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Notations 

 

1C Mono-fiber conical optical probe 

A Adjustment factor 

Ac Column cross-section 

Ai Injector cross-section 

C Bubble chord 

C10 Arithmetical averaged chord 

CARTP Computer automated radioactive tracking particle 

CC Cross-correlation 

CCD Charge-coupled device 

CD Drag coefficient 

CFD Computer fluid dynamics 

CL Lift coefficient 

CTD Turbulent dispersion coefficient 

CVM Added mass coefficient 

D Column diameter 

d Distance between probes 

D32 Bubble Sauter mean diameter 

deq Equivalent diameter 

𝐷𝑒 Bubble equivalent diameter 

Dh Bubble horizontal diameter 

Dop Diameter of the optical fiber 

dSM Mean Sauter diameter 

Dv Bubble vertical diameter 

Ecc Bubble eccentricity 

E-L Euler-Lagrange 

Eo Eötvös number 

ERT Electric resistance tomography 

f(1) Product density function 

fb Bubble arrival frequency 

Fgl Interfacial momentum exchange 
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Fd Drag force 

FL lift 

FVM Added mass 

g Gravitational acceleration 

H Column height 

h Height in the column  

h Swarm factor  

H0 Column bed static height 

HD Column bed dynamic height 

HFA Hot Film Anemometer 

i.d. Inner diameter 

jg Local gas flux 

l Length 

l12 Distance between tips of a double optical probe 

LDA Laser doppler anemometry 

LDV Laser doppler velocimetry 

LED Low energy diode 

LES Large eddy simulations 

ls Sensible tip length 

M Modified webber number 

Mo Morton number 

P Pressure 

P(C) Bubble chord distribution of the system 

Pc Detected chord distribution 

Pd(Rh) Probability distribution of detected bubble radius 

PDF Probability density function 

Phi 1000 1 m diameter column 

Phi 150 0.15 m diameter column 

Phi 3000 3 m diameter column 

Phi 400 0.4 m diameter column 

PIV Particla imaging velocimetry 

Q Flowrate 

R Column radius 
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r Distance to the bubble centre 

Re Reynolds number 

Rh Horizontal radius 

Rv Vertical radius 

s Variance of bubble population 

SignalA  Signal of probe A 

SignalB Signal of probe A 

t Time 

ta Time to bubble arrival  

tm Time to reach the top of the tip cone  

T1 Bubble signature from which is possible to infer a velocity 

T2 Bubble signature from which is not possible to infer a velocity 

ta Time of bubble arrival 

texp Experimental duration 

tg Time of gas 

tm Rising time 

u Axial liquid velocity  

ul Axial liquid velocity  

�̅� Mean liquid velocity 

u’ Axial liquid velocity fluctuation 

u’2 Axial liquid turbulent kinetic energy 

u’v’ Stress tensor 

URANS Unsteady Reynolds averaged Navier-Stokes  

v Radial liquid velocity  

v’ Radial liquid velocity fluctuation 

v’2 Radial liquid turbulent kinetic energy 

Vb Bubble velocity 

𝑣𝑏1 Bubble velocity (relative to the probe) before the contact with the probe 

have occurred 

Vi Injection velocity 

Vl Liquid velocity 

Vl(0) Centreline liquid velocity 
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Vmp Most probable velocity 

VOF Volume of fluid 

Vsg Superficial gas velocity 

x Spatial position 

xk Characteristic phase presence function 

h Height difference 

P Pressure difference 

𝑃(𝐶|𝑅ℎ) Probability of detect a chord C on a bubble with a radius Rh 

 

Greek letters 

g Gas hold-up 

g>= g  Average gas hold-up 

 Density 

 Viscosity 

 Surface tension 

 Stress tensor 

 Inclination angle of a bubble 

 Turbulent kinetic energy dissipation 

 Integration constant 

 Bubble rotation angle 

 

Exponents 

D Drag  

VM Virtual mass 

L Lift 

P Pressure 

  

Indices 

l Liquid 

g Gas 

32 Sauter mean 

v Vertical 
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h Horizontal 

b Bubble 

k Fluid phase 

lam Laminar 

tur Turbulent 

BIT Bubble induce turbulence 
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Introduction  

 

Bubble column reactors are widely used in the chemical and biological industry, as 

e.g. Fischer-Tropsch reactors, α-olefins oxidation reactors and as aerobic fermenters. 

They typically consist in a cylindrical vessel filled with liquid at the bottom of which gas 

is injected. The industrial advantages of such a configuration mainly rely on the good 

liquid-gas mixing and on the high interfacial area densities achieved without any moving 

parts. Therefore, bubble columns are suitable to carry strongly exothermic and/or mass 

transfer limited reactions. Typical scales of industrial reactors are 2-8m in diameter and 

2<H/D<5. They are commonly operated at superficial gas velocities, defined as the ratio 

of the injected gas flow rate to the column cross-section, about 5-30cm/s, leading typically 

to void fractions in the range of 10% to 35%. 

 

 

Figure 1 – Snapshot of the Fischer-Trospch pilot unit of IFPEN-ENI in Sannazzaro. (Copyright: © 

ENI) 

 

Despite their common utilization, the scale-up of bubble columns is still a very 

“experimental” process that requires a posteriori verification of the predicted performance 

several scales. Indeed, the hydrodynamics of such bubbly flows is expected to be strongly 

dependent on the column diameter and on the superficial gas velocity but existing scale-
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up correlations were mainly developed in small columns or at low gas hold-up conditions: 

thus their extrapolation to larger sizes and/or larger flow rate is a somewhat risky process. 

A possible solution to identify the correct scaling properties could be to exploit CFD 

simulations. However, nowadays no model is able to directly resolve all the interactions 

occurring in these flows, except when considering a very limited number of inclusions 

and small systems. Alternately, two-fluid Eulerian approaches that provide an averaged 

view of the flow, are frequently used in industry, and notably at IFPEN, for the 

simulations of these two-phase flows. This framework is well adapted to handle large 

systems and high gas content, but it requires the implementation of closure laws, such as 

those concerning the representation of turbulence or of interphase momentum exchanges. 

So far, and despite significant progress, these closures are not indisputably established: 

either their range of validity is not well known or some mechanisms are not properly 

accounted for. That situation is especially critical when considering industrial-like 

conditions (i.e. high gas hold-up and large columns) which are poorly documented. 

Consequently, more refined investigations are required to increase the reliability of the 

models and in fine to build fully predictive tools. 

 

 In this framework, the main objective of the present work is to improve our 

knowledge on gravity driven bubbly flows as the ones found in bubble columns, by 

building and analyzing of a wide experimental database of local flow characteristics 

including void fraction, bubble size distributions, velocity statistics on both phases… 

With respect to the scaling issue, these measurements should be obtained over a large 

range of column diameters. 

Anticipating on the detailed work program presented in the next chapters, in the 

present work, the columns diameter has been varied from 0.15m up to 3 m, i.e. spanning 

a 1:20 factor. In the same perspective, and for each column, the range of superficial gas 

velocities has been varied from 3 cm/s up to 35 cm/s, i.e. corresponding to a 1:10 factor.  

Moreover, in order to ease the analysis of hydrodynamic phenomena, to help the 

identification of scale-up rules and also to facilitate the test of simulations, the chosen 

strategy was to carry out experiments in the best controlled conditions possible. In 

particular, the following objectives were set:   

 The gas injection must be homogeneous over the column cross-section in order to 

avoid the formation of high gas concentration zones and consequently the 

appearance of instabilities in the vicinity of the injection.  
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 The injected bubble size must be as stable as possible when changing the column 

or the flow rates in order to ensure comparable experimental conditions.  

 Coalescence must be avoided. 

 

The manuscript is organized as follows. 

 A detailed review of the existing experimental studies, measuring methods and 

modeling approaches is presented in chapter 1, and the precise work program is 

defined accordingly. 

Chapter 2 presents the study of the gas injector design and the final choice of the 

gas distributor for each column. Furthermore, the bubble size in the vicinity of gas 

injection is analyzed for several columns.  

In chapter 3, the measurement methods adopted to access the various 

hydrodynamics properties are discussed. Their performances are analyzed by 

comparison with other methods or with literature data. In addition, a new method 

dedicated to the measurement of the average horizontal size of bubbles is proposed 

and tested.  

Chapter 4 presents the experimental data collected. The evolutions of the 

hydrodynamics properties with the column dimension and with the superficial gas 

velocity are analyzed. Some flow behaviors are then deduced from these observations 

including the probable presence of concentration fluctuations at meso-scale, and their 

possible consequences on the modeling are evoked.  

In chapter 5, a preliminary approach aimed at accounting for the observe dynamics 

in averaged two-fluid models is presented using a 1D balances as well as a 3D 

URANS simulations. 

Finally, a general conclusion synthetizes the main results and provide some 

perspectives. 
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1 Bubble columns hydrodynamics 

 

A bubble column is a vertical cylindrical vessel containing a liquid phase where a 

gas phase is injected at the bottom. This injection is made by a gas distributor those 

orifices are distributed all over the cross-section of the column. This gas phase thus 

produces rises through the liquid, escaping from it at the upper free surface.  Excepted at 

very low gas flow rate or in specific experimental setup involving capillary tubes as gas 

injectors, the hydrodynamics of the liquid phase exhibits an important recirculation at the 

center of the column (Forret et al., 2003). Such gas-liquid flows are characterized by very 

strong couplings between the dynamics of the two phases. Similar situations also arise 

for gas-liquid flows in ducts, such as in gas lift systems (Guet and Ooms, 2006) or when 

the forced liquid flow remains weak enough compared to gravity forcing (Mudde, 2005; 

Riviere et al., 1999a,b). All such gravity driven bubbly flows remain difficult to model 

without resorting to empirical information.  

Bubble columns encompass a wide variety of internal technologies as draft tubes, 

plates or packing, those improve some aspect of the flow as mass transfer or mixing 

(Deckwer, 1992). The Figure 1.1 presents some examples of bubble column internals. In 

the present study a focus is done on empty bubble columns. 

 

 

Figure 1.1 - Typical internals in bubble columns. 

 

In the first part of this bibliographic study, available results on global and local 

parameters gathered in bubble columns for various operating conditions are summarized. 

Main global quantities are for example the average gas hold up that quantifies the amount 

gas present in the column or the flow regime. Local variables typically concern the local 

void fraction, bubble size, bubble and liquid velocity and turbulence.  
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In a second part, available measuring techniques are described. Bubble size and 

liquid velocity measurements are considered in particular. 

Different modelling approaches are then briefly presented and their predictive 

capabilities on bubble columns are discussed. Finally, we identify key open questions on 

the dynamics of such flows and we then define an adapted work program. 

 

1.1 Hydrodynamics 

Global hydrodynamics 

Gas Hold Up and flow regimes 

 

The flow regimes in a bubble column are strongly related with the superficial gas 

velocity, vsg, and gas hold up, εg.  

 Three flow regimes can typically be found in literature: homogeneous (or bubbly 

flow), transition and heterogeneous (or churn-turbulent) (Krishna et al., 2001), as shown 

in Figure 1.2. The homogeneous regime is present at low values of vsg and is characterized 

by a quasi-linear behaviour of the global void fraction εg versus the gas superficial 

velocity vsg. The bubble population is equally dispersed in the column, and it is 

characterized by somewhat narrow bubble size distribution. The radial profiles of εg and 

mean velocities are flat. Bubble break up and coalescence phenomena are negligible in 

these conditions because bubbles are dispersed and have quasi-rectilinear paths. 

 With a further increase in vsg, the increasing trend of εg with vsg is reduced and 

goes through a local maximum, which is a characteristic of the transition regime. For 

these conditions, larger bubbles start to appear mostly in the centre of the column and 

their path become helical or wobbling.  

 The heterogeneous regime occurs at larger vsg conditions, where εg experiences a 

slower increase with vsg than in the homogeneous regime. This regime is characterized 

by an agitated flow, where the bubbles movement is more chaotic. In the heterogeneous 

regime, two major classes of bubbles are identified by some authors (Urseanu et al., 

2003). The large bubbles, found mostly in the centre, possess high velocities that lead to 

a quick rise through the column. The second class corresponds to small bubbles, normally 

found in the wall region, and that are entrained by the down coming flow of the liquid. 

This liquid recirculation is induced by the movement of the large bubbles in the core of 
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the column generating an upcoming flow of liquid. Once it reaches the top of the bed the 

liquid descends through the wall region. As consequence of this heterogeneous bubble 

concentration in the column, the gas hold up and the bubble velocity radial profiles 

become more parabolic. However, there is no consensus in the systematic presence of 

coalescence since some authors such as Chaumat et al. (2005) have not detected the 

presence of large bubbles in the heterogeneous regime. As a conclusion, it is not clear 

that the appearance of large bubbles determines the formation of a liquid recirculation. 

Both phenomena may also share a common cause as the increase of void fraction. Besides 

that, the picture below is not universal since in some conditions of gas injection, the 

relationship between the global void fraction and the superficial gas velocity does not 

exhibit any maximum. Instead, it could be monotonous with a continuous increase of the 

εg versus vsg slope. Clearly, the passage from the homogenous regime to the 

heterogeneous regime is still poorly understood.  

 

 

Figure 1.2 - Schematic representation of the flow regimes in a bubble column. (Forret et al., 2006)  

 

As a preliminary basic view of the hydrodynamics of bubble columns, it seems 

that one can distinguish two limiting cases. In the dilute limit and for well controlled 

injection conditions, the back flow of liquid occurs around each inclusion, and the swarm 

of bubbles remains globally spatially homogeneous (Garnier et al., 2002, Riboux et al., 

2014). When increasing the void fraction, the flow tends to structure itself into ascending 
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zones gathering most bubbles and descending zones with a weaker gas content (such a 

structuration process is also observed in sedimentation). Radial in-homogeneities become 

then significant. Even more, convective type instabilities can arise due to differential 

buoyancy forcing. This situation is typical of operating conditions of industrial bubble 

columns.  

In addition to the above hydrodynamic processes, coalescence may affect the 

bubble size and therefore the spatial distribution of buoyancy forcing. Yet, coalescence 

may not always be the driving mechanism of the homogeneous-heterogeneous transition 

usually observed in bubble columns, and the origin of the transition needs to be clarified.  

Impact of the gas injector design on gas hold up 

 

A gas hold up evolution, as showed in Figure 1.2, is not always possible to obtain. 

Ruzicka et al. (2001) and Kuncová et al. (1995) showed that the gas injector design has a 

determinant impact on the hold up. A perforated plate with small and closely spaced 

orifices is pointed as a design capable of generating homogeneous bubbling regimes. In 

a design with larger orifices the gas injection has a 'non-uniform' spatial distribution all 

over the column cross-section, creating local heterogeneous bubble concentration even at 

small vsg. Figure 1.3 shows the typical evolution of εg for a non-homogeneous gas injector. 

 

 

Figure 1.3 - Schematic representation of the flow regimes in a bubble column. Adaptation from 

Ruzicka et al. (2001)  

When such a gas holdup trend is obtained, it is not possible to identify the 

transition between regimes. Moreover, there is no real linear evolution of εg even at low 

vsg, suggesting that a liquid recirculation appears at very low gas velocity. As described 

by Ruzicka et al. (2001), regardless the gas injection device, the reached heterogeneous 
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regime is always similar; it is characterized by wide bubble size distributions with a strong 

presence of coalescence and liquid recirculation. 

Forret et al. (2006) have found that the distributor effect on the gas hold-up profile 

is only significant at an elevation lower than one diameter from the gas distributor.  

 

As a conclusion, the gas injector has a strong impact on global hydrodynamics, as 

it conditions the transition between homogeneous and heterogeneous regime. But when 

heterogeneous regimes are considered, the impact of the gas injection is negligible on 

global hydrodynamics. 

 

Impact of liquid phase properties on gas hold up 

The properties of liquid phase, such as surface tension and viscosity, have an 

important impact on the bubble formation and on bubble-up break/coalescence processes.  

 The literature (Kuncová et al., 2006; Kantarci et al., 2005; Thorat et al., 2008; 

Fransolet et al., 2005) indicates that a liquid phase with a higher viscosity yields a lower 

εg than one with a lower viscosity. This decrease in εg is related to an increase of the 

coalescing nature of the liquid phase, favouring the formation of larger bubbles in the 

near injector zone of the column. In the other hand, the viscosity of the liquid may 

decrease the relative velocity between fluids, which indicated how complex is the 

coupling between phenomena inside bubbles. The larger bubbles travel faster in the 

column than smaller bubbles, thus yielding a smaller εg. (Kuncová et al., 2006). Changes 

in the bubble population affect also the flow regime. Figure 1.4 shows the results of the 

study of the impact of liquid phase viscosity on the void fraction made by Kunková et al. 

(2006) in a 0.154 m diameter column equipped with a perforated plate with 0.5 mm i.d. 

holes. The viscosities were tested in a range from 1 mPa.s for distilled water to 110 mPa.s 

for the saccharose solution of 64,5wt%. On this figure the transition between regimes is 

clearly observed for distilled water, but tends to disappear when the viscosity increases. 
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Figure 1.4 – Gas holdup versus superficial gas velocity for Saccharose solutions with different 

concentrations (Kuncová et al., 2006).  

 

 The surface tension is also a property that has an important impact on the flow 

regime. The addition of surfactants reduces the surface tension between the liquid and gas 

phases, usually decreasing coalescence. As a consequence, the bubbles will be smaller 

which means that they will rise slower and a higher εg will be yield (Kantarci et al., 2005; 

Thorat et al., 2008; Mouza et al., 2005; Chaumat et al., 2005). These phenomena were 

also observed by Veera et al. (1999) in a 38 cm diameter and 3.2 m height bubble column. 

A perforated plate with 623*1 mm diameter holes was used as the gas distributor. The 

void fraction was measured using gamma ray tomography in an air/water system. In order 

to change the gas-liquid surface tension, several solutions of n-butanol, from 0.02 %v/v 

up to 0.5% v/v, have been used as can be seen in Figure 1.5 A. 
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A B 

 

 

Figure 1.5 – A) Effect of n-butanol concentration on the average gas hold-up (Symbols: crosses- 

water; rhombus – 0.02 % v/v; squares – 0.2 % v/v; triangles – 0.5 % v/v) (Veera et al., 1999); B) 

Variation of the surface tension of n-butanol with the concentration (Hey and Kippax, 2005) 

 

 As can be seen in Figure 1.5 B, the range of concentrations used in the experiments 

is placed in the zone where the surface tension has an important reduction with the 

concentration. The results show that, as already mentioned, a decrease in surface tension 

leads to higher void fractions. However, the 0.5 % v/v solution showed similar void 

fractions to the 0.2% v/v solution. Probably the bubble coalescence has been completely 

blocked at 0.2% v/v of n-butanol, so a further addition did not have an impact on the 

global gas hold-up (although this surfactant concentration remains below the maximum 

interface coverage limit according to Figure 1.5 B).  

 

Impact of the pressure level on gas hold up 

 

 Elevated pressure changes the behavior of the two phases and the way they 

interact. Increasing the pressure in a bubble column increases the global gas hold up in 

the heterogeneous regime and delays the transition from homogeneous to heterogeneous 

flow regime to higher superficial gas velocities (Wilkinson, 1991; Colombet, 2012; 

Urseanu et al., 2003). This phenomenon is linked with the decrease of mean bubble 

diameter, which may be caused by an effect of pressure on the bubble formation and/or 

on the breakage and coalescence. The reduction of the number of large bubbles also limits 

the propagation of instabilities in the column explaining the delay on the transition 
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between flow regimes (Urseanu et al., 2003). Authors studied the impact of pressure in 

the gas hold up for several liquids as can be seen in Figure 1.6. A 1.22 m high and 0.15 

m diameter column has been used with a perforated plated with 0.001 m holes.  

 

 

Figure 1.6 – Variation gas hold up with pressure and liquid viscosity in a bubble column (Urseanu 

et al., 2003)  

 

The results show that for the water/nitrogen system, the gas hold up strongly 

increases with the pressure level but for the heterogeneous regimes only. The sensitivity 

to pressure diminishes with an increase in viscosity, as can be seen for the Tellus-

oil/nitrogen system. In the case of the glucose solutions, the effect of the pressure level 

becomes insignificant. Clearly, large viscosities systems are not sensitive to the absolute 

pressure. Urseanu et al. (2003) argued that the promotion of bubble coalescence by 

viscosity overcome the bubble break-up phenomena due to elevated pressure. This 

argument is not convincing as coalescence is not expected to be promoted by viscosity. 

Even if effects on break-up and coalescence, it is more likely that the gas density 

modification due to the pressure level affects the injected size distribution itself, 

producing more smaller bubbles and thus increasing the void fraction. In addition, 
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injection conditions may change in these experiments as, for a given gas superficial 

velocity, the gas velocity inside the injectors evolves with the pressure level. 

An increase of the gas phase molecular weight is also associated with an increase 

in the gas hold up. This phenomenon is linked with an increase in the gas density that is 

the physical cause responsible for the effect of molecular weight and pressure on gas hold 

up (Kantarci et al., 2005; Wilkinson et al., 1994). 

  

 The study of bubble size, its path and velocity along the column will be discussed 

in detail in the chapter 4 through the study of local hydrodynamic parameters. 

 

Column geometry effect on the gas hold-up 

 

Forret et al. (2006) have measured the evolution of the global gas hold-up with 

the gas superficial velocity in bubble columns with diameter ranging from 0.15 m up to 

1 m (system air/water). Gas injections devices are similar in term of size of holes and 

global porosity. As can be seen in Figure 1.7, the gas hold-up shows no dependency in 

the column diameter for all the tested superficial gas velocities.  

 

 

Figure 1.7 – Global gas hold-up variation with the superficial gas velocity. (Forret et al., 2006) 

 

Considering the knowledge on global hydrodynamics allows to identify several open 

question as: 

 What mechanism is responsible for the transition?  
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 What is the role of the bubble size distribution on it? Is the coalescence the main 

cause of the transition? 

 

Local hydrodynamics 

Local gas holdup 

 

Forret et al. (2006) have showed that, for gas superficial velocities higher than 10 

cm/s, the radial profiles of the local gas hold-up εg normalized by the global void fraction  

𝜀�̅� overlap regardless of the column diameter and the superficial gas velocity, as shown 

in Figure 1.8. Hence, these profiles can be predicted as a function of the global gas hold-

up by the correlation developed by Schweitzer et al. (2001): 

𝜀𝑔(
𝑥
𝑅⁄ ) = 〈𝜀𝑔〉 [−1.7889(

𝑥
𝑅⁄
6
− 1) + 1.228(𝑥 𝑅⁄

4
− 1)

− 0.939(𝑥 𝑅⁄
2
− 1)] 

(1. 1) 

Where 𝑥 𝑅⁄  represents the dimensionless radial position, 𝜀𝑔(
𝑥
𝑅⁄ ) the local gas hold-up at 

this position, and 〈𝜀𝑔〉 represents the global gas hold-up.  

 

 

Figure 1.8 – Normalized gas hold-up radial profiles for several column diameters. (Forret et al., 

2006) 

 

The similarity between gas holdup profiles has been validated on a wide range of column 

diameter and superficial gas velocity, as long as the heterogeneous regime is achieved 

(vsg>10cm/s). 
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Bubble size  

 

The knowledge of the bubble size in large bubble columns is still a recurrent 

question in today’s research due to the lack of accurate experimental information and also 

due to its importance for the modelling of both hydrodynamics and mass transfer in such 

bubbly flows. There are two main aspects that determine the bubble size. The first one is 

the bubble formation process, as the bubble population at the bottom of the column is set 

by injection conditions. The second one is related with coalescence/break-up phenomena, 

as the equilibrium between these two processes determines how the bubble sizes evolve 

along the column.  

The shape of the bubble changes as a function of the flow conditions and can be 

roughly predicted using bubble regime maps as the one shown in Figure 1.9 (Clift et al., 

2005). The shape of bubbles is strongly linked to the their volume and relative velocity. 

It is thus linked also to the physical properties of the system. This map relates three non-

dimensional numbers, namely the bubble Reynolds number (Reb), the Eötvös number 

(Eö) and the Morton number (Mo). The Reynolds number represents a ratio between the 

inertial and viscous forces and can be calculated by: 

 
𝑅𝑒𝑏 =

𝜌𝑙𝑉𝑏
2𝑑𝑒𝑞

𝜇𝑙
 (1. 2) 

where 𝜌𝑙 and 𝜇𝑙 are respectively the liquid density and viscosity, 𝑉𝑏 is the bubble velocity 

relative to the liquid and 𝑑𝑒𝑞 is the diameter of an iso-volume spherical bubble. 

The Eötvös number compares the hydrostatic pressure at the scale of an inclusion and the 

capillary pressure, it is evaluated as follows, 

 
𝐸𝑜 =

∆𝜌𝑔𝑑𝑒𝑞
2

𝜎
 (1. 3) 

where ∆𝜌 is the density difference between the liquid and the gas phase, 𝑔 represents the 

gravitational acceleration and 𝜎 the surface tension. 

The Morton number that characterises the gas/liquid system and gravity is 

calculated as follows, 

 
𝑀𝑜 =

𝑔𝜇𝑙
4∆𝜌

𝜌𝑙2𝜎3
 

 

(1. 4) 
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Figure 1.9 - Bubbles shape regimes for bubbles in unhindered gravitational motion. (Cliff et al., 

2005). The map provides also the terminal velocity of bubbles. 

 

Figure 1.9 provides the bubble shape and its relative velocity (included in the 

Reynolds number) as a function of Eö (i.e. the bubble volume) and the Morton number. 

This map has been established for a single bubble in a stagnant liquid. Note that interfacial 

contamination should also be accounted for as it affects the relative velocity especially in 

the ellipsoidal and wobbling regions.  

Another issue is related with the type of statistics considered. Some techniques 

sample frozen bubbles (such as standard imaging techniques) while others account for 

fluxes (such as some local probes). These two approaches are not equivalent unless the 

relative velocities between any bubble classes remain negligible. This is another difficulty 

for performing sound comparisons between various contributions.  

Last, regarding coalescence and/or break-up, it must be emphasized that no conclusion 

can be drawn when comparing mean sizes only. Indeed, the size pdf (probability density 

function) and thus their moments can change simply because of transport and dispersion 

(in particular, it will be shown below that strong size segregation can occur in bubble 

columns) even in absence of coalescence/break-up. To ascertain the presence of 

coalescence, one needs to consider fluxes per size classes. Alternately, one can examine 
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the evolution of the minimum and maximum sizes in the system to decide whether or not 

coalescence/break-up processes are likely to be present. Despite these difficulties, we will 

analyse the data on bubble size that are available in the literature. 

 

The previous results as an important part of the work done in this subject were 

carried either in 2D columns (Mouza et al., 2005; Kazakis et al., 2006, Simmonet et al, 

2007; De Swart et al. 1996) or in small bubble columns (diameter < 0.15 m) at low gas 

hold-up due to measurement methods limitations. However, this study aims to study the 

bubble size in large bubble columns and at high void fractions. Consequently, only the 

studies done in similar conditions will be further detailed. As the present study is clearly 

focused on the scale-up of industrial bubble columns, a particular attention is paid to data 

acquired in “large” columns at high gas velocity. 

 

Impact of superficial gas velocity on bubble size 

 

Xue et al. (2008 B) have studied the evolution of the mean chord with the gas 

superficial velocity using a four point optical probe. This technique measures bubble 

chords, as it will be detailed in Chapter 3. The measurements were made in a 2.30 m 

height and 0.16 m diameter column using two different perforated plates in a tap water/air 

system. Spargers of different open area and hole diameter have been used. In the centre 

of the column (r/R=0), the results show an increase in the mean bubble chord from 2.5 

mm at 2 cm/s up to 6 mm at 30 cm/s. At higher superficial gas velocities, the mean bubble 

chord remained constant, with similar volume based bubble chord distribution. 

Though, in the wall region (r/R=0.9), the mean bubble chord remained constant 

around 3 mm for all the tested conditions, as can be seen in Figure 1.10. This information 

is in agreement with what was previously referred, in the churn-turbulent regime at high 

vsg: the larger bubbles quickly rise through the column centre. The smaller bubbles, 

already existent in the homogeneous regime, recirculate in the wall region explaining the 

difference between the two sets of measurements. There is thus a strong lateral 

segregation effect. 
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Figure 1.10 – Evolution of mean chord lengths with gas superficial velocity at the column center 

and near the wall (Xue et al., 2008 B). (z/D=5.1). 

 

Colombet et al. (2014) also addressed the impact of gas superficial velocity on the 

bubble equivalent diameter. The measurements were made using a photographic method, 

meaning that bubbles were only measured in the wall zone. The experiments were carried 

in a 0.15 m squared bubble column and 1m high. The gas distributor is composed by 841 

capillaries 15 cm long and with an inner diameter of 0.2 mm. Filtered tap water was used 

as liquid phase and air as gas phase. The measurements were made by two different 

imaging methods and a double tip optical probe. The bubble equivalent diameter is plotted 

as a function of the gas hold up, as shown in Figure 1.11. As previously referred, the gas 

hold up increases with gas superficial velocity. The results show that the equivalent 

diameter strongly increases with the gas hold-up up to 5%. Above this value, the bubble 

equivalent diameter presents a smaller increase with the gas hold-up.  
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Figure 1.11 – Evolution of bubble equivalent diameter with gas hold up (symbols: filled circles – 

imaging method with a telecentric lens, empty circles - imaging method with a fixed lens, crosses – 

double tip optical probe). (Colombet, 2014). 

 

 Colombet et al. (2014) have calculated the bubble equivalent diameter from the 

mean bubble chord, under the assumption of a mono dispersed bubble population with a 

null angle of attack when approaching the probe. Since there is no information about the 

bubble eccentricity in the work of Xue et al. (2008), it is impossible to compute the bubble 

equivalent diameter from the mean bubble chord. Consequently only a qualitative 

comparison can be done between both results. The results of Xue et al. (2008) present a 

steeper bubble size increase than Colombet et al. (2014), this could be due to the different 

configurations of the gas distributors. Colombet et al. (2014) stated that the capillary gas 

distributor assured an homogenous injection of 2 mm diameter bubbles, allowing to yield 

30% of gas hold-up without changing the flow regime (homogeneous regime). A more 

heterogeneous bubble injection can change the flow organization, and promote 

coalescence/break-up rates in the flow, which could explain the larger bubbles measured 

by Xue et al. (2008 B). 

 

Impact of pressure level on bubble size 

 

In his PhD thesis, Wilkinson (1991) studied the bubble sizes in 0.15 m diameter 

and 1.5 m height bubble column. The statistic information was obtained using a 

photographic method through visualisation windows present at different heights of the 

columns. In his work he studied several gas/liquid systems at different pressures, as can 
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be seen in Figure 1.12. The obtained bubble size distributions at the wall were fitted with 

a log-normal distribution as follows. 

 

𝑓(𝑑𝑒𝑞) =
1

𝑠 × 𝑑𝑒𝑞 × √2
𝑒𝑥𝑝

(−
1
2
(
ln(𝑑𝑒𝑞/𝑑𝑒𝑞̅̅ ̅̅ ̅

𝑠
)

2

)

 

 

(1. 5) 

Where s represents the variance of the bubble population and 𝑑𝑒𝑞̅̅ ̅̅̅ represents the 

mean bubble equivalent diameter. 

 

A B 

  

 

Figure 1.12 – Bubble size distributions in different systems at different pressures A) water-air B) N-

heptane-N2 Legend: circles – 1.5 MPa triangles – 1 MPa Plus signs – 0.5 MPa (Wilkinson, 1991).  

 

The results show that the pressure level affect the mean bubble size for both 

organic and aqueous media. It is visible that when the pressure rises, the larger sizes are 

not detected or are not present anymore. The disappearance of larger bubbles was also 

verified with the substitution of nitrogen by gases of higher density showing that the effect 

of pressure is a direct effect of density (Wilkinson et al., 1994). The limited range of 

pressure (from 0.5 to 1.5 MPa) and the fact that these measurements were achieved in the 

wall zone could explain the small effect of the pressure level on the bubble size 

distributions. 

The effect of pressure was also studied by Schafer et al. (2002) using 19 capillaries 

of 25 mm in length and inner diameter of 0.15 mm in a 1 m height and 0.054 m internal 

diameter column. The results are presented in the form of the mean Sauter diameter 𝑑32, 
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which represents the diameter of a mono dispersed spherical bubble population with the 

same volume/surface ratio as the one studied. The 𝑑32 can be calculated as follows, 

 
𝑑32 =

∑𝑑𝑣
3

∑𝑑𝑠2
 (1. 6) 

where 𝑑𝑣  is the diameter issued from the bubble volume and 𝑑𝑠  is the diameter from the 

bubble surface calculation. Shafer studied the effect of pressure for aqueous and organic 

systems as can be seen in Figure 1.13.  

 

A B 

 

 
 

Figure 1.13 – Evolution of mean Sauter diameter along the column in different mediums A) air-

water B) Comparison of water, cyclohexane and ethanol at vsg=0.39cm/s (Schafer et al., 2002). 

 

Figure 1.13 A shows that the mean Sauter diameter decreases with the pressure 

level all along the column, except near the sparger. 

 

Impact of liquid properties on bubble size 

 

Surface tension 

 

 The impact of liquid-gas superficial tension on the mean Sauter diameter of 

bubbles is recurrently studied in experiments using water and cyclohexane as liquid 

phases (Chaumat et al., 2007 A, Colombet et al. 2012). Indeed, these two liquids have 

similar viscosities (around 0.9 mPa.s at 25ºC) but different surface tensions, 24.4 mN/m 

for cyclohexane and 72 mN/m for water (at 25°C). In literature, it is recurrent to associate 

the decrease in surface tension with a stabilization of the interfaces and consequently a 
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reduction of bubble coalescence rate. This trend can be found in Figure 1.13 B where the 

mean Sauter diameter is measured along the column for several liquid phases. The results 

show that smaller surface tension leads to smaller bubble sizes. It is also demonstrated 

that the effect of surface tension is present all along the column and also at different 

pressures. 

Chaumat et al. (2007 A) have studied the impact of surface tension in a range of 

superficial gas velocities up to 0.2 m/s in water and cyclohexane systems. The 0.2 m 

diameter column used was operated in a continuous mode for the liquid and the gas 

phases. The bubbles were generated using an annular sparger with holes of 0.001 m. The 

measurements were made using a bi-optical probe located 0.65 m above the sparger. To 

perform the mean Sauter diameter calculation, a spherical form for the bubbles was 

assumed and the computation was made through the following equation, 

 
𝑑𝑠 =

3𝑉𝑚𝑝𝜀𝑔

2𝑓𝑏
 (1. 7) 

where 𝑉𝑚𝑝 is the most probable detected velocity and 𝑓𝑏 is the bubble arrival frequency. 

 The reduction of the 𝑑𝑠 with the decrease of the surface tension is visible in all the tested 

range of vsg and for different liquid velocities, as illustrated in Figure 1.14. 

 

 

Figure 1.14 – Evolution of mean Sauter diameter with superficial gas velocity. (Chaumat et al., 

2007 A)  UL is the liquid superficial velocity. 

 

This effect is also visible in Figure 1.12, where smaller bubble sizes and a more 

narrow size distribution were detected for an N-heptane/nitrogen system (surface tension 
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=20 mN/m) in comparison with the water/air system. This phenomenon is also well 

supported by the higher gas hold-up values reported with N-heptane than with water 

(Wilkinson et al., 1991). Indeed, smaller bubbles ascend slower in the column, leading to 

higher gas retention. 

 

Viscosity 

  

Kazakis et al. (2006) have studied the impact of the liquid viscosity on the bubble 

size distribution at the sparger region. A square cross-section column with 0.04 m side 

has been used, using metal porous disk as injector. The measurements were made using 

a photographic method. Two glycerine solutions (50% and 66.7% v/v) were used as an 

alternative liquid phase with a viscosity of 6.2 mPa.s and 16.6 mPa.s and a superficial 

tension of 69 mN/m and 67 mN/m at 25°C. Two different porous sizes of the gas 

distributor (porous of 40 and 100 µm) were tested and in both cases the increase of 

viscosity leads to a decrease in the bubble size, as illustrated in Figure 1.15. Furthermore, 

in the case of the porous plate with 100 µm holes, a bi-modal population was detected for 

the three tested systems (water and the two glycerine solutions). These results show how 

difficult it is to generate a homogeneous bubble size distribution when viscous liquids are 

involved. They also tend to prove that an increase of viscosity decreases the primary 

bubble size mean diameter. This result, also coherent with those of Mouza et al. (2005), 

tends to invalidate the arguments of Kuncova (1995) to explain the decrease of gas holdup 

with the viscosity of liquid. 
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Figure 1.15 – Bubble size distributions for two different porous plates with 100 μm (a) and 40 µm 

(b) porous sizes (Kazakis et al., 2006).  

 

Impact of gas distributor on bubble size 

 

Chaumat et al. (2006) studied the impact of the sparger on the bubble columns 

hydrodynamics. The experiments were carried out in a 0.2 m diameter and 1.6 m height 

bubble column equipped with two annular spargers with 0.5 mm and 1 mm hole 

diameters, respectively.  

 

A  

B  

Figure 1.16 – Mean Sauter diameter radial profiles obtained at different elevations for: A) 0.5 mm 

diameter holes sparger; B) 1 mm diameter holes sparger (Chaumat et al., 2006). 

 



35 

 

 As can be seen in Figure 1.16, in the sparger zone (0.25m above the distributor), 

a larger mean Sauter diameter was measured for the sparger with the larger holes. This 

trend is visible for both superficial gas velocities. However, in the fully developed zone 

(h=0.6m) no difference was found in the mean Sauter diameter between the bubbles 

generated by both spargers. 

These results are supported by the results of Xue et al (2008), where a cross 

sparger with 2.5 mm holes (sparger 1) and two perforated plates with 0.5 mm (sparger 2) 

and 1.2 mm (sparger 3) diameter holes were used in a 2.30 m high and 0.16 m diameter 

column. Measurements were taken at 0.27 m from the sparger in the column center, with 

a superficial gas velocity of 30 cm/s. Figure 1.17 shows, similarly to the results of 

Chaumat et al. (2006), that the size of generated bubbles increases with the diameter of 

the gas injectors. 

 

Figure 1.17 – Mean bubble chord and standard deviation of the bubble chord distribution for three 

different spargers, at the center of the column with a vsg of 30 cm/s and at 0.27 m from the sparger 

(Xue et al., 2008). 

 

As a short synthesis concerning the bubble size in the bubble columns, following 

trends have been identified: 

 The gas sparger impacts the primary bubble distribution 

 The impact of the sparger disappears in the heterogeneous regime when going up 

in the column.  

 Gas density affects breakage and/or coalescence and leads to larger bubbles, but 

does not affect clearly the bubble formation. 
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 The role of the liquid viscosity is not clear but tends to enlarge the bubble size 

distribution at the gas injection. 

 The superficial gas velocity increases the bubble size. 

 

Bubble velocity 

 

 Similarly to what has been referred to the study of bubble size, the measurement 

of bubble velocity is also an active vector in research nowadays. Although it has been 

studied for years, information about bubble velocity in large bubble columns and at high 

void fraction is still scarce. Most of the existing work has been done in 2D columns or in 

small columns in the homogeneous regime.  

The absolute bubble velocity is an important parameter, necessary to calculate the relative 

velocity, which is a key point to understand the interaction between gas and liquid phases 

and the global hydrodynamics of the columns. 

 

Impact of superficial gas velocity on bubble velocity 

 

Xue et al. (2008 B) studied the bubble rising velocity using a four point optical 

probe in a 0.16 m diameter column. One characteristics of this technique is the ability to 

measure bubbles moving upward and downward (although with a selection of large sizes, 

thus a bias). As a consequence, the presented velocity values are mean values obtained 

by: 

 
𝑉𝑏 =

𝑉𝑏,𝑢𝑝 ×𝑁𝑢𝑝 + 𝑉𝑏,𝑑𝑜𝑤𝑛 ×𝑁𝑑𝑜𝑤𝑛

𝑁𝑢𝑝 + 𝑁𝑑𝑜𝑤𝑛
 (1. 8) 

where 𝑉𝑏 represents the bubble velocity and N the number of detected bubbles while the 

subscripts represents the bubbles moving upward and downward.  

 At very low vsg (≈ 2cm/s), the radial profiles of the bubble mean velocity were 

flat, as expected since such superficial velocities generally correspond to an homogeneous 

regime. The increase of vsg changed the flow regime and the velocity radial profile 

became parabolic as a result of liquid recirculation, as can be seen in Figure 1.18. As 

typical in the churn-turbulent regime, the bubbles have a negative mean velocity value in 

the wall zone due to the downward direction of the liquid velocity. The experiments 
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carried out by Xue (2004) go up to gas superficial velocities of 60 cm/s, however his 

measurement technique has been only validated in a 2D column at low εg (values 

unknown). 

