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1
INTRODUCTION

This thesis deals with Petri-net-based techniques for fault diagnosis of discrete event sys-

tems (DESs). The work was accomplished in the Fault Tolerant Systems’ team (STF – Sys-

tèmes Tolérants aux Fautes) of the LAGIS laboratory (Laboratoire d’Automatique, Génie

Informatique et Signal, UMR CNRS 8219), at the École Centrale de Lille (EC-Lille), in col-

laboration with the COSYS/ESTAS (Composants et systèmes / Évaluation des systèmes

de transports automatisés et de leur sécurité) research team at IFSTTAR (Institut Français

des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux). This

thesis was supervised by Prof. Armand TOGUYÉNI and Dr. Mohamed GHAZEL, senior

researcher with IFSTTAR - COSYS/ESTAS.

The current chapter presents an overview of this thesis. Section 1.1 introduces the

background of the fault diagnosis problem in the context of DESs. Section 1.2 presents

our research objectives of this thesis. In Section 1.3, we state the contributions of this

thesis. Finally, we give the organization of this thesis in Section 1.4. Note that the general

hypotheses will be given in Section 2.3, after the introduction of some basic notations.

1.1 Background

1.1.1 Fault Diagnosis

Systems around us are more functional as their structures are more complex. For complex

and critical systems, e.g., aerospace systems, military systems, transportation systems,

power systems, manufacturing and production systems, the safe and continuous opera-

tion is imperative; therefore, it is necessary to let any abnormal behavior be detected and

identified as soon as possible, so that reconfiguration can be made to prevent the sys-

tem from dangerous consequences [Lin94]. Fault diagnosis is such a field dealing with

detecting any fault and its type, which ensures the safety and availability of systems.

1



CHAPTER 1. INTRODUCTION

Reviewing the systems mentioned above, we see that they have the following fea-

tures:

1. Large-scale and complex systems. In order to fulfill complex functions, some system

structures are designed to be larger and more complex, even though advanced de-

sign ideas have been used [Mor+07]. Complex structures also make potential fail-

ures more difficult to be detected and located, since the failure may be long-term

underlying anywhere in the system.

2. Safety-critical systems. In safety-critical systems, a failure may cause serious mate-

rial and/or human damages. In this context, it is important to ensure that any fault

occurred is detected as soon as possible. Moreover, this issue should be well consid-

ered at the design stage.

3. Continuous operation. For large systems, the start-up, shutdown and alternation of

operations often consume a lot of time and energy. Thus they are expected and

designed to offer high availability. From a practical point of view, it is not advisable

to systematically halt or stop the system to make a thorough examination. This

means the diagnosis procedure needs to be performed online and has to be efficient.

Now let us consider the features of faults. A fault results in a non-desired deviation

of the system or of one of its components from its normal or intended behavior. In fault

diagnosis, a fault that we study on is often such an “unobservable”, “indistinguishable” or

“silent ” event (or state), which is difficult to be distinguished from normal behavior di-

rectly, since an “observable” fault can be always detected by a direct sensor reading.

According to their lasting in time, faults are classified into the following three cate-

gories [D’A+99; DT89; Nel90], as shown in Figure 1.1:

1. A transient fault, which is often of finite duration shorter than the stable time inter-

val of the affected signal, occurs only once and then disappears. It may be the result

of external causes like interference. Generally, transient faults are the most common,

and they are also hard to identify, since they may disappear after having produced

errors.

2. An intermittent fault occurs and disappears repeatedly, making the system vibrate

between normal and fault states. It can be caused by an unstable device operation.

3. A permanent fault occurs but does not disappear (such that the system remains in a

fault state) until repairing measures are undertaken. Typically, a permanent fault is

due to subsystem failures, physical damage or design error.

Diagnosis of transient [Sch+01], intermittent [Con+04; Jia+03a; Sol+07] and perma-

nent faults have been studied. In this thesis, we only consider the diagnosis problems of

permanent faults and a series of works on diagnosis of permanent faults will be reviewed

in Chapter 3.
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Permanent fault

Intermittent fault

Transient fault

Time

Normal

Normal

Normal

Fault

Fault

Fault •

Figure 1.1: Transient fault, intermittent fault and permanent fault

1.1.2 Discrete Event System (DES)

Diagnosis techniques that we deal with in the framework of this thesis are model-based,

which means that one has a behavioral model that depicts the system dynamics. More-

over, we assume that diagnosis analysis can be undertaken at an abstraction level such

that the system behavior can be abstracted as a discrete-event model [Lin94].

A DES is informally a discrete-state and event-driven system [CL07]. More specifically,

the state space of a DES is a discrete set, e.g., a traffic light has three states: RED, YELLOW

and GREEN; a push button has two states: ON and OFF. The state transition mechanism

of a DES is event-driven, i.e., any state change is driven by an event execution, e.g., the

state of a traffic light changes from RED to GREEN after a permission signal is sent; the

state of a push button changes from OFF to ON after being pressed.

We study the problem of fault diagnosis in the context of DES, since most industrial

systems can be abstracted as a discrete-event model to a certain level of abstraction [Lin94;

Sam+95], which can be untimed, timed or stochastic. Note that many systems around us

are Computer-Controlled Systems, whose state space and event-driven mechanism are built

on binary logic. They can be treated as DESs to a certain degree. This is why control and

diagnosis of DESs have been extensively studied in recent years.

In order to characterize DESs, different modeling notations have been developed [CL07]:

language and automata, PN theory, (max,+) algebra, Markov chains and queuing the-

ory, discrete-event simulation, perturbation analysis, concurrent estimation techniques,

etc. Among them, automata and PNs are the two most used models in DES-based diag-

nosis. In this thesis, we study the DES-based diagnosis both in the untimed and the timed

context, using the LPN and LTPN notation.
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1.1.3 Problems

Fault diagnosis has been extensively studied. Most existing methods can be classified

as follows: fault-tree-based methods, quantitative, analytic model-based methods, ex-

pert systems and other knowledge-based methods, model-based reasoning methods, and

DES-based methods.

During the two past decades, DES-based methods have received a lot of attention in

industry and academia, since computers control more and more systems, and most of

them can be abstracted as discrete-event models to a certain abstraction degree.

DES-based diagnosis is first studied in the framework of automata [Sam+95], which

brings the problem of “state explosion”. Afterward, some research turns to the PN-based

technique [Ush+98], since PNs can provide solutions based on not only state enumeration

but also structure analysis.

At this stage, we would like to point out that some notions pertaining to diagnosis

issues can have various meaning according to whether they are used by continuous au-

tomatic community or discrete automatic community, e.g., detection, identification, local-

ization, etc. Let us recall here that when using these concepts, we refer to the definitions

as conventional within the discrete automatic community.

For DES-based diagnosis, we summarize the main issues as follows:

1. Diagnosability [Jia+01; Lin94; Sam+95; YL02a]. Informally, diagnosability refers to

the ability to detect and identify any fault within a finite delay after its occurrence.

The diagnosability is the basis of diagnosis, i.e., a fault can be diagnosed only if

the system is diagnosable w.r.t this fault class. Diagnosability is a property that is

analyzed offline, and most of the existing approaches use enumerative techniques

to investigate diagnosability.

2. K-diagnosability. As an extension of diagnosability, K-diagnosability requires that a

fault can be diagnosed in a given number of steps after its occurrence. This topic is

studied as K-diagnosability in the untimed context [Bas+10; Cab+12b; YG04] and

as ∆-diagnosability in the timed context [Tri02], as will be presented in details in

this dissertation. Note that, from different points of view, there are also some other

extensions of diagnosability, which will be discussed in Chapter 3.

3. Online diagnosis. Diagnosis process, strictly speaking, refers to the online monitor-

ing of the system that aims at detecting any abnormal behavior and identifying the

possible faults behind that. Moreover, detection and identification need to be per-

formed promptly and generally with as less interference with the system as possi-

ble. Hence, the objective of online diagnosis is passively diagnosing a fault, without

actively interrupting or alternating the operation of systems.

4. Active diagnosis. Compared with passive diagnosis whose objective is to observe sys-

tem behavior and give a verdict of potential faults, active diagnosis is an integrated

approach to control and diagnosis [Sam+98]:
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a) In the early period, the design of systems and the development of diagnosis

tools are decoupled. Fault diagnosis could not be well performed this way,

since the system may be undiagnosable. Even if the system in question is diag-

nosable, the design and development of the corresponding diagnosis tool may

be difficult, due to some practical limitations. The active diagnosis in the sense

of [Sam+98] aims at developing a diagnosable system by early integrating di-

agnosability analysis since the design phase. In distributed systems, [Rib+07]

determines the characteristics and the modifications that could be useful for

designers to improve and to guarantee some diagnosability objectives.

b) For existing systems, one can turn certain sensors ON or OFF as necessary,

such that the system can be monitored by a dynamic observer whose set of

observable events varies according to external commands. Diagnosis based on

dynamic observers permits achieving cost savings [CT08], since certain sen-

sors only operate as necessary.

5. Enhancement of diagnosability [Wen+06]. Although the active diagnosis is a trend in

the system design, existing undiagnosable systems have to be treated in another

way. It is possible to let these undiagnosable systems become diagnosable, by the

change of the number, type and/or placement of sensors. This has been further

studied as the problem of sensor optimization [Cab+13b; Deb+02; Jia+03b; RH10].

Besides, there are also other directions on diagnosis study, such as meta-diagnosis [Bel+11],

robust diagnosis [Car+12], etc. However, in this thesis, we will only deal with the first

three problems, aiming at developing new techniques to improve the efficiency of fault

diagnosis analysis on the basis of existing approaches. In the future, we will be interested

in active diagnosis and sensor optimization issues.

1.2 Objectives

As will be discussed in Chapter 3, some conventional approaches [Cab+12b; Jia+01; Sam+95;

YL02b] for diagnosis analysis are based on a priori built state space, which suffer from the

inherent state explosion problem. However, these works have developed necessary and

sufficient conditions for diagnosability, and the corresponding results have been formally

proved. Our goal here is to develop a new technique, namely the on-the-fly and incremen-

tal technique, which is able to tackle the state explosion problem in the untimed context

on the basis of existing proven results. In particular, in the timed context, we intend to de-

velop a formulation of the diagnosability issue, with the help of the time interval splitting

technique, in such a way to bring the techniques of the untimed context into play.

5



CHAPTER 1. INTRODUCTION

1.3 Contributions

This work will focus on fault diagnosis using the PN modeling formalism. The contri-

butions discussed mainly in Chapter 4 and Chapter 5 are summarized as follows, while

separating contributions in the untimed context and those dealing with timed diagnosis.

1. Fault diagnosis of untimed DESs:

a) Algebraic reformulation of diagnosability analysis:

The structure of a PN as well as its dynamics can be thoroughly described

by conventional algebraic representation with the help of markings, incidence

matrix and state equation. This formulation, however, is not sufficient for fea-

turing LPNs, as there is no characterization of relations between transitions

and events. To cope with the above shortcoming, we propose novel algebraic

representation for LPNs, based on some new notions that will be introduced,

namely extended incidence matrix, event marking, fault marking and extended state

equation, to both make explicit the mapping relationship between transitions

and events and record event occurrences.

b) On-the-fly and incremental analysis of K-diagnosability:

Based on several new concepts that we introduce, a tree-like structure holding

both the markings and their related fault information is elaborated. This struc-

ture, called FM-set tree, is computed on the fly while checking K-diagnosability

on the basis of a recursive algorithm we propose. Thanks to the on-the-fly in-

vestigation of diagnosability, building the whole FM-set tree is not necessarily

required. This is a notable advantage compared with the existing approaches,

which first build the reachability graph (RG) [Ush+98].

c) On-the-fly analysis of conventional diagnosability based on K-diagnosability:

By extension, we solve the conventional diagnosability by dealing with a se-

ries of K-diagnosability problems, where K increases progressively. Compared

with the existing approaches based on an RG or a diagnoser, generally only a

part of the state space is generated and searched.

d) Online diagnosis:

When the system is diagnosable (or K-diagnosable), the online diagnosis is

performed on the basis of a diagnoser, which is straightforwardly obtained

from the FM-set tree.

e) Development of a software tool for K-diagnosability and diagnosability analy-

sis:

In order to show the effectiveness of our method, we develop a diagnosis tool

called On-the-Fly PEtri-Net-based Diagnosability Analyzer (OF-PENDA), and

compare our approach with other existing ones with the help of the Workshop

on Discrete Event Systems (WODES) diagnosis benchmark [Giu07] and our

6
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developed railway level crossing (LC) benchmark. We thus show that some

big models are tractable using the on-the-fly technique, whereas some existing

approaches fail to analyze them, due to memory limitations.

2. Fault diagnosis of timed discrete event systems (TDESs):

a) We deal with the diagnosability of TDESs. The model we use is the LTPN -

an extension of TPN, wherein each transition is associated with an event that

can be either observable or unobservable. We propose an approach to check

diagnosability and provide the solution for the minimum delay ∆ that ensures

diagnosability. Diagnosability analysis is performed on the basis of on-the-fly

building of a structure that we call ASG and which carries information about

the state of the LTPN.

b) We develop a labeled timed diagnoser (LTD) for online diagnosis of LTPNs,

on the basis of the developed ASG.

1.4 Organization

This manuscript is organized as follows:

• In Chapter 2, we review some formalisms of DES and TDES, i.e. automata, PNs,

timed automata (TAs) and TPNs. In particular, we present two extensions of PNs

that will be used in this thesis: LPNs and LTPNs.

• In Chapter 3, we review the literature on DES-based diagnosis. The existing works

will be classified from different points of view.

• In Chapter 4, we discuss the problem of fault diagnosis of untimed DESs. First,

we introduce our algebraic representation of LPNs. Then we provide algorithms

to check K-diagnosability and conventional diagnosability. We demonstrate how to

perform online diagnosis of LPN models. Finally, we developed a diagnosis tool

called OF-PENDA and perform a comparative analysis with the help of WODES

benchmark and the LC benchmark, to show the effectiveness of our technique.

• In Chapter 5, we study the fault diagnosis problem of TDESs. We introduce the time

interval splitting (TIS) technique to reformulate the diagnosis problem of TDESs in

such a way to make it possible to apply the conventional diagnosability analysis

technique of the untimed context. Some notations are developed to characterize the

features of LTPNs. We propose necessary and sufficient conditions for the diagnos-

ability of TDESs, and provide algorithms to check ∆-diagnosability and diagnos-

ability for TDESs.

• In Chapter 6, we give the concluding remarks and draw some future works.
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2
MODELING FORMALISMS FOR DIAGNOSABILITY

ANALYSIS OF DES

In order to discuss the fault diagnosis problem of DESs, this chapter reviews some main

modeling formalisms of untimed DESs: automata, PNs and LPNs; and of TDESs: TAs,

TPNs and LTPNs. We will explain why the LPN and the LTPN are chosen as the model

for diagnosis analysis in this study. Also, we address the diagnosability of DESs and

TDESs while using these above notations.

2.1 Untimed Modeling Formalisms of DES

In the fault diagnosis field, DES-based methodology has been widely investigated and

applied for high level analysis, since most considered systems can be abstracted as a DES

model to a certain degree [CL07; Lin94], using techniques such as language and automata,

PN theory, (max,+) algebra, Markov chains and queuing theory, perturbation analysis,

concurrent estimation, etc. In our study, we discuss fault diagnosis of DESs while consid-

ering automata and PN models of the analyzed system.

2.1.1 Automata

An automaton is a graphical structure to describe the state space and state transitions of

a DES. In particular, one type of automata, called finite state automaton (FSA) or finite

state machine (FSM), is very useful in the analysis of finite-state DESs.

2.1.1.1 Finite State Automaton (FSA)

Definition 1 An FSA is a 5-tuple G = (X, Σ, δ, x0, F), where:

• X is a finite set of states;

9
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• Σ is a finite set of events;

• δ : X × Σ→ 2X is the partial transition mapping;

• x0 is the initial state of the system;

• F ⊆ X is the set of accepted states.

An automaton can be represented by a graph, where a state is denoted by a circle,

an event is denoted by an arrow from a source state to a target state, the initial state is

denoted by a circle with an arrow into it and a final state is denoted by a double circle.

Example 1 Let us look at automaton G = (X, Σ, δ, x0), F, as shown in Figure 2.1,

1start

2

3

4

5 6

c

a

u

f

ab b

a a

Figure 2.1: An example of automaton

• The set of states is X = {1, 2, 3, 4, 5, 6};

• The set of events is Σ = {a, b, c, f , u};

• The initial state is 1;

• δ(1, c) = {2} and δ(5, a) = {5};

• The set of accepted states is F = {6}.

2.1.1.2 Language Represented by Automata

The behavior of the system is described by the language L(G) generated by G. Henceforth,

we shall denote L(G) by L. L is a subset of Σ∗, where Σ∗ is the Kleene closure of set Σ.

In order to deal with the diagnosis problem of DESs in the framework of automata, a

DES is first abstracted as an automaton model including both normal and faulty behavior.

The set of events Σ is partitioned into two disjoint subsets as Σ = Σo ⊎ Σu, where Σo is

10
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the set of observable events and Σu is the set of unobservable events. Let Σ f denote the

set of faulty events that are to be diagnosed. We assume that Σ f ⊆ Σu, since it is straight-

forward to diagnose an observable faulty event. The set of fault events is partitioned into

m disjoint subsets that represent the set of fault classes:

Σ f = ΣF1 ⊎ ΣF2 ⊎ · · · ⊎ ΣFm

and this partition can be denoted by Π f .

Let us define the projection operator Po : Σ∗ → Σ∗o as


























Po(ǫ) = ǫ

Po(e) = e if e ∈ Σo

Po(e) = ǫ if e ∈ Σu

Po(se) = Po(s)Po(e) with s ∈ Σ∗, e ∈ Σ

(2.1)

The inverse projection operator P−1
o is defined as P−1

o (r) = {s ∈ L| Po(s) = r} for r ∈ Σ∗o .

In other words, given a sequence of events s, Po(s) filters all the unobservable and

empty events, leaving a new sequence consisting of only the observable events in s.

The post-language of L after s, denoted by L/s, is defined by:

L/s = {s′ ∈ Σ∗| ss′ ∈ L}

Example 2 For automaton G in Figure 2.1, assume that Σo = {a, b, c} and Σu = {u, f}. Given

s ∈ L(G), s = c f abaua, Po(s) = cabaa.

2.1.1.3 Observer Automaton

We say a system is “deterministic” in the sense that the next state after the occurrence

of an event is unique. In this context, an automaton as introduced in Section 2.1.1.1 is

not necessarily deterministic, since the function δ permits transitions from a state to two

different states upon the same event. Moreover, ǫ-transitions are also allowed. However,

a non-deterministic automaton G can be always transformed into a deterministic one

Obs(G), which is called observer automaton. This structure generates and marks the

same languages as the original non-deterministic automaton. The algorithm of building

an observer from a non-deterministic automaton is introduced in [CL07].

In other terms, an observer state is obtained by regrouping the automata states that

are reached from a given observer state right after the occurrence of the same observable

event. This provides a structure to estimate all possible states after the occurrence of a

sequence of observable events. An observer automaton can be used as a basis for fault

diagnosis.

Example 3 For the automaton in Figure 2.1, assume that the set of observable events is Σo =

{a, b, c}, the set of unobservable events is Σu = { f , u}, the observer is built in Figure 2.2.

11



CHAPTER 2. MODELING FORMALISMS FOR DIAGNOSABILITY ANALYSIS OF DES

{1}start {2, 4} {3, 5, 6} {5, 6} {4}c a a

b

b

a

a

Figure 2.2: The observer of the automaton in Figure 2.1

2.1.1.4 Diagnoser Automaton

Diagnosis is the process consisting to assign to each observed string of events a diagnosis

verdict, such as “normal”, “faulty” or “uncertain”. The uncertainty may be reduced by

further observations. For G, a plant modeled by an automaton, this inference can be done

with the help of a diagnoser automaton called Diag(G). A diagnoser automaton is actu-

ally a special observer such that each state is a subset of X × {N, Y}, where N denotes

that the state is reached after a sequence of events without fault, and Y denotes that the

state is reached after a sequence of events holding a fault.

Given a state x of an automaton G having an entering observable transition, if it can

be reached by two paths having the same observable projection and such that one path

contains the fault f and the other one does not, then there will be two pairs (x, N) and

(x, F) in the states of Diag(G).

This also means that the cardinality of Diag(G) is always greater than or equal to the

cardinality of Obs(G).

Example 4 For the automaton in Figure 2.1, assume that the set of unobservable fault events is

Σ f = { f}, the diagnoser automaton is given in Figure 2.3.

{1N}start {2N, 4F} {3N, 5F, 6F} {5N, 6F} {4F}c a a

b

b

a

a

� normal state � F-uncertain state � F-certain state

Figure 2.3: The diagnoser of the automaton in Figure 2.1

2.1.1.5 Diagnosability of Automata Models

The problem of diagnosability is to determine whether the system is diagnosable or not,

i.e., once a fault has occurred, can it be detected and identified in a finite number of steps?

12
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Definition 2 [Sam+95] A prefix-closed and live language L is said to be diagnosable w.r.t the

projection Po and w.r.t the partition Π f on Σ f if the following holds:

(∀ i ∈ Π f )(∃ ni ∈ N)[ ∀ s ∈ Ψ(ΣFi)](∀ r ∈ L/s)[|r| ≥ ni ⇒ D]

where:

• Ψ(ΣFi) denotes the set of all traces of L that end in a faulty event belonging to fault class

ΣFi ;

• |r| denotes the number of events in trace r;

• the diagnosability condition D is

ω ∈ P−1
o [Po(st)] ⇒ ΣFi ∈ ω

In other words, diagnosability requires that each fault event leads to distinct observa-

tions, sufficient to allow the identification of the fault within a finite delay.

Let us now introduce the definition of indeterminate cycle that is fundamental to test

the property of diagnosability in the diagnoser automaton [Sam+95].

Let us consider a system G and its diagnoser Diag(G). We say that a cycle in Diag(G)

is an indeterminate cycle if it is composed exclusively of uncertain states for which there

is:

• a corresponding cycle in G involving only states that carry Y in their labels in the

cycle in Diag(G) and

• a corresponding cycle in G involving only states that carry N in their labels in the

cycle in Diag(G).

The notion of indeterminate cycle is very important because their analysis gives us

necessary and sufficient conditions for diagnosability and gives a method to verify the

property of diagnosability of the system.

Proposition 1 [Sam+95] A language L without multiple failures of the same type is diagnosable

if and only if its diagnoser Diag(G) has no indeterminate cycles w.r.t each failure type ΣFi .

It is important to emphasize that the presence of a cycle of uncertain states in the

diagnoser does not necessarily imply undiagnosability. For example, in the diagnoser

(cf. Figure 2.4(b)) of the automaton in Figure 2.4(a), where Σo = {a, b, d, g, t} is the set

of observable events and ed is the unique unobservable fault event. There is a cycle of

uncertain states composed of {3F, 7N}, {4F, 9F, 11N} and {5F, 10F, 12N} w.r.t a feasible

sequence (bgd)∗ . Actually, this cycle is not an indeterminate cycle to imply undiagnos-

ability, since there is only a corresponding cycle of normal states (7,11 and 12) but no

corresponding cycle of faulty states from {3, 4, 5, 9, 10}.

For details about diagnosability and related notations, the reader can refer to [CL07].
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1start

2 3 4 5 6

7

8 9 10

11 12

ed

a b g t
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a
ed

b g

d

b g

d

(a) An example of automaton [CL07]

{1N}start {3F, 7N} {4F, 9F, 11N}

{5F, 10F, 12N}

{6F}

a b

g

d

t

t

� normal state � F-uncertain state � F-certain state

(b) The diagnoser of the automaton in Figure 2.4(a)

Figure 2.4: An automaton and its diagnoser without an indeterminate cycle
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2.1.2 Petri Nets (PNs)

In this dissertation, we use PNs (and their extensions) rather than automata to model

DESs, since PNs have the following advantages [Giu+07]:

• PNs give a graphical and mathematical representation of DESs. This helps to solve

problems either by the development and the analysis of graphical structures or by

mathematical calculation.

• PNs can well present concurrent processes, which is also one of the original objec-

tives to develop such a notation.

• PN models are quite convenient for composition and decomposition operations.

Compared with automata, which is a state transition graph, PNs describe more di-

rectly the natural structure of systems, including the relation between components

and the distribution of resources in the system. In other words, the process of de-

composing a modular system modeled by PN is more intuitive.

• Thanks to the mechanism of representing states with the distribution of tokens in

places, a PN with a finite structure (with a finite number of places and transitions)

can represent an infinite state space.

Here, we review some basics of PNs. For details, the reader can refer to [Mur89].

2.1.2.1 Definition of PN

Petri net, developed by Carl Adam Petri in the early 1960s, also named Place/ Transition nets

or P/T nets, are a graphical and mathematical modeling notation for DESs.

Definition 3 [Pet62] A PN is a tuple N = (P, T, Pre, Post), where:

• P is a finite set of places (represented by circles in a PN graph);

• T is a finite set of transitions (represented by boxes or bars in a PN graph);

• Pre : P × T → N is the pre-incidence mapping that gives the arcs linking places to

transitions in the net, as well as their corresponding weight;

• Post : P× T → N is the post-incidence mapping that gives the arcs linking transitions

to places in the net, as well as their corresponding weight.

A state of a PN is called “marking”, presented by a distribution of tokens (dots inside

the places of the PN graph) in the places of the net. A marking is a vector M ∈ N|P|

that assigns a non-negative integer to each place. We denote by M the set of reachable

markings.

A marked PN (N, M0) is a PN N with the initial marking M0. For simplicity, we will

use the term “PN” to refer to “marked PN” afterward.
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2.1.2.2 Dynamics of PN

The dynamics of a PN corresponds to a movement or redistribution of tokens according

to some firing rules. A transition ti is enabled at marking M if M ≥ Pre(·, ti), denoted by

M [ ti >.

We denote by En(M) the set of enabled transitions at M. Formally,

En(M) = {t | t ∈ T, M ≥ Pre(·, t)}. (2.2)

A transition ti enabled at a marking M can fire (here ti is also said to be firable), yield-

ing to a marking

M′ = M + C ·~ti (2.3)

where ~ti ∈ {0, 1}|T| is a vector in which only the entry associated with transition ti is

equal to 1, and

C = Post− Pre (2.4)

is called the incidence matrix.

Marking M′ is then said to be reachable from marking M by firing transition ti, also

denoted by M [ ti > M′.

A sequence of transitions σ = t1t2 . . . tk is executable (or achievable, feasible) at marking

M, if M [ t1 > M1 [ t2 > · · · Mk−1 [ tk >, and we write it as M [ σ >. The reached marking

M′ is computed by

M′ = M + C · π(σ) (2.5)

which is called state equation and denoted by M [ σ > M′, where

π(σ) =
k

∑
i=1

~ti (2.6)

is the firing vector relative to σ.

2.1.2.3 Properties of PNs

A PN (N, M0) is said to be bounded if the number of tokens in each place does not exceed

a finite number m ∈ N, for any marking reachable from M0.

A PN (N, M0) is said to be live if, no matter what marking has been reached from

M0, it is possible to ultimately fire any transition of the net by progressing through some

further firing sequence.

x is a T-invariant iff there is a firing sequence σ and a marking M such that M [ σ > M

and π(σ) = x .

A PN is acyclic if there is no direct circuit of transitions in the graph.

Example 5 Consider the example of N in Figure 2.5.

• The set of places is P = {p1, p2};

16



2.1. UNTIMED MODELING FORMALISMS OF DES

p1 p2t1

t2

t3

Figure 2.5: An example of PN

• The set of transitions is T = {t1, t2, t3};

• The initial marking is:

M0 =

[

p1 1

p2 0

]

;

• The pre-incidence mapping is:

Pre =

[

t1 t2 t3

p1 1 0 0

p2 0 1 1

]

;

• The post-incidence mapping is:

Post =

[

t1 t2 t3

p1 1 1 0

p2 0 0 0

]

;

• The incidence matrix is:

C = Post− Pre =

[

t1 t2 t3

p1 0 1 0

p2 0 −1 −1

]

;

• En(M0) = {t1} is the set of enabled transitions at marking M0;

• The PN is without T-invariant, bounded, unlive and not acyclic.

2.1.3 PN Language

A language over event set Σ is a set of strings (or traces) formed from events in Σ. In order

to represent a language by a PN, each transition of the PN is associated with an event by

a labeling function. Hence, we speak about labeled Petri net (LPN).
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2.1.4 Labeled Petri Nets (LPNs)

A labeled Petri net (LPN) is a quadruple NL = (N, M0, Σ, ϕ), where

• (N, M0) is a marked PN N with the initial marking M0;

• Σ is a finite set of events for transition labeling;

• ϕ : T → Σ is the transition labeling function, ϕ is also extended to sequences of tran-

sitions, ϕ : T∗ → Σ∗.

We also define the inverse mapping of ϕ by ϕ−1 : Σ→ 2T :

ϕ−1(e) = {t | t ∈ T, ϕ(t) = e}

A LPN graph is presented as a PN graph in which each transition is labeled by an

event in Σ.

The language generated by LPN NL is

L(NL) = {ϕ(σ) ∈ Σ∗ | σ ∈ T∗, M0 [ σ >}

where mapping ϕ is extended to transition sequences.

