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Il n’y a pas de solution basique dans une pile à combustible à membrane échangeuse de 

protons : non seulement les phénomènes physiques sont fortement couplés mais, en outre, le 

potentiel d’hydrogène est inférieur à 7.   
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ABSTRACT 

One of the main challenges for Proton Exchange Membrane Fuel Cells development is the 

performance loss, which largely limits the durability. The study of the degradation 

phenomena of the different MEA components is a challenge addressed by many researchers, 

but a study at a stack scale is needed in order to better understand the ageing mechanisms. 

Indeed, in an industrial fuel cell the operating conditions are not homogeneous as for 

laboratory fuel cells, especially as regards thermal aspects. The heterogeneities are 

particularly emphasized for automotive fuel cells, because of the compactness constraint of 

the cooling circuit. Moreover, the requirements of cold start should be considered, as well as 

the inertial effects of the stacks and the increased heterogeneities during the driving cycles.  

In this work, the effects of the temperature heterogeneities and hot spots on the automotive 

fuel cell performances and degradations are investigated.  The study is conducted in different 

conditions: nominal conditions, load/thermal cycling and New European Driving Cycles 

(NEDC).  

The work is composed of an experimental study, which consists of ageing tests on fuel cells 

and on-line diagnosis at both global and local scales. At the end of the tests, post-mortem 

analyses of the aged components are conducted. In parallel, a physic-based model is 

developed in order to predict the local temperature and humidity in the different components 

of the cell. Then, the impact of the reactive gases and cooling flow fields design on the 

thermal and water management of the cell is investigated. Finally, the experimental and 

modeling results are coupled in order to investigate the correlation between heat management, 

water management and degradations.  
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RÉSUMÉ 

L'un des principaux freins au développement des piles à combustible de type PEMFC (Proton 

Exchange Membrane Fuel Cell) est lié aux phénomènes de dégradation des performances qui 

les pénalisent encore  en termes de durée de vie. L'étude de ces phénomènes au niveau des 

composants de l’AME est un thème abordé aujourd'hui par de nombreuses équipes de 

recherche, mais une étude à une échelle d’un stack est nécessaire pour mieux comprendre les 

mécanismes en jeu. En effet, dans un stack les conditions de fonctionnement ne sont pas 

homogènes comme dans les cellules de laboratoire, notamment au niveau thermique. Ceci est 

particulièrement exacerbé dans les piles pour application automobile, dont la compacité 

contraint fortement la conception du circuit de refroidissement. De plus, les exigences en 

termes de démarrage à froid sont à prendre en compte, avec notamment la limitation de 

l'inertie thermique de l'empilement ou l'apparition d'hétérogénéités plus fortes pendant les 

phases transitoires. 

Ce travail de thèse se propose d'étudier l'effet d'hétérogénéités de température sur la 

performance d'une pile en application automobile et sa dégradation. L'étude est menée dans 

différentes conditions de fonctionnement: fonctionnement nominal, cyclage thermique et 

cyclage NEDC (New European Driving Cycles). 

Cette étude comporte une partie expérimentale, centrée sur des  essais de vieillissement en 

pile et un travail sur le diagnostic électrochimique global et local. Elle est complétée par des 

expertises post-mortem des assemblages membrane-électrodes et des plaques testés. En 

parallèle, un travail de modélisation est mené pour relier les constatations expérimentales à 

une description des phénomènes en présence. L'influence du design des canaux de réactifs et 

de caloporteur sur le fonctionnement des piles est étudiée. Enfin, l’effet de la gestion 

thermique sur la dégradation des performances et sur la détérioration des composants de la 

pile est étudié.   
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GENERAL INTRODUCTION 

 

Hydrogen is considered to be a promising energy carrier for different applications in the 

future scenarios of energy mix. A move from hydrocarbon to hydrogen–carbon and finally to 

hydrogen economy is expected in the next decades [1]. The conversion of hydrogen energy 

into electrical and thermal energy in a fuel cell is a viable clean solution for the development 

of alternative solutions to fossil fuels and for the reduction of greenhouse gas emissions. 

Indeed, since the planet is severely enduring the impact of the fossil fuels combustion on 

global warming and climate change, environmental sustainability becomes a crucial factor in 

energy policies. Moreover, given the evolutions of the fossil fuels reserves estimations on the 

one hand, and the world consumption rate on the other hand, they will probably run out before 

the next century [2]. Nuclear energy could be an alternative, but its development is contested 

either for safety reasons, or for the radioactive waste management. In this context, alternative 

energy sources as much as appropriate energy carriers need to be developed urgently, with a 

deep integration of environmental and social aspects.  

Hydrogen energy has the potential to become an earth-friendly energy because the only 

product of the conversion process of hydrogen chemical energy into electrical and/or thermal 

energy, via a fuel cell, is water. Hydrogen is a good energy carrier with a high energy density: 

~	33	��ℎ/��. That means 1 kg of hydrogen is energetically equivalent to 2.8	�� of gasoline 

and 2.4	�� of natural gas. Finally, hydrogen is a sustainable alternative solution to fossil fuels 

because it represents a viable solution for energy storage. It can be used to make the 

connection between the place/time of energy production and the place/time of energy demand, 

allowing an efficient valorization of intermittent energy sources (solar power, wind power…).  

Among the different fuel cell technologies, Proton Exchange Membrane Fuel Cells, 

which use a solid electrolyte, are particularly favorable for automotive application and many 

research works and industrials projects are underway regarding their commercialization. 

However, one of the main challenges for their development is the performance loss, which 

largely limits their durability. The local study of the degradation phenomena of the different 

Membrane Electrode Assembly components is a challenge addressed by many researchers, 

but a study at a stack scale, in real automotive conditions is needed in order to better 

understand the ageing mechanisms.  
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In this work, the effects of the temperature heterogeneities and hot spots on the 

automotive fuel cell performances and degradations are investigated. The work is composed 

of an experimental study, which consists of ageing tests on fuel cells with on-line and post-

mortem diagnosis at both global and local scales. In parallel, a physic-based model is 

developed in order to predict the local temperature and humidity in the different components 

of the cell.  

This manuscript is made up of five chapters and an appendix. The first chapter establishes 

the context of the study and sets out it main objectives. A literature review of the different 

studies of temperature distribution in PEMFCs and its impact on degradations is also 

presented.  

The research study itself begins with the experimental study, presented in Chapter 2. It 

consists of durability testing of fuel cells in automotive related conditions, performed by 

applying different loads: nominal conditions, load/thermal cycles and New European Driving 

Cycles. During the ageing tests, specific instrumentations are used to investigate in-situ the 

evolution of local and global performances and identify the sources of performance loss. 

Those investigations are completed by post-mortem analyses of the different components of 

the aged fuel cells: membranes, electrodes and bipolar plates. 

In parallel, modeling studies are performed in order to correlate the experimental results 

to the thermal conditions in the fuel cell. In particular, a dimensional continuum-based model, 

which consider the real design of the reactive gases as well as cooling water channels is 

developed, and validated with the experimental data. A thermal model, used for the study of 

temperature distribution in the cell is presented in Chapter 3. This model is extended to a 

multiphysics version for the study of coupled heat and water transport in the cells in Chapter 

4. This model, which predicts simultaneously the heat sources and cooling flow 

heterogeneities, is used to predict the temperature and the water distributions in the cell in 

different operating conditions.  

In the last part of the manuscript (Chapter 5), the experimental and simulation results are 

used simultaneously for a detailed study of the correlation between coupled heat/water 

management and degradations. Furthermore, a detailed study of each component’s 

degradation is conducted and correlated to local temperature and humidity. That allows 

proposing ways and means for the improvement of heat and water management in the cell. 
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Finally, the study opens up new prospects about the study of some degradation mechanisms in 

the cell and the challenges related to the thermal modeling.  
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1. Hydrogen economy and Fuel Cells 
 

The hydrogen economy concept considers hydrogen as a viable clean solution for energy 

storage and delivery. Hydrogen is the most abundant chemical element in the universe. Some 

studies [3] demonstrated the existence of natural hydrogen in submarine hydrothermal 

systems and researches are underway regarding its exploitation as an energy source.  

However, to date it is supposed that it exists freely (on the planet) only in negligible 

quantities. It needs to be produced by appropriate chemical processes like steam reforming of 

hydrocarbons, water electrolysis, photo-electrochemical water splitting, etc. [4].  

In Fig.I.1, a graphic illustration of the long-term future of the hydrogen economy, from 

production to consumption, passing through storage and distribution, is presented. 

 

 

Figure I.1: Graphic illustration of the long-term f uture of the hydrogen economy 
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Nowadays, hydrogen, which is also used for chemical processes in industry, is mainly 

produced via steam reforming and partial oxidation of hydrocarbons. Only ~ 5% is produced 

via water electrolysis, which can be considered to be environmentally sustainable when the 

electric power is provided by a renewable process. Recently, there is a progressive move from 

natural gas steam reforming (which is the most commonly used method) to environmentally 

sustainable hydrogen sources, as illustrated in Fig.I.2. 

 

Figure I.2: Modeled transition from reformed natural gas to the other zero or near-zero carbon 
sources of hydrogen over the century [5] 

Indeed, the production of hydrogen via steam reforming or partial oxidation of 

hydrocarbons can lead to higher emissions of greenhouse gases compared to their direct use in 

an internal combustion engine [6]. In the near future, other processes like 

photoelectrochemical water splitting or concentrating solar thermal, which convert solar 

energy into hydrogen energy, could also be implemented in the production mix.    

Distribution infrastructures are needed to supply the produced hydrogen to the 

consumption sites. Currently, the installation of hydrogen pipelines or the injection of 

hydrogen in existing natural gas networks as well as the construction of hydrogen fueling 

stations for transportation application are expanding. Consecutively or alternatively to the 

distribution infrastructures, storage techniques are needed to make the connection between the 

production time/site and the demand time/site. Storage represents a crucial challenge 

regarding the development of hydrogen economy due, firstly, to its low volumetric energy 

content (~	2	���/��	and secondly, to security reasons. Different technologies are used, 

depending mainly on the application: storage in gaseous phase (compressed hydrogen in 

tanks), in liquid phase (via liquefaction, in methanol or in formic acid), or in solid phase (in 
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metal hydrides). As with the production method, the distribution and storage methods 

presented in the Fig.I.1 are not exhaustive.  

Hydrogen is a potential fuel for many applications, from transportation to stationary 

power generation: vehicles, boats, airplanes, residences and power stations.  It can also serve 

as an energy storage medium, used to solve the discrepancies in time between the power 

stations production and the demand. This application, commonly called “power to gas” is a 

promising solution for managing the intermittency of renewable energy sources such as solar, 

wind and tidal power.  

Regarding the energy conversion process, different researchers and industrials have 

worked on hydrogen conversion for decades and harnessed hydrogen for different 

applications, from fueling space shuttles to powering energy stations. There are different ways 

to convert hydrogen energy. The first one is the conversion into thermal and mechanical 

energy using Internal Combustion Engines. This technology has many disadvantages like the 

performance limitation, the difficulties in controlling the fuel in the combustion chamber and 

the significant emissions of nitrogen oxides (NOx) related to the high combustion 

temperatures.  For these reasons, there is an important push towards Fuel Cells in which 

hydrogen is converted into electrical energy through an electrochemical reaction. The main 

advantages of the fuel cell technology are the good electrical efficiency (~	50%�, and the 

environmental sustainability. 

Historically, the fuel cell development is intrinsically coupled to the hydrogen 

production. In 1766, Henry Cavendish produced hydrogen (H2) by dissolving metals in acids 

and identified its main characteristics. In 1839, Sir William Grove developed the fuel cell 

principle to convert the H2 energy into electrical energy via redox reactions. As presented in 

Fig.I.3, a fuel cell consists of two Platinum electrodes (catalyst), separated by an ionic 

conductor (called electrolyte).  

 

Figure I.3:  Principle of the Grove Fuel Cell 
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However, the fuel cell technology had to wait until 1961 for its first industrialization, 

when General Electric developed and implemented a 1 kW fuel cell in the space capsules 

Gemini (NASA’s spaceflight program). To date, different hydrogen fuel cell technologies 

have been developed: Proton Exchange Membrane Fuel Cells (PEMFC), Solid Oxide Fuel 

Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Proton 

Ceramic Fuel Cells (PCFC) and Phosphoric Acid Fuel Cells (PAFC). Their main 

characteristics are reported in Tab.I.1. 

 

Fuel Cell 

Technology 

Anode reaction Electrolyte/ 

charge carrier 

Cathode reaction Operating 

temperature  

(°C) 

Application 

PEMFC �� → 2�� � 2 ! 

Acid polymer 

(solid) �� 

	12 	#� � 2�� � 2 ! → 	��# 60 -120 
Transportation 

Distributed power 

SOFC �� � #�! → ��# � 2 ! 

Yttria–Stabilized 

Zirconia (solid) 

O2- 

	12 	#� � 2 ! → #�! 500 – 1300 

Distributed power 

APUs 

Power plants 

MCFC �� � $#%�! → ��# � $#� � 2 ! 

Li 2CO3/K2CO3/ 

Na2CO3 (liquid) $#%�! 

12 	#� � $#� � 2 ! → $#%�! 600 – 700 Distributed power 

AFC �� � 2#�! → 2��# � 2 ! 

Alkaline polymer 

KOH (liquid) #�! 

12 	#� � 	��# � 2 ! → 2#�! 50 - 250 
Portable power 

Backup power 

PAFC �� → 2�� � 2 ! 
H3PO4 (liquid) �� 

12 	#� � 2�� � 2 ! → 	��# 160 - 220 
Distributed power 

Transportation 

 

Table I.1: Main characteristics of the different hydrogen fuel cell technologies 

Among those technologies, PEM Fuel Cells (PEMFCs), which use a solid electrolyte, are 

particularly favorable for automotive application and many research works and industrials 

projects are underway regarding their development and commercialization.  

 

2. PEM Fuel Cells in automotive application 
 

The Proton Exchange Membrane Fuel Cell introduced above is a promising candidate for 

many applications, especially for transportation due to its: 

� Excellent dynamic; 

� High power density; 
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� Good electrical efficiency: ~ 50%; 

� Solid polymer electrolyte; 

As illustrated in Fig.I.4, a cell is composed of one Membrane Electrode Assembly (MEA) 

where the electrochemical reaction takes place and one Bipolar Plate (BP) for the distribution 

of the reactive gases. As its name indicates, the electrolyte, which exchanges the protons, is a 

polymer membrane. In order to produce the desired level of power, single cells are usually 

connected in series, forming a “stack”. Different stacks are connected in parallel in high 

power systems for flexibility and modularity reasons.  

 

 

Figure I.4: Illustration of a single cell, a stack and a high power (80 kW) fuel cell  

Fig.I.5 illustrates the configuration of a fuel cell with the related system in automotive 

application. The implementation of experimental fuel cells in vehicles started in 1959 with a 

modified Allis-Chalmers farm tractor, powered by a 15 kW fuel cell. It was followed by an 

upscaling in road vehicles by General Motors in 1966 (Chevrolet Electrovan). The 

development of fuel cell vehicles accelerated during the 2000s and since then many concepts 

have been presented: Toyota FCHV-4 (2007), Peugeot 307cc Fisypac FCV (2008), Honda 

FCX Clarity (2008), Mercedes-Benz F-Cell (2009), Audi A7 h-tron quattro-FCEV (2014), etc. 

Many automakers are planning to enter the market and start the commercialization of next-

generation fuel cell vehicles before 2017. For example, Toyota Motors Co. started the sales of 

its high performance fuel cell vehicle Toyota Mirai in early 2015. Hyundai Motor Co. is 

planning to produce 1000 units of the Tucson Fuel Cell by 2015. 

Stack Fuel Cell 

Bipolar plate MEA 

Single cell 
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Figure I.5: Illustration of the main components of a Fuel Cell Vehicle (Honda FCX Clarity) 

In parallel, many programs are underway regarding the development of the 

infrastructures and filling stations for fuel cell vehicles. The California Hydrogen Highway 

program is planning to install more than 100 H2 filling stations in California in the next years 

[7]. A map of the stations in use and under construction is presented in Fig.I.6. JX Nippon Oil 

& Energy projects to install more than 100 H2 filling stations in Japan before 2018 [8]. In 

Europe, the H2 mobility initiative in Germany wants to raise the number of filling stations to 

100 from 2015 to 2017 and to 400 by 2023 [9]. Many other programs are underway all over 

the world.  

 

Figure I.6: Localization of the 60 filling stations in use (green) and under construction (yellow) 
in California [10]  
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As illustrated above, great investments and advances have been made on fuel cells for 

automotive application during the last years. However, their development and 

commercialization are still limited by the cost and lifetime. The Fuel cell technical status with 

respect of the target is presented in Fig.I.7, with the projected fuel cell system cost in the next 

years.   

 

Figure I.7: Automotive fuel cell targets vs status (the blue line indicated the status as a fraction 
of the target) [11] - Projected fuel cell transportation system costs per kW (assuming a volume 

production 500 000 units per year) [12] 
 

It is observed that tremendous advances have been achieved regarding the stack 

efficiency, specific power, cold start, etc. Nevertheless, a great deal of progress remains to 

be made regarding the cost and durability. In particular, in order to compete with the internal-

combustion engines, a fuel cell should cost 30 $/kWe and present a lifetime of 5000 h. Both 

challenges are related to the thermal management of the stack, because the performance and 

the degradations are intrinsically linked to the local temperature and water management.  

 

3. PEM Fuel Cells: state of the art and heat sources 
 

3.1. Principle of operation and efficiency  

The Proton Exchange Membrane Fuel Cell is an electrochemical device which converts the 

chemical energy of hydrogen into electricity and heat, via a redox reaction with oxygen. The 

principle of operation is illustrated in Fig.I.8. The fuel cell components illustrated in the figure 

will be presented in detail later.  



22 

 

 
Figure I.8: Redox reactions occurring in the cell 

The half-reaction which occurs at the anode electrode is:  

��&'()� → 2�� � 2 * [I. 1] 

The reversible potential of this electrode is:  

 +,-(./0, 1 *∆34567 58  
[I. 2] 

where ∆3(./0,, 5 and 8 are respectively the Gibbs free energy, the number of electrons 

involved in the reaction and the Faraday constant. The produced protons (��) flow through 

the polymer electrolyte membrane meanwhile the produced electrons ( !) flow through an 

electrical load, producing current. Once the protons and electrons arrive at the cathode 

electrode, they react with oxygen through the half reaction:   12#�&'()� � 2�� � 2 ! → �2#&94:	6;	�<=� [I. 3] 

The reversible potential at the cathode electrode is:  

 +,->(?@/0, 1 *∆3A4B�67 58  
[I. 4] 

Water can be produced either in vapor or in liquid phase, depending on the operating 

conditions of the fuel cell. The global electrochemical reaction of the cell is:  

��&'()� � 12#�&'()� → ��#&-(C	/+	DEF� [I. 5] 

MEA 
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a) Reversible potential of the cell 

The Nernst reversible potential of cell is the difference between the cathode and anode 

potentials: G+,- 1  +,->(?@/0, *  +,-(./0, [I. 6] 

In the Standard conditions for temperature and pressure (HI 1 25°$, KI 1 1	4BL), the 

Nernst reversible potential is  G+,-I 1 1.23	O. However, the Gibbs free energy of the half 

reactions depends on the cell local temperature and operating pressure. The resulting Nernst 

potentials can be obtained through the expression:  

G+,- 1 G+,-I � ∆P58 &H * H0� � QH58 lnTK�2K0 UK#2K0 V
12W 

 
[I. 7] 

where ∆P is the change in entropy of the electrochemical reaction, T the temperature and Pi 

the partial pressure of the species i. Nevertheless, the actual cell potential is decreased from its 

ideal potential because of several types of irreversible losses. These losses are due to the 

electrochemical reaction (or charge transfer) at the electrode/electrolyte interface in the active 

layers, and the charge and mass transport in the other components. These losses are often 

referred to as overpotential or overvoltage, though only the ohmic losses actually behave as a 

resistance. They are named activation overpotential (X(>?), Ohmic limitations (X/@Y) and 

concentration overpotential (X>/.>). The resulting potential of the cell (U) is:  Z 1 G+,- * X(>? * X/@Y * X>/.> 
 

[I. 8] 

b) Overpotentials 

� Activation overpotential: reaction kinetics 

The activation overpotential is due to the limited interfacial redox reactions kinetics, because 

a part of the generated voltage is lost in order to force the transfer between the protons and the 

electrons on the reaction sites. The Butler-Volmer equation relates the electrical current 

density (i) of the cell to this overpotential (X(>?�:  
< 1 <I [exp U_58QH X(>?V * exp U*&1 * _�58QH X(>?V` [I. 9] 

Where 	_ is the charge transfer coefficient and <I is the exchanged current density, given by: 

a<B�				<I 1 5	�I	 b: U* cIQHVTd4EefgfhI
W
i!j

Td4E!efgfkI
W
j
 [I. 10] 
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cI  is the activation energy; n is number of electrons involved in the reaction; �I is the 

standard rate constant; 4E are the activities of the reactive species; lE are the orders of the 

reactions;  mE are the stoichiometric coefficients and _ is the charge transfer coefficient.  

� Ohmic limitations 

Ohmic losses are caused by the ionic resistance in the electrolyte and electrodes as well as the 

electronic resistance in the electrodes and current collectors. The ohmic losses through the 

electrolyte can be reduced by decreasing the electrolyte thickness and enhancing the ionic 

conductivity of the electrolyte. Because both the electrolyte and fuel cell electrodes obey 

Ohm's law, the ohmic losses can be expressed by the equation: X/@Y 1 &Q, � QC�	< [I. 11] 

Where Q, and QC are respectively the electrical resistance of the cell and the proton transport 

resistance of the electrolyte.  

� Mass transport limitations 

The mass transport limitation is caused by the diffusion limitation of the reactive gases and 

flooding phenomena. It depends strongly on the current density, reactant activity, and 

electrode structure. As a reactant is consumed at the electrode by electrochemical reaction, it 

is often diluted by the products, when finite mass transport rates limit the supply of fresh 

reactant and the evacuation of products. As a consequence, a concentration gradient is 

formed, which drives the mass transport process. While at low current densities, mass-

transport losses are not significant, under practical conditions (high current densities, low fuel 

and air concentrations), they often contribute significantly to the losses of the cell potential. 

Since, the rate of mass transport to an electrode surface in many cases can be described by 

Fick's law, the concentration overpotential can be defined as: 

X>/.> 1 QH58 ln U1 * <<�<LV [I. 12] 

where i lim is the limiting current density. 

 

c) Polarization curve 

The current flow increase in a fuel cell results in a decrease of the cell voltage because of the 

losses by electrode and ohmic polarizations. The polarization curve represents a plot of the 

cell potential versus the current density. An example of polarization curve is presented in 

Fig.I.9 (in blue). The Nernst equilibrium potential and the different overpotentials which limit 

the fuel cell performances are presented on the same plot. This plot is valuable in quantifying 
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the performance evolution and the sources of performance loss (irreversibilities) as a function 

of the operating current density. 

 

Figure I.9: Polarization curve and sources of potential loss 

The reversible voltage of the cell, which is about 1.23 V in the Standard conditions for 

temperature and pressure, is degraded by the different overpotentials presented above:    

� The activation limitation (plot in light blue) accounts most for the losses occurring at 

low current densities and depends on temperature as presented in Equation [I.9].    

� The ohmic limitation (plot in yellow) is quite proportional to the current density. It is 

the cause of the linear shape of the polarization curve. As presented in Equation [I.11], 

higher is the electrical resistance, higher is the slope of the curve.   

� The mass transport limitation (plot in purple) occurs at high current densities and is 

responsible for the cell potential drop. 

Moreover, there is a deviation of the Open Circuit Voltage from the Nernst reversible voltage 

due to the permeability of the membrane to reactive gases. The measurement of that 

permeation is performed using an appropriate electrochemical characterization technique, 

which will be presented in the next chapter.  

 

d)  Efficiency 

The performance of fuel cells is affected by operating variables (e.g., temperature, pressure, 

gas composition, reactant utilization, and current density), cell design and other factors 

(impurities, degradations) that influence the ideal cell potential and the magnitude of the 

voltage losses described above. From a thermodynamics point of view, the fuel cell is an 
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energy conversion system in which the chemical energy of the fuel (total reaction enthalpy) is 

converted into electrical energy, generating entropy and waste heat. 

3�6n4�	; 4AB<65:			�� � 	12 	#� → G� AB;<A	:6a ; � � 4B	:6a ; ��4B ;	 [I. 13] 

The total reaction enthalpy is:  

• ∆�?/? 1 ∆�D 1 285.8	�q/L6�rs if water is  produced in liquid phase; 

• ∆�?/? 1 ∆�- 1 242	�q/L6�rs if water is produced in vapor phase; 

The difference between them being the latent heat of water evaporation/condensation. From 

the first principle, the chemical power source is the sum of electric power (K,u) produced and 

heat power (K?@):  

5vrs∆�?/? 1 K,u � K?@ [I. 14] 

Where 5vrs is the molar flow rate of the hydrogen consumed during the energy conversion 

process. The electric power (K,u) of the cell is the product of the cell potential (Z) and the 

produced current (w):  
K,u 1 Z ∙ w [I. 15] 

The fuel cell resulting thermodynamic efficiency is: 

y 1 K,u5vrs∆�?/? 1 Z ∙ w	5vrs∆�?/? 
[I. 16] 

The fuel cell electrochemical efficiency is the ratio of the electrical energy output to the ideal 

energy output (if all the fuel chemical energy is converted):  z 1 y	X [I. 17] 

with	X 1 Q 4AB 7	�� �P�::�< 7	�� � 	the	fuel	utilization	coefficient [I. 18] 

The evolution of fuel cell and automotive system (fuel cell and ancillaries) efficiencies as a 

function of the electric power is presented in Fig.I.10. 
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Figure I.10: Evolution of fuel cell efficiencies as a function of the electric power (CEA) 

The efficiency of the cell decreases when the output electric power increases. There is a 

maximal operating point above which there is a performance drop. The cell thermodynamics 

and electrochemical efficiencies are quite the same, indicating that almost all the supplied 

hydrogen effectively reacts in the fuel cell. Taking into account the ancillaries of the fuel cell, 

the efficiency of the automotive system starts from zero. That means the output electrical 

power of the cell is not sufficient to power its ancillaries. There is a maximum operating point 

where the system efficiency reaches ~54%, followed by a shape which is similar to the cell 

efficiency.  

The evolutions of the electric power and thermal power, as a function of the operating 

current is presented in Fig.I.11.  

 

Figure I.11: Electric and thermal power as a function of the operating current (CEA) 
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There is a maximum operating point for the output electric power, which is obtained at ~	1.25	c/AL²	  in this case. The thermal power is lower than the electric power at low current 

densities (< 0.75	c/AL²). At high current densities, the thermal power exceeds the electric 

power, following a quite quadratic evolution. This figure highlights the great importance of an 

appropriate heat removal strategy for the fuel cell design and optimization.  

 

3.2.  Heat sources in the cell 

The heat production is governed by different generation mechanisms: thermodynamic 

irreversibility, electrode kinetic, ohmic losses and mass transport losses. In general, they can 

be classified in:  

� Half-reactions entropy (Peltier Effect) 

In the catalyst layers there is reversible heating due to the entropy change (∆P) during the half 

reactions: 

�+,(> 1 *H	∆P&K, H� [I. 19] 

Different authors estimated the value of the half-reactions entropy change. Lampinen and 

Fominio [13] predicted ∆Sanode =-0.104 J/mol/K and ∆Scathode = 326.36 J/mol/K.  According to 

Ju et al. [14], it accounts for ~ 35% of the total heat release at (0.6V, 0.8A/cm², 80°C). 

According to Weber et al. [15], it accounts for 22% and 0.9% of the total heat generation 

(0.2V, 1.5A/cm², 80°C) respectively at the cathode and anode. 

� Electrochemical activation energy (Irreversibility) 

Standing to the activated complex theory, overpotentials are a consequence of the 

irreversibility of the reactions. The resulting heat source can be written: 

�(>?( 1 X( 	< [I. 20] 

�(>?> 1 X> 	< [I. 21] 

The anode and cathode overpotentials (	X( and X>� can be estimated using the electrochemical 

kinetic law. According to Ju et al. [14], it accounts for ~50% of the total heat release at (0.6V, 

0.8A/cm², 80°C). According to Weber et al. [15], it accounts for ~55.3% and ~8.6% 

respectively at the cathode and the anode of the total heat generation at (0.2V, 1.5A/cm², 

80°C). 
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� Sorption/desorption heat 

In the catalyst layers, there is a water sorption phenomenon. Namely, water is liquid in the 

membrane and mainly in vapor phase in the pores of the CLs. The heat release during this 

process is given by:  

�)/+C 1	5vrs�	∆�D↔-&H� [I. 22] 

where ∆�D↔- is the enthalpy of phase change between liquid and vapor phases and 5vrs� is the 

flux of water phase change. 

� Phase change heat 

It can exist in all the subsystems of the MEA or in the gas channels. Phase change is 

determined by the equilibrium between the vapor partial pressure and the temperature. As a 

whole, water condensation may take place in the cold zones of the gas channels while water 

evaporation may occur close to the membrane in the hot zones. Weber et al. [15] quantified 

the impact of that phase change on heat source distribution and found a total amount of ~2.6% 

with saturated feed gases.   

A global water balance of the fuel cells studied in this work was performed, assuming 

isothermal conditions in the cell (80°C). The operating range of the fuel cells studied in this 

work, with reference to the T-v diagram of water, is presented below in Fig.I.12. 

 

Figure I.12: Range of validity of ideal gas approximation for water vapor 

Operating range 
of the fuel cell 
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It is observed that, at a global scale, water should not condense in the cell. However, the 

thermal heterogeneities may induce zones of local condensation, and that will be discussed in 

Chapter IV.  

� Joule effect 

In all the subsystems, there is Ohmic heating due to the resistance of the materials to charge 

transport:  

�� 1 <��  
[I. 23] 

where � is the electrical conductivity of the material.  

 

3.3.  PEM Fuel Cells components 

As illustrated in Fig.I.8, a PEM fuel cell is composed of different layers, in order to: 

- Supply the electrodes in reactive gases as uniformly as possible; 

- Optimize the electrochemical reaction; 

- Collect the produced electrical current;  

- Ensure a good evacuation of the produced water and heat; 

- Maintain a good mechanical stability of the system. 

To this end, each cell is composed of one Membrane Electrode Assembly (MEA) and one 

Bipolar Plate (BP). The Membrane Electrode Assembly (MEA) is the multi-layered system in 

which the electrochemical reactions take place. As illustrated in Fig.I.13, it is composed of the 

Membrane and two Catalyst Layers sandwiched between two Micro-Porous Layers (MPL) 

and two Gas Diffusion Layers (GDL).  

 

Figure I.13: Different components of the Membrane Electrode Assembly. The indicated 
thicknesses are in µm 

GDL MPL MPL GDL 

Anode Catalyst Layer (~ 6 µm)  

Cathode Catalyst Layer (~ 12 µm) 

Membrane (~ 25 µm) 

~ 200 
µm 

~ 50 
µm 

~ 200 
µm 

~ 50 
µm 
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a) Membrane (electrolyte) 

The function of the membrane is to ensure protons transport and electronic insulation between 

the anode and the cathode while simultaneously inhibiting reactive gases transport. Different 

materials for the membrane have been studied in the past years (fluoropolymers, hydrocarbon-

based polymers…) but the most well-known and the most commonly used is Nafion, a 

perfluorosulfonic acid polymer (trademark of E.I. Dupont de Nemours). As indicated in 

Fig.I.14, it is made of a perfluorinated polymer backbone with sulphonic acid side chains for 

protons transport.  

