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“Many things went on at Unseen University and, regrettably, teaching had to be one of them. The

faculty had long ago confronted this fact and had perfected various devices for avoiding it. But this

was perfectly all right because, to be fair, so had the students.”
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partagé avec moi ses idées et ses connaissances et pour m’avoir consacré beaucoup de son temps
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Matte, Ste, Fra et Adri, ces années auraient été bien différentes et sans doute bien moins colorées

et joyeuses.

Je suis énormément reconnaissant envers mes parents Marina et Sabino (mamma e papà !) pour

tout ce qu’ils ont fait pour moi et pour avoir soutenu mes choix, même quand ils auraient sans

doute préféré que je choisisse un autre chemin. Per ringraziare Nonna Jole tornerò invece alla mia

lingua madre (prima di sentirmi dire che “c’erano parole strane”) : il suo contributo a questa tesi

non va affatto trascurato, dal momento che è stata lei, tanti anni fa, ad insegnarmi a contare i punti,

giocando a carte insieme. Per questo, e per tutto quello che ha fatto per me, le dico GRAZIE.

Et enfin, ma mâıtrise du français n’est sans doute pas suffisante pour exprimer mon immense

gratitude à Alessandra, qui a toujours été là pour moi. Tout simplement merci, merci et encore

mille fois merci.
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Soient K un corps de nombres et A/K une variété abélienne dont nous notons g la dimension.

Pour tout nombre premier ` et tout entier positif n, notons A[`n] ⊆ A(K) le groupe des points de

torsion de A dont l’ordre divise `n. Comme A est définie sur K, l’action naturelle du groupe de

Galois absolu Gal(K/K) sur A(K) stabilise A[`n] en tant que ensemble, ce qui nous fournit une

représentation continue

ρ`n : Gal(K/K)→ Aut (A[`n]) .

C’est à ces représentations galoisiennes, et à leur variantes `-adiques que nous rappellerons dans

un instant, que l’on s’intéresse dans toute la suite. Remarquons que le corps K(A[`n]) obtenu en

adjoignant à K les coordonnées des points de A[`n] est une extension galoisienne de K : il est alors

clair sur la définition que l’image G`n de ρ`n s’identifie au groupe de Galois de K(A[`n]) sur K. De

plus, il est bien connu que – K étant de caractéristique 0 – le groupe A[`n] est un Z/`nZ-module

libre de rang 2g.

Pour ` fixé, les groupes finis A[`n] forment un système projectif pour lequel les morphismes de

transition sont donnés par la multiplication par ` : la limite inverse de ce système est appelée

le module de Tate `-adique de A, souvent noté T`A. Comme chaque cran fini A[`n] est libre de

rang 2g sur Z/`nZ, on voit aisément que T`A est un Z`-module libre de rang 2g, et nous serons

très souvent amenés à fixer une Z`-base de T`A, ce qui nous permettra d’écrire certaines égalités

“en coordonnées”. Remarquons dès à présent que la construction du module de Tate s’applique

également à tout groupe `-divisible, et on peut notamment considérer le module de Tate du groupe

multiplicatif Gm, un objet qui sera utile par la suite.

Il n’est pas difficile de vérifier que les représentations (ρ`n), quand n varie, forment à leur tour un

système projectif, dont la limite ρ`∞ est donc une application continue

ρ`∞ : Gal(K/K)→ Aut(T`A)

qui est traditionnellement appelée la représentation `-adique associée à A et dont nous désignons

l’image par G`∞ .

Les représentations ρ`∞ ainsi construites jouent un rôle très important dans la théorie des nombres

contemporaine : il suffira par exemple de rappeler que la première preuve de la conjecture de

Mordell, donnée par Faltings dans les années ’80 [26], repose très fortement sur leur étude, et

qu’elles interviennent dans la preuve du dernier théorème de Fermat [142] [132].

Rappelons dès maintenant une des propriétés fondamentales des représentations ρ`∞ , dont on fera

un usage extensif par la suite : si on désigne par A∨ la duale de A, il existe sur T`(A)× T`(A∨) une

xi
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forme bilinéaire non-dégénérée 〈·, ·〉, dite accouplement de Weil, prenant ses valeurs dans le groupe

lim←−n µ`n(K) = T`Gm et Galois-équivariante, au sens où on a l’égalité

〈ρ`∞(g)v, ρ`∞(g)w〉 = χ`(g) · 〈v, w〉

pour tout v ∈ T`(A), w ∈ T`(A∨) et tout g ∈ Gal(K/K).

Quand la variétéA est présentée comme une jacobienne (notamment, si elle est une courbe elliptique)

on dispose de plus d’une polarisation principale canonique, à savoir un K-isomorphisme f entre A et

A∨, et l’accouplement de Weil peut alors se réinterpréter comme une forme non-dégénérée, bilinéaire,

antisymétrique et Galois-équivariante sur T`A que notons encore 〈·, ·〉 :

T`(A)× T`(A)
id×f−−−→ T`A× T`A∨

〈·,·〉−−→ T`Gm. (1)

L’existence d’une telle forme antisymétrique fait que l’image de ρ`∞ est contenue dans le groupe

des similitudes symplectiques de la forme 〈·, ·〉, groupe que nous notons GSp (T`A, 〈·, ·〉), ou même

simplement GSp (T`A), voire encore GSp2g(Z`) si le choix d’une Z`-base de T`A a été fait.

Dans le cas général, le choix d’une K-polarisation quelconque f : A → A∨ induit une forme

T`(A) × T`(A) → T`Gm comme en (1) : pour tout premier ` ne divisant pas le degré de f on a

T`A ∼= T`A
∨, d’où encore une inclusion G`∞ ⊆ GSp2g(Z`), alors que pour les premiers divisant

deg f on a seulement G`∞ ⊆ GSp2g(Q`).

Finalement, sur toutes ces questions on peut aussi prendre un point de vue adélique, ce qui nous

amène très naturellement à introduire la représentation adélique associée à A, à savoir le produit

des ρ`∞ pour tous les premiers ` :

ρ∞ : Gal(K/K)
∏
ρ`∞−−−−→

∏
`

Aut(T`A). (2)

Pour mieux préciser le cadre dans lequel se situe ce travail il est aussi indispensable de rappeler la

conjecture de Mumford-Tate (cf. la conjecture 1 ci-après). Pour comprendre comment cette conjec-

ture apparâıt de manière naturelle à partir de la philosophie motivique de Grothendieck, remarquons

d’abord que, pour chaque premier `, le module de Tate T`A peut s’identifier au dual de H1
ét

(
AK ,Z`

)
,

ce qui nous permet d’interpréter les représentations ρ`∞ comme étant données par l’action natu-

relle de Gal(K/K) sur le H1 étale de A. Or la philosophie motivique prédit que la cohomologie

étale n’est que une incarnation d’une cohomologie universelle, qui admet aussi une réalisation (de

Betti) comme cohomologie habituelle de l’espace topologique A(C). On va donc examiner quelques

propriétés de cette cohomologie, qui dans le cas d’une variété abélienne possède une description par-

ticulièrement simple : comme A(C) est topologiquement un tore, la formule de Künneth implique

que l’algèbre de cohomologie H• (A(C),Z) est canoniquement isomorphe à l’algèbre extérieure sur

H1(A(C),Z) ∼= H1(A(C),Z)∨, et d’après la théorie classique (qui remonte essentiellement à Rie-

mann) le sous-réseau H1(A(C),Z) de l’espace vectoriel complexe H1(A(C),C) décrit complètement

la variété abélienne complexe A(C). D’autre part, comme toute variété abélienne est en particulier

projective, et donc Kählerienne, la théorie de Hodge nous donne des renseignements plus précis sur

cette cohomologie : on dispose en effet d’une décomposition canonique

Hn (A(C),C) ∼=
⊕
p+q=n

Hp,q,
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où Hp,q est donné par Hp,q = Hp (A(C),Ωq) et respecte Hp,q = Hq,p. Par définition, cela signifie

que le Q-espace vectoriel Hn(A(C),Q) est une structure de Hodge (pure de poids n). D’après la

description des structures de Hodge donnée par Deligne [23], on sait que une structure de Hodge

sur le Q-espace vectoriel V est équivalent à la donnée d’un morphisme de groupes algébriques

h : S→ GLVR ,

où S := ResC/R (Gm,C) est le “tore de Deligne”, et VR désigne le R-espace vectoriel V ⊗Q R. La

Q-fermeture de Zariski de l’image de h est alors appelée le groupe de Mumford-Tate de la structure

de Hodge V . Dans le cas des variétés abéliennes, la formule de Künneth susmentionnée fait que la

décomposition de Hodge de Hn(A(C),C) s’obtient à partir de celle de H1(A(C),C), et il est donc

spécialement intéressant d’étudier cette dernière structure de Hodge (de poids 1).

Soit donc A une variété abélienne définie sur corps K, de caractéristique 0 et finiment engendré sur

son corps premier. Pour tout plongement σ de K dans C on obtient une variété abélienne complexe

Aσ := A ×σ C, et on définit le groupe de Mumford-Tate de A (noté MT(A)) comme le groupe de

Mumford-Tate de la structure de Hodge H1 (Aσ(C),Q). Grâce au fait que tous les cycles de Hodge

sont absolument de Hodge ([23, Theorem 2.11]), cette définition ne dépend pas de σ, de sorte que si

A est définie sur un corps K de type fini sur Q (notamment un corps de nombres) on peut parler du

groupe de Mumford-Tate de A sans spécifier un plongement de K dans C. Remarquons aussi que

MT(A) est un objet purement géométrique, et en particulier invariant par extension du corps de

base K ; de plus, il ne dépend que de la C-classe d’isogénie de A, car en effet la même propriété est

vraie pour H1(A(C),Q). Finalement, il n’est pas difficile de voir que le groupe MT(A) est contenu

dans GSp2g,Q : en effet, toute polarisation ϕ : A→ A∨ induit une forme bilinéaire alternée

H1(A(C),Q)×H1(A(C),Q)
id×ϕ−−−→ H1(A(C),Q)×H1(A∨(C),Q)→ Q

qui est une polarisation au sens des structures de Hodge, et il est bien connu que cela entrâıne l’inclu-

sion MT(A) ⊆ GSp2g,Q. Par ailleurs, remarquons que la dualité de Poincaré nous permet d’identifier

H1(A(C),Q) avec H1(A(C),Q)∨, ce qui induit une Q-structure de Hodge sur H1(A(C),Q) dont le

groupe de Mumford-Tate cöıncide avec celui de H1(A(C),Q).

Revenons maintenant à nos représentations galoisiennes ; on suppose à nouveau que A est définie

sur un corps de nombres K. D’après le théorème de comparaison en cohomologie étale, on dispose

d’un isomorphisme

H1(A(C),Q)⊗Q`
∼= H1

ét

(
AK ,Q`

)
qui s’étend d’ailleurs à toute l’algèbre de cohomologie, à savoir on dispose plus généralement d’iso-

morphismes

H•ét
(
AK ,Q`

) ∼= Λ•H1
ét

(
AK ,Q`

) ∼= Λ•H1 (A(C),Q)⊗Q`.

On est alors amené à comparer MT(A) – défini en termes de la réalisation Betti de A – avec un

objet correspondant sur le côté galoisien : c’est dans cet esprit qu’on définit le groupe de monodromie

`-adique de A, souvent noté G`(A), comme la Q`-clôture de Zariski dans GLT`(A)⊗Q` de l’image de

la représentation ρ`∞ introduite en (2). Le lecteur averti pourrait maintenant remarquer une légère

asymétrie dans nos définitions, car T`(A) ⊗ Q` s’identifie plutôt au dual de H1(A(C),Q) ⊗ Q` :

toutefois, cet asymétrie disparâıt lorsque on remarque que – comme on l’a déjà rappelé – le groupe



Introduction xiv

de Mumford-Tate de H1(A(C),Q) et celui de H1(A(C),Q) peuvent être identifiés. Finalement,

l’isomorphisme canonique H1(A(C),Q)⊗Q`
∼= T`(A)⊗Q` nous permet, par extension des scalaires

à Q`, de considérer MT(A)×QQ` comme un sous-groupe de GLT`(A)⊗Q` . Il est alors très tentant de

conjecturer que l’on devrait avoir G`(A) ∼= MT(A)×Q Q` en tant que sous-groupes de GLT`(A)⊗Q` ,

mais cette conjecture näıve est fausse : en effet, le groupe G`(A) n’est pas connexe en général, alors

que le groupe MT(A) est connexe par définition. Toutefois, un célèbre théorème de Serre ([121, §
2.2.3]) nous assure que – quitte à remplacer K par une extension finie – on peut garantir que G`(A)

est connexe pour tout ` ; de plus, il est clair que remplacer K par une extension finie ne change pas

la composante neutre G`(A)0 (car tout sous-groupe fermé de G`∞ d’indice fini est automatiquement

dense dans G`(A)0 pour la topologie de Zariski). Ce cercle d’idées apporta Mumford et Tate [84] à

formuler la célèbre conjecture :

Conjecture 1. (Mumford-Tate) Pour tout corps de nombres K et toute variété abélienne A/K on

a l’égalité G`(A)0 = MT(A)×Q Q`.

Beaucoup de progrès ont été faits en direction de cette conjecture, mais dans le cas général elle

reste encore largement ouverte. Le résultat le plus général à ce propos à été prouvé par Borovŏı

[14], Deligne [23, Exp. I, 2.9, 2.11], et Pjateckĭı-Šapiro [100], qui montrent

Théorème 2. Pour toute variété abélienne A sur un corps de nombres et tout premier ` on a

G`(A)0 ⊆ MT(A)×Q Q`.

A la lumière de ce théorème on voit que la partie encore ouverte de la conjecture de Mumford-

Tate revient essentiellement à dire que l’image G`∞ de la représentation ρ`∞ est “aussi grosse que

possible”, à savoir suffisamment grosse pour que sa fermeture de Zariski cöıncide avec MT(A)×QQ` :

pour cette raison on désigne souvent les résultats dans cette veine par le nom de “théorèmes de

l’image ouverte”.

D’après les travaux de plusieurs mathématiciens (notamment Serre, Pink, Ribet, Chi, Tanke’ev,

Banaszak, Gajda, Krasoń, Hall...) on connâıt des tels résultats pour des nombreuses classes de

variétés abéliennes : sans prétendre à l’exhaustivité, rappelons ici que la conjecture de Mumford-

Tate a été prouvé pour les variétés A de dimension impaire satisfaisant à EndK(A) = Z (Serre [118]),

pour les variétés satisfaisant à EndK(A) = Z et dont la dimension est en dehors d’un ensemble de

densité zéro (Pink [98]), pour les variétés de type CM (Shimura-Taniyama [126], Pohlmann [101],

Serre-Tate [124]) et pour les variétés dénommées “de type GL2” (Ribet [109]).

On peut aussi donner des résultats qui font intervenir un invariant plus fin que la simple dimension,

à savoir la dimension relative. Rappelons que si A est une variété abélienne géométriquement simple,

alors l’algèbre EndK(A)⊗Q est un corps gauche D (de plus, il s’agit d’une algèbre admettant une

involution positive), dont le centre est un corps de nombres E. On distingue alors le type de A selon

le type de l’algèbre D dans la classification donnée par Albert [1] [2], et on définit la dimension

relative (qui est toujours un nombre entier) par la formule

dim rél(A) =


dimA

[E:Q]
√

[D:E]
, si A est de type I, II ou III

2 dimA

[E:Q]
√

[D:E]
, si A est de type IV.

A titre d’exemple on a alors le résultat suivant :
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Théorème 3. (Banaszak, Gajda, Krasoń [6]) La conjecture de Mumford-Tate est vraie pour toute

variété abélienne simple de type I ou II et de dimension relative impaire.

Bien que ces résultats soient très satisfaisants du point de vue de la conjecture de Mumford-Tate, ils

ne répondent pas à la question de décrire précisément les images G`∞ des représentations ρ`∞ : la

propriété d’être ouvert est invariante par passage à un sous-groupe d’indice fini, donc ces théorèmes

ne fournissent pas un renseignement très précis sur G`∞ lui-même.

Dans certains cas particuliers on dispose toutefois d’une description de G`∞ , du moins pour `

suffisamment grand. Par exemple, dans son cours au Collège de France de 1986 Serre a prouvé le

théorème suivant :

Théorème 4. Soit A/K une variété abélienne de dimension 2, 6, ou un nombre impair. Suppo-

sons que EndK(A) = Z : alors l’image G∞ de la représentation adélique ρ∞ est ouverte dans le

produit restreint
∏′
` GSp2 dimA(Q`). En particulier, il existe un entier `0(A,K) tel que pour tout

` > `0(A,K) on a G`∞ = GSp2g(Z`).

Ce théorème, qui généralise un résultat précédent concernant les courbes elliptiques ([116]), n’est

malheureusement pas effectif : la preuve ne fournit aucune indication sur la valeur de `0(A/K).

L’extension engendrée par un point de torsion

Les différents théorèmes de l’image ouverte permettent aussi d’étudier la question suivante :

Problème 5. Soit A/K une variété abélienne et P ∈ Ators(K) un point de torsion d’ordre N . Quel

est la relation entre le degré [K(P ) : K] et l’ordre N ?

Ce genre de question apparâıt naturellement par exemple dans certains problèmes de type Manin-

Mumford relatif (cf. [74], pour ne donner qu’un exemple), et est bien sûr très intéressant en soi,

surtout en relation avec la conjecture nommée “de la torsion uniforme” :

Conjecture 6. Soient K un corps de nombres et g un entier positif. Existe-t-elle une constante

C(K, g) telle que pour toute variété abélienne A définie sur K et de dimension g on a

|Ators(K)| ≤ C(K, g)?

Plusieurs mathématiciens se sont occupés de différentes variantes du problème 5 ; notamment, en

utilisant la théorie de la transcendance, Bertrand [9] a prouvé

Théorème 7. Soit A/K une variété abélienne de dimension g sur un corps de nombres K. Alors

pour tout ε > 0 il existe une constante C(A,K, ε) telle que, pour tout point P ∈ Ators(K) d’ordre

N , on a [K(P ) : K] ≥ C(A,K, ε)N1/(2+g+ε). La constante C(A,K, ε) est ici effective en fonction

de ε et des équations définissant A.

D’après le travaux de Serre on sait toutefois qu’un tel résultat est relativement loin d’être optimal,

comme il le montre le théorème suivant :
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Théorème 8. ([118]) Soit A/K une variété abélienne sur un corps de nombres K. Supposons que

aucun facteur géométriquement simple de AK n’est de type CM : alors pour tout ε > 0 il existe une

constante C(A,K, ε) telle que, pour tout point P ∈ Ators(K) d’ordre N , on a

[K(P ) : K] ≥ C(A,K, ε)N2−ε.

Si AK a un facteur avec multiplication complexe, alors le même énoncé reste vrai quitte à remplacer

2− ε par 1− ε.

L’approche de Serre repose sur l’étude des représentations ρ`∞ , mais est une fois de plus ineffectif, au

sens où étant donnés des équations pour A la preuve du théorème 8 ne fournit aucune indication sur

la valeur de C(A,K, ε). Une exception est constituée par les variétés avec multiplication complexe,

pour lesquelles Silverberg [128] – en s’appuyant sur les travaux fondamentaux de Shimura-Taniyama

[126] et Serre-Tate [124] – a montré le résultat suivant, qui a de plus l’avantage d’être uniforme en

A :

Théorème 9. Soient K un corps de nombres et g un entier positif. Pour tout ε > 0 il existe

une constante effective C(K, g, ε) avec la propriété suivante : pour toute variété abélienne A/K

de dimension g avec multiplication complexe, et pour tout point P ∈ Ators(K) d’ordre N , on a

[K(P ) : K] ≥ C(K, g, ε)N1−ε.

Tous ces problèmes admettent évidemment des variantes, également intéressantes, qui concernent

par exemple l’extension engendrée par tous les points de N -torsion d’une variété A. Une petite

réflexion montre que ces variantes reviennent essentiellement à une reformulation dans ces termes

de résultats du type “image ouverte” ; on mentionne à ce propos un théorème de Ribet [110], qui

donne un tel résultat pour les variétés CM :

Théorème 10. Soit A/K une variété abélienne de type CM. Il existe des constantes positives

C1, C2, dépendantes de A et de K, et un entier r > 0, également dépendant de A, tels que pour tout

N entier positif on a

C1N
rω(N)r ≤ [K(A[N ]) : K] ≤ C2N

rω(N)r,

où ω(N) est le nombre de facteurs premiers distincts de N .

Remarquons que aussi ce résultat est non-effectif en ce qui concerne les constantes C1 et C2.

Finalement, le même genre de techniques permet aussi d’étudier une question complémentaire à

celles indiquées ci-dessus : si A/K est encore une fois une variété abélienne fixée, on peut essayer

de comprendre comment varie le groupe de torsion Ators(K
′) lorsque l’on fait varier K ′ parmi les

extensions finies de K. C’est le but des récents travaux de Hindry et Ratazzi [38] [39] [40], qui

introduisent l’invariant suivant :

Définition 11. Soit K un corps de nombres et A/K une variété abélienne. On pose

γ(A) = inf
{
x > 0

∣∣ ∃C > 0 ∀K ′/K finie,
∣∣Ators(K

′)
∣∣ ≤ C[K ′ : K]x

}
.

En s’appuyant sur des résultats du type “image ouverte”, Hindry et Ratazzi calculent l’invariant

γ(A) pour des nombreuses classes des variété abéliennes ; toute forme effective des théorèmes de
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l’image ouverte permettrait en particulier de mieux comprendre la nature de la constante C, et

plus généralement toute nouvelle instance (même non effective) de la conjecture de Mumford-Tate

permettrait sans doute d’élargir la classe des variétés abéliennes pour lesquelles on sait déterminer

cet exposant optimal γ(A).

Questions d’effectivité

Les résultats sur les représentations galoisiennes rappelés aux paragraphes précédents montrent très

clairement une tendance assez générale : même si on a beaucoup de renseignements qualitatifs sur

les images G`∞ des représentations ρ`∞ , presque aucun d’entre eux n’est effectif. Dans cette thèse

on se propose notamment de donner des versions effectives de certains des énoncés mentionnés aux

paragraphes précédents : concrètement, il s’agit de donner des valeurs pour les différentes bornes

qui aient une dépendance aussi simple que possible en les données A et K. D’après les travaux de

Faltings [26], on possède un moyen canonique de mesurer la complexité arithmétique d’une variété

abélienne : sa hauteur (de Faltings) stable h(A). On sait de plus que – pour tout corps K fixé et

tout B ∈ R – il n’y a que un nombre fini de variétés abéliennes A/K de hauteur bornée par B :

il est donc évident que les différentes bornes apparaissant dans les différents théorèmes de l’image

ouverte doivent pouvoir s’exprimer en fonction de h(A). On doit également choisir une mesure de

complexité pour les corps de nombres K : traditionnellement, on utilise à cet effet le discriminant

∆K/Q, mais on verra que très souvent le degré [K : Q] sera un invariant suffisant pour caractériser

la dépendance en K. Nous tenons à souligner dès maintenant que nos résultats faisant apparâıtre

la hauteur de Faltings de A ont une dépendance en h(A) qui est polynomiale, et qu’il en va de

même pour la dépendance en [K : Q] : ceci est rendu possible par l’utilisation d’une forme explicite

très précise du théorème dit “d’isogénie”, originairement prouvé dans une forme non effective par

Faltings [26] et ensuite redémontré de façon effective par Masser et Wüstholz grâce à des techniques

de théorie de la transcendance [70] [72] [73]. La version de ce théorème que nous utilisons ici est

plutôt due à Gaudron et Rémond [28] ; pour énoncer leur résultat, nous introduisons la définition

suivante :

Définition 12. On pose

b(d, g, h) :=
(

(14g)64g2dmax {1, h, log d}
)210g3

.

Plusieurs de nos résultats s’exprimeront à l’aide de la fonction b(d, g, h). Avec cette notation, l’un

des théorèmes principaux de [28] s’énonce ainsi :

Théorème 13. Soit A/K une variété abélienne de dimension g. Pour toute variété abélienne

A∗ définie sur K qui est K-isogène à A, il existe une K-isogénie A∗ → A de degré borné par

b([K : Q], g, h(A)).

Contenu de la thèse

Les résultats rappelés dans les paragraphes précédents nous amènent à considérer des questions que

l’on peut grossièrement distinguer en trois catégories :
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1. image ouverte : montrer que G`(A)0 = MT(A) ×Q Q` pour des nouvelles classes de variétés

abéliennes.

2. effectivité pour ` suffisamment grand : étant donné une variété abélienne A/K, donner une

borne effective `0 = `0(A/K) telle que, pour tout ` > `0, on sait décrire explicitement le

groupe G`∞ .

3. effectivité `-adique et adélique : étant donné A/K et un premier `, calculer une borne c(A/K, `)

sur les indices [G`(A)(Z`) : G`∞ ] et [
∏
` G`(A)(Z`) : G∞], si ce dernier est fini.

Dans cette thèse nous présentons quelques résultats originaux en direction des questions 1, 2 et 3

ci-dessus. Les différents chapitres sont rédigés sous la forme d’articles essentiellement indépendants

les uns des autres ; ainsi, le lecteur remarquera que certaines parties des introductions sont répétées.

La première (et plus longue) partie de la thèse est consacrée au problème de rendre complètement

effectifs les théorèmes du type “image ouverte” pour les variétés abéliennes, explicitant aussi toutes

les constantes qui interviennent.

Nous traitons d’abord (dans le chapitre 1) le cas des courbes elliptiques n’ayant pas de multiplication

complexe. Précisément, en passant par un résultat de structure pour certains algèbres de Lie entières

(à coefficients dans Z`), nous montrons notamment des versions effectives des théorèmes 4 et 8 pour

g = 1 :

Théorème 14. Soit E/K une courbe elliptique sans CM. On a[
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)]
< C1 · [K : Q]C2 ·max {1, h(E), log[K : Q]}2C2 ,

où C1 = exp(6 · 1029527) et C2 = 4.9 · 1010.

Si P ∈ Etors(K) est un point de torsion d’ordre N on a

[K(P ) : K] ≥
(
ζ(2) ·

[
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)])−1
·N2.

La preuve de ces résultats répose sur le théorème d’isogénie, combiné avec une extension de la

théorie des algèbres de Lie entières dûe à Pink [97]. Rappelons brièvement cette construction. Soit

A un anneau semi-local, et soit I l’intersection de tous les idéaux maximaux de A. On suppose que

l’anneau A est complet pour la topologie I-adique, et que A/I est annulé par un premier p, supposé

impair. La théorie de Pink montre alors qu’il a une corréspondence bijective et fonctorielle entre les

sous-groupes pro-p de SL2(A) et les couples (L,∆), où L est une sous-algèbre de Lie de sl2,A qui

vérifie ∩n≥0L
n = {0} et tr(L ·L) ·L ⊆ L, et ∆ est un sous-ensemble fermé de L/[L,L] qui respecte

certaines propriétés additionnelles. De plus, si (L,∆) est le couple qui corréspond au groupe G,

alors la connaissance de L est suffisante à déterminer le sous-groupe dérivé de G.

On aimerait pouvoir étudier l’image de Galois par l’intermédiaire de cette correspondence : en effet,

caractériser les sous-algèbres de Lie de sl2,Z` est essentiellement un problème d’algèbre linéaire, donc

rélativament facile, alors que travailler directement avec les sous-groupes de SL2(Z`) est (à priori)

bien plus compliqué. Malheuresement, la théorie de Pink n’est pas suffisante pour nos applications,

pour trois raisons différentes :

1. elle ne s’applique qu’aux sous-groupes de SL2(Z`), alors que l’image de Galois est un sous-

groupe de GL2(Z`) ;
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2. elle ne s’étend pas au cas p = 2 ;

3. son domaine d’applicabilité est limité aux sous-groupes de SL2(Z`) qui sont de plus pro-`, ce

qui en général n’est pas le cas pour nos groupes G`∞ .

Le premier problème n’est pas très difficile à contourner en considérant le groupe dérivé de G`∞ (qui

est automatiquement un sous-groupe de SL2(Z`)), mais les autres deux obstacles sont plus sérieux.

Il y a également une solution rélativement simple (mais pas complètement satisfaisante) pour le

troisième problème : si on remplace le corps K par une extension convenable, on peut toujours

supposer que – pour un premier ` fixé – le groupe G`∞ est un groupe pro-`. Malheuresement, le

degré de cette extension varie en général avec `, et cela se traduirait par un résultat final qui n’est

pas polynomiale en la hauteur de E.

Nous résolvons complètement les problèmes 2 et 3 par les résultats suivants, qui peuvent être

considérés comme une éxtension de la théorie de Pink dans le cas où l’anneau A est Zp (où p est

n’importe quel nombre premier, y compris p = 2).

Théorème 15. Soit ` un nombre premier impair (resp. ` = 2). Pour tout sous-groupe fermé G de

GL2(Z`) (resp. pour tout sous-groupe fermé dont la réduction modulo 2 est triviale si ` = 2), soit

L(G) le Z`-sous-module de sl2(Z`) engendré par l’ensemble
{
g − tr(g)

2 · Id
∣∣ g ∈ G}.

Soit H un sous-groupe fermé de GL2(Z`). Il existe un sous-groupe H1 de H, d’indice au plus 24

(resp. un sous-groupe d’indice au plus 192 ayant de plus une réduction triviale modulo 2, quand

` = 2), tel que l’on a l’implication suivante pour tout entier positif s : si L(H1) contient `ssl2(Z`),
alors H1 contient

B`(4s) :=
{
g ∈ SL2(Z`)

∣∣ g ≡ Id (mod `4s)
}

(resp. B2(6s) pour ` = 2).

Remarquons que le résultat pour ` = 2 est complètement indépendant des résultats de Pink. Si-

gnalons également que nous construisons des exemples qui montrent qu’on ne peut pas éviter de

remplacer H par un sous-groupe, de sorte que la forme de ce résultat est essentiellement optimale.

Dans le chapitre 2 nous étendons ensuite la méthode et les résultats du chapitre précédent au cas

d’un produit arbitraire de courbes elliptiques sans multiplication complexe :

Théorème 16. Soit n ≥ 2 et soient E1, . . . , En des courbes elliptiques définies sur un corps de

nombres K, deux à deux non isogènes sur K. Supposons que EndK(Ei) = Z pour i = 1, . . . , n, et

notons G∞ l’image de Gal(K/K) dans∏
`

Aut(T`(E1))× · · · ×Aut(T`(En)) ⊂ GL2(Ẑ)n.

Soit γ := 1013, δ := exp exp exp(13), et H = max {1, log[K : Q],maxi h(Ei)}. Le groupe G∞ a indice

au plus

δn(n−1) ·
(
[K : Q] ·H2

)γn(n−1)

dans

∆ :=
{

(x1, . . . , xn) ∈ GL2(Ẑ)n
∣∣ detxi = detxj ∀i, j

}
.
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La preuve de ce théorème nécessite d’une étude assez fine de certains sous-groupes fermés de

GL2(Z`)n. Il s’agit d’une exténsion ultérieure des résultats de Pink au cas où l’anneau de base

est Zn` ; même si le résultat pour n = 2 nous suffirait, nous traitons le cas d’un n arbitraire dans le

chapitre 8.

Dans le chapitre 3 nous commençons à considérer certains cas de dimension supérieure : nous y

étudions notamment les représentations ρ`∞ associées à des surfaces abéliennes A géométriquement

simples. Rappelons que – selon l’arithmétique de l’algèbre des endomorphismes de A – on distingue

4 types de surfaces : génériques (EndK(A) = Z), à multiplication réelle (EndK(A) est un ordre dans

un corps quadratique réel), à multiplication quaternionique (EndK(A) est un ordre dans une algèbre

de quaternions sur Q), et à multiplication complexe. Comme les variétés CM (sans restriction sur la

dimension) feront l’objet du successif chapitre 5, nous nous restreignons ici aux trois premiers cas,

pour lesquels nous donnons une description des groupes G`∞ pour ` suffisamment grand explicite.

Notamment, pour le cas générique nous prouvons :

Théorème 17. Soit A/K une surface abélienne telle que EndK(A) = Z. Soit ` un premier qui

n’est pas divisible par aucune place de mauvaise réduction de A. Si ` est non ramifié dans K et est

strictement plus grand que b(2 · 1920[K : Q], 4, 2h(A))1/4, alors G`∞ = GSp4(Z`).

Pour le cas de la multiplication réelle nous nous plaçons dans le cadre plus général des variétés

de type GL2, considérées par exemple par Ribet dans sa thèse [109] : pour des telles variétés nous

montrons

Théorème 18. Soit A/K une variété abélienne de dimension g telle que EndK(A) est un ordre

dans un corps totalement réel E de degré g sur Q. Supposons que tous les endomorphismes de A

sont définis sur K. Soit ` un nombre premier non ramifié dans K ·E et strictement plus grand que

b(2[K : Q], 2 dim(A), 2h(A))1/2 et b(A/K)g. On a

G`∞ =
{
x ∈ GL2 (OE ⊗ Z`)

∣∣ detOE x ∈ Z×`
}
.

Finalement, nous avons un résultat du même type aussi pour le cas de la multiplication quaternio-

nique :

Théorème 19. Soit A/K une surface abélienne telle que R = EndK(A) est un ordre dans une

algèbre de quaternions (indéfinie) et soit ∆ le discriminant de R. Supposons que tous les en-

domorphismes de A sont définis sur K. Soit ` un nombre premier strictement plus grand que

b(2[K : Q], 4, 2h(A))1/2, qui ne divise pas ∆, et qui est non ramifié dans K. On a G`∞ = (R⊗ Z`)×.

Faisons quelques remarques sur les outils impliqués dans la preuve de ces trois théorèmes concernant

les surfaces abéliennes. Un des ingrédients essentiels pour la preuve du théorème 17 est une analyse

des sousgroupes propres maximaux de GSp4(F`). On peut grossièrement classifier ces sousgroupes

en trois catégories :

• sous-groupes géométriques, qui préservent certaines structures additionnelles sur le F`-espace

vectoriel A[`] : tombent dans cette catégorie par exemple les sous-groupes qui stabilisent une

droite ou bien un plan de F4
`
∼= A[`], aussi bien que les sous-groupes dont l’action sur A[`] est

semi-linéaire par rapport à une certaine structure de F`2-espace vectoriel de A[`] ;
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• sous-groupes finis (dont l’image projective est de cardinal borné indépendamment de `) : il

s’agit de “petits” groupes finis qui admettent un plongement dans PGSp4(F`) pour des fa-

milles infinies de premiers `. Par exemple, certains groupes finis admettant une représentation

symplectique irréductible de dimension 4 (sur C) sont de ce type, car une telle représentation

peut être réalisée sur F` pour tout premier ` qui satisfait à certaines conditions de congruence ;

• sous-groupes dont l’image projective est conjuguée à l’image de la représentation symplectique

PGL2(F`)→ PGSp4(F`).

Pour montrer le résultat voulu il suffit de prouver que, si ` est suffisamment grand, l’image de

Galois dans AutA[`] n’est pas contenue dans aucun sous-groupe propre maximal de GSp4(F`). Il

s’agit alors de montrer que chacun des trois cas précédents ne peut pas se produire quand ` est

suffisamment grand. On traite les cas géométriques grâce au théorème d’isogénie, que l’on applique

à plusieurs réprises à la variété A, aussi bien qu’à certaines variétés abéliennes auxiliares construites

à partir de A.

On peut également traiter le cas des petits groupes finis à l’aide du théorème d’isogénie, et c’est l’ap-

proche qu’on suit dans ce chapitre. Remarquons toutefois que dans le chapitre 4 nous développons

une méthode plus fine, qui montre que ce cas ne peut pas se produire lorsque ` est plus grand qu’une

certaine borne qui est essentiellement uniforme en la variété A. Finalement, le cas le plus difficile

est celui des sous-groupes associés à la représentation PGL2(F`) → PGSp4(F`). Pour montrer que

de tels sousgroupes ne peuvent pas contenir l’image de Galois, on applique des résultats profonds,

dûs à Raynaud, qui décrivent l’action sur A[`] du groupe d’inertie associé à une place de K de

caractéristique `. Le résultat souhaité est alors obtenu en comparant la description de cette action

avec les propriétés de la représentation PGL2(F`)→ PGSp4(F`).

Le chapitre 4 est consacré à l’étude effective des représentations associées aux variétés de dimension

impaire. La preuve donnée par Serre de son théorème 4 ne se prête pas directement à être rendue

effective, et nous sommes obligés de prendre un chemin assez différent. Après avoir rappelé une

classification grossière des sous-groupes maximaux de GSp2g(F`), nous exploitons les propriétés des

représentations des groupes finis de type Lie pour montrer que si l’image de Galois est petite par

rapport à GSp2g(F`), alors en fait elle est contenue dans l’image d’une certaine représentation qui

est algébrique (et définie en caractéristique 0). Nous pouvons alors disposer de toutes les techniques

classiques de théorie des représentations, et nous prouvons que cette situation ne peut se produire

que dans de cas très particuliers.

Cela ne nous conduit pas à une preuve effective du théorème 4 en toute dimension, mais nous

obtenons quand même un résultat effectif quitte à imposer des restrictions additionnelles sur la

dimension g. Le cas le plus favorable est celui de la dimension 3, pour lequel nous avons le résultat

suivant :

Théorème 20. Soit A/K une variété abélienne de dimension 3 telle que EndK(A) = Z. Notons

N 0
A/K le conducteur naif de A/K, à savoir le produit des idéaux premiers de OK auxquels A a

mauvaise réduction, et supposons que les points de 7-torsion de A sont tous définis sur K.
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• Si l’Hypothèse de Riemann Généralisée est vraie, on a l’égalité G`∞ = GSp6(Z`) pour tout

premier ` non ramifié dans K et strictement plus grand que (2q)48, où

q = b(A2/K; 3)8
(

log |∆K/Q|+ logNK/Q

(
N 0
A/K

))2
.

• Inconditionnellement, la même conclusion est vraie avec

q = exp

(
cb(A2/K; 3)8

(
log |∆K |+ logNK/Q

(
N 0
A/K

))2
)
,

où c est une constante absolue et effective.

Nous obtenons également des résultats pour une infinité d’autres dimensions, mais la borne corréspondante

n’est pas complètement explicite en fonction de la variété A.

Nous considérons finalement un exemple concret (la Jacobienne J d’une courbe hyperelliptique

de genre 3 sur Q) qui ne peut pas être traité par les méthodes existantes, et pour lequel nous

déterminons explicitement une borne b0(J/Q) telle que l’action de Galois est maximale pour tout

` > b0(J/Q).

Dans le chapitre 5 nous nous focalisons sur les variétés géométriquement simples admettant mul-

tiplication complexe. Nous établissons une version effective du théorème 10 pour N une puissance

de nombre premier, et nous montrons notamment que dans ce cas les constantes C1, C2 y apparais-

sant peuvent être choisies indépendamment de A. Une version simplifiée du résultat principal de ce

chapitre s’énonce ainsi :

Théorème 21. Soit K un corps de nombres et A/K une variété abélienne de dimension g, admet-

tant multiplication complexe sur K par un ordre d’un corps CM qu’on note E. Soit r le rang du

groupe de Mumford-Tate de A et ` un premier plus grand que
√

2 · g! et non ramifié dans E ·K. Soit

µ le nombre de racines de l’unité en E et h(K) le nombre de classe de K. On a l’encadrement :

1

4µ
√
g!
· `nr ≤ [K(A[`n]) : K] ≤ 5

2
µ · h(K) · `nr.

En fait, les résultats du chapitre 5 s’appliquent à tout nombre premier `, mais les formules qu’on

obtient sont moins simples à écrire. La preuve du théorème 21 répose sur plusieurs outils : d’abord

bien sûr la théorie de la multiplication complexe, développée par Shimura-Taniyama et étendue par

Weil, Serre et Tate, puis des arguments de théorie du corps de classes, et finalement une étude des

isogénies entre tores définis sur des corps locaux, faite à la fois par des méthodes de cohomologie

galoisienne et de géométrie différentielle p-adique.

Nous traitons avec plus de détail le cas des courbes elliptiques CM, pour lesquelles nous montrons

le résultat adélique suivant, qui fournit une description très précise de l’image G∞ :

Théorème 22. Soit E/K une courbe elliptique telle que EndK(E) est un ordre dans le corps qua-

dratique imaginaire F . Notons ρ∞ : Gal(K/K) →
∏
`

AutT`E la représentation adélique associée

à E et G∞ son image. Pour tout premier ` notons ensuite C` le groupe (OF ⊗ Z`)×, considéré

comme sous-groupe de AutZ` (OF ⊗ Z`) ∼= GL2(Z`) ∼= AutT`E, et N(C`) le normalisateur de C`

dans GL2(Z`).
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1. Supposons que F ⊆ K : alors G∞ est inclus dans
∏
`C`, et l’indice [

∏
`C` : G∞] est borné

par 3[K : Q]. De plus, l’égalité G` = C` est vérifiée pour tout ` non ramifié dans K et de

bonne réduction pour E.

2. Supposons que F 6⊆ K : alors G∞ est inclus dans
∏
`N(C`) mais pas dans

∏
`C`, et l’indice

[
∏
`N(C`) : G∞] n’est pas fini. L’intersection H∞ = G∞ ∩

∏
`C` a indice 2 dans G∞, et

l’indice [
∏
`C` : H∞] est borné par 6[K : Q]. Finalement on a G` = N(C`) pour tout ` non

ramifié dans K · F et de bonne réduction pour E.

Si de plus on suppose que l’invariant j de E n’est pas égal à 0 ni à 1728, alors les constantes 3 and

6 des parties (1) et (2) peuvent être remplacées par 1 et 2 respectivement.

Toujours dans le chapitre 5, nous entamons aussi une étude assez approfondie du groupe de

Mumford-Tate des variétés CM, qui – comme il est bien connu – est un tore dans ce cas. La

difficulté principale est ici celle de comprendre le groupe des Z`-points d’un Q-tore ayant mauvaise

réduction en ` : sous l’hypothèse que MT(A) soit de dimension dimA + 1, ce qui est bien le cas

générique pour une variété CM, nous pouvons effectuer des calculs locaux qui conduisent à des

bornes essentiellement optimales pour les degrés [K(A[`n]) : K] :

Théorème 23. Soit A/K une variété abélienne géometriquement simple de dimension g, admettant

multiplication complexe (sur K) par le corps CM E. Soit MT(A) le groupe de Mumford-Tate de A

et r son rang.

1. Si ` est non ramifié en E on a l’encadrement suivant :

(1− 1/`)r`nr ≤ |MT(A)(Z/`nZ)| ≤ (1 + 1/`)r`nr.

2. Supposons r = g + 1. Alors pour tout premier ` 6= 2 et tout n ≥ 1 on a

(1− 1/`)g+1 · `(g+1)n ≤ |MT(A)(Z/`nZ)| ≤ 2g (1 + 1/`)g−1 `(g+1)n,

et pour ` = 2 et n ≥ 1 on a

1

22g+3
· 2(g+1)n ≤ |MT(A)(Z/2nZ)| ≤ 1

2
4g · 2(g+1)n.

Ce résultat est particulièrement intéressant pour les variétés CM de dimension au plus 3, car toute

telle variété respecte automatiquement l’hypothèse rg MT(A) = dim(A) + 1.

Dans la deuxième partie de la thèse nous quittons le domaine de l’effectivité pour nous tourner vers

des questions de nature plus qualitative.

Dans le chapitre 6 nous développons des techniques qui permettent d’étudier les groupes algébriques

G`(A × B) associés à un produit A × B de deux variétés abéliennes, et nous donnons une condi-

tion suffisante pour que les groupes G`(A),G`(B) déterminent le groupe G`(A × B). Nos résultats

s’expriment plus aisément à l’aide de l’objet suivant :

Définition 24. Soit A/K une variété abélienne, ` un nombre premier, et G`(A) le groupe de

monodromie algébrique associé à A/K. Nous posons H`(A) :=
(
G`(A) ∩ SLT`(A)⊗Q`

)0
.

Notre condition suffisante s’énonce alors ainsi (pour le cas d’un corps de définition de caractéristique

zéro : nous traitons aussi le cas d’un corps de définition quelconque) :
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Théorème 25. Soit K un corps finiment engendré de caractéristique zéro, soient A1 et A2 deux

variétés abéliennes sur K, et soit ` un nombre premier. Pour i = 1, 2 soit hi l’algèbre de Lie de

H`(Ai). Supposons les conditions suivantes vérifiées :

1. pour i = 1, 2 l’algèbre hi est semisimple (on a donc hi ⊗Q`
∼= hi,1 ⊕ · · · ⊕ hi,ni, où chaque hi,j

est simple) ;

2. pour i = 1, 2, il existe une décomposition V`(Ai)⊗Q`
∼= Vi,1 ⊕ · · · ⊕ Vi,ni telle que l’action de

hi⊗Q`
∼= hi,1⊕ · · · ⊕ hi,ni sur Vi,1⊕ · · · ⊕ Vi,ni se fait composante par composante, et hi,j agit

de façon fidèle sur Vi,j ;

3. pour tout choix de (i, j) et (i′, j′) distincts tels qu’il existe un isomorphisme ϕ : hi,j → hi′,j′, il

existe une représentation irréductible W de hi,j telle que tous les sous-modules simples de Vi,j

et de ϕ∗
(
Vi′,j′

)
(considérés comme représentations de hi,j) sont isomorphes à W , et le plus

haut poids qui définit W est stable sous l’action de tous les automorphismes de hi,j.

Alors on a soit HomK(A1, A2) 6= 0, soit H`(A1 ×A2) ∼= H`(A1)×H`(A2).

Même si les hypothèses de ce résultat sont assez techniques, elles sont tout de même très souvent

vérifiées, et nous déduisons de ce théorème plusieurs critères facilement applicables qui donnent des

conditions suffisantes pour que l’égalité H`(A1 ×A2) ∼= H`(A1)×H`(A2) soit vérifiée.

Par exemple, nous montrons comme un résultat d’Ichikawa [44], prouvé initialement pour les struc-

tures de Hodge, peut être transposé au cadre galoisien :

Théorème 26. Soit K un corps finiment engendré de caractéristique zéro et soient A′i, A
′′
j (pour

i = 1, . . . , n et j = 1, . . . ,m) des K-variétés abéliennes absolument simples, de dimension relative

impaire, et deux à deux non isogènes sur K. Supposons que chaque A′i est de type I, II ou III au sens

de la classification d’Albert, alors que chaque A′′j est de type IV. Soit finalement A une K-variété

abélienne qui est K-isogène à
∏n
i=1A

′
i ×
∏m
j=1A

′′
j . On a alors

H` (A) ∼=
n∏
i=1

H`
(
A′i
)
×H`

 m∏
j=1

A′′j

 .

Nous appliquons ensuite ce théorème, et plus généralement les méthodes de ce chapitre, pour prouver

que la conjecture de Mumford-Tate est vraie pour toute variété abélienne de dimension au plus 5

dont tous les facteurs géométriquement simples vérifient eux-mêmes Mumford-Tate. Cela complète

un résultat précédent de Moonen et Zarhin [81], qui déterminent les classes de Hodge sur de telles

variétés abéliennes non simples.

On étudie enfin une question soulevée naturellement par les travaux de Hindry et Ratazzi [38]

[39] [40]. Dans leur étude des extensions engendrées par les sous-groupes de torsion d’une variété

abélienne, les deux auteurs introduisent deux variantes (“forte” et “faible”) d’une propriété qu’ils

appellent (µ), et ils montrent que les deux variantes sont satisfaites par certaines (amples) classes

de variétés abéliennes. Rappelons ici leur définitions. Si A/K est une variété abélienne, le choix

d’une polarisation induit, pour tout ` et tout n, un accouplement (de Weil)

e`n : A[`n]×A[`n]→ µ`n .
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Fixons maintenant un sous-groupe finiH de A[`∞]. CommeH est fini, il est en particulier d’exposant

fini, d’où un entier m tel que H ⊆ A[`m]. Comme l’accouplement de Weil est Galois-équivariant,

on voit immédiatement que le groupe de racines de l’unité e`m (H ×H) est contenu dans K(H).

Grossièrement, on dit que A respecte la propriété (µ) forte si toute racine de l’unité `m-ième dans

K(H) est dans l’image de e`m(H ×H) :

Définition 27. Soit A/K une variété abélienne (avec une K-polarisation fixée). Posons

m1(H) = max

{
k
∣∣ ∃n ≥ 0, ∃P,Q ∈ H d’ordre `n, tels que

e`n(P,Q) engendre µ`k

}
.

On dit que A/K respecte la propriété µ forte par rapport à la polarisation fixée s’il existe une

constante C (dépendant de A et K, mais pas de `) telle que pour tout premier `, et pour tout

sous-groupe fini H de A[`∞], on a l’encadrement

1

C

[
K
(
µ`m1(H)

)
: K
]
≤ [K(H) ∩K(µ`∞)] ≤ C

[
K
(
µ`m1(H)

)
: K
]
.

Par ailleurs, il est facile de voir que cette définition ne dépend pas de la polarisation choisie : une

variété abélienne respecte la propriété (µ) forte pour une certaine polarisation si et seulement si elle

la respecte pour toute polarisation. On peut également considérer une version un peu affaiblie de

cette propriété, à savoir

Définition 28. Soit A/K une variété abélienne (avec une K-polarisation fixée). On dit que A/K

respecte la propriété µ faible par rapport à la polarisation fixée s’il existe une constante C (dépendant

de A et K, mais pas de `) telle que pour tout premier `, et pour tout sousgroupe fini H de A[`∞],

on a l’encadrement
1

C
[K (µ`n) : K] ≤ [K(H) ∩K(µ`∞)] ≤ C [K (µ`n) : K]

pour un certain n qui peut dépendre de ` et de H.

L’intérêt de ces propriétés est lié, comme le montrent Hindry et Ratazzi, à l’étude asymptotique

du nombre des points de torsion de A(F ), où A/K est une variété abélienne fixée et F parcourt

les extensions finies de K. Plus précisement, ces conditions (µ) – forte et faible – apparaissent de

manière naturelle lorsque l’on cherche à calculer l’invariant γ(A/K) suivant :

γ(A/K) = inf

{
x > 0

∣∣ ∃C ∈ R : pour toute extension finie F/K

on a |A(F )tors| ≤ C[F : K]x

}
.

Dans le chapitre 7 nous prouvons que la version faible de la propriété (µ) est vraie pour toute

variété abélienne qui vérifie la conjecture de Mumford-Tate, et on montre que un célèbre exemple

dû à Mumford [85] fournit un contre-exemple à la propriété (µ) forte dans le cas général, même si

on suppose que notre variété abélienne a un anneau d’endomorphismes trivial.
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In this thesis we consider various classes of problems concerning Galois representations attached to

abelian varieties, with a particular emphasis on the question of obtaining effective results. To fix

the notation, our objects of interest are abelian varieties A defined over number fields K, and the

associated families of Galois representations

ρ`∞ : Gal(K/K)→ AutT`A,

where T`(A) denotes as usual the `-adic Tate module of A. We denote by G`∞ the image of ρ`∞

and by G` the Q`-algebraic group obtained by taking the Zariski closure of G`∞ in GLT`(A)⊗Q` . We

consider three different aspects of the study of the ρ`∞ ’s:

1. determination of G` for non-simple A.

2. horizontal situation: certain combinations of conditions on EndK(A) and dimA imply that

G`∞ is of a specific form when ` is large enough; for example, when dimA is either 2 or

an odd number and EndK(A) = Z, then it is known by work of Serre [116] [118] [121] that

G`∞ = GSp2 dimA(Z`) for all ` large enough. For some such cases we quantify what “large

enough” means in terms of A and K.

3. vertical situation: for a given A/K and a given prime ` consider the Z`-closure GZ` of G`∞ in

GLT`A. The group G`∞ is of finite index in GZ`(Z`), and in some cases we can give an explicit

upper bound on the index [GZ`(Z`) : G`∞ ].

When A is an elliptic curve (with or without CM) both parts (2) and (3) can be carried out

successfully, and we actually obtain adelic results, which take into account all representations ρ`∞

at the same time. Since we are chiefly concerned with the problem of giving effective descriptions of

the groups G`∞ , what we want to do is bound the complexity of the representations G`∞ in terms

of the arithmetic complexity of A: thanks to the work of Faltings [26], we dispose of a canonical

measure of complexity for A, its semistable Faltings height h(A), and it is in terms of h(A) that

we express our results. Works of Raynaud [105], Masser and Wüstholz [72] [70], and Gaudron and

Rémond [28] make it possible to effectively describe the isogeny class of A, and we extract from this

information finer data about the groups G`∞ .

Concerning the determination of G` we prove that some numerical conditions on the dimensions of

the abelian varieties A,B allow us to compute G`(A×B) in terms of G`(A) and G`(B), recovering in

this context analogous results that were already known for the Hodge groups of non-simple abelian

varieties. As an application, we show that our criterion implies the truth of the Mumford-Tate

xxvii
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conjecture for non-simple abelian varieties of dimension at most 5, assuming that each geometrically

simple factor satisfies the conjecture (recall that Mumford-Tate is known to hold for absolutely

simple abelian varieties of dimension at most 3 and for most absolutely simple abelian fourfolds).

To show such statements we mainly use techniques issued from representation theory, as pioneered

by Serre, Ribet [111][109] and Zarhin [152], combined with results of Larsen and Pink [59] [58] on

the structure of the Lie algebra of G`.

A prototypical example of result in the horizontal setting is the following description of the groups

G`∞ attached to abelian surfaces:

Theorem 1. There is an explicit polynomial function f(d, h) with the following property. Let A/K

be an abelian surface with EndK(A) = Z, and let ` be a rational prime that is not divisible by any

place of bad reduction of A and does not ramify in K. If ` > f([K : Q], h(A)), then G`∞ = GSp4(Z`).

We also prove similar results for (geometrically simple) surfaces with arbitrary endomorphism rings,

for abelian varieties of GL2-type, and for geometrically simple threefolds A with EndK(A) = Z; we

also establish weaker results in the same vein for some abelian varieties of higher (odd) dimension

satisfying EndK(A) = Z. The techniques involved are in a sense more sophisticated than the ones

used to treat the algebraic groups G`: the main issue is the need to work with representations in

positive characteristic, and a combination of classical representation theory in characteristic zero

with the methods of finite group theory (especially Aschbacher’s classification of maximal subgroups

of classical finite groups) is necessary to treat such problems. Group-theoretical methods alone,

however, do not suffice: on the more arithmetical side we also need to rely on Chebotarev’s density

theorem and on results of Raynaud [104] that describe the action of inertia on the Galois modules

A[`].

The vertical situation is the most delicate one. Zywina [156] was the first to obtain adelic results

for non-CM elliptic curves, but his approach was limited to the field Q, and his bound not completely

effective; by contrast, in this thesis we obtain fully explicit results for (products of) non-CM elliptic

curves over any number field. Specifically, for a single elliptic curve we prove the following version

of Serre’s celebrated open image theorem:

Theorem 2. Let E/K be an elliptic curve that does not admit complex multiplication. Denote by

ρ∞ : Gal(K/K)→
∏
`

AutT`(A) ∼= GL2(Ẑ)

the adelic representation attached to E. The inequality[
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)]
< C1 · [K : Q]C2 ·max {1, h(E), log[K : Q]}2C2

holds, where C1 = exp(6 · 1029527) and C2 = 4.9 · 1010.

By refining the same idea through a more in-depth study of the combinatorics of subgroups of

GL2(Z`)n we are then able to extend this result to cover the case of arbitrary products of elliptic

curves without complex multiplication. The main technical tool underlying these results is a con-

struction, due to Pink [97], that allows for a classification of pro-` subgroups of SL2(Z`) in terms

of linear data, encoded in the form of certain Lie algebras with coefficients in Z`. However, Pink’s
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construction is not flexible enough for our purposes, and we need to extend his results in various

directions, circumventing for example the difficulties arising from the fact that his approach cannot

be made to work for the prime ` = 2. Once our extended construction is in place for GL2(Z`)
and GL2(Z`)2, the general case of an arbitrary product of copies of GL2(Z`) follows by applying an

integral version of the Goursat-Ribet lemma.

The one case in which the vertical situation is relatively well-understood is that of abelian varieties

admitting complex multiplication. Mainly thanks to work of Ribet [110], relying on previous funda-

mental contributions of Shimura-Taniyama and Serre-Tate, in the CM case estimates are available

for the degrees over K of the division fields K(A[`n]), but such estimates are not completely ef-

fective, and in fact it is not entirely clear what their dependence on A should be. Relying by and

large on the approach of Ribet, but combining it with techniques issued from Galois cohomology

(and even with some p-adic differential geometry), we can make such estimates effective and show

in particular that they can be made essentially uniform in the variety, the only relevant information

being the rank of the Mumford-Tate group of A. A rough but easily-stated version of this result

reads as follows:

Theorem 3. Let K be a number field and A/K be an abelian variety of dimension g admitting

complex multiplication over K by an order in the CM field E. Denote by µ be the number of roots

of unity contained in E and by h(K) the class number of K. Let r be the rank of the Mumford-Tate

group of A and ` >
√

2 · g! be a prime unramified in E ·K. The following inequality holds:

1

4µ
√
g!
· `nr ≤ [K(A[`n]) : K] ≤ 5

2
µ · h(K) · `nr.

Finally, in a slightly different direction, exploiting again methods coming from the representation

theory of algebraic groups (in positive characteristic), we explore a rather peculiar phenomenon

which does not seem to have been noticed before. Specifically, if H is a finite subgroup of A[`∞],

we show that while the degree of K(H)∩K(µ`∞) over K is essentially a power of ` (up to bounded

factors), it is not true that this power of ` is determined by the knowledge of the image of the Weil

pairing H ×H → µ`∞ . As shown by Hindry and Ratazzi [38] [39], this fact has a bearing on the

study of the extensions of K generated by torsion points of A.





Chapter 1

Adelic bounds for representations

arising from elliptic curves

1.1 Introduction

We are interested in studying Galois representations attached (via `-adic Tate modules) to elliptic

curves E defined over an arbitrary number field K and without complex multiplication, i.e. such

that EndK(E) = Z. Let us recall briefly the setting and fix some notation: the action of Gal(K/K)

on the torsion points of EK gives rise to a family of representations (indexed by the rational primes

`)

ρ` : Gal
(
K/K

)
→ GL(T`(E)),

where T`(E) denotes the `-adic Tate module of E. As T`(E) is a free module of rank 2 over Z` it

is convenient to fix bases and regard these representations as morphisms

ρ` : Gal
(
K/K

)
→ GL2(Z`),

and it is the image G` of these maps that we aim to study. It is also natural to encode all these

representations in a single ‘adelic’ map

ρ∞ : Gal
(
K/K

)
→ GL2(Ẑ),

whose components are the ρ` and whose image we denote G∞. By a theorem of Serre ([116, §4,

Théorème 3]) G∞ is open in GL2(Ẑ), and the purpose of the present study is to show that the

adelic index [GL2(Ẑ) : G∞] is in fact bounded by an explicit function depending only on the stable

Faltings height h(E) of E and on the degree of K over Q, generalizing and making completely

explicit a result proved by Zywina [156] in the special case K = Q. More precisely we show:

Theorem 1.1.1. Let E/K be an elliptic curve that does not admit complex multiplication. The

inequality [
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)]
< γ1 · [K : Q]γ2 ·max {1, h(E), log[K : Q]}2γ2

holds, where γ1 = exp(1021483) and γ2 = 2.4 · 1010.

Remark 1.1.2. We actually prove a more precise result (theorem 1.9.1), from which the present

bound follows through elementary estimates. The large constants appearing in this theorem have a

1
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very strong dependence on those of theorem 1.2.1; unpublished results that Eric Gaudron and Gaël

Rémond have been kind enough to share with the author show that the statement can be improved

to [
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)]
< γ3 · ([K : Q] ·max {1, h(E), log[K : Q]})γ4

with the much better constants γ3 = exp
(
1.9 · 1010

)
and γ4 = 12395, cf. remark 1.9.4.

As an easy corollary we also get:

Corollary 1.1.3. Let E/K be an elliptic curve that does not admit complex multiplication. There

exists a constant γ(E/K) with the following property: for every x ∈ Etors(K) (of order denoted

N(x)) the inequality

[K(x) : K] ≥ γ(E/K)N(x)2

holds. We can take γ(E/K) =
(
ζ(2) ·

[
GL2

(
Ẑ
)

: ρ∞
(
Gal(K/K)

) ])−1
, which can be explicitly

bounded thanks to the main theorem.

Remark 1.1.4. This corollary (with the same proof, but with a non-effective γ(E/K)) follows directly

from the aforementioned theorem of Serre ([116, §4, Théorème 3]). The exponent 2 for N(x) is best

possible, as is easily seen from the proof by taking N = `, a prime large enough that G` = GL2(Z`).
It should also be pointed out that for a general (possibly CM) elliptic curve Masser ([67, p. 262])

proves an inequality of the form

[K(x) : K] ≥ γ′(K)h(E)−3/2 N(x)

logN(x)
,

where γ′(K) is an effectively computable (but non-explicit) constant that only depends on [K : Q].

We briefly sketch the proof strategy, highlighting differences and similarities between our approach

and that of [156]. By a technique due to Masser and Wüstholz (cf. [71], [72] and [68]), and which is

by now standard, it is possible to give a bound on the largest prime ` for which the representation

modulo ` is not surjective; an argument of Serre then shows that (for ` ≥ 5) this implies full `-adic

surjectivity. This eliminates all the primes larger than a computable bound (actually, of all those

that do not divide a quantity that can be bounded explicitly in terms of E). We then have to deal

with the case of non-surjective reduction, that is, with a finite number of ‘small’ primes.

In [156] these small primes are treated using two different techniques. All but a finite number of them

are dealt with by studying a family of Lie algebras attached to G`; this analysis is greatly simplified

by the fact that the reduction modulo ` of G` is not contained in a Borel subgroup of GL2(F`), a

result depending on the hard theorem of Mazur on cyclic `-isogenies. The remaining primes belong

to an explicit list (again given by Mazur’s results), and are treated by an application of Faltings’

theorem to certain modular curves. This approach, however, has two important drawbacks. On the

one hand, effective results on cyclic isogenies do not seem – at present – to be available for arbitrary

number fields, so the use of Mazur’s theorem is a severe obstacle in generalizing this technique to

number fields larger than Q. On the other hand, and perhaps more importantly, the use of Faltings’

theorem is a major hindrance to effectivity, since making the result explicit for a given number field

K would require understanding the K-points of a very large number of modular curves, a task that

currently seems to be far beyond our reach.



Chapter 1. Adelic bounds for elliptic curves 3

While we do not introduce any new ideas in the treatment of the large primes, relying by and

large on the methods of Masser-Wüstholz, we do put forward a different approach for the small

primes that allows us to bypass both the difficulties mentioned above. With respect to [156], the

price to pay to avoid the use of Mazur’s theorem is a more involved analysis of the Lie algebras

associated with subgroups of GL2(Z`), which is done here without using a congruence filtration, but

dealing instead with all the orders at the same time; this approach seems to be more natural, and

proves more suitable for generalization to arbitrary number fields. We also avoid the use of Faltings’

theorem entirely. This too comes at a cost, namely replacing uniform bounds with functions of the

Faltings height of the elliptic curve, but it has the advantage of giving a completely explicit result,

which does not depend on the (potentially very complicated) arithmetic of the K-rational points

on the modular curves.

The organization of the present chapter reflects the steps alluded to above: in section 1.2 we recall

an explicit form of the isogeny theorem (as proved by Gaudron and Rémond in [28] building on the

work of Masser and Wüstholz) and an idea of Masser that will help improve many of the subsequent

estimates by replacing an inequality with a divisibility condition. In sections 3 through 6 we prove

the necessary results on the relation between Lie algebras and closed subgroups of GL2(Z`); the

main technical tool we use to show that the Galois image is large is the following theorem, which

is proved in sections 1.4 (for odd `) and 1.5 (for ` = 2):

Theorem 1.1.5. Let ` be an odd prime (resp. ` = 2). For every closed subgroup G of GL2(Z`)
(resp. every closed subgroup whose reduction modulo 2 is trivial if ` = 2) define L(G) to be the

Z`-span of
{
g − tr(g)

2 · Id
∣∣ g ∈ G}.

Let H be a closed subgroup of GL2(Z`). There is a closed subgroup H1 of H, of index at most 24

(resp. with trivial reduction modulo 2 and of index at most 192 for ` = 2), such that the following

implication holds for all positive integers s: if L(H1) contains `ssl2(Z`), then H1 itself contains

B`(4s) =
{
g ∈ SL2(Z`)

∣∣ g ≡ Id (mod `4s)
}

(resp. B2(6s) for ` = 2).

The methods of these sections are then applied in section 1.7 to get bounds valid for every prime `

(cf. theorem 1.7.5, which might have some independent interest), while section 1.8 deals with the

large primes through the aforementioned ideas of Masser and Wüstholz. Finally, in section 1.9 we

put it all together to get the adelic estimate.

1.2 Preliminaries on isogeny bounds

The main tool that makes all the effective estimates possible is a very explicit isogeny-type theorem

taken from [28], which builds on the seminal work of Masser and Wüstholz (cf. [70] and [72]). To

state it we will need some notation: we let α(g) = 210g3 and define, for any abelian variety A/K of

dimension g,

b([K : Q], g, h(A)) =
(

(14g)64g2 [K : Q] max (h(A), log[K : Q], 1)2
)α(g)

.

Theorem 1.2.1. ([28] Théorème 1.4; cf. also the section ‘Cas elliptique’ ) Let K be a number field

and A,A∗ be two abelian K-varieties of dimension g. If A,A∗ are isogenous over K, then there
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exists a K-isogeny A∗ → A whose degree is bounded by b([K : Q],dim(A), h(A)). If E is an elliptic

curve without complex multiplication over K, then the same holds with b([K : Q], dim(A), h(A))

replaced by

1013[K : Q]2 max (h(E), log[K : Q], 1)2 .

Remark 1.2.2. As the notation suggests, the three arguments of b will always be the degree of a

number field K, the dimension g of an abelian variety A/K and its stable Faltings height h(A).

Remark 1.2.3. Unpublished results of Gaudron and Rémond show that if A is the N -th power of

an elliptic curve E/K and A∗ is K-isogenous to A, then a K-isogeny A∗ → A exists whose degree

does not exceed 1013N [K : Q]2N max (h(E), log[K : Q], 1)2N .

The following theorem follows easily from the arguments in Masser’s paper [68]; however, since it is

never stated explicitly in the form we need, in the interest of completeness we include a short proof.

Theorem 1.2.4. (Masser) Suppose that A/K is an abelian variety that is isomorphic over K to

a product Ae11 × . . . × Aenn , where A1, . . . , An are simple over K, mutually non-isogenous over K,

and have trivial endomorphism ring over K. Let b ∈ R be a constant with the following property:

for every K-abelian variety A∗ isogenous to A over K there exists an isogeny ψ : A∗ → A with

degψ ≤ b. Then there exists an integer b0 ≤ b with the following property: for every K-abelian

variety A∗ isogenous to A over K there exists an isogeny ψ0 : A∗ → A with degψ0

∣∣ b0.

Proof. We take the notation of [68], which we briefly recall. Let m be a positive integer and G

be a Gal(K/K)-submodule of A[m]. For every K-endomorphism τ of A we denote by kerm τ the

intersection ker τ ∩A[m]; we also define

fm(G) := min
τ

[kerm τ : G] ,

where the minimum is taken over all τ in EndK(A) with G ⊆ kerm τ . By [68, Lemma 3.3] we

have fm(G) ≤ b for every positive integer m and every Galois submodule G of A[m]. We set

b0 := maxm,G fm(G), where the maximum is taken over all positive integers m and all Galois

submodules G of A[m]: clearly we have b0 ≤ b. Now if A∗ is a K-abelian variety that is K-

isogenous to A over K, then by [68, Lemma 4.1] there exists a K-isogeny ψ : A∗ → A such that

degψ
∣∣ b0, and this establishes the theorem. Notice that in order to apply [68, Lemma 4.1] we need

i(EndK(A)) = 1 (in the notation of [68]), which can be deduced as in [68, p. 185, proof of Theorem

2].

We will denote by b0(K,A) the minimal b0 with the property of the above theorem; in particular

b0(K,A) ≤ b([K : Q], h(A), dim(A)). Consider now b0(K ′, A) as K ′ ranges over the finite exten-

sions of K of degree bounded by d. On one hand, b0(K,A) divides b0(K ′, A); on the other hand

b0(K ′, A) ≤ b(d[K : Q], h(A), dim(A)) stays bounded, and therefore the number

b0(K,A; d) = lcm
[K′:K]≤d

b0(K ′, A)

is finite. The function b0(K,A; d) is studied in [68], Theorem D, mostly through the following

elementary lemma:
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Lemma 1.2.5. ([68, Lemma 7.1]) Let X,Y ≥ 1 be real numbers and B be a family of natural

numbers. Suppose that for every positive integer t and every subset A of B with |A| = t we have

lcm(A) ≤ XY t. The least common multiple of the elements of B is then finite, and does not exceed

4eYX1+log(C), where e = exp(1).

By adapting Masser’s argument to the function b(d[K : Q], h(A),dim(A)) at our disposal it is

immediate to prove:

Proposition 1.2.6. If A is of dimension g ≥ 1 and satisfies the hypotheses of the previous theorem,

then

b0(K,A; d) ≤ 4exp(1)·(d(1+log d)2)
α(g)

b([K : Q], dim(A), h(A))1+α(g)(log(d)+2 log(1+log d)).

If E is an elliptic curve without complex multiplication over K, then the number b0(K,E; d) is

bounded by

4exp(1)·d2(1+log d)2
(

1013[K : Q]2 max (h(E), log[K : Q], 1)2
)1+2 log d+2 log(1+log d)

.

Proof. We can clearly assume d ≥ 2. We apply the lemma to B = {b0(K ′, A)}[K′:K]≤d. Choose t

elements of B, corresponding to extensions K1, . . . ,Kt of K, and set L = K1 · · ·Kt. We claim that

max
{

log(dt[K : Q]), 1
}
≤ (1 + log(d))t max {1, log[K : Q]} .

Indeed the right hand side is clearly at least 1, so it suffices to show the inequality

t log(d) + log[K : Q] ≤ (1 + log(d))t max {1, log[K : Q]} ;

as log(d) > 0, we have (1 + log(d))t ≥ 1 + t log(d) by Bernoulli’s inequality, and the claim follows.

We thus see that lcm(b0(K1, A), . . . , b0(Kt, A)) divides

b0(L,A) ≤ b([L : Q],dim(A), h(A))

≤ b(dt[K : Q], dim(A), h(A))

≤
((
d(1 + log d)2

)α(g)
)t
b([K : Q], dim(A), h(A)),

so we can apply the above lemma with

X = b([K : Q],dim(A), h(A)), Y =
(
d(1 + log d)2

)α(g)

to get the desired conclusion. The second statement is proved in the same way using the corres-

ponding improved bound for elliptic curves.

Remark 1.2.7. We are only going to use the function b0(K,A; d) for bounded values of d (in fact,

d ≤ 24), so the essential feature of the previous proposition is to show that, under this constraint,

b0(K,A; d) is bounded by a polynomial in b([K : Q], dim(A), h(A)).

Also notice that, if A = E2 is the square of an elliptic curve E/K, then using the improved version

of theorem 1.2.1 mentioned in remark 1.2.3 we get

b0
(
K,E2; d

)
≤ 4exp(1)·d4(1+log d)4

(
1026[K : Q]4 max (h(E), log[K : Q], 1)4

)1+4 log d+4 log(1+log d)
.

We record all these facts together as a theorem for later use:

Theorem 1.2.8. Suppose A/K is an abelian variety, isomorphic over K to a product of simple

abelian varieties, each having trivial endomorphism ring over K. There exists a positive integer
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b0(K,A), not exceeding b([K : Q],dim(A), h(A)), with the following property: if A∗ is isogenous to

A over K, then there exists an isogeny A∗ → A, defined over K, whose degree divides b0(K,A).

Furthermore, for every fixed d the function

b0(K,A; d) = lcm[K′:K]≤d b0(K ′, A)

exists and is bounded by a polynomial in b([K : Q], dim(A), h(A)).

1.3 Group theory for GL2(Z`)

Let ` be any rational prime. The subject of the following four sections is the study of certain Lie

algebras associated with closed subgroups of GL2(Z`); the construction we present is inspired by

Pink’s paper [97], but we will have to extend his results in various directions: in particular, our

statements apply to GL2(Z`) (and not just to SL2(Z`)), to any `, including 2, and to arbitrary (not

necessarily pro-`) subgroups. The present section contains a few necessary, although elementary,

preliminaries on congruence subgroups, and introduces the relevant objects and notations.

1.3.1 Congruence subgroups of SL2(Z`)

We aim to study the structure of the congruence subgroups of SL2(Z`), which we denote

B`(n) =
{
x ∈ SL2(Z`)

∣∣ x ≡ Id (mod `n)
}
.

Notation. We let v` be the standard discrete valuation of Z` and set v = v`(2) (namely v = 0

if ` 6= 2 and v = 1 otherwise). We also let

(1
2

k

)
denote the generalized binomial coefficient(1

2

k

)
=

1

k!

k−1∏
i=0

(
1

2
− i
)

and define
√

1 + t to be the formal power series
∑
k≥0

(1
2

k

)
tk.

The first piece of information we need is the following description of a generating set for B`(n):

Lemma 1.3.1. For n ≥ 1 the group B`(n) is generated by the elements

La =

(
1 0

a 1

)
, Rb =

(
1 b

0 1

)
and Dc =

(
1 + c 0

0 1
1+c

)
for a, b, c ranging over `nZ`.

Proof. Let x =

(
x11 x12

x21 x22

)
be an element of B`(n). Since x11 ≡ 1 (mod `), it is in particular a

unit, so a = −x21

x11
has valuation v`(a) = v`(x21) ≥ n, i.e. a ∈ `nZ`. Next we compute

Lax =

(
x11 x12

0 ax12 + x22

)
;

we are thus reduced to the case x21 = 0. Under this hypothesis, and choosing b = −x12

x11
, it is easily

seen that xRb ∈ B`(n) is diagonal, and since every diagonal matrix in B`(n) is by definition of the

form Dc for some c ∈ `nZ` we are done.
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We will also need a description of the derived subgroup of B`(n); in order to prove the relevant

result, we first need a simple-minded lemma on valuations that will actually come in handy in many

instances:

Lemma 1.3.2. Let x ∈ Z`. We have:

1. For ` = 2 and v2(x) ≥ 3 the series
√

1 + x =
∑
k≥0

(1
2

k

)
xk converges to the only solution λ of

the equation λ2 = 1+x that satisfies λ ≡ 1 (mod 4). The inequality v2(
√

1 + x−1) ≥ v2(x)−1

holds.

2. For ` 6= 2 and v`(x) > 0 the series
√

1 + x =
∑
k≥0

(1
2

k

)
xk converges to the only solution λ of

the equation λ2 = 1 + x that satisfies λ ≡ 1 (mod `). The equality v`(
√

1 + x − 1) = v`(x)

holds.

Proof. For ` = 2 we have

v2

((1
2

k

))
= v2

(
(1/2)(−1/2)...(−(2k − 3)/2)

k!

)
= −k − v2(k!) ≥ −2k,

while for any other prime

v`

((1
2

k

))
= v`

(
k−1∏
i=1

(2i− 1)

)
− v`(k!) ≥ −v`(k!) ≥ − 1

`− 1
k.

Convergence of the series is then immediate in both cases, and the identity of power series∑
k≥0

(1
2

k

)
tk

2

= 1 + t

implies that, for every x such that the series converges,
∑

k≥0

(1
2

k

)
xk is indeed a solution to the

equation λ2 = 1 + x.

Let now ` = 2. Note that in the series expansion
√

1 + x− 1 =
∑

k≥1

(1
2

k

)
xk all the terms, except

perhaps the first one, have valuation at least

(v2(x)− 2) · 2 ≥ v2(x)− 1;

as for the first term, it is simply x
2 , so it has exact valuation v2(x) − 1 and we are done; a similar

argument works for ` 6= 2, except now v`
(
x
2

)
= v`(x). The congruence

√
1 + x ≡ 1 (mod 4) (resp.

modulo `) now follows.

Lemma 1.3.3. For n ≥ 1 the derived subgroup of B`(n) contains B`(2n+ 2v).

Proof. Take Rb =

(
1 b

0 1

)
with b ≡ 0 (mod `2n+2v) and set β = `n. By the above lemma 1 + b

β has

a square root y congruent to 1 modulo ` that automatically satisfies y ≡ 1 (mod `n), so

M =

(
y 0

0 1
y

)
and N =

(
1 β

0 1

)
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both belong to B`(n). It is immediate to compute

MNM−1N−1 =

(
1 β(y2 − 1)

0 1

)
=

(
1 b

0 1

)
,

so Rb is an element of B`(n)′. Similar identities also show that, for every a ≡ 0 (mod 22n+2v), the

derived subgroup B`(n)′ contains

(
1 0

a 1

)
= La. To finish the proof (using lemma 1.3.1) we now

just need to show that B`(n)′ contains Dc for every c ≡ 0 (mod `2n+2v). This is done through an

identity similar to the above, namely we set

M =

( √
1 + c 0
−c

β
√

1+c
1√
1+c

)
and N =

(
1 β
c
β c+ 1

)

and compute that MNM−1N−1 =

(
1 + c 0

0 1
1+c

)
= Dc. The only thing left to check is that M

and N actually belong to B`(n), which is easily done by observing that
√

1 + c ≡ 1 (mod `n) by

the series expansion and that v`

(
−c

β
√

1 + c

)
≥ 2n+ 2v − n ≥ n.

To conclude this paragraph we describe a finite set of generators for the congruence subgroups of

SL2(Z2):

Lemma 1.3.4. Let a, u ∈ Z2 and La =

(
1 0

a 1

)
. Let G be a closed subgroup of SL2(Z2). If La ∈ G,

then G also contains Lau =

(
1 0

au 1

)
. Similarly, if G contains Rb =

(
1 b

0 1

)
, then it also contains

Rbu for every u ∈ Z2. Finally, if c ≡ 0 (mod 4) and G contains Dc =

(
1 + c 0

0 1
1+c

)
, then G

contains Dcu for every u ∈ Z2.

Let s be an integer no less than 2. If a, b, c ∈ 4Z2 are such that max {v2(a), v2(b), v2(c)} ≤ s, and if

G contains La, Rb and Dc, then G contains B2(s).

Proof. We show that the set W consisting of the w in Z2 such that Law belongs to G is a closed

subgroup of Z2 containing 1. Indeed, Law1Law2 = La(w1+w2) by an immediate direct calculation, so

in particular L−1
aw = L−aw; furthermore 1 ∈ W by hypothesis, and if wn is a sequence of elements

of W converging to w, then {Lawn} ⊆ G converges to Law, and since G is closed Law itself belongs

to G, so w ∈ W . It follows that W is closed and contains the integers, and since Z is dense in Z2

we get W = Z2 as claimed. Given that u 7→ Rbu is a group morphism the same proof also works

for the family Rbu. The situation with the family Dcu is slightly different, in that u 7→ Dcu is not a

group morphism; however, if w ∈ Z2, then we see that

(Dc)
w =

(
(1 + c)w 0

0 1
(1+c)w

)
is well-defined and belongs to G (indeed this is trivially true for w ∈ Z, and then we just need argue

by continuity). As c ≡ 0 (mod 4) we also have the identity (1 + c)w = exp(w log(1 + c)), since

all the involved power series converge: more precisely, for any γ in 4Z2 the series
∑∞

j=1(−1)j+1 γj

j
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converges and defines log(1 + γ), and since the inequality v2(γj) − v2(j) > v2(γ) holds for every

j ≥ 2 we have v2(log(1+γ)) = v2(γ) ≥ 2. Suppose now that v2(γ) ≥ v2(c): then w = log(1+γ)
log(1+c) exists

in Z2, so we can consider (1 + c)w = exp(w log(1 + c)) = exp(log(1 + γ)) = 1 + γ and therefore for

any such γ the matrix Dγ belongs to G. The last statement is now an immediate consequence of

lemma 1.3.1.

1.3.2 Lie algebras attached to subgroups of GL2(Z`)

Our study of the groups G` will go through suitable integral Lie algebras, for which we introduce

the following definition:

Definition 1.3.5. Let A be a commutative ring. A Lie algebra over A is a finitely presented

A-module M together with a bracket [·, ·] : M ×M → M that is A-bilinear, antisymmetric and

satisfies the Jacobi identity. For any A, the module sl2(A) =
{
M ∈M2(A)

∣∣ tr(M) = 0
}

endowed

with the usual commutator is a Lie algebra over A. The same is true for gl2(A), the set of all 2× 2

matrices with coefficients in A.

We restrict our attention to the case A = Z`, and try to understand closed subgroups G of GL2(Z`)
by means of a surrogate of the usual Lie algebra construction. In order to do so, we introduce the

following definitions, inspired by those of [97]:

Definition 1.3.6. Let G be a closed subgroup of GL2(Z`); if ` = 2, suppose that the image of G

in GL2(F2) is trivial. We set

Θ : G → sl2 (Z`)
g 7→ g − 1

2 tr(g) · Id .

Note that this definition makes sense even for ` = 2, since by hypothesis the 2-adic valuation of the

trace of g is at least 1.

Definition 1.3.7. The special Lie algebra of G, denoted L(G) (or simply L if no confusion can

arise), is the closed subgroup of sl2(Z`) topologically generated by Θ(G). We further define C(G),

or simply C, as the closed subgroup of Z` topologically generated by all the traces tr(xy) for x, y

in L(G).

Remark 1.3.8. 1. L(G) is indeed a Lie algebra because of the identity

[Θ(x),Θ(y)] = Θ(xy)−Θ(yx).

2. If G is a subgroup of H then L(G) is contained in L(H).

3. C is a Z`-module: indeed it is a Z-module, and the action of Z is continuous for the `-adic

topology, so it extends to an action of Z` since C is closed. Therefore C is an ideal of Z`.

The key importance of L(G), at least for odd `, lies in the following result:

Theorem 1.3.9. ([97, Theorem 3.3]) Let ` be an odd prime and G be a pro-` subgroup of SL2(Z`).
Set L2 = [L(G), L(G)] and

H2 =
{
x ∈ SL2(Z`)

∣∣ Θ(x) ∈ L2, tr(x)− 2 ∈ C(G)
}
.

Then H2 is the derived subgroup of G.
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On the other hand, for ` = 2 the property of Θ that will be crucial for our study of L is the following

approximate addition formula:

Lemma 1.3.10. ([97, Formula 1.3]) For every g1, g2 ∈ GL2(Z`), if ` 6= 2 (respectively for every

g1, g2 ∈
{
x ∈ GL2(Z2)

∣∣ tr(x) ≡ 0 (mod 2)
}

, for ` = 2), the following identity holds:

2 (Θ(g1g2)−Θ(g1)−Θ(g2)) = [Θ(g1),Θ(g2)] + (tr(g1)− 2) Θ(g2) + (tr(g2)− 2) Θ(g1).

In what follows we will often want to recover partial information on G from information about the

reduction of G modulo various powers of `. It is thus convenient to use the following notation:

Notation. We denote by G(`n) the image of the reduction map G → GL2(Z/`nZ). We also let π

be the projection map G→ G(`).

We now record a simple fact about modules over DVRs we will need later:

Lemma 1.3.11. Let A be a DVR, n a positive integer, M a subset of An and N = 〈M〉 the

submodule of An generated by M . Denote by πk the projection An → A on the k-th component.

There exist a basis x1, . . . , xm of N consisting of elements of M and scalars (σij)1≤j<i≤m ⊆ A with

the following property: if we define inductively t1 = x1 and ti = xi − Σj<iσijtj for i ≥ 2, then

πk (xi − Σj<lσijtj) = 0 for every 1 ≤ k < l ≤ i ≤ m. The tj are again a basis of N .

Proof. We proceed by induction on n. The case n = 1 is easy: M is just a subset of A, and the claim

is that the ideal generated by M can also be generated by a single element of M , which is clear.

Consider now a subset M of An+1. Let ν be the discrete valuation of A; the set
{
ν(π1(x))

∣∣ x ∈M}
consists of non-negative integers, therefore it admits a minimum k1. Take x1 to be any element of

M such that ν(π1(x1)) = k1. For every element m ∈M we can form f(m) = m− π1(m)

π1(x1)
x1, which

is again an element of An+1 since by definition of x1 we have π1(x1)
∣∣ π1(m). It is clear enough

that π1(f(m)) = 0 for all m ∈M . Therefore f(M) is a subset of {0} ⊕An, and it is also apparent

that the module generated by x1 and f(M) is again N . Apply the induction hypothesis to f(M)

(thought of as a subset of An). It yields a basis f(x2), . . . , f(xm) of f(M), scalars (τij)2≤j<i≤m,

and a sequence u2 = f(x2), ui = f(xi) −
∑

2≤j<i τijuj , such that πk(f(xi) − Σ2≤j<lτijuj) = 0 for

2 ≤ k < l ≤ i ≤ m. We also have π1(f(xi) − Σ2≤j<lτijuj) = 0 if we view the ui as elements

of An+1. It is now enough to show that, with this choice of the xi, it is possible to find scalars

σij , 1 ≤ j < i ≤ m, in such a way that ti = ui for i ≥ 2, and this we prove again by induction. By

definition u2 = f(x2) = x2−
π1(x2)

π1(x1)
x1, so we can take σ21 =

π1(x2)

π1(x1)
. Assuming we have proved the

result up to level i, then, we have

ui+1 = f(xi+1)−
∑

2≤j<i+1

τijuj = xi+1 −
π1(xi+1)

π1(x1)
x1 −

∑
2≤j<i+1

τijtj ,

and we simply need to take σi+1,1 =
π1(xi+1)

π1(x1)
and σij = τij .

As for the last statement, observe that the matrix giving the transformation from the xi to the tj

is unitriangular, hence invertible.
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1.3.3 Subgroups of GL2(Z`), SL2(Z`), and their reduction modulo `

In view of the next sections it is convenient to recall some well-known facts about the subgroups of

GL2(F`), starting with the following definition:

Definition 1.3.12. A subgroup J of GL2(F`) is said to be:

• split Cartan, if J is conjugated to the subgroup of diagonal matrices. In this case the order

of J is prime to `.

• nonsplit Cartan, if there exists a subalgebra A of M2(F`) that is a field and such that

J = A×. The order of J is prime to `, and J is conjugated to

{(
a bε

b a

)
∈ GL2(F`)

}
, where

ε is a fixed quadratic nonresidue.

• the normalizer of a split (resp. nonsplit) Cartan, if there exists a split (resp. nonsplit)

Cartan subgroup C such that J is the normalizer of C. The index [J : C] is 2, and ` does not

divide the order of J (unless ` = 2).

• Borel, if J is conjugated to the subgroup of upper-triangular matrices. In this case J has a

unique `-Sylow, consisting of the matrices of the form

(
1 ∗
0 1

)
.

• exceptional, if the projective image PJ of J in PGL2(F`) is isomorphic to either A4, S4 or

A5, in which case the order of PJ is either 12, 24 or 60.

The above classes essentially exhaust all the subgroups of GL2(F`). More precisely we have:

Theorem 1.3.13. (Dickson’s classification, cf. [116]) Let ` be a prime number and J be a subgroup

of GL2(F`). Then we have:

• if ` divides the order of J , then either J contains SL2(F`) or it is contained in a Borel subgroup;

• if ` does not divide the order of J , then J is contained in a (split or nonsplit) Cartan subgroup,

in the normalizer of one, or in an exceptional group.

As subgroups of SL2(F`) are in particular subgroups of GL2(F`), the above classification also covers

all subgroups of SL2(F`). Cartan subgroups of SL2(F`) are cyclic (both in the split and nonsplit

case).

The next lemma can be proved by direct inspection of the group structure of A4, S4 and A5, and

will help us quantify how far exceptional subgroups are from being abelian:

Lemma 1.3.14. The groups A4 and S4 have abelian subgroups of order N if and only if 1 ≤ N ≤ 4.

The group A5 has abelian subgroups of order N if and only if 1 ≤ N ≤ 5.

The following lemma, due to Serre, will prove extremely useful in showing that G` = GL2(Z`) using

only information about the reduction of G` modulo `:
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Lemma 1.3.15. Let ` ≥ 5 be a prime and G be a closed subgroup of SL2(Z`). Suppose that the

image of G in SL2(F`) is equal to SL2(F`): then G = SL2(Z`). Similarly, if H is a closed subgroup

of GL2(Z`) whose image in GL2(F`) contains SL2(F`), then H ′ = SL2(Z`).

Proof. The first statement is [119, IV-23, Lemma 3]. For the second, consider the closed subgroup

H ′ of SL2(Z`). Since by assumption we have ` > 3, the finite group SL2(F`) is perfect, so the image

of H ′ in SL2(F`) contains SL2(F`)′ = SL2(F`). It then follows from the first part of the lemma that

H ′ = SL2(Z`) as claimed.

The following definition will prove useful to translate statements about subgroups of SL2(Z`) into

analogous results for subgroups of GL2(Z`) and vice versa:

Definition 1.3.16. Let G be a closed subgroup of GL2(Z`) (resp. GL2(F`)). The saturation of

G, denoted Sat(G), is the group generated in GL2(Z`) (resp. GL2(F`)) by G and Z×` · Id (resp.

F×` · Id). The group G is said to be saturated if G = Sat(G). We also denote by Gdet=1 the group

G ∩ SL2(Z`) (resp. G ∩ SL2(F`)).

Lemma 1.3.17. The following hold:

1. For every closed subgroup G of GL2(Z`) the groups G and Sat(G) have the same derived

subgroup and the same special Lie algebra.

2. The two associations G 7→ Gdet=1 and H 7→ Sat(H) are mutually inverse bijections between

the sets

G =

{
G subgroup of GL2(Z`)

∣∣∣∣∣ G is saturated,

det(g) is a square for every g in G

}
and

H =
{
H subgroup of SL2(Z`)

∣∣ − Id ∈ H
}
.

For every G in G the groups G and Gdet=1 have the same derived subgroup and the same

special Lie algebra.

3. The map G 7→ Sat(G) commutes with reducing modulo `, i.e.

(Sat(G)) (`) = Sat(G(`)).

If ` is odd and G is saturated we also have G(`)det=1 = Gdet=1(`).

Proof. 1. The statement is obvious for the derived subgroup. As for the special Lie algebra, let λg

be any element of Sat(G), where λ ∈ Z×` and g ∈ G. As L(G) is a Z`-module, Θ(λg) = λΘ(g)

belongs to L(G), hence L(Sat(G)) ⊆ L(G). The other inclusion is trivial.

2. The first statement is immediate to check since the determinant of any homothety is a square;

the other follows by writing G = Sat(H) and applying (1) to (Sat(H))det=1 = H and Sat(H).