Example 6 Let us consider the example of LPN NL = (N, M0, Σ, ϕ) in Figure 2.6.

p1 p2t1, a

t2, b

t3, b

Figure 2.6: An example of LPN

• Σ = {a, b} is the set of events;

• ϕ is the labeling function such that ϕ(t1) = a, ϕ(t2) = ϕ(t3) = b, ϕ−1(a) = {t1},

ϕ−1(b) = {t2, t3}.

2.1.5 Diagnosability of LPNs

As we have mentioned in Section 2.1.1.2, event set Σ is partitioned into two disjoint sets,

i.e., Σ = Σo ⊎ Σu and the set of fault events is a subset of Σu (Σ f ⊆ Σu). Accordingly, the
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set of transitions of an LPN is partitioned into the sets of observable and unobservable

transitions,

T = To ⊎ Tu,

and the set of faulty transitions is a subset of Tu (Tf ⊆ Tu).

We now give the definition of diagnosability of LPNs.

Definition 4 (K-diagnosability of LPNs) [Liu+13] Given an LPN NL, ∀e ∈ Σ f , e is diagnos-

able if ∀ u ∈ L, u|u| ∈ Σ f , uj 6∈ Σ f , ∀ 1 ≤ j ≤ |u| − 1 and ∀ v ∈ L/u, ∃ K ∈ N such that if

|Po(v)| ≥ K, then

r ∈ P−1
o (Po(uv))⇒ e ∈ r

We also say here that NL is K-diagnosable.

2.2 Timed Modeling Formalisms of DES

Untimed DES models are built when we consider only the logic features, i.e., the logical

order of event occurrences. This is insufficient for the analysis of some systems whose

behavior is based on quantitative temporal parameters. Therefore, the classic untimed

models for DES have been extended with temporal features. As examples of such timed

notations, one can cite timed transition systems (TTS), timed automata (TAs) [AD94],

timed Petri nets [Ram74], time Petri nets (TPNs) [Mer74] and labeled time Petri nets

(LTPNs) [Ber+05], etc.

In this section, we will review the background of TTS, TA, TPNs and LTPNs, which

will be used afterward. Some notations are inspired from [Ber+05; Dia01; Gha+09; Tri02].

For more details, the reader can refer to the literature.

2.2.1 Timed Transition Systems (TTS)

Let Σ be a finite set of events, and let R≥0 be the set of non-negative real numbers.

Definition 5 [Hen+92] A transition system S is a 4-tuple (Q, q0, Σ,→) where:

• Q is the set of states;

• q0 ∈ Q is the initial state;

• Σ is the set of events;

• →⊆ Q× (Σ ∪R≥0)×Q is the set of edges.

We use q a
−→ q′ to denote (q, a, q′) ∈→, which indicates that when the state of the

system is q, it can change to q′ upon a ∈ Σ ∪ R≥0. The edges labeled with an event of

Σ are called discrete edges and the edges labeled with a non-negative real number are

called continuous edges. A path is a finite or infinite sequence of edges q0
a0−→ q1

a1−→ · · · .

A state q′ ∈ Q is reachable from a state q if a finite sequence q0
a0−→ q1

a1−→ · · ·
an−1
−−→ qn,

exists such that q0 = q and qn = q′.
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Definition 6 [Hen+92] A timed transition system (TTS) S is a 6-tuple (Q, q0, Σ,→, l, u)

where:

• (Q, q0, Σ,→) is a transition system;

• l : Σ→ Q≥0 is a minimum delay for each transition e ∈ Σ;

• u : Σ→ Q≥0 ∪ {+∞} is a maximum delay for each transition e ∈ Σ.

2.2.2 Timed Automata (TA)

TAs are finite automata extended with real-valued variables called clocks to specify tim-

ing constraints between occurrences of events. For a detailed presentation of the funda-

mental results for TAs, the reader can refer to the seminal paper [AD94].

2.2.2.1 Definition of TA

Definition 7 [Alu+99] A timed automaton A is a 6-tuple (L, L0, Σ, X, I, E), where:

• L is a finite set of locations;

• L0 ⊆ L is a set of initial locations;

• Σ is a finite set of labels;

• X is a finite set of clocks;

• I is a mapping that labels each location s with some clock constraint in Φ(X), where the set

Φ(X) of clock constraints ϕ is defined by the grammar

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2, c ∈ Q≥0;

• E ⊆ L× Σ× 2X ×Φ(X)× L is a set of transitions. A transition (s, a, ϕ, λ, s′) represents

an edge from location s to location s′ on symbol a. ϕ is a clock constraint over X that specifies

when the transition is enabled, and the set λ ⊆ X gives the clocks to be reset while firing

this transition.

Example 7 Figure 2.7 presents an example of timed automaton.

s0start
s1

x < 1
s2

x < 1
s3

a, x := 0 b, y := 0 c

d, y > 2

c

Figure 2.7: An example of timed automaton
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• L = {s0, s1, s2, s3};

• L0 = {s0};

• Σ = {a, b, c, d};

• X = {x, y};

• I(s0) = I(s3) = ∅, I(s1) = I(s2) = {x < 1};

2.2.2.2 TA Semantics

The semantics of a timed automaton A is defined as a TTS SA. A state of SA is a pair

(s, ν) such that s is a location of A and ν is a clock valuation for X such that ν satisfies the

invariant I(s). The set of all states of A is denoted QA. A state (s, ν) is an initial state if s

is an initial location of A (s ∈ L0) and ν(x) = 0 for all clocks x. There are two types of

transitions in SA:

• Elapse of time: for a state (s, ν) and a real-valued time increment δ ≥ 0, (s, ν)
δ
−→

(s, ν + δ) if for all 0 ≤ δ′ ≤ δ, ν + δ′ satisfy the invariant I(s).

• Location transition: for a state (s, ν) and a transition (s, a, ϕ, λ, s′) such that ν satis-

fies ϕ, (s, ν)
a
−→ (s′, ν[λ := 0]).

Thus, SA is a transition system with label set Σ ∪R≥0.

The time-additivity property for TA is defined as:

(q δ
−→ q′) ∧ (q′ ǫ

−→ q′′)⇒ (q δ+ǫ
−−→ q′′)

with δ, ǫ ∈ R≥0.

Note that the executability constraints have been omitted here. First, when the invari-

ant of a location is violated, some outgoing edge must be enabled. Second, from every

reachable state, the automaton should admit the possibility of time to diverge. For exam-

ple, the automaton should not enforce infinitely many events in a finite interval of time.

Automata satisfying this operational requirement are called non-Zeno.

Example 8 For the TA of Figure 2.7, the state space of the associated transition system is {s0, s1,

s2, s3}×R2, the label set is {a, b, c, d} ∪R≥0, and as an example of transition sequence: (s0, 0, 0)
1.2
−→ (s0, 1.2, 1.2) a

−→ (s1, 0, 1.2) 0.7
−→ (s1, 0.7, 1.9) b

−→ (s2, 0.7, 0).

2.2.3 Time Petri Nets (TPNs)

2.2.3.1 Definition of TPN

Definition 8 [Mer74] A TPN is a 6-tuple (P, T, Pre, Post, M0, SIM), where:

• (P, T, Pre, Post, M0) is a marked PN;
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• SIM : T → Q≥0 × (Q≥0 ∪ {+∞}) associates a static interval mapping with each tran-

sition, where Q≥0 is the set of non-negative rational numbers.

Example 9 Let us consider the example of TPN in Figure 2.8. Here, SIM(t1) = [1, 1], SIM(t2) =

[0, 2] and SIM(t3) = [0, 3].

p1 p2t1[1, 1]

t2[0, 2]

t3[0, 3]

Figure 2.8: An example of TPN

The state of a TPN is a pair E = (M, I), where M is the marking of the net, and I is the

firing interval mapping which associates each transition with its firing interval.

The initial state is defined by E0 = (M0, I0), where M0 is the initial marking, and I0 is

the mapping associating each transition enabled at M0 with its static firing interval, and

the empty interval for all the other transitions. Formally, I0 is defined by:

I0(tj) =







SIM(tj) if tj ∈ En(M0)

∅ otherwise
(2.7)

2.2.3.2 Dynamics of TPN

Let us look at the state transition of the TPN from state E = (M, I) towards state E′ =

(M′, I ′) following the firing of transition t with I(t) = [αt, βt] 1, at a relative date θt. The

following rules must be respected:

• t ∈ En(M);

• θt ≥ αt;

• ∀k ∈ En(M), θt ≤ βk.

We write E
(t, θt)
−−−→ E′ to denote this state transition, and the new state E′ is defined as

follows:

• M′ = M− Pre(·, t) + Post(·, t);

• new firing intervals: ∀k ∈ T,

1 An interval is denoted by [αt, βt] when βt 6= +∞, and [αt, βt [ when βt = +∞.
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– if k 6∈ En(M′), I ′(k) = ∅;

– if k 6= t and k ∈ En(M), and k is not in conflict with t, then:

I ′(k) =







[max(0, αk − θt), βk − θt] if βk 6= +∞

[max(0, αk − θt),+∞[ otherwise
(2.8)

– I ′(k) = SIM(k), otherwise.

If transition t remains enabled during its own firing (t is multi-enabled [Dia01]), then

I ′(t) = SIM(t). That means t is considered as to be newly enabled.

2.2.3.3 TPN Semantics

The TTS ST = (Q, q0, T,→) associated with a TPN NT = (P, T, Pre, Post, M0, SIM) is

defined by Q = N|P| × (R≥0)n with n ≤ |T|, q0 = (M0,~0), and→⊆ Q× (T ∪R≥0)×Q is

the set of edges defined by:

1. The discrete edges (relative to transitions) are defined by, for all ti ∈ T:

(M, v)
ti−→ (M′, v′)⇔











































M ≥ Pre(ti) ∧M′ = M− Pre(•, ti) + Post(•, ti)

α(ti) ≤ vi ≤ β(ti)

v′k =



















0 if tk is newly enabled after

the firing of ti at M

vk otherwise

(2.9)

2. The continuous edges (relative to time elapsing) are defined by, for all δ ∈ R≥0:

(M, v) δ
−→ (M, v′)⇔ v′ = v + δ, and ∀k ∈ {1, · · · , n}, M ≥ Pre(tk)⇒ v′k ≤ β(tk).

The last condition on continuous transitions ensures that the time that elapses in a

marking cannot increase to a value which would disable transitions that are enabled by

the current marking (strong semantics). For TPNs, as for TA, it is not possible to work

directly on the TTS which represents the behavior of the TPN, because this TTS has in-

finitely many states (and infinitely many labels). Again, the use of abstraction methods

permit the construction of a transition system where the labels expressing the passing of

time are eliminated and where states are regrouped into classes on which the reachability

analysis can be done. The state class graph [BM83] and the zone graph [Gar+04] are ex-

amples of such approaches that gather the states that are equivalent up to a time elapsing

in macro states. However, these methods do not always give a result because for a TPN

the problems of reachability and boundedness are undecidable [BD91].

2.2.3.4 State Class

One can note that using notation (M, I) will lead to an infinite set of states. State class

has been introduced in order to gather the states which can be obtained from each other

simply by time elapsing.
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A state class of a TPN is associated with an achievable firing sequence of transitions

from the initial state:

(M, D) = {(M, i) | ∃(σ, u) ∈ D, M0 [ σ > M, (M0, i0)
(σ,u)
−−→ (M, i)}.

D is called the firing domain and is the set of vector solutions of the τj-linear inequali-

ties, where τj stands for the relative firing date of enabled transition tj.

Given tj ∈ T, tj is firable starting from a given class C = (M, D) iff:

• M ≥ Pre(·, tj);

• inequalities in the firing domain D holds;

• ∀j 6= k, τj ≤ τk. (Condition A)

Consider that from a given class C = (M, D), the system reaches class C′ = (M′, D′)

following the firing of transition tj, denoted by C
tj
−→ C′. Here C′ is defined by:

1. M′ = M− Pre(·, tj) + Post(·, tj);

2. the new firing domain D′ is determined starting from the linear system associated

with D, according to the following algorithm:

a) Condition A is added to the linear system of C and denotes that transition tj

can be first fired among En(M).

b) All variables τk associated with transitions tk in conflict with tj are eliminated

from the system.

c) Each variable τl , l 6= j is replaced by the sum τj + τl. Then, τj is eliminated

from the system.

d) For each transition tm newly enabled by M′, a new variable τm framed by the

bounds of the static firing interval of tm is introduced to the linear system.

The transition C
tj
−→ C′ can be simply explained as follows: any state in C′ can be

reached from one of the states in C by firing transition tj; or a subset of C exists such that

any state in this subset can arrive at a state in C′ by the firing of tj.

Given two state classes C and C′, C′ is said to be reachable from C if C′ can be obtained

by firing a sequence σ ∈ T∗ from C, and we denote it by C σ
−→ C′.

Proposition 2 [Dia01] A TPN is bounded iff the number of state classes of this net is finite.

2.2.4 Labeled Time Petri Nets (LTPNs)

By associating each transition of the TPN with an event, this TPN is said labeled. We

then speak of labeled time Petri net (LTPN) [Ber+05], such that each firing of transition

simultaneously produces the corresponding event.
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2.2.4.1 Definition of LTPN

Definition 9 [Bou+06] A LTPN is a 8-tuple (P, T, Pre, Post, M0, SIM, Σ, ϕ), where:

• (P, T, Pre, Post, M0, SIM) is a TPN;

• Σ is a finite set of events;

• ϕ : T → Σ is the transition labeling function as defined for LPNs.

Informally, we can treat an LTPN as an LPN with temporal constraints on its transi-

tions, or a TPN whose transitions are labeled with an event. The relation between LTPN

and PN, TPN, LPN is illustrated in Figure 2.9.

PN LPN

TPN LTPN

+ labels

+ intervals

+ labels

+ intervals

Figure 2.9: Relation between LTPN and PN, TPN, LPN

Example 10 Let us consider the example of LTPN in Figure 2.10. Here ϕ is the transition labeling

function such that ϕ(t1) = a, ϕ(t2) = ϕ(t3) = b.

p1 p2t1, a[1, 1]

t2, b[0, 2]

t3, b[0, 3]

Figure 2.10: An example of LTPN

A state change of a LTPN can be driven either by the firing of some transition or by

time elapsing. Note that, in LTPNs, two different transitions can be labeled with the same

event.

Definitions of state, state class and their corresponding transition mapping are the

same as for TPNs. We denote by M the set of states of LTPN. For E, E′ ∈ M, we write
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E
(t, θt)
−−−→ E′ to denote this state transition from E to E′ by the firing of transition t at

the relative firing date θt. Besides, most analysis approaches of TPNs can be extended to

LTPNs.

2.2.4.2 Timed Language for LTPNs

A dated firing sequence (DFS) [Dia01] is a pair (σ, u), where σ ∈ T∗ is an achievable firing

sequence, and u is the sequence of firing dates of the transitions in σ. The set of DFSs is

denoted by D.

Given a sequence of transition firings (or transition dates) w, we denote by wj the

jth element in w, and |w| the length (number of elements) of w. For a ∈ T × R≥0 and

w ∈ (T × R≥0)∗, we write a ∈ w if there exists j such that wj = a. We also write w =

w1w2 . . . wn to say that w is the concatenation of w1, w2, . . . , wn, where w1, w2, . . . , wn are

sequences of transitions (or events, dates).

A state E′ is said to be reachable from state E by the firing of a DFS (σ, u), denoted

by E
(σ,u)
−−→ E′ with |σ| = n, if ∃ E0, E1, · · · , En such that E = E0, En = E′ and ∀ 1 ≤

j ≤ n, Ej−1
(σj,uj)
−−−→ Ej.

Definition 10 A labeled dated firing sequence (LDFS) of DFS (σ, u) is defined by (s, u),

where s = ϕ(σ), and ϕ is the extended form of the labeling function ϕ in the usual manner.

We write Dl to denote the set of LDFSs.

Definition 11 The language generated by LTPN NLT is defined by:

L(NLT) = {(ϕ(σ), u)|∃E ∈ M, (σ, u) ∈ D, s.t. E0
(σ,u)
−−→ E}.

For a given LTPN NLT, we use L to denote L(NLT) for short.

Let us define some projections for timed language. Given an LDFS p and a set of

observable events Σo, Po(p) is the LDFS obtained by erasing from p all the unobservable

events and summing up the relative delays to the delay of the very following observable

event. Define the inverse projection operator P−1
o as

P−1
o (r) = {p ∈ L | Po(p) = r}

for r ∈ (Σo ×R≥0)∗.

Given a language L ⊆ Dl and a string p ∈ L, the post-language of L after p denoted

by L/p, is the language

L/p = {r ∈ Dl | pr ∈ L}.

Example 11 Given Σo = {a, c}, r1, r2 ∈ L, s1, s2 ∈ Σ∗ with r1 = (s1, u1), r2 = (s2, u2), s1 =

abca, u1 = (1, 2, 3, 2), s2 = aba, u2 = (1, 2, 0), then Po(r1) = (s3, u3) wherein s3 = aca and

u3 = (1, 5, 2). Finally, (ca, (3, 2)), (a, 0) ∈ L/(ab, (1, 2)).
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2.2.4.3 Diagnosability of LTPN

The diagnosability and ∆-diagnosability of TA has been introduced in [Tri02]. Now we

will discuss these issues in the framework of LTPNs. Without loss of generality, we con-

sider only one class of faults.

Definition 12 [Liu+14a] Given an LTPN NLT, we say G is diagnosable if ∃∆ ∈ Q≥0 such

that ∀(s, u) ∈ L, s|s| ∈ Σ f , sj 6∈ Σ f for j < |s| and ∀(w, z) ∈ L/(s, u), ∑
|z|
j=1 zj ≥ ∆, then the

following holds:

r ∈ P−1
o (Po(sw, uz))⇒ (∃e ∈ Σ f )(e ∈ r)

We also say here that G is ∆-diagnosable.

In simple terms, any fault in a diagnosable LTPN can be diagnosed with a finite delay

after its occurrence. Obviously, ∆min exists such that, G is ∆-diagnosable for any ∆ ≥ ∆min,

and G is not ∆-diagnosable for any ∆ < ∆min.

As we have analyzed, looking for the ∆min of a diagnosable LTPN will be an interest-

ing issue of practical significance, since we wish that the fault can be diagnosed as soon

as possible and it is important to determine the minimum delay upon which we ensure

the fault can be diagnosed.

2.3 Hypotheses

This work will deal with fault diagnosis of DESs in both untimed and timed contexts,

on the basis of proved existing results. Thus, we followed the hypotheses for the classic

diagnosis analysis. For clarity, we also make the following remarks:

1. The system under consideration can be abstracted as an untimed or timed DES,

which can be modeled by an LPN or an LTPN.

2. In the used models LPNs and LTPNs, each transition is associated with either an

observable or an unobservable event, and one event may assign to multiple transi-

tions.

3. No achievable cycle of unobservable transitions exists in the LPN or LTPN.

4. During the analysis, the system structure does not change, and the system behavior

does not respond to outside inferences (control commands).

5. We consider only permanent faults, i.e., the system remains in a faulty state after

the occurrence of the fault.

6. The faults considered can be partitioned into multiple disjoint sets.
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2.4 Conclusion

In the section, we have reviewed the modeling formalism of DESs and TDESs, as will be

used in this thesis, i.e., LPNs and LTPNs. We have also introduced some notations for

languages, the definition of K-diagnosability for untimed DESs and ∆-diagnosability for

TDESs. Finally, we give the basic hypothesis for the discussion in the sequel.

Before discussing the fault diagnosis issues, in the following chapter we will review

the literature concerning existing diagnosis techniques using the DES models as intro-

duced in the current chapter.
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3
LITERATURE REVIEW

This chapter reviews the existing studies on DES-based fault diagnosis. Literature is sum-

marized and classified by three parts: diagnosability and its extensions, diagnosis ap-

proaches, and diagnosis software tools.

3.1 Overview

Fault diagnosis has been shown to play an essential role in the safe and reliable operation

of industrial systems. This issue has received considerable attention in the context of

DESs. DES diagnosis has been studied from different viewpoints with the application of

various techniques, as shown in Figure 3.1:
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Figure 3.1: DES-based fault diagnosis
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• The two most discussed topics are online diagnosis and diagnosability analysis [Lin94].

In simple terms, diagnosis is performed online to detect the occurrences of faults

and to localize the cause of faults. Diagnosability refers to the ability to detect and

locate any fault within a finite delay after its occurrence. Diagnosability analysis is

performed offline. Logically, a fault can be eventually diagnosed if the system is di-

agnosable. Therefore, offline diagnosability analysis is the basis of online diagnosis.

• The two most used modeling formalism are automata and PNs. DES-based diag-

nosis is first studied in the framework of regular languages and automata [Lin94;

Sam+95]. These automata-based approaches are based on state enumeration, which

can induce state explosion problems. In order to overcome this problem, some

subsequent automata-based approaches [Jia+01; YL02b] have been proposed for

reducing the computational complexity, without the construction of a diagnoser au-

tomaton. Besides, a series of works [AF98; Bas+10; Bou+05; BW94; Cab+10; GL07;

Gha+09; Haa09; RH09; Ush+98; Wen+05] concerning the diagnosis and diagnosabil-

ity of DESs turned to PN modeling, thus benefiting from the expressiveness and the

well-developed theory of PNs.

• DES-based diagnosis is investigated in both untimed and timed contexts [Cas10;

Gha+09; HC94; Jia+06; Liu+13; Tri02; Wan+11; Wan+13; ZF06]. Untimed discrete-

event models and timed discrete-event models are two abstraction types of real sys-

tems. An untimed discrete-event model characterizes the logical behavior of sys-

tems, i.e., only the ordering of events is considered, while a timed discrete-event

model makes it explicit the quantitative temporal constraints on the system behav-

ior. Timing characterizes DESs in a different (time) dimension, so that the system be-

havior contains richer information. However, the complexity of dealing with such

systems is significantly higher.

We summarize and classify some main works on DES-based diagnosis, from the view-

points of modeling formalism, subject investigated and technique used, as shown in Ta-

ble A.1 in the appendix (cf. Appendix A).

3.2 Literature on Diagnosability of DESs

3.2.1 Classic Diagnosability

DES-based diagnosis has had a growing interest from both academia and industrial com-

munities during the two past decades. [Sam+95] is a pioneer work on this topic. The

authors set a formal definition of diagnosability for untimed DESs, where the faults are

treated as unobservable and classified into disjoint classes. They also give the necessary

and sufficient conditions for diagnosability. A model called “diagnoser” is then intro-

duced both to test diagnosability by examining indeterminate cycles and for online diag-

nosis by mapping the online observations on the diagnoser states. The diagnoser-based
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approach enumerates all the states and, consequently, suffers from state explosion prob-

lem. Generally, the diagnoser state space is exponential in the number of states of the

original automaton.

Diagnosability of DESs is then introduced in the framework of PNs. In [Ush+98], the

language-based diagnosability of [Sam+95] is extended to unbounded PNs, where the net

marking is observable and all transitions are unobservable, and the faults are associated

with transitions. A simple ω diagnoser and sufficient conditions for diagnosability of

unbounded PNs are proposed.

For other literature on classic diagnosability, we review the following representative

works.

In [Jia+01], an algorithm based on the parallel composition of an automaton with it-

self is proposed. In this approach, no diagnoser is built and the complexity is polynomial

of fourth order in the number of system states and linear in the number of the failure

types. In [YL02b], a comparable polynomial-time algorithm for deciding diagnosability

is presented. The approach is based on the construction of a non-deterministic automaton

called “verifier”. Both methods are based on algorithms which investigate if the system

is diagnosable by seeking some specific cycles. Hence the system is diagnosable if such

cycles do not exist. Although these approaches are more efficient than the diagnoser ap-

proach in terms of time complexity, they are still based on a priori built state space and

suffer from state explosion problem.

In [XZ04] and [Cab+12b], a composition net called verifier net (VN) is constructed for

the analysis of diagnosability for PNs. The practical verification condition is further given

for unbounded PNs based on the coverability graph of the verifier. The diagnosability of a

PN is then transformed as a reachability problem on the verifier model. The VN approach

is more efficient compared with traditional diagnoser approach, however, it requires an

exhaustive enumeration of the reachability set of the VN, which may be larger than the

reachability set of the original PN. Note that the authors of [Cab+12b] also deal with the

K-diagnosability problem and use the integer linear programming (ILP) technique.

In [Wen+05], the authors propose a sufficient condition for testing diagnosability by

checking the structure of sub-net called T-components related to the T-invariants of the

LPN without building a diagnoser. The indeterminate cycle in the sense of [Sam+95]

in the LPN is represented by the existence of two inequivalent T-invariants with the

same observable projection. Thus, the system is diagnosable if there exists no two such T-

invariants. This ILP-based approach is of polynomial complexity in the number of nodes

for computing a sufficient condition for diagnosability of the LPN. However, the solution

of T-invariants are the firing count vectors which record the number of firing transitions

but without their order. The approach is not suitable for analyzing the diagnosability

of LPNs with the T-invariants of the same observable projection, e.g., no verdict can be

made for the nets in Figure 3.2 and Figure 3.3 where events a and b are observable and f

is the faulty transition.

Note that the above mentioned literature is on the diagnosability of permanent faults.
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Figure 3.2: An undiagnosable LPN with 2 minimal T-invariants w.r.t the same observable
projection
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Figure 3.3: A diagnosable LPN with 2 minimal T-invariants w.r.t the same observable
projection

There are also some works on the diagnosability of intermittent faults as in [Con+04;

Jia+03a; Jia+06; YG04].

3.2.2 K-Diagnosability of Untimed DESs

The classic diagnosability problem consists in qualitatively determining the existence of

a finite delay upon which any fault (or class of faults) can be detected and identified.

In practice, the diagnosability feature can be insufficient to ensure a safe operation of

the system, namely when we deal with safety-critical systems. Indeed, this delay could

be too long and faults may have dramatic consequences before being diagnosed and

before some reconfiguration actions can be undertaken. Thus, some “quantitative” ver-

sions of diagnosability have been developed, namely K-diagnosability [Bas+10; Bas+12;

Cab+12b] which ensure that any fault (or class of faults) can be determined within a finite

delay of K observable events upon its occurrence.

Generally speaking, there are two main problems on K-diagnosability. The first is to

analyze K-diagnosability of a system under a given value of K, i.e., whether or not any
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fault (or class of faults) can be detected and identified within K steps (observable events)

after its occurrence. The second is to find the minimum K for a diagnosable system.

In [Bas+10], K-diagnosability is discussed in the framework of general PNs, where K

refers to the number of both observable and unobservable transitions fired after the faulty

transition. The K-diagnosability is solved as a linear programming problem. In [Bas+12],

an extensive approach is proposed to check K-diagnosability for both unlabeled and la-

beled PNs. In these approaches, system behavior is represented by a series of linear equa-

tions. The diagnosability of the PN models can be verified only if the faulty behavior can

be described by a finite number of equations. The approach is efficient when checking

K-diagnosability, however, it is not suitable for classic diagnosability analysis, since in

order to investigate classic diagnosability, new equation systems may have to be built for

each K, and the existing state space cannot be sufficiently used.

In [Cab+12b], the authors provide necessary and sufficient conditions for classic diag-

nosability and diagnosability in K steps (K-diagnosability), and develop an approach to

compute the bound K based on the analysis of the reachability/coverability graph of a

structure called modified VN. In this work the value K refers to the number of observable

transitions/events after the fault, which is a little different from that in [Bas+10; Bas+12].

Besides, there are many other studies on the other extensive versions of diagnosabil-

ity for untimed DESs, such as [1, K]-diagnosability in [Jia+06; YG04], codiagnosability

in [Wan+04], modular diagnosability in [Con+04], etc. We do not review these works

here, since the framework is different from the one considered in this thesis.

3.2.3 Diagnosability and ∆-Diagnosability of TDESs

Compared with DES, TDES is an abstraction of the system behavior which considers both

the ordering and the occurrence dates of events. With the help of the absolute occurrence

dates of events or the relative duration between two states, two undistinguishable event

sequences may become distinguishable in the timed context. Consequently, undiagnos-

able faults in untimed context may become diagnosable in a timed context, which means

that time information can carry valuable knowledge w.r.t diagnosis issues. This is an im-

portant motivation for considering time information while dealing with these issues.

However, considering temporal information in the diagnosis framework often leads

to much higher computation and memory complexity. Therefore, dealing with diagnosis

in a timed context becomes even more challenging, especially given that one has to han-

dle infinite state space in this case. In order to face this challenge, techniques seeking for

finite representation of infinite state space of TDESs, and transforming timed problem

into untimed one have been developed.

[Tri02] provides algorithms to check ∆-diagnosability for TDESs, i.e., to diagnose a

fault within a delay of at most ∆ time units after its occurrence, and gives necessary and

sufficient conditions of diagnosability for TAs. The developed algorithms are based on

standard reachability analysis of some accepting states or on searching non-zeno runs.
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[Xu+10] deals with diagnosis of TDESs modeled as TAs. It is shown that the problem of

diagnosability analysis and diagnosis of dense-time system is decidable by reducing this

problem to the untimed setting. These approaches are on the basis of a known state space.

For complex systems, computing the whole state space (TA) in the timed context may be

rather resource-consuming.

Diagnosis of TDESs are also considered in the framework of TPN. In [Pen09], the au-

thors describe faults that can occur during the execution of service workflows by means

of chronicles, and propose a diagnosis algorithm based on chronicle recognition in the

framework of TPNs. In [Jir+06], fault diagnosis of TPN model is discussed based on par-

tial orders (unfoldings). The set of legal traces in the TPN is obtained solving a system

of linear inequalities. Two methods based on Extended Linear Complementarity Prob-

lem and constraint propagation are used for the solution. These approaches discuss only

the diagnosis issue but not diagnosability. Besides, no analysis based on a more general

model LTPN can be found.