 

Figure I.14: Structure of the Nafion molecule [16] 

When the Nafion membrane is humidified, there is a separation between the hydrophobic 

backbone and the sulphonic acid groups, which are clustered in hydrophilic regions. Water, 

which is located in those hydrophilic regions, allows the proton transport either via vehicle 

mechanism, or via Grotthus mechanism [17]. As a consequence, the water content, defined as 

the number of water molecules per sulfonic acid group, largely affects the ionic conductivity 

and so the performance of the fuel cell.  

b) Catalyst Layers 

As its name indicates, the catalyst layer is the component where is located the catalyst for the 

electrochemical reaction. This component has to ensure the delivery at the same time of the 

reactive gases, the electrons and the protons to the catalyst zones. A microstructure of the 

cathode catalyst layer, extracted from [18] is presented in Fig.I.15. 
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Figure I.15: Schematic illustration of the cathode catalyst layers in PEMFCs [18]  

Usually, the platinum catalysts are deposited in the form of nano-particles on an electron 

conductive carbon support matrix, in order to maximize the flow of the electrons from the 

electrode to the reaction sites. The catalyst layer has a porous structure (porosity ~50%) for 

the transport of the reactive gases to the reaction sites. In parallel, Nafion is used for the 

transport of the protons from the membrane to the reaction sites. The hydrophobic properties 

of the PTFE included in the catalyst layer are also useful for the evacuation of produced water 

to the pores.  

c) Gas diffusion Layers and Micro-Porous Layers 

The main functions of the diffusion layers are to:  

� Ensure a proper reactive gas distribution from the channel to the catalyst layer surface. 

To this end, they have a high porosity (~ 75%);  

� Ensure a good electronic connection between the catalyst layers and the bipolar plate; 

� Support mechanically the MEA in order to avoid stresses due to the clamping pressure 

and membrane swelling during water uptake.   

GDLs are usually made of carbon fibers (diameter ~ 5 µm) pressed together either into a 

carbon cloth (GDL-CT, ELAT) or into carbon paper (Sigracet, Toray, Freudenberg). An 

image of a GDL obtained via Scanning Electron Microscopy is presented in Fig.I.16. 

 

Figure I.16: Microstructure of the Gas Diffusion Layer 



33 

 

The GDLs have a hydrophobic treatment obtained by coating their bulk surfaces with PTFE 

in order to assist water management and avoid flooding. A microporous layer (porosity ~ 

35%), which is made of carbon black powder with a hydrophobic agent (PTFE), is added 

between the GDLs and the CLs in order to: 

� Smooth the surface heterogeneities of the GDL and improve the electronic contact 

between the GDL and the CL; 

� Assist the water management of the cell by enhancing water removal from the catalyst 

layer and so avoiding flooding.  

� Increase the mechanical protection of the MEA. 

For this study, it is worth noting that the GDL is an extremely anisotropic component. The 

in-plane distribution of the carbon fibers induces electrical and thermal conductivities higher 

in the plane and lower across the plane (through plane). Moreover, in a stack the thermal and 

electrical conductivities of the GDLs highly depend on local compression.  

d) Bipolar plates 

The flow-field plates presented above are usually called “bipolar plates” because they ensure 

not only the anode and cathode gas distributions, but also the electrical connections between 

the individual cells. Usually, in order to eliminate the excessive heat in the system and 

maintain the optimal operating temperature, a coolant flows in the bipolar plates as indicated 

in Fig.I.8. So the Bipolar Plate is a multifunctional component which ensures a proper 

reactive gases distribution and products evacuation all over the cell, separates the different 

cells of the stack, collects the current from the cell, assists the heat and water management, 

and ensures the mechanical stability and the sealing of the stack. 

The Bipolar plates are usually classified by the material used and the flow field design. 

The ideal characteristics of the bipolar plate’s material are: high electrical and thermal 

conductivity; low weight; high corrosion resistance; low interfacial contact resistance; high 

mechanical strength; no brittleness. Different materials (Poco graphite, composite, metal) 

have been developed and tested by different researchers and industrials (see Fig.I.17), in order 

to optimize either the production cost or the durability in the fuel cell environment. Metallic 

bipolar plates (stainless steel, titanium, aluminum) are largely used in automotive application 

due to the good flexibility in manufacturing, the low volumetric power density and the low 

brittleness.      
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Figure I.17: Classification of materials for BPs used in PEM fuel cells [19] 

Regarding the flow field design, conventional designs include straight parallel, 

serpentine, parallel-serpentine and interdigitated flow fields. Straight parallel channels are 

simpler in manufacturing and present the main advantage of low pressure drop. However, 

they are limited by the non-uniform distribution of the reactant gases in the channels and the 

accumulation of liquid water under the ribs. Serpentine channels help in overcoming these 

limitations by inducing forced-convective under-rib flows between adjacent channels which 

enhance the performances. But a direct consequence of serpentine is higher pressures drops. 

Multi-pass serpentine flow-fields (MPSFFs) are a combination of parallel and serpentine flow 

fields (see Fig.I.18), which allow obtaining the best trade-off between performance, pressure 

drop and drainage of condensed water. Interdigitated flow fields, in which the flow is forced 

to pass through the diffusion layers using dead-end channels design, can also be effective in 

removing liquid water.  

 

Figure I.18: Illustration of serpentine, parallel (MGM-Carbon Industrial Co) and multi-pass 

serpentine flow-fields (Tech-Etch) 
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Bipolar plates design is a rapidly developing sector and with industrialization, innovative 

designs are continuously proposed. For example, Honda Motor Co. presented the wave flow 

design (see Fig.I.19.a) for the Honda FCX Clarity, and proved that it is effective in optimizing 

the performance and the volume of the fuel cell. Moreover, it uses gravity force to evacuate 

condensed water. Toyota Motor Co. proposed an innovative 3D fine-mesh flow-field (see Fig. 

I.19.b) which uses a kind of non-symmetric corrugated plates in order to optimize the 

drainage of liquid water and the diffusion of reactive gases over the active area.    

 

Figure I.19: (a) Wave flow BP of the Honda FCX Clarity with coolant flow field [20] 

(b) 3D fine-mesh flow-field of the Toyota Mirai stack [21] 

The coolant flow field (CFF) can be designed in an additional cooling plate, but 

nowadays there is an important push to use the channel network formed by the bipolar plate 

ribs for the cooling purposes (see Fig.I.19). With this solution, the reactive gases flow field 

design becomes a constraint for the coolant flow field design, which should be accurately 

controlled in order to avoid high temperature heterogeneities in the cell.    

 

 

 

 

 

 

 

a b 



36 

 

4. Thermal issues in automotive PEM Fuel Cells 

One of the key parameters facing the technical barriers presented above is the thermal 

management of the fuel cell. Indeed, the electrochemical reaction produces electricity, water, 

as well as a huge amount of heat which is generated within the fuel cell by the highly 

exothermic redox reaction and the Joule effect. This waste heat accounts for 20 - 80% of the 

total reaction enthalpy depending on the operating current as presented in Fig.I.11. 

On the one hand, the temperature of the cell should be maintained high enough in order to 

increase the kinetics of the electrochemical reactions, limit the voltage drop at low current 

densities, push maximal currents to higher values, improve the efficiency of heat rejection and 

increase the tolerance to CO (for hydrogen produced via steam reforming of hydrocarbons). 

On the other hand, the maximal temperature of the cell must be accurately controlled in order 

to limit the components ageing and prevent membrane drying (which limits it ionic 

conductivity). The issue of the balance between heat production and heat removal, called 

“ thermal management” is a crucial factor regarding PEMFCs performance and durability. 

Different cooling methods have been studied by researchers and industrials [22]: liquid 

cooling, heat spreaders, air cooling, phase change cooling… The most commonly used 

method for automotive application is liquid cooling because of its efficiency and 

compactness. Liquid water is often used as coolant, and most of the time it is mixed with 

ethylene glycol or propylene glycol in order to avoid freezing problems at low temperatures. 

This kind of coolant shows the advantages of good heat capacity and thermal conductivity. As 

represented above in Fig.I.20, the liquid water flows in the stack via the bipolar plates, and 

evacuates the excessive heat in the fuel cell. The cooling water is in turn cooled in a radiator, 

generally associated to a fan which drives ambient air on this air/water heat exchanger in 

order to dissipate the heat in ambient air.  

 

Figure I.20: Schematic of a fuel cell system with the cooling circuit in blue [23] 
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In the MEA, water can be produced in vapor or liquid phase depending on the local 

thermal and partial pressure conditions. On the one hand, water is necessary to ensure a good 

proton conductivity of the electrolyte. On the other hand, excessive water must be accurately 

removed through convection by the reactive gases in order to avoid flooding which 

significantly restrict the access of the reactive gases to the catalyst layers. The issue of the 

balance between water production (and supply) and water removal, usually called “water 

management”, is also one of the key factors regarding PEMFCs development and 

commercialization. Coupled to the heat management issue via the phase change and the local 

humidity, water management is a technical challenge for the fuel cells design and 

optimization. 

The technical barriers of PEMFCs development are greatly related to the temperature and 

water management of the stack, because the performance and the degradations are 

intrinsically linked to the local temperature and humidity. Nowadays, the reference 

temperature is 80°C and the reference humidity values varies between 30 and 50%.  However, 

there is an important push to higher temperatures and lower humidity values. For example, the 

target of the Japanese New Energy and Industrial Technology Development Organization is 

to increase the fuel cell temperature at 120°C without external humidification by 2030 [24]. 

On the one hand, a high temperature can widely exacerbate the degradation mechanisms of 

the membrane, catalyst layer and bipolar plates. For example, according to Curtin et al. [25], a 

local temperature higher than 90°C can degrade the membrane due to the attack of free 

radicals such as OH* and OOH*. In addition, degradation mechanisms are known to be 

exacerbated by low humidity in the membrane. On the other hand, a low temperature can 

induce local flooding in the cell due to low water saturation pressures. In both cases these 

effects of temperature heterogeneities can significantly restrict the lifetime and the 

performances of the cell. For that reason, intensive investigations are needed to address the 

specific challenges of heat and water management in the cell as well as their impact on 

degradations.  

 The current study is put forward in that context. Its main objectives can be summarized 

as the study of temperature and humidity distributions in automotive PEM Fuel Cells and the 

investigation of the effect of local temperature as well as high temperature heterogeneities on 

performance evolution and degradations.  
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5. State of the art of the investigation of temperature 

distribution in PEMFCs and its effect on degradations 

Since in a PEMFC the amount of heat released is of the same order of magnitude as the 

produced electrical energy, thermal management studies were performed with PEMFC 

development since the 1960s. The operating temperature was considered uniform in the fuel 

cell and was always limited by the material properties, especially by the membrane. The first 

detailed studies, introduced in early 1990s, were related to water management [26-27]. Those 

studies have been a spin-off for the studies of heat balance since it is intrinsically coupled to 

water transport.  The pioneering studies of local temperature distribution within the cell were 

performed by Fuller and Newman [28]. After that, several studies have been conducted either 

via experimentation or via modeling in order to investigate local temperature and its effects 

on individual components degradation.  

 

5.1. Experimental techniques for temperature measurement 

As regards experimentation, conventional methods such as micro-thermocouples, thermistors 

and resistance temperature detectors (RTDs) have been used to get the temperature 

distribution inside a cell. Some researchers tried non-conventional techniques, which will be 

presented below:  fiber bragg grating (FBG) sensors, bandgap temperature sensors, tunable 

diode laser absorption spectroscopy (TDLAS), phosphor thermometry, infrared imaging and 

capacitive polymer sensing elements (for humidity measurement).   

Pei et al. [29] embedded 36 thermocouples into 4 cathode plates of a 46 cells stack (9 

thermocouples for each 200 cm² active area cell) for the measurement of the temperature at 

the interface between the cathode plate and the MEA (Fig.I.21). At the cell scale, they found a 

parabola evolution of the temperature along the cell surface with maximal differences of 4.6 

and 7.8°C respectively at 0.5 A/cm² and 0.7 A/cm².  
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Figure I.21 : (a) Schematic disposal of the thermocouples in each cell used in [29] - (b) Position 
of the thermocouples in the stack – (c) Highest temperature and temperature differences in each 

cell 

For the stack, they observe that the temperature reaches its maximal value in the middle 

of the stack and that temperature heterogeneities increase with the current density. In addition, 

measurements in different operating conditions allow concluding that the main parameters 

influencing the temperature heterogeneities are: (i) the coolant flow rate – (ii) the operating 

current. 

Lee et al. [30] demonstrated the feasibility of using flexible thin-film sensors (2 µm thick) 

to measure at the same time local temperature (with RTDs) and humidity (with capacitive 

humidity technique) in a MEA. These thin-films were produced via micro-electro-

mechanical-systems (MEMS) fabrication. The optical microscopy photographs of the sensors 

are presented in Fig.I.22.a, with a figure of their integration in a micro-fuel cell (Fig.I.22.b). A 

plot of the measured temperature evolution at the outer surface of the BP (measured with a 

thermocouple) and at the MEA (measured with the thin-film) surface is presented in 

Fig.I.22.c. It is clearly observed that the BP temperature follows the dynamics of the MEA 

temperature with a maximal temperature difference of 5.7°C. This technology was upscaled 

by the development of a micro-flexible thermocouple that can be placed anywhere between 

the MEA and the flow channels without support frame for local temperature measurement 

[31]. 

c 
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Figure I.22 : (a) Optical microscopy photographs of the sensors – (b) Integration of the sensor in 
a micro-fuel cell– (c) Comparison of measurements made at the outer surface of the BP and at 

the surface of MEA [30] 

David et al. [32] implemented an optic fiber bragg grating (FBG) sensor for a 

simultaneous measurement of temperature and relative humidity inside the cell with high 

accuracy. Embedding two sensors along the cathode flow channel with serpentine design on a 

30 cm² cell (Fig.I.23), they measured temperature variations of ~ 1.5°C and humidity 

variations of ~ 40% at 0.5 A/cm². Moreover, the sensor could be used to study the dynamics 

of water transport in the MEA since the time scale of the FBG sensor response is of the same 

order of magnitude as the time scale of water sorption/desorption into the membrane. The 

plots of the measured RH and temperature while incrementing current are presented in 

Fig.I.23.c. It is observed that increasing current leads to: (i) an increase of both temperature 

values and temperature differences along the active area; (ii) a large increase of the RH close 

to the air outlet, especially at low current densities.  

a b c 
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Figure I.23 : (a) Schematic of the in situ FBG sensor located in the bottom of the flow channel – 
(b) Side view of the positions of the sensors in the BP – (c) Measured relative humidity and 

temperature at while incrementing current [32]  

Hinds et al. [33] used at the same time a miniature bandgap sensor for temperature 

measurement and a capacitive polymer sensing element for humidity measurement in a single 

cell. The sensors, incorporated into the flow field plates, can be used to study the humidity 

profile in the anode and cathode channels at the same time. However, eventual condensed 

water is not detected by the sensors.   

Tunable diode laser absorption spectroscopy (TDLAS) has been proven to be effective in 

measuring gas temperature and partial pressure in the bipolar plate channels in the operating 

range of PEMFCs [34-35]. Inman et al. [36] implemented thermal sensors based on the 

principles of the lifetime-decay method of phosphor thermometry to measure temperatures 

between the MEA and the bipolar plates. Infrared imaging technology was also used by some 

authors [37-38-39] despite the constraint of using optical plates which are transparent to IR. 

For the measurement of the temperature distribution within the MEA with good sensitivity, 

He et al. [40] laminated in Nafion a thin film thermistor embedded in a 16 µm thick parylene. 

Over a 5 cm² fuel cell, they measured a temperature difference of ~ 1.5 °C at 0.19 A/cm².  

 

5.2. Experimental techniques for current measurement 

Since the measurement of current density distribution can be useful for the design 

optimization as well as the evaluation of local heat and water sources in the cell, some 

a 

b 

c 
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researchers developed local current measurement techniques. Zhang et al. [41] used at the 

same time a current distribution measurement gasket and thin thermocouples between the 

cathode catalyst layer and gas diffusion layer (see Fig.I.24) to measure the in-plane current 

and temperature distributions (active area: 16 cm²). 

  

Figure I.24 : (a) Current distribution measurement gasket placed on the flow field plate – (b) 

Correlation between current distribution and temperature distribution at different cell voltages 
- (c) Current distributions and temperature distributions at different cell [41] 

An interesting result of this study is the measured distribution of current density and 

temperature at different cell voltages. It is observed that increasing current (decreasing the 

cell voltage) leads to more heterogeneities of current density and temperature (Fig.I.24.c). 

Moreover the temperature difference over the active area significantly increases when the 

operating current increases (Fig.I.24.b).  

Printed circuit boards like Current Scan Lin S++ device [42-45], inserted between two 

monopolar plates, can be used to map not only the temperature (using embedded RTDs) but 

also the current distribution (using hall effect sensors or shunts) in the stack with a good 

resolution. The main advantages of this technology are the accuracy, the relatively low 

a 

c 

b 
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invasiveness and the simultaneous measurement of the current density and temperature over 

all the active area of the cell.  Indeed, the sensor plate is positioned between two monopolar 

plates and so takes the place of one MEA in the stack (see Fig.I.25). Thus, there is no invasion 

of the reactive environment of the fuel cell by the sensor.  

 

Figure I.25 : (a) Photography of a printed circuit board S++ Current Scan Lin between the flow 
field plates – (b) Position of the sensor plate in a cell – (c) Measured current and temperature 

[42] 

More recently, Lee et al. [46] developed a flexible four-in-one micro sensor for the 

simultaneous measurement of temperature, voltage, current and flow in the cell. The micro 

temperature sensor uses the thermal resistance temperature detector (RTD) principle. 

However, this technology is limited by the resolution.  

 

5.3. Experimental techniques for the investigation of liquid water distribution 

Regarding liquid water distribution, Neutron Imaging is the most in-situ and non-invasive 

technique used in the area of PEMFCs. An example of experimental apparatus, used at the 

NIST (National Institute of Standards and Technology) is presented in Fig.I.26.a. The flow 

field geometry and the obtained colorized neutron image of liquid water distribution are also 

presented in Fig.I.26.b and I.26.c.    

a 

b 

c 

d 
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Figure I.26 : Experimental setup at NIST Center of Neutron Research – (b) Studied flow field 
geometry – (c) Colorized neutron image, which quantify the liquid water distribution [47[] 

Small angle neutron scattering (SANS) is also a powerful in-situ technique for the 

determination of the water profile across the membrane, as demonstrated by Gebel et al. [48]. 

The experimental setup as well as some results of water distribution across the membrane are 

presented in Fig.I.27. 

 

Figure I.27 : (a) SANS apparatus used by Gebel et al. [48] – (b) Distribution of water content in 
the membrane, the arrow indicates the profile evolution with time 

From a general point of view, the measured temperatures presented above are mainly 

influenced by the coolant flow rate and the operating current. All these measurement 

techniques are limited either to in-plane investigations over the interfaces between the 

different layers of the cell, or to through-plane investigation at a reference point of the active 

area. At a reference current density of 0.5 A/cm², typical through-plane temperature 

differences are ~ 5°C and typical in-plane temperature gradients are ~ 0.6 °C/cm. However, 

this value highly depends on the coolant flow rate and flow-field design. The global in-plane 

distributions of temperature and related parameters in all the components of the cell cannot be 

determined experimentally, and can be estimated only through modeling. In this way, fuel cell 

a b c 

a b 
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modelling allows determining the operating conditions in inaccessible zones of the MEA and 

bipolar plates with sensors. 

 

5.4. Models review 

Several modeling studies have been conducted since the development of PEMFCs to 

investigate the thermal effects with the main scope of design improvement and optimization. 

Many computational heat and mass transfer PEMFC models have been developed during the 

last years from the channel/rib to the stack level (see Fig.I.28). 

 

Figure I.28 : Description of the different modeling scales [49] 

 The great differences between the modeling approaches are the physics involved in the 

equations, the modeling scale and the dimensionality used to describe the system. Regarding 

the physics, the theoretical modeling is based on physical equations while empirical modeling 

is based on observation and experimentation. This latter is cheaper in computation time, but it 

requires appropriate experiments and detailed observations to implement the model. Two 

main types of approaches in PEMFCs theoretical modeling are found in literature:  

� Rule-based modeling in which a set of physical rules is applied to simplified structures of 

the system. The models using this approach are:   

� Full morphology models (FM) which consider the detailed microstructure of the cell 

layers [50].   

� Pore network modeling (PNM) which appears to be very efficient in modeling water 

transport in the porous electrodes [51-54].   

� First-principle based modeling in which governing partial differential equations of 

physical quantities obtained from established physics laws are solved.  Two sub-

approaches are commonly used: 
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� The bottom-up approach which starts with the resolution of the equations at the 

atomistic scale and implements them at higher scales. This approach allows 

advanced multiphase fluid dynamics simulations, with a realistic representation of 

the cell components. However, its computational cost limits its applicability to a 

local scale (see Fig.28).  The different models found in literature are: lattice gas (LG) 

and lattice Boltzmann (LB) equations [55-56]; molecular dynamics (MD) [57-58] and 

off-lattice pseudo-particle [59-60]. 

� The top-down approach which solves continuum-based equations in which 

homogeneous materials are considered with effective transport properties. This latter 

is the most adapted for this study, which is related to the heat and water transport 

phenomena at a macroscopic scale. Therefore, the following review is related to the 

thermal models solved using the “top-down approach”.  In general, one of the key 

factors facing computation with this approach is the dimensionality used to describe 

the transport phenomena. The Fig.I.29 shows the different dimensions used to 

describe transport phenomena in PEM Fuel cells.  

 

Figure I.29: Description of the different modeling dimensions at the channel/rib scale 

0-D models use simple equations without any spatial resolution or geometry description. 

They can be extended to 0-D multi-zone models in which multiple zero-dimensional zones are 

considered. This approach is generally suitable to capture global heterogeneities and trends 

with limited computational resources.  

       1-D models solve the transport equations in one spatial dimension, either along or across 

the cell active area. Early 1D studies were performed by Fuller et al. [28] who studied the 

effect of heat removal rate on operation. Djilali and Lu [61] predicted a temperature 

difference along the cell thickness (through-plane temperature difference) of 1-5 °C, with a 

model developed at the channel scale. Weber et al. [15] highlighted the heat pipe effect in the 

cell with an innovative model at the channel/rib scale. Pharoah et al. [62] developed a similar 
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model and concluded that the catalyst layer temperature is 3-6°C higher than the bipolar plate 

temperature at 1 A/cm2.  Park et al. [63] developed a dynamic model on a 20-cells stack with 

resolution of heat transport in the coolant to study the transient behavior of the cells 

temperature. In all those models, the liquid/vapor phase change in the cell was considered. 2-

D models have been very useful for the study of the transport phenomena in the active layers 

[64] and the channel/rib transport heterogeneities. The first 2-D thermal models were 

developed at the channel scale with a single phase approach.  Hwang et al. [65] introduced a 

novel approach for the resolution of solid phase and fluid phase temperature in the porous 

structures of the MEA. Introducing a two-phase model, Siegel et al. [66] demonstrated that 

one-phase models overpredict the fluid temperature if there is phase change and that local hot 

spots position depends on the heat transfer coefficient. Birgersson et al. [67] predicted a ~ 9°C 

temperature difference across the cell at 1 A/cm2 using a two phase model.  Jung et al. [68] 

investigated the effect of membrane thickness on temperature distribution and concluded that 

increasing Nafion thickness results in higher temperature at cathode. Basu et al. [69] 

demonstrated that phase change and heat pipe effect are strictly linked to local heat transport 

phenomena, which can vary widely depending on the position of the gases and cooling water 

inlets. Shan et al. [70] developed a similar one-phase model on a 2 cells stack to predict the 

dynamic distribution of temperature.  

For a complete analysis of the transport phenomena in the cell, some authors developed 

full 3D models. Shimpalee et al. [71] developed a two-phase model at the channel scale to 

study the impact of heat transfer consideration on performance prediction. Ju et al. [72] 

developed a similar model and concluded that GDL thermal conductivity plays an important 

role in coupled thermal and water management. Wang et al. [73] used a two-phase model to 

demonstrate that phase change accounts for 15–18% of the total heat generation. Nguyen et 

al. [74] developed a monophasic model on a cell segment and concluded that the temperature 

is highly dependent on the current density and that its difference across the cell increases from 

4 to 7°C when the current density ranges from 0.3 to 1.2 A/cm2.  

Finally, some 3D models were implemented at the scale of an entire cell. Su et al. [75] 

developed a thermal model on a 5.29 cm2-cell with CFD simulations and validated the model 

using micro-sensors. Le at al. [76] focused on liquid water transport and its effects on 

temperature distribution on a 2.6 cm2 cell. Hwang et al. [77] developed a dynamic model to 

investigate the lag in heat transfer with respect to electrochemical phenomena on a 9 cm²-cell. 

Liu et al. [78] introduced a simpler approach for large scale fuel cell stack simulation, and 

applied it on a six 8 cm2-cells stack. From a general point of view, the simulated temperature 
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distribution inside the cell in those papers was mainly governed by the local heat source and 

current density distribution. However, the temperature distribution also depends on the local 

heat removal rate, controlled by heat transfer rate with the coolant. Inoue et al. [79-80] 

developed a more complete two-phase model with simplified fluid dynamics equations on a 

225 cm² cell using a simplified geometry. That model is powerful for optimizing the flow 

pattern of reactant gases and cooling water, in order to make the relative humidity as uniform 

as possible. A summary of these works on non-isothermal modeling of transport phenomena 

in the cell with the principal observations is presented below in Table I.2. The great 

differences between the models is the decomposition of the cell layers, the resolution or not of 

heat transfer in the coolant, the consideration or not of liquid/vapor phase change, and the 

boundary conditions considered.  

 

Author Scale Dimension Resolution of 
Heat 

transport in 
the coolant 

Phases Observations 

Weber et al. 
[15] 

Channel 1D No Two Highlight of heat pipe effect in the cell 

Djilali and Lu 
[61] 

Channel 1D No Two 1 - 5°C temperature difference along the thickness of the cell 

Pharoah et al. 
[62] 

Channel
/ rib 

1D No Two The catalyst layer temperature is 3-6°C higher than the 
bipolar plate temperature at 1A/cm2 

Park et al. [63] 20-cell 
stack 

1D Yes Two Transient behavior of the cells temperature 

Fuller et al. [28] Channel 1D No Single Effect of heat removal rate on operation 
Birgersson et al. 

[67] 
Channel 2D No Two ~9°C temperature difference across the cell at 1A/cm2 

Hwang [77] Channel 2D No Single Novel approach for resolution of solid phase and fluid phase 
temperature in the MEA 

Siegel C. [66] Channel
/rib 

2D No Single /Two One-phase models always overpredicts the fluid temperature 
and local hot spot position depends on the heat transfer 

coefficient 
Jung et al. [68] Channel 2D No Two Investigation of the effect of membrane thickness on 

temperature distribution: increasing Nafion thickness results 
in more heat accumulation in cathode 

Basu et al. [69] Channel 2D No Two Phase change and heat pipe effect are strictly linked to local 
heat transport phenomena, which can vary widely depending 

on the position of the gases and cooling water inlets 
Inoue et 

al.[79][80] 
225 cm2 

Cell 
2D Yes Two Optimization of flow pattern 

of gas and cooling water that make the relative humidity 
higher and more uniform 

Shan et al. [70] 2 cell 
stack 

2D Yes Single Dynamic distribution of temperature  

Shimpalee et 
al.[71] 

Channel 3D No Two Impact of heat transfer consideration on performance 
prediction  

Ju et al. [72] Channel 3D No Single GDL thermal conductivity plays an important role in coupled 
thermal and water management 

Wang et al. [73] Channel 3D No Two Phase change could amount to 15–18% of total heat 
generation 

Nguyen et al. 
[74] 

Cell 
segment 

3D Yes Single The temperature is highly dependent on the loading 
conditions and the temperature difference across the cell rises 
from 4 to 7°C when the current density is changed from 0.3 

to 1.2 A/cm2 

Su et al. [75] 5.29m2 3D No Two CFD simulation and validation with the use of micro-sensors 
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Table I.2 : Summary of the works on non-isothermal modeling of transport phenomena in the 
cell 

 

5.5. Review of the correlation between local parameters and degradation 

Recently, a large number of studies has been conducted in order to study PEMFCs 

degradation with different approaches. Some of them are developed at the atomistic scale in 

order to understand the fundamentals of degradation mechanisms [81]. Other studies use 

macroscopic approaches by relating the operating conditions to global performance loss [82-

83]. C. Robin et al. [84] introduced an efficient method to study the impact of local conditions 

on degradation by coupling performance models developed at the cell scale with degradation 

models developed at lower scales. J. Pauchet et al. [85] developed an innovative numerical 

method which couples a rule-based model and a performance model for the study of the 

impact of single component degradation on performance. Regarding experimentation, printed 

circuit boards can be useful to study the degradation heterogeneities [44-45] while the use of 

segmented cells [86] can also be efficient for understanding the local ageing conditions within 

the cell.29 Post-mortem analyses of the aged components give also further information on the 

structure/properties of the different components for a better understanding of the degradations 

phenomena and their impact on the performances [87-88]. 

Pei et al. [89] reviewed the main factors influencing PEMFC degradation in automotive 

related conditions. It seems that coupled heat and water management is a probable driving 

force for many degradation mechanisms of membrane, catalyst layers, bipolar plates and gas 

diffusion layers. The review of the different degradation mechanisms of the cell components 

is presented in the following.  

 

 

 

 

Cell 
Le et al. [76] Cell 3D No Two Focus on liquid water transport and its effects on temperature 

distribution  
Hwang et al. 

[77] 
Cell 3D No Single Investigation of lag in heat transfer with respect to 

electrochemical phenomena  
Liu et al.[78] Six 

8cm2 

cell 
stack 

3D Yes Two Simpler approach for large scale fuel cell stack simulation 
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a) Membrane 

The most common degradations of the membrane [90-91] can be classified in:  

� Chemical degradation. It is due to chemical reactions of the membrane with species 

such as free radicals [92]. According to Sethuraman et al. [93], increasing the cell 

temperature leads to an acceleration of the membrane chemical degradation, which can 

be quantified in terms of fluorine release rate (FRR) or sulfur emission rate (see 

Fig.I.30). The measurements of the FRR is a good indicator for both the degradation 

state and the expected life of the membrane [94]. 

 

Figure I.30 : Total average fluorine and sulfur emission rates for a Nafion 112 membrane during 
OCV decay as a function of temperature [93] 

 

� Mechanical degradation. There are membrane delaminations or fractures caused by 

fatigue stresses due to temperature and/or humidity cycling. Indeed, water is necessary 

for ion conduction, but a direct consequence of the Nafion hydration is swelling. 

Moreover, PTFE is a thermoplastic material which can suffer from temperature 

heterogeneities. 

� Shorting. It is the local permeation to electrons, caused by a local overcompression 

and or creep of the membrane into the catalyst layers. 

Since the membrane endures high hygrothermal stresses, some authors focused their 

studies on the impact of humidity cycling on membrane degradation [95-101]. According to 

Zhang et al. [102], a simultaneous coupling of high temperatures and low humidity values 

significantly accelerate the membrane degradation.  

b) Catalyst layers 

The catalyst layers ageing is usually quantified in terms of the remaining Electrochemically 

Active Surface Area (ECSA) because the main degradation mechanisms are the platinum 

dissolution and the carbon support corrosion.  Bi et al. [103] studied the effect of temperature 
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(40-60-80°C) on platinum carbon (Pt/C) catalyst durability using potential cycling tests. They 

observed that increasing temperature results in higher degradations of the Pt catalyst ECSA 

and higher Pt deposition in the membrane. The obtained dissolution rate at different 

temperatures is presented in Fig.I.31. 

 

Figure I.31: Calculated Pt dissolution rate as a function of the potential cycles at different 
temperatures [103] 

According to Dam et al. [104], the platinum dissolution rate strongly depends on both 

temperature and voltage as presented in Fig.I.32.   

 

Figure I.32: Pt dissolution rate as a function of the potential, at different temperatures [104] 

Borup et al. [105] conducted detailed studies of PEMFC electrocatalyst degradation and 

concluded that:  

• The rate of ECSA loss increases with increasing temperature;  

• Increasing the relative humidity induces at the same time an increase of the ECSA 

loss and a decrease of the carbon support corrosion.   

