In this work we address the problems of stability analysis and controller synthesis for one dimensional linear parabolic Partial Differential Equations (PDEs). To achieve the tasks of stability analysis and controller synthesis we develop methodologies akin to the Linear Matrix Inequality (LMI) framework for Ordinary Differential Equations (ODEs). We develop a method for parabolic PDEs wherein we test the feasibility of certain LMIs using SDP to construct quadratic Lyapunov functions and controllers. The core of our approach is the construction of quadratic Lyapunov functions parametrized by positive definite operators on infinite dimensional Hilbert spaces. Unlike positive matrices, there is no single method of parametrizing the set of all positive operators on a Hilbert space. Of course, we can always parametrize a subset of positive operators, using, for example, positive scalars. However, we must ensure that the parametrization of positive operators should not be conservative. Our contribution is constructing a parametrization which has only a small amount of conservatism as indicated by our numerical results. We use Sum-of-Squares (SOS) polynomials to parametrize the set of positive, linear and bounded operators on Hilbert spaces. As the name indicates, an SOS polynomial is one which can be represented as a sum of squared polynomials. The most important property of an SOS polynomial is that it can be represented using a positive (semi)-definite matrix. This implies that even though the problem of polynomial (semi)-positivity is NP-hard, the problem of checking if polynomial is SOS (and hence (semi)-positive) can be solved using SDP. Therefore, we aim to construct quadratic Lyapunov functions parametrized by positive operators. These positive operators are in turn parametrized by SOS polynomials. This parametrization using SOS allows us to cast the feasibility problem for the existence of a quadratic Lyapunov function as the feasibility problem of LMIs. The feasibility problem of LMIs can then be addressed using SDP. In the first part of the thesis we consider stability analysis and boundary controller synthesis for a large class v of parabolic PDEs. The PDEs have spatially distributed coefficients. Such PDEs are used to model processes of diffusion, convection and reaction of physical quantities in anisotropic media. We consider boundary controller synthesis for both the state feedback case and the output feedback case (using an observer design). In the second part of thesis we design distributed controllers for the regulation of poloidal magnetic flux in a tokamak (a thermonuclear fusion device). First, we design the controllers to regulate the magnetic field line pitch (the safety factor). The regulation of the safety factor profile is important to suppress the magnetohydrodynamic instabilities in a tokamak. Then, we design controllers to maximize the internally generated bootstrap current density. An increased proportion of bootstrap current would lead to a reduction in the external energy requirements for the operation of a tokamak. vi

Dans le Chapitre 5 nous analysons la stabilité de w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), avec des conditions aux limites ν 1 w(0, t) + ν 2 w x (0, t) = 0 et ρ 1 w(1, t) + ρ 2 w x (1, t) = 0. où les polynômes M, K 1 et K 2 sont paramétrés par des matrices positives. Les résultats des expériences numériques présentées prouver que la méthode présentée a une quantité négligeable de conservatisme.

Dans le Chapitre 6 nous construisons de façon exponentielle stabiliser contrôleurs basés retour d'état pour w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), avec des conditions aux limites ν 1 w(0, t) + ν 2 w x (0, t) = 0 et ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t).

Ici u(t) ∈ R est l'entrée de commande. Utilisation des fonctions de Lyapunov de la forme V (w(•, t)) = w(•, t), P -1 w(•, t) , où P est de la forme donnée dans l' Équation (10.2), nous synthétisons contrôleurs F : H 2 (0, 1) → R de telle sorte que si la commande est donnée par

u(t) = F w(•, t),
alors le système est exponentiellement stable. Des expériences numériques indiquent que la méthode est très efficace dans des systèmes qui sont contrôlables dans un certain sens approprié de stabilisation. En outre, nous étendons la méthodologie de construction L 2 contrôleurs de limites optimales qui minimisent l'effet d'une entrée décentralisée exogène sur l'état du système.

Dans le Chapitre 7 nous construisons de façon exponentielle estimation observateurs d'état pour w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), avec des conditions aux limites ν 1 w(0, t) + ν 2 w x (0, t) = 0 et ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t).

Nous supposons que la mesure limite (sortir) de la forme y(t) = µ 1 w(1, t) + µ 2 w x (1, t), est disponible. L'objectif est d'estimer l'état w le système à l'aide de la sortie frontière y. Pour ce faire, nous concevons des observateurs de Luenberger de la forme ŵt (x, t) = a(x) ŵxx (x, t) + b(x) ŵx (x, t) + c(x) ŵ(x, t) + p(x, t), avec des conditions aux limites ŵ1 w(0, t) + ν 2 ŵx (0, t) = 0 et ρ 1 ŵ(1, t) + ρ 2 ŵx (1, t) = u(t) + q(t).

Ici p(x, t) et q(t) sont les entrées d'observateurs.

En construisant des fonctions de Lyapunov de la forme V (( ŵw)(•, t)) = ( ŵw)(•, t), P( ŵw)(•, t) , nous construisons opérateur O : R → L 2 (0, 1) et scalaire O de telle sorte que si p(x, t) = (O(ŷ(t)y(t))) (x) et q(t) = O(ŷ(t)y(t)), où ŷ(t) = µ 1 ŵ(1, t) + µ 2 ŵx (1, t), puis ŵ → w exponentiellement vite. En outre, nous montrons que les observateurs conçues peuvent être couplés à des contrôleurs conçus dans le Chapitre 6 à construire de façon exponentielle en fonction de stabilisation observateurs contrôleurs de limites. Les résultats numériques indiquent que la méthode proposée est efficace dans la construction de rétroaction de sortie contrôleurs.

Dans les Chapitres 8-9 on considère le gradient de flux magnétique poloïdal la Z = ψ x dont l'évolution est régie par

∂Z ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x, t) x ∂ ∂x (xZ(x, t)) + R 0 ∂ ∂x η (x, t)j lh (x, t) + j bs (x, t) ,
avec des conditions aux limites Z(0, t) = 0 et Z(1, t) = -R 0 µ 0 I p (t)/2π, où η = résistivité parallèle, j lh = hybride basse densité de courant (LHCD), j bs = densité de courant d'amorçage, I p = courant de plasma totale, et µ 0 = la perméabilité de l'espace libre.

Dans le Chapitre 8 nous réglementons le terrain des lignes de champ magnétique, également connu sous le profil de facteur de sécurité, ou la q-profil en utilisant j lh que l'entrée de commande. Depuis

q ∝ 1 Z ,
nous réglementons le Z-profil. Nous accomplissons cette tâche en utilisant une fonction de Lyapunov de partir

V (Z(•, t)) = 1 0 x 2 (1 -x)M(x) -1 Z(x, t) 2 dx,
où M(x) est un polynôme strictement positif et j lh (x, t) = K 1 (x)Z(x, t) + ∂ ∂x (K 2 (x)Z(x, t)) , où K 1 et K 2 sont des fonctions rationnelles.

Dans le Chapitre 9 nous maximisons la norme de la densité de courant bootstrap j bs . Depuis

j bs ∝ 1 Z ,
nous minimisons la norme de la Z-profil. Nous utilisons une fonction de la forme Lypaunov

V (Z(•, t)) = 1 0
x 2 M(x) -1 Z(x, t) 2 dx, où M(x) est un polynôme strictement positif et

j lh (x, t) = K 1 (x)Z(x, t),
où K 1 est une fonction rationnelle. De plus, nous présentons une heuristique de telle sorte que les contraintes de forme sur l'entrée de commande j lh sont respectés.

INTRODUCTION

In the year 2011, fossil fuel energy accounted for 83% of the total global consumption. Despite the fact that renewable energy and nuclear fission power are the world's fastest growing energy sources, fossil fuels will continue to supply almost 80% of the global demand through 2040 [1]. It is because of this dependence on fossil fuels that the total carbon emissions are expected to rise by 29% during the same time period [START_REF]Statistical Review of World Energy[END_REF]. Moreover, before the end of the 21 st century, an energy shortfall is expected to occur if only the present energy sources like fossil fuels, hydro and nuclear fission are used [START_REF]EFDA-JET, the world's largest nuclear fusion research experiment[END_REF]. Although renewable energy sources like solar, wind and geothermal energy are safe and cause a minimal environmental impact (green house gases emission and ecological damage), they do not posses the desired energy production density (rate of energy produced divided by the area of the land required to produce it). Thus, an energy source is required which has abundant fuel, possesses high energy density, causes a minimal environmental impact and is safe.

A possible energy source that satisfies all the requirements highlighted in the previous paragraph is nuclear fusion [START_REF]ITER organization[END_REF]. Nuclear fusion is the process in which two nuclei fuse to form a single nucleus and possibly additional neutrons and protons.

Consider the reaction

H 2 + H 3 → He 4 + n,
where H 2 denotes a Deuterium nucleus (one proton and one neutron), H 3 is the Tritium nucleus (one proton and two neutrons), He 4 is the Helium nucleus (two protons and two neutrons) and n is a neutron. In order for the Deuterium and Tritium particles to overcome the electrostatic force of repulsion and fuse, they must possess significant energy. This energy may be provided by heating up the Deuterium-Tritium gas to a temperature of a 100 million degrees Celsius. At a temperature of 100 million degrees Celsius, the Deuterium-Tritium gas is in a completely ionized state, also known as a plasma. Since the Deuterium-Tritium plasma has free electrons and ions, the plasma can be confined by a magnetic field. This is because a charged particle moving through a magnetic field experiences a force (Lorentz force) that causes it to gyrate about the magnetic field lines [START_REF] Serway | Physics for scientists and engineers[END_REF]. A tokamak is a toroidal vessel that uses magnetic fields to confine plasmas. A tokamak is equipped with current carrying coils arranged around the toroid (see Fig. 2.1). These current carrying coils create a magnetic field B T which lies in the toroidal plane. Additionally, a tokamak has a current carrying core which is charged before the initiation of the fusion and then is commanded to discharge. This discharge generates a varying magnetic field around the plasma. Since the plasma is a conductor, a current I p is generated described by Faraday's laws of induction. The plasma current I p generates a magnetic field B P in a plane normal to the toroidal plane. The combination of B P and B T produces a helical magnetic field that confines the plasma [START_REF] Wesson | Tokamaks[END_REF], [START_REF] Pironti | Fusion, tokamaks, and plasma control: An introduction and tutorial[END_REF]. The word 'tokamak' is derived from the Russian for 'toroidal chamber' and 'magnetic coil'. The T-1 tokamak, built in the former USSR, for the first time since research in fusion devices began, achieved temperature and confinement times re-quired for the initiation of fusion [START_REF] Azizov | Tokamaks: from A. D. sakharov to the present (the 60-year history of tokamaks)[END_REF]. It was soon realized that an improvement in the plasma confinement time could be achieved by increasing the plasma minor radius [START_REF] Wesson | Tokamaks[END_REF].

Thus, many countries undertook the project of designing and building larger tokamaks. The largest of these was the Joint European Torus (JET) tokamak [START_REF] Rebut | The Joint European Torus: installation, first results and prospects[END_REF]. The JET tokamak, and others like the Tore Supra [START_REF] Parlange | Tore Supra tokamak[END_REF], have been used for a better understanding of tokamak plasma physics and simulating conditions for future tokamaks.

One such future tokamak is the iter tokamak [START_REF]ITER organization[END_REF]. Iter is a large tokamak currently under construction in southern France and is jointly funded by China, the European Union, India, Japan, South Korea, Russia and the United States. The goal of iter is to demonstrate the technology for electricity generation using thermonuclear fusion.

The plasma in a tokamak suffers from various instabilities. For example, an important instability which occurs at the plasma center is the sawtooth instability [START_REF] Hastie | Sawtooth instability in tokamak plasmas[END_REF].

The sawtooth instability causes the temperature and pressure at the center of the plasma to rise and crash in a periodic fashion. The crash in the temperature and pressure results from a fast outward transport of particles and energy from the center.

This transport removes the energetic particles from the plasma center which are required for the fusion to continue. Additionally, large sawteeth can trigger other instabilities in the plasma [START_REF] Sauter | Control of neoclassical tearing modes by sawtooth control[END_REF].

Another example of a plasma instability is the Neoclassical Tearing Mode (NTM) instability. The magnetic field confining a tokamak plasma can be thought of as nested iso-flux toroids. The NTM instability occurs when the iso-flux surfaces tear and rejoin to form structures known as magnetic islands [START_REF] Walker | Emerging applications in tokamak plasma control[END_REF]. The presence of the magnetic islands adversely affects the energy confinement and reduces the plasma pressure. For example, if the NTM instabilities were allowed to grow in the iter tokamak, the magnetic islands would cover a third of the total plasma volume and reduce the fusion power production by a factor of four [START_REF] Halpern | Integrated simulations of saturated neoclassical tearing modes in DIII-D, Joint European Torus, and ITER plasmas[END_REF].

The suppression of such plasma instabilities and various others require feedback control to achieve desired plasma properties in a tokamak. Feedback control can be used to improve the safety and efficiency of tokamaks. A few examples of feedback control applications in a tokamak include, plasma shape [START_REF] Ariola | Plasma shape control for the JET tokamak: An optimal output regulation approach[END_REF], [START_REF] Liang | Active control of type-i edge-localized modes with n= 1 perturbation fields in the JET tokamak[END_REF], safety factor [START_REF] Ferron | Feedback control of the safety factor profile evolution during formation of an advanced tokamak discharge[END_REF], [START_REF] Argomedo | Lyapunov-based infinite-dimensional control of the safety factor profile in a tokamak plasma[END_REF] and plasma pressure and current [START_REF] Lazarus | Higher fusion power gain with current and pressure profile control in strongly shaped DIII-D tokamak plasmas[END_REF], [START_REF] Fransson | Feedback stabilization of nonaxisymmetric resistive wall modes in tokamaks. II. Control analysis[END_REF]. Moreover, the iter tokamak [START_REF]ITER organization[END_REF] will be operating under the Advanced Tokamak (AT) regime [START_REF] Taylor | Physics of advanced tokamaks[END_REF]. The AT regime requires plasma shapes with a high degree of accuracy, high plasma pressures, increased plasma confinement efficiency and a reduction in the dependence on external energy input. Due to the importance of feedback control, large tokamaks like JET [START_REF] Jet | Fusion energy production from a deuterium-tritium plasma in the JET tokamak[END_REF] and DIII-D [START_REF] Chan | DIII-D advanced tokamak research overview[END_REF] have ongoing programs dedicated to the design and validation of controllers for the AT regime [START_REF] Moreau | Real-time profile control for advanced tokamak operation on JET[END_REF], [START_REF] Moreau | Real-time control of the q-profile in JET for steady state advanced tokamak operation[END_REF], [START_REF] Greenfield | Understanding and control of transport in advanced tokamak regimes in DIII-D[END_REF], [START_REF] Okabayashi | Active feedback stabilization of the resistive wall mode on the DIII-D device[END_REF].

A tokamak plasma interacts with currents, magnetic fields and forces exerted on and by it. In order to quantitatively predict the behavior of tokamak plasmas, mathematical models are required. One way is to use Magneto-Hydro-Dynamics (MHD) models. MHD is a branch of physics that studies the behavior of plasma under the effects of electric and magnetic fields [START_REF] Miyamoto | Plasma physics and controlled nuclear fusion[END_REF]. A sub-branch of MHD is ideal MHD [START_REF] Freidberg | Ideal magnetohydrodynamic theory of magnetic fusion systems[END_REF], wherein we make the assumption that the plasma has zero resistivity. However, ideal MHD is sufficiently accurate in predicting certain plasma instabilities and its models can be used to construct plasma evolution equations for control design [START_REF] Pironti | Fusion, tokamaks, and plasma control: An introduction and tutorial[END_REF].

Ideal MHD models of plasmas are derived using Maxwell's equations and conservation of mass, momentum and energy [START_REF] Freidberg | Plasma Physics and Fusion Energy[END_REF]. Recall, Maxwell's equations are a set of four equations (Gauss' law for electricity, Gauss' law for magnetism, Faraday's laws of induction and Ampere's law) which describe how electric and magnetic fields interact, propagate, influence and get influenced by objects.

Maxwell's equations, and hence models of MHD, are described by Partial Differential Equations (PDEs). To understand what a PDE is, consider n variables

x 1 , • • • , x n , x j ∈ Ω ⊂ R, j ∈ {1, • • • , n}, and quantity w(x 1 , • • • , x n ), w : Ωו • •×Ω → R.
A general one dimensional PDE model is of the form [START_REF] Evans | Partial differential equations[END_REF]:

F x 1 , • • • , x n , ∂w ∂x 1 , • • • , ∂w ∂x n , ∂ 2 w ∂x 1 x 2 , • • • , ∂ (i) w ∂x (i) 1 , • • • = 0, (2.1) 
where

F : Ω × • • • × Ω × R × • • • × R → R, ∂w ∂x j , j ∈ {1, • • • , n}
, denote the partial derivative of w(x 1 , • • • , x n ) with respect to x j and i ∈ N. In this work, we consider PDEs of the form w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t),

where x ∈ [0, 1], t ≥ 0 and a, b and c are continuous functions of the independent variable x. Such types of PDEs are known as second order parabolic PDEs. Parabolic

PDEs are used to model processes such as diffusion, transport and reaction. The choice of such PDEs is partially motivated by the models employed for the evolution of plasma parameters in a tokamak. However, such models have coefficients which are both space and dependent. Since we are interested in the steady state operation of tokamaks, i.e., holding the plasms stable to some equilibrium, we drop the temporal dependencies of the coefficients and consider the simplified models. Such models may be used to depict the evolution of plasma parameters at time scales much slower than the MHD modes.

The first question to be asked of a parabolic PDE, or in fact any type of PDE, is if it is well-posed. A parabolic PDE is well-posed if the PDE has a unique solution.

The definition of a solution of a PDE is non-trivial [START_REF] Evans | Partial differential equations[END_REF], [START_REF] Zachmanoglou | Introduction to partial differential equations with applications[END_REF], [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], [START_REF] Hadamard | Lectures on Cauchy's problem in linear partial differential equations[END_REF]. To keep the introduction simple, we will use the 'classical definition of the solution'. Rigorous definitions of solutions of PDEs and their types will be presented in subsequent chapters. Consider the parabolic PDE given in Equation (2.2). Intuitively, it can be seen that a solution w to this second order PDE is one which is atleast twice continuously differentiable in x and continuously differentiable in t, such that all the derivatives are well-defined, and w satisfies the equation. These requirements lead to the definition of a classical solution.

Definition 2.1. [START_REF] Evans | Partial differential equations[END_REF] For the PDE given in (2.2), a function which is at least twice continuously differentiable in x, continuously differentiable in t and satisfies the PDE is known as a solution. If in addition, the solution is unique, it is defined as a classical solution.

Since the concept of classical solution is the easiest to understand, we will use it throughout the introduction.

We now consider the problem of stability analysis. To this end, we will start by defining a set of real valued functions known as L 2 (Ω), Ω ⊂ R, given as

L 2 (Ω) := {f : Ω → R : f L 2 = Ω f 2 (x)dx 1 2 < ∞}. (2.3) 
The set L 2 (Ω) is widely used in the analysis of PDEs and thus, we will use it in the subsequent discussion. The functional • L 2 : L 2 (Ω) → R is known as the norm on the set L 2 (Ω). The definition and properties of norms can be found in [START_REF] Kreyszig | Introductory functional analysis with applications[END_REF]. For any f ∈ L 2 (Ω), the norm f L 2 formalizes the concept of 'the size' of f . Similarly, for f, g ∈ L 2 (Ω), the norm fg L 2 quantifies the 'closeness' of f and g. With the understanding of L 2 and its norm • L 2 , we can now define the stability of solutions of PDEs. In particular, we are interested in exponential stability defined as following.

Definition 2.2. The PDE given in Equation (2.2) is exponentially stable in the sense of L 2 (Ω) if there exist scalars M > 0 and α > 0 such that w(•, t) L 2 ≤ Me -αt for all t > 0.

As an example, consider the stability of the one dimensional heat conducting rod whose temperature w(x, t), x ∈ [0, 1], t > 0, is governed by the parabolic PDE

w t (x, t) = κw xx (x, t),
where κ > 0 is the thermal conductivity of the rod. Additionally, suppose that the temperature of the rod is zero at both ends. This results in the following boundary conditions w(0, t) = 0 and w(1, t) = 0, for all t > 0.

The solution to this PDE is given by [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF]:

w(x, t) = 2κ ∞ n=1
e -π 2 n 2 t sin(πnx)

1 0
sin(πnz)w(z, 0)dz.

It is easy to show that w(•, t) ≤ Me -αt , for all t > 0,

where

M = 2κ 1 0 ∞ n=1 sin 2 (πnx) 1 0
sin 2 (πnz)w 2 (z, 0)dzdx

1 2
and α = π 2 .

Thus, using Definition 2.2 it can be seen that the heat equation is exponentially stable.

Consider the following extension of the PDE given in Equation (2.2):

w t (x, t) =a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t) + d(x)u 1 (x, t),

with boundary conditions w(0, t) = 0 and w x (1, t) = βu 2 (t), where a, b, c and d are known continuously differentiable coefficients, β is a known scalar and w(•, t) ∈ L 2 (0, 1). The functions u 1 : (0, 1) ×(0, ∞) → R and u 2 : (0, ∞) → R, which appear in the PDE in addition to the dependent variables and the unknown function w, are known as inputs. The distributed function of x, u 1 (x, t), is known as a distributed input. The function u 2 (t) which appears in the boundary conditions is known as a boundary input. The case when d(x) = 0 is an example of the system with only boundary input. Similarly, the system only has distributed input when β = 0.

For PDEs with input, we consider exponential stabilization and regulation defined as follows:

Definition 2.3 (Stabilization). For the PDE 2.4, the stabilization problem is:

Find: u 1 (x, t) and u 2 (t)

such that: there exist M, α > 0 with w(•, t) ≤ Me -αt , t ≥ 0.

Definition 2.4 (Regulation). Given a function v(x), the regulation problem is:

Find: u 1 (x, t) and u 2 (t)

such that: there exist M, α > 0 with w(•, t)v(•) ≤ Me -αt , t ≥ 0.

Some examples of stabilization and regulation of parabolic PDEs can be found in [START_REF] Christofides | Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds[END_REF], [START_REF] El-Farra | Analysis and control of parabolic PDE systems with input constraints[END_REF], [START_REF] Krstic | Adaptive boundary control for unstable parabolic PDEs, Part I: Lyapunov design[END_REF].

Consider the autonomous (without inputs) parabolic PDE for x ∈ [0, 1] and t ∈ (0, ∞),

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), w(0, t) = 0, w x (1, t) = 0, y 1 (x, t) = d(x)w(x, t), y 2 (t) = γw(1, t), (2.5) 
where a, b, c, d are known continuously differentiable functions and γ is a known scalar. Assume that y 1 (x, t) and y 2 (t) are known functions. These known functions which provide a complete or partial knowledge of w are known as the outputs. When the output provides the knowledge of w over a non-zero Lebesgue measure subset of [0, 1], it is known as distributed output. When the output provides the knowledge of w over the boundary of the set [0, 1], it is known as boundary output. In Equation (2.5), y 1 (x, t) is the distributed output and y 2 (t) is the boundary output.

Since in most cases, the outputs provide only a partial knowledge of the solution, it is desirable to use the outputs to estimate the complete solution of the PDEs.

The estimates may be used for the design of stabilizing control laws, for example. To estimate the solution, an artificial PDE is constructed that uses the output of the actual PDE as its input. This artificial PDE whose output is the estimate of the solution of the actual PDE is known as the observer. For the PDE given by Equation (2.5), an observer of the following type, also known as a Luenberger Observer,

can be designed ŵt (x, t) = a(x) ŵxx (x, t) + b(x) ŵx (x, t) + c(x) ŵ(x, t) + d(x) (ŷ 1 (x, t) -y 1 (x, t)) , ŵ(0, t) = 0, ŵx (1, t) = γ(ŷ 2 (t) -y 2 (t)), (2.6) 
where ŷ1 (x, t) = d(x) ŵ(x, t) and ŷ2 (t) = γ ŵ(1, t). The search for the unknown coefficients d and γ is known as the observer synthesis problem and can be stated as follows.

Definition 2.5 (Observer synthesis). Given the linear second order PDE 2.5 with outputs y 1 and y 2 , the observer synthesis problem is Find: d(x) and γ for the System 2.6 such that: there exist M, α > 0 with

w(•, t) -ŵ(•, t) ≤ Me -αt , t ≥ 0.
A few examples of observer synthesis for parabolic PDEs can be found in [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF], [START_REF] Dubljevic | Predictive control of parabolic PDEs with boundary control actuation[END_REF], [START_REF] Krstic | Backstepping boundary controllers and observers for the slender Timoshenko beam: Part I-Design[END_REF].

The stabilization problem can be restated as a question of feasibility. A general optimization problem is of the form

Minimize x i ∈R : f (x 1 , • • • , x n ) subject to : |g(x 1 , • • • , x n )| ≤ b and |x 1 | ≤ c, • • • , |x n | ≤ c,
where f, g : R n → R, b, c > 0. The related feasibility problem would be to find

x i ∈ R, i ∈ {1, • • • , n}
, which satisfy the constraints of the optimization problem.

An important type of optimization is convex optimization [START_REF] Boyd | Convex optimization[END_REF].

Definition 2.6 (Convex function). A real valued function f : R n → R is convex if f (αx + βy) ≤ αf (x) + βf (y) (2.7)
for all x, y ∈ R n and all α, β ∈ R with α

+ β = 1, α ≥ 0, β ≥ 0.
This convexity condition means that a line joining any two points on the function always lies on or above the function. For convex functions, we define the following class of optimization problems.

Definition 2.7 (Convex optimization problem).

A convex optimization problem is of the form

Minimize x∈R n : f 0 (x) subject to : f i (x) ≤ c i , c i ∈ R, i ∈ {1, • • • , m},
where the functions f 0 and f i are all convex.

Constrained optimization problems, for most cases, cannot be solved analytically. However, convex optimization problems can be efficiently solved algorithmically [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF]. An important class of convex optimization is a Semi-Definite Programming (SDP).

Definition 2.8. An SDP problem is an optimization problem of the form

Minimize x∈R n : c T x subject to : F 0 + n i=1 x i F i ≤ 0 and Ax = b, where c ∈ R n , b ∈ R k , A ∈ R k×n and symmetric matrices F i ∈ S m are given.
We use SDP to perform stability analysis, stabilization and observer synthesis for parabolic PDEs. To explain how we accomplish these tasks, we will change the way we represent parabolic PDEs. Consider the following equation

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), w(0, t) = 0, w x (1, t) = 0, (2.8) 
where t ∈ (0, ∞), x ∈ (0, 1) and the coefficients a, b and c are continuously differentiable. Consider the mapping

w : (0, ∞) → L 2 (0, 1)
defined by (w(t))(x) = w(x, t) (x ∈ (0, 1), t ∈ (0, ∞)).

Additionally, let

Az(x) = a(x)z xx (x) + b(x)z x (x) + c(x)z(x), for z ∈ D A ,
where

D A = {z ∈ L 2 (0, 1) : z, z x are absolutely continuous , z xx ∈ L 2 (0, 1), z(0) = 0 and z x (1) = 0}.
With these definitions, Equation (2.8) can be written as

ẇ(t) = Aw(t), w(t) ∈ D A . (2.9)
With this representation, we can provide Lyapunov inequalities for linear PDEs. We begin by providing the following definitions Definition 2.9. A mapping P : L 2 (Ω) → L 2 (Ω), Ω ⊂ R, is a bounded linear operator if for all y, z ∈ L 2 (Ω) and ω ∈ R there exists a scalar ξ > 0 such that

P(y + z) = Py + Pz, P(ωy) = ωPy, Py L 2 ≤ ξ y L 2 .
The set of all such operators is denoted by L(L 2 (Ω)).

Definition 2.10. An operator P ∈ L(L 2 (Ω)) is positive if for all y, z ∈ L 2 (Ω), there exists a positive scalar ζ such that

Py, z L 2 = y, Pz L 2 , P y, y L 2 ≥ ζ y 2 L 2 .
With these definitions, we now provide the Lyapunov inequalities for the stability analysis of linear PDEs.

Theorem 2.11. [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF] A given linear PDE

ẇ(t) = Aw(t)
is exponentially stable if and only if there exists a P ∈ L(L 2 (Ω)) and a scalar α > 0 such that Pz, z L 2 ≥ 0, and

Az, Pz L 2 + Pz, Az L 2 ≤ -α z, z L 2 , for all z ∈ D A .
There is no single method that can search over the set of positive operators to find a solution of the Lyapunov inequalities for PDEs given in Theorem 2.11.

We use Sum-of-Squares (SOS) polynomials to parametrize positive operators. By definition, an SOS polynomial is non-negative. Moreover, an SOS polynomial can be represented using a PSD matrix [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF]. Thus, a positive operator parametrized by an SOS polynomial can be represented by a PSD matrix. This implies that the search for a solution of the Lyapunov inequalities for linear PDEs can be performed over the set of PSD matrices. Hence, the problem of searching for a positive operator satisfying the Lyapunov inequalities can be cast as an SDP feasibility problem. The parametrization of operators using SOS polynomials and the setup of the Lyapunov inequalities as SDPs are discussed in subsequent chapters. Similarly, the search for controllers and observers can be cast as SDP feasibility problems.

The gradient of poloidal magnetic flux is an important physical quantity for the safe and efficient operation of tokamaks since it is related to the magnetic field line pitch, known as the safety factor profile, and the self-generated bootstrap current in the plasma. The dynamics of the gradient of poloidal magnetic flux are governed by a parabolic PDE [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF]. The control is exercised using distributed input. The actuators available to administer the input use electromagnetic waves at the cyclotron frequency of electrons and ions. Unfortunately, the control input is shape constrained and the best estimates for the allowable control inputs are empirical. Nevertheless, we are able to apply similar methodologies which we develop for a general class of parabolic PDEs.

Outline

This thesis is organized as follows:

• Chapter 3 presents a brief introduction to convex optimization, Semi-Definite Programming (SDP) and Sum-of-Squares (SOS) polynomials.

• Chapter 4 presents the model of the poloidal magnetic flux in a tokamak which is utilized in Chapters 8 and 9.

• Chapter 5 presents a methodology to analyze the stability of a large class of onedimensional linear PDEs. We use positive operators on Hilbert spaces paramterized by SOS polynomials.

• Chapter 6 presents a methodology to synthesize exponentially stabilizing boundary controllers for the class of PDEs considered in Chapter 5. We use SOS polynomials and positive operators to construct quadratic Lyapunov function and controller gains. An extension of this method is also provided wherein the synthesized controllers are shown to be L 2 -optimal in the presence of an exogenous distributed input.

• Chapter 7 presents a similar methodology to the one constructed in Chapter 6

to synthesize boundary observers which utilize only the boundary measurement of the state of the plant. It is then shown that these observers may be coupled to the controllers designed previously to produce exponentially stabilizing output feedback boundary controllers.

• Chapter 8 provides a control methodology of regulating the safety factor in a profile. This is accomplished by regulating the poloidal magnetic flux using a simplified version of the model in Chapter 4 and applying a simplified version of the methodology developed in Chapter 6. A numerical simulation for the Tore Supra tokamak is also provided.

• Chapter 9 provides a control methodology for the maximization of the bootstrap current density in a tokamak. Using a simplified version of the methodology considered in Chapter 6, we develop the control method using the poloidal magnetic flux model with uncertain spatio-temporal coefficients. A numerical simulation for the Tore Supra tokamak is also provided.

Notation

The following notation and definitions are used throughout the Thesis. For a detailed discussion of the definitions used, refer to [START_REF] Kreyszig | Introductory functional analysis with applications[END_REF], [START_REF] Rudin | Functional analysis. International series in pure and applied mathematics[END_REF] or the appendix of [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF].

Function Spaces

The following are defined for

-∞ < a < b < ∞ • The Hilbert space L 2 (a, b) is defined as L 2 (a, b) := {f : (a, b) → R : f L 2 = b a f 2 (x)dx 1 2
< ∞}.

• For any Hilbert space X and scalar 0 < τ < ∞, we denote

L 2 ([0, τ ]; X) := {f : [0, τ ] → X : f L 2 ([0,τ ];X) = τ 0 ] f (t) 2 L 2 dt 1 2 < ∞.}. Similarly, a function f ∈ L loc 2 ([0, ∞]; X) if f ∈ L 2 ([0, τ ]; X) for every τ ≥ 0. • For any f, g ∈ L 2 (a, b), f, g L 2 = b a f (x)g(x)dx.
• Unless otherwise indicated, •, • denotes the inner product on L 2 and

• = • L 2
denotes the norm induced by the inner product.

• A function f : (a, b) → R is absolutely continuous if for any integer N and any sequence t 1 , • • • , t N , we have N -1 k=1 |x(t k ) -x(t k+1 )| → 0 whenever N -1 k=1 |t k -t k+1 | → 0.
• The Sobolev space H m (a, b) is defined as

H m (a, b) := {f ∈ L 2 (a, b) : f, • • • , d m-1 f dx m-1 are absolutely continuous on (a, b) with d m f dx m ∈ L 2 (a, b)}. • For any f, g ∈ H m (a, b), f, g H m = m n=0 d n f dx n , d n g dx n L 2 .
• The set of n times continuously differentiable functions is defined as

C n (a, b) := {f : (a, b) → R : f, • • • , d n f
dx n exist and are continuous}.

• The set of smooth functions is defined as

C ∞ (a, b) := {f : (a, b) → R : f ∈ C n (a, b) for any n ∈ N}.
• For a set X and scalar 0 < τ < ∞, we denote

C n ([0, τ ]; X) := {f : [0, τ ] → X : f is n-times continuously differentiable on[0, τ ]}. Similarly, a function f ∈ C n loc ([0, ∞]; X) if f ∈ C n ([0, τ ]; X) for every τ ≥ 0.
• The direct sum of n Hilbert spaces X is denoted by X n .

Operators on Hilbert Spaces

The following are defined for any two Hilbert spaces X and Y with respective norms • X and • Y and inner products •, • X and

•, • Y .

• A mapping P : X → Y is a linear operator is for all f, g ∈ X and scalars β, it holds that P(f + g) = Pf + Pg and P(βf ) = βPf .

• A linear operator P : X → Y is a bounded linear operator if for all f ∈ X, there exists a scalar ω > 0 such that Pf Y ≤ ω f X .

• We say that P ∈ L(X, Y ) if P : X → Y is a bounded linear operator. Similarly, we denote by L(X) the set of all bounded linear operator mapping the elements of X back to itself.

• For P ∈ L(X, Y ), we define

P L(X,Y ) = sup f ∈X, f X =1 = Pf Y .
• For any P ∈ L(X, Y ), there exists a unique

P ⋆ ∈ L(Y, X) that satisfies Pf, g Y = f, P ⋆ g X for all f ∈ X, g ∈ Y.
The operator P ⋆ is called the adjoint operator of P.

• The operator P ∈ L(X, Y ) is known as self-adjoint if P = P ⋆ .

• A self-adjoint operator P ∈ L(X) is known as a positive operator, denoted by P > 0, if there exists a scalar ǫ > 0 such that Pf, f X ≥ ǫ f, f X , for all f ∈ X.

Similarly, a self-adjoint operator P ∈ L(X) is known as a positive semidefinite operator, denoted by P ≥ 0, if Pf, f X ≥ 0, for all f ∈ X.

• For any two self-adjoint operators P, R ∈ L(X), by P > R we mean that P -R is a positive operator.

Similarly, by P ≥ R we mean that P -R is a positive semidefinite operator.

• The identity operator is denoted by I.

• A linear operator T : D ⊂ X → Y is said to be closed if whenever

x n ∈ D, n ∈ N and lim n→∞ x n = x, lim n→∞ T x n = T x.
Vector Spaces and Real Algebra

• The set of non-negative real numbers is denoted by R + .

• The set of real matrices of dimension m × n is denoted by R m×n .

• The set of symmetric matrices of dimension n × n is denoted by S n .