3.3 Literature on Diagnosis Techniques

3.3.1 Diagnoser Approach

Classic diagnoser-based approach [Sam+95; Sam+96] is often referred as a pioneer work

on the DES diagnosis topic. In this approach, the system behavior is characterized by

states with the corresponding fault occurrence information. Accordingly, any state is la-

beled with a tag “normal”, “F(Fault)-certain” or “F-uncertain”. “F-uncertain” state can

lead to a “normal”, “F-certain” after further observations. This approach is based on state

enumeration. Thus, it is not suitable for an unbounded system (the number of system

states is infinite). Even for bounded model, it suffers from state space exploration. There-

fore, some other automata or PN based approaches have been developed, as attempts to

tackle this issue, even partially.

3.3.2 Verifier (Twin Plant) Approach

Instead of building a diagnoser, in verifier based approach a new structure derived from

the original model under consideration is constructed for diagnosability analysis. Then

the diagnosability problem can be treated by analyzing the structure of the verifier. The

verifier is constructed as the parallel composition of the plant model (possibly an au-

tomaton or a PN) with itself, the composite model is then called “twin plant”. The aim

of building a verifier is indeed to perform the diagnosability analysis under a lower com-

plexity than for the diagnoser-based approach.

In [Jia+01; YL02b], a verifier automaton, instead of a diagnoser automaton, is built by

the parallel composition of the automaton with fault information and itself. The system

is diagnosable if and only if there exists no such a cycle in the verifier that the fault occurs

in one trace but not in the other.
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In [Cab+12b; XZ04], a VN obtained by the parallel composition of the PN and itself

under some given rules is built. The diagnosability problem is then transformed as the

reachability/coverability analysis of the VN.

3.3.3 Decentralized/Distributed/Modular Approaches

To overcome the problem of state explosion, approaches of decentralized, distributed

and modular diagnosis [Ben+03; Cab+13a; Cas12; Con+06; Deb+00; GL07; JB05; Laf+05;

Pen09; Pro02; QK06] have also been discussed. Although we put these three literally sim-

ilar methods together, there are some differences between the terminology [ZL13]. Gener-

ally speaking, decentralized approaches have a set of diagnosers, each with different ob-

servation capabilities, but all considering the global system model in their model-based

inferencing. In distributed approaches, the individual diagnosers only use partial (local)

system models as opposed to the global system model.

In [GL07], the authors develop a distributed (modular) approach for online diagnosis.

The system under consideration is treated as a set of modules. For each of them a PN

diagnoser is built to perform online diagnosis. Local diagnosis information can be shared

between modules modeled by PNs with some common places, such that the global diag-

nosis information can be recovered.

3.3.4 Linear Programming Approach

The mathematical representation of PNs allows use of standard tools, such as ILP, to

solve DES diagnosis problems.

An early study on diagnosability of PNs models can be found in [Wen+05]. The au-

thors provide an algorithm of polynomial complexity in the number of nodes for comput-

ing a sufficient condition for diagnosability of PN models. ILP technique is used to check

a specific structure called T-component which is related to minimum T-invariants. The

proposed algorithm shows the efficiency compared with state enumeration approaches.

In [Bas+10; Bas+12], the authors propose ILP-based approaches to check K-diagnosability

of DESs modeled by PNs and LPNs, which avoids using a diagnoser. The proposed ap-

proach does not require any specific assumption on the structure of the net induced by

the unobservable transitions. Necessary and sufficient conditions are then given for di-

agnosability of bounded nets. The main drawback is that the characterization of a firable

sequence in terms of firing count vectors may require, in the worst case, a number of

firing count vectors equal to the sequence length.

[Cab+12b] deals with diagnosability of LPN models using a twin plant called VN. ILP

technique is used to look for cycles associated with firable repetitive sequences (upon the

firing of a fault transition) in the coverability graph of the VN.
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3.3.5 Unfolding Technique

There are also some diagnosis analysis approaches using unfolding technique [Ben+03;

Gra+10; Haa09; Mad+10]. Unfolding is a well-established technique for verifying prop-

erties of PNs; its use for this purpose was initially proposed by McMillan [MP95]. The

unfolding of a PN is another net of acyclic structure that fully represents the state space

(reachable markings) of the original net. Because unfoldings represent behavior by acyclic

structures rather than by interleaved actions, they are often exponentially smaller than

the state space of the net, and never larger than it.

[Gra+10] discusses the on-line diagnosis of distributed systems using TPN models.

They propose to base the method on unfoldings. Given a partial observation, as a possibly

structured set of actions, their method determines the causal relation between events in

the model that explains the observation. It can also synthesize parametric constraints as-

sociated with these explanations. The method is implemented in the tool Romeo [Gar+05].

[Mad+10] gives an approach to verify diagnosability in the framework of LPN un-

foldings based on the twin plant method. The unfolding is infinite whenever the LPN NL

has an infinite run; however, if NL has finitely many reachable states then the unfolding

eventually starts to repeat itself and can be truncated without loss of information, yield-

ing a finite representation. A verier, which compares pairs of paths from the initial model

sharing the same observable behavior, is built check diagnosability.

3.3.6 Model-Checking-Based Techniques

Model checking [Cla+94] is a formal verification technique for assessing functional prop-

erties of systems, which are written in propositional temporal logic. The verification pro-

cedure is an exhaustive search of the state space to check whether or not the given model

satisfies this property.

Model checking techniques are applied to fault diagnosis because it has the following

advantages [BK08]:

• It is a general verification approach for a wide range of applications such as embed-

ded systems, software engineering, hardware design, etc.

• It supports partial verification, i.e., properties can be checked individually, thus

allowing to focus on the essential properties first. No complete requirement specifi-

cation is needed.

• It provides diagnosis information and counterexamples in case a property is invali-

dated, which is useful for fault diagnosis.

In [Cim+03], the authors treat the diagnosability analysis as a model checking prob-

lem. A copy of the system is made to build a twin plant. The system is undiagnosable if

there exist two same observable scenarios in the original and copy system respectively,

such that the one brings the system to a faulty state and the other brings to the normal.
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In [Gra09], the author presents a symbolic-based approach to test diagnosability. The

search can be performed in a classic forward manner, or in a backward manner which

potentially avoids exploring all the search space of the DES. This approach can also be

mixed with a decentralised computation, which allows early detection of diagnosability

and reduction of the search space in general. Thus, the approach shows its advantages

when comparing with the existing enumerative approaches.

In [Hua+04], the authors study the diagnosis of DESs modeled in the rule-based mod-

eling formalism. An attractive feature of rule-based model is its compactness. A motiva-

tion for the work presented is to develop failure diagnosis techniques that are able to

exploit this compactness. In this regard, they develop symbolic techniques for testing di-

agnosability and computing a diagnoser. Diagnosability test is shown to be an instance of

first order temporal logic model checking. An on-line algorithm for diagnoser synthesis

is obtained by using predicates and predicate transformers.

[PG13] discusses the diagnosis issue using a unique logical framework called µ-calculus.

Diagnosability analysis is performed through the computing of successive logical rela-

tions. The implementation consists of a DBMS-architecture (Database Management Sys-

tem) where system behavior is encoded as a set of relational tables and diagnosability in-

vestigation is performed through an ordered sequence of queries on these tables [Gha+12].

As an approach using exhaustive search, model checking suffers from the state space

explosion problem, i.e., the number of states needed to model the system accurately may

easily exceed the amount of available computer memory. Models of realistic systems may

still be too large to fit in memory.

3.4 Literature on Diagnosis Software Tools

In this section, we review a few works on the development of diagnosis software tools

for DESs, and the comparisons between them.

UMDES [Laf00] is a library of C routines for the study of DESs modeled by FSA. The

tool provides manipulation of FSA, operations of supervisory control theory and fail-

ure diagnosis. The tool DESUMA [Ric+06] is an integration of the UMDES library with

the graphical environment GIDDES for visualizing DESs. DESUMA allows the user to

perform a variety of manipulations on DES modeled by FSAs, such as model editing,

diagnosability analysis, verification, control under full and partial observation, and de-

centralized control.

In [Sta+06], the authors develop a tool for Discrete-Event Control And Diagnosis

Analysis, called DECADA. DECADA checks diagnosability of an automaton model un-

der partial observation.

[Cab+11] develops a software platform for the integration of DESs tools. The objec-

tive of this software platform is to integrate several tools dealing with PNs and automata.

The purpose is twofold: first to allow for a rigorous comparison of the methods and algo-

rithms developed by the DISC project partners, and second to provide a packaged tool
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which would facilitate transfer of these techniques to the end users. The interchange for-

mat is compliant to the ISO standard Petri Net Markup Language (PNML). The platform

includes a series of plug-ins and adapters to manipulate/transform the different file for-

mats supported by the platform.

It is worth noticing that in [Cab+12a], a comparison of three tools for checking diag-

nosability is performed: UMDES-LIB, PN_DIAG and PN_DIAG_UNBOUNDED.

3.5 Conclusion

This chapter has recalled the existing study works on fault diagnosis of DESs in both

untimed and timed contexts. First, it is shown that the approaches based on existing

automata suffer from the inherent state explosion problem. Thus, we will focus on cop-

ing with this problem in the PN framework using on-the-fly and incremental techniques.

Secondly, in the timed context, the diagnosability of TPNs is still open, which will be

discussed in this work.
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UNTIMED PN-BASED DIAGNOSIS OF DES

In this chapter, we aim at developing on-the-fly and incremental techniques for fault di-

agnosis in order to cope with the state explosion problem when dealing with complex

systems. As will be shown in this chapter, analyzing on the basis of a known automata

or building the whole reachability graph is actually unnecessary in fault diagnosis anal-

ysis. Instead, our proposed approach can generally show more efficiency compared with

existing approaches. The motivation for using these techniques will be illustrated in Sec-

tion 4.1.

In Section 4.2 – Section 4.6, we will discuss the fault diagnosis of DES modeled by

LPNs, where faults correspond to unobservable transitions. Based on several new con-

cepts that we introduce, a tree-like structure holding both the markings and their related

information of fault occurrences is elaborated. This structure, called FM-set tree, is com-

puted on the fly while checking K-diagnosability on the basis of a recursive algorithm that

we propose [Liu+12]. Moreover, by extension, we transform the classic diagnosability

problem into a series of K-diagnosability problems [Liu+14b], where K increases progres-

sively. Additionally, when the system is K-diagnosable, the online diagnosis is performed

on the basis of a diagnoser which is obtained from the FM-set tree in a straightforward

way. Finally, comparative simulation is performed using the OF-PENDA software tool

that we have developed to prove the correctness and the efficiency of our approach.

4.1 Motivation

4.1.1 On-the-Fly Analysis Technique

For most of the previous approaches reviewed, diagnosability analysis is composed of

two stages. First, advanced models are developed for extracting the necessary informa-

tion for diagnosability analysis from the original model, e.g., diagnoser automata [Sam+95],
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verifier automata [YL02b], verifier (Petri) nets [Cab+12b], linear inequalities [Bas+12], etc.

Secondly, diagnosability analysis is tackled based on the structure analysis of the plant

(or by solving mathematical models), e.g., through checking the existence of certain spe-

cific states or cycles, verifying the existence of linear inequalities solutions, etc. Tradi-

tionally, the two stages are proceeded independently and sequentially. The analysis of

advanced models is performed after their state spaces have been completely generated.

This presents the state explosion problem when dealing with large systems. Here, we will

tackle this problem by using on-the-fly techniques [SE05], since such techniques have the

following advantages:

1. On-the-fly techniques can save memory resources. Generally, on-the-fly techniques

permit us to generate and investigate only a part of the state space to find solu-

tions, unlike the classic enumerative approaches which have to build the whole

state space a priori. On-the-fly exploration techniques do not reduce the complexity

of the original algorithms, but they do save memory resources in general, depend-

ing on the system structure and on the searching strategy. For example, using the

classic diagnoser approach to analyze the diagnosability of the automaton in Fig-

ure 4.1(a) requires building a priori the corresponding diagnoser in Figure 4.1(b).

Actually, generating a part of the diagnoser (cf. states {3N} and {2F, 6N} in Fig-

ure 4.1(b)) is sufficient to conclude the undiagnosability, since an indeterminate cy-

cle (the self-loop on diagnoser state {2F, 6N}) is found.

2. On-the-fly techniques can save computing time. On the one hand, on-the-fly ex-

ploration terminates as soon as some specific features are found (cf. Figure 4.2(b)),

which requires less time than investigating the whole state space (cf. Figure 4.2(a)).

On the other hand, for two-stage analysis, such as our approaches that will be given

in the following sections, the advanced models can be derived and analyzed step

by step as the on-the-fly building of the basic models (cf. Figure 4.2(c)), rather than

being analyzed after building the whole basic models (cf. Figure 4.2(a) and Fig-

ure 4.2(b)), which can save time from both analysis stages.

3. On-the-fly techniques can deal with some unbounded systems, since they return

a verdict as soon as some specific features are found, instead of investigating the

whole state space. Take the unbounded PN in Figure 4.3 (where t1, t2, t4 and t5 are

observable transitions and t3 is the only unobservable fault transition) for example,

the PN is diagnosable, since the occurrence of event b starting from the initial mark-

ing proves the occurrence of fault f without further investing the component (t5)

which induces the unboundedness of the net.

4.1.2 Incremental Analysis Technique

An Incremental method [Koe+04] is a search technique that reuses the information from

previous searches when some parameters change. Generally, it is faster than performing
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4.1. MOTIVATION

1 2

3start 4 5

6 7 8

a

f

b u

a a a

b

b b b

(a)

{3N}start

{2F, 6N}

{4N}

{7N, 8N}

a

b

a

b b

� normal diagnoser state

� F-uncertain diagnoser state

(b) Diag(G)

Figure 4.1: An automaton G and its diagnoser Diag(G)

the search for each changed parameter from scratch. The analysis of the kth step is based

on the search result of the (k− 1)th step. Different from other speeding up searches, it can

guarantee finding the shortest paths.

We will apply this technique in our diagnosability analysis, since it can bring the

following advantages:

1. It is suitable for the step-by-step analysis in which the current analysis reuses the

previous information. The classic diagnosability can be analyzed based on incre-

mentally investigating K-diagnosability with increasing the value of K, and the

Kmin value which ensures the diagnosability will be eventually found (for diag-

nosable systems), as will be discussed in Section 4.4.1. Note that some ILP-based

approaches [Bas+12; Wen+05] have to rebuild and solve the equation system (or

inequalities) when seeking out Kmin, without using the previous search results.

2. It is a skillful technique to speed up the search procedure. It should be used for

bounded systems so that the search can terminate well. In particular, it can be used
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time0

system

step 1 step 2 · · · step n

model generation

step 1 step 2 · · · step n

model analysis

diagnosability verdict

(a) Two-stage enumerative analysis

time0

specific features are foundsystem

step 1 step 2 · · · step n

model generation

step 1 step 2 · · · step n

model analysis

diagnosability verdict

(b) Two-stage on-the-fly analysis

time0

specific features are found

model generation stops as soon as specific features are found
system

step 1 step 2 · · · step n

model generation

step 1 step 2 · · · step n model analysis

diagnosability verdict

(c) Two-stage parallel and on-the-fly analysis

Figure 4.2: Three types of diagnosability analysis procedures

for unbounded systems when some conditions for terminating the search exist, as

the analysis on unbounded PNs in Section 4.6.1.3.

3. Incremental techniques can be used with on-the-fly analysis to perform an efficient

analysis. Both techniques do not change the computation complexity. However,

they improve the searching efficiency when dealing with real systems, as will be

shown in Section 4.6.
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p1

p2 p3

p4

t1, b

t2, a

t3, f

t4, b

t5, a

2

� observable transition

� unobservable faulty transition

Figure 4.3: An unbounded PN

4.2 Mathematical Representation of LPNs to Check

Diagnosability

We choose the LPN as the modeling notation in our study, since the LPN presents more

general properties, besides those of the PN mentioned at the beginning of Section 2.1.2.

As illustrated in Example 6, different transitions t2 and t3 can be associated with the same

event b, which implies that, in realty, different behavior can be monitored using the same

sensor. This will be of great significance when discussing sensor optimization problems in

the future. Besides, LPNs can describe systems in the level of both structure (LPN graph)

and state space (reachability graph). In the contrary, automata depict only the state space

of systems, without the representation in the structure level.

In this section, the structure of a PN, as well as its dynamics, can be thoroughly de-

scribed by classic mathematical representation with the help of markings, incidence matrix

and state equation. This formulation, however, is insufficient for featuring LPNs, since

there is no characterization of events. In this context, we propose a novel mathemati-

cal representation for LPNs, based on some new notions that we will introduce, namely

event-mapping matrix, event marking and extended state equation, to both make the mapping

relationship between transitions and events explicit, and record the event occurrences.

4.2.1 Extended Incidence Matrix

In order to characterize the mapping relationship between transitions and events for

LPNs in a mathematical way, we first introduce the so-called event-mapping matrix.

Let NL = (N, M0, Σ, ϕ) be an LPN, with set Σ′ ⊆ Σ containing only the events that we

are interested in. For example, in event-based diagnosis Σ′ contains all observable and
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fault events without considering harmless unobservable events, since all the harmless

unobservable events are useless in the diagnosability analysis based on ǫ-reduction, as

will be discussed in Section 4.2.3.

Definition 13 Let Σ′ = {e1, e2, . . . , e|Σ′|}. An event-mapping matrix is a |Σ′| × |T| matrix

Ce, where Ce(i, j) = 1 if ϕ(tj) = ei ∈ Σ′, otherwise Ce(i, j) = 0.

When Σ′ = Σ, matrices Ce, Pre, Post and initial marking M0, provide a complete de-

scription of the LPN structure. That is, we can rebuild an LPN by employing the above

matrices.

Example 12 Figure 4.3 is an LPN, where Σ = {a, b, u, f1, f2, f3}, ϕ(t1) = f1, ϕ(t2) = f2,

ϕ(t3) = f3, ϕ(t4) = u, ϕ(t5) = ϕ(t7) = ϕ(t10) = a, ϕ(t6) = ϕ(t8) = ϕ(t9) = b.

p1 p2

p5 p6

p7

p3 p4

t1, f1 t2, f2

t3, f3 t4, u

t5, a t6, b

t7, a t8, b

t9, b t10, a

� observable transition � unobservable transition

� unobservable faulty transition

Figure 4.4: An LPN

We also denote by Σo = {a, b}, Σu = {u} ∪ Σ f , Σ f = ΣF1 ∪ ΣF2 , ΣF1 = { f1, f3}, ΣF2 =

{ f2}, Σ′ = Σo ∪ Σ f , which will be used in the sequel.

The event-mapping matrix of this LPN is:

Ce =

















t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

a 0 0 0 0 1 0 1 0 0 1

b 0 0 0 0 0 1 0 1 1 0

f1 1 0 0 0 0 0 0 0 0 0

f2 0 1 0 0 0 0 0 0 0 0

f3 0 0 1 0 0 0 0 0 0 0

















(4.1)

Given an LPN, we can obtain a compact representation of both the incidence matrix

and the event-mapping matrix.
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Definition 14 An extended incidence matrix Cx is the orderly composition of the incidence

matrix and the event-mapping matrix:

Cx =

[

C

Ce

]

(4.2)

Example 13 The extended incidence matrix of the LPN in Figure 4.3 is:

Cx =

[

C
Ce

]

=





















































t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

p1 1 0 0 0 −1 0 0 0 0 0

p2 0 1 0 0 0 −1 0 0 0 0

p3 0 0 1 0 0 0 −1 0 0 0

p4 0 0 0 1 0 0 0 −1 0 0

p5 0 0 0 0 1 0 1 0 −1 0

p6 0 0 0 0 0 1 0 1 0 −1

p7 −1 −1 −1 −1 0 0 0 0 1 1

a 0 0 0 0 1 0 1 0 0 1

b 0 0 0 0 0 1 0 1 1 0

f1 1 0 0 0 0 0 0 0 0 0

f2 0 1 0 0 0 0 0 0 0 0

f3 0 0 1 0 0 0 0 0 0 0





















































(4.3)

4.2.2 Event Marking

In the following definition, we assign to a given marking M a vector, called event-marking,

which holds some event occurrences when the system state progresses from M0 to M

through a given sequence σ.

Definition 15 An event marking is a vector EM ∈N
|P|+|Σ′| defined by:

EM =

[

M

E

]

(4.4)

where:

– M ∈N
|P| is a marking such that ∃ σ ∈ T∗, M0 [ σ > M;

– E ∈ N
|Σ′| is an eventing vector E = Ce · π(σ).

The initial event marking is defined by:

EM0 =

[

M0

E0

]

=

[

M0

~0

]

(4.5)

We denote by E the set of event markings.

An event marking records the occurrences of events (in Σ′) from M0 to M through

some feasible sequence σ in its component E. Note that for a given marking M, E is not

unique since M may be reached by different sequences, as will be shown in Example 16.
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Example 14 The initial event marking of the LPN in Figure 4.3 is: 1

EM0 = [ 0 0 0 0 0 0 1 | 0 0 0 0 ]τ (4.6)

Note that an LPN structure can be completely specified with Pre, Post, M0 and the

event-mapping matrix. In other words, an LPN can be rebuilt using the given event-

mapping matrix and the initial marking, together with Pre and Post matrices. Besides,

these notations can be used to compute the dynamics of LPNs, as will be introduced in

the following section.

4.2.3 Extended State Equation

The extended incidence matrix makes it possible to characterize the dynamics of an LPN,

while giving both the distribution of tokens and the number of event occurrences.

We compute the successive event markings of EM by:

EM′ = EM + Cx · π(σ) (4.7)

and we say that EM′ is reachable from EM upon σ, written as EM [ σ > EM′. We denote

by R(EM) the set of all event markings reachable from EM. Note that R(EM) may be

infinite for a live and bounded LPN, since the firing of any transition labeled with an

event in Σ′ adds 1 to the corresponding component in the event marking. Also, the set of

event markings can be denoted by E = R(EM0).

In particular, if we replace Σ′ by T, then we describe the behavior of an unlabeled PN,

where firing any transition does not generate events. In this case, an event marking

EM =

[

M

E

]

records the firing number of each transition in the sequence σ having lead to M from M0.

In event-based diagnosis, we focus on the occurrences of observable and fault events

that we are interested in, without considering the harmless unobservable events. If we

take into account m fault classes Σ f =
⊎m

j=1 ΣFj , then Σ′ = Σo ⊎ Σ f .

For the sake of clarity and convenience, let Ce be the orderly composition of matrices

Co and C f ,

Ce =

[

Co

C f

]

(4.8)

where:

– Co is a |Σo| × |T| matrix, Co(i, j) = 1 if [ϕ(tj) = ei] ∧ (ei ∈ Σo), otherwise Co(i, j) = 0;

– C f is an m× |T| matrix, C f (i, j) = 1 if ϕ(tj) ∈ ΣFi , otherwise C f (i, j) = 0.

1Mτ is the transpose of matrix M.
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Example 15 The extended incidence matrix of the LPN in Figure 4.3, while considering two

classes of faults ΣF1 = { f1, f3} and ΣF2 = { f2}, is then:

Cx =







C
Co

C f






=















































t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

p1 1 0 0 0 −1 0 0 0 0 0

p2 0 1 0 0 0 −1 0 0 0 0

p3 0 0 1 0 0 0 −1 0 0 0

p4 0 0 0 1 0 0 0 −1 0 0

p5 0 0 0 0 1 0 1 0 −1 0

p6 0 0 0 0 0 1 0 1 0 −1

p7 −1 −1 −1 −1 0 0 0 0 1 1

a 0 0 0 0 1 0 1 0 0 1

b 0 0 0 0 0 1 0 1 1 0

ΣF1 1 0 1 0 0 0 0 0 0 0

ΣF2 0 1 0 0 0 0 0 0 0 0















































(4.9)

Note that Matrix 4.9 is different from Matrix 4.3, since we combine here f1 and f3 in the same

fault class.

Similarly, we denote an event marking by the orderly composition,

EM =

[

M

E

]

=

[

mark(EM)

event(EM)

]

=







mark(EM)

obs(EM)

f ault(EM)






(4.10)

where:

– mark is a marking projection, mark : E → N
|P|,

mark(EM) = [EM1, . . . , EM|P|]
τ ;

– event is a projection relative to the considered events, event : E → N
|Σo |+m,

event(EM) = [EM|P|+1, . . . , EM|P|+|Σo|+m]
τ ;

– obs is a projection relative to the observable events, obs : E → N
|Σo |,

obs(EM) = [EM|P|+1, . . . , EM|P|+|Σo|]
τ ;

– f ault is a projection relative to the considered fault classes, f ault : E → N
m,

f ault(EM) = [EM|P|+|Σo|+1, . . . , EM|P|+|Σo|+m]
τ .

Example 16 Considering the LPN in Figure 4.3, for sequence σ = t1t5t9t3t7t9, we have EM0 [ t1 >

EM1 [ t5 > EM2 [ t9 > EM3 [ t3 > EM4 [ t7 > EM5 [ t9 > EM6 and EM6 =

EM0 + Cx · π(σ), where the event markings generated successively are given in Table 4.1.
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Table 4.1: Event markings in Example 16

i EMi

0 [ 0 0 0 0 0 0 1 | 0 0 | 0 0 ]τ

1 [ 1 0 0 0 0 0 0 | 0 0 | 1 0 ]τ

2 [ 0 0 0 0 1 0 0 | 1 0 | 1 0 ]τ

3 [ 0 0 0 0 0 0 1 | 1 1 | 1 0 ]τ

4 [ 0 0 1 0 0 0 0 | 1 1 | 2 0 ]τ

5 [ 0 0 0 0 1 0 0 | 2 1 | 2 0 ]τ

6 [ 0 0 0 0 0 0 1 | 2 2 | 2 0 ]τ

Note that one can easily deduce if an observable event has been generated between

two successive event markings, just by comparing their obs components.

Example 17 By looking at the event components of the event markings generated successively in

Table 4.1, we can state that a sequence of transitions σ′ = t′1t′2t′3t′4t′5t′6 exists, such that EM0 [ t′1 >

EM1 [ t′2 > EM2 [ t′3 > EM3 [ t′4 > EM4 [ t′5 > EM5 [ t′6 > EM6, ϕ(t′1), ϕ(t′4) ∈

ΣF1 , ϕ(t′2) = ϕ(t′5) = a, ϕ(t′3) = ϕ(t′6) = b.

As a side note, we can observe that an event marking also provides a suitable represen-

tation for diagnosis based on the observation of both places (markings) and transitions,

as in [RH09].

4.2.4 Homomorphic Structure for Event Markings: LPN with Event Counters

As presented in the previous section, an event marking records both the marking and

the corresponding event occurrence information. However, event markings are only an

mathematical representation. Actually, an event marking can be visually presented by

the structure that we call event counter.

Definition 16 Given an LPN NL, an event counter relative to event e ∈ Σ is a place pe with

an input arc from all transitions labeled with e.

In other terms, the number of occurrences of e can be directly read from the number

of tokens in pe.

Definition 17 Given an LPN NL = (P, T, Pre, Post, M0, Σ, ϕ) and a set of events Σ′ ⊆ Σ, the

corresponding LPN with event counters (LPN-EC) is a tuple NΣ′

L = (P′, T, Pre, Post′ , M′0, Σ, ϕ),

where:

– P′ = P ∪ PΣ′ with PΣ′ a finite set of places assigned to Σ′;

– Post′ = Post ∪ PostΣ′ with PostΣ′ : T × P′ → {1} is the mapping that gives the arcs

linking transitions to the places in P′;
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– M′0 is the initial marking such that M′0(p) = M0(p) for p ∈ P and M′0(p) = 0 for

p ∈ PΣ′ .

Example 18 Consider the LPN-EC with event counters in Figure 4.5, where the yellow places

are the event counters of the original LPN as shown in Figure 4.3. Initially, each event counter

contains no tokens, since there is no occurrence of any event at the initial marking.

pa

p3 p4

p5

p7

p6

p1 p2

pb

pF1 pF2

t1, f1 t2, f2

t3, f3 t4, u

t5, a t6, b

t7, a t8, b

t9, b

t10, a

� observable transition � unobservable transition

� unobservable faulty transition

Figure 4.5: A LPN-EC

The LPN-EC can reach a new marking upon the firing of a sequence of transitions σ =

t1t5t9t3t7t9, yielding to the redistribution of tokens in the event counters, as shown in Figure 4.6:

M(pa) = M(pb) = 2 shows that there are 2 occurrences of events a and b respectively in the

firing of σ. Likewise, there are 2 occurrences of faults in ΣF1 and no occurrence of faults in ΣF2 .

We now summarize the relation between event markings and event counters:

1. Event markings are the vectors to carry the information of both markings and event

occurrences, in which some components indicate the number of tokens, and the oth-

ers indicate the number of event occurrences. An event counter is a specific place

added to the original LPN which translates the event occurrence information into

the number of tokens that it holds. The marking and the event occurrence informa-

tion of an LPN under consideration can then be depicted as the marking of the new

LPN-EC.

