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Abstract

Information diffusion explores the paths taken by information being transmitted through a social
network in order to understand and model the relationships between users in such network, leading
to a better comprehension of human relations and dynamics.

Although primarily concerned with theoretical, psychological and sociological aspects of social
networks, information diffusion models also serve as basis for several real-life applications of social
networks analysis, such as influence maximization, link prediction, discovery of influential nodes,
community detection, trend detection, etc.

This thesis is thus based on both sides of information diffusion: first by developing mathematical
theories and models to study the relationships between people and information, and in a second
time by creating tools to better exploit the hidden patterns in these relationships.

The theoretical tools developed here are opinion dynamics models and information diffusion
models, where we study the information flow from users in social networks, and the practical tools
developed here are a novel community detection algorithm and a novel trend detection algorithm.

We start by introducing an discrete-time opinion dynamics model in which agents interact with
each other about several distinct opinions/contents. In our framework, agents do not exchange all
their opinions with each other, they communicate about randomly chosen opinions at each time.
Our model uses scores to take this dynamics into account: each agent maintains a list of scores
for each opinion held. Opinions are selected according to a softmax choice function based on their
scores (the higher a score, the more likely an opinion is to be expressed) and then transmitted
to neighbors. Once an agent receives an opinion it gives it more credit, i.e., a higher score to
this opinion. We show, using stochastic approximation algorithms, that under mild assumptions
the opinion dynamics algorithm converges as time increases, whose behavior is ruled by how users
choose the opinions to broadcast at each time.

We develop next a practical algorithm which is a direct application of a particular instance of this
opinion dynamics model. When agents broadcast the content they appreciate the most, communities
are formed in the social network, where these communities are groups of users that broadcast the
same piece of information. This community detection algorithm, which is distributed by nature, has
the remarkable property that the discovered communities can be studied from a solid mathematical
standpoint. In addition to the theoretical advantage over heuristic community detection methods,
the presented algorithm is able to accommodate weighted and directed networks; parametric and
nonparametric versions; and the discovery of overlapping communities as a byproduct with no
mathematical overhead.

In a second part, we define a general Hawkes-based framework to model information diffusion in
social networks. The proposed framework takes into consideration not only the hidden interactions
between users but as well the interactions between contents and social networks, and can also
accommodate dynamic social networks and various temporal effects of the diffusion, which provides a



complete analysis of the hidden influences in social networks. This framework can be combined with
topic modeling, for which modified collapsed Gibbs sampling and variational Bayes techniques are
derived. We provide an estimation algorithm based on nonnegative tensor factorization techniques,
which together with a dimensionality reduction argument are able to discover, in addition, the latent
community structure of the social network.

Finally, we apply one instance of the previous information diffusion framework and develop
stochastic control techniques for near unstable Hawkes processes, creating a trend detection algo-
rithm, designed to find trendy topics being disseminated in a social network. We assume that the
broadcasts of messages in the social network is governed by a self-exciting point process, namely
a Hawkes process, which takes into consideration the real broadcasting times of messages and the
interaction between users and topics. We formally define trendiness and derive trend indices for
each topic being disseminated in the social network. These indices take into consideration the time
between the detection and the message broadcasts, the distance between the real broadcast intensity
and the maximum expected broadcast intensity, and the social network topology. The proposed
trend detection algorithm is simple and uses stochastic control techniques in order calculate the
trend indices. It is also fast and aggregates all the information of the broadcasts into a simple
one-dimensional process, thus reducing its complexity and the quantity of necessary data to the
detection. The advantage of this trend detection algorithm is that, to the best of our knowledge,
this is the first trend detection algorithm that is based solely on the individual performances of
topics, i.e., a topic may have a relatively small number of broadcasts and still be considered trendy.
The trendiness is thus, in our case, an expectation of an increase in broadcasts, not a comparison
measure with other topics.

Keywords: Opinion dynamics, stochastic approximation algorithms, community detection,
information diffusion, Hawkes processes, trend detection, stochastic control.
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Introduction

"We’re all social creatures.”
— Social Media Monthly Magazine

In an era where information travels fast and far away, people become more interconnected and
aware of their surroundings, their planet, and other cultures. This phenomenon facilitates the
formation of public opinions, mass movements, political polarization, and at the same time, the
creation of niches where people assemble around some specific interest or quirk, such as skydiving,
bodybuilding, cosplay, etc.

The one responsible for this informational advance was, without shadow of doubt, the Internet.
It was entirely fundamental for the development of this news-centered paradigm, which is a cyber
environment composed of social networks, social media sites, web blogs, and any other means of
digital communication.

As we became capable of storing more and more data and performing faster calculations, social
networks and social sites such as Google, Facebook, Twitter and Amazon became data centers where
everyone willing to exploit this huge amount of information circles around.

As humans connect in increasing rates, their relationships, stories, experiences and knowledge
interact, which creates a multitude of crowd behaviors that may lead to a better understanding of
human relationships. As a consequence, social networks became one of the major research themes
during these last years, as a source of never-ending untapped information serving researchers in
many areas of science: psychology, sociology, advertising, statistics, physics, computer science, etc.

A good example of crowd behavior with concrete applications is the wisdom of crowds: people
weight what others think and suggest, what most of their acquaintances do, where do they go to
have a drink, eat something exotic, or simply enjoy life. This social knowledge is the basis of the
social network Trip Advisor, which is nowadays stamped in most of the entertainment places all
over the world.

A famous quote by W. Edwards Deming: "In God we trust; all others bring data” illustrates this
accomplished almighty power of data and thus, also illustrates the ongoing role of social networks
as one of the shapers and suppliers of data and knowledge about human interactions in the modern
society. Moreover, the economic repercussions of this new business intelligence and business analyt-
ics model create the perfect incentive for data-driven and technology-driven companies, who thrive
in this flicker environment and become the major players in innovation. This synergy between data
and business generates hence a rising framework for the economical exploitation of this "big data",
and as consequence, motivates more academic and applied research.

This ongoing trend, which generates an enormous flow of business and sheds some light into the
nature of human behavior and human relationships, needs to be studied and understood; and for
that matter a solid and extended mathematical set of tools to comprehend and exploit these new
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paradigm of information is paramount.

That is precisely the framework of this thesis, which aims to

(i) develop mathematical methods to study these intricate relationships between people and in-
formation, and

(ii) create tools to better exploit the hidden patterns in these relationships.

This task is performed in two steps. The first one is theoretical and uses tools from behavioral
dynamics - opinion dynamics models and information diffusion models. The second step is from
a more practical and applied point of view, and uses the developed theoretical models in order to
derive a novel community detection algorithm and a novel trend detection algorithm.

This thesis is thus divided into two parts, each one with a theoretical chapter and a practical
application stemming from the developed theory. The first part of this thesis - composed by chapters
1 and 2 - develops a theoretical opinion dynamics algorithm for information diffusion in social
networks, and a subsequent and more practical community detection algorithm. The second part
- composed by chapters 3 and 4 - develops a theoretical information diffusion framework based on
point processes, with a subsequent and more practical trend detection algorithm.

Specifically, chapter 1 develops an opinion dynamics model that takes into account multiple
contents being broadcasted in a social network, and stochastic interactions between users. Broadcast
means that users of the social network post the contents in their walls, which their followers are
able to see/receive.

Chapter 2 is a direct application of a particular instance of this opinion dynamics model. When
agents broadcast the content they appreciate the most, communities may be formed in the social
network, where these communities are groups of users that broadcast the same piece of information.
We have developed thus a community detection algorithm, which is distributed by nature, and has
the property that the discovered communities can be studied from a solid mathematical standpoint,
which is a valuable feature for a community detection algorithm.

Chapter 3 develops a theoretical framework for information diffusion based on self-exciting point
processes - Hawkes processes [140, 208]. This framework is versatile and accommodates several
variants, all of them possessing the same basic estimation procedure. The proposed framework
discovers hidden influences between users and contents, and can be coupled with topic models in
order to have a more data-driven approach.

Chapter 4 is a direct application of one instance of the previous information diffusion framework,
where we develop stochastic control techniques for near unstable Hawkes processes, creating a
trend detection algorithm. These techniques come from optimal stopping theory of It6 diffusions
(Brownian diffusions), and define trend indices for each topic being disseminated. The advantage of
this trend detection algorithm is that, to the best of our knowledge, this is the first trend detection
algorithm that is based solely on the individual performances of topics, i.e., a topic may have a
relatively small number of broadcasts and still be considered trendy. The trendiness is thus, in our
case, an expectation of an increase in broadcasts, not an absolute comparison measure with other
topics.

The remainder of this introduction discusses in more details the academic literature relative to
each chapter of this thesis, providing a better comprehension of the tools used during the course of
this work.



0.1 Opinion dynamics and community detection 15

0.1 Opinion dynamics and community detection

As already mentioned, the first part of this thesis is dedicated to an opinion dynamics model
and a subsequent community detection algorithm employing ideas from one of its particular cases.
We provide now a general review of the literature about both subjects.

0.1.1 Opinion dynamics

Opinion dynamics is an active area of research among statistical physicists, mathematicians
and computer scientists, started by psychologist French in [105], who created simple and intuitive
models of interactions between people and information.

One of the first mathematical models in this area was developed by DeGroot in [83], where agents
in a communication/trust graph possess scalar opinions about a subject, and at each discrete time
step randomly selected agents perform a combination of their opinions with those of their neighbors,
this combination being dictated by the weights of the trust graph. DeGroot shows in his work that
if the graph satisfies some assumptions related to its connectivity - if it is for example strongly
connected - then these individuals reach consensus, i.e., they converge to the same opinion.

Although DeGroot’s model reflects in part the simple but correct idea that people tend to share
and weight their opinions against peers, consensus is not always achieved in our society, even in
small groups. In practice we do not know when a group of people will achieve a consensus, or will
subdivide in small groups that share the same opinions, i.e., clusters of people.

These cluster formations are the main subject of a different family of opinion dynamics mod-
els called bounded confidence models, for which the two major representatives are the Krause-
Hegselmann model [142] and the Weisbuch-Deffuant model [82]. Bounded confidence models’
premise is that people are inclined to accept other opinions when they are sufficiently close to
one’s own opinion. Krause presents in [179] a continuous state model in which agents have scalar
opinions and at each discrete time step every individual averages his opinion with those that are
sufficiently similar to his, i.e., that reside in his so-called acceptance neighbourhood. Another ex-
ample of a bounded confidence model is the Deffuant’s model [82], which is a stochastic version
of Krause’s model where at each time step two random individuals meet and if their opinions are
sufficiently close then they average their opinions, which consequently approaches each other.

Krause and Hegselmann [142] and Lorenz [210] prove that, under mild assumptions on the graph
connectivity and the opinion thresholds, both the Krause-Hegselmann model and the Weisbuch-
Deffuant model present clustering, i.e., smaller groups having the same intra-group opinions are
formed, although the study of the most general cases can only be tackled by numerical simulations.
In spite of all difficulties to derive precise analytical results predicting the behavior of these models,
several extensions have been developed (see e.g. [89, 90, 91]).

As one may notice, there are as many opinion dynamics models as there are particular behaviors
that need to be modeled and understood in social, economic and natural sciences. We discuss some
families of opinion dynamics models that reproduce and explain different mechanisms of interaction
between agents, be they people, animals, competing industries, etc.

The principal families of opinion dynamics models studied here are: Interacting particle sys-
tems and Crowd behavior models. These two families differ on the account that interacting particle
systems deal mostly with discrete states for agents and simple rules of interaction between them,
whereas crowd behavior models use basically differential equations in order to derive average non-
trivial behavior for the system of agents.

These two families can be divided into several subfamilies, each one representative of an attempt
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to model a particular feature of reality. For example, interacting particle systems can be further
categorized into

e Contact processes: developed by Clifford and Sudbury in [68] for the study of two species
competing for territory, each one possessing a binary state. Each competitor thus can change
its state with a rate depending on the quantity of neighbors in each space, giving rise to a
Markov process in the state space.

Other examples of stochastic processes describing contact (between people in a society, or
nodes in a graph) are [137], where the stochastic contact model is represented by a discrete
state. Holley and Liggett study in [153] the ergodicity and stationary properties for this kind
of stochastic contact process, providing a complete description of its mechanisms.

e Voter models: these models are the modern version of contact processes in the sense that they
too are based on interactions between agents and their neighbors, in discrete or continuous
time. As with the contact process, the behavior in these models depends greatly on the type
of interactions between agents, which can be of any sort.

For example, Cox and Durrett introduce in [70] the nonlinear voter model, having as particular
example the threshold voter model of Liggett [204], which models the rate of an agent with
a binary state space to change his state as a threshold function of his neighbors states, i.e.,
an agent has a nonzero probability of changing his state if he possesses sufficiently many
neighbors in the other state. Lanchier and Neuhauser propose in [187] a (biased) voter model
in a heterogeneous environment to investigate the effects of recurrent gene flow from transgenic
crop to wild relatives, with a binary state space (individuals carrying the transgenic gene or
the wild gene) model where agents are situated in the d-dimensional lattice, for which there
exists a predefined set in which the voter dynamics is frozen, i.e., agents belonging to this set
do not change their initial states (which is the transgenic state). Yildiz et al. develop in [311]
a voter model with possible stubborn agents; in this model agents communicate via a network
(which is coded by a directed graph) and possess a binary state space; if not stubborn, an
agent revises his state at independent exponential random times; the presence of stubborn
agents in this model can lead to either consensus, as in DeGroot’s case, or disagreement, as
shown in [311].

e Majority opinion models: originally developed by Galam [108]| to model public debates and
hierarchical votes in societies, they are based on the assumption that in a random group of
people reaching a consensus, they end up with the majority’s opinion.

For example, Galam proposes in [109] a model with individuals possessing binary opinions
(in favor or against war, preferring a political candidate over another, etc.) who engage in
discussions about these opinions; at each time step, a subgroup of individuals is randomly
selected (following a distribution that takes into consideration their environment) and is put
to discussion, with each individual adopting the majority opinion at the end of the discussion
period (when opinions are tied, agents maintain the same opinions); the author finds that
in this dynamical model there exists a threshold value such that initial concentrations of the
minority opinion above this threshold imply that every individual eventually adopts it.

In a different kind of model - the classical Sznajd model [275] - individuals occupy binary
states in a linear chain, which are updated in a sequential order using the following rule: if
an individual shares the same state as his neighbor, then he and his neighbor propagate this
state to their respective neighbors; however if they do not share the same state, then their
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respective neighbors’ neighbors adopt their states, i.e., if neighbors share the same state, they
influence the other neighbors to adopt it, but if they do not share the same state, then they
influence their neighbors’ neighbors to do so. The Sznajd model presents some interesting
properties [274], but its assumptions are a little unrealistic, so variants and extensions have
been proposed (see e.g. [274, 81, 110]).

e Statistical physics models: At last, we discuss models stemming from statistical physics, which
in many cases bear resemblance to beforementioned models such as the voter model. These
models are based on a function measuring the energy of the interaction between agents in a
system, depending on the configuration of their states. Thus, authors develop updating rules
for the changes in agents’ states taking into account this "social Hamiltonian".

A pioneering example of such model is the theory of social impact, developed by Latané in
[190] and further studied by Nowak et al. in [239]. Again, we have a group of individuals who
are able to communicate following a network, with two possible "spins" /opinions, and two
individual parameters for each agent: his persuasiveness and supportiveness, describing how
he can influence and be influenced by others, respectively. These parameters are supposed to
be random, and give rise to a Hamiltonian function measuring the impact that an individual
receives from the environment; this Hamiltonian takes into consideration not only agents
spins/opinions, persuasiveness, supportiveness but also their distance in this network and
random fields expressing all sources other than individuals that can alter opinions (for example
media sources).

Due to the simplicity of this model (for example, it does not take into consideration memories
of individuals), some extensions have been proposed [175, 155], such as one based on active
Brownian particles [270, 269].

A different paradigm of opinion dynamics and social behavior is crowd behavior models. This
type of models translate the natural behavior into mathematical equations of motion, be they for
schools of fish, flocks of birds, pedestrian movements in streets, vehicular traffic, etc. Crowd behavior
models can be further categorized into

e Flocking models: Models in this category represent the behavior of flocks of birds, schools of
fish and other natural phenomena by motion equations.

A celebrated flocking model is the Cucker and Smale flocking model, developed in [72] to study
the behavior of flocks of birds in mid-air, which is then given by a dynamical system accounting
for the difference in distance and velocity between the birds in the flock; the authors are able
to prove the existence of two very distinct regimes: a regime where the convergence of the
flock is guaranteed, i.e., the flock remains together, and a regime where its convergence is not
guaranteed.

A stochastic version of Cucker and Smale flocking model is the Vicsek model 73] of self-
propelled particles, where particles move in a square surface with periodic boundary condi-
tions, and at each time step a particle position is updated following a law that takes into
consideration the average behavior of its neighborhood and a uniformly randomly distributed
noise.

e Pedestrian behavior models: Pedestrian behavior is studied empirically since the 1950’s [134],
with a pioneer model proposed in [148] conjecturing that pedestrian flows behave like gases
or fluids, thus described by classical Navier-Stokes equations.
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A celebrated example of this family is the social force model, developed by Helbing and
coworkers [146, 147]. They model pedestrians as particles following Newtonian equations of
motion containing three parts: a personal force that drives the pedestrian velocity, a social
force given by interactions with other pedestrians and interactions with barriers, and a noise
term responsible for the pedestrians non-predictable behavior. This simple model reflects
realistic scenarios, such as the formation of ordered lanes of pedestrians who walk in the same
direction and the alternation of streams of pedestrians trying to go through a narrow door in
opposite directions.

Other models of pedestrian behavior given by dynamical systems are those related to mean
field games [215, 189], where a continuum of pedestrians are described as rational agents that
maximize some utility function, and move following optimal paths of an underlying optimal
control problem. Pedestrians are then characterized by a probability distribution that evolves
as a forward Kolmogorov equation, whereas their optimal strategies evolve as a backwards
Hamilton-Jacobi-Belmann equation. This forward-backward system is mathematically chal-
lenging and has presented a great deal of new insights and results (see e.g. [121, 46]).

The models presented here are not exhaustive and we furthermore refer the interested reader to
the very complete survey [48], by Castellano et al. Furthermore, we avoided on purpose discussing
game-theoretical models, such as [313]; since opinion dynamics models and information diffusion
models develop theoretical justifications for real-life phenomena such as consensus or clustering
formation, and game-theoretical models were introduced in the context of information diffusion, we
have chosen to discuss them in detail in the information diffusion introductory section.

0.1.2 Community detection

We observe a variety of different organizations in nature and society: groups of animals, family
and friendship networks, protein interaction networks, public transportation networks, etc. The
advance of the internet and the mass storage of data allow us to grasp a basic knowledge about
these natural or planned organizations; they are nevertheless extremely complex and intricate,
hindering our attempts to have a complete understanding of their mechanisms and properties.

One of the first mathematical tools created to infer these networks and study their properties
are random graphs [39]. Random graphs are graphs that have a fixed number of nodes (which
can converge to infinity as well) and random edges between these nodes. Two major examples
of random graphs are the Erdos-Rényi model [96] and the preferential attachment model [21]. In
the former, edges are independent and identically distributed Bernoulli random variables (1 if an
edge is present, 0 if not) and in the latter they are sequentially attached to random nodes with
probabilities proportional to the number of present edges nodes already have. As a consequence,
these different behaviors lead to different network properties: for example, in the Erdés-Rényi case
one cannot (with a high probability) find nodes with a high concentration of edges, as opposed to
the preferential attachment case.

However, real networks are not random graphs, as they display large inhomogeneities, revealing
a great deal of order and organization. They present a broad degree distribution and power law
tails (see e.g. |5]). Furthermore, the edge distribution is not only globally, but also locally inhomo-
geneous, with high concentrations of edges within special groups of vertices, and low concentrations
between these groups. This feature, present in real networks, was pinned community structure [116]
or clustering.

Hence, among these so-called network properties we have the creation of communities or clusters.
Clustering refers to the phenomenon when nodes of the network can be naturally be grouped into
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sets such that each set is densely connected internally, thus dividing the network into smaller groups
with dense connections internally and sparser connections externally. As a consequence, pairs of
nodes are more likely to be connected if they both belong to the same cluster, and less likely to be
connected if not. This clustering phenomenon creates divisions in the network in question, and the
understanding of these divisions can lead us to better comprehend not only these objects but the
human behavior or the nature itself, as well.

These clusters or communities are important not only for their scientific insights on networked
interactions, but also for their concrete real-life applications. For example, clustering web clients
having the same interests or being geographically close could help achieve a better performance of
internet services [181], identifying groups of purchasers with aligned interests enables to create more
efficient recommendation systems [259], grouping proteins having similar functions [258] may shed
some light on a better understanding of human and natural cellular mechanisms, etc.

Due to its vast range of applications, there was an explosion of the literature during the last
decades, with the presence of complete and thorough tutorials like [102, 267]. They explain a mul-
titude of graph clustering methods, such as spectral methods [234, 235], random walk methods
[253, 14], hierarchical clustering algorithms 233, 35|, divisive algorithms [116, 236], centrality opti-
mization algorithms [98], methods stemming from statistical mechanics [260], etc. These community
detection methods apply tools originating from quite distinct areas of science, such as computer sci-
ence, statistical physics, social network analysis, spectral analysis, probability theory, optimization
theory, and many others.