3. This is clear for the saturation. For G 7→ Gdet=1 note that G(`)det=1 contains Gdet=1(`),

so we need to show the opposite inclusion. Take any matrix [g] in G(`)det=1. By definition

[g] is the reduction of a certain g ∈ G whose determinant is 1 modulo `. As ` is odd and
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det(g) is congruent to 1 modulo ` we can apply lemma 1.3.2 and write det(g) = λ2, where

λ =
√

1 + (det(g)− 1) is congruent to 1 modulo `. As G is saturated, it contains λ−1 Id,

hence also λ−1g, whose determinant is 1 by construction. Furthermore, as λ ≡ 1 (mod `),

the two matrices λ−1g and g are congruent modulo `. We have thus found an element of G

of determinant 1 that maps to [g], so Gdet=1 → G(`)det=1 is surjective.

Finally, since we will be mainly concerned with the pro-` part of our groups, we will find it useful

to give this object a name:

Notation. If G is a closed subgroup of SL2(Z`) we write N(G) for its maximal normal subgroup

that is a pro-` group.

The following lemma shows that N(G) is well-defined and gives a description of it:

Lemma 1.3.18. Let G be a closed subgroup of SL2(Z`) and π : G→ G(`) the projection modulo `:

then G admits a unique maximal normal pro-` subgroup N(G), which can be described as follows.

1. If G(`) is of order prime to `, then N(G) = kerπ and G(`) ∼=
G

N(G)
.

2. If the order of G(`) is divisible by `, and furthermore G(`) is contained in a Borel subgroup,

then N(G) is the inverse image in G of the unique `-Sylow S of G(`).

3. If G(`) is all of SL2(F`), then N(G) = kerπ and G(`) ∼=
G

N(G)
.

Proof. Let N be a pro-` normal subgroup of G. The image π(N) is a normal pro-` subgroup of

G(`), hence it is trivial in cases (1) and (3) and it is either trivial or the unique `-Sylow of G(`) in

case (2). In cases (1) and (3) it follows that N ⊆ kerπ, and since kerπ is pro-` we see that kerπ

is the unique maximal normal pro-` subgroup of G. In case (2), let S be the unique `-Sylow of

G(`). It is clear that N is contained in π−1(S), which on the other hand is pro-` and normal in G.

Indeed, by choosing an appropriate (triangular) basis for G(`) we can define

G → G(`) → F×`

g 7→

(
a b

0 1/a

)
7→ a,

whose kernel is exactly π−1(S).

1.4 Recovering G from L(G), when ` is odd

Our purpose in this section (for ` 6= 2) and the next (for ` = 2) is to prove results that yield

information on G from analogous information on L(G). The statements we are aiming for are the

following:

Theorem 1.4.1. Let ` be an odd prime and G a closed subgroup of SL2(Z`).

1. Suppose that G(`) is contained in a Cartan or Borel subgroup, and that |G/N(G)| 6= 4. Then

the following implication holds for all positive integers s:
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(?) if L(G) contains `ssl2(Z`), then L(N(G)) contains `2ssl2(Z`).

2. Without any assumption on G, there is a closed subgroup H of G that satisfies [G : H] ≤ 12

and the conditions in (1) (so H has property (?)).

Theorem 1.4.2. Let ` be an odd prime, and G a closed subgroup of GL2(Z`).

1. Suppose that G satisfies the two conditions:

(a) det(g) is a square in Z×` for every g ∈ G;

(b) Sat(G)det=1 satisfies the hypotheses of theorem 1.4.1 (1).

Then the following implication holds for all positive integers s:

(??) if L(G) contains `ssl2(Z`), then G′ contains B`(4s).

2. Without any assumption on G, either G′ = SL2(Z`) or there is a closed subgroup H of G that

satisfies both [G : H] ≤ 24 and the conditions in (1) (so H has property (??)).

Remark 1.4.3. Condition (b) can be made more explicit using the description of the maximal

normal pro-` subgroup given in lemma 1.3.18. The conditions on G can translated into conditions

on (Sat(G))det=1(`): this group should be cyclic or have order divisible by ` and be contained in

a Borel subgroup of GL2(F`). In the first case we require |(Sat(G))det=1(`)| 6= 4; in the second

case we need
∣∣Sat(G)det=1(`)/S

∣∣ 6= 4, where S is the unique `-Sylow of Sat(G)det=1(`). With this

description, it is clear that condition (b) is true if Sat(G)det=1(`) contained in a Borel or Cartan

subgroup and has order not divisible by 4.

Let us remark that the statements numbered (2) in the above theorems require a case by case

analysis, which will be carried out in section 1.4.6 for theorem 1.4.2 (the proof of theorem 1.4.1 (2)

is perfectly analogous). In the same section we will also show that part (1) of theorem 1.4.2 can be

reduced to the corresponding statement in theorem 1.4.1, so the core of the problem lies in proving

the result for SL2(Z`). Before delving into the details of the proof (that involves a certain amount

of calculations) we describe the general idea, which is on the contrary quite simple. The following

paragraph should only be considered as outlining the main ideas, without any pretense of formality.

If G is as in theorem 1.4.1 (1), then G/N(G) is cyclic, and we can fix a generator [g] ∈ G/N(G)

that lifts to a certain g ∈ G. Denote by ϕ the operator x 7→ g−1xg: then ϕ acts on G and,

since it fixes Id, also on L(G). Furthermore it preserves L(N(G)) ⊆ L(G) by normality of N(G)

in G, and obviously it fixes Θ(g). If we were working over Q` instead of Z` we would have a

decomposition L(G) ∼= 〈Θ(g)〉 ⊕ M , where M is a ϕ-stable subspace of dimension 2, and the

projection operator p : L(G)→M could be expressed as a polynomial in ϕ. We would also expect

M to consist of elements coming from N(G), because 〈Θ(g)〉 is simply the special Lie algebra of

〈g〉; this would provide us with many nontrivial elements in L(N(G)). We would finally deduce

the equality L(N(G)) = sl2(Q`) by exploiting the fact that L(N(G)) is a Lie algebra of dimension

at least 2 that is also stable under ϕ. This point of view also suggests that we cannot expect the
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theorem to hold when G(`) is exceptional: if G/N(G) is a simple group, then we expect the special

Lie algebra of G not to be solvable, and since the only non-solvable subalgebra of sl2(Q`) is sl2(Q`)

itself, L(G) should be very large even if N(G) is very small.

In what follows we prove (1) of theorem 1.4.1 first when |G/N(G)| = 2 and then in case G(`) is

respectively contained in a split Cartan, Borel, or nonsplit Cartan subgroup; we then discuss the

optimality of the statement, showing through examples that it cannot be extended to the exceptional

case and that `2s cannot be replaced by anything smaller. Finally, in section 1.4.6 we finish the

proof of theorem 1.4.2.

Notation. For x ∈ L(G) we set πij(x) = xij , the coefficient in the i-th row and j-th column of the

matrix representation of x in sl2(Z`). The maps πij are obviously linear and continuous.

1.4.1 The case |G/N(G)| = 2

Suppose first that G(`) is contained in a Cartan subgroup, so that G/N(G) ∼= G(`). The only

nontrivial element x in G(`) satisfies the relations x2 = Id and det(x) = 1, so it must be − Id. It

follows that G contains an element g of the form − Id +`A for a certain A ∈ M2(Z`). Considering

the sequence

g`
n

= (− Id +`A)`
n

= − Id +O(`n+1)

and given that G is closed we see that − Id is in G. Next observe that for every h ∈ G either h

or −h belongs to N(G). If g1, g2, g3 are elements of G such that Θ(g1),Θ(g2),Θ(g3) is a basis for

L(G), then on the one hand for each i either gi or −gi belongs to N(G), and on the other hand

Θ(−gi) = −Θ(gi), so L(G) = L(N(G)) and the claim follows.

Next suppose G(`) is contained in a Borel subgroup. We can assume that the order of G(`) is

divisible by `, for otherwise G(`) is cyclic and we are back in the previous case. The canonical

projection G→ G/N(G) factors as

G → G(`) → F×`

g 7→

(
a b

0 1/a

)
7→ a,

so if G/N(G) has order 2 we can find in G(`) an element of the form

(
−1 b

0 −1

)
. Taking the `-th

power of this element shows that G(`) contains − Id and we conclude as above.

1.4.2 The split Cartan case

Suppose that G(`) is contained in a split Cartan, so that, by choosing a suitable basis, we can

assume that G(`) is contained in the subgroup of diagonal matrices of SL2(F`). Fix an element

g ∈ G such that [g] ∈ G(`) is a generator. By assumption the order of [g] is not 4, and by the

previous paragraph we can assume it is not 2; furthermore it is not divisible by `. The minimal

polynomial of [g] is then separable, and [g] has two distinct eigenvalues in F×` . It follows that g can

be diagonalized over Z` (its characteristic polynomial splits by Hensel’s lemma), and we can choose

a basis in which g =

(
a 0

0 1/a

)
, where a is an `-adic unit. Note that our assumption that |G(`)|
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does not divide 4 implies in particular that a4 6≡ 1 (mod `). A fortiori ` does not divide a2 − 1, so

the diagonal coefficients of Θ(g) =

(
a2−1

2a 0

0 −a2−1
2a

)
are `-adic units. The following lemma allows

us to choose a basis of L(G) containing Θ(g):

Lemma 1.4.4. Suppose g ∈ G is such that Θ(g) is not zero modulo `. The algebra L(G) admits a

basis of the form Θ(g),Θ(g2),Θ(g3), where g2, g3 are in G.

Proof. Recall that L(G) is of rank 3 since it contains `ssl2(Z`). Start by choosing g1, g2, g3 ∈ G
such that Θ(g1),Θ(g2),Θ(g3) is a basis for L(G). As Θ(g) is not zero modulo `, from an equality

of the form

Θ(g) =

3∑
i=1

λiΘ(gi)

we deduce that at least one of the λi is an `-adic unit, and we can assume without loss of generality

that it is λ1. But then

Θ(g1) = λ−1
1 (Θ(g)− λ2Θ(g2)− λ3Θ(g3)) ,

and we can replace g1 with g.

Recall that we denote by ϕ the endomorphism of sl2(Z`) given by x 7→ g−1xg. We now prove that

L(N(G)) is ϕ-stable and, more generally, describe the ϕ-stable subalgebras of sl2(Z`).

Lemma 1.4.5. Let ` be an odd prime, G a closed subgroup of GL2(Z`), N a normal closed subgroup

of G and g an element of G. The special Lie algebra L(N) is stable under ϕ.

Proof. As Θ(N) generates L(N) it is enough to prove that ϕ stabilizes Θ(N). Let x = Θ(n) for a

certain n ∈ N : then

g−1xg = g−1

(
n− tr(n)

2
Id

)
g = g−1ng − tr(g−1ng)

2
Id = Θ(g−1ng),

and this last element is in Θ(N) since N is normal in G.

Lemma 1.4.6. Let s be a non-negative integer. Let L be a ϕ-stable Lie subalgebra of sl2(Z`) and

x11, x12, x21, y11, y12, y21 be elements of Z` with v`(x21) ≤ s and v`(y12) ≤ s. If L contains both

l1 =

(
x11 x12

x21 −x11

)
and l2 =

(
y11 y12

y21 −y11

)
, then it contains all of `2ssl2(Z`).

Proof. Consider first the case x12 = y21 = 0. We compute

ϕ(l1) =

(
x11 0

a2x21 −x11

)
,

so L contains

(
x11 0

a2x21 −x11

)
− l1 =

(
0 0

(a2 − 1)x21 0

)
, where by our hypothesis on a the valuation

of the bottom-left coefficient is at most s. Analogously, L contains

(
0 (a2 − 1)y12

0 0

)
, and since it

is a Lie algebra it also contains the commutator[(
0 (a2 − 1)y12

0 0

)
,

(
0 0

(a2 − 1)x21 0

)]
=

(
(a2 − 1)2x21y12 0

0 −(a2 − 1)2x21y12

)
,
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whose diagonal coefficients have valuation at most 2s. This establishes the lemma in case x12 and

y21 are both zero, since the three elements we have found generate `2ssl2(Z`). The general case is

then reduced to the previous one by replacing l1, l2 with

a2ϕ(l1)− l1 =

(
(a2 − 1)x11 0

(a4 − 1)x21 −(a2 − 1)x11

)
and a−2ϕ(l2)− l2, and noticing that since by assumption ` - a4−1 we have v`((a

4−1)x21) = v`(x21)

and v`((a
−4 − 1)y12) = v`(y12).

We know from lemma 1.4.5 that L(N(G)) is ϕ-stable, so in order to apply lemma 1.4.6 to L(N(G))

we just need to find two elements l1, l2 in L(N(G)) with the property that v` ◦ π21(l1) ≤ s and

v` ◦ π12(l2) ≤ s. Since the values of the diagonal coefficients do not matter for the application of

this lemma we will simply write ∗ for any diagonal coefficient appearing from now on. In particular

we write g2, g3,Θ(g2),Θ(g3) in coordinates as follows:

gi =

(
∗ g

(i)
12

g
(i)
21 ∗

)
,Θ(gi) =

(
∗ g

(i)
12

g
(i)
21 ∗

)
.

As [g] generates G(`), for i = 2, 3 there exist ki ∈ N such that [gi] = [g]ki , or equivalently such that

g−kigi ∈ N(G). Since Θ(g),Θ(g2),Θ(g3) generate `ssl2(Z`), but the off-diagonal coefficients of Θ(g)

vanish, we can choose two indices i1, i2 ∈ {2, 3} such that v`◦π21(Θ(gi1)) ≤ s and v`◦π12(Θ(gi2)) ≤ s.
On the other hand, L(N(G)) contains

Θ(g−kigi) = Θ

((
a−ki 0

0 aki

)(
∗ g

(i)
12

g
(i)
21 ∗

))
=

(
∗ a−kig

(i)
12

akig
(i)
21 ∗

)
,

where a±ki is an `-adic unit. The `-adic valuation of the off-diagonal coefficients of Θ(g−kigi) is then

the same as that of the corresponding coefficients of Θ(gi), and we find two elements l1 = Θ(g−ki1gi1)

and l2 = Θ(g−ki2gi2) that satisfy v` ◦π21(l1) ≤ s and v` ◦π12(l2) ≤ s as required. We can now apply

lemma 1.4.6 with (L, g, l1, l2) = (L(N(G)), g,Θ(gi1),Θ(gi2)) and deduce that L(N(G)) contains

`2ssl2(Z`), as claimed.

1.4.3 The Borel case

Suppose G(`) is included in a Borel subgroup. If the order of G(`) is prime to `, then G(`) is in fact

contained in a split Cartan subgroup, and we are reduced to the previous case. We can therefore

assume without loss of generality that the order of G(`) is divisible by `. In this case we know that

N(G) is the inverse image in G of the unique `-Sylow of G(`), and that the canonical projection

G→ G/N(G) factors as

G → G(`) → F×`

g 7→

(
a b

0 1/a

)
7→ a.

Let H be the image of this map. The group H is cyclic and we can assume that its order does not

divide 4: it is not 4 by hypothesis and if it is 1 or 2 we are done. Let g be any inverse image in G

of a generator of H. The matrix representing g can be diagonalized over Z` since the characteristic

polynomial of [g] ∈ G(`) is separable, and the same exact argument as in the previous paragraph
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shows that we can choose a basis of L(G) of the form Θ(g),Θ(g2),Θ(g3). By definition of H we see

that for i = 2, 3 there is an integer ki such that [gi] = [g]ki in G/N(G), and the rest of the proof is

identical to that of the previous paragraph.

1.4.4 The nonsplit Cartan case

Suppose now that G(`) is contained in a nonsplit Cartan subgroup. Fix a g ∈ G such that [g]

generates G(`). We know that [g] is of the form

(
[a] [bε]

[b] [a]

)
, where [ε] is a fixed quadratic nonresidue

modulo `. In order to put g into a standard form we need the following elementary lemma, which

is an `-adic analogue of the Jordan canonical form over the reals.

Lemma 1.4.7. Up to a choice of basis of Z2
` , the matrix representing g can be chosen to be of the

form

(
a bε

b a

)
for certain a, b, ε lifting [a], [b], [ε], and where moreover a, b are `-adic units.

Proof. The characteristic polynomial of [g] splits over F`
[√

[ε]
]
, so by Hensel’s lemma the char-

acteristic polynomial of g splits over Z` [
√
ε]. The two eigenvalues of g in Z` [

√
ε] are of the form

a ± b
√
ε for certain a, b ∈ Z` (the notation is coherent: since the eigenvalues of [g] are simply the

projections of the eigenvalues of g, the elements a, b map to [a], [b] modulo `, respectively).

By definition of eigenvalue we can find a vector v+ ∈ Z`[
√
ε]2 such that gv+ = (a + b

√
ε)v+.

Normalize v+ in such a way that at least one of its coordinates is an `-adic unit, write v+ = w+z
√
ε

for certain w, z ∈ Z2
` and set v− = w − z

√
ε. As g has its coefficients in Z`, the vector v− is an

eigenvector for g, associated with the eigenvalue a−b
√
ε. The projections of v± in

(
F`
[√

[ε]
])2

are

therefore nonzero eigenvectors of [g] corresponding to different eigenvalues, hence they are linearly

independent. It follows that w = v++v−
2 , z = v+−v−

2
√
ε

are independent modulo `Z`[
√
ε], and since

w, z lie in Z2
` they are a fortiori independent modulo `. The matrix

(
z
∣∣ w
)

is then invertible modulo

`, so it lies in GL2(Z`) and can be used as base-change matrix. It is now straightforward to check

that in this basis the element g is represented by the matrix

(
a bε

b a

)
. Finally notice that a and b

are units: if [b] = 0 or [a] = 0 it is easy to check that the order of G(`) divides 4, contradicting the

assumptions.

We can also assume that G contains − Id, since replacing G with G·{± Id} alters neither the derived

subgroup nor the special Lie algebra of G. By lemma 1.4.4 the algebra L(G) admits a basis of the

form Θ(g),Θ(g2),Θ(g3), where g is as above and g2, g3 are in G. We write in coordinates

g2 =

(
y11 y12

y21 y22

)
,Θ(g2) =

(
y11−y22

2 y12

y21 −y11−y22
2

)
,

g3 =

(
z11 z12

z21 z22

)
,Θ(g3) =

(
z11−z22

2 z12

z21 − z11−z22
2

)
.
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1.4.4.1 Projection operators, ϕ-stable subalgebras

Recall that ϕ denotes x 7→ g−1xg. Following our general strategy we now describe projection

operators associated with the action of ϕ and ϕ-stable subalgebras of sl2(Z`).

Lemma 1.4.8. Let E,F ∈ Z`. If the matrix

(
−F −εE
E F

)
belongs to L(N(G)), then L(N(G))

also contains (
−F 0

0 F

)
,

(
−E 0

0 E

)
,

(
0 −εE
E 0

)
, and

(
0 −εF
F 0

)
.

Proof. We know from lemma 1.4.5 that L(N(G)) is ϕ-stable, so the identity

1

2ab

(
ϕ

(
−F −εE
E F

)
−
(
a2 + b2ε

)( −F −εE
E F

))
=

(
−εE −εF
F εE

)
(1.1)

shows that

(
−εE −εF
F εE

)
is in L(N(G)). At least one of F/E and E/F is an `-adic integer,

and we can assume it is F/E (the other case being perfectly analogous). In particular we have

v`(F ) ≥ v`(E). It follows that L(N(G)) contains

F

E

(
−F −εE
E F

)
−

(
−εE −εF
F εE

)
=

(
εE2−F 2

E 0

0 − εE2−F 2

E

)
.

If v`(F ) > v`(E) we have v`(εE
2 − F 2) = 2v`(E), while if v`(F ) = v`(E) we can write

F = `v`(E)ζ, E = `v`(E)γ,

where ζ, γ are not zero modulo `. In this second case we have εE2 − F 2 = `2v`(E)
(
εγ2 − ζ2

)
, and(

εγ2 − ζ2
)

does not vanish modulo ` since [ε] is not a square in F×` . Hence v`(εE
2 − F 2) = 2v`(E)

holds in any case, and (due to the denominator E) we have found in L(N(G)) a matrix whose

off-diagonal coefficients vanish and whose diagonal coefficients have the same valuation as E. By

the stability of L(N(G)) under multiplication by `-adic units we have thus proved that L(N(G))

contains

(
−E 0

0 E

)
. Identity (1.1) applied to this element shows that L(N(G)) also contains(

0 −εE
E 0

)
, hence by difference

(
−F 0

0 F

)
is in L(N(G)) as well. Applying equation (1.1) to

this last matrix we finally deduce that L(N(G)) also contains

(
0 −εF
F 0

)
.

Lemma 1.4.9. Let E,F be elements of Z` satisfying min {v`(F ), v`(E)} ≤ s. If

(
−F −εE
E F

)
belongs to L(N(G)), then L(N(G)) contains `2ssl2(Z`).

Proof. Suppose v`(F ) ≤ s, the other case being similar. The special Lie algebra L(N(G)) con-

tains

(
−F 0

0 F

)
,

(
0 −εF
F 0

)
by the previous lemma, so (given that v`(F ) ≤ s) it also contains

`s

(
1 0

0 −1

)
, `s

(
0 −ε
1 0

)
. Taking the commutator of these two elements yields another element of
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L(N(G)), namely [
`s

(
0 −ε
1 0

)
, `s

(
1 0

0 −1

)]
= `2s

(
0 2ε

2 0

)
.

Finally, since

1

2
`2s

(
0 2ε

2 0

)
+ `2s

(
0 −ε
1 0

)
= `2s

(
0 0

2 0

)
,

it is immediately checked that L(N(G)) contains a basis of `2ssl2(Z`) as desired.

1.4.4.2 The case when g2, g3 /∈ N(G).

Let us assume for now that gi 6∈ N(G) and −gi 6∈ N(G) for i = 2, 3. We will deal later with the

case when some of these elements already belong to N(G). Given that by hypothesis L(G) contains

`ssl2(Z`) we must have a representation

`s

(
1 0

0 −1

)
=

3∑
i=1

λiΘ(gi)

for certain scalars λ1, λ2, λ3 ∈ Z`. However, the diagonal coefficients of Θ(g) vanish, therefore there

exists an index i ∈ {2, 3} such that v` ◦ π11(Θ(gi)) ≤ s. Renumbering g2, g3 if necessary we can

assume i = 2. In coordinates, the condition v` ◦ π11(Θ(g2)) ≤ s becomes v`(y11 − y22) ≤ s.

Now since [g] generates G(`) there is an integer k such that [g]−k = [g2] in G(`); in other words,

both g2g
k and gkg2 are trivial modulo ` and therefore belong to N(G). It is immediate to check

that the matrix gk is of the form

(
c dε

d c

)
for certain c, d ∈ Z`. Now if d is 0 modulo `, then

(since c2 − εd2 ≡ 1 (mod `)) we have c ≡ ±1 (mod `), so either g2 or −g2 reduces to the identity

modulo ` and is therefore in N(G), contradicting our assumption. Hence d is an `-adic unit. We

then introduce

g4 =

(
c dε

d c

)(
y11 y12

y21 y22

)
, g5 =

(
y11 y12

y21 y22

)(
c dε

d c

)
.

By construction g4 and g5 are elements of N(G), whence Θ(g4),Θ(g5) are elements of L(N(G)). In

particular L(N(G)) contains their difference

Θ(g4)−Θ(g5) = g4 − g5 =

(
−d(y12 − εy21) dε (−y11 + y22)

d (y11 − y22) d (y12 − εy21)

)
,

where (given that d, ε are `-adic units) v` ◦ π21(Θ(g4)−Θ(g5)) ≤ s and v` ◦ π12(Θ(g4)−Θ(g5)) ≤ s.
Applying lemma 1.4.9 to the element Θ(g4)−Θ(g5) we have just constructed we therefore deduce

L(N(G)) ⊇ `2ssl2(Z`) as desired.

1.4.4.3 The case when one generator belongs to N(G).

Let x =

(
x11 x12

x21 −x11

)
denote any element of sl2(Z`). It is easy to check that

1

2ab

(
(3 + 4εb2)(ϕx− x)− ϕ(ϕx− x)

)
=

(
x12 − εx21 2εx11

−2x11 −x12 + εx21

)
,
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and furthermore if x belongs to L(N(G)), then

(
x12 − εx21 2εx11

−2x11 −x12 + εx21

)
is in L(N(G)) as

well.

Suppose now that either g2 or −g2 (resp. g3 or −g3) belongs to N(G). Since Θ(−gi) = −Θ(gi) we

can assume that g2 (resp. g3) itself belongs to N(G). Take

(
x11 x12

x21 −x11

)
to be Θ(g2) (resp. Θ(g3)).

Subtracting
x21

b
Θ(g1) from Θ(g2) we get

(
x11 x12 − εx21

0 −x11

)
∈ L(G), and since we know that

Θ(g2)− π21(Θ(g2))

b
Θ(g1), Θ(g3)− π21(Θ(g3))

b
Θ(g1)

together span `s

(
1 0

0 −1

)
⊕ `s

(
0 1

0 0

)
, we see that at least one among the coefficients of the

matrix Θ(g2) − π21(Θ(g2))

b
Θ(g1) = Θ(g2) − x21

b
Θ(g1) must have valuation at most s, that is

min {v`(x11), v`(x12 − εx21)} ≤ s. We now apply lemma 1.4.9 to

(
x12 − εx21 2εx11

−2x11 −x12 + εx21

)
,

which is in L(N(G)), to deduce L(N(G)) ⊇ `2ssl2(Z`), and we are done.

1.4.5 Optimality

The following examples show that it is neither possible to extend theorem 1.4.2 to the exceptional

case nor to improve the exponent 2s.

Proposition 1.4.10. Let ` be a prime ≡ 1 (mod 4). For every t ≥ 1 there exists a closed subgroup

G of SL2(Z`) whose special Lie algebra is sl2(Z`) and whose maximal pro-` subgroup is contained

in B`(t).

Proof. Notice that the following six elements form a finite subgroup H of PSL2(Z[i])(
1 0

0 1

)
,

(
0 1

−1 1

)
,

(
1 −1

1 0

)
,

(
0 i

i 0

)
,

(
−i i

0 i

)
,

(
i 0

i −i

)
,

and that H is isomorphic to S3: indeed, it is the group of permutations of {0, 1,∞} ⊂ P1 (Z[i]).

The inverse image H̃ of H in SL2(Z[i]) is therefore a finite group of cardinality 12. Now since

` ≡ 1 (mod 4) there is a square root of −1 in Z`, so Z[i] ↪→ Z` and H̃ ↪→ SL2(Z`). Consider

G = H̃ · B`(t) ⊂ SL2(Z`). It is clear that B`(t) is normal in G. Since G
B`(t) is isomorphic to a

quotient of H̃ (and therefore has order prime to `), the subgroup B`(t) is clearly the maximal pro-`

subgroup of G. Furthermore, the special Lie algebra of G contains the three elements

Θ

((
0 1

−1 1

))
=

(
−1/2 1

−1 1/2

)
, Θ

((
0 i

i 0

))
=

(
0 i

i 0

)
, Θ

((
i 0

i −i

))
=

(
i 0

i −i

)
,

that are readily checked to be a basis of sl2(Z`).

On the other hand, the following example shows that there exist subgroups of SL2(Z`) such that

L(G) contains `ssl2(Z`), but L(N(G)) only contains `2ssl2(Z`). Fix s ≥ 1, an integer N > 4 and

a prime ` congruent to 1 modulo N ; then Z×` contains a primitive N -th root of unity a, and we
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let g =

(
a 0

0 1/a

)
. The module M = `s

(
0 1

0 0

)
⊕ `s

(
0 0

1 0

)
⊕ `2s

(
1 0

0 −1

)
is a Lie subalgebra of

sl2(Z`), so by Theorem 3.4 of [97]

H =
{
x ∈ SL2(Z`)

∣∣ tr(x) ≡ 2 (mod `2s),Θ(x) ∈M
}

is a pro-` group with special Lie algebra M . Let G be the group generated by g and H. Up to

units Θ(g) is

(
1 0

0 −1

)
, so L(G) contains all of `ssl2(Z`). On the other hand, H is normal in G:

one simply needs to check that g−1Mg = M , and this is obvious from the equality

g−1

(
x11 x12

x21 −x11

)
g =

(
x11

x12
a2

a2x21 −x11

)
.

Finally, H is maximal among the pro-` subgroups of G, since G/H is a quotient of 〈g〉 ∼= Z/NZ,

hence of order prime to `. Therefore N(G) = H and L(N(G)) = L(H) = M contains `tsl2(Z`) only

for t ≥ 2s.

1.4.6 Proof of theorem 1.4.2

We now prove (1) of theorem 1.4.2 by reducing it to the corresponding statement in theorem 1.4.1.

AsG and Sat(G) have the same special Lie algebra and derived subgroup we can assumeG = Sat(G).

As G is saturated and satisfies the condition on the determinant, we know from lemma 1.3.17 that

G = Sat(H) for H = Gdet=1. By the same lemma we also have L(H) = L(G) and G′ = H ′. By

assumption H satisfies the hypotheses of theorem 1.4.1 (1), so H has property (?). As L(G) = L(H)

contains `ssl2(Z`) we deduce that L0 = L(N(H)) contains `2ssl2(Z`), and since N(H) is a pro-`

group we can apply theorem 1.3.9 to it. In order to do so we need to estimate C(N(H)) = tr (L0 · L0)

and [L0, L0]. Note that

C(N(H)) 3 tr

(
`2s

(
1 0

0 −1

)
· `2s

(
1 0

0 −1

))
= 2`4s,

so given that ` is odd we have C(L0) ⊇ (2`4s) = (`4s). Likewise,

[L0, L0] ⊇ [`2ssl2(Z`), `2ssl2(Z`)] = `4ssl2(Z`),

so the derived subgroup of N(H) (which is clearly included in H ′ = G′) is

N(H)′ =
{
x ∈ SL2(Z`)

∣∣ trx− 2 ∈ C(N(H)),Θ(x) ∈ [L0, L0]
}
,

and by the above it contains{
x ∈ SL2(Z`)

∣∣ trx ≡ 2 (mod `4s),Θ(x) ≡ 0 (mod `4s)
}
⊇ B`(4s),

which concludes the proof of (1).

We are now left with the task of proving (2). Consider first the map

G
det→ Z×` →

Z×`
Z×2
`

∼=
Z
2Z

and let G1 be its kernel: then [G : G1] ≤ 2, so we can replace G with G1 and assume that the

condition on the determinant is satisfied. We are reduced to showing that, under this hypothesis,

either G′ = SL2(Z`) or there exists a subgroup H of index at most 12 that satisfies the right
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conditions on Sat(H)det=1. For notational simplicity we let π denote the projection map G→ G(`).

We now distinguish cases according to ` and G(`) (cf. theorem 1.3.13):

- if ` ≥ 5 and G(`) contains SL2(F`), then it follows from lemma 1.3.15 that G′ = SL2(Z`).
- if ` = 3 we let S denote either a 3-Sylow of G(3), if the order of G(3) is a multiple of 3, or the trivial

group {Id}, if it is not. Notice that G(3) is a subgroup of
{
g ∈ GL2(F3)

∣∣ det(g) is a square
}

, which

has order 24, so the index [G(3) : S] is at most 8. We set H = π−1(S). It is clear that [G : H] ≤ 8,

and H satisfies the conditions in (1) by remark 1.4.3, because (SatH)det=1(3) is either {± Id} or a

group of order 6.

- if G(`) is exceptional, then by lemma 1.3.14 there exists a cyclic subgroup B of PG(`) with

[PG(`) : B] ≤ 12: such a B can be taken to have order 3 (resp. 5) if PG(`) is isomorphic to A4 or

S4 (resp. to A5). Fix a generator [b] of B and let ξ be the composition G→ G(`)→ PG(`). We set

H := ξ−1(B); it is clear that [G : H] ≤ 12. Let now b ∈ G(`) be an element that maps to [b] in B,

and let m be the (odd) order of [b]. We know that det b is a square in F×` , hence there exists a λ ∈ F×`
such that det(λb) = 1. Notice now that (λb)m is a homothety (it projects to the trivial element

in PG(`)) and has determinant 1, so it is either Id or − Id; replacing λ by −λ if necessary, we can

assume that (λb)m = − Id. By construction, every element in
(
Sat(H)det=1

)
(`) = Sat(H(`))det=1

can be written as ±(λb)n for some n ∈ N and for some choice of sign. Now using the fact that

(λb)m = − Id we see that
(
Sat(H)det=1

)
(`) is cyclic, generated by λb: since the order of λb is either

6 or 10, H satisfies the conditions in (1) by remark 1.4.3.

- if G(`) is contained in a (split or nonsplit) Cartan subgroup then the same is true for the group(
Sat(G)det=1

)
(`). If

(
Sat(G)det=1

)
(`) does not have order 4 we are done, so suppose it does. Then

PG(`) has at most 4 elements, and we can take

H = ker (G→ G(`)→ PG(`)) :

this H has index at most 4 in G, and H(`) has trivial image in PGL2(F`), so H(`) is contained in

the homotheties subgroup of GL2(F`). Therefore (Sat(H))det=1(`) = Sat(H(`))det=1 = {± Id} and

H satisfies the conditions in (1).

- if G(`) is contained in the normalizer of a (split or nonsplit) Cartan subgroup C, but not in C
itself, then G has a subgroup G1 of index 2 whose image modulo ` is contained in C, and we are

reduced to the Cartan case.

- if G(`) is contained in a Borel subgroup, then the same is true for Sat(G)det=1(`). To ease the

notation we set G2 = Sat(G)det=1. We can also assume that ` divides the order of G(`) (hence that

of G2(`) as well), for otherwise we are back to the (split) Cartan case. Now if |G2/N(G2)| 6= 4 we

can set H = G; if, on the contrary, |G2/N(G2)| = 4 we consider the group morphism

τ : G → G(`) → F×`

g 7→ [g] =

(
a b

0 c

)
7→ a/c.

Every g ∈ G is of the form λg2 for suitable λ ∈ Z×` and g2 ∈ G2, and since τ(λg2) = τ(g2) we

deduce τ(G) = τ(G2). On the other hand, when restricted to G2 the function τ becomes

g 7→ [g] =

(
a b

0 1/a

)
7→ a2,
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and as we have already remarked g 7→ [g] =

(
a b

0 1/a

)
7→ a is the quotient map G2 � G2/N(G2).

Hence τ factors through the quotient G2/N(G2) and we have |τ(G)| = |τ(G2)|
∣∣ 4. We take H

to be the kernel of τ . Then it is clear that [G : H] divides 4, and we claim that H satisfies the

conditions in (1). To check this last claim, notice first that H(`) is a subgroup of G(`), so it is

contained in a Borel subgroup. We also have kerπ ⊆ H, so G/H ∼= G/ kerπ
H/ kerπ = G(`)

H(`) ; in particular

[G(`) : H(`)] divides 4, and therefore the order of H(`) is divisible by `. Finally, any matrix

(
a b

0 c

)
in H(`) satisfies a/c = 1 by construction, so the intersection Sat(H(`))∩SL2(F`) consists of matrices(
a b

0 c

)
with a = c and ac = 1, so a = c = ±1. This implies that the quotient of Sat(H)det=1(`) by

its `-Sylow has at most 2 elements, and since this quotient is exactly Sat(H)det=1/N
(
Sat(H)det=1

)
the result follows.

Remark 1.4.11. For future applications, we remark that the same proof shows that the inequality

[G : H] ≤ 24 appearing in theorem 1.4.2 (2) can be replaced by the condition [G : H]
∣∣ 48, and even

by [G : H]
∣∣ 24 if in addition G satisfies det(G) ⊆ Z×2

` .

1.5 Recovering G from L(G), when ` = 2

We now consider closed subgroups of GL2(Z2), and endeavour to show results akin to those of the

previous section. For GL2(Z2) the statement is as follows:

Theorem 1.5.1. Let G be a closed subgroup of GL2(Z2).

1. Suppose that G(4) is trivial and det(G) ≡ 1 (mod 8). The following implication holds for all

positive integers n: if L(G) contains 2nsl2(Z2), then the derived subgroup G′ of G contains

the principal congruence subgroup B2(12n+ 2).

2. Without any assumption on G, the subgroup

H = ker(G→ G(4)) ∩ ker
(
G→ G(8)

det→ (Z/8Z)×
)

satisfies [G : H] ≤ 2 · 96 = 192 and the conditions in (1).

Note that (2) is immediate: the order of GL2(Z/4Z) is 96, and once we demand that G(4) is trivial

the determinant modulo 8 can only take two different values. As in the previous section, the core

of the problem lies in understanding the subgroups of SL2(Z2), so until the very last paragraph of

this section the letter G will denote a closed subgroup of SL2(Z2). In view of the result we want

to prove, we will also enforce the assumption that G has trivial reduction modulo 4; indeed in this

context the relevant statement is:

Theorem 1.5.2. Let G be a closed subgroup of SL2(Z2) whose reduction modulo 4 is trivial, and

let s be an integer no less than 2. If L(G) contains 2ssl2(Z2), then G contains B2(6s).

The idea of the proof is quite simple: despite the fact there is in general no reason why Θ(G) should

be a group under addition, we will show that for every pair x, y of elements of Θ(G) it is possible
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to find an element that is reasonably close to x+y and that lies again in Θ(G). The error term will

turn out to be quadratic in x and y, which is not quite good enough by itself, since a correction of

this order of magnitude could still be large enough to destroy any useful information about x+ y;

the technical step needed to make the argument work is that of multiplying all the elements we have

to deal with by a power of 2 large enough that the quadratic error term becomes negligible with

respect to the linear part. The rest of the proof is really just careful bookkeeping of the correction

terms appearing in the various addition formulas. We shall continue using the notation from the

previous section:

Notation. For x ∈ L := L(G) we set πij(x) = xij , the coefficient in the i-th row and j-th column

of the matrix representation of x in sl2(Z2). The maps πij are linear and continuous.

We start with a compactness lemma. Our arguments only yield (arbitrarily good) approximations

of elements of Θ(G), and we need to know that this is enough to show that the matrices we are

approximating actually belong to Θ(G).

Lemma 1.5.3. Let G be a closed subgroup of SL2(Z`), g be an element of G, and e ≥ 2. Suppose

that Θ(g) ≡ 0 (mod 2e): then tr(g) − 2 is divisible by 22e. Moreover Θ−1 : Θ(G) ∩ 22sl2(Z2) → G

is well defined and continuous, and the intersection Θ(G) ∩ 22sl2(Z2) is compact.

Proof. Write Θ(g) =

(
a b

c −a

)
and g =

tr(g)

2
Id +Θ(g). As G is a subgroup of SL2(Z2), we have

the identity

1 = det g = det

(
tr(g)

2
Id +Θ(g)

)
=

(
tr(g)

2

)2

− a2 − bc.

Furthermore G (hence g) is trivial modulo 4 by assumption, so an immediate calculation shows that

1 = det(g) ≡ 1 + (tr(g) − 2) (mod 8). It follows that tr(g)
2 is the unique solution to the equation

λ2 = 1+a2 +bc that is congruent to 1 modulo 4, hence
tr(g)

2
=
√

1 + a2 + bc =

∞∑
j=0

(
1/2

j

)
(a2 +bc)j

by lemma 1.3.2. Given that a2 + bc ≡ 0 (mod 22e) and 2e > 3, using again lemma 1.3.2 we find

v2 (tr(g)− 2) = v2

(
2

(
tr(g)

2
− 1

))
= 1 + v2

(√
1 + (a2 + bc)− 1

)
≥ 2e.

The case e = 2 of the above computation shows that every x ∈ 22sl2(Z2) admits exactly one inverse

image in SL2(Z2) that reduces to the identity modulo 4, so Θ : B2(2) → 22sl2(Z2) is a continuous

bijection: we have just described the (two-sided) inverse, so we only need to check that the image of

B2(2) under Θ does indeed land in 22sl2(Z2). We have to show that if g =

(
d b

c e

)
is any element

of B2(2), then Θ(g) =

(
d−e

2 b

c e−d
2

)
has all its coefficients divisible by 4. This is obvious for b and

c. For the diagonal ones, note that de − bc = 1, so de ≡ 1 (mod 8) and hence d ≡ e (mod 8) and
d−e

2 ≡ 0 (mod 4) as required. Observe now that a2 + bc = 1
2 tr

(
Θ(g)2

)
, so we can write

Θ−1(x) = x+

√
1 +

1

2
tr(x2) · Id,

which is manifestly continuous. Therefore Θ establishes a homeomorphism between B2(2) and

22sl2(Z2).
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In particular, we have a well-defined and continuous map Θ−1 : Θ(G) ∩ 22sl2(Z2) → G, and we

finally deduce that the intersection Θ(G) ∩ 22sl2(Z2) = Θ(G ∩ B2(2)) is compact, since this is true

for G ∩ B2(2) and Θ is continuous.

The core of the proof of theorem 1.5.2 is contained in the following lemma:

Lemma 1.5.4. Let e1, e2 be integers not less than 2 and x1, x2 be elements of Θ(G). Suppose that

x1 ≡ 0 (mod 2e1) and x2 ≡ 0 (mod 2e2): then Θ(G) contains an element y congruent to x1 + x2

modulo 2e1+e2−1. If, furthermore, both x1 and x2 are in upper-triangular form, then we can find

such a y having the same property.

Proof. Write x1 = Θ(g1), x2 = Θ(g2) and set y = Θ(g1g2). Applying lemma 1.3.10 we find

2 (y − x1 − x2) = [x1, x2] + (tr(g1)− 2)x2 + (tr(g2)− 2)x1.

Consider the 2-adic valuation of the various terms on the right. The commutator [x1, x2] is clearly

0 modulo 2e1+e2 . We also have tr(g1)− 2 ≡ 0 (mod 22e1) and tr(g2)− 2 ≡ 0 (mod 22e2) by lemma

1.5.3, so the last two terms are divisible respectively by 22e1+e2 and 2e1+2e2 . It follows that the

right hand side of this equality is zero modulo 2e1+e2 , and dividing by 2 we get the first statement

in the lemma.

For the last claim simply note that if x1, x2 are upper-triangular then the same is true for all of the

error terms, so y = x1 + x2 + (triangular error terms) is indeed triangular.

As a first application, we show that the image of Θ is stable under multiplication by 2 (up to units):

Lemma 1.5.5. Let x ∈ Θ(G) and m ∈ N. There exists a unit λ ∈ Z×2 such that λ · 2mx again

belongs to Θ(G).

Proof. Clearly there is nothing to prove for m = 0, so let us start with the case m = 1. Write

x = Θ(g) for a certain g ∈ G. By our assumptions on G, the trace of g is congruent to 2 modulo

4, so λ = tr(g)
2 is a unit in Z2. We can therefore form g̃ = 1

λg, which certainly exists as a matrix in

GL2(Z2), even though it does not necessarily belong to G. Our choice of g̃ is made so as to ensure

tr(g̃) = 2, so the formula given in lemma 1.3.10 (applied with g1 = g2 = g̃) yields

2
(
Θ
(
g̃2
)
−Θ(g̃)−Θ(g̃)

)
= [Θ(g̃),Θ(g̃)] + (tr(g̃)− 2) Θ(g̃) + (tr(g̃)− 2) Θ(g̃),

where the right hand side vanishes. We deduce Θ(g̃2) = 2Θ(g̃), and it is now immediate to check

that Θ(g2) = λ · 2Θ(g), whence the claim for m = 1. An immediate induction then proves the

general case.

We now take the first step towards understanding the structure of Θ(G), namely showing that a

suitable basis of L can be found inside Θ(G). Note that L, being open, is automatically of rank 3.

Lemma 1.5.6. There exist a basis {x1, x2, x3} ⊆ Θ(G) of L and scalars σ̃21, σ̃31, σ̃32 ∈ Z2 with

the following properties: π21(x2 − σ̃21x1) = 0, π21(x3 − σ̃31x1) = 0 and

π21(x3 − σ̃31x1 − σ̃32(x2 − σ̃21x1)) = π11(x3 − σ̃31x1 − σ̃32(x2 − σ̃21x1)) = 0.
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Remark 1.5.7. The slightly awkward equations appearing in the statement of this lemma actually

have a simple interpretation: they mean it is possible to subtract a suitable multiple of x1 from x2

and x3 so as to make them upper-triangular, and that it is then further possible to subtract one of

the matrices thus obtained from the other so as to leave it with only one nonzero coefficient (in the

top right corner).

Proof. This is immediate from lemma 1.3.11, which can be applied identifying sl2(Z2) ∼= Z3
2 via(

a b

c −a

)
7→ (c, a, b). Note that with this identification the three canonical projections Z3

2 → Z2

become π21, π11 and π12 respectively, and the vanishing conditions in the statement become exactly

those of lemma 1.3.11.

As previously mentioned, in order to make the quadratic error terms appearing in lemma 1.5.4

negligible we need to work with matrices that are highly divisible by 2:

Lemma 1.5.8. Let x1, x2, x3 be a basis of L. There exist elements y1, y2, y3 ∈ Θ(G) and units

λ1, λ2, λ3 ∈ Z×2 such that yi = λi · 24sxi for i = 1, 2, 3; in particular y1, y2, y3 are zero modulo 24s,

and the module generated by y1, y2, y3 over Z2 contains 25ssl2(Z2).

Proof. Everything is obvious (by lemma 1.5.5) except perhaps the last statement. Note that

y1, y2, y3 differ from 24sx1, 2
4sx2, 2

4sx3 only by multiplication by units, so these two sets gener-

ate over Z2 the same module M . But the xi generate L ⊇ 2ssl2(Z2), hence M = 24sL contains

25ssl2(Z2).

Notation. Let x1, x2, x3 be a basis of L as in lemma 1.5.6, and let y1, y2, y3 be the elements given by

lemma 1.5.8 when applied to x1, x2, x3. The properties of the xi become corresponding properties

of the yi:

• There is a scalar σ21 ∈ Z2 such that

y2 − σ21 · y1 =

(
b11 b12

0 −b11

)
∈ sl2(Z2);

• there are scalars σ31, σ32 such that

y3 − σ31y1 =

(
d11 d12

0 −d11

)
∈ sl2(Z2),

y3 − σ31y1 − σ32(y2 − σ21 · y1) =

(
0 c12

0 0

)
∈ sl2(Z2).

To ease the notation a little we set

t1 = y1 =

(
a11 a12

a21 −a11

)
, t2 =

(
b11 b12

0 −b11

)
and t3 =

(
0 c12

0 0

)
.

It is clear that {t1, t2, t3} and {y1, y2, y3} generate the same module M over Z2, so in particular M

contains 25ssl2(Z2).

Lemma 1.5.9. The 2-adic valuations of a21, b11 and c12 do not exceed 5s.
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Proof. We can express

(
0 0

25s 0

)
as a Z2-linear combination of t1, t2, t3,(

0 0

25s 0

)
= λ1t1 + λ2t2 + λ3t3,

for a suitable choice of λ1, λ2, λ3 in Z2. Comparing the bottom-left coefficients we find λ1a21 = 25s,

so v2(a21) ≤ 5s as claimed.

The same argument, applied to the representation of

(
25s 0

0 −25s

)
(resp.

(
0 25s

0 0

)
) as a combin-

ation of t1, t2, t3, gives b11|25s (resp. c12|25s) and finishes the proof of the lemma.

For future reference, and since it is easy to lose track of all the notation, we record here two facts

we will need later:

Remark 1.5.10. We have σ32 =
d11

b11
and v2(d12 − σ32b12) = v2(c12) ≤ 5s.

We now further our investigation of the approximate additive structure of Θ(G). Since essentially

all of the arguments are based on sequences of approximations the following notation will turn out

to be very useful.

Notation. We write a = b+O (2n) if a ≡ b (mod 2n).

Lemma 1.5.11. Let a1, a2 ∈ Θ(G) ∩ 24ssl2(Z2) and ξ ∈ Z2. Then Θ(G) contains an element z

congruent to a1 − ξa2 modulo 28s−1. If moreover a1, a2 are upper triangular then z can be chosen

to have the same property.

Proof. We construct a sequence (zn)n≥0 of elements of Θ(G) and a sequence (ξn)n≥0 of elements of

Z2 satisfying ξn = ξ +O(2n) and

zn = a1 − ξna2 +O
(
28s−1

)
.

We can take z0 = a1 and ξ0 = 0. Given zn, ξn we proceed as follows. If we let wn = v2(ξn − ξ),
then wn ≥ n by the induction hypothesis, and by lemma 1.5.5 we can find a unit λn such that

2wnλna2 also belongs to Θ(G). Note that both zn and 2wnλna2 are zero modulo 24s. Apply lemma

1.5.4 to (x1, x2) = (zn, 2
wnλna2): it yields the existence of an element zn+1 of Θ(G) of the form

zn + 2wnλna2 +O
(
28s−1

)
. We take ξn+1 = (ξn− 2wnλn); let us check that ξn+1, zn+1 have the right

properties. Clearly

zn+1 = zn + 2wnλna2 +O
(
28s−1

)
= a1 − (ξn − 2wnλn)a2 +O

(
28s−1

)
.

On the other hand the definition of wn implies that ξn − ξ = 2wn · µn where µn is a unit, so

v2 (ξn+1 − ξ) = v2 ((ξn − 2wnλn)− ξ)

= v2(2wn · µn − 2wn · λn)

= wn + v2(µn − λn) ≥ wn + 1 ≥ n+ 1,
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since µn, λn are both units and therefore odd. To conclude the proof it is simply enough to take

z = z8s−1: indeed

a1 − ξa2 − z8s−1 = a1 − ξa2 −
(
a1 − ξ8s−1a2 +O

(
28s−1

))
= (ξ8s−1 − ξ)a2 +O

(
28s−1

)
= O

(
28s−1

)
as required. The proof in the upper-triangular case goes through completely unchanged, simply

using the corresponding second part of lemma 1.5.4.

The above lemma is still not sufficient, since it cannot guarantee that we will ever find a matrix with

a coefficient that vanishes exactly. This last remaining obstacle is overcome through the following

result:

Lemma 1.5.12. Let a1, a2 ∈ Θ(G) ∩ 24ssl2(Z2) and ξ ∈ Z2. Suppose that for a certain pair (i, j)

the (i, j)-th coefficient of a1 − ξa2 vanishes while v2 ◦ πij(a2) ≤ 5s: then Θ(G) contains an element

z whose (i, j)-th coefficient is zero and that is congruent to a1− ξa2 modulo 27s−1. If, furthermore,

a1, a2 are upper-triangular, then this z can be chosen to be upper-triangular as well (while still

satisfying πij(z) = 0).

Proof. Let z0 be the element whose existence is guaranteed by lemma 1.5.11 when applied to a1, a2, ξ.

We propose to build a sequence (zn)n≥0 of elements of Θ(G) satisfying the following conditions:

1. zn+1 ≡ zn (mod 27s−1), and therefore zn ≡ z0 ≡ 0 (mod 24s);

2. the sequence wn = v2 ◦ πij(zn) is monotonically strictly increasing; in particular we have

wn ≥ w0 ≥ 8s− 1.

Suppose we have constructed zn, wn and let k = v2 ◦ πij(a2) ≤ 5s. By lemma 1.5.5 we can find

a unit λ such that 2wn−kλa2 also belongs to Θ(G) (note that wn ≥ 8s − 1 ≥ 5s ≥ k). We know

that zn ≡ 0 (mod 24s) and 2wn−kλa2 ≡ 0 (mod 2wn−k+4s) (note that a2 ≡ 0 (mod 24s)). Apply

lemma 1.5.4 to (x1, x2) = (zn, 2
wn−kλa2): it yields the existence of an element zn+1 of Θ(G) that is

congruent to zn + 2wn−kλa2 modulo 2(4s+wn−k)+4s−1.

We can write πij(zn) = 2wnµn and πij(a2) = 2kξ with µn, ξ ∈ Z×2 , so

v2 ◦ πij(zn + 2wn−kλa2) = v2(2wnµn + 2wn−k2k · ξλ) = wn + v2(µn + ξλ),

and since µn, ξ and λ are all odd the last term is at least wn + 1. As k is at most 5s by hypothesis

we deduce

wn+1 = v2 ◦ πij(zn+1)

= v2 ◦ πij
(
zn + 2wn−kλa2 +O

(
2(4s+wn−k)+4s−1

))
≥ min

{
v2 ◦ πij

(
zn + 2wn−kλa2

)
, 8s− 1 + wn − k

}
> wn.

As 2wn−kλa2 ≡ 0 (mod 2wn−k+4s), the difference zn+1 − zn is zero modulo 2wn−s, hence a fortiori

modulo 27s−1 since wn ≥ w0 ≥ 8s− 1.
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Lemma 1.5.3 says that Θ(G) ∩ 22sl2(Z2) is compact, so zn admits a subsequence converging to a

certain z ∈ Θ(G). By continuity of πij it is immediate to check that πij(z) = 0, and since every

zn is congruent modulo 27s−1 to z0 the same is true for z. Given that z0 is congruent to a1 − ξa2

modulo 28s−1, the last assertion follows.

Finally, the upper-triangular case is immediate, since it is clear from the construction that if a1, a2

are upper-triangular then the same is true for all the approximations zn.

The result we were really aiming for follows at once:

Proposition 1.5.13. Let G be a closed subgroup of SL2(Z2) whose reduction modulo 2 is trivial, and

let s be an integer no less than 2. If L(G) contains 2ssl2(Z2), then Θ(G) contains both an element

of the form

(
0 c̃12

0 0

)
, where v2(c̃12) ≤ 5s, and one of the form

(
f11 0

0 −f11

)
, where v2(f11) ≤ 6s.

Proof. We apply lemma 1.5.12 to a1 = y2, a2 = y1, ξ = σ21, (i, j) = (2, 1); the hypotheses are

satisfied since y1 ≡ y2 ≡ 0 (mod 24s) and v2 ◦ π21(y1) ≤ 5s by lemma 1.5.9. It follows that

Θ(G) contains a matrix b̃ of the form

(
b̃11 b̃12

0 −b̃11

)
, where we have b̃ij ≡ bij (mod 27s−1) for every

1 ≤ i, j ≤ 2; in particular, v2(b̃11) ≤ 5s.

The same lemma, applied to a1 = y3, a2 = y1 and ξ = σ31, implies that Θ(G) contains a matrix d̃

of the form

(
d̃11 d̃12

0 −d̃11

)
, where for every i, j we have d̃ij ≡ dij (mod 27s−1); in particular,

v2(d̃11) ≥ min {7s− 1, v2(d11)} ≥ v2(b11) = v2(b̃11).

Now since v2(d̃11) ≥ v2(b̃11) we can find a scalar ζ such that

d̃− ζb̃ =

(
d̃11 d̃12

0 −d̃11

)
− ζ

(
b̃11 b̃12

0 −b̃11

)
=

(
0 e12

0 0

)
,

so applying once again lemma 1.5.12 (more precisely, the version for triangular matrices) we find

that Θ(G) contains a certain matrix ẽ =

(
0 ẽ12

0 0

)
, where ẽ12 ≡ e12 (mod 27s−1). Observe now

that

ζ =
d̃11

b̃11

=
d11 +O

(
27s−1

)
b11 +O (27s−1)

=
d11

b11
+O

(
27s−1−v2(b11)

)
=
d11

b11
+O

(
22s−1

)
,

so upon multiplying by b̃12, which is divisible by 24s, we obtain the congruence ζb̃12 ≡
d11

b11
b̃12

(mod 26s−1). Since furthermore b̃12 ≡ b12 (mod 26s−1) we deduce ζb̃12 ≡
d11

b11
b12 (mod 26s−1). But

then the inequality v2 (c12) ≤ 5s (cf. remark 1.5.10) implies

v2(ẽ12) = v2

(
e12 +O

(
27s−1

))
= v2

(
d̃12 − ζb̃12 +O

(
27s−1

))
= v2

(
d12 −

d11

b11
b12 +O

(
26s−1

))
= v2

(
c12 +O

(
26s−1

))
≤ 5s.
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The existence of the diagonal element is now almost immediate: indeed, we can apply once more

lemma 1.5.12 to the difference

2s

(
b̃11 b̃12

0 −b̃11

)
− 2sb̃12

ẽ12

(
0 ẽ12

0 0

)
=

(
b̃11 0

0 −b̃11

)
,

the hypotheses being satisfied since clearly 2sb̃ ≡ 0 (mod 25s) and v2(ẽ12) ≤ 5s for what we have just

seen. It follows that Θ(G) contains a matrix

(
f11 0

0 −f11

)
congruent to 2s

(
b̃11 0

0 −b̃11

)
modulo

27s−1, and this is enough to deduce

v2(f11) = v2(2sb11 +O
(
27s−1

)
) = s+ v2(b11) ≤ 6s.

We are now ready for the proof of theorem 1.5.2:

Proof of theorem 1.5.2. With all the preliminaries in place this is now quite easy: by proposition

1.5.13 we know that Θ(G) contains an element of the form

(
0 c̃12

0 0

)
, where v2(c̃12) ≤ 5s, and by

the explicit description of Θ−1 (lemma 1.5.3) this element must come from Rc̃12 =

(
1 c̃12

0 1

)
∈ G.

Similarly, if we let f denote the diagonal element

(
f11 0

0 −f11

)
, then

Θ−1 (f) =

(
f11 0

0 −f11

)
+

√
1 +

1

2
tr (f2) · Id

is an operator of the form Dc =

(
1 + c 0

0 1
c+1

)
, where

v2(c) = v2

(
f11 +

√
1 +

1

2
tr (f2)− 1

)
= v2

(
f11 +O

(
22v2(f11)−1

))
= v2(f11) ≤ 6s.

Observe now that replacing G with Gt, the group
{
gt
∣∣ g ∈ G} endowed with the obvious product

gt1 ·gt2 = (g2g1)t, simply exchanges L(G) for L(G)t, so if L(G) contains the (symmetric) set 2ssl2(Z2),

then the same is true for L(Gt). Thus Gt contains R25s and G contains L25s . We have just shown

that G contains La, Rb and Dc for certain a, b, c of valuation at most 6s, so it follows from lemma

1.3.4 that G contains B2(6s).

Remark 1.5.14. The above result should be thought of as an analogue of theorem 1.3.9 for ` = 2,

even though the present result is actually much weaker. It would of course be interesting to have

a complete classification result for pro-2 groups purely in terms of Lie algebras, but as pointed out

in [97] the problem seems to be substantially harder than for ` 6= 2.

It is now easy to deduce theorem 1.5.1 (1):
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Proof. The proof follows closely that of theorem 1.4.2 (1): we can replace G first by H = G·(1+8Z2)

and then by H0 = H ∩ SL2(Z2) without altering L(G) nor G′, so we are reduced to working with

subgroups of SL2(Z2). Note now that n ≥ 2 since by hypothesis every element in G (and hence in

H0) has its off-diagonal coefficients divisible by 4. Theorem 1.5.2 then guarantees that H0 contains

B2(6n), so G′ = H ′0 contains B2(12n+ 2) because of lemma 1.3.3.

1.6 Lie algebras modulo `n

Fix any prime number ` and let L be a topologically open and closed, Z`-Lie subalgebra of sl2(Z`).
The same arguments of the previous section, namely an application of lemma 1.3.11, yield the

existence of a basis of L of the form

x1 =

(
a11 a12

a21 −a11

)
, x2 =

(
b11 b12

0 −b11

)
, x3 =

(
0 c12

0 0

)
.

Definition 1.6.1. A basis of this form will be called a reduced basis.

There is clearly no uniqueness of such an object, but in what follows we will just assume that the

choice of a reduced basis has been made.

Notation. We let k(L), or simply k, denote the number minm∈L v`(m21), where m21 is the bottom-

left coefficient of m in the standard matrix representation of elements of sl2(Z`). Furthermore, for

every positive n we denote by L (`n) be the image of the mod-`n reduction map πn : L→ sl2(Z/`nZ);

clearly L (`n) is a Lie algebra over Z/`nZ.

Remark 1.6.2. It is apparent from the very definition of a reduced basis that k(L) = v`(a21). Also

notice that, by definition, the images of x1, x2, x3 in L (`n) generate it as a (Z/`nZ)-module.

The following statement allows us to deduce properties of G(`n) from corresponding properties of

L(`n):

Proposition 1.6.3. Suppose L as above is obtained as Θ(G) for a certain closed subgroup G of

GL2(Z`) (whose reduction modulo 2 is trivial if ` = 2). For every integer m ≥ 1 let G(`m) be the

image of G in GL2(Z/`mZ), and let jm =
∣∣{i ∈ {1, 2, 3} ∣∣ xi 6≡ 0 (mod `m)}

∣∣ (that is, exactly jm

among x1, x2 and x3 are nonzero modulo `m). For every n ≥ 1 the following are the only possibilities

(recall that v = v`(2)):

• jn is at most 1 and G(`n) is abelian.

• jn = 2 and either j2n = 3 or G(`n−k(L)+1−2v) is contained in the subgroup of upper-triangular

matrices (up to a change of coordinates in GL2(Z`)).

• jn = 3 and L contains `n+2k(L)−1sl2(Z`).

Remark 1.6.4. The exponent n + 2k(L) − 1 is best possible: fix integers k ≥ 0, n ≥ 1 and let L

be the Lie algebra generated (as a Z`-module) by x1 =

(
1 0

`k −1

)
, x2 =

(
`k+n−1 0

0 −`k+n−1

)
,

and x3 =

(
0 `n−1

0 0

)
. Then clearly k(L) = k, jn(L) = 3, and it is easy to check that n+ 2k − 1

is the smallest exponent s such that `ssl2(Z`) is contained in L.
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Proof. Assume first jn ≤ 1. It is clear that every element of G(`n) can we written as λ Id +mn for

some λ ∈ Z/`nZ and mn ∈ L (`n). Now L is generated by x1, x2, x3, so in turn every mn is of the

form πn (µ1x1 + µ2x2 + µ3x3), and since at most one of πn(x1), πn(x2), πn(x3) is non-zero we can

find an ln ∈ L (`n) such that, for every mn, there exists a scalar µ ∈ Z/`nZ with mn = µ ln. It

follows that every element of G(`n) can be written as λ Id +µ ln for suitable λ, µ, and since Id and

ln commute our claim follows.

Next consider the case jn = 2. We can safely assume that j2n = 2, for otherwise we are done (notice

that j2n ≥ jn = 2). Under this assumption, it is clear that for i = 1, 2, 3 we have πn(xi) = 0 if and

only if π2n(xi) = 0. Suppose first πn(x1) = 0, so that k(L) ≥ 1. Then G(`n) is a subset of

Z/`nZ · Id +Z/`nZ · πn(x2) + Z/`nZ · πn(x3),

and Id, πn(x2), πn(x3) are upper-triangular matrices, so G(`n) – hence also G(`n−k(L)+1−2v), since

k(L) ≥ 1 – is in triangular form.

Suppose next πn(x1) 6= 0. Assume that πn(x3) = 0 (the other case being analogous, as we are only

going to use that x2 is upper triangular). L is a Lie algebra, hence so is L
(
`2n
)
; furthermore, every

element in L
(
`2n
)

is a combination of π2n(x1), π2n(x2) with coefficients in Z/`2nZ. In particular,

there exist ξ1, ξ2 ∈ Z/`2nZ such that

[x1, x2]− 2b11x1 + 2a11x2 =

(
−a21b12 4(a11b12 − a12b11)

0 a21b12

)
≡ ξ1x1 + ξ2x2 (mod `2n).

Matching the bottom-left coefficients we find ξ1a21 ≡ 0 (mod `2n), so, using v`(a21) = k(L), we

immediately deduce ξ1 ≡ 0 (mod `2n−k(L)). Reducing the above congruence modulo `2n−k(L) we

then have the relations −a21b12 ≡ ξ2b11 (mod `2n−k(L))

4(a11b12 − a12b11) ≡ ξ2b12 (mod `2n−k(L)).
(1.2)

We now introduce the vector y =

(
b12

−2b11

)
∈ Z2

` . An immediate calculation shows that this is an

exact eigenvector for x2 (associated with the eigenvalue −b11), and on the other hand it is also an

approximate eigenvector for 2x1, in the sense that 2x1 · y ≡ (ξ2 − 2a11) y (mod `2n−k(L)). Indeed,

2x1 · y =

(
a11 a12

a21 −a11

)(
2b12

−4b11

)
=

(
2a11b12 − 4a12b11

2a21b12 + 4a11b11

)
,

and using (1.2) we find

2x1 · y =

(
2a11b12 − 4a12b11

2a21b12 + 4a11b11

)

≡

(
2a11b12 + ξ2b12 − 4a11b12

−2ξ2b11 + 4a11b11

)
≡ (ξ2 − 2a11)y (mod `2n−k(L))

as claimed.
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Now if ` 6= 2 we immediately deduce x1 · y ≡
(
ξ2
2 − a11

)
y (mod `2n−k(L)). If, on the other hand,

` = 2, then we would like to prove that v2(ξ2) ≥ 1 in order to be able to divide by 2. Observe that

y is not zero modulo 2n+1, since its coordinates are (up to a factor of 2) the entries of x2, which we

have assumed not to reduce to zero in L (2n).

Let α = min {v2(2b11), v2(b21)} ≤ n and reduce the last congruence modulo 2α+1. Then we have

2x1 · y ≡ x1 · (2y) ≡ 0 (mod 2α+1), so (ξ2 − 2a11) y ≡ 0 (mod 2α+1), which implies that ξ2 is even

(that is to say, v2(ξ2) ≥ 1), for otherwise multiplying by λ− 2a11 would be invertible modulo 2α+1

and we would find y ≡ 0 (mod 2α+1), contradicting the definition of α. It follows that we can

indeed divide the above congruence by 2 to get

x1 · y ≡
(
ξ2

2
− a11

)
y (mod 22n−k(L)−1).

Equivalently, the following congruence holds for every prime `:

x1 · y ≡
(
ξ2

2
− a11

)
y (mod `2n−k(L)−v).

Note now that it is in fact true for every ` that y is not zero modulo `n+v (its coordinates are, up

to a factor of 2, the entries of x2, which we have assumed not to reduce to zero modulo `n).

Let again α = min {v`(2b11), v`(b21)} ≤ n− 1 + v and set ỹ = `−αy. Dividing by `α the congruence

x1 · y ≡
(
ξ2
2 − a11

)
y (mod `2n−k(L)−v) we get x1 · ỹ ≡

(
ξ2
2 − a11

)
ỹ (mod `n−k(L)+1−2v), where

ỹ =

(
ỹ1

ỹ2

)
is a vector at least one of whose coordinates is an `-adic unit. Assume by symmetry

that v`(ỹ1) = 0 and introduce the base-change matrix P =

(
ỹ1 0

ỹ2 1

)
: this is then an element of

GL2(Z`), since its determinant ỹ1 is not divisible by `.

An element of G(`n−k(L)+1−2v) will be of the form g = λ Id +µ1x1 + µ2x2, so by construction

conjugating G via P puts G(`n−k(L)+1−2v) in upper-triangular form. Indeed, the first column of xi

(for i = 1, 2) in the coordinates defined by P is given by

P−1xiP

(
1

0

)
= P−1xi · ỹ = P−1

(
(ξ2/2− a11)ỹ + `n−k(L)+1−2vw

)
= (ξ2/2− a11)

(
1

0

)
+ `n−k(L)+1−2vP−1w

≡ (ξ2/2− a11)

(
1

0

)
(mod `n−k(L)+1−2v)

where w is a suitable vector in Z2
` (that vanishes for i = 2).

Finally, suppose jn = 3. Then we have in particular πn(x3) 6= 0, so v`(c12) ≤ n − 1. As L is a Lie

algebra, we see that it contains

x4 = [x1, x3]− 2a11x3 =

(
−a21c12 0

0 a21c12

)
,
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whose diagonal entries have valuation at most v`(a21) + v`(c12) ≤ k(L) + (n − 1). Furthermore, L

also contains the linear combination

x5 = `n+k(L)−1x1 +
`n+k(L)−1a11

a21c12
x4 −

`n+k(L)−1a12

c12
x3 =

(
0 0

`n+k(L)−1a21 0

)
:

notice that the coefficients
`n+k(L)−1a11

a21c12
and

`n+k(L)−1a12

c12
have positive `-adic valuation by what

we have already shown, and that the valuation of the only non-zero coefficient of x5 is n+2k(L)−1.

Setting

s1 =

(
0 1

0 0

)
, s2 =

(
1 0

0 −1

)
, s3 =

(
0 0

1 0

)
we see that L contains the three elements x3 = c12s1, x4 = −a21c12s2, x5 = `n+k(L)−1a21s3. By

what we have already proved we have

max
{
v`(c12), v`(−a21c12), v`

(
`n+k(L)−1a21

)}
= n+ 2k(L)− 1,

so the Z`-module generated by x3, x4, x5 contains `n+2k(L)−1sl2(Z`), and a fortiori so does L.

Corollary 1.6.5. Let G be a closed subgroup of GL2(Z`) satisfying property (??) of theorem 1.4.2

(resp. G(4) = {Id} and det(G) ≡ 1 (mod 8) if ` = 2). Then for every positive integer n ≥ k(L(G))

at least one of the following holds:

1. G(`n) is abelian.

2. G(`n−k(L(G))+1−2v) is contained in the subgroup of upper-triangular matrices (up to a change

of coordinates in GL2(Z`)).

3. G′ contains the principal congruence subgroup

B`(16n− 4) =
(
Id +`16n−4gl2(Z`)

)
∩ SL2(Z`),

if ` is odd, and it contains B2(48n− 10), if ` = 2.

Proof. To ease the notation set L = L(G). Consider L (`n) and distinguish cases depending on jn

as in the statement of the previous proposition. If jn ≤ 1 we are in case (1) and we are done. If

jn ≥ 2 we begin by proving that either (2) holds or L contains `4n−1sl2(Z`).
If jn = 2 and j2n = 2, then we are in situation (2) by the previous proposition. If, on the other

hand, jn = 2 and j2n = 3, then (again by proposition 1.6.3) we have

L ⊇ `2n+2k(L)−1sl2(Z`) ⊇ `4n−1sl2(Z`)

since n ≥ k(L). Finally, for jn = 3 the proposition yields directly

L ⊇ `n+2k(L)−1sl2(Z`) ⊇ `3n−1sl2(Z`).

In all cases, property (??) (resp. theorem 1.5.1 (1) for ` = 2) now implies that G′ contains B`(16n−4)

(resp. B2(48n− 10)) as claimed.
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1.7 Application to Galois groups

We now plan to apply the above machinery to the Galois representations attached to an elliptic

curve. Let therefore K be a number field and E an elliptic curve over K without (potential) complex

multiplication.

Notation. ` is any rational prime, n a positive integer and G` the image of Gal(K/K) inside

AutT`(E) ∼= GL2(Z`). As before, v is 0 or 1 according to whether ` is respectively odd or even.

If ` is odd (resp. ` = 2), then by theorem 1.4.2 (resp. theorem 1.5.1) we know that either G`

contains a subgroup H` satisfying [G` : H`] ≤ 24 (respectively [G` : H`] ≤ 192 for ` = 2) and the

hypotheses of corollary 1.6.5, or otherwise G′` = SL2(Z`). In this second case we put H` = G`.

We also denote K` the extension of K fixed by H`. The degree [K` : K] is then bounded by 24,

for odd `, and 2 · |GL2(Z/4Z)| = 2 · 96, for ` = 2. For a fixed `, upon replacing K with K` we

are reduced to the case where G` satisfies the hypotheses of corollary 1.6.5. In order to apply this

result we want to have numerical criteria to exclude the ‘bad’ cases (1) and (2). These numerical

bounds form the subject of lemma 1.7.1 and proposition 1.7.4 below, whose proofs are inspired by

the arguments of [71] and [69].

Lemma 1.7.1. Suppose E/K does not admit potential complex multiplication. If `n - b0(K,E) the

group G`(`
n) cannot be put in triangular form.

Proof. Suppose that G`(`
n) is contained (up to a change of basis) in the group of upper-triangular

matrices. The subgroup Γ of E[`n] given (in the coordinates in which G`(`
n) is triangular) by

Γ =

{(
a

0

) ∣∣ a ∈ Z/`nZ

}
is Gal(K/K)-stable, hence defined over K. Consider then E∗ = E/Γ and the natural projection

π : E → E∗ of degree |Γ| = `n. By theorem 1.2.8 we also have an isogeny E∗ → E of degree b,

with b
∣∣ b0(K,E). Composing the two we get an endomorphism of E that kills Γ, and therefore

corresponds (since

(
1

0

)
is annihilated by `n) to multiplication by a certain `nd, d ∈ Z. Taking

degrees we get `n · b = |Γ| · b = d2`2n, so `n
∣∣ b and `n

∣∣ b0(K,E).

Corollary 1.7.2. Let L be the special Lie algebra of G` (supposing that G`(2) is trivial if ` = 2).

The inequality k(L) ≤ v`(b0(K,E)) holds, so that in particular `k(L)
∣∣ b0(K,E).

Proof. Let t = v`(b0(K,E)). If by contradiction we had k(L) ≥ t + 1, then L
(
`t+1

)
would be

triangular, and therefore so would be G`(`
t+1) ⊆ Z/`t+1Z · Id +L

(
`t+1

)
, which is absurd, since

`t+1 - b0(K,E).

Corollary 1.7.3. If `n - b0(K,E) the group G`(`
n) does not consist entirely of scalar matrices. In

particular this is true for G`(`
v`(b0(K,E))+1).

Using this last corollary we find:

Proposition 1.7.4. If `2n does not divide b0(K,E)4b0(K,E × E) the group G`(`
n) is not abelian.

In particular, the group G`(`) is not abelian if ` does not divide b0(K,E)b0(K,E × E).
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Proof. For the sake of simplicity set d = b0(K,E). By the previous corollary, there is an α ∈ G`
whose image modulo `1+v`(d) is not a scalar matrix. Suppose now that G`(`

n) is abelian. Consider

the subgroup Γ =
{

(x, α(x))
∣∣ x ∈ E[`n]

}
⊂ E ×E; this is defined over K, since for any γ ∈ G`(`n)

we have γ · (x, α(x)) = (γ · x, γ · α(x)) = (γ · x, α(γ · x)) as G`(`
n) is commutative. We can

therefore form the quotient K-variety E∗ = (E × E) /Γ, which comes equipped with a natural

isogeny E × E � E∗ of degree |Γ| = E[`n] = `2n; on the other hand, theorem 1.2.8 yields the

existence of a K-isogeny E∗ → E × E of degree b
∣∣ b0(K,E × E). Composing the two we obtain

an endomorphism ψ of E ×E, which (given that E does not admit complex multiplication) can be

represented as a 2× 2 matrix

(
e11 e12

e21 e22

)
with coefficients in Z and nonzero determinant.

Now since ψ kills Γ we must have e11x + e12α(x) = 0 and e21x + e22α(x) = 0 for every x ∈ E[`n].

Let η = min {v`(eij)} and suppose by contradiction η < n− v`(d). For the sake of simplicity, let us

assume this minimum is attained for e12 (the other cases being completely analogous: the situation

is manifestly symmetric in the index i, and to show that it is symmetric in j it is enough to compose

with α−1, which is again a non-scalar matrix). Dividing the equation e11x+ e12α(x) = 0 by `η we

get
e11

`η
x+

e12

`η
α(x) ≡ 0 (mod `n−η) ∀x ∈ E[`n],

whence
e11

`η
x+

e12

`η
α(x) = 0 ∀x ∈ E[`n−η],

where now
e12

`η
is invertible modulo `n−η, being relatively prime to `. Multiplying by the inverse of

e12

`η
, then, we find that

α(x) = −e11

`η

(e12

`η

)−1
x ∀x ∈ E[`n−η],

i.e. α is a scalar modulo `n−η. By definition of α, this implies `n−η
∣∣ d, so n − η ≤ v`(d), a

contradiction. It follows that `2n`−2v`(d)
∣∣ `2η ∣∣ det

(
e11 e12

e21 e22

)
. Squaring this last divisibility we

find

`4n`−4v`(d)
∣∣ (det

(
e11 e12

e21 e22

))2

= deg(ψ) = b`2n,

so `2n`−4v`(d)
∣∣ b and `2n

∣∣ `4v`(d)b0(K,E × E)
∣∣ d4 b0(K,E × E). The second assertion follows

immediately from the fact that ` is prime.

With these results at hand it is now immediate to deduce the following theorem, where we use the

notation introduced at the beginning of this section and the symbol B`(n) of section 1.3.

Theorem 1.7.5. Let ` be a prime and set D(`) = b0(K`, E)5b0(K`, E × E). Let n be a positive

integer. Suppose that `n−v does not divide D(`): then H ′` contains B`(16n − 4), for odd `, and it

contains B2(48n− 10), for ` = 2.

Proof. By the discussion at the beginning of this section there are two possibilities: if the derived

subgroup G′` is all of SL2(Z`) then the conclusion is obvious since H` = G`; if this is not the case,
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then H` satisfies the hypotheses of corollary 1.6.5. Note that the image of Gal(K`/K`) in AutT`(E)

is exactly H` by construction. We wish to apply corollary 1.6.5 to G = H`, assuming that `n−v

does not divide D(`).

Since `k(L)
∣∣ b0(K`, E) by corollary 1.7.2, we deduce `n−k(L)−v - b0(K`, E)4b0(K`, E × E), and a

fortiori `n−k(L)+1−2v - b0(K`, E)4b0(K`, E × E). Lemma 1.7.1 then implies that G(`n−k(L)+1−2v)

cannot be put in triangular form, and on the other hand `n−v - b0(K`, E)5b0(K`, E × E) implies

that `2n does not divide b0(K`, E)4b0(K`, E × E), so G(`n) is not abelian (thanks to proposition

1.7.4). It then follows from corollary 1.6.5 that G′ = H ′` contains the principal congruence subgroup

B`(16n− 4) (resp. B`(48n− 10) for ` = 2).

Corollary 1.7.6. Let D(∞) = b0(K,E; 120)5b0(K,E × E; 120) and ` be an odd prime. If `n does

not divide D(∞), then H ′` contains B`(16n− 4).

Proof. As [K` : K] ≤ 120 we find that

D(`) = b0(K`, E)5b0(K`, E × E)
∣∣ b0(K,E; 120)5b0(K,E × E; 120) = D(∞),

so the result follows from the theorem since `n - D(∞) implies `n - D(`).

Corollary 1.7.7. Notation as above. The index [SL2(Z`) : (H ′`∩B`(1))] can be written as the product

|SL2(F`)|B(`), where for ` 6= 2 the number B(`) is a power of ` dividing `33 ·D(`)48 (respectively

B(2) is a power of 2 dividing 2255D(2)144).

Proof. We can write the index [SL2(Z`) : (H ′` ∩ B`(1))] as

[SL2(Z`) : B`(1)] · [B`(1) : (H ′` ∩ B`(1))] = | SL2(F`)| · [B`(1) : (H ′` ∩ B`(1))],

so we just need to prove that B(`) = [B`(1) : (H ′` ∩ B`(1))] divides `33D(`)48 (and the analogous

statement for ` = 2). Notice that since B`(1) is a pro-` group the number B(`) is a power of `.

Choose n such that `n−v
∣∣∣∣ D(`): then `n+1−v - D(`), and therefore the above theorem implies

that H ′` contains B`(16(n + 1) − 4) ⊆ B`(1) (resp. B2(48(n + 1) − 10) for ` = 2): the index of

B`(16(n+ 1)− 4) in B`(1) is `3(16(n+1)−5), so we get

[B`(1) : (H ′` ∩ B`(1))]
∣∣ `48n+33

∣∣ `33 ·D(`)48

for ` 6= 2, and likewise we have

[B2(1) : (H ′2 ∩ B2(1))]
∣∣ 23(48(n−1)+85)

∣∣ 2255D(2)144

for ` = 2.

1.8 The determinant and the large primes

We now turn to studying the determinant of the adelic representation and the behaviour at the

very large primes.

Proposition 1.8.1. The index [
Ẑ× :

∏
`

det ρ`(Gal(K/K))

]
is bounded by [K : Q].



Chapter 1. Adelic bounds for elliptic curves 39

Proof. The Weil pairing induces an identification of the determinant Gal(K/K)
ρ`−→ G`

det−−→ Z×`
with Gal(K/K)

χ`→ Z×` , where χ` denotes the `-adic cyclotomic character; by Galois theory we have∏
`

det ρ`
(
Gal(K/K)

)
=
∏
`

χ`
(
Gal(K/K)

) ∼= Gal (K (µ∞) /K) .

Let F = K∩Q (µ∞): it is a finite Galois extension of Q. As Q (µ∞) is Galois over Q, the restriction

map Gal (K (µ∞) /K)→ Gal (Q (µ∞) /F ) is well-defined and induces an isomorphism. Therefore[
Ẑ× :

∏
`

χ`(Gal(K/K))

]
= [Gal (Q (µ∞) /Q) : Gal (Q (µ∞) /F )]

= [F : Q] ≤ [K : Q]

as claimed.

We will also need a surjectivity result (on SL2) modulo ` for every ` sufficiently large: as previously

mentioned, these are essentially the ideas of [71] and [68], in turn inspired by those of Serre.

Lemma 1.8.2. If ` - b0(K,E × E; 2)b0(K,E; 60) then the group G`(`) contains SL2(F`).

Proof. Let ` be a prime for which G`(`) does not contain SL2(F`) and let, for the sake of clarity,

G = G`(`). By theorem 1.3.13, if G does not contain SL2(F`), then the following are the only

possibilities:

1. G is contained in a Borel subgroup of GL2(F`): by definition, such a subgroup fixes a line,

therefore `
∣∣ b0(K,E) by lemma 1.7.1.

2. G is contained in the normalizer of a Cartan subgroup of GL2(F`): let C be this Cartan sub-

group and N its normalizer. By Dickson’s classification C has index 2 in N , so the morphism

Gal(K/K) → G → G

G ∩ C
↪→ N

C
induces a quadratic character of Gal(K/K), whose kernel

corresponds to a certain field K ′ satisfying [K ′ : K] ≤ |N/C| = 2. By construction, the image

of Gal(K ′/K ′) in Aut (E[`]) is contained in C, so applying proposition 1.7.4 to EK′ we get

`
∣∣ b0(K ′, E)b0(K ′, E × E)

∣∣ b0(K,E; 2)b0(K,E × E; 2).

Notice that this also covers the case of G being contained in a Cartan subgroup.

3. The projectivization PG of G is a finite group of order at most 60: we essentially copy the

previous argument. Let H = PG; then we have a morphism

Gal(K/K)→ G→
F×` G
F×`

= H

whose kernel defines an extension K ′′ of K with [K ′′ : K] = |H| ≤ 60 and such that the image

of the representation of Gal
(
K ′′/K ′′

)
on E[`] is contained in F×` : lemma 1.7.1 then yields

`
∣∣ b0(K ′′, E)

∣∣ b0(K,E; 60).

It is then apparent that the lemma is true with the condition

` - b0(K,E)b0(K,E × E)b0(K,E; 2)b(K,E × E; 2)b0(K,E; 60);

however, since

b0(K,E)
∣∣ b0(K,E; 2)

∣∣ b0(K,E; 60), b0(K,E × E)
∣∣ b0(K,E × E; 2),
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and since ` is prime, we see that ` divides

b0(K,E)b0(K,E × E)b0(K,E; 2)b0(K,E × E; 2)b0(K,E; 60)

if and only if it divides b(K,E × E; 2)b0(K,E; 60), which finishes the proof.

Corollary 1.8.3. Let Ψ = 30 · b0(K,E × E; 2)b0(K,E; 60). If ` - Ψ, then G′` is all of SL2(Z`).

Proof. The previous lemma implies that G`(`) contains SL2(F`), and by hypothesis ` is strictly

larger than 3, so the corollary follows from lemma 1.3.15.

1.9 The adelic index and some consequences

We have thus acquired a good understanding of the `-adic representation for every prime `, and

we are now left with the task of bounding the overall index of the full adelic representation. The

statement we are aiming for is:

Theorem 1.9.1. Let E/K be an elliptic curve without complex multiplication with stable Faltings

height h(E). Let ρ∞ : Gal(K/K)→ GL2

(
Ẑ
)

be the adelic Galois representation associated with E,

and set

Ψ = 2 · 3 · 5 · b0(K,E × E; 2)b0(K,E; 60), D(∞) = b0(K,E; 24)5b0(K,E × E; 24);

let moreover K2 be as in section 1.7 and

D(2) = b0(K2, E)5b0(K2, E × E).

With this notation we have[
GL2

(
Ẑ
)

: ρ∞Gal(K/K)
]
≤ [K : Q] · 2222 ·D(2)144 · rad(Ψ)36 ·D(∞)48,

where rad(Ψ) =
∏
`|Ψ

` is the product of the primes dividing Ψ.

The strategy of proof, which essentially goes back to Serre, is to pass to a suitable extension of

K over which the adelic representation decomposes as a direct product and then use the previous

bounds. For this we will need some preliminaries. If L is any number field, we let Lcyc = L (µ∞)

be its maximal cyclotomic extension. From the exact sequence

1→ SL2(Ẑ)

Gal
(
K/Kcyc

) → GL2(Ẑ)

ρ∞
(
Gal(K/K)

) → Ẑ×

det ◦ρ∞
(
Gal(K/K)

) → 1

we see that [GL2(Ẑ) : ρ∞
(
Gal(K/K)

)
] equals

[Ẑ× : det ◦ρ∞
(
Gal(K/K)

)
] · [SL2(Ẑ) : ρ∞

(
Gal

(
K/Kcyc

))
],

where the first term is bounded by [K : Q] thanks to proposition 1.8.1. It thus remains to understand

the term [SL2(Ẑ) : ρ∞
(
Gal

(
K/Kcyc

))
]. Let P be the (finite) set consisting of 2, 3, 5, and the prime

numbers ` for which G` does not contain SL2(Z`), and let F be the field generated over K by⋃
`∈P

E[`]. It is clear that

[SL2(Ẑ) : ρ∞
(
Gal

(
K/Kcyc

))
] ≤ [SL2(Ẑ) : ρ∞

(
Gal

(
K/Fcyc

))
].
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Notation. We set S = ρ∞
(
Gal

(
K/Fcyc

))
⊆ SL2(Ẑ) =

∏
` SL2(Z`) and let S` be the projection of

S on SL2(Z`).

The core of the argument is contained in the following proposition.

Proposition 1.9.2. Let B(`) be as in corollary 1.7.7 and D(2) be as in the statement of theorem

1.9.1. The following hold:

1. S =
∏
` S`.

2. For ` ∈ P, ` 6= 2, we have [
SL2(Z`) : S`

] ∣∣ |SL2(F`)| ·B(`);

for ` = 2 we have [
SL2(Z2) : S2

]
< 2258D(2)144.

3. For ` /∈ P the equality S` = SL2 (Z`) holds.

Proof. (1) This would follow from [123, Théorème 1], but since we do not need the added generality

and the proof is quite short we include it here for the reader’s convenience.

Regard S as a closed subgroup of
∏
` S` ⊆

∏
` SL2(Z`) = SL2(Ẑ). For each finite set of primes B,

let pB : S → SB =
∏
`∈B S` be the canonical projection. We plan to show that for every such B

containing P we have pB(S) = SB. Indeed let us consider the case B = P first. Our choice of F

implies that S` = ρ`(Gal(F/F )) is a pro-` group for every ` ∈ P: the group S` has trivial reduction

modulo ` by construction, and therefore S` admits the usual congruence filtration by the kernels

of the reductions modulo `k for varying k. Now a pro-` group is obviously pro-nilpotent, so pB(S)

is pro-nilpotent as well and therefore it is the product of its pro-Sylow subgroups (which are just

the S`). To treat the general case we recall some terminology from [119]. Following Serre, we say

that a finite simple group Σ occurs in the profinite group Y if there exist a closed subgroup Y1 of Y

and an open normal subgroup Y2 of Y1 such that Σ ∼= Y1/Y2. We also write Occ(Y ) for the set of

isomorphism classes of finite simple non abelian groups occurring in Y . From [119, IV-25] we read

the following description of the sets Occ(GL2(Zp)):

• Occ(GL2(Zp)) = ∅ for p = 2, 3;

• Occ(GL2(Z5)) = {A5};

• Occ(GL2(Zp)) = {PSL2(Fp), A5} for p ≡ ±1 (mod 5), p > 5;

• Occ(GL2(Zp)) = {PSL2(Fp)} for p ≡ ±2 (mod 5), p > 5.

Let B be a finite set of primes containing P and satisfying pB(S) = SB, and fix a prime `0 /∈ B.

We claim that pB∪{`0}(S) = SB∪{`0}. Notice first that PSL2(F`0) occurs in S`0 and therefore in

pB∪{`0}(S); set N`0 = ker
(
pB∪{`0}(S)→ pB(S)

)
. From the exact sequence

1→ N`0 → pB∪{`0}(S)→ pB(S)→ 1 (1.3)

we see that Occ
(
pB∪{`0}(S)

)
= Occ

(
pB(S)

)
∪ Occ

(
N`0

)
. On the other hand, the only finite non-

abelian simple groups that can occur in pB(S) are A5 and groups of the form PSL2(F`) for ` 6= `0, so
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PSL2(F`0) does not occur in pB(S) (notice that PSL2(F`0) 6∼= A5 since `0 6= 5), and therefore it must

occur in N`0 . Denote by N`0 the image of N`0 in SL2(F`0). The kernel of N`0 → SL2(F`0) is a pro-`0

group, so Occ
(
N`0

)
equals Occ

(
N`0

)
and therefore N`0 projects surjectively onto PSL2(F`0). Hence

we have N`0 = SL2(F`0) by [119, IV-23, Lemma 2], and by lemma 1.3.15 this implies N`0 = SL2(Z`0):

by (1.3) we then have pB∪{`0}(S) = pB(S) × SL2(Z`0) as claimed. By induction, the equality

pB(S) = SB holds for any finite set of primes B containing P, and since S is profinite we deduce

that S =
∏
` S`.

(2) The group S` is the kernel of the projection map (G` ∩ SL2 (Z`))→ SL2(F`); as such, it contains

the intersection H ′` ∩B`(1) (notation as in section 1.7), so we just need to invoke corollary 1.7.7 to

have [
SL2(Z`) : S`

] ∣∣ [SL2(Z`) : (H ′` ∩B`(1))
] ∣∣ |SL2(F`)|B(`)

as claimed. On the other hand, for ` = 2 the group H2 is a subgroup of ρ2(Gal
(
K/K(E[4])

)
), while

S2 is ρ2(Gal
(
K/Kcyc(E[2])

)
), so S2 is larger than H ′2 ∩ B2(1) and we can again use the bound of

corollary 1.7.7, which now reads[
SL2(Z2) : S2

]
≤ 2255D(2)144|SL2(F2)| < 2258D(2)144.

