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Abstract

Information diffusion explores the paths taken by information being transmitted through a social
network in order to understand and model the relationships between users in such network, leading
to a better comprehension of human relations and dynamics.

Although primarily concerned with theoretical, psychological and sociological aspects of social
networks, information diffusion models also serve as basis for several real-life applications of social
networks analysis, such as influence maximization, link prediction, discovery of influential nodes,
community detection, trend detection, etc.

This thesis is thus based on both sides of information diffusion: first by developing mathematical
theories and models to study the relationships between people and information, and in a second
time by creating tools to better exploit the hidden patterns in these relationships.

The theoretical tools developed here are opinion dynamics models and information diffusion
models, where we study the information flow from users in social networks, and the practical tools
developed here are a novel community detection algorithm and a novel trend detection algorithm.

We start by introducing an discrete-time opinion dynamics model in which agents interact with
each other about several distinct opinions/contents. In our framework, agents do not exchange all
their opinions with each other, they communicate about randomly chosen opinions at each time.
Our model uses scores to take this dynamics into account: each agent maintains a list of scores
for each opinion held. Opinions are selected according to a softmax choice function based on their
scores (the higher a score, the more likely an opinion is to be expressed) and then transmitted
to neighbors. Once an agent receives an opinion it gives it more credit, i.e., a higher score to
this opinion. We show, using stochastic approximation algorithms, that under mild assumptions
the opinion dynamics algorithm converges as time increases, whose behavior is ruled by how users
choose the opinions to broadcast at each time.

We develop next a practical algorithm which is a direct application of a particular instance of this
opinion dynamics model. When agents broadcast the content they appreciate the most, communities
are formed in the social network, where these communities are groups of users that broadcast the
same piece of information. This community detection algorithm, which is distributed by nature, has
the remarkable property that the discovered communities can be studied from a solid mathematical
standpoint. In addition to the theoretical advantage over heuristic community detection methods,
the presented algorithm is able to accommodate weighted and directed networks; parametric and
nonparametric versions; and the discovery of overlapping communities as a byproduct with no
mathematical overhead.

In a second part, we define a general Hawkes-based framework to model information diffusion in
social networks. The proposed framework takes into consideration not only the hidden interactions
between users but as well the interactions between contents and social networks, and can also
accommodate dynamic social networks and various temporal effects of the diffusion, which provides a



complete analysis of the hidden influences in social networks. This framework can be combined with
topic modeling, for which modified collapsed Gibbs sampling and variational Bayes techniques are
derived. We provide an estimation algorithm based on nonnegative tensor factorization techniques,
which together with a dimensionality reduction argument are able to discover, in addition, the latent
community structure of the social network.

Finally, we apply one instance of the previous information diffusion framework and develop
stochastic control techniques for near unstable Hawkes processes, creating a trend detection algo-
rithm, designed to find trendy topics being disseminated in a social network. We assume that the
broadcasts of messages in the social network is governed by a self-exciting point process, namely
a Hawkes process, which takes into consideration the real broadcasting times of messages and the
interaction between users and topics. We formally define trendiness and derive trend indices for
each topic being disseminated in the social network. These indices take into consideration the time
between the detection and the message broadcasts, the distance between the real broadcast intensity
and the maximum expected broadcast intensity, and the social network topology. The proposed
trend detection algorithm is simple and uses stochastic control techniques in order calculate the
trend indices. It is also fast and aggregates all the information of the broadcasts into a simple
one-dimensional process, thus reducing its complexity and the quantity of necessary data to the
detection. The advantage of this trend detection algorithm is that, to the best of our knowledge,
this is the first trend detection algorithm that is based solely on the individual performances of
topics, i.e., a topic may have a relatively small number of broadcasts and still be considered trendy.
The trendiness is thus, in our case, an expectation of an increase in broadcasts, not a comparison
measure with other topics.

Keywords: Opinion dynamics, stochastic approximation algorithms, community detection,
information diffusion, Hawkes processes, trend detection, stochastic control.
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Introduction

"We’re all social creatures."
— Social Media Monthly Magazine

In an era where information travels fast and far away, people become more interconnected and
aware of their surroundings, their planet, and other cultures. This phenomenon facilitates the
formation of public opinions, mass movements, political polarization, and at the same time, the
creation of niches where people assemble around some specific interest or quirk, such as skydiving,
bodybuilding, cosplay, etc.

The one responsible for this informational advance was, without shadow of doubt, the Internet.
It was entirely fundamental for the development of this news-centered paradigm, which is a cyber
environment composed of social networks, social media sites, web blogs, and any other means of
digital communication.

As we became capable of storing more and more data and performing faster calculations, social
networks and social sites such as Google, Facebook, Twitter and Amazon became data centers where
everyone willing to exploit this huge amount of information circles around.

As humans connect in increasing rates, their relationships, stories, experiences and knowledge
interact, which creates a multitude of crowd behaviors that may lead to a better understanding of
human relationships. As a consequence, social networks became one of the major research themes
during these last years, as a source of never-ending untapped information serving researchers in
many areas of science: psychology, sociology, advertising, statistics, physics, computer science, etc.

A good example of crowd behavior with concrete applications is the wisdom of crowds: people
weight what others think and suggest, what most of their acquaintances do, where do they go to
have a drink, eat something exotic, or simply enjoy life. This social knowledge is the basis of the
social network Trip Advisor, which is nowadays stamped in most of the entertainment places all
over the world.

A famous quote by W. Edwards Deming: "In God we trust; all others bring data" illustrates this
accomplished almighty power of data and thus, also illustrates the ongoing role of social networks
as one of the shapers and suppliers of data and knowledge about human interactions in the modern
society. Moreover, the economic repercussions of this new business intelligence and business analyt-
ics model create the perfect incentive for data-driven and technology-driven companies, who thrive
in this flicker environment and become the major players in innovation. This synergy between data
and business generates hence a rising framework for the economical exploitation of this "big data",
and as consequence, motivates more academic and applied research.

This ongoing trend, which generates an enormous flow of business and sheds some light into the
nature of human behavior and human relationships, needs to be studied and understood; and for
that matter a solid and extended mathematical set of tools to comprehend and exploit these new
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paradigm of information is paramount.
That is precisely the framework of this thesis, which aims to

(i) develop mathematical methods to study these intricate relationships between people and in-
formation, and

(ii) create tools to better exploit the hidden patterns in these relationships.

This task is performed in two steps. The first one is theoretical and uses tools from behavioral
dynamics - opinion dynamics models and information diffusion models. The second step is from
a more practical and applied point of view, and uses the developed theoretical models in order to
derive a novel community detection algorithm and a novel trend detection algorithm.

This thesis is thus divided into two parts, each one with a theoretical chapter and a practical
application stemming from the developed theory. The first part of this thesis - composed by chapters
1 and 2 - develops a theoretical opinion dynamics algorithm for information diffusion in social
networks, and a subsequent and more practical community detection algorithm. The second part
- composed by chapters 3 and 4 - develops a theoretical information diffusion framework based on
point processes, with a subsequent and more practical trend detection algorithm.

Specifically, chapter 1 develops an opinion dynamics model that takes into account multiple
contents being broadcasted in a social network, and stochastic interactions between users. Broadcast
means that users of the social network post the contents in their walls, which their followers are
able to see/receive.

Chapter 2 is a direct application of a particular instance of this opinion dynamics model. When
agents broadcast the content they appreciate the most, communities may be formed in the social
network, where these communities are groups of users that broadcast the same piece of information.
We have developed thus a community detection algorithm, which is distributed by nature, and has
the property that the discovered communities can be studied from a solid mathematical standpoint,
which is a valuable feature for a community detection algorithm.

Chapter 3 develops a theoretical framework for information diffusion based on self-exciting point
processes - Hawkes processes [140, 208]. This framework is versatile and accommodates several
variants, all of them possessing the same basic estimation procedure. The proposed framework
discovers hidden influences between users and contents, and can be coupled with topic models in
order to have a more data-driven approach.

Chapter 4 is a direct application of one instance of the previous information diffusion framework,
where we develop stochastic control techniques for near unstable Hawkes processes, creating a
trend detection algorithm. These techniques come from optimal stopping theory of Itô diffusions
(Brownian diffusions), and define trend indices for each topic being disseminated. The advantage of
this trend detection algorithm is that, to the best of our knowledge, this is the first trend detection
algorithm that is based solely on the individual performances of topics, i.e., a topic may have a
relatively small number of broadcasts and still be considered trendy. The trendiness is thus, in our
case, an expectation of an increase in broadcasts, not an absolute comparison measure with other
topics.

The remainder of this introduction discusses in more details the academic literature relative to
each chapter of this thesis, providing a better comprehension of the tools used during the course of
this work.
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0.1 Opinion dynamics and community detection

As already mentioned, the first part of this thesis is dedicated to an opinion dynamics model
and a subsequent community detection algorithm employing ideas from one of its particular cases.
We provide now a general review of the literature about both subjects.

0.1.1 Opinion dynamics

Opinion dynamics is an active area of research among statistical physicists, mathematicians
and computer scientists, started by psychologist French in [105], who created simple and intuitive
models of interactions between people and information.

One of the first mathematical models in this area was developed by DeGroot in [83], where agents
in a communication/trust graph possess scalar opinions about a subject, and at each discrete time
step randomly selected agents perform a combination of their opinions with those of their neighbors,
this combination being dictated by the weights of the trust graph. DeGroot shows in his work that
if the graph satisfies some assumptions related to its connectivity - if it is for example strongly
connected - then these individuals reach consensus, i.e., they converge to the same opinion.

Although DeGroot’s model reflects in part the simple but correct idea that people tend to share
and weight their opinions against peers, consensus is not always achieved in our society, even in
small groups. In practice we do not know when a group of people will achieve a consensus, or will
subdivide in small groups that share the same opinions, i.e., clusters of people.

These cluster formations are the main subject of a different family of opinion dynamics mod-
els called bounded confidence models, for which the two major representatives are the Krause-
Hegselmann model [142] and the Weisbuch-Deffuant model [82]. Bounded confidence models’
premise is that people are inclined to accept other opinions when they are sufficiently close to
one’s own opinion. Krause presents in [179] a continuous state model in which agents have scalar
opinions and at each discrete time step every individual averages his opinion with those that are
sufficiently similar to his, i.e., that reside in his so-called acceptance neighbourhood. Another ex-
ample of a bounded confidence model is the Deffuant’s model [82], which is a stochastic version
of Krause’s model where at each time step two random individuals meet and if their opinions are
sufficiently close then they average their opinions, which consequently approaches each other.

Krause and Hegselmann [142] and Lorenz [210] prove that, under mild assumptions on the graph
connectivity and the opinion thresholds, both the Krause-Hegselmann model and the Weisbuch-
Deffuant model present clustering, i.e., smaller groups having the same intra-group opinions are
formed, although the study of the most general cases can only be tackled by numerical simulations.
In spite of all difficulties to derive precise analytical results predicting the behavior of these models,
several extensions have been developed (see e.g. [89, 90, 91]).

As one may notice, there are as many opinion dynamics models as there are particular behaviors
that need to be modeled and understood in social, economic and natural sciences. We discuss some
families of opinion dynamics models that reproduce and explain different mechanisms of interaction
between agents, be they people, animals, competing industries, etc.

The principal families of opinion dynamics models studied here are: Interacting particle sys-
tems and Crowd behavior models. These two families differ on the account that interacting particle
systems deal mostly with discrete states for agents and simple rules of interaction between them,
whereas crowd behavior models use basically differential equations in order to derive average non-
trivial behavior for the system of agents.

These two families can be divided into several subfamilies, each one representative of an attempt
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to model a particular feature of reality. For example, interacting particle systems can be further
categorized into

• Contact processes: developed by Clifford and Sudbury in [68] for the study of two species
competing for territory, each one possessing a binary state. Each competitor thus can change
its state with a rate depending on the quantity of neighbors in each space, giving rise to a
Markov process in the state space.
Other examples of stochastic processes describing contact (between people in a society, or
nodes in a graph) are [137], where the stochastic contact model is represented by a discrete
state. Holley and Liggett study in [153] the ergodicity and stationary properties for this kind
of stochastic contact process, providing a complete description of its mechanisms.

• Voter models: these models are the modern version of contact processes in the sense that they
too are based on interactions between agents and their neighbors, in discrete or continuous
time. As with the contact process, the behavior in these models depends greatly on the type
of interactions between agents, which can be of any sort.
For example, Cox and Durrett introduce in [70] the nonlinear voter model, having as particular
example the threshold voter model of Liggett [204], which models the rate of an agent with
a binary state space to change his state as a threshold function of his neighbors states, i.e.,
an agent has a nonzero probability of changing his state if he possesses sufficiently many
neighbors in the other state. Lanchier and Neuhauser propose in [187] a (biased) voter model
in a heterogeneous environment to investigate the effects of recurrent gene flow from transgenic
crop to wild relatives, with a binary state space (individuals carrying the transgenic gene or
the wild gene) model where agents are situated in the d-dimensional lattice, for which there
exists a predefined set in which the voter dynamics is frozen, i.e., agents belonging to this set
do not change their initial states (which is the transgenic state). Yildiz et al. develop in [311]
a voter model with possible stubborn agents; in this model agents communicate via a network
(which is coded by a directed graph) and possess a binary state space; if not stubborn, an
agent revises his state at independent exponential random times; the presence of stubborn
agents in this model can lead to either consensus, as in DeGroot’s case, or disagreement, as
shown in [311].

• Majority opinion models: originally developed by Galam [108] to model public debates and
hierarchical votes in societies, they are based on the assumption that in a random group of
people reaching a consensus, they end up with the majority’s opinion.
For example, Galam proposes in [109] a model with individuals possessing binary opinions
(in favor or against war, preferring a political candidate over another, etc.) who engage in
discussions about these opinions; at each time step, a subgroup of individuals is randomly
selected (following a distribution that takes into consideration their environment) and is put
to discussion, with each individual adopting the majority opinion at the end of the discussion
period (when opinions are tied, agents maintain the same opinions); the author finds that
in this dynamical model there exists a threshold value such that initial concentrations of the
minority opinion above this threshold imply that every individual eventually adopts it.
In a different kind of model - the classical Sznajd model [275] - individuals occupy binary
states in a linear chain, which are updated in a sequential order using the following rule: if
an individual shares the same state as his neighbor, then he and his neighbor propagate this
state to their respective neighbors; however if they do not share the same state, then their



0.1 Opinion dynamics and community detection 17

respective neighbors’ neighbors adopt their states, i.e., if neighbors share the same state, they
influence the other neighbors to adopt it, but if they do not share the same state, then they
influence their neighbors’ neighbors to do so. The Sznajd model presents some interesting
properties [274], but its assumptions are a little unrealistic, so variants and extensions have
been proposed (see e.g. [274, 81, 110]).

• Statistical physics models: At last, we discuss models stemming from statistical physics, which
in many cases bear resemblance to beforementioned models such as the voter model. These
models are based on a function measuring the energy of the interaction between agents in a
system, depending on the configuration of their states. Thus, authors develop updating rules
for the changes in agents’ states taking into account this "social Hamiltonian".

A pioneering example of such model is the theory of social impact, developed by Latané in
[190] and further studied by Nowak et al. in [239]. Again, we have a group of individuals who
are able to communicate following a network, with two possible "spins"/opinions, and two
individual parameters for each agent: his persuasiveness and supportiveness, describing how
he can influence and be influenced by others, respectively. These parameters are supposed to
be random, and give rise to a Hamiltonian function measuring the impact that an individual
receives from the environment; this Hamiltonian takes into consideration not only agents
spins/opinions, persuasiveness, supportiveness but also their distance in this network and
random fields expressing all sources other than individuals that can alter opinions (for example
media sources).

Due to the simplicity of this model (for example, it does not take into consideration memories
of individuals), some extensions have been proposed [175, 155], such as one based on active
Brownian particles [270, 269].

A different paradigm of opinion dynamics and social behavior is crowd behavior models. This
type of models translate the natural behavior into mathematical equations of motion, be they for
schools of fish, flocks of birds, pedestrian movements in streets, vehicular traffic, etc. Crowd behavior
models can be further categorized into

• Flocking models: Models in this category represent the behavior of flocks of birds, schools of
fish and other natural phenomena by motion equations.

A celebrated flocking model is the Cucker and Smale flocking model, developed in [72] to study
the behavior of flocks of birds in mid-air, which is then given by a dynamical system accounting
for the difference in distance and velocity between the birds in the flock; the authors are able
to prove the existence of two very distinct regimes: a regime where the convergence of the
flock is guaranteed, i.e., the flock remains together, and a regime where its convergence is not
guaranteed.

A stochastic version of Cucker and Smale flocking model is the Vicsek model [73] of self-
propelled particles, where particles move in a square surface with periodic boundary condi-
tions, and at each time step a particle position is updated following a law that takes into
consideration the average behavior of its neighborhood and a uniformly randomly distributed
noise.

• Pedestrian behavior models: Pedestrian behavior is studied empirically since the 1950’s [134],
with a pioneer model proposed in [148] conjecturing that pedestrian flows behave like gases
or fluids, thus described by classical Navier-Stokes equations.
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A celebrated example of this family is the social force model, developed by Helbing and
coworkers [146, 147]. They model pedestrians as particles following Newtonian equations of
motion containing three parts: a personal force that drives the pedestrian velocity, a social
force given by interactions with other pedestrians and interactions with barriers, and a noise
term responsible for the pedestrians non-predictable behavior. This simple model reflects
realistic scenarios, such as the formation of ordered lanes of pedestrians who walk in the same
direction and the alternation of streams of pedestrians trying to go through a narrow door in
opposite directions.
Other models of pedestrian behavior given by dynamical systems are those related to mean
field games [215, 189], where a continuum of pedestrians are described as rational agents that
maximize some utility function, and move following optimal paths of an underlying optimal
control problem. Pedestrians are then characterized by a probability distribution that evolves
as a forward Kolmogorov equation, whereas their optimal strategies evolve as a backwards
Hamilton-Jacobi-Belmann equation. This forward-backward system is mathematically chal-
lenging and has presented a great deal of new insights and results (see e.g. [121, 46]).

The models presented here are not exhaustive and we furthermore refer the interested reader to
the very complete survey [48], by Castellano et al. Furthermore, we avoided on purpose discussing
game-theoretical models, such as [313]; since opinion dynamics models and information diffusion
models develop theoretical justifications for real-life phenomena such as consensus or clustering
formation, and game-theoretical models were introduced in the context of information diffusion, we
have chosen to discuss them in detail in the information diffusion introductory section.

0.1.2 Community detection

We observe a variety of different organizations in nature and society: groups of animals, family
and friendship networks, protein interaction networks, public transportation networks, etc. The
advance of the internet and the mass storage of data allow us to grasp a basic knowledge about
these natural or planned organizations; they are nevertheless extremely complex and intricate,
hindering our attempts to have a complete understanding of their mechanisms and properties.

One of the first mathematical tools created to infer these networks and study their properties
are random graphs [39]. Random graphs are graphs that have a fixed number of nodes (which
can converge to infinity as well) and random edges between these nodes. Two major examples
of random graphs are the Erdös-Rényi model [96] and the preferential attachment model [21]. In
the former, edges are independent and identically distributed Bernoulli random variables (1 if an
edge is present, 0 if not) and in the latter they are sequentially attached to random nodes with
probabilities proportional to the number of present edges nodes already have. As a consequence,
these different behaviors lead to different network properties: for example, in the Erdös-Rényi case
one cannot (with a high probability) find nodes with a high concentration of edges, as opposed to
the preferential attachment case.

However, real networks are not random graphs, as they display large inhomogeneities, revealing
a great deal of order and organization. They present a broad degree distribution and power law
tails (see e.g. [5]). Furthermore, the edge distribution is not only globally, but also locally inhomo-
geneous, with high concentrations of edges within special groups of vertices, and low concentrations
between these groups. This feature, present in real networks, was pinned community structure [116]
or clustering.

Hence, among these so-called network properties we have the creation of communities or clusters.
Clustering refers to the phenomenon when nodes of the network can be naturally be grouped into
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sets such that each set is densely connected internally, thus dividing the network into smaller groups
with dense connections internally and sparser connections externally. As a consequence, pairs of
nodes are more likely to be connected if they both belong to the same cluster, and less likely to be
connected if not. This clustering phenomenon creates divisions in the network in question, and the
understanding of these divisions can lead us to better comprehend not only these objects but the
human behavior or the nature itself, as well.

These clusters or communities are important not only for their scientific insights on networked
interactions, but also for their concrete real-life applications. For example, clustering web clients
having the same interests or being geographically close could help achieve a better performance of
internet services [181], identifying groups of purchasers with aligned interests enables to create more
efficient recommendation systems [259], grouping proteins having similar functions [258] may shed
some light on a better understanding of human and natural cellular mechanisms, etc.

Due to its vast range of applications, there was an explosion of the literature during the last
decades, with the presence of complete and thorough tutorials like [102, 267]. They explain a mul-
titude of graph clustering methods, such as spectral methods [234, 235], random walk methods
[253, 14], hierarchical clustering algorithms [233, 35], divisive algorithms [116, 236], centrality opti-
mization algorithms [98], methods stemming from statistical mechanics [260], etc. These community
detection methods apply tools originating from quite distinct areas of science, such as computer sci-
ence, statistical physics, social network analysis, spectral analysis, probability theory, optimization
theory, and many others.

The community detection techniques developed in the last decades are derived from ancient
graph partition methods, such as the max-cut problem [118]. The main difference between older
and newer approaches is that algorithms nowadays must be fast and with a low complexity (scaling
preferably subquadraticaly in the number of nodes or edges), since a slower but precise algorithm
is not even comparable to an approximate but faster one when clustering real-life networks with
hundreds of millions of nodes.

Community detection algorithms1 can thus be grouped into different families, each one high-
lighting the tools or techniques used to perform such network clustering. We discuss here some
of these families: modularity clustering, in which authors optimize a global measure of how orga-
nized a network is, called modularity [236]; multiscale clustering, in which authors adopt methods
possessing an adjustable parameter that alters the granularity of the communities found; random
walk clustering, where authors use probabilistic tools like Markov chains in order to derive clus-
tering algorithms; and centrality clustering, where authors develop clustering algorithms based on
network centrality measures, such as the edge betweenness centrality [116] or communicability [98]
(a centrality measure similar to Katz centrality [168]).

We now study these methods in more details, subdividing each family of community detection
methods into smaller subfamilies, starting by modularity clustering techniques.

With the advance of the field of complex networks (large networks without an apparent struc-
ture), researchers adopted more statistical qualitative measures of how well clustered a network
is, locally and globally. An important measure of clustering is the modularity of a network: the
modularity compares the original network with a randomized version of itself where edges are ran-
domly rearranged, keeping fixed the expected node degree distribution [236]. Modularity itself is
intractable to fully optimize, but there exist less costly alternatives to its complete optimization,

1. We only discuss in this introduction community detection methods for undirected networks, i.e., networks such
that the edges linking two nodes do not possess a predefined direction and the relationship induced by these
edges is symmetric. There exist community detection methods that deal with directed networks (with one-sided
relationships between nodes) such as [218], but it is not the focus here.
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such as

• Spectral methods: the problem of assigning nodes to a fixed number of clusters can be rewrit-
ten as a quadratic assignment problem [234, 304], and by applying a convex relaxation being
transformed into a quadratic programming problem [234, 304], which allows the use of spec-
tral techniques for this optimization problem. When the assignment is performed for only
two clusters, it is basically achieved by calculating the leading eigenvector of the so-called
modularity matrix [234]. The assignment of nodes into more than two clusters proceeds in a
similar fashion, following the ideas in [234, 235, 304].

• Hierarchical greedy methods: where one starts by associating each node with a community
and at each step computes the difference in modularity in pairs of communities, continuing in
the direction of the higher gain in modularity and merging the associated communities.

Two famous methods using this hierarchical greedy technique are the method developed by
Newman in [233] (which has a similar implementation in [67]) and the Louvain method [35].
The greedy method of Newman [233] associates at first each node to its own community, and
at each step it computes the maximum gain in modularity when merging two communities,
if any (it may well be that the gain in modularity is negative, so the algorithm terminates);
thus, the algorithm merges the two communities with the maximum gain in modularity, and
proceeds in an agglomerative fashion until termination at a local maximum of the modularity,
creating a network dendrogram.

The Louvain method, developed by Blondel et al. in [35], works in a similar fashion to
Newman’s greedy method. It is a greedy optimization of the modularity, using smartly the
fact that its local computation is quite fast. It starts, again, by associating each node with
its own community, and consists on the repeated iteration of two steps: first, it sequentially
sweeps over the nodes and given a node, it computes the difference in modularity of inserting
it in a neighbor’s community, performing the insertion of nodes in the community with the
higher increase in modularity, if any. In a second step, the nodes belonging to the same
community are merged, with the new community edge weights the sum of the weights of
the edges of the underlying nodes. These steps are repeated, generating a dendrogram from
which one can choose the best community structure. This method is extremely fast and yields
higher global modularity than other greedy techniques, but it has been remarked that it is
still not clear whether some of the intermediate parts of the associated dendrogram are indeed
meaningful hierarchical levels of the graph [102].

Despite its great success, the modularity optimization approach suffers from a resolution limit
problem, where it may fail to find communities smaller than a given scale which depends principally
on the network’s size, as pointed out by Fortunato and Barthélemy [103]. The same remark was
made by Kumpula et al. [183] regarding other null models.

In order to overcome this resolution limit problem, multiscale (or multiresolution) methods were
introduced. These methods possess an adjustable parameter that helps tuning the granularity level
of the communities found. They can be divided (for example) into

• Modularity optimization methods: Arenas et al. discuss in [11] this resolution limit not as
a problem, but as an intrinsic property of the network, proposing a multiscale method by
introducing self-loops with different weights in the original network and performing again a
modularity optimization approach.
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• Statistical physics methods: Reichardt and Bornholdt have shown in [260] (with the weighted
case being presented in [143]) that it is possible to reformulate the problem of community
detection as a problem of finding the fundamental state of a Potts model [307], where each
node is described with a spin. Thus, their method consists in minimizing a Hamiltonian
function that takes into consideration, as in the modularity case, a difference between a null
model with the same degree distribution of the original network and the actual interaction
between nodes, with a scale parameter � > 0 responsible for the granularity of the communities
found. If � = 1, they recover (up to a multiplicative factor) the modularity function of [236].

• Signal-processing methods: Different community detection algorithms appear when signal pro-
cessing tools are used, such as wavelets [217]. These techniques are successfully used in many
fields, such as the detection of subgraphs in networks [226].
A method that exploits the fact that networks may have different community structures when
using different resolutions is the wavelets-based community detection algorithm developed by
Tremblay and Borgnat in [288], where the authors use band-pass filters defined in the graph
Fourier domain, generated by stretching a band-pass filter kernel with a scale parameter s > 0.
They thus use the Fourier modes of the graph Laplacian (its eigenvectors) to create the wavelet
base (for a fixed resolution parameter s > 0) and draw a dendrogram of the target graph by
the node correlation between the elements of the base. The higher the resolution parameter
s, i.e., at larger scales, the fuzzier the resolution, i.e., we have bigger communities; the lower
the resolution parameter s, the wavelets use higher frequency modes and therefore create a
higher localization, generating smaller communities.

Another community detection framework is one based on random walks on networks [213]. Let
us assume, without loss of generality, that each node has at least one neighbor, and let us define the
probability of a random walker going from one node to another to be proportional to the weight of
the edge linking these two nodes, i.e., if a random walker is placed in a given node, the probability of
him going from this node to a neighbor node is proportional to the edge weight. If there is no edge
linking a pair of nodes, the random walker cannot go from one node to the other (at least in only
one hop). Classical Markov chain techniques allow the study of this random walk in depth, such
as discovering the analytic form of its stationary distribution (under certain hypothesis) and the
mixing time, and are closely related to spectral properties of the Laplacian matrix of the underlying
network [213].

Hence, one may expect that random walks may indeed help in discovering divisions and nontrivial
structures in networks. For instance, Van Dongen stated in his Ph. D. thesis [293] some basic
principles behind random-walk network clustering algorithms: 1) The number of higher-length
paths in a network is large for pairs of vertices lying in the same dense cluster, and small for pairs
of vertices belonging to different clusters. 2) A random walker that visits a dense cluster will likely
not leave the cluster until many of its vertices have been visited. 3) Considering all shortest paths
between all pairs of vertices, links between different dense clusters are likely to be in many shortest
paths.

We now discuss in detail some community detection methods that make use of random walks in
networks to uncover cluster structures:

• The first algorithm to be presented here is the Markov clustering algorithm (MCL) of Van
Dongen [293]. The algorithm consists in the iteration of two steps: a first step called expansion,
in which the random walk transition matrix is raised to an integer power p (it is well known
that the resulting transition matrix gives the probability that the random walker goes from
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one node to another in p steps), and a second step, called inflation, consisting in raising each
entry of the new transition matrix to some real-valued power ↵ > 0 and renormalizing the new
matrix to be again a transition matrix of a random walk. This last step enhances the weights
between pairs of vertices with large values, which are likely to belong to the same community.
After a few iterations, the process usually delivers a stable matrix, with some remarkable
properties. Its elements are either zero or one, and the generated network described by this
matrix is disconnected, with its connected components the uncovered communities of the
original graph.

• A particularly interesting instance of the MCL is the label propagation algorithm introduced
by Raghavan et al. in [256]. In the MCL, the author mentions a possible reduction by keeping
only the k maximum nonzero entries of each column after the expansion steps, which is taken
to the extreme by the label propagation algorithm: one keeps only the largest entry of each
row after each expansion step. The resulting algorithm can be designed as follows: one starts
with each node belonging to its own community; at each step, in a randomized order, each
node is assigned to the community containing the higher number of its neighbors (if there are
more than one such communities, one decides randomly among them); the process is repeated
until no more assignments can be done (it is worth mentioning that the algorithm may not
end).

As a consequence, the resulting communities have nodes that possess more edges with vertices
inside its community than vertices with nodes in each of the other communities, compared in
a pairwise fashion. Tibély and Kertész prove in [283] that the label propagation algorithm is
equivalent to finding the fundamental state of a zero-temperature Potts model [307], giving a
precise description of the communities found.

• Pons and Latapy show in [253] that the entrapment of a random walker in clusters can be
measured by quantities related to spectral properties of the transition matrix, defining dis-
tances between vertices and communities. The resulting algorithm, called Walktrap, proceeds
in the following greedy fashion: it starts by assigning each node to its own community (as
usual), and at each step it calculates the distance between (every reasonable) two communities
and merges the two communities with the smallest distance, following Ward’s method [301].
It provides then a hierarchical structure of the target network.

• Finally, Avrachenkov et al. develop in [14] a community detection algorithm based on the
mixing time of local random walks in a graph. Their algorithm computes for each cluster
a scoring function that takes into consideration the spectral gap of the transition matrix of
a random walker moving only inside the cluster in question (which is a proxy of how fast
the random walk mixes, i.e., converges to the stationary distribution, and measures how well
connected the cluster is) and the probability of not leaving the cluster if started inside it
(which is a proxy of how disconnected the cluster is with the rest of the network). The
algorithm thus performs an aggregating search for communities starting at each node being
its own community. This leads to a dendrogram representing the community structure of the
graph in question.

We conclude the discussion of community detection methods with centrality-based methods,
which find structures in networks using centrality measures. Some of these methods are the follow-
ing:
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• The betweenness centrality method develop by Girvan and Newman in [116], which extends
the concept of betweenness2 from vertices to edges, and leverages this idea to create a divi-
sive algorithm based on the idea that edges linking different communities usually have high
betweenness as paths from different communities must pass through them.

The algorithm begins with the whole network as a unique community, and at each iteration it
removes the edge with the highest betweenness, recalculating the new edge betweenness until
no edges remain and uncovering communities that eventually separate from one another. This
algorithm, as one might notice, constructs a dendrogram of the network where one may cut
it in any desirable fashion in order to retrieve the communities.

• An entirely unrelated approach, which resembles random-walk-based techniques, is given by
Ernesto and Hatano in [98], which is based on the generalization of the communicability of
nodes taking into account not only shortest paths between nodes but also the other paths
linking them.

The authors analyze a matrix taking into consideration all paths linking nodes in an un-
weighted network (powers of the original adjacency matrix), studying the Green function
given by the weighted sum of the number of paths. Thus, using spectral properties of this
matrix the authors are able to define rules to assign each node to communities.

The discussion led in this introductory section is not exhaustive and we refer the interested
reader to the survey in [102] where Fortunato presents in detail methods for undirected networks;
[218], where Malliaros and Vazirgiannis illustrate the theory and methods for directed networks;
and [252], where Platié and Crampes present a survey featuring a new approach based on semantics,
which allows interpreting social relations in community detection for social networks.

0.2 Information diffusion and trend detection

The second part of this thesis is dedicated to an information diffusion model and a subsequent
trend detection algorithm using ideas from one of its particular cases. We provide now a general
review of the literature about both subjects.

0.2.1 Information diffusion

Information diffusion models study the broadcasting and adoption of information by users in
networks. The basic idea is that people want to talk, share, post, tweet, like and perform any other
kind of social action in social networks, and by doing so, they influence others to do the same.
For example, when some new technology arrives, early buyers post photos and comments on social
networks, which are then diffused by "word-of-mouth". These actions lead, in turn, to an increase
in the number of buyers for this new technology, and so on. In Twitter, when someone retweets a
piece of news, he first must have been in contact with the news itself, so the broadcasting of the
initial news creates a cascade of new notifications and posts; these objects are called information
cascades [93].

The first information cascade models were opinion-dynamic and game-theoretical based models,
in which agents in a network have information they want to spread, or a utility function they want

2. For a given node, its vertex betweenness [104] is defined as the sum, among all pairs of other nodes, of the
ratio between the number of shortest paths (for unweighted networks) containing the given node and the total
number of shortest paths.
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to maximize. These models were quite useful when studying political trends [268], cultural fads and
fashion changes [26], collective actions [127], viral marketing [263], diffusion of innovations [264],
etc.

The division of these information diffusion models in opinion-dynamic versus game-theoretical
models is due basically to the difference of how agents interact: in opinion-dynamic based models,
agents do not seek to maximize a utility function; these models have simple rules and heuristics for
agents’ interactions and the goal is to study the aggregate behavior of the system. Some examples of
opinion-dynamic based model are independent cascade models [119, 120], threshold models [302, 24],
interacting particle systems [203, 7] (which are the continuous-time analogue of the stochastic cellular
automaton [295]), and other frameworks already mentioned during the general introduction about
opinion dynamic models.

Let us now present them in more detail:

• Independent cascade models: Are stochastic models of information diffusion, in which there
exists an initial seed group possessing some information that propagates through the network
from agents to their neighbors, until no agent is able to continue the transmission process
[119, 120].

Agents can be in two different states, active or inactive. An active agent may at each time step
disseminate the information to a random inactive neighbor, such that the transmission occurs
with a probability depending on their tie. The information transmission has only one chance
to succeed, i.e., if an active agent fails to transmit the information to an inactive neighbor, it
cannot repeat it to this same neighbor. An inactive agent can become active if it successfully
receives the information from an active node, and upon being activated it remains active until
the end of the diffusion process.

Thus, at each discrete time step, randomly chosen active agents try to disseminate their infor-
mation to some of their inactive neighbors, in an independent fashion, i.e., the transmissions
are independent from each other.

Independent cascade models are in the core of some influence maximization problems, such
as [169].

• Threshold models: These models are also based on stochastic diffusion of information, but in
the opposite sense of cascade models. There are also two states for each agent, active and
inactive, and the model begins with an initial seed group disseminating some information.
The difference from Independent cascade models happens in the sense of transmission, i.e., at
each time step the inactive agents compare the number of active neighbors against the number
of inactive ones, and become active depending on whether it is greater than some predefined
influence/infection threshold (which may be agent-specific [127] or fixed for the entire network
[24]). Usually this rule takes into consideration the weights on the edges of the underlying
graph, i.e. the bigger the weight in an edge, the larger the influence of a neighbor.

The classification of the subsequent model depends on how this influence/infection threshold
is defined. For example, majority threshold models [247] dictate that the information is
successfully transmitted to a given inactive agent if the (weighted) majority of his neighbors
are active; linear threshold models [216, 302] are themselves based on the assumption that
for a given inactive agent the (weighted) proportion of his active neighbors must be bigger
than an agent-specific threshold in order for the transmission to take place; and fixed-value
threshold models [24] follow the same ideas of linear threshold models, but with a fixed
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infection threshold for all agents in the network (for a fixed threshold of 1/2 it becomes the
majority rule).

Although opinion-dynamics-based model are well studied and possess a large literature in infor-
mation diffusion, they are still based on predefined rules and simple actions of agents, which have a
different interpretation in economics. The premise is that agents happen to adopt these transmis-
sion rules and dynamics because they are rational and seek to maximize some sort of utility or gain,
which comes in different forms. Some examples of game-theoretical information diffusion models
are:

• Stochastic best-response dynamics: The assumption in these models is that agents are not
fully rational when making a decision (the bounded rationality hypothesis [224]), such that
the actions are played following certain probabilities [37, 95].

At each (random) time agents revise their strategies and need to select an action to play,
which is taken to be the best-response of a game composed by their neighbors and the actions
chosen by them. As agents are not fully rational, they are not entirely certain that this game
reflects their true utility and thus, select a random action following a probability distribution
depending on the future utility of each action.

When this probability function is the softmax function [28], this mechanism is called log-linear
dynamics, and has been extensively studied in the game theory literature [225, 9].

• Diffusion of innovations: In this particular model the dynamics are similar to that of stochastic
best-response models, in the sense that agents are not fully rational and assign probabilities
to actions, which again depend on the future utilities stemming from local interactions with
their neighbors [313, 229].

The major difference between the two models is the fact that the choice of agents here is
not dependent on the present actions of neighbors (thus not playing a classical game) but on
their last played actions. As stochastic best-response dynamics, when the choice probability
function is the softmax distribution, it has been shown that under mild assumptions on the
utility functions and the network properties the agents’ actions configuration converges to a
stationary state [37]. When players become increasingly rational (when the noise parameter
of the softmax distribution converges to zero) the stationary state gives rise to the so-called
stochastically stable states [312], which are agents’ pure actions that are played with a nonzero
probability when agents are fully rational, i.e., they maximize agents utilities.

• Network games: In a more general fashion, the game-theoretical mechanism of agents playing
games in networks has been coined network games, which could have different forms: diffusion
of behavior and information cascades [111, 194], network formation games [159], etc. The
reader can be referred to [160] for an extensive review of literature on the subject.

Apart from the beforementioned theoretical models such as opinion dynamics and game-theoretical
models for information diffusion, a fruitful new research program came along in the past years, such
as Kempe et al. in [169], where the authors study how to maximize the initial seed set able to create
the largest information cascade in a social network, assuming that nodes pass along the received
information as in an independent cascade model or a linear threshold model. After the pioneering
work of Kempe et al., new and more complex information diffusion models started to be developed,
with a greater emphasis on the algorithmic part.
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These models take into consideration different aspects of information diffusion: the diffusion
patterns and times [317, 99], the contents diffused and their dissemination probabilities [195, 231],
the role of users at diffusing these contents [125, 201], the temporal shape of the impact/influence
of these diffusions [195, 232], the reconstruction of the networks given the observed cascades [123,
126, 316], and many other properties of this complex process.

Instead of modeling the qualitative properties of the dissemination process itself, these works
focused on retrieving the network properties from the likelihood of the information cascades. Their
goal is hence twofold: first, by retrieving the system parameters, these models are able to obtain
crucial information on users and the information being disseminated; second, by choosing a para-
metric model of information diffusion, they still model the diffusion process itself from the estimated
parameters. They thus provide a more complete approach to the information diffusion process by
not only modeling it but at the same time retrieving vital information about the network and the
disseminated contents.

Although a complete division of these works is rather difficult due to their diversity, we can
divide them into two categories: those that do not use point processes [74] and those that use them.
The main difference between them is that those that do not use point processes base themselves
on simple heuristics and empirical properties of information cascades to derive exploratory models.
For example:

• Leskovec et al. report in [197] some findings about the linking of blogs and the structure
of the information cascades, after analyzing a dataset with 45, 000 blogs and 2, 2 million
blog postings, designing a simple flu-like epidemiological model that mimics the spread of
information and produces information cascades similar to real-life ones.

• Leskovec et al. develop in [195] a scalable framework for meme-tracking3, providing a repre-
sentation of the news cycle. They identify a large class of memes exhibiting wide variation on
a daily basis by tracking 1, 6 million mainstream media sites and blogs over a period of three
months with a total of 90 million articles, finding new and persistent temporal patterns for
the information diffusion in such contexts.

• Myers and Leskovec study in [231] the variation of the probability in retransmiting information
due to previous exposure to different types of information; they found that, for Twitter, these
retransmission probabilities are indeed very different when compared to results stemming
from independent cascade models, which reinforces the discussion in deriving new model-free
approaches to information diffusion with multiple contents.

• Myers et al. study in [232] the influence of externalities over nodes on information cascades in
networks, adopting a cascade model with parameters relating to dissemination of information
from external sources and internal sources of social networks, for which the time instances of
diffusion are essential to the maximum likelihood estimation procedure.

• Snowsill et al. develop in [273] a network inference algorithm based on text mining techniques
in order to associate markers with reused text, in order to track pieces of text that travel
through nodes in a network. The reconstruction of the infection network is thus performed
using an approximated set covering technique [60] developed in [107] to infer a minimal graph
spanning a suitable stochastic branching process.

3. A meme is an idea, behavior, or style that spreads from person to person within a culture [79].
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• Gomez-Rodriguez et al. [122] and Daneshmand et al. [76] propose diffusion network infer-
ence algorithms for recovering the diffusion probabilities in continuous-time cascade models,
and Gomez-Rodriguez et al. develop in [123] an algorithm capable of uncovering the most-
likely network configuration leading to a given information cascade, following the independent
cascade model already presented in this introduction.

On the other hand, the works that use point process techniques base themselves on parametric
point processes in order to "guess" the interactions between users and information, estimating
their parametric version of the reality from the likelihood of events. Differently from other models,
point-process-based modeling has the advantage of aggregating several properties of not only the
information diffusion process itself also but the network, thus working as a trade-off between a
simpler view of reality against a more complete overview of the diffusion process. For example, a
point process that is deeply studied in the second part of this thesis is the Hawkes process [140, 208],
which is a self-exciting point process possessing a parametric intensity that takes into account the
previous events to increase the likelihood of future ones.

Some of its examples are:

• [38], where Blundell et al. model reciprocating relationships with Hawkes processes [140,
208], using a Bayesian nonparametric model that discovers the implicit social structure from
interacting data, based on the Infinite Relational Model [309].

• In [158], Iwata et al. propose a probabilistic model for discovering users latent influence
using cascades of inhomogeneous Poisson processes. The authors present a Bayesian inference
procedure of the model based on a stochastic expectation-maximization algorithm.

• Gomez-Rodriguez et al. generalize in [124] independent cascade models with survival theory,
developing general additive and multiplicative diffusion models. The proposed framework
solves efficiently the inference of the most probable network responsible for such cascades.

• Yang and Zha study in [310] the propagation of memes in social networks with linear Hawkes
processes and couple the point process with a language model in order to estimate the memes.
They provide a variational Bayes algorithm for the coupled estimation of the language model,
the influence of users and their intrinsic diffusion rates.

• Zhou et al. develop in [317, 316] a model for the information diffusion process with a multi-
variate Hawkes process, developing parametric and nonparametric learning algorithms for the
system parameters from the cascades of data.

• Li and Zha develop in [202] a compact learning algorithm for Hawkes-based parametric models
of information diffusion, replacing the influence kernels between users and information with
sparse temporal linear combinations of a reduced number of features. The authors compared
the proposed compact method with classical Hawkes learning methods in order to assess the
gain in predictive power when dealing with an insufficient number of information cascades.

As one can notice, this new wave of literature on information diffusion is quite extensive, with
new methods being developed using different sets of techniques such as cascade models, probability
theory, statistics, point processes, language models, etc.

We refer the interested reader to a well explained tutorial by Guille et al. [132] for more details.
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0.2.2 Trend detection

Finally, we present a general overview of the literature related to the last chapter of this thesis,
trend detection. Trend detection is the study of models, techniques and tools used for detecting or
predicting patterns in information. Trends come in various forms and shapes; for example, one may
look at the return time series of a stock and try to denoise it, revealing a deterministic trend [101];
one may be concerned about anomaly detection [4], where one looks at outlier events in some data,
forecasting which events are defined as "normal" and which ones are defined as "exceptional", etc.

The literature on topic/trend detection is very heterogeneous (see e.g. [8] for an overview),
employing several methods such as information diffusion methods [169, 58], adoption models and
complex contagion models [52, 51], text mining and queuing techniques [173, 300], etc.

The methods using information diffusion in social networks are pioneered by Kempe et al.
in their seminal paper [169], where the authors develop an optimization framework to study the
problem of identifying influential users for a marketing campaign, introduced by Domingos and
Richardson in [88]. The framework uses submodular functions to detect the optimal seed group in
order to diffuse a content, based on the already explained independent cascade propagation model
[119, 120] and linear threshold model [216, 302].

The problem of finding the best seed group that maximizes the expected number of influenced
nodes was denoted influence maximization problem, and inspired numerous works:

• S. Bharathi et al. [25], where the authors extend the influence maximization problem for
multiple competing topics using game-theoretical techniques, and N. Barbieri et al. [22], where
the authors extend the independent cascade and linear threshold models to take into account
multiple topics, and devise a new influence propagation model that instead of considering
user-user influences, leverages user authoritativeness and users interests in topics, leading to
a compact representation of parameters.

• Chen et al. derive in [56, 57] scalable extensions of the independent cascade and threshold
models, and Tang et al. derive in [279] an influence maximization algorithm that has near-
optimal complexity based on the triggering model defined in [169], which is an extension of
the classical independent cascade and linear threshold models.

• Chen et al. develop in [55] an influence maximization algorithm based on an extension of the
independent cascade model taking into account not only positive opinions, but also negative
ones.

• Zhuang et al. study in [318] the influence maximization problem on dynamic social networks.
Their setting consists in making periodical partial observations of the social network, with
the derivation of an algorithm that minimizes the difference between the expected number
of influenced nodes in the real social network and in the partially observed one, under the
classical independent cascade model.

• Gomez-Rodriguez and Schölkopf developed in [125] a greedy influence maximization algorithm
taking into consideration the continuous-time independent cascade model of [122].

Although the influence maximization literature is quite extensive and very important for the
understanding of trend detection in social networks, it does not represent its totality. For example,
some works using text mining and queuing theory are
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• [173], where Kleinberg develops a trend detection algorithm by modeling "bursts of activity"
over document streams using an infinite-state automaton (analogous to models in queuing
theory for bursty network traffic), in which bursts appear naturally as state transitions.