2. Using event counters requires introducing additional places and the necessary con-

necting arcs into the LPN under consideration. The liveness of the LPN will not

change after the introduction of event counters. Moreover, a bounded LPN may

become unbounded after the addition of event counters, as in Example 18.
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2pa

p3 p4

p5

p7

p6

p1 p2

2 pb

2pF1 pF2

t1, f1 t2, f2

t3, f3 t4, u

t5, a t6, b

t7, a t8, b

t9, b

t10, a

� observable transition � unobservable transition

� unobservable faulty transition

Figure 4.6: The reached marking of the LPN-EC in Figure 4.5 by the firing of t1t5t9t3t7t9

Note that we can find, for any event marking of an LPN, the same vector (marking)

in its corresponding LPN-EC, since they naturally carry the same information but in a

different structure. Thus, we say that an LPN-EC is an extended LPN, whose markings

represent both markings of the original LPN and the record of event occurrences. Both

event markings and event counters can be employed for monitoring and diagnosing an

LPN model as needed.

As a side note, a similar structure can be found in [Cab+12b]. The authors add a place

linked with some transitions (not necessarily labeled with the same event) to an existing

PN (verifier net) in order to record the steps after a fault for K-diagnosability analysis.

4.3 Verification of K-Diagnosability

Before discussing the diagnosability issue, we make the following assumptions:

1. The LPN is live and bounded;

2. No infinite feasible sequence of unobservable transitions exists;

3. Faults are permanent, i.e., when a fault occurs the system remains definitively faulty.

4.3.1 Fault Marking (FM)

By extension, we introduce fault marking for a more compact representation to check

diagnosability of a given class of faults.
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Definition 18 A fault marking of event marking EM w.r.t. a fault class ΣFi (1 ≤ i ≤ m), is a

vector FMi ∈ N
|P|+1, defined as follows:

FMi(EM) =

[

mark(FMi(EM))

f ault(FMi(EM))

]

where:

– mark(FMi(EM)) = mark(EM);

– f ault(FMi(EM)) =







1 if [ f ault(EM)]i > 0

0 otherwise

where for a given vector ~x = [x1, . . . , x|~x|]
τ , [~x]k denotes the kth entry xk.

In other words, f ault(FMi) is the tag relative to the occurrence of fault events belong-

ing to ΣFi from M0 to marking mark(EM): “0” indicates that no fault in ΣFi has occurred

and “1” indicates that a fault in ΣFi has occurred at least once. The initial fault marking

is:

FMi
0 =

[

M0

0

]

(4.11)

We denote by Qi the set of fault markings corresponding to ΣFi .

Example 19 For the LPN in Figure 4.4, the fault markings corresponding to fault class ΣF1 are

given in Table 4.2.

Table 4.2: Fault markings corresponding to ΣF1 in Example 19

j FM1
j

0 [ 0 0 0 0 0 0 1 | 0 ]τ

1 [ 1 0 0 0 0 0 0 | 1 ]τ

2 [ 0 0 0 0 1 0 0 | 1 ]τ

3 [ 0 0 0 0 0 0 1 | 1 ]τ

4 [ 0 0 1 0 0 0 0 | 1 ]τ

5 [ 0 0 0 0 1 0 0 | 1 ]τ

6 [ 0 0 0 0 0 0 1 | 1 ]τ

Compared with event markings, a fault marking carries the following information:

a marking with its relative occurrence information for a given class of faults, without

containing information relative to the occurrence of observable events. Therefore, two

event markings with different obs components will correspond to the same fault marking,

if their mark and f ault components are the same. This implies that a fault marking may be

reached from M0 by different observable sequences. For event markings EM1 and EM2

satisfying EM1 [ σ > EM2, σ ∈ T∗, we write FMi
1 [ σ > FMi

2, where FMi
1 and FMi

2 are

their fault markings relative to ΣFi respectively.
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Proposition 3 For a bounded LPN, given a fault class ΣFi , the FM i set is finite.

Proof. A bounded LPN NL has a finite marking graph. Assuming the number of mark-

ings of NL is p, then NL has at most 2p fault markings, since a fault marking relative to

ΣFi is composed of a marking combined with the fault information corresponding to ΣFi ,

namely 0 or 1. �

One can directly guess the utility of introducing fault markings compared to event

markings: to obtain a finite representation suitable for diagnosability analysis.

4.3.2 FM-Graph

For the purpose of diagnosis, we develop a fault marking graph (hereafter FM-graph) to

record certain specific markings with their respective fault occurrence information, while

dealing with single given class of faults.

Definition 19 The FM-graph relative to fault class ΣFi and called FM i-graph is a tuple N, Σo, δ,

FM0), where:

– N ⊆ Qi is a set of FM i nodes (fault markings);

– Σo is the set of observable events;

– FM0 =

[

M0

0

]

is the initial node;

– δ : Qi × Σo → 2Q
i

is the transition function of fault markings: given FMi
1 ∈ Q

i and

e ∈ Σo, δ(FMi
1, e) = {FMi

2 | ∃ σ ∈ T∗ s.t. Po(ϕ(σ)) = ϕ(σ|σ|) = e, mark(FMi
1) [ σ >

mark(FMi
2), f ault(FMi

2) = 1 iff [( f ault(FMi
1) = 1) ∨ (∃ k, (ϕ(σ))k ∈ ΣFi)]}, as

shown in Algorithm 1.

An FMi-graph is a directed non-deterministic graph. Each node indicates a given fault

marking and each arc indicates an observable event. Note that an arc from one node to

itself is permitted. For a given observable event e and two nodes FMi
1 and FMi

2, at most

one arc labeled with e may link FMi
1 to FMi

2. Actually, an FMi-graph can be treated as

an ǫ-reduced observer automaton with fault tag. We take the same idea as in [Sam+95]

but in a different formulation (using fault marking vectors), in order to use mathematical

tools to solve the problem.

For a bounded LPN, the complete FMi-graph w.r.t. ΣFi can be built by a finite num-

ber of δ functions from the initial fault marking. However, in order to perform diagnosis

analysis efficiently, we do not build the whole FMi-graph in our approach. Instead, we

build the FMi-graph and the FM-set tree on the fly in parallel, as will be discussed in Sec-

tion 4.3.6.

Example 20 Consider the LPN in Figure 4.3, the FM 1-graph (resp. FM 2-graph) is given in

Figure 4.7(a) (resp. Figure 4.7(b)). The corresponding nodes of these graphs are given in Table 4.3.
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Algorithm 1 Algorithm for δ function
1: Input: a fault marking FM and an observable event e;
2: Output: F = δ(FM, e);
3: function δ(FM, e)
4: Fcon ← {FM}; ⊲ Fcon is the set of fault markings under consideration.
5: F ← ∅; ⊲ F is the set of fault markings reached from FM immediately after the

occurrence of e.
6: for all y ∈ Fcon do
7: if mark(y) [ t > then ⊲ t is enabled at marking mark(y).
8: if t ∈ To then
9: if ϕ(t) = e then

10: z← y [ t >; ⊲ z is reached from y by the firing of t.
11: F ← F ∪ {z};

12: else ⊲ If t is an unobservable transition.
13: z← y [ t >;
14: Fcon ← Fcon ∪ {z};

15: return F ;

0 1

23

4

a
a a

b

b

a

b

(a) FM 1-graph

0 1

2

34

5

a

b bb

a

a
a

b
b

(b) FM 2-graph

Figure 4.7: The FM-graphs of the LPN in Figure 4.3

Table 4.3: Fault markings in Example 20

j FM1
j FM2

j

0 [ 0 0 0 0 0 0 1 | 0 ]τ [ 0 0 0 0 0 0 1 | 0 ]τ

1 [ 0 0 0 0 0 0 1 | 1 ]τ [ 0 0 0 0 0 0 1 | 1 ]τ

2 [ 0 0 0 0 1 0 0 | 1 ]τ [ 0 0 0 0 1 0 0 | 0 ]τ

3 [ 0 0 0 0 0 1 0 | 0 ]τ [ 0 0 0 0 1 0 0 | 1 ]τ

4 [ 0 0 0 0 0 1 0 | 1 ]τ [ 0 0 0 0 0 1 0 | 0 ]τ

5 – [ 0 0 0 0 0 1 0 | 1 ]τ

4.3.3 FM-Set

The formal definition of K-diagnosability is introduced in Section 2.1.5. Without loss of

generality, we first discuss the K-diagnosability for one class of faults ΣFi . In the sequel,

we will always reason about ΣFi . Thereby, for the sake of clarity, we will dismiss index i

relative to the considered fault class. The generalization of our approach can be obtained

just by repeating the same process for each class ΣFi .
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We now introduce the following notations to help describe the K-diagnosability prob-

lem.

Let the FM-set power set be X = 2Q and the initial FM-set x0 = {FM0}.

Definition 20 The FM-set transition mapping λ : X × Σo → X is defined as follows: given an

FM-set x ∈ X and an observable event e ∈ Σo,

λ(x, e) = {FM′ | ∃ FM ∈ x, σ ∈ T∗s.t. Po(ϕ(σ)) = ϕ(σ|σ|) = e, FM [ σ > FM′}

Here, λ(x, e) is the FM-set whose fault markings are reachable from those of x by exe-

cuting a sequence of unobservable events (possibly empty) followed by observable event

e. We extend this definition to the set of observable events Σo by defining the mapping

Λ : X → 2X ,

Λ(x) = ∪e∈Σo{λ(x, e)}

For simplicity, we write x x′ if x′ ∈ Λ(x).

Proposition 4 A bounded LPN has a finite number of FM-sets.

Proof. For a bounded LPN with p markings, the upper bound of its fault marking

number is 2p (cf. Proposition 3). The maximum number of FM-sets will not exceed the

number of all fault marking combinations:

C1
2p + C2

2p + · · ·+ C2p
2p

= (C0
2p + C1

2p + C2
2p + · · ·+ C2p

2p)− C0
2p

= 22p − 1

�

Definition 21 The tagging function tag : X → {F, N, U} is defined as follows:

tag(x) =



















N if ∀ FM ∈ x, f ault(FM) = 0

F if ∀ FM ∈ x, f ault(FM) = 1

U otherwise

An FM-set x is also said to be normal (resp. F-certain, F-uncertain) if tag(x) = N (resp. F,

U). Here, we use the same idea as in [Sam+95].

The propagation of tags between FM-sets is shown in Figure 4.8, where an arrow in-

dicates an observable event. For x  x′, if tag(x) ∈ {N, U}, we may have tag(x′) ∈

{F, N, U}; whereas if tag(x) = F then tag(x′) = F, as faults are assumed to be perma-

nent and, therefore, the F-certain tag is propagated to all the successive FM-sets. A simi-

lar idea has been presented as the fault propagation function of the diagnoser automata

in [Sam+95].

54



4.3. VERIFICATION OF K-DIAGNOSABILITY

Normal F-uncertain

F-certain

Figure 4.8: Fault propagation between FM-sets

Example 21 Considering the LPN in Figure 4.3, for ΣF1 , we have

λ(x0, a) = x1, λ(x0, b) = x2

and then

Λ(x0) = {x1, x2}

where, referring to Table 4.3:

x0 = {FM1
0}, x1 = {FM1

3}, x2 = {FM1
4}

4.3.4 FM-Set Tree

In order to represent both the reachability and fault propagation of an LPN model, we

introduce a structure called FM-set tree, which is the basis of the diagnosability analysis.

An FM-set tree is a tree-like structure, where:

– the root node is the initial FM-set x0 = {FM0};

– the subsequent nodes are the FM-sets reachable from x0 by a finite number of oper-

ations of λ function;

– for a given node x, the set of its child nodes (direct successors) is Λ(x).

4.3.5 Conditions for K-Diagnosability

4.3.5.1 Equivalent Indeterminate Cycles in FM-Set Tree

Let us recall that the condition for undiagnosability of an automaton is the existence of

an Fi-indeterminate cycle in its diagnoser model [Sam+95]. We will use this condition in

the following diagnosability analysis.

While building the FM-set tree on the fly, as shown in Figure 4.9(a) (where faulty fault

markings are indicated by black circles and the normal ones by white circles), a newly-

generated F-uncertain node (here x5) may be equal to one of its predecessors (here x1).

In this case, if two fault markings 1 and 2 exist in such a node, such that 1 is faulty, 2

is normal, and either of them has a path to itself in the FM-graph, i.e., 1, 3, 5 and 2, 4, 6

as shown in Figure 4.9(b), then we determine the existence of an indeterminate cycle

and, therefore, the system is undiagnosable; otherwise, there is no indeterminate cycle,

as shown in Figure 4.9(c), since a normal cycle 2, 4, 6 exists, but no faulty cycle exists.

55



CHAPTER 4. UNTIMED PN-BASED DIAGNOSIS OF DES

x0

x1

x3

x4

x5

x2

0

1 2

3 4

5 6

7

1 2

a

c
b

c

d

eq
u

iv
al

en
t

(a) FM-set tree

0

1 2

3 4

5 6

7

a

b

c

d

c

a

b

c

d

(b) FM-graph

0

1 2

3 4

5 6

7

a

b

c

d

c

a

b

c

d
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� normal FM or normal FM-set � F-uncertain FM-set
� fault FM or F-certain FM-set

Figure 4.9: Checking an indeterminate cycle

4.3.5.2 Relation between Undiagnosability and Delay Values

For the sake of analyzing K-diagnosability, we introduce a delay function to record the

number of successive F-uncertain FM-sets as the FM-set tree is processed.

Definition 22 The function delay : X → N is defined as follows:

– delay(x0) = 0;

– for any newly-generated node x′ ∈ Λ(x), define delay(x′) as shown in Table 4.4;

Table 4.4: Definition of delay function for newly generated node

tag(x) tag(x′) delay(x′)
N N or F 0
N U 1
U N or F 0
U U delay(x) + 1

– in particular, if a newly generated F-uncertain node x′ has been given a delay value accord-

ing to Table 4.4, and it also satisfies the following condition: (x′ = x′′) ∧ [delay(x′) >

delay(x′′)], where x′′ is an existing node, then let d = delay(x′)− delay(x′′). For x′′ and

each of its successor F-uncertain FM-sets y, update delay(y) with delay(y) + d. This will

be illustrated in the sequel in Figure 4.10 (cf. nodes x1, x3, x4 and x5).

We do not consider the case where tag(x) = F, since, as will be shown later when

building the FM-set tree, the processing of a branch is stopped as soon as a faulty node

(an FM-set tagged F) is obtained since, obviously, the subsequent states will all be faulty

(permanent faults) and, online, a diagnosis verdict can immediately be given.
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In simple terms, delay(x) denotes the maximum number of successive F-uncertain

FM-sets until x. In the on-the-fly construction of the FM-set tree, delay(x) is dynamic, as

it is updated while building the FM-set tree (in the case where two equivalent uncertain

nodes are met in the same branch). Indeed, when meeting the relation x = x′, we have to

compare delay(x) and delay(x′), and update delay values of relevant FM-sets.

Example 22 Let us consider the FM-set tree under construction shown in Figure 4.10(a), where

each arrow indicates an observable event. x2 (resp. x8) is the second F-uncertain node after a fault

that may have occurred between x0 and x1 (resp. x6 and x7). When x9, the child node of x8, is

generated, and as x9 = x2 and delay(x9) > delay(x2), we update the delay value of x2 and x3

as shown in Figure 4.10(b).

x0delay(x0) = 0

x1delay(x1) = 1

x2delay(x2) = 2

x3delay(x3) = 3

x4delay(x4) = 0

x6 delay(x6) = 0

x7 delay(x7) = 1

x8 delay(x8) = 2

x9x5delay(x5) = 0

(a) The FM-set tree after generating node x8

x0delay(x0) = 0

x1delay(x1) = 1

x2delay(x2) = 3

x3delay(x3) = 4

x4delay(x4) = 0

x6 delay(x6) = 0

x7 delay(x7) = 1

x8 delay(x8) = 2

x9 delay(x9) = 3x5delay(x5) = 0

equivalent

(b) The FM-set tree after generating node x9

� normal FM-set � F-uncertain FM-set � F-certain FM-set

Figure 4.10: Updating the delay values while generating an FM-set tree

4.3.6 Algorithm for On-the-Fly Checking K-Diagnosability

We now develop our algorithm for checking K-diagnosability based on on-the-fly build-

ing of the FM-set tree.

Proposition 5 For a bounded LPN, KDIAG function in Algorithm 3 terminates and its diagnos-

ability verdict is correct.

Proof. In Algorithm 3, we proceed, step by step with NEXTFMSET function, to build

the FM-set tree in parallel with the FM-graph, on the fly, for solving K-diagnosability.
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Algorithm 2 Checking K-diagnosability by on-the-fly building of FM-graph and FM-set
tree in parallel

1: Input: K, NL = (P, T, Pre, Post, Σ, ϕ, M0), To, Tu, Tf .
2: Output: K-diagnosability of NL;
3: N ← ∅; ⊲ N is the set of the FM-graph nodes.
4: A ← ∅; ⊲ A is the set of the FM-graph arcs.
5: Xv ← {x0}; ⊲ Xv is the set of the FM-sets nodes.
6: Av ← ∅; ⊲ Av is the set of the FM-sets arcs.
7: x ← x0;
8: T ← the initial FM-set tree which contains only x0;
9: (T ′, y, n)← KDIAG(T , x, K); ⊲ cf. Algorithm 3

10: switch n do
11: case 1
12: assert(NL is K-diagnosable;)

13: case 0
14: assert(NL is not K-diagnosable;) ⊲ NL may be K′-diagnosable for K′ > K.

15: case −1
16: assert(NL is not diagnosable;) ⊲ An indeterminate cycle is found.

First, we will prove that the algorithm terminates for a bounded LPN. The investiga-

tion of a branch of FM-set tree is stopped, when:

1. An F-certain FM-set is generated;

2. An F-uncertain FM-set, whose delay value is ≥ K, is generated (Line 14 – 16 and 23

– 26 of Algorithm 3);

3. A new normal FM-set is equal to a previous one (Line 8 of Algorithm 3);

4. A new F-uncertain FM-set is equal to a previous one (Line 18 – 26 of Algorithm 3).

In the on-the-fly construction of an FM-set tree, for any branch, one of the above condi-

tions will be met sooner or later, since we consider live and bounded LPNs here, which

means that the algorithm terminates well.

Secondly, we prove that this algorithm covers all the cases while constructing the FM-

set tree on the fly. For any newly-generated node x′,

1. If x′ is F-certain, it is not necessary to consider its child nodes, as all of them will

be F-certain according to the fault propagation relation illustrated in Figure 4.8. A

fault will be definitively determined when the system is in such a state. In this

case we stop proceeding the FM-set tree along this branch. Note that this case was

consequently omitted in the above algorithm.

2. If x′ is normal and

a) If there is already an existing node x′′ (in Xv) such that x′ = x′′, then we stop

investigating this branch, since x′ would have the same branches as x′′, which

has already been considered;
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Algorithm 3 Checking K-diagnosability by on-the-fly building of FM-graph and FM-set
tree in parallel

1: Input: an FM-set x in the FM-set tree T , and K relative to K-diagnosability;
2: Output: a triple (T ′, y, n), where T ′ is the FM-set tree generated after running KDIAG

function, y is the FM-set where the generation of an FM-set tree branch stops and n is
the K-diagnosability verdict;

3: function KDIAG(T , x, K)
4: for all e ∈ Σo do
5: x′ ← NEXTFMSET(x, e) ; ⊲ x′ is the child node of x.
6: update T to T ′ by adding x′ from x upon e;
7: if (x′ 6= ∅) ∧ [tag(x′) = N] then
8: if (∀ x′′ ∈ Xv)(x′ 6= x′′) then ⊲ No equivalent node already exists.
9: Xv ← Xv ∪ {x′};

10: (T ′′, y, n)← KDIAG(T ′, x′, K);
11: if n 6= 1 then
12: return (T ′′, y, n);

13: if (x′ 6= ∅) ∧ [tag(x′) = U] then
14: if delay(x′) = K then
15: return (T ′, x′, 0); ⊲ 0 denotes that NL is not K-diagnosable.
16: ⊲ However, it may be K′-diagnosable for K′ > K.
17: else
18: if (∃ x′′ ∈ Xv)(x′′ = x′) then
19: if x′ is in an indeterminate cycle then ⊲ Use of function
20: ⊲ path_exists from the library digraph [Rus12].
21: return (T ′, x′,−1); ⊲ −1 denotes NL is not
22: ⊲ (K-)diagnosable due to the indeterminate cycle.
23: else if delay(x′) > delay(x′′) then
24: d← delay(x′)− delay(x′′);
25: if UPDDELAY(x′′ , d, K) = FALSE then
26: return (T ′, x′, 0); ⊲ cf. Algorithm 5.

27: else
28: Xv ← Xv ∪ {x′};
29: (T ′′, y, n)← KDIAG(T ′, x′, K− 1);
30: if n 6= 1 then return (T ′′, y, n);

31: return (T ′, x′, 1); ⊲ 1 denotes that NL is K-diagnosable.

b) Otherwise, we continue investigating this branch (Lines 8 – 12).

3. If x′ is F-uncertain, there are many cases to be handled (Lines 13 – 30).

a) If delay(x′) = K, it means that until x′ there are already K successive F-uncertain

nodes, and then the fault cannot be detected after K observable events upon

its occurrence. Thus, NL is not K-diagnosable (Lines 14 – 16 of Algorithm 3);

b) If delay(x′) < K,

i. If there is an existing node x′′ (in Xv) such that x′ = x′′, (Lines 18 – 26 of

Algorithm 3)
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Algorithm 4 NEXTFMSET(): a subfunction of Algorithm 3 for computing the next FM-set
while building the FM-graph on the fly

1: Input: an FM-set x and an observable event e;
2: Output: FM-set x′ which is reached from x immediately after e;
3: function NEXTFMSET(x, e)
4: x′ ← ∅;
5: for all y ∈ x do
6: x′ ← x′ ∪ δ(y, e); ⊲ Function δ is given in Algorithm 1.
7: N ← N ∪ x′; ⊲ N is the set of the FM-graph nodes.
8: for all z ∈ δ(y, e) do
9: A ← A∪ {(y, e, z)}; ⊲ A is the set of the FM-graph arcs.

10: return x′;

Algorithm 5 UPDDELAY(): a sub-function of Algorithm 3 for updating delay values
1: Input: an FM-set x, an integer d and K relative to K-diagnosability;
2: Output: FALSE if NL is not K-diagnosable or TRUE if further investigation is needed;
3: function UPDDELAY(x, d, K)
4: for all node z s.t. x z do
5: if tag(z) = U then
6: delay(z) ← delay(z) + d;
7: if delay(z) ≥ K then
8: return FALSE; ⊲ NL is not K-diagnosable.
9: else

10: return UPDDELAY(z, d, K);
11: return TRUE;

A. If x′ is in an Fi-indeterminate cycle, therefore NL is not (K-) diagnos-

able (Lines 20 – 22 of Algorithm 3);

B. Otherwise, we update the delay value of the related nodes, and check

if one of these nodes x′′′ satisfying delay(x′′′) ≥ K exists (by func-

tion UpdDelay). If so, NL is not K-diagnosable (Lines 23 – 26 of Algo-

rithm 3);

ii. Otherwise, we continue investigating this branch by recalling KDIAG func-

tion on the current node (Lines 27 – 30 of Algorithm 3).

Since all the possible cases are considered, and since the number of FM-sets is finite

(cf. Proposition 4), we can be sure that our algorithm terminates well. �

Example 23 Let us analyze the K-diagnosability of LPN NL in Figure 4.3. As illustrated through

the solution process of Figure 4.11, we can conclude that NL is 1-diagnosable w.r.t. ΣF1 . Similarly,

according to Figure 4.12, NL is not 1,2,3-diagnosable w.r.t. ΣF2 .
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� normal FM-set � F-certain FM-set

Figure 4.11: Solution process of K-diagnosability for ΣF1
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Figure 4.12: Solution process of K-diagnosability for ΣF2

4.4 Verification of Diagnosability

4.4.1 Algorithm for Checking Diagnosability

In this section, we show how to investigate classic diagnosability on the basis of K-

diagnosability analysis.

For a K-diagnosable system A, it is obvious that: 1) A is K,′-diagnosable for any K,′≥

K, and 2) Kmin ∈ N exists such that A is Kmin-diagnosable and for all K,′< Kmin, A is

not K,′-diagnosable. In other words, Kmin is the minimum value to ensure diagnosability,

i.e., any fault can be diagnosed within at most Kmin steps (observable events) after its

occurrence. Thus, finding Kmin is of great significance while studying diagnosability.

We extend Algorithm 3 to solve the classic diagnosability problem (cf. Algorithm 6).

Our goal here is twofold: first to determine if the system is diagnosable, and, if so, what

the minimum value of K is for which the system is K-diagnosable and return the last
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FM-set tree for building the diagnoser in the future (cf. Section 4.5).

Algorithm 6 Checking diagnosability
1: Input: NL = (P, T, Pre, Post, M0, Σ, ϕ), To, Tf ;
2: Output: diagnosability verdict and (T ′, Kmin) if NL is diagnosable;
3: y← x0;
4: K ← 0;
5: n← 0;
6: T ′ ← the initial FM-set tree which contains only x0;
7: while n = 0 do ⊲ If NL is not K-diagnosable.
8: K ← K + 1;
9: x ← y;

10: T ← T ′;
11: (T ′, y, n)← KDIAG(T , x, K); ⊲ cf. Algorithm 3.

12: if n = 1 then
13: return (T ′, K); ⊲ NL is Kmin-diagnosable where Kmin = K.
14: ⊲ T ′ is used for building the diagnoser, cf. Section 4.5.
15: else ⊲ If n = −1.
16: return 0; ⊲ NL is not diagnosable.

As shown in Algorithm 6, checking diagnosability is performed on the fly while build-

ing the FM-set tree and the FM-graph. A notable advantage of this method is that, when

checking (K + 1)-diagnosability, the models (FM-graph and FM-set tree) generated while

investigating K-diagnosability are reused, instead of completely restarting from scratch.

It should be noted that in Algorithm 6 we do not set a upper bound for K. It seems that

K could be increased to infinity in the incremental research. Actually, the algorithm can

terminate well, since the system under consideration is bounded and K cannot exceed

the number FM-set tree states.

Example 24 Using Algorithm 6, we have analyzed the diagnosability of LPN NL in Figure 4.3

w.r.t. ΣF2 . We conclude that NL is not diagnosable for ΣF2 since an F2-indeterminate cycle has

been found when 4-diagnosability is investigated, after NL has been concluded to be not 1, 2 or

3-diagnosable.

4.4.2 Complexity and Effectiveness Analysis

Let us analyze the proposed algorithm in terms of memory complexity. According to

Proposition 1 and 2, for a given class of faults, if the number of markings of the consid-

ered LPN is p (which is also the number of automaton states if we consider the reacha-

bility graph as an automaton), the number of nodes in the FM-graph will be ≤ 2p, and

the number of nodes in the FM-set tree will be ≤ 22p (cf. Proposition 3). In the worst

case, when all the possible FM-sets are generated and investigated, i.e., when the FM-set

tree states are enumerated, the complexity in terms of memory is equal to the diagnoser

approach of [Sam+95]. The number of the FM-set tree states is exponential to the number

of LPN markings p.
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However, in general, we do not build the whole FM-graph and FM-set tree, since

we build them on the fly and keep only necessary nodes for diagnosis. In particular, an

undiagnosable PN will be identified immediately after an indeterminate cycle is found,

rather than continuing generating other FM-sets. Moreover, as soon as an F-certain node

is met, the investigation of the current branch is stopped, since faults are permanent and,

consequently, all the subsequent states will be faulty as well. The following example will

show the difference in memory complexity between the diagnoser approach and ours.

Example 25 Consider LPN NL in Figure 4.13(a), whose reachability graph can be treated as

automaton G in Figure 4.13(b), where the states in G are given in Table 4.5.

Table 4.5: The markings in Figure 4.13(b)

State of G Marking of NL

1 [ 1 0 0 0 0 0 0 0 ]τ

2 [ 0 1 0 0 0 0 0 0 ]τ

3 [ 0 0 1 0 0 0 0 0 ]τ

4 [ 0 0 0 1 0 0 0 0 ]τ

5 [ 0 0 0 0 1 0 0 0 ]τ

6 [ 0 0 0 0 0 1 0 0 ]τ

7 [ 0 0 0 0 0 0 1 0 ]τ

8 [ 0 0 0 0 0 0 0 1 ]τ

p1

p2

p3

p4 p5

p6 p7 p8

t1, a

t2, f
t3, b t4, u

t5, a t6, a t7, a

t8, b

t9, b t10, b t11, b

(a) NL

1 2

3start 4 5

6 7 8

a

f

b u

a a a

b

b b b

(b) The language equivalent automaton G of
the reachability graph of NL

Figure 4.13: LPN NL and its reachability graph G

Using the traditional diagnoser approach, diagnoser Diag(G) (cf. Figure 4.14(b)) can be built

based on observer Obs(G) (cf. Figure 4.14(a)) and the system is determined to be undiagnosable

due to the existence of an indeterminate cycle (the self loop on diagnoser state {2F, 6N} in Fig-

ure 4.14(b)).
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(a) Obs(G): the observer of G
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{2F, 6N}

{4N}
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(b) Diag(G): the diagnoser of G

Figure 4.14: The observer and diagnoser of G

3Nstart

2F 6N

a a

b b

(a) The FM-graph of NL

{3N}start

{2F, 6N}

{2F, 6N}

a

b equivalent

(b) The FM-set tree of NL

Figure 4.15: The FM-graph and FM-set tree of NL

The same verdict can be obtained when using our on-the-fly approach. The on-the-fly analy-

sis requires building the FM-set tree (cf. Figure 4.15(b) ) on the basis of the FM-graph (cf. Fig-

ure 4.15(a) ), where the fault markings are given in Table 4.6. Here, we assume that the branches

investigated first in the FM-graph (and accordingly in the FM-set tree) are the ones labeled by a.