(3) As ` 6∈ P we know that ρ`(Gal(K/K)) contains SL2(Z`), so the group PSL2(F`) occurs in

ρ`(Gal(K/K)). Consider the Galois group Gal(F/K): it is by construction a subquotient of∏
p∈P GL2 (Zp), so the only groups that can occur in it are those in

⋃
p∈P Occ (GL2 (Zp)), and

in particular PSL2(F`) does not occur in Gal(F/K). Now ρ`(Gal(K/K)) is an extension of a quo-

tient of Gal(F/K) by ρ`
(
Gal

(
K/F

))
, so PSL2(F`) occurs in ρ`

(
Gal

(
K/F

))
, and furthermore

ρ`
(
Gal

(
K/F

))
is an extension of an abelian group by ρ`

(
Gal

(
K/Fcyc

))
, so PSL2(F`) also oc-

curs in ρ`
(
Gal

(
K/Fcyc

))
= S`: reasoning as in (1), we then see that S` projects surjectively onto

PSL2(F`), and therefore S` = SL2(Z`).

The proof of theorem 1.9.1 is now immediate:

Proof of theorem 1.9.1. We have already seen that the index
[
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)]
equals

[Z× : det ◦ρ∞Gal(K/K)] · [SL2(Ẑ) : ρ∞
(
Gal

(
K/Kcyc

))
]. Now the first factor in this product is

at most [K : Q], while the second is bounded by [SL2(Ẑ) : S]; it follows that the adelic index is

bounded by

[K : Q] · [SL2(Ẑ) : S] ≤ [K : Q] ·
∏
`∈P

[SL2(Z`) : S`]

≤ [K : Q] ·
∏
`|Ψ

[SL2(Z`) : S`]

< [K : Q] · 2258 ·D(2)144 ·
∏

`|Ψ,` 6=2

| SL2(F`)| ·
∏

`|Ψ,` 6=2

B(`),

(1.4)

where we have used the fact that ` - Ψ⇒ ` /∈ P. We now observe that by construction for all odd

primes ` we have v`(D(∞)) ≥ v`(D(`)), so by corollary 1.7.7 the quantity
∏
`|Ψ,` 6=2B(`) divides∏

`|Ψ,`6=2

`33`48v`(D(`))
∣∣ ∏
`|Ψ,` 6=2

`33`48v`(D(∞)),
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which in turn divides
(

rad(Ψ)
2

)33
·D(∞)48. Combining this fact with equation (1.4) and the trivial

bound |SL2(F`)| < `3 we find that the adelic index is at most

[K : Q] · 2225 ·D(2)144 ·

 ∏
`|Ψ,` 6=2

`3

 · rad(Ψ)33 ·D(∞)48,

which in turn is less than [K : Q] · 2222 ·D(2)144 · rad(Ψ)36 ·D(∞)48, whence the theorem.

Using the estimates of proposition 1.2.6 to bound Ψ, D(2) and D(∞) we get:

Corollary 1.9.3. (Theorem 1.1.1) Let E/K be an elliptic curve that does not admit complex

multiplication. The inequality[
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)]
< γ1 · [K : Q]γ2 ·max {1, h(E), log[K : Q]}2γ2

holds, where γ1 = exp(1021483) and γ2 = 2.4 · 1010.

Remark 1.9.4. With some work, the techniques used in [62] (cf. especially Theorem 4.2 of op. cit.)

could be used to improve the above bound on Ψ; unfortunately, the same methods do not seem

to be easily applicable to bound D(∞). Notice that our estimates for Ψ and D(∞) are essentially

of the same order of magnitude, so using a finer bound for Ψ without changing the one for D(∞)

would only yield a minor improvement of the final result.

On the other hand, it is easy to see that using the improved version of the isogeny theorem mentioned

in remarks 1.2.3 and 1.2.7 one can prove[
GL2(Ẑ) : ρ∞

(
Gal(K/K)

)]
< γ3 · ([K : Q] ·max {1, h(E), log[K : Q]})γ4

with γ3 = exp
(
1.9 · 1010

)
and γ4 = 12395.

1.9.1 The field generated by a torsion point

As an easy consequence of our main result we can also prove:

Corollary 1.1.3. Let E/K be an elliptic curve that does not admit complex multiplication. There

exists a constant γ(E/K) with the following property: for every x ∈ Etors(K) (of order denoted

N(x)) the inequality

[K(x) : K] ≥ γ(E/K)N(x)2

holds. We can take γ(E/K) =
(
ζ(2) ·

[
GL2

(
Ẑ
)

: ρ∞
(
Gal(K/K)

) ])−1
, which can be explicitly

bounded thanks to the main theorem.

Proof. For any such x set N = N(x) and choose a point y ∈ E[N ] such that (x, y) is a basis of

E[N ] as (Z/NZ)-module. Let G(N) be the image of Gal(K/K) inside AutE[N ], which we identify

with GL2(Z/NZ) via the basis (x, y). We have a tower of extensions K(E[N ])/K(x)/K, where

K(E[N ]) is Galois over K and therefore over K(x). The Galois groups of these extensions are given

– essentially by definition – by

Gal(K(E[N ])/K) = G(N), Gal(K(E[N ])/K(x)) = Stab(x),
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where Stab(x) =
{
σ ∈ G(N)

∣∣ σ(x) = x
}

. It follows that

[K(x) : K] =
[K(E[N ]) : K]

[K(E[N ]) : K(x)]
=
|G(N)|
|Stab(x)|

,

and furthermore it is easy to check that

|G(N)| = |GL2(Z/NZ)|
[GL2(Z/NZ) : G(N)]

=

N3ϕ(N)
∏
p|N

(
1− 1

p2

)
[GL2(Z/NZ) : G(N)]

.

On the other hand, the stabilizer of x in G(N) is contained in the stabilizer of x in GL2(Z/NZ),

which is simply {(
1 a

0 b

) ∣∣ a ∈ Z/NZ, b ∈ (Z/NZ)×
}
,

so |Stab(x)| ≤ |Z/NZ| ·
∣∣(Z/NZ)×

∣∣ = Nϕ(N). Finally, the index of G(N) inside GL2(Z/NZ) is

certainly not larger than the index of G∞ inside GL2(Ẑ). Putting everything together we obtain

[K(x) : K] =

N3ϕ(N)
∏
p|N

(
1− 1

p2

)
[GL2(Z/NZ) : G(N)] · |Stab(x)|

≥

N3ϕ(N)
∏

p prime

(
1− 1

p2

)
Nϕ(N) · [GL2(Ẑ) : G∞]

,

and the corollary follows by remarking that
∏

p prime

(
1− 1

p2

)
=

1

ζ(2)
.



Chapter 2

Products of Elliptic Curves

2.1 Introduction

In this work we prove an explicit, adelic surjectivity result for the Galois representation attached

to a product of pairwise non-isogenous, non-CM elliptic curves, extending the result of chapter 1.

Our main theorem is as follows:

Theorem 2.1.1. Let E1, . . . , En, n ≥ 2, be elliptic curves defined over a number field K, pairwise

not isogenous over K. Suppose that EndK(Ei) = Z for i = 1, . . . , n, and denote by G∞ the image

of Gal(K/K) inside
n∏
i=1

∏
`

Aut(T`(Ei)) ⊂ GL2(Ẑ)n.

Set γ := 1013, δ := exp exp exp(13), and let H = max {1, log[K : Q],maxi h(Ei)}, where h(Ei)

denotes the stable Faltings height of Ei. The group G∞ has index at most

δn(n−1) ·
(
[K : Q] ·H2

)γn(n−1)

in

∆ :=
{

(x1, . . . , xn) ∈ GL2(Ẑ)n
∣∣ detxi = detxj ∀i, j

}
.

Remark 2.1.2. Note that the compatibility of the Weil pairing with the action of Galois forces G∞

to be contained in ∆. Also note that the statements we actually prove (lemma 2.7.3 and theorem

2.7.5 below) are slightly more precise, and immediately imply theorem 2.1.1 by proposition 2.2.5

and elementary estimates.

It should be noted that it has been known since the work of Serre and Masser-Wüstholz (cf. [71],

Main Theorem and Proposition 1) that the isogeny theorem (section 2.2 below) gives an effective

bound `0 on the largest prime ` for which the image of the representation

Gal(K/K)→ Aut(T`(E1 × . . .× En))

does not contain SL2(Z`)n. As it was in chapter 1, the main difficulty here lies in controlling the

image of the representation modulo powers of primes smaller than `0.

The proof of theorem 2.1.1 is somewhat technical, so before fiddling with the details we describe

the main ideas behind it. The general framework is the same as that of the proof of the non-

effective open image theorem for such a product (cf. for example [108, Theorem 3.5]), with the

45
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added difficulties that naturally arise when trying to actually compute the index. In particular,

when writing ‘of finite index’ or ‘open’ in the sketch that follows we tacitly imply that the index in

question is explicitly computable in terms of the data. In those instances when the need will arise

to actually quantify indices, it will be useful to work with the following ‘standard’ open subgroups:

Definition 2.1.3. For a prime ` and a positive integer s we let B`(s) be the open subgroup of

SL2(Z`) given by {
x ∈ SL2(Z`)

∣∣ x ≡ Id (mod `s)
}
.

We also set B`(0) = SL2(Z`), and for non-negative integers k1, . . . , kn we denote by B`(k1, . . . , kn)

the open subgroup
∏n
j=1 B`(ki) of SL2(Z`)n.

Let us now describe the proof method proper.

It is not hard to see that it is enough to consider the intersection G∞ ∩ SL2(Z`)n, because the

determinant of G∞ agrees with the cyclotomic character and is therefore well understood. A short

argument then shows that it is enough to consider products E1 × E2 involving only two factors:

this is done by proving that a subgroup of SL2(Z`)n whose projection on any pair of factors is of

finite index is itself of finite (and explicitly bounded) index. This step will be carried out in section

2.3 below, and should be thought of as the ‘integral’ version of [109, Lemma on p. 790].

With this result at hand we are thus reduced to dealing with subgroups G of SL2(Z`) × SL2(Z`)
whose projections on either factor are of finite index in SL2(Z`). Note that the fact that this index

is finite is the open image theorem for a single elliptic curve, which was proved by Serre in [116]

and made explicit in chapter 1. We wish to show that G is of (explicitly bounded) finite index in

SL2(Z`)2, that is, we want to exhibit a t such that G contains B`(t, t): this clearly comes down to

proving that the two kernels Ki = ker
(
G

πi→ SL2(Z`)
)

, when identified with subgroups of SL2(Z`),
are of (explicitly bounded) finite index. By symmetry, we just need to deal with K1.

In section 2.4 we linearize the problem by reducing it to the study of certain Z`-Lie algebras. We

also give the statements of two technical results whose proof, being rather lengthy, is deferred to

chapter 8; while the results themselves are more complicated, the methods used to show them do

not differ much from those of chapter 1, where the case of a single elliptic curve is treated.

A simple lemma, again given in section 2.4, further reduces the problem of finding an integer t such

that B`(t) is contained in K1 to the (easier) question of finding a t such that K1(`t), the reduction

modulo `t of K1, is nontrivial. We exploit here the fact that π2(G) (the projection of G on the

second factor SL2(Z`)) acts by conjugation on K1, the latter being a normal subgroup of G: we

prove that a group whose reduction modulo `t is nontrivial and that is stable under conjugation

by a finite-index subgroup of SL2(Z`) must itself be of finite index in SL2(Z`). This reduction step

is made simpler by the fact that we can work with Lie algebras instead of treating directly the

corresponding groups (which might be quite complicated).

Next we ask what happens if we suppose that the smallest integer t such that K1(`t) is nontrivial

is in fact very large. The conclusion is that the Lie algebra of G looks ‘very much like’ the graph of

a Lie algebra morphism sl2(Z`)→ sl2(Z`), namely it induces an actual Lie algebra morphism when

regarded modulo `N for a very large N (depending on t). Following for example the approach of

Ribet (cf. the theorems on p. 795 of [109]), we would like to know that all such morphisms are
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‘inner’, that is, they are given by conjugation by a certain matrix: it turns out that this is also true

in our context, even though the result is a little more complicated to state (cf. section 2.5).

In section 2.6 we then deal with the case of two elliptic curves, applying the aforementioned results

to deduce an open image theorem for each prime `. It is then an easy matter to deduce, in section

2.7, the desired adelic result for any finite product.

Notation. Throughout the whole chapter, the prime 2 plays a rather special role, and special care

is needed to treat it. In order to give uniform statements that hold for every prime we put v = 0

or 1 according to whether the prime ` we are working with is odd or equals 2, that is we set

v = v`(2) =

0, if ` is odd

1, otherwise.

We will also consistently use the following notations:

• G`, to denote the image of Gal(K/K) in AutT`(E1)× · · · ×AutT`(Ek);

• G(`n), where G is a closed subgroup of a certain GL2(Z`)k, to denote the reduction of G

modulo `n, that is to say its image in GL2(Z/`nZ)k;

• N(G), to denote the largest normal pro-` subgroup of G;

• G′, to denote the topological closure of the commutator subgroup.

2.2 Preliminaries on isogeny bounds

The main tool that makes all the effective estimates possible is the isogeny theorem of Masser and

Wüstholz [70] [72], which we employ in the explicit version proved in [28]. We need some notation:

we let α(g) = 210g3 and define, for any abelian variety A/K of dimension g,

b(A/K) = b([K : Q], g, h(A)) =
(

(14g)64g2 [K : Q] max (h(A), log[K : Q], 1)2
)α(g)

.

Theorem 2.2.1. ([28, Théorème 1.4]) Let K be a number field and A,A∗ be two Abelian K-

varieties of dimension g. If A,A∗ are isogenous over K, then there exists a K-isogeny A∗ → A

whose degree is bounded by b([K : Q], dim(A), h(A)).

Remark 2.2.2. As the notation suggests, the three arguments of b will always be the degree of a

number field K, the dimension g of an Abelian variety A/K and its stable Faltings height h(A).

In [68] (cf. especially lemma 3.4) Masser shows the following:

Theorem 2.2.3. (Masser) Suppose that A/K is an Abelian variety that is isomorphic over K to

a product Ae11 × . . . × Aemm , where each Ai is simple and has trivial endomorphism ring over K.

Suppose furthermore that for every A∗ isogenous to A over K we can find an isogeny A∗ → A of

degree bounded by b for a certain constant b. Then there exists an integer b0 ≤ b such that we can

always choose a K-isogeny A∗ → A of degree dividing b0.
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We will denote by b0(A/K) the minimal b0 with the property of the above theorem; in particular

b0(A/K) ≤ b(A/K). Consider now b0(A/K ′) as K ′ ranges through all the finite extensions of

K of degree bounded by d. On one hand, b0(A/K) divides b0(A/K ′) ([68], p.190); on the other

b0(A/K ′) ≤ b(d[K : Q], h(A),dim(A)) stays bounded, and therefore the number

lcm[K′:K]≤d b0(A/K ′)

exists and is finite. We give this function a name:

Definition 2.2.4. Suppose A/K is a product of simple varieties with absolutely trivial endomorph-

ism ring. Then we define

b0(A/K; d) = lcm[K′:K]≤d b0(A/K ′).

The function b0(A/K; d) is studied in [68, Theorem D]. Adapting the argument given by Masser to

the form of the function b(d[K : Q], h(A), dim(A)) at our disposal it is immediate to prove:

Proposition 2.2.5. (proposition 1.2.6) If A/K is as in the previous definition and of dimension

g, then

b0(A/K; d) ≤ b(A/K; d) := 4exp(1)·(d(1+log d)2)α(g)b([K : Q],dim(A), h(A))1+α(g) log(d(1+log d)2).

2.3 An integral Goursat-Ribet lemma for SL2(Z`)

As anticipated, we show that a (necessary and) sufficient condition for a subgroup of SL2(Z`)n to

be open is that all its projections on pairs of factors SL2(Z`)2 are themselves open. This will follow

rather easily from the following elementary lemma (whose easy verification we omit):

Lemma 2.3.1. Let s1, s2 be non-negative integers (with s1, s2 ≥ 2 if ` = 2 and s1, s2 ≥ 1 if

` = 3). The commutator group [B`(s1),B`(s2)] contains B`(s1 +s2 +v), and the iterated commutator

[· · · [︸︷︷︸
(n−1) times

B`(s1),B`(s2) ],B`(s3)], · · · ,B`(sn)] contains B`(s1 + · · ·+ sn + (n− 1)v).

Lemma 2.3.2. Let n be a positive integer, G a closed subgroup of
∏n
i=1 SL2(Z`), and πi the pro-

jection from G on the i-th factor. Suppose that, for every i 6= j, the group (πi × πj) (G) contains

B`(sij , sij) for a certain non-negative integer sij (with sij ≥ 2 if ` = 2 and sij ≥ 1 if ` = 3): then

G contains
∏n
i=1 B`

(∑
j 6=i sij + (n− 1)v

)
.

Proof. Clearly by the symmetry of the problem it is enough to show that G contains

{Id} × · · · × {Id} × B`

∑
j 6=n

snj + (n− 1)v

 .

By lemma 2.3.1, for any g in B`
(∑

j 6=n snj + (n− 1)v
)

there exist elements yi in B`(sni) (for i

between 1 and n − 1) such that g can be written as [· · · [[y1, y2], y3], · · · , yn−1]. By hypothesis we

can find x1, . . . , xn−1 ∈ G such that πi(xi) = Id and πn(xi) = yi for all i between 1 and n − 1.

Consider now the iterated commutator

g̃ = [· · · [[x1, x2], x3], · · · , xn−1] :
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this is a product of elements of G, and therefore it is itself an element of G. For i ≤ n− 1, the i-th

component of g̃ is trivial, since

πi(g̃) = [· · · [· · · [[πi(x1), πi(x2)], πi(x3)], · · · , πi(xi)︸ ︷︷ ︸
Id

], · · · , πi(xn−1)]

= [· · · [· · · [[πi(x1), πi(x2)], πi(x3)], · · · , Id], · · · , πi(xn−1)]

= Id .

On the other hand, our choice of y1, . . . , yn−1 ensures that πn(g̃) = [· · · [[y1, y2] , y3] , · · · , yn−1] = g.

We have thus shown that (1, 1, . . . , 1, g) = g̃ is an element of G for any choice of g in

B`

∑
j 6=n

sij + (n− 1)v

 ,

and repeating the argument for the other projections gives the required result.

Corollary 2.3.3. Let G be a closed subgroup of
∏n
i=1 SL2(Ẑ) with n ≥ 2. For every pair of indices

i 6= j let S(i,j) be a subgroup of SL2(Ẑ)2 with the following properties:

• the projection of G on the direct factor SL2(Ẑ)× SL2(Ẑ) corresponding to the pair of indices

(i, j) contains S(i,j);

• S(i,j) decomposes as a direct product
∏
` prime S

(i,j)
` ⊆

∏
` SL2(Z`)2;

• for almost every `, the group S
(i,j)
` is all of SL2(Z`)× SL2(Z`);

• for every prime ` such that S
(i,j)
` 6= SL2(Z`)× SL2(Z`) there exists an integer f

(i,j)
` such that

S
(i,j)
` = B`(f

(i,j)
` , f

(i,j)
` ) (if ` = 2 we demand that f

(i,j)
2 ≥ 2, while if ` = 3 we impose the

condition f
(i,j)
3 ≥ 1).

Denote by c(i,j) the index of S(i,j) in SL2(Ẑ) × SL2(Ẑ) and c = max
i 6=j

c(i,j). The index of G in∏n
i=1 SL2(Ẑ) is strictly less than

(8ζ(2))n(n−1)cn(n−1)/2.

Proof. Let ` > 3 be a prime. If S
(i,j)
` = SL2(Z`)2 for all (i, j), then the previous lemma applies (with

sij = 0 for every pair of indices (i, j)) and shows that
∏n
k=1 SL2(Z`) is contained in G. Suppose on

the other hand that either ` ≤ 3 or for at least one pair (i, j) we have S
(i,j)
` 6= SL2(Z`)×SL2(Z`). The

previous lemma tells us that the projection of G on the direct factor
∏n
i=1 SL2(Z`) of

∏n
i=1 SL2(Ẑ)

contains

B`

∑
j 6=1

f
(1,j)
` + (n− 1)v, . . . ,

∑
j 6=n

f
(n,j)
` + (n− 1)v

 .

Notice that the index of this group in
∏n
i=1 SL2(Z`) is at most

n∏
i=1

(
`3
∑
j 6=i f

(i,j)
` +3(n−1)v

)
= 23n(n−1)v

n∏
i=1

∏
j 6=i

`3f
(i,j)
` .
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Let now P = {2, 3} ∪
{
`
∣∣ ∃(i, j) : S

(i,j)
` 6= SL2(Z`)× SL2(Z`)

}
. By what we have just seen,[

n∏
k=1

SL2(Ẑ) : G

]
≤ 23n(n−1)

∏
`∈P

n∏
i=1

∏
j 6=i

`3f
(i,j)
` .

On the other hand, note that the index of S
(i,j)
` in SL2(Z`) × SL2(Z`) is at least `6f

(i,j)
` ·

(
`2−1
`2

)2
,

so the above product is bounded by

23n(n−1)
∏
`∈P

∏
i<j

{[
SL2(Z`)2 : S

(i,j)
`

]
·
(

`2

`2 − 1

)2
}

≤ 23n(n−1)
∏
`

(
`2

`2 − 1

)n(n−1)

·
∏
i<j

∏
`∈P

[
SL2(Z`)2 : S

(i,j)
`

]
≤ 23n(n−1)ζ(2)n(n−1)

∏
i<j

c(i,j)

≤ 23n(n−1)ζ(2)n(n−1)cn(n−1)/2.

2.4 Lie subalgebras of sl2(Z`)n and some Pink-type results

Let us briefly recall the construction (essentially due to Pink) of the Z`-Lie algebra associated with

a subgroup of GL2(Z`)n:

Definition 2.4.1. (cf. [97]) Let ` be a prime. Define maps Θn as follows:

Θn : GL2(Z`)n →
⊕n

i=1 sl2(Z`)
(g1, . . . , gn) 7→

(
g1 − 1

2 tr(g1), . . . , gn − 1
2 tr(gn)

)
.

If G is a closed subgroup of GL2(Z`)n (resp. of B2(2, . . . , 2) in case ` = 2), define L(G) ⊆ sl2(Z`)n

to be the Z`-span of Θn(G). We call L(G) the Lie algebra of G.

The crucial importance of this construction lies in the fact that it allows us to linearize the problem

of showing that a certain subgroup of GL2(Z`)n contains an open neighbourhood of the identity:

indeed, we have the following two results, for whose proof we refer the reader to chapter 8.

Theorem 2.4.2. Let ` > 2 be a prime number and G be a closed subgroup of GL2(Z`)×GL2(Z`).
Let G1, G2 be the two projections of G on the two factors GL2(Z`), and let n1, n2 be positive integers

such that Gi contains B`(ni) for i = 1, 2. Suppose furthermore that for every (g1, g2) ∈ G we have

det(g1) = det(g2). At least one of the following holds:

• G contains B`(20 max{n1, n2}, 20 max{n1, n2})

• there exists a subgroup T of G, of index dividing 2 · 482, with the following properties:

– if L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`) for a certain integer k, then T contains B`(p, p),
where

p = 2k + max {2k + 4, 8n1, 8n2} .

We call this property (∗).
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– for any (t1, t2) in T , if both [t1] and [t2] are multiples of the identity, then they are equal.

Theorem 2.4.3. Let G be a closed subgroup of GL2(Z2) × GL2(Z2) whose projection modulo 4 is

trivial. Denote by G1, G2 the two projections of G on the factors GL2(Z2), and let n1 ≥ 4, n2 ≥ 4

be integers such that Gi contains B2(ni). Suppose furthermore that for every (g1, g2) ∈ G we have

det(g1) = det(g2). If L(G) contains 2ksl2(Z2)⊕ 2ksl2(Z2) for a certain k ≥ 2, then G contains

B2(12(k + 12n2 + 5n1 + 13) + 1, 12(k + 12n1 + 5n2 + 13) + 1).

Finally, the following easy lemma characterizes conjugation-stable subalgebras of sl2(Z`):

Lemma 2.4.4. (Lemma 8.2.1) Let ` be a prime number, t a non-negative integer, and W ⊆ sl2(Z`)
a Lie subalgebra that does not reduce to zero modulo `t+1 and that is stable under conjugation by

B`(s), where s ≥ 0 is at least 2 if ` = 2 and at least 1 if ` = 3 or 5 (no conditions are necessary if

` ≥ 7). The open set `t+4s+4vsl2(Z`) is contained in W .

2.5 The automorphisms of sl2(Z`) are inner

We will obtain in this section a description of the automorphisms of sl2(Z`) showing that they are

all inner, in a suitable sense. In order to establish the required result we first need a few simple

preliminaries, starting with the following well-known version of Hensel’s lemma:

Lemma 2.5.1. Let p(x) ∈ Z`[x] be a monic polynomial and let α be an element of Z`. Suppose

that v`(p(α)) > 2v`(p
′(α)): then p(x) admits a root ᾱ such that v`(α− ᾱ) ≥ v`(p(α))− v`(p′(α)).

The main tool we will use to produce approximate roots of polynomials is the following lemma:

Lemma 2.5.2. Let ` be a prime number, n ≥ 1,m ≥ 1, g ∈ End (Zm` ) and pg(t) the characteristic

polynomial of g. Let furthermore λ ∈ Z`, w ∈ Zm` be such that gw ≡ λw (mod `n). Suppose that at

least one of the coordinates of w has `-adic valuation at most α: then pg(λ) ≡ 0 (mod `n−α).

Proof. Denote by (g − λ Id)∗ the adjugate matrix of (g − λ Id), that is the unique operator such

that (g − λ Id)∗(g − λ Id) = det(g − λ Id) · Id. Multiplying (g − λ Id)w ≡ 0 (mod `n) on the left by

(g − λ Id)∗ we obtain det(g − λ Id) · Idw ≡ 0 (mod `n), and by considering the coordinate of w of

smallest valuation we have pg(λ) = det(g − λ Id) ≡ 0 (mod `n−α) as claimed.

An immediate computation also shows:

Lemma 2.5.3. Let g ∈ sl2 (Z`). The linear operator Cg := [g, ·] from sl2 (Z`) to itself has eigenvalues

0,±2µ, where ±µ are the eigenvalues of g, so pCg(t) = t(t2 − 4µ2).

Combining the previous results we obtain the following lemma, which will be very useful for our

purposes:

Lemma 2.5.4. Let g be an element of sl2 (Z`), w be a vector in Z2
` , and β be the minimal valuation

of the coefficients of w. Suppose gw ≡ λw (mod `n). Then either g has an eigenvalue ν such that

v`(ν − λ) ≥ v`(λ) + 3 or else β is at least n− 2(2 + v`(λ)).
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Proof. Let ±µ be the eigenvalues of g. From lemma 2.5.2 we deduce that v`(pg(λ)) ≥ n − β;

notice further that pg(t) = t2 − µ2, so p′g(t) = 2t. Suppose that β < n − 2(2 + v`(λ)): then

n− β > 2(2 + v`(λ)) > 2v`(p
′
g(λ)), and by Hensel’s lemma pg(t) has a root ν such that

v`(ν − λ) ≥ v`(pg(λ))− v`(p′g(λ)) ≥ n− β − v − v`(λ) ≥ v`(λ) + 3.

We now come to the central result of this section, which as anticipated is essentially a description

of the Lie algebra automorphisms of (the finite quotients of) sl2(Z`).

Notation. For the remainder of this section, in order to make notation lighter, when a is a positive

integer we write x = y +O(a) for x ≡ y (mod `a).

Proposition 2.5.5. Let L1 be a subalgebra of sl2(Z`) and n ≥ 1, s ≥ 0 be integers. Suppose that

L1 contains `ssl2(Z`) and that ϕ : L1 → sl2(Z`) is a linear map such that

(∗) [ϕ(a), ϕ(b)] ≡ ϕ([a, b]) (mod `n) ∀a, b ∈ `ssl2(Z`).

Define

x = ϕ

(
`s ·

(
0 1

0 0

))
, y = ϕ

(
`s ·

(
0 0

1 0

))
, h = ϕ

(
`s ·

(
1 0

0 −1

))
and let α be the minimal integer such that x, y are both nonzero modulo `α+1.

Suppose that n ≥ α + 10s + 5v + 6. There exists a matrix M ∈ M2 (Z`), at least one of whose

coefficients is nonzero modulo `, and such that for every w ∈ (Z`)2 and every g1 ∈ L1 we have

M(g1 · w) ≡ ϕ(g1) ·M(w) (mod `n−α−6s−4v−6). (2.1)

Furthermore, det(M) does not vanish modulo `4s+v, and for every g1 in L1 we have

tr
(
ϕ(g1)2

)
≡ tr

(
g2

1

)
(mod `n−α−10s−5v−6)

and

ϕ(g1) ≡Mg1M
−1 (mod `n−α−10s−5v−6), M−1ϕ(g1)M ≡ g1 (mod `n−α−10s−5v−6)

Remark 2.5.6. The reader might wonder whether it is really necessary for the three parameters n, α

and s to all appear in equation (2.1). The answer is yes. This is apparent for n, if the result is

to say something nontrivial about ϕ. Consider next the limiting case where ϕ ≡ 0 (i.e. α goes to

infinity): this map satisfies the hypotheses in the proposition for every n, but it is easy to realize

that (independently of n) the equality

M(g1 · w) ≡ ϕ(g1) ·M(w) = 0 (mod `N )

can only hold for bounded N ; of course a similar conclusion holds if α stays finite, but is very large.

Finally, choose an n and any linear map ϕ and suppose s is sent to infinity. For s large enough, the

condition in the proposition will become void, since both sides of the equality will automatically be

0 modulo `n: but then we cannot hope to deduce anything meaningful about ϕ, so that s, too, has

to appear in the conclusion.

The question of whether the dependence on the parameters is optimal, on the other hand, is far

more complicated, and there is almost certainly room for improvement.
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Here again let us say a few words about the method of proof before starting with the technical

details. To simplify matters, consider the algebra L = sl2(Q`). Proving that every automorphism

of L is inner basically boils down to showing that the only 2-dimensional representation of sl2(Q`)

is the standard one, a result which is usually proved through the ‘highest weight vector’ machinery:

one shows that it is possible to choose an eigenvector v for h that is killed by x, and then describes

its full orbit under the action of x, y, h. More precisely, one shows that yv is an eigenvector for h,

that xyv is proportional to v, and that y2v = 0.

The proof that follows mimics this very argument by producing a vector v+, by definition an

eigenvector for h, which plays the role of the highest weight vector, and subsequently finding its

orbit under the action of h, x, y. The main difficulty lies probably in the initial step, where we need

to prove that the eigenvalues of h lie in Z` and are of a certain shape. Once this is done, most of

the proof looks very much like the one for sl2(Q`), with the additional complication that we have

to keep track of valuations along the way.

Proof. Denote by Ch the linear endomorphism of sl2(Z`) ∼= Z3
` given by taking the commutator with

h. It is clear that

Ch(x) = [h, x] ≡ ϕ

[
`s ·

(
1 0

0 −1

)
, `s ·

(
0 1

0 0

)]
≡ ϕ

(
2`s · `s ·

(
0 1

0 0

))
≡ 2`sx (mod `n),

so x is an (approximate) eigenvector of Ch associated with the (approximate) eigenvalue 2`s. Lemma

2.5.2 yields

pCh(2`s) ≡ 0 (mod `n−α).

If we let ±µ denote the eigenvalues of h, then p′Ch(t) = (t2 − 4µ2) + 2t2, and evaluating at 2`s we

find

p′Ch(2`s) = 4(`2s − µ2) + 8`2s =
pCh(2`s)

2`s
+ 8`2s.

To estimate the `-adic valuation of this last expression simply observe that

v`

(
pCh(2`s)

2`s

)
= v` (pCh(2`s))− v`(2)− s ≥ n− α− v − s > 3v + 2s,

so v`

(
p′Ch(2`s)

)
= v`

(
8`2s

)
= 3v + 2s. By Hensel’s lemma (lemma 2.5.1), pCh(t) admits a root

λ ∈ Z` such that

v`(λ− 2`s) ≥ v`(pCh(2`s))− v`(p′Ch(2`s)) ≥ n− α− 2s− 3v > 2s+ 1.

Note that λ cannot be zero, because clearly v`(0− 2`s) = v + s is strictly smaller than v`(λ− 2`s).

It follows that λ is one of the other two roots of pCh(t), namely ±2µ, and hence

±µ = ±1

2
(2`s +O(n− α− 2s− 3v)) = ±`s(1 +O(n− α− 3s− 4v)).

To sum up, the two eigenvalues of h belong to Z` and are of the form ±`s+O(n−α−2s−4v) (and

in particular of the form ±`s + O(s+ 4)). Let µ+ be the one of the form `s + O(n− α − 2s− 4v)

and v+ ∈ Z2
` a corresponding eigenvector, normalized in such a way that at least one of the two

coordinates is an `-adic unit. Set furthermore v− = yv+.

As anticipated, our next objective is to describe the action of x, y, h on v±. We expect v+ to be

annihilated by x and v− to be an eigenvector for h that is annihilated by y: of course this is not
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going to be exactly true at all orders, but only up to a certain error term that depends on n, α and

s. Let β be the minimal valuation of the coordinates of xv+: this is a number we want to show to

be large.

The idea is that if xv+ were not very close to zero, then it would be an eigenvector of h associated

with an eigenvalue that h does not possess. Note that

h(xv+) ≡ [h, x]v+ + xhv+ ≡ (2`s + µ+)xv+ (mod `n),

so by lemma 2.5.4 either h has an eigenvalue ξ such that v`(ξ−(µ+ +2`s)) ≥ 3+v`(µ+ +2`s) ≥ s+3

or β ≥ n − 2(2 + v`(µ+ + 2`s)). Note now that we cannot be in the first case: indeed h would

have an eigenvalue of the form 3`s + O(s + 3), but we have already seen that the eigenvalues

of h are ±`s + O(s + 4), contradiction. Hence we are in the second situation, and furthermore

v`(µ+ + 2`s) ≤ s + 1: hence β ≥ n − 2(2 + v`(µ+ + 2`s)) ≥ n − 2s − 6, and by definition of β this

means xv+ ≡ 0 (mod `n−2(s+3)). Next we compute

hv− = hyv+

= [h, y]v+ + yhv+

= −2`s · yv+ + y(µ+v+) +O(n)

= (µ+ − 2`s)v− +O(n)

= (−`s +O(n− α− 2s− 4v))v−

= −`sv− +O(n− α− 2s− 4v),

(2.2)

xv− = xyv+

= [x, y]v+ + yxv+

= `shv+ +O(n− 2(s+ 3))

= `sµ+v+ +O(n− 2(s+ 3))

= `s (`s +O(n− α− 2s− 4v)) v+ +O(n− 2(s+ 3))

= `2sv+ +O(n− α− 2(s+ 3));

(2.3)

this settles the question of the action of h and x on v−. We are left with showing that v− is

(approximately) killed by y:

h · yv− = [h, y]v− + yhv−

= −2`s · yv− + y ((−`s) +O(n− α− 2s− 4v)) v− +O(n)

= −3`syv− +O(n− α− 2s− 4v),

so that yv− is an (approximate) eigenvector of h, associated with the (approximate) eigenvalue

−3`s. Let γ be minimal among the valuations of the coefficients of yv−. Apply lemma 2.5.4: either

γ ≥ n − α − 2s − 4v − 2(2 + v`(−3`s)) ≥ n − α − 4s − 4v − 6 or h has an eigenvalue ν satisfying

v`(ν+ 3`s) ≥ v`(−3`s) + 3 ≥ s+ 3. This second possibility contradicts what we have already proven

on the eigenvalues of h, hence γ ≥ n−α− 4s− 4v− 6, that is to say yv− = O(n−α− 4s− 4v− 6).

Putting it all together, we have proved that up to an error of order `n−α−4s−4v−6 we have

xv+ = 0, yv+ = v−, hv+ = `sv+, xv− = `2sv+, yv− = 0, hv− = −`sv−.
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Write x (resp. y, h) for `s

(
0 1

0 0

)
(resp. `s

(
0 0

1 0

)
, `s

(
1 0

0 −1

)
) and consider the matrix M̃ whose

columns are given by `sv+ and v−. The above relations may be stated more compactly as

M̃x = xM̃, M̃y = yM̃, M̃h = hM̃ (2.4)

modulo `n−α−4s−4v−6. Let δ be minimal among the valuations of the coefficients of M̃ : by con-

struction, at least one of the coordinates of v+ is an `-adic unit, so δ ≤ s. Set M = `−δM̃ .

Dividing equations (2.4) by `δ we see that M satisfies analogous equations up to error terms of

order n−α− 5s− 4v− 6, and by construction at least one of the coefficients of M is an `-adic unit.

Let now g be any element of L1. The matrix `sg belongs to `ssl2(Z`), so it is a linear combination

of x, y, h with coefficients in Z`. Write `sg = λ1x+ λ2y + λ3h. We have

`sMg = M(`sg)

= M(λ1x+ λ2y + λ3h)

= (λ1x+ λ2y + λ3h)M +O(n− α− 5s− 4v − 6)

= ϕ(`sg)M +O(n− α− 5s− 4v − 6)

= `sϕ(g)M +O(n− α− 5s− 4v − 6),

so that dividing by `s we deduce Mg = ϕ(g)M +O(n− α− 6s− 4v − 6) for every g ∈ L1, which is

the first statement in the proposition.

Let us now turn to the statement concerning the determinant. We can assume that v+ is normalized

so that v+ =

(
1

c

)
. We also write v− =

(
b

d

)
. It is clear that v`(detM) ≤ v`(det M̃), and that

det M̃ = `s det

(
1 b

c d

)
, so let us consider D := v`

(
det

(
1 b

c d

))
. Suppose by contradiction

D > 3s+ v; by definition of the determinant we have d = bc+O(D), which implies

v− =

(
b

d

)
=

(
b

bc+O(D)

)
= bv+ +O(D).

Applying h to both sides of this equality and using equation (2.2) we get

µ−v− +O(n− α− 2s− 4v) = hv− = h(bv+ +O(D)) = bµ+v+ +O(D).

Comparing the first coordinate of these vectors we deduce

bµ− = bµ+ +O(min {D,n− α− 2s− 4v}),

hence

µ− = µ+ +O(min {D − v`(b), n− α− 2s− 4v − v`(b)}). (2.5)

Note now that since d = bc+O(D) we have v`(d) ≥ min {v`(b), D}. Moreover, we see by equation

(2.3) that xv− = `2sv+ +O(n−α− 2(s+ 3)), and since the right hand side does not vanish modulo

`2s+1 (since n−α− 2(s+ 3) > 2s+ 1 and `2sv+ =

(
`2s

`2sc

)
) we deduce that min {v`(b), v`(d)} ≤ 2s.

Let us show that we also have v`(b) ≤ 2s. Suppose that v`(b) ≥ 2s+ 1: then

v`(d) ≥ min {v`(b), D} ≥ min {2s+ 1, 3s+ v + 1} ≥ 2s+ 1,
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which implies min {v`(b), v`(d)} ≥ 2s+1 and contradicts what we just proved. Therefore v`(b) ≤ 2s,

hence equation (2.5) implies µ− = µ+ + O (D − 2s): notice that if the minimum in (2.5) were

attained for n − α − 2s − 4v − v`(b) > 3s + 1 we would have `s = −`s + O(3s + 2), a clear

contradiction. On the other hand, we know that µ± = ±`s + O(s + 4), so the above equation

implies 2`s + O(s + 4) = O(D − 2s). Hence we have proved v`(2`
s) ≥ D − 2s, i.e. D ≤ 3s + v, a

contradiction. It follows, as claimed, that v`(detM) ≤ v`(det M̃) = s+D ≤ 4s+ v.

Next we prove the statement concerning traces. Let g be any element of L1. Setting, for the sake

of simplicity, N = n−α−6s−4v−6, we have Mg = ϕ(g)M +O(N), so (multiplying on the left by

the adjugate M∗ of M) we deduce det(M)g = M∗ϕ(g)M +O(N). Didiving through by det(M) we

have g = M−1ϕ(g)M +O(N − (4s+ v)); note that this equality would a priori only hold in sl2(Q`),

but since both g and the error term are `-integral we necessarily also have M−1ϕ(g)M ∈ sl2(Z`).
Squaring and taking traces then yields tr

(
g2
)

= tr
[(
M−1ϕ(g)M

)2]
+O(N − (4s+ v)), i.e.

tr
(
g2
)

= tr
(
ϕ(g)2

)
+O(N − (4s+ v))

as claimed. Finally, essentially the same argument shows the last two statements: we can multiply

the congruence Mg1 ≡ ϕ(g1)M (mod `N ) on the right (resp. left) by M∗ and divide by detM to

get

Mg1M
−1 ≡ ϕ(g1) (mod `N−4s−v), g1 ≡M−1ϕ(g1)M (mod `N−4s−v).

2.6 Products of two curves

Let E1, E2 be two elliptic curves overK and ` be a prime number. To study the Galois representation

attached to E1×E2 we are going to pass to a suitable extension of K over which the study of the Lie

algebra of G` (the image of Gal(K/K) inside AutT`(E1)×AutT`(E2) ∼= GL2(Z`)2) is sufficient to

yield information on G` itself. Before doing this, however, we need to dispense with some necessary

preliminaries. Let G`,1, G`,2 be the two projections of G` onto the two factors GL2(Z`), and m1,

m2 be integers such that B`(mi) is contained in G`,i for i = 1, 2.

Suppose for the moment that ` is odd. We want to apply theorem 2.4.2, so for the whole section

(up until the very last proposition) we make the following

Assumption. If ` is odd, G` does not contain B` (20 max{m1,m2}, 20 max{m1,m2}).

Under this assumption, we define K` to be the extension of K associated with the following closed

subgroups of G`: ker
(
G2 → GL2(Z/8Z)2

)
, if ` = 2

H`, if ` 6= 2,

where H` is the group given by an application of theorem 2.4.2 under our assumption. Note that

the degree [K2 : K] is at most 32216, that is to say the order of{
(x, y) ∈ GL2(Z/8Z)2

∣∣ detx = det y
}
,

whereas [K` : K] is uniformly bounded by 2 · 482 for ` 6= 2. Note that H` is by construction

the image of Gal(K`/K`) in AutT`(E1) × AutT`(E2) ∼= GL2(Z`)2; we write H`,1, H`,2 for its two
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projections on the two factors GL2(Z`). Furthermore, we let n1, n2 be integers such that H`,1, H`,2

respectively contain B`(n1),B`(n2). Notice that if ` = 2 we have n1, n2 ≥ 2; on the other hand, for

` = 3 or t we explicitly demand that n1, n2 ≥ 1 (the groups H3 and H5 as constructed in chapter 8

will automatically satisfy this inequality).

Remark 2.6.1. Note that if m1,m2 > 0 we can in fact take n1 = m1, n2 = m2 unless ` ≤ 3: indeed

for primes ` ≥ 5 the index of H` in G` is not divisible by `, so for any positive value of n the (pro-`)

group B`(n) is contained in H`,i if and only if it is contained in G`,i.

Let L ⊆ sl2(Z`)⊕2 (resp. L1, L2 ⊆ sl2(Z`)) be the Lie algebra of H` (resp. H`,1, H`,2). Choose

a basis of L of the form (a1, b1), (a2, b2), (a3, b3), (0, y1), (0, y2), (0, y3). Such a basis clearly exists.

Since by our assumption H`,1 ⊇ B`(n1) we have L1 ⊇ `n1sl2(Z`).
Also note that (0, y1), (0, y2), (0, y3) span a Lie-subalgebra: indeed [(0, yi), (0, yj)] = (0, [yi, yj ])

must be a linear combination with Z`-coefficients of the basis elements; however, since a1, a2, a3

are linearly independent over Z`, we deduce that this commutator is a linear combination of

(0, y1), (0, y2), (0, y3), so that these three elements do indeed span a Lie algebra, which we call L3.

Note that L3 can equivalently be described as the kernel of the projection from L ⊆ sl2(Z`)⊕sl2(Z`)
to the first copy of sl2(Z`). We shall interchangeably think of L3 as being a subaglebra of sl2(Z`)
or of sl2(Z`)⊕2, by identifying it with its projection on the second factor sl2(Z`).

Lemma 2.6.2. L3 ⊆ sl2(Z`) is stable under conjugation by B`(n2).

Proof. For the proof we consider L3 as a subalgebra of sl2(Z`)⊕2.

Take any element l ∈ L3: it is the limit of a certain sequence ln =
∑n

i=1 λn,iΘ(gn,i) for certain

gn,i ∈ H`. For any g ∈ B`(n2) there exists a certain h ∈ H`,1 such that (h, g) is in H`. We have

(h, g)−1ln(h, g) =
n∑
i=1

λn,i(h, g)−1Θ(gn,i)(h, g) =
n∑
i=1

λn,i(h, g)−1

(
gn,i −

tr(gn,i)

2
Id

)
(h, g)

=
n∑
i=1

λn,i

(
(h, g)−1gn,i(h, g)− tr((h, g)−1gn,i(h, g))

2
Id

)

=
n∑
i=1

λn,iΘ((h, g)−1gn,i(h, g)) ∈ 〈Θ(H`)〉,

so the sequence
(
(h, g)−1ln(h, g)

)
n≥0

is in L, and by continuity of conjugation tends to the element

(h, g)−1l(h, g) of L. Now if we write l = (l(1), l(2)) = (0, l(2)) we have

(h, g)−1l(h, g) = (h, g)−1(0, l(2))(h, g) = (0, g−1l(2)g) ∈ L,

and since L3 is exactly the sub-algebra given by the elements whose first coordinate vanishes the

claim is proved.

Lemma 2.6.3. Fix an integer t, and suppose that at least one among y1, y2, y3 is not zero modulo

`t+1: then L3 contains `t+4n2+4vsl2(Z`).

Proof. Apply lemma 2.4.4 with s = n2 (recalling that n2 ≥ 1 if ` = 3 or 5).

Our task is therefore to bound the values of t for which the yi’s all vanish modulo `t. If at least

one among y1, y2, y3 does not vanish modulo `n2+1 we are done, so we can assume without loss of
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generality that yi ≡ 0 (mod `t) for a certain t ≥ n2 + 1. If this is the case, then none of b1, b2, b3

can be zero modulo `t, for otherwise L2 could not contain `n2sl2(Z`). Even more, the bi’s must

generate `n2sl2(Z`).
Denote by ϕ : L1 → L2 the only Z`-linear map sending ai to bi for i = 1, 2, 3. For two indices j, k

write [aj , ak] =
∑3

i=1 µ
(j,k)
i ai. There exist scalars ν

(j,k)
i such that

[(aj , bj), (ak, bk)] =
3∑
i=1

µ
(j,k)
i (ai, bi) +

3∑
i=1

ν
(j,k)
i (0, yi),

and reducing the second coordinate of this equation modulo `t gives

[ϕ(aj), ϕ(ak)] = [bj , bk] ≡
3∑
i=1

µ
(j,k)
i bi

≡
3∑
i=1

µ
(j,k)
i ϕ(ai)

≡ ϕ

(
3∑
i=1

µ
(j,k)
i ai

)
≡ ϕ ([aj , ak]) (mod `t).

We want to apply proposition 2.5.5 to ϕ. We claim that, in the notation of that proposition, we

can take α ≤ n2 + n1. Since b1, b2, b3 generate `n2sl2(Z`), a linear combination λ1b1 + λ2b2 + λ3b3

vanishes modulo `n1+n2+1 only if λ1, λ2, λ3 all vanish modulo `n1+1. Now since a1, a2, a3 generate

`n1sl2(Z`) we can choose scalars λ1, λ2, λ3 ∈ Z` such that `n1

(
0 1

0 0

)
= λ1a1 + λ2a2 + λ3a3, and

clearly at least one among λ1, λ2, λ3 is nonzero modulo `n1+1. It follows that

ϕ

(
`n1

(
0 1

0 0

))
= ϕ (λ1a1 + λ2a2 + λ3a3) =

3∑
i=1

λibi

is nonzero modulo `n1+n2+1 as claimed, and a perfectly analogous argument applies to the image

of `n1

(
0 0

1 0

)
. Also note that by construction of ϕ and by our assumption on t we have

(l1, l2) ∈ L(H`)⇒ l2 ≡ ϕ(l1) (mod `t).

Set T = t− 11n1 − n2 − 5v − 6. By proposition 2.5.5, there is a matrix M ∈M2(Z`) such that:

1. tr l21 ≡ tr(ϕ(l1)2) ≡ tr l22 (mod `T ) ∀(l1, l2) ∈ L(H`);

2. for all (l1, l2) ∈ L(H`) we have l2 ≡M · l1 ·M−1 (mod `T ) and M−1 · l2 ·M ≡ l1 (mod `T );

3. at least one of the coefficients of M is an `-adic unit.

Take any element (g1, g2) ∈ H`. By our choice of K`, we know that the determinant of g1 is a square

in Z`, so we can choose a square root of det g1 and write

(g1, g2) =
√

det g1(g′1, g
′
2)

for a certain (g′1, g
′
2) ∈ SL2(Z`). The image (l1, l2) of (g′1, g

′
2) via Θ2 differs from Θ2(g1, g2) by a

scalar multiple, so it lies again in L(H`). By definition, there exists a pair (λ1, λ2) ∈ Z2
` such that

(g′1, g
′
2) = (λ1, λ2) · Id + (l1, l2) , (2.6)
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and we wish to show that λ1 is congruent to λ2 modulo a large power of `. We begin by discussing

the case of odd `. Squaring equation (2.6) we obtain((
g′1
)2
,
(
g′2
)2)

= (λ2
1 · Id +l21 + 2λ1l1, λ

2
2 · Id +l22 + 2λ2l2).

Now the left hand side is simply
1

det g1

(
g2

1, g
2
2

)
, an element of H` up to scalar multiples. The image

of this matrix through Θ2 is then an element of L(H`), so applying Θ2 to the right hand side of the

previous equation we get (
Θ1(l21) + 2λ1l1,Θ1(l22) + 2λ2l2

)
∈ L(H`), (2.7)

which implies

Θ1(l22) + 2λ2l2 ≡M
(
Θ1(l21) + 2λ1l1

)
M−1 (mod `T )

and, using properties (1) and (2) above,

2λ1l2 ≡M (2λ1l1)M−1 ≡ 2λ2l2 (mod `T ).

If l2 has at least one coordinate not divisible by `, this last equation implies λ1 ≡ λ2 (mod `T ).

If not, then g′2 reduces modulo ` to a multiple of the identity (cf. equation (2.6)). Moreover, as

det(g′2) = 1, we have in particular

1 = det(λ2 Id +l2) = λ2
2 −

tr
(
l22
)

2
,

from which we find

λ2 = ±
√

1 +
tr(l22)

2
,

where the series converges since l2 is trivial modulo `. Symmetrically we prove that either the

congruence λ1 ≡ λ2 (mod `T ) holds or else l1 is trivial modulo ` and

λ1 = ±
√

1 +
tr(l21)

2
.

Suppose then l1, l2 to be both trivial modulo `. As tr
(
l21
)
≡ tr

(
l22
)

(mod `T ), it follows that λ1

and λ2 are congruent modulo `T as long as λ1 and λ2 have the same reduction modulo `. But g′1, g
′
2

reduce to diagonal matrices diag (λi, λi) in SL2(F`), so λ1 ≡ λ2 (mod `T ) if and only if g′1, g
′
2 have

the same reduction modulo `, and this is exactly one of the properties of H` given by theorem 2.4.2.

If, on the other hand, ` = 2, then l1, l2 vanish modulo 4 by construction and the same argument as

above shows that

λi = ±
√

1 +
tr(l2i )

2
, i = 1, 2. (2.8)

Given that 2λi ≡ tr (g′i) ≡ 2 (mod 8) by our construction ofH`, it follows that λ1 ≡ λ2 ≡ 1 (mod 4),

so the sign in equation (2.8) must be a plus and λ1 ≡ λ2 (mod 2T−2). Using this information in

equation (2.6) we have thus proved

Lemma 2.6.4. There exists a matrix M ∈ M2(Z`) such that, for every element (g1, g2) ∈ H`, the

congruence g2 ≡Mg1M
−1 (mod `T−2v) holds.

Set now H := T − 2v and choose any w ∈ E1[`H ]: as `Hw = 0, for every (g1, g2) ∈ H` we have

Mg1w = Mg1M
−1Mw = (g2M +O(`H))w = g2Mw,
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so the subgroup

Γ =
{

(w,Mw) ∈ E1[`H ]× E2[`H ]
∣∣ w ∈ E1[`H ]

}
is defined over K`: indeed for any (g1, g2) ∈ H` we have

(g1, g2) · (w,Mw) = (g1w, g2Mw) = (g1w,Mg1w).

Thus the abelian variety A∗ = E1×E2/Γ is defined over K`, and we have an isogeny E1×E2 → A∗

of degree |E1[`H ]| = `2H ; on the other hand, we also have an isogeny A∗ → E1 × E2 of degree b

dividing b0(E1×E2/K`), and the composition of the two is an endomorphism of E1×E2 that kills

Γ. Here we use the crucial fact that at least one of the coefficients of M is an `-adic unit to deduce

that the projection of Γ on E2 contains points of exact order `H , so the endomorphism of E1 ×E2

killing Γ must be of the form

(
`He1 0

0 `He2

)
, of degree e2

1e
2
2`

4H . It follows that e2
1e

2
2`

4H = `2Hb,

hence 2H ≤ v`(b0(E1×E2/K`)) and 2t ≤ v`(b0(E1×E2/K`))+2(11n1+n2+7v+6). This inequality

is certainly not satisfied if we take t =
⌊
v`(b0(E1×E2/K`))

2

⌋
+ 11n1 + n2 + 7v+ 7, so for this value of t

the Lie algebra L3 does not vanish modulo `t. Lemma 2.6.3 then shows that L3 contains `f1sl2(Z`),
where f1 =

⌊
v`(b0(E1×E2/K`))

2

⌋
+ 11n1 + 5n2 + 11v + 7, and therefore L(H`) contains 0⊕ `f1sl2(Z`).

Swapping the roles of E1 and E2 we deduce that L(H) contains `fsl2(Z`)⊕ `fsl2(Z`), where now

f =

⌊
v`(b0(E1 × E2/K`))

2

⌋
+ 16 max {n1, n2}+ 11v + 7.

Proposition 2.6.5. Let E1, E2 be elliptic curves over K that are not isogenous over K and do not

admit complex multiplication over K. Let ` be a prime number.

Suppose the image of Gal(K`/K`) → Aut(T`(Ei)) contains B`(ni) for i = 1, 2 (where ni ≥ 2 for

` = 2 and ni ≥ 1 for ` = 3 or 5). Let f be given by the formula above. If ` is odd, the image G` of

Gal(K/K)→ Aut(T`(E1))×Aut(T`(E2)) contains B`(4f + 4)×B`(4f + 4); if ` = 2, the image G2

of Gal(K/K)→ Aut(T2(E1))×Aut(T2(E2)) contains

B2(12(f + 17 max{n1, n2}+ 13) + 1, 12(f + 17 max{n1, n2}+ 13) + 1).

Proof. For ` = 2 the result follows at once from theorem 2.4.3. For odd `, and under the assumption

we made at the beginning of this section, the result similarly follows from property (∗) of H` given

in theorem 2.4.2 and the fact that clearly 2f + 4 > 8 max {n1, n2}. On the other hand, if our

assumption is false, then G` contains B` (20 max{n1, n2}, 20 max{n1, n2}) (note that we can assume

m1 ≤ n1,m2 ≤ n2 without loss of generality), which is stronger than what we are claiming.

2.7 Conclusion

Consider again the case of two elliptic curves E1, E2 defined over K, non-isogenous over K and

such that EndK(Ei) = Z. Let P be the set of primes ` for which G` does not contain SL2(Z`)2.

Rewriting Proposition 1 of [71] in terms of the function b0 of definition 2.2.4 we get:

Lemma 2.7.1. Let ` be a prime. If ` does not divide the product

30b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)
b0(E1 × E2/K; 2),

then ` is not in P.
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Proof. Lemma 1.8.2 implies that for a prime ` that does not divide

b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)

both projections of G`(`) on the two factors GL2(F`) contain SL2(F`). Under this hypothesis,

the proof of [71, Proposition 1] shows that G`(`) contains SL2(F`)2 unless `2
∣∣ b0(E1 × E2/K; 2).

Finally, a closed subgroup of GL2(Z`)2 whose projection modulo ` contains SL2(F`)2 contains all of

SL2(Z`)2, if ` ≥ 5 (this is well-known; see for example [113, Proposition 4.2]).

Corollary 2.7.2. The inequality∏
`∈P

` ≤ 30b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)
b0(E1 × E2/K; 2)

holds.

Let now ` be a prime different from 2 and 3. For j = 1, 2 set

Dj(∞) = b0(Ej/K; 120)5b0(E2
j /K; 2).

As ` is odd, by corollary 1.7.6 we see that G`,j contains

B` (16v`(Dj(∞)) + 12) ,

hence the same is true for H`,j , cf. remark 2.6.1. Therefore – in the notation of the previous section

– we can take nj = nj(`) = 16v`(Dj(∞)) + 12. On the other hand, for ` = 3 we apply theorem

1.7.5 directly to Ej/K3 (notice that our present K3 satisfies the same hypotheses as the field noted

K3 in chapter 1) and see that we can take

nj(3) = 16v3

(
b0(E/K3)5b0(E2/K3)

)
+ 12 ≤ 16v3(Dj(∞)) + 12;

similarly, for ` = 2 we can take nj(2) = 48v2

(
b0(Ej/K2)5b0(E2

j /K2)
)

+ 38.

Applying proposition 2.6.5 with these values of nj we get:

Lemma 2.7.3. Let ` be a prime. The group G` contains B`(f(`), f(`)), where f(`) is given by

f(`) = 2v`(b0(E1 × E2/K; 2 · 482)) + 210 max {v`(D1(∞)), v`(D2(∞))}+ 103

for odd ` and

f(2) = 6v2(b0(E1 × E2/K2)) + 104 max
j

{
v2

(
b0(Ej/K2)5b0(E2

j /K2)
)}

+ 104

for ` = 2.

Using the very same argument as in chapter 1 (paragraph 1.8), and some very crude estimates, we

deduce

Proposition 2.7.4. G∞ contains a subgroup S of the form S =
∏
` S`, where each S` coincides

with SL2(Z`)2 except for the finitely many primes that are in P, for which S` = B`(f(`), f(`)). The

index of S in SL2(Ẑ) is bounded by b(E1 × E2/K; 2 · 482)12000.

We finally come to the adelic estimate for an arbitrary number of curves:

Theorem 2.7.5. Let E1, . . . , En, n ≥ 2, be elliptic curves defined over K, pairwise non-isogenous

over K. Suppose that EndK(Ei) = Z for i = 1, . . . , n. Then G∞ has index at most

(8ζ(2))n(n−1) · [K : Q] ·max
i 6=j

b
(
Ei × Ej/K; 2 · 482

)6000n(n−1)
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in {
(x1, . . . , xn) ∈ GL2(Ẑ)n

∣∣ detxi = detxj ∀i, j
}
.

Proof. The exact sequence

1→ G∞ ∩ SL2(Ẑ)n → G∞
det−→ Ẑ× → Ẑ×

det ◦ρ∞Gal(K/K)
→ 1

and the fact that

∣∣∣∣∣ Ẑ×

det ◦ρ∞Gal(K/K)

∣∣∣∣∣ ≤ [K : Q] (cf. proposition 1.8.1) show that it is enough to

prove that the index of G∞ ∩ SL2(Ẑ)n inside SL2(Ẑ)n is bounded by

(8ζ(2))n(n−1) ·max
i 6=j

b(Ei × Ej/K; 2 · 482)6000n(n−1).

Set G = G∞ ∩ SL2(Ẑ). For every pair Ei, Ej of curves, we get from proposition 2.7.4 a subgroup

S(i,j) of

SL2(Ẑ)2 ⊆
∏
`

Aut (T`(Ei))×
∏
`

Aut (T`(Ej))

that satisfies all the requirements of corollary 2.3.3, and the theorem follows from this corollary

upon noticing that the index of S(i,j) in SL2(Ẑ)2 is bounded by b(Ei × Ej/K; 2 · 482)12000.



Chapter 3

Abelian surfaces & GL2-varieties

3.1 Introduction

The purpose of this work is the study of Galois representations attached to abelian surfaces over

number fields. Throughout the chapter, the letters K and A will respectively denote a number field

and a 2-dimensional abelian variety (‘surface’) defined over K, and the letter ` will be reserved for

prime numbers. The representations we examine are those given by the natural action of Gal(K/K)

on the various Tate modules of A (denoted by T`(A)), and the problem we study is that of describing

the image G`∞ of Gal(K/K) in Aut (T`(A)).

In a sense that will be made precise shortly, we aim to show that this image is as large as it is

permitted by some ‘obvious’ constraints, as soon as ` exceeds a certain bound `0(A,K) that we

explicitly compute in terms of arithmetical invariants of K and of the semistable Faltings height of

A (denoted by h(A)). Note that this fact, in its qualitative form, has been known since the work

of Serre [118] and Ribet [109]: the novelty of the result we present here lies in its being completely

explicit. Indeed, to the best of the author’s knowledge, before the present work the only paper

dealing with the problem of explicit surjectivity results for Abelian surfaces was [48], that only

covered the case EndK(A) = Z. Unfortunately, the argument of [48] seems to contain a gap, for

in his case analysis the author does not include the subgroup of GSp4(F`) arising from the unique

4-dimensional symplectic representation of SL2 (case 7 in theorem 3.3.2). This is essentially the

hardest case, and dealing with it requires nontrivial results of Raynaud on the structure of the

action of inertia.

Before stating our main result let us elaborate a little on the ‘obvious’ conditions that are imposed

on G`∞ . On the one hand, the compatibility of the Galois action with the Weil pairing 〈·, ·〉 forces

G`∞ to be contained in the group of similitudes with respect to the bilinear form 〈·, ·〉; on the other

hand, the action of Gal(K/K) is also compatible with the action of EndK(A), so that we also know

that G`∞ is contained in the centralizer of EndK(A) inside Aut(T`(A)).

This second condition leads naturally to classifying abelian surfaces according to the structure

of EndK(A). A study of those rings that appear as endomorphism rings of abelian surfaces (a

particular case of the so-called Albert classification, cf. for example [86, p. 203]) leads to the

conclusion that only five cases can arise:

63
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1. Type I, trivial endomorphisms: A is absolutely simple and EndK(A) = Z;

2. Type I, real multiplication: A is absolutely simple and EndK(A) is an order in a real quadratic

field;

3. Type II, quaternionic multiplication: A is absolutely simple and EndK(A) is an order in a

quaternion division algebra over Q;

4. Type IV, complex multiplication: A is absolutely simple and admits complex multiplication

by a quartic CM field;

5. Non-simple case: AK is isogenous to the product of two elliptic curves.

We focus here on the first three possibilities. The case of complex multiplication (in arbitrary

dimension) is treated in chapter 5, and that of a product of an arbitrary number of elliptic curves

without complex multiplication is studied in chapter 2; combining these results, it should also be

possible to treat the case of a product of two elliptic curves E1 × E2, where E1 admits complex

multiplication and E2 does not.

3.1.1 Notation and statement of the result

We are interested in the Galois representations attached to A: the natural action of Gal(K/K) on

the Tate modules T`(A) gives rise to a family of representations

ρ`∞ : Gal(K/K)→ GL(T`(A))

which will be our main object of study. We will also need to consider the residual mod-` represent-

ations, which we similarly denote by ρ` : Gal(K/K)→ GL(A[`]), and we write G`∞ (resp. G`) for

the image of ρ`∞ (resp. ρ`). Most of our estimates will be given in terms of the following function:

Definition 3.1.1. Let K be a number field and A be an abelian variety of dimension g defined

over K. Let α(g) = 210g3 and define

b(A/K) = b([K : Q], g, h(A)) =
(

(14g)64g2 [K : Q] max (h(A), log[K : Q], 1)2
)α(g)

.

We are now ready to state our main results. Let A/K be an abelian surface, R be its endomorphism

ring EndK(A), and ` be a rational prime.

Theorem 3.1.2. Suppose that R = Z. The equality G`∞ = GSp4(Z`) holds for every prime ` that

is not divisible by any place of bad reduction of A, does not ramify in K, and is strictly larger than

b(4 · 1920[K : Q], 4, 2h(A))1/4.

Remark 3.1.3. As it is remarked in chapter 4 (cf. especially remark 4.5.3), the good reduction

assumption can be weakened to the assumption that A has semistable reduction at least at one

place of K of characteristic `. Furthermore, by the techniques of that chapter, the bound can be

improved to b(4[K : Q], 4, 2h(A))1/4, cf. remark 3.3.20.

For the case of real multiplication, we treat the more general situation of abelian varieties of GL2-

type, namely those abelian varieties A/K such that EndK(A) ⊗ Q is a totally real number field

whose degree over Q equals dimA (such varieties were considered by Ribet in [109]):
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Theorem 3.1.4. Let A/K be an abelian variety of dimension g. Suppose that R = EndK(A) is

an order in a totally real field E of degree g over Q and that all endomorphisms of A are defined

over K. Let ` be a prime unramified both in K and in E and strictly larger than both b(A/K)g and

b(2[K : Q], 2 dim(A), 2h(A))1/2: then we have

G`∞ =
{
x ∈ GL2 (OE ⊗ Z`)

∣∣ detOE x ∈ Z×`
}
.

The case of abelian surfaces with real multiplication then follows as an immediate consequence:

Corollary 3.1.5. Suppose that R is an order in a real quadratic field E and that all endomorphisms

of A are already defined over K. Let ` be a rational prime, unramified both in K and in E and

strictly larger than b(2[K : Q], 4, 2h(A))1/2: then we have

G`∞ =
{
x ∈ GL2 (OE ⊗ Z`)

∣∣ detOE x ∈ Z×`
}
.

Remark 3.1.6. When A is a surface, the group H`∞ :=
{
x ∈ GL2 (OE ⊗ Z`)

∣∣ detOE x ∈ Z×`
}

ap-

pearing in this statement admits a concrete description as follows. When ` is split in E, OE ⊗Z` is

isomorphic to Z`⊕Z`, and H`∞ =
{

(h1, h2) ∈ GL2(Z`)2
∣∣ deth1 = deth2

}
. If, on the other hand, `

is inert in E, then OE ⊗ Z` is a domain that contains a canonical copy of Z` (namely Z⊗ Z`), and

we have H`∞ =
{
x ∈ GL2(OE ⊗ Z`)

∣∣ detx ∈ Z×`
}

, where now det is the usual determinant (since

OE ⊗ Z` is a domain). More generally, if A is of dimension g, then

H`∞ =

(xλ) ∈
∏
λ|`

GL2(Oλ)
∣∣ detxλ1 = detxλ2 ∈ Z×` ∀λ1, λ2 | `

 ,

where the product runs over the places of E dividing `.

Theorem 3.1.7. Suppose R is an order in an indefinite quaternion division algebra and let ∆ be

the discriminant of R. Suppose furthermore that all endomorphisms of A are already defined over

K. If ` is larger than b(2[K : Q], 4, 2h(A))1/2, does not divide ∆, and does not ramify in K, then

G`∞ = (R⊗ Z`)×.

Remark 3.1.8. Note that in the case of real and quaternionic multiplication we demand that the

endomorphisms of A be defined over K, but this is not a severe restriction. Indeed, this condition

can be achieved by passing to a finite extension K ′ of K, and when A is a surface it is known that

K ′/K can be taken to be of degree at most 2 for the case of real multiplication ([129, Proposition

4.3]), and at most 12 for the quaternionic case ([25, Prop. 2.1]); more complicated (but still explicit)

bounds on the degree K ′/K are also available in case A is of GL2-type, cf. again [129].

Replacing K with K ′ corresponds to killing the group of connected components of G`∞ , i.e. to

demanding that the image of Galois be connected. Analogous results (with slightly different bounds)

could be stated without this assumption, at the cost of replacing G`∞ by its identity component in

the conclusion.

Before moving to the proofs of the three main statements a few more comments are in order.

Consider first the hypothesis that ` does not lie below any place of bad reduction of A: without any

assumption on A, this condition cannot be turned into an inequality only involving h(A). Indeed,

the set of primes dividing the places of bad reduction of A/K is not stable under extensions of
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scalars, so it cannot be controlled just in terms of the stable Faltings height: this is really an

arithmetical condition that is hard to avoid. On the plus side, the primes which fail to meet this

restriction are often easy to determine in practice, especially when A is explicitly given as the

Jacobian of a genus 2 curve.

Also note that in many intermediate lemmas we give estimates in terms of the best possible isogeny

bound (cf. section 3.2.2), thus avoiding to use the specific form of the function b(A/K). However,

in order to make the final results more readable, we have chosen to express them in a form that

only involves the function b; this also has the merit of giving completely explicit bounds.

Let us also briefly review previous work in the area. As already mentioned, Serre [118] proved that

for a large class of abelian varieties (that includes surfaces with EndK(A) = Z) there exists a number

`1(A,K) such that G`∞ = GSp2 dimA(Z`) for every ` larger than `1(A,K); his result, however, is

not effective, in the sense that the proof does not give any bound on `1(A,K). Similarly, Ribet

proved in [109] an open image result for abelian varieties of GL2-type that includes surfaces with

real multiplication as a particular case, but that is again non-effective. The case of quaternionic

multiplication was treated independently in [93] and in [45] by extending the techniques Serre used

to prove his celebrated open image theorem for elliptic curves in [116], but once again these results

were not effective. Finally, it is only fair to also mention the results of Dieulefait who, in [24],

gives sufficient conditions for the equality G`∞ = GSp4(Z`) to hold at a prime `; the form of these

conditions, however, is again such that they do not yield a bound for the largest prime for which

the equality G` = GSp4(Z`) fails to hold. The treatment we give of case 7 of theorem 3.3.2, on the

other hand, has been inspired by Dieulefait’s paper.

To conclude this introduction let us give a brief overview of the organisation of the chapter and

of the proof methods. Theorems 3.1.2, 3.1.4, and 3.1.7 will be shown in sections 3.3, 3.4, and 3.5

respectively.

The main input for the proof in the case of trivial endomorphisms ring comes from group theory,

complemented by an application of some nontrivial results of Raynaud. After reducing the problem

to that of showing the equality G` = GSp4(F`) for ` large enough, we recall the classification of

the maximal proper subgroups of GSp4(F`) and proceed to show that each of them cannot occur

as the image of the Galois representation on A[`], at least for ` large enough. In most cases, this

follows from the so-called isogeny theorem of Masser and Wüstholz [70] [72] (theorem 3.2.2 below):

if the residual representation G` is small, then the Galois module A[`] (or A[`]×A[`]) is nonsimple,

a fact that gives rise to isogenies of high degree, eventually contradicting the isogeny theorem for `

large enough. In some exceptional cases, however, the representations A[`] and A[`] × A[`] can be

irreducible even if G` is comparatively very small, and it is to exclude this possibility that we need

to invoke Raynaud’s results.

For the case of real multiplication our method is quite different from the one of [109]: by appealing

more to group theory, we can completely avoid appealing to Chebotarev’s theorem, which would

be the main obstacle in making Ribet’s method effective.

Finally, a general philosophy suggests that – at the level of Galois representations – an abelian variety

of dimension 2g with quaternionic multiplication by an algebra with center L should behave as an

abelian variety of dimension g admitting multiplication by L, and indeed the case of section 3.5 turns
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out to be the easiest, the argument being very similar to that for elliptic curves without complex

multiplication. More precisely, the Tate module decomposes as two copies of a 2-dimensional Galois

representation, and we can apply techniques that are an essentially straightforward generalisation

of those employed to show analogous results for elliptic curves, and that go back to Serre [116] (cf.

also [71]).

Finally, in appendix 3.6 we show how to bound the index of EndK(A) in any order in which it is

contained, a result that is needed in the course of the proof of theorem 3.1.4.

3.2 Preliminaries

We collect in this section a number of results that are essentially well-known and that will form the

basis for all our further discussion. Specifically, we recall a few fundamental properties of Galois

representations attached to abelian varieties and an explicit form (due to Gaudron and Rémond) of

the so-called Isogeny Theorem, first proved by Masser and Wüstholz in a seminal series of papers,

cf. especially [70] and [72].

3.2.1 Weil pairing, the multiplier of the Galois action

Recall that the choice of a polarization on A equips the Tate module T`(A) with the Weil pairing,

a skew-symmetric, Galois-equivariant form

〈·, ·〉 : T`(A)× T`(A)→ Z`(1),

where Z`(1) is the 1-dimensional Galois module the action on which is given by the cyclotomic

character χ` : Gal(K/K) → Z×` . The Weil pairing is known to be nondegenerate on A[`] as soon

as ` does not divide the degree of any given K-polarization of A. Note now that the degree of a

minimal K-polarization on A is at most b(A/K) by [28, Théorème 1.1]: since all the bounds given in

the main theorem are strictly larger than this number, for the proof of this theorem we can restrict

ourselves to only working with primes that do not divide the degree of a minimal polarization, and

for which the Weil pairing is nondegenerate. We will therefore work under the following

Assumption. For all the primes ` we work with, the Weil pairing is nondegenerate on A[`].

The fact that 〈·, ·〉 is Galois-equivariant means that G`∞ is a subgroup of GSp(T`(A), 〈·, ·〉), the

group of symplectic similitudes of T`(A) with respect to the Weil pairing, which we will also simply

denote GSp(T`(A)). After a choice of basis we can then consider G`∞ (resp. G`) as being a subgroup

of GSp4(Z`) (resp. GSp4(F`)).

Our main interest in the Weil pairing comes from its relationship with the determinant (or, more

precisely, the multiplier) of the Galois action. Let us describe the connection. The algebraic group

GSp4 is not simple, a fact which often makes it much easier to work with its normal subgroup Sp4

instead. To describe the mutual relationship between these groups, note that in general, if 〈·, ·〉 is

a skew-symmetric form, the multiplier of a symplectic similitude A is the only scalar ν(A) such

that 〈Av,Aw〉 = ν(A)〈v, w〉 for every v, w. The association A 7→ ν(A) is then a homomorphism,
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whose kernel is the group Sp(〈·, ·〉) of symplectic isometries. In the case of Gal(K/K) we have an

exact sequence

1→ Sp(T`(A))→ GSp(T`(A))
ν→ Z×` → Z×` /χ`(Gal(K/K))→ 1,

so that in order to prove that G`∞ is all of GSp(T`(A)) it suffices to prove that G`∞ contains

Sp(T`(A)) and that G`∞
ν→ Z×` is surjective, i.e. that Gal(K/K)

χ`→ Z×` is surjective. This last

condition is very easy to check, and in fact the following lemma is all we will need to pass from

results on Sp(T`(A)) to results on GSp(T`(A)).

Lemma 3.2.1. Suppose ` does not ramify in K. Then Gal(K/K)
χ`→ Z×` is surjective.

In particular, if G` (resp. G`∞) contains Sp(A[`]) (resp. Sp(T`(A))) and ` does not divide the

discriminant of K, the equality G` = GSp(A[`]) (resp. G`∞ = GSp(T`(A))) holds.

Proof. The claim is equivalent to the fact that for all n ≥ 1 the equality [K(µ`n) : K] = ϕ(`n)

holds. It suffices to show that K/Q and Q(µ`n)/Q are linearly disjoint, and since the latter is

Galois it suffices to show that they intersect trivially. Now L := K ∩Q(µ`n) is a subfield of K, so `

is unramified in L, and is a subfield of Q(µ`n), so every prime different from ` is also unramified in

L. It follows that L is unramified everywhere, that is, L = Q as claimed. The second statement is

immediate.

3.2.2 The isogeny theorem

For future reference we introduce here the main tool that will make all the explicit estimates

possible. The crucial result is the isogeny theorem of Masser and Wüstholz [70] [72], in the following

completely explicit form proved by Gaudron and Rémond :

Theorem 3.2.2. (Isogeny Theorem, [28, Theorem 1.4]) Let b(A/K) be as in definition 3.1.1. For

every abelian variety A∗ defined over K that is K-isogenous to A, there exists a K-isogeny A∗ → A

whose degree is bounded by b(A/K).

It is very likely that the function b(A/K) of definition 3.1.1 is not the best possible one. Let us

then introduce another function b0(A/K), which is by definition the best possible isogeny bound:

Definition 3.2.3. For A/K an abelian variety, let b0(A/K) be the smallest natural number such

that, for every other abelian variety B/K that is K-isogenous to A, there exists a K-isogeny B → A

of degree at most b0(A/K). Also let b0(A/K; d) = max[K′:K]≤d b0(A/K ′), where the maximum is

taken over the finite extensions of K of degree at most d.

It is clear that the isogeny theorem implies that b0(A/K) and b0(A/K; d) are finite, and that

b0(A/K; d) ≤ b(d[K : Q], dimA, h(A)). Whenever possible, we will state our results in terms of

b0 instead of b. In some situations, however, in order to avoid cumbersome expressions involving

maxima we simply give bounds in terms of the function b.
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3.3 Type I – Trivial endomorphisms

In this section we establish the surjectivity result under the assumption EndK(A) = Z. The

material is organized as follows: the first paragraph deals with classical results on the structure of

subgroups of GSp4(F`), while in the second we collect information on the action of inertia that will

allow us to conclude that some exceptional subgroups of GSp4(F`) cannot arise as images of Galois

representations. Theorem 3.1.2 easily follows, as shown in the last paragraph.

3.3.1 Group theory for GSp4(F`)

We start by recalling a classical result describing subgroups of P Sp4(F`) in terms of their action on

P3 (F`). We will need a few definitions from classical projective geometry (cf. [41], p.7):

Definition 3.3.1. A hyperbolic (resp. elliptic) congruence is the set of all lines in P3(F`) that meet

two given skew lines, each defined over F` (resp. two conjugate lines defined over F`2 but not over

F`). We call these two lines the axes of the congruence.

A parabolic congruence is the set of all lines tangent to a non-degenerate ruled quadric along one of

its rulings, forming a one-parameter family of flat pencils sharing one line, namely the ruling they

are tangent to. We call this line the axis of the congruence.

Mitchell proved in [78] the following classification (see also King’s article in [141] for a more modern

account of the result):

Theorem 3.3.2. Let ` > 7. Every maximal proper subgroup G of P Sp4(F`) is of one of the following

types:

1. G stabilizes a point and a plane in P3(F`);

2. G stabilizes a parabolic congruence;

3. G stabilizes a hyperbolic congruence;

4. G stabilizes an elliptic congruence;

5. G stabilizes a quadric and has a subgroup of index 2 isomorphic to GL2(F`);

6. G stabilizes a quadric and has a subgroup of index 2 isomorphic to GU2(F`);

7. G stabilizes a twisted cubic;

8. G has order at most 1920.

The following simple lemma partially reduces the study of GSp4(F`) to the previous classification:

Lemma 3.3.3. Let ` ≥ 3 and G be a subgroup of GSp4(F`) whose projective image PG contains

P Sp4(F`). Then G contains Sp4(F`).
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Proof. Consider the kernel Gν=1 of G
ν→ F×` , where ν denotes the multiplier of a symplectic simil-

itude (cf. section 3.2.1). Suppose Gν=1 is a proper subgroup of Sp4(F`): then by [141, Theorem 2.8

on p. 36] the index [G : Gν=1] is at least `3. But if this is the case we have

|G| = |Gν=1| · |ν(G)| ≤ |Sp4(F`)|
`3

· (`− 1) < |P Sp4(F`)|,

contradiction.

It will prove useful to collate Mitchell’s classification with the description of the maximal subgroups

of Sp4(F`) given in the spirit of Aschbacher’s theorem (cf. for example Tables 8.12 and 8.13 of [19]).

Among the geometrical classes introduced by Aschbacher we will only need to deal with C1, C2 and

C3. Recall that a subgroup G̃ of Sp4(F`) is said to be of class

• C1, if it stabilizes a totally singular or non-singular subspace;

• C2, if it stabilizes a direct sum decomposition of F4
` in subspaces of the same dimension;

• C3, if there exist a prime r and a subgroup of index r of G̃ whose action on F4
` is F`r -linear

for a given F`r -vector space structure on F4
` . More precisely, G̃ is contained in{

A ∈ Sp4(F`)
∣∣ ∃σ ∈ Gal (F`r/F`) : ∀λ ∈ F`r , ∀v ∈ F4

` A(λv) = σ(λ)Av
}
,

and contains as a subgroup of index at most r the set{
A ∈ G̃

∣∣ ∀λ ∈ F`r , ∀v ∈ F4
` A(λv) = λAv

}
.

Let us consider what the various G’s in Mitchell’s list correspond to in an Aschbacher-type clas-

sification. Take G̃ to be the maximal subgroup of Sp(4,F`) that lifts G. That the following

correspondence is indeed correct follows at once by comparing the indices of the various subgroups

in Aschbacher’s and Mitchell’s classification. Let us disregard case (8), which does not have much

geometrical content.

• Cases 1 and 2 correspond to maximal parabolic groups stabilizing totally singular subspaces of

dimension 1 (the projective point) and 2 (the projective axis of the congruence) respectively,

so that G̃ is of class C1. For case 2, note that every projectivity sends flat pencils to flat pencils

and intersections to intersections, so the axis of the congruence (which is the intersection of

all the pencils in the congruence) is sent to itself.

• Case 3 corresponds to a group of class C2 in Aschbacher’s classification. The same argument

as with the parabolic congruence shows that every element of G̃ either fixes the axes of the

congruence or it interchanges them. Let H be the index-2 subgroup of those γ ∈ G̃ that

fix both axes. These axes correspond to trivially-intersecting planes Π1,Π2 in F4
` , and G̃ is

contained in the stabilizer of the direct sum decomposition Π1⊕Π2. The group H is isomorphic

to SL2(F`)× SL2(F`), where the two factors act separately on the two planes.

• Case 4 concerns groups belonging to class C3, with r = 2: they admit a subgroup of index 2

isomorphic to SL2(F`2), acting naturally on F4
`
∼= (F`2)2.
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• Case 5 corresponds again to class C2. This is most easily seen by giving an explicit realization

of the index-2 subgroup H of G̃: up to conjugation, we can take H to be{(
A 0

0
(
A−1

)t
) ∣∣ A ∈ GL2(F`)

}
,

so that (as it is immediate to check) H preserves the symmetric quadratic form whose matrix

is Q =

(
0 Id2

Id2 0

)
. Note also that H is symplectic with respect to the standard form(

0 − Id2

Id2 0

)
. From this description it is immediate to see that G̃ is contained in the stabilizer

of the decomposition of F4
` as direct sum of the two planes defined by the first (resp. last)

two coordinates being 0.

• In case (6), G̃ has a subgroup of index 2 that is compatible with an action of F`2 on F4
` , so by

definition it belongs to class C3.

• Finally, groups pertaining to case (7) belong to the exceptional class S in Aschbacher’s clas-

sification. By [19], Table 8.13, such G̃’s are isomorphic to SL2(F`).

From this analysis we deduce:

Lemma 3.3.4. Let G̃ be a subgroup of GSp(4,F`) such that G := PG̃ is contained in P Sp4(F`).

• If G is contained in a group of type (1), (2), (3) or (5) of Mitchell’s list, then G̃ admits a

subgroup H̃ of index at most 2 whose action on F4
` is not irreducible.

• If G is contained in a group of type (4) or (6) of Mitchell’s list, then G̃ admits a subgroup H̃

of index at most 2 whose action on F4
` commutes with F`2 (for a suitable structure of F4

` as

F`2-vector space).

• If G is contained in a group of type (8) then the subgroup of homotheties of G̃ has index at

most 1920 (in G̃).

Proof. We just need to reduce the case of GSp4(F`) to that of P Sp4(F`). Denote π : G̃ → G the

quotient map. If G falls into case (1), (2), (3) or (5), then it admits a subgroup H of index at

most 2 that fixes a point or a line in P3(F`). This point (line) corresponds to a line (plane) in F4
`

that is fixed by any matrix in GL4(F`) lifting an element of H. In particular this is true for every

element in the group H̃ = π−1(H), which has index at most 2 in G̃ (note that π is surjective, so

[π−1(G) : π−1(H)] = [G : H]).

Next suppose G is contained in a group of type (4) or (6). Let π1 : Sp4(F`) → P Sp4(F`) be the

canonical projection and G1 = π−1
1 (G). The hypothesis G ⊆ PSp4(F`) implies that π1(G1) = π(G̃):

every element of G lifts to an element of Sp4(F`). The group G1 contains a subgroup H1 of index

at most 2 that commutes with the action of F`2 . Define H̃ = π−1(π1(H1)). As before,

[G̃ : H̃] = [π(G̃) : π(H̃)] = [π1(G1) : π1(H1)] = [G1 : H1] ≤ 2,

and furthermore an element in H̃ differs from an element in H1 by a homothety, so H̃ commutes

with F`2 since this is true for H1.
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Finally, if G is of type (8) then the trivial group has index at most 1920 in G̃, so π−1(Id) (which

consists entirely of homotheties) has index at most 1920 in G.

To conclude this group-theoretic part we describe in some more detail the relationship between

subgroups of PSp4(F`) and PGSp4(F`) and the structure of groups falling into case (7). We shall

need the following fact, which is well-known and can be found for example in [19] (Tables 8.13 and

8.14, column “Stabilizer”):

Lemma 3.3.5. Every maximal subgroup of PGSp4(F`) not containing PSp4(F`) is an extension of

degree at most 2 of a proper maximal subgroup of PSp4(F`).

Definition 3.3.6. We shall say that a maximal subgroup G of PGSp4(F`) is of type n, with

1 ≤ n ≤ 8, if G is an extension (of degree at most 2) of a maximal subgroup of PSp4(F`) of the

corresponding type.

For groups of type (7) we have the following precise description ([19, §5.3], especially Proposition

5.3.6); notice that the condition ` ≥ 11 ensures the existence of maximal subgroups of PSp4(F`) of

type (7), cf. [19, Table 8.13].

Lemma 3.3.7. Let ` ≥ 11 be a prime, G0 ⊆ PSp4(F`) be a maximal subgroup of type (7) and

G ⊆ PGSp4(F`) a maximal subgroup of PGSp4(F`) containing G0 as an index-2 subgroup. Then G is

isomorphic to PGL2(F`), and for every g ∈ G and for every γ ∈ GSp4(F`) lifting g, the eigenvalues

of γ can be written as µλ3
1, µλ

2
1λ2, µλ1λ

2
2, µλ

3
2, where λ1 and λ2 are the roots of a second-degree

polynomial with coefficients in F` and µ is an element of F×` .

Remark 3.3.8. This can also be deduced from completely abstract considerations: the unique irredu-

cible 4-dimensional representation of the algebraic group SL2 is symplectic, so it gives an embedding

SL2 ↪→ Sp4 with weights −3,−1, 1, 3. This representation extends to a map PGL2 → PGSp4: it is

then not hard to see that this situation must correspond to case (7) above. The λi’s, i = 1, 2, are

the eigenvalues of the 2 by 2 matrix corresponding to γ in GL2.

3.3.2 The action of inertia

In this section l denotes a prime of OK of good reduction for A and Il the tame inertia group at

l. Let ` be the rational prime below l and e the absolute ramification index of l. We recall the

following well-known result of Raynaud:

Theorem 3.3.9. ([104, Corollaire 3.4.4]) Let V be a simple Jordan-Hölder quotient of A[`] (as a

module over the inertia group at l). Suppose that V has dimension n over F`. The action of the

inertia group at l on A[`] factors through Il. Moreover, there exist integers e1, . . . , en such that:

• V has a structure of F`n-vector space

• the action of Il on V is given by a character ψ : Il → F×`n

• ψ = ϕe11 . . . ϕenn , where ϕ1, . . . , ϕn are the fundamental characters of Il of level n
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• for every i = 1, . . . , n the inequality 0 ≤ ei ≤ e holds

In this section we only concern ourselves with the action of Il on A[`]; in particular, by a Jordan-

Hölder quotient of A[`] we implicitly mean “under the action of Il”.

Convention. There is of course a certain ambiguity in the numbering of the characters of level

n. We choose our numbering so that ϕj = (ϕ1)`
j−1

for j = 1, . . . , n. Note that the norm, taken

from F`n to F`, of the character ϕ1 (hence of all characters of level n) is the unique fundamental

character of level 1. When ` is unramified in K, this fundamental character of level 1 is χ`, the

cyclotomic character mod `.

Recall the following fact (a consequence of the definition of the fundamental characters):

Lemma 3.3.10. If ϕ : Il → F×`n is any fundamental character of order n, then ϕ is surjective,

hence in particular its image is a cyclic group of order `n − 1.

Corollary 3.3.11. Suppose ` is at least 5 and unramified in K, and let V be an n-dimensional

Jordan-Hölder quotient of A[`]. Then the following are the only possibilities:

• Il acts trivially

• Il acts through a fundamental character of order n

• Il acts through the product of two distinct fundamental characters of order n, where n ≥ 3

Proof. For any simple Jordan-Hölder constituent W of A[`] denote by ψW = ϕ
e1(W )
1 . . . ϕen(W )

n the

character giving the action of Il on W , where n is the dimension of W . The determinant of the

action of Il on W is the norm NF`n/F`

(
ϕ
e1(W )
1 . . . ϕ

en(W )
n(W )

)
= χ

e1(W )+···+en(W )
` . Since the determinant

of the Galois action on A[`] is χ2
` by the properties of the Weil pairing, we must have∏

W Jordan-Hölder
factor of A[`]

χ
e1(W )+···+en(W )
` (g) = χ`(g)2 ∀g ∈ Il,

where the product is taken over a fixed Jordan-Hölder filtration of A[`] that contains V . Comparing

orders we deduce ∑
W Jordan-Hölder

factor of A[`]

(e1(W ) + · · ·+ en(W )) ≡ 2 (mod |χ`(Il)|). (3.1)

Now since every ei(W ) is at most 1 (as ` is unramified in K we have ei(W ) ≤ e(`) = 1) the left

hand side is at most
∑

W Jordan-Hölder
factor of A[`]

dim(W ) = 4, hence from the inequality 4 ≤ `− 1 = |χ`(Il)| (cf.

lemma 3.3.10) we deduce that the congruence of equation (3.1) must in fact be an equality, and∑
W Jordan-Hölder

factor of A[`]

(e1(W ) + · · ·+ en(W )) = 2.