Potential cycles 
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c) Gas diffusion layers 

The main degradation mechanisms of the diffusion layers are the hydrophobicity loss which 

induces changes in wetting behavior and changes in structure due to mechanical stress and 

carbon fibers corrosion. Mukundan et al. [106] studied the wetting behavior of GDLs aged at 

80 and 95°C and concluded that the GDL hydrophobicity significantly decreases when the 

operating temperature is increased. Comparing in-situ the behavior the fresh and aged GDLs, 

they also observed that the new GDL performance increases with increasing the RH while the 

aged GDL performance decreases with increasing RH.  

d) Bipolar plates 

Regarding the bipolar plates, the main degradations listed in literature are corrosion, and 

deposits of corrosion products [107-111]. It is well known that corrosion increases with both 

temperature and humidity. Moreover, corrosion currents are higher at the anode compartment 

due to the acidity of the environment. However, it is observed that a passive layer, which 

stabilizes the corrosion current, can be developed on the BP surface [110]. Another effect of 

temperature on BPs degradation can be the large difference in the coefficient of thermal 

expansion (CTE) between the base metal of the BP and the coating material under the rib. It 

may induce thermomechanical failure in the hot zones by separation, microcracks and 

pinholes [112]. 
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Conclusion 

Fuel Cells are considered to be a viable solution for mitigating energy and environmental 

issues of the 21st century. Among the different types of fuel cells, Proton Exchange 

Membrane Fuel Cells (PEMFCs) are the focus of many works, especially for automotive 

application thanks to the advantages of good efficiency, excellent dynamics and high power 

density. However, heat and water management remain a global challenge for their 

development and commercialization.  

Experimental methods can be very useful to study temperature and water distribution in 

the cell, but they are limited by the high cost and invasiveness of the measurement techniques. 

The most convenient technique for local measurements in this study appears to be the use of 

printed circuit boards because of their good resolution and accuracy while maintaining a 

relatively low invasiveness compared to the other existing technologies. Indeed, the other 

measurement devices presented above (resistive temperature detectors, fiber bragg grating 

sensors, bandgap temperature sensors, etc.) interact with the reactive environment and can 

significantly affect the results. The measurements of the printed circuit boards can also be 

used to validate models developed at the cell scale. The step between the existing models in 

literature and this study should be the development of a thermo-fluidic model, with the 

resolution at the same time of the heat sources and cooling water heterogeneities. The great 

challenge for this model is to find the best tradeoff between the dimensionality used to 

describe the model, the accuracy of the physics phenomena description and the computational 

scale. Ideally, the model should be developed at the cell scale, in order to capture all the 

global heterogeneities of the fuel cell components. Moreover, the model should allow the 

prediction of temperature, humidity and related parameters in each component of the cell. 

 Regarding the effects of local temperature on degradations, a first observation is that in 

PEMFCs, either temperature or water distribution are supposed to be driving forces for many 

degradation mechanisms, even if the coupling between local temperature, humidity and 

degradations remains a great challenge.  
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Introduction 
 

In the previous chapter, the experimental techniques used to investigate local temperature in 

PEMFCs have been reviewed and printed circuit boards appeared to be the most adapted for 

this study. In this chapter, the methodology and experimental techniques used for the studies 

of temperature distribution and its impact on degradations are presented. First, the reference 

stack design and technology used is the study is presented with a detailed description of the 

single components of each cell. After that, the experimental test bench and control system is 

briefly described, as well as the different degradation tests performed in section 3. In section 

4, the measurement and electrochemical characterization methods used to study the 

temperature distribution as well as global and local performance losses are presented. In the 

last section, the post-mortem analysis methods and devices used to study the degradation of 

each fuel cell component are illustrated.   

 

1. Presentation of the stack design and technology 

The studied stacks are composed of several cells with an active area of 220 cm2, electrically 

connected in series. Each cell consists of one Membrane Electrode Assembly (MEA) where 

the electrochemical reactions take place and one metallic bipolar plate (BP). The 

configuration of a single cell is illustrated in Fig.II.1, with the main flow patterns of the 

reactive gases.  

 

Figure II.1: Main components of each cell with the reactive gases main flow patterns. The red, 

green and blue colors are respectively related to hydrogen, air and cooling water 
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The cells are stacked between two end-plates designed to apply a homogeneous 

mechanical pressure of approximately 1 MPa at the interface between the MEA and the BP, 

and a localized pressure on the sealing gaskets to ensure the gas tightness of each circuit. The 

stack is assembled with tie-rod and nuts, then its leak tightness is validated and finally it is 

connected to the test bench. 

1.1. Membrane Electrode Assemblies 

A single MEA (CEA home-made) consists of a Nafion reinforced Proton Exchange 

Membrane (PEM), sandwiched between the anode and cathode Catalyst Layers (aCL and 

cCL), two MicroPorous Layers (MPL), and two Gas Diffusion Layers (GDL). The detailed 

description of the MEA components is presented in Tab.II.1. 

Component Thickness (µm ) Characteristics 

PEM 25 Nafion, PTFE reinforced 

aCL 6 Carbon supported Pt catalyst with 0.1 mgPt/cm2  

cCL 12 Carbon supported Pt-Co catalyst with 0.4 mgPt/cm2  

MPL 50 Carbon black powder (Sigracet) 

GDL 246 Carbon paper GDL 24 BC (Sigracet) 

Table II.1: Description of the MEA components 
                                    

1.2.  Bipolar Plates 

The bipolar plate used in this study has a CEA homemade design, called “F” (see Fig.II.1), 

with multi-pass serpentine flow fields.  

a) Material 

The anode and cathode plates (aBP and cBP) are made of Stainless Steel 316 L Ni – Cr alloy. 

Its chemical composition is presented in Tab.II.2. In general, metallic bipolar plates have 

good advantages in fuel cell application like good electrical and thermal conductivities, the 

good mechanical stability, and the ease of manufacturing.  

Chemical Element Fe Cr Ni Mo Mn Si C P S Nb 

Percentage (wt%) 68.39 16.5 10.5 2.27 1.9 0.38 0.02 0.02 0.01 0.01 

Table II.2: Detailed composition (mass fraction) of the stainless steel 316L used for the BP 
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The anode and cathode plates are stamped separately. Then, they are welded together to 

form the bipolar plate (see Fig.II.2) and coated in order to improve the electrical contact with 

the GDL, without worsening the corrosion resistance.  

 

Figure II.2: Illustration of the bipolar plate elements at a channel/rib scale 

 

b) Flow-fields design 

The reactive gases flow field of the bipolar plates is multi-pass serpentine flow field (MPSFF) 

design with a different number of channels on both sides of the plate (Fig. II.3.a). In 

particular, there are:  

� 12 channels doing 5-pass flow fields in the anode plate; 

� 20 channels doing 3-pass flow fields in the cathode plate;  

 

Figure II.3: (a) Presentation of the hydrogen, cooling water and air flow field designs 

(b) Zoom of the BP geometry in a cross-flow zone 

 Welding joint Stainless steel sheets 
(~0.1 mm thick) 

Carbon based coating 
on the ribs 

 

a 

b 
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The cooling flow field is the resulting network between the two metallic sheets of the 

bipolar plate (see Fig. II.3.b). Thus, no additional cooling plate is needed.  

c) Channels geometry 

The gas channels section is trapezoidal due to design constraints of the flow field plates and 

liquid water drainage purposes. The resulting flow of the cooling water, at the back-side of the 

BP, has a hexagonal section in the parallel zones and a trapezoidal section in the cross-flow 

zones (Fig.II.4).  

Figure II.4: Illustration of the channels design in a cross-flow zone  

 

2. Presentation of the experimental bench 

The test bench, presented in Fig.II.5, is designed to provide a management of the operating 

conditions, which are:  

• The pressure of the reactive gases; 

• The temperature of the cell;   

• The relative humidity (RH) of the reactive gases; 

• The stoichiometric coefficient, defined as the ratio of the supplied flow rate and the 

consumption flow rate of the reactive gases in the cell.  

 

Figure II.5: Presentation of an experimental test bench 

Cooling water 
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For the reactants, the main important parameters controlled with the experimental 

apparatus are the feed flows, the humidity, the pressure and the temperature. Their mass flow 

rate is fixed by the total current imposed in order to respect the stoichiometric coefficient set-

point. The coolant used on the test bench is deionized water. The controlled parameters for the 

cooling circuit are the water mass flow rate and the temperature at the stack outlet. The 

components of the flow field circuits of the test bench are presented in Fig.II.6. 

Figure II.6 : Fluid circuits of the laboratory test bench 

A heating resistor is used in the reactant circuits at the stack inlet, after the reactive gases 

humidification, in order to avoid local water condensation in this zone. An electrical load, 

connected to the fuel cell current collectors, is used to monitor the total current setpoint. The 

laboratory test bench and its auxiliaries have a sufficient dynamic response for reproducing 

the cycling tests (which are presented below) in terms of pressure, relative humidity, cooling 

flow and current variations. However, there are some limitations in temperature variation rate 

due the limitations of the cooling system.  
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3. Ageing tests 

The targeted ageing tests have to reproduce the local conditions occurring in an automotive 

fuel cell. From a thermal point of view, there are different typologies of stress: 

� Thermal stresses under nominal operating conditions due to the history of local 

temperature (and humidity), even if the conditions are stationary. In addition, spatial 

heterogeneities in the MEA induce non-uniform stresses.  

� Thermal effects due to high and/or rapid temperature variations induced by peaks in 

power demand, due to elevated accelerations of the vehicle, for example; 

� Thermal effects due to humidity cycling between urban driving conditions (high 

humidity level) and highway driving conditions (dry conditions). Indeed, in highway 

driving, the combined effects of high temperature (due the radiator heat exchange 

limitations), high air flow rate (due to the high current) and low water vapor supplying 

(due to the humidifier limitations) induce dry operating conditions in the fuel cell;  

� Occasional thermal stresses due to cold-starts at subzero temperatures leading to ice 

formation and growth in the fuel cell as described by Yan et al. [113]. Additionally, 

freeze/thaw cycles can induce significant degradations [100] [114] and many 

researches are underway on the topic. These conditions are of paramount importance 

for fuel cell vehicles, but are beyond the scope of this study.  

This work focuses on reference operating conditions (around 80°C) of light-duty vehicles 

considering usual dynamic loads, cooling strategies and the fuel cell system constraints and 

limitations. Typically, there are different profiles of the dynamic load for light-duty vehicles 

depending on the country, the lifestyle and the vehicle performance. The commonly used are:  

• The New European Driving Cycle (NEDC) which is a highly modeled cycle, adapted 

by the Motor Vehicle Emissions Group. It is commonly used in the area of fuel cell 

vehicles. It considers the driving cycle as a combination between an urban cycle and 

an extra-urban cycle with constant speeds, accelerations and decelerations. The main 

advantages of this cycle are its reproducibility and its repeatability. However, it suffers 

some criticism for not considering the real accelerations of a light-duty vehicle. 

•  The Worldwide harmonized Light duty driving Test Cycle (WLTC) which was 

designed from a statistical database provided by different countries all over the world, 

in order to determine the energy consumption and the greenhouse gases emission. It is 

more recent and more realistic than the NEDC.     
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The global durability tests used to study the thermal effects should be chosen bearing in 

mind at the same time the application, the need of isolating the root effect of each type of 

thermal loads (spatial heterogeneities, temporal heterogeneities, temperature/RH cycling) on 

degradations and the available timeframe for the experimental tests. The reference tests 

chosen for this purpose are listed in the following.    

3.1.  Test 1 - Nominal operating conditions (stationary) 

The experiment consists of a stationary test over 2000 h in nominal operating conditions (0.4 

A/cm², 80°C).  The reference conditions of the ageing test are reported in Tab.II.3.   

Experimental parameter Setpoint 

Current [A] 88  (0.4 A/cm²) 

Outlet temperature cooling water [°C] 80 

Inlet temperature reactant gases [°C] 85 

Inlet pressure [bar] 1.3 

Inlet relative humidity [%] Hydrogen 50 

Air 30 

Stoichiometric coefficient Hydrogen 1.5 

Air 1.8 

Table II.3: Reference conditions of the stationary ageing test 
 

3.2.  Test 2 - NEDC/RH cycling 

The reference NEDC, which represents the evolution of the vehicle velocity over 1200 s, is 

presented in Fig.II.7. The NEDC was preferred to the WLTC because there is more database 

in literature concerning this cycle [44][115]. The firsts 800 s of the cycle repeat four low 

velocity urban cycles. The remaining 400 s represent a controlled-access highway driving 

with higher velocities. 
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Figure II.7 : Reference NEDC cycle 

In order to facilitate the control of the cycle, the reference NEDC speed cycle was adapted 

to a current cycle with different current steps as illustrated in Fig.II.8. This current cycle 

adaptation induces a squaring of the pulses and some loss of accuracy regarding the real 

dynamic loads of an automotive fuel cell, but it is commonly used in the area of automotive 

fuel cells [44][115]. 

 

Figure II.8 : Adapted NEDC cycle 

In order to take into account the humidifying system limitation at high currents, a lower 

RH (30% instead of 50%) is imposed during the controlled-access highway driving part of the 

cycle. The others parameters of the NEDC/RH cycling are the same as for the stationary test. 
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3.3. Test 3: Load/temperature cycling 

The cycle simulates peaks in power demand (local accelerations) in automotive conditions. 

This operating condition induce quite huge heat source peaks located in the MEA and 

consequently a temperature increase with an evolution which depends on the heat capacity of 

the cell and the efficiency of the cooling system. To simulate this thermal behavior, a 

temperature increase from 80 to 95°C is imposed at the cooling water outlet, while the current 

density simultaneously changes from 0.5 to 0.77 A/cm² (see Fig.II.9). The period of the 

load/thermal cycles (~ 8 min) was limited by the test bench cooling system.  

 

Figure II.9 : Imposed current and temperature during the load/temperature cycling 

For comparison, the operating conditions of the three reference ageing tests are summarized 

in Tab.II.4. 
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Experimental 

parameters 

Stationary NEDC/RH cycling Load/thermal cycling 

Number of cells 30 30 19 

Duration 2000 h ~2000 h 

(6034 cycles) 

~200 h 

(1500 cycles) 

Current [A] 

 

88 A            

(0.4 A/cm²) 

  

Outlet temperature 

cooling water [°C] 
80 80 

 

 RH Anode [%] 50 50 50 

 RH Cathode [%] 30 

 

50 

Inlet pressure [bar] 1.3 1.3 1.5 

Stoichiometric coef. H2 1.5 1.5 1.5 

Stoichiometric coef. O2 1.8 1.8 2 

Table II.4: Operating conditions of the three reference ageing tests 

It is worth noting that the maximal powers of the fuel cells stacks considered in the study 

(~ 3 kW) are not of the same order of magnitude as usual automotive fuel cells (~ 100 kW).  

The main difference between large-scale stacks (~ 500 cells) and laboratory-scale stacks (~5 

cells) is the buckling phenomena after the assembly phase which can induce uneven 

Time (s) Time (s) 

Time (s) 

Time (s) 



65 

 

distributions of mechanical pressure on the active area. Carral et al. [116] demonstrated that 

for production-scale cells, increasing the number of cells enhance the uniformity of the 

mechanical pressure and 5 cells are sufficient to obtain negligible effects of buckling 

phenomena. So the numbers of cells used in this study (30 and 19) are sufficient to represent 

the real heterogeneities occurring in a large-scale stack.  

 

4. Continuous diagnosis methods 

A proper diagnostic protocol has been defined in order to observe the degradations and 

identify the main causes of performance loss. Nowadays, numerous diagnostic techniques are 

commonly used in PEM fuel cells area with the objective of isolating the root causes of 

degradation: I-V characteristics curves, Voltammetry, Electrochemical Impedance 

spectroscopy (EIS), Fluoride Release Rate (FRR), electrochemical heat pump, current 

interruption, high frequency resistance measurement (HFR), Tafel slope measurement etc. 

The methodology as well as the diagnostic techniques used specifically in this study could be 

summarized as:  

� Punctual “in-situ” characterizations of the stack performance using polarization curves, 

cyclic voltammetry and linear sweep voltammetry; 

� Punctual “in-situ” measurements of the Fluoride Release Rate for the study of the 

membrane chemical degradation; 

� Continuous measurement of the temperature and current density distribution over the 

active area. 

4.1.  Global measurements 

a) Polarization curves 

The polarization curves are considered as the first step in studying the degradations and 

isolating the causes of performance loss. They are performed from the beginning to the end of 

test, in order to investigate the evolution of the global performance of the fuel cell. In most of 

the tests, the delay between the different polarization curves is 200 h, except for the 

load/thermal cycling in which the I-V curves were performed each 100 h. An example of 

polarization curves obtained for the stationary test is presented in Fig.II.10. 
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Figure II.10 : Example of polarization curves obtained for the stationary test 

During the measurements, the current (I) is varies from ~ 198 A (~0.9 A/cm²) to 0 A, 

with 11 A steps when I>10 A (0.045A/cm²) and 1 A steps when I<10 A. The duration of each 

step is 2 min.  

b) Cyclic voltammetry (CV) 

Cyclic voltammetry (CV) consists in determining the output current of an electrochemical 

system subject to a linear evolution of the cell potential between two values. Applied on a fuel 

cell, it is used to determine the electrochemical active surface area (ECSA). During this 

electrochemical characterization test, nitrogen flows over the working electrode (cathode) and 

hydrogen flows over the counter electrode (anode) which also works as the reference 

electrode. The voltage variation induces H2 adsorption and desorption onto the catalyst layer 

interface. Thus, the cathode electrochemical active surface area can be determined. A 

potentiostat (Autolab) is used to apply the potential variation between the electrodes and a 

booster is used to provide an additional current range. The electrochemical active area can be 

calculated by integrating the current exchanged during the time under the peaks. The 

electroactive area of platinum particles (S) can be calculated as: 

� =
�

�	���
 

 

[II.1] 

Where A is the area illustrated in the cyclic voltammogram (Fig.II.11);  ��� the hydrogen 

adsorption charge density (C/cm²) and � is the scanning speed.  
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Figure II.11 : Current response of a cell under CV 

The different peaks on the plots can add additional information like the charge-transfer 

reactions potential. During this electrochemical characterization test, three scanning speeds 

(�) are applied with 3 measurements for each speed in order to discard measurement 

dispersions.  

However, the surface electrochemically active in the operating fuel cell is only the portion 

of that ECSA which is effectively accessible to reactive gases via the pores of the catalyst 

layers. There should be also a performance loss due to the anode electrochemical active area 

loss, but the main part of the platinum loss is generally located at the cathode due to the 

higher overpotentials.  An example of the evolution of cyclic voltammograms from the 

beginning to the end of test (stationary test) is presented in Fig.II.12. 

 

Figure II.12: Measured CV on a cell at different times 
 

c) Linear sweep voltammetry (LSV) 

Linear sweep voltammetry (LSV) consists in applying a linear evolution of the potential to an 

electrochemical system between two values, and measuring the resulting current. Applied on 
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a fuel cell, it is used to study the evolution of the hydrogen permeation through the 

membrane. The measurement technique is almost the same as for the cyclic voltammetry, 

except the scanning velocity, which is sufficiently low in this case to allow the system 

stabilization. The quantity of hydrogen crossing the membrane is obtained from the 

expression: 

�	
 =
�

2	
	�
 

[II.2] 

With I the mean value of the stabilized permeation current (indicated on the voltammogram of 

Fig.II.13). S the active are surface of the membrane (220 cm² in this study). 

 

Figure II.13 : Current response of a cell under LSV 

 These LSV and CV characterizations are performed only on 6 different cells of each stack 

because of the high measuring time, which is about 30 min for each cell.  

d) Fluoride Release Rate 

In order to investigate in-situ, the rate of the membrane chemical degradation, Fluoride 

Release Rate (FRR) measurements of the effluent water were performed every 200 h, by ion-

exchange chromatography (Thermo Scientific™ Dionex™ ion chromatography systems - ICS-

5000+ HPIC). It allows measuring the concentration of given anions (here F-) with a 

sensitivity about 50 ppb. The FRR (10-8g/h/cm²) is calculated according to the mass flow rate 

of water collected at the outlet of the stack.  

4.2.  Local measurements 

a) Presentation of the printed circuit board used in the study 

Local in-situ diagnosis consisted of current density and temperature distributions 

measurements with a Current Scan Lin S++ sensor plate (see Fig.II.14). It is a custom-built 

segmented printed circuit board where the local current is measured using ring cores of a 
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magnetically soft material (ferrite). Because two ferrite ring cores are necessary for each 

measurement, the segments have a size of approximately 7 x 7 mm. Therefore, for a 220 cm2 

active surface, there are 480 measurement segments for current distribution.  

 

Figure II.14 : Sensor plate out of the stack and inserted in the middle of the stack 

� Current measurement principle 

The current measurement principle is based upon the dependence of the permeability of a 

magnetically soft material (�) on the magnetization H and the temperature T. As illustrated in 

Fig.II.14, the current Im, which has to be measured, flows through the coil L1 on a core made 

of magnetically soft material and causes its magnetization.  

 

Figure II. 15 : Current measurement principle of the sensor plate 

The magnetic field strength H depends upon the number of windings N and the magnetic 

length l:  

� =
���

�
 

[II.3] 

A small alternating current ���� is generated through the coil L2. This induces a voltage u (t) 

in the coil L3 which is calculated with the formula:  

���� = ���, �, 
�	��
�

�
	
�����

��
 

[II.4] 

So the current ��	can be deduced from the induced voltage u(t) and compensated with the 

measured temperature since the permeability depends on temperature. 

� Temperature measurement principle 

The temperature measurement is based upon the dependence of the resistivity (�) of metals 

such as copper upon temperature (resistance temperature detectors): 
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���� = ����		�	�1  !�� " ��	�# [II.5] 

with !	the temperature coefficient of resistance and �� a reference temperature.  

120 temperature sensors are embedded in the sensor plate to this end. There is a lower 

spatial resolution of the temperature measurement due to the limitations in space for the 

electronic circuit of the sensor plate.  The precisions of the device are 0.02 A/cm² for the 

current density and 1 °C for temperature. The thickness of the sensor plate is mainly 

determined by the thickness of the ferrite ring cores and is approximately 3 mm. The 

apparatus, inserted between two monopolar plates in the middle of the stacks (in order to 

eliminate the side effects) is used to map simultaneously the temperature and current 

distributions in the cell. The specifications of the Current Scan Lin S++ device are 

summarized in Tab. II.5.  

Current measurement 

Range 0 – 2.5 A/cm2 

Precision 0.02 A/cm² 

Measurement time 0.5 s for each 100 measurement segments 

Maximum current 3A/measurement segment 

Temperature 

measurement 

Range Up to 180°C 

Precision 1°C 

Measurement time 2 s for each 100 measurement segments 

Maximum temperature 180°C 

Table II.5: Specifications of the printed circuit board used for measurement 

Examples of current and temperature map are illustrated in Fig.II.16. The local maxima 

observed on the current density distribution are induced by the welding points of the bipolar 

plates which are preferential paths for current flow. The hot zones observed on the 

temperature map are due to the heterogeneities of the cooling flow field. They will be studied 

in detail in the chapter dedicated to the thermal model.  

 

Figure II.16 : Examples of current density (A/cm²) and temperature (°C) distributions measured 
with the sensor plate 
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The measured current density needs a post-treatment since the contact between the 

measurements segments and the bipolar plate is not homogeneous. 

b) Local data post-treatment 

Given the Multi-pass serpentine flow field design of bipolar plates with curve corners, the 

contact area between the measurement segments of the sensor plate and the bipolar plate 

shoulders is not homogeneous at all as illustrated in Fig II.17. 

 

Figure II.17 :  (a) In-plane and (b) through-plane illustration of the heterogeneities of the contact 
area between the sensor plate segments and the bipolar plate ribs 

In order to take into account these contact area heterogeneities which can have a 

considerable impact on the current density distribution measurement, appropriate weighting 

factors inversely proportional to the contact areas are used in each segment as follows: 

��$%	� = �$&&	�$&& 	↔ 		 �$&& = ��$% 	
�

�$&&
	= ��$%	( [II.6] 

Where ��$% and �$&& are respectively the measured and the effective current densities in each 

segment; � is the mean contact area between the BPs shoulders and each sensor plate 

segment; �$&& is the effective contact area between the BPs shoulders and the corresponding 

segment of the sensor plate. The weighting factors (, which consider the contact between the 

sensor plate and both the anode and cathode plate ribs (figure II.18) , varies from 0.75 to 1.25. 

Measurement segment in 
electrical contact with 2 ribs 

Measurement segment in 
electrical contact with 3 ribs 

a b 
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Figure II.18 : (a) Anode plate shoulders, scanning plate segmentation and cathode plate 
shoulders - (b) Post-treatment weighting factors matrix 

As illustrated in Fig.II.19, the post-treatment of the current density using the weighting 

factors induces a smoothing of the current density distribution, even if the effect of welding 

points (local maxima on the post-treated current density) is still observed. 

 

Figure II.19 : Effect of the post-treatment matrix on the current density distribution 
 

c) Perturbations on the temperature measurement 

The printed circuit board is sandwiched between two monopolar plates, replacing one MEA 

as indicated in Fig.II.17. As every plate contains a cooling circuit on the backside, the S++ 

temperature measurement is influenced by one additional cooling circuit. This configuration 

(Fig. II.20) may influence the absolute temperature measurement and its heterogeneity over 

the MEA surface. That induces a “double-cooling effect” and so a temperature heterogeneities 

smoothing with respect to the real heterogeneities along the active area. Moreover, given the 

relatively high thickness of the sensor plate with respect to the cell components (see 

Fig.II.20), there is a non-negligible heat exchanged between the sensor plate and the cooling 

water manifolds. As a consequence, the sensor plate is cooled on one side by the inlet cooling 

x x 
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water and heated on the other side by the outlet cooling water and that induces parasitic 

effects on the measurements.  

 

Figure II.20 : Illustration of: (a) the heat exchange between the sensor plate and the manifolds 
cooling water - (b) the double-cooling effect of the sensor plate sandwiched between two bipolar 

plates and two cooling circuits 

The “double cooling effect” as well as the heat exchange with the cooling water flowing 

in the manifolds should be taken into account either during the interpretation of the 

temperature maps, or during the development of the thermal model.   

 

5. Post-mortem analyses 

The post–mortem analyses are used to study the degradation state and the change of atomic 

and molecular structure of the isolated components of the aged cells. The techniques and tools 

are defined depending on the information released by each technique, the characterization 

time and the cost while bearing in mind the necessity of linking the observed degradations to 

the physical root causes. To this end, the different techniques used in this study are: optical 

microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and Infrared 

camera.  

5.1.  Optical microscopy (OM) 

Optical microscopy (Digital microscope VHX 500-FE) is used for the global analysis of the 

bipolar plates and membrane degradations at the cell scale. It is considered as the first step 

a b 

Hydrogen 

Air 

Cooling water 

Heat exchange between 
the sensor plate and the 
cooling water manifolds 

MEA  MEA  BP  BP  Sensor Plate  
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before going toward the advanced characterization techniques. Examples of optical 

microscopy images are presented in Fig.II.21.  

 

Figure II.21 : Visualization of (a) BP degradations and (b) membrane delamination using OM 
 

5.2.  X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy, sometimes named electron spectroscopy for chemical 

analysis (ESCA), is used for the local analysis of the chemical composition and state of 

oxidation of the bipolar plate surface. It consists in detecting the photoelectrons that are 

ejected from an inner-shell orbital of an atom by X-rays (see Fig.II.22). 

 

Figure II.22 : Principle of XPS, measurement system and example of a spectrum obtained on an 
aged BP 

 

5.3.  Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM LEO, 40kV) is used for a detailed study of the surface 

topography and microstructure of different components, from the bipolar plates to the MEA. 

It consists in making an interaction between a focus beam of electrons and the atoms that 

compose a region of the sample surface. The secondary electrons emitted back by the excited 

atoms reveal information about the morphology and microstructure of the sample.  An 

example of SEM image of an aged MEA is presented in Fig.II.23.  

a b 
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Figure II.23 : Example of SEM images obtained in back-scattered electrons on an aged MEA 

 

5.4.  Infrared (IR) Camera for local H 2 permeation  

An IR camera (FLIR® E-Series Advanced Thermal Imaging Camera) is used to measure the 

temperature distribution over the active area of aged MEAs supplied by pressurized hydrogen 

(in a hydrogen box) on the frontside of the MEA, and ambient air on the backside. As the 

MEA permeation increases, more heat is generated over the MEA due to direct combustion of 

the reactants. Thus, observed variations in temperature distribution are related to changes in 

the rate of the reactants crossover through the MEA (Fig.II.24). This diagnostic tool is used to 

localize eventual pin-holes or local thinning of the membrane.   

 

Figure II.24 : (a) MEA in the hydrogen box for the IR camera test 

(b) IR image of a drilled MEA 

 

Overview 

The detailed ageing tests and diagnostics protocol used in the study are summarized in 

Tab.II.6. 

 

Cathode catalyst layer 

Anode catalyst layer 

Membrane 

Pin-holes 

a b 
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Stationary  

30 cells 

NEDC/RH cycling 

30 cells 

Load/temperature cycling 

19 cells 

   

  

Table II.6: Overview of the ageing tests with the diagnostics protocol 

Stack assembling 

Conditioning 

Beginning of Test 

Characterizations: i-V, LSV, CV, S++ 

100 h ageing test, S++, FRR 

Characterizations: i-V, LSV, CV, S++ 

100 h ageing test, S++, FRR 

Characterizations: i-V, LSV, CV, S++ 

End of Test 

Stack disassembling 

Post-mortem analyses : SEM, XPS, IR, OM 

Stack assembling 

Conditioning 

Beginning of Test 

Characterizations: i-V, LSV, CV, S++ 

200 h ageing test, S++, FRR 

Characterizations: i-V, LSV, CV, S++ 

Repeat                  x 9 

End of Test 

Stack disassembling 

Post-mortem analyses : SEM, XPS, IR, OM 

a 

b 

a b 
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Introduction  

 

In this work, a sensor plate is inserted between two monopolar plates of the stack in order to 

measure the temperature distribution over the cell area. Since this measurement device is 

limited to the investigation of the in-plane temperature distribution between two monopolar 

plates, through-plane temperature can be determined only via modeling. Modeling heat 

transport in a fuel cell is a multiphysics problem which involves the study of in-situ thermal 

properties of the cell components, computational fluid dynamics, thermodynamics of the 

electrochemical reactions and phase change. The different approaches used to solve this 

problem in literature were reviewed in Chapter I.  

From a general point of view,  the temperature distribution inside the cell is governed not 

only by the local heat source rate in the exothermic reaction zones and current density 

distribution, but also by the local heat removal rate, controlled by heat transfer rate in the 

coolant. Faghri and Guo [117] reviewed the thermal management issues related to fuel cell 

technology and modeling. They conclude that in order to optimize the components design and 

the thermal management of the fuel cells, 3D numerical analysis models are needed. 

Nevertheless, for large-scale fuel cells, full 3D simulations require high computational 

resources and appropriate fluid dynamics solvers. For this reason, 3D models are generally 

developed at the level of one single channel. In this chapter, a global 3D model is developed 

at the channel/rib scale in order to understand the exact temperature distribution in the cell 

and the associated channel/rib effects. The model is upscaled at the cell scale, with an 

appropriate dimensionality reduction in order to solve the tradeoff between accuracy and 

computational cost. The upscaled “pseudo-3D” model is validated using the temperature 

measured with the sensor plate inserted in the stack. In the following section, the thermal 

properties of the components, which are of fundamental importance in this study, are 

reviewed.   
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1. Thermal properties of the cell components 
 

Understanding temperature distribution in PEM Fuel cells needs a deep and detailed analysis 

of the thermal properties (especially the thermal conductivity) of the MEA components and 

interfaces. Measured ex-situ data are useful for getting an idea of the thermal properties and 

their influence on an operating fuel cell. Nevertheless, these thermal properties can be very 

different during operation from those measured ex-situ due to local conditions (temperature, 

water content, local compression, etc.). So, local in-situ thermal properties are needed for an 

accurate study.  

Many researchers focused on that challenge, especially via experimentation [118-120], 

even if some models can help making predictions in different operating conditions [121-122]. 

In the following, the impact of local conditions on thermal conductivity of every cell 

component is briefly reviewed for a proper definition of the model parameters.    

