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Preface

This manuscript has been written to obtain the French Habilitation à Diriger des
Recherches. It is not intended to provide new academic results nor should it be con-
sidered as a reference textbook. Instead, this manuscript is a brief (and incomplete)
summary of my teaching and research activities. You will find in this manuscript a
compilation of some articles in which I had a significant contribution, together with
some introductory paragraphs about sequential search strategies based on kriging.

Gif-sur-Yvette, March 2015 Emmanuel Vazquez
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Introduction

I was admitted at the ENS Cachan in 1997. After my Agrégation de Physique
in 2000, I decided to undertake a Master of Research degree in applied mathematics.
This drove me toward statistics, machine learning and signal processing.

I started the preparation of my PhD under the supervision of Éric Walter who sug-
gested that I study the application of kriging for modeling computer experiments, in
the path of [4, 13]. I can safely say that the application of kriging/Gaussian processes
to modeling computer experiments was a quite confidential area when I started, at
least in France. My PhD dissertation [20] was focused on making bridges between
the literature of kriging [2, 3, 7, 8, 19, . . . ], the literature of reproducing kernel
methods [15, 28, 29, . . . ], and the literature of Support Vector methods in machine
learning [16–18, . . . ]. Today, I think that the textbooks [12, 14] cover much of what
I have written in my dissertation. Modeling computer experiments using Gaussian
processes has become a popular topic, as evidenced, for example, by its strong pres-
ence in the French Research Group MASCOT-NUM created in 2007.

In 2004, I was offered a position as an Assistant Researcher at Supélec, and been
asked to co-supervise the PhD thesis of Miguel Piera-Martinez who studied the
problem of computing probabilities of failure of a system [9]. At first, we concen-
trated our efforts on using the extreme value theory to obtain statistical models of
the tail distribution of the output of a computer model [10, 11]. In the second part of
his thesis, I suggested using a sequential approach for the estimation of a probability
of failure [25]. This was the first instance of a SUR (stepwise uncertain reduction)
algorithm.

In 2005, I began the supervision of Julien Villemonteix who had obtained a PhD
grant from Renault S.A. to work on the reduction of pollutants of combustion en-
gines [26]—in a context of increasingly stringent European emission standards. To
reduce emissions, the idea was to optimize, using computer simulations, the shape
of the intake ports of an engine. Since the simulation of the flow of the mixture of
air and fuel in the intake ports was time-consuming, it was important to consider
optimization algorithms which could provide a good approximation of the optimum
with a limited budget of computer simulations. My idea was to adopt a Bayesian
approach, by modeling the model output by a Gaussian process, and to devise an
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algorithm that would reduce the entropy of the distribution of the optimizer by
making new simulations sequentially. It turned out that this new idea worked very
well in practice. Our algorithm, which Julien called IAGO (Informational Approach
to Global Optimization), could be compared very favorably to the best algorithms
in the literature, and in particular to the expected improvement optimization algo-
rithm [27]. IAGO was again a SUR algorithm.

In 2009, I began a collaboration with my colleague Julien Bect who was newly
recruited at Supélec. Julien provided me invaluable help to formalize a number of
ideas I had during the supervision of my former PhD students [21–24]. We also
decided to undertake the supervision of several PhD theses: a first one on uncon-
strained single-objective Bayesian optimization (Romain Benassi, 2009–2013), a
second one on the problem of estimating probabilities of failure (Ling Li, 2009–
2012), a third on constrained multi-objective optimization (Paul Féliot, since 2014),
and a fourth on the design and analysis of computer experiments with several levels
of predictive precision (Rémi Stroh, since 2015). Supervising these theses was very
fruitful since it led us to the elaboration of several new algorithms: a fully Bayesian
optimization algorithm using an expected-improvement sampling criterion and se-
quential Monte Carlo techniques [1], a Bayesian Subset Simulation (BSS) algorithm
for the estimation of a probability of failure [6], a new Bayesian algorithm for con-
strained multi-objective optimization [5]. . . In this manuscript, I have chosen not to
focus on these algorithms. Instead, I will present in the foregoing paragraphs the
framework of my research activities on sequential search strategies based on krig-
ing, on the period 2007-2014.

To conclude this introduction, I would like to add that my main activity has been
devoted to teaching, so far. I also spend a significant part of my time working on
contracts with industrial partners. I try to set aside about 20% of my time for re-
search work.

The first part of this report consists of a presentation of my resume, an overview
of my teaching activities and an assessment of my research activities. In the second
part, I will focus on my research activities about sequential search strategies. In the
third and last part, I will discuss future orientations.
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Chapter 1
Resume

EMMANUEL VAZQUEZ
SUPELEC, 3 rue Joliot Curie
91192 Gif-sur-Yvette, France
Telephone: +33(0)169851416
E-mail: emmanuel.vazquez@centralesupelec.fr

CURRENT POSITION
Associate Professor at CentraleSupélec

PERSONAL DETAILS

Age & DOB: 39, Feb. 12, 1976
Nationality: French

Education

2001–2005 Ph.D. Université Paris-Sud
Title: Modélisation comportementale de systèmes non-linéaires

multivariables par méthodes à noyaux et applications
Supervision: Eric Walter
Defense: May 12, 2005 at Supélec, Gif-sur-Yvette
Jury: Georges Bastin, Pascal Bondon, Luc Pronzato, Robert Sch-

aback, Hans Wackernagel, Éric Walter
Host laboratory: Laboratoire des Signaux et Systèmes (UMR8506)
Funding: Allocation Couplée (from ENS)

2000–2001 DEA Mathématiques, Vision et Apprentissage
At: Centre de Mathématiques et de Leurs Applications (UMR8536),

ENS Cachan
Honors: Mention Très Bien

1997–2000 École Normale Supérieure de Cachan
- Agrégation Externe de Sciences Physiques, option physique et électricité

appliquée, rank: 7th
- Magistère de Physique Appliquée
- Maîtrise et Licence EEA, at Université Paris-Sud Orsay, Honors: men-

tion Bien

1994–1997 Classes préparatoires aux Grandes Écoles
At Lycée Marcelin Berthelot, Val-de-Marne, Option P’
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1994 Baccalauréat C
At: Lycée Camille Jullian, Bordeaux
Honors: Mention Bien

Professional experience

2004 – today Associate Professor at Supélec/CentraleSupélec
Teaching: about 220h/year (in équivalent TD)
Research: statistics, design of experiments, Gaussian processes for mod-

eling and optimization of systems
Contracts with industrial partners
Supervision: Ph.D. and postdoctoral students

2001 – 2004 Monitorat
Description: Travaux Dirigés on Probability and Travaux Pratiques on Sig-

nal Processing
At: Supélec, Service des Mesures
Duration: 64-80h/year (in équivalent TD)

2002 Continuing Education Teaching
Description: Time Series Analysis
At: Supélec
Duration: 3h30

2000 Teaching
Description: Travaux Pratiques on Linear Control Theory (40h)
At: IUT de Cachan
Duration: 40h

1999 Industrial-research training formation
Description: Positionnement sous-marin par effet Döppler, Codes large

spectre
At: Thomson-Marconi-Sonar, Sophia-Antipolis
Duration: 3 months

1999 Teaching
Description: Lecture and tutorial sessions in Physics
At: Lycée Marcelin Berthelot
Duration: 6h



Chapter 2
Teaching experience & industrial contracts

2.1 Teaching

The number of hours of my teaching service at Supélec is about 220–260 hours/year
on the period 2004–2014. Since Sept. 2014, I have reduced my teaching service to
about 210 hours. A large part of this service is dedicated to the supervision of student
projects.

Table 2.1: Teaching service

Title Type Period
Volume

(in équivalent
TD / year)

Place Level

Present teaching activities

Probability lectures +
small classes since 2009 33 Supélec 1st year

Markov Chains Monte
Carlo lectures since 2004 13.5 Supélec 3rd year

Bayesian Optimization lectures since 2011 3 Supélec lifelong
learning

Statistics small classes since 2004 6 Supélec 1st year

Introduction to stochas-
tic processes practical classes since 2001

108
(2001–2009),

54 (since
2009)

Supélec 2nd year

Project Supervision projects since 2004 ≈ 100 Supélec 1rd to 3rd

year

5



6 2 Teaching experience & industrial contracts

Past teaching activities

Hilbert Spaces and Mul-
tiresolution Analysis lectures 2004–2014 27 Supélec 2nd year

Introduction to numeri-
cal analysis small classes 2004–2014 6 Supélec 2nd year

Introduction to kriging lectures 2012 9 ATSI – Univ.
Paris-Sud 11 MSc

Modeling extreme
events from computer
simulations

lectures +
small classes 2011 26

Summer
School CEA-
EDF-INRIA

Sequential Bayesian de-
cision theory for design-
ing systems from ex-
pensive computer simu-
lations

lectures 2012 9

PhD week –
Risk and

Uncertainty
ECP-Polimi-

Supélec
Spectral representation
of stationary processes lectures 2004–2007 13.5 ATSI – Univ.

Paris-Sud 11 MSc

Signal Processing practical classes 2008–2009 54 Supélec 1st year
Introduction to stochas-
tic processes small classes 2004–2009 6 Supélec 2nd year

Non-stationary time se-
ries analysis lectures 2002 5.25 Supélec lifelong

learning
Linear control theory Practical classes 2000 40 IUT Cachan 2nd year

2.2 Industrial contracts

I spend a significant part of my time working on contracts with industrial partners.
This activity has three parts. The first part consists of the supervision of third-year
students during their industrial projects (which represents a volume of about 250
hours). As a supervisor, it is often necessary to participate in the project’s progress
and to assume the role of interface with the industrial partner. The second part con-
sists of taking part in collaborative projects funded by public agencies. The third
part consists of bilateral contracts.

Table 2.2: Industrial contracts

Title of the study Project/Industrial
partner

Period &
Effort

Supervision of student industrial projects

Prévision de hauteur de la nappe phréatique sous un site
industriel EDF R&D STEP 2004–2005
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Étude statistique de données de mesures de champ électro-
magnétique effectuées par l’ANFR à Paris

BOUYGUES
TELECOM

2004-2005

Modélisation et prévision des jeux de calage des conduites
du circuit primaire d’une centrale nucléaire EDF R&D STEP 2005–206

Étude statistique de l’émission électromagnétique d’un
télephone portable en environnement réel

BOUYGUES
TELECOM

2005-2006

Estimation du gradient hydraulique à partir de mesures de
hauteur de nappe phréatique effectuées sur des piézomètres
non uniformément répartis spatialement

EDF R&D STEP 2006-2007

Étude et optimisation d’une stratégie d’arbitrage ABC
ARBITRAGE

2006-2007

Étude statistique de données de vibration d’un moteur
d’avion, détection de valeurs aberantes HISPANO SUIZA 2006-2007

Modélisation par krigeage d’un code de calcul aéronau-
tique EADS 2006–2007

Analyse des performances d’un logiciel d’estimation de
composition isotopique CEA LIST 2007–2008

Modélisation statistique des flux sur une grille de calcul
LAB. DE

RECHERCHE EN
INFORMATIQUE

2007-2008

Récupération de texte dactylographié à partir de l’analyse
acoustique d’un clavier THALES 2008–2009

Méthode d’estimation d’une composition isotopique à par-
tir de mesure spectrale X/γ

CEA LIST 2008–2009

Méta-modèles pour l’estimation d’une probabilité de dé-
faillance et l’évaluation d’un risque de crue EDF R&D MRI 2009–2010

Utilisation de code adjoint pour l’optimisation fondée sur
des méta-modèles RENAULT 2009–2010

Étude et comparaison de méthodes de modélisation pour la
simulation de programmes de maintenance EDF R&D MRI 2010-2011

Estimation d’incertitudes de mesures en régime transitoire LNE 2010–2011
Étude comparative de méthodes de modélisation de charges
non linéaires sur le réseau électrique BT EDF R&D MIRE 2011-2012

Analyse statistique spatiale de données de fissuration sur
aéroréfrigérants EDF R&D MRI 2011–2012

Analyse statistique d’une procédure de calage d’un modèle
de circuit de refroidissement EDF R&D LNHE 2012–2013

Stratégies de planification d’expériences en vue de mod-
éliser des charges non linéaires EDF R&D MIRE 2012–2013

Méthodes d’analyse et de visualisation de données fonc-
tionnelles EDF R&D MRI 2012–2013

Optimisation de l’équilibrage d’un rotor SNECMA 2013–2014

Optimisation des techniques d’équilibrage d’un rotor SNECMA 2014–2015

Calage d’un modèle numérique de performance énergé-
tique d’un bâtiment EDF R&D MRI 2014–2015
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Collaborative projects

Étude statistique de l’inclinaison de tranches via les cap-
teurs de température des modules de cuisson dans le pro-
cessus de fabrication de circuits intégrés

Usine Numérique
Sytem@tic FUI 0

2006–2007
2 months

Method for Forward Collision Warning based on Extreme
Value Theory

ISI-PADAS
European project 2008–2011

Évaluation d’un risque d’inondation fluviale par planifica-
tion séquentielle d’expériences – Modélisation boîte noire
de systèmes couplés

OPUS
ANR project 2008-2011

Sequential design of computer experiments for the estima-
tion of a probability of failure

CSDL
Sytem@tic FUI 7 2009–2012

Optimisation d’un système électrique en présence
d’énergies renouvelables

APOTEOSE
ANR project 2012–2016

Optimisation de fonctions coûteuses

ROM – Outils de
conception et de

simulation
IRT SystemX

2013–2016
2.2 m/y

Bilateral projects

Estimation du gradient d’une nappe phréatique EDF R&D STEP
2006

2 months
Estimation du gradient de pression d’un écoulement
biphasique SCHLUMBERGER

2008
2 months

Calage du logiciel CooliSS EDF R&D LNHE
2009

0.5 months
Étude de performances d’une procédure de calage du logi-
ciel CooliSS EDF R&D LNHE

2012
1 months



Chapter 3
Research experience

3.1 Summary of research work

3.1.1 Modeling systems using kriging

I started the preparation of my PhD thesis in 2001. The thesis was focused on
the problem of modeling a system from computer experiments, using reproducing
kernel regression and kriging techniques [20]. In computer-aided design, the term
computer experiments refers to the idea of experimenting with a computer model
[8, 18, 35]. More precisely, assume a knowledge-based model of a system in the
form of a computer program—for example, a finite-element program simulating the
physical behavior of some component in a device. For a number of reasons, the com-
puter program used for this purpose must often be seen as a black box, only known
by the numerical values that it produces (the program outputs) for given numerical
values of its input arguments.

To study the influence of these inputs on the values taken by the outputs, for in-
stance to find the combination of input arguments that leads to the most satisfactory
values of the output arguments, one has to call the same program again and again.
When the computational cost of the program is high, the number of runs is limited.
One can use a second level of modeling, often called a meta-model, to summarize
what has been learned from the simulations and to infer the response of the original
computer model without actually running it again. The problem of constructing a
meta-model from simulation results is in fact that of function approximation from
pointwise evaluations. Kriging and kernel regression (which includes splines, ra-
dial basis functions, and support vector regression. . . ) have proven effective in this
context.

Mathematical links between kriging and kernel-based regularized regression
have been noticed very soon in the literature. My PhD dissertation presents a syn-
thesis of these links, drawn from the domains of function approximation, machine
learning, time series prediction and geostatistics. These links are essential, for in-
stance in order to understand how regularized regression via kernel-based methods

9
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should be formulated in the context of the approximation of vector-valued functions
for the approximation of MIMO systems [28], or to approximate the derivative of a
noisy function [30], or to take into account prior knowledge via semi-regularized re-
gression (or intrinsic kriging) [31] . . . The question of how kernel-based regression
methods can be applied in engineering was addressed via the consideration of real
problems [20, 25, 29].

The specific problem of choosing the experiments, that is, which computer sim-
ulations should be carried out to obtain relevant information about the black box
model, is not addressed in the dissertation, which at that time was left for future
work.

After my thesis defense in 2005, I continued working on the specific problem of
modeling systems using kriging. In particular, from 2006 to 2009, I worked on the
problem of constructing black box approximations of continuous-time dynamical
systems [34].

3.1.2 Modeling extreme events from computer simulations

Uncertainty may appear in a system due to external perturbations or dispersion of the
design parameters. In this case, a deterministic approach to design systems, which
assumes a perfect knowledge of its environment, becomes questionable. The need of
reliable systems leads us to elaborate statistical models that are able to deal with this
randomness. In this context, I undertook the supervision of Miguel Piera-Martinez
during his PhD thesis. We focused our work on the problem of modeling the oc-
currence of extreme values in the output of a computer program, following the idea
that these extreme values may correspond to abnormal or dangerous operating con-
ditions. A simple Monte Carlo analysis of extreme values requires many simulations
of the system, which are often very expensive. It is thus desirable to analyze extreme
events with as few system simulations as possible.

Our first idea was to use the statistical theory of extreme values to model the
tail distribution of the output of a computer model. We could obtain satisfactory
results by applying Extreme Value Theory (EVT) to various problems in the domain
of electronic design and electromagnetic compatibility engineering [15, 17]. We
were also interested in using EVT to estimate multivariate quantiles. In this context,
we proposed a method combining EVT and one-class SVM, using the following
principle [16]: one-class SVM constructs a function, which when thresholded, yields
an empirical multivariate quantile, that is, a set (in the space of the observations) that
contains a given proportion of the observations; by using EVT, we could adjust the
threshold in such a way that the quantile remains accurate even when the quantile
probability is close to one.

In the second part of Miguel’s thesis, I suggested using a sequential approach for
the estimation of a probability of failure [26] using a kriging approach. This was
the first instance of a SUR (stepwise uncertain reduction) algorithm. This work was
improved and published during the period 2009–2013 [3, 7, 21].
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In 2007, I was presented the opportunity to co-supervise the PhD thesis of Aimad
El Habachi, which was about the safety evaluation of electromagnetic emissions
from wireless communications devices on human health. More precisely, the ob-
jective was to assess using computer models the probability that the SAR (Specific
Absorption Rate) in human body exceeds a given level given the variability of hu-
man anatomy [10]. Aimad and his co-supervisors from Orange Labs were able to
obtain interesting practical results using the sequential techniques that I had devel-
oped with Miguel.

3.1.3 Informational approach to global optimization and
Bayesian optimization

Julien Villemonteix’s PhD thesis (2005–2009) was driven by a question central to
many industrial optimization problems: how to optimize a function when its evalu-
ation is time-consuming?

I suggested that we could construct a new optimization algorithm using the
Bayesian viewpoint of kriging and by focusing on the posterior probability distribu-
tion of the optimizer points. More precisely, the Informational Approach to Global
Optimization (IAGO) [33] consists in sequentially choosing new evaluation points
of the function to be optimized in order to decrease the entropy of the optimizer
points.

This idea yields a global optimization algorithm, which combines local search,
near promising evaluation results, and global search, in unexplored areas. This in-
stance of Bayesian optimization algorithms has proven effective in comparison to
other algorithms in this class, and in particular the classical EGO (Efficient Global
Optimization) algorithm [12].

The work of Julien was above all guided by industrial concerns. Julien focused on
the use of IAGO for solving actual industrial problems. In his dissertation [32], he
also discusses a couple of important practical problems: constrained optimization,
noisy evaluation results, multi-objective problems, robust optimization in presence
of manufacturing uncertainties. . .

By 2008, I also had the opportunity to help Sándor Bilicz whose PhD thesis was
on using Bayesian optimization for dealing with inverse problems in Eddy-current
testing [5].

More recently, I participated in the writing of an article with Héloïse Dutrieux,
PhD student (co-)supervised by my colleague Julien Bect, on the application of
IAGO to optimize very noisy functions [9], where we proposed a new sampling
criterion where to circumvent the problem of the estimation of the entropy when
evaluation noise becomes large.



12 3 Research experience

3.1.4 Study of kriging-based sequential strategies

By 2006, I was interested in the asymptotic performance of the SUR procedure to
estimate a probability of failure and wanted to know if using approximations could
yield better estimators than the simple Monte Carlo estimator [26, 27].

Later, Julien Bect and I worked on the problem of the consistency of kriging-
based sequential strategies [22–24]; more precisely, the problem was to understand
whether kriging-based sequential strategies could provide consistent estimators of
a given quantity of interest (for instance, when seeking the global maximum of
a function using the Expected Improvement [14, 19] criterion). This topic has been
left out since 2011 by lack of time and dedication, but is among my favorite research
activities.

3.1.5 Efficient algorithms for optimization and estimation of probabilities of
failure

Since September 2009, Julien Bect and I began the supervision of PhD students on
the problem of the implementation of kriging-based sequential strategies.

1. Implementation of SUR strategies to estimate a probability of failure
The objective was to work on the limitation of the SUR strategies to estimate
a probability of failure that we had developed before 2009. More precisely, the
strategies we were using until that time consisted in constructing a (Bayesian)
estimator of the (simple) Monte Carlo estimator of the volume of excursion of
a function of interest above a given threshold. The applicability of this idea,
that we called meta-estimation [1, 3], is limited by the cost of computing the
Bayesian posterior distribution of the function of interest. Julien and I suggested
the idea of a new algorithm, called Bayesian Subset Simulation, that combines
a SUR strategy and the classical Subset Simulation algorithm [2, 6]. By using
this new algorithm, we were able to obtain very good results for the problem of
estimating very small probabilities of failure [13].

2. Fully Bayesian optimization
The objective was to work on an efficient implementation of Bayesian opti-
mization based on the EI criterion. When working with EI-based algorithms,
two difficulties can be identified. The first problem is the choice of a Gaussian
process prior, and more precisely, the classical use of a maximum likelihood
approach to estimate the parameters of the covariance function of the Gaus-
sian process model of the EI-based approach. Using maximum likelihood turns
out to lack robustness and to yield poor optimizations in some configurations.
The second problem is the maximization of the multi-modal EI criterion after
each new evaluation. We suggested combining a fully Bayesian approach and a
Sequential Monte Carlo approach to deal with both problems [4]: at each step
of the optimization algorithm, we deal with a set of so-called particles, where
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each particle corresponds to a pair of a likely position for the maximizer of the
EI criterion and a parameter value of the covariance function. We could obtain
very interesting numerical results that showed that our algorithm compares very
favorably to other methods of the literature.

3. Constrained multi-objective optimization
Since January 2014, we work on the problem of dealing efficiently with expensive-
to-evaluate constraints in multi-objective optimization problems. By combining
several principles from our previous work, we were able to obtain promising
results [11]
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3.2 List of publications

I have co-authored 14 journal articles, 31 conference articles and 22 conference
talks, which are listed below. I also list a number of technical reports and invited
talks.
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Chapter 1
General framework

1.1 Introduction

The basic framework which underlines most kriging-related studies is that of de-
cision theory. In its simplest form, the problem is as follows. Consider a set F of
real-valued functions defined on a setX⊆Rd and possessing some regularity prop-
erty, and let φ : F → G be a given mapping. Our objective is to make inference
about φ( f ), with f ∈F unknown, from a finite set of (possibly noisy) evaluations
of f .

Under the framework of decision theory, the act of evaluating f at a given point
is an experiment. The experiments can be prescribed in advance or chosen adap-
tively, in which case the experimenter takes observations in sequence and decides
at each stage which new experiment should be performed on the basis of the in-
formation thus far collected. The usual mathematical structure to describe such ex-
periments consists of a sequence of random variables Z1, Z2, . . . ∈ R that model
the outcomes of the evaluations of f at points X1, X2, . . . ∈ X, which are also
random variables, such that for all n = 1, 2, . . ., Xn+1 depends on the information
In = {(X1,Z1) , . . . ,(Xn,Zn)} collected after n experiments. The initial point X1 may
be chosen arbitrarily. We simply have Zn = f (Xn) when evaluations are exact (noise-
less). Note that we use random models for the Xns and Zns because the Xns may be
chosen using a stochastic procedure, or because we may assume a random model
for f . The sequence of decision rules X = (X1, X2 , . . .) is commonly referred to as
the sampling strategy.

To describe an estimation problem, one needs two additional objects: an es-
timator φ̂n ∈ G of φ( f ) that depends measurably on In, and a positive function
L : G × G → R+ such that L(φ( f ), φ̂n) quantifies the loss incurred by choosing
the estimator φ̂n instead of φ( f ).

In our work, we consider the following four classes of problems, which originate
from problems of system design in the industry.

a) Approximation: find a function φ̂n such that it is close to f in some sense.

33
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b) Optimization: find φ̂n = (x?n,Mn) ∈X×R such that Mn is close to the maximum
value of f overX and x?n is close to (one of) the corresponding global maximizer.

c) Estimation of the probability of failure of a system: given a probability distribu-
tion PX on (X,B(X)), which models the fact that the input factors of a system
are uncertain, and a threshold u ∈ R which corresponds to a critical value, find
an estimate φ̂n of the probability α of f being above u, that is,

α = PX {x ∈X : f (x)> u} .

d) Estimation of a quantile: given a probability distribution PX on (X,B(X)) and
a real number 0≤ α ≤ 1, find an estimate φ̂n of

qα = inf{u ∈R : PX{ f ≤ u} ≥ α} .

Note however that a given real industrial problem can seldom be simply ex-
pressed under the form of one of the four classes stated above. In practice, several
objectives may be sought at the same time. For instance, when doing simulation-
based car-crash testing, one not only seeks to minimize the probability of injury of
the passengers, but also, to minimize the mass of the vehicle, the cost of fabrication,
etc.

The performance of the estimation procedure after n experiments depends on the
terminal decision, that is, the choice of φ̂n, and of the quantity of information col-
lected by the sampling strategy. The choice of a sampling strategy for the problems
mentioned above is discussed further in the next section.

1.2 SUR sampling strategies

In our work, we focus on stepwise uncertainty reduction (SUR) sampling strate-
gies [7, 66, 68, 69, . . . ]. Let ξ be a real-valued random process defined on some
probability space (Ω ,B,P0) with parameter in X, and assume that f is a sam-
ple path of ξ . From a Bayesian decision-theoretic point of view, ξ represents prior
knowledge about f and makes it possible to infer a quantity of interest φ(ξ ) by con-
sidering its posterior distribution after the results of the evaluations of ξ at X1, X2, . . .
This point of view, which has been introduced in the 60s in different domains [33–
35, 39, 40, 54], has been widely explored in the domain of optimization and com-
puter experiments (see, e.g., [17, 48, 61, 62, 71]). Then, X is a random sequence
in X, with the property that Xn+1 is measurable with respect to the σ -algebra Fn
generated by the random variables X1, Z1 = ξ (X1), . . . , Xn, Zn = ξ (Xn). (We ex-
clude here strategies where the Xns would be chosen using a stochastic mechanism.
Moreover, for the sake of clarity, we assume here that there is no noise.)

Under this setting, the performance of a given strategy X at step n can be assessed
using the risk

υn(X) := E0 L(φ(ξ ), φ̂n(ξ )) ,
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where E0 denotes expectation with respect to P0.
When the total number of experiments, say N, is known in advance, it is well-

known (see, e.g., [12, 13]) that there exists a strategy X? such that

υN (X?) = inf
X∈A

υN (X) ,

where A denotes the class of all sampling strategies, which can be formally ob-
tained by dynamic programming. Let rN = EN

(
L(φ(ξ ), φ̂N(ξ ))

)
, where En, n =

1, 2, . . . denotes the conditional expectation with respect to Fn. The quantity rN is
the terminal risk, or in other words, the actual loss incurred at the end of the estima-
tion procedure. Define by backward induction

rn = En
(
rn+1 | Xn+1

)
, n = N−1, . . . ,0. (1.1)

Notice that rn = En
(
rn+1 | Xn+1

)
is an Fn-measurable random variable, since Xn+1

is measurable with respect to Fn. Moreover, we have r0 = υN(X). The optimal
strategy X? is obtained by choosing, at each iteration n, the next evaluation point

X?
n+1 = argmin

x∈X
En
(
rn+1 | Xn+1 = x

)
, n = 1, . . . , N−1 . (1.2)

Unfortunately, solving (1.1)–(1.2) numerically is intractable when the horizon N is
greater than a few steps.

A very general approach to construct a sub-optimal strategy consists in replacing
the risk rn with r̃n = En

(
L(φ(ξ ), φ̂n(ξ ))

)
in (1.2), and to choose the next evaluation

point using the following one-step look-ahead decision rule:

Xn+1 = argmin
x∈X

En
(
r̃n+1

∣∣ Xn+1 = x
)
,

= argmin
x∈X

En
{
En+1

(
L(φ(ξ ), φ̂n+1(ξ ))

) ∣∣ Xn+1 = x
}

= argmin
x∈X

En
(
L(φ(ξ ), φ̂n+1(ξ ))

∣∣ Xn+1 = x
)
. (1.3)

The Fn-measurable random variable r̃n can often be viewed as a measure of the
residual uncertainty about φ(ξ ). Then, we say that the strategy (1.3) is a stepwise
uncertainty reduction strategy. In (1.3), the function

γn : x 7→ En
(
L(φ(ξ ), φ̂n+1(ξ ))

∣∣ Xn+1 = x
)

(1.4)

is viewed as a sampling criterion—the minimum of which indicates the next evalu-
ation to be performed.

A fundamental example — Let f :X→R be a real-valued continuous function de-
fined on a compact subset X of Rd , d ≥ 1 and consider the problem of finding an
approximation of the maximum of f ,
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M = max
x∈X

f (x) .

The unknown function f is considered as a sample path of a random process ξ

defined on some probability space (Ω ,B,P0), with parameter x ∈X. For a given f ,
the efficiency of an optimization strategy X can be measured using the loss function

L(M,Mn) = M−Mn , (1.5)

with Mn = f (X1)∨·· ·∨ f (Xn). Notice that M ∈ [Mn,Mn +m] with (Fn-conditional)
probability at least 1−En(M−Mn)/m by Markov’s inequality. Thus, En(M−Mn)
can be viewed as a measure of residual uncertainty about M. At iteration n, a SUR
strategy for choosing Xn+1 consists in minimizing the risk of X after n+1 evaluation
results:

Xn+1 = argmin
x∈X

En (M−Mn+1 | Xn+1 = x)

= argmax
x∈X

En (Mn+1 | Xn+1 = x)

= argmax
x∈X

ρn(x) := En
(
(ξ (x)−Mn)+

)
, (1.6)

where, for z ∈ R, z+ := z ∨ 0. This Bayesian decision-theoretic point of view for
optimization has been explored between 1970 and 1990 by J. Mockus, A. Žilinskas
and their coauthors (see [41, 42, 64, 79] and references therein). The sampling cri-
terion ρn, introduced by [42] and popularized through the EGO algorithm [31], is
known as the expected improvement (EI). �

To derive a numerical approximation of the conditional expectation En that ap-
pear in (1.3), we restrict ξ to be a Gaussian process. When ξ is Gaussian, it is
often possible (see, for instance, [7, 14]) to derive a closed-form expression of r̃n,
or sometimes of an upper-bound of r̃n, that depends only on the posterior mean ξ̂n
and the posterior standard deviation sn of ξ given ξ (X1), . . . , ξ (Xn). The functions
ξ̂n and sn can be computed with a moderate computational effort using the frame-
work of kriging (see next section). Then, the conditional expectation En in (1.3) is a
one-dimensional integral with respect to the Gaussian posterior distribution of Zn+1.
Example — When ξ is a Gaussian process, the case of optimization mentioned
above is a particular case of a SUR strategy where the sampling criterion itself can
be obtained as a closed-form expression that depends on Mn, ξ̂n and sn:

ρn(x) =





sn(x)Φ ′
(

ξ̂n(x)−Mn
sn(x)

)
+(ξ̂n(x)−Mn)Φ

(
ξ̂n(x)−Mn

sn(x)

)
if sn(x)> 0,

(
ξ̂n(x)−Mn

)
+

if sn(x) = 0,

(1.7)
with Φ standing for the Gaussian cumulative distribution function. �

In the next section, we recall the framework of kriging that is used to obtain the
posterior distribution of a Gaussian process.
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1.3 Kriging

As mentioned above, we use the framework of kriging to obtain the posterior dis-
tribution of a Gaussian process from observations. Hereafter, the notation ξ ∼
GP(m, k) means that ξ is a Gaussian process with mean function m : x ∈ X 7→
E(ξ (x)) and covariance function k : (x,y) ∈X2 7→ cov(ξ (x),ξ (y)), with respect to
a probability space (Ω ,B,P0).

Consider the model ξ defined by





ξ ∼ GP(m, k) ,

m(·) = ∑
q
i=1 βi pi(·) ,

β1, . . . , βq ∈R ,

(1.8)

where the βis are unknown parameters, the pis form a basis of d-variate polynomi-
als, and k is a continuous, strictly positive-definite function.
Notations. Let Λ̃ be the vector space of all finite-support measures on X ⊆ Rd .
In other words, Λ̃ is the space of linear combinations ∑

n
i=1 ciδxi , where for all i,

ci ∈ R, and δxi stands for the Dirac measure at xi ∈X. (In what follows, we shall
use the notation 〈λ ,ϕ〉 :=

∫
ϕ dλ , where ϕ is a measurable function and λ is a

signed measure.)
The linear map

ξ : Λ̃ → H = span{ξ (x) ; x ∈X} ⊂ L2(Ω ,B,P0)
λ = ∑

n
i=1 ciδxi 7→ ξ (λ ) := ∑

n
i=1 ciξ (xi) ,

(1.9)

extends ξ on Λ̃ . We can also define the linear maps

m : λ ∈ Λ̃ 7→ E(ξ (λ )) = 〈λ ,m〉

and
k : (λ ,µ) ∈ Λ̃

2 7→ cov[ξ (λ ),ξ (µ)] =
∫ ∫

k(x,y)dλ (x)dµ(y) .

The bilinear form (λ ,µ)
Λ̃

:= k(λ ,µ)+∑
q
i=1〈λ , pi〉〈µ, pi〉 defines an inner prod-

uct on Λ̃ (since k is strictly positive-definite). Denote by Λ the completion of Λ̃

under this inner product. Since ξ and m are bounded under (·, ·)
Λ

, they can be ex-
tended on Λ by continuity. Similarly, k can be extended by continuity on Λ 2.

Let P be the q-dimensional vector space spanned by the functions pi and denote
by ΛP⊥ the subset of elements of Λ that vanish on P:

λ ∈ΛP⊥ =⇒ ∀ϕ ∈P, 〈λ ,ϕ〉= 0 .

Notice that for all λ ∈ΛP⊥ , ξ (λ ) is a zero-mean random variable.
We recall now the notion of kriging prediction.
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Definition 1.1 (Kriging predictor). Suppose we observe random variables ξ i,obs =
ξ i+ε i, i = 1, . . . , n, where ξ 1, . . . , ξ n ∈H , and where the ε is are zero-mean Gaus-
sian random variables independent of H . Denote by λ i the (unique) element of Λ

such that ξ i = ξ (λ i). For a given λ ∈Λ , the kriging predictor of ξ (λ ) ∈H based
on the observations is the linear projection

ξ̂n(λ ) :=
n

∑
i=1

ai
λ

ξ
i,obs = ξ (λ̂n)+

n

∑
i=1

ai
λ

ε
i
(

with λ̂n =
n

∑
i=1

ai
λ

λ
i
)

(1.10)

of ξ (λ ) onto span{ξ i,obs, i = 1, . . . ,n}, such that the variance of the prediction error
ξ (λ )− ξ̂n(λ ) is minimized under the constraint

λ − λ̂n = λ −
n

∑
i=1

ai
λ

λ
i ∈ΛP⊥ . (1.11)

Proposition 1.1. The kriging coefficients ai
λ

, i = 1, . . . ,n, are solutions of a system
of linear equations, which can be written in matrix form as

(
K+Kε PT

P 0

)(
aλ

bλ

)
=

(
kλ

pλ

)
, (1.12)

where K is the n×n matrix with entries k(λ i,λ j), i, j = 1, . . . ,n, Kε is the covariance
matrix of the ε is, P is a q× n matrix with entries 〈λ j, pi〉 for j = 1, . . . ,n and i =
1, . . . , q, bλ is a vector of Lagrange multipliers, kλ is a vector of size n with entries
k(λ i,λ ) and pλ is a vector of size q with entries 〈λ , pi〉, i = 1, . . . ,q.

Proposition 1.2. The kriging predictor is unbiased.

Definition 1.2 (Kriging covariance). The covariance function kn of the prediction
error is called the kriging covariance function. For all λ ,µ ∈Λ ,

kn(λ ,µ) := cov
(

ξ (λ )− ξ̂n(λ ), ξ (µ)− ξ̂n(µ)
)

= k(λ ,µ)− aT
λ

kµ − aTµ kλ + aT
λ
(K+Kε)aµ ,

= k(λ ,µ)− aTµ kλ −bTµ pλ . (1.13)

Also define the kriging standard deviation sn as

sn(λ ) :=
√

kn(λ ,λ ) , λ ∈Λ . (1.14)

When λ = δx, for some x ∈X, we shall use the simplified notations ξ̂n(x) := ξ̂n(δx)
and sn(x) := sn(δx).