It is worth noting here that the order of branches investigation will be discussed later on in the

manuscript.

Table 4.6: The markings in Figure 4.15

State of FM-graph Fault markings
2F [ 0 1 0 0 0 0 0 0 | 1 ]τ

3N [ 0 0 1 0 0 0 0 0 | 0 ]τ

6N [ 0 0 0 0 0 1 0 0 | 0 ]τ
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Compare the two methods, the diagnoser approach generates 6 observer states and 4 diagnoser

states, whereas the on-the-fly approach generates 3 FM-graph states and 2 FM-set tree states. The

difference will be shown again in the comparative simulation results on the WODES benchmark

(cf. Section 4.6.1.2).

Generally speaking, the goal behind using an on-the-fly approach is to avoid, as much

as possible, building the whole state space. However, from an analytical point of view, we

are not able to determine, analytically and in general, the gain of our on-the-fly approach

comparatively to the existing approaches, which are based on a priori building of inter-

mediate exhaustive models (reachability graph, diagnoser, etc.). Indeed, this gain largely

depends on the analyzed model and there is no actual worse case on which the complex-

ity computation can be based.

It is worth noticing that our algorithm based on a depth-first search, does not define

priorities in the investigation of branches. We need to define some heuristics in terms of

priority between the branches to be investigated, to make our algorithm more efficient.

This needs to make numerous experiments on different benchmarks to validate the strat-

egy to be adopted.

Moreover, in order to solve diagnosability for each class of faults ΣFi , it is sufficient to

perform our algorithm for each ΣFi respectively. Thus, the computational complexity will

be linear with the number of fault classes (the same as in the diagnoser and the verifier-

based approaches).

4.5 Online Diagnosis

In this section, we develop an approach for online diagnosis of diagnosable LPNs on the

basis of a diagnoser, which is obtained from the FM-set tree in a straightforward way.

The objective is to determine, from a sequence of observable events, whether the system

is faulty and if so to which class the fault belongs.

An FM-set tree can be used for online diagnosis, because:

1. The node tag indicates the occurrence of fault: “normal” if no fault has occurred,

“F-uncertain” if a fault has probably occurred, or “F-certain” if a fault has occurred;

2. Each branch corresponds to one of the possible sequences of observable events from

the initial marking and ends at a node that is F-certain or is equal to another existing

node.

However, the marking component of a fault marking is useless for diagnosis, as we

perform diagnosis based on sequences of observable events and not on the basis of mark-

ings. In order to perform online diagnosis efficiently, we generate the diagnosis graph

(diagnoser) from the FM-set tree (cf. the return value T ′ in Algorithm 6), by:

1. Merging the equivalent nodes;
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2. For each node, keep only the fault tag information.

Actually, a diagnoser is a deterministic graph where each node carries a fault tag and

each arc is tagged with an observable event. Thus for any sequence of observable events,

by following the corresponding path in the diagnosis graph from the initial node, one

can determine the occurrence of a fault, online, by looking at the tag of the reached node.

Algorithm 7 Fault detection using the diagnoser derived from FM-set tree
1: Input: A sequence composed of observable event ej;
2: Output: The fault occurrence information of the current system state;
3: q0 ← N; ⊲ The system is normal (N) after the initialization.
4: j← 1;
5: while the system is in operation do
6: Wait for the input observable event ej;
7: qj ← the state from qj−1 upon ej;
8: switch qj do
9: case N

10: assert(No fault belonging to ΣFi has happened;)

11: case U
12: assert(A fault belonging to ΣFi has probably happened;)

13: case F
14: assert(A fault belonging to ΣFi has happened;)

15: case ∅ ⊲ The system arrives at a blocked faulty state “F”.
16: assert(A fault belonging to ΣFi has happened;)

17: j← j + 1;

The above algorithm considers a single fault type, however in order to deal with

several fault classes, the nodes fault tags must be extended accordingly.

Example 26 Consider the LPN in Figure 4.16 with observable events Σo = {a, b}. The diagnosis

graph for Σ f = { f} (cf. Figure 4.18 ) is generated from the FM-set tree of Figure 4.17. Letter N

(resp. U, F) indicates “normal” (resp. “F-uncertain”, “F-certain”).

By looking at this graph, upon the observation of trace “aaa” from the initial state node “N” is

reached. One can state that no fault from Σ f has occurred. Upon “abb” one can conclude that one

fault from Σ f has occurred, since in the diagnoser “F” is the only reachable node after “ab” and the

last “b” is unnecessary for giving diagnosis verdict. If “a” is observed, node “U” will be reached,

meaning that a fault has possibly happened and further observation is needed to determine the

system state.

4.6 OF-PENDA Software Tool

We have developed a tool implementing our various algorithms in C++, which we called

OF-PENDA. In order to show the effectiveness of our method, the WODES diagnosis

benchmark [Giu07] and the LC benchmark are used in the comparative simulation using
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Figure 4.16: LPN NL
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[ 0 1 0 0 0 0 0 0 | 0 ]τ

a

a b

b

a equivalent

Figure 4.17: The FM-set tree of NL

OF-PENDA and the UMDES library [Laf00], with the help of TINA tool [Ber+04]. Based

on the simulation results, we will point out the similarities and differences between our

approach and some existing DES-based diagnosis approaches.

4.6.1 Application to the WODES Diagnosis Benchmark

4.6.1.1 WODES Diagnosis Benchmark

The WODES diagnosis benchmark is shown in Figure 4.19 and describes a manufacturing

system characterized by three parameters: n, m and k, where:

– n is the number of production lines;

– m is the number of units of the final product that can be simultaneously produced.

Each unit of product is composed of n parts;
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Figure 4.18: The diagnoser of NL

– k is the number of operations that each part must undergo in each line.

The observable transitions are indicated by white boxes, and the unobservable transitions

by black boxes. For more details on the benchmark the reader can refer to [Giu07].
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Figure 4.19: The WODES diagnosis benchmark
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4.6.1.2 Comparative Simulation

We now analyze the diagnosability upon the fault class ΣF1 = { f1, . . . , fn−1}. In other

terms, only one class of faults is considered here. In order to perform a comparative

simulation with OF-PENDA and the UMDES library, some preparations are necessary.

The UMDES library deals with automata models by importing a “.fsm” file. Thus, we

first generate the reachability graph of the considered PN with the help of TINA yield-

ing to a “.aut” file, which is then transformed into a “.fsm” file by a script integrated

in OF-PENDA that we have developed. This ensures that the comparative simulation is

performed with the same input.

The simulation has been performed on a PC Intel with a clock of 2.26 GHz and the

results are shown in Table 4.7.

• The first 3 columns titled “m”, “n” and “k” are the basic structural parameters of

the WODES diagnosis benchmark.

• The 4th column is the stopping value of “K ” obtained with Algorithm 6. Note that

for a diagnosable case (cf. Column 9), this “K ” value is equal to “Kmin”.

• The 5th column titled “|R|” is the number of nodes in the marking graph computed

by TINA, which is equal to the number of states of the automaton for building the

diagnoser by the UMDES library.

• The 6th column titled “|N |” is the number of the FM-graph nodes.

• The 7th column titled “|Xv|” is the number of the FM-set tree nodes.

• The 8th column titled “|Diag|” is the number of the diagnoser automaton states

generated by UMDES.

• The 9th column titled “DO” is the diagnosability verdict returned by OF-PENDA,

where “Yes” indicates that the system is diagnosable and “No” indicates undiag-

nosable.

All the results are obtained under a simulation time of less than 6 hours. “o.t.” (out of

time) means the result cannot be computed within 6 hours.

The discussion relative to this comparative study is given in the following section.

4.6.1.3 Discussions

A Finer Version of Diagnosability Both the OF-PENDA and the UMDES library allow

us to check diagnosability for bounded DES. In particular, thanks to our incremental

investigation of diagnosability, our tool also gives Kmin for diagnosable systems, while

the UMDES library [Laf00] does not.

It is worthwhile to recall that the K-diagnosability is a finer version of diagnosability

with the following two main features:
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Table 4.7: Diagnosability analysis results based on WODES benchmark

m n k |R| |N | |Diag| |Xv| DD DO K

1 2 1 15 8 4 3 Yes Yes 2
1 2 2 24 10 4 3 Yes Yes 2
1 2 3 35 12 4 3 Yes Yes 2
1 2 4 48 14 4 3 Yes Yes 2

1 3 1 80 52 10 6 Yes Yes 3
1 3 2 159 90 10 6 Yes Yes 3
1 3 3 274 138 10 6 Yes Yes 3
1 3 4 431 196 10 6 Yes Yes 3

1 4 1 495 367 29 17 Yes Yes 4
1 4 2 1200 822 29 17 Yes Yes 4
1 4 3 2415 1533 o.t. 17 o.t. Yes 4
1 4 4 4320 2554 o.t. 17 o.t. Yes 4

1 5 1 3295 2607 o.t. 66 o.t. Yes 5
1 5 2 9691 o.t. o.t. o.t. o.t. o.t. o.t.

2 2 1 96 68 20 9 No No 8
2 2 2 237 137 o.t. 9 o.t. No 8
2 3 1 1484 801 20 12 No No 11
2 3 2 5949 2746 o.t. 12 o.t. No 11
2 4 1 28203 8795 o.t. 15 o.t. No 14
2 4 2 180918 o.t. o.t. o.t. o.t. o.t. o.t.

3 2 1 377 290 66 12 No No 11
3 3 1 12048 5165 o.t. 16 o.t. No 15
3 4 1 484841 o.t. o.t. o.t. o.t. o.t. o.t.

Online, the value of Kmin gives us a valuable piece of information indicating the min-

imum number of steps necessary to detect and identify faults for a diagnosable system.

Note that in [Bas+12], K is considered to be the number of both observable and unobserv-

able transitions after a faulty transition. While here, as well as in [Cab+12b] K is the value

relative to only observable events. Modifying our algorithm to compute both observable

and unobservable transitions can be done easily.

Secondly, K-diagnosability allows a meticulous description of the diagnosability for

multiple faults. It is advisable to discuss the traditional diagnosability as a series of K-

diagnosability problems for each class of faults ΣFi ⊆ Σ f . Further analysis on K could

help to enhance the diagnosability. In order to solve K-diagnosability for each ΣFi , it is

sufficient to perform our algorithm for each class of faults ΣFi iteratively. Thus, the com-

putational complexity will be linear with the number of fault classes.

An On-the-fly and Incremental Method The UMDES library deals with diagnosabil-

ity of systems modeled by automata based on the construction of an observer and a diag-

noser automaton, which requires an exhaustive enumeration of the state space.
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Our approach can solve the diagnosability for both labeled and unlabeled PNs. We

solve the classic diagnosability by handling a series of K-diagnosability problems, where

K increases progressively. In other words, we reuse the state space generated while ana-

lyzing K-diagnosability to deal with (K + 1)-diagnosability. This is totally different from

the approach in [Bas+12], since for each value of K a new system of equations is gen-

erated in their technique based on linear programming. Additionally, by progressively

increasing K, it is certain to find Kmin if the system is diagnosable. A similar idea can be

found in the solution of ∆-diagnosability for TAs in [Tri02].

Thanks to the on-the-fly investigation of diagnosability, building the whole FM-set

tree is not necessary. Actually, for undiagnosable systems, the FM-set tree building as

well as its exploration are stopped as soon as an indeterminate cycle is found. Moreover,

for diagnosable systems, while generating a branch in the FM-set tree, we stop as soon as

an F-certain or an existing node is obtained. This is a notable advantage compared with

the existing approaches [Cab+10; Sam+95] which first build an exhaustive diagnoser or a

reachability graph. The test result using the WODES diagnosis benchmark has shown this

point since we were able to investigate diagnosability on models which are not tractable

using UMDES library.

Relation between Diagnosability and Boundedness of PNs

The UMDES library solves the diagnosability problem based on exhaustive enumer-

ation of the state space. Therefore, it can only deal with bounded systems modeled by

finite state automata.

It is worth noting that there exist two PN-based approaches for the diagnosability

analysis of unbounded models. In [Cab+12b], the authors check the diagnosability of un-

bounded PN models by analyzing the structure of the generated verifier net reachability

graph. This approach requires an exhaustive enumeration of the reachability set of the

verifier net, which may be larger than the reachability set of the original PN. In [Bas+12],

the proposed approach is based on linear programming technique. System behavior is

represented by a series of linear equations. The diagnosability of the unbounded PN

models can be verified only if the faulty behavior can be described by a finite number

of equations.

With the help of the on-the-fly computation, our algorithm can determine undiagnos-

ability as soon as an Fi-indeterminate cycle is detected. Hence, this approach can be ap-

plied to some unbounded PNs with an Fi-indeterminate cycle. Although an unbounded

PN has infinite fault markings, which may result in an infinite number of FM-sets, the

construction of an FM-set tree terminates once an Fi-indeterminate cycle is detected and

a negative diagnosability verdict is emmitted. From a practical point of view, some thresh-

olds need to be used if our algorithm is used to deal with unbounded LPNs.

Case of Unlive PNs

Note that we have extended our algorithm to also deal with unlive systems, while

considering the definition of diagnosability relative to unlive DES, given in [Sam+98].

Besides, the WODES diagnosis benchmark we dealt with is unlive when n ≥ 2, which

71



CHAPTER 4. UNTIMED PN-BASED DIAGNOSIS OF DES

is against the assumption of liveness in [Sam+95]. Concretely, as the computation of the

FM-set tree is performed on the fly, we have added an additional stopping condition:

when some F-uncertain FM-set containing a deadlock state is obtained. Indeed, in this

case, the system may stay indefinitely in this uncertain state, and no diagnosis verdict

can be emitted.

4.6.2 Application to the Level Crossing (LC) Benchmark

In the previous section, we have proved the efficiency of our developed techniques us-

ing WODES benchmark, which is a classic diagnosis benchmark often used in diagnosis

analysis. However, it is not quite suitable for testing diagnosability analysis approach,

since

• The benchmark is live only if n = 1.

• The benchmark is diagnosable only if m = 1.

In order to obtain more general results, we will perform another group of analysis based

on our developed LC benchmark.

4.6.2.1 LC Benchmark

In this section, we develop an n-track LC benchmark based on the single-track LC model

in [LS85]. Different from the original model of [LS85], our benchmark is live and inte-

grated with the operation principles for multi-track LC, which can be sufficiently com-

plex for testing diagnosability analysis approaches.

Figure B.7 describes a global LPN model for a signle-track LC with a unidirectional

track. Based on this model, a more general model is given in Figure B.8 – involving n

railway tracks, which can be obtained from the single-track LC model while fulfilling the

following controlling rules under a nominal situation:

• The LC must be closed if any approaching train is detected in any line;

• The LC can be reopened if there is no train in the “within” or “before” sections in

any line.

In other terms, the above rules eliminate all the possibilities that the collision between

railway and road traffic may take place.

For more about the background of the LC systems and development of the n-track LC

benchmark, the reader can refer to Appendix B.

4.6.2.2 Comparative Simulation

In this section, we will analyze the diagnosability of the LC model while considering

various values of n. Here, we will consider two classes of faults:
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– For TF1 = ∪n
i=1{ti,5}, we consider all the faults ti,5 in each track as belonging to the

same class. Recall that such faults express the fact that trains can enter the crossing

zone while the barriers are not ensured to be down.

– For TF2 = {t6}, this fault class depicts an early lowering of the barriers, i.e., before

all the trains are ensured to have left the LC.

A comparative simulation with UMDES library is performed on an Intel PC (CPU:

2.50 GHz, RAM: 3.16 GB) and the results are given in Table 4.8, Figure 4.20 and Figure 4.21

, where:

– n is the number of railway tracks;

– ΣFi is the considered fault class (ΣF1 or ΣF2);

– |P| and |T| are the number of places and transitions of the PN model respectively;

– |A| and |R|, which are the number of the arcs and the nodes of the reachability

graph respectively, give the scale of the PN reachability graph computed by TINA

and which serves as the input automaton states for UMDES;

– |N | is the number of (on-the-fly) generated fault markings by OF-PENDA when

the diagnosability verdict is issued;

– |Diag| is the number of diagnoser states generated by UMDES (UMDES) (the diag-

noser approach) which were needed to give the diagnosability verdict.

– |Xv| is the number of (on-the-fly) generated FM-sets by OF-PENDA when the di-

agnosability verdict is issued, and corresponds also to the number of nodes of the

diagnoser derived from this FM-set tree when the model is diagnosable;

– DD, DV and DO are the diagnosability verdicts obtained by diagnoser approach,

verifier approach of UMDES and OF-PENDA respectively, where “Yes” indicates

that the system is diagnosable and “No” indicates undiagnosable;

– K is the minimum value ensuring diagnosability computed by OF-PENDA, if the

system is diagnosable; otherwise, it is the last value under which K-diagnosability

is investigated before concluding that the system is undiagnosable;

– TT is the time needed to generate the PN reachability graph computed by TINA,

i.e., the time used for preparing the input automaton needed for UMDES.

– TD, TV and TO are the times needed to obtain the diagnosability verdict by dcycle.exe

(diagnoser approach), verifer_dia.exe (verifier approach) of UMDES and OF-PENDA

(on-the-fly approach), respectively.
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4.6.2.3 Discussions

For the comparative simulation results, the following remarks can be made:

1. The UMDES library has been integrated in the DESUMA framework which also

integrates GIDDES for graphical facilities. However, we directly use the command

lines in UMDES library rather than the interface framework (DESUMA), since the

DESUMA takes so much time to load large automaton models.

2. The scale of the PN reachability graph grows quickly (cf. the columns titled with

|A| and |R| in Table 4.8) as n increases. The capability of TINA to calculate the

reachability graph considerably depends on the memory of the computer, since

TINA needs to refer to the already built part of the reachability graph all along

the computation. One can observe that the generated .aut files become considerable

starting from n = 7. For instance, the size of the .aut files for 1, 2, 3, 4, 5, 6, 7-track

LC benchmark is 655b, 11KB, 128KB, 1.2MB, 9.9MB, 74.8MB, 518.6MB, respectively.

A Mac with a RAM of 16GB cannot store the .aut file for 8-track benchmark even

if it can be calculated eventually. For the case of n = 9, the calculation stops with

an “out of memory” error. Thus, the analysis of the cases with n ≥ 9 cannot be

performed using UMDES.

3. The simulation using UMDES and OF-PENDA are performed on a Windows PC.

For ΣF1, some “accidental quits” happen during the running of dcycle.exe (diagnoser

approach in UMDES) for some cases. However, the diagnosability verdict can be ob-

tained by using the verifier technique (command verifier_dia.exe) in UMDES library.

Note that the relative results given by OF-PENDA when an accidental quit happens

are the last outputs before the program’s exit. We do not know exactly the reason

for this problem. The improvement of the source code and using other operation

systems may eliminate the problems.

4. In order to compare the efficiency in terms of time, we make a record of the com-

puting time for each case. The time indicated in the columns titled with TT, TD and

TV are obtained by an external timer, since TINA and UMDES do not output this in-

formation. Thus, there is an error margin of ±1s. For the OF-PENDA, an automatic

timer has been integrated with an error margin of less than 1ms.

5. Besides the diagnosability verdict, OF-PENDA also gives the minimum value of K

to ensure diagnosability, which cannot be obtained by UMDES.

6. In these cases, the number of FM-sets generated by OF-PENDA is lower than the

number of diagnoser states given by UMDES. This shows the advantage offered by

our on-the-fly technique in terms of memory consumption. Besides, it is worthwhile

to mention that the FM-sets can be far fewer than the diagnoser states when an

indeterminate cycle exists (i.e., the model is undiagnosable) and is detected early.

74



4.6.
O

F
-P

E
N

D
A

SO
F

T
W

A
R

E
T

O
O

L

Table 4.8: Comparative simulation results based on n-track LC benchmark

n ΣFi |P| |T| |A| |R| |N | |Diag| |Xv | DD DV DO K TT TD TV TO

1

ΣF1

13 11 28 24 24 26 15 YES YES YES 3 <1s <1s <1s <1ms
2 17 16 540 216 116 262 18 a.q. NO NO 11 <1s 11s <1s 15ms
3 21 21 6256 1632 173 1924 18 a.q. NO NO 11 <1s 12s 7s 46ms
4 25 26 56704 11008 230 12504 18 a.q. NO NO 11 <1s 32s 21m22s 62ms
5 29 31 442880 68608 287 75722 18 a.q. o.t. NO 11 2s 28m34s o.t. 78ms
6 33 36 3126272 403456 344 a.q. 18 o.t. o.t. NO 11 11s 1h36m o.t. 125ms
7 37 41 20500480 2269184 401 o.t. 18 o.t. o.t. NO 11 140s o.t. o.t. 156ms
8 41 46 127074304 12320768 458 o.t. 18 o.t. o.t. NO 11 29m o.t. o.t. 203ms
9 45 51 o.m. o.m. 515 - 18 - - NO 11 o.m. - - 249ms
10 49 56 o.m. o.m. 572 - 18 - - NO 11 o.m. - - 296ms
20 89 106 o.m. o.m. 1142 - 18 - - NO 11 o.m. - - 1467ms
40 169 206 o.m. o.m. 2282 - 18 - - NO 11 o.m. - - 5460ms

1

ΣF2

13 11 28 24 29 26 15 YES YES YES 7 <1s <1s <1s <1ms
2 17 16 540 216 277 262 207 YES YES YES 10 <1s <1s <1s 453ms
3 21 21 6256 1632 2109 1924 1842 YES YES YES 17 <1s <1s 5s 109s
4 25 26 56704 11008 13353 12504 5670 YES YES a.q. 18 <1s 20s 16m19s 2h4m
5 29 31 442880 68608 o.t. 75722 o.t. YES o.t. o.t. o.t. 2s 27m12s o.t. o.t.
6 33 36 3126272 403456 o.t. o.t. o.t. o.t. o.t. o.t. o.t. 11s o.t. o.t. o.t.
7 37 41 20500480 2269184 o.t. o.t. o.t. o.t. o.t. o.t. o.t. 140s o.t. o.t. o.t.
8 41 46 127074304 12320768 o.t. o.t. o.t. o.t. o.t. o.t. o.t. 29m o.t. o.t. o.t.
9 45 51 o.m. o.m. o.t. - o.t. - - o.t. o.t. o.m. - - o.t.

Note: o.m. = out of memory o.t. = out of time (> 6h) a.q.= accidental quit
�� results obtained by TINA �� results obtained by diag_UR.exe and dcycle.exe of UMDES
�� results obtained by verifier_dia.exe of UMDES �� results obtained by OF-PENDA
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Figure 4.20: Time cost for the diagnosability analysis on ΣF1
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Figure 4.21: Time cost for the diagnosability analysis on ΣF2

7. Our approach spends more computing time, because we generate the FM-set tree

directly from the PN, while the UMDES takes an automaton as an input which

is equivalent to the reachability graph of the PN. In other words, the inputs for

UMDES and OF-PENDA are not the same and we had to compute the PN reachabil-

ity graph a priori before performing analysis via UMDES, whereas, on the contrary,

the reachable markings are computed on the fly while investigating diagnosability

by OF-PENDA.

8. The results (cf. column TD and TV) show that the diagnoser approach is more effi-

cient than the verifier approach while dealing with the n-track LC benchmark. This

does not violate the claim that the verifier approach is more efficient in terms of time

complexity (polynomial for the verifier approach vs exponential for the diagnoser

approach), since the theoretical complexity is always computed while considering

the worst case.
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Here, we will give the transition sequences which help to obtain the diagnosability

verdict easily, such that the simulation results can be compared with this theoretical anal-

ysis to evaluate their correctness:

• For the case n = 1 and for ΣF1, the system is normal if in any transition sequence

t1,2 and t1,3 appear alternatively. Otherwise t1,5 must have occurred. Therefore, the

system can be diagnosable according to the order of appearance of t1,2 and t1,3.

• For ΣF1 in the cases of n-track LC (n ≥ 2), fault transition t1,5 can fire or not right af-

ter t1,1 firing. For both cases, a possible followed firing sequence t1t4t2,1t2,2t2,3t2,4t2t5

exists, which corresponds to an indeterminate cycle. Therefore, the system is undi-

agnosable.

• For ΣF2 in the cases of n-track LC (n ≥ 1), t6 can fire or not right after the firing

of sequence ti,1t1t4. Then the system can remain F2-uncertain for as long as 6 steps

during the firing of sequence ti,2ti,3ti,4ti,1t2t1. The 7th observable transition firing

will terminate the sequence of F2-uncertain states, i.e., the system is normal if t4

fires; otherwise the firing of t3 implies that fault t6 has occurred.

More importantly, compared with the diagnoser and verifier approaches, our on-the-

fly approach can deal with some quite complex models that UMDES cannot deal with

(e.g., for the cases ΣF1 when n ≥ 7), especially for some undiagnosable systems, and

shows better efficiency in terms of time and memory. For example, the diagnosability

analysis for the LC model is performed in less than 6 seconds, for even when n = 40,

whereas UMDES (diagnoser and verifier techniques) do not issue a verdict within 6 hours

for n > 4. However, for the diagnosable cases (ΣF2), we spend less memory but more

time than UMDES, although the obtained results remain comparable: OF-PENDA and

UMDES-verifier block from n = 4, whereas UMDES-diagnoser blocks at n = 5. This

gap in terms of efficiency depending on whether the model is diagnosable or not can be

explained as follows: For the undiagnosable models, the analysis by OF-PENDA is com-

pleted as soon as an indeterminate cycle is found which can occur quickly, hence avoiding

the generation and analysis of an important part of the state space. However, for diagnos-

able models, it is likely that a bigger part of the state space is generated/analyzed since,

in this case, the only stopping condition which allows us to avoid building/investigating

the whole state space is when a faulty node is generated. Indeed, since we deal with per-

manent faults, it is useless to continue investigating the following nodes since they are

faulty as well.

4.7 Conclusion

In this chapter, we have studied fault diagnosis of DES using on-the-fly and incremental

techniques to cope with state explosion problems. Algorithms for checking K-diagnosability,
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diagnosability and online diagnosis have been developed. The obtained results through

the WODES benchmark are encouraging.

In Section 4.1, the on-the-fly and incremental techniques have been introduced. The

on-the-fly techniques allow generating and investigating only a part of state space to

find the solutions. The incremental techniques can reuse historical information to avoid

recomputing works. Compared with traditional state enumerative approaches, they have

shown the advantages in improving efficiency of analyzing diagnosis problems.

In Section 4.2, we have developed mathematical representations for LPNs, namely

the extended incidence matrix, event marking and extended state equation, such that the

behavior relative to events can be well presented.

In Section 4.3, notions such as fault marking, FM-graph and the FM-set tree are in-

troduced to describe the state evolution with fault propagation of the system. We have

developed an approach to check K-diagnosability based on the on-the-fly building of

FM-graph and the FM-set tree.

In Section 4.4, classic diagnosability was discussed by solving a series of K-diagnosability.

The incremental technique has been used to analyze diagnosability and seek out Kmin to

ensure diagnosability.

In Section 4.5, the diagnoser derived from the FM-set tree has been developed. Com-

parisons between the traditional enumerative approaches and ours were performed, show-

ing that our diagnoser consumes less memory.

In Section 4.6, a group of comparative simulations on the basis of the WODES and

the LC benchmark have been performed. The obtained results showed that the on-the-

fly and incremental techniques can largely improve the efficiency in terms of time and

memory.
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TIME PN-BASED DIAGNOSIS OF DES

In the previous chapter, we have discussed fault diagnosis issue in the untimed context.

Principles in untimed analysis are simple, however, they sometimes require much re-

sources. Actually, by considering time information, some untimed analysis can be rather

easy. In [Tri02], fault diagnosis of timed DESs has been presented in the framework of

TAs. Necessary and sufficient conditions for diagnosability of TAs have been given. For

the analysis based on TPNs, it is possible to first transform TPN models into TAs using

existing techniques, and then to reuse the results of [Tri02]. However, the transformation

is not practical work, since:

• The TPN is the extension of the PN, thus it inherits the advantages of PNs compared

with automata.

• TPN is more expressive than TAs and more suitable for modeling a real system. In

the contrary, generating the whole state space (TAs) of real complex timed systems

is rather burdensome work.

This chapter deals with fault diagnosis of DESs in a timed context. Besides the rela-

tive ordering of events considered in untimed context, the information about the event

occurrence dates are also used for system modeling and fault diagnosis analysis.

The model that will be used here is LTPN – an extension of TPN, in which each tran-

sition is associated with an event which can be either observable or not. A given label

(event) may be assigned to various transitions.

Thanks to a skillful splitting of the time intervals assigned to the LTPN transitions,

a deterministic on-the-fly-built structure called ASG can be built for LTPN models. The

observer is enriched with information about fault occurrence, such that it is sufficient to

monitor the system behavior and detect faults reacting to observable events and their

respective occurrence dates. An ASG carries both the marking reachability and the fault
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propagation. Based on the ASG which is built on the fly, the timed diagnosability prob-

lem is transformed and analyzed as in the untimed context. In this case, some existing

techniques for untimed diagnosis analysis can be brought into play in the timed context.

Generally, and as explained in Chapter 4, using on-the-fly analysis makes it possible

to generate and investigate only partially the ASG state space for checking diagnosabil-

ity. This is a distinct advantage compared with the traditional enumerative approaches.

Furthermore, and in the same way as in the untimed context, for a diagnosable LTPN the

ASG is then used for deriving a diagnoser called LTD that we develop for performing

online diagnosis. As a classical diagnoser, an LTD assigns a state (or a set of states) with

a tag indicating fault occurrence: Normal, Fi-certain or Fi-uncertain, while it reacts to a

sequence of observable dated events.

