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Introduction and Outline

A phase transition is characterized by a singular behavior. The most commonly known singularities are discontinuities in extensive first derivatives of the free energy. In the case of a first order liquid/gas transition, the volume or the number of particles, thus the density, is discontinuous. In a binary fluid the composition changes discontinuously and in a ferromagnet under a magnetic field, the magnetic moment displays hysteresis due to a discontinuity in its equilibrium values. At continuous phase transitions, the singularity lies in second derivatives of the free energy. For example, the specific heat diverges at the critical point of the liquid/gas phase transition, demixing of binary mixtures or uniaxial ferromagnets. Moreover, the correlation length of fluctuations diverges at criticality, one spectacular and famous consequence of this divergence being the phenomenon of critical opalescence in a fluid. The critical singularities are characterized by scaling behavior: the evolution of thermodynamic quantities are dominated by power laws which can be summed up in scaling forms in which an n variable thermodynamic function condenses into an n -1 dimensional function of scaled variables. A fascinating feature stemming from scaling behavior is universality: a universality class is an ensemble of systems, experimental or model, sharing the exact same universal quantities at criticality, such as critical exponents.

A universality class is characterized by the spatial dimension of the system, the short or long range character of the interaction and the symmetry of the order parameter. The three above examples, liquid/gas, uniaxial ferromagnets and demixing of binary mixtures, belong to the universality class of the Ising model. In the first chapter of this work, we will introduce some basic knowledge on phase transitions and the very special case of continuous phase transitions.

The most prominent result being that it is possible to extract quantities that are relevant for critical phenomena in a wide range of experimental systems, from uniaxial magnets to polymer mixtures, from calculations in the rather simple Ising model.

In the absence of an exact solution of the Ising model in three dimensions, numerical simulations have been a major, ubiquitous and flexible tool for studying the Ising phase transition.

The second chapter, is therefore dedicated to presenting Monte Carlo numerical simulations of the Ising model, that formed the basis of most of the present work. At the same time, this will give us the opportunity to introduce finite size scaling, a theoretical approach fundamental to the present work, both for numerical and experimental considerations. The scaling behavior we 11 describe in chapter 1 are observed in thermodynamically large systems. We have stated that a phase transition is characterized by a singular behavior, but in a finite system no phase transition can occur as only an infinite number of degrees of freedom can foster a singularity. For example, in a finite system, the divergence of the correlation length when approaching a critical point will eventually be cut off as it cannot outgrow the system size. This was first considered as a limitation for numerical simulations as the limitations of computer capacities and algorithms force one to perform simulations in systems with rather small number of degrees of freedom compared to experimental setups. At criticality, quantities computed in a finite system will depend on the size and boundary conditions of the simulation, with values far from their thermodynamic ones. Finite size scaling is an extension of the scaling hypothesis explicitly taking into account the new relevant thermodynamic parameter which is the confining size of the system. It is a powerful tool for the interpretation and exploitation of the thermodynamics of confined critical systems [START_REF] Binder | Overcoming the Limitation of Finite Size in Simulations: From the Phase Transition of the Ising Model to Polymers, Spin Glasses, etc[END_REF]. It takes advantage out of this size dependency and enables one to extract thermodynamic quantities, such as critical exponents [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] and universal scaling functions [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] from finite-size simulations.

Today, the interest in finite size scaling has moved beyond numerical simulations. Confined phase transitions have been experimentally explored in a great variety of systems [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]: polymer mixtures [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF], superfluid helium [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Mehta | Superfluid Transition of 4 He for Two-Dimensional Crossover, Heat Capacity, and Finite-Size Scaling[END_REF][START_REF] Kimball | Specific Heat Near the Superfluid Transition of a 0.9869 µm 4he Film[END_REF][START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF], ferromagnets [START_REF] Wang | Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model[END_REF][START_REF] Li | Dimensional crossover in ultrathin Ni(111) films on W(110)[END_REF][START_REF] Huang | Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111)[END_REF], etc. A fascinating finite size effect, which has been the topic of an abundant literature in past decades [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF] is the critical Casimir force. The first "Casimir" force was predicted by Hendrik Casimir in 1948 [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF] as a consequence of the confinement of quantum fluctuations of the electromagnetic field between two conducting and uncharged metallic plates in vacuum. Its critical counterpart has been predicted by Fisher and de Gennes in 1978 [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF]. The confinement of critical fluctuations, similarly to the electrodynamic case, results in the critical Casimir force. The force can be defined in a finite size scaling universal form and thus will have the same form in a wide variety of phase transitions, inside a universality class. As this force is a consequence of the confinement of critical fluctuations, we have found it insightful to study how fluctuations develop in a confined system. We have computed the probability distribution of the magnetization at the critical point of the Ising model and used finite size scaling to study the influence of geometry and boundary fields on the form of this distributions. This will be the topic of the third chapter. The reader eager to know more about the critical Casimir force itself could pass this chapter and go directly to the following ones which tackle the most prominent part of this work: reinforcing the bonds between studies of the Casimir effect, both numeric and experimental, in magnetic and fluid systems.

The universality of the critical Casimir force allows one to compute its universal scaling function in model systems such as the Ising and XY models, numerical results in these model proving in very good agreement with experimental measurement in fluid systems [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF]. In the fourth chapter, we will give an introduction to the critical Casimir force, its scaling form and experimental and numerical approaches. In particular, we will describe a very successful method for computing the critical Casimir force in the Ising model [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], which inspired many elements of the numerical approaches we developed. We will try to emphasis one very important state of affairs which motived our work on the critical Casimir force: numerical and theoretical calculations of the critical Casimir force are systematically performed in magnetic model systems whereas measurements have all been done in fluid systems [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF][START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF]. We have tried to close this gap by proposing new approaches to the computation of this force, which are the topics of chapters five to seven.

On the one hand, we have proposed the first experimental protocol for measuring the scaling function for the critical Casimir force in a magnetic thin film (D. Lopes Cardozo, H. Jacquin and P. C. W. Holdsworth, Phys. Rev. B, november 2014 [START_REF] Lopes Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF]). We have tested this protocol through simulations of the Ising model, and this will be the topic of the fifth chapter. We believe this proposal could open the way to very rich experimental studies. Magnetic systems have long been the paradigm for studying critical phenomena (see for example ref. [START_REF] Stanley | Scaling, universality, and renormalization: Three pillars of modern critical phenomena[END_REF]) and the nanoengineering of magnetic thin films is particularly well-advanced [START_REF] Vaz | Magnetism in ultrathin film structures[END_REF]. Experimental systems [START_REF] De Jongh | Experiments on simple magnetic model systems[END_REF] potentially cover a wide range of universality classes, including quantum phase transitions, and various surface conditions, opening the possibility for a rich variation in universal behavior.

On the other hand, we present preliminary results, obtained in collaboration with Francesco Puosi (post-doctoral researcher at ENS de Lyon) and Sergio Ciliberto (CNRS, ENS de Lyon), for the first direct measurement of the critical Casimir force through the simulation of a fluid system, using a symmetrical binary mixture of Lennard-Jones particles in the Semi-Grand Canonical ensemble. This will be the topic of the seventh and final chapter. We have made contact with previous results obtained in the Ising model through measurements of the universal scaling functions of the excess internal energy but also the excess generalized pressure P = Pnµ, which we show to be the suitable quantity for a direct measurement of the critical Casimir force, P being the pressure, µ the total chemical potential and n the total density. We also obtained results that were not accessible directly to Ising model simulations. We have been able to distinguish the influence in the critical Casimir force of both the excess pressure and the excess chemical potential, and related the excess chemical potential to the excess internal energy. In particular, we predicted and confirmed numerically that the excess pressure is anisotropic in slab geometry, in which a confining length L ⊥ is clearly identified compared to the transverse size L ∥ ≫ L ⊥ . We believe these preliminary results in Lennard-Jones simulations of binary mixtures open the way to a great variety of studies, closely related to experimental approaches, such as measurements of the fluctuations of the critical Casimir force [START_REF] Bartolo | Fluctuations of Fluctuation-Induced Casimir-Like Forces[END_REF][START_REF] Dantchev | Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results[END_REF], dynamic effects when performing temperature quenches and out-of-equilibrium effects.

To compare results obtained both in the Ising and Lennard-Jones systems, which belong to the same universality class, we have estimated the scaling functions of the excess free energy and excess internal energy in the Ising model, which have attracted far less interest than the scaling function of the critical Casimir force. This is the topic of chapter six, in which we show that the relation between excess free energy and the critical Casimir force, can be used to our advantage to extract the first from the latter. This is of particular interest theoretically as the knowledge of the scaling function of the excess free energy gives access to any scaling function for quantities stemming from it, but also experimentally as the scaling function of the pressure anisotropy in slab geometry is the sum of the scaling functions of the critical Casimir force and the excess free energy.

All our numerical efforts benefited from the numerical resources of the PSMN at the ENS de Lyon [START_REF] Psmn | Pôle scientifique de modélisation numérique[END_REF] and this work was financed by the ERC grant OUTEFLUCOP with principal investigator Sergio Ciliberto (CNRS, ENS de Lyon). This work was performed during three years at the Laboratoire de Physique of the ENS de Lyon, under the direction of Peter Holdsworth.

Chapter 1 Phase Transitions and Critical Phenomena

The most commonly known phases of matter are the the gas, the liquid and the solid. They quite obviously differ by their macroscopic behavior: a gas tends to occupy all the volume offered, a liquid flows and a solid keeps its shape. Within these phases, others can be defined: we can distinguish different kinds of crystalline solids, fluids can be mixtures with complex interactions, atomic or molecular constituents can bear internal degrees of freedom such as magnetic or electric moments which can themselves organize in various phases. Some other phases are more subtle to define, such as the superfluid or superconducting states of matter. In the end, the number of phases of matter increases with the number of degrees of freedom and seems innumerable.

However, when it comes to continuous phase transitions, the number of different transitions is greatly reduced thanks to the concept of universality classes. A system undergoing a continuous phase transition will display singular behavior that has been showed to have universal features such as critical exponents, which are exactly identical in subsets of transitions, called universality classes [START_REF] Stanley | Scaling, universality, and renormalization: Three pillars of modern critical phenomena[END_REF]. We focus on the universality class of the Ising model in 3 dimensions, which bears the name of the simplest model belonging to this class and contains continuous transitions as various as the liquid-gas, demixing of binary mixtures and, of course, uniaxial magnetic systems. We will try to justify the predominance of the Ising model in the present work, which is our paradigm, by introducing theoretical notions on critical phenomena and the concept of universality classes.

Continuous and first-order transitions

The liquid-gas phase transition

In figure 1.1 we present a sketch of the most common phase diagram separating the solid, liquid and gas states of matter. We focus on the evolution from a liquid to a gas and present CHAPTER 1. PHASE TRANSITIONS AND CRITICAL PHENOMENA three isothermal paths through the phase diagram. The first (blue) one crosses the boundary separating the liquid domain from the gas domain in the Pressure-Temperature (P-T) diagram (Fig. 1.1a). This boundary has been represented as a continuous line because if one considers the corresponding path in the Pressure-Density diagram (Pn, where n=N/V is the number of particles N per volume V ), the transition will manifest itself by a discontinuous jump from a liquid of high density n liq to a gas of low density n gas (Fig. 1.1b) at constant pressure P 0 , fixed by the temperature T 0 . If, at pressure and temperature (P 0 , T 0 ), an external operator imposes that the overall density of the system takes a value n inter intermediate to n liq and n gas , the system will separate in two coexisting liquid and gas phases, so that no uniform phase of density n inter can exist under these conditions. The two other isothermal paths (red and green) do not cross the separation line and no discontinuity in density occurs. This is made possible by the termination of the liquid-gas separation line at a critical point. The difference in density of the liquid and gas phases vanishes as the temperature is increased toward its critical value T c . The "super-critical" region here is arbitrarily defined as the one in which P > P c and T > T c . Starting from the gas phase and passing through the super-critical region along the green isotherm, one can bypass the critical point and continue the path towards the liquid phase by changing the temperature (dotted green line in Fig. 1.1a). It is thus possible to pass from a gas to a liquid phase without discontinuity in the density. This is made possible by the fact that both phases have the same microscopic symmetries, whereas a solid will always be separated by a phase boundary from a fluid. The discontinuity of a phase transition is associated with a change in symmetry, either in configuration, or in geometrical space. The liquid/gas phase transition divides configuration space in two, between high and low density configurations, while maintaining full translational symmetry in each sub space. A crystalline solid, however, has reduced translational symmetry compared with 1.1. CONTINUOUS AND FIRST-ORDER TRANSITIONS the two fluid phases, which imposes that the crystalline solid will always be separated from the two fluid phases by a phase boundary [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF].

Though they can seem equivalent in the present representation, the red (T = T c ) and green (T > T c ) isotherms differ most significantly. The red one is the critical isotherm at T = T c , passing through the critical point. At this particular point, the system shows very surprising behavior. The first of them to be observed was the phenomena of critical opalescence, the fluid becoming turbid, scattering light of all wave lengths due to massive density fluctuations on all scales. This was later discovered to be accompanied by a divergence of the specific heat and isothermal compressibility. None of these singular features can occur along the green isotherm T > T c , the particularity of the "super-critical" region being that no value of the thermodynamic variables (P, T, n) used in the diagrams of figure 1.1 give rise to any singularity.

These considerations lead to the classification of phase transitions, or more precisely of boundaries between phases, in two classes [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF]:

• First-order phase transitions for which one or several extensive first derivatives of the free energy are discontinuous across the phase boundary. In our example, that is the case of the volume (or the number of particles, depending on the choice of variables kept fixed) which leads to a discontinuous density along the blue (T < T c ) isotherm of figure 1.1.

• Continuous phase transitions, for which a second derivative of the free energy is discontinuous or diverges. That is the case along the red path of figure 1.1.

In our formalism, a phase transition is not the passing from a phase to the other but the crossing of a phase boundary, that is to say of a point of non-analytic behavior for the free energy. Even if we allowed the temperature to drop so that the green path of figure 1.1 rejoined the liquid phase, no "phase transition" would be considered to occur as we need either to cross the line of first-order transitions or pass through the critical point to observe a non-analytic behavior.

The critical point gives a natural scale of pressure P c , temperature T c and density n c .

Using reduced units (P/P c , T /T c , n/n c ), we see that all phase diagrams for the liquid/gas phase transitions of different fluid systems fall on one master curve, Fig. 1.2. This is referred to as the law of corresponding states and constitutes our first step in the concept of universality, showing the special importance of critical points. Here, universality is only a consequence of dimensional analysis, but later, we will develop a more subtle concept of universality, appearing at criticality: scaling behavior and universality classes.

Line of continuous phase transitions

In addition to the solid, liquid and gas phases, if the constituents of a system bear magnetic moments they can undergo magnetic phase transitions. For example, in figure 1.3, we sketch the phase diagram of a system which, in the solid phase, can either present a paramagnetic [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF], proceeding from the work of ref [START_REF] Guggenheim | The Principle of Corresponding States[END_REF].

or ferromagnetic behavior, the latter being characterized by a non zero macroscopic magnetic moment in the absence of magnetic field. The phase boundary of figure 1.3 is represented as a dashed line as it is a line of continuous phase transitions, to be distinguished from the solid lines, phase boundaries at which first order transitions occur. We will not go any further into the classification of the great variety of possible phase diagrams [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF][START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF][START_REF] Krech | The Casimir effect in critical systems[END_REF] but from now on the ferromagnetic-paramagnetic phase transition will be our paradigm for describing phase transitions and for this purpose we will rely on the Ising model.

The Ising model

Definition of the model

The Ising model is at the heart of this work. It has first been introduced by Ising during his phD thesis, almost a century ago, to describe the ferromagnetic-paramagnetic transition. A magnetic system is described here as an ensemble of microscopic spins S i organized on a lattice.

In the present work, only the very simple, but already rich, case of classical spins S i = ±1 on 2dimensional square or 3-dimensional cubic lattice will be considered. The spins interact through a nearest neighbor exchange coupling characterized by a coupling constant J and are submitted to a magnetic field h. The Hamiltonian of the system reads

H = -J  ⟨i,j⟩ S i S j -h  i S i , (1.1) 
where the sum  ⟨i,j⟩ runs over all pairs of nearest neighbors and  i over all spins. Thermal agitation will tend to give random values to the spin and foster a paramagnetic phase with no magnetization at h = 0, whereas the nearest neighbor interactions favors alignment of spins and fosters a low temperature ferromagnetic phase with a non zero magnetization for all value of the magnetic field, including h = 0.

Despite its great simplicity, the Ising model accurately describes the magnetic phase transition of many uniaxial magnetic materials [START_REF] De Jongh | Experiments on simple magnetic model systems[END_REF][START_REF] Wolf | The Ising model and real magnetic materials[END_REF][START_REF] Ikeda | Neutron scattering study of two-dimensional Ising nature of K 2 CoF 4[END_REF]. From a theoretical point of view, its importance goes way beyond the description of those ferromagnetic materials as it is the generic model for a system with a scalar order parameter. It is the simplest model of the universality class that bears its name, which also contains the liquid/gas and demixing of binary mixtures transitions, as we will develop in the following. The Ising model has been solved in 1-dimension by Ising himself, showing that there is no phase transition at a non-zero temperature in this case.

The solution in 2-dimensions was found by Onsager in 1944 [START_REF] Onsager | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[END_REF], proving the existence of a phase transition at a finite temperature T c = 2J/(k B log(1 + √ 2)). Mean-field approaches [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF] already give insights on the nature of the phase transition and its critical behavior and give a quantitative description for dimension 4 and above, d = 4 being known as the upper critical dimension.

Mean field approaches are still widely used today but an exact solution in 3-dimensions is still lacking. However, extensive theoretical and numerical works [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] have lead to a rather precise understanding of the critical behavior of the Ising model [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF], which is still today at the heart of many works on critical phenomena.

In the same spirit as Fig. 1.2, we present a sketch of the phase diagram of an Ising ferromagnet in figure 1.4. The thermodynamic variables considered are the temperature T, the external magnetic field h and the average magnetization per spin ⟨m⟩ temperatures above the critical value T c the system is paramagnetic and has a zero average magnetization in the absence of a magnetic field. At low temperature T < T c , the system is ferromagnetic and displays a non zero magnetization ±m 0 at zero magnetic field.

⟨m⟩ = ⟨M ⟩ N = 1 N ⟨  i S i ⟩ , (1.2) 
with N the number of spins in the system and ⟨.⟩ stands for a statistical average. Three isotherms are sketched: one (blue) crossing the line of first order transitions (Fig. 1.2a) across which the magnetization discontinuously changes from positive to negative values (Fig. 1.2b), the critical isotherm (red) along which, at the critical point, the specific heat and magnetic susceptibility diverge, and a super-critical (green) isotherm which displays no phase transition, though the magnetization goes from negative to positive value, as for the other isotherms. As in the liquidgas case, the critical point defines an energy scale k B T c , with k B the Boltzmann constant, allowing one to define reduced units ( h = h/(k B T c ), T /T c ) to obtain a unique description of all Ising magnets, regardless of the internal parameter J.

Ising model and lattice fluids

Let us make the following change of variables for the Ising model [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF]:

n i = S i + 1 2 , (1.3) 
so that n i (S i = 1) = 1 and n i (S i = -1) = 0. The Hamiltonian of the Ising model becomes

H = -4J  ⟨i,j⟩ n i n j -(µ -µ c )  i n i + (Jz -h)N , (1.4) 
where the constant term (Jzh)N is only an energy shift which will not change the equilibrium properties of the system, so we define

H LG = -4J  ⟨i,j⟩ n i n j -(µ -µ c )  i n i , (1.5) 
where µ = 2h and µ c = 4Jz, describing a lattice gas with short range interactions. The transition from a positively magnetized Ising model to a negatively magnetized one is thus equivalent to going from a high density lattice fluid ⟨n i ⟩ > 1/2 to a low density one ⟨n i ⟩ < 1/2.

We can also convince ourselves that the Ising model could represent a mixture of two species A (S i = 1) and B (S i = -1). Like particles attract each other (-JS i S j < 0 if S i = S j ) and unlike particles repel each other (-JS i S j > 0 if S i ̸ = S j ). The field h is then a mismatch in chemical potentials h ∼ µ Aµ B favoring either A or B particles. A non zero magnetization corresponds to a rich in A or B phase and a zero magnetization to a mixed phase. Temperature then drives a demixing phase transition for a symmetrical (as the roles of A and B are equivalent) binary fluid. Thus, the Ising model is not only a model for uniaxial magnetic systems but is also a lattice model for fluid systems.

We will often refer to the magnetization as the order parameter. An order parameter is a characteristic feature of a phase transition, for a continuous phase transition it reflects the spontaneous breaking of a symmetry in the system between phases above and below the critical temperature. In the magnetic system the spin reversal symmetry is broken in the equilibrium phases below T c , for the lattice gas it is the particle-hole symmetry that is broken, and the A -B exchange symmetry in the binary mixture. In the absence of conjugate field (magnetic field h = 0, deviation to the critical value of the chemical potential µµ c = 0 or chemical mismatch

µ A = µ B )
this is reflected by the change from zero to non zero value of the order parameter, which in our examples is the magnetization ⟨m⟩, equivalently the deviation to the critical density nn c or the fraction in A (equivalently B) particles x Ax c compared to the mixed x c = 1/2 case. For other phase transitions, the order parameter can be difficult to measure, for example in the case of the liquid-solid transition or the normal fluid/superfluid transition. Depending on the phase transition, the order parameter can have different symmetries, being a scalar in the cases of the present section, a vector as in the case of non-uniaxial magnetic systems or the superfluid transition, or even a tensorial order parameter as in the case of liquid crystals. As we will see further, this symmetry of the order parameter is an important feature in differentiating universality classes.

Even though there is an exact mapping between a lattice gas, a lattice binary mixture and the Ising model, the equivalence between a real gas, a real binary mixture and a real Ising magnet is not exact. The similarities between the three systems are still quite striking if one considers the general form of the phase diagrams as presented in figure 1.5. In the case of the demixing of binary mixtures we present here the case of a high temperature consolute (critical) point, which compares most easily with the ferromagnetic case. We mention that the mixed phase can also be a low temperature phase and the demixed region a high temperature one, so that low temperature consolute points are also possible, and even phase diagrams with two consolute points, both high and low temperature, are observed. Comparing these three different phase transitions seems to be only qualitative, the exact mapping being confined to lattice models of fluids, which clearly can only be sketches of real fluids. We will see that close to the critical point, this analogy takes a very deep meaning with quantitative consequences: some quantities are universal for all these systems, allowing one to extract relevant quantities for all of them from the sole study of the Ising model. To this purpose, we need to introduce some quantitative aspects on the theory of continuous phase transitions and scaling at criticality.

Continuous phase transitions and scaling laws

Free energy and observables

We will first recall some fundamental notions of statistical mechanics. Taking a general approach, we consider a physical system whose macroscopic behavior is controlled by a set of microscopic degrees of freedom ϕ i , for example, spins for a magnetic system or positions of particles in a fluid one. The probability of observing a particular realization for the ensemble of the N degrees of freedom ϕ = (ϕ 1 , . . . , ϕ N ), or microstate, is given by the Boltzmann weight

P [ϕ] ≡ 1 Z e -κH [ϕ] , (1.6) 
where κ is the inverse thermal energy κ = 1/(k B T ), H the Hamiltonian of the system and Z a normalization factor, the partition function

Z ≡  {ϕ} e -κH [ϕ] , (1.7) 
where {ϕ} denotes the ensemble of all possible microstates (for a classical system of particles, it is the integral over all positions and speeds of all particles). In principle, the partition function allows for the calculation of the thermodynamic properties of all phases of the considered body.

The statistical average of an observable O, of value O[ϕ] in a micro state ϕ, is given by

⟨O⟩ ≡  {ϕ} O[ϕ] P [ϕ] . (1.8)
We define the free energy as:

Ω = -k B T ln Z . (1.9)
In this work, we focus on the Ising model universality class and thus we will use the formalism of magnetic systems. The free energy then depends on temperature T , magnetic field h and volume V of the system. We define magnetic observables such as the magnetic moment

⟨M ⟩ = ⟨  i S i ⟩ = ∂Ω ∂h     T , (1.10) 
the order parameter

⟨m⟩ = ⟨M ⟩ N , (1.11) 
and the associated susceptibility per spin

χ N ≡ χ N ≡ 1 N ∂⟨M ⟩ ∂h     T = 1 N ∂ 2 Ω ∂h 2     T = κ N   M 2  -⟨M ⟩ 2  . (1.12)
Nevertheless, we stress on the fact that these are very general quantities with equivalent counterparts in fluids, as we have already mentionned in the previous section. For example, the order parameter for a liquid-gas phase transition is built from the density, which we define in the Grand-Canonical ensemble (T, V, µ) in a similar way to the magnetization per spin

n = ⟨N ⟩ V = - 1 V ∂Ω ∂µ     T,V , (1.13) 
and the corresponding "susceptibility" being [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF]]

n 2 κ T = 1 V ∂ ⟨N ⟩ ∂µ     T,V = κ V   N 2  -⟨N ⟩ 2  , (1.14) 
with κ T the isothermal compressibility, more naturally defined in the isothermal-isobar (N, P, T )

ensemble κ T = - 1 V ∂V ∂P     N,T . (1.15) 
To conclude these very general notions of statistical mechanics, we stress on the fact that if one divides a system of very large volume in two subsystems, when the volume is sent to infinity, the surface contribution between the two subsystems will become negligible with respect to the overall free energy, as well as contributions coming from the outer limits of the system. In this case, the free energy becomes extensive and is thus proportional to the volume of the system:

Ω(T, h, V ) ∼ V →∞ V k B T ω bulk (T, h) , (1.16) 
where ω bulk is the free energy per unit volume expressed in units of k B T , that we will refer to as the thermodynamic limit or bulk free energy.

Critical exponents and scaling relations

We have seen that the order parameter vanishes at a continuous phase transition. Experimentally, it is observed that this behavior is controlled by a power law

⟨m(T, h = 0)⟩ = T →T - c m 0 |t| β , (1.17) 
at zero magnetic field, defining the order-parameter exponent β and a dimensionless reduced temperature

t ≡ T -T c T c . (1.18)
Scaling behavior for observables are characteristic of the singular behavior of systems undergoing continuous phase transitions. The susceptibility per spin diverges at the transition:

χ N (T ) = T →Tc χ ± 0 |t| -γ , (1.19) 
as well as the specific heat at constant volume and constant magnetic field

C v (T ) = ∂ ⟨H ⟩ ∂T     V,h = -T ∂ 2 Ω ∂T 2     V,h = T →Tc C ± 0 |t| -α , (1.20) 
defining the exponents γ, α and the scaling amplitude C ± 0 , χ ± 0 , taking + value when approaching the critical point from above andfrom below.

At criticality, the fluctuations of the order parameter become macroscopic (we mentioned the phenomenon of critical opalescence as a consequence of the fluctuations of density in a critical fluid). The fluctuations are correlated on a typical length ξ which can be defined using the order parameter correlation function [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] 

G(i, j, T, h) = ⟨(S i -⟨m⟩) (S j -⟨m⟩)⟩ , (1.21) 
which, for temperatures far above the critical value, takes the Ornstein-Zernike form [START_REF] Fisher | The theory of equilibrium critical phenomena[END_REF][START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF] 

G(r) ∝ r→∞ r -(d-1)/2 e -r/ξ . (1.22)
At the critical point, ξ diverges as

ξ(T, h = 0) = T →Tc ξ ± 0 |t| -ν , (1.23) 
which defines the correlation length exponent ν and it is observed at the critical temperature that [START_REF] Fisher | The theory of equilibrium critical phenomena[END_REF][START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF] 

G(r; T c , h = 0) ∼ r→∞ r -(d-2+η) , (1.24) 
where d is the dimension of the space and η a new critical exponent. Instead of working at h = 0, one can work precisely at T = T c with a non-zero homogeneous magnetic field h. In that case, scaling behavior occur with respect to the field, such as

⟨m(T c , h)⟩ = h→0 m ± 0,h |h| 1/δ . (1.25)
Two of the scaling exponents are independent, as many as the two relevant thermodynamic variables t and h. All other exponents can then be deduced using scaling relations which relate all exponents one to each other. We list scaling relations here, along with their usual names

Fisher γ = ν(2 -η) , Rushbrooke α + 2β + γ = 2 , Josephson νd = 2 -α , Widom γ = β(δ -1)
.

(1.26)

The Josephson hyperscaling relation, which introduces the spatial dimension into the relations, is not always valid and breaks down above the upper critical dimension d c at which mean-field becomes relevant (d c = 4 for the Ising model).

Scaling hypothesis

We separate the free energy by unit volume in an analytic ω a and a leading non analytic part ω 0

s ω bulk = ω a (T, h) + ω 0 s (t, h) , (1.27) 
The magnetization, susceptibility and specific heat stem from the free energy and thus their singular behavior should be contained in its singular part. The scaling hypothesis, first proposed by Widom on a phenomenological basis, is to consider that all scaling behaviors and scaling relations can be summed up by defining scaling functions, such as F ± , G for the singular part of the free energy and for the correlation function [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF][START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF] 

ω 0 s (t, h) = |t| 2-α F ±  h t ∆  , G(r; T, h) = r -(d-2+η) G  r ξ , h t ∆  , (1.28) 
defining the gap exponent ∆. The scaling hypothesis thus predicts that an n variable thermodynamic function condenses into an n -1 dimensional function of scaled variables. The dominant singular contribution to the observable, giving their scaling behavior, can be derived from Eq.1.28, for example

⟨m(T, h = 0)⟩ ∼ ∂ω 0 s ∂h    T (T, h = 0) = |t| 2-α-∆ F ′ ± (0) ∝ |t| β , χ(T, h = 0) ∼ ∂ 2 ω 0 s ∂ 2 h    T (T, h = 0) = |t| 2-α-2∆ F ′′ ± (0) ∝ |t| -γ , (1.29) 
relating ∆ with the exponents we defined perviously β = 2α -∆ and -γ = 2α -2∆, leading to the Rushbrooke equality α + 2β + γ = 2. In the same way, the power law behavior and scaling relations we have defined in the previous section can be deduced from Eq.1.28 (see ref. [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF]), except for the Josephson relation. The derivation of the Josephson (or hyperscaling) relation is more controversial. The simplest way to see it is to say that, at very large scales and finite correlation length, the free energy is expected to be the sum of the free energy of all sub-volumes of size V /ξ d , extensivity, lost due to the macroscopic correlation length, being recovered for scales above the correlation length. Thus we would expect with this argument that:

Ω(T, h = 0) ∼ t→0 V ξ d ∝ V |t| νd , (1.30)
which, combined with Eq.1.28 gives the Josephson relation of Eq.1.26.

The scaling hypothesis can be experimentally tested. For example, the magnetization scaling

form ⟨m(T, h)⟩ = |t| β F ′ ± (h/t ∆ )
shows that an experimental test of the scaling hypothesis is to verify that m t β is indeed a function of h t ∆ , whatever the couple (T, h) at which the magnetization is measured. This has been verified in many systems and we present in figure 1.6 an example of experimental realization in EuO [START_REF] Huang | Faraday rotation near the Curie point of EuO[END_REF].

12 FARADAY ROTATION NEAR THE CURIE POINT OF EuO 5257 For each measured rotation, the corresponding M and H were calculated using Eqs. ( 3) and (13). Figure 2 shows a plot of m~v s h/m for nine isotherms. The critical exponent P along the coexistence curve was obtained by extrapolating the data below T, to zero internal field. The temperature dependence of the spontaneous magnetization m was fitted to the expression 
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Knowing P and y, the scaling hypothesis can be checked by plotting h = h [ t [ ~~'"' as a function of m =I ) ti ~for all the data. As shown in Fig, 3, all the data fall on a universal curve with two branches, one for t & 0 and one for t & 0. Analyticity of the equation of state requires the following expansion to hold near the critical isochore or, equivalently, h=c&mt" +c3m t" +cpm t" + ~~W e find the t & 0 branch of Fig. 3 up to Bz = 2.0 can be fitted by the first three terms of Eq. ( 18), with the coefficients c& = 2.49+ 0. 10, c3= 2. 53+0.18, and c5 = 0.96.+ 0.24.

IV. PARAMETRIC EQUATIONS OF STATE

We have fitted the data to the parametiric equa- tions of state proposed by Schofield~a'~9 and by Ho and Litster. The comparison is more extensive and conclusive than previous attempts, ~' and provides values of coefficients that would be useful in future applications in which a concise knowledge of the static critical behavior of EuO is required.

The first parametric equation (PEl), called the linear model, has the form 

In PE1, the parameter r is a direct measure of the specific heat C~at constant magnetization.

Using the values of P andy obtained in Sec. III, a least- squares fit of the data to Eq. ( 20) yielded the opti- A comparison of the experimental function m [START_REF] Kimball | Specific Heat Near the Superfluid Transition of a 0.9869 µm 4he Film[END_REF] with Eq. ( 20d) is shown in Fig. 4. As a consistency check, we have calculated the coefficients mentioned in Sec. III in terms of the constants obtained in PE1. experimental verification of the scaling hypothesis in a magnetic system: whatever the couple (t, h) at which the magnetization was measured, all points fall on a master curve if one plots m t β as a function of h t ∆ . Figure from ref [START_REF] Huang | Faraday rotation near the Curie point of EuO[END_REF] (see also ref. [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF]).

Origin of the scaling hypothesis

The divergence of the correlation length at the critical point means that fluctuations can exist on all length scales, from the microscopic to the macroscopic. Consequently, the fluctuations will be the same on all length scales and the organization of the order parameter will be self similar (except of course, if we look at length scales of the order of the microscopic distance separating the components of the system). This self similarity can be seen by zooming in or out of snapshots of our system: in figure 1.7, we display a snapshot of the Ising model in 2 dimensions close to its critical point, obtained by Monte Carlo simulations, and show that a zoom on a random region of the system looks very much like the total system itself. A consequence of this self similarity, first proposed by Kadanoff, whose ideas led to the formalism of the renormalization group introduced by Wilson, is that, approaching the critical point, any thermodynamic function obeys a homogeneity relation in which t and h are rescaled [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF]. In the case of the singular part of the free energy this reads

ω 0 s (t, h) = ℓ -d f ± (ℓ yt t, ℓ y h h) , (1.31) 
with a different function f above (+) and below T c (-). This leads to the scaling hypothesis function when choosing ℓ = t -1/yt and y t = 1/ν, y h = ∆/ν

ω 0 s (T, h) = |t| νd f ±  1, t -∆ h  = |t| 2-α F ±  h t ∆  . (1.32)
The same arguments, in a more general framework allowing for non uniform magnetic fields, leads to the scaling form of the correlation function [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF].

Universality classes

Critical exponents and certain amplitude combinations such as the ratio ξ + 0 /ξ - 0 are universal. They take the same value in a variety of systems which form a universality class (for a review on critical phenomena, see ref. [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]). Actually, scaling functions such as F ± , and thus F ′ ± , are themselves universal, to within non universal amplitudes affecting the amplitude of the function and the scaling variable [START_REF] Privman | Universal critical amplitudes in finite-size scaling[END_REF], so that

F ± ( h t ∆ ) = A 1 W ± (A 2 h t ∆ ) , (1.33) 
defines a fully universal function W ± , A 1 and A 2 being non universal factors.

A universality class is characterized by the spatial dimension of the system, the short or long range character of the interaction and the symmetry of the order parameter. By short range of interactions concerning critical phenomena, which is the case we are interested in, one means that the typical interaction potential in a system decays faster than r -(d+2) for r → ∞, with r the separation between components of the system [START_REF] Krech | The Casimir effect in critical systems[END_REF]. This is a stronger assumption than requiring the existence of a stable equilibrium which imposes the potential to decay at least as fast as r -(d+1) . The origin of universality can be formalized in the framework of renormalization group theory [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF], which gives a theoretical background to scaling behavior and allows for the calculation of critical exponents and amplitudes. The universality class of the Ising model, bearing the name of its simplest member, regroups uniaxial ferromagnets, the liquid/gas phase transition and demixing of binary mixtures, involving the breaking of a Z 2 symmetry. As we announced at the beginning of this chapter, the analogies we presented between these three systems take a quantitative meaning at criticality. No formal equivalence exist between systems undergoing a continuous liquid/gas transition, demixing of binary mixtures and the Ising model, yet they belong to the same universality class and their singular critical behaviors are described by the same universal quantities. We could add other experimental systems to the list of members of the Ising universality class, as reviewed in ref. [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF], but we will mainly be interested in the present work by uniaxial magnetic systems and liquid binary mixtures. nents in the Ising 3D universality class were taken from ref. [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF] and for the 3D XY from ref. [START_REF] Campostrini | Critical behavior of the three-dimensional XY universality class[END_REF].

Correlation length amplitudes and critical temperatures were taken from ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Ruge | Correlation function in Ising models[END_REF][START_REF] Gottlob | Critical Behaviour of the 3d XY-Model: A Monte Carlo Study[END_REF]. Zero exponents, such as α = 0 in mean field and 2D Ising, signifies a logarithmic divergence.