• A symmetric matrix A ∈ S n is a positive definite matrix , denoted by A > 0, if there exists a scalar ǫ > 0 such that x T Ax ≥ ǫx T x, for all x ∈ R n .

Similarly, a symmetric matrix A ∈ S n is a positive semidefinite matrix , denoted by A ≥ 0, if x T Ax ≥ 0, for all x ∈ R n .

• For any two symmetric matrices A, B ∈ S n , by A > B we mean that A -B is a positive definite matrix.

Similarly, by A ≥ B we mean that A -B is a positive semidefinite matrix.

• The identity matrix of dimension n × n is denoted by I n .

• We denote by Z d (x) the vector of monomials up to degree d.

• We denote by Z n,d (x) the Kronecker product I n ⊗ Z d (x).

CHAPTER 3 CONVEX OPTIMIZATION, SEMI-DEFINITE PROGRAMMING AND SUM-OF-SQUARES POLYNOMIALS

Given the functions

f i : R n → R, i ∈ {0, • • • , m} and h i : R n → R, i ∈ {1, • • • , p}, a constrained optimization problem can be stated as Minimize x∈R n : f 0 (x)
subject to :

f i (x) ≤ 0, i ∈ {1, • • • , m}, (3.1) 
h i (x) = 0, i ∈ {1, • • • , p}.
The function f 0 (x) is the cost function or the objective function. The inequalities f i (x) ≤ 0 are called inequality constraints and the functions f i (x) are called the inequality constraint functions. Similarly, h i (x) = 0 are the equality constraints and h i (x) are the equality constraint functions. The optimal value p ⋆ of the Problem (3.1) is given as

p ⋆ = inf{f 0 (x) : f i (x) ≤ 0, i = 1, • • • , m, h i (x) = 0, i = 1, • • • , p} and x ⋆ for which f 0 (x ⋆ ) = p ⋆ is the optimal point.
For a point x to be an optimal point of a differentiable function f (x), the necessary condition is that [∇ x f (x)] x=x = 0, where ∇ x denotes the gradient with respect to x. The Karush-Kuhn-Tucker (KKT) conditions generalize this necessary condition for constrained optimization problems. The KKT conditions can be stated as follows [START_REF] Karush | Minima of functions of several variables with inequalities as side constraints[END_REF][START_REF] Kuhn | Nonlinear programming[END_REF]: for the optimization Problem (3.1), with differentiable f i and g i ,

a point x ⋆ ∈ R n is optimal (f (x ⋆ ) = p ⋆ ) only if there exist scalars λ ⋆ i and ν ⋆ i , known
as Lagrange multipliers, such that 1)

f i (x ⋆ ) ≤ 0, i ∈ {1, • • • , m}, h i (x ⋆ ) = 0, i ∈ {1, • • • , p}. (3.2) 2) λ ⋆ i ≥ 0, i ∈ {1, • • • , m}. (3.3) 3) λ ⋆ i f i (x ⋆ ) = 0, i ∈ {1, • • • , m}. (3.4) 4) ∇ x f 0 (x) + m i=1 λ ⋆ i ∇ x f i (x) + p i=1 ν ⋆ i ∇ x h i (x) x=x ⋆ = 0. (3.5)
The solution to the equations yielded by the KKT conditions are known as KKT points. The KKT points are the candidate optimal points for the opimization Problem (3.1). Equations (3.2)-(3.5) can be solved numerically, although for a few cases, they can be solved analytically as well.

For a few types of optimization problems, the KKT conditions are necessary and sufficient. For example, under certain conditions, KKT conditions are necessary and sufficient for convex optimization problems. We begin by defining convex

functions. A function f : R n → R is convex if f (αx + βy) ≤ αf (x) + βf (y), for all x, y ∈ R n and all α, β ∈ R with α +β = 1, α ≥ 0, β ≥ 0. A convex optimization
problem can be stated as

Minimize x∈R n : f 0 (x)
subject to :

f i (x) ≤ 0, i ∈ {1, • • • , m}, (3.6) 
Ax = b, A ∈ R p×n , b ∈ R p ,
where the functions f i , i ∈ {0, • • • , m} are convex. Thus, a convex optimization problem has a convex cost function, convex inequality constraint functions and affine equality constraint functions.

Let Problem (3.6) be strictly feasible, i.e., there exists a point x ∈ R n such that

f i (x) < 0, i ∈ {1, • • • , m}, Ax = b. (3.7)
Then, a point x ⋆ ∈ R n is the optimal point if and only if there exist Lagrange multipliers λ ⋆ i and ν ⋆ i satisfying the KKT conditions [START_REF] Boyd | Convex optimization[END_REF]. Thus, for strictly feasible convex optimization problems, the KKT conditions are necessary and sufficient for optimality.

To solve convex optimization problems, descent algorithms may be used. For the convex optimization Problem (3.6), descent algorithms produce a sequence x (k)

satisfying f 0 (x (k) ) ≥ f 0 (x (k+1) ) ≥ f (x (k+2) ) ≥ • • •
, where each element of the sequence satisfies the constraints. Given a feasible starting point x (0) , the descent sequence is defined recursively as

x (k+1) = x (k) + t (k) ∆x (k) ,
where t (k) ≥ 0. Here ∆x (k) is defined as the search direction and the scalar t (k) is the

step length. A valid search direction ∆x (k) is one such that for x (k+1) = x (k) +t (k) ∆x (k) , f 0 (x (k+1) ) ≤ f 0 (x (k)
). For equality constrained optimization, Newton's method may be used. The Newton's method, at each iterate, calculates the valid descent direction by minimizing the quadratic approximation of the cost function subject to the equality constraints. Calculation of this minimizer is equivalent to solving the necessary KKT conditions, which for equality constrained optimization problems, is a system of linear equations. A detailed discussion on Newton's method can be found in [START_REF] Boyd | Convex optimization[END_REF].

To solve the constrained optimization Problem (3.6), the inequality constraints are incorporated into the cost function using a barrier function. Problem (3.6) can be written as

Minimize x∈R n : f 0 (x) - m i=1 1 h log(-f i (x)) subject to : Ax = b, A ∈ R p×n , b ∈ R p , (3.8) 
where the function φ(u) = -1 h log(-u), for some h > 0, is the logarithmic barrier function. Note that this approximate problem is convex due to the convexity of the logarithmic barrier functions. The Newton's method may now be applied to obtain the optimal point, denoted by x ⋆ (h), for this problem. The interesting property of

x ⋆ (h) is that f 0 (x ⋆ (h)) -p ⋆ ≤ m h ,
where p ⋆ is the optimal value of the original Problem (3.6). Thus, as h → ∞,

f (x ⋆ (h)) → p ⋆ .
This fact is exploited by the barrier method and can be summarized as:

Given a feasible starting point x (0) ∈ R n , h > 0, µ > 1 and tolerance ǫ > 0 repeat 1. Formulate Problem (3.6) as Problem (3.8).

2. Apply Newton's method for equality constrained convex optimization problems to Problem (3.8) to obtain x ⋆ (h).

3. Update: h = µh and x (0) = x ⋆ (h).

until The stopping criteria ∇f 0 (x) 2 ≤ ǫ is reached.

The stopping criteria chosen is the simplest one because ∇f 0 (x ⋆ ) = 0.

Semi-Definite Programming

We use Lyapunov functions parametrized by sum-of-squares polynomials for the analysis and control of parabolic PDEs. The search for such Lyapunov functions can be represented as Semi-Definite Programming (SDP) problems.

An SDP problem is an optimization problem of the form

Minimize x∈R n : c T x subject to : F (x) = F 0 + n i=1
x i F i ≤ 0 and (3.9)

Ax = b,
where c ∈ R n , b ∈ R k , A ∈ R k×n and symmetric matrices F i ∈ S m are given. Since the cost function is linear and the the constraints are affine, an SDP problem is a convex optimization problem. This allows SDP problems to be solved efficiently, for example, using interior point methods. A survey of the theory and applications of SDP problems can be found in [START_REF] Vandenberghe | Semidefinite programming[END_REF].

Usually, SDP problems are used to solve the feasibility problem: does there exist an x ∈ R n such that F (x) ≤ 0? The inequality F (x) ≤ 0 is linear in the search variables. Thus, the feasibility problem is known as a Linear Matrix Inequality (LMI).

Any number of given LMIs can be cast as a single LMI. For example, LMIs F (x) ≤ 0 and G(x) ≤ 0 can be rewritten as

     F (x) 0 0 G(x)      =      F 0 0 0 G 0      + n i=1 x i      F i 0 0 G i      ≤ 0.
Another example of LMIs arise in finite-dimensional control theory. The linear The search for the positive definite X can be cast as an LMI. Let

X =      x 1 x 2 x 2 x 3      . Then X = x 1 e 11 + x 2 (e 12 + e 21 ) + x 3 e 22 ,
where e ij ∈ S 2 are matrices with e(i, j) = 1 and zeros everywhere else. Thus, the conditions in Equation (3.10) can be cast as the following LMI

F (x) = ǫ      1 0 0 1      + 3 i=1 x i F i ≤ 0,
where Since SDP problems are convex, they can be solved efficiently using convex optimization algorithms. For example, interior point methods are widely used for solving SDPs [START_REF] Alizadeh | Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results[END_REF], [START_REF] Mehrotra | On the implementation of a primal-dual interior point method[END_REF], [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF].

F 1 =      -e

Sum-of-Squares Polynomials

Sum-of-Squares (SOS) is an approach to the optimization of positive polynomial variables. A typical formalism for the polynomial optimization problem is given by max

x c T x, subject to m i=1 x i f i (y) + f 0 (y) ≥ 0,
for all y ∈ R n , where the f i are real polynomial functions. The key difficulty is that the feasibility problem of determining whether a polynomial is globally positive (f (y) ≥ 0 for all y ∈ R n ) is NP-hard [START_REF] Blum | Complexity and real computation[END_REF]. This means that there are no algorithms which can determine the global positivity of polynomials in polynomial time. Thus, relaxations that are tractable for such problems are required. A particularly important such condition is that the polynomial be sum-of-squares.

Definition 3.1. A polynomial p : R n → R is Sum-of-Squares (SOS) if there exist polynomials g i : R n → R such that

p (x) = i g 2 i (x).
We use p ∈ Σ s to denote that p is SOS.

The importance of the SOS condition lies in the fact that it can be readily enforced using semidefinite programming. This fact is attributed to the following theorem.

Theorem 3.2. A polynomial p : R n → R of degree 2d is SOS if and only if there exists a Positive Semi-Definite (PSD) matrix Q such that

p(x) = Z T d (x)QZ d (x), (3.11) 
where Z d (x) is a vector of monomials up to degree d.

Proof. If: Since Q is PSD, there exists a matrix A such that Q = A ⋆ A, where A ⋆ is the conjugate transpose of A. Hence, we have

p(x) = Z T d (x)A ⋆ AZ d (x) = (AZ d (x)) ⋆ AZ d (x).
It can be easily seen that AZ d (x) = G(x) is a vector of polynomials. Thus

p(x) = G(x) ⋆ G(x) ∈ Σ s .
Only if: Since p ∈ Σ s , there exist polynomials g i : R n → R satisfying

p(x) = i g 2 i (x). Let G T (x) = [g 1 (x), • • • , g i (x)]. Then, p(x) = G T (x)G(x). Now, g i (x) = a T i Z d (x)
, where a i is the vector containing the coefficients of the polynomial g i (x). Thus

G(x) =           a T 1 . . . a T i           Z d (x) = A T Z d (x).
Hence

p(x) = G T (x)G(x) = Z T d (x)AA T Z d (x) = Z T d (x)QZ d (x).
The observation that Q = AA T , and hence is a PSD matrix, completes the proof.

A proof similar to the one we present can be found in [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF].

As a simple example consider the polynomial p(x) = a 2 + b 2 x 2 + 2abx, for arbitrary scalars a and b. Then, p ∈ Σ s since p(x) = (a + bx) 2 . Additionally, for

Z T 1 (x) = [1 x], we have p(x) = Z T 1 (x)      a 2 ab ab b 2      Z 1 (x) = Z T 1 (x)QZ 1 (x),
where Q is PSD for any a, b ∈ R.

Theorem 3.2 establishes the link between SOS polynomials and PSD matrices.

In this way optimization of positive polynomials can be converted to SDP. The SDP approach to polynomial positivity was described in the thesis work of [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF] and also in [START_REF] Powers | An algorithm for sums of squares of real polynomials[END_REF]. See also [START_REF] Chesi | On convexification of some minimum distance problems[END_REF] and [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] for contemporaneous work. MATLAB toolboxes for manipulation of SOS variables have been developed and can be found in [START_REF] Prajna | Introducing SOSTOOLS: A general purpose sum of squares programming solver[END_REF] and [START_REF] Henrion | Gloptipoly: Global optimization over polynomials with MATLAB and SeDuMi[END_REF].

Note that the condition that a polynomial is globally positive if it is SOS is conservative. This is because not all globally positive polynomials are SOS. A detailed discussion on this topic can be found in [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF]. A well known example of a positive polynomial which is not SOS is the Motzkin polynomial

x 4 1 x 2 2 + x 2 1 x 4 2 + x 6 3 -3x 2 1 x 2 2 x 2 3 .
Proof of the Motzkin polynomial's global positivity can be found in literature. It was demonstrated in [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF] that there exists no PSD matrix satisfying Equation (3.11) for the Motzkin polynomial.

SOS polynomials can be used for the stability analysis of non-linear systems of the type

ẋ(t) = f (x(t)), (3.12) 
where f : R n → R n is a polynomial satisfying f (0) = 0. The condition for the global asymptotic stability of x = 0 is that there exist a Lyapunov function V : R n → R, for some ǫ > 0, satisfying

V (x(t)) -ǫx(t) T x(t) ≥ 0, ∇V (x(t)) T f (x) -ǫx(t) T x(t) ≤ 0.
As previously stated, showing the global positivity of polynomials is intractable. However, we can use SOS polynomials to relax the conditions to [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF]:

V (x(t)) -ǫx(t) T x(t) ∈ Σ s -∇V (x(t)) T f (x) -ǫx(t) T x(t) ∈ Σ s ,
for some ǫ > 0. This membership can be now tested in polynomial time using, for example, SOSTOOLS [START_REF] Prajna | Introducing SOSTOOLS: A general purpose sum of squares programming solver[END_REF].

Postivstellensatz.

A positivstellensatz is a theorem from real algebraic geometry which provides a means to verify polynomial positivity over semialgebraic sets.

Definition 3.3. A semialgebraic set is a set of the form

S = {x ∈ R n : g i (x) ≥ 0, i ∈ {1, • • • , m}, h i (x) = 0, i ∈ {1, • • • , p}},
where each g i and h i is a real valued polynomial.

The closed unit disc in R 2 is a straightforward example of a semialgebraic set defined as

S = {x ∈ R 2 : -x 2 1 -x 2 2 + 1 ≥ 0}.
We are asking the following feasibility question: Given a semialgebraic set S, is there a polynomial f (x) such that f (x) ≥ 0, for all x ∈ S? Of course, if the polynomials f and g i are convex, and h i are affine, then we have a convex feasibility problem.

Theorem 3.4 (Stengle's positivstellensatz, [START_REF] Stengle | A Nullstellensatz and a Positivstellensatz in semialgebraic geometry[END_REF]). Given the polynomials

g i (x), i ∈ {1, • • • , m}, let S = {x ∈ R n : g i (x) ≥ 0, i ∈ {1, • • • , m}}.
Then, S = ∅ if and only if there exist

s i , s ij , s ijk , • • • , s ijk•••m ∈ Σ s such that -1 =s 0 (x) + i s i (x)g i (x) + i =j s ij (x)g i (x)g j (x) + i =j =k s ijk (x)g i (x)g j (x)g k (x) + • • • + s ijk•••m (x)g i (x)g j (x)g k (x) • • • g m (x).
The following corollary expresses the conditions of polynomial positivity on a semialgebraic set.

Corollary 3.5. Given the polynomials f (x) and

g i (x), i ∈ {1, • • • , m}, f (x) > 0, for all x ∈ {x ∈ R n : g i (x) ≥ 0}, if and only if there exist p 0 , s i , p ij , s ij , p ijk , s ijk , • • • , p ijk•••m , s ijk•••m ∈ Σ s such that f (x) p 0 + i =j p ij (x)g i (x)g j (x) + i =j =k p ijk (x)g i (x)g j (x)g k (x) + • • • + p ijk•••m (x)g i (x)g j (x)g k (x) • • • g m (x) = 1 + s 0 (x) + i s i (x)g i (x) + i =j s ij (x)g i (x)g j (x) + i =j =k s ijk (x)g i (x)g j (x)g k (x) + • • • + s ijk•••m (x)g i (x)g j (x)g k (x) • • • g m (x).
Proof. The condition that f (x) > 0, for all x ∈ {x ∈ R n : g i (x) ≥ 0}, is equivalent to the emptiness of the set

S = {x ∈ R n : -f (x) ≥ 0, g i (x) ≥ 0, i ∈ {1, • • • , m}}.
Thus, the result is obtained by applying Theorem 3.4 to the semialgebraic set S.

This corollary can be used to test polynomial positivity on a semialgebraic set. However, although the search of the SOS multipliers can be cast as an LMI, the equality constraint is no longer affine in the search variables f , s and p. In fact, it is bilinear. Hence, this check cannot be performed using semidefinite programming.

When the semialgebraic sets are compact, the following positivstellensatz conditions hold.

Theorem 3.6 (Schmudgen's positivstellensatz, [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF]). Given the polynomials f (x)

and g i (x), i ∈ {1, • • • , m}, let S = {x ∈ R n : g i (x) ≥ 0, i ∈ {1, • • • , m}} be compact. If f (x) > 0, for all x ∈ S, then there exist s i , s ij , s ijk , • • • , s ijk•••m ∈ Σ s such that f (x) =1 + s 0 (x) + i s i (x)g i (x) + i =j s ij (x)g i (x)g j (x) + i =j =k s ijk (x)g i (x)g j (x)g k (x) + • • • + s ijk•••m (x)g i (x)g j (x)g k (x) • • • g m (x).
Now, the equality constraint is affine in f and s. Thus, Schmudgen's positivstellensatz can be tested using semidefinite programming.

Definition 3.7. Given the polynomials g i (x), i ∈ {1, • • • , m}, the set

M(g i ) = {p 0 (x) + m i=1 p i (x)g i (x), p 0 , p i ∈ Σ s }
is called the quadratic module generated by g i .

Theorem 3.8 (Putinar's positivstellensatz, [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]). Given the polynomials

g i (x), i ∈ {1, • • • , m}, suppose there exists a polynomial h ∈ M(g i ) such that {x ∈ R n : h(x) ≥ 0} (3.13)
is a compact set. Then, if f (x) ≥ 0, for all x ∈ S, where

S = {x ∈ R n : g i (x) ≥ 0, i ∈ {1, • • • , m}}, there exist s 0 , s i ∈ Σ s such that f (x) = s 0 (x) + i s i (x)g i (x).
Equivalent conditions, which are also semidefinite programming verifiable, for the one in Equation (3.13) can be found in [START_REF] Laurent | Sums of squares, moment matrices and optimization over polynomials[END_REF]. Similar to Theorem 3.6, the conditions of Theorem 3.8 can be checked using semidefinite programming. In terms of computational complexity, it can be seen that Putinar's positivstellensatz requires a much smaller number of SOS multipliers compared to Schmudgen's and Stengle's positivstellensatz.

A summary of positivstellensatz results can be found in [START_REF] Scheiderer | Positivity and sums of squares: A guide to recent results[END_REF].

We can use positivstellensatz results for the local stability analysis of the system given by

ẋ(t) = f (x(t)),
with polynomial f , on the semialgebraic set given by

S = {x ∈ R n : g i (x) ≥ 0, i ∈ {1, • • • , m}}.
We can now search for a polynomial Lyapunov function V (x(t)), scalar ǫ > 0 and SOS polynomials s 0 , p 0 , s i and p i such that

V (x(t)) -ǫx(t) T x(t) = s 0 (x) + i s i (x)g i (x), -∇V (x(t)) T f (x) -ǫx(t) T x(t) = p 0 (x) + i p i (x)g i (x).
CHAPTER 4

POLOIDAL MAGNETIC FLUX MODEL

The critical physical quantity in a tokamak is the magnetic field which is a combination of the toroidal magnetic field B T and the poloidal magnetic field B P . The toroidal magnetic field B T is controlled by powerful external current carrying coils.

Whereas, the poloidal magnetic field is generated by the plasma current I p . Consequently, the polidal magnetic field is an order of magnitude smaller than the toroidal magnetic field [START_REF] Wesson | Tokamaks[END_REF]. The coupling with the plasma current makes the poloidal magnetic field vulnerable to changes in the plasma. Additionally, regulating a suitable plasma current profile by regulating the poloidal magnetic flux has been demonstrated as an important condition for improved plasma confinement and steady state operation [START_REF] Murakami | Progress toward fully noninductive, high beta conditions in DIII-D[END_REF].

Let ψ(R, Z) denote the flux of the magnetic field passing through a disc centered on the toroidal axis at a height Z with the surface area πR 2 as depicted in Figure 4.1. The simplified dynamics of the poloidal flux ψ(ρ, t) are given by [START_REF] Blum | Numerical Simulation and Optimal Control in Plasma Physics[END_REF]:

ψ t (ρ, t) = η C 2 µ 0 C 3 ψ ρρ + η ρ µ 0 C 2 3 ∂ ∂ρ C 2 C 3 ρ ψ ρ + η V ρ B φ 0 F C 3 j ni , (4.1) 
where the spatial variable ρ := φ πB φ 0 1 2 (φ being the toroidal magnetic flux and B φ 0 the toroidal magnetic flux at the center of the vacuum vessel of the tokamak) is the radius indexing the magnetic surfaces, η is the parallel resistivity of the plasma, j ni is the non-inductively deposited current density, µ 0 is the permeability of free space, F is the diamagnetic function, C 2 and C 3 are geometric coefficients, V ρ is the spatial derivative of the plasma volume and B φ 0 is the toroidal magnetic field at the geometric center of the plasma. The various variable definitions are provided in Table 4.1.

Neglecting the diamagnetic effect applying cylindrical approximation of the plasma geometry (ρ << R 0 , where R 0 is the major plasma radius) the coefficients in Equation (4.1) simplify as follows:

F ≈ R 0 B φ 0 , C 2 = C 3 = 4π 2 ρ R 0 , V ρ = 4π 2 ρR 0 .
Defining a normalized spatial variable x = ρ/a, where a is the radius of the last closed magnetic surface and is assumed to be constant, the simplified model is obtained as in [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF]:

ψ t (x, t) = η (x, t) µ 0 a 2 ψ xx + 1 x ψ x + η (x, t)R 0 j ni (x, t) (4.2) 
with boundary conditions

ψ x (0, t) = 0 and ψ x (1, t) = - R 0 µ 0 I p (t) 2π . (4.3) 
The diffusion coefficient in Equation (4.2) is the plasma parallel resistivity η . The plasma resistivity introduces a coupling between the poloidal magnetic flux ψ, the electron temperature profile T e and the electron density profile n e as follows.

The expression for the resistivity is computed using the results in [START_REF] Hirshman | Neoclassical conductivity of a tokamak plasma[END_REF] by using the expressions for the electron thermal speed α e and the electron collision time τ e , given in [START_REF] Wesson | Tokamaks[END_REF], as √ n e ). Using these two expressions, the parallel conductivity can be calculated as [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF]:

α e (x,
σ (x, t) = σ 0 Λ E 1 - f t 1 + ξν 1 - C R f t 1 + ξν ,
where

σ 0 (x, t) = n e e 2 τ e m e , Λ E ( Z) = 3.40 Z 1.13 + Z 2.67 + Z , ν(x, t) = R 0 B φ 0 a 2 x (xǫ) 3/2 α e τ e ψ x , f t (x) = 1 -(1 -xǫ) 2 (1 -(xǫ) 2 ) -1/2 (1 + 1.46 √ xǫ) -1 , ξ( Z) = 0.58 + 0.20 Z, C R ( Z) 0.56 Z 3 - Z 3 + Z ,
and Z is the effective value of the plasma charge. With the expression for the parallel conductivity σ , the expression for the parallel resistivity η and be calculated as

η (x, t) = 1 σ (x, t) .
The plasma current I p is generated by the electromagnetic induction by the central ohmic coil. In addition, plasma current is also generated by non-inductive sources. The current generated by non-inductive means is known as the current drive (j ni in Equation (4.2)). The non-inductive current has two main components:

the internally generated bootstrap current density j bs and the external non-inductive current density j eni . We will discuss these current drive sources briefly.

The magnetic field strength in a tokamak, due to the vessel being toroidal, is proportional to 1/R as given by Ampere's law. Thus, the magnetic field strength is stronger on the inside of the tokamak vessel as compared to the outside. Since the ions and electrons follow the helical magnetic field lines around the toroid, they transition from the weak magneic field side to the strong side and vice-versa. In the absence of enough particle velocity parallel to the magnetic lines, a particle undergoes a magnetic mirror reflection [START_REF] Wesson | Tokamaks[END_REF]. Such particles remain trapped in the weak field side of the tokamak and thus, instead of going around in the poloidal plane, are forced to orbit the weaker magnetic side of the poloidal plane in what is known as banana orbits. The trapping of a few particles leads to collision between the trapped and free particles owing to their different orbits. These collisions lead to a momentum transfer between the trapped and free particles generating a current density which is known as the bootstrap current density [START_REF] Freidberg | Plasma Physics and Fusion Energy[END_REF], [START_REF] Krivit | Nuclear energy encyclopedia: science, technology, and applications[END_REF].

The model for the bootstrap current density is given in [START_REF] Hirshman | Finite-aspect-ratio effects on the bootstrap current in tokamaks[END_REF] as

j bs (x, t) = p e R 0 ψ x A 1 1 p e ∂p e ∂x + p i p e 1 p i ∂p i ∂x -α i 1 T i ∂T i ∂x -A 2 1 T e ∂T e ∂x ,
where p e and p i are the electron and ion pressure profiles respectively, T e and T i are the electron and ion temperature profiles respectively, α i is the ion thermal speed and the A 1 and A 2 are functions of the ratio of trapped to free particles. We can use the expressions p e = en e T e and p i = en i T i to express the bootstrap current density in terms of temperature and density profiles as

j bs (x, t) = eR 0 ψ x (A 1 -A 2 )n e ∂T e ∂x + A 1 T e ∂n e ∂x + A 1 (1 -α i )n i ∂T i ∂x + A 1 T i ∂n i ∂x . (4.4) 
The fraction of the total current due to bootstrap current can also be estimated using the empirical expression derived in [START_REF] Hoang | The bootstrap fraction in TFTR[END_REF].

The externally generated current density j eni has two components: the Lower Hybrid Current Density (LHCD) denoted by j lh , and the Electron Cyclotron Current Density (ECCD) denoted by j ec . The actuators for these current density deposits are Radio Frequency (RF) antennas. The ECCD actuator is tuned to the electron cyclotron resonant frequency and the LHCD actuator is tuned to a frequency which lies between the electron and ion cyclotron resonant frequencies [START_REF] Wesson | Tokamaks[END_REF]. We only consider the LHCD current density deposit j lh , although, the work presented can easily be extended to include ECCD as well.

The LHCD input j lh (x, t) is a function of the control actuator parameters N , the hybrid wave parallel refractive index, and P lh , the lower hybrid antenna power.

The development of an expression for the LHCD input is particularly difficult since the LHCD deposit depends on the operating conditions [START_REF] Imbeaux | Etude de la propagation et de l'absorption de l'onde hybride dans un plasma de tokamak par tomographie X haute énergie[END_REF]. One way of estimating the LHCD deposit profile is to use X-ray measurements of electrons to develop an empirical expression [START_REF] Barana | Real-time determination of suprathermal electrons local emission profile from hard X-ray measurements in Tore Supra[END_REF]. Using the X-ray measurements from the Tore Supra tokamak, an empirical model of the LHCD current density deposition was developed in [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF].

This model uses a Gaussian deposition pattern with control authority over certain scaling parameters. The width w(t) and center µ(t) of the deposit can be estimated as [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF]: The total current deposit can be established using the empirical laws presented in [START_REF] Goniche | Lower hybrid current drive efficiency on Tore Supra and JET[END_REF] as

w(t) =0.53B -0.
I LH (t) = η LH P LH nR 0 ,
where η LH (t) = 1.18D 0.55 n I 0.43 p Z-0.24 and D n (t) ≈ 2.03 -0.63N . The expression for j LH can now be given as

j LH (x, t) = v LH (t)e -(µ(t)-x) 2 /2σ LH (t) ,
where

v LH (t) = I LH (t) 2πa 2 1 0 xe -(µ(t)-x) 2 /2σ LH (t) dx -1 and σ LH (t) = (µ(t) -w(t)) 2 2 log 2 .
The safety factor profile, or the q-profile, is the magnetic field line pitch [START_REF] Wesson | Tokamaks[END_REF]. The q-profile is a common heuristic for setting operating conditions that avoid Magneto-Hydro-Dynamic (MHD) instabilities [START_REF] Moreau | A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET[END_REF]. The q-profile is defined as the ratio of the toroidal and poloidal magnetic flux gradients. The safety factor profile is defined in terms of the gradient of the poloidal magnetic flux ψ x as [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF]:

q(x, t) = φ x ψ x = - B φ 0 a 2 x ψ x , (4.5) 
where B φ 0 is the toroidal magnetic flux at the plasma center. Thus, to control the q-factor profile, gradient of the poloidal magnetic flux ψ x (x, t) may be controlled. The model for the evolution of Z = ψ x can be obtained by differentiating Equation (4.2)

in x to get ∂Z ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x, t) x ∂ ∂x (xZ(x, t)) + R 0 ∂ ∂x η (x, t)j ni (x, t) (4.6) 
with boundary conditions

Z(0, t) = 0 and Z(1, t) = -R 0 µ 0 I p (t)/2π. (4.7) 
Note that the control of Z = ψ x also facilitates in the control of the bootstrap current density since, from Equation (4.4), j bs ∝ 1/ψ x .

In Chapters 8 and 9 we will devise methodologies to control the gradient of the poloidal magnetic flux. We control ψ x to regulate the safety factor profile q and maximize the bootstrap current density j bs . 

STABILITY ANALYSIS OF PARABOLIC PDES

In this chapter we analyze the stability of a particular class of parabolic PDEs.

The goal is to develop a methodology to check the stability and construct Lyapunov functions which act as certificates of stability. We accomplish these tasks by constructing Lyapunov functions using positive operators parametrized by sumof-squares-polynomials.

We consider the following type of parabolic PDEs

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), x ∈ [0, 1], t ≥ 0, (5.1) 
with boundary conditions of the form

ν 1 w(0, t) + ν 2 w x (0, t) = 0 and ρ 1 w(1, t) + ρ 2 w x (1, t) = 0. ( 5.2) 
The functions a, b and c are polynomial functions in x. Moreover, the function a

satisfies a(x) ≥ α > 0, for x ∈ [0, 1]. (5.3)
The scalars ν i , ρ j ∈ R, i, j ∈ {1, 2}, can be chosen so that (5.2) represents Dirichlet, Neumann or Robin boundary conditions. Additionally, these scalars satisfy

|ν 1 | + |ν 2 | > 0 and |ρ 1 | + |ρ 2 | > 0. (5.4)
For PDEs in the form of Equations (5.1)-(5.2), we define the first-order differential form

ẇ(t) = Aw(t), w ∈ D 0 (5.5)
where the operator A : H 2 (0, 1) → L 2 (0, 1) is defined as

(Ay) (x) = a(x)y xx (x) + b(x)y x (x) + c(x)y(x), (5.6) 
and

D 0 = {y ∈ H 2 (0, 1) : ν 1 y(0) + ν 2 y x (0) = 0 and ρ 1 y(1) + ρ 2 y x (1) = 0}. (5.7)
For later use, we present the following parametrization of all possible boundary conditions.

Definition 5.1. Given scalars ν 1 , ν 2 , ρ 1 and ρ 2 , we define

{n 1 , n 2 , n 3 } =                  {-ν 1 ν 2 , 0, 1} if ν 1 , ν 2 = 0 {0, 1, 0} if ν 1 = 0, ν 2 = 0 {0, 0, 1} if ν 1 = 0, ν 2 = 0 and {n 4 , n 5 , n 6 } =                  {-ρ 1 ρ 2 , 0, 1} if ρ 1 , ρ 2 = 0 {0, 1, 0} if ρ 1 = 0, ρ 2 = 0 {0, 0, 1} if ρ 1 = 0, ρ 2 = 0 .
With this definition, the boundary conditions for any w ∈ D 0 can be represented as

w x (0) = n 1 w(0) + n 2 w x (0), w(0) = n 3 w(0), w x (1) = n 4 w(1) + n 5 w x (1), w(1) = n 6 w(1).

Uniqueness and Existence of Solutions

We will use semigroup theory presented in Subsection A.1.1 in Appendix A to show that a classical solution of the system represented by Equation (5.5) exists.

Thus, we have to show that the pair (A, D 0 ) generates a C 0 -semigroup. The idea is to express the operator A as the negative of a Sturm-Liouville operator and then use its spectral properties to show that (A, D 0 ) generates a C 0 -semigroup.

Definition 5.2. [77, Chapter 8] An operator S :

D 0 → L 2 (0, 1) is called a Sturm- Liouville operator if (Sy) (x) = - d dx p(x) dy(x) dx + q(x)y(x), y ∈ D 0 , (5.8) 
where p, dp/dx and q are real valued and continuous functions on [0, 1] and p(x) ≥

p 0 > 0, for all x ∈ [0, 1].
Additionally, for a given σ(x) > 0, an equation of the form

- d dx p(x) dy(x) dx + q(x)y(x) = λσ(x)y(x), (5.9) 
where λ ∈ R, is called a Sturm-Liouville equation. If there exist scalars λ n and functions φ n such that

- d dx p(x) dφ n (x) dx + q(x)φ n (x) = λ n σ(x)φ n , n ∈ N, (5.10) 
then, the scalars λ n are called the eigenvalues of S, and the functions φ n are called the eigenfunctions of S.

The following lemma summarizes some of the spectral properties of a Sturm-Liouville operator.

Lemma 5.3. [START_REF] Delattre | Sturm-Liouville systems are Rieszspectral systems[END_REF] Let S : D 0 → L 2 (0, 1) be a Sturm-Liouville operator. Then, the following properties hold:

1. S is a closed operator1 .

2. The eigenvalues {λ n , n ≥ 0} of S exist, are real, countable and simple.

3. The set of normalized eigenfunctions of S, {φ n , n ≥ 0}, is an orthonormal basis of L 2 (0, 1).

4. The closure of the set {λ n , n ≥ 0} is totally disconnected, that is, for two points

ω 0 , ω 1 ∈ {λ n , n ≥ 0}, [ω 0 , ω 1 ] / ∈ {λ n , n ≥ 0}.
5. The eigenvalues λ n satisfy Proof. For the operator A given in (5.6), if we choose

λ 0 < λ 1 < • • • < λ n < ∞ and λ n → ∞ as n → ∞.
p(x) = e x 0 b(ξ) a(ξ) dξ , q(x) = -c(x) p(x) a(x) , σ(x) = p(x) a(x) , then -Ay = 1 σ(x) Sy, y ∈ D 0 ,
where S is the Sturm-Liouville operator. Therefore, using Lemma 5.3 [START_REF] Serway | Physics for scientists and engineers[END_REF] and [45, Theorem 2.3.5(c)] we get that the pair (A, D 0 ) is the generator of a C 0 -semigroup S(t) on L 2 (0, 1).

From Theorem A.3 we obtain that for any w 0 ∈ D 0 , Equation (5.5), and thus (5.1)-(5.2), has a classical solution given by w(t, x) = (S(t)w 0 ) (x).

(5.11)

From Corollary A.4, for any w 0 ∈ L 2 (0, 1), (5.11) is the unique weak solution of (5.1)-(5.2).