We also discuss the relation between our developed ASG and the event-recording

automata (ERA), which is an existing determinizable subclass of TA. It is shown that

a determinizable subclass of LTPNs also exists, whose ASGs shows some equivalence

with ERA. The bisimulation between them makes it possible to bring existing TA-based

techniques into PN-based timed fault diagnosis.

5.1 Splitting Time Intervals Assigned to LTPN Transitions

Splitting time intervals assigned to LTPN transitions is a key element in our technique

for timed fault diagnosis analysis of DES. We assume the LTPN to be live and bounded.

This section will give the motivation and introduce some preliminary concepts that will

be used in this technique.

5.1.1 Motivation

First, let us look at the motivation of splitting time intervals with the following example.

Example 27 Consider the observability problem of the LTPN NLT in Figure 5.1(a), where t1, t2, t3 ∈

Σo are observable transitions.

Using the classical analytical approach [BM83], we can compute all the state classes reachable

from the initial class C0. A part of the state class graph is shown in Figure 5.1(b). From state class

C0, we have two reachable state classes C1 and C2 by the firing of transitions t1 at a date in [0, 2]

and t2 at a date in [1, 2] respectively. This is convenient if we do not consider event labels assigned

to the transitions.

However, when dealing with LTPNs, i.e., event based observation, it is possible that we cannot

distinguish between two transitions with the same label, even if additional time information is

available. For example, if event a is observed at date 0.5 t.u, C1 will be reached with certainty.

However, if a is observed at 1.5 t.u, it may correspond either to the firing of transition t1 or the

firing of t2 and it is uncertain whether C1 or C2 is reached.

In order to eliminate this nondeterminism, we want to modify the state class graph of NLT

while considering transition labeling, so that by each observation of event with its exact occurrence
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p1 p2 p3

p4 p5 p6

t1, a[0, 2] t2, a[1, 4] t3, b[3, 5]

(a) The LTPN NLT in Example 27

C0 :
M0 = [ 1 1 1 0 0 0 ]τ

t1[0, 2]
t2[1, 4]
t3[3, 5]

C1 :
M1 = [ 0 1 1 1 0 0 ]τ

t2[0, 4]
t3[1, 5]

C2 :
M2 = [ 1 0 1 0 1 0 ]τ

t1[0, 1]
t3[1, 4]

t1, a[0, 2] t2, a[1, 2]

(b) A part of the state class graph of NLT

C0 :
M0 = [ 1 1 1 0 0 0 ]τ

t1[0, 2]
t2[1, 4]
t3[3, 5]

C1a :
M1 = [ 0 1 1 1 0 0 ]τ

t2]0, 4]
t3]2, 5]

C1b
M1 = [ 0 1 1 1 0 0 ]τ

t2[0, 3]
t3[1, 4]

C2 :
M2 = [ 1 0 1 0 1 0 ]τ

t1[0, 1]
t3[1, 4]

t1, a[0, 1[ t1, a[1, 2] t2, a[1, 2]

(c) A part of the modified state class graph of NLT

Figure 5.1: The state class graph and the modified state class graph for LTPN NLT
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time, we can determine which state (or minimal set of states) the system can be in. A part of the

modified state class graph of NLT is shown in Figure 5.1(c). We split the time interval associated

with transition t1, i.e., [0, 2], into two disjoint intervals [0, 1[ and [1, 2]. We recompute the state

classes reached from C0, i.e., C1a and C1b, by the firing of t1 at a date belonging to these two

intervals respectively, using the classical approach for TPNs. In this case we can state that, if

event a is observed at a date belonging to [0, 1[, C1a is reached with certainty; whereas if a is

observed in [1, 2], one of the state classes belonging to the set {C1b, C2} is reached. Assuming that

we rebuild the state class graph from the initial state class C0 with the time intervals splitting

technique, and regroup all the state classes that are reached from the same state class (or set of

state classes) by a transition firing assigned with the same event and firing interval, we may solve,

even partially, the problem of nondeterminism in the observation of LTPNs.

Comparing the two previous cases, we generate more state classes in Figure 5.1(c) than in

Figure 5.1(b). However, the state classes obtained in Figure 5.1(c) are more precise in describing

the NLT behavior with regard to (w.r.t) event occurrence. For example, if a is observed at 0.5, we

are certain that C1a is reached and one of the following firable transitions t2 and t3 can be fired

at a relative date belonging to [0.5, 3.5] and [2.4, 4.5] respectively from C1a, rather than [1, 5]

as in class C1 Figure 5.1(b). This means that using the classical state class graph for observing

an LTPN leaves an overestimation on the firing domains. Moreover, this overestimation may be

propagated and aggravated as the system state moves forward along the reachable state classes,

resulting in a non-optimal evaluation of the system state. In summary, our objective here is to

develop an efficient deterministic structure for the observation and diagnosis analysis of LTPNs.

5.1.2 Semi-Interval

In this section we formally discuss how to split time intervals assigned to LTPN transi-

tions. The goal behind splitting a given finite set of time intervals is to generate a new

set of split intervals that we call basic interval set. For this aim, let us first introduce some

basic notations on time intervals that will be used afterward.

A time interval [All83] is indeed a set of non-negative rational numbers but may also

include infinity:

{[; ]} ×Q≥0× (Q≥0× {[; ]} ∪ {+∞[})

It can be a bounded, unbounded or half-bounded interval, e.g.,

[1, 5] = {x ∈ Q≥0 | 1 ≤ x ≤ 5}

]9, 13[= {x ∈ Q≥0 | 9 < x < 13}

[0,+∞[ = {x ∈ Q≥0 | x ≥ 0}

Definition 23 (semi-interval) A left semi-interval is a left-open interval, defined by

• a[ = {x ∈ Q≥0 | x < a} = [0, a[ with a ∈ Q≥0, or

• +∞[ = {x ∈ Q≥0} = [0,+∞[, or
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• a] = {x ∈ Q≥0 | x ≤ a} = [0, a];

a right semi-interval is a right-open interval, defined by

• ]a = {x ∈ Q≥0 | x > a} =]a,+∞[ with a ∈ Q≥0, or

• [a = {x ∈ Q≥0 | x ≥ a} = [a,+∞[.

Actually, to determine whether it is a left or a right interval, it suffices to note the po-

sition of rational limit (a) relatively to the square bracket: on the left for left semi-interval

and on the right for the right semi-interval.

Obviously, any time interval can be written as an intersection of a left semi-interval

and a right semi-interval. For the previous three time intervals, we have

[1, 5] = {x | x ≥ 1} ∩ {x | x ≤ 5}

]9, 13[= {x | x > 9} ∩ {x | x < 13}

[0,+∞[ = {x | x ≥ 0} ∩ {x | x < +∞}

Formally, we treat a time interval as an intersection of two half-open intervals that we

call semi-intervals.

Given an interval i, the corresponding left (resp. right) semi-interval is denoted by

le f t(i) (resp. right(i)), and the complementary set of semi-interval α is denoted by α. For

β = a] (resp. a[; ]a; [a), we denote bound(β) = a and border(β) = ] (resp. [; ]; [).

Example 28 Time interval i = [2, 4[, can be written as:

i = le f t(i) ∩ right(i)

where

right(i) = [2 = {x ∈ Q≥0 | x ≥ 2}

and

le f t(i) = 4[ = {x ∈ Q≥0 | x < 4}

We can also denote by

right(i) = 2[

bound(right(i)) = 2

border(right(i)) = [

For two left (or two right) semi-intervals α and β, we say α = β, if

• bound(α) = bound(β) and

• border(α) = border(β).

We define an order relation “≺” between semi-intervals as follows:
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• α ≺ β, if bound(α) < bound(β);

• c[ ≺ [c ≺ c] ≺ ]c, if bound(α) = bound(β) = c;

• α ≺ +∞[, if α 6= +∞[.

Example 29 For semi-intervals 1[; [1; 1]; ]1; 9[; [9; 9]; ]9 and +∞[, the order relation between

them is as follows:

1[ ≺ [1 ≺ 1] ≺ ]1 ≺ 9[ ≺ [9 ≺ 9] ≺ ]9 ≺ +∞[

The objective of defining this order relation between semi-intervals is to reorganize

a set of semi-intervals for further computing basic interval sets, as will be introduced

in Algorithm 8 in the following section (cf. Lines 3 and 8).

5.1.3 Basic Interval Set (BIS)

In order to eliminate nondeterminism in LTPNs, time interval splitting techniques [Liu+14a]

will be developed to reassign each observable event with an interval in the basic interval

set, such that each firing of an observable event with its relative time brings the system

to a unique minimal macro state (i.e., the augmented state class (ASC) that will be intro-

duced in Section 5.2.1).

Definition 24 Given a finite time interval set A, the basic interval set (BIS) of A, denoted by

BIS(A), is a set of disjoint nonempty time intervals β j subject to:

1. ∀ k 6= j, βk ∩ β j = ∅;

2. ∀ α ∈ A, ∃ β1, β2, · · · , βm ∈ BIS(A), such that α =
⋃m

j=1 β j;

3. ∀ β1, β2 ∈ BIS(A), β1 6= β2, ∃ α ∈ A, such that β1 ∩ α = ∅, β2 ∩ α 6= ∅.

In particular, for a time interval set A such that its cardinality (the number of elements

in set A) |A| = 1, BIS(A) = A. Here we emphasize that BIS(A) is a finite and unique set

for any finite interval set A, as will be illustrated in details in Propositions 6 and 8.

About the above definition, we make the following remarks:

• Condition 1 shows that the elements in a BIS must be disjoint from each other, e.g.,

{[1, 3]; [2, 4]} cannot be the BIS of any interval set since [1, 3] ∩ [2, 4] 6= ∅.

• Condition 2 indicates that any interval in set A is the union of a finite number of

intervals in BIS(A), e.g., for A = {[1, 4]; [2, 5]}, BIS(A) = {[1, 2[; [2, 4], ]4, 5]}, we

have [1, 4] = [1, 2[∪[2, 4] and [2, 5] = [2, 4]∪]4, 5].

• Condition 3 ensures that BIS(A) is unique and this will be proved in Proposition 8.
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Here, the term basic has two meanings. On the one hand, any time interval assigned to

an LTPN transition can be represented by a union of finite disjoint basic intervals. Some of

these basic intervals may also be parts of other time intervals of A, i.e., basic intervals can

be treated as basic components for the time intervals of A. On the other hand, Condition

3 of Definition 24 ensures that BIS(A) is unique and contains as few time intervals as

possible to represent all the elements in A as a union. More illustration will be given in

Example 30 at the end of this section.

Proposition 6 The BIS of a finite interval set is also finite.

Proof. Assume that given a finite interval set A, BIS(A) can be infinite and

BIS(A) =
+∞
⋃

j=1

{β j}

Consider that index j in ∪+∞
j=1{β j} gives the ordering of the intervals’ values, i.e., β1 holds

the smaller values, and so on, as shown in Figure 5.2.

•
0 +∞

• • • • • •
β1 β2 βk

· · · · · ·

Figure 5.2: Time intervals in BIS(A)

Let us take βi, βi+1 ∈ BIS(A), according to Condition 1 in Definition 24,

βi ∩ βi+1 = ∅

here we have

∀ x ∈ βi, y ∈ βi+1, x < y

According to Condition 3 in Definition 24,

∃ α1 ∈ A such that α1 ∩ βi 6= ∅ and α1 ∩ βi+1 = ∅

Moreover, as intervals β j are ordered from left to right and, given that α1 is an interval,

i.e., contains continuous values,

α1 ∩ βk = ∅ for k ≥ i + 1 (1)

In the same way,

∃ α2 ∈ A such that α2 ∩ βi+1 6= ∅ and αi+1 ∩ βi+2 = ∅

Likewise for βi+2, βi+3,

∃ α3 ∈ A such that α3 ∩ βi+2 6= ∅ and αi+2 ∩ βi+3 = ∅
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Hereby, α2 6= α3 and α1 6= α3, since from (1), α1 ∩ βk = ∅ for k ≥ i + 1. This way, for two

successive intervals βi, βi+1 in BIS(A), a new interval αk is found. Then as i goes from

1 to +∞, an infinite number of intervals αk is generated, which means A has an infinite

number of intervals and this violates the assumption. �

The BIS of a finite interval set can be computed by Algorithm 8.

Algorithm 8 Computation of BIS
1: Input: A; ⊲ A is a finite interval set.
2: Output: B; ⊲ B = BIS(A)
3: C← ∅; ⊲ C is an array of semi-intervals ordered according to ≺.
4: for all α ∈ A do
5: C← C ∪ {le f t(α)} ∪ {right(α)};

6: reorder C according to ≺;
7: c0 ← c1; ⊲ cj (j = 1, 2, . . .) denotes, in the order of ≺, the jth element of C.
8: C← C ∪ {c0}; ⊲ Insert c0 into C, then c0 will be the first element of C instead of the

original c1.
9: for j from 1 to (|C| − 1) do ⊲ For all the elements of C except the first and the last one.

10: if cj−1 is a right semi-interval then
11: α← cj−1; ⊲ α is a right semi-interval.
12: else
13: α← cj−1; ⊲ α is a left semi-interval.

14: if cj is a left semi-interval then
15: β← cj; ⊲ β is a left semi-interval.
16: else
17: β← cj; ⊲ β is a right semi-interval.

18: B← B ∪ {(α ∩ β)};

19: return B;

In order to prove the unicity of the BIS for a given finite interval set, we first give the

following proposition, which will be used in the demonstration of Proposition 8.

Proposition 7 Given a finite interval set A, for any α ∈ A and β ∈ BIS(A)

β ∩ α 6= ∅⇒ β ⊆ α

Proof. According to Condition 2,

(∃ β1, β2, · · · , βm ∈ BIS(A))(α =
m
⋃

j=1

β j)

and obviously ∀j = 1, · · · , m, β j ⊆ α.

Now suppose that

(∀ k = 1, · · · , m)(β 6= βk)

From Condition 1 in Definition 24,

(∀ k = 1, · · · , m)(β ∩ βk = ∅)
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⇒ β ∩ (∪m
k=1{β j}) = ∅

⇒ β ∩ α = ∅

This violates β ∩ α 6= ∅ in the propositon, thus

∃ k ∈ {1, 2, · · · , m} such that β = βk

⇒ β ⊆ α

�

Proposition 8 Given a finite set of time intervals A, BIS(A) is unique.

Proof. Assume that at least two different BIS exist for a finite set of time intervals A,

i.e.,

(∃ B1 = BIS(A), B2 = BIS(A))(B1 6= B2)

⇒ (∃ β ∈ B1)(∀ γ ∈ B2)(β 6= γ) (1)

or conversely

(∃ γ ∈ B1)(∀ β ∈ B2)(γ 6= β) (2)

According to Condition 3, (∃ α ∈ A)(β ∩ α 6= ∅)

According to Proposition 7, β ⊆ α

Since B2 = BIS(A), according to Condition 2,

(∃ γ′ ∈ B2)(γ
′ ⊆ α, γ′ ∩ β 6= ∅)

(1)⇒ γ′ 6= β

We have already obtained that,

β ⊆ α, γ′ ⊆ α, β 6= γ′, β ∩ γ′ 6= ∅

According to the three possible relations between β and γ′ as shown in Figure 5.3, we

have either

(∃ γ′′ ∈ B2, γ′′ ⊆ α)(γ′′ ∩ (γ′ ∩ β) 6= ∅) (3) (cf. Figure 5.3(a) and 5.3(b))

or

(∃ β′ ∈ B1, β′ ⊆ α)(β′ ∩ (β ∩ γ′) 6= ∅) (4) (cf. Figure 5.3(b) and 5.3(c))

According to Condition 3 in Definition 24,

(3)⇒ (γ′′ ∩ β 6= ∅) ∧ (∃α′ ∈ A)(γ′ ∩ α′ 6= ∅, γ′′ ∩ α′ = ∅)

β ∩ γ′ 6= ∅, γ′ ⊆ α′ ⇒ β ∩ α′ 6= ∅
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0 +∞
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γ′ ∩ β

(a) γ′ ⊆ β
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0 +∞
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γ′ ∩ β γ′ ∩ β
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(b) γ′ 6⊆ β and β 6⊆ γ′

p
0 +∞

p p

p p

p pp p
β′

α

γ′

β

γ′ ∩ β

p p p p

(c) β ⊆ γ′

Figure 5.3: The relation between β and γ′

⇒ β ⊆ α′

This violates (γ′′ ∩ β 6= ∅) ∧ (γ′′ ∩ α′ = ∅) The same violations can be obtained if we

consider (3). Therefore, the assumption does not hold.

We can make the same reasoning with (2) to come to the same result. Thus B1 = B2.

�

Example 30 Given a set of time intervals A = {[1, 3]; [2, 4]; [3, 7]; [5,+∞[}, the solution of

BIS(A) according to Algorithm 8 can be obtained as follows:

1. Split all the intervals in A into semi-intervals which are gathered in a new set C:

C = {[1; 3]; [2; 4]; [3; 7]; [5;+∞[}

2. Reorder the elements of C in the order ≺, i.e.,

[1 ≺ [2 ≺ [3 ≺ 3] ≺ 4] ≺ [5 ≺ 7] ≺ +∞[

3. For each pair of neighboring semi-intervals α and β in the ordering of the previous step

such that α ≺ β, let α′ = α (resp. β′ = β) if α is a left (resp. β is a right) semi-interval,

otherwise α′ = α (resp. β′ = β). Finally, α′ ∩ β′ will be an element of BIS(A), as shown

in Table 5.1.

4. BIS(A) = {[1, 2[; [2, 3[; [3, 3]; ]3, 4]; ]4, 5[; [5, 7]; ]7,+∞[}, according to the fourth col-

umn in Table 5.1.

A graphical illustration for this solution is given in Figure 5.4.
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Table 5.1: Solution of BIS(A) in Example 30

α ≺ β α′ β′ α′ ∩ β′

[1 ≺ [2 [1 [2 = 2[ [1, 2[
[2 ≺ [3 [2 [3 = 3[ [2, 3[
[3 ≺ 3] [3 3] [3, 3]
3] ≺ 4] 3] =]3 4] ]3, 4]
4] ≺ [5 4] =]4 [5 = 5[ ]4, 5[
[5 ≺ 7] [5 7] [5, 7]

7] ≺ +∞[ 7] =]7 +∞[ ]7,+∞[

p
0 1 2 3 4 5 6 7 8 9 time

• •

• •

• •

• •

[1, 3]

[3, 7]

[2, 4]

[5, 9]

(a) Intervals in set A

p
0 1 2 3 4 5 6 7 8 9 time

• ◦• ◦•

••◦ •◦ ◦• •

• ◦••◦ •

• •◦ •

[1, 2[; [2, 3[; [3, 3]

[3, 3]; ]3, 4]; ]4, 5[; [5, 7]

[2, 3[; [3, 3]; ]3, 4]

[5, 7]; ]7, 9]

(b) Splitting intervals of A to compute BIS(A)

Figure 5.4: The computation of BIS in Example 30

5.2 Reachability Analysis of LTPN with Fault Information

5.2.1 Augmented State Class (ASC)

In order to deal with the fault diagnosis problem using LTPNs, we need to associate each

state class with a fault tag, from which we can determine whether a fault has occurred or

not from the initial state class to the current one. Without loss of generality, we will deal

with a unique class of fault.

Definition 25 An ASC is a pair x = (C, y), which is associated to an achievable firing sequence

89



CHAPTER 5. TIME PN-BASED DIAGNOSIS OF DES

σ ∈ T∗ such that C0
σ
−→ C, and y is computed by:

y =







F if ∃ j, σj ∈ Tf

N otherwise

The initial ASC is defined by x0 = (C0, N), since we consider there is no fault in the

system initially. Two ASCs x = (C, y) and x′ = (C′, y′) are equivalent, iff C = C′, i.e., C

and C′ have the same marking and the same firing domain [Dia01], and y = y′.

Let NASC be the set of ASCs relative to a given LTPN, mapping TASC : NASC × T∗ →

NASC defines transition between ASCs. We say an ASC x′ = (C′, y′) is reachable from

x = (C, y) by σ ∈ T∗, denoted by x σ
−→ x′, iff:

• C σ
−→ C′;

•

y′ =







F if (y = F) ∨ (∃ j, σj ∈ Tf )

N otherwise
(5.1)

Consequently, the number of ASCs is at most twice the number of state classes. Recall that

we consider that faults are permanent. Thus, fault propagation follows the same rules as

in the untimed context, as shown in Figure 4.8 of the previous chapter.

Proposition 9 A bounded LTPN has a finite number of ASCs.

Proof. According to [Dia01], the number of state classes of a TPN is finite iff this net is

bounded. A state class can be associated with at most two values: N or F. Therefore, given

a bounded LTPN with m state classes, the number of ASCs will not exceed the number

of combinations of state classes and tags, i.e., 2m. �

5.2.2 Sequence Duration

In the classical state class graph for a given TPN, a time interval assigned to a transition

connecting two state classes, specifies the possible relative firable time of the transition

from the source state class, i.e., the possible delay between the source and destination

state classes. However, when considering the duration between any two state classes

with some intermediate state classes, and due to diagonal constraints, one cannot simply

sum up all the time intervals assigned to the transitions between them. In this section,

we discuss how to compute this time duration, i.e., how to compute a firing sequence

duration in a general way.

Definition 26 Given an ASC x, we shall call a candidate sequence of x any sequence of tran-

sitions σt ∈ T∗ which is achievable starting from x, where σ ∈ T∗u and t ∈ To.
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Note that σ may be empty.

We denote by Can(x) the set of candidate sequences from ASC x. The ASCs which

are reachable upon the firing of such sequences are called candidate ASCs of x. Formally

speaking,

Can(x) =
⋃

σ∈T∗u To

{x′ s.t. x σ
−→ x′}

To each candidate sequence, one assigns a relative framing to its duration [Gha+09].

This obtained time interval contains all the possible firing dates of observable transition

t relatively to x. Indeed, this duration is evaluated by solving the set of inequalities com-

posed of the constraints for the intervals assigned to each transition which brings a state

class to another. We use the notation SD(σ) to denote the duration of a transition se-

quence σ.

Example 31 Consider the LTPN in Figure 5.5.

p1 p2 p3 p4

t1, a[2, 5] t2, b[0, 3] t3, a[0, 3]

Figure 5.5: The LTPN graph for Example 30

C0 :
M0 = [ 1 0 1 0 ]τ

t1[2, 5]
t3[0, 3]

start

C1 :
M1 = [ 0 1 1 0 ]τ

t2[0, 3]
t3[0, 1]
2 ≤ θ1 + θ3 ≤ 3

C2 :
M2 = [ 0 1 0 1 ]τ

t2[0, 3]
0 ≤ θ3 + θ2 ≤ 3

C3 :
M3 = [ 0 0 1 1 ]τ

t3[0, 3]

C4 :
M4 = [ 0 0 0 2 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

t1, a[2, 3] t3, a[0, 1]

t2b[0, 3]

t3a[0, 3]

Figure 5.6: The state classes following σ for Example 30

One of the achievable firing sequences is σ = t1t3t2t3, with the state classes generated along

σ, i.e., from C0 to C4, as shown in Figure 5.6. Assume the firing dates of the transitions in σ are

respectively θ1, θ3, θ2, θ′3 (θ′3 is the relative date of the second firing of t3). Then SD(σ) is computed

by:

SD(σ) = θ1 + θ3 + θ2 + θ′3, where:
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2 ≤ θ1 ≤ 3 constraint of t1 between C0 and C1

0 ≤ θ3 ≤ 1 constraint of t3 between C1 and C2

0 ≤ θ2 ≤ 3 constraint of t2 between C2 and C3

0 ≤ θ′3 ≤ 3 constraint of t3 between C3 and C4

2 ≤ θ1 + θ3 ≤ 3 constraint of C1

0 ≤ θ3 + θ2 ≤ 3 constraint of C2

Here we obtain:

SD(σ) = [2, 9]

which is not simply the sum of intervals associating with each transition in the sequence (other-

wise, we would have obtained [2, 10]).

Example 30 shows that the direct addition of time intervals assigned to transitions

brings overestimation to the actual sequence duration.

5.2.3 ASC-Graph

In order to present both the reachability of ASCs upon observable events and fault propa-

gation information of an LTPN, we develop a structure called ASC-graph. As mentioned

earlier, without loss of generality, we consider a unique fault class.

Definition 27 An ASC-graph is a digraph (QASCG,AASCG, TASCG, q0), where:

• QASCG ⊆ 2NASC is the set of ASC-graph nodes;

• q0 = (C0, N) is the initial ASC-graph node;

• TASCG : QASCG × Σo → QASCG is the transition mapping between ASC-graph nodes.

Given X ∈ QASCG, e ∈ Σo, TASCG(X, e) = {q′ | ∃ q ∈ X, σ ∈ Can(q), ϕ(σ) = e, q σ
−→

q′};

• I is the set of time intervals (values in Q≥0);

• AASCG ⊆ QASCG × (Σo × 2I ) × QASCG is the set of directed arcs of the ASC-graph:

A = {(q, e, i, q′) | ∃ σ ∈ Can(q), q′ ∈ TASCG(q, e), s.t. SD(σ) = i, ϕ(σ) = e}, where i

denotes the set of possible time intervals.

The building procedure of the ASC-graph is in fact an augmented (with fault tag)

ǫ-reduction problem on the state graph in which we are interested in the reachability

of fault markings upon observable events. In this ǫ-reduction, only the fault markings

which can be reached right after an observable event are kept; sequence duration between

nodes in the ASC-graph is recomputed if there are some intermediary erased ASCs be-

tween them. In summary, an ASC-graph can be treated as an ǫ-reduced state class graph

enriched by the fault propagation relation.
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The ASC-graph is built a priori based on an existing state class graph, unlike the con-

struction of the FM-graph in the untimed context which is performed on the fly, since

the building of state class graphs is more complex than the reachability graph construc-

tion in the untimed context. Thanks to the analytical approach of building the state class

graph [BM83] and the developed tools such as [Ber+04; Gar+05], the ASC-graph can be

derived from the state class graph in a straightforward way. However, we will consider

the on-the-fly building of ASC-graphs or other advanced models in the future, such that

diagnosability analysis can be performed even more efficiently.

Example 32 Consider the LTPN in Figure 5.7, where Tu = Tf = {t1} and To = {t2, t3, t4}.

As a reference, the state class graph is given in Figure 5.8, where the grey boxes indicate the state

classes reached right after an observable transition.

p1 p2 p3p4p5 t1, f [1, 4] t2, a[2, 4]t3, a[2, 5]t4, b[0, 3]

Figure 5.7: The LTPN graph for Example 32

C0 :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

C1 :
M1 = [ 0 1 0 1 0 ]τ

t2[2, 4]
t4[0, 2]
1 ≤ θ1 + θ4 ≤ 3

C2 :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

C3 :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

C4 :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

C7 :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

C5 :
M5 = [ 0 1 0 0 1 ]τ

t2[2, 4]

C6 :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

C8 :
M8 = [ 0 0 1 0 1 ]τ

C9 :
M9 = [ 0 0 0 0 2 ]τ

t4, b[0, 3]

t1, f [0, 4] t3, a[0, 4]
t4, b[0, 1]

t2, a[0, 4]
t4, b[0, 0] t2, a[2, 4]

t1, f [1, 3]
t4, b[0, 3] t3, a[2, 3]

t4, b[0, 2] t2, a[2, 2]

Figure 5.8: The state graph of the LTPN in Figure 5.7

We can compute, step by step (from Figure 5.9(a) to 5.9(a)), to obtain its ASC-graph as shown

in Figure 5.9(a):
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• Step 1 (cf. Figure 5.9(a)): from the initial ASC (C0, N), determine all the reachable ASCs,

i.e., (C1, F), (C2, N) and (C3, N).

• Step 2 (cf. Figure 5.9(b)): for each ASC obtained in Step 1 and reached from an unobservable

transition (denoted by gray boxes in the figures) (here (C1, N)), compute its reachable ASCs

(here (C4, F) and (C7, F)). For general cases, this step will be repeated until each branch

arrives at an ASC reached right after an observable transition.

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C1, F) :
M1 = [ 0 1 0 1 0 ]τ

t2[2, 4]
t4[0, 2]
1 ≤ θ1 + θ4 ≤ 3

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

t1, f [1, 3]
t4, b[0, 3] t3, a[2, 3]

(a) Step 1

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C1, F) :
M1 = [ 0 1 0 1 0 ]τ

t2[2, 4]
t4[0, 2]
1 ≤ θ1 + θ4 ≤ 3

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

(C4, F) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

t1, f [1, 3]
t4, b[0, 3] t3, a[2, 3]

t4, b[0, 2] t2, a[2, 2]

(b) Step 2

Figure 5.9: The construction of ASC-graph

• Step 3 (cf. Figure 5.9(a)): for any pair of ASCs reached after an observable transition (green

boxes in the figures), connect them directly and label this new path with the observable

event in this transition sequence with its corresponding sequence duration intervals. Here,
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(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

(C4, F) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

b[0, 3] a[2, 3]

b[1, 3]

a[3, 3]

(a) Step 3

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

(C4, F) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C5, F) :
M5 = [ 0 1 0 0 1 ]τ

t2[2, 4]

(C6, F) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F) :
M8 = [ 0 0 1 0 1 ]τ

b[0, 3] a[2, 3]

b[1, 3]

a[3, 3]

t1, f [0, 4]
t3, a[0, 4] t4, b[0, 1]

t2, a[0, 4]
t4, b[0, 0] t2, a[2, 4]

(b) Step 4

Figure 5.9: The construction of ASC-graph (Continued)

(C1, F) is erased with the addition of b[1, 3] linking (C0, N) and (C4, F) and a[3, 3] linking

(C0, N) and (C7, F); t4, b[0, 3] and t3, a[2, 3] are replaced by b[0, 3] and a[2, 3] respectively.