 

 

Figure 1.18 – Bubble velocity radial profiles for several gas superficial velocities. Xue et al. (2008 B) 

 

 Chaumat et al. (2007 A) also studied the bubble velocity in a 0.2 m diameter 

column using a double tip optical probe for a water/nitrogen and cyclohexane/nitrogen 

system. The measuring method presented some limitations, as reported by the authors, 

especially at high superficial gas velocities. Namely the mean bubble velocity was 

dependent of the post-treatment calibration. The most probable velocity, that represents 

the maximum of the velocity distribution, was pointed as the more adequate variable to 

describe bubble velocities. Figure 1.19 shows the most probable velocity radial profiles 

for several superficial gas velocities. Contrarily to what have been seen in Figure 1.18, at 

low superficial gas velocities the profile is parabolic, indicating the presence of an 

heterogeneous flow. This parabolic shape is also found on the profiles at higher vsg. Since 

the above authors have reported different properties of the velocity distribution, it is not 

possible to compare the reported values.  
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Figure 1.19 - Effect of superficial gas velocity in bubbles velocity radial profiles. (Chaumat et al., 

2007 A) 

 

At 3.8 cm/s the velocity radial profile for hexane is flat, contrarily to the one 

obtained in water. This fact can be due to the reduction of coalescence in the medium, as 

shown in Figure 1.14. Hence, the flat shape of the bubble velocity profile is still present 

at higher vsg, which could indicate that the flow never reached the transition regime in the 

tested conditions (vsg up to 0.11m/s). 

 

Impact of pressure on bubble velocity 

 

The impact of pressure on bubbles velocity is also addressed in Xue et al (2008 

B), as can be seen in Figure 1.20. The results show that the bubble velocity slightly 

increases with the pressure level in the core of the column, and decreases in the wall 

region. As previously referred, an increase of the pressure leads to smaller bubble size 

and higher gas hold-up. These two parameters affect the bubble velocity along opposite 

ways. Smaller bubbles rise slower on the column than the larger ones. However, the liquid 

recirculation is enhanced by the void fraction (Fan and Cui, 2005). Since the bubble 

velocity is the sum of the bubble relative velocity and the liquid velocity, the effect of 

increasing the pressure depends on the radial position in the column. In the column core 

the liquid presents the highest rising velocity. However, the larger bubbles also rise in the 

column centre. When the pressure increases, the bubbles in the centre are smaller and 

have a smaller relative velocity, but the liquid velocity will also increase, leading to a 
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small increase in the bubble velocity. Closer to the column wall, the liquid exhibits its 

highest average downwards velocity and the bubbles are smaller. Hence, when the 

pressure level increases the bubbles are smaller, resulting in a lower relative velocity. 

Consequently, the bubbles are easier to be dragged down by the liquid.  

 

 

Figure 1.20 - Mean bubble velocity for a superficial gas velocity of 30cm/s in the center of the 

column at 80cm from the sparger (Xue et al., 2008 B) 

 

Impact of gas distributor on bubble velocity 

 

In the study of Xue et al. (2008B), three different spargers were used: a cross 

sparger with 2.5 mm holes and two perforated plates with 0. 5 mm diameter holes and 1.2 

mm diameter holes. As can be seen in Figure 1.21, the sparger configuration did not affect 

the bubble velocity PDF (measurement with a four point optical probe). However, as 

shown in the chapter 2.2.1, the gas distributor affects the bubble size. 
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Figure 1.21 - Sparger effect in bubble velocity distribution for a superficial gas velocity of 30cm/s in 

the center of the column at 80cm from the sparger. (Xue et al., 2008 B) 

 

Impact of liquid properties on bubble velocity 

 

In Figure 1.19 can be seen the impact of surface tension on bubble velocity done 

by Chaumat et al (2007 A). The results show that the decrease in surface tension did not 

affect considerably the velocity, although in cyclohexane the bubbles were smaller than 

the ones generated in the water, as shown Figure 1.14. Generally, smaller bubbles are 

associated with a lower velocity: this was not observed in this study. 

The absolute bubble velocity results from different parameters as the liquid velocity the 

bubble size, the properties of the system and so on. It is therefore difficult to analysis 

independently from the other parameters of interest. 

 

Liquid velocity 

 

The hydrodynamics of the liquid phase has a strong effect on mixing, heat and 

mass transfer and therefore plays an important role in the performance of a bubble 

column.Industrial bubble columns are often operated in a continuous mode for liquid and 

gas phases. However, the ratio of gas/liquid throughput is so high that it is possible to 

consider semi-batch operation conditions (batch operation for liquid and continuous for 
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gas). Studies performed in continuous and batch mode for the liquid phase can be found 

in the literature, although, in this study only the batch mode operated columns will be 

considered. 

The studies of the liquid hydrodynamics in bubble columns found in literature can 

be divided in two categories: 

- Studies of the liquid velocity field through the measuring of local 

instantaneous liquid velocities VL(r,z) . 

- Study of the recirculation dynamics that govern the macro mixing in the 

column, by the study of residence time distribution and diffusivity in the 

liquid phase. 

Since the objective of the present work is the study of local hydrodynamics, only 

the studies of liquid velocity field will be discussed. As previously referred, there is no 

liquid throughput to the column, so the liquid velocity in a bubble column is a result of 

the interfacial momentum transfer from the gas phase to the liquid phase. As a 

consequence, as it was already shown for the gas phase, it also depends on the column 

design, on physical-chemical properties and on the operation conditions. 

Flow organization 

 

Several studies (Forret et al., 2003 A, 2003 B, Menzel et al. 1990, Devanathan et 

al., 1990) show that the global organization of the liquid flow in the column can be 

defined as a core-annular flow. In the core of the column the liquid have an uprising 

direction with the gas phase, once at the top the degasing will occur and the flow path 

will change to the wall direction. In the near wall region the flow goes downwards to 

bottom on the column where, due to the momentum of the gas injection, the liquid will 

converge to the column centre closing the recirculation loop.  

Forret et al (2006) have measured liquid velocity profiles in 0.15 m, 0.4 m and 1 

m diameter bubble columns with a perforated plate with 2 mm diameter holes at several 

distances from the gas distributor for an air water system using a Pavlov tube, as shown 

in Figure 1.23. Similarly to void fraction profile, the radial profile of the mean liquid 

velocity is parabolic and axisymmetric with its maximum in the centre of the column. 

The point of the flow direction inversion is reported by different authors to be around the 

dimensionless radial position x/R=0.7. That indicates that, in average, the upflow region 

occupies 70% of the column radius, also equal to 50% of the column cross-section. Forret 
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et al. (2006) have also reported that when the radial profile of the axial liquid velocity 

(𝑉𝑙(𝑥)) is normalized by the axial liquid velocity in the column center (𝑉𝑙(0)) , the same 

profile is obtain regardless of liquid properties or column design, as can be seen in Figure 

1.25 B. Furthermore, this normalized axial liquid velocity 𝑉𝑙(𝑥)/𝑉𝑙(0) is only function 

of the velocity on the axis 𝑉𝑙(0) and its radial distribution can be approximated by the 

correlation of Schweitzer et al. (2001): 

 
𝑉𝑙(𝑥) =

𝑉𝑙(0)

𝑎 − 𝑐
[𝑎𝑒(−𝑏𝑥

2) − 𝑐] (1. 9) 

Where a=2.976, b=0.943 and c=1.848. However, this correlation is only valid in the fully 

heterogeneous regime and in column diameters up to 1 m. 

Degaleesan et al. (2001) also measured liquid velocity in a 0.44 m diameter 

column using a computer-automated radioactive-particle tracking (CARPT) method.  

 

 

Figure 1.22 – Liquid velocity radial profile in a 0.4 m diameter column at superficial gas velocity of 

9 cm/s. 

 

 Figure 1.22 shows that liquid velocity radial profiles obtained by Degaleesan et 

al. (2001) and Forret et al. (2006) have a good agreement with the empirical correlation 

of Schweitzer et al. (2001). 
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Gas distributor effect 

 

Degaleesan et al. (2001) have studied the impact of the gas injection on the liquid 

flow, using a computer-automated radioactive-particle tracking (CARPT) technique with 

an air-water system in 0.14 m and 0.44 m diameter columns. In the 0.14 m column, the 

gas injection was made using a perforated plate with 0.4 mm diameter holes, arranged in 

3 concentric circles achieving a 0.05% of porosity. In the 0.44 m diameter column, the 

gas injection was also made through a perforated plate but in this case with 0.7 mm 

diameter holes arranged in 14 concentric circles achieving a porosity of 0.077%. In this 

work it is reported that in a 14 cm diameter column there was no impact of the gas 

injection in the liquid velocity field at an elevation of 50 cm (H/D =3.57) from the gas 

distributor. A similar result is reported for the 0.44 m diameter column where the injection 

effect was detected up to 1.32 m (H/D =3) from the injection. This may show that the 

“height of gas effect” is perhaps not scalable with the column diameter.  

This subject was also address in the work of Forret et al. (2006), the perturbation 

made by the gas distributor was measured through the axial evolution of the liquid 

velocity. Figure 1.23 shows that there are two different zones in the column, as similarly 

reported by Degaleesan et al. (2001). However, Forret et al. have found that the zone of 

flow acceleration is only detecTable 1. up to h/D=1, where lower velocities have been 

measured. Above h/D≈1, the liquid velocity was no longer evolving with the height, as 

can be seen in Figure 1.23. This discrepancy can also be related to the fact that Degaleesan 

et al. (2001) used the radial and azimuthal components of the liquid velocity to verify the 

evolution of the flow regime and Forret et al. (2006) have only analysed the axial 

component of the flow velocity. 
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Figure 1.23 – Axial and radial liquid velocities profiles in a 1 m diameter bubble column (Forret, 

2006) 

 

Impact of liquid properties on liquid velocity 

 

 The impact of viscosity on the liquid velocity was studied by Krishna et al (2001) 

using a Pavlov tube method in a 0.38 m diameter column. Figure 1.24 presents the radial 

profiles of the axial liquid velocity obtained for water and Tellus oil (viscosity 75 times 

higher than water). The results show that liquid viscosity has no effect on the axial liquid 

velocity, since the profiles are overlapping over the column radius. 

 

 

Figure 1.24  - Radial profile of liquid velocity for water and Tellus oil. (Krishna, 2001) 
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Impact of column geometry on liquid velocity 

 

In literature, an increase in the column diameter is commonly associated to an 

increase of the liquid recirculation. Krishna et al (2001) measured a center-line liquid 

velocity more than doubled in a column with a diameter of 0.63 m than in 0.18 m 

diameter’s column filled with water.  

Forret et al. (2006) measured the center-line liquid velocity in several columns 

sizes (up to 1 m) in a wide range of vsg. The increase of liquid velocity with vsg was 

observed in all tested conditions (Figure 1.25 A).  

 

A B 

  

Figure 1.25 – A) Centre-line mean liquid axial velocity for several bubble column sizes. B) 

Normalized mean liquid velocity profiles for several bubble column sizes (Forret, 2006) 

 

 Miyauchi and Shyu (1970) proposed a correlation to predict the liquid velocity in 

the center of the column (𝑉𝑙(0)) as a function of the vsg and the column diameter (D): 

 𝑉𝑙(0) = 2.47 × 𝑣𝑠𝑔0.5 × 𝐷0.28 (1. 10)  

This correlation was validated by Forret et al. (2006) in columns ranging from 0.15 m up 

to 1 m diameter and in superficial gas velocities up to 30 cm/s. 
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Liquid velocity fluctuations 

 

The information on liquid velocity fluctuations in the churn-turbulent regime is 

very scarce. Figure 1.26 presents the radial profile of liquid velocity fluctuations in a 1m 

diameter column, from Forret et al. (2006). These data were obtained with a Pavlov tube 

with a resolution frequency of 50 Hz for a superficial gas velocity of 15 cm/s.  

 

 

Figure 1.26 – Radial profiles of axial velocity fluctuations in the liquid for a 1 m diameter column 

with and without internals. 

 

 The results show that the axial liquid velocity fluctuation (u’) profile is roughly 

parabolic and have the highest fluctuations in the zone of the mean flow inversion 

(namely x=0.7, as can be seen in Figure 1.25 B). Degaleesan et al. (2001) have measured 

the liquid turbulence intensity with a CARPT method in the axial direction (u’²) and in 

the radial direction (v’²) at superficial gas velocity of 10 cm/s in a 0.44 m diameter 

column, as can be seen in Figure 1.27. 
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A B 

 
 

Figure 1.27 – Radial profile of liquid turbulence intensity in the: A) axial direction; B) radial 

direction.  

 

The u’² measurements of Degaleesan et al. show a flat profile along the column 

axis, contrarily to the parabolic profile of Forret et al. (2006). The v’² is reported to be 

constant from the column wall up to x/R=0.3. Further from this point there is a strong 

reduction in the turbulence intensity, which is in agreement with the assumption that in 

the column core the liquid is raising in the upward direction. 

 

Reynolds stress 

 

Menzel et al. (1990) have measured the Reynolds stress in a 0.6 m diameter bubble 

column using a hot film anemometry probe at superficial gas velocities up to 10 cm/s. 

Devanathan et al. (1990) have also measured the Reynolds stress in a 0.3 m diameter 

column using a CARPT method up to 10 cm/s. Finally, Degaleesan et al. (2001) have also 

reported the Reynolds stress in a 0.4 m diameter with a CARPT method. All the results 

are shown in the Figure 1.28. 
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Figure 1.28 – Radial profiles of the Reynolds stress u’v’ at superficial gas velocity of 10 cm/s 

Menzel et al. (1990) D=0.6m, Devanathan et al. (1990) D=0.3m; Degaleesan et al. (2001) D=0.4m. 

 

The results show that despite the measurements have been made with different 

methods and different column diameters, they all have the same shape. Hence, the 

amplitude of the peak of the Reynolds shear is increasing with the column diameter, for 

a given superficial gas velocity. As previously stated, the liquid velocity profiles become 

steeper with the increase in the column diameter. As a consequence the velocity gradient 

and the turbulence increases also, which is in agreement with the results presented in 

Figure 1.28. Menzel et al. (1990) reported the Reynolds stress in all column diameters, 

and results show that the profile is asymmetric. This could be related to the large scale 

eddies rotating in opposite directions. Since the liquid rises in the core of the column and 

descends near the wall, the large eddies from each side of the column should be rotating 

in opposite directions.  

 

The analysis of liquid phase velocity profiles raises different remarks and questions. 

As for the gas holdup analysis, the transition between regimes is still not clear. The role 

of bubble coalescence is still under debate. Otherwise, the effect of scale-up on liquid 

average liquid velocity profiles has been characterized, but involved mechanisms are not 

really clear. The effect of turbulence is not yet well understood, and as existing data have 

been acquired without characterization of bubble diameter, is it not possible to 

discriminate clearly the effect of coalescence and turbulence on the regime transition and 

the flow structure. 
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1.2 Measurement techniques 

 

The study of local properties in a bubble column requires the characterization of 

continuous phase (liquid) and dispersed phase (gas). The experimental work will be 

conducted in different columns with different sizes (from 0.15 m to 3 m of diameter) and 

in a large interval of vsg. The final choice of measurement technology should take into 

account the ability to measure the local hydrodynamics in all desired range but also if it 

is possible to apply the technology at every scale. 

 

Hold up 

Global gas hold up 

 

The global gas hold up can be directly calculated by the visual observation of the 

expansion of liquid height by: 

 
𝜀�̅� = 1 −

𝐻0
𝐻𝐷

 (1. 11) 

Where 𝜀�̅� represents the global void fraction, 𝐻0 represents the non-aerated liquid height 

and 𝐻𝐷 the aerated liquid height. This is a very simple method but it is not very accurate 

and only gives a mean value of global gas hold up (Forret, 2006). 

 The global hold up can also be measured by pressure drop across a layer of aerated 

liquid. The mean gas hold-up is measured by the variation of the static pressure and 

assuming that axial variation of the gas hold up has a small dependency of acceleration 

and friction phenomena and there is no pressure gradient on the column radius (De Swart, 

1996; Chilekar, 2005). In this case the global gas hold up can be calculated by: 

 

𝜀�̅� =
(
∆𝑃
∆ℎ
)

𝑔(𝜌𝑙 − 𝜌𝑔)
 (1. 12) 

Where ∆𝑃 represents the differential pressure, ∆ℎ represents the difference of heights 

where the pressure probes are placed, 𝑔 represents the gravitational acceleration, 𝜌𝑙 

represents the liquid phase density and 𝜌𝑔 the gas phase density. 
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Local gas hold up 

ERT 

 

 Electrical resistance tomography (ERT) is a technology able to measure the local 

gas hold up. This technique is a non-intrusive method that consists in measuring the 

electrical resistance distribution in a section of the column. Electrodes placed in the 

column walls, as shown in Figure 1.29 A, are connected to a tomograph that converts the 

electrical signal into a gas hold up cross-section profile (Jin, 2007, Fransolet, 2001; Toye, 

2005).  

 

A B 

 
 

Figure 1.29 – A) A schematic representation of ERT system. B) A hold up cross-section profile 

measured by ERT. (Fransolet, 2001) 

 

Time and spatial resolution are still not enough to measure local void fraction in 

churn turbulent regime. Moreover, since the electrodes should have a tenth of diameter 

of the column it is very difficult to apply it in big scales (Toye, 2005). 
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X-ray tomography/γ-ray tomography 

 

 The gas hold-up in a bubble column can also be measured by X-ray tomography, 

as can be seen in Figure 1.30 A (Hubers et al. 2005). Through the attenuation caused by 

the transmission of the X-ray or γ-ray in a heterogeneous medium is possible to compute 

the mass density distribution on the beam path. If the measure of these distributions is 

performed at different angles in the same plan, an image reconstruction procedure can 

provide a spatial density distribution of phases in a high spatial resolution (Chaouki, 

1997). As shown in Figure 1.30 B, the measuring system is composed by a radioactive 

source outside of the column and a set of collimated sensors on the opposite side of the 

column. Hence, in order to obtain a completed image of the cross-section the complete 

system rotates around the column (Chaouki, 1997). Hubers et al (2005) have applied this 

method in a 30 cm diameter column at superficial gas velocities up to 18 cm/s. 

 

A B 

 

 

Figure 1.30 – A) A schematic representation of X-ray tomography system. B) Hold up cross-section 

profiles measured by of X-ray tomography (Hubers, 2005) 
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Resistivity probe 

 

 Another suiTable 1. technology to measure the local gas hold up is the resistivity 

probe, an intrusive technique, where at least one wire in placed inside the column. The 

electrical resistivity of the fluid present in the tip of wire is measured and registered as 

shown in Figure 1.31 A.  

 

A 

 

B 

 

Figure 1.31 – A) A scheme of resistivity probe installation in a bubble column. B) A schematic 

representation of the signal treatment (Lo, 2003) 
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A post treatment based on a threshold convert the probe signal into a phase 

detection function, as shown in Figure 1.31 B. Adding the time that the probe detected 

the gas phase, the hold up can be determined by the following equation. 

 
𝜀𝑔 =

𝐺𝑎𝑠 𝑡𝑖𝑚𝑒

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
 (1. 13)  

However this technique can only be applied in conductive flows which excludes 

the organic flows. An optical probe achieves a much higher signal-to-noise ratio than a 

resistivity probe (Xue, 2008)  

 

Optical probes 

Very common and intrusive methods to measure local gas hold up are the optical 

probes. In literature, there can be found light transmission optical probes (Kuncova, 1993) 

and light reflective optical probes (De Swart, 1996; Cartellier, 1990; Guet, 2003). 

In a light transmission probe, a light beam is sent through the liquid phase to a 

detector. If there is a bubble in the light path, the beam will be deflected and not detected, 

indicating to the probe is the presence of a bubble. 

In a light reflective probe, the beam is generated by a laser or led and is sent 

through glass fiber to the point of the probe. If the probe is in contact with the liquid 

phase, the light beam is refracted through the liquid media. Otherwise, if the probe tip is 

in contact with the gas phase, the light beam is reflected by the bubble into the probe tip 

and then detected by a photodiode where the light beam intensity is converted into 

voltage. 

The reflective probes have been more often used due to its smaller size and higher 

accuracy and capacity to be used in non-conductive media (e.g. organic liquids) (J. Xue, 

2004). The post treatment of the signal used to measure the local gas hold up is usually 

alike the one already presented for the resistivity probe.  
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Bubble velocities 

Optical probes 

 

Different configurations of reflective optical probes can be found according to the 

number of fibers. The most common type is the bi-probe where two fibers are set apart at 

a small elevation distance 𝑙12 (normally 1 or 2 mm) (Colombet, 2012) in the macroscopic 

flow direction, as can be seen in Figure 1.32. 

 

 

Figure 1.32 – A double optical probe (Chaumat, 2005) 

 

The raw signal of an optical probe is the detected voltage as a function of time. A post 

treatment based on a threshold, that will mark the transition from one phase to the other, 

can convert the probe signal into a phase detection function. In the case of a bi-probe, 

there will be two independent signals. The velocity’s calculation is done by association 

of both signals. In the case of a single bubble rising on the axis of the probe, the bubble 

will be pierced two times. First by the probe tip 1 and later by the probe tip 2, therefore, 

generating a pulse on each signal that will be delayed in time. This time delay (𝑡12)  

represents the time taken by the bubble interface to travel from tip 1 to tip 2. Once this 

time is determined, the bubble velocity (𝑣𝑏) can be found by Revankar and Ishi (1992): 
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 𝑣𝑏 =
𝑙12
𝑡12

 (1. 14) 

 Once the velocity has been measured, the pierced chord can be found by the 

multiplication of the bubble velocity with its own gas time. The described post-treatment 

is based on the assumption that the bubble rising velocity is strictly vertical and only one 

bubble shape is present in the flow (spheres or ellipsoids). The pure ascending flow can 

be a very restricting condition as reported by Xue et al. (2003) that stated that even in a 

2D bubble column only 1% of the bubbles have a pure ascending rising direction. 

Signals association is a crucial step to the determination of a bubble velocity. So 

even in a bubbly flow with only vertical movement it is necessary to assure that the signals 

associated are generated by the same bubble. Meaning that a time window should be 

defined in way to ensure that the second pulse is sufficiently distant in time from the first 

pulse, to be sure that the bubble has reached the second tip. Moreover, this window should 

be sufficiently narrow to rule out the detection of a second bubble. These conditions 

should become even more difficult to define at higher void fractions. This process can 

limit the range of bubble velocity detected by the probe, as reported by Chaumat et al. 

(2005). 

In a bubble column operated in heterogeneous regime, bubbles will have a chaotic 

movement and they are expected to present a significant transversal velocity. In this case, 

if a bubble approaches the probe in a certain angle relatively to the probe axis, the 

measured 𝑡12 will not be physically linked to the bubble axial velocity. However, it will 

be interpreted as a measurement of the axial bubble velocity, leading to an overestimation 

of the mean bubble velocity. Xue et al. (2003) have calculated that for an ellipsoid bubble 

this overestimation can grow from 50% for an angle of 30° up to 300% for a bubble with 

an angle of 60°.  

These phenomena have been experimentally verified by Chaumat et al. (2005), 

through the comparison of bubble velocity measurements obtained by an optical bi-probe 

and a visualization technique. The experiments were conducted in a 0.25m x 0.25m 

square tank filled with water. Nitrogen was used as a gas phase and was injected in the 

bottom by two 1 mm diameter nozzles. The experiments were carried out in moderate 

conditions with a bubble frequency ranging from 4.6 up to 9.9 bubbles/s. In a bubble 

column at superficial gas velocity of 35 cm/s, the bubble frequency is above 100 

bubbles/s. Even at these conditions the bi-probe has always measured higher mean bubble 
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velocity than the velocity measured by the flow observation, reaching a deviation of 32% 

for the higher bubble frequency.  

An optimization of the time window, where the second pulse is searched, has been 

proposed by Kamp (1996) and has been successfully used by Chaumat et al. (2005) to 

minimize the deviation between the mean bubble velocities. However, this procedure is 

done by comparing two bubble velocity distributions coming from different sources. 

Meaning that it cannot be performed a priori and requires a second method to measure 

the bubble velocity. Moreover, this time window is characteristic of the flow, so it should 

be necessary to repeat it for each flow condition in order to prevent the increase of the 

detection of a second pulse originated by a second bubble. Consequently, the chord 

estimation by a bi-probe cannot be realistic because it is based on the velocity 

measurement. Chaumat et al. (2005) showed that for a cyclohexane/nitrogen system, 15% 

of the detected chords were bigger than the biggest diameter detected by image analysis. 

In the case of a bubble in a horizontal position (as is assumed in the signal treatment) the 

bigger vertical chord that can be detected is the bubble vertical diameter, despite the 

bubble shape. This deviation can be originated either by a bubble that slowed down during 

the piercing or a piercing done in a non-vertical direction.  

A different probe configuration with four fibers has been developed by Saito and 

Mudde (2001), Guet et al. (2003) and Xue et al. (2003). Like a bi-probe, this probe 

configuration consists in the aggregation of four independent optical probes, as can be 

seen in Figure 1.33. The main probe has a central and lower position and the other three 

probes are placed in a triangular shape. 

The void fraction is measured, likely on a bi-probe, using the signal coming from 

the main tip. However, to measure the bubble velocity, four different bubble pulses must 

be associated. If the bubble is rising aligned with the center of the probe and in a pure 

ascending movement, the main probe signal will have the first pulse. Then, in function 

on the bubble shape, orientation and movement direction, the other three probes will later 

detect the bubble. However, if the bubble is rising with a considerable offset from the 

probe axis, this time delay for the detection of the bubble by one of the secondary probes 

can be significantly different. Similarly to what have been described to the bi-probe, it is 

necessary to add a criteria limiting the accepTable 1. time window, where all the four 

bubble pulses must be, in order to the bubble velocity to be taken into account (Guet et al 

2003). Guet et al. (2003) have found a good agreement between the imposed flow and the 

measured flow by limit this time window to ±25% of the mean time delay. However, 
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these experiments have been conducted in an air-lift mock-up with a 7.2 cm diameter 

column, operated in a gas superficial velocity up to 4 cm/s with a gas injection being done 

through a porous plate. Meaning that, despite the high void fraction achieved (28%), the 

flow would be homogeneous and follow mostly unidirectional path likewise, contrarily 

to the turbulent flow typical from a bubble column operated in industrial relevant 

conditions.  

 

Figure 1.33 – A scheme of a four point optical fiber probe (Guet, 2003) 

 

A signal process algorithm for a four-point optical probe has been proposed by 

Xue et al. (2003) based in the association of bubble pulses in the different probe tips. The 

authors affirm that the bubble ascending velocity (vb) can only be known when the bubble 

velocity vector is aligned with the probe axis. When it is not, the probe can only detect 

the vertical component of the velocity (v’) that is a function of the angle () between the 

bubble velocity vector and the probe normal vector. 

Xue et al. (2003) assumed that the angle 𝜃 would have the maximal value of 30° which 

implies a maximal velocity measurement error of 13%. However, this assumption was 

based on the results of Lim and Agarwal (1992) in a 2D fluidized bed flow and on the 

results of Kataoka et al. (1986) obtained in 6 cm diameter bubble column operated in the 

bubbly flow regime and the slug flow regime. Contrarily, in a large bubble column 

operated in the heterogeneous regime, bigger bubble angles can be detected, as will be 

later presented in this work. 

Xue et al. (2008A) tested the performance of the previous referred algorithm in 

different conditions such as single bubble experiment, 2D bubble column and Taylor flow 

in a 5.5 cm diameter column. The validation was performed through a comparison of 

results coming from the optical probe and from a visualization technique. The single-

bubble experiments showed that the piercing of the bubble by the probe tip caused no 
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deceleration. This is an important observation because, if the bubble decelerates when it 

is being pierced, a systematic error will be added to the velocity measurements. However, 

this effect has only been verified for the case where the velocity vectors of bubbles are 

aligned with the probe axis. Nevertheless, in the presence of a substantial angle between 

the bubble velocity vector and the probe axis the chances of occurrence of this 

phenomenon increase. 

Xue et al. (2008B) performed experiments in a 16 cm diameter bubble column 

using a four-point optical probe with a tap water/air system for superficial gas velocities 

up to 60 cm/s. A detailed characterization of detected bubble chords and velocity has been 

made through radial profiles obtained at different elevations of the column. However, the 

performance of the algorithm has only been verified in a 2D bubble column for low void 

fraction (Xue et al. 2008A). In the 3D bubble column at a gas superficial velocity of 60 

cm/s, high gradients of bubble and liquid velocity from the core of the column to the wall 

region are expected, leading to a chaotic movement of bubbles. Moreover, the bubble will 

be more deformed and will arrive at the probe with significant angles, meaning that 

further validation is needed. 

 

A B 

 

 

Figure 1.34 – The 1C mono-fiber optic probe: A)The shape of tip; B) 1C typical bubble signal 

(Cartellier, 1998)  

 

Cartellier (1998) has developed a mono-fiber conical optical probe that is able to 

measure void fraction, bubble velocity and consequently the pierced chord due to its 

shaped point. The point of the probe is produced by an etching technique and several 

probe tips have been tested. The chosen probe for this work has a 30 μm length cone in 

the tip (1C probe), as can be seen in Figure 1.34 A. Due to its shape, the probe signal has 

a curvature in the rise of the pulse when a bubble interface perambulates through the 

probe tip. Once the bubble is pierced, as shown in Figure 1.34 B, the signal starts to 
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increase. Using a low threshold, corresponding to the signal level when the probe tip is 

wet, the time of bubble arrival (ta) to the probe tip is detected. Using a high threshold that 

corresponds to the signal level when the probe is dry, the time when the bubble surface 

reach the top of the cone (tm) is detected. Knowing the length of the sensible tip (ls), the 

bubble velocity (vb) can then be calculated by: 

 𝑣𝑏 =
(𝑡𝑚 − 𝑡𝑎)

𝑙𝑠
 (1. 15) 

When the probe tip pierces out the bubble, the signal falls back to the liquid level 

and, using again the low threshold, the total time passed by the probe inside the bubble 

(tg) can be detected. The pierced chord can then be calculated by the product of the bubble 

velocity vb and the gas time tg. (Cartellier and Barrau, 1998) The best feature of a conical 

mono-fiber optical probe is that only one detection is needed to obtain the time of gas, 

bubble velocity and the pierced chord. Since there is no pulse association, the error 

coming from multi-bubble detection in high void fractions flows does not exist. 

Single bubble-probe interactions have been carried out by Barrau et al. (1999) by 

comparing the probe results with an imaging technique. The authors report a 10% error 

in the detected chord, for ellipsoidal bubble with a 2 mm horizontal diameter and 1.4 mm 

vertical diameter, when the bubble is pierced along its axis of symmetry. However, the 

authors alert for the fact that these values have been obtained for stagnant liquid 

conditions and larger errors should be found in two-phase flows with three dimensional 

and unsteady structures. The principal sources of error in mono-optical probes have 

already been identified by Cartellier et al (1999) and are explained by three different 

mechanisms: 

1. The blinding effect: the probe only detects the deformed surface of the bubble. In 

this case the detected chord will be smaller than the real on, as shown in Figure 

1.35 A. 

2. The drifting effect: the trajectory of the bubble is altered leading to a smaller 

detected chord or no chord detected, as shown in Figure 1.35 B. 

3. The crawling effect: the bubble is decelerated and/or deformed during the probe-

bubble interaction as shown in Figure 1.35 C. 

 



60 

 

 

 

 

 

Figure 1.35 – Illustration of three phenomenon leading to error in mono-optical probe measures. 

A)the blinding effect b)the drifting effect c) the crawling effect (Vejrazk, 2010)  

 

Vejrazka et al. (2010) have studied these mechanisms contributing for errors on 

optical probes measurements and therefore their impact on the probe performance. Errors 

on the measurements were reported in function of a modified Webber number (M), which 

is the ratio of the bubble momentum to the impulsion of the surface-tension from the 

probe, and characterizes the ability of the bubble to overcome the surface tension from 

the probe. It is reported that in case of an M number higher than 50, the void fraction and 

maximal chord measurement error should be less than 10%, and in the experiments 

carried out in our study the M number has been always greater than 100. Similarly to what 

have already be stated for other studies, one should mind that these values have been 

obtained for single bubble-probe interactions and in the absence of turbulent flows.  
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 A second probe tip has been developed that is formed by cone + cylinder + a cone 

(3C probe). The signal generated by this probe has, in addition to curvature coming from 

the cones, an intermediate level due to the cylinder, as shown in Figure 1.36 B. In this 

case, the velocity will be calculated dividing the length of the cylinder by the period of 

time that the signal remains at the intermediate level (marked by the red lines in Figure 

1.36 B). 

 

A B 

 

 

Figure 1.36 – The 3C mono-fiber optic probe: A) Shape of the probe tip. B) 3C typical bubble signal 

(Cartellier, 1998)  

 

Another mono-fiber optical probe have been developed by Mizushima and Saito 

(2012).This probe have the particularity of having edge tip with 35° angle, as shown in 

Figure 1.37, which according with the authors generated a pre-signal when the bubble is 

pierced in the center which allows the differentiation between bubble chords and diameter 

(Mizushima et al., 2013). Apart from that, the signal post-treatment is identical to the one 

previously described for the 1C mono-fiber optical probe. 

 

A B 

 
 

Figure 1.37 – The S-TOP mono-fiber optic probe: A) Shape of the probe tip. B) Typical bubble 

signal (Mizushima et al. 2013) 
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Acoustics probes 

 

Al Mashry et al. developed a technique that is based in the measuring of pressure 

pulsation caused by bubbles passing nearby the sensor. A methodology has been applied 

to measure bubbles velocities using the autocorrelation function. However this technique 

has been applied only until 12% of void fraction and in with a superficial gas velocity of 

4 cm/s. It will be very challenging to apply this technique in the turbulent conditions 

desired in this work. 

Bubble size 

Imaging 

 

Imaging was one of the first methods employed to measure bubble size. Usually 

a photographic camera (Wilkinson et al. 1994, Lage and Esposito 1999) or a high speed 

camera (Colombet 2012, Kazakis et al. 2006, Ferreira et al.2012) is used to take images 

of the flow from the outside of the column and a strong light source is placed on the 

opposite side. This technique requires a transparent wall column and can only be 

employed in 2D bubble columns or close to wall regions of a 3D bubble column, since it 

is dependent of light’s penetration in the flow. With the increase of the gas flow rate, the 

bubble velocity will increase, meaning a faster image capture will be necessary and 

consequently, a higher light intensity. Hence, with the increase of the flow rate, the void 

fraction will also increase and as a result the obstruction to the light path will also grow. 

The same problem can be expected when the column diameter is increased.  

In order to avoid the light obstruction problem, a solution has been found by 

performing an in situ image technique through an endoscope (Maas et al., 2011). 

Contrarily to the previously presented imaging methodologies the endoscope is an 

intrusive technique. The endoscope works like a very thin and long lens than can be 

inserted in the column allowing to take images close to the flow point of interest. The 

high speed video camera stays in the outside of the column reducing the flow 

perturbations. In some cases, endoscopes are equipped with optical fiber that can conduct 

a light beam from an exterior source to the measurement point. Moreover, since these are 

local measurements it is possible to analyze the radial evolution of bubble size. The 

velocity measurement can also be possible by particle tracking in an Eulerian frame.  
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Optical probes 

 

 The optical probes are also able to measure bubble sizes through measurement of 

bubble chords39. As previously mentioned, the optical probes measure two properties: 

bubble velocity 𝑉𝑏 and the time of detection of each bubble 𝑡𝑔. So it is possible to compute 

the bubble pierced chord (𝑙) by the following equation. 

 𝑙 = 𝑉𝑏 × 𝑡𝑔 (1. 16) 

 This bubble chord represents the path traversed by the probe inside the bubble. So 

for one bubble size, there will be a distribution of bubble chords. This distribution will 

change not only with bubble diameter but also with the shape of the bubble and its 

trajectory. 

In literature, different approaches are proposed to transform the chord distribution 

in to a diameter information. Cartellier et al (1999) developed an analytical procedure to 

reconstruct the distribution of bubble sizes from the detected chord distribution, assuming 

a spherical shape and ascendant flow path. This procedure is divided in two different 

cases, the one where there is no chord-velocity correlation and another one if there is.  

 If no chord-velocity correlation have been detected in the measurements the 

detected chord distribution can be directly used for the reconstruction of the bubble 

diameters distribution. The procedure is based on the fact that, in the chord distribution 

generated by a single spherical bubble, the larger chord corresponds to the bubble 

diameter. Therefore, in the bubble chord distribution issued from an optical probe 

measurement in a polydispersed bubble population, the larger detected chord is the 

diameter of the larger bubble. Moreover, the frequency of detection this chord indicates 

the number of bubbles with this size that have been detected. So the typical chord 

distribution of a spherical bubble with this size can be calculated and multiplied by the 

number of this class of bubbles present in the flow. At this point, the contribution of this 

bubble class to the chord distribution have been computed and then can be subtracted 

from the original chord distribution. Consequently, the larger bubble chord on the 

remainder chord distribution correspond to the second largest bubble class. So the 

procedure can be repeated, until the all the bubble chord distribution have been 

deconstructed. 
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 Otherwise if there is a chord-velocity correlation, the chord distribution need to 

be divided in several different distributions, corresponding to each class of bubble 

velocity. The procedure to reconstruct the detected diameter distribution remains the 

same, so at the end it will be a diameter distribution by each bubble velocity class. 

 However, such interpretation for ellipsoidal bubbles is quite more challenging, 

especially in the presence of important angles of attack. Moreover, even in the case of 

spherical bubbles this method requires a very detailed and converged bubble chord 

distribution. 

 Clark and Turton (1988) have proposed a numerical backward transform to find 

the bubble diameter distribution from the detected chord distribution for several bubble 

shapes, in a homogenous flow.  

 Liu et al. (1995) deduced the quantitative relationships of the mean and the 

standard deviation values for bubble chords and diameters for ellipsoidal bubbles. The 

bubble diameter distribution can be calculated by adjusting the gamma probability 

distribution to the detected chord distribution. 

 

Disengagement gas technique 

 

The dynamic gas disengagement technique is method to study bubble groups. The 

principle involves tracing the pressure drop in the column after the gas flow has been shut 

off. The resulting disengagement profile can be used to separate the contributions of the 

small bubbles and large bubbles to the total gas hold up (Kantarci, 2005; Fransolet, 2005). 

This technique can only show how many size classes of bubbles are present in the flow 

and their contribution to the flow. 

 

Chemical method 

 

The chemical method has been used in early studies to determine the interfacial area in 

bubble columns using reactions as the sulphite oxidation, hydrazine oxidation, glucose 

oxidation and hydrogen peroxide degradation (Pinelli et al., 2010). Usually the reaction 

involves a chemical species present in the liquid phase that will react with the oxygen 

coming from the gas phase. Assuming that the reaction happens fast enough it is possible 



65 

 

to affirm that the reaction rate is controlled by the mass transfer (Shultz and Elmer 1956, 

Akita and Yoshida 1974). Hence, if the oxygen concentration is known on the air inlet, 

air outlet and in the liquid, it is possible to calculate interfacial area and the mean Sauter 

diameter (Popovic and Robinson, 1987).  

This method requires very controlled conditions in order to assure that the mass transfer 

coefficient and the reaction rate are constant and within the assumed range, which can be 

very difficult to achieve in large bubble columns. Moreover, through this method only a 

global mean Sauter diameter can be calculated.  

 

Liquid velocities 

 

 In this chapter will be presented some of the available technologies to measure 

liquid velocity in a bubble column. However, as previously referred, the chosen 

technology should be able to be used in a large range of columns and in a wide vsg range. 

 

LDV, LDA 

 

 The laser Doppler velocimetry (LDV) or laser Doppler anemometry (LDA) is 

used to measured local mean and fluctuation velocity of the liquid phase in biphasic 

systems (Toye, 2005; Mudde, 1997). This technology is based on the Doppler effect that 

states that one particle in movement lighted by a light bean diffuse a different beam with 

a shifted frequency. The diffused frequency is linked with the frequency of the used light 

beam and the particle velocity. 

 Particles with a sufficient small size to follow all liquid flow dynamics are placed 

inside the column. These particles are lighted with a laser and the diffused radiation is 

measured. This technique can measure all desired components of the velocity; but for 

each velocity component, a different laser beam is needed. Fransolet et al (2005) were 

able to apply this technology in flows with void fractions up to 30%. However, a 2D 

column has been used. Since optical access is mandatory, this technology could be 

difficult to apply in large columns.  
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PIV 

 

Another available technique called particle image velocimetry (PIV) is also 

described in the literature (Liu, 2005; Lindken, 2002). For PIV method is also necessary 

to use small particles to follow the flow dynamics. The used particles are fluorescents and 

they are excited by a laser beam and then followed with a CCD camera. As LDA, this 

technology depends on the optical access to the flow, which restricts the range of gas hold 

up where it can be applied up to 5% (Lindken, 2002). 