The community detection techniques developed in the last decades are derived from ancient
graph partition methods, such as the max-cut problem [118]. The main difference between older
and newer approaches is that algorithms nowadays must be fast and with a low complexity (scaling
preferably subquadraticaly in the number of nodes or edges), since a slower but precise algorithm
is not even comparable to an approximate but faster one when clustering real-life networks with
hundreds of millions of nodes.

Community detection algorithms! can thus be grouped into different families, each one high-
lighting the tools or techniques used to perform such network clustering. We discuss here some
of these families: modularity clustering, in which authors optimize a global measure of how orga-
nized a network is, called modularity [236]; multiscale clustering, in which authors adopt methods
possessing an adjustable parameter that alters the granularity of the communities found; random
walk clustering, where authors use probabilistic tools like Markov chains in order to derive clus-
tering algorithms; and centrality clustering, where authors develop clustering algorithms based on
network centrality measures, such as the edge betweenness centrality [116] or communicability [98]
(a centrality measure similar to Katz centrality [168]).

We now study these methods in more details, subdividing each family of community detection
methods into smaller subfamilies, starting by modularity clustering techniques.

With the advance of the field of complex networks (large networks without an apparent struc-
ture), researchers adopted more statistical qualitative measures of how well clustered a network
is, locally and globally. An important measure of clustering is the modularity of a network: the
modularity compares the original network with a randomized version of itself where edges are ran-
domly rearranged, keeping fixed the expected node degree distribution [236]. Modularity itself is
intractable to fully optimize, but there exist less costly alternatives to its complete optimization,

1. We only discuss in this introduction community detection methods for undirected networks, i.e., networks such
that the edges linking two nodes do not possess a predefined direction and the relationship induced by these
edges is symmetric. There exist community detection methods that deal with directed networks (with one-sided
relationships between nodes) such as [218], but it is not the focus here.
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such as

e Spectral methods: the problem of assigning nodes to a fixed number of clusters can be rewrit-
ten as a quadratic assignment problem [234, 304], and by applying a convex relaxation being
transformed into a quadratic programming problem [234, 304|, which allows the use of spec-
tral techniques for this optimization problem. When the assignment is performed for only
two clusters, it is basically achieved by calculating the leading eigenvector of the so-called
modularity matrix [234]. The assignment of nodes into more than two clusters proceeds in a
similar fashion, following the ideas in [234, 235, 304].

e Hierarchical greedy methods: where one starts by associating each node with a community
and at each step computes the difference in modularity in pairs of communities, continuing in
the direction of the higher gain in modularity and merging the associated communities.

Two famous methods using this hierarchical greedy technique are the method developed by
Newman in [233] (which has a similar implementation in [67]) and the Louvain method [35].
The greedy method of Newman [233] associates at first each node to its own community, and
at each step it computes the maximum gain in modularity when merging two communities,
if any (it may well be that the gain in modularity is negative, so the algorithm terminates);
thus, the algorithm merges the two communities with the maximum gain in modularity, and
proceeds in an agglomerative fashion until termination at a local maximum of the modularity,
creating a network dendrogram.

The Louvain method, developed by Blondel et al. in [35], works in a similar fashion to
Newman’s greedy method. It is a greedy optimization of the modularity, using smartly the
fact that its local computation is quite fast. It starts, again, by associating each node with
its own community, and consists on the repeated iteration of two steps: first, it sequentially
sweeps over the nodes and given a node, it computes the difference in modularity of inserting
it in a neighbor’s community, performing the insertion of nodes in the community with the
higher increase in modularity, if any. In a second step, the nodes belonging to the same
community are merged, with the new community edge weights the sum of the weights of
the edges of the underlying nodes. These steps are repeated, generating a dendrogram from
which one can choose the best community structure. This method is extremely fast and yields
higher global modularity than other greedy techniques, but it has been remarked that it is
still not clear whether some of the intermediate parts of the associated dendrogram are indeed
meaningful hierarchical levels of the graph [102].

Despite its great success, the modularity optimization approach suffers from a resolution limit
problem, where it may fail to find communities smaller than a given scale which depends principally
on the network’s size, as pointed out by Fortunato and Barthélemy [103]. The same remark was
made by Kumpula et al. [183] regarding other null models.

In order to overcome this resolution limit problem, multiscale (or multiresolution) methods were
introduced. These methods possess an adjustable parameter that helps tuning the granularity level
of the communities found. They can be divided (for example) into

e Modularity optimization methods: Arenas et al. discuss in [11] this resolution limit not as
a problem, but as an intrinsic property of the network, proposing a multiscale method by
introducing self-loops with different weights in the original network and performing again a
modularity optimization approach.
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e Statistical physics methods: Reichardt and Bornholdt have shown in [260] (with the weighted
case being presented in [143]) that it is possible to reformulate the problem of community
detection as a problem of finding the fundamental state of a Potts model [307|, where each
node is described with a spin. Thus, their method consists in minimizing a Hamiltonian
function that takes into consideration, as in the modularity case, a difference between a null
model with the same degree distribution of the original network and the actual interaction
between nodes, with a scale parameter v > 0 responsible for the granularity of the communities
found. If v = 1, they recover (up to a multiplicative factor) the modularity function of [236].

o Signal-processing methods: Different community detection algorithms appear when signal pro-
cessing tools are used, such as wavelets [217]. These techniques are successfully used in many
fields, such as the detection of subgraphs in networks [226].

A method that exploits the fact that networks may have different community structures when
using different resolutions is the wavelets-based community detection algorithm developed by
Tremblay and Borgnat in [288|, where the authors use band-pass filters defined in the graph
Fourier domain, generated by stretching a band-pass filter kernel with a scale parameter s > 0.
They thus use the Fourier modes of the graph Laplacian (its eigenvectors) to create the wavelet
base (for a fixed resolution parameter s > 0) and draw a dendrogram of the target graph by
the node correlation between the elements of the base. The higher the resolution parameter
s, i.e., at larger scales, the fuzzier the resolution, i.e., we have bigger communities; the lower
the resolution parameter s, the wavelets use higher frequency modes and therefore create a
higher localization, generating smaller communities.

Another community detection framework is one based on random walks on networks [213]. Let
us assume, without loss of generality, that each node has at least one neighbor, and let us define the
probability of a random walker going from one node to another to be proportional to the weight of
the edge linking these two nodes, i.e., if a random walker is placed in a given node, the probability of
him going from this node to a neighbor node is proportional to the edge weight. If there is no edge
linking a pair of nodes, the random walker cannot go from one node to the other (at least in only
one hop). Classical Markov chain techniques allow the study of this random walk in depth, such
as discovering the analytic form of its stationary distribution (under certain hypothesis) and the
mixing time, and are closely related to spectral properties of the Laplacian matrix of the underlying
network [213].

Hence, one may expect that random walks may indeed help in discovering divisions and nontrivial
structures in networks. For instance, Van Dongen stated in his Ph. D. thesis [293] some basic
principles behind random-walk network clustering algorithms: 1) The number of higher-length
paths in a network is large for pairs of vertices lying in the same dense cluster, and small for pairs
of vertices belonging to different clusters. 2) A random walker that visits a dense cluster will likely
not leave the cluster until many of its vertices have been visited. 3) Considering all shortest paths
between all pairs of vertices, links between different dense clusters are likely to be in many shortest
paths.

We now discuss in detail some community detection methods that make use of random walks in
networks to uncover cluster structures:

e The first algorithm to be presented here is the Markov clustering algorithm (MCL) of Van
Dongen [293]. The algorithm consists in the iteration of two steps: a first step called expansion,
in which the random walk transition matrix is raised to an integer power p (it is well known
that the resulting transition matrix gives the probability that the random walker goes from
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one node to another in p steps), and a second step, called inflation, consisting in raising each
entry of the new transition matrix to some real-valued power o > 0 and renormalizing the new
matrix to be again a transition matrix of a random walk. This last step enhances the weights
between pairs of vertices with large values, which are likely to belong to the same community.
After a few iterations, the process usually delivers a stable matrix, with some remarkable
properties. Its elements are either zero or one, and the generated network described by this
matrix is disconnected, with its connected components the uncovered communities of the
original graph.

A particularly interesting instance of the MCL is the label propagation algorithm introduced
by Raghavan et al. in [256]. In the MCL, the author mentions a possible reduction by keeping
only the £ maximum nonzero entries of each column after the expansion steps, which is taken
to the extreme by the label propagation algorithm: one keeps only the largest entry of each
row after each expansion step. The resulting algorithm can be designed as follows: one starts
with each node belonging to its own community; at each step, in a randomized order, each
node is assigned to the community containing the higher number of its neighbors (if there are
more than one such communities, one decides randomly among them); the process is repeated
until no more assignments can be done (it is worth mentioning that the algorithm may not

end).

As a consequence, the resulting communities have nodes that possess more edges with vertices
inside its community than vertices with nodes in each of the other communities, compared in
a pairwise fashion. Tibély and Kertész prove in [283] that the label propagation algorithm is
equivalent to finding the fundamental state of a zero-temperature Potts model [307], giving a
precise description of the communities found.

Pons and Latapy show in [253] that the entrapment of a random walker in clusters can be
measured by quantities related to spectral properties of the transition matrix, defining dis-
tances between vertices and communities. The resulting algorithm, called Walktrap, proceeds
in the following greedy fashion: it starts by assigning each node to its own community (as
usual), and at each step it calculates the distance between (every reasonable) two communities
and merges the two communities with the smallest distance, following Ward’s method [301].
It provides then a hierarchical structure of the target network.

Finally, Avrachenkov et al. develop in [14] a community detection algorithm based on the
mixing time of local random walks in a graph. Their algorithm computes for each cluster
a scoring function that takes into consideration the spectral gap of the transition matrix of
a random walker moving only inside the cluster in question (which is a proxy of how fast
the random walk mixes, i.e., converges to the stationary distribution, and measures how well
connected the cluster is) and the probability of not leaving the cluster if started inside it
(which is a proxy of how disconnected the cluster is with the rest of the network). The
algorithm thus performs an aggregating search for communities starting at each node being
its own community. This leads to a dendrogram representing the community structure of the
graph in question.

We conclude the discussion of community detection methods with centrality-based methods,

which find structures in networks using centrality measures. Some of these methods are the follow-

ing:
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e The betweenness centrality method develop by Girvan and Newman in [116], which extends
the concept of betweenness? from vertices to edges, and leverages this idea to create a divi-
sive algorithm based on the idea that edges linking different communities usually have high
betweenness as paths from different communities must pass through them.

The algorithm begins with the whole network as a unique community, and at each iteration it
removes the edge with the highest betweenness, recalculating the new edge betweenness until
no edges remain and uncovering communities that eventually separate from one another. This
algorithm, as one might notice, constructs a dendrogram of the network where one may cut
it in any desirable fashion in order to retrieve the communities.

e An entirely unrelated approach, which resembles random-walk-based techniques, is given by
Ernesto and Hatano in [98], which is based on the generalization of the communicability of
nodes taking into account not only shortest paths between nodes but also the other paths
linking them.

The authors analyze a matrix taking into consideration all paths linking nodes in an un-
weighted network (powers of the original adjacency matrix), studying the Green function
given by the weighted sum of the number of paths. Thus, using spectral properties of this
matrix the authors are able to define rules to assign each node to communities.

The discussion led in this introductory section is not exhaustive and we refer the interested
reader to the survey in [102] where Fortunato presents in detail methods for undirected networks;
[218], where Malliaros and Vazirgiannis illustrate the theory and methods for directed networks;
and [252|, where Platié¢ and Crampes present a survey featuring a new approach based on semantics,
which allows interpreting social relations in community detection for social networks.

0.2 Information diffusion and trend detection

The second part of this thesis is dedicated to an information diffusion model and a subsequent
trend detection algorithm using ideas from one of its particular cases. We provide now a general
review of the literature about both subjects.

0.2.1 Information diffusion

Information diffusion models study the broadcasting and adoption of information by users in
networks. The basic idea is that people want to talk, share, post, tweet, like and perform any other
kind of social action in social networks, and by doing so, they influence others to do the same.
For example, when some new technology arrives, early buyers post photos and comments on social
networks, which are then diffused by "word-of-mouth". These actions lead, in turn, to an increase
in the number of buyers for this new technology, and so on. In Twitter, when someone retweets a
piece of news, he first must have been in contact with the news itself, so the broadcasting of the
initial news creates a cascade of new notifications and posts; these objects are called information
cascades [93].

The first information cascade models were opinion-dynamic and game-theoretical based models,
in which agents in a network have information they want to spread, or a utility function they want

2. For a given node, its vertex betweenness [104] is defined as the sum, among all pairs of other nodes, of the
ratio between the number of shortest paths (for unweighted networks) containing the given node and the total
number of shortest paths.
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to maximize. These models were quite useful when studying political trends [268], cultural fads and
fashion changes [26], collective actions [127], viral marketing [263], diffusion of innovations [264],
ete.

The division of these information diffusion models in opinion-dynamic versus game-theoretical
models is due basically to the difference of how agents interact: in opinion-dynamic based models,
agents do not seek to maximize a utility function; these models have simple rules and heuristics for
agents’ interactions and the goal is to study the aggregate behavior of the system. Some examples of
opinion-dynamic based model are independent cascade models [119, 120], threshold models |302, 24],
interacting particle systems [203, 7| (which are the continuous-time analogue of the stochastic cellular
automaton [295]), and other frameworks already mentioned during the general introduction about
opinion dynamic models.

Let us now present them in more detail:

o Independent cascade models: Are stochastic models of information diffusion, in which there
exists an initial seed group possessing some information that propagates through the network
from agents to their neighbors, until no agent is able to continue the transmission process
[119, 120].

Agents can be in two different states, active or inactive. An active agent may at each time step
disseminate the information to a random inactive neighbor, such that the transmission occurs
with a probability depending on their tie. The information transmission has only one chance
to succeed, i.e., if an active agent fails to transmit the information to an inactive neighbor, it
cannot repeat it to this same neighbor. An inactive agent can become active if it successfully
receives the information from an active node, and upon being activated it remains active until
the end of the diffusion process.

Thus, at each discrete time step, randomly chosen active agents try to disseminate their infor-
mation to some of their inactive neighbors, in an independent fashion, i.e., the transmissions
are independent from each other.

Independent cascade models are in the core of some influence maximization problems, such
as [169].

o Threshold models: These models are also based on stochastic diffusion of information, but in
the opposite sense of cascade models. There are also two states for each agent, active and
inactive, and the model begins with an initial seed group disseminating some information.
The difference from Independent cascade models happens in the sense of transmission, i.e., at
each time step the inactive agents compare the number of active neighbors against the number
of inactive ones, and become active depending on whether it is greater than some predefined
influence /infection threshold (which may be agent-specific [127] or fixed for the entire network
[24]). Usually this rule takes into consideration the weights on the edges of the underlying
graph, i.e. the bigger the weight in an edge, the larger the influence of a neighbor.

The classification of the subsequent model depends on how this influence/infection threshold
is defined. For example, majority threshold models [247] dictate that the information is
successfully transmitted to a given inactive agent if the (weighted) majority of his neighbors
are active; linear threshold models [216, 302] are themselves based on the assumption that
for a given inactive agent the (weighted) proportion of his active neighbors must be bigger
than an agent-specific threshold in order for the transmission to take place; and fixed-value
threshold models [24] follow the same ideas of linear threshold models, but with a fixed
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infection threshold for all agents in the network (for a fixed threshold of 1/2 it becomes the
majority rule).

Although opinion-dynamics-based model are well studied and possess a large literature in infor-
mation diffusion, they are still based on predefined rules and simple actions of agents, which have a
different interpretation in economics. The premise is that agents happen to adopt these transmis-
sion rules and dynamics because they are rational and seek to maximize some sort of utility or gain,
which comes in different forms. Some examples of game-theoretical information diffusion models
are:

e Stochastic best-response dynamics: The assumption in these models is that agents are not
fully rational when making a decision (the bounded rationality hypothesis [224]), such that
the actions are played following certain probabilities [37, 95].

At each (random) time agents revise their strategies and need to select an action to play,
which is taken to be the best-response of a game composed by their neighbors and the actions
chosen by them. As agents are not fully rational, they are not entirely certain that this game
reflects their true utility and thus, select a random action following a probability distribution
depending on the future utility of each action.

When this probability function is the softmax function [28], this mechanism is called log-linear
dynamics, and has been extensively studied in the game theory literature [225, 9].

o Diffusion of innovations: In this particular model the dynamics are similar to that of stochastic
best-response models, in the sense that agents are not fully rational and assign probabilities
to actions, which again depend on the future utilities stemming from local interactions with
their neighbors [313, 229].

The major difference between the two models is the fact that the choice of agents here is
not dependent on the present actions of neighbors (thus not playing a classical game) but on
their last played actions. As stochastic best-response dynamics, when the choice probability
function is the softmax distribution, it has been shown that under mild assumptions on the
utility functions and the network properties the agents’ actions configuration converges to a
stationary state [37]. When players become increasingly rational (when the noise parameter
of the softmax distribution converges to zero) the stationary state gives rise to the so-called
stochastically stable states [312], which are agents’ pure actions that are played with a nonzero
probability when agents are fully rational, i.e., they maximize agents utilities.

e Network games: In a more general fashion, the game-theoretical mechanism of agents playing
games in networks has been coined network games, which could have different forms: diffusion
of behavior and information cascades [111, 194|, network formation games [159], etc. The
reader can be referred to [160] for an extensive review of literature on the subject.

Apart from the beforementioned theoretical models such as opinion dynamics and game-theoretical
models for information diffusion, a fruitful new research program came along in the past years, such
as Kempe et al. in [169], where the authors study how to maximize the initial seed set able to create
the largest information cascade in a social network, assuming that nodes pass along the received
information as in an independent cascade model or a linear threshold model. After the pioneering
work of Kempe et al., new and more complex information diffusion models started to be developed,
with a greater emphasis on the algorithmic part.



26 Introduction

These models take into consideration different aspects of information diffusion: the diffusion
patterns and times [317, 99|, the contents diffused and their dissemination probabilities [195, 231],
the role of users at diffusing these contents [125, 201], the temporal shape of the impact/influence
of these diffusions [195, 232], the reconstruction of the networks given the observed cascades [123,
126, 316|, and many other properties of this complex process.

Instead of modeling the qualitative properties of the dissemination process itself, these works
focused on retrieving the network properties from the likelihood of the information cascades. Their
goal is hence twofold: first, by retrieving the system parameters, these models are able to obtain
crucial information on users and the information being disseminated; second, by choosing a para-
metric model of information diffusion, they still model the diffusion process itself from the estimated
parameters. They thus provide a more complete approach to the information diffusion process by
not only modeling it but at the same time retrieving vital information about the network and the
disseminated contents.

Although a complete division of these works is rather difficult due to their diversity, we can
divide them into two categories: those that do not use point processes [74] and those that use them.
The main difference between them is that those that do not use point processes base themselves
on simple heuristics and empirical properties of information cascades to derive exploratory models.
For example:

e Leskovec et al. report in [197] some findings about the linking of blogs and the structure
of the information cascades, after analyzing a dataset with 45,000 blogs and 2,2 million
blog postings, designing a simple flu-like epidemiological model that mimics the spread of
information and produces information cascades similar to real-life ones.

e Leskovec et al. develop in [195] a scalable framework for meme-tracking?, providing a repre-
sentation of the news cycle. They identify a large class of memes exhibiting wide variation on
a daily basis by tracking 1,6 million mainstream media sites and blogs over a period of three
months with a total of 90 million articles, finding new and persistent temporal patterns for
the information diffusion in such contexts.

e Myers and Leskovec study in [231] the variation of the probability in retransmiting information
due to previous exposure to different types of information; they found that, for Twitter, these
retransmission probabilities are indeed very different when compared to results stemming
from independent cascade models, which reinforces the discussion in deriving new model-free
approaches to information diffusion with multiple contents.

e Myers et al. study in [232| the influence of externalities over nodes on information cascades in
networks, adopting a cascade model with parameters relating to dissemination of information
from external sources and internal sources of social networks, for which the time instances of
diffusion are essential to the maximum likelihood estimation procedure.

e Snowsill et al. develop in [273] a network inference algorithm based on text mining techniques
in order to associate markers with reused text, in order to track pieces of text that travel
through nodes in a network. The reconstruction of the infection network is thus performed
using an approximated set covering technique [60] developed in [107] to infer a minimal graph
spanning a suitable stochastic branching process.

3. A meme is an idea, behavior, or style that spreads from person to person within a culture [79].
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e Gomez-Rodriguez et al. [122] and Daneshmand et al. |76] propose diffusion network infer-
ence algorithms for recovering the diffusion probabilities in continuous-time cascade models,
and Gomez-Rodriguez et al. develop in [123] an algorithm capable of uncovering the most-
likely network configuration leading to a given information cascade, following the independent
cascade model already presented in this introduction.