1.1. Membrane 

The membrane is a perfluorinated polymer backbone with sulphonic acid side chains for 

protons transport. Generally, for this type of thermoplastic material, the thermal conductivity 

varies with both temperature and water content.  

a) Effect of temperature 

It is commonly accepted that as the temperature increases, the thermal conductivity of the dry 

membrane decreases due to the phonon transport phenomena, as described by Choy et al. 

[123]. For dry Nafion, Khandelwal et al. [118] measured a decrease from 0.16 ± 0.03 to 0.13 

± 0.02 W/m/K when the temperature increases from 30°c to 65°C. With a linear extrapolation, 

they predicted a thermal conductivity of 0.11 ± 0.02 W/m/K at 80°C. These results are very 

similar to the results of Alhazmi et al. [120] who measured a decrease from 0.188 ± 0.015 to 

0.135 ± 0.011 W/m/K when temperature changes from 35 to 65°C.  

b) Effect of humidity 

Water is necessary for the ionic conductivity of the Nafion. Water is supplied by humidifying 

the reactive gases and by using directly the water produced by the electrochemical reaction. 

When the Nafion is humidified, there is a separation between the hydrophobic backbone and 

the sulphonic acid groups, which are clustered in hydrophilic regions. This phenomenon 

strongly impacts on the thermal conductivity. In order to estimate it theoretically, Alhazmi et 
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al. [120] assumed that the wet membrane is a mixture of water, air, and membrane material. 

They observed that the thermal conductivity significantly increases as the membrane becomes 

wetter and explained it by the fact that thermal conductivity of water (0.66 W/m/K) is higher 

than the dry membrane one (0.18 W/m/K). They also noted that the thermal conductivity of a 

wet membrane slightly increases with increasing temperature: they observed an increase from 

0.4 to 0.41 W/m/K when the temperature rises from 35 to 65°C. Burheim et al. [124] observed 

that the thermal conductivity of Nafion increases from 0.18 to 0.27 W/m/K when water 

content (��) changes from 0 to 22. After exanimating experimentally its evolution as a 

function of the amount of water molecules per sulphonic acid group in the membrane (water 

content) using a conductivity meter, they proposed the law, which will be used in this study:  

�������	[�/
/�] = �0.177 ± 0.008� + �3.7 ± 0.6� ∙ 10�� ∙ �� 

 

[III.1] 

1.2.  Catalyst layers 

The catalyst layers are a mixture of carbon powder (~ 2 W/m/K), Nafion (~ 0.18 W/mK) and 

platinum particles (~ 71.6 W/m/K). So the thermal conductivity is supposed to increase when 

increasing platinum content. Alhazmi et al. [120] measured the thermal conductivity of the 

MEA in order to deduce the catalyst layer one. They concluded that it is almost independent 

of the temperature and is about 0.291 ± 0.018 W/m/K. It agrees with the measurements 

performed by Kandelwal et al. [118] who obtained 0.27 ± 0.05 W/m/K for a catalyst layer 

with catalyst loading around 0.5 mgPt/cm2. 

Standing to Burheim et al. [125], the thermal conductivity of catalyst layers containing 

water ranges from 0.10 to 0.15 W/m/K when the compaction pressure increases from 5 to 16 

bars. In addition, they observed that the presence of the ionomer is supposed to increase the 

thermal conductivity as the catalyst layer absorbs water. For “supersaturated” catalyst layers, 

the thermal conductivity value can be expected to increase by 50%. The reference value of 

0.15 W/m/K will be used in this study.  

1.3.  Gas Diffusion Layer 

The GDL is made of carbon fibers (diameter ~ 5-10 µm) pressed together into a paper. The 

in-plane orientation of the fibers makes it a highly anisotropic material. Different methods 

have been used in literature to predict its thermal conductivity [118][122][126]. In general, 

those studies agree that the through-plane thermal conductivity (W/m/K) are respectively 



81 

 

around 0.2 for ELAT GDL, 0.3-0.4 for Sigracet PTL and 0.3-0.8 for a Toray GDL. Regarding 

the in-plane conduction, Pfrang et al. [127] used X-ray computed tomography structure data 

as well as randomly computer-generated structures to compute the anisotropy of GDLs under 

different conditions. They concluded that the average in-plane thermal conductivity of all 

structures is by a factor 4 to 12 higher than the average through-plane thermal conductivity. 

They also presented in a table a comparison between 35 thermal conductivity predictions 

published in literature. Zamel et al. [128] used a slug calorimeter method to experimentally 

measure the through-plane thermal conductivity of Toray carbon paper for a temperature 

range from -50 to +120°C. They concluded that, due to the thermal expansion of the 

graphitized carbon fibers, the thermal conductivity increases with temperature. Given the 

operating temperatures of this study (between 78 and 100°C), it can be stated that the thermal 

conductivity of the GDLs is constant.  

However, the microporous layer and the hydrophobic treatment, used to improve water 

management, greatly impact the ex-situ thermal properties of the GDL. The other parameters 

influencing in-situ thermal properties are the presence of liquid water in the pores and the 

inhomogeneous compression.  

a) Effect of PTFE content 

In fuel cell application, in order to limit its wetting during operation, the GDL is treated with 

polytetrafluoroethylene (PTFE) also called Teflon, because of its hydrophobic properties. 

Owing to the low thermal conductivity of PTFE (~0.25	�/
/�), it insulates the carbon 

fibers (120 W/m/K) from each other, leading to a drop of the global thermal conductivity of 

the GDL.  

Pfrang et al. [127] observed that the contact area between carbon fibers and the PTFE has a 

considerable effect on the thermal conductivity. According to Karimi et al. [119], the PTFE 

content influences more the GDL thermal conductivity at lower compression load. 

Khandelwal et al. [118] measured thermal conductivities of 0.48 ± 0.09, 0.31 ± 0.06 and 0.22 

± 0.04 W/m/K respectively when the PTFE content (wt.%) is 0, 5 and 20%. Sadeglifar et al. 

[122] proposed a statistically-based mechanistic model to predict the reduction of through-

plane thermal conductivity of GDLs treated with PTFE.  

b) Effect of MPL 

The MPL, made of a mix of hydrophobic agents with black powder nanoparticles, is added 

between the GDL and the CL to improve water management and smooth the surface 
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heterogeneities of the GDL. According to Thomas et al. [129], temperature gradients across 

the MPL contribute to water transport and helps keeping the water in the MPL in the vapor 

phase. 

Burheim et al. [130] measured the thermal conductivity of MPL at different pressures and 

PTFE contents and studied its impact on the temperature profile in the cell. They concluded 

that it can vary from 0.06 to 0.10 W/m/K depending especially on pressure. They also 

observed that the through-plane temperature difference significantly increases due to the 

MPL. So this component has to be considered for an accurate thermal modeling. Sadeghifar et 

al. [122] measured the thermal conductivity of SGL 24 BC MPL (which is used in this study) 

variations between 0.37 and 0.55 W/m/K depending on the compression.  

c) Effect of humidity 

The local humidity of the cell depends on water partial pressure and temperature. On the one 

hand, water partial pressure is supposed to be higher near the air outlet due to the production 

of water in the active layers. On the other hand, temperature is supposed to be higher near the 

coolant flow outlet.  The coupling of both phenomena can induce high humidity variations in 

the cell. Moreover, at a more local scale, humidity is supposed to be higher under the BP ribs, 

where the temperature is lower and the GDL may contain residual water at the same time. In 

order to take into account those effects, Yablecki et al. [121] used a Thermal Lattice 

Boltzmann Model to determine the anisotropic thermal conductivity of GDL containing liquid 

water. They observed increases of 20.8% and 5.4% respectively for the through and in-plane 

thermal conductivities when the total saturation is changed from 0 to 24.4%. According to 

Burheim et al. [125], when considering wet GDL and moderately humidified CL, the 

PEMFCs maximum internal temperature difference increases by 33% when compared to the 

commonly assumed thermal conductivities. Wang et al. [131] highlighted that the heat pipe 

effect can be responsible of an apparent increase of the through-plane thermal conductivity of 

the GDLs by 20 – 40%.  

d) Effect of inhomogeneous compression 

There are two major causes of heterogeneous compression of the GDL:  

• After the assembly phase, a deflection is observed at the center of the stack as 

demonstrated by Carral et al. [116]. The consequence is that the thermal resistance is 

higher at the center of the stack and lower close to the tie rods. The amplitude of the 

deflection depends on the number of cells and the position of the tie-rod nuts of the 



83 

 

assembly. Mechanical simulations and in-situ measurements showed that the effect of 

the deflection is negligible when the number of cells is higher than 10. Given that the 

experimental stacks tested in this study have 19 or 30 cells, the impact of deflection on 

the thermal study can be neglected.    

• As shown in the Fig.III.1, the channel/rib structure of the BP induces different 

pressure distribution between the area of the GDL under the channel and the one under 

the rib.  

 

Figure III.1 :  Simulation of the axial pressure distribution (MPa) in the GDL due to the 

channel/rib structure (CEA) 

A comparative study of the effect of heterogeneous compression of the GDL under the 

channel/rib structure on the temperature distribution was achieved by Hottinen et al. [132], at 

the channel scale. They concluded that when heterogeneous compression is taken into 

account, a significant portion of the heat produced under the channel is conducted in the plane 

of the MEA and enters the GDL under the rib, where there is a smaller thermal resistance, 

causing a significant temperature gradient inside the electrode. The study showed that the in 

plane temperature differences between the area under the channel and the one under the rib 

can be multiplied by 8.5 from a homogeneous to a heterogeneous compression. Using a 

guarded heat flux meter device, Karimi et al. [119] measured variations from 0.26 to 0.7 

W/m/K for Spectracarb GDL and from 0.25 to 0.52 W/m/K for Solvicore GDLs when the 

pressure rises from 0.7 to 13.8 bar, at a mean temperature of 70°C.  

From these observations, the presence of the MPL as well as the variations in thermal 

conductivity due to the heterogeneous compression of the GDL are of paramount importance 

in modeling heat transfer and thermal effects in the cell. For the GDL, the values of 0.2 and 

3.7 W/m/K, which were measured “ex-situ” at the CEA respectively for the though-plane and 
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in-plane thermal conductivities, will be considered as the references for this study. The MPL 

will be considered as a separate component, with an equivalent thermal conductivity of 0.4 

W/m/K. The phenomenon of heterogeneous compression will also be considered, using a 

geometrical analogy (Fig.III.5).       

1.4. Thermal contact resistances at the interfaces 

Since the thermal contact resistances (TCR), especially between the GDL and the adjacent 

components, can have a great impact on temperature distribution, reliable estimations of their 

values are needed for this study. Karimi et al. [119] measured variations of TCR from 2.4 to 

0.6 10�"	
#�/� and 3.6 to 0.9 10�"	
#�/� respectively for Spectracarb and Solvicore 

GDLs (in contact with iron surface) when the pressure is changed from 0.7 to 13.8 bar. 

Khandelwal [118] measured the TCR between Sigracet diffusion media and aluminium 

bronze material and found a quite constant value with varying PTFE content: ~1.2 − 1.5 ∙10�"
#�/�, with a pressure of 2.2 MPa. Sadeghifar et al. [133] developed an analytical 

model to predict the thermal contact resistance between the GDL and a flat surface 

(representing the BPs rib). The obtained results largely depend on porosity and pressure. For 

the typical values of porosity and pressure used in this study, the TCR was ~ 0.8 ∙10�"
#�/�. The values used in this study derive from literature: 1.5 ∙ 10�" and  1.25 ∙10�"	
#�/� respectively for the GDL/BP and GDL/MPL thermal contact resistances. 

It is worth noting that the thermal properties of the components evolve with ageing as 

observed by Burheim et al. [134]. Those ageing effects are not considered in this study, but 

could be of great importance for advanced fuel cell degradation models. 

2. A 3D thermal model at the channel/rib scale 

In this section, a 3D thermal model is developed at the channel/rib scale in order to investigate 

the real temperature distribution in the cell, as well as the impact of the thermal properties of 

the components and interfaces on heat transfer.  

2.1. Geometry and hypothesis 

a) Geometry 

The reference modeled geometry is a 2 cm long channel of the fuel cell stack as presented in 

Fig.III.2. For symmetry reasons, the geometry is limited to ½ channel + ½ rib. A deformation 
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about 25% of the GDL under the rib is modeled to consider the heterogeneities in pressure 

due to the channel/rib structure.    

 

Figure III.2 : Reference channel/rib computational domain 

b) Hypotheses of the model 

The hypotheses of the model are the following:  

• Heat transfer in the porous layers is purely diffusive. In general, in porous media like 

GDL and MPL, heat is transferred by conduction and convection. The ratio of the two 

entities is given by the Péclet number. In this study, the Péclet number is sufficiently 

low (~10��) to consider that the convective contribution to heat transfer is negligible. 

So the main heat transfer mechanism in the MEA is conduction.  

• Single phase flows; 

• Laminar flows in the channels ; 

• Reactants are ideal gases; 

• No mass transport through the membrane; 

• The electrochemical reaction takes place at the interface between the catalyst layers 

and the membrane where a current density distribution is imposed. 

 

a: anode  

c: cathode 

BP: Bipolar Plate 

CL : Catalyst Layer 

CW: Cooling Water 

GDL : Gas Diffusion Layer 

MPL : Micro-Porous Layer 



86 

 

2.2. Physical model: conservation equations 

a) Continuity equation 

Three equations of continuity are solved respectively in the anode compartment (aGC-aGDL-

aMPL-aCL), cathode compartment (cGC-cGDL-cMPL-cCL) and cooling water channels 

(CW). The reference continuity equation is:  %&'%( + ∇ ∙ �&	*� = 	+, 
[III.2] 

where & and *  are respectively the density and the velocity vector of the fluid; ' is the 

porosity of the medium (the porosity is 1 in the channels: aGC, cGC and CW). The mass 

source +, is only located in the catalyst layers (aCL and cCL), where the electrochemical 

reactions take place. The equations of state for the fluids are: & = - ./	⁄ in the gas channels, 

and & = 1(2 = 976	45/
� for the water in the cooling channels. 

b)  Species conservation 

The different species in the system are: H2 and H2O at the anode compartment; O2, N2 and 

H2O at the cathode compartment. The global equation of species conservation is:  %&'6�%( + 7 ∙ �&6�*� = 	−8 ∙ 9: + +� [III.3] 

Where 6� is the mass fraction of the species i. One equation (i=H 2) is solved at the anode 

compartment and two equations ( i=O2 and i=H 2O) are solved at the cathode compartment. 

The remaining species (H2O for the anode compartment and N2 for the cathode compartment) 

are deduced from mass balance [III.2]. As for the mass balance, the species source +� is only 

located in the catalyst layers (aCL and cCL), where the electrochemical reactions takes place. 9: is the diffusion flux, which is calculated using the generalized Fick’s law of 

multicomponent gas diffusion:  

9: =	− ;&6� 	<=�> 	?8@> + 1A �@> − 6>�	8AB + =�C DEE
�

>FG H [III.4] 

Where =�> , @>, A, =�C and E are respectively the binary molecular diffusivities, the mole 

fraction of the species 4, the pressure, the thermal diffusivity and the temperature. In this 

model, the diffusion of species due to the thermal gradient is neglected, so the last term of the 

equation shown above is zero (=�C = 0). The molecular diffusivities =�> are temperature and 

pressure dependent following the empirical correlation reported in Appendix 1. 
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=�> = =�>�A, /� [III.5] 

In the porous media, the Bruggeman correction is considered in order to take into account the 

impact of porous and tortuous structures of the GDL and CL on effective molecular 

diffusivity: 

=�>J�� = =�> 	'K 

 

[III.6] 

c)  Momentum  

In the free flows domains (aGC – cGC – CW), the Navier-Stokes equations are solved:  

& L%*%( + �* ∙ 7�*M = 	−∇p + ∇ LO�7* + �7*�C� − 23 O�∇ ∙ *� ∙ PM + Q [III.7] 

Where O is the dynamic viscosity of the fluid and Q are the volume forces (gravity).   

RO�7* + �7*�C� − #�O�∇ ∙ *�PS accounts for the viscous stress in the fluid, with             

�7* + �7*�C�  the rate of stress tensor and  2 3T �∇ ∙ *� ∙ U the isotropic stress tensor. 

In the porous domains (GDLa – GDLc – MPLa – MPLc – CLa – CLc), the Brinkman 

equations are used:  &' L%*%( + �V ∙ 7�*' M = −7A + 7 L1' ?O�7*+ �7*�C� − 23O�7 ∙ *�PBM − ?O� + +,'# B*+ Q [III.8] 

Where � is the hydraulic permeability of the porous medium. 

d) Charge transport  

Ohm’s law is used for solving the electronic potential W: X = −Y ∙ ∇W 

The calculation of the current density distribution in the different components is used in order 

to predict the local Joule heating.  

e) Heat transport  

The global heat transfer equation solved is:  

&Z[ %E%( + &Z[* ∙ 8E = 8 ∙ ��	8E� + \] [III.9] 

 \] is the local heat sources in the cell, which are distributed depending on heat generation 

mechanisms.  
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f)  Local heat sources in the cell Qs 

The calculation of local heat sources in the cell is obtained from the electrochemical reaction 

heat of overvoltage. Assuming that the produced water is in vapor phase, the total reaction 

enthalpy is (at 80°C): ∆_`�` = ∆_`�`a = 242	4c/
defg. The total reaction enthalpy is the 

sum of electrical energy leaving the system and waste heat:  

∆_`�` 	 X2	h = �Ji + \`j [III.10]  

The local electric energy produced is: �Ji = k ∙ X		where X				is the current density 

distribution imposed at the interface between the catalyst layer and the membrane and k is the 

potential. So from the energy balance, the waste heat produced in the cell (heat of 

overvoltage) is the difference between the total energy and the electric energy produced: 

\`j = ?∆_`�`2	h − kB 	X				 [III.11]  

Moreover, the electrons and protons transport in the components create Joule heating 

source terms:  

\l = X#Yl [III.12]  

Because of these uncertainties in heat generation mechanisms presented in Chapter I, 

section 3.2, the model assumes that all the entropy and electrochemical activation heats are 

located at the cathode catalyst layer/ membrane interface. The impact of that uncertainty 

about heat source localization on the temperature distribution will be evaluated in section 

4.4.b. Standing to those heat generation mechanisms, the source terms used in this study for 

coupling the governing equations are: 

 

Domain mn m: op 

aCL +fg +fg = − X2h 
0 ∙ q∆_(d(2	h − kr 	X 

at the anode catalyst layer/membrane interface. 

cCL +sg + +fgs 
+sg = − X4h 

+fgs = X2h 

1 ∙ q∆_(d(2	h − kr 	X 
at the cathode catalyst layer/membrane interface 

Membrane 0 0 
X#Y, 
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MPLs 0 0 
X#Y�tu 

GDLs 0 0 
X#Yvwu 

BPs 0 0 
X#Yxt 

Table III.1: Source terms used in the transport equations 

g) Boundary conditions 

The boundary conditions for the model are set as follows: 

• Continuity at all internal boundaries; 

• No slip boundary conditions at the channels walls: all the boundary layers are 

computed; 

• Velocity, temperature and concentrations are defined at channels inlet (Figure III.3.a); 

• Pressure and convective flux boundary (no viscous stress) conditions are defined at 

channels outlet (Figure III.3.b); 

• The bipolar plate is set to electric ground on one side of the cell;  

• The cell operation current density is fixed at the membrane/cathode catalyst layer 

interface; 

• Thermal continuity across the cell, to consider the repeatability of the cells in the stack 

(Figure III.3.c); 

• In-plane symmetry (Figure III.3.d); 

Figure III.3 : (a) Channels inlets - (b) Channels outlets - (c) Continuity and (d) Symmetry 

boundary conditions 

 

a b c d 
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2.3. Input parameters and physical properties of the components 

The current density distribution at the interface between the membrane and the cathode 

catalyst layer is presented in Fig.III.4. It corresponds to a mean current density of 0.8 A/cm².  

The current density is higher under the channel due to the higher diffusion of reactive gases in 

that zone. This type of current density profile was obtained from an electrochemical model 

developed at CEA, which is beyond the scope of this study.  

 

Figure III.4 : Current density distribution at the membrane/cathode catalyst layer interface 

In the following table, the values of the physical properties of the cell components used in the 

study are presented. They are issued either from the literature review, or from local “ex-situ”  

measurements performed at the CEA as presented in Section 1. 

Parameter BP GDL (Channel/rib variation) MPL CL Membrane 

Thickness 

[mm] 
2 ∙ 0.1 0.17 – 0.23 0.05 

aCL: 0.01 

cCL: 0.015 

0.025 

Thermal 

conductivity 

λ [W/m/K]  

16.1 
In-plane: 3.7 – 5.4 

Through-plane: 0.2 – 0.3 
0.4 0.15 

 

 

    0.186 

Electric 

conductivity 

σ [S/m] 

1.32 ∙ 10y In-plane: 3460 – 4862 

Through-plane: 64 – 184 
50 1000 

 

9.825 

Porosity z  0.69 − 0.77 0.35 0.47  

Permeability 

(m²) 
 

Kozeny-Carman correlation: 

1 ∙ '��1 − '�# 

With 1 = 3 ∙ 10�G"	
# 
2 ∙ 10�G� 10�G# 

 

Tortuosity  1.165 1.7 1.3  

Table II.2: Physical properties of the cell components 
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The thermal contact resistances considered are:  

• Thermal contact resistance GDL/BP: 1.5 ∙ 10�"	
#�/� 

• Thermal contact resistance GDL/MPL: 1.25 ∙ 10�"	
#�/� 

The channel/rib variations of the GDL thermal conductivities, used to consider the 

inhomogeneous compression, are presented in Fig.III.5. This profile is analogous to the 

geometrical deformation 2a�{� which varies from 0 under the channel to 25% under the rib.   

 

Figure III.5 : Distribution of the in-plane and thr ough-plane GDL thermal conductivities used to 

take into account the inhomogeneous compression  

The effect of the GDL deformation 2a�{� on the porosity 'vwu is taken into account 

considering the correlation [135]:   

'vwu = '| + 2a1 + 2a  
[III.13]  

In parallel, the hydraulic permeability used in the Brinkman equation is calculated using the 

Kozeny-Carman correlation: 

4 = 1 ∙ '��1 − '�# [III.14]  

The other input parameters and properties of the model are summarized in Table III.3. 

Description Value 

Inlet temperature of the reactive gases 80°1 

Inlet temperature of the cooling water 80°1 

Inlet velocity anode reactive gases 3.96 m/s 

Inlet velocity cathode reactive gases 7.85 m/s 

Inlet mass fraction H2  - Anode 0.3 

Inlet mass fraction O2 
  - Cathode 0.2 

Inlet mass fraction H2O  - Cathode 0.15 

Inlet velocity cooling water 0.25 m/s 

Table III.3: Input parameters of the model 
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2.4.  Numerical procedure 

The model is implemented in the commercial software Comsol Multiphysics 4.3b and solved 

with Finite Elements Method. The mesh (see Fig.III.6) consists of triangular elements in the 

fluids and mapped elements in the solids, swept along the channel. The resulting 3D mesh is 

composed of 262 620	elements (151 200 prism elements and 111420 hexahedral elements).  

In order to reach a maximal relative error of 	10�", the calculation time is about 28 minutes 

on an Intel Xeon  2,67 GHz  - RAM 32 GB. For the computation, direct methods are used with 

a PARDISO solver.  

 

Figure III.6 : Swept mesh used for the computation 

 

2.5.  Results and discussion 

a) Temperature distribution 

The temperature distribution in the cell at a mean current density of 0.8 A/cm² is presented in 

Fig.III.7 using a 3D plot and a 1D plot at two different cut lines at the middle of the cell 

length, under the channel and under the rib. Firstly, it is observed that the temperature is 

higher in the cathode catalyst layer (~83.5°C) due to the exothermic oxygen reduction 

reaction, and lower in the bipolar plate (~79°C). The temperature difference across the cell is 

about 4.5°C under the channel and reduced to 3°C under the rib.  Those results are in good 

agreement with the  literature review results presented in the first chapter. No significant 

evolution of the temperature distribution is observed along the channel length, even if there is 

a global temperature rise from the inlet to the outlet of the cooling water. 
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Figure III.7 : 3D Temperature distribution in the cell and 1D temperature distribution at the 

indicated cut lines 

The temperature drop is higher in the GDLs (~ 1.5°C) and at the interfaces between the 

gas diffusion layer and the adjacent components. Typically, temperature drops of ~ 0.65 and ~ 

0.4 °C are observed respectively at the GDL/BP and GDL/MPL interfaces. So the 

consideration of the thermal contact resistances is relevant for the temperature distribution 

prediction. In the other components, there is a lower temperature drop: ~ 0.4°C in the MPL, ~ 

0.25°C in the membrane and ~ 0.1°C in the CLs.  

The results also highlight the fact that considering the channel/rib heterogeneities is of 

paramount importance in modeling heat transfer in the cell: under the channel, there is a high 

heat production due to the high current density. Simultaneously, the heat flux to the channels 

flow is low due to the low heat capacity of the reactive gases. Under the ribs, the MEA is in 

direct contact with the cooling water which has a high heat capacity and the through-plane 

thermal conductivity is higher due to the elevated compression of the GDL. The combination 

of all these phenomena induces higher temperature variations between the zones under the 

channel and the ones under the rib. Moreover, the spatial variation of the temperature 

difference across the cell can induce heat pipe effect when there is phase change in the cell 

(for higher current densities) [68].  

b) Impact of reactive gases diffusion on heat transport  

Fig.III.8 presents the evolution of the mass fractions of O2 and H2 distributions respectively at 

the cathode and anode compartments. These mass fractions distribution highlight the 

aGDL cGDL 

cM
P

L
 

aM
P

L
 

Membrane 
aCL cCL 
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significant impact of the channel-rib design. As expected, lower oxygen and hydrogen gas 

concentration are observed under the rib because of the diffusion limitation under the rib. 

 

Figure III.8 :  3D H2 and O2 mass fractions evolution respectively at the anode and cathode 

compartments 

A similar computation assuming constant physical properties for the reactive gases (no 

species source term in the active layers) showed quite the same results presented in Fig.III.8. 

Thus, it can be concluded that assuming constant physical properties for the reactive gases is a 

good approximation to save computational time in thermal modeling. However, it is worth 

noting that the consideration of water transport can be useful for a fuel cell operating in wet 

conditions, in which there could be a high amount of water condensation, especially under the 

ribs. As indicated in Fig.III.8, under the ribs there is not only a lower concentration of 

reactants species (and so a higher concentration of water), but also a lower hydraulic 

permeability of the GDL due to the higher compression. Additionally, the direct contact with 

the cooling water induces a cooler rib surface and so lower vapor saturation pressures in that 

zone. Before going to a deep analysis of temperature distributions, a candid discussion about 

the limitations and the dimensionality of the thermal model is needed.  

 

3. From 3D to Pseudo-3D modeling 

3.1.  Limitations of the 3D channel/rib model 

The 3D channel/rib model presented above is a kind of reference model, largely used in 

literature [71-73] thanks to the main advantages of full description of the channel/rib 

geometry and the capture of all the heterogeneities over the 3 dimensions. However, its main 

limitations are: 

� The computational cost: the simulated geometry represents only ~1/1000 of the active 

area of the standard 220 cm² cell used in this study, despite of the computational time 
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of 28 minutes. Moreover, the boundary layers need to be accurately meshed in order to 

capture all the fluid/solid interactions. 

� The local heat source: in large-area fuel cells, current density can show high variations 

over the active area due to the evolution of the reactive gases concentration and the 

local water content. As a consequence, there can be high variations of the heat source, 

which greatly impact the temperature distribution.  

� The coolant flow field: the heterogeneities of the cooling flow field design can induce 

high flow rate heterogeneities in the cell, and consequently an uneven temperature 

distribution over the cell surface.  

In the context of this study, which focuses on the analyses of the local heterogeneities and 

their correlation with degradations, full cell scale models are needed. For the development of 

a thermal model at the cell scale, the current density distribution can be either measured with 

the printed circuit board inserted in the stack (Chapter 3) or calculated by using a physic-

based model (see Chapter 4). For upscaling the model while maintaining a feasible 

computational cost, the dimensionality used to describe the physics could be readjusted with 

appropriate pseudo-dimensional methods. 

 

3.2.  Multidimensionality effect in physic-based modeling of fuel cells 

For a complete study of heat and water management, cell-scale models which take into 

account at the same time all the cell components and the channel/rib heterogeneities are 

needed. The best tradeoff between modeling scale, precision and computational time must be 

accurately studied. Indeed, for large-scale fuel cells, full 3D simulations require high 

computational resources and appropriate fluid dynamics solvers. Raj et al. [136] used 

concentration differences calculations to analyze the effect of multidimensionality in 

PEMFCs. From a physical point of view, they observed that differences between full 3D and 

2D models mainly appear at high current densities (> 1	�/Z
²�. From a computational point 

of view, they concluded that 3D models are almost ten times slower than 2D models and 

require three times more memory. In the same direction, Kim et al. [137] demonstrated that 

solving the transport equations in the 2D cross-section of the MEA with 1D integration along 

the channels is optimal in terms of both efficiency and accuracy for straight channels. 

 



96 

 

3.3.  Pseudo-3D concept 

Actually, the thickness of the cell is very small compared to its length and width. The aspect 

ratio of the cell presented above: 12ee	(�XZ4�2�� 12ee	6X�(�T 	� 		0.012		is sufficiently low to 

consider each component as a plane layer. It can thus be appropriate to model the heat 

transport using a pseudo-3D approach, considering each component of the cell as a plane 

layer which exchanges heat out of plane with the adjacent components. The concept of the 

pseudo-3D approach, illustrated in Fig.III.9, is to consider each component of the cell as a 

plane layer which exchange heat out of plane with the adjacent components.  

 

Figure III.9 : Temperature distribution (K) at the channel/rib scale from 3D to pseudo-3D 

Applied at the cell scale, the pseudo-3D model can be validated experimentally with the 

printed circuit board Current Scan Lin S++ device [42] which, inserted between two 

monopolar plates of a 30 cells stack, is used to map the temperature distribution in the cell.  

Furthermore, the pseudo-3D concept developed at the cell scale allows predicting the in-plane 

temperature distribution in all the components of the cell with a low computation time, 

compared to full 3D model, while keeping a good precision. The thermal validation of the 

model is a first step of a multiphysics full predictive model which could take into account the 

species transport, the water content, the phase change effects, and the electrochemical 

behavior of the cell.  
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4. Development of a pseudo-3D model to investigate local 
temperature at the cell scale 

 

In this section a pseudo-3D thermo-fluidic cell model is developed to investigate the 

temperature distribution in the different components of the large area (220 cm2) Proton 

Exchange Membrane Fuel Cell. The main advantage of the model is the consideration of the 

real bipolar plate design and the detailed description of the studied geometrical domain while 

maintaining an acceptable computational time. The model is validated experimentally against 

local data obtained from a printed circuit board  which, inserted between two monopolar 

plates of a stack, is used to map the current and temperature distributions. In this study, 

detailed heat transport equations are solved with thermal coupling by convection and 

conduction in order to predict the 2D distribution of the temperature in each cell component, 

from the membrane to the bipolar plate. The cooling water and gas flows in the bipolar plates 

are solved using a fluid dynamics model which is coupled to the thermal model. The current 

density distribution is implemented by using the S++ measurement device results. The model 

is implemented in the commercial software COMSOL Multiphysics.  

 

4.1.  Model development 

a) Thermal model of the cell 

The studied stack consists of 30 cells with an active area of 220 cm2, connected in series. The 

configuration of the stack is shown in Fig.III.10 with a reduced number of cells for simplicity. 

The inlet and outlet manifolds for the reactant gases and cooling water are also indicated in 

Fig.III.10. The printed circuit board inserted between the 15th and the 16th cells allows 

measuring the in-plane current density distribution and the temperature in different operating 

conditions.  
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Figure III.10 : Configuration of the stack with the sensor plate 

As presented in Fig.III.11.a, a single cell consists (Reference cell) of the Membrane and 

Catalyst Layers (CL) sandwiched between two microporous layers (MPL), two gas diffusion 

layers (GDL) and two bipolar plates (BP).  Fig.III.11.b shows the different components and 

the configuration of the cell with the sensor plate (Validation cell). One reference cell consists 

of 9 solid and 3 fluid components. The S++ sensor plate, sandwiched between two monopolar 

plates, is introduced inside the stack replacing one MEA. As every plate contains a cooling 

circuit, the S++ temperature measurement is influenced by one additional cooling circuit. All 

of these additional components (including the S++ measurement device) need to be included 

in the cell description for the model’s validation before going to the reference cell (Figure 

III.11.a). Thus, in this study, two cell configurations will be studied: the first one is the 

validation cell which includes the S++ measurement device for the model validation against 

experimental data. The second one is the reference cell, which is used for the cell temperature 

analysis, is the classical configuration without the measurement device.  