Scaling is observed in mean-field solutions, such as the van der Waals model of fluids or the Bragg-Williams mean-field theory of ferromagnetism [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF] and mean-field solutions form a universality class. Of course, as we know, mean-field is expected to break down if we get too close to a critical point and fluctuations become the predominant feature of the transition, but it is possible to observe a crossover between mean-field scaling behaviors and non-mean field behavior when approaching the critical point and some systems prove to be experimentally well described by mean-field behavior [START_REF] Ott | HoRh 4 B 4 : A model mean-field ferromagnet[END_REF].

A universality class that we do not study in detail in this work but that we will mention often is the XY model universality class. The XY model is a model for magnetic systems of Hamiltonian

H XY = -J  ⟨i,j⟩ ⃗ S i . ⃗ S j -  i ⃗ h. ⃗ S i , (1.34) 
with two components spins

⃗ S i = (S x i , S y i ) of unit-length ∥ ⃗ S i ∥ = 1.
The importance of this universality class to us is that it contains the normal fluid/superfluid continuous phase transition which led to spectacular agreement between theoretical and experimental works on the critical Casimir effect (see chapter 4).

In table 1.1, estimates of critical exponents and amplitudes of the correlation length for mean-field, 2D Ising, 3D Ising and 3D XY universality classes are reviewed. All scaling behavior is defined with positive exponents, so that specific heat, magnetic susceptibility and correlation length diverge at the critical point, except for the specific heat in the 3D XY universality class which displays a cusp form with α = -0.0146(8).

Corrections to scaling

The scaling hypothesis is only true asymptotically close to the critical point. Corrections to scaling are thus observed when approaching the critical behavior, which goes to zero when approaching close enough to (T = T c , h = 0). For example, the scaling function for the susceptibility [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF] 

χ(T, h) = |t| -γ F ′′ ± ( h t ∆ , K3 t -νy3 ) , (1.35) 
can encompass an irrelevant scaling field K3 . The notion of scaling field comes from renormalization group theory and describes interaction in the system which are taken into account during renormalization. K3 is called irrelevant as it is associated with an exponent y 3 < 0, so that K3 t -νy3 → t→0 0, and we approach the scaling hypothesis of the form of Eq.1.28 close enough to T c . For small value of t and at h = 0, Eq.1.35 can be developed with respect to the irrelevant field

χ(T, h = 0) = |t| -γ (A ± + B ± K3 t -νy3 + . . . ) , (1.36) 
with A ± , B ± non-universal amplitudes, so that the power law |t| -γ is indeed the dominant behavior close to T c but it might be necessary to take t -νy3 into account if one wants to extract critical exponents from measurements.

Conclusion

We have presented some standard aspects of the theory of critical phenomena and the concept of universality classes. Universality classes are of great importance for the theoretical and numerical study of critical phenomena: one can use the rather simple Ising model to compute universal quantities relevant not only to uniaxial ferromagnets but to fluid systems at the liquid/gas continuous transition and to the demixing of binary mixtures.

As we mentioned, an exact solution of the Ising model in 3-dimensions is still lacking but numerical simulations provide an ubiquitous and powerful approach for studying this system and has been for decades at the heart of many works on critical phenomena. However, numerical simulations require the study of rather small systems compared to experimental set-ups. In the present chapter we have developed critical phenomena at the thermodynamic limit, but we will see that scaling behavior can be studied in finite size systems and actually leads to new, experimentally relevant, phenomena.

Chapter 2

Simulation of Critical Phenomena and

Finite Size Scaling

Numerical simulations provide an ubiquitous and powerful approach for studying the Ising model and haves been for decades at the heart of many works on critical phenomena. The limitations of computer capacities and algorithms force one to perform simulations in systems with, rapidly growing, but still rather small number of degrees of freedom compared to experimental setups. At criticality, quantities computed in a finite system will depend on the size and boundary conditions of the simulation, with values potentially very different from those in the thermodynamic limit.

Finite-size scaling is a powerful tool for the interpretation and exploitation of the thermodynamics of confined critical systems [START_REF] Binder | Overcoming the Limitation of Finite Size in Simulations: From the Phase Transition of the Ising Model to Polymers, Spin Glasses, etc[END_REF] as it takes advantage of this size dependency and enables one to extract thermodynamic quantities, such as critical exponents [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] or universal scaling functions [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Privman | Universal critical amplitudes in finite-size scaling[END_REF]. In this chapter, we will present basic concepts of Monte Carlo simulation of the Ising model and show how the simulation of finite-size critical systems leads to the extension of the scaling hypothesis developed previously into the concept of finite-size scaling.

Monte Carlo simulations of the Ising model

The Metropolis and Wolff algorithms

The principle of Monte Carlo simulations is to numerically estimate observables by exploring the phase space of a system, that is to say, in the case of the Ising model, exploring spin configurations.

Of course, exploring exactly the entire phase space, and thus exactly computing the partition function of a system

Z(T, h) =  {Si} e -κH ({Si}) , (2.1) 
where κ = 1/(k B T ) and  {Si} means a sum over all configurations of spins, would provide an exact solution to our problem but can only be performed in very small systems in a reasonable amount of time. Thus, one must estimate the average values of observables on a subset of randomly generated configurations, this being the basis of Monte Carlo simulations (the name "Monte Carlo" being a reference to the games of chance of Monaco's Casinos). As it is clear from the form of the partition function, a configuration has an impact on the thermodynamics of the systems associated with the Boltzmann weight e -κH ({Si}) and some configurations will have a much greater importance than others. To efficiently explore the phase space, on must take this weight into account when sampling configurations, this being referred to as the concept of importance sampling. We will not enter into technical demonstrations but a simple, yet efficient, importance sampling method is the Metropolis algorithm, which is widely used in a great variety of numerical simulations [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF][START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF]. In the Ising model, the basic rule for the algorithm is simple: a configuration of the spin system is updated by choosing at random a spin S i , which will be flipped with a probability related to the change in energy associated with the flipping

∆E(S i → -S i ) = 2S i   J  j∈nn(i) S j + h   , (2.2) 
where nn(i) represents the list of nearest neighbors of the i th spin. This probability reads

p metro (S i ) = min  1, e -κ∆E(Si→-Si)  , (2.3) 
being 1 if flipping the spin is energetically favorable (∆E(S i → -S i ) < 0) and e -κ∆E(Si→-Si)

which ranges from 0 to 1 otherwise. A Monte Carlo step is defined, in a system composed of N spins, by selecting N times a random spin and flipping it with probability p metro . This ensures that, in principle, the system can be updated from any possible configuration to any other in one step. The algorithm generates an ergodic random walk through configuration space.

This random walk satisfies detailed balance, that is to say the constraint that the probability P (µ → ν) for going from a state µ to a state ν is related to the probability of taking the reverse path by

P (µ → ν) P (ν → µ) = e -κ(Eν -Eµ) , (2.4) 
with E ν -E µ the difference in energy between states µ and ν. This condition ensures that in the limit of large times configurations are generated according to their Boltzmann weight.

As we are interested in critical phenomena, we are concerned by reducing the impact of an effect called critical slowing down. Close to the critical point, the auto-correlation time τ , that is to say the typical number of Monte Carlo steps required to generate a configuration of spins decorrelated from an original configuration, diverges as [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] τ ∼ ξ z , (

with z > 0 a critical exponent and ξ the correlation length which we have already shown to diverge at the critical point. Equivalently, this means that the quantity of new information brought by updating a spin configuration using one Monte Carlo step becomes decreasingly low as we approach the critical point. Thankfully, the exponent z depends on the algorithm and their exist algorithms which prove much more efficient than Metropolis at criticality, displaying smaller values of z.

We have used the Wolff algorithm [START_REF] Wolff | Collective Monte Carlo Updating for Spin Systems[END_REF] which considerably reduces the effect of critical slowing down in the critical region. The Wolff algorithm is a cluster algorithm, it is based on building clusters of spins and flipping them collectively instead of flipping each spin individually.

At zero magnetic field, the algorithm can be summed up as [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF]:

• pick a seed spin at random: it is the first element of the cluster. Only spins of same sign will be allowed to be included in the cluster,

• include in the cluster nearest neighbors of the seed spin with probability P add = 1e -2κJ , if they have the same sign than the seed spin,

• for each spin newly added to the cluster, include in the cluster its nearest neighbors with probability P add , if they are not already in the cluster and if they have the same sign than the seed spin,

• iterate until all possible new inclusions are rejected,

• flip the cluster.

Like the Metropolis algorithm, the Wolff algorithm is both ergodic and satisfies detailed balance. ). At very high temperature, P add ≈ 0, so clusters are only composed of the seed spin, and the update is made just by flipping at random a spin in the system, resulting in the expected completely disordered high temperature state. For T > T c , the number of spins in a cluster of the Wolff algorithm is actually directly related to the fluctuations of the magnetization as  m 2  = κ ⟨C⟩ /N . At very low temperature, P add ∼ 1, so that ⟨C⟩/N → 1 and clusters are spread over the entire system. As expected, the very low temperature region sees uniformly ordered systems ⟨m⟩ → ±1. The Wolff algorithm does not break the magnetization reversal symmetry, a single update at very low temperature will flip the entire system at once, so that the algorithm is fully ergodic. This is a rather consuming strategy in terms of computation time and in this region the Metropolis algorithm, though equivalent in principle, tends to outperform the Wolff algorithm by way of its implementation simplicity.

Hybrid algorithm using both Wolff and Metropolis updates can thus prove very efficient. In principle, for the Metropolis algorithm, flipping the entire system at very low temperature is possible, but as flipping a single spin in the almost completely ordered phase has a very low probability, the number of updates required for flipping the entire system diverges, and ergodicity is broken, as is the case for an experimental system.

We have said that a Monte Carlo "step" using the Metropolis algorithm must be defined by N updates using the algorithm, so that the entire system can in principle be modified each step. In the case of the Wolff algorithm, a Monte-Carlo step was defined by first computing the mean size of clusters generated by the Wolff algorithm ⟨C⟩ at each temperature and h = 0. One Monte-Carlo step is then composed of N/⟨C⟩ calls to the Wolff algorithm, so that, on average, N spin flips are performed each step.

To include a magnetic field, uniform or not, using the Metropolis algorithm is quite straightforward (Eq.2.2 and 2.3) but the Wolff cluster algorithm has been explicitly build in the absence of magnetic field. To include one, spin clusters are created in the same way as for the cluster algorithm at zero magnetic field but the clusters are no longer systematically flipped [START_REF] Lauwers | The critical 2d Ising model in a magnetic field. A Monte Carlo study using a Swendesen-Wang algorithm[END_REF][START_REF] Wang | Clusters in the three-dimensional Ising model with a magnetic field[END_REF][START_REF] Destri | Swendsen-Wang Monte Carlo study of the Ising model with external field[END_REF]. A first method is to add a "heat bath" step after constructing the cluster, choosing to flip it or not with a probability related to the change in energy ∆E = 2h  i∈C S i associated with flipping the C spins of the cluster in the magnetic field. This can become a very time consuming strategy as cluster are entirely built prior to choosing to flip them, while they might end up updating no spin at all. We chose to use the "ghost spin" method [START_REF] Lauwers | The critical 2d Ising model in a magnetic field. A Monte Carlo study using a Swendesen-Wang algorithm[END_REF][START_REF] Wang | Clusters in the three-dimensional Ising model with a magnetic field[END_REF] in which each spin of a cluster can be linked to a ghost spin of fixed value S ghost = +1 representing the magnetic field h. The probability of coupling a spin S belonging to the cluster to the ghost spin is 1e -2βSh if Sh > 0 and 0 otherwise: any cluster linked at least once to the ghost spin is left unflipped. Each time a spin is added to a cluster it is possible to test whether this spin couples to the ghost spin or not.

In the case that it does, the growth of the cluster is stopped to save computational time.

Observables and scaling

The configurations generated using the Wolff algorithm do not break the spin reversal symmetry in the absence of a magnetic field. Thus, the average magnetization per spin ⟨m⟩ is zero for all temperatures at zero magnetic field (this is also true in principle for sufficiently long runs using solely the Metropolis algorithm), unlike experimental magnets in which the symmetry is spontaneously broken. Consequently, the observable ⟨|m|⟩ (which is equivalent to ⟨m⟩ in the thermodynamic limit) better represents the symmetry breaking order parameter in this case, as it does signal the phase transition with the limit cases ⟨|m|⟩ →

T →∞ 0 and ⟨|m|⟩ → T →0

1. We use fluctuation relations to compute the specific heat

C v (T ) = N c(T ) = ∂ ⟨H ⟩ ∂T     h = k B κ 2   H 2  -⟨H ⟩ 2  , (2.6) 
with c(T ) the specific heat per spin, and the magnetic susceptibility

χ N (T ) = χ N = 1 N ∂ ⟨M ⟩ ∂h     T = κ N   M 2  -⟨M ⟩ 2  , (2.7) 
As for the order parameter, instead of the above definition of χ we use

χ(T ) = κ N   M 2  -⟨|M |⟩ 2  , (2.8) 
to ensure that χ →

T →0 0, whereas χ N (T ) ∝  M 2  → T →0
1 will not be peaked around T c [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF].

Figure 2.2 displays some results for observables in a 3D Ising model on a cubic lattice of volume L 3 with L ∈ [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF][START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF]. We display the magnetization both at h = 0 as a function of T and at T = T c as a function of h, the susceptibility at h = 0 and the specific heat at h = 0. It is clear that the finite size of the system has a tremendous influence on the results and that we are far from obtaining the behavior of the observables expected in the thermodynamic limit. Typically, the magnetization ⟨|m|⟩ does not go to zero at T c and the specific heat and susceptibility do not diverge. A genuine phase transition, that is to say displaying a singular behavior, can only occur in a thermodynamically large system. In a finite system, the number of degrees of freedom is finite and the mean value of observables results from an average over a finite number of analytic quantities and can thus only have an analytic behavior. When taking the thermodynamic limit, the number of degrees of freedom goes to infinity and singular behavior is thus possible.

Nevertheless, the scaling behavior expected at the thermodynamic limit can still be observed in finite systems, for which we provide evidence using a logarithmic scale in figure 2.3. We display (black dashed lines) the power law behaviors described in chapter 1 for the magnetization, the susceptibility and the specific heat, using estimates from the literature (see table 1 for a 3D Ising model of volume L 3 with L ∈ [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF][START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF]. Specific heat per spin (c) and susceptibility (d) at zero magnetic field for the same systems. Vertical line gives the location of the bulk critical temperature, using an estimate from literature (see table 1.1 and ref. [START_REF] Ruge | Correlation function in Ising models[END_REF]).

exponents and a fit for the amplitudes. For the magnetization and the susceptibility, the data are clearly coherent with the bulk (thermodynamic) scaling behaviors, but only for intermediate values of t or h. Too close to (t = 0, h = 0), the divergence of the correlation length is cut-off by the finite size of the system and observables deviate from the thermodynamic power law behavior. Of course, as observed in figure 2.3, the region, centered on (t = 0, h = 0), on which finite-size effects are dominant decreases with increasing system size.

In the case of the specific heat, the small value of the exponent α = 0.110(1) makes its divergence rather weak. Consequently, finite-size effects are more dramatic and the present system sizes do not allow one to identify clearly the power law behavior (Fig. [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF][START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF], logarithmic scale. For the susceptibility, the behaviors for t > 0 and t < 0 are both displayed. Typically, the scaling amplitudes C ± 0 , χ ± 0 are expected to be different regarding the sign of t. The black dashed lines show power law behaviors using estimates from the literatures (see table 1.1) for the exponents and a fit for the amplitude. In the absence of a magnetic field:

χ ∝ |t| -γ , C v /N ∝ |t| -α , ⟨|m|⟩ ∝ |t| β . At the critical temperature: ⟨|m|⟩ ∝ |h| 1/δ .
this approach is related to the rather small system size used and we could have pursued our quest for the scaling exponent α by increasing the system size. Moreover, the way we have highlighted scaling behavior in figure 2.3 is only illustrative. If we had not used our prior knowledge on power law behaviors in the Ising model, the rather complex behavior of the observables considered here close to the critical point would have made the identification of a scaling behavior much more difficult. Thermodynamic limit scaling will only be valid over a small interval before finite-size effects dominates (on the displayed data, we roughly get more than a decade on which the thermodynamic limit scaling holds, in the best case). Identifying this interval and fitting a power law through both amplitude and exponent is thus very complicated.

Thankfully, we will see that the size dependency of the observables can be used to our advantage. As the thermodynamic limit, L -1 → 0 is approached, the singularity at the critical point is restored. The inverse of the size L -1 can thus be seen as an extra variable to t and h, with the critical point located at (t, h, L -1 ) = (0, 0, 0), this statement leading to the concept of finite size scaling, which can be seen as a generalization of the scaling hypothesis to finite systems.

2.2 Finite-size scaling

Finite-size scaling of the free energy

In chapter 1, we only considered systems in the thermodynamic limit L -1 → 0, where L is the linear size of the system, that we implicitly supposed cubic. As we have illustrated in the previous section, in a finite system the singular part of the free energy has a dependency on the system size, other than the trivial volumic factor that appeared when defining the bulk free energy

ω bulk (T, h) = lim L -1 →0 Ω(T, h, L) V k B T , (2.9) 
which by definition is an extensive quantity. We have seen in section 1.3.4 that the scaling behavior originated in the divergence of the correlation length at criticality. As long as ξ ≪ L, the finite size of a system should not change its behavior compared to the thermodynamic limit and bulk behavior is still expected. However, the correlation length cannot outgrow the system size and if L ∼ ξ, the finite size will cut-off the correlation length, so that L/ξ, with ξ the bulk critical correlation length, becomes a relevant parameter. We have seen in chapter 1 that at zero field, ξ = ξ ± 0 t -ν so that L/ξ ∝ Lt ν . At T c , the bulk correlation length ξ = ξ h 0 h -ν/(γ+β) , so that L/ξ ∝ Lh ν/(γ+β) . We will see that indeed, (Lt ν , Lh ν/(γ+β) ) are the relevant finite-size scaling variables.

A way of looking at the extension of the scaling hypothesis to finite-size scaling is that a finite number of degrees of freedom cannot give you singular behaviour. Thus, a non-zero parameter L -1 suppresses the critical singular behavior, just as a non-zero reduced temperature t or a bulk field h would. The finite-size scaling hypothesis can thus be considered as an extension of the scaling hypothesis, with an extra variable L -1 to t and h. In chapter 1, we stated that the scaling hypothesis originated in a homogeneity relation for the singular part of the free energy ω 0 s (Eq.1.31). An equivalent form can be derived taking the new parameter L -1 into account [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF][START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF][START_REF] Krech | The Casimir effect in critical systems[END_REF] 

ω s (t, h, L) = ℓ -d f (ℓ yt t, ℓ y h h, ℓL -1 ) , (2.10) 
with y t = 1/ν, y h = (γ + β)/ν and a third scaling exponent which rather trivially is y L = 1.

Choosing ℓ = L, we get the finite-size scaling form of the singular part of the free energy

ω s (T, h, L) = L -d f (tL 1/ν , hL (γ+β)/ν , 1) , (2.11) 
which, as for the ω 0 s scaling form, is asymptotically true close enough to the critical point (t, h, L -1 ) = (0, 0, 0) and is universal to within non universal amplitudes on the scaling variables [START_REF] Privman | Universal critical amplitudes in finite-size scaling[END_REF]. Of course, we expect that, taking the thermodynamic limit, we recover results of chapter 1, so that

ω s (T, h, L) → L -1 →0 ω 0 s (T, h) . (2.12)
where one should be careful in taking the limit L -1 → 0 before (T, h) → (T c , 0). We can define the excess part of the free energy per unit volume in units of k B T , which contains the finite size contribution to the free energy and here amounts to

ω ex (T, h, L) ≡ Ω(T, h, L) V k B T -ω bulk = ω s (T, h, L) -ω 0 s (T, h) . (2.13)
which by definition vanishes in the thermodynamic limit ω ex →

L -1 →0
0. Here we confine ourselves to the case of periodic boundary conditions. Further, we will see that with non-periodic boundary conditions, a surface contribution ω surf (T, h) has to be taken into account in addition to the bulk, giving a contribution to the excess free energy. As a consequence, the form of the finite size scaling function of the excess free energy is modified by the type of boundary conditions imposed.

Finite-size scaling of observables

Just as we have deduced scaling behavior of observables from the scaling form of the free energy ω 0 s in chapter 1, we can deduce finite-size scaling forms for observables from the finite-size scaling of the free energy (Eq.2.20)

c = L α/ν c s  tL 1/ν , hL (γ+β)/ν  , N χ = L γ/ν χ s  tL 1/ν , hL (γ+β)/ν  , ⟨m⟩ = L -β/ν m s  tL 1/ν , hL (γ+β)/ν  , (2.14) 
which clearly describe the cut-off of diverging quantities and rounding of singular behavior in general. We can also define a finite-size scaling function for the correlation length

ξ = Lξ s  tL 1/ν , hL (γ+β)/ν  , (2.15) 
which clearly describes the cut-off of its divergence by the finite size of the system, so that ξ ∝ L at (t, h) = (0, 0), and for ⟨|m|⟩ [START_REF] Binder | Finite size effects at phase transitions[END_REF] ⟨|m|⟩ = L -β/ν ms (tL 1/ν , hL (γ+β)/ν ) , (2.16) even though they do not directly stem from Eq.2.11. We can test these scaling forms, using predictions from literature for the critical exponents and the critical temperature (see table 1.1), by showing that using the reduced form cL -α/ν = c s (tL 1/ν , 0) , N χL -γ/ν = χ s (tL 1/ν , hL (γ+β)/ν ) , ⟨|m|⟩L β/ν = ms (tL 1/ν , 0) , ⟨m⟩L β/ν = m s (0, hL (γ+β)/ν ) .

(2.17 for the magnetization and susceptibility, showing a very convincing collapse on a wide range of temperature and magnetic field. Finite-size scaling is thus a powerful tool for interpreting data obtained in a finite size system. Rather than trying to identify narrow regions of t and h in which the bulk behavior is valid (Fig. 2.3), one can take advantage of finite-size scaling forms, for example to extract critical exponents and the critical temperature, using them as a fitting parameters to reach the best data collapse.

The collapse of the specific heat c (Fig. 2.4d) appears less convincing, though quite good close to tL 1/ν = 0. To build the finite-size scaling forms of Eq.2.17, we have implicitly assumed that the singular contribution to the free energy was clearly dominant. This is too strong an assumption in the case of the slowly diverging specific heat. In general [START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF][START_REF] Hasenbusch | Finite size scaling study of lattice models in the three-dimensional Ising universality class[END_REF] 

c(T, h, L) = L α/ν c s  tL 1/ν , hL (γ+β)/ν  + c a (T, h) , (2.18) 
where c a is an analytic background. To estimate the effect of this analytic background, we estimated the value of c a (T c , h = 0) and c s (0, 0) by a fit to c(T c , 0, L) as a function of L α/ν , finding c a (T c , h = 0) = 1.3(3), which compares well with results of ref. [START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF]. We thus use the corrected scaling form

(c(T, h, L) -c a (T c , 0))L -α/ν = c s  tL 1/ν , hL (γ+β)/ν  , (2.19) 
in figure 2.4e), greatly improving the data collapse. To improve the collapse even further, one would need to take into account the dependency of the analytic term on T . Here we will not develop further this point, which is only meant to be illustrative.

Corrections to finite-size scaling

We have mentionned that finite-size scaling is only exact asymptotically close to the critical point (t, h, L -1 ) = (0, 0, 0). Getting away from this point, corrections to finite-size scaling might become relevant, just as corrections to scaling were for the thermodynamic scaling behavior (see section 1.3.6). As in the thermodynamic limit, irrelevant fields can enter the homogeneity with L ∈ [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF][START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF]: magnetization at zero magnetic field (a) and at t = 0 with non zero magnetic field (b), susceptibility (c) and specific heat per spin (d,e). Data collapse is poor at the maximum of cL -α/ν , though rather good at t = 0. An analytic background c a to c can be suppressed (e), improving the collapse. We used estimates from the literatures for the exponents and critical temperature (see table 1.1).

relation for the singular part of the free energy density [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF] 

ω s (t, h, L) = ℓ -d f (ℓ yt t, ℓ y h h, ℓL -1 , ℓ y3 K3 , . . . ) , (2.20) 
which give rise to corrections to the finite-size scaling behavior of Eq. 2.11. For example, a high precision measurement of the critical exponent η using finite size scaling of the susceptibility at (t, h) = (0, 0) might require one to take corrections into account and use the form [START_REF] Hasenbusch | Finite size scaling study of lattice models in the three-dimensional Ising universality class[END_REF].

χ = L 2-η χ s (0, 0)(1 + b 1 L -ω + . . . ) + χ a , (2.21) 
with χ a an analytic background and b 1 a non universal amplitude for the leading correction to scaling L -ω (ω = 0.84(4) in the Ising model [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]).

Apparent critical temperature and Binder cumulant

We have mentioned that the value of the critical temperature T c could be estimated by using it as a fitting parameter to obtain the best data collapse of an observable. The critical temperature being the temperature at which the specific heat (and susceptibility) diverges, one can use the temperature at which the specific heat (or the susceptibility) is maximum to define an effective critical temperature T c (L), clearly depending on L as can been seen in figure 2.2. This apparent temperature approaches the thermodynamic value of T c with increasing size as [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] T

c (L) = T c + λ T L -1/ν (1 + b T L -ω ) , (2.22) 
where λ T , b T are model dependent constants, taking into account a correction term L -ω . Using this form, T c can be deduced from a fit of T c (L) as a function of L.

It is also possible to define, using finite-size scaling, a quantity which is independent of L at T c such as the fourth order cumulant, or Binder cumulant [30]

U 4 = 1 - ⟨m 4 ⟩ 3⟨m 2 ⟩ 2 , (2.23) 
as both ⟨m 4 ⟩ and ⟨m 2 ⟩ 2 are proportional to L -4β/ν at T c in the scaling limit. Thus, the crossing point of U 4 computed in systems of different size L gives an estimate of T c , see figure 2.5. We see that the crossing point is very close to a high precision estimate of T c = 4.511528 found in the literature (see table 1.1), our best estimate being T Binder c = 4.5114 ± 6.10 -4 . We notice that the crossing point changes slightly when increasing the size L: the Binder cumulant too undergoes corrections to scaling [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Hasenbusch | Finite size scaling study of lattice models in the three-dimensional Ising universality class[END_REF], which have to be taken into account to increase the accuracy on the estimation of T c .

Experimental finite-size scaling

Finite-size scaling is not only a tool for numerical studies. It is experimentally relevant in magnetic thin films but also in fluid systems. For example, the finite size dependency of T c (L) L ∈ [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF][START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF]. Inset: blow up of the crossing region, the vertical line localizes an estimate of the bulk critical temperature from literature (see table 1.1).

discussed in the previous section has been observed in magnetic thin films and nano-particles [START_REF] Wang | Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model[END_REF][START_REF] Li | Dimensional crossover in ultrathin Ni(111) films on W(110)[END_REF][START_REF] Huang | Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111)[END_REF]. Measurements of finite size effects require that one stabilizes the system sufficiently close to its critical point for the correlation length to develop up to the system size. For example, in 4 He close to a superfluid transition (belonging to the XY model universality class), the critical end point at which the lambda line of normal/superfluid transitions meet the liquid/gas line of phase transitions is located at T λ = T c = 2.1786K [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF] and the correlation length amplitude is ξ 0 = 0.1422(5) nm [START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF]. Thus, if one achieves a relative precision on temperature t ∼ 10 -4 , the correlation length can develop up to ξ = ξ 0 t -ν = (10 -4 ) -0.67115 ×0.1422 nm ∼ 70 nm. This small order of magnitude gives an idea of the difficulty of measuring finite size effects. Nevertheless, this particular example has lead to very high precision measurement: for example, successful finite size scaling analysis of specific heat measurements in confined geometries [START_REF] Mehta | Superfluid Transition of 4 He for Two-Dimensional Crossover, Heat Capacity, and Finite-Size Scaling[END_REF][START_REF] Kimball | Specific Heat Near the Superfluid Transition of a 0.9869 µm 4he Film[END_REF][START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF].

We will discuss again experimental finite-size scaling in chapter 4, in which we present the critical Casimir force. The critical Casimir force is fostered by the confinement of critical fluctuations of a medium undergoing a continuous phase transition. It can be seen as a consequence of finite-size scaling: the free energy density depends on the system size in confined critical systems (Eq. 2.11), consequently leading to a critical contribution to the pressure. This effect, first predicted by Fisher and de Gennes in 1978 [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF], has been at the heart of many theoretical, numerical and experimental works for decades (see ref. [START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF] for a review on the subject). One of its fascinating features is universality: we can define a scaling function θ for the critical Casimir pressure

f c = k B T L -d ⊥ θ  tL 1/ν ⊥ , hL (β+γ)/ν ⊥  , (2.24) 
which, like the other scaling functions discussed in this chapter, is universal. In the present work, we will be interested in computing this function in the Ising universality class.

Conclusion

We have seen that in a finite-size system, the divergence of the correlation length is cut-off by the finite size, resulting in the rounding of singular behavior. This is well captured by the theory of finite-size scaling, which can be seen as an extension of scaling as it is expressed in the thermodynamic limit (see chapter 1). Finite-size scaling provides powerful tools to study critical phenomena in simulations, in which system sizes are quite small due to the limitation of computational resources. However, it is no longer confined to this role as it is now proving experimentally relevant in confined critical systems.

In the present work, we are particularly interested in one of these phenomena: the critical Casimir force. It will be the subject of chapters 4 to 7. In the present chapter, we have solely studied cubic systems, but we will see in chapter 4 that a convenient and experimentally relevant geometry to study the Casimir force is the slab geometry, in which a confining dimension L ⊥ is clearly identified. We will show in detail how this force is related to finite-size scaling in this geometry.

Hence, before detailing our work on the critical Casimir force, we have found it relevant and insightful to study, in chapter 3, how fluctuations develop at the critical temperature in a confined system. We will make the transition between cubic and slab geometries by putting the emphasis on the influence of the aspect ratio of a system on the fluctuations of the order parameter. Moreover, the influence on the fluctuations of fixed boundary conditions in the confining direction, rather than periodic, will also be studied. We will then see in the following chapter that the strong influence of boundary conditions on fluctuations in confined geometries has also a major impact on the form of the critical Casimir force.

Chapter 3 Critical Fluctuations of the Order

Parameter of the Ising Model

In chapter 2, we have seen that the limitations of computer capacities and algorithms makes simulations system sizes small compared to experimental setups. Finite-size scaling (FSS) is a powerful tool for the interpretation and exploitation of the thermodynamics of confined critical systems [START_REF] Binder | Overcoming the Limitation of Finite Size in Simulations: From the Phase Transition of the Ising Model to Polymers, Spin Glasses, etc[END_REF] and has proved to be of experimental relevance, particularly in the case of critical Casimir forces which are the main subject of this thesis. In the present chapter, we are interested in the form of fluctuations of the order parameter in confined critical two and three dimensional Ising models through the scaling behavior of the magnetization probability density. In chapter 2, we confined ourselves to systems with cubic geometry. However, we will see in chapter 4 that the slab geometry is more relevant to experimental approaches of finite-size scaling, particularly in studies of the critical Casimir force, which will be the topic of chapters 4 to 7. Thus, we will make the transition between cubic and slab geometries by putting the emphasis on the influence of the aspect ratio of a system on the fluctuations of the order parameter. We will study systems of dimensions L ⊥ × L d-1 ∥ , Fig. 3.1, with one confining dimension L ⊥ and d -1 non-confining ones L ∥ ≥ L ⊥ . Moreover, in chapter 2, we only presented the case of fully periodic boundary conditions (BC). It is quite intuitive that the presence of boundary fields will deeply influence the fluctuations. We will study this influence by using fixed (+, ±) boundary conditions in the confining direction z and see that in the slab limit L ∥ ≫ L ⊥ the probability distribution of the magnetization tends to a Gaussian form whatever the boundary conditions. 

Form of the magnetization probability distribution and finite-size scaling

At zero magnetic field and far from the critical temperature T c , that it to say when the correlation length ξ is small with respect to all system sizes, two regimes can be identified [START_REF] Binder | Overcoming the Limitation of Finite Size in Simulations: From the Phase Transition of the Ising Model to Polymers, Spin Glasses, etc[END_REF][START_REF] Daniel | Field Theory; The Renormalization Group and Critical Phenomena[END_REF]. At a temperature T much higher than the critical temperature, thermal fluctuations dominate and the central limit theorem applied to the uncorrelated spins leading to a Gaussian distribution

P (m, T, N ) =  N 2πχ(T ) e -N m 2 /2χ(T ) (3.1)
for the probability density of the magnetization per spin m, with the magnetic susceptibility χ being independent of the total number of spins N [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF]. At temperatures much lower than T c , P (m, T, N ) is double peaked, symmetrically around 0, the positions of the peaks are N independent but their width evolves as N -1/2 [START_REF] Daniel | Field Theory; The Renormalization Group and Critical Phenomena[END_REF]. We are interested in the behavior close to T c , in between these two limit cases.

The starting point of our finite size scaling hypothesis is the very general statement that for any distribution Π of a stochastic quantity x

Π(x) = (1/σ x ) Π(x/σ x ), (3.2) 
with σ x =  ⟨x 2 ⟩ -⟨x⟩ 2 the standard deviation, where ⟨.⟩ stands for a statistical average. For example, this statement is obviously verified if the distribution is a door function for which the width is √ 12σ x and amplitude 1/(

√ 12σ x ) or a Gaussian Π(x) = 1 √ 2πσ 2 x exp  -x 2 2σ 2 x  .
In a thermodynamically large system, the correlation length diverges when the temperature approaches T c as ξ ∝ |t| -ν with t = T -Tc Tc the reduced temperature. In a finite system this divergence is cut-off by the confining size L of the system and the ratio L/ξ becomes a relevant parameter, leading to finite-size scaling. It then follows from Eq.3.2 that the magnetization probability distribution function verifies [START_REF] Clusel | Quelques aspects de physique statistique des systèmes corrélés[END_REF] :

P (m, L, t) = (1/σ) P (m/σ, L/ξ), (3.3) 
with σ =  ⟨m 2 ⟩ -⟨m⟩ 2 the standard deviation of the reduced magnetization and the temperature dependency being governed by L/ξ, with ξ = ξ ± 0 t -ν the bulk correlation length. For a square 2D or cubic 3D system of side length L, and total number of spins N = L d , with d the spatial dimension, the magnetization probability distribution takes a finite-size scaling form in the scaling limit [START_REF] Binder | Finite size scaling analysis of ising model block distribution functions[END_REF][START_REF] Eisenriegler | Helmholtz free energy of finite spin systems near criticality[END_REF] 

P (m, L, t) = L β/ν P (mL β/ν , tL 1/ν ), (3.4) 
with β and ν scaling exponents taking their usual meaning and P a scaling function depending both on dimension and boundary conditions. The values of the scaling exponents β, ν depend on the system dimension d. However, for the sake of simplicity, we do not explicitly express this dependence, but assume that we use the relevant values when considering either the 2D or 3D

probability density (we used the values summed up in table 1.1). This form of the probability density is valid in both two and three dimensions where hyperscaling (Josephson relation) holds.

The scaling forms of Eq.3.3 and Eq.3.4 are shown to be equivalent by using the hyperscaling relation and stating that the susceptibility is related to the standard deviation χ = N σ 2 ∝ L γ/ν in the scaling limit, so that [START_REF] Clusel | Quelques aspects de physique statistique des systèmes corrélés[END_REF][START_REF] Binder | Finite size scaling analysis of ising model block distribution functions[END_REF][START_REF] Portelli | Fluctuations des grandeurs globales dans les systèmes corrélés[END_REF][START_REF] Portelli | Universal magnetic fluctuations with a field-induced length scale[END_REF]:

σ ∝ L -β/ν . (3.5)
Much richer behavior occurs in systems with non square, respectively non cubic, shapes. We are interested in systems in slab geometry of dimensions

L ⊥ × L d-1
∥ with one confining dimension

L ⊥ and d -1 non-confining ones L ∥ ≥ L ⊥ .
To clearly identify L ⊥ as the confining size, that is to say the one that will compete with ξ and cut-off its divergence at the critical temperature, we shall keep in all cases L ∥ ≥ L ⊥ . The aspect ratio ρ = L ⊥ /L ∥ will govern the functional form of the distribution [START_REF] Kaneda | Shape Effects of Finite-Size Scaling Functions for Anisotropic Three-Dimensional Ising Models[END_REF], leading to a straight forward generalization of Eq.3.3:

P (m, L ⊥ , L ∥ , t) = (1/σ) P (m/σ, L ⊥ /ξ, ρ), (3.6) 
with P (m/σ, ξ/L, 1) = P (m/σ, L/ξ). In the limit L ∥ ≫ L ⊥ , the argument that led to Eq.3.5 can be extended to the slab geometry : as L ⊥ is clearly identified as the confining dimension that will cut-off the diverging correlation length, so that ξ ∝ L ⊥ in the scaling limit at criticality, the magnetic susceptibility scales as

χ ∝ L γ/ν ⊥ . Using the fluctuation-dissipation relation χ = N σ 2 , with N = L ⊥ L d-1
∥ and the hyperscaling relation, we get:

σ = σL -β/ν ⊥ ρ (d-1)/2 , (3.7) 
which has been shown to hold in d = 2 [START_REF] Binder | Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations[END_REF] and that we will show to work in d = 3 in the following.

