); this is not necessarily the case in characteristic zero. On the other hand,
as in characteristic zero, it is clear from definition 6.5.5 that Hy(A x B) projects surjectively onto
Hy(A) and Hy(B).

Let us now restrict ourselves to abelian varieties A such that no simple factor of A« is of type IV.
In the proof of corollary 6.2.7 we can then replace Bogomolov’s theorem by Zarhin’s theorem, at
which point the argument used to show theorem 6.4.1 goes through essentially unchanged. Thus

for this class of abelian varieties we have:

Theorem 6.5.7. (cf. theorem 6.4.1) Let K be a finitely generated field of characteristic p > 0 and
Ay, A be K-abelian varieties such that A, 7z and A,z have no simple factors of type IV. Let { be

a prime number different from p, and suppose hypotheses 1 through 3 of theorem 6.4.1 are satisfied.
Then either Homz=(A1, A2) # 0 or Hy(Ay x Ag) = Hy(Ar) x Hy(Asz).
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Remark 6.5.8. This theorem is strictly weaker than the corresponding result in characteristic zero,
in that there exist abelian varieties of type IV (over number fields) that satisfy all hypotheses of
theorem 6.4.1. Examples of such varieties include fourfolds of type IV(1,1) that support excep-
tional Weil classes, cf. [80]. On the other hand, the abelian varieties of corollary 6.4.4 satisfy the
hypotheses of the present weakened version, hence the corollary remains true when K is of positive

characteristic.

Let us now consider theorem 6.4.7. Its proof essentially relies on theorem 6.2.24 and proposition
6.2.26, which in turn only depend on Tate’s conjecture and on the minuscule weights conjecture
(theorem 6.2.9). As already remarked, the former is now known for arbitrary finitely generated
fields of positive characteristic, while the second has been shown by Zarhin ([152, Theorem 4.2])
under an additional technical assumption, namely that the abelian variety in question has ordinary
reduction in dimension 1 at all places of K with at most finitely many exceptions (cf. [152, Definition
4.1.0]; this is a condition weaker than being ordinary). Finally, for varieties of type IV we have
also exploited the fact that the formal character of Gy(A)° is independent of ¢: this statement too
is known for finitely generated fields of positive characteristic (see [151] and [58], Proposition 6.12
and Examples 6.2, 6.3), so proposition 6.4.8 is still valid in this context. Taking all these facts into

account we obtain:

Theorem 6.5.9. (c¢f. theorem 6.4.7) Let K be a finitely generated field of positive characteristic
and A;,A;’ (fori = 1,...,n and j = 1,...,m) be absolutely simple K-abelian varieties of odd
relative dimension that are pairwise non-isogenous over K. Suppose every Al is of type I, II or
IIT in the sense of Albert, and every A7 is of type IV. Finally, suppose that each A} and each A
has ordinary reduction in dimension 1 at all places of K with at most finitely many exceptions,
and let ¢ be a prime different from char K. Let A be a K -abelian variety that is K-isogenous to
[Tic, A% < TT5%, AY: then

m

Hg (A) & HH@ (A;) X Hg HA;/
i=1 j=1

6.6 Nonsimple varieties of dimension at most 5

Let once more K be a finitely generated subfield of C and A/K be an abelian variety. With the
results of the previous sections at hand it is a simple matter to compute, when A/K is of dimension
at most 5 and nonsimple over K, the structure of Hy(A) in terms of the H,’s of the simple factors
of Az. Given however that the analogous problem for H(A) has been given a complete solution
in [82], we limit ourselves to showing that (in most cases) such an A satisfies Mumford-Tate, and
refer the reader to [82] for more details on the precise structure of H(A) (hence of Hy(A)). Note in
any case that — for many varieties, including those for which we cannot prove Mumford-Tate — our

argument will yield the structure of Hy;(A) directly, without appealing to the results of [82].

Proposition 6.6.1. Let K be a finitely generated subfield of C, n be an integer no less than 2,
and Ay, ..., A, be absolutely simple K -abelian varieties such that >, dimA; < 4. Let A be a
K -abelian variety that is K-isogenous to Ay x --- x Ay: then the Mumford-Tate conjecture holds
for A.
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Proof. Since H(A) and H;(A) are invariant both under isogeny and finite extension of the base
field, we can assume without loss of generality that A = A; x --- x A,. If all the A;’s are of
dimension at most 2 we can simply apply corollary 6.4.5, so we can also assume that A; is an
absolutely simple threefold and As is an elliptic curve. In particular, A; and As are of odd relative
dimension, so if Ay does not have complex multiplication (hence it is not of type IV) we have
Hy(A1 x Ag) = Hy(A1) x Hy(A2) by theorem 6.4.7, and the claim follows from lemma 6.3.6. On
the other hand, if Ay does have complex multiplication the claim follows immediately from lemma
6.3.5. O

Proposition 6.6.2. Let K be a finitely generated subfield of C and Ay, ..., A, be absolutely simple
K -abelian varieties. Let A be a K -abelian variety that is K -isogenous to Ay x --- x A,,, and suppose
that dim A = 5. We have:

1. if Mumford-Tate holds for every A;, then it also holds for A (this happens in particular if no

A; is of dimension 4);

2. if Mumford-Tate fails for one of the A;’s, say A1, then A1 is an absolutely simple fourfold,
Asg is an elliptic curve, and Hy(A) = Hp(Ay x Ag) = Hp(Ay) x Hp(A2).

Proof. We can work with A = A; x --- x A,, and we can assume that no two A;’s are isogenous
over K (for otherwise the problem is reduced to a lower-dimensional one). Furthermore, for n = 1
there is nothing to prove, so let us assume n > 2; as in the proof of the previous proposition, up to
renumbering the A;’s we can assume that dim A; > 3.

Suppose first that at least one of the A;’s has complex multiplication. Write A = B x C, where C
is the product of those A;’s that are CM and B is the product of the remaining factors. We have
dim B < 4. If B satisfies Mumford-Tate, then Mumford-Tate for A follows from lemma 6.3.5 and
we are done. If, on the contrary, B does not satisfy Mumford-Tate, then the results of section 6.2.4
together with the previous proposition imply that B = A; is an absolutely simple fourfold with
Endz(B) = Z, and we are in case (2); hence we just need to prove that Hy(A; x Ag) is isomorphic
to Hy(A1) x Hy(Az), which follows at once from lemma 6.3.4. From now on we can therefore assume
that no A; is CM. Also recall that elliptic curves and abelian surfaces without CM are of type I or
II in the sense of Albert.

We now need to distinguish several sub-cases, each of which we shall treat by proving the equality
Hy(A) =i, He(A;): indeed, if Mumford-Tate holds for every A;, this equality implies Mumford-
Tate for A by lemma 6.3.6, and if Mumford-Tate fails for one of the A;’s this equality is all we have

to show.

Suppose first that dim A; = 3 and Ay, A3 are elliptic curves (without CM): then for all primes ¢,
and independently of the type of A;, theorem 6.4.7 gives Hy(A) = Hy(A1) x Hy(Az) x Hy(A3g).
Next suppose dim A; is 3 and A is an absolutely simple abelian surface without CM (hence not
of type IV). Let ¢ be any prime. If reldim(As) = 1, or A; is not of type IV, then we have
Hy(A) =2 Hy(A1) x Hy(Az) resp. by theorem 6.4.7 or corollary 6.4.4. We can therefore assume that
End(A2) is Z and A; is of type IV and does not have complex multiplication. It is known that
in this case Lie(Hy(Az)) = sp,q,, and Lie (He(A1)%) @ Q = sly g, (cf. [112]), so it follows from
proposition 6.3.9 that Hy(A) = Hy(A1) x Hy(Az2).
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We now need to consider the case when Aj is an absolutely simple abelian fourfold and As is an
elliptic curve without CM; this assumption will be in force for the remainder of the proof.

Suppose first that A; is not of type IV and that Endy(A1) # Z. By the results of [80] we know
that A; is of general Lefschetz type, so that the equality Hy(A; x Aa) = Hy(A1) x Hy(Asg) follows

from theorem 6.4.1 and the remark following it.

Consider now the case when A; is of type IV. It is not hard to check (from the results in [80])
that either Lie(H;(A41)) ® Q does not have any simple factor isomorphic to sly (cases IV(1,1) and
IV(4,1) in the notation of [80]) or we are in case IV(2,1). In the former case we apply proposition
6.3.9 to deduce that Hy(A) = Hy(A1) x Hy(Az) for all primes ¢. Suppose instead that we are
in case IV(2,1), that is to say End%(Al) is a CM field F of degree 4 over Q. Let Ejy be the
maximal totally real subfield of E. We read from [80] the equality H (A1) = Res Fo/Q SU(E2, %),
where 1 is a suitable Hermitian form on E2. Since [Ep : Q] = 2 and SU(E?,v) is an Ep-form of
SLy, the group H(A;)%" is a Q-form of SL3; moreover, it is Q-simple by Theorem 1.10 of [99)].
Finally, the Mumford-Tate conjecture holds for A; by theorem 6.2.19, so for all primes ¢ we have
an isomorphism Hy;(A;) = H(A;) ® Qp. By lemma 6.3.2 there is a prime p such that the group
H,(Ap)der = H(A;)% ® Q, is simple over Q,.

Suppose by contradiction that rk H,(A)4e" is strictly less than rk H,(A1)% + rk H,(As). As
rk H,(A2) = 1 we have rtk H,(A)" = 1k H,(A1)%, so the natural projection H,(A) - H,(A;) in-
duces an isogeny H,(A)4" — H,(A;)%". Since H,(A;)%" is simple, the same is true for H,(A)%;
but this is absurd, because the canonical projection H,(A)" — H,(As) then gives a surjective
morphism in which the source Hp(A)der is simple but does not have the same rank as the image
H,(A2). The contradiction shows that rk Hj,(A) = rk H, (A1) + 1k H,(As), from which we de-
duce first that H,(A) = H,(A1) x Hp(A2) and then (since the ranks of Hy (A1), H;/(A2) and Hy(A)
do not depend on ¢) that Hy(A) = Hy(A1) x Hy(Az) holds for all primes £.

We finally come to the case dim Ay = 4 and Endy(A;) = Z. If for one (hence every) prime ¢ we
have Hy(A1) = Spgg,, then the abelian variety A; is of general Lefschetz type (cf. [80, §4.1]), so
the equality Hy(A) = Hy(A1) x Hy(Az) follows from theorem 6.4.1. Thus the last case we have to
cover is that of Hy(A1) being a Q-form of SL3 for every prime £. By [98, Theorem 5.13], there is
a simple Q-algebraic group P(A;) such that, for a set of primes ¢ of Dirichlet density 1, we have
an isomorphism Hy(A;) = P(A;) ® Q. Furthermore, P(4;) is a Q-form of SL3, so by lemma 6.3.2
we can choose a prime p for which H,(A4;) = P(4;) ® Qp is Qp-simple. We can now repeat the
argument of case IV(2,1) above: if by contradiction we had rk H,(A) < rk H,(A1) +rk H,(As2) then
H,(A) would be simple, and the canonical projection from H,(A) to Hy(A2) would be a surjective
morphism between groups of different rank, which is absurd because the source is simple. We
deduce once more that rk Hy(A) = rk Hy(A1) 4+ rk Hy(A3) holds for ¢ = p (hence for every prime ¢),

so for every ¢ we have Hy(A) = Hy(A1) x Hy(As). O



Chapter 7

Torsion points and roots of unity

7.1 Introduction

In this chapter we consider the following problem: given a number field K, an abelian variety
A/K (of dimension g), a prime ¢, and a finite subgroup H of A[¢*°], how does the number field
K (H) intersect the ¢-cyclotomic extension K (p)? More precisely, is the intersection completely
accounted for by the fact that K(H) contains the image of the Weil pairing H X H — py? In
order to study this question, Hindry and Ratazzi have introduced in [38] and [39] two variants of a
property they call (1), and which we now recall. We fix a polarization ¢ : A — AV and, for every
n > 0, we denote by esn the £"-Weil pairing A[¢"] x A[{"] — e given by composing the usual Weil
pairing A[("] x AV[("] — pem with the map A[("] — AV[¢"] induced by ¢. If H is a finite subgroup
of A[¢>°] we now define

mi(H) =max{k € N| 3In >0, 3P,Q € H of order ¢" such that e (P, () generates fi} .

Following [39, Définition 3.8] we can then introduce the following definition:

Definition 7.1.1. We say that (A/K, ¢) satisfies property (u)s (where “s” stands for “strong”) if
there exists a constant C' > 0, depending on A/K and ¢, such that for all primes ¢ and all finite

subgroups H of A[¢*°] the following inequalities hold:

S (g K] < [K(H) 0 K () 2 K] < CIE (tgmym) : K

Remark 7.1.2. Tt is easy to see that the choice of the polarization ¢ plays essentially no role, and
(A/K, p) satisfies property (u)s for a given ¢ if and only (A/K, 1)) satisfies property (u)s for every
polarization ¥ of A/K (possibly for different values of the constant C); for this reason we shall
simply say that A/K satisfies property (u)s when it does for one (hence any) polarization. It is
shown in [39] that if A/K satisfies the Mumford-Tate conjecture and has Mumford-Tate group
isomorphic to GSpy giy, 4@, then property (u)s holds for A.

We also consider the following variant of property (u)s, which we call (u),, (“weak”), and which
was first introduced in [38, Définition 6.3]:

Definition 7.1.3. We say that A satisfies property (i), if the following is true: there exists a
constant C' > 0, depending on A/K, such that for all primes ¢ and all finite subgroups H of A[¢*°]

181
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there exists n € N (in general depending on ¢ and H) such that

& K ) - K] < [K(H) N K () : K] < C K (o) < K]. (7.1)

Clearly, property (u)s implies property (u4)y. In this chapter we show the following two results:

Theorem 7.1.4. Let K be a number field and A/K be an abelian variety. If A satisfies the
Mumford-Tate conjecture, then property (p)y holds for A.

Theorem 7.1.5. There exists an abelian fourfold A, defined over a number field K, such that
Endz(A) = Z and for which property (1)s does not hold. More precisely, such an A can be taken
to be any member of the family constructed by Mumford in [85].

7.2 Property (1),

7.2.1 Preliminaries

We fix once and for all an embedding of Q into C, and consider the number field K as a subfield
of Q C C. The letter A denotes a fixed abelian variety over K: if ¢ is a prime number and n is a
positive integer, we write Gyn for the Galois group of K(A[("])/K and Gy for the Galois group of
K (A[f>°])/K. Finally, we take the following definition for the Mumford-Tate group of A:

Definition 7.2.1. Let K be a number field, A/K be an abelian variety, and V be the Q-vector space
H,(A(C),Q), equipped with its natural Hodge structure of weight —1. Also let Vz = H;(A(C),Z),
write S := Resc/g (Gm,c) for Deligne’s torus, and let i : S — GLygr be the morphism giving V'
its Hodge structure. We define MT(A) to be the Q-Zariski closure of the image of h in GLy, and

extend it to a scheme over Z by taking its Z-closure in GLy;,.

Remark 7.2.2. Taking the Z-Zariski closure in the previous definition allows us to consider points
of MT(A) with values in arbitrary rings. Notice that MT(A), being an algebraic group over a field
of characteristic 0, is smooth by Cartier’s theorem. It follows that MT(A) is smooth over an open

subscheme of SpecZ.

The following theorem summarizes fundamental results, due variously to Serre [122], Wintenberger
[145], Deligne [23, I, Proposition 6.2], Borovoi [14] and Pjateckii-Sapiro [100], on the structure of
Galois representations arising from abelian varieties over number fields; see also [40, §10] for a

detailed proof of the last statement.