 

Pavlov tube 

 

Forret26 has measured mean and fluctuation liquid velocity in large scale bubble 

columns (up to 3m) and with void fraction up to 25% using a Pavlov tube, with reported 

errors in the scale of 10%. The Pavlov tube is a cylindrical tube, in which two opposite 

0.5 mm holes, as shown in Figure 1.38. Each one of this holes is in a different section of 

the tube, and both sections are connected to a single differential pressure sensor. The path 

between the pressure sensor and the holes is filled with water, in order to assure the 

transmission of the pressure fluctuations from the flow to the pressure sensor. So the 

Pavlov tube is used to measure instantaneous differential pressure ∆𝑃 and consequently 

the instant liquid velocity 𝑉𝐿 is calculated by following equation. 

 

 (1. 17) 
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Figure 1.38 – Schematic representation of a Pavlov tube (Forret, 2006) 

 

Contrarily other liquid velocity measurement techniques, the Pavlov tube is well 

adapted to high void fraction flows and large bubble columns. However, have a limited 

time resolution; as will be detailed in section 3. 

CARPT 

 

The computer-automated radioactive particle tracking (CARPT) is a non-invasive 

measurement method which consists in the tracking of a radioactive particle that is 

moving with the continuous phase in the flow. This particle, that is neutrally buoyant, is 

tracked recurring to the intensity measurement of the radiation emitted by the particle. 

The raw information of this method is the position of the particle in function of time, 

which enables a Lagrangian tracking of the particle. Using the particle position is possible 

to compute the particle velocity and velocity fluctuations from which several turbulence 

proprieties can be computed (i.e. turbulence intensity, Reynolds shear tensor, etc…) 

(Devanathan 1990, Y. Pan 2001, Degaleesan 2001). 

This method have been applied to columns with diameters up to 44 cm and in gas 

superficial velocities up to 12 cm/s. However, this method was not retained for the present 

work because it will be very challenging to adapt this technique to a 1 m and 3 m diameter 

bubble columns. 

 

Hot wire / hot film anemometer 

The Hot-Wire Anemometer measures a fluid velocity by noting the heat convected 

away by the fluid. The core of the anemometer is an exposed hot wire either heated up by 

a constant current or maintained at a constant temperature. In either case, the heat lost to 

fluid convection is a function of the fluid velocity. By measuring the change in wire 

temperature under constant current or the current required to maintain a constant wire 

temperature, the heat lost can be obtained. The heat lost can then be converted into a fluid 

velocity in accordance with convective theory, considering the electrical power input 

equal to the power lost to convective heat transfer: 

  fwww TTAhRI  ..2
 (1. 18) 
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where I is the input current, Rw is the resistance of the wire, Tw and Tf are the temperatures 

of the wire and fluid respectively, Aw is the projected wire surface area, and h is the heat 

transfer coefficient of the wire, function of fluid velocity. The link between the heat 

transfer coefficient and the fluid velocity is obtained by calibration. 

  The advantages of this technique is the high spatial and time resolution, that make 

it an appropriate tool to measure turbulent fluctuations. The drawbacks are its fragility 

(wire diameter generally between 1 to 10 µm, so difficult to apply in large bubble 

columns) and the limitation of the measurement to only one velocity component.  

Based on hot wire anemometry, different configurations are proposed, such as hot 

film anemometers. In this case, the wire is replaced by a coating on a conical, beveled or 

spherical support (see the following figure). 

 

 

Figure 1.39: (b): simple hot wire, (a) and (e): double hot wire, (c): triple hot wire, (f): spherical hot 

film anemometer 

 

Suzanne et al. (1998) report that the hot film anemometer (HFA) had two major 

drawbacks: the difficulty to obtain a sTable 1. calibration curve, and the unknown effect 

of the bubble crossings on the film heat transfer. The HFA output voltage recorded in 

bubbly flow presents a drop of the signal that is characteristic of the presence of a bubble 

on the film and sometime a larger rear peak just after the passage of the bubble is 

observed. According to Suzanne et al. (1998), up to now, it was not admitted that this rear 

peak is representative of a real velocity in liquid phase.  

Roig and de Tournemine (2007) have developed a method for analyzing and 

interpreting the conditional statistics of the velocity in the liquid phase of a bubbly flow. 

By combining hot-film measurements and phase discrimination they were able, with a 

conditional averaging, to measure the perturbation induced in the liquid velocity in the 
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vicinity of a test bubble in a swarm. They have observed the attenuation of the length of 

its wake when the void fraction increases. 

 

1.3 Modeling of bubble columns  

 

The gas-liquid flow present in bubble columns is characterized by a combination 

of inherently unsteady flow interactions that are very heterogeneous in the time and space 

scales. Hence, modeling all these interactions poses a large number of problems to be 

solved. In a simplified manner there are 4 mechanisms that govern the bubble entrainment 

in the column. The first one concerns the movements induced by the density difference 

between the phases. The second one is the deceleration and the deviation of a bubble 

movement towards a vortex. The third one is the dispersion on the bubbles spatial 

arrangement by the liquid turbulence. The last one is the turbulence caused by bubbles 

(pseudo-turbulence). Presently there is no model that can resolve all the interactions in 

all the time and length scales excepted in small configurations. However, there are 

different models that are adapted to solve the hydrodynamics phenomena at different 

scales.  

 

Interface reconstruction methods 

 

Several CFD models are based on the principle to reconstruct the interface 

between gas and liquid, as Front Tracking, Level Set or Volume of Fluid methods. The 

latter approach is a very detailed solution that does not require empirical closure laws. In 

this method both phases are represented by “theoretical” phase where physical properties 

(density, viscosity, etc.) vary continuously in the passage of one phase to the other one. 

The instantaneous Navier-Stokes equations are solved to obtain the gas and liquid flow 

field in a very thin space resolution. This method has a spatial resolution in an order of 

10-4 m and is suiTable 1. to obtain bubble-liquid interactions, bubble shapes and 

interfacial closure laws. However, the simulation is very costly in time and limited in 

number of inclusions that can be simulated (<100) (Zhang, 2007; Lance, 1996). 

Furthermore, interfacial reconstruction algorithms are needed to limit the diffusion of 

interface to a small number of cells (1-3), and a compromise has to be chosen between 
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accurate but unsTable 1. algorithms and more diffusive and sTable 1. ones. Different 

authors have used VOF methods to simulate bubbly flows (Van Sint Annaland et al., 

2005; Swapna et al., 2010), but only small calculation domains are involved due to the 

CPU-time consumption of these methods. 

 

Euler-Lagrange 

 

The Euler-Lagrange (E-L) or Discrete bubble model is a model where the liquid 

is described as a continuous phase and the gas is defined as discontinuous phase. The 

liquid field is resolved in a eulerian framework. The gas phase is described by a tracking 

of several inclusions randomly distributed in the space by the resolution of a force balance 

for each inclusion  This model assumes that the hydrodynamic forces acting on each 

bubble is known. The model has a two-way coupling for the exchange of momentum 

between gas and liquid phase. This method is limited in the number of inclusions that 

could be followed (order of magnitude 106), so it is commonly applied in low gas hold up 

conditions or small vessels (Lance, 1996; Colombet, 2012). 

 

Two-fluid model (Euler-Euler) 

 

The Eulerian approach of modeling a biphasic mixture consists in converting it in 

equivalent homogeneous fluid with specific physical properties and behaviour laws. This 

“homogenization” of the biphasic flow is done by averaging the phase properties. The 

phases are represented by their characteristic function 𝑥𝑘(𝑥, 𝑡) that takes the value of 1 

when point x is in phase k at the time t and 0 when it is in the other phase. Hence, the gas 

retention rate 𝜀𝑔 is defined by the time-average of the gas phase characteristic function.  

 𝜀𝑔(𝑥, 𝑡) =< 𝑥𝑔(𝑥, 𝑡) > (1. 19)  

and the same could be written for the liquid phase, knowing that 𝜀𝑔 + 𝜀𝑙 = 1. The mean 

of the velocity of the phase weighted by the mass can be defined by: 

 
𝒖𝑘̅̅̅̅ =

< 𝑥𝑘𝜌𝑘𝒖𝑘 ≥

< 𝑥𝑘𝜌𝑘 >
 (1. 20)  
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The mass and momentum conservation laws for each phase are conditionally obtained by 

the local and instantaneous phase characteristic function and by applying the mean 

operator, so the obtained equations are  

 ∂𝜀kρk

∂t
+ ∇. (𝜀kρk𝐮k) = 0  (1. 21)  

 𝜕

𝜕𝑡
(𝜀𝑘𝜌𝑘𝒖𝑘) + ∇. (𝜀𝑘𝜌𝑘𝒖𝑘𝒖𝑘)

= −𝜀𝑘∇𝑃 + 𝜀𝑘𝜌𝑘𝒈 ± 𝑭𝑔𝑙 + ∇. (𝜀𝑘𝝉𝑘) 

(1. 22)  

Assuming that 𝜀𝑔 + 𝜀𝑙 = 1. 𝑭𝑔𝑙 is the interfacial momentum exchange. 𝜎�̇� is the stress 

tensor that can be calculated by: 

 
𝜏𝑘 = 𝜇𝑒𝑓𝑓,𝑘 (∇𝒖𝑘 + ∇𝒖𝑘

𝑇 −
2

3
𝐼𝑘) (1. 23)  

The advantage of this approach is to treat both fluids in a symmetric way, making 

it less costly in time than the Lagrangian approach. However, it poses closure problems 

especially in the Reynolds stress tensor and in the terms of interphase exchanges. To solve 

it authors resort to additional laws that are usually semi-empirical and dependent on flow 

parameters (Zhang, 2007; Lance, 1996). The topology of the dispersed phase is also 

required (size and shape of bubbles), or may result from breaking and coalescence 

coupled models. 

 

Interfacial momentum transfer 

 

The term of momentum transfer between phases is usually described as a sum of 

the contributions of drag force, lift, and added mass: 

 𝑭𝑔𝑙 = 𝑭
𝑑 + 𝑭𝐿 + 𝑭𝑉𝑀 (1. 24)  

Each term can be calculated as follows: 

 
𝑭𝑑 =

3𝜀𝑔𝐶𝑑

4𝐷𝑏
|𝑢𝑔 − 𝑢𝑙|(𝑢𝑔 − 𝑢𝑙) (1. 25)  

 𝑭𝐿 = 𝜀𝑔𝜌𝑙𝐶𝐿(𝑢𝑔 − 𝑢𝑙)(∇ × 𝑢𝑙) (1. 26)  

 
𝐹𝑉𝑀 = 𝜀𝑔𝜌𝑙𝐶𝑉𝑀 ((

𝜕

𝜕𝑡
+ ∇ × 𝑢𝑔) 𝑢𝑔 − (

𝜕

𝜕𝑡
+ ∇ × 𝑢𝑙) 𝑢𝑙) (1. 27)  

where the 𝐶𝑑 represents the drag coefficient, 𝐶𝐿 represents the lift coefficient, 𝐶𝑉𝑀 

represents the coefficient of added mass and the 𝐶𝑝 represents the pressure coefficient. 
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As previously referred, the described forces are calculated with the mean velocities of 

both phases.  

 

Drag force coefficient for single bubbles 

 

The drag force is the most important force to consider in the modelling of bi-fluid 

flows11.In the case of a bubble that ascends in a stationary way through the column, the 

drag force is the opposite force to the buoyancy force. The 𝐶𝑑 will be reviewed in detail 

since it impacts the relative velocity of the bubbles when comparing to the liquid velocity. 

Hence, it impacts the void fraction in the column. 

 The 𝐶𝑑 can be experimentally obtained by the measure of velocity of a bubble and 

the liquid, or can be obtained by simulation. In literature several correlations can be found 

for a 𝐶𝑑 of a spherical bubble, as showed in Figure 1.40, in function of the bubble 

Reynolds number Reb. 

 

Table 1. 1.1 –Correlations for 𝑪𝒅 of a single and spherical bubble (Brahem, 2013; Colombet, 2012) 

Conditions Correlation Authors 

𝑅𝑒𝑏 ≪ 1 
24

𝑅𝑒
 Stokes (1851) 

𝑅𝑒𝑏 ≪ 1 
16

𝑅𝑒𝑏
 Hadamard  (1911) 

𝑅𝑒𝑏 ≤ 1000 
24

𝑅𝑒
(1 + 0.15𝑅𝑒𝑏

0.687) Schiller Naumann 

(1933) 
𝑅𝑒𝑏 > 1000 0.44 

𝑅𝑒𝑏 ≤ 1 
16

𝑅𝑒𝑏
(1 +

𝑅𝑒𝑏
8
+
𝑅𝑒𝑏

2

40
ln(𝑅𝑒𝑏) +𝑂(𝑅𝑒𝑏)) Taylor et al.  (1964) 

𝑅𝑒𝑏 ≫ 1 
48

𝑅𝑒𝑏
 Levich  (1962) 

𝑅𝑒𝑏 > 50 
48

𝑅𝑒𝑏
(1 −

2. .211

𝑅𝑒𝑏
0.5) Moore (1963) 

- 
16

𝑅𝑒𝑏
(1 +

𝑅𝑒𝑏

8 + 0.5(𝑅𝑒𝑏 + 3.315𝑅𝑒𝑏
0.5)

) Mei et al.(1994) 

 𝐶𝐷 =
24

𝑅𝑒
(1 + 0.9135 𝑅𝑒0.6305) 

Fdhila and Duineveld, 

1996 

 𝐶𝐷 = 0.44 +
24

𝑅𝑒
+

1

1 + √𝑅𝑒
 

Zhang and Vanderheyde 

(2002) 
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However, a bubble is deformable, as already discussed in chapter 2.2, and its 

velocity will depend on the adapted shape under the flow conditions. It is possible to find 

in the literature specific correlations to compute the 𝐶𝑑 for deformed bubbles, as described 

in . In the case of deformed bubbles the authors add the Eotvos number and Morton 

number to the Reb to describe the 𝐶𝑑. 

 

Table 1. 2 –Correlations for 𝑪𝒅 of a single and deformed bubble (Brahem, 2013). 

Correlation Authors 

𝐶𝐷 =
8

3
(1 − 𝜀𝑔)

2
 

Ishii and Zuber 

(1979) 

{
 

 𝑓𝑜𝑟 𝐸𝑜 ≤ 7.12    𝑚𝑖𝑛 {
4

3

𝐸𝑜

𝑊𝑒𝑐
,
8

3
𝐸𝑜

2
3⁄ }

𝑓𝑜𝑟 𝐸𝑜 > 7.12                   
8

3

4𝐸𝑜

(9.5 + 𝐸𝑜)

 

𝑊𝑒𝑐 = max (0.517 ln(𝑀𝑜) + 7.624,2.326) 

Maxworthy et al. 

(1996) 

√𝐶𝑑
2(𝑅𝑒𝑏)+ 𝐶𝑑

2(𝐸𝑜) 

𝐶𝑑(𝑅𝑒𝑏) =
16

𝑅𝑒𝑏
(1 +

𝑅𝑒𝑏

8 + 0.5(𝑅𝑒𝑏 + 3.315𝑅𝑒𝑏
0.5)

) 

𝐶𝑑(𝐸𝑜) =
4𝐸𝑜

(9.5 + 𝐸𝑜)
 

Dijkhuizen et al. 

(2010) 

𝑚𝑎𝑥 {𝑚𝑖𝑛 {
16

𝑅𝑒𝑏
(1 + 0.15𝑅𝑒𝑏

0.687),
48

𝑅𝑒𝑏
} ,
8

3

𝐸𝑜

(4 + 𝐸𝑜)
} Tomiyama (1998) 

2

3
√𝐸𝑜 Zhang et al (2006) 

√𝐶𝑑
2(𝑅𝑒𝑏)+ 𝐶𝑑

2(𝐸𝑜) 

𝐶𝑑(𝑅𝑒𝑏) =
16

𝑅𝑒𝑏
(1 +

𝑅𝑒𝑏

8 + 0.5(𝑅𝑒𝑏 + 3.315𝑅𝑒𝑏
0.5)

) 

𝐶𝑑(𝐸𝑜) =
4𝐸𝑜

(9.5 + 𝐸𝑜)
 

Dijkhuizen et al. 

(2010) 

𝐶𝐷 =
8

3

𝐸𝑜

𝐸
2
3(1 − 𝐸2)−1𝐸𝑜 + 16𝐸

4
3

𝐹−2 

𝐹 =
𝑠𝑖𝑛−1(√1 − 𝐸2) − 𝐸√1 − 𝐸2

1 − 𝐸2
 

Tomiyama et al. 

(2012) 
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𝐸 =
1

1 + 0.163𝐸𝑜0.757
 

 

Several correlations are represented as a function of Re except for the range of Re 

number from 100 to 1000 the correlations predictions are very similar. 

 

 

Figure 1.40 – Representation of the drag coefficient in function of the Reynolds number (Brahem, 

2013) 

 

Drag coefficient for a bubble swarm 

 

The presented correlations were developed for a single bubble ascending in the 

column. These correlations are only adapted for much diluted flows (low εg). In the 

studied cases the gas hold up can achieve more than 30% so the 𝐶𝑑 should be adapted to 

these conditions. One of the strategies to resolve this problem is to use a swarm factor h 

that corrects the drag coefficient by: 

 
ℎ =

𝐶𝑑 

𝐶𝑑
∞ 
= (

𝑉𝑟
∞

𝑉𝑏
)

2

 (1. 28)  

Where 𝐶𝑑
∞

and 𝐶𝑑 represent the drag coefficient for a single bubble and for a swarm of 

bubbles respectively and 𝑉𝑟
∞ and 𝑉𝑟 represents the terminal velocity of a single bubble 
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and a bubble in a swarm. Several correlations are available in the literature to compute 

the h factor, as shown in the following Table 1.. 

 

Table 1.3 – Correlations for the h factor for a bubble swarm (Colombet, 2012; Zhang, 2007). 

Conditions Correlation Authors 

𝑛 = 1.39 

𝐸𝑐𝑐 < 1 1

(1 − 𝜀𝑔)2𝑛
 

Bridge et al (1964) 

𝑛 = 1 

𝐸𝑐𝑐 < 1 
Wallis  (1969) 

- 
1

√𝜀𝑙
 Ishii-Zuber (1979) 

𝐸𝑐𝑐 < 1 

0% ≤ 𝜀𝑔 ≤ 45% 

27 ≤ 𝑅𝑒𝑏 ≤ 960 

 

𝑒(3.64𝜀𝑔) + 𝜀𝑔
0.4864 Rusche & Issa (2000) 

𝐸𝑐𝑐 ≈ 0.5 

0% ≤ 𝜀𝑔 ≤ 30% 

300 ≤ 𝑅𝑒𝑏 ≤ 500 

 

1

(1 − 𝜀𝑔
1
3⁄ )2

 Garnier et al (2002) 

𝐸𝑐𝑐 < 1 

0% ≤ 𝜀𝑔 ≤ 45% 

150 ≤ 𝑅𝑒𝑏 ≤ 1200 

1 ≤ 𝐸𝑜 ≤ 5 

4 × 10−12 ≤ 𝑀𝑜 ≤ 2 × 10−9 

1 +
18𝜀𝑔

𝐸𝑜
 Roghair et al (2011) 

Simmonet et al. (2008) developed a drag law from local velocity measurements 

of gas and liquid performed directly in bubble and air-lift columns operated in the 

heterogeneous regime. The resulting swarm factor is written as follows:  

 

ℎ = (1 − 𝜀𝑔) [(1 − 𝜀𝑔)
25
+ (4.8

𝜀𝑔

1 − 𝜀𝑔
)

25

]

− 
2
25

 (1. 29) 

It has the particularity to increase slightly in the range of 𝜀𝑔 [0-15%], and then to decrease 

quickly to zero, as presenter in chapter 5. 
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Other coefficients for bubble swarms 

 

The lift coefficient for a single bubble was studied by Tomiyama (2004) that concluded 

that it could be computed as: 

 𝐶𝐿 = 𝑚𝑖𝑛(0.288 tanh(0.121𝑅𝑒) , 𝑓(𝐸𝑜𝑑)) (1. 30)  

where 𝐸𝑜𝑑 represents the modified Eotvos number that can be calculated by: 

 𝐸𝑜𝑑 =
𝐸𝑜

𝐸𝑐𝑐
  (1. 31)  

and 𝑓(𝐸𝑜𝑑) can be calculated by: 

 𝑓(𝐸𝑜𝑑) = 0.00105𝐸𝑜𝑑
3 − 0.0159𝐸𝑜𝑑

2 − 0.0204𝐸𝑜𝑑 +

0.474  
(1. 32)  

 Behzadi et al. (2004) studied the variation of the lift coefficient in a bubble swarm 

and concluded that it could be computed as: 

 𝐶𝐿 = 𝑚𝑖𝑛 (0.5,
6.51×10−4

𝜀𝑔
)  (1. 33)  

The vector of added mass coefficient was also studied by Tomiyama (2004), that 

states it has the form of (𝐶𝑉𝑀,ℎ, 𝐶𝑉𝑀,𝑣, 𝐶𝑉𝑀,ℎ). In the case of a spherical bubble, both 

components (horizontal and vertical) take the value 0.5. For an ellipsoidal bubble, the 

horizontal (𝐶𝑉𝑀,ℎ) and vertical (𝐶𝑉𝑀,𝑣) coefficients are computed as follows: 

 
𝐶𝑉𝑀,ℎ =

𝐸𝑐𝑐 × 𝑐𝑜𝑠−1(𝐸𝑐𝑐) − √1 − 𝐸𝑐𝑐2

𝐸𝑐𝑐 × √1 − 𝐸𝑐𝑐2 − 𝐸𝑐𝑐 × 𝑐𝑜𝑠−1(𝐸𝑐𝑐)
 (1. 34)  

 
𝐶𝑉𝑀,𝑣 =

𝑐𝑜𝑠−1(𝐸𝑐𝑐) − 𝐸𝑐𝑐 × √1 − 𝐸𝑐𝑐2

(2𝐸𝑐𝑐−1 − 𝐸𝑐𝑐) × √1 − 𝐸𝑐𝑐2 − 𝑐𝑜𝑠−1(𝐸𝑐𝑐)
 (1. 35)  

However, to be applied in high void fraction conditions it should be corrected 

(Wijngaarden, 1976) using: 

 𝐶𝑉𝑀,𝑆𝑤𝑎𝑟𝑚 = 𝐶𝑉𝑀,𝑏𝑢𝑏𝑏𝑙𝑒(1 + 2.89𝜀𝑔) (1. 36)  

 

Turbulence modeling 

 

In the phase k, the stress tensor can be described (Zhang, 2007) as: 

 
𝜏𝑘 = −𝜇𝑒𝑓𝑓 (∇𝑢𝑘 + (∇𝑢𝑘)

𝑇 −
2

3
𝐼∇𝑢𝑘) (1. 37)  

where 𝐼 represents the unit tensor and 𝜇𝑒𝑓𝑓 is the effective viscosity, that for the liquid 

phase can be computed as: 
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 𝜇𝐿,𝑒𝑓𝑓 = 𝜇𝐿,𝐿𝑎𝑚 + 𝜇𝐿,𝑇𝑢𝑟 + 𝜇𝐵𝐼𝑇 (1. 38)  

The term 𝜇𝐿,𝐿𝑎𝑚 represents the liquid molecular viscosity, 𝜇𝐿,𝑇𝑢𝑟 represents the liquid 

shear induced turbulence, and 𝜇𝐵𝐼𝑇 the bubble induced turbulence. The shear induced 

turbulence is resolved through turbulent models, in this chapter will be described the k-ε 

model and the sub grid model (SGS). According to Jakobsen et al (1997) the effective 

viscosity for the gas phase (𝜇𝑔,𝑒𝑓𝑓) can be computed as: 

  

𝜇𝑔,𝑒𝑓𝑓 =
𝜌𝑔

𝜌𝑙
𝜇𝐿,𝑒𝑓𝑓 

(1. 39)  

In the SGS model proposed by Vreman (2004) the shear induced turbulence in the liquid 

phase can be calculated as: 

 

𝜇𝐿,𝑇𝑢𝑟 = 2.5𝜌𝑙𝐶𝑠
2√

𝐵𝛽

𝑆𝑖𝑗𝑆𝑖𝑗
 (1. 40)  

Where 𝑆𝑖𝑗 and 𝐵𝛽 can be calculated as: 

 𝑆𝑖𝑗 = 𝜕𝑢𝑗 𝜕𝑥𝑖⁄  (1. 41)  

 𝐵𝛽 = 𝛽11𝛽22 − 𝛽12
2 + 𝛽11𝛽33 − −𝛽13

2 + 𝛽22𝛽33 − 𝛽23
2
 (1. 42)  

 𝛽𝑖𝑗 = ∆𝑖
2𝑆𝑖𝑗𝑆𝑖𝑗 (1. 43)  

Where ∆𝑖 represents the filter in the i direction and 𝐶𝑠  is a model constant that is valid 

within the range from 0.08 to 0.22. In the bubble column modeling carried by Zhang 

(2007), the 𝐶𝑠  had the fixed value of 0.1. 

 Sato (1975) propose to modeling the bubble induced turbulence through: 

 𝜇𝐿,𝐵𝐼𝑇 = 𝜌𝑙𝛼𝜀𝑔𝐶𝜇,𝐵𝐼𝑇𝐷𝑏|𝑢𝑔 − 𝑢𝑙| (1. 44)  

Where 𝐶𝜇,𝐵𝐼𝑇 in a model constant with the value of 0.6. 

 The extended k-ε model proposed by Pfelger and Becker (2001) considers that the 

liquid turbulence is influenced by the bubble induced turbulence. Hence, the term of the 

liquid bubble induced viscosity (𝜇𝐿,𝐵𝐼𝑇) is set to zero. The shear induced turbulence is 

calculated by: 

 
𝜇𝐿,𝑇𝑢𝑟 = 𝐶𝜇𝜌𝑙

𝑘𝑇
2

𝜀𝑇
 (1. 45)  

where 𝑘𝐿 represents the turbulence kinetic energy and the 𝜀𝐿 represents the turbulence 

dissipation rate and 𝐶𝜇 is a model constant. The conservation equations for k-ε model are 

given by: 
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𝜕(𝜀𝑙𝜌𝑙𝑘𝑇)

𝜕𝑡
+ ∇ (𝜀𝑙𝜌𝑙𝑘𝑇𝑢𝑙 − 𝜀𝑙 (𝜇𝐿,𝐿𝑎𝑚 +

𝜇𝐿,𝑇𝑢𝑟
𝜎𝑘

)∇𝑘𝑇)

= 𝜀𝑙(𝐺𝑙 − 𝜌𝑙𝜀𝑇) + 𝑆𝑘,𝐵𝐼𝑇 

(1. 46)  

𝜕(𝜀𝑙𝜌𝑙𝑘𝑇)

𝜕𝑡
+ 𝛻 (𝜀𝑙𝜌𝑙𝜀𝑇𝑢𝑙 − 𝜀𝑙 (𝜇𝐿,𝐿𝑎𝑚 +

𝜇𝐿,𝑇𝑢𝑟
𝜎𝜀

)𝛻𝜀𝑇)

= 𝛼𝑙
𝜀𝑇
𝑘𝐿
(𝐶𝜀1𝐺𝑙 − 𝐶𝜀2𝜌𝑙𝜀𝑇) + 𝑆𝜀,𝐵𝐼𝑇 

(1. 47)  

where 𝑆𝑘,𝐵𝐼𝑇 and 𝑆𝜀,𝐵𝐼𝑇 are source terms due to bubble presence and can be computed 

(Pfleger, 2001) by: 

𝑆𝑘,𝐵𝐼𝑇 = 𝜀𝑙𝐶𝑘|𝑀𝑙| × |𝑢𝑔 − 𝑢𝑙| (1. 48)  

 𝑆𝜀,𝐵𝐼𝑇 =
𝜀𝑇
𝑘𝑇
𝐶𝜀𝑆𝑘,𝐵𝐼𝑇 (1. 49)  

The values of the model constants are still in ongoing debate on the scientific community. 

In Table 1. 4 is possible to see the ones presented by Pfelger (2001).  

 

Table 1. 4 – Table 1. of values of k-ε model constants. 

Constant Value 

𝐶𝑘 = 𝐶𝜀1 1.44 

𝐶𝜀 = 𝐶𝜀2 1.92 

𝐶𝜇 0.09 

𝜎𝑘 1 

𝜎𝜀 1.217 

 

Many turbulent models have been developed following the RANS approach, and they 

will not be details here. Commonly used turbulence models in bubbly flows are k-, 

realizable k-, RNG-k- and k- models. RNG-k- is commonly used at IPFEN for the 

simulations of bubbly flows. 

 

About the use of two-fluid models 

 

The two-fluid Eulerian model is presently the only model usable in R&D for the 

simulation of industrial columns. For a given operating condition and a given geometry, 

the model has proven its ability to perform reasonable estimations of local average fluid 
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velocities and volume fractions. But despite the huge number of studies on the subject, 

many questions are still under debate as:  

 What are the forces really to be taken into account? Is the drag force sufficient? 

 What is the expression of the drag force? and the other forces, if any? 

 How to model turbulence in bubbly flows? Is the RANS (k- or similar) approach 

sufficient or do we need resolution at smaller scales? How to account for pseudo-

turbulence? 

 In a polydispersed bubble size distribution, what bubble size should be used? 

Should we use an averaged bubble size, transport all the moments of the bubble 

size distribution (Marchisio and Fox, 2013) or transport all the bubble classes 

individualy? 

Of course the question depends on the application and cannot found universal answers. 

Pourtousi et al. (2014) details the different variables and parameters that may affect the 

simulations of bubble columns, this illustrates the complexity of the problem. 

 

The question of the turbulence model is crucial but it is not the objective of the 

present study, and only low time-resolved metrology is used to characterize the liquid 

velocity fluctuations. Furthermore, different studies show rather satisfactory results with 

the RANS turbulence modelling in bubble columns, as Ekambara et al. (2005). 

Concerning the momentum exchange between phases, and especially concerning 

the drag force formulation, two difficulties make the subject very complex. First, usable 

data for drag law formulation are scarce and mostly acquired in the homogeneous regime. 

The use of resulting drag laws in heterogeneous regime is not validated. The lack of data 

is due to the difficulty to measure properly the velocity of both phases and the bubble size 

in chaotic flows, i.e. when bubbles have non vertical trajectories. 

Secondly, the studies concerning the validation of the drag law on bubble columns 

are often based on a narrow domain of operating conditions, and does not prove that 

identified formulations can be successfully used for scale-up. For instance, Krishna and 

Van Baten (2001) used CFD simulations validated on a 0.38 m diameter column, and 

validated a drag force formulation based on the discrimination between “small” and 

“large” bubbles. Ekambara et al. (2005) validated a drag law empirically fitted as a linear 

function of the gas holdup and the relative velocity, based on comparisons with 

experiments in various columns with a diameter ranging between 0.15 m and 0.6 m, but 
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only at low gas velocity (vsg < 0.1 m/s). More recent works of Xing et al. (2013) and 

McClure et al. (2015) provide drag law validation on a single column diameter of 0.19 m 

and 0.39 m, respectively. Note that the later one validates a swarm factor based on the 

formulation of Simmonet et al. (2008), as it will be discussed in chapter 5. 

 

It appears this clearly that the lack of data in large columns (i.e. D>0.4 m), is a major 

limitation to the validation of CFD for bubble column modeling. In particular the bubble 

size and velocity are necessary in the heterogeneous regime.  

 

1.4 Conclusions 

 

As presented in this chapter, the main parameters of the local hydrodynamics of 

bubble columns are the bubble size and shape, bubble velocity and concentration and 

liquid velocity statistics. These parameters are expected to be strongly interrelated, and 

depend on the liquid and gas physical properties, interface contamination, injection 

conditions, column design (H/D) and operating conditions (flow regimes). In addition, 

some key phenomena are still poorly known, namely the impact of bubble coalescence 

and of gas injection on the bubble columns hydrodynamic. The bubble coalescence can 

be avoided recurring to surfactants, which stabilize the interfaces and partially control the 

evolution of bubble size on the column. However, the gas injection conditions are inherent 

to the choice of gas injector and flow throughput. In the literature, different configurations 

of gas distributors can be found (e.g. porous plates, capillary injectors, perforated plates, 

single-hole spargers, etc…). Nevertheless, the gas injection can impact not only the 

primary bubble population but also other phenomena, as for example the bubble size 

evolution on the flow, the spatial gas distribution and liquid recirculation. Hence, 

experimental results are difficult to be comparable, causing the creation of consensus on 

the key phenomena to be a difficult task. This is why there is a lack of reliable scale-up 

correlations, which compels to an empiric procedure. Therefore, the main parameters 

have to be measured in cold mock-ups of different scales, in order to understand their 

evolution with the column scale.  

A possible alternative to improve the scale-up procedures can be the CFD simulations. 

The modeling of “industrial” scale bubbly flows requires 3D simulations that accounts 

for the unsteady and turbulence characteristics of the flow. Due to the size of the 
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simulation domains, DNS simulations are not a viable possibility. Therefore, these 

simulations can be performed recurring to URANS or LES models. In the present work 

only the URANS model will be studied, since the LES simulations are still very time 

demanding. As it was presented in section 1.3, the implementation of URANS models for 

the simulation of heterogeneous bubbly flows has two major setbacks: the correct 

prediction of the turbulence and accurate closing laws governing the interfacial 

momentum exchanges. However, in the present work only the latter will be discussed. In 

bubbly flows, the buoyancy force is the driving force, so to compute it is necessary to 

know the mean bubble size and concentration. The buoyancy force and the bubble drift 

velocity are linked by the drag force, which has a major role since it controls the gas hold-

up. However, the development of an adapted drag force for heterogeneous and turbulent 

flows is still an open question on research. In section 1.3, several drag forces are 

presented, mostly for single bubbles in diluted flows. Although, one should question if 

those correlations are still valid to be used in different flow regimes. Since the URANS 

models solve the turbulence in a scale larger than the size of a bubble, it is also 

questionable if the drag force should not also account for the unsolved turbulence scales 

(e.g. eddies smaller than a bubble) that could affect the bubble drift velocity. So, to be 

able to compute the drag force it is necessary to know locally the size and velocity of the 

bubbles and the liquid velocity and its fluctuations. 

The aim of the present work is to construct a detailed data base of the 

hydrodynamics properties obtained in bubble columns with different diameters and in a 

wide range of superficial gas velocities. The experiments will be carried out in columns 

with a diameter of 0.15 m, 0.4 m, 1m and 3 m, achieving a scale factor of 20. Since the 

measurements are carried out in a wide range of conditions and in different columns, it is 

necessary to ensure that the same bubble population is generated in the columns. As 

mentioned in chapter 1.1, the gas distributor configuration can impact not only bubble 

size but also the flow regime. Consequently, the air injection in the column is addressed 

by the study of a gas distributor that could be applied in the different columns. The 

objective is to ensure a homogenous gas distributor in all the columns assuring a known 

and controlled bubble generation. Moreover, one should mind the spatial arrangement of 

injectors on the gas distributor in order to avoid the interactions between jets. The pressure 

fluctuations on the air feeding system can also impact the gas injection on the column. 

The column must have a large air chamber before the gas distributor to serve as buffer to 

the pressure fluctuations, assuring a constant gas rate in the column. Beside the injection 
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aspects, the bubble coalescence should be ideally avoided, either by the choice of a non-

coalescence liquid/gas system or by the use of surfactants. 

Once one has ensured that all experiments are carried out in similar conditions, a 

wide database characterizing the flow should be build. The bubble size, velocity and 

concentration as the instantaneous and time averaged liquid velocities should be locally 

measured. These parameters should be characterized radially and axially on the columns, 

at a wide range of superficial gas velocities from 3 cm/s up to 35 cm/s. Assuring that the 

experiments are carried out both in homogenous and heterogeneous regimes, achieving a 

global gas hold-up up to 30%. Moreover, the meso-scale structures (clusters and voids), 

that are visible on the column walls, can have an important role on the momentum 

exchange. Therefore, they should be identified and their size and periodicity should be 

characterized on the flow. 

Since the flow properties that need to be measured have been identified, it is 

necessary to select adapted measurement methods. As the experiments will be carried out 

in large bubble columns, at high gas holdup, several technical constraints must be 

overcome. The size of the column and the gas concentration make it impossible to observe 

directly from the outside of the column, eliminating some visual techniques. Also the size 

of the column will generate high signal loss, which can be problematic for some non-

invasive methods. Additionally, due to the strong liquid recirculation, at high gas hold-

up, the bubble movement is “chaotic”, generating strong fluctuations, of liquid velocity 

and of gas concentration. These conditions are very challenging for several intrusive 

methods that should be able to perform reliable measurements in the presence of such 

conditions. The discussion of which methods should be used and their validation will be 

further detailed in chapter 3. 
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2 Experimental strategy  

 

In this chapter the cold mockups, which will be used in the experimental part of this 

work, will be presented in detail. The experiments will be carried out in bubble columns 

of different internal diameters, namely 0.15 m, 0.4 m, 1 m and 3 m respectively, 

corresponding to a scale-up factor of 20. As mentioned in chapter 1, the bed should have 

a ratio of static height of water/column diameter of at least 4 in order to ensure the 

existence of a fully developed flow zone. Besides, the experiments will be carried out in 

different flow regimes, since the superficial gas velocity will wary over a 10:1 range, 

yielding a global void fraction from 13 % up to more than 30 %. 

Also, and as seen in chapter 1, the configuration of the bubble gas distributor can 

impact the bubble size and the flow dynamics. Thus, in order to ease the comparison 

between the data collected on each column, a first objective was to ensure that the same 

(or at least very similar) bubble population were injected in all the experiments, and with 

a uniform injection of gas over the entire cross-section. Uniformity holds here both for 

the size distribution and for the flux. For this reason, a study of gas injection was carried 

out to characterize the impact of the injector design parameters such as the injector 

internal diameter and the injector length on the bubble population over a large range of 

gas injection velocities. From this analysis, presented in section 2.1 here below, an 

optimal ideal injector geometry was determined. Yet, technical constraints lead us to 

depart from this solution for some columns: adaptations and final choices are discussed 

at the end of section 2.1. In section 2.2, the four bubble columns used in this work are 

described in detail. As a last step, it was necessary to check the spatial homogeneity of 

injection over the columns cross-sections, the homogeneity being relative to bubble size 

but also to fluxes in particular to avert the generation of instabilities in the injection’s 

vicinity. Another issue concerns the impact of coalescence on the characteristics of 

injected bubbles, notably because of interacting gas jets and/or of liquid recirculation at 

the bottom of the columns. These questions are addressed in section 2.3. We then 

conclude on the quality of gas injection in our experimental set-up. 

 

2.1 - Gas distributor design 
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In this PhD work local hydrodynamic properties will be studied over a large range of 

superficial gas velocities and column diameters. As stated in Chapter 1, it is necessary to 

ensure similar bubble populations at injection in all tested conditions, in order to collect 

comparable data in columns of various dimensions. Hence, a necessary preliminary step 

was to design adapted gas distributors. The objective of this section is to find a gas 

distributor that could be applied in every studied scale, with the capacity to generate the 

same bubble size over a range of superficial gas velocity from 3cm/s up to 35 cm/s, and 

using an “industrial” design i.e. perforated plates with millimetre size holes and low hole 

density. The design parameters analysed in this study were: injection internal diameter 

(i.d.), injection velocity and the ratio injector length/inner diameter (l/i.d.). The presence 

of coalescence near the gas distributor was also checked through the measurement of 

bubble size at different distances from the gas distributor. All these experiments were 

achieved in a 0.15 m diameter column. 

 

Impact of injector diameter on the bubble size distribution 

 

In order to study the effect of the injector diameter on the initial bubbles size, 

several experiments were performed with a single injector located in the centre of the 

column, as depicted in Figure 2.1.  

A B 

  

Figure 2.1- A) 1.2 mm i.d. injector (Vi=29 m/s) B) 1.7 mm i.d. injector (Vi=61 m/s) 

 

A range of inner diameters from 0.6 mm up to 9 mm, with a l/i.d. ratio of 10, were 

tested for a gas injection velocity (Vi) in the range 9.8 m/s up to 83 m/s. The gas injection 

velocity is the ratio of the gas flow (Qg) to the injector exit cross section (Ai), as can be 

seen in the following equation. 
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Conical optical probes, which characteristics and performances are presented in Chapter 

3, were used to measure bubble chords and velocities as well as local void fractions. In 

particular, the bubble dimension is characterised either by a mean vertical chord, or by a 

mean horizontal diameter (see Chap.3 for details). The experiments consisted in 

measuring 7000 bubbles with an optical probe located at the centre of the column and at 

a given distance from the injector. The convergence of the mean chords and velocities 

was ensured to be within a range of ±5%, as can be seen in Figure 2.2, to allow the 

validation of each measurement. 