Then, Eq.3.6 and Eq.3.7 lead us to propose the following scaling form for the magnetization distribution at t = 0 when the limit L ∥ ≫ L ⊥ is approached :

P (m, L ⊥ , L ∥ , t = 0) = L β/ν ⊥ ρ -(d-1)/2 P  mL β/ν ⊥ ρ -(d-1)/2 , 0, 0  . (3.8) 
Moreover, the scaling function P (x, 0, 0) is expected to be Gaussian,

P (x, 0, 0) = 1 √ 2πσ 2 exp  - x 2 2σ 2  . (3.9)
The origin of the Gaussian form of the distribution at T c can be understood by stating that in the scaling limit with L ∥ ≫ L ⊥ the cut-off of the correlation length will be solely determined by the confining length L ⊥ so that the system can be divided in a number

N ind ∝ N/L d ⊥ of uncorrelated regions of volume ξ d ∼ L d ⊥ . In a sub-volume L d ⊥ the magnetization fluctuates with σ sv ∝ L -β/ν ⊥
as stated in Eq.3.4 [START_REF] Binder | Finite size scaling analysis of ising model block distribution functions[END_REF]. The N ind sub-volumes being uncorrelated, the centrallimit theorem tells us that the total magnetization will tend to have Gaussian fluctuations of standard deviation σ = σ sn / √ N ind , as N ind is increased. The scaling standard deviation σ is a non-universal quantity, it relates to non-universal scaling amplitudes of χ and ξ, and depends on the boundary conditions, as we will see in the following.

Numerical method

We have tested numerically these predictions for the scaling form of the probability distribution through Monte-Carlo simulation. We recall the Ising model Hamiltonian :

H = -J  <i,j> S i S j , (3.10) 
where the sum runs over all pairs of nearest neighbors, J is the coupling constant set here to J = 1 for convenience and S i are spins of value ±1. The spins are set on a cubic lattice of dimensions L d-1 ∥ × L ⊥ and were updated through a hybrid Wolff/Metropolis algorithm [START_REF] Wolff | Collective Monte Carlo Updating for Spin Systems[END_REF][START_REF] Newman | Monte Carlo study of the random-field Ising model[END_REF] to reduce critical slowing down. By counting the number of occurrence N (m) of each possible value m of the reduced magnetization

m = 1 N N  i=1 S i , (3.11) 
where

N = L ⊥ L d-1 ∥
is the total number of spins, we can estimate the probability for the system to exhibit a reduced magnetization m

P (m) = 1 Z  {Si} e -βH δ(m -m), (3.12) 
where Z =  {Sj } e -βH is the partition function, and the sum runs over all possible spin configurations. The total number of spins N in the system fixes the discrete number of values the magnetization can take so that

P (m) = N 2 N (m) , (3.13) 
ensuring that the normalization

1  -1
P (m)dm = 1 is conserved whatever the system size.

In two dimensions, only the case of fully periodic BC was investigated. In three dimension, periodic BC were always set in the x, y directions (Fig. 3.1) while in the confining z direction either periodic, or fixed BC were used. Fixed boundary conditions were realized by considering that the system is confined in the z direction between two layers of spins with fixed values, either positive (+) or negative (-). We use the convention that L ⊥ refers to the number of layers of fluctuating spins, whatever the boundary conditions [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir effect in films: The exchange cluster algorithm[END_REF]. Both the symmetric (++) and anti-symmetric (+-) cases were investigated. For a magnetic system, this amounts to putting a magnetic field acting only on boundary spins, with the limit case of fixing the value of boundary spins to either positive (+) or negative (-) value. In the case of a binary fluid, this is equivalent to having walls which preferentially adsorbs one of its two components (we will come back in chapter 4 to such comparisons and on the influence of the BCs on the critical Casimir force).

2D systems with fully periodic boundary conditions

In two dimensions, periodic boundary conditions were set in all directions. We computed the probability distribution P (m) at the critical temperature T 2D c for different confining dimensions L ⊥ ∈ [10 : 60] and aspect ratios, ranging from the square case ρ = 1 to ρ = 1/100. As can be seen in Figure 3.2a) the aspect ratio affects the functional form of the distribution which goes from a bimodal one for square systems to a monomodal form as we get closer to the limit

L ∥ ≫ L ⊥ . Plotting L -β/ν ⊥ P as a function of mL β/ν ⊥ , see figure 3.2b
), gives a convincing collapse of distributions obtained for systems with similar aspect ratios, , as expected from [START_REF] Kaneda | Shape Effects of Finite-Size Scaling Functions for Anisotropic Three-Dimensional Ising Models[END_REF] and from Eq.3.4 and Eq.3.6. In the square case the collapse is imperfect at the maxima of the distribution for the smallest system sizes studied L ⊥ = 10 which makes us suspect corrections to the scaling limit.

Particularizing systems with aspect ratios ρ ≤ 1/27 for which the distribution has reached a monomodal form, we can see in figure 3.2c) that the expected Gaussian behavior in the limit [START_REF] Binder | Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations[END_REF] and the scaling form of Eq.3.8 are very well verified. We shall stress that in this limit, all the magnetization distributions collapse according to Eq.3.8, and not only those for systems with similar aspect ratios. A Gaussian fit (Eq.3.9) performed on the reduced distribution for the biggest system size available proved excellent, with a standard deviation σ = 1.6835 [START_REF] Campostrini | Critical behavior of the three-dimensional XY universality class[END_REF].

L ∥ ≫ L ⊥
We recall that a Gaussian distribution is entirely characterized by its two first moments (the mean and the standard deviation). Here, with periodic boundary conditions, the third moment is null by symmetry, so that the lowest order moment of the distributions characterizing their difference from a Gaussian form is the fourth, or kurtosis:

γ 2 = ⟨(m -⟨m⟩) 4 ⟩ σ 2 -3, (3.14) 
shown in figure 3.2d). We mention that the excess kurtosis is proportional to the Binder Cumulant U 4 = -3γ 2 [START_REF] Binder | Finite size scaling analysis of ising model block distribution functions[END_REF] which, in the scaling limit, is used to estimate the critical temperature as it is a universal constant with respect to the system size L ⊥ at T c (see section 2.2.4). This this coherent with our observation that, Fig. for the same system sizes. The curves for systems with the same aspect ratio ρ collapse [START_REF] Kaneda | Shape Effects of Finite-Size Scaling Functions for Anisotropic Three-Dimensional Ising Models[END_REF]

. c) L -β/ν ⊥ ρ 1/2 P vs mL β/ν ⊥ ρ -1/2 displayed
only for monomodal distributions. The expected scaling from Eq.3.8 in the limit L ∥ ≫ L ⊥ seems to be valid. The continuous line is a Gaussian fit which proves excellent [START_REF] Binder | Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations[END_REF]. Inset : same, with logarithmic scale. d) Kurtosis γ 2 of all the distributions as a function of ρ. The continuous line is an exponential fit intended as a guide to the eye. The kurtosis does not depend on the confinement L ⊥ but only on the aspect ratio ρ.

3D systems with fully periodic boundary conditions

In three dimensions, periodic boundary conditions were always set in the "parallel" x, y directions.

In the confining z direction, different BC were used, but in order to extend the results of the previous section to the 3D case we start with the fully periodic BC case.

With fully periodic boundary conditions, the evolution of P (m) with the aspect ratio at the critical temperature in three dimensions is qualitatively equivalent to the two dimensional case. As figure 3.3a) shows, as ρ is changed from 1 to 1/12 the distribution P (m) evolves from a bimodal to a monomodal functional form [START_REF] Kaneda | Shape Effects of Finite-Size Scaling Functions for Anisotropic Three-Dimensional Ising Models[END_REF]. Equivalently to the 2D case, Eq.3.6 is verified as plotting L -β/ν P as a function of mL β/ν gives a convincing collapse of distributions for systems with the same aspect ratio, the functional form of the collapse depending on the aspect ratio, see figure 3.3b).

In the case of cubic ρ = 1 systems, a high resolution study of the Ising and spin-1 Blume-Capel models [START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF] has shown the functional form:

P (m) ∝ exp  -  M 2 M 2 0 L -2β/ν -1  2  a M 2 M 2 0 L -2β/ν + c   (3.15)
with L = L ⊥ = L ∥ and a, c, M 0 non-universal factors which may contain corrections to scaling, to accurately fit the probability distribution. This result can be made consistent with the scaling form of Eq.3.4 by using the form

L -β/ν P = P 0 exp  -  M 2 M 2 0 L -2β/ν -1  2  a M 2 M 2 0 L -2β/ν + c   , (3.16) 
in which we fitted a, c, P 0 , M 0 to an excellent agreement, see Fig. 3.3c). ⊥ ρ -(d-1)/2 following the scaling form proposed in Eq.3.8 for monomodal distributions, that is to say for ρ ≤ 1/6, which collapse whatever the aspect ratio. A Gaussian fit (Eq.3.9) of the reduced distribution for the biggest system available indicates that the Gaussian behavior predicted in 2D in the limit L ∥ ≫ L ⊥ by [START_REF] Binder | Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations[END_REF] holds in 3D, with σ ≈ 2.54. Thus, the scaling form proposed in Eq.3.8 appears verified in 3D as it was in 2D. Yet, the collapse is a little less convincing, probably because we could not as easily reach large values for L ∥ . Nevertheless, the Gaussian behavior clearly is approached in the limit ρ → 0. Following Eq.3.7, approaching this limit, L -β/ν ⊥ ρσ = σ. This can be verified by looking at the dependency of L -β/ν ⊥ ρσ on ρ, Fig. 3.3e), which indeed displays a saturation close to ρ = 0 at a value close to σ ≈ 2.4. Moreover, as in 2D, we used the kurtosis to characterize the evolution of the distribution towards a Gaussian when reaching the limit of slab geometry, Fig. 3.3f). The kurtosis only slightly depends on the confinement L ⊥ in the cubic ρ = 1 case but strongly on the aspect ratio, approaching zero as ρ → 0, confirming that we approach Gaussian behavior. We obtain an excellent collapse and the continuous line is a fit of an Ansätze proposed in ref. [START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF] (see main text). d) Particularizing monomodal distributions: L -β/ν ρ (d-1)/2 P as a function of

mL β/ν ⊥ ρ -(d-1)/2 . The continuous line is Gaussian fit. e) L -β/ν ⊥
ρσ tends to a saturation value σ as the slab limit ρ → 0 is approached. f ) Kurtosis γ 2 of all the distributions as a function of ρ.

Influence of fixed boundary conditions

Fixed (+-) boundary conditions

The presence of fixed boundary conditions deeply affects the behavior of the system. Fixed antisymmetric (+-) BC in the confining direction act as local magnetic fields and put a topological constraint on the magnetization that induces a boundary between a positively and a negatively magnetized region. This is a different situation than a phase separation, induced by fixing the total magnetization, the fluctuations of the magnetization being less constrained by the (+-) BC. From a universality class point of view, the situation with (+-) BC is equivalent to the case of a critical binary polymer mixture of components A and B, confined between two plates, each preferentially adsorbing one of the components of the mixture. In that case, the plates would induce a phase boundary between a A rich phase and a B rich one. We therefore expect that the average magnetization of systems with (+-) BC will fluctuate around 0 as a result of fluctuations of the phase interface. This is indeed the case as can be seen in figure 3.4a): the magnetization probability distribution remains monomodal at the critical temperature whatever the aspect ratio ρ, ranging from 1 to 1/9, and the system thickness

L ⊥ . Plotting L -β/ν ⊥ ρP as a function of mL β/ν ⊥ ρ -1 , Fig. 3.4b
), the scaling form of Eq.3.8 leads to a convincing collapse for systems with L ⊥ ≥ 20 and all the studied aspect ratios, the master curve being well fitted by a Gaussian of standard deviation σ = 0.43 [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]. The scaling functions obtained for thicknesses L ⊥ = 5, 10 have a slightly bigger standard deviation, but as this discrepancy seems to be related to the small system thicknesses, we understand them as corrections to scaling, which are expected to be more prominent with (+-) BC than periodic BC [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF]. This assumption can be tested by looking at the evolution of L β/ν ⊥ ρ -1 σ with L ⊥ , Fig. 3.4c). This reduced variance depends very little on ρ but strongly on L ⊥ , so that, unlike the periodic boundary conditions case, the absence of collapse seems more likely to be related to corrections to the scaling limit rather than to the approach of the limit of slab geometry ρ → 0. The evolution of the reduced standard deviation is well captured by a fit of the form

L β/ν ⊥ ρ -1 σ = σ + b ef f L -ω ef f ⊥ , (3.17) 
where b ef f , ω ef f , σ are fitting parameters for which we find ω ef f ≈ 0.86, σ ≈ 0.35 and b ef f ≈ 1.0.

This seems to be coherent with a correction to scaling, as ω ef f compares well with the exponent ω = 0.84(4) [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF] controlling the leading correction to scaling in the Ising model (see Eq. 2.21 in the case of the susceptibility). A more thorough study of the impact of corrections to scaling on σ would be required to confirm this point.

The kurtosis, our test of normality in the case of symmetric distributions, is always rather small and goes to zero as ρ → 0 (Fig. 3.4d). Even for the smallest system ρ = 1 and L ⊥ = 5, γ 2 is only ≈ 0.3, which is a kurtosis we would expect in a system of approximately ρ ∼ 1/10 with periodic boundary conditions. Thus, we obtain much more easily a Gaussian form with (+-) BC. Here, the physical origin of the monomodal distribution is different from the periodic boundary conditions case. The (+-) BC force the system to "demix" and the fluctuations of the order parameter come from the deformation of the interface between a + oriented region and aoriented one. These boundary conditions can be seen as local magnetic fields of value ±J acting on boundary spins. If the value of this boundary field is lowered towards zero, below a certain value of the field we crossover towards another class of boundaries, the free boundaries (Dirichlet (O, O)). We expect the free boundaries case to be qualitatively similar to the fully periodic case at a temperature above T c [START_REF] Binder | Finite size scaling analysis of ising model block distribution functions[END_REF]. The limit case L ⊥ → 1 here is a 2D system without boundary ⊥ ρ -1 for the same sizes as in a). We obtain a very convincing collapse of all data for thicknesses L ⊥ ≥ 20, whatever the aspect ratio. The scaling functions obtained for thicknesses L ⊥ = 5, 10 have greater variances. The continuous line is a Gaussian fit of the distribution for the biggest available system. c)

L β/ν ⊥ ρ -1 σ as a function of L ⊥ . The continuous line is a power law fit of form σ + b ef f L -ω ef f ⊥
, intended as a guide to the eye. d) Kurtosis of all the distributions as a function of ρ. The kurtosis depends mainly on ρ and goes to zero in the slab limit ρ → 0.

It also depends in a less pronounced way on the confinement L ⊥ , especially when ρ = 1.

Fixed (++) boundary conditions

With symmetry breaking (++) boundary conditions, the average magnetization ⟨m⟩ is no more expected to be zero, the total magnetic field imposed being non-zero. As can be seen in figure 3.5a) the magnetization probability distribution is monomodal but the position m max of its maximum depends on the system size. The average magnetization ⟨m⟩ depends mainly on the thickness L ⊥ and only little on the aspect ratio as can be see in figure 3 noticed in the distribution which can be quantified by looking at the skewness of the distribution:

γ 1 = ⟨  m -⟨m⟩ σ  3 ⟩ , (3.18)
which strongly depends on the aspect ratio, Fig. 3.5c). For a given thickness, the dependency of γ 1 with ρ appears linear in the range investigated here, as the fit displayed fit in figure 3.5c)

shows, based on the largest thickness L ⊥ = 30. The skewness γ 1 → 0 in the slab limit ρ → 0.

This limit can be understood by stating that when the limit ρ → 0 is taken, the central-limit 1.8

P(m)L -β/ν ρ L =20 L =30 L =20,30;ρ =1/3 L =20,30;ρ =1/6 L =20,30;ρ =1/9
Gaussian fit d)

Figure 3.6: Results obtained by Monte-Carlo simulation of 3D Ising system with fixed (++) BC for various system thicknesses L ⊥ and aspect ratios ρ at the critical temperature

T = T 3D c . a,b,c) L -β/ν ⊥ ρP (m-⟨m⟩) versus (m-⟨m⟩)L β/ν ⊥ ρ -1 .
For the sake of visibility, we have separated the most skewed distribution for ρ = 1 (a) and the smallest system thickness L ⊥ = 10 for which the variance is notably different from larger system thickness (b). For systems with L ⊥ ≥ 20 and ρ < 1, we obtain a convincing collapse within the current precision (c). The continuous line is a Gaussian fit on data obtained with the largest system available. d) We can verify that the standard deviation follows Eq.3.7 by plotting σ as a function of L -β/ν ⊥ ρ. The points for which this relation seems less verified are for the smallest system thickness L ⊥ = 10, confirming previous observations. Points color give L ⊥ . The continuous line is a linear evolution based on data for L ⊥ = 30.

theorem can be applied on the uncorrelated sub-volumes (as discussed in section 3.1) and ensures that we tend to a symmetrical gaussian distribution. However, particularly for ρ = 1, γ 1 still noticeably depends on L ⊥ , this effect decreasing as ρ → 0.

We focus on the fluctuations of the magnetization around its mean value by centering the probability density and looking at L

-β/ν ⊥ ρP (m-⟨m⟩) versus (m-⟨m⟩)L β/ν ⊥ ρ -1 , Fig. 3.6.
For the sake of visibility, we have separated data for ρ = 1 (Fig. 3.6a). In this case, a significant skewness prevents the collapse with data for other values of ρ, but the amplitude and standard deviation of the distributions scale well with data for other system sizes. We also particularize data for the smallest system thickness L ⊥ = 10 (Fig. 3.6b) for which the variance is notably different from larger system thickness. For systems with L ⊥ ≥ 20 and ρ < 1 (Fig. 3.6c), we obtain a convincing collapse within the current precision, which agrees well with a Gaussian behavior as shown by a Gaussian fit on data for the largest system available (giving σ = 0.25 [START_REF] Binder | Overcoming the Limitation of Finite Size in Simulations: From the Phase Transition of the Ising Model to Polymers, Spin Glasses, etc[END_REF]). The scaling of Eq.3.8 seems to be approached as L ⊥ grows. As for the case of fixed (++) boundaries, we present the evolution of the scaled standard deviation L β/ν ⊥ ρ -1 σ with L ⊥ . As this quantity also depends on ρ, we only display a power law fit (Eq. 3.17) as a guide to the eye. We stress the fact that the effect of ρ on the reduced standard deviation L β/ν ⊥ ρ -1 σ diminishes with increasing L ⊥ and L β/ν ⊥ ρ -1 σ tends towards a non zero value, giving us confidence that the scaling of Eq.3.8 is approached.

Conclusion

In this chapter, we have seen how both the aspect ratio and boundary conditions of an Ising system influence the fluctuations of the order parameter at the critical temperature. We used simple arguments to propose a scaling form in the limit of slab geometry L ∥ ≫ L ⊥ , in which case the probability density tends to a gaussian distribution in all studied cases. The data collapse was obtained by taking into account both the aspect ratio and the thickness L ⊥ .

We have seen that in the case of fixed (+-) boundary conditions, the gaussian limit for fluctuations is much more easily reached. This is a consequence of the topological constraint imposed by the competing boundaries. The induced separation in positively and negatively oriented regions is related to the phenomenon of wetting [START_REF] Binder | Monte Carlo Studies of Wetting, Interface Localization and Capillary Condensation[END_REF][START_REF] Wilding | Effect of criticality on wetting layers: A Monte Carlo simulation study[END_REF]. In a thermodynamically stable gaseous system, the presence of a surface can, by the action of attractive van der Waals forces, favor the condensation of the gas, forming a macroscopically thick wetting layer of liquid. In the Ising system, the + andoriented phases can be interpreted as liquid and gas phases. A picture more closely related to wetting experiments than the symmetric (+-) case would be a semi-infinite Ising system with one fixed + boundary (respectively -) and a small bulk magnetic field h < 0 (resp. h > 0). In this case, the stable bulk phase is the negatively (reps. positively) oriented one but the presence of the boundary can induce a wetting transition at which a film of positively oriented spins (resp. negatively oriented) can develop from the boundary. In chapter 4, we will see that wetting layers provide a experimental way to obtain a fluid system in slab geometry with small, controlled, thicknesses L ⊥ . This allows for high precision measurements of the critical Casimir force, which will be the topic of the next chapter. The critical Casimir force is actually a consequence of the confinement of critical fluctuations. Thus, as we will show, the Casimir force being intimately related to the magnetic fluctuations, the boundary conditions will strongly influence the force, just as they influence the magnetic fluctuation spectrum.

Chapter 4

The Critical Casimir Force

Introduction to the critical Casimir force and experimental approaches

The origin of the critical Casimir force is in the confinement of critical fluctuations of a medium undergoing a continuous phase transition. The name "Casimir" comes from its quantum electrodynamics forerunner predicted by Hendrik Casimir in 1948 [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF]. The now famous electrodynamic Casimir force occurs between two conducting and uncharged metallic plates in vacuum. As the plates put a constraint on the quantum fluctuations of the electromagnetic field, the imbalance between inside and outside the cavity of length L they form generates an attractive force of infinite range, decaying as L -4 . Its critical counterpart has been predicted by Fisher and de Gennes in 1978 [START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF]. In a confined critical system, the divergence of the correlation length is truncated by the finite size L of the system. The thermal fluctuations are thus constrained by the finite size of the system and, similarly to the electrodynamic case, this constraint results in a force. A simple way to comprehend this effect is to consider that when the correlation length develops up to the distance L separating the boundary conditions of the system, the boundaries interact through the correlated fluctuations.

Measurement of this effect requires high precision experiments. The first reason is that one must stabilize the system sufficiently close to its critical point to observe finite size effects, so that the correlation length develops up to the smallest system size. If, strictly speaking, a system is always finite, it is experimentally challenging to maintain a correlation length of the order of the micron, thus any larger systems can be considered infinitely large. For example, in a binary mixture of PMMA-3-octanone [START_REF] Crauste | Characterization of PMMA-3-octanone binary by turbidity and light scattering measurements[END_REF], the critical amplitude of the correlation length has been showed to be ξ 0 ∼ 0.97(2) nm for a critical temperature T c ∼ 306.58(4) K, so that stabilizing the reduced temperature at t ∼ 6.5 × 10 -5 and thus the correlation length at ξ = ξ 0 t -ν = (6.5 × 10 -5 ) -0.6301 × 0.97 nm ∼ 0.4 µm requires a control on temperature of ∼ 0.02 K. In 4 He, the critical end point at which the lambda line of normal/superfluid transitions meet 59 the liquid/gas line of phase transitions is located at T λ = T c = 2.1786K [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF] and the correlation length amplitude ξ 0 = 0.1422(5) nm [START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF]. Thus, if one achieves the same relative precision on temperature t ∼ 6.5 × 10 -5 as in our previous example, the correlation length can develop up to ξ = ξ 0 t -ν = (6.5 × 10 -5 ) -0.67115 × 0.1422 nm ∼ 94 nm. This actually compares well with the film thicknesses which were investigated in very succesful measurements of the Casimir force in 4 He, which ranged approximately from 20 nm to 34 nm [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF]. Another reason for the difficulty of measuring the Casimir force is its small amplitude: if one confines critical fluctuations that would occur at room temperature T amb ∼ 300 K between two plates separated by L ∼ 1 µm, the order of magnitude of the confinement force by unit surface is ∼ 4 mN m -2 [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF]. Nonetheless, this effect should not be neglected: as we will see in the following, it can counterbalance other well known forces such as van der Waals interactions with a substrate or gravitational potential energy in wetting experiments. It can trigger colloidal self organizations [START_REF] Van Duc Nguyen | Controlling colloidal phase transitions with critical Casimir forces[END_REF][START_REF] Edison | Critical Casimir Forces and Colloidal Phase Transitions in a Near-Critical Solvent: A Simple Model Reveals a Rich Phase Diagram[END_REF] and could have interesting applications in micro mechanical devices thanks to its great tunability [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF] (see section 4.2.3).

From this point of view, phase transitions in binary mixtures have the advantage of occurring at much higher temperature (T c ∼ 306.58(4) K in our example) than in superfluid systems such as 4 He (T c = 2.1786 K), giving rise to a stronger effect.

The first direct measurements of the critical Casimir force were performed only recently in a binary mixture of water and lutidine [START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF][START_REF] Hertlein | Direct measurement of critical Casimir forces[END_REF]. The confinement was performed by approaching a colloidal particle, immersed in the binary fluid and trapped by optical tweezers, close to a planar surface. Here, the confinement is in a sphere-plane geometry and not the plane-plane one that was already discussed in chapter 3. The plane-plane geometry is difficult to realize experimentally as the parallelism of confining plates has to be maintained. However, theoretical and numerical works directly tackling sphere-plane geometry [START_REF] Vasilyev | Critical Casimir interactions between spherical particles in the presence of bulk ordering fields[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir forces between a sphere and a plate: Monte Carlo simulation of a spin model[END_REF] are more rare than in the slab geometry.

The slab geometry is the simplest confined geometry, clearly identifying a confining length, and the two geometries can be related by the Derjaguin approximation in the case of small confinement compared to the sphere curvature R ≫ L [START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF] or by the small sphere approximation in the opposing limit [START_REF] Hasenbusch | Thermodynamic Casimir forces between a sphere and a plate: Monte Carlo simulation of a spin model[END_REF][START_REF] Burkhardt | Casimir Interaction of Spheres in a Fluid at the Critical Point[END_REF]. Moreover, indirect measurements of the Casimir force in wetting layers make slab geometry experimentally relevant. A wetting layer can be formed (Fig. 4.1) on a substrate, as a gas at a pressure and temperature close to their liquid-gas equilibrium values might condensate under the action of van der Waals interactions [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF][START_REF] Krech | Fluctuation-induced forces in critical fluids[END_REF][START_REF] Barrat | Basic Concepts for Simple and Complex Liquids[END_REF]. The interactions of the fluid particles with the substrate displaces the liquid-gas equilibrium point and the thickness of the layer is determined by the competition between van der Waals interactions favoring the condensation and other unfavorable interactions such as gravity [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF][START_REF] Garcia | Critical Casimir Effect near the 3 He-4 He Tricritical Point[END_REF] or a slight discrepancy between temperature of the substrate and the gas [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF]. For example, in ref. [START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF], the wetting is formed on a pedestal placed at a height h above a bulk reservoir of 4 He, the principle of such an apparatus being sketched in figure 4.1d). The height h controls the equilibrium thickness L of the film, which results from the competition of a chemical potential contribution due to gravity and van der Waals interactions. If the fluid undergoes an internal continuous phase transition, such as a superfluid transition in wetting films of 4 He [64] or 3 He -4 He mixture [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Garcia | Critical Casimir Effect near the 3 He-4 He Tricritical Point[END_REF], or a,b,c, reproduced from ref. [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF]). d) Sketch of an experimental cell to obtain a wetting layer of thickness L controlled by the height h of a pedestal above a liquid reservoir (see main text and ref. [START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF] for a more realistic sketch). a demixing transition in a binary polymer mixtures [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF][START_REF] Rafaï | Repulsive and attractive critical Casimir forces[END_REF], the associated fluctuations will be confined between the liquid-substrate and liquid-gas boundaries. The Casimir force related to the internal transition will modify the equilibrium thickness of the film. Monitoring the wetting layer equilibrium thickness when approaching the critical or tricritical point of the internal phase transition yields an indirect measurement of the Casimir force in slab geometry. Consequently it appears natural to define the critical Casimir force through finite-size scaling of the free energy in slab geometry, as will be the topic of section 4.2. We stress on the fact that the forces responsible for the confinement of the system here are multiple, such as the van der Waals interaction and the critical Casimir force, and all have comparable amplitudes. We will comment again on the definition of a confinement force in chapter 7 in which we will encounter non critical confinement effects induced by the periodic boundary conditions.

Confinement of any correlated thermal fluctuations can result in Casimir-like effects. At a critical point however, as we have seen in the previous part, the correlation length diverges, making the critical Casimir effect both long ranged and universal. Thus, the critical Casimir force can be seen as a direct consequence of finite-size scaling and is characterized by a universal scaling function. Universality allows us to map experimental realizations onto much simpler models belonging to the same universality class. The superfluid transition belongs to the 3D XY universality class and the demixing of binary mixtures to the 3D Ising one. Both these models are consequently at the heart of numerous numerical and theoretical works on the Casimir force.

We are particularly interested in the Ising universality class, as the Ising model is the simplest model of phase transitions, but the concepts we will develop are very general. In section 4.3, we will review some numerical approaches for computing the critical Casimir force in model systems and present in detail one method that we have reproduced in a 3D Ising system and which forms in part the basis of the magnetic method presented in chapter 5. Near the bulk critical point where the bulk correlation length ξ becomes similar to the confining size L ⊥ , the boundary conditions affect the spectrum of allowed fluctuations and the free-energy Ω(T, h, L ⊥ , A) is no longer extensive. Here, the free energy only depends on the sizes of the system, temperature T and h which represents the field conjugate to the order parameter. For a magnetic system, h is proportional to the applied magnetic field. In a simple fluid near the liquid gas critical point h ∼ µ-µ c is the chemical potential, measured with respect to the critical value µ c , while near the demixing transition of a binary fluid, h depends on the difference in chemical potential of the two species. All these systems belong to the Ising universality class in which h is a scalar, but our analysis can easily be extended to include vector fields and order parameters, relevant for other universality classes such as the XY one, describing helium films near the superfluid transition.

Finite-Size scaling and the critical Casimir force

Strictly speaking, thermodynamics require a fourth variable N , the number of particles, and hence a more general free energy Ω(T, h, L ⊥ , A, N ). We will develop our formalism in the case of a lattice model, particularizing the 3D Ising model on a cubic lattice, once again taking advantage of universality to conserve generality. The number of magnetic elements is therefore set by their density n = N V = 1 σ 3 where σ is the microscopic distance separating nearest neighbors, which is naturally fixed (for convenience, we can set σ = 1). The magnetic model thus becomes thermodynamically equivalent to a fluid system with fixed interaction range σ or, as we will see in more details in chapter 7, to a fluid binary mixture with fixed total density. In this case volume fluctuations impose fluctuations in the number of particles, so that one is dealing with a uniform medium. While spontaneous fluctuations of this kind clearly cannot exist in conventional magnetic systems [START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF], they do in fluid systems and allows us to discuss here the critical Casimir force in full generality. This point will be further discussed in the following chapter.

The slab limit takes L ∥ very large, even with respect to the correlation length, so that an extensive behavior is conserved in the x and y directions (dependence on a finite aspect ratio [START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF][START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] is not considered here). We can separate Ω in three different terms [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF][START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF][START_REF] Krech | Casimir forces in binary liquid mixtures[END_REF]. Two standard extensive contributions to the free-energy, defined in units of k B T : a bulk term

L ⊥ /L ∥
ω bulk (T, h) = lim L ⊥ →∞ lim A ′ →∞ Ω(T, h, L ⊥ , A ′ ) L ⊥ A ′ k B T , (4.1) 
and a surface term

ω surf (T, h) = lim L ⊥ →∞  lim A ′ →∞ Ω(T, h, L ⊥ , A ′ ) A ′ k B T -L ⊥ ω bulk (T, h)  . (4.2)
describing surface tension at boundaries in the z direction. In the case of periodic boundary conditions, this term is of course zero. In the x, y directions transverse to the confining one, we will always assume that surface terms are negligible in the limit of slab geometry or implement periodic boundary conditions in simulations. Close to a critical point the free-energy acquires a new, non-trivial dependance on L ⊥ and thus we can give the complete decomposition of the free energy in the limit of slab geometry [START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF][START_REF] Krech | Casimir forces in binary liquid mixtures[END_REF]]

Ω slab (T, h, L ⊥ , A) Ak B T = lim A→∞ Ω(T, h, L ⊥ , A) Ak B T = L ⊥ ω bulk (T, h) + ω surf (T, h) + L ⊥ ω ex (T, h, L ⊥ ) , (4.3) 
where ω ex is the excess free energy due to the confinement of critical fluctuations, which therefore vanishes far from the critical point (T = T c , h = 0) and in the thermodynamic limit L ⊥ → ∞.

The excess part can be seen as an interaction term between the confining boundary conditions, the range of the interaction being proportional to ξ. It can also be related to the finite-size scaling hypothesis discussed in chapter 2, but in the special case of the slab geometry. In the thermodynamic limit the bulk term dominates, which the scaling hypothesis decomposes in an analytic and a singular terms

ω bulk = ω a (T, h) + ω 0 s (t, h) , (4.4) 
where h = h/k B T c and we have seen in chapter 2 that, for periodic boundary conditions, the excess term is a confinement contribution to the singular term

ω ex = ω s (t, h, L ⊥ ) -ω 0 s (t, h) , (4.5) 
where

ω s (t, h, L ⊥ ) → L ⊥ →∞ ω 0 s (t, h).
The excess free energy density thus will have a universal form which depends on the bulk universality class. In the case of non periodic boundary conditions, it also depends on the confining surfaces as they can deeply modify the form of the fluctuations, as we have seen in chapter 3, and the excess free energy depends on the surface universality class, as we will develop in section 4.2.3. The excess part of the free energy being fostered by the truncation of the diverging correlation length at a critical point, the relevant variable is the ratio of the confining size L ⊥ and the correlation length ξ(t, h). Finite-size scaling then allows us to define a universal scaling function of the excess free energy (see section 2.2.1)

ω ex (t, h, L ⊥ ) = L -d ⊥ Θ  sgn(t) L ⊥ ξ t , L ⊥ ξ h  , (4.6) 
with d the spatial dimension, sgn(t) returns the sign of t as the function is not necessarily symmetric around T c , and

ξ t = ξ + 0 |t| -ν , ξ h = ξ h 0 | h| -ν/(β+γ) , (4.7) 
are expressions of the correlation length ξ either above T c at h = 0 (ξ t ) or at t = 0 for h ̸ = 0 (ξ h ), where critical exponents take their usual meaning [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF][START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF][START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF]. ξ ± 0 and ξ h 0 are non-universal amplitudes of the correlation length. However, the ratio ξ + 0 /ξ - 0 is universal, so that either length scale can be used to define a scaling variable without losing universality. Often, the simpler scaling form

ω ex (t, h, L ⊥ ) = L -d ⊥ Θ (u t , u h ) , (4.8) 
with the relevant scaling variables

u t = tL 1/ν ⊥ , u h = hL (β+γ)/ν ⊥ , (4.9) 
is used, all length being dimensionless, measured in units of the microscopic length σ. One should nonetheless keep in mind that to compare different systems of a certain universality class, the universal form of Eq.4.6 has to be used, so that the change in the values of non universal amplitudes ξ ± 0 and ξ h 0 from a system to the other is taken into account.

The critical Casimir force

In equilibrium and in the anisotropic slab limit defined above, the confining force per unit area is defined

F ⊥ = - 1 A ∂Ω slab ∂L ⊥    T,h,A , (4.10) 
which can be separated in a regular bulk pressure term and an anomalous term introduced by the restriction of the critical fluctuations

F ⊥ = -k B T ω bulk (T, h)    bulk pressure in z direction -k B T ∂L ⊥ ω ex ∂L ⊥    T,h (T, h, L ⊥ )    critical Casimir force , (4.11) 
defining the critical Casimir force per unit area

f c = -k B T ∂(L ⊥ ω ex ) ∂L ⊥    T,h = -k B T  ω s -ω 0 s + L ⊥ ∂ω s ∂L ⊥    T,h  . (4.12)
In fact, L -1 ⊥ plays an equivalent role in the criticality to reduced temperature and field, resulting in a third singular variable Q = ∂V (ωs-ω 0 s ) ∂L -1 ⊥ , in analogy with the magnetic moment M = V m and the entropy S. The Casimir force,

f c = k B T L -1 ⊥ (Q/V )
, is the natural physical observable related to this thermodynamics for which one finds a universal scaling form [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF] 

f c = k B T L -d ⊥ θ (u t , u h ) , (4.13) 
from which we define ∆ the universal scaling amplitude

θ(0, 0) = (d -1)∆ . (4.14) 
Eq. (4.12) relates the Casimir force universal scaling function to that for the excess free energy

Θ (Eq.4.8) by θ = (d -1)Θ - u t ν ∂Θ ∂u t    u h - u h (β + γ) ν ∂Θ ∂u h    ut . (4.15) 
Hence, if one scaling function is known, the other can be deduced by solving Eq.4.15 (this will be further discussed in chapter 6). This relation relates the underlying universal scaling functions of the Casimir force f c , the excess free energy f ex , the internal excess energy u ex and the excess order parameter m ex

f c k B T = (d -1)ω ex + tν -1 u ex + h β + γ ν m ex , (4.16) 
where

tu ex = -tT ∂ω ex ∂T    h,L ⊥ = -L -d ⊥ u t ∂Θ ∂u t    u h T T c ∼ -L -d ⊥ u t ∂Θ ∂u t    u h , (4.17) 
and where

hm ex = - h ∂ω ex ∂ h    T,L ⊥ = -L -d ⊥ u h ∂Θ ∂u h    ut . (4.18)

Importance of boundary conditions

The universal scaling form (Eq.4.13) of the Casimir force fully describes the phenomenon in all the experimental systems and models of a given universality class. However, this effect comes from the restriction of fluctuations by boundary conditions and is not a purely bulk phenomenon.