 

Figure III.11 : Reference cell (a) and validation cell with the sensor plate (b)  

a b 
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The governing equations of the model are derived with the following assumptions:  

• Constant physical properties of the reactive gases.  

• Uniform cell voltage. 

 With this pseudo-3D approach, the variables solved are the temperatures averaged over 

the thicknesses of the components, which will be called in-plane temperature and noted	/�. By 

coupling the in-plane temperatures through conduction and/or convection heat fluxes across 

the interfaces of the different components, it is possible to compute their 2D (in-plane) 

distribution in each component. So the in-plane temperature of each component from the 

MEA to the cooling water is calculated from the balance between local heat generation 

induced by the electrochemical reactions, the ohmic resistances and the local heat removal 

rate by cooling water and gases flows. The concept of the model, from the 3D geometry to the 

pseudo-3D approximation is presented below at the channel scale (Figure 9) and generalized 

to the cell.  

To obtain the pseudo-3D formulation, the 3D heat balance equation in the component i is 

integrated along the thickness of each component. Assuming that the system is stationary, the 

3D equation reduces to: 

�&Z[�� 	*: ∙ 8E� = D ∙ ��� ∙ DE�� + \� [III.15]  

The integration of the equation along the cell thickness leads to: 

�8 ∙ �� ∙ 8E����J
|

+�\��� = ��&Z[�� 	*: ∙ 8�E����J
|

J
|

 [III.16]  

The development of the equation considering Cartesian coordinates leads to: 

�q�� 	%#E�%�# + �� 	%#E�%{# + �� 	%#E�%�# r�� +
J
|

�\��� = ��&Z[�� ?��� %E�%� + ��� %E�%{ + ��� %E�%� B ��
J
|

J
|

 
[III.17]  

Where e is the thickness of the components i of the cell. Given that the thermal conductivities 

of the components do not vary along their thicknesses, one gets:  

	�� %#%�# ��E���J
|

� + �� %#%{# ��E���J
|

� + �� L%E�%� M|
J + \� ∙ 2 

= �&Z[�� ;���� %E�%� 	�� +J
|

���� %E�%{ 	�� + ���� %E�%� 	��J
|

J
|

H 
[III.18]  

Then, the through-plane heat flux is discretized:  
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	�� ∂#%�# �12 	�E�dzJ
|

� + �� ∂#%{# �12 	�E�dzJ
|

� + 12 	�� L%E�%� �J − %E�%� �|M + \� 

= 12 	�&Z[�� ;���� %E�%� 	�� +J
|

���� %E�%{ 	�� + ���� %E�%� 	��J
|

J
|

H 
[III.19]  

Considering that:  

12 �� %E�%� 	�� =J
|

12 ��	��		 12 �%E�%� 	��J
|

J
|

 
[III.20]  

And introducing the in-plane temperature /�, the in-plane velocity V:  and the through-plane 

local heat-fluxes at the component interfaces cC� and 	cC�: 

/� = 12 �E�dzJ
|

			 ; 		V: = 12 ��:dzJ
|

				 ; 			cC� =	12 ��� %E�%� �J ; 							 	cC� = −	12 ��� %E�%� �|	 [III.21]  

2D heat transfer equations are obtained for the in-plane temperature of each component of the 

cell, assuming that the electrochemical heat source \� is uniform along the thickness: 

�&Z[��V: ∙ ∇��/� = �:�� ∙ ∇��#/� + \� + �cC�  [III.22]  

To solve this problem, it is necessary to determine the through-plane heat fluxes at all the 

interfaces, the local heat source in each component and the in-plane fluid velocity in the three 

fluid circuits. 

b) Analytical model for through-plane heat flux 9�:  

The heat fluxes, which are related to the local temperatures E� ,  need to be described 

depending on the in-plane temperatures /�, via the introduction of effective transfer 

coefficients. Those effective transfer coefficients can also be seen as equivalent thermal 

resistances between the layers. There are two typologies of interfaces (see Fig.III.12) in the 

system: solid/solid (ex: bipolar plate/GDL) and solid/fluid (ex: bipolar plate/cooling water).  

Heat conduction fluxes between the solid interfaces are estimated considering the half 

thickness of each solid component. Their derivation is given in Appendix 2. For solid/solid 

interfaces (see for example bipolar plate/GDL, cG,�), the heat flux can be modeled as: 

cG,� = 12G ∙ 	 12�2��� + /1.G/� + 2G2�G� ∙ 1G,� ∙
�/� − /G� [III.23]  

where /1.G/� is the thermal contact resistance between the two components. For solid/fluid 

interfaces (ex: bipolar plate/cooling water, cG,G#), it can be written: 
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cG,G# =	 12G 	 ∙ 11�G# + 2G2�G�
∙ 1G,G# ∙ �/G# − /G� [III.24]  

 

Figure III.12 : (a) Illustration of 3D geometry at the channel scale with the heat fluxes (�) -      

(b) Corresponding pseudo-3D concept with thermal resistances  

where �G#	is the convective heat transfer coefficient in the cooling water. Its calculation can 

be obtained via the Nusselt numbers which only depends on the geometry for laminar flows. 

The Nusselt numbers �� in the channels will be calculated in the part dedicated to the fluid 

dynamics model. Note that 1�,l	are correction factors used to consider the change in heat 

exchange surface from the real 3D geometry to the 2D approximation. Indeed, as illustrated in 

Figure III.12, all the components of the cell are plane layers except the bipolar plates, which 

are stamped stainless sheets. Consequently, from the real geometry of the bipolar plates to the 

pseudo-3D geometrical model which assumes that the bipolar plate is a completely plane 

layer, there is a change in contact area between the bipolar plate and the adjacent components. 
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In order to consider the real exchange areas, the parameters Cij are used.  The Cij parameters 

are defined as the ratio between the real exchange areas and the approximated exchange areas 

in the pseudo-3D approach. The corresponding values of Cij are highlighted in Fig.III.13.    

 

Figure III. 13 : Corresponding values of the heat fluxes correction factors 

Thus, the thermal fluxes between the different components of the cell are evaluated by 

introducing effective transport coefficients in order to relate these fluxes to the mean 

temperatures averaged along the thickness of the components.  

c) Heat sources distribution 

Assuming that the produced water is in vapor phase, the total reaction enthalpy at 80°C is 

∆_`�` = 242	4c/
defg. It can be decomposed into produced electrical energy and heat 

source. The local produced electrical power �� Ji 	 is estimated by considering the local current 

density distribution X��, {�	 and the cell potential	k J¡¡, which are obtained from the 

experimental measurements: 

�Ji 	��, {� = k J¡¡	X��, {� [III.25]  

X��, {� can be obtained from Sensor plate measurement data. The heat of overvoltage is: 

\�`j��, {� = ?∆_`�`2	h − k J¡¡B 	X��, {� [III.26]  

In the components other than the catalyst layers, the heat sources density distribution (W/m3) 

are exclusively the Joule effect due to the electric resistance:  

\� ���, {� = X��, {�#Y�  
[III.27]  

and the energy balance is:  ∆_`�`2	h X��, {� = �Ji 	��, {� +< \¢� ��, {�� + \�£u��, {� [III.28]  

 

1G,# = e#eG = 1.6 

1G,� = e�eG = 0.6 

1#,� = e"eG = 1.4 
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where \�£u is the heat generated in the catalyst layer by the exothermic electrochemical 

reaction. 

For sake of simplicity, in this study, it is assumed that all the irreversible reactions and 

entropic heat sources are located in the cathode CL. A parametric study of the heat repartition 

between the aCL and the cCL has been realized to estimate the impact of the uncertainty of 

heat sources localization on the temperature distribution. The results show that heat source 

repartition between the catalyst layers has a negligible effect on the MEA temperature and the 

deviation is about 0.05°C if 25% of the heat is generated in the aCL. So all the remaining heat 

source can be introduced in the cathode catalyst layer as follows:   

\� £u��, {� = 12 £u 	¤?∆_`�`2 ∙ h − k J¡¡B 	X��, {� − � X��, {�#Yl 	2l¥ + X��, {�#Y£u  [III.29]  

So from the current density distribution which is obtained from experimentation, the local 

heat production inside each component of the cell can be deduced.  

The geometric application of the pseudo-3D model at the channel/rib scale (for simplicity) 

is presented below in Fig.III.14 with the geometric indication of out of plane heat flux 

coupling at the interfaces of the subsystems. The detailed through-plane heat fluxes cC�  of the 

different cell components are given in Appendix 2.  
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Figure III.14 : Out of plane heat flux coupling at the interfaces of the subsystems 

The last physical variable needed to solve the heat transfer equations is the in-plane fluid 

velocity in the three fluid circuits because the local in-plane temperature is determined by the 

Heat transfer in Fluids:  

Membrane 

Anode CL Cathode CL 

Cathode BP Anode BP 

   Cathode MPL 

Cathode GDL Anode GDL 

Anode MPL 

Cooling Water 

Air  H2 

Heat transfer in Solids:    

J4 

J 3 

J 2 

J 1 

J 5 

J 6 

J 7 

J 8 

J 15 

J 11 J 10 J 9 J 14 J 13 J 12 

�§¨©�ª« ¬�¬­ = �:�� ∙ D��®�: +o: + ¯9�:  

�§¨©�ª« ¬�:¬­ +	�§¨©�:V: ∙ 8���: = �:�� ∙ 8��®�: +o: + ¯9�:  



105 

 

balance between the local heat production and its removal, which is strongly related to the in 

plane velocity of the different fluids.  

d) Fluid dynamics model of the cell 

To study the heat transfer in the cell with an acceptable computation time, the simplest 

approach is to consider only the mean flow velocity in the channels. Indeed, the description of 

the temperature and velocity boundary layers inside the channels is not needed for the thermal 

balance since effective transfer coefficients have been introduced. The mass flow rate in the 

channel section, coupled with the use of effective convective transfer coefficient, �� is 

sufficient to calculate the convective heat transfer considering the pseudo-3D equations of 

heat transport. Using such an approach, it is not necessary to mesh finely the boundary layer 

and compute the shear stress tensor in order to determine the mean flow velocity in the 

channels. The fluid dynamics equations are reduced to a Darcy-Weisbach like approach. As a 

consequence, computation time can be saved without affecting the accuracy of the results. A 

comparison between the results obtained using the Darcy-Weisbach and the Navier-Stokes 

approaches is presented in section 4.3.b for comparison. 

The design of the two metallic plates is a parallel serpentine flow field technology with a 

different number of channels and passes for both plates. The general pattern of the gas circuit 

on a piece of the cell is presented in Fig.III.15. It consists of non-connected parallel serpentine 

channels for the two gas circuits. Thus the mean flow velocities in the gas channels will be 

easily deduced from the continuity equation. The cooling circuit results from the remaining 

space between both metal sheets and is a network of parallel straight channels in some zones 

and a network of chaotic connected channels in the other zones, where reactive gas channels 

cross each other. The local mean flow velocity in the different channels of the cooling circuit 

will be the result of the local pressure drops. 
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Figure III.15 : Hydrogen (a), cooling water (b) and air (c) channels respectively on a piece of the 

bipolar plate.  Identification of the periodic cross flow (b) of the cooling water and illustration of 

the chaotic network in 3D (d) 

Due to the fact that the channel section varies in the chaotic zones, specific formulations 

have to be developed for the 2D approach. In this approach, no-slip boundary conditions are 

considered at the walls and the mass and momentum conservation equations assimilate the 

channels as “porous” media. A permeability coefficient �G	which accounts for the fluid/wall 

friction and a passability coefficient �#	which accounts for the singular pressure drops due to 

section and direction variations in cross flow zones. The resulting continuity and momentum 

equations solved are: 

∇ ∙ V° = 0	 [III.30]  

0 = −∇A − 1�G OV° − 1�# ‖V°‖	V°			 [III.31]  

where V° is the mean velocity (bulk velocity) inside the channels, which will be called V in the 

following for sake of simplicity.  

 

� Distributed pressure drop: 1/K1 

The permeability coefficient �G accounts for the distributed pressure drop due to the friction 

between the fluid and the wall. It is estimated using the Reynolds number .2, the hydraulic 

diameter =j and the Fanning friction factor in the channel ²³. Thus, �G can be calculated from 

the Darcy-Brinkman equation: 
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∆Á = 4 ∙ ²³ ∙ &µ#2 ∙ 1=j = 1�G ∙ O ∙ V 
[III.32]  

The resulting permeability coefficient is: 

�G = =j#2 ∙ �²³ ∙ .2� [III.33]  

For laminar flows, ²³ ∙ .2 is only geometry dependent and its value is given in the next 

section (4.2). 

� Local/singular pressure drop: 1/K2 

The passability coefficient �# is the singular pressure drop factor in the complex zones where 

reactive gas channels cross each-other. In that chaotic flow network, the geometry is almost 

periodic as presented in figure II.4. In one basic element of the periodic chaotic network 

represented in figure III.16, the geometric configuration imposes the following obstacles to 

the fluid flow: 1 growth in hydraulic section, 3 shrinkages in hydraulic section, 2 changes in 

direction and 2 cross-flows. The singular pressure drop factor is thus estimated assuming that 

in one basic element of the periodic chaotic network we have the following pressure drops:   

 

•  1 increase in hydraulic section:  1 ∙ �1 − +# +G⁄ �# ∙ �& 2´⁄ � 
•  3 decreases in hydraulic section:  3 ∙ 0.5 ∙ �1 − +# +G⁄ � ∙ �& 2´�⁄  

•  2 changes in direction:   2 ∙ 1.13 ∙ & 2´⁄  

•  2 cross-flows: 2 ∙ & 2´⁄  

 

The passability coefficient �# is then expressed as: 

1�# = ¤1 ∙ ?1 − +#+GB
# + 3 ∙ 0.5 ∙ ?1 − +#+GB + 2 ∙ 1.13 + 2¥ ∙ &2´ = 5.26 ∙ &2´ [III.34]  

where L is the length of the periodic element. In the reference bipolar plate configuration �#  

is about	2 ∙ 10y	45/
". This value of the singular pressure drop coefficient is in good 

agreement with those reported in [138-140].   

 

 

 

Figure III.16 : Simulation of velocity field in one basic element of 
the periodic chaotic network using the Navier-Stokes equations 
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4.2.  Input data and solution procedure 

a) Friction factor and Nusselt number in the channels 

The flows in the gas channels and in the cooling water are laminar. In order to optimize the 

diffusion of the reactive gases in the GDL, the gas channels section is trapezoidal. The 

resulting flow in the cooling water, between the anode and cathode plates, has a hexagonal 

section in the parallel zones and a trapezoidal section in the cross-flow zones. 

Sadasivam et al. [141] used finite difference method to solve the Navier-Stokes equations 

for laminar flows and determine the friction factor and Nusselt number of these channels 

typology for a wide range of aspect ratio of the duct and different trapezoidal angles with 

good precisions. Venter et al. [142] used the finite element method to solve the appropriate 

momentum and energy equations in order to predict the same physical parameters. They 

found �²³ ∙ .2	, ��� � �14	, 4.3�	 and �²³ ∙ .2	, ��� � �14.68	, 3.5� respectively for 

hexagonal and trapezoidal geometries. These results are in a good agreement with those 

proposed by Sadasivam et al. [141] and Damean et al. [143]. So, they will be used to 

determine the appropriate friction factor and Nusselt number in this study. However, those 

results are effective for straight channels, where the flow is absolutely laminar.  

In the chaotic zones, the geometry induces high perturbations of the hydrodynamic and 

thermic boundary layers which enhances mixing and thus promotes higher convective heat 

transfer. In particular, the geometry configuration in these zones (Fig.III.15.b) can be 

considered a C-shaped geometry, as initially introduced by Liu et al. [138]. So it is necessary 

to take into account the intensification of convective heat transfer due to the chaoticity of the 

flow. Lasbet et al. [139-140] used a finite volume method on the commercial software Fluent 

to solve the Navier-Stokes and energy equations in order to evaluate the thermal performances 

of mini-channels with a uniform flux condition on the closed surface of the channel for a C-

shaped geometry. For a Reynolds number close to 200, they found a Nusselt number ratio of ~	4.5 between the chaotic and the regular geometries. Given that the Reynolds number in this 

study is in the same order of magnitude and that those results are in a good agreement with 

those presented by C. Chagny-Regardin [144] for a similar type of chaotic geometry, the ratio 

of 4.5 is used in this study. According to all the references cited above, the corresponding 

parameters for this study are given in Table III.5. 
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Channel section Friction factor 	¶Q ∙ ·ª Singular pressure 

drop 1/K2 

Nusselt number ̧ * (uniform 

wall heat flux condition) 

Trapezoidal 14.68 0 3.5 

Hexagonal 14 0 4.3 

Chaotic geometry 14 or 14.68 2 ∙ 10y 4.5 ∙ 3.5 = 15.75 

Table III.5: Fluid dynamics parameters for the study 

b) Physical properties of the components 

The thermal model presented above is implemented at the cell scale, including the sensor 

plate for model validation because its presence is thermally invasive. Indeed, the S++ sensor 

plate needs to be sandwiched between two monopolar plates and so induces the use of one 

additional plate to separate two cells and one additional cooling flow. All of these additional 

components need to be included in the model for its validation before going to the 

conventional configuration for the thermal study. The corresponding physical properties, 

presented in Table III.6, are issued from measurements and literature. 

The inhomogeneous compression of GDL between the area under the channel and the one 

under the rib has a non-negligible impact on temperature distribution as illustrated with the 

3D channel/rib model. Distinct values of the corresponding thickness and conductivities are 

considered as illustrated in Table III.6. 

Parameter BP GDL MPL CL Membrane S++ 

Thickness 

[mm] 
2 ∙ 0.1 

Under channel: 0.23 

Under rib: 0.17 
0.05 

aCL: 0.01 

cCL: 0.015 
0.025 3 

Thermal 

conductivity 

λ [W/m/K]  
16.1 

In-plane 

Under channel: 5.4 

Under rib: 3.7 
0.4 0.15 0.186 3 

Through-plane 

Under channel: 0.2 

Under rib: 0.3 

Electric 

conductivity 

σ [S/m] 

1.32 ∙ 10y 
Under channel: 64 

Under rib: 184 
50 1000 9.825 800 

Table III.6: Physical properties of the cell components used in the study 
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c) Numerical procedure 

The main numerical guidelines of the pseudo-3D thermal model are: 

� The in-plane heat transfer is solved numerically through a 2D numerical model; 

� The through-plane heat transfer is solved analytically with a flux continuity conditions 

at the interfaces between the components: 1D analytical model; 

� Some correction factors are introduced to take into account the real geometry of the 

bipolar plate, which is considered a plane layer;  

� The fluid dynamics model considers plug flows in the bipolar plates and the “bulk 

temperature” of the flow is considered for thermal coupling. 

As illustrated in Fig. III.14, the global system computed in this simulation for the model 

validation consists of 12 equations of heat transfer in solids, 4 equations of heat transfer in 

fluids, with thermal coupling through conductive and convective heat fluxes at the interfaces. 

The fluid velocities are calculated in the gases and water cooling channels. For sake of 

simplicity, an electrochemical model of the cell is not proposed. The current density 

distributions are directly measured by the S++ sensor plate and the cell potential is recorded. 

The model is implemented in the commercial software Comsol Multiphysics 4.3b and solved 

with Finite Elements Method. The mesh (see Fig.III.17) is about 3 ∙ 10¹	 triangular shell 

elements and to obtain a relative error of 	10�", the calculation time is about 6 hours on an 

Intel Xeon  2,67 GHz  - RAM 32 GB. For the computation, direct methods are used with a 

PARDISO solver for fluid dynamics and MUMPS for heat transfer.  

 

Figure III.17 : Zoom on the 2D shell mesh used for the computation 

The results presented in the next section and the experimental validation were obtained 

for a total current of 110 A (mean current density: 0.5	�/Z
#�, corresponding to an average 
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cell voltage of 0.7 V at the conditions summarized in Table III.7. The inlet temperature of the 

cooling water, which is a boundary condition of the model, is fixed to 77°C. The 

corresponding flow rate (inlet boundary condition) is 20		e/�/Z2ee. 
 

Experimental parameters H2 Air 

Inlet temperature [°C] 80 80 

Inlet relative humidity [%] 50 50 

Inlet pressure [bar] 1,5 1,5 

Stoichiometry 1,5 2 

Table IVI.7: Inlet conditions of the reactant gases 

4.3.  Model validation 

a) Local heat source 

Figure III.18 shows the distribution of the measured current density and the corresponding 

local heat produced in the cathode catalyst layer. This local heat source is obtained through 

Eq. [III.29] based on the local current measured by the S++ Sensor Plate and the cell 

potential. 

 

Figure III.18 : Current density and corresponding heat power density in the cell 
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The current density distribution and thus the heat source are higher close to the air outlet, 

because of the inlet conditions of the reactant gases and the GDL behavior. Indeed, the 

relative humidity at the air inlet in the reference conditions presented above is not sufficient to 

fully hydrate the membrane. As a consequence, current densities and corresponding heat 

sources remain rather small at the inlet part of the cell (~	3500	�/
#�. From the inlet to the 

outlet of the air flow, the progressive production of water because of the electrochemical 

reaction increases the water content of the membrane, and so increases its proton 

conductivity.  This phenomenon induces an increase of the current density (~	5500	�/
#� 
and the corresponding heat sources at the outlet because of irreversible and entropic losses. 

It is also possible to observe local variations and oscillations of current density along the 

cell surface. This is due to the heterogeneities of the bipolar plates welding zones, which 

represent preferential paths for current.  

b) Pressure distribution in the bipolar plate channels 

Figure III.19 shows the pressure evolution in the anode, cathode and cooling water channels. 

For the reactive gases, a regular pressure drop and consequently a constant velocity is 

obtained in the channels. This is coherent with the non-connected parallel serpentine structure 

of the bipolar plates and the non-resolution of the species transport. This approximation is 

justified by the little impact of the concentration change on heat transport.  

 

Figure III.19 : Pressure distribution (Pa) in the anode (left), cathode (middle) and cooling water 

(right) channels 

For the cooling water, there are high pressure heterogeneities due to the complex 

geometry and the disposition of the channels as presented in Fig.III.15. Indeed, the cross flow 

zones which are heterogeneously distributed in the channels induce high singular pressure 

drops and so high velocity heterogeneities in the cooling flow. Nevertheless, the obtained 

symmetry of the pressure distribution is coherent with the geometry. 
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The fluid dynamic model is validated globally through a comparison of experimental and 

simulated overall pressure drop in the channels. In particular, for the cooling water which is 

the most complex flow, the experimental and simulated overall pressure drops are 

respectively 30 and 27 mbar. The small difference between these two values could be due to 

the fact that the pressure drop in the manifolds is not taken into account in the model. 

Regarding the local validation, an experimental investigation of the local velocity is 

impossible because of the complex geometry of the flow field. Nevertheless, a local validation 

through a comparison with a full 3D Navier-Stokes model used for the design of the cell has 

been performed. The reference 3D Navier-Stokes model considers boundary layers and 

friction/wall interaction and is computed using Finite Volume Method. The comparison of the 

results obtained from the Darcy-Weisbach and the Navier-Stokes approaches at a reference 

cut line (see Fig.III.20) shows that the Darcy-Weisbach approach is able to capture the 

velocity distribution in the different channels of the cooling circuit. 

 

Figure III.20 : Comparison of the local velocities at the indicated cut line: 2D Darcy-Weisbach vs 

3D Navier-Stokes model 

In conclusion, the Darcy-Brinkman approach represents definitely a good method to 

resolve the compromise between the calculation time and the precision, especially in the cross 
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flow points. With the equivalent friction factors and Nusselt numbers in the channels it is no 

more necessary to compute the boundary layer gradients. 

c) Thermal model validation 

The thermal model including the Sensor plate is validated globally and locally. For the global 

validation, a comparison is made between the measured and simulated temperatures of the 

cooling water at the inlet and outlet of the cell. For an outlet temperature of the cooling water 

fixed at 353 K, the experimental and computed inlet temperatures are respectively 350 and 

349.9 K.  From these values, it can be stated that the model accurately predicts the global 

change in temperature of the cooling water from the inlet to the outlet of the stack.  

For the local validation, a comparison between the measured and computed in-plane 

temperature distribution in the S++ sensor plate is presented in Fig.III.21. 

 

Figure III.21 : Comparison of the computed (left) and measured (right) temperature 

distributions in the sensor plate. 

A very good agreement is observed between the simulated and the measured temperature. 

The heterogeneous temperature is well captured with a good localization of the hot zones over 

the cell surface and a good prediction of magnitude. Three hot zones are observed on the 

simulated and experimental temperatures. The measured temperature varies from ~ 352 to ~	357.5 K meanwhile the computed one ranges from ~ 352 to ~ 358 K.  

The temperature differences between the cathode catalyst layer and the bipolar plate ac 

vary from 3 to 6°C. This result is in a good agreement with the through-plane temperature 

simulated using the full 3D model at the channel/rib scale (see section 2.5.a). 



115 

 

4.4.  Results of the pseudo-3D model and discussion 

a) Temperature prediction at the cell scale 

Once the model including the sensor plate is validated, the classical model is used to predict 

the temperature in all the components of a conventional cell, without the intrusive 

measurement device, from the bipolar plates to the membrane. The temperature distribution in 

some components of the cell is presented in Fig.III.22. The first observation is that there are 

more heterogeneities in the real temperature distribution of the bipolar plates than the 

temperature measured by the sensor plate. So the sensor plate just captures a part of the real 

temperature heterogeneities because of its in-plane thermal conduction and invasiveness. The 

hot zones in the middle and close to the air outlet are greater than the one close to the air inlet. 

First, their location can be related to the location of the three zones of very low cooling water 

velocity (Fig. III.20). Furthermore, the observed temperatures in the hot zones in the middle 

and close to air outlet are amplified by the high values of the current density distribution 

(Fig.III.18) in the corresponding zones.   

Figure III.22 : Temperature distribution in the components of the cell 



116 

 

The model allows predicting the in-plane temperature of each cell component and the 

through-plane temperature difference between the components. It is observed that despite the 

outlet temperature of cooling water is set to 80°C, there are some zones where the bipolar 

plate temperature reaches 85°C. As a consequence, in those hot zones the MEA temperature 

reaches 90°C. This value of local temperature can accelerate the degradation of the membrane 

due to the attack of free radicals [25].  

The in-plane temperatures ranges are ~ 79 - 85°C, 81 – 87.5°C, 82 – 89°C, and 82.5 – 

90°C respectively for the bipolar plates, GDLs, MPLs and MEA. Hot zones are systematically 

observed where the velocity of the cooling water is the lowest and where the current density is 

the highest. Nevertheless, the temperature variation is different between the components. In 

particular, the in-plane temperature variations are around 7.5°C for the membrane and catalyst 

layers meanwhile in the bipolar plates the variations are smoother and reduced to  ~ 6°C. This 

means that the GDL and bipolar plate contribute to in-plane temperature homogenization. 

That observation is due to the high thermal conductivity of the bipolar plates and the 

anisotropy of the GDLs, which have an in-plane thermal conductivity higher than the through-

plane thermal conductivity with a ratio about 20. For that reason, the GDLs thermal 

conductivity is essential in optimizing the heat management of the cell. This observation is in 

good agreement with the results presented by Ju et al. [72]. 

 The temperature heterogeneities are mainly controlled by the coolant flow field design 

inside the bipolar plates because hot zones are located where the velocity of the cooling water 

is lowest. At the reference cut line at the middle of the cell (see Fig.III.23), it is observed that 

when the cooling flow velocity varies from 0.12 to 0.03 m/s (see Fig. III.20), the 

corresponding membrane temperature varies from 82 to 89 °C. 

 The local heat source heterogeneities (see Fig.III.18) also have a significant effect on 

temperature distribution. When the local heat source varies from ~	1900  to ~	3000	�/
#, 
the membrane temperature in the corresponding zones varies from ~ 84 to 86°C. Note that the 

cooling flow velocity in both zones considered for the comparison is almost the same. 

This simulation gives more precision on the decomposition of the temperature differences 

between the bipolar plates and the catalyst layers. The following values are obtained for the 

mean temperature differences between the components: 0.1 °C between the membrane and 

the cCL, 0.4 °C between the cCL and the cMPL, 1.7 °C between the cMPL and the cGDL, 

and 2.3°C between the cGDL and the cBP. The two monopolar plates (cBP and aBP) that 

compose the bipolar plate have almost the same in-plane temperature. That is due to the low 

thermal resistance between them because they are welded together.  
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Figure III.23 : Temperature distribution in some cell components at the indicated cut line 

 

b) Effect of uncertainty of heat sources localization on the temperature 

distribution 

Since in the model it was assumed that all the entropy and electrochemical activation heats 

were located in the cathode catalyst layer, the impact of the uncertainty about heat source 

localization on the temperature distribution needs to be evaluated.  

In the following figure, some results of this sensitivity analysis are presented for the 

anode compartment. In case 1, it is assumed that all the heat is generated in the cathode CL. In 

Case 2, it is assume that 25 % of the heat is generated in the anode catalyst layer. The results 

show that the heat source repartition has a small effect only on the catalyst layer temperature, 

for which the two curves are not perfectly superposed, the deviation being around 0.05°C. For 

all the other components, the difference cannot even be seen on this figure. The temperature 

distribution in the remaining components is almost insensitive to the heat source repartition 

between the catalyst layers.     
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Figure III.24 : Temperature distribution in some cell components at the indicated cut-line: effect 

of uncertainty of heat sources localization on the temperature distribution 

 

c) Temperature prediction at the Channel/rib scale 

The Fig.III.25 presents the temperature difference between the cathode catalyst layer and the 

bipolar plate on a segment of the cell active area. This temperature difference varies from ~ 3 

to 6°C. The zones where the temperature differences are the lowest corresponds to direct 

thermal contact between the MEA and the cooling circuit. They are adjacent to high 

temperature difference zones, corresponding to thermal contact between the MEA and 

reactant gases channels. The spatial variation of this temperature difference can induce heat 

pipe effect when there is phase change in the cell (for higher current densities) [68]. 

Moreover, the difference in the current density distribution due to the fact that the diffusion is 

faster in the area under the channel is not taken into account in this study, but may intensify 

the channel/rib effect. The model predicts that the spatial variation of the temperature 

differences is not homogeneous over the cell active area and so the heat pipe effect may not 

be homogeneous.  This can induce heterogeneities on the performance and MEA degradation. 

Reference cut line 
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Figure III.25 : Temperature difference between cBP and cCL: visualization of the channel/rib 

heterogeneities on a piece of the cell 

 

Conclusion 

 

In this chapter, the thermal conductivities of the fuel cell components were reviewed and used 

to study temperature evolution in the cell via a 3D model at the channel/rib scale. In order to 

address the specific challenge of the balance between accuracy and computational time, a 

pseudo-3D thermo-fluidic model was presented to investigate the local temperature in the 

industrial large-area fuel cell used in this study (220 cm2), with the resolution at the same time 

of the heat sources and heat removal. The model was first successfully validated against 

experimental data (S++) and then used for in-plane and through-plane temperature analysis in 

the cell. The main conclusions and discussions of the study can be drawn as follows: hot 

zones are observed in the cell due firstly to the heterogeneous flow velocity of the cooling 

water and secondly to the local current density heterogeneous distribution. It is worth 

mentioning that the flow regime is laminar and thus particularly unfavorable to intensive 

convective heat transfer. On the one hand, the heterogeneities of the local heat sources 

(current density distribution) depend on local concentration of reactants, water content of 

membrane, and local temperature. These local conditions are mainly controlled by the inlet 

conditions of the reactant gases, the gas channels design and the fluid dynamics. On the other 
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hand, the heterogeneities of the cooling water flow (local heat removal) depend on the cooling 

channels design. In other words, the local temperature is mainly controlled by the design of 

the bipolar plates and the inlet conditions of the reactant gases.   