Theorem 7.2.3. Let K be a number field and A/K be an abelian variety. The group MT(A)
is smooth over an open subscheme of SpecZ. There exists a finite extension L of K such that
for all primes ¢ the image of the natural representation pgs : Gal(L/L) — AutTy(A) lands into
MT(A)(Zy), and likewise the image of py : Gal(L/L) — Aut A[f] lands into MT(A)(Fy). If further-
more the Mumford-Tate conjecture holds for A, then the index [MT(A)(Z¢) : Im pgeo] is bounded by
a constant independent of £; the same is true for [MT(A)(Fy) : Im py].
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In view of the result we want to prove (theorem 7.1.4), we assume from now on that the Mumford-
Tate conjecture is true for our abelian variety A. As the statement of theorem 7.1.4 is clearly invari-
ant under extensions of the base field, theorem 7.2.3 allows us to assume that ppo (Gal(K/K)) is in-
cluded in MT(A)(Z,) for all primes ¢, in such a way that the index [MT(A)(Z,) : Gal (K (A[¢*°])/K)]
is bounded by a constant independent of £. Since the statement of theorem 7.1.4 is also invariant
under isogenies, making a further extension of the base field if necessary we can also assume without
loss of generality that A is principally polarized, which implies that Gy, resp Gy, is a subgroup of
GSpoy(Zy), resp. of GSpy,(Fy).

The following simple lemma shows that the property of having index bounded by a constant is

stable under passage to subgroups and quotients:

Lemma 7.2.4. Let C be a group and A, B be subgroups of C' such that [C : B] is finite. We have
[A: BN A] <[C: B]. Moreover, if w: C — D is a quotient of C, then [D : 7(B)] | [C : B].

Proof. The map A — C — C/B induces an injection (of sets) of A/(AN B) into C'/B. The second

statement is obvious. O

The previous lemma allows us to work with “equalities up to a finite index”, for which we now
introduce some notations. If Ly, Ly are number fields that depend on A/K and on some other set of
parameters, we write L = Ly to mean that there exists a constant C' (depending on A/K only) such
that the inequalities [L1 : L1 N Ly] < C and [Le : L1 N Ly] < C hold for all values of the parameters;
likewise, if G, G2 are subgroups of a same group (and depend on some set of parameters), we write
G1 = Gy if both [G1 : G1 N G2 and [G3 : G1 N Gg] are bounded by a constant depending only on
A/K, uniformly in all other parameters. Furthermore, for two functions f,g : I — R, where I
is any set, we write f = g if there is a constant C’ > 0 such that &g(z) < f(z) < C’g(x) for all

z € I. Finally, to deal with arithmetic functions we introduce the following definition:

Definition 7.2.5. Let P be the set of prime numbers, I be any set and h : I x P — NT be any

function. We say that h(z,¢) is a power of £ up to a bounded constant if there exists a C” > 0 such
h(z,f)
70e(h(@,0)

is bounded independently of x and /.

that for all z € I and ¢ € P we have

< C") or equivalently, if the prime-to-¢ part of h(z,¢)

As a typical example of the use of this notation, notice that our assumption that we are in the
situation of theorem 7.2.3 can be expressed by writing Gal (K(A[(*°])/K) = MT(A)(Zy) and
Gal (K (A[(])/K) = MT(A)(F;). We can also apply lemma 7.2.4 to the groups C' = MT(A)(F,),
B = Gal (K(A[(])/K) and A = {z € MT(A)(F;) | th=h Vh € H} to get

Gal (K(A[(])/K (H)) = {z € MT(A)(F,) ‘ th=h VYheH},

where the implied constant depends on A/K, but not on ¢ or H. Finally, notice that if A, B are
groups (depending on some set of parameters) such that [B : A] < N for all values of the parameters,
then taking N’ := N! we have [B : A] ‘ N’, again for any choice of the parameters: if we so desire

we can therefore replace boundedness conditions by divisibility conditions.
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7.2.2 Stabilizers of finite subgroups of A[(*]

Denote by G the Zs-algebraic group MT(A) xz Z; and let H be a finite subgroup of A[¢>°]. Write
H as H?£1 Z/U™Z for certain integers my > ... > myg, let eq, ..., ez, be generators of H (so e; is
a torsion point of order £™), and let €, ..., ez, be a basis of Ty A lifting the e;’s (that is, satisfying
e; = ¢; (mod ™) for i = 1,...,2¢g). For a subset I of {1,...,2g} we let G; be the Zs-algebraic
group given by

We plan to show that G; and other related groups are smooth (over Z;, or equivalently over Fy,
cf. lemma 7.2.9) whenever /¢ is sufficiently large with respect to A/K, independently of the choice
of e1,..., ez, and I (the result crucial to our applications is lemma 7.2.10). We shall make repeated

use of the following fact:

Theorem 7.2.6. Let £ be a prime number and k be a finite field of characteristic £. Let F be an

affine group scheme over k with coordinate ring R. The following are equivalent:
1. F is smooth;
2. R®y k is reduced;

3. the nilpotency index of R @y, k is smaller than €, that is, there exists an integer e < { such
that for all a € R ®y, k and all positive integers n, the equality a™ = 0 implies a® = 0;

4. the equality dimy Lie F = dim F holds.

Proof. 1 and 2 are equivalent by [140, Theorem on p. 88]. 1 and 4 are equivalent by [140, Corollary
on p. 94]. Clearly 2 implies 3, and 3 implies 2 by the same argument that proves Cartier’s theorem
(all algebraic groups over a field of characteristic zero are smooth), see for example [77, Proof of
Theorem 10.1]. O

The following proposition, while certainly well-known to experts, does not seem to appear anywhere
in the literature; we will use it as a substitute for Cartier’s theorem on smoothness when working

over a field of positive characteristic.

Proposition 7.2.7. Let n,d,m be fized positive integers. There is a constant c(n,d, m) with the

following property: for every prime £ > c(n,d, m), every finite field k of characteristic £, and every
k[zij, y]

———2""—— by at most m equations of degree at
(det(zi)y — 1)

algebraic subgroup F of GLy, . that is cut in

most d is smooth over k.

(det(zij)y —1)"
total degree of every fj, is at most d. To test smoothness we can base-change to k, and by theorem

Proof. Let I = (f1,..., ft) be the ideal defining F in R := , where t < m and the

7.2.6 we only need to prove that the nilpotency index of

klxij, y]
(det(xlj)y - ]-a fla DRI ft)

is bounded by a function of n, d and m alone, uniformly in ¢ and k. Now just notice that the ideal

R®kE§

(det(zij)y — 1, f1, ..., ft) is generated by equations whose number and degree are bounded in terms
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of n, d, and m, so the result follows from [47, Theorem 1.3] (see also [51]). More precisely, since we
have at most m + 1 equations of degree at most max{d,n + 1}, [47, Theorem 1.3] shows that one
can take c(n,d, m) = max{d,n + 1} O

Lemma 7.2.8. Let n be a positive integer, F be a group subscheme of GL,, q,, and let F be the
Zariski closure of F in GLy, z7,. Then F is flat over SpecZy.

Proof. An affine scheme Spec R over Z, is flat if and only if its coordinate ring R is a torsion-free

Ze-module ([64, Corollary 2.14]). In our case, if I is the ideal of % that defines F, then

I:=1InNn % is the ideal defining F. In particular, the coordinate ring R of F injects into
ij

the coordinate ring R of F, which is torsion-free since it is a Qg-vector space. O

Lemma 7.2.9. Let n be a positive integer, F be a group subscheme of GL, q,, and let F be the
Zariski closure of F in GLj z,. Suppose furthermore that F is smooth over Fy: then F is smooth

over Zy.

Proof. In order for a scheme F / SpecZy to be smooth, it is necessary and sufficient that it is
locally finitely presented and flat, with fibers that are smooth varieties all of the same dimension.
Finite presentation is obvious in our context, and flatness follows from the previous lemma. The
dimension of the fibers is locally constant by flatness, hence constant since the only open subset of
SpecZy; containing the closed point is all of SpecZy. It remains to show smoothness of the fibers:
the generic fiber is smooth by Cartier’s theorem ([140, §11.4]), and the special fiber is smooth by

assumption. ]
We finally come to the central result of this section:

Lemma 7.2.10. For all ¢ sufficiently large (depending only on A/K ), for all Zy-bases €1, . .., eaq4 of
Ty A, and for all subsets I of {1,...,2g}, the stabilizer Gr in G of the vectors &; (fori € I) is smooth
over Zy. Suppose furthermore that A/K is principally polarized, so that MT(A) C GSpyy 7. Let
furthermore X : MT(A) — Gy, 7 be the restriction to MT(A) of the algebraic multiplier character
A2 GSpgy g — Gy z. For € large enough (again depending only on A/K) all the groups

G ={MeG|M-&=&Viel,\(M)=1)}

are smooth.

Proof. Notice first that G; can be obtained as the Z,-Zariski closure of the Qg-group scheme
{MeH |M&=¢, viel}.

By lemma 7.2.9 it then suffices to prove smoothness over Fy, and to do this we can base-change
to Fy,. We can also assume that G is smooth over Z,, since this is true except for finitely many
exceptions. Now we claim that Gy is defined by equations whose number and degree are independent
of £: indeed, they are the equations defining MT(A) (and these do not depend on /), together with
linear equations that express in coordinates the equalities Mé&; = &;. Since there are at most (2g)>
such linear equations, the claim follows. We then deduce from proposition 7.2.7 that for ¢ large

enough (Gr)r, is smooth, and an entirely similar argument also proves the result for Q}l). O
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7.2.3 Some Galois cohomology

Lemma 7.2.11. Let G be a finite étale group scheme of order N over Fy. The first cohomology
group HY(F,,G) is finite, of order not exceeding N.

Proof. Recall ([140, §6.4]) that the association G — G(IF,) establishes an equivalence between the
category of étale group schemes over F, and that of finite groups with a continuous action of
Gal (E/Fg). To prove the lemma it is thus enough to consider the cohomology H!(F,, G) of a
finite group G of order N equipped with a continuous action of 7 =~ Gal (E/Fg). An element of
H! (Z, G) is represented by a continuous map 7 — G, which in turn is uniquely determined by the

image of a topological generator of Z: it follows that there are no more than |G| = N such maps,
hence that the order of H(Z,G) is bounded by N as claimed. O

Lemma 7.2.12. Let G be a linear algebraic group over Fy. We have |H (Fy, G)| < |HY(Fy,G/G%)|,
so in particular the order of H'(Fy,G) does not exceed the order of the group of components of G.

Proof. The long exact sequence in cohomology associated with the sequence
1-6"-5G—-6/G" =1

contains in particular the segment H'(F;, G°) — HY(F,,G) — H'(Fy,G/G°), where the first term
is trivial by Lang’s theorem (any connected algebraic group over a finite field has trivial H!, [54,
Theorem 2]). The first statement follows. The second is then a consequence of the previous lemma
and of the fact that G/G is étale by [140, §6.7]. O

7.2.4 Proof of theorem 7.1.4

We now come to the core of the proof of theorem 7.1.4.

Lemma 7.2.13. Suppose the Mumford-Tate conjecture holds for A: then for all primes ¢ and for
all finite subgroups H of A[{] there exists m € {0,1} such that

(K (em) : K] = [K(H) 0 K (ug) : K], (7.2)

that is to say, there exists D > 0 (depending on A/K ) with the following property: for every { and
every subgroup H of A[l] there exists m € {0, 1} such that

DV K(H) N K (pe) : K] < [K (em) : K] < DK(H) N K () : K]. (7.3)

Proof. Recall that we denote A the restriction to MT(A) of the multiplier map GSpyyz — Gmz-
Observe first that it suffices to prove that the conclusion of the lemma holds for all but finitely many
primes: indeed, for a fixed prime ¢ the finite group A[¢] possesses only finitely many subgroups H,
so we can choose D so large that (7.3) holds for any such H (with m = 0, say). Disregarding
a finite set of primes (which we call “bad”) we can therefore assume that ¢ is large enough that
the groups G; and g}” of section 7.2.2 are smooth (lemma 7.2.10) and that ¢ is unramified in
K. Recall that Gy C GSpy,(F) is a subgroup of MT(A)(FF,), and that (since we assume A to be
principally polarized) for all primes ¢ we have Ao p; = xy, the mod-¢ cyclotomic character. Let now

el,...,ezq be an [Fy-basis of A[f] such that ey,...,e, is an Fy-basis of H. We consider the finite
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group S = {M € Gy ’ M-h=h Vhe H}, that is, the stabilizer of H in Gy, and the algebraic
group S = {M € MT(A)r, | M -e; = e;, 1 < i <r}, that is, the stabilizer of H in MT(A)g, .

The group S is obtained as the special fiber of a group of the form G; (notation as in section
7.2.2), hence is smooth by our assumption on ¢. It is clear by definition that S = G, N S(Fy);
since Gy = MT(A)(F,), this shows in particular that S = S(Fy). We now claim that the group
of components of S has order bounded by a constant B independent of £ and H. Notice first
that it is enough to bound the number of F,-points of the group of components of S, hence it is

enough to consider the number of irreducible components of SE‘ Next observe that SE is cut in

Myy(Fy) = A%g)Q by the equations defining MT(A) (and these only depend on A/K) and by the
2g - r hyperplanes given by the vector equations M -e; = ¢; for i = 1,...,r: since clearly r < 2g,
we see that SE is defined by equations whose number and degree are bounded uniformly in £ and
H. By a variant of Bézout’s theorem (see [139, Theorem 7.1] for a precise statement), this implies
that the number of irreducible components of SE is bounded uniformly in ¢ and H. The very same

argument also shows that the order of the group of connected components of

S = {M € MT(A)r, ‘ M-h=h Yhe H, \NM)= 1} =ker(A: S = Gy 5,)
is bounded by a constant independent of ¢, which we call B;. Notice furthermore that the group
S = {M e Gy ‘ M-h=h Yhe H, \(M)= 1} satisfies S1 = S1(Fy).
Consider now the restriction of A : GSpyyr, = G F, to SO, the identity component of S. Notice
that (for the ¢ we are considering) the group S? is smooth (lemma 7.2.10), so the image A\(S°) is a

connected reduced subgroup of G, r,, hence it is either trivial or all of G,, r,. Let us consider the

two cases separately.

A(8%) is trivial. As we have already remarked we have S C S(F,). It follows that the order of
A(S) is at most the order of A\(S(FF;)), which in turn does not exceed [S : SY] since the restriction
of A to 8U is trivial. Hence we have |[A(S)| < [S: 8] < B.

A:SO— Gy, is onto. Consider the exact sequence
1—>Sl—>Si>(Gm7Fe —1
and take [Fy-rational points: the associated long exact sequence in cohomology shows that

S(Fy) 2> G, (Fe) = FX — H' (Fy, S1)

is exact, so ‘coker (S(Fg) EN IFZX) ‘ is at most ’Hl (F¢, S1)|, which in turn (by lemma 7.2.12 and what

we have already proved) does not exceed Bj. Since S = S(Fy), it follows that

AS)| = NSED] >

that is, there exists a constant B’ (independent of £) such that whenever A : S® — G, , is onto the

inequality |A\(S)| > % holds. Let now B” be a constant large enough that inequality (7.3) in the
statement of the lemma holds, with D = B”| for all the (finitely many) bad primes ¢, and for the
(finitely many) subgroups H of A[(] for each of these primes. Finally set D = max {B, B’, B"}. We
now show that inequality (7.3) is satisfied for all primes ¢ and all subgroups H of A[{]. It is clear by
construction that this is true for the bad primes, so we can again suppose that £ is unramified in K

and that the groups S, S; are smooth over Fy; let once more H be a subgroup of A[¢] for such an /.
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Observe that the group S we considered above is by definition the Galois group of K(A[{])/K(H),
whereas the Galois group of K(A[{]) over K(uy) is N := ker (Ge 2, IE‘@X) It follows that the
Galois group of K (A[l]) over K(H) N K (1) is the group generated by S and N, hence the degree
of K(H)N K(ug) over K is the index of NS in Gy. On the other hand we have |Gy/NS| = ”ﬁg//]]\\f,”
(recall that N is normal in Gy by construction), and G¢/N is clearly isomorphic to the image of
A : Gy — F). As (is unramified in K, the mod-¢ cyclotomic character x; : Gal(K/K) — F is
surjective, hence we have A(Gy) = x¢(Gal(K/K)) = F and therefore

GOl £-1

IANS)[ IAS)]

[K(H) N K(ue) : K] = |Ge/NS| =
By our previous arguments we now see that

e cither \(S?) is trivial, in which case 1 < |\(S)| < B and (7.3) is satisfied by taking m = 1;

e or A\: 8% — Gy, is onto, in which case we have < |A(S)| < ¢ —1 and (7.3) is satisfied

B~

by taking m = 0.