Positive Operators and Semi-Separable Kernels

As stated earlier, we establish the stability of the systems under consideration by constructing Lyapunov functions parametrized by positive operators. In particular, we construct positive operators on L 2 (0, 1) which are parametrized by Sum-of-Squares (SOS) polynomials. Since the search for SOS polynomials can be cast as a semidefinite programming as explained in Chapter 3, this parametrization allows us to construct the Lyapunov functions algorithmically.

We consider operators of the form

(Py)(x) = M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ+ 1 x K 2 (x, ξ)y(ξ)dξ, (5.12) 
where

M(x) : [0, 1] → R and K 1 (x, ξ), K 2 (x, ξ) : [0, 1] × [0, 1] → R are polynomials
and y ∈ L 2 (0, 1). In [START_REF] Peet | Using polynomial semi-separable kernels to construct infinite-dimensional Lyapunov functions[END_REF], the necessary and sufficient conditions for positivity of multiplier and integral operators of similar form using pointwise constraints on the functions M, K 1 and K 2 are given. Recently, in [START_REF] Peet | LMI parametrization of Lyapunov functions for infinite-dimensional systems: A toolbox[END_REF], these conditions was sharpened -See Theorem 5.5.

Theorem 5.5. Given d 1 , d 2 ∈ N and ǫ ∈ R, ǫ > 0, let Z 1 (x) = Z d 1 (x) and Z 2 (x, ξ) = Z d 2 (x, ξ)
as defined in Section 2.2. Suppose there exists a matrix U such that

U =           U 11 -ǫI 0 U 12 U 13 ⋆ U 22 U 23 ⋆ ⋆ U 33           ≥ 0,
where I 0 is a matrix of zeros of appropriate dimensions except at the 1-by-1 element which has a value of 1, and U ij are a partition of U. Let M, K 1 and K 2 be polynomials such that, for

(x, ξ) ∈ [0, 1] × [0, 1], M(x) ≥ Z 1 (x) T U 11 Z 1 (x), K 1 (x, ξ) =Z 1 (x) T U 12 Z 2 (x, ξ) + Z 2 (ξ, x)U 31 Z 1 (ξ) + ξ 0 Z 2 (η, x) T U 33 Z 2 (η, ξ)dη + x ξ Z 2 (η, x) T U 32 Z 2 (η, ξ)dη + 1 x Z 2 (η, x) T U 22 Z 2 (η, ξ)dη,
and

K 2 (x, ξ) =K 1 (ξ, x).
Then the operator P, defined by Equation (5.12) is self-adjoint and satisfies

Pw, w ≥ ǫ w 2 , for all w ∈ L 2 (0, 1).

For completeness, we have provided the proof in Appendix C. A similar proof can be found in [START_REF] Peet | LMI parametrization of Lyapunov functions for infinite-dimensional systems: A toolbox[END_REF].

For convenience, we define the set of multipliers and kernels which satisfy Theorem 5.5.

Ξ {d 1 ,d 2 ,ǫ} = {M, K 1 , K 2 : M, K 1 , K 2 satisfy the conditions of Theorem 5.5 for d 1 , d 2 , ǫ.}
Note that in Theorem 5.5 we have established only the lower bound for the positive operators. However, we would also require positive operators with known upper bounds. For this purpose, we present the following corollary.

Corollary 5.6.

Given d 1 , d 2 ∈ N and ǫ 1 , ǫ 2 ∈ R such that 0 < ǫ 1 < ǫ 2 , let Z 1 (x) = Z d 1 (x) and Z 2 (x, ξ) = Z d 2 (x, ξ)
as defined in Section 2.2. Suppose there exists a matrix U such that

U =           U 11 -ǫ 1 I 0 U 12 U 13 ⋆ U 22 U 23 ⋆ ⋆ U 33           ≥ 0,
where I 0 is a matrix of zeros of appropriate dimensions except at the 1-by-1 element which has a value of 1, and U ij are a partition of U. Additionally,

          U 11 U 12 U 13 ⋆ U 22 U 23 ⋆ ⋆ U 33           ≤ ǫ 2 θ 1 + θ 2 I,
where

θ 1 = sup x∈[0,1] Z 1 (x) T Z 1 (x), θ 2 = sup (x,ξ)∈[0,1]×[0,1] ξ 0 Z 2 (η, x) T Z 2 (η, ξ)dη + 1 x Z 2 (η, x) T Z 2 (η, ξ)dη . Let M, K 1 and K 2 be polynomials such that, for (x, ξ) ∈ [0, 1] × [0, 1], M(x) =Z 1 (x) T U 11 Z 1 (x), K 1 (x, ξ) =Z 1 (x) T U 12 Z 2 (x, ξ) + Z 2 (ξ, x)U 31 Z 1 (ξ) + ξ 0 Z 2 (η, x) T U 33 Z 2 (η, ξ)dη + x ξ Z 2 (η, x) T U 32 Z 2 (η, ξ)dη + 1 x Z 2 (η, x) T U 22 Z 2 (η, ξ)dη, K 2 (x, ξ) =K 1 (ξ, x).
Then the operator P, defined by Equation (5.12) is self-adjoint and satisfies

ǫ 1 y 2 ≤ Py, y ≤ ǫ 2 y 2 , for all y ∈ L 2 (0, 1).
Proof. By substituting ǫ 1 in place of ǫ of Theorem 5.5, it is readily proven that ǫ 1 y 2 ≤ Py, y , for all y ∈ L 2 (0, 1).

(5.13)

From the corollary statement,

          U 11 U 12 U 13 ⋆ U 22 U 23 ⋆ ⋆ U 33           ≤ ǫ 2 θ 1 + θ 2 I. Thus,           ǫ 2 θ 1 +θ 2 I -U 11 -U 12 -U 13 ⋆ ǫ 2 θ 1 +θ 2 I -U 22 -U 23 ⋆ ⋆ ǫ 2 θ 1 +θ 2 I -U 33           ≥ 0,
for identity matrices of appropriate dimensions. Thus, using the definitions of M, K 1 and K 2 and the analysis presented in Theorem 5.5, it can be shown that for any

y ∈ L 2 (0, 1), 1 0 y(x) M (x) -M(x) + x 0 K1 (x, ξ) -K 1 (x, ξ) y(ξ)dξ + 1 x K2 (x, ξ) -K 2 (x, ξ) y(ξ)dξ dx ≥ 0, where M (x) = ǫ 2 θ 1 + θ 2 Z(x) T Z(x), K1 (x, ξ) = ǫ 2 θ 1 + θ 2 ξ 0 Z 2 (η, x) T Z 2 (η, ξ)dη + 1 x Z 2 (η, x) T Z 2 (η, ξ)dη , K2 (x, ξ) = ǫ 2 θ 1 + θ 2 x 0 Z 2 (η, x) T Z 2 (η, ξ)dη + 1 ξ Z 2 (η, x) T Z 2 (η, ξ)dη .
Thus,

1 0 y(x) M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ dx ≤ y(x) M (x)y(x) + x 0 K1 (x, ξ)y(ξ)dξ + 1 x K2 (x, ξ)y(ξ)dξ dx. Therefore, y, Py ≤ 1 0 M(x)y(x) 2 dx + 1 0 x 0 y(x) K1 (x, ξ)y(ξ)dξdx + 1 0 x 0 y(x) K2 (x, ξ)y(ξ)dξdx ≤ 1 0 M(x)y(x) 2 dx + 1 0 x 0 |y(x)|| K1 (x, ξ)y(ξ)|dξdx + 1 0 x 0 |y(x)|| K2 (x, ξ)||y(ξ)|dξdx. Since K1 (x, ξ) = K2 (ξ, x), K1 and K2 have the same supremum over (x, ξ) ∈ [0, 1] × [0, 1]
. Thus, using the previous equation, we obtain

y, Py ≤ 1 0 M (x)y(x) 2 dx + 1 0 x 0 |y(x)|| K1 (x, ξ)y(ξ)|dξdx + 1 0 x 0 |y(x)|| K2 (x, ξ)||y(ξ)|dξdx ≤ sup x∈[0,1] M (x) 1 0 y(x) 2 dx + sup (x,ξ)∈[0,1]×[0,1] | K1 (x, ξ)| 1 0 |y(x)|dx 1 0 |y(ξ)|dξ.
Using the definitions of θ 1 and θ 2 , we obtain

y, Py ≤ ǫ 2 θ 1 θ 1 + θ 2 1 0 y(x) 2 dx + ǫ 2 θ 2 θ 1 + θ 2 1 0 |y(x)|dx 1 0 |y(ξ)|dξ.
Using Proposition B.8 in [START_REF] Gu | Stability of time-delay systems[END_REF], we obtain

y, Py ≤ ǫ 2 θ 1 θ 1 + θ 2 1 0 y(x) 2 dx + ǫ 2 θ 2 θ 1 + θ 2 1 0 |y(x)|dx 1 0 |y(ξ)|dξ ≤ ǫ 2 θ 1 θ 1 + θ 2 1 0 y(x) 2 dx + ǫ 2 θ 2 θ 1 + θ 2 1 0 y(x) 2 dx =ǫ 2 y 2 .
Thus, using Equation (5.13), we conclude that ǫ 1 y 2 ≤ Py, y ≤ ǫ 2 y 2 , for all y ∈ L 2 (0, 1).

For convenience, we define the set of multipliers and kernels which satisfy Corollary 5.6.

Ω {d 1 ,d 2 ,ǫ 1 ,ǫ 2 } = {M, K 1 , K 2 : M, K 1 , K 2 satisfy the conditions of Corollary 5.6 for d 1 , d 2 , ǫ 1 , ǫ 2 .}

Exponential Stability Analysis

In this section we consider the exponential stability of the system governed by Equations (5.1)-(5.2). The main result depends primarily on the following upper bound -the proof of which can be found in Lemma B.3 in Appendix B.

Aw, Pw + w, PAw ≤ w, Qw + w x (1)

1 0 Q 3 (x)w(x)dx + w x (0) 1 0 Q 4 (x)w(x)dx + w(1) Q 5 w(1) + Q 6 w x (1) + 1 0 Q 7 (x)w(x)dx + w(0) Q 8 w(0) + Q 9 w x (0) + 1 0 Q 10 (x)w(x)dx ,
for any w ∈ D 0 , where we define the operator Q as (5.14) where

(Qy) (x) = Q 0 (x)y(x) + x 0 Q 1 (x, ξ)y(ξ)dξ + 1 x Q 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1),
{Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 } = M(M, K 1 , K 2 )
and the linear operator M is defined as follows.

Definition 5.7. We say

{Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 } = M(M, K 1 , K 2 ) if the following hold Q 0 (x) = ∂ ∂x ∂ ∂x (a(x)M(x)) -b(x)M(x) + 2M(x)c(x) - αǫπ 2 2 + 2 ∂ ∂x [a(x) (K 1 (x, ξ) -K 2 (x, ξ))] ξ=x , Q 1 (x, ξ) = ∂ ∂x ∂ ∂x [a(x)K 1 (x, ξ)] -b(x)K 1 (x, ξ) + c(x)K 1 (x, ξ) + ∂ ∂ξ ∂ ∂ξ [a(ξ)K 1 (x, ξ)] -b(ξ)K 1 (x, ξ) + c(ξ)K 1 (x, ξ), Q 2 (x, ξ) =Q 1 (ξ, x), Q 3 (x) =2n 5 a(1)K 1 (1, x), Q 4 (x) = -2n 2 a(0)K 2 (0, x), Q 5 =2n 6 n 4 a(1)M(1) -n 2 6 [a x (1)M(1) + a(1)M x (1) -b(1)M(1)] , Q 6 =2n 6 n 5 a(1)M(1), Q 7 (x) =K 1 (1, x) [2n 4 a(1) + 2n 6 b(1)] -2n 6 [a x (1)K 1 (1, x) + a(1)K 1,x (1, x)] , Q 8 = -2n 3 n 1 a(0)M(0) + n 2 3 a x (0)M(0) + a(0)M x (0) -b(0)M(0) + αǫπ 2 2 , Q 9 = -2n 3 n 2 a(0)M(0), Q 10 (x) = -K 2 (0, x) [2n 1 a(0) + 2n 3 b(0)] + 2n 3 [a x (0)K 2 (0, x) + a(0)K 2,x (0, x)] ,
where

K 1,x (1, x) = [K 1,x (x, ξ)| x=1 ] ξ=x , K 2,x (0, x) = [K 2,x (x, ξ)| x=0 ] ξ=x and ǫ > 0 and n i , i ∈ {1, • • • , 6}, are scalars.
We now present the theorem for exponential stability analysis.

Theorem 5.8. Suppose that there exist scalars ǫ, δ > 0 and {M,

K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ such that {-Q 0 -2δM, -Q 1 -2δK 1 , -Q 2 -2δK 2 } ∈ Ξ d 1 ,d 2 ,0 , Q 3 = Q 4 = Q 6 = Q 7 = Q 9 = Q 10 = 0, Q 5 ≤ 0, Q 8 ≤ 0, for all n j , j ∈ {1, • • • , 6},
where n j are given by Definition 5.1 and

{Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 } = M(M, K 1 , K 2 ).
Then, for any initial condition w 0 ∈ D 0 , there exists a scalar M ≥ 0 such that the classical solution w(x, t) of Equations (5.1)-(5.2) satisfies w(•, t) ≤ e -δt M, t > 0.

For w 0 ∈ L 2 (0, 1), the same result holds for the weak solution.

Proof. Consider the following Lyapunov function

V (w(•, t)) = w(•, t), Pw(•, t) , where (Py) (x) = M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1).
Taking the derivative along trajectories of the system, we have

d dt V (w(•, t)) = w t (•, t), (Pw(•, t)) + w(•, t), (Pw t (•, t)) = Aw(•, t), Pw(•, t) + w(•, t), PAw(•, t) .
Since the initial condition w 0 ∈ D 0 , from Lemma 5.4, the classical solution w(•, t) ∈ D 0 exists for all t ≥ 0. For P as defined in (5.12) and M as defined in Definition 5.7, it is shown in Appendix B that if

{Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 } = M(M, K 1 , K 2 ), then d dt V (w(•, t)) = Aw(•, t), Pw(•, t) + w(•, t), PAw(•, t) ≤ w(•, t), Qw(•, t) + w x (1, t) 1 0 Q 3 (x)w(x, t)dx + w x (0, t) 1 0 Q 4 (x)w(x, t)dx + w(1, t) Q 5 w(1, t) + Q 6 w x (1, t) + 1 0 Q 7 (x)w(x, t)dx + w(0, t) Q 8 w(0, t) + Q 9 w x (0, t) + 1 0 Q 10 (x)w(x, t)dx ,
where the operator Q is defined in Equation (5.14). Now, since by assumption

Q 3 = Q 4 = Q 6 = Q 7 = Q 9 = Q 10 = 0, Q 5 ≤ 0 and Q 8 ≤ 0, we have d dt V (w(•, t)) ≤ w(•, t), Qw(•, t) = 1 0 w(x, t) Q 0 (x)w(x, t) + x 0 Q 1 (x, ξ)w(ξ, t)dξ + 1 x Q 2 (x, ξ)w(ξ, t)dξ dx = w(•, t), Qw(•, t) . (5.15) Since {-Q 0 -2δM, -Q 1 -2δK 1 , -Q 2 -2δK 2 } ∈ Ξ d 1 ,d 2 ,0 ,
we have that

1 0 Q 0 (x)w(x, t) 2 dx + 1 0 w(x, t) x 0 Q 1 (x, ξ)w(ξ, t)dξ + x 0 Q 2 (x, ξ)w(ξ, t)dξ dx ≤ -2δ 1 0 M(x)w(x, t) 2 dx -2δ 1 0 w(x, t) x 0 K 1 (x, ξ)w(ξ, t)dξ + x 0 K 2 (x, ξ)w(ξ, t)dξ dx.
Using the definitions of operators P and Q

w(•, t), Qw(•, t) ≤ -2δ w(•, t), Pw(•, t) .
Substituting into Equation (5.15) produces

d dt V (w(•, t)) ≤ w(•, t), Qw(•, t) ≤ -2δ w(•, t), Pw(•, t) .
Hence we conclude that

d dt V (w(•, t)) ≤ -2δV (w(•, t)), t > 0.
Integrating in time yields w(•, t), (Pw)(•, t) ≤ e -2δt w 0 , Pw 0 and since, {M,

K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ , we have ǫ w(•, t) 2 ≤ w(•, t), (Pw)(•, t) ≤ e -2δt w 0 , Pw 0 , t > 0 which implies w(•, t) ≤ e -δt w 0 , Pw 0 ǫ , t > 0.
Setting M = w 0 , Pw 0 ǫ completes the proof.

Numerical Results.

To illustrate the accuracy of the the stability test, we perform the following numerical experiments. We consider the following two parabolic PDEs:

w t (x, t) =w xx (x, t) + λw(x, t)
, and (5.16)

w t (x, t) = x 3 -x 2 + 2 w xx (x, t) + 3x 2 -2x w x (x, t) + -0.5x 3 + 1.3x 2 -1.5x + 0.7 + λ w(x, t), (5.17) 
where λ is a scalar which may be chosen freely. We consider the following boundary conditions for these two equations:

Dirichlet: = w(0) = 0, w(1) = 0, (5.18)

Neumann: = w x (0) = 0, w x (1) = 0, (5.19) 
Mixed: = w(0) = 0, w x (1) = 0, (5.20) 

Robin: = w(0) = 0, w(1) + w x (1) = 0. ( 5 
w x (0) = 0, w x (1) = 0 -0.002 0 Mixed w(0) = 0, w x (1) = 0 2.4597 π 2 /4 ≈ 2.47
Robin w(0) = 0, w(1) + w x (1) = 0 4.10 4.12 Table 5.3 illustrates the maximum λ for which we can construct a Lyapunov function for Equation (5.17 To illustrate the accuracy of the proposed stability analysis methodology, we plot the error between the calculated maximum stable λ using Theorem 5.8 versus the calculated/estimated maximum stable λ for Equations (5.16) and (5.17 We consider Equations (5.1)-(5.2), given in Chapter 5, with inhomogeneous boundary conditions given by

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), x ∈ [0, 1], t ≥ 0, (6.1) 
with boundary conditions of the form

ν 1 w(0, t) + ν 2 w x (0, t) = 0 and ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t). (6.2) 
Here, the real valued function u(t) ∈ R is called the control input. In addition, recall the properties of the system, namely, the functions a, b and c are polynomial functions in x. Moreover, the function a satisfies

a(x) ≥ α > 0, for x ∈ [0, 1]. (6.3)
The scalars ν i , ρ j ∈ R, i, j ∈ {1, 2} satisfy

|ν 1 | + |ν 2 | > 0 and |ρ 1 | + |ρ 2 | > 0. (6.4)
We wish to design a controller F :

H 2 (0, 1) → R such that if u(t) = F w(•, t), (6.5) 
then the system given by Equations (6.1)-(6.2) is stable. We also assume that access to the complete state is available for the design of controllers. Such type of controllers are called full state feedback based controllers.

For PDEs in the form of Equations (6.1)-(6.2), we define the following first order form

ẇ(t) = Aw(t), w ∈ D (6.6)
where the operator A : H 2 (0, 1) → L 2 (0, 1) is defined in Equation (5.6) as

(Ay) (x) = a(x)y xx (x) + b(x)y x (x) + c(x)y(x), (6.7) 
and

D = {y ∈ H 2 (0, 1) : ν 1 y(0) + ν 2 y x (0) = 0 and ρ 1 y(1) + ρ 2 y x (1) = F y}. (6.8)
If the operator F is of the form F y = R 1 y(1) + R 2 y x (1), y ∈ H 2 (0, 1), then, using the analysis presented in Section 5.1 the uniqueness and existence of classical (weak) solutions of Equation (6.6), and hence Equations (6.1)-(6.2), can be established. However, for a more general form of operator F which we consider, it is considerably more difficult to establish the uniqueness and existence of solutions.

Thus, we make the following assumption: Assumption 6.1. For any operator F : H 2 (0, 1) → R and initial condition w 0 ∈ D, there exists a classical solution to Equations (6.1)-(6.2) with u(t) given by Equation (6.5). Similarly, for any initial condition w 0 ∈ L 2 (0, 1), there exists a weak solution to Equations (6.1)-(6.2).

For later use, we present the following definition. Definition 6.2. Given scalars ν 1 , ν 2 , ρ 1 and ρ 2 , we define

{m 1 , m 2 , m 3 } =                  {-ν 1 ν 2 , 0, 1} if ν 1 , ν 2 = 0 {0, 1, 0} if ν 1 = 0, ν 2 = 0 {0, 0, 1} if ν 1 = 0, ν 2 = 0.
With this definition, the boundary conditions given in Equation (6.2) can be represented as w x (0, t) = m 1 w(0, t) + m 2 w x (0, t), w(0) = m 3 w(0, t).

Exponentially Stabilizing Boundary Control

In this section we consider the synthesis of controller F such that if the control input

u(t) = F w(•, t),
then, the system governed by Equations (6.1)-(6.2) is exponentially stable. The main result depends primarily on the following upper bound -the proof of which can be found in Lemma B.7 in Appendix B.

APz(•, t), z(•, t) + z(•, t), PAz(•, t) ≤ z(•, t), T z(•, t) + z(0, t) T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + z x (0, t) 1 0 T 5 (x)z(x, t)dx + 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx + z(1, t) (T 7 z(1, t) + T 8 z x (1, t)) ,
where z(•, t) = P -1 w(•, t), w being a solution of Equations (6.1)-(6.2), (Py) (x) = M(x)y(x)

+ x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1),
and we define the operator T as

(T y) (x) = T 0 (x)y(x) + x 0 T 1 (x, ξ)y(ξ)dξ + 1 x T 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1), (6.9)
where

{T 0 , T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 } = N (M, K 1 , K 2 )
and the linear operator N is defined as follows.

Definition 6.3. We say

{T 0 , T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 } = N (M, K 1 , K 2 )
if the following hold

T 0 (x) =a xx (x)M(x) + a(x)M xx (x) -b x (x)M(x) + b(x)M x (x) + 2c(x)M(x) + 2a(x) [K 1,x (x, x) -K 2,x (x, x)] - π 2 αǫ 2 , T 1 (x, ξ) = [a(x)K 1,xx (x, ξ) + a(ξ)K 1,ξξ (x, ξ)] + [b(x)K 1,x (x, ξ) + b(ξ)K 1,ξ (x, ξ)] + [c(x)K 1 (x, ξ) + c(ξ)K 1 (x, ξ)] , T 2 (x, ξ) = [a(x)K 2,xx (x, ξ) + a(ξ)K 2,ξξ (x, ξ)] + [b(x)K 2,x (x, ξ) + b(ξ)K 2,ξ (x, ξ)] + [c(x)K 2 (x, ξ) + c(ξ)K 2 (x, ξ)] , T 3 = -m 3 a(0)M x (0) - 1 2 αǫπ 2 + m 3 (a x (0) -b(0)) M(0) -2a(0) (m 1 M(0) + (m 2 -1)M x (0)) , T 4 =(m 3 -1)(a x (0) -b(0))K 2 (0, x) -2a(0) [(m 2 -1)K 2,x (0, x) + m 1 K 2 (0, x)] , T 5 (x) = -2m 2 (m 3 -1)a(0)K 2 (0, x), T 6 (x) =2(m 3 -1)K 2 (0, x), T 7 = -a x (1)M(1) + a(1)M x (1) + b(1)M(1), T 8 =2a(1)M(1), where K 1,x (1, x) = [K 1,x (x, ξ)| x=1 ] ξ=x , K 2,x (0, x) = [K 2,x (x, ξ)| x=0 ] ξ=x and ǫ > 0 and m i , i ∈ {1, • • • , 3}, are scalars.
We present the following theorem.

Theorem 6.4. Suppose that there exist scalars ǫ, δ > 0 and {M,

K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ such that {-T 0 -2δM, -T 1 -2δK 1 , -T 2 -2δK 2 } ∈ Ξ d 1 ,d 2 ,0 , T 3 ≤ 0, T 4 (x) = T 5 (x) = T 6 (x) = 0,
for all m j , j ∈ {1, • • • , 3} where m j are given by Definition 6.2 and

{T 0 , T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 } = N (M, K 1 , K 2 ).
Define the operator F := ZP -1 where, for any y ∈ H 2 (0, 1),

Zy =                  Z 1 y(1) + 1 0 Z 2 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 Z 3 y x (1) + 1 0 Z 4 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 Z 5 y(1) + 1 0 Z 6 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 .
Here, Z 1 , Z 3 and Z 5 are any scalars that satisfy

Z 1 < 0 and Z 1 < - ρ 2 2a(1) (T 7 -2a(1)M x (1)) , Z 3 < 0 and 1 Z 3 < - 1 ρ 1 M(1) T 7 T 8 , Z 5 < 0 and Z 5 < - ρ 2 2a(1) T 7 - ρ 1 ρ 2 T 8 -2a(1)M x (1) ,
and polynomials Z 2 (x), Z 4 (x) and Z 6 (x) are defined as

Z 2 (x) = ρ 2 K 1,x (1, x), Z 4 (x) = ρ 1 K 1 (1, x), Z 6 (x) = ρ 2 ρ 1 ρ 2 K 1 (1, x) + K 1,x (1, x) .
Additionally,

(Py) (x) = M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1).
Then for any solution w of (6.1) -(6.2) with u(t) = F w(•, t) and initial condition w 0 ∈ D there exists a scalar M ≥ 0 such that w(•, t) ≤ e -δt M, t > 0.

Proof. Consider the following Lyapunov function V (w(•, t)) = w(•, t), P -1 w(•, t) .

Note that this Lyapunov functional is well-defined because from Assumption 6.1, the solution (unique or weak) exists. Moreover, the bounded linear operator P is strictly positive. Thus, its inverse P -1 exists and is bounded and linear [START_REF] Kreyszig | Introductory functional analysis with applications[END_REF].

Taking the time derivative along trajectories of the system, we have

d dt V (w(•, t)) = Aw(t), P -1 w(t) + P -1 w(t), Aw(t) ,
where we have used the fact that P = P ⋆ implies P -1 = (P ⋆ ) -1 . Now let z = P -1 w.

Then

d dt V (w(•, t)) = APP -1 w(•, t), P -1 w(•, t) + P -1 w(•, t), APP -1 w(•, t) = APz(•, t), z(•, t) + z(•, t), APz(•, t) .
From Lemma B.7,

d dt V (w(•, t)) = APz(•, t), z(•, t) + z(•, t), APz(•, t) ≤ z(•, t), T z(•, t) + z(0, t) T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + z x (0, t) 1 0 T 5 (x)z(x, t)dx + 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx + z(1, t) (T 7 z(1, t) + T 8 z x (1, t)) ,
where the operator T is defined in Equation (6.9). From the theorem statement we have that T 4 (x) = T 5 (x) = T 6 (x) = 0 and T 3 ≤ 0, thus

d dt V (w(•, t)) = APz(•, t), z(•, t) + z(•, t), APz(•, t) ≤ z(•, t), T z(•, t) + z(1, t) (T 7 z(1, t) + T 8 z x (1, t)) . (6.10) 
From Equation (6.4),

|ρ 1 | + |ρ 2 | > 0.
Thus, there are three cases possible, ρ 1 = 0 and ρ 2 = 0, ρ 1 = 0 and ρ 2 = 0, ρ 1 = 0 and ρ 2 = 0.

For the case when ρ 1 = 0 and ρ 2 = 0,

ρ 2 w x (1, t) = u(t) = F w(•, t) = F PP -1 w(•, t) = Zz(•, t), hence w x (1, t) = 1 ρ 2 Zz(•, t).
Since, w = Pz, we have

w x (1, t) = 1 ρ 2 Zz(•, t) = M x (1)z(1, t) + M(1)z x (1, t) + 1 0 K 1,x (1, x)z(x, t)dx.
Hence,

M(1)z x (1, t) = 1 ρ 2 Zz(•, t) -M x (1)z(1, t) - 1 0 K 1,x (1, x)z(x, t)dx.
Multiplying both sides by 2a(1),

T 8 z x (1, t) = 2a(1) ρ 2 Zz(•, t) -2a(1)M x (1)z(1, t) - 1 0 2a(1)K 1,x (1, x)z(x, t)dx.
Substituting in Equation (6.10),

d dt V (w(•, t)) = APz(•, t), z(•, t) + z(•, t), APz(•, t) ≤ z(•, t), T z(•, t) + z(1, t) 2a(1) ρ 2 Zz(•, t) + z(1, t) (T 7 -2a(1)M x (1)) z(1, t) - 1 0 2a(1)K 1,x (1, x)z(x, t)dx .
Using the definition of Z from the theorem statement

d dt V (w(•, t)) = APz(•, t), z(•, t) + z(•, t), APz(•, t) ≤ z(•, t), T z(•, t) + z(1, t) 2 T 7 -2a(1)M x (1) + 2a(1) ρ 2 Z 1 .
Since Z 1 is any scalar that satisfies

Z 1 < 0 and Z 1 < - ρ 2 2a(1) (T 7 -2a(1)M x (1)) ,
there exists a scalar ζ 1 > 0 such that

T 7 -2a(1)M x (1) + 2a(1) ρ 2 Z 1 = -ζ 1 .
Thus, for the case when ρ 1 = 0 and ρ 2 = 0 we get that there exists a scalar

ζ 1 > 0 such that d dt V (w(•, t)) ≤ z(•, t), T z(•, t) -ζ 1 z(1, t) 2 . (6.11)
For the case when ρ 1 = 0 and ρ 2 = 0,

ρ 1 w(1, t) = u(t) = F w(•, t) = F PP -1 w(•, t) = Zz(•, t), hence w(1, t) = 1 ρ 1 Zz(•, t).
Using the fact that w = Pz we obtain

w(1, t) = 1 ρ 1 Zz(•, t) = M(1)z(1, t) + 1 0 K 1 (1, x)z(x, t)dx.
Now, by definition,

Zz(•, t) = Z 3 z x (1, t) + 1 0 Z 4 (x)z(x, t)dx.
Combining the last two statements and using the definition of Z 4 (x),

z x (1, t) = ρ 1 Z 3 M(1)z(1, t).
Note that this is well defined since Z 3 < 0. Substituting in Equation (6.10)

d dt V (w(•, t)) = APz(•, t), z(•, t) + z(•, t), APz(•, t) ≤ z(•, t), T z(•, t) + z(1, t) 2 T 7 + ρ 1 Z 3 M(1)T 8 .
Since, from the theorem statement,

Z 3 < 0 and 1 Z 3 < - 1 ρ 1 M(1) T 7 T 8 ,
there exists a scalar ζ 2 > 0 such that

T 7 + ρ 1 Z 3 M(1)T 8 = -ζ 2 ,
where we have used the fact that T 8 = 2a(1)M(1) > 0. Hence, for the case when ρ 1 = 0 and ρ 2 = 0, there exists a scalar ζ 2 > 0 such that

d dt V (w(•, t)) ≤ z(•, t), T z(•, t) -ζ 2 z(1, t) 2 . (6.12)
For the case when ρ 1 = 0 and ρ 2 = 0,

ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t) = F w(•, t) = F PP -1 w(•, t) = Zz(•, t), hence using w = Pz M(1)z x (1, t) = 1 ρ 2 Zz(•, t) - ρ 1 ρ 2 M(1)z(1, t) -M x (1)z(1, t) - ρ 1 ρ 2 1 0 K 1 (1, x)z(x, t)dx - 1 0 K 1,x (1, x)z(x, t)dx.
Multiplying both sides by 2a(1)

T 8 z x (1, t) = 2a(1) ρ 2 Zz(•, t) - ρ 1 ρ 2 T 8 z(1, t) -2a(1)M x (1)z(1, t) -2a(1) ρ 1 ρ 2 1 0 K 1 (1, x)z(x, t)dx -2a(1) 1 0 K 1,x (1, x)z(x, t)dx.
Substituting in Equation (6.10) we obtain

d dt V (w(•, t)) = APz(•, t), z(•, t) + z(•, t), APz(•, t) ≤ z(•, t), T z(•, t) + z(1, t) 2a(1) ρ 2 Zz(•, t) + z(1, t) 2 T 7 - ρ 1 ρ 2 T 8 -2a(1)M x (1) -z(1, t) 1 0 2a(1) ρ 1 ρ 2 K 1 (1, x) + K 1,x (1, x) z(x, t)dx.
Using the definition of Z from the theorem statement for the case when ρ 1 = 0 and

ρ 2 = 0 we obtain d dt V (w(•, t)) = APz(•, t), z(•, t) + z(•, t), APz(•, t) ≤ z(•, t), T z(•, t) + z(1, t) 2 T 7 - ρ 1 ρ 2 T 8 -2a(1)M x (1) + 2a(1) ρ 2 Z 5 .
Since, by definition, Z 5 is any scalar that satisfies

Z 5 < 0 and Z 5 < - ρ 2 2a(1) T 7 - ρ 1 ρ 2 T 8 -2a(1)M x (1) ,
there exists a scalar ζ 3 > 0 such that

T 7 - ρ 1 ρ 2 T 8 -2a(1)M x (1) + 2a(1) ρ 2 Z 5 = -ζ 3 .
Thus, for the case when ρ 1 = 0 and ρ 2 = 0, there exists a scalar ζ 3 > 0 such that

d dt V (w(•, t)) ≤ z(•, t), T z(•, t) -ζ 3 z(1, t) 2 . (6.13)
From Equations (6.11)-(6.13) we conclude that there exist scalars

ζ 1 , ζ 2 , ζ 3 > 0 such that d dt V (w(•, t)) ≤ z(•, t), T z(•, t) -ζz(1, t) 2 , (6.14) 
where

ζ = min{ζ 1 , ζ 2 , ζ 3 }.
Since ζ < 0, we conclude that

d dt V (w(•, t)) ≤ z(•, t), T z(•, t) .
From the theorem hypotheses,

{-T 0 -2δM, -T 1 -2δK 1 , -T 2 -2δK 2 } ∈ Ξ d 1 ,d 2 ,0 .
Thus we conclude that

d dt V (w(•, t)) ≤ -2δV (w(•, t)), t > 0.
Integrating in time yields

V (w(•, t)) ≤ e -2δt V (w(•, 0)) ⇒ Pz(•, t), z(•, t) ≤ e -2δt w 0 , P -1 w 0 . Since {M, K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ , ǫ z(•, t) 2 ≤ Pz(•, t), z(•, t
) and thus z(•, t) ≤ e -δt w 0 , P -1 w 0 ǫ .

Since z = P -1 w, w = Pz, and therefore,

w(•, t) = (Pz)(•, t) ≤ P L z(•, t) ≤ e -δt P L w 0 , P -1 w 0 ǫ .
Setting M = P L w 0 , P -1 w 0 ǫ completes the proof.

Numerical Results.

To illustrate the effectiveness of the controller synthesis, we construct exponentially stabilizing boundary controllers for the following two parabolic PDEs:

w t (x, t) =w xx (x, t) + λw(x, t), and (6.15) 
w t (x, t) = x 3 -x 2 + 2 w xx (x, t) + 3x 2 -2x w x (x, t) + -0.5x 3 + 1.3x 2 -1.5x + 0.7 + λ w(x, t), (6.16) 
where λ is a scalar which may be chosen freely. We consider the following boundary conditions for these two equations:

Dirichlet: = w(0) = 0, w(1) = u(t), (6.17) 
Neumann: = w x (0) = 0, w x (1) = u(t), (6.18) 
Mixed: = w(0) = 0, w x (1) = u(t), (6.19) 
Robin: = w(0) + w x (0) = 0, w(1) + w x (1) = u(t). (6.20)

We apply Theorem 6.4 to these PDEs for different degrees of polynomial representation for parameter values ǫ = δ = 0.001. stabilizing controller for Equation (6.15) using the analysis presented in Theorem 6.4.

Similarly Table 6.2 and Figure 6.2 illustrate the maximum λ for which we can construct an exponentially stabilizing controller for Equation (5.17) using the analysis presented in Theorem 6.4.