• Step 4 (cf. Figure 5.9(b)): for each new ASC, do as Step 1 and 2.

• Step 5 (cf. Figure 5.9(a)): for each new pair of ASC reached after an observable transition,
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(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

(C4, F) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C6, F) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F) :
M8 = [ 0 0 1 0 1 ]τ

b[0, 3] a[2, 3]

b[1, 3]

a[3, 3]

a[0, 4] b[0, 1]

a[0, 4]
b[0, 0]

a[2, 8]

(a) Step 5

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

(C4, F) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C6, F) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F) :
M8 = [ 0 0 1 0 1 ]τ

(C9, N) :
M9 = [ 0 0 0 0 2 ]τ

b[0, 3] a[2, 3]

b[1, 3]

a[3, 3]

a[0, 4] b[0, 1]

a[0, 4]
b[0, 0]

a[2, 8]

t4, b[0, 3]

(b) Step 6

Figure 5.9: The construction of ASC-graph (Continued)

do as Step 3.

• Step 6 (cf. Figure 5.9(b)): repeat Step 1 to obtain ASC (C9, N).

• Step 7 (cf. Figure 5.9(a)): repeat Step 3 to replace t4, b[0, 3] with b[0, 3]. Until now no new

ASC is reachable. Thus, the construction of this ASC-graph is terminated.
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(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

(C4, F) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

(C6, F) :
M6 = [ 0 0 0 1 1 ]τ

t4[0, 3]

(C8, F) :
M8 = [ 0 0 1 0 1 ]τ

(C9, N) :
M9 = [ 0 0 0 0 2 ]τ

b[0, 3] a[2, 3]

b[1, 3]

a[3, 3]

a[0, 4] b[0, 1]

a[0, 4]
b[0, 0]

a[2, 8]

b[0, 3]

(a) Step 7: ASC-graph

Figure 5.9: The construction of ASC-graph (Continued)

5.2.4 ASC-Set

In order to determinize an LTPN for state estimation and diagnosability analysis, we

will gather the states reached by the same timed observation (observable event and its

corresponding occurrence date) in some sets called ASC-sets.

An ASC-set is then an element of 2NASC . The initial ASC-set is defined by {x0}.

Given an ASC-set g, we say e ∈ Σo is a candidate event of g, if ∃ x ∈ g, TASCG(x, e) 6=

∅. We denote by CES(g) the candidate event set of g. The candidate interval set (CIS) of

g relative to e is defined by CIS(g, e) = BIS(Y), where Y = {SD(σ) | ∃ x ∈ g, σ ∈

Can(x), s.t. ϕ(σ) = e}.

In other words, CIS(g, e) is the basic interval set relative to the intervals correspond-

ing to the possible delays for e to occur from an element in g.

Example 33 Consider the CIS of the initial ASC-set g0 = {(C0, N)} of the LTPN in Fig-

ure 5.7. As shown inFigure 5.9(a), from the only element (C0, N) in g0, 4 firable transitions

a[3, 3], b[1, 3], b[0, 3] and a[2, 3] exist. Therefore, all the possible firing time of observable event

a relative to g0 can be gathered in the set CIS(g0, a) = {[2, 3[; [3, 3]}. In other words, one can

obtain a new ASC from g0 upon observable event a at a date in [2, 3[; [3, 3] relative to g0. Likewise,

CIS(g0, b) = {[0, 1[; [1, 3]}.

Let G be the set of reachable ASC-sets. Given g ∈ G, e ∈ CES(g) and i ∈ CIS(g, e), the

transition mapping between ASC-sets ξ : G × Σo × I → G is defined by:
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ξ(g, e, i) = {x′ | ∃ x ∈ g, σ ∈ Can(x), ϕ(σ) = e, x σ
−→ x′ s.t. i ⊆ SD(σ)}, where I is the set

of time intervals.

The ASC-set g is said to be

• normal, if ∀ (C, y) ∈ g, y = N;

• F-certain, if ∀ (C, y) ∈ g, y = F;

• F-uncertain, otherwise.

We denote tag(g) = N (resp. F, U), if g is normal (resp. F-certain, F-uncertain).

Example 34 This example shows how to compute the reachable ASC-set from the initial ASC-set

g0 = {(C0, N)} of the LTPN in Figure 5.1(c):

• Step 1 (cf. Figure 5.10(a)): for each ASC in g0, here (C0, N), determine all the reachable

ASCs: (C4, F), (C7, F), (C2, N) and (C3, N).

• Step 2: for each candidate event of g0, here a and b, compute its CIS:

CIS(g0, a) = BIS([3, 3]; [2, 3]) = {[2, 3[; [3, 3]}

CIS(g0, b) = BIS([1, 3]; [0, 3]) = {[0, 1[; [1, 3]}

• Step 3 (cf. Figure 5.10(b)): for each ASC in g0, recompute its reachable ASCs upon each

observable event e ∈ Σo with the relative firing interval in CIS(g0, e).

• Step 4 (cf. Figure 5.10(c)): collect the ASCs reached after the same label (observable event

and the corresponding firing interval) as a new ASC-set from g0.

5.2.5 ASC-Set Graph (ASG)

The augmented state class set graph (ASG) is introduced as a deterministic digraph which

will serve as a basis to check diagnosability. Here the term “deterministic” means that,

given an ASC-set and a candidate sequence, we can deduce with certainty which candi-

date ASCs the system will be possibly in. In other words, the ASG can be treated as a

timed diagnoser such that, given any timed trace, it estimates the possible system states,

as well as the corresponding fault information.

The ASG is a digraph (G,R, ξ, g0), where:

• G ⊆ 2NASC is the set of ASG nodes;

• g0 = {x0} = {(C0, N)} is the initial node;

• ξ is the transition mapping between ASC-sets;

• R ⊆ G × Σo × I × G is the set of ASG arcs: R = {(g, e, i, g′) | g′ = ξ(g, e, i)}.
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(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 4]
t3[0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 5

(C3, N) :
M2 = [ 0 0 0 2 0 ]τ

t4[0, 1]
t′4[0, 3]
2 ≤ θ3 + θ4 ≤ 3

(C4, F) :
M4 = [ 0 0 0 2 0 ]τ

t2[0, 4]
2 ≤ θ4 + θ2 ≤ 4

(C7, F) :
M7 = [ 0 0 1 1 0 ]τ

t4[0, 0]
3 ≤ θ2 + θ2 + θ4 ≤ 3

b[0, 3]
a[2, 3]b[1, 3] a[3, 3]

(a) Step 1

(C0, N) :
M0 = [ 1 0 0 1 0 ]τ

t1[1, 4]
t3[2, 5]
t4[0, 3]

start

(C2a, N) :
M2 = [ 1 0 0 0 1 ]τ

t1]0, 4]
t3]0, 5]
1 ≤ θ4 + θ1 ≤ 4
2 ≤ θ4 + θ3 ≤ 4

(C2b, N) :
M2 = [ 1 0 0 0 1 ]τ

t1[0, 3]
t3[0, 4]
1 ≤ θ4 + θ1 ≤ 4
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(c) Step 4

Figure 5.10: Computation of the reachable ASC-set of the initial ASC-set of LTPN in Fig-
ure 5.7

The ASG can be computed by Algorithm 9.

Example 35 The ASG of the LTPN in Figure 5.7 can be computed by Algorithm 9. The main

procedure is performed as follows:

• Step 1: select an existing ASC-set. Initially, there is only ASC-set g0. Compute all the

reachable ASC-sets from the selected ASC-set g0, as shown in Figure 5.10(c).
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Algorithm 9 Construction of the ASG
1: Input: the ASC-graph (NASC,A, γ, x0);
2: Output: the ASG;
3: g0 ← {x0}; ⊲ initialization
4: Gcon ← {g0}; ⊲ Gcon is the set of ASC-sets to be considered.
5: Gvst ← ∅; ⊲ Gvst is the set of ASC-sets that have been considered.
6: while Gcon 6= ∅ do
7: pick a node g ∈ Gcon s.t. g 6∈ Gvst;
8: for all e ∈ CES(g) do
9: Y ← CIS(g, e);

10: for all i ∈ Y do
11: Gcon ← Gcon ∪ {ξ(g, e, i)};

12: Gcon ← Gcon\{g};
13: Gvst ← Gvst ∪ {g};

• Step 2: for each newly obtained ASC-set, repeat Step 1 until no new ASC-sets can be ob-

tained, which means that the ASG is completed, as shown in Figure 5.11.
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Figure 5.11: The ASG for Example 35

5.3 Checking Diagnosability

The definition of diagnosability is introduced in Section 2.2.4.3. Without loss of generality,

we first discuss the diagnosability for one class of faults ΣFi . The generalization of our

approach can be obtained just by repeating the same process for each class ΣFi . For the
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sake of checking diagnosability based on observable events with their occurrence dates,

we will propose a deterministic structure called ASG on the basis of ASC-sets.

Before discussing the timed diagnosability of DES, we make the following assump-

tions, in the same way as in the untimed context:

• The LTPN is bounded;

• No achievable cycle of unobservable transitions exists;

• Faults are permanent, i.e., when a fault occurs the system remains indefinitely faulty.

Note that the liveness condition is relaxed.

5.3.1 Conditions for Undiagnosability

As we have explained earlier, the ASG offers a state representation that distinguishes

between reachable states, based on an explicit discrimination taking into account both

observable events, and their possible occurrence dates. Defining such a structure makes

it possible to use similar analysis as in the untimed context. However, some other consid-

erations related to time still need to be added, as will be presented in the following.

Condition 1: indeterminate cycle

Recall that the condition for undiagnosability of an automaton is the existence of an

indeterminate cycle as proved in [Sam+95]. We can extend this condition for the analysis

of diagnosability of LTPN on the basis of the ASG, since our technique, which consists in

splitting time intervals, makes it possible to derive an untimed-diagnoser-like structure,

by making the distinction between sequences on the basis of temporal criteria explicit in

the ASG model structure.

By analogy with the untimed context, we define an indeterminate cycle in an ASG

as a cycle composed of finite nodes in the graph, such that for any node g in this cycle,

there are two ASCs x1, x2 ∈ g, x1 is a faulty ASC in a cycle composed of faulty nodes in

the ASC-graph, while x2 is a normal ASC in a cycle composed of normal nodes in the

ASC-graph.

Proposition 10 The LTPN is undiagnosable if an indeterminate cycle in the ASG exists.

This is obvious according to the explanation of indeterminate cycle. Note that a cycle of F-

uncertain ASC-sets in ASG (Figure 5.12(a), where the black boxes are faulty ASCs and the

white ones are normal) is not necessarily an indeterminate cycle. If this cycle corresponds

to two ASC cycles in an ASC-graph such that one is a normal cycle (x1, x3) and the other

is a faulty one (x2, x4) as in Figure 5.12(b), then g1 and g2 form an indeterminate cycle.

Otherwise, they do not (Figure 5.12(c)).

Condition 2: infinite sequence duration in certain cases
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� Normal ASC � Fault ASC � ASC-set

Figure 5.12: Illustration of indeterminate cycle

Given an ASC-set g (which is not the initial ASC-set) and its predecessor g′, we define

the maximum delay mapping:

mdelay : NASC ×NASC → Q≥0 ∪ {+∞}

by mdelay(g′ , g) =

max{SD(σ) | ∃ x′ ∈ g′, x ∈ g, σ′ ∈ (Tu\Tf )
∗, t f ∈ Tf , σ ∈ T∗u To s.t. x′

σ′t f σ
−−→ x} In other

words, mdelay(g′ , g) is the maximum delay between the first possible occurrence of a

fault and g, relatively to a predecessor ASC-set g′.

We also define

f delay : NASC → Q≥0 ∪ {+∞}

by f delay(g) =

max{SD(σ) | ∃ x ∈ g, σ′ ∈ (T\Tf )
∗, t f ∈ Tf , σ ∈ T∗To s.t. x0

σ′t f σ
−−→ x}. Here f delay(g) is

the maximum delay between the first occurrence of a fault and g, relatively to the initial

ASC-set {x0}.

We define

SDmax(g′, g) = max{SD(σ) | ∃ x′ ∈ g′, x ∈ g, σ ∈ T∗u To s.t. x′ σ
−→ x}

Proposition 11 An LTPN is undiagnosable if g′ is the predecessor of ASC-set g, and

1. mdelay(g′ , g) = +∞ or

2. SDmax(g′, g) = +∞ if tag(g′) = U and tag(g) ∈ {U, F}.

Proof. We prove the above proposition according to the definition of diagnosability.

For an ASC-set g, it may be normal, F-uncertain or F-certain, i.e., tag(g) ∈ {N, U, F}.

• If tag(g) = N, no diagnosability verdict can be concluded and further investigation

is needed.
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• If tag(g) = U, for its predecessor g′, tag(g′) ∈ {N, U}.

– If tag(g) = N, there must be a fault in one of the paths (sequences of transi-

tions) between an ASC in g′ and an ASC in g. If mdelay(g′ , g) = +∞, the sys-

tem is undiagnosable. Otherwise, no diagnosability verdict can be concluded.

– If tag(g) = U and SDmax(g′, g) = +∞, the system is undiagnosable. Other-

wise, no diagnosability verdict can be concluded.

• If tag(g) = F, for its predecessor g′, tag(g′) ∈ {N, U, F}.

– If tag(g) = N, there must be a fault in one of the paths between an ASC in g′

and an ASC in g. If mdelay(g′ , g) = +∞, the system is undiagnosable. Other-

wise, no diagnosability verdict can be concluded.

– If tag(g) = U and SDmax(g′, g) = +∞, the system is undiagnosable. Other-

wise, no diagnosability verdict can be concluded. �

Condition 3: dead subset in certain cases

Note that here we also deal with non-live systems. For this, let us introduce the fol-

lowing definitions. An ASC-set g is said to be:

• undead or nonblocking, if ∀ x ∈ g, ∃ t ∈ T s.t. x t
−→;

• dead, if ∀ x ∈ g, 6 ∃ t ∈ T s.t. x t
−→;

• quasi-dead, otherwise.

Given a quasi-dead ASC-set g, we define the dead subset of g as the set of all dead

ASCs in g, which can be formalized as: DS(g) = {x ∈ g | 6 ∃t ∈ T s.t. x t
−→}.

Example 36 Let us consider the example in Figure 5.11. There are two dead ASC-sets g6, g7, and

a quasi-dead ASC-set g5 with dead subset DS(g5) = {(C8, F)}.

We will now discuss some conditions for undiagnosability w.r.t the liveness of ASC-

sets.

Proposition 12 An LTPN is undiagnosable if a quasi-dead ASC-set g exists, such that

3. DS(g) is F-uncertain, or

4. DS(g) is F-certain and a normal successor ASC-set g′ exists such that g′ may be reached

upon an infinite delay (+∞).

Proof. For condition (3), an F-uncertain dead subset means that, some ASCs in this

set may be reachable by firing a sequence containing a fault, while others can be reached

without any fault having been occurred. Furthermore, it is not possible to distinguish

them by further observation, since they are all dead and the system will remain in F-

uncertain state forever.

103



CHAPTER 5. TIME PN-BASED DIAGNOSIS OF DES

For condition (4), if g′ is reachable upon an infinite delay, one cannot determine

whether the system is blocked in the (faulty) dead subset of g (DS(g)), or it is still in

the way to g′, which means that it is possible that no fault has occurred in the state g′ or

DS(g) in a finite delay after the fault, i.e., we do not know if a fault has occurred. �

5.3.2 On-the-Fly Checking of Diagnosability

Proposition 13 A bounded LTPN is diagnosable iff none of the conditions in Propositions 10,

11 and 12 holds.

Proof. (⇒) : This condition is proposed from three perspectives that we consider:

1. With the help of splitting intervals, the behavior of LTPN is characterized as in the

untimed context, where non-existence of indeterminate cycle has been proved to be

necessary and sufficient condition for diagnosability [Sam+95].

2. This is the restriction from the definition of diagnosability of LTPN.

3. This is the restriction from the perspective of considering non-live TDES.

(⇐) : The negation of these three conditions has been proved to be necessary by Proposi-

tions 10, 11 and 12, since each of the conditions in Propositions 10, 11 and 12 is sufficient

for undiagnosability. �

We have shown that diagnosability can be checked while building ASG. Actually,

building the whole ASG would be similar to the approach based on state enumeration,

often consuming much memory while dealing with large systems, even if this burden-

some work could be performed off line. Yet, there is still a difference w.r.t this approach,

since ASG branch building is stopped as soon as an F-certain ASC-set is found or if one

of the conditions for undiagnosability (cf. Propositions 10, 11 and 12). In order to tackle

this problem, we will propose a new approach to check diagnosability on the basis of

on-the-fly building of the ASG, as shown in Algorithm 10. Moreover, we determine the

minimum value ∆min for which the system is diagnosable. Hence, when the system is di-

agnosable and with ∆min being determined, the system is ∆-diagnosable for any ∆ ≥ ∆min

and is not ∆-diagnosable for any ∆ < ∆min.

5.4 Discussion on Bisimulation between Event-Recording

Automata (ERA) and ASG

The ASG we have developed is a special structure that is similar to a type of TA called

event-recording automata (ERA). In this section, we discuss the similarities between ASG

and ERA and discuss the bisimulation between them under certain conditions.

Definition 28 [Cas12] The TA A is said to be deterministic if
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Algorithm 10 On-the-fly building of ASG, checking diagnosability and computing ∆min

1: Input: the ASC-graph;
2: Output: diagnosability of G and (if G is diagnosable) ∆min;
3: g0 = {x0};
4: ∆min = 0;
5: Gvst ← ∅;
6: Gcon ← {g0};
7: while Gcon 6= ∅ do pick a node g ∈ Gcon with g 6∈ Gvst;
8: for all e ∈ Σo do
9: I ← CIS(g, e);

10: for all i ∈ I do
11: g′ ← ξ(g, e, i);
12: if tag(g′) = U then
13: if ∃ g′′ ∈ Gvst s.t. g′′ = g′ then
14: if g′ is in an indeterminate cycle then
15: return G is undiagnosable;

16: if (tag(g) = N) ∧ (mdelay(g, g′) = +∞) then
17: return G is undiagnosable;

18: if (tag(g) = U)∧ (SDmax(g, g′) = +∞) then
19: return G is undiagnosable;

20: if tag(DS(g′)) = U then
21: return G is undiagnosable;

22: ∆min ← max(∆min, f delay(g′));

23: if tag(g′) = F then
24: if (tag(g) = N) ∧ (mdelay(g, g′) = +∞) then
25: return G is undiagnosable;

26: if (tag(g) = U)∧ (SDmax(g, g′) = +∞) then
27: return G is undiagnosable;

28: ∆min ← max(∆min, f delay(g′));

29: Gcon ← Gcon\{g};
30: Gvst ← Gvst ∪ {g};

31: return G is ∆min-diagnosable;

1. there is no ǫ labeled transition in A, and

2. whenever (l, g, a, r, l′) and (l, g′, a, r′, l′′) are transitions of A, g ∧ g′ ≡ FALSE.

Condition 1, like that in unTAs, does not allow the existence of empty event ǫ. Con-

dition 2 is quite different from that for unTAs. It implies that the non-deterministic case

for unTAs, such as a state having two output transitions with the same event, could be

deterministic in TA whenever the two transitions cannot occurr at the same time.

Unlike an untimed (non-deterministic) automaton, from which a deterministic au-

tomaton observer can always be built, a TA is not always determinizable [Alu+94]. More-

over, the determinization of a TA is proved to be undecidable [Tri06].
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However, a subclass of determinizable TA exists, which is called Event-Clock Au-

tomata (ECA) [Alu+94; Alu+99]. According to the type of clocks, ECA is further divided

into two subclasses: Event-Recording Automata (ERA) and Event-Predicting Automata

(EPA). It is worth discussing the ERA here, since it has some similarities in the expressive-

ness as an ASG of LTPN.

Let Σ be a finite set of events. For every event a ∈ Σ, we write xa to denote the event-

recording clock of a. Given a timed word ω = (a0, t0)(a1, t1) . . . (an, tn), the value of the

clock xa at the jth position of ω is tj − ti, where i is the largest position preceding j such

that ai equals a. If no occurrence of a precedes the jth position of ω, then the value of the

clock xa is “undefined”, denoted by⊥. We write R⊥ = R∪{⊥} for the set of nonnegative

real numbers together with the special value ⊥.

Definition 29 (event-recording clock) [Alu+94] For all 0 ≤ j ≤ n,

λ(ω, j)(xa) =



















tj − ti if i exists such that 0 ≤ i < j and ai = a

and for all k with i < k < j, ak 6= a,

⊥ if ak 6= a for k with 0 ≤ k < j.

An event-recording automaton (ERA) is a TA with event-recording clocks. It contains,

for every event a, a clock that records the time of the last occurrence of a. The class of

event-recording automata is, on the one hand, expressive enough to model (finite) timed

transition systems and, on the other hand, determinizable and closed under all boolean

operations. The translation from timed transition systems to event-recording automata,

which leads to an algorithm for checking if two timed transition systems have the same

set of timed behavior, has been presented in [Alu+94].

It should be noted that our developed ASG for LTPN has the following features:

• An ASG is a specific structure for analyzing diagnosability of LTPN. Given an

LTPN, different ASGs may be, in general, built on the fly according to different

search strategies. However, different ASGs result in the same diagnosability verdict.

In particular, the on-the-fly-built ASG will be the complete ASG, if all the behavior

of LTPN has been investigated.

• An ASG is an observer-like, but not exactly an observer for LTPN, since it is not

necessarily determinizable. The ASG is just the observer only if the LTPN is deter-

minizable and all the behavior are well considered while building the ASG.

• There is no strong connection between diagnosability and “determinizability” for

LTPNs. A diagnosable LTPN may be either determinizable or not; and a determiniz-

able LTPN may be either diagnosable or not. Given a diagnosable LTPN, (at least)

the on-the-fly-built ASG is a time deterministic structure such that any timed be-

havior corresponds to a state of ASG.
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• On the fly technique allows analyzing diagnosability for certain non-determinizable

LTPNs, since the generation of state space of ASG always stops when an F-certain

state is obtained, no matter whether future behavior is determinizable or not.

The general LTPNs can be non-deterministic and not necessarily determinizable. How-

ever, a subclass of LTPNs exists which are determinizable and their ASG is deterministic

to be transformed into ERA. For example, the ASG in Figure 5.11 can be transformed into

an ERA as shown in Figure 5.13.

We guess that our developed ASG can always be transformed into a language-equivalent

ERA. However, we do not prove it here and further study on the bisimulation between

the two models will be performed in the future.
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b

Figure 5.13: A language equivalent ERA for the ASG in Figure 5.11

5.5 Online Diagnosis

In this section, we discuss how online diagnosis for a diagnosable LTPN model is per-

formed, using a deterministic structure called LTD that will be developed. By observing

events with their corresponding occurrence dates online, one can deduce with certainty

which state (Normal, F-uncertain or F-centain) the system can be in and give the verdict

pertinent to fault occurrences.

The LTD is obtained from the ASG by erasing all the information except fault tags for

each node in the ASG and observable events labeling the arcs with their corresponding

intervals. This procedure deletes all the information unnecessary for diagnosis.
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For each F-uncertain quasi-dead node g, a virtual node g′ labeled with “F” is created

as a successor to g, and the arc from g to g′ is labeled with (ǫ, i), where ǫ is an empty

event indicating that no event is observed, i is the interval from the maximum firing date

of the other firable transitions to +∞. Note that, this virtual component does not belong

to the LTD, while it helps to diagnose a fault when dealing with non-live systems, as will

be illustrated through Example 37.

The tags associated with each node in an LTD provide the same information as that

in the ASG:

• “N” means that no fault has occurred;

• “U” denotes that a fault has possibly occurred, and further observation is needed

before being able to give a precise diagnosis verdict;

• “F” denotes that a fault has occurred with certainty.

Given a system behavior presented by a sequence of observable events with their

corresponding event occurrence dates, one can find whether a fault has occurred or not,

with the help of the LTD. The algorithm for online diagnosis of LTPNs is given in Algo-

rithm 11.

Algorithm 11 Fault detection using the LTD
1: Input: An LDFS composed of (ej, dj);
2: Output: The current system state;
3: q0 ← N; ⊲ The system is normal (N) after the initialization.
4: j← 1;
5: while the system is in operation do
6: Wait for the input observable event ej with its occurrence date dj;
7: qj ← the state from qj−1 upon ej at date dj;
8: switch qj do
9: case N

10: assert(No fault belonging to ΣFi has happened;)

11: case U
12: assert(A fault belonging to ΣFi has probably happened;)

13: case F
14: assert(A fault belonging to ΣFi has happened;)

15: case ∅ ⊲ The system arrives at a blocked faulty state “F”.
16: assert(A fault belonging to ΣFi has happened;)

17: j← j + 1;

Example 37 The LTD for the diagnosable LTPN in Figure 5.7 using its corresponding ASG

(Figure 5.11) is given in Figure 5.14. The part in dashed line corresponds to the virtual nodes

associated to the quasi-dead node (note that the considered system is non-live). Given two event

sequences: s1 = abb with the event firing relative dates 2.5, 0.5, 2 and s2 = ba with the event

firing relative dates 2, 3, one can conclude that the system is in:
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• a normal (blocking) state upon the firing of s1;

• an uncertain state right upon the firing of s2;

• suppose that no event is observed within 3 t.u upon s2, Then one concludes that a faulty

state has been reached (indicated by the dashed part added to the diagnoser).
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ǫ(> 3)

� Normal ASC � F-uncertain ASC � F-certain ASC

Figure 5.14: Diagnoser of the LTPN in Figure 5.7

5.6 Conclusion

5.6.1 Summary

The first contribution of this chapter is the development of the time interval splitting

technique and the ASG structure which makes it possible to take advantage of the re-

sults obtained on the diagnosis of DES under an untimed context. The considered timed

model which depicts the DES behavior is LTPN. The ASG structure carries necessary

information to check diagnosability, and allows for computing the parameter ∆min that

characterizes the minimum delay to ensure diagnosability.

Our second contribution is the reduction of the overestimation of the firing domain

of an ASC-set graph. Thus, we propose the necessary and sufficient conditions for diag-

nosability of LTPN. Note, moreover, that the ASG is built on the fly, and that the online

diagnoser is derived in a straightforward way.

5.6.2 Perspectives

Example 37 has presented a general diagnoser for LTPN. However, in practice, this struc-

ture can be further simplified to a modified labeled timed diagnoser (MLTD), as shown in Fig-

ure 5.15. For a given node, if an output arc (e, i) is the only one with an event component
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e, then we erase the interval component, e.g., the arc labeled with b[0, 1] in Figure 5.14

can be replaced with b in Figure 5.15.

g0start

g1 g2g3 g4

g8g5 g6

g7g9

b[0, 1[
a[2, 3[b[1, 3]

a[1, 2]
a]4, 7] a]2, 4]

b
a]3, 7] a[0, 3]

b[0, 3] b[0, 3]

b

ǫ(> 3)

� Normal ASC � F-uncertain ASC � F-certain ASC

Figure 5.15: The MLTD of the LTPN in Figure 5.7

From the implementation viewpoint, the modified LTD takes as few inputs as pos-

sible to deliver diagnosis verdict. As shown in Example 37, one can determine that the

system is normal after the observation of sequence s1 = abb, just by taking into account

the occurrence date of the first event a without that of the following two bs, since after

the occurrence of a at the date 2.5, the following diagnoser state is unique and must be

followed by event b regardless of its occurrence date.

The developed ASCs, which are derived from state classes, have been used for de-

scribing the state space of LTPNs. However, we note that another notion called zone graph

[Gar+04] has been reported to be more efficient than state classes in presenting TPN state

space. Thus, we are interested in using zone graph to improve our work.

In addition, for the online diagnosis we intend to take into account the actual occur-

rence dates of the observable events to make the diagnosis procedure more efficient. Note

however that this would need to perform the same computations online in order to prop-

agate this actual occurrence dates as additional constraints.
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6
CONCLUSIONS AND PERSPECTIVES

6.1 Conclusions

In this thesis, we are interested in fault diagnosis issues of DESs modeled by LPNs. The

on-the-fly and incremental technique is used to cope with state explosion problem. The

main contributions of this work can be summarized as follows:

• In the untimed context, we have developed algebraic representation, namely the

event-mapping matrix and the extended state equation for LPNs, to characterize their

static and dynamic features w.r.t. failure occurrence. The FM-graph and the FM-set

tree are built simultaneously and on the fly to analyze diagnosability. Conventional

diagnosability is analyzed by a series of K-diagnosability problems, in which K is

increased progressively. The incremental search technique is used to make full use

of the previous search information pertaining to (K-1)-diagnosability, while dealing

with K-diagnosability, which allows us to avoid recomputing the state space from

scratch.

• In the timed context, we deal with diagnosis issues using LTPN models. First, (tem-

poral) determinization for LTPNs is considered on the basis of a technique that we

have developed called TIS technique. Necessary and sufficient conditions for diag-

nosability are then given based on on-the-fly building and analysis of the ASG. Fi-

nally, online diagnosis can be performed on the basis of some structures called LTD

or MLTD, derived from the ASG. Our study shows that for diagnosable LTPNs, the

corresponding ASGs have some semantic equivalence with ERA.