To complete the proof of theorem 7.1.4 we need two more lemmas.

Lemma 7.2.14. Let K be a number field and A/K be an abelian variety satisfying the Mumford-
Tate conjecture: then for any finite subgroup H of A[l>°] the degree [K(H) : K(H][{])] is a power of
¢ (up to a bounded constant).

Proof. We use the notation from section 7.2.2; in particular we write H =2 szi 1 Z/™ 7, fix generat-
orseq,..., ez of H and abasisey, ..., ey, of Ty A lifting the e;’s. We suppose first that G := MT(A)z,
is smooth over Z,. Inspired by the approach of [39], given Zs-algebraic subgroups G; C Go C --- C G;
of G, a strictly increasing sequence n; < ng < --- < ng of positive integers, and a positive integer

n, we now denote by G(n;ni,...,n;) the finite group
{M € G(Z/0"Z) | M € G; mod £™™m) =1, ,t} :

It is natural to include the case of ¢ being 0: if n; is the empty sequence, we simply define G(n)
to be G(Z/"Z). To the group H we now attach a strictly decreasing sequence of positive integers

mM >m® > ... > m® > 1 (where t < 2g) by setting

m) = max {mz | m; # 0} and recursively m ) = max {mz ‘ 0<m; < m(r)} ,

and, for 1 <r <t, welet I, = {z e{l,...,2g} ‘ m; > m(r)}.

Finally, for 1 <r <t, we define G, :== Gy, . (notation as in section 7.2.2) and consider the strictly
increasing sequence n, = m+1=7) (for 1 < r < t). We can assume that £ is so large that all the
groups G, are smooth over Z; (lemma 7.2.10), and, as in [39], we see that the G,’s so defined form
an increasing sequence of subgroups of G such that [K(H[(™]) : K| = [G(Z/{™Z) : G(m;nq, ..., n)l.
We now show that (for any H and any m > 1) the number

G(Z/"Z) - G(msna, .. . )]
[G(Z/IZ) : G(Lsna, ... )]

(7.4)
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is a power of ¢. To prove this fact, we preliminarily show that for all m > 2 the reduction map
G (z/tm7) ===% g (z/¢™='Z) maps G(m;nq,...,ng) surjectively onto G(m — 1;nq,...,n;). We
can proceed by induction on ¢, showing the stronger statement that this is true for any chain of

groups G1 C G C --- C Gy C G where each term is smooth over Fy. Indeed,
e for t = 0 the claim follows from the smoothness of G and Hensel’s lemma;

e if m < ny, then we have G(j;n1,...,n¢) = Ge(j;n1,...,ni—1) both for j =m and j =m — 1,

so the claim follows from the induction hypothesis;

e if m > ny, then G (Z/¢™Z) — G (Z/¢™'7Z) is surjective by smoothness of G, and furthermore,
since by assumption we have m —1 > ny > nsq > ... > ny, any lift to G (Z/{™Z) of a
point in G(m — 1;nq,...,ns) belongs to G(m;ny,...,ns). In particular, the induced map

G(m;ny,...,ny) = G(m — 1;nq,...,mn) is indeed surjective.

We now prove our claim that (7.4) is a power of ¢ by induction on m. Notice that, by Hensel’s
lemma and since m > 2, the kernel of 7, 1 is an ¢-group (of order ¢4™m9). Tt follows that m,, 1
induces a surjective map G(m;ni,...,n;) — G(m — 1;nq,...,n;) whose kernel is an ¢-group; in
% and % are both powers of ¢, and an immediate

induction shows that the same is true for (7.4). Choosing m large enough that H = H[¢™], it follows

[K(H[™]) - K] _ ‘ .
K(H[): K] [K(H) : K(H[{])] is a power of £ (up to

bounded constants), which finishes the proof of the lemma when MT(A) is smooth over Fy, and

particular, the numbers

from our previous considerations that

leaves us with only the finitely many bad reduction primes to consider. To establish the lemma we
thus need to show that, for ¢ ranging over the bad primes and H ranging over the finite subgroups
of A[¢>°], the degree [K(H) : K(H[/])] is within a constant factor of a power of . As we are only
considering finitely many primes, there are only finitely many subgroups of A[(], and therefore we
have [K(H[(]) : K] = 1; hence we just need to show that [K(H) : K] is a power of £ up to a constant
factor. Let £™ be the exponent of H. Since the prime-to-¢ part of [K(H) : K| divides the prime-to-¢
part of [K(A[¢™]) : K], it is enough to show that |G| = | Gal (K (A[¢"])/K) | is a power of £ up
to a bounded constant. Let C' be the least common multiple of the orders of the groups G, for /¢
ranging over the primes of bad reduction. Consider the reduction map 7 : Gym — Gy, and notice

that its kernel is a subgroup of ker (GLog(Z/¢{™Z) — GLa4(F()), hence in particular an ¢-group; we
|Gem|
| ker 7|

a power of ¢, we see that the prime-to-¢ part of |Gym| is bounded by C'; this completes the proof in

can then write

as |7 (Gym)|, which by construction is an integer dividing C. Since |ker 7| is

the non-smooth case as well. O

Lemma 7.2.15. Let K be a number field, A/K an abelian variety satisfying the Mumford-Tate

conjecture, ¢ a prime number, and H a finite subgroup of A[(>°]. We have
K(H) N K(pe) = K(HE]) N K (1),
and the degree of K(H) N K () over K(H)N K (u) is a power of £.

Proof. Let m be such that H C A[¢{™]. The Galois group of K(A[¢{™]) over K(H[{]) N K (up) is
generated by the Galois groups of K(A[¢(™]) over K(H[{]) (which we denote by S;) and over K (1)
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(denoted by N); notice that N = ker (Ggm 2 IFZ). Let now S,,, be the Galois group of K (A[¢(™])
over K(H). By lemma 7.2.14 we see that [S; : S,,] is a power of ¢ (up to a constant bounded

independently of ¢), hence [NS; : NS,,| = "]]VVSSI// ]]\\[7” = “))\\<(51))‘|

constant independent of £). On the other hand, A(S1) is a subgroup of F/, hence of order prime to
¢: it follows that ’)’\\((g;)) ‘ = 1, and therefore NS; = N S,,,. Now NS is the Galois group of K (A[(™])
over K(H[¢])NK (), while N.S,, is the Galois group of K(A[¢(™])/K(H)NK (u¢): by Galois theory,
this implies K(H) N K (ue) = K(H[¢]) N K () as claimed. The second part is immediate by Galois

theory. ]

is again a power of ¢ (up to a

Theorem 7.2.16. (Theorem 7.1.4) Let K be a number field and A/K be an abelian variety. If A
satisfies the Mumgford-Tate conjecture, then property (i), holds for A.

Proof. Fix a prime ¢ and a subgroup H C A[(*°]: we want to show that we can choose n so as to
satisfy inequality (7.1) (for some constant C' only depending on A/K). Let L be the intersection
K(H[{]) N K(ue). By lemma 7.2.13, we can choose m € {0,1} so that

L K] = [K(uen) : K], (7.5)
and by lemma 7.2.15 we see that there is an integer j such that [K (H) N K () : L] = 7. Observe
now that [K(H) N K (ue) : K] = [K(H) N K(pee) : L) [L: K] = #][L : K], hence by (7.5) we have
[K(H)NK (o) : K] =0 - [K(pem) @ K|. Using the obvious equalities (up to bounded constants)
(K () + K ()] = [K () : K] = £ we deduce

K(H) O K () K] = 0+ [K (gm) : K]
= (K (o) : K (o) - [K (pom) : K]
= [K(pgy+m) : K.
This shows that, if we take C to be the constant implied in the last formula, for all primes ¢ and

all finite subgroups H of A[¢*°] inequality (7.1) can be satisfied by taking n = m + j, and therefore
property (i), holds for A as claimed. O

7.3 Property (u)s

Let F be any field. We start by considering the representation
p: GL2(F) X GLQ(F) X GLQ(F) — GSpS(F)

7.6
(a,b,c) = a®b®c, (7.6)

where we identify F® with F? ® F? @ F2. We equip F® with the symplectic form 1 given by
1 @ 1o ® 13, where 1; is the standard symplectic form on the i-th factor F2: the fact that every

element of GLy(F') preserves v; (up to a scalar) implies that p(a, b, c) preserves ¢ (up to a scalar),

so the image of p is indeed contained in GSpg(F).

Definition 7.3.1. We let My be the F-Zariski closure of the image of this representation (with its

obvious structure as an algebraic group over F).

Remark 7.3.2. For all A € F* the matrix A - Id belongs to the image of p. In particular, if F' is an
infinite field the group My contains the (algebraic) group of homotheties.
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Proposition 7.3.3. For every prime { we have Mg, = Mg xq Qq.

Proof. The inclusion Mg ® Q, C Mg, is obvious (since with Mg, we are taking the Zariski closure
of a larger set). On the other hand it is not hard to see that both groups become isomorphic to

G- SL% over an algebraic closure, so they have the same dimension and therefore must coincide. [

Remark 7.3.4. Consider the Z,-Zariski closure of Mg, in GSpgy,, call it Mz,. In view of the
proposition, My, coincides with the Z,-Zariski closure of Mg xq@ Q¢ in GSpg g, and the latter is
smooth over Z, for almost all £ because Mg extends to a smooth scheme over an open subscheme
of SpecZ. It follows that that Mz, is smooth over Z, for almost all ¢.

We think the algebraic group My as sitting inside A% = Mg(F). It is not hard to find polynomials

Bi1 Bia

that vanish identically on the image of p: indeed, if we let ( > be any element in Im p

By B
(where every B;j is a 4 x 4 matrix), the construction of the tensor product implies that the four

matrices B;; are pairwise linearly dependent, a condition which is purely algebraic (being given by

the vanishing of sufficiently many determinants); in particular, the same property is valid for any

_ Cn C
matrix in Mp(F'). Likewise, if we write B;; = C’H 012 , where each Cj; is a 2 x 2 matrix, we
21 22

must again have pairwise linear dependence of the Cj;’s, and this (being an algebraic condition)
is again true for any point in Mp(F). Let now ej,es be the standard basis of F? and write
ek = € ® ej @ ey, (with 4,5,k € {1,2}) for the corresponding basis of F¥. We order these basis

vectors as €111, €112, €121, €122, €211, €212, €221, €222. The form ’gb on F8 is then represented by the

matrix
0 00 0 0 0 0 1
0 00 0 0 0 —-10
0 00 0 0 -1 0 0
0 00 0 1 0 0 0
0 00 -10 0 0 0}
0 01 0 0 0 0 0
010 0 0 0 0 0
-100 0 0 0O 0 O

and it is immediate to check that ej11, €129, €212, €221 span a Lagrangian subspace.

Definition 7.3.5. Let F be any field. We let H be the subspace of F® = (F2)®3 generated by

e111, €122, €212, and eaoq.
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We now determine the stabilizer S of H in Mg (F) In matrix terms, an element s of S can be

written as

I Y A A B B
o o0 o+~ o o o
I I Y N B
N O B

O

Oodogogooano
o O O O o o o
O - 0O 0 o o o o

O

O O O O o o o =

O
O

where each entry [ is a priori any element of F. We now use the fact that S C Mg (F) to show that
S is finite. Write as before By (resp. Bia, Boi, Ba2) for the top-left (resp. top-right, bottom-left
and bottom-right) block of s of size 4 x 4. Since Bgg is nonzero, linear dependence of Bgg and
Bis can be expressed as Bias = aBay for a certain o € F'; however, since Bsy has some nonzero
diagonal coeflicients while the corresponding diagonal entries of Bjs vanish, we must have o = 0
and Bjo = 0. The same argument, applied to Bo; and Bii, shows that Bs; = 0. On the other hand,
the blocks By1 and By are both nonzero, so there exists a nonzero A € T~ such that Bos = A\Bq1:

this leads immediately to

1 0 0 00O0GO0O
0 1/A 0 00 0 0 0
0 0 1/A 00 0 0 O

oo 0o 10000

“lo 0 0 0AO0O0 O
0 0 0 00100
00 0 000710
0 0 0 0000 A

We now use the second part of our previous remark, namely the fact that the 2 x 2 blocks of Bj; are
linearly dependent as well. Comparing the top-left and bottom-right blocks of Bi; gives the addi-
tional condition A\? = 1, that is, A = #1: thus the stabilizer in My (F) of our Lagrangian subspace H
consists of exactly two elements, namely the identity and the operator diag(1,—1,—-1,1,—-1,1,1,—1)
(at least if char F' # 2: otherwise we have —1 = 1 and the two coincide). This stabilizer is also
clearly finite as an algebraic group, since it has only finitely many points over F.

Notice that this argument actually shows a little more. Let Mz, be the Z,-Zariski closure of Mg, in
GSpg z,, and suppose that Mz, is smooth over Z,. Let furthermore H be the Lagrangian subspace
of F$ = F? ® F? @ F? given in definition 7.3.5 (for the field Fy): then the stabilizer of H in Mg, (Fy)
has order at most 2. Indeed, all we have used to show that |Mp(F')| < 2 is the linear dependence
of certain blocks in the matrix representation of its elements and the fact that the equation A2 = 1
admits at most 2 solutions in F: both properties are also true for the points of Mgz, with values in

any integral Z-algebra (in particular, Fy). We record this fact in the following
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Proposition 7.3.6. Let £ be a prime, My, be the Z¢-Zariski closure of Mg, in GSpg z,, and H be
the subspace H of definition 7.3.5 for the field Fy. The stabilizer of H in Mg, (Fy) consists of at

most 2 elements.

7.3.1 Mumford’s examples

We now recall the construction given by Mumford in [85]. Suppose we are given the data of a totally

real cubic number field F' and of a central simple division algebra D over F' satisfying:

1. Corpg(D) = Ms(Q);
2. DogR2HoH® My(R).

Being a division algebra, D is equipped with a natural involution = — 7T; let G be the Q-algebraic
group whose Q-points are given by {x e D* ’ TT = 1}. Mumford constructed in [85] an abelian
variety of dimension 4 with trivial endomorphism ring and Hodge group equal to G (in fact, he
constructed a Shimura curve parametrizing abelian fourfolds whose Hodge group is contained in G,
and showed that every sufficiently generic fiber has exactly G as its Hodge group). By specialization,
there exists a principally polarized abelian fourfold A defined over a number field L and such that
Hg(A) = G; since Hg(A) is as small as it is possible for an abelian fourfold with no additional
endomorphisms, the Mumford-Tate conjecture is known to hold for A (cf. [80]). By theorem 7.2.3
there is a finite extension K of L such that, if we denote G the image of the mod-¢ representation
Gal(K/K) — Aut A[/], then we have G; C MT(A)(F,) for all primes ¢. On the other hand, the
equality Corp/p(D) = Ms(Q) implies the existence of a (“norm”) map N : D* — GLg(Q), and
Mumford’s construction is such that the action of G(Q) = D* on V := H;(A(C),Q) = Q? is given

exactly by N. Furthermore, it is also known that N is a Q-form of the R-representation
G(R) = SLy(R) x SUs(R)? — Spg(R)

coming from the tensor product of the standard representation of SL2(R) by the unique four-
dimensional faithful orthogonal representation SU3(R)? — SO4(R). In particular, by extension of
scalars to C we see that the action of G(C) = SLy(C)3 on V¢ is given by the representation p of the
previous paragraph (restricted to SLa(C)3).

Lemma 7.3.7. Let ¢ be a prime such that G xg Q¢ is split. Then (up to choosing a suitable
identification Ty(A) @ Qp = Q?) we have MT(A) xzQp = M xqQy, where M = Mg is the algebraic
group of definition 7.5.1 for the field Q.