The pseudo 3D approach can be easily applied to other cell designs in different operating 

conditions. Indeed, the 2D (in plane) real geometry of the channels is considered in the model 

and the impact on temperature of other designs could be studied. The best advantage of this 

approach is that the thermal model developed is purely predictive. It allows a detailed study of 

the in plane temperature distribution in all the components of the stack and the pseudo-3D 

approach allows reaching a good precision with low computation time and resources.  

Nevertheless, the limit of the applicability occurs when there is a considerable phase 

change in the cell because the local condensation/evaporation phenomena can have a non-

negligible impact on the energy equation. Furthermore, the present model uses measured 

current densities for the calculation of the electrochemical local heat source. So for a 

completely predictive multiphysics model, the thermal model should be coupled with an 

electrochemical model in which the species transport and the electrochemical reactions are 

computed in order to predict the current density distribution (and heat source). Thus, the next 

step of this model could take into account the latent heat of condensation/evaporation. 

Nevertheless, solving the electrochemical equations means new assumptions and hypothesis 

as well as a pseudo-3D species transport model, which has to be very accurate in order to 

avoid lower precision on the heat source distribution calculation. 
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Chapter IV 
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Introduction 

 

The pseudo-3D approach developed in the previous chapter has proven its worth as an efficient 

way in modeling the in-plane temperature heterogeneities in the different cell components for 

industrial scale fuel cells. However, the model was limited firstly by its dependence on the sensor 

plate current measurement and secondly by the assumption of constant physical properties for the 

reactive gases. To become a completely predictive model, the proposed thermal model should be 

coupled to an electrochemical model in which the species transport and the electrochemical 

reactions are computed in order to predict the current density distribution in the cell. Furthermore, 

in the frame of the study of the correlation between thermal effects and degradations, an accurate 

study of water transport is necessary since temperature is intrinsically coupled to water transport. 

It is commonly known that humidity largely impacts on hydrothermal stresses in the membrane 

[96-97] [101] as well as metallic bipolar plates corrosion [145]. In general, coupling water 

management to heat management remains a global challenge for the development and 

commercialization of PEM fuel cells [146]. 

In this chapter, a hybrid physic-based model is developed and validated experimentally against the 

measured data obtained from the printed circuit board. The model considers the cell as a multi-

layered system and each layer is accurately in-plane discretized to allow the simulation of local 

heterogeneities. The transport equations are solved using a pseudo-3D approximation and coupled 

to an analytical electrochemical model for the current density prediction. The main advantage of 

the model is the prediction of the current density, species concentrations, water content and 

temperature distributions in all the components of the cell with a low computation time compared 

to full 3D model, while keeping a good precision. It represents a potent instrument for the study of 

the correlation between local temperature, humidity and degradations.   
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1. Model development and governing equations 

The studied stack has the same configuration as the one presented in Chapter III, section 4.1.a. It is 

a 30 cells stack, with a printed circuit board inserted between the 15th and the 16th cells for the 

measurement of the in-plane current density and temperature distributions.  

1.1. Pseudo-3D formulation of the conservation equations 

In this model, the equations of the continuity, momentum, species and heat balance for each 

component n of the cell under steady state conditions are built with the same methodology as the 

3D thermal model presented in Chapter III. The model considers ideal gases for the reactants and 

uniform cell voltage along the cell surface. 

Given the aspect ratio of the different cell components, the idea of the pseudo-3D approach is 

to consider each component as a plane layer, which is coupled to the other components through 

appropriate exchange conditions, like the pseudo-3D thermal model presented in Chapter III. With 

this approach, it is thus possible to compute the 2D (in-plane) distribution of the different physical 

parameters (temperature, species concentration…) in each cell component (active layers, gas 

diffusion layers, membrane, bipolar plates, cooling circuit…) at a reasonable cost. The 

transformation from the full-3D to the pseudo-3D formulation is presented in the following for 

each equation. The nomenclature is the same as used in the Chapter III. 

a) Continuity 

Considering de pseudo-3D approach, which integrates the conservation equation over the 

thickness of the component, one gets in stationary conditions: 

��� ∙ �ρ	v	
� + 1��� ��� ���������
���� = S� [IV.1] 

with	v	
 = u��
+ u !
  the in-plane velocity and ��	the through-plane velocity.  ρ and S� are 

respectively the mean density and mass source along the thickness of the component. The 

integration of the through-plane mass transport term leads to:  

1��� ��� ���������
���� = ����������� − ����#$������#$���  [IV.2] 

The mean density can be discretized as: 
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����� = ρ%�� + ρ%&$��&$�� + ��&$ 		and			����#$� = ρ%�� + ρ%#$��#$�� + ��#$ 	 [IV.3] 

The mass transport equation becomes (Pseudo-3D formulation):  ��� ∙ �ρ	*
� = S� +	+& + +#	 [IV.4] 

with the following through-plane mass fluxes:  

+& = ������������� 			,-�	+# = −����#$������#$���  [IV.5] 

 

Figure IV.1 : Reference coordinates and fluxes used in the equations for the conservation equations in the 
component n, which exchanges with the components n-1 and n+1 

 

b) Momentum equation 

The global equation of momentum, considering no singular pressure drop and no momentum 

diffusion across the cell is: 

�. = 1/$ 0�	
 + 1/1 ‖�	
‖�	
 ↔ 456
57 ���p = 1/$ 0v	
 + 1/1 ‖v	
‖v	
1��� �.�� ����

���� = − 1/$ 0�� [IV.6] 

where p is the mean pressure along the thickness of the component. The discretization of the 

through-plane momentum equation leads to:  

�����#$� = −/���#$�0 9 p% − p%#$��� + ��#$�2 ; ;									������ = −/����0 9 p%&$ − p%���&$ + ���2 ;	 [IV.7] 

with the equivalent values of the hydraulic permeability discretized as follows:  

z  (through-plane) 
zn 

n-1 n n+1 

+& +# 

zn-1 

en-1 en en+1 
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/���#$� = �� + ��#$��/� + ��#$/�#$ ; 							/���� =
�� + ��&$��/� + ��&$/�&$ [IV.9] 

c) Species conservation 

The pseudo-3D formulation for the species i conservation equation is: 

��� ∙ �ρw>	v	
� + 1��� ��� ��?@�������
���� = 	−���J> −� ��� BC@�D����

���� + S> [IV.10] 

where ρw>, J> and S> are respectively the mean species concentration, diffusion flux and species 

source along the thickness of the component. The evaluation of the through-plane species 

transport terms is given by:  1��� ��� ��?@�������
���� = �?@���������� − �?@���#$������#$���  [IV.11] 

with:  

�?@���#$� = �ρw>���� + �ρw>��#$��#$�� + ��#$ ; 		�?@���� = �ρw>���� + �ρw>��&$��&$�� + ��&$  [IV.12] 

The Fick’s law of diffusion for the through-plane species transport is discretized as: ��� BC@�D�� = ��� E−F ���?@��� G 

= −F���#$���ρw>�� − �ρw>��#$���1 + F������ρw>��&$ − �ρw>�����1  

[IV.13] 

Where F is the equivalent mass diffusivity of the reactive species and: 

F���#$� = �� + ��#$��F� + ��#$F�#$ ; 					F���� =
�� + ��&$��F� + ��&$F�&$ [IV.14] 

Thus, the species transport equation becomes (Pseudo-3D formulation):  ��� ∙ �ρw> ∙ v	
� = 	−���J> + S> + +@& + +@# + C@&+	C@# [IV.15] 

With the through-plane convective fluxes: 

+H& = ρw>������������ 	,-�	+H# = −ρw>���#$������#$��� 	 [IV.16] 

 



126 

 

And the through-plane diffusive fluxes: 

CH& = F����B�ρwi�-+1 − �ρwi�-D�-2 	,-�	CH# = F���#$�B�ρwi�-−1 − �ρwi�-D�-2  [IV.17] 

d) Heat transport 

Pseudo-3D formulation (demonstrated in chapter 3, section 4):  

*
 ∙ �����JKL� = M ∙ ���1L + NO + CO&+	CO# [IV.18] 

Heat is transported via conduction in all the solid components and via convection in the bipolar 

plate channels. So, only one-phase (solid) heat transfer in considered in the porous media.   

Discretization of the in-plane diffusive heat fluxes (see Chapter 3 for the demonstration):  

	CO# = −P���#$��L� − L�#$��� 			,-�				CO& = P�����L�&$ − L����  [IV.19] 

With the global through-plane heat transfer coefficients:  

P���#$� = �� + ��#$��M� + LQR�/�#$ + ��#$M�#$ ; 					P���� =
�� + ��&$��M� + LQR�/�&$ + ��&$M�&$ [IV.20] 

Where LQR�/T is the eventual thermal contact resistance between the components n and m. In 

particular, it plays an important role at the BP/GDL and GDL/MPL interfaces. 

1.2.  Interfaces between the solid/porous components and the fluid flows in 

the channels 

At the interfaces between the solids/porous and fluids subsystems (GDLs/reactive gases flow, 

BPs/cooling flow, BPs/reactive gases flow), appropriate exchange conditions are used. The model 

assumes plug flows in the channels (anode reactive gases, cathode reactive gases and coolant 

flows). The computed parameters in the flows are coupled at the interfaces with the adjacent cell 

components (GDLs and BPs) using the transfer coefficients presented in the following. 

a) Mass transfer coefficient 

For the species transfer at the reactive gases flow/GDL interface, the convection mass transfer 

number used is: 

U = Nℎ ∙ FFW [IV.21] 



127 

 

Where  F, FW and Sh are respectively the mass diffusivity, the hydraulic diameter and the 

Sherwood number. The Sherwood number is calculated using the Frössling correlation:  

Nℎ = 2 + 0.552 ∙ R�$ 1\ ∙ NJ$ ]\  [IV.22] 

Sc is the Schmidt number, which represents the ratio of momentum diffusivity and mass 

diffusivity:   

NJ = F̂						 [IV.23] 

b) Convective heat transfer coefficient 

For the solid/fluid heat transfer, the convective heat transfer coefficient is calculated via the 

Nusselt number _� which only depends on the geometry since the flows are laminar.  

ℎ = _� MFW [IV.24] 

The appropriate Nusselt numbers adapted for the geometry in the laminar as well as in the 

chaotic zones are the same as presented in Chapter III.  

The transport equations are coupled to the current density in the catalyst layers through 

appropriate source terms related to the electrochemical reaction.   

1.3.  Semi-empirical electrochemical model 

The electrochemical model is obtained by inversing the Butler-Volmer equation presented in 

Chapter I: 

P`abb = cdae + f$ + f1L + f]Lg-�h� + fiLg-BjklD +fmLg-BjnlkD + foLg-BjnlD − RTh − R`abbh [IV.25] 

 

Where f@ are physical parameters which depend on the thermodynamics and kinetics of the 

electrochemical reactions.  

The reversible potential of the cell is calculated as follows:  

cdae = ,$ + ,1L + ,]Lg-BjklD + ,iLpg-BjnlD − g-BjnlkDq [IV.26] 

with 

,$ = ∆st2	u = 1.4824	x	; 	,1 = −∆Nt2	u = −1.593 ∙ 10#] x/ ;	,] = R4	u = 2.154 ∙ 10#m x/	;	,i = 2	,] [IV.27] 
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∆st (J/mol) and ∆Nt (J/mol/K) are respectively the Gibbs free energy and the entropy variation of 

the electrochemical reaction in reference conditions.  RT is the membrane protonic resistance defined as: RT = �{|{ [IV.28] 

where �T and |T are respectivelly the membrane thickness and ionic conductivity, whose 

calculation will be presented below. R`abb is the electrical resistance of the cell. For its calculation, 

an electrical model of the cell resistance, will is presented in the next section, is used.  

a)   Electrical resistance of the cell }~��� 
The local electrical resistance of the cell is evaluated considering the electrical architecture of the 

cell at the channel/rib scale and the heterogeneities of the welding zone positions over the BP 

active area which induce preferential paths for current transport.  These zones are indicated in 

Fig.IV.2, where the welding points (blue) are superimposed on the cathode flow field geometry 

(white) and cathode ribs (grey): 

 

Figure IV.2 : Reference zones used for the electrical model 

In the electrical model, two different zones are distinguished:  

� BPs rough contact zones (grey on Fig.IV.2), in which there is a relatively low electrical 

conduction between the two sheets of the BP because of the rough contact: 

R`abb = R��� + cQR���/�� + R�� + cQR��/�� [IV.29] 

� BPs welded contact zones (blue on Fig.2), in which there is a relatively high electrical 

conduction between the two sheets of the BP thanks to the welding; 

R`abb = R��� + cQR���/�� + R�� + cQR�ab�@�� [IV.30] 

Where cQR��/�� is the electrical contact resistance between the rough BPs and cQR�ab�@�� is the 

electrical contact resistance on the welding zones of the BPs.  
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b) Membrane ionic conductivity �� 

The membrane ionic conductivity is calculated using the Springer’s law [26]: 

	|T = �33,75 ∙ M� − 21,41��#$1o�O  

 
[IV.31] 

Where MT is the water content of the membrane obtained from an appropriate electrolyte water 

transport model. 

1.4.  Water transport through the membrane 

Before presenting the membrane water transport model, it is worth reminding the water content of 

the membrane, defined as the number of water molecules per sulfonic acid group:  

M� = JnlkJ�  [IV.32] 

Where Jnlk is the water concentration (mol/m3) and J� is the molar concentration of sulfonate sites 

in Nafion:  

J� = ��c� 

 
[IV.33] 

with �� the density of the membrane solid phase ( �� = 2240	��/{]) and  c� the equivalent 

weight of Nafion (c� = 1.1	��/{�g). The water content at the interfaces between the Nafion and 

the pores of the catalyst layers (M��� and	M`��) is obtained from the Springer’s law:  

M�,� = �0,043 + 17,81, − 39,85,1 + 36,]										h�		, ≤ 114 + 1,4�, − 1�												h�	, > 1 																					 
 

[IV.34] 

with the activity , which is defined as:  

, = jnlkj����L�	 
 

[IV.35] 

So the discontinuity of the water content dependence on activity at the saturation point, 

resulting from the Schroeder’s paradox, is considered in the model. However, in the numerical 

implementation, there is an interpolation at the saturation point in order to smooth the 

discontinuity and avoid numerical instabilities.  

The water transport through the membrane is a resulting balance between electro-osmosis drag 

from anode to cathode and molecular diffusion from cathode to anode. The hydraulic permeation 

of water through the membrane due to the pressure gradient and the thermos-osmosis transport 

due to the temperature gradient are negligible.  
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a) Water electro-osmosis drag flux through the membrane 

The water electro-osmosis drag flux is due to the polar attraction of the water molecules by the 

protons. The transport of protons from anode to cathode through the electrolyte induces a drag of 

water molecules at the same time. The flux of water dragged from anode to cathode is given by:  

ua� = ,a� nlkhu  [IV.36] 

With ,a� the electro-osmosis drag coefficient, defined as the number of water molecules dragged 

per proton. It is well-known that it depends on water content, but there are different laws for this 

dependence in literature with large discrepancies. Springer et al. proposed a linear relationship 

[26], Hwang et al. [147] and F. Meier et al. [148] proposed a quadratic evolution. Zawodzinski et 

al. proposed a discontinuous relationship [149]. These laws are presented in Tab.I.1.  

Author Model 

Springer [26] ,a� = 2.5	M 22  

Hwang et al. [147] ,a� = −3.4 ∙ 10#$¡ + 0,05	M  + 0,0029	M 1 

F. Meier et al. [148] ,a� = 1 + 0,028	M  + 0,0026	M 1 

Zawodzinski et al. [149] ,a� = � 1			h�	M  	≤ 14	0.1875	M  − 1.625		h�	M  	> 14	 
Table IV.1 : Different laws for the dependence of the electro-osmosis drag coefficient on water 

content 

The law proposed by Zawodzinski is used in this study because it represents a kind of tradeoff for 

the discrepancies of the existing laws. For comparison, the different laws are plotted on the same 

graph on Fig. IV.3.  
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Figure IV.3 : Comparison between the different laws for the dependence of the electro-osmosis drag 
coefficient on water content 

 

b) Diffusive flux through the membrane 

The diffusion of water molecules in the membrane is caused by the water content gradient 

between the cathode catalyst layer where water is produced and the anode catalyst layer. The 

diffusive flux from the cathode to the anode catalyst layer is expressed by considering a Fick’s 

law:  

C¢£¤# = 1�,Q¥ ∙ ¦F{�{§ ∙  U2¨ ∙ J� ∙ �MJQ¥�,� − M,Q¥�,�� [IV.37] 

Analogously, the diffusive flux from the anode to the cathode catalyst layer is: 

C¢£¤& = 1�JQ¥ ∙ ¦F{�{§ ∙  U2¨ ∙ J� ∙ �M,Q¥�,� − MJQ¥�,�� [IV.38] 

The membrane equivalent water content is evaluated as:  

M� = M����,� + M`���,�2  
 

[IV.39] 

It is commonly admitted that the membrane water diffusivity FT depends on water content and 

temperature. The different models for such dependence found in literature are summarized in 

Table IV.2.  
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Author Model 

Fuller [150] FT = 	2.1 ∙ 10#©M� ∙ exp	�− 2436L � 
Nguyen and White [151] FT = 	 �1.94 ∙ 10#�M� + 1.76 ∙ 10#¡� ∙ exp	�− 2436L � 
Zawodzinski et al. [152] FT = �6,707 ∙ 10#�M� + 6,387 ∙ 10#©� ∙ exp ¦−2416L § 

Hwang et al. [147] 

FT = F�M�� ∙ �¬. ­2416 ¦ 1303 − 1LT§® 
With  F�M�� = 456

57 10#$t						h�	M < 210#$t°1 + 2�M − 2�±						h�	2 ≤ M ≤ 310#$t°3 − 1.67�M − 3�±					h�	3 ≤ M ≤ 4.51.25 ∙ 10#$t					h�	M ≥ 4.5  

Motupally [153] FT = ³ 3.10 ∙ 10#©M�°exp	�0.28M�� − 1± ∙ exp	�− 2346L �					h�	0 ≤ M� ≤ 3
4.17 ∙ 10#�M�°1 + 161 ∙ exp	�−M��± exp ¦−2346L § 				h�	3 ≤ M� ≤ 17 

Table IV.2 : Different laws for the dependence of the membrane water diffusivity on water content 

As illustrated in Fig.IV.4, there are variations of the diffusivity reported in literature over several 

orders of magnitude due mainly to the difference in measuring methods and membrane material. 

In this study, the diffusivity’s law used is Motupally one because of its agreement with 

experimental data (within 5%). 

 

Figure IV.4 : Comparison between the different laws for the dependence of the membrane water 
diffusivity on water content 
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1.5.  Summary of the equations 

In summary, the global pseudo-3D model resolves 2D in-plane equations in each layer of the 

system with appropriate through-plane heat fluxes between the components. The global equations 

and related sources terms are summarized in Tab.IV.3.  

Quantity Equation 

Mass ∇���� ∙ *
� = NT +	+T& + +T# 			 
Momentum ���. = 1/$ 0*
 + 1/1 ‖*
‖*
 

Species ∇�� ∙ ��?@ ∙ *
� = 	−∇��C@ + N@ + +@& + +@# + C@&+	C@# 

Heat �JK*
 ∙ ���L = M ∙ ���1L + NO + CO&+	CO# 

Current P`abb = cdae + f$ + f1L + f]Lg-�h� + fiLg-BjklD + fmLg-BjnlkD + foLg-BjnlD − RTh − R`abbh 
 

Table IV.3 : Global equations solved in the model for each component 

The sources terms for the conservation equations in each subsystem are presented in Tab.IV.4:  

Component µ¶ µH µ· 

Channels 0 0 0 

BPs, GDLs, 

MPLs (n) 
0 0 

h1|� 

Anode CL 

(aCL) 

− 1���� ∙ ¦ nlh2u + ,a� nlkhu § 
+ 1���� ∙ FT�T ∙  nlk ∙ J� ∙ °M`���,� − M����,�± 

Nnl = − 1���� ∙  nlh2u  

 

h1|��� 

Cathode CL 

(cCL) 

1���� ∙ ¦− klh4u +  nlkh2u + ,a� nlkhu § 

+ 1���� ∙ FT�T ∙  nlk ∙ J� ∙ °M`���,� − M����,�± 

Nkl = − 1�`�� ∙  klh4u  

 

Nnlk = 1�`�� ∙ ¦ nlkh2u + ,a� nlkhu § 

+ 1�`�� ∙ FT�T ∙  nlk ∙ J� ∙ °M����,� − M`���,�± 

 1�`�� ∙ ­¦∆U���2 ∙ u − x̀ abb§ ∙ h® 
+ 1�`�� ∙ ¸−¹º h1|º �º» + h1|`�� 
Where ¼ represents all the 

components of the cell, 

excepted the cCL 

Membrane 0 0 
h1|T�M, L� 

Table IV.4 : Sources terms used in the mass, momentum, species and heat balance equations 

 

In order to consider the possibility of water vapor/liquid phase change in the cell at high currents, 

the total reaction enthalpy used is: 
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∆U��� = ∆Ub = 285.8	�C/{�gnl if jnlk = j½,¾�L� ∆U��� = ∆Ue = 242	�C/{�gnl if jnlk < j½,¾�L� [IV.40] 

Where jnlk is the water vapor partial pressure in the cathode catalyst layer and j����L� is the 

equilibrium vapor pressure, calculated with the Antoine equation: 

 Thus, the enthalpy of phase change is considered, even if there is the assumption of ideal gases 

for the gas flows. 

1.6. Input data and solution procedure 

The calculation of the transport properties of the reactant species, which depend on temperature, is 

given in Appendix 3. The input data used in this study are presented in Table IV.5: 

Parameter BP GDL (Channel/rib variation) MPL CL Mem brane 
Thickness 

[mm] 
2 ∙ 0.1 

Channel: 0.23 
0.05 

aCL: 0.006 
cCL: 0.012 

0.025 
Rib: 0.17 

Thermal 
conductivity λ 

[W/m/K]  
16.1 

In-plane  
Channel: 5.4 

0.4 0.15 
 
 
    0.177 + 3.7 ∙ 10#] ∙ M� 

Rib: 3.7 

Through-plane 
Channel: 0.2 

Rib: 0.3 

Charge 
conductivity 

σ [S/m] 
1.32 ∙ 10o 

In-plane 
Channel: 4862 

50 1000 
 �33,75 ∙ M� − 21,41��#�l¿ÀÁ      
 

Rib: 3460 

Through-plane 
Channel: 64 

Rib: 184 

Porosity  
Channel: 0.77 

0.35 0.47  
Rib: 0.69 

Permeability 
[m²] 

 2.6 ∙ 10#$] 2 ∙ 10#$] 10#$1  

Tortuosity  1.23  1.7 1.3  

Table IV.5 : Input data used in the model 

The electrochemical model is calibrated globally on a 5 cm² active area laboratory cell using a set 

of 18 different polarization curves recorded at the different partial pressures, temperatures and   

humidity values in the cell. The obtained values of the calibrated parameters are given in Table 

IV.6. ÂÃ Â£ ÂÄ ÂÅ ÂÆ ÂÇ −0.75384	x 3.39 ∙ 10#i	x// −7.84 ∙ 10#m	x// 1.298 ∙ 10#i	x// 0	x// 5.13 ∙ 10#m 	x// 

Table IV.6 : Parameters used in the electrochemical model 

The electrical contact resistances between rough BPs and in the welding zones of the BPs are 

fixed respectively cQR��/�� = 3.6 ∙ 10#o{1x/È and cQR�ab�@�� = 1 ∙ 10#o{1x/È [154]. 

j����L� = 101325 ∙ exp ¦11.6703 − 3816.44L − 46.13§		°j,± [IV.41] 
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Thus, the global electrical resistance of the cell is 	R`abb = 4.9 ∙ 10#o{1x/È	under the welding 

contact zones and R`abb = 7.5 ∙ 10#o{1x/È under the rough contact zones.  

 

2. Model validation 

2.1.  Electrochemical model validation 

a) Global validation 
The operating conditions used for these simulations are summarized in Table IV.7. The cooling 

flow rate of the cell is set to {É `Ê = 6	�/½ (0.36	g/{h-) and cooling water temperature at the cell 

outlet is L̀ Ê� = 80°Q. 

Modeling 

parameters 

Anode Cathode Cooling water 

Inlet temperature [°C] 85 85 

L̀ Ê�
− Ì∆U2u − PÍ ∙ Î{É J? ∙ JK  

Inlet pressure P [bar] 1.5 1.5 1.5 

Inlet  RH [%] 50 50  

Stoichiometry Sto 1.5 2  

Species 

mass fractions 

?nl = 11 + Ï� 

?nlk = 1 − ?nl 
with 

Ï� = 9.01 ∙ RU ∙ j����L̀ Ê� �j − RU ∙ j����L̀ Ê� � 
 

?kl = 0.2221 + Ï` 
?nlk = Ï`1 + Ï` 

?Ðl = 1 − ?kl − ?nlk 

with 

Ï` = 0.622 ∙ RU ∙ j����L̀ Ê� �j − RU ∙ j����L̀ Ê� � 

 

Flow rate (kg/s) �1 +	Ï�� ∙ N¾� ∙ Î2u ∙  nl 10.222 ∙ �1 +	Ï`� ∙ N¾� ∙ Î4u ∙  kl  6 ∙ 10#] 
Table IV.7 : Reference nominal operating conditions used in the study 
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The electrochemical model is validated globally by comparing the predicted and the measured 

currents at different potentials, as presented in Fig.IV.5 on a polarization curve.  

 

Figure IV.5 : Comparison of the computed results to the experimental polarization curve 
data 

 

b) Local validation 

For the local validation, a comparison between the computed current density in the MEA and the 

measured one with the sensor plate is made. Fig. IV.6 illustrates the comparison at a cell potential 

of 0.7V. An additional map of the interpolation of the simulated current density at the sensor plate 

current resolution is added for a better comparability.  
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Figure IV.6 :  Comparison of the measured and computed current density distributions. The arrows 
indicate the anode (red) and cathode (green) inlets and outlets. 

 

In the both cases, the current is higher near the air inlet and lower near the air outlet in both 

experimental and simulated results. The relatively low current density at the center of the cell 

caused by the hot spot, which induces a local membrane drying, is captured by the model. 

Regarding the local values, it is not easy to make a precise conclusion because, contrary to the 

sensor plate, the model captures the channel/rib heterogeneities. Moreover, the local maxima of 

the current density distribution induced by the bipolar plates welding zones are captured by the 

model. Globally, it can be stated that a good agreement is observed between the simulated and the 

measured current densities in terms of general trends.   

 

2.2.  Thermal model validation 

a) Global validation 

A global validation is made by comparing the measured and simulated temperature increase of the 

cooling water between the inlet and outlet of the cell. Experimented and computed temperature 
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variations between the inlet and the outlet of the cell are respectively about 3 and 3.1 °C at a cell 

potential of 0.7 V. So the thermal model is validated globally with a ~ 3% error.  

b) Local validation 

In the multiphysics model, the configuration of the cell including the sensor plate (considered in 

Chapter III for the thermal model validation) is not considered. The thermal model can only be 

validated by comparing the BP simulated temperature to the one obtained from the sensor plate 

temperature measurement. It is worth mentioning that the temperature heterogeneities are 

smoothed by the sensor plate resolution (as observed in Chapter III). This comparison is presented 

in Fig.IV.7, with an additional interpolation of the BP simulated temperature at the sensor plate 

temperature resolution (regular grid of 120 elements).  

 

Figure IV.7 : Comparison of the measured temperature in the sensor plate and computed 
temperature in the bipolar plate. The arrows indicate the cooling water inlet and outlet 

A good agreement is observed between the simulated and the measured temperatures 

regarding the general trends and localization of hot spots. Three hot zones are still observed on 

both the simulated and experimental temperatures, due mainly to the very low cooling water 

velocity in these zones (see Chapter 3, Fig.III.20). Furthermore, the observed temperatures in the 

hot zones close to air inlet are higher to those close to the air outlet due to the higher current 

density at the air inlet (Fig.IV.6). 

So the heterogeneous temperature is well captured with a good localization of the hot zones 

over the cell surface. However, the magnitude of the temperature heterogeneities is not the same. 
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There are more heterogeneities in the real temperature distribution of the bipolar plate than the 

temperature measured by the sensor plate. The measured temperature in the sensor plate varies 

from ~ 78 to ~	84 °C meanwhile the computed one in the bipolar plate ranges from ~ 78 to ~ 88 

°C. These discrepancies agree with the temperature differences observed in the chapter 3 (section 

4.4.a) with and without the sensor plate. Namely, the sensor plate just captures a part of the real 

temperature heterogeneities because of its in-plane thermal conduction and invasiveness. 

Moreover, in the multiphysics model, the heat sources are computed at the channel/rib level 

contrarily to the thermal model of the chapter 3, in which the heat sources heterogeneities were 

limited to the sensor plate resolution. Thus, the temperature distribution predicted with the 

multiphysics model presents higher heterogeneities than which ones observed in the Chapter 3.  

 

3. Use of the model for the study of heat and water transport  

Once the model is validated, it can be used to investigate the coupling effect between the 

electrochemical and the thermal behaviors in the cell. Due to the limitation in computational time 

for the simulations, in the following results, the cell discretization is limited to 6 subcomponents:  

� Anode gas channels (aGC); 

� Anode gas diffusion media (aGDM): combination of the anode GDL and MPL; 

� Membrane Electrode Assembly; 

� Cathode gas diffusion media (cGDM): combination of the cathode GDL and MPL; 

� Cathode gas channels (cGC); 

� Cooling channels. 

3.1. Operation under nominal condition 

The following simulations are performed in the same reference nominal conditions (0.7 V) used 

for the validation of the multiphysics model (presented in 2.1.a).  

a) Water concentration distribution 

The water mass concentration distribution (kg/m3) in the cell components is presented in Fig.IV.8. 

Variations between   0.136 – 0.330, 0.147 – 0.356, 0.150 – 0.387 and 0.144 – 0.292 kg/m3 are 

observed respectively in the anode gas channels, anode GDM, cathode GDM and cathode gas 

channels. The first conclusion is that the cumulative effect of reactant gases pre-humidification (at 

50%), water production at the cathode due to the oxygen reduction reaction and electro-osmotic 
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flux from the anode to the cathode induce the highest water concentration in the cathode diffusion 

media. So the cathode GDM acts like a sponge which maintain a sufficient amount of water in the 

MEA. 

 

Figure IV.8 : Water mass concentration distribution in the cell components 
 

A 1D plot at the reference cut-line at the middle of the cell is presented in Fig.IV.9. Close to the 

cathode inlet, the water concentration in the GDM is almost two times higher than the one in the 

gas channels. Contrary to the cathode gas channels, the water distribution in the anode gas 

channels is intrinsically coupled to the one in the anode GDM. This is due to the elevated 

convective transport in the cathode gas channels, compared to the anode gas channels. 

Over the cathode flow field, the production of water due to the electrochemical reaction 

induces a progressive increase of water concentration either in the MEA, or in the channels. In 

particular, the water concentration in the second pass of the cathode flow field (2) is higher than 

the one in the first pass (1). Regarding the 3rd pass of the cathode flow field (3), water 

concentration becomes lower, due to the interaction with the dry flow of the hydrogen inlet. This 

drying effect is more emphasized in the first pass of the anode flow field (a), where the cell 

becomes much dryer. In this zones, the water concentration in the cathode compartment becomes 

higher than the one at the anode. This peculiar effect is due to the elevated flux of water from the 

cathode GDM to the anode compartment in order to humidify the anode gases (which are 

relatively dry), as it is shown in the next section. 
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Figure IV.9 : Water mass concentration distribution in the cell components at the reference cut line. 
The vertical lines delimitate the different passes of the flow fields (red for the anode and green for the 

cathode) 

As regards the channel/rib distribution, the water concentration is higher under the rib and lower 

under the channels with channel/rib variations about 0.02 kg/m3 for the anode GDM and 0.06 

kg/m3 for the cathode GDM. Since water transport through the membrane takes place between the 

two GDMs, an accurate study of this phenomena may help getting more precise conclusions. 

b) Water transport through the membrane 

The water fluxes through the membrane, which are the result of the balance between electro-

osmotic drag and molecular diffusion, is presented in Fig.IV.10. Positive fluxes (from 0 to ~ 1.71 ∙ 10#]	��/{1/½) represent fluxes from cathode to anode meanwhile negative fluxes (from ~− 1.38 ∙ 10#] to 0 ��/{1/½) are fluxes from cathode to anode. Positive fluxes mean electro-

osmosis is predominating meanwhile negative fluxes mean diffusion is predominating. 