One fundamental property of a Gaussian process is the following proposition.

Proposition 1.3. Let

m =
q

∑
i=1

βi pi ∈P ,
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with βi
i.i.d.∼ N (0,s2), s> 0, and k be a strictly positive-definite covariance function.

Let ξ s be a Gaussian random process such that, for all λ ∈Λ ,

ξ
s(λ ) = η(λ )+m(λ ) , (1.15)

where η ∼ GP(0, k) and, for all λ and all i, E(η(λ )βi) = 0.
Given λ 1, . . . , λ n ∈ Λ , denote by ξ s | F s

n the random process ξ s conditioned
on the σ -algebra F s

n generated by ξ s,i = ξ s(λ i), i = 1, . . . , n. Then, as s becomes
large,

ξ
s |F s

n
d−→ GP

(
ξ̃

s
n , kn

)
,

where ξ̃ s
n(λ ) := ∑

n
i=1 ai

λ
ξ s,i and kn are respectively the kriging predictor and the

kriging covariance function using the coefficients ai
λ

from (1.12)—obtained under
the model (1.8).

Under the model (1.8), where the parameters βi in m are deterministic but un-
known, the kriging predictor ξ̂n does not correspond to the posterior mean En(ξ (λ ))

of ξ in general (because En(ξ (λ )) depends explicitly on m whereas ξ̂n does not).
Similarly, kn does not correspond to the posterior covariance of ξ . This is not desir-
able under a Bayesian framework. However, Proposition 1.3 shows that ξ̂n and kn do
correspond to the posterior mean and the posterior covariance of the model (1.15)
when s→ ∞. Note that (1.15) can be rewritten under the form of a hierarchical
Bayesian model:

ξ
s :





ξ
s | β1, . . . , βq ∼ GP

( q

∑
i=1

βi pi, k
)
,

β1, . . . , βq ∼ N(0, s2) .

(1.16)

As s→ ∞, the prior (1.16) becomes improper. Thus, we can say that the kriging
predictor and the kriging covariance receive a Bayesian interpretation as conditional
mean and covariance functions under an improper prior, which we shall denote again
by ξ [34, 47].

1.4 Consistency of the kriging predictor

The properties of the kriging estimator are partially understood. Most results come
from the literature of approximation in reproducing kernel Hilbert spaces (RKHS).

Throughout this section, assume that the distribution of ξ is given by (1.16)
with s = ∞, and that there is no evaluation noise.

Denote by R the topological dual space of (Λ ,‖·‖Λ ), which can be identified
(see [65], p. 65) to the RKHS of functions generated by the kernel
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k′ : (x,y) 7→ k(x,y)+
q

∑
i=1

pi(x)pi(y) .

Note that k′ is the reproducing kernel of the linear space of functions f = f0 + f1 +
· · ·+ fq, where f0 is in the RKHS (R0,‖·‖0) generated by the kernel k, and the fis,
i = 1, . . . , q, are in the RKHSs (Ri,‖·‖i) generated by the kernels x,y 7→ pi(x)pi(y),
endowed with a norm ‖·‖R defined by

‖ f‖2
R = min

[
‖ f‖2

0 +‖ f‖2
1 + · · ·+‖ f‖2

q
]
, (1.17)

the minimum taken for all the decompositions of f = f0 + f1 + · · · fq with fi ∈Ri
(see [4], p. 353).

Proposition 1.4. Let λ ∈ Λ , (λ n)n≥1 ∈ ΛN, and consider the sequence (λ̂n)n≥1 of
kriging predictors of λ from the λ is defined by (1.10).

Then,
lim
n→∞

sn(λ ) = 0 =⇒ ∀ f ∈R, lim
n→∞
〈λ̂n, f 〉= 〈λ , f 〉 .

If we take λ = δx, for some x ∈ X, and λ i = δxi , i = 1, 2, . . ., for some se-
quence of evaluation points {xi ; i ≥ 1} such that x is a point of adherence of
this sequence, then sn(δx) converges to zero (since k is continuous and for all i,
sn(δx)

2 ≤ var
(
ξ (x)− ξ (xi)

)
). Thus, pointwise consistency of the kriging predictor

holds for all sample paths f ∈R. However, it is well-known that P0{ξ ∈R} = 0
(see for instance Driscoll’s theorem in [37]), which means that, under the prior ξ ,
observations are not generated from a function coming from R. Fortunately, R is in
fact smaller than the space of all sample paths for which consistency holds, which
is of probability one, as shown in the following proposition.

Proposition 1.5. Let λ ∈Λ and (λ n)n≥1 ∈ΛN such that

lim
n→∞

sn(λ ) = 0.

Define
G = { f ∈RX : lim

n→∞
〈λ̂n, f 〉= 〈λ , f 〉)}

Then {ξ 6∈ G } is P0-negligible.

Determining interesting classes of functions included in G is related to the under-
lying properties of regularized approximation in reproducing kernel Hilbert spaces
and the notion of Lebesgue constant. More precisely, recall that the total varia-
tion of any λ = ∑i ciδxi ∈ Λ̃ is the positive measure |λ | := ∑i|ci|δxi . For given
λ ,λ 1, . . . ,λ n ∈ Λ̃ , the Lebesgue constant is defined as the operator norm |λ̂n|(X)

of the linear form f ∈ (C(X),‖·‖∞) 7→ 〈λ̂n, f 〉, that maps continuous functions to
their kriging interpolation at λ . This constant provides a measure of stability of the
interpolation process. The following proposition specifies the role of the Lebesgue
constant.
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Proposition 1.6. Assume there exists Φ ∈ L2(Rd) such that k(x,y) = Φ(x− y).
Denote by Φ̂ : u 7→ ∫

Rd Φ(x)e−ı(x,u) du the Fourier transform of Φ , and assume
that Φ−1 has at most polynomial growth.

Let (xn)n≥1 ∈XN be a bounded sequence and denote byX0 its compact closure.
Set λ i = δxi for all i≥ 1. Then, for x ∈X0,

sup
n≥1
|λ̂n|(X)< ∞ =⇒ ∀ f ∈C(Rd) , lim

n→∞
〈λ̂n, f 〉= f (x) .

Conversely, if the Lebesgue constant |λ̂n|(X) is not bounded, there exists a dense
subset V of

(
C(Rd),‖ ·‖

∞

)
such that, for all f ∈V , supn≥1|〈λ̂n, f 〉|=+∞

Note that Proposition 1.6 is a correction of a false claim in [76] (see [67]). Results
about the Lebesgue constant for RKHS interpolation were obtained only recently
by [28]. In the case Φ satisfies

c1(1+‖u‖2
2)
−s ≤ Φ̂(u)≤ c2(1+‖u‖2

2)
−s (u ∈Rd) (1.18)

with s > d/2 and constants 0 < c1 ≤ c2, [28] proves that the Lebesgue constant is
bounded for quasi-uniform designs; that is, when there exists c> 0 such that for all
n≥ 1,

qn ≤ hn ≤ cqn,

where
qn =

1
2

min
1≤i< j≤n

|xi− x j|

is the separation distance of (xn) and

hn = sup
x∈X

min
1≤i≤n

|x− xi|

is the fill distance of (xn).

1.5 Choice of a covariance function

1.5.1 Matérn Gaussian processes

As mentioned above, the rationale for restricting ξ to be a Gaussian process, or
in other words, for choosing a Gaussian prior for f , is that the posterior distribu-
tion of ξ given observational data can be computed with a moderate computational
effort. However, experience suggests that a Gaussian process prior carries a high
amount of information about f , and it is often difficult in practice to elicit such a
prior before any evaluation is made.

For numerical studies, we most often use a Gaussian process with a low-degree
unknown polynomial mean and a Matérn covariance function whose parameters are
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also assumed to be unknown. The Matérn covariance is a general purpose positive-
definite function on Rd , for every d. Recall that the Matérn correlation structure
may be written as

κν(h) =
1

2ν−1Γ (ν)

(
2ν

1/2h
)ν

Kν

(
2ν

1/2h
)

(h ∈R+) (1.19)

where Γ is the Gamma function and Kν is the modified Bessel function of the third
kind [26, 27, 63]. A corresponding anisotropic covariance function may be written
as

k{θ=(σ ,ν ,ρ1, ...,ρd)}(x,y) = σ
2
κν



√√√√ d

∑
i=1

(x[i]− y[i])2

ρ2
i


 (x,y ∈Rd) . (1.20)

The parameter ν > 0 controls regularity of the covariance, since for scale parameters
ρ1 = · · ·= ρd = 1, the Fourier transform ĝ of g : h ∈Rd 7→ kθ (0,h) may be written
up to a multiplicative constant as (Theorem 6.13 in [72])

ĝ(u) ∝ (4ν + |u|2)−ν−d/2 (u ∈Rd) .

Of course, there are other interesting choices for correlations structures: the in-
verse multiquadrics x ∈Rd 7→ (c2 +‖x‖2

2)
−β (with c> 0, β > 0), Wendland’s com-

pactly supported kernels [72]. . . We recommend against considering the Gaussian
covariance function in the context of sequential search algorithms because it may
yield inconsistent estimators; see [67, 77].

To deal with the unknown parameters of the covariance function, we generally
choose a prior distribution for those parameters (see, e.g., [26, 32, 47, 56]) and we
follow one of the two approaches described below.

1.5.2 Standard fully Bayesian approach

To deal with the parameters of the covariance function, we consider the model

ξ :





ξ | β1, . . . , βq,θ ∼ GP
( q

∑
i=1

βi pi, kθ

)
,

β1, . . . , βq ∼ N(0, ∞) ,

θ ∼ π0 .

(1.21)

In geostatistics and spatial statistics, the introduction of a prior for the parameters
of the covariance function is frequently called Bayesian kriging [26, 49, 58]. The
predictive distribution of ξ is generally obtained using conjugate priors (see, e.g.,
[11, 26, 36, 56]) or Monte Carlo sampling techniques (see, e.g., [18, 30, 45, 46, 74]).
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Methods for approximating the posterior distribution of ξ have also been pro-
posed [32, 44].

Under the model (1.21), the SUR sampling criterion (1.4) may be written as

γn(x) = En
(
L(φ(ξ ), φ̂n+1(ξ ))

∣∣ Xn+1 = x
)

= En

{
En
[
L(φ(ξ ), φ̂n+1(ξ ))

∣∣ θ , Xn+1 = x
] ∣∣ Xn+1 = x

}

=
∫

γ̄n(x; θ)dπn(θ) (1.22)

where γ̄n(x; θ)=En
(
L(φ(ξ ), φ̂n+1(ξ ))

∣∣ θ , Xn+1 = x
)

and πn stands for the posterior
distribution of θ . Sampling techniques (Monte Carlo Markov Chains, Sequential
Monte Carlo. . . ) are generally used to approximate the integral with respect to πn
in (1.22) (see, e.g., [10, 25, 50–52] and references therein). The corresponding com-
putational is often significant. It may be useful to obtain a closed-form expression of
the integral with respect to components of θ when possible, using conjugate priors,
as illustrated in the following example.

Example — Let r be a correlation function and assume that m and σ2 are indepen-
dent, with m∼ N(0, ∞) and σ2 following an inverse-gamma distribution IG(a0,b0)
with shape parameter a0 and scale parameter b0. Consider the case of a process ξ

with conditional distribution ξ | m,σ2 ∼ GP(m,σ2r). The prior for σ2 is conju-
gate [8, 9, 21, 36, 58, 73]: the conditional distribution of σ2 given Fn is IG(an,bn),
with {

an = a0 +
n−1

2 ,

bn = b0 +
1
2

(
ξ

n
− m̂n1n

)T
R−1

n

(
ξ

n
− m̂n1n

)
,

where ξ
n
= (ξ (X1), . . . , ξ (Xn))

T, 1n = (1, . . . ,1)T ∈Rn, Rn is the correlation ma-

trix of ξ
n
, and m̂n =

1Tn R−1
n ξ n

1Tn R−1
n 1n

is the weighted least squares estimate of m. Let

ς
2
n (x) =

bn

an

(
1− rn(x)TR−1

n rn(x)+
(1− rn(x)TR−1

n 1n)
2

1Tn R−1
n 1n

)
,

where rn(x) is the correlation vector between ξ (x) and ξ
n
.

Then, for all x ∈X, the posterior distribution of ξ (x) may be written as

ξ (x)− ξ̂n(x)
ςn(x)

|Fn ∼ tηn ,

with tη the Student distribution with η > 0 degrees of freedom and ηn = 2an. In
other words, the predictive distribution at x is a location-scale Student distribution
with ηn degrees of freedom, location parameter ξ̂n(x) and scale parameter ςn(x).

Using ξ as a model for a function f to be optimized, the EI criterion (1.6) has a
closed-form expression, which is a generalization of (1.7) [9]:
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En
(
(ξ (x)−Mn)+

)
= ςn(x)

(
ηn +u2

ηn−1
F ′ηn(u) + uFηn(u)

)
, (1.23)

with u=
(
ξ̂n(x)−Mn

)
/ςn(x) and Fη being the cumulative distribution function of tη .

�

1.5.3 Empirical Bayes approach

Very often however, we use the popular empirical Bayes approach, in which the
prior is estimated from the data inside a family of prior processes {ξθ ;θ ∈Θ} of the
type (1.16) with s = ∞, in contrast to the standard fully Bayesian approach where
the prior is fixed before any data are observed. Regarding SUR-based sequential
search strategies, this means that we are considering a family of Bayesian procedures
indexed by θ , corresponding to sampling criteria γθ ,n : x 7→ En

(
L(φ(ξθ ), φ̂n+1(ξθ ))

∣∣
Xn+1 = x

)
. Then, we choose at each iteration of the sequential strategy a sampling

criterion γ
θ̂n,n

corresponding to a member ξ
θ̂n

in the family of priors that we think
models observed data well. This is often called a plug-in approach.

Note that we can also think of the plug-in approach as an approximate fully
Bayesian method for dealing with covariance parameters: when the posterior distri-
bution πn of θ is concentrated enough around a point estimate θ̂n of θ ,

γn(x) =
∫

γ̄n(x;θ)dπn(θ) ≈ γ̄n(x; θ̂n) = γ
θ̂n,n

(x) .

Most often in practice, we use restricted maximum likelihood (REML) for esti-
mating θ [15, 29, 55, 63]. We prefer using REML estimation over maximum like-
lihood estimation because REML estimation does not require to integrate out the
mean of ξθ to carry out the estimation of θ . Recall that estimating the parameters
of the covariance by REML involves writing the likelihood of some zero-mean dif-
ferences of the observed data ξ

n,θ
= (ξθ (λ

1), . . . ,ξθ (λ
n))T, also called contrasts.

Contrasts are obtained by constructing a n× (n− q) matrix W of rank n− q such
that

PW = 0 ,

with P as in (1.12). (The columns of W are in the null space of P.) Then, for all
i ∈ {1, . . . , n}, ∑

n
j=1 W[i, j]λ

j ∈ Λ̃P⊥ . The contrast vector Z = WTξ
θ ,n
∈Rn−l−1 is

a zero-mean Gaussian random vector with covariance matrix WTKθ W, where Kθ is
the covariance matrix of ξ

θ ,n
with entries kθ (λ

i,λ j). The log-likelihood of contrasts
can be written as

l(z;θ) =−n−q
2

log2π− 1
2

logdet(WTKθ W)− 1
2

zT(WTKθ W)−1z . (1.24)
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To the best of our knowledge, determining the properties of the REML estimator
of the parameters of a covariance is still an open problem—in the setting of infill
asymptotics. We refer the reader to [5] for a comprehensive review of current re-
sults. One important result is that only microergodic parameters ([63], p. 162) of
the covariance function may be estimated consistently [2, 78]. In particular, param-
eters ν , σ and ρ1, . . . , ρd of the Matérn covariance interplay, and literature suggests
that one should not expect to be able to identify all parameters from data. To deal
with this issue, we suggest using a penalized version of REML:

l̃(z;θ) =−n−q
2

log2π− 1
2

logdet(WTKθ W)− 1
2

zT(WTKθ W)−1z− v(θ) ,

where v(θ) = (θ −θ ?)TV−1(θ −θ ?) is a quadratic penalization that constrains θ

in a neighborhood of a parameter θ ? that is deemed plausible by the user.
Eventually, note that using a stationary Matérn Gaussian process as above has the

merit of simplicity although some theoretical questions remain open. This frame-
work has been extended in several directions in the literature: non-Gaussian random
processes [18, 24, . . . ], non-stationary and local models [3, 6, 16, 20, 22, 53, 57, 59,
. . . ], modeling based on ANOVA decompositions and sensitivity analysis [19, 23,
38, 43, 70, . . . ].

1.6 Proofs

1.6.1 Proof of Proposition 1.1

The kriging coefficients ai
λ

, i = 1, . . . ,n, are solutions of a quadratic problem with
linear constraints, which can be written under matrix form as:

{
minaλ∈Rn k(λ ,λ )−2aT

λ
kλ + aT

λ
(K+Kε)aλ ,

Paλ = pλ .

It is well-known that such a problem can be rewritten under the form (1.12) using
the method of Lagrange multipliers which express collinearity of the gradients of
the linear form Paλ and the quadratic form k(λ ,λ )−2aT

λ
kλ + aT

λ
(K+Kε)aλ . �

1.6.2 Proof of Proposition 1.2

Since λ − λ̂n ∈ΛP⊥ . �
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1.6.3 Proof of Proposition 1.3

The solution (aλ ,bλ ) of (1.12) under the model ξ ∼ GP(m,k), where m is assumed
deterministic, can be written as

{
aλ = K−1kλ −K−1PT(PK−1PT)−1(PK−1kλ − pλ ) ,
bλ = (PK−1PT)−1(PK−1kλ − pλ ) .

For βi
i.i.d.∼ N (0,s2), m is a Gaussian process with distribution GP(0,k′) where,

for all λ and µ in Λ ,
k′(λ ,µ) = pT

λ
Σ pµ ,

with Σ = s2Iq standing for the covariance matrix of the random vector (β1, . . . , βq).
Since the mean of ξ s is zero, ξ s | Fn is a Gaussian process with distribution

GP(ξ̂ s
n , ks

n), where ξ̂ s
n and ks

n stand for the kriging predictor and the kriging covari-
ance function from observations ξ s,i = ξ s(λ i), i = 1, . . . , n, such that

ξ̂
s
n(λ ) = En(ξ

s(λ )) (λ ∈Λ)

and
ks

n(λ ,µ) = cov
(

ξ
s(λ )− ξ̂

s
n(λ ), ξ

s(µ)− ξ̂
s
n(µ)

)
(λ ,µ ∈Λ)

Note that ξ̂ s
n(λ ) is also the orthogonal projection of ξ s(λ ) onto span{ξ s,i, i =

1, . . . , n}. Thus,

ξ̂
s
n(λ ) =

n

∑
i=1

as, i
λ

ξ
s,i ,

where the as,i
λ

s satisfy

as
λ
= (as,1

λ
. . . as,n

λ
)T = (K+PT

ΣP)−1(kλ +PT
Σ pλ ) .

Using the Sherman-Morrison-Woodburry formula applied to the term (K+PTΣP)−1,
rewrite as

λ
as

as
λ
=K−1kλ −K−1PT

·
[
(Σ−1 +PK−1PT)−1PK−1kλ −

(
Iq− (Σ−1 +PK−1PT)−1PK−1PT

)
Σ pλ

]
.

Then, for s large enough,
(
Iq− (Σ−1 + PK−1PT)−1PK−1PT

)
Σ pλ

=

(
Iq−

(
Iq +(PK−1PT)−1

Σ
−1
)−1

)
Σ pλ

= (PK−1PT)−1 pλ − (PK−1PT)−1
Σ
−1(PK−1PT)−1 pλ +o(s−1) ,
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since
(
Iq + (PK−1PT)−1

Σ
−1)−1

= Iq− (PK−1PT)−1
Σ
−1 +(PK−1PT)−1

Σ
−1(PK−1PT)−1

Σ
−1 +o(s−2)

(Neumann series).
Therefore, aλ = (a1

λ
, . . . ,an

λ
)T = lims→∞ as

λ
, and ξ̂ s

n(λ )
p.s.−→ ξ̃ s

n(λ ) = ∑i ai
λ

ξ i,s.
Moreover, it can be easily shown that

as
λ

TPT = pT
λ
+
(
(PK−1kλ )

T− pT
λ

)
(PK−1PT)−1

Σ
−1 +o(s−1) .

Thus, as s→ ∞, the kriging covariance function ks
n can be written as

ks
n(λ ,µ) = k(λ ,µ)− as

λ

Tkµ +(pT
λ
− as

λ

TPT)Σ pµ

= k(λ ,µ)− aT
λ

kµ −bT
λ

pµ +o(1)
= kn(λ ,µ)+o(1) .

�

1.6.4 Proof of Proposition 1.4

Since λ − λ̂n ∈ΛP⊥ ,

‖λ − λ̂n‖2
Λ

= k(λ − λ̂n,λ − λ̂n) = ‖ξ (λ )−ξ (λ̂n)‖2
L2 = ‖ξ (λ )− ξ̂n(λ )‖2

L2

= sn(λ )
2 .

Therefore, the convergence λ̂n → λ holds strongly in Λ if and only if the
kriging predictor is L2(Ω ,A ,P)-consistent at λ ; that is, if the kriging variance
sn(λ )

2 converges to zero. Since strong convergence implies weak convergence, if
limn→∞ sn(λ )

2 = 0, then for all functions in the dual R of Λ

lim
n→∞
〈λ̂n, f 〉= 〈λ , f 〉.

�

1.6.5 Proof of Proposition 1.5

Since ξ s defined by (1.16) is a zero-mean process, ξ̂ s
n(λ ) = E(ξ s(λ ) |Fn) a.s.

Thus,
(
E(ξ s(λ ) |Fn)

)
n is an L2-bounded martingale sequence, and we know that
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(
ξ̂ s

n(λ )
)

n converges a.s. and in L2-norm to the same limit (see, e.g., [75]). Therefore,

ks
n(λ ,λ )→ 0 =⇒ 〈λ̂ s

n ,ξ
s〉 L2, a.s.−→ 〈λ ,ξ s〉. �

1.6.6 Proof of Proposition 1.6

Recall that the Sobolev space Hs(Rd) can be defined as the class of elements f ∈
L2(Rd) such that u 7→ uα f̂ (u) ∈ L2(Rd) for all multi-indices α satisfying |α| ≤ s,
where f̂ stands for the Fourier transform of f . Hs(Rd) is endowed with the inner
product

( f , g)s =
∫
(1+‖u‖2

2)
s f̂ (u)ĝ(u)du .

Recall also that the space C∞
0 (R

d) of C∞-functions with compact support on Rd

is dense in Hs for every s (see, e.g., [1], Theorem 3.18). C∞
0 (R

d) is also dense in
the class C(Rd) of continuous functions for the topology of uniform convergence
on compact sets (see, e.g., [1], Lemma 2.18).

We have the following properties:

(i) For all f ∈R0, we have (see, e.g., [65])

‖ f‖2
R0

=
1

(2π)d

∫

Rd

∣∣ f̃ (u)
∣∣2 Φ̂(u)−1 du .

(ii) Since Φ̂−1 has at most polynomial growth, there exists s0 such that for all
f ∈R0,

‖ f‖2
R0

=
1

(2π)d

∫

Rd

∣∣ f̃ (u)
∣∣2 Φ̂(u)−1du≤ C

(2π)d

∫

Rd

∣∣ f̃ (u)
∣∣2 (1+‖u‖2

2
)s0 du<+∞ .

Thus, Hs0(Rd) ↪→R0.
(iii) R0 is continuously embedded in R, due to (1.17).

Using (ii)-(iii) gives C∞
0 (R

d)⊂R. Thus,

x ∈X0 =⇒ ∀ f ∈C∞
0 (R

d), lim
n→∞
〈λ̂n, f 〉= f (x) . (1.25)

Let f ∈C(Rd), and let (φk) be a sequence of C∞
0 (R

d)-functions that converges
to f uniformly onX0. Then,

∣∣〈λ̂n, f 〉− f (x)
∣∣ ≤

∣∣〈λ̂n, f −φk〉
∣∣+
∣∣〈λ̂n−δx,φk〉

∣∣+
∣∣φk(x)− f (x)

∣∣

≤
(
1+ |λ̂n|(X0)

)
sup
X0

∣∣ f −φk
∣∣ +

∣∣〈λ̂n−δx,φk〉
∣∣ .

If we assume that the Lebesgue constant is upper-bounded by K > 0, then
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limsup
n→∞

∣∣〈λ̂n, f 〉− f (x)
∣∣ ≤

(
1+K

)
sup
X0

∣∣ f −φk
∣∣ −−−→

k→∞
0 .

Conversely, if the Lebesgue constant is not bounded, there exists a dense subset V
of
(
C(Rd),‖ ·‖

∞

)
such that, for all f ∈V , supn≥1|〈λ̂n, f 〉|=+∞ (Banach-Steinhaus

theorem; see, e.g., Section 5.8 of [60]).
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Chapter 2
Sequential search strategies

2.1 Overview

This chapter presents a selection of articles dealing with SUR/one-step look-ahead
strategies that I consider important and for which I had a significant contribution.
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1 Introduction

Let F be a set of real-valued functions on a set X and let S : F → G be an arbitrary mapping. We
consider the problem of making inference about S(f), with f ∈ F unknown, from a finite set of point-
wise evaluations of f . We are mainly interested in the problems of approximation and optimization.
Formally, a deterministic algorithm to infer a quantity of interest S(f) from a set of n evaluations of
f is a pair

(
Xn , Ŝn

)
consisting of a deterministic search strategy

Xn : f 7→ Xn(f) = (X1(f), X2(f), . . . , Xn(f)) ∈ Xn ,

and a mapping Ŝn : F → G, such that:

a) X1(f) = x1, for some arbitrary x1 ∈ X

b) For all 1 ≤ i < n, Xi+1(f) depends measurably on Ii(f), where Ii = ((X1, Z1) , . . . , (Xi, Zi)), and
Zi(f) = f(Xi(f)), 1 ≤ i ≤ n.

c) There exists a measurable function φn such that Ŝn = φn ◦ In.

The algorithm
(
Xn , Ŝn

)
describes a sequence of decisions, made from an increasing amount of infor-

mation: for each i = 1, . . . , n − 1, the algorithm uses information Ii(f) to choose the next evaluation
point Xi+1(f). The estimator Ŝn(f) of S(f) is the terminal decision. We shall denote by An the class
of all strategies Xn that query sequentially n evaluations of f and also define the subclass A0

n ⊂ An

of non-adaptive strategies, that is, the class of all strategies such that the Xis do not depend on f .
A classical approach to study the performance of a sequential strategy is to consider the worst

error of estimation on some class of functions F

ǫworstcase(Xn) := sup
f∈F

L(S(f), Ŝn(f)) ,

where L is a loss function. There are many results dealing with the problems of function approximation
and optimization in the worst case setting. Two noticeable results concern convex and symmetric
classes of bounded functions. For such classes, from a worst-case point of view, any strategy will
behave similarly for the problem of global optimization and that of function approximation. Moreover
the use of adaptive methods can not be justified by a worst case analysis (see, e.g., Novak, 1988,
Propositions 1.3.2 and 1.3.3). These results, combined with the fact that most optimization algorithms
are adaptive, lead to think that the worst-case setting may not be the most appropriate framework
to assess the performance of a search algorithm in practice. Indeed, it would be also important, in
practice, to know whether the loss L(S(f), Ŝn(f)) is close to, or on the contrary much smaller than
ǫworstcase, for “typical” functions f ∈ F not corresponding to worst cases. To address this question, a
classical approach is to adopt a Bayesian point of view.

In this paper, we consider methods where f is seen as a sample path of a real-valued random
process ξ defined on some probability space (Ω, B, P0) with parameter in X. Then, Xn(ξ) is a random
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sequence in X, with the property that Xn+1(ξ) is measurable with respect to the σ-algebra generated
by ξ(X1(ξ)), . . . , ξ(Xn(ξ)). From a Bayesian decision-theoretic point of view, the random process
represents prior knowledge about f and makes it possible to infer a quantity of interest before eval-
uating the function. This point of view has been widely explored in the domain of optimization and
computer experiments. Under this setting, the performance of a given strategy Xn can be assessed by
studying the average loss

ǫaverage(Xn) := E L(S(ξ), Ŝn(ξ)) .

How much does adaption help on the average, and is it possible to derive rates of decay for errors in
average? In this article, we shall make a brief review of results concerning average error bounds of
Bayesian search methods based on a random process prior.

This article has three parts. The precise assumptions about ξ are given in Section 2. Section 3 deals
with the problem of function approximation, while Section 4 deals with the problem of optimization.

2 Framework

Let ξ be a random process defined on a probability space (Ω, B, P0), with parameter x ∈ Rd. Assume
moreover that ξ has a zero mean and a continuous covariance function. The kriging predictor of ξ(x),
based on the observations ξ(Xi(ξ)), i = 1, . . . , n, is the orthogonal projection

(1) ξ̂n(x) :=
n∑

i=1
λi(x; Xn(ξ)) ξ(Xi(ξ))

of ξ(x) onto span{ξ(Xi(ξ)), i = 1, . . . , n} in L2(Ω, B, P0). At step n ≥ 1, given evaluation points Xn(ξ),
the kriging coefficients λi(x; Xn(ξ)) can be obtained by solving a system of linear equations (see, e.g.,
Chilès and Delfiner, 1999). Note that for any sample path f = ξ(ω, · ), ω ∈ Ω, the value ξ̂n(ω, x) is a
function of In(f) only.

The mean-square error (MSE) of estimation at a fixed point x ∈ Rd will be denoted by

σ2
n(x) := E{(ξ(x) − ξ̂(x; Xn(ξ)))2} .

It is generally not possible to compute σ2
n(x) when Xn is an adaptive strategy.

Regularity assumptions. Assume that there exists Φ : Rd → R such that k(x, y) = Φ(x − y), which
is in L2(Rd) and has a Fourier transform

Φ̃(u) = (2π)−d/2
∫

Rd
Φ(x)ei(x,u)dx

that satisfies

(2) c1(1 + ‖u‖2
2)−s ≤ Φ̃(u) ≤ c2(1 + ‖u‖2

2)−s , u ∈ Rd ,

with s > d/2 and constants 0 < c1 ≤ c2. Note that the Matérn covariance with regularity parameter ν

(see, e.g., Stein, 1999) satisfies such a regularity assumption, with s = ν + d/2. Tensor-product
covariance functions, however, never satisfy such a condition (see Ritter, 2000, chapter 7, for some
results in this case).

Let H be the RKHS of functions generated by k. Denote by ( · , · )H the inner product of H, and
by ‖ · ‖H the corresponding norm. It is well known (see, e.g. Wendland, 2005) that H is the Sobolev
space

W s
2 (Rd) =

{
f ∈ L2(Rd); f̃( · )(1 + ‖ · ‖2

2)s/2 ∈ L2(Rd)
}

due to the following result.
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Proposition 1. H ⊂ L2(Rd) and ∀f ∈ H,

‖f‖2
H =

∫

Rd
|f̃(u)|2 Φ̃(u)−1 du .

‖f‖2
H is equivalent to the Sobolev norm

‖f‖2
W s

2 (Rd) = ‖f̃( · )
(
1 + ‖ · ‖2

2
)s/2

‖L2(Rd)

3 Approximation

We first consider the problem of approximation, with the point of view exposed in Section 2. Using
the notations introduced above, the problem of approximation corresponds to considering operators
S and Ŝn defined by S(ξ) := ξ |X and Ŝn(ξ) := ξ̂n |X , with X ⊂ Rd a compact domain with non-
empty interior. For the design of computer experiments, classical criteria for assessing the quality of
a strategy Xn ∈ An for the approximation problem are the maximum mean-square error (MMSE)

ǫmmse(Xn) := sup
x∈X

E
((

ξ(x) − ξ̂n(x)
)2) = sup

x∈X
σ2

n(x)

and the integrated mean-square error (IMSE)

ǫimse(Xn) := E
(
‖ξ − ξ̂n‖2

L2(X,µ)

)
=
∫

X
σn(x)2 µ(dx)

(see, e.g., Sacks et al., 1989; Currin et al., 1991; Welch et al., 1992; Santner et al., 2003). These criteria
correspond to G-optimality and I-optimality in the theory of (parametric) optimal design.

As mentioned earlier, computing σ2
n(x) is usually not possible in the case of adaptive sampling

strategies, even for a Gaussian process. From a theoretical point of view, however, it is important to
know if adaptive strategies can improve upon non-adaptive strategies for the approximation problem.

Proposition 2. Assume that ξ is a Gaussian process. Then adaptivity does not help for the approxi-
mation problem, with respect to either the MMSE or the IMSE criterion.

Proof. For any adaptive strategy Xn , it can be proved by induction (using the fact that Xi+1 only
depends on Ii) that, for each x ∈ X,

(3) σ2
n(x) = E

(
σ2(x; X1(ξ), . . . , Xn(ξ))

)
,

where σ2(x; x1, . . . , xn), x1, . . . , xn ∈ X, denotes the MSE at x of the non-adaptive strategy that selects
the points x1, . . . , xn. Therefore, for each x ∈ X,

σ2
n(x) ≥ min

x1, ..., xn ∈ X
σ2(x; x1, . . . , xn) ,

which proves the claim in the case of the MMSE criterion. Similarly, integrating (3) yields
∫

X
σ2

n dµ = E
{∫

X
σ2(x; Xn(ξ)) µ(dx)

}

≥ min
x1, ..., xn ∈ X

∫

X
σ2(x; x1, . . . , xn) µ(dx) ,

which proves the claim in the case of the IMSE criterion.
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In the case of the IMSE criterion, Proposition 2 can be seen as a special case of a general result
about linear problems (see, e.g., Ritter, 2000, Chapter 7). The following proposition establishes a
connection between the MMSE criterion and the worst-case L∞-error of approximation in the unit
ball of H, which will be useful to establish the optimal rate for IMSE- and MMSE-optimal designs.

Proposition 3. Let H1 denote the unit ball of H. For any non-adaptive strategy Xn ∈ A0
n, the MMSE

criterion equals the squared worst-case L∞-error of approximation in H1 using Ŝn:

ǫmmse(Xn) =
(

sup
f∈H1

‖S(f) − Ŝn(f)‖L∞(X)

)2

.

Proof. Let Xn ∈ A0
n be a non-adaptive strategy such that Xi(ξ) = xi, i = 1, . . . , n, for some arbi-

trary xis in X. Denote by λi(x) = λi(x; Xn(ξ)) the corresponding kriging coefficients (which do not
depend on ξ). Using the fact that the mapping ξ(x) 7→ k(x, · ) extends linearly to an isometry from
span{ξ(y), y ∈ Rd} to H, we have for all x ∈ X

σn(x) =
∥∥ξ(x) − ξ̂n(x)

∥∥
L2(Ω,B,P0)

=
∥∥k(x, · ) −

∑
i
λi(x) k(xi, · )

∥∥
H

= sup
f∈H1

(
f , k(x, · ) −

∑
i
λi(x) k(xi, · )

)
H

.

= sup
f∈H1

(f − Ŝnf)(x) .

Thus,

sup
x∈X

σn(x) = sup
f∈H1

sup
x∈X

(f − Ŝnf)(x) = sup
f∈H1

∥∥f − Ŝnf
∥∥

L∞(X) .

The following proposition summarizes known results concerning the optimal rate of decay in the
class of non-adaptive strategies for both the IMSE criterion and the MMSE criterion. Note that, by
Proposition 2, this rate is also the optimal rate of decay in the class of all adaptive strategies if ξ is a
Gaussian process.

Proposition 4. Assume that ξ has a continuous covariance function satisfying the regularity assump-
tions of Section 2, and let ν = s − d/2 > 0. Then there exists C1 > 0 such that, for any Xn ∈ A0

n,

(4) C1 n−2ν/d ≤ ǫimse(Xn) ≤ µ(X) ǫmmse(Xn)

Moreover, if X has a Lipschitz boundary and satisfies an interior cone condition, then there exists
C2 > 0 such that

(5) inf
Xn∈A0

n

ǫimse(Xn) ≤ µ(X) inf
Xn∈A0

n

ǫmmse(Xn) ≤ C2 n−2ν/d .

The optimal rate of decay is therefore n−2ν/d for both criteria.

Proof. It is proved in (Ritter, 2000, Chapter 7, Proposition 8) that there exists C1 > 0 such that
ǫimse(Xn) ≥ C1 n−2ν/d in the case where X = [0; 1]d. This readily proves the lower bound (4) since
any X with non-empty interior contains an hypercube on which Ritter’s result holds.