In particular, taking again into account the fact that ei(V ) ≤ 1, the only possibilities for the

character giving the action of Il on V are precisely those given in the statement. To see the

necessity of the condition n ≥ 3 in the last case, note that for n = 1 there are no two distinct

fundamental characters and for n = 2 the product ϕ1ϕ2 coincides with χ`, so the action would

factor through F×` and the Jordan-Hölder factor V would not be simple.
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Proposition 3.3.12. Under the hypotheses of the previous lemma, for every g ∈ Il the multiset of

eigenvalues of ρ`(g) is one of the following (the superscript indicates the level of the characters):

1.
{
ϕ

(4)
1 (g)ϕ

(4)
2 (g), ϕ

(4)
2 (g)ϕ

(4)
3 (g), ϕ

(4)
3 (g)ϕ

(4)
4 (g), ϕ

(4)
4 (g)ϕ

(4)
1 (g)

}
2.
{
ϕ

(3)
1 (g)ϕ

(3)
2 (g), ϕ

(3)
2 (g)ϕ

(3)
3 (g), ϕ

(3)
3 (g)ϕ

(3)
1 (g), 1

}
3.
{
ϕ

(3)
1 (g), ϕ

(3)
2 (g), ϕ

(3)
3 (g), χ`(g)

}
4.
{
ϕ

(2)
1 (g), ϕ

(2)
2 (g), ϕ

(2)
1 (g), ϕ

(2)
2 (g)

}
5.
{
ϕ

(2)
1 (g), ϕ

(2)
2 (g), χ`(g), 1

}
6. {χ`(g), χ`(g), 1, 1}

Proof. The multiset of eigenvalues of ρ`(g) is the union of the multisets of values taken by the

characters that give the action on the simple Jordan-Hölder factors of A[`]. With this remark and

the previous lemma at hand the rest of the proof is just casework. The cases in the list correspond

to decompositions of A[`] with simple Jordan-Hölder factors of dimensions respectively 4 (case 1),

3+1 (cases 2 and 3), 2+2 (case 4), 2+1+1 (case 5) and 1+1+1+1 (case 6).

Note that the multiset
{
ϕ

(4)
1 (g)ϕ

(4)
3 (g), ϕ

(4)
2 (g)ϕ

(4)
4 (g), ϕ

(4)
3 (g)ϕ

(4)
1 (g), ϕ

(4)
4 (g)ϕ

(4)
2 (g)

}
, which does

not appear in the above list, is actually the same as
{
ϕ

(2)
1 (g), ϕ

(2)
2 (g), ϕ

(2)
1 (g), ϕ

(2)
2 (g)

}
.

Remark 3.3.13. In cases 1 through 3 the inertia group Il contains at least one g such that the set

of eigenvalues of ρ`(g) is contained neither in F×` nor in F×
`2

: otherwise, the action of Il on each

Jordan-Hölder quotient of A[`] would factor through F×
`2

and there would be no simple Jordan-

Hölder quotient of dimension at least 3.

We deduce the following technical result which will come in handy later:

Proposition 3.3.14. Suppose ` is at least 11 and unramified in K: then PG` is not contained in

a group of type (7).

Proof. Suppose on the contrary that PG` is of type (7). By lemma 3.3.7, for any g ∈ Gal(K/K)

the eigenvalues of ρ`(g) are of the form
{
µa3, µa2d, µad2, µd3

}
for certain a, d ∈ F×

`2
and µ ∈ F×` .

This applies in particular to the tame inertia group Il: for every g in Il, the eigenvalues of ρ`(g) lie

in F×
`2

, and – taken in some order λ1, λ2, λ3, λ4 – they satisfy the system of equations

λ1λ4 = λ2λ3, λ2λ4 = λ2
3, λ1λ3 = λ2

2. (3.2)

We will now go through all the cases listed in proposition 3.3.12 and see that (for a suitably chosen

g ∈ Il) there is no way to renumber the multiset of eigenvalues of ρ`(g) in such a way that the three

equations above are all satisfied together, a contradiction that shows the result. Remark 3.3.13

implies that cases 1 through 3 do not happen (since we have just seen that the eigenvalues of every

ρ`(g) are in F×
`2

). Next we consider case 6. Note that the condition ` ≥ 11 implies that the order

of χ` is at least 10 (by lemma 3.3.10), so there exists a g ∈ Il with χ`(g) 6= ±1. Consider equations

(3.2) for this specific g. If either λ2 or λ3 is 1, then one of the last two equations reads χ`(g)d = 1
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with d = 1 or 2, which contradicts χ`(g) 6= 1,−1. But if neither λ2 nor λ3 is 1 then the only

possibility is λ1 = λ4 = 1, λ2 = λ3 = χ`(g), which violates all of the three equations.

Likewise, in case 4 we can choose a g ∈ Il such that ϕ
(2)
1 (g) is of order `2−1, and – independently of

the numbering of the eigenvalues – from equations (3.2) we obtain
(
ϕ

(2)
1 (g)

)2
=
(
ϕ

(2)
2 (g)

)2
, which

using ϕ
(2)
2 =

(
ϕ

(2)
1

)`
implies

(
ϕ

(2)
1 (g)

)2(`−1)
= 1, a contradiction.

Finally, if we are in case 5, then taking the norm from F`2 to F` of the three equations (3.2) we find

that for all g ∈ Il there exists a positive integer d ≤ 3 such that χ`(g)d = 1, which again contradicts

the fact that χ`(Il) has order at least 10.

Remark 3.3.15. In chapter 4 we study in greater generality those maximal subgroups of GSp2g(F`)
whose projective image is isomorphic to either PSL2(F`) or PGL2(F`), deducing results similar to

proposition 3.3.14 that hold in arbitrary dimension. The method of chapter 4 also requires much

less casework.

3.3.3 The surjectivity result

We are almost ready to prove theorem 3.1.2. The ingredients we are still missing are two isogeny

estimates, which form the subject of lemmas 3.3.17 and 3.3.18 below, and the following result due

to Serre:

Lemma 3.3.16. Let n be a positive integer, ` ≥ 5 be a prime, and H be a closed subgroup of

Sp2n(Z`) whose projection modulo ` contains Sp2n(F`): then H = Sp2n(Z`). Likewise, let G be a

closed subgroup of GSp2n(Z`) whose projection modulo ` contains Sp2n(F`): then G′ = Sp2n(Z`).

Proof. The first statement is [120, Lemme 1 on p. 52]. The second part follows from applying the

first to G = H ′: indeed, the image modulo ` of H ′ contains the derived subgroup of Sp2n(F`), which

(since ` ≥ 5) is again Sp2n(F`), and the claim follows.

Lemma 3.3.17. Let A/K be an abelian variety of dimension g with EndK(A) = Z, and let ` be a

prime strictly larger than b0(A×A/K)1/2g. The centralizer of G` inside End(A[`]) is F`.

Proof. Suppose that the centralizer of G` inside End(A[`]) is strictly larger than F` and choose

an α lying in this centralizer but not in F`. Consider the abelian variety B = A × A and the

subgroup of B given by Γ =
{

(x, αx)
∣∣ x ∈ A[`]

}
. Note that Γ is defined over K: indeed any

g ∈ Gal(K/K) sends (x, αx) to (ρ`(g)x, ρ`(g)αx) = (ρ`(g)x, α(ρ`(g)x)) ∈ Γ (since α commutes with

all of ρ`(Gal(K/K))).

Let B∗ = B/Γ, π : B → B∗ be the natural projection and ψ : B∗ → B be an isogeny in the opposite

direction satisfying deg(ψ) ≤ b0(A×A/K). The isogeny ψ◦π of B kills Γ, and on the other hand by

the hypothesis EndK(A) = Z it is representable as a matrix

(
a b

c d

)
with a, b, c, d ∈ Z. By definition

we must have ax + bαx = cx + dαx = 0 for every x ∈ A[`]. Suppose that one among a, b, c, d is

not divisible by ` (and for the sake of simplicity let us assume it is b): then α(x) = −b−1ax for

every x in A[`], which shows that α is multiplication by an element of F`, contradiction. Therefore

a, b, c, d are all divisible by `, and the degree of ψ ◦ π, which is

(
det

(
a b

c d

))2g

, is divisible by `4g.
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On the other hand, the degree of π is |Γ| = |A[`]| = `2g, so we deduce `2g ≤ b0(A × A/K), which

contradicts the hypothesis.

Lemma 3.3.18. Let A/K be an abelian variety of dimension g with EndK(A) = Z, and let ` be a

prime strictly larger than b0(A/K). The G`-module A[`] is irreducible.

Proof. Let ` be such that A[`] is not irreducible and let H be a nontrivial subspace of A[`] stable

under the action of G`. As H is a proper F`-subspace of A[`] ∼= F2g
` , its order divides `2g−1. Consider

now the abelian variety A∗ = A/H, which is defined over K (since H is); we know that there exists

a nontrivial isogeny Ψ : A∗ → A of degree at most b0(A/K). Let π : A → A∗ be the canonical

projection, of degree |H| (which divides `2g−1), and consider the composition Ψ ◦ π : A → A. By

the hypothesis End(A) = Z this composition must be multiplication by m for a certain nonzero

integer m. Comparing degrees we see that m2g = deg(Ψ) deg(π) ≤ b0(A/K)`2g−1, and on the other

hand Ψ ◦ π kills H (since this is true even for π alone), so mH = 0. Every nonzero element of H

has order `, so m must be divisible by `, which implies `2g ≤ b0(A/K)`2g−1, i.e. ` ≤ b0(A/K).

Theorem 3.3.19. Let A/K be an Abelian surface with EndK(A) = Z. Let ` be a rational prime

that is not below any place of bad reduction of A. Suppose that ` does not ramify in K and is strictly

larger than b(2 · 1920[K : Q], 4, 2h(A))1/4: then G`∞ = GSp4(Z`).

Proof. By lemma 3.2.1 we just need to show that G`∞ contains Sp4(Z`), by lemma 3.3.16 it is

enough to prove that G` contains Sp4(F`), and by lemma 3.3.3 we are reduced to showing that PG`
contains P Sp4(F`). Suppose the contrary: then PG` is contained in a group of one of the types (1)

through (8) of definition 3.3.6; by proposition 3.3.14, type (7) is excluded. Let K`,1 be the quadratic

extension of K defined by

ker

(
Gal(K/K)→ PG` →

PG`
(PG` ∩ PSp4(F`))

)
,

and let H` := ρ`
(
Gal(K`,1/K`,1)

)
. By construction, PH` is a proper subgroup of PSp4(F`): in

particular, PH` is contained in one of the groups in Mitchell’s list, and we have already excluded

case (7). Hence by lemma 3.3.4 there is a subgroup J` of H` of index at most 1920 that either

admits an invariant subspace in A[`] or commutes with an action of F`2 , and by Galois theory

J` corresponds to a certain extension K`,2/K`,1 of degree at most 1920. This extension K`,2 has

the property that ρ`(Gal(K`,2/K`,2)) = J` either admits an invariant subspace or commutes with

an action of F`2 : but this contradicts lemma 3.3.18 or 3.3.17 respectively, where we can safely

replace the function b0 by the function b thanks to theorem 3.2.2. This contradiction establishes

the theorem.

Remark 3.3.20. By the methods of chapter 4 (cf. proposition 4.6.5) we can give a uniform bound

on the largest prime for which G` can be of type (8): this has the effect of improving the bound to

b(4[K : Q], 4, 2h(A))1/4, and with some more effort to b(2[K : Q], 4, 2h(A))1/4.
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3.4 Type I – Real multiplication

We consider now the case of GL2-varieties, which includes abelian surfaces with real multiplication

as a special case. Recall that an abelian variety A is said to be of GL2-type when it is absolutely

simple and EndK(A) is an order in a totally real number field E of degree equal to dimA; we shall

assume that this action is defined over K. For every ` we put O` = OE ⊗Z Z`, and if λ is a place of

E we let Oλ be the completion of OE at λ. We have O` ∼=
∏
λ|`Oλ, where the product is over the

places of E dividing `. An implicit convention will always be in force, that if λ is a place of E then

` denotes its residual characteristic.

Definition 3.4.1. Following Ribet’s paper [109] we say that a rational prime ` is good for A if it

does not divide the index [OE : R].

As [OE : R] is finite, all but finitely many primes are good for A. It is a general fact that [OE : R]

can be bounded in terms of K and h(A), cf. appendix 3.6. We obtain from proposition 3.6.5 the

following fact, which enables us to assume that all the primes we work with are good:

Proposition 3.4.2. The index [OE : End(A)] is bounded by b ([K : Q], dimA, h(A))dimA. In par-

ticular, any ` strictly larger than this quantity is good.

From now on we only consider good primes – this only excludes a finite, explicitly bounded number

of cases. Notice that in the case of surfaces, in view of the last proposition and of the obvious

inequality b(2[K : Q], 2 dimA, 2h(A))1/2 > b ([K : Q], dimA, h(A))2, all the primes considered in

corollary 3.1.5 are good for A. For any good prime ` we have R` := R ⊗ Z` ∼= OE ⊗ Z`, and

furthermore

Proposition 3.4.3. ([109], Proposition 2.2.1) If ` is good for A, then T`(A) is a free R`-module of

rank 2; equivalently, it is a free O`-module of rank 2.

When ` is good and λ is a place of E of characteristic ` we put Tλ(A) = T`(A) ⊗O` Oλ: this

makes sense since O` = R ⊗ Z`. The Galois action on T`(A) is O`-linear, and we thus obtain

canonical decompositions T`(A) ∼=
∏
λ|`

Tλ(A); the O`-linear morphism ρ`∞ then amounts to a family

of Oλ-linear maps

ρλ∞ : Gal(K/K)→ GL(Tλ(A)) ∼= GL2 (Oλ) .

We also have isomorphisms AutT`(A) ∼= GL2(OE ⊗Z`) ∼=
∏
λ|` GL2 (Oλ), and we regard the `-adic

Galois representation on T`(A) as a group morphism

ρ`∞ : Gal(K/K)→
∏
λ|`

GL2 (Oλ) .

It is also natural to consider λ-adic residual representations:

Definition 3.4.4. If λ is a place of E above a good prime ` we write Gλ for the image of the

residual representation modulo λ, namely the image of the map ρλ given by the composition

Gal(K/K)
ρ`∞→

∏
λ|`

GL2 (Oλ)→ GL2 (Oλ)→ GL2 (Oλ/λ) .
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The determinant of ρλ∞ is easy to describe:

Lemma 3.4.5. ([109], Lemma 4.5.1) For every λ dividing a good prime, the function

det
Oλ

ρλ∞ : Gal(K/K)→ O×λ

agrees with χ` : Gal(K/K)→ Z∗` , the `-adic cyclotomic character.

Observe that for a good prime ` the `-adic representation lands in AutO` (T`A). If we regard Z∗`
as being embedded in O` by the fact that the latter is naturally a Z`-algebra, the determinant of

ρ`∞(g) with respect to O` is an element of Z∗` , and the previous result (combined with lemma 3.2.1)

gives

Lemma 3.4.6. If ` is good and unramified in K then detO` : G`∞ → Z∗` is surjective.

3.4.1 The intersection G`∞ ∩ SL2(O`)

The key step in proving the surjectivity of the Galois representation for ` large enough lies in

understanding the intersection G`∞ ∩ SL2(O`). A remarkable simplification of the problem comes

from the fact that we can limit ourselves to studying the residual mod-` representation instead of

the full `-adic system: this is made possible by the following ‘lifting’ result, analogous to lemma

3.3.16.

Proposition 3.4.7. ([113], Proposition 4.2) Let O be the ring of integers of a number field E,

λ1, λ2, . . . , λr distinct primes of O above ` and H a closed subgroup of SL2(Oλ1) × · · · × SL2(Oλr)
whose projection to SL2(Fλ1) × · · · × SL2(Fλr) is surjective. If ` is unramified in E and ` ≥ 5,

then H is all of SL2(Oλ1) × · · · × SL2(Oλr). Under the same assumptions on `, if G is a closed

subgroup of GL2(Oλ1) × · · · × GL2(Oλr) whose projection to GL2(Fλ1) × · · · × GL2(Fλr) contains

SL2(Fλ1)× · · · × SL2(Fλr), then G′ = SL2(Oλ1)× · · · × SL2(Oλr).

Recall that we only work with good primes: concretely, this means that all the statements to follow

have the implicit hypothesis that ` is good for A.

3.4.1.1 A little group theory

We briefly review some group-theoretic results we are going to use. One is the following sufficient

criterion for a group to be a direct product:

Lemma 3.4.8. ([109], Lemma 5.2.2) Let S1, . . . , Sk (k > 1) be finite groups with no nontrivial

abelian quotients. Let G be a subgroup of S1 × · · · × Sk such that each projection G → Si × Sj
(1 ≤ i < j ≤ k) is surjective. Then G = S1 × · · · × Sk.

We will also need the following version of [71, Lemma 5.1]; note that even though our hypotheses

are slightly different from those of [71] the same proof works in our setting as well.
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Lemma 3.4.9. Let ` ≥ 5 be a prime, F be a finite field of characteristic `, and

D =
{

(b, b′) ∈ GL2(F)×GL2(F)
∣∣ det(b) = det(b′) ∈ F×`

}
.

Let H be a subgroup of D whose projections on the two factors GL2(F) contain SL2(F). Then either

H contains SL2(F)×SL2(F), or there exist an isomorphism f : V → V ′, a character χ : H → {±1}
and a (field) automorphism σ of F such that

H ⊆
{

(b, b′) ∈ GL(V )×GL(V ′)
∣∣ b′ = χ((b, b′))σ

(
fbf−1

)}
.

Finally we will need a description of the subgroups of GL2(F`β ) for β ≥ 1:

Theorem 3.4.10. (Dickson, [12, Theorem 3.4]) Let p be a prime number, β a positive integer,

q = pβ, and G a subgroup of GL2(Fq). Then, up to conjugacy in GL2(Fq), one of the following

occurs:

1. G is cyclic;

2. G is a subgroup of the Borel group

{(
x y

0 z

) ∣∣ x, z ∈ F×q , y ∈ Fq

}
;

3. G contains (as a subgroup of index 2) a cyclic subgroup of order u, where u divides q2 − 1;

4. G contains (as a subgroup of index 2) a subgroup consisting entirely of diagonal matrices;

5a. pβ > 3, and there is an α ∈ N>0 dividing β such that G is generated by SL2(Fpα) and by a

scalar matrix V ;

5b. pβ > 3, and there exist an α dividing β, a generator ε of F×
pβ

(as a multiplicative group), and

an element b ∈ F×
pβ

, such that G is generated by SL2(Fpα), a scalar matrix V , and the diagonal

matrix diag (b, bε); the subgroup generated by SL2(Fpα) and V is of type 5a, and has index 2

in G;

6. G/ {± Id} is isomorphic to S4 × Z
uZ , A4 × Z

uZ or S5 × Z
uZ , where Z

uZ is identified with the

subgroup generated by a scalar matrix in GL2(Fq)/ {± Id}.

7. G is not of type (6), but G/ {± Id} contains A4 × Z
uZ as a subgroup of index 2, and A4 as a

subgroup with cyclic quotient group; Z
uZ is as in type (6) with u even.

Definition 3.4.11. In cases (5a) or (5b) the number α will be called the level of the group G.

3.4.1.2 Isogeny estimates

Our strategy for obtaining explicit estimates is a variant of the approach of [71] – cf. especially

lemmas 3.1, 3.2 of op. cit. To ease the notation, when λ is a place of E we identify Oλ/λ with Fq for

a suitable q = `f . Also recall that we have introduced the residual representation Gλ in definition

3.4.4.

Lemma 3.4.12. Suppose Gλ fixes a subspace Γ of dimension 1 of F2
q. Then ` ≤ b0(A/K).
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Proof. Γ is fixed by Gλ and therefore defined over K. Consider the K-variety A∗ = A/Γ, which

comes equipped with a natural isogeny π : A � A∗ of degree |Γ| = |Fq| = `f . Choose a K-isogeny

ψ : A∗ → A of degree b ≤ b0(A/K). The composition ψ ◦ π is an endomorphism of A, so by

hypothesis it is given by a certain e ∈ End(A) ⊆ OE . Now, as e kills Γ and Ann(Γ) = λ, we must

have λ
∣∣ e (that is, e belongs to λ, where we identify a place with its corresponding prime ideal). It

follows that d := deg(e) = NE/Q(e)2 (for this equality cf. [11], Chapter 5, Corollary 1.3) is divisible

by NE/Q(λ)2, which is just |Fq|2 = `2f . Comparing degrees we have `2f
∣∣ d = b`f , so `f divides b

which, in turn, is at most b0(A/K).

Similarly, an easy variant of the argument of lemma 3.3.17 gives

Lemma 3.4.13. Suppose Gλ is commutative. Then `2 ≤ b0
(
A2/K

)
.

3.4.1.3 Explicit bounds: split primes

In this section we consider those primes ` that split completely in E. The group H` of the following

definition is the natural candidate for the image of ρ`, for `� 0: it is the largest (connected) group

whose elements are simultaneously symplectic isometries for the Weil pairing and contained in the

centralizer of the action of E.

Definition 3.4.14. Let ` be a prime that splits completely in E. We set

H` =

(hλ)λ|` ∈
∏
λ|`

GL2(O/λ)
∣∣ det(hλ1) = det(hλ2) ∈ F×` ∀λ1, λ2|`

 ,

where the product is over the places of E that divide `.

Lemma 3.4.15. For any split prime `, the group G` is contained in H`.

Proof. The determinant of every ρλ agrees with the cyclotomic character (lemma 3.4.5), so any two

hλ’s will have the same determinant.

With this notation, the bound we obtain is as follows:

Theorem 3.4.16. Let A/K be an abelian variety whose endomorphism algebra EndK(A)⊗Q is a

totally real number field E of degree equal to dimA. Suppose that the action of E is defined over

K. If ` is a prime that does not ramify in K, is completely split in E and is strictly larger than

b(2[K : Q], 2 dim(A), 2h(A))1/2, then the equality G` = H` holds.

To make the notation lighter we introduce the following definition:

Definition 3.4.17. Let A/K be an abelian variety. We set

M(A/K) := b(2[K : Q], 2 dim(A), 2h(A))1/2.

Lemma 3.4.18. If ` is a rational prime larger than M(A/K) and λ is a place of E above `, then

the group Gλ contains SL(2,F`).
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Proof. Let ` be a prime for which Gλ does not contain SL(2,F`) and recall that we identify Oλ/λ
with Fq for a suitable q = `f . By the Dickson classification (theorem 3.4.10; cf. also [116, §2]) we

know that if Gλ does not contain SL(2,F`), then the following are the only possibilities:

(I) Gλ is contained in a Borel subgroup of GL(2,Fq): by definition, such a subgroup fixes a line,

therefore ` ≤ b(A/K) by lemma 3.4.12.

(II) Gλ is contained in a Cartan subgroup of GL(2,Fq): then `2 ≤ b
(
A2/K

)
by lemma 3.4.13.

(III) Gλ is contained in the normalizer of a Cartan subgroup of GL(2,Fq): let C be this Cartan

subgroup and N its normalizer. By the Dickson classification, the index [N : C] is 2, so the

morphism

ΓK → Gλ →
Gλ

Gλ ∩ C
↪→ N

C

induces a quadratic character of Gal(K/K). The kernel of this character is associated with

a field extension K ′/K that satisfies [K ′ : K] ≤ |N/C| = 2. By construction, the image of

Gal(K ′/K ′) in Aut (A[λ]) is contained in C, so applying lemma 3.4.13 to AK′ we see that `

is at most b
(
A2/K ′

)1/2 ≤ b(2[K : Q], 2 dim(A), 2h(A))1/2.

(IV) The projective image PGλ of Gλ is a finite group of order at most 60: by lemma 3.4.12 we have

` ≤ b(A/K ′′), where K ′′ is the field associated with the kernel of Gal(K/K)→ Gλ → PGλ.

It is clear that Gλ does not fall in any of the previous cases – and therefore contains SL2(F`) –

as soon as ` is larger than max
{
b(A/K), b

(
A2/K

)1/2
, b(A2/K ′)1/2, b(A/K ′′)

}
. It is immediate to

check that this maximum is at most M(A/K).

Corollary 3.4.19. Let ` be a rational prime that is unramified in K, completely split in E and

strictly larger than M(A/K). The group Gλ equals GL(2,F`) for every place λ of E dividing `.

The final piece we need to prove theorem 3.4.16 is the following lemma:

Lemma 3.4.20. If ` > M(A/K) is totally split in E and does not ramify in K, and λ1, λ2 are two

places of E dividing `, then the projection G` ∩ SL(A[`])→ SL(Fλ1)× SL(Fλ2) is surjective.

Proof. Let ` > M(A/K) be a rational prime that is totally split in E and λ1, λ2 be places of E lying

over `. As SL2(F`) does not have any nontrivial abelian quotients for ` ≥ 5, lemma 3.4.8 implies

that

G` ∩ SL(A[`]) =
∏
λ|`

SL2(F`)

if and only if for every pair of different places λ1, λ2 of E above ` the projection of G` ∩ SL(A[`]) to

SL2(Fλ1)× SL(Fλ2) is surjective. Let

D =
{

(b, b′) ∈ GL(Fλ1)×GL(Fλ2)
∣∣ det(b) = det(b′)

}
,

and assume that G` → D is not surjective (this is even more general than the statement we actually

need). We want to derive a contradiction. Let f, χ be the morphisms given by lemma 3.4.9 when
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applied to the image of G` in D (the hypotheses of this lemma are satisfied thanks to corollary

3.4.19). Assume first that χ ≡ 1. Let Γ be the subgroup of A[`] given by(x, y, 0, . . . , 0) ∈ A[λ1]×A[λ2]×
∏
λ|`

λ6=λ1,λ2

A[λ]
∣∣ y = f(x)


and let A∗ = A/Γ. Denote by π the canonical projection A→ A∗ and let ϕ be an isogeny A∗ → A,

of degree b bounded by b(A/K), as guaranteed by theorem 3.2.2. The composition ϕ ◦ π : A → A

is given by a certain e ∈ OE , and it kills Γ. In particular, e must be divisible by both λ1 and λ2.

Indeed, e acts on A[λ1] via e1, the class of e in Fλ1 , and via e2, the class of e in Fλ2 , on A[λ2]. If

x ∈ A[λ1] is any element of order `, then fx has the same property (since f is an isomorphism), so

(e1, e2) · (x, fx) = (e1, e2f(x)) vanishes if and only if both e1 and e2 do. We deduce

`4 = NK/Q(λ1λ2)2
∣∣ NK/Q(e)2 = deg(e) = b · |Γ| = b`2,

so ` ≤ b1/2 ≤ b(A/K)1/2. On the other hand, if χ is not identically 1, then its kernel defines a

quadratic extension K ′ of K for which χ ◦ ρλ1 ≡ 1, therefore applying the same argument to K ′ we

deduce ` ≤ b(2[K : Q],dim(A), h(A))1/2. It is immediate to check that this number is smaller than

M(A/K), and the lemma follows.

The main result of this section is now well within our reach:

Proof. (of theorem 3.4.16) Let ` be completely split in E, unramified in K and larger than M(A/K).

By the previous lemma we have G`∩SL(A[`]) =
∏
λ|` SL2(F`), and by surjectivity of the determinant

(guaranteed by lemma 3.4.6) this means G` = H`.

3.4.1.4 Explicit bounds: non-split primes

Let ` be a prime unramified in E, and write
∏n
i=1 λi for its factorization in OE . Our next aim is to

show that, for every λi lying above `, the group Gλi contains SL2(Fλi).
Assume that ` > M(A/K) > 5, so that by lemma 3.4.18 we know that every Gλi contains SL2(F`).
We set βi = [Fλi : F`], and notice that `βi is the order of the residue field at λ. The assumption that

Gλi contains SL2(F`) immediately implies that Gλi must be of type (5a) or (5b) in the notation of

theorem 3.4.10. Suppose first Gλi is of type (5a), generated (up to conjugation) by SL2 (F`αi ) and

by a scalar matrix V = µ · Id. Since the determinant of any element in Gλi lies in F×` we know that

detV = µ2 is an element of F`, hence V 2 ∈ GL2(F`). In particular, Gλi contains as a subgroup of

index 2 the group generated by SL2 (F`αi ) and V 2, which is a subgroup of GL2 (F`αi ). Furthermore,

if Gλi is of type (5b), then it contains a group of type (5a) as a subgroup of index 2. We thus

deduce:

Lemma 3.4.21. Let ` > M(A/K), so that Gλi is of type (5a) or (5b). Let αi be the level of Gλi.

There exists an extension K ′ of K, of degree at most 4, such that – up to conjugation – the image

of ρλi : Gal(K ′/K ′)→ GL2 (Fλi) is contained in GL2 (F`αi ).

Our aim is to show that – at least for ` large enough – the level αi must necessarily equal βi, the

degree [Fλi : F`]:
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Lemma 3.4.22. Suppose that, up to conjugation in GL2(Fλi), the group Gλi contains SL2(F`) and

is contained in GL2 (F`αi ) for some αi < βi. Then ` ≤ b0(A/K)1/2.

Proof. For every place λ of E above ` we can identify A[λ] with F2
λ, and for the factor A[λi]

the hypothesis allows us to choose coordinates in such a way that the image of ρλi is contained

GL2 (F`αi ). Consider now the subspace of A[`] given by

Γ =

(xλ) ∈
∏
λ|`

A[λ] ∼=
∏
λ|`

F2
λ

∣∣ xλi ∈ (F`αi )2 , xλ = 0 for λ 6= λi

 .

Notice that, by construction, Γ contains torsion points whose annihilator in End(A) is exactly

(λi), for example the point whose coordinates (in our basis) are (1, 0) along the λi-component.

Furthermore, the subgroup Γ is Galois-stable: indeed, for any g ∈ Gal(K/K) and every (xλ) ∈ Γ,

we have

(ρλ(g) · xλ)λi = ρλi(g) · xλi ∈ F2
`αi ,

since both the coefficients of the vector xλi and those of the matrix ρλi(g) lie in F`αi . It follows that

the abelian variety A′ = A/Γ is defined over K, and there are isogenies π : A → A′ (the canonical

projection, of degree `2αi) and ψ : A′ → A (which can be chosen to be of degree at most b0(A/K)).

Notice now that ψ ◦ π is an endomorphism e ∈ OE of A, and it kills a point whose annihilator is

(λ). It follows that (λ)
∣∣ e, so the degree of ψ ◦ π satisfies

`2βi = NE/Q (λ)2
∣∣ NE/Q (e)2

∣∣ deg (ψ ◦ π) = `2αi degψ ≤ `2αib0(A/K),

hence `2 ≤ `2(βi−αi) ≤ b0(A/K). The lemma follows.

Combining the previous two lemmas we find

Corollary 3.4.23. Let ` > M(A/K) be a prime number and λ be a place of E above `. The image

of the representation ρλ : Gal(K/K)→ GL2(Fλ) contains SL2(Fλ).

Proof. By lemma 3.4.21 we know that Gλ is of type (5a) or (5b) in the sense of theorem 3.4.10.

Let αi be the level of Gλ; it is clear that it is enough to show αi = βi. By lemma 3.4.21, passing

to an extension K ′ of K of degree at most 4 we can assume that (up to conjugation) the image

of ρλi : Gal(K/K) → AutA[λ] is contained in GL2 (F`α). The corollary then follows from lemma

3.4.22 (applied to A/K ′) and the obvious inequality M(A/K) > b(A/K ′)1/2 ≥ b0(A/K ′)1/2.

Lemma 3.4.24. Let λ1, λ2 be two places of OE above the prime ` ≥ 5. Suppose that ` > M(A/K):

then the image of Gal(K/K)
ρλ1×ρλ2−−−−−−→ Gλ1 ×Gλ2 contains SL2(Fλ1)× SL2(Fλ2).

Proof. By corollary 3.4.23 Gλi contains SL2(Fλi) for i = 1, 2. Let S be the image of G` in Gλ1×Gλ2 ,

and for the sake of simplicity write Si = SL2(Fλi) for i = 1, 2 and set S1 = S∩ (S1 × S2). The claim

of the lemma amounts to saying that S1 = S1 × S2. Suppose that this is not the case: then by

Goursat’s lemma there exist normal subgroups N1, N2 (of S1, S2 respectively) and an isomorphism

ϕ : S1/N1 → S2/N2 such that S1 projects to the graph of ϕ in S1/N1 × S2/N2. Comparing the

orders of S1/N1 and S2/N2 (or, more precisely, their valuations at `) easily gives Fλ1 = Fλ2 . We
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can then deduce from lemma 3.4.9 the existence of an isomorphism f : F2
λ1
→ F2

λ2
, of a character

χ : S → {±1}, and of an automorphism σ of Fλ1 = Fλ2 such that g2 = χ((g1, g2))σ
(
fg1f

−1
)

for all

(g1, g2) in S. Assume first that χ ≡ 1: then the subspace

Γ :=

(xλ) ∈
∏
λ|`

F2
λ
∼=
∏
λ|`

A[λ]
∣∣ xλ2 = σ(fxλ1), xλ = 0 for λ 6= λ1, λ2


is Galois invariant, so the abelian variety A∗ := A/Γ is defined over K. Let π : A → A∗ be the

canonical projection and ψ : A∗ → A be an isogeny of degree at most b0(A/K). Since Γ contains

points whose annihilator is (λ1λ2), it follows that ψ ◦π =: e ∈ OE must be divisible by both λ1 and

λ2. Hence if β denotes the common degree [Fλ1 : F`] = [Fλ2 : F`] we have

`4β = NE/Q (λ1λ2)2 ≤ deg e = deg (ψ ◦ π) = `2β degψ ≤ `2βb0(A/K),

whence ` ≤ b0(A/K)1/2 < M(A/K). If, on the other hand, χ is not the trivial character, then the

kernel of Gal(K/K) → G` → S
χ−→ {±1} defines an extension K ′ of K of degree 2, and repeating

the same argument over K ′ we find ` ≤ b0(A/K; 2)1/2 < M(A/K).

We are now ready to prove theorem 3.1.4, whose statement we reproduce here for the reader’s

convenience:

Theorem 3.4.25. (Theorem 3.1.4) Let A/K be an abelian variety of dimension g. Suppose that

R = EndK(A) is an order in a totally real field E of degree g over Q (that is to say, A is of GL2-

type) and that all endomorphisms of A are defined over K. Let ` be a prime unramified both in K

and in E and strictly larger than both M(A/K) and b(A/K)g: we have

G`∞ =
{
x ∈ GL2 (OE ⊗ Z`)

∣∣ detOE x ∈ Z×`
}
.

Proof. By lemma 3.4.24, the inequality imposed on ` guarantees that for every pair of places λ1, λ2

of E lying above ` the image of

Gal(K/K)
ρλ1×ρλ2−−−−−→ GL2(Fλ1)×GL2(Fλ2)

contains SL2(Fλ1) × SL2(Fλ2). Since a group of the form SL2(Fλ) has no nontrivial abelian quo-

tients (we can clearly assume ` ≥ 5), lemma 3.4.8 guarantees that G` contains
∏
λ|` SL2(Fλ),

and proposition 3.4.7 then implies that G`∞ contains SL2(OE ⊗ Z`). Since furthermore the map

detOE⊗Z` : G`∞ → Z×` is surjective by lemma 3.4.6 (notice that ` is a good prime by proposition

3.4.2) we conclude that G`∞ contains
{
x ∈ GL2 (OE ⊗ Z`)

∣∣ detOE x ∈ Z×`
}

, hence it is equal to

it.

Remark 3.4.26. It is not hard to show that when g is large enough we have M(A/K) < b(A/K)g;

in fact, g ≥ 33 suffices.

The case of abelian surfaces follows at once:

Corollary 3.4.27. (Corollary 3.1.5) Let A/K be an abelian surface. Suppose that R = EndK(A)

is an order in a real quadratic field E and that all endomorphisms of A are defined over K. Let `

be a rational prime, unramified both in K and in E and strictly larger than b(2[K : Q], 4, 2h(A))1/2:

then we have

G`∞ =
{
x ∈ GL2 (OE ⊗ Z`)

∣∣ detOE x ∈ Z×`
}
.
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Proof. Immediate from the previous theorem and the (easy) inequality M(A/K) > b(A/K)2.

3.5 Type II – Quaternionic multiplication

In this section we establish the surjectivity result when the endomorphism ring of A, EndK(A), is

an order R in an indefinite (division) quaternion algebra D over Q, and the action of R is defined

over K. We let ∆ be the discriminant of R.

We start by recalling a result from [6], cf. in particular Theorem 5.4 and the remarks preceding it.

Theorem 3.5.1. Let ` be a prime not dividing ∆. Suppose that ` does not divide the degree of a

fixed K-polarization of A. There exists a Gal(K/K)-equivariant isomorphism

T`(A) ∼= W`∞ ⊕W`∞ ,

where W`∞ is a simple Gal(K/K)-module, free of rank 2 over Z`, equipped with a nondegenerate,

Gal(K/K)-equivariant bilinear form

〈·, ·〉QM : W`∞ ×W`∞ → Z`(1).

Notation. We write W` for W`∞/`W`∞ . It is a Gal(K/K)-module, free of rank 2 over F`.

Choosing bases for W`∞ and W` we have:

Lemma 3.5.2. If ` does not divide ∆ then G` can be identified with a subgroup of GL2(F`) (acting

on M2(F`) on the right), and similarly G`∞ can be identified with a subgroup of GL2(Z`) (acting on

M2(Z`) on the right).

In the light of the above lemma, we can consider G` as being a subgroup of GL2(F`), acting on F4
`

as two copies of the standard representation.

Lemma 3.5.3. Suppose ` does not divide ∆ and is larger than b(2[K : Q], 4, 2h(A))1/2. The group

G` contains SL2(F`) under the above identification.

Proof. This is a very minor variant of lemmas 3.4.12 and 3.4.13, so we only sketch the proof. If

G` does not contain SL2(F`), then Dickson’s classification (theorem 3.4.10) implies that one of the

following holds:

• G` is contained in a Borel subgroup: we can find a line Γ ⊆W` that is stable under the action

of G`. Applying an obvious variant of the argument of lemma 3.4.12 to the isogeny A→ A
Γ⊕Γ

we find `2 ≤ b(A/K).

• The projective image of G` has cardinality at most 60: by replacing K with an extension of

degree at most 60 we are back to the previous case, and therefore `2 ≤ b(60[K : Q], 2, h(A)).

• Up to replacing K with an extension K ′ of degree at most 2, G` is commutative, but does not

entirely consist of scalars (this case being covered by the first one). We can choose an α ∈ G`
which is not a scalar, and apply a variant the argument of lemma 3.4.13 to the isogeny given

by the natural projection from A×A to its quotient by the subgroup{
(x1, y1, x2, y2) ∈W` ⊕W` ⊕W` ⊕W`

∼= A[`]×A[`]
∣∣ x2 = αx1

}
.

The conclusion is now `2 ≤ b(A2/K ′) ≤ b(2[K : Q], 4, 2h(A)).
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Comparing the various bounds thus obtained we see that b(2[K : Q], 4, 2h(A))1/2 is much larger

than any of the others, thus establishing the lemma.

Lemma 3.5.4. Suppose ` is a prime that does not divide ∆, so that R ⊗ Z` ∼= M2(Z`). Suppose

furthermore that ` does not divide the degree of a fixed K-polarization of A. For any g ∈ Gal(K/K)

the determinant of ρ`(g), thought of as an element of GL2(Z`) (and not of GSp(T`(A))), is χ`(g).

Proof. This is the same argument as for elliptic curves. If we fix a basis e1, e2 of W`∞ and write(
a b

c d

)
for the matrix representing the action of ρ`∞(g) in this basis, we obtain

χ`(g)〈e1, e2〉QM = 〈ρ`∞(g)e1, ρ`∞(g)e2〉QM
= 〈ae1 + ce2, be1 + de2〉QM
= ad〈e1, e2〉+ bc〈e2, e1〉QM
= (ad− bc)〈e1, e2〉QM ,

and since 〈e1, e2〉QM does not vanish we obtain χ`(g) = (ad− bc) = det ρ`(g) as claimed.

Theorem 3.5.5. Suppose that every endomorphism of A is defined over K. Suppose furthermore

that ` does not divide ∆, does not ramify in K, and is strictly larger than b(2[K : Q], 4, 2h(A))1/2.

Then G`∞ = (R⊗ Z`)×.

Proof. As b(2[K : Q], 4, 2h(A))1/2 > b(A/K), by [28, Théorème 1] we see that ` does not divide the

degree of a minimal polarization of A, so by theorem 3.5.1 we have well-defined modules W`∞ ,W`

and a nondegenerate bilinear form 〈·, ·〉QM .

By lemma 3.5.3 the inequality imposed on ` guarantees that G` contains SL2(F`). It follows that

G`∞ is a closed subgroup of (R⊗Z Z`)× ∼= GL2(Z`) whose projection modulo ` contains SL2(F`).
Since we certainly have ` ≥ 5, it follows from lemma 3.3.16 that G`∞ contains SL2(Z`). On the other

hand, the previous lemma and the condition that ` is unramified in K ensure that det : G`∞ → Z×`
is onto, so G`∞ = GL2(Z`) as claimed.

Let us make a few closing remarks on this case. It is a general philosophy that – at the level of

Galois representations – a variety of dimension 2g with quaternionic multiplication by an algebra D

(whose center is the number field L) should behave like a variety of dimension g and endomorphism

algebra L. The proof we have just given shows that this philosophy is very much correct in the

case of surfaces, and indeed from lemma 3.5.3 onward this is virtually the same proof as for elliptic

curves (cf. for example [71]). Even more precisely, write the bound we obtained for a surface in

the form b(2[K : Q], 2 dim(A), 2h(A))1/2; for an elliptic curve E/K without (potential) complex

multiplication, the Galois representation is surjective onto GL2(Z`) for every prime ` that does not

ramify in K and is larger than b(2[K : Q], 2 dimE, 2h(E))1/2 (cf. [71]), which is formally the same

expression. On the other hand, the actual numerical dependence of the present result on the height

of A is much worse than the analogous one for elliptic curves, due to the strong dependence of the

function b([K : Q], dimA, h(A)) on the parameter dimA.
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Remark 3.5.6. In the light of this discussion, the reader might suspect that the methods of chapter

1 might be generalized to give results on the index of the adelic representation attached to A. We do

not attempt this here, for doing so would entail giving a classification of the integral Lie subalgebras

of any Z`-form of sl2: indeed, such algebras appear when we try to study the precise structure of

G`∞ for those `’s that divide ∆. The task of classifying such algebras seems rather daunting, given

that the easier problem of studying the Q`-forms of sl2 is already highly nontrivial.

3.6 The index of the endomorphism ring

Let A/K be an absolutely simple abelian variety. Its endomorphism ring R = EndK(A) is an order

in a finite-dimensional division algebra D over Q, and we are interested in giving a bound on the

index of R in any maximal order OD containing it. Note that when D is a field there is a unique

maximal order, which is just the usual ring of integers, but when D is not commutative the index

[OD : R] might a priori depend on the choice of OD. The following proposition shows that this is

not the case:

Proposition 3.6.1. Let L be a number field, D a central simple algebra over L and R an order

of D. Let OD be a maximal order in D containing R. The index [OD : R] does not depend on the

choice of OD.

Proof. Note first that any maximal order of D is stable under multiplication by OL (indeed if S

is a subring of D then the OL-module generated by S is again a subring of D), so the order R′

generated by R and OL is again contained in OD. We have [OD : R] = [OD : R′][R′ : R], and since

[R′ : R] clearly does not depend on OD we can assume that R = R′, i.e. that R is an OL-order.

Under this additional assumption we have

OD/R ∼=
⊕

v finite place of L

OD ⊗OLv
R⊗OLv

,

so that [OD : R] =
∏
v finite place of L[OD ⊗ OLv : Rv], where Rv = R ⊗ OLv. It is then clear

that OD ⊗OLv is a maximal order in OD ⊗ Lv, and that it is enough to prove that at every finite

place the index [OD ⊗ OLv : Rv] is independent of the choice of OD. We are thus reduced to the

local complete case, so Theorem 17.3 of [107] applies to give that all maximal orders in OD ⊗ Lv
are conjugated. We now write the index [OD ⊗ OLv : Rv] as the ratio

covol(Rv)

covol(OD ⊗OLv)
, where

the covolume is taken with respect to any Haar measure (on OD ⊗ Lv): as the Haar measure is

invariant under conjugation, this quantity does not depend on OD.

In order to simplify matters it is convenient to assume that all the endomorphisms of A are defined

over K. This condition is completely harmless, since it can be achieved at the expenses of a

controllable extension of K:

Lemma 3.6.2. ([129, Theorem 4.1]) There exists a number field K ′, with [K ′ : K] bounded only

in terms of g = dim(A), such that all the endomorphisms of A are defined over K ′. We can take

[K ′ : K] ≤ 2 · (9g)2g.
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From now on we will therefore assume that all the endomorphisms of A are already defined over

K. In order to get estimates in the case of noncommutative endomorphism algebras we will need

the following lemma, which is essentially [143, proposition 2.5.4]: even though the latter was stated

only for commutative endormorphism rings, the same proof works in the general case as well.

Lemma 3.6.3. Let D be a division algebra, R ⊆ S be orders in D and A/K be an abelian variety

with EndK(A) = R. There exists an abelian variety B/K, isogenous to A over K, such that

EndK(B) ⊇ S.

Corollary 3.6.4. Let A/K be an Abelian variety with endomorphism ring R, D = R⊗Q, and OD
any maximal order containing R. Suppose that all the endomorphisms of A are defined over K.

There exists an Abelian variety A′/K and two isogenies ε1 : A→ A′, ε2 : A′ → A, defined over K,

such that End(A′) = OD and

max {deg(ε1),deg(ε2)} ≤ b(A/K).

Proof. Lemma 3.6.3 shows the existence of a K-variety A′ having OD as its endomorphism ring, so

the claim follows from [28, Theorem 1.4] (which is a symmetric version of theorem 3.2.2, bounding

degrees of minimal isogenies both from A to A′ and from A′ to A).

We can now deduce the desired bound on [OD : R]:

Proposition 3.6.5. The inequality [OD : R] ≤ b(A/K)dimQ(D) holds.

Proof. Let A′, ε1, ε2 be as in the above corollary. Consider the following linear map:

ϕ : End(A′) → End(A) ↪→ End(A′)

e 7→ ε2 ◦ e ◦ ε1,

where the second embedding is given by the fact that R = End(A) is an order in D and OD is a

maximal order containing R. Note that End(A) is endowed with a positive-definite quadratic form

given by the degree. We consider End(A) and End(A′) both as lattices inside DR = End(A′)⊗Z R,

and observe that the degree map extends naturally to a positive-definite quadratic form on DR. This

makes DR into an Euclidean space, which in particular comes equipped with a natural (Lebesgue,

say) measure. Denote r the dimension of DR, which is also the dimension of D as a Q-vector space.

As deg(e1 ◦ e2) = deg(e1) · deg(e2) for any pair of isogenies between abelian varieties, we have

deg(ϕ(e)) = deg(ε2 ◦ e ◦ ε1) = deg(ε1) deg(ε2) deg(e) ≤ b(A/K)2 deg(e).

Extend ϕ by linearity to an endomorphism (which we still denote by ϕ) of DR and fix a deg-

orthonormal basis γ1, . . . , γr of DR. By construction ϕ(OD) ⊆ R, so that we have the inequality

[OD : R] =
covol(R)

covol(OD)
≤ covol (ϕ(OD))

covol(OD)
=

det(ϕ)covol(OD)

covol(OD)
= det(ϕ).

Write ϕ(γi) =
r∑
j=1

aijγj with aij ∈ R for the matrix representing ϕ in the basis of the γj ’s. Let

λ(·, ·) be the bilinear form associated with deg. Using the inequality deg(ϕ(e)) ≤ b(A/K)2 deg(e)

we deduce

deg

∑
j

aijγj

 = deg(ϕ(γi)) ≤ b(A/K)2 deg(γi) = b(A/K)2 ∀i = 1, . . . , r,
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so

b(A/K)2 ≥ λ

∑
j

aijγj ,
∑
k

aikγk

 =
∑
j,k

aijaikλ(γj , γk) =
∑
j

a2
ij ∀i = 1, . . . , r :

equivalently, the L2-norm of each row of the matrix (aij) is bounded by b(A/K). Hadamard’s

inequality then gives

[OD : R] ≤ det(ϕ) ≤
r∏
i=1

||ai||L2 ≤ b(A/K)r,

which is the desired estimate.





Chapter 4

Abelian threefolds, and a glimpse into

the higher-dimensional situation

4.1 Introduction

Let K be a number field and A be a K-abelian variety. The aim of the present chapter is to study

the Galois representations attached to A, under the assumption that EndK(A) is Z and g = dimA

is an odd number greater than or equal to 3. More precisely, we are interested in the family of

representations

ρ`∞ : Gal(K/K)→ Aut(T`(A)) ∼= GL2g(Z`)

arising (after a choice of basis) from the `-adic Tate modules of A. We shall also consider the

residual mod-` representations

ρ` : Gal(K/K)→ Aut(A[`]) ∼= GL2g(F`),

and write G`∞ (resp. G`) for the image of ρ`∞ (resp. of ρ`). Under our assumptions, it is known by

work of Serre [118] that for all ` large enough (with respect to A/K) the equality G`∞ = GSp2g(Z`)
holds. Our aim is to explicitly find a bound `0 (depending on A and K) such that, for all primes

` > `0, the representation ρ`∞ is onto GSp2g(Z`).
For technical reasons we need to impose an additional constraint on the dimensions g we take into

account. We say that the odd number g satisfies condition (∗) if the following holds (cf. definition

4.3.13 for the notion of class-S subgroups):

let ` > 1
2 (2g + 1)12g be a prime number, and let G be a class-S maximal subgroup of GSp2g(F`)

such that soc(PG) is a simple group of Lie type: then soc(PG) ∼= PSL2(F`).

Remark 4.1.1. Condition (∗), albeit very unnatural, is at least not too severe a restriction: indeed

we can show that the set E of odd numbers g that fail to satisfy it has density zero (theorem 4.10.1).

Furthermore, as it will be clear from sections 4.10 and 4.11, there is an algorithmic procedure that

allows us to decide whether a certain g has property (∗) or not: we use this procedure to show

that (∗) holds for all odd numbers in the interval 3 ≤ g ≤ 100 with the exception of 7, 55 and 63

(proposition 4.11.3). Finally, it is very likely that condition (∗) is not necessary for our results to

hold, but we are for now unable to get rid of it.

91
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To state our results more compactly we introduce the following functions:

Definition 4.1.2. Let K be a number field and A/K be an abelian variety of dimension g. We let

α(g) = 210g3 and define

b(A/K) = b([K : Q], g, h(A)) =
(

(14g)64g2 [K : Q] max (h(A), log[K : Q], 1)2
)α(g)

,

b(A/K; d) = b(d[K : Q], g, h(A)),

where h(A) is the stable Faltings height of A.

Our first result is the following explicit surjectivity theorem:

Theorem 4.1.3. Let A/K be an abelian variety of dimension g and G`∞ be the image of the natural

representation ρ`∞ : Gal(K/K)→ AutT`A. Suppose that:

1. EndK(A) = Z;

2. g ≥ 3 is an odd number satisfying condition (∗);

3. there exists a place v of K, of good reduction for A and with residue field of order qv, such that

the characteristic polynomial of the Frobenius at v acting on T`A has Galois group isomorphic

to (Z/2Z)g o Sg.

The equality G`∞ = GSp2g(Z`) holds for every prime ` unramified in K, strictly larger than

max
{

(2qv)
2g ·g!, b(A/K; g!), b(A2/K; g)1/2g

}
,

and such that there is a place of K of residue characteristic ` at which A has semistable reduction.

Furthermore, the term b(A2/K; g)1/2g can be omitted from the maximum if g ≥ 19.

In practice, it is usually very easy to find a place v as in the statement of theorem 4.1.3 (see for

example the explicit calculation of section 4.12 and the remarks preceding lemma 4.7.6); however,

in order to have a completely effective result we also need to show that the number qv can be

effectively bounded a priori in terms of simple arithmetic invariants of A/K. While unfortunately

we cannot do this for arbitrary g, for simple abelian threefolds we prove:

Theorem 4.1.4. (Theorem 4.9.17) Let A/K be an abelian variety of dimension 3 such that

EndK(A) = Z. Denote by N 0
A/K the naive conductor of A/K, that is, the product of the prime

ideals of OK at which A has bad reduction, and suppose that A[7] is defined over K.

• Assume the Generalized Riemann Hypothesis: then the equality G`∞ = GSp6(Z`) holds for

every prime ` unramified in K and strictly larger than (2q)48, where

q = b(A2/K; 3)8
(

log |∆K/Q|+ logNK/Q

(
N 0
A/K

))2
.

• Unconditionally, the same conclusion holds with

q = exp

(
cb(A2/K; 3)8

(
log |∆K |+ logNK/Q

(
N 0
A/K

))2
)
,

where c is an absolute, effectively computable constant.
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Remark 4.1.5. The condition that the 7-torsion points of A are defined over K is not very restrictive,

for it can be met by simply replacing K by K(A[7]), cf. remark 4.9.18.

Remark 4.1.6. Unpublished work of Winckler [144] shows that c can be taken to be 27175010.

Furthermore, if A/K is a semistable abelian variety, then logNK/Q

(
N 0
A/K

)
is bounded above by

[K : Q] (c0h(A) + c1) for certain constants c0, c1 depending only on [K : Q] and on dimA: this

result is stated and proved in [37] (see especially Theorem 6.5 of op. cit.) for abelian varieties over

function fields, but the same proof works equally well also over number fields (for a detailed proof

in the number field case see also [96, Theorem 1.1]).

To conclude this introduction let us describe the organization of this chapter. After two sections

of preliminaries (§ 4.2 and 4.3) we study the various classes of maximal proper subgroups G of

GSp2g(F`), showing that – at least for ` large enough – G` cannot be contained in any such G.

This occupies sections 4.4, 4.5, 4.6, and 4.7, each of which deals with a different kind of maximal

subgroup. Next in §4.8 we prove theorem 4.1.3, while section 4.9 contains a proof of theorem 4.1.4.

In sections 4.10 and 4.11 we use representation theory (both in positive characteristic and over C)

to show that property (∗) is typical, in that it is true for a set of of density 1 which contains in

particular all the odd numbers up to 100 with the only exception of g = 7, 55, 63. Finally, section

4.12 contains an example of an abelian threefold for which the previous theorems enable us to

establish explicit surjectivity results.

We say a few more words on the techniques used in sections 4.4 through 4.7. Three classes of

maximal subgroups (traditionally dubbed “imprimitive”, “reducible”, and “field extension” cases)

are dealt with in section 4.4 as an almost immediate consequence of the isogeny theorem of Masser

and Wüstholz [72] [70] (the completely explicit version we employ being due to Gaudron and

Rémond [28]). Other maximal subgroups of GSp2g(F`) are closely related to the image of the 2g-

dimensional projective symplectic representation of PGL2(F`), and in section 4.5 we show that, for `

sufficiently large, G` cannot be contained in such a subgroup: this is obtained by comparing purely

group-theoretical information with Raynaud’s description of the structure of A[`] as a module over

the inertia group at a place of characteristic `. The same results of Raynaud are also used in section

4.6 to eliminate the possibility of G` being a small “exceptional” (or “constant”) group: we obtain

a lower bound on |PG`| that is linear in ` (and essentially uniform in A), which – combined with

results of Larsen-Pink and Collins – shows that the exceptional case does not arise for ` larger than

a certain explicit function of g. Finally, the hardest case is that of G` being contained in a “tensor

product” subgroup. In §4.7 we show how, given a place v as in hypothesis (3) of theorem 4.1.3,

one can produce a finite set of integers whose divisors include all the primes for which G` is of

tensor product type; this is inspired by an argument of Serre [120], but his use of the characteristic

polynomial of Frv is almost completely replaced by a direct study of the multiplicative relations

satisfied by its roots. These relations also form the main object of interest in §4.9, where we

exploit their simple form and the manageable structure of the subgroups of GO3(F`) to show how,

if dimA = 3, a careful application of Chebotarev’s theorem yields an effective bound on the residual

characteristic of a place v with the desired properties.
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4.2 Preliminaries

4.2.1 The isogeny theorem

The result that makes all the explicit estimates possible is the following theorem, due to Masser

and Wüstholz [70] [72] and made explicit by Gaudron and Rémond [28]:

Theorem 4.2.1. (Isogeny Theorem, [28, Theorem 1.4]) Let A/K be an abelian variety. For every

abelian variety A∗ defined over K that is K-isogenous to A, there exists a K-isogeny A∗ → A whose

degree is bounded by b(A/K) (cf. definition 4.1.2).

It is very likely that the function b(A/K) of definition 4.1.2 is not the best possible one. Let us

then introduce another function b0(A/K), which is by definition the optimal isogeny bound:

Definition 4.2.2. Let A/K be an abelian variety. We denote by b0(A/K) the smallest natural

number such that, for every other abelian variety B/K that is K-isogenous to A, there exists a

K-isogeny B → A of degree at most b0(A/K). We set b0(A/K; d) = max[K′:K]≤d b0(A/K ′), where

the maximum is taken over the finite extensions of K of degree at most d.

It is clear that the isogeny theorem implies that b0(A/K) and b0(A/K; d) are finite, and that

b0(A/K; d) ≤ b(d[K : Q],dimA, h(A)) =: b(A/K; d). Whenever possible, we will state our results

in terms of b0 instead of b; in some situations, however, in order to avoid cumbersome expressions

involving maxima we simply give bounds in terms of the function b.

4.2.2 Weil pairing, Serre’s lifting lemma

Let A∨ be the dual variety of A and let 〈·, ·〉 denote the Weil pairing on A × A∨. We also let

Z`(1) be the 1-dimensional Galois module the action on which is given by the cyclotomic character

χ` : Gal(K/K)→ Z×` . For any choice of a polarization ϕ : A→ A∨, the composition

T`(A)× T`(A)
id×ϕ−−−→ T`(A)× T`(A∨)

〈·,·〉−−→ Z`(1)

equips the Tate module T`(A) with a Galois-equivariant, skew-symmetric form which we still denote

by 〈·, ·〉 and call the Weil pairing on T`(A). By Galois-equivariance of 〈·, ·〉, every element h of the

group G`∞ preserves the form 〈·, ·〉 up to multiplication by a scalar factor (called the multiplier of

h), so G`∞ is in fact contained in GSp(T`(A) ⊗Z` Q`, 〈·, ·〉), the group of symplectic similitudes of

T`(A)⊗Z`Q` with respect to 〈·, ·〉. Notice that the multiplier of h need not be an `-adic unit, whence

the need to tensor by Q`. Suppose however that ` does not divide the degree of the polarization

ϕ: then id×ϕ induces an isomorphism between T`(A) × T`(A) and T`(A) × T`(A∨), from which

one easily deduces that the multiplier of every h ∈ G`∞ is an `-adic unit. It follows that (for these

primes) G`∞ is a subgroup of GSp(T`(A), 〈·, ·〉), so, after a choice of basis, we can consider G`∞ as

being a subgroup of GSp2g(Z`).
Fix now (once and for all) a polarization ϕ of A of minimal degree. By [28, Théorème 1.1] we see

that degϕ ≤ b(A/K), so (since we only work with primes strictly larger than this quantity) we

can assume that G`∞ is a subgroup of GSp2g(Z`). Moreover, for such values of ` the Weil pairing

is nondegenerate on A[`], so for all primes ` > b(A/K) the group G` is a subgroup of GSp2g(F`).



Chapter 4. Abelian threefolds 95

Combining this remark with the following well-known lemma, originally due to Serre, will allow us

to only consider the residual mod-` representation ρ` instead of the full `-adic system ρ`∞ :

Lemma 4.2.3. Let g be a positive integer, ` ≥ 5 be a prime and G be a closed subgroup of Sp2g(Z`).
Suppose that G surjects onto Sp2g(F`) by reduction modulo `: then G = Sp2g(Z`). Likewise, let H

be a closed subgroup of GSp2g(Z`) whose reduction modulo ` contains Sp2g(F`): then H ′ = Sp2g(Z`).

Proof. The first statement is [120, Lemma 1 on p. 52], cf. also Theorem 1.3 in [136]. The second

part follows by applying the first to G = H ′ and noticing that the reduction modulo ` of H ′ contains

the derived subgroup of Sp2g(F`) which, for ` ≥ 5, is Sp2g(F`) itself.

Corollary 4.2.4. Let ` > b(A/K): then G` is contained in GSp2g(F`). Suppose ` does not ramify

in K: then Gal(K/K)
χ`−→ Z×` is surjective. In particular, if ` > b(A/K) does not ramify in K, the

inclusion Sp(A[`]) ⊆ G` implies G`∞ = GSp2g(Z`).

We conclude this section of preliminaries by underlining once more our working assumption that

` does not divide the degree of a minimal polarization: this is a minor technical point, but it is

necessary for all of our discussion to make sense.

Assumption 4.2.5. In all the statements to follow, we make the implicit hypothesis that the prime `

does not divide the degree of a minimal polarization of A. In particular, this allows us to identifty

G` (resp. G`∞) to a subgroup of GSp2g(F`) (resp. GSp2g(Z`)).

4.3 Maximal subgroups of GSp2g(F`)

Thanks to corollary 4.2.4 we see that in order to prove theorem 4.1.3 it is enough to show that

the equality G` = GSp2g(F`) holds all ` larger than a certain explicit bound. It is therefore not

surprising that we may need a description of the maximal (proper) subgroups of GSp2g(F`): the

core of our argument will consist in showing that – for ` large enough – G` cannot be contained in

any proper subgroup of GSp2g(F`), and hence it has to coincide with all of GSp2g(F`). The purpose

of this section is to introduce some notation and state theorem 4.3.14, which gives precisely such a

classification of the maximal subgroups of GSp2g(F`). Our main references for this section are [19]

and [49].

4.3.1 Group theoretical preliminaries

We now lay down some definitions and recall facts from finite group theory that will be needed in

what follows.

Definition 4.3.1. Let G be a finite group. The socle of G, denoted soc(G), is the subgroup of G

generated by the non-trivial minimal normal subgroups of G.

Definition 4.3.2. A finite group G is said to be almost simple if its socle is a non-abelian simple

group. In this case, if we let S = soc(G), we have S ≤ G ≤ Aut(S), and S is a normal subgroup of

G.

Lemma 4.3.3. An almost simple group G does not possess non-trivial normal solvable subgroups.
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Proof. Suppose a nontrivial normal solvable subgroup exists. Then the collection of such subgroups

is nonempty, and there is a minimal normal subgroup N0 of G that is solvable (a subgroup of a

solvable group is itself solvable). The definition of soc(G) implies N0 ⊂ soc(G), and moreover N0 is

normal in soc(G) since it is normal in G. By simplicity of soc(G) this forces N0 = soc(G); however,

the latter is simple non-abelian, hence in particular not solvable, contradiction.

Lemma 4.3.4. An almost-simple group has a unique non-trivial minimal normal subgroup, which

coincides with its socle.

Proof. Let N be a non-trivial minimal normal subgroup. We have N / soc(G), and as the latter is

simple this forces N = soc(G).

Definition 4.3.5. Let S be a finite group. The group Inn(S) of inner automorphisms of S is

the image of the map

S → Aut(S)

g 7→

(
ϕg : S → S

s 7→ gsg−1

)
.

The group Inn(S) is a normal subgroup of Aut(S). The quotient Aut(S)/ Inn(S) is called the group

of outer automorphisms of G, and is denoted by Out(S).

Definition 4.3.6. A group is said to be perfect if it equals its commutator subgroup. If H

is a finite group we denote by H∞ the first perfect group contained in the derived series of H;

equivalently,

H∞ =
⋂
i≥0

H(i),

where H(0) = H and H(i+1) = [H(i), H(i)].

Lemma 4.3.7. If G is almost simple we have soc(G) = G∞; in particular, soc(G) is perfect.

Proof. This follows immediately from the fact that the outer automorphism group of a simple group

is solvable ([19, Theorem 1.3.2]).

4.3.2 Definition of the classical groups

We now recall various standard constructions that are frequently used in the theory of finite matrix

groups. Let F be a finite field of characteristic different from 2 and n be an odd integer. The group

of orthogonal transformations of Fn is

GOn(F ) =
{
x ∈Mn(F )

∣∣ xtx = Id
}
.

We also define the special orthogonal group SOn(F ) =
{
x ∈ GOn(F )

∣∣ detx = 1
}

and the group

of orthogonal similarities

CGOn(F ) =
{
x ∈Mn(F )

∣∣ ∃λ ∈ F× such that xtx = λ Id
}
.

Remark 4.3.8. These definitions also make sense for even n: in this case, however, there are two

non-isomorphic groups preserving two non-equivalent quadratic forms on Fn. We shall not need to

deal with this case.
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We shall also need to consider the groups Ωn(F ):

Definition 4.3.9. ([19, p. 29]) Let n ≥ 3 be odd: the group Ωn(F ) is the unique subgroup of

SOn(F ) of index 2.

Remark 4.3.10. The group Ωn(F ) is usually introduced as the kernel of the so-called spinor norm

SOn(F`)→ {±1}; the precise definition of the spinor norm, however, is somewhat convoluted, while

the simpler definition 4.3.9 is perfectly suitable for our purposes. Also notice that for any finite

field F of odd characteristic the groups PΩ3(F ) and PSL2(F ) are isomorphic, cf. [19, Proposition

1.10.1].

Let now n be any positive integer. The standard symplectic form on F 2n is

〈·, ·〉 : F 2n × F 2n → F

(v, w) 7→ vtJw,

where J := antidiag(1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n

). We can then introduce the group of symplectic trans-

formations,

Sp2n(F ) =
{
x ∈M2n(F )

∣∣ xtJx = J
}
,

and the group of symplectic similarities

GSp2n(F ) =
{
x ∈M2n(F )

∣∣ ∃λ ∈ F× such that xtJx = λJ
}
.

Let V1, V2 be two vector spaces over F . The Kronecker product of g1 ∈ GL(V1) and g2 ∈ GL(V2)

is the endomorphism g1 ⊗ g2 of V1 ⊗F V2 which acts as (g1 ⊗ g2)(v1 ⊗ v2) = (g1v1) ⊗ (g2v2) on

decomposable elements, for all v1 ∈ V1 and v2 ∈ V2. If G and H are subgroups of GLm(F ), GLn(F )

respectively, we write G⊗H for the quotient of G×H by the equivalence relation

(a, b) ∼ (c, d) if and only if there exists λ ∈ F× such that c = λa, d = λ−1b.

The group G⊗H is in a natural way a subgroup of GLmn(F ), the inclusion being given by identifying

(g, h) ∈ G×H/ ∼ with g⊗h ∈ GLmn(F ): the definition of ∼ ensures that this identification is well

defined ([19, Proposition 1.9.8]).

Finally, whenever G is a subgroup of a certain linear group GLn(F ), we write PG for the image of

G in the quotient PGLn(F ) :=
GLn(F )

F× · Id
. We break this convention only for the groups PSLn(F )

and PGLn(F ), which in homage to the tradition will be denoted simply by PSLn(F ) and PGLn(F ).

4.3.3 Maximal subgroups of GSp2n(F`)

We are now in a position to recall the classification of the maximal subgroups of GSp2n(F`). For

simplicity of exposition, and since this is the only case we will need, we assume from now on that

both n and ` are odd. Before stating the classification theorem we need to define some of the

Aschbacher classes; we start with the notion of m-decomposition:

Definition 4.3.11. Let ` be an odd prime and m ≥ 2 be an integer. An m-decomposition of F2n
`

is the data of m subspaces V1, . . . , Vm of F2n
` , each of dimension 2n

m , such that

• the restriction of the standard symplectic form of F2n
` to Vi is either nondegenerate for every

i = 1, . . . ,m, or trivial for every i = 1, . . . ,m;
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• F2n
`
∼=
⊕m

i=1 Vi.

We can now define the first four Aschbacher classes; as the precise definition of class C3 is somewhat

complicated (cf. [19, Definition 2.2.5]), we shall limit ourselves to giving the property that will be

crucial to us.

Definition 4.3.12. A subgroup G of GSp2n(F`) is said to be:

1. reducible, or of class C1, if it stabilizes a linear subspace of F2n
` ;

2. imprimitive, or of class C2, if there exists an m-decomposition V1, . . . , Vm which is stable

under the action of G (i.e. for all g ∈ G and for all i = 1, . . . ,m there exists a j ∈ {1, . . . ,m}
such that gVi ⊆ Vj);

3. a field extension subgroup, or of class C3, if there exist a prime s dividing 2n, a structure

of F`s-vector space on F2n
` , and a subgroup H of G of index s such that H acts on F2n

`

preserving the F`s-structure;

4. a tensor product subgroup, or of class C4, if there is a decomposition F2n
`
∼= V1⊗V2 (where

V1, V2 are F`-vector spaces) and for each g ∈ G there exist g1 ∈ GL(V1) and g2 ∈ GL(V2) for

which g = g1 ⊗ g2.

We shall also have to deal with the exceptional class S:

Definition 4.3.13. (cf. [19, Definition 2.1.3]) A subgroup H of GSp2n(F`) is said to be of class S
if and only if all of the following hold:

1. PH is almost simple;

2. H does not contain Sp2n(F`);

3. H∞ acts absolutely irreducibly on F2n
` .

A general philosophy (cf. for example [118], especially §3, or [24, Remark 2.1]) predicts that groups

in class S should come in two different flavours. On one hand, there should exist finitely many

groups G1, . . . , Gk that embed in GSp2g(F`) for infinite families of primes `; we shall refer to these

as constant groups. On the other hand, if G is an algebraic group over Z admitting an irreducible,

symplectic representation of dimension 2n, then the corresponding embedding G ↪→ GSp2n,Z should

give rise – for almost all primes ` – to a maximal subgroup G(F`) of GSp2g(F`). We shall refer

to groups arising in this way as groups of Lie type. We do not turn these notions into precise

definitions, but it will be clear from sections 4.6 and 4.10 that there are indeed two different kinds

of class-S subgroups, and that they need to be treated in different ways.

We are now finally ready to state the following classification theorem, essentially due to Aschbacher

(but see also [49] and [19]):

Theorem 4.3.14. (Aschbacher [5]) Let n be an odd integer, ` be an odd prime, and G be a maximal

proper subgroup of GSp2n(F`) not containing Sp2n(F`). Then one of the following holds:
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1. G is of class C1;

2. G is of class C2, stabilizing an m-decomposition for some m ≥ 2 dividing 2n;

3. G is of class C3 for some prime s dividing 2n;

4. G is of class C4, and more precisely G is isomorphic to GSp2m (F`) ⊗ CGOt (F`), where m

and t ≥ 3 are integers such that 2mt = 2n (we call (m, t) the type of G);

5. G is of class S.

The proof of theorem 4.1.3 essentially consists in going through the list provided by theorem 4.3.14

to show that, for ` large enough, G` cannot be contained in any proper maximal subgroup of

GSp2g(F`), and therefore the equality G` = GSp2g(F`) must hold.

4.4 Reducible, imprimitive and field extension cases

Recall from the introduction that we denote by A/K an abelian variety of dimension g with

EndK(A) = Z, and by G` the image of the representation ρ` : Gal(K/K) → AutA[`]. At least for

` > b(A/K) we know from corollary 4.2.4 that G` ⊆ GSp2g(F`). Suppose now that G` does not

contain Sp2g(F`): then G` is contained in one of the maximal subgroups listed in theorem 4.3.14.

The following proposition shows that cases 1 through 3 of that theorem cannot arise for ` large

enough:

Proposition 4.4.1. Let G be a maximal proper subgroup of GSp2g(F`). Suppose G is

1. reducible: then ` ≤ b0(A/K).

2. imprimitive: then ` ≤ b0(A/K; g!).

3. a field extension subgroup: then ` ≤ b0(A2/K; g)1/2g.

Proof. Replacing K with an extension of degree at most g! or g in cases 2 and 3, we can assume

that G` stabilizes a subspace (cases 1 and 2), or that its centralizer is strictly larger than F×` (case

3). The claim then follows from lemmas 3.3.17 and 3.3.18.

4.5 Groups of Lie type with socle PSL2(F`)

We now consider maximal class-S subgroups G of GSp2n(F`) that satisfy soc(PG) ∼= PSL2(F`).
There are two reasons why we single out this case: on one hand, it is not hard to construct (for all

n and most `) an explicit family of maximal subgroups of GSp2n(F`) having this shape, so this is

clearly a case we need to treat; on the other hand, as we shall show in section 4.10, for most values

of n this is in fact the only kind of class-S subgroup of Lie type of GSp2n(F`).
To see how such subgroups with socle PSL2(F`) arise, denote by V1 := F2

` the definining repres-

entation of either GL2(F`) or SL2(F`), and consider, for every positive integer n, the (2n − 1)-th

symmetric power of V1, which we denote by V2n−1; it is a symplectic representation of GL2(F`)
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or SL2(F`) respectively. Moreover, for ` > 2n this representation is absolutely irreducible ([19,

Proposition 5.3.6 (i)]), hence its image gives rise to a maximal class-S subgroup of GSp2n(F`) with

socle PSL2(F`). We denote by

σ2n−1 : GL2(F`)→ GSp(V2n−1) ∼= GSp2n(F`)

the representation thus obtained, and by S2n−1 the image of GL2(F`) in GSp2n(F`). As the following

lemma shows, the group S2n−1 is the only one we need to consider:

Lemma 4.5.1. ([19, Proposition 5.3.6 (i)]) Let ` > 2n be a prime number and let G be a maximal

class-S subgroup of GSp2n(F`) such that socPG ∼= PSL2(F`). Then (up to conjugation in GSp2n(F`))
we have PG = PS2n−1.

We now turn to the application to abelian varieties. Suppose once more that A/K is an abelian

variety of dimension g with EndK(A) = Z, and suppose that for some prime ` > 2g the group

G` is contained in a maximal class-S subgroup G of GSp2g(F`) with projective socle PSL2(F`).
By the previous lemma, we can assume PG = PS2g−1. In this situation, the assumption G` ⊆ G

implies that for every h ∈ G` there exist a scalar λ ∈ F×` and an element M ∈ GL2(F`) such that

h = λ · σ2g−1(M). In particular, the eigenvalues of h are given by the (multi)set{
λµjν2g−1−j ∣∣ j = 0, . . . , 2g − 1

}
, (4.1)

where µ, ν are the eigenvalues of M . Notice that the eigenvalues of M lie either in F` or in its

(unique) quadratic extension, hence all eigenvalues of h are elements of F`2 . We shall now show

that (for ` large enough) this description of the eigenvalues of h contradicts what is known about

the representation ρ` restricted to the inertia at `. More precisely, let l be a place of K above the

prime `, let Il ⊆ Gal(K/K) be the inertia group at l, and write Itl for the tame inertia group at

l. Under a semistability hypothesis, the action of Il on A[`] factors through Itl , and is described by

the following theorem of Raynaud:

Theorem 4.5.2. ([104, Corollaire 3.4.4]) Suppose A has semistable reduction at l: then the wild

inertia subgroup of Il acts trivially on A[`], so the action of Il factors through Itl . Let V be a

Jordan-Hölder quotient of A[`] for the action of Itl . Suppose V is of dimension n over F`, and let

e be the ramification index of l over `. There exist integers e1, . . . , en such that:

• V has a structure of F`n-vector space;

• the action of Itl on V is given by a character ψ : Itl → F×`n;

• ψ = ϕe11 . . . ϕenn , where ϕ1, . . . , ϕn are the fundamental characters of Itl of level n;

• for every i = 1, . . . , n the inequality 0 ≤ ei ≤ e holds.

Remark 4.5.3. Raynaud’s theorem is usually stated for places of good reduction. However, as it was

shown in [61, Lemma 4.9], the extension to the semistable case follows easily upon applying results

of Grothendieck [30].
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Remark 4.5.4. By construction the fundamental characters of level n are surjective morphisms

Itl → F×`n . Moreover, the norm of a fundamental character of level n (taken from F`n to F`) is

the unique fundamental character of level 1. If furthermore l is unramified in K, then this unique

character of level 1 is χ`, the cyclotomic character mod `.

Notation. For the rest of this section we suppose that ` is a prime for which there exists a place l

of K of characteristic ` at which A has either good or bad semistable reduction.

Let now W1, . . . ,Wk be the sequence of Jordan-Hölder quotients of A[`] under the action of Itl , and

ψ1, . . . , ψk be the corresponding characters as in Raynaud’s theorem. Also write ni = dimWi and

suppose, for the rest of the section, that ` is unramified in K.

Lemma 4.5.5. Every ni is at most 2.

Proof. Let W be any simple Jordan-Hölder quotient of A[`] and let ψ be the associated character.

Suppose that the image of ψ is contained in F×
`k

for a certain k ≥ 1, and let σ be a generator

of Gal (F`k/F`). Since the action of Itl on W can be diagonalized over F`k , we can find a vector

v ∈W⊗F`F`k that is a common eigenvector for the action of Itl . The F`-vector subspace of W⊗F`F`k
spanned by v, σv, . . . , σk−1v is by construction σ-stable, hence it descends to a F`-subspace W ′ of

W , and it is clear by construction that W ′ is also stable under the action of Itl . As W is irreducible

and W ′ is nontrivial we must have W ′ = W , and since dimW ′ ≤ k we have dimW ≤ k. In our

situation, we have already remarked that all the eigenvalues of every element of G` lie in F`2 , hence

in particular the same is true for the eigenvalues of the action of Itl . It follows that the image of

ψ is entirely contained in F`2 , and the previous argument shows that W is of dimension at most

2.

In view of Raynaud’s theorem and of the previous lemma, the only characters through which Itl can

act on A[`] are the fundamental characters of level 1 and 2, along with the trivial character. Denote

by m0 (resp. m1,m2) the number of Jordan-Hölder quotients of A[`] on which Itl acts trivially (resp.

through χ`, through one of the fundamental characters of level 2). As A[`] is of dimension 2g, the

dimensions of its simple Jordan-Hölder quotients must add up to 2g, and so we have

m0 +m1 + 2m2 = 2g. (4.2)

These three numbers also satisfy another numerical relation:

Lemma 4.5.6. Suppose ` > g + 1 is unramified in K: then m0 = m1.

Proof. Notice that since ` is unramified in K the exponents ei in Raynaud’s theorem are all either

0 or 1. Write ϕ1, ϕ2 = ϕ`1 for the two fundamental characters of level 2. If W is a simple Jordan-

Hölder quotient of A[`] of dimension 2, the action of x ∈ Itl on W has eigenvalues ϕ1(x) and ϕ2(x),

hence its determinant is ϕ1(x)ϕ2(x) = χ`(x). On the other hand, the determinant of the action on

1-dimensional simple quotients is either 1 (if the action is trivial) or χ`(x) (if the action is through

χ`). It follows that

χ`(x)g = det (ρ`(x) : A[`]→ A[`]) =
∏
Wi

det (ρ`(x) : Wi →Wi) = χ`(x)m1χ`(x)m2 ∀x ∈ Itl ,
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i.e. χm1+m2−g
` ≡ 1 on Itl . Since ` is unramified in K, the order of the image of χ` is `− 1, hence we

must have (`− 1)
∣∣ m1 +m2− g. However, |m1 +m2− g| ≤ g by equation (4.2), and since `− 1 > g

by assumption the only possibility is m1 +m2 = g. Together with m0 +m1 + 2m2 = 2g this yields

m0 = m1 as claimed.

The next step is to show that in fact there are no inertia invariants if ` is sufficiently large with

respect to g:

Lemma 4.5.7. Suppose g ≥ 3. If ` > g(2g − 1) + 1 is unramified in K, then m0 = 0.

Proof. The previous lemmas imply that m1 + m2 = g ≥ 3, hence we have max {m1,m2} ≥ 2.

Suppose by contradiction that m0 ≥ 1. By definition of m0,m1 and m2, for every x ∈ Itl the ei-

genvalues of ρ`(x) are
{

1, χ`(x), ϕ1(x), ϕ1(x)`
}

, with multiplicities given respectively by m0,m1,m2

and m2. On the other hand, we know from (4.1) that the eigenvalues of ρ`(x) can be written as{
λµjν2g−1−j ∣∣ j = 0, . . . , 2g − 1

}
for some λ ∈ F×` and µ, ν ∈ F×

`2
. Now for all x ∈ Itl the operator

ρ`(x) admits an eigenvalue of multiplicity at least 2 (since max {m1,m2} ≥ 2) and it also has 1

among its eigenvalues (since m0 ≥ 1): thus there exist two indices 0 ≤ j1 < j2 ≤ 2g− 1 (depending

on x) such that λµj1ν2g−1−j1 = λµj2ν2g−1−j2 , and an index 0 ≤ j3 ≤ 2g − 1 (depending on x, and

not necessarily distinct from j1, j2) such that λµj3ν2g−1−j3 = 1. These equations can be rewritten

as (µ/ν)j1−j2 = 1

λ = µ−j3νj3−2g+1 = (µ/ν)−j3ν1−2g.

On the other hand, the fact that det ρ`(x) = χ`(x)g yields

χ`(x)g = det ρ`(x) =

2g−1∏
j=0

(
λµjν2n−1−j) = λ2g(µν)2g2−g, (4.3)

and upon replacing λ by (µ/ν)−j3ν1−2g we get χ`(x)g = (µ/ν)g(2g−1−2j3). Finally, raising both sides

of this equation to the (j1 − j2)-th power and using (µ/ν)j1−j2 = 1 we find

χ`(x)g(j1−j2) = (µ/ν)g(j1−j2)(2g−1−2j3) = 1,

which proves in particular that ordχ`(x) ≤ g(j2 − j1) ≤ g(2g − 1) for all x ∈ Itl . But since ` is

unramified in K the image of χ`|Itl is a cyclic group of order `−1 > g(2g−1): taking an x ∈ Itl such

that χ`(x) generates χ`(I
t
l ) gives a contradiction, which shows that we must in fact have m0 = 0.

We have thus proved that for ` > g(2g − 1) + 1 we necessarily have m0 = m1 = 0 and m2 = g. It

remains to show that this is impossible as well:

Lemma 4.5.8. Suppose ` ≥ 2g is unramified in K: then we cannot have m2 = g.

Proof. The proof is very similar to that of the previous lemma, so we keep the same notation. Let

x be any element of Itl . The assumption m2 = g implies (by an obvious pigeonhole argument) that

we can find two indices 0 ≤ j1 < j2 ≤ 2g−1 such that j2−j1 ≤ 2 and λµj1ν2g−1−j1 = λµj2ν2g−1−j2 ,

which implies (µ/ν)j2−j1 = 1 and therefore µ/ν = ±1. Moreover there exists an index 0 ≤ j ≤ 2g−1

such that λµjν2g−1−j = ϕ1(x), hence λ2g = ϕ1(x)2gν2g(1−2g). Equation (4.3) now implies

χ`(x)g = λ2g(µν)g(2g−1) = ϕ1(x)2g(µ/ν)g(2g−1) = ±ϕ1(x)2g,
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whence, using χ`(x) = ϕ1(x)ϕ2(x) = ϕ1(x)`+1, we see that ϕ1(x)g(`−1) = ±1 for all x ∈ Itl . This

implies that the cyclic group ϕ1(Itl ) has order at most 2g(` − 1), but on the other hand (since `

is unramified in K) we know that
∣∣ϕ1(Itl )

∣∣ = `2 − 1. This implies ` + 1 ≤ 2g, contrary to our

assumptions.

Putting together the last three lemmas we have

Proposition 4.5.9. Suppose ` > 2g(g − 1) + 1 is a prime unramified in K and such that there is

at least one place l of K of characteristic ` at which A has semistable reduction. Then G` cannot

be contained in a maximal class-S subgroup G of GSp2g(F`) with socPG ∼= PSL2(F`).

4.6 Constant groups in class S

The analysis of the constant subgroups of GSp2g(F`) is greatly simplified by the following theorems

of Larsen-Pink and Collins:

Theorem 4.6.1. (Larsen-Pink [60, Theorem 0.2]) For every positive integer n there exists a con-

stant J ′(n) with the following property: any finite subgroup Γ of GLn(k) over any field k possesses

normal subgroups Γ3 ⊂ Γ2 ⊂ Γ1 such that

(a) [Γ : Γ1] ≤ J ′(n);

(b) either Γ1 = Γ2, or p := char(k) is positive and Γ1/Γ2 is a direct product of finite simple groups

of Lie type in characteristic p;

(c) Γ2/Γ3 is abelian, of order not divisible by char(k);

(d) either Γ3 = {1}, or p := char(k) is positive and Γ3 is a p-group.

Theorem 4.6.2. ([22, Theorem A]) One can take J ′(n) :=

(n+ 2)!, if n ≥ 71

n4(n+ 2)!, if n < 71
, which is

also optimal for n ≥ 71. Furthermore, if in the previous theorem we restrict to fields k such that

char k - (n+ 1)(n+ 2), then one can replace J ′(n) by J(n) :=

(n+ 1)!, if n ≥ 71

n4(n+ 2)!, if n < 71

Remark 4.6.3. Collin’s theorem is in fact more precise and gives the optimal value of J ′(n) also for

n ≤ 71. Using this improved bound would not change our final result (theorem 4.1.3), and we have

therefore chosen to use the simpler expression given above.

Theorem 4.6.1 immediately implies:

Proposition 4.6.4. Let `, g be such that ` - (2g+ 1)(2g+ 2). Suppose G ⊆ GSp2g(F`) is a maximal

subgroup of class S and satisfies |PG| > J(2g): then the socle of PG is a simple group of Lie type

in characteristic `.
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Proof. Apply theorem 4.6.1 to G. Notice first that Γ3 is trivial: indeed, Γ3 is a solvable normal

subgroup of G, so PΓ3 is a solvable normal subgroup of PG, which is almost-simple since G is of class

S. It follows from lemma 4.3.3 that PΓ3 is trivial, so Γ3 is a subgroup of the group of homotheties in

GL2g(F`), which has order prime to `, hence Γ3 = {1} as claimed. The same argument now shows

that Γ2 ⊆ F×` · Id, for otherwise PΓ2 would be an abelian (in particular solvable) normal subgroup

of PG. This implies in particular that Γ1 and Γ2 commute, and that P(Γ1Γ2) = PΓ1. Notice that

PΓ1 cannot be trivial, for otherwise we would have |PG| ≤ J(2n)|P(Γ1)| = J(2n), contradicting the

hypothesis; hence PΓ1 is a nontrivial normal subgroup of PG, so it contains soc(G). On the other

hand, the fact that Γ2 consists entirely of homotheties implies that PΓ1 is a quotient of Γ1/Γ2,

hence in particular a direct product of finite simple groups of Lie type in characteristic `. Lemma

4.3.7 now implies that socPG = (Γ1/Γ2)∞ is of Lie type in characteristic `.

Proposition 4.6.5. Let ` be a prime such that there is a place l of K of residual characteristic `

at which A has either good or bad semistable reduction. If ` is unramified in K and not less than

g + 2, then |PG`| ≥ `− 1.

Proof. We take the notation of section 4.5; in particular, we let W1, . . . ,Wk be the simple Jordan-

Hölder quotients of A[`] under the action of the inertia group Il (or equivalently, of the tame inertia

group Itl ), and ψ1, . . . , ψk be the characters associated with the Wi’s by Raynaud’s theorem 4.5.2.

Let N be the order of |PG`|, and notice that for every y ∈ G` the projective image of yN is trivial,

that is, yN is a multiple of the identity, and in particular has a unique eigenvalue of multiplicity 2g.

Since for x ∈ Itl the eigenvalues of ρ`(x) are given by the Galois conjugates of the various ψi(x),

this implies that for all i, j = 1, . . . , k, for all integers t ≥ 0, and for all x ∈ Il we have

ψi(x)`
tN = ψj(x)N . (4.4)

We now distinguish three cases:

1. At least one of the Wi’s is of dimension ≥ 2: without loss of generality, we can assume that

n := dimW1 is at least 2. Let ψ be the associated character. By Raynaud’s theorem, there

are integers e0, . . . , en−1 ∈ {0, 1} such that ψ = ϕ
∑n−1
i=0 ei`

i
, where ϕ is a fundamental character

of level n. Note that we cannot have ei = 1 for i = 0, . . . , n− 1, for otherwise we would have

ψ = χ`, which contradicts the fact that W1 is of dimension n > 1 (cf. the proof of lemma

4.5.5). In particular, since for all integers t ≥ 0 the character ϕ`
t

is a Galois conjugate of ϕ,

replacing ϕ with ϕ`
t

for a suitable t we can assume that en−1 = 0 (notice that replacing ϕ

with ϕ` has the effect of permuting cyclically the integers ei, at least one of which is zero).

Now ϕ has exact order `n − 1, so ψ = ϕ
∑n−1
i=0 ei`

i
has order at least

`n − 1∑n−1
i=0 ei`

i
≥ `n − 1∑n−2

i=0 `
i

=
(`n − 1)(`− 1)

(`n−1 − 1)
≥ `(`− 1),

that is to say, there is an x ∈ Itl such that ψ(x) has order at least `(` − 1). Consider now

equation (4.4) for this specific x, for ψi = ψj = ψ and for t = 1: it gives ψ(x)(`−1)·N = 1, so

ψ(x) has order at most (`−1) ·N . Thus we obtain (`−1) ·N ≥ `(`−1), that is N ≥ ` > `−1

as claimed.
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2. All the Wi’s are of dimension 1, for at least one index i we have ψi = 1, and for at least one

index j we have ψj = χ`: then for all x ∈ Itl we have ψj(x)N = ψi(x)N , that is, χ`(x)N = 1

for all x ∈ Itl . As χ` has exact order `− 1, this implies N ≥ `− 1.

3. All the Wi’s are of dimension 1 and all characters ψi are equal to each other (and in particular

are either all trivial or all equal to the cyclotomic character χ`): in this case there are exactly

k = 2g simple Jordan-Hölder quotients, and from the equality

χ`(x)g = det ρ`(x) =

2g∏
i=1

ψi(x) =

1, if ψi = 1 for every i

χ`(x)2g, if ψi = χ` for every i

we find χ`(x)g = 1 for all x ∈ Itl , which contradicts the fact that the order of χ` is `− 1 > g.

Corollary 4.6.6. Let ` ≥ J(2g) + 2 be a prime unramified in K. Suppose that there exists a place

l of K, of residual characteristic `, at which A has semistable reduction: then |PG`| > J(2g).

Remark 4.6.7. Proposition 4.6.4 should be interpreted as saying that the order of the constant

groups appearing as maximal subgroups of PGSp2g(F`) is bounded by J(2g) (for large enough g,

equality is attained by the natural 2g-dimensional representation of S2g+1). Corollary 4.6.6 then

amounts to saying that for ` > J(2g) + 1 (and under a suitable semistability hypothesis) the action

of Galois cannot factor through a constant group of class S.