On the other hand, the works that use point process techniques base themselves on parametric
point processes in order to "guess" the interactions between users and information, estimating
their parametric version of the reality from the likelihood of events. Differently from other models,
point-process-based modeling has the advantage of aggregating several properties of not only the
information diffusion process itself also but the network, thus working as a trade-off between a
simpler view of reality against a more complete overview of the diffusion process. For example, a
point process that is deeply studied in the second part of this thesis is the Hawkes process [140, 208],
which is a self-exciting point process possessing a parametric intensity that takes into account the
previous events to increase the likelihood of future ones.

Some of its examples are:

e [38], where Blundell et al. model reciprocating relationships with Hawkes processes [140,
208|, using a Bayesian nonparametric model that discovers the implicit social structure from
interacting data, based on the Infinite Relational Model [309].

e In [158], Iwata et al. propose a probabilistic model for discovering users latent influence
using cascades of inhomogeneous Poisson processes. The authors present a Bayesian inference
procedure of the model based on a stochastic expectation-maximization algorithm.

e Gomez-Rodriguez et al. generalize in [124] independent cascade models with survival theory,
developing general additive and multiplicative diffusion models. The proposed framework
solves efficiently the inference of the most probable network responsible for such cascades.

e Yang and Zha study in [310] the propagation of memes in social networks with linear Hawkes
processes and couple the point process with a language model in order to estimate the memes.
They provide a variational Bayes algorithm for the coupled estimation of the language model,
the influence of users and their intrinsic diffusion rates.

e Zhou et al. develop in [317, 316] a model for the information diffusion process with a multi-
variate Hawkes process, developing parametric and nonparametric learning algorithms for the
system parameters from the cascades of data.

e Liand Zha develop in [202| a compact learning algorithm for Hawkes-based parametric models
of information diffusion, replacing the influence kernels between users and information with
sparse temporal linear combinations of a reduced number of features. The authors compared
the proposed compact method with classical Hawkes learning methods in order to assess the
gain in predictive power when dealing with an insufficient number of information cascades.

As one can notice, this new wave of literature on information diffusion is quite extensive, with
new methods being developed using different sets of techniques such as cascade models, probability
theory, statistics, point processes, language models, etc.

We refer the interested reader to a well explained tutorial by Guille et al. [132] for more details.
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0.2.2 Trend detection

Finally, we present a general overview of the literature related to the last chapter of this thesis,
trend detection. Trend detection is the study of models, techniques and tools used for detecting or
predicting patterns in information. Trends come in various forms and shapes; for example, one may
look at the return time series of a stock and try to denoise it, revealing a deterministic trend [101];
one may be concerned about anomaly detection [4], where one looks at outlier events in some data,
forecasting which events are defined as "normal" and which ones are defined as "exceptional", etc.

The literature on topic/trend detection is very heterogeneous (see e.g. [8] for an overview),
employing several methods such as information diffusion methods [169, 58|, adoption models and
complex contagion models |52, 51|, text mining and queuing techniques [173, 300], etc.

The methods using information diffusion in social networks are pioneered by Kempe et al.
in their seminal paper [169], where the authors develop an optimization framework to study the
problem of identifying influential users for a marketing campaign, introduced by Domingos and
Richardson in [88]. The framework uses submodular functions to detect the optimal seed group in
order to diffuse a content, based on the already explained independent cascade propagation model
[119, 120] and linear threshold model [216, 302].

The problem of finding the best seed group that maximizes the expected number of influenced
nodes was denoted influence maximization problem, and inspired numerous works:

e S. Bharathi et al. [25]|, where the authors extend the influence maximization problem for
multiple competing topics using game-theoretical techniques, and N. Barbieri et al. [22], where
the authors extend the independent cascade and linear threshold models to take into account
multiple topics, and devise a new influence propagation model that instead of considering
user-user influences, leverages user authoritativeness and users interests in topics, leading to
a compact representation of parameters.

e Chen et al. derive in [56, 57| scalable extensions of the independent cascade and threshold
models, and Tang et al. derive in [279] an influence maximization algorithm that has near-
optimal complexity based on the triggering model defined in [169], which is an extension of
the classical independent cascade and linear threshold models.

e Chen et al. develop in [55] an influence maximization algorithm based on an extension of the
independent cascade model taking into account not only positive opinions, but also negative
ones.

e Zhuang et al. study in [318] the influence maximization problem on dynamic social networks.
Their setting consists in making periodical partial observations of the social network, with
the derivation of an algorithm that minimizes the difference between the expected number
of influenced nodes in the real social network and in the partially observed one, under the
classical independent cascade model.

e Gomez-Rodriguez and Scholkopf developed in [125] a greedy influence maximization algorithm
taking into consideration the continuous-time independent cascade model of [122].

Although the influence maximization literature is quite extensive and very important for the
understanding of trend detection in social networks, it does not represent its totality. For example,
some works using text mining and queuing theory are
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e [173], where Kleinberg develops a trend detection algorithm by modeling "bursts of activity"
over document streams using an infinite-state automaton (analogous to models in queuing
theory for bursty network traffic), in which bursts appear naturally as state transitions.

e [300], where Wang et al. propose a general probabilistic algorithm that discovers correlated
bursty patterns and their periods across text streams, even if the streams have completely
different vocabularies - e.g. English vs. Chinese.

e [10], where AlSumait et al. propose an online topic model based on the Latent Dirichlet
Allocation [34], a generative hierarchical Bayesian model for text data, serving as foundation
to an algorithm detecting bursty topics in social networks. The idea is to incrementally update
the topic model at each time step by using the previously generated model, creating thus a
temporal evolutionary matrix for each topic and permitting the detection of bursty topics.

With the advent of social networks and their tsunami of data, a vast corpus of empirical works
appeared in the literature. They not only shed light into sociological phenomena [303], but also on
the information diffusion process [52, 51] and appearance of trends in social networks [306], acting
as a bridge and decreasing the gap between the abstract models of academia and real-life stylized
facts of social networks.

In spite of the fact that these empirical works do not reflect directly trends and do not develop
trend detection algorithms, we have chosen to discuss them in this section because they represent
the interaction between the theoretical works on the information diffusion models used to devise
better trend detection algorithms and the real-life data to support such theories. They provide
thus precious insights that allow the manufacturing of new and more realistic information diffusion
models, and as a consequence, better trend detection algorithms. Some of these empirical works
are:

[157], where Huberman and Adamic discuss several studies of information flow in social net-
works. They uncover critical properties of social networks and the information diffusion pro-
cess, such as their underlying social structure, how information spreads and why small world
experiments give solid results.

e [3], in which Adar and Adamic create a tracking algorithm responsible for discovering the
information flow in the blogshpere using several features of pairs of blogs: the number of
common blogs explicitly linked to by both blogs, the number of non-blog links shared by
both of them, text similarity, order and frequency of repeated infections, and in-link and out-
link counts for both of them. They also created a visualization tool in order to get a better
understanding of the diffusion process.

e Wu and Huberman study in [306] how attention to novel items propagates and fades among
large populations. They analyzed the dynamics of 1 million users of the social network Digg
and described it by a temporal model with single novelty factor.

e Centola et al. empirically illustrate in [52, 51| that a complex contagion model is more precise
than simple adoption models [86] for information diffusion in social networks, studying the
qualitative effects of network topology on its ability to propagate collective behavior.

e Gao et al. study in [112]| real anomalous events using mobile phone data, and find that
information flow during emergencies is dominated by repeated communications.
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Bakshy et al. [20], Teng et al. |282] and Weng et al. [303| analyze how the social networks can
influence the diffusion of different topics, and vice-versa, i.e., given different kinds of topics,
the relevance and creation of strong and weak ties in the social networks during the diffusion
process.

All the works presented so far tackle the trend detection problem at some instance, either in a
theoretical or practical manner. However, they are not perfectly suited to deal with trend detection
in social networks, as they do not exploit most of the relationships between users and information,
as for example user social authority and influence, topic influences, information flows, social actions,
contextual data, etc. We now present some of the works dealing with these issues:

Cataldi et al. devise in [50] an algorithm to detect in real-time emerging topics on Twitter.
First, they extract the contents of the tweets with a model for their life cycle. Second, they
consider the social importance of the sources of the tweets, using the Page Rank algorithm to
analyze the social ties of users. And finally, they create a topic graph connecting the emerging
terms with other semantically related keywords.

Takahashi et al. derive in [276] a trend detection algorithm focusing on the social aspects
of social networks, with links between users being generated dynamically through replies,
mentions, etc. The authors propose a stochastic model for behavior of a social network user,
detecting the emergence of a new topic. They combine the proposed anomaly score with a
change-point detection technique based on the Sequentially Discounting Normalized Maximum
Likelihood coding [291], or with Kleinberg’s burst model [173].

Budak et al. define and identify in [45] coordinated trends (characterized by the number of
connected users discussing them) and uncoordinated trends (characterized by the number of
unrelated people interested in them), providing network-oriented solutions for detection of
such trends.

Guille and Hacid derive in [131] an algorithm based on the asynchronous independent cascade
model [266], using an information diffusion model that captures and predicts the dissemination
process, relying on semantic, social, and time features.

Guille and Favre devise in [130] a Mention-Anomaly-Based Event Detection algorithm on
Twitter, based on the creation frequency of dynamic links users insert in tweets to detect im-
portant events and estimate their magnitude. The proposed algorithm dynamically estimates
the time periods for the events, not assuming them of fixed duration.

Cheng et al. propose in [58] a framework for addressing cascade prediction problems, moti-
vated by a view of cascades as complex dynamic objects passing through successive stages
while growing.
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CHAPTER 1

Opinion dynamics

"Opinions are made to be changed - or how is truth
to be got at?"

— Lord Byron

1.1 Introduction

We begin this thesis with a theoretical model of information diffusion in social networks, based
on an opinion dynamics model. This model is necessary to lay the fundamentals of information
diffusion ideas in order to fully explore them during the course of this thesis. Thus, the first part of
this thesis will have a theoretical and abstract flavor at first, and will be followed by an application
of this theoretical model: an opinion-dynamics-based community detection algorithm.

Opinion dynamics models develop rules on how a group of agents communicate and analyze
their impact at the network level (see [48] for a survey): do these rules lead to network consensus,
spontaneous clustering, etc.? Interestingly enough, simple opinion dynamics models often suffice to
be confronted with deep technical issues (see e.g. [53]) and fascinating conjectures (see e.g. [142]);
in addition, they also cover a large number of real-life situations that possess nontrivial behavior:
flocks of birds |72], interacting groups of people [105], distributed systems of robots [85], physical
particles with spins [254], etc.

This chapter introduces an opinion dynamics model based on exchange of opinions between
agents over multiple contents, and studies its convergence. We model the system as a weighted,
undirected graph, consisting of NV agents. All agents have a common set of contents, say K contents,
and each agent maintains a vector of scores, each of which reflecting the instantaneous appreciation
of the agent for each content. This appreciation starts with the agent’s own initial opinion for
each content, and then evolves as a function of signals the agent receives from her neighbors. Each
signal consists of the identity of one content, a number from 1 to K, that the neighbor chooses to
broadcast to the agent; the agent then updates its score for the specific content by the weight of
the link she has to the broadcasting neighbor. This choice is done by a random sampling from the
agents normalized scores on the contents, using a nonlinear transformation - the softmax probability
function with parameter 3 [28].

The softmax parameter [ impacts the choice of the signal: a small value of 8 corresponds to
a uniform choice over the K contents, and as 8 grows, the sampling becomes more biased towards
contents with larger scores. We show that for each fixed and finite value of 3, we obtain convergence
for the agents normalized scores as time tends to infinity.
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The sociological broadcasting/sharing mechanism used to construct our model has its roots in
the seminal work of DeGroot [83], modeling agents in a network possessing a scalar opinion about a
subject, interacting with neighbors through combinations of opinions coming from themselves and
from their neighbors. This same broadcasting idea was further developed by Tsitsiklis [289], Boyd
et al. [43], and many other authors to create decentralized gossip schemes, which aim to compute
linear functions of agents scalar opinions/states through pairwise interactions of agents, resulting in
the convergence of opinions towards a consensus. However, the convergence in our model, unlike in
standard consensus algorithms, may lead to disagreement between agents over the contents: since a
large softmax parameter 8 generates a greater bias towards contents with larger scores during the
agents’ random sampling, agents tend to broadcast opinions about contents for which they have a
greater appreciation; thus, depending on the way agents are connected, each agent starts receiving
more often signals about contents she appreciates the most, hence partaking a larger appreciation
for this same content with a subgroup of her neighbors, i.e., the network ends up clustered over
contents most appreciated by agents.

A similar clustering phenomenon also appears in a class of nonlinear opinion dynamics models,
the so-called bounded confidence models [142, 82|, where agents are placed in a communication
network and possess two quantities, the first one being a scalar opinion/state and the second one
being a confidence interval, which is a time-changing symmetric interval centered around the in-
stantaneous value of her opinion. Each agent’s opinion evolves thus through interactions with the
neighbors that reside inside the agent’s confidence interval, i.e., agents only interact when they
present opinions sufficiently close to each other’s. Since, at each time step, agents only interact
with neighbors possessing an opinion sufficiently similar to their own, agents’ opinions polarize
and converge towards different clusters, as expected. Although our model presents the possibility
of clustering, as in bounded confidence models, the interaction between agents are fundamentally
different in both cases: in bounded confidence models agents update their opinions following rules
similar to gossip schemes, using linear combinations of their actual opinions and the opinions of
neighbors residing in their confidence intervals, which results in similar opinions becoming even
more similar, while in our work agents do not have any control over the information received from
neighbors and the eventual clustering is an indirect effect, consequence of neighbors finally being
more appreciative, in the long run, of a common content.

As our model is based on scores measuring the appreciation of contents by agents, a reinforcement
mechanism takes place: the more agents broadcast opinions relative to a content, the higher the
probability their neighbors have of broadcasting opinions about the same content back to them.
This behavior is not "hard" or "binary" as in classical voter models |68, 205|, in which agents adopt
different states, but "soft" in the sense that the changes in agents’ opinions happen in a gradual
fashion. Due to the smooth changes in agents’ opinions, our model resembles recent voter models
with reinforcement [75, 49, 178]. Nevertheless, in our model, this reinforcement happens "on the
contrary sense" of the literature, as in the Sznajd model [275], which has an "outflow" dynamics
where each agent propagates her binary state to one of her two neighbors when she possesses
the same state of her other neighbor. This "outflow" dynamics appears as well in the proposed
model since agents broadcast their opinions to neighbors, with the reinforcement occurring in an
indirect level, when agents receive broadcasts from neighbors that randomly select the broadcasting
information from a softmax probability function.

Our model

i) takes into account the presence of multiple contents,

ii) relies on the random sampling of the broadcasted contents performed by agents through the
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nonlinear softmax function with parameter 5, and

iii) uses a stochastic broadcasting scheme of information where each agent transmits at each time
step an opinion about a single content to her neighbors.

Moreover, we prove the convergence of the normalized scores of agents, for any finite and fixed
value of 8, towards a particular set, however it turns out that studying this set is a challenging
task. For example, when the value of the softmax parameter § is small, agents’ normalized scores
converge to a consensus, whereas when [ is large, one can observe through numerical examples that
the convergence of agents’ normalized scores lead to the clustering of the network into groups where
agents have the same preferred content.

The rest of the chapter is organized as follows. Section 1.2 describes the proposed opinion
dynamics model and our main convergence result. In Section 1.3 we provide a mathematical proof
for the convergence of our opinion dynamics algorithm. In Section 1.4 numerical experiments are
performed to support our claims and Section 1.5 concludes the chapter.

1.2 Model description and main result

1.2.1 Notations

For two rectangular real matrices P,Q € Mnyxx(R), let (P,Q) = Tr(PTQ) be their scalar
product, with associated norm ||P|| = /(P, P). Also, let 1 be the vector with entries 1, where the
dimension of the vector is clear from the context, and let us define for a matrix P € Myxx(R) the
vectors P! = (Pbl ... PuK) ¢ RK,

We say that a sequence (my)ien € Mpyx i (R) converges to the set £ C Myxx(R) if and only
if d(m,E) — 0 when t — oo, where d(my, £) = inf ¢ ||m: — z|| is the distance between m; and the
set &.

Let us define the (K — 1)-dimensional simplex Ag = {z € RE | S 2% =1} and AL the set
of N x K real matrices such that every row is in Ax (the set of N x K real stochastic matrices),
e AN = (M € Myxg(Ry) | KM% =1, Vi < N}. Also define the set AN = {z €
Mpyxg(R) | 21 = 1 and z;, > 0, V(i,k)} and, for a parameter § > 0, the entropy function
Hp: Ax = R_ as Hg(y) = %Zk y* log y*.

1.2.2 The opinion dynamics model

We begin by presenting in detail our opinion dynamics model: let us consider a network of NV
agents sharing opinions about K distinct contents with their neighbors. The network could consist
of a small group of agents chatting in the same room or a large social network [180, 2, 78|, and these
contents might be an ensemble of movies, books, political leaders, etc. The communication network
is coded by a weighted, undirected communication graph G = (V| F) that represents the network
topology, where V' = {1,..., N} is the set of agents and F is a subset of all possible communication
links between agents, such that the link ¢ ~ j belongs to E if and only if agents ¢ and j are able to
communicate with each other.

The weights of G represent the influences that agents have over one another: if agent j is very
influential over agent 7, then the broadcasts of agent j have considerable impact over agent i, which
is hence reflected by a large weight for the link 7 ~ j. Mathematically speaking, the weights of G
are the entries of the NV x N symmetric matrix A, the adjacency matrix of V' such that A;; > 0 if
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and only if 7 ~ j. Defining the N x N diagonal degree matrix D such that D;; =) ; Aij, we have
that the entry Dj;; represents the total influence of the network over agent i € V.

As already explained, our model assumes that every broadcast is relative to one of K distinct
contents, each of them denoted by an integer k£ € {1,2,---, K}, with each agent ¢ possessing a
specific score Xf’k € Ry for content k£ at time ¢ € N. The higher the score XZ’k, the higher is
the appreciation for content k by agent ¢ at time ¢, which in turn implies that agent 7 is more
likely to perform a broadcast relative to content k to her peers. More specifically, we can define
Xt € Mpyxr(R4) as the matrix of scores of all agents, such that Xti * is the score of agent ¢ over
content k at time ¢, and we can define P; € A% as the agents normalized scores, where

"
ik X
V= o
2w Xi
In our model, agent ¢ selects the content relative to her broadcast at time ¢ + 1 according to a
random variable I/, € {1,---, K} following the random law
P(Iiy = kIGr) = f5" (Pt) (1.1)

where

o P c A% is the matrix of agents’ normalized scores, defined as X; = D(Xy)P,, with D(X})
the diagonal degree matrix of scores X; defined by D(X¢)iy = Y Xz’k,,

o f5: Mpyxk(R) — A is the softmax function [28] with parameter 3, defined as

i,k
ebp

- S e

where p € My« (R) is a N x K matrix and p®* is its (i, k) entry, and

5" (p)

e G = 0(Xs, s <t)is the standard filtration associated with X.

Then, after the broadcasting phase at time ¢ + 1 where agents perform the random sampling
and broadcast the selected information to neighbors, agents interpret the received information and
update their own scores X. A typical agent ¢ groups every information broadcasted to her and
updates her scores accordingly: she adds A;; to the score relative to the content brodcasted by
her neighbor j, i.e., to the score relative to the content given by the random variable Ith €

{1,2,--- ,K}.
We have thus the following update mechanism for the agents’ scores at time ¢ + 1:
ik ik B )
xXph=x" + ZAU]I{IgH:k} (1.2)
Jvi

=X+ D Al oy
J

which can be written in matrix form as
Xiy1 = Xy + ATy, (1.3)

where Z;41 is a N x K random matrix representing which content is relative to the broadcast of
agent 7 at time t 4+ 1. The matrix Z;; has entries

ik )
Lopr = Ty =y

Figure 1.1 illustrates an example of both the broadcasting and updating mechanisms.
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Figure 1.1: At t + 1 each agent chooses a content from the distribution (1.1) and broadcasts it to
her neighbors (broadcasting step), then agents update their scores with the received information,
following Eqn. (1.2) (updating step).

1.2.3 Discussion of the model

As previously discussed, our opinion dynamics model has two building steps: a broadcasting
step, in which agents select the contents relative to their broadcast and transmit the information
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to neighbors, and an updating step, in which agents retrieve the transmitted information from their
neighbors and update their scores according to the contents relative to each broadcast. These steps
are, however, independent from each other: the broadcasting step takes into consideration only
the agents’ scores, by means of the random sampling procedure, whereas the updating step relies
exclusively on agents’ influences, which affect how strongly agents interpret the information received
during the broadcast step.

The random sampling procedure is performed using the softmax function with parameter S [28].
The softmax parameter S impacts the choice of the content during the random sampling: a small
value of § corresponds to a uniform choice over the K contents, and as § grows, the sampling
becomes more biased towards contents with larger scores, i.e., agents start to broadcast more often
contents they appreciate the most.

It is worth mentioning that qualitatively the scores X; and the normalized scores P, represent
the same thing: agents appreciation of contents. The difference is that X; represents absolute scores
of agents while P, represents relative scores of agents.