From Tables 6.1-6.2 we conjecture that if the system is controllable for some suitable definition of controllability, then the conditions of Theorem. 6.4 will be feasible for sufficiently high d 1 and d 2 . We emphasize, however, that this is only a conjecture and additional work must be done in order to make this statement rigorous and determine its veracity. A further caveat to these results is the observation that the maximum degree d 1 and d 2 for which the conditions can be tested is a function of the memory and processing speed of the computational platform on which Recall that in Theorem 6.4 we use a Lyapunov function of the form V (w) = w(•, t), Pw(•, t) , where, for any z ∈ L 2 (0, 1), we define

(Pz) (x) = M(x)z(x) + x 0 K 1 (x, ξ)z(ξ)dξ + 1 x K 1 (x, ξ)z(ξ)dξ.
This form is atypical for the study of PDEs and thus, one may question the necessity of the kernels K 1 and K 2 . Especially since their inclusion significantly complicates the analysis. Therefore, to justify the inclusion of the kernels, we test the conditions of Theorem 6.4 on Equations (6.15)-(6.16) with the constraint K 1 = K 2 = 0. Tables 6.3-6.4 present these results. Comparing Tables 6.1-6.2 with Tables 6.3-6.4 we observe that inclusion of K 1 and K 2 allow us to synthesize controllers for significantly larger values of the parameter λ > 0. Additionally, it is clear from Tables 6.3-6.4 that with the constraint

K 1 = K 2 = 0
, the maximum value of feasible λ seems to converge. Therefore, we conclude that the kernels K 1 and K 2 play a crucial role in the synthesis of statefeedback controllers.

Finally, we provide a numerical simulation of Equation (6.16) for λ = 20 and mixed boundary conditions while being acted upon by controllers designed using Theorem 6.4. 

L 2 Optimal Control

In this section, we consider the inhomogeneous version of Equations (6.1)-(6.2)

given by

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t) + f (x, t), x ∈ [0, 1], t ≥ 0, (6.21) 
with boundary conditions of the form Here, the function

ν 1 w(0, t) + ν 2 w x (0, t) = 0 and ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t). ( 6 
f ∈ C 1 loc ([0, ∞]; L 2 (0, 1)) or f ∈ L loc 2 ([0, ∞]; L 2 (0, 1)
) 2 is the exogenous input. For this system, we wish to synthesize a controller F : H 2 (0, 1) → R such that if the control input is given by

u(t) = F w(•, t),
then there exists a positive scalar γ such that

∞ 0 w(•, t) 2 dt ≤ γ ∞ 0 f (•, t) 2 dt.
The following assumption, akin to Assumption 6.1, establishes uniqueness and existence of the solutions for the inhomogeneous system. Assumption 6.5. For any operator F :

H 2 (0, 1) → R, initial condition w 0 ∈ D and f ∈ C 1 loc ([0, ∞]; L 2 (0, 1)
), there exists a classical solution to Equations (6.21)-(6.22) with u(t) = F w(•, t). Similarly, for any initial condition w 0 ∈ L 2 (0, 1) and

f ∈ L loc 2 ([0, ∞]; L 2 (0, 1)
), there exists a weak solution to Equations (6.21)- (6.22).

We present the following theorem for L 2 stability analysis.

Theorem 6.6. Suppose that there exist scalars 0 < ǫ 1 < ǫ 2 , γ > 0 and {M,

K 1 , K 2 } ∈ Ω d 1 ,d 2 ,ǫ 2 ,ǫ 2 such that {-T 0 -2δM, -T 1 -2δK 1 , -T 2 -2δK 2 } ∈ Ξ d 1 ,d 2 ,0 , T 4 (x) = T 5 (x) = T 6 (x) = 0, T 3 ≤ 0, for all m j , j ∈ {1, • • • , 3} where δ = ǫ 2 ǫ 1 γ ,
m j are given by Definition 6.2 and

{T 0 , T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 } = N (M, K 1 , K 2 ).
2 Refer to the section on notation for definitions of the function spaces.

Define the operator F := ZP -1 where, for any y ∈ H 2 (0, 1),

Zy =                  Z 1 y(1) + 1 0 Z 2 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 Z 3 y x (1) + 1 0 Z 4 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 Z 5 y(1) + 1 0 Z 6 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 .
Here, Z 1 , Z 3 and Z 5 are any scalars that satisfy

Z 1 < 0 and Z 1 < - ρ 2 2a(1) (T 7 -2a(1)M x (1)) , Z 3 < 0 and 1 Z 3 < - 1 ρ 1 M(1) T 7 T 8 , Z 5 < 0 and Z 5 < - ρ 2 2a(1) T 7 - ρ 1 ρ 2 T 8 -2a(1)M x (1) ,
and polynomials Z 2 (x), Z 4 (x) and Z 6 (x) are defined as

Z 2 (x) = ρ 2 K 1,x (1, x), Z 4 (x) = ρ 1 K 1 (1, x), Z 6 (x) = ρ 2 ρ 1 ρ 2 K 1 (1, x) + K 1,x (1, x) .
Additionally,

(Py) (x) = M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1).
Then any solution w of (6.21) -(6.22) with u(t) = (F w)(t) and w 0 = 0 satisfies

∞ 0 w(•, t) 2 dt ≤ γ ∞ 0 f (•, t) 2 dt.
Proof. Consider the following Lyapunov function

V (w(•, t)) = w(•, t), P -1 w(•, t) .
Taking the time derivative along trajectories of the system, we have

d dt V (w(•, t)) = w t (•, t), P -1 w(•, t) + w(•, t), P -1 w t (•, t)
= Aw(t), P -1 w(t) + P -1 w(t), Aw(t)

+ 2 f (•, t), P -1 w(•, t) ,
where we have used the fact that P = P ⋆ implies P -1 = (P ⋆ ) -1 .

Now let z = P -1 w. Then

d dt V (w(•, t)) = APP -1 w(•, t), P -1 w(•, t) + P -1 w(•, t), APP -1 w(•, t) + 2 f (•, t), P -1 w(•, t) = APz(•, t), z(•, t) + z(•, t), APz(•, t) + 2 f (•, t), z(•, t) .
From the analysis presented in Theorem 6.4, we have

d dt V (w(•, t)) ≤ z(•, t), T z(•, t) + 2 f (•, t), z(•, t) .
Thus,

d dt V (w(•, t)) + δ z(•, t), Pz(•, t) - 1 δ f (•, t), P -1 f (•, t) ≤ z(•, t), (T + δP)z(•, t) + 2 f (•, t), z(•, t) - 1 δ f (•, t), P -1 f (•, t) =      z(•, t) f (•, t)      ,      T + δP I I -1 δ P -1           z(•, t) f (•, t)      . ( 6.23) 
From Schur complement, the operator

     T + δP I I -1 δ P -1      ≤ 0 if and only if T + 2δP ≤ 0. Since {-T 0 -2δM, -T 1 -2δK 1 , -T 2 -2δK 2 } ∈ Ξ d 1 ,d 2 ,0 , we have that T + 2δP ≤ 0,
and consequently, from Equation (6.23),

d dt V (w(•, t)) + δ z(•, t), Pz(•, t) ≤ 1 δ f (•, t), P -1 f (•, t) .
Integrating in time from t = 0 to t = T < ∞ , we obtain

V (w(•, T )) -V (w(•, 0)) + δ T 0 z(•, t), Pz(•, t) dt ≤ 1 δ T 0 f (•, t), P -1 f (•, t) dt. Since w 0 (x) = w(x, 0) = 0, V (w(•, 0)) = 0. Additionally, V (w(•, T )) ≥ 0, thus T 0 z(•, t), Pz(•, t) dt ≤ 1 δ 2 T 0 f (•, t), P -1 f (•, t) dt. Since, z(•, t), Pz(•, t) = w(•, t), P -1 w(•, t) , T 0 w(•, t), P -1 w(•, t) dt ≤ 1 δ 2 T 0 f (•, t), P -1 f (•, t) dt. Since {M, K 1 , K 2 } ∈ Ω d 1 ,d 2 ,ǫ 1 ,ǫ 2 , we have from Lemma C.1 that 1 ǫ 2 w(•, t) 2 ≤ w(•, t), P -1 w(•, t) and f (•, t), P -1 f (•, t) ≤ 1 ǫ 1 f (•, t) 2 .
Therefore,

1 ǫ 2 T 0 w(•, t) 2 dt ≤ 1 ǫ 1 δ 2 T 0 f (•, t) 2 dt. Consequently, T 0 w(•, t) 2 dt ≤ ǫ 2 ǫ 1 δ 2 T 0 f (•, t) 2 dt. Since δ = ǫ 2 ǫ 1 γ , we obtain T 0 w(•, t) 2 dt ≤ γ T 0 f (•, t) 2 dt.
Taking the limit T → ∞ completes the proof. 

w t (x, t) = x 3 -x 2 + 2 w xx (x, t) + 3x 2 -2x w x (x, t) + -0.5x 3 + 1.3x 2 -1.5x + 0.7 + λ w(x, t) + f (x, t), (6.25) 
where f ∈ L 2 (0, ∞; L 2 (0, 1)) is the exogenous distributed input. We consider the following boundary conditions for these two equations:

Dirichlet: = w(0) = 0, w(1) = u(t), (6.26) 
Neumann: = w x (0) = 0, w x (1) = u(t), (6.27 
)

Mixed: = w(0) = 0, w x (1) = u(t), (6.28) 
Robin: = w(0) + w x (0) = 0, w(1)

+ w x (1) = u(t). (6.29) 
Additionally, we choose the values for the parameter λ so that the autonomous unperturbed PDEs are unstable. The chosen values of λ for each case are presented in for which we can construct an optimal controller for Equation (6.25) using the analysis presented in Theorem 6.6. As for the case of exponentially stabilizing control, these results suggest that increasing the degree of polynomial representation leads to the construction of an controller for a lower value of γ > 0. However, for optimal control synthesis this effect is not as pronounced as for the case of exponentially stabilizing control. Moreover, for Equation (6.25) the values of γ seem to converge. We would require to test the conditions of Theorem 6.6 for higher degrees of polynomial representation. However, as discussed previously, that would incur a penalty on the memory requirements of the machine on which these tests are performed.

Since the conditions of Theorems 6.4 and 6.6 are similar, we infer that setting K 1 = K 2 = 0 would worsen the performance of the controllers synthesized.

Finally, we present a numerical simulation for the optimal controller. We simulate Equation (6.25) with exogenous input chosen as f (x, t) = e -0.1t cos πt 5 (1 + sin(0.1πx)) . 

Inverses of Positive Operators

In Theorems 6.4 and 6.6 we construct operators Z and P satisfying the conditions of the respective theorems. If such operators exist, then the controller is

given by F = ZP -1 . Thus, given a positive operator P, we require a method of constructing P -1 . Therefore, in this section, given scalar valued polynomials will provide a method to construct P -1 where (Py) (x) = M(x)y(x)

{M, K 1 , K 2 } ∈ Ξ {d 1 ,d 2 ,ǫ} , or indeed {M, K 1 , K 2 } ∈ Ω {d 1 ,d 2 ,ǫ 1 ,ǫ 2 } for any 0 < ǫ 1 < ǫ 2 , we 0 
+ x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ.
For operators without joint positivity, this procedure has been presented in [START_REF] Peet | Inverses of positive linear operators and state feedback design for timedelay systems[END_REF] and expanded in [START_REF] Peet | Full-state feedback of delayed systems using SOS: A new theory of duality[END_REF]. In this section, we further expand these results by proposing a method for constructing inverses for the class of operators considered in Section 5.2.

Since all positive bounded linear operators are invertible [START_REF] Kreyszig | Introductory functional analysis with applications[END_REF], the operators constructed in Theorem 5.5 are invertible. Of course, to construct the inverses of such operators, one could enforce the supremum of the integral kernels

K i (x, ξ), i ∈ {1, 2}
to be less than the infimum of M(x) so that the power series expansion of the inverse operator converges. However, such conditions are very conservative. Our approach uses the results presented in [START_REF] Gohberg | Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties[END_REF] where it has been shown that operators belonging to the set Ξ {d 1 ,d 2 ,ǫ} are the input-output maps of well-posed Linear Time Varying (LTV) systems. Thus, by switching the input and the output, such operators can be inverted. We prove this fact explicitly.

Let {M, K 1 , K 2 } ∈ Ξ {d 1 ,d 2 ,ǫ} , then K 1 (x, ξ) and K 2 (x, ξ) are of degree d 2 + 1 in variables x and ξ. We can always find a matrix

R ∈ R d 2 +2×d 2 +2 such that K 1 (x, ξ) = Z d 2 +1 (x) T RZ d 2 +1 (ξ).
Recall that we denote the vector of monomials up to degree

d 2 +1 by Z d 2 +1 (•). Since, K 2 (x, ξ) = K 1 (x, ξ), we get K 2 (x, ξ) = Z d 2 +1 (x) T R T Z d 2 +1 (ξ). Let R = R 1 R 2 be
a factorization, for e.g. QR factorization, then

K 1 (x, ξ) = Z d 2 +1 (x) T R 1 R 2 Z d 2 +1 (ξ), K 2 (x, ξ) = Z d 2 +1 (x) T R T 2 R T 1 Z d 2 +1 (ξ).
With this, we provide the following definition.

Definition 6.7. Consider the operator

(Py) (x) = M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ,
where

{M, K 1 , K 2 } ∈ Ξ {d 1 ,d 2 ,ǫ} , K 1 (x, ξ) = Z d 2 +1 (x) T R 1 R 2 Z d 2 +1 (ξ), K 2 (x, ξ) = Z d 2 +1 (x) T R T 2 R T 1 Z d 2 +1 (ξ), R = R 1 R 2 .
We define

Θ P = {M, F 1 , F 2 , G 1 , G 2 },
where

F 1 (x) = Z d 2 +1 (x) T R 1 ∈ R 1×d 2 +1 , F 2 (x) = -Z d 2 +1 (x) T R T 2 ∈ R 1×d 2 +1 , G 1 (ξ) = R 2 Z d 2 +1 (ξ) ∈ R d 2 +1×1 , G 2 (ξ) = R T 1 Z d 2 +1 (ξ) ∈ R d 2 +1×1 .
With this definition, if

(Py) (x) = M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ, then Θ P = {M, F 1 , F 2 , G 1 , G 2 } implies that (Py)(x) = M(x)y(x) + x 0 F 1 (x)G 1 (ξ)y(ξ)dξ - 1 x F 2 (x)G 2 (ξ)y(ξ)dξ.
We provide the following Lemma which we will use to construct inverse operators.

Lemma 6.8. Let A(x) be a matrix in R k×k , k ∈ N, whose entries are Lebesgue integrable and continuous on x ∈ [0, 1]. Then, the matrix differential equation

dU(x) dx =A(x)U(x), U(0) =I,
has a unique absolutely continuous solution which is given by the uniform limit on 0 ≤ x ≤ 1 of the sequence U 1 (x), U 2 (x), • • • , which are defined recursively as

U n+1 (x) = I + x 0 A(ξ)U n (ξ)dξ, U 1 (x) = I.
Additionally, U(x) is non-singular.

The matrix U(x) is known as the fundamental matrix of A(x).

A proof is provided in Appendix C. Additionally, refer to [START_REF] Gohberg | Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties[END_REF] and [START_REF] Daleckij | Stability of solutions of differential equations in Banach space[END_REF] and references therein for a similar proof. Theorem 6.9.

For {M, K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ , let (Pw) (x) = M(x)w(x) + t 0 K 1 (x, ξ)w(ξ)dξ + 1 x K 2 (x, ξ)w(ξ)dξ, w ∈ L 2 (0, 1).
Additionally, let

Θ P = (M, F 1 , F 2 , G 1 , G 2 )
. Define the operator P as

Pw (x) = M(x) -1 w(x) - x 0 γ 1 (x, ξ)w(ξ)dξ - 1 x γ 2 (x, ξ)w(ξ)dξ,
where

γ 1 (x, ξ) =M(x) -1 C(x)U(x)(I 4(d+1) -P )U(ξ) -1 B(ξ)M(ξ) -1 , γ 2 (x, ξ) = -M(x) -1 C(x)U(x)P U(ξ) -1 B(ξ)M(ξ) -1 , B(x) =      G 1 (x) G 2 (x)      , C(x) = F 1 (x) F 2 (x) , P = (N 1 + N 2 U(1)) -1 N 2 U(1), N 1 =      I 2(d+1) 0 0 0      , N 2 =      0 0 0 I 2(d+1)      , N 1 , N 2 ∈ S 4(d+1) , U(x) = fundamental matrix of -B(x)M(x) -1 C(x), and 
d =d 2 + 1.
Then, P is the inverse of P, i.e. P P = PP = I, where I is the identity operator.

The same result holds for {M,

K 1 , K 2 } ∈ Ω d 1 ,d 2 ,ǫ 1 ,ǫ 2 for any 0 < ǫ 1 < ǫ 2 .
Refer to Appendix C for the proof.

To construct the inverse in practice, the fundamental matrix U(x) has to be replaced by

U K (x) = I + x 0 -B(ξ)M(ξ) -1 C(ξ) U K-1 (ξ)dξ, U 1 (x) = I 4(d+1) ,
for some finite K where K is chosen sufficiently large so that the inverse is approximated adequately. In practice, we have found that only a few terms are required for convergence. To illustrate, in Figures 6.11(a) and 6.11(b) we find some

(M, K 1 , M 2 ) ∈ Ω 1,1,1,1 .
Then we plot w -PP -1 K w and w -P -1 K Pw , where P -1 K denotes P -1 with U(x) replaced by U K (x), as a function of K for the arbitrarily chosen function w(x) = x(x -0.4)(x -1). In this case, K = 5 yields norm error of order ≈ 10 -5 .

Finally, Figures 6.12(a) and 6.12(b) illustrate w(t), PP -1 K w (t) and P -1 K Pw (t). In this chapter we consider boundary stabilization of parabolic PDEs when only a partial knowledge of the state is available. In Chapter 6 we considered controller design using the complete knowledge of the state. However, due to the infinitedimensional nature of PDEs, real-time measurement of the complete state is not possible. Thus, a realistic approach would entail the design of controllers using only the partial knowledge of the state.

P -1 K P w K (b) w -P -1 K Pw Figure 6.
We consider Equations (6.1)-( 6.2) given by

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), x ∈ [0, 1], t ≥ 0, (7.1) 
with boundary conditions

ν 1 w(0, t) + ν 2 w x (0, t) = 0, ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t), (7.2) 
and measurement

y(t) = µ 1 w(1, t) + µ 2 w x (1, t). (7.3) 
As in Chapter 6, the function u(t) ∈ R is the control input. The measurement y(t) ∈ R is also called an output. As in previous chapters, the functions a, b and c are polynomials in x and

a(x) ≥ α > 0, for x ∈ [0, 1]. (7.4)
The scalars ν i , ρ j ∈ R, i, j ∈ {1, 2}, satisfy The method we use is to design an observer with measurement y(t) as inputs such that the state of the observer estimates the state of the system represented by Equations ( 7 

|ν 1 | + |ν 2 | > 0,
(x, t) = a(x) ŵxx (x, t) + b(x) ŵx (x, t) + c(x) ŵ(x, t) + p(x, t), (7.8) 
with boundary conditions

ν 1 ŵ(0, t) + ν 2 ŵx (0, t) = 0, ρ 1 ŵ(1, t) + ρ 2 ŵx (1, t) = q(t) + u(t), (7.9) 
where p(x, t) and q(t) are the inputs to the observer.

We wish to design a controller F : H 2 (0, 1) → R, observer operator O : R → L 2 (0, 1), and scalars O such that if the observer is given by Equations (7.8)-(7.9) with the observer inputs given by

p(x, t) = (O (ŷ(t) -y(t))) (x), q(t) =O (ŷ(t) -y(t)) ,
and the control input is given by

u(t) = F ŵ(•, t),
then the system represented by Equations (7.1)-(7.2) is stable. Here,

ŷ(t) = µ 1 ŵ(1, t) + µ 2 ŵx (1, t).
With the control input u(t) = F ŵ(•, t), the coupled dynamics of the system state w and the observer state ŵ can be written as

w t (x, t) =a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t) ŵt (x, t) =a(x) ŵxx (x, t) + b(x) ŵx (x, t) + c(x) ŵ(x, t) + (O (ŷ(t) -y(t))) (x), (7.10) 
with boundary conditions

ν 1 w(0, t) + ν 2 w x (0, t) = 0, ρ 1 w(1, t) + ρ 2 w x (1, t) = F ŵ(•, t), ν 1 ŵ(0, t) + ν 2 ŵx (0, t) = 0, ρ 1 ŵ(1, t) + ρ 2 ŵx (1, t) = O (ŷ(t) -y(t)) + F ŵ(•, t), (7.11) 
where

y(t) =µ 1 w(1, t) + µ 2 w x (1, t), ŷ(t) = µ 1 ŵ(1, t) + µ 2 ŵx (1, t),
A block-diagram of the coupled dynamics can be found in Figure 7.1.

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), ν 1 w(0, t) + ν 2 w x (0, t) = 0, ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t), y(t) = ω 1 w(1, t) + ω 2 w x (1, t). System ŵt (x, t) = a(x) ŵxx (x, t) + b(x) ŵx (x, t) + c(x) ŵ(x, t), + (O(ŷ(t) -y(t)))(x), ν 1 ŵ(0, t)+ ν 2 ŵx (0, t) = 0, ρ 1 ŵ(1, t)+ ρ 2 ŵx (1, t) = O (ŷ(t) -y(t)) + u(t), ŷ(t) = ω 1 ŵ(1, t) + ω 2 ŵx (1, t).
-+

y(t) O ŷ(t) O + + ŷ(t) -y(t) F ŵ(x, t) u(t) u(t)
Observer Based Controller 

     ẇ(t) ẇ(t)      =      A 0 -OC A + OC           w(t) ŵ(t)      ,      w ŵ     ∈ D,
where the operator A : H 2 (0, 1) → L 2 (0, 1) is defined as

(Az) (x) = a(x)z xx (x) + b(x)z x (x) + c(x)z(x), (7.12) 
the operator C : H 2 (0, 1) → R is defined as

Cz = µ 1 z(1) + µ 2 z x (1),
and the space D is defined as

D =      z ẑ     ∈ H 2 (0, 1) ⊕ H 2 (0, 1) : ν 1      z(0) ẑ(0)      + ν 2      z x (0) ẑx (0)      =      0 0      and ρ 1      z (1) ẑ(1) 
     + ρ 2      z x (1) ẑx (1) 
     =      0 F -OC F + OC           z ẑ     . (7.13) 
Similar to Chapter 6, we make the following assumption for the uniqueness and existence of solutions for the coupled closed loop system. 

p(x, t) = (O (ŷ(t) -y(t))) (x), q(t) =O (ŷ(t) -y(t)) .
Similarly, for any initial condition

     w 0 ŵ0      ∈ L 2 (0, 1) ⊕ L 2 (0, 1)
, there exists a weak solution to Equations (7.10)- (7.11).

For later use, let e = ŵw denote the state estimation error. Then, from Equation (7.11), the boundary conditions for the error variable e can be obtained as ν 1 e(0, t) + ν 2 e x (0, t) = 0 and ρ 1 e(1, t) + ρ 2 e x (1, t) = q(t).

For these boundary conditions, we provide the following definition analogous to Definition 6.2.

Definition 7.2. Given scalars ν 1 , ν 2 , ρ 1 and ρ 2 , we define

{l 1 , l 2 , l 3 } =                  {-ν 1 ν 2 , 0, 1} if ν 1 , ν 2 = 0 {0, 1, 0} if ν 1 = 0, ν 2 = 0 {0, 0, 1} if ν 1 = 0, ν 2 = 0 .
With this definition, the boundary condition at x = 0 given in Equation (7.11) can be represented as e x (0, t) = l 1 e(0, t) + l 2 e x (0, t), e(0) = l 3 e(0, t).

Observer Design

In this section we wish to design observers such that its state estimates the state of the plant to be controlled with an exponentially vanishing error. Then, in the following section, we show that this observer can be coupled to the controllers designed in Theorem 6.4 to produce an exponentially stabilizing observer based boundary controller.

We begin by defining the state estimation error e(x, t) = ŵ(x, t) = w(x, t), the dynamics of which can be obtained from Equations (7. 

(Ry) (x) = R 0 (x)y(x) + x 0 R 1 (x, ξ)y(ξ)dξ + 1 x R 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1),
where

{R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 } = J (N, L 1 , L 2 )
and the linear operator J is defined as follows.

Definition 7.3. We say

{R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 } = J (N, L 1 , L 2 )
if the following hold

R 0 (x) = ∂ ∂x ∂ ∂x (a(x)N(x)) -b(x)N(x) + 2N(x)c(x) - αǫπ 2 2 + 2 ∂ ∂x [a(x) (L 1 (x, ξ) -L 2 (x, ξ))] ξ=x , R 1 (x, ξ) = ∂ ∂x ∂ ∂x [a(x)L 1 (x, ξ)] -b(x)L 1 (x, ξ) + c(x)L 1 (x, ξ) + ∂ ∂ξ ∂ ∂ξ [a(ξ)L 1 (x, ξ)] -b(ξ)L 1 (x, ξ) + c(ξ)L 1 (x, ξ), R 2 (x, ξ) = ∂ ∂x ∂ ∂x [a(x)L 2 (x, ξ)] -b(x)L 2 (x, ξ) + c(x)L 2 (x, ξ) + ∂ ∂ξ ∂ ∂ξ [a(ξ)L 2 (x, ξ)] -b(ξ)L 2 (x, ξ) + c(ξ)L 2 (x, ξ), R 3 (x) = -2l 2 a(0)L 2 (0, x), R 4 = -2l 3 l 1 a(0)N(0) + l 2 3 a x (0)N(0) + a(0)N x (0) -b(0)N(0) + αǫπ 2 2 , R 5 = -2l 3 n 2 a(0)N(0), R 6 (x) = -L 2 (0, x) [2l 1 a(0) + 2l 3 b(0)] + 2l 3 [a x (0)L 2 (0, x) + a(0)L 2,x (0, x)] , R 7 = -a x (1)N(1) -a(1)N x (1) + b(1)N(1), R 8 =2a(1)N(1), R 9 (x) = -2a x (1)L 1 (1, x) -2a(1)L 1,x (1, x) + 2b(1)L 1 (1, x), R 10 (x) =2a(1)L 1 (1, x),
where

L 1,x (1, x) = [L 1,x (x, ξ)| x=1 ] ξ=x , L 2,x (0, x) = [L 2,x (x, ξ)| x=0 ] ξ=x and ǫ > 0 and l i , i ∈ {1, • • • , 3}, are scalars.
We present the following theorem.

Theorem 7.4. Suppose that there exist scalars ǫ, δ > 0 and {N,

L 1 , L 2 } ∈ Ξ d 1 ,d 2 ,ǫ such that {-R 0 -2δN, -R 1 -2δL 1 , -R 2 -2δL 2 } ∈ Ξ d 1 ,d 2 ,0 , R 3 (x) = R 5 = R 6 (x) = 0, R 4 ≤ 0, ,
for all l j , j ∈ {1, • • • , 3} where l j are given by Definition 7.2 and

{R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 } = J (N, L 1 , L 2 ).
Define the operator O := P -1 V where, for any κ ∈ R,

(Vκ)(x) =                  V 1 (x)κ = -1 2µ 1 R 9 (x) + Oµ 1 ρ 2 R 10 (x) κ, ρ 1 = 0, ρ 2 = 0 V 2 (x)κ = -1 2µ 2 Oµ 2 ρ 1 R 9 (x) + R 10 (x) κ, ρ 1 = 0, ρ 2 = 0 V 3 (x)κ = -1 2µ 1 R 9 (x) + Oµ 1 -ρ 1 ρ 2 R 10 (x) κ, ρ 1 = 0, ρ 2 = 0 ,
and O is any scalar that satisfies O < 0 and

O < -ρ 2 R 7 /µ 1 R 8 when ρ 1 = 0, ρ 2 = 0, 1 O < -µ 2 R 7 /ρ 1 R 8 when ρ 1 = 0, ρ 2 = 0, O < ρ 1 /µ 1 -ρ 2 R 7 /µ 1 R 8 when ρ 1 = 0, ρ 2 = 0.
Additionally, (Py) (x) = N(x)y(x)

+ x 0 L 1 (x, ξ)y(ξ)dξ + 1 x L 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1).
Then for any solution ŵ of (7.8)-(7.9) with p(•, t) = O(ŷ(t)y(t)) and q(t) = O(ŷ(t)y(t)) and any solution w of (7.1)-(7.2), there exists a scalar M ≥ 0 such that e(•, t) ≤ e -δt M, t ≥ 0, where e = ŵw and e 0 = ŵ0w 0 and the initial conditions satisfy

     w 0 ŵ0      ∈ D,
for any F : H 2 (0, 1) → R, and the space D is defined in Equation (7.13).

Proof From the condition in Equation (7.5) we have that

|ρ 1 | + |ρ 2 | > 0.
Thus, there are three possible cases:

CASE 1: ρ 1 = 0, ρ 2 = 0, CASE 2: ρ 1 = 0, ρ 2 = 0, CASE 3: ρ 1 = 0, ρ 2 = 0.
For the case when ρ 1 = 0 and ρ 2 = 0, we have that

ρ 2 e x (1, t) = q(t) or e x (1, t) = 1 ρ 2 O(ŷ(t) -y(t)).
From Equation (7.6), when ρ 1 = 0, we have that µ 1 = 0 and µ 2 = 0. Thus ŷ(t)y(t) = µ 1 e(1, t). From the theorem statement, when ρ 1 = 0 and ρ 2 = 0

Thus

O < 0 and O < - ρ 2 R 7 µ 1 R 8 ,
which is well defined as R 8 = 2a(1)N(1) > 0. Thus there exists a scalar ω 1 > 0 such that when ρ 1 = 0 and ρ 2 = 0 for some ω 1 > 0.

R 7 + Oµ 1 ρ 2 R 8 = -ω 1 . (7.22) Additionally (Vκ) (x) = V 1 (x)κ = - 1 2µ 1 R 9 (x) + Oµ 1 ρ 2 R 10 (x) κ, for any κ ∈ R. Thus 2µ 1 e(•, t), Ve(1, t) = -e(1, t) 1 0 R 9 (x) + Oµ 1 ρ 2 R 10 (x) e(x,
For the case when ρ 1 = 0 and ρ 2 = 0, we have that

ρ 1 e(1, t) = q(t), or e(1, t) = 1 ρ 1 O(ŷ(t) -y(t)).
From Equation (7.6), when ρ 1 = 0 and ρ 2 = 0, µ 1 = 0 and µ 2 = 0. Thus, ŷ(t)y(t) = µ 2 e x (1, t).

Thus,

e(1, t) = Oµ 2 ρ 1 e x (1, t), (7.25) 
and

e x (1, t) = ρ 1 Oµ 2 e(1, t), (7.26) 
which is well defined since for this case O = 0. Moreover From the theorem statement, when ρ 1 = 0 and ρ 2 = 0

(V(ŷ(t) -y(t))) (x) = µ 2 (Ve x (1, t)) (x). ( 7 
O < 0 and 1 O < - µ 2 ρ 1 R 7 R 8 
Thus, there exists a scalar ω 2 > 0 such that when ρ 1 = 0 and ρ 2 = 0 for some ω 2 > 0.

R 7 + ρ 1 Oµ 2 R 8 = -ω 2 , ( 7 
For the case when ρ 1 = 0 and ρ 2 = 0, we have that

ρ 1 e(1, t) + ρ 2 e x (1, t) = q(t), or e x (1, t) = 1 ρ 2 O(ŷ(t) -y(t)) - ρ 1 ρ 2 e(1, t).
From Equation (7.6), when ρ 1 = 0 and ρ 2 = 0, µ 1 = 0 and µ 2 = 0. Thus, ŷ(t)y(t) = µ 1 e(1, t).

Thus, From the theorem statement, when ρ 1 = 0 and ρ 2 = 0,

e x (1, t) = Oµ 1 -ρ 1 ρ 2 e(1, t). (7.33) Moreover (V(ŷ(t) -y(t))) (x) = µ 1 (Ve(1, t)) (x). ( 7 
O < 0 and O < ρ 1 µ 1 - ρ 2 R 7 µ 1 R 8 ,
which is well defined as R 8 = 2a(1)N(1) > 0. Thus, there exists a scalar ω 3 > 0 such that

R 7 + Oµ 1 -ρ 1 ρ 2 R 8 = -ω 3 . (7.36) Additionally, (Vκ) (x) = V 3 (x)κ = - 1 2µ 1 R 9 (x) + Oµ 1 -ρ 1 ρ 2 R 10 (x) κ,
for any κ ∈ R. Thus, 2µ 1 e(•, t), Ve(1, t) = -e(1, t) when ρ 1 = 0 and ρ 2 = 0 for some ω 3 > 0.

1 0 R 9 (x) + Oµ 1 -ρ 1 ρ 2 R 10 (x) e(x,
From Equations (7.24), (7.32) and (7.38) we conclude that for any ρ 1 , ρ 2 ∈ R which satisfy

|ρ 1 | + |ρ 2 | > 0, there exists scalars ω 1 , ω 2 , ω 3 > 0 such that d dt V (e(•, t)) ≤ e(•, t), Re(•, t) -ωe(1, t) 2 , (7.39) 
where ω = min{ω 1 , ω 2 , ω 3 }.

Since ω > 0, we conclude that

d dt V (e(•, t)) ≤ e(•, t), Re(•, t) . (7.40)
From the theorem statement we have that Setting M = e 0 , Pe 0 ǫ completes the proof.

{-R 0 -2δN, -R 1 -2δL 1 , -R 2 -2δL 2 } ∈ Ξ d 1 ,

Exponentially Stabilizing Observer Based Boundary Control

We now prove that the observer designed in Theorem 7.4 can be coupled to the controlled designed in Theorem 6.4 to produce an exponentially stabilizing observer based feedback controller. This is known as the separation principle [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF].