Thus, the function θ depends both on the bulk universality class and on the surface universality class.

Various boundary conditions can be considered, either periodic, free or displaying a surface field coupled to the order parameter. The periodic boundary conditions, only relevant in simulations of course, are characterized by the absence of surface free energy, leaving only a bulk phenomenon. The free, or Dirichlet, boundary conditions are characterized by a lack of interactions at the boundary and correspond in a magnetic system to a boundary with a non-magnetic material and in general to a wall with no local influence on the order parameter. This corresponds to the ordinary (O) surface universality class [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class[END_REF] with lower ordering at the surface than in the bulk. It is for example the relevant boundary condition for wetting experiments with a superfluid [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Garcia | Critical Casimir Effect near the 3 He-4 He Tricritical Point[END_REF], as the superfluid order parameter vanishes at the boundaries.

The addition of a strong boundary field corresponds to the normal or extraordinary surface universality class [START_REF] Hasenbusch | Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class[END_REF][START_REF] Diehl | The Theory of Boundary Critical Phenomena[END_REF], characterized by a higher ordering at the surface than in the bulk. For a magnetic system, this amounts to putting a magnetic field acting only on boundary spins, with the limit case of fixing the value of boundary spins to either positive (+) or negative (-) value.

We use the convention that L ⊥ refers to the number of layers of fluctuating spins, whatever the boundary conditions [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir effect in films: The exchange cluster algorithm[END_REF]. In the case of a binary fluid, this is equivalent to having walls which preferentially adsorbs one of its two components. In the first direct measurements of the critical Casimir force, performed in a binary mixture of water and lutidine [START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF][START_REF] Hertlein | Direct measurement of critical Casimir forces[END_REF], surface treatment allowed for the investigation of both symmetric (++), (--), and antisymmetric (+-) boundary conditions, showing direct experimental evidence that the Casimir force changed from attractive for symmetric boundaries to repulsive for antisymmetric ones (Fig. 4.6).

Consequently, surface treatment and patterning has been of great interest as a way of tuning the Casimir force [START_REF] Parisen Toldin | Critical Casimir forces between homogeneous and chemically striped surfaces[END_REF][START_REF] Tröndle | Critical Casimir forces between planar and crenellated surfaces[END_REF][START_REF] Tröndle | Critical Casimir effect for colloids close to chemically patterned substrates[END_REF][START_REF] Tröndle | Normal and lateral critical Casimir forces between colloids and patterned substrates[END_REF][START_REF] Tröndle | Critical adsorption and critical Casimir forces for geometrically structured confinements[END_REF][START_REF] Tröndle | Trapping colloids near chemical stripes via critical Casimir forces[END_REF][START_REF] Bimonte | Reversing the critical Casimir force by shape deformation[END_REF]. In the case of boundary conditions weakly coupled to the order parameter (weakly adsorbing walls for binary mixture or weak boundary magnetic fields for magnetic systems), crossover situations occur between +, O andboundary conditions [START_REF] Hasenbusch | Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class[END_REF][START_REF] Vasilyev | Critical Casimir forces for Ising films with variable boundary fields[END_REF][START_REF] Abraham | Casimir Interactions in Ising Strips with Boundary Fields: Exact Results[END_REF][START_REF] Mohry | Crossover of critical Casimir forces between different surface universality classes[END_REF] and, for example, weak asymmetric boundary conditions of different strength can be set so that the sign of the Casimir force in the Ising 3D universality class changes with temperature [START_REF] Vasilyev | Critical Casimir forces for Ising films with variable boundary fields[END_REF].

More complex boundary conditions than flat uniform walls have been explored. Crenellated boundary conditions [START_REF] Tröndle | Critical Casimir forces between planar and crenellated surfaces[END_REF] have recently been considered theoretically and in the case of walls structured by periodic arrays of wedges and ridges [START_REF] Tröndle | Critical adsorption and critical Casimir forces for geometrically structured confinements[END_REF] mean-field approaches predict not only a Casimir force acting normally on the confining walls but also transversally. The substrate can also be flat but chemically structured [START_REF] Parisen Toldin | Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface[END_REF][START_REF] Gambassi | Critical Casimir forces steered by patterned substrates[END_REF]. Structuring with alternating + andstripes can foster a lateral Casimir force in binary mixtures [START_REF] Sprenger | Forces between chemically structured substrates mediated by critical fluids[END_REF] and trigger the organization of colloids along the strips when immersed in the critical binary fluid close to the structured substrate [START_REF] Soyka | Critical Casimir Forces in Colloidal Suspensions on Chemically Patterned Surfaces[END_REF].

The effective potential felt by the colloids is well described by the Casimir force [START_REF] Tröndle | Normal and lateral critical Casimir forces between colloids and patterned substrates[END_REF][START_REF] Tröndle | Trapping colloids near chemical stripes via critical Casimir forces[END_REF], thanks to the Derjaguin approximation applied to the Casimir scaling function obtained in plane-plane geometry [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF]. For certain dimensions of the substrate's structures, a colloid is expected to undergo a critical Casimir force of changing sign with distance. A "levitation" distance exists which can be made stable with respect to thermal fluctuations and be tuned by the temperature [START_REF] Tröndle | Critical Casimir effect for colloids close to chemically patterned substrates[END_REF]. In the limit case of very narrow stripes, the structured boundary conditions can even mimic the O boundary conditions [START_REF] Parisen Toldin | Critical Casimir forces between homogeneous and chemically striped surfaces[END_REF]. This has recently also been attained with a surface with fixed + orspins randomly distributed, with resulting surface field of zero mean [START_REF] Parisen | Critical Casimir force in the presence of random local adsorption preference[END_REF]. Disorder introduced through random surface fields distributed according to a Gaussian distribution with vanishing mean have been showed to increase the Casimir force compared to the O boundary case [START_REF] Maciołek | Critical Casimir forces in the presence of random surface fields[END_REF].

Thus, the great variety of behaviors of the critical Casimir force, allowed by various boundary conditions, make it a promising candidate for technological applications in micro and nanomechanical devices, where it could counterbalance the electrodynamic Casimir force which is responsible for collapse of the structures [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF].

Limit behavior

The critical Casimir force comes from the confinement L ⊥ and by the divergence of the correlation length, itself governed by t and h, so we expect the limit behaviors in the Ising universality class

       θ(u t , u h ) → ut→∞ 0 , θ(u t , u h ) → u h →∞ 0 . (4.19)
Far from the critical point, θ for a confinement between two planar walls is expected to decay exponentially fast, following the analytic form

θ(u t ) → |ut|→∞ A 0 |u t | νd exp(-U 0 |u t | ν ) , (4.20) 
in the Ising model for d = 2, 4 and (+, ±) boundaries [START_REF] Tröndle | Normal and lateral critical Casimir forces between colloids and patterned substrates[END_REF], for d = 3 and (+-) boundary conditions at T > T c and for (++) boundaries for T both above and below T c [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Krech | Casimir forces in binary liquid mixtures[END_REF][START_REF] Borjan | Off-Critical Casimir Effect in Ising Slabs with Symmetric Boundary Conditions in d=3[END_REF].

In the case of the XY universality class though, the presence of Goldstone modes make the correlation length infinite even at low temperature: ξ - 0 is not defined and the θ function tends to a non-zero constant value at low temperature.

Numerical computation of the Casimir force : example of the coupling parameter approach

Introduction on numerical computations of the Casimir force

Numerical simulation is an ubiquitous way of computing the universal scaling function θ as it allows the study of various geometries and boundary conditions. To study liquid-gas criticality or critical binary mixtures, molecular simulations of Lennard-Jones systems can be thought as a way to mimic wetting experiments [START_REF] Wilding | Effect of criticality on wetting layers: A Monte Carlo simulation study[END_REF] or to measure directly a Casimir contribution to the pressure in confining geometries (this will be the topic of chapter 7). However, critical simulations of fluids are very challenging and, as far as we know, reference [START_REF] Wilding | Effect of criticality on wetting layers: A Monte Carlo simulation study[END_REF] has been the only attempt to capture a Casimir effect in this way. Therefore, universality has fully been exploited and model magnetic systems have been favored in numerical computation of the critical Casimir force.

A direct way to obtain the Casimir contribution to the confinement pressure in magnetic models such as the Ising, XY and Heisenberg models, is to construct a lattice stress tensor, which can be computed through Monte Carlo simulation [START_REF] Dantchev | Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results[END_REF][START_REF] Krech | Casimir forces in binary liquid mixtures[END_REF], but has only been exploited with fully periodic boundary conditions. Such a stress tensor had been used in other models analytically [START_REF] Bartolo | Fluctuations of Fluctuation-Induced Casimir-Like Forces[END_REF][START_REF] Dantchev | Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results[END_REF] and has very recently been used for mean field calculations [START_REF] Tröndle | Critical Casimir forces between planar and crenellated surfaces[END_REF][START_REF] Tröndle | Critical adsorption and critical Casimir forces for geometrically structured confinements[END_REF].

However, a now ubiquitous approach to computing the critical Casimir force relies on the fact that, as we have seen in the previous section, the Casimir force is defined as the excess contribution to the derivative of the free energy (Eq.4.10). Therefore, computing the free energy of a system or at least its variation with respect to system size can give access to the pressure from which one can extract the excess part if sufficient accuracy is reached. A text book approach to computing the free energy [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] uses the basic relation Ω = U -T S -M h, where U and S are the internal energy and entropy of the system. Monte-Carlo simulations give direct access to U and M and we can compute the entropy by a suitable integration of the measurable specific heat

C V = T ∂S ∂T    V,h
. Experimentally, the internal energy is not accessible, only the specific heat is. So, this methods needs another integration of C V to extract Ω. Both in experiments and simulations, this method suffers from the great difficulty of accurately measuring C V close to a critical point [START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF].

In numerical simulations, the value of all microscopic degrees of freedom being accessible, the number of numerical "observables" is much bigger than in experiments. If one can define a crossover Hamiltonian continuously interpolating between two different systems, one can compute the variation in free energy between them and it is therefore possible to design a simulation specifically for measuring the variation of free energy with respect to a change in system size [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Mon | Monte Carlo studies of critical free energies and the simple-cubic Ising model[END_REF][START_REF] Mon | Monte Carlo calculation of free energy for a fcc lattice-gas model[END_REF][START_REF] Krech | Casimir effect in critical systems: A Monte Carlo simulation[END_REF][START_REF] Vasilyev | Monte Carlo simulation results for critical Casimir forces[END_REF]. This very general approach is referred to as "thermodynamic integration" or "coupling parameter" approach. We will now present such a method which proved very efficient for computing the critical Casimir force and can be used in a very wide range of lattice systems and boundary conditions. We have reproduced some results of ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] in the 3D Ising model with fully periodic boundary conditions. We present these results in some details as they form in part the basis of the magnetic method presented in chapter 5.

Crossover Hamiltonian

Following [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Vasilyev | Monte Carlo simulation results for critical Casimir forces[END_REF] (see also [START_REF] Vasilyev | Critical Casimir forces for Ising films with variable boundary fields[END_REF][START_REF] Krech | Casimir effect in critical systems: A Monte Carlo simulation[END_REF]) we calculated f c for a 3D Ising model with a cubic lattice in film geometry. The present approach is to compute the variation in free energy caused by a change in system size, approximating the derivative of the free-energy with respect to system size L ⊥ , which contains f c the critical Casimir force. The idea is to define a crossover Hamiltonian which continuously interpolates between a L ⊥ layer thick system to a L ⊥ -1 layer thick one

H cr (λ) = (1 -λ)H 0 + λH 1 , (4.21) 
where H 0 is the Hamiltonian of a L ⊥ layers system and H 1 of a L ⊥ -1 layers one plus one decoupled layer, as schematized in figure 4.3. In the crossover system, if λ = 0, we have a regular 3D Ising system on a cubic lattice of size The free energy of the cross-over Hamiltonian, for a given value of the parameter λ, is

L ⊥ × L ∥ × L ∥ . As λ → 1,
Ω cr (λ) = -k B T ln    {Si} exp(-κH cr (λ))   , (4.22) 
where  {Si} means a sum over the phase space and κ = 1/k B T . So, we notice that the derivative of the free energy with respect to the crossover parameter

dΩ cr (λ) dλ =  {Si} (H 1 -H 0 )e -κHcr(λ)  {Si} e Hcr(λ) = ⟨H 1 -H 0 ⟩ Hcr(λ) , (4.23) 
with ⟨.⟩ Hcr(λ) a statistical average performed in the crossover system. This average can be efficiently computed using Monte Carlo simulation and amounts to computing the average of the quantity

H 1 -H 0 = -  x,y
S x,y,k0+1 S x,y,k0-1 -S x,y,k0 S x,y,k0+1 -S x,y,k0-1 S x,y,k0 .

Then, if we calculate this quantity for different values of λ, an integration over the crossover parameter give access to the difference in free energy

Ω 1-0 =  1 0 dλ ⟨H 1 -H 0 ⟩ Hcr(λ) = Ω 1 -Ω 0 , (4.25) 
between the {L ⊥ layers} and {L ⊥ -1 layers + 1 layer} systems, which we can decompose using the formalism of Eq.4.
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Ω 1-0 = Ω slab (T, h, L ⊥ -1, A) -Ω slab (T, h, L ⊥ , A) + Ω 2D (T, h, A) , (4.26) 
with Ω 2D (T, A) the free energy of the decoupled layer, and A = L 2 ∥ . If the system is sufficiently thick to consider that a variation of one layer is infinitesimal (L ⊥ ≫ 1), we are estimating the derivative of the free energy Ω slab

Ω 1-0 (T, h, ℓ, A) ≈ L ⊥ ≫1 - ∂Ω slab ∂L ⊥    T,h,A (T, h, ℓ, A)    bulk pressure + Af c +Ω 2D (T, h, A) , (4.27) 
evaluated at ℓ = L ⊥ -1/2, which therefore contains the critical Casimir force according to Eq.4.10,4.11. The intuitive choice ℓ = L ⊥ -1/2 has been shown rigorously to facilitate the approach to the scaling limit by minimizing the importance of corrections to scaling terms [START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF].

Extracting an excess contribution

Surface terms have been suppressed by the derivation as they do not depend on L ⊥ . We are only interested in the Casimir contribution, so we also need to get rid of the 2D and 3D bulk contributions. This can be done by taking advantage of the extensivity of the bulk 3D contribution and of the independence of the 2D term on ℓ. Thus, we repeate the procedure for two sets of length scales centered on ℓ and αℓ, all other parameters remaining equal. Subtracting results from the two pairs of length scales eliminates the free energy from 2D layer and the bulk contribution,

Ω 1-0 (T, h, αℓ, A) -Ω 1-0 (T, h, ℓ, A) ≈ Af c (T, h, αℓ) -Af c (T, h, ℓ) , (4.28) 
providing a first estimate of the Casimir force

f 0 c (T, h, ℓ) ≈ f c (T, ℓ) -f c (T, h, αℓ) . (4.29)
Given the universal scaling form of f c (Eq. 4.13), one can define a scaling function for

f 0 c f 0 c (T, h, ℓ) = k B T ℓ -d θ 0 (u t [ℓ], u h [ℓ]) . (4.30) 
related to θ at two different values of u t and u h by :

θ 0 (ℓ) = θ(ℓ) -α -d θ(αℓ). (4.31) 
Provided that at a given temperature and field the Casimir effect decreases with increasing system size, if α > 1, α -d < 1 and θ(αℓ) < θ(ℓ). Choosing α -d ≪ 1, the scaling function θ 0 will provide a good estimate for the functional form of θ(u t , u h ) as θ(αℓ) ≪ θ(ℓ) and α -d is a small parameter, the system of size αℓ acting as a reference system, large enough to be considered at the thermodynamic limit. This is of course a difficult limit to reach in a simulation but, thankfully, there exists another way of improving the estimate of θ from θ 0 .

Iteration procedure

To extract a complete estimate of θ from the measured quantity θ 0 , one can apply the procedure developed in ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] to solve Eq.4.31 iteratively. Here is presented an extended version of this procedure to include a non zero field h. We rewrite Eq.4.31 in the form

θ(ℓ) = θ 0 (ℓ) + α -d θ(αℓ) , (4.32) 
clearly showing that, as we already mentioned, if α is chosen greater than 1, we can consider, as a first approximation to the function θ(u t , u h ):

θ 0 (u t , u h ) ≈ θ(u t , u h ) . (4.33) 
It seems fairly logical to consider that an improved estimate θ 1 of θ will then be given by

θ 1 (ℓ) = θ 0 (ℓ) + α -d θ 0 (αℓ) , (4.34) 
considering the form of Eq.4.32. Using Eq.4.31 and 4.34 to express θ 1 as a function of θ, we can move to higher order approximations of θ(u t , u h ). This leads to defining the following recursion relation

θ n≥1 (u t , u h ) = θ n-1 (u t , u h ) + α -2 n-1 d θ n-1 (α 2 n-1 /ν u t , α 2 n-1 (β+γ)/ν u h ) . (4.35) 
This relation can be rewritten as a recursion procedure on the function θ 0 (u t , u h ) only, which converges towards

lim n→∞ θ n (u t , u h ) ≡ θ(u t , u h ) = ∞  n=0
α -dn θ 0 (α n/ν u t , α n(β+γ)/ν u h ) .

(4.36)

The series defining θ(u t , u h ) converges because α -dn decays exponentially fast with n and θ 0 (u t , u h ) is expected to be bounded, having a finite maximum close to the critical point and decaying exponentially quickly for u t , u h → ±∞. By injecting the expression of function θ(u t , u h ) into Eq.4.31, or equivalently Eq.4.32, we see that it is indeed a solution to the equation. The function θ(u t , u h ) can therefore be estimated using an approximation θ n (u t , u h ) obtained after a finite number of iterations.

For a typical value α = 2, this iteration procedure converges rather quickly in three dimensions. For the third iteration n = 3, we already get :

α -2 n-1 d ∼ 10 -4 , α 2 n-1 /ν ∼ 10 2 , α 2 n-1 (β+γ)/ν ∼ 10 3 .
The correction given by this third iteration is therefore expected to be small given the very small value of the parameter α 2 n-1 and that the point (α 2 n-1 /ν u t , α 2 n-1 (β+γ)/ν u h )

reached will be far from the critical point, except for extremely small values of (u t , u h ).

Note that, to obtain θ over a given range of u t and u h , using this recursion requires that the function θ 0 is measured over a much wider range, since each iteration dilutes the chosen window.

The iterative procedure requires access to increasingly high values (α n/ν u t , α n(β+γ)/ν u h ) of the scaling parameters, eventually falling outside the range of values for (u t , u h ) explored in the simulation. We have only considered the case h = 0 and are only concerned by the variable u t .

To estimate θ 0 for values outside the range of u t explored in the simulation, we have fitted the function θ 0 using an exponential ansätze of the form of Eq.4.20, which proved excellent.

Further, the procedure requires the use of values for θ 0 (u t , u h ) over the continuous range of variables (u t , u h ), not just the discrete set used in a Monte Carlo simulation. These values can be estimated using spline interpolation of the computed values of θ 0 . In practice we have chosen α ≈ 2, and have never used more than 2 iterations to obtain an estimate of θ in all the work presented in this thesis.

Simulation and results

We performed Monte Carlo simulations in order to accurately reproduce the results of ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF],

where only the case of h = 0 has been considered (the effect of a magnetic field will be studied in chapter 5). We restrained ourselves to a 3D system with periodic boundary conditions in all three The main effect of the iterative process is to suppress the "shoulder" that is visible close to u t = 0 in θ 0 . This "shoulder" is the signature of the influence on function θ 0 of the Casimir force computed in the system of size αℓ, as θ 0 can be seen as the scaling function of the difference between the Casimir force in the system of size ℓ minus the Casimir force computed in the system of size αℓ (Eq.4.29), which is of smaller amplitude and width.

Approximately 10 6 Monte Carlo steps were required to get the most accurate data presented.

The choice of system sizes allow us to directly compare the function θ 0 (u t , 0) that we computed to the one presented for the same parameters in ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], showing excellent agreement (Fig. 4.4).

This choice was primally motivated by several constraints: the width L ∥ has to be taken as large as possible to approach slab geometry (an aspect ratio L ⊥ /L ∥ = 1/6 has been showed in ref. [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] to already provide a good approximation of this limit). System thicknesses ℓ and αℓ should be as large as possible to ensure that the approximation of Eq.4.27 is valid and that we reached the scaling limit. Of course, a compromise has to be found as the computation time increases rapidly with increasing system size.
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The fully periodic boundary conditions cannot be related to any experimental situation.

But, as we have been able to reproduce to an excellent level of agreement results of reference [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] (Fig. 4.4), we have not pursued any further the reproduction of the data and will rely on results presented in this reference paper for other surface boundary conditions. Nevertheless, before presenting experimentally relevant results, we must consider the influence of corrections to scaling.

Corrections to scaling

In chapters 1 and 2, we have seen that scaling behavior is only dominant close enough to the critical point [START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF]. In section 1.3.6, we gave the example of corrections to scaling in the thermodynamic limit of the susceptibility

χ(T, h = 0) = |t| -γ (A ± + B ± K3 t -νy3 + . . . ) , (4.37) 
with A ± , B ± non-universal amplitudes, so that the power law |t| -γ is indeed the dominant behavior close to T c but t -νy3 might be important to take into account if one wants to extract critical exponents from measurements. In section 2.2.3, we extended this example to the case of corrections to finite-size scaling, in the case of the evolution of the amplitude at (t, h) = (0, 0) of the susceptibility

χ(T c , h = 0, L) = L 2-η χ s (0, 0)(1 + b 1 L -ω + . . . ) + χ a , (4.38) 
with χ a an analytic background and b 1 a non universal amplitude to the leading correction to scaling L -ω (ω = 0.84(4) in the Ising model [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]). In numerical simulations, corrections to finitesize scaling have often to be taken into account as the size of systems are limited by computers and algorithms capacities.

To get rid of these corrections, one must perform simulations in large enough systems, as allowed by the limitations of simulations techniques, or reach sufficient accuracy to disentangle universal behaviors from non universal corrections. Another possibility is to find models belonging to the universality class of interest in which the leading correction to scaling is suppressed [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]. This is the case of the Blume-Capel model of Hamiltonian

H BC = -  <i,j> S i S j + k B T D  i S 2 i , (4.39) 
where spins assume values shown that there exist a point D * at which the amplitude of the leading correction to scaling vanishes. One difficulty with this improved Hamiltonian approach is that it requires a precise estimate of the parameter value at which the leading correction is reduced, D * in the Blume-Capel model, while observables are still subject to higher order corrections to scaling. Nevertheless, the Blume-Capel has been shown to give high accuracy measurements of the critical Casimir force [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir effect in films: The exchange cluster algorithm[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir Forces between a Sphere and a Plate: Monte Carlo Simulation of a Spin Model[END_REF]. Improved models are more delicate to implement than simpler models such as the Ising model itself. The simplicity and flexibility of the latter and the abundant literature on its numerical resolution at criticality still makes it today a suitable choice for the study of the critical Casimir force [START_REF] Maciołek | Critical Casimir forces in the presence of random surface fields[END_REF].

S i ∈ {-1, 0, 1}
As for any other observable, corrections to scaling affect the critical Casimir force. Estimates of the scaling function θ obtained with different sets of systems size L ⊥ or L ∥ will differ if the system sizes are not large enough. Reference [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] gives a detailed discussion of corrections to scaling affecting θ in the 3D Ising and XY models for various boundary conditions. Firstly, the scaling behavior of the correlation length is affected by corrections to scaling: this effect can be captured by replacing the scaling variable t(L ⊥ /ξ + 0 ) 1/ν by a corrected one x(t, L ⊥ ). Both the finite thickness L ⊥ , which might be too small to be in the scaling limit, and the finite aspect ratio ρ = L ⊥ /L ∥ , which make the limit of slab geometry only approximate, can foster corrections to scaling. In ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], for periodic boundary conditions in the Ising model, corrections of the form ξt , with ξ t = ξ + 0 |t| -ν . We compare it to the the function θ corr (x) (blue dots) obtained in ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] for the same system sizes but taking corrections to scaling into account, affecting both the amplitude of the function θ corr and the scaling variable x (see main text). Error bars are smaller than points size.

x = t(L ⊥ /ξ + 0 ) 1/ν (1 + g ω L -ω ⊥ )(1 + r 1 ρ 2 ) , (4.40 
were used, where g ω and r 1 are non-universal amplitudes and ω = 0.84(4) is the universal exponent for leading corrections to scaling. It turns out that for the investigated system sizes in ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], g ω ≈ r 1 ≈ 0 already provided a data collapse. Secondly, the amplitude of the Casimir force is also affected by corrections to scaling and in ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], for periodic boundary conditions in the Ising model, corrections of the form

θ corr (x) = (1 + g 2 L -ω ef f ⊥ ) θ(x) , (4.41) 
were used, with θ the estimate of the scaling function after employing the iterative procedure described above and g 2 and ω ef f fitting parameters to obtain the best data collapse.

We compare in figure 4.5 the estimate θ 2 ( ℓ ξt ) that we have obtained to the best estimate θ corr (x) of ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] taking into account corrections to scaling. In this case, we see that only rather small corrections were necessary. This is not always the case, and corrections to scaling can turn out to be much more important, as in the case of fixed boundary conditions, as we will see in chapter 5 (e.g. Fig. 5.8). Actually, various corrections to scaling ansätze have been explored in ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], which proved more suited to other boundary conditions and to the results obtained in the XY model. We refer the reader to ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] for further discussions on the matter.

Numerical simulations compared to experimental results

As we already mentioned, the fully periodic boundary conditions cannot be related to any experimental situation. The slab geometry describes well the experimental set up of wetting films of 4 He [64] or 3 He -4 He mixture [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Garcia | Critical Casimir Effect near the 3 He-4 He Tricritical Point[END_REF][START_REF] Rafaï | Repulsive and attractive critical Casimir forces[END_REF] subject to a superfluid transition, or a demixing transition in a binary polymer mixtures [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF] 

a)

mum might occur when the exponentially diverging bulk correlation length 2D , associated with the KT critical point of the film, becomes comparable with the characteristic transverse length L ʈ ϵ ͱ A of the simulated system.

Dirichlet-Dirichlet boundary conditions

We consider first the case of ͑O , O͒ BC. As evidenced by Fig. 2͑a͒, in order to achieve a good data collapse of the curves corresponding to different lattice sizes we have to account for corrections to scaling according to Eqs. ͑18͒ and ͑19͒. As a phenomenological ansatz for the effective corrections we take eff = 1 and consider two functional forms for the L-dependent corrections to the scaling function: case ͑i͒ ͓Eq. ͑20͔͒ and case ͑ii͒ ͓Eq. ͑21͔͒ as discussed in Sec. III D. As a result of the fitting procedure, in the interval x ͓-6 , -2.1͔ ͓see Eq. ͑18͔͒ we find r 1 = 1.18͑10͒, r 2 = 2.40͑13͒, g 1 = 5.83͑25͒, and g = 2.25͑15͒ in case ͑i͒ and g 2 = -2.98͑8͒ in case ͑ii͒ with the same values for r 1 , r 2 , and g as in case ͑i͒. Figure 4 shows the corresponding resulting estimates of the scaling function ͑x͒ of the critical Casimir force. The qual-ity of the data collapse for the two cases separately clearly indicates that Eqs. ͑20͒, ͑21͒, and ͑18͒ are very effective ways of accounting for the corrections to scaling in this system. We find that ͑x͒ is slightly affected by the choice of the functional form of corrections to scaling and indeed in the two cases one finds estimates of ͑x͒ which have the same shape but the overall amplitude is reduced by a factor R Ӎ 0.9 in case ͑ii͒ as compared with case ͑i͒. The dashed line represents the scaling function which has been determined in Ref. ͓17͔ on the basis of a different numerical method and assuming corrections to scaling of the form ͑i͒. Even though this result is actually biased by that particular choice ͑a point which has not been discussed in Ref. ͓17͔͒, the very good agreement between the different approaches provides a highly welcome independent test of both methods.

Our MC results for ͑x͒ compare well also with the experimental data of Ref. ͓5͔. ͑For a meaningful comparison between the numerical and the experimental scaling function, the abscissa L 1/ of the experimental data presented in ͓17͔ and the sensitivity of the resulting scaling function to the assumed form of the corrections to scaling we conclude that our estimates for x min and min are compatible also with those presented there ͓-5.3͑1͒ and -1.35͑3͒, respectively͔. As expected, due to the presence of the Goldstone modes below T c , both the experimental and the MC data do not approach zero for x → -ϱ but saturate at some finite negative value at low temperatures. However, the absolute value of the saturation as obtained from the MC simulations is smaller than the experimental one. This difference, which extends deep into the noncritical regime, is, inter alia, due to 4 He specific properties and to the occurrence of capillary waves on the liquid-vapor interface of the critical 4 He wetting films. This point has been discussed in Ref. ͓29͔. In Fig. 4 the gray vertical bar indicates the universal value x O,O ء = -7.64͑15͒ of the scaling variable corresponding to the occurrence of the Kosterlitz-Thouless transition at T = T c ͑L͒ in the film, as inferred from MC simulations of lattice models in the XY universality class presented in Ref. ͓41͔. The Kosterlitz-Thouless transition is accompanied by an actually invisible essential singularity ϳexp͑-const/ ͱ ͉x -x ء ͉͒ in the behavior of the specific heat which, as discussed above, displays a pronounced maximum at a temperature T = T m ͑L͒. Accordingly, one does not expect to find any particular signature of this transition in the scaling function of the Casimir force for x Ӎ x ء , in distinction to the case of the Ising model ͑cf., Secs. IV B 2 and IV B 3͒.

Finally, for completeness, in Fig. 4 we have also included ͑dash-dotted line͒ our mean-field result for the Casimir scaling function OO ͑MFT͒ obtained from the limiting case of the vectoralized Blume-Emery-Griffiths lattice model corre-
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exp. Ref. [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF] Ref. [START_REF] Stanley | Scaling, universality, and renormalization: Three pillars of modern critical phenomena[END_REF] FIG. 4. ͑Color online͒ Scaling function OO of the Casimir force for the three-dimensional XY model with ͑O , O͒ BC. The MC data reported in this figure refer to lattices with L = 10, 15, and 20, with fixed inverse aspect ratio 1 / = 6. Corrections to scaling have been accounted for according to two different ansätze, provided by Eqs. ͑20͒ and ͑21͒; the corresponding numerical results are denoted by ͑i͒ and ͑ii͒, respectively. With corrections to scaling of the form ͑ii͒, the shape of the resulting scaling function is almost indistinguishable from the one obtained with corrections to scaling of the form ͑i͒, but its overall amplitude is reduced by a factor R Ӎ 0.9. For ͑i͒ our MC data compare very well with the corresponding experimental data from Ref. ͓5͔ ͑solid line͒ and with the MC data of Ref. For ͑+-͒ BC we have found g ˜1 = -1.8͑1͒, g ˜2 = 8.54͑43͒ and we estimate ⌬ +-͑L → ϱ͒ϵ⌬ +-= 2.71͑2͒, i.e., +-͑0͒ = 5.42͑4͒, in agreement with the experimental value +- ͑exp͒ ͑0͒ =6͑2͒ ͓8͔ but slightly larger compared to the previous MC estimate +-͑0͒ = 4.900͑64͒ ͓24͔ ͓indicated as a full circle in Fig. 8͑b͒, still affected by finite-size corrections͔ and the analytical estimates +- ͑FT͒ ͑0͒ = 3.16. . . 4.78. The latter depend on the approximant used to resum the O͑⑀͒ series ͑see Ref. ͓24͔ for details͒.

By using the values of g ˜1 and g ˜2 obtained previously in the context of the Casimir amplitude we determine the coefficient g of the correction to the scaling variable x ͓see Eq. ͑18͒ with r 1 =0͔ in order to achieve a good data collapse for the whole scaling function, with the results g = 2.04͑15͒ for ͑++͒ BC and g = 2.90͑15͒ for ͑+-͒ BC. The comparison between three phenomenological ansätze for the corrections to scaling, i.e., cases ͑i͒ ͓Eq. ͑20͔͒, ͑ii͒ ͓Eq. ͑21͔͒, and ͑iv͒ ͓Eq. ͑23͔͒, are presented in Figs. 9 and 10 for ͑++͒ and ͑+-͒ BC, respectively. The scaling functions corresponding to the rational expression for the corrections to scaling ansatz ͓case ͑iv͔͒ lie in between the two others.

Currently, for the film geometry with ͑++͒ BC there are no experimental data available for comparison, but in Fig. 9 ++ can be compared with the prediction of mean-field theory ͓24͔ ͑MFT, solid line, normalized such that ++ ͑MFT͒ ͑0͒ = ++ ͑MC͒ ͑0͒ ͓=2⌬ ++ ͑MC͒ see Fig. 8͑a͔͒͒ and with the prediction of the two-dimensional Ising model ͓23͔ ͑dashed line͒. Recently, the de Gennes-Fisher local-functional method has been extended to study the three-dimensional case with ͑++͒ BC ͓18,19͔. In this latter ͑nonperturbative͒ approach one takes advantage of the knowledge of the values of bulk critical exponents and amplitude ratios in order to fix completely certain parameters of an effective model which is then used to calculate the structural properties and the free energy of the system first in the presence of a single wall and eventually in thin films, giving access to the scaling function for ͑++͒ BC. The resulting scaling function ͑dash-dotted line in Fig. 9͒ is in very good agreement with the one ͑bottom set of data points in Fig. 9͒ determined numerically via MC simulations by assuming corrections to scaling of the form given by Eqs. ͑20͒ and ͑18͒ with r 1,2 = 0 and suitable values for the fitting parameters g and g 1 ͑see above͒. This agreement suggests that corrections to scaling are properly captured by such ansätze even for L → ϱ. The prediction of the de Gennes-Fisher local-functional method for the critical Casimir amplitudes ͓shown as diamonds in Figs. 8͑a͒ and 8͑b͔͒ is ⌬ ++ = -0.42͑8͒ and ⌬ +-= 3.1 ͓18͔, which compares quite well with our MC results for ⌬ ++ = -0.376͑29͒, whereas x ϑ ++ (x)

Ising BC ++ (i) (ii) (iv)
Ref. [START_REF] De Jongh | Experiments on simple magnetic model systems[END_REF] L=13 L=16 L=20 2D MFT FIG. 9. ͑Color online͒ Scaling function ++ of the critical Casimir force in the three-dimensional Ising model with ͑++͒ BC and zero bulk field. Data points refer to lattices with fixed inverse aspect ratio 1 / = 6. The bottom and top data sets have been obtained by accounting for corrections to scaling according to Eq. ͑20͒ ͓case ͑i͔͒ and Eq. ͑21͒ ͓case ͑ii͔͒, respectively. The intermediate data set, instead, considers corrections of the rational form given by Eq. ͑23͒ ͓case ͑iv͔͒. In each case the data collapse turns out to be very good within the range of the scaling variable x covered in the figure. The final estimate of the scaling function is biased by the functional form assumed for the corrections to scaling. The position x min Ӎ 5.90͑8͒ of the minimum is insensitive with respect to these choices for the form of the corrections. For comparison we provide the prediction of mean-field theory ͓24͔ ͑solid line͒, normalized such that ++ ͑MFT͒ ͑0͒ = ++ ͑MC͒ ͑0͒ ͓Fig. 8͑a͔͒, the exact result for the two-dimensional Ising model ͓23͔ ͑dashed line͒, and the result from the extended de Gennes-Fisher local-functional method ͓19͔ ͑dashdotted line͒. Note that the actual phase transition of the film occurs at a nonzero value of the bulk field. 10. ͑Color online͒ Scaling function +-of the critical Casimir force in the three-dimensional Ising model with ͑+-͒ BC and zero bulk field. Data points refer to lattices with fixed inverse aspect ratio 1 / = 6. For comparison we provide the mean-field prediction ͓24͔ ͑solid line͒, normalized such that +- ͑MFT͒ ͑0͒ = +- ͑MC͒ ͑0͒ ͓=2⌬ +-, Fig. 8͑b͔͒, the exact result for the two-dimensional Ising model ͓23͔ ͑dashed line͒, and the set of experimental data points from Ref. ͓8͔. The top and bottom data sets have been obtained by accounting for corrections to scaling according to Eq. ͑20͒ ͓case ͑i͔͒ and Eq. ͑21͒ ͓case ͑ii͔͒, respectively. The intermediate data set, instead, considers corrections of the rational form given by Eq. ͑23͒ ͓case ͑iv͔͒. In each case the data collapse turns out to be very good for x Ն -20. The final estimate of the scaling function is biased by the functional form assumed for the corrections to scaling. The position x max Ӎ -5.4͑1͒ of the maximum is insensitive with respect to these choices for the form of the corrections. In spite of this caveat the comparison with the experimental data is encouraging. Note that the actual phase transition of the film occurs at a nonzero value of the bulk field.
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UNIVERSAL SCALING FUNCTIONS OF CRITICAL…

PHYSICAL REVIEW E 79, 041142 ͑2009͒ 041142-13 (see reference for details). Red points with error bars come from measurements of ref. [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF], showing good agreement with the numerical work.