4.7 The tensor product case I

We are now left with the task of showing that, for ` large enough, the group G` cannot be contained

in a tensor product subgroup of GSp2g(F`). Let us briefly explain the key idea behind the proof,

which goes back to Serre (cf. [120]). If G` is contained in a tensor product subgroup, this forces

the eigenvalues of any x ∈ G` to satisfy a number of additional multiplicative relations that do not

hold for a sufficiently generic element of GSp2g(F`): we will therefore be able to show that G` is not

contained in a tensor product subgroup as soon as we have at our disposal an element of G` whose

eigenvalues do not satisfy any multiplicative relations except for the “obvious” ones. We shall look

for such an element among those of the form ρ`(Frv), where Frv is a Frobenius element associated

with a place v of K: since the eigenvalues of ρ`(Frv) are independent of `, if for a certain prime `0

the eigenvalues of ρ`0(Frv) do not satisfy these additional relations, then the same is true for the

eigenvalues of ρ`(Frv) for all but finitely many primes `. This will be enough to conclude that, for

` large enough, G` is not contained in a tensor product subgroup.

We split the analysis of tensor product subgroups in two parts: in the present section we show that,

given such a “generic” Frobenius element, we can indeed give an explicit bound on the largest prime

` for which G` can be contained in a tensor product subgroup; then, in section 4.9, we shall show

how, when g = 3, Chebotarev’s density theorem enables us to find a suitable Frobenius element.

To carry out both parts of this program we shall need to study Frobenius elements and their

eigenvalues in some detail. We let ΩK denote the set of finite places of K, and for each v ∈ ΩK
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we write pv for the residual characteristic and qv for the cardinality of the residue field at v. We

also write Frv ∈ Gal(K/K) for a Frobenius element at v. If v is a place of K of good reduction

for A, the characteristic polynomial of ρ`∞(Frv) does not depend on ` (as long as v - `), and will

be denoted by fv(x) ∈ Z[x]. We shall write µ1, . . . , µ2g for the roots of fv(x) in Q, and call these

algebraic integers the eigenvalues of Frv.

The splitting field of fv(x) is a Galois extension of Q which we call F (v). If ` is a prime not lying

below v, let l be any prime of F (v) lying above `, and let Fl be the residue field at l. Since the

µi’s are algebraic integers, it makes sense to consider their reductions modulo l, which are elements

of F`
×

which we will denote by µ1, . . . , µ2g; clearly these µi’s can also be identified with the roots

in F` of the characteristic polynomial of ρ`(Frv). When speaking of the roots µ1, . . . , µ2g of the

characteristic polynomial of ρ`(Frv) we shall always implicitly assume that this identification has

been made.

Lemma 4.7.1. The splitting field F (v) of the characteristic polynomial fv(x) of Frv has Galois

group isomorphic to a subgroup of (Z/2Z)g o Sg, so it has degree at most 2gg! over Q.

Proof. Immediate from the relation x2gfv
(
qvx
−1
)

= qgvfv(x), which in turn follows from ρ`∞(Frv)

being an element of GSp2g(Z`) for any sufficiently large prime ` and from the Weil conjectures.

We shall need the following basic facts from group theory, whose proof is completely straightforward:

Lemma 4.7.2. Let m,n be positive integers.

1. Let ` ≥ 3 be a prime. The groups Sp2m(F`)⊗SO2n+1(F`) and Sp2m(F`)⊗GO2n+1(F`) coincide.

2. Let F be a field not of characteristic 2 and h be an element of SO2n+1(F ). The multiset Ψ of

eigenvalues of h can be written as
{
β1, . . . , βn, 1, β

−1
1 , . . . , β−1

n

}
for certain β1, . . . , βn ∈ F

×
.

3. Suppose m,n are odd and let g = mn. Let G be a maximal subgroup of GSp2g(F`) of

tensor product type (m,n), that is, G ∼= GSp2m(F`) ⊗ CGOn(F`). For every h ∈ G, the

eigenvalues of h can be written as
{
λiβj , λi, λiβ

−1
j

∣∣ i = 1, . . . , 2m, j = 1, . . . , n−1
2

}
for cer-

tain λ1, . . . , λ2m, β1, . . . , βn−1
2

in F`
×

.

We now start investigating the multiplicative relations satisfied by the eigenvalues of an operator

lying in a tensor product subgroup. Even though in general there may be additional relations, by

part (3) of the previous lemma we already know a large number of equations these eigenvalues must

satisfy; to state them more concisely, we introduce the following definition:

Definition 4.7.3. We let Vmn be the affine scheme cut in A2g
Z (with variables z1, . . . , z2m and xij , yij

for i = 1, . . . , 2m and j = 1, . . . , n−1
2 ) by the equations

xijyij = z2
i for i = 1, . . . , 2m and j = 1, . . . , n−1

2

zkxij = zixkj for i, k = 1, . . . , 2m and j = 1, . . . , n−1
2

zkyij = ziykj for i, k = 1, . . . , 2m and j = 1, . . . , n−1
2

We denote v = (zk, xij , yij) a point in A2g
Z and let elements σ ∈ S2g act on A2g

Z by permuting

the coordinates in the natural way. For every σ ∈ S2g we also consider the scheme V σ
mn defined
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by
{
v ∈ A2g

Z
∣∣ σ(v) ∈ Vmn

}
. We also let Pσmn be a set of homogeneous binomials of degree 2 with

coefficients in {±1} that generate the ideal of V σ
mn: it is clear by the definition of V that such

polynomials exist. Finally, we let Uσmn be the open subscheme of V σ
mn over which

m∏
i=1

zi

(n−1)/2∏
j=1

xijyij

is invertible (note that this condition is invariant under the action of S2g), and to ease the notation

we set Umn := U id
mn.

Lemma 4.7.4. Let F be a field. For a 2g-tuple (w1, . . . , w2g) of elements of F× the following are

equivalent:

1. there exists a permutation σ ∈ S2g such that (w1, . . . , w2g) ∈ Uσmn(F );

2. there exist λ1, . . . , λ2m, β1, . . . , βn−1
2
∈ F× such that w1, . . . , w2g equal (in some order) the 2g

numbers λi, λiβ
±1
j for i = 1, . . . , 2m and j = 1, . . . , n−1

2 .

Proof. Notice that both conditions are invariant under the action of S2g, so we consider the state-

ment up to permutation of the coordinates. Assume first that (2) holds: then we obtain a point of

Umn(F ) by setting, for i = 1, . . . , 2m and j = 1, . . . , n−1
2 ,

zi = λi

xij = λiβj

yij = λiβ
−1
j .

Conversely, starting from a point (w1, . . . , w2g) in Uσmn(F ) as in (1), the invariance of the statement

under permutations allows us to assume that σ = id, and we get a decomposition as in (2) by

setting λi = zi for i = 1, . . . , 2m and βj = x1j/z1 for j = 1, . . . , n−1
2 .

Proposition 4.7.5. Let v be a place of good reduction of A and m,n be integers such that mn = g

(with n ≥ 3). Let (µ1, . . . , µ2g) be the eigenvalues of Frv and suppose that

(µ1, . . . , µ2g) 6∈
⋃

σ∈S2g

Uσmn(Q).

Then for every ` that is strictly larger than (2qv)
[F (v):Q] the element ρ`(Frv) does not lie in a tensor

product subgroup of GSp2g(F`) of type (m,n). In particular, for any such ` the group G` is not

contained in a tensor product subgroup of type (m,n).

Proof. Since clearly

2g∏
i=1

µi 6= 0, the fact that (µ1, . . . , µ2g) does not belong to Uσmn
(
Q
)

for any σ

is equivalent to the fact that for every σ ∈ S2g there is a pσ ∈ Pσmn (cf. definition 4.7.3) such

that ασp := pσ(µ1, . . . , µ2g) is nonzero; recall that pσ is a homogeneous binomial of degree 2 with

coefficients in {±1}. Since the µi’s are algebraic integers, so are the ασp ; furthermore, every ασp

belongs to F (v), the splitting field of fv(x). Finally, the absolute value of every Galois conjugate of

every µi is q
1/2
v , so |ασp | ≤ 2qv under any embedding of F (v) in C: putting everything together we

see that, for every fixed σ, the set of numbers
{
aσp := NF (v)/Q

(
ασp
) ∣∣ p ∈ Pσmn} consists of integers

of absolute value at most (2qv)
[F (v):Q], not all equal to zero. Suppose now by contradiction that
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ρ`(Frv) lies in a tensor product subgroup of type (m,n). By lemma 4.7.2, the eigenvalues µ1, . . . , µ2g

of ρ`(Frv) can be written as{
λi, λi · βj , λi · βj

−1 ∣∣ i = 1, . . . , 2m, j = 1, . . . ,
n− 1

2

}
for some elements λi, βj of F`

×
, and by lemma 4.7.4 there is a permutation σ such that (µ1, . . . , µ2g)

defines a point of Uσmn(F`). This implies that (for this specific choice of σ) all the numbers aσp reduce

to 0 in F`, and since the aσp are integers this amounts to saying that ` divides all the aσp (for p ∈ Pσmn).

However, we have seen that there is at least one polynomial p ∈ Pσmn for which aσp is nonzero, so

`
∣∣ aσp implies ` ≤ |aσp | ≤ (2qv)

[F (v):Q]: this clearly contradicts our choice of `, and the proposition is

proved.

Serre has proved [120, p. 49] that places v as in the statement of the proposition do exist, and

in fact a slight modification of his argument shows that they have density 1. On the other hand,

the following lemma gives an easily testable (sufficient) criterion to decide whether or not a place v

satisfies the hypotheses of the previous proposition:

Lemma 4.7.6. Let v be a place of K of good reduction for A such that the Galois group of fv(x) is

the full Weyl group Wg := (Z/2Z)g o Sg. Let (µ1, . . . , µ2g) be the eigenvalues of Frv. Then for any

choice of positive integers (m,n) with n ≥ 3 and mn = g the point (µ1, . . . , µ2g) does not belong to⋃
σ∈S2g

Uσmn(Q).

Proof. Let sv(x) ∈ Z[x] be the squarefree part of fv(x) and s be its degree. Like fv(x), the

polynomial sv(x) satisfies xssv(q/x) = qs/2sv(x), so its Galois group is a subgroup of (Z/2Z)soSs:

as the splitting fields of sv(x) and fv(x) coincide, we must have s = g, that is, the µi’s are all

distinct.

Let now λ, ν1, ν2 be any three distinct eigenvalues of Frv. We shall show that we cannot have

λ2 = ν1ν2, hence in particular no permutation of the µi’s can define a point of Umn(Q) (recall that

one of the equations defining Umn is z2
1 = x11y11). Suppose by contradiction that λ2 = ν1ν2. Up to

renumbering the µi’s, the action ofWg on the set {µ1, . . . , µ2g} has the following property: for every

σ ∈ Wg and for every pair of indices i, j, we have σ(µi) = µj if and only if σ(µ2g+1−i) = µ2g+1−j .

We call µ2g+1−i the conjugate of µi. Suppose first that ν2 is not the conjugate of ν1, nor of λ:

then there exists a σ ∈ Wg which fixes both ν1 and λ, but such that σ(ν2) 6= ν2. Applying σ

to the equality λ2 = ν1ν2 we find λ2 = ν1σ(ν2), which is a contradiction since σ(ν2) 6= ν2. Next

suppose that ν2 is the conjugate of λ: then ν1 is not the conjugate of λ, nor of ν2 (since λ, ν1, ν2

are all distinct), and we can just repeat the same argument with ν2 replaced by ν1. Finally, assume

ν1, ν2 are conjugate to each other (hence not to λ), and denote by S the stabilizer of ν1, ν2 in Wg:

since g ≥ 3, the orbit of λ under the action of S has order at least 4, hence in particular there is

a σ ∈ S such that σ(λ) 6= ±λ. Applying this σ to the equation λ2 = ν1ν2 leads once more to a

contradiction.

4.8 Proof of theorem 4.1.3

It is clear that the prime ` is larger than g(2g−1)+1 (cf. proposition 4.5.9), than (2g+1)(2g+2) (cf.

proposition 4.6.4), than J(2g) + 1 (cf. corollary 4.6.6) and than 1
2 (2g + 1)12g (the bound appearing
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in property (∗)). By corollary 4.2.4 we see that it is enough to show that G` contains Sp2g(F`), so

suppose this is not the case: G` is then contained in one of the maximal subgroups of GSp2g(F`)
listed in theorem 4.3.14. Let us go through this list. Given the inequalities imposed on `, proposition

4.4.1 implies that cases 1 through 3 cannot happen. Likewise proposition 4.7.5 (which can be applied

thanks to lemma 4.7.6) implies that case 4 cannot arise, so we are left with considering the case of

G` being contained in a maximal subgroup G of class S. If socPG is of Lie type in characteristic

`, then property (∗) implies that socPG ∼= PSL2(F`), which by proposition 4.5.9 cannot happen for

` > g(2g− 1) + 1. If, on the contrary, socPG is not of Lie type in characteristic `, then proposition

4.6.4 implies that PG is of order at most J(2g), which is impossible by corollary 4.6.6. Finally, it

is clear from the explicit expressions of b([K : Q], g, h(A)) that the function b(g! · [K : Q], g, h(A))

grows faster than b([K : Q], 2g, 2h(A))1/2g, and it is easy to check that for g ≥ 19 the inequality

b(A/K; g!) > b(A2/K; g)1/2g holds for any K and any A.

Remark 4.8.1. Notice that all that is used about v is that Frv satisfies the hypothesis of proposition

4.7.5 for all pairs (m,n) such that mn = g; we shall need this fact in the next section.

4.9 The tensor product case II

In this section we show that, when dim(A) = 3, a place v satisfying the hypothesis of proposition

4.7.5 can be found whose residue characteristic is bounded explicitly in terms of simple arithmetical

invariants of A/K. This will be achieved through an application of Chebotarev’s theorem, but

we shall first need a certain number of preliminaries. We continue using the notation of §4.7; in

particular, if v is a finite place of K we denote by pv (resp. qv) the characteristic (resp. the

cardinality) of the residue field at v. We also introduce the set

ΩA
K :=

{
v ∈ ΩK

∣∣ A has good reduction at v and v has degree 1 over Q
}
.

Most of what we do in this section could be generalized to some extent to other values of g: for

example, all results up to corollary 4.9.11 can easily be extended to cover the case of an arbitrary

(odd) prime dimension, and it is only the proof of proposition 4.9.12 that depends on the assumption

dimA = 3, since it relies on the particularly simple subgroup structure of CGO3(F`). Trying to

generalize this result to other g ≥ 5, one is faced with problems akin to those that forced us

to impose condition (∗) on the dimension g: the group GL2(F`) ⊗ CGOg(F`) contains families of

maximal proper subgroups of Lie type which we cannot exclude by simply looking at the action of

inertia on A[`].

Comparing our arguments with those used by Serre [121] to prove his open image theorem for abelian

varieties of odd dimension with EndK(A) = Z, it is easy to realize that a major stumbling block in

our approach is the fact that there is no clear analogue of Sen’s theorem [114] for representations

over F`: indeed, Sen’s theorem strongly depends on the completeness of Cp, and it is not even clear

what a modulo-` analogue of this theorem should look like.

4.9.1 Decompositions of the eigenvalues of Frv

We start with two easy lemmas, which do not depend on the assumption dimA = 3:
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Lemma 4.9.1. Let N be a positive integer no less than 3. Suppose all the torsion points of A of

order N are defined over K, and let v be any place of K of good reduction for A and not dividing

N . The group generated by the eigenvalues of Frv does not contain any nontrivial root of unity.

Proof. Let µ1, . . . , µ2g be the eigenvalues of Frv. Looking at the action of Frv on A[N ] we see that

each of them (hence every element of the group they generate) is congruent to 1 modulo N , but as

it is well known there are no nontrivial roots of unity congruent to 1 modulo N when N ≥ 3.

Lemma 4.9.2. Let N be a positive integer no less than 2g + 1. Suppose all the torsion points of

A of order N are defined over K, and let v be a place in ΩA
K . If pv does not divide N and is larger

than (2g)2, then pv does not divide tr Frv.

Proof. On the one hand Gal(K/K) acts trivially on A[N ], so tr Frv cannot be zero since it is

congruent to 2g modulo N . On the other hand, the Weil conjectures imply that | tr Frv | does not

exceed 2g · p1/2
v , so if pv divides | tr Frv | 6= 0 we must have pv ≤ 2g · p1/2

v , which is equivalent to

pv ≤ (2g)2.

We now specialize to the case dimA = 3. Notice that all tensor product subgroups of GSp6(F`) are

of type (1, 3), that is, up to conjugation they can be identified with the group GL2(F`)⊗CGO3(F`).
The following proposition imposes stringent restrictions on a Frobenius whose eigenvalues define a

point of U13(Q):

Proposition 4.9.3. Let N be an integer no less than 2g+ 1 = 7. Suppose all the torsion points of

A of order N are defined over K and let v be a place of K that satisfies:

• v ∈ ΩA
K and pv > max

{
N, (2g)2

}
;

• the eigenvalues (µ1, . . . , µ2g) of Frv define a point of
⋃
σ∈S2g

Uσ13(Q), i.e. Frv does not satisfy

the hypothesis of proposition 4.7.5.

Then at least one of the following holds:

1. there exist algebraic integers λ1, λ2 such that the eigenvalues of Frv are given by λ1 and λ2,

both with multiplicity g = 3;

2. for any choice of elements λ1, λ2, β of Q× such that the multisets
{
λiβ, λi, λiβ

−1
∣∣ i = 1, 2

}
and {µ1, . . . , µ2g} coincide, the algebraic number λ1 + λ2 is not an integer (at least one valid

choice of λi, β exists by lemma 4.7.4).

Proof. Notice first that, by lemma 4.9.2, the residue characteristic pv does not divide the (nonzero)

integer tr Frv. Let now λ1, λ2 and β be algebraic numbers such that the eigenvalues of Frv are λ1, λ2

and λiβ
±1 for i = 1, 2. As the eigenvalues of Frv are algebraic integers, this implies in particular

that λ1, λ2 are algebraic integers. If λ1 + λ2 is not an integer for any choice of λi, β we are done,

hence (without loss of generality) we can work under the additional assumption that λ1 + λ2 is an

integer. We are thus reduced to showing that β = 1: this we shall do by proving that β is a root

of unity, and then applying lemma 4.9.1. Let w be any place of Q. Suppose first that the residual
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characteristic of w is not pv: the Weil conjectures imply that the eigenvalues of Frv are units away

from pv, hence ordw(λiβ) = ordw(λiβ
−1) = 0, which immediately gives ordw(β) = 0.

Suppose now that the residual characteristic of w is pv. As tr Frv 6= 0 can also be written as

(λ1 + λ2)
(
1 + β + β−1

)
we see that λ1 + λ2 is nonzero. If ordw(λi) is positive for i = 1, 2, then

ordw (
∑

i λi) is positive as well and therefore (since λ1 + λ2 is an integer) we see that pv divides

λ1 + λ2. However, the Weil conjectures also imply that |λ1 + λ2| ≤ 2
√
pv, which – combined with

the fact that λ1 + λ2 is nonzero – gives a contradiction for pv ≥ 5 (and our assumptions entail in

particular pv > (2g)2 = 36), so without loss of generality we can assume ordw(λ1) = 0. Now since

λ1β and λ1β
−1 are algebraic integers they both have non-negative valuation at w, so we have

0 ≤ ordw(λ1β) = ordw(β), 0 ≤ ordw(λ1β
−1) = − ordw(β),

and therefore ordw(β) = 0. It follows that the algebraic number β has zero valuation at all places

of Q and is therefore a root of unity; by lemma 4.9.1, this implies β = 1.

We now proceed to give a sufficient criterion for case (2) of the previous proposition not to happen.

The criterion is not new, and can be deduced for example from [21, Sublemmas 5.2.3 and 5.2.4];

however, given that our setting is slightly different and the statement itself differs from Chi’s, we

reproduce the argument in full for the reader’s convenience. Before discussing the criterion itself

we set up some notation.

Definition 4.9.4. We say that a Frobenius element Frv is of tensor product type if the multiset

∆ of eigenvalues of Frv can be written as

∆ =
{
λi, λiβ

±1
∣∣ i = 1, 2

}
for some choice of λi, β in Q×. When this is the case, we write Ψ (resp. Λ) for the multiset

{
1, β±1

}
(resp. {λ1, λ2}), and we also write symbolically ∆ = Λ ·Ψ.

Remark 4.9.5. A priori, the eigenvalues of Frv could admit more than one decomposition as in

the previous definition. We shall be careful to distinguish those statements that hold for any such

decomposition from those that hold for a fixed decomposition. Also notice that lemma 4.7.4 amounts

to saying that a Frobenius Frv is of tensor product type if and only if its eigenvalues define a point

of
⋃
σ∈S2g

Uσ13(Q).

We now introduce a weak notion of multiplicative independence for the eigenvalues of a Frobenius

Frv of tensor product type. Fix sets Λ and Ψ as in definition 4.9.4, and consider the equation

(x1ψ1)2 = (x2ψ2)(x3ψ3) (4.5)

in unknowns x1, x2, x3 ∈ Λ and ψ1, ψ2, ψ3 ∈ Ψ. Notice that this equation admits two obvious

families of solutions: if we take x1 = x2 = x3, the equation reduces to ψ2
1 = ψ2ψ3, which for all

ψ ∈ Ψ admits the solutions 12 = ψ ·ψ−1 and ψ2 = ψ ·ψ; if no other solution exists, we say that the

eigenvalues of Frv are weakly independent. More precisely, we give the following definition:

Definition 4.9.6. We say that the eigenvalues of Frv are weakly independent (with respect to

a given decomposition of ∆ = Λ ·Ψ) if the following two conditions hold:

1. the eigenvalues of Frv are all distinct;
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2. if (x1, x2, x3, ψ1, ψ2, ψ3) ∈ Λ3×Ψ3 is a solution to equation (4.5), then x1 = x2 = x3 and there

exists ψ ∈ Ψ such that either (ψ1, ψ2, ψ3) = (1, ψ, ψ−1) or (ψ1, ψ2, ψ3) = (ψ,ψ, ψ).

A first useful feature of the notion of weak independence is that it entails unicity of the decomposition

∆ = Λ ·Ψ:

Lemma 4.9.7. Suppose that Frv is of tensor product type and that its eigenvalues are weakly

independent with respect to a certain decomposition ∆ = Λ ·Ψ: then λ1 + λ2 is an integer, and for

any decomposition ∆ = Λ′ ·Ψ′ of ∆ we have Λ′ = Λ and Ψ = Ψ′.

Proof. We start by describing a property that characterizes λ1, λ2 among the elements of ∆. For

every γ ∈ ∆ we consider the map

Tγ : ∆ → Q×

δ 7→ γ2

δ .

Claim. We have |Tγ(∆) ∩∆| ≥ g = 3 if and only if γ belongs to Λ.

Proof of claim. The “if” part is trivial: if γ = λi, then it is clear that Tλi(λiψ) ∈ ∆ for all ψ ∈ Ψ;

as Tγ is injective, this gives |Ψ| = 3 elements in the intersection Tγ(∆) ∩∆.

Conversely, suppose that |Tγ(∆) ∩∆| ≥ 3 for a certain γ ∈ ∆. Write γ = x1ψ1 with x1 ∈ Λ, ψ1 ∈ Ψ

and suppose ψ1 6= 1. Let x2ψ2 ∈ ∆ be such that Tγ(x2ψ2) ∈ ∆. By definition, this implies the

existence of x3 ∈ Λ, ψ3 ∈ Ψ that satisfy

(x1ψ1)2

x2ψ2
= x3ψ3,

and since the eigenvalues are weakly independent we have x2 = x1 and ψ2 = ψ1 (since ψ1 6= 1).

Hence we see that λ1ψ1 is the only eigenvalue δ of Frv such that Tγ(δ) belongs to ∆, contradicting

the fact that |Tγ(∆) ∩∆| ≥ g = 3.

Notice now that λ1 and λ2, being eigenvalues of Frv, are algebraic integers, so in order to show

that λ1 + λ2 is an integer it suffices to prove that it is a rational number, i.e. that the set {λ1, λ2}
is Gal(Q/Q)-invariant. By the previous characterization of λ1, λ2 it then suffices to show that for

every σ ∈ Gal(Q/Q) we have
∣∣Tσ(λi)(∆) ∩∆

∣∣ ≥ g = 3, and this follows from∣∣Tσ(λi)(∆) ∩∆
∣∣ =

∣∣Tσ(λi)(σ(∆)) ∩ σ(∆)
∣∣ = |Tλi(∆) ∩∆| ≥ g = 3,

where we have used the equality σ(∆) = ∆ (the set ∆ is Gal(Q/Q)-stable since the characteristic

polynomial of Frv has integral coefficients).

Moreover, the characterization we have given of λ1, λ2 does not use the decomposition of ∆ we have

fixed, hence it uniquely determines the values of λ1, λ2 in any possible decomposition ∆ = Λ′ ·Ψ′.
We show that the set Ψ is uniquely determined as well. Let ∆ = Λ · Ψ′ be any decomposition of

∆, with Ψ′ =
{

1, (β′)±1
}

, and suppose that β′ 6= β±1. By definition, µ = λ1β is an element of ∆,

hence it can be written as µ = λiψ
′ for some ψ′ ∈ Ψ′ and some i ∈ {1, 2}. As the eigenvalues of Frv

are all distinct we necessarily have ψ′ 6= 1; furthermore, if we had i = 1 we would also have ψ′ = β,

a contradiction, so (replacing β′ by (β′)−1 if necessary) we must in fact have µ = λ2β
′. It follows

that β′ is equal to λ1
λ2
β and hence ∆ also contains λ1β

′ =
λ21
λ2
β, which in turn must be of the form

λkψ for some k ∈ {1, 2} and ψ ∈ Ψ. Thus we find that (λ1β)2

λ2β
= λkψ is a solution to equation (4.5),

so by definition of weak independence we must have λ1 = λ2, which is absurd since the eigenvalues

of Frv are all distinct. The contradiction shows that β′ = β, that is, Ψ′ = Ψ.
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We also need a version of definition 4.9.6 for operators acting on F2g
` :

Definition 4.9.8. Let h be an element of GL2g(F`). If the multiset ∆` of eigenvalues of h in F`
×

can be written as Λ` · Ψ`, where Λ` = {λ1, λ2} and Ψ` =
{

1, β±1
}

for some λi, β ∈ F`
×

, we say

that h is of tensor product type (modulo `). If furthermore the elements of ∆` are all distinct,

and the equality (x1ψ1)2 = (x2ψ2)(x3ψ3) with xi ∈ Λ`, ψj ∈ Ψ` implies x1 = x2 = x3 and either

(ψ1, ψ2, ψ3) = (1, ψ, ψ−1) or (ψ1, ψ2, ψ3) = (ψ,ψ, ψ) for some ψ ∈ Ψ`, then we say that h has weakly

independent eigenvalues modulo `.

As the proof of lemma 4.9.7 does not use any particular features of the field Q, the same argument

also shows:

Lemma 4.9.9. Suppose h ∈ GSp2g(F`) is of tensor product type and has weakly independent ei-

genvalues modulo `: then the decomposition ∆` = Ψ` · Λ` is unique.

Lemma 4.9.10. Let v be a place in ΩA
K . Suppose that Frv is of tensor product type and ` is a

prime different from pv: then ρ`(Frv) is of tensor product type. If furthermore ρ`(Frv) has weakly

independent eigenvalues modulo ` (for some, hence for any, decomposition of ∆` as Λ` · Ψ`), then

Frv has weakly independent eigenvalues as well. In particular, the decomposition ∆ = Λ · Ψ of the

eigenvalues of Frv is unique, and it satisfies λ1 + λ2 ∈ Z.

Proof. The first statement is clear: a decomposition of the eigevanlues of Frv induces an analogous

decomposition of the eigenvalues of ρ`(Frv). As for the second part, notice first that by assumption

the eigenvalues of ρ`(Frv) are distinct, hence the eigenvalues of Frv are a fortiori distinct, and there

is a unique way to lift an eigenvalue of ρ`(Frv) to an eigenvalue of Frv. Denote by ∆ (resp. ∆`) the

set of eigenvalues of Frv (resp. of ρ`(Frv)); by assumption, there exists a decomposition ∆ = Λ ·Ψ,

which induces an analogous decomposition ∆` = Λ` ·Ψ`. The multiset ∆ does not contain elements

with multiplicity greater than 1, so the map

Λ×Ψ → ∆

(λ, ψ) 7→ λψ

is a bijection: equivalently, for every eigenvalue δ of Frv, in the given decomposition Λ ·Ψ there exist

unique λ ∈ Λ and ψ ∈ Ψ such that δ = λ · ψ. Repeating the same argument modulo ` we find that

Ψ× Λ→ ∆→ ∆` → Ψ` × Λ` is a bijection. Consider now the equation

(x1ψ1)2 = (x2ψ2)(x3ψ3)

with xi ∈ Λ and ψj ∈ Ψ. Reducing modulo ` and using the weak independence of the eigenvalues

of ρ`(Frv) we see that x1 = x2 = x3 (as elements of Λ`), and either ψ1 = ψ2 = ψ3 or ψ1 = 1

and ψ2 = ψ−1
3 (as elements of Ψ`). Using the fact that Ψ × Λ → Ψ` × Λ` is a bijection we then

conclude that we also have x1 = x2 = x3 as elements of Λ, and that (ψ1, ψ2, ψ3) is either of the form

(1, ψ, ψ−1) or of the form (ψ,ψ, ψ) for some ψ ∈ Ψ. The remaining statements follow immediately

from lemma 4.9.7.

We finally come to the result which will allow us to find Frobenius elements not of tensor product

type:
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Corollary 4.9.11. Let N be an integer no less than 2g + 1 = 7. Suppose that all the torsion

points of A of order N are defined over K, and let v ∈ ΩA
K satisfy pv > max{N, (2g)2}. Suppose

furthermore that for some prime ` different from pv the image ρ`(Frv) is of tensor product type and

has weakly independent eigenvalues modulo `. Then Frv is not of tensor product type.

Proof. Suppose Frv is of tensor product type: then it satisfies the assumptions of lemma 4.9.10, so

in the (unique) decomposition of its eigenvalues as Λ ·Ψ we must have λ1 + λ2 ∈ Z. Furthermore,

the eigenvalues of Frv are all distinct (since this is true when they are regarded modulo `). On the

other hand, Frv also satisfies the hypotheses of proposition 4.9.3, hence one of the two conclusions

of that proposition must hold: but this is absurd by what we just proved, and the contradiction

shows the result.

We now just need to find a Frobenius Frv as in the previous corollary: this will be achieved by an

application of Chebotarev’s theorem, for which we need one more lower bound on G` (recall that

the group Ω3(F`) was introduced in definition 4.3.9):

Proposition 4.9.12. Suppose that the 7-torsion of A is defined over K: then for all primes `

unramified in K and strictly larger than b(A2/K; 3)1/6 we have G` ⊇ SL2(F`)⊗ Ω3 (F`).

Proof. This is very similar to what we did in the previous sections, so we keep details to a minimum.

Notice first that we can assume that (up to conjugation) G` is contained in GL2(F`)⊗ CGO3 (F`),
for otherwise the proof of theorem 4.1.3 shows that G` contains all of Sp6(F`). Also notice that

the group GL2(F`)⊗CGO3 (F`) admits well-defined projections π2, π3 to PGL2(F`) and PCGO3(F`)
respectively. Also notice that the tensor product structure implies that if either projection stabilizes

a subspace (respectively in F2
` or in F3

` ), then the same is true for all of G`: indeed, if W is a point

of P
(
F2
`

)
(i.e. a line in F2

` ) stable under the action of π2(G`), then W ⊗ F3
` is a proper subspace

of F6
` stable under the action of G`, and the same argument applies to π3 as well. In particular,

proposition 4.4.1 implies that neither projection stabilizes a linear subspace. We now show that the

two projections are in fact surjective.

Surjectivity on PΩ3(F`) ∼= PSL2(F`). From [19, Table 8.7] we see that the maximal subgroups of

PCGO3(F`) that do not contain PΩ3 either stabilize a linear subspace or have order at most 120.

We have already excluded the first case, and the second case is easily treated as well: replacing K

with the extension defined by ker
(
Gal(K/K)→ G` → PCGO3(F`)

)
we are back to the case of a

group stabilizing a linear subspace, hence this case cannot happen for ` in our range (since we have

in particular ` > b0(A/K; 120)).

Remark 4.9.13. Notice that although PΩ3(F`) and PSL2(F`) are isomorphic as abstract groups,

the representation structure of their respective natural modules is very different: in particular, the

non-split Cartan subgroups are of class C3 in PSL2(F`) but of class C1 in PΩ3(F`).

(Almost) surjectivity on PSL2(F`). We read from [19, Table 8.1] that the maximal subgroups

of PGL2(F`) that do not contain PSL2(F`) and do not stabilize a linear subspace either contain a

normal abelian subgroup of index at most 2, or have order at most 120. The second case is excluded

by the same argument as in the previous paragraph, so the image H2 of G` in PGL2(F`) contains

either PSL2(F`) or an abelian subgroup C2 of index at most 2; furthermore, in the latter case there
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is no loss of generality in assuming that |C2| > 60 (for otherwise H2 has order at most 120, which

is excluded).

Surjectivity on both factors. Let H2 = π2(G`), H3 = π3(G`). We consider the image of G`

in PGL2(F`) × PCGO3(F`): it is a group H ⊆ H2 × H3 that projects surjectively on the factors

H2, H3. We also know that H3 contains PΩ3(F`). Suppose by contradiction that H2 contains an

abelian subgroup C2 of index at most 2 and replace K with its (at most) quadratic extension K ′

defined by ker
(
Gal(K/K)→ G` → H2 → H2/C2

)
. This has the effect of replacing H2 with C2;

at the same time H3 gets replaced by a subgroup C3 of index at most 2, and since PΩ3(F`) does

not have subgroups of index 2 we see that C3 ⊇ PΩ3(F`). Finally, G` is replaced by a subgroup

G̃` of index at most 2, and likewise H gets replaced by a subgroup C of index at most 2, which

satisfies C ⊆ C2 × C3 and projects surjectively on both C2 and C3. Let now N3 := ker (C → C2)

and N2 := ker (C → C3), considered as subgroups of C3, C2 respectively. By Goursat’s lemma we

know that the quotients C3/N3 and C2/N2 are isomorphic, and in particular abelian (as C2 is).

Since the group PCGO3 (F`) is almost simple with socle PΩ3(F`), it is clear that N3 contains all of

PΩ3(F`), so the quotient C3/N3 has order at most 2. Hence N2 has in turn index at most 2 in C2,

and therefore there is a nontrivial element α in N2 (recall that |C2| > 60). By definition of N2, this

α projects to the identity in C3, so any element α̃ ∈ G̃` lifting α is central in G̃`. In particular,

the centralizer of G̃` in AutA[`] is larger than F`, and by lemma 3.3.17 this is a contradiction for `

larger than b(A2/K ′)1/6, a quantity which is smaller than b(A2/K; 3)1/6.

G` contains SL2(F`) ⊗ Ω3(F`). Notice that it is enough to show that H (the image of π2 × π3)

contains PSL2(F`)× PΩ3(F`). Indeed, if this is the case, then for every x2 ∈ PSL2(F`) we can find

an x ∈ G` with π2(x) = x2 and π3(x) = Id, that is G` contains a certain x that can be written

as x = x2 ⊗ Id for some x2 ∈ GL2(F`) lifting x2. Consider now the subgroup of GL2(F`) given by{
x ∈ GL2(F`)

∣∣ x⊗ Id ∈ G`
}

: by what we just said, this group projects surjectively onto PSL2(F`),
hence it contains all of SL2(F`). It follows that G` contains SL2(F`) ⊗ {Id}, and by the same

argument applied to π3 we also have {Id} ⊗ Ω3(F`) ⊆ G`, which implies G` ⊇ SL2(F`)⊗ Ω3(F`) as

claimed.

So let again H2 = π2(G`) and H3 = π3(G`), where we now know that H2 (resp. H3) contains

PSL2(F`) (resp. PΩ3(F`)). Let N2, N3 be the kernels of H → H3, H → H2 respectively, considered

as subgroups of H2, H3, and recall that by Goursat’s lemma the image of H in H2/N2 × H3/N3

is the graph of an isomorphism H2/N2
∼−→ H3/N3. Now N2 is a normal subgroup of H2, so either

it contains all of PSL2(F`) or it is trivial: in the former case we have |H3/N3| = |H2/N2| ≤ 2,

which clearly implies that N3 contains PΩ3(F`) and H contains N2 × N3 ⊇ PSL2(F`) × PΩ3(F`)
as claimed. On the other hand, if N2 is the trivial group then H is the graph of an isomorphism

H2 → H3; up to conjugation, such an isomorphism is necessarily the 3-dimensional orthogonal

projective representation of either PGL2(F`) or PSL2(F`), according to whether H2 is PGL2(F`)
or PSL2(F`). For simplicity of exposition suppose that H2 = PSL2(F`); the argument is perfectly

analogous if H2 = PGL2(F`). Let σ2 be the second symmetric power of the standard representation

of SL2(F`) (which is also the unique 3-dimensional orthogonal representation of SL2(F`)), and recall

that if x ∈ SL2(F`) has eigenvalues λ1, λ2, then σ2(x) has eigenvalues λ2
1, λ1λ2, λ

2
2. Now since

σ2(− Id) is trivial σ2 fits into a diagram
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SL2(F`)
σ2 //

π

��

CGO3(F`)

π

��

PSL2(F`) Pσ2
// PCGO3(F`),

and we have just seen that all h ∈ H ⊆ H2 × H3 can be written as (π(x),Pσ2(π(x))) for some

x ∈ SL2(F`); furthermore, the commutativity of the diagram gives h = (π(x), π(σ2(x))). Now let

g2 ⊗ g3 be an element of G` (with g2 ∈ GL2(F`), g3 ∈ CGO3(F`)), mapping in H to a certain

h = (π(x), π(σ2(x))): by definition of H, this implies that there are scalars ν2, ν3 ∈ F×` such that

g2 = ν2x and g3 = ν3σ2(x). If we denote λ1, λ2 the eigenvalues of x we thus see that the eigenvalues

of g2⊗g3 are given by the pairwise products of {ν2λ1, ν2λ2} and {ν3λ
2
1, ν3λ1λ2, ν3λ

2
2}; finally letting

µ = ν2ν3, we have proved that the eigenvalues of any g2 ⊗ g3 ∈ G` can be written as

{µλ1, µλ2} ·
{
λ2

1, λ1λ2, λ
2
2

}
=
{
µλ3

1, µλ
2
1λ2, µλ1λ

2
2, µλ

2
1λ2, µλ1λ

2
2, µλ

3
2

}
(4.6)

for some µ ∈ F×` and λ1, λ2 ∈ F×
`2

. It is clear that the we arrive at the same conclusion also if

H2 = PGL2(F`). To conclude the proof we just need to show that the decomposition of eigenvalues

given by (4.6) leads to a contradiction for ` large enough, and this can easily be done by the

arguments of section 4.5. We give some detail.

Note first that, since we assume that A[7] is defined over K, a theorem of Raynaud [31, Proposition

4.7] implies that A has semistable reduction at all places of characteristic different from 7. In

particular, if we let l be any place of K of characteristic `, then A has either good or bad semistable

reduction at l, so we can apply theorem 4.5.2. Let W1, . . . ,Wk be the simple Jordan-Hölder quotients

of A[`] under the action of Il (or equivalently, of Itl ). The argument of lemma 4.5.5 implies that every

Wi is of dimension at most 2; let m0 (resp. m1,m2) denote the number of simple Jordan-Holder

quotients with trivial action of Itl (resp. with action given by χ`, by a fundamental character of

level 2). Equation (4.2) and lemma 4.5.6 still hold in our present context, and a slight variant of

lemma 4.5.7 shows that m0 = 0 for ` unramified in K and larger than 7; thus we want to exclude

the case m2 = 3. As in the proof of lemma 4.5.8, one sees that the assumption m2 = 3 implies

λ1 = ±λ2; on the other hand, for any given x ∈ Itl there is a fundamental character of level 2, call

it ϕ, such that µλ3
1 = ϕ(x). Since χ`(x)3 = det ρ`(x) = µ6(λ1λ2)9 we conclude that for all x ∈ Itl

we have

χ`(x)6 = µ12(λ1λ2)18 = ϕ(x)12(λ2/λ1)18 = ϕ(x)12,

whence for all x ∈ Itl there is a fundamental character ϕ of level 2 such that ϕ6(`+1)−12(x) = 1. As

|ϕ(Itl )| = `2 − 1 for both fundamental characters of level 2 this is absurd for ` > 7.

Finally, a simple combinatorial argument shows:

Lemma 4.9.14. For ` > 101 the groups Sp6 (F`) and SL2(F`)⊗Ω3 (F`) contain elements of tensor

product type with weakly independent eigenvalues (modulo `).

There are certainly many ways to prove this easy fact, but for the sake of completeness we include

a detailed proof:
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Proof. Fix a square root i ∈ F`2 of −1 and an element a ∈ F×` of multiplicative order at least 5. Let

Γ be the multiplicative group {c+ di | (c, d) ∈ F2
` , c

2 + d2 = 1}, which is isomorphic to either F×` or

ker
(
Norm : F×

`2
→ F×`

)
according to whether or not −1 is a square modulo `. Notice that if γ is an

element of Γ, then the pair (c, d) is uniquely determined by the equations c+ di = γ, c− di = 1/γ.

We can then consider the injective group morphism

σ : Γ → SL2(F`)⊗ SO3(F`)

γ = c+ di 7→ σγ :=

(
a 0

0 a−1

)
⊗

 c d 0

−d c 0

0 0 1

 ,

which, since SL2(F`) ⊗ Ω3(F`) has index 2 in SL2(F`) ⊗ SO3(F`), maps 2Γ into SL2(F`) ⊗ Ω3(F`).
Since |σ(2Γ)| = |2Γ| ≥ `−1

2 , the lemma will follow if we show that the image of σ contains no more

than 50 < `−1
2 operators whose eigenvalues are not weakly independent.

It is clear by construction that the eigenvalues of σγ are given by the pairwise products of Λ = {a±1}
and Ψ = {1, γ±1}, so σγ has weakly independent eigenvalues if and only if all the solutions to the

equation
(
aε1γδ1

)2
= aε2γδ2 · aε3γδ3 with εj ∈ {±1}, δj ∈ {0,±1} are given by ε1 = ε2 = ε3 and

either δ1 = δ2 = δ3 or δ1 = 0 and δ2 = −δ3. Equivalently, σγ has weakly independent eigenvalues if

and only if the equation am = γn with m ∈ {0,±2,±4} and n ∈ {0, 1, 2, 3, 4} has only the trivial

solution m = n = 0. Notice that (independently of γ) there are no nontrivial solutions with n = 0,

because |m| is at most 4 while a has order at least 5. On the other hand, for fixed a, for each

pair (m,n) ∈ {0,±2,±4} × {1, . . . , 4} the equation am = βn has at most n solutions β, so in total

there are at most 5 × (1 + 2 + 3 + 4) = 50 triplets (β,m, n) of solutions to the equation am = βn.

In particular, if γ is different from any of these (at most 50) β’s, then σγ has weakly independent

eigenvalues, and by what we already remarked this finishes the proof.

4.9.2 Chebotarev bounds

For the proof of theorem 4.1.4 we need one last ingredient, namely an effective version of the

Chebotarev density theorem. Lagarias and Odlyzko proved such a result in [53], but their estimate

involved a non-explicit constant (which was however effectively computable in principle); their

bound was subsequently improved by Œsterlé, who also computed the constant (cf. [92] and [117,

§2.5]). To state Œsterlé’s result we fix some notation. We let as usual K be a number field, and

denote by ∆K its absolute discriminant; we also write S for a finite subset of ΩK (the set of finite

places of K). To simplify the formulas that follow it is also useful to introduce the function

∆∗(K,S,N) := |∆K |N
(
N ·

∏
v∈S

p1−1/N
v

)N ·[K:Q]

,

where N is a positive integer, and express the bounds we obtain in terms of the quantity

B(K,S,N) = 70 · (log ∆∗(K,S,N))2.

Theorem 4.9.15. (Effective Chebotarev under GRH, [92]) Assume the Generalized Riemann Hy-

pothesis. Let L/K be a Galois extension of number fields of degree at most N and let S be a set of

finite places of K containing the ones the ramify in L. For every conjugacy class C of Gal(L/K)

there is a place v of K satisfying:
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1. v is of degree 1 over Q and does not belong to S;

2. the image of Frv in Gal(L/K) lies in C;

3. pv ≤ B(K,S,N).

Remark 4.9.16. Lagarias and Odlyzko also proved a version of theorem 4.9.15 which does not depend

on the Generalized Riemann Hypothesis: more precisely, they showed that the same conclusion

holds at the cost of replacing B(K,S,N) by ∆∗(K,S,N)c, where c is an absolute and effectively

computable constant. Unpublished work of Winckler [144] shows that one can take c = 27175010.

We can finally prove theorem 4.1.4, whose statement we reproduce here for the reader’s convenience:

Theorem 4.9.17. (Theorem 4.1.4) Let A/K be an abelian variety of dimension 3 such that

EndK(A) = Z. Denote by N 0
A/K the naive conductor of A/K, that is, the product of the prime

ideals of OK at which A has bad reduction, and suppose that A[7] is defined over K.

• Assume the Generalized Riemann Hypothesis: then the equality G`∞ = GSp6(Z`) holds for

every prime ` unramified in K and strictly larger than (2q)48, where

q = b(A2/K; 3)8
(

log |∆K/Q|+ logNK/Q

(
N 0
A/K

))2
.

• Unconditionally, the same conclusion holds with

q = exp

(
cb(A2/K; 3)8

(
log |∆K |+ logNK/Q

(
N 0
A/K

))2
)
,

where c is an absolute, effectively computable constant.

Proof. Let `0 be the smallest prime larger than b(A2/K; 3)1/6; by Bertrand’s postulate we have

`0 ≤ 2b(A2/K; 3)1/6. Let L denote the field K(A[`0]). By construction the Galois group Gal (L/K)

is just G`0 , and by proposition 4.9.12 we know that G`0 contains SL2(F`) ⊗ Ω3(F`) and hence, by

lemma 4.9.14, an operator of tensor product type with weakly independent eigenvalues. Let C be

the conjugacy class of this operator and set

S =
{
v ∈ ΩK

∣∣ pv ≤ (2g)2 = 36 or A has bad reduction at v
}
∪
{
v ∈ ΩK

∣∣ pv = `0
}

and N = [L : K]. Clearly N ≤ |GSp6(F`0)| < `22
0 ≤ 222b(A2/K; 3)11/3 and

log

(∏
v∈S

pv

)
≤ log

`[K:Q]
0 ·

∏
p<37

p[K:Q] ·
∏

v of bad reduction

pv


≤ logNK/Q(N 0

A/K) + [K : Q] (26.1 + log `0)

< logNK/Q(N 0
A/K) +

1

3
[K : Q] log b(A2/K; 3).

We obtain a (rough) bound on ∆∗(K,S,N) of the form

log ∆∗(K,S,N) ≤ N (log |∆K | + [K : Q] logN+

+[K : Q](logNK/Q(N 0
A/K) +

1

3
[K : Q] log b(A2/K; 3))

)
≤ 1√

70
b(A2/K; 3)4

(
log |∆K |+ logNK/Q

(
N 0
A/K

))
,
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where on the last line we have used the fact (a deep theorem of Fontaine and Abrashkin) that

there are no abelian varieties over Q having good reduction everywhere, and therefore the term

log |∆K | + logNK/Q

(
N 0
A/K

)
is always at least log 2. We now see from theorem 4.9.15 that there

exists a place v of K of degree one, satisfying

max{(2g)2, `0} < pv < 70 (log ∆∗(K,S,N))2 = q

and such that Frv maps to the conjugacy class C in Gal(L/K) = G`0 . By corollary 4.9.11, Frv is

not of tensor product type, and by construction A has good reduction at v (recall that v 6∈ S). In

particular, we can use this place v to apply theorem 4.1.3 (cf. remark 4.8.1), and the conclusion

follows because (2q)48 is much larger than either b(A2/K; 3)1/6 or b(A/K; 3).

Finally, if we do not assume the Generalized Riemann Hypothesis, we get the desired conclusion by

applying the unconditional version of the effective Chebotarev theorem, cf. remark 4.9.16.

Remark 4.9.18. The assumption that A[7] is defined over K is not a serious restriction. Let A/K0

be any abelian threefold with absolutely trivial endomorphism ring and let K be the field K0(A[7]).

Clearly if for some prime ` the representation ρ
(K)
` : Gal(K/K) → GSp(A[`]) is surjective, then

the same is true for the representation ρ
(K0)
` : Gal(K0/K0) → GSp(A[`]), so it suffices to give an

effective bound `0 such that ρ
(K)
` is surjective for ` > `0. Let S0 ⊆ ΩK0 be the set of places of bad

reduction of A. The degree N of the extension K/K0 is bounded by N := |GL6(F7)|, and it ramifies

at most at the places of S0 and at those of characteristic 7; set S = S0 ∪
{
v ∈ ΩK0

∣∣ pv = 7
}

. It

follows from [117, Proposition 5] that

|∆K | ≤ ∆∗(K0, S,N) < ∆N
K0
·
(

7[K:Q]N
)N [K:Q]

·
(
NK0/QN

0
A/K0

)N [K:Q]
.

We can then apply theorem 4.9.17 to A/K to get an effective bound `0 as above, without needing

A[7] to be defined over K.

4.10 Class-S subgroups of Lie type

In view of the result of proposition 4.6.4 we are interested in the question of whether, for a fixed

value of n, the group GSp2n(F`) actually contains any class-S subgroup with simple socle of Lie type

(in characteristic `). We have already remarked in section 4.5 that GSp2n(F`) contains maximal

class-S subgroups with socle PSL2(F`) for all n and almost all `; our purpose is to show that in

fact, for most n’s and `’s, all the maximal class-S subgroups of GSp2n(F`) of Lie type have socle

PSL2(F`):

Theorem 4.10.1. Set

E =

n ∈ N, n odd
∣∣ there exist a prime ` > 1

2(2n+ 1)12n and a maximal

class-S subgroup G of GSp2n(F`) such that soc(PG)

is of Lie type in characteristic ` and soc(PG) 6= PSL2(F`)


and let e(x) =

∣∣{n ∈ E ∣∣ n ≤ x}∣∣ be the associated counting function. Then for all ε > 0 we have

e(x) = O(x2/3+ε); in particular, E has density zero.

The proof of this result will take a rather lengthy detour through representation theory: in the next

few sections we shall show how to turn the problem at hand into a question about algebraic groups
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in positive characteristic, and subsequently reduce this question to a statement about algebraic

groups in characteristic 0, which can then be handled by the methods of [32]. From now on, we

assume ` 6= 2, 3, so as to avoid the pathologies associated with the finite Suzuki and Ree groups.

4.10.1 Preliminaries on algebraic groups and root systems

Let G be a simple, simply connected algebraic group of rank r over an algebraically closed field.

We fix a maximal torus T of G and write Λ ∼= Zr for its character group and {α1, . . . , αr} for its

simple roots. The vector space Λ⊗R is in a natural way an Euclidean space, and we write (·, ·) for

its inner product.

If α is an element of Λ (in particular, if it is a root) we write α∨ for 2α
(α,α) , and define the fun-

damental weights ω1, . . . , ωr as being the dual basis of α∨i with respect to (·, ·). By definition,

they satisfy
(
ωi, α

∨
j

)
= δij , and they are a Z-basis of Λ (this comes from the fact that G is simply

connected). It is also convenient to introduce the map 〈·, ·〉 : Λ× Λ→ Z given by

〈λ, α〉 :=
(
λ, α∨

)
=

2(λ, α)

(α, α)
,

which allows us to recast the duality between fundamental weights and simple roots in the compact

form 〈ωi, αj〉 = δij . Notice that we take the convention that 〈·, ·〉 be linear in its first argument. A

weight λ ∈ Λ will be said to be dominant if 〈λ, αi〉 ≥ 0 for all i = 1, . . . , r; equivalently, if it is

an integral combination of the fundamental weights ωi with non-negative coefficients. We denote

Λ+ the cone of dominant weights. We can introduce a partial ordering (both on Λ and on Λ+) by

declaring that a weight λ is larger than a weight µ (in symbols, λ � µ) if and only if λ− µ can be

written as a sum of simple roots with non-negative coefficients.

We also write ∆ for the set of all roots of G, and ∆+ for the subset of positive roots, i.e. those that

can be written as integral linear combinations of the αi’s with non-negative coefficients; we have

|∆| = 2|∆+|. We define the Weyl vector δ by the formula δ = 1
2

∑
α∈∆+ α, and recall ([42, §13.3,

Lemma A]) that δ =
∑r

i=1 ωi.

The Coxeter number of G is defined to be the ratio h := |∆|
r = 2|∆+|

r . By the classification of

simple root systems it is known that h does not exceed 4r (and is in fact at most 2r as long as

r ≥ 9).

The Cartan matrix of a root system (relative to a given choice of simple roots) is the r× r matrix

whose (i, j)-th entry is given by Cij = 〈αi, αj〉. Writing a simple root αi as a combination of the

fundamental weights, αi =
∑r

j=1 bjωj , and applying the linear map 〈·, αk〉 to both sides of this

equation we obtain Cik = bk, so the Cartan matrix is the base-change matrix expressing the simple

roots in terms of the fundamental weights. Moreover, C enjoys the following property, which can

be gleaned from a direct inspection of tables I through IX of Bourbaki [17]:

Lemma 4.10.2. The matrix C − 2 Id has non-positive entries and its diagonal coefficients vanish.

Finally, recall that the Weyl group of G, denoted by W (G), is the subgroup of GL(Λ ⊗ R)

generated by the reflections along the simple roots αi, and that the same definition can also be

used to introduce a notion of Weyl group for not necessarily irreducible root systems and for not

necessarily connected Dynkin diagrams. If ∆ (resp. D) is a root system (resp. the associated

Dynkin diagram) we write W (∆) = W (D) for the corresponding Weyl group.
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We conclude this section of preliminaries with a simple lemma which is certainly well-known to

experts, but for which we could not find any reference in the literature:

Lemma 4.10.3. Suppose G is of rank r and let λ ∈ Λ be a nonzero weight. The orbit of λ under

the Weyl group of G contains at least r + 1 distinct weights.

Proof. Let D be the Dynkin diagram associated with the root system of G. By the orbit-stabilizer

lemma it is enough to show that the stabilizer of λ has index at least r + 1 in W (D). Since every

weight is W (D)-conjugated to a dominant weight, there is no loss of generality in assuming that λ

is dominant. In this case, the stabilizer of λ is known to be generated by those reflections sα along

simple roots such that sαλ = λ ([42, §10.3B]). Since the stabilizer of λ is clearly not the full Weyl

group W (D), there is at least one simple root β whose associated reflection does not stabilize λ.

The stabilizer of λ is then identified to a subgroup of the group generated by sα for all simple roots

α 6= β; notice that the group generated by
{
sα
∣∣ α a simple root, α 6= β

}
is isomorphic to the Weyl

group of the Dynkin diagram obtained from D by erasing the node corresponding to β. We thus

obtain the following procedure for determining a lower bound on the index of Stab(λ) in W (D):

we consider the Dynkin diagram D and all the (quite possibly non-connected) diagrams D1, . . . , Dr

which we can obtain from D by erasing exactly one node. We then compute the Weyl groups W (Di)

associated with each of these diagrams and the indices |W (D)/W (Di)|: the smallest such index is

a lower bound for the index |W (D)/ Stab(λ)|. The lemma now follows from a straightforward, if

somewhat tedious, examination of the connected Dynkin diagrams and of table 4.1. As an example,

let us do this for root systems of type Ar, which give the smallest possible index. Removing the i-th

node (i = 1, . . . , r) from the Dynkin diagram for Ar leads to the Dynkin diagram for the root system

Ai−1 × Ar−i, where by A0 × Ar−1 and Ar−1 × A0 we simply mean Ar−1. The Weyl group of this

root system is Si × Sr−i+1, whose index in the Weyl group of Ar is (r+1)!
(i)!(r−i+1)! =

(
r+1
i

)
≥ r + 1.

Root system Order of the Weyl group

An (n+ 1)!
Bn 2nn!
Cn 2nn!
Dn 2n−1n!
E6 72 · 6!
E7 72 · 8!
E8 192 · 10!
F4 1152
G2 12

Table 4.1: Order of Weyl groups

4.10.2 Representation theory of finite simple groups of Lie type

This paragraph is essentially taken from [65], which will be our main reference for this section;

further information can be found in [20], Chapter 1 (especially sections 1.17-1.19). Let G̃ be a finite

twisted or non-twisted simple Chevalley group in characteristic ` 6= 2, 3 (that is, a finite simple
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group of Lie type of characteristic different from 2 and 3; in particular, not a Suzuki or a Ree

group). We shall describe shortly the main algebraic data associated with G̃, but before doing so

we need to define Frobenius maps:

Definition 4.10.4. Let k be an algebraically closed field of characteristic ` > 0, and let q = `e

(where e is a positive integer). The q-Frobenius map of GLn(k), denoted Fq, is the automorphism

of GLn(k) that raises all coefficients of a matrix to the q-th power. Let G be a linear algebraic

group over k. A standard Frobenius map is a group morphism F : G(k)→ G(k) such that, for

some embedding ι : G(k) ↪→ GLn(k) and for some q = `e, the identity ι(F (g)) = Fq(ι(g)) holds for

every g ∈ G(k). Finally, a group morphism G(k)→ G(k) is a Frobenius map (or endomorphism)

if some power of it is a standard Frobenius map.

It is known that to a group G̃ as above we can attach a connected reductive simple algebraic group

G over F` of simply connected type and a Frobenius endomorphism F of G with the following

property: denoting by GF the group
{
g ∈ G(F`)

∣∣ F (g) = g
}

of fixed points of F , and by Z the

center of GF , we have G̃ ∼= GF /Z. Furthermore, GF is the universal covering group (also known as

the universal perfect central extension) of G̃, see [29] and the references therein.

Remark 4.10.5. It is further known that the Frobenius endomorphism F is completely characterised

by the choice of an automorphism of the Dynkin diagram of G together with a real number q which,

in our setting, is an integral power of `. We include this number q among the data associated with

G̃; it will appear for example in the statements of theorem 4.10.6 and in the proof of lemma 4.10.24.

In this situation, we shall call G the algebraic group associated with G̃, and we shall indifferently

speak of the rank of G̃, of GF , or of G; likewise, we shall say that G̃,GF , or G, is of type Ar (resp.

Br, Cr, . . .) if the root system of G is.

Our interest in this construction comes from the fact that projective representations of G̃ in charac-

teristic ` are the same as linear representations of GF in characteristic ` ([131, pp. 76-77, items (ix)

and (x)]), which in turn can be constructed by restricting algebraic representations of the algebraic

group G to GF , as we now describe. Let G be of rank r, denote by Λ+ the cone of its dominant

weights (with respect to a given maximal torus), and write ω1, . . . , ωr for the fundamental ones;

for any given dominant weight λ ∈ Λ+, the irreducible F`[G]-module with highest weight λ will be

denoted by L(λ). The relationship between representations of GF and algebraic representations of

G is nicely described by the following theorem of Steinberg:

Theorem 4.10.6. (Steinberg [130]) Let G, GF and q be as above (with the restriction that the

characteristic be different from 2, 3). Define

Λq =
{
a1ω1 + · · ·+ arωr

∣∣ 0 ≤ ai ≤ q − 1 for 1 ≤ i ≤ r
}
.

The restrictions of the G-modules L(λ) with λ ∈ Λq to GF form a set of pairwise inequivalent

representatives of all equivalence classes of irreducible F`[GF ]-modules.

4.10.3 Some structure theorems

In this section we recall further results that describe more finely the structure of the simple modules

L(λ). It is useful to introduce the notion of (m-)restricted weights:
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Definition 4.10.7. Let G,GF be as above and m be a positive integer. A dominant weight

λ = a1ω1 + . . .+arωr ∈ Λ+ is said to be m-restricted if for every i = 1, . . . , r we have 0 ≤ ai ≤ m−1.

Definition 4.10.8. Let F be an automorphism of a group G̃ and ρ : G̃→ Aut(V ) be a represent-

ation of G̃. The twist of ρ by F is the representation Fρ given by Fρ(g) = ρ(F (g)) for all g ∈ G.

Note that twisting the representation does not change its image, nor its dimension.

The field automorphism x 7→ x` of F` can be used to construct a canonical endomorphism of the

algebraic group G, called the ‘standard Frobenius map’ and denoted by F0 ([43, §2.7]).

The following theorem elucidates the importance of `-restricted weights and their interactions with

Frobenius twists:

Theorem 4.10.9. (Steinberg’s twisted tensor product theorem [130]) If L is a G-module, let L(i)

be the module obtained by twisting the G-action on L by F i0. If λ0, . . . , λm are `-restricted weights,

then

L(λ0 + `λ1 + . . .+ `mλm) ∼= L(λ0)⊗ L(λ1)(1) ⊗ · · · ⊗ L(λm)(m).

Theorems 4.10.6 and 4.10.9 are all we need to describe representations over F`. However, to deal

with groups with socle PSL2(q), where q is a power of ` different from `, it is not enough to work

over F`, but we shall need to know when a representation over F` can be defined over a smaller

field. We make this notion more precise in the following definition:

Definition 4.10.10. Let G̃ be a finite group, K a field, and ρ : G̃ → GLn(K) a representation

of G̃ over K. We say that ρ can be defined over a field k ⊆ K if there exists a representation

ρk : G̃→ GLn(k) such that the representation

G̃
ρk−→ GLn(k) ↪→ GLn(K)

is isomorphic to ρ over K.

The fields of definition of modular representations of finite groups of Lie type are very well under-

stood (cf. [19, Theorem 5.1.13]). Here we just need the simplest case, namely a criterion to decide

whether a representation can be defined over F`:

Proposition 4.10.11. Let ` 6= 2, 3. Write the number q associated with GF (cf. remark 4.10.5)

as `e. Let M be an irreducible module for GF , and write M as a tensor product
⊗e−1

i=0 M
(i)
i as in

theorem 4.10.9: M can be defined over the field F` if and only if Mi
∼= Mj for all i, j.

Proof. This follows at once from the proof of [19, Theorem 5.1.13]. More specifically, by [19, Corol-

lary 1.8.14] M can be defined over F` if and only if it is stabilized by the Frobenius automorphism

F0, and on the other hand by definition F e0 is the identity of GF , so M is isomorphic to M (1) if and

only if
⊗e−1

i=0 M
(i)
i
∼=
⊗e−1

i=0 M
(i)
i−1, where M−1 = Me−1. Since the representation of theorem 4.10.9

is unique, this implies Mi−1
∼= Mi for i = 0, . . . , e− 1.

Corollary 4.10.12. Let q = `e be the invariant attached to GF , and let M be an absolutely

irreducible F`-module for GF whose dimension n is not a perfect power. Then e = 1, that is, q = `.

In particular, this holds if n ≡ 2 (mod 4).
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Proof. Let M := M ⊗ F` and λ be the associated dominant q-restricted weight. We can write

λ =
∑e−1

i=0 `
iλi, where each λi is `-restricted. By theorem 4.10.9 we have M ∼=

⊗e−1
i=0 L(λi)

(i), and

since by assumption M can be descended to F` the previous proposition gives L(λi) ∼= L(λj) for all

i, j. It follows that n = dim(Lλ) = (dimL(λ0))e, which is incompatible with e > 1. Finally notice

that no integer n ≡ 2 (mod 4) can be a perfect power, because any power of an even number is

divisible by 4.

4.10.4 Weyl modules

We briefly recall the most basic properties of the so-called Weyl modules; for more information,

cf. [43, §3.1]. For any λ ∈ Λ+ there is a certain ZG-module V (λ)Z such that

• the module L(λ) is a quotient of V (λ)Z ⊗Z F`;

• for a complex, simply connected, simple Lie group GC with the same root system as G, the

CG-module V (λ)C := V (λ)Z ⊗Z C is the unique irreducible module of highest weight λ.

Definition 4.10.13. We call V (λ)Z⊗ZF` the Weyl module associated with λ. It is a F`[G]-module

which we will denote by V (λ).

The celebrated Weyl dimension formula gives the dimension of V (λ):

Theorem 4.10.14. (Weyl) For all dominant weights λ we have

dimF` V (λ) = dimC V (λ)C =

∏
α∈∆+ (λ+ δ, α)∏
α∈∆+ (λ, α)

,

where δ = 1
2

∑
α∈∆+ α =

∑r
i=1 ωi.

4.10.4.1 Sufficient condition for the equality V (λ) = L(λ)

In general, it can very well happen that dimF` L(λ) is strictly smaller than dimF` V (λ). The following

theorem gives interesting information about the action of GF on Weyl modules, which we shall use

to deduce sufficient conditions for V (λ) and L(λ) to be isomorphic.

Theorem 4.10.15. (Wong, [147, (2D)], [43, §5.9]) If λ is a q-restricted, dominant weight, the

Weyl module V (λ) is indecomposable (but not necessarily irreducible) upon restriction to GF . In

particular, it is also indecomposable under the action of G.

Since V (λ) has highest weight λ by construction, V (λ) admits a unique G-simple quotient that is

the unique irreducible representation of G with highest weight λ; that is to say, L(λ) is the unique

simple quotient of V (λ). We shall now see that, under suitable assumptions on the dimension of

V (λ) and on `, we must in fact have V (λ) = L(λ). The key result we need is the following theorem

of McNinch (which builds on previous work of Jantzen, [46]).

Theorem 4.10.16. ([76]) Let k be an algebraically closed field of characteristic ` ≥ 7, and suppose

that the root system of G is not of type A1. Let furthermore V be a module over k[GF ] such that

dimk V ≤ 2`: then V is completely reducible.
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Corollary 4.10.17. Suppose G is not of Lie type A1. If λ is a dominant and q-restricted weight,

` is at least 7, and dimV (λ) ≤ 2`, then L(λ) ∼= V (λ).

Proof. Notice that an indecomposable and completely reducible module is simple. Hence in par-

ticular V (λ) is GF -simple by the combination of the previous theorems, and since L(λ) is a simple

(nonzero) quotient of V (λ) the two must coincide.

4.10.4.2 The case V (λ) 6= L(λ)

When L(λ) does not coincide with V (λ) its precise structure is still quite mysterious and forms

the subject of a rich body of work. For our applications, however, we shall just need to know

that the dimension of L(λ) grows reasonably quickly when the coefficients ai in the representation

λ =
∑
aiωi go to infinity. To prove such an estimate we shall need the following theorem of Premet:

Theorem 4.10.18. (Premet, [102]) Let G be a simple, simply connected algebraic group in char-

acteristic `. If the root system of G has different root lengths we assume that ` 6= 2, and if G is of

type G2 we also assume that ` 6= 3. Let λ be an `-restricted dominant weight. The set of weights of

the irreducible G-module L(λ) is the union of the W (G)-orbits of dominant weights µ that satisfy

µ ≺ λ.

The next lemma provides a lower bound on dimL(λ). The result is almost identical to [33, Lemma

2.3], which is however only stated and proved for root systems of type Ar. As it turns out, a very

small modification of the proof given in [33] yields a uniform bound for all root systems.

Lemma 4.10.19. Let λ =

r∑
i=1

aiωi ∈ Λ+ be an `-restricted weight. Then

dimL(λ) ≥ N(λ) := 1 + (r + 1)

{
r∏
i=1

(⌊ai
2

⌋
+ 1
)
− 1

}
Proof. Fix r integers x1, . . . , xr with 0 ≤ xi ≤

⌊
ai
2

⌋
. Set γ :=

∑
xiαi and let Cij be the Cartan

matrix of the relevant root system. By lemma 4.10.2, we have αi = 2ωi −
∑

j 6=i |Cij |ωj since all

off-diagonals coefficients of the Cartan matrix are non-positive. It follows that the coefficient of

γ =

r∑
i=1

2xiωi −
r∑
i=1

∑
j 6=i
|Cij |xiωj

along ωi, call it bi, is at most 2xi ≤ ai. Hence µ := λ − γ =

r∑
i=1

(ai − bi)ωi is a linear combination

of fundamental weights with non-negative coefficients, hence it is a dominant weight. On the other

hand, it is clear that λ � µ, since λ− µ = γ is by construction a combination of simple roots with

non-negative coefficients.

There are
r∏
i=1

(⌊ai
2

⌋
+ 1
)

possible choices for the integers xi, so the module V (λ) contains at least

r∏
i=1

(⌊ai
2

⌋
+ 1
)

different dominant weights, at most one of which is the zero weight. Consider now

the orbits of the nonzero dominant weights under the Weyl group. Each orbit consists entirely of

weights of V (λ), and contains exactly one dominant weight. In particular, two orbits do not intersect
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(for otherwise we would find two Weyl-conjugated dominant weights); moreover, by lemma 4.10.3

every nontrivial weight has orbit of length at least r + 1. We have thus found at least

1 + (r + 1)

{
r∏
i=1

(⌊ai
2

⌋
+ 1
)
− 1

}
= N(λ)

distinct weights in V (λ). Premet’s theorem 4.10.18 implies that these weights all appear in L(λ),

which is therefore of dimension at least N(λ), as claimed.

We derive in particular the following lower bound on dimL(λ):

Proposition 4.10.20. Let n ≥ 2 be a positive integer, and suppose that r, the rank of G, satisfies

2 ≤ r ≤ min
{
n,
√

6n
}

. If λ =
∑r

i=1 aiωi ∈ Λ+ is an `-restricted weight such that
∑r

i=1 ai > 2n,

then dimL(λ) > 2n.

Proof. The previous lemma gives dimL(λ) ≥ N(λ) ≥ 1 + (r+ 1)
(

1
2

∑r
i=1 ai −

r
2

)
, where the second

inequality is an equality if all but one of the ai’s are equal to 1, and the remaining one is odd. It

is straightforward to check that, for r ≤ n, the number 1 + (r + 1)
(

1
2

∑r
i=1 ai −

r
2

)
is not smaller

than 2n+ 1.

4.10.5 Lifting to characteristic zero

The purpose of this section is to show that, when the characteristic ` is large enough (compared to

n), the representation theory of subgroups of GSp2n(F`) is equivalent to the representation theory of

certain corresponding (algebraic) groups in characteristic zero. In order to do so, we need to ensure

that the equality L(λ) = V (λ) holds for all the λ’s of interest, and in view of corollary 4.10.17 it is

enough to know that the dimension of V (λ) is less than 2`. The following lemma provides an upper

bound on the dimension of Weyl modules:

Lemma 4.10.21. Fix a positive integer n. Consider all simply connected, simple algebraic groups

G over F` of rank at least 2 and at most min
{√

6n, n
}

. For each such G (of rank r), consider

the collection of all dominant, `-restricted weights λ =
∑r

i=1 aiωi such that
∑r

i=1 ai ≤ 2n and the

corresponding Weyl modules V (λ). For every such V (λ) we have

dimV (λ) ≤ (2n+ 1)12n .

Proof. Take a group G (of rank r) and a weight λ as in the statement of the lemma. Notice that

any positive root α can be represented as α =
∑r

j=1 bjαj , where the bj are non-negative integers; a

simple computation (using the fact that δ =
∑r

i=1 ωi) gives

〈λ, α〉 =

r∑
i=1

aibi, 〈δ, α〉 =

r∑
j=1

bj ,

so the ratio 〈λ,α〉〈δ,α〉 is bounded above by max ai ≤
∑r

i=1 ai. By Weyl’s dimension formula we have

dimV (λ) =

∏
α∈∆+(δ + λ, α)∏
α∈∆+(δ, α)

=
∏
α∈∆+

(
1 +
〈λ, α〉
〈δ, α〉

)
;
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combining this formula, the arithmetic-geometric inequality and the bound 〈λ,α〉
〈δ,α〉 ≤

∑r
i=1 ai ≤ 2n

we deduce

dimV (λ) ≤
(∑

α∈∆+(1 +
∑
ai)

|∆+|

)|∆+|
≤ (2n+ 1)|∆

+| .

Finally, since the Coxeter number h does not exceed 4r, we have |∆+| = rh
2 ≤ 2r2 ≤ 12n, and thus

dimV (λ) ≤ (2n+ 1)12n as claimed.

The following proposition gives the desired lift to characteristic zero, assuming that ` is large enough

with respect to n:

Proposition 4.10.22. Let n be an odd integer and ` a prime not smaller than 1
2(2n+ 1)12n. Then

for all groups of the form GF (where rank(G) ≤ min
{√

6n, n
}

), and for all absolutely irreducible

representations V of GF over F` of dimension 2n, there exist

• a simple, simply connected, complex Lie group GC with the same Lie algebra (hence in par-

ticular the same rank) as G;

• a complex, irreducible representation VC of GC such that dimC VC = 2n.

Proof. Let GF , G and V be as in the statement, and let r be the rank of G. By corollary 4.10.12 we

have q = `, and by theorem 4.10.6 V ⊗ F` is of the form L(λ) for a q-restricted (hence `-restricted)

weight λ. Write λ as
∑r

i=1 aiωi, and notice that
∑r

i=1 ai ≤ 2n, for otherwise dimV = dimL(λ) > 2n

by proposition 4.10.20, a contradiction. Lemma 4.10.21 then gives dimV (λ) ≤ (2n + 1)12n ≤ 2`,

which by corollary 4.10.17 implies L(λ) ∼= V (λ). Now if GC is the unique simple, simply connected,

complex Lie group with the same root system as G, then V (λ)Z ⊗Z C is exactly the (irreducible,

complex) representation associated with the dominant weight
∑r

i=1 aiωi of GC, and the result

follows.

4.10.6 Zero-density estimate in characteristic zero

We have now essentially turned our problem into a question about the representation theory of

certain complex Lie groups, for which we have the following zero-density estimate:

Proposition 4.10.23. Let C be any positive real number. Set

EC =

n ∈ N
∣∣ there exists a simple, simply connected, complex Lie group G

of rank r, with 2 ≤ r ≤ C
√
n,

admitting an irreducible representation on Cn


and let eC(x) =

∣∣{n ∈ EC ∣∣ n ≤ x}∣∣ be the associated counting function. Then for all ε > 0 we have

eC(x) = O(x2/3+ε); in particular, E has density zero.

Proof. Fix ε > 0. Let L be the collection of all (isomorphism classes of) complex, simple, simply

connected Lie groups of rank at least 2, and let Lx be the subset of those having rank at most C
√
x.

All the groups in L have Coxeter number at least 3: the only Lie algebra with Coxeter number 2

is A1, which we have excluded. Also note that |Lx| = O(x1/2): there are at most 5 Lie algebras of

any fixed rank.
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Following [56], for a complex, simple, simply connected Lie group G we denote by Rx(G) the number

of isomorphism classes of irreducible representations of G of dimension at most x. It follows from

[56, Theorem 5.1] that for every G ∈ L we have Rx(G) = O(x2/3+ε).

Furthermore, by [32, Corollary 3] we know that there exists a finite subset Σε of L (depending on

ε), such that, for all G ∈ L \ Σε, the inequality Rx(G) ≤ xε holds for every x ≥ 1. Note that

in fact [32] deals with compact Lie groups, but as it is well known every simple complex simply

connected Lie group admits a unique compact real form which has the same representation theory

as the complex group, so the result holds in our setting as well. It is now clear that

eC(x) ≤
∑
G∈Lx

Rx(G) =
∑

G∈Lx\Σε

Rx(G) +
∑
G∈Σε

Rx(G)

≤
∑

G∈Lx\Σε

xε +
∑
G∈Σε

O(x2/3+ε)

= O(x1/2+ε) +O(x2/3+ε) = O(x2/3+ε).

4.10.7 Order estimates

We now invoke simple order estimates to show that if the finite simple group of Lie type H appears

as a class-S subgroup of GSp2n(F`), then its rank cannot exceed
√

6n.

Lemma 4.10.24. Let L be a finite simple group of Lie type in characteristic ` 6= 2, 3 and r be its

rank (i.e. the rank of the corresponding algebraic group): we have |L| ≥ `r2.

Proof. The group in question is characterized by a number q (a integral power of `) and by the

family to which it belongs. For most families of simple Lie groups, the claim is easy to check by

direct inspection of the explicit formulas for the orders, so let us only check families Ar(q) and
2Ar(q

2), which are arguably the least trivial ones. In the two cases, the order is given by

qr(r+1)/2

(r + 1, q − ε)

r∏
i=1

(qi+1 − εi+1) ≥ qr(r+1)/2

q(q + 1)
q(r+1)(r+2)/2

r∏
i=1

(1− (εq)−i−1)

≥ q(r+1)2

q(q + 1)

∞∏
i=1

(
1− 1

qi+1

)
,

where ε = +1 for Ar(q) and ε = −1 for 2Ar(q
2). On the other hand,

log

∞∏
i=1

(1− q−i−1) =

∞∑
i=1

log
(
1− q−i−1

)
≥
∞∑
i=1

−2q−i−1 = − 2

q(q − 1)
≥ − 1

10

The order of the group in question is thus at least exp(−1/10)
q

q(q + 1)
q2r · qr2 > qr

2 ≥ `r
2

as

claimed.

We now compare this lower bound with the following upper bound due to Liebeck:

Theorem 4.10.25. ([63, Main theorem]) Let n be a positive integer and H be a class-S subgroup

of GSp2n(F`). The order of PH is strictly smaller than max
{
`6n, (2n+ 2)!

}
.
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Since `6n > (2n+ 2)! for ` > 2n+ 2 we also have:

Corollary 4.10.26. In the situation of the previous theorem, suppose ` > 2n+ 2. Then the order

of PH is strictly smaller than `6n.

Corollary 4.10.27. Let H be a class-S subgroup of GSp2n(F`), with ` > 2n+ 2. Suppose soc(PH)

is simple of Lie type in characteristic `: then the rank of soc(PH) is less than
√

6n.

Proof. Indeed, if r denotes the rank of soc(PH) we have | soc(PH)| ≥ `r
2

by lemma 4.10.24 and

| soc(PH)| < `6n by corollary 4.10.26.

4.10.8 Conclusion in positive characteristic

We are finally ready for the proof of theorem 4.10.1:

Proof. We can assume without loss of generality that n ≥ 6, so that min
{
n,
√

6n
}

=
√

6n. We

claim that the set
{

2n
∣∣ n ∈ E, n ≥ 6

}
is contained in the set EC of proposition 4.10.23 for C =

√
3.

Indeed let n ≥ 6 be an element of E: then we can find

• a prime ` > 1
2(2n+ 1)12n;

• a finite group of Lie type in characteristic `, call it GF , different from SL2(F`);

• and an absolutely irreducible representation of GF in characteristic ` of degree 2n.

Note that by corollary 4.10.12 we cannot have GF = SL2(q) for q = `e, e > 1. Let G be the simple,

simply connected algebraic group associated with GF as in section 4.10.2. By corollary 4.10.27 we

have rank(G) <
√

6n, and by what we just remarked we have rank(G) ≥ 2.

We are now in the situation of proposition 4.10.22, so we find a simple, simply connected, complex

Lie group GC, of rank lying in the interval [2,
√

3 ·
√

2n], admitting an irreducible representation on

C2n. By definition, this means that 2n ∈ EC (for C =
√

3). In particular, the counting function e(x)

satisfies e(x) ≤ eC(2x), and therefore it is O(x2/3+ε) for any positive ε by proposition 4.10.23.

4.11 Explicit determination of the small exceptional dimensions

In this section we determine all odd n ≤ 100 with the following property: for at least one prime

` > 13, the group GSp2n(F`) contains a class-S subgroup H such that soc(PH) is of Lie type in

characteristic ` and different from PSL2(F`). In order to carry out explicit calculations, we need to

fix our convention for the simple roots, and since we are going to rely on the tables of [65] we adopt

the same numbering as in that paper, which we summarize in table 4.2 (note that this convention

does not agree with that of [17]).

We shall need some information about the duality properties of our representations; recall that the

Frobenius-Schur indicator of an irreducible representation is +1 if that representation is orthogonal,

−1 if it is symplectic, and 0 if it is not self-dual. Regarding the Frobenius-Schur indicator of the

modular representations we are interested in we have the following result of Steinberg ([131, Lemmas

78 and 79], but cf. also [65, §6.3]):
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Ar
1 2 3 r

E6
1 3 4 5 6

2

Br
1 2 3 r

E7
1 3 4 5 6 7

2

Cr
1 2 3 r

E8
1 3 4 5 6 7 8

2

Dr
4 r

1

2

3
F4

1 2 3 4

G2

1 2

Table 4.2: Numbering of the simple roots

Theorem 4.11.1. Assume ` 6= 2. Write Z for the center of G(F`) and let λ =
∑r

i=1 aiωi be a

q-restricted, dominant weight. Then

• if G is of type Ar, or Dr with odd r, or E6, then the representations L (
∑r

i=1 aiωi) and

L
(∑r

i=1 aτ(i)ωi
)
, where the permutation τ is given by the automorphism of order two of the

Dynkin diagram, are dual to each other. For any other G all representations L(λ) are self-dual;

• there is an element h ∈ Z, of order at most 2, such that every self-dual module L(λ) is

symplectic if and only if h acts nontrivially on L(λ).

It is then relatively easy to work out which representations L(λ) are symplectic; notice however

that theorem 4.11.1 is quoted incorrectly in [65], and consequently the algorithm described in that

paper to decide whether L(λ) is symplectic or orthogonal does not yield correct results (for example,

it implies the existence of symplectic representations of Spin(7,Fp) for all sufficiently large primes

p, which is not the case). The following result can be deduced directly from theorem 4.11.1, but

follows more easily from an inspection of the proof of [133, Proposition 5.3]:

Corollary 4.11.2. Assume ` 6= 2, 3. In the situation of the previous theorem, the representation

L(λ) of the finite group of Lie type GF is symplectic if and only if:

• G is of type Ar, r ≡ 1 (mod 4), ai = ar+1−i for i = 1, . . . , r, and a(r+1)/2 is odd, or
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• G is of type Br, r ≡ 1, 2 (mod 4), and a1 is odd, or

• G is of type Cr, and ar + ar−2 + . . .+ armod 2 is odd, or

• G is of type Dr, r ≡ 2 (mod 4), a1 + a2 is odd, or

• G is of type E7, and a2 + a5 + a7 is odd.

Proposition 4.11.3. Let n ≤ 100 be odd, ` ≥ 17 and H be a class-S subgroup of GSp2n(F`) such

that the socle of PH is simple of Lie type in characteristic `. Then one of the following is true:

• up to conjugation, soc(PH) is the image of the (2n − 1)-th symmetric power of the standard

projective representation of PSL2(F`);

• n is one of 7, 55, 63.

In particular, if g ≤ 100 is an odd integer, g 6= 7, 55, 63, then g satisfies assumption (∗).

Proof. Let G̃ = soc(PH) and GF , G, q be the associated algebraic data as in section 4.10.2. If G is

of rank 1 (hence of type A1), then G̃ is necessarily of the form PSL2(q) for a certain q = `e, and

the case e > 1 is excluded by corollary 4.10.12. The same corollary also implies that in any case

we have q = `, hence we can assume that G is of rank at least 2. Since we know that PH acts

(absolutely) irreducibly on P2n(F`), we are just interested in irreducible representations of GF , that

is, representations of the form L(λ) for a certain `-restricted λ.

Thus we are looking for `-restricted, symplectic modules whose dimension is even, but not divisible

by 4: we shall do this by looking at the tables of [65] (to which we will refer by their number in that

paper), which contain a complete list of representations of degree at most 300 defined by weights

that are p-restricted for at least one prime p. By corollary 4.10.27 we see that we are only interested

in Lie groups of rank r ≤
√

600 < 25. By the previous corollary, groups of type E6, E8, F4, G2 do

not admit irreducible, symplectic representations. For groups of type E7 we look at representations

of even dimension: Table 6.52 shows that the smallest degree for such a representation is 912, which

certainly rules out the possibility that dimL(λ) ≤ 200. We can then focus on the infinite families

Ar −Dr, and we write λ =
∑r

i=1 niωi for the decomposition of λ along the fundamental weights.

• Type Ar (r ≥ 2): we just need to check those r’s that are congruent to 1 modulo 4, say

r = 4k + 1, and those weights λ =
∑r

i=1 niωi that satisfy ni = nr+1−i for i = 1, . . . , r and

n2k+1 ≡ 1 (mod 2). Further restricting our attention to modules of dimension 6≡ 0 (mod 4),

it is easy to see directly from tables 6.6-6.21 that there are no such representations with

2 ≤ r ≤ 17.

For r ≥ 21, Table 2 shows that there are no symplectic representations of dimension at most

200; indeed this table lists all irreducible representations of dimension up to r3/8 > 200, and

none of them meets the requirement that n(r+1)/2 is odd.

• Type Br: since we are looking for symplectic representations, by the previous corollary we

must have n1 odd. Taking into account the fact that the we only need consider modules

whose dimension is 6≡ 0 (mod 4), it is easy to see that no such representation exists for

r ≤ 11. Moreover, Table 2 shows that when r ≥ 12 there are no symplectic representations of

groups of type Br of degree not exceeding r3 > 200.
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• Type Cr: the condition on the defining weight is now that nr + nr−2 + . . . be odd. We

find the family of (defining) representations with highest weight (0, 0, . . . , 1): these are of no

interest to us, since clearly the defining representation does not give rise to a group of class

S. Apart from these, we find symplectic representations of groups of type C3 in dimension

14 and 126 = 2 · 63, and of groups of type C5 in dimension 110 = 2 · 55. For r ≥ 12, Table 2

shows that (apart from the trivial and defining representations) the smallest possible degree

of a nontrivial irreducible representation is 2r2 − r − 2 > 200.

• Type Dr: we need r ≡ 2 (mod 4) and n1 +n2 ≡ 1 (mod 2). No such representation (meeting

the conditions on the dimension) exists for r ≤ 11, and for r ≥ 12 we see from Table 2

that the smallest possible degree of an irreducible (nontrivial, symplectic) representation is

2r2 − r > 200.

4.12 A numerical example

In this short section we consider an explicit three-dimensional Jacobian and compute a bound

on the largest prime for which G` can differ from GSp6(F`). Zywina [157] has recently given

an example of a three-dimensional Jacobian having maximal (adelic) Galois action, his approach

consisting essentially in making effective a previous paper by Hall [34]. Effective results based

on Hall’s techniques have also been obtained in [3], where an algorithm is given to test whether

G` = GSp2g(F`) for a given abelian variety and a fixed prime `. We recall that an abelian variety

A/K satisfies Hall’s condition if for some finite extension L of K and for some finite place v of

L the fiber at v of the Néron model of A/OL is semistable with toric-dimension equal to 1. Our

example is fabricated precisely so as not to satisfy this condition, and is therefore – to the author’s

knowledge – the first abelian threefold not of Hall type for which the equality G` = GSp6(F`) is

established for all primes larger than an explicit (albeit enormous) bound.

We now turn to the example itself. We take as abelian variety the Jacobian A of a genus 3

hyperelliptic curve C over Q, given in an affine patch by the equation y2 = g(x), with

g(x) = x7 − x6 − 5x5 + 4x4 + 5x3 − x2 − 5x+ 3.

The polynomial g(x) has been found by referring to [50]. We shall prove that A has potentially

good reduction everywhere except at q = 45427, and that the reduction of A/Q at q is semistable

of toric dimension 2. Let us start by remarking that the discriminant of g(x) is q2, so C is smooth

(and A has good reduction) away from 2 and q. To study the exceptional places 2 and q we shall

employ the intersection graph of a semistable model of C:

Definition 4.12.1. Let X be a semistable curve over an algebraically closed field K. The inter-

section graph Γ(X) is the (multi)graph whose vertices are the irreducible components Xi of X and

whose edges are the singular points of X/K: more precisely, a singular point x ∈ X lying on Xi

and Xj defines an edge between Xi and Xj (the case i = j is allowed).

Theorem 4.12.2. ([15, §9.2, Example 8]) Let X be a semistable curve over a field K. The semi-

abelian variety Pic0
X/K has toric dimension equal to rankH1

(
Γ(XK),Z

)
.
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Notice now that

g(x) = (x+ 10504)2(x+ 13963)2
(
x3 + 41919x2 + 27613x+ 35727

)
in Fq[x],

so the reduction of C at q is semistable of toric dimension 2: indeed, our model has only ordinary

double points as singularities, so the reduction is already semistable over Qq. Moreover, the curve

is irreducible over Fq and admits exactly two singular points, so the intersection graph is topolo-

gically the wedge of two copies of S1, which shows that the toric dimension of the fiber at q is

rankH1
(
S1 ∨ S1,Z

)
= 2. To study the reduction at 2 we shall need the following additional result:

Theorem 4.12.3. ([75, Lemma 3.2.1] and [106, Théorème 1’]) Let K be a p-adic field with ring

of integers R and denote vp the corresponding p-adic valuation, extended to all of K. Let X be the

superelliptic curve given in the standard affine patch by the equation yp =
∏

1≤i≤m(x − xi), where

every xi is in R and (m, p) = 1. Suppose furthermore that vp(xi) = vp (xi − xj) = 0 for every pair

i 6= j. The intersection graph of the special fiber of the stable model X of X is a tree.

Take K to be the field generated over Q2 by the roots xi of g(x): then C/K satisfies the hypotheses

of theorem 4.12.3 for p = 2, because v2 (
∏
xi) = v2(g(0)) = 0 and

v2

∏
i 6=j

(xi − xj)

 = v2(disc g(x)) = 0.

Since trees have trivial H1, applying theorem 4.12.2 we see that Jac(C/Q2) acquires good reduction

over a finite extension of Q2: as claimed, A has potentially good reduction at 2. It follows in

particular that A does not satisfy Hall’s condition (over Q, nor over any number field).

Next we check that the Galois group of g(x) is the full alternating group A7, so by [153, Theorem

2.1] we have EndK(A) = Z. We then compute with Magma [16] that the characteristic polynomial

of the Frobenius at 3 is f3(x) = 27 + 9x5 + 6x2 + 2x3 + 2x4 + x5 + x6, which has Galois group

isomorphic to (Z/2Z)3oS3. It is interesting to observe that the characteristic polynomial of Frp has

Galois group (Z/2Z)3 o S3 at least for all odd primes up to 53 with the only exception of p = 17:

a random Frobenius usually has the largest possible Galois group, so that the corresponding place

satisfies assumption (3) of theorem 4.1.3. Finally, we can use [95, Théorème 2.4] to bound the

Faltings height of A: the minimal discriminant of X does not exceed the discriminant of our model

(namely 212q2), and (in the notation of [95]) we can take ev = 0 to get an upper bound on hF (A).

Taking into account the normalization of the Faltings height used in [95] we easily find that hF (A)

does not exceed −2.511...

We now simply apply theorem 4.1.3 to A/Q and to the prime v = 3 to deduce that G` = GSp6(F`)
for all ` > exp

(
3.8 · 108

)
(notice that this bound is much larger than the prime of bad reduction q).

Remark 4.12.4. The method of proof of proposition 4.7.5 produces a finite list of nonzero integers

among whose prime divisors we can find all primes ` for which G` is of tensor product type. Actually

carrying out these computations for Fr3 rules out the possibility that G` is of tensor product type

for any ` ≥ 5, and applying the same method to Fr5 shows that G3 is not of tensor product type

either.