If X is a bounded Lipschitz domain satisfying an interior cone condition, then (Narcowich et al.,
2005, Proposition 3.2) there exists c1 > 0 such that ‖S(f) − Ŝn(f)‖L∞(X) ≤ c1h

s−d/2
n ‖S(f)‖W s

2 (X) for
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all f ∈ H, where hn = supx∈X mini∈{1,...,n}‖x−Xi(f)‖2 is the fill distance of the non-adaptive strategy
Xn in X. Therefore

‖S(f) − Ŝn(f)‖L∞(X) ≤ c1hν
n ‖S(f)‖W s

2 (X) ≤ c1hν
n ‖f‖W s

2 (Rd) ≤ c2hν
n ‖f‖H

for some c2 > 0, using the equivalence of the Sobolev W s
2 (Rd) norm with the RKHS norm (see

Section 2). Considering any non-adaptive space-filling strategy Xn with a fill distance hn = O(n−1/d)
yields

inf
Xn∈A0

n

sup
f∈H1

∥∥f − Ŝnf
∥∥

L∞(X) ≤ c3 n−ν/d

for some c3 > 0 and the upper-bound (5) then follows from Proposition 3.

Finding a non-adaptive MMSE-optimal design is a difficult non-convex optimization problem in
nd dimensions. Instead of addressing directly such a high-dimensional global optimization problem,
we can use the classical sequential non-adaptive greedy strategy Xn( · ) = (x1, . . . , xn) ∈ Xn defined
by

(6) xi+1 = argmax
x∈X

σ2 (x; x1, . . . , xi) , 1 ≤ i < n .

Of course, the strategy is suboptimal but it only involves simpler optimization problems in d dimensions
and has the advantage that it can be stopped at any time. Following Binev et al. (2010), it can be
established that this greedy strategy is rate optimal.

Proposition 5. Assume that ξ has a continuous covariance function satisfying the regularity as-
sumptions of Section 2, and let ν = s − d/2 > 0. Let Xn be the sequential strategy defined by (6).
Then,

ǫmmse(Xn) = O(n2ν/d) .

Proof. Theorem 3.1 in Binev et al. (2010), applied to the compact subset {ξ(x), x ∈ X} in L2(Ω, B, P0),
states that the greedy algorithm (6) preserves polynomial rates of decay. The result follows from
Proposition 4.

4 Optimization

In this section, we consider the problem of global optimization on a compact domain X ⊂ Rd,
which corresponds formally to operators S and Ŝn defined by S(ξ) = supx∈X ξ(x) and Ŝn(ξ) =
maxi∈1,...,n ξ(Xi(ξ)).

In a Bayesian setting, a classical criterion to assess the performance of an optimization procedure
is the average error

ǫopt(Xn) := E(S(ξ) − Ŝn(ξ)) .

Although it may be not possible in the context of this article to make a comprehensive review of
known results concerning the average case in the Gaussian case, it can be safely said however that
such results are scarce and specific.

In fact, most available results about the average-case error concern the one-dimensional Wiener
process ξ on the interval [0, 1]. Under this setting, Ritter (1990) shows that the average error of
the best non-adaptive optimization procedure decreases at rate n−1/2 (extensions of this result for
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non-adaptive algorithms and the r-fold Wiener measure can be found in Wasilkowski, 1992). Under
the same assumptions for ξ, Calvin (1997) derives the exact limiting distribution of the error of a
particular adaptive algorithm, which suggests that adaptivity does yield a better average error for the
optimization problem—the result is that, for any 0 < δ < 1, it is possible to find an adaptive strategy
such that n(1−δ)(S(ξ) − Ŝn(ξ)) converges in distribution.

A theoretical result concerning the optimal average-error criterion for less restrictive Gaussian pri-
ors is also available. If the covariance of a Gaussian process ξ is α-Hölder continuous, then Grünewälder
et al. (2010) show that a space filling strategy Xn achieves

(7) ǫopt(Xn) = O(n−α/(2d)(log n)1/2) .

Thus, under the assumptions of Section 2, for a Matérn covariance with regularity parameter ν, the
rate of the optimal average error of estimation of the optimum is less than n−ν/d(log n)1/2 (since a
Matérn covariance is α-Hölder continuous with α = 2ν). Note that this bound is not sharp in general
since the optimal non-adaptive rate is n−1/2 for the Brownian motion on [0; 1], the covariance function
of which is α-Hölder continuous with α = 1.

In view of these results, we can safely say that characterizing the average behavior of adaptive
sequential optimization algorithms is still an open (and apparently difficult) problem. At present, the
only way to draw useful conclusions about the interest of a particular optimization algorithm is to
resort to numerical simulations.

In the following paragraphs, we shall illustrate the kind of results that can be expected from such
empirical studies. Benassi et al. (2011) provide an empirical comparison between four optimization
algorithms. The first algorithm is a non-adaptive space-filling strategy. The second algorithm as-
sumes a Gaussian prior about the objective function and use the expected improvement (EI) sampling
criterion (Mockus et al., 1978) for choosing the evaluation points. In practice however, it is often
difficult to choose a Gaussian prior before any evaluation is made. As a result, the covariance func-
tion of ξ is usually chosen in some parametric class of positive definite functions, the value of the
parameters assumed to be unknown. The third algorithm compared in Benassi et al. (2011) is a fully
Bayesian algorithm (FBA), which is used to deal with uncertain parameters of the covariance of ξ.
The fourth strategy is the popular efficient global optimization (EGO) algorithm introduced by Jones
et al. (1998), which assumes a Gaussian process prior and takes a plug-in approach to deal with the
uncertain parameters of the covariance.

In order to compare the four optimization strategies, Benassi et al. (2011) build several testbeds
Tk, k = 1, 2, . . ., of functions fk,l, l = 1, . . . , L, corresponding to sample paths of a Gaussian process,
with zero-mean and a Matérn covariance function, simulated on a set of q = 600 points in [0, 1]d
generated using a Latin hypercube sampling (LHS), with different values for d and for the parameters
of the covariance. Here, we present the results obtained for two testbeds in dimension 1 and 4 (the
actual parameters are provided in Table 1).

Figures 1 and 2 show the average errors and also the distributions of the error of estimation of the
global optimum. These empirical results show that the EI strategy performs much better in average
than the space-filling strategy. Large errors are also less frequent with the EI strategy. Moreover,
we can also assess the cost of estimating the parameters of the covariance. EGO and FBA have very
similar average performances. In fact, both of them perform almost as well, in this experiments,
as the EI strategy, where the true parameters are assumed to be known. Comparing the tails of
complementary cumulative distribution function of the error Sf − Ŝnf shows, however, that using a
fully Bayesian approach brings a reduction of the occurrence of large errors with respect to the EGO
algorithm. In other words, the fully Bayesian approach appears to be statistically more robust than
the plug-in approach, while retaining the same average performance. Empirical studies such as the
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Parameter \ Testbed T1 T2
Dimension d 1 4
Number of sample paths L 20000 20000
Variance σ2 1.0 1.0
Regularity ν 2.5 2.5
Scale β = (β1, . . . , βd) 0.1 (0.7, 0.7, 0.7, 0.7)

Table 1: Parameters used for building the testbeds of Gaussian-process sample-paths. The Gaussian process has a
zero-mean and a isotropic Matérn covariance function k[ν,σ2,ρ] : (x, y) ∈ Rd × Rd 7→ σ2κν(‖x − y‖/ρ) with κν(h) =

1
2ν−1Γ(ν)

(
2ν1/2h

)ν Kν

(
2ν1/2h

)
, h ∈ R, where Γ is the Gamma function, Kν is the modified Bessel function of the second

kind, and ν, σ2 ρ are strictly positive scalar parameters (see Stein, 1999).

one presented here are therefore very useful from a practical point of view, since they make it possible
to obtain fine and sound performance assessments of any strategy with a reasonable computational
cost.
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Figure 1: Average results and error distributions for testbed T1, for FBA (solid black line), EGO (dashed black line),
the EI with the parameters used to generate sample paths (solid gray line), the space-filling strategy (dashed gray line).
More precisely, (a) represents the average approximation error as a function of the number of evaluation points. In (b)
and (c), F (x) stands for the cumulative distribution function of the approximation error. We plot 1−F (x) in logarithmic
scale in order to analyze the behavior of the tail of the distribution (big errors with small probabilities of occurrence).
Small values for 1 − F (x) mean better results.
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(c) Distribution of errors at iteration 34

Figure 2: Average results and distribution of errors for testbed T2. See Figure 1 for details.
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64 2 Sequential search strategies

2.3 Sequential design of computer experiments for the
estimation of a probability of failure

This contribution was published in Statistics and Computing (Springer) in 2012. It
is an extension of a work initiated with Miguel Piera-Martinez (PhD student, 2004–
2008), and continued with my colleague Julien Bect with whom I have supervised
the PhD preparation of Ling Li (2009–2012). For writing the article, we also collab-
orated with David Ginsbourger and Victor Picheny.



Stat Comput (2012) 22:773–793
DOI 10.1007/s11222-011-9241-4

Sequential design of computer experiments for the estimation
of a probability of failure

Julien Bect · David Ginsbourger · Ling Li ·
Victor Picheny · Emmanuel Vazquez

Received: 8 September 2010 / Accepted: 22 February 2011 / Published online: 21 April 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper deals with the problem of estimating
the volume of the excursion set of a function f : Rd → R
above a given threshold, under a probability measure on Rd

that is assumed to be known. In the industrial world, this cor-
responds to the problem of estimating a probability of failure
of a system. When only an expensive-to-simulate model of
the system is available, the budget for simulations is usually
severely limited and therefore classical Monte Carlo meth-
ods ought to be avoided. One of the main contributions of
this article is to derive SUR (stepwise uncertainty reduction)
strategies from a Bayesian formulation of the problem of es-
timating a probability of failure. These sequential strategies
use a Gaussian process model of f and aim at performing
evaluations of f as efficiently as possible to infer the value
of the probability of failure. We compare these strategies to
other strategies also based on a Gaussian process model for
estimating a probability of failure.
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1 Introduction

The design of a system or a technological product has to take
into account the fact that some design parameters are subject
to unknown variations that may affect the reliability of the
system. In particular, it is important to estimate the proba-
bility of the system to work under abnormal or dangerous
operating conditions due to random dispersions of its char-
acteristic parameters. The probability of failure of a system
is usually expressed as the probability of the excursion set of
a function above a fixed threshold. More precisely, let f be
a measurable real function defined over a probability space
(X,B(X),PX), with X ⊆ Rd , and let u ∈ R be a threshold.
The problem to be considered in this paper is the estimation
of the volume, under PX, of the excursion set

� := {x ∈ X : f (x) > u} (1)

of the function f above the level u. In the context of ro-
bust design, the volume α := PX(�) can be viewed as the
probability of failure of a system: the probability PX models
the uncertainty on the input vector x ∈ X of the system—
the components of which are sometimes called design vari-
ables or factors—and f is some deterministic performance
function derived from the outputs of a deterministic model
of the system.1 The evaluation of the outputs of the model

1Stochastic simulators are also of considerable practical interest, but
raise specific modeling and computational issues that will not be con-
sidered in this paper.
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for a given set of input factors may involve complex and
time-consuming computer simulations, which turns f into
an expensive-to-evaluate function. Therefore, the estimation
of α must be carried out with a restricted number of evalua-
tions of f , generally excluding the estimation of the proba-
bility of excursion by a Monte Carlo approach. Indeed, con-
sider the empirical estimator

αm := 1

m

m∑

i=1

1{f (Xi)>u}, (2)

where the Xis are independent random variables with dis-
tribution PX. According to the strong law of large num-
bers, the estimator αm converges to α almost surely when
m increases. Moreover, it is an unbiased estimator of α, i.e.
E(αm) = α. Its mean square error is

E
(
(αm − α)2)= 1

m
α
(
1 − α

)
.

If the probability of failure α is small, then the standard de-
viation of αm is approximately

√
α/m. To achieve a given

standard deviation δα thus requires approximately 1/(δ2α)

evaluations, which can be prohibitively high if α is small.
By way of illustration, if α = 2 × 10−3 and δ = 0.1, we
obtain m = 50000. If one evaluation of f takes, say, one
minute, then the entire estimation procedure will take about
35 days to complete. Of course, a host of refined random
sampling methods have been proposed to improve over the
basic Monte Carlo convergence rate; for instance, meth-
ods based on importance sampling with cross-entropy (Ru-
binstein and Kroese 2004), subset sampling (Au and Beck
2001) or line sampling (Pradlwarter et al. 2007). They will
not be considered here for the sake of brevity and because
the required number of function evaluations is still very
high.

Until recently, all the methods that do not require a
large number of evaluations of f were based on the use
of parametric approximations for either the function f it-
self or the boundary ∂� of �. The so-called response sur-
face method falls in the first category (see, e.g., Bucher
and Bourgund 1990; Rajashekhar and Ellingwood 1993, and
references therein). The most popular approaches in the
second category are the first- and second-order reliability
method (FORM and SORM), which are based on a linear
or quadratic approximation of ∂� around the most probable
failure point (see, e.g., Bjerager 1990). In all these methods,
the accuracy of the estimator depends on the actual shape
of either f or ∂� and its resemblance to the approximant:
they do not provide statistically consistent estimators of the
probability of failure.

This paper focuses on sequential sampling strategies
based on Gaussian processes and kriging, which can be seen
as a nonparametric approximation method. Several strate-
gies of this kind have been proposed recently by Ranjan
et al. (2008), Bichon et al. (2008), Picheny et al. (2010) and

Echard et al. (2010a, 2010b). The idea is that the Gaussian
process model, which captures prior knowledge about the
unknown function f , makes it possible to assess the un-
certainty about the position of � given a set of evaluation
results. This line of research has its roots in the field of de-
sign and analysis of computer experiments (see, e.g., Sacks
et al. 1989; Currin et al. 1991; Welch et al. 1992; Oakley and
O’Hagan, 2001, 2004; Oakley 2004; Bayarri et al. 2007).
More specifically, kriging-based sequential strategies for the
estimation of a probability of failure are closely related to
the field of Bayesian global optimization (Mockus et al.
1978; Mockus 1989; Jones et al. 1998; Villemonteix 2008;
Villemonteix et al. 2009; Ginsbourger 2009).

The contribution of this paper is twofold. First, we intro-
duce a Bayesian decision-theoretic framework from which
the theoretical form of an optimal strategy for the estima-
tion of a probability of failure can be derived. One-step
lookahead sub-optimal strategies are then proposed,2 which
are suitable for numerical evaluation and implementation on
computers. These strategies will be called SUR (stepwise
uncertainty reduction) strategies in reference to the work of
D. Geman and its collaborators (see, e.g. Fleuret and Geman
1999). Second, we provide a review in a unified framework
of all the kriging-based strategies and compare them numer-
ically with the SUR strategies proposed in this paper.

The outline of the paper is as follows. Section 2 intro-
duces the Bayesian framework and recalls the basics of dy-
namic programming and Gaussian processes. Section 3 in-
troduces SUR strategies, from the decision-theoretic under-
pinnings, down to the implementation level. Section 4 pro-
vides a review of other kriging-based strategies proposed in
the literature. Section 5 provides some illustrations and re-
ports an empirical comparison of these sampling criteria. Fi-
nally, Section 6 presents conclusions and offers perspectives
for future work.

2 Bayesian decision-theoretic framework

2.1 Bayes risk and sequential strategies

Let f be a continuous function. We shall assume that f

corresponds to a computer program whose output is not
a closed-form expression of the inputs. Our objective is to
obtain a numerical approximation of the probability of fail-
ure

α(f ) = PX{x ∈ X : f (x) > u}
=
∫

X
1f >u dPX, (3)

2Preliminary accounts of this work have been presented in Vazquez
and Piera-Martinez (2007) and Vazquez and Bect (2009).
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where 1f >u stands for the indicator function of the ex-
cursion set �, such that for any x ∈ X, 1f >u(x) equals
one if x ∈ � and zero otherwise. The approximation of
α(f ) has to be built from a set of computer experiments,
where an experiment simply consists in choosing an x ∈
X and computing the value of f at x. The result of a
pointwise evaluation of f carries information about f and
quantities depending on f and, in particular, about 1f >u

and α(f ). In the context of expensive computer experi-
ments, we shall also suppose that the number of evalu-
ations is limited. Thus, the estimation of α(f ) must be
carried out using a fixed number, say N , of evaluations
of f .

A sequential non-randomized algorithm to estimate α(f )

with a budget of N evaluations is a pair (XN , α̂N),

XN : f �→ XN (f ) = (X1(f ),X2(f ), . . . ,XN(f )) ∈ XN,

α̂N : f �→ α̂N (f ) ∈ R+,

with the following properties:

(a) There exists x1 ∈ X such that X1(f ) = x1, i.e. X1 does
not depend on f .

(b) Let Zn(f ) = f (Xn(f )), 1 ≤ n ≤ N . For all 1 ≤ n < N ,
Xn+1(f ) depends measurably3 on In(f ), where In =
((X1,Z1), . . . , (Xn,Zn)).

(c) α̂N (f ) depends measurably on IN(f ).

The mapping XN will be referred to as a strategy, or pol-
icy, or design of experiments, and α̂N will be called an
estimator. The algorithm (XN , α̂N ) describes a sequence
of decisions, made from an increasing amount of informa-
tion: X1(f ) = x1 is chosen prior to any evaluation; for each
n = 1, . . . ,N − 1, the algorithm uses information In(f ) to
choose the next evaluation point Xn+1(f ); the estimation
α̂N (f ) of α(f ) is the terminal decision. In some applica-
tions, the class of sequential algorithms must be further re-
stricted: for instance, when K computer simulations can be
run in parallel, algorithms that query batches of K evalua-
tions at a time may be preferred (see, e.g. Ginsbourger et al.
2010). In this paper no such restriction is imposed.

The choice of the estimator α̂N will be addressed in
Sect. 2.4: for now, we simply assume that an estimator
has been chosen, and focus on the problem of finding a
good strategy XN ; that is, one that will produce a good
final approximation α̂N (f ) of α(f ). Let AN be the class
of all strategies XN that query sequentially N evaluations
of f . Given a loss function L : R × R → R, we define
the error of approximation of a strategy XN ∈ AN on f

as ε(XN ,f ) = L(̂αN(f ),α(f )). In this paper, we shall

3I.e., there is a measurable map ϕn : (X × R)n → X such that Xn+1 =
ϕn ◦ In.

consider the quadratic loss function, so that ε(XN ,f ) =
(̂αN(f ) − α(f ))2.

We adopt a Bayesian approach to this decision problem:
the unknown function f is considered as a sample path of
a real-valued random process ξ defined on some probability
space (	,B,P0) with parameter in x ∈ X, and a good strat-
egy is a strategy that achieves, or gets close to, the Bayes
risk

rB := inf
XN ∈AN

E0(ε(XN , ξ)),

where E0 denotes the expectation with respect to P0. From a
subjective Bayesian point of view, the stochastic model ξ is
a representation of our uncertain initial knowledge about f .
From a more pragmatic perspective, the prior distribution
can be seen as a tool to define a notion of a good strat-
egy in an average sense. Another interesting route, not fol-
lowed in this paper, would have been to consider the mini-
max risk infXN ∈AN

maxf ε(XN ,f ) over some class of func-
tions.

Notation From now on, we shall consider the stochastic
model ξ instead of the deterministic function f and, for
abbreviation, the explicit dependence on ξ will be dropped
when there is no risk of confusion; e.g., α̂N will denote the
random variable α̂N (ξ), Xn will denote the random vari-
able Xn(ξ), etc. We will use the notations Fn, Pn and En to
denote respectively the σ -algebra generated by In, the con-
ditional distribution P0( · | Fn) and the conditional expec-
tation E0( · | Fn). Note that the dependence of Xn+1 on In

can be rephrased by saying that Xn+1 is Fn-measurable.
Recall that En(Z) is Fn-measurable, and thus can be seen
as a measurable function of In, for any random vari-
able Z.

2.2 Optimal and k-step lookahead strategies

It is well-known (see, e.g., Berry and Fristedt 1985; Mockus
1989; Bertsekas 1995) that an optimal strategy for such a
finite horizon problem4, i.e. a strategy X�

N ∈ AN such that
E0(ε(X

�
N , ξ)) = rB, can be formally obtained by dynamic

programming: let RN = EN(ε(XN , ξ)) = EN((̂αN − α)2)

denote the terminal risk and define by backward induc-
tion

Rn = min
x∈X

En

(
Rn+1 | Xn+1 = x

)
,

n = N − 1, . . . ,0. (4)

To get an insight into (4), notice that Rn+1, n = 0, . . . ,

N − 1, depends measurably on In+1 = (In,Xn+1,Zn+1),

4In other words, a sequential decision problem where the total number
of steps to be performed is known from the start.
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so that En(Rn+1 | Xn+1 = x) is in fact an expectation with
respect to Zn+1, and Rn is an Fn-measurable random vari-
able. Then, we have R0 = rB, and the strategy X�

N defined
by

X�
n+1 = argmin

x∈X
En

(
Rn+1 | Xn+1 = x

)
,

n = 1, . . . ,N − 1, (5)

is optimal.5 It is crucial to observe here that, for this dy-
namic programming problem, both the space of possible
actions and the space of possible outcomes at each step
are continuous, and the state space (X × R)n at step n

is of dimension n(d + 1). Any direct attempt at solv-
ing (4)–(5) numerically, over an horizon N of more than
a few steps, will suffer from the curse of dimensional-
ity.

Using (4), the optimal strategy can be expanded as

X�
n+1 = argmin

x∈X
En

(
min
Xn+2

En+1 · · ·min
XN

EN−1RN

∣∣∣Xn+1 =x
)
.

A very general approach to construct sub-optimal—but
hopefully good—strategies is to truncate this expansion af-
ter k terms, replacing the exact risk Rn+k by any available
surrogate R̃n+k . Examples of such surrogates will be given
in Sects. 3 and 4. The resulting strategy,

Xn+1 = argmin
x∈X

En

(
min
Xn+2

En+1 · · · min
Xn+k

En+k−1R̃n+k

∣∣∣

Xn+1 = x
)

(6)

is called a k-step lookahead strategy (see, e.g., Bertsekas
1995, Sect. 6.3). Note that both the optimal strategy (5) and
the k-step lookahead strategy implicitly define a sampling
criterion Jn(x), Fn-measurable, the minimum of which in-
dicates the next evaluation to be performed. For instance, in
the case of the k-step lookahead strategy, the sampling cri-
terion is

Jn(x) = En

(
min
Xn+2

En+1 · · · min
Xn+k

En+k−1 R̃n+k

∣∣∣Xn+1 = x

)
.

In the rest of the paper, we restrict our attention to the class
of one-step lookahead strategies, which is, as we shall see in
Sect. 3, large enough to provide very efficient algorithms.
We leave aside the interesting question of whether more

5Proving rigorously that, for a given P0 and α̂N , (4) and (5) actually
define a (measurable!) strategy X�

N ∈ AN is a technical problem that
is not of primary interest in this paper. This can be done for instance,
in the case of a Gaussian process with continuous covariance function
(as considered later), by proving that x �→ En(Rn+1 | Xn+1(ξ) = x)

is a continuous function on X and then using a measurable selection
theorem.

complex k-step lookahead strategies (with k ≥ 2) could pro-
vide a significant improvement over the strategies examined
in this paper.

Remark 1 In practice, the analysis of a computer code usu-
ally begins with an exploratory phase, during which the out-
put of the code is computed on a space-filling design of size
n0 < N (see, e.g., Santner et al. 2003). Such an exploratory
phase will be colloquially referred to as the initial design.
Sequential strategies such as (5) and (6) are meant to be used
after this initial design, at steps n0 +1, . . . ,N . An important
(and largely open) question is the choice of the size n0 of
the initial design, for a given global budget N . As a rule of
thumb, some authors recommend to start with a sample size
proportional to the dimension d of the input space X, for
instance n0 = 10d ; see Loeppky et al. (2009) and the refer-
ences therein.

2.3 Gaussian process priors

Restricting ξ to be a Gaussian process makes it possible
to deal with the conditional distributions Pn and condi-
tional expectations En that appear in the strategies above.
The idea of modeling an unknown function f by a Gaus-
sian process has originally been introduced approximately
in 1960 in time series analysis (Parzen 1962), optimization
theory (Kushner 1964) and geostatistics (see, e.g., Chilès
and Delfiner 1999, and the references therein). Today, the
Gaussian process model plays a central role in the de-
sign and analysis of computer experiments (see, e.g., Sacks
et al. 1989; Currin et al. 1991; Welch et al. 1992; Sant-
ner et al. 2003). Recall that the distribution of a Gaus-
sian process ξ is uniquely determined by its mean func-
tion m(x) := E0(ξ(x)), x ∈ X, and its covariance function
k(x, y) := E0((ξ(x)−m(x))(ξ(y)−m(y))), x, y ∈ X. Here-
after, we shall use the notation ξ ∼ GP(m, k) to say that ξ

is a Gaussian process with mean function m and covariance
function k.

Let ξ ∼ GP(0, k) be a zero-mean Gaussian process. The
best linear unbiased predictor (BLUP) of ξ(x) from obser-
vations ξ(xi), i = 1, . . . , n, also called the kriging predictor
of ξ(x), is the orthogonal projection

ξ̂ (x;xn) :=
n∑

i=1

λi(x;xn)ξ(xi) (7)

of ξ(x) onto span{ξ(xi), i = 1, . . . , n}. Here, the notation xn

stands for the set of points xn = {x1, . . . , xn}. The weights
λi(x;xn) are the solutions of a system of linear equations

k(xn, xn)λ(x;xn) = k(x, xn) (8)

where k(xn, xn) stands for the n×n covariance matrix of the
observation vector, λ(x;xn) = (λ1(x;xn), . . . , λn(x;xn))

T,
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and k(x, xn) is a vector with entries k(x, xi). The function
x �→ ξ̂ (x;xn) conditioned on ξ(x1) = f (x1), . . . , ξ(xn) =
f (xn), is deterministic, and provides a cheap surrogate
model for the true function f (see, e.g., Santner et al. 2003).
The covariance function of the error of prediction, also
called kriging covariance is given by

k(x, y;xn) := cov
(
ξ(x) − ξ̂ (x;xn), ξ(y) − ξ̂ (y;xn)

)

= k(x, y) −
∑

i

λi(x;xn) k(y, xi). (9)

The variance of the prediction error, also called the kriging
variance, is defined as σ 2(x;xn) = k(x, x;xn). One funda-
mental property of a zero-mean Gaussian process is the fol-
lowing (see, e.g., Chilès and Delfiner 1999, Chap. 3):

Proposition 1 If ξ ∼ GP(0, k), then the random pro-
cess ξ conditioned on the σ -algebra Fn generated by
ξ(x1), . . . , ξ(xn), which we shall denote by ξ | Fn, is a Gaus-
sian process with mean ξ̂ ( ·; xn) given by (7)–(8) and co-
variance k( ·, ·; xn) given by (9). In particular, ξ̂ (x;xn) =
E0(ξ(x) | Fn) is the best Fn-measurable predictor of ξ(x),
for all x ∈ X.

In the domain of computer experiments, the mean of a
Gaussian process is generally written as a linear parametric
function

m( ·) = βTh( ·), (10)

where β is an l-dimensional vector of unknown parameters,
and h = (h1, . . . , hl)

T is an l-dimensional vector of func-
tions (in practice, polynomials). The simplest case is when
the mean function is assumed to be an unknown constant m,
in which case we can take β = m and h : x ∈ X �→ 1. The
covariance function is generally chosen to be a translation-
invariant function:

k : (x, y) ∈ X2 �→ σ 2 ρθ (x − y),

where σ 2 is the variance of the (stationary) Gaussian pro-
cess and ρθ is the correlation function, which generally de-
pends on a parameter vector θ . When the mean is written
under the form (10), the kriging predictor is again a linear
combination of the observations, as in (7), and the weights
λi(x;xn) are again solutions of a system of linear equations
(see, e.g., Chilès and Delfiner 1999), which can be written
under a matrix form as
(

k(xn, xn) h(xn)
T

h(xn) 0

)(
λ(x;xn)

μ(x)

)
=
(

k(x, xn)

h(x)

)
, (11)

where h(xn) is an l × n matrix with entries hi(xj ), i =
1, . . . , l, j = 1, . . . , n, μ is an l-dimensional vector of La-
grange coefficients (k(xn, xn), λ(x;xn), k(x, xn) as above).

The kriging covariance function is given in this case by

k(x, y;xn) := cov
(
ξ(x) − ξ̂ (x;xn), ξ(y) − ξ̂ (y;xn)

)

= k(x, y) − λ(x;xn)
T k(y, xn) − μ(x)Th(y).

(12)

The following result holds (Kimeldorf and Wahba 1970;
O’Hagan 1978):

Proposition 2 Let k be a covariance function.

If

{
ξ | m ∼ GP (m, k)

m : x �→ βTh(x),β ∼ URl

then ξ | Fn ∼ GP
(̂
ξ( ·;xn), k( ·, ·; xn)

)
,

where URl stands for the (improper) uniform distribution
over Rl , and where ξ̂ ( ·;xn) and k( ·, ·; xn) are given
by (7), (11) and (12).

Proposition 2 justifies the use of kriging in a Bayesian
framework provided that the covariance function of ξ is
known. However, the covariance function is rarely assumed
to be known in applications. Instead, the covariance func-
tion is generally taken in some parametric class (in this
paper, we use the so-called Matérn covariance function,
see Appendix A). A fully Bayesian approach also requires
to choose a prior distribution for the unknown parame-
ters of the covariance (see, e.g., Handcock and Stein 1993;
Kennedy and O’Hagan 2001; Paulo 2005). Sampling tech-
niques (Monte Carlo Markov Chains, Sequential Monte
Carlo. . .) are then generally used to approximate the pos-
terior distribution of the unknown covariance parameters.
Very often, the popular empirical Bayes approach is used
instead, which consists in plugging-in the maximum likeli-
hood (ML) estimate to approximate the posterior distribu-
tion of ξ . This approach has been used in previous papers
about contour estimation or probability of failure estimation
(Picheny et al. 2010; Ranjan et al. 2008; Bichon et al. 2008).
In Sect. 5.2 we will adopt a plug-in approach as well.

Simplified notation In the rest of the paper, we shall use
the following simplified notations when there is no risk of
confusion: ξ̂n(x) := ξ̂ (x;Xn), σ 2

n (x) := σ 2(x;Xn).

2.4 Estimators of the probability of failure

Given a random process ξ and a strategy XN , the opti-
mal estimator that minimizes E0((α − α̂n)

2) among all Fn-
measurable estimators α̂n, 1 ≤ n ≤ N , is

α̂n = En (α) = En

(∫

X
1ξ>u dPX

)
=
∫

X
pn dPX, (13)
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where

pn : x ∈ X �→ Pn {ξ(x) > u} . (14)

When ξ is a Gaussian process, the probability pn(x) of ex-
ceeding u at x ∈ X given In has a simple closed-form ex-
pression:

pn(x) = 1 − �

(
u − ξ̂n(x)

σn(x)

)
= �

(
ξ̂n(x) − u

σn(x)

)
, (15)

where � is the cumulative distribution function of the nor-
mal distribution. Thus, in the Gaussian case, the estima-
tor (13) is amenable to a numerical approximation, by inte-
grating the excess probability pn over X (for instance using
Monte Carlo sampling, see Sect. 3.3).

Another natural way to obtain an estimator of α given
In is to approximate the excess indicator 1ξ>u by a hard
classifier ηn : X → {0,1}, where “hard” refers to the fact
that ηn takes its values in {0,1}. If ηn is close in some sense
to 1ξ>u, the estimator

α̂n =
∫

X
ηndPX (16)

should be close to α. More precisely,

En

(
(̂αn − α)2

)
= En

[(∫
(ηn − 1ξ>u)dPX

)2
]

≤
∫

En

(
(ηn − 1ξ>u)

2
)

dPX. (17)

Let τn(x) = Pn{ηn(x) �= 1ξ(x)>u} = En((ηn(x) − 1ξ(x)>u)
2)

be the probability of misclassification; that is, the probability
to predict a point above (resp. under) the threshold when the
true value is under (resp. above) the threshold. Thus, (17)
shows that it is desirable to use a classifier ηn such that τn is
small for all x ∈ X. For instance, the method called SMART

(Deheeger and Lemaire 2007) uses a support vector machine
to build ηn. Note that

τn(x) = pn(x) + (1 − 2pn(x)) ηn(x).

Therefore, the right-hand side of (17) is minimized if we set

ηn(x) = 1pn(x)>1/2 = 1ξ̄n(x)>u, (18)

where ξ̄n(x) denotes the posterior median of ξ(x). Then, we
have

τn(x) = min(pn(x),1 − pn(x)).

In the case of a Gaussian process, the posterior median
and the posterior mean are equal. Then, the classifier that
minimizes τn(x) for each x ∈ X is ηn = 1ξ̂n>u, in which

case

τn(x) = Pn

(
(ξ(x) − u)(̂ξn(x) − u) < 0

)

= 1 − �

( |̂ξn(x) − u|
σn(x)

)
. (19)

Notice that for ηn = 1ξ̂n>u, we have α̂n = α(̂ξn). Therefore,
this approach to obtain an estimator of α can be seen as a
type of plug-in estimation.

Standing assumption It will assumed in the rest of the pa-
per that ξ is a Gaussian process, or more generally that
ξ | Fn ∼ GP(̂ξn, k( ·, ·; xn)) for all n ≥ 1 as in Proposi-
tion 2.

3 Stepwise uncertainty reduction

3.1 Principle

A very natural and straightforward way of building a one-
step lookahead strategy is to select greedily each evalua-
tion as if it were the last one. This kind of strategy, some-
times called myopic, has been successfully applied in the
field of Bayesian global optimization (Mockus et al. 1978;
Mockus 1989), yielding the famous expected improvement
criterion later popularized in the Efficient Global Optimiza-
tion (EGO) algorithm of Jones et al. (1998).

When the Bayesian risk provides a measure of the esti-
mation error or uncertainty (as in the present case), we call
such a strategy a stepwise uncertainty reduction (SUR) strat-
egy. In the field of global optimization, the Informational
Approach to Global Optimization (IAGO) of Villemonteix
et al. (2009) is an example of a SUR strategy, where the
Shannon entropy of the minimizer is used instead of the
quadratic cost. When considered in terms of utility rather
than cost, such strategies have also been called knowledge
gradient policies by Frazier et al. (2008).

Given a sequence of estimators (̂αn)n≥1, a direct applica-
tion of the above principle using the quadratic loss function
yields the sampling criterion (to be minimized)

Jn(x) = En

(
(α − α̂n+1)

2 | Xn+1 = x
)

. (20)

Having found no closed-form expression for this criterion,
and no efficient numerical procedure for its approximation,
we will proceed by upper-bounding and discretizing (20) in
order to get an expression that will lend itself to a numer-
ically tractable approximation. By doing so, several SUR
strategies will be derived, depending on the choice of esti-
mator (the posterior mean (13) or the plug-in estimator (16)
with (18)) and bounding technique.
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3.2 Upper bounds of the SUR sampling criterion

Recall that τn(x) = min(pn(x),1 − pn(x)) is the proba-
bility of misclassification at x using the optimal classi-
fier 1ξ̂n(x)>u. Let us further denote by νn(x) := pn(x)(1 −
pn(x)) the variance of the excess indicator 1ξ(x)≥u.

Proposition 3 Assume that either α̂n = En(α) or α̂n =∫
1ξ̂n≥udPX. Define Gn := ∫X

√
γn(y)dPX for all n ∈

{0, . . . ,N − 1}, with

γn :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νn = pn(1 − pn) = τn(1 − τn),

if α̂n = En (α) ,

τn = min(pn,1 − pn),

if α̂n = ∫ 1ξ̂n≥udPX.

Then, for all x ∈ X and all n ∈ {0, . . . ,N − 1},
Jn(x) ≤ J̃n(x) := En

(
G2

n+1 | Xn+1 = x
)

.

Note that γn(x) is a function of pn(x) that vanishes at 0
and 1, and reaches its maximum at 1/2; that is, when the
uncertainty on 1ξ̂n(x)>u is maximal (see Fig. 1).

Proof First, observe that, for all n ≥ 0, α − α̂n = ∫ Un dPX,
with

Un : x ∈ X �→ Un(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1ξ(x)>u − pn(x)

if α̂n = En (α) ,

1ξ(x)>u − 1ξ̂n(x)>u

if α̂n = ∫ 1ξ̂n≥udPX.