Conclusion

The method of thermodynamic integration over a crossover parameter, or coupling parameter approach, has proved very efficient, leading to later studies, for example, in sphere-plane geometry [START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF], with variable boundary fields [START_REF] Vasilyev | Critical Casimir forces for Ising films with variable boundary fields[END_REF], a bulk field [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF] or more recently in the presence of random surface fields [START_REF] Maciołek | Critical Casimir forces in the presence of random surface fields[END_REF]. However, this method clearly cannot be adapted to an experimental set up.

Moreover, from our previous discussions it appears that, apart from the preliminary work of ref.

[62] in 1998 trying to directly reproduce wetting experiments in a Lennard-Jones simulation, there is a dichotomy between experimental measurements and numerical simulations of the Casimir force. Measurements are performed in fluid systems, whereas theoretical and numerical works study magnetic models. We have already mentioned above the possibility of computing the free energy through integration of the specific heat C v . Such an approach is experimentally challenging and requires a double integration on temperature to estimate the free energy from C v . We have recently developed and numerically tested a new protocol for the measurement of the magnetic Casimir force based on the concept of generalized thermodynamic forces, showing that equivalent results to previous works can be achieved by directly evaluating free energy changes through integration of the magnetization from a reference state at high magnetic field into the critical region. In chapter 5, we will describe our proposal for the first protocol adapted to experimental measurements of the critical Casimir force in magnetic systems. Conversely, in chapter 7, we will try to close the gap between experimental and numerical approaches, this time by numerically studying the Casimir effect in a fluid system, through simulations of a

Lennard-Jones symmetrical binary mixture.

Chapter 5

The Critical Casimir Force in a Magnetic

System ; an Experimental Protocol

On the one hand, spin models are the paradigm for computing the universal scaling function of the critical Casimir force, the most experimentally relevant being the Ising and XY models.

Theoretical [START_REF] Bartolo | Fluctuations of Fluctuation-Induced Casimir-Like Forces[END_REF][START_REF] Krech | Casimir forces in binary liquid mixtures[END_REF][START_REF] Borjan | Off-Critical Casimir Effect in Ising Slabs with Symmetric Boundary Conditions in d=3[END_REF][START_REF] Evans | Solvation force in two-dimensional Ising strips[END_REF] and numerical [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF][START_REF] Dantchev | Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir forces between a sphere and a plate: Monte Carlo simulation of a spin model[END_REF][START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF][START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF][START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF][START_REF] Parisen Toldin | Critical Casimir forces between homogeneous and chemically striped surfaces[END_REF][START_REF] Hucht | Thermodynamic Casimir Effect in 4 He Films near T λ : Monte Carlo Results[END_REF][START_REF] Hasenbusch | The thermodynamic Casimir effect in the neighbourhood of the λtransition: a Monte Carlo study of an improved three-dimensional lattice model[END_REF] studies systematically use approaches based on generalized thermodynamic relationships between the constraining forces and the relevant free energy. On the other hand, experimental measurements of the critical Casimir effect were performed in fluid systems [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF][START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF][START_REF] Hertlein | Direct measurement of critical Casimir forces[END_REF][START_REF] Garcia | Critical Casimir Effect near the 3 He-4 He Tricritical Point[END_REF][START_REF] Rafaï | Repulsive and attractive critical Casimir forces[END_REF], as introduced in chapter 4, probing directly or indirectly the confining force. Thus, there is a clear segregation between theoretical and numerical works in magnetic systems on one side and experimental measurements in fluid systems on the other.

Given the success of spin models in the accurate computation of the critical Casimir force in almost all situations, it is paradoxical that no magnetic experiments exist which attempt to measure the scaling function from estimates of free energy differences, given that magnetic experiments have long been considered as the paradigm for studies of criticality (see for example ref. [START_REF] Stanley | Scaling, universality, and renormalization: Three pillars of modern critical phenomena[END_REF]) and that the nano-engineering of magnetic thin films is particularly well-advanced [START_REF] Vaz | Magnetism in ultrathin film structures[END_REF].

The reason is that the numerical techniques, accurate though they may be, are not adapted to experiments. Moreover, the experimental approaches developed for fluid systems are not suited for magnetic materials as they rely on directly or indirectly measuring a pressure, which is not in general a relevant thermodynamic observable for a solid material, especially in the absence of magneto elastic coupling.

We have developed and numerically tested a new protocol for measurement of the magnetic Casimir force based on the concept of generalized thermodynamic forces, showing that equivalent results to previous works can be achieved by directly evaluating free energy changes through integration of the magnetization from a reference state at high magnetic field into the critical region. Here, evolution of the free energy with system size yields the critical Casimir effect without direct access to the constraining force. This procedure could be adapted into the first experimental protocol for magnetic thin films, or for systems as diverse as ferroelectrics, liquid crystals or polymers and could give access to all universality classes including quantum criticality.

This work has been published in the Physical Review B [START_REF] Lopes Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF].

Free energy and integration of observables

As we have seen in the previous chapter, extremely efficient numerical algorithms already exist for the simulation of the critical Casimir force within the framework of lattice based spin models.

These algorithms make use of the thermodynamic relationship between force and free energy (Eq.4.12), making a discrete estimate of ∂Ω ∂L ⊥ , rather than simulating a direct force measurement.

We have detailed in the previous chapter (section 4.3) a method giving direct access to free energy changes induced by adiabatically disconnecting a single layer of spins from a connected stack of L ⊥ layers. The method provides accurate estimates for the Casimir force for different universality classes and boundary conditions both for zero field [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], and more recently for non zero field [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF].

We also mentioned the possibility of defining a magnetic stress tensor, equating the critical Casimir force with its anisotropic part [START_REF] Dantchev | Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results[END_REF], thus circumventing the integration over the auxiliary degree of freedom λ. This technique has been successfully used for varied situations, limited at present to zero field and periodic boundaries. Nevertheless, successful as these techniques may be, it is clear that they have no experimental equivalent.

A more experimentally relevant approach relies on a simple statement: thermodynamic observables are defined as derivatives of the free energy. We mentioned a text book approach to computing the free energy [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] using both the average internal energy U and the entropy S computed by integration of the specific heat

C v = T ∂S ∂T    V
to reconstruct the free energy Ω = U -T S. The free energy can actually be directly computed by integration of the internal energy with respect to temperature as U = ∂κΩ ∂κ    h , with 1/κ = k B T . Free energy differences have been estimated by tracking the evolution of the excess internal energy with temperature for systems of size L ⊥ and L ⊥ -1 [START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir forces between a sphere and a plate: Monte Carlo simulation of a spin model[END_REF][START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF][START_REF] Hucht | Thermodynamic Casimir Effect in 4 He Films near T λ : Monte Carlo Results[END_REF][START_REF] Hasenbusch | The thermodynamic Casimir effect in the neighbourhood of the λtransition: a Monte Carlo study of an improved three-dimensional lattice model[END_REF]. Using this method it has been possible to make accurate estimates of the scaling function in the Ising universality class [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] and of the scaling function extracted from work function measurements on helium films near the superfluid phase transition [START_REF] Hucht | Thermodynamic Casimir Effect in 4 He Films near T λ : Monte Carlo Results[END_REF], showing excellent agreement with results of ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] previously discussed (Fig. 4.6). However, neither the internal energy at temperature T , nor that at a required reference state are themselves directly accessible in experiment. One still has the option of performing a double integration of the specific heat

C v (T ) = -T ∂ 2 Ω ∂T 2    V,h
with respect to temperature to access the free energy. This route has been explored in ref. [START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF] for the 3D XY universality class: numerical estimates of the universal scaling function of the Casimir force were compared to the one obtained using specific heat measurements in helium 4 [START_REF] Mehta | Superfluid Transition of 4 He for Two-Dimensional Crossover, Heat Capacity, and Finite-Size Scaling[END_REF][START_REF] Kimball | Specific Heat Near the Superfluid Transition of a 0.9869 µm 4he Film[END_REF], obtaining a convincing agreement but with very strong size effects (additional to finite-size scaling) which became dominant when decreasing the temperature, preventing the estimation of the Casimir function in the low temperature region.

The specific heat is a rather difficult quantity to measure and we have seen in figure 2.4 of chapter 2 that, because of its very slow divergence close to the critical point, its critical behavior seems the most difficult to capture. Thus we turn to the magnetization as the suitable first derivative of the free energy and most easily accessible magnetic observable.

Casimir force and integration of the magnetization

As in chapter 4, we concentrate on a system with scalar order parameter m, conjugate external field h, volume V and free energy Ω slab (T, h, V ), close to a second order phase transition.

Anisotropic confinement is allowed for by setting V = AL ⊥ , with

√ A = L ∥ ≫ L ⊥ . We recall dimensionless variables, t = (T -T c )/T c , h = h/k B T c , with T c the bulk three-dimensional critical temperature.
As mentioned in the previous chapter, in the case of a lattice model the fourth relevant thermodynamic variable N is omitted, as the magnetic moment density n = N V is fixed. In this case volume fluctuations impose fluctuations in the number of magnetic elements, so that one is dealing with a uniform magnetic medium. While spontaneous fluctuations of this kind clearly cannot exist in conventional magnetic systems [START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF], the evolution of the free energy with system size can give indirect access to the Casimir force and this is the goal of our approach.

An alternative constraint would be to impose N constant, so that volume fluctuations would lead to magneto-elastic effects, as is the case in real magnets. In principle one could imagine magnetic experiments that directly measure Casimir forces through magneto-elastic coupling, although the separation of the critical and bulk contributions could be difficult. In practice, as magnetic exchange coupling varies rapidly with inter-atomic distance the critical properties are strongly perturbed and renormalization studies predict the transition to be driven first order by the coupling [START_REF] Bergman | Critical behavior of an Ising model on a cubic compressible lattice[END_REF]. This driving to first order is reminiscent of the existence of a tricritical point for the Blume-Capel model, in which the density of magnetic elements is allowed to vary (see section 4.3.7). This, in itself is an interesting field of study, but in the present work we neglect all magneto-elastic effects and concentrate on the free energy which is generic to magnetic and fluid systems. For convenience, we set the microscopic length scale σ = 1.

As we developed in section 4.2, the free energy can be decomposed in slab geometry as

Ω slab (T, h, L ⊥ , A) Ak B T = L ⊥ ω bulk (T, h) + ω surf (T, h) + L ⊥ ω ex (T, h, L ⊥ ) , (5.1) 
and the critical Casimir force is defined as

f c = -k B T ∂(L ⊥ ω ex ) ∂L ⊥    T,h = k B T L -d ⊥ θ (u t , u h ) . (5.2)
The difference in free energy along an isotherm, between a reference state, (T, h 0 ) and a final state (T, h) can be obtained through the magnetization

∆Ω = -  h h0 ⟨M (T, h ′ , L ⊥ )⟩dh ′ . (5.3)
Even if we choose T ∼ T c , if |h 0 | is chosen to be sufficiently large, the correlation length at the reference state will be small so that the reference free-energy will be essentially that of the bulk

Ω slab (T, h 0 , L ⊥ ) = V k B T ω bulk (T, h 0 ).
As a consequence ∆Ω should contain all the information of the Casimir effect at (T, h). This is similar to the procedure that could be developed along the temperature axis by integrating the specific heat, but this route would require a double integration [START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF]. Repeating this procedure for systems of size L ⊥ and L ⊥ -δL ⊥ and applying the extensivity principle for the free energy away from criticality one finds

δ ′ Ω(T, h, ℓ) ≡ ∆Ω(L ⊥ ) -∆Ω(L ⊥ -δL ⊥ ) = δΩ(T, h, ℓ) - δL ⊥ L ⊥ Ω slab (T, h 0 , L ⊥ ) = δΩ(T, h, ℓ) -δL ⊥ Ak B T ω bulk , (5.4) 
where δΩ is the increment in free energy, equating approximately to

δΩ(T, h, ℓ) ≈ δL ⊥ ∂Ω ∂L ⊥ (T, h, ℓ) , (5.5) 
evaluated at T, h and ℓ = L ⊥ -δL ⊥ /2. This intuitive choice for ℓ has been shown rigorously to facilitate the approach to the scaling limit by minimizing the importance of corrections to scaling terms [START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF]. Non-critical surface free energy corrections cancel in the subtraction of the contributions from the two length scales. One now repeats the procedure for two sets of length scales centered on ℓ and αℓ. Subtracting results from the two pairs of length scales eliminates the free energy from the reference state, Ω slab (T, h 0 , L ⊥ ), as well as the bulk contribution to the free energy at the point of interest, ω bulk (t, h), providing a first estimate of the Casimir force:

f 0 c (T, h, ℓ) = -[δ ′ Ω(ℓ) -δ ′ Ω(αℓ)] 1 AδL ⊥ = -[δΩ(ℓ) -δΩ(αℓ)] 1 AδL ⊥ ≈ f c (ℓ) -f c (αℓ) .
(5.6)

One could also think of using a thermodynamically large cubic system as a reference bulk state, but this would require the growth of a large enough monocrystal without defects. Given the universal scaling form for f c (Eq. ( 5.2)) one can define a scaling function for

f 0 c f 0 c (T, h, ℓ) = k B T ℓ -d θ 0 (u t [ℓ], u h [ℓ]) , (5.7) 
where u t [ℓ] = tℓ 1/ν and u h [ℓ] = hℓ (β+γ)/ν are the appropriate scaling variables. The scaling

function θ 0 (ℓ) is related to θ at two different values of u t [ℓ] and u h [ℓ] θ 0 (ℓ) = θ(ℓ) -α -d θ(αℓ) , (5.8) 
equation that can be solved using the iterative procedure described in Chapter 4, section 4.3.5.

Numerical method

We have tested these ideas through Monte Carlo simulation of a nearest neighbor Ising spin system with coupling strength J = 1 (for simplicity) and external field h, on a cubic lattice in slab geometry with L ∥ > L ⊥ . The magnetic order parameter is

⟨m⟩ = 1 V   i S i  , (5.9) 
where ⟨X⟩ is a thermal average. In the previous chapters, we have sometimes used the observables |m|, as ⟨m(T, h = 0)⟩ = 0 whatever the temperature in a finite size system where symmetry is not broken. Here, the relevant variable conjugate to the magnetic field h is ⟨m⟩, defined as a first derivative to the free energy.

To reduce critical slowing down we have used the Wolff algorithm, adapted to work in the presence of a symmetry breaking field (see Chapter 2). The boundary conditions were always set periodic in the xy plane but different boundaries along the z axis where explored: periodic or fixed (+, +) and (+, -) (see section 4.2.3). For temperatures below T c , as the absolute value of the magnetic field |h| increases, the number of rejected cluster flips increases dramatically, resulting in an increase of the autocorrelation time and therefore a loss of efficiency of the algorithm.

Obtaining precise results at low temperature, particularly for (+, -) boundary conditions requires a particularly large computation time [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF]. The data we present in the article were obtained using a number of Monte-Carlo steps ranging from 5 × 10 4 for (+, +) boundary conditions at the higher temperatures to 7 × 10 7 for temperatures far below T c in systems with (+, -) boundary conditions where the efficiency of the algorithm is at its lowest. The statistical error is evaluated using a modified bootstrap method [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF]. As the presence of fixed boundary conditions and bulk magnetic field increases the correlation time τ corr dramatically, we interpret the bootstrap method as providing a value for σ m /  N step where σ 2 m =  m 2  -⟨m⟩ 2 is the variance and N step is the number of Monte-Carlo steps performed, rather than the error itself. To compute the statistical error we estimated the autocorrelation time τ corr and then took the error to be  2τ corr σ 2 m /N step [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF], which proved in excellent agreement with the statistical noise observed. The simulations benefited from the numerical resources of the PSMN in Lyon [START_REF] Psmn | Pôle scientifique de modélisation numérique[END_REF].

From an numerical point of view, and for the same reasons as in the previous chapter (section 4.3), we chose to study preferentially system thicknesses ℓ = 9.5 and αℓ = 19.5 and initially took δL ⊥ = 1. Different constraints motivate this choice: first ℓ has to be big enough with respect to the variation δL ⊥ so that the derivative of the free-energy with respect to the system size can be safely approximated by the differential δΩ slab δL ⊥ . In order to test the robustness of this approximation, δL ⊥ = 3 and 5 have also been investigated. Secondly, ℓ must be big enough to allow an approach into the three dimensional scaling regime. This choice is moderated by the fact that the difference in magnetization for different system sizes falls to zero as the thermodynamic limit is approached, so that a pragmatic compromise is required, both in simulation and in any future experiment. These considerations motivates the choice of relatively modest system size ℓ = 9.5. Thirdly, α has to be as large as possible to have a fast convergence of the iteration process that extracts the approximation θ k from the measured θ 0 . Here α = 19.5/9.5 ≈ 2. The transverse size L ∥ should be chosen as big as possible with respect to L ⊥ in order to ensure that we stay in the anisotropic confinement regime. In all our simulations we used A = 3600 enabling us to directly compare our results with those from ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] where one can find detailed discussions on the impact of system size and of corrections to scaling, on the form of the universal function of the Casimir force obtained in the Ising and XY models.

Choice of h 0 and integration procedure

In figure 5.1 we show the evolution of the magnetization with applied field for T = T c for L z = 9, 10, 19, 20 and in the case of either periodic boundaries along z or (+, -) boundaries. In the case of fully periodic boundary conditions, the difference in ⟨m(L ⊥ , h)⟩, for small h is clearly visible for L ⊥ = 9 and 10, becoming much smaller for the larger L ⊥ . The Casimir force comes from the integral of these differences with field, so that system sizes straddling L ⊥ = 10 appear to offer a good pragmatic place to start. For this length scale the effect is pronounced, while one is already in the scaling regime to within a reasonable approximation. In addition, magnetic films of this thickness can be produced with great precision so that these parameters already correspond to the state of the art for thin film production [START_REF] Vaz | Magnetism in ultrathin film structures[END_REF]. In the case of (+, -) boundaries, Fig. magnetization curves do not collapse for high values of h: the fixed boundary conditions can be considered as local magnetic fields h s = ±J of total strength ±AJ and are in competition with the bulk magnetic field hV . This surface contribution is independent of L ⊥ and is suppressed in the differentiation process (Eq.5.4).

We can separate the magnetization in three contributions: bulk, surface and excess

⟨M (T, h, ℓ, A)⟩ = V ⟨m bulk (T, h)⟩ + A⟨m surf (T, h)⟩ + V ⟨m ex (T, h, ℓ)⟩ .
(5.10)

To be able to extract the free-energy by integration of the order parameter, it is necessary to determine a suitable reference magnetic field h 0 for which the excess part can be safely considered negligible. From the magnetizations of four systems of same area A but four different thicknesses

L ⊥ ∈ [ℓ ± δL ⊥ /2, αℓ ± δL ⊥ /2],
we can define the function

D(T, h, ℓ) = 1 AδL ⊥ ⟨M (αℓ + δL ⊥ /2) -M (αℓ -δL ⊥ /2) -M (ℓ + δL ⊥ /2) + M (ℓ -δL ⊥ /2)⟩ = 1 AδL ⊥ ⟨M ex (αℓ + δL ⊥ /2) -M ex (αℓ -δL ⊥ /2) -M ex (ℓ + δL ⊥ /2) + M ex (ℓ -δL ⊥ /2)⟩ , (5.11) 
where all the magnetizations are taken at the same temperature and magnetic field, omitted in the notation for the sake of lightness. This is a purely "excess" quantity, directly related to the Casimir effect as

θ 0 (u t , u h ) = ℓ d k B T  h0 h dh ′ D(T, h ′ , ℓ) .
( (same data as in Fig. 5.1). The integration of D(T, h, ℓ) over h gives θ 0 . D(T, h, ℓ) goes to zero as h is increased, h 0 should be chosen so that D(T, h, ℓ) is zero within the current precision of the simulation, ensuring that finite size effects are suppressed by this field.

Functions D and θ 0 also depend on the choice of the parameters α and δL ⊥ but we omit this dependences in our notations, again for sake of lightness. To illustrate the procedure further we concentrate on the case of fully periodic boundaries of Fig. 5.1a), for which ℓ = 9.5, αℓ = 19.5

and δL ⊥ = 1 and figure 5.2 shows the corresponding function D(T, h, ℓ). At zero magnetic field the value of the magnetization ⟨m(L ⊥ , h = 0)⟩ = 0 is imposed by magnetic moment reversal symmetry, thus D(T, h = 0, ℓ) = 0 (Fig 5 .2). At low magnetic field the magnetization depends on L ⊥ and D(T, h, ℓ) ̸ = 0. The magnetization curves asymptotically merge as the magnetic field is increased, reducing the correlation length and consequently suppressing finite-size effects, so that D(T, h, ℓ) → h→∞ 0, this limit being unchanged by the presence of surface fields as D is a purely excess quantity. Roughly speaking, we can convince ourselves from figure 5.2 that for h 0.08, D can safely be considered null within the current precision of the simulation. Carrying out the integration of Eq.5.12 using a reference magnetic field h 0 > 0.08 would add more noise than signal to θ 0 . We can thus use D to choose a suitable value for h 0 , large enough so that the value of θ 0 (u t , u h ) reaches an asymptote. The integration of Eq.5.12 was then performed using Simpson's rule from h 0 to h for all computed values of h. Note that h 0 depends on the temperature considered and, as the size of the critical region shrinks when getting away from T c , the reference magnetic field will vanish accordingly. A possible pitfall of this method could arise if the function D did not, as expected, decay exponentially fast at high magnetic field.

For example, a power law decay, even far from the critical point, could result in the choice of a reference field for which D is negligible with respect to the noise but which truncates a significant part of the integral of Eq.5.12.

At zero magnetic field

First estimate θ 0 at zero magnetic field

To make contact with previous works, in Figure 5.3 we compare the zeroth order scaling function, θ 0 (u t , 0) extracted using the magnetic protocol described above with that from reference [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] for (+, +) and (+, -) boundary conditions. In all cases ℓ = 9.5, δL ⊥ = 1 and αℓ = 19.5. One can observe excellent agreement between the two data sets for both boundary conditions, thus confirming our protocol as a viable method of extracting critical Casimir forces. We have also successfully tested our protocol against the coupling parameter method for periodic boundaries.

The difference in sign and amplitude of the Casimir force between (+, +) and (+, -) boundaries has its origin in the excess entropy of the trapped interface. This spectacular inversion and scale change is perfectly captured by our thermodynamic protocol. From here, the universal function θ can be extracted by iteratively solving Eq.5. were computed using a modified bootstrap method and an estimate of the autocorrelation time.

Iteration procedure

As we have already seen in Chapter 4, with our choice of system sizes and α ≈ 2, the scaling function θ 0 already provides a good estimate for the functional form of θ(u t , u h ). Nevertheless, to improve the estimate of θ, we can use the procedure described in section 4.3.5, which converged within two iterations. For n = 3, we found that all points (α 2 n-1 /ν u t , α 2 n-1 (β+γ)/ν u h ) (except for (u t = 0, u h = 0) of course) fell outside the range of values of (u t , u h ) explored in our Monte-Carlo simulation. Hence, their contribution could safely be considered to be negligible within the precision of our simulation. Figure 5.4 presents, as an example, the evolution of θ n ++ (u t , 0) between n = 0 and n = 2, with data found using ℓ = 9.5, αℓ = 19.5, δL ⊥ = 1 and A = 3600. 

Critical amplitude and corrections to scaling

Arriving at a scale free function from these system sizes also requires a delicate analysis of corrections to scaling [START_REF] Hasenbusch | Thermodynamic Casimir effect: Universality and corrections to scaling[END_REF]. Having made contact with previous work for these modest system sizes, we account for the corrections here by rescaling the data to the universal scaling amplitude, θ(0, 0) = 2∆ for each set of boundaries. If this technique were developed in magnetic thin film experiments, it is likely that initial measurements would require scaling in the same way, as was the case for early experimental data for helium films to remove amplitude shifts due to uncontrolled surface roughness [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF]. Numerical estimates given in the literature vary: [START_REF] Onsager | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[END_REF] and ∆ +-= 2.71(2) [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], ∆ ++ = -0.410 [START_REF] Mehta | Superfluid Transition of 4 He for Two-Dimensional Crossover, Heat Capacity, and Finite-Size Scaling[END_REF] and ∆ +-= 2.806 [START_REF] Wang | Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model[END_REF] [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF]. Here we take values from [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], as our method relates to this work. We return to this subject below, where we present some initial finite size scaling results for the critical Casimir force in finite field.

∆ ++ = -0.376

Fixed (+, +) boundary conditions and finite field

Positive magnetic field

Until recently [START_REF] Vasilyev | Critical Casimir interactions between spherical particles in the presence of bulk ordering fields[END_REF][START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF] there has been only minimal interest in the scaling of the critical Casimir force along the field axis. This can be explained in part by an absence of experimental motivation as it is difficult to probe the field variable in present setups: for the superfluid transition in 4 He films [START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF][START_REF] Garcia | Critical Casimir Effect near the 3 He-4 He Tricritical Point[END_REF] h is not accessible, while for binary liquid films [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF], experiments are performed for fixed concentrations, rather than conjugate field. However, experiments on thin film magnets lend themselves naturally to critical scaling in both u t and u h . Our numerical protocol is equally well adapted to work at non zero field and is in fact particularly efficient, as all points along an isotherm contribute to θ(u t , u h ). Our procedure therefore opens up a new direction for the study of these forces. In Figure 5.5, we show θ(u t , u h ) for (+, +) boundaries, illustrating the form of the scaling function in the half plane, h > 0. This figure requires the same computational effort as the one dimensional data sets shown in Figure 5.3. 

Negative magnetic field

Minimum of the scaling function

The scaling function shows no minimum value as a function of field for h > 0. The minimum can be found in the half plane, h < 0, with the field in the opposite direction to the pinned boundaries.

Remarkably, as we show in Figure 5.6, θ 0 plunges to values more than an order of magnitude lower, as one crosses the line to negative field values. This unexpectedly large amplitude [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF] comes from the competition between opposing surface and bulk fields. At large separation, the applied field imposes two magnetization interfaces. For smaller L ⊥ , this frustration is lifted ++ (0, u h ) for (++) boundaries with field spanning both + and-directions. The data were obtained with three different sets of system sizes: ℓ = 9.5, αℓ = 19.5 (red squares), ℓ = 14.5, αℓ = 29.5 (green dots) and ℓ = 19.5, αℓ = 39.5 (blue triangles). For all sets of data δL ⊥ = 1, A=3600 and α ≈ 2.

and symmetry is broken in the direction of the boundary field resulting in a particularly large Casimir force, which could be accessed in thin film experiments. This large effect can be quite straightforwardly understood when looking at magnetization curves of figure 5.7: finite size effects both influence the development of the amplitude of the magnetization but also the coercitive field for which ⟨m⟩ = 0, so that close to this point, the change in magnetization with system size is quite significant. For small system sizes, this sharp evolution of the magnetization could lead to and (ℓ = 19.5, αℓ = 39.5), but keeping δL ⊥ = 1 and A = 3600. This discrepancy can also be attributed to corrections to the slab limit [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF], as the aspect ratio changes from one set of sizes to the other, or other corrections to the scaling limit. We will see later that it can be captured by a phenomenological change of the scaling length ℓ → ℓ ef f .

⟨m(t = 0)⟩ h L ⊥ = 9 L ⊥ = 10 L ⊥ = 14 L ⊥ = 15 L ⊥ = 19 L ⊥ = 20 L ⊥ = 29 L ⊥ = 30 L ⊥ = 39 L ⊥ = 40
One can notice that the error bars displayed on figure 5.6 are significantly larger for the lowest values of magnetic field than for the highest ones. This is due to the integration from high to low magnetic field we use to compute θ 0 . Starting integration at the reference state h 0 , we accumulate error during the integration process.

Iteration procedure

The large amplitude Casimir force encountered in the case of (++) boundaries for a field in the reverse direction, h < 0, as shown in Figure 5.6, puts a strain on the iteration procedure in the region where the scaling function evolves most rapidly with field. This produces a kink in the estimated function θ(0, u h ) for small, negative h, as shown in Figure 5.8 for three different system sizes ℓ = 9.5, ℓ = 14.5 and ℓ = 19.5. The kink appears less pronounced for the larger system size, which suggests that it is an artifact of the procedure for small systems. More work would be required to confirm this point, considering in particular the rather low resolution of data for the biggest systems. However, it is clear that all sets of sizes produce very different estimates ++ (0, u h ), corresponding to the zeroth order scaling functions θ 0 ++ (0, u h ) of figure 5.6, obtained after applying n = 2 steps of the iterative procedure described in the text, that is to say to convergence within our current precision.

for the Casimir scaling function in the negative field region, suggesting that our results are far from the complete scaling regime. We therefore propose a rescaling method to take corrections to scaling into account.

Rescaling of θ ++ : choice of an effective size ℓ eff The significant discrepancy between data for the Casimir effect obtained with two sets of system sizes, displayed in figure 5.6 and 5.8, can be attributed to the failure of the approximation of derivatives by finite differences but also to corrections to the scaling limit. Corrections of this amplitude are encountered elsewhere [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Hasenbusch | Thermodynamic Casimir Forces between a Sphere and a Plate: Monte Carlo Simulation of a Spin Model[END_REF]. They can be accounted for by introducing a phenomenological change to the scaling length [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF][START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF][START_REF] Vasilyev | Critical Casimir forces for Ising films with variable boundary fields[END_REF]: ℓ → ℓ eff = ℓ + δℓ, see Figure 5.9, a process which can be justified analytically for the Blume-Capel model [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF][START_REF] Parisen Toldin | Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate[END_REF]. Hasenbusch [START_REF] Hasenbusch | Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: Symmetry-breaking boundary conditions[END_REF] argued that this correction could be understood as coming from the ad hoc separation of critical contributions in bulk and surface parts, forcing one to place a boundary separating surface spins from bulk spins. This choice modifies both critical contributions and leads to corrections to the scaling limit. We used this correction here in an exploratory manner. To obtain a data collapse, we calculate the necessary correction δℓ so that (ℓ eff /ℓ) d θ 0

++ is equal for the maxima of the three sets of data. We find, δℓ = 2.57 with an error of approximately 8 % considering the statistical error on the data (in ref. [START_REF] Lopes Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF] we found a best collapse for δℓ = 2.8 but at that time the ℓ = 19.5 results were not available). This correction affects both the amplitude of the function As shown in Figure 5.9, we find that this single parameter is enough to make the data collapse both in amplitude and width and reach a nice agreement with data from ref. [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF], except for negative values of u h close to 0 (we will see that this gap is closed by the iterative procedure).

The rescaling of the amplitude of θ due to the factor (ℓ ef f /ℓ) d is ∼ 2.05 ± 0.25 for ℓ = 9.5 and compares well with the ad hoc rescaling by a factor of 2.24 of the amplitude we used for the same system size in figure 5.5, which ensures that θ ++ (0, 0) = 2∆ ++ = -0.75 [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF].

In ref. [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF], corrections to scaling are captured using a much smaller value of δℓ = 0.60 [START_REF] Wang | Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model[END_REF].

We believe this discrepancy can in part be attributed to the different conventions used to define the thickness L ⊥ . In our study, L ⊥ refers to the number of layers of fluctuating spins, whatever the boundary conditions [START_REF] Hasenbusch | Thermodynamic Casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class[END_REF], and impose the fixed boundary conditions by adding two layers of fixed spins. Whereas, in ref. [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF], all layers are included in the count defining L ⊥ and the boundary conditions is imposed by strong local magnetic fields acting on boundary spins.

When performing iterations on the rescaled data, one should use α eff = αℓ+δℓ ℓ+δℓ rather than α. Figure 5.10a) shows how the approximation (ℓ eff /ℓ) d θ n ++ for ℓ = 9.5 evolves from n = 0 to n = ++ (0, u h ) vs (ℓ eff /ℓ) (γ+β)/ν u h , n = 0 (red squares), n = 2 (green dots). Data are for ℓ = 9.5, αℓ = 19.5, δL ⊥ = 1 and A = 3600. Corrections to scaling that affect both the amplitude of the function and the reduced parameter (ℓ eff /ℓ) (γ+β)/ν u h also affects the iteration process, as an effective value α eff = αℓ+δℓ ℓ+δℓ was used instead of α. Thus, we obtain the best estimate (b) of the universal scaling function (ℓ eff /ℓ) d θ ++ (0, (ℓ eff /ℓ) (γ+β)/ν u h ) for (+, +) boundaries with field spanning both + anddirections, here for three sets of system sizes (ℓ = 9.5, αℓ = 19.5) (red squares), (ℓ = 14.5, αℓ = 29.5) (green dots) and (ℓ = 19.5, αℓ = 39.5) (blue triangles). The data sets were rescaled to universal amplitude and width by replacing ℓ with ℓ ef f = ℓ + δℓ, with δℓ = 2.57. For comparison we display data from ref. [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF] (purple dashed line). the convergence point of our iteration procedure. The function (ℓ eff /ℓ) d θ 2 ++ (0, u h ) of Figure 5.10a) obtained using this procedure is in good agreement with that from reference [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF], without any further renormalization although our protocol yields a bigger value of δℓ. The iterative procedure was applied to data obtained with all system sizes ℓ = 9.5, 14.5 and 19.5, leading to our best estimate of the Casimir universal function (ℓ eff /ℓ) d θ ++ (0, (ℓ eff /ℓ) (γ+β)/ν u h ) displayed in figure 5.10b). The kink seen in Figure 5.8 is smoothed out in the rescaling process and the amplitude of the collapsed curves corresponds reasonably to that set by numerical estimates of the universal scaling amplitude, ∆ ++ . The agreement with results of reference [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF] is very convincing, even though our estimate of δℓ is only precise up to 8 %.
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Low temperature and negative field region

In the low temperature region T < T c , for negative magnetic fields, the magnetization can display a very brutal change of sign as shown in figure 5.11. The coercitive field changes with system size as it results from the competition between bulk and surface fields. The very sharp change of magnetization from positive to negative values makes our measurement very sensitive to the resolution in magnetic field. This non critical effect introduces a very important artifact in our method which cannot be reduced by any effective length scale and is extremely sensitive to the uncertainty in the coercive field value. Establishing the frontier from a result dominated by this artifact and the genuine Casimir effect would require more simulations. 

Experimental perspectives

Having established the potential of the method to construct the Casimir scaling function from measurements of the magnetic moment, we now return to confrontation with experiment. are shown in Figure 5.12 for δL ⊥ = 1, 3 and 5, for fixed ℓ = 9.5. Remarkably, the evolution of the estimated function, θ 0 , on moving from δL ⊥ = 1 to 3 is extremely small, with a typical difference of less than 5% as the function passes through its minimum between u t = 1 and u t = 2. This small evolution is only just resolvable above the statistical error on our data, which is approximately 1.5% in this region. Even for δL ⊥ = 5 the evolution remains less than 11% around the minimum of the function, while in all cases, increasing δL ⊥ enhances the measured Casimir force. In addition, as the free energy difference δΩ increases with δL ⊥ , the statistical errors are reduced, even in the wings of the figure. The effect therefore appears extremely robust and our results strongly suggest that it would stand up to the technical problems encountered in dedicated experiments on magnetic thin films [START_REF] De Jongh | Experiments on simple magnetic model systems[END_REF].

θ 0 ++ u t δL ⊥ = 1 δL ⊥ = 3 δL ⊥ = 5

Experimental set ups

Perhaps the most important point to address is the scale of the magnetic field required. Most of the Casimir signal comes from small fields, but in order to capture the entire effect it was necessary to go to fields as large as |h 0 |/J ∼ 0.3 for certain temperatures and boundary conditions (see Figure 5.1,5.2 and 5.5). One is therefore limited to ferromagnets with Curie temperatures up to around 100 K for fields up to ∼ 10 Tesla, provided that an "Ising model field" h = 0.3J corresponds to a magnetic field H ∼ 0.3 × 2k B T c × 0.22165/(gµ B ) in Tesla, using the bulk critical temperature T c = J/0.22165, the Bohr magneton µ B and a Landé factor g = 2 for 1/2 spins.

