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Résumé - Abstract

Résumé dans la langue de Molière

À l’approche d’un point critique, la divergence de la longueur de corrélation des fluctuations peut
être tronquée par le confinement du système. Cette troncature engendre des effets de taille finie
présentant des caractères universels au sein d’un classe de transitions de phases.

Nous nous sommes intéressés particulièrement à la classe d’universalité du modèle d’Ising,
regroupant notamment les transitions de phase ferro/paramagnétique pour les systèmes magné-
tiques uniaxiaux, la transition liquide/gaz et encore la démixtion de mélanges binaires. Nous
présentons tout d’abord une introduction aux phénomènes critiques, à l’universalité, au "finite-
size scaling" et aux simulations Monte Carlo du modèle d’Ising, sur lesquelles se fondent la
majeur partie de ce travail.

Un effet de taille finie ayant attiré une grande attention durant les dernières dizaines d’années
est la force de Casimir critique. Les travaux théoriques et numériques concernant cette force ont,
dans leur quasi totalité, été menés dans des systèmes magnétiques modèles, tel que les modèles
d’Ising ou XY. Par contre, les approches expérimentales ont toutes été réalisées dans des systèmes
fluides, tels que des mélanges binaires ou de l’hélium IV proche de la transition superfluide.

Une motivation de ce travail a été de chercher a résoudre cette situation paradoxale en
proposant, d’une part, un protocole expérimental pour la mesure de la force de Casimir dans une
couche mince magnétique et, d’autre part, une approche numérique dans un mélange binaire de
type Lennard-Jones. Cette dernière approche présente l’avantage d’ouvrir la porte à des études
des fluctuations de la force de Casimir ou encore hors-équilibre.
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10 CHAPTER 0. RÉSUMÉ - ABSTRACT

Abstract in the language of Shakespeare

Approaching a critical point, the divergence of the correlation length of fluctuations can be cut-off
by a confinement of the system. This truncation fosters finite size effects with universal features
in a class of continuous phase transitions.

We are particularly interested in the Ising universality class, regrouping transitions such as
the ferromagnetic/paramagnetic transition for uniaxial magnetic systems, the liquid/gas tran-
sition and the demixing of binary mixtures. We will first present an introduction to critical
phenomena, universality, finite-size scaling and Monte Carlo simulations of the Ising model, on
which a major part of this work relies.

A finite size effect that has particularly drawn attention in the past decades is the critical
Casimir force. On the one hand, theoretical and numerical works on the subject have almost
systematically been performed in magnetic model systems, such as the Ising or XY models.
On the other hand, experimental approaches were all realized in fluid systems, such as binary
mixtures or helium IV close to the superfluid transition.

A motivation of this work was to bridge this gap by proposing, firstly, an experimental
protocol for measuring the critical Casimir force in a magnetic layer and, secondly, a numerical
approach in a Lennard-Jones binary mixture. The latter is of particular interest as it could lead
the way to studying fluctuations of the Casimir force or out-of-equilibrium phenomena.



Introduction and Outline

A phase transition is characterized by a singular behavior. The most commonly known singu-
larities are discontinuities in extensive first derivatives of the free energy. In the case of a first
order liquid/gas transition, the volume or the number of particles, thus the density, is discontin-
uous. In a binary fluid the composition changes discontinuously and in a ferromagnet under a
magnetic field, the magnetic moment displays hysteresis due to a discontinuity in its equilibrium
values. At continuous phase transitions, the singularity lies in second derivatives of the free
energy. For example, the specific heat diverges at the critical point of the liquid/gas phase tran-
sition, demixing of binary mixtures or uniaxial ferromagnets. Moreover, the correlation length
of fluctuations diverges at criticality, one spectacular and famous consequence of this divergence
being the phenomenon of critical opalescence in a fluid. The critical singularities are character-
ized by scaling behavior: the evolution of thermodynamic quantities are dominated by power
laws which can be summed up in scaling forms in which an n variable thermodynamic function
condenses into an n−1 dimensional function of scaled variables. A fascinating feature stemming
from scaling behavior is universality: a universality class is an ensemble of systems, experimental
or model, sharing the exact same universal quantities at criticality, such as critical exponents.
A universality class is characterized by the spatial dimension of the system, the short or long
range character of the interaction and the symmetry of the order parameter. The three above
examples, liquid/gas, uniaxial ferromagnets and demixing of binary mixtures, belong to the uni-
versality class of the Ising model. In the first chapter of this work, we will introduce some
basic knowledge on phase transitions and the very special case of continuous phase transitions.
The most prominent result being that it is possible to extract quantities that are relevant for
critical phenomena in a wide range of experimental systems, from uniaxial magnets to polymer
mixtures, from calculations in the rather simple Ising model.

In the absence of an exact solution of the Ising model in three dimensions, numerical sim-
ulations have been a major, ubiquitous and flexible tool for studying the Ising phase transition.
The second chapter, is therefore dedicated to presenting Monte Carlo numerical simulations
of the Ising model, that formed the basis of most of the present work. At the same time, this will
give us the opportunity to introduce finite size scaling, a theoretical approach fundamental to
the present work, both for numerical and experimental considerations. The scaling behavior we

11



12 CHAPTER 0. INTRODUCTION AND OUTLINE

describe in chapter 1 are observed in thermodynamically large systems. We have stated that a
phase transition is characterized by a singular behavior, but in a finite system no phase transition
can occur as only an infinite number of degrees of freedom can foster a singularity. For example,
in a finite system, the divergence of the correlation length when approaching a critical point will
eventually be cut off as it cannot outgrow the system size. This was first considered as a limi-
tation for numerical simulations as the limitations of computer capacities and algorithms force
one to perform simulations in systems with rather small number of degrees of freedom compared
to experimental setups. At criticality, quantities computed in a finite system will depend on
the size and boundary conditions of the simulation, with values far from their thermodynamic
ones. Finite size scaling is an extension of the scaling hypothesis explicitly taking into account
the new relevant thermodynamic parameter which is the confining size of the system. It is a
powerful tool for the interpretation and exploitation of the thermodynamics of confined critical
systems [1]. It takes advantage out of this size dependency and enables one to extract thermody-
namic quantities, such as critical exponents [2] and universal scaling functions [3] from finite-size
simulations.

Today, the interest in finite size scaling has moved beyond numerical simulations. Confined
phase transitions have been experimentally explored in a great variety of systems [4]: polymer
mixtures [5], superfluid helium [6–9], ferromagnets [10–12], etc. A fascinating finite size effect,
which has been the topic of an abundant literature in past decades [13] is the critical Casimir
force. The first "Casimir" force was predicted by Hendrik Casimir in 1948 [14] as a consequence of
the confinement of quantum fluctuations of the electromagnetic field between two conducting and
uncharged metallic plates in vacuum. Its critical counterpart has been predicted by Fisher and
de Gennes in 1978 [15]. The confinement of critical fluctuations, similarly to the electrodynamic
case, results in the critical Casimir force. The force can be defined in a finite size scaling universal
form and thus will have the same form in a wide variety of phase transitions, inside a universality
class. As this force is a consequence of the confinement of critical fluctuations, we have found
it insightful to study how fluctuations develop in a confined system. We have computed the
probability distribution of the magnetization at the critical point of the Ising model and used
finite size scaling to study the influence of geometry and boundary fields on the form of this
distributions. This will be the topic of the third chapter. The reader eager to know more
about the critical Casimir force itself could pass this chapter and go directly to the following
ones which tackle the most prominent part of this work: reinforcing the bonds between studies
of the Casimir effect, both numeric and experimental, in magnetic and fluid systems.

The universality of the critical Casimir force allows one to compute its universal scaling
function in model systems such as the Ising and XY models, numerical results in these model
proving in very good agreement with experimental measurement in fluid systems [3]. In the
fourth chapter, we will give an introduction to the critical Casimir force, its scaling form
and experimental and numerical approaches. In particular, we will describe a very successful
method for computing the critical Casimir force in the Ising model [3], which inspired many
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elements of the numerical approaches we developed. We will try to emphasis one very important
state of affairs which motived our work on the critical Casimir force: numerical and theoretical
calculations of the critical Casimir force are systematically performed in magnetic model systems
whereas measurements have all been done in fluid systems [5, 6, 13]. We have tried to close this
gap by proposing new approaches to the computation of this force, which are the topics of
chapters five to seven.

On the one hand, we have proposed the first experimental protocol for measuring the scaling
function for the critical Casimir force in a magnetic thin film (D. Lopes Cardozo, H. Jacquin and
P. C. W. Holdsworth, Phys. Rev. B, november 2014 [16]). We have tested this protocol through
simulations of the Ising model, and this will be the topic of the fifth chapter. We believe
this proposal could open the way to very rich experimental studies. Magnetic systems have long
been the paradigm for studying critical phenomena (see for example ref. [17]) and the nano-
engineering of magnetic thin films is particularly well-advanced [18]. Experimental systems [19]
potentially cover a wide range of universality classes, including quantum phase transitions, and
various surface conditions, opening the possibility for a rich variation in universal behavior.

On the other hand, we present preliminary results, obtained in collaboration with Francesco
Puosi (post-doctoral researcher at ENS de Lyon) and Sergio Ciliberto (CNRS, ENS de Lyon), for
the first direct measurement of the critical Casimir force through the simulation of a fluid system,
using a symmetrical binary mixture of Lennard-Jones particles in the Semi-Grand Canonical
ensemble. This will be the topic of the seventh and final chapter. We have made contact
with previous results obtained in the Ising model through measurements of the universal scaling
functions of the excess internal energy but also the excess generalized pressure P̃ = P − nµ,
which we show to be the suitable quantity for a direct measurement of the critical Casimir
force, P being the pressure, µ the total chemical potential and n the total density. We also
obtained results that were not accessible directly to Ising model simulations. We have been able
to distinguish the influence in the critical Casimir force of both the excess pressure and the excess
chemical potential, and related the excess chemical potential to the excess internal energy. In
particular, we predicted and confirmed numerically that the excess pressure is anisotropic in slab
geometry, in which a confining length L⊥ is clearly identified compared to the transverse size
L∥ ≫ L⊥. We believe these preliminary results in Lennard-Jones simulations of binary mixtures
open the way to a great variety of studies, closely related to experimental approaches, such as
measurements of the fluctuations of the critical Casimir force [20, 21], dynamic effects when
performing temperature quenches and out-of-equilibrium effects.

To compare results obtained both in the Ising and Lennard-Jones systems, which belong
to the same universality class, we have estimated the scaling functions of the excess free energy
and excess internal energy in the Ising model, which have attracted far less interest than the
scaling function of the critical Casimir force. This is the topic of chapter six, in which we show
that the relation between excess free energy and the critical Casimir force, can be used to our
advantage to extract the first from the latter. This is of particular interest theoretically as the
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knowledge of the scaling function of the excess free energy gives access to any scaling function
for quantities stemming from it, but also experimentally as the scaling function of the pressure
anisotropy in slab geometry is the sum of the scaling functions of the critical Casimir force and
the excess free energy.

All our numerical efforts benefited from the numerical resources of the PSMN at the ENS
de Lyon [22] and this work was financed by the ERC grant OUTEFLUCOP with principal
investigator Sergio Ciliberto (CNRS, ENS de Lyon). This work was performed during three years
at the Laboratoire de Physique of the ENS de Lyon, under the direction of Peter Holdsworth.



Chapter 1

Phase Transitions and Critical
Phenomena

The most commonly known phases of matter are the the gas, the liquid and the solid. They quite
obviously differ by their macroscopic behavior: a gas tends to occupy all the volume offered, a
liquid flows and a solid keeps its shape. Within these phases, others can be defined: we can
distinguish different kinds of crystalline solids, fluids can be mixtures with complex interactions,
atomic or molecular constituents can bear internal degrees of freedom such as magnetic or electric
moments which can themselves organize in various phases. Some other phases are more subtle
to define, such as the superfluid or superconducting states of matter. In the end, the number of
phases of matter increases with the number of degrees of freedom and seems innumerable.

However, when it comes to continuous phase transitions, the number of different transitions
is greatly reduced thanks to the concept of universality classes. A system undergoing a continuous
phase transition will display singular behavior that has been showed to have universal features
such as critical exponents, which are exactly identical in subsets of transitions, called universality
classes [17]. We focus on the universality class of the Ising model in 3 dimensions, which bears the
name of the simplest model belonging to this class and contains continuous transitions as various
as the liquid-gas, demixing of binary mixtures and, of course, uniaxial magnetic systems. We will
try to justify the predominance of the Ising model in the present work, which is our paradigm,
by introducing theoretical notions on critical phenomena and the concept of universality classes.

1.1 Continuous and first-order transitions

1.1.1 The liquid-gas phase transition

In figure 1.1 we present a sketch of the most common phase diagram separating the solid, liq-
uid and gas states of matter. We focus on the evolution from a liquid to a gas and present

15



16 CHAPTER 1. PHASE TRANSITIONS AND CRITICAL PHENOMENA

three isothermal paths through the phase diagram. The first (blue) one crosses the boundary
separating the liquid domain from the gas domain in the Pressure-Temperature (P-T) diagram
(Fig. 1.1a). This boundary has been represented as a continuous line because if one considers
the corresponding path in the Pressure-Density diagram (P − n, where n=N/V is the number
of particles N per volume V ), the transition will manifest itself by a discontinuous jump from a
liquid of high density nliq to a gas of low density ngas (Fig. 1.1b) at constant pressure P0, fixed
by the temperature T0. If, at pressure and temperature (P0, T0), an external operator imposes
that the overall density of the system takes a value ninter intermediate to nliq and ngas, the
system will separate in two coexisting liquid and gas phases, so that no uniform phase of density
ninter can exist under these conditions.

Figure 1.1: Three isothermal path (colored continuous lines) in a sketch of a liquid-gas phase
diagram with respect to pressure and temperature (a) and pressure and molar volume (b) (the
solid phase is not represented on the latter, and can be considered at the far left). The blue path
represents a first order phase transition, the red one a continuous phase transition and the green
one does not present any phase transition.

The two other isothermal paths (red and green) do not cross the separation line and no
discontinuity in density occurs. This is made possible by the termination of the liquid-gas sep-
aration line at a critical point. The difference in density of the liquid and gas phases vanishes
as the temperature is increased toward its critical value Tc. The "super-critical" region here is
arbitrarily defined as the one in which P > Pc and T > Tc. Starting from the gas phase and
passing through the super-critical region along the green isotherm, one can bypass the critical
point and continue the path towards the liquid phase by changing the temperature (dotted green
line in Fig. 1.1a). It is thus possible to pass from a gas to a liquid phase without discontinuity
in the density. This is made possible by the fact that both phases have the same microscopic
symmetries, whereas a solid will always be separated by a phase boundary from a fluid. The
discontinuity of a phase transition is associated with a change in symmetry, either in configura-
tion, or in geometrical space. The liquid/gas phase transition divides configuration space in two,
between high and low density configurations, while maintaining full translational symmetry in
each sub space. A crystalline solid, however, has reduced translational symmetry compared with
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the two fluid phases, which imposes that the crystalline solid will always be separated from the
two fluid phases by a phase boundary [23].

Though they can seem equivalent in the present representation, the red (T = Tc) and green
(T > Tc) isotherms differ most significantly. The red one is the critical isotherm at T = Tc,
passing through the critical point. At this particular point, the system shows very surprising
behavior. The first of them to be observed was the phenomena of critical opalescence, the fluid
becoming turbid, scattering light of all wave lengths due to massive density fluctuations on all
scales. This was later discovered to be accompanied by a divergence of the specific heat and
isothermal compressibility. None of these singular features can occur along the green isotherm
T > Tc, the particularity of the "super-critical" region being that no value of the thermodynamic
variables (P, T, n) used in the diagrams of figure 1.1 give rise to any singularity.

These considerations lead to the classification of phase transitions, or more precisely of
boundaries between phases, in two classes [23]:

• First-order phase transitions for which one or several extensive first derivatives of the free
energy are discontinuous across the phase boundary. In our example, that is the case of
the volume (or the number of particles, depending on the choice of variables kept fixed)
which leads to a discontinuous density along the blue (T < Tc) isotherm of figure 1.1.

• Continuous phase transitions, for which a second derivative of the free energy is discontin-
uous or diverges. That is the case along the red path of figure 1.1.

In our formalism, a phase transition is not the passing from a phase to the other but the crossing
of a phase boundary, that is to say of a point of non-analytic behavior for the free energy. Even
if we allowed the temperature to drop so that the green path of figure 1.1 rejoined the liquid
phase, no "phase transition" would be considered to occur as we need either to cross the line of
first-order transitions or pass through the critical point to observe a non-analytic behavior.

The critical point gives a natural scale of pressure Pc, temperature Tc and density nc.
Using reduced units (P/Pc, T/Tc, n/nc), we see that all phase diagrams for the liquid/gas phase
transitions of different fluid systems fall on one master curve, Fig. 1.2. This is referred to as the
law of corresponding states and constitutes our first step in the concept of universality, showing
the special importance of critical points. Here, universality is only a consequence of dimensional
analysis, but later, we will develop a more subtle concept of universality, appearing at criticality:
scaling behavior and universality classes.

1.1.2 Line of continuous phase transitions

In addition to the solid, liquid and gas phases, if the constituents of a system bear magnetic
moments they can undergo magnetic phase transitions. For example, in figure 1.3, we sketch
the phase diagram of a system which, in the solid phase, can either present a paramagnetic
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Figure 1.2: Experimental phase diagrams in reduced variables (T/Tc, n/nc) for several fluid
systems: all fall on one master curve. Figure from ref. [24], proceeding from the work of ref [25].

or ferromagnetic behavior, the latter being characterized by a non zero macroscopic magnetic
moment in the absence of magnetic field. The phase boundary of figure 1.3 is represented as a
dashed line as it is a line of continuous phase transitions, to be distinguished from the solid lines,
phase boundaries at which first order transitions occur.

Figure 1.3: Phase diagram of a magnetic material in the absence of a magnetic field: in the solid
phase two magnetic phases, ferro- and paramagnetic, are separated by a critical line.

We will not go any further into the classification of the great variety of possible phase
diagrams [23, 24, 26] but from now on the ferromagnetic-paramagnetic phase transition will be
our paradigm for describing phase transitions and for this purpose we will rely on the Ising
model.
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1.2 The Ising model

1.2.1 Definition of the model

The Ising model is at the heart of this work. It has first been introduced by Ising during his
phD thesis, almost a century ago, to describe the ferromagnetic-paramagnetic transition. A
magnetic system is described here as an ensemble of microscopic spins Si organized on a lattice.
In the present work, only the very simple, but already rich, case of classical spins Si = ±1 on 2-
dimensional square or 3-dimensional cubic lattice will be considered. The spins interact through
a nearest neighbor exchange coupling characterized by a coupling constant J and are submitted
to a magnetic field h. The Hamiltonian of the system reads

H = −J

⟨i,j⟩

SiSj − h

i

Si , (1.1)

where the sum

⟨i,j⟩

runs over all pairs of nearest neighbors and

i

over all spins. Thermal

agitation will tend to give random values to the spin and foster a paramagnetic phase with no
magnetization at h = 0, whereas the nearest neighbor interactions favors alignment of spins and
fosters a low temperature ferromagnetic phase with a non zero magnetization for all value of the
magnetic field, including h = 0.

Despite its great simplicity, the Ising model accurately describes the magnetic phase tran-
sition of many uniaxial magnetic materials [19, 27, 28]. From a theoretical point of view, its
importance goes way beyond the description of those ferromagnetic materials as it is the generic
model for a system with a scalar order parameter. It is the simplest model of the universality
class that bears its name, which also contains the liquid/gas and demixing of binary mixtures
transitions, as we will develop in the following. The Ising model has been solved in 1-dimension
by Ising himself, showing that there is no phase transition at a non-zero temperature in this case.
The solution in 2-dimensions was found by Onsager in 1944 [29], proving the existence of a phase
transition at a finite temperature Tc = 2J/(kB log(1 +

√
2)). Mean-field approaches [24] already

give insights on the nature of the phase transition and its critical behavior and give a quantita-
tive description for dimension 4 and above, d = 4 being known as the upper critical dimension.
Mean field approaches are still widely used today but an exact solution in 3-dimensions is still
lacking. However, extensive theoretical and numerical works [30] have lead to a rather precise
understanding of the critical behavior of the Ising model [4], which is still today at the heart of
many works on critical phenomena.

In the same spirit as Fig.1.2, we present a sketch of the phase diagram of an Ising ferromagnet
in figure 1.4. The thermodynamic variables considered are the temperature T, the external
magnetic field h and the average magnetization per spin ⟨m⟩

⟨m⟩ = ⟨M⟩
N

=
1

N
⟨

i

Si⟩ , (1.2)
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Figure 1.4: Sketch of phase diagrams in the (h, T ) (a) and (h, ⟨m⟩) (b) planes for a ferromagnetic
system. Three isotherms are sketched, displaying a first order phase transition (blue, T < Tc),
a continuous phase transition (red, T = Tc) and not transition at all (green, T > Tc). At
temperatures above the critical value Tc the system is paramagnetic and has a zero average
magnetization in the absence of a magnetic field. At low temperature T < Tc, the system is
ferromagnetic and displays a non zero magnetization ±m0 at zero magnetic field.

with N the number of spins in the system and ⟨.⟩ stands for a statistical average. Three isotherms
are sketched: one (blue) crossing the line of first order transitions (Fig.1.2a) across which the
magnetization discontinuously changes from positive to negative values (Fig.1.2b), the critical
isotherm (red) along which, at the critical point, the specific heat and magnetic susceptibility
diverge, and a super-critical (green) isotherm which displays no phase transition, though the
magnetization goes from negative to positive value, as for the other isotherms. As in the liquid-
gas case, the critical point defines an energy scale kBTc, with kB the Boltzmann constant,
allowing one to define reduced units (h̃ = h/(kBTc), T/Tc) to obtain a unique description of all
Ising magnets, regardless of the internal parameter J .

1.2.2 Ising model and lattice fluids

Let us make the following change of variables for the Ising model [23]:

ni =
Si + 1

2
, (1.3)

so that ni(Si = 1) = 1 and ni(Si = −1) = 0. The Hamiltonian of the Ising model becomes

H = −4J

⟨i,j⟩

ninj − (µ− µc)

i

ni + (Jz − h)N , (1.4)

where the constant term (Jz−h)N is only an energy shift which will not change the equilibrium
properties of the system, so we define

HLG = −4J

⟨i,j⟩

ninj − (µ− µc)

i

ni , (1.5)
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where µ = 2h and µc = 4Jz, describing a lattice gas with short range interactions. The transition
from a positively magnetized Ising model to a negatively magnetized one is thus equivalent to
going from a high density lattice fluid ⟨ni⟩ > 1/2 to a low density one ⟨ni⟩ < 1/2.

We can also convince ourselves that the Ising model could represent a mixture of two species
A (Si = 1) and B (Si = −1). Like particles attract each other (−JSiSj < 0 if Si = Sj) and
unlike particles repel each other (−JSiSj > 0 if Si ̸= Sj). The field h is then a mismatch in
chemical potentials h ∼ µA − µB favoring either A or B particles. A non zero magnetization
corresponds to a rich in A or B phase and a zero magnetization to a mixed phase. Temperature
then drives a demixing phase transition for a symmetrical (as the roles of A and B are equivalent)
binary fluid. Thus, the Ising model is not only a model for uniaxial magnetic systems but is also
a lattice model for fluid systems.

We will often refer to the magnetization as the order parameter. An order parameter is
a characteristic feature of a phase transition, for a continuous phase transition it reflects the
spontaneous breaking of a symmetry in the system between phases above and below the critical
temperature. In the magnetic system the spin reversal symmetry is broken in the equilibrium
phases below Tc, for the lattice gas it is the particle-hole symmetry that is broken, and the A−B

exchange symmetry in the binary mixture. In the absence of conjugate field (magnetic field
h = 0, deviation to the critical value of the chemical potential µ− µc = 0 or chemical mismatch
µA = µB) this is reflected by the change from zero to non zero value of the order parameter,
which in our examples is the magnetization ⟨m⟩, equivalently the deviation to the critical density
n − nc or the fraction in A (equivalently B) particles xA − xc compared to the mixed xc = 1/2

case. For other phase transitions, the order parameter can be difficult to measure, for example
in the case of the liquid-solid transition or the normal fluid/superfluid transition. Depending
on the phase transition, the order parameter can have different symmetries, being a scalar in
the cases of the present section, a vector as in the case of non-uniaxial magnetic systems or the
superfluid transition, or even a tensorial order parameter as in the case of liquid crystals. As we
will see further, this symmetry of the order parameter is an important feature in differentiating
universality classes.

Even though there is an exact mapping between a lattice gas, a lattice binary mixture and
the Ising model, the equivalence between a real gas, a real binary mixture and a real Ising magnet
is not exact. The similarities between the three systems are still quite striking if one considers
the general form of the phase diagrams as presented in figure 1.5. In the case of the demixing
of binary mixtures we present here the case of a high temperature consolute (critical) point,
which compares most easily with the ferromagnetic case. We mention that the mixed phase
can also be a low temperature phase and the demixed region a high temperature one, so that
low temperature consolute points are also possible, and even phase diagrams with two consolute
points, both high and low temperature, are observed. Comparing these three different phase
transitions seems to be only qualitative, the exact mapping being confined to lattice models of
fluids, which clearly can only be sketches of real fluids. We will see that close to the critical
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Figure 1.5: Sketches of three phase diagrams for the liquid-gas (a), ferro-paramagnetic (b) and
demixing of a symmetrical binary mixture (c) phase transitions, displayed together in order to
emphasize their similarity. The reader can see ref. [26] for related discussions.

point, this analogy takes a very deep meaning with quantitative consequences: some quantities
are universal for all these systems, allowing one to extract relevant quantities for all of them
from the sole study of the Ising model. To this purpose, we need to introduce some quantitative
aspects on the theory of continuous phase transitions and scaling at criticality.

1.3 Continuous phase transitions and scaling laws

1.3.1 Free energy and observables

We will first recall some fundamental notions of statistical mechanics. Taking a general approach,
we consider a physical system whose macroscopic behavior is controlled by a set of microscopic
degrees of freedom ϕi, for example, spins for a magnetic system or positions of particles in a
fluid one. The probability of observing a particular realization for the ensemble of the N degrees
of freedom ϕ = (ϕ1, . . . , ϕN ), or microstate, is given by the Boltzmann weight

P [ϕ] ≡ 1

Z
e−κH [ϕ] , (1.6)

where κ is the inverse thermal energy κ = 1/(kBT ), H the Hamiltonian of the system and Z a
normalization factor, the partition function

Z ≡

{ϕ}

e−κH [ϕ] , (1.7)

where {ϕ} denotes the ensemble of all possible microstates (for a classical system of particles, it
is the integral over all positions and speeds of all particles). In principle, the partition function
allows for the calculation of the thermodynamic properties of all phases of the considered body.
The statistical average of an observable O, of value O[ϕ] in a micro state ϕ, is given by

⟨O⟩ ≡

{ϕ}

O[ϕ] P [ϕ] . (1.8)
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We define the free energy as:

Ω = −kBT lnZ . (1.9)

In this work, we focus on the Ising model universality class and thus we will use the formalism of
magnetic systems. The free energy then depends on temperature T , magnetic field h and volume
V of the system. We define magnetic observables such as the magnetic moment

⟨M⟩ = ⟨

i

Si⟩ =
∂Ω

∂h


T

, (1.10)

the order parameter

⟨m⟩ = ⟨M⟩
N

, (1.11)

and the associated susceptibility per spin

χN ≡ χ

N
≡ 1

N

∂⟨M⟩
∂h


T

=
1

N

∂2Ω

∂h2


T

=
κ
N


M2

− ⟨M⟩2


. (1.12)

Nevertheless, we stress on the fact that these are very general quantities with equivalent coun-
terparts in fluids, as we have already mentionned in the previous section. For example, the
order parameter for a liquid-gas phase transition is built from the density, which we define in
the Grand-Canonical ensemble (T, V, µ) in a similar way to the magnetization per spin

n =
⟨N⟩
V

= − 1

V

∂Ω

∂µ


T,V

, (1.13)

and the corresponding "susceptibility" being [23]

n2κT =
1

V

∂ ⟨N⟩
∂µ


T,V

=
κ
V


N2

− ⟨N⟩2


, (1.14)

with κT the isothermal compressibility, more naturally defined in the isothermal-isobar (N,P, T )

ensemble

κT = − 1

V

∂V

∂P


N,T

. (1.15)

To conclude these very general notions of statistical mechanics, we stress on the fact that if
one divides a system of very large volume in two subsystems, when the volume is sent to infinity,
the surface contribution between the two subsystems will become negligible with respect to the
overall free energy, as well as contributions coming from the outer limits of the system. In this
case, the free energy becomes extensive and is thus proportional to the volume of the system:

Ω(T, h, V ) ∼
V→∞

V kBTωbulk(T, h) , (1.16)

where ωbulk is the free energy per unit volume expressed in units of kBT , that we will refer to
as the thermodynamic limit or bulk free energy.



24 CHAPTER 1. PHASE TRANSITIONS AND CRITICAL PHENOMENA

1.3.2 Critical exponents and scaling relations

We have seen that the order parameter vanishes at a continuous phase transition. Experimentally,
it is observed that this behavior is controlled by a power law

⟨m(T, h = 0)⟩ =
T→T−

c

m0|t|β , (1.17)

at zero magnetic field, defining the order-parameter exponent β and a dimensionless reduced
temperature

t ≡ T − Tc

Tc
. (1.18)

Scaling behavior for observables are characteristic of the singular behavior of systems undergoing
continuous phase transitions. The susceptibility per spin diverges at the transition:

χN (T ) =
T→Tc

χ±
0 |t|−γ , (1.19)

as well as the specific heat at constant volume and constant magnetic field

Cv(T ) =
∂ ⟨H ⟩
∂T


V,h

= −T
∂2Ω

∂T 2


V,h

=
T→Tc

C±
0 |t|−α , (1.20)

defining the exponents γ, α and the scaling amplitude C±
0 , χ±

0 , taking + value when approaching
the critical point from above and − from below.

At criticality, the fluctuations of the order parameter become macroscopic (we mentioned
the phenomenon of critical opalescence as a consequence of the fluctuations of density in a critical
fluid). The fluctuations are correlated on a typical length ξ which can be defined using the order
parameter correlation function [24, 30]

G(i, j, T, h) = ⟨(Si − ⟨m⟩) (Sj − ⟨m⟩)⟩ , (1.21)

which, for temperatures far above the critical value, takes the Ornstein-Zernike form [31, 32]

G(r) ∝
r→∞

r−(d−1)/2e−r/ξ . (1.22)

At the critical point, ξ diverges as

ξ(T, h = 0) =
T→Tc

ξ±0 |t|−ν , (1.23)

which defines the correlation length exponent ν and it is observed at the critical temperature
that [31, 32]

G(r;Tc, h = 0) ∼
r→∞

r−(d−2+η) , (1.24)

where d is the dimension of the space and η a new critical exponent. Instead of working at h = 0,
one can work precisely at T = Tc with a non-zero homogeneous magnetic field h. In that case,
scaling behavior occur with respect to the field, such as

⟨m(Tc, h)⟩ =
h→0

m±
0,h|h|1/δ . (1.25)
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Two of the scaling exponents are independent, as many as the two relevant thermodynamic
variables t and h. All other exponents can then be deduced using scaling relations which relate
all exponents one to each other. We list scaling relations here, along with their usual names

Fisher γ = ν(2− η) ,

Rushbrooke α+ 2β + γ = 2 ,

Josephson νd = 2− α ,

Widom γ = β(δ − 1) .

(1.26)

The Josephson hyperscaling relation, which introduces the spatial dimension into the relations,
is not always valid and breaks down above the upper critical dimension dc at which mean-field
becomes relevant (dc = 4 for the Ising model).

1.3.3 Scaling hypothesis

We separate the free energy by unit volume in an analytic ωa and a leading non analytic part ω0
s

ωbulk = ωa(T, h) + ω0
s(t, h̃) , (1.27)

The magnetization, susceptibility and specific heat stem from the free energy and thus their
singular behavior should be contained in its singular part. The scaling hypothesis, first proposed
by Widom on a phenomenological basis, is to consider that all scaling behaviors and scaling
relations can be summed up by defining scaling functions, such as F±,G for the singular part of
the free energy and for the correlation function [23, 24]

ω0
s(t, h) = |t|2−αF±


h

t∆


,

G(r;T, h) = r−(d−2+η)G


r

ξ
,
h

t∆


,

(1.28)

defining the gap exponent ∆. The scaling hypothesis thus predicts that an n variable ther-
modynamic function condenses into an n − 1 dimensional function of scaled variables. The
dominant singular contribution to the observable, giving their scaling behavior, can be derived
from Eq.1.28, for example

⟨m(T, h = 0)⟩ ∼ ∂ω0
s

∂h


T
(T, h = 0) = |t|2−α−∆F ′

±(0) ∝ |t|β ,

χ(T, h = 0) ∼ ∂2ω0
s

∂2h


T
(T, h = 0) = |t|2−α−2∆F ′′

±(0) ∝ |t|−γ ,

(1.29)

relating ∆ with the exponents we defined perviously β = 2−α−∆ and −γ = 2−α−2∆, leading
to the Rushbrooke equality α+2β+γ = 2. In the same way, the power law behavior and scaling
relations we have defined in the previous section can be deduced from Eq.1.28 (see ref. [24]),
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except for the Josephson relation. The derivation of the Josephson (or hyperscaling) relation
is more controversial. The simplest way to see it is to say that, at very large scales and finite
correlation length, the free energy is expected to be the sum of the free energy of all sub-volumes
of size V/ξd, extensivity, lost due to the macroscopic correlation length, being recovered for scales
above the correlation length. Thus we would expect with this argument that:

Ω(T, h = 0) ∼
t→0

V

ξd
∝ V |t|νd , (1.30)

which, combined with Eq.1.28 gives the Josephson relation of Eq.1.26.

The scaling hypothesis can be experimentally tested. For example, the magnetization scaling
form ⟨m(T, h)⟩ = |t|βF ′

±(h/t
∆) shows that an experimental test of the scaling hypothesis is to

verify that m
tβ

is indeed a function of h
t∆ , whatever the couple (T, h) at which the magnetization

is measured. This has been verified in many systems and we present in figure 1.6 an example of
experimental realization in EuO [33].12 FARADAY ROTATION NEAR THE CURIE POINT OF EuO 5257

For each measured rotation, the corresponding
M and H were calculated using Eqs. (3) and (13).
Figure 2 shows a plot of m~ vs h/m for nine iso-
therms. The critical exponent P along the coexis-
tence curve was obtained by extrapolating the data
below T, to zero internal field. The temperature
dependence of the spontaneous magnetization m
was fitted to the expression

I 50—

I I I I I I I I I I I I I I

m = a(- f)'.
The resultant parameters are

P=O. 370a0. 006,
B= 1.10a 0.04,
T, = 69.104a 0.02 K.