Theorem 7.5. Suppose that there exist scalars ǫ, δ c , δ o > 0, {M,

K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ and {N, L 1 , L 2 } ∈ Ξ d 1 ,d 2 ,ǫ , such that {-T 0 -2δ c M, -T 1 -2δ c K 1 , -T 2 -2δ c K 2 } ∈ Ξ d 1 ,d 2 ,0 , {-R 0 -2δ o N, -R 1 -2δ o L 1 , -R 2 -2δ o L 2 } ∈ Ξ d 1 ,d 2 ,0 , T 3 ≤ 0, T 4 (x) = T 5 (x) = T 6 (x) = 0, R 4 ≤ 0, R 3 (x) = R 5 = R 6 (x) = 0,
for all l j , j ∈ {1, • • • , 3} where l j are given by Definition 7.2 and for all m j , j ∈ {1, • • • , 3} where m j are given by Definition 6.2. Here,

{T 0 , T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 } =N (M, K 1 , K 2 ), {R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 } =J (N, L 1 , L 2 ).
Define the operator

F := ZP -1 c
where, for any y ∈ H 2 (0, 1),

Zy =                  Z 1 y(1) + 1 0 Z 2 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 Z 3 y x (1) + 1 0 Z 4 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 Z 5 y(1) + 1 0 Z 6 (x)y(x)dx ρ 1 = 0, ρ 2 = 0 .
Here, Z 1 , Z 3 and Z 5 are any scalars that satisfy

Z 1 < 0 and Z 1 < - ρ 2 2a(1) (T 7 -2a(1)M x (1)) , Z 3 < 0 and 1 Z 3 < - 1 ρ 1 M(1) T 7 T 8 , Z 5 < 0 and Z 5 < - ρ 2 2a(1) T 7 - ρ 1 ρ 2 T 8 -2a(1)M x (1) ,
and polynomials Z 2 (x), Z 4 (x) and Z 6 (x) are defined as

Z 2 (x) = ρ 2 K 1,x (1, x), Z 4 (x) = ρ 1 K 1 (1, x), Z 6 (x) = ρ 2 ρ 1 ρ 2 K 1 (1, x) + K 1,x (1, x) .
Additionally, define the operator O := P -1 o V where, for any κ ∈ R,

(Vκ)(x) =                  V 1 (x)κ = -1 2µ 1 R 9 (x) + Oµ 1 ρ 2 R 10 (x) κ, ρ 1 = 0, ρ 2 = 0 V 2 (x)κ = -1 2µ 2 Oµ 2 ρ 1 R 9 (x) + R 10 (x) κ, ρ 1 = 0, ρ 2 = 0 V 3 (x)κ = -1 2µ 1 R 9 (x) + Oµ 1 -ρ 1 ρ 2 R 10 (x) κ, ρ 1 = 0, ρ 2 = 0 ,
and O is any scalar that satisfies O < 0 and

O < -ρ 2 R 7 /µ 1 R 8 when ρ 1 = 0, ρ 2 = 0, 1 O < -µ 2 R 7 /ρ 1 R 8 when ρ 1 = 0, ρ 2 = 0, O < ρ 1 /µ 1 -ρ 2 R 7 /µ 1 R 8 when ρ 1 = 0, ρ 2 = 0.
Moreover, for any y ∈ L 2 (0, 1),

(P c y) (x) =M(x)y(x) + x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ, (P o y) (x) =N(x)y(x) + x 0 L 1 (x, ξ)y(ξ)dξ + 1 x L 2 (x, ξ)y(ξ)dξ.
Then, for any solution w of (7. Now recall the dynamics of the observer given by ŵt (x, t) = a(x) ŵxx (x, t) + b(x) ŵx (x, t) + c(x) ŵ(x, t) + p(x, t), (7.42)

ν 1 ŵ(0, t) + ν 2 ŵx (0, t) = 0, ρ 1 ŵ(1, t) + ρ 2 ŵx (1, t) = q(t) + u(t). (7.43)
For the observer, consider the following Lyapunov function

V c ( ŵ(•, t)) = ŵ(•, t), P -1 c ŵ(•, t) .
Taking the time derivative along trajectories of the system, we have

d dt V c ( ŵ(•, t)) = A ŵ(•, t), P -1 c ŵ(•, t) + P -1 c ŵ(•, t), A ŵ(•, t) + 2 P -1 c ŵ(•, t), p(•, t) ,
where we have used the fact that

P c = P ⋆ c implies P -1 c = (P ⋆ c ) -1 . Now let ẑ = P -1 c ŵ. Then d dt V c ( ŵ(•, t)) = AP c P -1 c ŵ(•, t), P -1 c ŵ(•, t) + P -1 c ŵ(•, t), AP c P -1 c ŵ(•, t) + 2 P -1 c ŵ(•, t), p(•, t) = AP c ẑ(•, t), ẑ(•, t) + ẑ(•, t), AP c ẑ(•, t) + 2 ẑ(•, t), p(•, t) .
From Corollary B.7,

d dt V c ( ŵ(•, t)) ≤ ẑ(•, t), T ẑ(•, t) + 2 ẑ(•, t), p(•, t) + ẑ(0, t) T 3 ẑ(0, t) + 1 0 T 4 (x)ẑ(x, t)dx + ẑx (0, t) 1 0 T 5 (x)ẑ(x, t)dx + 1 0 1 M(0) T 6 (x)ẑ(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 ẑ(0, t) + 1 0 1 M(0) T 6 (x)ẑ(x, t)dx 1 0 αǫπ 2 ẑ(x, t)dx + ẑ(1, t) (T 7 ẑ(1, t) + T 8 ẑx (1, t)) .
From the theorem statement we have that T 4 (x) = T 5 (x) = T 6 (x) = 0 and T 3 ≤ 0, therefore

d dt V c ( ŵ(•, t)) ≤ ẑ(•, t), T ẑ(•, t) + 2 ẑ(•, t), p(•, t) + ẑ(1, t) (T 7 ẑ(1, t) + T 8 ẑx (1, t)) . (7.44)
Now, from the theorem statement u(t) = F ŵ(•, t) and F = ZP -1 c , which implies F P c = Z. Therefore

u(t) = F ŵ(•, t) = F P c P -1 c ŵ(•, t) = Z ẑ(•, t).
Thus, using (7.43), the boundary condition at x = 1 can be written as

ρ 1 ŵ(1, t) + ρ 2 ŵx (1, t) = u(t) + q(t) = Z ẑ(•, t) + q(t).
Using the definition of the operator Z from the theorem statement and applying the analysis presented in Theorem 6.4 and Equation (6.14), there exists a scalar ζ > 0 such that Equation (7.44) reduces to

d dt V c ( ŵ(•, t)) ≤ ẑ(•, t), T ẑ(•, t) -ζ ẑ(1, t) 2 + 2 ẑ(•, t), p(•, t) + 2ẑ(1, t)hq(t), (7.45) 
where 

h =                  2a(1)/ρ 2 , ρ 1 = 0, ρ 2 = 0, -T 8 /2Z 3 , ρ 1 = 0, ρ 2 = 0, 2a ( 
O = P -1 o V. Therefore, p(x, t) = P -1 o V (ŷ(t) -y(t)) (x).
Thus, using the analysis presented in Theorem 7.4 it can be established that

ẑ(•, t), p(•, t) = e(1, t) 1 0 W (x)ẑ(x, t)dx, (7.47) 
where

W (x) =                  µ 1 (P -1 o V 1 ) (x), ρ 1 = 0, ρ 2 = 0, (ρ 1 /O) (P -1 o V 2 ) (x), ρ 1 = 0, ρ 2 = 0, µ 1 (P -1 o V 3 ) (x), ρ 1 = 0, ρ 2 = 0 , (7.48) 
where polynomials V 1 (x), V 2 (x) and V 3 (x) are defined in the theorem statement.

Similarly, by definition q(t) = O (ŷ(t)y(t)). Thus, using the analysis presented in Theorem 7.4 it can be established that ẑ(1, t)hq(t) = ẑ(1, t)ge(1, t), (7.49) where

g =                  hOµ 1 , ρ 1 = 0, ρ 2 = 0, hρ 1 , ρ 1 = 0, ρ 2 = 0, hOµ 1 , ρ 1 = 0, ρ 2 = 0, , (7.50) 
and h is defined in (7.46).

Substituting Equations (7.47) and (7.49) into (7.45) produces

d dt V c ( ŵ(•, t)) ≤ ẑ(•, t), T ẑ(•, t) -ζ ẑ(1, t) 2 + 2e(1, t) 1 0 W (x)ẑ(x, t)dx + 2ẑ(1, t)ge(1, t), (7.51)
From Equations (7.41) and (7.51) we conclude that for any scalar A > 0,

A d dt V o (e(•, t)) + d dt V c ( ŵ(•, t)) ≤ A e(•, t), Re(•, t) -Aωe(1, t) 2 + ẑ(•, t), T ẑ(•, t) -ζ ẑ(1, t) 2 + 2e(1, t) 1 0 W (x)ẑ(x, t)dx + 2ẑ(1, t)ge(1, t), (7.52) 
where ζ, ω > 0.

Let us define the operator W : L 2 (0, 1) → L 2 (0, 1) as (Wy) (x) = W (x)y(x), for any y ∈ L 2 (0, 1). Thus, we get e(1, t)

1 0 W (x)ẑ(x, t)dx = e(1, t), W ẑ(•, t .
Substituting into Equation (7.52) and rearranging

A d dt V o (e(•, t)) + d dt V c ( ŵ(•, t)) ≤ A e(•, t), Re(•, t) +           ẑ(•, t) ẑ(1, t) e(1, t)           ,           T 0 W 0 -ζI gI W gI -AωI                     ẑ(•, t) ẑ(1, t) e(1, t)           , (7. 53 
)
where I is the identity operator and the inner product is defined on L 2 (0, 1)⊕L 2 (0, 1)⊕ L 2 (0, 1). Now, for any 0 < θ < δ c , consider the following operator on L 2 (0, 1)⊕L 2 (0, 1)⊕

L 2 (0, 1)           T + 2(δ c -θ)P c 0 W 0 -ζI gI W gI -AωI           . (7.54)
We can choose the scalar A > 0 large enough so that the operator

     -ζI gI gI -AωI      < 0 on L 2 (0, 1) ⊕ L 2 (0, 1)
. Therefore, we may apply Schur complements to conclude that the operator in Equation (7.54) is negative definite if and only if

T + 2(δ c -θ)P c + ζ Ŵ Aω -g 2 I < 0 on L 2 (0, 1), where Ŵ = sup x∈[0,1] W (x) 2 . From the theorem statement {-T 0 -2δ c M, -T 1 -2δ c K 1 , -T 2 -2δ c K 2 } ∈ Ξ d 1 ,d 2 ,0 .
Therefore, T + 2δ c P c ≤ 0 and

T + 2(δ c -θ)P c + ζ Ŵ Aω -g 2 I ≤ -2θP c + ζ Ŵ Aω -g 2 I.
Moreover, from the theorem statement we have that {M,

K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ . Thus, P c ≥ ǫI. Hence T + 2(δ c -θ)P c + ζ Ŵ Aω -g 2 I ≤ -2θP c + ζ Ŵ Aω -g 2 I ≤ -2θǫ + ζ Ŵ Aω -g 2 I,
which, for a large enough A > 0 is negative definite on L 2 (0, 1). Therefore, the operator defined in Equation (7.54) is negative definite, and thus

          T 0 W 0 -ζI gI W gI -AωI           ≤           -2(δ c -θ)P c 0 0 ⋆ 0 0 ⋆ ⋆ 0           .
Substituting into Equation (7.53)

A d dt V o (e(•, t)) + d dt V c ( ŵ(•, t)) ≤ A e(•, t), Re(•, t) -2(δ c -θ) P c ẑ(•, t), ẑ(•, t) . Since {-R 0 -2δ o N, -R 1 -2δ o L 1 , -R 2 -2δ o L 2 } ∈ Ξ d 1 ,d 2 ,0 , we have that R ≤ -2δ o P o . Thus A d dt V o (e(•, t)) + d dt V c ( ŵ(•, t)) ≤ -2Aδ o P o e(•, t), e(•, t) -2(δ c -θ) P c ẑ(•, t), ẑ(•, t) ≤ -2δ (AV o (e(•, t)) + V c ( ŵ(•, t))) , (7.55) 
where δ = min{δ o , δ c -θ}. Note that since 0 < θ < δ c , δ > 0. Moreover, since the presented arguments are for any arbitrary 0 < θ < δ c , we conclude that (7.55) holds for any 0 < δ < min{δ c , δ o }.

Integrating Equation (7.55) in time yields

AV o (e(•, t)) + V c ( ŵ(•, t)) ≤ e -2δt (AV o (e 0 ) + V c ( ŵ0 ))
,

where e 0 = e(x, 0) and ŵ0 = ŵ(x, 0).

Using the analysis presented in Theorems 5.8 and 6.4, we have that

e(•, t) 2 ≤ 1 ǫ V o (e(•, t)), ŵ(•, t) 2 ≤ P c 2 L ǫ V c ( ŵ(•, t)).
Thus, Substituting Equation (7.56) produces,

Aǫ e(•, t) 2 + ǫ P c -2 L ŵ(•, t) ≤ e -2δt (AV o (e 0 ) + V c ( ŵ0 )) , which in turn implies e(•, t) ≤ 1 √ Aǫ e -δt AV o (e 0 ) + V c ( ŵ0 ), ŵ(•, t) ≤ P c L √ ǫ e -δt AV o (e 0 ) + V c ( ŵ0 ). ( 7 
w(•, t) ≤ e -δt 1 √ Aǫ + P c L √ ǫ AV o (e 0 ) + V c ( ŵ0 ). Setting M = 1 √ Aǫ + P c L √ ǫ AV o (e 0 ) + V c ( ŵ0 )
completes the proof.

Numerical Results.

To illustrate the effectiveness of the output feedback controller synthesis, we construct exponentially stabilizing boundary controllers for the PDEs considered in Chapter 6. We consider the following two parabolic PDEs:

w t (x, t) =w xx (x, t) + λw(x, t), and (7.57)

w t (x, t) = x 3 -x 2 + 2 w xx (x, t) + 3x 2 -2x w x (x, t)
+ -0.5x 3 + 1.3x 2 -1.5x + 0.7 + λ w(x, t), (7.58) where λ is a scalar which may be chosen freely. We consider the following boundary conditions and outputs (y(t)) for these two equations: Similarly Table 7.2 and Figure 7.3 illustrate the maximum λ for which we can construct an exponentially stabilizing output feedback controller for Equation (7.58) using the analysis presented in Theorem 7.5.

Dirichlet: = w(0) = 0, w(1) = u(t), y(t) = w x (1), ( 7 
Similar to state feedback controller synthesis, from these results it is obvious that the conjecture that the proposed methodology can synthesize output feedback controllers for any controllable and observable class of PDE that we consider still holds. Additionally, the conditions of Theorem 7.5 are quite similar to the conditions of Theorem 6.4. Therefore, we infer that the inclusion of the integral kernels K 1 , K 2 , L 1 and L 2 (in Thm. 7.5) is vital.

Finally, we provide a numerical simulation of Equation (7.58) for λ = 35 and mixed boundary conditions while being acted upon the output feedback controller 

CONTROL AND VERIFICATION OF THE SAFETY FACTOR PROFILE IN TOKAMAKS

The instabilities in a tokamak plasma described by the Magneto-Hydrodynamic-Dynamic (MHD) models are known as MHD instabilities. MHD instabilities arise due to current gradients and pressure gradients interacting with the magnetic field line curvature [START_REF] Wesson | Tokamaks[END_REF].

A common heuristic for setting operating conditions that avoid MHD instabilities is the safety factor profile, or the q-profile [START_REF] Moreau | A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET[END_REF]. Additionally, in [START_REF] Eriksson | Discharges in the JET tokamak where the safety factor profile is identified as the critical factor for triggering internal transport barriers[END_REF], it has been shown that the safety factor profile is important in triggering Internal Transport Barriers (ITBs) which significantly improve energy confinement. The q-profile the the magnetic filed line pitch, that is, the number of revolutions a magnetic field line makes in the poloidal field while traversing a complete revolution in the toroidal plane. Recall the definition of the q-profile, presented in Equation (4.5),

q(x, t) = - B φ 0 a 2 x Z(x, t) , (8.1) 
where 3B φ 0 = toroidal magnetic field at the plasma center, a = loation of the last close magnetic surface,

x = normalized spatial variable, t = temporal varable, Z(x, t) = ψ x (x, t) = gradient of the poloidal magnetic flux, and ψ(x, t) = poloidal magnetic flux.

From Equation (8.1), it is evident that to control the q-profile, we may control the gradient of the poloidal magnetic flux Z.

Simplified Model of the Gradient of Poloidal Flux

Recall the evolution equation of Z presented in Chapter 4 obtained by neglecting the diamagnetic effect and applying cylindrical approximation as

∂Z ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x, t) x ∂ ∂x (xZ(x, t)) + R 0 ∂ ∂x η (x, t)j ni (x, t) , (8.2) 
with boundary conditions

Z(0, t) = 0 and Z(1, t) = -R 0 µ 0 I p (t)/2π, (8.3) 
where η = parallel resistivity, j ni = non-inductive effective current density,

I p = total plasma current,
R 0 = location of magnetic center, and µ 0 = permeability of free space.

For this model, we consider the plasma resistivity η (x, t) to be static, thus η (x, t) = η (x). Additionally, the averaged value of the bootsrap current density j bs (x, t) = jbs (x) is considered. For the external non-inductive current density source j eni , we consider only the Lower Hybrid Current Density (LHCD) source j lh . Finally, the plasma current I p is considered to be constant. Thus, since, j ni (x, t) = j bs (x, t) + j eni (x, t), we obtain

j ni (x, t) = jbs (x) + j lh (x, t).
Substituting into Equation (8.2) and using the steady plasma resistivity η (x) and a constant I p , we obtain

∂Z ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x) x ∂ ∂x (xZ(x, t)) + R 0 ∂ ∂x η (x) [ jbs (x) + j lh (x, t)] , (8.4) 
with boundary conditions

Z(0, t) = 0 and Z(1, t) = -R 0 µ 0 I p /2π. (8.5) 
Suppose we want to regulate q(x, t) to a desired steady state q ref (x). Let Z ref (x) be the associated gradient of the poloidal magnetic flux obtained using Equation (8.1). Then, since Z ref (x) satisfies Equations (8.4)-(8.5), we obtain

∂Z ref ∂t (x) = 0 = 1 µ 0 a 2 ∂ ∂x η (x) x ∂ ∂x (xZ ref (x)) + R 0 ∂ ∂x η (x) jbs (x) , (8.6) 
with boundary conditions

Z ref (0) = 0 and Z ref (1) = -R 0 µ 0 I p /2π. (8.7) Subtracting Equations (8.6)-(8.7) from Equations (8.4)-(8.5) produces ∂ 
Ẑ ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x) x ∂ ∂x x Ẑ(x, t) + R 0 ∂ ∂x η (x)j lh (x, t) , (8.8) 
with boundary conditions Ẑ(0, t) = 0 and Ẑ(1, t) = 0, (

where

Ẑ(x, t) = Z(x, t) -Z ref (x) (8.10)
is the error variable which must be regulated to zero.

Uniqueness and Existence of Solutions.

To regulate the error variable Ẑ to zero, we will be constructing state feedback controllers of the form

j lh (x, t) = K 1 (x) Ẑ(x, t) + ∂ ∂x K 2 (x) Ẑ(x, t) , (8.11) 
where K 1 and K 2 are rational functions.

To establish the uniqueness and existence of solutions for Equations (8.8)-(8.9)

with j lh given in Equation (8.11), we will follow the procedure presented in Section 5.1.

We begin by placing the following assumption.

Assumption 8.1. The functions

η (x) x + η ,x (x) and xη ,x (x) -η (x) x 2 are continuous for x ∈ [0, 1].
Lemma 8.2. Suppose there exists a rational function K 2 such that

η (x) 1 µ 0 a 2 + R 0 K 2 (x) > 0, x ∈ [0, 1].
Then, for any initial condition Ẑ0 ∈ D T , where

D T = {y ∈ H 2 (0, 1) : y(0) = y(1) = 0, } (8.12) 
there exists a classical solution Ẑ(•, t) ∈ D T , t > 0, for Equations (8.8)-(8.9) with control given in Equation (8.11) with any rational function K 1 .

Similarly, for any initial condition Ẑ0 ∈ L 2 (0, 1), there exists a weak solution

Ẑ(•, t) ∈ L 2 (0, 1), t > 0.
Proof. By substituting Equation (8.11) into Equation (8.8), we obtain

∂ Ẑ ∂t (x, t) = a(x) Ẑxx (x, t) + b(x) Ẑx (x, t) + c(x) Ẑ(x, t), (8.13) 
with boundary conditions Ẑ(0, t) = 0 and Ẑ(1, t) = 0, (

where

a(x) =η (x) 1 µ 0 a 2 + R 0 K 2 (x) , b(x) = 1 µ 0 a 2 η (x) x + η ,x (x) + R 0 η (x) (K 1 (x) + 2K 2,x (x)) + η ,x (x)K 2 (x) , c(x) = 1 µ 0 a 2 xη ,x (x) -η (x) x 2 + R 0 η (x) (K 1,x (x) + K 2,xx (x)) + R 0 η ,x (x) (K 1 (x) + K 2,x (x)) .
For Equations (8.13)-(8.14), we define the following first order differential form

Ż(t) = A T Ẑ(t), (8.15) 
where the operator A T : H 2 (0, 1) → L 2 (0, 1) is defined as

(A T y) (x) = a(x)y xx (x) + b(x)y x (x) + c(x)y(x), y ∈ H 2 (0, 1). ( 8.16) 
From the theorem statement, a(x) > 0 for all x ∈ [0, 1]. Moreover, from Assumption 8.1, the functions b(x) and c(x) are continuous. Thus, if we define

p(x) = e x 0 b (ξ) a(ξ) dξ , q(x) = -c(x) p(x) a(x) , σ(x) = p(x) a(x) 
, it follows that, for any y ∈ D T ,

-A T y = 1 σ(x) Sy,
where S is the Sturm-Liouville operator defined as

(Sy) (x) = - d dx p(x) dy(x) dx + q(x)y(x), y ∈ D T .
Therefore, similar to the analysis presented in Lemma 5.4, it can be established that the pair (A T , D T ) generates a C 0 -semigroup S(t) on L 2 (0, 1). Thus, from Theorem A.3, for any initial condition Ẑ0 ∈ D T , Equations (8.13)-(8.14) have a classical solution given by Ẑ(x, t) = S(t) Ẑ0 (x). (8.17)

From Corollary A.4, for any Ẑ0 ∈ L 2 (0, 1), (8.17) is the unique weak solution of (8.13)-(8.14).

Control Design

As explained before, we wish to design control j lh of the form presented in Equation (8.11) such that Z → Z ref .

As in previous chapters, we will use sum-ofsquares polynomials.

We present the following theorem.

Theorem 8.3. Suppose there exist polynomials M(x), Z 1 (x) and Z 2 (x) and scalars ǫ, α such that, for all x ∈ [0, 1],

M(x) ≥ǫ, 1 µ 0 a 2 (B 1 M) (x) + (B 2 Z 1 ) (x) + (B 3 Z 2 ) (x) + αf (x)M(x) <0, C 1 µ 0 a 2 M + Z 2 (x) <0,
where B i , i ∈ {1, 2, 3}, and C are defined as

(B 1 y) (x) = -f x (x) η (x) x + 1 2 d dx f (x) η (x) x + f x (x)η (x) y(x) + 1 2 f x (x)η (x) + f (x) η (x) x + d dx f (x)η (x) dy(x) dx + 1 2 f (x)η (x) d 2 y(x) dx 2 , y ∈ H 2 (0, 1), (B 2 y) (x) = 1 2 f x (x)y(x) - 1 2 f (x) dy(x) dx , y ∈ H 1 (0, 1), (B 3 y) (x) = 1 2 d dx (f x (x)η (x))y(x) + 1 2 -f x (x)η (x) + d dx f (x)η (x) dy(x) dx + 1 2 f (x)η (x) d 2 y(x) dx 2 , y ∈ H 2 (0, 1), (Cy) (x) = -η (x)y(x), y ∈ L 2 (0, 1), f (x) =x 2 (1 -x). Let K 1 (x) = R -1 0 η (x) -1 M(x) -1 Z 1 (x), K 2 (x) = R -1 0 M(x) -1 Z 2 (x).
Then, with

j lh (x, t) = K 1 (x) Ẑ(x, t) + ∂ ∂x K 2 (x) Ẑ(x, t) ,
for any initial condition Z 0 ∈ D T (L 2 (0, 1)) and a desired reference profile Z ref ∈ D T (L 2 (0, 1)), there exists a scalar κ ≥ 0 such that

Z(•, t) -Z ref (•) L f 2 (0,1) ≤ κe -αt , t > 0,
where, for any y ∈ L 2 (0, 1),

y L f 2 (0,1) = 1 0 f (x)y(x) 2 dx 1 2
.

Proof. We begin by recalling the evolution equation for Ẑ = Z -Z ref presented in Equation (

Ẑ ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x) x ∂ ∂x x Ẑ(x, t) + R 0 ∂ ∂x η (x)j lh (x, t) , 8.8)-(8.9) as ∂ 
with boundary conditions Ẑ(0, t) = 0 and Ẑ(1, t) = 0. (

From the theorem statement, for all x ∈ [0, 1],

C 1 µ 0 a 2 M + Z 2 (x) < 0.
Using the definition of C and K 2 (x), we obtain that

-M(x)η (x) 1 µ 0 a 2 + R 0 K 2 (x) < 0.
Since M(x) > 0, we conclude that, for all x ∈ [0, 1],

η (x) 1 µ 0 a 2 + R 0 K 2 (x) > 0.
Therefore, from Lemma 8.2, if Z 0 , Z ref ∈ D T (L 2 (0, 1)), and consequently, Ẑ ∈ D T (L 2 (0, 1)), Equations (8.18)-(8. [START_REF] Lazarus | Higher fusion power gain with current and pressure profile control in strongly shaped DIII-D tokamak plasmas[END_REF]) have a classical (weak) solution.

With the uniqueness and existence of solutions to Equations (8.18)-(8.19) established, let us define the following Lyapunov function

V ( Ẑ(•, t)) = 1 0 f (x)M(x) -1 Ẑ(x, t) 2 dx.
Taking the derivative along the trajectories of (8.18)- (8.19),

V ( Ẑ(•, t)) =2 1 0 f (x)M(x) -1 Ẑ(x, t) Ẑt (x, t)dx = 2 µ 0 a 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x η (x) x ∂ ∂x x Ẑ(x, t) dx + 2 1 0 f (x)M(x) -1 Ẑ(x, t) R 0 ∂ ∂x η (x)j lh (x, t) dx
Substituting in

j lh (x, t) = K 1 (x) Ẑ(x, t) + ∂ ∂x K 2 (x) Ẑ(x, t) produces V ( Ẑ(•, t)) = 2 µ 0 a 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x η (x) x ∂ ∂x x Ẑ(x, t) dx + 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x R 0 η (x)K 1 (x) Ẑ(x, t) dx + 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x η (x) ∂ ∂x R 0 K 2 (x) Ẑ(x, t) dx.
Since,

K 1 (x) = R -1 0 η (x) -1 M(x) -1 Z 1 (x), K 2 (x) = R -1 0 M(x) -1 Z 2 (x),
we have that

V ( Ẑ(•, t)) = 2 µ 0 a 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x η (x) x ∂ ∂x x Ẑ(x, t) dx + 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x Z 1 (x)M(x) -1 Ẑ(x, t) dx + 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x η (x) ∂ ∂x Z 2 (x)M(x) -1 Ẑ(x, t) dx.
We can write

V ( Ẑ(•, t)) = 2 µ 0 a 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x η (x) x ∂ ∂x xM(x)M(x) -1 Ẑ(x, t) dx + 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x Z 1 (x)M(x) -1 Ẑ(x, t) dx + 2 1 0 f (x)M(x) -1 Ẑ(x, t) ∂ ∂x η (x) ∂ ∂x Z 2 (x)M(x) -1 Ẑ(x, t) dx.
If we define

Y (x, t) = M(x) -1 Ẑ(x, t), we get V ( Ẑ(•, t)) = 2 µ 0 a 2 1 0 f (x)Y (x, t) ∂ ∂x η (x) x ∂ ∂x (xM(x)Y (x, t)) dx + 2 1 0 f (x)Y (x, t) ∂ ∂x (Z 1 (x)Y (x, t)) dx + 2 1 0 f (x)Y (x, t) ∂ ∂x η (x) ∂ ∂x (Z 2 (x)Y (x, t)) dx.
Thus, we can write

V ( Ẑ(•, t)) = 2 µ 0 a 2 V1 ( Ẑ(•, t)) + 2 V2 ( Ẑ(•, t)) + 2 V3 ( Ẑ(•, t)), (8.20) 
where

V1 ( Ẑ(•, t)) = 1 0 f (x)Y (x, t) ∂ ∂x η (x) x ∂ ∂x (xM(x)Y (x, t)) dx, V2 ( Ẑ(•, t)) = 1 0 f (x)Y (x, t) ∂ ∂x (Z 1 (x)Y (x, t)) dx, V3 ( Ẑ(•, t)) = 1 0 f (x)Y (x, t) ∂ ∂x η (x) ∂ ∂x (Z 2 (x)Y (x, t)) dx.
Before simplifying these terms using integration by parts, we would like to comment that since Y (x, t) = M(x) -1 Ẑ(x, t), from (8.19), we obtain that

Y (0, t) = 0 and Y (1, t) = 0. ( 8.21) 
Applying integration by parts twice and using (8.21) produces

V1 ( Ẑ(•, t)) = 1 0 Y (x, t) 2 (B 1 M) (x)dx + 1 0 Y x (x, t) 2 f (x) (CM) (x)dx. (8.22) 
Applying integration by parts once,

V2 ( Ẑ(•, t)) = 1 0 Y (x, t) 2 (B 2 Z 1 ) (x)dx. (8.23) 
Finally, applying integration by parts twice produces

V3 ( Ẑ(•, t)) = 1 0 Y (x, t) 2 (B 3 Z 2 ) (x)dx + 1 0 Y x (x, t) 2 f (x) (CZ 2 ) (x)dx.. (8.24) 
Substituting Equations (8.22)-(8.24) into (8.20) produces

V ( Ẑ(•, t)) =2 1 0 Y (x, t) 2 1 µ 0 a 2 (B 1 M) (x) + (B 2 Z 1 ) (x) (B 3 Z 2 ) (x) dx + 2 1 0 Y x (x, t) 2 f (x)C 1 µ 0 a 2 M + Z 2 (x) dx. Now V ( Ẑ(•, t)) = 1 0 f (x)M(x) -1 Ẑ(x, t) 2 dx = 1 0 f (x)M(x)Y (x, t) 2 dx. Thus V ( Ẑ(•, t)) + 2αV ( Ẑ(•, t)) = 2 1 0 Y (x, t) 2 1 µ 0 a 2 (B 1 M) (x) + (B 2 Z 1 ) (x) (B 3 Z 2 ) (x) + αf (x)M(x) dx + 2 1 0 Y x (x, t) 2 f (x)C 1 µ 0 a 2 M + Z 2 (x) dx. (8.25) 
Since, from the theorem statement, for all x ∈ [0, 1],

1 µ 0 a 2 (B 1 M) (x) + (B 2 Z 1 ) (x) (B 3 Z 2 ) (x) + αf (x)M(x) <0, C 1 µ 0 a 2 M + Z 2 (x) <0, and f (x) ≥ 0, from Equation (8.25) V ( Ẑ(•, t)) ≤ -2αV ( Ẑ(•, t)).
Thus, integrating in time

V ( Ẑ(•, t)) ≤ e -2αt V ( Ẑ0 ) = e -2αt V (Z 0 -Z ref ). (8.26) 
Using the fact that M(x) ≥ ǫ > 0, thus

Z(•, t) -Z ref (•) 2 L f 2 (0,1) ≤ 1 inf x∈[0,1] M(x) e -2αt V (Z 0 -Z ref ).
Taking the square root and setting

κ = V (Z 0 -Z ref ) inf x∈[0,1] M(x) ,
completes the proof.

Numerical Simulation

We test the conditions of Theorem 8.3 using SOSTOOLS. Once we obtain polynomials M(x), Z 1 (x) and Z 2 (x), and designed a controller, we would like to simulate the dynamics under realistic operating conditions. For this we discretize the error dynamics given by Equations (8.8)-(8.9) with control given by Equation (8.11).

However, unlike Chapters 5-7, a simple finite-difference scheme cannot be applied to disctretize the system dynamics. This is due to the fact that the coefficients of the PDE in question have a singularity at x = 0. This problem may be overcome by modifying the finite difference scheme as explained in [START_REF] Gahlawat | Control and verification of the safetyfactor profile in tokamaks using sum-of-squares polynomials[END_REF].

For the purpose of simulation, the following values are taken from the data of the Tore Supra tokamak: I p = 0.6MA and B φ 0 = 1.9T , where I p is the plasma current and B φ 0 is the toroidal magnetic field at the plasma center.

Given a q ref -profile, the corresponding Z ref -profile can be computed using In order to contain plasma, a tokamak uses a helical magnetic field which is generated due to the superposition of toroidal and poloidal magnetic fields. The toroidal magnetic field is generated using powerful external electromagnets, whereas, the poloidal magnetic field is generated by the plasma current I p . A major fraction of I p comes from the current induced by the central ohmic coil using transformer effect.

Other sources of I p are the external non-inductive sources of Lower Hybrid Current Density (LHCD) and Electron Cyclotron Current Density (ECCD). The total current provided provided by these sources accounts for a considerable portion of energy required for tokamak operation. Moreover, due to the current induced by the ohmic coil accounting for a large portion of I p , a tokamak can only operate as a pulsed

device.

An additional source of current is internally generated by particles trapped between isoflux surfaces (surfaces with constant magnetic flux). This current is referred to as the bootstrap current [START_REF] Wesson | Tokamaks[END_REF]. Thus, bootstrap current is an automatically generated source contributing to I p . A brief explanation of the mechanism which leads to the generation of the bootstrap current is provided in Chapter 4. An increase in the bootstrap current would lead to a reduced dependence on the current generated by the ohmic coil induction and the LHCD and ECCD inputs. This reduced dependence on external current sources would also increase the pulse lengths for which the tokamak can operate. For example, the ultimate goal of the ITER project [START_REF] Green | ITER: burning plasma physics experiment[END_REF] is to demonstrate the steady state operation of tokamaks. A high value of bootstrap current has been identified as a crucial factor for steady state operation of tokamaks [START_REF] Kikuchi | Steady state tokamak reactor based on the bootstrap current[END_REF], [START_REF] Shaing | Steady state tokamak equilibria without current drive[END_REF].

From Equation (4.4), we have that the bootstrap current density can be expressed as a function of the electron and ion temperature and density profiles and the gradient of the poloidal magnetic flux Z = ψ x as

j bs (x, t) = C(x, t) Z(x, t) , (9.1) 
where It is evident from Equation (9.1) that in order to maximize j bs , the gradient of the poloidal magnetic flux Z may be minimized. In this chapter, we construct controllers which allow us to minimize the upper bound on the norm of Z.

4 C(x, t) =eR 0 (A 1 -A 2 )n e ∂T e ∂x + A 1 T e ∂n e ∂x + A 1 (1 -α i )n i ∂T i ∂x + A 1 T i ∂n i ∂x , n i (n e ) =

Model of the Gradient of the Poloidal Flux

Recall the evolution equation of Z = ψ x , ψ being the poloidal magnetic flux, presented in Chapter 4 obtained by neglecting the diamagnetic effect and applying cylindrical approximation as

∂Z ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x, t) x ∂ ∂x (xZ(x, t)) + R 0 ∂ ∂x η (x, t)j ni (x, t) , (9.2) 
with boundary conditions

Z(0, t) = 0 and Z(1, t) = -R 0 µ 0 I p (t)/2π, (9.3) 
where η = parallel resistivity, j ni = non-inductive effective current density, I p = total plasma current, and µ 0 = permeability of free space.

The non-inductive current density j ni is a sum of the bootstrap current density j bs and the external non-inductive current density j eni . Moreover, as in Chapter 8, we will consider only the Lower Hybrid Current Density (LHCD) as j eni . Thus

j ni = j bs + j lh .
Hence, the model can be written as

∂Z ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x, t) x ∂ ∂x (xZ(x, t)) + R 0 ∂ ∂x η (x, t)j bs (x, t) + R 0 ∂ ∂x η (x, t)j lh (x, t) . (9.4) 
In our analysis, we will assume that

Z x (1, t) = -Z(1, t). (9.5) 
This assumption is based on the observation that the total current density j T (x, t), defined in [START_REF] Blum | Numerical Simulation and Optimal Control in Plasma Physics[END_REF] as

j T (x, t) = - xZ x (1, t) + Z(x, t) µ 0 R 0 a 2 x ,
is weak at the plasma edge, however, we assume it to be zero.