Chapter 5

The CM case

5.1 Introduction and statement of the result

The aim of this work is to study the division fields of simple abelian varieties of CM type. Recall that

an abelian variety A, of dimension g and defined over a number field K, is said to admit (potential)

complex multiplication, or CM for short, if there is an embedding E ↪→ EndK(A) ⊗ Q, where E

is an étale Q-algebra of degree 2g. We shall very often restrict to the situation of A admitting

complex multiplication by E over K, by which we mean that EndK(A) is equal to EndK(A), and

of A being absolutely simple, or equivalently, of E being a number field (of degree 2g over Q). The

problem we discuss is that of estimating the degree [K(A[`n]) : K], where ` is a prime number and

K(A[`n]) is the field generated over K by the coordinates of the `n-torsion points of A in K. As we

shall see shortly, this is really a problem in the theory of Galois representations, and the seminal

contributions of Shimura–Taniyama [126] and Serre–Tate [124] provide us with powerful tools for

handling these representations in the CM case. Employing such tools, Silverberg studied in [128]

the extension of K generated by a single torsion point of A, while Ribet gave in [110] asymptotic

(non-effective) bounds on [K(A[`n]) : K] as n → ∞. Our first result can be seen as an explicit

version of the main theorem of [110]:

Theorem 5.1.1. Let K be a number field and A/K be an abelian variety of dimension g admitting

complex multiplication over K by an order in the CM field E. Denote by µ be the number of roots

of unity contained in E and by h(K) the class number of K. Let r be the rank of the Mumford-Tate

group of A (cf. definition 5.2.10) and ` >
√

2 · g! be a prime unramified in E ·K. The following

inequality holds:

1

4µ
√
g!
· `nr ≤ [K(A[`n]) : K] ≤ 5

2
µ · h(K) · `nr.

Even though theorem 5.1.1 gives a good idea of the actual order of magnitude of the degree

[K(A[`n]) : K], we can in fact prove much more precise results that apply to all primes ` and

which are most easily described in the language of Galois representations. Recall that for every `

and every n there is a natural continuous action of Gal(K/K) on A[`n], giving rise to a represent-

ation

ρ`n : Gal(K/K)→ Aut(A[`n]);

135
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the extension [K(A[`n]) : K] is Galois, and its Galois group can be identified with the image G`n of

ρ`n . Taking the inverse limit of this system of representations gives rise to the `-adic representation

on the Tate module T`A,

ρ`∞ : Gal(K/K)→ Aut(T`A).

We denote by G`∞ the image of ρ`∞ and remark that, for every n, the group G`n is clearly isomorphic

to the image of G`∞ through the canonical projection

Aut(T`A)→ Aut

(
T`A

`nT`A

)
∼= Aut(A[`n]);

for simplicity of exposition, we fix once and for all a Z`-basis of T`A and consider G`∞ (resp. G`n)

as a subgroup of GL2g(Z`) (resp. of GL2g(Z/`nZ)).

We have thus reduced the problem of giving bounds on [K(A[`n]) : K] to that of describing G`n :

in trying to do so, it is natural to compare G`∞ with MT(A), the Mumford-Tate group of A (cf.

definition 5.2.10). By construction, MT(A) is an algebraic subtorus of GL2g which is only defined

over Q, so there is no obvious good definition for the group of its Z`-valued points. However,

Ono [94] has shown that there is in fact a good notion of MT(A)(Z`) (cf. definition 5.2.3), and

the Mumford-Tate conjecture [84, §4] – which is a theorem for CM abelian varieties ([101] and

[126]) – can be expressed by saying that, possibly after replacing K by a finite extension, G`∞ is a

finite-index subgroup of MT(A)(Z`). For the sake of simplicity, assume for now that no extension

of the base field K is necessary to attain the condition G`∞ ⊆ MT(A)(Z`) (our results do not

depend on this assumption). The problem of estimating the degree [K(A[`n]) : K] is then reduced

to the study of two separate quantities: the order of the finite group MT(A)(Z/`nZ) and the index

[MT(A)(Z`) : G`∞ ].

We treat the first problem in two important situations: when ` is unramified in E (a rather simple

case, covered by lemma 5.2.5), and when the CM type of A is nondegenerate (theorem 5.6.1). Our

result can be stated as follows:

Theorem 5.1.2. Let A/K be an absolutely simple abelian variety of dimension g, admitting (po-

tential) complex multiplication by the CM field E. Denote by MT(A) the Mumford-Tate group of A

and let r be its rank.

1. If ` is unramified in E the following inequalities hold:

(1− 1/`)r`nr ≤ |MT(A)(Z/`nZ)| ≤ (1 + 1/`)r`nr.

2. Suppose r = g + 1. For all primes ` 6= 2 and all n ≥ 1 we have

(1− 1/`)g+1 · `(g+1)n ≤ |MT(A)(Z/`nZ)| ≤ 2g (1 + 1/`)g−1 `(g+1)n,

while for ` = 2 and all n ≥ 1 we have

1

22g+3
· 2(g+1)n ≤ |MT(A)(Z/2nZ)| ≤ 1

2
4g · 2(g+1)n.

As for the index [MT(A)(Z`) : G`∞ ], our main result is as follows (cf. definition 5.2.9 for the notion

of reflex norm):

Theorem 5.1.3. (Theorem 5.5.5) Let A/K be an absolutely simple abelian variety of dimension g

admitting complex multiplication over K by the CM type (E,S), and let ` be a prime number. If A
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has bad reduction at a place of K dividing ` let µ∗ = |µ(E)|, the number of roots of unity in E; if

on the contrary A has good reduction at all places of K of characteristic ` set µ∗ = 1. Denote by

r the rank of MT(A) and by F the group of connected components of the kernel of the reflex norm

TE∗ → TE, where E∗ is the reflex field of E. Then:

(1) The index [G`∞ : G`∞ ∩MT(A)(Z`)] does not exceed |µ(E)| · h(K), where h(K) is the class

number of K.

(2) We have [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] ≤ µ∗ · [K : E∗] · |F |2r.

(3) If ` is unramified in E and does not divide |F |, then the index [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)]
divides µ∗ · [K : E∗] · |F |. If ` is also unramified in K, the bound can be improved to µ∗ · |F |.

Finally we have r ≤ g + 1 and |F | ≤ f(r) ≤ f(g + 1), where

f(x) =

⌊
2

(
x+ 1

4

)(x+1)/2
⌋
.

Remark 5.1.4. A few comments are in order:

• Theorem 5.1.1 follows immediately upon combining theorems 5.1.2 and 5.1.3.

• The assumption that the action of E is defined over K implies that the reflex field E∗ is

contained in K, see [55, Chap. 3, Theorem 1.1]. In particular, the degree [K : E∗] makes

sense.

• The condition ` - |F | is certainly satisfied if ` > |F |: in particular, it is true for all primes

` > f(r).

• Since |F | is bounded by f(g + 1), the degree [K : E∗] does not exceed [K : Q], and µ∗ can

be controlled in terms of g alone (a trivial bound is for example µ∗ ≤ 16g2), we see that part

(2) of theorem 5.1.3 gives a universal bound on [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] that only

depends on g and [K : Q].

• For small values of g the function f(g + 1) takes reasonably small values: we have f(3) = 2,

f(4) = 3, f(5) = 6, f(6) = 14 and f(7) = 32.

In the special case of elliptic curves the Mumford-Tate group admits a particularly simple descrip-

tion, which leads to a very precise characterization of the corresponding Galois representation. Such

a description can already be found (in a non-effective form) in [116, Corollaire on p.302], and the

following result makes it completely explicit:

Theorem 5.1.5. (Theorem 5.6.6) Let A/K be an elliptic curve such that EndK(A) is an order

in the imaginary quadratic field E. Denote by ρ∞ : Gal(K/K) →
∏
`

AutT`A the natural adelic

representation attached to A, and let G∞ be its image. For every prime ` denote by C` the group

(OE ⊗ Z`)×, considered as a subgroup of AutZ` (OE ⊗ Z`) ∼= GL2(Z`) ∼= AutT`A, and let N(C`) be

the normalizer of C` in GL2(Z`).
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1. Suppose that E ⊆ K: then G∞ is contained in
∏
`C`, and the index [

∏
`C` : G∞] does not

exceed 3[K : Q]. Moreover, the equality G`∞ = C` holds for every prime ` unramified in K

and such that A has good reduction at all places of K of characteristic `.

2. Suppose that E 6⊆ K: then G∞ is contained in
∏
`N(C`) but not in

∏
`C`, and the index

[
∏
`N(C`) : G∞] is not finite. The intersection H∞ = G∞ ∩

∏
`C` has index 2 in G∞, and

the index [
∏
`C` : H∞] does not exceed 6[K : Q]. Moreover, the equality G`∞ = N(C`) holds

for every prime ` unramified in K · E and such that A has good reduction at all places of K

of characteristic `.

Finally, the constants 3 and 6 appearing in parts (1) and (2) respectively can be replaced by 1 and

2 if we further assume that the j-invariant of A is neither 0 nor 1728.

As a by-product of the proof of theorem 5.1.3 we also obtain the following proposition, which slightly

strengthens a result first proved by Banaszak, Gajda and Krasoń ([7, Theorem A]) by removing

both the assumption that the CM type of A is nondegenerate and the hypothesis that ` is completely

split in K.

Proposition 5.1.6. (Proposition 5.5.6) Let A/K be an absolutely simple abelian variety admitting

complex multiplication (over K) by the CM field E, and let ` be a prime unramified in E. Let E∗

be the reflex field of E and suppose that A has good reduction at all places of K of characteristic `.

• The index [MT(A)(F`) : G` ∩MT(A)(F`)] divides [K : E∗] · |F |.

• If ` is also unramified in K, then [MT(A)(F`) : G` ∩MT(A)(F`)] divides |F |.

Let us conclude this introduction by giving a brief overview of the material in this chapter.

In section 5.2 we recall some fundamental notions about algebraic tori over Q and their Z`-points;

this part also includes a brief account of the theory of abelian varieties of CM type and of their

Mumford-Tate groups. In section 5.3 we apply cohomological machinery to study the map induced

on Z`-points by algebraic maps between Q-tori with good reduction at `. With more effort, the

method could also give results in the bad reduction setting, but the argument would become quite

cumbersome and the result would not be very satisfactory for our purposes. To remedy this situ-

ation, in section 5.4 we treat the case of arbitrary reduction through a purely geometric argument

inspired by [134]; it should be pointed out, however, that – in the good reduction setting – the

cohomological approach gives much sharper bounds. In section 5.5 we recall a form of the Fun-

damental Theorem of Complex Multiplication, which gives a complete description of the Galois

representations attached to A, and apply it to deduce theorem 5.1.3. In section 5.6 we give bounds

on the order of MT(A)(Z/`nZ) under the assumption that A is of nondegenerate type, i.e. that

rank MT(A) = dimA + 1. Finally, in the short section 5.7 we give a simple example that shows

that the optimal bound on `n rank MT(A)
/

[K(A[`n]) : K] grows at least exponentially fast in g, so

that our bounds are not too far from the truth.
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5.2 Preliminaries on algebraic tori

Recall that over a perfect field k there is an equivalence of categories between algebraic tori and

finitely generated, torsion-free, continuous Gal(k/k)-modules: if T is a k-torus, the corresponding

Gal(k/k)-module is the group of characters T̂ = Hom
(
Tk,Gm,k

)
. Also recall that this construction

extends to an equivalence between finitely generated, continuous Gal(k/k)-modules and k-group

schemes of multiplicative type; we will make use of this fact to study the kernel of the reflex norm.

We now introduce a family of Q-algebraic tori that will be especially relevant for us:

Definition 5.2.1. If E is any number field we set TE = ResE/Q(Gm,Q).

The torus TE is of rank [E : Q], and it admits a very simple description in terms of characters: it is

the Q-torus that corresponds to the free module over the set Hom(E,Q), endowed with its natural

(right) Gal(Q/Q)-action.

Proposition 5.2.2. Let E be a number field. The torus TE has good reduction at all the primes

not dividing disc(E).

Proof. By the Galois criterion ([88, Proposition 1.1]), TE has good reduction at ` if and only if the

inertia group at (a place of Q over) ` acts trivially on T̂E . In the present case T̂E is the free module

over Hom(E,Q), so if we let L be the Galois closure of E in Q the action of Gal(Q/Q) on T̂E factors

through its finite quotient Gal(L/Q). Now if a prime ` is unramified in E it is also unramified in L,

hence the inertia at ` has trivial image in Gal(L/Q) and TE has good reduction at `, as claimed.

5.2.1 Points of tori with values in Z` and Z/`nZ

We briefly discuss the various possible definitions for the group of Z`-valued points of a Q`-torus;

our main reference for this section is [110, §2]. Let T be a Q`-torus, not necessarily having good

reduction over F`. We fix a finite Galois extension L of Q` that splits T , and we regard T̂ as a Γ-

module, where Γ := Gal(L/Q`). Also notice that a character χ ∈ T̂ can in particular be considered

as a homomorphism χ : T (L)→ L×.

Definition 5.2.3. Following Ono ([94, §2]), we define T (Z`) to be HomΓ

(
T̂ ,O×L

)
, the group of Γ-

equivariant morphisms (of abelian groups) of T̂ in O×L . Equivalently, T (Z`) is the maximal compact

subgroup of T (Q`).

If furthermore we suppose that T has good reduction, then it is known ([138, Theorem 2 on p.109])

that there exists a Z`-model T of T (that is, a commutative smooth group scheme over Spec(Z`)
whose generic fiber is T ). As pointed out in [110, Remark 2.2], in this case the Z`-points of T in the

sense of Ono agree with the Z`-valued points of T , so that we are free to use whichever definition

we find more convenient. When a smooth model T exists we can also give the following definition:

Definition 5.2.4. If T has good reduction, the Z/`nZ-points of T are the Z/`nZ-valued points of

its smooth Z`-model T .
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We still need to discuss the meaning of T (Z/`nZ) when T does not have good reduction. The

construction in this case is again due to Ono. For n ≥ 0, we define subgroups of T (Q`) by the rule

T (1 + `nZ`) =
{
x ∈ T (Q`)

∣∣ v`(χ(x)− 1) ≥ n ∀χ ∈ T̂
}
.

We simply write T (Z`) for the group corresponding to n = 0: it can be easily checked that this

definition agrees with our previous ones. We can now set T (Z/`nZ) =
T (Z`)

T (1 + `nZ`)
; once again,

when T has a smooth Z`-model T , the group T (Z/`nZ) agrees with T (Z/`nZ). Finally, when T is a

Q-torus we define T (Z/`nZ) to be the group of Z/`nZ-points of T ⊗Q`. We conclude this discussion

with the following well-known lemma:

Lemma 5.2.5. Let T/Q` have good reduction. For every positive integer n we have

(1− 1/`)dimT `ndimT ≤ |T (Z/`nZ)| ≤ (1 + 1/`)dimT `n dimT .

Proof. A combination of Hensel’s lemma and [138, Theorem 2 on p.104]; for further details, we refer

the reader to [39, Lemme 2.1 and Proposition 2.2].

5.2.2 CM types and reflex norm

We briefly recall the notions of CM type, of reflex type, and of reflex norm; we refer the reader

to [110, §3] for further details. Let E be a CM field of degree 2g and Ẽ be its Galois closure in

Q, and write G,H for the Galois groups Gal(Ẽ/Q) and Gal(Ẽ/E) respectively. We denote by τ

the complex conjugation of C, or any of its restrictions, and we take the convention that the set

Hom(E,Q) be identified with the coset space H\G.

Lemma 5.2.6. The degree [Ẽ : Q] divides 2gg!.

Proof. Let E0 be the maximal totally real subfield of E and a ∈ E0 be such that E = E0(
√
a).

Let Ẽ0 be the Galois closure of E0 and a1 = a, . . . , ak ∈ Ẽ0 be the conjugates of a over Q, where

k ≤ [E0 : Q] = g. It is clear that Ẽ is generated over Ẽ0 by
√
a1, . . . ,

√
ak, so [Ẽ : Q] divides

[Ẽ0 : Q] · 2k. As [Ẽ0 : Q]
∣∣ g! and k ≤ g the lemma follows.

Definition 5.2.7. A CM-type for the CM field E is a subset S of H\G such that S ∩ τ(S) = ∅
and H\G = S ∪ τ(S).

Let S be a CM type for E and S̃ be the inverse image of S in G, i.e. S̃ =
{
g ∈ G

∣∣ Hg ∈ S}. We

set H ′ =
{
g ∈ G

∣∣ S̃g = S̃
}

and let E∗ be the fixed field of H ′; we then set R̃ =
{
s−1

∣∣ s ∈ S̃} and

let R be the image of R̃ in H ′\G ∼= Hom
(
E∗,Q

)
. It is not hard to check that R is a CM type for

E∗.

Definition 5.2.8. The pair (E∗, R) is called the reflex type of (E,S).

Finally, a CM type (E,S) is called simple if the equality

H =
{
g ∈ G

∣∣ gS̃ = S̃
}

holds. We are now ready to define the reflex norm:
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Definition 5.2.9. Let (E,S) be a CM type, Ẽ the Galois closure of E/Q and (E∗, R) the reflex

type of (E,S). The reflex norm associated with (E,S) is the Q-morphism

Φ(E,S) : TE∗ → TE

of algebraic tori given on characters by

Φ∗(E,S) : T̂E → T̂ ∗E

[g] 7→
∑

r∈R[rg],

where [g] (resp. [rg]) is the embedding of E (resp. E∗) in Q induced by the automorphism g ∈
Gal(Ẽ/Q) (resp. rg ∈ Gal(Ẽ/Q)).

5.2.3 The Mumford-Tate group

Our interest in the reflex norm stems from the fact that it allows us to define the Mumford-Tate

group of a CM abelian variety rather directly. Before doing so, however, we need to recall how one

associates a CM type with a CM abelian variety.

Let A/K be an absolutely simple abelian variety, admitting complex multiplication (over K) by

the field E. The tangent space at the identity of AK is a K-module and an E-module, and the two

actions are compatible: it follows that this tangent space is a (E ⊗K)-bimodule, so it decomposes

as TidAK
∼=
∏
ϕ∈SKϕ, where Kϕ is a 1-dimensional K-vector space on which E acts through the

embedding ϕ : E ↪→ K. The set S of embeddings that appear in this decomposition can be shown

to be a CM type for E, and in this case we say that A admits complex multiplication by the CM

type (E,S). When furthermore we have EndK(A) = EndK(A) we say that A admits complex

multiplication by (E,S) over K.

Definition 5.2.10. Let A/K be an absolutely simple abelian variety admitting complex multi-

plication (over K) by the CM type (E,S), and let (E∗, R) be the reflex type. We define the

Mumford-Tate torus MT(A) to be the image of the reflex norm Φ(E,S) : TE∗ → TE .

Remark 5.2.11. The Mumford-Tate group of A is in fact a purely geometric object – it can described

in terms of the Hodge structure associated with the complex abelian variety AC. In particular, it

is insensitive to extensions of the base field K.

Remark 5.2.12. It is known that the rank of MT(A) is at most g + 1. When equality holds, the

CM type is said to be nondegenerate, and the Mumford-Tate group has a very simple description

in terms of E: if τ denotes complex conjugation on E, for any Q-algebra B the B-points of MT(A)

are given by

MT(A)(B) =
{
x ∈ (E ⊗Q B)×

∣∣ xτ(x) ∈ B×
}
.

For all these facts see for example [110], Proposition 3.3 and the remarks following it.

5.2.4 The group of connected components of ker Φ(E,S)

An object which will be crucial to our study is the kernel of the reflex norm Φ(E,S): in this short

subsection we establish a bound on the order of its group of components. The bound is ultimately a

consequence of Hadamard’s inequality, which is the main tool used to establish the following lemma:
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Lemma 5.2.13. Let A be a n× n integral matrix all of whose entries are in {0, 1}. The following

inequality holds:

|detA| ≤ b2−n(n+ 1)(n+1)/2c.

Proof. Consider the matrix

B(A) =


1 1 · · · 1
0

2A
...

0

 .

It is clear by definition that detB(A) = 2n det(A). Consider the matrix H(A) obtained from

B(A) by subtracting the first row to each of the others. Clearly H(A) and B(A) have the same

determinant, and furthermore all the entries of H(A) are in {±1}. In particular, the L2-norm of

every row of H(A) is
√
n+ 1, so Hadamard’s inequality implies

|detA| = 2−n |detB(A)| = 2−n |detH(A)| ≤ 2−n(n+ 1)(n+1)/2.

The claim then follows from the fact that det(A) is an integer.

Lemma 5.2.14. Let T : Zn → Zm be a linear map, represented in the standard bases by a matrix

A all of whose entries are in {0, 1}. Let Y be the image of T , denote by k the rank of Y , and

let Z be given by Z =
{
z ∈ Zm

∣∣ ∃q ∈ Z such that qz belongs to Y
}
. The quotient Z/Y , which is

isomorphic to the torsion part of Zm/Y , has order at most b2−k(k + 1)(k+1)/2c.

Proof. The order of Z/Y is given by gcd
{

det(Ak)
∣∣ Ak is a minor of A of size k

}
. Lemma 5.2.13

ensures that the determinant of every minor of size k does not exceed b2−k(k + 1)(k+1)/2c, and the

lemma follows.

Proposition 5.2.15. Let C be the group of multiplicative type defined by the exact sequence

1→ C → TE∗
Φ(E,S)−−−−→ MT(A)→ 1

and let Ĉ be its character group. Suppose MT(A) has rank r. The torsion subgroup of Ĉ has order

at most b2−r(r + 1)(r+1)/2c.

Proof. Let Y be the image of Φ∗(E,S) : T̂E → T̂E∗ and

Z =
{
χ ∈ T̂E∗

∣∣ ∃n ∈ Z such that nχ ∈ Y
}
.

The torsion subgroup of Ĉ is isomorphic to Z/Y . Moreover, it is apparent from definition 5.2.9

that the matrix representing Φ∗(E,S) in the natural bases of T̂E∗ , T̂E has entries in {0, 1}, so the

proposition follows from lemma 5.2.14.

5.3 Cohomology and integral points of tori

The purpose of this section is to study the map induced on Z`-points by a surjection of tori over

Q`. More precisely, we let T
β−→ T ′′ → 1 be a surjection of Q`-algebraic tori, and we assume that T

has good reduction. We let T ′ be the kernel of β, which is in general just a group of multiplicative

type (and not necessarily a torus), and write F for the torsion subgroup of its character group T̂ ′.
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We also denote by a the rank of T ′, so that we have an isomorphism of abelian groups T̂ ′/F ∼= Za.
Finally, we fix a finite unramified Galois extension L of Q` that splits T , and we let Γ denote the

Galois group of L over Q`. It is also useful to introduce the following notation:

Notation. If n is any integer and ` is a prime we write |n|` for `−v`(n). When M is a finite group

we also write |M |` for `−v`(|M |).

With this notation we shall show:

Proposition 5.3.1. The cokernel of T (Z`)
β−→ T ′′(Z`) has order dividing |F | · |F |−[L:Q`]

` .

The proof is given below in §5.3.2, and relies mainly on the basic tools of Galois cohomology,

together with the following classical theorem of Nakayama (cf. for example [125, §2, Theorem 32]):

Theorem 5.3.2. Let A and B be modules over the finite group G. Assume that A is cohomologic-

ally trivial. In order for Hom(B,A) to be cohomologically trivial it is necessary and sufficient that

Ext1(B,A) be cohomologically trivial. In particular, if B is Z-free, then Hom(B,A) is cohomolo-

gically trivial.

5.3.1 Preliminaries on p-adic fields

The following two lemmas are certainly well-known, but for lack of an easily accessible reference we

prefer to include a short proof.

Lemma 5.3.3. Let L be a finite extension of Q` with ring of integers OL, and let n be a positive

integer. The quotient OL/O×nL has order dividing n · |n|−[L:Q`]
` .

Proof. We regard all the involved groups as Z/nZ-modules with trivial action, and denote by hn

the associated Herbrand quotient, that is to say for every finite Z/nZ-module M we set

hn(M) :=
|Ĥ0(Z/nZ,M)|
|H1(Z/nZ,M)|

.

As O1
L, the subgroup of principal units of OL, has finite index in O×L (and the Herbrand quotient

is invariant by passage to finite-index subgroups), we have hn(O×L ) = hn(O1
L). On the other hand,

O1
L contains a subgroup of finite index that is isomorphic to OL ([115, Chapitre XIV, prop. 10]), so

hn(O×L ) = hn(O1
L) = hn(OL). Furthermore, H1(Z/nZ,O×L ) = Hom

(
Z/nZ,O×L

)
= O×L [n] has order

dividing n, while H1(Z/nZ,OL) = OL[n] = 0. The lemma then follows easily because the quantity∣∣∣ O×LO×nL
∣∣∣ = h1(Z/nZ,O×L ) · hn

(
O×L
)

divides

n · hn(OL) = n
|OL/nOL|

h1(Z/nZ,OL)
= n · |n|−[L:Q`]

` .

Lemma 5.3.4. Let F be a finite abelian group and L be a finite extension of Q`. Then |Ext1(F,O×L )|
divides |F | · |F |−[L:Q`]

` .

Proof. Writing F as
⊕
i

Z
diZ

we have

Ext1
(
F,O×L

) ∼= ∏
i

Ext1

(
Z
diZ

,O×L

)
∼=
∏
i

O×L
O×diL

.

The result follows from the previous lemma.
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5.3.2 Proof of proposition 5.3.1

Note that – since L/Q` is unramified – the group O×L is a cohomologically trivial Γ-module (cf. for

example [90, Prop. 7.1.2 (ii)]). As T̂ and T̂ ′′ are free abelian groups, Nakayama’s theorem implies

in particular that Hom
(
T̂ ,O×L

)
and Hom

(
T̂ ′′,O×L

)
are cohomologically trivial Γ-modules. We will

make extensive use of this fact. The character groups of T, T ′, T ′′ fit into an exact sequence

0→ T̂ ′′ → T̂ → T̂ ′ → 0;

applying the functor Hom
(
−,O×L

)
gives another exact sequence

0→ Hom
(
T̂ ′,O×L

)
→ Hom

(
T̂ ,O×L

)
→ Hom

(
T̂ ′′,O×L

)
→ Ext1

(
T̂ ′,O×L

)
→ 0,

where the following Ext term vanishes since T̂ is free. If we let

I := Image
(

Hom
(
T̂ ,O×L

)
→ Hom

(
T̂ ′′,O×L

))
,

the previous sequence gives rise to the two exact sequences

0→ Hom
(
T̂ ′,O×L

)
→ Hom

(
T̂ ,O×L

)
→ I → 0 (5.1)

and

0→ I → Hom
(
T̂ ′′,O×L

)
→ Ext1

(
T̂ ′,O×L

)
→ 0. (5.2)

Writing as usual IΓ for H0 (Γ, I), the long exact sequences in Galois cohomology associated with

equations (5.1) and (5.2) give

0→ HomΓ

(
T̂ ′,O×L

)
→ T (Z`)→ IΓ → H1

(
Γ,Hom

(
T̂ ′,O×L

))
→ 0, (5.3)

0→ H1(Γ, I)→ H2
(

Γ,Hom
(
T̂ ′,O×L

))
→ 0, (5.4)

and

0→ IΓ → T ′′(Z`)→ H0
(

Γ,Ext1
(
T̂ ′,O×L

))
→ H1(Γ, I)→ 0, (5.5)

where we have used the fact that Hom
(
T̂ ,O×L

)
and Hom

(
T̂ ′′,O×L

)
are cohomologically trivial.

Also notice that we have an exact sequence of Γ-modules

0→ F → T̂ ′ → T̂ ′/F → 0 (5.6)

where T̂ ′/F ∼= Za is free. We can then apply Hom
(
−,O×L

)
to (5.6) to get

0→ Hom
(
T̂ ′/F,O×L

)
→ Hom

(
T̂ ′,O×L

)
→ Hom

(
F,O×L

)
→ 0,

and since Hom
(
T̂ ′/F,O×L

)
is again cohomologically trivial by theorem 5.3.2 we deduce that for

every n ≥ 1 we have canonical isomorphisms

Hn
(

Γ,Hom
(
T̂ ′,O×L

))
∼−→ Hn

(
Γ,Hom

(
F,O×L

))
. (5.7)

Straightforward manipulations of sequences (5.3) and (5.5) show that

∣∣coker
(
T (Z`)→ T ′′(Z`)

)∣∣ =
h0
(

Γ,Ext1
(
T̂ ′,O×L

))
· h1

(
Γ,Hom

(
T̂ ′,O×L

))
h1(Γ, I)

.
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For the sake of notational simplicity set M = Hom
(
F,O×L

)
. Using (5.4) and (5.7) we arrive at

∣∣coker
(
T (Z`)→ T ′′(Z`)

)∣∣ =
h0
(

Γ,Ext1
(
T̂ ′,O×L

))
· h1 (Γ,M)

h2(Γ,M)
. (5.8)

Observe now that the group Γ is cyclic (since it is the Galois group of an unramified extension) and

the module M is finite: as it is well-known, the Tate cohomology Ĥn of a cyclic group with values

in a finite module is 2-periodic in n. Moreover, the Herbrand quotient

∣∣∣Ĥ0(Γ,M)
∣∣∣∣∣∣Ĥ1(Γ,M)
∣∣∣ equals 1 since M

is finite, and therefore h2(Γ,M) =
∣∣∣Ĥ0(Γ,M)

∣∣∣ = h1(Γ,M) (for all these facts cf. for example [90,

§I.7]). Using this equality in (5.8) we finally find |coker (T (Z`)→ T ′′(Z`))| = h0
(

Γ,Ext1
(
T̂ ′,O×L

))
.

Proposition 5.3.1 then follows from the fact that h0
(

Γ,Ext1
(
T̂ ′,O×L

))
divides∣∣∣Ext1

(
T̂ ′,O×L

)∣∣∣ =
∣∣Ext1

(
Za ⊕ F,O×L

)∣∣ =
∣∣Ext1

(
F,O×L

)∣∣
and from lemma 5.3.4.

5.4 The cokernel of an isogeny, without the good reduction as-

sumption

Let T, T ′ be Q`-tori and λ : T → T ′ be a Q`-isogeny. We do not assume that T or T ′ has

good reduction, and for the purposes of this section we define the Z`-points of a Q`-torus to be

the maximal compact subgroup of T (Q`) (cf. definition 5.2.3). Our aim is again to bound the

order of coker
(
T (Z`)

λ−→ T ′(Z`)
)

, in terms of the degree m of λ and of dimT = dimT ′ =: d.

Cohomological tools could again be used to investigate the problem, but we find that an entirely

different approach (through p-adic differential geometry) yields simpler and more effective proofs;

the method is inspired by [134], see especially lemma 4.4 in op. cit.

Proposition 5.4.1. Let T, T ′ be Q`-tori of dimension d and λ : T → T ′ be an isogeny of degree m.

The order of coker
(
T (Z`)

λ−→ T ′(Z`)
)

is at most md · |m|−d` .

Proof. Notice first that λ fits into a commutative diagram

T ′(Z`)
λ∨ //

[m] $$

T (Z`)

λzz

T ′(Z`)

and therefore it is enough to bound the cokernel of [m] : T ′(Z`)→ T ′(Z`). Fix now a Haar measure

µ on T ′(Q`), normalized in such a way that µ(T ′(Z`)) = 1.

Consider the kernel K of [m] (as a subgroup of T ′(Z`), not as a group scheme) and the quotient

S = T ′(Z`)/K, and note that π : T ′(Z`) → S is a covering map. We denote by µS the measure

on S given by µS(A) = 1
|K|µ

(
π−1(A)

)
: it can also be interpreted as the measure induced on S

by the (Haar) volume form of T ′(Z`), which passes to the quotient since it is translation-invariant.

The volume of S (for the measure µS) is
vol(T ′(Z`))
|K|

=
1

|K|
, and we have an `-adic analytic map

q : S → T ′(Z`) such that the following diagram commutes:
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T ′(Z`)
[m]

//

π
""

T ′(Z`)

S

q

<<

Clearly q is an `-adic analytic embedding and we have Image q = Image[m] =: I. We have the

following immediate equality:

vol(I) =
1

|T ′(Z`)/I|
vol
(
T ′(Z`)

)
=

1

|T ′(Z`)/I|
. (5.9)

On the other hand, a simple computation in coordinates shows q∗µ = |m|d` µS : we can parametrize

a neighbourhood of g ∈ T ′(Z`) by x 7→ g exp(x) (for x varying in some small neighbourhood of

0 in the Lie algebra of T ′(Q`)), and composing with π this also induces a parametrization of a

neighbourhood of π(g) ∈ S. In these coordinates the map q is simply multiplication by m, so its

Jacobian determinant is |m|d` and the change of variables formula for `-adic integration gives the

required result. This yields

vol(I) =

∫
I
dµ =

∫
q(S)

dµ =

∫
S
d(q∗µ) =

∫
S
|m|d` dµS = |m|d`

1

|K|
,

and comparing this equality with equation (5.9) gives∣∣∣∣coker

(
T ′(Z`)

[m]−→ T ′(Z`)
)∣∣∣∣ = |T ′(Z`)/I| =

1

vol(I)
=
|K|
|m|d`

.

Finally, it is clear that |K| ≤
∣∣T ′(Q`)[m]

∣∣ = md, and this finishes the proof.

5.5 Description of the Galois representation

Let A/K be an absolutely simple g-dimensional CM abelian variety admitting complex multiplica-

tion (over K) by the CM type (E,S). Let Ẽ be the Galois closure of E, denote by (E∗, R) the reflex

type of (E,S), and let ` be a prime number. It is known that – since the action of E is defined over

K – the reflex field E∗ is contained in K ([55, Chap. 3, Theorem 1.1]), and by [124, Corollary 2 to

Theorem 5], the `-adic Galois representation attached to A can be viewed as a map

ρ`∞ : Gal(K/K)→ (EndK(A)⊗ Z`)× ↪→ (OE ⊗ Z`)× .

We denote by G`∞ the image of ρ`∞ . We now recall the description of ρ`∞ coming from the

fundamental theorem of complex multiplication, and refer the reader to [110, §4] and [124] for

further details. Let IK be the group of idèles of K. As (OE ⊗ Z`)× is commutative, there is a

factorization

IK // Gal(K/K)ab // (OE ⊗ Z`)×

Gal(K/K)

ρ`∞

77OO

which (by class field theory) allows us to regard ρ`∞ as a map from IK to (OE ⊗ Z`)×. Let us

introduce some notation: we write µ(E) for the group of roots of unity in E, and if v is a place of

K we write OK,v for the completion at v of the ring of integers of K. If v is furthermore finite we
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denote by pv its residual characteristic; we also let ΩK be the set of all finite places of K. If F is

a number field we denote by F` the algebra F ⊗ Q`, and for an idèle a ∈ IK we write a` for the

component of a in K`
∼=
∏
pv=`

K×v . With this notation, the map ρ`∞ is described very precisely by

the following theorem:

Theorem 5.5.1. ([124, Theorems 6, 10 and 11]) There exists a unique continuous homomorphism

ε : IK → E× such that, for all finite places v of K, the group ε
(
O×K,v

)
is contained in µ(E), and

ρ`∞(a) = ε(a)Φ(E,S)

(
NK`/E

∗
`
(a`)

)−1

for all a ∈ IK . If furthermore v ∈ ΩK is a place of good reduction for A, then ε
(
O×K,v

)
is trivial.

We now consider the restriction of ρ`∞ to K× ·
∏
v∈ΩK

O×K,v: as it is well-known (cf. for example

[89, Proposition 2.3]), this is the group of idèles of H, the Hilbert class field of K. In terms of

Galois groups, this has the effect of restricting ρ`∞ to Gal(H/H) ⊆ Gal(K/K), so it is clear that

ρ`∞
(
Gal(H/H)

)
is a subgroup of ρ`∞

(
Gal(K/K)

)
of index dividing h(K), the class number of K.

Now as ρ`∞ factors through Gal(K/K) we see that ρ`∞(K×) is trivial, so we can just consider the

restriction of ρ`∞ to
∏
v∈ΩK

O×K,v. We now remark that for an idèle (av) ∈
∏
v∈ΩK

O×K,v theorem

5.5.1 implies

ε(a) =
∏
v∈ΩK

ε (av) =
∏

v:A has bad
reduction at v

ε(av) ∈ µ(E),

whence J := ker ε ∩
∏
v∈ΩK

O×K,v has index dividing |µ(E)| in
∏
v∈ΩK

O×K,v, and likewise the

index of J` := ker ε ∩
∏
v|`O

×
K,v in

∏
v|`O

×
K,v divides |µ(E)|. Furthermore, since the function

a 7→ Φ(E,S)

(
NK`/E

∗
`
(a`)

)−1
kills O×K,v when pv 6= `, we have ρ`∞(J) = ρ`∞(J`). Also notice that,

upon restriction to J`, the representation ρ`∞ coincides with the map

ϕ`∞ :
∏
v|`

O×K,v → (OE ⊗ Z`)×

a 7→ Φ(E,S)

(
NK`/E

∗
`
(a)
)−1

,

and that if A has good reduction at v, then ρ`∞ and ϕ`∞ coincide on all of
∏
v|`

O×K,v. For the sake

of notational simplicity let us then set

µ∗ =


|µ(E)|, if A has bad reduction at

some place v of characteristic `

1, otherwise

We have proved:

Proposition 5.5.2. For all primes ` the group G`∞ contains ρ`∞ (J`) as a subgroup of index

dividing |µ(E)| · h(K). We have ρ`∞(J`) = ϕ`∞(J`), and if A has good reduction at all places v of

characteristic ` we have J` =
∏
v|`O

×
K,v. Finally,ϕ`∞
∏

v|`

O×K,v

 : ρ`∞(J`)

 ∣∣ µ∗. (5.10)
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We can now interpret ϕ`∞ as a map between algebraic tori: indeed, the norm NK/E∗ can be seen

as a morphism TK → TE∗ , and
∏
v|`O

×
K,v is nothing but TK(Z`), so the map ϕ`∞ is simply the map

induced on Z`-points by (
Φ(E,S)

)−1 ◦NK/E∗ : TK → MT(A);

together with the previous proposition, this implies in particular that ρ`∞ (J`) = ϕ`∞ (J`) is con-

tained in MT(A)(Z`), and that ϕ`∞ (J`) has index at most µ∗ in ϕ`∞ (TK(Z`)). We thus want to

understand the composition

TK(Z`)
NK/E∗−−−−→ TE∗(Z`)

ψ`−→ MT(A)(Z`),

where for simplicity of notation we write ψ` for the base-change to Q` of the map
(
Φ(E,S)(·)

)−1
.

Even though the extension K/E∗ is in general non-abelian, the cokernel of NK/E∗ can be understood

through class field theory:

Theorem 5.5.3. ([4, Theorem 7 on p. 161]) Let L/M be an extension of local fields, and let Lab be

the largest abelian subextension of L/M . Then we have NL/ML
× = NLab/M

(
L×ab
)
, and the cokernel

M×

NL/ML×
has order dividing [L : M ].

Notice that the image of ψ` is open and MT(A)(Z`) is compact, hence the cokernel of

ψ` : TE∗(Z`)
ψ`−→ MT(A)(Z`)

is finite; since furthermore by theorem 5.5.3

∣∣∣∣ TE∗(Z`)
NK/E∗(TK(Z`))

∣∣∣∣ divides [K : E∗] we find that

[MT(A)(Z`) : ϕ`∞(TK(Z`))] divides [K : E∗] ·
∣∣∣∣ MT(A)(Z`)
ψ` (TE∗(Z`))

∣∣∣∣ . (5.11)

Remark 5.5.4. When ` is unramified in K the local norm TK(Z`) → TE∗(Z`) is surjective and the

factor [K : E∗] can be omitted, cf. [115, Corollary to Proposition 3 of Chapter V].

It is clear that ψ` = Φ−1
(E,S) and Φ(E,S) have the same cokernel, so ultimately we just need to

compute the cokernel of the reflex norm. Denote by T ′ the kernel of Φ(E,S) and write F for the

torsion of its character group T̂ ′. By proposition 5.2.15 we have |F | ≤ b2−r(r + 1)(r+1)/2c, where

r = dim Im Φ∗(E,S) = rk MT(A) does not exceed g+1. Set now T = TE∗⊗Q` and T ′′ = MT(A)⊗Q`,

and let L be one of the fields appearing in the decomposition of Ẽ ⊗ Q` as a direct sum of fields:

L/Q` is then a finite Galois extension that splits T (recall that Ẽ is Galois and contains E∗). If `

is unramified in E (hence in Ẽ) the extension L/Q` is itself unramified, so T has good reduction

over Q`; furthermore, [L : Q`]
∣∣ [Ẽ : Q]

∣∣ 2g · g! (cf. lemma 5.2.6).

Applying proposition 5.3.1 to the surjection of algebraic tori T
Φ(E,S)−−−−→ T ′′ we find that∣∣∣∣coker

(
TE∗(Z`)

Φ(E,S)−−−−→ MT(A)(Z`)
)∣∣∣∣ divides |F | · |F |−[L:Q`]

` , (5.12)

and the right hand side in turn divides |F | · |F |−2gg!
` ; we have thus almost completely established

the following result:

Theorem 5.5.5. (Theorem 5.1.3) Let A/K be an absolutely simple abelian variety of dimension g

admitting complex multiplication over K by the CM type (E,S), and let ` be a prime number. If A
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has bad reduction at a place of K dividing ` let µ∗ = |µ(E)|, the number of roots of unity in E; if

on the contrary A has good reduction at all places of K of characteristic ` set µ∗ = 1. Denote by

r the rank of MT(A) and by F the group of connected components of the kernel of the reflex norm

TE∗ → TE, where E∗ is the reflex field of E. Then:

(1) The index [G`∞ : G`∞ ∩MT(A)(Z`)] does not exceed |µ(E)| · h(K), where h(K) is the class

number of K.

(2) We have [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] ≤ µ∗ · [K : E∗] · |F |2r.

(3) If ` is unramified in E and does not divide |F |, then the index [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)]
divides µ∗ · [K : E∗] · |F |. If ` is also unramified in K, the bound can be improved to µ∗ · |F |.

Finally we have r ≤ g + 1 and |F | ≤ f(r) ≤ f(g + 1), where

f(x) =

⌊
2

(
x+ 1

4

)(x+1)/2
⌋
.

Proof. We have already proved (1): the intersection G`∞ ∩MT(A)(Z`) contains ϕ`∞(J`) = ρ`∞(J`),

and by proposition 5.5.2 the group ϕ`∞(J`) has index at most |µ(E)| · h(K) in G`∞ . As for part

(2), the exact sequence

1→ T ′ → TE∗ ⊗Q` → MT(A)⊗Q` → 1

induces, by quotienting out by (T ′)0 (the connected component of the identity of T ′), the exact

sequence

1→ F → TE∗ ⊗Q`

(T ′)0

τ`−→ MT(A)⊗Q` → 1,

where F is a finite group scheme of order |F |. Proposition 5.4.1 implies∣∣∣∣ MT(A)(Z`)
ψ` (TE∗(Z`))

∣∣∣∣ =

∣∣∣∣coker

(
τ` :

TE∗ ⊗Q`

(T ′)0
(Z`)→ MT(A)(Z`)

)∣∣∣∣
≤ |deg(τ`)|dim MT(A)| deg(τ`)|

− dim MT(A)
`

= |F |dim MT(A)|F |− dim MT(A)
` ,

which, together with equations (5.10) and (5.11), gives the desired result. Finally, consider part

(3). As ρ`∞(J`) is a subgroup of MT(A)(Z`) the index [MT(A)(Z`) : G`∞ ∩MT(A)(Z`)] divides

[MT (A)(Z`) : ρ`∞(J`)], and we can write∣∣∣∣MT(A)(Z`)
ρ`∞(J`)

∣∣∣∣ ∣∣ µ∗ · [MT(A)(Z`) : ϕ`∞(TK(Z`))] (by (5.10))∣∣ µ∗ · [K : E∗] · |coker (ψ` : TE∗(Z`)→ MT(A)(Z`))| (by (5.11))∣∣ µ∗ · [K : E∗] · |F | · |F |−2gg!
` . (by (5.12))

Since by assumption ` does not divide |F | we conclude that [MT(A)(Z`) : G`∞∩MT(A)(Z`)] divides

µ∗ · [K : E∗] · |F |. Finally, when ` is unramified in K the factor [K : E∗] can be omitted, cf. remark

5.5.4.

Starting from equations (5.11) and (5.12) it is also easy to prove the following result, which might

have some independent interest:
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Proposition 5.5.6. (Proposition 5.1.6) Let A/K be an absolutely simple abelian variety admitting

complex multiplication (over K) by the CM field E, and let ` be a prime unramified in E. Let E∗

be the reflex field of E and suppose that A has good reduction at all places of K of characteristic `.

• The index [MT(A)(F`) : G` ∩MT(A)(F`)] divides [K : E∗] · |F |.

• If ` is also unramified in K, then [MT(A)(F`) : G` ∩MT(A)(F`)] divides |F |.

Proof. By proposition 5.2.2 the hypothesis implies that TE∗ has good reduction at `, hence the

same is true for its quotient MT(A), which therefore defines a torus over F`: in particular, the

group MT(A)(F`) makes sense and its order is not divisible by `. On the other hand, the index of

G`∩MT(A)(F`) in MT(A)(F`) divides [K : E∗]·|F |·|F |−2gg!
` by proposition 5.5.2 and equations (5.11)

and (5.12), and since |MT(A)(F`)| is prime to ` we deduce that [MT(A)(F`) : G` ∩MT(A)(F`)]
divides [K : E∗] · |F | as claimed. The second part follows by the same argument and remark

5.5.4.

5.6 The Mumford-Tate group in the nondegenerate case

In this section we consider CM abelian varieties A with nondegenerate CM type, that is to say we

assume that rank(MT(A)) = dimA + 1: this is the “generic” case, and it is also known that all

simple CM varieties of prime dimension have nondegenerate CM type (a result due to Ribet, cf.

[111]). In this situation we have the following bounds on the order of MT(A)(Z/`nZ):

Theorem 5.6.1. Suppose A is simple of nondegenerate CM type. For all primes ` 6= 2 and all

n ≥ 1 we have

(1− 1/`)g+1 · `(g+1)n ≤ |MT(A)(Z/`nZ)| ≤ 2g (1 + 1/`)g−1 `(g+1)n,

while for ` = 2 and all n ≥ 1 we have

1

22g+3
· 2(g+1)n ≤ |MT(A)(Z/2nZ)| ≤ 1

2
4g · 2(g+1)n.

The proof of this result will occupy sections 5.6.1 and 5.6.2, while in sections 5.6.3 and 5.6.4 we

discuss the special cases of elliptic curves and abelian surfaces.

5.6.1 The natural filtration on the norm-1 torus

Let ` 6= 2 be a rational prime, L be a finite extension of Q` and τ be an involution of L. Denote Lτ

the fixed field of τ , so that L/Lτ is a quadratic (Galois) extension. Fix a squarefree d ∈ OLτ such

that L = Lτ
(√

d
)

and consider the (multiplicative) group

C =
{
x ∈ O×L

∣∣ x · τ(x) = 1
}
.

We write λ for a uniformizer of Lτ , set e = e (Lτ/Q`), and consider v` and vλ as valuations on Q`,

normalized so as to have vλ(λ) = 1 and v`(`) = 1; in particular, vλ = e · v`. We want to investigate

the structure of the filtration of C given by C(n) :=
{
x ∈ C

∣∣ vλ(x− 1) ≥ n
}

. It is easy to see that

every x ∈ C(1) can be represented as

x = 1 + 2du · λ2+2v + 2u2 · λ1+v
√
d
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with u, u2 ∈ O×Lτ and v ∈ N subject to the condition

u(1 + du · λ2+2v) = u2
2. (5.13)

Furthermore, for n ≥ 1 we have an exact sequence of abelian groups

0 → C(n+ 1) → C(n)
α−→ OL/(λ)OL,

x 7→
[
x− 1

2λn

]
where [·] denotes the class of an element of OL in the quotient OL/(λ)OL. Let us describe the image

of α for n ≥ 1. Clearly x ∈ C(n) implies v ≥ n−1, and for v ≥ n we have α(x) = 0; when v = n−1

we have α(x) = [u2

√
d]. Notice now that we have an injection (of additive groups) OLτ

(λ)OLτ
↪→ OL

(λ)OL
induced by x 7→ x

√
d, and we claim that all points in the image of this embedding can be realized

as α(x) for some x ∈ C(n). This is clear for the zero element, so let us consider an element of the

form [u2

√
d] with u2 ∈ O×Lτ . Consider the equation

t
(
1 + λ2ndt

)
= u2

2 (5.14)

in the variable t. By Hensel’s lemma, the discriminant ∆ := 1 + 4u2
2λ

2nd is a square in OLτ
(recall that n > 0). Let 1 + z be the square root of ∆ that is congruent to 1 modulo λ: then z

satisfies (1 + z)2 = 1 + 4u2
2λ

2nd, from which we easily find vλ(z) = 2n + vλ(d). It follows that

u :=
−1 +

√
∆

2dλ2n
=

z

2dλ2n
is a solution to equation (5.14) which is also a λ-adic unit. We can

then set x = 1 + 2du · λ2n + 2u2 · λn
√
d: by construction x is an element of C(n), and it satisfies

α (x) = [u2

√
d]. This shows that the image of α is in bijection with OLτ

(λ)OLτ
. Finally, essentially the

same argument can be repeated when ` = 2, except that Hensel’s lemma is now only applicable for

n > vλ(2). We thus deduce the following lemma:

Lemma 5.6.2. Suppose ` 6= 2. For every n ≥ 1, the quotient C(n)/C(n + 1) has order
∣∣∣ OLτ(λ)OLτ

∣∣∣.
For ` = 2 the same conclusion holds for every n > vλ(2).

The quotients C(n)/C(n+ 1) for small values of n are described by the following lemma:

Lemma 5.6.3. Let f be the inertia degree of Lτ over Q`. Suppose first ` 6= 2: then the quotient
C(0)
C(1) has order either 2`f or `f + 1, with the first (resp. second) case happening exactly when L/Lτ

is ramified (resp. unramified). Suppose on the other hand that ` = 2 and n ≤ vλ(2): then the

quotient C(n)
C(n+1) has order at most 4f .

Before giving a proof, recall the following

Definition 5.6.4. Let L be a finite extension of Q` with ring of integers OL and residue field F. Let

π : OL → F be the canonical projection. The Teichmüller lift is the unique group homomorphism

ω : F× → O×L such that, for all y ∈ F×, the element ω(y) ∈ O×L is the unique solution to the

equation x|F|−1 = 1 satisfying π(x) = y.

Proof. Consider first the case of L/Lτ being unramified (and ` 6= 2). Let π : OL → F := OL
(λ)OL

be the canonical projection, and observe that F has order `2f . It is clear that π restricts to a map

C(0) → F×, and on the other hand x ∈ C(0) maps to 1 if and only if vλ(x − 1) > 0, i.e. if and

only if x ∈ C(1): this implies that C(0)/C(1) injects into F×. The involution τ induces on F an
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automorphism τF, which is necessarily the unique nontrivial involution x 7→ x`
f
. Let now x ∈ C(0).

By definition we have x · τ(x) = 1, hence 1 = π(x) · π(τ(x)) = π(x) · τF(π(x)) = π(x)`
f+1, so

C(0)/C(1) injects into the subgroup H of F× given by the roots of unity of order dividing `f + 1.

The group H is of order `f + 1, and it is not hard to see that C(0)/C(1) surjects onto it: indeed for

every h ∈ H we have ω(h) ∈ C(0), and by definition π(ω(h)) = h. Suppose on the other hand that

L/Lτ is ramified, so that L = Lτ (
√
d) with vλ(d) = 1. Again we see that C(0)/C(1) injects into

F× :=
(
OL

(λ)OL

)×
(which however is not a field anymore), and the involution τ acts on an element

[a + b
√
d] ∈

(
OL

(λ)OL

)×
, with a, b ∈ OLτ , by sending it to [a − b

√
d]. Writing π(x) = [a + b

√
d],

the equation xτ(x) = 1 implies [a2 − db2] = 1, which in turn, since vλ(d) = 1, means [a2] = 1 and

[a] = ±1. This shows that C(0)/C(1) injects into {±1} × OLτ
(λ)OLτ

, a set with 2 · `f elements. On

the other hand, for any value of [±1 + b
√
d] ∈ F×, the equation a2 = 1 + db2 (with fixed b, in the

variable a) admits solutions in OLτ by Hensel’s lemma; the elements ±a+ b
√
d ∈ C(0) then satisfy

(±a+ b
√
d) · τ(±a+ b

√
d) = a2 − db2 = 1,

and on the other hand π(±a + b
√
d) = [±1 + b

√
d], so C(0)/C(1) actually projects surjectively on

{±1} × OLτ
(λ)OLτ

; this shows that |C(0)/C(1)| = 2`f as claimed. The upper bound for ` = 2 likewise

follows from the fact that for any n ≥ 0 the quotient C(n)/C(n+ 1) injects into OL
(λ)OL .

5.6.2 The order of MT(A)(Z/`nZ)

Let E be a CM field of degree 2g over Q and TE be the associated algebraic torus, and let τ

denote complex conjugation on E. If A/K is an abelian variety with complex multiplication by the

nondegenerate CM type (E,S), it is known that we have

MT(A)(B) =
{
x ∈ (E ⊗Q B)×

∣∣ xτ(x) ∈ B×
}
∀ Q-algebra B.

We can also consider the ‘norm 1’ (or Hodge) subtorus of MT(A) given as a functor by

Hg(A)(B) =
{
x ∈ (E ⊗Q B)×

∣∣ xτ(x) = 1
}
∀ Q-algebra B.

We aim to give bounds on the number of Z
`nZ -points of MT(A), but it is easier to first consider

Hg(A). If we write E ⊗Q`
∼=
∏s
i=1 Fi (a product of fields), we have

Hg(A)(Q`) =

{
x = (x1, . . . , xs) ∈

s∏
i=1

F×i
∣∣ xτ(x) = 1

}
.

We can renumber the Fi’s in such a way that τ acts by exchanging F2i−1 and F2i for i = 1, . . . , r

and it acts as an involution on Fi for i = 2r + 1, . . . , s.

With this convention, a point (x1, . . . , x2r, x2r+1, . . . , xs) ∈
∏s
i=1 F

×
i is in Hg(A)(Q`) if and only if

x2i−1x2i = 1 for i = 1, . . . , r and xiτ(xi) = 1 for i = 2r + 1, . . . , s, that is,

Hg(A)(Q`) ∼=
r∏
i=1

{
x2i−1 ∈ F×2i−1

}
×

s∏
i=2r+1

{
xi ∈ F×i

∣∣ xiτ(xi) = 1
}
. (5.15)

The character groups of MT(A)Q` and of Hg(A)Q` are quotients of T̂E,Q` , which in turn is generated

by the elements of the form (χ1, . . . , χs), where χi ranges over the embeddings of Fi in Q`. It follows

that a point x ∈ Hg(A)(Q`) is in Hg(A)(Z`) if and only if for any choice of embeddings χi : Fi ↪→ Q`
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we have χi(xi) ∈ Oχi(Fi); as the property of being `-integral is Galois-invariant we deduce that a

necessary and sufficient condition is xi ∈ O×Fi . Hence we find

Hg(A)(Z`) ∼=
r∏
i=1

O×F2i−1
×

s∏
i=2r+1

{
xi ∈ O×Fi

∣∣ xiτ(xi) = 1
}
,

and a perfectly analogous argument shows that

Hg(A)(1 + `nZ`) ∼=
r∏
i=1

{
x2i−1 ∈ O×F2i−1

∣∣ v`(x2i−1 − 1) ≥ n
}
×

×
s∏

i=2r+1

{
xi ∈ O×Fi

∣∣ v`(xi − 1) ≥ n, xiτ(xi) = 1
}
.

Write ei and fi for the ramification index and inertia degree of F τi over Q`, and λi for a uniformizer

of F τi (i = 2r + 1, . . . , s). The order of
∣∣∣ Hg(A)(Z`)

Hg(A)(1+`nZ`)

∣∣∣ is then given by

|Hg(A)(Z/`nZ)| =
r∏
i=1

∣∣∣∣∣ O×F2i−1

1 + `nOF2i−1

∣∣∣∣∣ ×
s∏

i=2r+1

∣∣∣∣∣ C(i)(0)

C(i)(nei)

∣∣∣∣∣ , (5.16)

where

C(i)(k) =
{
xi ∈ O×Fi

∣∣ vλi(xi − 1) ≥ k, xi · τ(xi) = 1
}

is the filtration we studied in the previous section for the field Fi and the involution τ |Fi . For

i = 1, . . . , r let furthermore πi (resp. ei, fi) be a uniformizer (resp. the ramification index over Q`,

the inertia degree over Q`) of F2i−1. We now compute the order of Hg(A)(Z/`nZ). Basic properties

of local fields show that

∣∣∣∣ O×F2i−1

1+`nOF2i−1

∣∣∣∣ has order∣∣∣∣∣ O×F2i−1

1 + πiOF2i−1

∣∣∣∣∣ ·
nei−1∏
j=1

∣∣∣∣ 1 + (πi)
jOF2i−1

1 + (πi)j+1OF2i−1

∣∣∣∣ =
(
`fi − 1

)
· `fi(nei−1),

while (for ` 6= 2) lemma 5.6.2 gives∣∣∣∣∣ C(i)(0)

C(i)(nei)

∣∣∣∣∣ =

∣∣∣∣∣C(i)(0)

C(i)(1)

∣∣∣∣∣ ·
∣∣∣∣∣ C(i)(1)

C(i)(nei)

∣∣∣∣∣ =

∣∣∣∣∣C(i)(0)

C(i)(1)

∣∣∣∣∣ · `fi(nei−1).

Now notice that s − 2r does not exceed g: indeed [Fi : F τi ] = 2 for every i = 2r + 1, . . . , r, hence

2g = [E ⊗Q` : Q`] ≥
s∑

i=2r+1

[Fi : Q`] ≥ 2(s− 2r) as claimed. Applying lemma 5.6.3 we then deduce

that the order of Hg(A)(Z/`nZ) is at most
r∏
i=1

`nfiei ·
s∏

i=2r+1

2
(

1 + `fi
)(

`fi
)nei−1

= 2s−2r
2r∏
i=1

`
1
2
n[Fi:Q`]

s∏
i=2r+1

(
1 + `−fi

)(
`fi
)nei

≤ 2s−2r (1 + 1/`)s−2r
s∏
i=1

`
1
2
n[Fi:Q`]

≤ 2g (1 + 1/`)g `gn,
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and at least
r∏
i=1

(
`fi − 1

)
`(nei−1)fi

s∏
i=2r+1

(`fi + 1)
(
`fi
)nei−1

≥ (1− 1/`)r ·
r∏
i=1

`nfiei
s∏

i=2r+1

`nfiei

= (1− 1/`)r ·
2r∏
i=1

`
1
2
n[Fi:Q`] ×

s∏
i=2r+1

`
1
2
n[Fi:Q`]

≥ (1− 1/`)g · `gn;

moreover, if for at least one index i ∈ {2r + 1, . . . , s} the extension Fi/F
τ
i is ramified, then we see

from lemma 5.6.3 that the lower bound can be improved to

|Hg(A)(Z/`nZ)| ≥ 2(1− 1/`)g · `gn. (5.17)

To finish the proof of theorem 5.6.1 we shall use the following lemma:

Lemma 5.6.5. Consider the map

Ψ : Hg(A)(Z/`nZ)× (Z/`nZ)× → MT(A)(Z/`nZ)

(h,m) 7→ m−1h.

If ` 6= 2, the group Im Ψ has order equal to 1
2 |Hg(A)(Z/`nZ)| × (1− 1/`)`n and has index at most 2

in MT(A)(Z/`nZ). Moreover, Ψ is surjective if and only if for all x ∈ MT(A)(Z/`nZ) the number

xτ(x) is a square in (Z/`nZ)×. On the other hand, for ` = 2 we have

• for n = 1, the group Im Ψ has order equal to that of |Hg(A)(Z/2Z)| and Ψ is surjective;

• for n = 2, the group Im Ψ has order equal to that of |Hg(A)(Z/4Z)| and Im Ψ has index either

1 or 2 in MT(A)(Z/4Z);

• for n ≥ 3, the group Im Ψ has order equal to 2n−3 · |Hg(A)(Z/2nZ)| and Im Ψ has index 1, 2

or 4 in MT(A)(Z/2nZ);

Proof. Let us start with the case ` 6= 2. The kernel of ψ is given by the intersection of Hg(A)(Z/`nZ)

and (Z/`nZ)× inside MT(A)(Z/`nZ), namely{
h ∈ (Z/`nZ)×

∣∣ hτ(h) = 1
}

=
{
h ∈ (Z/`nZ)×

∣∣ h2 = 1
}

= {±1} ,

so Im Ψ has order

1

|ker Ψ|
· |Hg(A)(Z/`nZ)| ·

∣∣(Z/`nZ)×
∣∣ =

(`− 1)`n−1

2
· |Hg(A)(Z/`nZ)|

as claimed.

As for the index of Im Ψ, notice first that for every x = m−1h ∈ Im Ψ we have that x · τ(x) = m−2

is a square in (Z/`nZ), so if Ψ is surjective we necessarily have x · τ(x) ∈ (Z/`nZ)×2 for every

x ∈ MT(A)(Z/`nZ). Conversely, suppose that for every x in MT(A)(Z/`nZ) the number xτ(x) is

a square in (Z/`nZ)×, say xτ(x) = µ(x)2 with µ(x) ∈ (Z/`nZ)×. Then every x can be written

as x = µ(x) · x
µ(x) , and since x

µ(x) is in Hg(A)(Z/`nZ) this shows that x belongs to Im Ψ, which is

therefore surjective.
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Finally, if there is a y ∈ MT(A)(Z/`nZ) such that yτ(y) is not a square in (Z/`nZ)×, then using

the fact that (Z/`nZ)×2 is of index 2 in (Z/`nZ)× we easily see that for every x ∈ MT(A)(Z/`nZ)

either x or xy belongs to Im Ψ, thus proving the remaining claim. The conclusion for ` = 2 follows

by the same argument upon noticing that (Z/2nZ)×

(Z/2nZ)×2 has order 1, 2, or 4, according to whether n is

1, 2, or at least 3.

Combining this last lemma with our previous estimates gives the desired upper bound

|MT(A)(Z/`nZ)| ≤ 2 |Im Ψ| = |Hg(A)(Z/`nZ)| ×
∣∣(Z/`nZ)×

∣∣
≤ 2g (1 + 1/`)g−1 `(g+1)n.

As for the lower bound, suppose first that for at least one index i in the set {2r + 1, . . . , s} the

extension Li/L
τ
i is ramified: then using the lower bound of equation (5.17) (which is conditional on

this hypothesis) we find

|MT(A)(Z/`nZ)| ≥ 1

2
|Hg(A)(Z/`nZ)| ×

∣∣(Z/`nZ)×
∣∣ ≥ (1− 1/`)g+1`(g+1)n.

Suppose on the other hand that Li/L
τ
i is unramified for every i = 2r+ 1, . . . , s: then we claim that

map Ψ from lemma 5.6.5 is not surjective. Assuming this is the case, we have

|MT(A)(Z/`nZ)| ≥ 2× 1

2
× |Hg(A)(Z/`nZ)| ×

∣∣(Z/`nZ)×
∣∣ ≥ (1− 1/`)g+1`(g+1)n,

which is what we want to show. We are thus reduced to proving that Ψ is not surjective, or

equivalently (by lemma 5.6.5), to showing that there is an x ∈ MT(A)(Z/`nZ) such that xτ(x) is

not a square in (Z/`nZ)×. By the same argument that leads to equations (5.15) and (5.16), we can

represent elements of MT(A)(Z`) as tuples

(x1, . . . , x2r, x2r+1, . . . , xs,m) ∈
2r∏
i=1

O×Fi ×
s∏

j=2r+1

O×Fj × Z×` ,

satisfying x2i−1x2i = m for i = 1, . . . , r and xjτ(xj) = m for j = 2r + 1, . . . , s. Now if 2r = s

it is clear that MT(A)(Z`/`nZ) contains elements x such that xτ(x) is not a square (it suffices to

choose m ∈ Z×` which is not a square in Z/`nZ and set x2i−1 = 1, x2i = m for i = 1, . . . , r), so

we can assume s > 2r. For j = 2r + 1, . . . , s write Fj = F τj (
√
dj) for some squarefree dj ∈ O×Fj

(recall that we assume Fj/F
τ
j to be unramified), and likewise write xj = aj + bj

√
dj for some

aj , bj ∈ OF τj . We claim that since Fj/F
τ
j is unramified every element m ∈ Z×` can be represented

as a2
j − djb2j for some choice of aj , bj ∈ OF τj . To see this, notice that for fixed m and dj the conic

section C : {a2 − djb2 = mc2} admits a point (a0, b0, c0) over the residue field of F τj ; as dj is not

a square in F τj we cannot have c0 = 0, and since C is smooth the point (a0, b0, c0) lifts to a point

(a, b, c) ∈ C
(
OF τj

)
, with c a unit (since it does not reduce to 0 in the residue field). Dividing through

by c2 then yields (a/c)2 − dj(b/c)2 = m as desired. Pick now a fixed non-square m ∈ Z×` and for

each j = 2r + 1, . . . , s fix a representation m = a2
j − djb2j . Take furthermore x2i−1 = 1, x2i = m for

i = 1, . . . , r.

The corresponding point x = ((xi)i=1,...,2r, (xj)j=2r+1,...,s,m) of MT(A)(Z`) has the property that

xτ(x) = m is not a square in Z`, and therefore the image of x in MT(A)(Z/`nZ) has again the

property that xτ(x) = [m] ∈ (Z/`nZ)× is not a square. Combined with lemma 5.6.5, this shows

that Ψ is not surjective in this case and concludes the proof of theorem 5.6.1 for ` 6= 2.
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Notice now that for ` = 2 the lower bound of theorem 5.6.1 is trivial for n ≤ 2, so we can assume

n ≥ 3. We then remark that (by equation (5.16)) Hg(A)(Z/2nZ) has order at least
r∏
i=1

2(n−1)[F2i−1:Q`] ×
s∏

i=2r+1

∣∣∣∣∣C(i)(ei + 1)

C(i)(nei)

∣∣∣∣∣ ,
which (by the same argument as above, using the second part of lemma 5.6.2) in turn is at least

r∏
i=1

2(n−1)[F2i−1:Q`] ×
s∏

i=2r+1

(
2fi
)(n−1)ei−1

≥ 2g(n−2).

Furthermore, taking into account the factor coming from the homotheties – namely (Z/2nZ)× – we

find |MT(A)(Z/2nZ)| ≥ 2(g+1)(n−2)−1. Finally, the upper bound for ` = 2 follows trivially from the

previous computations and from the second halves of lemmas 5.6.3 and 5.6.5.

5.6.3 Elliptic curves

When the CM abelian variety under consideration is an elliptic curve we can give a complete

description of the full adelic Galois representation:

Theorem 5.6.6. Let A/K be an elliptic curve such that EndK(A) is an order in the imaginary

quadratic field E. Denote by ρ∞ : Gal(K/K) →
∏
`

AutT`A the natural adelic representation

attached to A, and let G∞ be its image. For every prime ` denote by C` the group (OE ⊗ Z`)×,

considered as a subgroup of AutZ` (OE ⊗ Z`) ∼= GL2(Z`) ∼= AutT`A, and let N(C`) be the normalizer

of C` in GL2(Z`).

1. Suppose that E ⊆ K: then G∞ is contained in
∏
`C`, and the index [

∏
`C` : G∞] does not

exceed 3[K : Q]. Moreover, the equality G`∞ = C` holds for every prime ` unramified in K

and such that A has good reduction at all places of K of characteristic `.

2. Suppose that E 6⊆ K: then G∞ is contained in
∏
`N(C`) but not in

∏
`C`, and the index

[
∏
`N(C`) : G∞] is not finite. The intersection H∞ = G∞ ∩

∏
`C` has index 2 in G∞, and

the index [
∏
`C` : H∞] does not exceed 6[K : Q]. Moreover, the equality G`∞ = N(C`) holds

for every prime ` unramified in K · E and such that A has good reduction at all places of K

of characteristic `.

Finally, the constants 3 and 6 appearing in parts (1) and (2) respectively can be replaced by 1 and

2 if we further assume that the j-invariant of A is neither 0 nor 1728.

We start by recording the following consequence of theorem 5.5.5:

Corollary 5.6.7. Let A/K be an elliptic curve admitting complex multiplication (over K) by the

imaginary quadratic field E. The group G`∞ is contained in MT(A)(Z`) = C`, and if A has good

reduction at all places of K of characteristic ` the index [MT(A)(Z`) : G`∞ ] is at most 1
2 [K : Q]. If

in addition ` is also unramified in K we have G`∞ = (OE ⊗ Z`)×.

Proof. Since E is quadratic, E and E∗ coincide and the reflex norm is simply the identity TE → TE ,

hence MT(A) = TE and (in the notation of theorem 5.5.5) F is the trivial group. In particular
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TE(Z`) = (OE ⊗ Z`)× = C` contains G`∞ by [124, Corollary 2 to Theorem 5] (cf. also [116,

Corollaire on p. 302]): the claim on the index then follows from theorem 5.5.5 upon noticing that

[K : E∗] = [K : E] = 1
2 [K : Q]. Furthermore, if ` is unramified in K, then it is also unramified in

E, and the remaining assertion G`∞ = C` = MT(A)(Z`) follows from part (3) of theorem 5.5.5.

We shall also need some results concerning elliptic curves A/K that admit complex multiplication

over K but not over K. We start with the following easy properties of N(C`):

Lemma 5.6.8. C` is of index 2 in N(C`). In particular, N(C`) is generated by C` and any element

in N(C`)\C`. Furthermore, if H` is an open subgroup of C`, then the normalizer of H` in GL2(Z`)
is contained in N(C`).

Proof. Fix ω ∈ OE such that (1, ω) is a Z-basis of OE . There exist c, d ∈ Z such that ω satisfies the

quadratic relation ω2 = cω + d. In the Z`-basis (1, ω) of OE ⊗ Z`, the group C` is the subgroup of

GL2(Z`) given by the invertible matrices that can be written as

(
a bd

b a+ bc

)
for some a, b ∈ Z`. We

thus see that C` is given by the intersection of GL2(Z`) with a 2-dimensional plane Π (that defined

by the equations x11 + cx21 = x22, x12 = dx21, where xij is the coefficient on the i-th row and j-th

column). In particular, for an element g ∈ GL2(Z`) the condition of normalizing C` is equivalent

to that of stabilizing Π. The latter is a Zariski-closed condition, and since any subgroup H` of C`

open in the `-adic topology is Zariski-dense in Π we see that if g normalizes H`, then it stabilizes

Π and hence it normalizes C`. Finally, with the explicit description at hand it is immediate to see

that [N(C`) : C`] = 2, and that a nontrivial element of N(C`) \ C` is given by

(
1 c

0 −1

)
.

Lemma 5.6.9. Suppose A/K is an elliptic curve such that EndK(A) = Z but EndK(A) is an order

in an imaginary quadratic field E: then for every prime ` the group G`∞ is contained in N(C`).

Proof. The field K1 = K · E is a quadratic extension of K over which all the endomorphisms of

A are defined, and the group G1
`∞ = ρ`∞

(
Gal(K1/K1)

)
is a closed subgroup of G`∞ of index at

most 2 (hence in particular it is normal and open in G`∞). Let R = EndK(A). Since A admits

complex multiplication by R over K1, we know by [116, §4.5, Corollaire] that G1
`∞ is of finite index

in (R⊗Z`)×, which in turn is of finite index in C`. Thus the normalizer of G1
`∞ is included in N(C`)

by lemma 5.6.8, and since G1
`∞ is normal in G`∞ we have G`∞ ⊆ N(G1

`∞) ⊆ N(C`) as claimed.

Lemma 5.6.10. In the situation of the previous lemma, for all primes ` the group G`∞ has

nonempty intersection with N(C`) \ C`.

Proof. For all primes ` we have G`∞ ⊆ N(C`). On the other hand, we know by Faltings’ theorem

that the centralizer of G`∞ in End (T`A) ⊗ Q` equals EndK(A) ⊗ Q` = Q`. It follows that G`∞

cannot be abelian, for otherwise its centralizer would contain all of G`∞ (which is not contained in

the homotheties Q`): in particular, G`∞ must have nonempty intersection with N(C`) \ C`.

We can now prove theorem 5.6.6:
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Proof. (of theorem 5.6.6) The proof is quite similar to that of theorem 5.5.5, the main differences

being that we need to treat all places at the same time and that the action of E needs not be

defined over K. Consider first case (1). The inclusion G`∞ ⊆ C` is part of corollary 5.6.7, and

implies G∞ ⊆
∏
`G`∞ ⊆

∏
`C`. In particular, G∞ is abelian, so class field theory allows us to

interpret ρ∞ as a map

IK
ρ∞−−→

∏
`

C`

that is trivial on K∗. As in the proof of theorem 5.5.5, since we are looking for a lower bound on

G∞ no harm is done in replacing IK by the group of idèles of the Hilbert class field of K; concretely,

this means considering the restriction of ρ∞ to
∏
v∈ΩK

O×K,v, where ΩK is the set of finite places of

K. Recall from theorem 5.5.1 that the action of ρ∞ on a finite idèle a = (av)v∈ΩK is given by

ρ∞(a) = ε(a)
(
NK`/E`(a

−1
` )
)
` prime

.

As in the proof of theorem 5.5.5, if we let µ(E) be the group of roots of unity in E we know that

ker ε is a subgroup of
∏
v∈ΩK

O×K,v of index at most |µ(E)|, and since E is a quadratic imaginary

field we have |µ(E)| ≤ 6. Therefore the image of ρ∞ has index at most | ker ε| ≤ 6 in the image of

the map

ϕ∞ :
∏
v∈ΩK

O×v →
∏
`(OE ⊗ Z`)× =

∏
`C`

(a)v 7→
(
NK`/E` (a`)

)
`

given by taking local norms from K` to E`. Hence in particular we have[∏
`

C` : G∞

]
≤ 6

[∏
`

C` : Imϕ∞

]
,

and it suffices to show that [∏
`

C` : Imϕ∞

]
≤ [K : E] =

1

2
[K : Q],

which follows from [4, Theorem 7 on p. 161] (the global field counterpart of theorem 5.5.3). The

remaining assertion of part (1) is exactly the content of corollary 5.6.7.

As for part (2), we have seen in lemmas 5.6.9 and 5.6.10 that in this case G`∞ is contained in

N(C`), but not in C`. If we let K1 = K ·E, then A admits complex multiplication by E over K1, so

ρ∞

(
Gal(K1/K1)

)
is contained in

∏
`C` by part (1). Since Gal(K1/K1) has index 2 in Gal(K/K)

we must have H∞ = ρ∞

(
Gal(K1/K1)

)
, so that the index [G∞ : H∞] is indeed 2 and applying

part (1) we find [
∏
`C` : H∞] ≤ 3[K1 : Q] = 6[K : Q]; moreover, the index [

∏
`N(C`) : G∞] is not

finite since the same is clearly true for the index [
∏
`N(C`) :

∏
`C`]. Finally, if ` is unramified in

K1 we see from corollary 5.6.7 (applied to A/K1) that G`∞ contains all of C`, and by lemma 5.6.10

we know that G`∞ also contains an element of N(C`) \C`. The equality G`∞ = N(C`) then follows

from lemma 5.6.8.

As for the last assertion, notice that if we exclude elliptic curves with j-invariant equal to 0 or 1728

the field of complex multiplication E is neither Q(i) nor Q(ζ3), so the only roots of unity in E are

±1. This implies that ker ε has index at most 2 in
∏
v∈ΩK

O×v , and the same argument as above

shows that the constants 3 and 6 can indeed be replaced by 1 and 2.
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Remark 5.6.11. The following simple example shows that the constants 3 and 6 appearing in the

statement of theorem 5.6.6 cannot be improved in general. We consider the elliptic curve A over

the field K = Q (ζ3) given by the Weierstrass equation y2 = x3 + 1. As it is clear, A has com-

plex multiplication (over K) by the full ring of integers of E = K. Moreover, all the 2-torsion

points of A are defined over K, so G2 has trivial reduction modulo 2. Hence G2 is a subgroup

of ker (Z2[ζ3]× → F2[ζ3]×), and its index in (OE ⊗ Z2)× ∼= Z2[ζ3]× is divisible by |F2[ζ3]×| = 3.

Likewise, the fact that the 3-torsion point with coordinates (0, 1) is defined over K shows that the

index of G3 in (OE ⊗Z3)× is divisible by 2. Thus we conclude that the index of G∞ in
∏
`C` is at

least 6 = 3[K : Q], so that the constant 3 is indeed sharp. Finally, considering the Q-elliptic curve

given by the same Weierstrass equation shows the optimality of part (2): in this case H∞ is exactly

the image of the Galois representation attached to A/K, so we have [
∏
`C` : H∞] = 6 by what we

just showed.

5.6.4 Abelian surfaces

An easy direct computation shows that when dimA = 2 the kernel of the reflex norm is always

connected, and therefore the group F of theorem 5.5.5 is trivial. Since furthermore simple CM types

are automatically non-degenerate in dimension 2, combining theorems 5.5.5 and 5.6.1 we deduce:

Corollary 5.6.12. Let A/K be an absolutely simple abelian variety of dimension 2. Suppose that

A has CM over K by the field E and let ` be a prime number such that A has good reduction at

all places of K of characteristic `. The group G`∞ ∩ MT(A)(Z`) has index at most [K : E∗] in

MT(A)(Z`), hence we have [K(A[`n]) : K] ≥ 1

[K : E∗]
(1 − 1/`)3`3n for ` 6= 2, while for ` = 2

we have [K(A[2n]) : K] ≥ 1

27[K : E∗]
23n. Finally, if ` is unramified in K · E we even have

[K(A[`n]) : K] ≥ (1− 1/`)3`3n.

5.7 A family of varieties with small 2-torsion fields

Let p ≥ 3 be a prime number and Kp be the cyclotomic field Q (ζp). We let Cp be the unique

smooth Kp-curve birational to yp = x(1 − x) and J(p) be its Jacobian, again over Kp. It is clear

that Cp admits an action of µp, so J(p) is a CM abelian variety, admitting complex multiplication

over Kp by the full ring of integers of Kp. Notice furthermore that Cp is birational to the curve

z2 = wp + 1/4

(just set x = z + 1/2, y = −w), so it is hyperelliptic of genus p−1
2 . Direct inspection of the model

yp = x(1− x) reveals that Cp is smooth away from p, so J(p) has everywhere good reduction over

Kp except perhaps at the unique place dividing p. The reflex field is K∗p = Kp. Let us compute the

CM type S of J(p): in the basis ωj := wj dwz (j = 0, . . . , p−3
2 ) of the space of differentials on Cp, the

action of ζp is given by [ζp]
∗ωj = ζj+1

p ωj , hence the CM type, considered as a subset of
(

Z
pZ

)×
, is{

1, . . . , p−1
2

}
. Equivalently,

S =

{
g ∈

(
Z
pZ

)× ∣∣ 2〈g〉 < p

}
,
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where 〈g〉 is the unique integer lying in the interval [0, p− 1] that is congruent to g modulo p. This

description shows that our CM type agrees with the type S1 described in [66], which by [66, Lemma

1] is nondegenerate (cf. also [52]): thus we have rank MT(A) = dimA+ 1 = p+1
2 .

Let now β1, . . . , βp be the roots of wp + 1/4 = 0 in Q, and let Pi = (βi, 0) be the corresponding

points of Cp (in the coordinates (w, z)). Finally, for i = 1, . . . , p let di denote the divisor (Pi)− (∞).

It is known (see for example [10, §5.1]) that the 2-torsion of J(p) is an F2-vector space of dimension

p − 1 spanned by the di’s, which are only subject to the linear relation
∑p

i=1 di = [0]. It follows

that the 2-torsion field Kp(J(p)[2]) = Kp ({βi}) = Kp

(
p
√

1/4
)

has degree p over Kp, so for ` = 2

and n = 1 the ratio `n rank MT(A)
/

[K(A[`n]) : K] is given by

2rank MT(A)

[K(J(p)[2]) : K]
=

2(p+1)/2

p
=

2dim J(p)+1

2 dimJ(p) + 1
,

which shows in particular that, as claimed in the introduction, the optimal bound on the quantity

`n rank MT(A)
/

[K(A[`n]) : K] grows at least exponentially in the dimension of A.



Chapter 6

On the `-adic Galois representations

attached to nonsimple abelian

varieties

6.1 Introduction

Let K be a field finitely generated over its prime subfield, and let A be an abelian variety over K.

The action of the absolute Galois group of K on the various Tate modules T`A (for ` 6= charK)

gives a (compatible) family of `-adic representations of the absolute Galois group of K, and most of

the relevant information is encoded neatly in a certain family of algebraic groups (denoted H`(A)

in what follows, cf. definitions 6.2.5 and 6.5.5). It is thus very natural to try and understand the

Galois action on nonsimple varieties in terms of the groups H`; the main results of this chapter

are several sufficient criteria for the equality H`(A × B) ∼= H`(A) × H`(B) to hold. We start by

discussing the case charK = 0, which is technically simpler, and prove for example the following

`-adic version, and mild generalization, of a Hodge-theoretical result of Hazama [36]:

Theorem 6.4.1. Let K be a finitely generated field of characteristic zero, A1 and A2 be K-abelian

varieties, and ` be a prime number. For i = 1, 2 let hi be the Lie algebra of H`(Ai). Suppose that

the following hold:

1. for i = 1, 2, the algebra hi is semisimple, so that we can write hi ⊗ Q`
∼= hi,1 ⊕ · · · ⊕ hi,ni,

where every hi,j is simple;

2. for i = 1, 2, there exists a decomposition V`(Ai)⊗Q`
∼= Vi,1 ⊕ · · · ⊕ Vi,ni such that the action

of hi ⊗Q`
∼= hi,1 ⊕ · · · ⊕ hi,ni on Vi,1 ⊕ · · · ⊕ Vi,ni is componentwise and hi,j acts faithfully on

Vi,j;

3. for all distinct pairs (i, j) and (i′, j′) for which there exists an isomorphism ϕ : hi,j → hi′,j′

there is an irreducible hi,j-representation W such that all simple hi,j-submodules of Vi,j and

of ϕ∗
(
Vi′,j′

)
are isomorphic to W , and the highest weight defining W is stable under all

automorphisms of hi,j.

161
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Then either HomK(A1, A2) 6= 0 or H`(A1 ×A2) ∼= H`(A1)×H`(A2).

From this theorem we deduce many easily applicable criteria, including for example the following

result on low-dimensional abelian varieties.

Corollary 6.4.5. Let K be a finitely generated subfield of C and A1, . . . , An be absolutely simple

K-abelian varieties of dimension at most 2, pairwise non-isogenous over K. Let k1, . . . , kn be

positive integers and A be a K-abelian variety that is K-isogenous to
∏n
i=1A

ki
i . Then we have

H` (A) ∼=
∏n
i=1H`(Ai), and the Mumford-Tate conjecture holds for A.

On the other hand, as the conditions in theorem 6.4.1 are often not easy to check, it would be

desirable to describe families of abelian varieties for which they are known to hold; in this direction

we prove a result inspired by a paper of Ichikawa [44], where a sufficient criterion is given for the

equality H(A×B) ∼= H(A)×H(B) to hold for the Hodge groups of complex abelian varieties. The

criterion is expressed in terms of the relative dimensions of the factors:

Definition 6.1.1. Let K be any field and A be an absolutely simple K-abelian variety, so that

End0
K

(A) = EndK(A) ⊗Z Q is a division algebra, with center a number field E (either totally real

or CM). The degree of End0
K

(A) over E is a perfect square, which we write as d2; by type of A we

mean the type of End0
K

(A) in the Albert classification. The relative dimension of A is then given

by

reldim(A) =


dimA

de
, if A is of type I, II or III

2 dimA

de
, if A is of type IV

Note that d = 1 if A is of type I, and d = 2 if A is of type II or III.

A Ribet-style lemma (proved in section 6.3) that slightly generalizes results found in the literature,

combined with techniques due to Pink [98] and Larsen-Pink [57], allows us to prove the following

`-adic analogue of Ichikawa’s theorem, which has exactly the same form as the corresponding Hodge-

theoretical result:

Theorem 6.4.7. Let K be a finitely generated field of characteristic zero and A′i, A
′′
j (for i = 1, . . . , n

and j = 1, . . . ,m) be absolutely simple K-abelian varieties of odd relative dimension that are pairwise

non-isogenous over K. Suppose every A′i is of type I, II or III in the sense of Albert, and every A′′j
is of type IV. Let A be a K-abelian variety that is K-isogenous to

∏n
i=1A

′
i ×
∏m
j=1A

′′
j : then

H` (A) ∼=
n∏
i=1

H`

(
A′i
)
×H`

 m∏
j=1

A′′j

 .

In section 6.5 we then discuss to which extent the previous results apply to finitely generated fields

of positive characteristic. It turns out that in this setting the most natural definition of H`(A)

is different, and that some additional technical hypotheses must be added to our main results.

Theorems 6.5.7 and 6.5.9 are positive-characteristic versions of theorems 6.4.1 and 6.4.7 respectively;

they are slightly weaker than their characteristic-zero counterparts, but are still qualitatively very

similar.
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Finally, in section 6.6 we apply our results to nonsimple varieties of dimension at most 5 defined over

finitely generated subfields of C; by studying the product structure of H` we prove the Mumford-

Tate conjecture for most such varieties, and in all cases we are able to reproduce in the arithmetical

setting results obtained in [82] for their Hodge group. Note that [82] makes ample use of compactness

arguments (for real semisimple groups) that are not available in the `-adic context and thus need

to be replaced in our setting.

6.2 Preliminaries

6.2.1 Notation

Throughout the chapter the letter A will be reserved for an abelian variety defined over a field K,

which we suppose to be finitely generated (over its prime subfield). A field K will be said to be a

“finitely generated subfield of C” if it is finitely generated over Q and a distinguished embedding

σ : K ↪→ C has been fixed. If A is an abelian variety defined over a finitely generated subfield of

C, we will write AC for the base-change of A to C along σ; the symbol V (A) will then denote the

first homology group H1 (AC(C),Q). We will also denote ` a prime number, and write V`(A) for

T`(A)⊗Q`, where T`(A) is as usual the `-adic Tate module of A.

If G is an algebraic group we shall write Gder for its derived subgroup, Z(G) for the connected

component of its center, and G0 for the connected component of the identity; when h is a reductive

Lie algebra we shall write hss for its semisimple part. Finally, if ϕ : g → h is a morphism of Lie

algebras and ρ : h→ gl(V ) is a representation of h, we denote ϕ∗(V ) the representation ρ ◦ ϕ of g.

Definition 6.2.1. When h is a classical Lie algebra (i.e. of Lie type Al, Bl, Cl, or Dl), we call

standard representation of h the one coming from the defining representation of the correspond-

ing algebraic group. It is in all cases the representation with highest weight ω1 (in the notation of

Bourbaki [18, Planches I-IV]).

6.2.2 The Hodge group

We now briefly recall the notion of Hodge group of an abelian variety (defined over an arbitrary

subfield F of C), referring the reader to [79] for more details. To stress that F need not be finitely

generated, we depart from our standard notation A and denote X an abelian variety defined over F ;

we denote XC the base-change of X to C. The Q-vector space V (X) = H1 (XC(C),Q) is naturally

endowed with a Hodge structure of type (−1, 0) ⊕ (0,−1), that is, a decomposition of C-vector

spaces V (X)⊗ C ∼= V (X)−1,0 ⊕ V (X)0,−1 such that V (X)−1,0 = V (X)0,−1.

Let µ∞ : Gm,C → GL (V (X)C) be the unique cocharacter such that z ∈ C∗ acts as multiplication

by z on V (X)−1,0 and trivially on V (X)0,−1. The Mumford-Tate group of X is the Q-Zariski

closure of the image of µ∞, that is to say the smallest Q-algebraic subgroup MT(X) of GL(V (X))

such that µ∞ factors through MT(X)C. It is not hard to show that MT(X) contains the torus of

homotheties in GL(V (X)).

Definition 6.2.2. The Hodge group of X is H(X) = (MT(X) ∩ SL(V (X)))0.
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Remark 6.2.3. The group MT(X) can be recovered from the knowledge of H(X): indeed, MT(X)

is the almost-direct product of Gm and H(X) inside GL(V (X)), where Gm is the central torus of

homotheties.

It is well known that the group H(X) is connected and reductive, and that there is an isomorphism

End0
F

(X) ∼= End(V (X))H(X). Moreover, if λ is a polarization of XC and ϕ is the bilinear form

induced on V (X) by λ, the group H(X) is contained in Sp(V (X), ϕ). It is also easy to show that

when the F -abelian varieties X1 and X2 are isogenous over C the groups H(X1) and H(X2) are

isomorphic, and that when XC has no simple factor of type IV the group H(X) is semisimple.

Finally, we also have some information on the behaviour of H(X) with respect to products:

Proposition 6.2.4. Let F be a subfield of C and X1, X2 be abelian varieties defined over F . The

group H(X1 ×X2) is contained in H(X1)×H(X2), and it projects surjectively on both factors.

Let X1, . . . , Xk be absolutely simple F -abelian varieties that are pairwise non-isogenous over C, and

let n1, . . . , nk be positive integers. The groups H(Xn1
1 × · · · × Xnk

k ) and H(X1 × · · · × Xk) are

isomorphic.

6.2.3 The groups H`(A)

Let now K be a finitely generated field of characteristic zero, A be an abelian variety defined over

K, and ` be a prime number; recall that we set V`(A) = T`(A) ⊗ Q`. The action of Gal
(
K/K

)
on the torsion points of A induces a representation ρ` : Gal

(
K/K

)
→ GL(V`(A)) ∼= GL2 dimA(Q`);

the Zariski closure of the image of ρ` is called the algebraic monodromy group at `, and is

denoted G`(A). As in the Hodge-theoretical case, it is known that G`(A) contains the homotheties

(Bogomolov [13]), so that G`(A) is determined by its intersection with SL(V`(A)). This intersection

is our main object of study.

Definition 6.2.5. Let K be a finitely generated field of characteristic zero and A be a K-abelian

variety. We set H`(A) = (G`(A) ∩ SL(V`(A)))0.