(14)

(16)

IOO-+

l

II 50—

h = c&m+ c3m-+ c5m + ~ ~ ~,5 (16)

Knowing P and y, the scaling hypothesis can be
checked by plotting h = h [ t [ ~~'"' as a function of
m =I ) ti ~ for all the data. As shown in Fig, 3,
all the data fall on a universal curve with two
branches, one for t & 0 and one for t & 0. Analyticity
of the equation of state requires the following ex-
pansion to hold near the critical isochore ~:

I0 0 0.4 0.8 I.2 1.6 2.0 2.4 2.8
rn = m// —-If p

Tc

FIG. 3. Universal plot of scaled magnetic field vs
scaled magnetization.

or, equivalently,

h=c&mt" +c3m t" +cpm t" + ~ ~ ~

We find the t & 0 branch of Fig. 3 up to Bz = 2.0 can
be fitted by the first three terms of Eq. (18), with
the coefficients c& = 2.49+ 0.10, c3= 2. 53+0.18,
and c5 = 0.96.+ 0.24.

IV. PARAMETRIC EQUATIONS OF STATE

We have fitted the data to the parametiric equa-
tions of state proposed by Schofield~a'~9 and by Ho
and Litster. The comparison is more extensive
and conclusive than previous attempts, ~' and pro-
vides values of coefficients that would be useful in
future applications in which a concise knowledge of
the static critical behavior of EuO is required.
The first parametric equation (PEl), called the

linear model, has the form

O. l 6

O. I 4

O. I 2

h=a, 8(I —8')r'+"
t=(1-bq8 )r,
m=m(8)r~,

where

(20a)

(20b)

(20c)

O. IO

fTl

0.08

0.06

0.04

(20d)

(20e)
In PE1, the parameter r is a direct measure of the
specific heat C~ at constant magnetization. Using
the values of P andy obtained in Sec. III, a least-
squares fit of the data to Eq. (20) yielded the opti-
mum coefficients
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k~ = 1.025.
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FIG. 2. Magnetization rn as a function of internal field
k along nine isotherms.

A comparison of the experimental function m (8)
with Eq. (20d) is shown in Fig. 4. As a consistency
check, we have calculated the coefficients mentioned
in Sec. III in terms of the constants obtained in PE1.

Figure 1.6: Magnetic equation of state in EuO, a classical Heisenberg ferromagnet. This is an
experimental verification of the scaling hypothesis in a magnetic system: whatever the couple
(t, h) at which the magnetization was measured, all points fall on a master curve if one plots m

tβ

as a function of h
t∆ . Figure from ref [33] (see also ref. [24]).

1.3.4 Origin of the scaling hypothesis

The divergence of the correlation length at the critical point means that fluctuations can exist
on all length scales, from the microscopic to the macroscopic. Consequently, the fluctuations will
be the same on all length scales and the organization of the order parameter will be self similar
(except of course, if we look at length scales of the order of the microscopic distance separating
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Figure 1.7: Snapshot of an Ising 2D system close to its critical point obtained by Monte-Carlo
simulation. Blue and green points represent spins pointing up and down. Zooming on a random
region of the configuration, we emphasize its self similarity.

the components of the system). This self similarity can be seen by zooming in or out of snapshots
of our system: in figure 1.7, we display a snapshot of the Ising model in 2 dimensions close to
its critical point, obtained by Monte Carlo simulations, and show that a zoom on a random
region of the system looks very much like the total system itself. A consequence of this self
similarity, first proposed by Kadanoff, whose ideas led to the formalism of the renormalization
group introduced by Wilson, is that, approaching the critical point, any thermodynamic function
obeys a homogeneity relation in which t and h are rescaled [24]. In the case of the singular part
of the free energy this reads

ω0
s(t, h) = ℓ−df±(ℓytt, ℓyhh) , (1.31)

with a different function f above (+) and below Tc (−). This leads to the scaling hypothesis
function when choosing ℓ = t−1/yt and yt = 1/ν, yh = ∆/ν

ω0
s(T, h) = |t|νdf± 1, t−∆h


= |t|2−αF±


h

t∆


. (1.32)

The same arguments, in a more general framework allowing for non uniform magnetic fields,
leads to the scaling form of the correlation function [23].

1.3.5 Universality classes

Critical exponents and certain amplitude combinations such as the ratio ξ+0 /ξ
−
0 are universal.

They take the same value in a variety of systems which form a universality class (for a review
on critical phenomena, see ref. [4]). Actually, scaling functions such as F±, and thus F ′

±, are
themselves universal, to within non universal amplitudes affecting the amplitude of the function
and the scaling variable [34], so that

F±(
h

t∆
) = A1W±(A2

h

t∆
) , (1.33)

defines a fully universal function W±, A1 and A2 being non universal factors.
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A universality class is characterized by the spatial dimension of the system, the short or long
range character of the interaction and the symmetry of the order parameter. By short range of
interactions concerning critical phenomena, which is the case we are interested in, one means
that the typical interaction potential in a system decays faster than r−(d+2) for r → ∞, with
r the separation between components of the system [26]. This is a stronger assumption than
requiring the existence of a stable equilibrium which imposes the potential to decay at least as
fast as r−(d+1). The origin of universality can be formalized in the framework of renormalization
group theory [23], which gives a theoretical background to scaling behavior and allows for the
calculation of critical exponents and amplitudes. The universality class of the Ising model,
bearing the name of its simplest member, regroups uniaxial ferromagnets, the liquid/gas phase
transition and demixing of binary mixtures, involving the breaking of a Z2 symmetry. As we
announced at the beginning of this chapter, the analogies we presented between these three
systems take a quantitative meaning at criticality. No formal equivalence exist between systems
undergoing a continuous liquid/gas transition, demixing of binary mixtures and the Ising model,
yet they belong to the same universality class and their singular critical behaviors are described by
the same universal quantities. We could add other experimental systems to the list of members
of the Ising universality class, as reviewed in ref. [4], but we will mainly be interested in the
present work by uniaxial magnetic systems and liquid binary mixtures.

mean field 2D Ising 3D Ising 3D XY

α 0 0 0.110(1) -0.0146(8)

β 1/2 1/8 0.3265(3) 0.3485(2)

γ 1 7/4 1.2372(5) 1.3177(5)

δ 3 15 4.789(2) 4.780(2)

ν 1/2 1 0.6301(4) 0.67155(27)

η 0 1/4 0.0364(5) 0.0380(4)

2−α
νd 4/d 1 1 1

ξ+0 ; ξ−0 1/
√
2 ; 1/

√
8 0.501(2); 0.243(1) 0.498(2) ; undefined

κc
1
2 log(1 +

√
2) 0.2216544(3) 0.45420(2)

Table 1.1: Critical exponents of different bulk universality classes. Estimates for critical expo-
nents in the Ising 3D universality class were taken from ref. [4] and for the 3D XY from ref. [35].
Correlation length amplitudes and critical temperatures were taken from ref. [3, 36, 37]. Zero
exponents, such as α = 0 in mean field and 2D Ising, signifies a logarithmic divergence.
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Scaling is observed in mean-field solutions, such as the van der Waals model of fluids or
the Bragg-Williams mean-field theory of ferromagnetism [24] and mean-field solutions form a
universality class. Of course, as we know, mean-field is expected to break down if we get too
close to a critical point and fluctuations become the predominant feature of the transition, but
it is possible to observe a crossover between mean-field scaling behaviors and non-mean field
behavior when approaching the critical point and some systems prove to be experimentally well
described by mean-field behavior [38].

A universality class that we do not study in detail in this work but that we will mention
often is the XY model universality class. The XY model is a model for magnetic systems of
Hamiltonian

HXY = −J

⟨i,j⟩

S⃗i.S⃗j −

i

h⃗.S⃗i , (1.34)

with two components spins S⃗i = (Sx
i , S

y
i ) of unit-length ∥S⃗i∥ = 1. The importance of this

universality class to us is that it contains the normal fluid/superfluid continuous phase transition
which led to spectacular agreement between theoretical and experimental works on the critical
Casimir effect (see chapter 4).

In table 1.1, estimates of critical exponents and amplitudes of the correlation length for
mean-field, 2D Ising, 3D Ising and 3D XY universality classes are reviewed. All scaling behavior
is defined with positive exponents, so that specific heat, magnetic susceptibility and correlation
length diverge at the critical point, except for the specific heat in the 3D XY universality class
which displays a cusp form with α = −0.0146(8).

1.3.6 Corrections to scaling

The scaling hypothesis is only true asymptotically close to the critical point. Corrections to scal-
ing are thus observed when approaching the critical behavior, which goes to zero when approach-
ing close enough to (T = Tc, h = 0). For example, the scaling function for the susceptibility [23]

χ(T, h) = |t|−γF ′′
±(

h

t∆
, K̃3t

−νy3) , (1.35)

can encompass an irrelevant scaling field K̃3. The notion of scaling field comes from renormal-
ization group theory and describes interaction in the system which are taken into account during
renormalization. K̃3 is called irrelevant as it is associated with an exponent y3 < 0, so that
K̃3t

−νy3 →
t→0

0, and we approach the scaling hypothesis of the form of Eq.1.28 close enough to
Tc. For small value of t and at h = 0, Eq.1.35 can be developed with respect to the irrelevant
field

χ(T, h = 0) = |t|−γ(A± +B±K̃3t
−νy3 + . . . ) , (1.36)

with A±, B± non-universal amplitudes, so that the power law |t|−γ is indeed the dominant
behavior close to Tc but it might be necessary to take t−νy3 into account if one wants to extract
critical exponents from measurements.
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1.4 Conclusion

We have presented some standard aspects of the theory of critical phenomena and the concept of
universality classes. Universality classes are of great importance for the theoretical and numerical
study of critical phenomena: one can use the rather simple Ising model to compute universal
quantities relevant not only to uniaxial ferromagnets but to fluid systems at the liquid/gas
continuous transition and to the demixing of binary mixtures.

As we mentioned, an exact solution of the Ising model in 3-dimensions is still lacking but
numerical simulations provide an ubiquitous and powerful approach for studying this system and
has been for decades at the heart of many works on critical phenomena. However, numerical
simulations require the study of rather small systems compared to experimental set-ups. In
the present chapter we have developed critical phenomena at the thermodynamic limit, but we
will see that scaling behavior can be studied in finite size systems and actually leads to new,
experimentally relevant, phenomena.



Chapter 2

Simulation of Critical Phenomena and
Finite Size Scaling

Numerical simulations provide an ubiquitous and powerful approach for studying the Ising model
and haves been for decades at the heart of many works on critical phenomena. The limitations
of computer capacities and algorithms force one to perform simulations in systems with, rapidly
growing, but still rather small number of degrees of freedom compared to experimental setups. At
criticality, quantities computed in a finite system will depend on the size and boundary conditions
of the simulation, with values potentially very different from those in the thermodynamic limit.
Finite-size scaling is a powerful tool for the interpretation and exploitation of the thermodynamics
of confined critical systems [1] as it takes advantage of this size dependency and enables one to
extract thermodynamic quantities, such as critical exponents [2] or universal scaling functions
[3, 34]. In this chapter, we will present basic concepts of Monte Carlo simulation of the Ising
model and show how the simulation of finite-size critical systems leads to the extension of the
scaling hypothesis developed previously into the concept of finite-size scaling.

2.1 Monte Carlo simulations of the Ising model

2.1.1 The Metropolis and Wolff algorithms

The principle of Monte Carlo simulations is to numerically estimate observables by exploring the
phase space of a system, that is to say, in the case of the Ising model, exploring spin configurations.
Of course, exploring exactly the entire phase space, and thus exactly computing the partition
function of a system

Z(T, h) =

{Si}

e−κH ({Si}) , (2.1)

31
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where κ = 1/(kBT ) and

{Si}

means a sum over all configurations of spins, would provide an

exact solution to our problem but can only be performed in very small systems in a reasonable
amount of time. Thus, one must estimate the average values of observables on a subset of
randomly generated configurations, this being the basis of Monte Carlo simulations (the name
"Monte Carlo" being a reference to the games of chance of Monaco’s Casinos). As it is clear
from the form of the partition function, a configuration has an impact on the thermodynamics
of the systems associated with the Boltzmann weight e−κH ({Si}) and some configurations will
have a much greater importance than others. To efficiently explore the phase space, on must take
this weight into account when sampling configurations, this being referred to as the concept of
importance sampling. We will not enter into technical demonstrations but a simple, yet efficient,
importance sampling method is the Metropolis algorithm, which is widely used in a great variety
of numerical simulations [2, 39]. In the Ising model, the basic rule for the algorithm is simple:
a configuration of the spin system is updated by choosing at random a spin Si, which will be
flipped with a probability related to the change in energy associated with the flipping

∆E(Si → −Si) = 2Si

J


j∈nn(i)

Sj + h

 , (2.2)

where nn(i) represents the list of nearest neighbors of the ith spin. This probability reads

pmetro(Si) = min

1, e−κ∆E(Si→−Si)


, (2.3)

being 1 if flipping the spin is energetically favorable (∆E(Si → −Si) < 0) and e−κ∆E(Si→−Si)

which ranges from 0 to 1 otherwise. A Monte Carlo step is defined, in a system composed
of N spins, by selecting N times a random spin and flipping it with probability pmetro. This
ensures that, in principle, the system can be updated from any possible configuration to any
other in one step. The algorithm generates an ergodic random walk through configuration space.
This random walk satisfies detailed balance, that is to say the constraint that the probability
P (µ → ν) for going from a state µ to a state ν is related to the probability of taking the reverse
path by

P (µ → ν)

P (ν → µ)
= e−κ(Eν−Eµ) , (2.4)

with Eν − Eµ the difference in energy between states µ and ν. This condition ensures that in
the limit of large times configurations are generated according to their Boltzmann weight.

As we are interested in critical phenomena, we are concerned by reducing the impact of an
effect called critical slowing down. Close to the critical point, the auto-correlation time τ , that
is to say the typical number of Monte Carlo steps required to generate a configuration of spins
decorrelated from an original configuration, diverges as [2]

τ ∼ ξz , (2.5)
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with z > 0 a critical exponent and ξ the correlation length which we have already shown to
diverge at the critical point. Equivalently, this means that the quantity of new information
brought by updating a spin configuration using one Monte Carlo step becomes decreasingly low
as we approach the critical point. Thankfully, the exponent z depends on the algorithm and
their exist algorithms which prove much more efficient than Metropolis at criticality, displaying
smaller values of z.

We have used the Wolff algorithm [40] which considerably reduces the effect of critical
slowing down in the critical region. The Wolff algorithm is a cluster algorithm, it is based on
building clusters of spins and flipping them collectively instead of flipping each spin individually.
At zero magnetic field, the algorithm can be summed up as [2]:

• pick a seed spin at random: it is the first element of the cluster. Only spins of same sign
will be allowed to be included in the cluster,

• include in the cluster nearest neighbors of the seed spin with probability Padd = 1− e−2κJ ,
if they have the same sign than the seed spin,

• for each spin newly added to the cluster, include in the cluster its nearest neighbors with
probability Padd, if they are not already in the cluster and if they have the same sign than
the seed spin,

• iterate until all possible new inclusions are rejected,

• flip the cluster.

Like the Metropolis algorithm, the Wolff algorithm is both ergodic and satisfies detailed balance.
Figure 2.1a) shows a typical cluster of the Wolff algorithm, generated in a 2D Ising system close
to the critical temperature. The average size of the clusters generated by the Wolff algorithm
⟨C⟩ depends on temperature, Fig 2.1b). At very high temperature, Padd ≈ 0, so clusters are
only composed of the seed spin, and the update is made just by flipping at random a spin
in the system, resulting in the expected completely disordered high temperature state. For
T > Tc, the number of spins in a cluster of the Wolff algorithm is actually directly related to
the fluctuations of the magnetization as


m2

= κ ⟨C⟩ /N . At very low temperature, Padd ∼ 1,

so that ⟨C⟩/N → 1 and clusters are spread over the entire system. As expected, the very low
temperature region sees uniformly ordered systems ⟨m⟩ → ±1. The Wolff algorithm does not
break the magnetization reversal symmetry, a single update at very low temperature will flip the
entire system at once, so that the algorithm is fully ergodic. This is a rather consuming strategy
in terms of computation time and in this region the Metropolis algorithm, though equivalent
in principle, tends to outperform the Wolff algorithm by way of its implementation simplicity.
Hybrid algorithm using both Wolff and Metropolis updates can thus prove very efficient. In
principle, for the Metropolis algorithm, flipping the entire system at very low temperature is
possible, but as flipping a single spin in the almost completely ordered phase has a very low
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Figure 2.1: a) Snap shot of a 2D Ising model close to the critical temperature, at zero magnetic
field. Blue and green dots indicate spins pointing up and down, and white dots the cluster flipped
by the Wolff algorithm. b) Mean size ⟨C⟩ of the clusters generated by the Wolff algorithm, at
zero magnetic field for a 3D Ising model of volume L3 with L ∈ [15, 30, 45, 60]. Vertical line gives
the location of the bulk critical temperature.

probability, the number of updates required for flipping the entire system diverges, and ergodicity
is broken, as is the case for an experimental system.

We have said that a Monte Carlo "step" using the Metropolis algorithm must be defined
by N updates using the algorithm, so that the entire system can in principle be modified each
step. In the case of the Wolff algorithm, a Monte-Carlo step was defined by first computing the
mean size of clusters generated by the Wolff algorithm ⟨C⟩ at each temperature and h = 0. One
Monte-Carlo step is then composed of N/⟨C⟩ calls to the Wolff algorithm, so that, on average,
N spin flips are performed each step.

To include a magnetic field, uniform or not, using the Metropolis algorithm is quite straight-
forward (Eq.2.2 and 2.3) but the Wolff cluster algorithm has been explicitly build in the absence
of magnetic field. To include one, spin clusters are created in the same way as for the cluster
algorithm at zero magnetic field but the clusters are no longer systematically flipped [41–43]. A
first method is to add a "heat bath" step after constructing the cluster, choosing to flip it or not
with a probability related to the change in energy ∆E = 2h


i∈C

Si associated with flipping the

C spins of the cluster in the magnetic field. This can become a very time consuming strategy
as cluster are entirely built prior to choosing to flip them, while they might end up updating
no spin at all. We chose to use the ”ghost spin” method [41, 42] in which each spin of a cluster
can be linked to a ghost spin of fixed value Sghost = +1 representing the magnetic field h. The
probability of coupling a spin S belonging to the cluster to the ghost spin is 1−e−2βSh if Sh > 0

and 0 otherwise: any cluster linked at least once to the ghost spin is left unflipped. Each time a
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spin is added to a cluster it is possible to test whether this spin couples to the ghost spin or not.
In the case that it does, the growth of the cluster is stopped to save computational time.

2.1.2 Observables and scaling

The configurations generated using the Wolff algorithm do not break the spin reversal symmetry
in the absence of a magnetic field. Thus, the average magnetization per spin ⟨m⟩ is zero for
all temperatures at zero magnetic field (this is also true in principle for sufficiently long runs
using solely the Metropolis algorithm), unlike experimental magnets in which the symmetry is
spontaneously broken. Consequently, the observable ⟨|m|⟩ (which is equivalent to ⟨m⟩ in the
thermodynamic limit) better represents the symmetry breaking order parameter in this case, as
it does signal the phase transition with the limit cases ⟨|m|⟩ →

T→∞
0 and ⟨|m|⟩ →

T→0
1. We use

fluctuation relations to compute the specific heat

Cv(T ) = Nc(T ) =
∂ ⟨H ⟩
∂T


h

= kBκ2


H 2

− ⟨H ⟩2


, (2.6)

with c(T ) the specific heat per spin, and the magnetic susceptibility

χN (T ) =
χ

N
=

1

N

∂ ⟨M⟩
∂h


T

=
κ
N


M2

− ⟨M⟩2


, (2.7)

As for the order parameter, instead of the above definition of χ we use

χ̃(T ) =
κ
N


M2

− ⟨|M |⟩2


, (2.8)

to ensure that χ̃ →
T→0

0, whereas χN (T ) ∝

M2


→
T→0

1 will not be peaked around Tc [30].

Figure 2.2 displays some results for observables in a 3D Ising model on a cubic lattice of
volume L3 with L ∈ [15, 30, 45, 60]. We display the magnetization both at h = 0 as a function
of T and at T = Tc as a function of h, the susceptibility at h = 0 and the specific heat at
h = 0. It is clear that the finite size of the system has a tremendous influence on the results and
that we are far from obtaining the behavior of the observables expected in the thermodynamic
limit. Typically, the magnetization ⟨|m|⟩ does not go to zero at Tc and the specific heat and
susceptibility do not diverge. A genuine phase transition, that is to say displaying a singular
behavior, can only occur in a thermodynamically large system. In a finite system, the number
of degrees of freedom is finite and the mean value of observables results from an average over a
finite number of analytic quantities and can thus only have an analytic behavior. When taking
the thermodynamic limit, the number of degrees of freedom goes to infinity and singular behavior
is thus possible.

Nevertheless, the scaling behavior expected at the thermodynamic limit can still be observed
in finite systems, for which we provide evidence using a logarithmic scale in figure 2.3. We display
(black dashed lines) the power law behaviors described in chapter 1 for the magnetization, the
susceptibility and the specific heat, using estimates from the literature (see table 1.1) for the
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Figure 2.2: Magnetization at zero magnetic field (a) and at T = Tc as a function of h (b)
for a 3D Ising model of volume L3 with L ∈ [15, 30, 45, 60]. Specific heat per spin (c) and
susceptibility (d) at zero magnetic field for the same systems. Vertical line gives the location of
the bulk critical temperature, using an estimate from literature (see table 1.1 and ref. [36]).

exponents and a fit for the amplitudes. For the magnetization and the susceptibility, the data
are clearly coherent with the bulk (thermodynamic) scaling behaviors, but only for intermediate
values of t or h. Too close to (t = 0, h = 0), the divergence of the correlation length is cut-off
by the finite size of the system and observables deviate from the thermodynamic power law
behavior. Of course, as observed in figure 2.3, the region, centered on (t = 0, h = 0), on which
finite-size effects are dominant decreases with increasing system size.

In the case of the specific heat, the small value of the exponent α = 0.110(1) makes its
divergence rather weak. Consequently, finite-size effects are more dramatic and the present
system sizes do not allow one to identify clearly the power law behavior (Fig. 2.3d). This
illustrates the limitations due to the finite size of lattice simulations. Of course, the failure of
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Figure 2.3: Magnetization at zero magnetic field and t < 0 (a) and at t = 0 and positive
magnetic field (b), susceptibility (c) and specific heat per spin (d) of a 3D Ising model of
volume L3 with L ∈ [15, 30, 45, 60], logarithmic scale. For the susceptibility, the behaviors for
t > 0 and t < 0 are both displayed. Typically, the scaling amplitudes C±

0 , χ±
0 are expected

to be different regarding the sign of t. The black dashed lines show power law behaviors using
estimates from the literatures (see table 1.1) for the exponents and a fit for the amplitude. In the
absence of a magnetic field: χ ∝ |t|−γ , Cv/N ∝ |t|−α, ⟨|m|⟩ ∝ |t|β . At the critical temperature:
⟨|m|⟩ ∝ |h|1/δ.

this approach is related to the rather small system size used and we could have pursued our quest
for the scaling exponent α by increasing the system size. Moreover, the way we have highlighted
scaling behavior in figure 2.3 is only illustrative. If we had not used our prior knowledge on power
law behaviors in the Ising model, the rather complex behavior of the observables considered here
close to the critical point would have made the identification of a scaling behavior much more
difficult. Thermodynamic limit scaling will only be valid over a small interval before finite-
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size effects dominates (on the displayed data, we roughly get more than a decade on which the
thermodynamic limit scaling holds, in the best case). Identifying this interval and fitting a power
law through both amplitude and exponent is thus very complicated.

Thankfully, we will see that the size dependency of the observables can be used to our
advantage. As the thermodynamic limit, L−1 → 0 is approached, the singularity at the critical
point is restored. The inverse of the size L−1 can thus be seen as an extra variable to t and
h, with the critical point located at (t, h, L−1) = (0, 0, 0), this statement leading to the concept
of finite size scaling, which can be seen as a generalization of the scaling hypothesis to finite
systems.

2.2 Finite-size scaling

2.2.1 Finite-size scaling of the free energy

In chapter 1, we only considered systems in the thermodynamic limit L−1 → 0, where L is the
linear size of the system, that we implicitly supposed cubic. As we have illustrated in the previous
section, in a finite system the singular part of the free energy has a dependency on the system
size, other than the trivial volumic factor that appeared when defining the bulk free energy

ωbulk(T, h) = lim
L−1→0

Ω(T, h, L)

V kBT
, (2.9)

which by definition is an extensive quantity. We have seen in section 1.3.4 that the scaling
behavior originated in the divergence of the correlation length at criticality. As long as ξ ≪ L,
the finite size of a system should not change its behavior compared to the thermodynamic limit
and bulk behavior is still expected. However, the correlation length cannot outgrow the system
size and if L ∼ ξ, the finite size will cut-off the correlation length, so that L/ξ, with ξ the bulk
critical correlation length, becomes a relevant parameter. We have seen in chapter 1 that at zero
field, ξ = ξ±0 t−ν so that L/ξ ∝ Ltν . At Tc, the bulk correlation length ξ = ξh0h

−ν/(γ+β), so that
L/ξ ∝ Lhν/(γ+β). We will see that indeed, (Ltν , Lhν/(γ+β)) are the relevant finite-size scaling
variables.

A way of looking at the extension of the scaling hypothesis to finite-size scaling is that
a finite number of degrees of freedom cannot give you singular behaviour. Thus, a non-zero
parameter L−1 suppresses the critical singular behavior, just as a non-zero reduced temperature
t or a bulk field h would. The finite-size scaling hypothesis can thus be considered as an extension
of the scaling hypothesis, with an extra variable L−1 to t and h. In chapter 1, we stated that
the scaling hypothesis originated in a homogeneity relation for the singular part of the free
energy ω0

s (Eq.1.31). An equivalent form can be derived taking the new parameter L−1 into
account [23, 24, 26]

ωs(t, h, L) = ℓ−df(ℓytt, ℓyhh, ℓL−1) , (2.10)
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with yt = 1/ν, yh = (γ + β)/ν and a third scaling exponent which rather trivially is yL = 1.
Choosing ℓ = L, we get the finite-size scaling form of the singular part of the free energy

ωs(T, h, L) = L−df(tL1/ν , hL(γ+β)/ν , 1) , (2.11)

which, as for the ω0
s scaling form, is asymptotically true close enough to the critical point

(t, h, L−1) = (0, 0, 0) and is universal to within non universal amplitudes on the scaling vari-
ables [34]. Of course, we expect that, taking the thermodynamic limit, we recover results of
chapter 1, so that

ωs(T, h, L) →
L−1→0

ω0
s(T, h) . (2.12)

where one should be careful in taking the limit L−1 → 0 before (T, h) → (Tc, 0). We can define
the excess part of the free energy per unit volume in units of kBT , which contains the finite size
contribution to the free energy and here amounts to

ωex(T, h, L) ≡
Ω(T, h, L)

V kBT
− ωbulk = ωs(T, h, L)− ω0

s(T, h) . (2.13)

which by definition vanishes in the thermodynamic limit ωex →
L−1→0

0. Here we confine ourselves
to the case of periodic boundary conditions. Further, we will see that with non-periodic boundary
conditions, a surface contribution ωsurf (T, h) has to be taken into account in addition to the
bulk, giving a contribution to the excess free energy. As a consequence, the form of the finite
size scaling function of the excess free energy is modified by the type of boundary conditions
imposed.

2.2.2 Finite-size scaling of observables

Just as we have deduced scaling behavior of observables from the scaling form of the free energy
ω0
s in chapter 1, we can deduce finite-size scaling forms for observables from the finite-size scaling

of the free energy (Eq.2.20)

c = Lα/νcs


tL1/ν , hL(γ+β)/ν


,

Nχ̃ = Lγ/νχs


tL1/ν , hL(γ+β)/ν


,

⟨m⟩ = L−β/νms


tL1/ν , hL(γ+β)/ν


,

(2.14)

which clearly describe the cut-off of diverging quantities and rounding of singular behavior in
general. We can also define a finite-size scaling function for the correlation length

ξ = Lξs


tL1/ν , hL(γ+β)/ν


, (2.15)

which clearly describes the cut-off of its divergence by the finite size of the system, so that ξ ∝ L

at (t, h) = (0, 0), and for ⟨|m|⟩ [44]

⟨|m|⟩ = L−β/νm̄s(tL
1/ν , hL(γ+β)/ν) , (2.16)
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even though they do not directly stem from Eq.2.11. We can test these scaling forms, using
predictions from literature for the critical exponents and the critical temperature (see table 1.1),
by showing that using the reduced form

cL−α/ν = cs(tL
1/ν , 0) ,

Nχ̃L−γ/ν = χs(tL
1/ν , hL(γ+β)/ν) ,

⟨|m|⟩Lβ/ν = m̄s(tL
1/ν , 0) ,

⟨m⟩Lβ/ν = ms(0, hL
(γ+β)/ν) .

(2.17)

we get a collapse on a single master curve of data obtained in systems of different sizes. Fig-
ures 2.4a,b,c) display results obtained in cubic 3D Ising models of volume L3 with L ∈ [15, 30, 45, 60]

for the magnetization and susceptibility, showing a very convincing collapse on a wide range of
temperature and magnetic field. Finite-size scaling is thus a powerful tool for interpreting data
obtained in a finite size system. Rather than trying to identify narrow regions of t and h in
which the bulk behavior is valid (Fig. 2.3), one can take advantage of finite-size scaling forms,
for example to extract critical exponents and the critical temperature, using them as a fitting
parameters to reach the best data collapse.

The collapse of the specific heat c (Fig. 2.4d) appears less convincing, though quite good
close to tL1/ν = 0. To build the finite-size scaling forms of Eq.2.17, we have implicitly assumed
that the singular contribution to the free energy was clearly dominant. This is too strong an
assumption in the case of the slowly diverging specific heat. In general [45, 46]

c(T, h, L) = Lα/νcs


tL1/ν , hL(γ+β)/ν


+ ca(T, h) , (2.18)

where ca is an analytic background. To estimate the effect of this analytic background, we
estimated the value of ca(Tc, h = 0) and cs(0, 0) by a fit to c(Tc, 0, L) as a function of Lα/ν ,
finding ca(Tc, h = 0) = 1.3(3), which compares well with results of ref. [45]. We thus use the
corrected scaling form

(c(T, h, L)− ca(Tc, 0))L
−α/ν = cs


tL1/ν , hL(γ+β)/ν


, (2.19)

in figure 2.4e), greatly improving the data collapse. To improve the collapse even further, one
would need to take into account the dependency of the analytic term on T . Here we will not
develop further this point, which is only meant to be illustrative.

2.2.3 Corrections to finite-size scaling

We have mentionned that finite-size scaling is only exact asymptotically close to the critical
point (t, h, L−1) = (0, 0, 0). Getting away from this point, corrections to finite-size scaling might
become relevant, just as corrections to scaling were for the thermodynamic scaling behavior
(see section 1.3.6). As in the thermodynamic limit, irrelevant fields can enter the homogeneity
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Figure 2.4: Finite-size scaling applied to data obtained in cubic 3D Ising models of volume L3

with L ∈ [15, 30, 45, 60]: magnetization at zero magnetic field (a) and at t = 0 with non zero
magnetic field (b), susceptibility (c) and specific heat per spin (d,e). Data collapse is poor at
the maximum of cL−α/ν , though rather good at t = 0. An analytic background ca to c can be
suppressed (e), improving the collapse. We used estimates from the literatures for the exponents
and critical temperature (see table 1.1).
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relation for the singular part of the free energy density [4]

ωs(t, h, L) = ℓ−df(ℓytt, ℓyhh, ℓL−1, ℓy3K̃3, . . . ) , (2.20)

which give rise to corrections to the finite-size scaling behavior of Eq. 2.11. For example, a high
precision measurement of the critical exponent η using finite size scaling of the susceptibility at
(t, h) = (0, 0) might require one to take corrections into account and use the form [46].

χ = L2−ηχs(0, 0)(1 + b1L
−ω + . . . ) + χa , (2.21)

with χa an analytic background and b1 a non universal amplitude for the leading correction to
scaling L−ω (ω = 0.84(4) in the Ising model [4]).

2.2.4 Apparent critical temperature and Binder cumulant

We have mentioned that the value of the critical temperature Tc could be estimated by using it
as a fitting parameter to obtain the best data collapse of an observable. The critical temperature
being the temperature at which the specific heat (and susceptibility) diverges, one can use the
temperature at which the specific heat (or the susceptibility) is maximum to define an effective
critical temperature Tc(L), clearly depending on L as can been seen in figure 2.2. This apparent
temperature approaches the thermodynamic value of Tc with increasing size as [30]

Tc(L) = Tc + λTL
−1/ν(1 + bTL

−ω) , (2.22)

where λT , bT are model dependent constants, taking into account a correction term L−ω. Using
this form, Tc can be deduced from a fit of Tc(L) as a function of L.

It is also possible to define, using finite-size scaling, a quantity which is independent of L at
Tc such as the fourth order cumulant, or Binder cumulant [30]

U4 = 1− ⟨m4⟩
3⟨m2⟩2 , (2.23)

as both ⟨m4⟩ and ⟨m2⟩2 are proportional to L−4β/ν at Tc in the scaling limit. Thus, the crossing
point of U4 computed in systems of different size L gives an estimate of Tc, see figure 2.5. We see
that the crossing point is very close to a high precision estimate of Tc = 4.511528 found in the
literature (see table 1.1), our best estimate being TBinder

c = 4.5114± 6.10−4. We notice that the
crossing point changes slightly when increasing the size L: the Binder cumulant too undergoes
corrections to scaling [30, 46], which have to be taken into account to increase the accuracy on
the estimation of Tc.

2.2.5 Experimental finite-size scaling

Finite-size scaling is not only a tool for numerical studies. It is experimentally relevant in
magnetic thin films but also in fluid systems. For example, the finite size dependency of Tc(L)
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Figure 2.5: Binder cumulant U4 at zero magnetic field for a 3D Ising model of volume L3 with
L ∈ [15, 30, 45, 60]. Inset: blow up of the crossing region, the vertical line localizes an estimate
of the bulk critical temperature from literature (see table 1.1).

discussed in the previous section has been observed in magnetic thin films and nano-particles
[10–12]. Measurements of finite size effects require that one stabilizes the system sufficiently close
to its critical point for the correlation length to develop up to the system size. For example, in
4He close to a superfluid transition (belonging to the XY model universality class), the critical
end point at which the lambda line of normal/superfluid transitions meet the liquid/gas line of
phase transitions is located at Tλ = Tc = 2.1786K [6] and the correlation length amplitude is
ξ0 = 0.1422(5)nm [9]. Thus, if one achieves a relative precision on temperature t ∼ 10−4, the
correlation length can develop up to ξ = ξ0t

−ν = (10−4)−0.67115×0.1422 nm ∼ 70 nm. This small
order of magnitude gives an idea of the difficulty of measuring finite size effects. Nevertheless,
this particular example has lead to very high precision measurement: for example, successful
finite size scaling analysis of specific heat measurements in confined geometries [7–9].