Recall from Equation (9.1) that j bs (x, t) = C(x, t)/Z(x, t). As a result Equation (9.4) is implicitly nonlinear in Z. We address this problem by linearizing j bs about a static operating point Z(x) to get

j bs (x, t) = C(x) Z(x) + u(x, t),
where C(x) corresponds to the static operating point Z(x) and

u(x, t) = ∂ ∂Z C| Z= Z Z(x, t) -Z(x) .
For our analysis, we take C(x)/ Z(x) = 0. Numerical simulation results presented at the end of the chapter verify that this assumption does not have a significant effect on the controller performance. Thus

j bs (x, t) = u(x, t).
Substituting into Equation (9.4) produces the evolution equation Z used for the controller synthesis and is given by

∂Z ∂t (x, t) = 1 µ 0 a 2 ∂ ∂x η (x, t) x ∂ ∂x (xZ(x, t)) + R 0 ∂ ∂x η (x, t)j lh (x, t) + R 0 ∂ ∂x η (x, t)u(x, t) . (9.6) 
with boundary conditions Z(0, t) = 0 and Z(1, t) = -R 0 µ 0 I p (t)/2π. (9.7)

We will take the disturbance u(x, t) to be the external input to the system and 5 . This also implies that

assume that u ∈ L loc 2 ([0, ∞], C 2 (0, 1)) ⊂ L loc 2 ([0, ∞], L 2 (0, 1))
for all 0 < T < ∞, u ∈ L 2 ([0, T ], C 2 (0, 1)) ⊂ L 2 ([0, T ], L 2 (0, 1)). Unlike Chapters 5-8,
where the coefficient of the PDEs involved were only spatially varying, the coefficients in Equation (9.6) are time-varying due to the presence of η (x, t). Thus, we can no longer apply the semigroup approach to prove the uniqueness and existence of solutions. Instead, we assume that for all initial conditions Z 0 ∈ C 2 [0, 1] and all sufficiently smooth η , there exists a unique solution Z ∈ C 1 ([0, T ], C 2 (0, 1)) satisfying Equations (9.6)-(9.7). Refer to [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Section 7.6] for the existence and uniqueness of where f (x) = x 2 , M(x) > 0, for all x ∈ [0, 1], and Z is the solution of Equations (9.6)-(9.7) with u ∈ L loc 2 ([0, ∞], C 2 (0, 1)). Suppose that there exists a scalar γ > 0 such

that dV (Z(•, t)) dt = V (Z(•, t)) ≤ 1 γ u(•, t) 2 -γ Z(•, t) 2 L M -2 2 (0,1)
, for all t ≥ 0. Then

Z 2 L loc 2 ([0,∞],L M -2 2 (0,1)) ≤ 1 γ 2 u 2 L loc 2 ([0,∞],L M -2 2 (0,1)) + 1 γ V (Z 0 ),
where

Z 0 ∈ C 2 [0, 1] is the initial condition.
Here,

L M -2 2 (0, 1) := {g : (0, 1) → R : g L M -2 2 = 1 0 M(x) -2 g(x) 2 dx 1 2 < ∞}. Proof. Since u ∈ L loc 2 ([0, ∞], C 2 (0, 1)
), for any 0 < T < ∞, we have that u ∈ L 2 ([0, T ], C 2 (0, 1)). Thus, from our assumption, for any initial condition

Z 0 ∈ C 2 [0, 1],
there exists a unique Z ∈ C 1 ([0, T ], C 2 (0, 1)) satisfying Equations (9.6)-(9.7). Addi-

tionally 1 2 V (Z(•, t)) = 1 0 Z(x, t)f (x)M(x) -1 ∂Z ∂t (x, t).
Note that this is well defined as ∂Z(x, t)/∂t is given by (9.6) and f (x) cancels out the singularity at x = 0 due to 1/x.

Assume that the hypothesis of the Lemma holds. Integrating

V (Z(•, t)) ≤ 1 γ u(•, t) 2 -γ Z(•, t) 2 L M -2 2 (0,1)
in time from 0 to an arbitrary 0 < T < ∞,

Z 2 L 2 ([0,T ],L M -2 2 (0,1)) ≤ 1 γ 2 u 2 L 2 ([0,T ],L M -2 2 (0,1)) + 1 γ V (Z 0 ),
where we have used the fact that Z(x, 0) = Z 0 (x).

Taking the limit T → ∞ gives us

Z 2 L loc 2 ([0,∞],L M -2 2 (0,1)) ≤ 1 γ 2 u 2 L loc 2 ([0,∞],L M -2 2 (0,1)) + 1 γ V (Z 0 ).
This expression is well defined since u 2

L loc 2 ([0,∞],L M -2 2
(0,1)) < ∞ and V (Z 0 )/γ is a constant.

Control Design

We now apply integration by parts to the condition in Lemma 9.1 to formulate our optimization problem which will allow us to synthesize controllers which minimize the upper bound 1 γ on Z. We assume that the plasma resistivity can be approximates, as given in [START_REF] Bribiesca | A strict control lyapunov function for a diffusion equation with time-varying distributed coefficients[END_REF]:

η (x, t) = a(t)e λ(t) x,
where, for all t ≥ 0, 0 < a ≤ a(t) ≤ ā < ∞ and 0 < λ ≤ λ(t) ≤ λ < ∞.

We present the following theorem. Theorem 9.2. Suppose that for a given scalar γ > 0 there exist polynomials M(x) and R(x) such that

M(x) >0, for all x ∈ [0, 1], Ω(x, λ) + Θ ≤0, for all (x, λ) ∈ [0, 1] × [λ, λ], 2A 4 + 2B 2 + A 2 (1) ≤0,
where

Ω(x, λ) =           2A 1 (x) 0 -R 0 µ 0 a 2 f (x) ⋆ A 0 (x, λ) -R 0 µ 0 a 2 f x (x) ⋆ ⋆ 0           , Θ =           0 0 0 ⋆ µ 0 a 2 γ a 0 ⋆ ⋆ -µ 0 a 2 āe λγ           , A 0 (x, λ) =2A 3 (x) -λA 2 (x) -A 2,x (x) + 2B 1 (x, λ), A 1 (x) = -f (x)M(x), A 2 (x) = -f (x)M(x) -f (x)M x (x) -f x (x)M(x), A 3 (x) = -2M(x) -f x (x)M x (x), A 4 = M(1), B 1 (x) = 1 2 (-f x (x)R(x) + f (x)R x (x) + λf (x)R(x)) , B 2 = 1 2 R(1), f (x) =x 2 and f (x) = x.
Then if

j lh (x, t) = K(x) R 0 µ 0 a 2 Z(x, t),
where K(x) = M(x) -1 R(x), then Z is bounded as follows:

Z 2 L loc 2 ([0,∞],L M -2 2 (0,1)) ≤ 1 γ 2 u 2 L loc 2 ([0,∞],L M -2 2 (0,1)) + 1 γ V (Z 0 ).
Proof. Suppose there exists a γ > 0 for which the hypotheses of the theorem hold true. Taking the time derivative of V (Z(•, t)) defined in Lemma 9.1 produces

1 2 V (Z(•, t)) = 1 0 Z(x, t)M(x) -1 f (x) ∂Z ∂t (x, t)dx, = V1 (Z(•, t)) + V2 (Z(•, t)) + V3 (Z(•, t)),
where

V1 (Z(•, t)) = 1 µ 0 a 2 1 0 Z(x, t)M(x) -1 f (x) ∂ ∂x η (x, t) x ∂ ∂x (xZ(x, t)) dx, V2 (Z(•, t)) =R 0 1 0 Z(x, t)M(x) -1 f (x) ∂ ∂x η (x, t)u(x, t) dx, V3 (Z(•, t)) =R 0 1 0 Z(x, t)M(x) -1 f (x) ∂ ∂x η (x, t)j lh (x, t) dx.
If we define

Y (x, t) = M(x) -1 Z(x, t),
we obtain

V1 (Z(•, t)) = 1 µ 0 a 2 1 0 Y (x, t)f (x) ∂ ∂x η (x, t) x ∂ ∂x (xM(x)Y (x, t)) dx, V2 (Z(•, t)) =R 0 1 0 Y (x, t)f (x) ∂ ∂x η (x, t)u(x, t) dx, V3 (Z(•, t)) =R 0 1 0 Y (x, t)f (x) ∂ ∂x η (x, t)j lh (x, t) dx.
Applying integration by parts twice, we obtain

V1 (Z(•, t)) = 1 0 η (x, t) µ 0 a 2 A 1 (x)Y x (x, t) 2 dx + 1 0 η (x, t) µ 0 a 2 A 3 (x) - 1 2 λA 2 (x) - 1 2 A 2,x (x) Y (x, t) 2 dx + η (1, t) µ 0 a 2 A 4 + 1 2 A 2 (1) Y (1, t) 2 + η (1, t) µ 0 a 2 Z x (1, t)Y (1, t). (9.9) 
Here we have used the fact that

Z(x, t) = M(x)Y (x, t), ⇒ Z x (x, t) = M x (x)Y (x, t) + M(x)Y x (x, t), ⇒ Z x (1, t) = M x (1)Y (1, t) + M(1)Y x (1, t).
Due to the assumption on the total current density on the boundary j T (1, t)

and due to the linearization of j bs , we obtain the boundary condition u(1, t) = 0.

Thus, upon applying integration by parts once, we obtain

V2 (Z(•, t)) = - 1 0 R 0 η (x, t) (Y (x, t)f x (x) + Y x (x, t)f (x)) u(x, t)dx. (9.10) 
Using the feedback law j lh (x, t) = K(x)Z(x, t)/R 0 µ 0 a 2 , we get

V3 (Z(•, t)) = 1 µ 0 a 2 1 0 Y (x, t)f (x) ∂ ∂x η (x, t)K(x)Z(x, t) dx = 1 µ 0 a 2 1 0 Y (x, t)f (x) ∂ ∂x η (x, t)K(x)M(x)M(x) -1 Z(x, t) dx = 1 µ 0 a 2 1 0 Y (x, t)f (x) ∂ ∂x η (x, t)R(x)Y (x, t) dx.
Applying integration by parts twice

V3 (Z(•, t)) = 1 0 η (x, t) µ 0 a 2 B 1 (x)Y (x, t) 2 dx + η (1, t) µ 0 a 2 B 2 Y (1, t) 2 . (9.11) Since V (Z(•, t)) = 2 V1 (Z(•, t))+2 V2 (Z(•, t))+2 V3 (Z(•, t))
, using Equations (9.9)-(9.11), we obtain

V (Z(•, t)) = 1 0 η (x, t) µ 0 a 2           Y x (x, t) Y (x, t) u(x, t)           T Ω(x, λ)           Y x (x, t) Y (x, t) u(x, t)           dx + η (1, t) µ 0 a 2 (2A 4 + A 2 (1) + 2B 2 ) Y (1, t) 2 + η (1, t) µ 0 a 2 Z x (1, t)Y (1, t). Consequently V (Z(•, t)) - 1 γ u(•, t) 2 L 2 (0,1) + γ Z(•, t) 2 L M -2 2 (0,1) = V (Z(•, t)) - 1 γ u(•, t) 2 L 2 (0,1) + γ Y (•, t) 2 L 2 (0,1) = 1 0 η (x, t) µ 0 a 2           Y x (x, t) Y (x, t) u(x, t)           T Ω(x, λ)           Y x (x, t) Y (x, t) u(x, t)           dx + 1 0 η (x, t) µ 0 a 2 - µ 0 a 2 η (x, t) u(x, t) 2 γ + µ 0 a 2 η (x, t) γY (x, t) 2 dx + η (1, t) µ 0 a 2 (2A 4 + A 2 (1) + 2B 2 ) Y (1, t) 2 + η (1, t) µ 0 a 2 Z x (1, t)Y (1, t). (9.12) Since η (x, t) = a(t)e λ(t)x , a ≤ āe λ for all (x, t) ∈ [0, 1] × [0, T ]. Thus           Y x (x, t) Y (x, t) u(x, t)           T Ω(x, λ)           Y x (x, t) Y (x, t) u(x, t)           - µ 0 a 2 η (x, t) u(x, t) 2 γ + µ 0 a 2 η (x, t) γY (x, t) 2 ≤           Y x (x, t) Y (x, t) u(x, t)           T Ω(x, λ)           Y x (x, t) Y (x, t) u(x, t)           - µ 0 a 2 āe λ u(x, t) 2 γ + µ 0 a 2 a γY (x, t) 2 =           Y x (x, t) Y (x, t) u(x, t)           T [Ω(x, λ) + Θ]           Y x (x, t) Y (x, t) u(x, t)          
.

Since Ω(x, λ) + Θ ≤ 0, for all (x, λ) ∈ [0, 1] × [λ, λ], we conclude that Using Equation (9.5) and the fact that Y (x, t) = M(x) -1 Z(x, t), we get that

1 0 η (x, t) µ 0 a 2           Y x (x, t) Y (x, t) u(x, t)           T Ω(x, λ)           Y x (x, t) Y (x, t) u(x, t)           dx + 1 0 η (x, t) µ 0 a 2 - µ 0 a 2 η (x, t) u(x, t) 2 γ + µ 0 a 2 η (x,
η (1, t) µ 0 a 2 Z x (1, t)Y (1, t) = - η (1, t) µ 0 a 2 Z(1, t)Y (1, t) = - η (1, t) µ 0 a 2 M(1)Y (1, t) 2 . (9.15)
Combining Equations (9.12)-(9.15) we get

V (Z(•, t)) ≤ 1 γ u(•, t) 2 L 2 (0,1) -γ Z(•, t) 2 L M -2 2
(0,1) .

Lemma 9.1 then completes the proof.

By using sum-of-squares to maximize γ in the conditions of Theorem 9.2, we can minimize the upper bound on the state Z. Because bootstrap current density is inversely proportional to Z and is non-zero on non-zero measure subsets on [0, 1], for all t ≥ 0, this implies that our controller will maximize the norm of the bootstrap current density.

9.

3.1 Constraints on the Control Input. The controller given by Theorem 9.2 will have a spatial distribution which is a function of the state Z(x, t). Unfortunately, this distribution may not correspond to the Gaussian distribution described in our discussion of Subsection 9.1.1. In order to constrain the input profile to have the required Gaussian shape, we propose the following simple heuristic.

To ensure that j lh resembles a Gaussian defined by suitable choice pf the time-varying parameters v lh , µ lh and σ lh , we add an additional constraint to our optimization problem. This constraint has the form

g 1 (x) ≤ j lh (x, t) = K(x) R 0 µ 0 a 2 Z(x, t) ≤ g 2 (x),
where g 1 (x) < g 2 (x), for all x ∈ [0, 1], are polynomial approximations of two selected feasible Gaussians. Since both K(x) and Z(x, t) are continuous, the control is a continuous function bounded by the shape of the constraint envelope defined by g 1 (x) and g 2 (x). Additionally, we assume that

Z(x, t) = α(t)Z 1 (x) + (1 -α(t))Z 2 (x), for all t ≥ 0,
where α ∈ [0, 1] and Z 1 (x) is the polynomial approximation of the open loop steady state. Similarly, Z 2 (x) is the polynomial approximation of the closed loop steady state under maximum actuation of j lh . Hence, Z 1 (x) and Z 2 (x) define the expected envelope on the state Z(x, t) established for a given set of operating conditions. The parameter α reflects the actuation capabilities. Since K(x) = R(x)/M(x), the shape constraint becomes

R 0 µ o a 2 M(x)g 1 (x) ≤ R(x) (αZ 1 (x) + (1 -α)Z 2 (x)) ≤ R 0 µ o a 2 M(x)g 2 (x), for all (x, α) ∈ [0, 1] × [0, 1]
. Although this approach is only a heuristic, we may improve our results by trying different constraint envelopes, as represented by g 1 (x) and g 2 (x). 9.3.2 Computation. Finally, we implement the conditions of Theorem 9.2 and the heuristic discussed previously using sum-of-squares polynomials. We formulate the optimization problem as follows. We are given polynomials Z 1 (x), Z 2 (x), g 1 (x) and g 2 (x) and solve the following.

Maximize γ > 0 such that there exist polynomials M(x) and R(x) satisfying M(x) > 0, for all x ∈ [0, 1], Ω(x, λ) + Θ ≤ 0, for all (x, λ)

∈ [0, 1] × [λ, λ],
2A 4 + 2B 2 + A 2 (1) ≤ 0, and

R 0 µ o a 2 M(x)g 1 (x) ≤ R(x) (αZ 1 (x) + (1 -α)Z 2 (x)) ≤ R 0 µ o a 2 M(x)g 2 (x), for all (x, α) ∈ [0, 1] × [0, 1],
where Ω(x, λ), Θ, A 4 , A 2 (x) and B 2 are defined in Theorem 9.2.

We solve the optimization problem using SOSTOOLS. The search for the maximum γ is performed using the bisection method. We solve this problem for the Tore Supra tokamak for which R 0 = 2.38m and a = 0.38m. Moreover, the plasma resistivity is defined as η (x, t) = a(t)e λ(t)x , where a(t) ∈ [0.0093, 0.0121] and λ(t) ∈ [4, 7.3] for all t ≥ 0. These values were obtained from the data for shot TS 35109. 

Numerical Simulation

(x) R 0 µ 0 a 2 (αZ 1 (x) + (1 -α)Z 2 (x)) for α ∈ [0, 1].
We obtain a maximum value of γ = 10 4 as the solution for the optimization problem for Tore Supra. The feasible polynomials M(x) and R(x) obtained for this value of γ are of degree 12 in x. We simulate the closed loop system on the simulator developed in [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF]. This simulator considers rge nonlinear evolution model of Z. The following figures provide the simulation results and show that although our controller was developed using a linearized model, it is effective in controlling the nonlinear PDE.

Figure 9.1 shows the constraint envelope as well as Finally, to analyze the control input shapes, we fit a feasible Gaussian to control input at a time instance as shown in Figure 9.5. We observe that the control input approximates the shape of feasible Gaussians satisfactorily for roughly 70% of the spatial domain. However, the control input departs from the Gaussian shapes as

K(x) R 0 µ 0 a 2 (αZ 1 (x) + (1 - α)Z 2 (x)) for several values of α ∈ [0, 1], where K(x) = R(x)/M(x).
x → 0. This is due to the controller having the form j lh (x, t) = K(x)Z(x, t)/R 0 µ 0 a 2 and the boundary condition Z(0, t) = 0. Note that the Gaussian approximation of the LHCD current deposit is obtained from hard X-ray measurements and, as stated in [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF], a large uncertainty remains concerning the actual deposit close to the plasma center (x = 0). If a true zero boundary condition for the input is desired, then RFantennas (ECCD) can be used to generate a sharper deposit profile near the plasma center. In Chapter 5 we analyze the stability of

w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t),
with boundary conditions

ν 1 w(0, t) + ν 2 w x (0, t) = 0 and ρ 1 w(1, t) + ρ 2 w x (1, t) = 0.
Here a, b and c are polynomial functions of x ∈ [0, 1]. Additionally,

|ν 1 | + |ν 2 | > 0 and|ρ 1 | + |ρ 2 | > 0. ( 10.1) 
Different values of these scalars may be used to represent Dirichlet, Neumann, Robin or mixed boundary conditions.

We establish the exponential stability by constructing Lyapunov functions of the form V (w(•, t)) = w(•, t), Pw(•, t) , where (Py) (x) = M(x)y(x)

+ x 0 K 1 (x, ξ)y(ξ)dξ + 1 x K 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1), (10.2) 
and {M, K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ for some ǫ > 0. The results of the numerical experiments presented prove that the presented methodology has an inconsequential amount of conservatism.

In Chapter 6 we construct exponentially stabilizing state feedback based controllers for w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t),

Here p(x, t) and q(t) are the observer inputs.

By constructing Lyapunov functions of the form In Chapter 8 we regulate the magnetic field line pitch, also known as the safety factor profile, or the q-profile using j lh as the control input. Since

V (( ŵ -w)(•, t)) = ( ŵ -w)(•,
q ∝ 1 Z ,
we regulate the Z-profile. We accomplish this task by using a Lyapunov function of the from

V (Z(•, t)) = 1 0 x 2 (1 -x)M(x) -1 Z(x, t) 2 dx,
where M(x) is a strictly positive polynomial and

j lh (x, t) = K 1 (x)Z(x, t) + ∂ ∂x (K 2 (x)Z(x, t)) ,
where K 1 and K 2 are rational functions.

In Chapter 9 we maximize the norm of the bootstrap current density j bs . Since

j bs ∝ 1 Z ,
we minimize the norm of the Z-profile. We use a Lypaunov function of the form

V (Z(•, t)) = 1 0 x 2 M(x) -1 Z(x, t) 2 dx,
where M(x) is a strictly positive polynomial and

j lh (x, t) = K 1 (x)Z(x, t),
where K 1 is a rational function. Moreover, we present a heuristic such that shape constraints on the control input j lh are respected. Of course, the question arises whether the pair (A, D A ) generates a C 0 -semigroup.

This question can be answered using the Hille-Yoisida Theorem [45, Theorem 2.1.12].

Using the semigroup theory, we can discuss the uniqueness and existence of solutions. We begin with the following notion of a solution.

Definition A.2. A function w(t) is a classical solution of (A.16) on [0, τ ] if z ∈ C 1 ([0, τ ]; L 2 (0, 1)), z(t) ∈ D A for all t ∈ [0, τ ] and z(t) satisfies (A.16) for all t ∈ [0, τ ].
The function z(t) is a classical solution of (A. [START_REF] Liang | Active control of type-i edge-localized modes with n= 1 perturbation fields in the JET tokamak[END_REF]) on [0, ∞] if it is a classical solution on [0, τ ] for every τ ≥ 0.

A classical solution captures all the properties that one might expect a 'solution' of the PDE (A.13) to possess. That is, the solution is continuously differentiable in time, its spatial derivatives up to order 2 are continuous, satisfies the equation and the boundary conditions. The following theorem establishes the existence of a unique classical solution of PDE (A.13) using the semigroup theory. The condition that f ∈ C 1 ([0, τ ]; L 2 (0, 1)) is very conservative. In fact, it can be weakened to f ∈ L 2 ([0, τ ]; L 2 (0, 1)) with w 0 ∈ L 2 (0, 1), in which case, w(t) in Equation (A.18) is known as the mild solution or the weak solution.

Corollary A.4. If the operator A generates a C 0 -semigroup S(t) on L 2 (0, 1), f ∈ L 2 ([0, τ ]; L 2 (0, 1)) and w(0) = w 0 ∈ L 2 (0, 1). Then there exists a unique weak solution of PDE (A.13) given by

w(t) = S(t)w 0 + t 0 S(t -s)f (s)ds. (A.19)
Simply put, the idea is that the weak solution satisfies the PDE (A.13) almost everywhere in t and x, that is, under the integral. Thus, instead of searching for solutions which are continuously differentiable in x and t, we can search over the larger space of functions whose generalized derivatives or weak derivatives exist. Refer to Chapters 5 and 7 in [START_REF] Evans | Partial differential equations[END_REF] for weak derivatives and weak solutions of parabolic PDEs.

For the homogeneous case (f = 0), the classical solution of PDE (A.13) is

given by w(t) = S(t)w 0 , w 0 ∈ D A .

Compare this to the solution of the ODE ẋ(t) = Ax(t), A ∈ R n×n , which is given by

x(t) = e At x 0 , x 0 ∈ R n .
This comparison immediately illustrates that a C 0 -semigroup can be thought of as an infinite dimensional generalization of the matrix exponential.

Note that although we chose Dirichlet boundary conditions in Equation (A. Definition B.2. We say

{Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 } = M(M, K 1 , K 2 )
if the following hold

Q 0 (x) = ∂ ∂x ∂ ∂x (a(x)M(x)) -b(x)M(x) + 2M(x)c(x) - αǫπ 2 2 + 2 ∂ ∂x [a(x) (K 1 (x, ξ) -K 2 (x, ξ))] ξ=x , Q 1 (x, ξ) = ∂ ∂x ∂ ∂x [a(x)K 1 (x, ξ)] -b(x)K 1 (x, ξ) + c(x)K 1 (x, ξ) + ∂ ∂ξ ∂ ∂ξ [a(ξ)K 1 (x, ξ)] -b(ξ)K 1 (x, ξ) + c(ξ)K 1 (x, ξ), Q 2 (x, ξ) = ∂ ∂x ∂ ∂x [a(x)K 2 (x, ξ)] -b(x)K 2 (x, ξ) + c(x)K 2 (x, ξ) + ∂ ∂ξ ∂ ∂ξ [a(ξ)K 2 (x, ξ)] -b(ξ)K 2 (x, ξ) + c(ξ)K 2 (x, ξ), Q 3 (x) =2n 5 a(1)K 1 (1, x), Q 4 (x) = -2n 2 a(0)K 2 (0, x), Q 5 =2n 6 n 4 a(1)M(1) -n 2 6 [a x (1)M(1) + a(1)M x (1) -b(1)M(1)] , Q 6 =2n 6 n 5 a(1)M(1), Q 7 (x) =K 1 (1, x) [2n 4 a(1) + 2n 6 b(1)] -2n 6 [a x (1)K 1 (1, x) + a(1)K 1,x (1, x)] , Q 8 = -2n 3 n 1 a(0)M(0) + n 2 3 a x (0)M(0) + a(0)M x (0) -b(0)M(0) + αǫπ 2 2 , Q 9 = -2n 3 n 2 a(0)M(0), where K 1,x (1, x) = [K 1,x (x, ξ)| x=1 ] ξ=x , K 2,x (0, x) = [K 2,x (x, ξ)| x=0 ] ξ=x and ǫ > 0 and n i , i ∈ {1, • • • , 6}, are scalars. Lemma B.3. Suppose we are given {M, K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ , {Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 } = M(M, K 1 , K 2 ),
and scalars n i , i ∈ {1, • • • , 6}, as defined in Definition 5.1. Then, for any solution w(x, t) of Equations (5.1)-(5.2), A as defined in Equation (5.6) and P defined in Equation (5.12), we have that

Aw(•, t), Pw(•, t) + w(•, t), PAw(•, t) ≤ w(•, t), Qw(•, t) + w x (1, t) 1 0 Q 3 (x)w(x, t)dx + w x (0, t) 1 0 Q 4 (x)w(x, t)dx + w(1, t) Q 5 w(1, t) + Q 6 w x (1, t) + 1 0 Q 7 (x)w(x, t)dx + w(0, t) Q 8 w(0, t) + Q 9 w x (0, t) + 1 0 Q 10 (x)w(x, t)dx ,
where Q is defined as

(Qy) (x) = Q 0 (x)y(x) + x 0 Q 1 (x, ξ)y(ξ)dξ + 1 x Q 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1).
Proof. We begin by considering the following decomposition

Aw(•, t), Pw(•, t) + w(•, t), PAw(•, t) = 2 1 0 (a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t)) (Pw) (x, t)dx = 2 (Γ 1 + Γ 2 + Γ 3 + Γ 4 + Γ 5 ) , (B.1)
where

Γ 1 = 1 0 w xx (x, t)a(x)M(x)w(x, t)dx, Γ 2 = 1 0 w x (x, t)b(x)M(x)w(x, t)dx, Γ 3 = 1 0 w xx (x, t)a(x) x 0 K 1 (x, ξ)w(ξ, t)dξ + 1 x K 2 (x, ξ)w(ξ, t)dξ dx, Γ 4 = 1 0 w x (x, t)b(x) x 0 K 1 (x, ξ)w(ξ, t)dξ + 1 x K 2 (x, ξ)w(ξ, t)dξ dx, Γ 5 = 1 0 w(x, t) 2 M(x)c(x)dx + 1 0 x 0 w(x, t)c(x)K 1 (x, ξ)w(ξ, t)dξ + 1 0 1 x w(x, t)c(x)K 2 (x, ξ)w(ξ, t)dξ.
Applying integration by parts twice

Γ 1 = - 1 0 w 2 x (x, t)a(x)M(x)dx + 1 0 w 2 (x, t) 1 2 ∂ 2 ∂x 2 (a(x)M(x)) dx, + w(1, t) a(1)M(1)w x (1, t) - 1 2 a x (1)M(1) + 1 2 a(1)M x (1) w(1, t) + w(0, t) -a(0)M(0)w x (0, t) + 1 2 a x (0)M(0) + 1 2 a(0)M x (0) w(0, t) . (B.2)
Since a(x)M(x) ≥ αǫ, applying a variation of Wirtinger's inequality given in Lemma B.1 produces

- 1 0 w x (x, t) 2 a(x)M(x)dx ≤ -αǫ 1 0 w x (x, t) 2 dx ≤ - αǫπ 2 4 1 0 w(x, t) 2 dx + αǫπ 2 4 1 0 w(0, t) 2 dx. Substituting into Equation (B.2), Γ 1 ≤ 1 0 w 2 (x, t) 1 2 ∂ 2 ∂x 2 (a(x)M(x)) - αǫπ 2 4 dx + w(1, t) a(1)M(1)w x (1, t) - 1 2 a x (1)M(1) + 1 2 a(1)M x (1) w(1, t) + w(0, t) -a(0)M(0)w x (0, t) + 1 2 a x (0)M(0) + 1 2 a(0)M x (0) + αǫπ 2 4 w(0, t) .
Using the representation of w(0, t), w x (0, t), w(1, t) and w x (1, t) given in Definition 5.1, we obtain

Γ 1 ≤ 1 0 w 2 (x, t) 1 2 ∂ 2 ∂x 2 (a(x)M(x)) - αǫπ 2 4 dx + n 6 n 4 a(1)M(1) - n 2 6 2 a x (1)M(1) - n 2 6 2 a(1)M x (1) w(1, t) 2 + (n 6 n 5 a(1)M(1)) w(1, t)w x (1, t) + (-n 3 n 2 a(0)M(0)) w(0, t)w x (0, t) + -n 3 n 1 a(0)M(0) + n 2 3 2 a x (0)M(0) + n 2 3 2 a(0)M x (0) + n 2 3 αǫπ 2 4 w(0, t) 2 . (B.3)
Applying integration by parts once

Γ 2 = - 1 0 w 2 (x, t) 1 2 ∂ ∂x (b(x)M(x)) dx + w 2 (1, t) n 2 6 2 b(1)M(1) -w 2 (0, t) n 2 3 2 b(0)M(0). (B.4)
Applying integration by parts twice and using the fact that K 1 (x, x) = K 2 (x, x),

Γ 3 = 1 0 w 2 (x, t) ∂ ∂x [a(x) (K 1 (x, ξ) -K 2 (x, ξ))] ξ=x dx + 1 0 x 0 w(x, t) ∂ 2 ∂x 2 a(x)K 1 (x, ξ) w(ξ, t)dξdx + 1 0 1 x w(x, t) ∂ 2 ∂x 2 a(x)K 2 (x, ξ) w(ξ, t)dξdx + w x (1, t) 1 0 n 5 a(1)K 1 (1, x)w(x, t)dx -w x (0, t) 1 0 n 2 a(0)K 2 (0, x)w(x, t)dx + w(1, t) 1 0 [n 4 a(1)K 1 (1, x) -n 6 a x (1)K 1 (1, x) -n 6 a(1)K 1,x (1, x)] w(x, t)dx + w(0, t) 1 0 [-n 1 a(0)K 2 (0, x) + n 3 a x (0)K 2 (0, x) + n 3 a(0)K 2,x (0, x)] w(x, t)dx.
Applying a change of order of integration in the double integrals, switching between

x and ξ and using the fact that K

1 (x, ξ) = K 2 (ξ, x) produces Γ 3 = 1 0 w 2 (x, t) ∂ ∂x [a(x) (K 1 (x, ξ) -K 2 (x, ξ))] ξ=x dx + 1 2 1 0 x 0 w(x, t) ∂ 2 ∂x 2 a(x)K 1 (x, ξ) + ∂ 2 ∂ξ 2 a(ξ)K 1 (x, ξ) w(ξ, t)dξdx + 1 2 1 0 1 x w(x, t) ∂ 2 ∂x 2 a(x)K 2 (x, ξ) + ∂ 2 ∂ξ 2 a(ξ)K 2 (x, ξ) w(ξ, t)dξdx + w x (1, t) 1 0 n 5 a(1)K 1 (1, x)w(x, t)dx -w x (0, t) 1 0 n 2 a(0)K 2 (0, x)w(x, t)dx + w(1, t) 1 0 [n 4 a(1)K 1 (1, x) -n 6 a x (1)K 1 (1, x) -n 6 a(1)K 1,x (1, x)] w(x, t)dx + w(0, t) 1 0 [-n 1 a(0)K 2 (0, x) + n 3 a x (0)K 2 (0, x) + n 3 a(0)K 2,x (0, x)] w(x, t)dx. (B.5)
Similarly,

Γ 4 = - 1 0 x 0 w(x, t) 1 2 ∂ ∂x b(x)K 1 (x, ξ) + 1 2 ∂ ∂ξ b(ξ)K 1 (x, ξ) w(ξ, t)dξdx - 1 0 1 x w(x, t) 1 2 ∂ ∂x b(x)K 2 (x, ξ) + 1 2 ∂ ∂ξ b(ξ)K 2 (x, ξ) w(ξ, t)dξdx + w(1, t) 1 0 n 6 b(1)K 1 (1, x)w(x)dx -w(0) 1 0 n 3 b(0)K 2 (0, x)w(x, t)dx. (B.6)
Finally, changing the order of integration produces

Γ 5 = 1 0 w(x, t) 2 M(x)c(x)dx + 1 0 x 0 w(x, t) 1 2 [c(x) + c(ξ)] K 1 (x, ξ) w(ξ, t)dξ + 1 0 1 x w(x, t) 1 2 [c(x) + c(ξ)] K 2 (x, ξ) w(ξ, t)dξ. (B.7) Substituting Equations (B.3)-(B.7) into (B.1) produces Aw(•, t), Pw(•, t) + w(•, t), PAw(•, t) ≤ w(•, t), Qw(•, t) + w x (1, t) 1 0 Q 3 (x)w(x, t)dx + w x (0, t) 1 0 Q 4 (x)w(x, t)dx + w(1, t) Q 5 w(1, t) + Q 6 w x (1, t) + 1 0 Q 7 (x)w(x, t)dx + w(0, t) Q 8 w(0, t) + Q 9 w x (0, t) + 1 0 Q 10 (x)w(x, t)dx .
For the following corollary, recall the definition of J from Chapter 7.