• [300], where Wang et al. propose a general probabilistic algorithm that discovers correlated
bursty patterns and their periods across text streams, even if the streams have completely
different vocabularies - e.g. English vs. Chinese.

• [10], where AlSumait et al. propose an online topic model based on the Latent Dirichlet
Allocation [34], a generative hierarchical Bayesian model for text data, serving as foundation
to an algorithm detecting bursty topics in social networks. The idea is to incrementally update
the topic model at each time step by using the previously generated model, creating thus a
temporal evolutionary matrix for each topic and permitting the detection of bursty topics.

With the advent of social networks and their tsunami of data, a vast corpus of empirical works
appeared in the literature. They not only shed light into sociological phenomena [303], but also on
the information diffusion process [52, 51] and appearance of trends in social networks [306], acting
as a bridge and decreasing the gap between the abstract models of academia and real-life stylized
facts of social networks.

In spite of the fact that these empirical works do not reflect directly trends and do not develop
trend detection algorithms, we have chosen to discuss them in this section because they represent
the interaction between the theoretical works on the information diffusion models used to devise
better trend detection algorithms and the real-life data to support such theories. They provide
thus precious insights that allow the manufacturing of new and more realistic information diffusion
models, and as a consequence, better trend detection algorithms. Some of these empirical works
are:

• [157], where Huberman and Adamic discuss several studies of information flow in social net-
works. They uncover critical properties of social networks and the information diffusion pro-
cess, such as their underlying social structure, how information spreads and why small world
experiments give solid results.

• [3], in which Adar and Adamic create a tracking algorithm responsible for discovering the
information flow in the blogshpere using several features of pairs of blogs: the number of
common blogs explicitly linked to by both blogs, the number of non-blog links shared by
both of them, text similarity, order and frequency of repeated infections, and in-link and out-
link counts for both of them. They also created a visualization tool in order to get a better
understanding of the diffusion process.

• Wu and Huberman study in [306] how attention to novel items propagates and fades among
large populations. They analyzed the dynamics of 1 million users of the social network Digg
and described it by a temporal model with single novelty factor.

• Centola et al. empirically illustrate in [52, 51] that a complex contagion model is more precise
than simple adoption models [86] for information diffusion in social networks, studying the
qualitative effects of network topology on its ability to propagate collective behavior.

• Gao et al. study in [112] real anomalous events using mobile phone data, and find that
information flow during emergencies is dominated by repeated communications.
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• Bakshy et al. [20], Teng et al. [282] and Weng et al. [303] analyze how the social networks can
influence the diffusion of different topics, and vice-versa, i.e., given different kinds of topics,
the relevance and creation of strong and weak ties in the social networks during the diffusion
process.

All the works presented so far tackle the trend detection problem at some instance, either in a
theoretical or practical manner. However, they are not perfectly suited to deal with trend detection
in social networks, as they do not exploit most of the relationships between users and information,
as for example user social authority and influence, topic influences, information flows, social actions,
contextual data, etc. We now present some of the works dealing with these issues:

• Cataldi et al. devise in [50] an algorithm to detect in real-time emerging topics on Twitter.
First, they extract the contents of the tweets with a model for their life cycle. Second, they
consider the social importance of the sources of the tweets, using the Page Rank algorithm to
analyze the social ties of users. And finally, they create a topic graph connecting the emerging
terms with other semantically related keywords.

• Takahashi et al. derive in [276] a trend detection algorithm focusing on the social aspects
of social networks, with links between users being generated dynamically through replies,
mentions, etc. The authors propose a stochastic model for behavior of a social network user,
detecting the emergence of a new topic. They combine the proposed anomaly score with a
change-point detection technique based on the Sequentially Discounting Normalized Maximum
Likelihood coding [291], or with Kleinberg’s burst model [173].

• Budak et al. define and identify in [45] coordinated trends (characterized by the number of
connected users discussing them) and uncoordinated trends (characterized by the number of
unrelated people interested in them), providing network-oriented solutions for detection of
such trends.

• Guille and Hacid derive in [131] an algorithm based on the asynchronous independent cascade
model [266], using an information diffusion model that captures and predicts the dissemination
process, relying on semantic, social, and time features.

• Guille and Favre devise in [130] a Mention-Anomaly-Based Event Detection algorithm on
Twitter, based on the creation frequency of dynamic links users insert in tweets to detect im-
portant events and estimate their magnitude. The proposed algorithm dynamically estimates
the time periods for the events, not assuming them of fixed duration.

• Cheng et al. propose in [58] a framework for addressing cascade prediction problems, moti-
vated by a view of cascades as complex dynamic objects passing through successive stages
while growing.
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CHAPTER 1

Opinion dynamics

"Opinions are made to be changed - or how is truth
to be got at?"

— Lord Byron

1.1 Introduction

We begin this thesis with a theoretical model of information diffusion in social networks, based
on an opinion dynamics model. This model is necessary to lay the fundamentals of information
diffusion ideas in order to fully explore them during the course of this thesis. Thus, the first part of
this thesis will have a theoretical and abstract flavor at first, and will be followed by an application
of this theoretical model: an opinion-dynamics-based community detection algorithm.

Opinion dynamics models develop rules on how a group of agents communicate and analyze
their impact at the network level (see [48] for a survey): do these rules lead to network consensus,
spontaneous clustering, etc.? Interestingly enough, simple opinion dynamics models often suffice to
be confronted with deep technical issues (see e.g. [53]) and fascinating conjectures (see e.g. [142]);
in addition, they also cover a large number of real-life situations that possess nontrivial behavior:
flocks of birds [72], interacting groups of people [105], distributed systems of robots [85], physical
particles with spins [254], etc.

This chapter introduces an opinion dynamics model based on exchange of opinions between
agents over multiple contents, and studies its convergence. We model the system as a weighted,
undirected graph, consisting of N agents. All agents have a common set of contents, say K contents,
and each agent maintains a vector of scores, each of which reflecting the instantaneous appreciation
of the agent for each content. This appreciation starts with the agent’s own initial opinion for
each content, and then evolves as a function of signals the agent receives from her neighbors. Each
signal consists of the identity of one content, a number from 1 to K, that the neighbor chooses to
broadcast to the agent; the agent then updates its score for the specific content by the weight of
the link she has to the broadcasting neighbor. This choice is done by a random sampling from the
agents normalized scores on the contents, using a nonlinear transformation - the softmax probability
function with parameter � [28].

The softmax parameter � impacts the choice of the signal: a small value of � corresponds to
a uniform choice over the K contents, and as � grows, the sampling becomes more biased towards
contents with larger scores. We show that for each fixed and finite value of �, we obtain convergence
for the agents normalized scores as time tends to infinity.
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The sociological broadcasting/sharing mechanism used to construct our model has its roots in
the seminal work of DeGroot [83], modeling agents in a network possessing a scalar opinion about a
subject, interacting with neighbors through combinations of opinions coming from themselves and
from their neighbors. This same broadcasting idea was further developed by Tsitsiklis [289], Boyd
et al. [43], and many other authors to create decentralized gossip schemes, which aim to compute
linear functions of agents scalar opinions/states through pairwise interactions of agents, resulting in
the convergence of opinions towards a consensus. However, the convergence in our model, unlike in
standard consensus algorithms, may lead to disagreement between agents over the contents: since a
large softmax parameter � generates a greater bias towards contents with larger scores during the
agents’ random sampling, agents tend to broadcast opinions about contents for which they have a
greater appreciation; thus, depending on the way agents are connected, each agent starts receiving
more often signals about contents she appreciates the most, hence partaking a larger appreciation
for this same content with a subgroup of her neighbors, i.e., the network ends up clustered over
contents most appreciated by agents.

A similar clustering phenomenon also appears in a class of nonlinear opinion dynamics models,
the so-called bounded confidence models [142, 82], where agents are placed in a communication
network and possess two quantities, the first one being a scalar opinion/state and the second one
being a confidence interval, which is a time-changing symmetric interval centered around the in-
stantaneous value of her opinion. Each agent’s opinion evolves thus through interactions with the
neighbors that reside inside the agent’s confidence interval, i.e., agents only interact when they
present opinions sufficiently close to each other’s. Since, at each time step, agents only interact
with neighbors possessing an opinion sufficiently similar to their own, agents’ opinions polarize
and converge towards different clusters, as expected. Although our model presents the possibility
of clustering, as in bounded confidence models, the interaction between agents are fundamentally
different in both cases: in bounded confidence models agents update their opinions following rules
similar to gossip schemes, using linear combinations of their actual opinions and the opinions of
neighbors residing in their confidence intervals, which results in similar opinions becoming even
more similar, while in our work agents do not have any control over the information received from
neighbors and the eventual clustering is an indirect effect, consequence of neighbors finally being
more appreciative, in the long run, of a common content.

As our model is based on scores measuring the appreciation of contents by agents, a reinforcement
mechanism takes place: the more agents broadcast opinions relative to a content, the higher the
probability their neighbors have of broadcasting opinions about the same content back to them.
This behavior is not "hard" or "binary" as in classical voter models [68, 205], in which agents adopt
different states, but "soft" in the sense that the changes in agents’ opinions happen in a gradual
fashion. Due to the smooth changes in agents’ opinions, our model resembles recent voter models
with reinforcement [75, 49, 178]. Nevertheless, in our model, this reinforcement happens "on the
contrary sense" of the literature, as in the Sznajd model [275], which has an "outflow" dynamics
where each agent propagates her binary state to one of her two neighbors when she possesses
the same state of her other neighbor. This "outflow" dynamics appears as well in the proposed
model since agents broadcast their opinions to neighbors, with the reinforcement occurring in an
indirect level, when agents receive broadcasts from neighbors that randomly select the broadcasting
information from a softmax probability function.

Our model

i) takes into account the presence of multiple contents,

ii) relies on the random sampling of the broadcasted contents performed by agents through the
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nonlinear softmax function with parameter �, and

iii) uses a stochastic broadcasting scheme of information where each agent transmits at each time
step an opinion about a single content to her neighbors.

Moreover, we prove the convergence of the normalized scores of agents, for any finite and fixed
value of �, towards a particular set, however it turns out that studying this set is a challenging
task. For example, when the value of the softmax parameter � is small, agents’ normalized scores
converge to a consensus, whereas when � is large, one can observe through numerical examples that
the convergence of agents’ normalized scores lead to the clustering of the network into groups where
agents have the same preferred content.

The rest of the chapter is organized as follows. Section 1.2 describes the proposed opinion
dynamics model and our main convergence result. In Section 1.3 we provide a mathematical proof
for the convergence of our opinion dynamics algorithm. In Section 1.4 numerical experiments are
performed to support our claims and Section 1.5 concludes the chapter.

1.2 Model description and main result

1.2.1 Notations

For two rectangular real matrices P,Q 2 MN⇥K(R), let hP,Qi = Tr(P TQ) be their scalar
product, with associated norm ||P || =

p
hP, P i. Also, let 1 be the vector with entries 1, where the

dimension of the vector is clear from the context, and let us define for a matrix P 2MN⇥K(R) the
vectors P i

= (P i,1, · · · , P i,K
) 2 RK .

We say that a sequence (mt)t2N 2MN⇥K(R) converges to the set E ⇢MN⇥K(R) if and only
if d(mt, E)! 0 when t!1, where d(mt, E) = infz2E ||mt� z|| is the distance between mt and the
set E .

Let us define the (K � 1)-dimensional simplex �K = {x 2 RK
+ |

PK
k=1 x

k
= 1} and �N

K the set
of N ⇥K real matrices such that every row is in �K (the set of N ⇥K real stochastic matrices),
i.e.: �N

K = {M 2 MN⇥K(R+) |
PK

k=1M
i,k

= 1, 8i  N}. Also define the set ˚

�

N
K = {x 2

MN⇥K(R) | x1 = 1 and xi,k > 0, 8(i, k)} and, for a parameter � > 0, the entropy function
H� : �K ! R� as H�(y) =

1
�

P
k y

k
log yk.

1.2.2 The opinion dynamics model

We begin by presenting in detail our opinion dynamics model: let us consider a network of N
agents sharing opinions about K distinct contents with their neighbors. The network could consist
of a small group of agents chatting in the same room or a large social network [180, 2, 78], and these
contents might be an ensemble of movies, books, political leaders, etc. The communication network
is coded by a weighted, undirected communication graph G = (V,E) that represents the network
topology, where V = {1, . . . , N} is the set of agents and E is a subset of all possible communication
links between agents, such that the link i ⇠ j belongs to E if and only if agents i and j are able to
communicate with each other.

The weights of G represent the influences that agents have over one another: if agent j is very
influential over agent i, then the broadcasts of agent j have considerable impact over agent i, which
is hence reflected by a large weight for the link i ⇠ j. Mathematically speaking, the weights of G
are the entries of the N ⇥N symmetric matrix A, the adjacency matrix of V such that Aij > 0 if
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and only if i ⇠ j. Defining the N ⇥N diagonal degree matrix D such that Dii =
P

j Aij , we have
that the entry Dii represents the total influence of the network over agent i 2 V .

As already explained, our model assumes that every broadcast is relative to one of K distinct
contents, each of them denoted by an integer k 2 {1, 2, · · · ,K}, with each agent i possessing a
specific score X i,k

t 2 R+ for content k at time t 2 N. The higher the score Xi,k
t , the higher is

the appreciation for content k by agent i at time t, which in turn implies that agent i is more
likely to perform a broadcast relative to content k to her peers. More specifically, we can define
Xt 2MN⇥K(R+) as the matrix of scores of all agents, such that X i,k

t is the score of agent i over
content k at time t, and we can define Pt 2 �N

K as the agents normalized scores, where

P i,k
t =

Xi,k
tP

k0 X
i,k0
t

.

In our model, agent i selects the content relative to her broadcast at time t+ 1 according to a
random variable I it+1 2 {1, · · · ,K} following the random law

P(I it+1 = k|Gt) = f i,k
� (Pt) (1.1)

where

• Pt 2 �N
K is the matrix of agents’ normalized scores, defined as Xt = D(Xt)Pt, with D(Xt)

the diagonal degree matrix of scores Xt defined by D(Xt)ii =
P

k0 X
i,k0
t ,

• f� : MN⇥K(R)! �

N
K is the softmax function [28] with parameter �, defined as

f i,k
� (p) =

e�p
i,k

P
k0 e

�pi,k0
,

where p 2MN⇥K(R) is a N ⇥K matrix and pi,k is its (i, k) entry, and

• Gt = �(Xs, s  t) is the standard filtration associated with X.

Then, after the broadcasting phase at time t + 1 where agents perform the random sampling
and broadcast the selected information to neighbors, agents interpret the received information and
update their own scores X. A typical agent i groups every information broadcasted to her and
updates her scores accordingly: she adds Aij to the score relative to the content brodcasted by
her neighbor j, i.e., to the score relative to the content given by the random variable Ijt+1 2
{1, 2, · · · ,K}.

We have thus the following update mechanism for the agents’ scores at time t+ 1:

X i,k
t+1 = Xi,k

t +

X

j⇠i

AijI{Ijt+1=k} (1.2)

= Xi,k
t +

X

j

AijI{Ijt+1=k},

which can be written in matrix form as

Xt+1 = Xt +AIt+1, (1.3)

where It+1 is a N ⇥ K random matrix representing which content is relative to the broadcast of
agent j at time t+ 1. The matrix It+1 has entries

Ii,k
t+1 = I{Iit+1=k}.

Figure 1.1 illustrates an example of both the broadcasting and updating mechanisms.
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Figure 1.1: At t + 1 each agent chooses a content from the distribution (1.1) and broadcasts it to
her neighbors (broadcasting step), then agents update their scores with the received information,
following Eqn. (1.2) (updating step).

1.2.3 Discussion of the model

As previously discussed, our opinion dynamics model has two building steps: a broadcasting
step, in which agents select the contents relative to their broadcast and transmit the information
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to neighbors, and an updating step, in which agents retrieve the transmitted information from their
neighbors and update their scores according to the contents relative to each broadcast. These steps
are, however, independent from each other: the broadcasting step takes into consideration only
the agents’ scores, by means of the random sampling procedure, whereas the updating step relies
exclusively on agents’ influences, which affect how strongly agents interpret the information received
during the broadcast step.

The random sampling procedure is performed using the softmax function with parameter � [28].
The softmax parameter � impacts the choice of the content during the random sampling: a small
value of � corresponds to a uniform choice over the K contents, and as � grows, the sampling
becomes more biased towards contents with larger scores, i.e., agents start to broadcast more often
contents they appreciate the most.

It is worth mentioning that qualitatively the scores Xt and the normalized scores Pt represent
the same thing: agents appreciation of contents. The difference is that Xt represents absolute scores
of agents while Pt represents relative scores of agents.

1.2.4 Assumptions and main result

1.2.4.1 Assumptions

In order to prove our main convergence result, we make the following assumption throughout
the chapter:

Assumption 1. (i) miniDii = mini
P

j Aij > 0,

(ii) mini
P

k X
i,k
0 > 0.

Assumption D.1(i) implies that every agent is influenced, and thus agents scores are updated at
each step of the opinion dynamics algorithm. The degree matrix D then satisfies Dii =

P
j Aij > 0

for every i 2 V , which allows the definition of the inverse matrix D�1.
Assumption D.1(ii) implies that each agent has an initial score, which simply serves to avoid

a different starting rule for the opinion dynamics algorithm. Xi,k
0 represents the initial opinion of

agent i about content k; the bigger this opinion the harder is for agent i to change it during the
opinion dynamics algorithm.

1.2.4.2 Main result

The main result of this chapter provides the almost sure convergence of agents normalized scores
Pt subject to the opinion dynamics (1.2), under assumption D.1. The next section is dedicated to
prove the following statement:

Theorem 1. Let Pt 2 �N
K be the agents normalized scores defined as Pt = D(Xt)

�1Xt, where the
agents scores Xt follow the updating Eqn. (1.2).

Under assumption D.1, we have that Pt ! Fx
� almost surely when t!1, where

Fx
� = {x 2 �N

K | x = D�1Af�(x)}.
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1.3 Convergence analysis and proof of theorem 1

We provide in this section a rigorous proof of theorem 1, which dictates the convergence of
the agents normalized scores Pt defined in section 1.2. The proof relies on the description of the
evolution of the normalized scores Pt as a stochastic approximation algorithm [23, 185], which allows
the use of the so-called ODE method (see for example [41]) to ensure the desired convergence result.

1.3.1 Tools necessary for convergence

In order to fully understand the concepts used during the proof of theorem 1, we provide a quick
introduction on stochastic approximation algorithms, the ODE method and Lyapunov functions.
The interested reader is directed to [23, 185] for detailed tutorials.

1.3.1.1 Stochastic approximation algorithms

We say that the sequence of random matrices1 (St)t2N 2MN⇥K(R) is a stochastic approxima-
tion algorithm if St satisfies the following recursive equation

St+1 = St + ⇢t+1

✓
g(St) +Mt+1 + rt+1

◆
, (1.4)

where

• the step size ⇢t 2 R+ satisfies ⇢t ! 0 and
P

t ⇢t =1,

• g : MN⇥K(R)!MN⇥K(R) is a continuous function,

• Mt+1 2MN⇥K(R) is a martingale difference, i.e., E[Mt+1|�(Ss,Ms, rs, s  t)] = 0, and

• the remainder term rt+1 2MN⇥K(R) satisfies rt+1 ! 0 almost surely.

Stochastic approximation algorithms can be seen as the random counterpart of the Euler dis-
cretisation of the ordinary differential equation (ODE)

ṡ = g(s), s0 2MN⇥K(R), (1.5)

and under mild assumptions possess the same asymptotic behavior as the semiflow induced by it
(see [23, 185]), as discussed next.

Let us define by S : R+ !MN⇥K(R) the continuous time affine interpolation of St, such that
⌧0 = 0, ⌧t =

Pt
i=1 ⇢i and

S(⌧t + s) = St + s
St+1 � St

⌧t+1 � ⌧t
(1.6)

for all t 2 N and 0  s < ⇢t+1, and let �g
: R+⇥MN⇥K(R)!MN⇥K(R) be the semiflow induced

by ODE (1.5).
When the function g is bounded and Lipschitz continuous (or the stochastic approximation algo-

rithm is bounded almost surely), the noise in the stochastic approximation algorithm has bounded
variance, and both the step size and remainder term decrease sufficiently fast, we have that the
process S shadows in every interval [t, T + t] the semiflow �

g originated in S(t), when t is large
enough. This is due to the next lemma, consequence of propositions 4.1 and 4.2 of [23]:

1. We use for simplicity random matrices, but the reader may see [23] for a more general definition using metric
spaces.
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Lemma 1. Let St be the stochastic approximation algorithm defined by Eqn. (1.4) and S its con-
tinuous time affine interpolation.

If g is bounded and Lipschitz continuous (or if supt ||St|| <1 almost surely), supt E[||Mt+1||2] <
1,

P
t �

2
t <1 and

P
t ⇢t||rt|| <1 almost surely, we have that

lim

t!1 sup

0hT
||S(t+ h)� �g

(h, S(t))|| = 0 (1.7)

for any T > 0, where �g is the semiflow induced by the limit ODE (1.5).

Definition 1. We say that the continuous time affine interpolation S is an Asymptotic Pseudotrajectory
(APT) of the semiflow �g induced by ODE (1.5) (see [23]) if it satisfies Eqn. (1.7) for the semiflow
�

g.

1.3.1.2 The ODE method

After introducing the concepts of stochastic approximation algorithms and asymptotic pseudo-
trajectories of semiflows, we are ready to discuss the ODE method, which is one of the basic tools
used to proving convergence of stochastic approximation algorithms.

The ODE method works as follows:

1. First, one retrieves the limit ODE (1.5) from the stochastic approximation algorithm St given
by Eqn. (1.4).

2. Second, one proves that S, the continuous time affine interpolation (1.6), is an asymptotic
pseudotrajectory of �g, the semiflow associated with ODE (1.5), i.e., S satisfies Eqn. (1.7).

3. Finally, one proves that �g converges towards some limit set, which in turn implies the con-
vergence of the stochastic approximation algorithm St towards the same limit set under mild
assumptions.

1.3.1.3 Lyapunov functions

A crucial step of the ODE method consists in proving that the semiflow �g induced by the limit
ODE (1.5) converges to a limit set, which can be achieved for example through the construction of
a Lyapunov function (see [23] for instance).

Definition 2. Let ⇤ ⇢ MN⇥K(R) be a compact invariant set of the semiflow �

g induced by the
limit ODE (1.5). We say that a continuous function V : MN⇥K(R) ! R is a Lyapunov function
for ⇤ if

• The function t! V (�

g
(t, x)) is strictly decreasing if x 2MN⇥K(R) \ ⇤.

• The function t! V (�

g
(t, x)) is constant if x 2 ⇤.

1.3.2 Sketch of proof

We start the proof of theorem 1 by providing some insights, all arguments are made rigorous in
the remainder of the section.

The proof is performed in several steps, following the ODE method of subsubsection 1.3.1.2:
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(i) We study the evolution of normalized scores Pt = D(Xt)
�1Xt under the updates (1.2). We

show that the normalized scores Pt can be represented as a stochastic approximation algorithm
[23, 185] and that they admit a stochastic approximation algorithm decomposition (Yt,Wt)

that satisfies Pt = D�1AYt +Wt and where its continuous time affine interpolation (Y ,W ) is
an Asymptotic PseudoTrajectory of the semiflow � associated with the limit ODE

⇢
ẏ = f�(D

�1Ay + w)� y
ẇ = �w. (1.8)

(ii) We study the limit behavior of the semiflow induced by ODE (1.8), from which the proof of
theorem 1 is a direct consequence of proposition 6.4 in [23]. To do so, we proceed as follows:

(ii-a) We derive a Lyapunov function V� for the semiflow �, following the ideas in [150], which
in turn implies the convergence of � to the set (Fy

� , 0), where Fy
� = {y 2 �N

K | y =

f�(D
�1Ay)}, and the almost sure convergence of (Yt,Wt) to the set (Fy

� , 0).

(ii-b) Due to the almost sure convergence of (Yt,Wt) to (Fy
� , 0), we retrieve the almost sure

convergence of Pt = D�1AYt +Wt to the set D�1AFy
� , which we show is in fact equal

to the set Fx
� = {x 2 �N

K | x = D�1Af�(x)}.

1.3.3 The opinion dynamics algorithm as a stochastic approximation algorithm

As previously mentioned, theorem 1 provides the limit behavior of normalized scores Pt under
the updates given by Eqn. (1.2), which can be written in matrix form as Eqn. (1.3).

We begin the proof of theorem 1, following the steps of the ODE method detailed in subsubsec-
tion 1.3.1.2, with a lemma describing Pt as a stochastic approximation algorithm.

Lemma 2. We have that the normalized scores Pt satisfy the following stochastic approximation
algorithm for t 2 N

Pt+1 = Pt +
1

t+ 1

✓
D�1Af�(Pt)� Pt + ⇣t+1 + ⌘t+1

◆
, (1.9)

where ⇣t+1 is a bounded martingale difference, i.e., E[⇣t+1|Gt] = 0, and ⌘t+1 is a bounded random
matrix satisfying

P
t

1
t+1 ||⌘t+1|| <1.

Proof. By the definition of the normalized score matrix Pt, one has that Eqn. (1.3) can be written
as

D(Xt+1)Pt+1 = D(Xt)Pt +AIt+1,

where Pt is the N ⇥K matrix with agents normalized scores P i,k
t at time t and It+1 is a random

matrix accounting for the updating of the algorithm.
The matrix It+1 has entries Ii,k

t+1 = I{Iit+1=k} and we clearly have by Eqn. (1.1) that E[Ii,k
t+1|Gt] =

P(I it+1 = k|Gt) = f i,k
� (Pt), i.e.,

E[It+1|Gt] = f�(Pt),

hence ⇣t+1 = AIt+1 �Af�(Pt) satisfies E[⇣t+1|Gt] = 0, i.e., ⇣t+1 is a martingale difference.
Eqn. (1.3) resolves to

D(Xt+1)Pt+1 = D(Xt)Pt +AIt+1 = D(Xt)Pt + ⇣t+1 +Af�(Pt),
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which implies by subtracting D(Xt+1)Pt from both sides

D(Xt+1)(Pt+1 � Pt) = (D(Xt)�D(Xt+1))Pt +Af�(Pt) + ⇣t+1.

We have for every i 2 V

D(Xt+1)ii = (Xt+11)i = (Xt1 +AIt+11)i = (Xt1)i + (A1)i = D(Xt)ii +Dii,

which implies that

Pt+1 = Pt +D(Xt+1)
�1

✓
�DPt +Af�(Pt) + ⇣t+1

◆

= Pt +
1

t+ 1

✓
D�1Af�(Pt)� Pt + ⇣t+1 + ⌘t+1

◆
,

where ⇣t+1 = D�1⇣t+1 is a bounded martingale difference and the remainder term

⌘t+1 =

✓
(t+ 1)D(Xt+1)

�1 �D�1

◆
(Af�(Pt)�DPt + ⇣t+1)

satisfies, for constants L,L0 > 0,

X

t

1

t+ 1

||⌘t+1||  L
X

t

1

t+ 1

||(D +

D(X0)

t+ 1

)

�1 �D�1||  L0X

t

1

(t+ 1)

2
<1

because D(Xt) = tD +D(X0), and f� and ⇣t+1 are bounded.

1.3.4 Decomposition of preferences

After deriving a stochastic approximation algorithm for the evolution of preferences Pt, we
continue the ODE method by proving that the semiflow induced by its limit ODE converges, however
the limit ODE of the stochastic approximation algorithm satisfied by the agents preferences Pt does
not have any special structure that allows us to prove its convergence. Nevertheless, by decomposing
Pt into two parts Yt and Wt, we are able to derive a new stochastic approximation algorithm
possessing a structure allowing us to prove its convergence.

We start thus the convergence analysis of the preferences Pt by decomposing Eqn. (1.9) into
a new stochastic approximation algorithm (Yt,Wt) composed of two parts Yt and Wt; we are able
to prove that the part Wt converges to zero almost surely, whereas one has that the part Yt bares
resemblance to the stochastic fictitious play studied in [150]. This step is extremely important since
it allows the eventual derivation of a Lyapunov function V� for the semiflow induced by the limit
ODE associated with the couple (Yt,Wt).

We begin the decomposition with two auxiliary lemmas:

Lemma 3. We have that
sup

x2MN⇥K(R)
max

(i,k),(j,c)
|@(j,c)f i,k

� (x)|  �,

which implies that f� : MN⇥K(R)! �

N
K has bounded derivative and is Lipschitz continuous.
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Proof. The conclusion easily follows from the calculation of the derivatives of f�

@(j,c)f
i,k
� (x) =

8
>><

>>:

0 if j 6= i

�

✓
f i,k
� (x)� (f i,k

� (x))2
◆

if j = i, c = k

��f i,k
� (x)f i,c

� (x) if j = i, c 6= k,

and the fact that 0  f i,k
� (x)  1 for all (i, k).

Lemma 4. Define B2
p
N = {x 2MN⇥K(R) | ||x||  2

p
N}. There exists a 0 < �  1

K such that

inf

(z,w)2�N
K⇥B2

p
N

min

(i,k)
f i,k
� (D�1Az + w) � �.

Proof. The result easily stems from the fact that f i,k
� (11

T /K) =

1
K , the compactness of the set

{D�1Az+w | (z, w) 2 �N
K⇥B2

p
N} ⇢MN⇥K(R) and the continuity of f� , since f i,k

� (D�1Az+w) >

0 for all (z, w) 2 �N
K ⇥B2

p
N .

Now, we state the main decomposition lemma:

Lemma 5. Let Pt be the stochastic approximation algorithm (1.9). Define by (Yt,Wt) the following
stochastic approximation algorithm

8
>><

>>:

Yt+1 = Yt +
1

t+1

✓
f�(D

�1AYt +Wt)� Yt

◆

Wt+1 = Wt +
1

t+1

✓
�Wt + ⇣t+1 + ⌘t+1

◆
,

(1.10)

with Y0 =
11T

K , W0 = P0 � 11T

K , and where ⇣t+1 and ⌘t+1 are defined in lemma 2.
We have that

(i) Pt = D�1AYt +Wt for all t 2 N.

(ii) Let � > 0 be the constant defined in lemma 4. Then Yt 2 {y 2 �N
K | yi,k � �}, 8(i, k)} for all

t 2 N and supt ||Wt||  2

p
N .

(iii) The continuous time affine interpolation (Y ,W ) : R+ !MN⇥K(R)⇥MN⇥K(R) of (Yt,Wt)

is an Asymptotic Pseudotrajectory of � : R ⇥
✓
MN⇥K(R) ⇥MN⇥K(R)

◆
! MN⇥K(R) ⇥

MN⇥K(R), the semiflow induced by the following ODE
⇢

ẏ = f�(D
�1Ay + w)� y

ẇ = �w. (1.11)

Proof. (i) Let us define Qt = D�1AYt + Wt. We must prove that Qt = Pt, which we do by
induction in t. The result is clearly true for t = 0 since D�1A11T

K =

11T

K implies

P0 =
11

T

K
+ (P0 �

11

T

K
) = D�1AY0 +W0 = Q0.
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Let us assume the result is true for t, i.e., Pt = Qt. Thus

Qt+1 = D�1AYt+1 +Wt+1

= D�1AYt +Wt +
1

t+ 1

✓
D�1Af�(D

�1AYt +Wt)�D�1AYt �Wt + ⇣t+1 + ⌘t+1

◆

= Pt +
1

t+ 1

✓
D�1Af�(Pt)� Pt + ⇣t+1 + ⌘t+1

◆

= Pt+1

since Pt satisfies Eqn. (1.9), which proves item (i).

(ii) First of all, we prove by induction in t that Y i,k
t � � for all t 2 N: the base case Y i,k

0 =

1
K � �

stems from the definition of � in lemma 4. Suppose that Y i,k
t � �, then, since Pt 2 �N

K by
construction and f i,k

� (Pt) � � for all Pt by lemma 4, we have that

Y i,k
t+1 = Y i,k

t +

1

t+ 1

✓
f i,k
� (D�1AYt +Wt)� Y i,k

t

◆
= Y i,k

t (1� 1

t+ 1

) +

1

t+ 1

f i,k
� (Pt)

� Y i,k
t (1� 1

t+ 1

) +

�

(t+ 1)

� �,

which completes the induction.
Let us now prove by induction in t that Yt1 = 1 for all t � 0: we have that Y01 = 1, which is
the base case. Let us assume now that Yt1 = 1, then

Yt+11 = Yt1 +
1

t+ 1

✓
f�(D

�1AYt +Wt)� Yt

◆
1 = Yt1 = 1,

since f�(z) 2 �N
K for all z 2MN⇥K(R), which completes the induction.

Since Wt = Pt �D�1AYt by item (i), Pt 2 �N
K for all t 2 N by construction, we just proved

that Yt 2 �N
K for all t 2 N and �N

K is invariant by D�1A, the fact that supz2�N
K
||z|| 

p
N

concludes item (ii).

(iii) First of all, we have that the semiflow � : R ⇥
✓
MN⇥K(R) ⇥MN⇥K(R)

◆
!MN⇥K(R) ⇥

MN⇥K(R) is globally defined and possesses unique trajectories since f� is smooth and Lipschitz
continuous by lemma 3.
In view of Eqn. (1.10), since supt2N(||Yt|| + ||Wt||) < 1 by item (ii), f� is bounded and
Lipschitz continuous,

P
t

1
(t+1)2 < 1, ⇣t+1 is a bounded martingale and

P
t

1
t+1 ||⌘t+1|| < 1,

the proof follows from lemma 1.

1.3.5 Lyapunov function for the limit ODE (1.11)

We now proceed to proving that the semiflow � induced by the limit ODE (1.11) converges.
This is achieved by the construction of a Lyapunov function V� for the invariant set (Fy

� , 0) 2
�

N
K ⇥MN⇥K(R), where Fy

� = {y 2 �N
K | y = f�(D

�1Ay)}.
The Lyapunov function is composed of two parts, each one related to a term of the decomposition

(Yt,Wt) defined in lemma 5. The part related to Yt is exactly the Lyapunov function constructed
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in [150] for potential games in stochastic fictitious play, and the part related to Wt is proportional
to the norm of the autonomous part of ODE (1.11), with the proportionality constant taking into
consideration the derivative of the entropy function H� .

However, since the norm of the derivative of H� goes to 1 at the boundary @�N
K = {y 2

�

N
K | 9(i, k) such that yi,k = 0}, we must restrict the semiflow � induced by the limit ODE (1.11)

to an invariant compact subset K of ˚�N
K such that Yt 2 K for all t 2 N.

We begin the construction of the Lyapunov function with some auxiliary lemmas:

Lemma 6. We have that ˚

�

N
K = {x 2 MN⇥K(R) | x1 = 1 and xi,k > 0, 8(i, k)} is a smooth

manifold of dimension N ⇥ (K � 1) without boundary.
Moreover, the tangent space at x 2 ˚

�

N
K is given by

Tx
˚

�

N
K = {� 2MN⇥K(R) | �1 = 0}.

Proof. The result stems from the fact that ˚

�

N
K is an open subset, for the induced topology, of

the affine subspace S = {m 2 MN⇥K(R) | m1 = 1}, with associated vector space V = {� 2
MN⇥K(R) | �1 = 0}.

Lemma 7. Let (yt, wt) be the solution of ODE (1.11) with y0 2 ˚

�

N
K , given by lemma 5. There exists

a nonempty maximal interval J = [0, t⇤) such that yt 2 ˚

�

N
K = {x 2MN⇥K(R) | x1 = 1 and xi,k >

0, 8(i, k)} for all t 2 J .

Proof. Define t⇤ = sup{s � 0 | ys 2 ˚

�

N
K and @u 2 [0, s] such that yu /2 ˚

�

N
K} as the supremum of

the times for which yt remains in ˚

�

N
K before it exits for the first time.

We have for (y, w) 2 ˚

�

N
K ⇥MN⇥K(R) that

✓
f�(D

�1Ay + w)� y

◆
1 = f�(D

�1Ay + w)1� y1 = 1� 1 = 0

since f : �

N
K ! �

N
K , which implies that for yt 2 ˚

�

N
K we have ẏt = f�(D

�1Ayt + wt)� yt 2 Tyt
˚

�

N
K

by lemma 6.
Since y0 2 ˚

�

N
K , ˚

�

N
K is a smooth manifold by lemma 6, f� is smooth and ẏt 2 Tyt

˚

�

N
K for

yt 2 ˚

�

N
K , we have by standard theory of ODEs in manifolds that yt 2 ˚

�

N
K for all 0  t < t⇤, and

that t⇤ > 0.

Lemma 8. We have that for every y 2 Fy
� there exists a vector c(y) 2 RN such that

ryV�(y, w) = c(y)1T , (1.12)

where the Lyapunov function V� is defined in lemma 10.

Proof. This lemma is simply a particular case of lemma A.1 in [150]. However we provide a proof
for the sake of completeness. We easily have that

@yi,kV�(y, w) = �
1

2

✓X

j

Aijy
j,k

+

X

j

Ajiy
j,k

◆
+

Dii

�
log(yi,k) +

Dii

�

=

Dii

�

✓
log(yi,k)� �(D�1Ay)i,k + 1

◆

by the symmetry of the adjacency matrix A.
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Since y 2 Fy
� , we have that

log(yi,k) = �(D�1Ay)i,k � log(

X

k0
e�(D

�1Ay)i,k0
),

which implies that

@yi,kV�(y, w) =
Dii

�

✓
1� log(

X

k0
e�(D

�1Ay)i,k0
)

◆
= ci(y)

and concludes the proof.

Lemma 9. Let ( ˆF i
)i2V be the auxiliary functions defined in lemma 10. We have for every y 2 �N

K

that for all i 2 V
hf i

(D�1Ay)� yi, ˆF i
(y)i � 0.

Proof. This lemma is simply a particular case of lemma A.2 in [150]. However, we provide a proof
for the sake of completeness.

First of all, we have that rkH�(x) =
1
� (log x

k
+ 1), which implies that

rkH�(x)|x=f i
�(D

�1Ay) = (D�1Ay)i,k +
1

�
(1� log(

X

k0
e�(D

�1Ay)i,k0
))

= (D�1Ay)i,k + ai(y),

with ai(y) 2 R, which can be written in a more concise form

rH�(x)|x=f i
�(D

�1Ay) = (D�1Ay)i + ai(y)1.

Moreover, since y 2 �N
K and f�(D

�1Ay) 2 �N
K , we have that

hai(y)1, f i
�(D

�1Ay)� yii = ai(y)
�
1� 1

�
= 0.

Thus,

h ˆF i
(y), f i

(D�1Ay)� yii = h(D�1Ay)i �rH�(y
i
), f i

(D�1Ay)� yii
= hrH�(x)|x=f i

�(D
�1Ay) �rH�(y

i
), f i

(D�1Ay)� yii � hai(y)1, f i
(D�1Ay)� yii

= hrH�(x)|x=f i
�(D

�1Ay) �rH�(y
i
), f i

(D�1Ay)� yii � 0

since the entropy function H� is convex.

We now state the lemma constructing the Lyapunov function:

Lemma 10. Let � > 0 be the constant defined in lemma 4, K = {y 2 �N
K | yi,k � �

4 , 8(i, k)} ⇢ ˚

�

N
K ,

B2
p
N = {x 2 MN⇥K(R) | ||x||  2

p
N}, and define the functions ˆF : K ! MN⇥K(R) and

V : K ⇥B2
p
N ! R by

ˆF i
(y) =

X

j

D�1
ii Aijy

j �rH�(y
i
), 8i 2 V,

and
V�(y, w) = L||w||�

X

i

Dii

✓
1

2

X

j

D�1
ii Aijhyi, yji �H�(y

i
)

◆
,
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where
L = 2

�
sup

z2MN⇥K(R)
||rf�(z)||

�
.
�
sup

x2K

X

i

Dii|| ˆF i
(x)||

�
.

We have that

(i) the compact set K ⇥ B2
p
N is an invariant set of the semiflow � induced by the limit ODE

(1.11).

(ii) (Fy
� , 0) ⇢ K ⇥B2

p
N and (Y (t),W (t)) 2 K ⇥B2

p
N for all t 2 R+.

(iii) V� is a Lyapunov function for the set (Fy
� , 0) with respect to �|K⇥B2

p
N
, the semiflow induced

by the limit ODE (1.11) and restricted to K ⇥B2
p
N .

(iv) V�(Fy
� , 0) =

S
z2Fy

�
V�(z, 0) has empty interior.

Proof. (i) Let (yt, wt) be the unique solution of ODE (1.11) such that (y0, w0) 2 K⇥B2
p
N , i.e.,

(yt, wt) = �(t, (y0, w0)).
First of all, since ẇ = �w, we trivially have that the function ||wt||2 satisfies d

dt ||wt||2 =

�2||wt||2  0, which implies that wt 2 B2
p
N for all t � 0.

Take now w0 2 B2
p
N and y0 2 @K = {z 2 �N

K | 9(i, k) such that zi,k =

�
4} and let (ik, kn) be

indices such that yin,kn0 =

�
4 and that yi,k0 > �

4 for all (i, k) /2
S

n(in, kn).
Define now, for ✏ > 0, the set B✏(y0, w0) = {(y, w) 2 �N

K ⇥B2
p
N | ||y� y0||+ ||w�w0||  ✏}.

We clearly have that there exists a ✏ > 0 such that maxn y
in,kn  �

2 for all (y, w) 2 B✏(y0, w0).
Furthermore, we also have by lemma 4 that min(i,k) f

i,k
� (D�1Ay + w) � �.

Moreover, by the continuity of yt and by lemma 7, there exists a nonempty interval [0, t⇤)
such that (yt, wt) 2 B✏(y0, w0) and min(i,k)/2Sn(in,kn)

yi,kt > �
4 for all t 2 [0, t⇤).

In addition, for every t 2 (0, t⇤), the mean value theorem gives us

yt = y0 +

Z t

0
ẏudu = y0 +

Z t

0
(f�(D

�1Ayu + wu)� yu)du.

Now, since yin,knu  �
2 and f in,kn

� (D�1Ayu + wu) � � for all u 2 [0, t], we have that

yin,knt = yin,kn0 +

Z t

0

✓
f in,kn
� (D�1Ayu + wu)� yin,knu

◆
du � yin,kn0 + t

�

2

> yin,kn0 =

�

4

and by consequence yt 2 K \ @K for all t 2 (0, t⇤). Since yt can only exit the set K through
an element of @K = {y 2 �N

K | 9(i, k) such that yi,k =

�
4 , 8(i, k)}, we have the result for

y0 2 @K, which also implies the result for y0 2 K and concludes the proof of item (i).

(ii) Take y 2 Fy
� . Then by lemma 4 we have that yi,k = f i,k

� (D�1Ay) � � > �
4 , which proves that

Fy
� ⇢ K. Hence item (ii) of lemma 5 and the convexity of K ⇥ B2

p
N conclude the proof of

item (ii).

(iii) One simply must prove that the function t ! V�(yt, wt) is strictly decreasing for (y0, w0) /2
(Fy

� , 0), since (Fy
� , 0) is the equilibrium set of ODE (1.11), which clearly implies that V�(yt, wt) =

V�(y0, w0) if (y0, w0) 2 (Fy
� , 0).
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First of all, since K⇥B2
p
N is invariant for the semiflow � by item (i) and supx2K maxi ||rH�(x

i
)|| <

1, the function t 7! V�(yt, wt) is well defined for all t � 0 when (y0, w0) 2 K ⇥ B2
p
N .

Moreover, we have that w0 6= 0 implies wt = w0e
�t 6= 0 for all t � 0, thus t 7! V�(yt, wt) is

smooth in t when w0 6= 0.
Using the symmetry of the adjacency matrix A we have that @yiV�(y, w) = �Dii

ˆF i
(y), thus

following the proof of theorem 3.2 in [150], we have

d

dt
V�(yt, wt) = Lh wt

||wt||
, ẇti+

X

i

h@yiV�(yt, wt), ẏ
ii = �L||wt||�

X

i

Diih ˆF i
(yt), ẏ

ii

= �L||wt||�
X

i

Diih ˆF i
(yt), f

i
�(D

�1Ayt)� yit + �iti,

where �t = f�(D
�1Ayt + wt)� f�(D

�1Ayt).
Since ||�t||  supz2MN⇥K(R) ||rf�(z)||.||wt|| and yt 2 K by item (i), we have by the Cauchy-
Schwarz inequality that

X

i

Dii|h ˆF i
(yt), �

i
ti| 

X

i

Dii|| ˆF i
(yt)||.||�it || 

L

2

||wt||,

which implies

d

dt
V�(yt, wt) = �

X

i

Diih ˆF i
(yt), �

i
ti �

X

i

Diih ˆF i
(yt), f

i
�(D

�1Ayt)� yiti � L||wt||

 �
X

i

Diih ˆF i
(yt), f

i
�(D

�1Ayt)� yiti �
L

2

||wt||

< �
X

i

Diih ˆF i
(yt), f

i
�(D

�1Ayt)� yiti.

By lemma 9, we have for all i 2 V that

h ˆF i
(yt), f

i
�(D

�1Ayt)� yiti � 0,

which, together with the fact that (Fy
� , 0) ⇢ K ⇥ B2

p
N by item (ii), conclude the proof of

item (iii).

(iv) First of all, one clearly has that Fy
� ⇢ ˚

�

N
K by item (ii). Define the smooth function ˜V :

˚

�

N
K !

R+ as
˜V (y) = V�(y, 0).

Also, one has that the vector space MN⇥K(R) can be decomposed into MN⇥K(R) = V � T ,
where V = {� 2 MN⇥K(R) | �1 = 0}, T = {c1T | c 2 RN}, V = T ? and V \ T = {0}.
Indeed, one has that for every � 2 V and c 2 RN

h�, c1T i = h�1, ci = 0,

and in addition

dim(V) + dim(T ) = N(K � 1) +N = NK = dim(MN⇥K(R)).
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Now, we have by lemma 8 that for each y 2 Fy
� there exists a vector c(y) 2 RN such that

ryV�(y, 0) = c(y)1T 2 T . Moreover, since ˚

�

N
K is an open set of an affine space with V as the

associated vector space (see proof of lemma 6), we have that, since c(y)1T 2 T = V?,

r ˜V (y) = ProjV
✓
ryV�(y, 0)

◆
= ProjV

✓
c(y)1T

◆
= 0,

where ProjV : MN⇥K(R)! V is the orthogonal projection of MN⇥K(R) onto V .
Hence

Fy
� ⇢ {y 2 ˚

�

N
K | y is a critical point of ˜V }

and the conclusion follows by Sard’s lemma.