• The study we have carried out shows the advantages of using an on-the-fly and

incremental technique in tackling diagnosis problems: 1) the on-the-fly technique

have been shown to be an efficient means to tackle the state explosion phenomenon
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in some cases. In particular, for diagnosability analysis we have proved that gener-

ating the whole state space is not always necessary. 2) incremental technique avoids

recomputing state space from scratch when dealing with K (resp. ∆)-diagnosability

with progressively increasing K (resp. ∆). These computing techniques do not re-

duce complexity in terms of time and memory. However, in general, only a part of

the state space is investigated. Even when the system is diagnosable, the investiga-

tion of the whole state space is not necessarily required. Moreover, the theoretically

worst case seems to be rather rare in practice and the simulation results obtained

on some benchmarks show the efficiency of such techniques.

6.2 Perspectives

Our work on diagnosis of DESs gives rise to some interesting perspectives in the short

and medium terms:

• While analyzing the diagnosability of DESs based on incremental search of K (resp.

∆)-diagnosability for LPNs (resp. LTPNs), the value K (resp. ∆) continues to in-

crease until a diagnosability verdict can be emitted or when the necessary (but not

necessarily the whole) state space is investigated. For unbounded models, the ap-

proach may work as well, depending on the structure of the model and the search

strategy. However, it generally risks increasing K (resp. ∆) to infinity in such a way

that no verdict would be eventually given. Therefore, it is worth looking for an

optimal threshold value Kopt (resp. ∆opt) such that the diagnosability verdict can be

given out immediately upon Kopt (resp. ∆opt)-diagnosability is investigated. Besides,

this would be important also when dealing with bounded models. This would re-

quire investigating some structural features on the PN model. We intend to investi-

gate this issue in the near future.

• The LPN-EC introduced in Section 4.2.4 is useful for recording event occurrences,

whereas it is not necessarily bounded even if the original net is bounded. We intend

to modify the LPN-EC structure in such a way as to ensure boundedness.

• Our approaches use depth-first search to investigate the state space (nodes in the

developed tree-like structures) branch by branch. Moreover, no rules are defined to

select the branch to be built/investigated first, i.e., the order of branch exploring is

arbitrary. The strategy could be improved to direct the search in such a way as to

increase the chances of quickly obtaining a diagnosability verdict. A similar idea

can be found in [Hua13].

• The algebraic representation of LPNs can simplify the description of system behav-

ior, particularly in the event- and/or state-based analysis for LPNs, e.g., [Bas+12;

RH09]. The drawback of this technique is that event-markings record only occur-

rence number but no ordering of events. This could be improved by integrating
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the ordering information of events such that the diagnosability of LPNs could be

directly investigated using algebraic representation and their corresponding tools.

• We are interested in introducing zone graph representation [Gar+04] into our analy-

sis for LTPNs, since test results show that the zone graph approach is more efficient

than the traditional state class graph [BM83] when dealing with bounded TPNs.

This could improve our analysis process while investigating diagnosability in the

timed context.

• For online diagnosis, we intend to take the actual occurrence dates of the observable

events into account to make the online diagnosis procedure more efficient. Note,

however, that this would require performing the same computations online in order

to propagate the actual occurrence dates as additional constraints.

• As the on-the-fly approach shows its efficiency in terms of time and memory, we

intend to apply this technique to the verifier approach, which has been proved to

be of low complexity.
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DEVELOPMENT OF THE LC BENCHMARK

A level crossing (LC), is an intersection where a railway line (or multiple railway lines)

crosses a road or path at the same level, as opposed to the railway line crossing over or

under using a bridge or a tunnel.

B.1 An Overview on the Case Study

In France, there are more than 18,000 LCs. Every day they are traversed by an aver-

age of 16,000,000 vehicles and nearly 450,000 closing cycles take place for the passage

of trains. LCs are identified as critical safety points in both road and railway infras-

tructures [Gha09]. On average, 400 people are killed every year in the European Union

(EU) [CP13]. In France, 100 collisions happened and 33 people were killed in 2012 [RFF13].

Therefore, safety of LCs always attracts great attention in railway operation and also in

the research area [GE07; KG09; Mek+12].

In this section, we apply our diagnosis techniques to an LC system. We consider a

bidirectional multi-track LC (or unidirectional single-track LC for the simple case) and

a bidirectional road. Generally, an LC plant is composed of train sensors set on the rail-

way infrastructure, local control system, sound alarm, road lights and barriers, as shown

in Figure B.1 [GEK14]. The LC global dynamics can be depicted while considering three

subsystems, namely the railway traffic, the LC controller and the barriers, which will be

detailed in Appendix B.2.

The logic of a single-track track LC is as follows: when a train approaching the LC is

detected by the sensors, the barriers are lowered and the road lights show red. The LC

is reopened to road traffic as soon as the train is detected (also by train sensors) out of

the crossing zone. As for a multi-track LC, the control on barriers depends on the railway

traffic on each line:
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Figure B.1: The construction of a single-track track LC system

• The LC is closed when a train approaching the LC from any line is detected by the

train sensors;

• The LC is reopened to road traffic only if no train is still in the crossing zone.

The LC dynamics will be depicted by means of PN models in the next section.

B.2 Modeling of the LC Subsystems

This section presents the modeling of the LC subsystems, namely the railway traffic, the

LC controller and the barriers. The n-track LC benchmark will be built based on the

single-track LC model [LS85] with some modifications. We will give their correspond-

ing LPN models and operating principles. Note that, as the first step, only the normal

behavior will be modeled; some failures will be introduced afterward.

B.2.1 Railway Traffic

Railway traffic can be modeled as an LPN composed of 4 places and 4 transitions as

shown in Figure B.2, where:

• Marked place pi,1 (here the subscript i denotes the track index) denotes that a train

is approaching the LC, as shown in Figure B.2(a);

• Marked place pi,2 denotes that the train has come into the section before the LC,

which can be detected by sensor (ti,1, api) (here “ap” denotes “approaching”), as

shown in Figure B.2(b);
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pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(a) the train is approaching the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(b) the train is before the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(c) the train is within the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(d) the train has left the LC

Figure B.2: The LPN model for a train passing an LC

• Marked place pi,3 denotes that the train has entered the LC, which can be detected

by sensor (ti,2, eni) (here “en” denotes “entering”), as shown in Figure B.2(c);

• Marked place pi,4 denotes that the train has left the LC, which can be detected by

sensor (ti,3, lvi) (here “lv” denotes “leaving”), as shown in Figure B.2(d). The zone

delimited by transition ti,1 and ti,3 will be called the crossing zone;

• Finally, place pi,4 is linked with pi,1 through transition (ti,4, aw4) (here “aw” denotes

that the train is “away” from the LC), which implies that the next train can approach

the LC (when pi,1 is marked) only if the previous train has left the LC crossing zone
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(when pi,4 is marked). In other words, there is no overlapping between successive

train passages.

B.2.2 LC Controller

The LC controller is equipment to collect trains position information from the sensors

along the track (in the railway traffic subsystem) and send controlling commands to the

barriers and the road lights. The road lights will be omitted in the model as their status

can be directly deduced from that of the barriers. It is a processing subsystem between

railway traffic and the protection subsystem. The LPN model pertaining to the LC con-

troller is shown in Figure B.3 and the operating principles are explained below:

• When a train enters the LC crossing zone, an alert signal is sent from sensor ti,1 to

the LC controller (place p1 will be marked). Then (t1, cr) (here “cr” denotes “closing

request”) is fired and a token is added into place p5, which means that the condition

for closing barriers is satisfied. A token is also added to place p3 upon t1 firing, to

store the information about the train arrival.

• When a train has left the LC crossing zone, its position is detected by sensor ti,3 and

this information is sent to the LC controller (place p4 will be marked). Then (t2, or)

(here “or” denotes “open request”) can be fired and a token is added into place p6,

which means that the condition for reopening barriers is satisfied.

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api ti,3, lvi

LC controller

Figure B.3: The LPN model for LC controller

The LC controller holds, among others, a component called interlock [LS85]. An in-

terlock can be a hardware or a software mechanism for ensuring correct sequences of

events.

The LPN model for an interlock is shown in Figure B.4. In order to make sure that t1

has to fire before t2, a new place p5 is added as an output place of t1 and as an input place

of t2, as shown in Figure B.4(b). In other words, the introduction of the interlock (place p5

and its input/output arcs) ensures that the firing of t2 is conditioned by the firing of t1.
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p1

p2

p3

p4

t1 t2

(a) without interlock

p1

p2

p3

p4

p5

t1 t2

(b) an interlock

Figure B.4: The PN model for an interlock

In a given system, multiple interlocks may exist for ensuring the order of events in

some sequences. For example, two interlocks in the LC controller module exist, as shown

in Figure B.3: the one is formed by t1 → p3 → t2 ensuring the firing priority of t1 over

t2; and the other by t2 → p2 → t1 ensuring the firing priority of t2 over t1 after t1 has

been first fired. Such a double-interlock can make sure that t1 and t2 fire alternatively. In

practice, this means that the LC may be closed only if it was open and reopened only if it

was closed.

B.2.3 Barriers Subsystem

The barriers are a subsystem passively responding to the commands from the LC con-

troller. The barrier state switches between “up” (place p7 is marked) and “down” (place

p8 is marked), i.e., the intermediary positions are ignored. The barriers can be set to

“down” (resp. “up”) to prevent (resp. permit) vehicles from crossing only if the closing

(resp. reopening) condition is satisfied. Here p7 and p8 are mutually exclusive, i.e., they

cannot be marked at the same time, since a barrier can be only up or down. The LPN

model for the barrier system is given in Figure B.5, where the labels of t7 and t8 transi-

tions denote “lower” and “raise” respectively.

p7, up

p8, down

other closing conditions other reopening conditions

t7, lw t8, rs

Figure B.5: The LPN model for a barrier system
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B.3 Single-Track LC Model

After having set up the models for the three LC subsystems, let us now establish the

global single-track LC model depicted in Figure B.6.

pi,1 pi,2 pi,3 pi,4

ti,4, awi

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api ti,3, lvi

p7, up

p8, down

p9

ti,2, ini

t4, lw t5, rs

railway traffic

LC controller

barriers

Figure B.6: A single-track LC

The railway traffic subsystem “communicates” with the LC controller through the

train sensors which send train position information. The LC controller sends “close” or

“open” command to switch the “up” and “down” states of the barriers. Place p9, together

with transitions t4 and ti,2, forms an interlock ensuring that normally the barriers must

be well lowered (transition t4 has been fired) before the train enters the LC (transition ti,2

is fired).

In the LC, there are two classes of faults which are denoted by red colored transitions

in Figure B.7: the first one is modeled by transition (ti,5, ig) (here “ig” denotes “ignore”)

indicating that the train may enter the LC crossing zone before the barriers are ensured

to be lowered; the other modeled by transition (t6, bf) (here “bf” denotes “barrier fault”)

indicating a barrier failure that results in a premature barrier raising. Each of these two
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faults can induce a train-car collision.

pi,1 pi,2 pi,3 pi,4

ti,5, ig

ti,4, awi

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api

p7, up

p8, down

p9

ti,3, lvi

t6, bf

ti,2, ini

t4, lw t5, rs

n

railway traffic

LC controller

barriers

Figure B.7: A single-track LC with two classes of faults

Note that compared with the model shown in Figure B.3, there are two more arcs into

and out of place p9: the arc from ti,2 to p9 ensures that p9 is remarked after the firing of

ti,2; the other arc from p9 to ti,3 takes p9 as one of the conditions for firing ti,3. Both of

the two arcs ensure the boundedness of the LPN model. More precisely, the LPN here is

1-bounded (or n-bounded for the n-track LC model afterward).

In the following section, we will introduce a more general LPN model for the LC

system, while taking into account n railway lines.

B.4 n-Track LC Model

Figure B.7 describes a global LPN model for a unidirectional signle-track LC. Based on

this model, a more general model is given in Figure B.8 – involving n railway tracks,
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which can be obtained from the single-track LC model while fulfilling the following con-

trolling rules under a nominal situation:

• The LC must be closed if any approaching train is detected in any line;

• The LC can be reopened if there is no train in the “within” or “before” sections in

any line.

p1,1 p1,2 p1,3 p1,4

pn,1 pn,2 pn,3 pn,4

t1,5, ig

tn,5, ig

t4

tn,4, aw4

p1 np2 p3 p4

p5 n p6

t1, cr t2, or

t1,1, ap1 t1,3, lv1

tn,1, apn tn,3, lvn

p7, up

p8, down

p9

t6, bf

t1,2, in1

tn,2,inn

t4, lwt3, kd t5, rs

n n

railway traffic

· · · · · ·
· · · · · ·
· · · · · ·

LC controller

barriers

Figure B.8: n-track LC benchmark

In other terms, the above rules eliminate all the possibilities that the collision between

railway and road traffic may take place.
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Compared with the single-track LC (cf. Figure B.7), there are several changes when

generating the n-track LC model:

• Transition t3 is newly added. In the n-track LC model, t3 can be fired if both places

p5 and p8 are marked. This means that if there is an LC closing request from one

of the n lines (place p5 is marked), whereas the barriers are already in the low po-

sition (place p8 is marked) due to a previous closing command from any other line.

Then the barriers shall remain down (transition t3 fires for clearing the request from

marked place p5 while keeping the token in p8).

• Place p2 is marked with n tokens to ensure that at most n closing requests can be

proceeded by the LC controller (place p1 is n-bounded).

• Place p6 is also marked with n tokens and denotes the reopening condition. Each

firing of t1 removes a token from p6 and puts a token into p3, meaning that the

LC cannot be reopened when at least one closing request is proceeded by the LC

controller. The LC can be reopened only if p6 is n-marked, i.e., all the trains have

passed the LC and their closing LC requests have already been treated by the LC

controller.

• The two arcs linking t5 and p6 have a weight of n. t5 can be fired only if p6 holds the

reopening condition (n tokens), i.e., no train is still in the crossing zone. The firing

of t5 also returns n tokens to p6 to indicate that at most n closing requests can be

treated (as no train is still crossing on any of n tracks).

• The arcs linking ti,2 to p9 and p9 to ti,3 ensure that, whether the train passes the

LC normally (ti,2 is fired) or upon a fault “ig” (ti,5 is fired), the token in p9 will

be removed when the train leaves the LC. This ensures the boundedness of the

LPN model, since, without these two arcs, the LPN will be unbounded due to the

unbounded place p9.

In order to obtain sufficiently large LC models for analysis, one can add as many “rail-

way traffic” blocks as necessary and connect them with the “LC controller” and “barriers”

blocks in the same way.

In this global model, all the transitions are observable, but the faulty transitions, i.e.,

To = T\Tu and Tu = Tf = {t6} ∪ (∪i{ti,5}).

The n-track LPN model can be rather big when n takes great values. The state space

of the corresponding LPN models for the various values of n can be calculated by the

TINA tool [Ber+04], as shown in Table B.1, where:

• n denotes the number of tracks in the n-track LC;

• |P| denotes the number of places in the LPN;

• |T| denotes the number of transitions in the LPN;
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• |A| denotes the number of arcs in the RG, i.e., the number of automaton arcs in the

diagnoser approach [Sam+95].

• |R| denotes the number of nodes in the RG, i.e., the number of automaton states

when analyzing diagnosability with the diagnoser approach;

• TT denotes the time used for computing the RG (here the value of |R| and |A|) of

the PN by means of TINA on an Inter Mac (CPU: 2.8 GHz, RAM: 16 GB).

Table B.1: Some figures about the state space of the various LC models

n |P| |T| |A| |R| TT

1 13 11 28 24 <1s
2 17 16 540 216 <1s
3 21 21 6,256 1,632 <1s
4 25 26 56,704 11,008 <1s
5 29 31 442,880 68,608 2s
6 33 36 3,126,272 403,456 11s
7 37 41 20,500,480 2,269,184 140s
8 41 46 127,074,304 12,320,768 29m
9 45 51 o.m. o.m. o.m.
Note: o.m. = out of memory

Recall here that not the whole state space will be generated while using our on-the-fly

technique. However, the RGs are generated in order to transform them into the input

files (language-equivalent automata) for UMDES.

As shown in Table B.1, the size of the RG grows very quickly as n increases, since

places p2 and p6 can hold as many as n tokens, due to which so many markings exist.
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RÉSUMÉ ÉTENDU EN FRANÇAIS

Cette thèse s’intéresse à l’étude des problèmes de diagnostic des fautes sur les sys-

tèmes à événements discrets (SED) en utilisant des modèles réseau de Petri (RdP). Cette

étude est effectuée dans l’équipe STF (Systèmes Tolérants aux Fautes) du LAGIS (Labora-

toire d’Automatique, Génie Informatique et Signal, UMR CNRS 8219), à l’École Centrale

de Lille, en collaboration avec le département COSYS/ESTAS (Composants et systèmes /

Évaluation des systèmes de transports automatisés et de leur sécurité) à l’IFSTTAR (Insti-

tut français des sciences et technologies des transports, de l’aménagement et des réseaux),

sous la direction du Prof. Armand Toguyéni et du Dr. Mohamed Ghazel, Chargé de

Recherche à l’IFSTTAR - COSYS/ESTAS.

Cette mémoire de thèse se divise en six chapitres.

Chapitre 1

Le premier chapitre fournit un aperçu du manuscrit.

Ce chapitre débute par une introduction et une mise en contexte sur des problèmes de

diagnostic des fautes sur les SED. Nous considérons les SED dans les contextes atemporel

et temporel. Les modèles que nous utilisons sont les RdP-L et les RdP-LT. Les fautes que

nous traitons sont permanentes, i.e., le système reste fautif dès qu’une occurrence de

faute. Nous discutons quatre principaux problèmes :

• Diagnosticabilité classique : est-ce que le système est diagnosticable (une faute avec

son type peut être déduit après un délai fini dès son occurrence) ou pas ?

• K/∆-diagnosticabilité : est-ce que le système est K/∆-diagnosticable (une faute

avec son type peut être déduit après un délai donné et fini de K dès son occurrence

dans le contexte atemporel ou ∆ dans le contexte temporel) ou pas ?

• K/∆min : quel est le minimum valeur K/∆ pour assurer la diagnosticabilité (si le

système est diagnosticable) ?

• Diagnostic en ligne : comment développer un outil diagnostiqueur pour effectuer

le diagnostic en ligne ?

Les objectifs de cette thèse sont comme suit :

• Réduction des problèmes de l’explosion combinatoire dans les approches classiques ;

• Développement de la technique à-la-volée et incrémentale pour résoudre les princi-

paux problèmes mentionnés en utilisant le même formalisme.
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Chapitre 2

Le deuxième chapitre introduit certaines formalismes pour la modélisation des SED

dans le contexte atemporel : automates, RdP et RdP labellisés (RdP-L); et dans le contexte

temporel : automates temporisés, RdP temporels (RdP-T) et RdP labellisés et temporels

(RdP-LT). Nous présentons aussi les définitions formelles de la diagnosticabilité des SED

dans les contextes atemporel et temporels en utilisant les notations mentionnées.

Nous avons choisi les RdP comme les modèles pour l’analyse des SED, parce que les

RdP ont les avantages de l’expressivité et la représentation compacte.

Chapitre 3

Le troisième chapitre examine les travaux existants sur le diagnostic des fautes des

SED. Les références sont classifiées et résumées en trois parties : la diagnosticabilité et ses

extensions, les approches de diagnostic, et les outils logiciels pour l’analyse de diagnostic.

Les deux problèmes les plus discutés sont le diagnostic en ligne et l’analyse de diag-

nosticabilité. En termes simples, le diagnostic est la détecter les occurrences des fautes et

de localiser la cause des fautes. La diagnosticabilité se réfère à la capacité de détecter et lo-

caliser n’importe quelle faute dans un délai fini dès l’occurrence de cette faute. L’analyse

de diagnosticabilité est effectuée hors ligne. En toute logique, une faute peut finalement

être diagnostiquée si le système est diagnosticable. L’analyse de diagnosticabilité hors

ligne est donc la base de diagnostic en ligne.

Les deux modèles les plus utilisés sont les automates et les RdP. Le diagnostic basé

sur SED est premièrement étudié dans le cadre des langages réguliers et automates. Ces

approches à base d’automates sont basées sur l’énumération des états, qui porte les prob-

lèmes de l’explosion combinatoire.

Afin de combattre ces problèmes, certaines approches basées sur l’automate ont été

proposées pour réduire la complexité, sans construction d’un diagnostiqueur automate.

De plus, une série de travaux concernant le diagnostic et la diagnosticabilité de SED a

été discutée dans le contexte de RdP, pour profiter de ses avantages de l’expressivité et la

représentation compacte.

Le diagnostic basé sur SED a été étudié dans les contextes atemporel et temporel.

Les modèles à événement discret atemporel et temporel sont les deux abstractions des

systèmes réels. Un modèle à événement discret atemporel caractérise le comportement

logique des systèmes, i.e., seulement l’ordre des événements est considéré. Un mod-

èle temporel peut préciser explicitement les contraintes temporelles et quantitatives sur

le comportement du système. Le temps peut caractériser un SED dans une dimension

temporelle, telle que le comportement du système contient des informations plus riche.

Cependant, le traitement des tels systèmes est plus complexe.
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Chapitre 4

Ce chapitre vise à développer la technique à-la-volée et incrémentale pour le diag-

nostic en ligne pour résoudre le problème de l’explosion combinatoire en traitant les sys-

tèmes complexes.

Comme illustré dans ce chapitre, l’analyse à base d’un automate connu ou la construc-

tion du graphe d’accessibilité entier n’est pas nécessaire pour l’analyse de diagnostic. Au

lieu de cela, l’approche que nous proposons peut présenter plus d’efficacité comparée

avec les approches existantes.

La motivation de l’utilisation de ces techniques est illustrée dans la section 4.1. Dans

les sections suivantes, nous discutons le diagnostic des SED modélisés par les RdP-L,

où les fautes correspondent aux transitions inobservables. Basé sur certains nouveaux

concepts que nous avons introduits, une structure d’arbre qui porte le marquage et les in-

formations d’occurrence de faute est élaborée. Cette structure que nous appelons FM-set

tree est calculée à la volée pour vérifier la K-diagnosticabilité en utilisant un algorithme

récursif que nous avons développé. De plus, par extension, nous transformons le prob-

lème de diagnosticabilité classique en une série des problèmes de K-diagnosticabilité, où

la valeur K augmente progressivement. En outre, lorsque le système est K-diagnosticable,

le diagnostic en ligne est effectué sur la base d’un diagnostiqueur qui est obtenu à partir

de FM-set tree d’une manière simple.

Enfin, un teste comparatif basé sur le WODES benchmark est effectué à l’aide du logi-

ciel OF-PENDA que nous avons développé pour prouver l’efficacité de notre approche.

Comme certaines limitations du WODES benchmark apparaît dans le teste, nous dévelop-

pons un benchmark à partir du système ferroviaire : passage à niveau avec multiple

lignes. Ce benchmark vivant et bornée porte deux types de faute : l’un diagnosticable

et l’autre non-diagnosticable. De plus, nous pouvons obtenir un modèle suffisamment

gros si le nombre de ligne augmente. Le résultat obtenu par le benchmark passage à

niveau présente très bonne efficacité en termes de temps et mémoire comparé avec les

approches diagnostiqueur et vérifieur lors que le système et non-diagnosticable à cause

de l’existence d’un cycle indéterminé.

Chapitre 5

Le cinquième chapitre discute le problème de diagnostic des fautes dans le contexte

temporel.

Le modèle que nous utilisons est les RdP-LT qui est une extension des RdP-T pour

laquelle à chaque transition est associé un événement qui peut être observable ou non.

La première contribution est le développement du technique fractionnement des in-

tervalles de temps, qui permet de transformer l’analyse des problèmes dans le contexte

temporel en l’analyse à l’aide des techniques dans le contexte atemporel. La deuxième

contribution est les conditions nécessaires et suffisantes pour la diagnosticabilité des RdP-

LT.
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Nous proposons une approche pour vérifier la diagnosticabilité et nous fournissons

une solution pour calculer le délai minimum pour garantir cette diagnosticabilité. L’analyse

de cette diagnosticabilité est effectuée par un algorithme à la volée, basé sur une struc-

ture de données que nous nommerons ASG. Cette structure contient les informations sur

l’état du RdP-LT.

Les algorithmes à la volée permettent souvent d’obtenir un résultat sans avoir néces-

sairement à explorer tout l’espace d’états. C’est un avantage important par rapport aux

approches classiques d’énumération systématique de tous les états. La discussion dans

ce chapitre est la première contribution sur la diagnosticabilité dans le cadre de RdP-T

d’après notre meilleure connaissance.

Chapitre 6

Le sixième chapitre termine ce manuscrit avec les contributions et respectives. L’originalité

de cette thèse est le développement du technique à-la-volée et incrémentale pour l’analyse

des problèmes de diagnostic, qui permet de partiellement résoudre le problème de l’explosion

combinatoire.

Les principales contributions de cette thèse sont comme suit :

• Dans le contexte atemporel, nous avons développé les notations pour représenter

le modèle RdP-L de manière mathématique, la technique à-la-volée et incrémen-

tale pour l’analyse du diagnostic et un outil logiciel OF-PENDA pour implémenter

notre approche ;

• Dans le contexte temporel, nous avons développé la technique « fractionnement

des intervalles de temps » pour l’analyse de estimation d’états et diagnostic des

fautes. De plus, nous avons aussi proposé et prouvé les conditions nécessaires et

suffisantes pour la diagnosticabilité des SED-T.

Certaines directions sont indiquées pour l’étude à l’avenir : l’application de la tech-

nique a-la-volée sur l’approche vérifieur, le placement des capteurs, l’introduction de la

technique « zone graph », etc.
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ABSTRACT

This PhD thesis deals with fault diagnosis of discrete event systems in both untimed

and timed contexts using Petri net models. Some on-the-fly and incremental techniques

are developed to reduce the state explosion problem while analyzing diagnosability. In

the untimed context, an algebraic representation for LPNs is developed to feature the

system behavior. The diagnosability of LPN models is tackled by analyzing a series of K-

diagnosability problems, where K is increased progressively. Two models called respec-

tively FM-graph and FM-set tree are developed and built on the fly to record the neces-

sary information for diagnosability analysis and online diagnosis. Finally, a diagnoser is

derived from the FM-set tree for online diagnosis. In the timed context, time interval split-

ting techniques are developed in order to generate a state representation of LTPN models,

for which techniques from the untimed context can be used to analyze diagnosability and

perform online diagnosis. Based on this, necessary and sufficient conditions for the diag-

nosability of LTPN models are determined. Moreover, we provide the solution for the

minimum delay ∆ that ensures diagnosability. From a practical point of view, diagnos-

ability analysis is performed on the basis of on-the-fly building of a structure that we call

ASG and which holds fault information about the LTPN states. Generally, using on-the-

fly analysis and incremental techniques makes it possible to build and investigate only a

part of the state space. Analytical results obtained on some chosen benchmarks show the

efficiency in terms of time and memory compared with the traditional approaches based

on state enumeration.

Keywords: Fault diagnosis, Discrete event systems, Labeled Petri nets, Labeled time

Petri nets, On-the-fly analysis, Incremental approach, Time interval splitting.
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RÉSUMÉ

Cette thèse s’intéresse à l’étude des problèmes de diagnostic des fautes sur les sys-

tèmes à événements discrets dans des contextes atemporel et temporel sur la base de mod-

èles réseau de Petri. Des techniques d’exploration incrémentale et à-la-volée sont dévelop-

pées pour combattre le problème de l’explosion de l’espace d’état. Dans le contexte atem-

porel, une représentation algébrique pour les réseaux de Petri labellisés (RdP-L) a été

développée pour caractériser le comportement du système. La diagnosticabilité de mod-

èles RdP-L est ensuite abordée par l’analyse d’une série de problèmes d’analyse de K-

diagnosticabilité, où K peut être augmenté progressivement. Concrètement, l’analyse de

la diagnosticabilité est effectuée sur la base de deux modèles nommés respectivement FM-

graph et FM-set tree qui sont développés à-la-volée et qui contiennent les informations

relatives aux fautes. Un diagnostiqueur peut facilement être dérivé à partir du FM-set tree

pour le diagnostic en ligne. Dans le contexte temporel, une technique de fractionnement

des intervalles de temps a été élaborée pour développer une représentation de l’espace

d’état des réseaux de Petri labellisés et temporels (RdP-LT) pour laquelle des techniques

d’analyse de la diagnosticabilité du contexte atemporel, peuvent être exploitées. Sur cette

base, les conditions nécessaires et suffisantes pour la diagnosticabilité de RdP-LT ont été

déterminées, et nous présentons la solution pour le délai minimum ∆ qui assure la diag-

nosticabilité. En pratique, l’analyse de la diagnosticabilité est effectuée sur la base de la

construction à-la-volée d’une structure que l’on appelle ASG et qui contient des informa-

tions relatives à l’occurrence de fautes sur les états du RdP-LT. D’une manière générale,

l’analyse effectuée sur la base des techniques à-la-volée et incrémentale permet de con-

struire et explorer seulement une partie de l’espace d’état. Les résultats des analyses ef-

fectuées sur certains bancs d’essais montrent l’efficacité des techniques que nous avons

développées en termes de temps et de mémoire par rapport aux approches traditionnelles

basées sur l’énumération des états.

Mots clés : Diagnostic des fautes, Systèmes à événements discrets, Réseaux de Petri

labellisés, Réseaux de Petri labellisés et temporels, Analyse à-la-volée, Approche incré-

mentale, Fractionnement d’intervalles temporels.
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