1.2.4 Assumptions and main result
1.2.4.1 Assumptions

In order to prove our main convergence result, we make the following assumption throughout
the chapter:

Assumption 1. (i) min; D;; = min; Zj A >0,
(ii) min; 32, XF > 0.

Assumption D.1(i) implies that every agent is influenced, and thus agents scores are updated at
each step of the opinion dynamics algorithm. The degree matrix D then satisfies D;; = > j Ai; >0
for every i € V, which allows the definition of the inverse matrix D~

Assumption D.1(ii) implies that each agent has an initial score, which simply serves to avoid
a different starting rule for the opinion dynamics algorithm. Xé’k represents the initial opinion of
agent ¢ about content k; the bigger this opinion the harder is for agent ¢ to change it during the
opinion dynamics algorithm.

1.2.4.2 Main result

The main result of this chapter provides the almost sure convergence of agents normalized scores
P, subject to the opinion dynamics (1.2), under assumption D.1. The next section is dedicated to
prove the following statement:

Theorem 1. Let P; € A% be the agents normalized scores defined as P, = D(Xt)_lXt, where the
agents scores Xy follow the updating Eqn. (1.2).
Under assumption D.1, we have that P, — ]—'Ef almost surely when t — oo, where

7= {z e AN | 2= D Afs(a)}.
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1.3 Convergence analysis and proof of theorem 1

We provide in this section a rigorous proof of theorem 1, which dictates the convergence of
the agents normalized scores P; defined in section 1.2. The proof relies on the description of the
evolution of the normalized scores P; as a stochastic approximation algorithm |23, 185], which allows
the use of the so-called ODE method (see for example [41]) to ensure the desired convergence result.

1.3.1 Tools necessary for convergence

In order to fully understand the concepts used during the proof of theorem 1, we provide a quick
introduction on stochastic approximation algorithms, the ODE method and Lyapunov functions.
The interested reader is directed to |23, 185| for detailed tutorials.

1.3.1.1 Stochastic approximation algorithms

We say that the sequence of random matrices! (Sy)ieny € Myx ki (R) is a stochastic approxima-
tion algorithm if S; satisfies the following recursive equation

Sit1 =St + pr1 (Q(St) + M1 + Tt+1> , (1.4)

where

the step size p; € Ry satisfies py — 0 and ), p; = o0,

g : Mnyxr(R) = Myxk(R) is a continuous function,

M1 € Myxk(R) is a martingale difference, i.e., E[My11|0(Ss, Ms,rs, s <t)] =0, and

the remainder term 7441 € My« (R) satisfies 411 — 0 almost surely.

Stochastic approximation algorithms can be seen as the random counterpart of the Euler dis-
cretisation of the ordinary differential equation (ODE)

$=g(s), so€ Mnyxx(R), (1.5)

and under mild assumptions possess the same asymptotic behavior as the semiflow induced by it
(see [23, 185]), as discussed next.
Let us define by S : Ry — My« ik (R) the continuous time affine interpolation of Sy, such that
To=0, 7= Zle pi and
< St+1— 5

S(Tt+8) :St—l-s
Tt41 — Tt

(1.6)
forallt € Nand 0 < s < pi41, and let &9 : Ry X Myxig(R) = Myx i (R) be the semiflow induced
by ODE (1.5).

When the function g is bounded and Lipschitz continuous (or the stochastic approximation algo-
rithm is bounded almost surely), the noise in the stochastic approximation algorithm has bounded
variance, and both the step size and remainder term decrease sufficiently fast, we have that the
process S shadows in every interval [t,T + t] the semiflow ®9 originated in S(t), when t is large

enough. This is due to the next lemma, consequence of propositions 4.1 and 4.2 of [23]:

1. We use for simplicity random matrices, but the reader may see [23] for a more general definition using metric
spaces.
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Lemma 1. Let S; be the stochastic approzimation algorithm defined by Eqn. (1.4) and S its con-
tinuous time affine interpolation.

If g is bounded and Lipschitz continuous (or if sup, ||St|| < oo almost surely), sup, E[||Mz+1|]?] <
00, Y-y 7 < 0o and Y, pi||re]| < oo almost surely, we have that

lim sup [[S(t+h) — ®9(h, S(t))]| =0 (1.7)

t—o0 0<h<T
for any T > 0, where ®9 is the semiflow induced by the limit ODE (1.5).

Definition 1. We say that the continuous time affine interpolation S is an Asymptotic Pseudotrajectory
(APT) of the semiflow ®9 induced by ODE (1.5) (see [23]) if it satisfies Eqn. (1.7) for the semiflow
DI,

1.3.1.2 The ODE method

After introducing the concepts of stochastic approximation algorithms and asymptotic pseudo-
trajectories of semiflows, we are ready to discuss the ODE method, which is one of the basic tools
used to proving convergence of stochastic approximation algorithms.

The ODE method works as follows:

1. First, one retrieves the limit ODE (1.5) from the stochastic approximation algorithm S; given
by Eqn. (1.4).

2. Second, one proves that S, the continuous time affine interpolation (1.6), is an asymptotic
pseudotrajectory of ®9; the semiflow associated with ODE (1.5), i.e., S satisfies Eqn. (1.7).

3. Finally, one proves that ®9 converges towards some limit set, which in turn implies the con-
vergence of the stochastic approximation algorithm .S; towards the same limit set under mild
assumptions.

1.3.1.3 Lyapunov functions

A crucial step of the ODE method consists in proving that the semiflow ®9 induced by the limit
ODE (1.5) converges to a limit set, which can be achieved for example through the construction of
a Lyapunov function (see [23] for instance).

Definition 2. Let A C Myxg(R) be a compact invariant set of the semiflow ®9 induced by the
limit ODE (1.5). We say that a continuous function V : Myxg(R) — R is a Lyapunov function
for A if

o The function t — V(®I(t,x)) is strictly decreasing if v € Myxr(R) \ A.

e The function t — V(®I(t,x)) is constant if x € A.

1.3.2 Sketch of proof

We start the proof of theorem 1 by providing some insights, all arguments are made rigorous in
the remainder of the section.
The proof is performed in several steps, following the ODE method of subsubsection 1.3.1.2:
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(i) We study the evolution of normalized scores P, = D(X;)~'X; under the updates (1.2). We
show that the normalized scores P, can be represented as a stochastic approximation algorithm
[23, 185] and that they admit a stochastic approximation algorithm decomposition (Yz, W;)
that satisfies P, = D~'AY; + W; and where its continuous time affine interpolation (Y, W) is
an Asymptotic PseudoTrajectory of the semiflow ® associated with the limit ODE

{ gy =fs(D'Ay+w) —y (1.8)

w w.

(ii) We study the limit behavior of the semiflow induced by ODE (1.8), from which the proof of
theorem 1 is a direct consequence of proposition 6.4 in [23]. To do so, we proceed as follows:

(ii-a) We derive a Lyapunov function V3 for the semiflow ®, following the ideas in [150], which
in turn implies the convergence of ® to the set (]—"g,O), where fg ={ye AV |y =

fa(D71Ay)}, and the almost sure convergence of (Y, W;) to the set (Fg, 0).

(ii-b) Due to the almost sure convergence of (Y, Wy) to (.7-"57 0), we retrieve the almost sure
convergence of P, = D™'AY; + W, to the set D_lAfg, which we show is in fact equal
to the set % = {x € AY | 2 = D71 Afs(z)}.

1.3.3 The opinion dynamics algorithm as a stochastic approximation algorithm

As previously mentioned, theorem 1 provides the limit behavior of normalized scores P; under
the updates given by Eqn. (1.2), which can be written in matrix form as Eqn. (1.3).

We begin the proof of theorem 1, following the steps of the ODE method detailed in subsubsec-
tion 1.3.1.2, with a lemma describing P; as a stochastic approximation algorithm.

Lemma 2. We have that the normalized scores Py satisfy the following stochastic approximation
algorithm fort € N

1 _
1Dt+1 :Pt‘f‘m(D 1AfB(Pt)_Pt+Ct+l+77t+1>7 (1'9)

where (441 is a bounded martingale difference, i.e., E[Ci+1|Gi] = 0, and niy1 is a bounded random
matriz satisfying >, H%HWHH < 0.

Proof. By the definition of the normalized score matrix P;, one has that Eqn. (1.3) can be written
as

D(Xi41)Piy1 = D(Xy) P+ ALy,

where P, is the N x K matrix with agents normalized scores PtZ K at time ¢ and T4 is a random
matrix accounting for the updating of the algorithm. A
The matrix It+1’ has entries I;fl =1 Ii, =k} and we clearly have by Eqn. (1.1) that ]E[Iffl |G| =
P(Ij y = KIG) = f5"(Py), ie.,
EZi111G:] = f5(P),

hence (1 = ATy11 — Afs(P,) satisfies E[(,,1]|G] = 0, i.e., (4 is a martingale difference.
Eqn. (1.3) resolves to

D(Xi41)Pip1 = D(Xy) Py + ALy = D(X) Py + (o + Afs(Pr),
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which implies by subtracting D(X;41)P; from both sides
D(Xi41)(Piy1 — P) = (D(Xy) — D(Xy11)) P+ Afs(Py) + o1
We have for every i € V
D(Xi41)ii = (Xeg11)s = (Xyl + ATy 111); = (Xi1); + (A1); = D(Xt)ii + Dis,

which implies that
Piy1 =P+ D(Xp1) ™! ( — DP, + Afsg(R) +Ct+1>

1 _
=P+ P (D YAfs(P) — Po+ Gga + 77t+1>7

where (11 = DI, 41 is a bounded martingale difference and the remainder term

nert — ((t FD(Xep) ! - D-l) (Af5(P)) — DP,+Cpor)

satisfies, for constants L, L > 0,

D(XO) -1 -1 / 1
<L (D - D <L —

because D(X;) = tD + D(Xy), and fz and (;,; are bounded. O

1.3.4 Decomposition of preferences

After deriving a stochastic approximation algorithm for the evolution of preferences P;, we
continue the ODE method by proving that the semiflow induced by its limit ODE converges, however
the limit ODE of the stochastic approximation algorithm satisfied by the agents preferences P; does
not have any special structure that allows us to prove its convergence. Nevertheless, by decomposing
P, into two parts Y; and Wy, we are able to derive a new stochastic approximation algorithm
possessing a structure allowing us to prove its convergence.

We start thus the convergence analysis of the preferences P, by decomposing Eqn. (1.9) into
a new stochastic approximation algorithm (Y;, W;) composed of two parts Y; and Wy; we are able
to prove that the part W; converges to zero almost surely, whereas one has that the part Y; bares
resemblance to the stochastic fictitious play studied in [150]. This step is extremely important since
it allows the eventual derivation of a Lyapunov function Vg for the semiflow induced by the limit
ODE associated with the couple (Y, W,).

We begin the decomposition with two auxiliary lemmas:

Lemma 3. We have that

sup max |0 fi’k x)| <8,
e ra () () Cre) ‘ (J.0) g ()|

which implies that fg : My« (R) — A% has bounded derivative and is Lipschitz continuous.
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Proof. The conclusion easily follows from the calculation of the derivatives of f3
0if j #i
e fi @) = B( 1@ = U@ ) it =i o=
—Bf5 (@) f5° (@) i j =i, ¢ # k,
and the fact that 0 < fék(:r) <1 for all (i, k). O

Lemma 4. Define B, 5 = {z € Myxx([R) | [|z]| < 2vV/N}. There exists a 0 < § < + such that

inf min fé’k(DflAz +w) > 4.
(zw)eARXB, /5 (i:k)

Proof. The result easily stems from the fact that fé’k(llT /K) = +, the compactness of the set
{D ' Az+w | (z,w) € AR X B, /x} € Mnxk(R) and the continuity of fs, since fg’k(D_lAz%—w) >
0 for all (z,w) € A¥ x B, /x- O

Now, we state the main decomposition lemma:

Lemma 5. Let P, be the stochastic approzimation algorithm (1.9). Define by (Y, Wy) the following
stochastic approximation algorithm

Vi =Y+ 7 <fB(D_1AY¥ + Wi) — Yt>
(1.10)

Wip1 = Wi + 71 < — Wi+ G+ 77t+1>,
with Yy = %, Wo=PFy— %, and where (411 and ney1 are defined in lemma 2.
We have that
(i) P, = D7 YAY; + W; for all t € N.

(ii) Let & > 0 be the constant defined in lemma 4. Then Y; € {y € AX | y* > 6}, V(i k)} for all
t € N and sup, ||Wy|| < 2V/'N.

(iii) The continuous time affine interpolation (Y, W) : Ry — Myxkx(R) x Mpyxx(R) of (Y, Wy)
is an Asymptotic Pseudotrajectory of ® : R x (MNxK(R) X MNxK(R)) — Myxkg(R) x
Mn <k (R), the semiflow induced by the following ODE

. o 1 B
{ b =FpD7 Ayt w) —y (1.11)
w = —w.
Proof. (i) Let us define Q; = D~'AY; + W;. We must prove that Q; = P;, which we do by
induction in ¢. The result is clearly true for ¢ = 0 since D_lA% = % implies
nr 17
Py=—+(Py— —) =D ' AYy + Wy = Qo.

K K
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Let us assume the result is true for ¢, i.e., P, = Q¢. Thus
Qi1 =D TAY 1 + Wiy

_ 1 _ _ _
=D 1AYt+Wt+t+1<D 'Afs(D™'AY, + W,) — D 1AYt—Wt+<t+1+m+1>

1 _
=P+ t—i—l(D YAfa(P) — P+ G +77t+1>

= P
since P; satisfies Eqn. (1.9), which proves item (i).

(ii) First of all, we prove by induction in ¢ that Y;’k > ¢ for all t € N: the base case Yoi’k =%£>0
stems from the definition of 4 in lemma 4. Suppose that Ytz’k > 4, then, since P, € A% by
construction and fé’k(Pt) > ¢ for all P, by lemma 4, we have that

ik ik 1 ik 1 ik ik 1 1 ik
Yin =Y+ 7\ fs (DAY + W) =Y, | =Y, (1—m)+mfg (£1)
, 1 )
R A g > §
=V t—|—1)+(t+1)_ ’

which completes the induction.

Let us now prove by induction in ¢ that ;1 =1 for all ¢ > 0: we have that Yyl = 1, which is
the base case. Let us assume now that Y;1 = 1, then

1
Yipil=Y1+ m(fB(DlAYt + W) — Yt>1 =Yl =1,

since f3(z) € AY for all z € My (R), which completes the induction.

Since W; = P, — D~'AY; by item (i), P, € A% for all t € N by construction, we just proved
that V; € AY for all t € N and A¥ is invariant by DA, the fact that SUD_e AN l|z|| < VN
concludes item (ii).

(iii) First of all, we have that the semiflow ® : R x <MNxK(R) X MNxK(]R)> — My« (R) x

My« k(R) is globally defined and possesses unique trajectories since fg is smooth and Lipschitz
continuous by lemma 3.

In view of Eqn. (1.10), since supyen(||Yz|| + |[W]]) < oo by item (ii), fz is bounded and

Lipschitz continuous, ), ﬁ < 00, (41 is a bounded martingale and ), H%”WHH < 00,
the proof follows from lemma, 1.

O

1.3.5 Lyapunov function for the limit ODE (1.11)

We now proceed to proving that the semiflow ® induced by the limit ODE (1.11) converges.
This is achieved by the construction of a Lyapunov function V3 for the invariant set (]—'g,O) €
AR X Myxk(R), where Ff = {y € AX | y = fs(D~' Ay)}.

The Lyapunov function is composed of two parts, each one related to a term of the decomposition
(Y;, W) defined in lemma 5. The part related to Y; is exactly the Lyapunov function constructed
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in [150] for potential games in stochastic fictitious play, and the part related to W; is proportional
to the norm of the autonomous part of ODE (1.11), with the proportionality constant taking into
consideration the derivative of the entropy function Hg.

However, since the norm of the derivative of Hg goes to oo at the boundary 8A% ={y €
A¥X | 3(i, k) such that y**F = 0}, we must restrict the semiflow ® induced by the limit ODE (1.11)
to an invariant compact subset K of A% such that Y; € I for all ¢t € N.

We begin the construction of the Lyapunov function with some auxiliary lemmas:

Lemma 6. We have that A% = {z € Mnxxk(R) | 21 =1 and x;, > 0, V(i,k)} is a smooth
manifold of dimension N x (K — 1) without boundary.
Moreover, the tangent space at x € A% s given by

T, AY = {\ € My x(R) | AL = 0}.

Proof. The result stems from the fact that A% is an open subset, for the induced topology, of
the affine subspace & = {m € Muyxx(R) | ml = 1}, with associated vector space V = {\ €
My« (R) | A1 = 0}. O

Lemma 7. Let (yi, wy) be the solution of ODE (1.11) with yo € A%, given by lemma 5. There exists
a nonempty maximal interval J = [0,t*) such that y; € A% ={z e Myxrg(R) |21 =1 and z;;, >
0, Y(i,k)} for allt € J.

Proof. Define t* = sup{s > 0 | ys € A% and Fu € [0, s] such that y, ¢ A%} as the supremum of
the times for which 7y remains in A% before it exits for the first time.
We have for (y,w) € AY x Myxk(R) that

(fg(D_lAy +w) — y>1 = fe(D ' Ay +w)l —yl=1-1=0

since f : AX — AN, which implies that for y; € A% we have 1 = f/g(D_lAyt +w) —y € TytA%
by lemma 6.

Si{lce yo € AY, A¥ is a smooth manifold by lemma 6, fz is sm(o)oth and g € T, A¥ for
Yt € A%, we have by standard theory of ODEs in manifolds that y,; € A% for all 0 < ¢ < t*, and
that t* > 0. O

Lemma 8. We have that for every y € ]-"g there exists a vector c(y) € RY such that
VyV(y, w) = e(y)17, (1.12)
where the Lyapunov function Vg is defined in lemma 10.

Proof. This lemma is simply a particular case of lemma A.1 in [150]. However we provide a proof
for the sake of completeness. We easily have that

1 ” ik D;; oy, Dii
Oy Valy,w) = —3 (;Aij?ﬂ’ + Zj:AﬁyJ > + 5 sy +
D

-Z <1og<yiv’“>—6<D—1Ay>i,k+1>

by the symmetry of the adjacency matrix A.
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Since y € fg, we have that

log(yi7k) = B(D_lAy>i,k - log(z e’B(D_lAy)i,k/)’
k/

which implies that

Oyik Va(y,w) =

- <1 —log(} GB(D_lAy)”“’)) =c'(y)

k/
and concludes the proof. O

Lemma 9. Let (Fi)iev be the auziliary functions defined in lemma 10. We have for every y € A%
that for alli eV

(fi(D™*Ay) — ¢, Fi(y)) > 0.

Proof. This lemma is simply a particular case of lemma A.2 in [150]. However, we provide a proof
for the sake of completeness.
First of all, we have that V;Hg(x) = %(log 2* 4+ 1), which implies that

Vit p(@)jo=ri(p-14y) = (D 1Ay)m+ (1 —log( Ze TV

= (D' Ay)ix +a'(y),

with a’(y) € R, which can be written in a more concise form
VHE(T) jp= gy (D-1.4y) = (D~ Ay)i + a' (y)1.
Moreover, since y € AY and f3(D~1Ay) € AY, we have that
(a' ()1, f5(D~ Ay) — o) = a'(y)(1 - 1) = 0.
Thus,

(F'(y), f(D  Ay) — y') = (D' Ay); — VHs(y'), (D Ay) — y')

= <VH5(x)\m:fé(D_1Ay) - V,Hﬁ(yl)v fl(DilAy) -y > < ( )17 fZ(DilAy) - yz>
= (VH3(@) jo— g (D-1.4y) — VHs(Y"), f(D Ay) —y') > 0
since the entropy function Hg is convex. O

We now state the lemma constructing the Lyapunov function:

Lemma 10. Let § > 0 be the constant defined in lemma 4, K = {y € A¥ ] k> g V(i k)} C AN

B, m = {z € Mnxx(R) | [|z]] < 2v/ N}, and define the functzons F: K = Myxg(R) and
VK xB, x5 —Rby

= D;'Aijy? — VHs(y'), Vi€V,
i

1 — i, i
Vit = Lllull = 3 D (5 30050407~ ol ).
i J

and
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where N
L=2( sup |\Vf5(2)||)~(§1€12ZDn‘HFl(x)H)‘

zEMpnx K (R)

We have that

(i) the compact set KC x B, s is an invariant set of the semiflow @ induced by the limit ODE
(1.11).

(i1) (.7:[13/,0) C K x By and (Y (t),W(t)) € K x By s for all t € Ry.

iii) Vg is a Lyapunov function for the set (F4,0) with respect to ®cxp. ., the semiflow induced
B B KX By /5
by the limit ODE (1.11) and restricted to K x B, /5.

(iv) V3(Fj5,0) = Uzefg Vs(z,0) has empty interior.