1.3.6 Proof of theorem 1

After proving in lemma 5 that the continuous time interpolation of (Yt,Wt) is an Asymptotic
Pseudotrajectory (APT) for the semiflow � generated by the limit ODE (1.11) (see definition 1),
and by constructing a Lyapunov function for the set (Fy

� , 0) in lemma 10, we are ready to provide
a rigorous proof of theorem 1 following the steps of the ODE method of subsubsection 1.3.1.2.

We first provide an auxiliary lemma regarding the sets Fx
� and Fy

� :

Lemma 11. Define the sets Fy
� = {y 2 �N

K | y = f�(D
�1Ay)} and Fx

� = {x 2 �N
K | x =

D�1Af�(x)}.
We have that D�1AFy

� = Fx
� , where D�1AFy

� =

S
y2Fy

�
D�1Ay.

Proof. Take y 2 Fy
� , then x = D�1Ay 2 �N

K satisfies

x = D�1Ay = D�1Af�(D
�1Ay) = D�1Af�(x),

hence x 2 Fx
� . This implies D�1AFy

� ⇢ Fx
� .

Take now x 2 Fx
� and define y = f�(x) 2 �N

K . Then x = D�1Af�(x) = D�1Ay and

y = f�(x) = f�(D
�1Ay),

hence y 2 Fy
� . This implies Fx

� ⇢ D�1AFy
� and concludes the proof.

Proof of theorem 1: Let � be semiflow induced by the limit ODE (1.11), (Y ,W ) be the continuous
time affine interpolation of (Yt,Wt), both defined in lemma 2 and satisfying Pt = D�1AYt +Wt for
all t � 0, and also let K ⇥B2

p
N be the invariant set for the semiflow �, defined by lemma 10.

First of all, since (Y ,W ) is an APT for � satisfying (Y (t),W (t)) 2 K⇥B2
p
N for all t 2 R+ by

lemmas 5 and 10, we have that the semiflow � can be restricted without loss of generality to the

set K ⇥B2
p
N , i.e., it can be defined as a function �|K⇥B2

p
N
: R+ ⇥

✓
K ⇥B2

p
N

◆
! K ⇥B2

p
N .

Moreover, since (Y ,W ) is an APT for �|K⇥B2
p

N
, the limit set L(Y,W ) =

T
t2R+

S
s�t(Y (s),W (s))

is internally chain transitive (see definition in [23]) by item (i) of theorem 5.7 in [23]. Finally, since
V� is a Lyapunov function for the compact and invariant set (Fy

� , 0) such that V (Fy
� , 0) has empty

interior by lemma 10, we have by proposition 6.4 of [23] that L(Y,W ) ⇢ (Fy
� , 0), which implies that

(Yt,Wt)! (Fy
� , 0) almost surely when t!1.
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The uniform continuity of D�1A provides the almost sure convergence of Pt = D�1AYt +Wt to
the set D�1AFy

� , which is equal to Fx
� by lemma 11. This concludes the proof.

⇤

1.4 Numerical examples

We perform in this section some numerical simulations of the proposed opinion dynamics al-
gorithm, with the sole purpose of illustrating our claims. We use in the simulations 5 different
undirected networks:

• The Zachary Karate Club (ZKC) network [314], with N = 34 people.

• The American College Football (ACF) teams in Division I during Fall 2000 regular season
[116], with N = 115 teams.

• The social network of frequent associations between N = 62 bottlenose dolphins (Dolphins)
over a period of seven years from 1994 to 2001 [214].

• An undirected randomly generated network following the Erdös Rényi model [96] (Erdös
Rényi), with N = 50 nodes and an edge probability p = 0.4, i.e., edges are randomly sampled
from independent Bernoulli random variables with parameter p.

• An undirected randomly generated network following the preferential attachment model of
Barabási and Albert [21] (Pref Attach) with N = 50 nodes and 5 edges per new node, i.e.,
each new node creates 5 new edges in the network.

We simulate our opinion dynamics algorithm with the 5 networks above, using at each time the
number of contents K equal to the number of nodes in the network, until a final time T = 3000

and with a softmax parameter2 � = 30. Figures 1.2 and 1.3 depict the results of the simulations
and provide a numerical validation of our main convergence result: theorem 1.

Figure 1.2 illustrates the convergence of the normalized scores Pt when t ! 1 by plotting the
evolution of their relative L2 error at each 50 steps, i.e., it plots the function rErr(t) = ||Pt+50�Pt||

||Pt|| .
The convergence of the function rErr(t) to 0, represented by Figure 1.2, provides a numerical
example of the almost sure convergence of the opinion dynamics algorithm (1.3), independently of
the underlying network.

Figure 1.3 illustrates the convergence of the normalized scores Pt to the set Fx
� = {x 2 �N

K | x =

D�1Af�(x)} by plotting the L2 error between the normalized scores Pt and the function D�1Af�
applied to the normalized scores, at each 50 steps, i.e., it plots the function fErr(t) = ||Pt �
D�1Af�(Pt)||. The convergence of the function fErr(t) to 0, represented by Figure 1.3, numerically
confirms that indeed the normalized scores, under the opinion dynamics algorithm (1.3), converge
almost surely to the set Fx

� = {x 2 �N
K | x = D�1Af�(x)} when t ! 1, independently of the

underlying network.

1.5 Conclusion

We introduced a new opinion dynamics model which incorporates opinions about multiple con-
tents and random broadcasts of information. The agents appreciation for each content is contained

2. We do not provide simulations with different softmax parameter values, since the main convergence theorem 1
remains valid for every softmax parameter value.
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Figure 1.2: Plot of rErr(t) = ||Pt+50�Pt||
||Pt|| , the relative L2 error of the normalized scores at each 50

steps, for each of the 5 networks: ZKC, ACF, DOLPHINS, ERDOS RENYI, PREF ATTACH.

0 10 20 30 40 50 60
0

1

2

3

4

5
L2 error compared to fixed point

Nb Steps / 50

|P
t−

 D
−1

A
f β

(P
t)|

 

 

ZKC
ACF
DOLPHINS
ERDOS RENYI
PREF ATTACH

Figure 1.3: Plot of fErr(t) = ||Pt � D�1Af�(Pt)||, the L2 error between the normalized scores
and the function D�1Af� , at each 50 steps, for each of the 5 networks: ZKC, ACF, DOLPHINS,
ERDOS RENYI, PREF ATTACH.

in an absolute score, and at each time step agents broadcast to their neighbors an opinion about
a random content, which is chosen based on a softmax function of their relative scores. After this
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broadcasting period, each agent interprets the received information and updates her scores in an
additive fashion by weighting this new piece of information with her neighbors’ influences over
herself.

We showed that, when agents cannot influence themselves and influence each other equally,
i.e., the network graph is undirected and without self-loops, there exists a Lyapunov function that
provides the almost sure convergence of the opinion dynamics algorithm.

When � ⌧ 1, the algorithm converges to a consensus on the uniform distribution over the
contents, and when � � 1, numerical simulations show that the algorithm converges to a point
that represents a division of the network in clusters where agents inside each cluster only broadcast
contents they appreciate the most.

Moreover, our main convergence theorem provides the convergence of agents’ normalized scores
for social networks with any number of agents, broadcasting information about any number of
contents. It implies that our model remains coherent when simulating the opinion dynamics of
agents using real-life social networks with millions of nodes.



CHAPTER 2

Community Detection

"Every person is defined by the communities she
belongs to."

— Orson Scott Card, Speaker for the Dead

2.1 Introduction

This chapter introduces a novel community detection algorithm that discovers the network
communities using the limit state of the opinion dynamics algorithm studied in chapter 1. The
algorithm relies on the same principle than random walk methods for community detection. A
random process takes place in the network, such that its limit state allows the discovery of the
network communities.

As such, our algorithm bears resemblance to community detection methods stemming from
statistical mechanics - such as the Potts-based clustering model of [29] - which are able to detect
the communities of the network using the local minima of a Hamiltonian function. Moreover,
our method relies on an underlying opinion dynamics algorithm where at each time step nodes
randomly sample from a softmax distribution; this exponential weighting of states from the softmax
distribution can be found for example in the Potts clustering algorithm [29], the zero-temperature
Hamiltonian system equivalent to the label-propagation model of Raghavan et al. [256], and many
other methods.

As discussed in chapter 1, the softmax parameter � impacts the random sampling of the opinion
dynamics algorithm: a small value of � corresponds to a uniform choice over the K contents, and
as � grows, the sampling becomes more biased towards contents with larger scores. In sight of
this dichotomy, our community detection algorithm uses a large value of � (e.g. � = 50, � = 100,
� = 250) for the random sampling step, which represents a large bias for contents with the highest
scores.

Through the mechanism of the underlying opinion dynamics algorithm, one may realize that
the proposed community detection algorithm resembles Von Dongen’s Markov Cluster Algorithm
(MCL) [293], which takes advantage of the transition probability matrix of a suitable random walker
in the network and consists on the iteration of two steps: a first step called expansion, in which
the transition matrix is raised to an integer power, and a second step called inflation, consisting in
raising each entry of the transition matrix to some real-valued power and renormalizing this new
matrix to be again a transition matrix of a random walk. The latter step enhances the weights
between pairs of nodes with large edge weights, which are likely to belong to the same community;
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after a few iterations, the process normally delivers a stable matrix, which can be associated with
communities of the original network.

The broadcasting step of the opinion dynamics algorithm, which is the foundation of our com-
munity detection algorithm, works in a similar fashion as the inflation step of MCL, increasing the
importance given to a content that already possesses a higher score. The communities are thus
created around these contents. The main difference between both algorithms is the way how the
expansion and inflation steps are performed: in our algorithm, the expansion step is achieved by a
multiplication of the network’s adjacency matrix, whereas MCL uses at each step a different tran-
sition matrix for the random walker; in the inflation step, our algorithm uses the softmax function
with parameter �, whereas MCL uses a renormalized power of the actual transition matrix.

Since the softmax function with a large � parameter - used during the broadcasting step of
the underlying opinion dynamics algorithm - takes into account only the contents with highest
scores, we perform the same reduction as the label propagation method [256] - which is a particular
instance of MCL: for each node, we only keep a small subset of active contents. As consequence,
the communities found by our method bears resemblance to those of the label propagation method,
described in [283].

Our method

i) can be mathematically proven to converge, contrary to heuristic state-of-the-art methods,

ii) describes the structure of the communities found,

iii) can be executed in a distributed fashion without difficulty,

iv) presents a manageable complexity,

v) discovers overlapping communities without an increase of complexity, and

vi) allows directed networks to be studied under the same practical framework, although it still
lacks a theoretical proof of convergence.

vii) Moreover, it can be performed in two ways: a parametric and a nonparametric one; the para-
metric way is faster and allows the choice of the maximum number of detected communities;
the nonparametric way does not cap the maximum number of discovered communities, thus
overcharging the underlying opinion dynamics algorithm, increasing its complexity; this choice
allows the proposed algorithm to behave as a multiscale community detection algorithm.

The rest of this chapter is organized as follows. Section 2.2 describes the community detection
algorithm and introduces our definition of communities. Section 2.3 discusses the fine-tuning of
the algorithm’s parameters, in order to achieve an optimal performance, and the complexity of
the algorithm in question. Section 2.4 performs some numerical tests and comparisons with other
community detection methods. And Section 2.5 concludes the chapter.

2.2 The community detection algorithm and definition of commu-
nities

2.2.1 Notations

We use the notations of chapter 1, as described in subsection 1.2.1. Moreover, we denote for the
matrix M its (i, k) entry as Mi,k or M i,k, the L1-norm |M |1 = maxi,k |Mik|, the spectral radius
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sp(M) = sup{|�| | det(M � �I) = 0}, and v : MN⇥K(R) ! RNK the vectorization operation of
matrices.

We define for any real numbers x and y, bxc as the floor of x, dxe as the ceiling of x, x ^ y =

min{x, y} as the minimum between x and y and x_ y = max{x, y} as the maximum between x and
y and we denote for every set A its cardinality as |A|.

For two positive real functions f, g, we also denote f(x) ⇠ O(g(x)) (or simply f ⇠ O(g)) if and
only if there exists two constants M,x0 � 0 such that f(x) Mg(x) for all x � x0.

2.2.2 The community detection algorithm

We now begin the main focus of this chapter, the derivation of our community detection algo-
rithm. As already mentioned, the foundation of our community detection algorithm is the opinion
dynamics model of chapter 1. The community detection algorithm has the following steps, which
are written in a more concise form in algorithm 1:

1 - Choose the parameters of the community detection algorithm:

1.1 - T : number of steps of the opinion dynamics algorithm.
1.2 - � � 1: softmax parameter for the random sampling under the distribution in Eqn. (1.1).
1.3 - K: number of contents of the opinion dynamics algorithm.
1.4 - X0: initial condition of the opinion dynamics algorithm.

2 - For each time step 0  t  T � 1:

2.1 - Create an auxiliary N ⇥K matrix Auxt+1 and initialize it to 0.
2.2 - Get the normalized score matrix Pt from the nodes score matrix Xt as

P i,k
t =

Xi,k
tP

k0 X
i,k0
t

.

2.3 - For each node i 2 {1, 2, · · · , N}:
2.3.1 - Sample the content to be broadcasted by node i at time t + 1, denoted by I it+1,

following the random law given by Eqn. (1.1), as

P(Iit+1 = k) = f i,k
� (Pt).

2.3.2 - Broadcast the content Iit+1 to the neighbors of node i, i.e., for each node j ⇠ i:
2.3.2.1 - Increment the entry (j, Ii

t+1) of the auxiliary matrix Auxt+1 with the weight of
the edge between nodes i and j, as

Aux
j,Iit+1
t+1 = Aux

j,Iit+1
t+1 +Aj,i.

2.4 - Update the nodes scores by adding the auxiliary matrix Auxt+1 to the ancient scores as

Xt+1 = Xt +Auxt+1.

3 - Retrieve the communities (ck)k2{1,2,··· ,K} of G from the final normalized scores PT as

ck = {i 2 V | P i,k
T � max

l
P i,l
T � �(�)}, (2.1)

where �(�)⌧ 1. As a rule of thumb, one may use �(�) = 1/
p
� or �(�) = 1/�.
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Algorithm 1 - Opinion Dynamics Clustering
1: Input: Graph G = (V,E)

2: Choose T the number of steps, the softmax parameter � � 1, the number of contents K and
the initial condition X0.

3: Create an auxiliary N ⇥K matrix Aux.
4: for each time step 0  t  T � 1 do
5: Initialize Aux 0.
6: Get normalized scores Pt following P i,k

t  Xi,k
tP

k0 X
i,k0
t

.

7: for each node i 2 {1, 2, · · · , N} do
8: Sample the content I it+1, following P(Iit+1 = k) = f i,k

� (Pt).
9: for each neighbor node j ⇠ i do

10: Increment entry (j, I it+1) of auxiliary matrix Aux as

Auxj,I
i
t+1  Auxj,I

i
t+1

+Aj,i.

11: end for
12: end for
13: Update nodes scores following

Xt+1  Xt +Aux

14: end for
15: Retrieve the communities C = (ck)kK following Eqn. (2.1) as

ck = {i 2 V | P i,k
T � max

l
P i,l
T � �(�)}.

16: Output: Communities C = (ck)kK .
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2.2.3 Definition of communities

Let us assume, for simplicity, that nodes inside a community have only one preferred content
(which is the same for every node in the community) and let us associate the communities with
the preferred content of nodes belonging to them, denoting a community by ck if the preferred
content is k 2 {1, 2, · · · ,K}. In sight of algorithm 1, when � � 1, we expect that outside ck, there
exists a smaller number of nodes that possess their highest scores relative to content k, and that
the nodes inside ck possess more edges inside ck than edges flowing outside ck, since otherwise they
would receive more information about a different content and they would possibly end up with a
higher score for this content when compared to content k. This motivates the following definition
of communities:

Let P(N) = 2

V be the power set of V = {1, 2, · · · , N} and C = (ck)k2{1,2,··· ,K} ⇢ P(N) be a set
of sets. We can define for each i 2 V the probabilities pi,k as

pi,k =

(
1

|{k0 | i2ck0}| if i 2 ck

0 if i /2 ck,
(2.2)

i.e., for each i 2 V we can define probabilities pi,k that are uniform on the sets ck that contain i.
These probabilities represent the sets of nodes: if a node i has pi,k > 0 it means that it belongs to
the community ck.

Definition 3. The graph G is divided in communities C = (ck)kK if

•
S

k ck = V .

• for each ck 6= ; we have the following: for every i 2 ck,
X

j2ck
Aijpj,k �

X

j2ck0
Aijpj,k0 , 8k0 6= k. (2.3)

In other words, a community ck is a subgroup of nodes of G such that for each node i in ck, the
weighted sum of the probabilities of the neighbors of i in ck is larger than or equal to the weighted
sum of the probabilities of the neighbors of i in any other community, compared in a pairwise
fashion. This definition is different from the usual definition of communities found in the literature
[255], but it also reproduces the intuition that there are clusters of nodes more connected within
themselves than with other clusters.

Remark: If for every node i 2 V , there exists only one nonzero entry for (pi,k)kK , then node i
belongs to a single community and condition (2.3) becomes: for every i 2 ck,

X

j2ck
Aij �

X

j2ck0
Aij , 8k0 6= k,

which is exactly the same property of the communities found by the label propagation method [256],
as explained in [283].

This definition of communities is intimately related to a certain set F1 ⇢ �N
K , as explained by

the next proposition:

Proposition 1. Let f1 : MN⇥K(R)! �

N
K be defined as

f i,k
1 (p) =

I{k2Mi(p)}
|Mi(p)|

, (2.4)
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with Mi(p) = {k | pi,k = maxk0 p
ik0} the set with the highest indices of pi = (pi,1, · · · , pi,K), i.e.,

the set with indices of maximum values for node i with respect to the matrix p, and define as well
the set

F1 = {x 2 �N
K | x = D�1Af1(x)}.

Let x 2 F1 and define the sets

cxk = {i 2 V | f i,k
1 (x) > 0}. (2.5)

Then Cx
= (cxk)kK is a division of G in communities.

Proof. Since
P

k f
i,k1 (x) = 1 for every i 2 V , we have that there exists at least one nonzero entry in

(f i,k1 (x))kK , and thus every node i belongs to some community. This trivially implies
S

k c
x
k = V .

We also have, by the definition of Cx, that f i,k1 (x) > 0, i 2 cxk, which implies

i 2 cxk , f ik
1(x) > 0, xi,k = max

l
xi,l , k 2Mi(x)

and

f i,k
1 (x) =

I{k2Mi(x)}
|{k0 | k0 2Mi(x)}|

=

I{i2cxk}
|{k0 | i 2 cxk0}|

= pi,k,

by the definition of pi,k in Eqn. (2.2).
Let i 2 cxk, then xi,k � xi,k

0 for all k0 6= k, and
X

j

Aijpj,k =

X

j

Aijf
j,k
1 (x) = Dii(D

�1Af1(x))i,k = Diix
i,k � Diix

i,k0
=

X

j

Aijpj,k0 , 8k0 6= k.

Since pj,k 6= 0, j 2 cxk, this shows that for each k and for all i 2 cxk we have
X

j2cxk
Aijpj,k �

X

j2cx
k0

Aijpj,k0 , 8k0 6= k

and Cx is indeed a division of G in communities.

Moreover, we also have the following lemma about the minimum size of a community:

Lemma 12. Let (ck)kK be a division of G in communities. If for every i 2 V we have that
Aii = 0, then |ck| � 2 for every nonempty community ck.

Proof. Let us assume without loss of generality that node 1 belongs to community c1 with |c1| = 1,
i.e., c1 = {1}, and let us prove the result by contradiction.

By assumption D.1(i), there exists a node i 2 V such that A1i > 0, which belongs to a community
cki 6= c1. Thus, by Eqn. (2.3) in the definition of communities, we have that (since A11 = 0)

0 =

X

j2c1
A1jpj,1 �

X

j2cki
A1jpj,ki � A1ipi,ki ,

which implies pi,ki = 0 since A1i > 0. This is a contradiction since i 2 cki , pi,ki > 0 by Eqn.
(2.2).
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2.2.4 Discussion

As already mentioned in chapter 1, the opinion dynamics algorithm (1.3) behaves quite differ-
ently when varying the softmax parameter �: if � ⌧ 1, nodes sample the content to be broadcasted
at each time step almost uniformly, whereas the broadcasting step with � � 1 is biased towards
the contents possessing the highest score.

As consequence, when � � 1, we expect that if a node i has a higher number of neighbors
that prefer the same content k, the limit normalized scores of node i should also bear a higher
value for content k, which implies that a limit point for Pt should somehow "cluster" the network
G in communities where nodes inside the same community have the highest scores over the same
contents. This is the main intuition behind the community detection algorithm 1.

Despite the simplicity of the community detection algorithm 1, there are two important points
that need to be discussed:

1. The numerical experiments performed in section 1.4 of chapter 1 suggest that the normalized
scores PT converge almost surely, when T !1, to an element of the limit set Fx

� (see figure
1.2). Moreover, Peter Tino already proved in [285, 286] that for the vectorial case (where
the adjacency matrix A is the identity matrix I and nodes do not affect each other), the set
Fx
� converges to the set F1 when � ! 1, in the sense that supx02Fx

�
d(x0,F1) ! 0 when

� !1, i.e., for every sequence x� 2 Fx
� we have that lim�!1 x� 2 F1 (since F1 is finite).

This item provides the motivation of why the community detection algorithm 1 discovers the
communities of G by using Eqn. (2.1): it relates a point in Fx

� to the discovered communities
of G, which, since Fx

� ⇠ F1 when � � 1, satisfy proposition 1.

2. The discovery of the network communities is performed by Eqn. (2.1), using the final nor-
malized scores PT provided by the underlying opinion dynamics algorithm (1.3). The choice
of retrieving the communities using this equation is by no means the only way of retrieving
the network communities. This choice is based on proposition 1, which describes the set F1
(which is close to the limit set Fx

� when � � 1) as a subset of the communities of G, following
definition 3.
Thus, the division of G = (V,E) into communities C = (ck)k2{1,2,··· ,K} is associated with
node probabilities (pi)i2V such that pi,k is the probability that node i belongs to community
ck (see Eqn. (2.2)), in such a way that each community has the same impact on node i if
node i belongs to more than one community. This association of probabilities p to nodes
given communities ck provides, by proposition 1, a theoretical guarantee that each discovered
community possesses "sufficient" mass, in the sense that for each discovery community ck, the
weighted sum of edges of nodes in ck - weighted by the nodes probabilities p in Eqn. (2.3) - is
greater than or equal to the weighted sum of edges flowing to another community ck0 , when
comparing ck against every other community ck0 6= ck in a pairwise fashion.
Again, this association of nodes probabilities p to communities C = (ck)k2{1,2,··· ,K}, as illus-
trated by Eqn. (2.2), is by no means unique and one could provide different associations.
For example, one could associate for each node i the probabilities P i

T = (P i,1
T , · · · , P i,K

T ) such
that for every content k giving rise to a community ck we have that P i,k

T is the probability
that node i belongs to the community ck. These probabilities are of course different from the
probabilities p defined by Eqn. (2.2), which can be retrieved from PT by means of Eqn. (2.1).
The retrieval of p (defined by Eqn. (2.2) and calculated from the discovered communities
using Eqn. (2.1)) from PT can be hence seen as a soft thresholding of PT in the sense that all
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nonzero probabilities PT that are not above some threshold (depending itself on the maximum
value of P i

T for each node i) are reduced to 0 in order to generate p.

That being said, one argument in favor of our choice of nodes probabilities p given communities
C, as illustrated by Eqn. (2.2), is the theoretical guarantee of proposition 1, which is no longer
true for probabilities different than p.

Remark: We discover the communities with Eqn. (2.1) in order to accommodate overlapping
communities, in which one node may belong to more than one community. However, if one is not
interested in overlapping communities, she can find the communities ck given by Eqn. (2.1) as

ck = {i 2 V | P i,k
T = max

l
P i,l
T }.

2.3 Choice of parameters and complexity

One of the strong points of the proposed opinion-dynamics-based community detection algorithm
is its simplicity. This community detection algorithm simply updates scores (which can be performed
in a distributed fashion) using Eqn. (1.2) and retrieves communities using the simple rule of Eqn.
(2.1). However, to reach maximum performance, one may need to tune the parameters of the
algorithm: the initial condition X0, the softmax parameter �, the number of steps T of the opinion
dynamics algorithm and the number K of different contents in the opinion dynamics algorithm.

This section focuses on how to choose the parameters and when to stop the opinion dynamics
algorithm (1.2) to retrieve the discovered communities, in order to decrease the complexity of the
procedure and increase the odds of finding nontrivial communities.

2.3.1 Initial condition and number of contents

One can clearly see that a division of G in communities can always be achieved by ck = V and
ck0 = ; for all k0 6= k, which is associated with an element x 2 F1 such that xi,l = I{l=k} for some
fixed k 2 {1, · · · ,K}. These communities are trivial ones, and one must make sure that our opinion
dynamics algorithm does not converge to one of them when t ! 1. Since we do not have control
of the limit point of the opinion dynamics algorithm, a suitable initial condition must be chosen in
order to assure the convergence to nontrivial communities.

We denote by A / B if matrix A is proportional to matrix B, i.e., A = �B with � > 0. A "good"
generic initial condition X0 that has been numerically tested that converges to a nontrivial division
of the graph is X0 / A, with K = N , i.e., the number of contents equals the number of nodes in
V . This is a very logical choice: since we have no information on the number of communities that
our algorithm will find, we take K as big as possible to accommodate every possibility, hence we
choose K = N .

The choice X0 / A gives P0 = D�1A and highlights a similarity with the label propagation
algorithm [256]: when K = N , each content can be associated with a community and we can
say that, at first, each node i belongs to its own community, labeled with an abuse of notation i.
Thus, at the first iteration, nodes choose one content to broadcast randomly to their neighbors,
using the softmax function; when the graph G is unweighted, i.e., Aij 2 {0, 1}, this choice is
made uniformly. At each iteration, nodes start to change communities, being influenced by their
neighbors’ broadcasts. At the end, nodes belong to the communities corresponding to the content
they received the most. When communities do not overlap, we retrieve thus the result of [283].
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This choice of initial condition gives systematically a nontrivial division of communities - a fact
sustained by an extensive number of simulations. This happens because, at first, nodes broadcast
only information about contents that represent their neighbors (recall that P i,k

0 =

Aik
Dii

), thus they
will continue broadcasting contents relative to their neighbors (which are associated with a com-
munity since K = N), and the system converges to a configuration where the normalized scores
concentrate on the neighbors possessing the highest degree. Hence, these high-degree nodes trans-
mit their communities to their neighbors, which in their turn transmit to their own neighbors, and
gradually cluster the network, as desired.

On the other hand, one may want to cap the maximum number of communities to be found,
let us say, to K < N . This limitation on the number of communities may stem from two main
reasons: first, the complexity of the algorithm increases with K, since at each iteration we need
to sample N random variables from a K-dimensional vector. Second, one may want to retrieve
a smaller number of communities with a larger number of nodes inside each community, thus the
capping of the maximum number of communities forces the nodes to redistribute themselves among a
smaller number of communities and increase their sizes (this phenomenon is represents the multiscale
character of community detection, which is studied at length in [103, 287]).

We can retrieve a capped similar initial condition as follows: enumerate the nodes from 1 to N
and divide them into K blocks of size dN/Ke (note that the last block will have a size smaller than
or equal to bN/Kc). Then we define, for k 2 {1, 2, · · · ,K}, the initial condition X0 as

X i,k
0 /

(k⇥dN/Ke)^NX

j=(k�1)⇥dN/Ke+1

Aij .

Hence Xi,k
0 represents the proportion of neighbors of node i in block k, for k 2 {1, 2, · · · ,K}. The

case K = N happens when we have only one node per block.
Remark: Using lemma 12 we can choose K  dN/2e and X0 accordingly, since every community

must have at least two nodes when the network is without self loops.
Remark: If one can estimate in advance the maximum number of communities in G, then

applying the beforementionned choice of K and X0 drastically decreases the complexity of the
algorithm. Also, if one already knows some of the communities, she can bias the initial condition
in order to "direct" the opinion dynamics algorithm to converge faster to the desired communities.

2.3.2 Running time T and softmax parameter �

The choice of the number of steps T for the opinion dynamics algorithm to achieve convergence
is of utmost importance, since it is the major contributor for the complexity of the community
detection algorithm, as well as the softmax parameter �, since it is responsible for the approximation
of f1 (defined by Eqn. (2.4)) by f� when � � 1. Clearly, both parameters depend on the number
of nodes N , the number of contents K and on the structure of the graph G.

Theoretical bounds for the running time T using the convergence of the stochastic approximation
algorithm (1.9) could be obtained from laws of iterated logarithm [177] or central limit theorems
[248]. However, these bounds are not satisfactory for three main reasons: first, one needs to compute
the asymptotic covariance of the martingale differences ⇣t+1 in Eqn. (1.9), second, the results
stemming from laws of iterated logarithms and central limit theorems are asymptotic and do not
provide an analytic lower bound, and third, these generic bounds are most of the time conservative
and do not exploit the full structure of the model.
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For example, let us take PT ! P� 2 Fx
� almost surely when T !1. By the almost sure central

limit theorem 1 of [248] that, conditional to the event PT ! P� , we have

p
T (v(PT )� v(P�))

d! N (0,�),

where � is the NK⇥NK asymptotic covariance matrix taking into consideration the covariance of
v(⇣T+1) and the derivative of f� at the limit point P� .

Assuming that errors smaller than 1
N do not affect the communities found by our algorithm

(because these communities are associated with points P� ⇠ x 2 F1 when � is large enough), we
must control the probability that ||v(PT )� v(P�)|| is greater than 1

N . Since yT��1y � ||y||2
sp(�) for all

vectors y 2 RNK by the partial ordering on the symmetric positive-definite matrices, we have by
the almost sure central limit theorem that

P(||v(PT )� v(P�)|| �
1

N
) = P( T

sp(�)
||v(PT )� v(P�)||2 �

T

sp(�)N2
)

 P((v(PT )� v(P�))
T
(

�

T
)

�1
(v(PT )� v(P�)) �

T

sp(�)N2
)

= P(�2
NK �

T

sp(�)N2
),

where �2
NK is a Chi-Squared random variable with NK degrees of freedom. Since �2

NK�NKp
2NK

d!
N (0, 1) when NK !1, we have that for a 5% probability of ||v(PT )� v(P�)|| being greater than
1
N , we must have

T

sp(�)N2
2 [NK � 2

p
2NK,NK + 2

p
2NK]) T ⇠ O(N3Ksp(�)).

One has, at least intuitively, that sp(�) decreases when � % 1 because � takes into consid-
eration the quality of the approximation of f1 by the softmax function f� (or in other terms,
the convergence of the set Fx

� towards the set F1), which means that increasing � reduces the
asymptotic variance of �, and by consequence, the running time T .

Two important details must be discussed here:

• Although we have that increasing the softmax parameter � decreases the running time T for
the opinion dynamics algorithm, it has a lower bound by the central limit theorem, i.e., the
almost sure central limit theorem assures the convergence of

p
T (v(PT )� v(P�)) to a normal

distribution of covariance matrix � only when T !1, thus we cannot increase � indefinitely
and expect to reduce the running time T .

Thus, we still cannot provide a theoretical lower bound for the running time T , which presents
itself as quite challenging. With this lack of theoretical results, we used in our experiments in
section 2.4 bounds on T of the form

T ⇠ O(logN) or T ⇠ O(

p
N),

nevertheless a more detailed study should be conducted.

• On the other hand, if care is not taken in the choice of �, one may have very large values of
e�P

i,k
t that may be larger than the maximum boundaries for floating numbers in the computer
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(as an example, e100 ⇠ 2.6⇥ 10

43), which would provoke numerical errors when sampling the
random variables Ii

t+1 from the softmax function f� in Eqn. (1.1), invalidating the sampling
mechanism and as a result invalidating the community detection algorithm entirely.

Thus, the choice of � must lie in an optimal interval in order for the community detection
algorithm to achieve a good performance. However, finding this optimal interval for the
softmax parameter � is still a challenging task. We used for our simulations in section 2.4 a
softmax parameter � varying from 50, 100, 200, 250, which again needs a more detailed and
structured study.

2.3.3 Complexity of the community detection algorithm

We calculate now the complexity of our community detection algorithm. At each step t 2
{1, 2, · · · , T} of our opinion dynamics algorithm (1.2), each node i 2 V samples a content k 2
{1, 2, · · · ,K} to broadcast to his di =

P
j I{Aji>0} neighbors.

The sampling operation from the softmax function is of order O(K), and broadcasting it is of
order O(di). Hence, at the end of broadcasting at a single time step t, we have a complexity of

X

i

O
�
K + di

�
= O(|V |⇥K + |E|) = O(NK + |E|).

After storing every content to be updated from the broadcasting step t, we must update the
scores Xt+1. This operation is of order O(NK) since we are simply summing up two matrices of
size N ⇥K.

At the end of the T time steps of our opinion dynamics algorithm, we have the complexity

O(T ⇥ (NK + |E|)) from the broadcasting
O(T ⇥NK) from the updating,

which is of complexity
O(T ⇥ (NK + |E|)).

Finally, using proposition 1, we retrieve the communities using Eqn. (2.1). We must thus
calculate the maximum of N vectors with K coordinates, which is of complexity O(NK).

In summary, after the T broadcasting and updating steps and with the retrieval of communities,
our algorithm has total complexity

O
✓
T ⇥

�
NK + |E|

�
+NK

◆
= O

✓
T ⇥

�
NK + |E|

�◆
.

Remark: If one does not have enough memory to store the totality of the updates at each step,
one can update the scores individually at each broadcast, randomly choosing a node i to perform
the broadcast at each time step t.

Remark: One can also readily check that the complexity of the algorithm is much higher for the
nonparametric version, since in this case K = N or K = N/2 by lemma 12. For the parametric
version, one can choose a much lower value for K, which decreases significantly the complexity of
the algorithm.
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2.3.4 Speeding up the algorithm

There are several ways of speeding up this community detection algorithm, all of them based
on some heuristics. For example:

• Suppose that we have a total number of time steps TK for the opinion dynamics algorithm with
K contents. Starting our algorithm with X0 / A and running it until some time t1 ⌧ TK , we
can check whether some of the normalized scores (P i,k

t )i2V are close to 0 for certain contents k.
If it is indeed true, it means that these contents will always be close to 0 during the algorithm,
thus we can eliminate their entire columns from Pt1 and rerun the algorithm with a smaller
number of contents. This reduces the complexity of the algorithm and allows it to run with a
number of contents closer to the actual number of communities to be found.

• Use the true function f1 instead of f� for time steps t � 1, since the normalized scores Pt

will be already converging to the limit point that generates the communities. Sampling from
f� is costlier than from f1, but it is absolutely necessary in the earlier stages of the opinion
dynamics algorithm where the initial condition is far away from the limit points.

2.4 Numerical examples

This section is dedicated to numerical examples of our community detection algorithm. We per-
form a comparison between our algorithm and some benchmark algorithms found in the literature,
for six undirected networks:

• Undirected Zachary Karate Club (ZKC) network [314], with N = 34 people. See figure 2.1.

• Undirected American College Football (ACF) teams in Division I during Fall 2000 regular
season [116], with N = 115 teams. See figure 2.2.

• Undirected social network of frequent associations between N = 62 bottlenose dolphins
(Dolphins) over a period of seven years from 1994 to 2001 [214]. See figure 2.3.

• Undirected network composed of 10 friend lists (ego networks) from Facebook (Facebook-
ego) [223], with N = 4, 039 users. See figure 2.4.

• Undirected general relativity and quantum cosmology collaboration network in ArXiv (GRQC-
ArXiv) with N = 5, 241 researchers, from January 1993 to April 2003 [196]. See figure 2.5.

• Undirected contact network between the N = 15, 088 users in Youtube (Youtube), crawled
in December 2008 [278]. See figure 2.6.

We compare our community detection method with different algorithms: the label propagation
method [256], the Louvain method [35], greedy implementations of the modularity [236] and the
statistical mechanics Hamiltonian of Reichardt and Bornholdt [260], and fast implementations of
them based on the algorithm of Le Martelot and Hankin [191] using global criteria.

We denote by:

• OD our opinion-dynamics-based community detection algorithm.

• LP the label propagation method of [256].

• L1, L2, L3 different clustering divisions given by the Louvain method [35].
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• FM an implementation of the fast algorithm using global criteria of [191] with as optimization
criterion the modularity function of [236].

• FN a greedy hierarchical method to maximize the modularity function, proposed by Newman
in [233]. It works as follows: first one defines every node as its own community, and at each
step one computes for each pair of communities the difference in modularity when merging
them, proceeding in the direction of the highest gain in modularity (stopping the algorithm
if there is none).

• SRB1, SRB2, SRB3 different implementations of the fast algorithm using global criteria of
[191] with as optimization criterion the Reichardt and Bornholdt Hamiltonian function [260]
with scale parameters � = 0.8, 0.7, 0.6, respectively.

• R a greedy hierarchical method (defined before for the method FN) to maximize the Hamiltonian
function of Reichardt and Bornholdt [260], with a scale parameter � = 0.8.

We compute for each community detection algorithm comparative measures on the beforemen-
tioned six undirected networks. The comparative measures are

• Modularity (mod).

• Number of communities (nbC).

• Average community density (den), i.e., average ratio between number of edges inside commu-
nities and number of pairs inside communities.

• Average community embeddedness (emb), i.e., average ratio between number of edges from
inside communities and the total number of edges of the communities.

• Average proportion of the communities to the total number of nodes (siz).

• Normalized mutual information [188] between the communities found by other methods and
those found by our method (mut), i.e., a number between 0 and 1 that checks the similarity
of the communities.

• And when available, the normalized mutual information between the communities found and
the ground truth communities (miTrue), which measures how well the algorithms were in
discovering the true communities.

2.4.1 ZKC and ACF

We start by comparing our algorithm with benchmarks algorithms over the ZKC (table 2.1) and
ACF (table 2.2) networks. These networks are small but important, due to the fact that they are
the only ones whose information about their true communities is available.

One can see in table 2.1 that our algorithm (and the label propagation method, who found the
same communities as we did) was by far the best in reconstructing the true communities of the
ZKC. It is important to notice that 84% is relatively big, because we only have 34 nodes, missing
one node reduces drastically the normalized mutual information (in fact we miss only 1 node).
Our algorithm also finds the communities with the highest average size, lowest average density
and highest average embeddedness (together with the label propagation method and the greedy
Reichardt and Bornholdt statistical mechanics method). This suggests that, in the ZKC example,
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OD LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.37 0.37 0.37 0.42 0.42 0.42 0.39 0.48 0.52 0.57 0.47
den 0.25 0.25 0.64 0.44 0.44 0.45 0.35 0.40 0.40 0.25 0.25
siz 0.50 0.50 0.17 0.25 0.25 0.25 0.33 0.33 0.33 0.50 0.50
mut 1.00 1.00 0.52 0.59 0.59 0.69 0.69 0.70 0.70 0.84 0.84
nbC 2 2 6 4 4 4 3 3 3 2 2
emb 0.77 0.77 0.38 0.56 0.56 0.56 0.59 0.66 0.66 0.77 0.77
miTrue 0.84 0.84 0.44 0.49 0.49 0.59 0.56 0.57 0.57 0.68 0.68

Table 2.1: Comparative table ZKC

OD LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.58 0.60 0.60 0.60 0.60 0.60 0.55 0.63 0.65 0.67 0.58
den 0.88 0.82 0.86 0.76 0.76 0.76 0.48 0.60 0.60 0.54 0.52
siz 0.08 0.09 0.08 0.10 0.10 0.10 0.17 0.14 0.14 0.17 0.20
mut 1.00 0.96 0.98 0.95 0.95 0.95 0.74 0.85 0.85 0.80 0.71
nbC 13 11 12 10 10 10 6 7 7 6 5
emb 0.47 0.51 0.50 0.55 0.55 0.55 0.57 0.60 0.60 0.62 0.61
miTrue 0.92 0.90 0.93 0.89 0.89 0.89 0.70 0.79 0.79 0.74 0.65

Table 2.2: Comparative table ACF

the other methods find communities close to cliques (communities with higher density) and our
method finds communities with more embeddedness (ratio of internal edges compared to the total
number of edges).

In table 2.2, we can see that our algorithm was almost 100% accurate in reconstructing the true
communities of the ACF (lost only to one instance of the Louvain method, by only 1%). Again,
the label propagation method found communities very close to ours, but they are not the same,
which proves that the methods are not equivalent. Now, on the other hand, our algorithm finds the
communities with the lowest average size, highest average density and lowest average embeddedness.
This suggests that, in the ACF example, our method finds communities closer to cliques compared
to the other methods.

In both examples ZKC and ACF, our method uses the right criteria in order to find the network
communities: our method discovers communities with higher density when the true communities
have a high density value, and it discovers communities with higher embeddedness when the true
communities have a high embeddedness value. For real-life networks it can also indicate that maybe
the appropriate definition of communities is not the standard one finds in the literature, where
communities are subsets with more edges inside them compared to edges outside them [255]; we
could use the definition 3 as the standard definition of communities, where we only compare the
edges inside a community with edges stemming from other communities, one at a time. Of course
a much more detailed study must be conducted to shed light onto this phenomenon.

The reader should also notice that our definition of communities allows overlapping communities
without any increase in complexity, which can be sometimes desirable (in figure 2.1 we found one
node belonging to both communities).
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Figure 2.1: Communities for ZCK.

2.4.2 Dolphins

OD LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.50 0.48 0.50 0.52 0.52 0.52 0.50 0.58 0.60 0.63 0.56
den 0.62 0.25 0.73 0.35 0.35 0.34 0.42 0.29 0.29 0.29 0.22
siz 0.14 0.33 0.10 0.20 0.20 0.20 0.25 0.25 0.25 0.25 0.33
mut 1.00 0.74 0.88 0.87 0.87 0.82 0.71 0.86 0.86 0.86 0.67
nbC 7 3 10 5 5 5 4 4 4 4 3
emb 0.47 0.75 0.40 0.56 0.56 0.56 0.58 0.65 0.65 0.65 0.72

Table 2.3: Comparative table Dolphins

We compare now our algorithm for the Dolphins network. Although we do not have its true
communities, we can still make some remarks concerning the performance of our algorithm compared
to the others, following table 2.3: first, one may see that contrary to the ZKC and ACF examples our
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Figure 2.2: Communities for ACF.

algorithm found very different communities than the label propagation algorithm. Our algorithm has
a number of communities between the first instance of the Louvain method and the other methods,
keeping in the same order the modularity of the partitions and the average embeddedness.

However, we find communities with much higher average densities (together with the first in-
stance of the Louvain method), which means that our communities resemble cliques more than the
communities found by the other methods.

2.4.3 Facebook-ego

For the ten ego networks in Facebook, one can clearly see in table 2.4 that all methods found
at least ten communities, with the exception of the greedy implementation using the Hamiltonian
function of [260]. Of course the ego networks may have nested communities, which explains why
there are almost systematically more than ten communities found by every method.

Again, the label propagation method gives very different results than our method, which resem-
bles most the second instance of the Louvain method (the fact that our agorithm resembles one of
the instances of the Louvain method seems to be fairly constant in other datasets).

Similarly to the Dolphins network example, our algorithm finds communities with the same
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Figure 2.3: Communities for Dolphins.

OD LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.79 0.16 0.81 0.83 0.83 0.83 0.78 0.86 0.87 0.89 0.77
den 0.33 0.04 0.68 0.31 0.31 0.29 0.37 0.18 0.18 0.18 0.23
siz 0.04 0.02 0.01 0.05 0.06 0.06 0.08 0.08 0.08 0.08 0.11
mut 1.00 0.39 0.80 0.81 0.78 0.80 0.72 0.80 0.80 0.80 0.70
nbC 25 51 101 19 17 16 13 13 13 13 9
emb 0.73 0.05 0.54 0.87 0.87 0.89 0.90 0.92 0.92 0.92 0.95

Table 2.4: Comparative table Facebook-ego

order of modularity and average embeddedness as the other methods, with higher than the average
densities, which means that our communities resemble cliques more than the communities found by
the other methods.

The lower average embeddedness may come from our definition of communities (definition 3),
where we are concerned simply with pairwise comparison between communities. We do not attempt
to minimize, for example, the number of edges between nodes inside and outside the communities,
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as dictated by the standard definition of communities in [255].

Figure 2.4: Communities for Facebook-ego.

2.4.4 GRQC-ArXiv

OD LP L1 L2 L3 FM FN SRB1 SRB2 SRB3 R

mod 0.77 0.79 0.72 0.84 0.81 0.86 0.82 0.87 0.87 0.88 0.82
den 0.50 0.69 0.81 0.68 0.78 0.82 0.81 0.83 0.83 0.84 0.81
siz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mut 1.00 0.93 0.92 0.87 0.77 0.76 0.74 0.75 0.75 0.73 0.71
nbC 633 726 1204 537 404 387 416 384 383 380 420
emb 0.69 0.80 0.58 0.90 0.94 0.98 0.97 0.99 0.99 0.99 0.97

Table 2.5: Comparative table GRQC-ArXiv
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This example shows a result below the average when compared with other methods, where the
communities discovered by our method have lower density (den) and embeddedness (emb) than
the communities found by other methods. Our method finds communities resembling those of the
label propagation and the Louvain method once again. However, one can see that the modularity
of the communities found by our method still remains similar to other methods that are based on
modularity-like optimization techniques.

This time, our method found a higher number of communities than the benchmark methods,
which could explain the decrease in average density and embeddedness. This may be corrected
by limiting the maximal number of communities to be found using the parameter K (number of
contents in the underlying opinion dynamics algorithm)

Figure 2.5: Communities for GRQC-ArXiv

2.4.5 Youtube

Similarly to the GRQC-ArXiv example, our method finds communities with lower density and
embeddedness than other methods, with modularity still comparable to other methods that are
based on modularity-like optimization techniques.
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OD LP L1 L2 L3 FM SRB1 SRB2 SRB3

mod 0.52 0.38 0.64 0.68 0.61 0.67 0.69 0.70 0.72
den 0.17 0.50 0.66 0.37 0.47 0.50 0.59 0.59 0.63
siz 0.01 0.01 0.00 0.01 0.02 0.03 0.03 0.03 0.03
mut 1.00 0.42 0.64 0.57 0.47 0.49 0.45 0.45 0.42
nbC 141 73 628 79 52 40 33 33 30
emb 0.42 0.76 0.34 0.71 0.76 0.84 0.88 0.88 0.90

Table 2.6: Comparative table Youtube

Again, our method found a higher number of communities than the benchmark methods, which
could explain the decrease in average density and embeddedness. Nevertheless, the unusual fact
about this particular example is that none of the other methods seems to be similar to ours, which
is given by the difference in normalized mutual information (mut) between the communities found
by our method and the communities found by other methods.