(21)

Moreover, note that γn = ‖Un‖2
n in both cases, where ‖ · ‖n :

L2(	,B,P) → L2(	,Fn,P), W �→ En(W
2)1/2. Then, us-

ing the generalized Minkowski inequality (see, e.g., Vestrup
2003, Sect. 10.7) we get that
∥∥∥∥
∫

Un dPX

∥∥∥∥
n

≤
∫

‖Un‖n dPX

=
∫ √

γn dPX = Gn. (22)

Finally, it follows from the tower property of conditional ex-
pectations and (22) that, for all n ≥ 0,

Jn(x) = En

(
‖α − α̂n+1‖2

n+1 | Xn+1 = x
)

= En

(∥∥∥∥
∫

Un+1 dPX

∥∥∥∥
2

n+1

∣∣∣Xn+1 = x

)

≤ En

(
G2

n+1 | Xn+1 = x
)

. �

Note that two other upper-bounding sampling criteria
readily follow from those of Proposition 3, by using the

Fig. 1 γn as a function of pn (see Proposition 3). In both cases, γn is
maximum at pn = 1/2

Cauchy-Schwarz inequality in L2(X,B(X),PX):

J̃n(x) ≤ En

(∫
γn+1 dPX

∣∣∣Xn+1 = x

)
. (23)

As a result, we can write four SUR criteria, whose expres-
sions are summarized in Table 1. Criterion J SUR

1,n has been
proposed in the PhD thesis of Piera-Martinez (2008) and
in conference papers (Vazquez and Piera-Martinez 2007;
Vazquez and Bect 2009); the other ones, to the best of
our knowledge, are new. Each criterion is expressed as the
conditional expectation of some (possibly squared) Fn+1-
measurable integral criterion, with an integrand that can be
expressed as a function of the probability of misclassifica-
tion τn+1. It is interesting to note that the integral in J SUR

4
is the integrated mean square error (IMSE)6 for the pro-
cess 1ξ>u.

Remark 2 The conclusions of Proposition 3 still hold in the
general case when ξ is not assumed to be a Gaussian pro-
cess, provided that the posterior median ξ̄n is substituted to
posterior the mean ξ̂n.

3.3 Discretizations

In this section, we proceed with the necessary integral dis-
cretizations of the SUR criteria to make them suitable for
numerical evaluation and implementation on computers. As-
sume that n steps of the algorithm have already been per-
formed and consider, for instance, the criterion

J SUR
3,n (x) = En

(∫
τn+1(y)PX(dy)

∣∣∣Xn+1 = x

)
. (24)

6The IMSE criterion is usually applied to the response surface ξ itself
(see, e.g., Box and Draper 1987; Sacks et al. 1989). The originality
here is to consider the IMSE of the process 1ξ>u instead. Another way
of adapting the IMSE criterion for the estimation of a probability of
failure, proposed by Picheny et al. (2010), is recalled in Sect. 4.2.
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Table 1 Expressions of four
SUR-type criteria SUR-type sampling criterion How it is obtained

J SUR
1,n (x) = En((

∫ √
τn+1 dPX)2 | Xn+1 = x) Proposition 3 with α̂n = ∫ 1ξ̂n>u dPX

J SUR
2,n (x) = En((

∫ √
νn+1 dPX)2 | Xn+1 = x) Proposition 3 with α̂n = En(α)

J SUR
3,n (x) = En(

∫
τn+1 dPX | Xn+1 = x) Equation (23) with α̂n = ∫ 1ξ̂n>u dPX

J SUR
4,n (x) = En(

∫
νn+1 | Xn+1 = x) Equation (23) with α̂n = En(α)

Remember that, for each y ∈ X, the probability of misclas-
sification τn+1(y) is Fn+1-measurable and, therefore, is a
function of In+1 = (In,Xn+1,Zn+1). Since In is known at
this point, we introduce the notation vn+1(y;Xn+1,Zn+1) =
τn+1(y) to emphasize the fact that, when a new evaluation
point must be chosen at step (n + 1), τn+1(y) depends on
the choice of Xn+1 and the random outcome Zn+1. Let us
further denote by Qn,x the probability distribution of ξ(x)

under Pn. Then, (24) can be rewritten as

J SUR
3,n (x) =

∫ ∫

R×X
vn+1(y;x, z)Qn,x(dz)PX(dy),

and the corresponding strategy is:

Xn+1 = argmin
x∈X

∫ ∫

R×X
vn+1(y;x, z)

× Qn,x(dz)PX(dy). (25)

Given In and a triple (x, y, z), vn+1(y;x, z) can be com-
puted efficiently using the equations provided in Sects. 2.3
and 2.4.

At this point, we need to address: (1) the computation of
the integral on X with respect to PX; (2) the computation of
the integral on R with respect to Qn,x ; (3) the minimization
of the resulting criterion with respect to x ∈ X.

To solve the first problem, we draw an i.i.d. sequence
Y1, . . . , Ym ∼ PX and use the Monte Carlo approximation:

∫

X
vn+1(y;x, z)PX(dy) ≈ 1

m

m∑

j=1

vn+1(Yj ;x, z).

An increasing sample size n �→ mn should be used to build
a convergent algorithm for the estimation of α (possibly
with a different sequence Yn,1, . . . , Yn,mn at each step). In
this paper we adopt a different approach instead, which
is to take a fixed sample size m > 0 and keep the same
sample Y1, . . . , Ym throughout the iterations. Equivalently,
it means that we choose to work from the start on a dis-
cretized version of the problem: we replace PX by the em-
pirical distribution P̂X,n = 1

m

∑m
j=1 δYj

, and our goal is now
to estimate the Monte Carlo estimator αm = ∫ 1ξ>udP̂X,n =
1
m

∑m
j=1 1ξ(Yj )>u, using either the posterior mean En(αm) =

1
m

∑
j pn(Yj ) or the plug-in estimate 1

m

∑
j 1ξ̂ (Yj ;Xn)>u.

This kind of approach has be coined meta-estimation by Ar-
naud et al. (2010): the objective is to estimate the value of
a precise Monte Carlo estimator of α(f ) (m being large),
using prior information on f to alleviate the computational
burden of running m times the computer code f . This point
of view also underlies the work in structural reliability of
Hurtado (2004, 2007), Deheeger and Lemaire (2007), De-
heeger (2008), and more recently Echard et al. (2010a,
2010b).

This new point of view suggests a natural solution for
the third problem, which is to replace the continuous search
for a minimizer x ∈ X by a discrete search over the set
Xm := {Y1, . . . , Ym}. This is obviously sub-optimal, even
in the meta-estimation framework introduced above, since
picking x ∈ X \ Xm can sometimes bring more informa-
tion about ξ(Y1), . . . , ξ(Ym) than the best possible choice
in Xm. Global optimization algorithms may of course be
used to tackle directly the continuous search problem: for
instance, (Ranjan et al. 2008) use a combination of a genetic
algorithm and local search technique, (Bichon et al. 2008)
use the DIRECT algorithm and (Picheny et al. 2010) use a
covariance-matrix-adaptation evolution strategy. In this pa-
per we will stick to the discrete search approach, since it is
much simpler to implement (we shall present in Sect. 3.4 a
method to handle the case of large m) and provides satisfac-
tory results (see Sect. 5).

Finally, remark that the second problem boils down to the
computation of a one-dimensional integral with respect to
Lebesgue’s measure. Indeed, since ξ is a Gaussian process,
Qn,x is a Gaussian probability distribution with mean ξ̂n(x)

and variance σ 2
n (x) as explained in Sect. 2.3. The integral

can be computed using a standard Gauss-Hermite quadra-
ture with Q points (see, e.g., Press et al. 1992, Chap. 4):
∫

vn+1(y;x, z)Qn,x(dz)

≈ 1√
π

Q∑

q=1

wq vn+1
(
y;x, ξ̂n(x) + σn(x)uq

√
2
)
,

where u1, . . . , uQ denote the quadrature points and w1,

. . . ,wQ the corresponding weights. Note that this is equiv-
alent to replacing under Pn the random variable ξ(x) by
a quantized random variable with probability distribution

72



Stat Comput (2012) 22:773–793 781

∑Q
q=1 w′

qδzn+1,q (x), where w′
q = wq/

√
π and zn+1,q (x) =

ξ̂n(x) + σn(x)uq

√
2.

Taking all three discretizations into account, the proposed
strategy is:

Xn+1 = argmin
1≤k≤m

m∑

j=1

Q∑

q=1

w′
qvn+1

(
Yj ; Yk, zn+1,q (Yk)

)
. (26)

3.4 Implementation

This section gives implementation guidelines for the SUR
strategies described in Sect. 3. As said in Sect. 3.3, the strat-
egy (26) can, in principle, be translated directly into a com-
puter program. In practice however, we feel that there is still
room for different implementations. In particular, it is im-
portant to keep the computational complexity of the strate-
gies at a reasonable level. We shall explain in this section
some simplifications we have made to achieve this goal.

A straight implementation of (26) for the choice of an
additional evaluation point is described in Table 2. This pro-

cedure is meant to be called iteratively in a sequential algo-
rithm, such as that described for instance in Table 3. Note
that the only parameter to be specified in the SUR strat-
egy (26) is Q, which tunes the precision of the approxima-
tion of the integral on R with respect to Qn,x . In our nu-
merical experiments, it was observed that taking Q = 12
achieves a good compromise between precision and numer-
ical complexity.

To assess the complexity of a SUR sampling strategy,
recall that kriging takes O(mn2) operations to predict the
value of f at m locations from n evaluation results of f (we
suppose that m > n and no approximation is carried out). In
the procedure to select an evaluation, a first kriging predic-
tion is performed at Step 1 and then, m different predictions
have to performed at Step 2.1. This cost becomes rapidly
burdensome for large values of n and m, and we must fur-
ther simplify (26) to be able to work on applications where
m must be large. A natural idea to alleviate the computa-
tional cost of the strategy is to avoid dealing with candidate
points that have a very low probability of misclassification,
since they are probably far from the frontier of the domain

Table 2 Procedure to select a
new evaluation point Xn+1 ∈ X
using a SUR strategy

Require computer representations of

(a) A set In = {(X1, f (X1)), . . . , (Xn,f (Xn))} of evaluation results;
(b) A Gaussian process prior ξ with a (possibly unknown linear parametric) mean function

and a covariance function kθ , with parameter θ ;
(c) A (pseudo-)random sample Xm = {Y1, . . . , Ym} of size m drawn from the distribution PX;
(d) Quadrature points u1, . . . , uQ and corresponding weights w′

1, . . . ,w
′
Q;

(e) A threshold u.

1. Compute the kriging approximation f̂n and kriging variance σ 2
n on Xm from In

2. For each candidate point Yj , j ∈ {1, . . . ,m},
2.1 For each point Yk , k ∈ {1, . . . ,m}, compute the kriging weights λi(Yk; {Xn,Yj }),

i ∈ {1, . . . , (n + 1)}, and the kriging variances σ 2(Yk; {Xn,Yj })
2.2 Compute zn+1,q (Yj ) = f̂n(Yj ) + σn(Yj )uq

√
2, for q = 1, . . . ,Q

2.3 For each zn+1,q (Yj ), q ∈ {1, . . . ,Q},
2.3.1 Compute the kriging approximation f̃n+1,j,q on Xm from In ∪ (Yj ,

f (Yj ) = zn+1,q (Yj )), using the weights λi(Yk; {Xn,Yj }), i = 1, . . . , (n + 1),
k = 1, . . . ,m, obtained at Step 2.1.

2.3.2 For each k ∈ {1, . . . ,m}, compute vn+1(Yk; Yj , zn+1,q (Yj )), using u, f̃n+1,j,q

obtained in 2.3.1, and σ 2(Yk; {Xn,Yj }) obtained in 2.1

2.4 Compute Jn(Yj ) =∑m
k=1
∑Q

q=1 w′
q vn+1(Yk; Yj , zn+1,q (Yj )).

3. Find j� = argminj Jn(Yj ) and set Xn+1 = Yj�

Table 3 Sequential estimation
of a probability of failure 1. Construct an initial design of size n0 < N and evaluate f at the points of the initial design.

2. Choose a Gaussian process ξ (in practice, this amounts to choosing a parametric form for
the mean of ξ and a parametric covariance function kθ )

3. Generate a Monte Carlo sample Xm = {Y1, . . . , Ym} of size m from PX
4. While the evaluation budget N is not exhausted,

4.1 Optional step: estimate the parameters of the covariance function (case of a plug-in
approach);

4.2 Select a new evaluation point, using past evaluation results, the prior ξ and Xm;
4.3 Perform the new evaluation.

5. Estimate the probability of failure obtained from the N evaluations of f (for instance, by
using EN (αm) = 1

m

∑
j pN(Yj )).
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of failure. It is also likely that those points with a low proba-
bility of misclassification will have a very small contribution
in the variance of the error of estimation α̂n − αm.

Therefore, the idea is to rewrite the sampling strategy de-
scribed by (26), in such a way that the first summation (over
m) and the search set for the minimizer is restricted to a sub-
set of points Yj corresponding to the m0 largest values of
τn(Yj ). The corresponding algorithm is not described here
for the sake of brevity but can easily be adapted from that
of Table 2. Sections 5.2 and 5.3 will show that this pruning
scheme has almost no consequence on the performances of
the SUR strategies, even when one considers small values
for m0.

4 Other strategies

4.1 Estimation of a probability of failure and closely
related objectives

Given a real function f defined over X ⊆ Rd , and a thresh-
old u ∈ R, consider the following possible goals:

1. estimate a region � ⊂ X of the form � = {x ∈ X |
f (x) > u};

2. estimate the level set ∂� = {x ∈ X | f (x) = u};
3. estimate f precisely in a neighborhood of ∂�;
4. estimate the probability of failure α = PX(�) for a given

probability measure PX.

These different goals are, in fact, closely related: indeed,
they all require, more or less explicitly, to select sampling
points in order to get a fine knowledge of the function f in
a neighborhood of the level set ∂� (the location of which is
unknown before the first evaluation). Any strategy proposed
for one of the first three objectives is therefore expected to
perform reasonably well on the fourth one, which is the topic
of this paper.

Several strategies recently introduced are presented in
Sects. 4.2 and 4.3, and will be compared numerically to
the SUR strategy in Sect. 5. Each of these strategies has
been initially proposed by its authors to address one or sev-
eral of the above objectives, but they will only be discussed
from the point of view of their performance on the fourth
one. Of course, a comparison focused on any other objective
would probably be based on different performance metrics,
and thus could yield a different performance ranking of the
strategies.

4.2 The targeted IMSE criterion

The targeted IMSE proposed in Picheny et al. (2010) is a
modification of the IMSE (Integrated Mean Square Error)
sampling criterion (Sacks et al. 1989). While the IMSE sam-
pling criterion computes the average of the kriging variance

(over a compact domain X) in order to achieve a space-
filling design, the targeted IMSE computes a weighted av-
erage of the kriging variance for a better exploration of the
regions near the frontier of the domain of failure, as in Oak-
ley (2004). The idea is to put a large weight in regions
where the kriging prediction is close to the threshold u, and
a small one otherwise. Given In, the targeted IMSE sam-
pling criterion, hereafter abbreviated as tIMSE, can be writ-
ten as

J tIMSE
n (x) = En

(∫

X

(
ξ − ξ̂n+1

)2
Wn dPX

∣∣∣Xn+1 = x

)
(27)

=
∫

X
σ 2 (y;X1, . . . ,Xn, x) Wn(y)PX(dy), (28)

where Wn is a weight function based on In. The weight
function suggested by Picheny et al. (2010) is

Wn(x) = 1

sn(x)
√

2π
exp

(
−1

2

(
ξ̂n(x) − u

sn(x)

)2
)

, (29)

where s2
n(x) = σ 2

ε + σ 2
n (x). Note that Wn(x) is large when

ξ̂n(x) ≈ u and σ 2
n (x) ≈ 0, i.e., when the function is known

to be close to u.
The tIMSE criterion operates a trade-off between global

uncertainty reduction (high kriging variance σ 2
n ) and ex-

ploration of target regions (high weight function Wn). The
weight function depends on a parameter σε > 0, which al-
lows to tune the width of the “window of interest” around
the threshold. For large values of σε , J tIMSE behaves ap-
proximately like the IMSE sampling criterion. The choice
of an appropriate value for σε , when the goal is to estimate
a probability of failure, will be discussed on the basis of nu-
merical experiments in Sect. 5.3.

The tIMSE strategy requires a computation of the expec-
tation with respect to ξ(x) in (27), which can be done ana-
lytically, yielding (28). The computation of the integral with
respect to PX on X can be carried out with a Monte Carlo
approach, as explained in Sect. 3.3. Finally, the optimiza-
tion of the criterion is replaced by a discrete search in our
implementation.

4.3 Criteria based on the marginal distributions

Other sampling criteria proposed by Ranjan et al. (2008),
Bichon et al. (2008) and Echard et al. (2010a, 2010b) are
briefly reviewed in this section.7 A common feature of these
three criteria is that, unlike the SUR and tIMSE criteria

7Note that the paper of Ranjan et al. (2008) is the only one in this
category that does not address the problem of estimating a probability
of failure (i.e., Objective 4 of Sect. 4.1).
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discussed so far, they only depend on the marginal poste-
rior distribution at the considered candidate point x ∈ X,
which is a Gaussian N (̂ξn(x), σ 2

n (x)) distribution. As a con-
sequence, they are of course much cheaper to compute than
integral criteria like SUR and tIMSE.

A natural idea, in order to sequentially improve the esti-
mation of the probability of failure, is to visit the point x ∈ X
where the event {ξ(x) ≥ u} is the most uncertain. This idea,
which has been explored by Echard et al. (2010a, 2010b),
corresponds formally to the sampling criterion

J EGL
n (x) = τn(x) = 1 − �

( |u − ξ̂n(x)|
σn(x)

)
. (30)

As in the case of the tIMSE criterion and also, less explic-
itly, in SUR criteria, a trade-off is realized between global
uncertainty reduction (choosing points with a high σ 2

n (x))
and exploration of the neighborhood of the estimated con-
tour (where |u − ξ̂n(x)| is small).

The same leading principle motivates the criteria pro-
posed by Ranjan et al. (2008) and Bichon et al. (2008),
which can be seen as special cases of the following sam-
pling criterion:

J RB
n (x) := En

(
max
(
0, ε(x)δ − |u − ξ(x)|δ)) , (31)

where ε(x) = κ σn(x), κ, δ > 0. The following proposition
provides some insights into this sampling criterion:

Proposition 4 Define Gκ,δ : ]0,1[ → R+ by

Gκ,δ(p) := E
(

max
(

0, κδ − ∣∣�−1(p) + U
∣∣
))

,

where U is a Gaussian N (0,1) random variable. Let ϕ

and � denote respectively the probability density function
and the cumulative distribution function of U .

(a) Gκ,δ(p) = Gκ,δ(1 − p) for all p ∈]0,1[.
(b) Gκ,δ is strictly increasing on ]0,1/2] and vanishes at 0.

Therefore, Gκ,δ is also strictly decreasing on [1/2,1[,
vanishes at 1, and has a unique maximum at p = 1/2.

(c) Criterion (31) can be rewritten as

J RB
n (x) = σn(x)δ Gκ,δ

(
pn(x)

)
. (32)

(d) Gκ,1 has the following closed-form expression:

Gκ,1(p) = κ
(
�(t+) − �(t−)

)

− t
(
2�(t) − �(t+) − �(t−)

)

− (2ϕ(t) − ϕ(t+) − ϕ(t−)
)
, (33)

where t = �−1(1 − p), t+ = t + κ and t− = t − κ .

(e) Gκ,2 has the following closed-form expression:

Gκ,2(p) = (κ2 − 1 − t2)(�(t+) − �(t−)
)

− 2t
(
ϕ(t+) − ϕ(t−)

)

+ t+ϕ(t+) − t−ϕ(t−), (34)

with the same notations.

It follows from (a) and (b) that J RB
n (x) can also be seen as a

function of the kriging variance σ 2
n (x) and the probability of

misclassification τn(x) = min(pn(x),1 − pn(x)). Note that,
in the computation of Gκ,δ(pn(x)), the quantity denoted by t

in (33) and (34) is equal to (u − ξ̂n(x))/σn(x), i.e., equal to
the normalized distance between the predicted value and the
threshold.

Bichon et al.’s expected feasibility function corresponds
to (32) with δ = 1, and can be computed efficiently us-
ing (33). Similarly, Ranjan et al.’s expected improvement8

function corresponds to (32) with δ = 2, and can be com-
puted efficiently using (34). The proof of Proposition 4 is
provided in Appendix B.

Remark 3 In the case δ = 1, our result coincides with the
expression given by Bichon et al. (2008, (17)). In the case
δ = 2, we have found and corrected a mistake in the compu-
tations of Ranjan et al. (2008, (8) and Appendix B).

5 Numerical experiments

5.1 A one-dimensional illustration of a SUR strategy

The objective of this section is to illustrate a SUR strategy
in a simple one-dimensional case. We wish to estimate α =
PX{f > 1}, where f : X = R → R is such that ∀x ∈ R,

f (x) = (0.4x − 0.3)2 + exp
(−11.534|x|1.95)

+ exp
(−5(x − 0.8)2),

and where X is endowed with the probability distribution
PX = N (0, σ 2

X), σX = 0.4, as depicted in Fig. 2. We know
in advance that α ≈ 0.2. Thus, a Monte Carlo sample of size
m = 1500 will give a good estimate of α.

8Despite its name and some similarity between the formulas, this cri-
terion should not be confused with the well-known EI criterion in the
field of optimization (Mockus et al. 1978; Jones et al. 1998).
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Fig. 2 Illustration of a SUR strategy. This figure shows the initial
design. Top: threshold u = 1 (horizontal dashed line); function f

(thin line); n = 4 initial evaluations (squares); kriging approximation
fn (thick line); 95% confidence intervals computed from the kriging
variance (shaded area). Middle: probability of excursion (solid line);
probability density of PX (dotted line). Bottom: graph of J SUR

1,n=4(Yi),
i = 1, . . . ,m = 1500, the minimum of which indicates where the next
evaluation of f should be done (i.e., near the origin)

In this illustration, ξ is a Gaussian process with constant
but unknown mean and a Matérn covariance function, whose
parameters are kept fixed, for the sake of simplicity. Figure 2
shows an initial design of four points and the sampling crite-
rion J SUR

1,n=4. Notice that the sampling criterion is only com-
puted at the points of the Monte Carlo sample. Figures 3 and
4 show the progress of the SUR strategy after a few itera-
tions. Observe that the probability of excursion pn is very
close to either zero or one in the region where the density of
PX is high.

5.2 An example in structural reliability

In this section, we evaluate all criteria discussed in Sects. 3
and 4 through a classical benchmark example in structural
reliability (see, e.g., Borri and Speranzini 1997; Waarts
2000; Schueremans 2001; Deheeger 2008). Echard et al.
(2010a, 2010b) used this benchmark to make a compari-
son among several methods proposed in Schueremans and
Gemert (2005), some of which are based on the construction
of a response surface. The objective of the benchmark is to
estimate the probability of failure of a so-called four-branch

.

Fig. 3 Illustration of a SUR strategy (see also Figs. 2 and 4). This fig-
ure shows the progress of the SUR strategy after two iterations—a total
of n = 6 evaluations (squares) have been performed. The next evalua-
tion point will be approximately at x = −0.5

Fig. 4 Illustration of a SUR strategy (see also Figs. 2 and 3). This fig-
ure shows the progress of the SUR strategy after eight iterations—a to-
tal of n = 12 evaluations (squares) have been performed. At this stage,
the probability of excursion pn almost equals 0 or 1 in the region where
the density of PX is high

series system. A failure happens when the system is working
under the threshold u = 0. The performance function f for
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Fig. 5 Left: mesh plot of the
performance function f

corresponding to the
four-branch series system; a
failure happens when f is below
the transparent plane; Right:
contour plot of f ; limit state
f = 0 (thick line); sample of
size m = 3 × 103 from PX (dots)

this system is defined as

f : (x1, x2) ∈ R2 �→

f (x1, x2)= min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3+0.1(x1 −x2)
2 − (x1 +x2)/

√
2;

3+0.1(x1 −x2)
2 + (x1 +x2)/

√
2;

(x1 − x2) + 6/
√

2;
(x2 − x1) + 6/

√
2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

The uncertain input factors are supposed to be independent
and have standard normal distribution. Figure 5 shows the
performance function, the failure domain and the input dis-
tribution. Observe that f has a first-derivative discontinuity
along four straight lines originating from the point (0,0).

For each sequential method, we will follow the proce-
dure described in Table 3. We generate an initial design
of n0 = 10 points (five times the dimension of the factor
space) using a maximin LHS (Latin Hypercube Sampling)9

on [−6;6] × [−6;6]. We choose a Monte Carlo sample of
size m = 30000. Since the true probability of failure is ap-
proximately α = 0.4% in this example, the coefficient of
variation for αm is 1/

√
mα ≈ 9%. The same initial design

and Monte Carlo sample are used for all methods.
A Gaussian process with constant unknown mean and a

Matérn covariance function is used as our prior information
about f . The parameters of the Matérn covariance functions
are estimated on the initial design by REML (see, e.g. Stein
1999). In this experiment, we follow the common practice of
re-estimating the parameters of the covariance function dur-
ing the sequential strategy, but only once every ten iterations
to save some computation time.

The probability of failure is estimated by (13). To eval-
uate the rate of convergence, we compute the number nγ

of iterations that must be performed using a given strategy

9More precisely, we use Matlab’s lhsdesign() function to select
the best design according to the maximin criterion among 104 ran-
domly generated LHS designs.

to observe a stabilization of the relative error of estimation
within an interval of length 2γ :

nγ = min

{
n ≥ 0; ∀k ≥ n,

|̂αn0+k − αm|
αm

< γ

}
.

All the available sequential strategies are run 100 times, with
different initial designs and Monte Carlo samples. The re-
sults for γ = 0.10, γ = 0.03 and γ = 0.01 are summarized
in Table 4. We shall consider that n0.1 provides a measure of
the performance of the strategy in the “initial phase”, where
a rough estimate of α is to be found, whereas n0.03 and n0.01

measure the performance in the “refinement phase”.
The four variants of the SUR strategy (see Table 1) have

been run with Q = 12 and either m0 = 10 or m0 = 500.
The performance are similar for all four variants and for
both values of m0. It appears, however, that the criteri-
ons J SUR

1 and J SUR
2 2 (i.e., the criterions given directly by

Proposition 3) are slightly better than J SUR
3 and J SUR

4 ; this
will be confirmed by the simulations of Sect. 5.3. It also
seems that the SUR algorithm is slightly slower to obtain
a rough estimate of the probability of failure when m0 is
very small, but performs very well in the refinement phase.
(Note that m0 = 10 is a drastic pruning for a sample of
size m = 30000.)

The tIMSE strategy has been run for three different val-
ues of its tuning parameter σ 2

ε , using the pruning scheme
with m0 = 500. The best performance is obtained for
σ 2

ε ≈ 0, and is almost as good as the performance of SUR
strategies with the same value of m0 (a small loss of perfor-
mance, of about one evaluation on average, can be noticed
in the refinement phase). Note that the required accuracy
was not reached after 200 iterations in 17% of the runs for
σ 2

ε = 1. In fact, the tIMSE strategy tends to behave like a
space-filling strategy in this case. Figure 6 shows the points
that have been evaluated in three cases: the evaluations are
less concentrated on the boundary between the safe and the
failure region when σ 2

ε = 1.
Finally, the results obtained for J RB and J EGL indicate

that the corresponding strategies are clearly less efficient in
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Table 4 Comparison of the convergence to αm in the benchmark example Sect. 5.2 for different sampling strategies. The first number (bold text)
is the average value of nγ over 100 runs. The numbers between brackets indicate the 10th and 90th percentile

Criterion Parameters γ = 0.10 γ = 0.03 γ = 0.01

J SUR
1 m0 = 500 16.1 [10–22] 25.7 [17–35] 36.0 [26–48]

m0 = 10 19.4 [11–28] 28.1 [19–38] 35.4 [26–44]

J SUR
2 m0 = 500 16.4 [10–24] 25.7 [19–33] 35.5 [25–45]

m0 = 10 20.0 [11–30] 28.3 [20–39] 35.3 [26–44]

J SUR
3 m0 = 500 18.2 [10–27] 26.9 [18–37] 35.9 [27–46]

m0 = 10 20.1 [11–30] 28.0 [20–36] 35.2 [25–44]

J SUR
4 m0 = 500 17.2 [10–28] 26.5 [20–36] 35.2 [25–45]

m0 = 10 21.4 [13–30] 28.9 [20–38] 35.5 [27–44]

J tIMSE σ 2
ε = 10−6 16.6 [10–23] 26.5 [19–36] 37.3 [28–49]

σ 2
ε = 0.1 15.9 [10–22] 29.1 [19–43] 50.5 [30–79]

σ 2
ε = 1 21.7 [11–31] 52.4 [31–85] 79.5 [42–133]a

J EGL – 21.0 [11–31] 29.2 [21–39] 36.4 [28–44]

J RB δ = 1, κ = 0.5 18.7 [10–27] 27.5 [20–35] 36.6 [27–44]

δ = 1, κ = 2.0 18.9 [11–28] 28.3 [21–35] 37.7 [30–45]

δ = 2, κ = 0.5 17.6 [10–24] 27.6 [20–34] 37.1 [29–45]

δ = 2, κ = 2.0 17.0 [10–21] 27.1 [20–34] 36.8 [29–44]

aThe required accuracy was not reached after 200 iterations in 17% of the runs

Fig. 6 The first 16 points (squares) evaluated using sampling criterion J SUR
1 (left), J tIMSE with σ 2

ε = 0.1 (middle), J tIMSE with σ 2
ε = 1 (right).

Numbers near squares indicate the order of evaluation. The location of the n0 = 10 points of the initial design are indicated by circles

the “initial phase” than strategies based on J SUR
1 or J SUR

2 .
For γ = 0.1, the average loss with respect to J SUR

1 is be-
tween approximately 0.9 evaluations for the best case (cri-
terion J RB with δ = 2, κ = 2) and 3.9 evaluations for the
worst case. For γ = 0.03, the loss is between 1.4 evaluations
(also for (criterion J RB with δ = 2, κ = 2) and 3.5 eval-
uations. This loss of efficiency can also be observed very
clearly on the 90th percentile in the initial phase. Crite-
rion J RB seems to perform best with δ = 2 and κ = 2 in
this experiment, but this will not be confirmed by the simu-
lations of Sect. 5.3. Tuning the parameters of this criterion

for the estimation of a probability of failure does not seem
to be an easy task.

5.3 Average performance on sample paths of a Gaussian
process

This section provides a comparison of all the criteria intro-
duced or recalled in this paper, on the basis of their average
performance on the sample paths of a zero-mean Gaussian
process defined on X = [0,1]d , for d ∈ {1,2,3}. In all ex-
periments, the same covariance function is used for the gen-
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Table 5 Size of the initial design and covariance parameters for the
experiments of Sect. 5.3. The parametrization of the Matérn covariance
function used here is defined in Appendix A

d n0 σ 2 ν ρ

1 3 1.0 2.0 0.100

2 10 1.0 2.0 0.252

3 15 1.0 2.0 0.363

eration of the sample paths and for the computation of the
sampling criteria. We have considered isotropic Matérn co-
variance functions, whose parameters are given in Table 5.
An initial maximin LHS design of size n0 (also given in the
table) is used: note that the value of n reported on the x-axis
of Figs. 7–11 is the total number of evaluations, including
the initial design.

The d input variables are assumed to be independent and
uniformly distributed on [0,1], i.e., PX is the uniform distri-
bution on X. An m-sample Y1, . . . , Ym from PX is drawn one
and for all, and used both for the approximation of integrals
(in SUR and tIMSE criteria) and for the discrete search of
the next sampling point (for all criteria). We take m = 500
and use the same MC sample for all criteria in a given di-
mension d .

We adopt the meta-estimation framework as described in
Sect. 3.3; in other words, our goal is to estimate the MC es-
timator αm. We choose to adjust the threshold u in order to
have αm = 0.02 for all sample paths (note that, as a con-
sequence, there are exactly mαm = 10 points in the failure
region) and we measure the performance of a strategy after
n evaluations by its relative mean-square error (MSE) ex-
pressed in decibels (dB):

rMSE := 10 log10

(
1

L

L∑

l=1

(̂α
(l)
m,n − αm)2

α2
m

)
,

where α̂
(l)
m,n = 1

m

∑m
j=1 p

(l)
n (Yj ) is the posterior mean of the

MC estimator αm after n evaluations on the lth simulated
sample path (L = 4000).

We use a sequential maximin strategy as a reference in
all of our experiments. This simple space-filling strategy is
defined by Xn+1 = argmaxj min1≤i≤n |Yj − Xi |, where the
argmax runs over all indices j such that Yj �∈ {X1, . . . ,Xn}.
Note that this strategy does not depend on the choice of a
Gaussian process model.

Our first experiment (Fig. 7) provides a comparison of
the four SUR strategies proposed in Sect. 3.2. It appears that
all of them perform roughly the same when compared to the
reference strategy. A closer look, however, reveals that the
strategies J SUR

1 and J SUR
2 provided by Proposition 3 per-

form slightly better than the other two (noticeably so in the
case d = 3).

The performance of the tIMSE strategy is shown on
Fig. 8 for several values of its tuning parameter σ 2

ε (other
values, not shown here, have been tried as well). It is clear
that the performance of this strategy improves when σ 2

ε goes
to zero, whatever the dimension.

The performance of the strategy based on J RB
κ,δ is shown

on Fig. 9 for several values of its parameters. It appears that
the criterion proposed by Bichon et al. (2008), which cor-
responds to δ = 1, performs better than the one proposed
by Ranjan et al. (2008), which corresponds to δ = 2, for the
same value of κ . Moreover, the value κ = 0.5 has been found
in our experiments to produce the best results.

Figure 10 illustrates that the loss of performance asso-
ciated to the “pruning trick” introduced in Sect. 3.4 can be
negligible if the size m0 of the pruned MC sample is large
enough (here, m0 has been taken equal to 50). In practice,
the value of m0 should be chosen small enough to keep
the overhead of the sequential strategy reasonable—in other
words, large values of m0 should only be used for very com-
plex computer codes.

Finally, a comparison involving the best strategy obtained
in each category is presented on Fig. 11. The best result is
consistently obtained with the SUR strategy based on J SUR

1,n .

The tIMSE strategy with σ 2
ε ≈ 0 provides results which are

almost as good. Note that both strategies are one-step looka-
head strategies based on the approximation of the risk by
an integral criterion, which makes them rather expensive
to compute. Simpler strategies based on the marginal dis-
tribution (criteria J RB

n and J EGL
n ) provide interesting alter-

natives for moderately expensive computer codes: their per-
formances, although not as good as those of one-step looka-
head criterions, are still much better than that of the refer-
ence space-filling strategy.

6 Concluding remarks

One of the main objectives of this paper was to present a syn-
thetic viewpoint on sequential strategies based on a Gaus-
sian process model and kriging for the estimation of a prob-
ability of failure. The starting point of this presentation is a
Bayesian decision-theoretic framework from which the the-
oretical form of an optimal strategy for the estimation of a
probability of failure can be derived. Unfortunately, the dy-
namic programming problem corresponding to this strategy
is not numerically tractable. It is nonetheless possible to de-
rive from there the ingredients of a sub-optimal strategy: the
idea is to focus on one-step lookahead suboptimal strate-
gies, where the exact risk is replaced by a substitute risk that
accounts for the information gain about α expected from a
new evaluation. We call such a strategy a stepwise uncer-
tainty reduction (SUR) strategy. Our numerical experiments
show that SUR strategies perform better, on average, than
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Fig. 7 Relative MSE
performance of several SUR
strategies

Fig. 8 Relative MSE
performance of the tIMSE
strategy for several values of its
parameter

the other strategies proposed in the literature. However, this
comes at a higher computational cost than strategies based
only on marginal distributions. The tIMSE sampling crite-
rion, which seems to have a convergence rate comparable

to that of the SUR criterions when σ 2
ε ≈ 0, also has a high

computational complexity.
In which situations can we say that the sequential strate-

gies presented in this paper are interesting alternatives
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Fig. 9 Relative MSE
performance of the J RB

criterion, for several values of
its parameters

Fig. 10 Relative MSE
performance of two SUR
criteria, with and without the
“pruning trick” described in
Sect. 3.4. The black and gray
lines are almost surimposed for
each of the criterions J SUR

1
and J SUR

3

to classical importance sampling methods for estimating
a probability of failure, for instance the subset sampling
method of Au and Beck (2001)? In our opinion, beyond
the obvious role of the simulation budget N , the answer

to this question depends on our capacity to elicit an ap-
propriate prior. In the example of Sect. 5.2, as well as in
many other examples using Gaussian processes in the do-
main of computer experiments, the prior is easy to choose
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Fig. 11 Relative MSE
performance the best strategy in
each category

because X is a low-dimensional space and f tends to be
smooth. Then, the plug-in approach which consists of us-
ing ML or REML to estimate the parameters of the covari-
ance function of the Gaussian process after each new eval-
uation is likely to succeed. If X is high-dimensional and
f is expensive to evaluate, difficulties arise. In particular,
our sampling strategies do not take into account our un-
certain knowledge of the covariance parameters, and there
is no guarantee that ML estimation will do well when the
points are chosen by a sampling strategy that favors some
localized target region (the neighborhood the frontier of the
domain of failure in this paper, but the question is equally
relevant in the field of optimization, for instance). The dif-
ficult problem of deciding the size n0 of the initial design
is crucial in this connection. Fully Bayes procedures consti-
tute a possible direction for future research, as long as they
don’t introduce an unacceptable computational overhead.
Whatever the route, we feel that the robustness of Gaussian
process-based sampling strategies with respect to the proce-
dure of estimation of the covariance parameters should be
addressed carefully in order to make these methods usable
in the industrial world.