Experimental systems [START_REF] De Jongh | Experiments on simple magnetic model systems[END_REF] potentially cover a wide range of universality classes and surface conditions, opening the possibility for a rich variation in universal behavior. Our protocol can easily be extended to cover many of these situations, and we stress on the fact that accessing the free-energy from integration of observables is a very general approach. Other universality classes can easily be treated, as can the anisotropic spin Hamiltonians often appearing in magnetic systems. In such cases one expects crossover from the microscopic starting point to the final universality class as the correlation length grows. These effects could be studied in detail and could be highly relevant for magnetic experiments. Boundary effects could be extended to include both rough and soft interfaces [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF][START_REF] Tröndle | Critical adsorption and critical Casimir forces for geometrically structured confinements[END_REF][START_REF] Maciołek | Critical Casimir forces in the presence of random surface fields[END_REF]. However, materials with a strongly anisotropic spin Hamiltonian and hard smooth interfaces offer the most promising starting point.

Magnetic materials show essentially perfect model magnetism in many instances (see for example refs. [START_REF] Ikeda | Neutron scattering study of two-dimensional Ising nature of K 2 CoF 4[END_REF][START_REF] Ronnow | High-temperature magnetic correlations in the 2d s = 1/2 antiferromagnet copper formate tetradeuterate[END_REF][START_REF] Als-Nielsen | Neutron scattering investigation of the static critical properties of Rb 2 CrCl 4[END_REF]) and are excellent candidates for the exploration of different boundary conditions. Candidates for the Casimir effect would be ferromagnets and could include both metallic and insulating materials. Promising characteristics that one might consider include iron doped palladium films for which both the transition temperature and film thickness can be accurately controlled [START_REF] Kapaklis | Melting artificial spin ice[END_REF][START_REF] Kapaklis | Thermal fluctuations in artificial spin ice[END_REF][START_REF] Th Papaioannou | Dimensionality and confinement effects in δ-doped Pd(Fe) layers[END_REF]. The films can be grown on non-magnetic substrates such as Vanadium allowing again for free magnetic boundaries, but they can also be grown on ferromagnetic substrates such as iron itself. This would allow for the study of fixed boundaries.

Pinning the interface with moments pointing out of the sample, as can be done by roughening the interface [START_REF] Shender | Spin Structure in Magnetic Multilayers with Rough Interfaces[END_REF], would lead to (+, -) boundaries, hence enhancing the magnitude of the Casimir force. In the case of insulating compounds Tb(OH) 3 and K 2 CuCl 4 ,2H 2 O are examples of Ising and Heisenberg ferromagnets respectively with Curie temperatures in the 5K range [START_REF] De Jongh | Experiments on simple magnetic model systems[END_REF]. The metallic RKKY material, HoRh 4 B 4 is a perfect mean field ferromagnet [START_REF] Ott | HoRh 4 B 4 : A model mean-field ferromagnet[END_REF] which could offer access to mean field critical Casimir forces for the first time. The dipolar ferromagnet, LiHoF 4 is the archetypical transverse field Ising system [START_REF] Bitko | Quantum critical behavior for a model magnet[END_REF] which, if produced as a film could provide a candidate for the study of Casimir forces at a quantum critical point [START_REF] Sachdev | Quantum Phase Transitions[END_REF]. Lutetium Vanadate Lu 2 V 2 O 7 , a ferromagnet ordering at T C = 70K has been shown to be Heisenberg-like to an excellent approximation [START_REF] Mena | Spin-Wave Spectrum of the Quantum Ferromagnet on the Pyrochlore Lattice Lu 2 V 2 O 7[END_REF][START_REF] Onose | Observation of the Magnon Hall Effect[END_REF].

Finally, we remark that our protocol could be extended to study non-magnetic systems such as ferroelectrics, liquid crystals or simple and binary fluids, as it offers a generic method when the field conjugate to the order parameter is a control parameter. It could then be experimentally relevant in setups for fluid systems if the chemical potentials could be controlled, rather than the concentrations.

Chapter 6

Excess Free Energy in a Confined

Geometry

In chapter 4, we have mentioned that the critical Casimir force could be decomposed (Eq.4.15 to 4.18) into three contributions from the excess free energy, the excess internal energy and the excess order parameter, which can all be expressed using the scaling function of the excess free energy. In the case of the Ising model with fully periodic boundary conditions, this relationship was studied theoretically in slab (ρ > 1), cubic (ρ = 1 and rod (ρ < 1) geometries [START_REF] Dohm | Critical Casimir force in slab geometry with finite aspect ratio: Analytic calculation above and below Tc[END_REF][START_REF] Volker | Critical free energy and Casimir forces in rectangular geometries[END_REF],

in the 2D Ising model in rectangular geometry [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] and through Monte-Carlo simulations in 3 dimensions [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF].

We will see in this chapter that we can take advantage of the relation between the scaling functions of critical Casimir force and the free energy to extract the excess free energy from data presented in chapters 4 and 5, for the case of fully periodic boundary conditions but also fixed (++) and (+-) confining boundary conditions. We will thus use in the present chapter the same notations and formalism as in chapter 5. We compute the universal scaling function Θ of the excess part of the free energy ω ex in an Ising 3D system in slab geometry. The knowledge of such a scaling function gives access to all excess parts of observables deriving from the free energy: magnetization, specific heat and susceptibility, and of course the critical Casimir force [START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF]. However, to our knowledge, only little interest has been given to the computation of Θ compared to the abundant literature concerning the scaling function of the critical Casimir force. 99 6.1 The excess free energy from magnetization data

Fully periodic boundary conditions

As discussed in the previous chapter, the difference in free energy along an isotherm, between a reference state, (T, h 0 ) and a final state (T, h) is

∆Ω = -  h h0 M (T, h ′ , L ⊥ )dh ′ . (6.1) 
We have already detailed in section 5.2 how the choice of an appropriately large reference magnetic field |h 0 | enables us to construct purely excess quantities from this integration. In the case of periodic boundary conditions, there is no surface contribution ω surf to the free energy (following the decomposition of Eq.5.1), so that repeating the procedure of Eq.6.1 for systems of size L ⊥ and L ′ ⊥ = αL ⊥ and applying the extensivity principle for the free energy away from criticality one finds

δω = -  1 L ⊥ ∆Ω(L ⊥ ) - 1 L ′ ⊥ ∆Ω(L ′ ⊥ )  1 Ak B T ≈ -ω ex (T, h, L ′ ⊥ ) + ω ex (T, h, L ⊥ ) = L -d ⊥  Θ (u t , u h ) -α -d Θ  α 1/ν u t , α (β+γ)/ν u h  , (6.2) 
the subtraction eliminating the free energy from the reference states, Ω(L ⊥ , h 0 ) and Ω(L ′ ⊥ , h 0 ), as well as the bulk contribution to the free energy at the point of interest, providing a first estimate

Θ 0 (u t , u h ) ≡ δωL d ⊥ = Θ (u t , u h ) -α -d Θ  α 1/ν u t , α (β+γ)/ν u h  , (6.3) 
of the excess free energy scaling function Θ defined as

ω ex (t, h, L ⊥ ) = L -d ⊥ Θ (u t , u h ) , (6.4) 
with Θ 0 → α→∞ Θ. As in the case of the estimation of the Casimir scaling function, choosing α ≈ 2 the scaling function Θ 0 already provides a good estimate for the functional form of Θ(u t , u h ). To extract a complete estimate for Θ, one can apply the iterative procedure described in chapter 4, section 4.3.5, for the Casimir scaling function, as equation 6.3 is exactly for Θ what equation 4.31 was for θ.

Estimation of ω ex from magnetization data

We used the same magnetization data as in chapter 5 to extract the free energy scaling function (Fig. 5.1) for fully periodic boundary conditions in slab geometry. Figure 6.1a) presents the zeroth order estimate of the excess free energy scaling function obtained by integration of the difference between magnetization data for L ⊥ = 9, L ′ ⊥ = 20 and A = 3600. We notice that, unlike the critical Casimir force, the maximum amplitude seems to be located at the bulk critical temperature.

We used a fitting Ansatz to complete our data at high values of u t

Θ(u t ) ∼ |ut|→∞ A 0 U 0 |u t | ν(d-1) exp(-U 0 |u t | ν ) (6.5) 
which proved excellent as shown in Fig. (6.1b). This functional form derives from the exponential decay expected for the critical Casimir function θ(u t )

∼ |ut|→∞ A 0 |u t | νd exp(-U 0 |u t | ν ) (Eq.4.20)
(the form of Eq. 6.5 being a solution of Eq.4.15 corresponding to the asymptotic exponential behavior of θ). In the low temperature limit, we alternatively assumed that Θ(u t ) ≈ 0 for low values of u t for which θ(u t ) ≈ 0 within the available precision. This allows one to iteratively resolve Eq.6.3 to obtain a better approximation of Θ. This procedure converged after two iter- Figure 6.1: a) Zeroth order estimate of the scaling function of the excess free energy Θ 0 (u t , 0), obtained using two systems of thicknesses L ⊥ = 9, L ′ ⊥ = 20, with A = 3600 b) A better approximation Θ n of Θ can be obtained using the iterative process described in chapter 4, converging after two iterations. Here the procedure converged after two iterations. To complete our data at high temperature, we used a n exponential fit (Eq.6.5) which proved excellent (light blue line). In ref [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF], a low temperature limit -ρ 2 ln(2) (dashed black line, here ρ = 9/60) was found, which is not captured by our method. of ref. [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] in which both the critical Casimir force and the excess free energy are estimated for the 3D Ising model with fully periodic boundary conditions and various aspect ratios ρ, using integration over temperature of the excess internal energy. However, in ref [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] the scaling function of the excess free energy displays a low temperature limit Θ(-∞, 0) = -ρ d-1 ln(2), which is not observed in our result (we represent it as dashed line in Fig. 6.1b). This has no influence on the estimation of the Casimir force as it is a purely ρ dependent term. This terms comes from the breaking of the positive/negative magnetization symmetry at low temperature [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF][START_REF] Privman | Finite-size effects at first-order transitions[END_REF]. In a finite system, both region of positive and negative magnetization of the phase space can be explored by thermal fluctuations of the order parameter, but in a thermodynamically large system ergodicity and hence symmetry is broken. Thus, an excess -k B T ln(2) term in the total free energy is expected in a finite-size system for T < T c [START_REF] Privman | Finite-size effects at first-order transitions[END_REF], leading to the -ρ d-1 ln(2) contribution to the scaling function Θ. As our procedure uses the difference in free energy ∆Ω (Eq.6.1) between two states (t, h) and (t, h 0 ), the presence of a magnetic field systematically breaking the symmetry, this purely aspect-ratio depend contribution is suppressed. As the contribution -ρ d-1 ln(2) vanishes in the limit of slab geometry ρ → 0, in view of accessing this limit our approach remains pertinent. Moreover, this ρ dependent term does not influence any quantity that we are interested in in the present work, such as the magnetization, the internal energy or the Casimir force, which are derivatives of the free energy at fixed volume or fixed aspect-ratio in the case of the Casimir force.

As for the magnetic protocol presented in chapter 5 for the computation of the critical Casimir force, no extra computational effort is required to extract an estimate of Θ for all values of h, see Fig. 6.2, than to estimate it at h = 0 (Fig. 6.1). 

Excess internal energy extracted from the estimate of the excess free energy

The great advantage of having access to the excess free energy is that from it stems many other excess contributions to thermodynamic observables. In the limit of slab geometry, the derivative

∂Θ ∂ut    u h
gives access to the excess internal energy u ex as

tu ex = -tT ∂ω ex ∂T    h,L ⊥ = -L -d ⊥ u t ∂Θ ∂u t    u h T T c ∼ -L -d ⊥ u t ∂Θ ∂u t    u h . (6.6) 
We use the approximation u ex T Tc ∼ u ex as T Tc can be set to unity in the scaling limit within which we work. We stress on the fact that the presence of this approximation is implicit in

Extracting the critical Casimir force from the estimate of the excess free energy

As we have presented in chapter 4, the scaling function of the excess part of the free energy is related to the scaling function of the Casimir force by the equation

θ = (d -1)Θ - u t ν ∂Θ ∂u t    u h - u h (β + γ) ν ∂Θ ∂u h    ut . (6.11) 
The derivates of the scaling function of the free energy in equation 6.11 represent the excess

internal energy u ex expressed in units of k B T tu ex = -tT ∂ω ex ∂T    h,L ⊥ = -L -d ⊥ u t ∂Θ ∂u t    u h T T c ≈ -L -d ⊥ u t ∂Θ ∂u t    u h , (6.12) 
and excess magnetization

hm ex = - h ∂ω ex ∂ h    T,L ⊥ = -L -d ⊥ u h ∂Θ ∂u h    ut , (6.13) 
so that Casimir force, excess free energy and excess magnetization are related by

f c k B T = (d -1)ω ex + tν -1 u ex + h β + γ ν m ex . (6.14) 
Hence our estimate of Θ(t, h) extracted from magnetization data can be used to build up an equivalent estimate of the Casimir function θ using equation 6.11.

In the previous section, we have computed u ex and u 0 ex by derivation of Θ and Θ 0 with respect to u t . We can now construct a zeroth order estimate θ 0 using

θ 0 = (d -1)Θ 0 - u t ν ∂Θ 0 ∂u t    u h - u h (β + γ) ν ∂Θ 0 ∂u h    ut . (6.15) 
and the final estimate θ of the scaling function of the critical Casimir force using Eq.6.11 (at u h = 0, the excess magnetization does not contribute). In figure 6.4 we present θ 0 and θ constructed in this way and the contributions of the excess free energy and excess internal energy to these functions. We find excellent agreement with the independent results obtained for the same system dimensions using the adiabatic coupling approach outlined in chapter 4, both for θ 0 and θ, confirming the validity of our approach.

The rather pronounced noise in the wings of θ and θ 0 is due to the difficulty of estimating of the derivative of Θ and Θ 0 in these regions, the noise on the derivative being magnified by the factor u t in Eq.6.11. We stress the fact that estimating the critical amplitude from the estimate of Θ or θ is strictly equivalent as Θ(0, 0) = ∆ = (1/2)θ(0, 0), given that neither u ex nor m ex contribute to θ at the bulk critical point. Thus, the (d-1)Θ contribution to θ naturally dominates close to the bulk critical point and measuring the Casimir force f c amounts to measuring the excess part of the free energy. On the other hand, far from the critical point, the excess internal we can construct the zeroth order scaling function of the critical Casimir force θ 0 using Eq.6.15.

energy contribution tu ex = -L -d ⊥ u t ∂Θ ∂ut    u h becomes dominant.
θ 0 (blue points) results from the sum of a contribution from the excess free energy (blue line) and excess internal energy (blue crosses). We get an excellent agreement between this approach and the coupling parameter one described in chapter 4 for the same system sizes (grey line). b) From this zeroth order scaling function, a better estimate Θ has been extracted, and a corresponding better estimate of θ can be constructed using Eq.6.11. θ (red points) results from the sum of a contribution from the excess free energy (red line) and excess internal energy (red crosses).

This result for θ again compares very well with the best estimate of θ independently obtained in chapter 4 (grey line).

Computing the excess free energy by integration of the critical Casimir force

In the case on non-periodic confining boundary conditions, surface contributions to the free energy ω surf come in the way of the previous approach as it is not an extensive contribution to the free energy. However, we can take advantage of the results of chapter 5 in which we have accurately computed the scaling function of the critical Casimir force. We have used Eq. 6.11

to reconstruct the scaling function of the Casimir force θ from the scaling function of the excess part of the free energy Θ. The reverse path can actually be taken: Eq.6.11 can be solved and the scaling function of the excess free energy Θ can be extracted from that of the Casimir force θ using

Θ(u t , u h ) =  ∞ 1 s -d θ(u t s 1/ν , u h s (β+γ)/ν )ds , (6.16) 
which is a generalization to non-zero field h of the solution proposed in ref. [START_REF] Diehl | Large-n approach to thermodynamic Casimir effects in slabs with free surfaces[END_REF]. This solution assumes that lim ut→±∞ Θ(u t , u h ) = 0 and lim u h →±∞ Θ(u t , u h ) = 0. In the limit A → ∞, the function Θ is not analytic as the slab system undergoes a 2D phase transition at the apparent critical temperature T = T c (L ⊥ ) (see section 2.2.4 and ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF][START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF]). We expect that this does not prevent us to solve Eq.6.11 as Θ and its derivatives involved in Eq.6.11 are still continuous and finite functions. The present precision on our data did not allow the observation of a signature of this 2D transition.

The evolution of Θ at h = 0 can be deduced without any knowledge of θ at non-zero values of h, as Eq.6.11 reduces to

θ(u t , 0) = (d -1)Θ(u t , 0) - u t ν ∂Θ ∂u t    u h (u t , 0) , (6.17) 
which can be solved solely with knowledge of θ(u t , 0) using

Θ(u t , 0) =  ∞ 1 s -d θ(u t s 1/ν , 0)ds . (6.18) 
Equivalently, at the critical temperature

θ(0, u h ) = (d -1)Θ(0, u h ) - u h (β + γ) ν ∂Θ ∂u h    ut (0, u h ) , (6.19) 
which can be solved using

Θ(0, u h ) =  ∞ 1 s -d θ(0, u h s (β+γ)/ν )ds . (6.20) 
A first observation, that is obvious from Eq.6.17, is that

Θ(0, 0) = 1 d -1 θ(0, 0) = ∆ , (6.21) 
with ∆ the universal scaling amplitude of the critical Casimir force. This fixed point forces one to perform the integration of Eq. 6.18 (respectively Eq. 6.20) in two times: one for positive values of u t (respectively u h ) and one for negative values. Moreover, the integral of Eq. 6.18 (respectively Eq. 6.20) must be truncated up to a reference state u 0 t (respectively u 0 h ) rewriting Eq. 6.18

Θ(u t ) = s 1-d 0 Θ(u t s 1/ν 0 , 0) +  s0 1 s -d θ(u t s 1/ν )ds =  u 0 t u t  ν(1-d) Θ(u 0 t , 0) +  s0 1 s -d θ(u t s 1/ν )ds , (6.22) 
with s 0 = 

u 0 t ut  ν
. An exact application of Eq. 6.22 requires the knowledge of Θ(u 0 t ) at the reference point, which of course we do not know a priori. We notice that the influence of this reference value in Eq.6.22 is proportional to u ν(d-1) t

, so that any error on the determination of Θ(u 0 t ) will be smoothed out when approaching the fixed point u t → 0. An error on the determination of the reference Θ(u 0 t ) will principally affect Θ close to u 0 t itself. If a reference state u 0 t or u 0 h at which the Casimir scaling function can safely be considered zero is available, we make the assumption that the reference value Θ(u 0 t , 0) or Θ(0, u 0 h ) can also safely be considered zero. This is consistent with the solutions provided by Eq.6.18 (respectively 6.20) which imposes that for sufficiently large values of u 0 t (resp. u 0 h ) for which θ decays monotonically towards zero: θ(u 0 t , 0) ≥ (d -1)Θ(u 0 t , 0) (resp. θ(0, u 0 h ) ≥ (d -1)Θ(0, u 0 h )). This can be easily shown: in the case of a monotonously decaying θ (for example at h = 0)

θ(u 0 t s 1/ν , 0) ≤ θ(u 0 t , 0) , (6.23) 
for s ≥ 1, leading to

Θ(u 0 t , 0) =  ∞ 1 s -d θ(u 0 t s 1/ν , 0)ds ≤  ∞ 1 s -d θ(u 0 t , 0)ds = θ(u 0 t , 0) d -1 , (6.24) 
the demonstration for θ(0, u 0 h ) ≥ (d -1)Θ(0, u 0 h ) being equivalent.

Fully periodic boundary conditions

As a first test of the present approach, we compare in figure 6.5 the estimate of Θ(u t , 0) obtained by integration of the magnetization described in section 6.1.2 to the result given by integration of the critical Casimir function θ (Eq.6.18) using the data presented in chapter 4 (Fig. 4.4). These two independent estimates show excellent agreement. Once again, the present approach does not capture the non-zero limit -ρ d-1 ln(2), as it assumes a vanishing Θ far from the critical point, and thus is relevant for the slab geometry limit ρ → 0. The only notable difference between the two approaches compared in Fig. 6.5 is in the limit of large u t where, as we stated, the integration of θ suffers from the greatest error due to the determination of a reference value Θ(u 0 t , 0). As in the previous approach, we completed our data in the high temperature region using the exponential 4.20) and accordingly determined the reference state for the integration of Eq.6.22 as Θ(u 0 t , 0) =

decay expected for θ f it (u t , 0) = A f it |u t | νd exp(-U f it |u t | ν ) (Eq.
A f it U f it |u 0 t | ν(d-1) exp(-U f it |u 0 t | ν ), with u 0
t the highest available value for u t . obtained by integration of the magnetization (red line), see section 6.1.2 (Eq.6.2), compared to the result given by integration of scaling function of the Casimir force scaling function θ (yellow dots) using Eq.6.18 and data of chapter 4 for θ.

Fixed (++) and (+-) boundary conditions, h = 0

We extended our study to the case of fixed (++) and (+-) boundary conditions in the confining z direction, taking advantage of the data for the critical Casimir force presented in chapter 5.

In figure 6.6, we present our best estimates for the scaling function θ ++ and θ +-of the critical Casimir force (see figures 5.3 and 5.5). These functions were obtained using our magnetic protocol in systems of dimension ℓ = 9.5, αℓ = 19.5, A = 3600 and after performing two iterations of the procedure described in chapter 4, section 4. (red dots and line) . Amplitudes of functions θ +± were rescaled to θ +-(0, 0) = 2∆ +-= 5.42(4) and θ ++ (0, 0) = 2∆ ++ = -0.75 [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF] [3] to account for corrections to scaling.

amplitude of the scaling functions, we rescaled them to the values θ +-(0, 0) = 2∆ +-= 5.42 [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF] and θ ++ (0, 0) = 2∆ ++ = -0.75 [START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF] obtained in ref. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] after extensive study of these corrections.

Using Eq. 6.22 and the hypothesis that Θ +± (u 0 t , 0) ≈ 0, we computed the corresponding scaling functions of the excess free energy Θ +± . Corrections affecting the scaling variable u t are neglected here but could affect the behavior of Θ +± . The present results are thus preliminary.

We display in figure 6.6 the contributions (Eq. 6.11) to the functions θ +± of the excess free energy scaling functions (d -1)Θ +± and of their derivatives

-ut ν ∂Θ+± ∂ut    u h
(which amounts to contributions of the excess internal energy, see Eq. 6.12). Of course, the sum of these two contributions amounts exactly to θ +± as they have been consistently built as solutions of Eq. 6.11.

As discussed in the case of fully periodic boundary conditions, the fixed point θ +± (0, 0) = (d -1)Θ +± (0, 0) imposes that the critical Casimir force is dominated by the contribution of the free energy close to the critical point. Far from the critical temperature, the contribution related to the excess internal energy becomes predominant.

Fixed (++) boundary conditions with non zero field

In section 5.6.2 of chapter 5, we have seen that a Casimir force an order of magnitude bigger than at zero magnetic field could be obtained at the critical temperature by imposing a nonzero magnetic field opposing the confining boundary conditions (++) (Fig. 5.10). Corrections to scaling were taken into account by introducing an effective length ℓ ef f = ℓ + δℓ, δℓ being used as a fitting parameter to obtain a collapse of data obtained for three different sets of systems sizes (see section 5.6.2). Taking into account these corrections to the scaling limit, we have extracted an estimate of the free energy scaling function Θ ++ from our best estimate of θ ++ using Eq.6.20.

We display in figure 6.7 the contributions (Eq. 6.11) to the function θ ++ of the excess free energy scaling function (d -1)Θ ++ and of its derivative -u h β+γ ν

∂Θ++ ∂u h    ut
, which amounts to a contribution of the excess magnetization (Eq. 6.13). In section 5.6.2, we mentioned that the large amplitude of the Casimir force in the strong negative magnetic field region could be intuitively understood by looking at magnetization curves of Fig. 5.7. We see in figure 6.7 that indeed, for strong magnetic fields, the contribution of the excess magnetization clearly dominates. Thus, in this region access to the excess magnetization leads already to an approximation for the Casimir effect without access to the free energy. ut (red curve), which amounts to a contribution from the excess magnetization (Eq. 6.13).

Conclusion

We have solved Eq. 6.11 in order to extract the scaling function Θ of the excess free energy from estimates of the scaling function of the critical Casimir force in the 3D Ising system with fully periodic and fixed (+±) boundary conditions. This provided insights into the relative importance of contributions of the excess free energy, internal energy and magnetization to the critical Casimir force (Eq. 6.14). Moreover, the knowledge of the scaling function Θ gives in principle access to all excess quantities of observables deriving from it: this proved to be efficient in the case of the excess internal energy u ex (Fig. 6.3), a result that we will exploit in chapter 7.

We will also see in chapter 7 that the knowledge of the scaling function of the excess free energy is necessary to study the anisotropy of the excess pressure which arises in confined slab geometry.

We have seen that solving Eq. 6.11, as well as deriving Θ directly from magnetization data in the case of fully periodic boundary conditions, could not capture the low temperature limit -ρ 2 ln(2) (Fig. 6.1) expected for non-zero aspect ratios [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF], because of the cancellation of this term in the subtraction process between the chosen state (T, h) and a reference state (T, h 0 ).

Thus, our results are valid when approaching the limit of slab geometry ρ → 0. However, the study of the dependency on the aspect ratio of the critical Casimir force and the excess free energy, requiring data for various aspect ratios not explored in the present work, is an interesting perspective, which has already been explored for fully periodic boundary conditions in ref. [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF].

The relation of Eq.6.11 linking free energy and Casimir force can be extended to include this aspect-ratio dependency [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF][START_REF] Dohm | Critical Casimir force in slab geometry with finite aspect ratio: Analytic calculation above and below Tc[END_REF] by including a dependency on the aspect ratio in the excess free energy density scaling function

ω ex (t, L ⊥ , ρ) = L -d ⊥ Θ ρ (u t , ρ) , (6.25) 
the scaling function of the critical Casimir force becoming

θ ρ (u t , u h , ρ) = (d -1)Θ ρ - u t ν ∂Θ ρ ∂u t    u h ,ρ - u h (β + γ) ν ∂Θ ρ ∂u h    ut,ρ -ρ ∂Θ ρ ∂ρ    ut,u h , (6.26) 
with of course the limits θ ρ → ρ→0 θ and Θ ρ → ρ→0 Θ.

Chapter 7

The Critical Casimir Force in a

Lennard-Jones Binary Mixture

The Lennard-Jones model of fluids offers the possibility for simulations more closely related to experiments in liquid systems, than a simulation of the Ising model. Typically, in a Lennard-Jones fluid, the pressure is more naturally defined than in a magnetic lattice model. As stressed in previous chapters, we are particularly interested in critical binary mixtures, the demixing transition belonging to the Ising universality class and having been used for measurements of the critical Casimir force [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF]. The order parameter is the composition of the mixture, equivalent to the magnetization in a magnetic system, particles being either of species A or B in one case, and spins being up or down in the other. The "magnetic" degree of freedom which is the species of the particles is coupled to the positional degrees of freedom, conveying a critical Casimir effect close to the demixing critical point. Complex geometries, fluctuations of the force and out-ofequilibrium measurements would be accessible to Monte Carlo or molecular dynamics simulations of such a fluid model.

To our knowledge, the only attempt to capture a critical Casimir effect through simulation of a fluid system was published in ref. [START_REF] Wilding | Effect of criticality on wetting layers: A Monte Carlo simulation study[END_REF]. In this work, wetting experiments were simulated using a Lennard-Jones symmetrical binary mixture confined in slab geometry between a simple hard wall and an attractive hard wall. The attractive wall is responsible for the formation of a wetting layer of binary mixture, similarly to van der Waals interaction in wetting experiments introduced in chapter 4. The thickness of this layer is then affected by the critical Casimir force arising close to the demixing transition. This effect was captured qualitatively in ref. [START_REF] Wilding | Effect of criticality on wetting layers: A Monte Carlo simulation study[END_REF] but did not give rise to a measurement of the critical Casimir scaling function.

In this chapter, we show preliminary results for the direct measurement of the critical Casimir force through Semi-Grand Canonical simulations of a symmetrical binary Lennard-Jones fluid.

Convincing agreement with data obtained in the Ising model for the excess internal energy is found. Moreover, we make a theoretical prediction for a pressure anisotropy in the critical pressure in slab geometry and for the relation between chemical potential and internal energy, for which we find confirmation in our numerical approach.

7.1 Lennard-Jones binary mixtures 

v LJ (r) = 4ϵ   σ r  12 -  σ r  6  , (7.1) 
where r is the separation between the centers of the two particles, σ is a typical range of the interaction at which it turns from attractive to repulsive and ϵ is a typical interaction energy which sets the depth of the attractive potential, see Fig. 7.2. The attractive part represents the dominant long range van der Waals-London interaction between simple spherical particles and the repulsive part the strongly repulsive short range interaction due to the Pauli principle opposing superposition (the steep r -12 form was chosen for computational convenience as it is the square of the attractive part dependency) [START_REF] Barrat | Basic Concepts for Simple and Complex Liquids[END_REF]. For computational reasons, the potential v(r)

we used is a truncated and shifted version of the standard Lennard-Jones one. The potential is put to zero when the separation between particle exceeds a cut-off length r > r c , but with the constraint that the potential stays continuous and of continuous derivative at

v LJ (r) v LJ (r) v LJ (r) v(r) v LJ (r) v(r)
r c v(r) =      v LJ (r) -v LJ (r c ) - 1 2r c dv LJ dr (r c )  r 2 -r 2 c  if r ≤ r c , 0 if r > r c . (7.2) 
Figure 7.2 shows how v(r) with r c = 2.5σ differs from v LJ (r), the resulting amplitude shift being very small, and the two potentials being extremely similar. For simplicity, we used units of energy such that ϵ = 1, and of length such that σ = 1.

Symmetrical binary mixture

To simulate a binary mixture, the Lennard-Jones potential is modified to take into account two species A and B with different interaction energy ϵ ij and interaction range σ ij , so that the Lennard-Jones potential becomes

v i,j LJ (r) = 4ϵ ij   σ ij r  12 -  σ ij r  6  , (7.3) 
on which the same regularization as in Eq.7.2 is made to obtain the simulation potential v ij (r).

In symmetrical mixtures the parameters of the potential between identical particles are the same σ AA = σ BB = σ and ϵ AA = ϵ BB = ϵ. The binary nature of the fluid then comes from the unlike particles interaction σ AB = sσ and ϵ AB = eϵ, where s and e are parameters either bigger or smaller than 1. Of course, s = e = 1 is the simple Lennard-Jones case and in the limit cases s = 0 or e = 0 we obtain two non interacting simple Lennard-Jones fluids. In the following, we restrict our study to the case of identical particle sizes s = 1 and interaction between unlike particles reduced by a factor of one half, e = 1/2.

The Semi-Grand Canonical ensemble

A Canonical binary Lennard-Jones fluid of N = N A + N B particles confined in a volume V is described by four thermodynamic variables (T, V, N A , N B ) and the internal energy is given by the Hamiltonian

H int = N A  i<j v AA (r ij ) + N B  i<j v BB (r ij ) + N A  i=1 N B  j=1 v AB (r ij ) , (7.4) 
where v ij is the shifted Lennard-Jones potential described in the previous section for a symmetrical mixture. The number of particles can be allowed to fluctuate in the Grand-Canonical ensemble, in which the full Hamiltonian includes two new terms showing that the Grand-Canonical ensemble can be equivalently described by the set of variables (T, V, µ, µ AB ), the chemical potential µ being the conjugate variable to the total number of particles and µ AB to the composition of the mixture.

H = H int -µ A N A -µ B N B , (7.5 
A Grand-Canonical simulation requires an efficient way of simulating a particle reservoir, inserting or suppressing particles in the simulation cell, an obviously difficult step in the case of a dense fluid. If one is interested in the demixing transition, this difficulty can be circumvented by working in the numerically relevant Semi-Grand Canonical ensemble, in which the total number of particles is fixed but its composition fluctuates [START_REF] Subir | Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation[END_REF][START_REF] Materniak | The phase behavior of two-dimensional symmetrical mixtures[END_REF]. The Semi-Grand Canonical ensemble is described by the variables (T, V, N, µ AB ), so that the Semi-Grand Canonical potential is differentiated as

dΩ sgc = -SdT -P dV + µdN -∆Ndµ AB .
The total number of particles is fixed but the nature of a particle can change during the simulation so that the A -B symmetry can be broken and a transition between mixed to either A-rich or B-rich phase can occur, characterized by the "mixing" order parameter ∆N/N . This transition can be driven by temperature but of course also by a symmetry breaking field, that is a non zero µ AB so that one species is favored over the other by the A-B "color" reservoir. Nevertheless, we will fix in the following µ AB = 0 and keep a fully symmetric system with respect to A -B exchange.

Linking the Semi-Grand Canonical fluid with the Ising model

We have already seen in the previous chapters that the demixing transition of binary mixtures belongs to the universality class of the Ising model, but what is the best thermodynamic ensemble to directly compare results computed in both systems ? The Ising model is equivalent to a lattice gas, an up spin representing an occupied spot and a down spin a vacancy, and to a lattice binary fluid, an up spin being a particle of type A and a down spin a particle B (see section 1.2.2). We can hence draw a qualitative parallel between the Lennard-Jones binary fluid and a magnetic system. In the case where the typical size of particles do not depend on its nature, σ ij = σ, the influence of the nature of particle on the potential v ij can be factorized

v ij (r) = ϵ ij ϵ v(r) . (7.7) 
We have chosen 2ϵ AB = ϵ AA = ϵ BB = ϵ, which can be written in a compact way as

ϵ ij = ϵ 4 (S i S j + 3) , (7.8) 
where S i = 1 if the particle is of type A and S j = -1 if it is of type B. Thus

v ij (r) = 1 4 (S i S j + 3)v(r) , (7.9) 
factorizing the binary fluid potential in a Lennard-Jones simple fluid part and an Ising like term.

The Hamiltonian then reads

H int = N  i<j 1 4 (S i S j + 3)v(r ij ) , (7.10) 
and we can see our binary mixture as a simple model for ferrofluid, a Lennard-Jones fluid with an internal "magnetic" degree of freedom S i which can be updated using a Metropolis type algorithm. If one considers a frozen positional configuration of the system, it is equivalent to an

Ising system with quenched disorder and further neighbor interactions over a length scale 2.5σ.

The mixing order parameter

∆N N = 1 N N  i S i = m , (7.11) 
is straightforwardly related to an equivalent magnetization m, the difference in chemical potentials µ AB playing the equivalent role of a magnetic field h. This analogy can also be seen when comparing the differential of the Semi-Grand Canonical potential, depending on (T, V, N, µ AB ), dΩ sgc = -SdT -P dV + µdN -∆Ndµ AB , (7.12)

to the corresponding Ising free energy, depending on (T, V, N, h), dΩ = -SdT -P dV + µdN -Mdh . coherent with molecular dynamics, but this approach turned out to lead to significantly longer computation times. The change in particle type was performed using Monte Carlo updates, using a Metropolis rule (see chapter 2). As µ AB = 0 in all our simulations, the Metropolis step only takes into account the change in energy due to interactions between particles. Optimizing the parameters of the simulation to obtain agreement with previous results of ref. [START_REF] Subir | Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation[END_REF], we defined an update of the system by 1000 molecular dynamics steps for positions followed by N Monte Carlo steps for particle types. Equilibration was performed by starting from a system with all A type particles and required typically ∼ 3 × 10 7 steps, followed by ∼ 5 × 10 7 steps for measurement.

One major difficulty in the present simulations is to ensure that we study a demixing transition far from the liquid/gas transition. This turned out to be quite difficult to avoid in 2D

systems, thus we focused on 3D simulations, which allowed for direct comparison with the results we obtained in Ising simulations, as well as with previous simulations on this model [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF][START_REF] Subir | Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation[END_REF].

Both the cases of cubic and slab geometries where explored.

Pressure measurement

The pressure is computed using to the Virial formula, giving access to P = -∂Ω ∂V    T,N,µ AB [START_REF] Frenkel | Understanding Molecular Simulation, Second Edition: From Algorithms to Applications[END_REF][START_REF] De | The nature of the calculation of the pressure in molecular simulations of continuous models from volume perturbations[END_REF], which reads

P = nk B T +  1 dV  i ⃗ r i . ⃗ f i  , (7.16) 
where ⃗ r i is the position of particle i and ⃗ f i the sum of interactions with other particles, deriving from the potential of Eq.7.3. The x, y and z components of the pressure tensor are also computed, the component k being [128]

P k =  1 V  i mv k 2 i + 1 V  i r ki f ki  , (7.17) 
using the k components of v ki the velocity of particle i and the k components of positions and forces.