Definition B.4. We say

{R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 } = J (M, K 1 , K 2 ) if the following hold R 0 (x) = ∂ ∂x ∂ ∂x (a(x)M(x)) -b(x)M(x) + 2M(x)c(x) - αǫπ 2 2 + 2 ∂ ∂x [a(x) (K 1 (x, ξ) -K 2 (x, ξ))] ξ=x , R 1 (x, ξ) = ∂ ∂x ∂ ∂x [a(x)K 1 (x, ξ)] -b(x)K 1 (x, ξ) + c(x)K 1 (x, ξ) + ∂ ∂ξ ∂ ∂ξ [a(ξ)K 1 (x, ξ)] -b(ξ)K 1 (x, ξ) + c(ξ)K 1 (x, ξ), R 2 (x, ξ) = ∂ ∂x ∂ ∂x [a(x)K 2 (x, ξ)] -b(x)K 2 (x, ξ) + c(x)K 2 (x, ξ) + ∂ ∂ξ ∂ ∂ξ [a(ξ)K 2 (x, ξ)] -b(ξ)K 2 (x, ξ) + c(ξ)K 2 (x, ξ), R 3 (x) = -2l 2 a(0)K 2 (0, x), R 4 = -2l 3 l 1 a(0)M(0) + l 2 3 a x (0)M(0) + a(0)M x (0) -b(0)M(0) + αǫπ 2 2 , R 5 = -2l 3 n 2 a(0)M(0), R 6 (x) = -K 2 (0, x) [2l 1 a(0) + 2l 3 b(0)] + 2l 3 [a x (0)K 2 (0, x) + a(0)K 2,x (0, x)] , R 7 = -a x (1)M(1) -a(1)M x (1) + b(1)M(1), R 8 =2a(1)M(1), R 9 (x) = -2a x (1)K 1 (1, x) -2a(1)K 1,x (1, x) + 2b(1)K 1 (1, x), R 10 (x) =2a(1)K 1 (1, x), where K 1,x (1, x) = [K 1,x (x, ξ)| x=1 ] ξ=x , K 2,x (0, x) = [K 2,x (x, ξ)| x=0 ] ξ=x and ǫ > 0 and l i , i ∈ {1, • • • , 3}, are scalars. T 1 (x, ξ) = [a(x)K 1,xx (x, ξ) + a(ξ)K 1,ξξ (x, ξ)] + [b(x)K 1,x (x, ξ) + b(ξ)K 1,ξ (x, ξ)] + [c(x)K 1 (x, ξ) + c(ξ)K 1 (x, ξ)] , T 2 (x, ξ) = [a(x)K 2,xx (x, ξ) + a(ξ)K 2,ξξ (x, ξ)] + [b(x)K 2,x (x, ξ) + b(ξ)K 2,ξ (x, ξ)] + [c(x)K 2 (x, ξ) + c(ξ)K 2 (x, ξ)] , T 3 = -m 3 a(0)M x (0) - αǫπ 2 2 + m 3 (a x (0) -b(0)) M(0) -2a(0) (m 1 M(0) + (m 2 -1)M x (0)) , T 4 =(m 3 -1)(a x (0) -b(0))K 2 (0, x) -2a(0) [(m 2 -1)K 2,x (0, x) + m 1 K 2 (0, x)] , T 5 (x) = -2m 2 (m 3 -1)a(0)K 2 (0, x), T 6 (x) =2(m 3 -1)K 2 (0, x), T 7 = -a x (1)M(1) + a(1)M x (1) + b(1)M(1), T 8 =2a(1)M(1), where K 1,x (1, x) = [K 1,x (x, ξ)| x=1 ] ξ=x , K 2,x (0, x) = [K 2,x (x, ξ)| x=0 ] ξ=x and ǫ > 0 and m i , i ∈ {1, • • • , 3}, are scalars. Lemma B.7. Suppose we are given {M, K 1 , K 2 } ∈ Ξ d 1 ,d 2 ,ǫ , {T 0 , T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 } = N (M, K 1 , K 2 ),
and scalars m i , i ∈ {1, • • • , 3}, as defined in Definition 6.2. Then, for the solution w(x, t) of Equations (6.1)-(6.2) or Equations (6.21)-(6.22), A as defined in Equation (6.7) and P defined in Equation (5.12), we have that

APz(•, t), z(•, t) + z(•, t), PAz(•, t) ≤ z(•, t), T z(•, t) + z(0, t) T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + z x (0, t) 1 0 T 5 (x)z(x, t)dx + 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx + z(1, t) (T 7 z(1, t) + T 8 z x (1, t)) ,
where z(•, t) = P -1 w(•, t), and T is defined as

(T y) (x) = T 0 (x)y(x) + x 0 T 1 (x, ξ)y(ξ)dξ + 1 x T 2 (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1).
Proof. We begin by considering the following decomposition

APz(•, t), z(•, t) + z(•, t), APz(•, t) = 2 1 0 a(x) ∂ 2 ∂x 2 (Pz)(x, t) + b(x) ∂ ∂x (Pz)(x, t) + c(x)(Pz)(x, t) z(x, t)dx = 2 (Γ 1 + Γ 2 + Γ 3 + Γ 4 ) , (B.8)
where

Γ 1 = 1 0 z xx (x, t) [a(x)M(x)] z(x, t)dx, Γ 2 = 1 0 z x (x, t) [2a(x)M x (x) + b(x)M(x)] z(x, t)dx, Γ 3 = 1 0 z 2 (x, t) [a(x) (M xx (x) + K 1,x (x, x) -K 2,x (x, x)) + b(x)M x (x)] dx + 1 0 z 2 (x, t)M(x)c(x)dx, Γ 4 = 1 0 x 0 z(x, t) [a(x)K 1,xx (x, ξ) + b(x)K 1,x (x, ξ) + c(x)K 1 (x, ξ)] z(ξ, t)dξdx + 1 0 1 x z(x, t) [a(x)K 2,xx (x, ξ) + b(x)K 2,x (x, ξ) + c(x)K 2 (x, ξ)] z(ξ, t)dξdx.
Applying integration by parts twice

Γ 1 = - 1 0 z 2 x (x, t)a(x)M(x)dx + 1 0 z 2 (x, t) 1 2 ∂ 2 ∂x 2 (a(x)M(x)) dx + z(1, t) - 1 2 [a x (1)M(1) + a(1)M x (1)] z(1, t) + a(1)M(1)z x (1, t) + z(0, t) 1 2 [a x (0)M(0) + a(0)M x (0)] z(0, t) -a(0)M(0)z x (0, t) .
Applying a variation of Wirtinger's inequality

Γ 1 ≤ 1 0 z 2 (x, t) 1 2 ∂ 2 ∂x 2 (a(x)M(x)) - αǫπ 2 2 dx + z(1, t) - 1 2 [a x (1)M(1) + a(1)M x (1)] z(1, t) + a(1)M(1)z x (1, t) + z(0, t) 1 2 a x (0)M(0) + a(0)M x (0) + αǫπ 2 2 z(0, t) -a(0)M(0)z x (0, t) . (B.9)
Applying integration by parts

Γ 2 = - 1 0 z 2 (x, t) a x (x)M x (x) + a(x)M xx (x) + 1 2 ∂ ∂x (b(x)M(x)) dx + z 2 (1, t) a(1)M x (1) + 1 2 b(1)M(1) -z 2 (0, t) a(0)M x (0) + 1 2 b(0)M(0) . (B.10)
Adding Equations (B.9) and (B.10)

Γ 1 + Γ 2 ≤ 1 0 z 2 (x, t) 1 2 a xx (x)M(x) - 1 2 a(x)M xx (x) - 1 2 b x (x)M(x) - 1 2 b(x)M x (x) dx - 1 0 αǫπ 2 4 z 2 (x, t)dx + z(1, t) 1 2 T 7 z(1, t) + 1 2 T 8 z x (1, t) + - 1 2 a(0)M x (0) + 1 4 αǫπ 2 z(0, t) 2 + z(0, t) 1 2 a x (0) - 1 2 b(0) M(0)z(0, t) -z(0, t)a(0)M(0)z x (0, t) -a(0)M x (0)z(0, t) 2 . (B.11) Since z(•, t) = P -1 w(•, t), w(•, t) = Pz(•, t). Thus 2w(x, t) =M(x)z(x, t) + x 0 K 1 (x, ξ)z(ξ, t)dξ + 1 x K 2 (x, ξ)z(ξ, t)dξ and w x (x, t) =M x (x)z(x, t) + M(x)z x (x, t) + x 0 K 1,x (x, ξ)z(ξ, t)dξ + 1 x K 2,x (x, ξ)z(ξ, t)dξ.
The boundary condition for x = 0 can hence be written as w(0, t) =M(0)z(0, t)

+ 1 0 K 2 (0, x)z(x, t)dx, w x (0, t) =M x (0)z(0, t) + M(0)z x (0, t) + 1 0 K 2,x (0, x)z(x, t)dx.
Using Definition 6.2, w x (0, t) = m 1 w(0, t) + m 2 w x (0, t), w(0, t) = m 3 w(0, t), the boundary conditions in variable z can be written as 

z(0, t) =m 3 z(0, t) + 1 0 (m 3 -1) 1 M(0) K 2 (0, x)z(x, t)dx, (B.12) M(0)z(0, t) =m 3 M(0)z(0, t) + 1 0 (m 3 -1)K 2 (0, x)z(x, t)dx, (B.13) M(0)z x (0, t) = [m 1 M(0) + (m 2 -1)M x (0)] z(0, t) + m 2 M(0)z x (0, t) + 1 0 [(m 2 -1)K 2,x (0, x) + m 1 K 2 (0, x)] z(x,
Γ 1 + Γ 2 ≤ 1 0 z 2 (x, t) 1 2 a xx (x)M(x) - 1 2 a(x)M xx (x) - 1 2 b x (x)M(x) - 1 2 b(x)M x (x) dx - 1 0 π 2 4 αǫz 2 (x, t)dx + z(0, t) 1 2 T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx -m 2 a(0)z x (0, t)M(0)z(0, t) + z(1, t) 1 2 T 7 z(1, t) + 1 2 T 8 z x (1, t) .
Substituting the boundary condition in Equation (B.13) in the second to last term of the previous equation we obtain

Γ 1 + Γ 2 ≤ 1 0 z 2 (x, t) 1 2 a xx (x)M(x) - 1 2 a(x)M xx (x) - 1 2 b x (x)M(x) - 1 2 b(x)M x (x) dx - 1 0 π 2 4 αǫz 2 (x, t)dx + z(0, t) 1 2 T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + z x (0, t) 1 2 1 0 T 5 (x)z(x, t)dx + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx + z(1, t) 1 2 T 7 z(1, t) + 1 2 T 8 z x (1, t) -z(0, t)m 2 m 3 M(0)z x (0, t).
Recall from Definition 6.2 that for all possible cases, m 2 m 3 = 0. Thus,

Γ 1 + Γ 2 ≤ 1 0 z 2 (x, t) 1 2 a xx (x)M(x) - 1 2 a(x)M xx (x) - 1 2 b x (x)M(x) - 1 2 b(x)M x (x) dx - 1 0 π 2 4 αǫz 2 (x, t)dx + z(0, t) 1 2 T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + z x (0, t) 1 2 1 0 T 5 (x)z(x, t)dx + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx + z(1, t) 1 2 T 7 z(1, t) + 1 2 T 8 z x (1, t) . (B.15)
Adding Equation (B.15) and Γ 3 produces

Γ 1 + Γ 2 + Γ 3 ≤ 1 0 z 2 (x, t) 1 2 T 0 (x)dx + z(0, t) 1 2 T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + z x (0, t) 1 2 1 0 T 5 (x)z(x, t)dx + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 2 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx + z(1, t) 1 2 T 7 z(1, t) + 1 2 T 8 z x (1, t) . (B.16)
Switching the order of integration and interchanging x and ξ produces 

Γ 4 = 1 0 x 0 z(x, t) 1 2 T 2 (x, ξ)z(ξ, t)dξ + 1 0 1 x z(x, t) 1 2 T 3 (x, ξ)z(ξ,
+ z(0, t) T 3 z(0, t) + 1 0 T 4 (x)z(x, t)dx + z x (0, t) 1 0 T 5 (x)z(x, t)dx + 1 0 1 M(0) T 6 (x)z(x, t)dx -a(0)M x (0) + 1 2 αǫπ 2 z(0, t) + 1 0 1 M(0) T 6 (x)z(x, t)dx 1 0 αǫπ 2 z(x, t)dx + z(1, t) (T 7 z(1, t) + T 8 z x (1, t)) .

APPENDIX C POSITIVE OPERATORS AND THEIR INVERSES

Proof of Theorem 5.5. By non-negativity, there exists a Ū such that U = ŪT Ū. Partitioning Ū as

Ū = D H 1 H 2 gives us U =           D T D D T H 1 D T H 2 H T 1 D H T 1 H 1 H T 1 H 2 H T 2 D H T 2 H 1 H T 2 H 2           =           U 11 -ǫI 0 U 12 U 13 ⋆ U 22 U 23 ⋆ ⋆ U 33           (C.1) Let, for y ∈ L 2 (0, 1), (Ay)(η) = DZ 1 (η)y(η) + η 0 H 1 Z 2 (η, x)y(x)dx + 1 η H 2 Z 2 (η, x)y(x)dx. Similarly, (Ay) 
(η) = DZ 1 (η)y(η) + η 0 H 1 Z 2 (η, ξ)y(ξ)dξ + 1 η H 2 Z 2 (η, ξ)y(ξ)dξ.

Thus,

Ay, Ay

= 1 0 y(η) T Z 1 (η) T D T + η 0 y(x) T Z 2 (η, x) T H T 1 dx + 1 η y(x) T Z 2 (η, x) T H T 2 dx DZ 1 (η)y(η) + η 0 H 1 Z 2 (η, ξ)y(ξ)dξ + 1 η H 2 Z 2 (η, ξ)y(ξ)dξ dη = A 1 + A 2 + A 3 , (C.2)
where Note that here we have used the definitions of U ij . Therefore y, Py ≥ ǫ y 2 , for all y ∈ L 2 (0, 1).

A 1 = 1 0 y(η) T Z 1 (η) T (U 11 -ǫI 0 ) Z 1

Switching between η and x in

Self-adjointedness of P can be established using the fact that by construction where I is the identity operator. From Theorem 6.9, we know that the inverse of theis operator P -1 exists. Thus, y, P Iǫ 2 P -1 y ≤ 0.

K 1 (x, ξ) = K 2 (ξ, x).
By definition P is a positive operator. Thus, by [35, 9.4-2], P has a unique positive self-adjoint square root, that is,

P = P 1 2 P 1 2 .
Thus, we get y, P We will now prove that for any m ∈ N, the following holds 

(T m V )(x) -(T m W )(x) R k×k ≤ α m x m m! V -W ∞ . (C.
(T m+1 V )(x) -(T m+1 W )(x) R k×k ≤α V -W ∞ x 0 α m ξ m m! dξ = α m x m m! V -W ∞ .
Thus, we have proven by induction that

(T m V )(x) -(T m W )(x) R k×k ≤ α m x m m! V -W ∞ ≤ α m m! V -W ∞ , for all x ∈ [0, 1]. Since T m V -T m W ∞ = sup x∈[0,1] (T m V )(x) -(T m W )(x) R k×k ,
we conclude

T m V -T m W ∞ ≤ α m m! V -W ∞ .
Since V, W ∈ Φ were chosen arbitrarily, and for a large enough m ∈ N

α m m! < 1,
we conclude that T m , for a large enough m ∈ N, is a contraction on Φ [35, 5.1-1].

Therefore, from Banach fixed point theorem [35, 5.1-2], there exists a unique fixed point U ∈ Φ which satisfies

U = T m U,
and U can be obtained by the uniform limit of

U 0 = I, U 1 = T m U 0 , U 2 = T 2m U 1 , • • • , U n = T nm U n-1 , • • • .
Moreover, from [START_REF] Kreyszig | Introductory functional analysis with applications[END_REF], U ∈ Φ is also the unique solution to

U = T U
and hence is given by the uniform limit of the sequence To prove that U(x) is non-singular for every x ∈ [0, 1], one may apply the small-gain theorem [52, 3.7] and use the fact that U(x) is the uniform limit of the sequence U n (x) provided previously.

U 0 = I, U 1 = T U 0 , U 2 = T 2 U 1 , • • • , U n = T n U n-1 , • • • .
Proof of Theorem 6.9. We begin by noting that U(x), the fundamental matrix of -B(x)M(x) -1 C(x), exists and is non-singular for all x ∈ [0, 1]. This is due to the fact that the elements of the matrix -B(x)M(x) -1 C(x) are rational functions, and hence, Lebesgue integrable. Thus, by Lemma 6.8, the result follows.

The integral kernels γ 1 and γ 2 are well defined if the matrix P is well-defined. is well defined. Thus, the matrix P = (N 1 + N 2 U(1)) -1 N 2 U(1) and the integral kernels γ 1 and γ 2 are well defined.

Since Θ P = (M, F 1 , F 2 , G 1 , G 2 ), we have that (Pw)(x) =M(x)w(x) + The uniqueness and existence of solutions to such problems has been established in Lemma 5.4. However, using separation of variables, we can establish the structure of solutions and then establish the stability properties. We present the following theorem. a(ξ) dξ , q(x) = -c(x) p(x) a(x) , σ(x) = p(x) a(x) .

Additionally, let p(x) ≥ p 0 > 0, q(x) ≥ q 1 , σ(x) ≤ σ 1 .

Then, if ν 1 ν 2 ≤ 0 and ρ 1 ρ 2 ≥ 0, we have that

ω 0 ≤ -λ cc 0 ,
where the scalars ω n define the solution given in Equation (D.3) and λ cc 1 is the first eigenvalue of the following constant coefficient Sturm-Liouville equation -p 0 d 2 z(x) dx 2 + q 1 z(x) = λσ 1 z(x), z ∈ D 0 .

Proof. We begin by commenting that since a(x) ≥ α > 0, there exists a scalar p 0 such that p(x) = e

x 0 b(ξ) a(ξ) dξ ≥ p 0 > 0.

Additionally, since q(x) and σ(x) are continuous, there exist scalars q 1 and σ 1 such that q(x) ≥ q 1 , σ(x) ≤ σ 1 .

Recall from the proof of Lemma D. 

CHAPTER 1 R

 1 ÉSUM É EN FRANC ¸AIS Dans ce travail, nous considérons l'analyse et le contrôleur et la synthèse d'observateur pour les Équations Différentielles Partielles (EDP) paraboliques en utilisant polynômes Somme des carrés (SOS). Dans les Chapitres 5-7 nous considérons une classe générale des EDP paraboliques. Considérant que, dans les Chapitres 8-9 nous considérons la PDE régissant l'évolution du flux magnétique poloïdal dans un Tokamak.
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 0112 Ici a, b et c sont des fonctions polynomiales de x ∈ [0, 1]. En outre, |ν 1 | + |ν 2 | > 0 et |ρ 1 | + |ρ 2 | > 0. (1.1) Différentes valeurs de ces scalaires peuvent être utilisés pour représenter Dirichlet, Neumann, Robin ou des conditions aux limites mixtes. Nous établissons la stabilité exponentielle en construisant des fonctions de Lyapunov de la forme V (w(•, t)) = w(•, t), Pw(•, t) , où (Py) (x) = M(x)y(x)+ x (x, ξ)y(ξ)dξ + (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1), (1.2)

Figure 2 . 1 .

 21 Figure 2.1. Schematic of a tokamak.

  time invariant system ẋ(t) = Ax(t), A ∈ R n×n is stable if and only if there exists a symmetric matrix X ∈ S n such that [52, Corollary 4.3] X > 0 and A T X + XA < 0.(3.10)

  e 12 + e 21 ) + (e 12 + e 21 )A

Figure 4 . 1 .

 41 Figure 4.1. Coordinates (R, Z) and surface S used to define the poloidal magnetic flux ψ(R, Z) [68].
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Lemma 5 . 4 .

 54 For any initial condition w 0 ∈ D 0 there exists a classical solution for the system represented by Equations (5.1)-(5.2). Additionally, for any initial condition w 0 ∈ L 2 (0, 1) there exists a weak solution for the system represented by Equations (5.1)-(5.2).

. 21 )

 21 Table5.1 illustrates the maximum λ for which we can construct a Lyapunov function for Equation (5.16) using the analysis presented in Theorem 5.8 as a function of the degree of polynomial representation d 1 = d 2 = d with ǫ = δ = 0.001.

  ) using the analysis presented in Theorem 5.8 as a function of d 1 = d 2 = d with the previously chosen parameters of ǫ = δ = 0.001.

  w x (0) = 0, w x (1) = 0 -0.2625 -0.255 Mixed w(0) = 0, w x (1= 0, w(1) + w x (1

  ). Figures[START_REF] Serway | Physics for scientists and engineers[END_REF].1(a)-5.1(b) provide these results. As is evident, for degree d 1 = d 2 = 7 the difference between the calculated and predicted maximum λ is less that 0.1. Thus, we conclude that the provided methodology is quite accurate in analyzing the stability of the parabolic PDEs considered.

Figure 5 . 1 .

 51 Figure 5.1. Error between calculated max. λ using Theorem 5.8 and calculated/estimated max. λ using Sturm-Liouville/finite-differences.

Figure 6 . 1 .

 61 Figure 6.1. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.4 are feasible, thereby implying the existence of an exponentially stabilizing controller for Equation (6.15).

Figure 6 . 2 .

 62 Figure 6.2. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.4 are feasible, thereby implying the existence of an exponentially stabilizing controller for Equation (6.16).

Figure 6 .-Figure 6 . 3 .

 663 Figure 6.3. Autonomous state evolution of Equation (6.16) for λ = 20 and mixed boundary conditions .

Figure 6 . 4 .Figure 6 . 5 .

 6465 Figure 6.4. Closed loop state evolution of Equation (6.16) for λ = 20 and mixed boundary conditions .

Figure 6 . 6 .

 66 Figure 6.6. Minimum γ as a function of polynomial degree d 1 = d 2 = d for whichthe conditions of Theorem 6.6 are feasible, thereby implying the existence of an optimal controller for Equation (6.24).

Figure 6 . 7 .

 67 Figure 6.7. Minimum γ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.6 are feasible, thereby implying the existence of an optimal controller for Equation (6.25).

Figure 6 .Figure 6 . 8 .

 668 Figure 6.8 shows the state evolution, from a zero initial condition, without any control input.

Figure 6 . 9 .Figure 6 . 10 .

 69610 Figure 6.9. Closed loop state evolution of Equation (6.25) with mixed boundary conditions .

and |ρ 1 |µ 1 = 0 and µ 2 = 0 if ρ 2 µ 1 = 0 and µ 2 = 0 if ρ 1 = 0 and ρ 2

 11221212 + |ρ 2 | > 0. (7.5) Additionally, the scalars µ k , k ∈ {1, 2} satisfy µ 1 = 0 and µ 2 = 0 if ρ 1 = 0

Figure 7 . 1 .

 71 Figure 7.1. Diagram representing the coupled dynamics (7.10)-(7.11)

Assumption 7 . 1 .

 71 For any controller F : H 2 (0, 1) → R, observer operator O :L 2 (0, 1) → L 2 (0,1), scalar O, and initial condition there exists a classical solution to Equations (7.10)-(7.11) with control input u(t) = F ŵ(•, t) and

1 0R 0 L 1 1 xL 2

 10112 10 (x)e(x, t)dx, where e(•, t) is any solution of Equations (7.15)-(7.16), (Py) (x) = N(x)y(x) + x (x, ξ)y(ξ)dξ + (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1), and we define the operator R as

  1)/ρ 2 , ρ 1 = 0, ρ 2 = 0. (7.46) By definition p(x, t) = (O(ŷ(t)y(t))) (x) and

. 56 )

 56 Since e = ŵw, w(•, t) = ŵ(•, t)e(•, t) ≤ ŵ(•, t) + e(•, t) .

. 59 )

 59 Neumann: = w x (0) = 0, w x (1) = u(t), y(t) = w(1), (7.60)Mixed: = w(0) = 0, w x (1) = u(t), y(t) = w(1),(7.61)Robin: = w(0) + w x (0) = 0, w(1) + w x (1) = u(t), y(t) = w(1). (7.62) We apply Theorem 7.5 to these PDEs for different degrees of polynomial representation for parameter values ǫ = δ = δ c = δ o = 0.001. Table 7.1 and Figure 7.2 illustrate the maximum λ as a function of d 1 = d 2 = d for which we can construct an exponentially stabilizing output feedback controller for Equation (7.57) using the analysis presented in Theorem 7.5.
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 72 Figure 7.2. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 7.5 are feasible, thereby implying the existence of an exponentially stabilizing output feedback controller for Equation (7.57).

Figure 7 .

 7 Figure 7.5 shows the control input evolution.

Figure 7 .

 7 Figure 7.6 shows the evolution of the observer state initialized by a zero initial condition.

Figure 7 . 3 .Figure 7 . 4 .Figure 7 . 5 .Figure 7 . 6 .

 73747576 Figure 7.3. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 7.5 are feasible, thereby implying the existence of an exponentially stabilizing output feedback controller for Equation (7.58).

( 8 . 1 )Figure 8 . 1 .

 8181 Figure 8.1. Control effort, j lh (x, t).

Figure 8 . 2 . 9 MAXIMIZATION

 829 Figure 8.2. Time evolution of safety-factor and Z profiles and their corresponding error profiles

  ion (electron) density profile, T i (T e ) = ion (electron) temperature profile, α i = ion thermal speed, e = electron charge, R 0 = location of magnetic center, and A 1 , A 2 = functions of ratio of trapped to free particles.

Figure 9 . 1 .

 91 Figure 9.1. Constraint envelope and K(x) R 0 µ 0 a 2 (αZ 1 (x) + (1α)Z 2 (x)) for α ∈ [0, 1].

Figure 9 .

 9 Figure 9.2 shows the comparison between the time evolution of the spatial L 2 (0, 1) norm of Z(x, t) using both open-loop and closed-loop with closed loop control starting at t = 12. Figure 9.3 shows the evolution of the spatial L 2 -norm of j bs (x, t)using both open-loop and closed-loop with closed loop control starting at t = 12. As a consequence of the decrease in Z(x, t), we are able to obtain a percentage increase of ≈ 90% in j bs (•, t) .

Figure 9 . 2 .

 92 Figure 9.2. Evolution of closed loop (t ≥ 12) and open loop Z(•, t) .

Figure 9 . 3 .Figure 9 . 4 .Figure 9 . 4

 939494 Figure 9.3. Evolution of closed loop (t ≥ 12) and open loop j bs (•, t)

Figure 9 . 5 . 10 CONCLUSION

 9510 Figure 9.5. Shape comparison between constructed j lh (x, t) and a feasible Gaussian with parameters v lh = 4.35 × 10 5 , µ lh = 0.33 and σ lh = 0.072 at a time instance of 17s.

  with boundary conditions Z(0, t) = 0 and Z(1, t) = -R 0 µ 0 I p (t)/2π, where η = parallel resistivity, j lh = Lower Hybrid Current Density (LHCD), j bs = bootstrap current density, I p = total plasma current, and µ 0 = permeability of free space.

1 .

 1 A strongly continuous semigroup, or a C 0 -semigroup is an operator valued function S(t), S : [0, ∞) → L(L 2 (0, 1)), that satisfies S(t + s) = S(t)S(s), for t, s ≥ 0; S(0) = I; S(t)yy → 0 as t → 0 + for all y ∈ L 2 (0, 1).

Theorem A. 3 .

 3 [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF] Theorem 3.1.3] If the operator A generates a C 0 -semigroup S(t) on L 2 (0, 1), f ∈ C 1 ([0, τ ]; L 2 (0, 1)) and w(0) = w 0 ∈ D A . Then there exists a unique classical solution of PDE (A.13) given by w(t) = S(t)w 0 + t 0 S(ts)f (s)ds.(A.[START_REF] Argomedo | Lyapunov-based infinite-dimensional control of the safety factor profile in a tokamak plasma[END_REF] 

14 )

 14 to illustrate the uniqueness and existence of solutions, the same theory applies to Neumann and Robin boundary conditions.Remark A.5. Establishing the well-posedness of parabolic PDEs using semigroup theory requires that the coefficients a, b, c in Equation (A.13) be independent of t. IfAPPENDIX B UPPER BOUNDS FOR OPERATOR INEQUALITIESFirst, recall the variation of Wirtinger's inequality Lemma B.1.[START_REF] Hardy | Inequalities[END_REF][START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] For any w ∈ H 1 (0, 1) x) 2 dx. Now recall the definition of M from Chapter 5.

0 U 1 ηU 0 Z 2 1 ηZ 2 1 0 1 η 0 Z 2 1 ηZ 2

 010212110212 ) T Z 1 (η) T η 12 Z 2 (η, ξ)y(ξ)dξ + 13 Z 2 (η, ξ)y(ξ)dξ dη, ) T Z 2 (η, x) T U 21 dx + 1 η y(x) T Z 2 (η, x) T U 31 dx Z 1 (η)y(η)dη and ) T Z 2 (η, x) T U 22 η (η, ξ)y(ξ)dξ + U 23 (η, ξ)y(ξ)dξ dxdη + y(x) T Z 2 (η, x) T U 32η (η, ξ)y(ξ)dξ + U 33 (η, ξ)y(ξ)dξ dxdη.

A 1 A 1 = 1 0 1 0 1 x 2 A 2 Z 2 1 xZ 2 Z 2 Z 2 1 xZ 2 Z 2 Z 2 1 ξZ 2 2 gives 0 K 1 1 xK 2 0 K 1 1 xK 2 1 0 1 0 1 0y

 111112221222122212201120112111 y(x) T Z 1 (x) T (U 11 -ǫI) Z 1 (x)y(x)dx + ) T Z 1 (x) T U 12 Z 2 (x, ξ)y(ξ)dξdx + y(x) T Z 1 (x) T U 13 Z 2 (x, ξ)y(ξ)dξdx. (C.3)Switching between η and ξ and switching the order of integration in A (ξ, x) T U 31 Z 1 (ξ)y(ξ)dξ + (ξ, x) T U 21 Z 1 (ξ)y(ξ)dξ dx(C.4)Switching the order of integration, first between x and η and then between ξ and ηin A 3 , we get (η, x) T U 33 Z 2 (η, ξ)dη + x ξ (η, x) T U 32 Z 2 (η, ξ)dη + (η, x) T U 22 Z 2 (η, ξ)dη y(ξ)dξdx + (η, x) T U 33 Z 2 (η, ξ)dη + ξ x (η, x) T U 23 Z 2 (η, ξ)dη + (η, x) T U 22 Z 2 (η, ξ)dη y(ξ)dξdx. (C.5)Substituting Equations (C.3)-(C.5) into (C.2) and using the definitions of K 1 and K ) Z 1 (x) T U 11 Z 1 (x) -ǫZ 1 (x) T I 0 Z 1 (x) y(x) +x (x, ξ)y(ξ)dξ+ (x, ξ)y(ξ)dξ dx.From the theorem statement,M(x) ≥ Z 1 (x) T U 11 Z 1 (x). Therefore, ) M(x) -ǫZ 1 (x) T I 0 Z 1 (x) y(x) + x (x, ξ)y(ξ)dξ + (x, ξ)y(ξ)dξ dx = y, Pyǫ y(x)Z 1 (x) T I 0 Z 1 (x)y(x)dx.Since Ay, Ay ≥ 0, using the previous expression we get that y, Pyǫ y(x)Z 1 (x) T I 0 Z 1 (x)y(x)dx ≥ 0.Finally, since Z 1 (x) T I 0 Z 1 (x) = 1, we obtain y, Pyǫ (x)Z 1 (x) T I 0 Z 1 (x)y(x)dx = y, Pyǫ y 2 ≥ 0.

Lemma C. 1 . 0 K 1 1 xK 2 following holds 1 ǫ 2 y 2 ≤ y, P -1 y ≤ 1 ǫ 1 y 2 .

 1011222 Let {M, K 1 , K 2 } = Ω d 1 ,d 2 ,ǫ 1 ,ǫ 2 for any 0 < ǫ 1 < ǫ 2 .Then for the following operator(Py) (x) = M(x)y(x) + x (x, ξ)y(ξ)dξ + (x, ξ)y(ξ)dξ, y ∈ L 2 (0, 1), the Proof. Since {M, K 1 , K 2 } = Ω d 1 ,d 2 ,ǫ 1 ,ǫ 2 ,from Corollary 5.6 we have that ǫ 1 y 2 ≤ y, Py ≤ ǫ 2 y 2 . Now, y, Py ≤ ǫ 2 y 2 = ǫ 2 y, y . Thus, y, (Pǫ 2 I) y ≤ 0,

2 I -ǫ 2 P 1 2 1 2 y, P 1 2 I -ǫ 2 P 0 A 0 A 0 A 0 A

 2211220000 -1 y ≤ 0.Since P is self-adjoint P -1 y ≤ 0.For any V ∈ Φ, we define the following mapping(T V )(x) = I + x (ξ)V (ξ)dξ.Then for any V, W ∈ Φ,(T V )(x) -(T W )(x) = x (ξ) [V (ξ) -W (ξ)] dξ. Thus, (T V )(x) -(T W )(x) R k×k = x (ξ) [V (ξ) -W (ξ)] dξ R k×k ≤ x (ξ) R k×k V (ξ) -W (ξ) R k×k dξ. (C.6)Since the elements of A(x) are continuous on [0, 1],A ∈ Φ. Let α = A ∞ , then A(ξ) R k×k ≤ α, for all ξ ∈ [0, 1].Moreover,V (ξ) -W (ξ) R k×k ≤ V -W ∞ , for all ξ ∈ [0, 1].Thus, substituting these in Equation (C.6) produces(T V )(x) -(T W )(x) R k×k ≤ α V -W ∞ x 0 dξ = α V -W ∞ x, for all x ∈ [0, 1]. (C.7)

8 ) 0 A 0 Aα x 0 [

 8000 Clearly, from Equation (C.7), this claim is true for m = 1. Assume that Equation (C.8) holds for any m ∈ N. Then(T m+1 V )(x) -(T m+1 W )(x) R k×k = x (ξ) [(T m V )(ξ) -(T m W )(ξ)] dξ R k×k ≤ x (ξ) R k×k [(T m V )(ξ) -(T m W )(ξ) ] R k×k dξ ≤ (T m V )(ξ) -(T m W )(ξ) ] R k×k dξ.Substituting in Equation (C.8) produces

0 A

 0 Since the unique fixed point U satisfies U = T U, using the definition of the mappingT , U(x) = I + x (ξ)U(ξ)dξ.Thus, by differentiating in x, we see that the fixed point U satisfiesdU(x) dx = A(x)U(x)and U(0) = I.

.