Proof. The morphism G' — Spg g is given by the norm map, and if G xQy is split (hence isomorphic
to SL%@@) the norm map is exactly

p: SLa(Qe)® —  Spg(Qy)

(a,b,c) = a®b®c;
it follows that M (Qg) contains p (G(Qr)) = Hg(A)(Qr) and M xg Q, contains Hg(A) xg Q, (as
algebraic groups). On the other hand, MT(A) is the almost-direct product of Hg(A) by the ho-
motheties torus G,,, and by remark 7.3.2 we know that M also contains G,,. This proves that we
have MT(A) x Q; € M x Qy, and since the two groups have the same dimension the inclusion must

be an equality. ]
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Extend now M and G to group schemes over Z by taking their Z-Zariski closure in their respective
ambient spaces; there is an open subscheme SpecZ %] of SpecZ over which M,MT(A) and G
are all smooth. Consider the family F of primes ¢ unramified in K, such that G splits over Qy,
and which do not divide S. We claim that F is infinite. Indeed, for G to be split over Qy it is
enough that the root datum of G be unramified at ¢ and that the Frobenius at ¢ act trivially on
it, which — by Chebotarev’s theorem — is the case for a positive-density set of primes (the action
of Gal(Q/Q) on the root datum of G factors through a finite quotient): it is then clear that F
is infinite, because only finitely many primes divide S or the discriminant of K. Pick now any
¢ in F and let M = M xy Zy. The definition of F implies that M is a smooth Z,-model of
M xz7 Q; = Mg,, and by lemma 7.3.7 we have MT(A) xz Z, = M, because both groups can
be obtained as the Zg-Zariski closure of the same generic fiber. In particular, we see that Gy is
contained in M(FFy) = MT(A)(F,). Take now H C A[{] to be the Lagrangian subspace of definition
7.3.5 (for the field Fy). The field K(H) is clearly contained in K (A[¢]), so in order to describe K (H)
it suffices to describe Gal (K (A[¢])/K(#)), that is, the stabilizer of H in Gy; as Gy is contained in
M(Fy), this stabilizer is certainly contained in the stabilizer of H in M(Fy), which in turn consists
of at most two elements by proposition 7.3.6. We have thus proved that the index [K(A[{]) : K(H)]
is at most 2, and since K () is contained in K (A[{]) by the properties of the Weil pairing (recall

that A is principally polarized) we have
(-1

[K () : K] = 5

where the last equality follows from the fact that ¢ is unramified in K. We then see that property

(M) 1 K )« K > 5 (KAL) 0 K ) - K] >

N =

()5 does not hold for Mumford’s example: indeed, H is Lagrangian, so mj(H) is 0; but if property

()s held for A/K, then (for some C') the inequality
(-1
—5— SIKMH)NE (<) : K] < O [K(ppmyon) : K] = ©
would be satisfied by all the primes in our infinite family F, and this is clearly absurd. This

establishes theorem 7.1.5.



Chapter 8

Pink-type results for general

subgroups of GlLy(Zy)"

8.1 Motivation and statement of the result

The ultimate goal of this work is the study of the images of certain Galois representations with values
in GLa(Z¢)™, such as those afforded by the Tate modules of elliptic curves, or some representations
arising from modular forms. It would therefore be useful to have a manageable way to describe
these images; however, it turns out that it is beneficial, and in a sense simpler, to consider arbitrary
subgroups G of GL(Zy)"™ without making any reference to their origin, and in the present work
Galois representations will play virtually no role. In most applications to the study of Galois
representations, the main object of interest is actually the intersection GNSLa(Zy)"™, and furthermore
it is an easy matter to pass from results on subgroups of SLo(Zg)" to results on subgroups of
GL2(Zy)™, so we shall actually mostly work with subgroups G of SLa(Z¢)". Any such G is the
extension of a ‘finite’ part, the image G(¢) of the reduction G — SLa(F,)", by a ‘Lie’ part, the
kernel of this reduction.

When G is closed and G(?) is trivial (or more generally when G is pro-£), and ¢ is odd, a construction
due to Pink [97] gives a very concrete and handy description of G in terms of a certain Z,-Lie algebra
L(G) (together with some additional data which is not very important to our present discussion).
Furthermore, if G is the image of a representation of Gal(K/K) (K a number field), the condition
that G(¢) be trivial can always be met by replacing K by a finite extension, so that Pink’s theorem
applies. Note however that the degree of this extension depends on ¢: while this is often perfectly
fine when considering a single Galois representation, it may become a major drawback when dealing
with infinite families Gy indexed by the rational primes (as it is the case, for example, with the action
of Gal(K /K) on the various Tate modules of an abelian variety). Furthermore, Pink’s theorem does
not apply to £ = 2, which might again be quite a hindrance when trying to study the whole system
Gy at once.

While we cannot hope to give a complete description of G in terms of Pink’s Lie algebras when
G is not pro-¢, we could try and settle for less, namely a result of the form ‘when L(G) contains
a large neighbourhood of the identity (given explicitly), we can explicitly find a neighbourhood of
the identity of SLa(Z,)" that is included in G’. Note that when dealing with Galois representations

195
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we are often interested in ‘large image’ results, for which this weaker form of Pink’s theorem would
still be adequate. Unfortunately, even this is not possible (cf. for example §1.4.5), and the best we
can hope for is for such a statement to hold not quite for G, but for a subgroup H of G such that
the index [G : H] is bounded by a function of n alone.

In order to give a concrete statement we shall need some preliminary definitions:

Definition 8.1.1. For a prime ¢ and a positive integer s we let By(s) be the open subgroup of
SLa(Z¢) given by

{# €SLy(Z¢) | =1d (mod ¢°)} .

We also set By(0) = SLa(Zy), and for non-negative integers ki, ..., k, we denote by By(k1,..., k)
the open subgroup [[7_; Be(k;) of SLa(Z¢)".

Definition 8.1.2. (cf. [97]) Let ¢ be a prime, n a positive integer and G be a closed subgroup of
GLa(Zg)™. If £ = 2, assume further that the reduction modulo 4 of G is trivial. Writing elements
of G as n-tuples (g1,...,gn) of elements of GLa(Zy), we define a map ©,, by the formula

O : G - D7, sl2(Zy)
(917"'7971) = (gl_%tr(gl)a7gn_%tr(gn))7
and we let L(G) C sly(Z¢)™ be the Zs-span of ©,,(G). We call L(G) the Lie algebra of G.

Theorem 8.1.3. Let £ be an odd prime, n be an integer, and G be a closed subgroup of SLo(Zy)™.
There exists a closed subgroup H of G, of index at most 247481 " with the following property:
if L(H) contains @}_, (*slo(Zy) for a certain integer k > 0, then H contains By(p,...,p) for
p = 80(max{n,2} — 1)k.

Similarly, let n be a positive integer and G be a closed subgroup of SLa(Z2)™. There exists a closed
subgroup H of G that satisfies |G : H] | 96", is trivial modulo 4 (so that L(H) is defined), and
has the following property: if L(H) contains @}, 28sla(Z2) for a certain integer k > 0, then H
contains Ba(p,...,p) for p=645(max{n,2} — 1)k.

While it is certainly true that both this theorem and its proof are quite technical, it should be
remarked that this statement does enable us to show exactly the kind of ‘large image’ results we
alluded to: the case n = 1 has been used in chapter 1 to show an explicit open image theorem
for elliptic curves (without complex multiplication), and in chapter 2 we apply the case n = 2 to
extend this result to arbitrary products of non-CM elliptic curves.

A few more words on the proof of theorem 8.1.3: as it will be clear from section 8.5, the crucial
cases are n = 1 and n = 2. While the former has essentially been proven in chapter 1, the latter
forms the core of the present chapter, and we shall actually prove it in a slightly more precise form
than strictly necessary to establish theorem 8.1.3. This will be done in sections 8.3 and 8.4 below,

where we also give analogous statements for GLa(Zy)?.

Notation. We shall make constant use of the following notations:

e G(I™), where G is a closed subgroup of GLy(Z)*, will denote the reduction of G' modulo £7,
that is to say its image in GLg(Z/("Z)F;
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e N(G) will denote the largest normal pro-f subgroup of G, where G is a subgroup of either
GL2(Z¢) or of GLo(IFy);

e (G’ will denote the topological closure of the commutator subgroup;

o if x is an element of GLa(Z) (resp. of Z;), we shall write [z] for its image in GLa(Fy) (resp.
in [Fy).

8.2 Preliminary lemmas

In this section we set up the necessary notation and prove a few preliminary lemmas.

Throughout the whole chapter, the prime 2 plays a rather special role, and special care is needed to
treat it. In order to give uniform statements that hold for every prime, we put v = 0 or 1 according

to whether the prime ¢ we are working with is odd or equals 2, that is we set
0, if £ is odd

v=1y(2) =
1, otherwise.

Lemma 8.2.1. Let { be a prime number, t a non-negative integer, and W C sla(Zy) a Lie subalgebra
that does not reduce to zero modulo (1 and that is stable under conjugation by By(s), where s > 0
is at least 2 if £ = 2 and at least 1 if £ = 3 or 5 (no conditions are necessary if £ > 7). The open
set (H4s+40515(Z,) is contained in W.

Proof. Write an element w of W that does not vanish modulo ¢t as p,x + pyy + pph, where
0 1 0 0 10
xTr = y y = s h =
0 0 10 0 —1
and min {ve(pa), velpy), ve(pn)} < t.

1 0
Let C; (resp. C4,C,) be the linear operator of W into itself given by conjugation by (23 1) (resp.

1+¢45 0 1 ¢
( + ) , ( ) >) and Do = Co — Id, where e is one among [, d, r. Concretely,

U
1o\ (10
Dy(w) = | . w| —w.
51 1

Also set o := 1+ £5. We have
at(Cy — a?) o Dgw = (a* — 1)(a® — D) ppx € W,
where vg((a* — 1)(a? — 1)) = 25 + 3v by our assumptions on s. Similarly, we also have
(@ —1)(a® = Dy €W

and by difference also (a* — 1)(a? — 1)uph € W. Up to symmetry, we can therefore assume that W

gt+25+3v 0 0 £t+25+3v
or M2 =

contains either M; =

0 _ 25430 0 0 ) To finish the proof we use

the following immediate identities:
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0 0 _2£t+38+3v 0
£t+35+4v5 o (ZK)

0 2£t+35+3v 0 0
e D.(M;) = ,Dy(My) = , so that in this case W contains

0 0

* DlODl(MQ) - ( _gpttdst3v

that in this case W contains £+45+40sl, (Z,).

_2€t+35+3v 0
, DyoDy(Mz) — 2Dy (Mz) = 0 gpt+3s+3v |50

O

Lemma 8.2.2. Let ¢ be a prime number, n > 1,m > 1, g € End (Z}") and py(t) be the characteristic
polynomial of g. Let furthermore X\ € Zy, w € Zy' be such that gw = Aw (mod ™). Suppose that at

least one of the coordinates of w has (-adic valuation at most a: then py(A) =0 (mod £"~).

Proof. Denote (g — AId)* the adjugate matrix of (¢ — AId), that is the unique operator such that
(g — Ad)*(g — A1d) = det(g — A\Id) - Id. Multiplying (g — AId)w = 0 (mod ¢™) on the left by
(9 — A1d)* we obtain det(g — AId) - Idw = 0 (mod ¢"), and by considering the coordinate of w of
smallest valuation we obtain py(A\) = det(g — AId) =0 (mod ¢"~“) as claimed. O

Lemma 8.2.3. Let s1,s2 be non-negative integers (with s1,s2 > 2 if £ = 2 and s1,s2 > 1 if

¢ =3). The commutator group [By(s1), Be(s2)] contains By(s1+se2+v), and the iterated commutator

[---[  Bels1), Be(s2) |, Be(s3)], - -+, Be(sn)] contains Be(s1 + -+ + sn + (n — 1)v).
(n—1) times
Proof. This is an easy verification. O

The quantitative result we will need is the following:

Lemma 8.2.4. Let n be a positive integer, G a closed subgroup of [[;—, SL2(Z¢), and ; the pro-
jection from G on the i-th factor. Suppose that, for every i # j, the group (m; x mj) (G) contains
Bi(sij, sij) for a certain non-negative integer s;; (with s;; > 2 if { =2 and s;j > 1 if £ = 3): then
G contains [, Be (Zj# sij + (n — 1)1)).

Proof. Clearly by the symmetry of the problem it is enough to show that G contains

{Id} x - x {Id} x By anj+(n—1)v
J#n
By lemma 8.2.3, for any g in By (Z#n Spj + (n — 1)1)) there exist elements y; in By(spi) (for i
between 1 and n — 1) such that g can be written as [---[[y1,v2], 93], - ,yn—1]. By hypothesis we
can find xi,...,2,-1 € G such that m;(z;) = Id and 7m,(z;) = y; for all i between 1 and n — 1.

Consider now the iterated commutator
g=1[-[r1, 2], 23], -+ ,xpn_1]:

this is a product of elements of G, and therefore it is itself an element of G. For ¢ < n — 1, the i-th

component of g is trivial, since

mi(g) = [+ [+ [[mi(@1), mi(@2)], mi(w3)], - mi@s)) -+ mi@n—1)] = 1d.
Id
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On the other hand, our choice of y1,...,y,—1 ensures that 7,(g) = [ - - [[y1, 2] ,¥3], * , Yn—1] = g
We have thus shown that (1,1,...,1,9) = g is an element of G for any choice of g in

By Zsij+(n— Lo |,
J#n

and repeating the argument for the other projections gives the required result. O

8.3 0Odd/(, n=2

In this section we establish the case n = 2 of the main theorem when £ is an odd prime. We shall

actually prove the following variant concerning subgroups of GLa(Z)?:

Theorem 8.3.1. Let £ > 2 be a prime number and G be a closed subgroup of GLa(Z¢) x GLa(Zy).
Let G1, G4 be the two projections of G on the two factors GLa(Zyg), and let ny,ny be positive integers
such that G contains B¢(n;) for i = 1,2. Suppose furthermore that for every (g1,¢92) € G we have
det(g1) = det(ga). At least one of the following holds:

e G contains By(20 max{ni,na}, 20 max{ni,na})
o there exists a subgroup T of G, of index dividing 2 - 482, with the following properties:

— if L(T) contains (*sly(Z;) ® (Fsly(Zy) for a certain integer k, then T contains Be(p,p),
where
p = 2k + max {2k + 4,8n1,8na} .
We call this property (x).
— for any (t1,t2) in T, if both [t1] and [ta] are multiples of the identity, then they are equal.

The corresponding statement for subgroups of SLa(Zy)? is as follows:

Theorem 8.3.2. Let £ > 2 be a prime number and G be a closed subgroup of SLa(Zy) x SLa(Zy)

and nyi,ny be positive integers such that G; contains Be(n;) fori =1,2. At least one of the following
holds:

e G’ contains By(20 max nq,ng, 20 max ny, ng)
o there exists a subgroup T of G, of index dividing 482, with the following properties:

— if L(T) contains (*sly(Zg) @ (Fslo(Zy) for a certain integer k, then T' contains Be(p,p),
where
p = 2k + max {2k + 4,8n1,8na} .
We call this property (sx).
— an element (t1,t2) of T satisfies [t1] = [Id] if and only if it satisfies [ta] = [Id].
We will start by showing that theorem 8.3.2 implies theorem 8.3.1, and then proceed to prove

the former. One of the key ingredients of the proof is the following theorem, which in turn is an

immediate consequence of Pink’s results from [97] (see also the proof of theorem 1.4.2).
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Theorem 8.3.3. Let £ # 2 be a prime number and k be an integer.

Suppose G is a closed pro-f subgroup of Sla(Zy), and suppose furthermore that L(G) contains
0*s515(Zy): then G’ contains By(2k). Similarly, if G is a closed pro-£ subgroup of SLa(Z¢)? and L(G)
contains (¥slo(Zy) ® (*sly(Zy), then G' contains Be(2k, 2k).

Proof. (of theorem 8.3.1) Write det* for the map G det, 72 ™% 7y given by the composition of the
usual determinant with the projection on the first coordinate of Zf. Note that by assumption an
element (g1, ¢g2) of G satisfies det(g1,¢92) = (1,1) if and only if it satisfies det*(g1,g2) = 1.

Assume first that £ < 5. Denote by T the inverse image in G of an /-Sylow of G(£), and set

= det* X Z;
T := ker T —7Z,; — 5 |-
Z;

By the assumption that every element (g1, g2) of G satisfies det g; = det g2, we see that the index
of T in G divides 2 - ﬁ (%)2 | 2-482. As in lemma 1.3.17, one sees that the groups T and
Tt := (T- (2} - (1d,1d))) N SL2(Z¢)? have the same derived subgroup and the same Lie algebra,
and moreover T is a pro-£ subgroup of SLy(Z)?. Furthermore, every element (¢1,t3) of T reduces
to ([Id], [Id]) modulo £. Now if L(T') contains ¢*sly(Zs) & (*sl(Z), then the same is true for L (1),
hence (T!) = T" contains B,(2k,2k) by theorem 8.3.3.