 

 
𝑉𝑖 =

𝑄𝑔

𝐴𝑖
 (2)  
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A 

 

B 

 

Figure 2.2 – Convergence of the cumulative average of: A) bubble chord B) bubble velocity. 

(Dashed lines- ±5% convergence)(I.d. injector =1.2 mm at 0.16 m from the injector and Vi=17 m/s) 

 

In the case of the injectors with inner diameter of 0.6 mm, 1.2 mm, 1.7 mm and 4 

mm, the probe was located 0.16 m above the injector exit. In the case of 9 mm i.d. injector 

(for all the l/i.d. ratios tested), the probe was located at 0.41 m from the injector. The 

distance was changed in order to gather data outside the gas jet region where bubble break 

up phenomenon is still very active and where the bubble size is not yet stabilized. 

To study the same injection range in different injector diameters a wide range of 
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can be compared through the superficial gas velocity (vsg) that is computed through the 

following equation. 

 

W 

where 𝑄𝑔 represents the gas flow and 𝐴𝑐 represent the column cross-section. As can be 

seen in Table 2.5 and in Figure 2.3 a wide range of superficial gas velocities and local gas 

hold-up were scrutinized during these experiments. 

 

Table 2.5 – Superficial gas velocities in cm/s as a function of injector diameter and velocity of gas 

injection. 

Injector Diameter (mm) 
Velocity Injection (m/s) 

9.8 17 29 49 61 83 

0.6 0.015 0.02 0.04 - - - 

1.2 0.06 0.11 0.18 0.3 -  -  

1.7 0.12 0.22 0.37 0.6 0.7 1.06 

4 0.7 1.2 2.1 3.5 4.3 5.9 

9 3.5 6.1 10.4 17.6 22 31 

 

 

Figure 2.3- Evolution of local gas hold-up measured by optical probes with the gas superficial 

velocity for different injector sizes. (l/i.d.=10) 
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𝑉𝑠𝑔 =

𝑄𝑔

𝐴𝑐
 (3)  
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 Figure 2.3 shows that the experiments for the 4 mm and 9 mm inside diameter 

injectors were carried at much higher gas superficial velocities than for the smaller i.d. 

injectors. In these conditions, significant liquid and gas recirculation can occur that does 

not appear, or remain less drastic in more dilute conditions: this will be confirmed 

thereafter by bubble velocity measurements. Therefore, one should bear in mind that the 

characterisations of injected bubbles were not achieved in strictly identical conditions for 

“small” (namely 0.6 mm, 1.2 and 1.7 mm i.d.) and “large” (namely 4 mm and 9 mm i.d.) 

injectors. 

Figure 2.4 A and Figure 2.5 A present the evolution of the mean vertical chord 

(measured by 1C optical probe) with the gas injection velocity for each tested injector. 

The results show that the 0.6 mm diameter injector always produces bubbles smaller than 

2 mm, compared to the 1.2 mm and 1.7 mm diameter injectors that produce intermediary 

size bubbles between 2 and 3 mm. The 4 mm and 9 mm i.d. injectors produce somewhat 

larger bubbles, in a range 3 to 4mm, at the tested elevation. 
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A 

 

B 

 

Figure 2.4 – A) Evolution of bubbles mean chord with the gas injection velocity B) Evolution of the 

standard deviation of the bubble chord distribution with the gas injection velocity. Measurements 

for several injector with internal diameters ranging from 0.6 mm to 1.7mm, measurements at an 

elevation of 0.16m from the injector. 
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A 

 

B 

 

Figure 2.5 – A) Evolution of bubbles mean chord with gas injection velocity B) Evolution of the 

standard deviation of the bubble chord distribution with the gas injection velocity. Measurements 

for injectors with internal diameter of 4 mm and 9 mm. Measurements taken at an elevation of 0.16 

m and 0.5 m from the injector, for the 4 mm and 9 mm diameter injectors, respectively. 
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drastically increases, leading to a widely dispersed size distribution for injectors of large 

inner diameter. 

 

 

Figure 2.6– Evolution of the mean bubble chord and standard deviation with the injection inner 

diameter for an injection velocity of 50 m/s 

 

Impact of injection velocity on bubble size distribution 

 

 As can be seen in Figure 2.4 A and Figure 2.5 A, the injection velocity does not 

impact the functioning of the different injectors in the same way. For the “small” injectors 

with an inner diameter of 0.6 mm, 1.2 mm and 1.7 mm, the bubble size experiences a 

steep increases at low gas velocities, say below 20-30m/s. Thereafter the increase is 

smoother, with a slope of the mean chord versus velocity of the order 0.01 s. For the larger 

injectors (4 and 9 mm i.d.), the sensitivity to the injection velocity remains low (slope ≈ 

0.04 s) over the entire velocity range tested. Note that the slope is negative for the 4 mm 

i.d. injector (which is odd) but it has a similar magnitude. Thus, for “large” injectors and 

for “small” injectors above 20-30m/s injection velocity, the characteristic bubble size is 

weakly affected by the injection velocity. This behaviour is quite advantageous as similar 

bubble sizes can be produced over a large range of gas superficial velocities with the same 

injector.  
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bubble velocity and the standard deviation of the bubble velocity distribution, for the 0.6 

mm, 1.2 mm and 1.7 mm inside diameter injectors, are presented in Figure 2.7 A and B, 

respectively. The results for the 4 mm and 9 mm inside diameter injectors are presented 

in Figure 2.8 A and B. 

 

A 

 

B 

 

Figure 2.7 - A) Evolution of bubbles mean velocity with gas injection velocity B) Evolution of the 

standard deviation of the bubble velocity distribution with gas injection velocity. Measurements for 

several injector with internal diameters ranging from 0.6 mm to 1.7mm, measurements at an 

elevation of 0.16m from the injector. 
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A 

 

B 

 

Figure 2.8 – A) Evolution of bubbles mean velocity with gas injection velocity B) Evolution of the 

standard deviation of the bubble velocity distribution with the gas injection velocity. Measurements 

for injectors with internal diameter of 4 mm and 9 mm. Measurements take at an elevation of 0.16 

m and 0.5 m from the injector, for the 4 mm and 9 mm diameter injectors, respectively. 
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0.8 m/s) than the terminal velocities (≈0.2-0.3m/s) for this type of bubbles (Clift et al., 

1978). Taking everything into consideration, it is clear that, in the experiments with the 4 

mm and 9 mm i.d. injectors, the bubbles were entrained by the liquid recirculation so that 

the detected characteristic sizes are not due to the injection dynamics alone.  

 

Impact of injector l/i.d. ratio on bubble size distribution 

 

The pressure drop in each hole can work as a buffer to avoid the effects on 

injection velocity caused by pressure fluctuations in the gas circuit before the column, or 

those due to bubble formation. Moreover, it is important to ensure a sufficient pressure 

drop through the gas distributor to guarantee that all the injectors will be working, even 

at low gas velocities. The length of the injector (l) has a direct impact on the pressure 

drop, and this is the reason why the l/i.d. ratio was also studied. The 1.7 mm diameter 

injector was studied for l/i.d. ratio of 15, 10 and 5. The 4 mm injector was tested for l/i.d. 

ratio of 10, 5 and 2. Finally, the 9 mm injector was studied with l/i.d. ratio of 10 and 2. 

For these different l/i.d. ratios, the mean bubble chords are shown in Figure 2.9. 
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Injector diameter 1.7 mm Injector diameter 4 mm 

  

Injector diameter 9 mm 

 

Figure 2.9 - Mean bubble chord for 1.7 mm, 4 mm and 9 mm injectors for several l/i.d. ratios in 

function of the injection velocity. Measurements at an elevation of 0.16 m for the 1.7 mm and 4 mm 

injectors and 0.5 m for the 9 mm injector (Vertical bars represent the standard deviation of each 

bubble chord distribution). 

 

The presented data suggests that the l/i.d. ratio has no significant impact on mean 

bubble chord (typical deviations are at most about 1mm), and that for each injection 

velocity all the mean chords are inside the standard deviation (vertical bars) intervals. 

Figure 2.10 presents the PDF of the bubble chord distributions for all the tested injectors 

at velocities injections of 30 m/s and 80 m/s. 
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Vi=10 m/s Vi=80 m/s 

Injector diameter = 1.7 mm 

  

Injector diameter=4 mm 

  

Injector diameter = 9 mm 

  

Figure 2.10 - Bubble chords probability density of bubble chords for 1.7 mm, 4 mm and 9 mm 

injectors for several l/d ratios.Measurements at an elevation of 0.16 m for the 1.7 mm and 4 mm 

injectors and 0.5 m for the 9 mm injector 
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the pdfs remain unaltered for chords above ≈ 0.8-0.9 mm. Also, the injector of 9 mm i.d. 

leads to very similar PDFs whatever the l/i.d. ratio and the injection velocities. 

Therefore, as previously mentioned, no significant impact of the l/i.d. ratio was 

found on bubble chord distributions. This could mean that the velocity profile is already 

established inside the injectors, even for the smallest tested l/d ratios.  

Impact of the height of measurement on bubble size distribution 

 

In order to study the impact of the height of the measurement on the detected 

bubble size distribution, the optical probe was located at higher distances from the injector 

(h) and measurements were repeated. These experiments were performed to verify 

whether the previous results have been collected outside the gas jet region. So doing, the 

presence of coalescence can also be tested by checking if bubbles larger than those 

detected near the injector are seen or not further downstream. 

 As in the previous experiments the probe was located in the column centre. When 

using the 1.7 mm and 4 mm injectors, the probe was placed at 0.40 m above from the 

injector. In the case of the 9 mm injector the probe was placed at 0.75 m above from the 

injector. Figure 2.11 presents the variation of the mean chord with the distance from the 

injector for two injection velocities (61 m/s and 83 m/s)).  

 

A B 

  

Figure 2.11 – Evolution of the mean bubble chord with the distance from the injector for an l/d=10: 

A) injection velocity of 61 m/s; B) injection velocity of 0.83 m/s. (vertical bars represent the standard 

deviation of the bubble chord distribution) 

 

The results show that, for a given injection velocity, the mean chord differences 

are quite small (less than 0.5 mm). The PDFs of bubble chords corresponding to these 

measurements are presented in Figure 2.12. 
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Vi= 60 m/s Vi=83 m/s 

Injector diameter = 1.7 mm 

  

Injector diameter=4 mm 

  

Injector diameter = 9 mm 

  

Figure 2.12- Bubble chords probability density functions for l/d ratio of 10. 

 

Figure 2.12 shows that all the PDFs from the three injectors on the two injection 

velocities considered are overlapping. So, based on these results and on the results of 

Figure 2.11, is possible to affirm that the distance to the injector has no significant 

influence on the bubble chord distribution. Consequently, this demonstrates that all the 

measurements presented in the previous sections were indeed performed outside the gas 

jet, that is in a zone where the break-up processes related with injection are terminated. 

Moreover, there is no indication of the presence of coalescence in these flows, since the 

larger bubbles have the same size at both distances. 
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In order to further confirm that the measurements were made out of the exit jet, 

one can analyse the arithmetic average bubble velocity at both distances from the 

injectors, as presented in Figure 2.13 A and B. 

 

A B 

  

Figure 2.13 - Evolution of mean bubble velocity with the distance from the injector: A) injection 

velocity of 60 m/s B) injection velocity of 83 m/s (vertical bars represent the standard deviation of the 

bubble velocity distribution, injectors with a l/i.d. ratio of 10) 

 

Figure 2.13 A and B show that the average bubble velocity was indeed stable 

along the column axis, for both injection velocities. These results bring further evidence 

that all measurements were made outside the gas jet region, validating thus the 

experiments.  

 

Injector designs: ideal solution and practical choices 

 

In the perspective of an injector design able to produce similar bubble size 

distributions over a wide range of superficial velocities, the above analysis leads to the 

following conclusions: 

- The l/i.d. ratio was studied and the results prove that there is no significant 

impact on the bubble size distribution in the range of injection velocities 

considered.  

- no evidence was found of the existence of coalescence at injection in the 

conducted experiments. 

- for “large” injectors and “small” injectors above 20-30m/s injection velocity, the 

mean bubble chord is weakly affected by the gas injection velocity. 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8

M
e

an
 b

u
b

b
le

 v
e

lo
ci

ty
 (

m
/s

)

Distance from the injector (m)

i.d.=1.7 mm i.d.=4 mm i.d.=9 mm

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8

M
e

an
 b

u
b

b
le

 v
e

lo
ci

ty
 (

m
/s

)

Distance from the injector (m)

i.d.=1.7 mm i.d.=4 mm i.d.=9 mm



100 

 

- Standard deviations increase with injection velocity. Yet, they are significantly 

stronger for “large” injectors than for “small” injectors. 

Owing to these trends, selecting “small” injectors appeared as the best solution to 

ensure similar mean bubble sizes over a large range of injection velocity together with a 

restricted extent of their size distribution. In that view, the chosen configuration was 1 

mm internal diameter injectors. The ratio internal diameter/length was set to 10, large 

values of this ratio being favorable for damping any pressure fluctuations. The number of 

injectors must then be chosen with the aim of achieving the desired flow rate with an 

injection velocity at the injector within the tested range. In addition, the spacing between 

injectors should be large enough to avoid (or limit) the interactions between the existing 

gas jets and thus to avoid coalescence at injection. Moreover, the spatial arrangement 

should ensure a homogeneous injection over all the column section and to avert the 

generation of instabilities in the injection’s vicinity. 

These ideal objectives should then be matched with practical constraints. Here below 

we detail the choices made for the injectors of the four columns.  

A perforated plate was the chosen configuration of gas distributor, since it was 

suitable for the several columns used in the study. In addition, it ensures (at least in 

principle) an homogeneous injection over the column section since it allows an even 

distribution of injectors over the whole cross-section. The 0.15 m and 0.4 m diameter 

columns (Phi 150 and Phi 400) have perforates plates 10 mm thicknen with 55 and 391 

injectors of 1 mm diameter, respectively. The plate porosity on both gas distributors is 

0.2 %. Low plate porosity is important to ensure enough pressure drop to allow that all 

orifices are injecting gas even at lower superficial gas velocities. For the 1 m diameter 

column (Phi 1000), we selected a perforated plate with 613 injectors with a 2 mm 

diameter, instead of 1 mm diameter injectors, due to technical manufacturing difficulties. 

However, the plate porosity was kept constant (0.2%) in order to ensure the same injection 

velocity by orifice than the other gas distributors (at iso-vsg). The difference on the 

injectors inner diameter, of 1 mm to 2 mm, is expected to have no influence on the bubble 

size population in the columns. Since the 1.2 mm and 1.7 mm injectors presented similar 

bubbles populations (c.f. Figure 2.4 A). Nevertheless, the homogeneity of the bubble size 

in all the columns will be further verified in the section 2.3. 

Another parameter considered in the gas distributor design was the injectors pitch. 

The use of a sufficiently large pitch was important in order to avoid the bubble 

coalescence at the injection/bubble formation. However, a pitch exceedingly large can 
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induce heterogeneities and instabilities on the flow, contrary to the objective of having a 

homogeneous injection on the column section. Moreover, a large pitch will limit the 

number of injectors on the column surface. Therefore, the chosen pitch was a compromise 

between the number of injectors, the column cross-section and the bubble size, knowing 

that ideally the pitch should be at least the size of a bubble. The injectors were arranged 

in a triangular pitch of 15 mm for the 0.15m and 0.4 m diameter column, and of 38 mm 

for the 1 m diameter column. 

For the 3 m diameter column (Phi 3000), the gas distributor has not been changed 

because of the cost and of the technical difficulties involved. The existing one is a sparger 

comprising 164 injectors with 9 mm i.d. orifices, arranged in a 200 mm pitch.  

Let us now discuss the expected bubble sizes. Recurring to a method that will be 

presented in chapter 3, the information gathered on the average bubble chord C10 is 

transformed into a Sauter mean diameter along the vertical (𝐷𝑣32 =
∑ 𝐷𝑣𝑖

3𝑛
0

∑ 𝐷𝑣𝑖
2𝑛

0
) using 𝐶10 =

2

3
𝐷𝑣32. This transformation is based on the assumptions that the bubbles have rectilinear 

motion and that all the bubbles have the same shape, later being either spheres or 

ellipsoids with the same eccentricity. Thus the expected 𝐷𝑣32 was estimated for the 

lowest and highest gas injection velocities considered in the single jet experiments. The 

resulting superficial gas velocity was calculated taking into consideration the gas 

distributor configuration (size and number of injectors) for each column. Indeed, for a 

given gas injection velocity and a number of injectors, the gas flow rate injected in the 

column is evaluated, and it is transformed into a superficial gas velocity by diving the 

flow rate by the column cross-section. For the columns Phi 150, Phi 400 and Phi 1000, 

the 𝐷𝑣32 was estimated from the mean chord detected for the 1.7 mm i.d. single injector. 

This estimation was made under the assumption that a 1 mm and 2 mm i.d injectors 

produce the same bubble populations, an assumption supported by the quite similar 

results obtain for the 1.2 mm and 1.7 mm i.d. single injectors, as presented above. The 

estimation of the bubble Dv32 for the Phi 3000 column was made from the results obtained 

for the 9 mm i.d. single injector The estimation of the bubble size in each column, which 

are presented in Table 2.6: in terms of vsg the table covers nearly the whole range of 

conditions that will be considered in our experiments. 
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Table 2.6 – Prediction of expected the 𝑫𝒗𝟑𝟐 of the bubble population at injection and for all the 

columns. 

 
  

Phi 
150 

Phi 
400 

Phi 
1000 

Phi 
3000 

 Injectors i.d. (mm) 1 1 2 9 

Injection velocity 
(m/s) 

Number of injectors 55 391 613 164 

9.8 m/s 

Superficial gas velocity 
(cm/s) 

2 1.5 

Dv32 (mm) 2.8 4.9 

83 m/s 

Superficial gas velocity 
(cm/s) 

20 12 

Dv32 (mm) 4.9 6.3 

 

The two configurations of gas distributors installed on the Phi 150, 400 and 1000 

columns are expected to generate equivalent bubble populations, with a vertical Sauter 

mean diameter evolving with the superficial gas velocity from 2.8 to 4.9 mm. In the Phi 

3000 column, larger size of bubbles are expected, the latter evolving from 4.9 to 6.63 

mm: at a given superficial gas velocity, these sizes are somewhat larger than those 

expected on three other columns. This trend is especially neat at very low superficial gas 

velocities. 

 

2.2 Experimental set-up 

 

In the present work four different columns with 0.15 m, 0.4 m and 1 m and 3m 

inner diameters were tested. The diameter tolerance on the columns is ±0.5 mm, ±0.8 

mm, ±1.2mm, ±2 mm for the 0.15 m, 0.4 m and 1 m and 3m diameter columns, 

respectively. Moreover, the verticality of all the columns was verified a bubble level. 

All the experiments were conducted with compressed air, which had been dried 

and cooled, as the gas phase and with water, with no net liquid flow rate, as the liquid 

phase. In the 0.15 m, 0.4 m and 1 m diameter columns the water came from the public 

system. However, due to its volume (45 m3), in the 3 m diameter column was used 

untreated water coming from a water well. This water source was not analyzed, so there 

is no information about the possible contaminants on the water. In addition, the 0.15 m, 

0.4 m and 1 m diameter columns were operated with a liquid static height/column 
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diameter ratio of 4. On the other hand, the 3 m diameter column has operated with 2.2 

liquid static height/diameter ratio because the column is only 12 m height. 

 

0.15 m diameter column (Phi 150) 

 

The smaller bubble column used in this study was 0.15 m in diameter and 1 m high (Figure 

2.14 A), in which it is easy to change the air distributor. For the experiments where a 

single orifice injector was used, it was always placed in the centre of the column bottom 

(c.f. Figure 2.1). In the remainder experiments, a perforated plate was used as a gas 

distributor. The perforated plate was 10 mm thick and has 55 holes of 1 mm inner 

diameter, spaced in a 15 mm triangular pitch, yielding a porosity of 0.24%. The air enters 

in the column by way of a 2 litres gas chamber located under the perforated plate. The air 

flow is controlled by two Brooks mass flow controllers in the range from 0 to 1 Nm3/h 

and 0 to 60Nm3/h with a flow rate resolution of 0.01 Nm3/h and 0.1 Nm3/h. The superficial 

gas velocity was measured with an uncertainty of ±5%. 

. 

 

A B C D 

  
 

 

 

Figure 2.14 – A) 0.15 m diameter column; B) 0.4m diameter column; C) 1 m diameter column; D) 

3m diameter column 
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0.4 m diameter column (Phi 400) 

 The second bubble column studied in this work had 0.4 m inner diameter and was 

3.25 m high, as can be seen in Figure 2.14 B. Also constructed in Plexiglas, this column 

is equipped with a perforated plate with 391 holes of 1 mm diameter, arranged in a 15 

mm triangular pitch, yielding a plate porosity of 0.2%.The perforated plate has 10 mm 

thickness and it is located on top of a 25 liters air chamber. The air flow is controlled by 

three Brooks mass flow controllers in a range from 0 to 60 Nm3/h with a resolution of 0.1 

Nm3/h. The superficial gas velocity was measured with an uncertainty of ±7%. 

1m diameter column (Phi 1000) 

 The third column had 1 m inner diameter and was 5.7 m high, as depicted in Figure 

2.14 C. The gas distributor was a perforated plate made of stainless steel, contrarily to the 

gas distributors used in the Phi 150 and 400 columns that were constructed in PMMA. As 

a consequence, it was technically challenging to perforate 1 mm holes, so the solution 

was to use 2 mm diameter holes. However, the distributor was 20 mm thick, which kept 

the same l/d ratio of the injectors, and also 0.2% of porosity. The final design consists in 

613 holes of 2 mm in diameter, arranged in a 38 mm triangular pitch. The air flow was 

controlled by four rotameters with capacities of 60 Nm3/h, 300 Nm3/h and two of 600 

Nm3/h, and a resolution of 5 Nm3/h, 20 Nm3/h and 50 Nm3/h, respectively. The superficial 

gas velocity was measured with an uncertainty of ±12%. In addition, the air entered into 

the column through a 780 liters air chamber, located under the gas distributor. 

 

3m diameter column (Phi 3000) 

 The largest column studied in this work had 3 m in diameter and 12 m height. It 

was not possible to change the gas distributor on this column. The one available for this 

column was a tubular sparger with 164holes of 9 mm i.d. and 5 mm thick arranged in a 

200 mm square pitch, yielding a porosity of 0.15%. The air flow is controlled by mass 

flow controllers in a range from 0 to 10200 Nm3/h which uncertainty was measured 

recurring to a standard flow meter to be of ±10%. Moreover, due to technical difficulties 

this column was only operated in the superficial gas velocity range between 5 cm/s and 

15 cm/s.  

 

The main design parameters of four injectors are listed in the following table. 
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Table 2.7- Injectors design parameters for all the columns. 
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Phi 150 6 4 1 55 15 (triangular) 0.2 13-140 
3-35 

±5% 
10 

Phi 400 8 4 1 391 15(triangular) 0.2 13-140 
3-35 

±7%. 
10 

Phi 1000 6 4 2 613 38(triangular) 0.2 13-140 
3-35 

±5%. 
20 

Phi 3000 4 2.2 9 164 200(squared) 0.15 37-103 
5-15 
±10% 

5 

 

2.3 Injection conditions in the various columns 

Characterization of bubble size 

 

After designing the gas distributors it was necessary to verify if the bubble size 

was stable for all the superficial gas velocities and for all the columns, and if the bubble 

injection rate was constant over the columns cross-sections. In addition, the bubble size 

measured in the columns were also compared to the single injector results, detailed in 

section 2.1 on a single injector. 

To do so the bubble size was measured at an elevation 16 cm above the perforated 

plates, in the three columns (Phi 150, Phi 400 and Phi 1000), using the 1C mono-fiber 

optical probe. Such measurements were not done in the Phi 3000 column, the adaptation 

of the probe holder being complex and also far too time consuming. 

The PDFs of the bubble chords detected in the column center, at vsg of 3 cm/s, 16 

cm/s and 25 cm/s are presented in Figure 2.15 A, B and C, respectively.  
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A 

 

B 

 

C 

 

Figure 2.15 – Bubble chords PDFS in different columns at superficial gas velocities of: A) 3cm/s, B) 

16 cm/s, C) 25cm/s. (measurements made at 16 cm from the gas distributor, in the center of the 

column) 

 

Figure 2.15 A shows that for each of the three superficial gas velocity investigated, 
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columns Phi 400 and Phi 1000 are nearly identical or at least very close. The chord 

distributions detected in the Phi 150 columns happen to be slightly different, with the 

maxima of the PDFs shifted to higher chords. Yet the difference is slim (the shift is from 

0.4 mm to 0.5 mm). Besides, the maximum values of the chords are identical in all the 

columns. 

The same data have been reorganized in Figure 2.16 to illustrate the evolution of 

cord PDFs with the superficial gas velocity for each column. These distributions are 

insensitive to vsg in the Phi 1000 column. The same trends holds for the Phi 150 and Phi 

400 for superficial gas velocities higher than 10 cm/s. The deviations observed at the 

lowest vsg correspond to the disappearance of the largest cords (Figure 2.16). 
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A 

 

B 

 

C 

 

 

Figure 2.16 - Bubble chords PDFS in different superficial gas velocities in the columns: A) Phi 150, 

B) Phi 400, C) Phi 1000. (measurements made at 16 cm from the gas distributor, in the center of the 

column) 
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Accordingly, the standard deviations, shown in Figure 2.17, are in a range from 4 

mm up to 6 mm for superficial gas velocities higher than 10 cm/s, in the Phi 400 an Phi 

1000 columns. For all the other conditions, the standard deviations present smaller values, 

about 2 mm. 

 

 

Figure 2.17 – Standard deviations of the bubble chords distributions for several superficial gas 

velocities and column diameters. (measurements made at 16 cm from the gas distributor, in the 

center of the column) 

 

To further analyze the bubble size population, the Sauter mean vertical diameter 

(Dv32) was deduced from the mean detected chord, using the same method as in section 

2.1. Measurements were obtained at 3, 16 and 25 cm/s: the radial profiles of the mean 

vertical diameter are given in Figure 2.18 A, B and C, respectively. The measurements 

were obtained at a superficial gas velocity of 3 cm/s, 16 cm/s and 25 cm/s: the radial 

profiles are shown in Figure 2.18 A, B and C, respectively. The measurements were only 

made up to a dimensionless radial position x/R=0.8 due to the size of the probe support. 

The vertical bars plotted in Figure 2.18 represent the standard deviation of the bubble 

chord distributions for each measurement. 
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A 

 

B 

 

C 

 

Figure 2.18 – Radial profiles of the Sauter mean vertical diameter in different columns at 

superficial gas velocities of: A) 3cm/s, B) 16 cm/s, C) 25cm/s. (measurements made at 16 cm above 

the gas distributor, vertical bars represent the standard deviation of the bubble chord 

distributions) 
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 By analyzing Figure 2.18 A, it is possible to conclude that at the superficial gas 

velocity of 3 cm/s the bubble vertical diameter evolve between 3 and 6 mm along the 

column diameter. Both the Phi 150 and Phi 400 columns presented both a constant Dv32≈ 

3 mm along the column diameter. For the Phi 1000, the Dv32 varies from 4 mm in the 

column center, up to 6 mm at x/R=0.4, and, decreases to 5 mm at larger radial distances. 

 Figure 2.18 B represents the radial profiles of the Dv32 at vsg=16 cm/s. It shows 

that the Phi 150 column has a flat profile around 3 mm. The same holds for the Phi 400 

column, but in this case with Dv32≈4 mm. In the Phi 1000 column, and like it has been 

seen in Figure 2.18 A, the bubble size evolves between 4 mm and 6 mm, along the column 

radius.  

 At 25 cm/s (Figure 2.18 C), the Phi 150 and Phi 400 columns present flat profiles 

around 4 mm and 5 mm, respectively. Again, the Phi 1000 column presents a similar 

radial evolution of the bubble size, as seen at lower superficial gas velocities, with Dv32  

ranging from 4 mm up to 6 mm. 

 Concluding, the Phi 150 and Phi 400 columns present flat radial profiles of bubble 

size in all the tested conditions, but with an increase on the of Dv32 with the superficial 

gas velocity from 3 mm to 4 mm and from 4 mm to 5 mm, respectively. Let us note that, 

the final injection configuration presents a weaker bubble size evolution with the 

superficial gas velocity than the one observed for a single injector (namely 2.8mm – 4.9 

mm, see section 2.1). Despite the small variations in the bubble Dv32 (typically 1 mm), it 

is possible to affirm that the goal of having a stable and homogenous bubble size between 

the columns was obtained for the Phi 150 and Phi 400 columns.  

Contrarily to the above mentioned columns, the bubble size evolves along the 

column radius in the Phi 1000 column, with Dv32 ranging from 4 mm up to 6 mm. The 

profiles are all close to a parabola with a maximum in size at x/R= 0.4. Such a shape may 

results from the lateral motions due to the recirculating liquid. Indeed, the measurements 

are performed at h=16 cm, i.e., a low h/D value and more homogeneous conditions may 

be reached at larger distances from injection: this question will be addressed in chapter 

4where the experimental data are analyzed. Note that, as h is fixed, the ratio h/D is not 

the same for the other columns diameters, and that may explain the flatness of the profiles 

for the Phi 150 and Phi 400 columns. Also, and compared with a single injector 

conditions, much larger size are detected in the Phi 1000, possibly due to some 

coalescence in the vicinity of the injector (that question will be revisited in the chapter 4). 
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Nevertheless, for the Phi 1000, there is no significant evolution of the bubble size with 

the superficial gas velocity. 

A resume of the estimated Dv32 from single injector experiments (c.f. section 2.1) 

and the measured Dv32 in the final gas distributor configurations is presented in Table 2.8 

 

Table 2.8- Estimated and measured Dv32 for the Phi 150, Phi 400 an Phi 1000 columns. 

     Measured Dv32 (mm) 

Vsg (cm/s) Column Estimated Dv32 (mm) Vsg (cm/s) Column 
Min 

detected 
Max 

detected 

2 

Phi 150 

2 3 

Phi 150 2.6 3 

Phi 400 Phi 400 2.6 3.2 

Phi 1000 Phi 1000 3.2 5.8 

20 

Phi 150 

4.9 

16 

Phi 150 2.6 5.8 

Phi 400 3.8 4.6 

Phi 400 
Phi 1000 3.9 6.3 

25 

Phi 150 2.8 4.8 

Phi 1000 
Phi 400 3.6 5 

Phi 1000 4 6.3 

 

The results show that for a superficial gas velocity of 3 cm/s, the Dv32 in the Phi 

150 and Phi 400 column ranges between 2.6 mm and 3.2 mm. These result are in  a good 

agreement with the estimated Dv32 (≈2 mm) issued from the single injector experiments. 

Yet, larger bubbles were detected on the Phi 1000 column with Dv32 up to 5.8 mm. Yet, 

superficial gas velocities (16cm/s and 25 cm/s), the bubble size in the three columns 

becomes quite close with a Dv32 ranging between 3 mm and 6 mm. The predicted Dv32 

for a superficial gas velocity of 20 cm/s was 5 mm, showing the good agreement with 

single injector experiments.  

Concluding, the objective of injecting similar a bubble size in the three columns 

at all superficial gas velocities was fulfilled in most cases. Indeed, and except of the Phi 

150 the Phi 400 columns at the smallest superficial gas velocity (3cm/s), the Sauter mean 

vertical diameter evolves between 3.4 mm (±0.6mm) and 5.5 mm (+0.8/-0.9 mm) in all 

the tested conditions and over the column cross-sections. In additions, the width of the 

size distributions are similar (standard deviation ≈ 5 mm) in the Phi 400 and in the Phi 

1000 provided that the superficial gas velocity is higher than 3 cm/s. For all other 

conditions, the standard deviations are comprised between 1 and 3 mm. 
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The experimental data are adapted and reported in Figure 2.19 that depicts a map 

of bubble shape regimes as a function of Eötvos, and Morton numbers. The equivalent 

diameter, that represents the diameter of a iso-volume sphere, is here computed through 

the Dv32, assuming a bubble eccentricity of 0.7, which is the mean value in the 

experimental conditions (c.f. section 3.4). The corresponding Eötvös number (Eq. (1.2)) 

evolves from 2 (Dv32= 3 mm and De= 3.8 mm) to 7.9 (Dv32= 6 mm and De= 7.6 mm)and 

for a Morton number (Eq.(1.13)) of 2.63 × 10−11 (air/water system). The grey lines on 

Figure 2.19 represent the range of the experimental conditions: in all cases the bubbles 

correspond to wobbling ellipsoidal bubbles. That conclusion will be confirmed in section 

3.4, by in situ optical measurements. 

Besides, the particulate Reynolds (Eq. (1.2)) number can be deduced from this 

map. It ranges from 1200 to 2500, corresponding to terminal velocities in still fluid 

comprised between 31 cm/s and 33 cm/s. It should be notice that the contamination is not 

precisely accounted for here, however it is not expected to have a drastic impact in this 

regime. 
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Figure 2.19 – Shape regimes for bubbles in unhindered gravitational motion trough liquids (Clift et 

al., 1978) (Vertical grey lines represents the range of Eötvös number for this work) 

 

Characterization of the bubble flux 

 

 As already, said, aside bubbles sizes, the second objective of the gas distributor 

design was to obtain a uniform gas injection gas over the entire cross-section of the 

column. The 1C mono-fibre optical probe can measure the local gas hold-up (g) and the 

local gas flux (jg), as it will be detailed in section 3.3.  

Further investigation of the gas distribution in the column can be achieved by the 

study of the gas hold-up profiles in the vicinity of the injection. Therefore, Figure 2.20 A, 

B and C presents the gas hold-up profiles obtained by the 1C mono-fibre optical probe in 

the Phi 150, Phi 400 and Phi 1000 columns, respectively. 
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A 

 

B 

 

C 

 

Figure 2.20 – Radial profiles of the gas hold-up in Phi 150, Phi 400 and Phi 1000 columns: A) 3 

cm/s; B) 16 cm/s; C) 25 cm/s (measurements taken at 16 cm from the gas distributor) 
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section. At higher superficial gas velocities, the local gas hold-up radial profiles become 

slightly parabolic, especially for the Phi 150 and Phi 400 columns. However, for the 

profiles for the Phi 1000 column are quite flat, even at superficial gas velocity of 25 cm/s. 

This phenomenon can be linked with the liquid recirculation in the columns. Indeed, the 

zone of establishment of the liquid flow roughly corresponds to h/D≈1 (elevation on the 

column/column diameter ratio), as presented in chapter 1. Since the distance from the 

injector is fixed to 16 cm (to ensure that the measurements are made outside of the 

coherent region of the gas jets), the ratio h/D is decrease from small to large columns. In 

that view, it is probable that the measurements performed in the smaller columns were 

made far enough from the injector, to perceive the entrainement by the liquid 

recirculation, and thus the start of the formation of a parabolic-type void fraction profile. 

In the Phi 1000 column the measurements were made at h/D=0.16, i.e. in a zone where 

the entrainment is not yet efficient, leading thus to flat profiles. The axial evolution of the 

gas hold-up profiles will be analysed in the chapter 4. Whatever the reasons of these 

differences, it happens that, at iso-vsg, similar local gas hold-up values were measured in 

the three columns in the tested conditions. So, it is possible to conclude that, the objective 

of ensuring an even gas concentration distribution over the various columns cross-section 

and in the whole considered range of superficial gas velocity was reached. 

A better check would consist in considering the gas flux instead of the gas hold-

up profile. As referred in the beginning of this section, the 1C mono-fibre optical probe 

can also measure the local gas flux. However, it should be notice that these measurements 

were performed in the bottom of the column, a zone where the liquid flow reversal takes 

place. Consequently, strong transversal liquid and gas velocities are to be expected, that 

represent very challenging conditions to perform velocity measurements with the 1C 

mono-fibre optical probe. Indeed, the velocity measurements using conical optical probes 

are reliable for angles between the probe axis and the bubble trajectory typically 

comprised between ±30° (Cartellier and Barrau, 1998 A). Additionally, significant errors 

on the gas flux estimation on the cross-section of the column were found at higher 

elevations in the column (c.f. section 3.5) even though the mean flow orientation is more 

favourable for a correct probe functioning. For all these reasons, the flux measurements 

performed in the three columns and at an elevation of 16 cm above the gas distributor 

should be considered with care. The radial profiles of the local volumetric gas fluxes are 

presented in Figure 2.21 A,B and C, for superficial gas velocities of 3 cm/s, 16 cm/s and 

25 cm/s respectively. 
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A 

 

B 

 

C 

 

Figure 2.21 – Radial profiles of the local gas volumetric flux sense in the Phi 150, Phi 400 and Phi 

1000 columns: A) 3 cm/s; B) 16 cm/s; C) 25 cm/s (measurements taken at 16 cm from the gas 

distributor) 
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Figure 2.21 A shows that at 3 cm/s the local gas flux (jg) is constant at around 0.04 

m/s in the Phi 150 and Phi 1000 columns. However, in the Phi 400 column there is a 

misdistribution of gas, since on the left hand size of the image the jg reaches values up to 

six times higher than in the right hand side of the image (jg max= 0.05 m/s; jg min= 0.008 

m/s). One possible cause for this phenomenon may be the radial entrance of the gas flow 

in the gas chamber. Indeed, that gas entrance corresponds to the left hand size of the 

Figure 2.21 in the Phi 400 column. There is no such asymmetry the Phi 150 and Phi 1000 

columns as the gas flow entrance in the gas chamber is achieved along the symmetry axis.  

For a superficial gas velocity of 16 cm/s (Figure 2.21 B), Phi 400 column presents 

a parabolic profile of jg with a value 0.16 m/s in the centre of the column and 0.09 m/s at 

x/R=0.8. The Phi 150 and Phi 1000 columns present a peak around x/R=0.2 (0.18 m/s 

and 0.23 m/s, respectively) and minimum value at further radial distances (0.06 m/s and 

0.16 m/s, respectively). Furthermore, similar trends are found for the 25 cm/s 

experiments, with higher values of jg. The Phi 150 and Phi 400 columns present parabolic 

profiles ranging from 0.12 m/s and 0.16 m/s in the column centre to 0.06 m/s and 0.10 at 

further radial distances. The Phi 1000 column, as discussed for the other superficial gas 

velocities, presents a maximum of 0.35 m/s at x/R=0.2 and a minimum of 0.13 m/s at the 

position x/R=0.8. Two different causes could explain these results: a higher flux of gas is 

being injected in the column centre rather than near the wall or the bubbles in the centre 

of the column are already being accelerated by the liquid recirculation. Since jg increases 

with the column diameter and with the superficial gas velocity, as observed in the liquid 

velocity, this fact supports the latter hypothesis. For that reason, the detected 

characteristics of jg are not due to the injection dynamics alone but are related with the 

hydrodynamics in the entire column.  

 

In this chapter, the four experimental set-up have been presented. Attention has 

been paid to design optimised gas distributors for the Phi 150, 400 and 1000 columns 

while for technical reasons, the distributor for the Phi 3000 remained unchanged. These 

new distributors were able to generate relatively homogeneous conditions over the entire 

columns cross-sections, both in terms of bubble size distribution and of concentration (the 

homogeneity in terms of gas flux was not properly checked due to the limitations of the 

measuring techniques). If one sets aside the Phi 150 and Phi 400 columns operated at the 

lowest superficial gas velocity of 3 cm/s, the vertical mean Sauter diameters Dv32 range 

typically from 3.4 mm (±0.6 mm) and 5.5 (+0.8/-0.9 mm) in all the tested conditions and 
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over the columns cross-sections. Such bubbles correspond to Eö numbers in the range of 

2 to 7.9: they all pertain to the wobbling ellipsoidal regime, with a the terminal velocity 

in a still fluid between 31 cm/s and 33 cm/s. 
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3 Measurement techniques  

As presented in chapter 1, this study aims to locally measure the bubble velocity and 

size and the liquid velocity at high gas hold-up. These measurements will be performed 

in the experimental set-ups presented in chapter 2. In the present chapter the adopted 

measuring methods and their measuring capabilities will be detailed.  