Figure 2.6: Communities for Youtube
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2.5 Conclusion

We introduced in this chapter a new community detection algorithm based on a stochastic model
of opinion dynamics. The proposed algorithm is studied using stochastic approximation techniques,
which results in a precise description of the communities found.

In addition to the theoretical advantage over heuristic community detection methods, the pre-
sented algorithm is able to accommodate weighted networks, with the discovery of overlapping com-
munities as an interesting byproduct with no mathematical or algorithmic overhead. Furthermore,
one can add as well a priori information on the communities to be found, by choosing a suitable
initial condition for the opinion dynamics algorithm.

Heuristic arguments for the fine-tuning of the parameters were presented, they establish two main
implementations for the algorithm: a parametric one and a nonparametric one. The parametric
version is less complex and caps the maximum number of communities to be found, whereas the
non-parametric version does not make any assumptions on the maximum number of communities
to be found. This choice gives the algorithm a multiscale character, allowing one to select the
granularity of the unknown communities.

This algorithm has a manageable complexity and is also designed to be performed easily in a
distributed fashion, making it useful for real-life networks.

Moreover, empirical tests with real-life benchmark graphs suggest that our less restrictive def-
inition of communities could more easily fit real-life networks, where nodes inside communities do
not need to be more linked within themselves, compared to the rest of the graph; it would suffice
for them to be more linked only compared with other communities, taken one at a time.
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CHAPTER 3

Information diffusion using Hawkes pro-
cesses

"If content is king, then conversion is queen."
— John Munsell, CEO of Bizzuka

3.1 Introduction

After studying in the first part of this thesis theoretical ideas of information diffusion on social
networks by the means of opinion dynamics methods, we dedicate the second part of this thesis to
a more computational and concrete approach to information diffusion. We derive in this chapter
a general framework of information diffusion with Hawkes processes, and use one instance of this
framework to create a trend detection algorithm.

Information diffusion/dissemination in social networks refers to users broadcasting (sharing,
posting, tweeting, retweeting, liking, etc.) information to others in the network. By tweeting, for
example, users broadcast information to the network, which is then transmitted to their followers.
These sequences of broadcasts by users are called information cascades, and have been studied
extensively over the past years; see for example [26, 174, 51]. The large amount of recent work
on this subject reflects the strategic real-life implications which may be brought by the knowledge
of such cascades: one can discover the hidden impact of users and contents on this diffusion, and
highlight various characteristics of not only the social networks in question but also of the influential
users and their contents [273, 126, 123].

Information cascades are complex objects, for which there is no consensus on the standard way
to study them; for example: Kempe et al. in their seminal paper [169] develop a framework based on
submodular functions to detect the optimal seed group in order to diffuse a fixed content in a social
network, based on the so-called independent cascade propagation model [119, 120], which is a well
known information diffusion model. In [231], Myers and Leskovec study the variation of the proba-
bility in retransmiting information due to previous exposure to different types of information; they
found that, for Twitter, these retransmission probabilities are indeed very different when compared
to results stemming from independent cascade models; however, their approach does not take into
consideration the time between broadcasts of information and the topology of the network. And
in [124], Gomez-Rodriguez et al. study the network inference problem from information cascades
using survival theory; however, again, the authors to not take into consideration the underlying
network structure.
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Among the works dealing with information diffusion, there has been a steady increase of interest
in point-processes-based models [310, 38, 158]. Point processes take into consideration the broadcast
times of users, whereas a lot of information cascade models consider time to be discrete, i.e., time
only evolves when events occur; point processes are counting processes and have thus a discrete
state space, which makes them able to fully capture real-life features, such as the number of posts,
without increasing the mathematical complexity of the models; and the closed formula for the
likelihood of these point processes ([74] p. 232) gives us easy, simple and direct methods for the
estimation of important model parameters. For instance, Myers et al. study in [232] the influence
of externalities from other nodes on information cascades in networks; they use a point process
approach, from which the time instances of infection are essential for the estimation of parameters,
but the topological properties of the network are of secondary concern in their work.

One point process has been particularly useful in the modeling of these continuous-time models:
the Hawkes process [140, 208]. Hawkes processes are self-exciting point processes and are perfect
candidates for counting events on information cascades, where users transmit their information to
their neighbors in a social network. The use of self-exciting processes here enlightens the necessity
of a theory that can model the interaction between people having a conversation or exchanging
messages: imagine two people messaging each other through SMS. Normally each one would have
its own rhythm of messaging, but due to the self-excitation among these people, they will text and
respond faster than they would normally do when generating SMS messages without response. For
example, Yang and Zha study in [310] the propagation of memes (see definition in [79] p. 192.) in
social networks with linear Hawkes processes and couple the point process with a language model in
order to estimate the memes. They provide a variational Bayes algorithm for the coupled estimation
of the language model, the influence of users and their intrinsic diffusion rates; however, they do
not take into consideration the influence that memes may have on one another; moreover, they
propose the estimation of the entire social network, not taking into consideration the eventual lack
of communication between users.

Hawkes processes have already been successfully used to study earthquakes [242], neuronal
activities [40], high-frequency finance [15], social sciences [201, 71] and many other fields, with a
vast and diversified literature.

This chapter aims to provide a solid and rich framework for information diffusion models in
social networks using Hawkes processes. The presented framework is capable of:

• modeling and estimating user-user and topic-topic interactions,

• modeling and estimating multiple social networks and their interactions,

• being combined with topic models [34, 265, 33], for which modified collapsed Gibbs sampling
[77, 128] and variational Bayes techniques [151, 145] are derived,

• estimating different temporal effects of the users diffusion, such as seasonality and non-
homogeneity,

• using and estimating dynamic/temporal social networks [154], and

• retrieving the community structure of the underlying users influence in social networks, due to
a dimensionality reduction during the parameters estimation (see [182] for another example
of such methodology).

This chapter is organized as follows. Section 3.2 describes the models for our Hawkes information
diffusion framework. Section 3.3 details the estimation procedure of the hidden influences. Section
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3.4 discusses some additional topics for the Hawkes diffusion framework. In Section 3.5 numerical
experiments are performed with four different datasets, and Section 3.6 concludes the chapter.

3.2 Hawkes diffusion models

We start with brief introduction to Hawkes processes: a multivariate linear Hawkes process
(see [140, 208] for more details) is a self-exciting orderly point process Xt, t 2 [0, ⌧ ] with intensity
�t = lim�&0

E[Xt+��Xt|Ft]
� satisfying

�t = µ+

Z t

0
�(t� s)dXs,

where Ft = �(Xs, s  t) is the filtration generated by X, µ is an intrinsic Poissonian rate and � is
a causal kernel that is responsible for the self-exciting part.

The Hawkes intensity �t can be divided into two distinguished parts: the intrinsic Poissonian
rate µ, which models the base intensity of the Hawkes process, and does not take into account the
past of the process, and the self-exciting part

R t
0 �(t� s)dXs, which models the interactions of the

present with past events. The µ coefficient can, for example, model how some user tweets something,
after learning about it in class or at work, after listening to the radio or watching television.

The orderly property of the Hawkes process means that X cannot have two events/jumps at
the same time ([74] p. 232), and by the standard theory of point processes ([74] p. 233) we have
that an orderly point process is completely characterized by its intensity, which in this case is also
a stochastic process.

The self-excitatory property of the Hawkes process means that for all 0  u < t < s  ⌧ we
have that: for every pair of coordinates (i, j)

cov(Xi
s �Xi

t , X
j
t �Xj

u) � 0,

and there exists at least one pair of coordinates (i⇤, j⇤) such that

cov(X i⇤
s �Xi⇤

t , Xj⇤
t �Xj⇤

u ) > 0,

This means that the future jumps of a self-exciting process become more probable to occur when
the process jumps.

We place ourselves under a generic framework for information diffusion: N users of a social
network disseminate their information over a social network. The dissemination/broadcasting of
messages can be performed in various ways, depending on the application and the social network
in question: measuring tweets or retweets, checking the history of a conversation in a chat room,
"pinning" pictures, etc. However, they all have one thing in common: messages are broadcasted by
the N users in the social network, and those users that can receive these broadcasts are influenced
by them (at least indirectly).

The social network is defined as a communication graph G = (V,E), where V is the set of
users and E is the edge set, i.e., the set with all the possible communication links between users of
the social network. We assume the graph to be directed and unweighted, and coded by an inward
adjacency matrix A such that Ai,j = 1 if user j is able to broadcast messages to user i, or Ai,j = 0

otherwise. We define j  i if and only if Ai,j = 1, i.e., if i can be influenced by user j.
Users influence each other when broadcasting, in the following way: when user i broadcasts

something, all users that receive the broadcasts from user i (users j such that Aj,i = 1) see this
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broadcast. They are then more compelled to reiterate this procedure in the future, by broadcasting
on their own. Let us take Twitter for example: user i tweets something in Twitter, and thus users
that follow user i receive this tweet on their walls. They read this tweet and may become inclined
to answer it, comment it, rebuke it, or even retweet it. This means that this tweet from user i
created a cascade effect, which provided all his followers an increase in their tweeting probability
on the future. This signifies that user i influenced his followers.

Throughout this chapter we adopt two kinds of message categories: the first kind assumes that
messages are of K predefined topics (economics, religion, culture, politics, sports, music, etc.) and
that each message is represented by exactly one of these topics. The second kind assumes a "fuzzy"
setup with K topics, where this time the topics are not known beforehand and messages are a
mixture of these unknown (latent) topics; Barack Obama may for example tweet something that
has 40% of its content about politics, 50% of its content about economics and 10% of its content
related to something else.

3.2.1 User-user and topic-topic interactions with predefined topics

We first focus on the case where messages are about one of K predefined contents (economics,
religion, sports, etc.). We assume that we have N users in a single social network and that they can
influence each other to broadcast, and that these influences are independent of the broadcasted con-
tent. On the other hand, the topic to be broadcasted is influenced by the topics already broadcasted
beforehand.

This is the case, for example, if one wants to separate the influence effects of users and top-
ics: posts about politics can influence posts about fashion, economics, religion, etc., and people
can influence other people simply because they are friends, famous or charismatic. In this model
we assume that the influence of a specific user when posting something is given by two different
components, the user-user component and the topic-topic component.

These influences are coded by two matrices J and B such that Ji,j � 0 is the influence of user i
over user j and Bc,k � 0 is the influence of topic c over topic k.

We model the number of messages broadcasted by users as a linear Hawkes process Xt 2
MN⇥K(R+), where Xi,k

t is the cumulative number of messages of topic k broadcasted by user
i until time t 2 [0, ⌧ ] in the social network. In other words, this Xt is a RN⇥K point process with
intensity

�i,kt = µi,k
+

X

c

X

j i

Bc,kJi,j

Z t�

0
�(t� s)dXj,c

s = µi,k
+

X

c

X

j i

Bc,kJi,j(� ⇤ dX)

j,c
t ,

where µi,k � 0 is the intrinsic rate of broadcasting of user i about topic k, �(t) � 0 is the temporal
influence kernel that measures the temporal shape of influences coming from past broadcasts - which
satisfies ||�||1 =

R1
0 �(t)dt <1 - and

(� ⇤ dX)t =

Z t�

0
�(t� s)dXs 2MN⇥K(R+)

is the convolution matrix of the temporal kernel � and the jumps dX. This allows one to use
N2

+K2 parameters instead of N2K2 for the full fledged model without this influence factorization.
As said before, not all users can communicate among themselves. Hence one must take into

consideration the inward adjacency matrix A given by the underlying structure on the social network.
This is done by the relation

Ai,j = 0) Ji,j = 0. (3.1)
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Remark: Two standard time-decaying functions are �(t) = !e�!t.I{t>0} a light-tailed exponen-
tial kernel [245, 246, 310] and �(t) = (b � 1)(a + t)�b.I{t>0} a heavy-tailed power-law kernel (see
[71]). Expectation-minimization algorithms can be derived in order to estimate the parameters !
in the exponential case [133, 198] and a, b in the power-law case, as provided in appendix B.

3.2.2 User-topic interactions and global influence in the social network

A different model arises when users do not influence other individually, but they influence the
social network as a whole. This means that instead of having an influence matrix J 2MN⇥N (R+)

that measures the user-user interactions, we have now an influence matrix ˜J 2 MN⇥K(R+) such
that ˜Ji,k � 0 is the influence of user i over the whole social network, when he broadcasts something
about topic k.

Hence, the associated Hawkes process Xi,k
t , which measures the cumulative number of messages

broadcasted by user i about topic k until time t 2 [0, ⌧ ], has intensity

�i,kt = µi,k
+

X

c

X

j i

Bc,k
˜Jj,c

Z t�

0
�(t� s)dXj,c

s

= µi,k
+

X

c

X

j

Bc,kAi,j
˜Jj,c

Z t�

0
�(t� s)dXj,c

s ,

Think about Barack Obama: it is natural that posts or tweets about economics or politics
coming from Obama are going to have a much bigger impact than posts about sports or fashion.
People normally have the most influence in their areas of expertise, and we develop a model that
accommodates this feature.

3.2.3 User-user and topic-topic interactions with "fuzzy" topic label

Up until now we have dealt with information dissemination models having K predefined topics
and in which each broadcasted message was assumed to belong to one, and only one, of these topics.
We consider now a different point of view regarding the broadcasted messages: each message now
is a mixture over K undiscovered/latent topics. These topics are distributions over words and each
message broadcasted at time ts 2 [0, ⌧ ] generates the message’s empirical distribution of topics
random variable Zts such that

Zts
k =

1

Ns

NsX

w=1

zs,wk , (3.2)

where Ns is the number of words in the message broadcasted at time ts and zs,w are independent
discrete random variables modeling the topic of word w, i.e., zs,wk = 1 if and only if word w at
message ts is about topic k, and 0 otherwise.

In this model users receive messages that are mixtures of topics and each user reacts to topics in
a different manner, these user-topic interactions are characterized by the matrix b 2MN⇥K(R+),
such that bi,k measures the influence of topic k over user i.

We define thus the Hawkes processes Xi
t as the cumulative number of messages broadcasted by



82 Chapter 3. Information diffusion using Hawkes processes

user i in the social network until time t 2 [0, ⌧ ], with intensity

�it = µi
+

X

j i

Ji,j
X

c,k

Bc,kbi,k

Z t�

0
�(t� s)Zs

cdX
j
s

= µi
+

X

j i

Ji,j
X

c,k

Bc,kbi,k(� ⇤Z dX)

j,c
t ,

where µi � 0 represents the intrinsic dissemination rate of user i and

(� ⇤Z dX)

j,c
t =

Z t�

0
�(t� s)Zs

cdX
j
s

is the (j, c) entry of the weighted convolution of the temporal kernel � and the jumps dX, where
the weights are the topic empirical proportions of each message broadcasted by user j.

Again, not all users can communicate among themselves, hence one must take into consideration
Eqn. (3.1).

In order to fully exploit the random variables Zts we use topic models [34, 265, 33], as for
example the latent Dirichlet allocation [34] (see for [211] such a methodology) or the author-topic
model [265]. More details about topic models can be found in appendix C.

Remark: One can also easily extend the model in subsection 3.2.2 to the "fuzzy" diffusion
framework, following these ideas.

3.2.4 User-user and topic-topic interactions with predefined topics in multiple
social networks

We now turn to the case where we have M "interconnected" social networks. The mth social
network is defined as a communication graph Gm

= (V m, Em
), where V m is the set of users and

Em is the edge set, i.e., the set with all the possible communication links between users of the
mth social network. We assume these graphs to be directed and unweighted, and coded by inward
adjacency matrices Am such that Am

i,j = 1 if user j is able to broadcast messages to user i on social
network m, or Am

i,j = 0 otherwise. Having this collection of unweighted inward adjacency matrices
(Am

)m2{1,2,··· ,M}, we define j
m i if and only if Am

i,j = 1, i.e., if i can be influenced by user j through
social network m.

One can think about Facebook and Twitter users: there are users in Facebook that do not
necessarily follow the same people on Facebook and on Twitter, and vice-versa. The explanation is
quite simple: Facebook posts are of a different nature than Twitter posts, thus the following process
on both networks is also different. Let us say that Facebook is social network 1 and Twitter is social
network 2; A1

i,j = 1 means that user i follows user j in Facebook and receives the news published
by user j in his or her timeline. As said, that does not necessarily imply that A2

i,j = 1, i.e., user i
also follows user j on Twitter.

This network formalism can be associated with the multiplex network formalism [87, 172]: multi-
plex networks (or "multirelational" networks) are networks where links have different characteristics,
thus one node may have more than one edge linking it to another node. It may also happen that
nodes do not have all types of links, only a few of them (maybe even none). In our case, specif-
ically, we may consider the ensemble of M social networks as a multiplex network with node set
V =

S
m V m (with cardinality N = ](

S
m V m

)) and edge set E =

S
mEm, and links being charac-

terized by the social network in question, i.e., each social network m has its own set of links Em,
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and two users (nodes) may have multiple links between them, each of them associated to a different
social network.

Users influence each other when broadcasting, in the following way: when user i broadcasts
something on social network m, all users that receive the broadcasts from user i (users j such that
Am

j,i = 1) see this broadcast. They are then more compelled to reiterate this procedure in the future,
by broadcasting on their own, which may not necessarily happen on the same social network.

Assuming that we have M different social networks, each one with its own adjacency matrix Am,
we model the influence of broadcasts using, similarly to the model in subsection 3.2.1, three matrices
J 2MN⇥N (R+), B 2MK⇥K(R+) and S 2MM⇥M (R+), such that Ji,j � 0 is the influence of user
i over user j, Bc,k � 0 is the influence of topic c over topic k and Sm,n is the influence that a generic
user of the social network m has over a generic user of the social network n. The network-network
influence matrix S measures thus how broadcasts made on one social network influence broadcasts
made on the others.

Let Xi,k,n
t be the cumulative number of messages broadcasted by user i about content k at social

network n until time t 2 [0, ⌧ ]. The intensity for this process is thus

�i,k,nt = µi,k,n
+

X

m,c,j i

Sm,nJi,jBc,k

Z t

0
�n(t� s)dXj,c,m

s ,

where J is again the user-user influence matrix, B is the topic-topic influence matrix and µ is the
intrinsic rate of dissemination on different social networks.

In view of Eqn. (3.1), if there exists an edge j  i in some social network, then user i can be
influenced by user j. Our new constraint becomes

X

m

Am
i,j = 0) Ji,j = 0.

One can notice in the definition for the intensity of this model that each social network m has
its own1 temporal kernel function �m. Each temporal kernel �m represents how users and contents
in each social network are affected by ancient messages, and are considered a timescale parameter2.
Let us take for comparison Twitter and Flickr: in Twitter users chat, discuss, posts comments and
retweets, while Flickr is a photo-sharing social network that allows users to upload photos and post
comments. This means that the conversation and interaction mechanisms in both social networks
are different, since they serve different purposes. It is thus natural to assume that users in both
social networks react differently to the information received; these different reactions are in part
measured by the different temporal kernels (�m)m2{1,··· ,M}.

Remark: One can notice that this factorization of influences allows us to use N2
+ K2

+ M2

parameters instead of N2K2M2, which decreases in a great amount the complexity of the system
and the estimation time.

3.2.5 Network dependent user-user and topic-topic interactions in multiple so-
cial networks

A second (and more complex) extension to the single social network information diffusion model
is to assume that the different broadcasting mechanisms in each social network imply different

1. The temporal kernel functions could take more complicated forms, such as �k,m, where each topic in a social
network would have an idiosyncratic temporal kernel function. This enlightens the versatility of this Hawkes
framework, allowing one to adapt the system parameters to any desired situation.

2. Take for example the exponential kernel �(t) = !e

�!t
.I{t>0}: the larger the !, the larger is the influence of

recent broadcasts. This may imply users responding faster to immediate messages.
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influences on users and topics. It means that the user-user and topic-topic influences are now
specific to each social network, i.e., user j broadcasting a message about content c on a social
network m influences user i in this same social network when he broadcasts some message about
content k. These network-dependent influences are measured by the user-user influence matrices
(Jm

)m2{1,··· ,M} and topic-topic influence matrices (Bm
)m2{1,··· ,M}.

Remark: Viewed as high-dimensional objects, J and B are three-dimensional tensors.
We can define, again, Xi,k,n

t to be the cumulative number of messages broadcasted by user i
about content k at social network n until time t 2 [0, ⌧ ]. The intensity for this process is then

�i,k,nt = µi,k,n
+

X

m,c,j
m i

Sm,nJ
m
i,jB

m
c,k

Z t

0
�n(t� s)dXj,c,m

s ,

where j
m i means that user j can influence user i in social network m, i.e., Am

i,j = 1.
Since now users only influence themselves in the same social network, the adjacency matrix

constraint in Eqn. (3.1) becomes
Am

i,j = 0) Jm
i,j = 0.

Remark: One can easily extend the model with social network-social network specific influences
of the form Jm,n

i,j and Bm,n
c,k , for which the above extension is a particular case Jm,n

i,j = Jm
i,jSm,n and

Bm,n
c,k = Bm

c,kSm,n.
Remark: One can also easily extend the model in subsections 3.2.2 and 3.2.3 to take into account

multiple social networks, following the same ideas.

3.2.6 General interaction model with predefined topics in multiple social net-
works

We provide, for the sake of completeness, the most general model of interactions in social
networks. It occurs when one does not factorize the interactions of users, contents and networks,
as in the previous cases. The influences have now the full form �

(j,c,m)
(i,k,n) , where �(j,c,m)

(i,k,n) measures
the influence of the user-content-network triple (j, c,m) on the user-content-network triple (i, k, n),
i.e., how a broadcast of user j about content c in social network m influences a broadcast of user i
about content k in social network n.

The intensity of a model with predefined topics takes the form

�i,k,nt = µi,k,n
+

X

m

X

c

X

j
m i

�

(i,k,n)
(j,c,m)

Z t�

0
�n(t� s)dXj,c,m

s

and have all other models as particular cases.
The usefulness of the simpler models regards the number of hidden influence parameters to be

estimated: for the full general model one has N2K2M2 parameters to estimate, whereas in the
simpler ones one only has, for example, at most N2

+ K2
+ M2 in subsection 3.2.4 and at most

M(N2
+K2

) in subsection 3.2.5.

3.3 Maximum likelihood estimation and multiplicative updates

Section 3.2 describes different parametric models of information diffusion using Hawkes pro-
cesses, all of them exploiting different peculiarities of the reality. One of the strong points about
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point processes (and Hawkes processes for that matter) is the analytic form of the likelihood of
their realization (see [240] or [74] p. 232), where Hawkes-based models for information diffusion
used extensively this property in order to derive convex-optimization-based maximum likelihood
estimates for the system parameters [158, 310, 317]. For example, in our Hawkes diffusion frame-
work, we may estimate the user-user influence matrix J , the content-content influence matrix B,
the network-network influence matrix S, the users intrinsic dissemination rate µ, etc.

A different technique for the maximum likelihood estimation of the Hawkes process X was
derived in [245, 246], where the authors slice the information time period [0, ⌧ ] into T small bins of
size � > 0 in order to create suitable tensors for the intensity �t and the Hawkes jumps dXt, and
show that maximizing an approximation of the log-likelihood is equivalent to solving a nonnegative3

tensor factorization (NTF) problem [192, 170, 66]. This section is thus dedicated to demonstrating
that all information dissemination models in section 3.2 can be estimated using the same techniques,
which creates an unified information dissemination framework using Hawkes processes and topic
models.

Since we deal with real-life social networks, the number of parameters to be estimated is large
and convex optimization techniques that estimate each parameter separately are too demanding
in terms of complexity. That is why we adopt the estimation framework of [245, 246], for which
multiplicative updates4 can be derived (see [212, 211] for the same methodology).

Let us take a � > 0 that is smaller than the minimum elapsed time between broadcasts in [0, ⌧ ]
and divide [0, ⌧ ] into T = d ⌧� e time bins such that we do not have more5 than one broadcast in each
bin, in order to preserve the orderliness property of X.

Let Y , � and � be tensors such that

Yt =
dX(t�1)�

�
=

Xt� �X(t�1)�

�
, �t = �(t�1)� and

�
m
t =

⇢
(�m ⇤ dX)(t�1)� for predefined topics model
(�m ⇤Z dX)(t�1)� for "fuzzy" diffusion model,

i.e. Y contains the jumps of Xt at each time bin ((t� 1)�, t�].
We begin our estimation procedure by showing that maximizing the Riemann-sum approxima-

tion of the log-likelihood of X is equivalent to minimizing the Kullback-Leibler (KL) divergence
between Y and �.

Lemma 13. If
R ⌧
0 log(�i,k,mt )dXi,k,m

t and
R ⌧
0 �

i,k,m
t dt are approximated by their respective Riemann

sums, then maximizing the approximated log-likelihood of X in [0, ⌧ ] is equivalent to minimizing

DKL(Y |�) =
X

i,k,m,t

dKL(Y
i,k,m
t |�i,k,mt ), (3.3)

where dKL(y|x) = y log( yx)� y + x is the Kullback-Leibler divergence between x and y.

Proof. Let us place ourselves, without loss of generality, in an information diffusion model with

3. By nonnegative we mean tensors with nonnegative entries.
4. The multiplicative updates using NTF techniques are only one of the existing estimation techniques. Alternative

methods are discussed in subsection 3.4.3.
5. In practice, this orderliness constraint is not satisfied in order to decrease the complexity of the multiplicative

updates.
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predefined topics6 and let tn be the broadcast instants in [0, ⌧ ], such that user in broadcasted a
message about topic kn in social network mn at time tn, i.e., tn is the nth broadcasting time in the
M social networks.

We have that the log-likelihood of X is given by (see for example [240] or [74] p. 232)

L = log

✓ Y

0tn⌧
�in,kn,mn
tn

◆
�

X

i,k,m

Z ⌧

0
�i,k,mt dt

=

X

i,k,m

✓Z ⌧

0
log �i,k,mt dXi,k,m

t �
Z ⌧

0
�i,k,mt dt

◆
.

Approximating the integrals in L by their Riemann sums we get

L ⇠
X

i,k,m

X

t

✓
log �i,k,m(t�1)�(X

i,k,m
t� �Xi,k,m

(t�1)�)� ��
i,k,m
(t�1)�

◆
,

thus maximizing the approximation of L is equivalent to minimizing

�L/� ⇠
X

i,k,m

X

t

✓
�
i,k,m
t � Y i,k,m

t log �
i,k,m
t

◆
.

With Y fixed, this is equivalent to minimizing

DKL(Y |�) =
X

i,k,m,t

dKL(Y
i,k,m
t |�i,k,mt ).

Using lemma 13, we have that the maximization of the approximated log-likelihood of X is
equivalent to a nonnegative tensor factorization problem with cost function DKL(Y |�), where Y
are the normalized jumps of X and � is a tensor representing the intensity of X.

This nonnegative tensor factorization problem stemming from the minimization of the cost
function DKL(Y |�) has already been studied at length in [192, 193, 170], where authors derive
convergent multiplicative updates [176, 100].

These multiplicative updates are interesting for several reasons: they are simple to implement
(they are basically matrix products and entrywise operations), can be performed in a distributed
fashion and have a low complexity on the data, thus being adequate to work on real-life social
network of millions (or even hundreds of millions) of nodes.

These NTF techniques are based on the multiplicative updates given by the following lemma:

Lemma 14. Let Y be a nonnegative tensor of dimension M , S a nonnegative tensor of dimension
sS + L and H a nonnegative tensor of dimension hH + L such that sS + hH � M . Define SH, a
the nonnegative tensor of dimension M , such that

(SH)j1,··· ,jM =

X

l1,··· ,lL
Sis1 ,··· ,isS ,l1,··· ,lLHih1 ,··· ,ihH ,l1,··· ,lL ,

where we have that
6. For "fuzzy" diffusion models, we consider the conditional log-likelihood with respect to Z, which is (see for

example [74] p. 251)

L(X|Z) = log

✓ Y

0t
n

⌧

�

i
n

,m
n

t
n

◆
�

X

i,m

Z ⌧

0

�

i,m
t dt =

X

i,m

✓Z ⌧

0

log �

i,m
t dX

i,m
t �

Z ⌧

0

�

i,m
t dt

◆
.
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• {is1 , · · · , isS}[{ih1 , · · · , ihH
} = {j1, j2, · · · , jM} (we can still have {is1 , · · · , isS}\{ih1 , · · · , ihH

} 6=
;) and

• {j1, · · · , jM} \ {l1, · · · , lL} = ;.

Define the cost function

DKL(Y |SH) =

X

j1,··· ,jM
dKL(Yj1,··· ,jM |(SH)j1,··· ,jM ),

where dKL(y|x) = y log( yx)� y + x is the Kullback-Leibler divergence between x and y.
The multiplicative updates for DKL(Y |SH) of the form

Zn+1  Zn �
r�

ZDKL(Y |SH)|Zn

r+
ZDKL(Y |SH)|Zn

, (3.4)

with

• the variables Z 2 {S,H}, r+/�
Z DKL(Y |SH) the positive/negative part of rZDKL(Y |SH),

• A�B the entrywise product between two tensors A and B, and

• A
B the entrywise division between two tensors A and B,

satisfy
DKL(Y |Sn+1H)  DKL(Y |SnH) and DKL(Y |SHn+1

)  DKL(Y |SHn
),

i.e., the multiplicative updates produce nonincreasing values for the cost function DKL(Y |SH).

Proof. We prove the result only for the tensor S, the calculations for the tensor H are equivalent.
Let

DKL(Y |SH) =

X

j1,··· ,jM
dKL(Yj1,··· ,jM |(SH)j1,··· ,jM ),

where dKL(y|x) = y log( yx)� y + x is the Kullback-Leibler divergence between x and y.
In order to find suitable multiplicative updates for this cost function we proceed in the same

manner as in [100, 176], i.e., we find an auxiliary function G such that G(S, ˜S) � D(Y |SH) for all
nonnegative tensor S and G(S, S) = D(Y |SH), with the NTF updates Sn, n 2 {0, 1, 2, · · · } of the
form

Sn+1
= argminX�0G(X,Sn

). (3.5)

We have thus

D(Y |Sn+1H)  G(Sn+1, Sn
) = min

S̃�0
G(

˜S, Sn
)

 G(Sn, Sn
) = D(Y |SnH).

Let J = {j1, · · · , jM}, S = {is1 , · · · , isS}, H = {ih1 , · · · , ihH
} and L = {l1, · · · , lL} be the index

sets for the tensor summations such that S [H = J and J \ L = ;, and define the function G as

G(S, ˜S) =
X

J

X

L

SS,LHH,L
˜YJ

dKL(YJ | ˜YJ
SS,L
˜SS,L

)
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where ˜YJ =

P
L ˜SS,LHH,L (if ˜S = S then ˜YJ =

P
L SS,LHH,L = (SH)J ).

We easily have that G(S, S) = D(Y |SH). Moreover, by the convexity of dKL(x|y) in y and
P

L
S̃S,LHH,L

ỸJ
= 1, we have that

G(S, ˜S) �
X

J
dKL(YJ |

X

L

˜SS,LHH,L
˜YJ

˜YJ
SS,L
˜SS,L

)

=

X

J
dKL(YJ |

X

L
SS,LHH,L) = D(Y |SH),

thus G is indeed an auxiliary function.
Now, we calculate the multiplicative updates for this auxiliary function as in Eqn. (3.5). Taking

the gradient rSG(Sn+1, Sn
) = 0 gives us

@SS,LG(Sn+1, Sn
) =

X

J\S

✓
1�

YJSn
S,L

˜YJSn+1
S,L

◆
HH,L

=

X

J\S
HH,L �

✓X

J\S

YJ
˜YJ

HH,L
◆
Sn
S,L

Sn+1
S,L

= @+SS,LD(Y |SnH)� @�SS,LD(Y |SnH)

Sn
S,L

Sn+1
S,L

= 0,

which easily implies Sn+1
S,L = Sn

S,L ⇥
@�SS,LD(Y |SnH)

@+SS,LD(Y |SnH)
, the desired multiplicative updates.

The proof of lemma 14 is based on bounding DKL(Y |SH) by above using an auxiliary function,
due to the convexity of dKL. The result when Y, S and H are matrices is well explained in [176, 100].
From the intensity equations in section 3.2, the intensity tensor � is a combination of sums and
products of the tensors µ, S, J , B, b and �, which makes lemma 14 suitable for the estimation of
these parameters.

Unfortunately, the cost function (3.3) is not convex on the ensemble of tensors, which means
that we cannot expect to retrieve the global minimum of DKL(Y |�), i.e., the global maximum of
the Hawkes likelihood. Nevertheless, it is convex (due to the convexity of the Kullback-Leibler
divergence) on each tensor, given that the other is fixed. So, estimating each tensor given the rest
fixed in a cyclic way produces nonincreasing values for Eqn. (3.3), as in [176, 100], thus converging
to a local maximum of the approximated log-likelihood.

When � ! 0, the Riemann sums converge to their respective integrals, and minimizing the cost
function in Eqn. (3.3) becomes equivalent to maximizing the likelihood of X.

As all information diffusion models of our Hawkes-based framework can be estimated using
the same techniques based on lemmas 13 and 14, we have thus created an unified information
dissemination framework using Hawkes processes.

Similarly to nonnegative matrix factorization (NMF) problems [193, 100], the multiplicative
updates in lemma 14 can be sometimes written in a concise matrix form. We give next three
examples of such cases: the models of subsections 3.2.1, 3.2.4 and 3.2.3.

3.3.1 Estimation of model in subsection 3.2.1

In order to proceed to the estimation of the Hawkes parameters J , B and µ, one needs first to
handle the user-user interaction with care: due to the overwhelming number of user-user interaction
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parameters Ji,j in real-life social networks (where we have millions or even billions of users), we
factorize J into FG, such that F 2MN⇥d(R+) is a N ⇥ d matrix and G 2Md⇥N (R+) is a d⇥N
matrix, with d ⌧ N . This method is similar to clustering our social network influence graph into
different communities (see [182]).

One can also notice that by performing a dimensionality reduction J = FG during the esti-
mation, we not only estimate the influence that users have over one another but we also acquired
information on the communities of the underlying social network, since we were able to factorize
the hidden influence graph J .

This is a very difficult problem, since the cyclic multiplicative updates destroy this relationship,
and the only other way to satisfy the constraint in Eqn. (3.1) is to estimate each coordinate
separately. Since Ai,j 2 {0, 1}, we can circumvent this problem using a convex relaxation7 of this
constraint of the form8 ⌘h1�A,FGi and ⌘ � 0 a penalization parameter.

We have the following penalization ⌘h1�A,FGi, with derivatives

rF ⌘h1�A,FGi = ⌘(1�A)GT and
rG⌘h1�A,FGi = ⌘F T

(1�A). (3.6)

Unfortunately, since F and G act as a product, there is a potential identifiability issue of the
form FG = FPP�1G =

˜F ˜G where P is any scaled permutation and the pair ˜F = FP , ˜G = P�1G
is also a valid factorization of J (see [192, 227, 245]). We deal with this issue normalizing the rows
of G to sum to 1 (see [192, 245]). This normalization step involves the resolution of a nonlinear
system for each row of G to find the associated Lagrange multipliers.

Our constraint thus becomes G1 = 1, for which the Karush-Kuhn-Tucker (KKT) conditions
are written in matrix form as ⌘G =

Pd
i=1 ⌘G,ie

T
i 1, with (ei)i2{1,··· ,d} the standard basis vectors and

⌘G,i 2 R the Lagrange multipliers solution of the nonlinear equation G1 = 1 after the update9.
Let us recall that in this particular model we have the Hawkes parameters J = FG,B and µ.

In this particular model, one can further simplify the multiplicative updates given by lemma 14,
using the structure of the intensity, as presented in [212].

We can redefine, with an abuse of language, the NK ⇥ T matrices Y,�,� and µ as

Yi+(k�1)N,t =

dXi,k
(t�1)�

�

�i+(k�1)N,t = �i,k(t�1)�

�i+(k�1)N,t = (� ⇤ dX i,k
)(t�1)�

µi+(k�1)N,t = µi,k,

i.e., these matrices are the transposition of the mode-3 matricizations [170] of the N ⇥ K ⇥ T
dimensional tensors Y , � and �.

Let us also define the N ⇥ T matrices Y k, �k, �k and µk such that

Y k
i,t = Y i,k

t , �
k
i,t = �

i,k
t , �

k
i,t = �

i,k
t , µk

i,t = µi,k,

7. We use here a L

1 convex relaxation, similar to the LASSO procedure [284, 139]. This implies that we introduce
a certain degree of sparsity on the influence graph J . Other kinds of convex relaxation functions can be used,
such as a L

2 relaxation of the form ⌘||(1�A)� FG||2.
8. From now on we denote by 1 any vector of matrix with entries equal to 1. The dimension of 1 will be clear in

the context.
9. The same reasoning is applied to the matrices B, b and S defined in section 3.2, i.e.,

P
k Bc,k = 1,

P
k bi,k = 1

and
P

n Sm,n = 1.
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the dK ⇥ T matrix ⇢ and the d⇥ T matrices ⇢k and ⇢k such that

⇢ = (I⌦G)�, ⇢ki,t =
X

j

Gi,j�
k
j,t and ⇢ki,t =

X

k0
Bk0,k⇢

k0 .

The NK ⇥ T intensity matrix � can thus be written as (see [212])

� = µ+ (BT ⌦ J)�,

where ⌦ is the Kronecker product [156].
Following [212], we derive matrix-based multiplicative updates for the Hawkes paremeters F,G,B

and µ.

Lemma 15. We have the following multiplicative updates for F :

F  F �
PK

k=1

�
[

Y k

�
k ](⇢

k
)

T
�

PK
k=1 1(⇢

k
)

T
+ ⌘F (1�A)GT

, (3.7)

where ⌘F (1 � A)GT , with ⌘F � 0, is a convex penalization term responsible for the constraint in
Eqn. (3.1).

Proof. First of all, we have that (BT ⌦ FG) = (BT ⌦ F )(I⌦G), thus � = µ+ (BT ⌦ F )(I⌦G)�.
Let Fi be the rows of F and ⇢t be the columns of ⇢, with ⇢kt the columns of the submatrices ⇢k.

Then
�
(BT ⌦ F )⇢

�
i+(k�1)N,t

=

KX

k0=1

BT
k,k0hFi, ⇢

k0
t i = hFi,

KX

k0=1

Bk0,k⇢
k0
t i = (F⇢k)it.

Hence

DKL(Y |�) =
X

j,t

dKL(Yjt|�jt) =
X

t

X

i

X

k

dKL(Yi+(k�1)N,t|�i+(k�1)N,t)

=

X

k

✓X

t

X

i

dKL(Y
k
i,t|µi,k

+ (F⇢k)i,t)

◆
=

X

k

DKL(Y
k|µk

+ F⇢k)

= DF
KL(F ).

One can see that DF
KL is a sum of cost functions involving matrix products, hence we can use the

well known nonnegative matrix factorization techniques [100, 193] to derive multiplicative updates
for F . We have thus the following multiplicative update rule

F  F �

PK
k=1

✓
[

Y k

�
k ](⇢

k
)

T

◆

PK
k=1 1(⇢

k
)

T
,

Since the penalization term ⌘F (1 � A)GT has all its entries nonnegative, it is added to the
denominator of the NMF updates, as in [100]. Following [100], we can rewrite the multiplicative
updates with the linear penalization as Eqn. (3.7).

Define the N ⇥ T auxiliary matrices �k such that

�

k
=

X

k0
Bk0k�

k0
,

i.e., �k = µk
+ FG�

k.
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Lemma 16. We have the following multiplicative updates for G:

G G�
PK

k=1 F
T
�
[

Y k

�
k ](�

k
)

T
�

PK
k=1 F

T
1(�

k
)

T
+ ⌘GF T

(1�A) + ⌘G
, (3.8)

where ⌘G is a d ⇥ N matrix composed by Lagrange multipliers solution of the nonlinear equation
G1 = 1 and ⌘GF T

(1�A), with ⌘G � 0, is responsible for the constraint in Eqn. (3.1).

Proof. Firstly, we have that

DKL(Y |�) =
X

j,t

dKL(Yjt|�jt) =
X

i,t,k

dKL(Y
k
i,t|µi,k

+ h
KX

k0=1

Bk0kFi, G�
k0
t i)

=

X

k

✓X

i,t

dKL(Y
k
it |
�
µk

+ FG�
k�

i,t
)

◆
=

X

k

DKL(Y
k|µk

+ FG�
k
)

= DG
KL(G).

Using the same arguments as with F , we have the update rule for G given by Eqn. (3.8).

Define the K ⇥ T matrices Y
i, µi, �i and ⇣i such that

Y
i
k,t = Yi+(k�1)N,t = Y i,k

t

µi
k,t = µi+(k�1)N,t = µi,k

⇣ik,t =
�
J�

k�
i,t

=

X

j

Ji,j�
k
j,t

�
i
k,t = �i+(k�1)N,t = µi,k

+

�
BT ⇣i

�
k,t
.

Lemma 17. We have the following multiplicative updates for B:

B  B �

PN
i=1 ⇣

i
[

(Y
i
)T

(�
i
)T

]

PN
i=1 ⇣

i
1 + ⌘B

, (3.9)

where ⌘B is a matrix composed by the Lagrange multipliers solution of the nonlinear equation B1 = 1.

Proof. Firstly, we have

D(Y |�) =
X

j,t

dKL(Yjt|�jt) =
X

i,t,k

dKL(Y
i
k,t|µi,k

+

X

k0
BT

kk0⇣
i
k0,t)

=

X

i

✓X

i,t

dKL(Y
i
k,t|

�
µi

+BT ⇣i
�
k,t
)

◆
=

X

i

DKL(Y
i|µi

+BT ⇣i) = DB
KL(B

T
).

By the same principle as in the estimation of F and G, the updates for B are given by Eqn.
(3.9).

Lemma 18. Let v be the vectorization operation on matrices. We have the multiplicative updates
for µ:

v(µ) = v(µ)�
[

Y
�
]1

h1, 1i = v(µ)�
[

Y
�
]1

T
. (3.10)
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Proof. By the same token, it is easy to see that

D(Y |�) =
X

j,t

dKL(Yjt|
�
v(µ)1 + (BT ⌦ J)�

�
jt
)

=

X

j,t

dKL(Yjt|
�
v(µ)1

�
jt
+

�
(BT ⌦ J)�

�
jt
) = Dµ

KL(Y |µ),

giving us the multiplicative updates in Eqn. (3.10).

3.3.2 Estimation of model in subsection 3.2.4

When using the simplest model for multiple social networks, if one assumes that10 �n = �,
i.e., every social networks has the same temporal kernel for the past influences, one may write the
intensity for this model in a concise way.

Let us recall that one needs first to handle the user-user interaction with care, and perform
the dimensionality reduction J = FG, as in subsection 3.3.1. One must then introduce the convex
penalizations given by Eqn. (3.6) in the denominator of the multiplicative updates given by lemma
14.

Let us also recall the intensity N ⇥ K ⇥M ⇥ T tensor �i,k,n,t which represents the intensity
of user i on broadcasting a message of topic k on social network n at time t. We also have the
convolution N ⇥K ⇥M ⇥ T tensor �, defined as

�i,k,n,t = (� ⇤ dX i,k,n
)t =

Z t�

0
�(t� s)dXi,k,n

s ds,

and the intrinsic Poissonian rate N ⇥K ⇥M ⇥ T tensor µ, defined as

µi,k,n,t = µi,k,n.

The estimation for this model is hence quite straightforward, since the intensity tensor � can be
written as

� = µ+ �⇥1 J ⇥2 B
T ⇥3 S

T
= µ+ �⇥1 G⇥1 F ⇥2 B

T ⇥3 S
T ,

where ⇥l is the mode-l product between a tensor and a matrix [170, 66]. This means that the tensor
� � µ can be decomposed in a Tucker decomposition [170] with a nonnegative core tensor � and
nonnegative matrices J,BT and ST .

Since by lemma 13 the maximum likelihood estimation is equivalent to a cost function using the
Kullback-Leibler divergence, the nonnegative Tucker decomposition techniques satisfy lemma 14.
They can be represented explicitly in a concise form using mode products and mode matricizations
of tensors. The basic updates for nonnegative Tensor decomposition methods using the Kullback-
Leibler divergence cost function can be found in [170].

3.3.3 Estimation of model in subsection 3.2.3

We concentrate in this subsection on the "fuzzy" diffusion model with user-user and topic-topic
interactions in a single social network. The estimation procedure in "fuzzy" diffusions follow the
same ideas as in the preceding subsections, with a minor difference: one also needs to estimate the

10. Actually, the only necessary hypothesis is that the temporal kernel in the intensity for �i,k,n
t cannot depend on

i, k or n.
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topic model parameters. The topic model parameters are estimated during the Hawkes parameters
estimation phase, and are influenced by the Hawkes process itself. At the same time, the topic model
parameters also influence the Hawkes parameters estimation through the topic random variables Z.

The estimation step is thus performed in several steps in an iterative fashion: 1) estimate the
topic model parameters, with the Hawkes parameters F,G,B, b and µ fixed. 2) using the conditional
log-likelihood of X given Z and lemma 13, estimate the Hawkes parameters fixed in a cyclical way,
3) Repeat steps 1) and 2) until convergence.

We perform here only the estimation procedure for the Hawkes parameters, given the empirical
topic proportions Z fixed. The modified estimation procedure for the topic model parameters is
performed in appendix C, for the latent dirichlet allocation [34] and the author-topic [265] topic
models.

Let us recall that one needs first to handle the user-user interaction with care and perform the
dimensionality reduction J = FG, as in subsection 3.3.1. One must then introduce the convex
penalizations given by Eqn. 3.6 in the denominator of the multiplicative updates given by lemma
14.

When estimating the Hawkes parameters in "fuzzy" diffusion models, one must fix the topic
model random variables Z and maximize the conditional log-likelihood of X given Z. For the
model in subsection 3.2.3, we have that this conditional log-likelihood is given by

L(X|Z) = log

✓ Y

0tn⌧
�intn

◆
�

X

i

Z ⌧

0
�i,mt dt =

X

i

✓Z ⌧

0
log �itdX

i
t �

Z ⌧

0
�itdt

◆
.