Next consider the case ¢ > 5. Let U; be the subgroup of G, of index at most 2, given by
ker (G det, 7, — L] /sz). Let Uy = (Uy - (Z) - (1d,1d))) NSL2(Z¢)?, and notice that Uy and Us
have the same derived subgroup (lemma 1.3.17). We can assume that U5 = U] does not contain
Bi(4ny 4 16n9, 8ny), for otherwise we are done. Apply theorem 8.3.2 to Us to find a subgroup 75 of
Us (of index at most 482) that has property (x*). Notice that we have a well-defined morphism

Ur 5 Uy /(2(1d,1d))

given by g — [g/ \/W], where \/m exists in Z, by construction of U;. Let T, be the image
of Ty in the quotient Us/(£(Id, Id)). Notice that 1 is surjective by definition of Uy, so if we define T’
to be the inverse image of Ty through 1), then the index [U; : T] divides 482. As the prime / is larger
than 5, it does not divide [G : TY, so (given that By(n1), Be(nz2) are f-groups) the two projections of
T on the two factors SLa(Zy) contain By(ni), Be(ne) respectively. Furthermore, the Lie algebra of
T and that of T agree, as do their derived subgroups: for every to € T5 we can find a ¢t € T' such
that ¢/v/det* t = +ty, so that ©1(t) and O (t) differ by an element of Z; , and conversely for every
t € T there exists a to € Ty such that to = +t/,/det* () (so that again ©1(t) and ©1(t2) differ by
an f-adic unit). Suppose now that L(T) contains #*sly(Z) @ (*sly(Z,): then the same is true for
L(T») (as the two Lie algebras coincide), and therefore by property (%) (cf. theorem 8.3.2) we see
that Ty = T contains By(p, p).

Finally, let (¢1,t2) be in T and suppose that [t1], [t2] are multiples of the identity. By construction,
there exists a scalar A and an element (wq,wsy) € T such that (¢1,t2) = A(wy,w2). As the only
multiples of the identity in SLo(FFy) are +1d, changing A into —A if necessary we can assume that
[w1] = Id. But then the properties of T, imply that [ws] = Id, so [t1] = [A - 1d] = [t2]. O

Remark 8.3.4. Tt is clear from this proof that we can assume ¢ > 5 without loss of generality. Doing
so will simplify some of the arguments. Also note that the property [t1] = [Id] < [t2] = [Id] of the

group T of theorem 8.3.2 will be clear from its construction, so we will not comment further on it.
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Our final objective is to compute, in terms of k,n; and ne, an integer p such that G contains
By(p, p). This would be immediate if G were a pro-¢ group, for then we would simply apply theorem
8.3.3 as it is. In general, however, one needs to take into account the structure of G(¢), and many

different possibilities arise, according to the type of G1(¢), G2(¢) in the Dickson classification.

The problem of studying G is complicated by the many possibilities for the mutual relationship
between G,G1 and G2. However, in some situations which we now discuss, the two projections
G1 and G35 behave essentially independently one of the other: in this case the problem is greatly
simplified, and it is possible to exhibit an integer p as above without examining too closely the

structure of G(¢). To identify these cases we start with the following easy lemma:

Lemma 8.3.5. Suppose G contains an element g of the form (x,y), where [x] is trivial and [y] is
nontrivial and of order prime to £. The group G contains an element of the form (1,z), where the

order of [z] is the same as the order of [y].
Proof. Such an element is given by any limit point of the sequence ¢g*". O

The following statement is also easy to check (cf. lemma 8.4.17 below for an analogous, but more

complicated case):

1 ugdm
Lemma 8.3.6. Let m be a non-negative integer, ui,us be £-adic units, g1 be (O 11 ), g2 be

1 0
( 1), and G be a closed subgroup of SLa(Zy). If G contains both g1 and ga, then it also

DY AL

contains all of By(2m).

Lemma 8.3.7. Suppose that G contains an element (a,b) such that a is trivial modulo ¢ and the
prime-to-£ part of the order of [b] is at least 3. Then G’ contains By(4ny + 16n2, 8nsa).

Proof. Note that both the hypothesis and the conclusion are invariant under any change of basis,
so we can freely change bases to simplify the calculations.

There exists an integer m such that [b]*" has order prime to ¢; replacing (a,b) with (a,b)"" allows
us to assume that the order of [b] is at least 3. By lemma 8.3.5, G contains an element of the form
(1,'), where the order of [b'] is the same as the order of [b]. We can therefore assume a = 1.

By hypothesis, for any g2 in By(ns) we can find a g; such that (g1, g2) belongs to G. It follows that
for any g2 € By(n2) the element

(17 b/)il(glng)(L b,)(gla.QQ)il = (17 (b/)7192b/92_1)

0
belongs to G. Up to a choice of basis, we can assume that either &’ = (0 1/d> for a certain unit

c de
d,ort/ = ( > for certain units ¢, d and a certain ¢ such that [¢] is not a square (for this second
c

1 m2
shows that
0 1

(1’ <1 (d~2 - 1)6”2>>
0 1

case cf. lemma 1.4.7). In the first case, choosing g2 = (
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belongs to G. Given that d is not congruent to =1 modulo ¢, for otherwise the order of [b] would

be 1 or 2, we see that the f-adic valuation of (d=2 — 1)/™2 is exactly no. Similarly, G contains

(1, ((d2 _11)€n2 (1)>> , and by lemma 8.3.6 this implies that G contains {1} x B;(2n2). A similar
Lo _celet?)

analysis in the second case (taking g of the form d(irl) >, where vg(e) > ngy) shows

that G contains {1} x By(4nz2). e

Consider now an element h = (hy, ha) of G whose first coordinate is h; = (1) ﬁl_lgm ; such an

1 gmtt
element exists by assumption. Its £(¢2 — 1)-th power is of the form b/ = ((0 . > ,h’2> , where

[hy] = [ho]“@—1) = [hy]ISL2(FOl = [Id]. The ¢*"2~1-th power of A’ (recall that ny > 0), therefore, is

a certain
h” _ 1 €n1+4n2 h”
0o 1 I

where hY € By(4ns). By what we already saw, G contains (1, %), so G contains

1 gn1+4n2
R'(1,h5) "t = 1.

1 0

The same argument shows that G also contains
€n1+4n2 1

) , 1) , and we finally deduce that G

contains By(2n; + 8ng) x {1}, hence G’ contains By(4ny + 16n2) x By(8ng). O

Lemma 8.3.8. Suppose that L(N(G)) contains an element of the form (0,u), where u is nonzero
modulo (**t1 (s a non-negative integer). Then G’ contains {1} x By(2s + 8ns).

If L(N(G)) contains two elements (u1,0) and (0,uz) that are nonzero modulo £, then G’ contains
Be(2s + 8n1) x By(2s + 8nya).

Proof. Note first that the Lie algebra L(N(G)) is stable under conjugation by G (by the same
argument as lemma 1.4.5). The smallest Lie subalgebra of L(N(G)) that contains (0,u) and is
stable under conjugation by G is 0 @ L(u), where L(u) is the smallest Lie subalgebra of sla(Zy)
that contains u and is stable under conjugation by Gs. By virtue of lemma 8.2.1, and given that
G2 contains By(ngy), the algebra L(u) contains ¢5+t4"2sly(Z,). Tt follows that L(N(G)) contains
0 @ ¢5+42505(Zy), and applying theorem 8.3.3 we deduce that N(G)" (hence also G') contains
{1} x B¢(2s + 8nz). The second statement is now immediate. O

We now have three categories of groups for which, given information on L(G), we can deduce
information on G:

(A) pro-¢ groups: by theorem 8.3.3, if L(G) contains (*sly(Z;) @ (*sly(Z,), then G’ contains
B(2k, 2k);

(B) groups that contain an element (a,b) such that [a] is trivial and the prime-to-¢ part of the

order of [b] is least 3, because of lemma 8.3.7;
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(C) groups satisfying the hypotheses of lemma 8.3.8.

We now start with a general closed subgroup G of SLy(Z)? and show that (up to passing to a
subgroup of finite, absolutely bounded index) the group G must satisfy one of these three sets of
hypotheses.

As already anticipated, we will need a case analysis based on the structure of G1(¢) and Ga(¥).
These are subgroup of SLo(Fy), and by the Dickson classification we know that any subgroup of
SLa(Fy) is of one of the following types:

trivial, split Cartan, nonsplit Cartan, normalizer of split Cartan, normalizer of nonsplit Cartan,

Borel, exceptional, SLa(Fy).

Remark 8.3.9. To be more precise we should rather write ‘contained in a split Cartan subgroup’,

‘contained in a Borel subgroup’, etc. The slight abuse of language should not cause any problems.

We call ‘type’ of G the pair (type of G1(¢), type of Ga({)). The proof will proceed by analysing all
the possibilities for the type of G.

Notice that, if (B) above applies, then (without even using any information on L(G)) we know
that G contains By(4n1 + 16n2, 8ns), and we are done. We can therefore assume that (B) does not
apply and drastically reduce the number of cases we need to treat, as we now show. Consider the
kernel Jy of the reduction G(¢) — G1(¢), which we identify to a (normal) subgroup of Ga(¢). If
the prime-to-¢ part of the order of Jy is at least 3, then we are in case (B) above: indeed SLy(Fy)
contains only one element of order 2, namely minus the identity, so if the prime-to-f part of the
order of Js is at least 3, then Jy contains an element b whose order has prime-to-£ part at least 3,
and we are done.

Suppose, on the contrary, that the prime-to-f part of the order of Jo is at most 2. Taking into
account that Jo is a subgroup of SLa(F,), we see that the ¢-part of its order can either be 1 or /.
Thus the order of Js can only be 1,2, ¢, 2¢; furthermore, the last two cases can only happen if G2 (¥)
is of Borel type, since these are the only subgroups of SLy(Fy) admitting a normal ¢-Sylow. The
same argument also applies to J; = ker (G(¢) — Ga(¥)).

Replacing G' with its subgroup H = ker (G — G({) — G2(¢) — G2(¢)/N (G2({))) we can assume
that the order of J3 is either 1 or £. Similarly, up to passing to a second subgroup of index 2, we
can assume that the order of J; is 1 or /.

Goursat’s lemma implies that G1(¢)/J; and G2(¢)/J2 are isomorphic, and since J; is either trivial

or agrees with N(G;(¢)) we see that in particular we can assume

G(l)/N(G(¥)) is the graph of an isomorphism between the finite groups G1(¢)/N(G1(¢)) and
Go(£)/N(Ga(0))- (%)

In order to minimize the number of cases we need to treat, let us also get rid of the ‘exceptional’
case and simplify the Cartan ones.

In case G1(¢) is exceptional, there exists a subgroup H < G of index dividing 48 with the property
that m (H)(¢) is a cyclic subgroup of order 3 or 5 (according to whether the projective image of
G1(¢) is isomorphic to Ay, or respectively to As or Ss). Assumption (x) implies that mo(H) is also

cyclic of order either 3 or 5.
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Likewise, if G1(¥) is contained in the normalizer of a Cartan subgroup, passing to a subgroup H
of index at most 2 allows us to assume that 71 (H)({) is in fact contained in the Cartan subgroup
itself, and the same then holds for mo(H)(¥).

As a final simplifying assumption, note that if G1(¢) = Gy (¥) is of order dividing 8, then passing to
the subgroup defined by ker(G — G(¥)) ensures that G is in fact pro-£ (so (A) applies, and we are
done). Notice that this step is not necessary if we performed the reduction from the exceptional to
the cyclic case.

Putting it all together, we see that at the cost of passing to a subgroup of index dividing 2 - 2 - 48

we have reduced the list of our cases (for a single factor) to
trivial, split Cartan, nonsplit Cartan, Borel, SLa(Fy),

and we can furthermore assume that property (x) holds and that the orders of G1(¢) and G3(¥) do
not divide 8. We shall now list all the remaining cases for the type of GG, and then show how to

deal with each of them in turn.

Before getting started with our case analysis let us record a couple of simple results on Teichmiiller
lifts:

Definition 8.3.10. Let F' be a finite unramified extension of Q, of degree k, with residue field
F = Fy. For an element [f] € F we denote w([f]) the Teichmiiller lift of [f], that is to say the only
element g € O that reduces to [f] in F and satisfies gék =g.

Lemma 8.3.11. With the notation of the previous definition, the sequence ffkn converges to w([f])

when n tends to infinity.
Proof. Immediate. O

Lemma 8.3.12. Let g be an element of SLa(Zy) such that [g] has order prime to ¢ and strictly
greater than 2. Then the sequence gz% for n € N converges to a certain goo that satisfies gﬁz = Goo-

Moreover, if [g] is diagonalizable over By, the limit goo even satisfies gt = goo-

Proof. The assumption implies that [g] has distinct eigenvalues, hence there exists a quadratic
unramified extension F of Q over which g can be written as g = P~!DP, where D = diag(\, A\™!)
is diagonal and P is a base-change matrix. By the previous lemma, the sequence D" converges to
diag(w([A]), w(]A71])), so the sequence g©“" = PD?" P! converges to P~! diag(w([A]), w(]A"1]))P,
which satisfies the conclusion since w([A\])** = w([A]). For the second statement we can take F = Qq
and use the fact that the Teichmiiller lifts satisfy w([\])¢ = w([\]). O

We are now ready to deal with the remaining cases for the type of G. Every case is dealt with in a
separate section, whose title is of the form (type of G, type of G2). Note that since N(SLy(Fy)) is
trivial we have G1(¢) = SLa(F/) if and only if G2(¢) = SLa(FFy); this helps exclude a few more cases.
Also notice that thus far we have replaced G by a subgroup of index dividing 4 - 48, and therefore
we are still free, if necessary, to further replace it with subgroups of index dividing 12 (in fact, we

shall only need one more replacement, by a subgroup of index 2, in sections 8.3.3 and 8.3.4).
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8.3.1 Case (Trivial, anything)

Since we assume (x) and G1(¢) is trivial, G2(¢)/N(G2(¥)) is again trivial, so Ga(¢) is pro-¢. The
same then holds for G, and therefore G falls into category (A). Theorem 8.3.3 gives directly that
G’ contains By(2k, 2k).

8.3.2 Cases (Nonsplit Cartan, Split Cartan) and (Nonsplit Cartan, Borel)

The same idea works in both cases: consider an element (a,b) € G with [a] of maximal order in
G1(¢); notice in particular that [a] has order dividing ¢ + 1. The finite group G(¢) contains the

element
([a], ()Y = ([, 1)),

ord([a])
(£ =1, 0rd([a]))
(B), contradiction. On the other hand, notice that (¢ — 1,ord([a])) < 2, so m < 2 implies ord[a] } 4,

contradicting our assumption that the order of G1(¢) does not divide 8.

and the order of [a]m_l) is given by =:m. If m is at least 3 this falls into category

8.3.3 Cases (Split Cartan, Split Cartan), (Borel, Borel) and (Split Cartan,
Borel)

We start by considering the type (Split Cartan, Split Cartan), the other two cases being essentially
identical. Note that the groups N(G(¢)), N(G1(¢)) and N(Gz(¥)) are all trivial, so G1(¢) and
G4({) are isomorphic by (x), and we can find an element (h1,he) € G such that [hy], [ha] generate
G1(0), Go(£) respectively. By lemma 8.3.12, the limit (g1, g2) of the sequence (hy,hs)®" satisfies
gt = g1,95 = go, and furthermore [g1], [g2] generate G1(£), Go(¢) respectively. We choose bases in
such a way that both g; and go are diagonal. Write ¢g; = C(l; d(:l , where d; satisfies df = d;.
Since we are assuming that G1(¢) = Go(¢), we know that the o;ders of [di] and [d2] agree. In
particular, we can write [da] = [d1]? for a certain integer ¢, 1 < g < ord[d;], that is prime to the
order of [d1]. Replacing G with a subgroup of index 2 if necessary we can assume g # £2.