Accordingly to the water concentration distributions in the different components of the cell (see 

Fig.IV.8), water transport takes place from the anode toward the cathode close to the air inlet and 

conversely, from the cathode toward the anode close to the hydrogen inlet. 

1 2 3 

e d c b a 
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At the channel-rib level, the first observation is that electro-osmosis is predominant under the 

channels meanwhile diffusion is predominant under the ribs. It agrees with the elevated water 

accumulation of water which was observed under the rib due to the low water diffusion in that 

zone (see Fig.IV.8). The resulting water fluxes across the membrane are highly dependent on the 

cathode flow field design even if the first pass of the anode flow field can be distinguished. This 

results confirms the claim given in the previous section: the cell drying in front of the first pass of 

the anode flow field is related to the elevated diffusion of water from cathode to anode in this 

zone.  

 

Figure IV.10 : Water fluxes across the membrane 

It is also observed that hot spots induce higher fluxes from anode to cathode. This is due to the 

dependence of water diffusivity on water content, which is lower in the hot zones. This result is in 

good agreement with the observed decrease of water concentration in the cathode GDM in these 

zones, as presented if Fig.IV.8.   

The distributions of the membrane water content, ionic conductivity, water diffusivity and 

electro-osmosis drag coefficient are presented in Fig.IV.11. The first observation is that the hot 

spots largely impact on the transport properties of the membrane. Water content, which is ~ 8   

near the air inlet, reaches values < 4 in the hot spots. As a consequence, the membrane ionic 

conductivity is much lower in that zone, causing the lower current density observed in Fig.IV.11. 

The interpretation of water diffusivity is more complex since it depends on water content and 

temperature at the same time. Moreover, it increases with the temperature as well as with the 
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water content, following a non-monotonous law. The electro-osmosis drag coefficient remains 

quite constant (aeo=1) in the operating conditions of the study.   

 

Figure IV.11 : Membrane water content, ionic conductivity, diffusivity and thermal 
conductivity 

A representation of the water content evolution at the reference cut-line in presented in Fig.IV.12. 

This figure clearly highlights the impact of the three hot spots on the membrane water content. 

The channel/rib heterogeneities of the water content range from 0.5 to 3.5.  

Water content Ionic conductivity (S/m) 

Water diffusivity  Dm (m²/s) Thermal conductivity (W/m/K)  
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Figure IV.12 : 1D plot of the membrane water content at the reference cut line 
 

c)  Water saturation in the cell 

The study of the humidity, defined as the ratio between the water vapor pressure and the water 

saturation pressure is more complex because of the coupled effects of temperature and water 

concentration distributions. Indeed, both temperature and water concentration are higher in the 

cathode catalyst layer where the electrochemical reaction takes place. The water vapor pressure 

has a linear dependence on water concentration while the water saturation pressure has an 

exponential dependence on temperature. The saturation (N) is defined in as: 

This saturation is defined only in the zones where there is liquid water. When there is no liquid 

water, its value is set to zero. At the equilibrium point, at which there is water condensation, the 

relative humidity is 1 and the saturation becomes higher than zero. Since in the model it is 

considered that the reactants are ideal gases and the liquid water flows with the same velocity as 

the gas, this definition of the saturation underestimates the quantity of liquid water in the gas 

channels. For two-phase fluid dynamics models, the liquid phase should be accurately computed 

with a separate density. Moreover, typical values of the velocity ratio between the gas/vapor and 

the liquid phase in the gas channels are between 100 and 1000 [155]. This ratio should be lower in 

the porous media.  It is worth mentioning that the porosity as well as the fluid flow regime can 

also impacts on the water saturation. In few words, the saturation parameter aforementioned just 

N = jnlk − j����L��b ∙ R ∙ L nlk − j����L� [IV.42] 
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give qualitative results about the likely or unlikely presence of the liquid water in the cell. For 

appropriate quantitative results, an appropriate two-phase fluid dynamics model should be 

developed with the consideration of the interfacial effects as well as the capillary effects.     

The distribution of such saturation in the gas channels and GDMs of the cell is presented in 

Fig. IV.13. It is observed that the saturation is higher in the cathode GDM despite its higher 

temperature. The maximal saturations are respectively 6.3 – 7.9 – 12.3 and 3.0 (x 10-5) 

respectively in the anode gas channels, aGDM, cGDM and cathode gas channels. The saturation 

distributions in the anode gas channels, aGDM and cGDM are highly coupled meanwhile the one 

in the cathode gas channels presents a particular evolution. This might be due to the coupled 

effects of high water transport via convection in the cathode gas channels and limited water 

transport from the cathode GDM to the cathode gas channels. The impact of the hot spots on water 

saturation is clearly highlighted, which means that heat and water management are highly coupled 

and should not be studied separately.  

 

Figure IV.13 : Saturation in the different components of the cell 

All the results and discussions presented above were related to the reference nominal operating 

conditions of the cell. In the following, the effect of the different operating parameters (current, 

temperature, relative humidity) on heat and water transport is studied.  
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3.2.  Effect of the operating conditions on local parameters 
 

a) Effect of the operating current 

In this section, the impact of the operating current on the local parameters is studied. The 

operating conditions used for these simulations are the same as those presented in Tab.IV.7. So the 

flow rates and concentrations of the reactant gases at the inlet are imposed in order to produce the 

requested current still respecting the imposed stoichiometry. For the different current steps, the 

inlet temperature of the cooling water (L̀ Ê@ ) is set in order to maintain its outlet temperature (L̀ Ê� ) 

at 80°Q. The cooling flow rate of the cell is set to {É = 6	�/½ (0.36	g/{h-). For example, in order 

to get an outlet temperature of the cooling water of 80°C with a cooling flow rate of 0.36	g/{h-, 

the inlet temperature of the cooling water is ~	79 − 	77.8 − 76.2 − 74.4 − 73 − 71°Q		when the 

mean current density is respectively 0.1 − 0.2 − 0.4 − 0.6 − 0.8 − 1	È/J{1. The distributions of 

the computed current densities, temperatures and water contents in the membrane at different 

operating currents are presented in Fig.IV.14.  
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Figure IV.14 : Current density, temperature and water content in the membrane at the different operating currents 
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The heterogeneities of the current density, temperature and water content distribution increase 

when the total current increases. In the nominal operation conditions, the current density remains 

higher close to the air inlet. In these conditions, the membrane water content is enough to maintain 

a good ionic conductivity whatever the current. However, when the current achieves the highest 

value, this zone of higher current density progressively moves from the air inlet region to the 

cooling water inlet in the lower left corner (Fig.IV.14). This behavior results of the tradeoff 

between higher oxygen concentration and adequate cell temperature. Since the cooling water flow 

rate is fixed, the inlet temperature of the cooling water varies with the operating current in order to 

respect its outlet temperature set point.  Simulations results highlights the significant dependence 

of the membrane water content with the membrane temperature. Namely, in the vicinity of the 3 

hot zones observed at high current density (0.8, 1 A/cm²), the membrane water content is quite 

low. As a consequence, lower current densities are calculated because of the lower ionic 

conductivity of the membrane. 

The increase of the current leads to higher temperature heterogeneities in the cell as observed 

on the temperature maps. In addition, as observed on the temperature plots, the hot spots due to 

the heterogeneities in the cooling flow velocity distribution (presented in Chapter 3) are more 

emphasized when increasing the operating current. Namely, the temperature variations over the 

membrane surface are respectively ~	4 − 9 − 17 − 26 − 38 − 48	°Q at	0.1 − 0.2 − 0.4 − 0.6 −0.8 − 1È/J{1, even if the difference in cooling water temperature between the inlet and the outlet 

of the cell is only ~ 1 – 2.2 – 3.8 – 5.6 – 7 – 9 °C (Fig.IV.15).   

 

Figure IV.15: Effect of the current density on temperature heterogeneities 

Furthermore, the current increase induces simultaneously more water production in the cell 

and higher temperature heterogeneities. These combined effects lead to much more water content 
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heterogeneities over the membrane surface. Since the membrane ionic conductivity linearly 

increase with the water content, the current density progressively moves towards the lower 

temperature and higher water concentration regions when the total current is increased.      

Lower is the current, higher is the effect of the reactive gases inlets on the water content 

distribution. The effects of the air and hydrogen inlets on membrane drying can be clearly 

identified at 0.1	and 0.2	È/J{1. At higher currents, the effect of the coolant flow field design 

becomes more and more significant. On the one hand, increasing current results in higher water 

production in the cell, and so higher water vapor pressures. On the other hand, increasing current 

results in higher heat production heterogeneities in the cell, with as a consequence higher water 

saturation pressures. The balance results in a decrease of the water content with the operating 

current. That means the effect of increasing temperature is predominating on the water content. To 

illustrate this, the evolutions of the mean, maximum and minimum values of the membrane water 

content with the current density are presented in Fig.IV.16. As for the temperature distribution, 

channel/rib heterogeneities of water content are more emphasized at higher current densities. 

 

Figure IV.16 : Evolutions of the mean, maximum and minimum values of the membrane 
water content with current density 

At the channel-rib scale, it is observed that increasing the operating current leads to more 

channel/rib heterogeneities, either for the current density distribution, or for the temperature and 

water content distributions. The 2D plot of the membrane temperature at the reference cut line 

presented in Fig.IV.17 highlights the emphasis of the channels/rib heterogeneities with the 

operating current. Typically, the channel/rib temperature variations about 0.4 – 0.8 – 1.8 – 3 – 4.5 

-  6°C  can be observed respectively at 	0.1 − 0.2 − 0.4 − 0.6 − 0.8 − 1È/J{1. This evolution is 
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due to the higher channel/rib heat source heterogeneities at higher operating currents, mainly 

caused by the limitation of reactants species diffusion under the rib at high current densities.  

 

Figure IV.17: 2D plot of the membrane temperature at the reference cut line 

The saturation distribution at different current densities in the channels and gas diffusion 

media of the cell is presented in Fig.IV.18. It is observed that the maximal saturation progressively 

increases with the current density. So the effect of the increased water production is predominant 

on the effect of the increased temperature. For each component, it is worth mentioning that 

increasing current leads to:  

• More liquid water accumulation near the  gas channels outlet; 

• More accentuated impact of the coolant flow field design on the saturation distribution in 

the gas diffusion media; 

• More Liquid water accumulation at the cathode gas diffusion media. 

Liquid water accumulation in the gas diffusion media is partly related to the cold zone over the 

MEA surface area. Such a result highlights the effect of coolant flow-field design on the fuel cell 

flooding at high current density. Water accumulation at the anode compartment is related to the 

water diffusion through the membrane along the anode channel length. Nevertheless, water 

transport through the membrane results from a complex tradeoff between water electro-osmosis 
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and water diffusion (due to the higher gradient of water concentration across the membrane at the 

same time). So the study of water transport between both compartments is a complex and 

multiphysics phenomenon.  
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Figure IV.18: Saturation in the cell components at different operating currents 
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From a general point of view, there is more liquid water accumulation in the cold zones of 

the cathode GDLs and near the gas channels outlets in nominal operation conditions (Fig.IV.18). 

The saturation in the anode gas channels is intrinsically coupled to the one in the anode GDL 

while there is a significant difference between the cathode GDL and channels. This might be due 

to the water transport via convection in the cathode gas channels. The saturation evolution in the 

cathode GDL mainly depends both on the cathode and the coolant flow field designs. However, 

the first pass (of the 5-passes flow-field) of the anode is predominant over the last pass (of the 3-

passes flow field) of the cathode due to the elevated water transport via diffusion from cathode to 

anode through the membrane.  

For currents lower than 0.2	È/J{1,  there is almost no presence of liquid water in the cell, 

even if the low cell temperature (79.5°C) induce low water saturation pressures. Indeed, in these 

conditions, the water removal via advection is completely predominant on the water production in 

the cell. At 0.4	È/J{1, there is water condensation in the cold zones of the GDL and close to the 

air outlet of the cathode gas channels. In addition, there is a low liquid water accumulation after 

the central hot spot of the anode gas channels. At higher current densities (>	0.6	È/J{1), the 

distributions are quite the same, but with a maximal saturation which is progressively higher. At 

the same time, the saturation zones are progressively reduced. This is due to the competition 

between water and heat productions with current density increase. As a consequence, at high 

current densities the cell exhibits high humidity variations over the surface which could induce 

condensation and re-evaporation along the gas channels 

At the channel/rib scale, it can be observed that increasing the operating current results in 

increasing at the same time the local water vapor concentration heterogeneities and the water 

saturation pressure heterogeneities. When the current increases, the water electro-osmosis fluxes 

mainly increase under the channels. At the same time, there is more water diffusion across the 

membrane under the ribs where there is more water accumulation. As a consequence, increasing 

current results in more channel/rib heterogeneities of water transport across the membrane. 

b) Effect of the operating temperature 

The effect of the operating temperature on the local parameters in presented in Fig.IV.19. The 

reference temperatures (outlet temperature of the cooling water) studied are 65, 80 and 95°C and 

the cell potential is set to 0.7 V. At the lower temperature of operation (65°C), higher currents are 

observed in the cell thanks to the higher membrane water content. In this operation condition, 

water condensation takes place at the cathode compartment that exhibits higher saturation. 

However, the water saturation in the cell is too high and the single phase model used for the fluid 
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flow should be questionable. Indeed, liquid water could fill the pores of the gas diffusion media, 

inducing higher diffusion resistances and even electrode flooding. Moreover, the accumulation of 

liquid water close to the gas channels outlet could block the channels, leading to reactants 

starvation. As a consequence, despite the high water content of the membrane which induce a 

good proton conductivity, the current should be lower than the one at 80°C. 

At 95°C, the current density becomes lower due to the elevated temperature which induces 

membrane drying. In this condition, there is no presence of liquid water in the cell and it can be 

considered that the model accurately predicts the electrochemical and thermal behaviors of the 

cell. At 80°C which is the transition (and the reference temperature of this study), the current 

density is a slightly lower than the one at 65°C.The membrane water content is high enough to 

ensure a good proton conductivity.  
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Figure IV.19: Effect of the operating temperature on local parameters 
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c) Effect of the relative humidity of the reactants 

One of the main goals of the PEMFC industry is to reduce the pre-humidification of the reactant 

gases. The impact of the relative humidity (RH) of the reactants at the cell inlet on local 

parameters in presented in Fig.IV.20.  The reference RH studied are 25, 50 and 75 %, and the cell 

potential is set to 0.7 V. The first observation is that increasing RH results in higher current 

densities close to the air inlet. At 25% (dry condition), the current density is more uniform along 

the MEA surface. In this condition, the production of water due to the electrochemical reaction is 

quite helpful for the membrane hydration. As a consequence, the increase of water content 

compensates in part the effect of the oxygen concentration depletion along the channels. At 75% 

(wet condition), the current density is much more heterogeneous with higher current close to the 

air inlet. Indeed, in this conditions, the high pre-humidification of the reactants induces a good 

proton conductivity in this zone. However, the high water saturation (especially in the gas 

diffusion media) can induce considerable deviation for the fluid dynamics model, due to the 

reasons aforementioned.   
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Figure IV.20 : Effect of the inlet RH on local parameters 
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d) Effect of the coolant flow rate 

The coolant flow rate is a key factor for the thermal management that impacts not only the fuel 

cell stack, but also the fuel cell system (pump which moves the cooling water, radiator which 

evacuates the excessive heat, etc.). The study of the impact of such coolant flow rate on the 

membrane temperature and water content is presented in Fig.IV.21. Three coolant flow rates are 

studied:  2, 6 and 12	�/½.  
 

 

Figure IV.21 : Effect of the coolant flow rate on local parameters 

Increasing the coolant flow rate ({É `Ê) results in increasing the inlet temperature of the cooling 

water (L̀ Ê@ ) in order to respect the set point of the outlet temperature (L̀ Ê� ), which is 80°Q. As a 

consequence, the global temperature becomes higher and more uniform over cell surface as 

presented in the Fig.IV.21. Because of the relationship between temperature and the membrane 

water content, the cell works in a dryer environment.  At lower coolant flow rate, a displacement 

of the hot zone toward the coolant outlet is observed. Another consequence of the coolant flow 

rate increase is the higher singular pressure drop in the cross-flow zones of the cooling flow (as 

illustrated in Chapter 3, section 4.1.d). Since the singular pressure drops are directly related to the 

kinetic energy of the flow, the hot spots are emphasized when the coolant flow rate is increased. 

This effect is clearly observed between 2 and 6	�/½.  However, at 12	�/½, the global 

homogenization due to the lower temperature difference between the cooling water inlet and outlet 

partly masks the effect of the heterogeneous distribution of the coolant flow.   
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Conclusion 
 

A pseudo-3D multiphysics model was developed in this chapter in order to study simultaneously, 

the electrochemical performances as well as the heat and water transports in the cell. The model 

was validated globally using the measured polarization data and locally using both the current 

density and temperature distributions over the cell surface measured with a sensor plate (S++). In 

the thermal model, the enthalpy of phase change was considered in the cell meanwhile single 

phase flows were assumed in the fluid dynamics model. The main conclusions that may be drawn 

from the study are:  

• The temperature heterogeneities predicted using the multiphysics model are much higher 

than the ones predicted using the pseudo-3D thermal model developed in the chapter III. 

Indeed, the multiphysics model captures all the channel/rib heterogeneities of the heat 

sources in the cell (which was not the case in the thermal model). The significant impact of 

the temperature distribution on water saturation means that heat and water management are 

highly coupled and should not be studied separately. 

• The water concentration is higher in the cathode gas diffusion media due to the cumulative 

effect of the oxygen reduction reaction and electro-osmotic flux from anode to cathode. The 

water distribution in the anode gas channels is intrinsically coupled to the one in the MEA, 

contrarily to the cathode gas channels.  

• The water transport across the membrane is a complex phenomenon. Electro-osmosis is 

predominant under the channels meanwhile diffusion is predominant under the ribs, where 

there is more water accumulation. The BP design largely impact on the water fluxes across 

the membrane, especially as regards the diffusive fluxes. Moreover, the hot spots deeply 

impact on the transport properties of the membrane. 

• The operating conditions of the cell greatly impact heat and water management. The 

increase of the operating current induces more global temperature heterogeneities, 

emphasizes the hot spots and reduces at the same time the impact of the reactive gases inlet 

on the humidity distribution. At a more local scale, the current increase leads to more 

channel/rib heterogeneities, either for the current density distribution, or for the temperature 

and water content distributions. The operating temperature mainly impacts the membrane 

water content, and so its proton conductivity. Increasing the relative humidity of the 

reactants leads to higher current densities close to the air inlet. Finally, the increase of the 
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coolant flow rate emphasizes the hot spots, even if it reduces the global temperature 

difference between the inlet and the outlet of the cooling water.  

However, the model could be called into question in the following points. The important 

discrepancies in the parameters of membrane water transport (electro-osmosis drag and 

diffusivity) found in literature could considerably affect the water distribution in the cell. 

Moreover, the water saturation in the GDM could considerably impacts on its diffusive and 

thermal properties.  

Globally, the model is an efficient tool for the study of the correlation between coupled heat 

and water management and degradations. Using appropriate degradation models, the model could 

be useful for the study of the long term performance of the cell components under different 

operating conditions.  It is well known that the membrane swells when absorbing water, and even 

more when there is liquid-phase water. The highly heterogeneous distribution of temperature and 

humidity observed can induce high levels of hydrothermal stresses inside the membrane, and 

accelerate its degradation.  
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Introduction 
 

In Proton Exchange Membrane Fuel Cells, local temperature could be a driving force for 

many degradation mechanisms such as membrane hygrothermal deformation and creep, 

platinum dissolution, bipolar plates corrosion, etc. In order to investigate and quantify those 

effects, durability testing in automotive operating conditions were conducted as presented in 

the Chapter 2. During the ageing tests, the local performance and temperature were 

investigated using a printed circuit board inserted in the middle of the stacks. At the end of 

life, post-mortem analyses of the aged components were conducted in order to investigate 

their local microstructure and chemical composition. In parallel to those degradation studies, 

a thermal model was developed in the Chapter 3 in order to investigate the local temperature 

distribution inside the cell. This model was extended to a multiphysics full predictive model 

in the chapter 4, and used for the study of the impact of the operating conditions on coupled 

temperature and humidity distribution.  

 In this last part of the study, all the experimental and modeling tools presented in the 

previous parts are used simultaneously in order to investigate the correlation between local 

temperature and PEM fuel cells degradations in automotive application. The degradations 

observed during the ageing tests are presented and compared to the simulated thermal 

loading of the cell for the different tests. Those on-line studies are combined with the post-

mortem analyses of the aged components in order to correlate at the same time the 

performance losses and the observed components degradation to the thermal conditions in 

the cell.    
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1.  Study of the MEA degradations 

The stationary ageing test is the reference test used in this study because the model used to 

predict the local thermal conditions in the cell is run in stationary conditions. The other tests 

are used in order to better investigate the impact of local parameters cycling on ageing 

conditions.   

1.1. Global performance loss and degradation 

The global continuous diagnosis, which consisted of polarization curves and electrochemical 

characterizations, were performed each 200 h from the beginning of test (BOT) to the end of 

test (EOT).  

a) Polarization curves with potential degradation rates 

Fig.V.1 shows the evolution of the polarization curves during the three ageing tests and the 

degradation rates of the singles cells at the reference current density of 0.5 A/cm². 

 

Figure V.1 : Evolution of the polarization curves and potential degradation rates during 
the ageing test 

A high voltage drop is observed at the beginning of the test (during the firsts 200 hours). 

After that, the voltage drop becomes considerably slower. The mean degradation rate 

observed is 18	��/�. The voltage drop is quite homogeneous, except for the first cell which 

endured a degradation almost two times higher than the others. From a fluid dynamics point 

of view, the pressure drop at the stack inlet can induce an uneven distribution of the reactants 

gases and cooling water in the first cell. That could explain the higher degradations observed.  

The electrochemical characterizations may help in identifying the causes of potential loss.  
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b) Electrochemical characterizations 

Fig.V.2 shows the evolutions of the electrochemical active area (m²) and hydrogen 

permeation (mA/cm²) during the ageing test.  

 

Figure V.2 : Evolution of the ECSA and permeation current  

There are substantial electrochemical surface area losses during the first 200 hours. 

Regarding the hydrogen permeation, there is a zone where there is no considerable evolution 

at the beginning of the test, followed by a quite quadratic evolution from ~ 800 h. In the 

following, in order to eliminate the impacts of the edge-effects on the degradations observed, 

the cell 1 is excluded from the results.  The mean evolutions of the rugosity factor of the 

electrochemical active area (m²Pt/m² electrode) and hydrogen permeation (mA/cm²), for the 

5 remaining cells presented above, are presented in Fig.V.3.  

 

Figure V.3 : Mean evolutions of the permeation current and ECSA  

 The mean electrochemical surface area loss is very high during the firsts 200 h 

(~	0.1	
��
/
�/�) and becomes lower after (~	5 ∙ 10��
��
/
�/�). These results agree 

with the polarization curves evolution which exhibit higher performance drop at the 

beginning of the test. It can be explained by an important effect of Ostwald ripening during 
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the first hours as reported by Holby et al. [156]. In addition, higher is the operating 

temperature, faster should be the growth of the particles [105]. In the zones where the 

temperature exceeds 100°C, the thermal oxidation of Pt/C in air should occurs, as observed 

by Stevens et al. [157].  

 Regarding the membrane degradation, the hydrogen permeation is almost stable during 

the first 800 hours of the ageing test, followed by a quite quadratic evolution from 800 h as it 

can be observed from the fitting curve. The acceleration of hydrogen permeation with time 

corresponds to membrane thinning and/or apparition of microcracks. The membrane thinning 

effect can related to the chemical degradation of the membrane induced by oxygen crossover 

as described by Inaba et al. [158]. The Fluoride-ion release rate (FRR) is an interesting 

method to investigate such chemical degradation of the membrane.  

c) Effluent water analysis 

In order to investigate the membrane chemical degradation, FRR measurements of the 

effluent water was performed each 200 h. The results are presented in Fig.V.4. The 

measurements of the FRR at 1400 and 1600 h were not performed due to a problem on the 

data acquisition system. 

 

Figure V.4. Evolution of the FRR 

First, it is observed that fluoride is mainly released in the cathode effluent water. There is no 

significant evolution of the FRR over time, despite the quadratic evolution of the hydrogen 

permeation across the membrane presented in Fig.V.3. Therefore, it can be stated that the 

main mechanism affecting the membrane permeation is not the chemical degradation. 

Investigations at a more local scale may help to better investigate the correlation between the 

local thermal conditions to the performance losses observed.  
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1.2. Local performance loss and degradation 

Fig.V.5 shows examples of current density and temperature measured over the cell surface 

using the segmented printed circuit. The hot zones observed on the temperature map are 

related to the heterogeneities of the cooling flow field, as explained in the chapter III. 

 

Figure V.5 : Measured current density (A/cm²) and temperature (°C) with the 
printed circuit board 

For a detailed study of the correlation between local temperature and performance loss, five 

reference zones have been chosen in this study as indicated in Fig.V.5: 

• Zone a: Medium temperature zone, with low water concentration (cathode inlet); 

• Zone b: Hot zone, with relatively medium water concentration (center of the cell); 

• Zone c: Cold zone, with relatively medium water concentration (center of the cell); 

• Zone d: Cold zone, with high water concentration (cathode outlet); 

• Zone e: Cold zone, with low water concentration (anode outlet). 

8 current measurement segments are included in each zone in order to eliminate the side-

effect of welding points of the bipolar plates on local current density heterogeneities. Fig.V.6 

shows respectively the evolution of the current density and temperature during the stationary 

ageing test in the five reference zones. 

 

Figure V.6 : Evolution of the current density and temperature in the five reference 
zones 
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It is observed that there is no significant performance loss in the hot zone (b). However, there 

is a performance loss (about 14 %) close to the air inlet (low water concentration zones) and 

a performance rise (about 10 %) in the vicinity of the air outlet (high water concentration 

zones). Regarding temperature, no significant evolutions are found (~1.5 %) since 

temperature distribution is mainly controlled by the cooling flow field design. From this 

evolution of the local current density over time, it could be concluded that the main factor 

affecting the local performance loss is water concentration in the cell.  

 As a finding, it can be stated that the performance losses are mainly caused by the 

electrochemical active surface area loss at the beginning of the test and membrane 

mechanical degradations which is quite accelerated at the middle of test. Locally, the current 

density maximal values move from the air inlet towards the air outlet over time, suggesting 

that performance losses are related to the water concentration in the cell. A detailed 

examination of the aged components, especially the membrane, may help to understand the 

ageing mechanisms and their correlation with heat and water management. 

1.3. Post-mortem analyses 

Once the aged stacks are disassembled, post-mortem analyses of the different components of 

the cell are performed. The post-mortem analyses protocol is composed of different steps. 

The first one is the investigation of the hydrophobicity loss of the GDLs, performed by 

immersing them in water and measuring the contact angle of the water droplets on their 

surfaces. The results showed no significant hydrophobicity degradations. The second one is 

study of the through-plane microstructure of the MEAs, using SEM. To this end, 

representative zones have been chosen depending on the local temperature and water 

concentration (zones a, b, c, d and e presented in section 3.1.b). The results showed no 

particular heterogeneities of the active layers thickness and microstructure, despite the high 

heterogeneities of temperature (see Appendix 5). 

 In the following section, local analyses of the MEA at different scales are presented. The 

results are simultaneously compared to the measured data during the continuous on-line 

diagnosis and discussed with the simulated results.   

 Fig.V.7 shows one aged membrane of the stationary test, separated from the catalyst 

layers. The separation is made using ethanol in which the MEA is immersed for few hours. 

Thus, the catalyst layers are easily detached from the membrane without external effort. By 

comparing the membrane structure to the simulated local parameters, some correlations were 

found with the membrane water content. For this reason, on the same figure, the plot of the 
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predicted membrane water content obtained via the pseudo-3D model is presented for 

comparison.  

 

Figure V.7 : Comparison between the membrane structural degradations and the 
simulated water content  

 The first observation is the non-uniform printing of the reactive gases flow field on the 

membrane. There are some correlations between the water content distribution and the 

membrane structure. The transparent zones (black on the figure) are defect free. The 

opacification of the membrane (whitish zones on the figure) indicates structural changes. So 

higher is the water content, higher is the structural damage of the membrane. In particular, 

the degradations can be quantified as follows: 

• When the water content ��  is lower than 7, there is no visual observation of the 

membrane degradation; 

• When the water content reaches 7, there is the emerging of degradations characterized 

by a slight swelling of the membrane with a delamination of a whitish color film. The 

film thickness is of a few microns; 

• For �� � 10,  the delamination becomes more important, with the emerging of the 

intensification of the whitish color; 

•  For �� � 11,  there is a complete delamination of the film, with a considerable 

swelling. The intensification of the delamination causes superficial tears on the 

membrane. 

Fig.V.8 show a local analysis of the membrane degraded zones via SEM. From the 

microscopic studies, it appears that the observed degradations are delaminations, mainly 

observed at the anode side of the membrane.  
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Figure V.8: Microscopic studies of the membrane degradations 

 The delaminations are coupled to the channel/rib geometry printing with a severity which 

depends on the local water content (see Fig.V.7). The anode flow field geometry printing is 

predominant close to the hydrogen inlet while the cathode flow field geometry printing is 

predominant in all the other parts. It is well known that the behavior of the Nafion is 

governed by irreversible thermodynamics. Majsztrik et al. [159] systematically investigated 

the hydrothermal behavior of Nafion and observed that: on one hand water acts like a Nafion 

plasticizer at lower temperatures; on the other hand, water acts like a Nafion Stiffener at 

temperatures above 90°C. It is not easy to make a conclusion about the observed 

degradations because only the irreversible (plastic) deformations are observed in detail using 

SEM. Moreover, the impact of the membrane separation protocol (immersion in ethanol for 

few hours) may induce structural changes. Curiously, the stack aged in NEDC/RH cycling 

conditions underwent a huge membrane degradation. The high increase of the membrane 

permeation led to an instantaneous loss of functionality for some cells of this stack.  
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1.4. Comparison of the membrane permeating currents 

The evolutions of the rugosity factor (m²Pt/m² electrode) and hydrogen permeation (mA/cm²) 

during the stationary and NEDC/RH cycling tests are presented in Fig.V.9 for comparison.  

 

Figure V.9 : Mean evolutions of the permeation current and ECSA 

The ECSA loss of the NEDC cycle is very low compared to the stationary test one. 

Regarding the permeation current, there is a considerable increase for the NEDC/RH, 

compared to the stationary test. This makes think that the main effect of current and humidity 

cycling is an acceleration of the membrane degradation. The too high permeation (> 50 

mA/cm²) of one cell of the stack (cell number 15) at 1400 h caused its loss of functionality. 

Therefore, at ~ 1500 h, the cell 15 was removed from the stack, leading to a 29 cells stack. 

Curiously, no gradual performance loss was observed on a specific zone of the active area. 

From the literature review, elevated potentials and temperatures are supposed to increase the 

membrane chemical degradation while RH cycling is supposed to increase its mechanical 

degradation. Therefore, the following study focuses on the study of the chemical and 

mechanical degradations of the membranes of the NEDC/RH cycling test.  
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1.5. Comparison of the Fluoride Release Rates 

The FRR measured at the outlet of the stack aged in NEDC/RH cycling conditions is 

presented in Fig.V.10 with the one of the stationary test for comparison.  