Proof. (i) Let (yi,w:) be the unique solution of ODE (1.11) such that (yo,wo) € K x B, /5, i.e.,
(ye, we) = (¢, (yo, wo))-
First of all, since & = —w, we trivially have that the function ||w;|* satisfies < ||w||* =
—2||w¢||? < 0, which implies that w; € B, s forallt > 0.
Take now wo € B, /5 and yp € OK = {z € AN | 3(i, k) such that 2%F = ¢} and let (ik, k) be
indices such that y"*" = ¢ and that y5* > ¢ for all (i,k) ¢ U, (in, kn).
Define now, for € > 0, the set B.(yo, wo) = {(y,w) € A¥ x B, 5 | [y = ol +[|w —wol| < €}
We clearly have that there exists a ¢ > 0 such that max,, y'F» < % for all (y,w) € Be(yo,wo).
Furthermore, we also have by lemma 4 that min; y fé’k(D_lAy +w) > 6.
Moreover, by the continuity of y; and by lemma 7, there exists a nonempty interval [0, t*)
such that (yi, wi) € Be(yo, wo) and ming gy (i k) yi’k > g for all t € [0,t*).

In addition, for every t € (0,t*), the mean value theorem gives us
t t
Yt = Yo + / Yudu = yo + / (f3(D™' Ayy + wy) — yu)du.
0 0

Now, since yi* < ¢ and fé"’k"(D_lAyu +w,,) > ¢ for all u € [0,¢], we have that

A . t A , , A . 5
n7k7z nakn n7k7z — n,Kkn n,kn 'rukn _
v = g +/ (fé (D 1Ayu+wu)—yﬁ’k)du2y8 Hig >yt =

0

2 4
and by consequence y; € K\ 9K for all ¢ € (0,¢*). Since y; can only exit the set IC through
an element of 9K = {y € A¥ | 3(i, k) such that y** = %7 V(i,k)}, we have the result for
Yo € 0K, which also implies the result for yg € K and concludes the proof of item (i).
(ii) Take y € Fg. Then by lemma 4 we have that y* = fé’k(D_lAy) >0 > g, which proves that
fé’ C(IC) Hence item (ii) of lemma 5 and the convexity of K x B, /& conclude the proof of
item (ii).

(iii) One simply must prove that the function ¢ — Vj(y, wy) is strictly decreasing for (yo,wo) ¢
(fg, 0), since (}"g, 0) is the equilibrium set of ODE (1.11), which clearly implies that Va(y;, wy) =

Vﬁ(yOawO) if (y07w0) € (]:gvo)
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First of all, since Kx B, /y is invariant for the semiflow ® by item (i) and sup, ¢ max; [|[VHg(2")[| <

oo, the function ¢ — Vj(ys,wy) is well defined for all ¢ > 0 when (yo,wo) € K X By -
Moreover, we have that wg # 0 implies wy = woe™" # 0 for all ¢ > 0, thus ¢ — Va(y;, wy) is
smooth in ¢ when wq # 0.

Using the symmetry of the adjacency matrix A we have that 9, Vs(y, w) = —DyF i(3), thus
following the proof of theorem 3.2 in [150], we have

d Wt
—V
dt IB(yt:wt) <Hth

=—L||wt|\—ZDu (o), FH(D ™ Ag) — i+ D),

+Z (0, Va(ye, wr), ') = — L[| —ZDM

where v = fﬁ(D_lAyt +wy) — fﬁ(D_lAyt).

Since ||ve]| < supeamy, @) [IV3(2)]-[|wt]| and y+ € K by item (i), we have by the Cauchy-
Schwarz inequality that

ZDu! ()90 < Y Dall (o)l il < *Hwtll

%

which implies

d i
dtvﬁ Yt, W) E Dm E D” Z/t fﬁ( lAl/t) —yi) — Lf|wl|
Z -1 i L
< - Dzz yt fﬂ( Ayt) - yt> - §Hwt||

< —EDM (F'( (ye), f5(D~" Aye) — up).

By lemma 9, we have for all i € V' that

(F'(y), fé(D_lAyt) —yi) >0,

which, together with the fact that (]:g, 0) C K x B, /5 by item (ii), conclude the proof of
item (iii).

First of all, one clearly has that ]-"g C A% by item (ii). Define the smooth function V : A% —
R, as

V(y) = Vs(y,0).

Also, one has that the vector space My« x(R) can be decomposed into Myxx(R) =V & T,
where V = {A € Myxx(R) | A\l =0}, T ={clT | c e RN}, V =T+ and VN T = {0}.
Indeed, one has that for every A € V and ¢ € RY

(A elTy = (A, ¢) =0,
and in addition

dim(V) + dim(T) = N(K — 1) + N = NK = dim(Myxx (R)).
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Now, we have by lemma 8 that for each y € fé’ there exists a vector ¢(y) € RY such that

V,Vs(y,0) = c(y)1T € T. Moreover, since A% is an open set of an affine space with V as the
associated vector space (see proof of lemma 6), we have that, since ¢(y)17 € T = V*,

YV ) = Projy (W, Vs(0) ) = Progy (ctn1” ) =0,

where Projy : Myxk(R) — V is the orthogonal projection of My (R) onto V.

Hence .
fﬁy c {y e A¥ | y is a critical point of V}

and the conclusion follows by Sard’s lemma.

1.3.6 Proof of theorem 1

After proving in lemma 5 that the continuous time interpolation of (Y, W;) is an Asymptotic
Pseudotrajectory (APT) for the semiflow ® generated by the limit ODE (1.11) (see definition 1),
and by constructing a Lyapunov function for the set (Fg, 0) in lemma 10, we are ready to provide
a rigorous proof of theorem 1 following the steps of the ODE method of subsubsection 1.3.1.2.

We first provide an auxiliary lemma regarding the sets .7-"5 and ]-"g:

Lemma 11. Define the sets Fg = {y € A¥ | y = fs(DtAy)} and Fi ={z € AR |z =

D= YAfs(z)}.
We have that D~'AF} = F§, where D"'AF} = Uyefg D~1Ay.

Proof. Take y € F3, then z = D~'Ay € AX satisfies
x=D"'Ay=D'Afs(D ' Ay) = Dt Afs(x),
hence z € F3. This implies D_lAfﬁy C Fj.
Take now z € Fj and define y = fz(z) € AX. Then 2 = D~YAfs(z) = D71 Ay and
y = fs(z) = fo(D~ Ay),

hence y € ]-'g. This implies Fi C D_lA]:g and concludes the proof. O

Proof of theorem 1: Let ® be semiflow induced by the limit ODE (1.11), (Y, W) be the continuous
time affine interpolation of (Y, W;), both defined in lemma 2 and satisfying P, = D~'AY; + W; for
all t > 0, and also let K x B, VN be the invariant set for the semiflow ®, defined by lemma 10.

First of all, since (Y, W) is an APT for ® satisfying (Y (t), W(t)) € K x B, /5 for all t € Ry by
lemmas 5 and 10, we have that the semiflow ® can be restricted without loss of generality to the

set K X B, /77, 1.e., it can be defined as a function ‘I)\leBNﬁ Ry X (IC X B2\/ﬁ> — K X By /5-

Moreover, since (Y, W) is an APT for PikxB, 5 the limit set L(Y, W) = (Vg Uszt(?(5)7 W(s))
is internally chain transitive (see definition in [23]) by item (i) of theorem 5.7 in [23]. Finally, since
V3 is a Lyapunov function for the compact and invariant set (]-"é/, 0) such that V(]—'é/, 0) has empty
interior by lemma 10, we have by proposition 6.4 of [23] that L(Y, W) C (F},0), which implies that
(Y, W) — (F4,0) almost surely when ¢t — oco.
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The uniform continuity of D~' A provides the almost sure convergence of P, = D~'AY; + W to
the set D~ AFY, which is equal to ]:g by lemma 11. This concludes the proof.
O

1.4 Numerical examples

We perform in this section some numerical simulations of the proposed opinion dynamics al-
gorithm, with the sole purpose of illustrating our claims. We use in the simulations 5 different
undirected networks:

e The Zachary Karate Club (ZKC) network [314], with N = 34 people.

e The American College Football (ACF) teams in Division I during Fall 2000 regular season
[116], with N = 115 teams.

e The social network of frequent associations between N = 62 bottlenose dolphins (Dolphins)
over a period of seven years from 1994 to 2001 [214].

e An undirected randomly generated network following the Erdés Rényi model [96] (Erdos
Rényi), with N = 50 nodes and an edge probability p = 0.4, i.e., edges are randomly sampled
from independent Bernoulli random variables with parameter p.

e An undirected randomly generated network following the preferential attachment model of
Barabasi and Albert [21]| (Pref Attach) with N = 50 nodes and 5 edges per new node, i.e.,
each new node creates 5 new edges in the network.

We simulate our opinion dynamics algorithm with the 5 networks above, using at each time the
number of contents K equal to the number of nodes in the network, until a final time 7' = 3000
and with a softmax parameter? 8 = 30. Figures 1.2 and 1.3 depict the results of the simulations
and provide a numerical validation of our main convergence result: theorem 1.

Figure 1.2 illustrates the convergence of the normalized scores P, when ¢t — oo by plotting the

evolution of their relative L? error at each 50 steps, i.e., it plots the function r Err(t) = %

The convergence of the function rErr(t) to 0, represented by Figure 1.2, provides a numerical
example of the almost sure convergence of the opinion dynamics algorithm (1.3), independently of
the underlying network.

Figure 1.3 illustrates the convergence of the normalized scores P; to the set 72 = {x € AN |z =
D~ YAfs(z)} by plotting the L? error between the normalized scores P; and the function D1 Af3
applied to the normalized scores, at each 50 steps, i.e., it plots the function fErr(t) = ||P —
D YAf3(P,)||. The convergence of the function fErr(t) to 0, represented by Figure 1.3, numerically
confirms that indeed the normalized scores, under the opinion dynamics algorithm (1.3), converge
almost surely to the set 7% = {x € A¥ | 2 = D71 Afz(x)} when t — oo, independently of the
underlying network.

1.5 Conclusion

We introduced a new opinion dynamics model which incorporates opinions about multiple con-
tents and random broadcasts of information. The agents appreciation for each content is contained

2. We do not provide simulations with different softmax parameter values, since the main convergence theorem 1
remains valid for every softmax parameter value.
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Figure 1.2: Plot of rErr(t [Pesso—Prl| , the relative L? error of the normalized scores at each 50

|
steps, for each of the 5 networks %I&C ACF, DOLPHINS, ERDOS RENYI, PREF ATTACH.
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Figure 1.3: Plot of fErr(t) = ||, — D"YAfs(P;)||, the L? error between the normalized scores
and the function D_lAf/j, at each 50 steps, for each of the 5 networks: ZKC, ACF, DOLPHINS,
ERDOS RENYI, PREF ATTACH.

in an absolute score, and at each time step agents broadcast to their neighbors an opinion about
a random content, which is chosen based on a softmax function of their relative scores. After this
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broadcasting period, each agent interprets the received information and updates her scores in an
additive fashion by weighting this new piece of information with her neighbors’ influences over
herself.

We showed that, when agents cannot influence themselves and influence each other equally,
i.e., the network graph is undirected and without self-loops, there exists a Lyapunov function that
provides the almost sure convergence of the opinion dynamics algorithm.

When 8 <« 1, the algorithm converges to a consensus on the uniform distribution over the
contents, and when S > 1, numerical simulations show that the algorithm converges to a point
that represents a division of the network in clusters where agents inside each cluster only broadcast
contents they appreciate the most.

Moreover, our main convergence theorem provides the convergence of agents’ normalized scores
for social networks with any number of agents, broadcasting information about any number of
contents. It implies that our model remains coherent when simulating the opinion dynamics of
agents using real-life social networks with millions of nodes.



CHAPTER 2

Community Detection

"FEvery person is defined by the communities she
belongs to."

— Orson Scott Card, Speaker for the Dead

2.1 Introduction

This chapter introduces a novel community detection algorithm that discovers the network
communities using the limit state of the opinion dynamics algorithm studied in chapter 1. The
algorithm relies on the same principle than random walk methods for community detection. A
random process takes place in the network, such that its limit state allows the discovery of the
network communities.

As such, our algorithm bears resemblance to community detection methods stemming from
statistical mechanics - such as the Potts-based clustering model of [29] - which are able to detect
the communities of the network using the local minima of a Hamiltonian function. Moreover,
our method relies on an underlying opinion dynamics algorithm where at each time step nodes
randomly sample from a softmax distribution; this exponential weighting of states from the softmax
distribution can be found for example in the Potts clustering algorithm [29], the zero-temperature
Hamiltonian system equivalent to the label-propagation model of Raghavan et al. [256], and many
other methods.

As discussed in chapter 1, the softmax parameter 8 impacts the random sampling of the opinion
dynamics algorithm: a small value of 5 corresponds to a uniform choice over the K contents, and
as B grows, the sampling becomes more biased towards contents with larger scores. In sight of
this dichotomy, our community detection algorithm uses a large value of 5 (e.g. § = 50, g = 100,
B = 250) for the random sampling step, which represents a large bias for contents with the highest
scores.

Through the mechanism of the underlying opinion dynamics algorithm, one may realize that
the proposed community detection algorithm resembles Von Dongen’s Markov Cluster Algorithm
(MCL) [293], which takes advantage of the transition probability matrix of a suitable random walker
in the network and consists on the iteration of two steps: a first step called expansion, in which
the transition matrix is raised to an integer power, and a second step called inflation, consisting in
raising each entry of the transition matrix to some real-valued power and renormalizing this new
matrix to be again a transition matrix of a random walk. The latter step enhances the weights
between pairs of nodes with large edge weights, which are likely to belong to the same community;
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after a few iterations, the process normally delivers a stable matrix, which can be associated with
communities of the original network.

The broadcasting step of the opinion dynamics algorithm, which is the foundation of our com-
munity detection algorithm, works in a similar fashion as the inflation step of MCL, increasing the
importance given to a content that already possesses a higher score. The communities are thus
created around these contents. The main difference between both algorithms is the way how the
expansion and inflation steps are performed: in our algorithm, the expansion step is achieved by a
multiplication of the network’s adjacency matrix, whereas MCL uses at each step a different tran-
sition matrix for the random walker; in the inflation step, our algorithm uses the softmax function
with parameter 3, whereas MCL uses a renormalized power of the actual transition matrix.

Since the softmax function with a large S parameter - used during the broadcasting step of
the underlying opinion dynamics algorithm - takes into account only the contents with highest
scores, we perform the same reduction as the label propagation method [256] - which is a particular
instance of MCL: for each node, we only keep a small subset of active contents. As consequence,
the communities found by our method bears resemblance to those of the label propagation method,
described in [283].

Our method

i) can be mathematically proven to converge, contrary to heuristic state-of-the-art methods,

ii) describes the structure of the communities found,

)
)
iii) can be executed in a distributed fashion without difficulty,
)
)
)

iv) presents a manageable complexity,

v) discovers overlapping communities without an increase of complexity, and

vi) allows directed networks to be studied under the same practical framework, although it still

lacks a theoretical proof of convergence.

vii) Moreover, it can be performed in two ways: a parametric and a nonparametric one; the para-
metric way is faster and allows the choice of the maximum number of detected communities;
the nonparametric way does not cap the maximum number of discovered communities, thus
overcharging the underlying opinion dynamics algorithm, increasing its complexity; this choice
allows the proposed algorithm to behave as a multiscale community detection algorithm.

The rest of this chapter is organized as follows. Section 2.2 describes the community detection
algorithm and introduces our definition of communities. Section 2.3 discusses the fine-tuning of
the algorithm’s parameters, in order to achieve an optimal performance, and the complexity of
the algorithm in question. Section 2.4 performs some numerical tests and comparisons with other
community detection methods. And Section 2.5 concludes the chapter.

2.2 The community detection algorithm and definition of commu-
nities
2.2.1 Notations

We use the notations of chapter 1, as described in subsection 1.2.1. Moreover, we denote for the
matrix M its (i, k) entry as M, or Mk the L®-norm |M|s = max; | M;y|, the spectral radius
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sp(M) = sup{|A| | det(M — AI) = 0}, and v : Myxx(R) — RVE the vectorization operation of
matrices.

We define for any real numbers = and y, |x] as the floor of z, [x] as the ceiling of z, z Ay =
min{z, y} as the minimum between = and y and z Vy = max{z,y} as the maximum between = and
y and we denote for every set A its cardinality as |A|.

For two positive real functions f, g, we also denote f(z) ~ O(g(x)) (or simply f ~ O(g)) if and
only if there exists two constants M,z > 0 such that f(z) < Mg(z) for all x > xo.

2.2.2 The community detection algorithm

We now begin the main focus of this chapter, the derivation of our community detection algo-
rithm. As already mentioned, the foundation of our community detection algorithm is the opinion
dynamics model of chapter 1. The community detection algorithm has the following steps, which
are written in a more concise form in algorithm 1:

1 - Choose the parameters of the community detection algorithm:

1.1 - T number of steps of the opinion dynamics algorithm.
1.2 - 8> 1: softmax parameter for the random sampling under the distribution in Eqn. (1.1).
1.3 - K: number of contents of the opinion dynamics algorithm.

1.4 - Xj: initial condition of the opinion dynamics algorithm.
2 - For each time step 0 <t < T — 1:

2.1 - Create an auxiliary N x K matrix Auz;11 and initialize it to 0.
2.2 - Get the normalized score matrix P; from the nodes score matrix X; as
"
Pk = X
R
> Xy
2.3 - For each node 7 € {1,2,--- ,N}:

2.3.1 - Sample the content to be broadcasted by node i at time ¢t + 1, denoted by Iti+17
following the random law given by Eqn. (1.1), as

P(Ij, = k) = f5"(Py).

2.3.2 - Broadcast the content IZH to the neighbors of node i, i.e., for each node j ~ i:

2.3.2.1 - Increment the entry (j,Z} +1) of the auxiliary matrix Auz;y1 with the weight of
the edge between nodes ¢ and j, as

-ali A7Ii
Auz = Auz U+ Ay,
2.4 - Update the nodes scores by adding the auxiliary matrix Auz;41 to the ancient scores as
Xiy1 = Xi + Auwyy.
3 - Retrieve the communities (cx)ref1,2,.., k}y of G from the final normalized scores Pr as

c={ieV|PF> mlaXP%l —8(8)}, (2.1)

where §(3) < 1. As a rule of thumb, one may use 6(3) = 1/y/B or 6(8) = 1/8.



56 Chapter 2. Community Detection

Algorithm 1 - Opinion Dynamics Clustering

1: Input: Graph G = (V, E)
2: Choose T the number of steps, the softmax parameter $ > 1, the number of contents K and
the initial condition Xj.

3: Create an auxiliary N x K matrix Auz.
4: for each time step 0 <t <T —1 do
5: Initialize Aux < 0. L
6: Get normalized scores P; following Ptl’k +— #
k't

7: for each node i € {1,2,--- ,N} do
8: Sample the content I7, , following P(I},, = k) = fé’k(Pt).
9: for each neighbor node j ~ i do
10: Increment entry (j, I/, ) of auxiliary matrix Aux as

Aughlien  AughTia 4 Aji.
11: end for
12: end for
13: Update nodes scores following

Xt+1 — X+ Aux

14: end for

15: Retrieve the communities C = (¢ )r<x following Eqn. (2.1) as
o ={ieV|PF> mlaxp;’v’ —5(8)}.

16: Output: Communities C = (cx)r<k-
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2.2.3 Definition of communities

Let us assume, for simplicity, that nodes inside a community have only one preferred content
(which is the same for every node in the community) and let us associate the communities with
the preferred content of nodes belonging to them, denoting a community by c¢; if the preferred
content is k € {1,2,--- , K}. In sight of algorithm 1, when § > 1, we expect that outside cg, there
exists a smaller number of nodes that possess their highest scores relative to content k, and that
the nodes inside ¢ possess more edges inside ¢ than edges flowing outside ¢, since otherwise they
would receive more information about a different content and they would possibly end up with a
higher score for this content when compared to content k. This motivates the following definition
of communities:

Let P(N) = 2" be the power set of V = {1,2,--- , N} and C = (ck)ref1,2, .53 C P(IV) be a set
of sets. We can define for each i € V' the probabilities p; . as

1  _ifieec
) T TiEem ! k 2.2
Pik {Oifz’gﬁck, (2:2)

i.e., for each ¢ € V we can define probabilities p;; that are uniform on the sets ¢; that contain i.
These probabilities represent the sets of nodes: if a node 7 has p; ;, > 0 it means that it belongs to
the community cg.

Definition 3. The graph G is divided in communities C = (ck)k<x if

[ ] Uk Ck: — V.

e for each ¢ # ) we have the following: for every i € ¢,
Z Aijpjg = Z Aijpjw, VK # k. (2.3)
JEck JECK

In other words, a community ¢z is a subgroup of nodes of G such that for each node ¢ in ¢, the
weighted sum of the probabilities of the neighbors of i in ¢ is larger than or equal to the weighted
sum of the probabilities of the neighbors of ¢ in any other community, compared in a pairwise
fashion. This definition is different from the usual definition of communities found in the literature
[255], but it also reproduces the intuition that there are clusters of nodes more connected within
themselves than with other clusters.

Remark: If for every node i € V, there exists only one nonzero entry for (p;x)r<rx, then node i
belongs to a single community and condition (2.3) becomes: for every i € ¢y,

D Ay =) Ay, VK #E,

Jj€Ecy JEC

which is exactly the same property of the communities found by the label propagation method [256],
as explained in [283].