A Pavlov tube method, described in section 3.1, is used to measure the liquid velocity 

and its fluctuations. An endoscopic flow visualization technique, that will notably be used 

to validate optical probe measurements, is presented in section3.2. The chosen method to 

locally measure gas hold-up, bubble velocity and vertical size, namely the 1C mono-fiber 

optical probe, and its signal treatment are presented in section 3.3. An extension of the 

optical probe measurement capacities to measure a mean horizontal bubble diameter is 

described in detail in section 3.4. This new method is based on the spatial cross-

correlation between the signals of two optical probes separated by a given distance. A 

theoretical model to interpret the variation of the cross-correlation value with the distance 

between probes for several bubble shapes and orientations is also illustrated in section 

3.4. Finally, in section 3.5, the 1C mono-fiber optical probe and the cross-correlation are 

validated in different flow regimes by comparison with other measuring methods. 

 

3.1 Pavlov tube 

The Pavlov tube was the chosen method for liquid velocity measurements in the 

present work, due to its simplicity and its capacity to measure liquid velocity at high gas 

hold-up (Forret et al., 2003, 2006). The hot film anemometry was also a possibility, which 

is a method that is able to measure multiples velocity components. However, this method 

requires frequent recalibrations and its use in high gas hold-up can be very challenging.  

  

Apparatus 

 

The Pavlov tube used in this work is composed by four 5 mm diameter tubes, 

arranged as it is shown in the right-hand side of Figure 3.1. The four tubes are placed 

inside a 30 mm diameter tube, that crosses horizontally the column, in order to obtain 

rigidity and to allow horizontal displacement. The 5 mm diameter tubes are completely 
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closed, except for a 0.5 mm diameter lateral hole that assure that the pressure inside the 

tube is equal to the one in the column. 

 

Figure 3.1 – Schematic representation of the Pavlov tube. (Axial measurements are performed 

along a vertical axis, radial measurements are performed along a horizontal axis) 

 

The holes of the tubes on the vertical plan are placed in the same axis but in opposite 

directions, as can be seen in Figure 3.1. Additionally, each of the tubes on the vertical 

direction is connected to one of the chambers of a differential pressure sensor. These tubes 

serve to measure the axial pressure difference, since the holes on the tubes are aligned 

with the column vertical axis.  

Similarly, the holes of the tubes on the horizontal plan are also aligned in the same 

axis but in opposite directions, as can be seen in Figure 3.1. Moreover, these tubes are 

also connected to a chamber of a second differential pressure sensor. The horizontally 

aligned tubes will measure the radial pressure difference, since the holes on the tubes will 

be aligned with the column radial axis. The four tubes are filled with water in order to 

assure quasi instantaneous response time.  

The simultaneous measurements of the radial and axial pressure differences (ΔP) 

can be used to calculate the radial (vl) and axial (ul) liquid velocity recurring to the 

following equation. 

 vl(t) =

{
 
 

 
 
√
2ΔP(t)

𝜌𝑙
 𝑖𝑓 ΔP(t) ≥ 0 

−√
−2ΔP(t)

𝜌𝑙
 𝑖𝑓 ΔP(t) < 0

 (3. 1) 
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Two different sets of pressure sensors were used, in the first configuration were 

used two Rosemount 3051T differential pressure transmitters that have a frequency of 8 

Hz. The axial ΔP measurement was made with a differential pressure transmitter with a 

range of ±60 mbar and resolution of 0.01 mbar. The radial ΔP measurement was made 

with pressure transducer with a range of ±7 mbar with a resolution of 0.001 mbar. Note 

that each branch was connected to one side of the sensor membrane: so doing these 

sensors were able to measure positive and negative values of ΔP, namely positive as well 

as negative velocities. 

In order to reach a higher time resolution, the Rosemount pressure sensors were 

replaced by 100 Hz frequency Keller sensors. However, these sensors can only measure 

positive values of ΔP, making it necessary to connect each branch of the Pavlov tube to 

a separate sensor. The other connection of the pressure sensor was left open to the 

atmosphere, to measure the absolute pressure. The resulting ΔP was calculated during 

the signal post-treatment. In this configuration each branch dedicated to measure the axial 

ΔP was connected to a 0 - 500 mbar sensor with a resolution of 2.5 mbar. Likewise, the 

each of the radial branches was connected to a 0 - 200 mbar sensor with a resolution of 1 

mbar. A resume of the characteristics of the four different pressure sensors is presented 

in Table 3.9. 

 

Table 3.9 – Characteristics of pressure sensors used with the Pavlov tube. 

Pressure 
sensor 

Velocity 
component 

Frequency 
(Hz) 

Pressure 
range (mbar) 

Pressure 
resolution 

(mbar) 

Velocity 
range 
(m/s) 

Velocity 
resolution 

(m/s) 

Rosemount 
3051T 

Axial 
8 

±60 0.01 ±3.5 0.04 

Radial ±7 0.001 ±1.2 0.01 

Keller Series 
PD23 

Axial 
100 

0 - 500 0.2 ±10 0.2 

Radial 0 - 200 0.08 ±6.3 0.12 

 

According to Table 3.9, with the 8 Hz frequency pressure sensors the Pavlov tube 

can be used to measure liquid velocities higher than 0.04 m/s on the axial direction and 

0.01 m/s on the radial direction. When using the 100 Hz sensors, the Pavlov tube is able 

to measure liquid velocities from 0.2 m/s on the axial direction up to 0.12 m/s on the axial 

direction. 

The second limitation of this method is a consequence of the fact that the Pavlov is 

a tube that crosses the column. Therefore, the measurements can only be acquired at 
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heights where it is possible to insert the tube in the column. The radial profiles are easily 

obtained by moving the measuring cell along the column radius. However, it is necessary 

to ensure a good alignment between the holes and the desired components of the velocity. 

Forret (2003) has shown that the velocity measured by the Pavlov tube changes with the 

angle between the measurement direction and the velocity direction. For angles up to 45°, 

the measured velocity decreased proportionally with the cosine of angle between the 

measurement direction and the velocity direction. In order to avoid the misplacement of 

the holes, the external tube had a mark that allowed to visually verify the verticality of 

the vertical holes. Since the radial holes are perpendicular to the vertical ones, only one 

verification is necessary. 

 

Pavlov tube measurements 

 

 Before each measurement the differential pressure was registered during 30 s in a 

stagnant liquid (no gas or liquid throughput). The mean value of the differential pressure 

obtained during this period is considered as the “zero” of the sensor. Moreover, this 

procedure is repeated after the measurement in order to detect if any bubble has entered 

the tube. In case of presence of a bubble in the measurement chain, the differential 

pressure will not match the one acquired before the measurement. If the initial and final 

differential pressures diverge of more than 0.1 mbar, the whole measurement chain will 

be flushed, with water, in order to ensure that the gas bubble is removed and the 

measurement is repeated. The pressure measurement chain was calibrated in all the 

detectable range recurring to a dedicated Mensor standard pressure sensor. 

 In each measurement, both differential pressures are sampled and the 

instantaneous velocity components (ul,vl) are calculated by Eq. (1.15). The experiments 

were carried out over 300 s to assure ±10% of convergence on the average velocity, as 

shown in Figure 3.2. 
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A B 

  

 

Figure 3.2 –A) An example of a Pavlov tube measurement; B) A zoom of the signal between 200 s 

and 230 s. (Dashed lines – 10 % convergence of the averaged velocity, acquisition rate: 100 Hz). 

  

The velocity fluctuations (u’ and v’) can be calculated through the instantaneous 

and the averaged velocities, using Reynolds decomposition, as presented in the following 

equation. 

 𝑢(𝑥, 𝑡) = 𝑢(𝑥)̅̅ ̅̅ ̅̅ + 𝑢′(𝑥, 𝑡) (3. 2) 

Where 𝑢(𝑥)̅̅ ̅̅ ̅̅  represents the mean liquid velocity, 𝑢′(𝑥, 𝑡) represents the liquid 

fluctuation velocity at the instant t and 𝑢(𝑥, 𝑡) represents the liquid velocity at the instant 

t. Therefore, using the velocities fluctuations it is possible to calculate the turbulent 

intensities (u’² and v’²) and the Reynolds stress (u’v’). However, it should be noticed that 

the pressure measurements were done over 15x15 mm window, as can be seen in Figure 

3.1. This distance between the pressure measuring points is not taken into account in Eq. 

3.1. Consequently, this method will not be able to measure velocity fluctuations inside 

structures smaller than the measurement window. Moreover, it is necessary to verify if 

the pressure range available with each pressure sensor is adapted to the velocity range 

that is intended to be measured. The 8 Hz frequency pressure sensors were only used in 

the Phi 150 and Phi 400 column. Since, the liquid velocity and turbulence is expected to 

increase with the column diameter the available velocity range for 8 Hz frequency sensor 

will be only compared with the maximum velocities detected on the Phi 400 column. The 

100 Hz frequency sensor velocity range will be compared with the maximum velocities 

detected in the Phi 1000 column. The maximum detected velocities and the velocity range 

are presented in the next table. 
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Table 3.10 – Comparison between the available range of velocity and maximal detected velocity for 

each pressure sensors used with the Pavlov tube. 

Pressure sensor 
Velocity 

component 
Frequency 

(Hz) 
Velocity range 

(m/s) 

Velocity 
resolution 

(m/s) 

Maximum 
detected 
velocity 

(m/s) 

Rosemount 3051T 
Axial 

8 
±3.5 0.04 2 

Radial ±1.2 0.01 0.9 

Keller Series PD23 
Axial 

100 
±10 0.2 5 

Radial ±6.3 0.12 2.7 

 

Table 3.10 shows that the maximal detected velocities are inside the available 

velocity range of all sensors. Therefore, it is possible to conclude that velocity detection 

it is not limited by the velocity range. Nevertheless, is should be noticed that the resolution 

on velocity measurement are not the same for all the sensors, as shown in Table 3.9. 

Under the limits indicated in Table 3.10, the velocity will be considered as zero. The 8 

Hz frequency pressure sensors have high velocity resolution, namely 0.01 m/s and 0.001 

m/s for the axial and radial velocity components. However, the 100 Hz frequency pressure 

sensor provides a velocity resolution of 0.2 m/s and 0.12 m/s for the axial and radial 

components of the velocity, respectively. Therefore, some limitations can be found in the 

measurement of low liquid velocities. 

 

3.2 Endoscope 

 For in situ bubble size and shape measurements and also for the validation of the 

cross-correlation technique (that is presented hereafter), a flow visualisation methodology 

was required that could be applied in all columns and for all void fractions. An endoscopic 

technique was chosen because it does not require optical access through the column wall 

and also because its short working distance allows its usage inside bubbly flows. As a 

matter of fact, at high concentrations, only the bubbles in the wall region are visible (Mass 

et al., 2001). 
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Apparatus 

 

A 0.7 m long and 8 mm diameter Sirius endoscope from the society Foretec was 

used to obtain images of the flow. These were captured with a high speed video camera 

Baumer HXC20, with a 2/3” captor, through the acquisition software StreamPix 5. A 

LED panel was installed in the opposite side of the column to supply the necessary light 

intensity to capture high speed videos.  

In the experiments made in the Phi 150 column, a light source with a power 400 

lm was placed outside the column, in front of the endoscope, as shown in Figure 3.3 A. 

In the Phi 400 and Phi 1000 columns, due to the increase of the column scale, it was 

necessary to place the light source close to the measurement point. A 50 mm diameter 

tube was inserted radially in the column, as shown in Figure 3.3 B, to guide the light beam 

from a 50 mm diameter spot light with a power of 500 lm, placed outside of the column, 

up to the measuring point. 
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A 

 

B 

 

C 

 

Figure 3.3 – Schematic representation of: A) the endoscope experiments on Phi 150; B) the 

endoscope experiments on Phi 400 and Phi 1000 C) Endoscope view angle and depth of field. 

Endoscope measurements 

 

The endoscope is equipped with a lens with 90° vision angle with a depth of field 

of 3 mm, the extension of the field of view is ≈25 mm, which should be larger enough 

compared with the bubble size. An object placed inside of this field can be measured with 

+/- 7% of uncertainty due to the variation of the magnification inside the depth of field. 

The high speed camera was configured to take images with 50 µs of exposure time to 

freeze the moving bubbles. The images had spatial resolution of 35 pixels/mm and the 

minimal detectable size was 0.3 mm. In the image analysis it was assumed that the 

LED panel

Φ=8 mm
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Column walls
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bubbles had an ellipsoidal shape. The bubbles were manually selected under somewhat 

subjective criteria based on sharpness. Also, bubbles overlapped by other bubbles or that 

were only partially visible in the field, were not considered. For each selected bubble, the 

horizontal diameter (big diameter), the vertical diameter (small diameter) and their angle, 

relatively to a horizontal axis, were measured. Figure 3.4 presents two examples of the 

images obtained by this method. Moreover, the solid line represents the measurement of 

the vertical diameter and the dashed line the horizontal diameter.  

 

Vsg=0.015m/s Vsg=0.15 m/s 

  

Figure 3.4 - Examples of endoscopic images (Measurements taken at the centre of the Phi 150 

column, using an outside illumination). 

 

The selection of the bubbles is also represented in the Figure 3.4. The bubbles that 

would be selected to be measured have a dashed line over their horizontal diameter and a 

solid line over their vertical diameter. The other bubbles would be considered to be either 

out of the depth of field or overlapped. The bubble eccentricity (Ecc), i.e. the ratio 

between the vertical diameter (Dv) and the horizontal one (Dh) was calculated for each 

bubble by the following equation. 

 𝐸𝑐𝑐 =
𝐷𝑣

 Dh
 (3. 3) 

 

 Due to the image’s small contrast it was not possible to develop an automatic 

measurement routine. Therefore, all measurements were hand-made, a laborious and 

time-consuming process, making it necessary to minimize the number of treated images. 



130 

 

The convergence of bubble horizontal and vertical diameter and eccentricity is depicted 

in Figure 3.5. 

 

Figure 3.5 – Convergence of the mean values of eccentricity, horizontal and vertical diameters. 

(Measurements taken at the centre of the Phi 150 column, using an outside illumination, dashed 

lines represent the convergence range of each variable) 

 

The results show that for 100 measured bubbles the three parameters are already 

inside a ±5% convergence range. Nevertheless, to assure that the convergence will be 

achieved, even in conditions were the bubble size population is more polydispersed, each 

measurement comprises 200 bubble detections. Moreover, the PDFs of vertical and 

horizontal diameters and of eccentricity are presented in Figure 3.6. 
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A B 

  

C 

 

Figure 3.6 – PDFs from endoscopic measurements : A) Horizontal diameter; B) Vertical diameter; 

C) Eccentricity (Measurements taken at the centre of the Phi 150 column, using an outside 

illumination) 

 

By analysing Figure 3.6 is possible to conclude that 200 bubbles are also enough 

to achieve a good convergence on the PDFs of horizontal and vertical diameter and 

eccentricity.  

Two different focal lengths, namely 14 and 26 mm, were used to test if the 

working distance affects the size measurements. After selecting one focal distance, 

several gas superficial velocities were tested in a range between 1.5 and 15 cm/s in the 

centre of the Phi 150 column, as can be seen in Figure 3.7. 
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A B 

  

C 

 

Figure 3.7– Effect of the focal length on: A) Mean horizontal diameter; B) Mean vertical diameter; 

C) Eccentricity (Measurements taken at the centre of the Phi 150 column, using an outside 

illumination) 

 

By analysing the results it is possible to conclude that the focal distance does not have a 

significant impact on the mean bubble size measurements (mean deviation ± 1.8 %), 

regardless of the tested gas superficial velocity. The PDFs of the horizontal and vertical 

diameters are plotted in Figure 3.8 A and B, respectively.  

 

A B 

  

Figure 3.8– Effect of the focal lengths on: A) PDF of horizontal diameter; B) PDF of vertical 

diameter (Measurements taken at the centre of the Phi 150 column, using an outside illumination) 
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Figure 3.8 A and B show that similar PDF of the vertical and horizontal diameter are 

obtained for the focal distances of 26 mm and 14 mm. In agreement with the conclusion 

of the analysis of the averaged values, is possible to conclude that the focal distance does 

not have a significant impact on the measured diameter distributions. Therefore, the focal 

distance used in the measurements, that will be presented in further in this chapter and 

the chapter 4, was typically 20 mm. 

Intrusive behaviour 

 As previously referred, the endoscope imaging is an intrusive method, especially 

when the illumination tube is also introduced in the column. Therefore, the impact of the 

endoscope and of the illumination bar on the bubble size was studied. In the Phi 400 

column, the bubble size was measured by the spatial cross-correlation method (method 

further detailed in this chapter) by placing the optical probes in the focal plane of the 

endoscope. Afterwards, those measurements were compared with the ones acquired at the 

same location in the column but without the endoscope. These results can provide some 

information about the perturbation effect of the endoscope and of the illumination tube 

on the bubble characteristics inside the measurement volume.  

 

A B 

  

Figure 3.9 – Effect of the presence of the endoscope on: A) Dh32 (bubble size) measurements by the 

spatial cross-correlation method; B) Local gas hold-up (measured by the optical probe) 

(Measurements taken at the centre of the Phi 400 column) 

 

By analyzing the results of Figure 3.9, it is possible to conclude that the endoscope 

and the illumination tube did not affect the measured bubble size. Similarly, Figure 3.9 B 

shows that the local gas hold-up does not significantly change with or without the 

presence of the endoscope. Hence, the endoscope imaging method will be used as a 

reference to test the size measurement performed using optical probes.  
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The Pavlov tube and the endoscope are radially inserted in the column and placed 

perpendicular to the flow, making their positions in the column fixed. The measurements 

were made at ratio height of the column/ column diameter of 2.5 and 3.75 in all of the 

columns in order to obtain comparable data. In the 0.15 m, 1 m and 3 m columns the 

probes were inserted axially, allowing its positioning at any height. In the 0.4 m column 

the probe was also inserted radially, meaning that, just as the endoscope and the Pavlov 

tube, its positions in the column were limited. Nevertheless, the optical probe 

measurements were also carried out at height of the column/ column diameter ratio of 2.5 

and 3.75 

 

3.3 Optical probes 

 

As referred in the section 1.3, optical probes ideally provide the local gas hold-up 

as well as information on chord and velocity for each detected inclusion. Several optical 

probes configurations have been presented in the Chap.1. However, in this work, a 1C 

(conical) mono-fibre optical probe will be used. This type of probe has the advantage of 

allowing the access to the bubble velocity component along the probe axis with only one 

fibre (c.f. section 1.3). Beside, and compared with bi- or quadri-probes, no signals 

association is required, a feature that eliminates many, often subjective, processing 

parameters.  

For single conical probes, developments in signal processing, in data post-treatment 

as well as validations of the technique have been presented in several publications 

(Cartellier, 1990, 1992, 1998; Cartellier and Barrau, 1998 A, 1998 B; Barrau et al. 1999 

A, 1999 B; Vejrazka et al., 2010) that will be briefly detailed further in this section.  

The bubble size, velocity and flux measurements by the 1C mono-fiber optical 

probes have been validated in bubbly flows with narrow bubble size distributions (see for 

ex. Andreotti, 2009), and also in various gas-liquid flows up to void fractions of 30%. 

The typical uncertainty on void fraction measurements using 1C mono-fiber optical 

probes was about -10%/+0% while the gas flux was determined with an uncertainty about 

±15% Cartellier (1998). To quantify the range of proper probe functioning in bubbly 

flows, Vejrazka et al. (2010) have proposed a modified Weber number M, that represents 

the ratio between the bubble momentum ~ 𝜌𝑙𝐷𝑒
3𝑣𝑏1 and the impulsion of the surface-
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tension force arising from the probe dewetting 𝜎𝑙𝐷𝑜𝑝𝐷𝑒 𝑣𝑏1⁄ ,.and that is thus computed 

from following equation: 

 𝑀 =
𝜌𝑙𝐷𝑒

2𝑣𝑏1
2

𝜎𝑙𝐷𝑜𝑝
 (3. 4) 

Where 𝜌𝑙 and 𝜎𝑙 represent the liquid density and surface tension, respectively, 𝐷𝑒 

represents the bubble equivalent diameter, 𝑣𝑏1 represents the bubble velocity (relative to 

the probe) before the contact with the probe have occurred and 𝐷𝑜𝑝 the diameter of the 

optical fiber. Vejrazka et al. (2010) have reported the errors of the gas hold-up and bubble 

chord measurements by the optical probe as function of M. For low viscosity fluids (such 

as water) and for M values higher than 50, the void fraction and the maximal chord 

measurement error should be less than 10%. In all bubble column experiments carried out 

in our study, the M number has always been greater than 100: our flow conditions were 

thus quite favorable for using monofiber probes. 

However, most previous probe qualification were performed on quasi 1D flows 

such as bubble swarms or flows confined inside a tube, i.e. without liquid recirculation 

nor strong velocity fluctuations. In such flows, bubbles have an almost unidirectional 

movement, contrary to the flows that will be considered in this work. Whenever unsteady 

3D structures are present, the probes performances are expected to be less reliable but it 

is not clear in what measure. For example, very severe measuring difficulties have been 

encountered using double-optical probes in dense bubble columns (Chaumat et al., 2007). 

The performance of monofiber probes in the conditions of our bubble columns, and 

notably at high gas hold up, deserves thus to be evaluated. 

 

  In subsequent sections, the principles of optical probes are initially summarized, 

followed by a proposition on how to extend their measuring capabilities to the detection 

of the horizontal dimension of distorted bubbles. In the section 3.5, the reliability of single 

probes to provide bubbly flow characteristics in bubbles columns at high void fractions 

is discussed.  

Apparatus 

The probe is placed in the flow and connected to an opto-electronic module by an optical 

fibre, as can be seen in Figure 3.10. As already mentioned in section 1.3, a laser beam is 

generated by this module, sent to the probe tip and, in case of gas detection, it is reflected 

back to the opto-electronic module. A photodiode converts it into an electrical signal and 
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sends it to an oscilloscope Picoscope 2000 series, built by Picotech. The oscilloscope has 

a USB connection with a computer, in which the signals are treated by the software SO6 

from the society A2 Photonic Sensors. Throughout this work a 1C conical mono-fibre 

optical probe from A2 Photonics Sensors was used: the 130 µm outer diameter optical 

fibre is held by a 1.5 mm in diameter stainless steel tube. Its length outside the holder is 

about 6 mm. Its conical tip provides a sensing length about 12 µm. 

 

 

Figure 3.10 – Optical probes experiments apparatus.  

Optical probes measurements 

 The SO6 software requires two preliminary adjustments before a measurement: a 

liquid level interval and the gas level. The liquid level interval corresponds to the signal 

voltage when the probe tip is wet, in which conditions the signal presents small 

fluctuations. Hence, an interval must be defined in a way that these fluctuations are 

contained within it: the later are represented by red lines in the lower part of the signal in 

Figure 3.11. The gas level is the signal voltage reached when the probe tip is completely 

dry (inside a bubble): it is represented by the upper (blue) line in Figure 3.11. The post 

treatment of the mono-fibre optical probes signal has been carefully detailed in several 

publications (Cartellier, 1990, 1992, 1998; Cartellier and Barrau, 1998A, 1998B) and 

only the main principles will be described hereafter.  
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Figure 3.11 – Snapshot of gas and liquid voltages in SO6 software. 

 

Local gas hold up measurement 

 

 Each time the signal voltage is higher than the liquid upper level, the signal 

treatment detects a bubble. The signal treatment considers the end of the bubble detection 

as the moment when the signal voltage drops neatly below the gas level. The gas 

residence time, which corresponds to the time that the probe tip stays in the bubble, is the 

time difference between the beginning and the end of the detection of each bubble. The 

local gas hold up is computed as the ratio between the sum of all detected gas residence 

times tgi and the total measurement duration texp.  

Velocity measurement  

 

 The signal treatment detects the beginning and the end of the rising front of the 

signal as illustrated in Figure 1.33. This time difference is defined as the rising time: it 

characterises the probe de-wetting process that occurs when its tip enters a bubble. The 

velocity component along the probe axis is computed as the ratio between the sensing 

length of the probe (a parameter quantified before the measurements, see Cartellier 

(1989)) and the rising time of the bubble (Cartellier, 1992).  

 In some cases the bubble does not travel through the whole sensing tip of the 

probe, so the rising front of the signal is not well defined, as represented Figure 3.12. For 

this kind of signature, the end of gas detection occurs when the signal decreases sharply. 
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Also, for such signatures, it is not possible to directly obtain a reliable velocity 

measurement. The signal treatment can detect these two types of signatures and defines 

them as T1 bubbles, if a velocity information is directly available, or T2 bubbles, if not. 

When there is no direct velocity information, a software routine interpolates the velocity 

from the previous and the next T1 bubbles (Cartellier, 1998). Therefore, all the detected 

bubbles are associated with a value for the gas residence time and a value for the velocity. 

From these data, one can extract the velocity distribution and its various moments, 

including the arithmetic mean bubble velocity.  

 

 

Figure 3.12 – A sample of 1C mono-fiber optical probe signal collected in the Phi 1000 bubble 

column vsg of 35 cm/s at the center of the column. 

 

Chord calculation 

 

 The pierced chord corresponds to the length of the course made by the probe tip 

in the bubble. This information can be calculated by the product of the gas residence time 

with the bubble velocity. From the chord distributions, various quantities can be inferred, 

including a Sauter mean diameter. Therefore, the basic output from these probes is a 

product density f(1)(Chord,Velocity) from which one can infer various variables of interest 

(Cartellier, 1999) including void fraction, joint chord-velocity distributions, local 

volumetric flux, number density and its flux, interfacial area density. The variables that 

will be exploited in the present work are given below. 

Local volumetric flux  

Assuming that the velocity in the gas phase and on all positions along the chord 

pierced by the probe equals the velocity detected on the interface (a very reasonable 

T1 Bubbles

T2 Bubble
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assumption for bubbly flows), the local volumetric gas flux can be calculated by 

weighting each velocity by the bubble residence time, namely: 

 
𝑗𝑔 =

∑𝑉𝑏𝑖
∗ × 𝑡𝑔𝑖

𝑡𝑒𝑥𝑝
 (𝑚 𝑠⁄ ) (3. 5) 

Where 𝑉𝑏𝑖
∗  represents the ith bubble velocity (measured or interpolated), 𝑡𝑔𝑖 represents the 

ith bubble residence time and 𝑡𝑒𝑥𝑝 is the measuring duration. When using (3.5), all 

contributions have to be considered (namely populations T1 and T2). The gas flow rate 

on the column can be computed by integrating 𝑗𝑔 over the column cross-section. 

 

Shape estimation 

According to Clark and Turton (1988), if the bubble population is composed of 

oblate ellipsoids, with a given eccentricity Ecc and a unidirectional ascending movement, 

the pierced chord (C) through a bubble is given by the equation: 

 𝐶 = 2𝐸𝑐𝑐√𝑅ℎ2 − 𝑟2 (3. 6) 

Where C represents the bubble chord, 𝑅ℎ represents the horizontal diameter of the 

ellipsoid and 𝑟 is the distance in the x, y plane between the bubble center and the probe 

tip. Moreover, Clark and Turton (1988) have established the mathematical relation 

between the chord distribution (P(C)) and the radius distribution of detected bubbles 

(Pd(Rh)): 

  𝑃(𝐶)𝑑𝐶 = ∫ 𝑃𝑑(𝑅ℎ)𝑑𝑅ℎ × 𝑃𝑐(𝐶|𝑅ℎ)
∞

𝐶
2𝐸𝑐𝑐

 (3. 7) 

Where 𝑃𝑐(𝐶|𝑅ℎ) represents the probability of detecting the chord C on a bubble with an 

horizontal radius Rh, and 𝑃𝑑(𝑅ℎ) represents the probability of detecting a bubble with 

an horizontal radius Rh. 𝑃𝑐(𝐶|𝑅ℎ) can be defined as the surface ratio between the crown 

(i.e. the positions of bubble centers) where a chord C can be detected and the projected 

surface of the bubble (Figure 3.13): 

  𝑃𝑐(𝐶|𝑅ℎ) =
2𝜋𝑟𝑑𝑟

2𝜋𝑅ℎ2
  (3. 8) 



140 

 

 

Figure 3.13 – Schematic representation of an oblate bubble. 

 

Therefore, r and dr can be obtained from Eq. (3.6) and Eq. (3.8) can be rewritten as: 

   𝑃𝑐(𝐶|𝑅ℎ) =
𝐶

𝐸𝑐𝑐𝑅ℎ2
  (3. 9) 

 

In the above equations, Pd(Rh) represents the probability that the probe detects a bubble 

of size Rh. Pd(Rh) differs from the size distribution P(D) in the system since large bubbles 

are easier to be detected than small ones. Since the probability of detecting a bubble is 

proportional to its projected surface, the following relation is obtained: 

 𝑃𝑑(𝑅ℎ) = 𝑃(𝑅ℎ) × 𝑅ℎ2 × 𝜑  (3. 10) 

Where 𝜑 is a constant of normalization. Replacing Eq. (3.9) and (3.10) in Eq. (3.7): 

 𝑃(𝐶)𝑑𝑐 =
𝑐

𝐸𝑐𝑐
𝜑∫ 𝑃(𝑅ℎ)𝑑𝑅ℎ

∞

𝑐
2𝐸𝑐𝑐

  (3. 11) 

The mean chord (C10) can be found by 

 𝐶10 = ∫ 𝑐𝑃(𝐶)𝑑𝐶 = ∫ 𝑑𝐶∫
𝐶2

𝛼
𝜑𝑃(𝑅ℎ)𝑑𝑅ℎ

∞

𝐶
2𝐸𝑐𝑐

∞

0

∞

0

  (3. 12) 

Permuting dC and dRh 

 

𝐶10 =
𝜑

𝐸𝑐𝑐
∫ 𝑃(𝑅ℎ)∫ 𝑦2𝑑𝐶𝑑𝑅ℎ

2𝐸𝑐𝑐𝑅ℎ

0

∞

0

=
𝜑

𝐸𝑐𝑐
∫ 𝑃(𝑅ℎ) ×

8𝐸𝑐𝑐3𝑅ℎ3

3
𝑑𝑅ℎ

∞

0

=
𝜑8𝐸𝑐𝑐2 < 𝑅ℎ >3

3
  

  

(3. 13) 

 

The normalization by 𝜑 must ensure that ∫ 𝑃(𝐶)𝑑𝐶 = 1
∞

0
, then 
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1 =
𝜑

𝐸𝑐𝑐
∫ ∫ 𝐶𝑃(𝑅ℎ)𝑑𝐶

2𝐸𝑐𝑐𝑅ℎ

0

𝑑𝑅ℎ⇔ 1
∞

0

=
𝜑

𝛼
×
4𝐸𝑐𝑐2𝑅ℎ2

2
⇔𝜑=

1

2𝐸𝑐𝑐 < 𝑅ℎ2 >
 

  

(3. 14) 

Replacing in Eq. (3.13): 

 
𝐶10 =

4𝐸𝑐𝑐

3

< 𝑅ℎ >3

< 𝑅ℎ >2
=
2𝐸𝑐𝑐

3
𝐷ℎ32 

  

(3. 15) 

Where Dh is the Sauter mean diameter evaluated using the size distribution P(Rh) in the 

system (and not the detected one). Note that, when using the detected size distribution 

Pd(Rh), one has: 

 
𝐶10 =

2𝐸𝑐𝑐

3
𝐷ℎ𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =

2

3
𝐷𝑣𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

  

(3. 16) 

where 𝐷ℎ𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 and 𝐷𝑣𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 are the arithmetical mean diameters of the detected 

distributions. Beside, according to the definition of eccentricity Eq. (3.3), and assuming 

a constant eccentricity for all the bubbles present in the flow, Eq. (3.15) can be rewritten 

as: 

 
𝐶10 =

2

3
𝐷𝑣32 

  

(3. 17) 

where Dv32 is the Sauter mean of the vertical diameters again using the size distribution 

P(Rv) of the system. 

Concluding, the Sauter mean vertical diameter (𝐷𝑣32) of the bubble population can be 

computed using Eq.(3.16), even if the eccentricity of the oblate bubble population is 

unknown.  

 

Deconvolution of chord distribution into diameter distribution 

Clark & Turton (1988) and Lui and Clark (1995) have proposed an algorithm to 

compute the distribution of bubble diameters on the flow from the distribution of the 

detected chords for a bubble population of various but fixed bubble shapes. In this work, 

the procedure to obtain the diameter distribution of an oblate shaped bubble population 
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with a known fixed eccentricity will be detailed. First, we rewrite the Eq. (3.9) by 

replacing Rh by Dh and by normalizing using 〈𝐷ℎ2〉: 

 𝑃𝑑(𝐷ℎ) =
𝑃(𝐷ℎ) × 𝐷ℎ2

〈𝐷ℎ2〉
  (3. 18) 

The relation chord diameter becomes: 

 
𝑃𝑐(𝐶) =

2𝐶

𝐸𝑐𝑐2〈𝐷ℎ2〉
∫ 𝑃(𝐷ℎ)𝑑𝐷ℎ =
∞

𝐶
𝐸𝐶𝐶

2𝐶

𝐸𝑐𝑐2
∫

𝑃𝑑(𝐷ℎ)

𝐷ℎ2
𝑑𝐷ℎ

∞

𝐶
𝐸𝐶𝐶

= 

(3. 19) 

The chord classes are already known, so it is only necessary to define the classes of Pd. 

Since the largest diameter cannot be bigger than the largest chord, the maximal limit is 

set as the largest chord. Therefore, diameter classes can be defined considering that their 

size is identical to the ones of chord classes. Eq. (3.18) is discretized by the method of 

finite sums: 

𝑃𝑐(𝑖) =
2𝐶(𝑖)𝑃𝑑(𝑖)

𝐸𝑐𝑐2𝐷ℎ(𝑖)2
𝑑𝐷ℎ(𝑖) +

2𝐶(𝑖)

𝐸𝑐𝑐2
∑

𝑃𝑑(𝑗)

𝐷ℎ(𝑗)2
𝑑𝐷ℎ(𝑗)

𝑁

𝑗=𝑖+1
  (3. 20) 

Solving for 𝑃𝑑(𝑖): 

𝑃𝑑(𝑖) =
𝐸𝑐𝑐2𝐷ℎ(𝑖)2

2𝐶(𝑖)𝑑𝐷ℎ(𝑖)
𝑃𝑐(𝑖) −

𝐷ℎ(𝑖)2

𝑑𝐷ℎ(𝑖)
∑

𝑃𝑑(𝑗)

𝐷ℎ(𝑗)2
𝑑𝐷ℎ(𝑗)

𝑁

𝑗=𝑖+1
  (3. 21) 

The calculus is initialized with i=N, and by looping i from N-1 to 1, the distribution of 

the detected diameter can be computed. Therefore, the diameter distribution can be found 

by solving Eq. (3.18). This process requires a well converged Pc curve in order to avoid 

negative probabilities in Pd. Typically, the Pc issued from optical chords measurements 

presents long tail with very low probability of detections, which can induce the negative 

probabilities in the calculated Pd. Therefore, the calculus should be applied preferentially 

to chord distributions issued from very long acquisitions (large number of detections) to 

avoid this problem. Nevertheless, the Pc can be smooth out by neglecting the higher 

chords and imposing a more linear increase of the detection probability of the chords. 

 

3.4 Spatial cross-correlation of optical probes signals 

 

As seen above, single optical probes provide bubble sizes along the probe direction, 

the latter being usually aligned with the main flow direction. For the distorted bubbles 

considered in this work, this information is insufficient as one requires also an estimate 
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of the bubble size in a direction normal to the main flow. Therefore, a new technique has 

been implemented to access this information. The basis of the proposed method is to 

correlate the signals of two mono-fiber optical probes placed parallel side by side, at a 

given distance from each other. This correlation should be sensitive to the bubble size 

along the direction defined by the two probes tips. In practice, since the mono-fiber 

optical probes will be vertically aligned and will thus give access to the vertical dimension 

of the bubbles only, the direction defined by the two tips has been set to horizontal in 

order to measure the horizontal dimension of the bubbles.  

In this section it will be detailed how to deduce the horizontal diameter from the 

correlations of the signals of the probes as a function of the bubble shape. The nature of 

this measurement will also be discussed to understand what kind of averaging is 

performed by the correlation method. Afterwards the feasibility of this method and 

notably the impact of the bubble concentration on the measured correlation will be 

studied. 

 

Principle 

 

The normalized cross-correlation is a function that quantifies the similarity of two 

binary signals by analyzing both signals simultaneously: 

 

 𝐶𝐶 =
∫ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑡)𝑑𝑡
𝑡𝑒𝑥𝑝
𝑡=0

∫ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑡)𝑑𝑡
𝑡𝑒𝑥𝑝
𝑡=0

 (3. 22) 

 

Here 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴 and 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵 represent the raw signals coming from two different 

probes at the same elevation in the column at a radial distance (d) and texp represents the 

time of registration. The cross-correlation value is maximal if both probes are at the same 

point in space (distance between probes (d) of 0 mm), since the signals will be identical. 

In a single bubble-probe interaction, as the distance between the probes increases, the 

cross-correlation of the probe signals will decrease. The cross-correlation will be zero 

when the distance between probes becomes larger than the bubble horizontal diameter 

due to the fact that the same bubble cannot be detected by both probes at the same time. 

Hence, some information related to the horizontal bubble size can be extracted from the 

shape of the cross-correlation curve as a function of probes distances. 
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Some preliminary experiments were carried out in the center of the Phi 150 

column and at h/D=2, where the cross-correlation was measured for several probe 

distances from 0 mm up to 12 mm, as can be seen in Figure 3.14. 

 

 

Figure 3.14 – Evolution of the experimental cross-correlation with the distance between the probes 

for several superficial gas velocities. 

 

 The results show that, as expected, the cross-correlation decreases with the 

distance between the probes. However, the cross-correlation is never zero even when the 

distances between probes reaches 12 mm, a value much larger than the largest bubble 

horizontal diameter. In fact, at large distances, the cross-correlation increases with the gas 

hold-up (εg). This is to be related with the simultaneous detection of two bubbles that 

increases the cross-correlation. A notable feature of the results of Fig.3.15 is that, up to a 

distance about 1.5 mm, all the curves have a similar behavior, which seems to indicate 

that this is the zone that should be explored in order to obtain some information about the 

horizontal diameter. 

Therefore, in order to fully understand the variation of the cross-correlation with 

the distance between probes, the bubble shape and its orientation, two different 

approaches were developed: first an analytic approach based on a rectilinear motion of 

the bubbles and afterwards a numerical approach without any hypothesis on the bubbles 

movement.  
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Analytical 2D approach 

 

Let us consider an idealized bubbly flow of spherical shaped bubbles rising along 

a vertical axis of the column. All the bubbles have the same radius (R) and rising velocity. 

Moreover, the probability of detect a bubble center in a given point is uniform in all flow 

volume. If two optical probes (noted Probe A and Probe B in Figure 3.15) are placed 

parallel side by side, at a given distance (d) from each other along the abscissa axis. 

Consequently, a rising bubble (represented by a circle in Figure 3.15) will intersect the 

abscissa axis on the point x and generate a detected chord (C) on each probe that can be 

determined by Eq. (3.6), considering Ecc=1 since the bubble is spherical. 

 

 

Figure 3.15 – Schematic view of the analytic 2D approach. 

 

Therefore, it is possible to define two events such as: 

1 - There is a bubble in the Probe 1 

2 - There is a bubble in the Probe 2 

The cross-correlation can thus be considered as the conditional probability of A knowing 

that B have occur: 

 𝐶𝐶 = 𝑃(2|1) =
𝑃(1 ∩ 2)

𝑃(2)
 (3. 23) 

P(A) can be determined by the definition of the pierced chord (𝐶1) and the probably of a 

bubble passing through the point x (P(x)). Hence, the abscises that can generate a 

detection of the chord by the Probe 1 are comprise between –R and R, so: 

x

d

C

Bubble 
movement

Probe 1 Probe 2



146 

 

 𝑃(1) = ∫ 𝐶1𝑃(𝑥)𝑑𝑥 = 𝜋𝑅
2𝑃(𝑥)

+𝑅

−𝑅

 (3. 24) 

𝑃(1 ∩ 2) represents the probability that a bubble touches both probes at the same time. 