We will discuss again experimental finite-size scaling in chapter 4, in which we present the
critical Casimir force. The critical Casimir force is fostered by the confinement of critical fluctu-
ations of a medium undergoing a continuous phase transition. It can be seen as a consequence
of finite-size scaling: the free energy density depends on the system size in confined critical
systems (Eq. 2.11), consequently leading to a critical contribution to the pressure. This effect,
first predicted by Fisher and de Gennes in 1978 [15], has been at the heart of many theoretical,
numerical and experimental works for decades (see ref. [47] for a review on the subject). One of
its fascinating features is universality: we can define a scaling function θ for the critical Casimir
pressure

fc = kBTL
−d
⊥ θ


tL

1/ν
⊥ , h̃L

(β+γ)/ν
⊥


, (2.24)

which, like the other scaling functions discussed in this chapter, is universal. In the present work,
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we will be interested in computing this function in the Ising universality class.

2.3 Conclusion

We have seen that in a finite-size system, the divergence of the correlation length is cut-off
by the finite size, resulting in the rounding of singular behavior. This is well captured by the
theory of finite-size scaling, which can be seen as an extension of scaling as it is expressed in
the thermodynamic limit (see chapter 1). Finite-size scaling provides powerful tools to study
critical phenomena in simulations, in which system sizes are quite small due to the limitation
of computational resources. However, it is no longer confined to this role as it is now proving
experimentally relevant in confined critical systems.

In the present work, we are particularly interested in one of these phenomena: the critical
Casimir force. It will be the subject of chapters 4 to 7. In the present chapter, we have solely
studied cubic systems, but we will see in chapter 4 that a convenient and experimentally relevant
geometry to study the Casimir force is the slab geometry, in which a confining dimension L⊥

is clearly identified. We will show in detail how this force is related to finite-size scaling in this
geometry.

Hence, before detailing our work on the critical Casimir force, we have found it relevant
and insightful to study, in chapter 3, how fluctuations develop at the critical temperature in
a confined system. We will make the transition between cubic and slab geometries by putting
the emphasis on the influence of the aspect ratio of a system on the fluctuations of the order
parameter. Moreover, the influence on the fluctuations of fixed boundary conditions in the
confining direction, rather than periodic, will also be studied. We will then see in the following
chapter that the strong influence of boundary conditions on fluctuations in confined geometries
has also a major impact on the form of the critical Casimir force.



Chapter 3

Critical Fluctuations of the Order
Parameter of the Ising Model

In chapter 2, we have seen that the limitations of computer capacities and algorithms makes
simulations system sizes small compared to experimental setups. Finite-size scaling (FSS) is a
powerful tool for the interpretation and exploitation of the thermodynamics of confined critical
systems [1] and has proved to be of experimental relevance, particularly in the case of critical
Casimir forces which are the main subject of this thesis. In the present chapter, we are interested
in the form of fluctuations of the order parameter in confined critical two and three dimensional
Ising models through the scaling behavior of the magnetization probability density. In chapter 2,
we confined ourselves to systems with cubic geometry. However, we will see in chapter 4 that
the slab geometry is more relevant to experimental approaches of finite-size scaling, particularly
in studies of the critical Casimir force, which will be the topic of chapters 4 to 7. Thus, we will
make the transition between cubic and slab geometries by putting the emphasis on the influence
of the aspect ratio of a system on the fluctuations of the order parameter. We will study systems
of dimensions L⊥ × Ld−1

∥ , Fig.3.1, with one confining dimension L⊥ and d − 1 non-confining
ones L∥ ≥ L⊥. Moreover, in chapter 2, we only presented the case of fully periodic boundary
conditions (BC). It is quite intuitive that the presence of boundary fields will deeply influence
the fluctuations. We will study this influence by using fixed (+,±) boundary conditions in the
confining direction z and see that in the slab limit L∥ ≫ L⊥ the probability distribution of the
magnetization tends to a Gaussian form whatever the boundary conditions.

x

yz 3D2D

Figure 3.1: The slab geometry in 2 and 3 dimensions.

45
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3.1 Form of the magnetization probability distribution and

finite-size scaling

At zero magnetic field and far from the critical temperature Tc, that it to say when the correlation
length ξ is small with respect to all system sizes, two regimes can be identified [1, 48]. At a
temperature T much higher than the critical temperature, thermal fluctuations dominate and
the central limit theorem applied to the uncorrelated spins leading to a Gaussian distribution

P (m,T,N) =


N

2πχ(T )
e−Nm2/2χ(T ) (3.1)

for the probability density of the magnetization per spin m, with the magnetic susceptibility
χ being independent of the total number of spins N [30]. At temperatures much lower than
Tc, P (m,T,N) is double peaked, symmetrically around 0, the positions of the peaks are N
independent but their width evolves as N−1/2 [48]. We are interested in the behavior close to
Tc, in between these two limit cases.

The starting point of our finite size scaling hypothesis is the very general statement that for
any distribution Π of a stochastic quantity x

Π(x) = (1/σx)Π̃(x/σx), (3.2)

with σx =

⟨x2⟩ − ⟨x⟩2 the standard deviation, where ⟨.⟩ stands for a statistical average. For

example, this statement is obviously verified if the distribution is a door function for which the
width is

√
12σx and amplitude 1/(

√
12σx) or a Gaussian Π(x) = 1√

2πσ2
x

exp

− x2

2σ2
x


.

In a thermodynamically large system, the correlation length diverges when the temperature
approaches Tc as ξ ∝ |t|−ν with t = T−Tc

Tc
the reduced temperature. In a finite system this

divergence is cut-off by the confining size L of the system and the ratio L/ξ becomes a relevant
parameter, leading to finite-size scaling. It then follows from Eq.3.2 that the magnetization
probability distribution function verifies [49] :

P (m,L, t) = (1/σ)P̄ (m/σ,L/ξ), (3.3)

with σ =


⟨m2⟩ − ⟨m⟩2 the standard deviation of the reduced magnetization and the temper-
ature dependency being governed by L/ξ, with ξ = ξ±0 t−ν the bulk correlation length. For a
square 2D or cubic 3D system of side length L, and total number of spins N = Ld, with d the
spatial dimension, the magnetization probability distribution takes a finite-size scaling form in
the scaling limit [50, 51]

P (m,L, t) = Lβ/ν P̃ (mLβ/ν , tL1/ν), (3.4)

with β and ν scaling exponents taking their usual meaning and P̃ a scaling function depending
both on dimension and boundary conditions. The values of the scaling exponents β, ν depend
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on the system dimension d. However, for the sake of simplicity, we do not explicitly express this
dependence, but assume that we use the relevant values when considering either the 2D or 3D
probability density (we used the values summed up in table 1.1). This form of the probability
density is valid in both two and three dimensions where hyperscaling (Josephson relation) holds.
The scaling forms of Eq.3.3 and Eq.3.4 are shown to be equivalent by using the hyperscaling
relation and stating that the susceptibility is related to the standard deviation χ = Nσ2 ∝ Lγ/ν

in the scaling limit, so that [49, 50, 52, 53]:

σ ∝ L−β/ν . (3.5)

Much richer behavior occurs in systems with non square, respectively non cubic, shapes. We
are interested in systems in slab geometry of dimensions L⊥×Ld−1

∥ with one confining dimension
L⊥ and d − 1 non-confining ones L∥ ≥ L⊥. To clearly identify L⊥ as the confining size, that is
to say the one that will compete with ξ and cut-off its divergence at the critical temperature, we
shall keep in all cases L∥ ≥ L⊥. The aspect ratio ρ = L⊥/L∥ will govern the functional form of
the distribution [54], leading to a straight forward generalization of Eq.3.3:

P (m,L⊥, L∥, t) = (1/σ)P̂ (m/σ,L⊥/ξ, ρ), (3.6)

with P̂ (m/σ, ξ/L, 1) = P̃ (m/σ,L/ξ). In the limit L∥ ≫ L⊥, the argument that led to Eq.3.5 can
be extended to the slab geometry : as L⊥ is clearly identified as the confining dimension that
will cut-off the diverging correlation length, so that ξ ∝ L⊥ in the scaling limit at criticality, the
magnetic susceptibility scales as χ ∝ L

γ/ν
⊥ . Using the fluctuation-dissipation relation χ = Nσ2,

with N = L⊥L
d−1
∥ and the hyperscaling relation, we get:

σ = σ̂L
−β/ν
⊥ ρ(d−1)/2, (3.7)

which has been shown to hold in d = 2 [55] and that we will show to work in d = 3 in the following.
Then, Eq.3.6 and Eq.3.7 lead us to propose the following scaling form for the magnetization
distribution at t = 0 when the limit L∥ ≫ L⊥ is approached :

P (m,L⊥, L∥, t = 0) = L
β/ν
⊥ ρ−(d−1)/2P̂


mL

β/ν
⊥ ρ−(d−1)/2, 0, 0


. (3.8)

Moreover, the scaling function P̂ (x, 0, 0) is expected to be Gaussian,

P̂ (x, 0, 0) =
1√
2πσ̂2

exp


− x2

2σ̂2


. (3.9)

The origin of the Gaussian form of the distribution at Tc can be understood by stating that in
the scaling limit with L∥ ≫ L⊥ the cut-off of the correlation length will be solely determined
by the confining length L⊥ so that the system can be divided in a number Nind ∝ N/Ld

⊥ of
uncorrelated regions of volume ξd ∼ Ld

⊥. In a sub-volume Ld
⊥ the magnetization fluctuates with

σsv ∝ L
−β/ν
⊥ as stated in Eq.3.4 [50]. The Nind sub-volumes being uncorrelated, the central-

limit theorem tells us that the total magnetization will tend to have Gaussian fluctuations of
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standard deviation σ = σsn/
√
Nind, as Nind is increased. The scaling standard deviation σ̂ is a

non-universal quantity, it relates to non-universal scaling amplitudes of χ and ξ, and depends on
the boundary conditions, as we will see in the following.

3.2 Numerical method

We have tested numerically these predictions for the scaling form of the probability distribution
through Monte-Carlo simulation. We recall the Ising model Hamiltonian :

H = −J

<i,j>

SiSj , (3.10)

where the sum runs over all pairs of nearest neighbors, J is the coupling constant set here to
J = 1 for convenience and Si are spins of value ±1. The spins are set on a cubic lattice of
dimensions Ld−1

∥ × L⊥ and were updated through a hybrid Wolff/Metropolis algorithm [40, 56]
to reduce critical slowing down. By counting the number of occurrence N (m) of each possible
value m of the reduced magnetization

m̂ =
1

N

N
i=1

Si , (3.11)

where N = L⊥L
d−1
∥ is the total number of spins, we can estimate the probability for the system

to exhibit a reduced magnetization m

P (m) =
1

Z


{Si}

e−βH δ(m− m̂), (3.12)

where Z =

{Sj}

e−βH is the partition function, and the sum runs over all possible spin config-

urations. The total number of spins N in the system fixes the discrete number of values the
magnetization can take so that

P (m) =
N

2
N (m) , (3.13)

ensuring that the normalization
1

−1

P (m)dm = 1 is conserved whatever the system size.

In two dimensions, only the case of fully periodic BC was investigated. In three dimension,
periodic BC were always set in the x, y directions (Fig. 3.1) while in the confining z direction
either periodic, or fixed BC were used. Fixed boundary conditions were realized by considering
that the system is confined in the z direction between two layers of spins with fixed values, either
positive (+) or negative (−). We use the convention that L⊥ refers to the number of layers
of fluctuating spins, whatever the boundary conditions [57–59]. Both the symmetric (++) and
anti-symmetric (+−) cases were investigated. For a magnetic system, this amounts to putting a
magnetic field acting only on boundary spins, with the limit case of fixing the value of boundary
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spins to either positive (+) or negative (−) value. In the case of a binary fluid, this is equivalent
to having walls which preferentially adsorbs one of its two components (we will come back in
chapter 4 to such comparisons and on the influence of the BCs on the critical Casimir force).

3.3 2D systems with fully periodic boundary conditions

In two dimensions, periodic boundary conditions were set in all directions. We computed the
probability distribution P (m) at the critical temperature T 2D

c for different confining dimensions
L⊥ ∈ [10 : 60] and aspect ratios, ranging from the square case ρ = 1 to ρ = 1/100. As can be seen
in Figure 3.2a) the aspect ratio affects the functional form of the distribution which goes from a
bimodal one for square systems to a monomodal form as we get closer to the limit L∥ ≫ L⊥.

Plotting L
−β/ν
⊥ P as a function of mL

β/ν
⊥ , see figure 3.2b), gives a convincing collapse of

distributions obtained for systems with similar aspect ratios, , as expected from [54] and from
Eq.3.4 and Eq.3.6. In the square case the collapse is imperfect at the maxima of the distribution
for the smallest system sizes studied L⊥ = 10 which makes us suspect corrections to the scaling
limit.

Particularizing systems with aspect ratios ρ ≤ 1/27 for which the distribution has reached
a monomodal form, we can see in figure 3.2c) that the expected Gaussian behavior in the limit
L∥ ≫ L⊥ [55] and the scaling form of Eq.3.8 are very well verified. We shall stress that in this
limit, all the magnetization distributions collapse according to Eq.3.8, and not only those for
systems with similar aspect ratios. A Gaussian fit (Eq.3.9) performed on the reduced distribution
for the biggest system size available proved excellent, with a standard deviation σ̂ = 1.6835(35).
We recall that a Gaussian distribution is entirely characterized by its two first moments (the
mean and the standard deviation). Here, with periodic boundary conditions, the third moment
is null by symmetry, so that the lowest order moment of the distributions characterizing their
difference from a Gaussian form is the fourth, or kurtosis:

γ2 =
⟨(m− ⟨m⟩)4⟩

σ2
− 3, (3.14)

shown in figure 3.2d). We mention that the excess kurtosis is proportional to the Binder Cumu-
lant U4 = −3γ2 [50] which, in the scaling limit, is used to estimate the critical temperature as
it is a universal constant with respect to the system size L⊥ at Tc (see section 2.2.4). This this
coherent with our observation that, Fig.(3.2d), the kurtosis does not depend on the confinement
L⊥ within our current precision. The kurtosis only depends on the aspect ratio ρ. As ρ is
decreased the kurtosis goes to zero, making it a suitable quantity to characterize the Gaussian
form of the distribution when reaching the limit of slab geometry.
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Figure 3.2: a) P (m) obtained in a 2D Ising system with fully periodic boundary conditions
at the critical temperature T = T 2D

c . Different total number of spins N = L⊥L∥, thicknesses
L⊥ and aspect ratio ρ were investigated. As the aspect ratio is changed from the square case
ρ = 1 towards the limit L∥ ≫ L⊥, the functional form of the distribution goes from a bimodal
to a monomodal one. b) L

−β/ν
⊥ P vs mL

β/ν
⊥ for the same system sizes. The curves for systems

with the same aspect ratio ρ collapse [54]. c) L
−β/ν
⊥ ρ1/2P vs mL

β/ν
⊥ ρ−1/2 displayed only for

monomodal distributions. The expected scaling from Eq.3.8 in the limit L∥ ≫ L⊥ seems to be
valid. The continuous line is a Gaussian fit which proves excellent [55]. Inset : same, with
logarithmic scale. d) Kurtosis γ2 of all the distributions as a function of ρ. The continuous
line is an exponential fit intended as a guide to the eye. The kurtosis does not depend on the
confinement L⊥ but only on the aspect ratio ρ.
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3.4 3D systems with fully periodic boundary conditions

In three dimensions, periodic boundary conditions were always set in the "parallel" x, y directions.
In the confining z direction, different BC were used, but in order to extend the results of the
previous section to the 3D case we start with the fully periodic BC case.

With fully periodic boundary conditions, the evolution of P (m) with the aspect ratio at
the critical temperature in three dimensions is qualitatively equivalent to the two dimensional
case. As figure 3.3a) shows, as ρ is changed from 1 to 1/12 the distribution P (m) evolves from a
bimodal to a monomodal functional form [54]. Equivalently to the 2D case, Eq.3.6 is verified as
plotting L−β/νP as a function of mLβ/ν gives a convincing collapse of distributions for systems
with the same aspect ratio, the functional form of the collapse depending on the aspect ratio,
see figure 3.3b).

In the case of cubic ρ = 1 systems, a high resolution study of the Ising and spin-1 Blume-
Capel models [60] has shown the functional form:

P (m) ∝ exp


−


M2

M2
0L

−2β/ν
− 1

2
a

M2

M2
0L

−2β/ν
+ c


(3.15)

with L = L⊥ = L∥ and a, c, M0 non-universal factors which may contain corrections to scaling,
to accurately fit the probability distribution. This result can be made consistent with the scaling
form of Eq.3.4 by using the form

L−β/νP = P0 exp


−


M2

M2
0L

−2β/ν
− 1

2
a

M2

M2
0L

−2β/ν
+ c


, (3.16)

in which we fitted a, c, P0,M0 to an excellent agreement, see Fig. 3.3c).

Figure 3.3d) shows L
−β/ν
⊥ ρ(d−1)/2P as a function of mL

β/ν
⊥ ρ−(d−1)/2 following the scaling

form proposed in Eq.3.8 for monomodal distributions, that is to say for ρ ≤ 1/6, which collapse
whatever the aspect ratio. A Gaussian fit (Eq.3.9) of the reduced distribution for the biggest
system available indicates that the Gaussian behavior predicted in 2D in the limit L∥ ≫ L⊥

by [55] holds in 3D, with σ̂ ≈ 2.54. Thus, the scaling form proposed in Eq.3.8 appears verified
in 3D as it was in 2D. Yet, the collapse is a little less convincing, probably because we could not
as easily reach large values for L∥. Nevertheless, the Gaussian behavior clearly is approached in
the limit ρ → 0. Following Eq.3.7, approaching this limit, L−β/ν

⊥ ρσ = σ̂. This can be verified by
looking at the dependency of L−β/ν

⊥ ρσ on ρ, Fig. 3.3e), which indeed displays a saturation close
to ρ = 0 at a value close to σ̂ ≈ 2.4. Moreover, as in 2D, we used the kurtosis to characterize
the evolution of the distribution towards a Gaussian when reaching the limit of slab geometry,
Fig. 3.3f). The kurtosis only slightly depends on the confinement L⊥ in the cubic ρ = 1 case but
strongly on the aspect ratio, approaching zero as ρ → 0, confirming that we approach Gaussian
behavior.
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Figure 3.3: Results obtained by Monte-Carlo simulation of 3D Ising system with fully periodic
boundary conditions, for various system thicknesses L⊥ and aspect ratios ρ at the critical tem-
perature T = 4.5115 = T 3D

c . a) Magnetization probability distribution P (m) as a function of
m. As the aspect ratio ρ is changed from 1 to 1/12 the distribution evolves from a bimodal to a
monomodal functional form. b) L

−β/ν
⊥ P as a function of mL

β/ν
⊥ . Distributions for system with

similar aspect ratios collapse, but the functional form of the collapse depends on the aspect ratio.
c) Particularizing distributions for the cubic case ρ = 1, we plot L−β/ν

⊥ P as a function of mL
β/ν
⊥ .

We obtain an excellent collapse and the continuous line is a fit of an Ansätze proposed in ref. [60]
(see main text). d) Particularizing monomodal distributions: L−β/νρ(d−1)/2P as a function of
mL

β/ν
⊥ ρ−(d−1)/2. The continuous line is Gaussian fit. e) L

−β/ν
⊥ ρσ tends to a saturation value σ̂

as the slab limit ρ → 0 is approached. f) Kurtosis γ2 of all the distributions as a function of ρ.
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3.5 Influence of fixed boundary conditions

3.5.1 Fixed (+−) boundary conditions

The presence of fixed boundary conditions deeply affects the behavior of the system. Fixed anti-
symmetric (+−) BC in the confining direction act as local magnetic fields and put a topological
constraint on the magnetization that induces a boundary between a positively and a negatively
magnetized region. This is a different situation than a phase separation, induced by fixing the
total magnetization, the fluctuations of the magnetization being less constrained by the (+−)

BC. From a universality class point of view, the situation with (+−) BC is equivalent to the
case of a critical binary polymer mixture of components A and B, confined between two plates,
each preferentially adsorbing one of the components of the mixture. In that case, the plates
would induce a phase boundary between a A rich phase and a B rich one. We therefore expect
that the average magnetization of systems with (+−) BC will fluctuate around 0 as a result of
fluctuations of the phase interface. This is indeed the case as can be seen in figure 3.4a): the
magnetization probability distribution remains monomodal at the critical temperature whatever
the aspect ratio ρ, ranging from 1 to 1/9, and the system thickness L⊥.

Plotting L
−β/ν
⊥ ρP as a function of mL

β/ν
⊥ ρ−1, Fig. 3.4b), the scaling form of Eq.3.8 leads to

a convincing collapse for systems with L⊥ ≥ 20 and all the studied aspect ratios, the master curve
being well fitted by a Gaussian of standard deviation σ̂ = 0.43(4). The scaling functions obtained
for thicknesses L⊥ = 5, 10 have a slightly bigger standard deviation, but as this discrepancy seems
to be related to the small system thicknesses, we understand them as corrections to scaling, which
are expected to be more prominent with (+−) BC than periodic BC [3]. This assumption can
be tested by looking at the evolution of Lβ/ν

⊥ ρ−1σ with L⊥, Fig. 3.4c). This reduced variance
depends very little on ρ but strongly on L⊥, so that, unlike the periodic boundary conditions
case, the absence of collapse seems more likely to be related to corrections to the scaling limit
rather than to the approach of the limit of slab geometry ρ → 0. The evolution of the reduced
standard deviation is well captured by a fit of the form

L
β/ν
⊥ ρ−1σ = σ̂ + beffL

−ωeff

⊥ , (3.17)

where beff , ωeff , σ̂ are fitting parameters for which we find ωeff ≈ 0.86, σ̂ ≈ 0.35 and beff ≈ 1.0.
This seems to be coherent with a correction to scaling, as ωeff compares well with the exponent
ω = 0.84(4) [4] controlling the leading correction to scaling in the Ising model (see Eq. 2.21 in
the case of the susceptibility). A more thorough study of the impact of corrections to scaling on
σ would be required to confirm this point.

The kurtosis, our test of normality in the case of symmetric distributions, is always rather
small and goes to zero as ρ → 0 (Fig.3.4d). Even for the smallest system ρ = 1 and L⊥ = 5,
γ2 is only ≈ 0.3, which is a kurtosis we would expect in a system of approximately ρ ∼ 1/10

with periodic boundary conditions. Thus, we obtain much more easily a Gaussian form with
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(+−) BC. Here, the physical origin of the monomodal distribution is different from the periodic
boundary conditions case. The (+−) BC force the system to "demix" and the fluctuations of the
order parameter come from the deformation of the interface between a + oriented region and a −
oriented one. These boundary conditions can be seen as local magnetic fields of value ±J acting
on boundary spins. If the value of this boundary field is lowered towards zero, below a certain
value of the field we crossover towards another class of boundaries, the free boundaries (Dirichlet
(O,O)). We expect the free boundaries case to be qualitatively similar to the fully periodic case
at a temperature above Tc [50]. The limit case L⊥ → 1 here is a 2D system without boundary
field (the two + and − boundaries canceling each other) at high temperature as T 3D

c > T 2D
c ,

therefore conserving a monomodal distribution.
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Figure 3.4: Results of Monte-Carlo simulation of 3D Ising systems with (+−) BC for various
thicknesses L⊥ and aspect ratios ρ at the critical temperature T 3D

c . a) Magnetization probability
distribution P (m). Whatever the aspect ratio, the distribution remains monomodal. b) L−β/ν

⊥ ρP

versus mL
β/ν
⊥ ρ−1 for the same sizes as in a). We obtain a very convincing collapse of all data for

thicknesses L⊥ ≥ 20, whatever the aspect ratio. The scaling functions obtained for thicknesses
L⊥ = 5, 10 have greater variances. The continuous line is a Gaussian fit of the distribution for
the biggest available system. c) L

β/ν
⊥ ρ−1σ as a function of L⊥. The continuous line is a power

law fit of form σ̂+beffL
−ωeff

⊥ , intended as a guide to the eye. d) Kurtosis of all the distributions
as a function of ρ. The kurtosis depends mainly on ρ and goes to zero in the slab limit ρ → 0.
It also depends in a less pronounced way on the confinement L⊥, especially when ρ = 1.
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3.5.2 Fixed (++) boundary conditions

With symmetry breaking (++) boundary conditions, the average magnetization ⟨m⟩ is no more
expected to be zero, the total magnetic field imposed being non-zero. As can be seen in figure
3.5a) the magnetization probability distribution is monomodal but the position mmax of its
maximum depends on the system size. The average magnetization ⟨m⟩ depends mainly on the
thickness L⊥ and only little on the aspect ratio as can be see in figure 3.5b).

With the boundary conditions breaking the symmetry, the kurtosis is no longer the lowest
order moment quantifying a difference from the Gaussian behavior. A slight asymmetry can be
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Figure 3.5: Results obtained by Monte-Carlo simulation of 3D Ising system with fixed (++)

BC for various system thicknesses L⊥ and aspect ratios ρ at the critical temperature T =

T 3D
c . a) Magnetization probability distribution P (m) as a function of m. The distribution is

always monomodal, but the symmetry breaking boundary conditions impose a non-zero average
magnetization. b) The mean magnetization decreases with increasing L⊥ and slightly depends
on ρ for the smallest system thickness L⊥ = 10. The continuous line is a power law fit intended as
a guide to the eye. Points color give ρ. c) Asymmetry of the distributions can be highlighted by
looking at the skewness γ1. We find the main trend to be γ1 ∝ ρ, represented by the continuous
line, fitted on the data for the largest thickness L⊥ = 30. Points color give L⊥.
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noticed in the distribution which can be quantified by looking at the skewness of the distribution:

γ1 = ⟨

m− ⟨m⟩

σ

3

⟩ , (3.18)

which strongly depends on the aspect ratio, Fig. 3.5c). For a given thickness, the dependency
of γ1 with ρ appears linear in the range investigated here, as the fit displayed fit in figure 3.5c)
shows, based on the largest thickness L⊥ = 30. The skewness γ1 → 0 in the slab limit ρ → 0.
This limit can be understood by stating that when the limit ρ → 0 is taken, the central-limit
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Figure 3.6: Results obtained by Monte-Carlo simulation of 3D Ising system with fixed (++)

BC for various system thicknesses L⊥ and aspect ratios ρ at the critical temperature T = T 3D
c .

a,b,c) L−β/ν
⊥ ρP (m−⟨m⟩) versus (m−⟨m⟩)Lβ/ν

⊥ ρ−1. For the sake of visibility, we have separated
the most skewed distribution for ρ = 1 (a) and the smallest system thickness L⊥ = 10 for which
the variance is notably different from larger system thickness (b). For systems with L⊥ ≥ 20

and ρ < 1, we obtain a convincing collapse within the current precision (c). The continuous
line is a Gaussian fit on data obtained with the largest system available. d) We can verify that
the standard deviation follows Eq.3.7 by plotting σ as a function of L

−β/ν
⊥ ρ. The points for

which this relation seems less verified are for the smallest system thickness L⊥ = 10, confirming
previous observations. Points color give L⊥. The continuous line is a linear evolution based on
data for L⊥ = 30.
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theorem can be applied on the uncorrelated sub-volumes (as discussed in section 3.1) and ensures
that we tend to a symmetrical gaussian distribution. However, particularly for ρ = 1, γ1 still
noticeably depends on L⊥, this effect decreasing as ρ → 0.

We focus on the fluctuations of the magnetization around its mean value by centering the
probability density and looking at L−β/ν

⊥ ρP (m−⟨m⟩) versus (m−⟨m⟩)Lβ/ν
⊥ ρ−1, Fig. 3.6. For the

sake of visibility, we have separated data for ρ = 1 (Fig. 3.6a). In this case, a significant skewness
prevents the collapse with data for other values of ρ, but the amplitude and standard deviation
of the distributions scale well with data for other system sizes. We also particularize data for
the smallest system thickness L⊥ = 10 (Fig. 3.6b) for which the variance is notably different
from larger system thickness. For systems with L⊥ ≥ 20 and ρ < 1 (Fig. 3.6c), we obtain a
convincing collapse within the current precision, which agrees well with a Gaussian behavior as
shown by a Gaussian fit on data for the largest system available (giving σ̂ = 0.25(1)). The scaling
of Eq.3.8 seems to be approached as L⊥ grows. As for the case of fixed (++) boundaries, we
present the evolution of the scaled standard deviation L

β/ν
⊥ ρ−1σ with L⊥. As this quantity also

depends on ρ, we only display a power law fit (Eq. 3.17) as a guide to the eye. We stress the fact
that the effect of ρ on the reduced standard deviation L

β/ν
⊥ ρ−1σ diminishes with increasing L⊥

and L
β/ν
⊥ ρ−1σ tends towards a non zero value, giving us confidence that the scaling of Eq.3.8 is

approached.

3.6 Conclusion

In this chapter, we have seen how both the aspect ratio and boundary conditions of an Ising
system influence the fluctuations of the order parameter at the critical temperature. We used
simple arguments to propose a scaling form in the limit of slab geometry L∥ ≫ L⊥, in which case
the probability density tends to a gaussian distribution in all studied cases. The data collapse
was obtained by taking into account both the aspect ratio and the thickness L⊥.

We have seen that in the case of fixed (+−) boundary conditions, the gaussian limit for
fluctuations is much more easily reached. This is a consequence of the topological constraint
imposed by the competing boundaries. The induced separation in positively and negatively
oriented regions is related to the phenomenon of wetting [61, 62]. In a thermodynamically stable
gaseous system, the presence of a surface can, by the action of attractive van der Waals forces,
favor the condensation of the gas, forming a macroscopically thick wetting layer of liquid. In
the Ising system, the + and − oriented phases can be interpreted as liquid and gas phases. A
picture more closely related to wetting experiments than the symmetric (+−) case would be a
semi-infinite Ising system with one fixed + boundary (respectively −) and a small bulk magnetic
field h < 0 (resp. h > 0). In this case, the stable bulk phase is the negatively (reps. positively)
oriented one but the presence of the boundary can induce a wetting transition at which a film of
positively oriented spins (resp. negatively oriented) can develop from the boundary. In chapter 4,
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we will see that wetting layers provide a experimental way to obtain a fluid system in slab
geometry with small, controlled, thicknesses L⊥. This allows for high precision measurements
of the critical Casimir force, which will be the topic of the next chapter. The critical Casimir
force is actually a consequence of the confinement of critical fluctuations. Thus, as we will show,
the Casimir force being intimately related to the magnetic fluctuations, the boundary conditions
will strongly influence the force, just as they influence the magnetic fluctuation spectrum.



Chapter 4

The Critical Casimir Force

4.1 Introduction to the critical Casimir force and experimen-

tal approaches

The origin of the critical Casimir force is in the confinement of critical fluctuations of a medium
undergoing a continuous phase transition. The name "Casimir" comes from its quantum electro-
dynamics forerunner predicted by Hendrik Casimir in 1948 [14]. The now famous electrodynamic
Casimir force occurs between two conducting and uncharged metallic plates in vacuum. As the
plates put a constraint on the quantum fluctuations of the electromagnetic field, the imbalance
between inside and outside the cavity of length L they form generates an attractive force of
infinite range, decaying as L−4. Its critical counterpart has been predicted by Fisher and de
Gennes in 1978 [15]. In a confined critical system, the divergence of the correlation length is
truncated by the finite size L of the system. The thermal fluctuations are thus constrained by
the finite size of the system and, similarly to the electrodynamic case, this constraint results in
a force. A simple way to comprehend this effect is to consider that when the correlation length
develops up to the distance L separating the boundary conditions of the system, the boundaries
interact through the correlated fluctuations.

Measurement of this effect requires high precision experiments. The first reason is that
one must stabilize the system sufficiently close to its critical point to observe finite size effects,
so that the correlation length develops up to the smallest system size. If, strictly speaking, a
system is always finite, it is experimentally challenging to maintain a correlation length of the
order of the micron, thus any larger systems can be considered infinitely large. For example,
in a binary mixture of PMMA-3-octanone [63], the critical amplitude of the correlation length
has been showed to be ξ0 ∼ 0.97(2) nm for a critical temperature Tc ∼ 306.58(4)K, so that
stabilizing the reduced temperature at t ∼ 6.5 × 10−5 and thus the correlation length at ξ =

ξ0t
−ν = (6.5 × 10−5)−0.6301 × 0.97 nm ∼ 0.4 µm requires a control on temperature of ∼ 0.02K.

In 4He, the critical end point at which the lambda line of normal/superfluid transitions meet

59
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the liquid/gas line of phase transitions is located at Tλ = Tc = 2.1786K [6] and the correlation
length amplitude ξ0 = 0.1422(5) nm [9]. Thus, if one achieves the same relative precision on
temperature t ∼ 6.5× 10−5 as in our previous example, the correlation length can develop up to
ξ = ξ0t

−ν = (6.5×10−5)−0.67115×0.1422 nm ∼ 94 nm. This actually compares well with the film
thicknesses which were investigated in very succesful measurements of the Casimir force in 4He,
which ranged approximately from 20 nm to 34 nm [6, 64]. Another reason for the difficulty of
measuring the Casimir force is its small amplitude: if one confines critical fluctuations that would
occur at room temperature Tamb ∼ 300K between two plates separated by L ∼ 1 µm, the order
of magnitude of the confinement force by unit surface is ∼ 4mN m−2 [13]. Nonetheless, this effect
should not be neglected: as we will see in the following, it can counterbalance other well known
forces such as van der Waals interactions with a substrate or gravitational potential energy in
wetting experiments. It can trigger colloidal self organizations [65, 66] and could have interesting
applications in micro mechanical devices thanks to its great tunability [13] (see section 4.2.3).
From this point of view, phase transitions in binary mixtures have the advantage of occurring at
much higher temperature (Tc ∼ 306.58(4)K in our example) than in superfluid systems such as
4He (Tc = 2.1786K), giving rise to a stronger effect.