Software We would like to draw the reader’s attention on
the recently published package KrigInv (Picheny and Gins-
bourger 2011) for the statistical computing environment R
(see Hornik 2010). This package provides an open source
(GPLv3) implementation of all the strategies proposed in
this paper. Please note that the simulation results presented

in this paper were not obtained using this package, that was
not available at the time of its writing.
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Appendix A: The Matérn covariance

The exponential covariance and the Matérn covariance are
among the most conventionally used stationary covariances
of design and analysis of computer experiments. The Matérn
covariance class (Yaglom 1986) offers the possibility to ad-
just the regularity of ξ with a single parameter. Stein (1999)
advocates the use of the following parametrization of the
Matérn function:

κν(h) = 1

2ν−1�(ν)

(
2ν1/2h

)ν
Kν

(
2ν1/2h

)
, h ∈ R (35)

where � is the Gamma function and Kν is the modified
Bessel function of the second kind. The parameter ν > 0
controls regularity at the origin of the function. To model
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a real-valued function f defined over X ⊂ Rd , with d ≥ 1,
we use the following anisotropic form of the Matérn covari-
ance:

kθ (x, y) = σ 2κν

⎛

⎝

√√√√
d∑

i=1

(x[i] − y[i])2

ρ2
i

⎞

⎠ , x, y ∈ Rd (36)

where x[i], y[i] denote the ith coordinate of x and y, the pos-
itive scalar σ 2 is the variance parameter (we have kθ (x, x) =
σ 2), and the positive scalars ρi are scale or range parame-
ters of the covariance, i.e., characteristic correlation lengths.
Since σ 2 > 0, ν > 0, ρi > 0, i = 1, . . . , d , we can take the
logarithm of these scalars, and consider the vector of pa-
rameters θ = {logσ 2, logν,− logρ1, . . . ,− logρd} ∈ Rd+2,
which is a practical parameterization when σ 2, ν, ρi , i =
1, . . . , d , need to be estimated from data.

Appendix B: Proof of Proposition 4

(a) Using the identity �−1(1 − p) = −�−1(p), we
get

∣∣U + �−1(1 − p)
∣∣=
∣∣∣U − �−1(p)

∣∣∣ d=
∣∣∣U + �−1(p)

∣∣∣ ,

where
d= denotes an equality in distribution. Therefore

Gκ,δ(1 − p) = Gκ,δ(p).
(b) Let Sp = max(0, κδ − |�−1(p) + U |). Straightfor-

ward computations show that t �→ P(|t + U | ≤ v) is strictly
decreasing to 0 on [0,+∞[, for all v > 0. As a consequence,
p �→ P(Sp < s) is strictly increasing to 1 on [1/2,1[, for all
s ∈]0, κδ[. Therefore, Gκ,δ is strictly decreasing on [1/2,1[
and tends to zeros when p → 1. The other assertions then
follow from a).

(c) Recall that ξ(x) ∼ N (̂ξn(x), σ 2
n (x)) under Pn. There-

fore U := (ξ(x) − ξ̂n(x))/σn(x) ∼ N (0,1) under Pn, and
the result follows by substitution in (31).

The closed-form expression of Ranjan et al.’s and Bichon
and al.’s criteria (assertions (d) and (e)) are established in the
following sections.

B.1 A preliminary decomposition common to both criteria

Recall that t = �−1(1 − p), t+ = t + κ and t− = t − κ .
Then,

Gκ,δ(p) = Gκ,δ(1 − p) = E
(

max
(

0, κδ − ∣∣t − U
∣∣δ
))

=
∫

κδ−|t−u|δ≥0

(
κδ − |t − u|δ) ϕ(u)du

=
∫ t+

t−

(
κδ − |t − u|δ) ϕ(u)du

= κδ
(
�(t+) − �(t−)

)−
∫ t+

t−
|t − u|δ ϕ(u)du

︸ ︷︷ ︸
Term A

.

(37)

The computation of the integral A will be carried separately
in the next two sections for δ = 1 and δ = 2. For this pur-
pose, we shall need the following elementary results:

∫ b

a

uϕ(u)du = ϕ(a) − ϕ(b), (38)

∫ b

a

u2ϕ(u)du = aϕ(a) − bϕ(b) + �(b) − �(a). (39)

B.2 Case δ = 1

Let us compute the value A1 of the integral A for δ = 1:

A1 =
∫ t+

t−
|t − u|ϕ(u)du

=
∫ t

t−
(t − u)ϕ(u)du +

∫ t+

t

(u − t)ϕ(u)du

= t

(∫ t

t−
ϕ(u)du −

∫ t+

t

ϕ(u)du

)

−
∫ t

t−
uϕ(u)du +

∫ t+

t

uϕ(u)du

= t
(
2�(t) − �(t−) − �(t+)

)

+ 2ϕ(t) − ϕ(t−) − ϕ(t+), (40)

where (38) has been used to get the final result. Plugging
(40) into (37) yields (33).

B.3 Case δ = 2

Let us compute the value A2 of the integral A for δ = 2:

A2 =
∫ t+

t−
(t − u)2ϕ(u)du

= t2
∫ t+

t−
ϕ(u)du − 2t

∫ t+

t−
uϕ(u)du +

∫ t+

t−
u2ϕ(u)du

= t2 (�(t+) − �(t−)
)− 2t

(
ϕ(t−) − ϕ(t+)

)

+ t−ϕ(t−) − t+ϕ(t+) + �(t+) − �(t−), (41)

where (38) and (39) have been used to get the final result.
Plugging (41) into (37) yields (34).
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2.4 Estimation of the volume of an excursion set of a Gaussian
process using intrinsic kriging

This article is where the notion of SUR strategy appears first in my work. This
a technical report on arXiv.org written in 2006, which makes an analysis of the
convergence of a kriging-based estimator of the volume of an excursion set.
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Abstract — Assume that a Gaussian process ξ is predicted from n pointwise

observations by intrinsic Kriging and that the volume of the excursion set of ξ

above a given threshold u is approximated by the volume of the predictor. The

first part of this paper gives a bound on the convergence rate of the approximated

volume. The second part describes an algorithm that constructs a sequence of

points to yield a fast convergence of the approximation. The estimation of the

volume of an excursion set is a highly relevant problem for the industrial world

since it corresponds to the estimation of the failure probability of a system that

is known only through sampled observations.

Keywords – Excursion set; Gaussian process; Intrinsic Kriging; Quantile es-

timation; Failure probability; Design of experiments

1 Introduction

The problem to be considered in this paper is the estimation of the probability

Pu := P{f(X) ≥ u}, (1)
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where f(x) is a real function defined over an arbitrary set X (X = [0, 1]d or

X = Rd, in most situations) endowed with a probability measure µ and X ∈ X
is a random vector with the distribution µ. In practice, the estimation of (1) is

based on a finite sequence of evaluations of f at points (xi)1≤i≤n in X. Another

way of looking at (1) is via the excursion set

Au(f) := {x ∈ X : f(x) ≥ u} (2)

of the function f above the level u, since P{f(X) ≥ u} is the volume µ(Au(f)),

hereafter denoted by |Au(f)|.
Such a problem is frequently encountered in engineering: the probability

that the inputs of the system will generate a level of a function of the outputs

that exceeds a specified reference level may be expressed as (1) (where in this

case, X is the vector of the inputs of the system and f is a statistic of the

outputs). Since to obtain the value of f at a given x may be very expensive in

practice, because it may involve heavy computer codes for instance, it is often

essential to estimate Pu using as few evaluations of f as possible.

To overcome the problem of evaluating f many times, one possible approach

is to estimate |Au(fn)| instead of |Au(f)|, where fn is an approximation of f

constructed from a small set {f(x1), . . . , f(xn)} of pointwise evaluations. Such

an approximation can be obtained by assuming that f is a sample path of a

Gaussian random process ξ and by using a linear predictor ξn of ξ constructed

from ξ(xi), i = 1, . . . , n. In this paper, intrinsic Kriging (Matheron, 1973) will

be used to obtain ξn. We shall show in Section 2 that this method is likely to

give faster convergences than the classical Monte Carlo estimators, depending

on the regularity of ξ.

A second step is to choose a sequence of evaluation points (xi) so that

|Au(ξn)| − |Au(ξ)| conditioned on the random variables ξ(xi), i ≤ n, converges

rapidly to zero. Section 3 presents an acceleration algorithm based on computing

an upper bound of the mean square error of volume approximation conditioned

on the events {ξ(xi) = f(xi), i = 1 . . . , n}: a point xn+1 is selected so that

evaluating f(xn+1) yields the potential largest decrease of the upper bound.

Section 4 provides a numerical example.
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2 Excursion set volume estimation by intrinsic

Kriging

This section deals with the estimation of the probability Pu from observations

of f at a finite sequence of points (xi)1≤i≤n. As mentioned above, Pu is the

volume of Au(f) under the probability distribution µ. We assume moreover

that f is a sample path of a (separable) Gaussian process ξ, with mean m(x),

x ∈ X, and covariance k(x, y), (x, y) ∈ X2.

2.1 Monte Carlo estimation

Monte Carlo is a commonly used method to estimate |Au(ξ)|. The volume of

excursion of a Gaussian process ξ may be estimated by

|Au(ξ)|l :=
1

l

l∑

i=1

1{ξ(Xi)≥u} →l |Au(ξ)| a.s. (3)

where the Xis are independent random variables with distribution µ. The esti-

mator (3) is unbiased, since E[|Au(ξ)|l | ξ] = |Au(ξ)|, and

E
[
(|Au(ξ)|l − |Au(ξ)|)2 | ξ

]
=

1

l
|Au(ξ)|

(
1 − |Au(ξ)|

)
.

If evaluating f (a sample path of ξ) at many points of X is not particularly

demanding, then estimating |Au(f)| is straightforward. However, if |Au(f)|
is small, then the variance of the Monte Carlo estimator is approximately

|Au(f)|/l. To achieve a given standard deviation κ|Au(f)|, with κ > 0 small,

the required number of evaluations is approximately 1/(κ2|Au(f)|), i.e. it is

high. Thus, the convergence of (3) may be too slow in many real applications

where doing a lot of evaluations of f may not be affordable (for instance, f

may be a complex computer simulation and may take hours or days to run). Of

course, many other methods have been proposed to improve the basic Monte

Carlo convergence. For instance, methods based on importance sampling, on

cross-entropy (Rubinstein, 1999), on the classical extreme value theory (e.g. Em-

brechts et al., 1997), etc. They are not considered here for the sake of brevity.

2.2 Estimation based on an approximation

An alternative approach is to replace f by an approximation fn constructed

from a set of n point evaluations of f . Provided fn converges rapidly enough

3
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to f , one expects a good estimation of the excursion sets and their volume

using only a few evaluations of f . There are many ways of constructing such an

approximation. Let us mention two classical methods: regularized regressions

in reproducing kernel Hilbert spaces, e.g. splines or radial basis functions (see

for instance Wendland, 2005), and linear prediction of random processes, also

known as Kriging (see for instance Chilès and Delfiner, 1999). In this paper, we

shall adopt the probabilistic framework1.

Thus, let us consider that an unbiased linear estimator ξn of ξ has been

obtained from ξ(x1), . . . , ξ(xn). In particular, we can use ordinary Kriging when

the mean of ξ(x) is known and intrinsic Kriging when it is unknown, which is

more often the case.

Can we expect a faster convergence when ξ is replaced by ξn? Here, we

assume the computation time to evaluate ξn(x), x ∈ X, conditioned on ξ(xi) =

f(xi), i = 1, . . . , n, is small, which means that we can make |Au(ξn)|l −|Au(ξn)|
negligible with respect to |Au(ξn)| − |Au(ξ)|. Thus, we are now interested in

the convergence of |Au(ξn)| to |Au(ξ)|. Section 2.2.2 shows how the convergence

rate in mean square of |Au(ξn)| to |Au(ξ)| depends on the fill distance of X and

the regularity of ξ. In Section 3, we shall propose an algorithm to speed up this

rate by a sequential choice of the evaluation points.

2.2.1 Intrinsic Kriging basics

In this paper, we use intrinsic Kriging (IK) to obtain a linear predictor of ξ based

on a finite set of pointwise observations of the process. We recall here the main

results (Matheron, 1973). IK extends linear prediction when the mean of ξ(x)

is unknown but can be written as a linear parametric function m(x) = bTp(x).

Here, p(x) is a q-dimensional vector of base functions of a vector space N of

translation-stable functions (in practice, all polynomials of degree less or equal

to l) and b is a vector of unknown parameters. Intrinsic Kriging assumes that

observed values of f are samples from a representation of an intrinsic random

function (IRF), a generalized random process defined over a space Λl of measures

orthogonal to N , and characterized by its stationary generalized covariance k(h)

(see the Appendix Section for more details).

Proposition 1 (Intrinsic Kriging, Matheron 1973). Let ξG be an IRF(l), with
1In fact, these two classes of methods, which have been studied separately, are equivalent

(see for instance Kimeldorf and Wahba (1970)).
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generalized covariance k(h). Assume n observations be sample values of the

random variables ξobsxi
= ξ(xi) + Ni, i = 1, . . . , n, where ξ is an unknown rep-

resentation of ξG and the Nis are zero-mean random variables independent of

ξ(x), with covariance matrix KN .

The intrinsic Kriging predictor of ξ(x) based on the observations, is the linear

projection ξn(x) =
∑

i λi,xξ
obs
xi

of ξ(x) onto HS = span{ξobsxi
, i = 1, . . . , n}, such

that the variance of the prediction error ξ(x) − ξn(x) is minimized under the

constraint δx − ∑
λi,xδxi ∈ Λl. The coefficients λi,x, i = 1, . . . , n, are solutions

of a system of linear equations, which can be written in matrix form as

 K +KN PT

P 0





 λx

µ


 =


 kx

px


 , (4)

where K is the n× n matrix of generalized covariances k(xi − xj), P is a q × n

matrix with entries xj
i for j = 1, . . . , n and multi-indexes i = (i1, . . . , id) such

that |i| := i1 + · · ·+ id ≤ l, µ is a vector of Lagrange coefficients, kx is a vector

of size n with entries k(x − xi) and px is a vector of size q with entries xi, i

such that |i| ≤ l.

The variance of the prediction error is given by σn(x)
2 := var[ξ(x)−ξn(x)] =

k(0) − λT
xkx − µTpx.

Proof. See Matheron (1973).

2.2.2 Asymptotics

In this section, we shall justify that modeling the unknown f by a Gaussian

random process ξ and estimating |Au(ξ)| by |Au(ξn)| is well-founded. Our ob-

jective is to establish a mean square convergence when the evaluation points fill

X.

Classical results in approximation theory (see for instance Wu and Schaback,

1993 ; Light and Wayne, 1998 ; Narcowich et al., 2003 ; Wendland, 2005) assert

that the variance σ2
n(x) of the IK prediction error at x decreases as the sampling

density or the regularity of the covariance increases. More precisely, if X is a

bounded domain of Rd, and the Fourier transform of k(h), h ∈ Rd, satisfies

c1(1 + ‖ω‖22)−ν ≤ k̃(ω) ≤ c2(1 + ‖ω‖22)−ν .

with ν > d/2, then

‖σn(.)‖∞ ≤ Chν−d/2
n , (5)

5

91



where hn = supy∈X mini‖y − xi‖2 is a fill distance of (x1, . . . , xn) in X.

The following theorem shows that a similar result holds for the process

thresholded at a level u.

Theorem 1. Let ξ be an unknown representation of an IRF(l) ξG, and ξn(x) be

the IK predictor of ξ based on observations ξ(xi), i = 1, . . . , n. Define σn(x) :=

var [ξ(x) − ξn(x)]
1/2. Then,

E
[
(1ξ(x)≥u − 1ξn(x)≥u)

2
]
= O(σn(x)|log(σn(x))|1/2) when σn(x) → 0 .

Proof. For all x ∈ X, ξ(x) − ξn(x) is Gaussian with zero-mean and variance

σn(x)
2 (but is not orthogonal to ξn(x), as would be the case if the mean of ξ

were known). Thus, ∀x ∈ X and ∀n ∈ N, we can write ξ(x) as

ξ(x) = (1 + an(x))ξn(x) + bn(x) + ζn(x) , (6)

where an(x), bn(x) ∈ R, ζn(x) is Gaussian and such that E[ξn(x)ζn(x)] = 0 and

E[ζn(x)] = 0. This decomposition exists and is unique for every n. (To simplify

notations, from now on, we shall omit the dependence on x when there is no

ambiguity.)

Clearly, var[ξn] is non-decreasing and can be assumed to be strictly positive

for n large enough. Since E[anξn] = −bn, we have

σ2
n = var[anξn + bn + ζn] = E[(anξn + bn + ζn)

2] = a2n var[ξn] + E[ζ2n], (7)

and thus, the following upper bounds hold for n large enough:




|an| ≤ Ka σn , |bn| ≤ Kb σn ,

σ̃n := E[ζ2n]
1/2 ≤ σn ,

(8)

for some Ka,Kb > 0.

For some threshold u ∈ R, let α be such that

α > |anu+ bn| ≥ 0 , (9)

and let N ∈ N be such that ∀n > N , |an| < 1. For all n > N , define




h−
n =

u − bn − α

1 + an
,

h+
n =

u − bn + α

1 + an
.

Note that h−
n < u < h+

n and that

h+
n − h−

n =
2α

1 + an
.

6
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For all n > N ,

E
[
(1ξ(x)≥u − 1ξn(x)≥u)

2 | ξn(x)
]
= Ψ

(
u − (1 + an)ξn − bn

σ̃n

)
1ξn(x)<u

+Ψ

(
−u − (1 + an)ξn − bn

σ̃n

)
1ξn(x)≥u ,

(10)

in which Ψ denotes the tail of the standard Gaussian distribution function.

Since 



ξn < h−
n ⇒ u − (1 + an)ξn − bn > α ,

ξn > h+
n ⇒ −u+ (1 + an)ξn + bn > α ,

and σ̃n ≤ σn, we have

E
[
(1ξ(x)≥u − 1ξn(x)≥u)

2 | ξn(x)
]

≤ Ψ

(
α

σn

)
1ξn(x)∈R\[h−

n ,h+
n ] + 1ξn(x)∈[h−

n ,h+
n ] .

(11)

By integrating with respect to the density of ξn, we obtain

E
[
(1ξ(x)≥u − 1ξn(x)≥u)

2
]

≤ Ψ

(
α

σn

)
+ c0

2α

1 + an
(12)

≤ σn

α
√
2π

exp(− α2

2σ2
n

) + c1α (13)

where (13) uses a standard Gaussian tail inequality.

The upper bound can be tighten by replacing α with a sequence (αn) such

that

αn :=
√
2σn|log(σn)|1/2,

which satisfies (9) for n large enough. Therefore,

E
[
(1ξ(x)≥u − 1ξn(x)≥u)

2
]

≤ O(σn|log(σn)|1/2) when σn → 0. (14)

Hence, if X is bounded:

E
[
(|Au(ξ)| − |Au(ξn)|)2

]
= E

[(∫

X
1ξ(x)≥u − 1ξn(x)≥udµ

)2]

≤
∫

X
E
[
(1ξ(x)≥u − 1ξn(x)≥u)

2
]
dµ

≤ C‖σn(.)‖∞|log‖σn(.)‖∞|1/2 (15)

when n → 0 and ‖σn(.)‖∞ → 0.

Therefore, this simple result shows that the mean square convergence of

|Au(ξn)| to |Au(ξ)| is related to the mean square convergence of ξn to ξ, hence,

7
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due to (5), to the regularity of the covariance and the fill-in distance of X.

Informally speaking, we can say that using an approximation will be more ef-

ficient than a mere Monte Carlo approach if the regularity of ξ compensates

for the slowness of filling X, which of course increases as the dimension d of X
increases. By choosing the xis on a lattice, the fill distance can be made such

that hn = O(n−1/d). Then, the convergence of |Au(ξn)| to |Au(ξ)| when the xis

fill X regularly, is faster than Monte Carlo if ν > 3d/2.

3 Convergence acceleration

3.1 Control of convergence

Of course, sampling X regularly as above may be suboptimal when the eval-

uations of f are sequential. This section addresses the problem of choosing

a sequence (xn)n∈N so that the error of volume approximation conditioned on

ξ(xi) = f(xi), i = 1, 2, . . . decreases rapidly. More precisely, a desirable strategy

would consist in choosing

xn = argmin
xn∈X

Υn(xn) := E
[
(|Au(ξ)| − |Au(ξn)|)2 | Zn−1

]
, (16)

where for all n, Zn = (ξ(x1), . . . , ξ(xn)). Note that Υn(xn) can also be written

as

Υn(xn) = E
[
E
[
(|Au(ξ)| − |Au(ξn)|)2 | Zn

]
| Zn−1

]
. (17)

The distribution of |Au(ξ)| conditioned on observations is generally unknown

(see Adler, 2000, Section 4.4) and therefore, E
[
(|Au(ξ)|−|Au(ξn)|)2 | Zn

]
cannot

be easily determined analytically. To overcome this difficulty, we could minimize

a Monte Carlo approximation of (16) instead, namely

xn =argmin
xn∈X

Υn,m(xn) :=

E

[
m−1

m∑

i=1

(|Au(ξn + ζin)| − |Au(ξn)|)2
∣∣ Zn−1, {ζin, i ≤ m}

]
,

(18)

where the random processes ζin are m independent copies of ξ conditioned on

Zn = (0, . . . , 0). The program (18) becomes numerically tractable if we also

replace |Au(·)| by its Monte Carlo estimator |Au(·)|l. Whereas simulating the

conditioned processes ζin is easy in principle (see Chilès and Delfiner, 1999,

chap. 7), it is also computationally intensive since it typically requires O(l3)

operations to simulate ξ at given points x1, . . . , xl. Since l has to be high enough
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to ensure a degree of accuracy of the estimator |Au(·)|l, conditional simulations

ought to be avoided.

An alternative solution is to approximate E
[
(|Au(ξ)| − |Au(ξn)|)2 | Zn

]
by

E
[
(|Au(ξ)|l − |Au(ξn)|l)2 | Zn, {Xi, i ≤ l}

]
, for l high enough. Then, the

Minkowski inequality gives

E
[
(|Au(ξ)|l−|Au(ξn)|l)2 | Zn, {Xi, i ≤ l}

]1/2

≤ 1

l

l∑

i=1

E
[
(1ξ(Xi)>u − 1ξn(Xi)>u)

2 | Zn, {Xi, i ≤ l}
]1/2

.
(19)

This makes possible to build a stepwise uncertainty reduction algorithm as pre-

sented in the next section.

3.2 A stepwise uncertainty reduction algorithm

Denote by S = {y1, . . . , yl} a set of l independent sample values of X . Given

a finite sequence (xi)1≤i≤n−1 of evaluation points, we wish to obtain a new

point xn that yields the largest decrease of the upper bound of the volume

approximation mean-square error obtained in (19), i.e.,

xn = argmin
xn∈S

Υ′
n(xn) :=

1

l

l∑

i=1

E
[
(1ξ(yi)>u − 1ξn(yi)>u)

2 | Bn−1

]1/2
, (20)

where Bn denotes the event {ξ(x1) = f(x1), . . . , ξ(xn) = f(xn)}, n > 0.

A few steps are needed to transform (20) into a numerically tractable pro-

gram. First, note that

E
[
(1ξ(yi)>u−1ξn(yi)>u)

2 | Bn−1

]

=

∫

z∈R
E
[
(1ξ(yi)>u − 1ξn(yi)>u)

2 | ξ(xn) = z,Bn−1

]

× pξ(xn)|Bn−1
(z)dz , ∀i ∈ {1, . . . , l},

(21)

where pξ(x)|Bn−1
denotes the density of ξ(x) conditionally to Bn−1. However,

intrinsic Kriging assumes that the mean of ξ is unknown and therefore, for

x ∈ X, E
[
(1ξ(x)>u−1ξn(x)>u)

2 | ξ(xn) = z,Bn−1

]
cannot be determined exactly.

Indeed, the values of an(x), bn(x) and σ̃n(x) in (10) are unknown in practice.

Nevertheless, (8) leads to the approximation

E
[
(1ξ(x)>u − 1ξn(x)>u)

2 | ξn(x)
]

≈ υn(x) := Ψ

(∣∣∣∣
u − ξn(x)

σn(x)

∣∣∣∣
)

. (22)
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Finally, define a discretization operator ∆Q, which can be written for in-

stance as

∀h ∈ R , ∆Qh = z1 +

Q∑

i=2

(zi − zi−1)1]zi,+∞[(h)

with z1 < z2 < · · · < zQ. We can now write (20) as a numerically tractable

program:

xn = argmin
xn∈S

Υ′′
n(xn) :=

1

l

l∑

i=1

( Q∑

j=1

P{∆Qξ(xn) = zj |Bn−1}E
[
υn(yi) | ξ(xn) = zj , Bn−1

])1/2

. (23)

An informal interpretation of (23) is that xn minimizes the error of predic-

tion of 1ξ(x)>u by 1ξn(x)>u, which is measured via υn(x), averaged on X under

the distribution µ, and conditioned on the observations. When Υ′′
n(x) becomes

small for all x ∈ S, |Au(ξn)|l conditioned on observations provides a good ap-

proximation of Pu. As will be seen in Section 4, the proposed strategy is likely

to achieve very efficient convergences.

4 Example

This section provides a one-dimensional illustration of the proposed algorithm.

We wish to estimate (1), where f(x) is a given function defined over R and

X ∼ µ = N (0, σ2). We assume that f is a sample path of ξ. After a few

iterations, the unknown function f (as shown in Figure 1) has been sampled so

that the probability of excursion P{ξ(x) > u | ξ(xi) = f(xi), i = 1 . . . , n} is

determined accurately in the region where the probability density of X is high.

This example illustrates the effectiveness of the proposed algorithm. Note that

in practice, a parametrized covariance has to be chosen for ξ and its parameters

should be estimated from the data, using, for instance, a maximum likelihood

approach (e.g. Stein, 1999).

5 Appendix : Intrinsic Random Functions

In this section, we intend to summarize the most important notions about in-

trinsic random functions (Matheron, 1973). Let N be a vector space of functions

{bTr(x), b ∈ Rl} and ξ(x) be a random process with mean m(x) ∈ N . The
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Figure 1. Top: threshold u (horizontal solid line), function f (thin line), n=10

evaluations as obtained by the proposed algorithm using l = 800 and Q = 20

(squares), IK approximation fn (thick line), 95% confidence intervals computed

from the IK variance (dashed lines). Middle: probability of excursion (solid

line), probability density of X (dotted line). Bottom: graph of Υ′′
n(yi), i =

1, . . . , l = 800, the minimum of which indicates where the next evaluation of f

should be done (i.e., at approximately 0.75).

11

97



main idea of intrinsic random functions is to find some linear transformations

of ξ(x) filtering out the mean so as to consider a zero-mean process again.

Let Λ̃ be the vector space of finite-support measures, i.e. the space of linear

combinations
∑n

i=1 λiδxi , where δx stands for the Dirac measure, such that for

any B ⊂ X, δx(B) equals one if x ∈ B and zero otherwise. Let Λ̃N⊥ be the

subset of the elements of Λ̃ that vanish on N . Thus, λ ∈ Λ̃N⊥ implies

〈λ, f〉 :=
n∑

i=1

λif(xi) = 0 , ∀ f ∈ N .

In the following, we shall restrict ourselves to the case where N is a vector space

of polynomials of degree at most equal to l. Denote by Nl the linear hull of all

multivariate monomials xi, where i = (i1, . . . , id) are multi-indexes such that

|i| := i1 + · · · + id ≤ l, and define Λ̃l := Λ̃N⊥
l

.

Let ξG(λ) be a linear map on Λ̃l, with values in L2(Ω,A,P), the space of

second-order random variables. Assume that E[ξG(λ)] = 0 for all λ and that

k(λ, µ) := cov[ξG(λ), ξG(µ)] =
∑

i,j

λiµjk(xi, yj) ,

where k(x, y) is a symmetric conditionally positive definite function (i.e. a

function such that k(x, y) = k(y, x) and k(λ, λ) ≥ 0 for all λ ∈ Λ̃l). Then, ξG(λ)

is a generalized random process and k(x, y) is called a generalized covariance

(note that any covariance is a generalized covariance). Let H̃l be the subspace

of L2(Ω,A,P) spanned by ξG(λ), λ ∈ Λ̃l. Since random variables in H̃l are

zero-mean, the inner product of L2(Ω,A,P) can be expressed in H̃l as

(ξG(λ), ξG(µ))L2(Ω,A,P) = k(λ, µ) , λ, µ ∈ Λ̃l .

Thus, the bilinear form k(λ, µ) endows Λ̃l and H̃N⊥ with a structure of pre-

Hilbert space. The completions Hl and Λl of H̃l and Λ̃l under this inner product

define isomorphic Hilbert spaces. ξG(λ) can be extended on Λl by continuity.

Simplifying hypotheses are introduced in the next paragraph.

Let τh : Λ̃l → Λ̃ be the translation operator such that for λ =
∑

i λiδxi ∈ Λ̃l,

τhλ =
∑

i λiδxi+h. Note that Λ̃l is stable under translation since Nl is itself

a translation-stable space of functions. Assume further that the generalized

covariance k(x, y) is invariant by translation. In the following, we shall write

k(h) with h = x − y instead of k(x, y), when the covariance is assumed to be

stationary. Then τh is continuous and can be uniquely extended on Λl.
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Definition 1. Let ξG(λ) be a zero-mean generalized random process defined

on Λl, with stationary generalized covariance k(h). The random process h 7→
ξG(τhλ), λ ∈ Λl, is therefore weakly stationary. ξG(λ), λ ∈ Λl, is then an

Intrinsic Random Function of order l, or IRF(l) in short.

If ξ(x), x ∈ X, is a second-order random process, with mean in Nl and

covariance k(x, y), the linear map

ξ : Λ̃l → H
λ =

∑n
i=1 λiδxi 7→ ξ(λ) :=

∑n
i=1 λiξ(xi) ,

extends ξ(x) on Λ̃l, where H stands for the Hilbert space generated by ξ(x),

x ∈ X. Since k(x, y) is positive definite, (λ, µ)Λ̃l
:= (ξ(λ), ξ(µ))H defines an

inner product on Λ̃l. Let Λl be the completion of Λ̃l under this inner product

and extend ξ(λ) on Λl by continuity (a generalized random process is thus

obtained).

Definition 2. Let ξG(λ) be an IRF(l). A second-order random process ξ(x),

x ∈ X, is a representation of ξG(λ) iff

ξG(λ) = ξ(λ), ∀λ ∈ Λl .

If ξ0(x) is any representation of ξG(λ), other representations of ξG(λ) can be

written as

ξ(x) = ξ0(x) +

q∑

i=1

Bipi(x) , (24)

where the pis form a basis of Nl and the Bis are any second-order random

variables. Thus, the representations of an IRF(l) constitute a class of random

processes with mean in Nl (Matheron, 1973).
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2.5 Stepwise Uncertainty Reduction to estimate a quantile

This contribution was presented in the Journées de Statistique in 2010. It follows
a collaboration with EDF R&D on assessing the risk of river flooding, which was
formalized as a problem of quantile estimation. It details a general framework to
carry out sequential Bayesian estimation based on the simulation of sample paths of
ξ .



Évaluation d’un risque d’inondation fluviale par
planification séquentielle d’expériences

Aurélie Arnaud1, Julien Bect2, Mathieu Couplet1, Alberto Pasanisi1

et Emmanuel Vazquez2,⋆

1. EDF R&D, Dépt. Management des Risques Industriels, 78401, Chatou, France

2. SUPELEC, Dépt. Signaux & Systèmes Électroniques, 91192 Gif-sur-Yvette, France

Résumé : Nous nous intéressons au risque d’inondation d’une zone habitable ou industrielle, située à
proximité d’un fleuve. Le risque est évalué à partir d’un modèle de la ligne d’eau du fleuve en présence
d’incertitudes sur le débit et les caractéristiques du lit fluvial. Comme l’évaluation du modèle de la
hauteur d’eau, pour un débit et des caractéristiques du lit fixés, est potentiellement coûteux en temps de
calcul, l’estimation d’une probabilité de dépassement de seuil ou d’un quantile de la hauteur d’eau doit
en pratique être conduite avec un budget réduit de simulations. Dans cet article, nous nous intéressons
spécifiquement à l’estimation d’un quantile et nous proposons une méthode de planification d’expériences
séquentielle qui construit une approximation du modèle par krigeage en choisissant les points d’évaluation
du modèle de manière à réduire la variance d’estimation du quantile.

Abstract : The risk of river flooding in an inhabitable or industrial area is usually assessed by modeling
the water-surface profile of the river, subject to uncertainties on the river discharge and the features of
the riverbed. Because a single evaluation of such a model for known discharge and riverbed features is
potentially time-consuming, the estimation of a probability of flooding must be achieved with a small
budget of simulations. In this paper, we focus on the estimation of a water-level quantile. We propose
a sequential Bayesian algorithm that selects relevant simulations to reduce the variance of estimation of
the quantile.

1 Introduction
Cette étude concerne l’estimation du risque d’inondation d’une zone habitable ou in-

dustrielle, située à proximité d’un fleuve. Soit f la fonction à valeurs réelles, représentant la
hauteur de l’eau du fleuve en un point donné, et dont l’argument est un vecteur de facteurs
à valeurs dans X ⊆ Rd. Ces facteurs sont les grandeurs (physiques, morphologiques, etc.)
susceptibles d’avoir une influence sur la hauteur d’eau observée. L’ensemble X est supposé
muni d’une mesure de probabilité PX, qui modélise le fait que les facteurs varient au cours
du temps (on peut penser par exemple au débit du fleuve) ou qu’ils sont mal connus (par
exemple, les caractéristiques du lit du fleuve). Nous nous intéressons à l’estimation du
quantile qα(f) = inf{u ∈ R; PX{f ≤ u} ≥ α}, pour une probabilité α donnée et proche
de 1. En pratique, la connaissance d’un tel quantile permet de dimensionner la hauteur
d’un ouvrage de protection.

La méthode standard pour estimer qα(f) consiste à simuler unm-échantillonX1, . . . , Xm

selon la loi PX, puis à considérer l’estimateur empirique

q̂α,m(f) = min

{
y;

1

m

m∑

i=1

1Yi≤y ≥ α

}
= Y(⌈αm⌉

) (1)

où Yi = f(Xi), i = 1, . . . , m, et Y(i) désigne la statistique d’ordre de rang i de l’échantillon

Y1, . . . , Ym. Il est bien connu que
√
m
(
q̂α,m(f)−qα(f)

)
→m N

(
0, σ2

)
, avec σ2 = α(1−α)

pY (qα(f))2
,

1
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où pY est la densité de Y = f(X), X ∼ PX (voir par exemple [11]). Il est donc générale-
ment nécessaire de simuler un échantillon de grande taille afin d’obtenir une estimation
satisfaisante. Cependant, dans le cas où l’évaluation de la fonction f est coûteuse (par
exemple, lorsqu’une évaluation du modèle en un point de l’espace des facteurs nécessite
plusieurs heures de calcul), le budget d’évaluations de f sera très limité. La recherche d’es-
timateurs de quantile avec une faible variance constitue donc un enjeu important pour
l’analyse de risque à partir de modèles coûteux. L’échantillonnage d’importance est l’idée
la plus naturelle pour atteindre cet objectif [2, 4]. De plus, les techniques d’échantillon-
nage d’importance peuvent être sensiblement améliorées si l’on est capable de simuler
facilement une variable aléatoire auxiliaire, disons Z, fortement corrélée avec Y [2,5]. Une

telle variable aléatoire peut être obtenue en construisant une approximation f̂ de f et en
posant Z = f̂(X), X ∼ PX.

Dans cet article, nous proposons une approche fondée sur un algorithme bayésien de
planification séquentielle d’expériences, inspiré des algorithmes bayésiens pour l’optimisa-
tion globale (voir par exemple [6,7,10]) et d’un algorithme pour estimer des probabilités de
défaillance proposé dans [9]. On notera aussi que l’algorithme proposé possède des points

communs avec [8]. Supposons que les points Xi
i.i.d∼ PX, i = 1, . . . , m aient été générés

mais qu’il n’est pas possible de calculer (1) en raison du coût d’évaluation de f . Notre ob-
jectif est de choisir séquentiellement des points d’évaluations x1, . . . , xn ∈ {X1, . . . , Xm}
de f afin de construire un (méta-)estimateur q̃α,n de q̂α,m(f), consistant et rapidement
convergent, de telle sorte que l’on puisse avoir q̃α,n très proche de q̂α,m(f) avec n << m.
L’algorithme proposé est exposé dans la section 2. La section 3 fournit une évaluation par-
tielle et empirique des performances de l’algorithme. Enfin la section 4 détaille le contexte
applicatif et présente les résultats obtenus.