In such case, the chord generated on the Probe 2 (𝐶2) can be determined by  

 𝐶2 = 2√𝐷2 − (𝑥 − 𝑑)2 (3. 25) 

Since we are interest in the bubble positions where the both probes detect the bubble, the 

contribution of each bubble to 𝑃(1 ∩ 2) is equal to the min(𝐶1, 𝐶2): if 𝑥 > 𝑑
2⁄  the 

smallest chord is 𝐶1, otherwise if 𝑥 < 𝑑 2⁄  the smallest chord is 𝐶2. Therefore 𝑃(1 ∩ 2) 

can be defined as: 

 𝑃(1 ∩ 2) = ∫ 𝐶2𝑃(𝑥)𝑑𝑥 +
𝑑/2

𝑅−𝑑

∫ 𝐶1𝑃(𝑥)𝑑𝑥
𝑅

𝑑/2

 (3. 26) 

Since both integrals are symmetric to the distance d/2 of the bubble center and equal in 

value Eq. (3.26) becomes: 

 

𝑃(1 ∩ 2) = 2∫ 𝐶1𝑃(𝑥)𝑑𝑥
𝑅

𝑑/2

= 4𝑃(𝑥) [
1

2
𝑥√𝑅2 − 𝑥2 +

𝑅2

2
arcsin  (

𝑑

2𝑅
)]
𝑑
2

𝑅

= 2𝑃(𝑥) [
𝜋𝑅2

2
−
𝑑

2
√𝑅2 −

𝑑2

4
− 𝑅2arcsin (

𝑑

2𝑅
)] 

(3. 27) 

Replacing Eq.(3.27) and Eq.(3.24) in Eq.(3.23): 

 𝐶𝐶 = 𝑃(2|1) = 1 −
1

𝜋

𝑑

𝑅
√1 − (

𝑑

2𝑅
) −

2

𝜋
arcsin  (

𝑑

2𝑅
) (3. 28) 

 

The Eq. (3.28) was plotted in Figure 3.16 (black line), the results show that for 𝑑 > 2𝑅 

the cross-correlation is zero, as expeted. 
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Figure 3.16 – Graphic representation of Eq. (3.28) and Eq. (3.29). 

 

Since in vicinity of 𝑥 = 0 one can develop the function arcsin (𝑥) as arcsin(𝑥) =

𝑥 +
𝑥3

6
, in the vicinity of 

𝑑

𝑅
= 0 Eq. (3.28) can be rewritten as: 

 𝐶𝐶 = 𝑃(2|1) = 1 −
2

𝜋

𝑑

𝑅
 (3. 29) 

So, there is a linear relation between CC and 
𝑑

𝑅
.that was also plotted in Figure 3.16 (grey 

line). Moreover, results show that Eq. (3.29) predicts correctly the exact solution 

(deviation of 7%). 

 The previous result was obtained from a 2D approach and for spherical shaped 

bubbles. Therefore, a more realistic solution should be obtained in a 3D approach and 

considering ellipsoidal bubbles (oblates).  

 

Analytical 3D approach 

  

 Let us consider an idealized bubbly flow of oblate shaped bubbles, with a 

horizontal radius Rh and a vertical diameter 𝑅𝑣 = 𝐸𝑐𝑐𝑅ℎ, where all the bubbles have the 

same eccentricity. Likewise the 2D approach one should consider that all the bubbles 

have a vertical motion and the probability of detect a bubble (P(x,y)) is uniform in all the 

considered volume. Therefore, the pierced chord can be determined by the bubble Dh and 

distance from the probe as shown in Eq. (3.6). A schematic view of the 3D approach is 

presented in Figure 3.17. 
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Figure 3.17 - Schematic view of the analytic 3D approach. 

 

The Eq. (3.23) is still valid for a 3D approach, however P(1) is now determined by: 

  𝑃(1) = ∫ 𝐶1𝑃(𝑥, 𝑦)𝑑𝑠 =
4

3
𝜋𝐸𝑐𝑐𝑅ℎ3𝑃(𝑥, 𝑦)

|𝑟|<𝑅2
 (3. 30) 

The bubbles contributing to 𝑃(1 ∩ 2), in a horizontal plan have their center in the grey 

area of Figure 3.17, so : 

 𝑃(1 ∩ 2) = ∫ 𝐶1𝑃(𝑥, 𝑦)𝑑𝑠
𝑔𝑟𝑒𝑦 𝑎𝑟𝑒𝑎

 (3. 31) 

Since there is a symmetry to d/2, and also a symmetry to the axis of abscesses Eq. (3.31) 

can be redefined as: 

 𝑃(1 ∩ 2) = 4∫ 𝑑𝑥∫ 𝑑𝑦𝐶1𝑃(𝑥, 𝑦)
𝑌𝑚𝑎𝑥

0

𝑅

𝑑
2

 (3. 32) 

Since 𝑌𝑚𝑎𝑥
2 + 𝑥2 = 𝑅ℎ2, Eq. (3.32) becomes: 

y

x

Probe 1

Probe 2

Area for bubble centers contributing 
to Probe 1 and Probe 2

Area for bubble centers 
contributing to Probe 2

Area for bubble centers 
contributing to Probe 1

d RhRh
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𝑃(1 ∩ 2) = 4∫ 𝑑𝑥
𝑅

𝑑
é

∫ 𝑑𝑦 𝐶1𝑃(𝑥, 𝑦)
𝑌𝑚𝑎𝑥

0

= 4𝑃(𝑥, 𝑦)∫ 𝑑𝑥∫ 𝑑𝑦2𝐸𝑐𝑐√𝑅ℎ2 − [𝑥2+𝑦2]
𝑌𝑚𝑎𝑥

0

𝑅

𝑑
2

= 8𝐸𝑐𝑐𝑃(𝑥, 𝑦)∫ 𝑑𝑥
𝑅

𝑑
é

∫ 𝑑𝑦√𝑌𝑚𝑎𝑥2 − 𝑦2
𝑌𝑚𝑎𝑥

0

= 8𝐸𝑐𝑐𝑃(𝑥, 𝑦)∫ 𝑑𝑥 [
𝑦

2
√𝑌𝑚𝑎𝑥2 − 𝑦2

𝑅

𝑑
2

+
𝑌𝑚𝑎𝑥2

2
arcsin (

𝑦

𝑌𝑚𝑎𝑥
)]
0

𝑌𝑚𝑎𝑥

 

= 8𝐸𝑐𝑐𝑃(𝑥, 𝑦)∫ 𝑑𝑥
𝑅

𝑑
é

[
𝜋

2

𝑌𝑚𝑎𝑥

2
]

= 2𝜋𝐸𝑐𝑐𝑃(𝑥, 𝑦)∫ 𝑑𝑥
𝑅

𝑑
é

(𝑅ℎ2 − 𝑥2)

= 2𝜋𝐸𝑐𝑐𝑃(𝑥, 𝑦)𝑅3 [
2

3
−

𝑑

2𝑅ℎ
+
1

3
(
𝑑

2𝑅
)
3

] 

(3. 33) 

Replacing Eq. (3.33) and Eq. (3.30) in Eq. (3.23): 

 𝐶𝐶 = 𝑃(2|1) = 1 −
3

4

𝑑

𝑅
+
1

16
(
𝑑

𝑅
)
3

 (3. 34) 

Eq. (3.34) have been plotted in Figure 3.18 (black line), the results show that, as 

already seen for the 2D approach, the cross-correlation becomes zero for d=2R. 

Additionally, a linear regression was fitted to the curve (grey line), with a slope of 0.75. 

So it is possible to conclude that for small values of d/Rh, there is a linear evolution of 

the cross-correlation with the distance between the probes.  

 

Figure 3.18 – Graphic representation of the Eq. (3.34) and Eq. (3.35). 
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In the idealized flow considered, both in the 2D and 3D approach, the bubbles had 

all the same size. However, in real flows there is a distribution of bubble sizes and shapes. 

Therefore, the previous result can be improved by taking in account a bubble size 

distribution, yet with a fixed eccentricity.  

 

Analytical 3D polydispersed approach 

 

 In order to consider a polydispersed bubble population in the calculus of 𝑃(2|1), 

one should start by integrate P(1) in the system bubble size distribution: 

 

𝑃(1, 𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑)

= ∫𝑃(𝑅ℎ)𝑑𝑅ℎ∫ 𝐶1𝑃(𝑥, 𝑦)𝑑𝑠
|𝑟|<𝑅2

= ∫
4

3
𝜋𝐸𝑐𝑐𝑅ℎ3𝑃(𝑥, 𝑦)𝑃(𝑅) 𝑑𝑅ℎ

=
4

3
𝜋𝐸𝑐𝑐𝑃(𝑥, 𝑦) < 𝑅ℎ3 > 

(3. 35) 

In a likely manner, 𝑃(1 ∩ 2) should also to be integrated over the bubble size distribution: 

 

𝑃(1 ∩ 2, 𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑)

= ∫𝑃(𝑅ℎ) 𝑑𝑅ℎ𝑅ℎ3 [
2

3
−

𝑑

2𝑅ℎ
+
1

3
(
𝑑

2𝑅
)
3

] 
(3. 36) 

Thus, 𝑃(2|1, 𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑)can be determined by: 

 𝑃(2|1, 𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑) = 1 −
3

4

𝑑 < 𝑅ℎ2 >

< 𝑅ℎ3 >
+
1

16

𝑑3

< 𝑅ℎ3 >
 (3. 37) 

The results show that the CC is a complex function of different distribution 

moments, namely Rh32 and <Rh3> as can be seen in Eq. (3.37). Nevertheless, if one 

considers only the vicinity of 𝑑/𝑅ℎ = 0, is possible to say that the CC has a linear 

evolution with the d/R with a slope of 0.75. Indeed, since this result takes in to account 

the <Rh> over the entire population, it is only valid if the smallest bubble has ℎ ≥ 𝑑 2⁄  , 

otherwise the average values will be truncated. Nevertheless, this is a major result since 

it allows to deduce a bubble size from an experimentally measured CC value. However, 

this result is limited to cases where the bubbles have a rectilinear path, which may be a 

strong assumption in a flow with unsteady 3D structures. Indeed, such structures are to 

be expected in our experiments. So, a numerical approach without any assumptions on 
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the bubble path, and that allows to take in consideration wobbling bubbles will now be 

presented. 

 

Numerical approach 

 

In order to develop a numerical approach of the cross-correlation, let us start by 

considering a spherical shaped bubble. A sphere is the simpler bubble geometry, due to 

its axial and rotational symmetries, meaning that bubble rotation has no impact on cross-

correlation calculation. Consequently, a bubble was discretized through a spherical shape 

with radius R, centered at (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏). For this first computation, the bubble remains fixed 

in space and probes are moving over space. The first probe position (𝑥1, 𝑦1, 𝑧1) is always 

located inside the bubble. The second probe is set at a fixed distance (𝑥1, 𝑦1 + 𝑑, 𝑧1), as 

can be seen Figure 3.19. 

 

A B 

  

Figure 3.19 – Schematic representation of the model: A) both probes inside the bubble; B) only one 

probe inside the bubble. 

 

For each position of the first probe, it is verified if both probes are inside the 

bubble (Figure 3.20 A and B). Such conditions correspond to the following equation: 

 

𝑓(𝑥1, 𝑦1, 𝑧1, 𝑑)

= {
1, (𝑥1 − 𝑥𝑏)

2 + ((𝑦1 + 𝑑) − 𝑦𝑏)
2
+ (𝑧1 − 𝑧𝑏)

2 ≤ 𝑅2

0, (𝑥1 − 𝑥𝑏)
2 + ((𝑦1 + 𝑑) − 𝑦𝑏)

2
+ (𝑧1 − 𝑧𝑏)

2 > 𝑅2
 

(3. 38) 

Then the cross-correlation can be calculated by integrating the above equation 

over the bubble volume: 

O(r, r, r)

z

x
y

Probe #1 Probe #2

(x,y,z) (x,y+d,z)

O(r, r, r)

z

x
y

Probe #1 Probe #2

(x,y,z) (x,y+d,z)
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 𝐶𝐶 =∰𝑓(𝑥1, 𝑦1, 𝑧1, 𝑑)𝜕𝑥𝜕𝑦𝜕𝑧 (3. 39) 

 

In order to solve Eq. (3.39), the bubble was discretized through 3D geometrical shape and 

within its volume a mesh was designed. The first probe was positioned in all of the nodes 

of the mesh, the second probe was set at a fixed horizontal distance and Eq. (3.38) was 

solved for each position. This procedure was repeated for several distances between 

probes, from 0 mm up to a distance larger than the bubble horizontal diameter, allowing 

the description of the effect caused by the distance between probes on the cross-

correlation for single bubble-probe interactions. The results showed, as expected, that the 

slopes of the calculated curves depend on the bubble diameter, as presented in Figure 3.20 

A. Additionally, if the distances between probes are normalized by the bubble horizontal 

diameter, all the simulations collapse on a master curve, as can be seen in Figure 3.20 B. 

Thus, if one measures the correlation coefficient for a given (known) distance between 

two probes, then the bubble horizontal diameter can be deduced using that master curve. 

A B 

  

Figure 3.20 – Cross-correlations for spherical bubbles of various size : A) evolution with the 

distance between the probes; B) evolution with the ratio” distance between the probes/bubble 

diameter” (model). 

 

  In the limit of a vanishing distance, the master curve is nearly linear. In order to 

retrieve the information on the bubble horizontal diameter, it is thus easier to focus on 

that initial linear slope. Another advantage is to avoid the perturbations induced by 

neighbor bubbles as shown on experimental correlations (Figure 3.20). A linear 

regression of the initial slope of the curve provides: 

 Dh = −A
𝑑

(𝐶𝐶(𝑑) − 1)
 (3. 40) 

where A=1.472. From Eq. (3.40) it is thus possible to calculate the horizontal dimension 

Dh for spherical bubbles knowing d and measuring CC(d). It should be notice the good 
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agreement with the result of the analytical approach, which also determined the slope of 

the cross-correlation curve to be 1.5 (Eq. 3.34).  

Alternately, the extrapolation of the slope intersects the abscissa at d/D ≈ 0,7, 

which indicates that Dh ≈1,6 d at the intersection: this provides the range of measurable 

sizes with this technique.  

 

The effect of eccentricity and θ angle on the cross-correlation 

 

In order to develop a method capable of measuring the bubble size in the 

heterogeneous regime, it is necessary to understand how the bubble shape can affect the 

cross-correlation. In our experimental conditions, the bubble size population will be 

polydispersed in size and, according to Clift et al. (1978) in tap water/air systems, bubbles 

larger than 1 mm have an ellipsoidal shape. The distortion of the bubble shape can be 

described by the eccentricity (Eq. (3.3)), and results from the impact of gravity on the 

bubbles (Clift et al., 1978). An ellipsoidal bubble can have up to three diameters with 

different lengths and, consequently, several shapes can be considered. In this work only 

two different ellipsoidal shapes were considered, namely oblate and prolate shapes, as 

shown in Figure 3.21.  

 

 

Figure 3.21 - A) Two different configurations of an ellipsoid shaped bubble. 

 

The prolate shaped bubble is an ellipsoid with one large diameter (axis a) along a 

close to the horizontal direction and two small diameters (axis b) of the same length, 
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presenting symmetry relatively to the horizontal axis. An oblate ellipsoid has two large 

diameters (axis a) and a small diameter (axis b) close to the vertical direction, presenting 

symmetry relatively to the vertical axis, as can be seen in Figure 3.21. The oblate shaped 

bubble was the first configuration to be studied. Contrarily to a spherical bubble, that is 

symmetrical relatively to all of its Cartesian axis, the oblate one is only symmetrical with 

respect to its horizontal axis. To take this fact into consideration in the theoretical 

approach, the cross-correlation was calculated for an oblate shaped bubble that can be 

randomly inclined by an angle 𝜃 (with respect to an horizontal plane) evolving in a range 

of +/-30 degrees (Figure 3.21). This range in 𝜃 angle was also proposed by Xue et al. 

(2003) in the development of the four-point optical probe. To correctly reproduce the 

bubble-probe interactions it was necessary to consider that the bubble can randomly rotate 

from 0° up to 360° around the b axis (angle α). Up to this point, both probes were set in 

space at the same height, but in order to simulate this both rotations the second probe is 

now located at: 

 𝑥2 = 𝑥1 + 𝑑 cos 𝛼 sin 𝜃 (3. 41) 

 𝑦2 = 𝑦1 + 𝑑 sin 𝛼 sin 𝜃 (3. 42) 

 𝑧2 = 𝑧1 + 𝑑 cos 𝜃 (3. 43) 

 

Where (𝑥1,𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) represent, respectively, the first and second probe 

positions and 𝑑 represents the distance between probes. Figure 3.22 presents the results 

from the calculation of the cross-correlation for an oblate shaped bubble with a horizontal 

diameter of 4 mm, for eccentricities of 1, 0.7 and 0.5. 
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Figure 3.22 - Variation of the cross-correlation with the distance between probes for an oblate 

shaped bubble of various eccentricities (Dh=4mm, 𝜽 ∈ [−𝟑𝟎°, 𝟑𝟎°]). (model). 

 

The results showed that, in the considered range of 𝜃 angles, the eccentricity has 

no significant impact on the cross-correlation curves. Since an oblate with an eccentricity 

of 1 is a sphere, the determination of the horizontal diameter Dh of an oblate shaped 

bubble can also be achieved using Eq. (3.40).  

Another possible configuration for a deformed bubble is a prolate ellipsoid, as 

schemed in Figure 3.21. In this configuration, the eccentricity impacts the vertical 

diameter and one of the horizontal diameters, axis b in Figure 3.21. As in the oblate bubble 

analysis, the angles 𝜃  and α were considered to be random between +/- 30 degrees and 0 

to 360 degrees, respectively. Recurring to the theoretical approach, the effect of 

eccentricity was studied through the calculation of cross-correlation curves for a fixed 

bubble horizontal diameter (4mm), as can be seen in Figure 3.23. In this study, the 

eccentricity was varied from 0.5 up to 1, a range consistent with the measurements 

performed in our flow conditions with the endoscopic imaging method (further detailed 

on this section). The results show that the eccentricity increases the initial slope of the 

cross-correlation curves, meaning that the previously methodology used to find the 

bubble horizontal diameter cannot be applied to prolate bubbles. Moreover, it was found 

that at iso-eccentricity, the curves of the cross-correlation overlap when represented as a 

function of the ratio ‘probe distance/bubble horizontal diameter’ (d/Dh). It is possible to 

conclude that the effect of the bubble horizontal diameter on the cross-correlation curves 

that was described for the oblate shaped is also present in the case of prolate shaped 

bubbles. Moreover, there is a second effect caused by the eccentricity that also impacts 

the cross-correlation curves regardless of the bubble horizontal diameter.  
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Figure 3.23 – Evolution of the cross-correlation with the ratio ‘distance between probes/Horizontal 

diameter’ for prolate shaped bubbles of various eccentricities (model). 

 

 

In order to extract the information about the bubble horizontal diameter, a study was 

performed to quantify the impact of eccentricity on the initial slope of the cross-

correlation curves. In order to do so, the ratio between the initial slope of a prolate shaped 

bubble cross-correlation curve and the one of a spherical bubble cross-correlation curve 

(Ecc=1) was calculated for several eccentricities. This ratio can be calculated by the 

following fit. 

 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑙𝑜𝑝𝑒 (𝐸𝑐𝑐)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑎 𝑠𝑝ℎ𝑒𝑟𝑒
= 0.9933𝐸𝑐𝑐−0.494 (3. 44) 

Substituting the previous equation on Eq. (3.40), the A factor yields: 

 A = 1.426Ecc−0.494 (3. 45) 

 

This result shows that when the bubble eccentricity is known, one can calculate the 

horizontal diameter of prolate shaped bubbles using the cross-correlation. The sensitivity 

of the coefficient to eccentricity is significant (Figure 3.24) with deviations up to 40% 

when comparing the case of a sphere with a prolate shaped bubble with an eccentricity of 

0.5. 
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Figure 3.24 – Evolution of the ratio “Initial slope (Ecc)/Initial slope of a sphere” with the 

eccentricity for prolate shaped bubbles. 

 

 

Up to this point, the spatial cross-correlation method has proven its ability to 

measure the bubble size along a horizontal plane. Moreover, in the case of spherical or 

oblate shape the both diameters on the horizontal plan have the same dimension. 

Therefore, this dimension can be directly obtained from the experimental cross-

correlation and the distance between the probes used in the experiment (Eq. (3.40)). 

Hence, it has been proved that the eccentricity did not impact these measurements.  

On the contrary, in the case of a prolate shaped bubble, there are two different 

dimensions in a horizontal plan (axis a and b in Figure 3.21). Moreover, the measurement 

is sensitive to the eccentricity, as shown in Eq. (3.45). In this case, in order to obtain the 

horizontal size it is necessary to know the bubble eccentricity, which has to be obtained 

through another measuring method (e.g. endoscopic imaging). 

Up to this point three different bubble shapes have been considered in ideal flow 

conditions (1D, single bubble). In actual flows, deviations from such ideal situations are 

expected notably due to bubble orientation, distributions in size and in shape, 3D motion, 

finite void fraction, etc... As a first step, eccentricity and orientation distributions are 

taken into account. For that, the experimental conditions encountered in the studied 

bubble columns are the starting point. Thus, to infer the shape of the bubbles on the flow, 

the endoscope was inserted on the column along its axis. In that manner, contrarily to 

what has been described in section 3.2, the eccentricity measured will be the ratio between 

the two horizontal diameters of the bubble. For that reason, that quantity will be referred 
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to as the horizontal eccentricity. The experiments were carried out on the Phi 400 column, 

in the center of the column at h/D=3.75 and at superficial gas velocities between 3 cm/s 

and 16 cm/s. The horizontal eccentricity distribution for all the tested superficial gas 

velocities is presented in Figure 3.25. 

 

 

Figure 3.25 – Distribution of the bubble horizontal eccentricity, measured by the endoscopic 

imaging method. (measurements in the column Phi 400, column center at h/D=3.75) 

 

Further superficial gas velocities were not tested due to insufficient illumination 

in such experimental conditions. The results show that the majority of the measured 

bubbles have an horizontal eccentricity higher than 0.8 (~80%) and that there is no 

significant effect of the superficial gas velocity. Moreover, no bubbles present horizontal 

eccentricities less than 0.7. Since the prolate shaped bubbles have identical vertical and 

horizontal eccentricities and since , as will be further shown, the average vertical 

eccentricity is 0.7, it will be considered that the bubbles present in our flows have an 

oblate shape.  

So far in the cross-correlation calculus the eccentricity has been considered as 

constant, regardless of the bubble size and the flow regime. However, in a real flow there 

is a distribution of eccentricities that can evolve with experimental conditions. In order to 

study the variation of the bubble eccentricity, experiments were conducted in the Phi 400 

column, in the column center at h/D=3.75, at superficial gas velocities from 3 cm/s up to 

35 cm/s. The PDFs of the eccentricity measured during these experiments are presented 

in Figure 3.26. 
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Figure 3.26 – PDF of the bubble vertical eccentricity, measured by the endoscopic imaging method. 

(measurements in the column Phi 400, column center at h/D=3.75) 

 

The results show, as previously referred, that there are bubbles with different 

eccentricities. Moreover, at 3 cm/s the eccentricity presents a narrow distribution, 

between 0.6 and 0.9. Higher superficial gas velocities displayed wider distributions, 

between 0.5 and 1, and no significant effect of the superficial gas velocity was found for 

values higher than 9 cm/s. The arithmetical mean and the standard deviation of the 

presented distributions are depicted in Figure 3.30 

 

 

Figure 3.27 – Evolution of the mean vertical eccentricity and of the standard deviation of the 

vertical eccentricity distribution with the superficial gas velocity, measured by the endoscopic 

imaging method. (measurements in the column Phi 400, column center at h/D=3.75) 
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The results indicate that the averaged vertical eccentricity is constant around 0.7 

for the all tested superficial gas velocities. Moreover, at 3 cm/s the eccentricity 

distribution presents a low standard deviation (≈ 0.01) while at higher superficial gas 

velocities the standard deviation remains constant, close to 0.1. Therefore, in the cross-

correlation calculus it will be considered that the eccentricity distribution does not change 

with the superficial gas velocity. 

 It is also important to investigate the variation of the eccentricity distribution with 

the bubble size. Since there is no significant variation of the eccentricity distribution with 

the superficial gas velocity, the variation of the eccentricity with the bubble size has been 

performed only for Vsg16 cm/s. Figure 3.30 presents the PDF of the eccentricity for 

different bubble horizontal diameters.  

 

 

Figure 3.28 - PDF of the bubble horizontal eccentricity for different bubble sizes, measured by the 

endoscopic imaging method. (measurements in the column Phi 400, column center at h/D=3.75, 

superficial gas velocity 16 cm/s) 

 

The results demonstrate that the PDF of the eccentricity for the different bubble 

size classes are similar, so it is possible to assume that the eccentricity distribution is 

nearly constant over the whole range of horizontal diameters detected in the flow. 

Consequently, a unique eccentricity distribution will be accounted for the calculus of the 

cross-correlation. 
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The angle 𝜃 (Figure 3.21), that was previously considered as random between 

±30°, was also measured by endoscopic imaging. Since there are bubbles with different 

eccentricities on the flow, and since eccentricity may have a coupled effect with the angle 

𝜃, the distribution of the angle 𝜃 (absolute values) is presented in Figure 3.29 for different 

eccentricities.  

 

 

Figure 3.29 – Distribution of angles 𝜽 for different bubble eccentricities, measured by the 

endoscopic imaging method. (measurements in the column Phi 400, column center at h/D=3.75, 

superficial gas velocity 16 cm/s) 

 

By analyzing Figure 3.29, it is possible to conclude that the θ angle distribution is 

not random and that it is wider than it was previously considered. Moreover, it is possible 

to observe that there is no significant correlation between the eccentricity and the 𝜃 angle 

distribution. Therefore, it will be considered that the angle distribution is constant for all 

the eccentricities present on the flow (from 0.5 up to 1). 

Taking into account the above mentioned results of the endoscopic imaging 

measurements, a new approach of theoretical calculus of the cross-correlation was 

developed. The theoretical cross-correlation was computed for a bubble population of 

oblate bubbles with the same distribution of eccentricity (Figure 3.25, superficial gas 

velocity= 16 cm/s) and θ angle (Figure 3.29) detected on the endoscopic measurements 

(eccentricity range: 0.5-1; θ angle range: -90 - +90). For each iteration, the bubble 

eccentricity and θ angle were randomly chosen from their respective distributions and the 

probes were then set in space using Eqs. (2.25), (2.26) and (2.27). This process was 

repeated enough times for each probe distance to ensure convergence of the cross-
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correlation. Then, this process was repeated for different distances between probes. 

Figure 3.30 shows the evolution of the cross-correlation as a function of the ratio ‘probe 

distance/bubble horizontal diameter’ for both methods. The 1st method corresponds to the 

approach where the eccentricity was fixed and the bubble inclination (angle θ) was 

randomly set between ±30°. The 2nd method uses the approach where bubble eccentricity 

and inclination obey the probability distributions detected by endoscopic imaging. 

 

 

Figure 3.30 – The effect of considering the distribution of eccentricity and range of inclinations θ on 

the cross-correlation evolution with the ratio ‘distance between probes/Horizontal diameter’. 

(model). 

 

 

The results show that, with a broader angle distribution and with an eccentricity 

distribution, the cross-correlation coefficient, for a given probe distance, decreases. After 

adjusting the linear regression to the new results, the A factor takes now the value 1.598 

instead of 1.472. 

Regardless of the bubble shape considered, the expression to find the bubble 

diameter recurring to the cross-correlation value and the probe distance always follows 

the formalism Dh = −A
𝑑

(𝐶𝐶(𝑑)−1)
. Therefore, the impact of the bubble shape, inclinations 

θ angle and eccentricity on the obtained diameter can be evaluated by the variation of the 

variable A, as shown in Table 3.11.  

Concluding, for spherical bubbles, eccentricity and inclinations are irrelevant and 

lead to a factor A=1.472 in the equation 3.24 that provides the bubble size. In a first 

approach for oblate shaped bubbles, the θ angle was considered random between ±30° 
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with an α angle was also randomly ranging between 0° and 360° (Figure 3.21). Within 

these ranges, the eccentricity has no impact on the cross-correlation and the factor A 

remains unchanged. In the case of prolate shaped bubbles, with similar ranges for the 

angles α and θ angles, the A parameter becomes a function of the bubble eccentricity (c.f. 

Table 3.11). For sake of comparison, the vertical eccentricity was considered to be 0.7 in 

agreement with the measured bubbles eccentricities detected in our experiments and 

presented in Figure 3.27: the resulting factor A becomes 1.7. The second method to 

calculate the cross-correlation for an oblate shaped bubble takes into account the 

measured distributions of vertical eccentricities and inclinations with respect to an 

horizontal plane and the factor A becomes 1.5978. These results show that the largest 

deviation between the four different approaches is 15.5 %, corroborating thus the 

resilience of the proposed method. 

  

Table 3.11 – Table of A factors for all bubbles shapes and the deviation of the diameter estimation 

between a given bubble shape and a spherical bubble 

 Sphere 

Oblate (1st 

method)  

-30< theta <30 

Prolate  

-30< theta <30 

Oblate (2nd 

method) 

experimental Ecc 

(Figure 3.25) and θ 

angle distributions 

(Figure 3.28) 

A +1.472 +1.472 
1.426Ecc−0.494 

1.7 at Ecc=0.7 
+1.5978 

Deviation 

from the 

sphere case 

- 0% 15.5% 8.54% 

. 

The void fraction effect 

 

The theoretical approaches previously proposed considered only single bubble 

interactions with the probes. However, in the experiments, the local void fraction can be 

as large as 40%, and such conditions may alter the response of the measuring device. 

When comparing the simulated correlation coefficients (Figure 3.22) with those measured 
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in actual flows (Figure 3.14), it becomes clear that the measured correlation coefficients 

never decrease to zero but they reach a plateau that increases with the void fraction. 

Clearly, that portion of the curve is not exploitable for size measurements. The question 

is whether the first portion of the curve can still be used for accessing the horizontal 

bubble size. 

To test the effect of the void fraction, a first simulation was carried out in which 

bubbles of the same size were randomly located in a control volume. In order to simplify 

the calculus, the bubbles were considered as spheres (Figure 3.31 A, B and C). The 

random bubble placement procedure imposes that the bubbles should not be intercepted 

neither by the control volume frontiers nor intercept themselves. The cross-correlation 

was calculated for configurations with 𝜀𝑔 up to 23 %. In addition, different spatial 

arrangements were tested in order to check whether or not the results depend on the spatial 

organization of the bubbles. The same cross-correlation curve was obtained (Figure 3.32), 

showing that the bubble positioning has no effect. 
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A B 

 
 

C D 

  

Figure 3.31 – Different 3D arrangements of spherical bubbles: A,B,C) Random placement (void 

fraction = 23%; D) Manual placement (void fraction = 41%) (model). 

 

A second attempt was made where bubbles were manually set in space in order to 

decrease the computation time and therefore to simulate higher void fractions (namely 41 

%). The selected arrangement is shown in Figure 3.31 D and the resulting cross-

correlation curve is presented in Figure 3.32.  
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Figure 3.32 - Evolution of the cross-correlation with the ratio ‘probe distance/bubble horizontal 

diameter’ for spherical shaped bubbles at different void fractions. (model ).  

 

Clearly, the void fraction distorts the correlation coefficient as the probability that 

the two probes hit different bubbles increases. Yet the curve remains robust for short 

distances between probes: this trend is indeed expected since the probability to detect two 

different bubbles on each probe decreases when the probes are close enough to each other. 

Consequently, the prediction from the single bubble approach remains exploitable for 

short distances between probes. Therefore, to study the error committed using the single 

bubble assumption, the relative error of the estimation of the horizontal diameter was 

calculated as a function of the bubble horizontal diameter, for a probe distance of 0.8 mm, 

in Figure 3.33. 
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Figure 3.33 – Relative error of resulting of the single bubble approach as a function of bubble 

horizontal diameter for spherical shaped bubbles at different void fractions. (model , distance 

between probes = 0.8 mm).  

 

Quantitatively, Figure 3.33 shows that in order to have an error on the bubble 

diameter estimation below 10%, the bubble horizontal diameter should be larger than 3.5 

mm for a void fraction of 41%, and superior than 1.4 mm for a void fraction of 23%. 

Therefore, if one sets the probe distance to, say, 0.8 mm, the method based on the single 

bubble approach can correctly measure bubbles with a horizontal diameter above 3.5 mm 

at a void fraction 41%, and above 1.4 mm at a void fraction of 23%. 

These results show the necessity to adapt the distance between probes as a function 

of the bubble size distribution present in the flow, in order to ensure an acceptable 

measurement error. In the present work, according to the endoscopic imaging results 

which will be discussed in chapter 4, at a void fraction around 20% the smallest bubble 

detected has a 2 mm horizontal diameter. Moreover, at 40% of void fraction the smallest 

horizontal diameter detected by the endoscopic measurement was 4 mm. Additionally, 

the local gas hold-up was never higher than 50%. In that view, it is possible to conclude 

that the chosen distance between the probes (0.8 mm) was sufficient to perform 

measurements with an error less than 10 % for all the flow conditions consider in this 

work. 
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Averaging type  

 

So far, the cross-correlation technique was analyzed considering only monodispersed size 

distributions. In actual flow conditions, bubbles are polydispersed in size and in shape (or 

eccentricity). Thus, the measured cross-correlation will result from the contributions of 

bubbles of different sizes, each population being weighted by its respective contribution 

to the void fraction. As this technique only allows to determine a single characteristic 

dimension, the question is whether that dimension is significant when considering a 

polydispersion of bubbles. In other words, it is important to identify what type of 

averaging is made by the cross-correlation technique.  

To answer this question, the response of a polydispersed population was modeled. 

N classes of bubbles are considered, each class being associated with an horizontal 

diameter 𝐷ℎ𝑖, a vertical diameter 𝐷𝑣𝑖 and a void fraction 𝜀𝑔𝑖. In that vision, it is possible 

to define a normalized cross-correlation value CC as the ratio between the cross-

correlation for a given probe distance and the cross-correlation value measured with both 

probes in the same point in space. In the case of a single bubble class, CC (i) can be 

written as: 

 

 𝐶𝐶(𝑖) =
∫ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑖, 𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑖, 𝑡)𝜕𝑡
𝑇𝑒𝑥𝑝
𝑡=0

𝜀𝑔𝑖
 (3. 46) 

In case of several size classes present in the flow, the total normalized cross-

correlation CC results from the sum of all bubble pulses, seen by both probes at the 

same time, and can be described as: 

 𝐶𝐶 =
∫ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑡)𝜕𝑡
𝑇𝑒𝑥𝑝
𝑡=0

𝜀𝑔
 (3. 47) 

where each signal can be decomposed as the sum of bubble pulses for each 

bubble class i, namely: 

 

𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑡)

=∑ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑖, 𝑡) ×∑ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑗, 𝑡)
𝑗𝑖

 
(3. 48) 

Under the assumption that only one bubble can be detected by both probes at the 

same time (meaning that the effect of void fraction will not be modeled here): 

 if i ≠ j                𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑖, 𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑗, 𝑡) = 0 (3. 49) 
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Eq. (3.48) can be rewritten as 

 

𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑡)

=∑ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑖, 𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑖, 𝑡)
𝑖

 
(3. 50) 

By replacing Eq. (3.50) in Eq. (3.47): 

𝐶𝐶 =
∫ [∑ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑖, 𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑖, 𝑡)𝑖 ]𝜕𝑡
𝑇𝑒𝑥𝑝
𝑡=0

𝜀𝑔

=
∑ [∫ 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴(𝑖, 𝑡) × 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵(𝑖, 𝑡)𝜕𝑡

𝑇𝑒𝑥𝑝

𝑡=0
]𝑖

𝜀𝑔

=
∑ 𝜀𝑔𝑖𝐶𝐶(𝑖)
𝑛
0

𝜀𝑔
 

(3. 51) 

Finally, if Eq. (2.22) is applied to an oblate bubble population with several 

bubble classes i: 

CC =
∑ [1 − A

𝑑
𝐷ℎ𝑖

]𝑛
1 𝐷ℎ𝑖

2𝐷𝑣𝑖

∑ 𝐷ℎ𝑖
2𝐷𝑣𝑖

𝑛
1

=
∑ [1 − A

𝑑
𝐷ℎ𝑖

]𝑛
1 𝐷ℎ𝑖

3𝐸𝑐𝑐𝑖

∑ 𝐷ℎ𝑖
3𝐸𝑐𝑐𝑖

𝑛
1

=
∑ [1 − A

𝑑
𝐷ℎ𝑖

]𝑛
1 𝐷ℎ𝑖

3

∑ 𝐷ℎ𝑖
3𝑛

1

=
∑ 𝐷ℎ𝑖

3 −𝑛
1 ∑ [Ad

𝐷ℎ𝑖
3

𝐷ℎ𝑖
]𝑛

1

∑ 𝐷ℎ𝑖
3𝑛

1

= 1 − 𝐴d
∑ 𝐷ℎ𝑖

2𝑛
1

∑ 𝐷ℎ𝑖
3𝑛

1

 

(3. 52) 

The equivalent diameter is equal to 
∑ 𝐷ℎ𝑖

3𝑛
0

∑ 𝐷ℎ𝑖
2𝑛

0
 so the mean horizontal diameter obtained from 

the cross-correlation corresponds to the Sauter average (𝐷ℎ32) of the horizontal 

dimension of bubbles using the size distribution present in the system. The same 

conclusion was obtained in the derivation of the model for spherical bubbles, and the 

demonstration hereinabove show that that conclusion also holds for distorted bubbles. 

 

Uncertainty determination 

 

Four different sources can contribute to the uncertainty on the bubble diameter 

measurement using the cross-correlation technique:  

- the uncertainty on the distance between optical fibers, 

- the reproducibility in the measurement of the cross-correlation, 

- the uncertainty in the determination of the slope using a linear regression, 
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- the deviation from an ideal response due to finite void fraction. 

As previously mentioned, the experimental data used for the horizontal diameter 

determination was obtained using two optical probes at the same elevation on the column, 

with a distance between probes of 0.8 mm. The distance between the fibers was measured 

by the society A2 Photonic Sensors recurring to a microscope with an error of +/- 6 µm. 

This uncertainty in the probe distance alters the diameter estimation only by 0.075%, 

therefore it will be disregarded.  

To evaluate the uncertainty on the experimental determination of the cross-

correlation value, the measurements were repeated several times in the same conditions, 

with the same probes. The results show a variation of 0.44 % on the cross correlation 

value that affects the diameter estimation by ±2.5 %.  

The variation of the cross-correlation with the ratio of the distance between the 

probes and the bubble horizontal diameter is not linear, making the linear regression an 

approximation. As it will be presented in chapter 4, the horizontal diameter of the bubbles 

found in the flow varies from 2 mm up to 14 mm, causing the ratio ‘probe distance/bubble 

horizontal diameter’ to vary from 0.06 up to 0.4. Consequently, the slope resulting from 

the linear regression calculation can vary ±2 %, depending on the interval in which it is 

calculated (from 0 to 0.06 or from 0 to 0.4). If this difference is transposed to the diameter 

prediction, a ±6% variation can be found.  

The error caused by the simultaneous detection of two bubbles is a function of the 

void fraction and the ratio ‘distance between the probes/bubble horizontal diameter’, as 

can be seen in Figure 3.32. Therefore, it is not possible to estimate a global value for this 

error, becoming necessary to do it for every operational condition. Moreover, this error 

can only overestimate the bubble horizontal diameter measurement. 

Therefore, the overall uncertainty on the 𝐷ℎ32 measurement using the cross-

correlation technique will be considered to be ±6%, a value corresponding to the 

maximum of all sources of uncertainties. If one considers all uncertainties as cumulative, 

i.e., that all factors bias the measurements in the same way, then the uncertainty reaches 

±10.5%, a value still acceptable. 

The above considerations assume perfect, non-intrusive optical probes. In practice, 

the finite size of optical probes can induce bubble shape/trajectory distortions during 

bubble-probe interactions (Vejrazka et al., 2010) which may contribute to the 

measurement uncertainty. As previously discussed (section 3.3), most of the considered 

flow conditions are quite favorable for an optimal probe response. Thus, simulations of 
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bubble-probe interactions were not attempted. Instead, comparisons with measurements 

performed using alternative techniques were used to test the reliability of the cross-

correlation technique. In addition, deviations from ideal unidirectional flows were also 

tested.  

 

Spatial cross-correlation measurements 

 

The cross-correlations were measured using two optical probes at the same height 

in the column, side by side, at a given horizontal distance from each other. Each 

measurement was performed during the detection of 10000 bubbles, to assure the 

convergence of the cross-correlation value, as shown in Figure 3.34. 

 

Figure 3.34 – Convergence of the cross-correlation value as function of time for an experiment in 

the Phi 400 column, at 35 cm/s in the column center (experimental, dashed lines ±2.5 %) 

 

The experiments carried out to measure bubble horizontal diameter were made with 

a straight bi-probe composed by two independent 1C mono-fiber optical probes. The 

fibers had the same length and were radially spaced by 0.8 mm. For the experiments with 

no distance between the probes only one 1C mono-fiber optical probe was used and its 

signal was auto-correlated.  