The first direct measurements of the critical Casimir force were performed only recently in a
binary mixture of water and lutidine [47, 67]. The confinement was performed by approaching a
colloidal particle, immersed in the binary fluid and trapped by optical tweezers, close to a planar
surface. Here, the confinement is in a sphere-plane geometry and not the plane-plane one that
was already discussed in chapter 3. The plane-plane geometry is difficult to realize experimentally
as the parallelism of confining plates has to be maintained. However, theoretical and numerical
works directly tackling sphere-plane geometry [68, 69] are more rare than in the slab geometry.
The slab geometry is the simplest confined geometry, clearly identifying a confining length,
and the two geometries can be related by the Derjaguin approximation in the case of small
confinement compared to the sphere curvature R ≫ L [47] or by the small sphere approximation
in the opposing limit [69, 70]. Moreover, indirect measurements of the Casimir force in wetting
layers make slab geometry experimentally relevant. A wetting layer can be formed (Fig.4.1) on
a substrate, as a gas at a pressure and temperature close to their liquid-gas equilibrium values
might condensate under the action of van der Waals interactions [13, 71, 72]. The interactions of
the fluid particles with the substrate displaces the liquid-gas equilibrium point and the thickness
of the layer is determined by the competition between van der Waals interactions favoring the
condensation and other unfavorable interactions such as gravity [6, 64, 73] or a slight discrepancy
between temperature of the substrate and the gas [5]. For example, in ref. [64], the wetting is
formed on a pedestal placed at a height h above a bulk reservoir of 4He, the principle of such an
apparatus being sketched in figure 4.1d). The height h controls the equilibrium thickness L of
the film, which results from the competition of a chemical potential contribution due to gravity
and van der Waals interactions. If the fluid undergoes an internal continuous phase transition,
such as a superfluid transition in wetting films of 4He [64] or 3He −4 He mixture [6, 73], or
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Figure 4.1: a) Schematic phase diagram of a fluid. A gas at pressure and temperature close to
their liquid-gas equilibrium values (P0, T0) (b) will form a wetting layer (c) close to a wall due
to van der Waals interactions with the substrate. Its thickness L diverging when getting towards
(P0, T0). (Figures a, b, c, reproduced from ref. [13]). d) Sketch of an experimental cell to obtain
a wetting layer of thickness L controlled by the height h of a pedestal above a liquid reservoir
(see main text and ref. [64] for a more realistic sketch).

a demixing transition in a binary polymer mixtures [5, 74], the associated fluctuations will be
confined between the liquid-substrate and liquid-gas boundaries. The Casimir force related to
the internal transition will modify the equilibrium thickness of the film. Monitoring the wetting
layer equilibrium thickness when approaching the critical or tricritical point of the internal phase
transition yields an indirect measurement of the Casimir force in slab geometry. Consequently it
appears natural to define the critical Casimir force through finite-size scaling of the free energy in
slab geometry, as will be the topic of section 4.2. We stress on the fact that the forces responsible
for the confinement of the system here are multiple, such as the van der Waals interaction and
the critical Casimir force, and all have comparable amplitudes. We will comment again on the
definition of a confinement force in chapter 7 in which we will encounter non critical confinement
effects induced by the periodic boundary conditions.

Confinement of any correlated thermal fluctuations can result in Casimir-like effects. At
a critical point however, as we have seen in the previous part, the correlation length diverges,
making the critical Casimir effect both long ranged and universal. Thus, the critical Casimir
force can be seen as a direct consequence of finite-size scaling and is characterized by a universal
scaling function. Universality allows us to map experimental realizations onto much simpler
models belonging to the same universality class. The superfluid transition belongs to the 3D XY
universality class and the demixing of binary mixtures to the 3D Ising one. Both these models
are consequently at the heart of numerous numerical and theoretical works on the Casimir force.
We are particularly interested in the Ising universality class, as the Ising model is the simplest
model of phase transitions, but the concepts we will develop are very general. In section 4.3, we
will review some numerical approaches for computing the critical Casimir force in model systems
and present in detail one method that we have reproduced in a 3D Ising system and which forms
in part the basis of the magnetic method presented in chapter 5.
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4.2 Finite-Size scaling and the critical Casimir force

4.2.1 Finite-size scaling of the free-energy in slab geometry

Let us consider a 3D critical system in slab geometry of size L∥ × L∥ × L⊥ with L⊥ ≪ L∥ and
A = L2

∥, fig.4.2. We have already encountered this geometry in chapter 3: it allows one to clearly
identify a confining dimension L⊥ and is of great experimental relevance, as it maps to the set
up of wetting experiments.

Figure 4.2: The slab geometry.

Near the bulk critical point where the bulk correlation length ξ becomes similar to the confining
size L⊥, the boundary conditions affect the spectrum of allowed fluctuations and the free-energy
Ω(T, h, L⊥, A) is no longer extensive. Here, the free energy only depends on the sizes of the
system, temperature T and h which represents the field conjugate to the order parameter. For
a magnetic system, h is proportional to the applied magnetic field. In a simple fluid near the
liquid gas critical point h ∼ µ−µc is the chemical potential, measured with respect to the critical
value µc, while near the demixing transition of a binary fluid, h depends on the difference in
chemical potential of the two species. All these systems belong to the Ising universality class in
which h is a scalar, but our analysis can easily be extended to include vector fields and order
parameters, relevant for other universality classes such as the XY one, describing helium films
near the superfluid transition.

Strictly speaking, thermodynamics require a fourth variable N , the number of particles,
and hence a more general free energy Ω(T, h, L⊥, A,N). We will develop our formalism in the
case of a lattice model, particularizing the 3D Ising model on a cubic lattice, once again taking
advantage of universality to conserve generality. The number of magnetic elements is therefore
set by their density n = N

V = 1
σ3 where σ is the microscopic distance separating nearest neighbors,

which is naturally fixed (for convenience, we can set σ = 1). The magnetic model thus becomes
thermodynamically equivalent to a fluid system with fixed interaction range σ or, as we will
see in more details in chapter 7, to a fluid binary mixture with fixed total density. In this case
volume fluctuations impose fluctuations in the number of particles, so that one is dealing with a
uniform medium. While spontaneous fluctuations of this kind clearly cannot exist in conventional
magnetic systems [75], they do in fluid systems and allows us to discuss here the critical Casimir
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force in full generality. This point will be further discussed in the following chapter.

The slab limit takes L∥ very large, even with respect to the correlation length, so that an
extensive behavior is conserved in the x and y directions (dependence on a finite aspect ratio
L⊥/L∥ [75, 76] is not considered here). We can separate Ω in three different terms [23, 47, 77].
Two standard extensive contributions to the free-energy, defined in units of kBT : a bulk term

ωbulk(T, h) = lim
L⊥→∞

lim
A′→∞

Ω(T, h, L⊥, A
′)

L⊥A′kBT
, (4.1)

and a surface term

ωsurf (T, h) = lim
L⊥→∞


lim

A′→∞

Ω(T, h, L⊥, A
′)

A′kBT
− L⊥ωbulk(T, h)


. (4.2)

describing surface tension at boundaries in the z direction. In the case of periodic boundary
conditions, this term is of course zero. In the x, y directions transverse to the confining one, we
will always assume that surface terms are negligible in the limit of slab geometry or implement
periodic boundary conditions in simulations. Close to a critical point the free-energy acquires a
new, non-trivial dependance on L⊥ and thus we can give the complete decomposition of the free
energy in the limit of slab geometry [47, 77]

Ωslab(T, h, L⊥, A)

AkBT
= lim

A→∞

Ω(T, h, L⊥, A)

AkBT
= L⊥ ωbulk(T, h) + ωsurf (T, h) + L⊥ωex(T, h, L⊥) ,

(4.3)
where ωex is the excess free energy due to the confinement of critical fluctuations, which therefore
vanishes far from the critical point (T = Tc, h = 0) and in the thermodynamic limit L⊥ → ∞.
The excess part can be seen as an interaction term between the confining boundary conditions,
the range of the interaction being proportional to ξ. It can also be related to the finite-size
scaling hypothesis discussed in chapter 2, but in the special case of the slab geometry. In the
thermodynamic limit the bulk term dominates, which the scaling hypothesis decomposes in an
analytic and a singular terms

ωbulk = ωa(T, h) + ω0
s(t, h̃) , (4.4)

where h̃ = h/kBTc and we have seen in chapter 2 that, for periodic boundary conditions, the
excess term is a confinement contribution to the singular term

ωex = ωs(t, h̃, L⊥)− ω0
s(t, h̃) , (4.5)

where ωs(t, h̃, L⊥) →
L⊥→∞

ω0
s(t, h̃). The excess free energy density thus will have a universal form

which depends on the bulk universality class. In the case of non periodic boundary conditions,
it also depends on the confining surfaces as they can deeply modify the form of the fluctuations,
as we have seen in chapter 3, and the excess free energy depends on the surface universality
class, as we will develop in section 4.2.3. The excess part of the free energy being fostered by
the truncation of the diverging correlation length at a critical point, the relevant variable is the
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ratio of the confining size L⊥ and the correlation length ξ(t, h̃). Finite-size scaling then allows
us to define a universal scaling function of the excess free energy (see section 2.2.1)

ωex(t, h̃, L⊥) = L−d
⊥ Θ̃


sgn(t)

L⊥

ξt
,
L⊥

ξh


, (4.6)

with d the spatial dimension, sgn(t) returns the sign of t as the function is not necessarily
symmetric around Tc, and

ξt = ξ+0 |t|−ν , ξh = ξh0 |h̃|−ν/(β+γ) , (4.7)

are expressions of the correlation length ξ either above Tc at h = 0 (ξt) or at t = 0 for h ̸= 0

(ξh), where critical exponents take their usual meaning [4, 23, 78]. ξ±0 and ξh0 are non-universal
amplitudes of the correlation length. However, the ratio ξ+0 /ξ

−
0 is universal, so that either length

scale can be used to define a scaling variable without losing universality. Often, the simpler
scaling form

ωex(t, h̃, L⊥) = L−d
⊥ Θ(ut, uh) , (4.8)

with the relevant scaling variables

ut = tL
1/ν
⊥ , uh = h̃L

(β+γ)/ν
⊥ , (4.9)

is used, all length being dimensionless, measured in units of the microscopic length σ. One
should nonetheless keep in mind that to compare different systems of a certain universality class,
the universal form of Eq.4.6 has to be used, so that the change in the values of non universal
amplitudes ξ±0 and ξh0 from a system to the other is taken into account.

4.2.2 The critical Casimir force

In equilibrium and in the anisotropic slab limit defined above, the confining force per unit area
is defined

F⊥ = − 1

A

∂Ωslab

∂L⊥


T,h,A

, (4.10)

which can be separated in a regular bulk pressure term and an anomalous term introduced by
the restriction of the critical fluctuations

F⊥ = −kBTωbulk(T, h)  
bulk pressure in z direction

− kBT
∂L⊥ωex

∂L⊥


T,h

(T, h, L⊥)  
critical Casimir force

, (4.11)

defining the critical Casimir force per unit area

fc = −kBT
∂(L⊥ωex)

∂L⊥


T,h

= −kBT


ωs − ω0

s + L⊥
∂ωs

∂L⊥


T,h


. (4.12)

In fact, L−1
⊥ plays an equivalent role in the criticality to reduced temperature and field, resulting

in a third singular variable Q =
∂V (ωs−ω0

s)

∂L−1
⊥

, in analogy with the magnetic moment M = V m
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and the entropy S. The Casimir force, fc = kBTL
−1
⊥ (Q/V ), is the natural physical observable

related to this thermodynamics for which one finds a universal scaling form [78]

fc = kBTL
−d
⊥ θ (ut, uh) , (4.13)

from which we define ∆ the universal scaling amplitude

θ(0, 0) = (d− 1)∆ . (4.14)

Eq. (4.12) relates the Casimir force universal scaling function to that for the excess free energy
Θ (Eq.4.8) by

θ = (d− 1)Θ− ut

ν

∂Θ

∂ut


uh

− uh(β + γ)

ν

∂Θ

∂uh


ut

. (4.15)

Hence, if one scaling function is known, the other can be deduced by solving Eq.4.15 (this will be
further discussed in chapter 6). This relation relates the underlying universal scaling functions
of the Casimir force fc, the excess free energy fex, the internal excess energy uex and the excess
order parameter mex

fc
kBT

= (d− 1)ωex + tν−1uex + h̃
β + γ

ν
mex , (4.16)

where
tuex = −tT

∂ωex

∂T


h,L⊥

= −L−d
⊥ ut

∂Θ

∂ut


uh

T

Tc
∼ −L−d

⊥ ut
∂Θ

∂ut


uh

, (4.17)

and where
h̃mex = −h̃

∂ωex

∂h̃


T,L⊥

= −L−d
⊥ uh

∂Θ

∂uh


ut

. (4.18)

4.2.3 Importance of boundary conditions

The universal scaling form (Eq.4.13) of the Casimir force fully describes the phenomenon in all
the experimental systems and models of a given universality class. However, this effect comes
from the restriction of fluctuations by boundary conditions and is not a purely bulk phenomenon.
Thus, the function θ depends both on the bulk universality class and on the surface universality
class.

Various boundary conditions can be considered, either periodic, free or displaying a surface
field coupled to the order parameter. The periodic boundary conditions, only relevant in sim-
ulations of course, are characterized by the absence of surface free energy, leaving only a bulk
phenomenon. The free, or Dirichlet, boundary conditions are characterized by a lack of interac-
tions at the boundary and correspond in a magnetic system to a boundary with a non-magnetic
material and in general to a wall with no local influence on the order parameter. This corre-
sponds to the ordinary (O) surface universality class [3, 58] with lower ordering at the surface
than in the bulk. It is for example the relevant boundary condition for wetting experiments with
a superfluid [6, 73], as the superfluid order parameter vanishes at the boundaries.
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The addition of a strong boundary field corresponds to the normal or extraordinary surface
universality class [58, 79], characterized by a higher ordering at the surface than in the bulk. For
a magnetic system, this amounts to putting a magnetic field acting only on boundary spins, with
the limit case of fixing the value of boundary spins to either positive (+) or negative (−) value.
We use the convention that L⊥ refers to the number of layers of fluctuating spins, whatever the
boundary conditions [57–59]. In the case of a binary fluid, this is equivalent to having walls which
preferentially adsorbs one of its two components. In the first direct measurements of the critical
Casimir force, performed in a binary mixture of water and lutidine [47, 67], surface treatment
allowed for the investigation of both symmetric (++), (−−), and antisymmetric (+−) boundary
conditions, showing direct experimental evidence that the Casimir force changed from attractive
for symmetric boundaries to repulsive for antisymmetric ones (Fig.4.6).

Consequently, surface treatment and patterning has been of great interest as a way of tuning
the Casimir force [80–86]. In the case of boundary conditions weakly coupled to the order
parameter (weakly adsorbing walls for binary mixture or weak boundary magnetic fields for
magnetic systems), crossover situations occur between +, O and − boundary conditions [58, 87–
89] and, for example, weak asymmetric boundary conditions of different strength can be set so
that the sign of the Casimir force in the Ising 3D universality class changes with temperature [87].

More complex boundary conditions than flat uniform walls have been explored. Crenellated
boundary conditions [81] have recently been considered theoretically and in the case of walls
structured by periodic arrays of wedges and ridges [84] mean-field approaches predict not only
a Casimir force acting normally on the confining walls but also transversally. The substrate can
also be flat but chemically structured [90, 91]. Structuring with alternating + and − stripes
can foster a lateral Casimir force in binary mixtures [92] and trigger the organization of colloids
along the strips when immersed in the critical binary fluid close to the structured substrate [93].
The effective potential felt by the colloids is well described by the Casimir force [83, 94], thanks
to the Derjaguin approximation applied to the Casimir scaling function obtained in plane-plane
geometry [3]. For certain dimensions of the substrate’s structures, a colloid is expected to undergo
a critical Casimir force of changing sign with distance. A "levitation" distance exists which can
be made stable with respect to thermal fluctuations and be tuned by the temperature [82]. In
the limit case of very narrow stripes, the structured boundary conditions can even mimic the O

boundary conditions [80]. This has recently also been attained with a surface with fixed + or −
spins randomly distributed, with resulting surface field of zero mean [95]. Disorder introduced
through random surface fields distributed according to a Gaussian distribution with vanishing
mean have been showed to increase the Casimir force compared to the O boundary case [96].

Thus, the great variety of behaviors of the critical Casimir force, allowed by various boundary
conditions, make it a promising candidate for technological applications in micro and nano-
mechanical devices, where it could counterbalance the electrodynamic Casimir force which is
responsible for collapse of the structures [13].
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4.2.4 Limit behavior

The critical Casimir force comes from the confinement L⊥ and by the divergence of the correlation
length, itself governed by t and h̃, so we expect the limit behaviors in the Ising universality class

θ(ut, uh) →
ut→∞

0 ,

θ(ut, uh) →
uh→∞

0 .

(4.19)

Far from the critical point, θ for a confinement between two planar walls is expected to decay
exponentially fast, following the analytic form

θ(ut) →
|ut|→∞

A0|ut|νd exp(−U0|ut|ν) , (4.20)

in the Ising model for d = 2, 4 and (+,±) boundaries [83], for d = 3 and (+−) boundary
conditions at T > Tc and for (++) boundaries for T both above and below Tc [57, 77, 97].

In the case of the XY universality class though, the presence of Goldstone modes make the
correlation length infinite even at low temperature: ξ−0 is not defined and the θ function tends
to a non-zero constant value at low temperature.

4.3 Numerical computation of the Casimir force : example

of the coupling parameter approach

4.3.1 Introduction on numerical computations of the Casimir force

Numerical simulation is an ubiquitous way of computing the universal scaling function θ as it
allows the study of various geometries and boundary conditions. To study liquid-gas criticality
or critical binary mixtures, molecular simulations of Lennard-Jones systems can be thought as
a way to mimic wetting experiments [62] or to measure directly a Casimir contribution to the
pressure in confining geometries (this will be the topic of chapter 7). However, critical simulations
of fluids are very challenging and, as far as we know, reference [62] has been the only attempt to
capture a Casimir effect in this way. Therefore, universality has fully been exploited and model
magnetic systems have been favored in numerical computation of the critical Casimir force.

A direct way to obtain the Casimir contribution to the confinement pressure in magnetic
models such as the Ising, XY and Heisenberg models, is to construct a lattice stress tensor,
which can be computed through Monte Carlo simulation [21, 77], but has only been exploited
with fully periodic boundary conditions. Such a stress tensor had been used in other models
analytically [20, 21] and has very recently been used for mean field calculations [81, 84].

However, a now ubiquitous approach to computing the critical Casimir force relies on the
fact that, as we have seen in the previous section, the Casimir force is defined as the excess
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contribution to the derivative of the free energy (Eq.4.10). Therefore, computing the free energy
of a system or at least its variation with respect to system size can give access to the pressure
from which one can extract the excess part if sufficient accuracy is reached. A text book approach
to computing the free energy [2] uses the basic relation Ω = U − TS −Mh, where U and S are
the internal energy and entropy of the system. Monte-Carlo simulations give direct access to
U and M and we can compute the entropy by a suitable integration of the measurable specific
heat CV = T ∂S

∂T


V,h

. Experimentally, the internal energy is not accessible, only the specific heat

is. So, this methods needs another integration of CV to extract Ω. Both in experiments and
simulations, this method suffers from the great difficulty of accurately measuring CV close to a
critical point [9].

In numerical simulations, the value of all microscopic degrees of freedom being accessible,
the number of numerical "observables" is much bigger than in experiments. If one can de-
fine a crossover Hamiltonian continuously interpolating between two different systems, one can
compute the variation in free energy between them and it is therefore possible to design a simu-
lation specifically for measuring the variation of free energy with respect to a change in system
size [3, 98–101]. This very general approach is referred to as "thermodynamic integration" or
"coupling parameter" approach. We will now present such a method which proved very efficient
for computing the critical Casimir force and can be used in a very wide range of lattice systems
and boundary conditions. We have reproduced some results of ref. [3] in the 3D Ising model with
fully periodic boundary conditions. We present these results in some details as they form in part
the basis of the magnetic method presented in chapter 5.

4.3.2 Crossover Hamiltonian

Following [3, 101] (see also [87, 100]) we calculated fc for a 3D Ising model with a cubic lattice
in film geometry. The present approach is to compute the variation in free energy caused by a
change in system size, approximating the derivative of the free-energy with respect to system size
L⊥, which contains fc the critical Casimir force. The idea is to define a crossover Hamiltonian
which continuously interpolates between a L⊥ layer thick system to a L⊥ − 1 layer thick one

Hcr(λ) = (1− λ)H0 + λH1 , (4.21)

where H0 is the Hamiltonian of a L⊥ layers system and H1 of a L⊥ − 1 layers one plus one
decoupled layer, as schematized in figure 4.3. In the crossover system, if λ = 0, we have a regular
3D Ising system on a cubic lattice of size L⊥ × L∥ × L∥. As λ → 1, the spins of a layer k0

(chosen far from the boundary conditions if they are not periodic) are continuously decoupled
from their nearest neighbor in the z direction, while spins of layers k0+1 and k0−1 are coupled,
all couplings in x and y directions remaining unchanged. This results in the decoupling of a 2D
layer upon changing λ → 1, until obtaining a (L⊥ − 1) × L∥ × L∥ system plus a 2D decoupled
layer.
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Figure 4.3: Definition of the crossover Hamiltonian Hcr(λ). With λ going from 0 to 1, the layer
labeled k0 is decoupled from the rest of the system and layer k0 + 1 coupled to k0 − 1. (Figure
reproduced from ref. [3])

4.3.3 Computing the change in free energy with system thickness

The free energy of the cross-over Hamiltonian, for a given value of the parameter λ, is

Ωcr(λ) = −kBT ln


{Si}

exp(−κHcr(λ))

 , (4.22)

where

{Si}

means a sum over the phase space and κ = 1/kBT . So, we notice that the derivative

of the free energy with respect to the crossover parameter

dΩcr(λ)

dλ
=


{Si}

(H1 − H0)e
−κHcr(λ)

{Si}
eHcr(λ)

= ⟨H1 − H0⟩Hcr(λ)
, (4.23)

with ⟨.⟩Hcr(λ)
a statistical average performed in the crossover system. This average can be

efficiently computed using Monte Carlo simulation and amounts to computing the average of the
quantity

H1 − H0 = −

x,y

Sx,y,k0+1Sx,y,k0−1 − Sx,y,k0
Sx,y,k0+1 − Sx,y,k0−1Sx,y,k0

. (4.24)

Then, if we calculate this quantity for different values of λ, an integration over the crossover
parameter give access to the difference in free energy

Ω1−0 =

 1

0

dλ ⟨H1 − H0⟩Hcr(λ)
= Ω1 − Ω0 , (4.25)

between the {L⊥ layers} and {L⊥ − 1 layers + 1 layer} systems, which we can decompose using
the formalism of Eq.4.3

Ω1−0 = Ωslab(T, h, L⊥ − 1, A)− Ωslab(T, h, L⊥, A) + Ω2D(T, h,A) , (4.26)
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with Ω2D(T,A) the free energy of the decoupled layer, and A = L2
∥. If the system is sufficiently

thick to consider that a variation of one layer is infinitesimal (L⊥ ≫ 1), we are estimating the
derivative of the free energy Ωslab

Ω1−0(T, h, ℓ, A) ≈
L⊥≫1

−∂Ωslab

∂L⊥


T,h,A

(T, h, ℓ, A)  
bulk pressure +Afc

+Ω2D(T, h,A) , (4.27)

evaluated at ℓ = L⊥ − 1/2, which therefore contains the critical Casimir force according to
Eq.4.10,4.11. The intuitive choice ℓ = L⊥ − 1/2 has been shown rigorously to facilitate the
approach to the scaling limit by minimizing the importance of corrections to scaling terms [75].

4.3.4 Extracting an excess contribution

Surface terms have been suppressed by the derivation as they do not depend on L⊥. We are only
interested in the Casimir contribution, so we also need to get rid of the 2D and 3D bulk contribu-
tions. This can be done by taking advantage of the extensivity of the bulk 3D contribution and
of the independence of the 2D term on ℓ. Thus, we repeate the procedure for two sets of length
scales centered on ℓ and αℓ, all other parameters remaining equal. Subtracting results from the
two pairs of length scales eliminates the free energy from 2D layer and the bulk contribution,

Ω1−0(T, h, αℓ,A)− Ω1−0(T, h, ℓ, A) ≈ Afc(T, h, αℓ)−Afc(T, h, ℓ) , (4.28)

providing a first estimate of the Casimir force

f0
c (T, h, ℓ) ≈ fc(T, ℓ)− fc(T, h, αℓ) . (4.29)

Given the universal scaling form of fc (Eq. 4.13), one can define a scaling function for f0
c

f0
c (T, h, ℓ) = kBTℓ

−dθ0 (ut[ℓ], uh[ℓ]) . (4.30)

related to θ at two different values of ut and uh by :

θ0(ℓ) = θ(ℓ)− α−dθ(αℓ). (4.31)

Provided that at a given temperature and field the Casimir effect decreases with increasing
system size, if α > 1, α−d < 1 and θ(αℓ) < θ(ℓ). Choosing α−d ≪ 1, the scaling function θ0 will
provide a good estimate for the functional form of θ(ut, uh) as θ(αℓ) ≪ θ(ℓ) and α−d is a small
parameter, the system of size αℓ acting as a reference system, large enough to be considered
at the thermodynamic limit. This is of course a difficult limit to reach in a simulation but,
thankfully, there exists another way of improving the estimate of θ from θ0.
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4.3.5 Iteration procedure

To extract a complete estimate of θ from the measured quantity θ0, one can apply the procedure
developed in ref. [3] to solve Eq.4.31 iteratively. Here is presented an extended version of this
procedure to include a non zero field h. We rewrite Eq.4.31 in the form

θ(ℓ) = θ0(ℓ) + α−dθ(αℓ) , (4.32)

clearly showing that, as we already mentioned, if α is chosen greater than 1, we can consider, as
a first approximation to the function θ(ut, uh):

θ0(ut, uh) ≈ θ(ut, uh) . (4.33)

It seems fairly logical to consider that an improved estimate θ1 of θ will then be given by

θ1(ℓ) = θ0(ℓ) + α−dθ0(αℓ) , (4.34)

considering the form of Eq.4.32. Using Eq.4.31 and 4.34 to express θ1 as a function of θ, we can
move to higher order approximations of θ(ut, uh). This leads to defining the following recursion
relation

θn≥1(ut, uh) = θn−1(ut, uh) + α−2n−1dθn−1(α2n−1/νut, α
2n−1(β+γ)/νuh) . (4.35)

This relation can be rewritten as a recursion procedure on the function θ0(ut, uh) only, which
converges towards

lim
n→∞

θn(ut, uh) ≡ θ̂(ut, uh)

=

∞
n=0

α−dnθ0(αn/νut, α
n(β+γ)/νuh) .

(4.36)

The series defining θ̂(ut, uh) converges because α−dn decays exponentially fast with n and
θ0(ut, uh) is expected to be bounded, having a finite maximum close to the critical point and de-
caying exponentially quickly for ut, uh → ±∞. By injecting the expression of function θ̂(ut, uh)

into Eq.4.31, or equivalently Eq.4.32, we see that it is indeed a solution to the equation. The
function θ(ut, uh) can therefore be estimated using an approximation θn(ut, uh) obtained after a
finite number of iterations.

For a typical value α = 2, this iteration procedure converges rather quickly in three di-
mensions. For the third iteration n = 3, we already get : α−2n−1d ∼ 10−4, α2n−1/ν ∼ 102,
α2n−1(β+γ)/ν ∼ 103. The correction given by this third iteration is therefore expected to be small
given the very small value of the parameter α2n−1

and that the point (α2n−1/νut, α
2n−1(β+γ)/νuh)

reached will be far from the critical point, except for extremely small values of (ut, uh).

Note that, to obtain θ over a given range of ut and uh, using this recursion requires that the
function θ0 is measured over a much wider range, since each iteration dilutes the chosen window.
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The iterative procedure requires access to increasingly high values (αn/νut, α
n(β+γ)/νuh) of the

scaling parameters, eventually falling outside the range of values for (ut, uh) explored in the
simulation. We have only considered the case h = 0 and are only concerned by the variable ut.
To estimate θ0 for values outside the range of ut explored in the simulation, we have fitted the
function θ0 using an exponential ansätze of the form of Eq.4.20, which proved excellent.

Further, the procedure requires the use of values for θ0(ut, uh) over the continuous range of
variables (ut, uh), not just the discrete set used in a Monte Carlo simulation. These values can
be estimated using spline interpolation of the computed values of θ0. In practice we have chosen
α ≈ 2, and have never used more than 2 iterations to obtain an estimate of θ in all the work
presented in this thesis.

4.3.6 Simulation and results

We performed Monte Carlo simulations in order to accurately reproduce the results of ref. [3],
where only the case of h = 0 has been considered (the effect of a magnetic field will be studied in
chapter 5). We restrained ourselves to a 3D system with periodic boundary conditions in all three
directions. Both the Wolff cluster algorithm and Metropolis algorithm (see chapter 2) were used
in a hybrid Monte Carlo step composed of a Wolff step on the entire system followed by Metropolis
iterations in layers {k0 − 1, k0, k0 + 1}. For each temperature, 20 Monte Carlo simulations with
different values of λ ranging from 0 to 1 were performed to allow for the integration of Eq.4.25,
performed using the quadratic Simpson’s rule.

In figure 4.4 are presented the function θ0(ut, 0) obtained for (ℓ = 9.5, αℓ = 19.5, A = 602)

and θ2, an improved estimate of θ thanks to the iterative procedure of Eq.4.35, which converged
within our present precision after two iterations. θ0 and θ2 are asymmetric and exponentially
decays to zero far from the critical point, showing that it is a purely critical phenomenon. The
scaling function is always negative, yielding an attractive Casimir force.

The main effect of the iterative process is to suppress the "shoulder" that is visible close to
ut = 0 in θ0. This "shoulder" is the signature of the influence on function θ0 of the Casimir force
computed in the system of size αℓ, as θ0 can be seen as the scaling function of the difference
between the Casimir force in the system of size ℓ minus the Casimir force computed in the system
of size αℓ (Eq.4.29), which is of smaller amplitude and width.

Approximately 106 Monte Carlo steps were required to get the most accurate data presented.
The choice of system sizes allow us to directly compare the function θ0(ut, 0) that we computed
to the one presented for the same parameters in ref. [3], showing excellent agreement (Fig.4.4).
This choice was primally motivated by several constraints: the width L∥ has to be taken as large
as possible to approach slab geometry (an aspect ratio L⊥/L∥ = 1/6 has been showed in ref. [76]
to already provide a good approximation of this limit). System thicknesses ℓ and αℓ should be
as large as possible to ensure that the approximation of Eq.4.27 is valid and that we reached
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Figure 4.4: θ0(ut, 0) (red filled squares) obtained with (ℓ = 9.5, αℓ = 19.5, A = 602) and
the same function obtained for the same lattice sizes in ref. [3] (blue dots), showing very good
agreement. Within our present precision, the iterative procedure of Eq.4.35 converged after two
iterations, providing a better estimate θ2(ut, 0) (green open squares). Error bars are of the order
or smaller than points size.

the scaling limit. Of course, a compromise has to be found as the computation time increases
rapidly with increasing system size.

The fully periodic boundary conditions cannot be related to any experimental situation.
But, as we have been able to reproduce to an excellent level of agreement results of reference
[3] (Fig.4.4), we have not pursued any further the reproduction of the data and will rely on
results presented in this reference paper for other surface boundary conditions. Nevertheless,
before presenting experimentally relevant results, we must consider the influence of corrections
to scaling.

4.3.7 Corrections to scaling

In chapters 1 and 2, we have seen that scaling behavior is only dominant close enough to the
critical point [23]. In section 1.3.6, we gave the example of corrections to scaling in the thermo-
dynamic limit of the susceptibility

χ(T, h = 0) = |t|−γ(A± +B±K̃3t
−νy3 + . . . ) , (4.37)

with A±, B± non-universal amplitudes, so that the power law |t|−γ is indeed the dominant
behavior close to Tc but t−νy3 might be important to take into account if one wants to extract
critical exponents from measurements. In section 2.2.3, we extended this example to the case of
corrections to finite-size scaling, in the case of the evolution of the amplitude at (t, h) = (0, 0) of
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the susceptibility

χ(Tc, h = 0, L) = L2−ηχs(0, 0)(1 + b1L
−ω + . . . ) + χa , (4.38)

with χa an analytic background and b1 a non universal amplitude to the leading correction to
scaling L−ω (ω = 0.84(4) in the Ising model [4]). In numerical simulations, corrections to finite-
size scaling have often to be taken into account as the size of systems are limited by computers
and algorithms capacities.

To get rid of these corrections, one must perform simulations in large enough systems, as
allowed by the limitations of simulations techniques, or reach sufficient accuracy to disentangle
universal behaviors from non universal corrections. Another possibility is to find models belong-
ing to the universality class of interest in which the leading correction to scaling is suppressed [4].
This is the case of the Blume-Capel model of Hamiltonian

HBC = −

<i,j>

SiSj + kBTD

i

S2
i , (4.39)

where spins assume values Si ∈ {−1, 0, 1} and D is a parameter controlling the density of
vacancies Si = 0 [57, 59, 102]. For −∞ < D < Dtri the model undergoes a continuous phase
transition at a critical temperature TBC

c (D), belonging to the Ising universality class (actually, in
the limit D → −∞ the model becomes equivalent to the Ising model). Numerically, it has been
shown that there exist a point D∗ at which the amplitude of the leading correction to scaling
vanishes. One difficulty with this improved Hamiltonian approach is that it requires a precise
estimate of the parameter value at which the leading correction is reduced, D∗ in the Blume-Capel
model, while observables are still subject to higher order corrections to scaling. Nevertheless,
the Blume-Capel has been shown to give high accuracy measurements of the critical Casimir
force [57, 59, 102]. Improved models are more delicate to implement than simpler models such
as the Ising model itself. The simplicity and flexibility of the latter and the abundant literature
on its numerical resolution at criticality still makes it today a suitable choice for the study of the
critical Casimir force [96].

As for any other observable, corrections to scaling affect the critical Casimir force. Estimates
of the scaling function θ obtained with different sets of systems size L⊥ or L∥ will differ if the
system sizes are not large enough. Reference [3] gives a detailed discussion of corrections to
scaling affecting θ in the 3D Ising and XY models for various boundary conditions. Firstly, the
scaling behavior of the correlation length is affected by corrections to scaling: this effect can be
captured by replacing the scaling variable t(L⊥/ξ

+
0 )

1/ν by a corrected one x(t, L⊥). Both the
finite thickness L⊥, which might be too small to be in the scaling limit, and the finite aspect ratio
ρ = L⊥/L∥, which make the limit of slab geometry only approximate, can foster corrections to
scaling. In ref. [3], for periodic boundary conditions in the Ising model, corrections of the form

x = t(L⊥/ξ
+
0 )

1/ν(1 + gωL
−ω
⊥ )(1 + r1ρ

2) , (4.40)
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Figure 4.5: Effect of corrections to scaling computed in ref. [3]. We display our result for θ2( ℓ
ξt
)

(green open squares), obtained with (ℓ = 9.5, αℓ = 19.5, A = 602) and already presented in
Fig.4.4, as a function of the universal scaling variable ℓ

ξt
, with ξt = ξ+0 |t|−ν . We compare it to

the the function θcorr(x) (blue dots) obtained in ref. [3] for the same system sizes but taking
corrections to scaling into account, affecting both the amplitude of the function θcorr and the
scaling variable x (see main text). Error bars are smaller than points size.

were used, where gω and r1 are non-universal amplitudes and ω = 0.84(4) is the universal
exponent for leading corrections to scaling. It turns out that for the investigated system sizes in
ref. [3], gω ≈ r1 ≈ 0 already provided a data collapse. Secondly, the amplitude of the Casimir
force is also affected by corrections to scaling and in ref. [3], for periodic boundary conditions in
the Ising model, corrections of the form

θcorr(x) = (1 + g2L
−ωeff

⊥ )θ̂(x) , (4.41)

were used, with θ̂ the estimate of the scaling function after employing the iterative procedure
described above and g2 and ωeff fitting parameters to obtain the best data collapse.