As already proved in lemma 13, maximizing the Riemann-sum approximation of this conditional
log-likelihood is equivalent to minimizing the cost function

DKL(Y |�) =
X

i,t

dKL(Y
i
t |µi

+

X

k

bi,k
X

j

X

c

X

l

Fi,lGl,j�
j,c
t Bc,k). (3.11)

We thus use again lemma 14 to derive concise multiplicative updates for F,G,B, b and µ,
following the same ideas as in subsection 3.3.1:

Lemma 19. Define the dK ⇥ T matrix ⇢ = (I⌦G)� and the d⇥ T matrices ⇢k and ⇢k such that

⇢ki,t = ⇢i+(k�1)N,t and ⇢ki,t =
KX

k0=1

Bk0,k⇢
k0
i,t,

and define the T row vectors Y n
= (Y n

1 , Y n
2 , · · · , Y n

T ) and �n = (�
n
1 ,�

n
2 , · · · ,�

n
T ).

Let Fn be the d row vector Fn
= (Fn,1, · · · , Fn,d), i.e., the nth row of the matrix F , and let

(1�A)n be the nth row of the matrix (1�A).
We have the following multiplicative updates for Fn:

Fn  Fn �
PK

k=1 bn,k
�
[

Y n

�
n ](⇢k)T

�

PK
k=1 bn,k1(⇢

k
)

T
+ ⌘F (1�A)nGT

,

where ⌘F (1 � A)nGT , with ⌘F � 0, is a convex penalization term responsible for the constraint in
Eqn. (3.1)
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Proof. We have by lemma 14 applied to the cost function (3.11) that

@Fn,mDKL(Y |�) =
X

t

�
1� Y n

t

�
n
t

�X

k

bn,k(G�tB)m,k

=

X

k

✓X

t

bn,k
�
1� Y n

t

�
n
t

�
(G�tB)m,k

◆
.

The conclusion follows easily by rearranging the positive and negative terms.

We can apply the same principle to G, B, µ and b, yielding:

Lemma 20. Define by abuse of notation the N ⇥ T matrices Y and � such that

Yi,t = Y i
t =

dXi
t

�
and �i,t = �

i
t.

Define also the N ⇥ d matrices F k and the N ⇥ T matrices �k such that

F k
i,l = Fi,lbi,k and �

k
i,t =

X

k0
Bk0k�

i,k0
t .

We have the following multiplicative updates for G:

G G�
PK

k=1(F
k
)

T
�
[

Y
�
](�

k
)

T
�

PK
k=1(F

k
)

T
1(�

k
)

T
+ ⌘GF T

(1�A) + ⌘G
,

where ⌘G is a d ⇥ N matrix composed by Lagrange multipliers solution of the nonlinear equation
G1 = 1 and ⌘GF T

(1�A), with ⌘G � 0, is a convex penalization term responsible for the constraint
in Eqn. (3.1).

Lemma 21. Let Y i
= (Y i

1 , · · · , Y i
T ) and �i = (�

i
1, · · · ,�

i
T ) be T column vectors and Bk be the kth

column of B.
Define the K ⇥ T matrices ⇣i such that

⇣ik,t =
X

j

Jij�
j,k
t .

We have the following multiplicative updates for Bk:

Bk  Bk �
PN

i=1 bi,k⇣
i
[

Y i

�
i ]

PN
i=1 bi,k⇣

i
1 + ⌘kB

,

where ⌘kB is the kth column of the matrix ⌘B, composed by the Lagrange multipliers solution of the
nonlinear equation B1 = 1.

Lemma 22. Let Y n
= (Y n

1 , · · · , Y n
T ) and �

n
= (�

n
1 , · · · ,�

n
T ) be T row vectors and bn be the nth

row of b.
Define the K ⇥ T matrices  n such that

 

n
k,t =

X

l,c

Jn,l�
l,c
t Bc,k = (J�tB)n,k.
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We have the following multiplicative updates for bn:

bn  bn �
[

Y n

�n ]( 
n
)

T

1( 

n
)

T
+ ⌘nb

,

where ⌘nb is the nth row of the matrix ⌘b, composed by the Lagrange multipliers solution of the
nonlinear equation b1 = 1.

Lemma 23. Define by abuse of notation the N ⇥ T matrices Y and � such that

Yi,t = Y i
t =

dXi
t

�
and �i,t = �

i
t.

We have the following multiplicative updates for µ:

µ = µ�
[

Y
�
]1

1

T
1

= µ�
[

Y
�
]1

T
.

Remark: We derive in [211] an approximated estimation procedure based on weighted nonneg-
ative matrix factorization techniques [36] for F,G,B, µ and b, using the convexity of dKL and the
logarithm in the maximum likelihood of X. This procedure maximizes a function that bounds by
below the conditional log-likelihood of X.

Algorithm 2 - Hawkes estimation procedure
1: Input: jumps dX, step size �, temporal kernels (�m)m2{1,··· ,M}
2: Discretize [0, ⌧ ] into T bins of size �
3: Calculate normalized jumps Y =

dX
� , convolution tensors � and discretized intensities �

4: Initialize Hawkes matrices set X (for example, in a user-user topic-topic model with predefined
topics X = {F,G,B, S, µ})

5: while Matrices in X have not converged do
6: if In a "fuzzy" diffusion model then
7: With all Hawkes matrices X fixed, run round of topic model estimation as dictated by

appendix C
8: end if
9: for matrix x in X do

10: With all other matrices fixed (and topic model parameters as well, if in a "fuzzy" diffusion
model), update x as

xn+1  xn �
r�

xDKL(Y |�)|xn

r+
xDKL(Y |�)|xn

,

11: end for
12: end while
13: Output: Hawkes matrices X and topic model parameters

3.4 Additional remarks

This section is concerned with further explanations and extensions of the Hawkes information
diffusion framework developed in this chapter. The discussion and explanations regard solely the
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Hawkes process, which means that it is not concerned with aspects on topic models. They are
discussed at length in appendix C.

We start by calculating, as an illustrative example, the complexity of the multiplicative updates
given by lemma 14 applied to the estimation of the model in subsection 3.2.1, which were derived
in matrix form in subsection 3.3.1.

3.4.1 Complexity of the estimation procedure in subsection 3.3.1

As shown in subsection 3.3.1, the nonnegative tensor decomposition updates for the model in
subsection 3.2.1 can actually be written in matrix form, which in this case give rise to modified
nonnegative matrix factorization updates.

Nonnegative matrix factorization techniques are multiplicative updates, using only entrywise
operations and matrix products11, which are fast and can be performed in a distributed fashion very
easily. Hence, at each step of the cyclic estimation procedure, we have the following complexity for
the updates, written in terms of the number of users N , the number of topics K, the factorization
dimension d and the number of time discretization steps T :

Hence, at each step of the cyclic estimation procedure, we have the following complexity for the
updates:

3.4.1.1 Complexity for F

(1) First we need to calculate ⇢ = (IK⇥K⌦G)�, which is of complexity O(dNKT ) if the structure
of the Kronecker product is exploited.

(2) Then, following Eqn. (3.7), we have that the complexity for the numerator update of F
is K ⇥ O(dNT ) = O(dKNT ), while for the denominator is O(dKNT ) + K ⇥ O(dN2

) =

O(dKNT + dN2
) due to the penalization term (one can see that the real complexity of this

term is much lower since A is in practice a sparse matrix).

Thus, the complexity of updating F is O(dKNT + dKN2
).

3.4.1.2 Complexity for G

(1) First we need to calculate �k for all k, which is of complexity O(NK2T ).

(2) Then, following Eqn. (3.8), we have that the complexity for the numerator update of G is
K ⇥O(dNT ) = O(dKNT ) if done in the proper order (there are two matrix products in the
numerator this time), while for the denominator it is O(dKNT+dN2

) due to the penalization
term.

Thus, the complexity of updating G is O(K2NT + dKNT + dKN2
).

Remark: For the complexity of G and B, we also have to take into consideration the calculation
of the Lagrange multipliers ⌘G and ⌘B. These multipliers are calculated using convex optimization
techniques12, whose complexity is not greater than the complexity of the multiplicative updates for
G or B.

11. We make use of the fact that the complexity of a product of two matrices of sizes n⇥m and m⇥ t is at most
O(nmt).

12. Since we need to find the zero of the function h(⌘) =

1
a+⌘

.
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3.4.1.3 Complexity for B

(1) First we need to calculate ⇣i for all i 2 V , which is of complexity O(dNKT ) if done using the
fact that J = FG.

(2) Then, following Eqn. (3.9), we have that the complexity for the numerator and denominator
updates of B is N ⇥O(K2T ) = O(K2NT ).

Thus, the complexity of updating B is O(dNKT +K2NT ).

3.4.1.4 Complexity for µ

Following Eqn. (3.10), we have that the complexity for µ is simply O(dKNT ), given by the
calculation of �, which is the lowest complexity of all updates.

3.4.1.5 Total complexity of the updates

We can clearly see that the calculation of F is of complexity O(dKNT + dKN2
), that of G is

of complexity O(K2NT + dKNT + dKN2
), that of B is of complexity O(dKNT + K2NT ) and

that of µ is of complexity O(dKNT ). Hence the complexity to update at each cyclical estimation
step is

O(K2NT + dKNT + dKN2
).

Remark: It is worthy mentioning that the quadratic complexity of O(dKN2
) due to the pe-

nalization terms can be reduced in several ways: first, the term (1 � A) appearing in the matrix
products (1 � A)GT and F T

(1 � A) is normally sparse for real-life social networks. Second, one
may use surrogates for the matrix (1 � A), for example dividing the graph G into communities
beforehand and using the communities as representatives for the users. Third, one may use simply
the initial implementation on F and G during the estimation steps, since a strictly positive entry
for F and G continues to be strictly positive during the entire procedure. Fourth, since the con-
vex penalizations are matrix products, one can calculate them in a distributed fashion, reducing
drastically the complexity.

Thus, if we assume K ⌧ N , K ⌧ T and d ⌧ N and set aside the quadratic complexity from
the penalization terms in F and G, we achieve the following complexity

O(dKNT )

which is linear in every parameter, and dictated by N .

3.4.1.6 Complexity without the factorization J = FG

Following the same calculations as for the complexity of F using Eqn. (3.7), we get that the
complexity for J is K ⇥O(N2T ) = O(KN2T ).

By the same token, every time we factorize J = FG to compute the other multiplicative updates
for B and µ, we have to calculate �, which has a complexity of O(dKNT ). If we cannot factorize
J , the complexity becomes O(KN2T ), which is much larger than O(dKNT ) since d⌧ N .

This proves that the dimensionality reduction J = FG is crucial to obtain a low complexity in
the data.
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3.4.2 Initial condition

One known setback in the nonnegative tensor factorization framework is the convergence to
local minima of the cost function DKL(Y |�), which means that a good initial condition is crucial
for the estimation. There are results in the NMF literature that illustrate how to achieve a better
estimation by constructing an improved initial condition (see [6, 42, 305]), nevertheless they do not
work in our framework: our cost function is with respect to DKL(Y |�) and the frameworks in [6, 42]
do not apply if we consider finding good initial conditions for J = FG, B and µ at the same time.
Moreover, we do not know the true value of J = FG, our only proxy is the adjacency matrix A,
which is binary (Ai,j 2 {0, 1}) and make it very hard to use the methods in [42, 305].

We use random initial conditions for B and µ, and we factorize A into A = F0G0 using a
standard NMF algorithm, with F0 2 MN⇥d(R+

) and G0 2 Md⇥N (R+
). We use then F0 as the

initial condition for F and G0 as the initial condition for G.
That being said, different methods for the random initialization of the Hawkes parameters can

be applied at one’s desire, such as simulated annealing methods [171, 294], rank-by-rank (greedy)
heuristics [294], multilayer techniques [65, 63], particle based and nature-inspired methods [164,
165, 166], etc.

3.4.3 Alternative estimation methods

The problem of nonnegative tensor factorization (or more specifically nonnegative matrix fac-
torization) has been studied for a long time now, with a vast and varied research literature.

The NTD multiplicative updates used in this chapter are simply one of the existing methods
for NTD estimation. The reasons for the use of multiplicative NTD updates are: they are easy
to implement, can be implemented in a distributed fashion, have a low (even linear) complexity
on the data, provide an easy way to introduce penalizations and constraints, and they provide a
mathematically solid and unified estimation framework for the Hawkes-based information diffusion
models.

Other methods wildly used are: projected gradient and alternate least-square algorithms [251,
62, 207], fixed-point alternating least-squares algorithms [64, 220], quasi-Newton algorithms [65,
315], multilayer techniques and hierarchical methods [250, 65, 61], etc. The reader has the excellent
review of these methods in [63].

3.4.4 Extensions

This subsection is dedicated to the discussion of extensions of this information diffusion frame-
work to accommodate different patterns on the data, and different behaviors of the model.

3.4.4.1 Nonparametric choice of the community structure parameter d

Our estimation method, which is based on maximum likelihood estimates of the point process
X and nonnegative matrix factorization (NMF) techniques, requires the NMF parameter d. This
parameter is intimately related to the community structure of the influence matrix J , as in [182],
and is unfortunately ad-hoc, so it must be learned beforehand.

Tan and Févotte, however, derive an automatic way of finding the optimal d during the NMF
updates in [277]. They do so by considering the NMF procedure for the �-divergence (for which
the Kullback-Liebler divergence is a particular case) as a Bayesian estimation of an underlying
probabilistic model.
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One can thus introduce this automatic detection step into algorithm 2 in order to create a more
data-driven estimation procedure for the Hawkes parameters.

3.4.4.2 Introduction of seasonality in the intrinsic intensity µ

It may be desirable to introduce periods in which people behave differently and thus broadcast
messages differently; for example, users probably have a higher intrinsic rate during the lunch hour
or the evening compared to the late night, since users are most certainly sleeping.

That being said, let us define nonoverlapping periods ⌧n 2 [0, ⌧ ] such that ⌧i \ ⌧j = ; andS
n ⌧n = [0, ⌧ ], following this practical example: let ⌧1 be all the periods [0, 6h] for every day in

[0, ⌧ ], ⌧2 = (6h, 12h], ⌧2 = (12h, 18h] and ⌧2 = (18h, 24h]. We have divided thus [0, ⌧ ] into four
regions, where each region is responsible for one quarter of every day in [0, ⌧ ].

Let 1⌧n be the T vector such that 1⌧nt = I{�(t�1)2⌧n} and µ⌧n be the intrinsic rate associated with
the period ⌧n. Thus, 1 =

P
n 1

⌧n and we can apply our NTF procedure for each µ⌧n separately,
since

DKL(Y |�) = DKL(Y |µ+ SE) = DKL(Y |
X

n

µ⌧n + SE),

where SE accounts to the self-excited part of the intensity.
For example, for the estimation procedure of the model in subsection 3.2.3, we have the following

updates for the periods ⌧n:

µ⌧n  µ⌧n �
[

Y
�
]1

⌧n

h1, 1⌧ni .

If dividing the time frame [0, ⌧ ] into different periods is not sufficient to account for temporal
effects in the data and one must adopt a nonlinear behavior for the intrinsic rate µ (which is
equivalent to consider the underlying Poisson process that generates the self-exciting cascades [141,
44] to be inhomogeneous), one can incorporate a nonparametric estimation of the intrinsic rate µ
as in Lewis and Mohler [198].

3.4.4.3 Estimation of the temporal kernel

Another important part of the Hawkes modeling and estimation procedure is the shape of the
temporal kernels (�m)m2{1,··· ,M}. The temporal kernels are responsible for the type of temporal
interactions that broadcasts have when cascading through the social networks.

These interactions can appear in various forms, for example exponential temporal kernels imply
short-range interactions and power-law temporal kernels imply long-range interactions. The para-
metric kernels introduce timescale parameters, which may be advantageous to retrieve from data,
instead of being an input of the model. See subsection 3.2.4 for a more detailed discussion.

However, when estimating the temporal kernels �m, the convolution �m ⇤ dX must be recalcu-
lated13 at each NTD cyclical update step, which increases the running time of the algorithm.

There are two alternatives to estimating the temporal kernels: parametric and nonparametric
methods.

• Parametric kernels: they belong to basically two families of functions, exponential [245, 246,
310] and power-law [71] functions. They can be estimated with the maximization of the

13. When estimating exponential kernels, one could calculate �m ⇤ dX only up to a fixed lag, as in [310], which
speeds up the algorithm. This is due to the fact that exponential kernels have light tails, which give more
importance to the immediate past than the far away past.
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Hawkes log-likelihood [15], with expectation-maximization methods [198, 221, 319], or with
quadratic contrast minimization methods [18, 19].

Expectation-maximization methods are preferred over likelihood maximization methods, since
maximum likelihood methods recur to numerical optimization algorithms and are costlier than
their counterparts. Some expectation-maximization algorithms for exponential and power-law
kernels are derived in appendix B, regarding the model in subsection 3.2.1.

Recently, however, Bacry et al. [18, 19] developed new concentration inequalities for quadratic
contrast minimization in order to derive more data-driven, low-rank and sparse structures for
information cascades.

• There are also attempts to derive nonparametric estimation of kernels for Hawkes processes,
as in Lewis and Mohler [198], Al Dayri et al. in [80], Bacry and Muzy [17], an many more
[262, 135, 16].

Lewis and Mohler derive in [198] a kernel density estimation method and a maximum penalized
likelihood estimation method, which results in Euler-Lagrange equations for the temporal
kernel (and the intrinsic rate as well).

Hansen et al. [135], Reynaud-Bouret and Schbath [262], and Reynaud-Bouret et al. [261]
develop nonparametric estimation techniques for the temporal kernels in Hawkes processes
using quadratic contrast minimization and oracle inequalities, with applications to neurobiol-
ogy. It is worthy mentioning that the benefits of using contrast minimization is that it allows
the estimation of nonlinear models (which can include negative temporal kernels) [135, 262]
and the discovery of the "best" Hawkes process in accordance to the data (it may be that the
assumption of data behaving as a multivariate Hawkes process is simply wrong).

Bacry and Muzzy [17] and Bacry et al. [16] show that a Hawkes process can be characterized
by its first and second order statistics, and derive nonparametric estimates for the temporal
kernels based on a Wiener-Hopf system [237, 13].

The problem with nonparametric kernel estimation is the high dimension of our Hawkes
processes, i.e., N � 1. These methods have at least a quadratic complexity in N , which
make them quite slower than the parametric alternatives, such as expectation-maximization
methods, and impractical for real-life social networks.

3.4.4.4 Extension of dynamic/temporal networks

In many cases links on social networks are severed or acquired, which means that the social
network in question may be a dynamic object [154], instead of a static one. Let us consider the
model in subsection 3.2.1 and assume, without any loss of generality, that the topic-topic interaction
matrix B remains static, for the sake of simplicity.

One has thus P increasing periods of time (⌧p)p2{1,··· ,P} such that

• ⌧p ⇢ [0, ⌧ ], ⌧p0 \ ⌧p = ;,

•
S

p ⌧p = [0, ⌧ ] and

• sup ⌧p = inf ⌧p+1.

We also assume that the adjacency matrices for each time period ⌧p, denoted by Ap, satisfy Ap 6= Ap0

if p 6= p0, i.e., each period of time represents a change on the underlying social structure. Let
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• 1

⌧p be the N ⇥ T matrix such that 1

⌧p
i,t = I{(t�1)��inf ⌧p},

• pt = {p 2 {1, · · · , P} | t 2 ⌧p} be the unique index p such that t 2 ⌧p,

• Pt =
S

st ps be all time period indices until time t and

• j
p i means that user j can influence user i on the time period ⌧p.

The intensity in this model, as already studied before, is thus14

�i,kt = µi,k
+

X

c

Bc,k

Z �t

0

X

j
ps i

Jps
i,j�(t� s)dXj,c

s

= µi,k
+

X

c

Bc,k

X

p2Pt

Z t^sup ⌧p

inf ⌧p

X

j
p i

Jp
i,j�(t� s)dXj,c

s ,

which in matrix form is given by (according to subsection 3.2.1)

�t = µ+

X

p2Pt

Jp�
p,t
B,

where the N ⇥K matrices �p,t satisfy

�
p,t
j,c =

8
><

>:

R (t�1)�^sup ⌧p
inf ⌧p

�(t� s)dXj,c
s if (t� 1)� 2 ⌧p

0 otherwise.

By lemma 13, we have that our maximum likelihood estimation algorithm for F p, Gp, B and µ
is found by seeking the minimum of

DKL(Y |�) =
X

i,k,t

dKL(Y
i,k
t |µi,k

+

X

p2P(t�1)�

(F pGp�
p,t
B)i,k).

Define the N ⇥ T matrices Y p,k and �p,k, and the d⇥ T matrices ⇢p,k and ⇢p,k, such that

Y p,k
i,t = Y i,k

t .I{(t�1)��inf ⌧p}, �
p,k
i,t = �

i,k
t .I{(t�1)��inf ⌧p},

⇢p,ki,t =

X

j

Gp
i,j�

p,k
j,t and ⇢p,ki,t =

KX

k0=1

Bk0,k⇢
p,k0
i,t .

Using lemma 14 we have that the multiplicative updates for F take the form

F p  F p �
PK

k=1[
Y p,k

�
p,k ](⇢

p,k
)

T

PK
k=1 1

⌧p
(⇢p,k)T + ⌘pF (1�Ap

)(Gp
)

T
,

with similar multiplicative updates for Gp. The multiplicative updates for B differ only in the
auxiliary matrices, and those for µ remain unaltered.

14. One may see that this dynamical framework for J is similar to the convolutive nonnegative matrix factorization
framework of [272, 308].
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One may also be interested in finding the ensemble (Jp
)p2{1,··· ,P} the smoothest as possible

(if one sees the temporal function p 7! Jp as the way the adjacency matrix J evolves through
time). One may apply L1 or L2 regularization techniques during the estimation of (F p

)p2{1,··· ,P}
and (Gp

)p2{1,··· ,P}.
The regularization procedure may occur in at least two different ways:

(i) The first way is to use a Tikhonov regularization g on the derivative of p 7! Jp, as g(F,G) =

⌘
2

P
0p<P ||Jp � Jp+1||2 = ⌘

2

P
0p<P ||F pGp � F p+1Gp+1||2. We have derivatives15

rF pg(F,G) = ⌘(2Jp � Jp�1 � Jp+1
)(Gp

)

T
= ⌘(2F pGp � Jp�1 � Jp+1

)(Gp
)

T

rGpg(F,G) = ⌘(F p
)

T
(2Jp � Jp�1 � Jp+1

) = ⌘(F p
)

T
(2F pGp � Jp�1 � Jp+1

),

with obviously J�1
= 0 and JP+1

= 0. It has positive part

r+
F pg(F,G) = 2⌘Jp

(Gp
)

T
= 2⌘F pGp

(Gp
)

T

r+
Gpg(F,G) = 2⌘(F p

)

TJp
= 2⌘(F p

)

TF pGp

and negative part

r�
F pg(F,G) = ⌘(Jp+1

+ Jp�1
)(Gp

)

T

r�
Gpg(F,G) = ⌘(F p

)

T
(Jp+1

+ Jp�1
).

It is thus easy to incorporate this step into the cyclical estimation algorithm 2 using lemma
14 and cost function DKL(Y |�) + g(F,G).

(ii) The second way is to first estimate the base matrix J0 without regularization (which makes
J0 the "true"or "expected" value of J), and then at each time period ⌧p+1 we apply a reg-
ularization with respect to the past period ⌧p, with g(F p+1, Gp+1

) =

⌘p

2 ||Jp+1 � Jp||2 =

⌘p

2 ||F p+1Gp+1 � Jp||2 as regularizing function. We have derivatives

rF p+1g(F p+1, Gp+1
) = ⌘p+1

(F p+1Gp+1 � Jp
)(Gp+1

)

T

rGp+1g(F p+1, Gp+1
) = ⌘p+1

(F p+1
)

T
(F p+1Gp+1 � Jp

),

which have positive part

r+
F p+1g(F

p+1, Gp+1
) = ⌘p+1F p+1Gp+1

(Gp+1
)

T
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Gp+1g(F

p+1, Gp+1
) = ⌘p+1
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TF p+1Gp+1

and negative part
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T
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Gp+1g(F
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(F p+1
)

TJp.

It is thus easy to incorporate this step into the cyclical estimation algorithm 2 with lemma
14 by beginning with F 0 and G0 (which do not require this regularization), and using the old
values of F p and Gp to estimate the new F p+1 and Gp+1.
Remark: One can see that this choice of regularization is equivalent (at least in principle) to
assume that Jp+1

= Jp
+ �p, where �p is the derivative of p 7! Jp.

15. One can easily realize that the operation p ! 2J

p � J

p+1 � J

p�1 is the numerical second derivative of the
function p 7! J

p.
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3.4.4.5 Nonparametric choice of K, number of topics, in "fuzzy" diffusion models

This part is the only extension regarding topic models, and is discussed here instead of appendix
C because it also affects the Hawkes parameters.

Yang and Zha also comment in [310] that a nice extension of the topic would be to incorporate
a nonparametric way of choosing the number of topics for the Hawkes model, i.e., the value of K.
The natural mathematical framework for an unbounded (as yet to be discovered) number of topics
is developed by Delattre et al. in [84], using infinite dimensional Hawkes processes.

The normalization
P

k Bc,k = 1 allows one to easily satisfy the existence conditions in [84] of
infinite dimensional Hawkes process for the model proposed, so if ones uses the infinite dimensional
framework for Hawkes processes developed in [84] together with a topic model that accommodates
a nonparametric selection of the number of topics, as in [281, 280], one can produce even more
coherent and data-driven models and methods for information diffusion in the Hawkes framework.

3.5 Numerical examples

In this section we describe some numerical examples of this information diffusion framework, or
more specifically, exemples of the model in subsection 3.2.1.

We have four different datasets, two simulated with the thinning algorithm16 developed by Ogata
in [241] and two real-life datasets:

• The first example is a synthetic dataset of a 2-clique uniformly random network with N = 100

(each complete clique having 50 nodes), K = 10 and an exponential temporal kernel, and
concerns figures 3.1, 3.2, 3.3 and 3.4.

We used d = 51 for our factorization J = FG, with a linear penalization (as in lemma 15)
with constants ⌘F = ⌘G = 10

3. We did not use cross-validation techniques to find optimal
penalization parameters ⌘F and ⌘G, since the algorithm is robust enough with respect to them.

Figure 3.1 is the heatmap of J = FG, where the left heatmap is the estimated J = FG and
the right heatmap is the true value for J . One can clearly see that our algorithm retrieves
quite well the structure behind the true J , i.e., two distinct cliques.

Figure 3.2 is the heatmap of the squared difference of the true J and its estimation ˜J , i.e., for
each true entry Ji,j and estimated entry ˜Ji,j we have plotted the differences (Ji,j � ˜Ji,j)

2 and
(Ji,j � ˜Ji,j)

2/J2
i,j (when Ji,j is nonzero).

Figure 3.3 refers to the squared difference of B and its estimation and figure 3.4 refers to the
squared difference of the true µ and its estimation, as in figure 3.2.

• The second example is again a synthetic dataset, simulated for a 2-clique uniformly random
network with N = 20 and K = 1 and exponential temporal kernel, and concerns figures 3.5
and 3.6.

We compare our estimation choosing d = 10 with the estimation algorithm in [310] (with the
obvisouly simplification of K = 1 and no language model), which models memes propagation
in a social network using a Hawkes model similar to ours (identical to ours when K = 1),

16. The thinning algorithm simulates a standard Poisson process Pt with intensity M >

P
i,k �

i,k
t for all t 2 [0, ⌧ ]

and selects from each jump of Pt the Hawkes jumps of X

i,k
t with probability �

i,k

t

M
, or no jump at all with

probability M�P
i,k

�
i,k

t

M
.
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but making use of an auxiliary language model for the memes labeling and not using the
factorization J = FG as in subsection 3.3.1; one can see that our algorithm (on the left of
figure 3.5) outperforms the algorithm of [310] not only on the estimation17 of μ, but also on
the estimation of J , retrieving the community structure when the algorithm in [310] did not.
Moreover, the algorithm of [310] needs an ad-hoc parameter ρ to control the sparsity of the
network, which is not needed in our case.

• The third example is a Game of Thrones18 (GOT) dataset with the dialogues of the pilot
episode, with their respective timestamps and characters. We assumed that every character
could influence all the others, and we estimated the characters hidden influence matrix J using
K = 1, i.e., we are only concerned with the characters’ influence on each other without any
topic distinction. The heatmap of J is plotted on figure 3.7, and shows that our estimation
algorithm indeed performs a community detection procedure, by dividing the influence graph
into the two most famous families Stark and Lannister.

• The last example is a MemeTracker dataset, with different topics and world news for the 5, 000
most active websites from 4 million sites from March 2011 to February 201219. We used the
5 most broadcasted memes, i.e., K = 5, leading to the websites influence graph in figure 3.8.
This graph was plotted with the websites having the 10% largest outdegrees20 and shows the
influence of websites on one another. The thicker the edge lines, the larger the influence, and
the larger the website’s name, the larger the overall influence of the website (the sum of its
influences).

3.6 Conclusion

We presented in this chapter a general framework to model information diffusion in social net-
works based on the theory of self-exciting point processes - linear multivariate Hawkes processes.
Hawkes processes were already successfully introduced in a multitude of domains, such as neuro-
science, finance, seismology, and even social sciences, and present themselves as a natural way to
model information cascades in social networks.

The framework developed here exploits the real broadcasting times of users - a feature that
comes with no mathematical overhead since we do so in the theory of point processes - which
guarantees a more realistic view of the information diffusion cascades.

Our framework takes into consideration every possible type of influence between users and
contents in social networks, under a variety of assumptions, which provides a deeper and much
more general analysis of hidden influences in social networks.

This framework is also interesting for several other reasons: first, it allows one to use predefined
topics (labeled data) and unknown topics (unlabeled data). The overhead of introducing topic

17. One can clearly see that our algorithm is able to detect the different sets of values for μ, although with a
high variance. This is completely understandable, because a linear Hawkes process is equivalent to an Poisson
cluster process (see [141]), where immigrants arrive following a Poisson process with rate μ. This means that
the algorithm estimates a rate μ of a Poisson process, which is known to have (optimal) variance μ itself (see
[92]), hence a larger rate implies a larger variance. Of course the estimation improves when τ → ∞, since for
J fixed this is equivalent to a maximum likelihood estimator (MLE), which is consistent and asymptotically
normal (see [240]); we used in this example a rather small τ due to performance reasons.

18. http://en.wikipedia.org/wiki/Game_of_Thrones.
19. Data available at http://snap.stanford.edu/netinf.
20. This means that we have chosen the 9th decile of nodes regarding the distribution (

∑
i Ji,j)j∈V .

http://en.wikipedia.org/wiki/Game_of_Thrones
http://snap.stanford.edu/netinf
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Figure 3.1: Heatmap of J = FG for 2-clique network of 100 nodes.

Figure 3.2: Heatmap of L2 differences (absolute and relative) between entries of true J and estimated
J .

models into the Hawkes models is minimal and allows a much more data-driven way of discovering
the hidden influences on social networks, for which modified collapsed Gibbs sampling and varia-
tional Bayes techniques are derived; moreover, the generality of these topic models also simplifies
the extension of our framework to any kind of data modeling, such as hierarchical topic models,
semi-supervised topic models, nonparametric topic models, spatial topic models, etc. Second, this
framework easily allows dynamic social networks and/or various temporal effects of users intrinsic
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Figure 3.3: Heatmap of L2 differences (absolute and relative) between entries of true B and esti-
mated B.

Figure 3.4: Heatmap of L2 differences (absolute and relative) between entries of true µ and estimated
µ.

rate of diffusion to be investigated and discovered.
Our estimation algorithms do not depend on the temporal kernel of the underlying Hawkes

process, and a variety of kernels can be used to model different kinds of temporal interactions, for
example: close-range interactions with the exponential kernel and long-range interactions with power
law kernels. The estimation algorithms remain robust and fast no matter what, and parametric
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Figure 3.6: Plot of µ for comparison with
[310].

Figure 3.7: Game of Thrones influence heatmap.

estimation algorithms (or even nonparametric ones) for these temporal kernels may also be coupled
in our estimation procedure.

The multiplicative updates stemming from the nonnegative tensor factorization are also appeal-
ing: the multiplicative updates derived from the optimization problem are easy to implement, even
in a distributed fashion - they are basically matrix products and entrywise operations - and the
complexity of the algorithm is linear in the data, allowing one to perform estimations in real-life
social networks, especially if some of the parameters are already known beforehand.
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Figure 3.8: Sites influence graph.

One can also notice that by performing a dimensionality reduction during our nonnegative tensor
factorization estimation, we not only estimated the influence that users have on one another but we
also acquired information on the communities of the underlying social networks, since we were able
to factorize the hidden influence graphs. Here, we used heavily the self-exciting model to retrieve
the hidden influence graphs, which is different from other graphs generated by different methods;
for example, one could weight the communication graph with the number of messages from one user
to its neighbors, but by doing so one looses the temporal character. Moreover, the graphs found by
performing this kind of technique are under the assumption that messages influence directly other
users, which may not be the case. In our Hawkes framework, the influence is a byproduct of the
interaction of users and information, and therefore their influence is probabilistic - it may or may
not occur at each broadcast.



CHAPTER 4

Trend detection using Hawkes processes

"I don’t set trends. I just find out what they are and
exploit them."

— Dick Clark

4.1 Introduction

We focus now, in the last chapter of this thesis, on a particular instance of information diffusion:
the discovery of trendy topics being disseminated in a social network. The trend detection algo-
rithm developed here stems from a particular instance of the general information diffusion Hawkes
framework presented in chapter 3.

Since we are dealing with social networks, we cannot use classical trend detection algorithms
[173, 300], as they do not grasp the full relationship between users and contents in the social network.
This idea of leveraging social and textual contents is quite recent, with works as [50, 276] shedding
some light into the matter.

In order to fully exploit the social ties between users and information in social networks, we
base our trend detection algorithm on information diffusion models [120, 169], and more specifically
on a Hawkes-based model for information diffusion in social networks [71, 201, 310]. The Hawkes-
based model allows: 1) leveraging on the knowledge of the influences between users and contents,
2) to fully explore the real time of broadcasts, 3) leveraging on the knowledge of users intrinsic (or
exogenous) rates. Moreover, the Hawkes intensity represents the propensity of users to broadcasts
topics at each time, thus serving as proxy for the activity level of topics and users in the social
network [99].

We assume that there exist different topics being disseminated in a social network and we
employ the Hawkes process to count the number of broadcasts of these topics by each user in
the social network. We say that a topic is trendy if it has a rapid increase in its broadcasting
Hawkes intensity. These topic intensities are combinations of the users broadcasting intensities,
where each user contributes to the topic intensities with a measure of his impact on the network,
proportional to his network outgoing eigenvector centrality [234]. A trendy topic has then a burst
in its broadcasting in the network, which corresponds to an increase in its broadcasting intensity,
or a peak. Our algorithm thus seeks the "peaks" in the intensity of the underlying Hawkes process
in order to determine the topics that are most likely to be trendy.

The difference between the proposed trend detection algorithm and one that looks solely at the
topics with the largest number of broadcasts is that we aim to detect those topics that are trendy but
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do not necessarily have a large number of broadcasts. Indeed, the most straightforward approach
would be to look at the point process intensities and choose those topics with the highest intensities.
The approach used in this chapter is different: we do not compare topics between themselves, but
rather compare the topic intensities against their expected maximum values at each time, meaning
that topics that do not have yet large intensities can indeed be trendy. Still, our algorithm is also
able to capture the trendiness coming from large intensities.

The proposed method bares some resemblance with classical works on trend detection. For ex-
ample, as mentioned above, our algorithm uses Hawkes processes [140, 208] to model the broadcast-
ing/posting times of messages in a social network, which is similar to the infinite-state automaton
approach of Kleinberg [173]; the difference between both approaches is how to deal with the intensity
stemming from the broadcasting activity: while Kleinberg searches the periods in time with a high
frequency of broadcasts about similar contents, we study a Hawkes intensity for broadcasts about
contents that can increase even by broadcasted messages about different ones. Since the influences
of users and topics in our information diffusion Hawkes model generates correlation in broadcasts
between different contents, the work in this chapter also relates through the underlying Hawkes
intensity to the work of Wang et al. [300], where the authors propose a probabilistic algorithm
that discovers correlated bursty patterns and their periods across text streams; the main difference
besides the underlying information diffusion model is that we assume the broadcasts to be about
specific predefined topics, whereas Wang et al. use text mining techniques to unravel the topics,
defined as probabilities over vocabularies.

In comparison to other works on trend detection in social networks, our framework resembles
the one proposed by Cataldi et al. [50], where the authors devise an algorithm to detect real-time
emerging topics in Twitter firstly by extracting the contents of the tweets with a model for their life
cycle and secondly by considering the social importance of the sources of the tweets, using the Page
Rank algorithm. It also resembles the one proposed by Takahashi et al. [276], where the authors
derive an algorithm focusing on the social aspects of social networks by dynamically generated
links between users, and propose a stochastic model for behavior of a generic social network user,
detecting the emergence of a new topic. Again, the major difference between these works and this
chapter is the underlying model of broadcasts and the fact that our methodology does not rely
on text mining techniques since the content of each broadcasted message is assumed to be already
labeled.

To the best of our knowledge, our proposal is the first trend detection algorithm that uses
point processes and stochastic control techniques. These techniques are successfully used in many
other fields, and are complementary tools to machine learning and text mining techniques, hence
providing more diversified treatments for this kind of problem.

The remainder of this chapter is organized as follows. In section 4.2, we recall the adopted
model of information diffusion in the social network using Hawkes processes. In section 4.3, we
define trendiness in our context, detail our trend detection algorithm and derive the trend indices
for topics of messages broadcasted in the social network. In section 4.4, we illustrate our algorithm
using two different datasets. Section 4.5 eventually concludes the chapter.

4.2 Information diffusion

We start the theoretical study of our trend detection algorithm by adopting a model for infor-
mation diffusion in social networks. This model is based on an instance of the Hawkes framework
for information diffusion studied in chapter 3.
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4.2.1 The Hawkes-based model

As discussed during this thesis, Hawkes-based information diffusion models are widely adopted
to model information diffusion in social networks [71, 201, 310]. This is due to several reasons,
which are nonexhaustively listed here:

• They are point processes [74], and as such they are designed to model discrete events in
networks such as posting, sharing, tweeting, liking, digging, etc.

• Hawkes processes are self-excited processes, i.e., the probability of a future event increases
with the occurrence of past events.

• They possess a simple and linear structure for their intensity (the conditional expectation of
an occurrence of an event, at each time).

• They present simple maximum likelihood formulas [74, 241], which facilitates a maximum
likelihood estimation of the parameters.

• A linear Hawkes process can be seen as a Poisson cluster process [141], which permits the
distinction of two regimes: a stationary (or stable) regime in which the intensity processes has
a stationary and nonexplosive version, and a nonstationary (or unstable) regime, in which the
process has an unbounded number of events (see [140, 44] for details).

• It easily allows extensions from the basic model, such as multiple social networks [172], dy-
namic/temporal networks [154], seasonality and/or time-dependence for the intrinsic diffusion
rate of users [292], etc.

Thus, after listing the properties of Hawkes processes that are interesting when modeling infor-
mation diffusion in social networks, we restate a detailed description of the adopted information
diffusion model in this paper, which is the information diffusion model of subsection 3.2.1.

Again, we represent our social network as a communication graph G = (V,E), where V is the
set of users with cardinality ]V = N and E is the edge set, i.e., the set with all the possible
communication links between users, as in chapter 3. We assume this graph to be directed and
weighted, and coded by an inward adjacency matrix J such that Ji,j > 0 if user j is able to
broadcast messages to user i, or Ji,j = 0 otherwise. If one thinks about Twitter, Ji,j > 0 means
that user i follows user j and receives the news published by user j in his or her timeline.

We assume that users in this social network broadcast messages (post, share, comment, tweet,
retweet, etc.) during a time interval [0, ⌧ ]. These messages represent information about K pre-
defined1 topics (economics, religion, culture, politics, sports, music, etc.), and at each event the
broadcasted message concerns one and only one specific topic among these K different ones.

When broadcasting, users may influence others to broadcast. For example: when tweeting,
the user’s followers may find the tweet interesting and retweet it to their friends and followers,
generating then a cascade of tweets.

We assume that these influences are divided into two categories: user-user influences and topic-
topic influences. For example, during these retweeting cascade, users may react differently to the
content of the tweet in question, which of course may imply a different influence of this particular
tweet among users. By the same token, the followers in question may respond differently depending
on the broadcaster, since people influence others differently in social networks.

1. In our work, we rely on text mining techniques only to classify the broadcasted messages into different topics.
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The influences are coded by the N ⇥N matrix J and the K⇥K matrix B, such that Ji,j � 0 is
the (possible) influence of user i over user j and Bc,k � 0 is the (possible) influence of topic c over
topic k.

In light of this explanation, we assume that the cumulative number of messages broadcasted by
users is a linear Hawkes process X, where X i,k

t represents the cumulative number of messages of
topic k broadcasted by user i until time t 2 [0, ⌧ ].

Let Ft = �(Xs, s  t) be the filtration generated by the Hawkes process X. Our Hawkes
process is then a RN⇥K point process with intensity �t = lim�&0 E[Xt+� �Xt|Ft]/� defined as

�i,kt = µi,k
+

X

j

X

c

Ji,jBc,k

Z t�

0
�(t� s)dXj,c

s ,

where µi,k � 0 is the intrinsic (or exogenous) intensity of the user i for broadcasting messages of
topic k and �(t) is a nonnegative causal kernel responsible for the temporal impact of the past
interactions between users and topics, satisfying ||�||1 =

R1
0 �(u)du <1.

The intensity can be seen in matrix form as

�t = µ+ J(� ⇤ dX)tB, (4.1)

where (� ⇤ dX)t is the N ⇥K convolution matrix defined as (� ⇤ dX)

i,k
t =

R t
0 �(t� s)dXi,k

s .
Remark: This chapter is not concerned with the estimation of the Hawkes parameters µ, J and

B, for which we redirect the reader to subsection 3.3.1 of chapter 3.

4.2.2 Stationary regime

As already mentioned in subsection 4.2.1, one of the main properties of linear Hawkes processes
is that they have a narrow link with branching processes with immigration [141], which gives us the
following result (whose proof is well explained in [140, 44] and in chapter 12 of [74]):

Lemma 24. We have that the linear Hawkes process Xt admits a version with stationary increments
if and only if it satisfies the following stability condition2

sp(J)sp(B)||�||1 < 1. (4.2)

4.3 Discovering trendy topics

After defining in detail the adopted information diffusion framework serving as foundation for
our trend detection algorithm, we continue towards the real goal of this paper: to derive a Hawkes-
based trend detection algorithm.

The proposed algorithm takes into consideration the entire history of the Hawkes process Xt

for t 2 [0, ⌧ ] and makes a prediction for the trendiest topics at time ⌧ , based on trend indices
Ik, k 2 {1, 2, · · · ,K}. It consists of the following steps:

1. Perform a temporal rescaling of the intensity following the theory of nearly unstable Hawkes
processes [162], which gives a Cox-Ingersoll-Ross (CIR) process [69] as the limiting rescaled
process.

2. Where for a squared matrix A we denote by sp(A) its spectral radius, i.e., sp(A) = sup{|�| | det(A� �I) = 0}.
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2. Search the expected maxima of the rescaled intensities for each topic k 2 {1, 2, · · · ,K}, with
the aid of the limit CIR process. This task is achieved by solving stochastic control problems
following the theory developed in [97], which measure the deviation of the rescaled intensities
with respect to their stationary mean.

3. Generate from each control problem a time-dependent index Ik
t , which measures the peaks

of topic k during the whole dissemination period [0, ⌧ ]. We create then the trend indices
Ik

=

R ⌧
0 Ik

t dt for each topic k 2 {1, 2, · · · ,K}.

4.3.1 Trendy topics and rescaling

As our algorithm is based on the assumption that a trendy topic is one that has a rapid and
significant increase in the number of broadcasts, a major tool in the development of this trend
detection algorithm is the rescaling of nearly unstable Hawkes processes, developed by Jaisson and
Rosenbaum in [162].

As already mentioned in section 4.2, Hawkes processes possess two distinct regimes: a stable
regime, where the intensity �t possesses a stationary version and thus the number of broadcasts
remains at most linear, and an unstable regime where the number of broadcasts increases in a
superlinear fashion.

The intuition behind the rescaling is the following: since we want to measure topics that have a
burst in the number of broadcasted messages, we place ourselves between the stable and unstable
regimes, where the stability equation (4.2) is satisfied but barely, i.e., sp(J)sp(B)||�||1 = 1� �

⌧ for
� > 0, and where there exists a drastic change in the behavior of the broadcasts - a Hawkes process
satisfying this property is called nearly unstable [162]. By placing ourselves in the stable regime, the
Hawkes process still possesses a limited number of broadcasted messages, but as we approach the
unstable regime, the number of broadcasted messages increases (which could represent trendiness).
Our trend detection algorithm uses hence this rationale in order to transform the Hawkes intensity
�t into a Brownian diffusion, for which stochastic control techniques exist and are easy to implement.

The rescaling works thus in the following fashion: as the trendy data has a large number of
broadcasts, we artificially "push" the Hawkes process X to the unstable regime when estimating
the parameters µ,B, J and �, in order to accommodate this large quantity of broadcasts. Then, we
perform a rescaling to the intensity �t, which converges in law when ⌧ ! 1 to a one-dimensional
Cox-Ingersoll-Ross (CIR) process (see theorem 2), whose deviation to the stationary mean is studied
using stochastic control techniques, or more precisely, by detecting its expected maxima [97].

Remark: As there are several ways to rescale the intensity �t and obtain a nontrivial limit
behavior, we have chosen to use the framework of [162] because their rescaling transforms �t into a
mean-reverting Brownian diffusion, for which there exist detailed studies about finding its expected
maxima, such as [97].

Remark: In order to find the most appropriate nearly unstable regime for the Hawkes process
X, the choice of the time horizon ⌧ is crucial, as it determines the timescale of the predicted trends.
It means that if ones uses ⌧ measured in seconds, the prediction considers what happens in the
seconds after the prediction period [0, ⌧ ], if one uses ⌧ measured in days, the prediction considers
what happens in the next day or days after the prediction period [0, ⌧ ], etc.

4.3.2 Topic trendiness

We recall the definition of trendiness in our context of information diffusion: a trendy topic is
one that has a rapid and significant increase in the number of broadcasts.
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Although this idea is fairly simple, care must be taken: the definition must take into consider-
ation the users in question, since users do not affect it in the same way. For example: if Barack
Obama tweets about climate change, one may assume that climate change may become a trendy
topic, but if an anonymous user tweets about the same topic, one has less argument to believe that
the topic will become trendy. By the same token, if a group composed of many people start tweeting
about the latest iPhone, one may consider it a trendy topic, but if only a small group of friends
starts tweeting about it, again, one may not be inclined to think so.