 

A resume of the bubble size measuring methods and their capabilities is presented 

in Table 3.12. 
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Table 3.12 – Resume of measuring methods and measured variables. 
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3.5 Validation of local measuring methods 

 

In this section the performances of the above detailed measuring methods will be 

studied. At first, the Pavlov tube measurements will be compared to the results of other 

authors obtained in similar conditions. Afterwards, the results of the 1C mono-fiber 

optical will also be accessed, both the typical measurement capabilities and the new 𝐷ℎ32 

measurement method. To do so, results obtained in experimental set-ups described in 

chapter 2 will be compared with results from other authors and with the results of the 

endoscopic imaging measurements. 

 

Pavlov tube 

 

In order to validate the measurements of the liquid velocity performed with the 

Pavlov tubes, the results will be compared with measurements from other authors. As 

presented in Chapter 1, liquid velocity measurements on large bubble columns at high 

void fractions are scarce in the literature. The available data on the axial liquid velocity 

are plotted in Figure 3.35. 

Degaleesan et al (1990, 2001) have performed measurements with a CARPT 

system and Forret et al. (2003) have measured liquid velocities with Pavlov tube. A 

resume of the experimental conditions used by these authors is presented in Table 3.13. 
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Table 3.13 – Resume of experimental conditions of the literature data on liquid velocity. 
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Degaleesan 

et al., 1990 
0.3 10.5 - 

Averaged 

between 

0.1<h/D<2 

- 33 

Degaleesan 

et al., 2001 
0.44 9.6 19 

Averaged 

between 

0.75<h/D<4 

- 33 

Forret et al, 

2006 
0.4 12  19 h/D=3 ±10 50 

 

  In Figure 3.35 are also plotted the data obtained from the Pavlov tubes with the 

two sets of pressure sensors, namely one with frequency bandwidth of 8 Hz (referred to 

as Pavlov @ 8Hz) and one with a frequency bandwidth of 100 Hz (referred to as Pavlov 

@ 100 Hz). The data were obtained in the Phi 400 column at h/D of 3.75 and for a gas 

superficial velocity of 9.5 cm/s. 
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Figure 3.35 – Evolution of the axial liquid velocity with the radial position. (Vertical bars represent 

the ±10 % measurement error of the Pavlov tube) 

 

Globally the results are all in good agreement all along the column radius. The 

profiles from the 8 Hz and the 100 Hz Pavlov tubes present the same shape and provide 

similar values as those found by Degaleesan et al. (2001). The radial profile of 

Devanathan et al. (1990) has a shape similar to the above mentioned profiles, but with a 

significantly lower axial liquid velocity in the centre of the column. The liquid velocity 

in the column centre can be estimated by the correlation Eq (1.3) as a function of the 

column size and the superficial gas velocity. The measured and predicted liquid velocities 

in the centre of the column, for all the data series presented in Figure 3.35, are compared 

in Table 3.14. 
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Table 3.14 – Measured and predicted values of the axial liquid velocity in the center of the column 

(ul(0)). 

Authors 
ul(0) 

(cm/s) 

Eq (1.3) 

(cm/s) 

Difference 

between 

measured 

and 

estimated 

values (%) 

Degaleesan et al., (1990) 50 59 -14 .8% 

Degaleesan et al., (2001) 63 61 3.6 % 

Forret et al, (2006) 75 69 8.9% 

Pavlov @ 8 hz 70 60 17% 

Pavlov @ 100 hz 58 60 -3% 

 

 The results show that the measurements of Degaleesan et al., (1990) are 

considerably lower than the predicted velocity (~15%) , possibly because of the small 

diameter of their column. Moreover, the higher velocities measured by the Pavlov tube 

with a frequency bandwidth of 8 Hz are explained by an overestimation of the liquid 

velocity (+17%): oddly such deviations are observed with the sensor which has the best 

resolution (typically 0.01 m/s). The results of Forret et al, (2006), Degaleesan et al., 

(2001) and the Pavlov @ 100 Hz present an agreement between the measurements and 

the predicted values within a ±10% interval. Let us recall that the resolution of the Pavlov 

@ 100 Hz is rather poor, typically about 0.1 m/s. So it is possible to conclude that the two 

Pavlov tubes can correctly measure the mean axial liquid velocity in the Phi 400 bubble 

column. None of the previously mentioned authors have reported any profile of the radial 

liquid velocity, so it is impossible to test the response of Pavlov tube in the radial 

direction. 

 As referred to in section 3.1, by applying the Reynolds averaging definition it is 

possible to evaluate the liquid axial velocity fluctuations u’ (where u’ denotes here the 

root-mean-square of velocity fluctuations) and the turbulence kinetic energy along the 

axial direction (u’2). In Figure 3.36 are provides the radial profiles of liquid turbulent 

kinetic energy reported in literature as well as our measurements performed in the same 

experimental conditions as detailed in Figure 3.35. 
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Figure 3.36 – Evolution of the axial liquid turbulent kinetic energy (u’2) with the radial 

dimensionless position. (Vertical bars represent the ±20 % measurement error of the Pavlov tube) 

 

 Contrary to the mean axial liquid velocity, the available experimental results on 

the liquid turbulent kinetic energy are in a poor agreement. The Pavlov results present 

almost flat profiles but with quite different intensities: the 100 Hz Pavlov presents 

velocity fluctuations four times higher than the 8 Hz Pavlov. The Pavlov @ 100 Hz used 

for each velocity component two different pressure sensors. Thus, the discrepancy on the 

results presented in Figure 3.36, can result from a cumulative effect of the uncertainty of 

each pressure sensor. Moreover, the results from Degaleesan et al. (2001) also present a 

rather flat profile along the column radius, with values close to the measurements 

performed with the 8 Hz Pavlov tube. Forret et al. (2006) have reported a profile that 

peaks around x/R=0.7, the location where the mean axial liquid velocity changes its 

direction. If one set aside the 100 Hz Pavlov tube, all profiles present similar magnitudes 

of axial turbulent kinetic energy. Similar are found when comparing the radial liquid 

turbulence kinetic energy (v’2) as shown in Figure 3.37. 
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Figure 3.37 – Evolution of radial liquid turbulent kinetic energy (v’2) with the radial dimensionless 

position. (Vertical bars represent the ±20 % measurement error of the Pavlov tube) 

 

 Since the Pavlov tube is able to measure simultaneously the axial and radial 

velocity components, the Reynolds stress tensor (u’v’) can be computed. The comparison 

between the results obtained with the two Pavlov tubes configurations and the results 

from literature are presented in Figure 3.38. Menzel et al. (1990) have measured the liquid 

velocity in a 0.6 m diameter column using a hot-film anemometry method. 

 

 

Figure 3.38 – Evolution of the Reynolds stress tensor (u’v’’) with the radial dimensionless position. 

(Vertical bars represent the ±20 % measurement error of the Pavlov tube) 
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The results show that the 8 Hz Pavlov profile presents the same trend than those 

of Degaleesan et al. (2001) and of Devanathan et al. (1990), but with smaller values of 

the Reynolds stress tensor. As already noted in Figure 3.36, the 100 Hz Pavlov profile is 

flat and with a much higher magnitude than the 8 Hz Pavlov. The results form Menzel et 

al. (1990) present higher values of Reynolds stress tensor, as expected, since they were 

obtained in a larger column. However, the difference seems too large to be only explained 

by the scale-up effect alone. An explanation for this difference could be that the 8 Hz 

Pavlov and the 33 Hz CARPT measurement system are filtering some velocities 

fluctuations. The 100 Hz Pavlov always gives much higher values of velocity fluctuations 

than the other methods, even higher than the results of Menzel et al. (1990) that were 

acquired in a larger bubble column.  

Concluding, the time average axial liquid velocities measured from the Pavlov 

tubes were validated by comparison with similar results from different authors: within 

±15%, the magnitudes are in agreement with previous findings. The Pavlov tubes are also 

able to measure the velocity fluctuations, but large differences were observed between 

the two systems. In the 8 Hz configuration, the measurements always provide lower 

values compared with those obtained by other authors, a trend that may be related with 

the low time resolution of the pressure sensor. Contrarily, the 100 Hz configuration 

always present higher velocity fluctuations. Both sensors will be exploited for the analysis 

of the flow behaviour in Chap.4. 

 

Optical probes 

 

In this section, the performance of the 1C mono-fibre optical probe in the 

experimental conditions described in chapter 2 will be detailed. As previously discussed, 

these probes were mainly validated in somewhat favourable conditions, namely quasi 

unidirectional flows. Since this work aims at measuring bubble dynamics in large bubble 

columns (up to 3 m diameter) and in high gas hold up (up to 30%) it is necessary to verify 

their performance in heterogeneous and strongly agitated flows. In the following, the 

measurement capability of the optical probes in terms of gas hold-up, vertical bubble size 

and bubble velocity will be checked. Afterwards, the new method developed in section 

3.4 to access to the 𝐷ℎ32 will be tested. 
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Another factor that can impact the performance of the optical probes is the fouling 

formation on the probe tip. Since the experiments were carried in large bubble columns 

it is impossible to use distilled or permutated water. Consequently, deposits can be formed 

on the probe sensible tip, which can alter the de-wetting process and block the passage of 

the light beam through the probe tip. Normally, this phenomenon is accompanied with an 

attenuation of the gas signal voltage and can lead to underestimation of the bubble 

velocity. Such conditions were detected during the experiments, and since it is an 

irreversible process the experiments were repeated with a different probe. 

 

Void fraction measurements 

 

Accurate measurements with optical probes require the correct detection of all 

bubbles crossing the probe tip position. With the discussion on the modified Weber 

number M in section 3.3, we have already seen that the mean flow conditions considered 

here are favorable in the sense that trajectory deviations or shape distortions are 

minimized. Yet, various flow features depart from this ideal view. First, strong velocity 

fluctuations are present in most flow conditions (see Chap.4) with a magnitude often 

comparable to the mean velocity. Therefore, some bubble-probe interactions arise with 

low (and even nearly zero) approaching velocities. In such cases, the M parameter 

decreases by an order of magnitude, resulting in trajectory modifications, velocity 

deceleration and thus distorted detections. Even more, velocity fluctuations can lead to 

flow reversal anywhere along a column radius, and how optical probes detect bubbles 

arriving from its rear is a situation poorly documented. Finally, the mean flow itself is 

reversed in regions near the wall. All these features lead to quite challenging conditions 

for optical probes. Although a systematic investigation of the impact of the bubble 

trajectory on the probe response could have been feasible on a dedicated test bench, it 

was decided to directly analyze the probe response in our flow conditions. 

As a first step, the bubble detection efficiency was first checked by considering the 

void fraction measurements. Indeed, the probe provides local gas hold-up, and after 

integration over a cross-section, one obtains the surfacic gas fraction. The surfacic gas 

fraction should be equal to the volumic gas fraction (equivalently the global gas hold-up) 

provided that the flow is quasi fully-developed and stationary. The global gas hold-up 𝜀�̅� 

was measured by the bed expansion method and thus it concerns the entire volume of the 
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column. Therefore, the fully developed assumption is clearly not fulfilled. Despite this 

shortcoming, the comparison has been attempted. The measurements were performed all 

over the cross-section with a probe vertical position and pointing downwards. 

For the integration, since the gas hold-up was not measured close to the column wall, 

it was considered that the gas hold-up is zero on the column walls and that it varies 

linearly between the last measured point(at x/R=0.8) and the wall. Assuming there is no 

variation of the void fraction along the height of the column, the surfacic void fraction is 

compared to the global gas hold-up measured. For the integration, we considered the 

radial profiles have been collected at h/D= 3.75. 

 

 

Figure 3.39 – Comparison between the volumic gas hold-up and the surfacic gas hold-up deduced 

from the optical probes measurements. (Dashed lines  ±15 %) 

 

As can be seen in Figure 3.39, the volumic and surfacic results present a deviation 

under ± 15 % superficial gas velocities ranging from 3 cm/s up to 35 cm/s in the three 

columns. One should bear in mind that the measurement of the volume gas hold-up was 

performed by the measurement of the height expansion, with a typical relative uncertainty 

of ± 10 %. Therefore it is possible to affirm that both measurements are in good 

agreement. 

In conclusion, the void fraction measurements by the 1C mono-fiber optical probe 

were validated in dense and 3D flows as the ones found in bubble columns up to 1 m of 

diameter and at gas hold-up values up to nearly 40%.  This good result is not too surprising 

as void fraction measurements with single optical probes are known to be insensitive to 
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the probe orientation with respect to the main flow at least up to 90° angles (Barrau et al., 

1999; Zun et al.,(1995)). Yet, let us recall that in the present conditions, such angles can 

be much higher than 90° and even reach 180° when the flow is reversed.  

The impact of these challenging flow conditions is expected to be much more drastic 

when considering more refined variables such as the interface velocity, grounded on the 

de-wetting dynamics, and the bubble size distributions, related with the gas residence 

time of the probe tip inside bubbles. As a first step, let us first analyze the optical probe 

signals and some of their characteristics. 

Optical probes signal in heterogeneous flows 

 

The raw signals happen to be quite similar to those observed in less complex 

bubbly flows, notably with very similar bubble signatures expect for the “double bubbles” 

that will be discussed later.  

As a first indication of the correct probe functioning, let us consider the percentage 

of bubbles of type T1 that corresponds to bubbles signatures with a fully de-wetted probe 

(see section 3.2): that percentage gives an information on the quality of the measurements. 

In unidirectional flows and for millimeter size bubbles, this parameter is typically about 

90%. The evolution of the percentage of T1 bubbles along the column radius in the Phi 

400 for a superficial gas velocity of 16 cm/s is plotted in Figure 3.40 A. Figure 3.40 B 

presents the evolution of the percentage of T1 bubbles with the superficial gas velocity, 

for the Phi 150, 400 and 1000 column at center of the column. 

 

A B 

  

Figure 3.40 - A) Evolution of the % of T1 bubbles in the measurements along the column radius in 

the Phi 400 column at 16 cm/s at h/D=2.5. B) Evolution of the % of T1 bubbles in the measurements 

with the superficial gas velocity in the column center at h/D=2.5. 
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 The results depicted in Figure 3.40 B show that, whatever the superficial gas 

velocity the percentage of T1 bubbles in our measurements were always of the same order 

of magnitude as in the unidirectional experiments of the literature. Figure 3.40 A shows 

that the percentage of T1 bubbles slightly decreases along the column radius, however it 

remains quite large. These trends are to be expected owing to the somewhat large size of 

bubbles considered here. Indeed, T1 signatures corresponds to signals that reach the upper 

gas level: here bubble sizes are about a few millimeters while the probe sensing length is 

a few tens of micrometers so that complete probe de-wetting is highly probable. Since a 

bubble velocity is evaluated whenever the ratio of the residence time over the rising time 

is exceeds a few units (Barrau et al., 1999), all T1 signatures will provide a velocity in 

the present flow condition. Consequently, and contrary to situations involving smaller 

bubbles (say below 2-3mm), there is no selection criteria on the range of impact angles 

(the impact angle is defined between the probe axis and the local normal vector to the 

interface) and the transformation rise time–velocity is therefore unduly applied for some 

signatures (this is notably so for bubbles trajectories normal to the probe axis). Thus, the 

% of T1 bubbles is not a meaningful criterion to ascertain the reliability of velocity 

measurements in the present flow conditions.  

 To further analyze of the signals delivered by the 1C mono-fiber optical probe, 

the rising time and gas residence time PDFs have been examined. Examples of such PDFs 

are presented in Figure 3.41: these data were collected in the center of the Phi 400 column 

at h/D=2.5 and for a superficial gas velocities of 3 cm/s and 35 cm/s. 

 

A B 

  

Figure 3.41 - A) PDF of rising times B) PDF of gas residence times (measurements in the Phi 400 

column, at the column center and h/D=2.5)  
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 Figure 3.41 A presents the PDFs of the rising times at superficial gas velocities of 

3 cm/s and 35 cm/s. These distributions are similar to what is commonly observed in 

bubbly flows. Let us recall that the rising time corresponds to the time required to de-wet 

the sensible tip of the probe. As previously referred to, the bubble velocity along the probe 

axis is given by the ratio between the sensing length of the probe and the rising time of 

each bubble. Therefore, and as expected, the PDF measured at vsg=35 cm/s is centered on 

lower values than the one measured at 3 cm/s, since the bubbles are rising faster at 35 

cm/s.  

Figure 3.41 B presents the PDFs of the gas residence times at superficial gas 

velocities of 3 cm/s and 35 cm/s. Again, these distributions have the same shape as those 

commonly gathered in bubbly flows when using conical probes (see also the discussion 

on the PDF shape in Vejrazka et al. 2010). The gas residence time represents the time that 

the sensible tip of the probe passed inside each bubble, and the pierced chord can be 

computed by the product of the bubble velocity and the gas residence time of each bubble 

The distribution for vsg=3 cm/s is centered on a higher gas residence than the one for 

vsg=35 cm/s: this is consistent with the change in velocity since the bubble sizes are nearly 

the same according to endoscopic measurements (see Figure 3.48).  

Some special bubble signatures have been detected in the raw signal. The anomaly 

illustrated Figure 3.42 corresponds to a pair of bubbles separated by a thin liquid bridge. 

When the distance between the two bubbles is smaller than the probe sensitive length, the 

probe tip is not completely wet and the signal voltage does not drop down to the liquid 

level. As a consequence, the signal post-treatment considers that there is only one bubble 

those velocity is that of the first one and with a gas residence time corresponding to the 

sum of both contributions. 

 

 

Figure 3.42 – Signal anomaly: two bubbles detected as one.  



185 

 

 

The occurrence of this phenomenon increases with the gas hold-up, since the 

distance between bubbles is reduced and the presence of unsteady 3D structures on the 

flow can lead to the formation of bubble swarms. The impact of this anomaly on the flow 

was studied for superficial gas velocity of 35 cm/s in the Phi 1000 column center. The 

probability of detecting a bubble pair happens to be quite small, less than 0.2% of the 

total number of bubbles detected, and that holds at all superficial velocities (see Table 

3.15). In addition, the “double bubble” events have been manually processed to extract 

the true chord for each bubble. Thereafter, the mean chord has been evaluated accounting 

for the presence of two bubbles and it has been compared with the value given by the 

post-processing. As seen from Table 3.15, the maximum difference is less than 2.5%. 

Thus, the occurrence of bubble pairs has no significant impact on the measurements, and 

we did not implement any criteria in the signal processing to detect such events. 

 

Table 3.15 – Occurrence of “double bubbles” and their impact on the mean chord. 

Superficial gas 
velocity (cm/s) 

9 16 25 35 

% fraction of 
double bubbles 

detected 
0.09 0.11 0.19 0.15 

C10 (mm) original 
post-treatment 

2.93 3.64 3.82 4.44 

C10 (mm) with the 
treatment of 

double bubbles 
2.90 3.60 3.73 4.35 

 

All the above analysis indicates that, even in presence of high gas hold-up and 

unsteady 3D structures, the optical probes are still capable of correctly detecting the 

bubbles and in particular, there is no odd behavior of the raw signals nor of the 

characteristic times statistics. 

As already pointed out, a key issue in our flow conditions is the impact of the 

probe direction with respect to the main flow. Before discussing this, it is important to 

evaluate how often the flow reverses its direction. This has been quantified by the fraction 

of time during which the liquid is descending, deduced from the instant velocity measured 

by the Pavlov tube. The results for the columns Phi 400 and Phi 1000 at h/D= 3.75 are 

presented in Figure 3.43 A, B and C, respectively. 
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A B 

  

C 

 

Figure 3.43 – Evolution of the fraction of time with a downward directed velocity along the column 

radius at h/D=2.5: A) Phi 400 (Pavlov @ 8Hz) B) Phi 400 (Pavlov @ 100Hz) C) Phi 1000 (Pavlov @ 

100Hz, h/D=3.75). 

 

Some quantitative differences arise depending on what pressure sensor has been 

connected to the Pavlov, but clear trends appear. First, and whatever the superficial gas 

velocity and the column size, the time fraction monotonically increases along the column 

radius. This is due both to fluctuations than can lead to absolute negative velocities and, 

at larger distance from the axis, to the downward directed mean liquid motion. Note that 

a fraction of 50% corresponds roughly to x/R ≈ 0.7, which is indeed the location of the 

mean flow reversal: that indicates that the above measurements are consistent. In the 

central region, the occurrence of a downward liquid velocity remains significant, 

including on the column axis with typical value between 20 and 40% at low vsg (see 

Figure 3.43). Note that for vsg=9cm/s and higher, the two pressure sensors provide quite 

different results near the axis. On the axis, one found 1% according to the 8 Hz sensor, to 

be compared with 20% for the 100Hz sensor. Owing to the resolution, the results gathered 

with the 8Hz sensor may be more reliable, so that no absolute negative velocity arise on 

the axis at vsg=9cm/s and above (see also the velocity pdf in Figure 4.45 Chap.4). At 

vsg=3cm/s, the magnitude of the negative velocities are up to 20-30cm/s (see Figure 4.45 

Chap.4): this is sufficient to entrain a fraction of the bubbles population downward. Also, 
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and whatever vsg, the occurrence of downward directed velocity is already significant 

(≥10%) at x/R≈0.2. Thus, when analyzing quantities integrated over a cross-section, one 

should bear in mind that downward directed motions are always present and will affect 

the probe response. This was notably the case for the void fraction: it that case, the 

consequences of the change in flow direction on the measurement uncertainty were 

limited. 

 Let us now use the above features to investigate the sensitivity to the probe 

orientation. To investigate the effect of the bubble trajectory with respect to the probe, 

measurements were performed in the same flow conditions and for different orientations 

of the probe with respect to the mean flow. Hereafter, an angle of 0° corresponds to a 

probe pointing downward. These tests have been only achieved at low vsg (namely 3cm/s) 

in the center of the Phi 400. As seen above, in these conditions, the liquid velocity is 

directed downward roughly 40% of the time. Although it is probable that the same figure 

measured on bubble velocities would have been lower, it is likely that downward directed 

bubble motion was present as well. 

Figure 3.44 presents the effect of the angle on the measured variables. The local 

gas hold up and the bubble detection frequency are given Figure 3.44 A.  
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A 

 

B 

 

C 

 

Figure 3.44 – Incidence of the probe orientation with respect to the flow (0° = vertical probe 

pointing downward) on key quantities: A) Local gas hold-up and bubble detection frequency; B) 

bubble velocity; C) Bubble chords (Measurements obtained in the Phi 400 column at h/D=2.5 and 

x/R=0) 
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The first striking result is that whatever the orientation between 0° and 180°, the 

probe detects a significant number of bubbles. The detected void fraction and the bubble 

detection frequency drop by 40% between 0° and 180° when compared with the value at 

0°. As flow reversal is present at most 40% of the time and with moderate downward 

velocities (0.3 cm/s at most) that can hardly entrain the largest bubbles, it is clear that 

bubbles coming from the rear and hitting the probe tip are also perceived by the probe.  

Detected velocities (mean and maximum values) monotonously decrease with the 

angle (Figure 3.44 B). The decrease is steep between 0 and 45°, and less marked 

thereafter. The difference between 0° and 180° corresponds to a 30-35% drop in the 

detected velocity. Similar trends are observed on the mean chord and on maximum 

chords: again, the drop between 0° and 180° is in the range 35-40% (Figure 3.44 C). As 

a majority of bubbles are selected for velocity measurement (the decrease of the 

proportion of T1 bubble with the angle - from 95 to 90% - is negligible), it is clear that 

the impact conditions (in terms of probe axis with respect to the normal to the interface) 

are strongly varying. Hence, the rise-time velocity relationship established for close to 

normal impacts is unduly applied to a larger proportion of hits as the angle increases. The 

decrease in the velocity is also to be expected as normal impacts provide the shortest de-

wetting times, i.e. the largest velocity measurements. For the chord, there is an additional 

effect due to the lateral motion of bubbles since, for oblique trajectories, the chords 

detected become closer to the horizontal diameter instead of the vertical dimension of 

bubbles.  

When examining the local gas flux (Figure 3.45), the sensitivity to the probe 

orientation is even more pronounced with a drop by a factor nearly 60% from 0° to 180° 

compared to the value at 0°. That corresponds to a ratio of 2.5 between extreme values. 

Such magnitudes are not surprising as the gas flux gathers information relative to the 

number of bubbles, velocities and chords. 
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Figure 3.45 - Incidence of the probe orientation with respect to the flow (0° = vertical probe 

pointing downward) on the local gas flux (Measurements obtained in the Phi 400 column at h/D=2.5 

and x/R=0) 

 

The above information are not sufficient to provide a complete understanding of 

the probe response in such complex flows. In particular, it would have been interesting to 

repeat the above tests in others flow conditions, such as at higher vsg or in the region of 

mean downward motion. They nevertheless underline some of the difficulties in the 

interpretation of the measurements. Let us now evaluate the reliability of the bubble 

velocity as measured with optical probes in such flow conditions. 

 

Bubble velocity measurements 

 

Inside the bubble columns, we had no possibility to compare the bubble velocity 

measured with the optical probe with an alternate technique. Indeed, the 1C mono-fiber 

optical probe is the only method, among those used in this work, which that can measure 

the bubble velocity. Besides, the comparison of the bubble velocity measurements with 

the results from others authors can be challenging because the experimental conditions 

were not the same and the techniques were different. Thus, to roughly evaluate the quality 

of bubble velocity measurements, we considered the largest velocities detected in each 

phase and assume that they should be strongly correlated. In a “smooth” bubbly flow, 

they should be the same but this is no longer true for example if strong in-homogeneities 
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optimal detection conditions for optical probes. The liquid velocity was extracted from 

Pavlov tube data: let us recall that this information is collected over a region of significant 

extent (≈15mm see Chap. 2). Arbitrarily, the averaging was performed over the 10% 

highest values. The averages of the 10% highest bubble velocities measured in the Phi 

400 column, in the center of the column and at h/D=2.5 for superficial gas velocities 

ranging from 3 cm/s up to 35 cm/s, are presented in Figure 3.46. The averages of the 10% 

highest liquid velocities (measured with the Pavlov@8Hz) at the same location in the Phi 

400 column for superficial gas velocities of 9 cm/s, 16 cm/s and 35 cm/s are also reported 

in Figure 3.46. For sake of comparison, and as optical probes are unable to detect the sign 

of the velocity, the liquid velocities are essentially upward in these selected conditions. 

 

 

Figure 3.46 – Comparison between the averaged velocity of the 10 % higher velocities detected for 

the liquid and bubbles. (Measurements performed in the Phi 400 column, at the column center at 

h/D=2.5. Liquid velocity measured by the Pavlov tube and bubble velocity measured by the optical 

probes) 

 

The results show that both phasic velocities have comparable magnitudes and 

exhibit the same trend with the superficial gas velocity. The bubble velocity is slightly 

higher than that of the liquid. In this view, it is possible to conclude that the bubble 

velocity seems to be correctly measured when the flow has an ascending unidirectional 

movement. The same exercise was made in the Phi 1000 column, with data collected in 

the column center and at h/D= 3.75: in these conditions, the fraction of downward directed 

motion is higher than in the Phi 400 (Figure 3.43). The corresponding data are presented 

Figure 3.47. 
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Figure 3.47 – Comparison between the averaged velocity of the 10 % higher velocities detected for 

the liquid and bubbles. (Measurements performed in the Phi 100 column, at the column center at 

h/D=3.75. Liquid velocity measured by the Pavlov tube and bubble velocity measured by the optical 

probes) 

 

As seen in Figure 3.46 and in Figure 3.47, the liquid and bubble velocity present 

the same evolution with the superficial gas velocity. Yet, the difference between the two 

velocities in the Phi 1000 column is larger than in the Phi 400 column. In view of Figure 

3.47, one may think that the bubble velocity is overestimated, but no evidences were 

found that could explain a possible overestimation of the measured gas velocity. Globally, 

the above results are encouraging that but the reliability of bubble velocity measurements 

cannot be quantified.  

 

Bubble size measurements in the vertical direction 
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eccentricity over the entire bubble population were assumed (the value of the eccentricity 

is not required). 

The endoscope imaging method measures vertical and horizontal diameters for 

each detected bubble, as described in section 3.2. Therefore, it is possible to calculate the 

Sauter mean vertical diameter (Dv32) from each measurement series. Note that the optical 

probe detects continuously the flow passing through the probe (average in time) and the 

endoscope detects some bubbles inside a control volume (volume average). To obtain 

comparable averaged quantities, one needs to transform the detected distribution into the 

size distribution in the system, as seen in section 3.3. Providing that we consider average 

with respect to the actual size distribution in the system, the various mean diameters are 

indeed equivalent and can de compared on a solid basis. Let us also bear in mind that the 

endoscopic method underestimates the weight of the smaller bubbles, but the resulting 

bias is hard to evaluate. 

The Dv32 measured by the two methods in the Phi 400 column at a h/D=2.5 and in 

the column center for superficial gas velocities from 3 cm/s up to 35 cm/s are plotted in 

Figure 3.48.  

 

 

Figure 3.48 – Evolution of the Sauter mean vertical diameter with the superficial gas velocity. 

(Measurements performed no the Phi 400 column at h/D=3.75 and at center of the column) 

 

 The endoscopic imaging results present a constant value Dv32 of around of 6 mm 

for all the tested superficial gas velocity range. For the optical probe, the Dv32 increases 

with the superficial gas velocity between 3 cm/s and about 15 cm/s. As a consequence, 

the results at 3 cm/s and 9 cm/s present a considerable deviation: the difference between 
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the two techniques reaches 3mm as vsg=3cm/s. Yet, at superficial gas velocities above 

about 15cm/s, a good agreement is found between the two methods, with an averaged 

difference of 1.1 mm. 

Similar studies were performed in the axis of the columns. In the Phi 150 column 

and at a h/D=2.5, the endoscope imaging experiments were only made for superficial gas 

velocities in the range of 2 cm/s to 13 cm/s while the 1C mono-fiber optical probe 

measurements were performed between 3 cm/s and 35 cm/s (Figure 3.49). 

Measurements were also achieved in the Phi 1000 column at h/D=3.75 and for superficial 

gas velocities from 3 cm/s up to 35 cm/s (Figure 3.50). 

 

 

Figure 3.49 – Evolution of the Sauter mean vertical diameter with the superficial gas velocity. 

(Measurements performed in the Phi 150 column at h/D=2.5, and at center of the column) 

 

The Sauter mean vertical diameter was also measured in the Phi 1000 column by 

the 1C mono-fiber optical probe and the endoscopic imaging method. The measurements 

were performed in the center of the column at a h/D=3.75 for superficial gas velocity 

range from 3 cm/s up to 35 cm/s, as shown in Figure 3.50.  
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Figure 3.50 – Evolution of the Sauter mean vertical diameter with the superficial gas velocity. 

(Measurements performed no the Phi 1000 column at h/D=3.75 and at center of the column) 

 

In both cases (in Figure 3.49 and Figure 3.50), the evolutions of the Sauter mean 

vertical diameter with vsg present a trend similar as the one of Figure 3.48. The endoscope 

imaging measurements present a constant bubble size along the tested range of superficial 

gas velocity while the bubble size measured with a 1C mono-fiber optical probe increases 

with the superficial gas velocity up to vsg ≈ 10 cm/s or 15 cm/s. As a consequence, 

significant deviations (≈2 to 3mm) arise between the measurements for the lowest 

superficial gas velocities. These disagreements disappear at larger velocities, with a mean 

difference between the two techniques of 1.07 mm in the Phi 1000 column. An estimation 

of the mean difference could not be performed in the Phi 150 column since the endoscopic 

and optical probe measurements were carried out at different superficial gas velocities. 

Globally, the results show that the measurements agreement holds at vsg above 10-15cm/s 

and for all column diameters. 

The evolution of the Sauter mean vertical diameter as measured by the two 

techniques was also investigated along the column radius in the Phi 400 column and at a 

superficial gas velocity of 16 cm/s. 
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Figure 3.51 – Evolution of the Sauter mean vertical diameter along the column radius. 

(Measurements performed no the Phi 400 column at h/D=2.5 at a superficial gas velocity of 16cm/s) 

 

 The endoscope results show a decrease of the bubble vertical diameter between 

the column center and the position x/R=0.25, and for larger distances to the axis, the 

bubble size remains constant. The optical probe results display a parabolic profile with 

the vertical diameter of the bubbles monotonously decreasing along the column radius. A 

good agreement is found between the measurements on the column center and also close 

to the wall at x/R=0.8. For intermediate positions, the endoscope detects a Dv32 smaller 

than the one measured with optical probe (deviation up to 2 mm). Nevertheless, the 

average difference between measurements is 1.6 mm.  

Concluding, 1C mono-fiber optical probe and endoscopic size measurements are 

in good agreement on the column axis and for all columns for vsg above 10-15cm/s. 

Significant deviations are found at low superficial gas velocities. One possible 

explanation for these deviations may be an overestimation of the bubble diameter as 

measured by the endoscope. Indeed, smaller bubbles hidden behind larger ones are not 

counted and may be thus underestimated. A priori such a bias should be independent of 

the velocity. A second explanation arises from the response for the optical probe: indeed, 

at low vsg, the velocity fluctuations are significant compared with the mean leading to 

weak impact velocities on the probe and therefore to strong perturbations of the bubble 

trajectory and velocity. This effect disappears as vsg increases since the probability to 

apparition of weak or zero absolute velocities drops to zero above about 10cm/s as shown 

by the liquid velocity distributions (see Figure 4.45 in Chap.4). 
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The agreement between the two techniques is somewhat degraded when moving 

along the column radius: this phenomenon is possibly related with the presence of 3D 

unsteady structures that lead to downward directed velocities: indeed, the fraction of the 

later drastically increases with the distance to the axis (Figure 3.43) and that induces a 

bias in the response of the optical probe as discussed in the previous section. Oddly, one 

should therefore expect the largest deviations to occur in the mean flow recirculation 

region: instead the agreement between the two techniques is better at x/R=0.8 than for 

intermediate radial positions. 

Aside the mean size discussed above, we also compared the chord distributions 

given by the optical probe with those deduced from the size distributions measured with 

the endoscope using the transformation given by Eq. (3.20). For the reconstruction, we 

considered the distribution of horizontal diameters and we assumed a constant 

eccentricity, equal to 0.7. Note that we are considering here the statistics on chords along 

the vertical direction. The comparisons are shown Figure 3.52 for data collected on the 

axis of the Phi 400 column at h/D= 2.5 and for vsg= 3 cm/s, 16 cm/s and 35cm/s. 
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Figure 3.52 – Comparison of chord distributions measured with the optical probe and 

reconstructed from the endoscope data for the superficial gas velocities of: A) 3 cm/s B) 16 cm/s C) 

35 cm/s. (Measurements performed in the center of the Phi 400 column at h/D=2.5) The vertical 
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lines correspond to the maximum vertical and horizontal diameter detected with the imaging 

technique 

 

As for the Sauter mean diameters discussed above, the mean chords are similar 

except at the lowest superficial gas velocity (Table 3.16). Oddly, the chord distributions 

arising from the two techniques are quite different. In all cases, small chords are 

underestimated by the endoscope, most probably as a result of the underestimation of the 

smallest bubbles present in the flow. The most striking feature is the extent of the chord 

distributions as seen by the optical probe that exceeds the maximum vertical dimensions 

detected with the endoscope. At 3cm/s, the difference is moderate, but it becomes huge 

for vsg=16 and 35 cm/s. Even more, the chords detected are larger than the maximum 

horizontal diameter observed in image analysis. Owing to velocity fluctuations, the probe 

may indeed combine vertical as well as horizontal dimensions of the bubbles in its 

statistics. Clearly, this is not the only difficulty here as the above results indicate that 

incorrect chords are detected even though the associated probability is low. It is highly 

likely that such defects originate from incorrect bubble velocity measurements since, as 

already indicated, the discrimination on the impact angle is inefficient in these flow 

conditions. In support to that, the chord PDF constructed with the mean liquid velocity 

and with the gas residence times detected by the optical probe never exhibit such 

overestimated sizes. 

 Therefore, in such complex bubbly flows, the chord distribution should be considered 

with care even though the mean chord is significant. In particular, the maximum chord 

detected should not be used as an estimate of the maximum bubble size. 
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 Table 3.16 – Comparison of different moments of the bubble size distribution, obtained by the 

endoscope and optical probe. 

 vsg (cm/s): 3 16 35 

Optical probe C10 SO 2,16 3,78 4,29 

Endoscope 

Dh32 endo 8,57 8,57 9,71 

C10 from Dh 4,00 4,00 4,53 

Dv32 endo 5,80 6,19 6,90 

C10 from Dv 3,87 4,13 4,60 

Max Dh 13.4 16.8 16.8 

Max Dv 10 10.3 10.8 

 

Bubble flux measurements 

 

As mono-fiber optical probes can measure the local gas flux by way of Eq. (3.5), 

it is thus possible to evaluate the global gas flux in the column by integration over the 

cross-section. Examples of radial profiles of the local gas flux measured in the Phi 400 

column are presented Figure 3.54. In the column Phi 150, the measurements were 

acquired up to a dimensionless radial distance of x/R= 0.75, that corresponds to 56 % of 

the column cross-section area. In the Phi 400 and Phi 1000 columns, the measurements 

were made up to x/R=0.8, that corresponds to 65% of the cross-section area. 

Consequently, to quantify the impact of the gas flux in this outer zone of the column, two 

extreme scenarios were considered. The first scenario assumes that the gas flux remains 

constant between the last measurement point and the wall (Figure 3.53 A), while the 

second scenario assumes that the gas flux is zero (Figure 3.53 B).  
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A B 

  

Figure 3.53 – Schematic representation the extrapolation scenari of measured local gas flux for the 

integration: A) 1st scenario; B) 2nd scenario.  

 

 

Figure 3.54 – Evolution of the local gas flux measured by the optical probe along the column radius. 

(Measurements performed in the Phi 400 column at h/D=2.5) 

 

Performing the integration on such basis, a superficial gas velocity can be 

calculated by dividing the integrated local gas flux by the total cross-section area of the 

column, as shown in the following expression. 

Additionally, in the Phi 400 column the local gas flux was measured in both sides 

of the column, however only one side was used for the integration. 

Figure 3.55 presents the comparison between the superficial gas velocity 

calculated by Eq. (3.53) and the superficial gas velocity deduced from global gas flow 

rate measurements, for the columns Phi 150, 400 and 1000. First of all, the differences 

between the two scenarios are weak. Besides deviations are significant for the Phi 150 
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column (relative error from 20% to 60%) and the Phi 400 column (relative error from 

10% to 50%), while the agreement is quite good (maximum relative error ≈ 15%) for the 

Phi 1000 column except at the lowest superficial velocity, namely 3 cm/s. 

 

A 

  

B 

  

C 

  

Figure 3.55 – Comparison of vsg as estimated from local measurement with the experimental vsg 

(1st scenario -filled symbols, 2nd scenario – empty symbols): A) Phi 150; B) Phi 400; C) Phi 1000 

(dashed line represents the bisector). Left parity plot, right relative uncertainty 

 

These results deserve a number of comments. First, the optical probe is unable to 

detect the sign of the velocity, so that, with the probe pointing downward, the local flux 

is always positive, in the upward direction (Figure 3.43). Therefore, the bubbles dragged 

down by the liquid, and especially in the outer zone of the column (x/R>0.7) are not 
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properly accounted for. Instead, they contribute to the upward flux. Beside the central 

region, i.e. 0<x/R<0.7, and the outer region where the mean recirculation occurs, i.e. 

0.7<x/R<1, have the same areas: the contribution of the recirculation zone is thus 

significant (even if the void fraction decreases with the distance to the axis). For these 

reasons, one should have expected a strong overestimation of vsg computed from local 

data. However, as seen in Figure 3.55, the integrated flux is always underestimated 

compared with the injected gas flux, except in the Phi 1000 column where the 

overestimation is at most 15%.  

Among possible reasons for these defects, we have already seen that incorrect 

measurements of the gas velocity do occur and that they lead to excessive chord sizes. 

Similarly for the flux, such events bring extra spurious contributions but in an unknown 

proportion. Second, the flux collects information all along a column radius. For most 

radial positions, the flow is reversed for a fraction of the time (Figure 3.43), so that the 

probe is sometimes functioning in bad conditions. As seen in Figure 3.45, the probe 

orientation can affect the local flux by a factor 2 or more. Moreover, as the fraction of 

time occupied by downward motions evolves radially, the information seen by the probe 

is a combination of the actual upward and downward fluxes weighted by the probe 

sensitivity to its orientation with the mean flow: the outcome on the global flux is hard to 

predict. Note that, for lack of time, we didn’t attempt to vary the probe position to 

investigate the consequences on the flux.  

In addition to the above considerations on the probe response, the observed 

deviations on the flux strongly increase with vsg in the Phi 150 and Phi 400 columns, 

while they almost disappear in the Phi 1000 column although the conditions in terms of 

mean and fluctuating velocities are not much different from those arising in the Phi 400 

(see Chap.4). Such trends are difficult to explain.  