We compare in figure 4.5 the estimate θ2( ℓ
ξt
) that we have obtained to the best estimate

θcorr(x) of ref. [3] taking into account corrections to scaling. In this case, we see that only rather
small corrections were necessary. This is not always the case, and corrections to scaling can turn
out to be much more important, as in the case of fixed boundary conditions, as we will see in
chapter 5 (e.g. Fig. 5.8). Actually, various corrections to scaling ansätze have been explored in
ref. [3], which proved more suited to other boundary conditions and to the results obtained in
the XY model. We refer the reader to ref. [3] for further discussions on the matter.
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4.3.8 Numerical simulations compared to experimental results

As we already mentioned, the fully periodic boundary conditions cannot be related to any ex-
perimental situation. The slab geometry describes well the experimental set up of wetting films
of 4He [64] or 3He −4 He mixture [6, 73, 74] subject to a superfluid transition, or a demixing
transition in a binary polymer mixtures [5]. The first case belongs to the universality class of the
3D XY model with (O,O) confining boundary conditions and the other to the 3D Ising model
with (+,−) boundary conditions. The Casimir scaling function has been computed numerically
in these cases [3] and the results compare very well with experiments in the XY universality class
and are also in agreement in the Ising one, Fig.4.6.

a)

mum might occur when the exponentially diverging bulk
correlation length !2D, associated with the KT critical point
of the film, becomes comparable with the characteristic
transverse length L! "#A of the simulated system.

1. Dirichlet-Dirichlet boundary conditions

We consider first the case of $O ,O% BC. As evidenced by
Fig. 2$a%, in order to achieve a good data collapse of the
curves corresponding to different lattice sizes we have to
account for corrections to scaling according to Eqs. $18% and
$19%. As a phenomenological ansatz for the effective correc-
tions we take "eff=1 and consider two functional forms for
the L-dependent corrections to the scaling function: case $i%
&Eq. $20%' and case $ii% &Eq. $21%' as discussed in Sec. III D.
As a result of the fitting procedure, in the interval x! &−6,
−2.1' &see Eq. $18%' we find r1=1.18$10%, r2=2.40$13%, g1
=5.83$25%, and g"=2.25$15% in case $i% and g2=−2.98$8% in
case $ii% with the same values for r1, r2, and g" as in case $i%.
Figure 4 shows the corresponding resulting estimates of the
scaling function #$x% of the critical Casimir force. The qual-

ity of the data collapse for the two cases separately clearly
indicates that Eqs. $20%, $21%, and $18% are very effective
ways of accounting for the corrections to scaling in this sys-
tem. We find that #$x% is slightly affected by the choice of
the functional form of corrections to scaling and indeed in
the two cases one finds estimates of #$x% which have the
same shape but the overall amplitude is reduced by a factor
R(0.9 in case $ii% as compared with case $i%. The dashed
line represents the scaling function which has been deter-
mined in Ref. &17' on the basis of a different numerical
method and assuming corrections to scaling of the form $i%.
Even though this result is actually biased by that particular
choice $a point which has not been discussed in Ref. &17'%,
the very good agreement between the different approaches
provides a highly welcome independent test of both methods.

Our MC results for #$x% compare well also with the ex-
perimental data of Ref. &5'. $For a meaningful comparison
between the numerical and the experimental scaling func-
tion, the abscissa $L1/% of the experimental data presented in
Ref. &5' has to be properly normalized as $ $L /!0

+$exp%
%1/% by

using the experimental value !0
+$exp%

=1.432 Å &44,45'.% In
particular, the position of the pronounced minimum of the
scaling function is properly captured. The corrections to
scaling of form $i% yield xmin

$i% =−5.43$2% and #min
$i% "#$xmin

$i% %
=−1.396$6%, whereas those of form $ii% result in xmin

$ii%

=−5.43$2% and #min
$ii% "#$xmin

$ii% %=−1.260$5%. The correspond-
ing experimental values are xmin

$exp%=−5.7$5% and #min
$exp%

=−1.30$3%. Taking into account the aforementioned bias af-
fecting the results of Ref. &17' and the sensitivity of the
resulting scaling function to the assumed form of the correc-
tions to scaling we conclude that our estimates for xmin and
#min are compatible also with those presented there &−5.3$1%
and −1.35$3%, respectively'. As expected, due to the presence
of the Goldstone modes below Tc, both the experimental and
the MC data do not approach zero for x→−& but saturate at
some finite negative value at low temperatures. However, the
absolute value of the saturation as obtained from the MC
simulations is smaller than the experimental one. This differ-
ence, which extends deep into the noncritical regime, is, in-
ter alia, due to 4He specific properties and to the occurrence
of capillary waves on the liquid-vapor interface of the critical
4He wetting films. This point has been discussed in Ref.
&29'. In Fig. 4 the gray vertical bar indicates the universal
value xO,O

!
=−7.64$15% of the scaling variable corresponding

to the occurrence of the Kosterlitz-Thouless transition at T
=Tc$L% in the film, as inferred from MC simulations of lattice
models in the XY universality class presented in Ref. &41'.
The Kosterlitz-Thouless transition is accompanied by an ac-
tually invisible essential singularity )exp$−const /#*x−x!*%
in the behavior of the specific heat which, as discussed
above, displays a pronounced maximum at a temperature T
=Tm$L%. Accordingly, one does not expect to find any par-
ticular signature of this transition in the scaling function of
the Casimir force for x(x!, in distinction to the case of the
Ising model $cf., Secs. IV B 2 and IV B 3%.

Finally, for completeness, in Fig. 4 we have also included
$dash-dotted line% our mean-field result for the Casimir scal-
ing function #OO

$MFT% obtained from the limiting case of the
vectoralized Blume-Emery-Griffiths lattice model corre-
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FIG. 4. $Color online% Scaling function #OO of the Casimir
force for the three-dimensional XY model with $O ,O% BC. The MC
data reported in this figure refer to lattices with L=10, 15, and 20,
with fixed inverse aspect ratio 1 /'=6. Corrections to scaling have
been accounted for according to two different ansätze, provided by
Eqs. $20% and $21%; the corresponding numerical results are denoted
by $i% and $ii%, respectively. With corrections to scaling of the form
$ii%, the shape of the resulting scaling function is almost indistin-
guishable from the one obtained with corrections to scaling of the
form $i%, but its overall amplitude is reduced by a factor R(0.9. For
$i% our MC data compare very well with the corresponding experi-
mental data from Ref. &5' $solid line% and with the MC data of Ref.
&17' $dashed%. Due to the Goldstone modes #OO$x→−&%=const
!0. The dash-dotted line shows the mean-field scaling function
&30,31' normalized to the depth of the minimum of the MC data $i%.
The levelling off of the experimental data &5' for x→−& contains a
component which is specific for 4He wetting films &29' and cannot
be captured by an XY lattice model. The gray bar indicates the
position and uncertainty of the universal value xO,O

!
=−7.64$15% of

the scaling variable x corresponding to the occurrence of the
Kosterlitz-Thouless transition in the film, as inferred from MC
simulations of lattice models in the XY universality class presented
in Ref. &41'.
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b)

field-theoretical !=4−d expansion up to O!!" series !see
Ref. #24$ for details".

For !+−" BC we have found g̃1=−1.8!1", g̃2=8.54!43"
and we estimate "+−!L→#"%"+−=2.71!2", i.e., $+−!0"
=5.42!4", in agreement with the experimental value
$+−

!exp"!0"=6!2" #8$ but slightly larger compared to the previ-
ous MC estimate $+−!0"=4.900!64" #24$ #indicated as a full
circle in Fig. 8!b", still affected by finite-size corrections$
and the analytical estimates $+−

!FT"!0"=3.16. . .4.78. The latter
depend on the approximant used to resum the O!!" series
!see Ref. #24$ for details".

By using the values of g̃1 and g̃2 obtained previously in
the context of the Casimir amplitude we determine the coef-
ficient g% of the correction to the scaling variable x #see Eq.
!18" with r1=0$ in order to achieve a good data collapse for
the whole scaling function, with the results g%=2.04!15" for
!++" BC and g%=2.90!15" for !+−" BC. The comparison
between three phenomenological ansätze for the corrections
to scaling, i.e., cases !i" #Eq. !20"$, !ii" #Eq. !21"$, and !iv"
#Eq. !23"$, are presented in Figs. 9 and 10 for !++" and
!+−" BC, respectively. The scaling functions corresponding
to the rational expression for the corrections to scaling ansatz
#case !iv"$ lie in between the two others.

Currently, for the film geometry with !++" BC there are
no experimental data available for comparison, but in Fig. 9

$++ can be compared with the prediction of mean-field
theory #24$ !MFT, solid line, normalized such that
$++

!MFT"!0"=$++
!MC"!0" #=2"++

!MC" see Fig. 8!a"$" and with the
prediction of the two-dimensional Ising model #23$ !dashed
line". Recently, the de Gennes–Fisher local-functional
method has been extended to study the three-dimensional
case with !++" BC #18,19$. In this latter !nonperturbative"
approach one takes advantage of the knowledge of the values
of bulk critical exponents and amplitude ratios in order to fix
completely certain parameters of an effective model which is
then used to calculate the structural properties and the free
energy of the system first in the presence of a single wall and
eventually in thin films, giving access to the scaling function
for !++" BC. The resulting scaling function !dash-dotted line
in Fig. 9" is in very good agreement with the one !bottom set
of data points in Fig. 9" determined numerically via MC
simulations by assuming corrections to scaling of the form
given by Eqs. !20" and !18" with r1,2=0 and suitable values
for the fitting parameters g% and g1 !see above". This agree-
ment suggests that corrections to scaling are properly cap-
tured by such ansätze even for L→#. The prediction of the
de Gennes–Fisher local-functional method for the critical
Casimir amplitudes #shown as diamonds in Figs. 8!a" and
8!b"$ is "++=−0.42!8" and "+−=3.1 #18$, which compares
quite well with our MC results for "++=−0.376!29", whereas
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FIG. 9. !Color online" Scaling function $++ of the critical Ca-
simir force in the three-dimensional Ising model with !++" BC and
zero bulk field. Data points refer to lattices with fixed inverse aspect
ratio 1 /&=6. The bottom and top data sets have been obtained by
accounting for corrections to scaling according to Eq. !20" #case !i"$
and Eq. !21" #case !ii"$, respectively. The intermediate data set,
instead, considers corrections of the rational form given by Eq. !23"
#case !iv"$. In each case the data collapse turns out to be very good
within the range of the scaling variable x covered in the figure. The
final estimate of the scaling function is biased by the functional
form assumed for the corrections to scaling. The position xmin
&5.90!8" of the minimum is insensitive with respect to these
choices for the form of the corrections. For comparison we provide
the prediction of mean-field theory #24$ !solid line", normalized
such that $++

!MFT"!0"=$++
!MC"!0" #Fig. 8!a"$, the exact result for the

two-dimensional Ising model #23$ !dashed line", and the result from
the extended de Gennes–Fisher local-functional method #19$ !dash-
dotted line". Note that the actual phase transition of the film occurs
at a nonzero value of the bulk field.
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FIG. 10. !Color online" Scaling function $+− of the critical Ca-
simir force in the three-dimensional Ising model with !+−" BC and
zero bulk field. Data points refer to lattices with fixed inverse aspect
ratio 1 /&=6. For comparison we provide the mean-field prediction
#24$ !solid line", normalized such that $+−

!MFT"!0"=$+−
!MC"!0" #=2"+−,

Fig. 8!b"$, the exact result for the two-dimensional Ising model #23$
!dashed line", and the set of experimental data points from Ref. #8$.
The top and bottom data sets have been obtained by accounting for
corrections to scaling according to Eq. !20" #case !i"$ and Eq. !21"
#case !ii"$, respectively. The intermediate data set, instead, considers
corrections of the rational form given by Eq. !23" #case !iv"$. In
each case the data collapse turns out to be very good for x'−20.
The final estimate of the scaling function is biased by the functional
form assumed for the corrections to scaling. The position xmax&
−5.4!1" of the maximum is insensitive with respect to these choices
for the form of the corrections. In spite of this caveat the compari-
son with the experimental data is encouraging. Note that the actual
phase transition of the film occurs at a nonzero value of the bulk
field.
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Figure 4.6: Figure extracted from ref. [3]: a) colored dots represent the scaling function of
the Casimir force ϑOO(x) in the 3D XY universality class with (O,O) boundary conditions
for different system dimensions and collapsed using two different corrections to scaling anzätse
(i), (ii) (see reference for details). The red curve comes from measurements of ref. [6, 64] and the
purple dashed line represents other numerical results of ref. [103]. Excellent agreement is obtained
between numerical and experimental works. b) Colored dots represent the scaling function of
the Casimir force ϑ+−(x) in the 3D Ising universality class with (+,−) boundary conditions for
different system sizes and collapsed using three different corrections to scaling anzätse (i), (ii), (iv)
(see reference for details). Red points with error bars come from measurements of ref. [5], showing
good agreement with the numerical work.

4.3.9 Conclusion

The method of thermodynamic integration over a crossover parameter, or coupling parameter
approach, has proved very efficient, leading to later studies, for example, in sphere-plane geometry
[47], with variable boundary fields [87], a bulk field [78] or more recently in the presence of random
surface fields [96]. However, this method clearly cannot be adapted to an experimental set up.
Moreover, from our previous discussions it appears that, apart from the preliminary work of ref.
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[62] in 1998 trying to directly reproduce wetting experiments in a Lennard-Jones simulation, there
is a dichotomy between experimental measurements and numerical simulations of the Casimir
force. Measurements are performed in fluid systems, whereas theoretical and numerical works
study magnetic models. We have already mentioned above the possibility of computing the
free energy through integration of the specific heat Cv. Such an approach is experimentally
challenging and requires a double integration on temperature to estimate the free energy from
Cv. We have recently developed and numerically tested a new protocol for the measurement of
the magnetic Casimir force based on the concept of generalized thermodynamic forces, showing
that equivalent results to previous works can be achieved by directly evaluating free energy
changes through integration of the magnetization from a reference state at high magnetic field
into the critical region. In chapter 5, we will describe our proposal for the first protocol adapted
to experimental measurements of the critical Casimir force in magnetic systems. Conversely,
in chapter 7, we will try to close the gap between experimental and numerical approaches, this
time by numerically studying the Casimir effect in a fluid system, through simulations of a
Lennard-Jones symmetrical binary mixture.
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Chapter 5

The Critical Casimir Force in a Magnetic
System ; an Experimental Protocol

On the one hand, spin models are the paradigm for computing the universal scaling function
of the critical Casimir force, the most experimentally relevant being the Ising and XY models.
Theoretical [20, 77, 97, 104] and numerical [3, 9, 21, 57, 58, 69, 75, 76, 78, 80, 103, 105] studies
systematically use approaches based on generalized thermodynamic relationships between the
constraining forces and the relevant free energy. On the other hand, experimental measurements
of the critical Casimir effect were performed in fluid systems [5, 64, 67, 73, 74], as introduced in
chapter 4, probing directly or indirectly the confining force. Thus, there is a clear segregation
between theoretical and numerical works in magnetic systems on one side and experimental
measurements in fluid systems on the other.

Given the success of spin models in the accurate computation of the critical Casimir force
in almost all situations, it is paradoxical that no magnetic experiments exist which attempt
to measure the scaling function from estimates of free energy differences, given that magnetic
experiments have long been considered as the paradigm for studies of criticality (see for example
ref. [17]) and that the nano-engineering of magnetic thin films is particularly well-advanced [18].
The reason is that the numerical techniques, accurate though they may be, are not adapted to
experiments. Moreover, the experimental approaches developed for fluid systems are not suited
for magnetic materials as they rely on directly or indirectly measuring a pressure, which is not
in general a relevant thermodynamic observable for a solid material, especially in the absence of
magneto elastic coupling.

We have developed and numerically tested a new protocol for measurement of the magnetic
Casimir force based on the concept of generalized thermodynamic forces, showing that equivalent
results to previous works can be achieved by directly evaluating free energy changes through
integration of the magnetization from a reference state at high magnetic field into the critical
region. Here, evolution of the free energy with system size yields the critical Casimir effect

79
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without direct access to the constraining force. This procedure could be adapted into the first
experimental protocol for magnetic thin films, or for systems as diverse as ferroelectrics, liquid
crystals or polymers and could give access to all universality classes including quantum criticality.
This work has been published in the Physical Review B [16].

5.1 Free energy and integration of observables

As we have seen in the previous chapter, extremely efficient numerical algorithms already exist
for the simulation of the critical Casimir force within the framework of lattice based spin models.
These algorithms make use of the thermodynamic relationship between force and free energy

(Eq.4.12), making a discrete estimate of
∂Ω

∂L⊥
, rather than simulating a direct force measurement.

We have detailed in the previous chapter (section 4.3) a method giving direct access to free energy
changes induced by adiabatically disconnecting a single layer of spins from a connected stack of
L⊥ layers. The method provides accurate estimates for the Casimir force for different universality
classes and boundary conditions both for zero field [3], and more recently for non zero field [78].
We also mentioned the possibility of defining a magnetic stress tensor, equating the critical
Casimir force with its anisotropic part [21], thus circumventing the integration over the auxiliary
degree of freedom λ. This technique has been successfully used for varied situations, limited at
present to zero field and periodic boundaries. Nevertheless, successful as these techniques may
be, it is clear that they have no experimental equivalent.

A more experimentally relevant approach relies on a simple statement: thermodynamic
observables are defined as derivatives of the free energy. We mentioned a text book approach
to computing the free energy [2] using both the average internal energy U and the entropy
S computed by integration of the specific heat Cv = T ∂S

∂T


V

to reconstruct the free energy
Ω = U − TS. The free energy can actually be directly computed by integration of the internal
energy with respect to temperature as U = ∂κΩ

∂κ


h
, with 1/κ = kBT . Free energy differences

have been estimated by tracking the evolution of the excess internal energy with temperature for
systems of size L⊥ and L⊥−1 [9, 57, 69, 76, 103, 105]. Using this method it has been possible to
make accurate estimates of the scaling function in the Ising universality class [57, 76] and of the
scaling function extracted from work function measurements on helium films near the superfluid
phase transition [103], showing excellent agreement with results of ref. [3] previously discussed
(Fig.4.6). However, neither the internal energy at temperature T , nor that at a required reference
state are themselves directly accessible in experiment. One still has the option of performing a
double integration of the specific heat Cv(T ) = −T ∂2Ω

∂T 2


V,h

with respect to temperature to access

the free energy. This route has been explored in ref. [9] for the 3D XY universality class: numerical
estimates of the universal scaling function of the Casimir force were compared to the one obtained
using specific heat measurements in helium 4 [7, 8], obtaining a convincing agreement but with
very strong size effects (additional to finite-size scaling) which became dominant when decreasing
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the temperature, preventing the estimation of the Casimir function in the low temperature region.

The specific heat is a rather difficult quantity to measure and we have seen in figure 2.4 of
chapter 2 that, because of its very slow divergence close to the critical point, its critical behavior
seems the most difficult to capture. Thus we turn to the magnetization as the suitable first
derivative of the free energy and most easily accessible magnetic observable.

5.2 Casimir force and integration of the magnetization

As in chapter 4, we concentrate on a system with scalar order parameter m, conjugate exter-
nal field h, volume V and free energy Ωslab(T, h, V ), close to a second order phase transition.
Anisotropic confinement is allowed for by setting V = AL⊥, with

√
A = L∥ ≫ L⊥. We recall

dimensionless variables, t = (T −Tc)/Tc, h̃ = h/kBTc, with Tc the bulk three-dimensional critical
temperature.

As mentioned in the previous chapter, in the case of a lattice model the fourth relevant
thermodynamic variable N is omitted, as the magnetic moment density n = N

V is fixed. In
this case volume fluctuations impose fluctuations in the number of magnetic elements, so that
one is dealing with a uniform magnetic medium. While spontaneous fluctuations of this kind
clearly cannot exist in conventional magnetic systems [75], the evolution of the free energy with
system size can give indirect access to the Casimir force and this is the goal of our approach.
An alternative constraint would be to impose N constant, so that volume fluctuations would
lead to magneto-elastic effects, as is the case in real magnets. In principle one could imagine
magnetic experiments that directly measure Casimir forces through magneto-elastic coupling,
although the separation of the critical and bulk contributions could be difficult. In practice, as
magnetic exchange coupling varies rapidly with inter-atomic distance the critical properties are
strongly perturbed and renormalization studies predict the transition to be driven first order by
the coupling [106]. This driving to first order is reminiscent of the existence of a tricritical point
for the Blume-Capel model, in which the density of magnetic elements is allowed to vary (see
section 4.3.7). This, in itself is an interesting field of study, but in the present work we neglect
all magneto-elastic effects and concentrate on the free energy which is generic to magnetic and
fluid systems. For convenience, we set the microscopic length scale σ = 1.

As we developed in section 4.2, the free energy can be decomposed in slab geometry as

Ωslab(T, h, L⊥, A)

AkBT
= L⊥ ωbulk(T, h) + ωsurf (T, h) + L⊥ωex(T, h, L⊥) , (5.1)

and the critical Casimir force is defined as

fc = −kBT
∂(L⊥ωex)

∂L⊥


T,h

= kBTL
−d
⊥ θ (ut, uh) . (5.2)

The difference in free energy along an isotherm, between a reference state, (T, h0) and a final
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state (T, h) can be obtained through the magnetization

∆Ω = −
 h

h0

⟨M(T, h′, L⊥)⟩dh′ . (5.3)

Even if we choose T ∼ Tc, if |h0| is chosen to be sufficiently large, the correlation length at the
reference state will be small so that the reference free-energy will be essentially that of the bulk
Ωslab(T, h0, L⊥) = V kBTωbulk(T, h0). As a consequence ∆Ω should contain all the information
of the Casimir effect at (T, h). This is similar to the procedure that could be developed along
the temperature axis by integrating the specific heat, but this route would require a double
integration [9]. Repeating this procedure for systems of size L⊥ and L⊥ − δL⊥ and applying the
extensivity principle for the free energy away from criticality one finds

δ′Ω(T, h, ℓ) ≡ ∆Ω(L⊥)−∆Ω(L⊥ − δL⊥)

= δΩ(T, h, ℓ)− δL⊥

L⊥
Ωslab(T, h0, L⊥)

= δΩ(T, h, ℓ)− δL⊥AkBTωbulk ,

(5.4)

where δΩ is the increment in free energy, equating approximately to

δΩ(T, h, ℓ) ≈ δL⊥
∂Ω

∂L⊥
(T, h, ℓ) , (5.5)

evaluated at T, h and ℓ = L⊥ − δL⊥/2. This intuitive choice for ℓ has been shown rigorously
to facilitate the approach to the scaling limit by minimizing the importance of corrections to
scaling terms [75]. Non-critical surface free energy corrections cancel in the subtraction of the
contributions from the two length scales. One now repeats the procedure for two sets of length
scales centered on ℓ and αℓ. Subtracting results from the two pairs of length scales eliminates
the free energy from the reference state, Ωslab(T, h0, L⊥), as well as the bulk contribution to the
free energy at the point of interest, ωbulk(t, h), providing a first estimate of the Casimir force:

f0
c (T, h, ℓ) = − [δ′Ω(ℓ)− δ′Ω(αℓ)]

1

AδL⊥

= − [δΩ(ℓ)− δΩ(αℓ)]
1

AδL⊥
≈ fc(ℓ)− fc(αℓ) . (5.6)

One could also think of using a thermodynamically large cubic system as a reference bulk state,
but this would require the growth of a large enough monocrystal without defects. Given the
universal scaling form for fc (Eq. (5.2)) one can define a scaling function for f0

c

f0
c (T, h, ℓ) = kBTℓ

−dθ0 (ut[ℓ], uh[ℓ]) , (5.7)

where ut[ℓ] = tℓ1/ν and uh[ℓ] = h̃ℓ(β+γ)/ν are the appropriate scaling variables. The scaling
function θ0(ℓ) is related to θ at two different values of ut[ℓ] and uh[ℓ]

θ0(ℓ) = θ(ℓ)− α−dθ(αℓ) , (5.8)

equation that can be solved using the iterative procedure described in Chapter 4, section 4.3.5.
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5.3 Numerical method

We have tested these ideas through Monte Carlo simulation of a nearest neighbor Ising spin
system with coupling strength J = 1 (for simplicity) and external field h, on a cubic lattice in
slab geometry with L∥ > L⊥. The magnetic order parameter is

⟨m⟩ = 1

V


i

Si


, (5.9)

where ⟨X⟩ is a thermal average. In the previous chapters, we have sometimes used the observables
|m|, as ⟨m(T, h = 0)⟩ = 0 whatever the temperature in a finite size system where symmetry is
not broken. Here, the relevant variable conjugate to the magnetic field h is ⟨m⟩, defined as a
first derivative to the free energy.

To reduce critical slowing down we have used the Wolff algorithm, adapted to work in the
presence of a symmetry breaking field (see Chapter 2). The boundary conditions were always set
periodic in the x− y plane but different boundaries along the z axis where explored: periodic or
fixed (+,+) and (+,−) (see section 4.2.3). For temperatures below Tc, as the absolute value of the
magnetic field |h| increases, the number of rejected cluster flips increases dramatically, resulting
in an increase of the autocorrelation time and therefore a loss of efficiency of the algorithm.
Obtaining precise results at low temperature, particularly for (+,−) boundary conditions requires
a particularly large computation time [3]. The data we present in the article were obtained using
a number of Monte-Carlo steps ranging from 5 × 104 for (+,+) boundary conditions at the
higher temperatures to 7× 107 for temperatures far below Tc in systems with (+,−) boundary
conditions where the efficiency of the algorithm is at its lowest. The statistical error is evaluated
using a modified bootstrap method [2]. As the presence of fixed boundary conditions and bulk
magnetic field increases the correlation time τcorr dramatically, we interpret the bootstrap method
as providing a value for σm/


Nstep where σ2

m =

m2

− ⟨m⟩2 is the variance and Nstep is the

number of Monte-Carlo steps performed, rather than the error itself. To compute the statistical
error we estimated the autocorrelation time τcorr and then took the error to be


2τcorrσ2

m/Nstep

[2], which proved in excellent agreement with the statistical noise observed. The simulations
benefited from the numerical resources of the PSMN in Lyon [22].

From an numerical point of view, and for the same reasons as in the previous chapter (sec-
tion 4.3), we chose to study preferentially system thicknesses ℓ = 9.5 and αℓ = 19.5 and initially
took δL⊥ = 1. Different constraints motivate this choice: first ℓ has to be big enough with
respect to the variation δL⊥ so that the derivative of the free-energy with respect to the system
size can be safely approximated by the differential δΩslab

δL⊥
. In order to test the robustness of this

approximation, δL⊥ = 3 and 5 have also been investigated. Secondly, ℓ must be big enough to
allow an approach into the three dimensional scaling regime. This choice is moderated by the
fact that the difference in magnetization for different system sizes falls to zero as the thermody-
namic limit is approached, so that a pragmatic compromise is required, both in simulation and
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in any future experiment. These considerations motivates the choice of relatively modest system
size ℓ = 9.5. Thirdly, α has to be as large as possible to have a fast convergence of the iteration
process that extracts the approximation θk from the measured θ0. Here α = 19.5/9.5 ≈ 2. The
transverse size L∥ should be chosen as big as possible with respect to L⊥ in order to ensure that
we stay in the anisotropic confinement regime. In all our simulations we used A = 3600 enabling
us to directly compare our results with those from ref. 3 where one can find detailed discussions
on the impact of system size and of corrections to scaling, on the form of the universal function
of the Casimir force obtained in the Ising and XY models.

5.4 Choice of h0 and integration procedure

In figure 5.1 we show the evolution of the magnetization with applied field for T = Tc for
Lz = 9, 10, 19, 20 and in the case of either periodic boundaries along z or (+,−) boundaries. In
the case of fully periodic boundary conditions, the difference in ⟨m(L⊥, h)⟩, for small h is clearly
visible for L⊥ = 9 and 10, becoming much smaller for the larger L⊥. The Casimir force comes
from the integral of these differences with field, so that system sizes straddling L⊥ = 10 appear to
offer a good pragmatic place to start. For this length scale the effect is pronounced, while one is
already in the scaling regime to within a reasonable approximation. In addition, magnetic films of
this thickness can be produced with great precision so that these parameters already correspond
to the state of the art for thin film production [18]. In the case of (+,−) boundaries, Fig.5.1b),
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Figure 5.1: Magnetic order parameter vs. h at T = Tc = J/0.22165 for four different system
thicknesses L⊥ ∈ [9, 10, 19, 20], A = 3600 and either fully periodic boundary conditions (a)
(inset: blow-up of the low field region of the magnetization) or (+−) boundary conditions in
the z direction (b).
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magnetization curves do not collapse for high values of h: the fixed boundary conditions can be
considered as local magnetic fields hs = ±J of total strength ±AJ and are in competition with
the bulk magnetic field hV . This surface contribution is independent of L⊥ and is suppressed in
the differentiation process (Eq.5.4).

We can separate the magnetization in three contributions: bulk, surface and excess

⟨M(T, h, ℓ, A)⟩ = V ⟨mbulk(T, h)⟩+A⟨msurf (T, h)⟩+ V ⟨mex(T, h, ℓ)⟩ . (5.10)

To be able to extract the free-energy by integration of the order parameter, it is necessary to
determine a suitable reference magnetic field h0 for which the excess part can be safely considered
negligible. From the magnetizations of four systems of same area A but four different thicknesses
L⊥ ∈ [ℓ± δL⊥/2, αℓ± δL⊥/2], we can define the function

D(T, h, ℓ) =
1

AδL⊥
⟨M (αℓ+ δL⊥/2)−M (αℓ− δL⊥/2)−M (ℓ+ δL⊥/2) +M (ℓ− δL⊥/2)⟩

=
1

AδL⊥
⟨Mex (αℓ+ δL⊥/2)−Mex (αℓ− δL⊥/2)−Mex (ℓ+ δL⊥/2) +Mex (ℓ− δL⊥/2)⟩ ,

(5.11)

where all the magnetizations are taken at the same temperature and magnetic field, omitted in
the notation for the sake of lightness. This is a purely "excess" quantity, directly related to the
Casimir effect as

θ0(ut, uh) =
ℓd

kBT

 h0

h

dh′ D(T, h′, ℓ) . (5.12)
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Figure 5.2: Function D(T, h, ℓ) defined in Eq.5.11 with respect to the magnetic field h. The data
were obtained at T = Tc for periodic boundary conditions and ℓ = 9, 5,αℓ = 19, 5 and A = 3600

(same data as in Fig.5.1). The integration of D(T, h, ℓ) over h gives θ0. D(T, h, ℓ) goes to zero
as h is increased, h0 should be chosen so that D(T, h, ℓ) is zero within the current precision of
the simulation, ensuring that finite size effects are suppressed by this field.
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Functions D and θ0 also depend on the choice of the parameters α and δL⊥ but we omit this
dependences in our notations, again for sake of lightness. To illustrate the procedure further we
concentrate on the case of fully periodic boundaries of Fig.5.1a), for which ℓ = 9.5, αℓ = 19.5

and δL⊥ = 1 and figure 5.2 shows the corresponding function D(T, h, ℓ). At zero magnetic field
the value of the magnetization ⟨m(L⊥, h = 0)⟩ = 0 is imposed by magnetic moment reversal
symmetry, thus D(T, h = 0, ℓ) = 0 (Fig 5.2). At low magnetic field the magnetization depends
on L⊥ and D(T, h, ℓ) ̸= 0. The magnetization curves asymptotically merge as the magnetic
field is increased, reducing the correlation length and consequently suppressing finite-size effects,
so that D(T, h, ℓ) →

h→∞
0, this limit being unchanged by the presence of surface fields as D is

a purely excess quantity. Roughly speaking, we can convince ourselves from figure 5.2 that for
h & 0.08, D can safely be considered null within the current precision of the simulation. Carrying
out the integration of Eq.5.12 using a reference magnetic field h0 > 0.08 would add more noise
than signal to θ0. We can thus use D to choose a suitable value for h0, large enough so that
the value of θ0(ut, uh) reaches an asymptote. The integration of Eq.5.12 was then performed
using Simpson’s rule from h0 to h for all computed values of h. Note that h0 depends on the
temperature considered and, as the size of the critical region shrinks when getting away from
Tc, the reference magnetic field will vanish accordingly. A possible pitfall of this method could
arise if the function D did not, as expected, decay exponentially fast at high magnetic field.
For example, a power law decay, even far from the critical point, could result in the choice of a
reference field for which D is negligible with respect to the noise but which truncates a significant
part of the integral of Eq.5.12.

5.5 At zero magnetic field

5.5.1 First estimate θ0 at zero magnetic field

To make contact with previous works, in Figure 5.3 we compare the zeroth order scaling function,
θ0(ut, 0) extracted using the magnetic protocol described above with that from reference [3] for
(+,+) and (+,−) boundary conditions. In all cases ℓ = 9.5, δL⊥ = 1 and αℓ = 19.5. One
can observe excellent agreement between the two data sets for both boundary conditions, thus
confirming our protocol as a viable method of extracting critical Casimir forces. We have also
successfully tested our protocol against the coupling parameter method for periodic boundaries.
The difference in sign and amplitude of the Casimir force between (+,+) and (+,−) boundaries
has its origin in the excess entropy of the trapped interface. This spectacular inversion and scale
change is perfectly captured by our thermodynamic protocol. From here, the universal function
θ can be extracted by iteratively solving Eq.5.8.
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Figure 5.3: Zeroth order scaling function θ0 vs ut = tℓ1/ν for h = 0. Data from the magnetic
protocol outlined in the text (red cross), data from ref. [3] (blue line). Figure a) (+,+) bound-
aries, b) (+,−). In all cases ℓ = 9.5, δL⊥ = 1 and αℓ = 19.5, while A = 3600. The error bars
were computed using a modified bootstrap method and an estimate of the autocorrelation time.