Computing the chemical potential

We calculate the chemical potential µ via the particle insertion method (or Widom method) [START_REF] Frenkel | Understanding Molecular Simulation, Second Edition: From Algorithms to Applications[END_REF][START_REF] Widom | Some Topics in the Theory of Fluids[END_REF]. Let us first describe this method for a one component system of N atoms in a cubic box of size L and volume V = L d at constant temperature T. The classical partition function of such a system is

Z(N, V, T ) = V N Λ dN N !  1 0 . . .  1 0 d⃗ s N exp  -κH int (⃗ s N ; L)  , (7.18) 
where the scaled coordinates ⃗ s N = ⃗ r N /L are used, κ = 1/(k B T ) and Λ = h/ √ 2πmk B T . The chemical potential is defined as

µ = ∂Ω C ∂N    T,V , (7.19) 
with the canonical free energy

Ω C = -k B T ln(Z) . (7.20) 
For sufficiently large N , Eq.7.19 leads to

µ = -k B T ln  Z N +1 Z N  , (7.21) 
which can be decomposed in an ideal gas part µ id and interaction part µ int

µ = -k B T ln  V N Λ dN N !  -k B T ln   d⃗ s N +1 exp  -κH int (⃗ s N +1 ; L)   d⃗ s N exp [-κH int (⃗ s N ; L)]  ≡ µ id (n) + µ int . (7.22)
The fact that the ideal part is defined using the de Broglie length makes it a difficult quantity to evaluate in a Grand-Canonical situation, as such a microscopic length scale is not naturally defined. This is not a problem in our case as the ideal gas part is an intensive quantity and will not contribute to finite-size effects. We focus on the interaction part µ int and separate the potential energy of the N + 1 system into the potential energy of the N -particle system, H int (⃗ s N ; L), and the interaction of the additional particle,

∆H int = H int (⃗ s N +1 ; L) -H int (⃗ s N ; L). Then, µ int reads µ int = -k B T ln  d⃗ s N +1 ⟨exp [-κ∆H int ]⟩ N  , (7.23) 
where ⟨.⟩ N is the ensemble average over the configurations of the N -particle system.

In practice, Eq.7.23 is implemented as follows: at regular time intervals, we generate a coordinate ⃗ r N +1 uniformly in the simulation box and we compute the corresponding Boltzmann factor exp [-κ∆H int ]. The excess part of the chemical potential is obtained by averaging this latter quantity over all generated positions.

We extended this method to the case of a symmetric binary mixture in the semi-grand canonical ensemble. In this case, it is necessary to take into account the possibility of (virtually) inserting either a A or B particle. Thankfully, the symmetrical nature of our mixture gives A and B particles an equivalent role. To compute µ = (µ A + µ B )/2, we have used the particle insertion method, inserting randomly a A or a B particle with equal probability. For computational reasons, this was the easiest choice, but in further work we would be interested in computing separately µ A and µ B . If in principle, averaging µ A and µ B should lead to the same result as our random selection of A and B particles, critical slowing down could lead to local ergodicity breaking leading to a discrepancy between the two approaches. We stress the fact that computing µ proved increasingly difficult with increasing density. We have been able to reach satisfactory precision only for densities lower than n = 0.8.

Using cubic geometry as a reference

In chapter 4, we have seen that one difficulty of extracting excess quantities is the subtraction of the bulk and surface contributions from our observables. As we restrict ourselves, for now, to fully periodic boundary conditions, we are only concerned by the bulk contribution. One solution is to use a large enough cubic system of volume L 3 as a "bulk" reference [START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF][START_REF] Vasilyev | Critical Casimir forces for Ising films with variable boundary fields[END_REF], given that the critical region diminishes with increasing side length L as L -1/ν and the amplitude of the critical Casimir force decreases as L -d . Additionally, in the 3D Ising universality class, the maximum amplitude of the critical Casimir force scaling function is approximately 3 times smaller in cubic geometry than in slab geometry (see figures 3 and 4 of ref. [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF]). Thus, we expect that in a cubic system of volume 32 3 , in units of σ, the maximum Casimir effect is 3 × (12/32) -3 ≈ 57 times smaller than in a system of thickness L ⊥ = 12 in slab geometry. The critical region is also (12/32) -1/ν ≈ 5 times narrower. As precision of simulation results increase, the excess contributions of the cubic system might be no longer negligible, one then would have to disentangle the different excess contributions (see section 4.3.5).

We studied systems in slab geometry of width L ∥ = 60 and thicknesses ranging from L ⊥ = 5

to 12, thus a cubic system of volume 32 3 can safely be used as an approximate reference "bulk" state, with the advantage that this reference can be simply subtracted from observables of interest. With the choice of cut-off r c = 2.5σ, L ⊥ = 5 is the smallest thickness conceivable in the case of periodic boundary conditions, smaller sizes would see particles interact with themselves. We also studied the cubic geometry with L ranging from 5 to 10. For the smallest size, the reference cubic system L = 32 is clearly a suitable reference state as (32/5) 3 ≈ 260 and for the largest L = 10 system, we still expect a comfortable scale separation as (32/10) 3 ≈ 33. We will see that our results are coherent with this statement.

Phase diagram and influence of density

In figure 7.3a), we present a sketch of a mean-field phase diagram for a square-well binary mixture close to the symmetrical case e = 0.57 [START_REF] Wilding | Liquid-vapor phase behavior of a symmetrical binary fluid mixture[END_REF]. In this case, the presence of a lambda line of continuous demixing transitions suppresses the critical point of the liquid/gas transition, turning it into a tricritical point. We have not tried to reconstruct a complete phase diagram from our Lennard-Jones simulations but kept the total density sufficiently high to study the demixing transition far from the liquid/gas one. In figure 7.3a), we built up the demixing phase diagram for n ≥ 0.4 by displaying the evolution of the critical temperature T n c with density n, estimated from the maximum of the susceptibility of the reference cubic system. We notice that the critical temperature has a maximum close to n ∼ 0.9, exhibiting reentrant miscibility [START_REF] Materniak | Reentrant miscibility in two-dimensional symmetrical mixtures[END_REF]. For values of the density sufficiently smaller with respect to n = 1.0, the average interaction energy ⟨v ij (r)⟩ decreases as density is increased, as the attractive part of the interaction is dominant. Above a threshold value of the density close to n = 1, at which the mean inter-particular distance is σ, increasing the density will increase the average interaction energy, as the repulsive part of the potential becomes predominant. This gives a qualitative explanation for the diminution of the typical energy k B T n c for the demixing transition above a threshold density. Looking for the most efficient density to work at, we have started with a rather high value n = 1.0 to avoid the liquid/gas transition, also allowing benchmarking with previous results [START_REF] Subir | Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation[END_REF].

Extracting excess quantities at such high density proved difficult. Computing the chemical a) A maximum for T n c is clearly visible and the system displays reentrant miscibility [START_REF] Almarza | Reentrant miscibility in fluids with spherical interactions[END_REF]. c) Evolution of the critical pressure P c with the total density n. potential requires the virtual insertion of an extra particle to the system, this being obviously a difficult action in a very dense fluid, already for n = 0.8. Moreover, the total pressure P c at the critical temperature depends dramatically on the density, see figure 7.3c), decreasing approximately by an order of magnitude from n = 1.0 to n = 0.5. The critical Casimir force having an amplitude independent of the density, it seems intuitive to consider that working at lower density will make this excess quantity easier to extract from a smaller value of the total pressure. This was confirmed in practice and we gradually moved to lower densities, n = 0.6 and 0.7 allowing for our most accurate results up to now. We stress the fact that this difficulty arising from the small amplitude of the critical Casimir force relatively to the bulk pressure is lifted in experimental approaches when at least one confining wall is also in contact with a non confined fluid. In wetting experiments, the wetting layer is in equilibrium with the gas of binary mixture so that the bulk pressure in the confined layer is compensated by the gas pressure. Thus, the equilibrium thickness of the layer is only determined by confinement forces comparable in amplitude to the Casimir force. Equivalently, if the confinement is obtained by optically trapping a sphere close to a wall (or two spheres), the bulk pressure is compensated by completely immersing the sphere in the critical fluid.

Universal scaling functions: comparing Ising and Lennard-

Jones data

Fully universal scaling form for the excess quantities

In the previous chapters, we were only concerned by the study of the Ising model and used the scaling form for the excess part of the free energy

ω ex (t, L ⊥ ) = L -d ⊥ Θ (u t ) , (7.24) 
with u t = tL 1/ν ⊥ . Restricting ourselves to the case of h = 0, equivalently µ AB = 0, we omit the dependency on this variable. The scaling forms for all observables of interest, in the present study, stem from the excess free energy, and in chapter 6, we developed the relation between the scaling function of the excess free energy Θ, the scaling function of the critical Casimir force θ

θ(u t , 0) = (d -1)Θ(u t , 0) - u t ν ∂Θ ∂u t    u h (u t , 0) , (7.25) 
and the excess internal energy density in units of k B T 

u ex = -L 1/ν-d ⊥ ∂Θ ∂u t    u h . ( 7 
ω ex (t, L ⊥ ) = L -d ⊥ Θ  t  L ⊥ ξ + 0  1/ν  , (7.27) 
defining the scaling variable

x t = t  L ⊥ ξ + 0  1/ν . ( 7 

.28)

We omit again the dependency on h ∼ µ AB .

The amplitudes of the scaling functions Θ and θ are independent of ξ + 0 . To compare data for the excess free energy and critical Casimir force obtained in different systems belonging to the same universality class, one should simply be careful to use the scaling variable x t rather than u t to obtain fully universal functions. The amplitude of the excess internal energy does, on the other hand, depend on ξ + 0 . The fully universal scaling form for the excess internal energy is therefore

L d ⊥  L ⊥ ξ + 0  -1/ν u ex = - ∂ Θ ∂x t    h = -ξ + 0 1/ν ∂Θ ∂u t    u h , (7.29) 
as a function of x t . This allows for comparison of results we obtained in the Ising model with results in Lennard-Jones systems.

Amplitude of the correlation function

In the Ising model ξ + 0 = 0.501( 2) is known to a very good approximation and we have used this value from the literature, see ref. [START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]. We recall that all lengths are measured in units of the microscopic length scale σ which is taken equal to 1 in both the Ising and Lennard-Jones systems. For the case of a Lennard-Jones binary mixture, the correlation length amplitude ξ + 0 depends on the density n and was estimated for each density using the concentration part of the structure factor [START_REF] Subir | Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation[END_REF][START_REF] Subir | Transport phenomena and microscopic structure in partially miscible binary fluids: A simulation study of the symmetrical Lennard-Jones mixture[END_REF]. The partial pair correlation functions are given by

g ij (r) = N nN i N j  Ni  k=1 Nj  l=1 δ(r -| ⃗ r k -⃗ r l |)  , (7.30) 
where i, j can be A or B, the type of particle. The fluctuations in the concentration of the system are described by a combination of these pair correlation functions [START_REF] Subir | Transport phenomena and microscopic structure in partially miscible binary fluids: A simulation study of the symmetrical Lennard-Jones mixture[END_REF] g

cc (r) = x 2 A x 2 B (g AA + g BB -2g AB ) , (7.31) 
where x A = N A /N, x B = N B /N . The Fourier transform S cc (q) of g cc (r) takes for small wave vectors an Ornstein-Zernike form

S cc (q) = k B T χ 1 + q 2 ξ 2 , ( 7.32) 
with the susceptibly for T > T c

k B T χ = N (⟨x 2 A ⟩ -1/4) , (7.33) 
equivalent to the magnetic susceptibility (Eq.2.7) with m = x Ax B . Thus, we can extract the correlation length ξ from small wave vector measurements of S cc and estimate the amplitude ξ + 0 by fitting the scaling form 

ξ = ξ + 0 |t| -ν , ( 7 

Excess internal energy of the Lennard-Jones binary mixture

The internal energy per unit volume u, in units of k B T , of the Lennard-Jones system is defined by the statistical average of the interaction Hamiltonian (Eq.7.4) Shifting data for n = 1.0 by a small amount u shif t (L ⊥ ) (d) shows that the amplitude and width of the critical effect corresponds quite well to the Ising case. n = 0.6, 0.7, 1.0. In the case of the two smallest investigated thicknesses L ⊥ = 5, 6 (Fig. 7.5a), we obtain a very convincing agreement with the scaling function of the Ising model,despite the small value of L ⊥ . For the largest thicknesses investigated L ⊥ = 9, 12 (Fig. 7.5b), the agreement remains convincing for high temperature data but not for T < T c . In this last case, the apparently non systematic evolution of u ex and the important discrepancy between data for different densities and systems sizes makes us expect this to be related to the difficulty of thermalizing such large systems, requiring very important computation resources, and we believe that higher precision could lead to a collapse of all the data. Another possible explanation, is the important change in aspect ratio from thickness L ⊥ = 5, 6 to L ⊥ = 9, 12. However, simulations in Ising systems have proved systems of sizes L ⊥ ∼ 10 and L ∥ ∼ 60 to be a good approximation of the slab limit (see chapter 5). If this were the case, the discrepancy between Ising and Lennard-Jones systems would thus have to be explained. Further work is required to confirm this point.

u = ⟨H int ⟩ k B T V . ( 7 
u ex L ⊥ d-1/ν ξ + 0 1/ν Ising L ⊥ =5, n=1.0 L ⊥ =6, n=1.0 L ⊥ =9 ,n=1.0 L ⊥ =12, n=1.0 d) -10 -5 0 5 10 t (L ⊥ /ξ + 0 ) 1/ν -0.05 0 0.05 0.1 (u ex -u shift ) L ⊥ d-1/ν ξ + 0 1/ν Ising L ⊥ =5, n=1.0 L ⊥ =6, n=1.0 L ⊥ =9 ,n=1.0 L ⊥ =12, n=1.0
For density n = 1.0, Fig. density n = 0.7. A finite-size critical effect is clear, a peak in u ex appearing close to T 0.7 c = 1.32, and its amplitude decreases with increasing size. However, the excess internal energy does not go to zero far from the critical temperature, especially for the smallest system size L = 5. The limit value u shif t reached by the excess energy decreases with increasing size L in a non monotonic way, oscillating around zero. We have already mentioned that such non critical effects have been observed in single component fluid simulations [START_REF] Kolafa | Finite size effects for liquids in cyclic boundary conditions[END_REF]; oscillations of the internal energy being related to the particularly small sizes used. Increasing the system size would then make this effect negligible but for now, to focus on the critical effect, we removed the limit value u shif t from u ex before trying the finite-size scaling from of Eq.7.38. One can notice from figure 7.6a) that u shif t is more pronounced at t < 0 than t > 0 for L = 5. Thus, u shif t (L, sign(t)) both a) depends on L and the sign of t and for each system size. As the system changes from a mixture to a simple fluid when crossing the transition, it is not surprising that the shift evolves from high to low temperature. Hence, we have subtracted two different values of u shif t to u ex for data above and below the critical temperature. This proved to be an acceptable approximation within the current precision but could eventually result in a discontinuity around T 0.7 c in the data, as u shif t is in principle a continuous function of the temperature (this will be the case below). In figure 7.6b), we show the convincing agreement between excess internal energy data computed in our Lennard-Jones simulations and θ cubic estimated in ref. [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] in the Ising model, the agreement being excellent except for low temperatures where our data are clearly dominated by statistical noise.

As we developed in chapter 6, the knowledge of the excess internal energy scaling function gives access to the scaling function of the excess free energy and thus to the critical Casimir force scaling function, or any excess quantity stemming from the excess free energy. However, the specificity of the present Lennard-Jones simulation is that it can give direct access to the critical Casimir force and its fluctuations. Thus, we are interested in the direct measurement of the pressure and chemical potential, rather than extracting the average Casimir force through measurement and integration of the excess internal energy.

7.5 Critical pressure anisotropy in slab geometry 7.5.1 Universal scaling function for the pressure anisotropy

We have mentioned at the end of chapter 6 that it is possible to extend our study of the Casimir effect to the case of non zero aspect ratios, simply by adding a dependency on ρ = L ⊥ /L ∥ to the universal scaling functions [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF]. The excess free energy density, in units of k B T = 1/κ, then scales as

ω ex (t, L ⊥ , ρ) = L -d ⊥ Θ ρ (u t , ρ) . (7.39)
For the sake of simplicity, we will not take into account the dependency on the field h ∼ µ AB , which we always set to zero in Lennard-Jones simulations. The critical Casimir force by unit of surface in the confining direction z is then given by

κf ⊥ c = -1 L d-1 ∥ ∂(V ωex) ∂L ⊥ = L -d ⊥  (d -1) -ut ν ∂ ∂ut -ρ ∂ ∂ρ  Θ ρ (u t , ρ) , (7.40) 
and corresponds to the extension to arbitrary values of ρ of f c , the definition of the Casimir force we have used up to now in this work (Eq.5.2). Of course, in the limit of slab geometry

f ⊥ c → ρ→0 f c . (7.41) 
The evolution of the form of the Casimir force scaling function with ρ has already been studied in Monte Carlo simulations of the Ising model [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF], but another effect that this formalism allows one to tackle is the Casimir effect in the transverse directions x, y, related to a change in the width L ∥ rather than the thickness L ⊥ . We define the excess contribution to the confining force in the transverse directions as the derivative of the excess free energy with volume at fixed

L ⊥ κf ∥ c = -∂(V ωex) ∂V    L ⊥ , = - 1 L ⊥ L ∥ (d-1) ∂(V ωex) ∂L ∥    L ⊥ , = - L -d ⊥ (d-1)  (d -1) -ρ ∂ ∂ρ  Θ ρ . (7.42) 
As expected from the clearly asymmetric roles played by L ⊥ and L ∥ in this geometry, the critical force is anisotropic and f ∥ c differs from f ⊥ c . The two forces can be related using Eq.7.40 and 7.42

f ∥ c = 1 d -1  -f ⊥ c -k B T L -d ⊥ u t ν ∂Θ ρ ∂u t  , (7.43) 
and the anisotropy is directly related to the excess internal energy -L -d ⊥ u t ∂Θρ ∂ut = tu ex . We remark that an average of the forces in the three directions x, y, z gives

κ d (f ⊥ c + (d -1)f ∥ c ) = -L -d ⊥ u t νd ∂Θ ρ ∂u t = t νd u ex , (7.44) 
and is directly related to the excess internal energy. In the limit of cubic geometry, ρ → 1, we of course expect to recover isotropy and

f ⊥ c = f ∥ c (7.45) so that κ d (f ⊥ c + (d -1)f ∥ c ) → ρ→1 κf cubic c = t νd u ex , (7.46) 
and the critical Casimir force f cubic c is directly related to the excess internal energy, a result already demonstrated in ref. [START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF], giving us confidence in our approach.

Let us now study the anisotropy itself. Eq.7.43 leads to

f ∥ c -f ⊥ c = k B T d -1  -d k B T f ⊥ c + t ν u ex  . ( 7 
.47)

In the slab limit, we know that

κf ⊥ c → ρ→0 κf c = (d -1)ω ex + tν -1 u ex , (7.48) 
which implies The universal scaling form of the anisotropy in the limit of slab geometry is thus

ρ Θ ρ ∂ρ    x ⊥ → ρ→0 0 . ( 7 
L d ⊥ κ(f ⊥ c -f ∥ c ) → ρ→0 θ(u t ) + Θ(u t ) , (7.52) 
the sum of the scaling functions of the critical Casimir force and of the excess free energy that we have estimated in chapters 5 and 6 in the Ising model in the limit ρ → 0. In the following, we will always assume that this limit is reached, at least to a good approximation.

Pressure anisotropy in a Lennard-Jones binary mixture

In Lennard-Jones simulations, the critical Casimir forces are expected to be excess quantities of the generalized pressure P = Pµρ. However, the anisotropy must clearly come from the pressure itself and not from the chemical potential, which is an intrinsically isotropic quantity.

Lennard-Jones simulations allow for the computation of this anisotropy and of its fluctuations, as the virial formula for the pressure naturally provides instantaneous measurements of the pressure in x, y and z directions. Thus, we can compute the anisotropy in pressure of the anisotropy is located close to the critical temperature, which changes significantly with the density, so that we can clearly identify a critical effect in the anisotropy. Secondly, far from the critical temperature, the anisotropy does not tend to zero, so that a non critical anisotropy is also detected. In figure 7.7b), we display the difference P ⊥ -P ∥ that we obtain in a one component Lennard-Jones fluid, for the same densities n = 0.6 and 0.7 and dimensions L ⊥ = 5 and L ∥ = 60. An anisotropy in the pressure is observed, of approximately the same amplitude as the non critical anisotropy observed in the binary mixture. This effect is induced by the periodic boundary conditions and was observed in single component fluid models (including Lennard-Jones) in non cubic geometries in ref. [START_REF] González-Melchor | Stress anisotropy induced by periodic boundary conditions[END_REF]. It was shown that the pressure anisotropy oscillates as the system size is changed, vanishing as the system grows, but significant for systems of small size < 10σ. This effect was considered in ref. [START_REF] González-Melchor | Stress anisotropy induced by periodic boundary conditions[END_REF] as a periodic error on pressure measurements but we can interpret it, as discussed in section 7.1.5, as a non critical confinement force.

To check the scaling form of Eq.7.54 for the anisotropy, we need to subtract the non critical contribution to the pressure anisotropy. It is tempting to use the anisotropy found in the single component Lennard-Jones system to subtract non critical anisotropy in the mixture's pressure.

However, in the case of a binary mixture, the composition changes with temperature. This is not the case of course in the one component fluid and thus there is no reason for the non critical anisotropy to evolve in the same way in both two and one components fluids. As a preliminary test, we have simply subtracted an ansätze P shif t (T, L ⊥ , n) for the baseline shift to P ⊥ -P ∥ and tested the validity of the scaling form κL d ⊥ (P ⊥ -P ∥ -P shif t (T, L ⊥ , n)) = θ(u t ) + Θ(u t ) . assuming the limit ρ → 0 is verified. For L ⊥ = 5, we used a constant shift P shif t (T, n, L ⊥ ) = A shif t (n, L ⊥ ), represented in figure 7.7a). For L ⊥ = 6, the limit value of the pressure anisotropy appears different for high and low temperatures (Fig. 7.7c). Assuming that this change in the non critical anisotropy is related to the change in composition of the mixture, we used the ansatz P shif t (T, n, L ⊥ ) = A shif t (n, L ⊥ ) + B shif t (n, L ⊥ )|m(T )| , (7.55) to capture this effect, with m(T ) = (N A -N B )/N the order parameter. We display P shif t (T, L ⊥ , n) in figure 7.7c): this ansatz is very close to using two different constant shifts for temperatures above and below T n c as it quite sharply evolves close to the critical temperature. In figure 7.8, we test the scaling form of Eq.7.54, comparing the critical part of the pressure anisotropy to the sum of functions θ and Θ obtained through Monte Carlo simulation in the Ising model (see chapters 5 and 6). The agreement between Lennard-Jones and Ising data is very convincing and clearly confirms our predictions for the universal scaling function of the critical pressure anisotropy. The maximum of the scaled pressure anisotropy seems slightly lower for L ⊥ = 5, n = 0.6, but this discrepancy could be absorbed in the choice of a larger value of P shif t . Increasing the thickness L ⊥ , P shif t decreases so that we expect that for sufficiently large systems only the critical anisotropy should remain. However, we have not been able to reach this limit with sufficient precision for now. In section 7.5.2 we have seen that, for the smallest system thicknesses, we must add to this picture a non critical confinement pressure P shif t (T, L ⊥ , n). Making the hypothesis that this effect solely affects P ⊥ , that it to say that L ∥ is large enough not to cut-off the density pair correlation function, we get P ⊥ = f ⊥ c + nµ ex + P shif t (T, L ⊥ , n) + P bulk (T, n) ,

P ∥ = f ∥ c + nµ ex + P bulk (T, n) , (7.57) 
which is coherent with our observations for the anisotropy P ⊥ -P ∥ . In figure 7.9, we show the excess part P ex,⊥ = P ⊥ -P cubic (T, n) , (7.58) a) of the confinement pressure P ⊥ , using the pressure P cubic (T, n) computed in the large L = 32 cubic system as an estimate of the bulk pressure P bulk (T, n). The presence of P shif t (T, n, L ⊥ ) is clear. The form and amplitude of the excess pressure is incompatible with the critical Casimir force f ⊥ c (see for example Fig. 4.5), which does not change sign with temperature and is expected to have an amplitude of ≈ -3 × 10 -3 for L ⊥ = 5, n = 0.6, thus an order of magnitude smaller than the critical effect observed in figure 7.9. Defining the excess part of the chemical potential µ ex = µ(T, n, L ⊥ )µ cubic (T, n) , (7.59) it appears clearly in figure 7.9 that P ex,⊥ and nµ ex are dominated by a similar term. This term resembles the excess internal energy and from the amplitudes shown it seems that this term will cancel in taking the difference between the two quantities. We notice in figure 7.9 a small shift, so that nµ ex does not decay to zero far from the critical temperature, which we interpret once again as a non critical confinement effect. Therefore, we shall use a shift µ shif t for each densities to recover the limit of vanishing µ ex far from T n c . We complete again our decomposition of P ⊥ P ⊥ = f ⊥ c + nµ ex + Pshift (T, L ⊥ , n) + P bulk (T, n) , (7.60) and rather than separately estimating µ shif t and P shif t , which would be quite delicate, we define In figure 7.10, we show preliminary results for this analysis for n = 0.6, 0.7, L ⊥ = 5 and L ∥ = 60.

Looking at Pex,⊥ (Fig. 7.10 a, b), it is clear that the noise level is still quite high with respect to the effect we are trying to capture. However, we can estimate the non critical effect using the form of Eq.7.61 (see Fig. for n = 0.6. This result is only preliminary and we present the only configurations for which we reached at the moment of the redaction of the manuscript sufficient precision to obtain a first indication of a direct measurement of the critical Casimir force in a Lennard-Jones simulation.

Although the level of noise on the signal is still high, the fact that the critical effect observed in both P ex,⊥ and nµ ex (Fig. 7.9), ten times larger than the critical Casimir force, cancels exactly is already an extremely encouraging result. We believe that better statistics, with data further away from the critical temperature, will allow a better estimate of the non critical shifts and confirm this first signature of the critical Casimir force.

Excess chemical potential and excess internal energy

To define the scaling function of the excess chemical potential, we need to understand how the excess part of the free energy depends on the the total number of particles N . We know that the excess free energy density ω ex takes a universal scaling form, see Eq.7.27 for the limit case ρ → 0. Two quantities appearing in this scaling form depend on N , through the density n: ξ + 0 (n) and T n c (see figures 7.3 and 7.4). The scaling function of Eq.7.27 being fully universal, we can assume that the dependency of ω ex on density is entirely contained in ξ + 0 (n) and T n c and we can make explicit this dependency ∂n . An interesting feature of this factor is that, as it appears clearly from the evolution of T n c with density (see figure 7.3), it changes sign at a density close to n = 0.9, see figure 7.11. To test the validity of the relation between excess chemical potential and excess internal energy (Eq.7.66), in figure 7.12 we compare µ exµ shif t to the excess internal energy k B T u ex (we recall that in our simulation k B ≡ 1) for L ⊥ = 5 and n = 0.6, 0.7. The similarity of the two observables is striking. Moreover, computing the ratio κ(µ exµ shif t )/u ex , we find a good agreement with our estimate of A(n, T n c ), see figure 7.12, giving us confidence in the relations of Eq.7.66 and 7.67 between excess chemical potential and internal energy. The A(n, T n c ) factors are very close to unity but the precision of our date seems sufficient to extract the predicted trend around unity for these two density values. At the moment of the redaction of this manuscript, we have not yet produced the necessary data to present the same treatment as in figure 7.12 for other system sizes or densities.

ω ex (t, L ⊥ , n) = L -d ⊥ Θ   T -T n c T n c   L ⊥ ξ + 0 (n)  1/ν  . ( 7 
Typically, computing the chemical potential at densities n ≥ 0.8 proved extremely challenging. However, we are confident that future data can confirm our findings as they are supported by qualitative observations in the pressure and internal energy measurements, more easily accessible than chemical potential ones.

As we have noticed, the excess pressure P ⊥ -P cubic (T, n) is dominated by the term nµ ex , Eq.7.57, so that we can compare it to the excess internal energy to draw qualitative conclusions.

In figure 7.13, we compare the excess pressure to the excess internal energy for L ⊥ ∈ [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF][START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF][START_REF] Huang | Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111)[END_REF] and n = 0.6, 0.7, 1.0. We remark their great similarity in general, comforting the relation between chemical potential and internal energy (Eq.7.66). For densities n = 0.6, 0.7, we display the evolution of P ⊥ -P cubic against u ex but at higher density n = 1.0 we looked at the evolution of the excess part of P averaged = (1/d)(P x +P y +P z ). Measurements of the pressure at higher density requiring longer computation times than at n = 0.6, 0.7, we did not reach sufficient statistics for P z alone for all system sizes at the moment of writing the present chapter. Thus, as a preliminary approach, we present data for P averaged , which is also suited for a comparison with u ex as it is also expected to be dominated by the excess chemical potential contribution. The first thing one can remark in figure 7.13e) is that the excess pressure P averaged -P cubic , at density n = 1.0, has undergone a sign change (also present in P ⊥ ) compared with lower densities n = 0.6, 0.7.

The excess pressure is now positive above the critical temperature and negative below. This sign change is actually coherent with the sign change of A(n, T n c ) (Fig. 7.11). In figures 7.13e) and f), we compare P averaged -P cubic with A(n, T n c )u ex scaled by the factor A(n, T n c ) ≈ -0.6. Scaled in this way, it is clear that the two quantities main contribution remain proportional despite the change in sign of P averaged -P cubic , well captured by the factor A(n, T n c ).

Conclusion

Using Semi-Grand Canonical simulations of a symmetrical Lennard-Jones binary mixture, we have made contact with previous results obtained in the Ising model through measurements of the universal scaling functions of the excess internal energy but also the excess generalized pressure P = Pnµ, which is the suitable quantity for a direct measurement of the critical [START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF][START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF][START_REF] Huang | Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111)[END_REF] and L ∥ = 60. For the highest density n = 1.0, we display the excess pressure averaged in the three directions P averaged -P cubic (e) and, to emphasis the similarity, we do not display simply u ex but A(n, T n c )u ex (f ) as in this case, unlike the other densities, A(n, T n c ) ≈ -0.6 is negative.

potential proved quite challenging. Moreover, the analysis of scaling behavior is complicated by the presence of non critical confinement effects induced by the particularly small system sizes used. As the numerical effort required to reach sufficient precision increases rapidly with system size, we cannot yet produce results in large enough systems to make these effects negligible.

However, we have been able to propose preliminary approaches to take these effects into account and obtain convincing agreement with data computed in the Ising model in the previous chapters.

We also obtained results that were not accessible directly to Ising model simulations. We proposed and successfully verified the universal finite size scaling form for the anisotropy of the excess part of the pressure. In slab geometry, the critical Casimir force is defined as the critical contribution to the confinement force in the confining direction z. However, a transverse effect in direction x and y also exists and the excess contribution to the transverse pressure P ∥ is different from the critical Casimir force in the confining direction [START_REF] Dantchev | Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results[END_REF]. The universal scaling function of the anisotropy P ⊥ -P ∥ proved to be the sum θ + Θ of the scaling functions of the critical Casimir force θ and the excess free energy Θ. Moreover, we have been able to distinguish the influence in the critical Casimir force of both the excess pressure and the excess chemical potential. As the chemical potential is intrinsically an isotropic quantity, the anisotropy of the Casimir effect is entirely contained in the excess pressure. A direct measure of the critical Casimir force however does necessarily pass through the computation of the excess chemical potential, which proved approximately an order of magnitude larger than the critical Casimir force. Computing the chemical potential proving rather difficult, we could in future works take advantage of the relation between excess chemical potential and excess internal energy µ ex = A(n, T )u ex that we identified.

We believe these preliminary results form a strong basis for future investigations and we are confident that the tendencies outlined in the present chapter, such as the direct measurement of the critical Casimir force (Fig. in very small simulation boxes and perhaps develop a numerical approach allowing for the study of larger systems than in the present work, the numerical effort being quite demanding.
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 11 Figure 1.1: Three isothermal path (colored continuous lines) in a sketch of a liquid-gas phase diagram with respect to pressure and temperature (a) and pressure and molar volume (b) (the solid phase is not represented on the latter, and can be considered at the far left). The blue path represents a first order phase transition, the red one a continuous phase transition and the green one does not present any phase transition.
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 12 Figure 1.2: Experimental phase diagrams in reduced variables (T /T c , n/n c ) for several fluid systems: all fall on one master curve. Figure from ref.[START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF], proceeding from the work of ref[START_REF] Guggenheim | The Principle of Corresponding States[END_REF].
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 13 Figure 1.3: Phase diagram of a magnetic material in the absence of a magnetic field: in the solid phase two magnetic phases, ferro-and paramagnetic, are separated by a critical line.

Figure 1 . 4 :

 14 Figure 1.4: Sketch of phase diagrams in the (h, T ) (a) and (h, ⟨m⟩) (b) planes for a ferromagnetic system. Three isotherms are sketched, displaying a first order phase transition (blue, T < T c ), a continuous phase transition (red, T = T c ) and not transition at all (green, T > T c ). At

Figure 1 . 5 :

 15 Figure 1.5: Sketches of three phase diagrams for the liquid-gas (a), ferro-paramagnetic (b) and demixing of a symmetrical binary mixture (c) phase transitions, displayed together in order to emphasize their similarity. The reader can see ref. [26] for related discussions.

FIG. 3 .

 3 FIG.[START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF]. Universal plot of scaled magnetic field vs scaled magnetization.

FIG. 2 .

 2 FIG. 2. Magnetization rn as a function of internal field k along nine isotherms.

Figure 1 . 6 :

 16 Figure 1.6: Magnetic equation of state in EuO, a classical Heisenberg ferromagnet. This is an

Figure 1 . 7 :

 17 Figure 1.7: Snapshot of an Ising 2D system close to its critical point obtained by Monte-Carlo simulation. Blue and green points represent spins pointing up and down. Zooming on a random region of the configuration, we emphasize its self similarity.

Figure 2 .

 2 Figure 2.1a) shows a typical cluster of the Wolff algorithm, generated in a 2D Ising system close to the critical temperature. The average size of the clusters generated by the Wolff algorithm ⟨C⟩ depends on temperature, Fig 2.1b). At very high temperature, P add ≈ 0, so clusters are

Figure 2 . 1 :

 21 Figure 2.1: a) Snap shot of a 2D Ising model close to the critical temperature, at zero magnetic field. Blue and green dots indicate spins pointing up and down, and white dots the cluster flipped by the Wolff algorithm. b) Mean size ⟨C⟩ of the clusters generated by the Wolff algorithm, at zero magnetic field for a 3D Ising model of volume L 3 with L ∈ [15, 30, 45, 60]. Vertical line gives the location of the bulk critical temperature.

Figure 2 . 2 :

 22 Figure 2.2: Magnetization at zero magnetic field (a) and at T = T c as a function of h (b)

  2.3d). This illustrates the limitations due to the finite size of lattice simulations. Of course, the failure of a)

Figure 2 . 3 :

 23 Figure 2.3: Magnetization at zero magnetic field and t < 0 (a) and at t = 0 and positive magnetic field (b), susceptibility (c) and specific heat per spin (d) of a 3D Ising model of volume L 3 with L ∈ [15, 30, 45, 60], logarithmic scale. For the susceptibility, the behaviors for

  ) we get a collapse on a single master curve of data obtained in systems of different sizes. Figures 2.4a,b,c) display results obtained in cubic 3D Ising models of volume L 3 with L ∈[START_REF] De Gennes | Phénomènes aux parois dans un mélange binaire critique[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF][START_REF] Hasenbusch | A + /A -,α,ν, and f s ξ 3 from 3d Ising energy and specific heat[END_REF][START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF] 

Figure 2 . 4 :

 24 Figure 2.4: Finite-size scaling applied to data obtained in cubic 3D Ising models of volume L 3

Figure 2 . 5 :

 25 Figure 2.5: Binder cumulant U 4 at zero magnetic field for a 3D Ising model of volume L 3 with

Figure 3 . 1 :

 31 Figure 3.1: The slab geometry in 2 and 3 dimensions.

( 3 . 2 P 2 Figure 3 . 2 :

 32232 Figure 3.2: a) P (m) obtained in a 2D Ising system with fully periodic boundary conditions at the critical temperature T = T 2D c . Different total number of spins N = L ⊥ L ∥ , thicknesses L ⊥ and aspect ratio ρ were investigated. As the aspect ratio is changed from the square case ρ = 1 towards the limit L ∥ ≫ L ⊥ , the functional form of the distribution goes from a bimodal to a monomodal one. b) L -β/ν ⊥ P vs mL β/ν ⊥

Figure 3 .