Let us discuss it in more details: since the intensity �t is associated with the expected increase
in broadcasts at time t, we use �t as base measure for the trendiness. Moreover, by the previous
paragraph, we must also weight the intensity �t with a user-network measure responsible for the
impact of users on the network. In our case, this user-network measure is the outgoing network
eigenvector centrality of users [234].

Mathematically speaking, let vT be the left-eigenvector of the user-user interaction matrix J ,
related to the leading3 eigenvalue ⌫ > 0. Since v is the leading eigenvector of JT - the outward
weighted adjacency matrix of the communication graph in our social network - it represents the
outgoing centrality of the network (also known as eigenvector centrality, similar to the PageRank
algorithm [117]) and consequently the users’ impact on the network, as desired.

Multiplying Eqn. (4.1) in the left by vT we have that

vT�t = vTµ+ vTJ(� ⇤ dX)tB

= vTµ+ ⌫vT (� ⇤ dX)tB

= vTµ+ ⌫(� ⇤ vTdX)tB.

Define ˜Xt = XT
t v, ˜�t = �Tt v and µ̃ = µT v, where they all belong to RK . Transposing the above

equation we have the topics intensity

˜�t = µ̃+ ⌫BT
(� ⇤ d ˜X)t. (4.3)

The intensity ˜�t of the stochastic process ˜Xt has its kth coordinate given by

˜�kt =

NX

i=1

�i,kt vi, (4.4)

which means that it represents a topic as a weighted sum by users, where the weights are given by
each user impact on the social network.

By reference to the previous Obama example: since Obama has assumedly a large v coefficient
(he has a large impact on the network), a topic broadcasted by him should be more inclined to be
trendy, and thus have a potentially large increase in ˜Xt; on the other hand, if a topic is broadcasted
by some unknown person, with a small coefficient v, it will almost not affect the topic intensity ˜�t.

Since ˜Xt is a linear combination of point processes, the increase at time t in ˜Xt can be measured
by its intensity ˜�t. Consequently, we adopt ˜�kt as surrogate for topic k trendiness at time t.

3. This left-eigenvector v

T has all its entries nonnegative, together with the eigenvalue ⌫ � 0, by the Perron-
Frobenius theorem for matrices with nonnegative entries, without the need of further assumptions. However,
we assume without loss of generality that ⌫ > 0, which can be easily avoided during the estimation.
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4.3.3 Searching the topic peaks by rescaling

Our algorithm is concerned with the detection of trendy topics at the final diffusion time ⌧ ,
taking into consideration all the diffusion history in [0, ⌧ ]. This means that our goal is to find topics
that will possibly have more broadcasts after time ⌧ than they should have, if one looks at their
broadcast history in [0, ⌧ ]. With that in mind, we say that topic k has a peak at time t if its topic
intensity ˜�kt achieves its maximum expected intensity at time t, which will be determined by Eqn.
(4.9).

Since the influences ⌫(� ⇤ d ˜X)tB are always nonnegative in Eqn. (4.3), we can only find peaks
when ˜�kt is greater than or equal to its intrinsic mean µ̃k. Moreover, one can notice that our
definition does not take directly into consideration comparisons between topics, i.e., our definitions
of trendiness and of peaks are relative, although there exist interactions between topics through the
topic-topic influence matrix B.

We continue to the formal derivation of the rescaling, which is performed under the following
technical assumption4:

Assumption 2. The topic interaction matrix B can be diagonalized into B = PDP�1 (where P is
the matrix with the eigenvectors of B and D is a diagonal matrix with the eigenvalues of B) and B
has only one maximal eigenvalue.

Moreover, we assume without loss of generality that Di,i � Di+1,i+1 and that the largest eigen-
value is D1,1 > 0 (again, by the Perron-Frobenius theorem, since B has nonnegative entries).

Let us use, for simplicity, exponential kernels, i.e., �(t) = e�!tI{t>0}, where ! > 0 is a parameter
that reflects the heaviness of the temporal tail. This means that a larger ! implies a lighter tail,
and a smaller temporal interaction between broadcasts.

This choice of kernel function implies that our rescaling uses only one degree of freedom - the
timescale parameter !. It is then quite understandable that with just one degree of freedom we
can only have one nontrivial limit behavior for our rescaled topic intensities �̃k⌧t

⌧ . This behavior
is thus dictated by the leading eigenvector of B when rescaling. This argument further supports
assumption 2.

4.3.3.1 Rescaling the topic intensities

Using the decomposition B = PDP�1, where D is a diagonal matrix with the eigenvalues of B,
we have that Eqn. (4.3) can be written as

˜�t = µ̃+ ⌫(P�1
)

TDTP T
(� ⇤ d ˜X)t,

which when multiplied by P T by the left becomes

P T
˜�t = P T µ̃+ ⌫DTP T

(� ⇤ d ˜X)t

= P T µ̃+ ⌫D(� ⇤ d(P T
˜X))t.

4. The assumption that B can be diagonalized is in fact a simplifying one. One could use the Jordan blocks of
B, on the condition that there exists only one maximal eigenvalue. This assumption is verified if, for example,
the graph associated with B is strongly connected; which means that every topic influences the other topics,
even if it is in an indirect fashion (by influencing topics that will, in their turn, influence other topics, and so
on). One can also develop a theory in the case of multiple maximal eigenvalues for B, but it would be much
more complicated as the associated stochastic control problem (as in [97]) has not yet been solved analytically,
hence numerical methods should be used.
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Defining �t = P T
˜Xt, 't = P T

˜�t and # = P T µ̃, we have that �t is a K-dimensional stochastic
process with intensity

't = #+ ⌫D(� ⇤ d�)t.

Under assumption 2, we have

'k
t = #k + ⌫Dk,k(� ⇤ d�k

)t, (4.5)

where 'k
t are uncoupled one-dimensional stochastic processes.

Now, following [162], we rescale 't by "pushing" the timescale parameter ! to the unstable
regime of ˜Xt, so as to obtain a nontrivial behavior (peak) for the intensity ˜�t, if any. In light
of lemma 24 and assuming an exponential kernel �(t) = e�!t.I{t>0}, we have that the timescale
parameter ! satisfies, for some � > 0, ⌧(1 � ⌫D1,1

! ) ⇠ � when ⌧ ! 1, which implies (we assume
without loss of generality that ⌧ > �)

! ⇠ ⌧⌫D1,1

(⌧ � �) . (4.6)

The rescaling stems from the next theorem (the one-dimensional case is proven in theorem 2.2
of [163]), which is proven in appendix D, subsection D.1.4:

Theorem 2. Let assumption 2 be true, the temporal kernel be defined as �(t) = e�!t.I{t>0}, let
⇢ = ((P�1

)1,1, · · · , (P�1
)1,K) be the leading left-eigenvector of B, ṽ be the leading right-eigenvector

of J , and define ⇡ = (

P
k(Pk,1)

2⇢k)(
P

i v
2
i ṽi).

If ! ⇠ ⌧⌫D1,1

(⌧��) when ⌧ ! 1, then the rescaled process 1
⌧'

1
⌧ t converges in law, for the Skorohod5

topology in [0, 1], to a CIR process C1 satisfying the following stochastic differential equation (SDE)
⇢

dC1
t = �⌫D1,1(

#1

� � C1
t )dt+ ⌫D1,1

p
⇡
p
C1
t dWt

C1
0 = 0,

(4.7)

where Wt is a standard Brownian motion.
Moreover for k > 1, the rescaled processes 1

⌧'
k
⌧ t converge in law to 0, for the Skorohod topology

to in [0, 1].

As a result, we are only interested in the CIR process C1, since it is the only one that possesses
a nontrivial behavior. One can clearly see that, since a CIR process is a mean-reverting one, C1

mean-reverts to the stationary expectation µ =

#1

� . As already discussed in subsection 4.3.3, if one
wants to capture some trend behavior one must see this process above its stationary expectation µ,
i.e., one must study the process Ct = C1

t � µ.
By Eqn. (4.7), one easily has that Ct = C1

t � µ satisfies the following SDE:

dCt = ��⌫D1,1Ctdt+ ⌫D1,1
p
⇡
p
Ct + µdWt. (4.8)

Remark: A way of pushing the Hawkes process to the instability regime, when estimating the
matrices µ, J and B, is to put the timescale parameter ! near the stability boundary given by Eqn.
(4.2).

5. The Skorohod topology in a given space is the natural topology to study càdlàg processes, i.e., stochastic
processes that are right-continuous with finite left limits. This topology has the goal to define convergence on
cumulative distribution functions and stochastic processes with jumps. See [27] for a formal definition.
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4.3.3.2 The trend index

After rescaling the 't = P T
˜�t, we effectively search for the peaks in ˜�t using the framework

developed by Espinosa and Touzi [97] dedicated to search for the maximum of scalar mean-reverting
Brownian diffusions.

For that goal, we define trend indices Ik
t as the measure, at each time instant t 2 [0, ⌧ ], of how

far is the intensity ˜�kt from its peak, where a peak is represented by a maximum of ˜�kt in the sense
of [97]. To do so, we use the fact that ˜�t = (P�1

)

T't to determine the limit behavior of �̃
k
⌧t
⌧ , namely

˜�k,1t , as
˜�k,1t =

X

j

P�1
j,k C

j
t = P�1

1,kC
1
t = P�1

1,k (Ct + µ),

where P is the eigenvector matrix of B in assumption 2 and Ck
t are the rescaled CIR processes in

theorem 2.
Hence, in order to find our intensity peaks, we consider for each topic k the following optimal

stopping problem

Vk = inf

✓2T0
E[

(P�1
1,k )

2

2

(C⇤
T0
� C✓)

2
], (4.9)

where C⇤
t = supstCs is the running maximum of Ct, Ty = inf{t > 0 | Ct = y} is the first hitting

time of barrier y � 0 and T0 is the set of all stopping times ✓ (with respect to C) such that ✓  T0

almost surely, i.e., all stopping times until the process C reaches 0.
By the theory developed in [97], one has optimal barriers �k relative to each problem Vk. A

barrier represents the peaks of the intensities, i.e., if the CIR process C touches the optimal barrier
�k, it means that we have found a peak for topic k.

The authors show that the free barriers �k have two monotone parts; first a decreasing part �k# (x)
and then an increasing part �k" (x), which are found by solving the ordinary differential equations
(ODE) (5.1) and (5.15) in [97], respectively6.

We are now able to define for each time t  T0, the temporal trend indices Ik
t as

Ik
t =

8
>><

>>:

 +
(⌧ � t, Ct � �k(Ct)) if t < ⌧ and Ct � 0,

 �
(⌧ � t, Ct � �k(Ct)) if t < ⌧ and Ct < 0,

 

+
(C⌧ � �k(C⌧ )) if t = ⌧ and Ct � 0,

 

�
(C⌧ � �k(C⌧ )) if t = ⌧ and Ct < 0,

where  +/� are decreasing in time (the first variable), increasing in space (the second variable)
functions and  +/� are increasing in space functions. We impose  +/� as decreasing functions of
time because our trend detection algorithm is to determine the trendy topics at time ⌧ , the end
of the estimation time period. Thus the further we are in the past (measured by ⌧ � t), the less
influence it must have in our decision, and consequently in our trend index. By the same token,
 +/� and  +/� must be increasing functions in space because we want to distinguish topics that
have higher intensities, and penalize those that have a lower intensity, thus if the intensity is bigger

6. For the CIR case we have by Eqn. (4.8) that the functions ↵, S and S

0 defined in [97] are

• ↵(x) =

2�x
⌫D1,1⇡(x+µ) , S

0
(x) = e

2�x

⌫D1,1⇡

(

x
µ
+ 1)

� 2�µ

⌫D1,1⇡ and

• S is a linear combination of a suitable transformation of the confluent hypergeometric functions of first
and second kind, M and U , respectively (see [1]), since it must satisfy S(0) = 0 and S

0
(0) = 1 (see [186]).
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than the optimal barrier, we must give it a bigger index. If, on the other hand, the intensity is
smaller than the optimal barrier, even negative in some cases, we must take into account the degree
of this separation. One has the liberty to choose the functions  and  according to some calibration
dataset, which makes the model more versatile and data-driven.

Please note that in the definition of Ik
t , the following factors have been taken into consideration:

• even if the CIR intensity Ct did not reach its expected maximum given by �k(Ct), we must
account for the fact that it may have been close enough,

• reaching the expected maximum is good, but surpassing it is even better. So we must not
only define a high trend index if Ct reaches the expected maximum given by �k(Ct), but we
must define a higher trend index if Ct surpasses these barriers, and

• it is important to penalize all the times t 2 [0, ⌧ ] that the intensity Ct becomes negative, i.e.,
the intensities ˜�kt become smaller than their stationary expectation.

The trend indices Ik are thus defined as

Ik
=

Z ⌧

0
Ik
t dt.

Remark: One could be also interested in not only tracking the relative trendiness of each topic
with respect to their maxima, but also the absolute trendiness of topics with respect to each other.
In this case, one may define the trend indices ˜Ik

t as

˜Ik
t = Ik

t + a(⌧ � t)˜�k,1t = Ik
t + a(⌧ � t)P�1

1,k (Ct + µ),

where a(⌧ � t) � 0 are nonincreasing functions of time (again, in order to give a bigger influence to
the present compared to the past). The absolute trendiness of topics can be explained as follows:
Lady Gaga may be not trendy according to our definition, if for example people do not tweet as
much as expected about her at the moment, but she will probably still be trendier than a rising-
but-still-obscure Punk-Rock band. In this case, the relative trend index Ik of Lady Gaga is not
that big as compared to the relative trend index of the Punk-Rock band. However, the absolute
trend index ˜Ik of Lady Gaga will surely be bigger than the absolute trend index of the Punk-Rock
band, if the function a(⌧ � t) is large enough. The function a(⌧ � t) controls which behavior one
wants to detect, the relative or the absolute trendiness.

Remark: This algorithm is fast, despite the use of numerical discretization schemes for the
ODEs. By using the eigenvector centrality of the underlying social network as tool to create our
trend indices, we not only use the topological properties of the social network in question but we
reduce considerably the dimension of the problem: we only have a one-dimensional CIR process to
study. Moreover, the complexity of the algorithm breaks down to three parts: 1) the resolution of
the K optimal barrier ODEs, which is of order O(

K
� ) where � is the time-discretization step, 2) the

calculation of the left and right leading eigenvectors of J and B, which can be achieved fairly fast
with iterative methods such as the power method, and 3) the matrix product in the calculation of
µ, which has complexity O(NK).

4.4 Numerical Examples

We provide in this section two examples where we apply our trend detection algorithm.
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Algorithm 3 - Trend detection algorithm
1: Input: Hawkes process Xt, t ∈ [0, τ ], matrices J , B and μ
2: Compute the leading left-eigenvector vT and eigenvalue ν of J , and the topic intensities λ̃t

following Eqn. (4.3)
3: Compute the leading right-eigenvector (P11, · · · , PK1), left-eigenvector (P−1

11 , · · · , P−1
1K ) and

eigenvalue D1,1 of B, and the leading right-eigenvector ṽ of J
4: "Push" λ̃t to the instability regime following Eqn. (4.6) and calculate the CIR intensity Ct

following Eqn. (4.8)
5: Discretize [0, τ ] into T bins of size δ � 1
6: for k = 1 to K do
7: Get the optimal barrier γk in {0, δ, 2δ, · · · , (T − 1)δ}, following [97]
8: for t = 1 to T do
9: Calculate the trend index Ik(t−1)δ using the optimal barrier γk of the optimal stopping

problem (4.9)
10: end for
11: Calculate the topic trend index Ik =

∫ τ
0 Ikt dt = δ

∑T
t=1 Ik(t−1)δ

12: end for
13: Output: Trend indices Ik

The first example is performed on a synthetic near unstable Hawkes processes in a social network
using Ogata’s thinning algorithm7 [241] in a time horizon τ = 50. We use 10 topics for the
simulation, the last 5 topics not possessing any topic influence, i.e., Bc,k = 0 for all c and k ∈
{6, 7, 8, 9, 10}, corresponding to figures 4.1 and 4.2.

The second example is applied to a MemeTracker dataset containing different memes (short
distinct phrases) for the 5, 000 most active sites from 4 million sites from March 2011 to February
20128. We use the 10 most broadcasted memes, which are:

1. dancing with the stars,

2. two and a half men,

3. sex and the city,

4. rolling in the deep,

5. too big to fail,

6. don’t ask, don’t tell,

7. i have a dream,

8. i will always love you,

9. the girl with the dragon tattoo,

10. the tree of life.

7. The thinning algorithm simulates a standard Poisson process Pt with intensity M >
∑

i,k λ
i,k
t for all t ∈ [0, τ ]

and selects from each jump of Pt the Hawkes jumps of Xi,k
t with probability λ

i,k
t
M

, or no jump at all with

probability
M−∑

i,k λ
i,k
t

M
.

8. Data available at http://snap.stanford.edu/infopath.

http://snap.stanford.edu/infopath
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Table 4.1: Comparison of indices for synthetic dataset.

Topic 1 2 3 4 5 6 7 8 9 10

˜I 0.104 0.088 0.097 0.096 0.0889 0.033 0.033 0.033 0.033 0.0334

Nb of Posts 47640 41770 56368 51039 56097 55252 48105 48096 43882 53580

Table 4.2: Comparison of indices for MemeTracker dataset.

Meme 1 2 3 4 5 6 7 8 9 10

˜I 0.002 0.001 0.004 0.009 0.005 0.003 0.007 0.009 0.0159 0.011

Nb of Posts 1768 1925 1406 1537 1578 1871 1746 1562 1344 1499

In this numerical example, each meme plays the role of a topic in our theoretical model of section
4.2. We use the maximum likelihood estimation procedure for the parameters, as detailed in the
subsection 3.2.1 of chapter 3.

For both examples, we shall illustrate how our method is able to detect the trendiness of each
topic or meme according to the index I, and that the highest trendiness does not necessarily
correspond to the topic or meme which has the highest number of broadcasts.

For both examples, figures 4.1 and 4.3 plot the scaled topic intensities �̃⌧t
⌧ as a function of time,

and figures 4.2 and 4.4 plot the cumulative number of broadcasts about each topic as a function
of time, i.e., Xk

t =

P
iX

i,k
t . Furthermore, we compute in tables 4.1 and 4.2 the trend indices ˜Ik

and the total number of broadcasts for both examples. We use for the trend indices calculation the
following functions  +/�

(t, x) = e2x

t+1 ,  
+/�

(x) = 2x and a(t) = 1
t+1 , as explained in subsubsection

4.3.3.2.
In reference to table 4.1, one can see that the trend index for topic 1 is the highest, even though

it does not possess the highest number of broadcasts, which is held by topic 3. The reason is that
in the synthetic dataset, topic 1 has the largest topic intensity.

In reference to table 4.2, one can see that meme 9 shows higher trendiness than the other memes,
even though it does not possess the highest intensity and it possesses the smallest total number of
broadcasts; it is then followed by memes 10 and 8 in second and third place, respectively. The reason
is similar for all of them: they possess larger and more frequent "peaks" of intensity compared to
other memes, occurring at times closer to the prediction instant ⌧ , as depicted in figure 4.3.

A different phenomenon occurs for meme 2, which has the highest total number of broadcasts
but the least trendiness. Since most of the broadcasts of meme 2 occur very early in time, the
peak of intensity related to this increase in the number of broadcasts has little impact in the trend
index, which takes more into account broadcasts that happen near the prediction instant ⌧ . Thus,
as meme 2 does not have significant peaks in intensity near the prediction instant ⌧ , it receives
a lower trend index. Both phenomena illustrate the difference between our algorithm and one that
looks solely to the largest topic intensities and the total number of broadcasts.

4.5 Conclusion

We have developed in this chapter a trend detection algorithm, designed to find trendy topics
being disseminated in a social network. We have assumed that broadcasts of messages in the social
network can be modeled by a self-exciting point process, namely a Hawkes process, which takes into
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Figure 4.1: Topic intensities ˜�kt =
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for the synthetic dataset.
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Figure 4.3: Topic intensities ˜�kt =

P
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for the meme tracker dataset.
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consideration the real broadcasting times of messages and the interaction between users and topics.
We defined our idea of trendiness and derived trend indices for each topic being disseminated.

These indices take into consideration the time between the actual trend detection and the message
broadcasts, the distance between the intensity of broadcasting and the maximum expected intensity
of broadcasting, and the social network topology. This result is, to the best of our knowledge, the
first definition of relative trendiness, i.e., a topic may not be very trendy in absolute number of
broadcasts when compared to other topics, but has still rapid and significant number of broadcasts
as compared to its expected behavior. Still, one can easily create an absolute trend index for each
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topic in our trend detection algorithm, where all one needs to do is use the broadcasting intensities of
each topic as surrogates for their trendiness. It is worthy mentioning that these broadcast intensities
also take into consideration the social network topology, or more precisely, the outgoing eigenvector
centrality of each user, i.e., their respective influences on the social network.

The proposed trend detection algorithm is simple and uses stochastic control techniques in order
to derive a free barrier for the maximum expected broadcast intensity of each topic. This method is
fast and aggregates all the information of the point process into a simple one-dimensional diffusion,
thus reducing its complexity and the quantity of data necessary to the detection - indispensable
features if one is concerned with the detection of trends in real-life social networks.



Conclusion

"I am turned into a sort of machine for observing
facts and grinding out conclusions."

— Charles Darwin

We have started this thesis with a simple opinion dynamics model. The reason for that is quite
concrete: opinion dynamics models were the predecessors of social network analysis and laid the
ground for all the nonstandard and complex models that were used and discussed in this thesis.

The goal was to produce an opinion dynamics model that could handle multiple contents and
stochastic interactions between agents in a social network. We have thus developed a model where
agents could transmit information to their neighbors, the information itself being stochastic - it
would depend on the appreciation of the broadcaster towards the contents.

The tools used to analyze this opinion dynamics algorithm were stochastic approximation al-
gorithms (which are used in classical and distributed optimization problems, control theory, ma-
chine learning problems, etc.) and game theory, or more precisely stochastic fictitious play (game-
theoretical learning paradigms in which agents learn about the possible Nash equilibria by playing
consecutive games with the time average of the agents’ ancient responses).

We used different choice mechanisms for the content being broadcasted and proved mathemat-
ically that when the communication network is undirected this novel opinion dynamics algorithm
converges, as time goes by. The limit behavior of this algorithm depends, of course, on the way
agents interact - which is summarized by a rationality parameter: when this parameter is very
small, agents are more dubious about their preferences and thus the system converges to a state
of complete uncertainty - uniform preferences of contents. When this parameter is large, agents
become more and more certain about which content to broadcast, and thus the system converges to
a clustering of the social network in question, where clusters are composed of agents that broadcast
the content they appreciate the most; it allows each cluster to be associated with a specific content.

Using this opinion dynamics algorithm under the assumption that agents are quite certain
about which content to broadcast at each time (a large rationality parameter), we created a com-
munity detection algorithm that is easily implemented, even in a distributed fashion, and generates
communities that can be mathematically analyzed - a fact that is quite rare in the community
detection community. The fact that communities can be analyzed opens new frontiers in terms of
a mathematically sound definition for communities in social networks, as most of the community
detection algorithms are based on heuristics and the discovered communities cannot be analyzed
mathematically (empirical validations on the goodness-of-fit of these algorithms must be taken into
consideration).

Our algorithm, as already mentioned, is based on a well-studied opinion dynamics algorithm
and discovers communities based on a sound mathematical formulation, with the advantage of
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being versatile: it can also be used in weighted graphs; the communities found still satisfy the same
assumptions, with the additional benefit of incorporating community overlaps without overhead.

This community detection algorithm has two variants, depending on the previous knowledge
one has about the social network: by limiting the number of contents in the underlying opinion
dynamics algorithm, one may drastically decrease the complexity of the algorithm; this means
limiting the maximum number of communities and giving it a more parametric flavor. On the other
hand, if one uses the full-fledged algorithm, it becomes completely nonparametric. It means that
our community detection algorithm is multiscale, i.e., it can adapt to the desired final resolution of
the social network in question.

After better comprehending the interactions of users in social networks due to the creation of
our opinion dynamics model and the associated community detection algorithm, we introduced a
complete framework for the study of hidden influences on social networks.

The proposed framework is based on self-exciting point processes, the so-called Hawkes processes.
This type of stochastic process was developed by Hawkes in the 70’s to model earthquakes, which
have a positive temporal correlation, i.e., the probability of a future occurrence of an earthquake
increases with past earthquake activity. The same effect happens in social networks, or in any
conversation for that matter: the probability of posting, reposting, retweeting, sharing or liking
increases if some previous action was performed.

With this in mind, we created a Hawkes-based theoretical framework for information diffusion
in social networks that models and discovers the hidden influences between users and contents.
This framework is general by construction, and adapts to one’s needs at ease: it can accommodate
user-user interactions, user-topic interactions, topic-topic interactions, multiple social networks or
a single social network, static social networks or dynamic/temporal social networks, seasonality or
different temporal effects on the users diffusion rate, different temporal interactions (short-range or
long-range interactions), predefined topics (known beforehand) or unknown topics (combined use
of several topic models for the estimation procedure). As one can see, our framework is sufficiently
general to model and estimate most of interesting phenomena occurring on social networks, with
simplifications being made only for the sake of reducing the complexity since the theory deals with
real-life social networks.

The estimated procedure developed in order to discover these hidden influences and temporal
phenomena is based on a maximum likelihood estimation of the underlying Hawkes processes, using
nonnegative tensor factorization techniques. Nonnegative tensor factorization techniques are a set
of tools developed in the signal and image processing community in order to seek patterns in mul-
tidimensional noisy data, for example image and sound decomposition. In our particular case, we
adapt the so called multiplicative updates stemming from nonnegative matrix factorization tech-
niques in order to derive a simple, distributed, fast and easy-to-implement estimation framework for
the hidden parameters which, due to a dimensionality reduction algorithm, has a linear complexity
on the data.

The dimensionality reduction (the factorization of the influence graphs) provides information
on the "hidden" communities of the social networks in question, which is a byproduct achieved
with no overhead at all. These communities cannot be uncovered by standard social network
analysis tools since they represent the "hidden" influence of users over one another, and are different
from other measures generated by these tools; for example, one could weight the communication
graph with the number of messages from one user to his neighbors, but by doing so one looses the
temporal character. Moreover, the graphs found by performing this kind of technique are under the
assumption that messages influence directly other users, which may not be the case. In our Hawkes
framework, the influence is a consequence of the interaction between users and information, and
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therefore it is probabilistic by definition - it may or may not occur at each broadcast.
The last part of this thesis bases itself on one instance of the previously defined Hawkes informa-

tion diffusion framework, in order to derive a trend detection algorithm for topics in social networks.
We have assumed that broadcasts of messages in a social network are modeled by a Hawkes process,
which takes into consideration the real broadcasting times of messages and the interaction between
users and topics.

We used the influence matrix (which is estimated following the ideas in this thesis) to define the
topic diffusion intensities: when someone posts or retweets something, the influence that this person
has over the social network must be taken into consideration in order to calculate a meaningful notion
of topic trendiness. This influence takes the form of an eigenvector centrality measure, the same
sort of measure used in the PageRank algorithm.

We also defined our idea of trendiness: a topic may not be very trendy in absolute number
of broadcasts when compared to other topics, but may still have rapid and significant number of
broadcasts as compared to its expected behavior. This idea is, to the best of our knowledge, the
first definition of relative trendiness. Still, one can easily integrate an absolute trend index for
each topic, simply by introducing the broadcasting intensities of each topic as surrogates for their
trendiness.

We defined thus trend indices, one for each topic, that aggregate these characteristics in a single
value: they take into consideration the time between the actual trend detection and the message
broadcasts, the distance between the intensity of broadcasting and the maximum expected intensity
of broadcasting, and the social network topology.

The calculation of these indices are a two-step procedure: first, we considered a near-unstable
Hawkes framework in order to find a suitable time rescaling for the topic intensities, transforming
them into a Cox-Ingersoll-Ross process, which is an Itô diffusion. Second, we adapt an optimal stop-
ping problem previously studied for the detection of the expected maximum of a mean-reverting
scalar Itô diffusion, which allows the search for "peaks" in the rescaled topic intensities; the opti-
mal stopping tools used in this detection problem come from the more general stochastic control
toolbox, a set of techniques and methods developed to study control problems under uncertainty,
and successfully applied in mathematical finance, control theory, continuous-time optimization and
decision problems.

The rescaling step is important for two reasons: first, since we look at bursts of broadcasts,
the "stretching" of time finds a more appropriate timeframe for the topic intensities themselves.
Second, it transforms the intensities in Brownian diffusions, for which there exists a multitude of
stochastic control methods.

The adopted optimal stopping theory allows the derivation of free barriers for the maximum
expected broadcast intensity of each topic, which are responsible for the calculation of the trend
indices. These indices take hence the distance between the topic intensities and their maximum
expected intensities, generating (as desired) a relative trend index for each topic. An absolute trend
index can be added, by incorporating information about the topic intensities themselves, which
gives a more versatile and applicable trend detection algorithm.

This method is fast and aggregates all the information of the point process into a simple one-
dimensional diffusion, thus reducing its complexity and the quantity of data necessary to the de-
tection - indispensable features if one is concerned with the detection of trends in real-life social
networks.

In times where information is jury, judge and executioner, I cannot imagine more fitting fi-
nal words than Human.4’s Mike A. Lancaster’s: "We simply don’t have enough data to form a
conclusion."
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Future work

This thesis tackled the problem of information diffusion in social networks in two ways: we first
developed an opinion dynamics model, from which we derived a community detection algorithm,
and we second created a Hawkes-based information diffusion framework, which generated a Hawkes-
based trend detection algorithm in social networks. Future work on these subjects has several scopes,
for which we provide a non-exhaustive list of potential directions.

Regarding the opinion dynamics algorithm of chapter 1, these directions may be

• Our main convergence result, theorem 1, is proven under the assumption that the network
is undirected, whereas numerical evidence conjectures that this theorem remains valid for
directed networks as well. Thus, a direction of future research may be to prove a more general
convergence result for directed networks or construct a counter-example in the negative case.

• A more detailed study of the limit set Fx
� for the case � � 1, as follows: Stochastic fictitious

play literature [149, 290] assumes that when � ! 1 the limit set Fy
� converges to the finite

set Fy
� = {y 2 (�K)

N | y = f1(D�1Ay)}, where

f1 : (�K)

N ! (�K)

N

x 7! f ik
1(x) =

I{k2argmaxl(xi,l)}
]argmaxl(xi,l)

.

This is assumed since f� converges pointwise to f1 when � ! 1 (a result that seems to
be true in the performed numerical simulations). This method is called equilibrium selection
[138].

A partial answer is positively answered by Peter Tiňo in [285, 286], showing in addition that
we also have a finite number of fixed points for the softmax function f� in the vector case
(which is equivalent to demanding the matrix A to be the identity matrix in our case).

• Exploit heterogeneity of agents, as in [106]. This can be accomplished by defining for each
agent i 2 V a specific softmax parameter �i. We can have thus different groups of agents,
one in which all agents have a small softmax parameter and thus are indifferent to contents,
another in which agents have a large softmax parameter and thus almost always broadcast
the content they appreciate the most, etc.

• Use dynamic [154], random [39], multiplex networks [87, 172], etc. For example, a multiplex
network is a network G = (V,E) in which edges have classes: imagine that the union of all
social networks is a multiplex with every social network being a class. Nodes may thus have
more than one edge between them, which could provide a better model for opinion dynamics
with agents belonging to multiple social networks.

About the subsequent community detection algorithm of chapter 2, future directions may be

• Develop theoretical and/or heuristic ways to improve the speed of the algorithm (for example,
derive better bounds on the running time T ).

• Provide a more rigorous and/or detailed analysis of the impact on the retrieved communities
due to the initial condition.
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• Create a more systematic way of exploring the multiscale character of the algorithm based on
the number of contents K and the softmax parameter �.

• In the Potts model clustering algorithm [29, 230], the softmax parameter � plays the role
of "inverse temperature", which is responsible for the granularity of the communities found.
The Potts model clustering algorithm possess three distinct phases, for which the temperature
responsible for the phase transition can be estimated using mean-field [307] and Markov-Chain
Monte-Carlo [298] approaches. One may thus apply these methods to derive better bounds
for �.

• Extend the community detection algorithm to dynamic/temporal networks [154], following
the opinion dynamics framework of chapter 1.

• Extend the community detection algorithm to multiplex networks [87, 172], following the
opinion dynamics framework of chapter 1.

Regarding the second part of this thesis concerning Hawkes-based information diffusion methods,
future directions on the trend detection algorithm of chapter 4 may be

• Introduce topic models as in chapter 3.

• Extend the trend detection algorithm to accommodate dynamic networks [154] or multiplex
networks [87, 172], following the ideas of chapter 3.

• Introduce seasonality or temporal aspects for the intrinsic rates of diffusion µ, as in chapter
3.

• Introduce different temporal kernel functions �.

• Provide a standard way of "pushing" the Hawkes process to the unstable regime when esti-
mating the Hawkes parameters µ, J , B and �.

• Derive a more data-driven way to determine the time-rescale parameters ⌧ and �.

• Measure the impact of the temporal kernel � on the trend detection algorithm.

• Measure the impact of the temporal discounting functions  +/�, the final barrier functions
 

+/� and the function a(t) on the trend indices.
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APPENDIX A

Opinion dynamics with f (P ) = P

In chapter 1 we presented an opinion dynamics model with choice function f the softmax function
with parameter �, given by Eqn. (1.1). This choice function stems from the concept of bounded
rationality (as seen in chapter 1) and represents the certitude that agents have when choosing a
content to broadcast.

This appendix is concerned with a different kind of choice function, the identity function f(P ) =

P . This function represents the broadcast probability of a content k 2 {1, · · · ,K} to be proportional
to the appreciation that agents have for this particular content.

This model differs from the one with a softmax choice function for a simple reason: with the
softmax choice function with a parameter � � 1, agents have a much higher probability to broad-
cast the topics with maximum appreciation, in a superlinear way, due to the exponential function.
If f(P ) = P , agents still have a higher probability to broadcast the contents with maximum appre-
ciation, however this difference is not superlinear, which smooths the evolution of differences in the
topics with maximum and average appreciation1.

As already shown in chapter 2, when � � 1 the opinion dynamics algorithm (1.9) converges
to a clustering of the graph G = (V,E), where clusters are composed of agents that broadcast
internally the same content. We show in this appendix that when the choice function is f(P ) = P ,
the convergence result is quite different: the opinion dynamics algorithm converges to a consensus
on each strongly connected component of G.

We first define rigorously a consensus:

Definition 4. (Reaching Consensus) We say that the stochastic approximation algorithm (1.9)
reaches a consensus if:

max

0kK
|P i,k

t � P j,k
t | t!1! 0, 8i, j 2 V almost surely .

We begin thus the convergence study of the new opinion dynamics algorithm with choice function

P(uit+1 = k|Ft) = P i,k
t .

When f(P ) = P , we have that the ODE (1.11) resolves to a linear ODE of the form

ṗ = p�D�1Ap = �D�1
�p, (A.1)

where � = D �A is the graph inward Laplacian.

1. There exists a similar argument when � ⌧ 1.
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As one can see, the limit Eqn. (A.1) is in fact a linear equation, which means that the limit
set for this stochastic approximation algorithm is K = ker�\�N

K , which means that we must first
study ker� is order to better understand the limit set K.

A great deal of effort was put in order to study spectral properties of the graph Laplacian � [59],
for which one of the techniques employed was random walks: since D�1A is a stochastic matrix, we
can define a random walk on G with state space V and transition probabilities

pi,j = D�1
i,i Ai,j ,

i.e., at each time t+ 1, a random walker2 that is at node i at time t chooses to go to another node
j with probability pi,j = D�1

i,i Ai,j . One can thus apply the theory of Markov chains [238] in order
to study the asymptotic properties of this random walk.

Moreover, the stationary states of this random walk are given by the probability row vectors
⇡T such that ⇡T = ⇡TD�1A, i.e., ⇡TD�1 2 ker�. This means that studying the stationary states
of the Markov chain associated with G sheds light into the limit set K by transposition. For this
study, we need two lemmas: the first one concerns about the form of the eigenvectors (right and
left) of the transition matrix D�1A, and the second one is a coordinate change which shows that
a graph Laplacian always can be factorized into its kernel plus a part with all eigenvalues strictly
positive.

Lemma A.1. Let P be a transition matrix for a finite state Markov chain, i.e., P is a N ⇥ N
stochastic matrix, such that there exist C recurrence classes (Cc, c  C) for this Markov chain.
Then there exist C left invariant and linearly independent probability measures ⇡Tc and C right
eigenvectors 1

c of P such that ⇡Tc P = ⇡Tc , supp(⇡c) = Cc, P1

c
= 1

c and that, restricted to
S

cCc,
we have that 1ci = I{i2Cc}.

Proof. Since we have C recurrence classes we can assume, without loss of generality, that

P =

0

BBBBB@

P1 0 0 · · · 0

0 P2 0 · · · 0

...
... . . . ...

...
0 · · · 0 PC 0

T1 T2 · · · TC T

1

CCCCCA

where (Pc, c  C) are irreducible matrices associated with the recurrent classes and Ti are matrices
associated with the transient class of the Markov chain.

Since Pc are stochastic matrices, the eigenvalue with maximum value is 1 (it follows from Perron-
Frobenius theory). By the Perron-Frobenius theorem, there exist only one eigenvector associated
with this eigenvalue, which is the vector 1. The theory of Markov chains gives us a unique left
invariant probability ⇡c for Pc.

Now, if we have a right eigenvector v of P such that Pv = v and v = (v1, · · · , vC , vT ), then
Pcvc = vc for all c  C and

P
cC Tcvc+TvT = vT . If (I�T )�1 is well defined, we will have vc = 1

or vc = 0 and vT = (I� T )�1P
cC Tcvc.

We now show that sp(T ) < 1, which implies that (I � T )�1 is well defined and vT is uniquely
determined by (Tc, c  C) and T . Since T is associated with the transient part of the Markov chain,

2. The standard way of defining a random walk in a graph G is to use the outward edges of a node for the random
walker. We adopt here the normalized inward edges as transition probabilities in order to study the spectral
properties of the normalized inward adjacency matrix D

�1
A.
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there exists an index i such that
P

j Tij < 1. Let us assume, without loss of generality, that i = 1.
Thus

P
j(T

2
)ij =

P
j

P
l TilTlj =

P
l Til

P
j Tlj = Ti1

P
j T1j+

P
l�2 Til

P
j Tlj < Ti1+

P
l�2 Til  1,

which implies that sp(T 2
) < 1 and by consequence sp(T ) < 1. This implies that the eigenvector v

such that Pv = v is determined by the components (vc, c  C), which are 1 or 0.
On the other hand, let ⇡T be a left invariant measure of P such that ⇡TP = ⇡T and ⇡ =

(⇡1, · · · ,⇡C ,⇡T ). Then ⇡Ti Pi + ⇡TT Ti = ⇡Ti and ⇡TT T = ⇡TT . Since sp(T ) < 1, we have that ⇡T = 0

because ⇡TT = ⇡TT T
n for every n, which goes to 0. Thus ⇡Ti Pi = ⇡Ti and we know that they are the

unique left-invariant probability measures since Pi are irreducible. This shows that the only left
invariant probability measures of P are convex combinations of (0, · · · ,⇡c, · · · , 0).

Lemma A.2. Let C be the algebraic dimension of kerD�1
�, i.e., the number of recurrence classes

of the Markov chain associated with D�1A. There exists a N ⇥ N nonsingular matrix � and a

N �C⇥N �C matrix B such that ��1
(D�1

�)� =

✓
0 0

0 B

◆
and B has all generalized eigenvalues

strictly positive.

Proof. Let (Cc, c  C) be the recurrence classes of the Markov chain associated with the transition
matrix D�1A. By lemma A.1 there exists C left invariant probability measures ⇡Tc , c  C such that
supp(⇡c) = Cc.

Suppose now, by absurd, that there exists a vector v such that D�1
�v 2 ker(D�1

�), i.e.,
D�1

�v = x 6= 0 but (D�1
�)

2v = 0.
Let us assume, without loss of generality, that

D�1A =

0

BBBBB@

P1 0 0 · · · 0

0 P2 0 · · · 0

...
... . . . ...

...
0 · · · 0 PC 0

T1 T2 · · · TC T

1

CCCCCA

where (Pc, c  C) are irreducible matrices associated with the recurrent classes and Ti are matrices
associated with the transient class of the Markov chain.

Let ⇡T be an invariant left probability measure of D�1A, i.e., ⇡TD�1A = ⇡T . Then, ⇡Tx =

⇡TD�1
�v = ⇡T (D�1

�)

2v = 0. Let x =

P
n any

n, where at least one an 6= 0 and yn 2 ker(D�1A)
and let x = (x1, · · · , xC , xT ), yn = (yn1 , · · · , ynC , ynT ). By lemma A.1 we have that ynT = (I �
T )�1P

c Tcy
n
c , where ync are either 1 or 0.

Since x 6= 0 we have two possibilities: xc 6= 0 for at least one c  C or xc = 0 for all c  C and
xT 6= 0. We show that the latter cannot happen: suppose that xc = 0 for all c  C. This means
that

P
n any

n
c = 0 for all c  C, hence

xT =

X

n

any
n
T =

X

n

an(I� T )�1
X

cC

Tcy
n
c = (I� T )�1

X

cC

Tc

X

n

any
n
c = 0

and we have that x = 0, which is a contradiction.
Suppose then, without loss of generality, that x1 6= 0 and

P
n an 6= 0. Let ⇡T be an invariant

measure such that supp(⇡) = C1. Then ⇡Tx =

P
n an 6= 0 and we get a contradiction, which shows

that the kernel of D�1
� can be diagonalized.
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Take now N�C linearly independent elements on im�, as s1, · · · , sN�C . Define the N⇥(N�C)

matrix S, the N ⇥ C matrix I and the N ⇥N matrix � as

S =

0

@
· · ·

s1 · · · sN�C

· · ·

1

A , I =

0

@
· · ·

1

1 · · · 1

C

· · ·

1

A , and � =

�
I S

�
,

where 1

c are N vectors such that 1

c
i = I{i2Cc} on

S
cCc, given by lemma A.1.

We have that � is nonsingular since 1

c 2 ker�, si 2 im� and RN ' im�� ker�. And since
by the Perron-Frobenius theorem applied to D�1A, all eigenvalues of D�1A different from 1 have
modulus strictly smaller than 1 (which implies that all nonzero eigenvalues of D�1

� are strictly
positive), we have that

D�1
�I = 0 and D�1

�S = SB.

for some (N � C) ⇥ (N � C) matrix B with all eigenvalues strictly negative. This concludes the
proof.

With both lemmas we are ready to prove the main theorem of this appendix:

Theorem A.1. Let assumption D.1 be true and f(P ) = P be the identity. Then there exists a
random variable P1 2 �N

K such that Pt ! P1 almost surely.
Moreover, we also have that for each recurrence class Cc of D�1A,

8k, P i,k
1 = P j,k

1 for all i, j 2 Cc.

This means that, if ker(D�1
�) is unidimensional3 (the Markov chain associated with D�1A has

only one recurrence class) we have that Pt reaches a consensus, as in definition 4.

Proof. Let C be the number of recurrence classes of the Markov chain associated with the stochastic
matrix D�1A. By lemma A.2 there exists a nonsingular matrix � and a N �C ⇥N �C matrix B

such that ��1
(D�1

�)� =

✓
0 0

0 B

◆
= B0 and B has strictly positive eigenvalues.

Define Zt = �

�1Pt, where Pt is the stochastic approximation algorithm (1.9) with f(P ) = P .
We have by Eqn. (1.9) that

Zt+1 = �
�1Pt+1 = �

�1Pt +
1

t+ 1

✓
� ��1D�1

�Pt + �
�1�t+1 + �

�1⇣t+1

◆

= Zt +
1

t+ 1

✓
�B0Zt + Vt+1 +Wt+1

◆
,

where Wt+1 = �
�1⇣t+1 and Vt+1 = �

�1�t+1, with
P

t
1

t+1 ||Vt+1|| <1.
Define the vectors (Zc

t )cC and the (N�C)⇥N block matrix ZN�C
t as Zt = (Z1

t , · · · , ZC
t , ZN�C

t ),
with the same definitions for V and W . By the definition of B0, we have that

Zc
t+1 = Zc

t +
1

t+ 1

(W c
t+1 + V c

t+1) for all c  C

ZN�C
t+1 = ZN�C

t +

1

t+ 1

�
�BZN�C

t +WN�C
t+1 + V N�C

t+1

�
.

3. This is the case if for example the graph G is strongly connected or contains a spanning tree.
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Since
P

t
1

(t+1)2 <1 and ⇣t+1 is a bounded martingale difference, we have that
P

t0t
1

t0+1Wt0+1

is a L2-bounded martingale, hence convergent almost surely by Doob’s martingale convergence the-
orem. By the same token, since

P
t

1
t+1 ||Vt+1|| <1, we have that Zc

t+1 = Zc
0+

P
0t0t

1
t0+1

�
W c

t0+1+

V c
t0+1

�
converges almost surely to some random variable Zc1.

Since �B has strictly negative eigenvalues, 0 is the only asymptotic stable point of the dynamical
system żt = �Bzt. Since P1 2 �N

K , we can apply theorem 6.10 of [23] to have that ZN�C
t converges

almost surely to 0 when t!1.
We have thus Zt = (Z1

t , · · · , Zc
t , · · · , ZC

t , ZN�C
t ) converges almost surely to Z1 = (Z11, · · · , ZC1, 0),

and one has that Pt converges almost surely to P1 = �Z1 by the continuous mapping theorem.
P1 2 �N

K because Pt 2 �N
K for all t and �N

K is closed.
By lemma A.1, the kernel of D�1

� is spanned by the vectors 1

c such that restricted to
S

cCc

we have 1

c
i = I{i2Cc}. By the proof in lemma A.2, we have that the first C columns of � can be

assumed, without loss of generality, to be the vectors (1c)cC . This means that for every recurrence
class Cc and every i 2 Cc

P i,k
1 = (�Z1)i,k = (�(Z1

1, · · · , ZC
1, 0))i,k =

X

cC

�i,cZ
c,k
1 ,

where �i,c = 1

c
i = I{i2Cc}. This shows that P i,k1 depends only on the recurrence class of i.