2 Algorithme séquentiel bayésien pour l’estimation

de quantile
Dans [9], l’estimation d’une probabilité de défaillance est formulée comme un pro-

blème de planification séquentielle d’expériences dans un cadre bayésien, où l’information
provenant des expériences effectuées à un instant est combinée à un a priori sur la fonc-
tion f , afin de choisir les expériences futures. Nous adoptons ici le même point de vue
pour l’estimation d’un quantile. L’information a priori sur f est spécifiée sous la forme
d’un processus aléatoire ξ dont la loi est choisie (ou estimée) par l’utilisateur. En général,
on se restreint au cas des processus gaussiens, car il est possible dans ce cas d’écrire la
loi a posteriori du processus après n évaluations de f en utilisant le krigeage (voir par
exemple [3, 9, 10]).

Dans ce cadre, considérons l’estimateur q̃α,n = E[ q̂α,m(ξ) | Fn ], où Fn désigne la σ-
algèbre engendrée par les variables aléatoires ξ(x1), . . . , ξ(xn) et les points X1, . . . , Xm.
En pratique, q̃α,n peut être approché par l’estimateur q̃ ′

α,n construit de la manière suivante.
A-1 Pour i = 1, . . . , N :

(a) Générer une trajectoire f (n,i) selon la loi de ξ conditionnée par ξ(x1), . . . , ξ(xn), évaluée aux
points Xj.

(b) Calculer q
(n,i)
α = q̂α,m(f (n,i)), en utilisant l’échantillon

{
f (n,i)(Xj)

}
j=1,...,m

.

2
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A-2 On obtient ainsi un échantillon q
(n,1)
α , . . . , q

(n,N)
α distribué selon la loi a posteriori de q̂α,m(ξ).

Définir q̃ ′
α,n = 1

N

∑N
i=1 q

(n,i)
α .

Pour l’étape A-1.(a), la technique usuelle est celle du conditionnement par krigeage
(pour plus de détails, voir par exemple [3,10]). Notons qu’évaluer f (n,i) en un grand nombre
de points est généralement coûteux en temps de calcul. Ceci limite donc la valeur de m
que l’on peut considérer en pratique.

Nous cherchons ensuite à réduire l’erreur d’estimation a posteriori de q̂α,m(ξ) par q̃α,n
en choisissant les points d’évaluation de f (voir [9] pour des explications plus détaillées).
Pour ce faire, nous adoptons une stratégie de planification à un pas, consistant à construire
la suite (xn)n≥1 définie itérativement par

xn = argmin
x∈{X1,...,Xm}

Υn(x) := E
{
(q̂α,m(ξ) − q̃α,n)

2 | Fn−1

}
, (2)

où q̃α,n est calculé à partir des observations ξ(xi), i = 1, . . . , n−1 et de ξ(x) qui n’a pas été
observée. Notons que pour tout n, xn est une fonction de ξ(x1), . . . , ξ(xn−1). En pratique,
le calcul du critère Υn en un point x se fait en deux étapes en remarquant que

Υn(x) = E

{
E
{
(q̂α,m(ξ) − q̃α,n)

2 | Fn

} ∣∣∣Fn−1

}
.

Plus précisément, le calcul numérique de l’espérance conditionnelle intérieure peut se faire
d’après la procédure suivante.

B-1 Faire l’étape A-1 ci-dessus en conditionnant les trajectoires par ξ(x1), . . . , ξ(xn−1), et ξ(x) = y

B-2 Définir q̃ ′
α,n(x, y) =

1
N

∑N
i=1 q

(n,i)
α et Γn(x, y) =

1
N−1

∑N
i=1(q

(n,i)
α − q̃ ′

α,n(x, y))
2.

Le calcul numérique de l’espérance conditionnelle extérieure consiste à approcher l’in-
tégrale

∫
R Γn(x, y) pξ(x)|Fn−1(y)dy, où pξ(x)|Fn−1 désigne la densité conditionnelle de ξ(x)

par rapport à Fn−1. Ceci ne pose pas de problème en pratique.

3 Exemple illustratif
Cette section illustre le comportement de l’algorithme proposé lorsque f est une fonc-

tion d’une seule variable scalaire. Nous considérons l’expérience suivante. Nous simulons
une trajectoire f d’un processus gaussien sur X = R, de moyenne nulle et avec une fonc-
tion de covariance stationnaire de Matérn (voir par exemple [10]) écrite sous la forme
k(h) = σ2

2ν−1Γ(ν)
sKν(s), avec s = 2ν1/2h/ρ, σ2 = 1, ν = 3 et ρ = 1/3. Nous cherchons

à estimer le quantile qα(f), avec α = 0.97, lorsque X est muni d’une probabilité uni-
forme sur [−1, 1]. Nous choisissons m = 500 points et N = 200. La figure 1 présente le
comportement de l’algorithme de planification séquentielle après n = 10 itérations. Nous
constatons que les points d’évaluation se concentrent dans les régions où les valeurs de f
sont proches de qα.

Pour compléter cet exemple, nous répétons cette expérience K = 2000 fois, et nous
calculons les quantiles à 0.005 et 0.995 de l’erreur relative de l’estimateur proposé en
fonction du nombre d’itérations. Les résultats sont reportés dans la table 1. On constate
empiriquement que l’algorithme a un comportement satisfaisant.
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Figure 1: Haut : Fonction f (en trait interrompu), n=10 évaluations de f construites d’après l’algo-

rithme proposé (carrés), approximation f̂n par krigeage (en trait continu), intervalles de confiance à 95%
calculés en utilisant la variance de krigeage (grisé), estimation du quantile à 97% (ligne horizontale). Bas :
Graphe de Υn(xi), i = 1, . . . ,m = 500. Le minimum de ce graphe indique la position de la prochaine
évaluation de f (à environ x = 0.2).

n 4 10 15 18 20

[i−, i+] [−12.9, 9.1] [−0.92, 1.31] [−0.12, 0.072] [−2.210−2, 2.3 10−2] [−4.5 10−3, 7.0 10−3]

Table 1: Intervalles empiriques [i−, i+] à 99% de l’erreur relative e = (q̃α,n − q̂α,m(ξ))/q̂α,m(ξ) en
fonction de n.

4 Application industrielle
On s’intéresse à une portion de la Garonne, d’environ 50 km, comprise entre Tonneins

(ville du Lot-et-Garonne, située en aval de la confluence avec le Lot) et La Réole (ville de
Gironde, située à la limite de la zone d’influence hydrodynamique de la marée). Bien que
cette portion ne présente pas d’installations industrielles importantes, elle se rapproche des
configurations fluviales modélisées dans le cadre d’études à plus forts enjeux (notamment
de protection d’installations nucléaires), et constitue donc un bon cas-test à la fois pour
les études hydrauliques [1] et les analyses de risque.

Nous supposons ici que le problème est unidimensionnel. Plus particulièrement, la
grandeur d’intérêt est la ligne d’eau, c’est-à-dire la relation, dépendante du temps, entre la
hauteur d’eau et une abscisse curviligne. Le phénomène physique est régi par les équations
de Saint-Venant qui lient la hauteur d’eau au débit, à la section mouillée, aux apports de
débits latéraux, à la pente du tronçon et aux pertes de charges par frottement entre l’eau
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et le lit fluvial. Nous considérons une modélisation dite « en lit composé », avec un débit
de crue constant (régime permanent) et des apports latéraux nuls. Pour des raisons de
simplicité, nous ne modélisons pas les zones d’expansion de la crue, une fois que la hauteur
d’eau a dépassé la côte de la berge. Par conséquent, le modèle aura tendance à surestimer
la hauteur d’eau. Les résultats obtenus ont uniquement une valeur d’exemple. Une section
fluviale comporte ainsi deux zones : un lit mineur (zone principale d’écoulement) et un lit
majeur (zone élargie qui est investie en présence de crues importantes). Ces deux zones
sont caractérisées par des sols de nature différente et, par conséquent, par des rugosités
différentes, exprimées classiquement par des coefficients de frottement de Strickler. Les
coefficients de Strickler permettent d’évaluer, en fonction du débit et de la morphologie
de la section fluviale, les pertes de charges dans les équations de Saint Venant. Ils ont la
particularité de fournir une mesure décroissante du frottement : plus la valeur du coefficient
de Strickler est faible, plus les pertes de charge seront élevées. Le calcul hydraulique est
réalisé à l’aide du logiciel Mascaret développé par EDF-R&D et le CETMEF (Centre
d’Etudes Techniques Maritimes et Fluviales) et disponible gratuitement.

Dans le cadre de cette étude, les grandeurs physiques supposées incertaines sont le
débit, et les coefficients de frottement, affectés par une incertitude de type épistémique, due
à un manque de connaissance. La morphologie du cours d’eau et les conditions limites sont
considérées connues. La modélisation probabiliste du débit s’avère très facile en pratique
car l’historique du débit du fleuve est bien connu. Le maximum annuel du débit peut
être modélisé de manière très satisfaisante par une loi de Gumbel. La modélisation de
l’incertitude des coefficients de Strickler est en revanche délicate. Ces derniers sont en effet
des paramètres du modèle, mais ils ne sont pas directement observables. Il est possible de
les estimer indirectement, à partir de couples hauteur-débit, relevés à différents endroits
du fleuve. Comme ces estimations sont conduites dans un cadre bayésien, nous avons
accès à la loi a posteriori des coefficients de Strickler. Nous choisissons ici de modéliser
l’incertitude sur ces facteurs par leur loi a posteriori. Enfin, pour des raisons tenant à
l’identifiabilité des coefficients de Strickler à partir des données disponibles, seuls deux
coefficients seront considérés (un coefficient global pour le lit mineur du tronçon, et un
autre pour le lit majeur). Notons alors que l’espace des facteurs X est de dimension 3.
Nous testons le comportement de l’algorithme proposé pour α = 0.99 et m = 2000 points.
Les résultats sont présentés dans la figure 2 et paraissent satisfaisants.

En conclusion, la technique que nous proposons ici nous semble être intéressante dans le
domaine de l’analyse de risque lorsque cette analyse est fondée sur l’évaluation de modèles
informatiques coûteux et qui ne permettent pas l’utilisation d’estimateurs empiriques
classiques.

Remerciements. Cette étude a été en partie financée par l’Agence Nationale de la Recherche française
(ANR) dans le contexte du projet OPUS (réf. ANR-07-CIS7-010 et ANR-07-TLOG-015).
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Chapter 3
Bayesian optimization

3.1 Overview

This chapter consists of a selection of contributions on Bayesian optimization.
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3.2 A new integral loss function for Bayesian optimization

This article is a technical report available on arXiv.org (2014) suggesting the use of
a new loss function for Bayesian optimization.
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A new integral loss function for Bayesian optimization
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Abstract

We consider the problem of maximizing a real-valued continuous function f using a Bayesian approach. Since the
early work of Jonas Mockus and Antanas Žilinskas in the 70’s, the problem of optimization is usually formulated
by considering the loss function max f − Mn (where Mn denotes the best function value observed after n evaluations
of f ). This loss function puts emphasis on the value of the maximum, at the expense of the location of the maximizer.
In the special case of a one-step Bayes-optimal strategy, it leads to the classical Expected Improvement (EI) sampling
criterion. This is a special case of a Stepwise Uncertainty Reduction (SUR) strategy, where the risk associated to
a certain uncertainty measure (here, the expected loss) on the quantity of interest is minimized at each step of the
algorithm. In this article, assuming that f is defined over a measure space (X, λ), we propose to consider instead
the integral loss function

∫
X

( f − Mn)+ dλ, and we show that this leads, in the case of a Gaussian process prior, to
a new numerically tractable sampling criterion that we call EI2(for Expected Integrated Expected Improvement). A
numerical experiment illustrates that a SUR strategy based on this new sampling criterion reduces the error on both
the value and the location of the maximizer faster than the EI-based strategy.

Keywords: Bayesian optimization, computer experiments, Gaussian process, global optimization, sequential design
62L05; 62M20; 62K20; 60G15; 60G25; 90C99

1. Introduction

Let f : X → R be a real-valued continuous function defined on a compact subset X of Rd, d ≥ 1. We consider
the problem of finding an approximation of the maximum of f ,

M = max
x∈X

f (x) ,

and of the set of maximizers,
x⋆ ∈ argmax

x∈X
f (x) ,

using a sequence of queries of the value of f at points X1, X2, . . . ∈ X. At iteration n + 1, the choice of the evaluation
point Xn+1 is allowed to depend on the results f (X1), . . . , f (Xn) of the evaluation of f at X1, . . . , Xn. Thus, the
construction of an optimization strategy X = (X1, X2, . . .) can be seen as a sequential decision problem.

We adopt the following Bayesian approach for constructing X. The unknown function f is considered as a sample
path of a random process ξ defined on some probability space (Ω,B,P0), with parameter x ∈ X. For a given f , the
efficiency of a strategy X can be measured in different ways. For instance, a natural loss function for measuring the
performance of X at iteration n is

εn(X, f ) = M − Mn , (1)

with Mn = max ( f (X1), . . . , f (Xn)). The choice of a loss function εn, together with a random process model, makes it
possible to define the following one-step Bayes-optimal strategy:


X1 = xinit

Xn+1 = argminxn+1∈X En

(
εn+1(X, ξ)

∣∣∣ Xn+1 = xn+1

)
, ∀n ≥ 1, (2)
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where En denotes the conditional expectation with respect to the σ-algebra Fn generated by the random variables
X1, ξ(X1), . . . , Xn, ξ(Xn). This Bayesian decision-theoretic point of view has been initiated during the 70’s by the
work of Jonas Mockus and Antanas Žilinskas (see Mockus et al., 1978; Mockus, 1989, and references therein).

For instance, consider the loss defined by (1). Then, at iteration n + 1, the strategy (2) can be written as

Xn+1 = argmin
xn+1∈X

En (M − Mn+1 | Xn+1 = xn+1) (3)

= argmax
xn+1∈X

ρn (xn+1) ,

where ρn (x) ≔ En
(
max (ξ(x) − Mn, 0)

)
is the Expected Improvement (EI) criterion, introduced by Mockus et al.

(1978) and later popularized through the EGO algorithm (Jones et al., 1998), both in the case of Gaussian process
models (for which ρn (x) admits a closed-form expression as a function of the posterior mean and variance of ξ at x).

The contribution of this paper is a new loss function for evaluating the efficiency of an optimization strategy,
from which we can derive, in the case of a Gaussian process prior, a numerically tractable sampling criterion for
choosing the evaluations points according to a one-step Bayes-optimal strategy. Section 2 explains our motivation
for the introduction of a novel loss function, and then proceeds to present the loss function itself and the associated
sampling criterion. The numerical implementation of this new sampling criterion is discussed in Section 3. Finally,
Section 4 presents a one-dimensional example that illustrates qualitatively the effect of using our new loss function,
together with a numerical study that assesses the performance of the criterion from a statistical point of view on a set
of sample paths of a Gaussian process.

2. An integral loss function

Observe that (3) can be rewritten as

Xn+1 = argmin
xn+1∈X

En (Hn+1 | Xn+1 = xn+1) , (4)

with Hn = En (M − Mn). TheFn+1-measurable random variable Hn+1 in the right-hand side of (4) can be seen as a mea-
sure of the uncertainty about M at iteration n+1: indeed, according to Markov’s inequality, M ∈ [Mn+1; Mn+1 + Hn+1/δ]
with probability at least 1−δ under Pn+1. Thus, this strategy is actually a special case of stepwise uncertainty reduction
(Vazquez and Piera-Martinez, 2006; Villemonteix et al., 2009; Bect et al., 2012; Chevalier et al., 2013).

In a global optimization problem, it is generally of interest to obtain a good approximation of both M and x⋆.
The classical loss function εn = M − Mn is not very satisfactory from this respect, since the associated uncertainty
measure Hn = En (M − Mn) puts all the emphasis on M, at the expense of x⋆. Other uncertainty measures have
been proposed recently, which take the opposite approach and focus on x⋆ only (Villemonteix et al., 2009; Picheny,
2014a,b).

Assume now thatX is endowed with a finite positive measure λ (e.g., Lebesgue’s measure restricted toX), and let
us remark that the classical loss function (1) is proportional to λ(X) (M−Mn), that is, to the area of the hatched region
in Figure 1a. This illustrates that Hn = En(εn) is only a coarse measure of the uncertainty about the pair (M, x⋆). We
propose to use instead the integral loss function

ε′n(X, f ) =
∫

X

( f (x) − Mn)+ λ(dx), (5)

where z+ ≔ max (z, 0). This new loss function is depicted in Figure 1b. The associated uncertainty measure H′n =
En

(
ε′n

)
should, intuitively, provide a finer measure of the uncertainty about the pair (M, x⋆) and thereby lead to better

optimization algorithms. The corresponding stepwise uncertainty reduction strategy can be written as

Xn+1 = argmin
xn+1∈X

En

(∫

X

(ξ(y) − Mn+1)+ λ(dy)
∣∣∣ Xn+1 = xn+1

)

= argmin
xn+1∈X

En

( ∫

X

En+1
(
(ξ(y) − Mn+1)+

)
λ(dy)

∣∣∣ Xn+1 = xn+1

)

= argmin
xn+1∈X

ςn (xn+1) , (6)
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where

ςn (xn+1) ≔ En

(∫

X

ρn+1 (y) λ(dy)
∣∣∣∣ Xn+1 = xn+1

)
(7)

is a new sampling criterion than we call EI2(for Expected Integrated Expected Improvement). Note that the strategy (6)
is very different in spirit from the classical one, associated to the EI criterion. Indeed, while the classical strategy
selects a point where the current EI is maximal, the new strategy selects a point where the integral of the future EI is
minimal, in expectation.

Remark. The sampling criterion defined by (7) is a one-point sampling criterion; that is, a sampling criterion for use
in a fully sequential setting. A multi-point sampling criterion can be defined similarly, for use in a batch-sequential
setting:

ςn,r (xn+1, . . . , xn+r) ≔ En

(∫

X

ρn+r (y) λ(dy)
∣∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)
(8)

(see Chevalier and Ginsbourger (2013); Chevalier et al. (2013) and references therein for more information on multi-
point stepwise uncertainty reduction strategies).

X

M

Mn

X

M

Mn

(a) (b)

Figure 1: A diagrammatic interpretation of the loss functions εn (left plot) and ε′n (right plot).

3. Numerical approximation of the sampling criterion

Numerical approximations of the sampling criterion ςn can be obtained with an acceptable computational com-
plexity when ξ is a Gaussian process. Rewrite (7) as

ςn (xn+1) =
∫

X

ρn (y; xn+1) λ(dy) , (9)

where ρn (y; xn+1), which we shall call the Expected Expected Improvement (EEI) at y ∈ X given a new evaluation
at xn+1 ∈ X, is defined by

ρn (y; xn+1) ≔ En

(
ρn+1 (y)

∣∣∣ Xn+1 = xn+1

)
. (10)

(Note that ρn (y; xn+1) , ρn(y) because of the implicit dependency of ρn+1 (y) on the future maximum Mn+1.)
It turns out that ρn (y; xn+1) can be expressed in closed form, as a function of the posterior mean and covariance

of ξ, using the special functions Φ, the cumulative distribution function of the univariate standard normal distribution,
and Φ2, the cumulative distribution function of the bivariate standard normal distribution. To see this, observe that

(ξ(y) − Mn+1)+ = M̃n+2 − Mn+1 =
(
M̃n+2 − Mn

) − (
Mn+1 − Mn

)
, (11)
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where M̃n+2 = max
(
Mn+1, ξ(y)

)
. Therefore, we have

ρn (y; xn+1) = En
(
(ξ(y) − Mn+1)+ | Xn+1 = xn+1

)
= ρn, 2 (xn+1, y) − ρn (xn+1) , (12)

where ρn, r denotes the r-point expected improvement criterion:

ρn, r (xn+1, . . . , xn+r) ≔ En

(
Mn+r − Mn

∣∣∣ Xn+k = xn+k, 1 ≤ k ≤ r
)
. (13)

Equation (12) makes it possible to compute ρn (y; xn+1) using the closed-form expression obtained for the multi-
point EI by Chevalier and Ginsbourger (2013).

Assuming that λ(X) < +∞, a simple idea for the computation of the integral overX in (9) is to use a Monte Carlo
approximation:

ςn (xn+1) ≈ λ(X)
m

m∑

i=1

ρn (Yi; xn+1)

where (Yi)1≤i≤m is a sequence of independent random variables distributed according to λ (·) /λ(X). Since ςn has also
to be minimized overX, we can also use the sample (Yi)1≤i≤m to carry out a simple stochastic optimization. In practice
however, we would recommend to use a more advanced sequential Monte Carlo method, in the spirit of that described
in Benassi et al. (2012) and Benassi (2013), to carry out both the integration and the optimization steps.

Remark. Equations (9)–(13) are easily generalized to batch sequential optimization. Define a multi-point EEI by

ρn, r (y; xn+1, . . . , xn+r) ≔ En

(
ρn+r (y)

∣∣∣ Xn+k = xn+k, 1 ≤ k ≤ r
)
.

We have
ρn, r (y; xn+1, . . . , xn+r) = ρn, r+1 (xn+1, . . . , xn+r, y) − ρn (xn+1, . . . , xn+r) .

Then, we can express a multi-point version of the sampling criterion (7) as

ςn, r (xn+1, . . . , xn+r) =
∫

X

ρn, r (y; xn+1, . . . , xn+r) λ (dy) .

4. Numerical study

The numerical results presented in this section have been obtained with STK (Bect et al., 2014), a free GPL-
licenced Matlab/Octave kriging toolbox.

First, we present a simple one-dimensional illustration, whose aim is to contrast qualitatively the behaviour of
a sampling strategy based on the EI2criterion ςn with that of the classical EI-based strategy. Figure 2 depicts a
situation where there is a large expected improvement in a small region of the search domain, and a smaller expected
improvement over a large region of the search domain. In such a situation, the new sampling criterion ςn favors the
large region with a smaller expected improvement, thereby inducing a better exploration of the search domain than ρn.

Figure 3 represents, for both strategies, the average approximation error obtained on a testbed of 2700 sample
paths of a Gaussian process on Rd, d = 3, with zero-mean and isotropic Matérn covariance function, simulated
on a set of m = 1000 points in [0, 1]d. The isotropic form of the Matérn covariance on Rd may be written as
k(x, y) = σ2rν(‖x − y‖/β), with rν : R+ → R+ such that, ∀h ≥ 0,

rν(h) =
1

2ν−1Γ(ν)

(
2ν1/2h

)νKν
(
2ν1/2h

)
,

where Γ is the Gamma function and Kν is the modified Bessel function of the second kind of order ν. Here, σ2 = 1.0,
β = (4·10−2Γ(d/2+1)/πd/2)1/d ≈ 0.2 and ν = 6.5. For each optimization strategy, we use the same covariance function
for ξ than that used to generate the sample paths in the testbed. Before running the optimization strategies, an initial
evaluation point x1 is set at the center of [0, 1]d. For each sample path f , and each n ≥ 1, the estimator x⋆n of x⋆ is
defined as x⋆n = argmaxx∈{x1,...,xn} f (x). Thus, ‖x⋆− x⋆n ‖ is not a decreasing function of n in general. Figure 3 shows that
the approximation errors M −Mn and ‖x⋆ − x⋆n ‖ decrease approximately at the same rate for both strategies; however,
the Euclidean distance of x⋆n to x⋆ is significantly smaller in the case of the new strategy.
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Figure 2: Assessment of the behavior of the sampling criterion ςn (bottom, right) against that of ρn (bottom, left). The objective is to maximize
the function f : x ∈ [−1, 1] 7→ (

0.8x − 0.2
)2
+ exp

(− 1
2 |x + 0.1|1.95/0.11.95) + exp

(− 1
2 (2x − 0.6)2/0.1

) − 0.02 (top, dashed line). Evaluations points
are represented by squares; the posterior mean ξ̂n is represented by a solid line; 95% credible intervals computed using sn are represented by gray
areas. The next evaluation point will be chosen at the minimum of the sampling criterion (vertical solid line).
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Figure 3: Approximation errors of x⋆ (left) and M (right) using the sampling criteria ςn (solid line) and ρn (dashed line), as a function of the number
of evaluations n. More precisely, each plot represents an average approximation error obtained on a testbed of 2700 sample paths of a Gaussian
process onR3, with zero-mean and isotropic Matérn covariance function, simulated on a set of 1000 points in [0, 1]3.
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3.3 Convergence properties of the expected improvement
algorithm with fixed mean and covariance functions

This article in the Journal of Statistical Planning and Inference (2010) shows that
when ξ is a fixed Gaussian process prior satisfying a no-empty-ball property, the
expected improvement algorithm converges to the global optimum of any f in the
RKHS attached to ξ , and almost surely for f drawn from ξ . In 2011, Adam Bull
(The Journal of Machine Learning Research, 2011) extends our results with a (seem-
ingly loose) upper-bound of the convergence rate of the expected improvement strat-
egy. In 2012, Dmitry Yarotsky (Journal of Global Optimization, 2012) gives an ex-
ample of inconsistency of the expected improvement strategy when a Gaussian co-
variance is used. In 2013, he gives an exponential upper-bound of the convergence
rate when f is a univariate analytic function (and a Gaussian covariance is used).
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This paper deals with the convergence of the expected improvement algorithm, a

popular global optimization algorithm based on a Gaussian process model of the

function to be optimized. The first result is that under some mild hypotheses on the

covariance function k of the Gaussian process, the expected improvement algorithm

produces a dense sequence of evaluation points in the search domain, when the

function to be optimized is in the reproducing kernel Hilbert space generated by k.

The second result states that the density property also holds for P�almost all

continuous functions, where P is the (prior) probability distribution induced by the

Gaussian process.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Global optimization is the task of finding the global optima of a real valued function using the results of some pointwise
evaluations, which can be chosen sequentially, or in batches, when parallelization is possible. The function to be optimized is
generally called objective function. In the field of design and analysis of computer experiments, as pioneered by Sacks et al. (1989)
and Currin et al. (1991), the objective function—typically an expensive-to-evaluate numerical model of some physical
phenomenon—is seen as a sample path of a stochastic process. The stochastic model captures prior knowledge about the
objective function and makes it possible to infer the position of the global optima before evaluating the function. This Bayesian
decision-theoretic point of view has been largely explored during the 70’s and the 80’s by the Vilnius school of global optimization
led by Mockus (see Mockus et al., 1978; Mockus, 1989; Törn and Zilinskas, 1989; Zilinskas, 1992, and references therein).

In this paper, we consider the expected improvement (EI) algorithm, a popular optimization algorithm proposed by
Mockus in the 70’s and brought to the field of computer experiments by Jones, Schonlau and Welch (Schonlau and Welch,
1996; Schonlau, 1997; Schonlau et al., 1997; Jones et al., 1998). Let X be a compact subset of Rd, dZ1, and let x be a real
valued Gaussian process with parameter x 2 X. Our goal is to maximize a given objective function, which is assumed to be
a sample path of x. The EI algorithm is a sequential planning strategy that constructs a sequence ðxnÞn2N 2 X

N in such a
way that each evaluation point xn is a function of the previous evaluation points xi, ion, and the corresponding values of
the objective function. Let Mn ¼ xðx1Þ3 � � �3xðxnÞ be the observed maximum at step n; then, a new evaluation point xn+ 1 is
chosen in order to maximize the quantity

rnðxÞ :¼ E½ðxðxÞ�MnÞþ jxðx1Þ, . . . ,xðxnÞ�, ð1Þ
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where zþ ¼ z30. Note that this is equivalent to choosing the evaluation point xn +1 that maximizes E½Mn3xðxÞjxðx1Þ, . . . ,
xðxnÞ� with respect to x. The function rnðxÞ, which is called the expected improvement at x, is the conditional mean excess
of xðxÞ above the current maximum Mn. It is well known that the expected improvement has a closed-form expression,
which can be written using the kriging predictor and its variance (see, e.g., Jones et al., 1998).

This paper addresses the convergence of the EI algorithm, under the assumption that x is a Gaussian process with zero
mean and known covariance. (Our results still apply if some parameters of the covariance function—for instance, the range
and regularity parameters of a Matérn covariance function—are estimated using a first batch of evaluations and held fixed
afterward.) It is easily seen that a global optimization algorithm converges for all continuous functions if and only if the
sequence of evaluation points produced by the algorithm is dense for all continuous functions (Törn and Zilinskas, 1989,
Theorem 1.3). In the case of the EI algorithm, this property was proved by Locatelli (1997), with d=1, X¼ ½0,1� and x a
Brownian motion. Mockus (1989, Section 4.2) claims a much more general convergence result, but his proof unfortunately
contains a severe technical gap.1

The main contribution of this paper is a couple of convergence results for the EI algorithm. The first result (Theorem 6)
states that the sequence of evaluation points is dense in the search domain provided that the objective function belongs to
the reproducing kernel Hilbert space H attached to x, under a non-degeneracy assumption on the covariance function that
we call the no-empty-ball (NEB) property. This convergence result is quite natural from the point of view of interpolation
theory. The second result (Theorem 7) states that the density property also holds for P-almost all continuous functions,
where P is the (prior) probability distribution of the Gaussian process x.

The paper is outlined as follows. Section 2 introduces our framework, notations and standing assumptions. Section 3
describes the EI algorithm in greater details and states the main results of the paper. Section 4 provides a sufficient
condition for the NEB property, in the case of a stationary covariance function. Section 5 contains the proof of the main
theorems. Finally, Section 6 gives our conclusions and discusses future work.

2. Preliminaries

2.1. Framework and standing assumptions

The central mathematical object in global optimization theory is the objective function o : X-R, defined on some
search space X. A deterministic search strategy can therefore be seen as a mapping X from the set O¼RX to the set XN of
all sequences in X,

X ðoÞ :¼ ðX1ðoÞ,X2ðoÞ, . . .Þ, ð2Þ

with the property that, for all nZ1, Xnþ1ðoÞ depends only on the first n evaluations oðX1ðoÞÞ, . . . ,oðXnðoÞÞ. Assuming
measurability of the Xns with respect to the product s�algebra A on O (i.e., the s�algebra generated by cylinder sets), this
can be reformulated in the language of probability theory—although there is no probability measure involved yet. Indeed,
let

x : X�O-R, ðx,oÞ/xðx,oÞ :¼ oðxÞ, ð3Þ

denote the canonical process on the path space ðO,AÞ. Then, the above search strategy X can be seen as a random sequence
in X, with the property that Xn +1 is Fn�measurable, where F n is the s�algebra generated by xðX1Þ, . . . ,xðXnÞ. It must be
stressed that, despite the lexical shift, we are still dealing with deterministic algorithms: randomness only comes from the
fact that we are now considering the objective function xðU,oÞ ¼o as a random element in O.

In the Bayesian approach to global optimization, prior information on the objective function is taken into account under
the form of a probability measure P on ðO,AÞ, which amounts to specifying the probability distribution of the stochastic
process x. This prior information is then updated at each step of the search, through the computation of the conditional
distribution PfUjF ng. For practical reasons, only Gaussian process priors have been considered in the literature: in this case,
the prior is completely specified by the mean m(x) and the covariance function k(x,x0), and the process x remains Gaussian
under the conditional distributions PfUjF ng, nZ1. Throughout the paper we shall make the following standing
assumptions:

Assumption 1. (i) X is a compact subset of Rd, for some dZ1,

(ii) x is a centered Gaussian process under P,

(iii) the covariance function k is continuous and positive definite.

Let H � O denote the reproducing kernel Hilbert space (RKHS) that is canonically attached to x (also known as the
Cameron–Martin space of x; see, e.g., Bogachev, 1998). Assumption 1(iii) entails that H is a space of continuous functions.
We shall denote by ðU,UÞH the inner product of H and by JUJH the corresponding norm. It is worth noting that PðHÞ ¼ 0
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(see, e.g., Lukic and Beder, 2001, Driscoll’s theorem). We shall comment on this fact with respect to our convergence result
in Section 3.

Remark 2. Unless otherwise specified (see Section 4), it is not assumed that the covariance k is stationary. To the best of
our knowledge, however, most practical applications of the EI algorithm have used stationary covariances to model the
objective function prior to any evaluation.

2.2. Linear prediction and the no-empty-ball property

For nZ1, xn ¼ ðx1, . . . ,xnÞ 2X
n and x 2 X, we denote by x̂nðx; xnÞ the conditional expectation of xðxÞ given xðx1Þ,

xðx2Þ, . . . ,xðxnÞ. Since x is a centered Gaussian process, the conditional expectation is also the best linear predictor in
L2ðO,A,PÞ, and therefore can be written as

x̂nðx,o; xnÞ ¼
Xn

i ¼ 1

li
nðx; xnÞxðxi,oÞ: ð4Þ

Let s2
nðxnÞ denote the mean-square prediction error, i.e.,

s2
nðx; xnÞ :¼ E½ðxðxÞ�x̂nðx; xnÞÞ

2
�: ð5Þ

(Recall that, since x is a Gaussian process, the error of prediction is independent of the s�algebra generated by the xðxiÞs,
1r irn; see, e.g., Chil�es and Delfiner, 1999, Section 3.3.4.)

Definition 3. We shall say that the Gaussian process xFor, equivalently, the covariance function k—has the no-empty-
ball (NEB) property if, for all sequences ðxnÞnZ1 in X and all y 2 X, the following assertions are equivalent:

(i) y is an adherent point of the set fxn,nZ1g,
(ii) s2

nðy; xnÞ-0 when n-þ1.

Since k is assumed continuous, (i) always implies (ii) in Definition 3. The NEB property is therefore equivalent
to the assertion that, if the prediction error at y goes to zero, then there can be no ‘‘empty ball’’ centered at y (i.e., for all
e40, there exists nZ1 such that jy�xnjoe)—hence its name. A sufficient condition for the NEB property will be given in
Section 4. To the best of our knowledge, finding necessary and sufficient condition for the NEB property is an open
problem.

2.3. Simplified notations

Since the notations introduced in (4) and (5) would rapidly become cumbersome in the next sections, the following
simplified notations will be used

x̂nðx,oÞ :¼ x̂nðx,o;X nðoÞÞ, ð6Þ

s2
nðx,oÞ :¼ E½ðxðxÞ�x̂nðx;X nÞÞ

2
jF n�ðoÞ ¼ s2

nðx;X nðoÞÞ, ð7Þ

with X n ¼ ðX1, . . . ,XnÞ. Remark that s2
nðx,oÞ is a stochastic process indexed by X. The second equality in (7) follows from the

fact that x̂nðx; UÞ is continuous for all x 2 X.

3. Main results

In this paper, we shall consider a generalization of the EI criterion. Define

rnðxÞ ¼ gðx̂nðxÞ�Mn,s2
nðxÞÞ, ð8Þ

where the function g : R� ½0; þ1Þ-½0; þ1Þ satisfies the following requirements:

R1 : g is continuous,

R2 : 8zr0, gðz,0Þ ¼ 0,

R3 : 8z 2 R, 8s40, gðz,sÞ40: ð9Þ

The corresponding optimization algorithm can then be written as

X1 ¼ xinit 2 X,

Xnþ1 ¼ argmaxx2X rnðxÞ:

�
ð10Þ
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Remark 4. It is well known (Schonlau and Welch, 1996) that the EI criterion defined by (1) can be rewritten under the
form (8). More precisely, let F denote the Gaussian cumulative distribution function. Then (8) holds for the EI criterion with

gðz,sÞ ¼

ffiffi
s
p

F0
zffiffi
s
p

� �
þzF

zffiffi
s
p

� �
if s40,

maxðz,0Þ if s¼ 0:

8><
>: ð11Þ

In fact, Eq. (8) with g thus defined should be taken as the true definition of the EI criterion. Indeed, the exact mathematical
meaning of ‘‘rnðxÞ :¼ E½ðxðxÞ�MnÞþ jFn�’’ has to be specified, since, for each x, the conditional expectation is only defined up to
a P�negligible subset of O.

Remark 5. The criterion x/rnðxÞ is continuous, but there is no guarantee that the maximizer over X will be unique.
Therefore, a more rigorous statement of the iterative part of (10) would be Xnþ1 2 arg maxx2XrnðxÞ. In this way, instead of a
single algorithm, we encapsulate the family of all algorithms that choose (measurably) Xn + 1 among the maximizers of rn.
General measurable selection theorems (see, e.g., Molchanov, 2005) ensure that such an algorithm does exist.

The first result of this paper is the following density theorem:

Theorem 6. Assume that the covariance function k has the NEB property. Then, for all xinit 2 X and all o 2 H, the sequence

ðXnðoÞÞnZ1 generated by (10) is dense in X.

The fact that Theorem 6 is stated for objective functions in the RKHS H calls for some comments. From the point of view
of interpolation theory, it is indeed quite natural that an algorithm built on the best interpolants x̂nðU,oÞ in a RKHS H
should be provably working, using the tools of RHKS theory, only when o is in this very space. From the probabilistic point
of view, however, the event fxðUÞ 2 Hg almost never happens according to Driscoll’s theorem (Lukic and Beder, 2001). The
second result of this paper states that the result of Theorem 6 also holds P�almost surely in O.

Theorem 7. Assume that the covariance function k has the NEB property. Then, for all xinit 2X, the sequence ðXnÞnZ1 generated

by (10) is P-almost surely dense in X.