This definition of communities is intimately related to a certain set Fo, C A%, as explained by
the next proposition:

Proposition 1. Let foo : Myxg(R) — A% be defined as

) I .

i,k {kEMz(p)}

o P) = 7\ 2.4
foo'(p) |(Mi(p) 24
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with M;(p) = {k | p"¥ = max pik/} the set with the highest indices of p* = (pb!,--- ,pb%), d.e.,
the set with indices of maximum values for node i with respect to the matrixz p, and define as well
the set

Foo={z €AY | 2 =D Af o (2)}.

Let © € Foo and define the sets
ck={ieV| fif=z) >0} (2.5)
Then C* = (cf) k<K s a division of G in communities.

Proof. Since ), féok(a:) =1 for every ¢ € V, we have that there exists at least one nonzero entry in
(f o (x))k<Kk, and thus every node i belongs to some community. This trivially implies | J, ¢f = V.
We also have, by the definition of CZ, that fi (x) > 0 & i € ¢f, which implies

i€t e fifa) >0t = mlaxxi’l & ke M;(x)

and

Fik (@) = Ihemi@y ey ik
> {E [ R e Mi(@)} {K [iec} =7

by the definition of p; ; in Eqn. (2.2).
Let @ € ¢, then 2ok > 20K for all K/ %k, and

Y Aupik =D Aijf(x) = Dis(D Afoo(@))ig = Disa™* > D™ =3 Aijpj o, VK # k.
J J J
Since p;r # 0 < j € ¢}, this shows that for each k and for all i € ¢, we have

> Aupik = Y Aipjw, VK £k
JECE jecz/
and C? is indeed a division of G in communities. O

Moreover, we also have the following lemma about the minimum size of a community:

Lemma 12. Let (ck)p<x be a division of G in communities. If for every i € V we have that
Aii =0, then |cg| > 2 for every nonempty community cy.

Proof. Let us assume without loss of generality that node 1 belongs to community ¢; with |¢1] = 1,
i.e., c; = {1}, and let us prove the result by contradiction.

By assumption D.1(i), there exists anode i € V such that A;; > 0, which belongs to a community
ck; # c¢1. Thus, by Eqn. (2.3) in the definition of communities, we have that (since A;; = 0)

0= Aypi1 > > Aijpjk = A1iPig

JjEC1 jecki

which implies p; ;, = 0 since Ay; > 0. This is a contradiction since i € ¢, < p;r, > 0 by Eqn.
(2.2). O
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2.2.4 Discussion

As already mentioned in chapter 1, the opinion dynamics algorithm (1.3) behaves quite differ-
ently when varying the softmax parameter g8: if 8 < 1, nodes sample the content to be broadcasted
at each time step almost uniformly, whereas the broadcasting step with 8 > 1 is biased towards
the contents possessing the highest score.

As consequence, when 8 > 1, we expect that if a node i has a higher number of neighbors
that prefer the same content k, the limit normalized scores of node ¢ should also bear a higher
value for content k, which implies that a limit point for P; should somehow "cluster" the network
G in communities where nodes inside the same community have the highest scores over the same
contents. This is the main intuition behind the community detection algorithm 1.

Despite the simplicity of the community detection algorithm 1, there are two important points
that need to be discussed:

1. The numerical experiments performed in section 1.4 of chapter 1 suggest that the normalized
scores Pp converge almost surely, when 17" — oo, to an element of the limit set F E (see figure
1.2). Moreover, Peter Tino already proved in [285, 286] that for the vectorial case (where
the adjacency matrix A is the identity matrix I and nodes do not affect each other), the set
Fj converges to the set Foo when § — oo, in the sense that SUP,/e d(z', Foo) — 0 when

B — oo, i.e., for every sequence z° € Fj we have that limg_, 2P € Fuo (since Fo is finite).

This item provides the motivation of why the community detection algorithm 1 discovers the
communities of G by using Eqn. (2.1): it relates a point in Fj to the discovered communities
of G, which, since Fi~Foo when > 1, satisfy proposition 1.

2. The discovery of the network communities is performed by Eqn. (2.1), using the final nor-
malized scores Pr provided by the underlying opinion dynamics algorithm (1.3). The choice
of retrieving the communities using this equation is by no means the only way of retrieving
the network communities. This choice is based on proposition 1, which describes the set F
(which is close to the limit set /3 when > 1) as a subset of the communities of G, following
definition 3.

Thus, the division of G = (V, F) into communities C = (cg)pe{1,2,..,x} 1S associated with
node probabilities (p’);cy such that p»* is the probability that node i belongs to community
¢ (see Eqn. (2.2)), in such a way that each community has the same impact on node ¢ if
node i belongs to more than one community. This association of probabilities p to nodes
given communities ¢ provides, by proposition 1, a theoretical guarantee that each discovered
community possesses "sufficient" mass, in the sense that for each discovery community cg, the
weighted sum of edges of nodes in ¢, - weighted by the nodes probabilities p in Eqn. (2.3) - is
greater than or equal to the weighted sum of edges flowing to another community ¢/, when
comparing ¢y against every other community ¢y # ¢x in a pairwise fashion.

Again, this association of nodes probabilities p to communities C = (C]g)ke{LQ’...,K}, as illus-
trated by Eqn. (2.2), is by no means unique and one could provide different associations.
For example, one could associate for each node ¢ the probabilities P} = (P}"l7 e ,P}"K) such
that for every content k giving rise to a community ¢; we have that P%’k is the probability
that node 7 belongs to the community ci. These probabilities are of course different from the
probabilities p defined by Eqn. (2.2), which can be retrieved from Pr by means of Eqn. (2.1).

The retrieval of p (defined by Eqn. (2.2) and calculated from the discovered communities
using Eqn. (2.1)) from Pr can be hence seen as a soft thresholding of Pr in the sense that all
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nonzero probabilities Pr that are not above some threshold (depending itself on the maximum
value of P} for each node i) are reduced to 0 in order to generate p.

That being said, one argument in favor of our choice of nodes probabilities p given communities
C, as illustrated by Eqn. (2.2), is the theoretical guarantee of proposition 1, which is no longer
true for probabilities different than p.

Remark: We discover the communities with Eqn. (2.1) in order to accommodate overlapping
communities, in which one node may belong to more than one community. However, if one is not
interested in overlapping communities, she can find the communities ¢ given by Eqn. (2.1) as

cp={ieV| P}"k = InlaxP}Zl}.

2.3 Choice of parameters and complexity

One of the strong points of the proposed opinion-dynamics-based community detection algorithm
is its simplicity. This community detection algorithm simply updates scores (which can be performed
in a distributed fashion) using Eqn. (1.2) and retrieves communities using the simple rule of Eqn.
(2.1). However, to reach maximum performance, one may need to tune the parameters of the
algorithm: the initial condition Xj, the softmax parameter 5, the number of steps T" of the opinion
dynamics algorithm and the number K of different contents in the opinion dynamics algorithm.

This section focuses on how to choose the parameters and when to stop the opinion dynamics
algorithm (1.2) to retrieve the discovered communities, in order to decrease the complexity of the
procedure and increase the odds of finding nontrivial communities.

2.3.1 Initial condition and number of contents

One can clearly see that a division of G in communities can always be achieved by ¢ = V' and
¢ = 0 for all k' # k, which is associated with an element « € Fo such that ! = I—p for some
fixed k € {1,---, K}. These communities are trivial ones, and one must make sure that our opinion
dynamics algorithm does not converge to one of them when t — co. Since we do not have control
of the limit point of the opinion dynamics algorithm, a suitable initial condition must be chosen in
order to assure the convergence to nontrivial communities.

We denote by A o< B if matrix A is proportional to matrix B, i.e., A = vB with v > 0. A "good"
generic initial condition X that has been numerically tested that converges to a nontrivial division
of the graph is Xy oc A, with K = N, i.e., the number of contents equals the number of nodes in
V. This is a very logical choice: since we have no information on the number of communities that
our algorithm will find, we take K as big as possible to accommodate every possibility, hence we
choose K = N.

The choice Xg o A gives Py = D™'A and highlights a similarity with the label propagation
algorithm [256]: when K = N, each content can be associated with a community and we can
say that, at first, each node i belongs to its own community, labeled with an abuse of notation i.
Thus, at the first iteration, nodes choose one content to broadcast randomly to their neighbors,
using the softmax function; when the graph G is unweighted, ie., A;; € {0,1}, this choice is
made uniformly. At each iteration, nodes start to change communities, being influenced by their
neighbors’ broadcasts. At the end, nodes belong to the communities corresponding to the content
they received the most. When communities do not overlap, we retrieve thus the result of [283].
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This choice of initial condition gives systematically a nontrivial division of communities - a fact
sustained by an extensive number of simulations. This happens because, at first, nodes broadcast
only information about contents that represent their neighbors (recall that Pé’k = f‘)?’? ), thus they
will continue broadcasting contents relative to their neighbors (which are associated with a com-
munity since K = N), and the system converges to a configuration where the normalized scores
concentrate on the neighbors possessing the highest degree. Hence, these high-degree nodes trans-
mit their communities to their neighbors, which in their turn transmit to their own neighbors, and

gradually cluster the network, as desired.

On the other hand, one may want to cap the maximum number of communities to be found,
let us say, to K < N. This limitation on the number of communities may stem from two main
reasons: first, the complexity of the algorithm increases with K, since at each iteration we need
to sample N random variables from a K-dimensional vector. Second, one may want to retrieve
a smaller number of communities with a larger number of nodes inside each community, thus the
capping of the maximum number of communities forces the nodes to redistribute themselves among a
smaller number of communities and increase their sizes (this phenomenon is represents the multiscale
character of community detection, which is studied at length in [103, 287]).

We can retrieve a capped similar initial condition as follows: enumerate the nodes from 1 to IV
and divide them into K blocks of size [N/K| (note that the last block will have a size smaller than
or equal to [N/K|). Then we define, for k € {1,2,---, K}, the initial condition X, as

(kx[N/K1)AN

Xé’k X Z AU
j=(k—1)x[N/K]+1

Hence Xé’k represents the proportion of neighbors of node 7 in block k, for k € {1,2,--- , K}. The
case K = N happens when we have only one node per block.

Remark: Using lemma 12 we can choose K < [N/2] and X/ accordingly, since every community
must have at least two nodes when the network is without self loops.

Remark: If one can estimate in advance the maximum number of communities in G, then
applying the beforementionned choice of K and X drastically decreases the complexity of the
algorithm. Also, if one already knows some of the communities, she can bias the initial condition
in order to "direct" the opinion dynamics algorithm to converge faster to the desired communities.

2.3.2 Running time 7 and softmax parameter

The choice of the number of steps T for the opinion dynamics algorithm to achieve convergence
is of utmost importance, since it is the major contributor for the complexity of the community
detection algorithm, as well as the softmax parameter 3, since it is responsible for the approximation
of fo (defined by Eqn. (2.4)) by fz when > 1. Clearly, both parameters depend on the number
of nodes N, the number of contents K and on the structure of the graph G.

Theoretical bounds for the running time 7" using the convergence of the stochastic approximation
algorithm (1.9) could be obtained from laws of iterated logarithm [177]| or central limit theorems
[248]. However, these bounds are not satisfactory for three main reasons: first, one needs to compute
the asymptotic covariance of the martingale differences (;4; in Eqn. (1.9), second, the results
stemming from laws of iterated logarithms and central limit theorems are asymptotic and do not
provide an analytic lower bound, and third, these generic bounds are most of the time conservative
and do not exploit the full structure of the model.
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For example, let us take Pr — Pg € Fj almost surely when 7" — oo. By the almost sure central
limit theorem 1 of [248] that, conditional to the event Pr — Pg, we have

VT (v(Pr) — v(Ps)) % N(0,T),

where I is the NK x N K asymptotic covariance matrix taking into consideration the covariance of
v(¢r41) and the derivative of fg at the limit point Pjs.
Assuming that errors smaller than % do not affect the communities found by our algorithm

because these communities are associated with points Pg ~ x € F when [ is large enough), we
B

[yl
sp(I')
vectors y € RNE by the partial ordering on the symmetric positive-definite matrices, we have by

the almost sure central limit theorem that

1 T

must control the probability that |[v(Pr) — v(Ps)|| is greater than 4. Since y’ T~y > for all

T

B(|lo(Pr) - v(Py)l| > ) = P(sp(l“) \[v(Pr) — v(Pg)||* > W)
< Bl(u(Pr) — o(P) (1) 0Pr) —o(Ps) 2 — )
T
=P(x%x > W)’

2
2 . . . . . Xiyx—NK d
where X% is a Chi-Squared random variable with NK degrees of freedom. Since “svE

N(0,1) when NK — oo, we have that for a 5% probability of ||v(Pr) — v(Ps)|| being greater than

1 .
> we must have

sp(l?)NQ € [NK —2V2NK,NK +2V2NK] = T ~ O(N3Ksp(I)).

One has, at least intuitively, that sp(I') decreases when 5 , 0o because I' takes into consid-
eration the quality of the approximation of fo, by the softmax function fz (or in other terms,
the convergence of the set ]-"g towards the set Fu), which means that increasing § reduces the
asymptotic variance of I', and by consequence, the running time 7.

Two important details must be discussed here:

e Although we have that increasing the softmax parameter 3 decreases the running time 7" for
the opinion dynamics algorithm, it has a lower bound by the central limit theorem, i.e., the
almost sure central limit theorem assures the convergence of v/T'(v(Pr) — v(Ps)) to a normal
distribution of covariance matrix I" only when 7" — oo, thus we cannot increase 8 indefinitely
and expect to reduce the running time 7.

Thus, we still cannot provide a theoretical lower bound for the running time 7', which presents
itself as quite challenging. With this lack of theoretical results, we used in our experiments in
section 2.4 bounds on T of the form

T ~O(ogN) or T~ OKWN),
nevertheless a more detailed study should be conducted.

e On the other hand, if care is not taken in the choice of 8, one may have very large values of

i,k . . . .
ePP that may be larger than the maximum boundaries for floating numbers in the computer
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(as an example, % ~ 2.6 x 10*3), which would provoke numerical errors when sampling the
random variables Z} 1 from the softmax function fz in Eqn. (1.1), invalidating the sampling
mechanism and as a result invalidating the community detection algorithm entirely.

Thus, the choice of § must lie in an optimal interval in order for the community detection
algorithm to achieve a good performance. However, finding this optimal interval for the
softmax parameter [ is still a challenging task. We used for our simulations in section 2.4 a
softmax parameter § varying from 50, 100, 200, 250, which again needs a more detailed and
structured study.

2.3.3 Complexity of the community detection algorithm

We calculate now the complexity of our community detection algorithm. At each step ¢ €
{1,2,---,T} of our opinion dynamics algorithm (1.2), each node i € V samples a content k €
{1,2,---, K} to broadcast to his d; = 3, I14,,0} neighbors.

The sampling operation from the softmax function is of order O(K), and broadcasting it is of
order O(d;). Hence, at the end of broadcasting at a single time step ¢, we have a complexity of

Y O(K+d) =0(V| x K +|E|) = O(NK + |E|).

After storing every content to be updated from the broadcasting step ¢, we must update the

scores Xy11. This operation is of order O(NK) since we are simply summing up two matrices of
size N x K.

At the end of the T time steps of our opinion dynamics algorithm, we have the complexity

O(T x (NK + |E|)) from the broadcasting
O(T x NK) from the updating,

which is of complexity
O(T x (NK + |E|)).

Finally, using proposition 1, we retrieve the communities using Eqn. (2.1). We must thus
calculate the maximum of N vectors with K coordinates, which is of complexity O(NK).

In summary, after the T broadcasting and updating steps and with the retrieval of communities,
our algorithm has total complexity

O(T <« (NK + |E|) +NK> _ 0<T < (VK + |E|)>.

Remark: If one does not have enough memory to store the totality of the updates at each step,
one can update the scores individually at each broadcast, randomly choosing a node i to perform
the broadcast at each time step t.

Remark: One can also readily check that the complexity of the algorithm is much higher for the
nonparametric version, since in this case K = N or K = N/2 by lemma 12. For the parametric
version, one can choose a much lower value for K, which decreases significantly the complexity of
the algorithm.
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2.3.4 Speeding up the algorithm

There are several ways of speeding up this community detection algorithm, all of them based
on some heuristics. For example:

2.4

Suppose that we have a total number of time steps Tk for the opinion dynamics algorithm with
K contents. Starting our algorithm with X oc A and running it until some time t; < Tk, we
can check whether some of the normalized scores (P} ’k)iev are close to 0 for certain contents k.
If it is indeed true, it means that these contents will always be close to 0 during the algorithm,
thus we can eliminate their entire columns from F;, and rerun the algorithm with a smaller
number of contents. This reduces the complexity of the algorithm and allows it to run with a
number of contents closer to the actual number of communities to be found.

Use the true function f,, instead of fg for time steps ¢ > 1, since the normalized scores P;
will be already converging to the limit point that generates the communities. Sampling from
fs is costlier than from f., but it is absolutely necessary in the earlier stages of the opinion
dynamics algorithm where the initial condition is far away from the limit points.

Numerical examples

This section is dedicated to numerical examples of our community detection algorithm. We per-
form a comparison between our algorithm and some benchmark algorithms found in the literature,
for six undirected networks:

Undirected Zachary Karate Club (ZKC) network [314], with N = 34 people. See figure 2.1.

Undirected American College Football (ACF) teams in Division I during Fall 2000 regular
season [116], with N = 115 teams. See figure 2.2.

Undirected social network of frequent associations between N = 62 bottlenose dolphins
(Dolphins) over a period of seven years from 1994 to 2001 [214]. See figure 2.3.

Undirected network composed of 10 friend lists (ego networks) from Facebook (Facebook-
ego) [223], with N = 4,039 users. See figure 2.4.

Undirected general relativity and quantum cosmology collaboration network in ArXiv (GRQC-
ArXiv) with N = 5,241 researchers, from January 1993 to April 2003 [196]. See figure 2.5.

Undirected contact network between the N = 15,088 users in Youtube (Youtube), crawled
in December 2008 [278]. See figure 2.6.

We compare our community detection method with different algorithms: the label propagation
method [256], the Louvain method [35], greedy implementations of the modularity [236] and the
statistical mechanics Hamiltonian of Reichardt and Bornholdt [260], and fast implementations of
them based on the algorithm of Le Martelot and Hankin [191] using global criteria.

We denote by:

OD our opinion-dynamics-based community detection algorithm.
LP the label propagation method of [256].

L1, L2, L3 different clustering divisions given by the Louvain method [35].
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e FM an implementation of the fast algorithm using global criteria of [191] with as optimization
criterion the modularity function of [236].

e F'N a greedy hierarchical method to maximize the modularity function, proposed by Newman
in [233]. It works as follows: first one defines every node as its own community, and at each
step one computes for each pair of communities the difference in modularity when merging
them, proceeding in the direction of the highest gain in modularity (stopping the algorithm
if there is none).

e SRB1, SRB2, SRB3 different implementations of the fast algorithm using global criteria of
[191] with as optimization criterion the Reichardt and Bornholdt Hamiltonian function [260]
with scale parameters v = 0.8,0.7, 0.6, respectively.

e R agreedy hierarchical method (defined before for the method F'N') to maximize the Hamiltonian
function of Reichardt and Bornholdt [260], with a scale parameter v = 0.8.

We compute for each community detection algorithm comparative measures on the beforemen-
tioned six undirected networks. The comparative measures are

e Modularity (mod).
e Number of communities (nbC).

e Average community density (den), i.e., average ratio between number of edges inside commu-
nities and number of pairs inside communities.

e Average community embeddedness (emb), i.e., average ratio between number of edges from
inside communities and the total number of edges of the communities.

e Average proportion of the communities to the total number of nodes (siz).

e Normalized mutual information [188] between the communities found by other methods and
those found by our method (mut), i.e., a number between 0 and 1 that checks the similarity
of the communities.

o And when available, the normalized mutual information between the communities found and
the ground truth communities (miTrue), which measures how well the algorithms were in
discovering the true communities.

2.4.1 ZKC and ACF

We start by comparing our algorithm with benchmarks algorithms over the ZKC (table 2.1) and
ACF (table 2.2) networks. These networks are small but important, due to the fact that they are
the only ones whose information about their true communities is available.