Now if Ker(D�1
�) is unidimensional, C = 1 and we can choose � = (1,�N�1) where �N�1 is

a N ⇥ (N � 1) matrix. Then Zt = (Z1
t , Z

N�1
t ) converges almost surely to (Z11, 0) and Pt converges

to P1 = �(Z11, 0) = (Z11, · · · , Z11).

Remark: As one can see, theorem A.1 gives us the convergence of the opinion dynamics algorithm
(1.3) to an element of �N

K such that each recurrence class of the stochastic matrix D�1A reaches a
consensus. Since each recurrence class of D�1A is a strongly connected component of G, we have
created a distributed algorithm that discovers the strongly connected components of G.





APPENDIX B

Estimation of temporal kernel in informa-
tion diffusion

We derive in this appendix algorithms regarding the estimation of the temporal kernel � defined
in chapter 3. These algorithms take two different forms: parametric and nonparametric ones. Due
to the large number of nodes of the social networks in question, the nonparametric alternatives
are too costly and probably nonviable when dealing with real-life social networks. We present here
nevertheless their calculation for the sake of completion.

The two most common employed parametric kernels � are the exponential kernel and the power-
law kernel. Exponential kernels [310, 245, 246] are short-range interaction kernels, since they have
very light tails, and power-law kernels [71] are long-interaction kernels, since they have heavy tails.
Both types of temporal kernels were used in works modeling social networks and social interactions,
and their use is entirely up to one’s desired modeling considerations - as already discussed in chapter
3 the theory is robust regardless the temporal kernel used.

Remark: It is important to remember that each time we update �, we must recalculate our
Hawkes process Xt due to the convolutions �t. When dealing with exponential kernels, one does
not need to use every point in the grid [0, ⌧ ] in order to calculate the exponentials; one may use
only up to some fixed length (see [310]). By doing so, one drastically decreases the complexity of
this procedure.

In this appendix, for the sake of simplicity, we consider the model of user-user and topic-topic
interactions with a single social network and predefined topics, as in chapter 3. The intensity for
the cumulative countnumber Hawkes process Xt is given by

�i,kt = µi,k
+

X

j

X

c

Ji,jBc,k

Z t�

0
�(t� s)dXj,c

s ,

and the log-likelihood is given by (see [74, 240])

L =

X

i,k

✓Z ⌧

0
log(�i,kt )dXi,k

t �
Z ⌧

0
�i,kt dt

◆
. (B.1)

B.1 Parametric estimation of the temporal kernel

There are two standard ways of estimating parametric kernels in Hawkes models, both of them
take advantage of the analytic expression of the log-likelihood of X.
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The first one is to use numerical optimization methods to find the maximum-likelihood estimator
for the kernel parameters by maximizing the log-likelihood (B.1) (as in [15]), and the second one is
to derive expectation-maximization methods (see [198, 221, 319]).

Our goal here is to derive expectation-maximization (EM) methods to the kernel parameters,
since they are less costly than running numerical optimization schemes, and have the advantage of
working nicely with exponential and power-law kernels.

Following Eqn. (B.1), the log-likelihood for this model is thus

L =

X

i,k

✓Z ⌧

0
log(�i,kt )dXi,k

t �
Z ⌧

0
�i,kt dt

◆

=

X

tl

log(�il,kltl
)�

X

i,k

✓
⌧µi,k

+ Ji,ilBkl,k

X

tl

�(⌧ � tl)

◆

=

X

tl

log(µil,kl
+

X

tn<tl

Jil,inBkn,kl�(tl � tn))�
X

i,k

Ji,ilBkl,k

X

tl

�(⌧ � tl)� ⌧
X

i,k

µi,k

= L1 � L2 � ⌧
X

i,k

µi,k,

where

L1 =
X

tl

log(µil,kl
+

X

tn<tl

Jil,inBkn,kl�(tl � tn)), (B.2)

L2 =
X

i,k

Ji,ilBkl,k

X

tl

�(⌧ � tl)

and �(t) =
R t
0 �(s)ds is the primitive of the temporal kernel �.

For the EM algorithm, we must insert the parametric kernel � and calculate the maximum
likelihood estimator for the kernel parameters. By doing so, we arrive at nonlinear equations for the
kernel parameters. One could, at will, use convex optimization methods to calculate this optimal
parameter. We adopt a different path: we approximate the nonlinear parts of the derivative of the
log-likelihood in order to get analytic and simple updates for the parameters.

We perform this linear approximation is order to decrease the complexity of the algorithm, since
the log-likelihood has a quadratic complexity on the jumps of X, due to the double sum

P
tl

P
tn<tl

.

Algorithm 4 - EM estimation procedure
1: Input: jumps times tl, Hawkes parameters J,B, µ, initial condition (!0 for exponential, a0 and

b0 for power-law)
2: while Temporal kernel parameters have not converged do
3: Calculate branching variables p0l and (pnl )n<l with parameters of previous step
4: Calculate parameters EM update equation with new branching variables (Eqn. (B.3) for the

exponential and Eqn. (B.4) for the power-law - calculate a and b in a cyclic manner)
5: end while
6: Output: Kernel parameters (! for exponential, a and b for power-law)
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B.1.1 Expectation-maximization algorithm for an exponential kernel

We start the parametric estimation of the temporal kernel with an exponential kernel of the
form �(t) = !e�!t.It>0, with ! > 0. Let tl be the jumps of the Hawkes process, and let il be the
user that broadcasted content kl at time tl.

From Eqn. (B.2) we have that the log-likelihood of X with an exponential temporal kernel takes
the form

L1 =
X

tl

log(µil,kl
+

X

tn<tl

Jil,inBkn,kl!e
�!(tl�tn)

),

L2 =
X

i,k

Ji,ilBkl,k

X

tl

(1� e�!(⌧�tl)
).

Using the concavity of the logarithm function, we have that

L1 �
X

tl

✓ X

tn<tl

�
pnl log(Jil,inBkn,kl!e

�!(tl�tn)
)� pnl log p

n
l

�
+ p0l log(µ

il,kl
)� p0l log p

0
l

◆

=
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�
pnl log(Jil,inBkn,kl!)� pnl !(tl � tn)� E(pnl )

�
+H(p0l )

◆

= Lp
1

where E(x) = x log x, Hl
(p0l ) = p0l log(µ

il,kl
)�E(p0l ) and the nonnegative branching variables p0l , p

n
l

satisfy p0l +
P

n<l p
n
l = 1.

Maximizing Lp
1 with respect to the branch variables, under the constraint p0l +

P
n<l p

n
l = 1,

gives us

p0l =
µil,kl

µil,kl
+

P
tn<tl

Jil,inBkn,kl!e
�!(tl�tn)

and pnl =

Jil,inBkn,kl!e
�!(tl�tn)

µil,kl
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P
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.

Now, maximizing Lp
= Lp

1 � L2 with respect to ! gives us
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�Jil,inBkn,kl

!
� (tl � tn)

�
�

X

i,k

Ji,ilBkl,k(⌧ � tl)e
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◆
= 0.

Let !t be the output of the EM algorithm at step t. By approximating e�!t+1(⌧�tl), the ex-
ponential at time t + 1, by e�!t(⌧�tl), the exponential at time t, we get a linear update for !t+1

as

!t+1
=

P
tl

P
tn<tl

pnl Jil,inBkn,kl

P
tl

✓P
tn<tl

pnl (tl � tn) +
P

i,k Ji,ilBkl,k(⌧ � tl)e�!
t(⌧�tl)

◆ . (B.3)

B.1.2 Expectation-maximization algorithm for a power-law kernel

We now derive an EM algorithm for a power law kernel of the form �(t) = b(a + t)�(b+1), for
a > 0 and b 6= 0. From Eqn. (B.2) we have that the log-likelihood of X with a power-law temporal
kernel takes the form

L1 =
X

tl

log(µil,kl
+

X

tn<tl

Jil,inBkn,klb(a+ tl � tn)
�(b+1)

),

L2 =
X

i,k

Ji,ilBkl,k

X

tl

(a�b � (a+ ⌧ � tl)
�b
).
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Using again the concavity of the logarithm, we have the lower bound for L1,

L1 �
X

tl

✓ X

tn<tl

�
pnl log(Jil,inBkn,klb)� pnl (b+ 1) log(a+ tl � tn)� E(pnl )

�
+H(p0l )

◆

= Lp
1.

Thus, maximizing this bound for p0l and pnl under the constraint p0l +
P

n<l p
n
l = 1 gives us

p0l =
µil,kl

µil,kl
+

P
tn<tl

Jil,inBkn,klb(a+ tl � tn)�(b+1)

and
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And maximizing Lp
= Lp

1 � L2 with respect to a and b gives
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Again, let at and bt be the updates of a and b at step t. Approximating
�
a�bt+1

log a� (a+ ⌧ �
tl)

�bt+1
log(a+⌧�tl)

�
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a�bt
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and
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where B1
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log a
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B.2 Nonparametric estimation of the temporal kernel

As next step of the temporal kernel estimation, we describe a nonparametric procedure, following
Bacry and Muzy [17] and using an intensity of the form

�i,kt = µi,k
+

X

j,c

Ji,jBc,k

Z t

�1
�(t� s)dXj,c

s .
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We assume that the Hawkes process is in the stable regime (see chapter 4). In order for X to
be in the stable regime, we must have (see lemma 24)

sp(B)sp(J) <
1

||�||1
.

Since in the stable regime the Hawkes process X has stationary increments (see [140, 44]), we
define ⇤i,k

= E[�i,kt ] to be the expectation of the intensity, which satisfies

⇤

i,k
= E[�i,kt ] = µi,k

+

X

j,c

Ji,jBc,k

Z t

�1
�(t� s)E[dXj,c

s ]

= µi,k
+

X

j,c

Ji,jBc,k

Z t

�1
�(t� s)⇤j,c,

which in matrix form becomes
⇤ = µ+ ||�||1J⇤B. (B.5)

By taking the vectorization of Eqn. (B.5), we get

v(⇤) = (I� ||�||1(BT ⌦ J))�1v(µ).

It has been shown in [17] that the first and second order statistics of a Hawkes process com-
pletely characterizes it, i.e., we only need the expectation and covariance functions to determine its
structure. Since Hawkes processes are orderly processes (they almost surely do not possess more
than one jump at the same time) with jumps of size 1, we can use the conditional expectation of
jumps instead of the covariance function, defined by

G(i,j),(c,k)
(t)dt = E[dXi,k

t |dXj,c
0 = 1]� �(i,k),(j,c)�(t)� ⇤i,kdt,

where �l,n is the Kronecker delta, i.e., �l,n = 1 if l = n and 0 otherwise.
The conditional expectation can be seen as a function G : R ! MNK⇥NK(R) by using the

indices (i, j), (c, k) as in (BT ⌦ J). Defining �(t) to be the nonparametric NK ⇥ NK matrix
composed by the kernels of the Hawkes process X, as

v(�t) = v(µ) + (� ⇤ dX)t,

we have by proposition 3 of [17] that � satisfies the N2K2 dimensional Wiener-Hopf system

G(t) = �(t) + � ⇤G(t), t > 0, (B.6)

which admits a unique solution, i.e., it completely characterizes the temporal kernel �. Bacry and
Muzzy developed in [17] a nonparametric estimation procedure for the whole kernel matrix �, which
does not take into account its partial parametric form �(t) = �(t)(Bt ⌦ J).

In our case, we do not have for each time t the full N2K2 degrees of freedom from �(t),
since we have that the kernels must satisfy the constraint �(t) = �(t)(Bt ⌦ J). That being said,
our nonparametric estimation of �(t) is thus a problem of finding the function �(t) that best
approximates the true kernels �(t).

In order to do so, we derive from the Wiener-Hopf system (B.6) the equations satisfied by G, as
in [17], which gives us an equality between the tensor G and the kernel �. Then, we discretize [0, ⌧ ]
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into bins to achieve a linear system linking both quantities, and apply a nonnegative least squares
estimation procedure to determine the best � in each time bin.

By Eqn. (30) in [17], we have that G satisfies

G(i,j),(c,k)
(t) = �(i,j),(c,k)(t) +

X

l,p

✓Z

s>0
�(i,l),(p,k)(t� s)G(l,j),(c,p)

(s)ds
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j,c

Z

s<0
�(i,l),(p,k)(t� s)G(j,l),(p,c)

(�s)ds
◆

(B.7)
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⇤
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⇤

j,c
�(t+ s)G(j,l),(p,c)

(s)

◆
ds

For simplicity, take a size T quadrature1 grid [0, h, 2h, · · · , sh, · · · , (T � 1)h] of [0, ⌧ ], with
timestep h, and let l = i+N(k � 1) and n = j +N(c� 1), where l and n are then indices for the
vectorization of ⇤. Define, with abuse of notation, the NK⇥NK tensor  , the T vector � and the
NK ⇥NK ⇥ T tensor G such that

 = BT ⌦ J, �s = �((s� 1)h), Gl,n,s = Gl,n
((s� 1)h),

Using the quadrature grid, Eqn. (B.7) becomes2

Gl,n,t =  l,n�t + h
X

s�1

X

d

 l,d

✓
Gd,n,s�t�s +

⇤d

⇤n
Gn,d,s�t+s

◆
, (B.8)

where �t�s = 0 if s � t from the fact that � is a causal kernel.
Defining the NK ⇥NK ⇥ T ⇥ T tensor ⌘, such that

8
<

:

⌘l,n,t,s =  l,n if s = t
⌘l,n,t,s = h

P
d l,dGd,n,t�s if s < t

⌘l,n,t,s = h
P

d l,d
⇤d

⇤nGn,d,s�t if s > t,

we have G = ⌘ ⇥4 �
T , where ⌘ ⇥4 �

T is the mode-1 product of ⌘ and �T (see [170]). And defining
the NK ⇥NK ⇥ T ⇥ T tensor ⇢ by

8
<

:

⇢l,n,t,s = �l,n if s = t
⇢l,n,t,s = hGd,n,t�s if s < t

⇢l,n,t,s = h⇤d

⇤nGn,d,s�t if s > t,

we have that ⌘ = ⇢⇥1  .
We easily have by Eqn. (B.8) then

G = ⌘ ⇥4 �
T
= ⇢⇥1  ⇥4 �

T .

We can thus apply a nonnegative Tucker decomposition with quadratic cost function to find the
best nonnegative �, following [170], which gives us

�T  �T �
[G⇥1 (B ⌦ JT

)](4)⇢
T
(4)

�T [⇢⇥1 (BBT ⌦ JTJ)](4)⇢
T
(4)

,

1. In [17], the estimation procedure is based on the Nyström method [54] using Gaussian quadrature.
2. One can notice that Eqn. (B.7) has a discontinuity in t = 0, which is also observed in Eqn. (B.8). One way to

deal with this problem is to estimate directly the integrals, as in Eqn. (43) of [17].



B.2 Nonparametric estimation of the temporal kernel 143

with G(4) the mode-4 matricization of the tensor G (see [170]). Taking the transpose amounts to
the following multiplicative updates

� ��
⇢(4)[G⇥1 (B ⌦ JT

)]

T
(4)

⇢(4)[⇢⇥1 (BBT ⌦ JTJ)]T(4)�
, (B.9)

which converges to the unique minimum, since the quadratic cost is convex in �.
Remark: Another estimation technique to solve nonnegative Tucker decomposition problems

in the alternating least squares (ALS) method [62, 251, 250], in which one replaces the cyclic
multiplicative updates to alternating projected gradient descents.

One can see that, nevertheless, the complexity for this update is high, due to the matrix product
from the matricization of the tensors. This approach is useful, however, if one wants to estimate
separately the matrix  = BT ⌦ I.

It is also important to notice that the NTD updates are matrix products and entrywise divisions
and multiplications, so they can be performed in a distributed fashion. Moreover, one may use the
structure in  and ⇢ is order to decrease the complexity of the mode-4 and mode-1 products, and
the mode-4 matricizations.

The simpler approach is to use the fact that

G = ⌘ ⇥4 �
T , GT

(4) = ⌘T(4)�,

which can be seen as the matrix multiplication, and perform a nonnegative least squares estimation
in order to find �.

Algorithm 5 - Nonparametric estimation procedure
1: Input: jumps of Hawkes process dX, Hawkes parameters J,B, µ, discretization timestep h

2: Estimate ⇤ by ⇤i,k ' Xi,k
⌧
⌧

3: Discretize [0, ⌧ ] as [0, h, 2h, · · · , (T � 1)h]
4: Estimate Gl,n,s using empirical averages
5: Calculate matrices  , ⌘ and ⇢ (and the possible mode-m products and matricizations)
6: Estimate � using nonnegative least squares (or the NTD multiplicative updates (B.9) until

convergence)
7: Output: Kernel function �((s� 1)h), s 2 {1, · · · , T}





APPENDIX C

Modified estimation of topic models

C.1 Introduction

Chapter 3 is concerned with the development and study of our Hawkes-based information diffu-
sion framework. One of the biggest advantages of this framework is that one can create and adapt
different models at ease, such as the models derived in subsections 3.2.1, 3.2.2, 3.2.3, 3.2.4 and 3.2.5

From all abovementioned models of information diffusion, one of them is in need of a tool that
does not stem from point processes and nonnegative tensor decompositions in order to be properly
analyzed: the "fuzzy" diffusion model of subsection 3.2.3. The tool necessary for the adequate
treatment of "fuzzy" diffusions is topic models [34, 265, 145].

Topic modeling is a subfield of machine learning and natural language processing. A topic model
is a statistical model for discovering compound "topics", composed of multiple ideas, that occur
in documents. Intuitively speaking, given that a document is about a particular topic, one would
expect particular words to appear in the document more or less frequently: "politics" or "vote"
would probably appear more in a political-oriented document. A document which is 80% about
politics and 20% about economics would have on average four times more words linked to politics
than it has about economics. A topic model captures this intuition in a mathematical framework,
which allows examining documents and discovering, based on the statistics of the words contained
in each of them, what would be the relevant topics and their balance.

In this appendix we take advantage of the probabilistic latent semantic analysis (PLSA) frame-
work [152, 222], which uses statistical techniques to study relationships between words in documents.
One of the ideas used in PLSA is that a document is a mixture decomposition stemming from a
latent class model, i.e., documents are (probabilistic) combinations of "yet undiscovered topics".
Among topic models from PLSA, two are particularly useful in our Hawkes-based information dif-
fusion framework: latent Dirichlet allocation [34] and author-topic model [265].

Latent Dirichlet allocation (LDA) is a generative probabilistic model for discrete data, such as
text, developed in [34] by Blei et al. It is based on a hierarchical Bayesian model, in which every
document is an independent finite mixture over K topics. Each topic is then represented as a finite
mixture over a representative set of topic probabilities. In other terms, documents are probabilities
over the K topics and these probabilities will be related to the words encountered in each document.

In the LDA, words have topic assignments that are document-dependent and independent from
each other, and documents are independent mixtures of the K latent topics, which are retrieved
from its words. These topics are thus defined as distributions over words, and this mechanism
defines a hierarchical Bayesian model.

Author-topic model (ATM) is also a generative probabilistic model for discrete data, similar to
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the LDA. The big difference between both models is that in the ATM, the topic variables assigned
to words in documents are not document-oriented, but author-oriented, i.e., in the LDA the words
of a document were intrinsically related to the document in question, whereas in the ATM words
are related to the authors of the document.

The motivation for using the ATM instead of the LDA is the fact that in the LDA, messages
are a mixture of topics, independent of other messages. This means that we do not take into
consideration the authors inclination to post messages on their topics of expertise or interest. Think
for example about Barack Obama: he is more likely to post messages on Twitter about topics related
to economics or politics than topics related to fashion or sports. The ATM takes that individuality
into consideration when discovering the latent topics, as opposed to the LDA which assumes that
each tweet from Obama is independent from the others.

A potential weakness of the ATM is that it does not allow any particular aspect of a document.
The document is thus generated only by a mixture of the authors’ topic distributions. The LDA
model on the other hand is in a sense its complete opposite - it allows each document to have its
own document-specific topic mixture. One could also provide less "extreme" topic models that lie
between these two, allowing a flexible treatment of the broadcasted messages.

wzt,w✓t↵ �k ⌘

8w 2 t

8t  T

8k  K

Figure C.1: Graphical model for latent Dirichlet allocation [34].

wzt,wxt,wat

✓a↵

�k ⌘

8w 2 t

8t  T

8k  K

8a  N

Figure C.2: Graphical model for author-topic language model [265].

The use of the LDA and ATM topic models in this thesis is not restrictive at all and different
topic models are in fact plausible. We have chosen these particular two topic models for their
simplicity, which makes them base models for a series of extensions and variants [271, 280, 299].

Since we are not dealing with a standard topic model problem, we will exchange the nomenclature
with our own, in order to avoid confusion:

• Documents become messages that are broadcasted.

• Messages are a mixture of topics or contents.
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• Authors are the users in our social networks.

• As in LDA and ATM, a word is the basic unit of data, being defined as an entry of a
vocabulary (dictionary) of size W . A word relative to the ith entry of the vocabulary is a
W -dimensional vector w such that wi = 1 and wj = 0 for j 6= i.

C.2 Generative procedures for latent Dirichlet allocation and author-
topic model

C.2.1 Latent Dirichlet allocation

The latent Dirichlet allocation is a generative probabilistic topic model following the generative
process (see Figure C.1):

1- Choose the K topic distributions over the W words, �k, k 2 {1, 2, · · · ,K}, such that1

�k ⇠ Dirichlet(⌘).

2- For each message t 2 {1, 2, · · · , T} we choose the message topic distribution

✓t ⇠ Dirichlet(↵).

2.1- For each word w in the message t we get the topic zt,w 2 RK
+ from the discrete2 distri-

bution ✓t, such as
P(zt,wk = 1|✓t) = ✓tk. (C.1)

2.2- Given the topic zt,w we choose the word topic from the K⇥W matrix topic distribution
� as

�kj = P(wj = 1|zt,wk = 1).

C.2.2 Author-topic model

The author-topic model is a generative probabilistic topic model following the generative process
(see Figure C.2):

1- Choose the K topic distributions over the W words, �k, k 2 {1, 2, · · · ,K}, such that

�k ⇠ Dirichlet(⌘).

2- For each user/author in V , choose the author-topic distributions, ✓a, a 2 {1, 2, · · · , N}, such
that

✓a ⇠ Dirichlet(↵).

3- For each message t 2 {1, 2, · · · , T} with authors at ⇢ {1, 2, · · · , N}

1. A random variable � follows a Dirichlet distribution with parameter ⌘ (such that ⌘j > 0 for all j), denoted by
� ⇠ Dirichlet(⌘), if � has probability density p(x) =

Q
j

�(⌘
j

)

�(
P

j

⌘
j

)

Q
j x

⌘
j

�1
j for x such that xj � 0 and

P
j xj = 1.

2. A random variable z 2 {1, 2, · · · ,K} follows a discrete distribution with parameter ✓ (such that ✓k � 0 andP
k ✓k = 1), denoted by z ⇠ Discrete(✓), if P(z = k) = ✓k.
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3.2- For each word w in the message t, we choose the author xt,w 2 at = {ai1 , · · · , ait}
corresponding to the word w in a uniform fashion

P(xt,w = ain) =
1

]at
.

3.2- Given the author xt,w of word w in message t, we get the topic zt,w 2 RK
+ from the

discrete distribution ✓xt,w , such as

P(zt,wk = 1|✓xt,w
) = ✓x

t,w

k . (C.2)

3.3- Given the topic zt,w, we choose the word topic from the K⇥W matrix topic distribution
� as

�kj = P(wj = 1|zt,wk = 1). (C.3)

Remark: The random variable xt,w represents the author associated with the word w in docu-
ment t, sampled uniformly from at ⇢ {1, 2, · · · , N}. In our case, ]at = 1 for all messages t  T , i.e.,
each message has only one author and this author is the user it 2 {1, 2, · · · , N} that broadcasted
the message at time tt.

Remark: In both topic models, we have two Dirichlet hyperparameters ⌘ and ↵ responsible
to "smooth" the topic distributions �, ✓ and give them a predetermined shape. A great deal of
importance is given to them, with detailed and thorough discussions [144, 12, 296] from theoretical
and practical points of view.

C.3 Topic model parameters estimation

There are several ways of estimating the LDA topic model parameters, such as variational meth-
ods, Gibbs sampling, expectation-propagation, among others: for example, Blei et al. [34] develop
a variational Bayes algorithm, Hoffman et al. [151] develop an online variational Bayes algorithm
and [47, 77, 128] illustrate a Gibbs sampler procedure for the estimation of the beforementioned
parameters.

We concentrate here on the two most common ways of estimating the topic model parameters ✓, z
and �: variational Bayes methods (see [34, 151, 145]) and Gibbs sampling methods (see [47, 77, 128]).

As already mentioned, we place ourselves on the model in subsection 3.2.3, which serves as an
example for every "fuzzy" diffusion model implemented in our information diffusion framework of
chapter 3.

We take advantage of the relationship between the topic model and the information diffusion
cascades generated by the Hawkes process X, which stems from the presence of the random variables
Zts in the intensity, rewritten here

�it = µi +

X

j,c,k

Ji,jBc,kbi,k

Z t�

0
�(t� s)Zs

cdX
j
s .

We use then the relationship between the topic model and the Hawkes process X to derive a
more data-driven methodology for the topic model parameters estimation. Other examples of such
methodology are [310], where the authors introduce a simple topic model to detect the mutation of
memes in social networks, and [200], where the authors introduce the LDA topic model to identify
and label search tasks and queries.
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C.3.1 Modified Collapsed Gibbs sampler

We start our estimation methodology with the Gibbs sampler (see [114, 28, 115] for a more
detailed discussion). Gibbs sampling is a member of the Markov-chain Monte Carlo (MCMC)
framework (see [28, 115]), and it is a particular instance of the Metropolis-Hastings algorithm. In
Bayesian estimation, MCMC algorithms aim to construct a Markov chain that has the posterior
distribution as its unique stationary distribution.

In both topic models, one wants to sample from the posterior of z, i.e., P(z|w,↵, ⌘), however
this expression is unknown. On the other hand, since the discrete distribution and the Dirichlet
distribution are conjugate [257, 113], one can analytically integrate ✓ and � out of the posterior.
This gives rise to a simple and efficient estimation method called collapsed Gibbs sampling [209]
(where the discrete random variable ✓ and the Dirichlet random variable � are "collapsed" from the
posterior distribution).

Remark: Since we have only one user broadcasting each message in our framework, we have by
definition ]at = 1 for every message t, i.e., the ensemble of authors for each message in the ATM
is always unitary, the posterior distribution P(z, a, ✓,�|w, x,↵, ⌘) for the ATM can be simplified as
P(z, ✓,�|w, x,↵, ⌘).

From now on, let zs,i be the topic of word wi, belonging to message3 s, and z�(s,i) be the topics
of all other words except the word wi. Let also xs,i be the author of word wi, belonging to message
s, and x�(s,i) be the authors of all other words except the word wi.

The standard collapsed Gibbs sampling method for sampling z works as follows: one wants to
sample from the posterior P(z, |w,↵, ⌘), however this posterior is unknown due to dependencies
between z. One can, on the other hand, calculate analytically P(zs,i, |w, z�(s,i),↵, ⌘) for both LDA
and ATM by collapsing the latent random variables ✓ and �. Moreover, one can show that to sample
from P(z, |w,↵, ⌘), it suffices sampling from P(zs,i, |w, z�(s,i),↵, ⌘) in a cyclical way, since by Bayes
rule

P(z, |w,↵, ⌘) = P(zs,i, z�(s,i)|w,↵, ⌘) = P(zs,i|w, z�(s,i),↵, ⌘)P(z�(s,i)|w,↵, ⌘)
/ P(zs,i|w, z�(s,i),↵, ⌘),

i.e., sampling from P(z, |w,↵, ⌘) and from P(zs,i|w, z�(s,i),↵, ⌘) is equivalent since they are propor-
tional.

We can use the analytic form of the standard Gibbs sampler to derive modified collapsed Gibbs
sampling method for the LDA and ATM, in two different parts. The methodology is the same
for both of them, differing only on the notation used (the ATM possesses authors, which change
the equation for the posterior distribution). The difference between our modified version and the
standard version of Gibbs sampling stems from the introduction of the point process X into the
estimation, using Bayes rule.

Remark: We do not discuss here about the practical implementation of a Gibbs sampler, since
it has already been largely discussed in the literature [115]. We only present the modified sampling
equations for the sampler.

Remark: The fact that the Gibbs sampling is quite simple for the LDA and ATM makes another
good reason to why choose these models as base models to our information diffusion framework.

3. From now on, we denote message s the message broadcasted at time ts.
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C.3.1.1 Latent Dirichlet allocation

We have from [47, 77, 128] that the sampling probabilities for zi,s can be calculated analytically
using z�(s,i), w, ↵ and ⌘ as

P(zs,i = k|z�(s,i), w,↵, ⌘) /
n
(wi)
�i,k + ⌘wi

n
(·)
�i,k +

P
j ⌘j

.
n
(s)
�i,k + ↵k

n
(s)
�i,· +

P
k0 ↵k0

, (C.4)

where

• n
(wi)
�i,k is the number of instances of word wi assigned to topic k, in exception of word wi in

message s,

• n
(·)
�i,k is the total number of words, in exception of word wi in message s, that are assigned to

topic k,

• n
(s)
�i,k is the number of words in message s assigned to topic k, in exception of word wi,

• n
(s)
�i,· is the total number of words in message s, in exception of word wi.

Now we introduce the Hawkes process Xt: Let X be the instances of the point process Xt and Z
be the empirical topic proportions of messages, given by Eqn. (3.2). Since the intensity �t depends
only on z through Z, we have by Bayes rule

P(zs,i|z�(s,i), w,X,↵, ⌘) / P(X|zs,i, z�(s,i), w,↵, ⌘)⇥ P(zs,i|z�(s,i), w,↵, ⌘)

= P(X|zs,i, z�(s,i)
)P(zs,i|z�(s,i), w,↵, ⌘) = P(X|Z)P(zs,i|z�(s,i), w,↵, ⌘)

= L(X|Z)P(zs,i|z�(s,i), w,↵, ⌘), (C.5)

where L(X|Z) is the conditional likelihood of X given Z, as (see [74, 240])

L(X|Z) =

⇥X(⌧)Y

n=1

�intn
⇤
exp(�

X

i

Z ⌧

0
�iudu), (C.6)

where in is the user that broadcasted the message at time tn and X(⌧) is the total number of jumps
of X in [0, ⌧ ], i.e., the total number of messages broadcasted in [0, ⌧ ].

Let ts be the time of broadcast of the message s containing word wi and is be the user that
broadcasted the message at time ts. Looking at the likelihood L(X|Z) more closely, one can see
some terms that do not depend on zs,i, and are casted out during the normalization process; these
are the terms not containing Zts . Thus one can replace L(X|Z) by

Lts
(X|Z) =

 X(⌧)Y

tn>ts

�intn

�
exp

✓
�

Z ⌧

0

X

j,c,k

Jj,isBc,kZ
ts
c bj,k�(t� ts)dt

◆

=

 X(⌧)Y

tn>ts

�intn

�
exp

✓
�

X

j,c,k

Jj,isBc,kZ
ts
c bj,k�(⌧ � ts)

◆
, (C.7)

where �(t) =
R t
0 �(s)ds is the primitive of the kernel �. This expression can be further simplified

using the fact that the normalizing constant on the Gibbs sampler uses only information on the
current sampling topic.
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Thanks to the analytic form of P(zs,i|z�(s,i), w,↵, ⌘) given by Eqn. (C.4) and by Eqn. (C.5),
we have derived a sampling probability for zs,i that depends not only on the topic parameters but
also on the Hawkes process itself, which makes it more data-driven.

After achieving the stationary regime for z one can compute the estimators for ✓ and � as

ˆ✓tk =

n(t, k) + ↵kP
k0
�
n(t, k0) + ↵k0

� and ˆ�kj =
n(j, k) + ⌘jP

j0
�
n(j0, k) + ⌘j0

� ,

where n(t, k) is the number of times a word in message t is of topic k and n(j, k) is the number of
times the j-word of the vocabulary was associated with topic k (see [77, 144]).

C.3.1.2 Author-topic model

As already mentioned, since we only have one author per message, the sampling part reduces to
sampling only from zs,i instead of sampling from the topic-author couple zs,i, xs,i, as in the original
topic-author model [265]; nevertheless, we describe here the full form of the collapsed Gibbs sampling
for the ATM for the sake of completeness. Thus, we have from [265] that the sampling probabilities
for zi,s can be calculated analytically using z�(s,i), x�(s,i), w, a, ↵ and ⌘ as

P(zs,i = k, x(s,i) = p|z�(s,i), x�(s,i), w, a,↵, ⌘) /
n�wi,WT
wi,k

+ ⌘wi

n�wi,WT
·,k +

P
j ⌘j

.
n�wi,TA
p,k + ↵k

n�wi,TA
p,· +

P
k0 ↵k0

, (C.8)

where

• n�wi,WT
wi,k

is the number of instances of word wi assigned to topic k, in exception of word wi

in message s,

• n�wi,WT
·,k is the total number of words, in exception of word wi in message s, that are assigned

to topic k,

• n�wi,TA
p,k is the number of words of author p assigned to topic k, in exception of word wi in

message s,

• n�wi,TA
p,· is the total number of words of author p, in exception of word wi in message s.

Since ]as = 1 for every message s, we have that

P(zs,i, xs,i|z�(s,i), x�(s,i), X,w, a,↵, ⌘) = P(zs,i|z�(s,i), x�(s,i), X,w, a,↵, ⌘)

hence, again by Bayes rule,

P(zs,i, xs,i|z�(s,i), x�(s,i), w, a,X,↵, ⌘) = P(zs,i|z�(s,i), x�(s,i), w, a,X,↵, ⌘)

/ P(X|zs,i, z�(s,i), x�(s,i), w, a,↵, ⌘)⇥ P(zs,i|z�(s,i), x�(s,i), w, a,↵, ⌘)

= P(X|zs,i, z�(s,i)
)⇥ P(zs,i|z�(s,i), x�(s,i), w, a,↵, ⌘)

= P(X|Z)⇥ P(zs,i|z�(s,i), x�(s,i), w, a,↵, ⌘)

= L(X|Z)⇥ P(zs,i|z�(s,i), x�(s,i), w, a,↵, ⌘), (C.9)

where the conditional likelihood L(X|Z) is given by Eqn. (C.6), and simplified as in Eqn. (C.7).
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Again, thanks to the analytic form of P(zs,i|z�(s,i), x�(s,i), w, a,↵, ⌘) given by Eqn. (C.8) and
by Eqn. (C.9), we have derived a sampling probability for zs,i that depends not only on the topic
parameters but also on the Hawkes process itself, which makes it more data-driven.

After achieving the stationary regime for z one can compute the estimators for ✓ and � as

ˆ✓a,k =

nTA
(a, k) + ↵kP

k0 n
TA

(a, k0) + ↵k0
and

ˆ�k,j =
nWT

(k, j) + ⌘jP
j0 n

WT
(k, j0) + ⌘j0

,

where nTA
(a, k) is the number of times a word of author a is of topic k and nWT

(k, j) is the number
of times the j-word of the vocabulary was associated with topic k (see [265]).

C.3.2 Modified variational Bayes estimation

As stated before, one standard alternative to the Gibbs sampling is the so-called variational
approach, where one substitutes the random sampling part with an optimization over some free
variables (see [34, 151, 145] for the approach in LDA).

Even though the Gibbs sampling is faster than the optimization approach of the variational
Bayes technique, one may still prefer using optimization methods instead of the random sampling.
Some of the reasons are:

• The Gibbs sampling needs a burn-in period, where one ignores the first samples, which does
not possess any reasonable theoretical guarantee on the minimal number of samples to be
ignored.

• After the burn-in period, one considers only every nth sample when averaging values to com-
pute an expectation, since consecutive samples are correlated and form a Markov chain.

• It is difficult to assert that the underlying Markov chain related to the Gibbs sampling proce-
dure indeed converged (the convergence is measured with the autocorrelation function of the
samples with different time lags).

• The optimization is easy to perform, and easy to assert convergence.

• The optimization technique uses the entropy function to derive an inferior bound for the
function to be maximized, which is easier to replicated to different models than the sampling
procedure.

Again, we perform a modified variational Bayes estimation for the topic models in two separate
parts. The reason is that although the principles are still the same, the implementations are slightly
different. This is due to the introduction of authors on the ATM. Moreover, we also present the
calculations for the standard variational Bayes estimation procedure in the ATM, for the sake of
completeness. The standard variational Bayes approach for the LDA can be found in [34].

The basic idea behind the standard variational Bayes approach is to derive a lower bound on
the log-likelihood of the topic models, by applying Jensen’s inequality and introducing the entropy
function. For that goal, one introduces free variational parameters following the same distributions
as the latent variables, and "breaks" the dependence between the latent variables, generating a
simpler Bayesian graphical model.
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Then, one estimates the closest variational family to the posterior distribution, with respect to
the Kullback-Leibler divergence, and retrieve the free parameters. In this estimation step, one has
analytic formulas for the free variational parameters, which must be recalculated in a cyclic way
until convergence.

At last, one uses the free parameters to sample the topic model latent variables. For the
hyperparameters ↵ and ⌘, one can proceed as in [34, 228] to find a Newton-Raphson algorithm to
find the optimal values.

C.3.2.1 Latent Dirichlet Allocation

In order to apply variational Bayes estimation techniques for the LDA, one must first introduce
free variational

• Dirichlet variables �s = (�s1, · · · , �sK), �sk � 0 for the message-topic latent variables ✓s,

• discrete variables  l,i for the word-topic latent variables zl,i, where
P

k  
l,i
k = 1 and  l,i

k � 0.

One can thus retrieve the random variables ✓s, zl,i as

✓s ⇠ Dirichlet(�s) and zl,i ⇠ Discrete( l,i
).

Secondly, following [34, 145], one must find the minimum distance (given by the Kullback-Liebler
divergence) between a variational distribution q and the true posterior P(✓, z|X,w,↵,�), as

(�⇤, ⇤
) = argmin(�, )dKL(q(✓, z|�, )|P(z, ✓|X,w,↵,�)),

where for each message s and each word wi of message s,

qs(✓
s, zs|�s, s

) = qs(✓
s|�s)

Y

i

qs(z
s,i| s,i

),

with qs the variational distribution related to message s, which remains4 in the same exponential
family as z and ✓, respectively. As one can imagine, the variational distribution q is the proxy of
the posterior P(✓, z,X,w|↵,�) in the same exponential family of ✓ and z.

Our approach, again, makes use of the Hawkes process X to modify the true posterior and
introduces a dependence between the dynamics of X and the LDA topic model. To include the
Hawkes process X into our posterior, we use Bayes rule as

P(✓, z, w,X|↵,�) = P(X|✓, z, w,↵,�).P(✓, z, w|↵,�)
= P(X|Z).P(✓, z, w|↵,�) = L(X|Z).P(✓, z, w|↵,�), (C.10)

where L(X|Z) is the conditional likelihood of X given Z, as in Eqn. (C.6).
Applying the same methods as in appendix A.3 in [34], we have

logP(X,w|↵,�) = L(�, ;↵,�) + dKL(q(✓, z|�, )|P(✓, z|X,w,↵,�)),

where

L(�, ;↵,�) = Eq[logP(✓, z, w,X|↵,�)]� Eq[q(✓, z)]

= Eq[logL(X|Z)] + Eq[logP(✓, z, w|↵,�)]� Eq[q(✓, z)]

4. We clearly have Eq[z
s,i
] =  

s,i and Eq[✓
l
] = �

l (see [34]).
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by Eqn. (C.10) and, by Eqn. (C.6),

Eq[logL(X|Z)] = Eq[

X(⌧)X

n=1

log(�intn)]� Eq[

X

i

Z ⌧

0
�itdt]. (C.11)

One cannot, however, compute analytically Eqn. (C.11). The alternative is to derive a lower
bound using the concavity of the logarithm function: let jl be the user that broadcasted message l.
Due to the concavity of the logarithm and the fact that

Eq[Z
tl
] =

1

Nl

X

i

Eq[z
l,i
] =

1

Nl

X

i

 l,i
=

˜ l,

one can introduce nonnegative branching variables uti such that uti,0+
P

tl<t,c u
t
i,c,l

˜ l
c = 1 and bound

Eq[log(�
i
t)] as

Eq[log(�
i
t)] = Eq[log(µ

i
+

X

j,c,k

Ji,jBc,kbi,k

Z t�

0
�(t� s)Zs

cdX
j
s )] (C.12)

= Eq[log(µ
i
+

X

tl<t,c,k

Ji,jlBc,kbi,kZ
tl
c �(t� tl))]

�
X
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c ] log(Ji,jl

X

k

Bc,kbi,k�(t� tl))

+ uti,0 log(µ
i
)� uti,0 log(u

t
i,0)�

X
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uti,c,lEq[Z
tl
c ] log(u

t
i,c,l)

= uti,0 log(µ
i
) +

X

tl<t,c

uti,c,l
˜ l
c log(Ji,jl
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t
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X
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c log(u

t
i,c,l).

We can find the uti that makes this bound the tightest possible by maximizing it under the
constraint uti,0 +

P
tl<t,c u

t
i,c,l

˜ l
c = 1, which gives us

uti,0 =
µi

µi
+

P
tl<t,c

˜ l
cJi,jl

P
k Bc,kbi,k�(t� tl)

and
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P
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P
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P
k Bc,kbi,k�(t� tl)

.

We also trivially have

Eq[

X

i

Z ⌧

0
�itdt] =

X

i
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0

�
µi

+

X
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Ji,jl
X
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�
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= ⌧
X

i
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+

X

i

X
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�(⌧ � tl)Ji,jl
X

c,k

Bc,kbi,k ˜ 
l
c, (C.13)

where �(t) =
R t
0 �(s)ds is the primitive of �(t).
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Plugging Eqns. (C.12) and (C.13) into L(�, ;↵,�) and deriving with respect to  l,w
c we find

0 = @
 l,w
c

L(�, ;↵,�) = 'l,w
c + LDAl,w

c ,

where

'l,w
c =

1

Nl

✓ X

tn>tl

unin,c,l log(
Jin,jl

P
k Bc,kbin,k�(tn � tl)

unin,c,l
)� �(⌧ � tl)

X

i

Ji,jl
X

k

Bc,kbi,k

◆
,

with in the user that broadcasted message n, and

LDAl,w
c =  (�lc)� (

X

c0
�lc0) + log �c,vw � log l,w

c + LM,

where  (x) = �0(x)
�(x) is the digamma function (see [1] for a numerical implementation using Taylor

approximation), vw 2 {1, 2, · · · ,W} is the unique index such that wv = 1 and LM is a positive
Lagrange multiplier for the constraint

P
c  

l,w
c = 1 (this result is found in appendix A.3.1 of [34]

(above Eqn. (16)).
It is then straightfoward to get

 l,w
k / �k,vw exp('l,w

k + (�lk)� (
X

k0
�lk0)).

Since L(X|Z) does not depend on ✓ (and by consequence on �) nor �, we have that the updates
for � and � are the same as from the variational Bayes on LDA given by [34], i.e.,

�lk = ↵k +

X

w

 l,w
k

and (when we consider � fixed instead of following a Dirichlet distribution)

�kj /
X(⌧)X

s=1

NsX

i=1

 s,i
k ws,i

j .

If we consider �k ⇠ Dirichlet(⌘) and use a variational parameter ⇢k for each �k, we get (see
[34])

⇢kj = ⌘j +

X(⌧)X

s=1

NsX

i=1

 s,i
k ws,i

j .

C.3.2.2 Author-topic model

We derive here a modified variational Bayes estimation for the author-topic model. We proceed
in two steps: first step is to calculate the standard variational Bayes estimation for the author-topic
model, without taking into consideration the Hawkes process X; this is done for the sake of com-
pleteness, without being able to find it in the literature. Secondly, we introduce the Hawkes process
X to derive modified variational Bayes estimates, as previously done in subsubsection C.3.2.1.

Lemma C.1. Let us define the free variational

• Dirichlet variables �a = (�a1 , · · · , �aK), �ak � 0, for the author-topic latent variables ✓a,
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• discrete variables  s,i for the word-topic latent variables zs,i, where
P

k  
s,i
k = 1 and  l,i

k � 0,
and

• Dirichlet variables ⇢k = (⇢k,1, · · · , ⇢k,W ), ⇢k,j � 0, for the topic distributions �k.

If ]at = 1, i.e., each message has only one author, the standard variational Bayes free variables
for the author-topic model are given by

�ak = ↵k +

P
s2Aa

PNs
w=1  

s,w
j

]Aa

 s,w
k / exp

✓
 (⇢k,vw)� (

X

j0
⇢k,j0) + (�

as

k )� 0
(

X

k0
�a

s

k0 )

◆

⇢k,j = ⌘j +
X

s=1

NsX

i=1

 s,i
k ws,i

j ,

where as is the author of message s and Aa = {s | as = a} is the set of messages that have author
a 2 V and vw is the unique index j for word w such that word wj = 1.

Thus, we can retrieve the random variables ✓a, zs,i and �k as

✓a ⇠ Dirichlet(�a), zs,i ⇠ Discrete( s,i
) and �k ⇠ Dirichlet(⇢k).

Proof. We derive a variational Bayes estimation for the author-topic model similar to the one used
in [34] for the latent Dirichlet allocation topic model, which is a particular case of [145].

Following appendix A.3 of [34], we define the full variational distribution q(✓, z,�|�, , ⇢), which
is factorized in

q(✓, z,�|�, , ⇢) =
Y

k

qk(�k|⇢k)
Y

n

qn(✓
n|�n)

Y

s,i

qs,i(z
s,i| s,i

)

= q(�|⇢)q(✓|�)q(z| ),

where as is the author of message s, ws,i are words in message s, and q are the variational
distributions5. As one can imagine, the variational distribution q is the proxy of the posterior
P(✓, z,�, w, a|↵, ⌘) in the same exponential family of ✓, z and �.

In order to use the variational approach in the appendix A.3 of [34], we need to find the minimum
distance (given by the Kullback-Liebler divergence) between the variational distribution q and the
true posterior P(✓, z,�|w, a,↵, ⌘).