  Since U(x) is invertible, so is U(1). Hence U -122 exists and consequently, (N 1 + N 2 U(1)) -1

x 0 K 1 1 xK 2 0 F 1 1 xF 2 0 γ 1 1 x γ 2 P 0 K 1 1 xK 2 0 γ 1 1 x γ 2 0 K 1 0 γ 1 1 ξ γ 2 1 xK 2 0 γ 1 1 ξ γ 2 1 xK 1 1 ξK 1 1 x ξ 0 K 2 1 x 1 ξK 2 1 xK 1 K 1 1 x x 0 K 1 1 xK 2 1 x 1 θK 2 K 2 1 xK 1 ξ 0 K 1 1 x x 0 K 1 1 xK 2 1 x 1 ξK 2 K 2 0 φ 1 1 x φ 2 0 K 1 K 1 1 xK 2 0 K 1 1 ξK 2 1 +N 2 1 x 8 B 1 + 4 ( 1 + 1 + 1 + 1 - 1 + C(x) N 1 x 0 BN 2 1 ξ

 01120112011201120112010112120112111110211211110112112211011011211220112011120112118141111101 (x, ξ)w(ξ)dξ + (x, ξ)w(ξ)dξ =M(x)w(x) +x (x)G 1 (ξ)w(ξ)dξ -(x)G 2 (ξ)w(ξ)dxi.It can be easily established thatK 1 (x, ξ) =F 1 (x)G 1 (ξ) = C(x)N 1 B(ξ), K 2 (x, ξ) = -F 2 (x)G 2 (ξ) = -C(x)N 2 B(ξ).(C.9) Now, from the theorem hypothesis, we have that Pw (x) = M(x) -1 w(x) -x (x, ξ)w(ξ)dξ -(x, ξ)w(ξ)dξ.Then, Pw (x) = M(x) Pw (x) +x (x, ξ) Pw (ξ)dξ + (x, ξ) Pw (ξ)dξ= M(x) M(x) -1 w(x) -x (x, ξ)w(ξ)dξ -(x, ξ)w(ξ)dξ + x (x, ξ) M(ξ) -1 w(ξ) -ξ (ξ, θ)w(θ)dθ -(ξ, θ)w(θ)dθ dξ + (x, ξ) M(ξ) -1 w(ξ) -ξ (ξ, θ)w(θ)dθ -(ξ, θ)w(θ)dθ dξ. x)γ 1 (x, ξ) + K 1 (x, ξ)M(ξ) -1 w(ξ)dξ + -M(x)γ 2 (x, ξ) + K 2 (x, ξ)M(ξ) -1 w(ξ)dξ -(x, ξ)γ 1 (x, ξ)w(θ)dθdξ -x 0 (x, ξ)γ 2 (ξ, θ)w(θ)dθdξ -(x, ξ)γ 1 (ξ, θ)w(θ)dθdξ -(x, ξ)γ 2 (ξ, θ)w(θ)dθdξ.Changing the order of integration in the last four integralsP Pw (x) = w(x) + x 0 -M(x)γ 1 (x, ξ) + K 1 (x, ξ)M(ξ) -1 w(ξ)dξ + -M(x)γ 2 (x, ξ) + K 2 (x, ξ)M(ξ) -1 w(ξ)dξ -(x, ξ)γ 1 (ξ, θ)dξw(θ)dθ -(x, ξ)γ 2 (ξ, θ)dξw(θ)dθ -(x, ξ)γ 2 (ξ, θ)dξw(θ)dθ -x 0 (x, ξ)γ 1 (ξ, θ)dξw(θ)dθ -(x, ξ)γ 1 (ξ, θ)dξw(θ)dθ -(x, ξ)γ 2 (ξ, θ)dξw(θ)dθ.Switching between θ and ξ in the last six integrals producesP Pw (x) = w(x) + x 0 -M(x)γ 1 (x, ξ) + K 1 (x, ξ)M(ξ) -1 w(ξ)dξ + -M(x)γ 2 (x, ξ) + K 2 (x, ξ)M(ξ) -1 w(ξ)dξ -(x, θ)γ 1 (θ, ξ)dθw(ξ)dξ -x 0 (x, θ)γ 2 (θ, ξ)dθw(ξ)dξ -(x, θ)γ 2 (θ, ξ)dθw(ξ)dξ -x 0 (x, θ)γ 1 (θ, ξ)dθw(ξ)dξ -(x, θ)γ 1 (θ, ξ)dθw(ξ)dξ -(x, θ)γ 2 (θ, ξ)dθw(ξ)dξ.Finally, collecting terms, we obtain P Pw (x) =w(x) +x (x, ξ)w(ξ)dξ + (x, ξ)w(ξ)dξ, where (C.10)φ 1 (x, ξ) = -M(x)γ 1 (x, ξ) + K 1 (x, ξ)M(ξ) -1 -ξ (x, θ)γ 2 (θ, ξ)dθ x ξ (x, θ)γ 1 (θ, ξ)dθ -(x, θ)γ 1 (θ, ξ)dθ, φ 2 (x, ξ) = -M(x)γ 2 (x, ξ) + K 2 (x, ξ)M(ξ) -1 -x (x, θ)γ 2 (θ, ξ)dθ ξ x K 2 (x, θ)γ 2 (θ, ξ)dθ -(x, θ)γ 1 (θ, ξ)dθ.From Equation (C.9)K 1 (x, ξ) = C(x)N 1 B(ξ) and K 2 (x, ξ) = -C(x)N 2 B(ξ),and from the theorem hypothesisγ 1 (x, ξ) =M(x) -1 C(x)U(x)(I 4(d+1) -P )U(ξ) -1 B(ξ)M(ξ) -1 , γ 2 (x, ξ) = -M(x) -1 C(x)U(x)P U(ξ) -1 B(ξ)M(ξ) -1 .Substituting these values in φ 1 (x, ξ), we obtainφ 1 (x, ξ) = C(x) -U(x) I 4(d+1) -P U(ξ) -1 + N 1 B(ξ)M(ξ) -)M(θ) -1 C(θ)U(θ)dθ I 4(d+1) -P + B(θ)M(θ) -1 C(θ)U(θ)dθ I 4(d+1) -P U(ξ) -1 B(ξ)M(ξ) -1 . (C.11) Since U(θ) is the fundamental matrix of -B(θ)M(θ) -1 C(θ), from Lemma 6.(θ)M(θ) -1 C(θ)U(θ) = -dU(θ) dθ and U(0) = I 4(d+1) . (C.12)Substituting Equation (C.12) into (C.11),φ 1 (x, ξ) =C(x) -U(x) I 4(d+1) -P U(ξ) -1 + N 1 B(ξ)M(ξ) -d+1) -P U(ξ) -1 B(ξ)M(ξ) -1 =C(x) -U(x) I 4(d+1) -P U(ξ) -1 + N 1 B(ξ)M(ξ) -1 + C(x) -N 1 U(ξ) -I 4(d+1) P + N 1 (U(x) -U(ξ)) I 4(d+1) -P -N 2 (U(1) -U(x)) I 4(d+1) -P U(ξ) -1 B(ξ)M(ξ) -1 ,where we have used the fact that U(0) = I 4(d+1) . Simplifyingφ 1 (x, ξ) =C(x) -U(x) I 4(d+1) -P U(ξ) -1 + N 1 B(ξ)M(ξ) -C(x) N 1 U(x) I 4(d+1) -P + N 2 U(x) I 4(d+1) -P -N 1 U(ξ) + N 1 P -N 2 U(1) + N 2 U(1)P U(ξ) -1 B(ξ)M(ξ) -1 (C.13) By definition P = (N 1 + N 2 U(1)) -1 N 2 U(1), thus N 2 U(1) = (N 1 + N 2 U(1)) P .HenceN 1 P -N 2 U(1) + N 2 U(1)P =N 1 P -(N 1 + N 2 U(1)) P + N 2 U(1)P =N 1 P -N 1 P -N 2 U(1)P + N 2 U(definition N 1 + N 2 = I 4(d+1). Using this fact and substituting (C.14) into (C.13) producesφ 1 (x, ξ) =C(x) -U(x) I 4(d+1) -P U(ξ) -1 + N 1 B(ξ)M(ξ) -C(x) U(x) I 4(d+1) -P -N 1 U(ξ) U(ξ) -1 B(ξ)M(ξ) -1 =C(x) -U(x) I 4(d+1) -P U(ξ) -1 + N 1 B(ξ)M(ξ) -C(x) U(x) I 4(d+1) -P U(ξ) -1 -N 1 B(ξ)M(ξ) -1 .Thusφ 1 (x, ξ) =C(x) -U(x) I 4(d+1) -P U(ξ) -1 + N 1 B(ξ)M(ξ) -C(x) -U(x) I 4(d+1) + P U(ξ) -1 -N 1 B(ξ)M(ξ) -1 =0. (C.15)Substituting the definitions of K 1 and K 2 from Equation (C.9) and γ 1 and γ 2 from the theorem hypothesis producesφ 2 (x, ξ) = C(x) U(x)P U(ξ) -1 -N 2 B(ξ)M(ξ) -(θ)M(θ) -1 C(θ)U(θ)dθP -N 2 ξ x B(θ)M(θ) -1 C(θ)U(θ)dθP + B(θ)M(θ) -1 C(θ)U(θ)dθ I 2(d+1) -P U(ξ) -1 B(ξ)M(ξ) -1 . (C.16)From Equation (C.12), we have thatB(θ)M(θ) -1 C(θ)U(θ) = -dU(θ) dθ and U(0) = I 4(d+1) .Thusφ 2 (x, ξ) =C(x) U(x)P U(ξ) -1 -N 2 B(ξ)M(ξ) -1 + C(x) -N 1 PDES USING SEPARATION OF VARIABLESFor a few types of parabolic PDEs, the solution may be explicitly calculated using a technique known as separation of variables[START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF]. The idea is to represent the solution of the PDE as the product of solutions of two Ordinary Differential Equations (ODEs). We specifically consider the class of PDEs considered in Chapter 5 and use Sturm-Liouville theory[START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] to formulate solutions.Consider the following PDE w t (x, t) = a(x)w xx (x, t) + b(x)w x (x, t) + c(x)w(x, t), (D.1) with boundary conditions of the form ν 1 w(0, t) + ν 2 w x (0, t) = 0 and ρ 1 w(1, t) + ρ 2 w x (1, t) = 0. (D.2) The scalars ν i and ρ j satisfy |ν 1 | + |ν 2 | > 0 and |ρ 1 | + |ρ 2 | > 0. Here, a, b and c are polynomials and a(x) ≥ α > 0 for all x ∈ [0, 1].

Lemma D. 1 .

 1 For any initial condition w 0 ∈ D 0 (L 2 (0, 1)), there exist scalars ω n and an orthonormal basis φ n of L 2 (0, 1), n ∈ N such that the classical (weak) solution ofEquations (D.1)-(D.2) is given by w(x, t) = ∞ n=0 e ωnt w 0 , φ n φ n (x). (D.3)Moreover,ω 0 > ω 1 > • • • > ω n > • • • and ω n → -∞ as n → ∞. x)X(x) = λσ(x)X(x), X ∈ D 0 . (D.10) For Definition 5.2, the operator S is the Sturm-Liouville operator and Equation (D.10) is the Sturm-Liouville equation. Then, form Lemma 5.3, there exist scalars λ n satisfyingλ 0 < λ 1 < • • • < λ n < • • • and λ n → ∞ as n → ∞,and functionsX n = φ n ∈ D 0 such that d dx p(x) dφ n (x) dx + q(x)φ n (x) = λ n σ(x)φ n (x). (D.11)For each λ n , the solution of Equation (D.8) can be easily calculated asT n (t) = A n e -λnt , (D.12)for some scalar A n ∈ R. Since from the Ansatz we have thatw(x, t) = X(x)T (t),for any n ∈ N, the solution to Equations (D.1)-(D.2) is given byw n (x, t) = X n (x)T n (t) = A n e -λnt φ n (x).By superposition, the solution of Equations (D.1)-(D.2) is a linear combination of all possible solutions. Thus, there exist scalars B n ∈ R such that w(x, t) = ∞ n=0 C n e -λnt φ n (x), (D.13) Lemma D.2. Given coefficients a(x), b(x) and c(x) of Equation (D.1), define p(x) = e

1 0 1 √ 2 1 √ 2 1 √ 2

 1121212 1 that ω n = -λ n , where λ n are the eigenvalues of the following Sturm-Liouville equation x)z(x) = λσ(x)z(x), z ∈ D 0 .Using the Rayleigh quotient[START_REF] Egorov | On spectral theory of elliptic operators[END_REF] Chapter 5], the first eigenvalue is given byλ 0 = min z∈D 0 p(0)y(0)y x (0)p(1)y(1)y x (1) + (p(x)y x (x) 2 + q(x)y(x) 2 ) dx 1 0 σ(x)y(x) 2 dx . (D.14) then, we get p(x) = p 0 = 1, q(x) = q 1 = -λ, σ(x) = σ 1 = 1. (E.7)Then, by Lemma D.1, the solution of Equation (E.1) is given byw(x, t) = ∞ n=0 e ωnt w 0 , φ n φ n (x),where w 0 is an appropriately chosen initial condition and ω n = -λ cc n , where λ cc n and φ n are the eigenvalues and normalized eigenfunctions, respectively, of the following constant coefficient Sturm-Liouville equation-p 0 d 2 z(x) dx 2 + q 1 z(x) = λ cc σ 1 z(x).Using the values in (E.7) and TableD.1, the solution of Equation (E.1) with Dirichlet boundary conditions (E.3) is given byw(x, t) = ∞ n=0 e ( λ-n 2 π 2 )t w 0 , φ n φ n (x), (E.8)where φ n (x) = sin nπx. Therefore, for Dirichlet boundary conditions, Equation (E.1) is stable for λ ∈ [0, π 2 ). Similarly, the solution of Equation (E.1) forNeumann and mixed boundary conditions, respectively, isw(x, t) = ∞ n=0 e (λ-n 2 π 2 )t w 0 , φ n φ n (x), (E.9)where φ n (x) = cos nπx, andw(x, t) = ∞ n=1e (λ-(2n-1) 2 π 2 /4)t w 0 , φ n φ n (x), (E.10) where φ n (x) = sin nπx. From Equation (E.9), for Neumann boundary condition, the system governed by Equation (E.1) is stable for λ ∈ [0, π 2 ). Similarly, from Equation (E.10), for mixed boundary condition, the system governed by Equation (E.1) is stable for λ ∈ [0, π 2 /4).

Figure E. 1 .

 1 Figure E.1. State norm w(•.t) of Equation (E.1) with Robin boundary conditions for different λ.

Figure E. 2 . 25 Figure E. 3 .

 2253 Figure E.2. State norm w(•.t) of Equation (E.2) with Dirichlet boundary conditions w(0, t) = w(1, t) = 0 for different λ.

Figure E. 4 .

 4 Figure E.4. State norm w(•.t) of Equation (E.2) with mixed boundary conditions w(0, t) = w x (1, t) = 0 for different λ.

Figure E. 5 .

 5 Figure E.5. State norm w(•.t) of Equation (E.2) with Robin boundary conditions w(0, t) = w(1, t) + w x (1, t) = 0 for different λ.

  = 0, w x (1) = 0 λ < 4.66 Robin w(0) = 0, w(1) + w x (1) = 0 λ < 7.96

  

  6022×10 -19 C is the electron charge, m e = 9.1096×10 31 kg is the electron mass and ǫ 0 = 8.854 × 10 -12 F m -1 is the permittivity of free space. Additionally,

	where e = 1.Λ(x, t) = 31.318+log(T e /					
	t) =	eT e m e	and τ e (x, t) =	12π 3/2 m 1/2 e ǫ 2 0 e 5/2 √ 2	T e 3/2 n e log Λ	,

Table 4 .

 4 1. Tokamak plasma variable definitions.

	Variables	Description	Units
	ψ	Poloidal magnetic flux profile	T m 2
	φ	Toroidal magnetic flux profile	T m 2
	q	Safety factor profile	
	R 0	Location of magnetic center	m
	B φ 0	Toroidal magnetic field at the plasma center	T
	ρ	Equivalent radius of the magnetic surfaces	m
	a	Location of the last closed magnetic surface	m
	x	Normalized spatial variable x =ρ/a	
	V	Plasma volume	m 3
	F	Diamagnetic function	T m
	C 2 , C 3	Geometric coefficients	
	η	Parallel resistivity	Ωm
	µ 0 j ni	Permeability of free space: 4π × 10 -7 Non-inductive effective current density	Hm -1 Am -2
	j lh	LHCD current density	Am -2
	j bs	Bootstrap current density	Am -2
	I p	Total plasma current	A
	P lh	Lower hybrid antenna power	A
	N	Hybrid wave parallel refractive index	
	m e n e	Electron mass, 9.1096 × 10 31 Electron density profile	kg m -3
	n i	Electron density profile	m -3
	n	Electron line average density	m -2
	T e	Electron temperature profile	eV
	T i	Ion temperature profile	eV
	τ e	Electron collision time	s
	Z	Effective value of plasma charge	C
	α e	Electron thermal speed	ms -1
	α i	Ion thermal speed	ms -1

Table 5 .

 5 1. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which a Lyapunov function proving the exponential stability of w t = w xx + λw can be constructed using Theorem 5.8

	Boundary Conditions	d = 3	4	5	6	7
	Dirichlet					
	w(0) = 0, w(1) = 0	λ = 0.78	3.67	6.14	9.63	9.83
	Neumann					
	w x (0) = 0, w x (1) = 0	-0.0061 -0.002 -0.002 -0.002 -0.002
	Mixed					
	w(0) = 0, w x (1) = 0	0.7263	2.4353 2.4567 2.4597 2.4597
	Robin					
	w(0) = 0, w(1) + w x (1) = 0 0.7843	3.9124	4.095	4.10	4.10

Table 5 .

 5 

2 presents a comparison of the maximum λ as calculated by Theorem 5.8 and the maximum λ calculated using Sturm-Liouville theory presented in Table E.1 in Appendix E.

Table 5 .

 5 2. Comparison of maximum λ for which a Lyapunov function proving the exponential stability of w t = w xx + λw can be constructed using Theorem 5.8 and maximum λ predicted by Sturm-Liouville theory for stability.

	Boundary Conditions	Maximum λ	Maximum λ
		using Theorem 5.8 using Sturm Liouville theory
	Dirichlet		
	w(0) = 0, w(1) = 0	9.83	π 2 ≈ 9.86
	Neumann		

Table 5 .

 5 [START_REF]EFDA-JET, the world's largest nuclear fusion research experiment[END_REF]. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which a Lyapunov function proving the exponential stability of Equation (5.17) can be constructed using Theorem 5.8.

	Boundary Conditions	d = 3	4	5	6	7
	Dirichlet					
	w(0) = 0, w(1) = 0	λ = 99.9 15.615	18.837	18.853	18.87
	Neumann					
	w x (0) = 0, w x (1) = 0	-99.9	-0.2625 -0.2625 -0.2625 -0.2625
	Mixed					
	w(0) = 0, w x (1) = 0	4.37	4.61	4.61	4.62	4.62
	Robin					
	w(0) = 0, w(1) + w x (1) = 0	7.89	7.89	7.89	7.89	7.91

Table 5 .

 5 

4 presents a comparison of the maximum λ as calculated by Theorem 5.8 and the maximum λ calculated using finite-difference approach presented in Table E.2 in Appendix E.

Table 5 .

 5 [START_REF]ITER organization[END_REF]. Comparison of maximum λ for which a Lyapunov function proving the exponential stability of Equation (5.17) can be constructed using Theorem 5.8 and maximum λ predicted by finite-difference approach.

Table 6

 6 

.1 and Figure 6.1 illustrate the maximum λ as a function of d 1 = d 2 = d for which we can construct an exponentially

Table 6 .

 6 1. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.4 are feasible, thereby implying the existence of an exponentially stabilizing controller for Equation (6.15).

	Boundary Conditions	d = 6	7	8	9	10	11
	Dirichlet						
	w(0) = 0, w(1) = u(t)	λ = 10.3767 14.3982 17.9626 22.8645 23.3093 27.1179
	Neumann						
	w x (0) = 0, w x (1) = u(t)	10.5743 13.1227 16.6992 17.1814 21.8781 21.8781
	Mixed						
	w(0) = 0, w x (1) = u(t)	10.3767 14.3982 17.9626 22.8645 23.3093 27.1179
	Robin						
	w(0) + w x (0) = 0, w(1) + w x (1) = u(t)	9.3170	12.0911 14.9445 16.6565 18.7748 18.7748

Table 6 .

 6 2. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.4 are feasible, thereby implying the existence of an exponentially stabilizing controller for Equation (6.16).

	Boundary Conditions	d = 4	5	6	7	8
	Dirichlet					
	w(0) = 0, w(1) = u(t)	λ = 19.0216 36.1359 39.7247 43.5974 44.5219
	Neumann					
	w x (0) = 0, w x (1) = u(t)	16.8152 31.3484 32.8186 32.8186 37.5130
	Mixed					
	w(0) = 0, w x (1) = u(t)	19.0216 36.1359 39.7247 43.5974 44.5219
	Robin					
	w(0) + w x (0) = 0, w(1) + w x (1) = u(t) 12.7869 26.7517 28.0090 28.0090 32.6233

Table 6 .

 6 [START_REF]EFDA-JET, the world's largest nuclear fusion research experiment[END_REF]. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.4 are feasible with K 1 = K 2 = 0, thereby implying the existence of an exponentially stabilizing controller for Equation(6.15).

	Boundary Conditions	d = 1	2	3	4 • • • 10
	Dirichlet				
	w(0) = 0, w(1) = u(t)	λ = 3.90 4.78 4.88	4.88
	Neumann				
	w x (0) = 0, w x (1) = u(t)	3.22	3.51 3.51	3.51
	Mixed				
	w(0) = 0, w x (1) = u(t)	3.90	4.78 4.88	4.88
	Robin				
	w(0) + w x (0) = 0, w(1) + w x (1) = u(t)	2.32	2.34 2.34	2.34

Table 6 .

 6 [START_REF]ITER organization[END_REF]. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.4 are feasible with K 1 = K 2 = 0, thereby implying the existence of an exponentially stabilizing controller for Equation(6.16).

	Boundary Conditions	d = 1	2	3	4 • • • 10
	Dirichlet				
	w(0) = 0, w(1) = u(t)	λ = 3.51 7.03 8.59	8.59
	Neumann				
	w x (0) = 0, w x (1) = u(t)	3.51	5.46 6.64	6.64
	Mixed				
	w(0) = 0, w x (1) = u(t)	3.51	7.03 8.59	8.59
	Robin				
	w(0) + w x (0) = 0, w(1) + w x (1) = u(t)	3.51	5.46 5.46	5.46

  6.2.1 Numerical Results. We now test the conditions of Theorem 6.6 on the perturbed versions of Equations (6.15)-(6.16), namely w t (x, t) =w xx (x, t) + λw(x, t) + f (x, t), and (6.24)

Table 6 .

 6 5. 

Table 6 . 5

 65 Table 6.6 and Figure6.6 illustrate the minimum γ as a function of d 1 = d 2 = d for which we can construct an optimal controller for Equation (6.24) using the analysis presented in Theorem 6.6.

		Dirichlet	Neumann	Mixed	Robin
	PDE (6.24) λ = π 2 + 0.04	0.033	π 2 4 + 0.034 -0.967
	PDE (6.25)	λ = 19.006	-0.195	4.72	-2.37

. Values of parameter λ chosen for Equations (6.24)-(6.25) with boundary conditions (6.26)-(6.29).

We apply Theorem 6.6 to these PDEs for different degrees of polynomial representation for parameter values ǫ 1 = 0.001 and ǫ 2 = 1, and find the smallest upper bound of the state γ > 0.

Table 6 .

 6 [START_REF] Wesson | Tokamaks[END_REF]. Minimum γ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 6.6 are feasible, thereby implying the existence of an optimal controller for Equation(6.24).

	Boundary Conditions	d = 3	4	5	6	7
	Dirichlet					
	w(0) = 0, w(1) = u(t)	γ = 99.90 99.90 99.90 91.79 27.73
	Neumann					
	w x (0) = 0, w x (1) = u(t)	220.58	45.89 17.08 10.74 10.74
	Mixed					
	w(0) = 0, w x (1) = u(t)	999.93	176.65 32.71 7.515 5.615
	Robin					
	w(0) + w x (0) = 0, w(1) + w x (1) = u(t)	125	39.06 19.04 13.18 13.18

Table 6 .

 6 7 and Figure 6.7 illustrate the minimum γ as a function of d 1 = d 2 = d

  . Consider the Lyapunov function V (e(•, t)) = e(•, t), Pe(•, t) , where e(x, t) = ŵ(x, t)w(x, t) is the state estimation error whose dynamics are governed by Equations (7.15)-(7.16). Taking the derivative along the trajectories of the system, we

	have			
	Substituting into Equation (7.17) produces d dt V (e(•, t)) = e t (•, t), Pe(•, t) + e(•, t), Pe t (•, t) d dt V o (e(•, t)) ≤ e(•, t), Re(•, t) + 2 e(•, t), V (ŷ(t) -y(t)) 1 = Ae(•, t), Pe(•, t) + e(•, t), PAe(•, t) + 2 Pe(•, t), p(•, t) , + e(1, t) R 7 e(1, t) + R 8 e x (1, t) + R 9 (x)e(x, t)dx	
	0 where we have used the fact that P is self-adjoint. Using Corollary B.5, 1 dt V (e(•, t)) 0 d + e x (1, t) R 10 (x)e(x, t)dx.	(7.18)
			1	
			R 9 (x)e(x, t)dx	
			0	
		1		
	+ e x (1, t)	0	R 10 (x)e(x, t)dx + 2 Pe(•, t), p(•, t) .	(7.17)
	Now,			
	p(x, t) = (O(ŷ(t) -y(t))) (x).	
	Thus,			

≤ e(•, t), Re(•, t) + e x (0, t)

1 0 R 3 (x)e(x, t)dx + e(0, t) R 4 e(0, t) + R 5 e x (0, t) + 1 0 R 6 (x)e(x, t)dx + e(1, t) R 7 e(1, t) + R 8 e x (1, t) + 1 0 R 9 (x)e(x, t)dx + e x (1, t) 1 0 R 10 (x)e(x, t)dx + 2 Pe(•, t), p(•, t) .

Since from the theorem statement R 3 (x) = R 5 = R 6 (x) = 0 and R 4 ≤ 0, thus

d dt V (e(•, t)) ≤ e(•, t), Re(•, t) + e(1, t) R 7 e(1, t) + R 8 e x (1, t) + Pe(•, t), p(•, t) = Pe(•, t), O (ŷ(t)y(t)) = e(•, t), PO (ŷ(t)y(t)) ,

where we have utilized the fact that P is self-adjoint. Since O = P -1 V, we have that PO = V. Thus, Pe(•, t), p(•, t) = e(•, t), PO (ŷ(t)y(t)) = e(•, t), V (ŷ(t)y(t)) .

Table 7 .

 7 1. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 7.5 are feasible, thereby implying the existence of an exponentially stabilizing output feedback controller for Equation (7.57).

	Boundary Conditions	d = 6	7	8	9	10	11
	Dirichlet						
	w(0) = 0, w(1) = u(t)	λ = 10.3767 14.3982 17.7643 22.8645 23.3093 27.1179
	Neumann						
	w x (0) = 0, w x (1) = u(t)	10.0739 13.1227 14.8163 17.1814 21.8781 21.8781
	Mixed						
	w(0) = 0, w x (1) = u(t)	10.3767 14.3982 17.7643 22.8645 23.3093 27.1179
	Robin						
	w(0) + w x (0) = 0, w(1) + w x (1) = u(t)	9.1171	12.0911 14.9445 16.6565 18.7748 18.7748

Table 7 .

 7 2. Maximum λ as a function of polynomial degree d 1 = d 2 = d for which the conditions of Theorem 7.5 are feasible, thereby implying the existence of an exponentially stabilizing output feedback controller for Equation (7.58).

	Boundary Conditions	d = 4	5	6	7	8
	Dirichlet					
	w(0) = 0, w(1) = u(t)	λ = 18.3090 36.0199 38.0478 40.5930 44.5219
	Neumann					
	w x (0) = 0, w x (1) = u(t)	15.8531 29.8492 32.4059 32.4059 34.1584
	Mixed					
	w(0) = 0, w x (1) = u(t)	18.3090 36.0199 38.0478 40.5930 44.5219
	Robin					
	w(0) + w x (0) = 0, w(1) + w x (1) = u(t) 12.7869 24.7589 27.5421 27.9083 29.4762

  Table E.2. Stability margins for Equation (E.2) with Dirichlet, Neumann, mixed and Robin boundary conditions.

Refer to Section

2.2 for the definition of a closed operator.

Refer to Table

[START_REF]ITER organization[END_REF].1 for tokamak variable definitions.

Refer to Table 4.1 for tokamak variable definitions

Refer to Section 2.2 for the definitions of the function spaces

solutions to parabolic PDEs with time-varying coefficients. Improved regularity for zero boundary conditions has been proved in [START_REF] Bribiesca | A strict control lyapunov function for a diffusion equation with time-varying distributed coefficients[END_REF]. 9.1.1 Control Input. The control input j lh is shape constrained. The shape constraints are dependent on the operating conditions. Using the X-ray measurement from Tore Supra and empirical model of j lh was developed in [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF] and is presented in Chapter 4. This model uses a Gaussian deposition pattern with control authority over certain scaling parameters. In particular, we may use j lh (x, t) = v lh (t)e -(µ lh (t)-x) 2 /2σ lh (t) , (9.8) where we may control the amplitude v lh , mean µ lh and the variance σ lh with the constraints that v lh (t) ∈ [0, 1.22 MA], µ lh (t) ∈ [0.14, 0.33], and σ lh (t) ∈ [0.016, 0.073],

for all t ≥ 0.

We will design control laws for these three input parameters using full-state feedback. Note that we choose the Gaussian parameters as the control input parameters and not the engineering parameters, namely the hybrid wave parallel refractive index N and the lower hybrid antenna power P lh . In a tokamak, these parameters determine the Gaussian parameters. Hence, unlike the approach we have chosen, the mean, amplitude and variance of the control cannot vary independently.

A Boundedness Condition on the System Solution

We wish to synthesize control j lh such that the norm of Z is minimized in the presence of the input u. We now present a result which shows that, for a bounded u, Z is bounded.

Lemma 9.1. Consider the function

with boundary conditions ν 1 w(0, t) + ν 2 w x (0, t) = 0 and ρ 1 w(1, t) + ρ 2 w x (1, t) = u(t).

Here u(t) ∈ R is the control input. Using Lyapunov functions of the form V (w(•, t)) = w(•, t), P -1 w(•, t) , where P is of the form given in Equation (10.2), we synthesize controllers F : H 2 (0, 1) → R such that if the control is given by

then the system is exponentially stable. Numerical experiments indicate that the method is very effective in stabilizing systems which are controllable in some appropriate sense. Moreover, we extend the methodology to construct L 2 optimal boundary controllers which minimize the effect of an exogenous distributed input on the state of the system.

In Chapter 7 we construct exponentially estimating state observers for

with boundary conditions

We assume that a boundary measurement (output) of the form

is available. The goal is to estimate the state w of the system using the boundary output y. For this purpose we design Luenberger observers of the form

with boundary conditions ŵ1 w(0, t) + ν 2 ŵx (0, t) = 0 and

Equation (PDE) model is of the form [START_REF] Evans | Partial differential equations[END_REF]:

where

respect to x j and i ∈ N. PDEs are classified in three ways: order, (non)linearity and type. The order of a PDE is defined by the highest order partial derivative appearing in F . For example, Equation (A.1) illustrates an i th order PDE. PDEs can be further classified as linear or nonlinear [START_REF] Zachmanoglou | Introduction to partial differential equations with applications[END_REF]. To explain this classification, consider a first order PDE in two independent variables x and t and a dependent variable w(x, t) given by F (x, t, w, w x , w t ) = 0, (A.2)

where w x and w t denote ∂w ∂x and ∂w ∂t respectively. If F is linear, it can be written as where the coefficients are functions of the independent variables x and t only. The type of a second order PDE depends on the discriminant defined as

Under the assumption that the discriminant does not change sign in some region Ω, the PDE (A.6) is one of the following types in Ω:

If the discriminant ∆ changes sign in the region Ω, the PDE is said to be of a mixed type in Ω.

For the Equation (A.6), let us assume that x ∈ Ω ⊂ R n , Ω open. Additionally, assume that the variable t represents time, thus, t ≥ 0. Then, the PDE given by Equation (A.6) is often known as an evolution equation because the quantity w(x, t) evolves in time from a given initial configuration w(x, 0) = w 0 (x). The function w 0 (x) is known as the initial condition. If the quantity w is scalar valued for each x and t, that is, w : Ω × [0, ∞) → R, then the PDE is known as a scalar valued PDE.

Let ∂Ω denote the boundary 6 of Ω. Then, for an operator G, a constraint of 

A.1 Well-Posedness of Parabolic PDEs

The research work presented in the thesis deals with evolution equations given by scalar valued parabolic PDEs. Parabolic PDEs are used to model processes such as diffusion, transport and reaction. An example of a fairly well known parabolic PDE is the heat equation. For a uniform one dimensional rod of length L, the temperature of the rod w(x, t) at any point x ∈ [0, L] and at time t > 0 is governed by the heat equation given by

where κ is the thermal conductivity of the material of the rod. It is clear from Equation (A.9) that the PDE (A.12) is of the parabolic type. Further examples of parabolic PDEs are the equations modeling the evolution of the poloidal magnetic flux in a tokamak ψ and its gradient ψ x given by Equations (4.2) and (4.6) in Chapter 4.

The first question to be asked of a parabolic PDE, or in fact any type of PDE, is if it is well-posed. A parabolic PDE is well-posed if:

1. the PDE has a unique solution;

2. the solution depends continuously on the data given in the problem.

A.1.1 Semigroup theory. The definition of a solution of a PDE is non-trivial [START_REF] Evans | Partial differential equations[END_REF], [START_REF] Zachmanoglou | Introduction to partial differential equations with applications[END_REF], [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], [START_REF] Hadamard | Lectures on Cauchy's problem in linear partial differential equations[END_REF]. One way of establishing the definitions of solutions and their uniqueness and existence is by using semigroup theory.

Consider the following second order inhomogeneous parabolic PDE

with Dirichlet boundary conditions, w(0, t) = 0 and w(1, t) = 0, (A. [START_REF] Halpern | Integrated simulations of saturated neoclassical tearing modes in DIII-D, Joint European Torus, and ITER plasmas[END_REF] where the functions a, b and c are C 1 functions, f is a known function, x ∈ [0, 1] and t ≥ 0. We can write this PDE as a differential equation as follows. Let

Additionally, define the following differential operator

Then, the PDE (A.13) can be written as

Let us denote by D A the space of functions over which the operator A is well defined and also incorporates the boundary conditions (A.14). Thus this is not the case, the Galerkin method [31, Section 7.1] may be used to establish the existence and uniqueness of weak solutions.

A.2 Stability of systems governed by Parabolic PDEs

Once we have established that the PDE (A.13) has a classical (weak) solution,

we would like to know if the PDE is stable. We begin by defining the following notion of stability.

Definition A.6. Suppose that w(t) is a classical (weak) solution of (A.13) with initial condition w 0 . Then, the PDE is exponentially stable if for any w 0 , there exist scalars M, ω > 0 such that

Exponential stability can be established using semigroup theory.

Definition A.7. A C 0 -semigroup S(t) on L 2 (0, 1) is exponentially stable if there exist scalars N, α > 0 such that

The following theorem may be used to verify the exponential stability of C 0semigroups. Note that for the PDE (A.13) with f = 0, the PDE is exponentially stable if the C 0 -semigroup S(t) generated by (A, D A ) is exponentially stable because

Then, by setting ω = α and M = N w 0 and using Definition A.6 shows that the PDE is exponentially stable.

Exponential stability can also be established by using Lyapunov functions.

Suppose there exists a classical (weak) solution of PDE (A.13) and a Lyapunov function V (w(t)) such that for some ǫ, α > 0

Then, by integrating the second inequality in time and using the first inequality, we can show that the PDE is exponentially stable. Note that if we choose V (w(t)) = w(t), Pw(t) , for some positive operator P ∈ L (L 2 (0, 1)), it becomes evident that Inequalities (A.24)-(A.25) are similar to Inequalities (A.22)-(A.23).

Corollary B.5. Suppose we are given {M, Definition B.6. We say

if the following hold

Using [35, 9.4-2] we get that since P commutes with P -1 , P 1 2 commutes with P -1 .

Therefore

Thus, we conclude that Iǫ 2 P -1 ≤ 0, on L 2 (0, 1).

Therefore, for any y ∈ L 2 (0, 1), we have that

This implies that, for any y ∈ L 2 (0, 1),

The assertion that

is similarly proved.

Proof of Lemma 6.8. Let • R k×k be any induced norm on R k×k . Then, for any matrix

It can be easily verified that the space

where • ∞ is the norm, is a complete normed space. In other words, the space Φ with norm • ∞ is a Banach space.

-

where we have used the fact that U(0) = I 4(d+1) . Simplifying

Finally,

Substituting Equations (C.15) and (C.17) into (C.10) produces P Pw (x) = w(x).

Thus, P P = I. The proof for PP = I is similar.

Here, the set D 0 is defined as

Proof. We begin by using the ansatz that the solution can be written as

Substituting this ansatz into Equation (D.1) produces

with boundary conditions

Separating spatial and temporal terms

Since the left hand side is a function of time t only and the right hand side is a function of space x only, in order for (D.4) to be true, the following must hold for some λ ∈ R,

Thus, we obtain the following ODEs

with boundary conditions

and

where C n = A n B n . This solution obviously satisfies the boundary conditions (D.2) since φ n ∈ D 0 . However, the solution must satisfy w(x, 0) = w 0 (x). From Lemma 5.3

we have that φ n is an orthonormal basis for L 2 (0, 1), thus, from [35, Theorem 3.5-2]

Therefore, If we set

Hence, the solution is given by

Finally, setting

e ωnt w 0 , φ n φ n (x).

From Lemma D.1 we have that

Thus, the system represented by Equations (D.1)-(D.2) is exponentially stable if ω 0 < 0. If we can calculate the eigenvalues, we can infer the system's stability properties. Unfortunately, for a system with spatially distributed coefficients, there is no general way of calculating the eigenvalues. However, we can estimate them. For the stability analysis, this will serve as a benchmark against which we can compare the provided methodology. Additionally, this will help us to synthesize static controllers which will serve as a benchmark against which we can compare the performance of the controllers we synthesize. We present the following Lemma.

If z ∈ D 0 , then z ∈ D0 , where D0 = {y ∈ H 1 (0, 1) :

where

, Thus, Equation (D.14) may be written as

We assumed that ν 1 ν 2 ≤ 0 and ρ 1 ρ 2 ≥ 0, thus

Consequently k 0 p(0)y(0) 2 + k 1 p(1)y(1) 2 + 1 0 (p(x)y x (x) 2 + q(x)y(x) 2 ) dx

Since the right hand side is also a Rayleigh quotient, it follows that

where λ cc 0 is the first eigenvalue of the following constant coefficient Sturm-Liouville equation

Since ω 0 = -λ 0 , we obtain

The advantage of Lemma D.2 is that the eigenvalues of the constant coefficient Sturm-Liouville equation

for most boundary conditions, can be calculated analytically. Thus, we can easily obtain an upper bound on ω 1 and thus, wean information on the system stability. 

where λ is a scalar which may be chosen freely. We consider the following boundary conditions for these two equations: with Robin boundary conditions is stable for λ < 4.12.

The stability margins for λ in Equation (E.1) with various boundary conditions is presented in Table E.1.

As stated earlier, analytical solutions for Equation (E.2) can not be calculated.

Thus, we rely solely on finite-differences to approximate the upper bounds for the parameter λ so that the system is stable. Figures E.