5.5.2 Iteration procedure

As we have already seen in Chapter 4, with our choice of system sizes and α ≈ 2, the scaling
function θ0 already provides a good estimate for the functional form of θ(ut, uh). Nevertheless, to
improve the estimate of θ, we can use the procedure described in section 4.3.5, which converged
within two iterations. For n = 3, we found that all points (α2n−1/νut, α

2n−1(β+γ)/νuh) (except
for (ut = 0, uh = 0) of course) fell outside the range of values of (ut, uh) explored in our Monte-
Carlo simulation. Hence, their contribution could safely be considered to be negligible within
the precision of our simulation. Figure 5.4 presents, as an example, the evolution of θn++(ut, 0)

between n = 0 and n = 2, with data found using ℓ = 9.5, αℓ = 19.5, δL⊥ = 1 and A = 3600.
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Figure 5.4: Evolution of the scaling function with the iteration procedure. Function θn++(ut, 0)

of the Casimir force for n = 0 (red squares) and n = 2 (blue dots) as a function of reduced
variable ut = t L

1/ν
z , computed using the proposed integration method for (++) boundaries and

ℓ = 9.5, αℓ = 19.5,δLz = 1 and A = 3600.

5.5.3 Critical amplitude and corrections to scaling

Arriving at a scale free function from these system sizes also requires a delicate analysis of
corrections to scaling [107]. Having made contact with previous work for these modest system
sizes, we account for the corrections here by rescaling the data to the universal scaling amplitude,
θ(0, 0) = 2∆ for each set of boundaries. If this technique were developed in magnetic thin
film experiments, it is likely that initial measurements would require scaling in the same way,
as was the case for early experimental data for helium films to remove amplitude shifts due
to uncontrolled surface roughness [6, 64]. Numerical estimates given in the literature vary:
∆++ = −0.376(29) and ∆+− = 2.71(2) [3], ∆++ = −0.410(7) and ∆+− = 2.806(10) [57]. Here
we take values from [3], as our method relates to this work. We return to this subject below,
where we present some initial finite size scaling results for the critical Casimir force in finite field.

5.6 Fixed (+,+) boundary conditions and finite field

5.6.1 Positive magnetic field

Until recently [68, 78] there has been only minimal interest in the scaling of the critical Casimir
force along the field axis. This can be explained in part by an absence of experimental motivation
as it is difficult to probe the field variable in present setups: for the superfluid transition in 4He
films [64, 73] h is not accessible, while for binary liquid films [5], experiments are performed for
fixed concentrations, rather than conjugate field. However, experiments on thin film magnets
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lend themselves naturally to critical scaling in both ut and uh. Our numerical protocol is equally
well adapted to work at non zero field and is in fact particularly efficient, as all points along an
isotherm contribute to θ(ut, uh). Our procedure therefore opens up a new direction for the study
of these forces. In Figure 5.5, we show θ(ut, uh) for (+,+) boundaries, illustrating the form of
the scaling function in the half plane, h > 0. This figure requires the same computational effort
as the one dimensional data sets shown in Figure 5.3.
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Figure 5.5: θ++(ut, uh) for (+,+) boundaries, found using the magnetic protocol outlined in
the text for ℓ = 9.5, αℓ = 19.5, δL⊥ = 1 and A = 3600. The field is confined to the + direction.
The function was scaled to universal amplitude, θ++(0, 0) = 2∆++ = −0.75. The lines projected
onto the base show contours of equal Casimir force.

5.6.2 Negative magnetic field

Minimum of the scaling function

The scaling function shows no minimum value as a function of field for h > 0. The minimum can
be found in the half plane, h < 0, with the field in the opposite direction to the pinned boundaries.
Remarkably, as we show in Figure 5.6, θ0 plunges to values more than an order of magnitude
lower, as one crosses the line to negative field values. This unexpectedly large amplitude [78]
comes from the competition between opposing surface and bulk fields. At large separation, the
applied field imposes two magnetization interfaces. For smaller L⊥, this frustration is lifted
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Figure 5.6: Zeroth order scaling function θ0++(0, uh) for (++) boundaries with field spanning
both + and− directions. The data were obtained with three different sets of system sizes: ℓ = 9.5,
αℓ = 19.5 (red squares), ℓ = 14.5, αℓ = 29.5 (green dots) and ℓ = 19.5, αℓ = 39.5 (blue triangles).
For all sets of data δL⊥ = 1, A=3600 and α ≈ 2.

and symmetry is broken in the direction of the boundary field resulting in a particularly large
Casimir force, which could be accessed in thin film experiments. This large effect can be quite
straightforwardly understood when looking at magnetization curves of figure 5.7: finite size effects
both influence the development of the amplitude of the magnetization but also the coercitive field
for which ⟨m⟩ = 0, so that close to this point, the change in magnetization with system size is
quite significant. For small system sizes, this sharp evolution of the magnetization could lead to
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Figure 5.7: Magnetization with respect to field h at Tc for L⊥ × 60 × 60 systems with (+,+)

boundary conditions.



5.6. FIXED (+,+) BOUNDARY CONDITIONS AND FINITE FIELD 91

the failure of the approximation of derivatives by a finite difference with the change δL⊥ and could
explain the significant discrepancy between data for the Casimir effect displayed in figure 5.6
which were obtained with different sets of system sizes, (ℓ = 9.5, αℓ = 19.5), (ℓ = 14.5, αℓ = 29.5)

and (ℓ = 19.5, αℓ = 39.5), but keeping δL⊥ = 1 and A = 3600. This discrepancy can also be
attributed to corrections to the slab limit [76], as the aspect ratio changes from one set of sizes
to the other, or other corrections to the scaling limit. We will see later that it can be captured
by a phenomenological change of the scaling length ℓ → ℓeff .

One can notice that the error bars displayed on figure 5.6 are significantly larger for the
lowest values of magnetic field than for the highest ones. This is due to the integration from
high to low magnetic field we use to compute θ0. Starting integration at the reference state h0,
we accumulate error during the integration process.

Iteration procedure

The large amplitude Casimir force encountered in the case of (++) boundaries for a field in the
reverse direction, h < 0, as shown in Figure 5.6, puts a strain on the iteration procedure in the
region where the scaling function evolves most rapidly with field. This produces a kink in the
estimated function θ(0, uh) for small, negative h, as shown in Figure 5.8 for three different system
sizes ℓ = 9.5, ℓ = 14.5 and ℓ = 19.5. The kink appears less pronounced for the larger system
size, which suggests that it is an artifact of the procedure for small systems. More work would
be required to confirm this point, considering in particular the rather low resolution of data for
the biggest systems. However, it is clear that all sets of sizes produce very different estimates
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Figure 5.8: Improved estimate of the universal Casimir function θ2++(0, uh), corresponding to
the zeroth order scaling functions θ0++(0, uh) of figure 5.6, obtained after applying n = 2 steps
of the iterative procedure described in the text, that is to say to convergence within our current
precision.
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for the Casimir scaling function in the negative field region, suggesting that our results are far
from the complete scaling regime. We therefore propose a rescaling method to take corrections
to scaling into account.

Rescaling of θ++ : choice of an effective size ℓeff

The significant discrepancy between data for the Casimir effect obtained with two sets of system
sizes, displayed in figure 5.6 and 5.8, can be attributed to the failure of the approximation
of derivatives by finite differences but also to corrections to the scaling limit. Corrections of
this amplitude are encountered elsewhere [3, 102]. They can be accounted for by introducing a
phenomenological change to the scaling length [57, 75, 78, 87]: ℓ → ℓeff = ℓ+δℓ, see Figure 5.9, a
process which can be justified analytically for the Blume-Capel model [57, 75]. Hasenbusch [57]
argued that this correction could be understood as coming from the ad hoc separation of critical
contributions in bulk and surface parts, forcing one to place a boundary separating surface spins
from bulk spins. This choice modifies both critical contributions and leads to corrections to
the scaling limit. We used this correction here in an exploratory manner. To obtain a data
collapse, we calculate the necessary correction δℓ so that (ℓeff/ℓ)

dθ0++ is equal for the maxima of
the three sets of data. We find, δℓ = 2.57 with an error of approximately 8 % considering the
statistical error on the data (in ref. [16] we found a best collapse for δℓ = 2.8 but at that time the
ℓ = 19.5 results were not available). This correction affects both the amplitude of the function
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Figure 5.9: Zeroth order scaling function with (+,+) boundaries for (ℓ = 9.5, αℓ = 19.5) (red
squares) and (ℓ = 14.5, αℓ = 29.5) (green dots) and (ℓ = 19.5, αℓ = 39.5) (blue triangles)
collapsed using an effective length scale ℓeff = ℓ + δℓ. Here δℓ = 2.57. This correction affects
both the amplitude of the function by a factor of (ℓeff/ℓ)d and the reduced parameter uh by a
factor (ℓeff/ℓ)(γ+β)/ν . For all data δL⊥ = 1 and A = 3600. For comparison we display data from
ref. [78] (purple dashed line).
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by a factor of (ℓeff/ℓ)d and the reduced parameter uh = h̃L
(β+γ)/ν
⊥ by a factor (ℓeff/ℓ)

(γ+β)/ν .
As shown in Figure 5.9, we find that this single parameter is enough to make the data collapse
both in amplitude and width and reach a nice agreement with data from ref. [78], except for
negative values of uh close to 0 (we will see that this gap is closed by the iterative procedure).
The rescaling of the amplitude of θ due to the factor (ℓeff/ℓ)

d is ∼ 2.05 ± 0.25 for ℓ = 9.5 and
compares well with the ad hoc rescaling by a factor of 2.24 of the amplitude we used for the
same system size in figure 5.5, which ensures that θ++(0, 0) = 2∆++ = −0.75 [3].

In ref. [78], corrections to scaling are captured using a much smaller value of δℓ = 0.60(10).
We believe this discrepancy can in part be attributed to the different conventions used to define
the thickness L⊥. In our study, L⊥ refers to the number of layers of fluctuating spins, whatever
the boundary conditions [58], and impose the fixed boundary conditions by adding two layers
of fixed spins. Whereas, in ref. [78], all layers are included in the count defining L⊥ and the
boundary conditions is imposed by strong local magnetic fields acting on boundary spins.

When performing iterations on the rescaled data, one should use αeff = αℓ+δℓ
ℓ+δℓ rather than α.

Figure 5.10a) shows how the approximation (ℓeff/ℓ)
dθn++ for ℓ = 9.5 evolves from n = 0 to n = 2,
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Figure 5.10: a) Recursion procedure combined with corrections to scaling. (ℓeff/ℓ)
dθn++(0, uh)

vs (ℓeff/ℓ)
(γ+β)/νuh, n = 0 (red squares), n = 2 (green dots). Data are for ℓ = 9.5, αℓ = 19.5,

δL⊥ = 1 and A = 3600. Corrections to scaling that affect both the amplitude of the function
and the reduced parameter (ℓeff/ℓ)

(γ+β)/νuh also affects the iteration process, as an effective
value αeff = αℓ+δℓ

ℓ+δℓ was used instead of α. Thus, we obtain the best estimate (b) of the universal
scaling function (ℓeff/ℓ)

dθ++(0, (ℓeff/ℓ)
(γ+β)/νuh) for (+,+) boundaries with field spanning both

+ and − directions, here for three sets of system sizes (ℓ = 9.5, αℓ = 19.5) (red squares),
(ℓ = 14.5, αℓ = 29.5) (green dots) and (ℓ = 19.5, αℓ = 39.5) (blue triangles). The data sets were
rescaled to universal amplitude and width by replacing ℓ with ℓeff = ℓ+ δℓ, with δℓ = 2.57. For
comparison we display data from ref. [78] (purple dashed line).
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the convergence point of our iteration procedure. The function (ℓeff/ℓ)
dθ2++(0, uh) of Figure

5.10a) obtained using this procedure is in good agreement with that from reference [78], without
any further renormalization although our protocol yields a bigger value of δℓ. The iterative
procedure was applied to data obtained with all system sizes ℓ = 9.5, 14.5 and 19.5, leading to
our best estimate of the Casimir universal function (ℓeff/ℓ)

dθ++(0, (ℓeff/ℓ)
(γ+β)/νuh) displayed

in figure 5.10b). The kink seen in Figure 5.8 is smoothed out in the rescaling process and the
amplitude of the collapsed curves corresponds reasonably to that set by numerical estimates
of the universal scaling amplitude, ∆++. The agreement with results of reference [78] is very
convincing, even though our estimate of δℓ is only precise up to 8 %.

5.6.3 Low temperature and negative field region

In the low temperature region T < Tc, for negative magnetic fields, the magnetization can display
a very brutal change of sign as shown in figure 5.11. The coercitive field changes with system
size as it results from the competition between bulk and surface fields. The very sharp change
of magnetization from positive to negative values makes our measurement very sensitive to the
resolution in magnetic field. This non critical effect introduces a very important artifact in our
method which cannot be reduced by any effective length scale and is extremely sensitive to the
uncertainty in the coercive field value. Establishing the frontier from a result dominated by this
artifact and the genuine Casimir effect would require more simulations.
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Figure 5.11: Magnetization with respect to field h at T = 4.1J < Tc for L⊥ × 60× 60 systems
with (+,+) boundary conditions.
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5.7 Experimental perspectives

Having established the potential of the method to construct the Casimir scaling function from
measurements of the magnetic moment, we now return to confrontation with experiment.

5.7.1 Influence of δL⊥

The experimental feasibility of this protocol requires the fabrication of samples with thickness
resolution better than δL⊥ as well as the capacity to keep the uncontrolled errors generated by
measurements on different samples at different times below the same threshold. The chances of
success would clearly be increased if one could increase δL⊥ above a monolayer. With this in
mind we have investigated the measured Casimir effect for different values of δL⊥. The results
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Figure 5.12: Scaling function θ0 vs ut = tℓ1/ν for h = 0, ℓ = 9.5 and (+,+) boundaries. Data
from the magnetic protocol outlined in the text (red squares) for δL⊥ = 1, L⊥ = 10, for δL⊥ = 3,
L⊥ = 11 (green dots), for δL⊥ = 5, L⊥ = 12 (blue triangles). A = 3600.

are shown in Figure 5.12 for δL⊥ = 1, 3 and 5, for fixed ℓ = 9.5. Remarkably, the evolution
of the estimated function, θ0, on moving from δL⊥ = 1 to 3 is extremely small, with a typical
difference of less than 5% as the function passes through its minimum between ut = 1 and
ut = 2. This small evolution is only just resolvable above the statistical error on our data, which
is approximately 1.5% in this region. Even for δL⊥ = 5 the evolution remains less than 11%

around the minimum of the function, while in all cases, increasing δL⊥ enhances the measured
Casimir force. In addition, as the free energy difference δΩ increases with δL⊥, the statistical
errors are reduced, even in the wings of the figure. The effect therefore appears extremely robust
and our results strongly suggest that it would stand up to the technical problems encountered
in dedicated experiments on magnetic thin films [19].
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5.7.2 Experimental set ups

Perhaps the most important point to address is the scale of the magnetic field required. Most
of the Casimir signal comes from small fields, but in order to capture the entire effect it was
necessary to go to fields as large as |h0|/J ∼ 0.3 for certain temperatures and boundary conditions
(see Figure 5.1,5.2 and 5.5). One is therefore limited to ferromagnets with Curie temperatures
up to around 100 K for fields up to ∼ 10 Tesla, provided that an "Ising model field" h = 0.3J

corresponds to a magnetic field H ∼ 0.3×2kBTc×0.22165/(gµB) in Tesla, using the bulk critical
temperature Tc = J/0.22165, the Bohr magneton µB and a Landé factor g = 2 for 1/2 spins.

Experimental systems [19] potentially cover a wide range of universality classes and surface
conditions, opening the possibility for a rich variation in universal behavior. Our protocol can
easily be extended to cover many of these situations, and we stress on the fact that accessing the
free-energy from integration of observables is a very general approach. Other universality classes
can easily be treated, as can the anisotropic spin Hamiltonians often appearing in magnetic
systems. In such cases one expects crossover from the microscopic starting point to the final
universality class as the correlation length grows. These effects could be studied in detail and
could be highly relevant for magnetic experiments. Boundary effects could be extended to include
both rough and soft interfaces [6, 64, 84, 96]. However, materials with a strongly anisotropic
spin Hamiltonian and hard smooth interfaces offer the most promising starting point.

Magnetic materials show essentially perfect model magnetism in many instances (see for
example refs. [28, 108, 109]) and are excellent candidates for the exploration of different bound-
ary conditions. Candidates for the Casimir effect would be ferromagnets and could include both
metallic and insulating materials. Promising characteristics that one might consider include
iron doped palladium films for which both the transition temperature and film thickness can
be accurately controlled [110–112]. The films can be grown on non-magnetic substrates such
as Vanadium allowing again for free magnetic boundaries, but they can also be grown on fer-
romagnetic substrates such as iron itself. This would allow for the study of fixed boundaries.
Pinning the interface with moments pointing out of the sample, as can be done by roughening the
interface [113], would lead to (+,−) boundaries, hence enhancing the magnitude of the Casimir
force. In the case of insulating compounds Tb(OH)3 and K2CuCl4,2H2O are examples of Ising
and Heisenberg ferromagnets respectively with Curie temperatures in the 5K range [19]. The
metallic RKKY material, HoRh4B4 is a perfect mean field ferromagnet [38] which could offer
access to mean field critical Casimir forces for the first time. The dipolar ferromagnet, LiHoF4 is
the archetypical transverse field Ising system [114] which, if produced as a film could provide a
candidate for the study of Casimir forces at a quantum critical point [115]. Lutetium Vanadate
Lu2V2O7, a ferromagnet ordering at TC = 70K has been shown to be Heisenberg-like to an
excellent approximation [116, 117].

Finally, we remark that our protocol could be extended to study non-magnetic systems such
as ferroelectrics, liquid crystals or simple and binary fluids, as it offers a generic method when the
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field conjugate to the order parameter is a control parameter. It could then be experimentally
relevant in setups for fluid systems if the chemical potentials could be controlled, rather than the
concentrations.
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Chapter 6

Excess Free Energy in a Confined
Geometry

In chapter 4, we have mentioned that the critical Casimir force could be decomposed (Eq.4.15
to 4.18) into three contributions from the excess free energy, the excess internal energy and the
excess order parameter, which can all be expressed using the scaling function of the excess free
energy. In the case of the Ising model with fully periodic boundary conditions, this relationship
was studied theoretically in slab (ρ > 1), cubic (ρ = 1 and rod (ρ < 1) geometries [118, 119],
in the 2D Ising model in rectangular geometry [76] and through Monte-Carlo simulations in 3
dimensions [76].

We will see in this chapter that we can take advantage of the relation between the scaling
functions of critical Casimir force and the free energy to extract the excess free energy from data
presented in chapters 4 and 5, for the case of fully periodic boundary conditions but also fixed
(++) and (+−) confining boundary conditions. We will thus use in the present chapter the
same notations and formalism as in chapter 5. We compute the universal scaling function Θ of
the excess part of the free energy ωex in an Ising 3D system in slab geometry. The knowledge
of such a scaling function gives access to all excess parts of observables deriving from the free
energy: magnetization, specific heat and susceptibility, and of course the critical Casimir force [9].
However, to our knowledge, only little interest has been given to the computation of Θ compared
to the abundant literature concerning the scaling function of the critical Casimir force.

99
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6.1 The excess free energy from magnetization data

6.1.1 Fully periodic boundary conditions

As discussed in the previous chapter, the difference in free energy along an isotherm, between a
reference state, (T, h0) and a final state (T, h) is

∆Ω = −
 h

h0

M(T, h′, L⊥)dh
′ . (6.1)

We have already detailed in section 5.2 how the choice of an appropriately large reference mag-
netic field |h0| enables us to construct purely excess quantities from this integration. In the
case of periodic boundary conditions, there is no surface contribution ωsurf to the free energy
(following the decomposition of Eq.5.1), so that repeating the procedure of Eq.6.1 for systems
of size L⊥ and L′

⊥ = αL⊥ and applying the extensivity principle for the free energy away from
criticality one finds

δω = −


1

L⊥
∆Ω(L⊥)−

1

L′
⊥
∆Ω(L′

⊥)


1

AkBT

≈ −ωex(T, h, L
′
⊥) + ωex(T, h, L⊥)

= L−d
⊥


Θ(ut, uh)− α−dΘ


α1/νut, α

(β+γ)/νuh


,

(6.2)

the subtraction eliminating the free energy from the reference states, Ω(L⊥, h
0) and Ω(L′

⊥, h
0),

as well as the bulk contribution to the free energy at the point of interest, providing a first
estimate

Θ0 (ut, uh) ≡ δωLd
⊥ = Θ(ut, uh)− α−dΘ


α1/νut, α

(β+γ)/νuh


, (6.3)

of the excess free energy scaling function Θ defined as

ωex(t, h̃, L⊥) = L−d
⊥ Θ(ut, uh) , (6.4)

with Θ0 →
α→∞

Θ. As in the case of the estimation of the Casimir scaling function, choosing α ≈ 2

the scaling function Θ0 already provides a good estimate for the functional form of Θ(ut, uh). To
extract a complete estimate for Θ, one can apply the iterative procedure described in chapter 4,
section 4.3.5, for the Casimir scaling function, as equation 6.3 is exactly for Θ what equation
4.31 was for θ.

6.1.2 Estimation of ωex from magnetization data

We used the same magnetization data as in chapter 5 to extract the free energy scaling function
(Fig. 5.1) for fully periodic boundary conditions in slab geometry. Figure 6.1a) presents the
zeroth order estimate of the excess free energy scaling function obtained by integration of the
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difference between magnetization data for L⊥ = 9, L′
⊥ = 20 and A = 3600. We notice that,

unlike the critical Casimir force, the maximum amplitude seems to be located at the bulk critical
temperature.

We used a fitting Ansatz to complete our data at high values of ut

Θ(ut) ∼
|ut|→∞

A0

U0
|ut|ν(d−1) exp(−U0|ut|ν) (6.5)

which proved excellent as shown in Fig.(6.1b). This functional form derives from the exponential
decay expected for the critical Casimir function θ(ut) ∼

|ut|→∞
A0|ut|νd exp(−U0|ut|ν) (Eq.4.20)

(the form of Eq. 6.5 being a solution of Eq.4.15 corresponding to the asymptotic exponential
behavior of θ). In the low temperature limit, we alternatively assumed that Θ(ut) ≈ 0 for low
values of ut for which θ(ut) ≈ 0 within the available precision. This allows one to iteratively
resolve Eq.6.3 to obtain a better approximation of Θ. This procedure converged after two iter-
ations, Fig.(6.1b), and increases the amplitude of the best estimate Θ2 compared to the zeroth
order function. Our result for Θ compares well in amplitude and width with the similar results
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Figure 6.1: a) Zeroth order estimate of the scaling function of the excess free energy Θ0(ut, 0),
obtained using two systems of thicknesses L⊥ = 9, L′

⊥ = 20, with A = 3600 b) A better
approximation Θn of Θ can be obtained using the iterative process described in chapter 4,
converging after two iterations. Here the procedure converged after two iterations. To complete
our data at high temperature, we used a n exponential fit (Eq.6.5) which proved excellent (light
blue line). In ref [76], a low temperature limit −ρ2 ln(2) (dashed black line, here ρ = 9/60) was
found, which is not captured by our method.

of ref. [76] in which both the critical Casimir force and the excess free energy are estimated for
the 3D Ising model with fully periodic boundary conditions and various aspect ratios ρ, using
integration over temperature of the excess internal energy. However, in ref [76] the scaling func-
tion of the excess free energy displays a low temperature limit Θ(−∞, 0) = −ρd−1 ln(2), which is
not observed in our result (we represent it as dashed line in Fig. 6.1b). This has no influence on
the estimation of the Casimir force as it is a purely ρ dependent term. This terms comes from
the breaking of the positive/negative magnetization symmetry at low temperature [76, 120]. In
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a finite system, both region of positive and negative magnetization of the phase space can be
explored by thermal fluctuations of the order parameter, but in a thermodynamically large sys-
tem ergodicity and hence symmetry is broken. Thus, an excess −kBT ln(2) term in the total free
energy is expected in a finite-size system for T < Tc [120], leading to the −ρd−1 ln(2) contribu-
tion to the scaling function Θ. As our procedure uses the difference in free energy ∆Ω (Eq.6.1)
between two states (t, h) and (t, h0), the presence of a magnetic field systematically breaking
the symmetry, this purely aspect-ratio depend contribution is suppressed. As the contribution
−ρd−1 ln(2) vanishes in the limit of slab geometry ρ → 0, in view of accessing this limit our
approach remains pertinent. Moreover, this ρ dependent term does not influence any quantity
that we are interested in in the present work, such as the magnetization, the internal energy or
the Casimir force, which are derivatives of the free energy at fixed volume or fixed aspect-ratio
in the case of the Casimir force.

As for the magnetic protocol presented in chapter 5 for the computation of the critical
Casimir force, no extra computational effort is required to extract an estimate of Θ for all values
of h, see Fig.6.2, than to estimate it at h = 0 (Fig.6.1).
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Figure 6.2: Zeroth order estimate of the scaling function of the excess free energy Θ0(ut, uh)

obtained using two systems of thicknesses L⊥ = 9, L′
⊥ = 20, with A = 3600.

6.1.3 Excess internal energy extracted from the estimate of the excess
free energy

The great advantage of having access to the excess free energy is that from it stems many other
excess contributions to thermodynamic observables. In the limit of slab geometry, the derivative
∂Θ
∂ut


uh

gives access to the excess internal energy uex as

tuex = −tT
∂ωex

∂T


h,L⊥

= −L−d
⊥ ut

∂Θ

∂ut


uh

T

Tc
∼ −L−d

⊥ ut
∂Θ

∂ut


uh

. (6.6)

We use the approximation uex
T
Tc

∼ uex as T
Tc

can be set to unity in the scaling limit within
which we work. We stress on the fact that the presence of this approximation is implicit in
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several thermodynamic relations where uex appears in this thesis, in particular in chapter 7.

We can use a numerical derivation of function Θ to estimate the excess internal energy.
We present in Fig.6.3a) the estimate of uex extracted from the estimate of Θ presented in the
previous section, for a system of thickness L⊥ = 9, using Eq.6.6.

To check the validity of our estimate of Θ, we compared the excess internal energy computed
as a derivative of the excess free energy (Fig.6.3a) to an estimate of the same quantity as an
excess part of the average value of the Hamiltonian per unit volume

u(T, h, L⊥) =
⟨H ⟩
kBTV

(6.7)

in units of kBT (kB = 1 in our simulations), computed directly in the Monte-Carlo simulation of a
system of thickness L⊥. In order to give access to a simple, direct comparison with measurements
of the internal energy u, we turn to the zeroth order excess internal energy

u0
ex = −L

1/ν−d
⊥

∂Θ0

∂ut


uh

, (6.8)

corresponding to the difference in excess internal energy between systems of thicknesses L⊥

and L′
⊥ used to compute the zeroth order scaling function Θ0

u0
ex(tL

1/ν
⊥ , 0) = uex(tL

1/ν
⊥ , 0)− uex(tL

′1/ν
⊥ , 0) . (6.9)

This quantity should thus be equal to the difference in internal energy per particle between the
two systems of thicknesses L⊥, L

′
⊥

u(T, h = 0, L⊥)− u(T, h = 0, L′
⊥) = uex(tL

1/ν
⊥ , 0)− uex(tL

′1/ν
⊥ , 0) . (6.10)

The comparison between u(T, h = 0, L⊥) − u(T, h = 0, L′
⊥) and u0

ex(tL
1/ν
⊥ , 0) is displayed in

figure 6.3, showing excellent agreement and comforting us in the validity of our approach.
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Figure 6.3: a) uex = −L
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the excess part of the internal energy estimated for a
system of dimensions 9×60×60 and computed by derivation of the scaling function of the excess
free energy Θ. b) Equivalent zeroth order quantity u0

ex = −L
(d−1/ν)
⊥

∂Θ0

∂ut


uh

computed from the

zeroth order function Θ0 obtained using two system of thicknesses L⊥ = 9, L′
⊥ = 20 and area

A = 3600, compared to the variation in internal energy u(L⊥)−u(L′
⊥) between the two systems.
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6.1.4 Extracting the critical Casimir force from the estimate of the
excess free energy

As we have presented in chapter 4, the scaling function of the excess part of the free energy is
related to the scaling function of the Casimir force by the equation

θ = (d− 1)Θ− ut

ν

∂Θ

∂ut


uh

− uh(β + γ)

ν

∂Θ

∂uh


ut

. (6.11)

The derivates of the scaling function of the free energy in equation 6.11 represent the excess
internal energy uex expressed in units of kBT

tuex = −tT
∂ωex

∂T


h,L⊥

= −L−d
⊥ ut

∂Θ

∂ut


uh

T

Tc
≈ −L−d

⊥ ut
∂Θ

∂ut


uh

, (6.12)

and excess magnetization

h̃mex = −h̃
∂ωex

∂h̃


T,L⊥

= −L−d
⊥ uh

∂Θ

∂uh


ut

, (6.13)

so that Casimir force, excess free energy and excess magnetization are related by

fc
kBT

= (d− 1)ωex + tν−1uex + h̃
β + γ

ν
mex . (6.14)

Hence our estimate of Θ(t, h) extracted from magnetization data can be used to build up an
equivalent estimate of the Casimir function θ using equation 6.11.

In the previous section, we have computed uex and u0
ex by derivation of Θ and Θ0 with

respect to ut. We can now construct a zeroth order estimate θ0 using

θ0 = (d− 1)Θ0 − ut

ν

∂Θ0

∂ut


uh

− uh(β + γ)

ν

∂Θ0

∂uh


ut

. (6.15)

and the final estimate θ of the scaling function of the critical Casimir force using Eq.6.11 (at
uh = 0, the excess magnetization does not contribute). In figure 6.4 we present θ0 and θ

constructed in this way and the contributions of the excess free energy and excess internal energy
to these functions. We find excellent agreement with the independent results obtained for the
same system dimensions using the adiabatic coupling approach outlined in chapter 4, both for
θ0 and θ, confirming the validity of our approach.

The rather pronounced noise in the wings of θ and θ0 is due to the difficulty of estimating
of the derivative of Θ and Θ0 in these regions, the noise on the derivative being magnified by the
factor ut in Eq.6.11. We stress the fact that estimating the critical amplitude from the estimate
of Θ or θ is strictly equivalent as Θ(0, 0) = ∆ = (1/2)θ(0, 0), given that neither uex nor mex

contribute to θ at the bulk critical point. Thus, the (d−1)Θ contribution to θ naturally dominates
close to the bulk critical point and measuring the Casimir force fc amounts to measuring the
excess part of the free energy. On the other hand, far from the critical point, the excess internal
energy contribution tuex = −L−d

⊥ ut
∂Θ
∂ut


uh

becomes dominant.



6.2. EXCESS FREE ENERGY BY INTEGRATION OF CASIMIR FORCE 105
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Figure 6.4: a) From the zeroth order estimate of the scaling function of the excess free energy Θ0

we can construct the zeroth order scaling function of the critical Casimir force θ0 using Eq.6.15.
θ0 (blue points) results from the sum of a contribution from the excess free energy (blue line) and
excess internal energy (blue crosses). We get an excellent agreement between this approach and
the coupling parameter one described in chapter 4 for the same system sizes (grey line). b) From
this zeroth order scaling function, a better estimate Θ has been extracted, and a corresponding
better estimate of θ can be constructed using Eq.6.11. θ (red points) results from the sum of
a contribution from the excess free energy (red line) and excess internal energy (red crosses).
This result for θ again compares very well with the best estimate of θ independently obtained in
chapter 4 (grey line).

6.2 Computing the excess free energy by integration of the

critical Casimir force

In the case on non-periodic confining boundary conditions, surface contributions to the free
energy ωsurf come in the way of the previous approach as it is not an extensive contribution to
the free energy. However, we can take advantage of the results of chapter 5 in which we have
accurately computed the scaling function of the critical Casimir force. We have used Eq. 6.11
to reconstruct the scaling function of the Casimir force θ from the scaling function of the excess
part of the free energy Θ. The reverse path can actually be taken: Eq.6.11 can be solved and
the scaling function of the excess free energy Θ can be extracted from that of the Casimir force
θ using

Θ(ut, uh) =

 ∞

1

s−dθ(uts
1/ν , uhs

(β+γ)/ν)ds , (6.16)

which is a generalization to non-zero field h of the solution proposed in ref. [121]. This solution
assumes that lim

ut→±∞
Θ(ut, uh) = 0 and lim

uh→±∞
Θ(ut, uh) = 0. In the limit A → ∞, the function

Θ is not analytic as the slab system undergoes a 2D phase transition at the apparent critical
temperature T = Tc(L⊥) (see section 2.2.4 and ref. [3, 76]). We expect that this does not prevent
us to solve Eq.6.11 as Θ and its derivatives involved in Eq.6.11 are still continuous and finite
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functions. The present precision on our data did not allow the observation of a signature of this
2D transition.

The evolution of Θ at h = 0 can be deduced without any knowledge of θ at non-zero values
of h, as Eq.6.11 reduces to

θ(ut, 0) = (d− 1)Θ(ut, 0)−
ut

ν

∂Θ

∂ut


uh

(ut, 0) , (6.17)

which can be solved solely with knowledge of θ(ut, 0) using

Θ(ut, 0) =

 ∞

1

s−dθ(uts
1/ν , 0)ds . (6.18)

Equivalently, at the critical temperature

θ(0, uh) = (d− 1)Θ(0, uh)−
uh(β + γ)

ν

∂Θ

∂uh


ut

(0, uh) , (6.19)

which can be solved using

Θ(0, uh) =

 ∞

1

s−dθ(0, uhs
(β+γ)/ν)ds . (6.20)

A first observation, that is obvious from Eq.6.17, is that

Θ(0, 0) =
1

d− 1
θ(0, 0) = ∆ , (6.21)

with ∆ the universal scaling amplitude of the critical Casimir force. This fixed point forces one to
perform the integration of Eq. 6.18 (respectively Eq. 6.20) in two times: one for positive values of
ut (respectively uh) and one for negative values. Moreover, the integral of Eq. 6.18 (respectively
Eq. 6.20) must be truncated up to a reference state u0

t (respectively u0
h) rewriting Eq. 6.18

Θ(ut) = s1−d
0 Θ(uts

1/ν
0 , 0) +

 s0

1

s−dθ(uts
1/ν)ds

=


u0
t

ut

ν(1−d)

Θ(u0
t , 0) +

 s0

1

s−dθ(uts
1/ν)ds ,

(6.22)

with s0 =


u0
t

ut

ν
. An exact application of Eq. 6.22 requires the knowledge of Θ(u0

t ) at the
reference point, which of course we do not know a priori. We notice that the influence of this
reference value in Eq.6.22 is proportional to u

ν(d−1)
t , so that any error on the determination

of Θ(u0
t ) will be smoothed out when approaching the fixed point ut → 0. An error on the

determination of the reference Θ(u0
t ) will principally affect Θ close to u0

t itself.