Suppose now that we have fixed an embedding K ↪→ C, so that we can speak of the Hodge group

of A. The Mumford-Tate conjecture predicts that the group H`(A) should be an `-adic analogue

of H(A), and the two groups are indeed known to share many important properties. It is clear by

definition thatH`(A) is connected; furthermore, by the comparison isomorphism of étale cohomology

we can write V`(A) ∼= V (A)⊗Q Q`, and since V (A) is equipped with a bilinear form ϕ (induced by

a polarization) we obtain by extension of scalars a bilinear form ϕ` on V`(A). It is then possible to

show that the inclusion H`(A) ⊆ Sp(V`(A), ϕ`) holds.

Deeper properties of H`(A) are intimately related to Tate’s conjecture for abelian varieties, and we

summarize them in the following theorem:

Theorem 6.2.6. (Faltings [26], [27]) Let K be a finitely generated field of characteristic zero, ` be

a prime number, and A,B be K-abelian varieties. Then G`(A) is a reductive group, and we have

HomQ`[G`(A×B)] (V`(A), V`(B)) ∼= HomK(A,B)⊗Q`.

In particular we have End(V`(A))G`(A) ∼= EndK(A)⊗Z Q`.
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Corollary 6.2.7. Let K be a finitely generated field of characteristic zero, A and B be abelian

varieties defined over K, ` be a prime number, and h` be the Lie algebra of H`(A × B). Suppose

Homh` (V`(A), V`(B)) 6= 0: then HomK(A,B) 6= 0.

Proof. There is a finite extension K ′ of K such that the Zariski closure G` of the image of the repres-

entation Gal
(
K ′/K ′

)
→ Aut (V`(A×B)) is connected. We want to show that HomK′(A,B) 6= 0.

By the previous theorem it is enough to prove that HomQ`[G`] (V`(A), V`(B)) is nontrivial. As G`

is connected, an element of Hom (V`(A), V`(B)) is G`-equivariant if and only if it is equivariant

for the action of the Lie algebra g` of G`. On the other hand, we know there is an isomorphism

g` ∼= h` ⊕Q`, where the factor Q` corresponds to the homotheties. Since any linear map commutes

with the action of the homotheties we have HomQ`[G`] (V`(A1), V`(A2)) ∼= Homh` (V`(A1), V`(A2)),

and the latter space is nontrivial by hypothesis. Thus HomK′ (A1, A2), and a fortiori HomK (A1, A2),

are both nontrivial.

Notice furthermore that the group H`(A) is unchanged by finite extensions of the base field K, and

that if A,B are K-abelian varieties that are K-isogenous we have H`(A) ∼= H`(B).

Moreover, H`(A) is semisimple when AK does not have any simple factor of type IV (the proof of

this fact being the same as for Hodge groups, cf. again [79], especially proposition 1.24), and it has

the same behaviour as H(A) with respect to products:

Proposition 6.2.8. Let K be a finitely generated field of characteristic zero and A1, A2 be K-abelian

varieties. The group H`(A1 × A2) is contained in H`(A1)×H`(A2), and it projects surjectively on

both factors.

Let A1, . . . , Ak be absolutely simple K-abelian varieties that are pairwise non-isogenous over K,

and let n1, . . . , nk be positive integers. The groups H`(A
n1
1 × · · · ×A

nk
k ) and H`(A1 × · · · ×Ak) are

isomorphic.

We also have some information about the structure of V`(A) as a representation of H`(A):

Theorem 6.2.9. (Pink, [98, Corollary 5.11]) Let K be a finitely generated field of characteristic

zero, A be a K-abelian variety, ` be a prime number, and h`(A) be the Lie algebra of H`(A). Write

h`(A) ⊗ Q`
∼= c ⊕

⊕n
i=1 hi, where c is abelian and each hi is simple. Let W be a simple submodule

of V`(A)⊗Q` for the action of (h`(A)⊗Q`), decomposed as W ∼= C ⊗
⊗n

i=1Wi, where each Wi is

a simple module over hi and C is a 1-dimensional representation of c. Then:

1. each hi is of classical type (i.e. of Lie type Al, Bl, Cl or Dl for some l);

2. if Wi is nontrivial, then the highest weight of hi in Wi is minuscule.

Remark 6.2.10. This theorem is stated in [98] only for number fields. The version for finitely

generated fields follows easily by a specialization argument (cf. also proposition 6.2.11 below).

For the reader’s convenience and future reference, we reproduce the full list of minuscule weights

for classical Lie algebras, as given for example in [18] (Chapter 8, Section 3 and Tables 1 and 2);

the last column of this table contains +1 if the corresponding representation is orthogonal, −1 if it

is symplectic, and 0 if it is not self-dual.
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Root system Minuscule weight Dimension Duality properties

Al (l ≥ 1) ωr, 1 ≤ r ≤ l
(
l + 1

r

) (−1)r, if r =
l + 1

2

0, if r 6= l + 1

2

Bl (l ≥ 2) ωl 2l
+1, if l ≡ 3, 0 (mod 4)
−1, if l ≡ 1, 2 (mod 4)

Cl (l ≥ 3) ω1 2l −1

Dl (l ≥ 4)

ω1 2l +1

ωl−1, ωl 2l−1
+1, if l ≡ 0 (mod 4)
−1, if l ≡ 2 (mod 4)
0, if l ≡ 1 (mod 2)

Table 6.1: Minuscule weights

6.2.4 Known results towards the Mumford-Tate conjecture

Let K be again a field finitely generated over Q, and A be an abelian variety over K. Fix any

embedding σ : K ↪→ C, so that we can regard K as a subfield of C, and the Mumford-Tate and

Hodge groups of A are defined. The celebrated Mumford-Tate conjecture predicts that the equality

G`(A)0 = MT(A) ⊗ Q` should hold for every prime `; equivalently, for every A and ` we should

have H`(A) ∼= H(A)⊗Q`. Note that both sides of this equality are invariant under finite extensions

of K and isogenies: in particular, if A and B are K-abelian varieties that are K-isogenous, the

conjecture holds for A if and only if it holds for B.

Even though the general case of the conjecture is still wide open, many partial results have proven,

and we shall now recall a number of them that we will need in what follows. Let us start with the

following proposition, which allows a reduction of the problem to the case of K being a number

field:

Proposition 6.2.11. (Serre, Noot, [91, Proposition 1.3]) Let ` be a prime, K be a finitely generated

subfield of C and A be a K-abelian variety. There exist a number field L, a specialization B of A

over L, and identifications H1(AC(C),Q) ∼= H1(BC(C),Q) and T`(A) ∼= T`(B) (compatible with the

comparison isomorphism in étale cohomology) such that MT(A) = MT(B) and G`(A) = G`(B)

under the given identifications.

This proposition implies in particular that most results which are known for number fields and

depend on a single prime ` automatically propagate to finitely generated subfields of C. This

applies to all the theorems we list in this section, some of which were originally stated only for

number fields.

Theorem 6.2.12. (Piatetskii-Shapiro, Borovoi, Deligne [23, I, Proposition 6.2]) Let K be a finitely

generated subfield of C and A be a K-abelian variety. For every prime ` we have the inclusion

G`(A)0 ⊆ MT(A)⊗Q`.

Theorem 6.2.13. (Pink, [59, Theorem 4.3]) Let K be a finitely generated subfield of C and A be

a K-abelian variety. Suppose that the equality rk(H(A)) = rk(H`(A)) holds for one prime `: then
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H`(A) = H(A) ⊗ Q` holds for every prime `. In particular, if the Mumford-Tate conjecture holds

for one prime, then it holds for every prime.

Theorem 6.2.14. (Vasiu, [137, Theorem 1.3.1]; cf. also Ullmo-Yafaev, [135, Corollary 2.11]) Let

K be a finitely generated subfield of C and A be a K-abelian variety. For every prime ` we have

Z(H`(A)) ∼= Z(H(A)) ⊗ Q`. In particular, the Mumford-Tate conjecture is true for CM abelian

varieties.

Remark 6.2.15. The CM case of the Mumford-Tate conjecture was first proved by Pohlmann [101].

The following proposition follows immediately upon combining the previous three theorems:

Proposition 6.2.16. Let K be a finitely generated subfield of C and A be a K-abelian variety.

Suppose that for one prime number ` we have rk(H(A)der) ≤ rk(H`(A)der): then the Mumford-Tate

conjecture holds for A. The same is true if (for some prime `) we have rkH(A) ≤ rkH`(A).

In a different direction, many results are known for absolutely simple abelian varieties of specific

dimensions:

Theorem 6.2.17. (Serre, [119]) The Mumford-Tate conjecture is true for elliptic curves (over

finitely generated subfields of C).

Theorem 6.2.18. (Tanke’ev, Ribet, [112, Theorems 1, 2 and 3]) The Mumford-Tate conjecture is

true for absolutely simple abelian varieties of prime dimension (over finitely generated subfields of

C).

Theorem 6.2.19. (Moonen, Zarhin, [80]) Let K be a finitely generated subfield of C and A be

an absolutely simple K-abelian variety of dimension 4. If EndK(A) 6= Z, then the Mumford-Tate

conjecture holds for A. If EndK(A) = Z, then either for all primes ` we have H`(A) ∼= Sp8,Q` and

Mumford-Tate holds for A, or else for all ` the group H`(A) is a Q`-form of SL3
2.

Remark 6.2.20. The preprint [155] announces a proof of the Mumford-Tate conjecture for absolutely

simple abelian fourfolds A with EndK(A) = Z. In what follows we shall not need this fact, whose

only effect would be to slightly simplify the statement of proposition 6.6.2.

There are some common elements to the proofs of all the dimension-specific results we just listed,

and we shall try to capture them in definition 6.2.22 below. We now try to motivate this definition.

As the group H`(A) is reductive and connected, most of its structure is encoded by the Q`-Lie

algebra h`(A) = Lie(H`(A)); extending scalars to Q`, the Lie algebra h`(A) ⊗ Q` can be written

as c ⊕
⊕n

i=1 hi, with c abelian and each hi simple. The proofs of theorems 6.2.17 and 6.2.18 yield

information about the structure of this Lie algebra:

Proposition 6.2.21. Let K be a finitely generated subfield of C and A/K be an absolutely simple

abelian variety whose dimension is either 1 or a prime number. Fix a prime ` and let h`(A) be the

Lie algebra of H`(A). Suppose A is not of type IV. Then the following hold:

• the Lie algebra h`(A)⊗Q` admits a decomposition h1 ⊕ · · · ⊕ hn, where each simple factor hi

is of Lie type spk for some k;
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• for each i = 1, . . . , n there exists a (not necessarily simple) hi-module Wi such that V`(A)⊗Q`

is isomorphic to W1⊕· · ·⊕Wn, the action of h1⊕ . . .⊕hn on W1⊕· · ·⊕Wn is componentwise,

and hi acts faithfully on Wi;

• every module Wi is a direct sum of copies of the standard representation of hi (cf. definition

6.2.1).

Trying to isolate the essential features of this proposition, and taking into account theorem 6.2.9,

we are led to the following definition:

Definition 6.2.22. Let K be a finitely generated field of characteristic zero, A/K be an abelian

variety, and h`(A) be the Lie algebra of H`(A). We can write h`(A)⊗Q`
∼= c⊕ h1⊕ · · · ⊕ hn, where

c is abelian and each factor hi is simple and (by theorem 6.2.9) of classical type. We say that A

is of general Lefschetz type if it is absolutely simple, not of type IV, and for every prime ` the

following hold:

1. for each i = 1, . . . , n there exists a (not necessarily simple) hi-module Wi such that V`(A)⊗Q`

is isomorphic to W1 ⊕ · · · ⊕ Wn, where the action of h1 ⊕ . . . ⊕ hn on W1 ⊕ · · · ⊕ Wn is

componentwise, and hi acts faithfully on Wi;

2. if the simple Lie algebra hi is of Lie type Al, the rank l is odd and Wi is a direct sum of copies

of
∧ l+1

2 Std, where Std is the standard representation of hi (cf. definition 6.2.1);

3. if the simple algebra hi is of Lie type Bl, the module Wi is a direct sum of copies of the (spinor)

representation defined by the highest weight ωl (in the notation of [18, Planches I-IV]);

4. if the simple algebra hi is of Lie type Cl or Dl, the module Wi is a direct sum of copies of the

standard representation of hi.

Remark 6.2.23. As proved in [87, Lemma 2.3], when A is a complex abelian variety of type I or II

the action of the Lefschetz group of A on V (A)⊗ C has precisely this structure.

Several instances of this situation have been studied, for example in a series of papers by Banaszak,

Gajda and Krasoń. Among various other results, for abelian varieties of type I and II they prove:

Theorem 6.2.24. (Theorems 6.9 and 7.12 of [6]) Let K be a finitely generated subfield of C and

A/K be an absolutely simple abelian variety of type I or II. Suppose that h = reldim(A) is odd: then

for every prime ` the simple factors of H`(A)⊗Q` are of type Sp2h. Furthermore, the Mumford-Tate

conjecture holds for A.

Remark 6.2.25. It is clear from the proof of [6, Lemma 4.13] that any variety as in the previous

statement is of general Lefschetz type. Moreover, the result also holds for h = 2: this is not stated

explicitly in [6], but follows essentially from the same proof (cf. also [21, Theorem 8.5], which covers

the case of abelian fourfolds of relative dimension 2).

Another paper by the same authors, [8], deals with varieties of type III:
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Proposition 6.2.26. Let K be a finitely generated subfield of C and A/K be an absolutely simple

abelian variety of type III. Suppose that h = reldim(A) is odd: then for every ` the simple factors of

(LieH`(A))⊗Q` are either of type so2h or of type sll+1, where l + 1 is a power of 2. Furthermore,

A is of general Lefschetz type.

Remark 6.2.27. Note that the authors of [8] claim a stronger statement, namely the fact that the

simple factors of H`(A) ⊗ Q` can only be of type SO2h and that, under the same hypotheses,

Mumford-Tate holds for A. The proof of [8, Lemma 4.13], however, fails to take into account the

minuscule orthogonal representations whose dimension is congruent to 2 modulo 4 (those corres-

ponding to algebras of type sll+1 acting on Λ
l+1
2 Std, when l ≥ 3 and l + 1 is a power of 2); as a

result, the statements of [8, Theorems 4.19 and 5.11] need to be amended as we did in proposition

6.2.26.

6.3 Preliminary lemmas

We now start proving some lemmas on algebraic groups and Lie algebras we will repeatedly need

throughout the chapter.

Lemma 6.3.1. Let G ↪→ G1 ×G2 be an inclusion of algebraic groups over a field of characteristic

zero. Suppose that G,G1 and G2 are reductive and connected, and that the projections of G on G1

and G2 are surjective. If rkG equals rk(G1) + rk(G2), then the inclusion is an isomorphism.

Proof. We show that G is open and closed in G1×G2. It is closed because every algebraic subgroup

is, and it is open since G and G1 ×G2 have the same Lie algebra by [35, Lemma 3.1].

Lemma 6.3.2. Let G be a Q-simple algebraic group. If G is semisimple and the number of simple

factors of GQ is at most 3, then there is a set of primes L of positive density such that for every `

in L the group GQ` is simple.

Proof. Let n be the number of simple factors of GQ; if n = 1 there is nothing to prove, so we can

assume n is 2 or 3. The permutation action of Gal
(
Q/Q

)
on the simple factors of GQ determines

a map ρ : Gal
(
Q/Q

)
→ Sn, and the assumption that G is Q-simple implies that the image of

ρ is a transitive subgroup of Sn. As n ≤ 3, we see that the image of ρ contains an n-cycle g.

By the Chebotarev density theorem there exists a set of primes L of positive density such that

ρ
(
Gal

(
Q`/Q`

))
contains g; in particular, for any such ` the group Gal

(
Q`/Q`

)
acts transitively on

the simple factors of GQ` , so GQ` is Q`-simple.

Lemma 6.3.3. Let K be a finitely generated subfield of C and A,B be K-abelian varieties. Suppose

B is CM and H(A × B) ∼= H(A) ×H(B). Then we have H`(A × B) ∼= H`(A) ×H`(B) for every

prime `.

Proof. Using the hypothesis and applying theorem 6.2.14 twice we find

rkZ (H` (A×B)) = rkZ (H (A×B))

= rkZ (H (A)) + rkZ (H (B))

= rkZ (H` (A)) + rkZ (H` (B)) .
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Furthermore, as H`(B) is a torus, the canonical projection H`(A×B)→ H`(A) induces an isogeny

H`(A × B)der ∼= H`(A)der, hence rkH`(A × B)der = rkH`(A)der. Putting these facts together we

get rkH`(A × B) = rkH`(A) + rkH`(B), so the inclusion H`(A × B) ↪→ H`(A) × H`(B) is an

isomorphism by lemma 6.3.1.

The next lemma is certainly well-known to experts (a somewhat similar statement is for example

[116, Théorème 7], which deals with the case of elliptic curves), but for lack of an accessible reference

we include a short proof:

Lemma 6.3.4. Let K be a finitely generated subfield of C and A,B be K-abelian varieties. Suppose

B is of CM type and AK has no simple factor of type IV. Then we have H(A×B) ∼= H(A)×H(B),

and for every prime ` we also have H`(A×B) ∼= H`(A)×H`(B).

Proof. The same proof works for both the Hodge group and the group H`, so let us only treat the

former. The canonical projections H(A × B) → H(A) and H(A × B) → H(B) induce isogenies

H(A×B)der ∼= H(A)der and Z(H(A×B)) ∼= Z(H(B)), so we have

rkH(A×B) = rkH(A×B)der + rkZ(H(A×B)) = rkH(A)der + rkZ(H(B)) = rkH(A) + rkH(B)

and we conclude by lemma 6.3.1.

Lemma 6.3.5. Let K be a finitely generated subfield of C and A,B be K-abelian varieties. Suppose

that Mumford-Tate holds for A, and that B is CM. Then Mumford-Tate holds for A×B.

Proof. Let ` be a prime number. As in the previous lemma we have rkH`(A×B)der = rkH`(A)der

and rkH(A × B)der = rkH(A)der. Since the Mumford-Tate conjecture holds for A, we deduce

rkH`(A × B)der = rkH`(A)der = rkH(A)der = rkH(A × B)der, and the lemma follows from pro-

position 6.2.16.

Lemma 6.3.6. Let K be a finitely generated subfield of C and A1, . . . , An be K-abelian varieties.

Suppose that Mumford-Tate holds for every Ai, and that the equality H` (
∏n
i=1Ai) =

∏n
i=1H`(Ai)

holds for a given prime `. Then the Mumford-Tate conjecture holds for
∏n
i=1Ai.

Proof. The hypothesis implies

rkH`

(
n∏
i=1

Ai

)
=

n∑
i=1

rkH`(Ai) =
n∑
i=1

rkH(Ai) ≥ rkH

(
n∏
i=1

Ai

)
,

and the lemma follows from proposition 6.2.16.

One of the most important ingredients in our proofs is the following lemma, part of which is

originally due to Ribet. The statement we give here is close in spirit to [80, Lemma 2.14], but our

version is even more general.

Lemma 6.3.7. Let C be an algebraically closed field of characteristic zero and V1, . . . , Vn be finite-

dimensional C-vector spaces. Let gl(Vi) be the Lie algebra of endomorphisms of Vi and let g be a

Lie subalgebra of gl(V1) ⊕ · · · ⊕ gl(Vn). For each i = 1, · · · , n let πi :
⊕n

j=1 gl(Vj) → gl(Vi) be the

i-th projection and let gi = πi(g). Suppose that each gi is a simple Lie algebra and that one of the

following conditions holds:
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(a) For every pair of distinct indices i, j the projection πi ⊕ πj : g→ gi ⊕ gj is onto.

(b) For all indices i 6= j for which there is an isomorphism ϕ : gi → gj we have the following:

1. there is an irreducible gi-representation W such that all simple gi-submodules of Vi and

of ϕ∗ (Vj) are isomorphic to W , and the highest weight defining W is stable under all

automorphisms of gi;

2. let I =
{
k ∈ {1, . . . , n}

∣∣ gk ∼= gi
}

; the equality Endg

(⊕
k∈I Vk

) ∼= ∏k∈I Endgk Vk holds.

Then g =
n⊕
j=1

gj.

Remark 6.3.8. As inner automorphisms preserve every highest weight, in condition (b1) one only

needs to check the action of the outer automorphisms (which are finite in number, up to inner

automorphisms, since they correspond to automorphisms of the Dynkin diagram). In particular,

our conditions (b) generalize those given in [80, Lemma 2.14].

Proof. The fact that (a) implies the desired equality is classical, cf. the Lemma on pages 790-791

of [109]. Thus it suffices to show that (b) implies (a). Let us fix a pair (i, j) and consider the

projection πi ⊕ πj : g → gi ⊕ gj . Let h be the image of this projection and k be ker (h→ gi).

Since k can be identified to an ideal of gj (which is simple), we either have k ∼= gj , in which case

h ∼= gi ⊕ gj as required, or k = {0}, in which case h is the graph of an isomorphism gi ∼= gj ; it is

this latter possibility that we need to exclude. If gi and gj are not isomorphic there is nothing to

prove, so let us assume gi ∼= gj , and suppose by contradiction that h is the graph of an isomorphism

ϕ : gi → gj . Let ρi : gi → gl(Vi) and ρj : gj → gl(Vj) be the tautological representations of gi, gj .

By assumption (b1), the simple gi-subrepresentations of ρi and ρj ◦ϕ are isomorphic, so there exists

a nonzero morphism of gi-representations χij : Vi → Vj . Equivalently, χij is h-equivariant (recall

that h is the graph of ϕ). Setting I =
{
k ∈ {1, . . . , n}

∣∣ gk ∼= gi
}

, the map

Ψ :
⊕
k∈I

Vk →
⊕
k∈I

Vk

(vi1 , · · · , vi︸︷︷︸
factor Vi

, · · · , vi|I|) 7→ (0, · · · , χij(vi)︸ ︷︷ ︸
factor Vj

, · · · , 0)

then belongs to Endg

(⊕
k∈I Vk

)
, but does not send every factor to itself, so it is not an element of∏

k∈I Endgk (Vk). This contradicts condition (b2), so g → gi ⊕ gj must be onto, and therefore (b)

implies (a) as required.

Proposition 6.3.9. Let K be a finitely generated field of characteristic zero, A,B be K-abelian

varieties and ` be a prime number. Suppose at least one among H`(A) and H`(B) is semisimple,

and no simple factor of Lie(H`(A))ss ⊗ Q` is isomorphic to a simple factor of Lie(H`(B))ss ⊗ Q`:

then H`(A×B) ∼= H`(A)×H`(B).

Proof. Up to interchanging A and B we can assume that H`(A) is semisimple: the projection

H`(A×B)� H`(B) then induces an isogeny Z(H`(A×B)) ∼= Z(H`(B)).
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Next consider the semisimple ranks. Let h, hA and hB be the Lie algebras Lie(H`(A×B))ss ⊗Q`,

Lie(H`(A))⊗Q` and Lie(H`(B))ss ⊗Q` respectively.

Write hA ∼= g1 ⊕ · · · ⊕ gn and hB ∼= gn+1 ⊕ · · · ⊕ gn+m, with every gi simple. We can consider h

as a subalgebra of
⊕n

i=1 gi ⊕
⊕m

j=1 gn+j that projects surjectively onto
⊕n

i=1 gi and
⊕m

j=1 gn+j . In

particular, h projects surjectively onto each simple factor gi.

Let us show that all the double projections h→ gi ⊕ gj are onto. If i, j are both at most n (or i, j

are both at least n+ 1) this is trivial, so we can assume i ≤ n < j. But then by assumption gi and

gj are nonisomorphic, so by the same argument as in the proof of lemma 6.3.7 the projection must

be surjective. Lemma 6.3.7 now gives h ∼= hA ⊕ hB, thus implying rk h = rk hA + rk hB. In terms of

groups this leads to

rkH`(A×B) = rkH`(A×B)der + rkZ(H`(A×B))

= rkH`(A)der + rkH`(B)der + rkZ(H`(B))

= rkH`(A) + rkH`(B),

and we conclude by lemma 6.3.1.

6.4 Sufficient conditions for H` to decompose as a product

6.4.1 An `-adic analogue of a theorem of Hazama

We are now ready to prove the following `-adic analogue (and mild generalization) of a Hodge-

theoretical result of Hazama ([36, Proposition 1.8]):

Theorem 6.4.1. Let K be a finitely generated field of characteristic zero, A1 and A2 be K-abelian

varieties, and ` be a prime number. For i = 1, 2 let hi be the Lie algebra of H`(Ai). Suppose that

the following hold:

1. for i = 1, 2, the algebra hi is semisimple, so that we can write hi ⊗ Q`
∼= hi,1 ⊕ · · · ⊕ hi,ni,

where every hi,j is simple;

2. for i = 1, 2, there exists a decomposition V`(Ai)⊗Q`
∼= Vi,1 ⊕ · · · ⊕ Vi,ni such that the action

of hi ⊗Q`
∼= hi,1 ⊕ · · · ⊕ hi,ni on Vi,1 ⊕ · · · ⊕ Vi,ni is componentwise and hi,j acts faithfully on

Vi,j;

3. for all distinct pairs (i, j) and (i′, j′) for which there exists an isomorphism ϕ : hi,j → hi′,j′

there is an irreducible hi,j-representation W such that all simple hi,j-submodules of Vi,j and

of ϕ∗
(
Vi′,j′

)
are isomorphic to W , and the highest weight defining W is stable under all

automorphisms of hi,j.

Then either HomK(A1, A2) 6= 0 or H`(A1 ×A2) ∼= H`(A1)×H`(A2).

Remark 6.4.2. Condition 3, as W is fixed under all automorphisms of gi,j (hence of gi′,j′), is actually

independent of the choice of ϕ.
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Proof. Let h be the Lie algebra of H`(A1×A2). We shall try to apply lemma 6.3.7 to the inclusion

h⊗Q` ↪→ (h1 ⊕ h2)⊗Q`, and distinguish cases according to whether hypothesis (b2) is satisfied or

not. Observe that h⊗Q` is a subalgebra of

(h1 ⊕ h2)⊗Q`
∼=

2⊕
i=1

ni⊕
j=1

hi,j ⊂
2⊕
i=1

ni⊕
j=1

gl (Vi,j)

whose projection on each factor gl (Vi,j) is isomorphic to hi,j , hence simple. Moreover, hypothesis

3 of this theorem implies condition (b1) of lemma 6.3.7. Suppose now that (b2) holds as well:

then h ⊗ Q`
∼= (h1 ⊕ h2) ⊗ Q`, hence in particular rk h = rk h1 + rk h2, and lemma 6.3.1 implies

H`(A1 × A2) ∼= H`(A1) × H`(A2). Suppose on the other hand that (b2) fails: then there exists a

nontrivial endomorphism ϕ in

Endh⊗Q`

 2⊕
i=1

ni⊕
j=1

Vi,j

 \ 2⊕
i=1

ni⊕
j=1

Endhi,j (Vi,j) .

Since the action of hi ⊗ Q` on V`(Ai) ⊗ Q`
∼=
⊕ni

j=1 Vi,j is componentwise for i = 1, 2, it is clear

that ϕ does not belong to Endh1

(⊕n1
j=1 V1,j

)
× {0}, nor to {0} × Endh2

(⊕n2
j=1 V2,j

)
. Thus, up to

exchanging the roles of A1 and A2 if necessary, the map ϕ induces an (h⊗Q`)-equivariant morphism

from
⊕n1

j=1 V1,j to
⊕n2

j=1 V2,j : this implies that the space

Homh (V`,1, V`,2)⊗Q`
∼= Homh⊗Q`

(
V`,1 ⊗Q`, V`,2 ⊗Q`

)
is nontrivial. In particular, Homh (V`(A1), V`(A2)) 6= 0, and therefore HomK(A1, A2) is nontrivial

by corollary 6.2.7.

Remark 6.4.3. We now check to what extent the theorem can be applied to varieties A of general

Lefschetz type. It is clear that conditions 1 and 2 are satisfied, so let us discuss condition 3. Let

h be a simple constituent of LieH`(A)⊗Q`. By definition, the simple h-submodules of V`(A)⊗Q`

are all isomorphic to a single representation W . Let us distinguish cases according to the type of h:

• if h is of Lie type Al, then W is defined by the highest weight ω l+1
2

(recall that l is odd by

assumption), and is therefore stable under the unique nontrivial automorphism of the Dynkin

diagram of Al: condition 3 is satisfied;

• if h is of Lie type Bl or Cl, the Dynkin diagram does not have any nontrivial automorphisms,

hence all automorphisms of h are inner and fix the highest weight of W : condition 3 is again

satisfied;

• finally, if h is of Lie type Dl the module W is defined by the highest weight ω1. As long as

l 6= 4, the Dynkin diagram of Dl has a unique nontrivial automorphism, and it is immediate

to check that this automorphism fixes ω1: condition 3 is satisfied once more. Note however

that for l = 4 the Dynkin diagram has additional (triality) automorphisms, and that these do

not fix ω1, so condition 3 fails in this case.

Thus we conclude that every abelian variety A of general Lefschetz type satisfies the hypotheses of

the previous theorem unless LieH`(A)⊗Q` has a simple factor of Lie type D4.
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Corollary 6.4.4. Let K be a finitely generated subfield of C and A1, . . . , An be absolutely simple

abelian varieties defined over K, pairwise non-isogenous over K. Suppose that no Ai is of type IV,

and that the dimension of each Ai is either 2 or an odd number. Let k1, . . . , kn be positive integers

and A be a K-abelian variety that is K-isogenous to
∏n
i=1A

ki
i . Then we have an isomorphism

H` (A) ∼=
∏n
i=1H`(Ai), and the Mumford-Tate conjecture holds for A.

Proof. The Albert classification implies that every Ai is of type I or II (recall that in characteristic

zero there is no absolutely simple abelian surface of type III). As the three abelian varieties
∏n
i=1A

ki
i ,∏n

i=1Ai and A all have the same Hodge group and the same groups H`, there is no loss of generality

in assuming that k1 = · · · = kn = 1 and that A =
∏n
i=1Ai. The fact that H`(A1 × · · · × An) and

H`(A1)×· · ·×H`(An) are isomorphic then follows by induction from theorem 6.4.1, the hypotheses

being satisfied thanks to theorem 6.2.24 (and the remark following it). Lemma 6.3.6 then implies

that Mumford-Tate holds for A1 × · · · ×An.

Corollary 6.4.5. Let K be a finitely generated subfield of C and A1, . . . , An be absolutely simple

K-abelian varieties of dimension at most 2, pairwise non-isogenous over K. Let k1, . . . , kn be

positive integers and A be a K-abelian variety that is K-isogenous to
∏n
i=1A

ki
i . Then we have

H` (A) ∼=
∏n
i=1H`(Ai), and the Mumford-Tate conjecture holds for A.

Remark 6.4.6. Such a result is in a sense the best possible. There is an example – due to Shioda

[127] – of an absolutely simple threefold Y of CM type and a CM elliptic curve E such that

H(Y × E) 6= H(Y ) × H(E). By the Mumford-Tate conjecture in the CM case, this also means

H`(Y ×E) 6= H`(Y )×H`(E) (note that Y and E, being CM, can be defined over a number field).

Proof. As in the previous proof, we can assume k1 = · · · = kn = 1 and replace A by
∏n
i=1Ai. By

lemma 6.3.6, Mumford-Tate for A would follow from the isomorphism H` (A) ∼=
∏n
i=1H`(Ai), so

let us prove the latter. Up to renumbering, we can also assume that A1, . . . , Am are of type I or

II and Am+1, . . . , An are of type IV (since there are no absolutely simple abelian varieties of type

III of dimension at most 2). The classification of elliptic curves and simple surfaces implies that

Am+1, . . . , An are CM. Let A′ = A1×· · ·×Am and A′′ = Am+1×· · ·×An. As A′′ is CM and A′ has

no simple factor of type IV, lemma 6.3.4 gives H`(A
′ × A′′) ∼= H`(A

′)×H`(A
′′). It thus suffices to

prove the result when either A′ or A′′ is trivial. If A′′ is trivial the claim follows from corollary 6.4.4,

so we can assume A′ is trivial, in which case we have to show H` (
∏n
i=1Ai)

∼=
∏n
i=1H`(Ai) under

the additional assumption that every Ai is CM. Appealing to the Mumford-Tate conjecture in the

CM case, it is enough to show the corresponding statement for Hodge groups, which is exactly the

content of [103, Theorem 3.15].

6.4.2 A criterion in terms of relative dimensions

As promised in the introduction, we have the following `-adic analogue of a theorem proved by

Ichikawa in [44]:

Theorem 6.4.7. Let K be a finitely generated field of characteristic zero and A′i, A
′′
j (for i = 1, . . . , n

and j = 1, . . . ,m) be absolutely simple K-abelian varieties of odd relative dimension that are pairwise
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non-isogenous over K. Suppose every A′i is of type I, II or III in the sense of Albert, and every A′′j
is of type IV. Let A be a K-abelian variety that is K-isogenous to

∏n
i=1A

′
i ×
∏m
j=1A

′′
j : then

H` (A) ∼=
n∏
i=1

H`

(
A′i
)
×H`

 m∏
j=1

A′′j

 .

For the proof of this theorem we shall need the following result:

Proposition 6.4.8. Let K be a finitely generated field of characteristic zero, A/K be an absolutely

simple abelian variety of odd relative dimension and ` be a prime number. Write Lie(H`(A))⊗Q`

as c⊕ h1 ⊕ · · · ⊕ hn, where c is abelian and every hi is simple. Then

1. if A is of type I, II or III, then A satisfies all the hypotheses of theorem 6.4.1;

2. if A is of type IV, then the algebras hi are of type Al, where l + 1 is not a power of 2.

Proof. Let A be of type I, II or III. Then A is of general Lefschetz type by theorem 6.2.24 and

proposition 6.2.26, and again by proposition 6.2.26 the simple factors of Lie (H`(A))⊗Q` of ortho-

gonal type are of the form so2h with h odd, so none of them is of Lie type D4. Hence A satisfies

the hypotheses of theorem 6.4.1 by remark 6.4.3.

Let now A be of type IV. Let E be the center of the simple algebra End0
K

(A); set e = [E : Q] and

d2 =
[
End0

K
(A) : E

]
. We are first going to show the desired property for those primes that split

in E, and then extend the result to all primes through an interpolation argument based on the

techniques of [57]. Suppose therefore that ` is totally split in E. From the equality E⊗Q`
∼= Q[E:Q]

`

we get

End0
K

(A)⊗Q`
∼=

⊕
σ:E↪→C

Md(Q`),

so Schur’s lemma implies

V`(A)⊗Q`
∼=

⊕
σ:E↪→C

W⊕dσ ,

where each Wσ is simple of dimension 1
de dimQ`(V`(A)⊗Q`) = reldim(A). The action of H`(A) on

V`(A) is faithful, so for every i = 1, . . . , n there exists a σ : E ↪→ C (depending on i) such that

the action of hi is nontrivial on Wσ. Note that dim(Wσ) is odd. Let Wσ
∼= Z1 ⊗ · · · ⊗ Zn be the

decomposition of Wσ with respect to the action of h1 ⊕ · · · ⊕ hn; the module Zi is thus a nontrivial

minuscule representation of hi of odd dimension: since every minuscule module over an algebra of

type Bl, Cl, Dl is of even dimension (cf. table 1), we deduce that hi is of type Al for a certain l.

Furthermore, l + 1 cannot be a power of 2, since in that case every irreducible minuscule module

over Al is of even dimension. This shows our claim when ` is totally split.

Let us now consider the general case. Let ` be any prime, and p be a fixed prime that splits

completely in E. Let Φ` be the root system of
(
G`(A)⊗Q`

)der
, and let Φ0

` be the subset of Φ`

given by those roots that are short in their respective simple factors of
(
G`(A)⊗Q`

)der
. Note that

Φ0
p = Φp, since Φp only involves root systems of type Al (and such root systems do not possess

long roots). It is a theorem of Serre that the formal characters of the various G`(A), for varying

`, are all equal (see [98, Corollary 3.8]), and from [57, §4] (see also pp. 212-213 of [98]) we know
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that the formal character completely determines Φ0
` . Hence we have Φ0

` = Φ0
p =

⊕k
i=1Ani for

a certain k and for integers ni such that no ni + 1 is a power of 2; in particular, no ni equals

1. Write now Φ` =
⊕r

i=1Ri, where each Ri is a simple root system. It is easy to see that

A0
l = Al, B

0
l = lA1, C

0
l = Dl and D0

l = Dl, so the equality

k⊕
i=1

Ani = Φ0
p = Φ0

` =
r⊕
j=1

R0
j

implies – by uniqueness of the decomposition in simple root systems – that every root system Rj

is either of type Al or Bm (for some l,m). On the other hand, if one Rj were of type Bm, then the

right hand side of the above equality would contain B0
m = mA1, but no root system of type A1 can

appear on the left hand side by what we have already shown. This implies that every Rj is of type

Al (for some l), and the uniqueness of the decomposition shows that r = k and (up to renumbering

the indices) Rj = Anj . Hence the root system of G`(A)der is the same as that of Gp(A)der, and in

particular all the simple algebras hi are of Lie type Al, where l + 1 is not a power of 2.

Proof. (of Theorem 6.4.7) There is no loss of generality in assuming that A = A′ ×A′′, where

A′ =
n∏
i=1

A′i, A′′ =
m∏
j=1

A′′j .

Thanks to the previous proposition, theorem 6.4.1 and an immediate induction imply that H`(A
′)

is isomorphic to
∏n
i=1H`(A

′
i). Thus it is enough to show that H`(A) ∼= H`(A

′)×H`(A
′′), and this

follows from proposition 6.3.9: by the results of section 6.2.4, the simple factors of Lie (H`(A
′))⊗Q`

are either of type so, sp or sll+1 (with l+ 1 a power of 2), whereas by the previous proposition the

simple factors of Lie
(
H`(A

′′)der
)
⊗Q` are of type sll+1 (with l + 1 not a power of 2).

Remark 6.4.9. Notice that, as the rank of H`(A) is independent of `, knowing that part (2) of

proposition 6.4.8 holds for some prime ` would in fact be enough to prove theorem 6.4.7. Though

a weaker version of the proposition would be easier to show (since it would not require the second

part of the proof provided), we have preferred to give and employ the result in its stronger form

(applying to all primes), which we believe has some merit in itself.

6.5 Results in positive characteristic

We now discuss the situation of K being a field of positive characteristic, finitely generated over

its prime field, and we restrict ourselves to the primes ` 6= charK. If A is a K-abelian variety, we

denote G`(A) the Zariski closure of the natural Galois representation

ρ` : Gal (Ks/K)→ Aut (T`(A)) ,

where Ks is now a fixed separable closure of K.

The main difficulty in translating the results of the previous sections to this context is that if we

define H`(A) as (G`(A) ∩ SL(V`(A)))0, then this group might not capture any information about

A at all. The crucial problem is the failure of Bogomolov’s theorem in positive characteristic: for

general abelian varieties A/K, it is not true that G`(A) contains the torus of homotheties, and

therefore the intersection G`(A) ∩ SL(V`(A)) may very well be finite.
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Remark 6.5.1. A simple example of this phenomenon is given by an ordinary elliptic curve E over

a finite field Fq. Let Frq be the Frobenius automorphism of Fq; the image of ρ` is generated by the

image g of Frq, and as it is well known we have det ρ`(g) = q. Looking at the Lie algebra of G`(E),

it follows easily that this group is 1-dimensional and that H`(E) is the trivial group, so that no

information about E can be recovered from H`(E). This problem is studied in [154], where more

examples of this situation are given.

However, Zarhin has proved that a statement akin to Bogomolov’s theorem holds in positive char-

acteristic if we restrict ourselves to a certain (large) class of abelian varieties; more precisely, we

have the following result:

Theorem 6.5.2. ([150], Theorem 2 and Corollary 1) Let K be a finitely generated field of positive

characteristic and A be a K-abelian variety. Let ` be a prime different from char(K). There exist

a semisimple Lie algebra h and a 1-dimensional Lie algebra c such that LieG`(A) ∼= c⊕ h.

If furthermore no simple factor of AK is of type IV in the sense of Albert, then c ∼= Q` · Id is the

Lie algebra of the torus of homotheties.

Remark 6.5.3. Zarhin’s theorem is a rather direct consequence of the reductivity of G`(A) and of

Tate’s conjecture on homomorphisms. At the time of [150], these two facts had only been established

(by Zarhin himself, cf. [148] and [149]) under the assumption that charK is greater than 2, but

Mori [83] has subsequently lifted this restriction.

Remark 6.5.4. Let K be a finitely generated field of positive characteristic and E1, E2 be two elliptic

curves over K. Assume EndK(E1) and EndK(E1) are imaginary quadratic fields, and E1, E2 are

not isogenous over K. As E1 × E2 is CM, the group G`(E1 × E2) is abelian and therefore – by

Zarhin’s theorem – of dimension 1: this is in stark contrast with what happens in characteristic

zero, where H`(E1 × E2) ∼= H`(E1) ×H`(E2) is of dimension 2. In particular, we cannot hope for

an analogue of corollary 6.4.5 to hold in positive characteristic.

In view of Zarhin’s theorem and of the previous remarks, the most natural definition for H`(A) in

positive characteristic seems to be the following:

Definition 6.5.5. Let K be a finitely generated field of characteristic p > 0. For every prime `

different from p we set H`(A) =
(
G`(A)0

)der
.

Remark 6.5.6. When the characteristic of K is positive, Zarhin’s theorem implies that G`(A)der is

of codimension 1 in G`(A); this is not necessarily the case in characteristic zero. On the other hand,

as in characteristic zero, it is clear from definition 6.5.5 that H`(A × B) projects surjectively onto

H`(A) and H`(B).

Let us now restrict ourselves to abelian varieties A such that no simple factor of AK is of type IV.

In the proof of corollary 6.2.7 we can then replace Bogomolov’s theorem by Zarhin’s theorem, at

which point the argument used to show theorem 6.4.1 goes through essentially unchanged. Thus

for this class of abelian varieties we have:

Theorem 6.5.7. (cf. theorem 6.4.1) Let K be a finitely generated field of characteristic p > 0 and

A1, A2 be K-abelian varieties such that A1,K and A2,K have no simple factors of type IV. Let ` be

a prime number different from p, and suppose hypotheses 1 through 3 of theorem 6.4.1 are satisfied.

Then either HomK(A1, A2) 6= 0 or H`(A1 ×A2) ∼= H`(A1)×H`(A2).
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Remark 6.5.8. This theorem is strictly weaker than the corresponding result in characteristic zero,

in that there exist abelian varieties of type IV (over number fields) that satisfy all hypotheses of

theorem 6.4.1. Examples of such varieties include fourfolds of type IV(1,1) that support excep-

tional Weil classes, cf. [80]. On the other hand, the abelian varieties of corollary 6.4.4 satisfy the

hypotheses of the present weakened version, hence the corollary remains true when K is of positive

characteristic.

Let us now consider theorem 6.4.7. Its proof essentially relies on theorem 6.2.24 and proposition

6.2.26, which in turn only depend on Tate’s conjecture and on the minuscule weights conjecture

(theorem 6.2.9). As already remarked, the former is now known for arbitrary finitely generated

fields of positive characteristic, while the second has been shown by Zarhin ([152, Theorem 4.2])

under an additional technical assumption, namely that the abelian variety in question has ordinary

reduction in dimension 1 at all places of K with at most finitely many exceptions (cf. [152, Definition

4.1.0]; this is a condition weaker than being ordinary). Finally, for varieties of type IV we have

also exploited the fact that the formal character of G`(A)0 is independent of `: this statement too

is known for finitely generated fields of positive characteristic (see [151] and [58], Proposition 6.12

and Examples 6.2, 6.3), so proposition 6.4.8 is still valid in this context. Taking all these facts into

account we obtain:

Theorem 6.5.9. (cf. theorem 6.4.7) Let K be a finitely generated field of positive characteristic

and A′i, A
′′
j (for i = 1, . . . , n and j = 1, . . . ,m) be absolutely simple K-abelian varieties of odd

relative dimension that are pairwise non-isogenous over K. Suppose every A′i is of type I, II or

III in the sense of Albert, and every A′′j is of type IV. Finally, suppose that each A′i and each A′′j
has ordinary reduction in dimension 1 at all places of K with at most finitely many exceptions,

and let ` be a prime different from charK. Let A be a K-abelian variety that is K-isogenous to∏n
i=1A

′
i ×
∏m
j=1A

′′
j : then

H` (A) ∼=
n∏
i=1

H`

(
A′i
)
×H`

 m∏
j=1

A′′j

 .

6.6 Nonsimple varieties of dimension at most 5

Let once more K be a finitely generated subfield of C and A/K be an abelian variety. With the

results of the previous sections at hand it is a simple matter to compute, when A/K is of dimension

at most 5 and nonsimple over K, the structure of H`(A) in terms of the H`’s of the simple factors

of AK . Given however that the analogous problem for H(A) has been given a complete solution

in [82], we limit ourselves to showing that (in most cases) such an A satisfies Mumford-Tate, and

refer the reader to [82] for more details on the precise structure of H(A) (hence of H`(A)). Note in

any case that – for many varieties, including those for which we cannot prove Mumford-Tate – our

argument will yield the structure of H`(A) directly, without appealing to the results of [82].

Proposition 6.6.1. Let K be a finitely generated subfield of C, n be an integer no less than 2,

and A1, . . . , An be absolutely simple K-abelian varieties such that
∑n

i=1 dimAi ≤ 4. Let A be a

K-abelian variety that is K-isogenous to A1 × · · · × An: then the Mumford-Tate conjecture holds

for A.
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Proof. Since H(A) and H`(A) are invariant both under isogeny and finite extension of the base

field, we can assume without loss of generality that A = A1 × · · · × An. If all the Ai’s are of

dimension at most 2 we can simply apply corollary 6.4.5, so we can also assume that A1 is an

absolutely simple threefold and A2 is an elliptic curve. In particular, A1 and A2 are of odd relative

dimension, so if A2 does not have complex multiplication (hence it is not of type IV) we have

H`(A1 × A2) ∼= H`(A1) × H`(A2) by theorem 6.4.7, and the claim follows from lemma 6.3.6. On

the other hand, if A2 does have complex multiplication the claim follows immediately from lemma

6.3.5.

Proposition 6.6.2. Let K be a finitely generated subfield of C and A1, . . . , An be absolutely simple

K-abelian varieties. Let A be a K-abelian variety that is K-isogenous to A1×· · ·×An, and suppose

that dimA = 5. We have:

1. if Mumford-Tate holds for every Ai, then it also holds for A (this happens in particular if no

Ai is of dimension 4);

2. if Mumford-Tate fails for one of the Ai’s, say A1, then A1 is an absolutely simple fourfold,

A2 is an elliptic curve, and H`(A) = H`(A1 ×A2) ∼= H`(A1)×H`(A2).

Proof. We can work with A = A1 × · · · × An, and we can assume that no two Ai’s are isogenous

over K (for otherwise the problem is reduced to a lower-dimensional one). Furthermore, for n = 1

there is nothing to prove, so let us assume n ≥ 2; as in the proof of the previous proposition, up to

renumbering the Ai’s we can assume that dimA1 ≥ 3.

Suppose first that at least one of the Ai’s has complex multiplication. Write A = B × C, where C

is the product of those Ai’s that are CM and B is the product of the remaining factors. We have

dimB ≤ 4. If B satisfies Mumford-Tate, then Mumford-Tate for A follows from lemma 6.3.5 and

we are done. If, on the contrary, B does not satisfy Mumford-Tate, then the results of section 6.2.4

together with the previous proposition imply that B = A1 is an absolutely simple fourfold with

EndK(B) = Z, and we are in case (2); hence we just need to prove that H`(A1 ×A2) is isomorphic

to H`(A1)×H`(A2), which follows at once from lemma 6.3.4. From now on we can therefore assume

that no Ai is CM. Also recall that elliptic curves and abelian surfaces without CM are of type I or

II in the sense of Albert.

We now need to distinguish several sub-cases, each of which we shall treat by proving the equality

H`(A) ∼=
∏n
i=1H`(Ai): indeed, if Mumford-Tate holds for every Ai, this equality implies Mumford-

Tate for A by lemma 6.3.6, and if Mumford-Tate fails for one of the Ai’s this equality is all we have

to show.

Suppose first that dimA1 = 3 and A2, A3 are elliptic curves (without CM): then for all primes `,

and independently of the type of A1, theorem 6.4.7 gives H`(A) ∼= H`(A1)×H`(A2)×H`(A3).

Next suppose dimA1 is 3 and A2 is an absolutely simple abelian surface without CM (hence not

of type IV). Let ` be any prime. If reldim(A2) = 1, or A1 is not of type IV, then we have

H`(A) ∼= H`(A1)×H`(A2) resp. by theorem 6.4.7 or corollary 6.4.4. We can therefore assume that

EndK(A2) is Z and A1 is of type IV and does not have complex multiplication. It is known that

in this case Lie(H`(A2)) ∼= sp4,Q` , and Lie
(
H`(A1)der

)
⊗ Q`

∼= sl3,Q` (cf. [112]), so it follows from

proposition 6.3.9 that H`(A) ∼= H`(A1)×H`(A2).
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We now need to consider the case when A1 is an absolutely simple abelian fourfold and A2 is an

elliptic curve without CM; this assumption will be in force for the remainder of the proof.

Suppose first that A1 is not of type IV and that EndK(A1) 6= Z. By the results of [80] we know

that A1 is of general Lefschetz type, so that the equality H`(A1 × A2) ∼= H`(A1)×H`(A2) follows

from theorem 6.4.1 and the remark following it.

Consider now the case when A1 is of type IV. It is not hard to check (from the results in [80])

that either Lie(H`(A1))⊗Q` does not have any simple factor isomorphic to sl2 (cases IV(1,1) and

IV(4,1) in the notation of [80]) or we are in case IV(2,1). In the former case we apply proposition

6.3.9 to deduce that H`(A) ∼= H`(A1) × H`(A2) for all primes `. Suppose instead that we are

in case IV(2,1), that is to say End0
K

(A1) is a CM field E of degree 4 over Q. Let E0 be the

maximal totally real subfield of E. We read from [80] the equality H(A1)der = ResE0/Q SU(E2, ψ),

where ψ is a suitable Hermitian form on E2. Since [E0 : Q] = 2 and SU(E2, ψ) is an E0-form of

SL2, the group H(A1)der is a Q-form of SL2
2; moreover, it is Q-simple by Theorem 1.10 of [99].

Finally, the Mumford-Tate conjecture holds for A1 by theorem 6.2.19, so for all primes ` we have

an isomorphism H`(A1) ∼= H(A1) ⊗ Q`. By lemma 6.3.2 there is a prime p such that the group

Hp(A1)der ∼= H(A1)der ⊗Qp is simple over Qp.

Suppose by contradiction that rkHp(A)der is strictly less than rkHp(A1)der + rkHp(A2). As

rkHp(A2) = 1 we have rkHp(A)der = rkHp(A1)der, so the natural projection Hp(A)� Hp(A1) in-

duces an isogeny Hp(A)der → Hp(A1)der. Since Hp(A1)der is simple, the same is true for Hp(A)der;

but this is absurd, because the canonical projection Hp(A)der � Hp(A2) then gives a surjective

morphism in which the source Hp(A)der is simple but does not have the same rank as the image

Hp(A2). The contradiction shows that rkHp(A)der = rkHp(A1)der + rkHp(A2), from which we de-

duce first that Hp(A) ∼= Hp(A1)×Hp(A2) and then (since the ranks of H`(A1), H`(A2) and H`(A)

do not depend on `) that H`(A) ∼= H`(A1)×H`(A2) holds for all primes `.

We finally come to the case dimA1 = 4 and EndK(A1) = Z. If for one (hence every) prime ` we

have H`(A1) = Sp8,Q` , then the abelian variety A1 is of general Lefschetz type (cf. [80, §4.1]), so

the equality H`(A) ∼= H`(A1) ×H`(A2) follows from theorem 6.4.1. Thus the last case we have to

cover is that of H`(A1) being a Q`-form of SL3
2 for every prime `. By [98, Theorem 5.13], there is

a simple Q-algebraic group P (A1) such that, for a set of primes ` of Dirichlet density 1, we have

an isomorphism H`(A1) ∼= P (A1)⊗Q`. Furthermore, P (A1) is a Q-form of SL3
2, so by lemma 6.3.2

we can choose a prime p for which Hp(A1) ∼= P (A1) ⊗ Qp is Qp-simple. We can now repeat the

argument of case IV(2,1) above: if by contradiction we had rkHp(A) < rkHp(A1) + rkHp(A2) then

Hp(A) would be simple, and the canonical projection from Hp(A) to Hp(A2) would be a surjective

morphism between groups of different rank, which is absurd because the source is simple. We

deduce once more that rkH`(A) = rkH`(A1) + rkH`(A2) holds for ` = p (hence for every prime `),

so for every ` we have H`(A) ∼= H`(A1)×H`(A2).



Chapter 7

Torsion points and roots of unity

7.1 Introduction

In this chapter we consider the following problem: given a number field K, an abelian variety

A/K (of dimension g), a prime `, and a finite subgroup H of A[`∞], how does the number field

K(H) intersect the `-cyclotomic extension K(µ`∞)? More precisely, is the intersection completely

accounted for by the fact that K(H) contains the image of the Weil pairing H × H → µ`∞? In

order to study this question, Hindry and Ratazzi have introduced in [38] and [39] two variants of a

property they call (µ), and which we now recall. We fix a polarization ϕ : A → A∨ and, for every

n ≥ 0, we denote by e`n the `n-Weil pairing A[`n]×A[`n]→ µ`n given by composing the usual Weil

pairing A[`n]×A∨[`n]→ µ`n with the map A[`n]→ A∨[`n] induced by ϕ. If H is a finite subgroup

of A[`∞] we now define

m1(H) = max {k ∈ N | ∃n ≥ 0, ∃P,Q ∈ H of order `n such that e`n(P,Q) generates µ`k} .

Following [39, Définition 3.8] we can then introduce the following definition:

Definition 7.1.1. We say that (A/K,ϕ) satisfies property (µ)s (where “s” stands for “strong”) if

there exists a constant C > 0, depending on A/K and ϕ, such that for all primes ` and all finite

subgroups H of A[`∞] the following inequalities hold:

1

C
[K(µ`m1(H)) : K] ≤ [K(H) ∩K(µ`∞) : K] ≤ C[K(µ`m1(H)) : K].

Remark 7.1.2. It is easy to see that the choice of the polarization ϕ plays essentially no role, and

(A/K,ϕ) satisfies property (µ)s for a given ϕ if and only (A/K,ψ) satisfies property (µ)s for every

polarization ψ of A/K (possibly for different values of the constant C); for this reason we shall

simply say that A/K satisfies property (µ)s when it does for one (hence any) polarization. It is

shown in [39] that if A/K satisfies the Mumford-Tate conjecture and has Mumford-Tate group

isomorphic to GSp2 dimA,Q, then property (µ)s holds for A.

We also consider the following variant of property (µ)s, which we call (µ)w (“weak”), and which

was first introduced in [38, Définition 6.3]:

Definition 7.1.3. We say that A satisfies property (µ)w if the following is true: there exists a

constant C > 0, depending on A/K, such that for all primes ` and all finite subgroups H of A[`∞]

181
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there exists n ∈ N (in general depending on ` and H) such that

1

C
[K(µ`n) : K] ≤ [K(H) ∩K(µ`∞) : K] ≤ C [K(µ`n) : K] . (7.1)

Clearly, property (µ)s implies property (µ)w. In this chapter we show the following two results:

Theorem 7.1.4. Let K be a number field and A/K be an abelian variety. If A satisfies the

Mumford-Tate conjecture, then property (µ)w holds for A.

Theorem 7.1.5. There exists an abelian fourfold A, defined over a number field K, such that

EndK(A) = Z and for which property (µ)s does not hold. More precisely, such an A can be taken

to be any member of the family constructed by Mumford in [85].

7.2 Property (µ)w

7.2.1 Preliminaries

We fix once and for all an embedding of Q into C, and consider the number field K as a subfield

of Q ⊆ C. The letter A denotes a fixed abelian variety over K; if ` is a prime number and n is a

positive integer, we write G`n for the Galois group of K(A[`n])/K and G`∞ for the Galois group of

K(A[`∞])/K. Finally, we take the following definition for the Mumford-Tate group of A:

Definition 7.2.1. Let K be a number field, A/K be an abelian variety, and V be the Q-vector space

H1(A(C),Q), equipped with its natural Hodge structure of weight −1. Also let VZ = H1(A(C),Z),

write S := ResC/R (Gm,C) for Deligne’s torus, and let h : S → GLV⊗R be the morphism giving V

its Hodge structure. We define MT(A) to be the Q-Zariski closure of the image of h in GLV , and

extend it to a scheme over Z by taking its Z-closure in GLVZ .

Remark 7.2.2. Taking the Z-Zariski closure in the previous definition allows us to consider points

of MT(A) with values in arbitrary rings. Notice that MT(A), being an algebraic group over a field

of characteristic 0, is smooth by Cartier’s theorem. It follows that MT(A) is smooth over an open

subscheme of SpecZ.

The following theorem summarizes fundamental results, due variously to Serre [122], Wintenberger

[145], Deligne [23, I, Proposition 6.2], Borovŏı [14] and Pjateckĭı-Šapiro [100], on the structure of

Galois representations arising from abelian varieties over number fields; see also [40, §10] for a

detailed proof of the last statement.

Theorem 7.2.3. Let K be a number field and A/K be an abelian variety. The group MT(A)

is smooth over an open subscheme of SpecZ. There exists a finite extension L of K such that

for all primes ` the image of the natural representation ρ`∞ : Gal(L/L) → AutT`(A) lands into

MT(A)(Z`), and likewise the image of ρ` : Gal(L/L)→ AutA[`] lands into MT(A)(F`). If further-

more the Mumford-Tate conjecture holds for A, then the index [MT(A)(Z`) : Im ρ`∞ ] is bounded by

a constant independent of `; the same is true for [MT(A)(F`) : Im ρ`].
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In view of the result we want to prove (theorem 7.1.4), we assume from now on that the Mumford-

Tate conjecture is true for our abelian variety A. As the statement of theorem 7.1.4 is clearly invari-

ant under extensions of the base field, theorem 7.2.3 allows us to assume that ρ`∞
(
Gal(K/K)

)
is in-

cluded in MT(A)(Z`) for all primes `, in such a way that the index [MT(A)(Z`) : Gal (K(A[`∞])/K)]

is bounded by a constant independent of `. Since the statement of theorem 7.1.4 is also invariant

under isogenies, making a further extension of the base field if necessary we can also assume without

loss of generality that A is principally polarized, which implies that G`∞ , resp G`, is a subgroup of

GSp2g(Z`), resp. of GSp2g(F`).
The following simple lemma shows that the property of having index bounded by a constant is

stable under passage to subgroups and quotients:

Lemma 7.2.4. Let C be a group and A,B be subgroups of C such that [C : B] is finite. We have

[A : B ∩A] ≤ [C : B]. Moreover, if π : C → D is a quotient of C, then [D : π(B)]
∣∣ [C : B].

Proof. The map A ↪→ C → C/B induces an injection (of sets) of A/(A∩B) into C/B. The second

statement is obvious.

The previous lemma allows us to work with “equalities up to a finite index”, for which we now

introduce some notations. If L1, L2 are number fields that depend on A/K and on some other set of

parameters, we write L1 $ L2 to mean that there exists a constant C (depending on A/K only) such

that the inequalities [L1 : L1∩L2] ≤ C and [L2 : L1∩L2] ≤ C hold for all values of the parameters;

likewise, if G1, G2 are subgroups of a same group (and depend on some set of parameters), we write

G1 $ G2 if both [G1 : G1 ∩ G2] and [G2 : G1 ∩ G2] are bounded by a constant depending only on

A/K, uniformly in all other parameters. Furthermore, for two functions f, g : I → R+, where I

is any set, we write f $ g if there is a constant C ′ > 0 such that 1
C′ g(x) ≤ f(x) ≤ C ′g(x) for all

x ∈ I. Finally, to deal with arithmetic functions we introduce the following definition:

Definition 7.2.5. Let P be the set of prime numbers, I be any set and h : I × P → N+ be any

function. We say that h(x, `) is a power of ` up to a bounded constant if there exists a C ′′ > 0 such

that for all x ∈ I and ` ∈ P we have h(x,`)

`v`(h(x,`))
≤ C ′′, or equivalently, if the prime-to-` part of h(x, `)

is bounded independently of x and `.

As a typical example of the use of this notation, notice that our assumption that we are in the

situation of theorem 7.2.3 can be expressed by writing Gal (K(A[`∞])/K) $ MT(A)(Z`) and

Gal (K(A[`])/K) $ MT(A)(F`). We can also apply lemma 7.2.4 to the groups C = MT(A)(F`),
B = Gal (K(A[`])/K) and A =

{
x ∈ MT(A)(F`)

∣∣ xh = h ∀h ∈ H
}

to get

Gal (K(A[`])/K(H)) $
{
x ∈ MT(A)(F`)

∣∣ xh = h ∀h ∈ H
}
,

where the implied constant depends on A/K, but not on ` or H. Finally, notice that if A,B are

groups (depending on some set of parameters) such that [B : A] ≤ N for all values of the parameters,

then taking N ′ := N ! we have [B : A]
∣∣ N ′, again for any choice of the parameters: if we so desire

we can therefore replace boundedness conditions by divisibility conditions.
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7.2.2 Stabilizers of finite subgroups of A[`∞]

Denote by G the Z`-algebraic group MT(A)×Z Z` and let H be a finite subgroup of A[`∞]. Write

H as
∏2g
i=1 Z/`miZ for certain integers m1 ≥ . . . ≥ m2g, let e1, . . . , e2g be generators of H (so ei is

a torsion point of order `mi), and let ê1, . . . , ê2g be a basis of T`A lifting the ei’s (that is, satisfying

êi ≡ ei (mod `mi) for i = 1, . . . , 2g). For a subset I of {1, . . . , 2g} we let GI be the Z`-algebraic

group given by

GI =
{
M ∈ G

∣∣Mêi = êi ∀i ∈ I
}
.

We plan to show that GI and other related groups are smooth (over Z`, or equivalently over F`,
cf. lemma 7.2.9) whenever ` is sufficiently large with respect to A/K, independently of the choice

of ê1, . . . , ê2g and I (the result crucial to our applications is lemma 7.2.10). We shall make repeated

use of the following fact:

Theorem 7.2.6. Let ` be a prime number and k be a finite field of characteristic `. Let F be an

affine group scheme over k with coordinate ring R. The following are equivalent:

1. F is smooth;

2. R⊗k k is reduced;

3. the nilpotency index of R ⊗k k is smaller than `, that is, there exists an integer e < ` such

that for all a ∈ R⊗k k and all positive integers n, the equality an = 0 implies ae = 0;

4. the equality dimk LieF = dimF holds.

Proof. 1 and 2 are equivalent by [140, Theorem on p. 88]. 1 and 4 are equivalent by [140, Corollary

on p. 94]. Clearly 2 implies 3, and 3 implies 2 by the same argument that proves Cartier’s theorem

(all algebraic groups over a field of characteristic zero are smooth), see for example [77, Proof of

Theorem 10.1].

The following proposition, while certainly well-known to experts, does not seem to appear anywhere

in the literature; we will use it as a substitute for Cartier’s theorem on smoothness when working

over a field of positive characteristic.

Proposition 7.2.7. Let n, d,m be fixed positive integers. There is a constant c(n, d,m) with the

following property: for every prime ` > c(n, d,m), every finite field k of characteristic `, and every

algebraic subgroup F of GLn,k that is cut in
k[xij , y]

(det(xij)y − 1)
by at most m equations of degree at

most d is smooth over k.

Proof. Let I = (f1, . . . , ft) be the ideal defining F in R :=
k[xij , y]

(det(xij)y − 1)
, where t ≤ m and the

total degree of every fh is at most d. To test smoothness we can base-change to k, and by theorem

7.2.6 we only need to prove that the nilpotency index of

R⊗k k ∼=
k[xij , y]

(det(xij)y − 1, f1, . . . , ft)

is bounded by a function of n, d and m alone, uniformly in ` and k. Now just notice that the ideal

(det(xij)y − 1, f1, . . . , ft) is generated by equations whose number and degree are bounded in terms
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of n, d, and m, so the result follows from [47, Theorem 1.3] (see also [51]). More precisely, since we

have at most m + 1 equations of degree at most max{d, n + 1}, [47, Theorem 1.3] shows that one

can take c(n, d,m) = max{d, n+ 1}m+1.

Lemma 7.2.8. Let n be a positive integer, F be a group subscheme of GLn,Q`, and let F be the

Zariski closure of F in GLn,Z`. Then F is flat over SpecZ`.

Proof. An affine scheme SpecR over Z` is flat if and only if its coordinate ring R is a torsion-free

Z`-module ([64, Corollary 2.14]). In our case, if I is the ideal of
Q`[xij ,y]

(det(xij)y−1) that defines F , then

I := I ∩ Z`[xij ,y]
(det(xij)y−1) is the ideal defining F . In particular, the coordinate ring R of F injects into

the coordinate ring R of F , which is torsion-free since it is a Q`-vector space.

Lemma 7.2.9. Let n be a positive integer, F be a group subscheme of GLn,Q`, and let F be the

Zariski closure of F in GLn,Z`. Suppose furthermore that F is smooth over F`: then F is smooth

over Z`.

Proof. In order for a scheme F
/

SpecZ` to be smooth, it is necessary and sufficient that it is

locally finitely presented and flat, with fibers that are smooth varieties all of the same dimension.

Finite presentation is obvious in our context, and flatness follows from the previous lemma. The

dimension of the fibers is locally constant by flatness, hence constant since the only open subset of

SpecZ` containing the closed point is all of SpecZ`. It remains to show smoothness of the fibers:

the generic fiber is smooth by Cartier’s theorem ([140, §11.4]), and the special fiber is smooth by

assumption.

We finally come to the central result of this section:

Lemma 7.2.10. For all ` sufficiently large (depending only on A/K), for all Z`-bases ê1, . . . , ê2g of

T`A, and for all subsets I of {1, . . . , 2g}, the stabilizer GI in G of the vectors êi (for i ∈ I) is smooth

over Z`. Suppose furthermore that A/K is principally polarized, so that MT(A) ⊆ GSp2g,Z. Let

furthermore λ : MT(A) → Gm,Z be the restriction to MT(A) of the algebraic multiplier character

λ : GSp2g,Z → Gm,Z. For ` large enough (again depending only on A/K) all the groups

G(1)
I =

{
M ∈ G

∣∣M · êi = êi ∀i ∈ I, λ(M) = 1
}

are smooth.

Proof. Notice first that GI can be obtained as the Z`-Zariski closure of the Q`-group scheme{
M ∈ H`

∣∣Mêi = êi, ∀i ∈ I
}
.

By lemma 7.2.9 it then suffices to prove smoothness over F`, and to do this we can base-change

to F`. We can also assume that G is smooth over Z`, since this is true except for finitely many

exceptions. Now we claim that GI is defined by equations whose number and degree are independent

of `: indeed, they are the equations defining MT(A) (and these do not depend on `), together with

linear equations that express in coordinates the equalities Mêi = êi. Since there are at most (2g)2

such linear equations, the claim follows. We then deduce from proposition 7.2.7 that for ` large

enough (GI)F` is smooth, and an entirely similar argument also proves the result for G(1)
I .
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7.2.3 Some Galois cohomology

Lemma 7.2.11. Let G be a finite étale group scheme of order N over F`. The first cohomology

group H1(F`,G) is finite, of order not exceeding N .

Proof. Recall ([140, §6.4]) that the association G 7→ G(F`) establishes an equivalence between the

category of étale group schemes over F` and that of finite groups with a continuous action of

Gal
(
F`/F`

)
. To prove the lemma it is thus enough to consider the cohomology H1(F`, G) of a

finite group G of order N equipped with a continuous action of Ẑ ∼= Gal
(
F`/F`

)
. An element of

H1
(
Ẑ, G

)
is represented by a continuous map Ẑ→ G, which in turn is uniquely determined by the

image of a topological generator of Ẑ: it follows that there are no more than |G| = N such maps,

hence that the order of H1(Ẑ, G) is bounded by N as claimed.

Lemma 7.2.12. Let G be a linear algebraic group over F`. We have |H1(F`,G)| ≤ |H1(F`,G/G0)|,
so in particular the order of H1(F`,G) does not exceed the order of the group of components of G.

Proof. The long exact sequence in cohomology associated with the sequence

1→ G0 → G → G/G0 → 1

contains in particular the segment H1(F`,G0) → H1(F`,G) → H1(F`,G/G0), where the first term

is trivial by Lang’s theorem (any connected algebraic group over a finite field has trivial H1, [54,

Theorem 2]). The first statement follows. The second is then a consequence of the previous lemma

and of the fact that G/G0 is étale by [140, §6.7].

7.2.4 Proof of theorem 7.1.4

We now come to the core of the proof of theorem 7.1.4.

Lemma 7.2.13. Suppose the Mumford-Tate conjecture holds for A: then for all primes ` and for

all finite subgroups H of A[`] there exists m ∈ {0, 1} such that

[K(µ`m) : K] $ [K(H) ∩K(µ`) : K] , (7.2)

that is to say, there exists D > 0 (depending on A/K) with the following property: for every ` and

every subgroup H of A[`] there exists m ∈ {0, 1} such that

D−1 [K(H) ∩K(µ`) : K] ≤ [K(µ`m) : K] ≤ D [K(H) ∩K(µ`) : K] . (7.3)

Proof. Recall that we denote λ the restriction to MT(A) of the multiplier map GSp2g,Z → Gm,Z.

Observe first that it suffices to prove that the conclusion of the lemma holds for all but finitely many

primes: indeed, for a fixed prime ` the finite group A[`] possesses only finitely many subgroups H,

so we can choose D so large that (7.3) holds for any such H (with m = 0, say). Disregarding

a finite set of primes (which we call “bad”) we can therefore assume that ` is large enough that

the groups GI and G(1)
I of section 7.2.2 are smooth (lemma 7.2.10) and that ` is unramified in

K. Recall that G` ⊆ GSp2g(F`) is a subgroup of MT(A)(F`), and that (since we assume A to be

principally polarized) for all primes ` we have λ ◦ρ` = χ`, the mod-` cyclotomic character. Let now

e1, . . . , e2g be an F`-basis of A[`] such that e1, . . . , er is an F`-basis of H. We consider the finite
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group S =
{
M ∈ G`

∣∣M · h = h ∀h ∈ H
}

, that is, the stabilizer of H in G`, and the algebraic

group S =
{
M ∈ MT(A)F`

∣∣M · ei = ei, 1 ≤ i ≤ r
}
, that is, the stabilizer of H in MT(A)F` .

The group S is obtained as the special fiber of a group of the form GI (notation as in section

7.2.2), hence is smooth by our assumption on `. It is clear by definition that S = G` ∩ S(F`);
since G` $ MT(A)(F`), this shows in particular that S $ S(F`). We now claim that the group

of components of S has order bounded by a constant B independent of ` and H. Notice first

that it is enough to bound the number of F`-points of the group of components of S, hence it is

enough to consider the number of irreducible components of SF` . Next observe that SF` is cut in

M2g(F`) ∼= A(2g)2

F`
by the equations defining MT(A) (and these only depend on A/K) and by the

2g · r hyperplanes given by the vector equations M · ei = ei for i = 1, . . . , r: since clearly r ≤ 2g,

we see that SF` is defined by equations whose number and degree are bounded uniformly in ` and

H. By a variant of Bézout’s theorem (see [139, Theorem 7.1] for a precise statement), this implies

that the number of irreducible components of SF` is bounded uniformly in ` and H. The very same

argument also shows that the order of the group of connected components of

S1 =
{
M ∈ MT(A)F`

∣∣M · h = h ∀h ∈ H, λ(M) = 1
}

= ker(λ : S → Gm,F`)

is bounded by a constant independent of `, which we call B1. Notice furthermore that the group

S1 =
{
M ∈ G`

∣∣M · h = h ∀h ∈ H, λ(M) = 1
}

satisfies S1 $ S1(F`).

Consider now the restriction of λ : GSp2g,F` → Gm,F` to S0, the identity component of S. Notice

that (for the ` we are considering) the group S0 is smooth (lemma 7.2.10), so the image λ(S0) is a

connected reduced subgroup of Gm,F` , hence it is either trivial or all of Gm,F` . Let us consider the

two cases separately.

λ(S0) is trivial. As we have already remarked we have S ⊆ S(F`). It follows that the order of

λ(S) is at most the order of λ(S(F`)), which in turn does not exceed [S : S0] since the restriction

of λ to S0 is trivial. Hence we have |λ(S)| ≤ [S : S0] ≤ B.

λ : S0 → Gm,F` is onto. Consider the exact sequence

1→ S1 → S
λ−→ Gm,F` → 1

and take F`-rational points: the associated long exact sequence in cohomology shows that

S(F`)
λ−→ Gm,F`(F`) = F×` → H1 (F`,S1)

is exact, so
∣∣∣coker

(
S(F`)

λ−→ F×`
)∣∣∣ is at most

∣∣H1 (F`,S1)
∣∣, which in turn (by lemma 7.2.12 and what

we have already proved) does not exceed B1. Since S $ S(F`), it follows that

|λ(S)| $ |λ(S(F`))| ≥
`− 1

B1
,

that is, there exists a constant B′ (independent of `) such that whenever λ : S0 → Gm,F` is onto the

inequality |λ(S)| ≥ `− 1

B′
holds. Let now B′′ be a constant large enough that inequality (7.3) in the

statement of the lemma holds, with D = B′′, for all the (finitely many) bad primes `, and for the

(finitely many) subgroups H of A[`] for each of these primes. Finally set D = max {B,B′, B′′}. We

now show that inequality (7.3) is satisfied for all primes ` and all subgroups H of A[`]. It is clear by

construction that this is true for the bad primes, so we can again suppose that ` is unramified in K

and that the groups S,S1 are smooth over F`; let once more H be a subgroup of A[`] for such an `.
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Observe that the group S we considered above is by definition the Galois group of K(A[`])/K(H),

whereas the Galois group of K(A[`]) over K(µ`) is N := ker
(
G`

λ−→ F×`
)

. It follows that the

Galois group of K(A[`]) over K(H) ∩K(µ`) is the group generated by S and N , hence the degree

of K(H) ∩K(µ`) over K is the index of NS in G`. On the other hand we have |G`/NS| = |G`/N |
|NS/N |

(recall that N is normal in G` by construction), and G`/N is clearly isomorphic to the image of

λ : G` → F×` . As ` is unramified in K, the mod-` cyclotomic character χ` : Gal(K/K) → F×` is

surjective, hence we have λ(G`) = χ`(Gal(K/K)) = F×` and therefore

[K(H) ∩K(µ`) : K] = |G`/NS| =
|λ(G`)|
|λ(NS)|

=
`− 1

|λ(S)|
.

By our previous arguments we now see that

• either λ(S0) is trivial, in which case 1 ≤ |λ(S)| ≤ B and (7.3) is satisfied by taking m = 1;

• or λ : S0 → Gm,F` is onto, in which case we have
`− 1

B′
≤ |λ(S)| ≤ `− 1 and (7.3) is satisfied

by taking m = 0.

To complete the proof of theorem 7.1.4 we need two more lemmas.

Lemma 7.2.14. Let K be a number field and A/K be an abelian variety satisfying the Mumford-

Tate conjecture: then for any finite subgroup H of A[`∞] the degree [K(H) : K(H[`])] is a power of

` (up to a bounded constant).

Proof. We use the notation from section 7.2.2; in particular we write H ∼=
∏2g
i=1 Z/`miZ, fix generat-

ors e1, . . . , e2g of H and a basis ê1, . . . , ê2g of T`A lifting the ei’s. We suppose first that G := MT(A)Z`
is smooth over Z`. Inspired by the approach of [39], given Z`-algebraic subgroups G1 ⊆ G2 ⊆ · · · ⊆ Gt
of G, a strictly increasing sequence n1 < n2 < · · · < nt of positive integers, and a positive integer

n, we now denote by G(n;n1, . . . , nt) the finite group{
M ∈ G(Z/`nZ)

∣∣M ∈ Gi mod `min(n,ni), i = 1, . . . , t
}
.

It is natural to include the case of t being 0: if ni is the empty sequence, we simply define G(n)

to be G(Z/`nZ). To the group H we now attach a strictly decreasing sequence of positive integers

m(1) > m(2) > · · · > m(t) ≥ 1 (where t ≤ 2g) by setting

m(1) = max
{
mi

∣∣ mi 6= 0
}

and recursively m(r+1) = max
{
mi

∣∣ 0 < mi < m(r)
}
,

and, for 1 ≤ r ≤ t, we let Ir =
{
i ∈ {1, . . . , 2g}

∣∣ mi ≥ m(r)
}

.

Finally, for 1 ≤ r ≤ t, we define Gr := GIt+1−r (notation as in section 7.2.2) and consider the strictly

increasing sequence nr = m(t+1−r) (for 1 ≤ r ≤ t). We can assume that ` is so large that all the

groups Gr are smooth over Z` (lemma 7.2.10), and, as in [39], we see that the Gr’s so defined form

an increasing sequence of subgroups of G such that [K(H[`m]) : K] $ [G(Z/`mZ) : G(m;n1, . . . , nt)].

We now show that (for any H and any m ≥ 1) the number

[G(Z/`mZ) : G(m;n1, . . . , nt)]

[G(Z/`Z) : G(1;n1, . . . , nt)]
(7.4)
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is a power of `. To prove this fact, we preliminarily show that for all m ≥ 2 the reduction map

G (Z/`mZ)
πm−1−−−→ G

(
Z/`m−1Z

)
maps G(m;n1, . . . , nt) surjectively onto G(m − 1;n1, . . . , nt). We

can proceed by induction on t, showing the stronger statement that this is true for any chain of

groups G1 ⊂ G2 ⊂ · · · ⊂ Gt ⊂ G where each term is smooth over F`. Indeed,

• for t = 0 the claim follows from the smoothness of G and Hensel’s lemma;

• if m ≤ nt, then we have G(j;n1, . . . , nt) = Gt(j;n1, . . . , nt−1) both for j = m and j = m− 1,

so the claim follows from the induction hypothesis;

• if m > nt, then G (Z/`mZ)→ G
(
Z/`m−1Z

)
is surjective by smoothness of G, and furthermore,

since by assumption we have m − 1 ≥ nt > nt−1 > . . . > n1, any lift to G (Z/`mZ) of a

point in G(m − 1;n1, . . . , nt) belongs to G(m;n1, . . . , nt). In particular, the induced map

G(m;n1, . . . , nt)→ G(m− 1;n1, . . . , nt) is indeed surjective.

We now prove our claim that (7.4) is a power of ` by induction on m. Notice that, by Hensel’s

lemma and since m ≥ 2, the kernel of πm−1 is an `-group (of order `dimG). It follows that πm−1

induces a surjective map G(m;n1, . . . , nt) → G(m − 1;n1, . . . , nt) whose kernel is an `-group; in

particular, the numbers |G(m;n1,...,nt)|
|G(m−1;n1,...,nt)| and |G(Z/`mZ)|

|G(Z/`m−1Z)| are both powers of `, and an immediate

induction shows that the same is true for (7.4). Choosing m large enough that H = H[`m], it follows

from our previous considerations that
[K(H[`m]) : K]

[K(H[`]) : K]
= [K(H) : K(H[`])] is a power of ` (up to

bounded constants), which finishes the proof of the lemma when MT(A) is smooth over F`, and

leaves us with only the finitely many bad reduction primes to consider. To establish the lemma we

thus need to show that, for ` ranging over the bad primes and H ranging over the finite subgroups

of A[`∞], the degree [K(H) : K(H[`])] is within a constant factor of a power of `. As we are only

considering finitely many primes, there are only finitely many subgroups of A[`], and therefore we

have [K(H[`]) : K] $ 1; hence we just need to show that [K(H) : K] is a power of ` up to a constant

factor. Let `m be the exponent of H. Since the prime-to-` part of [K(H) : K] divides the prime-to-`

part of [K(A[`m]) : K], it is enough to show that |G`m | = |Gal (K(A[`m])/K) | is a power of ` up

to a bounded constant. Let C be the least common multiple of the orders of the groups G` for `

ranging over the primes of bad reduction. Consider the reduction map π : G`m → G`, and notice

that its kernel is a subgroup of ker (GL2g(Z/`mZ)→ GL2g(F`)), hence in particular an `-group; we

can then write |G`
m |

| kerπ| as |π (G`m)| , which by construction is an integer dividing C. Since |kerπ| is

a power of `, we see that the prime-to-` part of |G`m | is bounded by C; this completes the proof in

the non-smooth case as well.

Lemma 7.2.15. Let K be a number field, A/K an abelian variety satisfying the Mumford-Tate

conjecture, ` a prime number, and H a finite subgroup of A[`∞]. We have

K(H) ∩K(µ`) $ K(H[`]) ∩K(µ`),

and the degree of K(H) ∩K(µ`∞) over K(H) ∩K(µ`) is a power of `.

Proof. Let m be such that H ⊆ A[`m]. The Galois group of K(A[`m]) over K(H[`]) ∩ K(µ`) is

generated by the Galois groups of K(A[`m]) over K(H[`]) (which we denote by S1) and over K(µ`)
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(denoted by N); notice that N = ker
(
G`m

λ−→ F×`
)

. Let now Sm be the Galois group of K(A[`m])

over K(H). By lemma 7.2.14 we see that [S1 : Sm] is a power of ` (up to a constant bounded

independently of `), hence [NS1 : NSm] =
|NS1/N |
|NSm/N |

=
|λ(S1)|
|λ(Sm)|

is again a power of ` (up to a

constant independent of `). On the other hand, λ(S1) is a subgroup of F×` , hence of order prime to

`: it follows that
∣∣∣ λ(S1)
λ(Sm)

∣∣∣ $ 1, and therefore NS1 $ NSm. Now NS1 is the Galois group of K(A[`m])

over K(H[`])∩K(µ`), while NSm is the Galois group of K(A[`m])/K(H)∩K(µ`): by Galois theory,

this implies K(H)∩K(µ`) $ K(H[`])∩K(µ`) as claimed. The second part is immediate by Galois

theory.

Theorem 7.2.16. (Theorem 7.1.4) Let K be a number field and A/K be an abelian variety. If A

satisfies the Mumford-Tate conjecture, then property (µ)w holds for A.

Proof. Fix a prime ` and a subgroup H ⊆ A[`∞]: we want to show that we can choose n so as to

satisfy inequality (7.1) (for some constant C only depending on A/K). Let L be the intersection

K(H[`]) ∩K(µ`). By lemma 7.2.13, we can choose m ∈ {0, 1} so that

[L : K] $ [K(µ`m) : K] , (7.5)

and by lemma 7.2.15 we see that there is an integer j such that [K(H)∩K(µ`∞) : L] $ `j . Observe

now that [K(H) ∩K(µ`∞) : K] = [K(H) ∩K(µ`∞) : L] [L : K] $ `j [L : K], hence by (7.5) we have

[K(H) ∩K(µ`∞) : K] $ `j · [K(µ`m) : K]. Using the obvious equalities (up to bounded constants)

[K(µ`j+1) : K(µ`)] $ [K(µ`j ) : K] $ `j we deduce

[K(H) ∩K(µ`∞) : K] $ `j · [K(µ`m) : K]

$ [K(µ`j+m) : K(µ`m)] · [K(µ`m) : K]

= [K(µ`j+m) : K].

This shows that, if we take C to be the constant implied in the last formula, for all primes ` and

all finite subgroups H of A[`∞] inequality (7.1) can be satisfied by taking n = m+ j, and therefore

property (µ)w holds for A as claimed.

7.3 Property (µ)s

Let F be any field. We start by considering the representation

ρ : GL2(F )×GL2(F )×GL2(F ) → GSp8(F )

(a, b, c) 7→ a⊗ b⊗ c,
(7.6)

where we identify F 8 with F 2 ⊗ F 2 ⊗ F 2. We equip F 8 with the symplectic form ψ given by

ψ1 ⊗ ψ2 ⊗ ψ3, where ψi is the standard symplectic form on the i-th factor F 2: the fact that every

element of GL2(F ) preserves ψi (up to a scalar) implies that ρ(a, b, c) preserves ψ (up to a scalar),

so the image of ρ is indeed contained in GSp8(F ).

Definition 7.3.1. We let MF be the F -Zariski closure of the image of this representation (with its

obvious structure as an algebraic group over F ).

Remark 7.3.2. For all λ ∈ F× the matrix λ · Id belongs to the image of ρ. In particular, if F is an

infinite field the group MF contains the (algebraic) group of homotheties.
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Proposition 7.3.3. For every prime ` we have MQ`
∼= MQ ×Q Q`.

Proof. The inclusion MQ ⊗Q` ⊆MQ` is obvious (since with MQ` we are taking the Zariski closure

of a larger set). On the other hand it is not hard to see that both groups become isomorphic to

Gm ·SL3
2 over an algebraic closure, so they have the same dimension and therefore must coincide.

Remark 7.3.4. Consider the Z`-Zariski closure of MQ` in GSp8,Z` , call it MZ` . In view of the

proposition, MZ` coincides with the Z`-Zariski closure of MQ ×Q Q` in GSp8,Z` , and the latter is

smooth over Z` for almost all ` because MQ extends to a smooth scheme over an open subscheme

of SpecZ. It follows that that MZ` is smooth over Z` for almost all `.

We think the algebraic group MF as sitting inside A64
F = M8(F ). It is not hard to find polynomials

that vanish identically on the image of ρ: indeed, if we let

(
B11 B12

B21 B22

)
be any element in Im ρ

(where every Bij is a 4 × 4 matrix), the construction of the tensor product implies that the four

matrices Bij are pairwise linearly dependent, a condition which is purely algebraic (being given by

the vanishing of sufficiently many determinants); in particular, the same property is valid for any

matrix in MF (F ). Likewise, if we write Bij =

(
C11 C12

C21 C22

)
, where each Ckl is a 2 × 2 matrix, we

must again have pairwise linear dependence of the Ckl’s, and this (being an algebraic condition)

is again true for any point in MF (F ). Let now e1, e2 be the standard basis of F 2 and write

eijk = ei ⊗ ej ⊗ ek (with i, j, k ∈ {1, 2}) for the corresponding basis of F 8. We order these basis

vectors as e111, e112, e121, e122, e211, e212, e221, e222. The form ψ on F 8 is then represented by the

matrix 

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0


,

and it is immediate to check that e111, e122, e212, e221 span a Lagrangian subspace.

Definition 7.3.5. Let F be any field. We let H be the subspace of F 8 ∼=
(
F 2
)⊗3

generated by

e111, e122, e212, and e221.
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We now determine the stabilizer S of H in MF

(
F
)
. In matrix terms, an element s of S can be

written as

s =



1 � � 0 � 0 0 �

0 � � 0 � 0 0 �

0 � � 0 � 0 0 �

0 � � 1 � 0 0 �

0 � � 0 � 0 0 �

0 � � 0 � 1 0 �

0 � � 0 � 0 1 �

0 � � 0 � 0 0 �


,

where each entry � is a priori any element of F . We now use the fact that S ⊆MF (F ) to show that

S is finite. Write as before B11 (resp. B12, B21, B22) for the top-left (resp. top-right, bottom-left

and bottom-right) block of s of size 4 × 4. Since B22 is nonzero, linear dependence of B22 and

B12 can be expressed as B12 = αB22 for a certain α ∈ F ; however, since B22 has some nonzero

diagonal coefficients while the corresponding diagonal entries of B12 vanish, we must have α = 0

and B12 = 0. The same argument, applied to B21 and B11, shows that B21 = 0. On the other hand,

the blocks B11 and B22 are both nonzero, so there exists a nonzero λ ∈ F× such that B22 = λB11:

this leads immediately to

s =



1 0 0 0 0 0 0 0

0 1/λ 0 0 0 0 0 0

0 0 1/λ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 λ 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 λ


.

We now use the second part of our previous remark, namely the fact that the 2×2 blocks of B11 are

linearly dependent as well. Comparing the top-left and bottom-right blocks of B11 gives the addi-

tional condition λ2 = 1, that is, λ = ±1: thus the stabilizer in MF (F ) of our Lagrangian subspace H

consists of exactly two elements, namely the identity and the operator diag(1,−1,−1, 1,−1, 1, 1,−1)

(at least if charF 6= 2: otherwise we have −1 = 1 and the two coincide). This stabilizer is also

clearly finite as an algebraic group, since it has only finitely many points over F .

Notice that this argument actually shows a little more. LetMZ` be the Z`-Zariski closure of MQ` in

GSp8,Z` , and suppose thatMZ` is smooth over Z`. Let furthermore H be the Lagrangian subspace

of F8
`
∼= F2

` ⊗ F2
` ⊗ F2

` given in definition 7.3.5 (for the field F`): then the stabilizer of H inMZ`(F`)
has order at most 2. Indeed, all we have used to show that |MF (F )| ≤ 2 is the linear dependence

of certain blocks in the matrix representation of its elements and the fact that the equation λ2 = 1

admits at most 2 solutions in F : both properties are also true for the points ofMZ` with values in

any integral Z`-algebra (in particular, F`). We record this fact in the following
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Proposition 7.3.6. Let ` be a prime, MZ` be the Z`-Zariski closure of MQ` in GSp8,Z`, and H be

the subspace H of definition 7.3.5 for the field F`. The stabilizer of H in MZ`(F`) consists of at

most 2 elements.

7.3.1 Mumford’s examples

We now recall the construction given by Mumford in [85]. Suppose we are given the data of a totally

real cubic number field F and of a central simple division algebra D over F satisfying:

1. CorF/Q(D) = M8(Q);

2. D ⊗Q R ∼= H⊕H⊕M2(R).

Being a division algebra, D is equipped with a natural involution x 7→ x; let G be the Q-algebraic

group whose Q-points are given by
{
x ∈ D∗

∣∣ xx = 1
}

. Mumford constructed in [85] an abelian

variety of dimension 4 with trivial endomorphism ring and Hodge group equal to G (in fact, he

constructed a Shimura curve parametrizing abelian fourfolds whose Hodge group is contained in G,

and showed that every sufficiently generic fiber has exactly G as its Hodge group). By specialization,

there exists a principally polarized abelian fourfold A defined over a number field L and such that

Hg(A) ∼= G; since Hg(A) is as small as it is possible for an abelian fourfold with no additional

endomorphisms, the Mumford-Tate conjecture is known to hold for A (cf. [80]). By theorem 7.2.3

there is a finite extension K of L such that, if we denote G` the image of the mod-` representation

Gal(K/K) → AutA[`], then we have G` ⊆ MT(A)(F`) for all primes `. On the other hand, the

equality CorF/Q(D) = M8(Q) implies the existence of a (“norm”) map N : D∗ → GL8(Q), and

Mumford’s construction is such that the action of G(Q) = D∗ on V := H1(A(C),Q) ∼= Q8 is given

exactly by N . Furthermore, it is also known that N is a Q-form of the R-representation

G(R) ∼= SL2(R)× SU2(R)2 → Sp8(R)

coming from the tensor product of the standard representation of SL2(R) by the unique four-

dimensional faithful orthogonal representation SU2(R)2 → SO4(R). In particular, by extension of

scalars to C we see that the action of G(C) ∼= SL2(C)3 on VC is given by the representation ρ of the

previous paragraph (restricted to SL2(C)3).