One can see in table 2.1 that our algorithm (and the label propagation method, who found the
same communities as we did) was by far the best in reconstructing the true communities of the
ZKC. Tt is important to notice that 84% is relatively big, because we only have 34 nodes, missing
one node reduces drastically the normalized mutual information (in fact we miss only 1 node).
Our algorithm also finds the communities with the highest average size, lowest average density
and highest average embeddedness (together with the label propagation method and the greedy
Reichardt and Bornholdt statistical mechanics method). This suggests that, in the ZKC example,
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Ob LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 037 037 037 042 0.42 042 039 048 0.52 0.57 0.47
den 0.25 0.25 064 044 0.44 0.45 0.35 0.40 0.40 0.25 0.25

siz 0.50 0.50 0.17 0.25 0.25 0.25 033 0.33 0.33 0.50 0.50
mut 1.00 1.00 0.52 0.59 0.59 0.69 0.69 0.70 0.70 0.84 0.84
nbC 2 2 6 4 4 4 3 3 3 2 2

emb 0.77 077 0.38 056 0.56 0.56 0.59 0.66 0.66 0.77 0.77
miTrue 0.84 0.84 044 049 0.49 0.59 0.56 0.57 0.57 0.68 0.68

Table 2.1: Comparative table ZKC

ObD LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.58 0.60 0.60 0.60 0.60 0.60 0.55 0.63 0.65 0.67 0.58
den 0.88 0.82 0.86 0.76 0.76 0.76 0.48 0.60 0.60 0.54 0.52

siz 0.08 0.09 0.08 0.10 0.10 0.10 0.17 0.14 0.14 0.17 0.20
mut 1.00 096 098 095 095 095 0.74 0.85 0.85 0.80 0.71
nbC 13 11 12 10 10 10 6 7 7 6 5

emb 0.47 0.51 0.50 0.55 0.55 0.55 0.57 0.60 0.60 0.62 0.61
miTrue 0.92 090 093 089 089 0.89 0.70 0.79 0.79 0.74 0.65

Table 2.2: Comparative table ACF

the other methods find communities close to cliques (communities with higher density) and our
method finds communities with more embeddedness (ratio of internal edges compared to the total
number of edges).

In table 2.2, we can see that our algorithm was almost 100% accurate in reconstructing the true
communities of the ACF (lost only to one instance of the Louvain method, by only 1%). Again,
the label propagation method found communities very close to ours, but they are not the same,
which proves that the methods are not equivalent. Now, on the other hand, our algorithm finds the
communities with the lowest average size, highest average density and lowest average embeddedness.
This suggests that, in the ACF example, our method finds communities closer to cliques compared
to the other methods.

In both examples ZKC and ACF, our method uses the right criteria in order to find the network
communities: our method discovers communities with higher density when the true communities
have a high density value, and it discovers communities with higher embeddedness when the true
communities have a high embeddedness value. For real-life networks it can also indicate that maybe
the appropriate definition of communities is not the standard one finds in the literature, where
communities are subsets with more edges inside them compared to edges outside them [255]; we
could use the definition 3 as the standard definition of communities, where we only compare the
edges inside a communilty with edges stemming from other communities, one at a time. Of course
a much more detailed study must be conducted to shed light onto this phenomenon.

The reader should also notice that our definition of communities allows overlapping communities
without any increase in complexity, which can be sometimes desirable (in figure 2.1 we found one
node belonging to both communities).
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Figure 2.1: Communities for ZCK.

2.4.2 Dolphins

Ob LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.50 048 0.50 0.52 0.52 0.52 0.50 0.58 0.60 0.63 0.56
den 0.62 025 0.73 035 035 034 042 0.29 0.29 0.29 0.22
siz 0.14 0.33 0.10 0.20 0.20 0.20 0.25 0.25 0.25 0.25 0.33
mut 1.00 0.74 088 0.87 087 0.82 0.71 0.86 0.86 0.86 0.67
nbC 7 3 10 ) 5 ) 4 4 4 4 3

emb 047 0.75 040 0.56 0.56 0.56 0.58 0.65 0.65 0.65 0.72

Table 2.3: Comparative table Dolphins

We compare now our algorithm for the Dolphins network. Although we do not have its true
communities, we can still make some remarks concerning the performance of our algorithm compared
to the others, following table 2.3: first, one may see that contrary to the ZKC and ACF examples our
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Figure 2.2: Communities for ACF.

algorithm found very different communities than the label propagation algorithm. Our algorithm has
a number of communities between the first instance of the Louvain method and the other methods,
keeping in the same order the modularity of the partitions and the average embeddedness.

However, we find communities with much higher average densities (together with the first in-
stance of the Louvain method), which means that our communities resemble cliques more than the
communities found by the other methods.

2.4.3 Facebook-ego

For the ten ego networks in Facebook, one can clearly see in table 2.4 that all methods found
at least ten communities, with the exception of the greedy implementation using the Hamiltonian
function of [260]. Of course the ego networks may have nested communities, which explains why
there are almost systematically more than ten communities found by every method.

Again, the label propagation method gives very different results than our method, which resem-
bles most the second instance of the Louvain method (the fact that our agorithm resembles one of
the instances of the Louvain method seems to be fairly constant in other datasets).

Similarly to the Dolphins network example, our algorithm finds communities with the same
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Figure 2.3: Communities for Dolphins.

Ob LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R
mod 0.79 0.16 081 0.83 083 0.83 0.78 0.86 0.87 0.89 0.77
den 033 0.04 068 031 031 0.29 0.37 0.18 0.18 0.18 0.23
siz 0.04 0.02 0.01 0.05 0.06 0.06 0.08 0.08 0.08 0.08 0.11
mut 1.00 039 080 0.81 0.78 0.80 0.72 0.80 0.80 0.80 0.70
nbC 25 o1 101 19 17 16 13 13 13 13 9
emb 0.73 0.05 054 087 087 0.89 0.90 0.92 0.92 0.92 0.95

Table 2.4: Comparative table Facebook-ego

order of modularity and average embeddedness as the other methods, with higher than the average
densities, which means that our communities resemble cliques more than the communities found by

the other methods.

The lower average embeddedness may come from our definition of communities (definition 3),
where we are concerned simply with pairwise comparison between communities. We do not attempt
to minimize, for example, the number of edges between nodes inside and outside the communities,
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as dictated by the standard definition of communities in [255].

Figure 2.4: Communities for Facebook-ego.

2.4.4 GRQC-ArXiv

ObD LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.77 0.79 0.72 084 0.81 0.86 0.82 0.87 0.87 0.88 0.82
den 050 0.69 081 068 0.78 0.82 0.81 0.83 0.83 0.84 0.81
siz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mut 1.00 093 092 087 0.77 076 0.74 0.7 0.75 0.73 0.71
nbC 633 726 1204 537 404 387 416 384 383 380 420
emb 0.69 080 0.58 090 094 098 097 0.99 0.99 0.99 0.97

Table 2.5: Comparative table GRQC-ArXiv
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This example shows a result below the average when compared with other methods, where the
communities discovered by our method have lower density (den) and embeddedness (emb) than
the communities found by other methods. Our method finds communities resembling those of the
label propagation and the Louvain method once again. However, one can see that the modularity
of the communities found by our method still remains similar to other methods that are based on
modularity-like optimization techniques.

This time, our method found a higher number of communities than the benchmark methods,
which could explain the decrease in average density and embeddedness. This may be corrected
by limiting the maximal number of communities to be found using the parameter K (number of
contents in the underlying opinion dynamics algorithm)

Figure 2.5: Communities for GRQC-ArXiv

2.4.5 Youtube

Similarly to the GRQC-ArXiv example, our method finds communities with lower density and
embeddedness than other methods, with modularity still comparable to other methods that are
based on modularity-like optimization techniques.
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ObD LP L1 L2 L3 FM SRB1 SRB2 SRB3

mod 0.52 038 0.64 0.68 0.61 0.67 0.69 0.70 0.72
den 0.17 0.50 0.66 0.37 047 0.50 0.59 0.59 0.63
siz 0.01 0.01 0.00 0.01 0.02 0.03 0.03 0.03 0.03
mut 1.00 042 0.64 0.57 047 049 045 0.45 0.42
nbC 141 73 628 79 52 40 33 33 30

emb 042 076 034 0.71 0.76 0.84 0.88 0.88 0.90

Table 2.6: Comparative table Youtube

Again, our method found a higher number of communities than the benchmark methods, which
could explain the decrease in average density and embeddedness. Nevertheless, the unusual fact
about this particular example is that none of the other methods seems to be similar to ours, which
is given by the difference in normalized mutual information (mut) between the communities found
by our method and the communities found by other methods.

Figure 2.6: Communities for Youtube
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2.5 Conclusion

We introduced in this chapter a new community detection algorithm based on a stochastic model
of opinion dynamics. The proposed algorithm is studied using stochastic approximation techniques,
which results in a precise description of the communities found.

In addition to the theoretical advantage over heuristic community detection methods, the pre-
sented algorithm is able to accommodate weighted networks, with the discovery of overlapping com-
munities as an interesting byproduct with no mathematical or algorithmic overhead. Furthermore,
one can add as well a priori information on the communities to be found, by choosing a suitable
initial condition for the opinion dynamics algorithm.

Heuristic arguments for the fine-tuning of the parameters were presented, they establish two main
implementations for the algorithm: a parametric one and a nonparametric one. The parametric
version is less complex and caps the maximum number of communities to be found, whereas the
non-parametric version does not make any assumptions on the maximum number of communities
to be found. This choice gives the algorithm a multiscale character, allowing one to select the
granularity of the unknown communities.

This algorithm has a manageable complexity and is also designed to be performed easily in a
distributed fashion, making it useful for real-life networks.

Moreover, empirical tests with real-life benchmark graphs suggest that our less restrictive def-
inition of communities could more easily fit real-life networks, where nodes inside communities do
not need to be more linked within themselves, compared to the rest of the graph; it would suffice
for them to be more linked only compared with other communities, taken one at a time.
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CHAPTER 3

Information diffusion using Hawkes pro-
cesses

"If content is king, then conversion is queen.”
— John Munsell, CEO of Bizzuka

3.1 Introduction

After studying in the first part of this thesis theoretical ideas of information diffusion on social
networks by the means of opinion dynamics methods, we dedicate the second part of this thesis to
a more computational and concrete approach to information diffusion. We derive in this chapter
a general framework of information diffusion with Hawkes processes, and use one instance of this
framework to create a trend detection algorithm.

Information diffusion/dissemination in social networks refers to users broadcasting (sharing,
posting, tweeting, retweeting, liking, etc.) information to others in the network. By tweeting, for
example, users broadcast information to the network, which is then transmitted to their followers.
These sequences of broadcasts by users are called information cascades, and have been studied
extensively over the past years; see for example [26, 174, 51]. The large amount of recent work
on this subject reflects the strategic real-life implications which may be brought by the knowledge
of such cascades: one can discover the hidden impact of users and contents on this diffusion, and
highlight various characteristics of not only the social networks in question but also of the influential
users and their contents [273, 126, 123].

Information cascades are complex objects, for which there is no consensus on the standard way
to study them; for example: Kempe et al. in their seminal paper [169] develop a framework based on
submodular functions to detect the optimal seed group in order to diffuse a fixed content in a social
network, based on the so-called independent cascade propagation model [119, 120], which is a well
known information diffusion model. In [231], Myers and Leskovec study the variation of the proba-
bility in retransmiting information due to previous exposure to different types of information; they
found that, for Twitter, these retransmission probabilities are indeed very different when compared
to results stemming from independent cascade models; however, their approach does not take into
consideration the time between broadcasts of information and the topology of the network. And
in [124], Gomez-Rodriguez et al. study the network inference problem from information cascades
using survival theory; however, again, the authors to not take into consideration the underlying
network structure.
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Among the works dealing with information diffusion, there has been a steady increase of interest
in point-processes-based models [310, 38, 158]. Point processes take into consideration the broadcast
times of users, whereas a lot of information cascade models consider time to be discrete, i.e., time
only evolves when events occur; point processes are counting processes and have thus a discrete
state space, which makes them able to fully capture real-life features, such as the number of posts,
without increasing the mathematical complexity of the models; and the closed formula for the
likelihood of these point processes (|74] p. 232) gives us easy, simple and direct methods for the
estimation of important model parameters. For instance, Myers et al. study in [232] the influence
of externalities from other nodes on information cascades in networks; they use a point process
approach, from which the time instances of infection are essential for the estimation of parameters,
but the topological properties of the network are of secondary concern in their work.

One point process has been particularly useful in the modeling of these continuous-time models:
the Hawkes process [140, 208]. Hawkes processes are self-exciting point processes and are perfect
candidates for counting events on information cascades, where users transmit their information to
their neighbors in a social network. The use of self-exciting processes here enlightens the necessity
of a theory that can model the interaction between people having a conversation or exchanging
messages: imagine two people messaging each other through SMS. Normally each one would have
its own rhythm of messaging, but due to the self-excitation among these people, they will text and
respond faster than they would normally do when generating SMS messages without response. For
example, Yang and Zha study in [310] the propagation of memes (see definition in [79] p. 192.) in
social networks with linear Hawkes processes and couple the point process with a language model in
order to estimate the memes. They provide a variational Bayes algorithm for the coupled estimation
of the language model, the influence of users and their intrinsic diffusion rates; however, they do
not take into consideration the influence that memes may have on one another; moreover, they
propose the estimation of the entire social network, not taking into consideration the eventual lack
of communication between users.

Hawkes processes have already been successfully used to study earthquakes [242|, neuronal
activities [40], high-frequency finance [15], social sciences [201, 71| and many other fields, with a
vast and diversified literature.

This chapter aims to provide a solid and rich framework for information diffusion models in
social networks using Hawkes processes. The presented framework is capable of:

e modeling and estimating user-user and topic-topic interactions,
e modeling and estimating multiple social networks and their interactions,

e being combined with topic models [34, 265, 33|, for which modified collapsed Gibbs sampling
[77, 128] and variational Bayes techniques [151, 145] are derived,

e estimating different temporal effects of the users diffusion, such as seasonality and non-
homogeneity,

e using and estimating dynamic/temporal social networks [154], and

e retrieving the community structure of the underlying users influence in social networks, due to
a dimensionality reduction during the parameters estimation (see [182] for another example
of such methodology).

This chapter is organized as follows. Section 3.2 describes the models for our Hawkes information
diffusion framework. Section 3.3 details the estimation procedure of the hidden influences. Section
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3.4 discusses some additional topics for the Hawkes diffusion framework. In Section 3.5 numerical
experiments are performed with four different datasets, and Section 3.6 concludes the chapter.

3.2 Hawkes diffusion models

We start with brief introduction to Hawkes processes: a multivariate linear Hawkes process
(see [140, 208] for more details) is a self-exciting orderly point process Xy, t € [0, 7] with intensity

Ar = limg o w satisfying

t
Ay = /.L+/ @(t - S)dXS,
0

where F; = 0(Xs, s <t) is the filtration generated by X, p is an intrinsic Poissonian rate and ¢ is
a causal kernel that is responsible for the self-exciting part.

The Hawkes intensity A; can be divided into two distinguished parts: the intrinsic Poissonian
rate u, which models the base intensity of the Hawkes process, and does not take into account the
past of the process, and the self-exciting part fg o(t — s)d X, which models the interactions of the
present with past events. The u coefficient can, for example, model how some user tweets something,
after learning about it in class or at work, after listening to the radio or watching television.

The orderly property of the Hawkes process means that X cannot have two events/jumps at
the same time ([74] p. 232), and by the standard theory of point processes (|74] p. 233) we have
that an orderly point process is completely characterized by its intensity, which in this case is also
a stochastic process.

The self-excitatory property of the Hawkes process means that for all 0 < u <t < s < 7 we
have that: for every pair of coordinates (i, j)

cov(X! — X¢, X) — XI) >0,
and there exists at least one pair of coordinates (i*, 7*) such that
cov(XY — XU, XIT — XI7) >0,

This means that the future jumps of a self-exciting process become more probable to occur when
the process jumps.

We place ourselves under a generic framework for information diffusion: N users of a social
network disseminate their information over a social network. The dissemination/broadcasting of
messages can be performed in various ways, depending on the application and the social network
in question: measuring tweets or retweets, checking the history of a conversation in a chat room,
"pinning" pictures, etc. However, they all have one thing in common: messages are broadcasted by
the IV users in the social network, and those users that can receive these broadcasts are influenced
by them (at least indirectly).

The social network is defined as a communication graph G = (V, E), where V is the set of
users and F is the edge set, i.e., the set with all the possible communication links between users of
the social network. We assume the graph to be directed and unweighted, and coded by an inward
adjacency matrix A such that A; ; = 1 if user j is able to broadcast messages to user ¢, or A; ; =0
otherwise. We define j ~~ 7 if and only if A; ; = 1, i.e., if ¢ can be influenced by user j.

Users influence each other when broadcasting, in the following way: when user i broadcasts
something, all users that receive the broadcasts from user i (users j such that A;; = 1) see this
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broadcast. They are then more compelled to reiterate this procedure in the future, by broadcasting
on their own. Let us take Twitter for example: user 7 tweets something in Twitter, and thus users
that follow user i receive this tweet on their walls. They read this tweet and may become inclined
to answer it, comment it, rebuke it, or even retweet it. This means that this tweet from user 7
created a cascade effect, which provided all his followers an increase in their tweeting probability
on the future. This signifies that user ¢ influenced his followers.

Throughout this chapter we adopt two kinds of message categories: the first kind assumes that
messages are of K predefined topics (economics, religion, culture, politics, sports, music, etc.) and
that each message is represented by exactly one of these topics. The second kind assumes a "fuzzy"
setup with K topics, where this time the topics are not known beforehand and messages are a
mixture of these unknown (latent) topics; Barack Obama may for example tweet something that
has 40% of its content about politics, 50% of its content about economics and 10% of its content
related to something else.

3.2.1 User-user and topic-topic interactions with predefined topics

We first focus on the case where messages are about one of K predefined contents (economics,
religion, sports, etc.). We assume that we have N users in a single social network and that they can
influence each other to broadcast, and that these influences are independent of the broadcasted con-
tent. On the other hand, the topic to be broadcasted is influenced by the topics already broadcasted
beforehand.

This is the case, for example, if one wants to separate the influence effects of users and top-
ics: posts about politics can influence posts about fashion, economics, religion, etc., and people
can influence other people simply because they are friends, famous or charismatic. In this model
we assume that the influence of a specific user when posting something is given by two different
components, the user-user component and the topic-topic component.

These influences are coded by two matrices J and B such that J; ; > 0 is the influence of user i
over user j and B, > 0 is the influence of topic ¢ over topic k.

We model the number of messages broadcasted by users as a linear Hawkes process X; €
My« (Ry), where XZ’k is the cumulative number of messages of topic k broadcasted by user
i until time ¢ € [0, 7] in the social network. In other words, this X; is a RN*K point process with
intensity

NP =ity Y Berdi /Ot Ot = 5)AXLS = p 4 Y03 Bepdis(6 dX)7,

c gt c i

where ;%% > 0 is the intrinsic rate of broadcasting of user i about topic k, ¢(t) > 0 is the temporal
influence kernel that measures the temporal shape of influences coming from past broadcasts - which
satisfies [|¢[[1 = [~ ¢(t)dt < oo - and

tf

(pxdX) = ; ot — S)dXS € MNX[{(R+)
is the convolution matrix of the temporal kernel ¢ and the jumps dX. This allows one to use
N2+ K? parameters instead of N2K? for the full fledged model without this influence factorization.
As said before, not all users can communicate among themselves. Hence one must take into
consideration the inward adjacency matrix A given by the underlying structure on the social network.
This is done by the relation
Ai,j =0= J@j = 0. (3.1)
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Remark: Two standard time-decaying functions are ¢(t) = we*‘“t.]l{bo} a light-tailed exponen-
tial kernel [245, 246, 310] and ¢(t) = (b — 1)(a + t)".Ij~0y a heavy-tailed power-law kernel (see
[71]). Expectation-minimization algorithms can be derived in order to estimate the parameters w
in the exponential case [133, 198] and a, b in the power-law case, as provided in appendix B.

3.2.2 User-topic interactions and global influence in the social network

A different model arises when users do not influence other individually, but they influence the
social network as a whole. This means that instead of having an influence matrix J € Myxn(Ry)
that measures the user-user interactions, we have now an influence matrix J € Myxx (R, ) such
that ij > 0 is the influence of user ¢ over the whole social network, when he broadcasts something
about topic k.

Hence, the associated Hawkes process Xf’k, which measures the cumulative number of messages
broadcasted by user i about topic k until time ¢ € [0, 7], has intensity

3 . ~ t_ .
N =t 30D Berdie | ol = 5)axie

c g
t_

=+ 30D BerdisTie | ol = £)axI
c g

Think about Barack Obama: it is natural that posts or tweets about economics or politics
coming from Obama are going to have a much bigger impact than posts about sports or fashion.
People normally have the most influence in their areas of expertise, and we develop a model that
accommodates this feature.

3.2.3 User-user and topic-topic interactions with "fuzzy" topic label

Up until now we have dealt with information dissemination models having K predefined topics
and in which each broadcasted message was assumed to belong to one, and only one, of these topics.
We consider now a different point of view regarding the broadcasted messages: each message now
is a mixture over K undiscovered/latent topics. These topics are distributions over words and each
message broadcasted at time t; € [0,7] generates the message’s empirical distribution of topics
random variable Z%s such that
N
Zyp=—>Y z", (3.2)

w=1

where Ny is the number of words in the message broadcasted at time ¢4 and z%" are independent

discrete random variables modeling the topic of word w, i.e., ;" = 1 if and only if word w at
message tg is about topic k, and 0 otherwise.

In this model users receive messages that are mixtures of topics and each user reacts to topics in
a different manner, these user-topic interactions are characterized by the matrix b € Myxx(Ry),
such that b; , measures the influence of topic £ over user <.