It is still an important open question to determine whether the algorithm converges for all continuous functions, as
claimed in Mockus (1989). Another interesting open problem would be to determine whether the NEB assumption can be
relaxed.

Remark 8. We have assumed for the sake of simplicity that the optimization algorithm starts after a single evaluation
performed at X1=xinit. In practice, especially when some parameters of the covariance need to be estimated, the algorithm
starts with an initial design of several evaluations x1

init, . . . ,x
n0

init. This is equivalent to saying that F1 is the s�algebra
generated by xðx1

initÞ, . . . ,xðx
n0

initÞ. The proofs of Theorems (6) and (7) carry over without modification.

4. A sufficient condition for the NEB property

4.1. Statement of the result

In this section we shall prove that the following assumption is a sufficient condition for the NEB property:

Assumption 9. The process x is stationary and has spectral density S, with the property that S�1 has at most polynomial
growth.

In other words, Assumption 9 means that there exist C40 and r 2 N\f0g such that SðuÞð1þjujrÞZC, almost everywhere
on Rd. This assumption prevents k from being too regular. In particular, the so-called Gaussian covariance,

kðx,yÞ ¼ s2e�aJx�yJ2

, s40, a40, ð12Þ

does not satisfy Assumption 9. However, we are still allowed to consider a large class of covariances. For instance, the
exponential covariances

kðx,yÞ ¼ s2e�aJx�yJs

, s40, a40, 0oso2, ð13Þ

the class of Matérn covariances (see, e.g., Stein, 1999), and their anisotropic versions, all satisfy Assumption 9. The main
result of this section is:

Proposition 10. Let ðxnÞnZ1 and ðynÞnZ1 be two sequences in X. Assume that the sequence (yn) is convergent, and denote by y%

its limit. Then each of the following conditions implies the next one:

(i) y% is an adherent point of the set fxn,nZ1g,
(ii) s2

nðyn; xnÞ-0 when n-1,
(iii) x̂nðyn,o; xnÞ-xðy%,oÞ when n-1, for all o 2 H.
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Moreover, under Assumption 9, the three conditions are equivalent and therefore x has the NEB property.

Remark 11. As already observed, the Gaussian covariance does not satisfy Assumption 9. In fact, it is known that the
Gaussian covariance does not even have the NEB property (Vazquez and Bect, 2010).

4.2. Consequence of Assumption 9 in terms of RKHS

Let H0 denote the RKHS associated to k on Rd. It is well known (Aronszajn, 1950, Section 1.5) that H embeds
isometrically into H0 and that, for all o 2 H0, the orthogonal projection of o onto H is simply its restriction to X.

Under Assumption 9, H0 contains the Sobolev space Hr=2ðRd
Þ, and the injection is continuous. Indeed, denoting by ô the

Fourier transform of o 2 H0, we haveZ
ð1þjujrÞjôðuÞj2 duZC

Z
SðuÞ�1

jôðuÞj2 du¼ JoJ2
H0 :

A useful consequence is that H0 contains the space C1c ðR
d
Þ of all compactly supported infinitely differentiable functions on

Rd, for any r. In particular, k is a universal kernel on X in the sense of Steinwart (2001), which means that H is dense in the
Banach space CðXÞ of all continuous functions on X.

4.3. Proof of Proposition 10

ðiÞ ) ðiiÞ. Assume that y%=2fxn,nZ1g (otherwise the result holds trivially). Let ðxfk
Þ be a subsequence of (xn) converging to

y% and let cn ¼maxffk;fkrng. Then,

s2
nðyn; xnÞ ¼ var½xðynÞ�x̂nðyn; xnÞ�rvar½xðynÞ�xðxcn

Þ�:

Since cn-1, it follows from the continuity of k that

var½xðynÞ�xðxcn
Þ� ¼ kðyn,ynÞþkðxcn

,xcn
Þ�2kðxcn

,ynÞ-0:

ðiiÞ ) ðiiiÞ. Using the Cauchy–Schwarz inequality in H, we have

jxðyn,oÞ�x̂nðyn,o; xnÞjrsnðyn; xnÞJoJH:

Therefore

jxðy%,oÞ�x̂nðyn,o; xnÞjr jxðy
%,oÞ�xðyn,oÞjþjxðyn,oÞ�x̂nðyn; xnÞjr joðy%Þ�oðynÞjþsnðyn; xnÞJoJH-0,

since o is continuous.
Under Assumption 9, ðiiiÞ ) ðiÞ. Suppose (i) is false. Then, there exists a neighborhood U of y% in Rd that does not

intersect fxn,nZ1g. Besides, it follows from Assumption 9 that there exists o 2 H such that supp o � U and oðy%Þ40
(where supp o denotes the support of o). Then, x̂nðy

%,o; xnÞ ¼ 0 for all n, whereas xðy%,oÞ ¼oðy%Þa0. Therefore (iii) does
not hold. &

5. Proofs of the main theorems

5.1. Proof of Theorem 6

Let nn ¼ supx2XrnðxÞ, where rn is the criterion defined by Eq. (8). Note that, for all nZ1,

nn ¼ rnðXnþ1Þ ¼ gðx̂nðXnþ1Þ�Mn,s2
nðXnþ1ÞÞ:

Our proof of Theorem 6 will be based on the following result (which does not require the NEB property):

Lemma 12. For all o 2 H, liminfn-1nnðoÞ ¼ 0.

Proof. Fix o 2 H. For all nZ1, set xn ¼ XnðoÞ, sn ¼ s2
nðxnþ1,oÞ and zn ¼ x̂nðxnþ1,oÞ�MnðoÞ, so that nnðoÞ ¼ gðzn,snÞ. Let y% be

a cluster point of the sequence (xn) and let ðxfn
Þ be any subsequence converging to y%: we are going to prove that

nfn�1ðoÞ-0. It follows from Proposition 10, ðiÞ ) ðiiiÞ, that x̂fn�1ðxfn
,oÞ-oðy%Þ. Moreover, ðMfn�1ðoÞÞ is a bounded

increasing sequence, with the property that Mfn�1ðoÞZMfn�1
ðoÞZoðxfn�1

Þ-oðy%Þ. Therefore ðzfn�1Þ has a finite limit,
such that

lim
n-1

zfn�1 ¼ lim
n-1

x̂fn�1ðxfn
,oÞ� lim

n-1
Mfn�1ðoÞr0:
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By Proposition 10, ðiÞ ) ðiiÞ, we also know that sfn�1 ¼ s2
fn�1ðxfn

,oÞ-0. Therefore, using (R1) and (R2),

nfn�1ðoÞ ¼ gðzfn�1,sfn�1Þ-g lim
n-1

zfn�1,0
� �

¼ 0:

This completes the Proof of Lemma 12. &

Proof of Theorem 6. Now fix o 2 H, and suppose that fXnðoÞ,nZ1g is not dense in X. Then there exist a point y% 2 X that
is not adherent to fXnðoÞ,nZ1g. This implies, by the NEB property, that

inf
nZ1

s2
nðy

%,oÞ40:

Besides, using the Cauchy–Schwartz inequality in H, we observe that the sequence ðx̂nðy
%,oÞÞ is bounded. Indeed, we have

jx̂nðy
%,oÞ�oðy%Þj2rs2

nðy
%,oÞJoJ2

Hrkðy%,y%ÞJoJ2
H:

The sequence ðMnðoÞÞ is also obviously bounded by JoJ1. Therefore, we obtain as a consequence of (R1) and (R3) that

rnðy
%,oÞZ inf

kZ1
gðx̂kðy

%,oÞ�MkðoÞ,s2
k ðy

%,oÞÞ40:

This is a contradiction with Lemma 12, since nnðoÞ ¼maxx2Xrnðx,oÞ. The proof is thus complete. &

5.2. Proof of Theorem 7

In essence, the structure of the proof of Theorem 7 is the same as that of Theorem 6. The first step is to obtain an almost
sure version of Lemma 12.

Lemma 13. liminfn-1nn ¼ 0 almost surely.

Proof. Let Dn ¼min1r irnjXnþ1�Xij be the distance of Xnþ1 to the set of all previous evaluation points. Define
Tk ¼minfnZ1;Dnrrkg, with (rk) a sequence of positive numbers such that lim rk ¼ 0. Note that each Tk is finite, since the
set X is compact, and is an ðFnÞ�stopping time since the sequence ðDnÞ is ðF nÞ�adapted.

The first step is to see that, as in the proof of Proposition 10,

s2
Tk
ðXTkþ1ÞrZk :¼ sup

jx�yjr rk

kðx,xÞþkðy,yÞ�2kðx,yÞ�!
k-1

0: ð14Þ

Note that ðXTk þ1Þk does not necessarily converge.

The next step is to prove that x̂Tk
ðXTkþ1Þ�xðXTk þ1Þ converges to zero almost surely, for a suitable choice of the sequence

(rk). First, using that Tk is a stopping time, we have

E½ðx̂Tk
ðXTk þ1Þ�xðXTkþ1ÞÞ

2
� ¼E

X
nZ1

1Tk ¼ nðx̂nðXnþ1Þ�xðXnþ1ÞÞ
2

" #

¼
X
nZ1

E½1Tk ¼ nE½ðx̂nðXnþ1Þ�xðXnþ1ÞÞ
2
jFn��

¼E
X
nZ1

1Tk ¼ ns2
nðXnþ1Þ

" #

¼E½s2
Tk
ðXTkþ1Þ�rZk:

Then, for each e40, it follows from Markov’s inequality that

Pfðx̂Tk
ðXTkþ1Þ�xðXTkþ1ÞÞ

24egrZk=e:

Choosing rk such that, for instance, Zk ¼ 1=k2, ensures that x̂Tk
ðXTkþ1Þ�xðXTk þ1Þ converges to zero almost surely. Therefore,

the sequence ðx̂Tk
ðXTk þ1ÞÞ is almost surely bounded. Moreover,

limsup
k-1

x̂Tk
ðXTkþ1Þ�MTk

¼ limsup
k-1

x̂Tk
ðXTk þ1Þ�MTkþ1r lim

k-1
x̂Tk
ðXTkþ1Þ�xðXTkþ1Þ ¼ 0 a:s:, ð15Þ

where we have used the fact that (Mn) is convergent.

Finally, using (R1) and (R2), the fact that ðx̂Tk
ðXTkþ1Þ�MTk

Þ is almost surely bounded, (14) and (15), we conclude that

nTk
¼ gðx̂Tk

ðXTkþ1Þ�MTk
,s2

Tk
ðXTk þ1ÞÞ -

k-1
0 a:s: &
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Proof of Theorem 7. Fix x 2 X and define the event Ax 2 A by

Ax ¼ fx is not an adherent point of the set fXn,nZ1gg:

Then infnZ1s2
nðxÞ40 on Ax by the NEB property. Moreover, the martingale x̂nðxÞ ¼ E½xðxÞjFn� is bounded in L2 since

Ex̂nðxÞ
2rkðx,xÞoþ1, and thus converges almost surely and in L2 to a random variable x̂1ðxÞ (see, e.g., Williams, 1991).

As a consequence, the event

Bx :¼ fðx̂nðxÞ�MnÞ is boundedg

has probability one, since (Mn) is also convergent. Therefore, we obtain by (R1) and (R3) that, on Ax \ Bx,

nnZrnðxÞZ inf
kZ1

gðx̂kðxÞ�Mk,s2
k ðxÞÞ40:

Since PðBxÞ ¼ 1, it follows from Lemma 13 that PðAxÞ ¼ 0.

Finally, let ~X be a countable dense subset of X and let O0 ¼O\
S

x2 ~XAx. Then PðO0Þ ¼ 1 and it is straightforward to see

that for each o 2 O0, the set fXnðoÞ,nZ1g is dense in X. &

6. Discussion

Since Jones et al. (1998), the expected improvement (EI) algorithm has become a very popular algorithm to optimize an
expensive-to-evaluate function. Such functions are often encountered in industrial problems, where the function value
may be the output of a complex computer simulation, or the result of costly measurements on prototypes. A body of
empirical studies, based on optimization test-beds and real applications, have shown that the EI algorithm can lead to
significant evaluation savings over traditional optimization methods (see, e.g., Jones, 2001; Huang et al., 2006; Forrester
et al., 2008). Yet, making use of an optimization algorithm without knowing its convergence properties is not satisfying,
not only theoretically, but also from a practical viewpoint. Indeed, if it turned out that the EI algorithm could not get
arbitrarily close to a global optimizer when the number of function evaluations increases, using this algorithm on a
restricted budget of function evaluations would hardly be justified.

In this paper, we have provided two important results. The first one is that the EI improvement algorithm behaves
consistently provided that the objective function belongs to the reproducing kernel Hilbert space (RKHS) attached to x,
under a non-degeneracy assumption on the covariance function that we have called the no-empty-ball (NEB) property.
This result is obviously interesting from a theoretical viewpoint; it is less so in practice because one seldom knows in
advance whether the objective function belongs to a given RKHS. The second main result of this paper, which states that
convergence also takes place for P�almost all continuous functions, where P is the (prior) probability distribution of the
Gaussian process x, is what really matters from a practical point of view.

These results constitute a first step toward a deeper understanding of global optimization algorithms based on the EI
criterion, or more generally on criterions satisfying (9). Possible directions for future research include the derivation
of pathwise or average convergence rates, the convergence of the algorithm when some parameters of the covariance are
re-estimated after each new evaluation, and the extension—possibly under more restrictive assumptions—of our
convergence results to all continuous functions.
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3.4 Informational approach to global optimization

This article in the Journal of Global Optimization (2009) presents a Bayesian ap-
proach to global optimization where the experiments are chosen in order to mini-
mize the amount of uncertainty in the posterior distribution of the location of the
optimum. To quantity this uncertainty, we use Shannon’s entropy. This article also
discusses the problem of noisy evaluation results.
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1 Introduction

This paper is devoted to global optimization in a context of expensive function evaluation.
The objective is to find global minimizers in X (the factor space, a bounded subset of Rd )
of an unknown function f : X → R, using a very limited number of function evaluations.
Note that the global minimizer may not be unique (any global minimizer will be denoted
as x∗). Such a problem is frequently encountered in the industrial world. For instance, in
the automotive industry, optimal crash-related parameters are obtained using costly real tests
and time-consuming computer simulations (a single simulation of crash-related deformations
may take up to 24 h on dedicated servers). It then becomes essential to favor optimization
methods that use the dramatically scarce information as efficiently as possible.

To make up for the lack of knowledge on the function, surrogate (also called meta or
approximate) models are used to obtain cheap approximations [13]. They turn out to be
convenient tools for visualizing the function behavior or suggesting the location of an addi-
tional point at which f should be evaluated in the search for x∗. Surrogate models based
on Gaussian processes have received particular attention. Known in geostatistics under the
name of Kriging since the early 1960s [15], Gaussian process models provide a probabilistic
framework to account for the uncertainty stemming from the lack of information on the sys-
tem. When dealing with an optimization problem, this framework allows the set of function
evaluations to be chosen efficiently [12–14].

In this context, several strategies have been proposed, with significant advantages over
traditional optimization methods when confronted to expensive-to-evaluate functions. Most
of them implicitly seek a likely value for x∗, and then assume it to be a suitable location for a
new evaluation of f . Yet, given existing evaluation results, the most likely location of a global
minimizer is not necessarily a good evaluation point to improve our knowledge on x∗. As
we shall show, by making full use of Kriging, it is instead possible to explicitly estimate the
probability distribution of the optimum location, which allows an information-based search
strategy.

Based on these observations, the present paper introduces minimizers entropy as a crite-
rion for the choice of new evaluation points. This criterion, directly inspired from stepwise
uncertainty reduction [9], is then inserted in an algorithm similar to the Efficient Global
Optimization (EGO) algorithm [14]. We call the resulting algorithm IAGO, for Informa-
tional Approach to Global Optimization.

Sect. 2 recalls the principle of Kriging-based optimization, along with some general ideas
on Gaussian process modeling that are used in Sect. 3 to build an estimate of the distribu-
tion of the global minimizers. Sect. 4 details the stepwise uncertainty reduction approach
applied to global optimization, while Sect. 5 describes the corresponding algorithm and its
extensions to noisy problems. Sect. 6 illustrates the behavior of the new algorithm on some
simple benchmark problems, along with its performances compared with those of the clas-
sical EGO algorithm, chosen for its good compromise between local and global search [17].
Finally, after a conclusion section and to make this paper self-contained, Sect. 8 recalls, as
an appendix, some more results on Gaussian process modeling and Kriging.

2 Kriging-based global optimization

When dealing with expensive-to-evaluate functions, optimization methods based on probabi-
listic surrogate models (and Kriging in particular) have significant advantages over traditional
optimization techniques, as they require fewer function evaluations to provide an acceptable
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solution. Kriging provides not only a cheap approximation of the function but also an esti-
mate of the potential error in this approximation. Numerous illustrations of this superiority
can be found in the literature (see, for instance, [6]) and many variations have been explored
(for extensive surveys, see [13] and [17]). As explained in this section, these methods deal
with the cost of evaluation using an adaptive sampling strategy, replacing the optimization
of the expensive-to-evaluate function f by a series of optimizations of a cheap criterion.

2.1 Gaussian process modeling and Kriging

This section briefly recalls the principle of Gaussian process (GP) modeling, and lays down
the necessary notation. A more detailed presentation is available in the appendix (Sect. 8).

When modeling with Gaussian processes, the function f is assumed to be a sample path
of a Gaussian random process F , with mean function m(x) and covariance function k(·, ·)
defined over X2. If we denote (�, A, P) the underlying probability space, this amounts to
assuming that ∃ω ∈ �, such that F(ω, ·) = f (·). Whenever possible, we shall omit the
dependence of F in ω to simplify notation.

In particular, given a set of n evaluation points S = {x1, . . . , xn} (the design), ∀xi ∈
S the evaluation result f (xi ) is viewed as a sample value of the random variable F(xi ).
Kriging computes an unbiased linear predictor of F(x) in the vector space HS = span
{F(x1), . . . , F(xn)}, which can be written as

F̂(x) = λ(x)TFS, (1)

with FS = [F(x1), . . . , F(xn)]T, and λ(x) the vector of Kriging coefficients for the predic-
tion at x.

Given the covariance function of F , the Kriging coefficients can be computed along with
the variance of the prediction error

σ̂ 2(x) = var(F̂(x)− F(x)). (2)

The covariance function of F is chosen within a parametrized class (for instance, the Matérn
class), and its parameters are either estimated from the data or chosen a priori (see Sect. 8.3.2
for details on the choice of a covariance function).

Once f has been evaluated at all evaluation points in S, the predicted value of f at x is
given by

f̂ (x) = λ(x)TfS, (3)

with fS = [ f (x1), . . . , f (xn)]T (fS is viewed as a sample value of FS). The same results
could be derived in a Bayesian framework, where F(x) is Gaussian conditionally to the
evaluations carried out (FS = fS), with mean f̂ (x) and variance σ̂ 2(x).

Note that the random processes F(x) and F̂(x) satisfy

∀ xi ∈ S, F̂(xi ) = F(xi ), (4)

and that the prediction at xi ∈ S is f (xi ). When f is assumed to be evaluated exactly,
Kriging is thus an interpolation, with the considerable advantage over other interpolation
methods that it also provides an explicit characterization of the prediction error (zero-mean
Gaussian with variance σ̂ 2(x)).
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2.2 Adaptive sampling strategies

The general principle of optimization using Kriging is iteratively to evaluate f at a point
that optimizes a criterion based on the model obtained using previous evaluation results. The
simplest approach would be to choose a minimizer of the prediction f̂ as a new evaluation
point. However, by doing so, too much confidence would be put in the current prediction
and search is likely to stall on a local optimum (as illustrated by Fig. 1). To compromise
between local and global search, more emphasis has to be put on the prediction error, which
can indicate locations where additional evaluations are needed to improve confidence in the
model. This approach has led to a number of criteria to select additional evaluation points
based on both prediction and prediction error.

A standard example of such a criterion is expected improvement (EI) [18]. As the name
suggests, it involves computing how much improvement in the optimum is expected, if f is
evaluated at a given additional point. Let fmin be the best function value obtained so far. The
improvement expected from an additional evaluation of f at x given fS, the results of past
evaluations, can then be expressed as

EI(x) = E [max ( fmin − F (x) , 0) |FS = fS] .

Since F(x) is conditionally Gaussian with mean f̂ (x) and variance σ̂ 2(x),

EI(x) = σ̂ (x)

[
u�(u)+ d�

du
(u)

]
, (5)

Fig. 1 Naive approach to optimization using Kriging: (top) prediction f̂ (bold line) of the true function f
(dotted line, supposedly unknown) obtained from an initial design materialized by squares; (bottom) prediction
after seven iterations minimizing f̂
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Fig. 2 EI approach to optimization using Kriging: (top) prediction f̂ (bold line), 95% confidence intervals
computed using σ̂ (dashed line) and true function f (dotted line); (bottom) expected improvement

with

u = fmin − f̂ (x)

σ̂ (x)

and � the normal cumulative distribution function. The new evaluation point is then chosen
as a global maximizer of EI(x). An example is given on Fig. 2, where the problem that
deceived the naive method of Fig. 1 is directly solved with the EI criterion. This method has
been used for computer experiments in [17], while modified criteria have been used in [11]
and [26] to deal with noisy functions.

In [13] and [24], a fair number of alternative criteria are presented and compared. Although
quite different in their formulation, they generally aim to answer the same question: What
is the most likely position of x∗? Another, and probably more relevant, question is: Where
should the evaluation be carried out optimally to improve knowledge on the global minimiz-
ers?

In what follows, a criterion that addresses this question will be presented, along with its
performances. The reference for comparison will be EI, which is a reasonable compromise
between local and global search [17], and has been successfully used in many applications.

3 Estimating the distribution of x∗

Once a Kriging surrogate model f̂ has been obtained, any global minimizer of f̂ is a natural
approximation of x∗. However, it might be excessively daring to trust this approximation as
it does not take in account the uncertainty of the prediction. A more cautious approach to
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estimating x∗ is to use the probabilistic framework associated with F . Of course, x∗ is not
necessarily unique, and we shall focus on describing the set of all global minimizers of f as
efficiently as possible.

3.1 Probabilistic modeling of the global minimizers of f

According to the GP model, a global minimizer x∗ of f corresponds to a global minimizer
of this particular sample path of F . It seems therefore natural to use the GP model of f to
obtain a probabilistic model for x∗. Consider the random set M∗

X of the global minimizers
of F over X, i.e., the set of all global minimizers for each sample path, which for any ω ∈ �

can be written as

M∗
X(ω) = {x∗ ∈ X|F(ω, x∗) = min

u ∈ X
F(ω,u)}.

To ensure that M∗
X(ω) is not empty for all ω, we assume that F has continuous sample paths

with probability one. This continuity can be ensured through a proper choice of covariance
function (see, e.g., [1]).

Let X∗ be a random vector uniformly distributed on M∗
X (from now on, we omit the

dependency of M∗
X in ω). The probability density function of this random vector conditional

to past evaluation results, that we shall thereafter call conditional density of the global min-
imizers and denote pX∗|fS(x), is of great interest, as it allows one not only to estimate the
global minimizers of f (for example, through the maximization of their conditional density),
but also to characterize the uncertainty associated with this estimation. In fact, pX∗|fS(x)

contains all of what has been assumed and learned about the system. However, no tracta-
ble analytical expression for pX∗|fS(x) is available [2,19]. To overcome this difficulty, the
approach taken here is to consider a discrete version of the conditional distribution, and to
approximate it using Monte Carlo simulations.

Let G = {x1, . . . , xN } be a finite subset of X, M∗
G be the random set of global minimizers

of F over G, and X∗G be a random vector uniformly distributed on M∗
G. The conditional

probability mass function of X∗G given fS (or simply minimizers distribution) is then ∀x ∈ G

PX∗G|fS(x) = P(X∗G = x |FS = fS).

It can be approximated using conditional simulations, i.e., simulations of F that satisfy
FS = fS. Assuming that non-conditional simulations are available, several methods exist to
make them conditional [4]. Conditioning by Kriging seems the most promising of them in
the present context and will be presented in the next section.

To keep the presentation simple, we assume in what follows that S ⊂ G.

3.2 Conditioning by Kriging

This method, due to G. Matheron, uses the unbiasedness of the Kriging prediction to transform
non-conditional simulations into simulations interpolating the results fS of the evaluations.
The idea is to sample from the conditional distribution of the prediction error F − F̂ rather
than from the conditional distribution of F , which is made easier by the fact that the statistical
properties of the prediction error do not depend on the result of the evaluations, nor on the
mean m(x) of F(x).

To present this more formally, let Z be a zero-mean Gaussian process with covariance
function k (the same as that of F) and Ẑ be its Kriging predictor based on the random variables
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Z(xi ), xi ∈ S, and consider the random process

T (x) = f̂ (x)+
[

Z(x)− Ẑ(x)
]
, (6)

where f̂ is the mean of the Kriging predictor based on the design points in S. Since this Kri-
ging predictor is an interpolator, at evaluation points in S, we have f̂ (xi ) = f (xi ). Equation 4
implies that Z(xi ) = Ẑ(xi ), which leads to T (xi ) = f (xi ), ∀xi ∈ S. In other words, T is
such that all its sample paths interpolate the known values of f . It is then easy to check that
T has the same finite-dimension distributions as F conditionally to past evaluation results
[7], simply because the prediction error Z − Ẑ , for Z , has the same distribution as the pre-
diction error for F , F − F̂ . Note that the same vector λ(x) of Kriging coefficients is used to
interpolate the data and the simulations at design points. Using (3), one can rewrite (6) as

T (x) = Z(x)+ λ(x)T [fS − ZS] , (7)

with ZS = [Z(x1), . . . , Z(xn)]T.
In summary, to simulate F over G conditionally to past evaluation results fS, we can

simulate a zero-mean Gaussian process Z over G, compute the prediction error for each
simulation and shift the prediction error around the desired mean f̂ . This is achieved by the
following procedure (illustrated on Fig. 3):

Fig. 3 Conditioning a simulation: (top) unknown real curve f (doted line), sample points (squares) and asso-
ciated Kriging prediction f̂ (bold line); (middle) non-conditional simulation z, sample points and associated
Kriging prediction ẑ (bold line); (bottom) the simulation of the Kriging error z − ẑ is picked up from the
non-conditional simulation and added to the Kriging prediction to get the conditional simulation (thin line)
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− compute, for every point in G, the vector of Kriging coefficients based on the design
points in S,

− compute the Kriging prediction f̂ (x) based on past evaluation results fS for every x in
G,

− collect non-conditional sample paths of Z over G (provided that a Gaussian sampler is
available, setting the proper covariance for the simulated vector can be achieved using,
for example, the Cholesky decomposition),

− apply (7) for each non conditional simulation and at every point in G. That is, to generate
t (x), a conditional simulation of T (x) from a non-conditional simulation z(x) of Z(x),
apply

t (x) = z(x)+ λ(x)T[fS − zS], (8)

where zS is the sampled valued of Z over S, which is available since S ⊂ G.

With this sampling method, it becomes straightforward to estimate PX∗G|fS . Let x∗i be a
global minimizer of the i-th conditional simulation (i = 1, . . . , r ) over G (if it is not unique,
choose one randomly). Then, for any x in G, a classical estimator is

P̂X∗G|fS(x) = 1

r

r∑

i=1

δx∗i (x), (9)

with δ the Kronecker symbol. Figure 4 presents the approximation P̂X∗G|fS for an example
where locating a global minimizer is not easy. Knowing the conditional distribution of X∗G
gives valuable information on the areas of X where a global minimizer might be located, and
that ought to be investigated. This idea will be detailed in the next section.

4 The stepwise uncertainty reduction strategy

The knowledge about the global minimizers of f is summarized by P̂X∗G|fS . In order to
evaluate the interest of a new evaluation of f at a given point, a measure of the expected
information gain is required. An efficient measure is conditional entropy, as used in sequen-
tial testing [9] in the Stepwise Uncertainty Reduction (SUR) strategy. This section extends
the SUR strategy to global optimization.

4.1 Conditional entropy

The entropy of a discrete random variable U (expressed in bits) is defined as:

H(U ) = −
∑

u

P(U = u) log2 P(U = u).

H(U ) measures the spread of the distribution of U . It decreases as this distribution gets more
peaked. In particular:

− P̂X∗G|fS(x) = 1/N ∀x ∈ G ⇒ H(X∗G) = log2(N ),

− P̂X∗G|fS(x) =
{

0 if x �= x0

1 if x = x0
⇒ H(X∗G) = 0

Similarly, for any event B, the entropy of U relative to the probability measure P(.|B) is

H(U |B) = −
∑

u

P(U = u|B) log2 P(U = u|B).
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Fig. 4 Estimation of the distribution of X∗G: (top) Kriging interpolation, 95% confidence intervals and sample
points; (bottom) estimated distribution of X∗G using 10000 conditional simulations of F and a regular grid
for G

The conditional entropy of U given another discrete random variable V is

H(U |V ) =
∑

v

P(V = v)H(U |V = v),

and the conditional entropy of U given B and V is

H(U |B, V ) =
∑

v

P(V = v|B)H(U |B, V = v). (10)

Note that H(U |V ) and H(U |B, V ) are, despite the similarity of notation with conditional
expectation, deterministic quantities. More details on conditional entropy can be found in
[5].

4.2 Conditional minimizers entropy

Let FQ(x) be a discrete version of F(x), defined as FQ(x) = Q(F(x)) with Q a quantiza-
tion operator. Q is characterized by a finite set of M real numbers {y1, . . . , yM }, and defined
∀u ∈ R as

Q(u) = yk with k = arg min
i
|yi − u|. (11)

For optimization problems, the SUR strategy for the selection of the next value of x ∈ X
at which f will be evaluated will be based on H(X∗G|FS = fS, FQ(x)), the conditional
entropy of X∗G given the evaluation results {FS = fS} and FQ(x) (we shall refer to it later
on as conditional entropy of the minimizers, or simply minimizers entropy).
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Using (10) we can write

H(X∗G|FS = fS, FQ(x)) =
M∑

i=1

P(FQ(x) = yi |FS = fS)H(X∗G|FS = fS, FQ(x) = yi )

(12)

with

H(X∗G|FS = fS, FQ(x) = yi ) = −
∑

u∈G
PX∗G|fS,yi (u) log2 PX∗G|fS,yi (u),

and

PX∗G|fS,yi (u) = P(X∗ = u|FS = fS, FQ(x) = yi ).

H(X∗G|FS = fS, FQ(x)) is a measure of the anticipated uncertainty remaining in X∗G
given the candidate evaluation point x and the result fS of the previous evaluations. Antici-
pation is introduced in (12) by considering the entropy of X∗G resulting from every possible
sample value of FQ(x). At each stage of the iterative optimization, the SUR strategy retains
for the next evaluation a point that minimizes the expected entropy of the minimizers dis-
tribution after the evaluation, i.e., a point that maximizes the expected gain in information
about X∗G.

The conditional entropy of the minimizers thus takes in account the conditional statistical
properties of F and particularly the covariance function of the model. There lies the interest
of the SUR strategy applied to global optimization. It makes use of what has been previously
assumed and learned about f to pick up the most informative evaluation point. By contrast,
the EI criterion (as most standard criteria) depends only on the conditional mean and variance
of F at the design point being considered.

5 Implementing the SUR strategy

5.1 IAGO algorithm

Our algorithm is similar in spirit to the strategy for Kriging-based optimization known as
Efficient Global Optimization (EGO) [14]. EGO starts with a small initial design, estimates
the parameters of the covariance function of F and computes the Kriging model. Based on
this model, an additional point is selected in the design space to be the location of the next
evaluation of f using the EI criterion. The parameters of the covariance function are then
re-estimated, the model re-computed, and the process of choosing new points continues until
the improvement expected from sampling additional points has become sufficiently small.
The IAGO algorithm uses the same idea of iterative incorporation of the obtained information
to the prior on the function, but with a different criterion.

To compute the minimizers entropy using (12), a new quantization operator Qx is used
for each value of x to improve the precision with which the empirical mean of entropy reduc-
tion over possible evaluation results is computed. We use the fact that F(x) is conditionally
Gaussian with mean f̂ (x) and variance σ̂ 2(x) obtained by Kriging, to select a set of values
{y1(x), . . . , yM (x)}, such that

P(FQx (x) = yi |FS = fS) = 1

M
∀ i ∈ [[1 : M]] . (13)

Here we used a set of ten possible values (M = 10).
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Table 1 Selection of a new evaluation point for f

Algorithm
Input: Set S = {x1, . . . , xn} of evaluation points and corresponding values fS of the function f
Output: Additional evaluation point xnew
1. Choose G, a discrete representation of X
2. Set covariance parameters either a priori or by maximum-likelihood estimation based on fS
3. Compute r non-conditional simulations over G
4. Compute f̂ (x) and σ̂ (x) over G by Kriging from fS
5. while the set of candidate points has not been entirely explored
6. do Take an untried point xc in the set of candidate points
7. Compute the parameters {y1, . . . , yM } of the quantization operator Q
8. Compute the Kriging coefficients at every point in G based on evaluation points in S and xc
9. for i ← 1 to M
10. do Construct conditional simulations using (7) and assuming that f (xc) = yi
11. Find a global minimizer x∗k of the k-th conditional simulation over G (k = 1, . . . , r )
12. Estimate PX∗G|fS,yi

over G using (9)

13. Compute H(X∗G|FS = fS, FQ(xc) = yi )
14. Compute the minimizers entropy given an evaluation at xc using (12)
15. Output xnew that minimizes the conditional entropy over the set of candidate points

For each of these possible values (or hypotheses F(x) = yi ), P̂X∗G|fS,yi is computed using
conditional simulations. The minimizers entropy is then obtained using (12). These opera-
tions are carried out on a discrete set of candidate evaluation points (see Sect. 5.2 for some
details on the choice of this set), and a new evaluation of f is finally performed at a point that
minimizes minimizers entropy. Next, as in the EGO algorithm, the covariance parameters
are re-estimated and the model re-computed. The procedure for the choice of an additional
evaluation point is described in Table 1.

When the number of additional function evaluations is not specified beforehand, we pro-
pose to use as a stopping criterion the conditional probability that the global minimum of the
GP model be no further apart of fmin = minxi∈S f (xi ) (the best function value yet obtained)
than a given tolerance threshold δ. The algorithm then stops when

P(F∗ < fmin + δ|FS = fS) < PStop,

with F∗ = minx ∈G F(x), and PStop ∈ [0, 1] a critical value to be chosen by the user.
Proposed in [18], this stopping criterion is well suited here, since evaluating the repartition
function of f (x∗) does not require any additional computation. We can indeed use the con-
ditional simulations that have been performed to approximate the conditional distribution of
X∗G for this purpose, provided that we keep track, for each of them, not only of a global mini-
mizer, but also of the minimum. The histogram thus obtained can then easily be transformed
into a simple approximation of the conditional repartition function of the minimum.

5.2 Computational complexity

With the previous notation, n the number of evaluation points, r the number of conditional
simulations, N the number of points in G and M the number of discretized potential eval-
uation results for an evaluation, the computational complexity for the approximation of the
minimizers entropy (Steps 7–14 in Table 1) is as follows:

− computing Kriging coefficients at every point in G (Step 8): O(n2 N ), as (20) (to be
found in appendix) has to be solved N times. The covariance matrix can be factorized,
and Kriging at an untried point is then simply in O(n2),
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− constructing conditional simulations (Step 10): O(nr N ) (M is not involved since the
main part of the conditioning procedure described by (8) can be carried out outside the
loop on the discretized potential evaluation results),

− locating the global minimizers for each simulation by exhaustive search (Step 11):
O(r N M).

Since all other operations are in O(N ) at most, evaluating minimizers entropy at any given
point requires O(N ) operations.

To complete the description of an implementable algorithm, we must specify a choice for
G and a policy for the minimization of minimizers entropy. What follows is just an example
of a possible strategy, and many variants could be considered.

The simplest choice for G is a uniform grid on X. However, as the number of evaluations
of f increases, the spread of PX∗G|fS diminishes along with the precision for the computation
of the entropy. To keep a satisfactory precision over time, G can be a random sample of points
in X, re-sampled after every evaluation of f with the distribution P̂X∗G|fS . Re-sampling makes
it possible to use a set G with a smaller cardinal and to escape, at least partly, the curse of
dimensionality (to resample using P̂X∗G|fS , any non-parametric density estimator could be
used along with a sampling method such as Metropolis-Hastings, see, e.g., [3]).

Ideally, to choose an additional evaluation point for f using IAGO, minimizers entropy
should be minimized over X. However, this of course is in itself a global optimization prob-
lem, with many local optima. It would be possible to design an ad-hoc optimization method
(as in [13]), but this perspective is not explored here. Instead, we evaluate the criterion exten-
sively over a chosen set of candidate points. Note that only the surrogate model is involved at
this stage, which makes the approach practical. The idea is, exactly as for the choice of G, to
use a space-filling sample covering X and resampled after each new evaluation. The current
implementation of IAGO simply uses a Latin Hyper Cube (LHC) sample, however, it would
be easy to adapt this sample iteratively using the conditional distribution of the minimizers
P̂X∗G|fS as a prior. For instance, areas of the design space where the distribution is sufficiently
small could be ignored. After a few evaluations, a large portion of the design space usually
satisfies this property, and the computations saved could be used to improve knowledge on
the criterion by sampling where P̂X∗G|fS is high (using the same approach as for the choice
of G).