If a reference state u0
t or u0

h at which the Casimir scaling function can safely be considered
zero is available, we make the assumption that the reference value Θ(u0

t , 0) or Θ(0, u0
h) can also

safely be considered zero. This is consistent with the solutions provided by Eq.6.18 (respectively
6.20) which imposes that for sufficiently large values of u0

t (resp. u0
h) for which θ decays mono-

tonically towards zero: θ(u0
t , 0) ≥ (d− 1)Θ(u0

t , 0) (resp. θ(0, u0
h) ≥ (d− 1)Θ(0, u0

h)). This can be
easily shown: in the case of a monotonously decaying θ (for example at h = 0)

θ(u0
t s

1/ν , 0) ≤ θ(u0
t , 0) , (6.23)



6.2. EXCESS FREE ENERGY BY INTEGRATION OF CASIMIR FORCE 107

for s ≥ 1, leading to

Θ(u0
t , 0) =

 ∞

1

s−dθ(u0
t s

1/ν , 0)ds ≤
 ∞

1

s−dθ(u0
t , 0)ds =

θ(u0
t , 0)

d− 1
, (6.24)

the demonstration for θ(0, u0
h) ≥ (d− 1)Θ(0, u0

h) being equivalent.

6.2.1 Fully periodic boundary conditions

As a first test of the present approach, we compare in figure 6.5 the estimate of Θ(ut, 0) obtained
by integration of the magnetization described in section 6.1.2 to the result given by integration of
the critical Casimir function θ (Eq.6.18) using the data presented in chapter 4 (Fig.4.4). These
two independent estimates show excellent agreement. Once again, the present approach does not
capture the non-zero limit −ρd−1 ln(2), as it assumes a vanishing Θ far from the critical point, and
thus is relevant for the slab geometry limit ρ → 0. The only notable difference between the two
approaches compared in Fig. 6.5 is in the limit of large ut where, as we stated, the integration of
θ suffers from the greatest error due to the determination of a reference value Θ(u0

t , 0). As in the
previous approach, we completed our data in the high temperature region using the exponential
decay expected for θfit(ut, 0) = Afit|ut|νd exp(−Ufit|ut|ν) (Eq.4.20) and accordingly determined
the reference state for the integration of Eq.6.22 as Θ(u0

t , 0) =
Afit

Ufit
|u0

t |ν(d−1) exp(−Ufit|u0
t |ν),

with u0
t the highest available value for ut.

4 3 2 1 0 1 2 3 4 5
ut

0.15

0.10

0.05

0.00

Θ

Θ extracted from θ Θ extracted from m

Figure 6.5: Scaling function of the excess free energy Θ for fully periodic boundary conditions
obtained by integration of the magnetization (red line), see section 6.1.2 (Eq.6.2), compared to
the result given by integration of scaling function of the Casimir force scaling function θ (yellow
dots) using Eq.6.18 and data of chapter 4 for θ.
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6.2.2 Fixed (++) and (+−) boundary conditions, h = 0

We extended our study to the case of fixed (++) and (+−) boundary conditions in the confining
z direction, taking advantage of the data for the critical Casimir force presented in chapter 5.
In figure 6.6, we present our best estimates for the scaling function θ++ and θ+− of the critical
Casimir force (see figures 5.3 and 5.5). These functions were obtained using our magnetic protocol
in systems of dimension ℓ = 9.5, αℓ = 19.5, A = 3600 and after performing two iterations of
the procedure described in chapter 4, section 4.3.5, to suppress the contribution of the system
of thickness αℓ = 19.5. To account for the rather important corrections to scaling on the
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Figure 6.6: Critical Casimir force scaling function θ+± for fixed (+−) (a) or (++) (b) boundary
conditions, estimated with the magnetic protocol of chapter 5 (green dots and line). Using
Eq. 6.12, we estimated the corresponding scaling functions Θ+± of the excess free energy. We
can thus display the contributions to θ+± (Eq. 6.11) of the excess free energy scaling function
(d−1)Θ+± (blue dots and line) and its derivative −ut

ν
∂Θ+±
∂ut


uh

(red dots and line) . Amplitudes

of functions θ+± were rescaled to θ+−(0, 0) = 2∆+− = 5.42(4) and θ++(0, 0) = 2∆++ = −0.75(6)

[3] to account for corrections to scaling.

amplitude of the scaling functions, we rescaled them to the values θ+−(0, 0) = 2∆+− = 5.42(4)

and θ++(0, 0) = 2∆++ = −0.75(6) obtained in ref. [3] after extensive study of these corrections.
Using Eq. 6.22 and the hypothesis that Θ+±(u

0
t , 0) ≈ 0, we computed the corresponding scaling

functions of the excess free energy Θ+±. Corrections affecting the scaling variable ut are neglected
here but could affect the behavior of Θ+±. The present results are thus preliminary.

We display in figure 6.6 the contributions (Eq. 6.11) to the functions θ+± of the excess
free energy scaling functions (d − 1)Θ+± and of their derivatives −ut

ν
∂Θ+±
∂ut


uh

(which amounts

to contributions of the excess internal energy, see Eq. 6.12). Of course, the sum of these two
contributions amounts exactly to θ+± as they have been consistently built as solutions of Eq. 6.11.
As discussed in the case of fully periodic boundary conditions, the fixed point θ+±(0, 0) =

(d− 1)Θ+±(0, 0) imposes that the critical Casimir force is dominated by the contribution of the
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free energy close to the critical point. Far from the critical temperature, the contribution related
to the excess internal energy becomes predominant.

6.2.3 Fixed (++) boundary conditions with non zero field

In section 5.6.2 of chapter 5, we have seen that a Casimir force an order of magnitude bigger
than at zero magnetic field could be obtained at the critical temperature by imposing a non-
zero magnetic field opposing the confining boundary conditions (++) (Fig. 5.10). Corrections to
scaling were taken into account by introducing an effective length ℓeff = ℓ+ δℓ, δℓ being used as
a fitting parameter to obtain a collapse of data obtained for three different sets of systems sizes
(see section 5.6.2). Taking into account these corrections to the scaling limit, we have extracted
an estimate of the free energy scaling function Θ++ from our best estimate of θ++ using Eq.6.20.
We display in figure 6.7 the contributions (Eq. 6.11) to the function θ++ of the excess free
energy scaling function (d− 1)Θ++ and of its derivative −uh

β+γ
ν

∂Θ++

∂uh


ut

, which amounts to a

contribution of the excess magnetization (Eq. 6.13). In section 5.6.2, we mentioned that the large
amplitude of the Casimir force in the strong negative magnetic field region could be intuitively
understood by looking at magnetization curves of Fig.5.7. We see in figure 6.7 that indeed, for
strong magnetic fields, the contribution of the excess magnetization clearly dominates. Thus, in
this region access to the excess magnetization leads already to an approximation for the Casimir
effect without access to the free energy.
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(β+γ)
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Figure 6.7: Critical Casimir force scaling function θ++ for fixed (++) boundary conditions
at T = Tc with non-zero magnetic field spanning positive and negative values (green curve),
estimated with the magnetic protocol of chapter 5 (Fig. 5.10), using an effective length ℓeff to
capture corrections to scaling (see section 5.6.2). From this function, the scaling function of the
excess free energy Θ++ can be extracted (Eq.6.20). We can thus display the contributions to
the function θ++ (Eq. 6.11) of the excess free energy scaling function (d − 1)Θ++ (blue curve)
and its derivative −uh

β+γ
ν

∂Θ++

∂uh


ut

(red curve), which amounts to a contribution from the excess

magnetization (Eq. 6.13).



110 CHAPTER 6. EXCESS FREE ENERGY IN A CONFINED GEOMETRY

6.3 Conclusion

We have solved Eq. 6.11 in order to extract the scaling function Θ of the excess free energy
from estimates of the scaling function of the critical Casimir force in the 3D Ising system with
fully periodic and fixed (+±) boundary conditions. This provided insights into the relative
importance of contributions of the excess free energy, internal energy and magnetization to the
critical Casimir force (Eq. 6.14). Moreover, the knowledge of the scaling function Θ gives in
principle access to all excess quantities of observables deriving from it: this proved to be efficient
in the case of the excess internal energy uex (Fig.6.3), a result that we will exploit in chapter 7.
We will also see in chapter 7 that the knowledge of the scaling function of the excess free energy
is necessary to study the anisotropy of the excess pressure which arises in confined slab geometry.

We have seen that solving Eq. 6.11, as well as deriving Θ directly from magnetization data
in the case of fully periodic boundary conditions, could not capture the low temperature limit
−ρ2 ln(2) (Fig. 6.1) expected for non-zero aspect ratios [76], because of the cancellation of this
term in the subtraction process between the chosen state (T, h) and a reference state (T, h0).
Thus, our results are valid when approaching the limit of slab geometry ρ → 0. However, the
study of the dependency on the aspect ratio of the critical Casimir force and the excess free
energy, requiring data for various aspect ratios not explored in the present work, is an interesting
perspective, which has already been explored for fully periodic boundary conditions in ref. [76].
The relation of Eq.6.11 linking free energy and Casimir force can be extended to include this
aspect-ratio dependency [76, 118] by including a dependency on the aspect ratio in the excess
free energy density scaling function

ωex(t, L⊥, ρ) = L−d
⊥ Θρ (ut, ρ) , (6.25)

the scaling function of the critical Casimir force becoming

θρ(ut, uh, ρ) = (d− 1)Θρ −
ut

ν

∂Θρ

∂ut


uh,ρ

− uh(β + γ)

ν

∂Θρ

∂uh


ut,ρ

− ρ
∂Θρ

∂ρ


ut,uh

, (6.26)

with of course the limits θρ →
ρ→0

θ and Θρ →
ρ→0

Θ.



Chapter 7

The Critical Casimir Force in a
Lennard-Jones Binary Mixture

The Lennard-Jones model of fluids offers the possibility for simulations more closely related to
experiments in liquid systems, than a simulation of the Ising model. Typically, in a Lennard-
Jones fluid, the pressure is more naturally defined than in a magnetic lattice model. As stressed
in previous chapters, we are particularly interested in critical binary mixtures, the demixing
transition belonging to the Ising universality class and having been used for measurements of the
critical Casimir force [5]. The order parameter is the composition of the mixture, equivalent to
the magnetization in a magnetic system, particles being either of species A or B in one case, and
spins being up or down in the other. The "magnetic" degree of freedom which is the species of
the particles is coupled to the positional degrees of freedom, conveying a critical Casimir effect
close to the demixing critical point. Complex geometries, fluctuations of the force and out-of-
equilibrium measurements would be accessible to Monte Carlo or molecular dynamics simulations
of such a fluid model.

To our knowledge, the only attempt to capture a critical Casimir effect through simulation
of a fluid system was published in ref. [62]. In this work, wetting experiments were simulated
using a Lennard-Jones symmetrical binary mixture confined in slab geometry between a simple
hard wall and an attractive hard wall. The attractive wall is responsible for the formation of a
wetting layer of binary mixture, similarly to van der Waals interaction in wetting experiments
introduced in chapter 4. The thickness of this layer is then affected by the critical Casimir force
arising close to the demixing transition. This effect was captured qualitatively in ref. [62] but
did not give rise to a measurement of the critical Casimir scaling function.

In this chapter, we show preliminary results for the direct measurement of the critical Casimir
force through Semi-Grand Canonical simulations of a symmetrical binary Lennard-Jones fluid.
Convincing agreement with data obtained in the Ising model for the excess internal energy is
found. Moreover, we make a theoretical prediction for a pressure anisotropy in the critical

111
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pressure in slab geometry and for the relation between chemical potential and internal energy,
for which we find confirmation in our numerical approach.

7.1 Lennard-Jones binary mixtures

7.1.1 Simple Lennard-Jones fluid

We consider a Lennard-Jones fluid confined in a three dimensional cell of thickness L⊥ and area
A = L∥ ×L∥, figure 7.1 showing a snapshot of the simulation box. The boundary conditions are
set periodic in all directions. A great variety of confining boundary conditions in the z direction
could be studied, for example closed with a steeply repulsive (∼ r−12) interaction or by fixing
particles on the boundary. We will restrict ourselves to the fully periodic case in this initial
study. The snapshot of figure 7.1 shows two different species of particles but for simplicity we

x

yz

Figure 7.1: Snapshot of the simulation box used in this work, with two particle types and
L⊥ = 5σ and L∥ = 60σ.

will first describe the case of a one component fluid. The system is composed of N particles
of diameter ∼ σ, interacting one with another through a truncated and shifted Lennard-Jones
potential. The standard Lennard-Jones potential is defined as:

vLJ(r) = 4ϵ

σ
r

12
−
σ
r

6
, (7.1)

where r is the separation between the centers of the two particles, σ is a typical range of the
interaction at which it turns from attractive to repulsive and ϵ is a typical interaction energy
which sets the depth of the attractive potential, see Fig.7.2. The attractive part represents
the dominant long range van der Waals-London interaction between simple spherical particles
and the repulsive part the strongly repulsive short range interaction due to the Pauli principle
opposing superposition (the steep r−12 form was chosen for computational convenience as it is
the square of the attractive part dependency) [72]. For computational reasons, the potential v(r)
we used is a truncated and shifted version of the standard Lennard-Jones one. The potential is
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Figure 7.2: Lennard-Jones potential vLJ and truncated and shifted potential v used in the
simulations, here with rc = 2.5σ and ϵ = 1.

put to zero when the separation between particle exceeds a cut-off length r > rc, but with the
constraint that the potential stays continuous and of continuous derivative at rc

v(r) =


vLJ(r)− vLJ(rc)−

1

2rc

dvLJ

dr
(rc)


r2 − r2c


if r ≤ rc ,

0 if r > rc .

(7.2)

Figure 7.2 shows how v(r) with rc = 2.5σ differs from vLJ(r), the resulting amplitude shift being
very small, and the two potentials being extremely similar. For simplicity, we used units of
energy such that ϵ = 1, and of length such that σ = 1.

7.1.2 Symmetrical binary mixture

To simulate a binary mixture, the Lennard-Jones potential is modified to take into account two
species A and B with different interaction energy ϵij and interaction range σij , so that the
Lennard-Jones potential becomes

vi,jLJ(r) = 4ϵij

σij

r

12
−
σij

r

6
, (7.3)

on which the same regularization as in Eq.7.2 is made to obtain the simulation potential vij(r).
In symmetrical mixtures the parameters of the potential between identical particles are the same
σAA = σBB = σ and ϵAA = ϵBB = ϵ. The binary nature of the fluid then comes from the unlike
particles interaction σAB = sσ and ϵAB = eϵ, where s and e are parameters either bigger or
smaller than 1. Of course, s = e = 1 is the simple Lennard-Jones case and in the limit cases
s = 0 or e = 0 we obtain two non interacting simple Lennard-Jones fluids. In the following,
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we restrict our study to the case of identical particle sizes s = 1 and interaction between unlike
particles reduced by a factor of one half, e = 1/2.

7.1.3 The Semi-Grand Canonical ensemble

A Canonical binary Lennard-Jones fluid of N = NA + NB particles confined in a volume V is
described by four thermodynamic variables (T, V,NA, NB) and the internal energy is given by
the Hamiltonian

Hint =

NA
i<j

vAA(rij) +

NB
i<j

vBB(rij) +

NA
i=1

NB
j=1

vAB(rij) , (7.4)

where vij is the shifted Lennard-Jones potential described in the previous section for a sym-
metrical mixture. The number of particles can be allowed to fluctuate in the Grand-Canonical
ensemble, in which the full Hamiltonian includes two new terms

H = Hint − µANA − µBNB , (7.5)

with µA, µB chemical potentials associated with each type of particle and measured in units
of ϵ [122–125]. The relevant Grand-Canonical thermodynamic variables are (T, V, µA, µB), so
that the differential of the Grand Potential Φ(T, V, µA, µB) reads

dΦ = −SdT − PdV −NAdµA −NBdµB .

Defining µ = (µA + µB)/2, µAB = (µA − µB)/2 and ∆N = NA −NB we can perform a change
of variables so that the Hamiltonian can be rewritten

H = Hint − µN − µAB∆N . (7.6)

and the differential of the Grand Potential

dΦ = −SdT − PdV −Ndµ−∆NdµAB ,

showing that the Grand-Canonical ensemble can be equivalently described by the set of vari-
ables (T, V, µ, µAB), the chemical potential µ being the conjugate variable to the total number
of particles and µAB to the composition of the mixture.

A Grand-Canonical simulation requires an efficient way of simulating a particle reservoir,
inserting or suppressing particles in the simulation cell, an obviously difficult step in the case of
a dense fluid. If one is interested in the demixing transition, this difficulty can be circumvented
by working in the numerically relevant Semi-Grand Canonical ensemble, in which the total
number of particles is fixed but its composition fluctuates [124, 125]. The Semi-Grand Canonical
ensemble is described by the variables (T, V,N, µAB), so that the Semi-Grand Canonical potential
is differentiated as

dΩsgc = −SdT − PdV + µdN−∆NdµAB .
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The total number of particles is fixed but the nature of a particle can change during the simulation
so that the A−B symmetry can be broken and a transition between mixed to either A−rich or
B−rich phase can occur, characterized by the "mixing" order parameter ∆N/N . This transition
can be driven by temperature but of course also by a symmetry breaking field, that is a non zero
µAB so that one species is favored over the other by the A-B "color" reservoir. Nevertheless,
we will fix in the following µAB = 0 and keep a fully symmetric system with respect to A − B

exchange.

7.1.4 Linking the Semi-Grand Canonical fluid with the Ising model

We have already seen in the previous chapters that the demixing transition of binary mixtures
belongs to the universality class of the Ising model, but what is the best thermodynamic ensemble
to directly compare results computed in both systems ? The Ising model is equivalent to a lattice
gas, an up spin representing an occupied spot and a down spin a vacancy, and to a lattice binary
fluid, an up spin being a particle of type A and a down spin a particle B (see section 1.2.2). We
can hence draw a qualitative parallel between the Lennard-Jones binary fluid and a magnetic
system. In the case where the typical size of particles do not depend on its nature, σij = σ, the
influence of the nature of particle on the potential vij can be factorized

vij(r) =
ϵij
ϵ
v(r) . (7.7)

We have chosen 2ϵAB = ϵAA = ϵBB = ϵ, which can be written in a compact way as

ϵij =
ϵ

4
(SiSj + 3) , (7.8)

where Si = 1 if the particle is of type A and Sj = −1 if it is of type B. Thus

vij(r) =
1

4
(SiSj + 3)v(r) , (7.9)

factorizing the binary fluid potential in a Lennard-Jones simple fluid part and an Ising like term.
The Hamiltonian then reads

Hint =

N
i<j

1

4
(SiSj + 3)v(rij) , (7.10)

and we can see our binary mixture as a simple model for ferrofluid, a Lennard-Jones fluid with
an internal "magnetic" degree of freedom Si which can be updated using a Metropolis type
algorithm. If one considers a frozen positional configuration of the system, it is equivalent to an
Ising system with quenched disorder and further neighbor interactions over a length scale 2.5σ.
The mixing order parameter

∆N

N
=

1

N

N
i

Si = m , (7.11)
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is straightforwardly related to an equivalent magnetization m, the difference in chemical poten-
tials µAB playing the equivalent role of a magnetic field h. This analogy can also be seen when
comparing the differential of the Semi-Grand Canonical potential, depending on (T, V,N, µAB),

dΩsgc = −SdT − PdV + µdN−∆NdµAB , (7.12)

to the corresponding Ising free energy, depending on (T, V,N, h),

dΩ = −SdT − PdV + µdN−Mdh . (7.13)

As mentioned in chapter 4, in the case of the lattice Ising model the variable N was omitted
as the lattice imposes the density n = N/V . Strictly speaking this fourth variable is necessary
and working at constant density makes the magnetic model thermodynamically equivalent to a
simple fluid with fixed interaction range σ or, as in the present case, to a binary mixture with
fixed volume and total number of particles, thus fixed total density, which is the case in the
Semi-Grand Canonical ensemble.

The Semi-Grand Canonical ensemble hence appears as the most suitable ensemble to com-
pute excess quantities in a Lennard-Jones simulation directly related to the results obtained in the
Ising model in the previous chapters. A Grand-Canonical simulation of a binary mixture would
be more directly related to the phenomenology of the Blume-Capel model (see section 4.3.7), in
which a spin can take values Si = −1, 0,+1, being equivalent (on a lattice) to A particle, B par-
ticle or the absence of a particle. The number of non zero spins, equivalent to the total number
of particles N , being controlled by a parameter D, equivalent to the chemical potential µ.

7.1.5 Definition of the confinement force

In the Semi-Grand Canonical ensemble at fixed density n, the number of particles is controlled
by the volume and the differential of the potential becomes

dΩsgc = −SdT − (P − µn)dV −∆NdµAB . (7.14)

so that P −µn is the natural conjugate variable to the volume. In chapters 4 and 5, to compute
the critical Casimir force in the Ising model, we found access to the variation of free energy when
adding or removing a layer of spins, performing a variation

(T, V,N, h) → (T, V + δV,N + δN, h)

with n = N/V = (N + δN)/(V + δV) fixed. The corresponding variation of the free energy δΩ

was thus implicitly related to the quantity P − µn as

δΩ = −PδV + µδN = (µn− P )δV , (7.15)

and we expect the critical Casimir force in a Semi-Grand Canonical fluid to be contained in the
generalized pressure P̃ = P − µn.
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At the beginning of chapter 4, we gave a quick introduction to measurements of the critical
Casimir force. In wetting experiments, the confinement of critical fluctuations is realized by the
formation of a wetting film. The thickness of such a film is determined by the competition between
different contributions, for example: a gravitational contribution to the chemical potential, or
coming from a temperature gradient, van der Waals interactions with the substrate and, of
course, the critical Casimir force. All these contributions could be referred to as "confinement
forces", as they all control the confinement of the system. We particularize the critical Casimir
force as it is a purely critical, universal effect. In our simulations, the confinement is imposed and
we measure the resulting forces instead of indirectly deducing them from the equilibrium volume
of the system. Nevertheless, there is no reason a priori to consider that non critical confinement
forces should not arise. We have discussed in previous chapters that fixed boundary conditions
can impose topological constrains on the local composition (equivalently the magnetization) of
the system. The boundaries not only affect the critical fluctuations but can also give rise to non
critical contributions to the free energy. In the Ising model, we have considered that the periodic
boundary conditions did not foster any non critical confinement force nor surface term and
that fixed (++) and (+−) boundary conditions only gave rise to surface tension contributions.
However, as it has been exploited in ref. [62] to mimic a wetting experiment in a Lennard-
Jones simulation, the presence of a wall can induce a non critical confinement force, in addition
to the critical Casimir force. In a dense fluid, the density pair correlation function decays in
an oscillatory way [124] and in very small systems the boundary conditions can cut-off these
oscillations, inducing confinement effects in the pressure and internal energy, which themselves
oscillate with system size [126, 127]. We will see in the following that for particularly small
system thicknesses, even periodic boundary conditions give rise to such non critical confinement
effects [126] in both the pressure (see for example figure 7.7) and the internal energy (see for
example figure 7.5), due to the incommensurability of the oscillations in the pair correlation
function with the system size.

7.2 Semi-Grand Canonical simulation of a binary mixture

7.2.1 Simulation method

We simulated the symmetrical Lennard-Jones binary mixture described above in the semi-grand
canonical ensemble with fully periodic boundary conditions. The simulations were performed
by Francesco Puosi, post-doctoral researcher at the Physics Laboratory of the E.N.S. de Lyon,
using the LAMMPS package for parallelized molecular simulations [128] and taking advantage
of the numerical resources of the PSMN in Lyon [22].

The positions of the particles were updated using molecular dynamics using the Nosé-Hoover
thermostat. We used a quite small time step of 10−5 × τ , with τ = σ


m/ϵ = 1 the simulation
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characteristic time scale (typically, using parameters describing a Lennard-Jones model for Argon,
τ = 2ps), with m the mass of a particle. This represents a time step ten to a hundred times
smaller than in standard simulations of simple fluids, but the perturbation of the dynamics due
to the change in particle type forced us to use a smaller time step, leading to longer computation
times. It is possible to use Monte Carlo updates of the position, which we verified to give results
coherent with molecular dynamics, but this approach turned out to lead to significantly longer
computation times. The change in particle type was performed using Monte Carlo updates, using
a Metropolis rule (see chapter 2). As µAB = 0 in all our simulations, the Metropolis step only
takes into account the change in energy due to interactions between particles. Optimizing the
parameters of the simulation to obtain agreement with previous results of ref. [124], we defined an
update of the system by 1000 molecular dynamics steps for positions followed by N Monte Carlo
steps for particle types. Equilibration was performed by starting from a system with all A type
particles and required typically ∼ 3× 107 steps, followed by ∼ 5× 107 steps for measurement.

One major difficulty in the present simulations is to ensure that we study a demixing tran-
sition far from the liquid/gas transition. This turned out to be quite difficult to avoid in 2D
systems, thus we focused on 3D simulations, which allowed for direct comparison with the results
we obtained in Ising simulations, as well as with previous simulations on this model [76, 124].
Both the cases of cubic and slab geometries where explored.

7.2.2 Pressure measurement

The pressure is computed using to the Virial formula, giving access to P = − ∂Ω
∂V


T,N,µAB

[129,

130], which reads

P = nkBT +


1

dV


i

r⃗i.f⃗i


, (7.16)

where r⃗i is the position of particle i and f⃗i the sum of interactions with other particles, deriving
from the potential of Eq.7.3. The x, y and z components of the pressure tensor are also computed,
the component k being [128]

Pk =


1

V


i

mvk
2
i +

1

V


i

rkifki


, (7.17)

using the k components of vki the velocity of particle i and the k components of positions and
forces.

7.2.3 Computing the chemical potential

We calculate the chemical potential µ via the particle insertion method (or Widom method) [129,
131]. Let us first describe this method for a one component system of N atoms in a cubic box of
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size L and volume V = Ld at constant temperature T. The classical partition function of such a
system is

Z(N,V, T ) =
V N

ΛdNN !

 1

0

. . .

 1

0

ds⃗N exp

−κHint(s⃗

N ;L)

, (7.18)

where the scaled coordinates s⃗N = r⃗N/L are used, κ = 1/(kBT ) and Λ = h/
√
2πmkBT . The

chemical potential is defined as

µ =
∂ΩC

∂N


T,V

, (7.19)

with the canonical free energy
ΩC = −kBT ln(Z) . (7.20)

For sufficiently large N , Eq.7.19 leads to

µ = −kBT ln


ZN+1

ZN


, (7.21)

which can be decomposed in an ideal gas part µid and interaction part µint

µ = −kBT ln


V N

ΛdNN !


− kBT ln


ds⃗N+1 exp


−κHint(s⃗

N+1;L)


ds⃗N exp [−κHint(s⃗N ;L)]


≡ µid(n) + µint . (7.22)

The fact that the ideal part is defined using the de Broglie length makes it a difficult quantity
to evaluate in a Grand-Canonical situation, as such a microscopic length scale is not naturally
defined. This is not a problem in our case as the ideal gas part is an intensive quantity and will not
contribute to finite-size effects. We focus on the interaction part µint and separate the potential
energy of the N +1 system into the potential energy of the N -particle system, Hint(s⃗

N ;L), and
the interaction of the additional particle, ∆Hint = Hint(s⃗

N+1;L) − Hint(s⃗
N ;L). Then, µint

reads
µint = −kBT ln


ds⃗N+1 ⟨exp [−κ∆Hint]⟩N


, (7.23)

where ⟨.⟩N is the ensemble average over the configurations of the N -particle system.

In practice, Eq.7.23 is implemented as follows: at regular time intervals, we generate a
coordinate r⃗N+1 uniformly in the simulation box and we compute the corresponding Boltzmann
factor exp [−κ∆Hint]. The excess part of the chemical potential is obtained by averaging this
latter quantity over all generated positions.

We extended this method to the case of a symmetric binary mixture in the semi-grand
canonical ensemble. In this case, it is necessary to take into account the possibility of (virtually)
inserting either a A or B particle. Thankfully, the symmetrical nature of our mixture gives A and
B particles an equivalent role. To compute µ = (µA+µB)/2, we have used the particle insertion
method, inserting randomly a A or a B particle with equal probability. For computational
reasons, this was the easiest choice, but in further work we would be interested in computing
separately µA and µB . If in principle, averaging µA and µB should lead to the same result as
our random selection of A and B particles, critical slowing down could lead to local ergodicity
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breaking leading to a discrepancy between the two approaches. We stress the fact that computing
µ proved increasingly difficult with increasing density. We have been able to reach satisfactory
precision only for densities lower than n = 0.8.

7.2.4 Using cubic geometry as a reference

In chapter 4, we have seen that one difficulty of extracting excess quantities is the subtraction
of the bulk and surface contributions from our observables. As we restrict ourselves, for now,
to fully periodic boundary conditions, we are only concerned by the bulk contribution. One
solution is to use a large enough cubic system of volume L3 as a "bulk" reference [78, 87], given
that the critical region diminishes with increasing side length L as L−1/ν and the amplitude
of the critical Casimir force decreases as L−d. Additionally, in the 3D Ising universality class,
the maximum amplitude of the critical Casimir force scaling function is approximately 3 times
smaller in cubic geometry than in slab geometry (see figures 3 and 4 of ref. [76]). Thus, we
expect that in a cubic system of volume 323, in units of σ, the maximum Casimir effect is
3 × (12/32)−3 ≈ 57 times smaller than in a system of thickness L⊥ = 12 in slab geometry. The
critical region is also (12/32)−1/ν ≈ 5 times narrower. As precision of simulation results increase,
the excess contributions of the cubic system might be no longer negligible, one then would have
to disentangle the different excess contributions (see section 4.3.5).

We studied systems in slab geometry of width L∥ = 60 and thicknesses ranging from L⊥ = 5

to 12, thus a cubic system of volume 323 can safely be used as an approximate reference "bulk"
state, with the advantage that this reference can be simply subtracted from observables of inter-
est. With the choice of cut-off rc = 2.5σ, L⊥ = 5 is the smallest thickness conceivable in the case
of periodic boundary conditions, smaller sizes would see particles interact with themselves. We
also studied the cubic geometry with L ranging from 5 to 10. For the smallest size, the reference
cubic system L = 32 is clearly a suitable reference state as (32/5)3 ≈ 260 and for the largest
L = 10 system, we still expect a comfortable scale separation as (32/10)3 ≈ 33. We will see that
our results are coherent with this statement.

7.2.5 Phase diagram and influence of density

In figure 7.3a), we present a sketch of a mean-field phase diagram for a square-well binary
mixture close to the symmetrical case e = 0.57 [132]. In this case, the presence of a lambda
line of continuous demixing transitions suppresses the critical point of the liquid/gas transition,
turning it into a tricritical point. We have not tried to reconstruct a complete phase diagram from
our Lennard-Jones simulations but kept the total density sufficiently high to study the demixing
transition far from the liquid/gas one. In figure 7.3a), we built up the demixing phase diagram
for n ≥ 0.4 by displaying the evolution of the critical temperature Tn

c with density n, estimated
from the maximum of the susceptibility of the reference cubic system. We notice that the critical
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temperature has a maximum close to n ∼ 0.9, exhibiting reentrant miscibility [134]. For values
of the density sufficiently smaller with respect to n = 1.0, the average interaction energy ⟨vij(r)⟩
decreases as density is increased, as the attractive part of the interaction is dominant. Above a
threshold value of the density close to n = 1, at which the mean inter-particular distance is σ,
increasing the density will increase the average interaction energy, as the repulsive part of the
potential becomes predominant. This gives a qualitative explanation for the diminution of the
typical energy kBT

n
c for the demixing transition above a threshold density.

Looking for the most efficient density to work at, we have started with a rather high value
n = 1.0 to avoid the liquid/gas transition, also allowing benchmarking with previous results [124].
Extracting excess quantities at such high density proved difficult. Computing the chemical
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Figure 7.3: a) Sketch of the mean-field T-n phase diagram for a Lennard-Jones binary mixture
(see ref. [132]). The continuous line represents first order liquid-gas transitions while the red
dashed line is the λ−line of demixing continuous phase transitions. b) Partial phase diagram
obtained by simulation of a Lennard-Jones symmetrical binary mixture, showing the evolution
of the demixing critical temperature Tn

c with density n. A maximum for Tn
c is clearly visible

and the system displays reentrant miscibility [133]. c) Evolution of the critical pressure Pc with
the total density n.
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potential requires the virtual insertion of an extra particle to the system, this being obviously
a difficult action in a very dense fluid, already for n = 0.8. Moreover, the total pressure Pc

at the critical temperature depends dramatically on the density, see figure 7.3c), decreasing
approximately by an order of magnitude from n = 1.0 to n = 0.5. The critical Casimir force
having an amplitude independent of the density, it seems intuitive to consider that working at
lower density will make this excess quantity easier to extract from a smaller value of the total
pressure. This was confirmed in practice and we gradually moved to lower densities, n = 0.6

and 0.7 allowing for our most accurate results up to now. We stress the fact that this difficulty
arising from the small amplitude of the critical Casimir force relatively to the bulk pressure
is lifted in experimental approaches when at least one confining wall is also in contact with a
non confined fluid. In wetting experiments, the wetting layer is in equilibrium with the gas
of binary mixture so that the bulk pressure in the confined layer is compensated by the gas
pressure. Thus, the equilibrium thickness of the layer is only determined by confinement forces
comparable in amplitude to the Casimir force. Equivalently, if the confinement is obtained by
optically trapping a sphere close to a wall (or two spheres), the bulk pressure is compensated by
completely immersing the sphere in the critical fluid.

7.3 Universal scaling functions: comparing Ising and Lennard-

Jones data

7.3.1 Fully universal scaling form for the excess quantities

In the previous chapters, we were only concerned by the study of the Ising model and used the
scaling form for the excess part of the free energy

ωex(t, L⊥) = L−d
⊥ Θ(ut) , (7.24)

with ut = tL
1/ν
⊥ . Restricting ourselves to the case of h̃ = 0, equivalently µAB = 0, we omit

the dependency on this variable. The scaling forms for all observables of interest, in the present
study, stem from the excess free energy, and in chapter 6, we developed the relation between the
scaling function of the excess free energy Θ, the scaling function of the critical Casimir force θ

θ(ut, 0) = (d− 1)Θ(ut, 0)−
ut

ν

∂Θ

∂ut


uh

(ut, 0) , (7.25)

and the excess internal energy density in units of kBT

uex = −L
1/ν−d
⊥

∂Θ

∂ut


uh

. (7.26)

Functions θ,Θ and ∂Θ
∂ut


uh

implicitly depend on the model considered, through the non-universal

(i.e. model dependent) value of the correlation length amplitude ξ+0 (or equivalently ξ−0 , the
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ratio ξ+0 /ξ
−
0 being a universal quantity). As mentioned in section 4.2, to compare observables

computed in different models of the same universality class, one must be careful in defining a
fully universal quantity based on the scaling of the free energy

ωex(t, L⊥) = L−d
⊥ Θ̄


t


L⊥

ξ+0

1/ν


, (7.27)

defining the scaling variable

xt = t


L⊥

ξ+0

1/ν

. (7.28)

We omit again the dependency on h̃ ∼ µAB .