 

Figure V.10. Evolution of the FRR 

It is observed that the during the NEDC/RH cycling, the FRR is almost 4 times higher than 

during the stationary test. This may be due to the higher mean operating potential and/or 

considerable hygrothermal loadings of the NEDC/RH cycling, compared to the stationary 

test. On the one hand, the membrane chemical degradation is more likely to occur at elevated 

potentials [160]. On the other hand, the operating temperature can also largely impact on the 

FRR [161]. According to Endoh et al. [162], reducing the humidification leads to an increase 

of the chemical degradation rate. The isolated effects of temperature and humidity on 

membrane chemical degradation can be studied by measuring the thickness of the membrane 

in the representative zones presented in section 1.3.a. 
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1.6. Effect of local parameters cycling on membrane chemical 

degradation 

The measured temperature evolutions in the references zones during one cycle of the NEDC 

is presented in Fig.V.11. The reference zones are the same as presented in section 1.2. 

 

 

Figure V.11 : Evolution of the local temperature if the reference zones during the 
NEDC/RH cycle 

It is clearly observed that the current cycling induce local temperature cycling in the cell, 

with different amplitudes between the zones. Higher is the temperature of the zone, higher is 

the amplitude of the temperature change. As a consequence, the hot zones (a) undergo a 

higher temperature cycling. Regarding the evolution of the cycles over time, there are not 

significant variations from the beginning to the end of test. The analysis of the membrane 

thickness in those zones via SEM showed no significant differences. That means local 

temperature and humidity are not the main factors affecting the membrane chemical 

degradation in this kind of cycle. As a consequence, the investigation has to be oriented 

towards mechanical degradation.  

1.7. Effect of local parameters cycling on membrane mechanical 

degradation 

In order to study the mechanical degradation, the IR camera with the hydrogen box presented 

in Chapter II, section 5.4 is used. This experimental technique is used to localize eventual 

pin-holes or local cracks of the membrane which are preferential paths for hydrogen 

permeation. For example, an infrared image of the MEA is presented in Fig. V.12 with the 

corresponding degradation point (red point) on the MEA. Whereas the mean temperature of 
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the MEA is ~ 20°C, a hot spot, where the temperature reaches 28°C, is observed in vicinity 

of the hydrogen outlet.  

 

Figure V.12 : a) Aged MEA in the hydrogen box for the IR camera test 

(b) Infrared image of the aged MEA 

The figure V.13 shows the correlation between the maximal temperatures observed with the 

IR camera and the membrane permeation. Accordingly, there is a good correlation between 

the maximal temperature observed with the IR imaging and the permeation current 

measured. The maximal temperature of the IR camera seems to be a great indicator of the 

gas crossover through the membrane. The localization of the maximal temperature allows 

getting information about the preferential zones of gas crossover due to local pinholes and/or 

local membrane thinning.  

 

Figure V.13 : Correlation between the maximal temperatures observed with the IR 
camera and the membrane permeation 

The IR images obtained for some cells of the aged stacks are presented in Fig.V.14. The 

preferential paths for hydrogen permeation (degraded zones) are mainly localized close to 

the anode outlet, except for the MEA 1, where it is located close to the hydrogen inlet.  
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Figure V.14 : Infrared images of some aged MEA of the tests  

 The figure V.15 presents the simulated membrane water content at the minimum and 

maximal operating current points of the cycle as well as the water content evolution between 

these two points. Negative water content variations (from ~ -6.5 to 0) correspond to 

membrane shrinking while positive variations (from 0 to ~ 8) correspond to membrane 

swelling. For more detail, the global membrane water content evolution in the different 

operating conditions of the ageing tests are presented in Appendix 4.  

 The three zones indicated on the 2D plot of the water content difference with dashed 

black contours are the zones with the highest water content changes during the NEDC/RH 

cycling. In two of these three zones, significant membrane degradations are observed using 

the IR camera. Curiously, in the last zone (center of the cell), no significant degradation of 

the membrane is observed. 

 

Figure V.15 : Correlation between the membrane degradations and the water content 
variations 

MEA 1 MEA 13 MEA 22 MEA 28 

I=176A, RH=30% I=22A, RH=50% 
Water content 

Water content difference 
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On the whole, it can be stated that IR camera is useful technique to locate the pin-hole or 

local membrane thinning. The degraded zones of the membrane mainly correspond to the 

zones in which there are significant variations of membrane water content over time. Indeed, 

the variations of the membrane water content induce non-uniform membrane swelling and 

shrinking. As a consequence, there are non-uniform hygrothermal stresses in the membrane 

which can induce micro-cracks and pinholes where the gas crossover may intensify. These 

mechanical degradations can cause the fuel cell loss of functionality, even without gradual 

performance loss.  However, further studies with huge humidity cycles are needed to better 

clarify this assertion since it is confirmed on only two zones among three.    

2.  Study of the Bipolar Plates degradations 

2.1. Degradations cartography 

Fig.V.16.a shows the cartography of cathode plate degradations for a cell aged in stationary 

conditions. Fig. V.10.b focuses on one cell of the stack (cell 25) and shows a localization and 

typology of the visual degradation observed by optical microscopy. The khaki color contrast 

is related to the severity of the degradations observed. The purple points, which indicate the 

welding zones of the bipolar plate, are not useful for this study.  
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Figure V.16 : Cartography of the cathode plate degradations 

The first observation is that the severity of the degradations observed is not homogeneous 

along the stack, but their localization over each cell is reproducible. When focusing on one 

single cell of the stack, different typologies of physical degradations are distinguished. The 

degradations are concentrated close to the air outlet, where the operating environment of the 

bipolar plate is wetter. 

 The same analyses are performed on the anode plates (see Fig.V.17). In this case, the 

severity of the observed degradations is indicated with the brown contrast. As for the cathode 

side, the degradations have the same localization on the anode plates, even if their severity is 

quite different.  

Reference surface 
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Degraded surface 
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Figure V.17 : Cartography of the anode plate degradations 

At the stack level, there is a linear evolution of the degradation severity from the first to the 

last cell. This could be caused by the heterogeneities of the cooling water distribution in the 

cells of the stack. Indeed, there is a progressive decrease of the coolant flow rate from the 

first to the last cell due to the pressure drop in the manifolds. This induces a progressive 

temperature increase from the first to the last cell. The degradations observed on the single 

cells are mainly located in the vicinity of hot spots of the cell, or close to the air outlet. 

Different types of physical degradations are identified via optical microscopy. For a deeper 

investigation of the observed degradations, Scanning Electron Microscopy is used. 

2.2. Analysis via Scanning Electron Microscopy 

When performing SEM on the aged bipolar plates (Fig.V.18), with a focus on the degraded 

zones, three main types of degradation can be distinguished: 

� Corrosion. It is characterized by the bipolar plate surface chemical attack; 

� Fouling and deposits. It is characterized by the accumulation of corrosion products 

and solid materials in the bipolar plate channels. Some SEM images of the deposits 

are presented in Fig.V.18.  

� Welding points attack. The welding points are weakened by corrosion since they are 

at the same time preferential paths for current flow and chemically altered zones. The 

study of the welding points attack is an important challenge for mitigating the 

corrosion, but it is beyond the scope of this study.  
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Figure V. 18: Example of degradations observed via SEM on the anode plate 

Detailed analysis by X-ray Photoelectron Spectroscopy should allow identifying the 

chemical composition of the deposits and the state of oxidation of the BP surfaces.  

2.3. Detailed analysis of the BP surface by XPS 

a) Anode plate analysis 

Fig.V.19 shows some results of the XPS spectrum analysis on some degraded zones of the 

anode plate.  

 

Figure V.19 : Example of XPS spectrum obtained on the anode plate 

The first observation is that there is no passive layer on the BP surface. Deposits of corrosion 

products of the BP are observed in the hot zones. In particular, chromium oxide (Cr2O3), iron 

oxide (Fe2O3) and Silicon oxide (SiO2) are observed in channels edge. In addition, graphite 

carbon is observed in the channels bottom. It may come either from the GDLs or from the 

BPs coating (on the land).  

 Deposits of CF2, F, C and O are observed close to the hydrogen inlet. It is worth noting 

that F- is very aggressive anion for the stainless steel and it should increase the potential risk 

of corrosion [110]. 

Zoom 

Zoom 
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b) Cathode plate analysis 

A passivation film of chromium oxides is observed on the cathode surface, excepted on the 

welding points, which are preferential zones of chemical attack. It agrees with what was 

observed by Davies et al. [163] and Wang et al. [164]. Corrosion products like chromium 

oxides, silicium oxides and iron oxides are observed in the channels. Pitting corrosion, 

coupled to an extremely localized depassivation is observed in some areas of BP, close to the 

air outlet.  

2.4. Correlation between local temperature, humidity and BP 

degradations 

Fig.V.20 shows the comparison between the anode plate degradations and the temperature in 

the gas channels.  

 

Figure V.20 : Comparison between the observed degradations on the anode plate 
and the local temperature 

The first observation is that there is a deep correlation between the anode bipolar plate 

degradations and the temperature. The zones in which the anode bipolar plate temperature 

reaches extreme values (in which the saturation is lower) correspond to the zones where 

elevated degradations are observed. However, there are some degradations which don’t 

really correspond to the hot zones as illustrated in dashed on Fig.V.20.a. XPS analyses 

showed that the fouling deposits in this zone are mainly composed of CF2, F, C and O. The 

presence of O, CF2 and F is likely related to a high oxygen permeation through the 

membrane, which cause its chemical attack by hydroxy and peroxy radicals. As a 

consequence, there is a considerable release of fluoride ions which are deposited on the 

bipolar plates since water is in vapor phase in this zone.  

b: Simulated temperature (°C) 
 

a: Anode plate degradations 
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Fig.V.21.a shows the map of the observed degradations on the cathode plate and Fig.V.21.b 

shows the simulated relative humidity in the cathode gas channels.  

 

Figure V.21. Comparison between the observed degradations on the cathode plate 
and the local humidity 

It is observed that there are some correlations between the humidity in the channels and the 

degradations.  The observed degradations in the channels were classified in: dry corrosion, 

damp corrosion and deposits. In general, the main factors affecting the corrosion of stainless 

steel are the moisture on the surface, the water concentration and the temperature. 

Furthermore, the presence of contaminants and corrosive anions could increase the corrosion 

rate [145]. Fig.V.22 shows a global description of the correlation between heat, water 

management and the BPs degradations along one channel. 

 

Figure V.22. Evolution of the water saturation along one channel - Description of the 
bipolar plates degradation mechanisms along the same channel 

 

The electrochemical reaction induces a progressive increase of water concentration in the 

channel since the convective transport is predominant. From a certain water concentration 

threshold, there is water condensation on the bipolar plate surface, depending on local 

a : Cathode plate degradations b : RH in the gas channels 
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temperature. The presence of liquid water increases the risk of corrosion. Farther in the gas 

channel, in the hot zones of the cell, the condensed water is evaporated again due to the 

increased water saturation pressure. This local evaporation increases the risk of deposits and 

fouling of the corrosion products on the bipolar plate surface.  

 Fouling, characterized by the accumulation of corrosion products and solid materials in 

the fuel cell environment, is mainly affected by temperature and phase change. During water 

evaporation (in the hot spots), the deposition of the dissolved materials is the major cause of 

fouling at the bipolar plates surface. The local flow velocity can also impact on fouling. At 

low flow rates, fouling is more probable due to the natural setting of suspended particles.  

The foulants pollute the reactive gases, increase the electrical resistance on the bipolar plate 

surface and they can be transported to the active layers by convection. The deposits can react 

with the coating layer and form other insoluble foulants, which can induce pollution of the 

MEA and even gas flows obstruction. Moreover, the corrosion products could cause ionic 

contamination of the membrane. Indeed, the membrane, which is an ionic conductor, may 

absorb the ionic impurities coming from metals corrosion and transported by liquid water 

droplets. As a consequence, its ionic conductivity would decrease, inducing a fuel cell 

performance drop.  

Conclusion 
 

In this study, a detailed investigation of the correlation between the coupled heat/water 

managements and PEMFCs degradations was conducted. Durability testing in automotive-

related operating conditions was studied with different in-situ global and local experimental 

techniques. At the end of life, post-mortem analyses of the aged MEA and BP were 

performed. The main conclusion which can be drawn from this study are:  

• The current density decreases over time in the dry zones and increases in the 

relatively wet zones.   

• High values of water content in the membrane cause changes in physical structure, 

which can induce local delaminations.  However, understanding the effect of the 

membrane delamination on performance loss remains a challenge.    

• The membrane mechanical degradation is mainly affected by the water content 

variations over time. Cyclic variations of water content induce hydrothermal stresses 

in the membrane which lead to micro-cracks and pinholes.  



182 

 

• Dry and damp corrosion are observed in the bipolar plates. The main factor affecting 

the bipolar plates corrosion is the moisture on the surface and the temperature. 

• Corrosion forms insoluble products that are transported by the flow and mixed with 

other degradation products (carbon from GDLs, CF2 from membrane…). Those 

products can be either transported out of the cell through advection by the flow, or 

deposited in the fuel cell environment depending on local heat and water 

management. Phase change is mainly responsible for accumulation of corrosion 

products and fouling.   

 However, the study can be called into question on some points. The model used for the 

study of heat and water transport was calibrated for the MEA at the beginning of life. 

However, physical properties of the cell evolve with ageing: the electrochemical active surface 

area evolution is heterogeneous over the active area; the through-plane thermal conductivity of 

the GDLs increases with ageing as observed by Burheim et al. [134].  One perspective of the 

study is the modeling of the transport phenomena in the cell taking into account the evolution 

and degradation of the components. Appropriate degradation models should be developed and 

calibrated to this end. Indeed, the disparate time scale between real-time performances loss 

and various degradation mechanisms remains a great challenge. Moreover, the 

thermomechanical degradation of the coating layer of the bipolar plates was not taken into 

account in this study. The large difference in the coefficient of thermal expansion (CTE) 

between the base metal and the coating material may induce failure in the hot zones by 

separation, microcracks and pinholes [112]. 
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CONCLUSION 

The work presented in this thesis allowed to understand the temperature heterogeneities in a 

PEM Fuel Cell and to quantify the sources of these heterogeneities. The pseudo-3D approach 

developed appeared to be an efficient and low-cost method to study the heat and water 

transport phenomena at the cell scale, while taking into account the local heterogeneities 

induced by the bipolar plate design. Indeed, the model was accurately validated against 

measured data obtained via a sensor plate inserted in the middle of the stack. The pseudo-3D 

approach can easily be applied to other flow-field designs, for design and optimization 

purposes. Indeed, it appeared that the cooling flow field is a crucial factor for the heat 

management, and particular attention should be paid to its design. The reactive gases flow-

field designs mainly impact on the water transport across the membrane, and consequently on 

the membrane water content. However, the phenomenon of water transport in the membrane, 

which represents the interface between the anode and cathode compartments, should be 

studied more carefully. Indeed, the elevated discrepancies in the water electro-osmosis drag 

and diffusivity models found in literature could induce non-negligible variations of the 

simulations, especially as regards temperature and water content distributions. The gas 

diffusion layer is also a crucial factor for the optimization of water management because it 

acts like a filter which maintains a considerable amount of the produced water in the MEA 

and contributes to smoothing the in-plane temperature heterogeneities.  

The fact that a large part of the study was dedicated to modeling is justified by the 

correlations between heat/water management and degradations observed in Chapter V. 

Indeed, the simulations were useful in order to understand the components degradation, 

especially for the membrane. Without the simulation results, the observed mechanical 

degradation of the membrane could not be explained. Furthermore, in automotive conditions, 

the membrane is the most critical component of the cell in terms of durability. Nowadays, 

many researchers pay more attention to the electrochemical active surface area loss, which 

often leads to a gradual performance loss. Many efforts should be dedicated to the membrane, 

because its degradation often leads to an instantaneous functionality loss of the system, even 

without gradual performance loss.  In the real automotive conditions, the global parameters 

cycling induces a non-uniform cycling of the local operating conditions, with can lead to a 

premature deterioration. From the correlation between the local water content and the 

membrane degradations found in this study, an empirical law can be deduced, for the 
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prediction of the membrane durability as a function of the value and/or oscillations of the 

local water content.   

Experimental techniques are often limited in terms of reproducibility and invasiveness. 

Consequently, for fuel cells development, advanced models should be continuously developed 

with an appropriate choice of the physics, the dimensionality and the computation scale. 

Continuum-level modeling means making assumptions, which should be accurately borne in 

mind when analyzing the results. For example, in this study it was considered that the 

computed variables do not evolve along the thickness of each component. Moreover, one-

phase flows were considered in the gas channels, and that may induce an uneven distribution 

of the saturation and phase change heat. The exact distribution of liquid water was measured 

by some researchers of the CEA and NIST using neutron radiography. They observed that the 

model developed in this study accurately predicts the localization of liquid water in the cell, 

excepted close to the air outlet, where there is a considerable amount of water condensation. 

But if the obtained results are post-treated taking into account the velocity ratio between the 

gas phase and the liquid phase, the coherence between the simulated and the measured 

distributions of liquid water becomes quite better close to the air outlet. In other words, the 

next step of this study should be the consideration of two-phase flows in the gas channels with 

the computation of different velocities for each phase. The resolution of the liquid phase can 

also be useful for the investigation of the bipolar plates degradations. Indeed, the 

accumulation of liquid water in the cell increases the probability of damp corrosion, 

especially in the cathode gas channels. The corrosion products are either transported out of the 

cell by the reactive gases flow, or deposited in the fuel cell environment depending on the 

local thermal conditions. The water evaporation is mainly responsible for the accumulation of 

the corrosion products in the gas channels.  

For a proper study of the durability, the evolution of the thermal and electrical properties 

of the fuel cell components with ageing should be considered. Appropriate components 

degradation models should be proposed and calibrated to this end. Another perspective of the 

study is the detailed study of the structural damages observed in the membrane, which are 

greatly correlated to the water content. The membrane represents a crucial component towards 

which must be oriented the researches, with the purpose of an optimized heat and water 

management strategy for an improved durability. Furthermore, the industrial ambitions of 

increasing the fuel cell temperature and reducing the external humidification in the near future 

should induce additional constraints for the membrane durability studies.   
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APPENDIX 

APPENDIX 1: MOLECULAR DIFFUSIVITIES 

The molecular diffusivities ��,� are temperature (�) and pressure (�) dependent following the 

empirical correlations:  

���,	�� 4.26 ∙ 10�� ∙ ��.��� �⁄  �	�,	�� 2.14 ∙ 10�� ∙ ��.��� �⁄  �	�,�� 2.44 ∙ 10�� ∙ ��.��� �⁄  

���,�� 6.43 ∙ 10�� ∙ ��.��� �⁄  

���,	�� 4.45 ∙ 10�� ∙ ��.��� �⁄  

 

APPENDIX 2: THROUGH-PLANE HEAT FLUXES 

Solid/solid heat flux 

 

For every component a of the system which exchange heat with an adjacent component b 

as represented in figure, the Fourier’s law for the heat flux from b to a is:  

 

���  !" #$#% &�� 
 

The through-plane heat flux integration leads to:			 
()  	1* "+ #$#%,+� 

- ∙ ()  0			 ↔ "+ #$#%  /0123413 
↔		()  ")*) ∙ 5$6%��7 ! $6%�78  19: ∙ 5$6%�;7 ! $6%��78

 "<*< ∙ 5$6%�7 ! $6%�;78 
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=>?
>@ $6%��7 ! $6%�7  () ∙ *)")$6%�;7 ! $6%��7  () ∙ 9:$6%�7 ! $6%�;7  () ∙ *<"<

 

()  1*) ∙ 1*)") A 9: A *<"< 5$6%�7 ! $6%�78 
�)  $6%�7 A $6%��72 		↔ 	$6%�7  2 ∙ �) ! $6%��7	 
�<  $6%�;7 A $6%�72 		↔ 	$6%�7  2 ∙ �< ! $6%�;7 

 

The through-plane heat flux, considering heat conduction in both solids and a contact 

resistance (Rc) becomes: 

()  1*) ∙ 	 1*)") A 9: A *<"< 52 ∙ �< ! $6%�;7 ! 2 ∙ �) A $6%��78 
 

()  1*) ∙ 	 1*)") A 9: A *<"< 52 ∙ �< ! 2 ∙ �) ! () ∙ 9:8 
And definitely: 

()  1*) ∙ 	 1*)2") A 9: A *<2"< 5�< ! �)8 
Analogously, the heat flux from a to b is:  

(<  1*< ∙ 	 1*)2") A 9: A *<2"< 5�) ! �<8 
 

Solid/fluid heat flux 

 

The Fourier’s law of heat conduction from %� to %� is: 

(B  	1* "+ #$#%,+�  "B*B ∙ 5$6%�7 ! $6%�78 
The Newton’s law of heat convection from %� to %�: (B  C6�D ! $6%277 
Flux continuity at interface %� leads to:: 
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"B*B ∙ 5$6%�7 ! $6%�78  C ∙ E�D ! $6%27F 
or 

↔ 	$6%�7  *B"B ∙ GHC A "B*BI ∙ $6%27 ! C ∙ �DJ				 
 

Introducing the average temperature of the solid component:  

�B  $6%�7 A $6%�72  

Allows calculating θ(%�): 
$6%�7  2�B A C ∙ *" �D2 A C ∙ *"  

	 
It follows for the Newton’s law of convection: 

(B  	 1*B ∙ C ∙ K�D ! 2�B A
C ∙ *" �D2 A C ∙ *" L 

 

↔					 (B  	 1*B 	 ∙ 11C A *2" ∙ 6�D ! �B7 
Analogously, the heat flux from the solid e to the fluid f is:  

(D  	 1*D 	 ∙ 11C A *2" ∙ 6�B ! �D7 
The heat fluxes (�,M	at the interfaces of the different components of the cell are 

presented in Fig.III.12.a, which illustrates the 3D geometry at the channel 

scale.  Figure III.12.b presents the corresponding pseudo-3D concept, which 

introduces a flattened configuration. Detailed through-plane heat fluxes.  
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Subsystem 

(Temperature) 

NOP QR 
Membrane (T6) 

1*� ∙ S 1*�2"� 	A 	 *�2"�T ∙ 6�� ! ��7 A
1*� ∙ S 1*U2"U 		A 	 *�2"�T ∙ 6�U ! ��7 

V�W� 
aCL 

(T5) 

1*� ∙ S 1*�2"� 		A 	 *�2"�T ∙ 6�� ! ��7 A
1*� ∙ S 1*�2"� 		A 	 *�2"�T ∙ 6�� ! ��7 

0 ∙ H∆YZ[Z2 ∙ \ ! ]:B^^I ∙ V 
A V�W� 

aMPL 

(T4) 

1*� ∙ S 1*�2"� 	A 	 *�2"�T ∙ 6�� ! ��7 A
1*� ∙ S 1*�2"� 	A 	9: 	A 	 *�2"�T ∙ 6�� ! ��7 

V�W� 

aGDL 

(T3) 

1*� ∙ S 1*�2"� 	A 	9: A	 *�2"�T ∙ 6�� ! ��7 A
1*� ∙ S 1*�2"� 	A 	9: 	A 	 *�2"�T ∙ /�∙ 6�� ! ��7 

A 1*� ∙ _ 1*�2"� 	A 	 1C�` ∙ /� ∙ 6�� ! ��7 
V�W� 

H2 Gas 

Channels 

(T2) 

1*� ∙ _ 1*�2"� A 1C�	` ∙ /� ∙ 6�� ! ��7 A
1*� ∙ _ 1*�2"� A 1C�	` ∙ /� ∙ 6�� ! ��7 0 

aBP 

(T1) 

1*� ∙ S 1*�2"� 	A 	9: A	 *�2"�T ∙ /� ∙ 6�� ! ��7 A
1*� ∙ _ 11C� A *�2"�	` ∙ /�∙ 6�� ! ��7 A 

1*� ∙ _ 11C�� A *�2"�	` ∙ /� ∙ 6��� ! ��7 A
1*� ∙ S 1*��2"�� 	A 	9: 	A 	 *�2"�T ∙ /�∙ 6��� ! ��7 

V�W� 

Cooling Water 

(T12) 

1*�� ∙ _ 1*�2"� A 1C��` ∙ /� ∙ 6�� ! ���7 A
1*�� ∙ _ 1*��2"�� A 1C��` ∙ /� ∙ 6��� ! ���7 0 

cBP 

(T11) 

1*�� ∙ S 1*�2"� 	A 	9: 	A 	 *��2"��T ∙ /� ∙ 6�� ! ���7 A
1*�� ∙ _ 11C�� A *��2"��` ∙ /�∙ 6��� ! ���7 A 

1*�� ∙ _ 11C�a A *��2"��` ∙ /� ∙ 6��a ! ���7 A
1*�� ∙ S 1*b2"b 	A 	9: 	A 	 *��2"��T ∙ /�∙ 6�b ! ���7 

V�W�� 
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Air Gas 

Channels 

(T10) 

1*�a ∙ _ 1*��2"�� A 1C�a` ∙ /� ∙ 6��� ! ��a7 A
1*�a ∙ _ 1*b2"b A 1C�a` ∙ /� ∙ 6�b ! ��a7 0 

cGDL 

(T9) 

1*b ∙ S 1*��2"�� 	A 	9: 	A 	 *b2"bT ∙ /� ∙ 6��� ! �b7 A
1*b ∙ _ 11C�a A *b2"b` ∙ /�∙ 6��a ! �b7 

A 1*b ∙ 	S 1*�2"� 	A 	9: 	A 	 *b2"bT ∙ 6�� ! �b7 
V�Wb 

cMPL 

(T8) 

1*� ∙ S 1*b2"b 	A 	9: 	A 	 *�2"�T ∙ 6�b ! ��7 A
1*� ∙ S 1*U2"U 	A 		 *�2"�T ∙ 6�U ! ��7 

V�W� 
cCL 

(T7) 

1*U ∙ S 1*�2"� 	A 		 *U2"UT ∙ 6�� ! �U7 A
1*U ∙ S 1*�2"� 	A 		 *U2"UT ∙ 6�� ! �U7 

1 ∙ H∆YZ[Z2 ∙ \ ! ]:B^^I ∙ V 
A V�WU 

 

 

APPENDIX 3: THERMODYNAMIC PROPERTIES OF THE REACTIV E GASES 

a) Thermodynamics and transport properties of the reactant gases 

The transport properties of the reactant species, which depend on temperature, were 

calculated using the relationships proposed by Todd and Young [165]. These relations are 

given in appendix. For the reactive gases, which are a mixture of different species, the kinetic 

theory of the transport properties proposed by Van Der Waals was used. The heat capacity of 

the mixture is: 

cde�f  gh�cdi�  

The dynamic viscosity of the mixtures of ideal gases is given by the Wilke formulas [166]: 

je�f  g k�j�∑ kMm�M��  

Analogously, the thermal conductivity is: 

ne�f  g k�n�∑ kMm�M��  
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Where ψij is given by:  

m�M  o1 A H
pMp�I� �q Hj�jMI� �q r

�

s8 H1 Ap�pMI
 

b) Diffusion coefficients 

Fickian approximation is used in this model as illustrated in section 1.1.c, instead of the 

Stefan-Maxwell diffusion which is more adapted for the transport of more than two 

concentrated species. Lindstrom et al. [167] demonstrated that the use of the diagonal Fick 

diffusivity can be equivalent to the Maxwell-Stefan diffusion model, with variation by only a 

few percent, if an appropriate equivalent diffusion coefficient is used. For the PEM fuel cell 

application, they proposed the following value for the cathode equivalent diffusivity, which is 

used in the study:  

�a:  1.07 ∙ 10��	v�/2 
At the anode compartment, the reference diffusion coefficient is the binary diffusivity 

between Y�	and  Y�x: 

�a)  2.14 ∙ 10�� ∙ ��.����  

In the Porous media, there is a Bruggeman correction to account for the impact of porous and 

tortuous structures on the effective molecular diffusivity: 

�BDD  �a ∙ yz 
 

c) Ideal gases approximation for the reactants 

The hypothesis of ideal gases for the reactants, presented in 1.1., needs justification. This can 

be done by comparing the densities of ideal gas and water vapor at the fuel cell temperature 

and pressure operating ranges.  In the reference operating conditions, the temperature ranges 

from ~ 78 to ~ 100°C and the water vapor partial pressure maximal ranges from ~ 0.2 to ~ 

0.45 bar.  
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At T=80°C and �	��  0.32 bar (anode reference nominal conditions): 

• The water vapor density is: {  0.19757	n}/v� 
• The ideal gas density is: {  ~∙�	���∙� = 0.196 n}/v� 

Thus, the error caused by the ideal gas approximation is about 0.8%. 

At T=80°C and �	��  0.23 bar (cathode reference nominal conditions): 

• The water vapor density is:  {  0.14175	n}/v� 
• The ideal gas density is: {  ~∙�	���∙� = 0.141 n}/v� 

In this condition, the error caused by the ideal gas approximation is about 0.5%. 

At T=80°C and �	��  �243680°/7) =  0.47 bar (saturation point):  

• The water vapor density is: {  0.291	n}/v� 
• The ideal gas density is:  {  ~∙�	���∙� = 0.288 n}/v� 

Thus, the error caused by the ideal gas approximation reaches 1% at the saturation point. 

Then, it can be stated that the water vapor density satisfies the ideal gas law in all the 

operating range of the fuel cell.  
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APPENDIX 4: EVOLUTION OF THE LOCAL PARAMETERS DURIN G THE 

AGEING TESTS 

During the stationary test, the cell is under prolonged thermal loading, with considerable spatial 

heterogeneities of temperature and water content along the active area. For the load/thermal 

cycling, there are also high temperature and water content heterogeneities along the active area, 

which also evolve with time. Significant variations of temperature (~15°C) and water content 

(~3) are observed over each cycle, leading to evolutions between moderately humidified and dry 

conditions. Regarding the NEDC/RH cycling, the hydrothermal conditions of the cell undergo 

noteworthy spatial and temporal variations, which should induce notable and non-uniform 

hygrothermal stresses in the membrane. The corresponding results of the simulations are 

presented in the following figure: 

 

Simulated local operating conditions of the three reference ageing tests 

NEDC/RH 

Load/thermal 

Temperature T 

Water content " 

" 

" 

T	6°C7

T	6°C7

Stationary 
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APPENDIX 5: THROUGH-PLANE ANALYSIS OF THE AGED M.E. A. 

 

a) Analysis of the through-plane microstructure of the MEA 

In order to study the local microstructure of the MEA, representative zones have been identified 

based on membrane local temperature and water content distributions predicted by the model. 

The figure presented below shows those cut zones (samples) for through-plane microscopic 

studies superposed on temperature and water content distributions. Those cut zones, which have 

different values of temperature and water concentration, are included in the reference zones a, b, 

c and d studied in section the 1.2 of the Chapter V. 

 

Different cut zones superposed on water content and temperature distribution simulated 
over the membrane surface 

The following table gives the mean hygrothermal operating conditions of the chosen zones.  

Zone Mean water content Mean temperature (°C) 

A 8 83.5 

B 4.5 90.5 

C 10.5 84.5 

D 11.5 84.7 

Membrane water content and temperature in the reference zones 

The following figure shows some optical microscopy results (x 2000) on the reference cut zones 

of the MEA 22 of the stack aged in stationary condictions. A micro-crack of the cathode catalyst 

layer, with a membrane creep inside the crack is observed in the main hot spot of the MEA (zone 

B). No significant degradation is observed in the other zones. 
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Optical microscopy images on the different zones (x 2000) 

SEM analysis (obtained in back-scattered electrons) of the reference cut zones on the MEA 18 of 

the stack aged in stationary conditions: 

 

SEM images obtained in back-scattered electrons for the different samples 

Local delaminations are observed between the different layers of the MEA. In particular, there 

are two different types of delamination. Some of them are located between the cathode catalyst 

layer and the membrane (zone B) and the others are between the anode catalyst layer and the 

microporous layer (zone A). The first ones are mainly located in the hot zones (B) where the 

temperature exceeded 90 °C. When the temperature reaches 90°C, the probability of thermal and 

mechanical degradation is highly increased due to the relatively low glass-transition temperature 

of hydrated Nafion. It is worth noting that the delaminations are very localized (length ~100 µm). 

Micro-crack 

cCL 
Membrane 

aCL 

A 

D C 

B 
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Combined to the reactive gases permeation, this delamination observed could induce local 

damage or shorting of the membrane despite of no gradual performance loss observation. 

 