Lemma 7.3.7. Let ` be a prime such that G ×Q Q` is split. Then (up to choosing a suitable

identification T`(A)⊗Q`
∼= Q8

`) we have MT(A)×ZQ` = M ×QQ`, where M = MQ is the algebraic

group of definition 7.3.1 for the field Q.

Proof. The morphism G→ Sp8,Q is given by the norm map, and if G×QQ` is split (hence isomorphic

to SL3
2,Q`) the norm map is exactly

ρ : SL2(Q`)
3 → Sp8(Q`)

(a, b, c) 7→ a⊗ b⊗ c;

it follows that M(Q`) contains ρ (G(Q`)) = Hg(A)(Q`) and M ×Q Q` contains Hg(A) ×Q Q` (as

algebraic groups). On the other hand, MT(A) is the almost-direct product of Hg(A) by the ho-

motheties torus Gm, and by remark 7.3.2 we know that M also contains Gm. This proves that we

have MT(A)×Q` ⊆M ×Q`, and since the two groups have the same dimension the inclusion must

be an equality.
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Extend now M and G to group schemes over Z by taking their Z-Zariski closure in their respective

ambient spaces; there is an open subscheme SpecZ
[

1
S

]
of SpecZ over which M,MT(A) and G

are all smooth. Consider the family F of primes ` unramified in K, such that G splits over Q`,

and which do not divide S. We claim that F is infinite. Indeed, for G to be split over Q` it is

enough that the root datum of G be unramified at ` and that the Frobenius at ` act trivially on

it, which – by Chebotarev’s theorem – is the case for a positive-density set of primes (the action

of Gal(Q/Q) on the root datum of G factors through a finite quotient): it is then clear that F
is infinite, because only finitely many primes divide S or the discriminant of K. Pick now any

` in F and let M = M ×Z Z`. The definition of F implies that M is a smooth Z`-model of

M ×Z Q` = MQ` , and by lemma 7.3.7 we have MT(A) ×Z Z` = M, because both groups can

be obtained as the Z`-Zariski closure of the same generic fiber. In particular, we see that G` is

contained inM(F`) = MT(A)(F`). Take now H ⊆ A[`] to be the Lagrangian subspace of definition

7.3.5 (for the field F`). The field K(H) is clearly contained in K(A[`]), so in order to describe K(H)

it suffices to describe Gal (K(A[`])/K(H)), that is, the stabilizer of H in G`; as G` is contained in

M(F`), this stabilizer is certainly contained in the stabilizer of H inM(F`), which in turn consists

of at most two elements by proposition 7.3.6. We have thus proved that the index [K(A[`]) : K(H)]

is at most 2, and since K(µ`) is contained in K(A[`]) by the properties of the Weil pairing (recall

that A is principally polarized) we have

[K(H) ∩K(µ`∞) : K] ≥ 1

2
[K(A[`]) ∩K(µ`∞) : K] ≥ 1

2
[K(µ`) : K] =

`− 1

2
,

where the last equality follows from the fact that ` is unramified in K. We then see that property

(µ)s does not hold for Mumford’s example: indeed, H is Lagrangian, so m1(H) is 0; but if property

(µ)s held for A/K, then (for some C) the inequality

`− 1

2
≤ [K(H) ∩K(µ`∞) : K] ≤ C

[
K(µ`m1(H)) : K

]
= C

would be satisfied by all the primes in our infinite family F , and this is clearly absurd. This

establishes theorem 7.1.5.



Chapter 8

Pink-type results for general

subgroups of GL2(Z`)n

8.1 Motivation and statement of the result

The ultimate goal of this work is the study of the images of certain Galois representations with values

in GL2(Z`)n, such as those afforded by the Tate modules of elliptic curves, or some representations

arising from modular forms. It would therefore be useful to have a manageable way to describe

these images; however, it turns out that it is beneficial, and in a sense simpler, to consider arbitrary

subgroups G of GL2(Z`)n without making any reference to their origin, and in the present work

Galois representations will play virtually no role. In most applications to the study of Galois

representations, the main object of interest is actually the intersectionG∩SL2(Z`)n, and furthermore

it is an easy matter to pass from results on subgroups of SL2(Z`)n to results on subgroups of

GL2(Z`)n, so we shall actually mostly work with subgroups G of SL2(Z`)n. Any such G is the

extension of a ‘finite’ part, the image G(`) of the reduction G → SL2(F`)n, by a ‘Lie’ part, the

kernel of this reduction.

When G is closed and G(`) is trivial (or more generally when G is pro-`), and ` is odd, a construction

due to Pink [97] gives a very concrete and handy description of G in terms of a certain Z`-Lie algebra

L(G) (together with some additional data which is not very important to our present discussion).

Furthermore, if G is the image of a representation of Gal(K/K) (K a number field), the condition

that G(`) be trivial can always be met by replacing K by a finite extension, so that Pink’s theorem

applies. Note however that the degree of this extension depends on `: while this is often perfectly

fine when considering a single Galois representation, it may become a major drawback when dealing

with infinite families G` indexed by the rational primes (as it is the case, for example, with the action

of Gal(K/K) on the various Tate modules of an abelian variety). Furthermore, Pink’s theorem does

not apply to ` = 2, which might again be quite a hindrance when trying to study the whole system

G` at once.

While we cannot hope to give a complete description of G in terms of Pink’s Lie algebras when

G is not pro-`, we could try and settle for less, namely a result of the form ‘when L(G) contains

a large neighbourhood of the identity (given explicitly), we can explicitly find a neighbourhood of

the identity of SL2(Z`)n that is included in G’. Note that when dealing with Galois representations

195
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we are often interested in ‘large image’ results, for which this weaker form of Pink’s theorem would

still be adequate. Unfortunately, even this is not possible (cf. for example §1.4.5), and the best we

can hope for is for such a statement to hold not quite for G, but for a subgroup H of G such that

the index [G : H] is bounded by a function of n alone.

In order to give a concrete statement we shall need some preliminary definitions:

Definition 8.1.1. For a prime ` and a positive integer s we let B`(s) be the open subgroup of

SL2(Z`) given by {
x ∈ SL2(Z`)

∣∣ x ≡ Id (mod `s)
}
.

We also set B`(0) = SL2(Z`), and for non-negative integers k1, . . . , kn we denote by B`(k1, . . . , kn)

the open subgroup
∏n
j=1 B`(kj) of SL2(Z`)n.

Definition 8.1.2. (cf. [97]) Let ` be a prime, n a positive integer and G be a closed subgroup of

GL2(Z`)n. If ` = 2, assume further that the reduction modulo 4 of G is trivial. Writing elements

of G as n-tuples (g1, . . . , gn) of elements of GL2(Z`), we define a map Θn by the formula

Θn : G →
⊕n

i=1 sl2(Z`)
(g1, . . . , gn) 7→

(
g1 − 1

2 tr(g1), . . . , gn − 1
2 tr(gn)

)
,

and we let L(G) ⊆ sl2(Z`)n be the Z`-span of Θn(G). We call L(G) the Lie algebra of G.

Theorem 8.1.3. Let ` be an odd prime, n be an integer, and G be a closed subgroup of SL2(Z`)n.

There exists a closed subgroup H of G, of index at most 24n48n(n−1), with the following property:

if L(H) contains
⊕n

i=1 `
ksl2(Z`) for a certain integer k > 0, then H contains B`(p, . . . , p) for

p = 80(max{n, 2} − 1)k.

Similarly, let n be a positive integer and G be a closed subgroup of SL2(Z2)n. There exists a closed

subgroup H of G that satisfies [G : H]
∣∣ 96n, is trivial modulo 4 (so that L(H) is defined), and

has the following property: if L(H) contains
⊕n

i=1 2ksl2(Z2) for a certain integer k > 0, then H

contains B2(p, . . . , p) for p = 645(max{n, 2} − 1)k.

While it is certainly true that both this theorem and its proof are quite technical, it should be

remarked that this statement does enable us to show exactly the kind of ‘large image’ results we

alluded to: the case n = 1 has been used in chapter 1 to show an explicit open image theorem

for elliptic curves (without complex multiplication), and in chapter 2 we apply the case n = 2 to

extend this result to arbitrary products of non-CM elliptic curves.

A few more words on the proof of theorem 8.1.3: as it will be clear from section 8.5, the crucial

cases are n = 1 and n = 2. While the former has essentially been proven in chapter 1, the latter

forms the core of the present chapter, and we shall actually prove it in a slightly more precise form

than strictly necessary to establish theorem 8.1.3. This will be done in sections 8.3 and 8.4 below,

where we also give analogous statements for GL2(Z`)2.

Notation. We shall make constant use of the following notations:

• G(`n), where G is a closed subgroup of GL2(Z`)k, will denote the reduction of G modulo `n,

that is to say its image in GL2(Z/`nZ)k;
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• N(G) will denote the largest normal pro-` subgroup of G, where G is a subgroup of either

GL2(Z`) or of GL2(F`);

• G′ will denote the topological closure of the commutator subgroup;

• if x is an element of GL2(Z`) (resp. of Z`), we shall write [x] for its image in GL2(F`) (resp.

in F`).

8.2 Preliminary lemmas

In this section we set up the necessary notation and prove a few preliminary lemmas.

Throughout the whole chapter, the prime 2 plays a rather special role, and special care is needed to

treat it. In order to give uniform statements that hold for every prime, we put v = 0 or 1 according

to whether the prime ` we are working with is odd or equals 2, that is we set

v = v`(2) =

0, if ` is odd

1, otherwise.

Lemma 8.2.1. Let ` be a prime number, t a non-negative integer, and W ⊆ sl2(Z`) a Lie subalgebra

that does not reduce to zero modulo `t+1 and that is stable under conjugation by B`(s), where s ≥ 0

is at least 2 if ` = 2 and at least 1 if ` = 3 or 5 (no conditions are necessary if ` ≥ 7). The open

set `t+4s+4vsl2(Z`) is contained in W .

Proof. Write an element w of W that does not vanish modulo `t+1 as µxx+ µyy + µhh, where

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
and min {v`(µx), v`(µy), v`(µh)} ≤ t.

Let Cl (resp. Cd, Cr) be the linear operator of W into itself given by conjugation by

(
1 0

`s 1

)
(resp.(

1 + `s 0

0 1
1+`s

)
,

(
1 `s

0 1

)
) and D• = C• − Id, where • is one among l, d, r. Concretely,

Dl(w) =

(
1 0

`s 1

)−1

w

(
1 0

`s 1

)
− w.

Also set α := 1 + `s. We have

α4(Cd − α2) ◦ Ddw = (α4 − 1)(α2 − 1)µxx ∈W,

where v`((α
4 − 1)(α2 − 1)) = 2s+ 3v by our assumptions on s. Similarly, we also have

(α4 − 1)(α2 − 1)µyy ∈W

and by difference also (α4− 1)(α2− 1)µhh ∈W . Up to symmetry, we can therefore assume that W

contains either M1 =

(
`t+2s+3v 0

0 −`t+2s+3v

)
or M2 =

(
0 `t+2s+3v

0 0

)
. To finish the proof we use

the following immediate identities:
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• Dr(M1) =

(
0 2`t+3s+3v

0 0

)
,Dl(M1) =

(
0 0

−2`t+3s+3v 0

)
, so that in this case W contains

`t+3s+4vsl2 (Z`)

• Dl ◦Dl(M2) =

(
0 0

−2`t+4s+3v 0

)
,Dl ◦Dl(M2)−2Dl(M2) =

(
−2`t+3s+3v 0

0 2`t+3s+3v

)
, so

that in this case W contains `t+4s+4vsl2 (Z`).

Lemma 8.2.2. Let ` be a prime number, n ≥ 1,m ≥ 1, g ∈ End (Zm` ) and pg(t) be the characteristic

polynomial of g. Let furthermore λ ∈ Z`, w ∈ Zm` be such that gw ≡ λw (mod `n). Suppose that at

least one of the coordinates of w has `-adic valuation at most α: then pg(λ) ≡ 0 (mod `n−α).

Proof. Denote (g − λ Id)∗ the adjugate matrix of (g − λ Id), that is the unique operator such that

(g − λ Id)∗(g − λ Id) = det(g − λ Id) · Id. Multiplying (g − λ Id)w ≡ 0 (mod `n) on the left by

(g − λ Id)∗ we obtain det(g − λ Id) · Idw ≡ 0 (mod `n), and by considering the coordinate of w of

smallest valuation we obtain pg(λ) = det(g − λ Id) ≡ 0 (mod `n−α) as claimed.

Lemma 8.2.3. Let s1, s2 be non-negative integers (with s1, s2 ≥ 2 if ` = 2 and s1, s2 ≥ 1 if

` = 3). The commutator group [B`(s1),B`(s2)] contains B`(s1 +s2 +v), and the iterated commutator

[· · · [︸︷︷︸
(n−1) times

B`(s1),B`(s2) ],B`(s3)], · · · ,B`(sn)] contains B`(s1 + · · ·+ sn + (n− 1)v).

Proof. This is an easy verification.

The quantitative result we will need is the following:

Lemma 8.2.4. Let n be a positive integer, G a closed subgroup of
∏n
i=1 SL2(Z`), and πi the pro-

jection from G on the i-th factor. Suppose that, for every i 6= j, the group (πi × πj) (G) contains

B`(sij , sij) for a certain non-negative integer sij (with sij ≥ 2 if ` = 2 and sij ≥ 1 if ` = 3): then

G contains
∏n
i=1 B`

(∑
j 6=i sij + (n− 1)v

)
.

Proof. Clearly by the symmetry of the problem it is enough to show that G contains

{Id} × · · · × {Id} × B`

∑
j 6=n

snj + (n− 1)v

 .

By lemma 8.2.3, for any g in B`
(∑

j 6=n snj + (n− 1)v
)

there exist elements yi in B`(sni) (for i

between 1 and n − 1) such that g can be written as [· · · [[y1, y2], y3], · · · , yn−1]. By hypothesis we

can find x1, . . . , xn−1 ∈ G such that πi(xi) = Id and πn(xi) = yi for all i between 1 and n − 1.

Consider now the iterated commutator

g̃ = [· · · [[x1, x2], x3], · · · , xn−1] :

this is a product of elements of G, and therefore it is itself an element of G. For i ≤ n− 1, the i-th

component of g̃ is trivial, since

πi(g̃) = [· · · [· · · [[πi(x1), πi(x2)], πi(x3)], · · · , πi(xi)︸ ︷︷ ︸
Id

], · · · , πi(xn−1)] = Id .
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On the other hand, our choice of y1, . . . , yn−1 ensures that πn(g̃) = [· · · [[y1, y2] , y3] , · · · , yn−1] = g.

We have thus shown that (1, 1, . . . , 1, g) = g̃ is an element of G for any choice of g in

B`

∑
j 6=n

sij + (n− 1)v

 ,

and repeating the argument for the other projections gives the required result.

8.3 Odd `, n = 2

In this section we establish the case n = 2 of the main theorem when ` is an odd prime. We shall

actually prove the following variant concerning subgroups of GL2(Z`)2:

Theorem 8.3.1. Let ` > 2 be a prime number and G be a closed subgroup of GL2(Z`)×GL2(Z`).
Let G1, G2 be the two projections of G on the two factors GL2(Z`), and let n1, n2 be positive integers

such that Gi contains B`(ni) for i = 1, 2. Suppose furthermore that for every (g1, g2) ∈ G we have

det(g1) = det(g2). At least one of the following holds:

• G contains B`(20 max{n1, n2}, 20 max{n1, n2})

• there exists a subgroup T of G, of index dividing 2 · 482, with the following properties:

– if L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`) for a certain integer k, then T contains B`(p, p),
where

p = 2k + max {2k + 4, 8n1, 8n2} .

We call this property (∗).

– for any (t1, t2) in T , if both [t1] and [t2] are multiples of the identity, then they are equal.

The corresponding statement for subgroups of SL2(Z`)2 is as follows:

Theorem 8.3.2. Let ` > 2 be a prime number and G be a closed subgroup of SL2(Z`) × SL2(Z`)
and n1, n2 be positive integers such that Gi contains B`(ni) for i = 1, 2. At least one of the following

holds:

• G′ contains B`(20 maxn1, n2, 20 maxn1, n2)

• there exists a subgroup T of G, of index dividing 482, with the following properties:

– if L(T ) contains `ksl2(Z`)⊕ `ksl2(Z`) for a certain integer k, then T ′ contains B`(p, p),
where

p = 2k + max {2k + 4, 8n1, 8n2} .

We call this property (∗∗).

– an element (t1, t2) of T satisfies [t1] = [Id] if and only if it satisfies [t2] = [Id].

We will start by showing that theorem 8.3.2 implies theorem 8.3.1, and then proceed to prove

the former. One of the key ingredients of the proof is the following theorem, which in turn is an

immediate consequence of Pink’s results from [97] (see also the proof of theorem 1.4.2).
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Theorem 8.3.3. Let ` 6= 2 be a prime number and k be an integer.

Suppose G is a closed pro-` subgroup of SL2(Z`), and suppose furthermore that L(G) contains

`ksl2(Z`): then G′ contains B`(2k). Similarly, if G is a closed pro-` subgroup of SL2(Z`)2 and L(G)

contains `ksl2(Z`)⊕ `ksl2(Z`), then G′ contains B`(2k, 2k).

Proof. (of theorem 8.3.1) Write det∗ for the map G
det−−→ Z2

`
π1−→ Z` given by the composition of the

usual determinant with the projection on the first coordinate of Z2
` . Note that by assumption an

element (g1, g2) of G satisfies det(g1, g2) = (1, 1) if and only if it satisfies det∗(g1, g2) = 1.

Assume first that ` ≤ 5. Denote by T̃ the inverse image in G of an `-Sylow of G(`), and set

T := ker

(
T̃

det∗−−→ Z×` →
Z×`
Z×2
`

)
.

By the assumption that every element (g1, g2) of G satisfies det g1 = det g2, we see that the index

of T in G divides 2 · 1
`−1

(
|GL2(F`)|

`

)2 ∣∣ 2 · 482. As in lemma 1.3.17, one sees that the groups T and

T 1 :=
(
T · (Z×` · (Id, Id))

)
∩ SL2(Z`)2 have the same derived subgroup and the same Lie algebra,

and moreover T 1 is a pro-` subgroup of SL2(Z`)2. Furthermore, every element (t1, t2) of T reduces

to ([Id], [Id]) modulo `. Now if L(T ) contains `ksl2(Z`)⊕`ksl2(Z`), then the same is true for L
(
T 1
)
,

hence (T 1)′ = T ′ contains B`(2k, 2k) by theorem 8.3.3.

Next consider the case ` > 5. Let U1 be the subgroup of G, of index at most 2, given by

ker
(
G

det∗−−→ Z×` → Z×` /Z
×2
`

)
. Let U2 =

(
U1 ·

(
Z×` · (Id, Id)

))
∩ SL2(Z`)2, and notice that U1 and U2

have the same derived subgroup (lemma 1.3.17). We can assume that U ′2 = U ′1 does not contain

B`(4n1 + 16n2, 8n2), for otherwise we are done. Apply theorem 8.3.2 to U2 to find a subgroup T2 of

U2 (of index at most 482) that has property (∗∗). Notice that we have a well-defined morphism

U1
ψ→ U2/(±(Id, Id))

given by g 7→ [g/
√

det∗(g)], where
√

det∗ g exists in Z×` by construction of U1. Let T2 be the image

of T2 in the quotient U2/(±(Id, Id)). Notice that ψ is surjective by definition of U2, so if we define T

to be the inverse image of T2 through ψ, then the index [U1 : T ] divides 482. As the prime ` is larger

than 5, it does not divide [G : T ], so (given that B`(n1),B`(n2) are `-groups) the two projections of

T on the two factors SL2(Z`) contain B`(n1),B`(n2) respectively. Furthermore, the Lie algebra of

T and that of T2 agree, as do their derived subgroups: for every t2 ∈ T2 we can find a t ∈ T such

that t/
√

det∗ t = ±t2, so that Θ1(t) and Θ1(t2) differ by an element of Z×` , and conversely for every

t ∈ T there exists a t2 ∈ T2 such that t2 = ±t/
√

det∗(t) (so that again Θ1(t) and Θ1(t2) differ by

an `-adic unit). Suppose now that L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`): then the same is true for

L(T2) (as the two Lie algebras coincide), and therefore by property (∗∗) (cf. theorem 8.3.2) we see

that T ′2 = T ′ contains B`(p, p).
Finally, let (t1, t2) be in T and suppose that [t1], [t2] are multiples of the identity. By construction,

there exists a scalar λ and an element (w1, w2) ∈ T2 such that (t1, t2) = λ(w1, w2). As the only

multiples of the identity in SL2(F`) are ± Id, changing λ into −λ if necessary we can assume that

[w1] = Id. But then the properties of T2 imply that [w2] = Id, so [t1] = [λ · Id] = [t2].

Remark 8.3.4. It is clear from this proof that we can assume ` > 5 without loss of generality. Doing

so will simplify some of the arguments. Also note that the property [t1] = [Id] ⇔ [t2] = [Id] of the

group T of theorem 8.3.2 will be clear from its construction, so we will not comment further on it.
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Our final objective is to compute, in terms of k, n1 and n2, an integer p such that G contains

B`(p, p). This would be immediate if G were a pro-` group, for then we would simply apply theorem

8.3.3 as it is. In general, however, one needs to take into account the structure of G(`), and many

different possibilities arise, according to the type of G1(`), G2(`) in the Dickson classification.

The problem of studying G is complicated by the many possibilities for the mutual relationship

between G,G1 and G2. However, in some situations which we now discuss, the two projections

G1 and G2 behave essentially independently one of the other: in this case the problem is greatly

simplified, and it is possible to exhibit an integer p as above without examining too closely the

structure of G(`). To identify these cases we start with the following easy lemma:

Lemma 8.3.5. Suppose G contains an element g of the form (x, y), where [x] is trivial and [y] is

nontrivial and of order prime to `. The group G contains an element of the form (1, z), where the

order of [z] is the same as the order of [y].

Proof. Such an element is given by any limit point of the sequence g`
n
.

The following statement is also easy to check (cf. lemma 8.4.17 below for an analogous, but more

complicated case):

Lemma 8.3.6. Let m be a non-negative integer, u1, u2 be `-adic units, g1 be

(
1 u1`

m

0 1

)
, g2 be(

1 0

u2`
m 1

)
, and G be a closed subgroup of SL2(Z`). If G contains both g1 and g2, then it also

contains all of B`(2m).

Lemma 8.3.7. Suppose that G contains an element (a, b) such that a is trivial modulo ` and the

prime-to-` part of the order of [b] is at least 3. Then G′ contains B`(4n1 + 16n2, 8n2).

Proof. Note that both the hypothesis and the conclusion are invariant under any change of basis,

so we can freely change bases to simplify the calculations.

There exists an integer m such that [b]`
m

has order prime to `; replacing (a, b) with (a, b)`
m

allows

us to assume that the order of [b] is at least 3. By lemma 8.3.5, G contains an element of the form

(1, b′), where the order of [b′] is the same as the order of [b]. We can therefore assume a = 1.

By hypothesis, for any g2 in B`(n2) we can find a g1 such that (g1, g2) belongs to G. It follows that

for any g2 ∈ B`(n2) the element

(1, b′)−1(g1, g2)(1, b′)(g1, g2)−1 = (1, (b′)−1g2b
′g−1

2 )

belongs to G. Up to a choice of basis, we can assume that either b′ =

(
d 0

0 1/d

)
for a certain unit

d, or b′ =

(
c dε

d c

)
for certain units c, d and a certain ε such that [ε] is not a square (for this second

case cf. lemma 1.4.7). In the first case, choosing g2 =

(
1 `n2

0 1

)
shows that(

1,

(
1 (d−2 − 1)`n2

0 1

))
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belongs to G. Given that d is not congruent to ±1 modulo `, for otherwise the order of [b] would

be 1 or 2, we see that the `-adic valuation of (d−2 − 1)`n2 is exactly n2. Similarly, G contains(
1,

(
1 0

(d2 − 1)`n2 1

))
, and by lemma 8.3.6 this implies that G contains {1} × B`(2n2). A similar

analysis in the second case (taking g2 of the form

(
1 + e − ce(e+2)

d(e+1)

0 1
1+e

)
, where v`(e) ≥ n2) shows

that G contains {1} × B`(4n2).

Consider now an element h = (h1, h2) of G whose first coordinate is h1 =

(
1 1

`2−1
`n1

0 1

)
; such an

element exists by assumption. Its `(`2− 1)-th power is of the form h′ =

((
1 `n1+1

0 1

)
, h′2

)
, where

[h′2] = [h2]`(`
2−1) = [h2]|SL2(F`)| = [Id]. The `4n2−1-th power of h′ (recall that n2 > 0), therefore, is

a certain

h′′ =

((
1 `n1+4n2

0 1

)
, h′′2

)
,

where h′′2 ∈ B`(4n2). By what we already saw, G contains (1, h′′2), so G contains

h′′(1, h′′2)−1 =

((
1 `n1+4n2

0 1

)
, 1

)
.

The same argument shows that G also contains

((
1 0

`n1+4n2 1

)
, 1

)
, and we finally deduce that G

contains B`(2n1 + 8n2)× {1}, hence G′ contains B`(4n1 + 16n2)× B`(8n2).

Lemma 8.3.8. Suppose that L(N(G)) contains an element of the form (0, u), where u is nonzero

modulo `s+1 (s a non-negative integer). Then G′ contains {1} × B`(2s+ 8n2).

If L(N(G)) contains two elements (u1, 0) and (0, u2) that are nonzero modulo `s+1, then G′ contains

B`(2s+ 8n1)× B`(2s+ 8n2).

Proof. Note first that the Lie algebra L(N(G)) is stable under conjugation by G (by the same

argument as lemma 1.4.5). The smallest Lie subalgebra of L(N(G)) that contains (0, u) and is

stable under conjugation by G is 0 ⊕ L(u), where L(u) is the smallest Lie subalgebra of sl2(Z`)
that contains u and is stable under conjugation by G2. By virtue of lemma 8.2.1, and given that

G2 contains B`(n2), the algebra L(u) contains `s+4n2sl2(Z`). It follows that L(N(G)) contains

0 ⊕ `s+4n2sl2(Z`), and applying theorem 8.3.3 we deduce that N(G)′ (hence also G′) contains

{1} × B`(2s+ 8n2). The second statement is now immediate.

We now have three categories of groups for which, given information on L(G), we can deduce

information on G:

(A) pro-` groups: by theorem 8.3.3, if L(G) contains `ksl2(Z`) ⊕ `ksl2(Z`), then G′ contains

B`(2k, 2k);

(B) groups that contain an element (a, b) such that [a] is trivial and the prime-to-` part of the

order of [b] is least 3, because of lemma 8.3.7;
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(C) groups satisfying the hypotheses of lemma 8.3.8.

We now start with a general closed subgroup G of SL2(Z`)2 and show that (up to passing to a

subgroup of finite, absolutely bounded index) the group G must satisfy one of these three sets of

hypotheses.

As already anticipated, we will need a case analysis based on the structure of G1(`) and G2(`).

These are subgroup of SL2(F`), and by the Dickson classification we know that any subgroup of

SL2(F`) is of one of the following types:

trivial, split Cartan, nonsplit Cartan, normalizer of split Cartan, normalizer of nonsplit Cartan,

Borel, exceptional, SL2(F`).

Remark 8.3.9. To be more precise we should rather write ‘contained in a split Cartan subgroup’,

‘contained in a Borel subgroup’, etc. The slight abuse of language should not cause any problems.

We call ‘type’ of G the pair (type of G1(`), type of G2(`)). The proof will proceed by analysing all

the possibilities for the type of G.

Notice that, if (B) above applies, then (without even using any information on L(G)) we know

that G contains B`(4n1 + 16n2, 8n2), and we are done. We can therefore assume that (B) does not

apply and drastically reduce the number of cases we need to treat, as we now show. Consider the

kernel J2 of the reduction G(`) → G1(`), which we identify to a (normal) subgroup of G2(`). If

the prime-to-` part of the order of J2 is at least 3, then we are in case (B) above: indeed SL2(F`)
contains only one element of order 2, namely minus the identity, so if the prime-to-` part of the

order of J2 is at least 3, then J2 contains an element b whose order has prime-to-` part at least 3,

and we are done.

Suppose, on the contrary, that the prime-to-` part of the order of J2 is at most 2. Taking into

account that J2 is a subgroup of SL2(F`), we see that the `-part of its order can either be 1 or `.

Thus the order of J2 can only be 1, 2, `, 2`; furthermore, the last two cases can only happen if G2(`)

is of Borel type, since these are the only subgroups of SL2(F`) admitting a normal `-Sylow. The

same argument also applies to J1 = ker (G(`)→ G2(`)).

Replacing G with its subgroup H = ker (G→ G(`)→ G2(`)→ G2(`)/N (G2(`))) we can assume

that the order of J2 is either 1 or `. Similarly, up to passing to a second subgroup of index 2, we

can assume that the order of J1 is 1 or `.

Goursat’s lemma implies that G1(`)/J1 and G2(`)/J2 are isomorphic, and since Ji is either trivial

or agrees with N(Gi(`)) we see that in particular we can assume

G(`)/N(G(`)) is the graph of an isomorphism between the finite groups G1(`)/N(G1(`)) and

G2(`)/N(G2(`)). (∗)

In order to minimize the number of cases we need to treat, let us also get rid of the ‘exceptional’

case and simplify the Cartan ones.

In case G1(`) is exceptional, there exists a subgroup H < G of index dividing 48 with the property

that π1(H)(`) is a cyclic subgroup of order 3 or 5 (according to whether the projective image of

G1(`) is isomorphic to A4, or respectively to A5 or S5). Assumption (∗) implies that π2(H) is also

cyclic of order either 3 or 5.
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Likewise, if G1(`) is contained in the normalizer of a Cartan subgroup, passing to a subgroup H

of index at most 2 allows us to assume that π1(H)(`) is in fact contained in the Cartan subgroup

itself, and the same then holds for π2(H)(`).

As a final simplifying assumption, note that if G1(`) ∼= G2(`) is of order dividing 8, then passing to

the subgroup defined by ker(G→ G(`)) ensures that G is in fact pro-` (so (A) applies, and we are

done). Notice that this step is not necessary if we performed the reduction from the exceptional to

the cyclic case.

Putting it all together, we see that at the cost of passing to a subgroup of index dividing 2 · 2 · 48

we have reduced the list of our cases (for a single factor) to

trivial, split Cartan, nonsplit Cartan, Borel, SL2(F`),

and we can furthermore assume that property (∗) holds and that the orders of G1(`) and G2(`) do

not divide 8. We shall now list all the remaining cases for the type of G, and then show how to

deal with each of them in turn.

Before getting started with our case analysis let us record a couple of simple results on Teichmüller

lifts:

Definition 8.3.10. Let F be a finite unramified extension of Q` of degree k, with residue field

F = F`k . For an element [f ] ∈ F we denote ω([f ]) the Teichmüller lift of [f ], that is to say the only

element g ∈ OF that reduces to [f ] in F and satisfies g`
k

= g.

Lemma 8.3.11. With the notation of the previous definition, the sequence f `
kn

converges to ω([f ])

when n tends to infinity.

Proof. Immediate.

Lemma 8.3.12. Let g be an element of SL2(Z`) such that [g] has order prime to ` and strictly

greater than 2. Then the sequence g`
2n

for n ∈ N converges to a certain g∞ that satisfies g`
2

∞ = g∞.

Moreover, if [g] is diagonalizable over F`, the limit g∞ even satisfies g`∞ = g∞.

Proof. The assumption implies that [g] has distinct eigenvalues, hence there exists a quadratic

unramified extension F of Q` over which g can be written as g = P−1DP , where D = diag(λ, λ−1)

is diagonal and P is a base-change matrix. By the previous lemma, the sequence D`2n converges to

diag(ω([λ]), ω([λ−1])), so the sequence g`
2n

= PD`2nP−1 converges to P−1 diag(ω([λ]), ω([λ−1]))P ,

which satisfies the conclusion since ω([λ])`
2

= ω([λ]). For the second statement we can take F = Q`

and use the fact that the Teichmüller lifts satisfy ω([λ])` = ω([λ]).

We are now ready to deal with the remaining cases for the type of G. Every case is dealt with in a

separate section, whose title is of the form (type of G1, type of G2). Note that since N(SL2(F`)) is

trivial we have G1(`) = SL2(F`) if and only if G2(`) = SL2(F`); this helps exclude a few more cases.

Also notice that thus far we have replaced G by a subgroup of index dividing 4 · 48, and therefore

we are still free, if necessary, to further replace it with subgroups of index dividing 12 (in fact, we

shall only need one more replacement, by a subgroup of index 2, in sections 8.3.3 and 8.3.4).
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8.3.1 Case (Trivial, anything)

Since we assume (∗) and G1(`) is trivial, G2(`)/N(G2(`)) is again trivial, so G2(`) is pro-`. The

same then holds for G, and therefore G falls into category (A). Theorem 8.3.3 gives directly that

G′ contains B`(2k, 2k).

8.3.2 Cases (Nonsplit Cartan, Split Cartan) and (Nonsplit Cartan, Borel)

The same idea works in both cases: consider an element (a, b) ∈ G with [a] of maximal order in

G1(`); notice in particular that [a] has order dividing ` + 1. The finite group G(`) contains the

element

([a], [b])`(`−1) = ([a]`(`−1), [Id]),

and the order of [a]`(`−1) is given by
ord([a])

(`− 1, ord([a]))
=: m. If m is at least 3 this falls into category

(B), contradiction. On the other hand, notice that (`− 1, ord([a])) ≤ 2, so m ≤ 2 implies ord[a]
∣∣ 4,

contradicting our assumption that the order of G1(`) does not divide 8.

8.3.3 Cases (Split Cartan, Split Cartan), (Borel, Borel) and (Split Cartan,

Borel)

We start by considering the type (Split Cartan, Split Cartan), the other two cases being essentially

identical. Note that the groups N(G(`)), N(G1(`)) and N(G2(`)) are all trivial, so G1(`) and

G2(`) are isomorphic by (∗), and we can find an element (h1, h2) ∈ G such that [h1], [h2] generate

G1(`), G2(`) respectively. By lemma 8.3.12, the limit (g1, g2) of the sequence (h1, h2)`
2n

satisfies

g`1 = g1, g
`
2 = g2, and furthermore [g1], [g2] generate G1(`), G2(`) respectively. We choose bases in

such a way that both g1 and g2 are diagonal. Write gi =

(
di 0

0 d−1
i

)
, where di satisfies d`i = di.

Since we are assuming that G1(`) ∼= G2(`), we know that the orders of [d1] and [d2] agree. In

particular, we can write [d2] = [d1]q for a certain integer q, 1 ≤ q ≤ ord[d1], that is prime to the

order of [d1]. Replacing G with a subgroup of index 2 if necessary we can assume q 6= ±2.

Given that the Teichmüller lift is a homomorphism we deduce d2 = ω([d2]) = ω([d1])q = dq1. The

cases q = ±1 and q 6= ±1 will turn out to be somewhat different, as we will see shortly. Note that

the cases q = 1 and q = −1 are the same up to a change of basis (the one exchanging the two

coordinates on the second factor SL2(Z`)), so in the scenario q = ±1 we can in fact assume without

loss of generality that q = 1. Consider now the three matrices

M1 =

(
0 1

0 0

)
,M2 =

(
1 0

0 −1

)
,M3 =

(
0 0

1 0

)
and let π1 (resp. π2, π3) be the linear maps sl2(Z`) → Z` ·Mi giving the projection of an element

on its M1 (resp. M2,M3) component. A Z`-basis of the Lie algebra sl2(Z`) ⊕ sl2(Z`) is given by

(Mi⊕0), (0⊕Mj) for i = 1, 2, 3 and j = 1, 2, 3. Note that both L(G) and L(N(G)) are stable under

conjugation by (g1, g2) (cf. lemma 1.4.5).
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Writing elements of sl2(Z`)⊕ sl2(Z`) as the 6-dimensional vectors of their coordinates in the basis

just described, the action of conjugating by (g1, g2) is given by

(x1, x2, x3, x4, x5, x6) 7→ (d2
1x1, x2, d

−2
1 x3, d

2
2x4, x5, d

−2
2 x6).

In particular, if we denote C the linear operator (acting on sl2(Z`)⊕ sl2(Z`))

(x, y) 7→ (g1xg
−1
1 , g2yg

−1
2 ),

we have

1

`− 1

`−2∑
i=0

Ci(x1, x2, x3, x4, x5, x6) = (0, x2, 0, 0, x4, 0) ,

since
1

`− 1

`−2∑
i=0

d2i
1 =

1

`− 1

d
2(`−1)
1 − 1

d2
1 − 1

= 0 (recall that d`1 = d1 and d2
1 6= 1), and similarly for d−2

1

and d±2
2 . It follows that if L(G) or L(N(G)) contains the vector (x1, . . . , x6), then it also contains

the vectors (x1, 0, x3, x4, 0, x6) and (d2j
1 x1, 0, d

−2j
1 x3, d

2j
2 x4, 0, d

−2j
2 x6) (for every integer j). Consider

the matrix

V =


1 1 1 1

d2
1 d−2

1 d2
2 d−2

2

d4
1 d−4

1 d4
2 d−4

2

d6
1 d−6

1 d6
2 d−6

2

 .

This is a Vandermonde matrix, so its determinant does not vanish modulo ` as long as d2
1 6≡ d−2

1

and d2
1 6≡ d

±2
2 (mod `). Recall that we have already assumed that the order of d1 does not divide 4,

so the first condition is automatically satisfied. If d2
1 6≡ d

±2
2 (mod `), then, this matrix is invertible

in Z`, that is to say the standard basis vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) can be

written as linear combinations of the rows of V . In turn, this implies that the vectors

(x1, 0, 0, 0, 0, 0), (0, 0, x3, 0, 0, 0), (0, 0, 0, x4, 0, 0), (0, 0, 0, 0, 0, x6)

can be written as Z`-combinations of the four vectors Cj(x1, 0, x3, x4, 0, x6) for j = 0, 1, 2, 3. Equi-

valently, we have shown that if q 6= ±1 the Lie algebras L(G), L(N(G)) are stable under the

projection operators π1 ⊕ 0, π3 ⊕ 0, 0⊕ π1, 0⊕ π3.

On the other hand, under our assumptions if d2
1 ≡ d

±2
2 (mod `) then we have q = 1 (so g1 = g2), and

an even easier computation shows that L(G), L(N(G)) are stable under the projection operators

π1 ⊕ π1 and π3 ⊕ π3.

Regarding (with a little abuse of notation) the πi’s as maps from gl2(Z`) to itself, we can write

Θ1 = π1 + π2 + π3, so that πiΘ1 = πi for i = 1, 2, 3. Further we have the immediate identity

M1gi =

(
0 d−1

i

0 0

)
= d−1

i M1 for i = 1, 2,

whence for any A ∈ GL2(Z`) we have

π1Θ1(Agi) = π1(Agi) = d−1
i π1(A) for i = 1, 2.

Again we need to distinguish between the case when d2
1 and d±2

2 are not congruent modulo ` and

the case when they are. Consider the former. We know that (0⊕ π1)(L(G)) is contained in L(G),

and it is generated by an element of the form (0⊕π1)(Θ2(h)), for a certain h ∈ G. We can certainly
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choose an integer m in such a way that h · (g1, g2)m belongs to N(G). For such an m, the element

Θ2(h · (g1, g2)m) lies in L(N(G)). However, L(N(G)) is stable under 0⊕ π1, so it also contains

dm2 · (0⊕ π1) (Θ2(h · (g1, g2)m)) = dm2 (0, π1Θ1(hgm2 ))

= (0, π1(Θ1(h))).

Now L(G) contains (0⊕ π1)(`ksl2(Z`)⊕ `ksl2(Z`)) = 0⊕ `kM1, so the previous formula shows that

the same holds for L(N(G)). Repeating the same argument swapping the roles of two factors then

shows that L(N(G)) contains `kM1 ⊕ 0. We are in situation (C), and lemma 8.3.8 implies that G′

contains

B` (2k + 8 max {n1, n2} , 2k + 8 max {n1, n2}) .

Suppose on the other hand that d2
1 ≡ d

±2
2 (mod `), so that under our assumptions we have d1 ≡ d2

(mod `). Let us write, for the sake of simplicity, g for g1 = g2 and d for d1 = d2. As we have seen,

both L(G) and L(N(G)), thought of as subsets of sl2(Z`)⊕sl2(Z`), are stable under the maps πi⊕πi
for i = 1, 2, 3. Hence L(G) is the direct sum of three rank-2 subalgebras Ri = (πi ⊕ πi)(L(G)),

i = 1, 2, 3, with Ri open in Z`Mi ⊕ Z`Mi; similarly, L(N(G)) is the direct sum of three algebras

Si = (πi⊕πi)(L(N(G))), with Si open in Z`Mi⊕Z`Mi. We claim that S1 = R1. If R1 is generated

by the two elements (π1 ⊕ π1) (Θ2(h1)) , (π1 ⊕ π1) (Θ2(h2)), then we can find integers m1,m2 such

that h1(g, g)m1 and h2(g, g)m2 belong to N(G). It follows that for i = 1, 2 the algebra S1 contains

dmi(π1 ⊕ π1)(Θ2(hi(g, g)mi)) = dmid−mi(π1 ⊕ π1)(Θ2(hi)),

i.e. S1 = R1 as claimed.

Now note that L(G) contains `ksl2(Z`)⊕ `ksl2(Z`), so R1 = (π1⊕ π1)(L(G)) contains `kM1⊕ `kM1

and the same is true for S1 = (π1 ⊕ π1)(L(N(G))). As above, we conclude that G′ contains

B` (2k + 8 max {n1, n2} , 2k + 8 max {n1, n2}) .

Finally, note that the (Borel, Borel) and (Split Cartan, Borel) cases are completely analogous: we

simply need to choose for (g1, g2) a generator of G/N(G), which is cyclic (cf. lemma 1.3.18).

8.3.4 Case (Nonsplit Cartan, Nonsplit Cartan)

We follow an approach very close to that of the previous section. Using lemma 8.3.12 and the fact

that G(`) is the graph of an isomorphism G1(`)→ G2(`), we can find an element (g1, g2) of G such

that g`
2

i = gi and [gi] generates Gi(`); in a suitable basis we can write gi =

(
ai biεi

bi ai

)
, where εi

is an element of Z×` \ Z
×2
` (that is to say, [εi] is not a square in F×` ). The condition that the order

of Gi(`) does not divide 8 implies aibi 6≡ 0 (mod `). For any `-adic unit ε consider now the three

matrices

M1(ε) =

(
0 ε

1 0

)
, M2(ε) = M2 =

(
1 0

0 −1

)
, M3(ε) =

(
0 −ε
1 0

)
.

A basis of sl2(Z`)⊕ sl2(Z`) is given by

(M1(ε1), 0), (M2(ε1), 0), (M3(ε1), 0), (0,M1(ε2)), (0,M2(ε2)), (0,M3(ε2)),
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and again we write elements of sl2(Z`)⊕ sl2(Z`) as six-dimensional vectors in this basis. Let C be

the linear operator (from sl2(Z`) ⊕ sl2(Z`) to itself) given by (x, y) 7→ (g1, g2)(x, y)(g1, g2)−1; once

again, L(G) and L(N(G)) are stable under C. The matrix of C in this basis is block-diagonal, the

blocks being given by Bi =

 1 0 0

0 1 + 2εib
2
i 2aibiεi

0 2aibi 1 + 2εib
2
i

 . Since the bottom-right 2 by 2 block of Bi

is simply g2
i , the eigenvalues of Bi are 1 and the squares of the eigenvalues of gi. The analogue of the

condition [d1]2 6= [d2]±2 of the previous paragraph is ‘the only eigenvalue shared by [B1] ∈ GL3(F`)
and [B2] ∈ GL3(F`) is 1’. We now replace G by a subgroup of index at most 2 by the following

prescription (notice that 1 is not an eigenvalue of [gi]
2):

1. for an element z ∈ Z`[
√
ε1,
√
ε2] denote by [z] its image in F`. By construction we have

ai±bi
√
εi = ω

([
ai ± bi

√
εi
])

, where ω is the Teichmüller lift. If [a1±
√
ε1b1]2 = [a2±

√
ε2b2]2,

then (if necessary) we apply on the second factor SL2(Z`) the change of basis induced by the

matrix S =

(
1 0

0 −1

)
to assume [a1 +

√
ε1b1]2 = [a2 +

√
ε2b2]2. Notice that the matrix S does

not belong to SL2(Z`), but nonetheless both the hypothesis and the conclusion of theorem 8.3.2

are left unchanged by this change of basis. We then set T := ker (G→ G(`)→ G(`)/2G(`)) ,

which (since G(`) is cyclic) has index 2 in G. The element (g1, g2)2 ∈ T projects to a generator

of T (`), and we have

(a1 + b1
√
ε1)2 = ω

(
[a1 + b1

√
ε1]2

)
= ω

(
[a2 + b2

√
ε2]2

)
= (a2 + b2

√
ε2)2,

which – using the fact that a2
i − εib

2
i = det gi = 1 – implies ε1b

2
1 = ε2b

2
2. Notice that

T , being of index 2 in G, is normal, hence its Lie algebra L(T ) is stable not just under

conjugation by elements of T , but also under conjugation by elements of G; the same is true

for L(N(T )) = L(N(G)). In particular, both these algebra are stable under conjugation by

(g1, g2), that is, they are stable under C.

2. if (a1 ±
√
ε1b1)2, (a2 ±

√
ε2b2)2 are all distinct in F` we simply set T = G. In this case the

squares of the eigenvalues of g1 and of g2 are distinct.

We now assume that L(T ) contains `ksl2(Z`) ⊕ `ksl2(Z`), and we shall show that T ′ contains

B`(2k + 8 max{n1, n2}, 2k + 8 max{n1, n2}).

Suppose first that we are in subcase (2). Let p1(x) be the characteristic polynomial of B1, and

consider p1(C). This will be a block-diagonal operator whose first block is the null matrix and

whose second block is of the form

 0 0 0

0
A

0

, with A invertible modulo ` (this follows at once

from the fact that the reduction modulo ` of this block can be computed as p1([B2]), and the only

eigenvalue that is common to [B1] and [B2] is 1). Note furthermore that by the Hamilton-Cayley

theorem the 2× 2 identity can be expressed as a polynomial in A, so that ultimately the diagonal

matrix with diagonal entries (0, 0, 0, 0, 1, 1) can be expressed a polynomial in C. Concretely, this is
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the operator

Π :

((
h1 x1

y1 −h1

)
,

(
h2 x2

y2 −h2

))
7→

(0 0

0 0

)
,

 h2
x2 − ε2y2

2
ε2y2 − x2

2ε2
−h2


 ,

and we have just shown that L(T ) and L(N(T )) (being stable under C) are in particular also stable

under Π. As T2 contains B`(n2), there exists an element f1 of T1 such that

(
f1,

(
1 `n2

0 1

))
belongs

to T . Taking the `(`2 − 1)-th power of this element shows that N(T ) contains the element(
f
`(`2−1)
1 ,

(
1 (`2 − 1)`n2+1

0 1

))
,

and therefore L(N(T )) contains

1

`2 − 1
Θ2

(
f
`(`2−1)
1 ,

(
1 (`2 − 1)`n2+1

0 1

))
=

(
1

`2 − 1
Θ1

(
f
`(`2−1)
1

)
,

(
0 `n2+1

0 0

))
.

Applying Π and multiplying by 2ε2 we see that L(N(T )) contains

(
0,

(
0 ε2`

n2+1

−`n2+1 0

))
; by

lemma 1.4.8 we see that L(N(T )) also contains

(
0,

(
`n2+1 0

0 −`n2+1

))
, and since L(N(T )) is

stable under conjugation by all of T it is easy to see that L(N(T )) contains 0 ⊕ `2n2+1sl2(Z`).
Swapping the roles of T1, T2 and repeating the same argument we find that L(N(T )) contains all of

`2n1+1sl2(Z`)⊕`2n2+1sl2(Z`), and applying theorem 8.3.3 we deduce that N(T )′ (hence T ′) contains

B`(4n1 + 2, 4n2 + 2).

Next consider subcase (1). Recall that the algebras L(T ) and L(N(T )) are stable under C. We

keep the notation Mi(ε) from subcase (2), and we let π1(ε) (resp. π2(ε), π3(ε)) be the linear maps

sl2(Z`)→ Z` ·Mi(ε) giving the projection of an element on its M1(ε) (resp. M2(ε),M3(ε)) compon-

ent. Using the fact that ε1b
2
1 = ε2b

2
2, one easily checks that

π1(ε1)⊕ π1(ε2) = − 1

4ε1b21

(
Id−2(1 + 2ε1b

2
1)C + C2

)
,

from which we see that L(T ), L(N(T )) are stable under π1(ε1)⊕π1(ε2) and therefore, by difference,

also under π̃ : (x1, x2, x3, x4, x5, x6) 7→ (0, x2, x3, 0, x5, x6). We now set Λ to be the 6× 6 matrix of

C in the basis (M1(ε1), 0), (M2(ε1), 0), (M3(ε1), 0), (0,M1(ε2)), (0,M2(ε2)), (0,M3(ε2)); as we have

already seen in subcase (2), this is the block-diagonal operator with blocks given by 1, g2
1, 1, g

2
2. We

claim that π̃(L(T )) and π̃(L(N(T ))), seen as submodules of Z6
` , are stable under left multiplication

by Λ−1. Indeed, since the Lie algebras of T and of N(T ) are stable under conjugation by (g1, g2)

the claim follows from the identity

π̃
(
(g1, g2)−1(t1, t2)(g1, g2)

)
= Λ−1 · π̃ ((t1, t2)) ∀(t1, t2) ∈ sl2(Z`)2. (8.1)

Furthermore, one easily checks that, for all t ∈ T , we have π̃
(
Θ2

(
(g1, g2)2 · t

))
= Λ · π̃ (Θ2(t)) . Let

now w1, . . . , w4 ∈ T be such that π̃(L(T )) is generated by π̃(Θ2(w1)), . . . , π̃(Θ2(w4)). Since [(g2
1, g

2
2)]

generates T (`), for i = 1, . . . , 4 there is an integer mi such that (g1, g2)miwi belongs to N(T ) (that

is, it is trivial modulo `): it follows that Θ2

(
(g2

1, g
2
2)miwi

)
is in L(N(T )), and since L(N(T )) is



Chapter 8. Subgroups of GL2(Z`)n 210

stable under both π̃ and Λ−1 we find

Λ−mi · π̃
(
Θ2

(
(g2

1, g
2
2)miwi

))
= Λ−mi · Λmi · π̃(Θ2(wi)) = π̃ (Θ2(wi)) ∈ L(N(T )).

This easily implies L(N(T )) ⊇ π̃ (L(N(T ))) = π̃(L(T )) ⊇ π̃(`ksl2(Z`) ⊕ `ksl2(Z`)). In particular,

L(N(T )) contains two elements (u1, 0) and (0, u2) with u1, u2 6≡ 0 (mod `k+1): by lemma 8.3.8 we

conclude that N(T )′ contains B` (2k + 8 max {n1, n2} , 2k + 8 max {n1, n2}) .

8.3.5 Case (SL2(F`), SL2(F`))

We reduce this case to the question of whether or not, for any given t, the group G(`t) is the graph of

an isomorphism G1(`t)→ G2(`t). The following lemma covers the case when this does not happen:

Lemma 8.3.13. Let m be a positive integer. Suppose G contains an element of the form (g1, g2),

where g1 is trivial modulo `m but g2 is not. Then G′ contains B`(4m, 4m).

Proof. Let

x1 =

(
1 `

0 1

)
, y1 =

(
1 0

` 1

)
, h1 =

(
1 + ` 0

0 1
1+`

)
.

As G1 is all of SL2(Z`) (cf. lemma 1.3.15) we can certainly find x2, y2, h2 ∈ G2 such that x = (x1, y1),

y = (y2, y2) and h = (h1, h2) belong to G. Recall that G(`) is the graph of an isomorphism

G1(`)→ G2(`): as x1, y1 and h1 are all trivial modulo `, the same must be true of x2, y2, h2.

Consider then the elements x`
m−1

, y`
m−1

and h`
m−1

. They satisfy:

• their first coordinates generate B`(m)

• their second coordinates are trivial modulo `m,

so that the group they generate contains an element of the form (g−1
1 , g′2), where g′2 is necessarily

trivial modulo `m. The group G, therefore, contains the product g = (g−1
1 , g′2)(g1, g2) = (1, g′2g2),

whose second coordinate is congruent to g2 (and therefore nontrivial) modulo `m. Notice that by

assumption G(`) is the graph of an isomorphism G1(`)→ G2(`), so since g1 is trivial modulo ` the

same is true for g2; it follows in particular that g ∈ N(G) = ker(G→ G(`)). Thus L(N(G)) contains

Θ2(g), which is of the form (0, u) with u nontrivial modulo `m. Applying lemma 8.3.8 we deduce that

N(G) contains {1}×B`(2m) (notice that in the notation of lemma 8.3.8 we can take s = 0). To finish

the proof, consider the group H topologically generated by x′ = x`
2m−1

, y′ = y`
2m−1

, h′ = h`
2m−1

. It

is clear that π1(H) ⊇ B`(2m) and π2(H) ⊆ B`(2m), so the group generated by H and {1}×B`(2m)

(which is still a subgroup of G) contains B`(2m)× B`(2m), and we are done.

We now show that for t = k + 1 the hypothesis of the previous lemma is satisfied. Indeed suppose

by contradiction that the projections

G(`k+1)→ G1(`k+1), G(`k+1)→ G2(`k+1)

have trivial kernel. Then Goursat’s lemma implies that G(`k+1) is the graph of an isomorphism

G1(`k+1) → G2(`k+1), i.e. an automorphism of SL2(Z/`k+1Z). By [146, Theorem 2], and since

` > 5, all such automorphisms are inner, so we can find a matrix M ∈ SL2(Z/`k+1Z) such that

G(`k) =
{

(x, y) ∈ SL2(Z/`k+1Z)2
∣∣ y = MxM−1

}
.
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Consequently, if we still denote by the same letter any lift of M to SL2(Z`), we have

G ⊆
{

(x, y) ∈ SL2(Z`)2
∣∣ y ≡MxM−1 (mod `k+1)

}
.

Applying Θ2 and noticing that tr(MxM−1) = tr(x) we deduce

L(G) ⊆
{

(x, y) ∈ sl2(Z`)2
∣∣ y ≡MxM−1 (mod `k+1)

}
,

but this contradicts the hypothesis that L(G) contains `ksl2(Z`) ⊕ `ksl2(Z`). Thus at least one of

the two projections G(`k+1)→ Gi(`
k+1) has nontrivial kernel, and the previous lemma shows that

G′ contains B`(4(k + 1), 4(k + 1)).

8.4 ` = 2, n = 2

In this section we prove:

Theorem 8.4.1. Let G be a closed subgroup of GL2(Z2) × GL2(Z2) whose projection modulo 4 is

trivial. Denote by G1, G2 the two projections of G on the factors GL2(Z2), and let n1 ≥ 4, n2 ≥ 4

be integers such that Gi contains B2(ni). Suppose furthermore that for every (g1, g2) ∈ G we have

det(g1) = det(g2) ∈ 1 + 8Z2. If L(G) contains 2ksl2(Z2) ⊕ 2ksl2(Z2) for a certain k ≥ 2, then G

contains

B2(12(k + 12n2 + 5n1 + 13) + 1, 12(k + 12n1 + 5n2 + 13) + 1).

By an argument similar to that used for the case of odd ` (and that will be carried out at the end

of this section) we can easily reduce the problem to one concerning subgroups of SL2(Z2):

Theorem 8.4.2. Let G be a closed subgroup of SL2(Z2)2 whose reduction modulo 4 is trivial.

Denote by G1, G2 the two projections of G on the factors SL2(Z2), and choose integers ni ≥ 4 so

that Gi contains B2(ni). If L(G) contains `ksl(Z2) ⊕ `ksl(Z2) for a certain integer k ≥ 2, then G

contains all of

B2(6(k + 12n2 + 5n1 + 13), 6(k + 12n1 + 5n2 + 13)).

The proof of this theorem, although technically involved, relies on a very simple idea: we can find

an element of G of the form (Id, a), where a is not too close to the identity 2-adically, and this easily

implies the conclusion by theorem 1.5.2. In order to find a we proceed by contradiction: if there

is no such a, then G looks very much like the graph of a map G1 → G2, and this imposes severe

restrictions on its Lie algebra. Quantifying this idea of ‘being 2-adically very close to a graph’ gives

a contradiction with the fact that L(G) contains `ksl(Z2)⊕ `ksl(Z2).

We start to deploy the strategy just described by showing that it is in fact enough to find an element

(Id, a) as above:

Lemma 8.4.3. Suppose that G contains an element of the form (Id, a), where a is nontrivial modulo

2n for a certain integer n ≥ 3. Then G contains all of

B2(6n+ 24n2 + n1 + 24, 6n+ 24n2 + 24).
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Proof. Consider the smallest normal subgroup H of G that contains (Id, a). This is clearly of the

form {Id} ×H2, where H2 is the smallest normal subgroup of G2 containing a. The Lie algebra L

of H2 contains Θ1(a), so it is nontrivial modulo 2n. By normality of H2 in G2, L is stable under

conjugation by B2(n2), so lemma 8.2.1 says that L contains 2n+4n2+4sl2(Z2). Applying theorem

1.5.2 we deduce that H2 contains B2(6n + 24n2 + 24). We finish the proof as we did for lemma

8.3.13.

We now come to the hard part of the proof, namely showing that the non-existence of such an

a implies that G is very close to being a graph. For any fixed integer t > 2, we distinguish two

possibilities:

1. There exist two elements (a, b) and (a, b′) of G with b 6≡ b′ (mod 2t), or equivalently, there

exists an element of G of the form (Id, b′′) with b′′ 6≡ Id (mod 2t). In this case we simply

apply lemma 8.4.3.

2. For every a ∈ G1 there exists a (necessarily unique) b ∈ G2(2t) such that, for every element

of G of the form (a, c), we have c ≡ b (mod 2t). In this case we write b = ϕ(a), so that ϕ is a

well-defined function G1 → G2(2t).

As it is clear, the key step in proving theorem 8.4.2 is to bound the values of t for which this

second case can arise. Let then t ≥ 3 be an integer for which we are in case 2. Choose a function

ψ : G1 → G2 such that

• ψ(a) ≡ ϕ(a) (mod 2t) for every a ∈ G1;

• (a, ψ(a)) belongs to G for every a ∈ G1.

As we shall see shortly, the function ϕ is actually a continuous group morphism. On the other

hand, the function ψ does not necessarily have any nice group-theoretic properties, but allows us

to work with well-defined elements of Z2 instead of congruence classes. We will also see that any

such morphism ϕ is, in a suitable sense, ‘inner’, a fact that will lead to a contradiction for t large

enough. From now on, therefore, we work under the following assumption:

Condition 8.4.4. The integer t ≥ 3 has the following property: for every a ∈ G1 there exists a

(necessarily unique) b ∈ G2(2t) such that, for every element of G of the form (a, c), we have

c ≡ b (mod 2t).

Lemma 8.4.5. ϕ defines a group morphism G1 → G2(2t).

Proof. Let a1, a2 be any two elements of G1. Then (a1, ψ(a1))(a2, ψ(a2)) = (a1a2, ψ(a1)ψ(a2))

belongs to G, so our assumption implies that ψ(a1)ψ(a2) ≡ ϕ(a1a2) (mod 2t). As ψ(a1) (resp.

ψ(a2)) is congruent to ϕ(a1) (resp. ϕ(a2)) modulo 2t the claim follows.

Definition 8.4.6. For any integer n ≥ 2 we let

x(n) =

(
1 2n

0 1

)
, y(n) =

(
1 0

2n 1

)
, h(n) =

(
1 + 2n 0

0 1
1+2n

)
.

To ease the notation, for i = 1, 2 we also let xi (resp. yi, hi) denote x(ni) (resp. y(ni), h(ni)).
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Recall that, by assumption, G1 contains B2(n1), hence it contains x1, y1, h1.

Lemma 8.4.7. ϕ is continuous.

Proof. Denote by π1, π2 : SL2(Z2)2 → SL2(Z2) the projections on the two factors. As x1, y1, h1

belong to G1 we can find a, b, c so that x′ = (x1, a), y′ = (y1, b), h
′ = (h1, c) all belong to G.

Consider then (x′)2t , (y′)2t , (h′)2t and the group H they generate (topologically). The projection

π1(H) contains x2t
1 = x(n1 + t) and y2t

1 = y(n1 + t), hence it contains B2(2(n1 + t)) and is therefore

open in SL2(Z2). On the other hand, π2(H) is generated by a2t , b2
t
, c2t , so it is trivial modulo 2t.

It follows that for any g1 ∈ H we have ϕ(g1) = 1, so kerϕ is open and ϕ is continuous.

Definition 8.4.8. Let g be an element of SL2(Z2) (resp. of a finite quotient SL2(Z/2mZ)) that is

trivial modulo 2, and let β be any 2-adic integer. Write β =
∑

n≥0 an2n, where each an is either 0

or 1. We set gβ =
∏
n≥0 g

an2n , which is well-defined since for every finite p only a finite number of

terms appearing in the product are nontrivial modulo 2p.

Lemma 8.4.9. Let β be any 2-adic integer and g be an element of G1. We have ϕ(gβ) = ϕ(g)β.

Proof. Write β =
∑

n≥0 an2n (with an ∈ {0, 1}), and set β(s) =
∑

n≤s an2n, so that β(s) is a

rational integer for all s. In view of the continuity of ϕ, the lemma follows from

ϕ
(
gβ
)

= ϕ
(

lim
s→∞

gβ(s)
)

= lim
s→∞

ϕ
(
gβ(s)

)
= lim

s→∞
ϕ (g)β(s) = ϕ(g)β.

Let, for the sake of simplicity, α = (1 + 2n1)2. Note that h1x1h
−1
1 = xα1 , so – by the previous lemma

– we have ϕ(h1)ϕ(x1)ϕ(h1)−1 = ϕ(x1)α, or equivalently

ψ(h1)ψ(x1)ψ(h1)−1 ≡ ψ(x1)α (mod 2t).

Taking the logarithm of both sides we deduce

ψ(h1) log(ψ(x1))ψ(h1)−1 ≡ α logψ(x1) (mod 2t). (8.2)

Lemma 8.4.10. Suppose that logψ(x1) vanishes modulo 2n1+n2. Then G contains

B2(30n1 + 30, 30n1 + n2 + 30).

Proof. Exponentiating the hypothesis gives ψ(x1) ≡ Id (mod 2n1+n2). There exist a, b, c ∈ G1

such that x′ = (a, x2), y′ = (b, y2), h′ = (c, h2) belong to G. Consider (x′)2n1 , (y′)2n1 , (h′)2n1 : these

three elements generate a group H such that π1(H) is trivial modulo 2n1+1 (recall that a, b, c are

already trivial modulo 4) and π2(H) contains B2(n1 +n2). It follows that H (hence G) contains an

element of the form (w,ψ(x1)−1), where w is trivial modulo 2n1+1. Therefore G contains the element

(x1, ψ(x1))(w,ψ(x1)−1) = (x1w, 1), where x1w ≡ x1 (mod 2n1+1) is nontrivial modulo 2n1+1. The

claim follows from lemma 8.4.3.

Lemma 8.4.11. With the notation of theorem 8.4.2, condition 8.4.4 and definition 8.4.8, let

U = t− 3n1 − n2 − 4

and suppose that logψ(x1) does not vanish modulo 2n1+n2. Suppose furthermore that U > 3n1.

Then ψ(h1) is diagonalizable (over Q2), with eigenvalues λ1, λ2 that satisfy

λ1 ≡ 1 + 2n1 (mod 2U ), λ2 ≡ (1 + 2n1)−1 (mod 2U ).
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Proof. Denote Cψ(h1) the linear endomorphism of sl2(Z2) given by conjugation by ψ(h1) and p(x)

its characteristic polynomial. Note that tr(logψ(x1)) = log detψ(x1) = 0, so logψ(x1) is in sl2(Z2).

Finally, let λ1, λ2 be the eigenvalues of ψ(h1).

An easy computation shows that p(x) = (x− 1)
(
x− λ2

1

) (
x− λ2

2

)
. With a little abuse of notation,

in the course of the proof we shall use congruences (modulo powers of 2) that involve λ1, λ2: a

priori, these might not be elements of Z2, so the precise meaning of these congruences is that we

work with the ideals generated by the relevant powers of 2 in the ring of integers of F , where F is

a suitable quadratic extension of Q2 that contains λ1, λ2.

Since the logarithm map commutes with conjugation by ψ(h1), from equation (8.2) we get

ψ(h1) (logψ(x1))ψ(h1)−1 = log
(
ψ(h1)ψ(x1)ψ(h1)−1

)
= log

(
ψ(x1)α +O(2t)

)
= α logψ(x1) +O(2t),

and therefore logψ(x1) is an approximate eigenvector for Cψ(h1). We deduce from lemma 8.2.2 and

the assumption logψ(h1) 6≡ 0 (mod 2n1+n2) that p(α) ≡ 0 (mod 2t−n1−n2). We have λ1 ≡ λ2 ≡ 1

(mod 4) by construction, so v2(1 + 2n1 + λi) = 1 for i = 1, 2. Hence v2(p(α)), which is given by

v2 (α− 1) + v2(1 + 2n1 + λ1) + v2(1 + 2n1 + λ2) + v2(1 + 2n1 − λ1) + v2(1 + 2n1 − λ2),

does not exceed

(n1 + 1) + 1 + 1 + 2 max
i
v2(1 + 2n1 − λi),

so that

max
i
v2(1 + 2n1 − λi) ≥

v2(p(α))− n1 − 3

2
≥ t− 2n1 − n2 − 3

2
.

Let U ′ =

⌊
t− 2n1 − n2 − 3

2

⌋
. For U ′ > 2n1 (a condition that is implied by the hypothesis U > 3n1)

we have λ1 ≡ 1+2n1 (mod 2U
′
) and λ2 ≡ λ−1

1 ≡ 1−2n1 +22n1 (mod 22n1+1). It follows in particular

that v2(1 + 2n1 − λ2) = n1 + 1, so that we can improve our previous estimate to

v2(1 + 2n1 − λ1) ≥ v2(p(α))− (n1 + 1)− 1− 1− (n1 + 1) ≥ t− 3n1 − n2 − 4.

If we let U = t − 3n1 − n2 − 4, this amounts to saying that λ1 ≡ λ−1
2 ≡ 1 + 2n1 (mod 2U ). Note

that the trace of ψ(h1) is given by

λ1 + λ2 = 1 + 2n1 + 1− 2n1 + 22n1 +O(23n1),

at least for U > 3n1, so

tr(ψ(h1))2 − 4 det(ψ(h1)) =
(
2 + 22n1 +O(23n1)

)2 − 4 = 22n1+2 +O(23n1+1)

is a square in Z2 (since n1 ≥ 4). It follows that the eigenvalues of ψ(h1) lie in Z2, because

λ1,2 =
tr(ψ(h1))±

√
(trψ(h1))2 − 4

2

is in Q2 (as the expression under square root is a square) and is 2-integral (as p(x) is monic with

2-integral coefficients). It follows that ψ(h1) is diagonalizable, and that its eigenvalues satisfy the

given congruences.
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Corollary 8.4.12. Under the hypotheses of the previous lemma, there exists a 2-integral matrix

N ∈ GL2(Q2) that satisfies:

1. N−1ψ(h1)N is diagonal (with diagonal entries λ1, λ2 as above);

2. v2 det(N) ≤ n1 + 1.

Proof. Let w1, w2 be two eigenvectors for ψ(h1), associated resp. with λ1, λ2, and chosen so as to

be 2-integral and to have at least one coordinate that is a 2-adic unit. Let N be the matrix having

w1, w2 as columns: it is clear that N satisfies (1). Now if w1, w2 are linearly independent over

F2 we are done, for then v2(detN) = 0. Otherwise, up to rescaling w1, w2 and swapping the two

coordinates, we can assume they are of the form w1 = (1, w′1)T , w2 = (1, w′2)T . The determinant of

N is simply w′2 − w′1, so that we have(
0

w′2 − w′1

)
≡ 0 (mod det(N)) ⇒ w2 ≡ w1 (mod det(N)).

Applying ψ(h1) to both sides of this last congruence we find

λ2w2 = λ1w1 (mod det(N)),

and comparing the first coordinates of these vectors we deduce λ1 ≡ λ2 (mod det(N)). Since

λ1 ≡ 1 + 2n1 (mod 22n1), λ2 ≡ 1− 2n1 (mod 22n1), we have in particular 2n1+1 ≡ 0 (mod det(N)),

whence the corollary.

Assuming the hypotheses of lemma 8.4.11, fix a matrix N as in the previous corollary, and change

basis on the second factor SL2(Z2) ⊆ SL2(Q2) using N . As it is clear, in this basis there is no

guarantee that the elements of G2 are 2-integral. We restrict our attention to those that are:

Lemma 8.4.13. Asume that logψ(x1) does not vanish modulo 2n1+n2 and that U > 3n1, so that we

can find an N as above. Let g1 be an element of B2(2n1 + 1) ⊆ G1. Then N−1ψ(g1)N is 2-integral

and trivial modulo 4.

Proof. As B2(2n1+1) is generated by x(2n1+1), y(2n1+1), h(2n1+1) it is enough to show the lemma

for these three elements. Let us only do the first, the proof being virtually identical for the other

two. We have x(2n1 + 1) = x(n1)2n1+1
, so ψ(x(2n1 + 1)) ≡ ψ(x(n1))2n1+1

(mod 2t). As ψ(x(n1))

is trivial modulo 4, the matrix ψ(x(n1))2n1+1
is trivial modulo 2n1+3. Writing ψ(x(n1))2n1+1

as

Id +2n1+3B for a certain 2-integral matrix B we have

N−1ψ(x(2n1 − 1))N = N−1
(
Id +2n1+3B

)
N = Id +N∗

(
2n1+3

det(N)
B

)
N,

where N∗ = det(N)N−1 is the adjugate matrix of N . This last expression is manifestly 2-integral

and congruent modulo 4 to the identity.
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Let N∗ be the adjugate matrix of N and D =

(
λ1

λ2

)
= N−1ψ(h1)N . By the previous lemma,

the following identity only involves 2-integral matrices:(
N−1ψ(h1)N

) (
N−1ψ(x(2n1 + 1))N

) (
N∗ψ(h1)−1N

)
= N∗ψ(h1)ψ(x(2n1 + 1))ψ(h1)−1N

≡ N∗ϕ(h1)ϕ(x(2n1 + 1))ϕ(h1)−1N (mod 2t)

≡ N∗ϕ (x(2n1 + 1)α)N (mod 2t)

≡ N∗ϕ (x(2n1 + 1))αN (mod 2t).

Dividing through by det(N) we deduce

D
(
N−1ψ(x(2n1 + 1))N

)
D−1 ≡

(
N−1ψ(x(2n1 + 1))N

)α
(mod 2t−n1−1). (8.3)

Note that since t−n1− 1 ≥ U we can in particular rewrite this last equation modulo 2U instead, in

which case we also know that D ≡

(
1 + 2n1

(1 + 2n1)−1

)
(mod 2U ). Furthermore, we see that

v2(α− λ2
2) = v2

(
(1 + 2n1)2 −

(
1− 2n1 +O

(
22n1

))2)
= v2

(
1 + 2n1+1 + 22n1 −

(
1− 2n1+1 +O

(
22n1

)))
= v2

(
2n1+2 +O(22n1)

)
= n1 + 2,

and similarly v2(α− 1) = n1 + 1.

Lemma 8.4.14. Let Ax = log
(
N−1ψ(x(2n1 + 1))N

)
. Write

Ax = µx

(
0 1

0 0

)
+ µy

(
0 0

1 0

)
+ µh

(
1 0

0 −1

)
for certain scalars µx, µy, µh. We have

µh ≡ 0 (mod 2U−n1−1), µy ≡ 0 (mod 2U−n1−2).

Proof. Reducing equation (8.3) modulo 2U and taking logarithms we get

α(Ax) ≡ DAxD−1 ≡

(
λ1 0

0 λ2

)
Ax

(
λ1 0

0 λ2

)−1

(mod 2U ),

and the right hand side can be computed explicitly in terms of µx, µh, µy. We arrive at

αAx ≡ λ2
1µx

(
0 1

0 0

)
+ λ2

2µy

(
0 0

1 0

)
+ µh

(
1 0

0 −1

)
(mod 2U ),

i.e. 
αµx ≡ λ2

1µx (mod 2U )

αµy ≡ λ2
2µy (mod 2U )

αµh ≡ µh (mod 2U ).

Rewriting the last formula as (α − 1)µh ≡ 0 (mod 2U ) shows that µh ≡ 0 (mod 2U−n1−1), while

the second congruence guarantees v2(µy) + v2(α− λ2
2) ≥ U , whence v2(µy) ≥ U − n1 − 2.
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A completely analogous argument yields similar congruences for log
(
N−1ψ(y(2n1 + 1))N

)
. Now a

simple series computation, using the fact that

(
0 1

0 0

)
squares to zero, shows that

N−1ψ(x(2n+ 1))N = exp log
(
N−1ψ(x(2n+ 1))N

)
= exp(Ax) = Id +Ax +O(2U−2n1),

and since we have similar expressions for ψ(y(2n+ 1)) we arrive at:

Proposition 8.4.15. Assume that

• T := U − 2n1 = t− 5n1 − n2 − 4 is larger than 3n1;

• G contains no element of the form (Id, b), where b 6≡ Id (mod 2t);

• logψ(x1) does not vanish modulo 2n1+n2.

There exists a 2-integral matrix N ∈ GL2(Q2), whose determinant satisfies v2 det(N) ≤ n1 + 1, and

scalars c, d ∈ 4Z2, such that

N−1ψ(h1)N ≡

(
λ1

λ2

)
≡ h1 (mod 2T ),

N−1ψ(x(2n1 + 1))N ≡

(
1 c

0 1

)
(mod 2T ), N−1ψ(y(2n1 + 1))N ≡

(
1 0

d 1

)
(mod 2T ).

Remark 8.4.16. As we shall see shortly, the product cd is 2-adically very close to 24n1+2, as one

would expect. However, it is not true in general that c, d, taken separately, are 2-adically very close

to 22n1+1.

The parameters c, d are up to now completely free, and they can’t be controlled in any way by

simply using the relations hxh−1 = xα, hyh−1 = y−α (which are just the integrated forms of the

usual sl2-Lie algebra relations [h, x] = 2x, [h, y] = −2y). In order to say something meaningful

about them, we shall need to use an integrated form of the Lie algebra relation [x, y] = h, that is to

say we want to have some degree of control on the commutator xyx−1y−1. This is made possible

by the following simple lemma, whose proof is immediate by induction:

Lemma 8.4.17. For every a ∈ Z2 of valuation at least 1 set

xa =

(
1 a

0 1

)
, ya =

(
1 0

a 1

)
.

Then

• For any pair (a, b) of elements of Z2 of valuation at least 1, the finite products

Πn =
−1∏
i=−n

x(ab)−i
a ·

(
xaybx

−1
a y−1

b

)
·
n∏
i=1

y
−(ab)i

b

converge, as n→∞, to

(
1

1−ab 0

0 1− ab

)
.
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• Let (a, b) be as above and (c, d) be any other pair of elements of 2-adic valuation at least 1.

The finite products

Π′n =
−1∏
i=−n

x(ab)−i
c ·

(
xcydx

−1
c y−1

d

)
·
n∏
i=1

y
−(ab)i

d

converge to a limit for n→∞, and this limit is of the form

(
? ?

? 1− cd

)
.

Apply this lemma to a = 22n1+1, b = 22n1+1: the infinite product
−1∏

i=−∞
x(ab)−i
a ·

(
xaybx

−1
a y−1

b

)
·
∞∏
i=1

y
−(ab)i

b

converges to

 1

1− 24n1+2
0

0 1− 24n1+2

 = hβ1 , where β is defined by (1 + 2n1)−β = 1 − 24n1+2.

Applying ϕ (which, being continuous, commutes with infinite products) we deduce that

ϕ(h1)β =

−1∏
i=−∞

ϕ(xa)
(ab)−i ·

(
ϕ(xa)ϕ(yb)ϕ(xa)

−1ϕ(yb)
−1
)
·
∞∏
i=1

ϕ(yb)
−(ab)i .

Set, for the sake of notational simplicity, Bx = N−1ψ(x(2n1 + 1))N,By = N−1ψ(y(2n1 + 1))N .

Multiplying by N∗, N and dividing by det(N) (as we did for example in deriving equation (8.3))

we get (
N−1ϕ(h1)N

)β ≡ −1∏
i=−∞

B(ab)−i
x ·

(
BxByB

−1
x B−1

y

)
·
∞∏
i=1

B−(ab)i

y (mod 2T−n1−1).

Letting c, d be elements of Z2 that satisfy

Bx = N−1ψ(x(2n1 + 1))N ≡

(
1 c

0 1

)
(mod 2T )

and

By = N−1ψ(y(2n1 + 1))N ≡

(
1 0

d 1

)
(mod 2T )

and applying the second part of the previous lemma to xc, yd we obtain

(N−1ϕ(h1)N)β ≡
−1∏

i=−∞
x(ab)−i
c ·

(
xcydx

−1
c y−1

d

)
·
∞∏
i=1

y
−(ab)i

d =

(
? ?

? 1− cd

)
(mod 2T−n1−1),

so that, comparing the bottom-right coefficients, we deduce 1− 24n1+2 ≡ 1− cd (mod 2T−n1−1). In

particular, if T ≥ 5n1 + 4, we must have v2(c) + v2(d) = 4n1 + 2, and by symmetry we can assume

that v2(c) ≤ 2n1 + 1. We deduce that d ≡ 24n1+2

c (mod 2T−n1−1−v2(c)), and therefore

d ≡ 24n1+2

c
(mod 2T−3n1−2).

Consider M =

(
1 0

0 22n1+1/c

)
(which, by our assumption on c, is 2-integral). By construction it

satisfies Mx(2n1 + 1) = xcM , so that

Mx(2n1 + 1) ≡ xcM ≡ N−1ψ(x(2n1 + 1))NM (mod 2T ),
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and furthermore (since N−1ψ(h1)N is diagonal and congruent to h1 modulo 2T ) we also have

Mh1 ≡ h1M ≡ N−1ψ(h1)NM (mod 2T ).

Finally, using what we just proved on d we find (for T ≥ 5n1 + 4)

My(2n1 + 1) =

(
1 0

24n1+2/c 22n1+1/c

)
≡

(
1 0

d 22n1+1/c

)
= ydM

≡ N−1ψ(y(2n+ 1))NM (mod 2T−3n1−2).

Multiplying any of these equations on the left by M∗ =

(
22n1+1/c 0

0 1

)
we get equations of the form

detM · y(2n1 + 1) ≡M∗N−1ψ(y(2n1 + 1))NM (mod 2T−3n1−2), and similar ones for x(2n+ 1), h1.

Given that v2(detM) ≤ 2n1 + 1, dividing by detM we find

(NM)−1ψ(y(2n+ 1))NM ≡ y(2n+ 1) (mod 2T−5n1−3),

along with similar relations for x(2n1 + 1), h1. As x(2n1 + 1), y(2n1 + 1), h1 generate B2(2n1 + 1)

we have thus established

Proposition 8.4.18. For every g ∈ B2(2n1 +1) we have (NM)−1ψ(g)(NM) ≡ g (mod 2T−5n1−3).

We now give a version of the previous proposition that applies to all elements of G1. Take any

element g ∈ G1. Clearly g22n1−1
belongs to B2(2n1 + 1), so

(NM)−1ψ (g)22n1−1

(NM) ≡ (NM)−1ψ
(
g22n1−1

)
(NM) ≡ g22n1−1

(mod 2T−5n1−3).

Notice now that g, ψ(g) are trivial modulo 4 by assumption, so we are allowed to take logarithms,

and we obtain

22n1−1(NM)−1 logψ(g)(NM) ≡ 22n1−1(log g) (mod 2T−5n1−3),

whence

(NM)−1 logψ(g)(NM) ≡ log g (mod 2T−7n1−2).

Since log g is trivial modulo 4, we can exponentiate both sides of the congruence to find

(NM)−1ψ(g)(NM) ≡ g (mod 2T−7n1−2),

a formula which is now valid for every g ∈ G1. Taking the trace of this last congruence also gives

trψ(g) ≡ tr(g) (mod 2T−7n1−2). Including again all the assumptions we made along the way, we

have thus established:

Proposition 8.4.19. Assume:

1. G contains no element of the form (Id, b), where b 6≡ Id (mod 2t);

2. logψ(x1) does not vanish modulo 2n1+n2;

3. t− 5n1 − n2 − 4 ≥ 7n1 + 2 (so that T − 7n1 − 2 ≥ 0).

For every g ∈ G1 we have

(NM)−1Θ1(ψ(g))(NM) ≡ Θ1(g) (mod 2T−7n1−2).
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Notice now that we can replace NM by λNM for any λ ∈ Z2 and the previous proposition still

holds; in particular, we can assume that NM is 2-integral, with at least one coefficient which is a

2-adic unit.

Corollary 8.4.20. Under the same assumptions, the Lie algebra L(G) is contained in{
((NM)z, z(NM))

∣∣ z ∈ sl2(Z`)
}

when regarded modulo 2t−12n1−n2−8.

The result we were aiming for is now well within reach:

Proof. (of theorem 8.4.2) Suppose that L(G) contains 2ksl2(Z2) ⊕ 2ksl2(Z2). Since one of the

coefficients of NM is a 2-adic unit, this contradicts the conclusion of the previous corollary if

t−12n1−n2−8 > k, so at least one of the assumptions cannot hold if we take t = k+12n1 +n2 +9.

Now for this choice of t the inequality given in condition 3 is certainly satisfied, so either 1 or 2

must fail. If 2 fails, then lemma 8.4.10 implies that G contains B2(30(n1 + 1), 30(n1 + 1) + n2). On

the other hand, if condition 1 is not met, then lemma 8.4.3 implies that G contains all of

B2(6(k + 12n1 + 5n2 + 13) + n1, 6(k + 12n1 + 5n2 + 13)) ⊆ B2(30(n1 + 1), 30(n1 + 1) + n2).

Finally, note that the hypotheses of the theorem are symmetric in n1, n2, so we can repeat the

whole argument switching the roles of G1, G2, which shows that G also contains

B2(6(k + 12n2 + 5n1 + 13), 6(k + 12n2 + 5n1 + 13) + n2)

and concludes the proof of the theorem.

As promised, we can finally deduce theorem 8.4.1:

Proof. Let Gsat be the group generated by G and by Z×2 · (Id, Id), denote by U the intersection

Gsat ∩ SL2(Z2)2, and let U1, U2 be the two projections of U on the factors SL2(Z2). Note that

U ′ = G′: it suffices to show that any element of G, when multiplied by a suitable scalar, lies in U ,

and this follows from the fact that the determinant of any element of G is a square in Z×2 .

Also remark that if G1 contains B2(n1), then the same is true for U1: indeed for any g1 ∈ B2(n1)

we know that there exists a certain h2 ∈ G2 such that (g1, h2) ∈ G. As det(h2) = det(g1) = 1

by assumption, this shows that (g1, h2) belongs to U as well, and therefore g1 belongs to U1.

The same argument obviously also works for U2. Applying theorem 8.4.2 to U we deduce that

U contains B2(6(k + 12n2 + 5n1 + 13), 6(k + 12n1 + 5n2 + 13)), and therefore G′ = U ′ contains

B2(12(k + 12n2 + 5n1 + 13) + 1, 12(k + 12n1 + 5n2 + 13) + 1) as claimed.

8.5 Conclusion of the proof

We are now in a position to show that cases n = 1, 2 of theorem 8.1.3 (in the form given in

sections 8.3 and 8.4) imply the general one. Before doing so, let us remark that the condition

[G : H] ≤ 120 appearing in the statement of theorem 1.4.2 can be improved to [G : H]
∣∣ 24: this

follows immediately from the same proof and the simple remark that if G(`) is exceptional, then
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G contains a subgroup H, of index dividing 24, such that H(`) is cyclic of order dividing 6 or 10.

With this small improvement, case n = 1 of theorem 8.1.3 is (amply) covered by theorems 1.4.1

and 1.5.1.

Let us start with the case ` 6= 2. If ` = 3 we take H = ker (G→ SL2(F`)n), which is a pro-` group

and for which the claim follows directly from Pink’s theorem (theorem 8.3.3).

By our previous remarks we can then assume ` ≥ 5, n ≥ 2. Denote by πi : SL2(Z`)n → SL2(Z`)
the n canonical projections and let πi1,i2 = πi1 × πi2 be the projection on the two factors numbered

i1 and i2. For m between 1 and n, construct inductively groups Hm as follows: apply theorem

1.4.1 to π1(G) to find a subgroup K1 of π1(G) of index dividing 24 and having property (?), and

set H1 = π−1
1 (K1) (this is a subgroup of G of index dividing 24). Assuming we have constructed

Km and Hm, apply theorem 1.4.1 to πm+1(Hm) to find a subgroup Km+1 of index dividing 24 and

having property (?), and set Hm+1 = π−1
m+1(Km+1). It is clear by construction that Hn is a closed

subgroup of G of index dividing 24n. For 1 ≤ i ≤ n let ni be a positive integer such that B`(ni) is

contained in πi(Hn).

Now let (i1, j1), (i2, j2), . . . , (in(n−1)/2, jn(n−1)/2) be the list of all n(n− 1)/2 pairs {i, j} with i < j,

and construct inductively groups Hik,jk (for k = 1, . . . , n(n − 1)/2) as follows. Applying theorem

8.3.2 to πi1,j1(Hn) we see that at least one of the following holds:

1. B`(4ni1 + 16nj1 , 8nj1) is contained in πi1,j1(Hn);

2. there exists a closed subgroup Ki1,j1 of πi1,j1(Hn) satisfying [πi1,j1(Hn) : Ki1,j1 ]
∣∣ 482 and

having property (∗∗).

We set Hi1,j1 to be the inverse image of Ki1,j1 in Hn in case (2), and to be all of Hn in case

(1). We now repeat the procedure: if Hik,jk has been constructed, we apply theorem 8.3.2 to

πik+1,jk+1
(Hik,jk) and construct Hik+1,jk+1

according to the above prescription, that is to say

1. either B`(4nik+1
+ 16njk+1

, 8njk+1
) is contained in πik+1,jk+1

(Hik,jk), in which case we set

Hik+1,jk+1
= Hik,jk ,

2. or there exists a closed subgroup Kik+1,jk+1
of πik+1,jk+1

(Hik,jk), of index dividing 482 and

having property (∗∗), in which case we set Hik+1,jk+1
to be the inverse image in Hik,jk of

Kik+1,jk+1
.

We finally set H = Hin(n−1)/2,jn(n−1)/2
; by construction, it is a closed subgroup of G of index dividing

24n48n(n−1).

Denote by τi : sl2(Z`)n → sl2(Z`) (resp. τi,j) the projection on the i-th (resp. (i, j)-th) factor.

Suppose that L(H) contains `ksl2(Z`)⊕ . . .⊕ `ksl2(Z`). We have

L(Ki) ⊇ L(πi(H)) ⊇ τi(L(H)) ⊇ `ksl2(Z`),

so the properties of Ki imply that it contains B`(4k). Note now that [Hi : H] is only divisible

by factors 2 and 3, hence the same is true for [πi(Hi) : πi(H)]. As B`(4k) is a pro-` group, ` is

neither 2 nor 3, and B`(4k) ⊆ πi(Hi), it follows that B`(4k) ⊆ πi(H). In particular, all the integers

nj introduced above can be taken to be 4k. Consider now a pair of indices (i, j). As before we

have L(Ki,j) ⊇ L(πi,j(H)) ⊇ τi,j(L(H)) ⊇ `ksl2(Z`) ⊕ `ksl2(Z`), so two cases arise (depending on

whether we were in case (1) or (2) above):
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1. either B`(4ni + 16nj , 8nj) ⊇ B`(80k, 32k) is contained in πi,j(G),

2. or Ki,j contains B`(p, p) with p = 2k + max {2k + 4, 8ni, 8nj} ≤ 34k.

Either way, we see that πi,j(G) contains B`(80k, 80k). Again the only prime factors appearing in

[πi,j(G) : πi,j(H)] are 2 and 3, so the fact that πi,j(G) contains B`(80k, 80k) implies that πi,j(H)

contains B`(80k, 80k). Since this holds for every pair of indices 1 ≤ i < j ≤ n, lemma 8.2.4 then

implies that H contains
n∏
i=1

B` (80(n− 1)k), as claimed.

The case ` = 2 is even simpler. Define H to be the kernel of the reduction G → SL2(Z/4Z)n.

Suppose that L(H) contains 2ksl2(Z2)⊕ . . .⊕ 2ksl2(Z2), and let Hi = πi(H), Hi,j = πi,j(H). Since

L(πi(H)) ⊇ 2ksl2(Z2), theorem 1.5.2 implies that Hi contains B2(6k), and the integers ni can

all be taken to be 6k > 4. Similarly, L(Hi,j) contains 2ksl2(Z2) ⊕ 2ksl2(Z2), hence by theorem

8.4.2 the group Hi,j contains B2(618k + 78, 618k + 78): lemma 8.2.4 then implies that H contains
n∏
i=1

B2 ((n− 1)(618k + 79)). Finally, as H is trivial modulo 4, it is clear that k ≥ 3, so we have

618k + 79 ≤ 645k and we are done.
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May 2015.

[41] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical

Monographs. The Clarendon Press, Oxford University Press, New York, 1985. ISBN 0-19-

853536-8. Oxford Science Publications.

[42] J. E. Humphreys. Introduction to Lie algebras and representation theory, volume 9 of Graduate

Texts in Mathematics. Springer-Verlag, New York-Berlin, 1978. ISBN 0-387-90053-5. Second

printing, revised.

[43] J. E. Humphreys. Modular representations of finite groups of Lie type, volume 326 of London

Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2006.

ISBN 978-0-521-67454-6; 0-521-67454-9.

[44] T. Ichikawa. Algebraic groups associated with abelian varieties. Mathematische Annalen, 289

(1):133–142, 1991. URL http://eudml.org/doc/164773.

[45] M. I. Jacobson. Variétés abéliennes de dimension deux ayant pour algèbre d’endomorphismes
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