The amplitudes of the scaling functions Θ and θ are independent of ξ+0 . To compare data
for the excess free energy and critical Casimir force obtained in different systems belonging to
the same universality class, one should simply be careful to use the scaling variable xt rather
than ut to obtain fully universal functions. The amplitude of the excess internal energy does, on
the other hand, depend on ξ+0 . The fully universal scaling form for the excess internal energy is
therefore

Ld
⊥


L⊥

ξ+0

−1/ν

uex = − ∂Θ̄

∂xt


h̃
= −ξ+0

1/ν ∂Θ

∂ut


uh

, (7.29)

as a function of xt. This allows for comparison of results we obtained in the Ising model with
results in Lennard-Jones systems.

7.3.2 Amplitude of the correlation function

In the Ising model ξ+0 = 0.501(2) is known to a very good approximation and we have used
this value from the literature, see ref. [4]. We recall that all lengths are measured in units of
the microscopic length scale σ which is taken equal to 1 in both the Ising and Lennard-Jones
systems. For the case of a Lennard-Jones binary mixture, the correlation length amplitude ξ+0
depends on the density n and was estimated for each density using the concentration part of the
structure factor [124, 135]. The partial pair correlation functions are given by

gij(r) =
N

nNiNj


Ni
k=1

Nj
l=1

δ(r − |r⃗k − r⃗l|)


, (7.30)

where i, j can be A or B, the type of particle. The fluctuations in the concentration of the system
are described by a combination of these pair correlation functions [135]

gcc(r) = x2
Ax

2
B(gAA + gBB − 2gAB) , (7.31)

where xA = NA/N, xB = NB/N . The Fourier transform Scc(q) of gcc(r) takes for small wave
vectors an Ornstein-Zernike form

Scc(q) =
kBTχ

1 + q2ξ2
, (7.32)
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with the susceptibly for T > Tc

kBTχ = N(⟨x2
A⟩ − 1/4) , (7.33)

equivalent to the magnetic susceptibility (Eq.2.7) with m = xA − xB . Thus, we can extract the
correlation length ξ from small wave vector measurements of Scc and estimate the amplitude ξ+0
by fitting the scaling form

ξ = ξ+0 |t|−ν , (7.34)

using for ν an estimate from literature for the Ising universality class (see table 1.1). In fig-
ure 7.4a), we display the evolution of ξ with t and the corresponding fit for various densities,
leading to estimates of ξ+0 displayed in figure 7.4b). As one can see clearly from figure 7.4, this
estimation of ξ+0 is somewhat imprecise and will introduce an error on the amplitude of the
scaling function of the excess free energy which, unlike the critical Casimir force, depends on
ξ+0 . Nevertheless, it appears clearly that the correlation length amplitude has a maximum value
approximately located between n = 0.7 and 0.8, just as the critical temperature had a maximum
value, but for a larger value of the density n.
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Figure 7.4: a) Power law behavior of the correlation length ξ for various densities. Dashed
lines are fits of the form ξ = ξ+0 |t|−ν , using ξ+0 as the only fitting parameter. b) Corresponding
estimates of ξ+0 , as a function of density.

7.4 Excess internal energy of the Lennard-Jones binary mix-

ture

The internal energy per unit volume u, in units of kBT , of the Lennard-Jones system is defined
by the statistical average of the interaction Hamiltonian (Eq.7.4)

u =
⟨Hint⟩
kBTV

. (7.35)
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The excess part of u is obtained by simply subtracting the reference uref obtained for same
temperature and density in the large L = 32 cubic system

uex = u− uref . (7.36)

Using the universal scaling form of Eq.7.29, we compare in figure 7.5 the excess internal energy
computed for the Ising model with fully periodic boundary conditions in chapter 6 with the same
quantity computed in the Lennard-Jones binary mixture, for different values of the density and
thickness L⊥. All data for the Lennard-Jones fluid were obtained with L∥ = 60 and densities
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L⊥/ξ

+
0

1/ν , obtained for the Ising model with
fully periodic boundary conditions (dashed line, see section 6.1.3) and compared to the same
quantity obtained in a symmetrical Lennard-Jones binary mixture (colored lines). All data for
the Lennard-Jones fluid were obtained with L∥ = 60 and for densities n ∈ [0.6, 0.7, 1.0]. For
clarity, we separated data for the two smallest investigated thicknesses L⊥ = 5, 6 (a) from data
for the two largest ones L⊥ = 9, 12 (b) and data obtained for the highest density n = 1.0 (c).
Shifting data for n = 1.0 by a small amount ushift(L⊥) (d) shows that the amplitude and width
of the critical effect corresponds quite well to the Ising case.

n = 0.6, 0.7, 1.0. In the case of the two smallest investigated thicknesses L⊥ = 5, 6 (Fig. 7.5a),
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we obtain a very convincing agreement with the scaling function of the Ising model,despite
the small value of L⊥. For the largest thicknesses investigated L⊥ = 9, 12 (Fig. 7.5b), the
agreement remains convincing for high temperature data but not for T < Tc. In this last case,
the apparently non systematic evolution of uex and the important discrepancy between data
for different densities and systems sizes makes us expect this to be related to the difficulty of
thermalizing such large systems, requiring very important computation resources, and we believe
that higher precision could lead to a collapse of all the data. Another possible explanation, is the
important change in aspect ratio from thickness L⊥ = 5, 6 to L⊥ = 9, 12. However, simulations
in Ising systems have proved systems of sizes L⊥ ∼ 10 and L∥ ∼ 60 to be a good approximation of
the slab limit (see chapter 5). If this were the case, the discrepancy between Ising and Lennard-
Jones systems would thus have to be explained. Further work is required to confirm this point.
For density n = 1.0, Fig. 7.5c), the general behavior of the excess energy is still in agreement
with that of the Ising model. The rather poor collapse of data for several thicknesses L⊥ makes
us expect that we do not yet capture the main scaling behavior of this quantity, but removing a
shift value ushift(L⊥) to uex to center the scaling function, Fig. 7.5d), we see that the amplitude
and width are coherent with Ising data. We believe these shifts arise from the non critical
confinement effects discussed in section 7.1.5 and should be present in single component fluid
simulations, which we have not yet simulated at the moment of the redaction of this manuscript.

The nice agreement observed between excess internal energy of the Ising and Lennard-Jones
models gives us confidence in the validity of our current approach. Moreover, this agreement can
also be observed in cubic geometry. In this case, the critical Casimir force is directly related to
the excess internal energy [76]

κf cubic
c =

t

νd
uex , (7.37)

so that the excess internal energy can easily be related to the scaling function θcubic of the critical
Casimir force in cubic geometry

t

νd
uexL

d = θcubic , (7.38)

which was computed through Monte Carlo simulations in the Ising model in ref. [76]. In fig-
ure 7.6a), we display Tuex for various sizes L ∈ [5, 6, 9, 10] as a function of temperature for a
density n = 0.7. A finite-size critical effect is clear, a peak in uex appearing close to T 0.7

c = 1.32,
and its amplitude decreases with increasing size. However, the excess internal energy does not go
to zero far from the critical temperature, especially for the smallest system size L = 5. The limit
value ushift reached by the excess energy decreases with increasing size L in a non monotonic
way, oscillating around zero. We have already mentioned that such non critical effects have been
observed in single component fluid simulations [127]; oscillations of the internal energy being
related to the particularly small sizes used. Increasing the system size would then make this
effect negligible but for now, to focus on the critical effect, we removed the limit value ushift

from uex before trying the finite-size scaling from of Eq.7.38. One can notice from figure 7.6a)
that ushift is more pronounced at t < 0 than t > 0 for L = 5. Thus, ushift(L, sign(t)) both
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Figure 7.6: Excess internal energy uex obtained in a symmetrical Lennard-Jones binary mix-
ture in cubic geometry (colored points) (a). Following Eq.7.38, this excess internal energy can
be compared to the scaling function of the critical Casimir force θcubic in cubic geometry com-
puted in ref. [76] in the Ising model (solid black line), after removing a non critical contribution
ushift(L, sign(t)) to uex (b). Lennard-Jones data were obtained in systems of size L ∈ [5, 6, 9, 10]

at density n = 0.7.

depends on L and the sign of t and for each system size. As the system changes from a mixture
to a simple fluid when crossing the transition, it is not surprising that the shift evolves from
high to low temperature. Hence, we have subtracted two different values of ushift to uex for data
above and below the critical temperature. This proved to be an acceptable approximation within
the current precision but could eventually result in a discontinuity around T 0.7

c in the data, as
ushift is in principle a continuous function of the temperature (this will be the case below). In
figure 7.6b), we show the convincing agreement between excess internal energy data computed in
our Lennard-Jones simulations and θcubic estimated in ref. [76] in the Ising model, the agreement
being excellent except for low temperatures where our data are clearly dominated by statistical
noise.

As we developed in chapter 6, the knowledge of the excess internal energy scaling function
gives access to the scaling function of the excess free energy and thus to the critical Casimir
force scaling function, or any excess quantity stemming from the excess free energy. However,
the specificity of the present Lennard-Jones simulation is that it can give direct access to the
critical Casimir force and its fluctuations. Thus, we are interested in the direct measurement of
the pressure and chemical potential, rather than extracting the average Casimir force through
measurement and integration of the excess internal energy.
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7.5 Critical pressure anisotropy in slab geometry

7.5.1 Universal scaling function for the pressure anisotropy

We have mentioned at the end of chapter 6 that it is possible to extend our study of the Casimir
effect to the case of non zero aspect ratios, simply by adding a dependency on ρ = L⊥/L∥ to
the universal scaling functions [76]. The excess free energy density, in units of kBT = 1/κ, then
scales as

ωex(t, L⊥, ρ) = L−d
⊥ Θρ (ut, ρ) . (7.39)

For the sake of simplicity, we will not take into account the dependency on the field h ∼ µAB ,
which we always set to zero in Lennard-Jones simulations. The critical Casimir force by unit of
surface in the confining direction z is then given by

κf⊥
c = − 1

Ld−1
∥

∂(V ωex)
∂L⊥

= L−d
⊥


(d− 1)− ut

ν
∂

∂ut
− ρ ∂

∂ρ


Θρ(ut, ρ) ,

(7.40)

and corresponds to the extension to arbitrary values of ρ of fc, the definition of the Casimir force
we have used up to now in this work (Eq.5.2). Of course, in the limit of slab geometry

f⊥
c →

ρ→0
fc . (7.41)

The evolution of the form of the Casimir force scaling function with ρ has already been studied
in Monte Carlo simulations of the Ising model [76], but another effect that this formalism allows
one to tackle is the Casimir effect in the transverse directions x, y, related to a change in the
width L∥ rather than the thickness L⊥. We define the excess contribution to the confining force
in the transverse directions as the derivative of the excess free energy with volume at fixed L⊥

κf∥
c = −∂(V ωex)

∂V


L⊥

,

= − 1
L⊥L∥(d−1)

∂(V ωex)
∂L∥


L⊥

,

= − L−d
⊥

(d−1)


(d− 1)− ρ ∂

∂ρ


Θρ .

(7.42)

As expected from the clearly asymmetric roles played by L⊥ and L∥ in this geometry, the critical
force is anisotropic and f

∥
c differs from f⊥

c . The two forces can be related using Eq.7.40 and 7.42

f∥
c =

1

d− 1


−f⊥

c − kBTL
−d
⊥

ut

ν

∂Θρ

∂ut


, (7.43)

and the anisotropy is directly related to the excess internal energy −L−d
⊥ ut

∂Θρ

∂ut
= tuex. We

remark that an average of the forces in the three directions x, y, z gives

κ
d
(f⊥

c + (d− 1)f∥
c ) = −L−d

⊥
ut

νd

∂Θρ

∂ut
=

t

νd
uex , (7.44)
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and is directly related to the excess internal energy. In the limit of cubic geometry, ρ → 1, we of
course expect to recover isotropy and

f⊥
c = f∥

c (7.45)

so that
κ
d
(f⊥

c + (d− 1)f∥
c ) →

ρ→1
κf cubic

c =
t

νd
uex , (7.46)

and the critical Casimir force f cubic
c is directly related to the excess internal energy, a result

already demonstrated in ref. [76], giving us confidence in our approach.

Let us now study the anisotropy itself. Eq.7.43 leads to

f∥
c − f⊥

c =
kBT

d− 1

 −d

kBT
f⊥
c +

t

ν
uex


. (7.47)

In the slab limit, we know that

κf⊥
c →

ρ→0
κfc = (d− 1)ωex + tν−1uex , (7.48)

which implies

ρ
Θρ

∂ρ


x⊥

→
ρ→0

0 . (7.49)

this limit being the signature of the recovery of extensivity of the free energy V ωex with respect
to L∥. Thus, the anisotropy becomes

κ(f∥
c − f⊥

c ) →
ρ→0

−dωex − tν−1uex = −κf⊥
c − ωex , (7.50)

and consequently

κf∥
c →

ρ→0
−ωex = −L−d

⊥ Θ(ut) . (7.51)

The universal scaling form of the anisotropy in the limit of slab geometry is thus

Ld
⊥κ(f⊥

c − f∥
c ) →

ρ→0
θ(ut) + Θ(ut) , (7.52)

the sum of the scaling functions of the critical Casimir force and of the excess free energy that
we have estimated in chapters 5 and 6 in the Ising model in the limit ρ → 0. In the following,
we will always assume that this limit is reached, at least to a good approximation.

7.5.2 Pressure anisotropy in a Lennard-Jones binary mixture

In Lennard-Jones simulations, the critical Casimir forces are expected to be excess quantities
of the generalized pressure P̃ = P − µρ. However, the anisotropy must clearly come from the
pressure itself and not from the chemical potential, which is an intrinsically isotropic quantity.
Lennard-Jones simulations allow for the computation of this anisotropy and of its fluctuations, as
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the virial formula for the pressure naturally provides instantaneous measurements of the pressure
in x, y and z directions. Thus, we can compute the anisotropy in pressure

P⊥ − P∥ ≡ Pz −
Px + Py

2
, (7.53)

which we display in figure 7.7. For clarity, in figure 7.7a), we only display P⊥−P∥ for the smallest
L⊥ = 5 and largest L⊥ = 12 thicknesses investigated, both for n = 0.6 and n = 0.7. In all cases,
L∥ = 60. Considering the current precision, no anisotropy is seen in the case L⊥ = 12, whereas a
clear one is seen for L⊥ = 5. We distinguish two features in this anisotropy. Firstly, the minimum
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Figure 7.7: Pressure anisotropy P⊥−P∥ in a Lennard-Jones system in slab geometry of thickness
L⊥ = 5, 12 for two values of the total density n = 0.6, 0.7. In all cases L∥ = 60. In the case of
a symmetrical binary mixture (a), for L⊥ = 5, the pressure anisotropy clearly has a minimum
value close to the demixing critical temperature Tn

c (located by arrows). Continuous lines show
estimates of the non critical pressure anisotropy Pshift(T, n, L⊥). In the case of a one component
Lennard-Jones fluid (b) an anisotropy is still present. In the case of a binary mixture confined
with L⊥ = 6 (c), the limit value of the pressure anisotropy appears different for high and low
temperatures. We used the ansatz Pshift(T, n, L⊥) = A(n,L⊥) + B(n,L⊥)|m(T )| (continuous
lines) to capture this effect (m(T ) = (NA −NB)/N).



7.5. CRITICAL PRESSURE ANISOTROPY IN SLAB GEOMETRY 131

of the anisotropy is located close to the critical temperature, which changes significantly with
the density, so that we can clearly identify a critical effect in the anisotropy. Secondly, far from
the critical temperature, the anisotropy does not tend to zero, so that a non critical anisotropy
is also detected. In figure 7.7b), we display the difference P⊥ − P∥ that we obtain in a one
component Lennard-Jones fluid, for the same densities n = 0.6 and 0.7 and dimensions L⊥ = 5

and L∥ = 60. An anisotropy in the pressure is observed, of approximately the same amplitude as
the non critical anisotropy observed in the binary mixture. This effect is induced by the periodic
boundary conditions and was observed in single component fluid models (including Lennard-
Jones) in non cubic geometries in ref. [126]. It was shown that the pressure anisotropy oscillates
as the system size is changed, vanishing as the system grows, but significant for systems of small
size < 10σ. This effect was considered in ref. [126] as a periodic error on pressure measurements
but we can interpret it, as discussed in section 7.1.5, as a non critical confinement force.

To check the scaling form of Eq.7.54 for the anisotropy, we need to subtract the non critical
contribution to the pressure anisotropy. It is tempting to use the anisotropy found in the single
component Lennard-Jones system to subtract non critical anisotropy in the mixture’s pressure.
However, in the case of a binary mixture, the composition changes with temperature. This is
not the case of course in the one component fluid and thus there is no reason for the non critical
anisotropy to evolve in the same way in both two and one components fluids. As a preliminary
test, we have simply subtracted an ansätze Pshift(T, L⊥, n) for the baseline shift to P⊥−P∥ and
tested the validity of the scaling form

κLd
⊥(P⊥ − P∥ − Pshift(T, L⊥, n)) = θ(ut) + Θ(ut) . (7.54)
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Figure 7.8: Finite-size scaling of the critical part of the pressure anisotropy computed in the
symmetrical Lennard-Jones binary mixture for L⊥ = 5, 6, L∥ = 60 and n = 0.6, 0.7 (colored
points). The data are in very good agreement with the expected universal scaling function θ+Θ,
sum of the scaling function for the critical Casimir force and for the excess free energy, computed
in the Ising model (solid black line).
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assuming the limit ρ → 0 is verified. For L⊥ = 5, we used a constant shift Pshift(T, n, L⊥) =

Ashift(n,L⊥), represented in figure 7.7a). For L⊥ = 6, the limit value of the pressure anisotropy
appears different for high and low temperatures (Fig. 7.7c). Assuming that this change in the
non critical anisotropy is related to the change in composition of the mixture, we used the ansatz

Pshift(T, n, L⊥) = Ashift(n,L⊥) +Bshift(n,L⊥)|m(T )| , (7.55)

to capture this effect, with m(T ) = (NA−NB)/N the order parameter. We display Pshift(T, L⊥, n)

in figure 7.7c): this ansatz is very close to using two different constant shifts for temperatures
above and below Tn

c as it quite sharply evolves close to the critical temperature.

In figure 7.8, we test the scaling form of Eq.7.54, comparing the critical part of the pressure
anisotropy to the sum of functions θ and Θ obtained through Monte Carlo simulation in the
Ising model (see chapters 5 and 6). The agreement between Lennard-Jones and Ising data is
very convincing and clearly confirms our predictions for the universal scaling function of the
critical pressure anisotropy. The maximum of the scaled pressure anisotropy seems slightly lower
for L⊥ = 5, n = 0.6, but this discrepancy could be absorbed in the choice of a larger value of
Pshift. Increasing the thickness L⊥, Pshift decreases so that we expect that for sufficiently large
systems only the critical anisotropy should remain. However, we have not been able to reach
this limit with sufficient precision for now.

7.6 Pressure and chemical potential

7.6.1 Generalized pressure and critical Casimir force

As discussed previously, we expect to be able to extract the critical Casimir force from the
measurement of the pressure and the chemical potential. We expect the form

P⊥ = f⊥
c + nµex + Pbulk ,

P∥ = f
∥
c + nµex + Pbulk .

(7.56)

In section 7.5.2 we have seen that, for the smallest system thicknesses, we must add to this
picture a non critical confinement pressure Pshift(T, L⊥, n). Making the hypothesis that this
effect solely affects P⊥, that it to say that L∥ is large enough not to cut-off the density pair
correlation function, we get

P⊥ = f⊥
c + nµex + Pshift(T, L⊥, n) + Pbulk(T, n) ,

P∥ = f
∥
c + nµex + Pbulk(T, n) ,

(7.57)

which is coherent with our observations for the anisotropy P⊥ − P∥. In figure 7.9, we show the
excess part

Pex,⊥ = P⊥ − P cubic(T, n) , (7.58)
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Figure 7.9: Excess part Pex,⊥ (Eq.7.58) of the confinement pressure P⊥, compared to the ex-
cess chemical potential multiplied by density nµex. All data are obtained in systems of sizes
L⊥ = 5, L∥ = 60. For clarity, we separate data obtained at density n = 0.6 (a) and n = 0.7 (b).

of the confinement pressure P⊥, using the pressure P cubic(T, n) computed in the large L = 32

cubic system as an estimate of the bulk pressure P bulk(T, n). The presence of Pshift(T, n, L⊥) is
clear. The form and amplitude of the excess pressure is incompatible with the critical Casimir
force f⊥

c (see for example Fig.4.5), which does not change sign with temperature and is expected
to have an amplitude of ≈ −3 × 10−3 for L⊥ = 5, n = 0.6, thus an order of magnitude smaller
than the critical effect observed in figure 7.9. Defining the excess part of the chemical potential

µex = µ(T, n, L⊥)− µcubic(T, n) , (7.59)

it appears clearly in figure 7.9 that Pex,⊥ and nµex are dominated by a similar term. This term
resembles the excess internal energy and from the amplitudes shown it seems that this term will
cancel in taking the difference between the two quantities. We notice in figure 7.9 a small shift,
so that nµex does not decay to zero far from the critical temperature, which we interpret once
again as a non critical confinement effect. Therefore, we shall use a shift µshift for each densities
to recover the limit of vanishing µex far from Tn

c . We complete again our decomposition of P⊥

P⊥ = f⊥
c + nµex + P̃shift(T, L⊥, n) + Pbulk(T, n) , (7.60)

and rather than separately estimating µshift and Pshift, which would be quite delicate, we define
the generalized pressure non critical shift

P̃shift(T, n, L⊥) = Pshift − nµshift = Ã(n,L⊥) + B̃(n,L⊥)|m(T )| , (7.61)

which we expect to depend on the change in composition of the system (as in the case of the
pressure anisotropy in section 7.5.2) Ã, B̃ being fitting parameters. Thus, the confinement excess
generalized pressure

P̃ex,⊥ = Pex,⊥ − nµex , (7.62)
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should contain both a non critical confinement effect and the critical Casimir force. We expect
that its critical part P̃ex,⊥−P̃shift amounts to the critical Casimir force in the slab limit f⊥

c →
ρ→0

fc

and thus scales as
Ld
⊥

kBT
(P̃ex,⊥ − P̃shift) = θ(xt) . (7.63)

In figure 7.10, we show preliminary results for this analysis for n = 0.6, 0.7, L⊥ = 5 and L∥ = 60.
Looking at P̃ex,⊥ (Fig. 7.10 a, b), it is clear that the noise level is still quite high with respect
to the effect we are trying to capture. However, we can estimate the non critical effect using
the form of Eq.7.61 (see Fig. 7.10 a, b). For density n = 0.6, the change of P̃shift across the
transition is much more pronounced than for n = 0.7, for which the shift is almost a constant.
We then compare Ld

⊥
kBT (P̃ex,⊥ − P̃shift), to the scaling function θ computed in the Ising model,

see figure 7.10 c, d). This shows a promising tendency for n = 0.7 and a promising agreement
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Figure 7.10: Excess part of the generalized pressure P̃ex,⊥ (red squares) obtained in a Lennard-
Jones binary mixture with n = 0.6 (a) and n = 0.7 (b). In all cases, L⊥ = 5, L∥ = 60. Using
the form of Eq.7.61, we estimate the non critical part of this excess generalized pressure (black
lines). Then, we can test the scaling form of Eq.7.63 by comparing the critical part of the excess
generalized pressure (red squares), for n = 0.6 (c) and n = 0.7 (d), to the scaling function of
the critical Casimir force θ obtained in the Ising mode (black line).
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for n = 0.6. This result is only preliminary and we present the only configurations for which we
reached at the moment of the redaction of the manuscript sufficient precision to obtain a first
indication of a direct measurement of the critical Casimir force in a Lennard-Jones simulation.
Although the level of noise on the signal is still high, the fact that the critical effect observed in
both Pex,⊥ and nµex (Fig.7.9), ten times larger than the critical Casimir force, cancels exactly
is already an extremely encouraging result. We believe that better statistics, with data further
away from the critical temperature, will allow a better estimate of the non critical shifts and
confirm this first signature of the critical Casimir force.

7.6.2 Excess chemical potential and excess internal energy

To define the scaling function of the excess chemical potential, we need to understand how the
excess part of the free energy depends on the the total number of particles N . We know that
the excess free energy density ωex takes a universal scaling form, see Eq.7.27 for the limit case
ρ → 0. Two quantities appearing in this scaling form depend on N , through the density n: ξ+0 (n)
and Tn

c (see figures 7.3 and 7.4). The scaling function of Eq.7.27 being fully universal, we can
assume that the dependency of ωex on density is entirely contained in ξ+0 (n) and Tn

c and we can
make explicit this dependency

ωex(t, L⊥, n) = L−d
⊥ Θ̄


T − Tn

c

Tn
c


L⊥

ξ+0 (n)

1/ν


. (7.64)

here still in the limit ρ → 0. The excess chemical potential is defined as

κµex =
∂V ωex

∂N


T,V

= V L−d
⊥

∂Θ̄

∂N


T,V

. (7.65)
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∂n , the dominant part close to the critical temperature
of the factor A(n, T ) relating excess internal energy and excess chemical potential.
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Using the scaling variable xt =


T−Tn
c

Tn
c


L⊥

ξ+0 (n)

1/ν
, we can relate the chemical potential to the

internal energy
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uex = A(n, T )uex , (7.66)

with

A(n, T ) = −V
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. (7.67)

Thus, at a given density and at T = Tn
c , the excess chemical potential and excess internal energy

are expected to be simply proportional, by a factor A(n, Tn
c ) =

1
Tn
c

∂Tn
c

∂n . An interesting feature
of this factor is that, as it appears clearly from the evolution of Tn

c with density (see figure 7.3),
it changes sign at a density close to n = 0.9, see figure 7.11. To test the validity of the relation
between excess chemical potential and excess internal energy (Eq.7.66), in figure 7.12 we compare
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Figure 7.12: Comparison of the excess chemical potential µex − µshift (see main text) to the
excess internal energy uex in a symmetrical Lannard-Jones binary mixture at density n = 0.6

(a) and n = 0.7 (b). All data are obtained in systems of sizes L⊥ = 5, L∥ = 60. In the bottom
figures, we compare the ratio (µex − µshift)/(Tuex) (blue squares) to its expected value at the
critical point A(n, Tn

c ) =
1
Tn
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∂Tn
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∂n (black dashed lines).
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µex − µshift to the excess internal energy kBTuex (we recall that in our simulation kB ≡ 1) for
L⊥ = 5 and n = 0.6, 0.7. The similarity of the two observables is striking. Moreover, computing
the ratio κ(µex − µshift)/uex, we find a good agreement with our estimate of A(n, Tn

c ), see
figure 7.12, giving us confidence in the relations of Eq.7.66 and 7.67 between excess chemical
potential and internal energy. The A(n, Tn

c ) factors are very close to unity but the precision
of our date seems sufficient to extract the predicted trend around unity for these two density
values. At the moment of the redaction of this manuscript, we have not yet produced the
necessary data to present the same treatment as in figure 7.12 for other system sizes or densities.
Typically, computing the chemical potential at densities n ≥ 0.8 proved extremely challenging.
However, we are confident that future data can confirm our findings as they are supported by
qualitative observations in the pressure and internal energy measurements, more easily accessible
than chemical potential ones.

As we have noticed, the excess pressure P⊥ − P cubic(T, n) is dominated by the term nµex,
Eq.7.57, so that we can compare it to the excess internal energy to draw qualitative conclusions.
In figure 7.13, we compare the excess pressure to the excess internal energy for L⊥ ∈ [5, 6, 9, 12]

and n = 0.6, 0.7, 1.0. We remark their great similarity in general, comforting the relation between
chemical potential and internal energy (Eq.7.66). For densities n = 0.6, 0.7, we display the
evolution of P⊥ − P cubic against uex but at higher density n = 1.0 we looked at the evolution of
the excess part of P averaged = (1/d)(Px+Py+Pz). Measurements of the pressure at higher density
requiring longer computation times than at n = 0.6, 0.7, we did not reach sufficient statistics for
Pz alone for all system sizes at the moment of writing the present chapter. Thus, as a preliminary
approach, we present data for P averaged, which is also suited for a comparison with uex as it is
also expected to be dominated by the excess chemical potential contribution. The first thing one
can remark in figure 7.13e) is that the excess pressure P averaged − P cubic, at density n = 1.0,
has undergone a sign change (also present in P⊥) compared with lower densities n = 0.6, 0.7.
The excess pressure is now positive above the critical temperature and negative below. This sign
change is actually coherent with the sign change of A(n, Tn

c ) (Fig.7.11). In figures 7.13e) and f),
we compare P averaged − P cubic with A(n, Tn

c )uex scaled by the factor A(n, Tn
c ) ≈ −0.6. Scaled

in this way, it is clear that the two quantities main contribution remain proportional despite the
change in sign of P averaged − P cubic, well captured by the factor A(n, Tn

c ).

7.7 Conclusion

Using Semi-Grand Canonical simulations of a symmetrical Lennard-Jones binary mixture, we
have made contact with previous results obtained in the Ising model through measurements
of the universal scaling functions of the excess internal energy but also the excess generalized
pressure P̃ = P − nµ, which is the suitable quantity for a direct measurement of the critical
Casimir force. The results presented here are preliminary, as the computation of the chemical
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potential proved quite challenging. Moreover, the analysis of scaling behavior is complicated by
the presence of non critical confinement effects induced by the particularly small system sizes
used. As the numerical effort required to reach sufficient precision increases rapidly with system
size, we cannot yet produce results in large enough systems to make these effects negligible.
However, we have been able to propose preliminary approaches to take these effects into account
and obtain convincing agreement with data computed in the Ising model in the previous chapters.

We also obtained results that were not accessible directly to Ising model simulations. We
proposed and successfully verified the universal finite size scaling form for the anisotropy of the
excess part of the pressure. In slab geometry, the critical Casimir force is defined as the critical
contribution to the confinement force in the confining direction z. However, a transverse effect in
direction x and y also exists and the excess contribution to the transverse pressure P∥ is different
from the critical Casimir force in the confining direction [21]. The universal scaling function of
the anisotropy P⊥−P∥ proved to be the sum θ+Θ of the scaling functions of the critical Casimir
force θ and the excess free energy Θ. Moreover, we have been able to distinguish the influence in
the critical Casimir force of both the excess pressure and the excess chemical potential. As the
chemical potential is intrinsically an isotropic quantity, the anisotropy of the Casimir effect is
entirely contained in the excess pressure. A direct measure of the critical Casimir force however
does necessarily pass through the computation of the excess chemical potential, which proved
approximately an order of magnitude larger than the critical Casimir force. Computing the
chemical potential proving rather difficult, we could in future works take advantage of the relation
between excess chemical potential and excess internal energy µex = A(n, T )uex that we identified.

We believe these preliminary results form a strong basis for future investigations and we are
confident that the tendencies outlined in the present chapter, such as the direct measurement of
the critical Casimir force (Fig.7.10), will be confirmed in the continuation of this work. Lennard-
Jones simulations of binary mixtures open the way to a great variety of studies, closely related
to experimental approaches, such as measurements of the fluctuations of the critical Casimir
force [20, 21], dynamic effects when performing temperature quenches and out-of-equilibrium
effects. The introduction of fixed boundary conditions is of course a natural future step. This
will require the disentanglement of the critical Casimir force from non critical confinement forces,
just as in the case of experimental approaches where the critical Casimir force has to be separated
from contributions such as van der Waals forces [5, 6, 64, 73].
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Conclusions and Perspectives

In this work we have studied the effect of the confinement of critical fluctuations using numerical
simulations and the theoretical framework of finite-size scaling (see chapters 1, 2 and 3). At the
heart of this work is one consequence of this confinement which has attracted much attention in
the past decades: the critical Casimir force (see chapter 4). A motivation of this work was the
observation that theoretical and numerical works have almost systematically been performed in
magnetic model systems, while experimental approaches were all realized in fluid systems, such
as binary mixtures or helium IV close to the superfluid transition. We have been interested in
closing this gap by, firstly, proposing an experimental protocol for measuring the critical Casimir
force in a magnetic layer (chapter 5) and, secondly, proposing a numerical approach in a Lennard-
Jones binary mixture (chapter 7). We confined ourselves to the Ising universality class but the
theoretical developments of this work can be easily extended to other universality classes, such
as that of the XY model, which is of great experimental relevance.

We believe our magnetic protocol opens to the way to exploring the critical Casimir effect
in magnetic systems, which would give access to a great variety of universality classes, including
quantum phase transitions, a variety of geometries and boundary conditions, uniform or struc-
tured, and crossover phenomena, for example between 2D and 3D effects or between different
universality classes. Such realizations require the fabrication of magnetic thin films of very well
controlled thickness, sufficient resolution on the magnetization measurements to capture finite-
size effects and materials with Curie temperature low enough so that finite-size effects can be
completely suppressed by a magnetic field. The right material has still to be found but numer-
ous systems show essentially perfect model magnetism and the fabrication of magnetic thin films
is well advanced. This new perspective leads to further theoretical and experimental questions.
Can we measure the critical Casimir force thanks to magneto-elastic coupling in a magnetic layer,
or does magneto-elastic coupling systematically drives the transition first order [106] ? Can two
objects close to a magnetic system at criticality feel a critical Casimir interactions mediated by
the magnetic system [68] ?

Our results in Lennard-Jones binary mixtures have made contact with previous results, es-
pecially with finite-size scaling results obtained in the Ising model. The results we presented
are still in part preliminary but already lead to quite new conclusions, such as the spectacular
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cancellation of the critical finite-size effects in the excess confinement pressure Pex,⊥ and the
excess chemical potential multiplied by the density nµex. Their difference, the generalized pres-
sure Pex,⊥ − nµex, amounts to the critical Casimir force, an order of magnitude smaller than
the critical effects in Pex,⊥ and nµex, and our results show a promising tendency in this direc-
tion. Quite surprisingly, the excess pressure undergoes a sign change above a threshold total
density. We have been able to related this sign change to the reentrant miscibility observed in
the phase diagram of our Lennard-Jones binary mixtures and the change in sign of the derivative
of the critical temperature with respect to density. Some of our results are potentially of great
experimental interest, such as the anisotropy of the excess pressure in slab geometry. Access to
the critical Casimir effect in directions transverse to the confinement would give direct access
to the scaling function of the excess free energy (see chapter 6). Due to lack of time, we have
not yet studied the fluctuations of the critical Casimir force, or dynamic and out-of-equibrium
effects, but molecular dynamics simulations give access to instantaneous values of the force and
lend themselves to such approaches. We have also been restricted to the case of fully boundary
conditions but the study of different boundary conditions is naturally accessible and of great ex-
perimental and theoretical interest. This leaves open some theoretical and numerical questions,
as one would need to disentangle non-critical confinement forces from the critical Casimir forces
in very small simulation boxes and perhaps develop a numerical approach allowing for the study
of larger systems than in the present work, the numerical effort being quite demanding.
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