We define thus the Hawkes processes X} as the cumulative number of messages broadcasted by
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user ¢ in the social network until time ¢t € [0, 7], with intensity

t—
MNo=p'+) Jig Y Berbin [ ot —s)Z5dX]
— 0
I~ c,k
— ui + Z Ji,j Z Bc,kbi,k(¢ Xy dX)g’c,

i c,k
where p' > 0 represents the intrinsic dissemination rate of user i and

. t= ,
(¢ xz dX)] = Pt — s)ZdX]
0

is the (j,¢) entry of the weighted convolution of the temporal kernel ¢ and the jumps dX, where
the weights are the topic empirical proportions of each message broadcasted by user j.

Again, not all users can communicate among themselves, hence one must take into consideration
Eqn. (3.1).

In order to fully exploit the random variables Z% we use topic models |34, 265, 33|, as for
example the latent Dirichlet allocation [34] (see for [211] such a methodology) or the author-topic
model [265]. More details about topic models can be found in appendix C.

Remark: One can also easily extend the model in subsection 3.2.2 to the "fuzzy" diffusion
framework, following these ideas.

3.2.4 User-user and topic-topic interactions with predefined topics in multiple
social networks

We now turn to the case where we have M "interconnected" social networks. The m!" social
network is defined as a communication graph G™ = (V™ E™), where V'™ is the set of users and
E™ is the edge set, i.e., the set with all the possible communication links between users of the
mt" social network. We assume these graphs to be directed and unweighted, and coded by inward
adjacency matrices A™ such that Aj"; = 1 if user j is able to broadcast messages to user ¢ on social
network m, or A" = 0 otherwise. Having this collection of unweighted inward adjacency matrices
(Am)m€{1,27..‘ M}, we define j 2% i if and only if AZL]- =1, i.e., if 7 can be influenced by user j through
social network m.

One can think about Facebook and Twitter users: there are users in Facebook that do not
necessarily follow the same people on Facebook and on Twitter, and vice-versa. The explanation is
quite simple: Facebook posts are of a different nature than Twitter posts, thus the following process
on both networks is also different. Let us say that Facebook is social network 1 and Twitter is social
network 2; Az-ly ; = 1 means that user i follows user j in Facebook and receives the news published
by user j in his or her timeline. As said, that does not necessarily imply that Aij =1, i.e., user i
also follows user j on Twitter.

This network formalism can be associated with the multiplex network formalism [87, 172]: multi-
plex networks (or "multirelational" networks) are networks where links have different characteristics,
thus one node may have more than one edge linking it to another node. It may also happen that
nodes do not have all types of links, only a few of them (maybe even none). In our case, specif-
ically, we may consider the ensemble of M social networks as a multiplex network with node set
V=, V™ (with cardinality N = §(|J,, V™)) and edge set E = |J,, E™, and links being charac-

terized by the social network in question, i.e., each social network m has its own set of links E™,
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and two users (nodes) may have multiple links between them, each of them associated to a different
social network.

Users influence each other when broadcasting, in the following way: when user ¢ broadcasts
something on social network m, all users that receive the broadcasts from user 7 (users j such that
A}Tfi = 1) see this broadcast. They are then more compelled to reiterate this procedure in the future,
by broadcasting on their own, which may not necessarily happen on the same social network.

Assuming that we have M different social networks, each one with its own adjacency matrix A™,
we model the influence of broadcasts using, similarly to the model in subsection 3.2.1, three matrices
J e Mnxn(Ry), B e Mgxk(Ry)and S € Mpyxar(Ry), such that J; ; > 0 is the influence of user
i over user j, B.j, > 0 is the influence of topic c over topic k and Sy, 5, is the influence that a generic
user of the social network m has over a generic user of the social network n. The network-network
influence matrix S measures thus how broadcasts made on one social network influence broadcasts
made on the others.

Let X/ K1 e the cumulative number of messages broadcasted by user ¢ about content k at social
network n until time ¢ € [0, 7]. The intensity for this process is thus

)\?kﬂ = /,Ll’k’n + Z Sm;nJi,ch,k/ ¢n(t - S)ngqua
0

m,c,j~>1

where J is again the user-user influence matrix, B is the topic-topic influence matrix and p is the
intrinsic rate of dissemination on different social networks.

In view of Eqn. (3.1), if there exists an edge j ~» i in some social network, then user ¢ can be
influenced by user j. Our new constraint becomes

ZAZ}:O:JiijO'
m

One can notice in the definition for the intensity of this model that each social network m has
its own! temporal kernel function ¢™. Each temporal kernel ¢™ represents how users and contents
in each social network are affected by ancient messages, and are considered a timescale parameter?.
Let us take for comparison Twitter and Flickr: in Twitter users chat, discuss, posts comments and
retweets, while Flickr is a photo-sharing social network that allows users to upload photos and post
comments. This means that the conversation and interaction mechanisms in both social networks
are different, since they serve different purposes. It is thus natural to assume that users in both
social networks react differently to the information received; these different reactions are in part
measured by the different temporal kernels (qzbm)me{L... M}

Remark: One can notice that this factorization of influences allows us to use N2 + K2 4 M?
parameters instead of N2K2?M?, which decreases in a great amount the complexity of the system
and the estimation time.

3.2.5 Network dependent user-user and topic-topic interactions in multiple so-
cial networks

A second (and more complex) extension to the single social network information diffusion model
is to assume that the different broadcasting mechanisms in each social network imply different

1. The temporal kernel functions could take more complicated forms, such as ¢*™, where each topic in a social
network would have an idiosyncratic temporal kernel function. This enlightens the versatility of this Hawkes
framework, allowing one to adapt the system parameters to any desired situation.

2. Take for example the exponential kernel ¢(t) = wef“’t.]l{bo}: the larger the w, the larger is the influence of
recent broadcasts. This may imply users responding faster to immediate messages.
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influences on users and topics. It means that the user-user and topic-topic influences are now
specific to each social network, i.e., user j broadcasting a message about content ¢ on a social
network m influences user i in this same social network when he broadcasts some message about
content k. These network-dependent influences are measured by the user-user influence matrices
(J™)mef1,- vy and topic-topic influence matrices (B™)eq1,... a3}

Remark: Viewed as high-dimensional objects, J and B are three-dimensional tensors.

We can define, again, XZ’k’n to be the cumulative number of messages broadcasted by user i
about content k at social network n until time ¢ € [0, 7]. The intensity for this process is then

NS =S SB[ 6 saxien,
0

.m .
777‘707]’\/‘)Z

where j <5 i means that user j can influence user i in social network m, i.e., A;“] =1
Since now users only influence themselves in the same social network, the adjacency matrix
constraint in Eqn. (3.1) becomes
Al =0=J" =0.

Remark: One can easily extend the model with social network-social network specific influences
of the form J;Z’n and BZ};", for which the above extension is a particular case JZZ" = JI%Smn and
B:fk’" = BlSmn-

Remark: One can also easily extend the model in subsections 3.2.2 and 3.2.3 to take into account
multiple social networks, following the same ideas.

3.2.6 General interaction model with predefined topics in multiple social net-
works

We provide, for the sake of completeness, the most general model of interactions in social
networks. It occurs when one does not factorize the interactions of users, contents and networks,

as in the previous cases. The influences have now the full form Fg’z’:z)), where Fgf;:?))

the influence of the user-content-network triple (j, ¢, m) on the user-content-network triple (i, k, n),
i.e., how a broadcast of user j about content ¢ in social network m influences a broadcast of user ¢
about content k in social network n.

The intensity of a model with predefined topics takes the form

, , , t— ,
W=t SIS TG [ e saxien

i

measures

and have all other models as particular cases.

The usefulness of the simpler models regards the number of hidden influence parameters to be
estimated: for the full general model one has N2K2M? parameters to estimate, whereas in the
simpler ones one only has, for example, at most N? 4+ K? + M? in subsection 3.2.4 and at most
M(N? + K?) in subsection 3.2.5.

3.3 Maximum likelihood estimation and multiplicative updates

Section 3.2 describes different parametric models of information diffusion using Hawkes pro-
cesses, all of them exploiting different peculiarities of the reality. One of the strong points about
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point processes (and Hawkes processes for that matter) is the analytic form of the likelihood of
their realization (see [240] or [74] p. 232), where Hawkes-based models for information diffusion
used extensively this property in order to derive convex-optimization-based maximum likelihood
estimates for the system parameters [158, 310, 317]. For example, in our Hawkes diffusion frame-
work, we may estimate the user-user influence matrix J, the content-content influence matrix B,
the network-network influence matrix S, the users intrinsic dissemination rate u, etc.

A different technique for the maximum likelihood estimation of the Hawkes process X was
derived in 245, 246], where the authors slice the information time period [0, 7] into 7" small bins of
size > 0 in order to create suitable tensors for the intensity A; and the Hawkes jumps dX;, and
show that maximizing an approximation of the log-likelihood is equivalent to solving a nonnegative?
tensor factorization (NTF) problem [192, 170, 66]. This section is thus dedicated to demonstrating
that all information dissemination models in section 3.2 can be estimated using the same techniques,
which creates an unified information dissemination framework using Hawkes processes and topic
models.

Since we deal with real-life social networks, the number of parameters to be estimated is large
and convex optimization techniques that estimate each parameter separately are too demanding
in terms of complexity. That is why we adopt the estimation framework of [245, 246], for which
multiplicative updates* can be derived (see [212, 211] for the same methodology).

Let us take a ¢ > 0 that is smaller than the minimum elapsed time between broadcasts in [0, 7]
and divide [0, 7] into 7' = [%] time bins such that we do not have more® than one broadcast in each
bin, in order to preserve the orderliness property of X.

Let Y, X and ¢ be tensors such that

dX_ Xis — X _
Y, = (; s _ A 5(t 1)5, N = Ao_1ys and

= (@™ % dX)—1)s for predefined topics model
E L (@M k2 dX)p—1)s for "fuzzy" diffusion model,

i.e. Y contains the jumps of X; at each time bin ((¢ — 1), td].

We begin our estimation procedure by showing that maximizing the Riemann-sum approxima-
tion of the log-likelihood of X is equivalent to minimizing the Kullback-Leibler (KL) divergence
between Y and \.

Lemma 13. If [ log()\i’k’m)dXti’k’m and [ )\i’k’mdt are approximated by their respective Riemann
sums, then mazximizing the approximated log-likelihood of X in [0, 7] is equivalent to minimizing

— ik.m ~i,km
Drr(YN) = Y drr (V535" (3.3)

i,k,m,t
where dicr(y|z) = ylog(2) —y + x is the Kullback-Leibler divergence between x and y.

Proof. Let us place ourselves, without loss of generality, in an information diffusion model with

3. By nonnegative we mean tensors with nonnegative entries.

4. The multiplicative updates using NTF techniques are only one of the existing estimation techniques. Alternative
methods are discussed in subsection 3.4.3.

5. In practice, this orderliness constraint is not satisfied in order to decrease the complexity of the multiplicative
updates.
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predefined topics® and let ¢, be the broadcast instants in [0,7], such that user 4, broadcasted a
message about topic k, in social network m,, at time t,, i.e., t,, is the nth broadcasting time in the
M social networks.

We have that the log-likelihood of X is given by (see for example [240] or [74] p. 232)

Lzlog( 11 x"”“mmn> Z/ ALR™ gt

0<t, <t i,k,m

=y < / log AR g xRm _ / )\i’k’mdt>.
; 0 0

i,k,m

Approximating the integrals in £ by their Riemann sums we get

i,k,m i,k,m i,k,m i,k,m
L~ ZZ(log)\ o(Xig ™ = XGETS) = 5)\(t1)6>,

i,kom t

thus maximizing the approximation of £ is equivalent to minimizing

L5~ Z (ﬂ’“m—yjﬁ’“»ml Ai’””).

i,k,m

With Y fixed, this is equivalent to minimizing

Z m k
Drr(Y[N) = Y dir (¥ N™).

i,k,m,t

O

Using lemma 13, we have that the maximization of the approximated log-likelihood of X is
equivalent to a nonnegative tensor factorization problem with cost function Dx (Y|)), where YV
are the normalized jumps of X and X is a tensor representing the intensity of X.

This nonnegative tensor factorization problem stemming from the minimization of the cost
function Dxr(Y|\) has already been studied at length in [192, 193, 170], where authors derive
convergent multiplicative updates [176, 100].

These multiplicative updates are interesting for several reasons: they are simple to implement
(they are basically matrix products and entrywise operations), can be performed in a distributed
fashion and have a low complexity on the data, thus being adequate to work on real-life social
network of millions (or even hundreds of millions) of nodes.

These NTF techniques are based on the multiplicative updates given by the following lemma:

Lemma 14. Let Y be a nonnegative tensor of dimension M, S a nonnegative tensor of dimension
ss + L and H a nonnegative tensor of dimension hg + L such that ss + hg > M. Define SH, a
the nonnegative tensor of dimension M, such that

(SH ]17 i E , Slsl,- sgsl1 ,'-,lLHihl,“-,ihH,llf'wlm
l,

where we have that

6. For "fuzzy" diffusion models, we consider the conditional log-likelihood with respect to Z, which is (see for
example [74] p. 251)

L(X|Z) log( I » mn) —Z/O A;V'"dtzz </0 log \e™d X ™ —/0 Ai’mdt).

0<ty, <7
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o {ig, - isg f\UH{iny, - ying t = {J1.J2, -+ s im} (we can still have {ig,,- - ,isg }{iny, - yin, } #

0) and
o (i, gm0 {l, 1} = 0.
Define the cost function
Drr(Y[SH) = Z dKL(Y}L"-,jM|(SH)J'17"-JM)v
Jiyedm

where dicr(y|lr) = ylog(¥2) —y + x is the Kullback-Leibler divergence between x and y.
The multiplicative updates for D (Y |SH) of the form

VD (Y[SH)zn

Zn+1 — Z’VL@ ’
V}DKL(Y\SHMZn

(3.4)

with
o the variables Z € {S, H}, VJZr/fDKL(Y\SH) the positive/negative part of VzDg (Y |SH),
e A ® B the entrywise product between two tensors A and B, and
° % the entrywise division between two tensors A and B,

satisfy
Drp(Y|S"™H) < D (Y|S"H) and Dy (Y|SH"™) < Dy (Y|SH"),

i.e., the multiplicative updates produce nonincreasing values for the cost function Dir(Y|SH).

Proof. We prove the result only for the tensor .S, the calculations for the tensor H are equivalent.
Let
Dgr(Y|SH) = Z AL (Vs e gag|(SH ) jy e iar)
Ji M

where d(y|z) = ylog(%) — y + x is the Kullback-Leibler divergence between x and y.

In order to find suitable multiplicative updates for this cost function we proceed in the same
manner as in [100, 176], i.e., we find an auxiliary function G such that G(S,5) > D(Y|SH) for all
nonnegative tensor S and G(S,S) = D(Y|SH), with the NTF updates S, n € {0,1,2,---} of the

form
S™ = argminxsoG(X, S™). (3.5)

We have thus

D(Y|S"MH) < G(S™,5™) = min G(S, S™)
S5>0

< G(S",8") = D(Y|S"H).

Let J = {j1,"' ,jM}, S= {isl,"' ,iSS}, H = {ihl,'-‘ ,ihH} and £ = {ll,"- ,lL} be the index
sets for the tensor summations such that SUH = J and J N £ = 0, and define the function G as

~ Sg EHHE > SSE
G(S, S) = %d;{L(Yj‘Yj — )
%:Zg: Yy Ss.c
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where Y/j = ZL SS,LHH,L (if S = S then Y/j = Z[E SS7£HH7£ = (SH)7).
We easily have that G(S,S) = D(Y|SH). Moreover, by the convexity of dxr(z|y) in y and

Z Ss.cHu.c

= 1, we have that
Yg

. Ss.cHyr o S
G(S.9) 2 Y drn(Yy] Yy "2V, 225)

7 ra Ys S&g
= dgr(Ys])  SscHur) = D(Y|SH),
7 z

thus G is indeed an auxiliary function.
Now, we calculate the multiplicative updates for this auxiliary function as in Eqn. (3.5). Taking
the gradient VgG(S™H1, S™) = 0 gives us

Y7 8n
055, G(S"1,5m) =Y (1 - iﬁ)ﬂm

T\S Y755
Yg S8 c
=D Hur- (Z yHHﬂ) el
TI\S J\s T S,L
+ n — mn ngﬁ
— 8SS,£D(Y|S H) - 8SS’LD(Y\S H)W — 0,
S,
which easily implies Sg’r" = Sg » ¥ : the desired multiplicative updates. O

a;syﬁpmsm)’

The proof of lemma 14 is based on bounding Dg (Y |SH) by above using an auxiliary function,
due to the convexity of di . The result when Y, .S and H are matrices is well explained in [176, 100].
From the intensity equations in section 3.2, the intensity tensor A is a combination of sums and
products of the tensors p, S, J, B, b and ¢, which makes lemma 14 suitable for the estimation of
these parameters.

Unfortunately, the cost function (3.3) is not convex on the ensemble of tensors, which means
that we cannot expect to retrieve the global minimum of Dk (Y |)), i.e., the global maximum of
the Hawkes likelihood. Nevertheless, it is convex (due to the convexity of the Kullback-Leibler
divergence) on each tensor, given that the other is fixed. So, estimating each tensor given the rest
fixed in a cyclic way produces nonincreasing values for Eqn. (3.3), as in [176, 100], thus converging
to a local maximum of the approximated log-likelihood.

When 6 — 0, the Riemann sums converge to their respective integrals, and minimizing the cost
function in Eqn. (3.3) becomes equivalent to maximizing the likelihood of X.

As all information diffusion models of our Hawkes-based framework can be estimated using
the same techniques based on lemmas 13 and 14, we have thus created an unified information
dissemination framework using Hawkes processes.

Similarly to nonnegative matrix factorization (NMF) problems [193, 100], the multiplicative
updates in lemma 14 can be sometimes written in a concise matrix form. We give next three
examples of such cases: the models of subsections 3.2.1, 3.2.4 and 3.2.3.

3.3.1 Estimation of model in subsection 3.2.1

In order to proceed to the estimation of the Hawkes parameters J, B and pu, one needs first to
handle the user-user interaction with care: due to the overwhelming number of user-user interaction
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parameters J; ; in real-life social networks (where we have millions or even billions of users), we
factorize J into F'G, such that F' € Mpyy«q(R4) is a N x d matrix and G € Mgxn(R4) isad x N
matrix, with d < N. This method is similar to clustering our social network influence graph into
different communities (see [182]).

One can also notice that by performing a dimensionality reduction J = F'G during the esti-
mation, we not only estimate the influence that users have over one another but we also acquired
information on the communities of the underlying social network, since we were able to factorize
the hidden influence graph J.

This is a very difficult problem, since the cyclic multiplicative updates destroy this relationship,
and the only other way to satisfy the constraint in Eqn. (3.1) is to estimate each coordinate
separately. Since A;; € {0,1}, we can circumvent this problem using a convex relaxation” of this
constraint of the form® (1 — A, FG) and 1 > 0 a penalization parameter.

We have the following penalization (1 — A, F'G), with derivatives

Ven(l — A, FG) = n(1 — A)GT and
Ven(l — A, FG) = nFT(1 - A). (3.6)

Unfortunately, since F' and G act as a product, there is a potential identifiability issue of the
form FG = FPP1G = FG where P is any scaled permutation and the pair F=FP,G=P '@
is also a valid factorization of J (see [192, 227, 245]). We deal with this issue normalizing the rows
of G to sum to 1 (see [192, 245]). This normalization step involves the resolution of a nonlinear
system for each row of G to find the associated Lagrange multipliers.

Our constraint thus becomes G1 = 1, for which the Karush-Kuhn-Tucker (KKT) conditions
are written in matrix form as 75 = Zle ngﬂ-eiTl, with (e;)ie{1,... .4y the standard basis vectors and
na,; € R the Lagrange multipliers solution of the nonlinear equation G1 =1 after the update®.

Let us recall that in this particular model we have the Hawkes parameters J = F'G, B and pu.
In this particular model, one can further simplify the multiplicative updates given by lemma 14,
using the structure of the intensity, as presented in [212].

We can redefine, with an abuse of language, the NK x T matrices Y, \, ¢ and [ as

ax 22111)5
Yit-nne = s

Xt (b—1)N,t = /\z;k,l)(;

Gy k1N = (D% dXF) 1)

Hit(k—1)Nt = pk,
i.e., these matrices are the transposition of the mode-3 matricizations [170] of the N x K x T
dimensional tensors Y, A and ¢.

Let us also define the N x T matrices Y, Xk, $k and 7i* such that

k _ vik ~k o ~i,k —k o —i,k —k _ ik
Yi,t =Y, /\i,t =N, ¢i,t =, Hig =17

7. We use here a L' convex relaxation, similar to the LASSO procedure [284, 139]. This implies that we introduce
a certain degree of sparsity on the influence graph J. Other kinds of convex relaxation functions can be used,
such as a L? relaxation of the form 7n||(1 — A) — FG||?.

8. From now on we denote by 1 any vector of matrix with entries equal to 1. The dimension of 1 will be clear in
the context.

9. The same reasoning is applied to the matrices B, b and S defined in section 3.2, i.e., >, Bex =1, >, 