Given that the Teichmiiller lift is a homomorphism we deduce d2 = w([d2]) = w([d1])? = di. The
cases ¢ = £1 and g # £+1 will turn out to be somewhat different, as we will see shortly. Note that
the cases ¢ = 1 and ¢ = —1 are the same up to a change of basis (the one exchanging the two
coordinates on the second factor SLa(Zy)), so in the scenario ¢ = 1 we can in fact assume without

loss of generality that ¢ = 1. Consider now the three matrices

1 1
My = 0 , Moy = 0 M3 = 00
0 0 0o -1 1 0

and let mp (resp. 2, 73) be the linear maps sla(Zy) — Z, - M; giving the projection of an element
on its M; (resp. My, M3) component. A Zs-basis of the Lie algebra sly(Zy) @ sla(Zy) is given by
(M;®0), (0 M;) fori=1,2,3 and j = 1,2,3. Note that both L(G) and L(N(G)) are stable under
conjugation by (g1,¢92) (cf. lemma 1.4.5).
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Writing elements of sla(Zy) @ sl2(Zy) as the 6-dimensional vectors of their coordinates in the basis

just described, the action of conjugating by (g1, g2) is given by
(z1, 2, 23, 24, 25, 76) > (dia1, 2o, dy *x3, dsay, x5, dy *x6).
In particular, if we denote C' the linear operator (acting on sla(Zy) @ sla(Zy))

(,y) = (1297 ", 92995 1),

we have
1 {—2 '
=1 C*(x1,x9, 3,24, x5, 6) = (0,22,0,0,24,0),
=0
i ! gd%— ! di(H)_l—O( Il that d = d; and d? # 1), and similarly for d;?
s1nce€71i:0 1 71 d%—l reca. at ay 1 and dy , and similarly for d

and dF?. Tt follows that if L(G) or L(N(G)) contains the vector (1, ..., ), then it also contains
the vectors (z1, 0, z3, 24,0, x6) and (d?jxl, 0, d;2j$3, d%jx4,0,d52jaz6) (for every integer j). Consider
the matrix

1 1 1 1

a2 dy? d3 dy?

i dyt di dyt

a8 dy® d§ dy°

V=

This is a Vandermonde matrix, so its determinant does not vanish modulo £ as long as d7 # dfz
and di # d3? (mod £). Recall that we have already assumed that the order of d; does not divide 4,
so the first condition is automatically satisfied. If d? # alg[2 (mod /), then, this matrix is invertible
in Zy, that is to say the standard basis vectors (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) can be

written as linear combinations of the rows of V. In turn, this implies that the vectors
(xly 07 07 07 07 0)7 <07 07 xs3, 07 07 O>7 (07 07 07 T4, 07 0)7 (07 07 07 07 07 .TG)

can be written as Zy-combinations of the four vectors C7(x1,0,x3, 14,0, 76) for j = 0,1,2,3. Equi-
valently, we have shown that if ¢ # +1 the Lie algebras L(G), L(N(G)) are stable under the
projection operators m; ¢ 0,73 $ 0,0 H 7,0 P 73.

On the other hand, under our assumptions if d = d2j[2 (mod /) then we have ¢ =1 (so g1 = g2), and
an even easier computation shows that L(G), L(N(G)) are stable under the projection operators

m D m and w3 D 3.

Regarding (with a little abuse of notation) the m;’s as maps from gly(Zy) to itself, we can write

©1 = w1 + T + 73, so that ;01 = 7; for ¢ = 1,2, 3. Further we have the immediate identity

0 d!
Mig; = ‘ =d M, fori=1,2,
19 ( 0 0 ) ) 1

whence for any A € GLy(Zy) we have
71'1@1(Agi) = 7r1(Agz-) = di_lﬂl(A) fori=1,2.
Again we need to distinguish between the case when d2 and inQ are not congruent modulo £ and

the case when they are. Consider the former. We know that (0 & m)(L(G)) is contained in L(G),
and it is generated by an element of the form (0@ 71 )(©2(h)), for a certain h € G. We can certainly
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choose an integer m in such a way that h - (g1, g2)™ belongs to N(G). For such an m, the element
O2(h - (g1,92)™) lies in L(N(G)). However, L(N(G)) is stable under 0 & 71, so it also contains

dy' - (0@ m1) (O2(h - (g1,92)™)) = d3"(0, m1O1(hgy"))
= (0,m1(©1(h)))-

Now L(G) contains (0 ® m1)(fFsla(Ze) @ (¥sly(Zy)) = 0 @ L8 My, so the previous formula shows that
the same holds for L(N(G)). Repeating the same argument swapping the roles of two factors then
shows that L(N(G)) contains ¢¥M; @ 0. We are in situation (C), and lemma 8.3.8 implies that G

contains

By (2k + 8 max {ny,na}, 2k + 8 max {ni,na}).

Suppose on the other hand that d} = dgﬁ (mod /), so that under our assumptions we have d; = da
(mod /). Let us write, for the sake of simplicity, g for g1 = g2 and d for d; = d2. As we have seen,
both L(G) and L(N(G)), thought of as subsets of sla(Zy) ®sl2(Zy), are stable under the maps m; &;
for i = 1,2,3. Hence L(G) is the direct sum of three rank-2 subalgebras R; = (m; ® m;)(L(G)),
i =1,2,3, with R; open in Z;M; & Z;M;; similarly, L(N(G)) is the direct sum of three algebras
Si = (m; @) (L(N(Q))), with S; open in ZyM; ® Z;M;. We claim that S = Ry. If Ry is generated
by the two elements (m @ 1) (O2(h1)), (71 @ 71) (©2(h2)), then we can find integers mq, mg such
that hq(g,g)™ and ha(g,g)™2 belong to N(G). It follows that for i = 1,2 the algebra S; contains

d™ (m @ m1)(O2(hi(g,9)™)) = d™d"" (11 ® m1)(O2(h)),

i.e. S1 = Ry as claimed.
Now note that L(G) contains (*sly(Zy) @ £¥s5l5(Zy), so Ry = (71 ® m1)(L(G)) contains £¥ My @ 0% M,
and the same is true for S; = (m ® m)(L(N(G))). As above, we conclude that G’ contains

By (2k + 8 max {ny,na}, 2k + 8 max {ni,na}) .

Finally, note that the (Borel, Borel) and (Split Cartan, Borel) cases are completely analogous: we

simply need to choose for (g1, ¢2) a generator of G/N(G), which is cyclic (cf. lemma 1.3.18).

8.3.4 Case (Nonsplit Cartan, Nonsplit Cartan)

We follow an approach very close to that of the previous section. Using lemma 8.3.12 and the fact

that G(¢) is the graph of an isomorphism G1(¢) — G2(¢), we can find an element (g1, g2) of G such
a; big;

that ng = ¢; and [g;] generates G;(¢); in a suitable basis we can write g; = bl |, where &;
i

is an element of Z \ Z;* (that is to say, [¢;] is not a square in F,). The condition that the order

of G;(¢) does not divide 8 implies a;b; Z 0 (mod ¢). For any ¢-adic unit € consider now the three

= (35 ma=an= () °) w0 (7 7).

A basis of sla(Zy) @ sla(Zy) is given by
(M1(€1)70)7 (MQ(El)vo)v (M3(51)70)7 (07 M1(52))7 (07M2(52))7 (O,Mg(Eg)),

matrices
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and again we write elements of sla(Zy) @ sla(Zy) as six-dimensional vectors in this basis. Let C be

the linear operator (from sla(Zy) @ slz(Zy) to itself) given by (z,y) — (g1, 92)(z,3)(g1,92) " '; once

again, L(G) and L(N(G)) are stable under C. The matrix of C' in this basis is block-diagonal, the
1 0 0

blocks being given by B; = | 0 1+ 2511)? 2a;b;e; . Since the bottom-right 2 by 2 block of B;
0 2ab; 14 2eb?

is simply gf, the eigenvalues of B; are 1 and the squares of the eigenvalues of g;. The analogue of the

condition [d1]? # [d2]*? of the previous paragraph is ‘the only eigenvalue shared by [B;] € GL3(IFy)

and [Bz] € GL3(F,) is 1’. We now replace G by a subgroup of index at most 2 by the following

prescription (notice that 1 is not an eigenvalue of [g;]?):

1. for an element z € Zy[\/e1,/22] denote by [z] its image in Fy. By construction we have
a; £biy/E = w ([a; £ b;\/&;]), where w is the Teichmiiller lift. If [ay & /21b1]* = [ag £ /Z2ba]?,
then (if necessary) we apply on the second factor SLa(Z,) the change of basis induced by the

1 0
matrix S = 0 to assume [a; + \/ab1]2 = lag + \/562]2. Notice that the matrix S does

not belong to SLa(Z), but nonetheless both the hypothesis and the conclusion of theorem 8.3.2
are left unchanged by this change of basis. We then set T := ker (G — G(¢) — G(¢)/2G(¥)),
which (since G(¢) is cyclic) has index 2 in G. The element (g1, g2)? € T projects to a generator
of T'(¢), and we have

(a1 + b1vE1)? = w ([a1 + biv/Er]?) = w ([as + bay/E2)?) = (a2 + bay/E2)?,
which — using the fact that a% - Eib% = detg; = 1 — implies 51()% = 526%. Notice that
T, being of index 2 in G, is normal, hence its Lie algebra L(T') is stable not just under
conjugation by elements of T', but also under conjugation by elements of GG; the same is true
for L(N(T)) = L(N(G)). In particular, both these algebra are stable under conjugation by
(g1, 92), that is, they are stable under C.

2. if (aq = \/abl)Q, (ag + \/5b2)2 are all distinct in F, we simply set "= G. In this case the

squares of the eigenvalues of g1 and of g, are distinct.

We now assume that L(T) contains *sly(Z¢) © (*sl5(Zy), and we shall show that T’ contains
Be(2k + 8 max{ni,na}, 2k + 8 max{ni, na}).

Suppose first that we are in subcase (2). Let pj(x) be the characteristic polynomial of Bj, and
consider p1(C). This will be a block-diagonal operator whose first block is the null matrix and
00 O

whose second block is of the form | 0 A | with A invertible modulo ¢ (this follows at once

0
from the fact that the reduction modulo ¢ of this block can be computed as p;([Bz]), and the only

eigenvalue that is common to [Bj] and [Bs] is 1). Note furthermore that by the Hamilton-Cayley
theorem the 2 x 2 identity can be expressed as a polynomial in A, so that ultimately the diagonal

matrix with diagonal entries (0,0,0,0,1,1) can be expressed a polynomial in C. Concretely, this is



Chapter 8. Subgroups of GLa(Z¢)" 209

the operator
T2 — €212
hi hy 2 0 0 ho 5
II: ’ = | e2y2 — w2 ’
B —h y2  —he 00 Z2ds 72 —hs
262

and we have just shown that L(T) and L(N(T)) (being stable under C) are in particular also stable

1 fn2
under II. As T5 contains By(ng), there exists an element f; of T} such that < f1, <0 . )) belongs

to T. Taking the £(¢?> — 1)-th power of this element shows that N(T) contains the element

w1y (1 (2 =1)emtt
fl 9 9
0 1
and therefore L(N(T')) contains

1 £(£2—1) 1 (€2 — 1)€n2+1 i 1 £(£2-1) 0 €n2+1
52_162<f1 ’(O 1 B 62—1@1<f1 ) 0 0 '

0 g2t
Applying IT and multiplying by 2e2 we see that L(N(T')) contains (O, ( a1 €2 ; >> ; by

et

lemma 1.4.8 we see that L(N(T)) also contains (0, (
0 —¢rtt

)), and since L(N(T)) is

stable under conjugation by all of T it is easy to see that L(N(T)) contains 0 @ ¢2"2+15l,(7Z,).
Swapping the roles of T7, T and repeating the same argument we find that L(/N (7)) contains all of
2itlgly (Zy) @ 022 51y (Zy), and applying theorem 8.3.3 we deduce that N(T')" (hence T”) contains
Be(4n1 + 2,4ns + 2).

Next consider subcase (1). Recall that the algebras L(T") and L(N(T)) are stable under C. We
keep the notation M;(e) from subcase (2), and we let 71(¢) (resp. ma(g), m3(e)) be the linear maps
slo(Zy) — Zy¢ - M;(e) giving the projection of an element on its M (e) (resp. Ma(e), M3(e)) compon-
ent. Using the fact that £1b% = £2b3, one easily checks that

1b2 (Id —2(1 4 26143)C + C?) ,

from which we see that L(T"), L(N(T)) are stable under m(g1) @71 (e2) and therefore, by difference,
also under 7 : (x1, z2, 3, 4, T5,26) — (0, x2, 23,0, 25, 26). We now set A to be the 6 x 6 matrix of
C' in the basis (Mi(e1),0), (Ma(e1),0), (Ms(e1),0), (0, Mi(e2)), (0, Ma(e2)), (0, M3(e2)); as we have
already seen in subcase (2), this is the block-diagonal operator with blocks given by 1, g7, 1, g5. We
claim that #(L(T)) and #(L(N(T))), seen as submodules of Z¢, are stable under left multiplication
by A~!. Indeed, since the Lie algebras of T' and of N(T) are stable under conjugation by (g1, go)

771(81) D 7r1(€2) =

the claim follows from the identity

T ((91,92) (t1,t2) (91, 92)) = A" -7 ((t1,t2))  V(ta, t2) € sl2(Ze). (8.1)

Furthermore, one easily checks that, for all ¢ € T, we have 7 (@2 ((gl, g2)? - t)) =A-7(O2(t)). Let
now wi, ..., wys € T be such that 7(L(T)) is generated by 7(Oa(wy)), ..., 7(O2(ws)). Since [(¢3, g3)]
generates T'(¢), for i = 1,...,4 there is an integer m; such that (g1, g2)™ w; belongs to N(T) (that
is, it is trivial modulo £): it follows that O ((¢7,93)™w;) is in L(N(T)), and since L(N(T)) is
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stable under both # and A~! we find
A7 (02 (97, 93) ™ ws)) = A7 - A™ - 7 (Oa(w;)) = 7 (Oa(w;)) € L(N(T)).

This easily implies L(N(T)) D 7 (L(N(T))) = #(L(T)) D #({*sly(Z;) ® (*sl5(Zy)). In particular,
L(N(T)) contains two elements (u1,0) and (0, us) with uy,us # 0 (mod £¥+1): by lemma 8.3.8 we
conclude that N(T)" contains By (2k + 8 max {n1,na}, 2k + 8 max {ni, na}).

8.3.5 Case (SLy(F,), SLy(F)))

We reduce this case to the question of whether or not, for any given ¢, the group G(#!) is the graph of

an isomorphism G1(¢') — G2(£"). The following lemma covers the case when this does not happen:

Lemma 8.3.13. Let m be a positive integer. Suppose G contains an element of the form (g1, g2),

where g1 is trivial modulo €™ but go is not. Then G’ contains By(4m,4m).

1 ¢ 10 b 1+¢ 0
Tr1 = s g s = .
o) e )M T Lo

As Gy is all of SLa(Zy) (cf. lemma 1.3.15) we can certainly find z2, y2, he € G2 such that x = (x1,y1),

Proof. Let

y = (y2,92) and h = (hi,h) belong to G. Recall that G(¢) is the graph of an isomorphism
G1(f) — G2(£): as x1,y1 and hy are all trivial modulo ¢, the same must be true of x, y2, ha.