Let ws
= (ws,1, · · · , ws,Ns

) be the words in message s, with respective topic latent variables
zs = (zs,1, · · · , zs,Ns

), and let us define the variational free energy

L(�, , ⇢;↵, ⌘) = Eq[logP(w, a, z, ✓,�|↵, ⌘)]� Eq[log q(✓, z,�)]. (C.14)

5. One can see that since q remains in the same exponential family as z and ✓, we have Eq[z
s,i
] =  

s,i, Eq[✓
a
] = �

a

and Eq[�k] = ⇢k (see [34]).
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Applying the same methods as in appendix A.3 in [34], we have that

logP(w, a|↵, ⌘) =
X

s

logP(ws, as|↵, ⌘) =
X

s

log

Z X

zs

P(ws, as, zs, ✓,�|↵, ⌘)d✓d�

=

X

s

log

Z X

zs

P(ws, as, zs, ✓|↵, ⌘)q(✓)q(zs)q(�)d✓d�
q(✓)q(zs)q(�)

�
X

s

Eq[logP(ws, as, zs, ✓,�|↵, ⌘)]� Eq[log
�
q(✓)q(zs)q(�)

�
]

= Eq[logP(w, a, z, ✓,�|↵, ⌘)]� Eq[log q(✓, z,�)]

= L(�, , ⇢;↵, ⌘)

by Jensen’s inequality for the logarithm function and by the fact that the messages are independent
given the authors.

Since by Bayes rule

logP(w, a|↵, ⌘) = logP(w, a, ✓, z,�|↵, ⌘)� logP(✓, z,�|w, a,↵, ⌘),

we have that

logP(w, a|↵, ⌘) = Eq[logP(w, a|↵, ⌘)]
= Eq[logP(w, a, ✓, z,�|↵, ⌘)]� Eq[logP(✓, z,�|w, a,↵, ⌘)],

thus thanks to Eqn. (C.14)

logP(w, a|↵, ⌘) = Eq[logP(w, a, ✓, z,�|↵, ⌘)]� Eq[logP(✓, z,�|w, a,↵, ⌘)]
= L(�, , ⇢;↵, ⌘) + Eq[log q(✓, z,�)]� Eq[logP(✓, z,�|w, a,↵, ⌘)]
= L(�, , ⇢;↵, ⌘) + dKL(q(✓, z,�|�, , ⇢)|P(✓, z,�|w, a,↵, ⌘)),

where dKL is the Kullback-Leibler divergence between probability distributions. This implies that in
order to minimize the Kullback-Leibler divergence between the posterior P(✓, z,�|w, a,↵, ⌘) and the
variational distribution q(✓, z,�|�, , ⇢), one may simply maximize the free energy L(�, , ⇢;↵, ⌘).

On the other hand, following the graphical model in Figure C.2, we have that (we used the fact
that ]as = 1)

P(w, a, ✓, z,�|↵, ⌘) = P(✓|↵)P(z|a, ✓)P(w|z,�)P(�|⌘)
=

Y

n2V
P(✓n|↵)

Y

s

Y

i

P(zs,i|✓as)P(ws,i|zs,i,�)
Y

k

P(�k|⌘).

Now, we calculate each term separately, following appendix A.3 of [34]:
Since ✓n are Dirichlet random variables and the variational distributions q remain in the same

family, we have

Eqn [logP(✓n|↵)] = log�(

X

k

↵k)�
X

k

log�(↵k) +

X

k

(↵k � 1)Eqn [log ✓
n
k ]

= log�(

X

k

↵k)�
X

k

log�(↵k) +

X

k

(↵k � 1)

✓
 (�nk )� (

X

k0
�nk0)

◆
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and

Eqn [log qn(✓
n
)] = log�(

X

k

�nk )�
X

k

log�(�nk ) +
X

k

(�nk � 1)

✓
 (�nk )� (

X

k0
�nk0)

◆
,

where  (x) = �0(x)
�(x) is the digamma function (see [1] for a numerical implementation using Taylor

approximation).
Since z are discrete random variables, we have by Eqn. (C.2) that

Eqs,i [logP(zs,i|✓a
s
)] =

X

k

 s,i
k Eqs,i [log ✓

as

k ] =

X

k

 s,i
k
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 (�a

s

k )� (
X

k0
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k0 )

◆

and

Eqs,i [log qs,i(z
s,i
)] =

X

k

 s,i
k log s,i

k ,

Since �k are also Dirichlet random variables, we have as in ✓i

Eqk [logP(�k|⌘)] = log�(

X

j

⌘j)�
X

j

log�(⌘j)

+

X
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✓
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◆

and

Eqk [log qk(�k)] = log�(
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⇢k,j)�
X

j

log�(⇢k,j)
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X
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X
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,

Finally, we have by Eqn. (C.3) that

Eq[logP(ws,i|zs,i,�)] =
X

j

X

k

ws,i
j  s,i

k Eqk [log �k,j ]

=

X

j

X

k
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j  s,i

k

✓
 (⇢k,j)� (

X
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◆
.
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Putting all these terms together, we get that

L(�, , ⇢;↵, ⌘) = Eq[logP(✓, z, w, a,�|↵, ⌘)]� Eq[log q(✓, z,�)]
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We have then

0 = @�akL(�, , ⇢;↵,�)

=

X

s2Aa

✓
 

0
(�ak)[↵k +

NsX
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 s,w
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j � �aj ]

◆
,

where Aa = {s | as = a}, which gives us the following updates for �ak

�ak = ↵k +

P
s2Aa

PNs
w=1  

s,w
j

]Aa
.

For  s,w, we have that

@ s,w
k

L(�, , ⇢;↵,�) =  (�ask )� 0
(

X

k0
�ask0 ) (C.15)

+ (⇢k,vw)� (
X

j0
⇢k,j0)� log( s,w

k ) + LM s,w
= 0,

where vw is the index for word w in the dictionary, as is the author of message s and LM s,w is a
Lagrange multiplier for the constraint

P
k  

s,w
k = 1. We have thus the update for  s,i

k

 s,w
k / exp

✓
 (⇢k,vw)� (

X

j0
⇢k,j0) + (�

as

k )� 0
(

X

k0
�a

s

k0 )

◆
.

And for ⇢k,j , we have that
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which gives us the following update for ⇢k,j

⇢k,j = ⌘j +
X

s

NsX

i=1

 s,i
k ws,i

j .

Following subsubsection C.3.2.1, we introduce the free variational

• Dirichlet variables �a = (�a1 , · · · , �aK), �ak � 0, for the author-topic latent variables ✓a, and

• discrete variables  l,i for the word-topic latent variables zl,i, where
P

k  
l,i
k = 1 and  l,i

k � 0

We can thus retrieve the random variables ✓a, zl,i as

✓a ⇠ Dirichlet(�a) and zl,i ⇠ Discrete( l,i
).

Our approach, again, makes use of the Hawkes process X to modify the true posterior and
introduces a dependence between the dynamics of X and the author-topic model. To include the
Hawkes process X into our posterior, we use Bayes rule as

P(✓, z, w, a,X|↵,�) = P(X|✓, z, w, a,↵,�).P(✓, z, w, a|↵,�)
= P(X|Z).P(✓, z, w, a|↵,�) = L(X|Z).P(✓, z, w, a|↵,�), (C.16)

where L(X|Z) is the conditional likelihood of X given Z, as in Eqn. (C.6).
Applying the same methods as in appendix A.3 in [34] and subsubsection C.3.2.1, we have

logP(X,w, a|↵,�) = L(�, ;↵,�) + dKL(q(✓, z|�, )|P(✓, z|X,w, a,↵,�)),

where

L(�, ;↵,�) = Eq[logP(✓, z, w, a,X|↵,�)]� Eq[q(✓, z)]

= Eq[logL(X|Z)] + Eq[logP(✓, z, w, a|↵,�)]� Eq[q(✓, z)]

by Eqn. (C.16) and, by Eqn. (C.6),

Eq[logL(X|Z)] = Eq[

X(⌧)X
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log(�intn)]� Eq[

X

i

Z ⌧

0
�itdt]. (C.17)

Since one cannot compute analytically Eqn. (C.17), we derive a lower bound using the concavity
of the logarithm function: let jl be the user that broadcasted message l. Due to the concavity of
the logarithm and the fact that

Eq[Z
tl
] =

1

Nl

X

i

Eq[z
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] =

1

Nl

X

i

 l,i
=

˜ l,
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one can introduce nonnegative branching variables uti such that uti,0+
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t)] in the following way:
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We can find the uti that makes this bound the tightest possible by maximizing it under the
constraint uti,0 +

P
tl<t,c u

t
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˜ l
c = 1, which gives us
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We also trivially have
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where �(t) =
R t
0 �(s)ds is the primitive of �(t).

Plugging Eqns. (C.18) and (C.19) into L(�, ;↵,�) and deriving with respect to  l,w
c we find

0 = @
 l,w
c

L(�, ;↵,�) = 'l,w
c +AT l,w

c ,
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with in the user that broadcasted message n,

AT l,w
c = log �c,vw + (�ilc )� 0

(

X

c0
�ilc0)� log( l,w

c ) + LM l,w,

as in Eqn. (C.15) of lemma C.1, vw 2 {1, 2, · · · ,W} is the unique index such that wv = 1 and
LM l,w is a positive Lagrange multiplier for the constraint

P
c  

l,w
c = 1.

It is then straightforward to get

 l,w
k / �k,vw exp('l,w

k + (�ilk )� (
X

k0
�ilk0)).
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Since L(X|Z) does not depend on ✓ (and by consequence on �) nor �, we have that the updates
for � and � are the same as in lemma C.1.

Again, if we consider �k ⇠ Dirichlet(⌘) and use a variational parameter ⇢k for each �k, we get
by lemma C.1

⇢k,j = ⌘j +
X

s

NsX

i=1

 s,i
k ws,i

j .

C.4 Additional remarks

In this thesis we used the latent Dirichlet allocation and the author-topic topic models to take
into consideration the "randomness" of the topics in each message broadcasted by users in social
networks. The latent Dirichlet allocation topic model, developed by Blei et al. in [34], is one of the
most used and understood topic models, and its usage can be verified in several domains outside
of text mining, such as collaborative filtering, image retrieval, bioinformatics, etc., where the same
can be said about the author-topic model.

However, LDA and ATM are rather simple models, albeit their common use. One of their
strengths - and the choice of LDA and ATM as the topic models in this thesis - stems exactly from
this simplicity, which allows one to extend and complexify both topic models to one’s desire. For
example, some of these extensions are:

• hierarchical topic models [32], where topics are joined together in a hierarchy by using the
nested Chinese restaurant process,

• LDA-dual model [271], where one uses a corpus in which a document includes two types of
information (e.g., words and names),

• Hidden Markov Model LDA [129], where one distinguishes between different types of words
(e.g., function words and content words),

• supervised topic models [31] and semi-supervised topic models [219], where documents can
possess observed labels,

• dynamic topic models [30, 297], where topics can evolve in time,

• extensions of LDA with Hierarchical Dirichlet process mixture model [281], which allows the
number of topics to be unbounded and learned from data [280],

• Spatial LDA [299], where for instance one automatically puts natural images into categories,
such as "bedroom" or "forest", by treating an image as a document, and small patches of the
image as words [199].



APPENDIX D

Tools used in chapter 4

We discuss in this appendix the two necessary tools in order to develop our trend detection
algorithm of chapter 4: how to rescale nearly unstable Hawkes processes, as in [163], and how to
detect the maximum of a mean-reverting scalar Itô diffusion, as in [97].

D.1 Rescaling Hawkes process

D.1.1 Introduction

According to chapter 4, we have a multivariate linear Hawkes process X i,k
t with intensity of the

form
�i,kt = µi,k

+

X

c

X

j

Bc,kJi,j

Z t�

0
�(t� s)dXj,c

s , (D.1)

which in matrix form can be seen as

�t = µ+ J(� ⇤ dX)tB,

where µ is the intrinsic rate of dissemination, J is the user-user interaction matrix, B is the topic-
topic interaction matrix and (� ⇤ dX)t is the N ⇥K convolution matrix defined as (� ⇤ dX)

i,k
t =R t

0 �(t� s)dXi,k
s .

Hawkes processes have two distinct regimes: stable and unstable - their boundaries are given
by lemma 24. However, the estimation of the Hawkes parameters J and B in finance led practi-
tioners to believe that most of Hawkes processes are stable, but near the unstability regime, i.e.,
sp(J)sp(B)||�||1 ⇠ 1, as for example in [136].

Indeed, one of the most well documented facts in high frequency finance is the long memory
of markets, see for example [206]. Since Hawkes processes are the point process equivalent of
autoregressive processes, they exhibit short range dependence, failing to reproduce this classical
long memory empirical feature. Moreover, since the estimation of the Hawkes parameters is done
under a finite time horizon, a condition of the form sp(J)sp(B)||�||1 ⇠ 1 may imply that the
estimation is done during an insufficiently small time horizon, hence counting too many jumps per
timeframe and "pushing" the Hawkes parameters near the instability regime.

One solution to remedy to this is by rescaling the Hawkes process so as to have less jumps
per timeframe. Jaisson and Rosenbaum study in [163] the rescaling of a nearly unstable one-
dimensional Hawkes process X⌧

t , t 2 [0, ⌧ ], and show that, under mild assumptions, the rescaling
of X⌧

t converges to a Cox-Ingersoll-Ross (CIR) process [69]. CIR processes are used in finance to
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model interest rates. They have two interesting properties: a CIR process is nonnegative (even
strictly positive under certain conditions) and mean-reverting, i.e., it is an ergodic process which
admits a long-term average, and its evolution is a fluctuation around this well-defined average.

D.1.2 Assumptions

In order to prove our main rescaling convergence result, we make the following assumptions:

Assumption D.1. The temporal kernel �(t) is an exponential function with timescale parameter
!⌧

�(t) = e�!⌧ t.I{t>0}.

Remark: Assumption D.1 is in fact a simplifying one, and one may use any temporal kernel
satisfying the hypothesis in [163].

Assumption D.2. The interaction matrices J and B can be diagonalized into J = v�1⌫v and
B = ⇢D⇢�1 and BT ⌦J has only one maximal eigenvalue. Thus, in light of the decomposition for J
and B, we have that J has left-eigenvectors the rows of v, denoted by vTi , with associated eigenvalues
⌫i; and B has right-eigenvectors the columns of ⇢, denoted by ⇢k, with associated eigenvalues Dk,k,
i.e., vT is the N ⇥N matrix and ⇢ is the K ⇥K matrix

vT =

0

@
. . .

vT1 . . . vTN
. . .

1

A and ⇢ =

0

@
. . .

⇢1 . . . ⇢K
. . .

1

A .

Since the eigenvalues of BT⌦J are of the form viDk,k, (i, k), we assume without loss of generality
that ⌫1 � ⌫2 � · · · � ⌫N and D1,1 > D2,2 � D3,3 � · · · � DK,K , and that the largest eigenvalues of
J and B satisfy ⌫1 > 0 and D1,1 > 0.

Moreover, we also have that vT1 and ⇢1 have nonnegative entries by the Perron-Frobenius theorem,
since J and B have nonnegative entries (this result remains true for the leading right-eigenvector
of J and the leading left-eigenvector of B as well).

Remark: The assumption that J and B can be diagonalized is in fact a simplifying one. One
could use the Jordan blocks of J and B, on the condition that there exists only one maximal
eigenvalue for BT ⌦ J . This assumption is verified if, for example, the graph associated with B
is strongly connected; which means that every topic influences the other topics, even if it is in an
undirected fashion (by influencing topics that will, in their turn, influence other topics, and so on).
One can also develop a theory in the case of multiple maximal eigenvalues, but it will be much more
complicated and the associated stochastic control problem has not yet been solved analytically,
hence numerical methods must be employed.

Assumption D.3. We have that the timescale parameter !⌧ satisfies, for some � > 0,

⌧(1� ⌫1D1,1

!⌧
)! �

when ⌧ !1, which implies
!⌧ & ⌫1D1,1.
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D.1.3 Rescaling theorem

The multidimensional case presented here works in a similar fashion, which is achieved by the
following theorem:

Theorem D.1. Let X be the multivariate Hawkes process in [0, ⌧ ] with intensity given by Eqn.
(D.1), and let 'i,k

t = vTi
�⌧t
⌧ ⇢k, where vTi and ⇢k are defined in assumption D.2.

Under assumptions D.1, D.2 and D.3 we have that

• If (i, k) 6= (1, 1) then 'i,k
t converges in law to 0 for the Skorokhod topology in [0, 1] when

⌧ !1.

• Let vT1 and ṽ1 be the leading left and right eigenvectors of J associated with the eigenvalue
⌫1 > 0, let ⇢1 and ⇢̃T1 be the leading right and left eigenvectors of B associated with the
eigenvalue D1,1 > 0, and define ⇡ = (

P
i v

2
1,iṽi,1)(

P
k ⇢

2
k,1⇢̃1,k).

Thus, '1,1
t converges in law to the CIR process Ct for the Skorokhod topology in [0, 1] when

⌧ !1, where Ct satisfies the following stochastic differential equation
⇢

dCt = �⌫1D1,1(
µ
� � Ct)dt+ ⌫1D1,1

p
⇡
p
CtdWt, t 2 [0, 1]

C0 = 0,

where Wt is a standard Brownian motion.

D.1.4 Proof of theorem D.1

We now proceed to the proof of theorem D.1, following the ideas in [162]. We provide here a
sketch of the proof:

1. We start by writing the equations satisfied by the rescaled intensities 'i,k
t = vTi

�⌧t
⌧ ⇢k and

study their first-order properties.

2. Secondly, we define the new martingales Bi,k
t and show that they converge to a standard

Brownian motion.

3. Thirdly, we rewrite '1,1
t in a more suitable form, with remainder terms Ut and Vt, and we

show that they converge to 0.

4. Finally, we apply the convergence theorem 5.4 of [184] for limits of stochastic integrals with
semimartingales.

D.1.5 Rescaling the Hawkes intensity

Let us begin by defining the one-dimensional stochastic processes

˜�i,kt = vTi �t⇢k,

which satisfy the one-dimensional equations

˜�i,kt = vTi µ⇢k + vTi J(� ⇤ dX)tB⇢k

= µ̃i,k
+ ⌫iDk,k(� ⇤ ˜�i,k)t + ⌫iDk,k(� ⇤ vTi dM⇢k)t, (D.2)
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with Mt = Xt �
R t
0 �sds the compensated martingale associated with the Hawkes process X and

µ̃i,k
= vTi µ⇢k. Using lemma 2.1 of [163], we have that

˜�i,kt = µ̃i,k
+ µ̃i,k

Z t

0
 i,k(t� s)ds+

Z t

0
 i,k(t� s)vTi dMs⇢k, (D.3)

where
 i,k(t) =

X

n�1

(⌫iDk,k�(t))
⇤n,

with the nth convolution operator defined as

(⌫iDk,k�(t))
⇤1

= ⌫iDk,k�(t), and (⌫iDk,k�(t))
⇤n

= ((⌫iDk,k�)
⇤(n�1) ⇤ ⌫iDk,k�)t.

We have the following lemma for the convolutions  i,k:

Lemma D.1. Let  i,k(t) =
P

n�1(⌫iDk,k�(t))
⇤n, then under assumption D.1 we have that

 i,k(t) = ⌫iDk,ke
�!⌧ (1� ⌫iDk,k

!⌧
)t.

Moreover, under assumptions D.2 and D.3 we have that

 1,1(⌧ t)! ⌫1D1,1e
�⌫1D1,1�t

uniformly in [0, 1] when ⌧ !1, and that there exists a constant L > 0 such that for (i, k) 6= (1, 1)
we have Z t

0
 i,k(⌧(t� s))ds  L

⌧
. (D.4)

Proof. Under assumption D.1, we have that

(⌫iDk,k�(t))
⇤2

= (⌫iDk,k)
2
Z t

0
e�!⌧ (t�s)e�!⌧ sds = (⌫iDk,k)

2te�!⌧ t

) (⌫iDk,k�(t))
⇤n

= (⌫iDk,k)
n tn�1

(n� 1)!

e�!⌧ t,

hence
 i,k(t) = e�!⌧ t

X

n�1

⌫ni D
n
k,k

tn�1

(n� 1)!

= ⌫iDk,ke
�(1� ⌫iDk,k

!⌧
)!⌧ t.

Now, under assumptions D.2 and D.3, we have that ⌧(1� ⌫1D1,1

!⌧
)! � and !⌧ ! ⌫1D1,1, which

implies that there exists a constant � > 0 such that for every (i, k) 6= (1, 1)

!⌧ (1�
⌫iDk,k

!⌧
) � � > 0 and ⌧(1� ⌫iDk,k

!⌧
)!1.

Firstly, for t 2 [0, 1], using the Lipschitz continuity of e�t we have that

| 1,1(⌧ t)� ⌫1D1,1e
�⌫1D1,1�t|  (⌫1D1,1)

2�( sup

s2[0,1]
e�⌫1D1,1�s

)t|!⌧⌧(1�
⌫1D1,1

!⌧
)� ⌫1D1,1�|

 (⌫1D1,1)
2�|!⌧⌧(1�

⌫1D1,1

!⌧
)� ⌫1D1,1�|! 0
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when ⌧ !1, which implies that  1,1(⌧ t)! ⌫1D1,1e
�⌫1D1,1�t uniformly in [0, 1].

At last, for (i, k) 6= (1, 1), we have that
Z t

0
 i,k(⌧(t� s))ds = ⌫iDk,k

1� e�t⌧!⌧ (1� ⌫iDk,k
!⌧

)

⌧!⌧ (1� ⌫iDk,k

!⌧
)

 L

⌧

where L > 0 is a large enough positive constant.

Let us now define the one-dimensional rescaled stochastic processes, for t 2 [0, 1],

'i,k
t =

vTi �⌧ t⇢k
⌧

,

which clearly satisfies

't = v
�⌧ t
⌧
⇢. (D.5)

We have the following lemma concerning the first order properties of 't:

Lemma D.2. Let us define the 1⇥N row vector v�2
i such that (v�2

i )j = v2i,j and the K ⇥ 1 vector
⇢�2
k such that (⇢�2

k )c = ⇢2c,k. We have

1. 'i,k
t satisfies the following equation

'i,k
t = µ̃i,k

(

1

⌧
+

Z t

0
 i,k(⌧(t� s))ds) +

Z t

0
 i,k(⌧(t� s))

r
(v�2

i )

T
�⌧s
⌧
⇢�2
k dBi,k

s , (D.6)

where
Bi,k

t =

p
⌧

Z t

0

vTi dM⌧s⇢kq
(v�2

i )

T�⌧s⇢
�2
k

=

Z t

0

vTi dM⌧s⇢kq
(v�2

i )

T v�1's⇢�1⇢�2
k

is a L2 martingale.

2. If (i, k) 6= (1, 1), then

E['i,k
t ]  L

⌧
,

where L > 0 is a large enough positive constant. Moreover, we also have that

E['1,1
t ]  L.

Proof. 1. We have that

'i,k
t =

1

⌧
µ̃i,k

+

1

⌧
µ̃i,k

Z ⌧ t

0
 i,k(⌧ t� s)ds+

1

⌧

Z ⌧ t

0
 i,k(⌧ t� s)vTi dMs⇢k

=

1

⌧
µ̃i,k

+ µ̃i,k

Z t

0
 i,k(⌧(t� s))ds+

Z t

0
 i,k(⌧(t� s))vTi dM⌧s⇢k

=

1

⌧
µ̃i,k

+ µ̃i,k

Z t

0
 i,k(⌧(t� s))ds

+

Z t

0
 i,k(⌧(t� s))

r
(v�2

i )

T
�⌧s
⌧ s

⇢�2
k

vTi
p
⌧dM⌧s⇢kq

(v�2
i )

T�⌧s⇢
�2
k

=

1

⌧
µ̃i,k

+ µ̃i,k

Z t

0
 i,k(⌧(t� s))ds+

Z t

0
 i,k(⌧(t� s))

r
(v�2

i )

T
�⌧s
⌧ s

⇢�2
k dBi,k

s .
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As �⌧s
⌧ = v�1's⇢

�1 by Eqn. (D.5), we have the result.

2. Since Bi,k
t is a martingale, we have that

E['i,k
t ] =

1

⌧
µ̃i,k

+

1

⌧
µ̃i,k

Z ⌧ t

0
 i,k(⌧ t� s)ds

=

1

⌧
µ̃i,k

+ µ̃i,k

Z t

0
 i,k(⌧(t� s))ds,

which together with lemma D.1 gives us the result.

Remark: We can assume, without loss of generality, that there exists a c > 0 such that

• vT1 µ⇢1 = µ̃1,1 � c, since vT1 µ⇢1 = µ̃1,1
= 0 ) E['1,1

t ] = 0 by lemma D.2, which implies
'1,1
t = 0 almost surely for all t � 0 by the fact that '1,1

t � 0 for all t � 0, and

• min(i,k)(v
�2

)

T
i µ⇢

�2
k � c, which implies for all (i, k) that (v�2

)

T
i �s⇢

�2
k � (v�2

)

T
i µ⇢

�2
k � c > 0.

D.1.6 Second order properties

We study now the second order properties of Bi,k
t and 'i,k

t , with the help of a classical lemma,
which we do not prove.

Lemma D.3. Let f : MN⇥K(R+
) ! R+ and g : MN⇥K(R+

) ! R+ be functions satisfying for
some constant C > 0

|f('t)|  C(1 + ||'t||) and |g('t)|  C(1 + ||'t||),

let h : R ! R and r : R ! R be continuous functions and let Z1
t and Z2

t be L2 martingales such
that [Z1, Z2

]t = t+Mt, where Mt is a martingale.
Defining z1t =

R t
0 h(s)f('s)dZ

1
s and z2t =

R t
0 r(s)g('s)dZ

2
s we have that

E[z1t z2t ] =
Z t

0
h(s)r(s)E[f('s)g('s)]ds.

Moreover, if Zt is a L2 semimartingale, we have that the stochastic process Yt =
R t
0 h(s)f('s)dZs

satisfies

[Y ]t =

Z t

0
h2(s)f2

('s)d[Z]s and E[Y 2
t ]  E[[Y ]t].

Regarding the second order properties of Bi,k
t and 'i,k

t , we have the following lemma:

Lemma D.4. For each (i, k) let [Bi,k
]t be the quadratic variation of the martingale Bi,k

t . We have
that

1.

[Bi,k
]t = t+

1

⌧

Z ⌧ t

0

(v�2
i )

TdMs⇢
�2
k

(v�2
i )

T�s⇢
�2
k

. (D.7)
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2.
E[('i,k

t )

2
]  L (D.8)

for a constant L > 0.

3. Moreover, if (i, k) 6= (1, 1), then

E[('i,k
t )

2
]  L

⌧2

for a constant L > 0.

Proof. 1. Since the Hawkes process X does not have more than one jump at each time, we have
that

[M i,k,M j,c
]t = Xi,k

t I{(i,k)=(j,c)},

which by its turn implies
[vTi M⇢k]t = (v�2

i )

TXt⇢
�2
k .

We have by lemma D.2 that

Bi,k
t =

p
⌧

Z t

0

vTi dM⌧s⇢kq
(v�2

i )

T�⌧s⇢
�2
k

=

1p
⌧

Z ⌧ t

0

vTi dMs⇢kq
(v�2

i )

T�s⇢
�2
k

,

hence

[Bi,k
]t =

1

⌧

Z ⌧ t

0

(v�2
i )

TdXs⇢
�2
k

(v�2
i )

T�s⇢
�2
k

=

1

⌧

Z ⌧ t

0

(v�2
i )

T�s⇢
�2
k

(v�2
i )

T�s⇢
�2
k

ds+
1

⌧

Z ⌧ t

0

(v�2
i )

TdMs⇢
�2
k

(v�2
i )

T�s⇢
�2
k

= t+
1

⌧

Z ⌧ t

0

(v�2
i )

TdMs⇢
�2
k

(v�2
i )

T�s⇢
�2
k

.

2. Using the fact that (a+ b+ c)2  3(a2 + b2 + c2), we have by Eqn. (D.6) and lemma D.1 that

('i,k
t )

2  3

✓
(µ̃i,k

)

2

⌧2
+ (µ̃i,k

)

2
(

Z t

0
 i,k(⌧(t� s))ds)2

+ (

Z t

0
 i,k(⌧(t� s))

q
(v�2

i )

T v�1's⇢�1⇢�2
k dBi,k

s )

2

◆

 L0
+ 3(

Z t

0
 i,k(⌧(t� s))

q
(v�2

i )

T v�1's⇢�1⇢�2
k dBi,k

s )

2.

Since  i,k(⌧(t� s)) =  i,k(⌧ t) i,k(�⌧s), we have then

('i,k
t )

2  L0
+ 3(

Z t

0
 i,k(⌧(t� s))

q
(v�2

i )

T v�1's⇢�1⇢�2
k dBi,k

s )

2

= L0
+ 3 

2
i,k(⌧ t)(Z

i,k
t )

2,

with Zi,k
t =

R t
0  i,k(�⌧s)

q
(v�2

i )

T v�1's⇢�1⇢�2
k dBi,k

s a martingale. By lemma D.3 we have by
lemma D.2 that

E[('i,k
t )

2
]  L0

+ 3 

2
i,k(⌧ t)

Z t

0
 

2
i,k(�⌧s)(v�2

i )

T v�1E['s]⇢
�1⇢�2

k ds

= L0
+ 3

Z t

0
 

2
i,k(⌧(t� s))(v�2

i )

T v�1E['s]⇢
�1⇢�2

k ds  L.
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3. For (i, k) 6= (1, 1), we have from Eqn. (D.3), lemma D.1 and the inequality (a + b + c)2 
3(a2 + b2 + c2) that

(

˜�i,kt )

2  L0
+ 3(

Z t

0
 i,k(t� s)vTi dMs⇢k)

2.

One can promptly see by lemma D.2 that E[�i,kt ] = (v�1E[˜�t]⇢�1
)i,k  L000. Hence using

lemma D.3 and the same calculation of the previous item gives

E[(˜�i,kt )

2
]  L0

+ 3

Z t

0
 

2
i,k(t� s)(v�2

i )

TE[�s]⇢�2
k ds

 L00
(1 +

Z t

0
 

2
i,k(t� s)ds)  L

for a constant L > 0. Thus E[('i,k
t )

2
] =

E[(�̃i,k⌧t )
2]

⌧2
 L

⌧2
, as desired.

We derive next the convergence properties of the martingales Bi,k
t and the rescaled process

'i,k
t , (i, k) 6= (1, 1), which use two lemmas. The first one is

Lemma D.5. Let X be a N ⇥K matrix with nonnegative entries, vT 6= 0 be a 1 ⇥ N row vector
with nonnegative entries and ⇢ 6= 0 be a K ⇥ 1 vector with nonnegative entries. Then

(v�2
)

TX⇢�2  ||v||.||⇢||.vTX⇢.

Proof. Define the row vector ṽT =

vT

||v|| and the vector ⇢̃ =

⇢
||⇢|| , such that ṽTi  1 and ⇢̃k  1, which

implies (ṽi)
2  ṽi and (⇢̃k)

2  ⇢̃k. Then

(v�2
)

TX⇢�2
= ||v||2.||⇢||2

X

i,k

ṽ2iXi,k⇢̃
2
k  ||v||2.||⇢||2.

X

i,k

ṽiXi,k⇢̃k

= ||v||.||⇢||.
X

i,k

viXi,k⇢k = ||v||.||⇢||vTX⇢.

The second one is1

Lemma D.6. Let f⌧ : R+ ! R be a sequence of functions such that

1. There exists a constant C > 0 such that sup⌧ supt2R |f⌧ (t)|  C,

2. There exists a constant C > 0 such that for all ⌧

|f⌧ (t)� f⌧ (s)|  C⌧ |t� s|,

3. For any 0 < " < 1, there exists C" > 0 such that for every t, s

sup

⌧

Z

R
(f⌧ (t� u)� f⌧ (s� u))2du  C"|t� s|1�",

1. This lemma can be proven using the ideas in [163] (see the proof of the convergence for the rescaled process
(Y

T
t )t2[0,1] at the beginning of page 18, corollaries 4.1, 4.2, 4.3, 4.4 and lemma 4.7).
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4.
R
R+ f2

⌧ (s)ds! 0 when ⌧ !1, and

5. There exists a constant C > 0 such that sup⌧ | ˆf⌧ (z)|  C(|1z | ^ 1).

Let g : MN⇥K(R+
)! R be a function satisfying for some constant C > 0

|g('t)|  C(1 + ||'t||),

and define Y i,k,⌧
t =

R t
0 f⌧ (t� s)g('s)dB

i,k
s .

We have that Y i,k,⌧
t converges in law to 0 for the Skorohod topology in [0, 1] when ⌧ !1.

Now, for the convergence of Bi,k
t and 'i,k

t :

Lemma D.7. We have that

1. For every (i, k), Bi,k
t converges in law to a standard Brownian motion for the Skorohod topology

in [0, 1] when ⌧ !1.

2. If (i, k) 6= (1, 1), then 'i,k
t converges in law to 0 for the Skorohod topology in [0, 1] when

⌧ !1.

Proof. 1. By Eqn. (D.7) we have for t 2 [0, 1]

E[([Bi,k
]t � t)2] = E[( 1

⌧

Z ⌧ t

0

(v�2
i )

TdMs⇢
�2
k

(v�2
i )

T�s⇢
�2
k

)

2
]  1

⌧2
E[
Z ⌧ t

0

d[(v�2
i )

TM⇢�2
k ]s�

(v�2
i )

T�s⇢
�2
k

�2 ]

=

1

⌧2
E[
Z ⌧ t

0

(v�4
i )

T�s⇢
�4
k ds

�
(v�2

i )

T�s⇢
�2
k

�2 ]

 ||v�2
i ||.||⇢�2

k ||. 1
⌧2

E[
Z ⌧ t

0

ds

(v�2
i )

T�s⇢
�2
k

]

 L
1

⌧2

Z ⌧ t

0
dt  L

⌧

for some L > 0 by lemma D.5.
Thus, by Markov’s inequality we have that for all " > 0 and for all t 2 [0, 1]

P(|[Bi,k
]t � t| � ")  L

⌧"2
! 0 when ⌧ !1,

which shows that, for every t 2 [0, 1], [Bi,k
]t converges in probability towards t when ⌧ !1.

Since Bi,k has uniformly bounded jumps because X and � have uniformly bounded jumps,
we have by theorem V III.3.11 of [161] that Bi,k

t converges in law to a standard Brownian
motion for the Skorohod topology in [0, 1] when ⌧ !1.

2. Since supt2[0,1] E['
i,k
t ] ! 0 when ⌧ ! 1 by lemma D.2, we have by Eqn. (D.6) that we

only need to prove the convergence of Zi,k
t =

R t
0  i,k(⌧(t � s))g('s)dB

i,k
s , where g('s) =q

(v�2
i )

T v�1's⇢�1⇢�2
k satisfies |g('s)|  C(1 + ||'s||) for some C > 0.

Since  i,k(⌧(t � s)) is an exponential function by lemma D.1, we have that assumption D.3
implies that  i,k(⌧(t� s)) satisfies all hypothesis of lemma D.6, and as consequence we have
that Zi,k

t converges in law to 0 for the Skorohod topology in [0, 1] when ⌧ ! 1, which
concludes the proof.
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D.1.7 Convergence of '1,1
t

After studying the asymptotic behavior of the martingale Bt and the rescaled processes 'i,k
t

for (i, k) 6= (1, 1), we study the asymptotic behavior of '1,1
t . We start by rewriting it in a more

convenient form, using Eqn. (D.6):

'1,1
t = µ̃1,1

(

1

⌧
+

Z t

0
 1,1(⌧(t� s))ds) +

Z t

0
⌫1D1,1e

�⌫1D1,1�(t�s)
q
⇡'1,1

s dB1,1
s

+ Ut + Vt, (D.9)

where ⇡ = (

P
i v

2
1,i(v

�1
)i,1)(

P
k ⇢

2
k,1(⇢

�1
)1,k),

Ut =

Z t

0
 1,1(⌧(t� s))(

q
(v�2

1 )

T v�1's⇢�1⇢�2
1 �

q
⇡'1,1

s )dB1,1
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and
Vt =

Z t

0

✓
 1,1(⌧(t� s))� ⌫1D1,1e

�⌫1D1,1�(t�s)

◆q
⇡'1,1

s dB1,1
s (D.11)

We begin by studying the asymptotic behavior of Ut in Eqn. (D.10) and Vt in (D.11), which
need an additional lemma:

Lemma D.8. Let ⇡ = (

P
i v

2
1,i(v

�1
)i,1)(

P
k ⇢

2
k,1(⇢

�1
)1,k). We have that
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t

for some constant L > 0.

Proof. Let us define the 1⇥N row vector V T
= (v�2

1 )

T v�1 and the K⇥ 1 vector R = ⇢�1⇢�2
1 , such

that
V T
j =

X

i

v21,iv
�1
i,j and Rc =

X

k

⇢�1
c,k⇢

2
k,1.

Thus

(v�2
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t Rc
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t

for a constant L > 0.

Lemma D.9. We have that Ut defined in Eqn. (D.10) converges in law to 0 for the Skorohod
topology in [0, 1] when ⌧ !1.

Proof. Let us define the martingale Zt =
R t
0  1,1(�⌧s)(

q
(v�2

1 )

T v�1's⇢�1⇢�2
1 �

q
⇡'1,1

s )dB1,1
s , such

that Ut =  1,1(⌧ t)Zt. Using the product formula for semimartingales and the fact that  1,1 has
bounded variation, we have that

Ut =

Z t

0
@t 1,1(⌧s)Zsds+

Z t

0
 1,1(⌧s)dZs = Vt +Wt,
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where Vt =
R t
0 @t 1,1(⌧s)Zsds has bounded variation and Wt =

R t
0  1,1(⌧s)dZs is a martingale with

quadratic variation [W ]t satisfying by lemma D.3
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Thus, using the fact that
p
a+ b�

p
b  a

2
p
b

for a, b > 0, we have by lemma D.4
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for some constant L > 0 by lemma D.8. Since '1,1
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⌧ > 0, we have by lemma D.4 that for
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Thus, by Markov’s inequality we have that for all " > 0 and for all t 2 [0, 1]

P([W ]t � ") 
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"
(
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⌧2
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1

⌧
)! 0 when ⌧ !1,

which proves that [W ]t converges in probability to 0 for all t � 0.
Since W has uniformly bounded jumps, we have by theorem V III.3.11 of [161] that Wt converges

in law to 0 for the Skorohod topology in [0, 1] when ⌧ !1.
Now, regarding Vt, we have that since |@t 1,1(⌧ t)|  C for some constant C > 0,

E[(Vt � Vs)
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by the Burkholder-Davis-Gundy inequality. Since by lemma D.3
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and  1,1(�⌧s)  C for some constant C > 0, we have using the same calculations as before and
choosing s = 0 that for t 2 [0, 1]

E[V 2
t ]  C 0t2E[[Z]t] 

C 00

⌧2
,

which easily implies that (Vt1 , · · · , Vtn) ! 0 in distribution for every (t1, · · · , tn) 2 [0, 1]n when
⌧ !1, i.e., we have the convergence of the finite-dimensional distribution of Vt to 0 when ⌧ !1.

Moreover, since E[(Vt � Vs)
2
]  C 000

(t� s)2, we have by the Kolmogorov criterion for tightness
that Vt is tight for the Skorohod topology in [0, 1], which implies that Vt converges in law to 0 for
the Skorohod topology in [0, 1] when ⌧ !1.

Hence, we clearly have that Ut = Vt + Wt converges in law to 0 for the Skorohod topology in
[0, 1] when ⌧ !1.

Lemma D.10. We have that Vt defined in Eqn. (D.11) converges in law to 0 for the Skorohod
topology in [0, 1] when ⌧ !1.

Proof. Define the function

f⌧ (t) =  1,1(⌧ t)� ⌫1D1,1e
�⌫1D1,1�t
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✓
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◆
.

By assumption D.3, that there exists a C > 0 such that

1. sup⌧ supt |f⌧ (t)|  C,

2. Since f⌧ is a difference of exponential functions, we can assume without loss of generality that
| ˆf⌧ (z)|  C(|1z | ^ 1),

3. Applying lemma 4.7 of [163] we have that for any 0 < " < 1, there exists C" > 0 such that for
every t, s

sup
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5. Since, for ↵ > 0, e�↵t satisfies |e�↵t � e�↵s|  ↵|t � s|, we easily have that there exists a
constant C > 0 such that

|f⌧ (t)� f⌧ (s)|  C⌧ |t� s|.
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Hence, f⌧ satisfies all hypothesis of lemma D.6. Moreover, g('s) =

q
⇡'1,1

s satisfies

|g('t)|  C(1 + ||'t||).

We can thus apply lemma D.6 to conclude the proof.

We have arrived to the final step of the proof: by lemma D.1, we have that µ̃1,1
R t
0  1,1(⌧(t�s))ds

converges uniformly in [0, 1] to µ̃1,1
R t
0 ⌫1D1,1e

�⌫1D1,1�(t�s)ds = µ̃1,1
(

1�e�⌫1D1,1�t

� ), when ⌧ !1.
Moreover, by lemma D.7 we have that B1,1

t converges in law to a standard Brownian motion for
the Skorohod topology in [0, 1] when ⌧ !1, and by lemmas D.9 and D.10 we have that Ut and Vt

converge in law to 0 for the Skorohod topology in [0, 1] when ⌧ !1.
As in [163], since Ut and Vt converge to a deterministic limit, we get the convergence in law,

for the product topology, of the triple (Ut, Vt, B
1,1
t ) to (0, 0,Wt) with W a standard Brownian

motion. The components of (0, 0,Wt) being continuous, the last convergence also takes place for
the Skorohod topology on the product space.

Thus, we have by theorem 5.4 of [184] that '1,1
t converges in law to the limit process Ct for the

Skorohod topology in [0, 1] when ⌧ !1, where Ct is the unique solution of

Ct = µ̃1,1
(

1� e�⌫1D1,1�t

�
) + ⌫1D1,1

Z t

0
e�⌫1D1,1�(t�s)

p
⇡CsdWs,

where Wt is a standard Brownian motion.
By a simple calculation, we have that Ct satisfies the following stochastic differential equation

dCt = ⌫1D1,1µ̃
1,1e�⌫1D1,1�tdt+ ⌫1D1,1

✓
� ⌫1D1,1�
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0
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�
� Ct)dt+ ⌫1D1,1

p
⇡CtdWt.

Remark: One promptly has that the columns of v�1 are the right-eigenvectors of J and that the
rows of ⇢�1 are the left-eigenvectors of B, thus ⇡ > 0 can be rewritten as

⇡ = (

X

i

v21,iṽi,1)(
X

k

⇢2k,1⇢̃1,k),

where vT1 is the leading left-eigenvector of J , ṽ1 is the right-eigenvector of J , ⇢1 is the leading right-
eigenvector of B and ⇢̃T1 is the leading left-eigenvector of B. Moreover, by the Perron-Frobenius
theorem we have that v, ṽ, ⇢ and ⇢̃ have nonnegative entries.

Remark: In the one-dimensional case, we clearly have that ⇡ = 1, retrieving thus the same result
as in [163].

D.2 Detecting the maximum of mean-reverting Itô diffusions

Another fundamental tool to our trend detection algorithm is the detection of maximum in
mean-reverting Itô diffusions, as proposed in [94, 97].
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A (time-homogeneous) Itô diffusion Xt is a stochastic process in Rn, solution of a stochastic
differential equation (SDE) of the form

dXt = µ(Xt)dt+ �(Xt)dWt, X0 2 Rn,

where Wt is a standard n-dimensional Brownian motion. The term µ is called the drift coefficient,
and � is called the diffusion coefficient. The drift coefficient is responsible for the "deterministic"
infinitesimal change in Xt+dt �Xt, of size µ(Xt)dt, and � is responsible for the randomness of this
change, having variance �2(Xt)dt and zero mean.

Under some regularity conditions (Lipschitz continuity of µ and �), the Itô diffusion has almost
surely continuous paths, admits a unique strong solution and is strongly Markovian (see [244]).
Itô diffusions are very similar to the Langevin equation in physics, and have applications in a
multitude of domains, such as quantitative finance, control theory, neuroscience, harmonic analysis,
telecommunications, etc...

Here, we enunciate briefly the work of Espinosa and Touzi developed in [97], where they adopt
a stochastic control framework to detect the maximum of a nonnegative scalar Itô diffusion: They
consider the following Itô diffusion

dXt = µ(Xt)dt+ �(Xt)dWt, X0 > 0, (D.12)

with2 µ(x)  0, Wt a standard Brownian motion, and the following optimal stopping problem:

V0 = inf

✓2T0
E[l(X⇤

T0
�X✓)], (D.13)

where

• l(x) � 0 is a convex cost function,

• X⇤
t = supstXs is the running maximum of Xt,

• Ty = inf{t > 0 | Xt = y} is the first hitting time of barrier y � 0, and

• T0 is the set of all stopping times ✓ (with respect to X) such that ✓  T0 almost surely, i.e.,
all stopping times until the process X reaches 0.

Optimal stopping problems (see [249]) are stochastic control problems where the control variable
is the time, i.e., the controller needs to choose the most appropriate time to perform an action. For
example, in quantitative finance, the pricing of American Options (see [167, 243]) is an optimal
stopping problem. In [97], the optimal stopping problem given by Eqn. (D.13) is the detection of
the closest point of Xt to the current maximum X⇤

T0
until reaching 0, measured by the function l.

Under mild assumptions on the Itô diffusion (for example if X is a CIR process) and with
l(x) = ax2

2 , a > 0, Espinosa and Touzi find in [97] a free barrier �(x) such that the stopping time
T ⇤

= T0 ^ inft�0{X⇤
t � �(Xt)} is optimal for this problem, i.e., we have detected a peak in Xt at

2. The mean-reverting character of this Itô diffusion is given by µ(x)  0, where the drift coefficient "pulls" the
nonnegative diffusion towards 0. It is also interesting to notice that the mean-revertion is a condition on the
drift alone, independent of the diffusion coefficient. This is explained by the fact that the drift and the diffusion
coefficient are responsible for infinitesimal changes of different magnitudes.
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time T ⇤. Moreover, they show that the free barrier � has two monotone parts; first a decreasing
part �#(x) and then an increasing part �"(x), such that

8
>>>>>>>><

>>>>>>>>:

�0#(x) =

Lg(x,�#)
1�x

S0(x)
S(x) �

S(x)
S(�#)

�#(0) = inf{z � 0 | Lg(0, z) � 0}

�0"(x) =

Lg(x,�")
1� S(x)

S(�")
�"(0) = inf{x � 0 | �0#(x) � 0},

(D.14)

where (see [97])

• ↵(x) = �2µ(x)
�2(x) ,

• S(x) =
R x
0 e

R u
0 ↵(r)drdu satisfies S00

(x) = ↵(x)S0
(x) with S(0) = 0 and S0

(0) = 1,

• g(x, z) = a
2 (z � x)2 + aS(x)

R1
z

u�x
S(u)du for 0  x  z, and

• Lv(x, z) = @2x2v(x, z)� ↵(x)@xv(x, z).
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