 3 Figure 3.3d) shows L -β/ν ⊥ ρ (d-1)/2 P as a function of mL β/ν

L 2 Figure 3 . 3 :

 233 Figure 3.3: Results obtained by Monte-Carlo simulation of 3D Ising system with fully periodic boundary conditions, for various system thicknesses L ⊥ and aspect ratios ρ at the critical temperature T = 4.5115 = T 3D c . a) Magnetization probability distribution P (m) as a function of m. As the aspect ratio ρ is changed from 1 to 1/12 the distribution evolves from a bimodal to a monomodal functional form. b) L -β/ν ⊥ P as a function of mL β/ν ⊥ . Distributions for system with similar aspect ratios collapse, but the functional form of the collapse depends on the aspect ratio. c) Particularizing distributions for the cubic case ρ = 1, we plot L -β/ν ⊥ P as a function of mL β/ν ⊥ .We obtain an excellent collapse and the continuous line is a fit of an Ansätze proposed in ref.[START_REF] Tsypin | Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study[END_REF] 

L 2 Figure 3 . 4 :

 234 Figure 3.4: Results of Monte-Carlo simulation of 3D Ising systems with (+-) BC for various thicknesses L ⊥ and aspect ratios ρ at the critical temperature T 3D c . a) Magnetization probability distribution P (m). Whatever the aspect ratio, the distribution remains monomodal. b) L -β/ν ⊥ ρP versus mL β/ν

LFigure 3 . 5 :

 35 Figure 3.5: Results obtained by Monte-Carlo simulation of 3D Ising system with fixed (++) BC for various system thicknesses L ⊥ and aspect ratios ρ at the critical temperature T = T 3D c . a) Magnetization probability distribution P (m) as a function of m. The distribution is always monomodal, but the symmetry breaking boundary conditions impose a non-zero average magnetization. b) The mean magnetization decreases with increasing L ⊥ and slightly depends on ρ for the smallest system thickness L ⊥ = 10. The continuous line is a power law fit intended as a guide to the eye. Points color give ρ. c) Asymmetry of the distributions can be highlighted by looking at the skewness γ 1 . We find the main trend to be γ 1 ∝ ρ, represented by the continuous line, fitted on the data for the largest thickness L ⊥ = 30. Points color give L ⊥ .
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Figure 4 . 1 :

 41 Figure 4.1: a) Schematic phase diagram of a fluid. A gas at pressure and temperature close to their liquid-gas equilibrium values (P 0 , T 0 ) (b) will form a wetting layer (c) close to a wall due to van der Waals interactions with the substrate. Its thickness L diverging when getting towards (P 0 , T 0 ). (Figuresa, b, c, reproduced from ref.[START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF]). d) Sketch of an experimental cell to obtain a wetting layer of thickness L controlled by the height h of a pedestal above a liquid reservoir
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 21 Finite-size scaling of the free-energy in slab geometryLet us consider a 3D critical system in slab geometry of sizeL ∥ × L ∥ × L ⊥ with L ⊥ ≪ L ∥ and A = L 2 ∥ , fig.4.2.We have already encountered this geometry in chapter 3: it allows one to clearly identify a confining dimension L ⊥ and is of great experimental relevance, as it maps to the set up of wetting experiments.
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 42 Figure 4.2: The slab geometry.

the spins of a layer k 0 (Figure 4 . 3 :

 043 Figure 4.3: Definition of the crossover Hamiltonian H cr (λ). With λ going from 0 to 1, the layer labeled k 0 is decoupled from the rest of the system and layer k 0 + 1 coupled to k 0 -1. (Figure reproduced from ref. [3])

  directions. Both the Wolff cluster algorithm and Metropolis algorithm (see chapter 2) were used in a hybrid Monte Carlo step composed of a Wolff step on the entire system followed by Metropolis iterations in layers {k 0 -1, k 0 , k 0 + 1}. For each temperature, 20 Monte Carlo simulations with different values of λ ranging from 0 to 1 were performed to allow for the integration of Eq.4.25, performed using the quadratic Simpson's rule.In figure4.4 are presented the function θ 0 (u t , 0) obtained for (ℓ = 9.5, αℓ = 19.5, A = 60 2 ) and θ 2 , an improved estimate of θ thanks to the iterative procedure of Eq.4.35, which converged within our present precision after two iterations. θ 0 and θ 2 are asymmetric and exponentially decays to zero far from the critical point, showing that it is a purely critical phenomenon. The scaling function is always negative, yielding an attractive Casimir force.

Figure 4 . 4 :

 44 Figure 4.4: θ 0 (u t , 0) (red filled squares) obtained with (ℓ = 9.5, αℓ = 19.5, A = 60 2 ) and the same function obtained for the same lattice sizes in ref. [3] (blue dots), showing very good agreement. Within our present precision, the iterative procedure of Eq.4.35 converged after two iterations, providing a better estimate θ 2 (u t , 0) (green open squares). Error bars are of the order or smaller than points size.

  and D is a parameter controlling the density of vacancies S i = 0 [57, 59, 102]. For -∞ < D < D tri the model undergoes a continuous phase transition at a critical temperature T BC c (D), belonging to the Ising universality class (actually, in the limit D → -∞ the model becomes equivalent to the Ising model). Numerically, it has been

Figure 4 . 5 :

 45 Figure 4.5: Effect of corrections to scaling computed in ref.[START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF]. We display our result for θ 2 ( ℓ ξt ) (green open squares), obtained with (ℓ = 9.5, αℓ = 19.5, A = 60 2 ) and already presented in Fig.4.4, as a function of the universal scaling variable ℓ ξt , with ξ t = ξ + 0 |t| -ν . We compare it to the the function θ corr (x) (blue dots) obtained in ref.[START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] for the same system sizes but taking

  . The first case belongs to the universality class of the 3D XY model with (O, O) confining boundary conditions and the other to the 3D Ising model with (+, -) boundary conditions. The Casimir scaling function has been computed numerically in these cases [3] and the results compare very well with experiments in the XY universality class and are also in agreement in the Ising one, Fig.4.6.

  Ref. ͓5͔ has to be properly normalized as ͑L / 0 +͑exp͒ ͒ 1/ by using the experimental value 0 +͑exp͒ = 1.432 Å ͓44,45͔.͒ In particular, the position of the pronounced minimum of the scaling function is properly captured. The corrections to scaling of form ͑i͒ yield x min ͑i͒ = -5.43͑2͒ and min ͑i͒ ϵ ͑x min ͑i͒ ͒ = -1.396͑6͒, whereas those of form ͑ii͒ result in x min ͑ii͒ = -5.43͑2͒ and min ͑ii͒ ϵ ͑x min ͑ii͒ ͒ = -1.260͑5͒. The corresponding experimental values are x min ͑exp͒ = -5.7͑5͒ and min ͑exp͒ = -1.30͑3͒. Taking into account the aforementioned bias affecting the results of Ref.

  FIG.[START_REF] Pelissetto | Critical phenomena and renormalization-group theory[END_REF]. ͑Color online͒ Scaling function OO of the Casimir force for the three-dimensional XY model with ͑O , O͒ BC. The MC data reported in this figure refer to lattices with L = 10, 15, and 20, with fixed inverse aspect ratio 1 / = 6. Corrections to scaling have been accounted for according to two different ansätze, provided by Eqs. ͑20͒ and ͑21͒; the corresponding numerical results are denoted by ͑i͒ and ͑ii͒, respectively. With corrections to scaling of the form ͑ii͒, the shape of the resulting scaling function is almost indistinguishable from the one obtained with corrections to scaling of the form ͑i͒, but its overall amplitude is reduced by a factor R Ӎ 0.9. For ͑i͒ our MC data compare very well with the corresponding experimental data from Ref. ͓5͔ ͑solid line͒ and with the MC data of Ref. ͓17͔ ͑dashed͒. Due to the Goldstone modes OO ͑x → -ϱ͒ = const 0. The dash-dotted line shows the mean-field scaling function ͓30,31͔ normalized to the depth of the minimum of the MC data ͑i͒. The levelling off of the experimental data ͓5͔ for x → -ϱ contains a component which is specific for 4 He wetting films ͓29͔ and cannot be captured by an XY lattice model. The gray bar indicates the position and uncertainty of the universal value x O,O ء = -7.64͑15͒ of the scaling variable x corresponding to the occurrence of the Kosterlitz-Thouless transition in the film, as inferred from MC simulations of lattice models in the XY universality class presented in Ref. ͓41͔.

Figure 4 . 6 :

 46 Figure 4.6: Figure extracted from ref. [3]: a) colored dots represent the scaling function of the Casimir force ϑ OO (x) in the 3D XY universality class with (O, O) boundary conditionsfor different system dimensions and collapsed using two different corrections to scaling anzätse (i), (ii) (see reference for details). The red curve comes from measurements of ref.[START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF] and the purple dashed line represents other numerical results of ref.[START_REF] Hucht | Thermodynamic Casimir Effect in 4 He Films near T λ : Monte Carlo Results[END_REF]. Excellent agreement is obtained between numerical and experimental works. b) Colored dots represent the scaling function of the Casimir force ϑ +-(x) in the 3D Ising universality class with (+, -) boundary conditions for different system sizes and collapsed using three different corrections to scaling anzätse (i), (ii), (iv)

9 L ⊥ = 10 L ⊥ = 19 L ⊥ = 20 Figure 5 . 1 :

 910192051 Figure 5.1: Magnetic order parameter vs. h at T = T c = J/0.22165 for four different system thicknesses L ⊥ ∈ [9, 10, 19, 20], A = 3600 and either fully periodic boundary conditions (a) (inset: blow-up of the low field region of the magnetization) or (+-) boundary conditions in the z direction (b).
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 52 Figure 5.2: Function D(T, h, ℓ) defined in Eq.5.11 with respect to the magnetic field h. The data were obtained at T = T c for periodic boundary conditions and ℓ = 9, 5,αℓ = 19, 5 and A = 3600
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 53 Figure 5.3: Zeroth order scaling function θ 0 vs u t = tℓ 1/ν for h = 0. Data from the magnetic protocol outlined in the text (red cross), data from ref. [3] (blue line). Figure a) (+, +) boundaries, b) (+, -). In all cases ℓ = 9.5, δL ⊥ = 1 and αℓ = 19.5, while A = 3600. The error bars

2 Figure 5 . 4 :

 254 Figure 5.4: Evolution of the scaling function with the iteration procedure. Function θ n ++ (u t , 0) of the Casimir force for n = 0 (red squares) and n = 2 (blue dots) as a function of reduced variable u t = t L 1/ν z , computed using the proposed integration method for (++) boundaries and ℓ = 9.5, αℓ = 19.5,δL z = 1 and A = 3600.
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 55 Figure 5.5: θ ++ (u t , u h ) for (+, +) boundaries, found using the magnetic protocol outlined in the text for ℓ = 9.5, αℓ = 19.5, δL ⊥ = 1 and A = 3600. The field is confined to the + direction. The function was scaled to universal amplitude, θ ++ (0, 0) = 2∆ ++ = -0.75. The lines projected onto the base show contours of equal Casimir force.
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 56 Figure 5.6: Zeroth order scaling function θ 0++ (0, u h ) for (++) boundaries with field spanning both + and-directions. The data were obtained with three different sets of system sizes: ℓ = 9.5,

Figure 5 . 7 :

 57 Figure 5.7: Magnetization with respect to field h at T c for L ⊥ × 60 × 60 systems with (+, +) boundary conditions.

5 Figure 5 . 8 :

 558 Figure 5.8: Improved estimate of the universal Casimir function θ 2++ (0, u h ), corresponding to the zeroth order scaling functions θ 0 ++ (0, u h ) of figure 5.6, obtained after applying n = 2 steps of the iterative procedure described in the text, that is to say to convergence within our current

78 Figure 5 . 9 :

 7859 Figure 5.9: Zeroth order scaling function with (+, +) boundaries for (ℓ = 9.5, αℓ = 19.5) (red squares) and (ℓ = 14.5, αℓ = 29.5) (green dots) and (ℓ = 19.5, αℓ = 39.5) (blue triangles)collapsed using an effective length scale ℓ eff = ℓ + δℓ. Here δℓ = 2.57. This correction affects both the amplitude of the function by a factor of (ℓ eff /ℓ) d and the reduced parameter u h by a factor (ℓ eff /ℓ) (γ+β)/ν . For all data δL ⊥ = 1 and A = 3600. For comparison we display data from ref.[START_REF] Vasilyev | Critical Casimir forces for films with bulk ordering fields[END_REF] (purple dashed line).

78 Figure 5 .

 785 Figure 5.10: a) Recursion procedure combined with corrections to scaling. (ℓ eff /ℓ) d θ n++ (0, u h ) vs (ℓ eff /ℓ) (γ+β)/ν u h , n = 0 (red squares), n = 2 (green dots). Data are for ℓ = 9.5, αℓ = 19.5,

9 L ⊥ = 10 L ⊥ = 19 L ⊥ = 20 Figure 5 . 11 :

 9101920511 Figure 5.11: Magnetization with respect to field h at T = 4.1J < T c for L ⊥ × 60 × 60 systems with (+, +) boundary conditions.
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 71 Influence of δL ⊥ The experimental feasibility of this protocol requires the fabrication of samples with thickness resolution better than δL ⊥ as well as the capacity to keep the uncontrolled errors generated by measurements on different samples at different times below the same threshold. The chances of success would clearly be increased if one could increase δL ⊥ above a monolayer. With this in mind we have investigated the measured Casimir effect for different values of δL ⊥ . The results -

Figure 5 . 12 :

 512 Figure 5.12: Scaling function θ 0 vs u t = tℓ 1/ν for h = 0, ℓ = 9.5 and (+, +) boundaries. Data from the magnetic protocol outlined in the text (red squares) for δL ⊥ = 1, L ⊥ = 10, for δL ⊥ = 3, L ⊥ = 11 (green dots), for δL ⊥ = 5, L ⊥ = 12 (blue triangles). A = 3600.

  ations, Fig.(6.1b), and increases the amplitude of the best estimate Θ 2 compared to the zeroth order function. Our result for Θ compares well in amplitude and width with the similar results a)
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 62 Figure 6.2: Zeroth order estimate of the scaling function of the excess free energy Θ 0 (u t , u h ) obtained using two systems of thicknesses L ⊥ = 9, L ′ ⊥ = 20, with A = 3600.

result of chapter 4 Figure 6 . 4 :

 464 Figure 6.4: a) From the zeroth order estimate of the scaling function of the excess free energy Θ 0
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 65 Figure 6.5: Scaling function of the excess free energy Θ for fully periodic boundary conditions

3 . 5 ,Figure 6 . 6 :

 3566 Figure 6.6: Critical Casimir force scaling function θ +± for fixed (+-) (a) or (++) (b) boundaryconditions, estimated with the magnetic protocol of chapter 5 (green dots and line). Using Eq. 6.12, we estimated the corresponding scaling functions Θ +± of the excess free energy. We can thus display the contributions to θ +± (Eq. 6.11) of the excess free energy scaling function (d -1)Θ +± (blue dots and line) and its derivative -ut ν ∂Θ+± ∂ut    u h

Figure 6 . 7 :

 67 Figure 6.7: Critical Casimir force scaling function θ ++ for fixed (++) boundary conditions at T = T c with non-zero magnetic field spanning positive and negative values (green curve), estimated with the magnetic protocol of chapter 5 (Fig. 5.10), using an effective length ℓ ef f to capture corrections to scaling (see section 5.6.2). From this function, the scaling function of the excess free energy Θ ++ can be extracted (Eq.6.20). We can thus display the contributions to the function θ ++ (Eq. 6.11) of the excess free energy scaling function (d -1)Θ ++ (blue curve) and its derivative -u h β+γ ν ∂Θ++ ∂u h   
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 1171 Figure 7.1: Snapshot of the simulation box used in this work, with two particle types and L ⊥ = 5σ and L ∥ = 60σ.

Figure 7 . 2 :

 72 Figure 7.2: Lennard-Jones potential v LJ and truncated and shifted potential v used in the simulations, here with r c = 2.5σ and ϵ = 1.

  ) with µ A , µ B chemical potentials associated with each type of particle and measured in units of ϵ[START_REF] Wilding | Critical end point behavior in a binary fluid mixture[END_REF][START_REF] Wilding | Continuous demixing at liquid-vapor coexistence in a symmetrical binary fluid mixture[END_REF][START_REF] Subir | Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation[END_REF][START_REF] Materniak | The phase behavior of two-dimensional symmetrical mixtures[END_REF]. The relevant Grand-Canonical thermodynamic variables are (T, V, µ A , µ B ), so that the differential of the Grand Potential Φ(T, V, µ A , µ B ) readsdΦ = -SdT -P dV -N A dµ A -N B dµ B . Defining µ = (µ A + µ B )/2, µ AB = (µ Aµ B )/2 and ∆N = N A -N B we can perform a change of variables so that the Hamiltonian can be rewritten H = H int -µNµ AB ∆N . (7.6) and the differential of the Grand Potential dΦ = -SdT -P dV -N dµ -∆N dµ AB ,

(7. 13 )

 13 As mentioned in chapter 4, in the case of the lattice Ising model the variable N was omitted as the lattice imposes the density n = N/V . Strictly speaking this fourth variable is necessary and working at constant density makes the magnetic model thermodynamically equivalent to a simple fluid with fixed interaction range σ or, as in the present case, to a binary mixture with fixed volume and total number of particles, thus fixed total density, which is the case in the Semi-Grand Canonical ensemble.The Semi-Grand Canonical ensemble hence appears as the most suitable ensemble to compute excess quantities in a Lennard-Jones simulation directly related to the results obtained in the Ising model in the previous chapters. A Grand-Canonical simulation of a binary mixture would be more directly related to the phenomenology of the Blume-Capel model (see section 4.3.7), in which a spin can take values S i = -1, 0, +1, being equivalent (on a lattice) to A particle, B particle or the absence of a particle. The number of non zero spins, equivalent to the total number of particles N , being controlled by a parameter D, equivalent to the chemical potential µ.7.1.5 Definition of the confinement forceIn the Semi-Grand Canonical ensemble at fixed density n, the number of particles is controlled by the volume and the differential of the potential becomes dΩ sgc = -SdT -(Pµn)dV -∆N dµ AB .(7.14) so that Pµn is the natural conjugate variable to the volume. In chapters 4 and 5, to compute the critical Casimir force in the Ising model, we found access to the variation of free energy when adding or removing a layer of spins, performing a variation(T, V, N, h) → (T, V + δV, N + δN, h)with n = N/V = (N + δN)/(V + δV) fixed. The corresponding variation of the free energy δΩ was thus implicitly related to the quantity Pµn as δΩ = -P δV + µδN = (µn -P )δV ,(7.15) and we expect the critical Casimir force in a Semi-Grand Canonical fluid to be contained in the generalized pressure P = Pµn.characteristic time scale (typically, using parameters describing a Lennard-Jones model for Argon, τ = 2 ps), with m the mass of a particle. This represents a time step ten to a hundred times smaller than in standard simulations of simple fluids, but the perturbation of the dynamics due to the change in particle type forced us to use a smaller time step, leading to longer computation times. It is possible to use Monte Carlo updates of the position, which we verified to give results
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 73 Figure 7.3: a) Sketch of the mean-field T-n phase diagram for a Lennard-Jones binary mixture (see ref. [132]). The continuous line represents first order liquid-gas transitions while the red dashed line is the λ-line of demixing continuous phase transitions. b) Partial phase diagram obtained by simulation of a Lennard-Jones symmetrical binary mixture, showing the evolution of the demixing critical temperature T n c with density n.A maximum for T n c is clearly visible and the system displays reentrant miscibility[START_REF] Almarza | Reentrant miscibility in fluids with spherical interactions[END_REF]. c) Evolution of the critical pressure P c with
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 74 Figure 7.4: a) Power law behavior of the correlation length ξ for various densities. Dashed lines are fits of the form ξ = ξ + 0 |t| -ν , using ξ + 0 as the only fitting parameter. b) Corresponding estimates of ξ + 0 , as a function of density.

. 35 )

 35 The excess part of u is obtained by simply subtracting the reference u ref obtained for same temperature and density in the large L = 32 cubic systemu ex = uu ref . (7.36) Using the universal scaling form of Eq.7.29, we compare in figure 7.5 the excess internal energy computed for the Ising model with fully periodic boundary conditions in chapter 6 with the same quantity computed in the Lennard-Jones binary mixture, for different values of the density and thickness L ⊥ . All data for the Lennard-Jones fluid were obtained with L ∥ = 60 and densities

Figure 7 . 5 :

 75 Figure 7.5: Excess internal energy universal scaling form L d ⊥  L ⊥ /ξ + 0  -1/ν u ex with respect

. 49 )

 49 this limit being the signature of the recovery of extensivity of the free energy V ω ex with respect to L ∥ . Thus, the anisotropy becomesκ(f ∥ cf ⊥ c ) → ρ→0 -dω extν -1 u ex = -κf ⊥ cω ex , = -L -d ⊥ Θ (u t ) .(7.51)

PFigure 7 . 7 :

 77 Figure 7.7: Pressure anisotropy P ⊥ -P ∥ in a Lennard-Jones system in slab geometry of thickness L ⊥ = 5, 12 for two values of the total density n = 0.6, 0.7. In all cases L ∥ = 60. In the case of a symmetrical binary mixture (a), for L ⊥ = 5, the pressure anisotropy clearly has a minimum value close to the demixing critical temperature T n c (located by arrows). Continuous lines show estimates of the non critical pressure anisotropy P shif t (T, n, L ⊥ ). In the case of a one component Lennard-Jones fluid (b) an anisotropy is still present. In the case of a binary mixture confined with L ⊥ = 6 (c), the limit value of the pressure anisotropy appears different for high and low temperatures. We used the ansatz P shif t (T, n, L ⊥ ) = A(n, L ⊥ ) + B(n, L ⊥ )|m(T )| (continuous lines) to capture this effect (m(T ) = (N A -N B )/N ).
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 78 Figure 7.8: Finite-size scaling of the critical part of the pressure anisotropy computed in the symmetrical Lennard-Jones binary mixture for L ⊥ = 5, 6, L ∥ = 60 and n = 0.6, 0.7 (colored points). The data are in very good agreement with the expected universal scaling function θ + Θ, sum of the scaling function for the critical Casimir force and for the excess free energy, computed in the Ising model (solid black line).

7. 6

 6 Pressure and chemical potential7.6.1 Generalized pressure and critical Casimir forceAs discussed previously, we expect to be able to extract the critical Casimir force from the measurement of the pressure and the chemical potential. We expect the formP ⊥ = f ⊥ c + nµ ex + P bulk , P ∥ = f ∥ c + nµ ex + P bulk .(7.56)
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 79 Figure 7.9: Excess part P ex,⊥ (Eq.7.58) of the confinement pressure P ⊥ , compared to the excess chemical potential multiplied by density nµ ex . All data are obtained in systems of sizes L ⊥ = 5, L ∥ = 60. For clarity, we separate data obtained at density n = 0.6 (a) and n = 0.7 (b).

  the generalized pressure non critical shiftPshift (T, n, L ⊥ ) = P shif tnµ shif t = Ã(n, L ⊥ ) + B(n, L ⊥ )|m(T )| ,(7.61)which we expect to depend on the change in composition of the system (as in the case of the pressure anisotropy in section 7.5.2) Ã, B being fitting parameters. Thus, the confinement excess generalized pressure Pex,⊥ = P ex,⊥nµ ex ,(7.62) should contain both a non critical confinement effect and the critical Casimir force. We expect that its critical part Pex,⊥ -Pshift amounts to the critical Casimir force in the slab limit f ⊥ c → ⊥ -Pshift ) = θ(x t ) .(7.63) 
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 710 Figure 7.10: Excess part of the generalized pressure Pex,⊥ (red squares) obtained in a Lennard-Jones binary mixture with n = 0.6 (a) and n = 0.7 (b). In all cases, L ⊥ = 5, L ∥ = 60. Using the form of Eq.7.61, we estimate the non critical part of this excess generalized pressure (black lines). Then, we can test the scaling form of Eq.7.63 by comparing the critical part of the excess generalized pressure (red squares), for n = 0.6 (c) and n = 0.7 (d), to the scaling function of the critical Casimir force θ obtained in the Ising mode (black line).
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 64711 Figure 7.11: Evolution of A(n, T n c ) = 1 T n c
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 712 Figure 7.12: Comparison of the excess chemical potential µ exµ shif t (see main text) to the excess internal energy u ex in a symmetrical Lannard-Jones binary mixture at density n = 0.6 (a) and n = 0.7 (b). All data are obtained in systems of sizes L ⊥ = 5, L ∥ = 60. In the bottom figures, we compare the ratio (µ exµ shif t )/(T u ex ) (blue squares) to its expected value at the critical point A(n, T n c ) = 1 T n c
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 713 Figure 7.13: Evolution of the excess pressure P ⊥ -P cubic in the confining z direction (a,c) against the the excess internal energy u ex (b,d) for Lennard-Jones binary mixtures of density n =∈ [0.6, 0.7] in systems of size L ⊥ ∈ [5, 6, 9, 12] and L ∥ = 60. For the highest density n = 1.0, we display the excess pressure averaged in the three directions P averaged -P cubic (e) and, to

  7.10), will be confirmed in the continuation of this work. Lennard-Jones simulations of binary mixtures open the way to a great variety of studies, closely related to experimental approaches, such as measurements of the fluctuations of the critical Casimir force[START_REF] Bartolo | Fluctuations of Fluctuation-Induced Casimir-Like Forces[END_REF][START_REF] Dantchev | Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results[END_REF], dynamic effects when performing temperature quenches and out-of-equilibrium effects. The introduction of fixed boundary conditions is of course a natural future step. This will require the disentanglement of the critical Casimir force from non critical confinement forces, just as in the case of experimental approaches where the critical Casimir force has to be separated from contributions such as van der Waals forces[START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF][START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Ganshin | Critical Casimir Force in He4 Films: Confirmation of Finite-Size Scaling[END_REF][START_REF] Garcia | Critical Casimir Effect near the 3 He-4 He Tricritical Point[END_REF].CHAPTER 7. CONCLUSIONS AND PERSPECTIVEScancellation of the critical finite-size effects in the excess confinement pressure P ex,⊥ and the excess chemical potential multiplied by the density nµ ex . Their difference, the generalized pressure P ex,⊥nµ ex , amounts to the critical Casimir force, an order of magnitude smaller than the critical effects in P ex,⊥ and nµ ex , and our results show a promising tendency in this direction. Quite surprisingly, the excess pressure undergoes a sign change above a threshold total density. We have been able to related this sign change to the reentrant miscibility observed in the phase diagram of our Lennard-Jones binary mixtures and the change in sign of the derivative of the critical temperature with respect to density. Some of our results are potentially of great experimental interest, such as the anisotropy of the excess pressure in slab geometry. Access to the critical Casimir effect in directions transverse to the confinement would give direct access to the scaling function of the excess free energy (see chapter 6). Due to lack of time, we have not yet studied the fluctuations of the critical Casimir force, or dynamic and out-of-equibrium effects, but molecular dynamics simulations give access to instantaneous values of the force and lend themselves to such approaches. We have also been restricted to the case of fully boundary conditions but the study of different boundary conditions is naturally accessible and of great experimental and theoretical interest. This leaves open some theoretical and numerical questions, as one would need to disentangle non-critical confinement forces from the critical Casimir forces

Table 1 .

 1 

		mean field	2D Ising	3D Ising	3D XY
	α	0			0		0.110(1)	-0.0146(8)
	β	1/2			1/8		0.3265(3)	0.3485(2)
	γ	1			7/4		1.2372(5)	1.3177(5)
	δ	3			15		4.789(2)	4.780(2)
	ν	1/2			1		0.6301(4)	0.67155(27)
	η	0			1/4		0.0364(5)	0.0380(4)
	2-α νd	4/d			1		1	1
	ξ + 0 ; ξ -0		1/	√	2 ; 1/	√	8 0.501(2); 0.243(1) 0.498(2) ; undefined
	κ c		1 2 log(1 +	√	2)	0.2216544(3)	0.45420(2)

1: Critical exponents of different bulk universality classes. Estimates for critical expo-

  - 0 being a universal quantity). As mentioned in section 4.2, to compare observables computed in different models of the same universality class, one must be careful in defining a fully universal quantity based on the scaling of the free energy
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	Functions θ, Θ and ∂Θ ∂ut (i.e. model dependent) value of the correlation length amplitude ξ +    implicitly depend on the model considered, through the non-universal u h 0 (or equivalently ξ -0 , the

  .34) using for ν an estimate from literature for the Ising universality class (see table1.1). In figure 7.4a), we display the evolution of ξ with t and the corresponding fit for various densities, leading to estimates of ξ + 0 displayed in figure7.4b). As one can see clearly from figure7.4, this estimation of ξ + 0 is somewhat imprecise and will introduce an error on the amplitude of the scaling function of the excess free energy which, unlike the critical Casimir force, depends on ξ + 0 . Nevertheless, it appears clearly that the correlation length amplitude has a maximum value approximately located between n = 0.7 and 0.8, just as the critical temperature had a maximum value, but for a larger value of the density n.
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  7.5c), the general behavior of the excess energy is still in agreement with that of the Ising model. The rather poor collapse of data for several thicknesses L ⊥ makes us expect that we do not yet capture the main scaling behavior of this quantity, but removing a shift value u shif t (L ⊥ ) to u ex to center the scaling function, Fig.7.5d), we see that the amplitude and width are coherent with Ising data. We believe these shifts arise from the non critical confinement effects discussed in section 7.1.5 and should be present in single component fluid simulations, which we have not yet simulated at the moment of the redaction of this manuscript.

	κf cubic c	=	t νd	u ex ,	(7.37)
	so that the excess internal energy can easily be related to the scaling function θ cubic of the critical
	Casimir force in cubic geometry				
	t νd	u ex L			

The nice agreement observed between excess internal energy of the Ising and Lennard-Jones models gives us confidence in the validity of our current approach. Moreover, this agreement can also be observed in cubic geometry. In this case, the critical Casimir force is directly related to the excess internal energy

[START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] 

d = θ cubic ,

(7.38)

which was computed through Monte Carlo simulations in the Ising model in ref.

[START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF]

. In figure 7.6a), we display T u ex for various sizes L ∈ [5, 6, 9, 10] as a function of temperature for a

  Excess internal energy u ex obtained in a symmetrical Lennard-Jones binary mixture in cubic geometry (colored points) (a). Following Eq.7.38, this excess internal energy can be compared to the scaling function of the critical Casimir force θ cubic in cubic geometry computed in ref.[START_REF] Hucht | Aspect-ratio dependence of thermodynamic Casimir forces[END_REF] in the Ising model (solid black line), after removing a non critical contribution u shif t (L, sign(t)) to u ex (b). Lennard-Jones data were obtained in systems of size L ∈[START_REF] Fukuto | Critical Casimir Effect in Three-Dimensional Ising Systems: Measurements on Binary Wetting Films[END_REF][START_REF] Garcia | Critical Fluctuation-Induced Thinning of 4he Films near the Superfluid Transition[END_REF][START_REF] Hasenbusch | Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the λ transition[END_REF][START_REF] Wang | Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model[END_REF] at density n = 0.7.
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Remerciements

several thermodynamic relations where u ex appears in this thesis, in particular in chapter 7. We can use a numerical derivation of function Θ to estimate the excess internal energy.

We present in Fig. 6.3a) the estimate of u ex extracted from the estimate of Θ presented in the previous section, for a system of thickness L ⊥ = 9, using Eq.6.6.

To check the validity of our estimate of Θ, we compared the excess internal energy computed as a derivative of the excess free energy (Fig. 6.3a) to an estimate of the same quantity as an excess part of the average value of the Hamiltonian per unit volume

in units of k B T (k B = 1 in our simulations), computed directly in the Monte-Carlo simulation of a system of thickness L ⊥ . In order to give access to a simple, direct comparison with measurements of the internal energy u, we turn to the zeroth order excess internal energy

corresponding to the difference in excess internal energy between systems of thicknesses L ⊥ and L ′ ⊥ used to compute the zeroth order scaling function Θ 0 u 0 ex (tL

This quantity should thus be equal to the difference in internal energy per particle between the two systems of thicknesses

The comparison between u(T, h = 0, L ⊥ )u(T, h = 0, L ′ ⊥ ) and u 0 ex (tL 

the excess part of the internal energy estimated for a system of dimensions 9 × 60 × 60 and computed by derivation of the scaling function of the excess free energy Θ. b) Equivalent zeroth order quantity u 0 ex = -L

computed from the zeroth order function Θ 0 obtained using two system of thicknesses L ⊥ = 9, L ′ ⊥ = 20 and area A = 3600, compared to the variation in internal energy u(L ⊥ )u(L ′ ⊥ ) between the two systems.

At the beginning of chapter 4, we gave a quick introduction to measurements of the critical Casimir force. In wetting experiments, the confinement of critical fluctuations is realized by the formation of a wetting film. The thickness of such a film is determined by the competition between different contributions, for example: a gravitational contribution to the chemical potential, or coming from a temperature gradient, van der Waals interactions with the substrate and, of course, the critical Casimir force. All these contributions could be referred to as "confinement forces", as they all control the confinement of the system. We particularize the critical Casimir force as it is a purely critical, universal effect. In our simulations, the confinement is imposed and we measure the resulting forces instead of indirectly deducing them from the equilibrium volume of the system. Nevertheless, there is no reason a priori to consider that non critical confinement forces should not arise. We have discussed in previous chapters that fixed boundary conditions can impose topological constrains on the local composition (equivalently the magnetization) of the system. The boundaries not only affect the critical fluctuations but can also give rise to non critical contributions to the free energy. In the Ising model, we have considered that the periodic boundary conditions did not foster any non critical confinement force nor surface term and that fixed (++) and (+-) boundary conditions only gave rise to surface tension contributions.

However, as it has been exploited in ref. [START_REF] Wilding | Effect of criticality on wetting layers: A Monte Carlo simulation study[END_REF] to mimic a wetting experiment in a Lennard-Jones simulation, the presence of a wall can induce a non critical confinement force, in addition to the critical Casimir force. In a dense fluid, the density pair correlation function decays in an oscillatory way [START_REF] Subir | Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation[END_REF] and in very small systems the boundary conditions can cut-off these oscillations, inducing confinement effects in the pressure and internal energy, which themselves oscillate with system size [START_REF] González-Melchor | Stress anisotropy induced by periodic boundary conditions[END_REF][START_REF] Kolafa | Finite size effects for liquids in cyclic boundary conditions[END_REF]. We will see in the following that for particularly small system thicknesses, even periodic boundary conditions give rise to such non critical confinement effects [START_REF] González-Melchor | Stress anisotropy induced by periodic boundary conditions[END_REF] in both the pressure (see for example figure 7.7) and the internal energy (see for example figure 7.5), due to the incommensurability of the oscillations in the pair correlation function with the system size.

7.2 Semi-Grand Canonical simulation of a binary mixture

Simulation method

We simulated the symmetrical Lennard-Jones binary mixture described above in the semi-grand canonical ensemble with fully periodic boundary conditions. The simulations were performed by Francesco Puosi, post-doctoral researcher at the Physics Laboratory of the E.N.S. de Lyon, using the LAMMPS package for parallelized molecular simulations [128] and taking advantage of the numerical resources of the PSMN in Lyon [START_REF] Psmn | Pôle scientifique de modélisation numérique[END_REF].

The positions of the particles were updated using molecular dynamics using the Nosé-Hoover thermostat. We used a quite small time step of 10 -5 × τ , with τ = σ  m/ϵ = 1 the simulation

Conclusions and Perspectives

In this work we have studied the effect of the confinement of critical fluctuations using numerical simulations and the theoretical framework of finite-size scaling (see chapters 1, 2 and 3). At the heart of this work is one consequence of this confinement which has attracted much attention in the past decades: the critical Casimir force (see chapter 4). A motivation of this work was the observation that theoretical and numerical works have almost systematically been performed in magnetic model systems, while experimental approaches were all realized in fluid systems, such as binary mixtures or helium IV close to the superfluid transition. We have been interested in closing this gap by, firstly, proposing an experimental protocol for measuring the critical Casimir force in a magnetic layer (chapter 5) and, secondly, proposing a numerical approach in a Lennard-Jones binary mixture (chapter 7). We confined ourselves to the Ising universality class but the theoretical developments of this work can be easily extended to other universality classes, such as that of the XY model, which is of great experimental relevance.

We believe our magnetic protocol opens to the way to exploring the critical Casimir effect in magnetic systems, which would give access to a great variety of universality classes, including quantum phase transitions, a variety of geometries and boundary conditions, uniform or structured, and crossover phenomena, for example between 2D and 3D effects or between different universality classes. Such realizations require the fabrication of magnetic thin films of very well controlled thickness, sufficient resolution on the magnetization measurements to capture finitesize effects and materials with Curie temperature low enough so that finite-size effects can be completely suppressed by a magnetic field. The right material has still to be found but numerous systems show essentially perfect model magnetism and the fabrication of magnetic thin films is well advanced. This new perspective leads to further theoretical and experimental questions.

Can we measure the critical Casimir force thanks to magneto-elastic coupling in a magnetic layer, or does magneto-elastic coupling systematically drives the transition first order [START_REF] Bergman | Critical behavior of an Ising model on a cubic compressible lattice[END_REF] ? Can two objects close to a magnetic system at criticality feel a critical Casimir interactions mediated by the magnetic system [START_REF] Vasilyev | Critical Casimir interactions between spherical particles in the presence of bulk ordering fields[END_REF] ?

Our results in Lennard-Jones binary mixtures have made contact with previous results, especially with finite-size scaling results obtained in the Ising model. The results we presented are still in part preliminary but already lead to quite new conclusions, such as the spectacular 141