Consider then the elements /", y*" " and h’" . They satisfy:

e their first coordinates generate B;(m)

e their second coordinates are trivial modulo £,

so that the group they generate contains an element of the form (g; L g5), where g is necessarily
trivial modulo ™. The group G, therefore, contains the product g = (97, g5)(g1,92) = (1, ghg2),
whose second coordinate is congruent to g (and therefore nontrivial) modulo ¢™. Notice that by
assumption G(¢) is the graph of an isomorphism G1(¢) — G2(¥), so since g; is trivial modulo ¢ the
same is true for go; it follows in particular that g € N(G) = ker(G — G(¢)). Thus L(N(G)) contains
©2(g), which is of the form (0, u) with u nontrivial modulo £™. Applying lemma 8.3.8 we deduce that
N(G) contains {1} xBy(2m) (notice that in the notation of lemma 8.3.8 we can take s = 0). To finish

the proof, consider the group H topologically generated by o/ = 2" ",/ = y©" " W = B It
is clear that m (H) 2 By(2m) and 7o (H) C By(2m), so the group generated by H and {1} x B,;(2m)
(which is still a subgroup of G) contains B,(2m) x By(2m), and we are done. O

We now show that for t = k£ + 1 the hypothesis of the previous lemma is satisfied. Indeed suppose

by contradiction that the projections
G(€k+1) N G1(€k+1), G(ZkJrl) N G2(€k+1)
have trivial kernel. Then Goursat’s lemma implies that G(£¥*!) is the graph of an isomorphism

G1(fF*1) — Go(#F*1), ie. an automorphism of SLg(Z/¢*+1Z). By [146, Theorem 2], and since

¢ > 5, all such automorphisms are inner, so we can find a matrix M € SLy(Z/¢*T'Z) such that

G(0%) = {(m,y) € SLo(Z/0"17)? | y = MxM*l} :
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Consequently, if we still denote by the same letter any lift of M to SLy(Z¢), we have
G C {(x,y) € SLo(Zy)? |y=MazM~" (mod Kk“)} .
Applying O and noticing that tr(MxzM 1) = tr(z) we deduce
L(G) C {(a:,y) € sly(Z0)? | y = MaM™"  (mod ekﬂ)} ,

but this contradicts the hypothesis that L(G) contains ¢¥sly(Z,) © ¢*sl5(Z). Thus at least one of
the two projections G(£¥+1) — G;(£**1) has nontrivial kernel, and the previous lemma shows that
G’ contains By(4(k + 1),4(k + 1)).

84 (=2,n=2
In this section we prove:

Theorem 8.4.1. Let G be a closed subgroup of GLa(Z2) x GLa(Z2) whose projection modulo 4 is
trivial. Denote by G1, Gy the two projections of G on the factors GLa(Zs), and let ny > 4,n9 > 4
be integers such that G; contains Ba(n;). Suppose furthermore that for every (gi,92) € G we have
det(g1) = det(g2) € 1+ 8Zy. If L(G) contains 2¥sly(Zs) @ 2Fsly(Zs) for a certain k > 2, then G

contains

By an argument similar to that used for the case of odd ¢ (and that will be carried out at the end

of this section) we can easily reduce the problem to one concerning subgroups of SLo(Zs2):

Theorem 8.4.2. Let G be a closed subgroup of SLo(Z2)? whose reduction modulo 4 is trivial.
Denote by G1,G2 the two projections of G on the factors SLa(Z2), and choose integers n; > 4 so
that G; contains Ba(n;). If L(G) contains (Fsl(Zy) @ (Fsl(Zy) for a certain integer k > 2, then G

contains all of

Ba(6(k + 12ng + 5ny + 13),6(k + 12ny + 5ng + 13)).

The proof of this theorem, although technically involved, relies on a very simple idea: we can find
an element of G of the form (Id, a), where a is not too close to the identity 2-adically, and this easily
implies the conclusion by theorem 1.5.2. In order to find a we proceed by contradiction: if there
is no such a, then G looks very much like the graph of a map G; — Go9, and this imposes severe
restrictions on its Lie algebra. Quantifying this idea of ‘being 2-adically very close to a graph’ gives
a contradiction with the fact that L(G) contains (*sl(Zs) @ (*sl(Zs).

We start to deploy the strategy just described by showing that it is in fact enough to find an element
(Id, a) as above:

Lemma 8.4.3. Suppose that G contains an element of the form (Id, a), where a is nontrivial modulo
2™ for a certain integer n > 3. Then G contains all of

BQ(GTL + 24n9 4+ ny + 24, 6n + 24ns + 24).
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Proof. Consider the smallest normal subgroup H of G that contains (Id,a). This is clearly of the
form {Id} x Ha, where Hp is the smallest normal subgroup of Gy containing a. The Lie algebra L
of Hs contains O1(a), so it is nontrivial modulo 2. By normality of Hs in G, L is stable under
conjugation by Ba(nz), so lemma 8.2.1 says that L contains 2"472+45(5(Zy). Applying theorem
1.5.2 we deduce that Hy contains Ba(6n + 24ng + 24). We finish the proof as we did for lemma
8.3.13. O

We now come to the hard part of the proof, namely showing that the non-existence of such an
a implies that G is very close to being a graph. For any fixed integer ¢ > 2, we distinguish two

possibilities:

1. There exist two elements (a,b) and (a,d’) of G with b # b (mod 2'), or equivalently, there
exists an element of G of the form (Id,b"”) with b” # Id (mod 2'). In this case we simply
apply lemma 8.4.3.

2. For every a € G there exists a (necessarily unique) b € Go(2') such that, for every element
of G of the form (a,c), we have ¢ = b (mod 2!). In this case we write b = ¢(a), so that ¢ is a
well-defined function G; — G2(2Y).

As it is clear, the key step in proving theorem 8.4.2 is to bound the values of ¢ for which this
second case can arise. Let then ¢ > 3 be an integer for which we are in case 2. Choose a function
1 : G1 — (9 such that

e (a) = p(a) (mod 2t) for every a € Gy;

e (a,¢(a)) belongs to G for every a € Gj.

As we shall see shortly, the function ¢ is actually a continuous group morphism. On the other
hand, the function 1 does not necessarily have any nice group-theoretic properties, but allows us
to work with well-defined elements of Zs instead of congruence classes. We will also see that any
such morphism ¢ is, in a suitable sense, ‘inner’, a fact that will lead to a contradiction for ¢ large

enough. From now on, therefore, we work under the following assumption:

Condition 8.4.4. The integer ¢ > 3 has the following property: for every a € (1 there exists a

(necessarily unique) b € Go(2') such that, for every element of G of the form (a,c), we have
c=b (mod 2").
Lemma 8.4.5. ¢ defines a group morphism G1 — Go(2!).

Proof. Let aj,as be any two elements of G;. Then (a1,v¥(a1))(az,¥(a2)) = (a1az2,¥(a1)y(az))
belongs to G, so our assumption implies that (a1)y(as) = ¢(ajas) (mod 2%). As v(ay) (resp.
¥(az)) is congruent to p(ai) (resp. ¢(az)) modulo 2! the claim follows. O

Definition 8.4.6. For any integer n > 2 we let

x(n):<0 1), y(n):<2n 1)7 h(n):< 0 1+12n)

To ease the notation, for ¢ = 1,2 we also let x; (resp. y;, h;) denote z(n;) (resp. y(ni), h(n;)).
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Recall that, by assumption, G contains Ba(n), hence it contains z1,y1, hy.
Lemma 8.4.7. ¢ is continuous.

Proof. Denote by m, T2 : SLa(Z2)? — SLa(Zs) the projections on the two factors. As z1,y1, hy
belong to G7 we can find a,b,c so that 2’ = (x1,a),y’ = (y1,b),h’ = (hy,¢) all belong to G.
Consider then (2/)2", (y/), (#)?" and the group H they generate (topologically). The projection
71(H) contains 22" = z(ny +t) and y2 = y(ny +1t), hence it contains By(2(n; +t)) and is therefore
open in SLy(Zs). On the other hand, my(H) is generated by a2',b?", ¢, so it is trivial modulo 2.

It follows that for any g3 € H we have p(g1) = 1, so ker ¢ is open and ¢ is continuous. O

Definition 8.4.8. Let g be an element of SLa(Z2) (resp. of a finite quotient SLo(Z/2™Z)) that is
trivial modulo 2, and let 5 be any 2-adic integer. Write 8 = ano an2™, where each a,, is either 0
or 1. We set ¢° = ano g®?" | which is well-defined since for every finite p only a finite number of

terms appearing in the product are nontrivial modulo 2P.
Lemma 8.4.9. Let (8 be any 2-adic integer and g be an element of G1. We have p(g%) = ¢(g)P.
Proof. Write 8 = 3 <;an2" (with a, € {0,1}), and set B(s) = >, ., an2", so that ((s) is a

rational integer for all s. In view of the continuity of ¢, the lemma follows from

v <9ﬁ> =y < lim gﬁ(s)) = lim ¢ (g’@‘s)) = lim ¢ (9)"" = ¢(9)".

§—00 §—00

n<s

O]

Let, for the sake of simplicity, a = (1+2")2. Note that hlxlhl_l = z{', so — by the previous lemma
—we have ¢(h1)p(x1)p(h1) ™t = ¢(21)%, or equivalently

Y(h)(e)d(h) ™! = d(e1)*  (mod 2°).

Taking the logarithm of both sides we deduce

(h)log(¥(w1))d(h1) ™" = alogt(z1)  (mod 2°). (8.2)
Lemma 8.4.10. Suppose that log(z1) vanishes modulo 2"1"2. Then G contains

B2(30n1 + 30,30n1 + ng + 30).
Proof. Exponentiating the hypothesis gives ¢ (z1) = Id (mod 2™*"2). There exist a,b,c € G
such that 2’ = (a,72),y = (b,y2), ' = (¢, ha) belong to G. Consider (2/)2"", (y/)2"", (h')?"": these
three elements generate a group H such that 71 (H) is trivial modulo 2™*! (recall that a,b, c are
already trivial modulo 4) and my(H) contains Ba(n; +ns). It follows that H (hence G) contains an
element of the form (w, 1) (z1)~!), where w is trivial modulo 2”171, Therefore G contains the element
(21,9 (z1))(w, ¥(z1)") = (w1w, 1), where 1w = x1 (mod 2™ T1) is nontrivial modulo 21!, The
claim follows from lemma 8.4.3. O
Lemma 8.4.11. With the notation of theorem 8.4.2, condition 8.4.4 and definition 8.4.8, let
U:t—3n1—n2—4
and suppose that logi(x1) does not vanish modulo 2"1%"2.  Suppose furthermore that U > 3n;.
Then 1(hy) is diagonalizable (over Qs), with eigenvalues A1, Ao that satisfy
AM=1+2" (mod2Y), Xo=(1+2")"" (mod2Y).
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Proof. Denote Cy,) the linear endomorphism of slz(Z2) given by conjugation by t(h1) and p(x)
its characteristic polynomial. Note that tr(log(z1)) = logdet )(x1) = 0, so log1(x1) is in sla(Z2).
Finally, let A1, A2 be the eigenvalues of 1(hy).

An easy computation shows that p(z) = (z — 1) (z — Af) (z — A3). With a little abuse of notation,
in the course of the proof we shall use congruences (modulo powers of 2) that involve A, Ay: a
priori, these might not be elements of Zs, so the precise meaning of these congruences is that we
work with the ideals generated by the relevant powers of 2 in the ring of integers of F', where F' is

a suitable quadratic extension of Qo that contains A1, Ao.
Since the logarithm map commutes with conjugation by ¥ (hq), from equation (8.2) we get
b(h1) (log (1)) Y(ha) ™" = log (Y(ha)¥(z1)¥(h1) ")
= log (¢(z1)* + 0(2"))
= alogy(a1) + O(2"),

and therefore log1(x1) is an approximate eigenvector for Cy(hy)- We deduce from lemma 8.2.2 and
the assumption log+(h1) Z 0 (mod 2™ 7"2) that p(a) = 0 (mod 2!7"17"2), We have A\ = \p = 1
(mod 4) by construction, so va(1 + 2™ + \;) =1 for i = 1,2. Hence v2(p(«)), which is given by

V2 (Oé — 1) + U2(1 + 2™ 4 )\1) + ’02(1 + 2™ 4 )\2) + U2(1 + 2™ )\1) + UQ(l + 2™ _ )\2),
does not exceed
(n1+1)4+ 141+ 2maxwva(1+ 2" —X\),
KA

so that

maxva(1 + 2™ — \;) > va(p(ar)) —m1 — 3 > t—2n; —ng — 3.
i 2 2

t— 2’/L1 —ng — 3
2

we have \; = 14+2™ (mod 2V) and Ay = A\{! = 1-2" 422" (mod 22M+1). Tt follows in particular

that va(1 4 2™ — A2) = n; + 1, so that we can improve our previous estimate to

va(1+2™ — X)) > va(p(a)) = (n1+1)—1—1—=(n1+1) >t —3n; —ng — 4.

Let U' = { J . For U’ > 2n, (a condition that is implied by the hypothesis U > 3n)

If we let U =t — 3n; — ng — 4, this amounts to saying that A\; = A;l =1+2" (mod 2Y). Note
that the trace of 1 (hi) is given by

A+ A =142 1 —2™M 4221 4 O(2°™),
at least for U > 3ny, so
((n))? — Adet((n)) = (2+ 27 +0(2M))? — 4 = 220324 O(2m )
is a square in Zgy (since ny > 4). It follows that the eigenvalues of ¥ (hq) lie in Zo, because

tr(v (k1)) + 4/ (tr(ha))* - 4
2
is in Q2 (as the expression under square root is a square) and is 2-integral (as p(z) is monic with

A2 =

2-integral coefficients). It follows that ¢(hy) is diagonalizable, and that its eigenvalues satisfy the

given congruences. O
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Corollary 8.4.12. Under the hypotheses of the previous lemma, there exists a 2-integral matrix
N € GL2(Q2) that satisfies:

1. N=%(h1)N is diagonal (with diagonal entries A1, Az as above);
2. vy det(N) <n;+1.

Proof. Let wi,wy be two eigenvectors for 1(h1), associated resp. with A1, A2, and chosen so as to
be 2-integral and to have at least one coordinate that is a 2-adic unit. Let N be the matrix having
wi,wg as columns: it is clear that N satisfies (1). Now if w;,wy are linearly independent over
Fy we are done, for then vy(det N) = 0. Otherwise, up to rescaling wq,wy and swapping the two
)T

coordinates, we can assume they are of the form wy = (1,w})?, wy = (1,w))?. The determinant of

N is simply w) — w}, so that we have
0
(w’ —w’) =0 (mod det(N)) = wp=w; (mod det(N)).
2 1
Applying 1(h;) to both sides of this last congruence we find
Aowy = Aqw;  (mod det(N)),

and comparing the first coordinates of these vectors we deduce A\; = A9 (mod det(N)). Since
A1 =142 (mod 22™), Ay =1 —2™ (mod 22"1), we have in particular 217! = 0 (mod det(N)),

whence the corollary. O

Assuming the hypotheses of lemma 8.4.11, fix a matrix N as in the previous corollary, and change
basis on the second factor SLa(Za) C SLa(Q2) using N. As it is clear, in this basis there is no

guarantee that the elements of Gy are 2-integral. We restrict our attention to those that are:

Lemma 8.4.13. Asume that log(z1) does not vanish modulo 2" 7"2 and that U > 3ny, so that we
can find an N as above. Let g1 be an element of Ba(2n1 +1) C G1. Then N~'4(g1)N is 2-integral

and trivial modulo 4.

Proof. As Ba(2n1+1) is generated by xz(2n;+1),y(2n1+1), h(2n1+1) it is enough to show the lemma
for these three elements. Let us only do the first, the proof being virtually identical for the other
two. We have (2n1 + 1) = z(n1)2™"", so ¥(z(2n1 + 1)) = ¥(z(n1))2™"" (mod 2¢). As h(z(ny))
is trivial modulo 4, the matrix ¢ (z(n1))2"""" is trivial modulo 2743, Writing ¢(x(n1))2" " as

Id +2™13B for a certain 2-integral matrix B we have

2n1+3
Nt 21 —1)N =N (1d+2"1t3B) N = Id +N* B|N
Y(x(2n; — 1)) (Id + ) d+ det(N) ;

where N* = det(N)N~! is the adjugate matrix of N. This last expression is manifestly 2-integral
and congruent modulo 4 to the identity. O
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A
Let N* be the adjugate matrix of N and D = ! > = N~ (h1)N. By the previous lemma,

2
the following identity only involves 2-integral matrices:

(N2 (h)N) (N (@@ + 1))N) (N 0(h) " N) = N (k)b (@(2ny + 1)) ()~ N
= N*p(h1)e(x(2n1 + 1))o(h1)'N  (mod 2)
= N*p(z(2n1 +1)*) N (mod 2)
= N*p(z(2n1 +1))*N (mod 2).
Dividing through by det(N) we deduce
D (N7'%(z(2n1 + 1))N) D™t = (N "p(2(2m1 +1))N)®  (mod 20771, (8.3)

Note that since t —n; — 1 > U we can in particular rewrite this last equation modulo 2V instead, in
14 2™

(14 2m)~
v ((1+27) = (1-2m + 0 (22m))°)

oy (142 (10 ()
(247 4 0(2)

=1+ 2,

which case we also know that D = ( ) (mod 2Y). Furthermore, we see that

vo(a — )\%)

and similarly ve(a — 1) =ng + 1.
Lemma 8.4.14. Let A, =log (N~ (z(2n1 4+ 1))N). Write

01 00 1 0
Ap = pla 00 + Hy 10 + bn 0 —1

for certain scalars piz, jiy, pin,. We have

pr =0 (mod 2V"™7N) 4, =0 (mod 2V™72),

Proof. Reducing equation (8.3) modulo 2V and taking logarithms we get

-1
A0 A0
a(A,)=DA,D ="} A, [ (mod 2Y),
0 A 0 A

and the right hand side can be computed explicitly in terms of p, pn, pty. We arrive at

01 0 0 1 0
aAy = N, + )2 + mod 2Y),
1 <0 0) 2Hy (1 0> 3 P ( )

aply = N, (mod 2Y)

i.e.

apy =Ny (mod 2Y)
apn = pp (mod 2Y).