As dimension increases, trying to cover the factor space while keeping the same accuracy
leads to an exponential increase in complexity. However, in a context of expensive function
evaluation, the objective is less to specify exactly all global minimizers (which would be
too demanding in function evaluations anyway), than to use available information efficiently
to reduce the likely areas for the location of these minimizers. This is exactly the driving
concept behind IAGO. In practice, within a set of one thousand candidate points, picking
an additional evaluation point requires about 3 min with a standard personal computer (and
this figure is relatively independent of the dimension of factor space). Moreover, the result
obtained can be trusted to be a consistent choice within this set of candidate points, in regard
of what has been assumed and learned about f .

5.3 Taking noise in account

Practical optimization problems often involve noise. This section discusses possible adapta-
tions of the optimization algorithm that make it possible to deal with noisy situations, namely
noise on the evaluation of f and noise on the factors.

123
137



J Glob Optim (2009) 44:509–534 521

5.3.1 Noise on the evaluation of f

When the results of the evaluations of f are corrupted by noise, the algorithm must take this
fact into account. A useful tool to deal with such situations is non-interpolative Kriging (see
Sect. 8.2).

If the evaluation at xi ∈ S is assumed to be corrupted by an additive Gaussian noise
εi with known mean and variance, the Kriging prediction should no longer be interpolative.
The optimization algorithm remains nearly unchanged, except for the conditional simula-
tions. Sample paths of F , should be built conditionally to evaluation results, i.e., realizations
of the random variables f (xi ) + εi for xi ∈ S. Since the variance of the prediction error
is no longer zero at evaluation points (in other words, there is some uncertainty left on the
values of f at evaluation points), we first have to sample, at each evaluation point, from
the distribution of F conditionally to noisy evaluation results. An interpolative simulation,
based on these samples, is then built using conditioning by Kriging. An example of such a
simulation is presented on Fig. 5 for a noise variance of 0.01.

5.3.2 Noise on the factors

In many industrial design problems, the variability of the values of the factors in mass pro-
duction has a significant impact on performance. One might then want to design a system that
optimizes some performance measure while ensuring that performance uncertainty (stem-
ming from noise on the factors) remains under control. These so-called robust optimization

Fig. 5 Example of prediction by Kriging (bold line) of noisy measurements represented by squares. Dashed
lines represent 95% confidence regions for the prediction and the thin solid line is an example of conditional
simulation obtained using the method presented in Sect. 5.3.1
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problems can generally be written as

arg min
x ∈ D

J (x), (14)

with J (x) a cost function reflecting some statistical property of the corrupted performance
measure f (x+ ε), where ε is a random vector accounting for noise on the factors. Classical
cost functions are:

− mean: J (x) = Eε[ f (x + ε)],
− standard deviation: J (x) = √varε( f (x + ε)),
− linear combination of mean and standard deviation: J (x)= Eε[ f (x + ε)]
+ √varε( f (x + ε)),

− α-quantile: J (x) = Qα(x) with Qα(x) such that P( f (x + ε) < Qα(x)) = α.

Using, for example, the α-quantile as a cost function, it is possible to adapt our optimization
algorithm to solve (14). Given a set of evaluation results fS at noise-free evaluation points,
and if it is possible to sample from the distribution pε of ε, a Monte Carlo approximation
Q̂α(x) of Qα(x) is easily obtained by computing f̂ (x + ε) over a set sampled from pε .
The global optimization algorithm can then be applied to Qα(x) instead of f , using pseudo-
evaluations Q̂α

S = [Q̂α(x1), . . . , Q̂α(xn)] (recomputed after each evaluation of f ) instead of
fS. This naive approach can certainly be improved, but is sufficient to show the feasibility of
a robust approach and to illustrate on a simple example (to be presented in the next section)
the impact of ε on the evaluation points to be chosen by IAGO.

It is of course possible to combine these ideas and to deal simultaneously with noise both
on the factors and the function evaluations.

6 Illustrations

This section presents some simple examples of global optimization using IAGO, with a
regular grid as a set of candidate evaluation points. An empirical comparison with global
optimization using expected improvement is also presented. The Matérn covariance class
will be used for Kriging prediction, as it facilitates the tuning of the variance, regularity and
range of correlation of the underlying random process, but note that any kind of admissible
covariance function could have been used. The parameters of the covariance may be estimated
from the data using a maximum-likelihood approach (see Sect. 8.3).

6.1 A one-dimensional example

Consider the function with two global minimizers illustrated by Fig. 6 and defined by f :
x �−→ 4[1 − sin(x + 8 exp(x − 7))]. Given an initial design consisting of three points, the
IAGO algorithm is used to compute six additional points iteratively. The final Kriging model
is depicted in the left part of Fig. 6, along with the resulting conditional distribution for
the minimizers on the right part. After adding some noise on the function evaluations, the
variant of IAGO presented in Sect. 5.3.1 is also applied to the function with the same initial
design. In both cases, six additional evaluations have significantly reduced the uncertainty
associated with the position of the global minimizers. The remaining likely locations reduce
to small areas centered on the two actual global minimizers. In the noisy case, larger zones
are identified, a direct consequence of the uncertainty associated with the evaluations.

Figure 7 illustrates robust optimization using the same function and initial design, but
considering an additive zero-mean Gaussian noise on the factors with a standard deviation of
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Fig. 6 Example of global optimization using IAGO on a function of one variable (dotted line), with an initial
design consisting of three points (represented by squares). Six additional evaluations are carried out (triangles)
using two versions of the IAGO algorithm. The graphs on the left part of the figure account for the predictions,
while the right part presents the corresponding conditional distributions of the global minimizers. a Kriging
prediction and conditional distribution of the global minimizers based on the initial design. b Standard IAGO
algorithm (noise free case). c IAGO algorithm for noisy evaluations (the additive noise is zero-mean Gaussian
with standard deviation 0.2)

0.2. The cost function used is the 90%-quantile Q90%, which is computed on the surrogate
model but also, and only for the sake of comparison, on the true function using Monte
Carlo uncertainty propagation (the quantile is approximated using 5000 simulations). After
six iterations of the robust optimization algorithm, the distribution of the robust minimizers
is sufficiently peaked to give a good approximation of the true global robust minimizer.

These result are encouraging as they show that the requirement of fast uncertainty reduc-
tion is met. The next section provides some more examples, along with a comparison with
EGO, the EI-based global optimization algorithm.
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Fig. 7 Example of robust optimization using IAGO and the cost function Q90%. The function f (dotted line),
corrupted by an additive Gaussian noise on the factor (zero mean with a standard deviation of 0.2), is studied
starting from the initial design of three points already used in Fig. 6. Six additional evaluations are carried out
(triangles), which are used to estimate the cost function based on the Kriging model (bold line), along with
the conditional distribution of the robust minimizers (right). The cost function Q90% estimated, only for the
sake of comparison, from the true function using Monte Carlo uncertainty propagation is also provided (mixed
line)

6.2 Empirical comparison with expected improvement

Consider first the function described by Fig. 8. Given an initial design of three points, both EI
and minimizers entropy are computed. Their optimization provides two candidate evaluation
points for f , which are also presented on Fig. 8, along with the post-evaluation prediction
and conditional distribution for X∗G. For this example, the regularity parameter of the Matérn
covariance is set a priori to a high value (2.5). By taking in account the covariance function
of F through conditional simulations, the minimizers entropy uses regularity to conclude
faster. The resulting conditional distribution of the minimizers is then generally more peaked
using the IAGO algorithm than using the EGO algorithm (as illustrated by Fig. 8b,c).

Consider now the Branin function (see, for instance, [8]), defined as

f : [−5, 10] × [0, 15] −→ R

(x1, x2) �−→
(

x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6
)2 + 10

(
1− 1

8π

)
cos(x1)+ 10.

It has three global minimizers x∗1 ≈ (−3.14, 12.27)T, x∗2 ≈ (3.14, 2.27)T and x∗3 ≈
(9.42, 2.47)T, and the global minimum is approximately equal to 0.4. Given an initial uni-
form design of sixteen points, fifteen additional points are iteratively selected and evaluated
using the IAGO and EGO algorithms. The parameters of the Matérn covariance are estimated
on the initial design, and kept unchanged during both procedures. The positions of the eval-
uation points are presented on Fig. 9 (left), along with the three global minimizers. Table 2
summarizes the results obtained with EGO and IAGO, based on the final Kriging models
obtained with both approaches. Note that the EI criterion in EGO is maximized with a high
precision, while minimizers entropy in IAGO is computed over a thousand candidate evalua-
tion points located on a regular grid. It appears nevertheless that the algorithm using EI stalls
on a single global minimizer, while the minimizers entropy allows a relatively fast estimation
of all three of them. Besides IAGO yields a better global approximation of the supposedly
unknown function. If twenty additional evaluations are carried out (as presented in the right
part of Fig. 9), the final Kriging prediction using minimizers entropy estimates the minimum
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Fig. 8 Comparison between minimizers entropy and EI: the left side contains the Kriging predictions before
and after an additional evaluation chosen with either EI or minimizers entropy, while the right side presents the
corresponding conditional distribution of the global minimizers. a Initial prediction and minimizers distribu-
tion. b Prediction and minimizers distribution after an additional evaluation of f chosen with EI. c Prediction
and minimizers distribution after an additional evaluation of f chosen with minimizers entropy

with an error of less than 0.05 for all three minimizers (cf. Table 2), while the use of EI does
not improve the information on any minimizer any further. The difference between the two
strategies is clearly evidenced. The EI criterion, overestimating the confidence in the initial
prediction, has led to performing evaluations extremely close to one another, for a very small
information gain. In a context of expensive function evaluation, this is highly detrimental.
The entropy criterion, using the same covariance parameters, does not stack points almost
at the same location before having identified the most likely zones for the minimizers. The
use of what has been assumed and learned about the function is clearly more efficient in this
case, and this property should be highly attractive when dealing with problems of higher
dimension.
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Fig. 9 Fifteen iterations of two optimization algorithms, that differ by their criteria for selecting evaluation
points for f , on the Branin function: (top) the EI criterion is used, (bottom) the minimizers entropy criterion
is used with a thousand candidate evaluation points for f set on a regular grid (squares account for initial
data, triangles for new evaluations, and crosses give the actual locations of the three global minimizers). a 15
iterations using EGO. b 35 iterations using EGO. c 15 iterations using IAGO. d 35 iterations using IAGO

Table 2 Estimation results for the Branin function using the evaluations of Fig. 9

EGO IAGO

15 Iterations 35 Iterations 15 Iterations 35 Iterations

Euclidean distance between x∗1 and its final estimate 3.22 3.22 2.18 0.23
Value of the true function at estimated minimizer 17.95 17.95 2.59 0.40
Euclidean distance between x∗2 and its final estimate 2.40 2.40 0.44 0.18
Value of the true function at estimated minimizer 13.00 13.00 0.85 0.42
Euclidean distance between x∗3 and its final estimate 0.04 0.04 0.82 0.23
Value of the true function at estimated minimizer 0.40 0.40 1.94 0.44

7 Discussion

7.1 Robustness to uncertainty on the covariance parameters

Jones studied in [13] the potential of Kriging-based global optimization methods such as
EGO. One of his most important conclusion, is that these methods “can perform poorly if
the initial sample is highly deceptive”. An eloquent example is provided on page 373 [13],
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where a sine function is sampled using its own period, leading to a flat prediction over the
domain, associated with a small prediction error.

This potential for deception is present throughout the IAGO procedure, and should not be
ignored. To overcome this difficulty, several methods have been proposed (see, e.g., Enhanced
Method 4 in [13] or [10]), which achieve some sort of robustness to an underestimation of
the prediction error and more generally to a bad choice of covariance function. They seem
to perform better than classical algorithms, including EGO.

Comparing the IAGO approach to such methods is an interesting topic for future research.
The issue considered here was to demonstrate the interest of the minimizers entropy criterion,
and we felt that this had to be done independently from the rest of the procedure.

It is of course essential to make IAGO robust to errors in the estimation of the covariance
parameters. In many industrial problems, this can be easily done by using prior knowledge
on the unknown function to restrict the possible values for these parameters. For example,
experts of the field often have information regarding the range of values attainable by the
unknown function. This information can be directly used to restrict the search space for the
variance of the modeling process F , or even to choose it beforehand.

More generally, given the probabilistic framework used here, it should be relatively easy to
develop a Bayesian or minimax extension of IAGO to guide the estimation of the parameters
of the covariance function. A comparison with robust methods such as those detailed in [13]
will then be essential.

7.2 Conclusions and perspectives

In this paper, a stepwise uncertainty reduction strategy has been used for the sequential global
optimization of expensive-to-evaluate functions. This strategy iteratively selects a minimizer
of the conditional minimizers entropy as the new evaluation point. To compute this entropy,
a Gaussian random model of the function evaluations is used and the minimizers entropy is
estimated through Kriging and conditional simulations. At each iteration, the result of the
new evaluation is incorporated in the data base used to re-build the Kriging model (with a
possible re-estimation of the parameters of its covariance function).

We have shown on some simple examples that, compared to the classical EI-based algo-
rithm EGO, the method proposed significantly reduces the evaluation effort in the search
for global optimizers. The stepwise uncertainty reduction strategy allows the optimization
method to adapt the type of search to the information available on the function. In particular,
the minimizers entropy criterion makes full use of the assumed regularity of the unknown
function to balance global and local searches.

Choosing an adequate set of candidate points is crucial, as it must allow a good esti-
mation of a global minimizer of the criterion, while keeping computation feasible. Prom-
ising results have already been obtained with space-filling designs, and adaptive sampling
based on the conditional density of the global minimizers should be useful as dimension
increases.

Extension to constrained optimization is an obviously important topic for future investiga-
tions. When it is easy to discard the candidate points in X that do not satisfy the constraints, the
extension is trivial. For expensive-to-evaluate constraints, the extension is a major challenge.

Finally, the stepwise uncertainty reduction strategy associated with conditioning by Kri-
ging is a promising solution for the robust optimization of expensive-to-evaluate functions,
a problem that is central to many industrial situations, for which an efficient product design
must be found in the presence of significant uncertainty on the values actually taken by some
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factors in mass production. In addition, robustness to the uncertainty associated with the
estimation of the parameters of the covariance function should also be sought.

8 Appendix: modeling with Gaussian processes

This section recalls the main concepts used in this paper, namely Gaussian process modeling
and Kriging. The major results will be presented along with the general framework for the
estimation of the model parameters.

8.1 Kriging when f is evaluated exactly

Kriging [4,15] is a prediction method based on random processes that can be used to approx-
imate or interpolate data. It can also be understood as a kernel regression method, such as
splines [23] or Support Vector Regression [20]. It originates from geostatistics and is widely
used in this domain since the 60s. Kriging is also known as the Best Linear Unbiased Pre-
diction (BLUP) in statistics, and has been more recently designated as Gaussian Processes
(GP) in the 90s in the machine learning community.

As mentioned in Sect. 2.1, it is assumed that the function f is a sample path of a Gaussian
random process F . Denote by m(x) = E[F(x)] the mean function of F(x) and by k(x, y)

its covariance function, written as

k(x, y) = cov(F(x), F(y)).

Kriging then computes the BLUP of F(x), denoted by F̂(x), in the vector space generated
by the evaluations HS = span{F(x1), . . . , F(xn)}. As an element of HS, F̂(x) can be written
as

F̂(x) = λ(x)TFS. (15)

As the BLUP, F̂(x) must have the smallest variance for the prediction error

σ̂ 2(x) = E[(F̂(x)− F(x))2], (16)

among all unbiased predictors. The variance of the prediction error satisfies

σ̂ 2(x) = k(x, x)+ λ(x)TKλ(x)− 2λ(x)Tk(x), (17)

with

K = (
k(xi , x j )

)
, (i, j) ∈ [[1, n]]2

the n × n covariance matrix of F at evaluation points in S, and

k(x) = [k(x1, x), . . . , k(xn, x)]T

the vector of covariances between F(x) and FS
The prediction method [16] assumes that the mean of F(x) can be written as a finite linear

combination

m(x) = βTp(x),

where β is a vector of fixed but unknown coefficients, and

p(x) = [p1(x), . . . , pl(x)]T
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is a vector of known functions of the factor vector x. Usually these functions are monomials
of low degree in the components of x (in practice, their degree does not exceed two). These
functions may be used to reflect some prior knowledge on the unknown function. As we have
none for the examples considered here, we simply use an unknown constant.

The Kriging predictor at x is then the best linear predictor subject to the unbiasedness con-
straint E(F̂(x)) = m(x), whatever the unknown β. The unbiasedness constraint translates
into

βTP Tλ(x) = βTp(x), (18)

with

P =
⎛
⎜⎝

p(x1)
T

...

p(xn)T

⎞
⎟⎠ .

For (18) to be satisfied for all β, the Kriging coefficients must satisfy the linear constraints

P Tλ(x) = p(x), (19)

called universality constraints by Matheron. At this point, Kriging can be reformulated as
follows: find the vector of Kriging coefficients that minimizes the variance of the predic-
tion error (17) subject to the constraints (19). This problem can be solved via a Lagrangian
formulation, with µ(x) a vector of l Lagrange multipliers for the constraints in (19). The
coefficients λ(x) are then solutions of the linear system of equations

(
K P

P T 0

) (
λ(x)

µ(x)

)
=

(
k(x)

p(x)

)
, (20)

with 0 a matrix of zeros. A convenient expression for the variance of the prediction error is
obtained by substituting k(x)− Pµ(x) for Kλ(x) in (17) as justified by (20), to get

σ̂ 2(x) = E
[

F(x)− F̂(x)
]2 = k(x, x)− λ(x)Tk(x)− p(x)Tµ(x). (21)

The variance of the prediction error at x can thus be computed without any evaluation of f ,
using (20) and (21). It provides a measure of the quality associated with the Kriging predic-
tion. Evaluations of f remain needed to estimate the parameters of the covariance function
of F (if any), as will be seen in Sect. 8.3.2.

Once f has been evaluated at all evaluation points, the prediction of the value taken by f
at x becomes

f̂ (x) = λ(x)TfS, (22)

with fS = [ f (x1), . . . , f (xn)]T (fS is viewed as a sample value of FS).
It is easy to check that (20) implies that

∀ xi ∈ S, F̂(xi ) = F(xi ).

The prediction of f at xi ∈ S is then f (xi ), so Kriging is an interpolation with the consider-
able advantage that it also accounts for model uncertainty through an explicit characterization
of the prediction error.
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Remark The Bayesian framework (see, for instance, [25]) is an alternative approach to derive
the BLUP, in which F is viewed as a Bayesian prior on the output. In the case of a zero-mean
model, the conditional distribution of the function is then Gaussian with mean

E [F(x)|FS = fS] = k(x)TK−1fS, (23)

and variance

Var [F(x)|FS = fS] = k(x, x)− k(x)TK−1k(x),

which are exactly the mean (22) and variance (21) of the Kriging predictor for a model F
with zero mean. The Kriging predictor can also be viewed as the conditional mean of F(x) in
the case of an unknown mean, if the universality constraints are viewed as a non-informative
prior on β.

8.2 Kriging when f is evaluated approximately

The Kriging predictor was previously defined as the element of the space HS generated by the
random variables F(xi ) that minimizes the prediction error. A natural step is to extend this
formulation to the case of a function whose evaluations are corrupted by additive independent
and identically distributed Gaussian noise variables εi with zero mean and variance σ 2

ε . The
model of the observations then becomes Fobs

xi
= F(xi )+ εi , i = 1, . . . , n, and the Kriging

predictor for F(x) takes the form F̂(x) = λ(x)TF obs
S with F obs

S = [
Fobs

x1 , . . . , Fobs
xn

]T
. The

unbiasedness constraint (19) remain unchanged, while the mean-square error (2) becomes

E[F̂(x)− F(x)]2 = k(x, x)+ λ(x)T(K + σ 2
ε In)λ(x)− 2λ(x)Tk(x),

with In the identity matrix. Finally, using Lagrange multipliers as before, it is easy to show
that the coefficients λ(x) of the prediction must satisfy

(
K + σ 2

ε In P

P T 0

)(
λ(x)

µ(x)

)
=

(
k(x)

p(x)

)
. (24)

The resulting prediction is no longer interpolative, but can still be viewed as the mean of the
conditional distribution of F . The variance of the prediction error is again obtained using
(21).

8.3 Covariance choice

Choosing a suitable covariance function k(·, ·) for a given f is a recurrent and fundamental
question. It involves the choice of a parametrized class (or model) of covariance, and the
estimation of its parameters.

8.3.1 Covariance classes

The asymptotic theory of Kriging [21] stresses the importance of the behaviour of the covari-
ance near the origin. This behaviour is indeed linked with the quadratic-mean regularity of the
random process. For instance, if the covariance function is continuous at the origin, then the
process will be continuous in quadratic mean. In practice, one often uses covariances that are
invariant by translation (or equivalently stationary), isotropic, and such that regularity can
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be adjusted. Non-stationary covariances are seldom used in practice, as they make parameter
estimation particularly difficult [4]. Isotropy, however, is not required and can even be inap-
propriate when the factors are of different natures. An example of an anisotropic, stationary
covariance class is k(x, y) = k(h), with h = √

(x − y)TA(x − y) where (x, y) ∈ X2 and
A is a symmetric positive definite matrix.

A number of covariance classes are classically used (for instance, exponential h �→
σ 2 exp(−θ |h|α), product of exponentials, or polynomial). The Matérn covariance class offers
the possibility to adjust regularity with a single parameter [21]. Stein (1999) advocates the
use of the following parametrization of the Matérn class:

k(h) = σ 2

2ν−1�(ν)

(
2ν1/2h

ρ

)ν

Kν

(
2ν1/2h

ρ

)
, (25)

where Kν is the modified Bessel function of the second kind [27]. This parameterization is
easy to interpret, as ν controls regularity, σ 2 is the variance (k(0) = σ 2), and ρ represents
the range of the covariance, i.e., the characteristic correlation distance. To stress the signif-
icance and relevance of the regularity parameter, Fig. 10 shows the influence of ν on the
covariance function, and Fig. 11 demonstrates its impact on the sample paths. Since Kriging
assumes that f is a sample path of F , a careful choice of the parameters of the covariance is
essential.

Fig. 10 Matérn covariances with ρ = 0.5, σ 2 = 1. Solid line corresponds to ν = 4, dashed line to ν = 1
and dotted line to ν = 0.25

123
148



532 J Glob Optim (2009) 44:509–534

0 0.4 0.8 1.2 1.6

-2

-1

0

1

2

2

Fig. 11 Three sample paths of a zero-mean Gaussian process with a Matérn covariance. Conventions are as
in Fig. 10: ν = 4 for the solid line, ν = 1 for the dashed line and ν = 0.25 for the dotted line

8.3.2 Covariance parameters

The parameters for a given covariance class can either be fixed using prior knowledge on
the system, or be estimated from experimental data. In geostatistics, estimation is carried
out using the adequacy between the empirical and model covariances [4]. In other areas,
cross validation [23] and maximum likelihood [21] are mostly employed. For simplicity
and generality reasons [21], the maximum-likelihood method is preferred here. Using the
joint probability density of the observed Gaussian vector, and assuming that the mean of
F(x) is zero for the sake of simplicity, one obtains the maximum-likelihood estimate of the
vector θ of the covariance parameters (see, for instance, [22]) by minimizing the negative
log-likelihood

l(θ) = n

2
log 2π + 1

2
log det K(θ)+ 1

2
f T

S K(θ)−1fS. (26)

When the mean for F(x) is unknown, the parameters can be estimated, using for example
the REstricted Maximum Likelihood (REML, see [21]). This is the approach used for the
examples in this paper.

Figure 12 illustrates prediction by Kriging with a Matérn covariance, the parameters of
which have been estimated by REML. The prediction interpolates the data, and confidence
intervals are deduced from the square root of the variance of the prediction error to assess
the quality of the prediction between data. Figure 12 also contains a series of conditional
simulations (obtained with the method explained in Sect. 3.2), namely sample paths of F
that interpolate the data. As implied by (23), the Kriging prediction is the mean of these
conditional simulations.
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Fig. 12 Example of Kriging interpolation (bold line) for a function of one variable. The data are represented
by squares, and the covariance parameters were estimated by REML. Dashed lines delimit 95% confidence
region for the prediction. The thin solid lines are examples of conditional simulations
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152 3 Bayesian optimization

3.5 Constrained multi-objective Bayesian optimization

This article was presented in the Learning and Intelligent OptimizatioN Conference
(LION9, 2015). It is a preliminary presentation of a recent contribution on con-
strained multi-objective optimization. A detailed version is in preparation.
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Abstract. This paper addresses the problem of derivative-free multi-
objective optimization of real-valued functions under multiple inequality
constraints. Both the objective and constraint functions are assumed
to be smooth, nonlinear, expensive-to-evaluate functions. As a conse-
quence, the number of evaluations that can be used to carry out the
optimization is very limited. The method we propose to overcome this
difficulty has its roots in the Bayesian and multi-objective optimization
literatures. More specifically, we make use of an extended domination
rule taking both constraints and objectives into account under a unified
multi-objective framework and propose a generalization of the expected
improvement sampling criterion adapted to the problem. A proof of con-
cept on a constrained multi-objective optimization test problem is given
as an illustration of the effectiveness of the method.

1 Introduction

This paper addresses the problem of derivative-free multi-objective optimization
of real-valued functions under multiple inequality constraints:

{
Minimize f(x)
Subject to x ∈ X and c(x) ≤ 0

where f = (fj)1≤j≤p is a vector of objective functions to be minimized, X ⊂ Rd
is the search domain and c = (ci)1≤i≤q is a vector of constraint functions. Both
the objective functions fj and the constraint functions ci are assumed to be
smooth, nonlinear functions that are expensive to evaluate. As a consequence,
the number of evaluations that can be used to carry out the optimization is
very limited. This setup typically arises when the values f(x) and c(x) for a
given x ∈ X correspond to the outputs of a computationally expensive computer
program.

In this work, we consider a Bayesian approach to this optimization problem.
The objective and constraint functions are modelled using a vector-valued Gaus-
sian process and X is explored using a sequential Bayesian design of experiments
approach [14]. More specifically, we focus on the Expected Improvement (EI)
infill sampling criterion. This criterion was originally introduced in the context
of single-objective, unconstrained optimization [10,13]. It was later extended to

153



handle constraints [7,17,19,21,22] and to address unconstrained multi-objective
problems [4,18,24,9]. However, to the best of our knowledge, the general case
of a constrained multi-objective problem has only been addressed very recently
by [23]. In their paper, Shimoyama et al. consider three different Bayesian criteria
for unconstrained multi-objective optimization and study the effect of multiply-
ing the criteria by a probability of feasibility in order to handle the constraints.

The approach we propose to handle the constraints is based on an extended
domination rule, in the spirit of [6,16,20], which takes both objectives and con-
straints into account under a unified framework. The extended domination rule
makes it possible to derive a new expected improvement criterion to deal with
constrained multi-objective optimization problems. Section 2 introduces the pro-
posed method, while Section 3 presents a proof of concept on a classical test case
from the literature. Results and future works are briefly discussed at the end of
Section 3.

2 An expected improvement criterion for constrained
multi-objective optimization

In this section, we present our extended domination rule and introduce a new ex-
pected improvement criterion suitable for constrained and unconstrained multi-
objective problems. The new criterion is equivalent to the original EI on uncon-
strained single-objective problems and to Schonlau’s extension to the constrained
case [22] once a feasible point has been found. It is also similar to the formula-
tion of [24] for unconstrained multi-objective problems and to that of [23] in the
constrained case once a feasible point has been found. As such, it can be seen as
a generalization of the above-mentioned criteria.

Denote by F ⊂ Rp and C ⊂ Rq the objective and constraint spaces respec-
tively, and let Y = F × C. We shall say that y1 ∈ Y dominates y2 ∈ Y, which
will be denoted by y1 C y2, if ψ(y1) dominates ψ(y2) in the usual Pareto sense,
where

ψ : F× C → Rp × Rq

(yf , yc) 7→
{
(yf , 0) if yc ≤ 0,

(+∞,max(yc, 0)) otherwise,

In the above system of equations, R denotes the extended real line. For un-
constrained problems, we simply take the usual domination rule on F. Figure 1
illustrates this extended domination rule in different cases.

Assume now that Y is bounded. Much like [4,24,18], we define the improve-
ment yielded by a new observation as the increase of the dominated hyper-
volume:

IN (xN+1) = |HN+1| − |HN | ,
where HN is the subset of Y dominated by the solutions observed so far
(f(x1), c(x1)) , . . . , (f(xN ), c(xN )) and | · | denotes the usual (Lebesgue) volume
measure in Rp+q. The corresponding expected improvement criterion can be
written as
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Fig. 1. Illustration of the extended domination rule in different situations. The region
dominated by each point is represented by a shaded area. Darker shades of gray indicate
overlapping regions. (a) Feasible solutions are compared with respect to their objective
values using the usual domination rule in the objective space. (b) Non-feasible solutions
are compared component-wise with respect to their constraint violations using the usual
domination rule applied in the constraint space. (c) Feasible solutions always dominate
non-feasible solutions; other cases are handled as in the first two figures.

EIN (xN+1) = EN ((IN (xN+1))

= EN

(∫

Y\HN

1ξ(xN+1)Cy dy

)

=

∫

Y\HN

PN (ξ(xN+1)C y) dy

where PN denotes the probability conditional to the observations and ξ is a
vector-valued Gaussian model for (f, c).

Even though the integrand of the EI formula can be readily computed ana-
lytically, its integration is not trivial due to the combinatorial nature of the prob-
lem [8,2,5]. To overcome this difficulty, we propose to use a Sequential Monte
Carlo (SMC) approximation [3,11,12,1]:

EIN (xN+1) ≈
n∑

i=1

wi PN (ξ(xN+1)C yi),
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where YN = (wi, yi)1≤i≤n is a weighted sample that targets the uniform density
on Y \HN .

3 Proof of concept

In this paper, we illustrate the behavior of our new optimization strategy us-
ing the Osyczka and Kundu test problem [15] for constrained multi-objective
optimization (d = 6, p = 2, q = 6). The algorithm is initialized using a Latin
Hypercube sample of 18 samples and proceeds using the above mentionned cri-
terion. Figure 2 shows the convergence of the algorithm at different steps of the
optimization.

We are also able to report good results on other challenging test cases
from the literature and future communications will include a comparison of
our method to reference optimization methods. More details about the SMC
procedure will also be proposed.
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Fig. 2. Test results on Osyczka and Kundu test problem with, from left to right,
N = 20, 40 and 60 evaluations. Only feasible points are shown on the figures. The
dark dots represent non-dominated observations while the light gray dots represent
dominated ones. The dark curve represents the target Pareto front.
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Conclusions & Future work





Conclusions & Future work

1 Summing up

This manuscript presents a summary of my teaching and research work. The latter
represents approximately 20% of my activity during the period 2005–2014.

I would say that my research domain is that of the Bayesian approach to design
and analysis of computer experiments. This domain has its roots in contributions
such as those of G. S. Kimeldorf and G. Wahba (1970), J. Mockus, V. Tiesis and
A. Žilinskas (1978), C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker (1991),
M. Locatelli and F. Schoen (1993). . . Here, the central object is a computer model
of a system, which is regarded as a function f :X→R that maps a vector of input
variables to a quantity of interest (a performance, a cost. . . ). The act of running the
model is viewed as an experiment, made for the purpose of collecting information
about the properties of the system under study. Research in the domain of computer
experiments aims at designing algorithms for getting information from computer
models as efficiently as possible.

There are several general classes of problems that can be considered: prediction,
optimization, level set estimation, sensitivity analysis. . . In a given real industrial
problem several objectives are frequently sought at the same time. For instance,
when doing simulation-based car-crash testing, one not only seeks to minimize the
probability of injury of the passengers, but also, to minimize the mass of the vehicle,
the cost of fabrication, etc. The most fundamental class of problems is probably that
of prediction, since it relates to the others classes of problems in addition to being
of interest in its own right. In our work, we follow a path traced for over more
than two decades and focus on the kriging approach to prediction. The main reason
for the central role of kriging in the domain of design and analysis of computer
experiments is that this conceptually simple approach is well suited to a Bayesian
decision-theoretic framework.

The Bayesian approach to design and analysis of computer experiments has
shown to be very useful and effective in practical problems, in particular in the
context of expensive computer simulations where Monte Carlo methods are not af-
fordable. A large number of applications can be found in the literature. Yet, there
are numerous methodological and theoretical questions still open at present time.

This manuscript does not provide new academic results. It consists of a gen-
eral presentation of sequential search strategies based on kriging and a selection of
articles organized in two parts: a range of articles about the notion of sequential
uncertainty reduction, and a specific part about Bayesian optimization. The selec-
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162 2 Ongoing work

tion aims at showing that we try to study both practical and theoretical questions
regarding Bayesian strategies for design and analysis of computer experiments.

From a practical point of view, we strive to address effectively industrial needs
by taking into account the constraints that appear in real problems. For instance, the
idea of considering the problem of the estimation of a probability of failure in 2006
was initiated and nurtured by a series of discussions with people from EADS—now
AIRBUS GROUP. Another aspect of our work, which has not been emphasized in
this manuscript, is the willingness to provide efficient implementations of Bayesian
strategies to solve actual problems. Our motivation is twofold.

The primary motivation is a concern for reproducible research. Indeed, the com-
plexity of working implementations of our algorithms is often quite high—for in-
stance, coding a IAGO algorithm from scratch can take several weeks. Besides, the
performance of an algorithm is often dependent on its implementation. Today, we
try to publish our implementations inside the Small (Matlab/GNU Octave) Toolbox
for Kriging (STK), which I am contributing to write with my colleague Julien Bect,
who is the main developer today. The STK is published under a GPLv3 license and
is the tool that we use daily to write and test our algorithms. As such, the STK has
become central to our research activities.

The secondary motivation is that developing new algorithms and providing effi-
cient implementations give rise to intrinsically interesting research questions. Since
2009, Julien Bect and I have been supervising PhD students on the problem of the
implementation of kriging-based sequential strategies, and in particular, on the de-
velopment of implementations based on sequential Monte Carlo techniques.

2 Ongoing work

At present, our main focus is on the problem of multi-objective optimization of real-
valued functions subject to multiple inequality constraints. The problem consists in
finding an approximation of the set

Γ = {x ∈X : c(x)≤ 0 and @x′ ∈X such that f (x′)≺ f (x)} ,

whereX⊂Rd is the search domain, c = (ci)1≤i≤q is a vector of constraint functions
(ci :X→R), c(x)≤ 0 means that ci(x)≤ 0 for all 1≤ i≤ q, f = ( f j)1≤ j≤p is a vec-
tor of objective functions to be minimized ( f j :X→R), and ≺ denotes the Pareto
domination rule. Our approach so far consists in defining an extended domination
rule to handle the constraints and the objectives simultaneously. Then, we define a
Bayesian sampling criterion that extends the expected improvement sampling crite-
rion in the single-objective unconstrained setting. The calculation and optimization
of the criterion are performed using sequential Monte Carlo techniques. In partic-
ular, an algorithm similar to our Bayesian subset simulation method (L. Li, J. Bect
and E. Vazquez; 2012) is used to estimate the expected improvement criterion.

This work is being carried out since 2014 in collaboration with industrial partners
and is being supported by the SystemX Institute of Technology.

More recently, we also have started a collaboration with LNE (laboratoire na-
tional de métrologie et d’essais) on the design and analysis of multi-fidelity com-
puter experiments applied to fire safety.



3 Perspectives

As probably expected, past studies have stirred at least as many questions they have
solved. One topic that has been left out for some time, yet still in my very research
interests, is the problem of the convergence of kriging-based sequential strategies.
In particular, a first question concerns the possibility to improve on Adam Bull’s
convergence rates of the expected improvement algorithm, which are seemingly not
as tight as expected. A second question concerns the convergence of our new integral
loss criterion for optimization (E. Vazquez and J. Bect; 2014). A third question is
about the convergence of kriging-based optimization strategies in presence of noisy
evaluation results. . .

New directions related to the choice of priors in sequential search strategies are
also of interest. In fact, we feel that the simple framework of stationary Gaussian
random process with a Matérn correlation structure has never been entirely satis-
fying. In particular, the problem becomes particularly difficult when f has local
irregularities. Second, this type of model is difficult to use when the dimension ofX
becomes high. In fact, in high dimensional problems, it is generally expected that
the output of the computer model depends only on a few factors, or maybe a few
combinations of them. Studying this type of setting is interesting from both theoret-
ical and practical viewpoints.
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