Rewriting the last formula as (o — 1)y, = 0 (mod 2Y) shows that pp = 0 (mod 2V~"171)  while

the second congruence guarantees va(fiy) + v2(a — A3) > U, whence va(py) > U —ny — 2. O
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A completely analogous argument yields similar congruences for log (N ¢ (y(2n1 + 1))N). Now a

. . . . 01
simple series computation, using the fact that 00 squares to zero, shows that

N7'9(z(2n + 1))N = explog (N ' (z(2n + 1))N) = exp(4,) = Id+A4, + O(2V ™),
and since we have similar expressions for ¢(y(2n + 1)) we arrive at:
Proposition 8.4.15. Assume that
o I':=U—2n; =t—>5n1 —no — 4 is larger than 3ny;
e G contains no element of the form (Id,b), where b # Id (mod 2!);
e log(x1) does not vanish modulo 21172,

There exists a 2-integral matriz N € GLa(Q2), whose determinant satisfies va det(N) < ni+1, and
scalars c,d € 47, such that

N=Y(h)N = (Al \ ) =hy (mod 27),
2

10

Nlp(x(2n1 + )N = ((1) ;) (mod 27),  N~'4(y(2ns + 1))N = <d 1) (mod 27),

Remark 8.4.16. As we shall see shortly, the product cd is 2-adically very close to 24172 as one

would expect. However, it is not true in general that c, d, taken separately, are 2-adically very close
to 22m+tl

The parameters c¢,d are up to now completely free, and they can’t be controlled in any way by
simply using the relations hxh~! = 2%, hyh™' = y~ (which are just the integrated forms of the
usual slp-Lie algebra relations [h,z] = 2z, [h,y] = —2y). In order to say something meaningful
about them, we shall need to use an integrated form of the Lie algebra relation [z, y] = h, that is to

1

say we want to have some degree of control on the commutator zyz~'y~!. This is made possible

by the following simple lemma, whose proof is immediate by induction:

Lemma 8.4.17. For every a € Zo of valuation at least 1 set
1 a 10

Tq = s Ya = .
"o 1) a1

e For any pair (a,b) of elements of Za of valuation at least 1, the finite products

-1 n )
I, = H xgab)_z . (xaybl';lyb_l) . Hyl:(ab)
] =1

=N

Then

1
— 0
converge, as n — oo, to | 1= )
0 1—ab
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e Let (a,b) be as above and (¢,d) be any other pair of elements of 2-adic valuation at least 1.
The finite products

H 27" (2 eyaxy Yy Y Hy_(ab

1=—n

* *
converge to a limit for n — oo, and this limit is of the form ( . d> .
* 1—¢

Apply this lemma to a = 22"+, b = 22m+1: the infinite product

H x(ab) (waypry Lyt .ﬁyb—(ab)i
=1

i=—00
! 0
converges to [ 1 — 24n1+2 = h?, where 3 is defined by (1 +2™)7F = 1 — 24m+2,
0 1— 24n1+2

Applying ¢ (which, being continuous, commutes with infinite products) we deduce that

—1 ) 00 ,
e(m)’ = ] o) (plaa)polm)elra) " olmw) ") - T olu) "
=1

Set, for the sake of notational simplicity, B, = N~ (z(2n; + 1))N, B, = N4 (y(2ny + 1))N.
Multiplying by N*, N and dividing by det(N) (as we did for example in deriving equation (8.3))

we get

(N ()0 hl H B B B B lB . HBy—(ab)i (mOd 2T—n1—1).

Letting ¢, d be elements of Zy that satisfy
1
B, = N~ %(z(2n; + 1))N = (0 ;’) (mod 27)
and
_1 (1 0 T
=N ""Y(y(2n1 +1))N = i1 (mod 2%)

and applying the second part of the previous lemma to z.,yqs we obtain
-1

(N_lgo(hl)N)ﬁ = H :U&ab)fi . (xcyd:cc_lyd Hy—(ab)z ( * ) (mod 2T—n1—1)7

- * 1—cd
1=—00

so that, comparing the bottom-right coefficients, we deduce 1 —24"1*+2 = 1 —¢d (mod 2711, In

particular, if 7' > 5n; + 4, we must have va(c) + v2(d) = 4n; + 2, and by symmetry we can assume

that vo(c) < 2nq + 1. We deduce that d = w (mod 2T—"1~1-v2(¢)) "and therefore
24n1+2
d= (mod 27 —3m=2),
c
. 1 0 : : o L
Consider M = 0 2m (which, by our assumption on ¢, is 2-integral). By construction it
c

satisfies Mx(2n; + 1) = x.M, so that
Mz(2n; +1) = 2.M = N Y9(z(2n1 + 1))NM  (mod 27),
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and furthermore (since N~14(h1)N is diagonal and congruent to k1 modulo 27) we also have
Mhy =hiM = N"'(h))NM  (mod 27).

Finally, using what we just proved on d we find (for T' > 5n; + 4)

1 0 1 0
My(2ny +1) = < ) = (d 22"1+1/c> = yaM

24n1+2/c 22n1+1/c
= N"Y(y(@2n +1))NM (mod 2773m72),

22n1+1 0
0 /e ) we get equations of the form

det M -y(2ny +1) = M* N1 (y(2n; +1))NM (mod 273"1-2) and similar ones for z(2n + 1), hy.
Given that ve(det M) < 2n; + 1, dividing by det M we find
(NM) " ep(y(2n +1))NM = y(2n +1) (mod 27 -5m173),

Multiplying any of these equations on the left by M* =

along with similar relations for z(2n; + 1), k1. As z(2n; + 1),y(2n1 + 1), h generate Ba(2n; + 1)
we have thus established

Proposition 8.4.18. For every g € Ba(2n1+ 1) we have (NM)™14(g)(NM) = g (mod 2T —-5m1-3),

We now give a version of the previous proposition that applies to all elements of G;. Take any
element g € Gy. Clearly ¢2™"'"" belongs to Ba2(2n; + 1), so

(VM) h ()7 (VM) = (V) T (¢2) (VM) = g

22t (mod 2T —5m1=3),

Notice now that g, (g) are trivial modulo 4 by assumption, so we are allowed to take logarithms,

and we obtain
221 (N M) log (g (VM) = 221 L(logg)  (mod 2751-9),
whence
(NM)'logd(g)(NM) =logg (mod 27772,
Since log g is trivial modulo 4, we can exponentiate both sides of the congruence to find
(NM)"'(g)(NM) =g (mod 2777 72),

a formula which is now valid for every g € G;. Taking the trace of this last congruence also gives
try(g) = tr(g) (mod 277"172), Including again all the assumptions we made along the way, we
have thus established:

Proposition 8.4.19. Assume:
1. G contains no element of the form (I1d,b), where b # Id (mod 2¢);
2. log(x1) does not vanish modulo 2172
3. t—5n1—ng—4>Tny+2 (sothat T —Tny —2>0).

For every g € G1 we have

(NM)™'01((9))(NM) = ©1(g)  (mod 27772,
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Notice now that we can replace NM by ANM for any A € Zy and the previous proposition still
holds; in particular, we can assume that NM is 2-integral, with at least one coefficient which is a

2-adic unit.

Corollary 8.4.20. Under the same assumptions, the Lie algebra L(G) is contained in
{(NM)z,2(NM)) | z € sla(Zy) }

when regarded modulo 2121 —n2—8

The result we were aiming for is now well within reach:

Proof. (of theorem 8.4.2) Suppose that L(G) contains 2Fsly(Zs) @ 2¥sl5(Zy). Since one of the
coefficients of NM is a 2-adic unit, this contradicts the conclusion of the previous corollary if
t—12n1 —ngo—8 > k, so at least one of the assumptions cannot hold if we take t = k+12n1 +no+9.
Now for this choice of t the inequality given in condition 3 is certainly satisfied, so either 1 or 2
must fail. If 2 fails, then lemma 8.4.10 implies that G contains B2(30(n; + 1),30(n; + 1) +ns2). On

the other hand, if condition 1 is not met, then lemma 8.4.3 implies that G contains all of
Ba(6(k + 12n1 + 5ng + 13) + nq, 6(k + 12nq + 5ng + 13)) C B2(30(nq + 1),30(ng + 1) + na).

Finally, note that the hypotheses of the theorem are symmetric in ni,n9, so we can repeat the

whole argument switching the roles of G1, G2, which shows that G also contains
Ba(6(k + 12n2 + 5nq + 13),6(k 4+ 12n9 + 5nq + 13) + ng)

and concludes the proof of the theorem. O

As promised, we can finally deduce theorem 8.4.1:

Proof. Let G*' be the group generated by G and by ZJ - (Id,Id), denote by U the intersection
G N SLy(Z2)?, and let Uy, Uz be the two projections of U on the factors SLa(Zs). Note that
U’ = G': it suffices to show that any element of G, when multiplied by a suitable scalar, lies in U,
and this follows from the fact that the determinant of any element of G is a square in ZJ.

Also remark that if G contains Ba(n1), then the same is true for Uj: indeed for any g1 € Ba(ni)
we know that there exists a certain hy € G2 such that (g1,h2) € G. As det(h2) = det(g1) = 1
by assumption, this shows that (g1, h2) belongs to U as well, and therefore g; belongs to Uj.
The same argument obviously also works for Us. Applying theorem 8.4.2 to U we deduce that
U contains B2 (6(k + 12ny 4+ 5nq + 13),6(k + 12ny + 5ng + 13)), and therefore G’ = U’ contains
B2 (12(k + 12ng + 5ny + 13) + 1, 12(k + 12n; 4 5ng + 13) + 1) as claimed. O

8.5 Conclusion of the proof

We are now in a position to show that cases n = 1,2 of theorem 8.1.3 (in the form given in
sections 8.3 and 8.4) imply the general one. Before doing so, let us remark that the condition
[G : H] < 120 appearing in the statement of theorem 1.4.2 can be improved to [G : H] | 24: this

follows immediately from the same proof and the simple remark that if G(¢) is exceptional, then
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G contains a subgroup H, of index dividing 24, such that H (/) is cyclic of order dividing 6 or 10.
With this small improvement, case n = 1 of theorem 8.1.3 is (amply) covered by theorems 1.4.1
and 1.5.1.

Let us start with the case ¢ # 2. If £ = 3 we take H = ker (G — SLa(F,)™), which is a pro-¢ group
and for which the claim follows directly from Pink’s theorem (theorem 8.3.3).

By our previous remarks we can then assume ¢ > 5 n > 2. Denote by 7; : SLo(Zy)" — SLa(Zy)
the n canonical projections and let m;, ;, = m;, X m;, be the projection on the two factors numbered
i1 and io. For m between 1 and n, construct inductively groups H,, as follows: apply theorem
1.4.1 to m(G) to find a subgroup K; of m1(G) of index dividing 24 and having property (%), and
set Hy = n; '(K1) (this is a subgroup of G of index dividing 24). Assuming we have constructed
K,, and H,,, apply theorem 1.4.1 to m,+1(Hy) to find a subgroup K,,11 of index dividing 24 and
having property (%), and set H,,+1 = 7T;L£_1(Km+1). It is clear by construction that H,, is a closed
subgroup of G of index dividing 24™. For 1 < i < n let n; be a positive integer such that By(n;) is
contained in m;(H,).

Now let (i1, j1), (12, J2), - - - s (in(n—1)/25 Jn(n—1)/2) be the list of all n(n —1)/2 pairs {7, j} with i < j,
and construct inductively groups Hj, j, (for k = 1,...,n(n — 1)/2) as follows. Applying theorem
8.3.2 to m;, j, (Hy) we see that at least one of the following holds:

1. By(4n;, + 16n;,,8n; ) is contained in m;, ;, (Hp);

2. there exists a closed subgroup Kj, j, of m;, j, (Hy) satisfying [m, j, (Hy) : Ky 5] | 48% and
having property ().

We set H;, ;, to be the inverse image of K;, j in H, in case (2), and to be all of H, in case

(1). We now repeat the procedure: if H; has been constructed, we apply theorem 8.3.2 to

k:Jk

Tiji1,jner (Hiy,j,) and construct H; according to the above prescription, that is to say

k4+1:dk+1

L. either By(4n;, ., + 16n;,,,,8n;, ) is contained in 7, j . (H;, j,), in which case we set
H;

k1odk+1 — Hig,dko

2. or there exists a closed subgroup Kj,, j,., of m, ., .., (Hs j.), of index dividing 482 and
having property (x%), in which case we set H; of

K;

wi1.ri1 b0 be the inverse image in Hy, j,
k+1Jk+1"

We finally set H = H;
24n48n(n=1),

Denote by 7; : sla(Zg)" — sla(Zg) (resp. 7;;) the projection on the i-th (resp. (4,7)-th) factor.

Suppose that L(H) contains ¢¥sly(Z,) @ ... @ (*sly(Z,). We have
L(K;) 2 L(mi(H)) 2 m(L(H)) 2 *sly(Zy),

n(n—1)/2:dn(n-1)/2} by construction, it is a closed subgroup of GG of index dividing

so the properties of K; imply that it contains B,(4k). Note now that [H; : H]| is only divisible
by factors 2 and 3, hence the same is true for [m;(H;) : mi(H)]. As By(4k) is a pro-£ group, ¢ is
neither 2 nor 3, and By(4k) C m;(H;), it follows that B,(4k) C m;(H). In particular, all the integers
n; introduced above can be taken to be 4k. Consider now a pair of indices (¢,7). As before we
have L(K; ;) D L(m;(H)) 2 7 ;(L(H)) 2 €*s15(Zs) ® €*s13(Zy), so two cases arise (depending on

whether we were in case (1) or (2) above):
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1. either By(4n; 4+ 16n;,8n;) D Be(80k, 32k) is contained in ; j(G),
2. or K; ; contains By(p, p) with p = 2k + max {2k + 4, 8n;, 8n;} < 34k.

Either way, we see that m; j(G) contains B,(80k,80k). Again the only prime factors appearing in

[7i;(G) : m; ;(H)] are 2 and 3, so the fact that m; j(G) contains B(80k, 80k) implies that m; ;j(H)

contains B,(80k,80k). Since this holds for every pair of indices 1 < i < j < n, lemma 8.2.4 then
n

implies that H contains H B, (80(n — 1)k), as claimed.

i=1
The case ¢ = 2 is even simpler. Define H to be the kernel of the reduction G — SLy(Z/47Z)".

Suppose that L(H) contains 2¥sly(Zs) @ ... ® 2¥sly(Zs), and let H; = mi(H), H; ; = m; ;(H). Since
L(mi(H)) D 2¥sly(Zs), theorem 1.5.2 implies that H; contains Bo(6k), and the integers n; can
all be taken to be 6k > 4. Similarly, L(H; ;) contains 28515 (Z9) @ 2¥sly(Zs), hence by theorem
8.4.2 the group H; ; contains By (618k + 78,618k + 78): lemma 8.2.4 then implies that H contains

HBQ ((n —1)(618k + 79)). Finally, as H is trivial modulo 4, it is clear that £ > 3, so we have

i=1
618k + 79 < 645k and we are done. O
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