Thus, the above comparison between integrated and global fluxes is not much 

informative with respect to the probe capability. Clearly, the outer region leads to strong 

errors, and we will attempt to exploit the flux in the center of the column in Chapter 4.  
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Bubble size measurements in the horizontal direction with the cross-

correlation method 

 

In order to test the size measured performed with the spatial cross-correlation 

method (c.f. section 3.4), the results will be compared with the measurements from the 

endoscope and also with those achieved with the 1C mono-fiber optical probe. The cross-

correlation was measured using a distance between probes equal to 0.8 mm: the two 

probes were pointing downward with their tips aligned at the same elevation. For the 

cross-correlation technique, the bubble Sauter mean horizontal diameter 𝐷ℎ32 was 

calculated using Eq. (3.39). Two different bubble shapes were considered:  

 An oblate shaped bubble population with a bubble orientation and 

eccentricity distributions existing in the flow, which corresponds to a A 

factor of 1.5978, as detailed in section 3.4. 

 A prolate shaped bubble population with a constant eccentricity (0.7) and 

a random θ angle in the range of ±30°, that corresponds to a A factor of 

1.7. 

The horizontal diameter distributions, measured by the endoscopic imaging, were 

treated to obtain a Sauter average. The above data were also compared with Dh32 

measurements performed with the 1C mono-fiber optical probe using Eq. (3.16) and 

considering a constant eccentricity of 0.7.  

The tests were performed in the Phi 400 column, at h/D = 2.5, and for superficial 

gas velocities ranging from 3 cm/s up to 35 cm/s. The resulting data collected on the axis 

are presented in Figure 3.56, while data collected along a radius are given in Figure 3.57. 

Concerning the cross-correlation technique, the Dh32 evaluated assuming prolate 

shaped bubbles, shown in Figure 3.56 and in Figure 3.57, are close within 0.5 mm from 

the Dh32 predictions for oblate bubbles, proving that the eventual error originated by an 

incorrect choice of the bubble shape has a small impact on the final measurement. This 

was an expected result since the A factor used in each case varies only from 1.6 to 1.7. 
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Figure 3.56 – Evolution of the Dh32 measured by cross-correlation, endoscopic imaging and optical 

probes with the superficial gas velocity (Phi 400, h/D=2.5, x/R=0) 

 

 

Let us now compared the three techniques. Through the analysis of Figure 3.56, 

that represents the evolution of the Dh32 measured on the column axis (at h/D=2.5) with 

the gas superficial velocity, it is possible to conclude that all three techniques provide 

very similar results (within ±1 mm) at large superficial gas velocities, say above 15cm/s. 

The differences increase at lower vsg: they are less than 2mm at vsg=9 cm/s but reach 

2.5mm (for the cross-correlation technique) or 4 mm (for the single probe) at vsg=3 cm/s. 

Similar measurements were also performed along the column radius in the Phi 

400 column for the superficial gas velocity of 16 cm/s, as presented in Figure 3.57. 
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Figure 3.57 – Evolution of the Dh32 measured by cross-correlation, endoscopic imaging and optical 

probes along the column radius ( Phi 400, h/D=2.5,vsg=16cm/s) 

 

For the measurements performed along the column radius in the Phi 400 column 

at a superficial gas velocity of 16 cm/s, and presented in Figure 3.57, there is again a good 

agreement between the three methods in the column center. However, the agreement 

between the results degrades along the column radius. Indeed, the endoscope 

measurements present a steep decrease of the Dh32 between the column center and the 

position x/R=0.2, and a constant bubble size for further positions. For the cross-

correlation and the single probe techniques, the bubble size smoothly decreases when 

moving from the axis to the wall. At intermediate positions, the difference with the 

endoscope data is comprised between 1.5mm (for the cross-correlation technique) and 

2mm (for the single probe), while at x/R=0.8, all three techniques are in good agreement. 

Globally, the deviation between the cross-correlation and the single probe techniques is 

0.9 mm in average and at most 1.5mm. Between the cross-correlation and the endoscopic 

measurements, the maximum difference amount for 1.3 mm is 0.6mm in average. 

 Thus, bubble size measurements with the cross-correlation technique have been 

validated at several superficial gas velocities: moderate differences of the order of 1mm 

were found with the other two techniques, at least for vsg above about 10 cm/s.  

 

3.6 Detection of flow structures of intermediate scale 

In this section, we will briefly introduce a few different approaches aimed at 

testing the existence, and at quantifying, somewhat coherent flow structures. Indeed, we 

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

D
h

3
2

 (m
m

)

Radial position (x/R)
CC (Oblate) CC (Prolate) Endoscope Optical probe



207 

 

do suspect, as can be seen by the observation of the flow along the walls or of the top of 

the columns (Figure 3.58), the existence inside the flow of meso-scale structures with a 

dimension intermediate between the bubble size et the column dimension. Both time and 

space have been considered on both liquid and gas phases. 
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Figure 3.58 – Images of the flow in the columns: A) Phi 150 (vsg=15 cm/s); B) Phi 400 C) Phi 3000 

(vsg=13 cm/s, top view) 
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Liquid phase 

Analysis in time 

 The primary outcome of Pavlov tube is instantaneous liquid velocity as a function 

of time (with some bandwidth limitations). So, it is possible to perform an FFT analysis 

of the velocity to identify liquid flow time-scales, and their possible evolution along radial 

position and with the column size, or the superficial gas velocity. The results of this data 

treatment will be presented in chapter 4. 

Analysis in space  

 

 Another possibility to measure the coherent structures on the liquid flow is to use 

two different Pavlov tubes, oriented in the same direction, at the same elevation in the 

column. Therefore, in likely manner as was done for the cross-correlation of the optical 

probes signals, the signals of both Pavlov tubes can be cross-correlated for different 

spatial distances. The outcome of this approach will be an averaged structure size in the 

direction of the distance between the Pavlov tubes. Due to time limitation and technical 

difficulties, this approach was not tested: it is presented as a perspective and a possible 

manner to extend measurement capabilities of the Pavlov tube. 

Gas phase 

Analysis in time 

 Using an optical probe, one can access to the temporal evolution of the local void 

fraction. To do so, it is necessary to compute a moving average over a window of a 

selected duration, by estimating the ratio of the sum of gas residence times over the 

window duration. Therefore, in a similar manner as was described for the liquid velocity, 

a continuous void fraction signal can be extracted and an FFT analysis of the signal can 

be performed.  

However, it is necessary to properly define the time scale over which the void 

fraction will be averaged, which is the most significant step of the process. If this step is 

too small, it will only be possible to detect the frequency at which the bubbles arrive on 

the probe tip. In the opposite, an average over a too large time step will smooth out any 

void fraction evolution and no characteristic frequencies will be detected. Thus, the 

determination of this time step was achieved by computing the auto-correlation in time 
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of a single optical probe signal. This exercise showed that there is a time step from which 

the optical probe signal is not auto-correlated, which was then used in the moving average 

calculation. The results of FFT analysis of such a “continuous” void fraction signal will 

be presented in the chapter 4. 

 

Analysis in space 

 

 The existence of bubble swarms in the column was investigated recurring to the 

cross-correlation. The experimental results of the cross-correlation at large distances 

showed that the cross-correlation does not decrease under the value of the local gas hold-

up (c.f. Figure 3.14). Moreover, the local gas hold-up value is the minimum value for the 

cross-correlation at large distances (provided the flow is not too in-homogeneous). Thus, 

some useful information can be obtained in the zone bounded by the distance between the 

probes that ensures single bubble detection, and the distance at which the curves converge 

to the local gas hold-up. 

 Therefore, it is possible to define two events such as: 

 A – There is a bubble in the probe A 

 B – There is a bubble in the probe B. 

Using the fact that the probability of each occurrence of the event A and B is 𝑃(𝐴) =

𝜀𝑔(𝐴) and 𝑃(𝐵) = 𝜀𝑔(𝐵), it is possible to define the cross-correlation as the probability 

of A knowing B ( 𝑃(𝐴|𝐵)), so: 

𝐶𝐶 = 𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (3. 54) 

If A and B are de-correlated then they are independent events and therefore: 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵) (3. 55) 

So is possible to rewrite Eq. (3.52) 

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵)

𝑃(𝐵)
= 𝑃(𝐴) = 𝜀𝑔(𝐴) (3. 56) 

Consequently, it is possible to affirm that if the cross-correlation is higher than the local 

gas hold-up, the signals are correlated. Thus, elevated levels of the correlation between 

the optical probes signals for distances higher than the bubbles horizontal dimension can 

be related to the presence of bubbles swarms, or higher concentration zones, in the flow. 
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The experiments that aimed to measure the bubble clusters in the column, followed 

the previously stated procedure for the cross-correlation measurements. However, the 

operation was repeated for several distances between probes ranging from 0.8 mm up to 

90 mm. Three different configurations of optical probes were used in this study. The 

measurements with a probe distance of 0.8 mm were performed with a straight bi-probe. 

The measurements with a probe distance of 1 mm were performed with a bended bi-

probe. At last, the measurements with a probe distance equal or higher than 1.5 mm were 

performed with two independent 1C mono optical probes. The results will be presented 

in chap.4.  

Note that an alternate technique based on resistance tomography and providing an 

image of the void fraction spatial distribution over a certain area was also envisioned but 

it was not tested due to lack of time. 

 

In this chapter we have presented the measuring methods that will be used in the 

acquisition of our experimental database. A resume of all methods and their measuring 

capacities was presented in Table 3.17. The performance of those methods, under the 

experimental conditions envisaged in this work, have been studied. Despite some 

shortcomings, namely some errors on the bubble velocity detection, due to the presence 

of flow reversal and unsteady 3D structures on the flow, the results are encouraging. A 

major result was the development of a new method to measure the bubble horizontal 

diameter (Dh32), which showed to be adapted to perform bubble size measurements even 

in challenging conditions to perform optical probe measurements. Additionally, this 

method present an extension of the measurement capabilities of the optical probes, which 

could only measure the vertical dimension of bubbles.  
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Table 3.17 – Resume of measuring methods and measured variables. 

 Pavlov Endoscope 
Optical 
probes 

Cross-
correlation 

Liquid 
velocity 

Instantaneous 
axial and radial 

velocity and 
velocity 

fluctuations. 

   

Local gas 
hold-up 

  Time averaged  

Bubble 
velocity 

  
Product density 

f(1)(Chord, 
Velocity) for 

each detected 
bubble 

The chord 
distribution can 

be used to 
compute the 

diameter 
distribution or 

the Sauter mean 
horizontal 

diameter under 
some 

assumptions 

 

Bubble size  

Detection of the 
horizontal and 

vertical diameter 
for each 

detected bubble. 

Measurements 
of the Mean 

Sauter horizontal 
diameter 
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4 Local hydrodynamics in bubble columns 

 

In chapter 1 the local hydrodynamic variables of interest such as gas hold-up, bubble 

size and velocity, liquid velocity, were identified through a detailed analysis of the 

literature and of existing modeling attempts. Afterwards, the range of experimental 

conditions to be considered was defined in chapter 2: the investigations concern bubble 

columns with a diameter ranging from 0.15 m up to 3 m and for superficial gas velocities 

from 3 cm/s up to 35 cm/s. Moreover, the ideal injection configuration was studied in 

order to ensure an homogeneous gas injection in all the columns, both in terms of bubble 

size and flux. Due to technical constraints it was not possible to install the same gas 

distributor in all the columns. However, the final configuration and the generated bubble 

population for the columns Phi 150, Phi 400 and Phi 1000 were also discussed in chapter 

2: the new injectors were able to generate a relatively homogenous conditions over the 

entire columns cross-section. Additionally, the mean bubble size is relatively similar for 

all the columns, with a small evolution of the generated bubble size with the superficial 

gas velocity. The only exception concerns the Phi 1000 column at vsg of 3 cm/s, where 

bubbles neatly larger than in the other columns are formed. These conclusions hold for 

superficial gas velocities in the range between 3 cm/s and 25 cm/s. 

 In chapter 3, the measurement methods chosen to measure the identified variables 

were detailed and validated by comparison, either with reference methods or with data 

collected from the literature. 

In this chapter, the flow dynamics is analyzed. First, we address the question of 

coalescence. Then, the measurements of local hydrodynamic variables are detailed and 

their significance in terms of flow organization is discussed. Finally, the first attempts to 

identify meso-scale flow structures are presented and their characteristics are discussed. 

 

4.1  Bubble coalescence 

 

With respect to data interpretation and also in order to provide refined data bases for 

testing simulations, it is important to characterize the actual bubble size in the 

experiments in addition to the data already provided at injection (see Chap.2). In 

particular, the existence of bubble coalescence in the flow needs to be checked. Indeed, 
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coalescence can affect the bubble size evolution in the columns and, therefore, it can also 

impact other variables (e.g. local gas hold-up, bubble velocity, liquid velocity, etc…). To 

test the presence of coalescence (or breakup), examining the evolution of mean sizes 

alone can be misleading as the latter can be driven by dispersion and/or by size 

segregation in addition to coalescence and/or break-up. A more adapted quantity is the 

number of density flux per size classes, but again a comparison of the evolution of local 

values along a vertical axis does not account for lateral exchanges. As lateral fluxes are 

not available, the only option left would be to consider fluxes per size class integrated 

over a cross section. Yet, owing to the complexity of the flow structure in bubble columns 

(in particular to flow reversal and lateral size segregation which are detailed later in this 

chapter) and the limitations of the measuring techniques, such integrated variables will 

be poorly significant. Thus, with respect to coalescence, we decided to examine if there 

is any significant evolution of the maximum bubble size along the axis of the columns in 

addition to mean values Dv32. To do so, we considered the bubble chord distributions 

obtained from 1C mono-fiber optical probe at different h/D ratios at iso-vsg. Another 

possibility was to study the evolution of the Dh32, measured by the cross-correlation 

method. However, the analysis of the mean diameter alone is no sufficient. 

Let us first analyze the Sauter mean diameter, deduced from C10 from the detected T1 

bubbles in the center of the columns Phi 150, Phi 400 and Phi 1000 at several h/D 

presented in Table 2.5. As mentioned in section 3.3, the rate of T1 bubble always elevated 

(typically ≥90%) and stable for all the tested conditions. Therefore the T2 bubble have a 

negligible impact on the determination of the C10. Owing to that, we chosen to only take 

in account the T1 bubbles in the comparison of the bubble size along the column axis. 

For sake of simplicity, the measurements obtained at an elevation of 15 cm above the gas 

distributor in all columns are noted as “h/D≤1”. The determination of a typically 

uncertainty of those measurements may be a challenging task, since the error might be a 

function of the vsg and the axial position (see section 3.3). 
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Table 4.18 – Dv32 deduced from optical probe measurements for several columns, superficial gas 

velocities and h/D ratios at x/R=0. 

  

3 cms-1 16 cms-1 25 cms-1 

h/D≤1 h/D=2.5 h/D=3.75 h/D≤1 h/D=2.5 h/D=3.75 h/D≤1 h/D=2.5 h/D=3.75 

Phi 150 2.7 1.8 - 3.3 3.6 - 3.15 3.9 - 

Phi 400 2.55 2.85 2.4 4.2 5.55 4.35 4.65 5.85 4.95 

Phi 1000 3.15 2.85 3.45 4.5 4.8 4.65 4.65 4.8 5.7 

 

The results show that, in the Phi 150, the Dv32 does not evolve more than 0.9 mm from 

h/D=1 up to h/D=2.5, whatever the superficial gas velocity. In Phi 400 column, the Dv32 

was also stable along a vertical at vsg=3 cm/s while it, experienced an increase of Dv32 of 

approximately 1.3 mm for vsg=16 cm/s and 25 cm/s. In the case of the column Phi 1000, 

the Dv32 was quite constant along the column axis for vsg=3 and 16 cm/s, and it 

experienced a moderate (≈0.9mm) increase at 25 cm/s. Note that the increase is not 

monotonous with the distance downstream injection. Concluding, for a given gas 

superficial velocity, the Dv32 changes along a vertical in all columns, with deviations 

never exceeding 1.3 mm. This is also the magnitude of the variations observed at injection 

in Chap.2 when vsg was varied. Within the above mentioned interval, the mean size does 

not change much neither due to vsg nor due to axial evolution of bubble size within the 

columns.  

Nevertheless, as referred to above, the analysis of mean sizes is not fully conclusive 

for the detection of coalescence since it is not possible to distinguish the effects of bubble 

coalescence and of segregation. In order to do so, let us examine the chord pdfs. The 

chords PDFs obtained in the Phi 150 column at h/D of 1 and 2.5 are plotted in Figure 4.1 

A, B and C at superficial gas velocities of 3, 16 and 25 cm/s, respectively.  
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A 

 

B 

 

C 

 

Figure 4.1 – PDFs of the bubble chords measured in the center of the Phi 150 column at h/D=1 and 2 

for superficial gas velocities of: A) 3cm/s; B) 16 cm/s; C) 25 cm/s. 
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chords were detected, but the probability of detecting chords larger than 6 mm in only 

2%. At vsg=16 and 25 cm/s, there is no significant evolution of the maximum detected 

chord (≈8 mm), at a probability density value of 0.01 see Figure 4.1 B and C). Thus, it is 

possible to conclude that, in the Phi 150, no evidence of the existence of bubble 

coalescence was detected. 

In the Phi 400 column, the bubble vertical dimension was measured at h/D=0.38, 2.5 

and 3.75. The bubble chords PDFs detected in the column center for superficial gas 

velocities of 3, 16 and 25 cm/s are presented in Figure 4.2 A, B and C, respectively. 
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A 

 

B 

 

C 

 

Figure 4.2 –  PDFs of the bubble chords measured in the center of the Phi 400 column at h/D ratios 

of 0.38, 2.5 ad 3.75 for superficial gas velocities of: A) 3cm/s; B) 16 cm/s; C) 25 cm/s 

 

The results show that at 3cm/s in the Phi 400 column the same maximum chord is 

detected at h/D =0.38, 2.5 and 3.75 (≈5-6.5 mm) for a probability density of 0.01. 
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However, slightly larger chords (≈10 mm) are detected at h/D=2.5 but again the 

probability to detect chords larger than 6 mm is only 4%. For superficial gas velocities of 

16 cm/s and 25 cm/s, quite similar bubble chords PDFs are obtained at the different axial 

positions.  

The bubble vertical size was measured in the Phi 1000 column at h/D ratios of 0.15, 

2.5 and 3.75. The bubble chords PDFs obtained in the center of the column for superficial 

gas velocities of 3 cm/s, 16 cm/s and 25 cm/s are presented in Figure 4.3 A, B and C, 

respectively. 
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A 

 

B 

 

C 

 

Figure 4.3 – PDFs of the bubble chords measured in the center of the Phi 1000 column at h/D ratios 

of 0.16, 2.5 ad 3.75 for superficial gas velocities of: A) 3cm/s; B) 16 cm/s; C) 25 cm/s 
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similar trends are present in the PDFs obtained at superficial gas velocities of 16 cm/s and 

25 cm/s with a maximal detected chord ≈8 mm for all the tested elevations. 

Concluding, there is no significant bubble coalescence since the analysis of the bubble 

chord PDFs show that the maximal bubble chord detected was stable along the column 

axis, for all the tested vsg and in the three columns. As referred to chapter 2, one of the 

conditions desired for the experiments was to avoid bubble coalescence. Thus, it is 

possible to conclude that this condition was achieved for all columns and for all flow 

conditions. As the pdf are only slightly modified, there is also no strong evidence of 

bubble breakage between the three elevations. 

The presence of bubble coalescence was not investigated in the Phi 3000 column since 

the bubble size measurements were only performed at one elevation in the column. 

 

 

4.2 Bubble size  

 

Since there is no bubble coalescence, and since the generated bubbles size was 

found homogeneous in the injection vicinity, in all the columns (see chap. 2 3), the 

question to be addressed now concerns a possible spatial segregation of bubble size within 

the columns. Indeed, the study the bubble segregation can be perform using only a mean 

diameter, so we have chosen the cross-correlation method due to its reliably and 

simplicity. Since the spatial cross-correlation can only measure the Dh32,  it is important 

to first address the evolution of the bubble eccentricity in order to the fully comprehend 

the bubble size evolution in the columns. 

 

Bubble eccentricity 

 

The bubble eccentricity was measured recurring to the endoscopic imaging 

method in the centre of the columns Phi 150, Phi 400 and Phi 1000 at h/D=2.5 for 

superficial gas velocities ranging from 3 cm/s up to 35 cm/s. The results are presented in 

Figure 4.4 A. Moreover the bubble eccentricity was also measured along the column 

radius in the columns Phi 150 (vsg=13 cm/s), Phi 400 and Phi 1000 (vsg=16 cm/s) at 

h/D=2.5, as shown in Figure 4.4 B. 
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A 

 

B 

 

Figure 4.4 – Evolution of the mean eccentricity in the columns Phi 150, Phi 400 and Phi 1000 at 

h/D=2.5: A) in the column center for superficial gas velocities from 3 cm/s up to 35 cm/s; B) along 

the column radius (endoscopy). 

 

Figure 4.4 A and B show that the mean bubble eccentricity was quite stable around 

0.7 regardless of the superficial gas velocity, the radial position in the column and the 

column diameter. 
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velocities from 6 cm/s up to 16 cm/s, and along the column radius for vsg=12 cm/s. The 

results are presented in Figure 4.5.  
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D 

 

Figure 4.5 – Radial profiles of the bubbles Dh32 for several superficial gas velocities in the columns: 

A) Phi 150 (h/D=2.5); B) Phi 400 (h/D=2.5); c) Phi 1000 (h/D=2.5) D) Phi 3000 (h/D=2.5) (Cross-

Correlation) 
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with vsg for other radial position is not possible, since only one radial profile was obtained. 

Nevertheless, at vsg=12 cm/s the Dh32 decreased along the column radius, is a likely 

manner as in the other columns. However, the bubble spatial segregation was stronger 

than in the other columns, reaching a Dh32 difference of 5 mm between the positions 

x/R=0 and 0.9. 

 Concluding, the results show that at vsg=3 cm/s the bubble size was homogeneous 

(≈6 mm) over the cross-sections of the Phi 150, Phi 400 and Phi 1000 columns. The 

increase in superficial gas velocity leads to an increase of the Dh32 in the column inner 

zone (x/R≤0.6) for all columns. However in the outer zone (x/R>0.6) the Dh32 showed a 

quite smaller increase with the vsg. Since there is no bubble coalescence/breakup, this 

evolution of the bubble size can only be due to a lateral size segregation: the larger 

bubbles are rising in the central part of the column where the liquid phase also has a 

mainly ascending direction, however the liquid recirculation “drags” the small bubbles to 

the outer zone of the column. Moreover, the segregation effect seems to be even stronger 

in the column Phi 3000 where the Dh32 decreased down to 2 mm at x/R=0.9 compared 

with Dh32=8 mm on the axis. Therefore it is important to also investigate the evolution of 

this segregation phenomenon with the size of the column. 

 

Impact of the bubble column diameter on the lateral size segregation 

 

The horizontal bubble diameter Dh32 at x/R=0 and at x/R=0.8 at h/D= 2.5 for the 

columns Phi 150, Phi 400, Phi 1000 and Phi 3000 are plotted in Figure 4.6. 
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Figure 4.6 – Evolution of the Dh32 with the column diameter at h/D=2.5 for the radial positions 

x/R=0, 0.6 and 0.8. (Measurements obtained at vsg=16 cm/s for the Phi 150, Phi 400 and Phi 1000 

and at vsg=13 cm/s for Phi 3000) 

 

 The results show that the Dh32 in the columns center has decreased between the 

Phi150 column and the Phi 400, however it was constant (≈ 7mm) for all the other 

columns. Contrarily, the Dh32 at x/R=0.8 and x/R=0.6 have decreased almost linearly with 

the column diameter, from 6 mm in the Phi 150 column up to 3 mm in the Phi 3000 

column. Indeed, the results seem to indicate that the bubble size segregation increase with 

column diameter. However, this conclusion should be taken with some care, since the 

bubble injection and coalescence on the column Phi 3000 was not studied. Further 

confirmation can be achieve by the study of the bubble chords PDFs at iso-vsg, for several 

radial positions. So, Figure 4.7 A and B present the PDFs of the bubble chords detected 

in the columns Phi 400 and Phi 1000, respectively, at vsg=16 cm/s. 
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A 

 

B 

 

Figure 4.7 – PDFs of the bubble chords at vsg=16 cm/s for several radial positions in the columns: 

A) Phi 400 B) Phi 1000 (measurements obtained at h/D=2.5) 
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probability of detect bubble chords smaller than 1 mm than at x/R=0. Contrarily, at the 
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detection, even if the larger detected chord is constant in both positions.  
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 The analysis of the chords PDFs support the conclusions drawn for the analysis of 

the mean values: the PDFs at x/R=0.8 have shifted for smaller chords and the difference 

between the chords PDFs at x/R=0 and x/R=0.8 have increased with the column diameter.  

 

Evolution of the bubble mean size along the column axis 

 

 It is also important to study if the bubble segregation phenomena was already 

established at h/D=2.5 or if it evolves along the column axis. So, the radial profiles of the 

bubble Dh32 in the columns Phi 400 and Phi 1000 for vsg=3 cm/s, 16 cm/s and 35 cm/s at 

h/D=2.5 and 3.75 are plotted in Figure 4.8 A and B, respectively. 
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Figure 4.8 – Radial profiles of Dh32 at h/D=2.5 and 3.75 for vsg ranging from 3 cm/s up to 35 cm/s in 

the columns: A) Phi 400; B) Phi 1000. 
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 Figure 4.8 A and B show that quite similar profiles of Dh32 were obtained at 

h/D=2.5 and 3.5, meaning that the spatial segregation of the bubble size was already 

established at h/D=2.5. Nevertheless, there were some differences on the Dh32 values 

obtained at the two elevations. Further study the evolution of the bubble size on the 

column axis Table 4.19 and Table 4.20 present the difference of the Dh32 measured at 

h/D=2.5 and 3.75 and at x/R=0 and X/R=0.6 for all the superficial gas velocities for the 

Phi 400 and Phi 1000 columns, respectively 

 

Table 4.19 – Difference between the Dh32 measured at h/D=2.5 and 3.75 in the Phi 400 column. 

Units= mm 

 Position Radial (x/R) 

Vsg (cm/s) 0 0.6 

3 0.6 0.6 

9 -0.5 -0.5 

16 -0.2 -0.2 

25 -0.4 -0.4 

35 -0.4 -0.4 

 

Table 4.20 – Difference between the Dh32 measured at h/D=2.5 and 3.75 in the Phi 400 column. 

Units= mm 

 Position Radial (x/R) 

Vsg (cm/s) 0 0.6 

3 -0.2 -0.2 

9 -0.2 -0.2 

16 -0.3 -0.1 

25 -0.5 -0.2 

35 -0.7 -0.8 

 

 The results presented in Table 4.19 support the conclusion that there is no 

significant evolution of the Dh32 between the h/D=2.5 and 3.75 in the Phi 400 column, 

since the measurements never differed more than 0.6 mm. The average difference 

between the measurements, along the radial profile and at iso-vsg was typically 0.7 mm, 

except for the vsg=3 cm/s where the average difference was 0.3 mm. 

 The results obtained in the Phi 1000 column presented ever a similar agreement 

with the maximum difference between both measurements of 0.8 mm, however the 

average difference along the radial profile of ≈0.3 mm, at iso-vsg. 
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Concluding, the radial profiles of the Dh32 are already established at h/D=2.5, with 

a maximal difference of the Dh32 0.8 mm. Moreover, in all the columns the bubble Dh32 

in the column center ranged from typically 6 mm at vsg= 3 cm/s up to 8 mm at vsg= 35 

cm/s, as can be seen in Table 4.21. The spatial segregation of bubble size increased with 

the superficial gas velocity and the column diameter, as can also be seen in Table 4.21.  

 

Table 4.21 – Resume of Dh32 measured at x/R=0 and the spatial segregation of the Dh32 for all the 

columns and vsg. Units= mm 

  vsg (cm/s) 

  3 9 16 25 35 

Phi 150 
Dh32(x/R=0) 7.0 7.6 8.9 9.8 9.4 

Δ Dh32  0.3 1.6 2.4 3.1 2.2 

Phi 400 
Dh32(x/R=0) 6.5 6.5 7.8 7.7 8.3 

Δ Dh32 0.0 1.1 1.9 2.1 2.4 

Phi 1000 
Dh32(x/R=0) 5.7 6.6 7.2 7.6 8.4 

Δ Dh32  0.5 1.5 2.2 2.6 3.0 

vsg (cm/s) 6 9 12 16 - 

Phi 3000 
Dh32(x/R=0) 6.8 8.0 7.3 7.2 - 

Δ Dh32 - - 4.0 - - 

 

4.3 Global gas hold-up 

 

The global gas hold-up can be measured by the difference of the column static height 

and dynamic height as shown in Eq. (1.1). This method is not very accurate, since it relies 

on the visual measurement of the bed’s free surface height, which can be quite challenging 

to be determined in agitated flows (relative error: ±10%). However, it is a quick and easy 

method to apply and it has been commonly used by others authors. The global void 

fraction was measured in all the columns for a superficial gas velocity range between 2 

cm/s and 35 cm/s, except in the Phi 3000 column, where it was measured between 5 cm/s 

and 15 cm/s. The results are presented in Figure 4.9. Moreover, Forret et al. (2006) have 

used this method to measure the mean gas hold-up in columns with diameters up to 1 m. 

Their results for a 0.4 m diameter column, that used a perforated plate with 2 mm inner 

diameter injectors, are also plotted in Figure 4.9. 
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Figure 4.9 – Evolution of the mean gas hold-up with the superficial gas velocity 

 

 The results show that, in general, the global gas hold-up has no dependency on the 

column diameter. That conclusion arises from the good agreement found between the data 

gathered in columns with a 1:20 scale factor: the mean difference between the 

measurements in the column Phi 400, Phi 1000 and Phi 3000 relatively to the Phi 150 are 

0.017 0.018 and 0.02, respectively. This result is in agreement with the findings of Forret 

et al. (2006).  

In Figure 4.9, the Phi 400 column presents a slightly higher global gas hold-up 

between the superficial gas velocities of 7 cm/s and 9 cm/s, which could be related with 

a variation in the bubble size: smaller bubbles rise slowly in the column and consequently 

can lead to a higher gas hold-up. In order to further understand this phenomena the bubble 
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chords PDFs for superficial gas velocities of 3 cm/s, 9 cm/s and 16 cm/s at h/D=2.5 

obtained in the center of the column are presented in Figure 4.10. 

 

 

Figure 4.10 – Bubble chords PDFs at superficial gas velocities of 3 cm/s, 9 cm/s and 16 cm/s 

obtained in the center of the Phi 400 column at h/D=2.5 

 

By analyzing Figure 4.10 it is possible to observe that there is an increase in the 

maximal detected chords between 3 cm/s and higher superficial gas velocities. However, 

a similar bubble chord distribution is obtained for vsg of 9 cm/s and 16 cm/s, in both ends 

of the PDFs. So, no explanation was found to the maximum of the global gas hold-up 

detected in the Phi 400 column. 

Additionally, the results show a good agreement with the data of Forret et al. (2006) 

in all the range of vsg, except in between vsg= 2 cm/s and 5 cm/s where somewhat higher 

values were found in our experiments.  

The variation of the global gas hold-up can also give us some information on the 

transition between the homogeneous/heterogeneous regimes. A log-log plot of global gas 

hold-up as a function of the vsg should present a different slope for the global gas hold-up 

evolution of in each regime, as shown in Figure 4.11. 
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Figure 4.11 – A log-log representation of the global gas hold-up as a function of the superficial gas 

velocity for all the columns. 

 

Analyzing Figure 4.11 is possible to conclude that the homogeneous regime extends only 

up to a vsg=3-4 cm/s. At higher superficial gas velocities, the flow is already in the 

heterogeneous regime. Note also that the global void fraction is nearly linear with vsg 

when focusing on very low superficial gas velocities (say below 4-5 cm/s): this linearity 

at low vsg has been often observed (see chap 1) and it is consistent with the model 

proposed by Ruzcika et al. (2001) in which the liquid backflow takes places everywhere 

in the spacing between bubbles. This linear region will be not analyzed further owing to 

the limited number of data. 

Table 4.22 presents some correlations from the literature that permit to predict the 

global gas hold-up as a function of the superficial gas velocity and the physical properties 

of the gas and liquid phases. 
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Table 4.22 – Global gas hold-up literature correlations  

Correlation Author 

𝜀𝑔̅̅ ̅ = 0.505𝑣𝑠𝑔
0.47 (

0.072

𝜎
)

2
3⁄

(
0.001

𝜇𝑙
)
0.05

 

Hikita and 

Kikukawa 

(1974) 

𝜀𝑔̅̅ ̅ = 0.672 (
𝑣𝑠𝑔𝜇𝑙

𝜎
)
0.578

(
𝜇𝑙
4𝑔

𝜌𝑙𝜎3
)

−0.131

(
𝜌𝑔

𝜌𝑙
)
0.062

(
𝜇𝑔

𝜇𝑙
)
0.107

 
Hikita et al. 

(1980) 

𝜀𝑔̅̅ ̅ = 0.728𝑥′ − 0.485𝑥2 + 0.0975𝑥3 

𝑥 = 𝑣𝑠𝑔 [
𝜌𝑙
2

𝜎(𝜌𝑙 − 𝜌𝑔)𝑔
]

1
4⁄

 

Grover et al. 

(1986) 

𝜀𝑔̅̅ ̅ = 296𝑣𝑠𝑔
0.44𝜌𝑙

−0.98𝜌𝑔
0.19𝜎−0.16 + 0.009 

Reilly et al. 

(1986) 

 

𝜀𝑔̅̅ ̅ = 129 (
𝜇𝑙𝑣𝑠𝑔

𝜎
)
0.99

(
𝜇𝑙
4𝑔

𝜌𝑙𝜎3
)

−0.123

(
𝜌𝑔

𝜌𝑙
)
0.187

(
𝜇𝑔

𝜇𝑙
)
0.343

(
𝑑0
𝐷
)
−0.089

 

Sotelo et al. 

(1994) 

 

Each of these correlations depend on the superficial gas velocity. Yet, the 

proposed scaling are quite different, with exponents ranging from 0.44 up to 1. Therefore, 

to study the dependency of the global gas hold-up with the superficial gas velocity, our 

experimental data are represented in a log-log plot in Figure 4.12. A power law behavior 

arises for all columns and over the whole range of vsg. The slopes are close to 0.44±0.05, 

except for the larger slope (≈0.57) found for the Phi 3000 column that may result from 

the limited number of data collected and/or because of significant coalescence effects in 

that column. Putting all the data together, the scaling corresponds to 〈𝜀𝑔〉 ∝ 𝑣𝑠𝑔
0.45, and 

within the resolution of our measurements, there is no effect of the column diameter on 

the slope. Such a trend is in very good agreement with the correlations proposed by Reilly 

et al. (1986) or by Hikita and Kikukawa (1974). However, if the lowest superficial gas 

velocities are discarded, that is for vsg ≥ 5cm/s, there is still no sensitivity to the column 

diameter and the behavior with the superficial gas velocity becomes significantly less 

steep with 〈𝜀𝑔〉 ∝ 𝑣𝑠𝑔
0.35. 
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Figure 4.12 – A log-log representation of the global gas hold-up as a function of the superficial gas 

velocity.  

 

4.4 Local gas hold-up 

 

The radial profiles of gas hold-up that provide some information about the spatial 

concentration of the gas phase inside the column are detailed in this section. Let us recall 

that the local gas-hold up is measured using 1C mono-fiber optical probe. For all 

conditions, the probe was vertical and pointing downwards as seen in Chap.3. 

Stabilized flow region 

 

The local gas hold-up profiles were measured at several h/D in the Phi 400 column 

in order to study their evolution along the column axis. The stabilized flow region, a zone 

of the flow sufficiently away from the gas distributor and from the free surface to have a 

quasi-fully developed behaviour, is characterized by an axial invariance of the local gas 

hold-up profile. Thus, the radial profiles of local hold-up were plotted in Figure 4.13 A, 

B and C at several h/D ratios (from 0.38 up to 5) for the vsg of 3 cm/s, 16 cm/s and 35cm/s, 

respectively. There is no profile for vsg=3cm/s at h/D = 5, since the expansion of the bed 

was not sufficient to perform measurements at such an elevation. 
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A 

 

B 

 

C 

 

Figure 4.13 – Local gas hold-up radial profiles at several h/D ratios for various superficial gas 

velocities: A) 3cm/s; B) 16 cm/s; C) 35 cm/s. (Measurements in the Phi 400 column with 1C probe) 
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other. They are also flatter than the ones obtained at lower elevations, namely h/D of 0.38 

and 1.25, possibly due to the homogenization of the gas concentration in the column. 

 By analyzing the measurements obtained at 16 cm/s, it is possible to conclude that 

there is no significant evolution of the local gas hold-up profiles from h/d=0.38 up to 

3.75, except in the center of the column, where slightly lower gas hold-up values were 

obtained at h/D = 0.32 and 1.25. The measurements performed at h/D = 5 present higher 

values of the gas hold-up in all the tested radial positions, which could indicate that the 

measurements were performed too close to the free surface of the column. 

 Similar conclusions can be drawn for the measurements performed at vsg of 35 

cm/s, where no significant evolution is noted for h/D ratios from 0.38 up to 3.75, except 

in the column center. Once again, the local gas hold-up values measured at h/D of 5 were 

higher than the ones obtained at lower h/D ratios. 

 It is impossible to perform the same study on the Phi 150 column since the local 

gas hold-up was only measured at h/D=1 and 2.5. Nevertheless, the evolution of local gas 

hold-up profiles will be studied between the two elevations, and both profiles are plotted 

for superficial gas velocities of 3 cm/s, 9 cm/s and 16 cm/s in Figure 4.14 A. 

 In a similar order to verify if the established flow region defined for the Phi 400 

column is also valid for the column Phi 1000, the local void fraction profiles at h/D=2.5 

and 3.75 are presented in Figure 4.14 B. 



238 

 

A 

 

B 

 

Figure 4.14 – Local gas hold-up radial profiles at several h/D ratios in the columns: A) Phi 150; B) 

Phi 1000 

 

 In the column Phi 150, the results show that at 3 cm/s the radial profile is already 

established at h/D=1, though at vsg= 9 cm/s and 16 cm/s higher local gas hold-up values 

are obtained at h/D=2. Since the measurements were not performed at h/D=3.75 it is not 

possible to verify if the profiles of local gas hold-up changed at higher elevations in the 

column. 

 Regarding the column Phi 1000, Figure 4.14 B shows that the radial gas hold-up 

profiles obtained at h/D=2.5 and 3.75 are overlapping, which is in agreement with the 

results obtained in the Phi 400 column. In order to analyze these differences in more 
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difference found in the εg values between the elevations h/D=2.5 and 3.75 for two radial 

positions x/R=0 and x/R=0.6. 

 

Table 4.23 – Difference between the εg measured at h/D=2.5 and 3.75 in the Phi 400 column. 

Units=absolute gas hold-up 

    Position Radial (x/R) 

Δ εg 

vsg (cm/s) 0 0.6 

3 0.01 0.01 

9 0.01 0.03 

16 0 0.03 

25 0.01 -0.01 

35 0.03 0.02 

 

Table 4.24 – Difference between the εg measured at h/D=2.5 and 3.75 in the Phi 1000 column. 

Units=absolute gas hold-up 

    Position Radial (x/R) 

Δ εg  

vsg (cm/s) 0 0.6 

3 0.01 0.01 

9 0.01 0.01 

16 0.02 0 

25 0.02 -0.01 

35 0.01 0.01 

 

 In the Phi 400 column, the maximum difference detected between the εg was 0.03, 

while the average difference in each profile was typically 0.02. In the Phi 1000 column 

the maximum difference was of 0.02, and the average difference found on each profile 

was typically 0.01.  

Concluding, the results show that the stabilized flow regime zone is located 

between the h/D ratio of 2.5 and 3.75 in Phi 400 and Phi 1000 columns (for a maximal 

difference of 0.03). It should be noticed that, in the Phi 150 column it was not possible to 

verify if the local gas hold-up was constant for h/D>2.5. Additionally, no study of the 

variation of the local gas hold-up was conducted in the Phi 3000 column. So, it will be 

considered that in the columns Phi 150 and Phi 3000 the evolution of the local gas hold-

up along the column axis is similar to the other columns.  
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Impact of the superficial gas velocity 

 

The local gas hold-up was measured along the column radius for the Phi 150, 400 

and 1000 and 3000 columns at a dimensionless height of h/D=2.5. Figure 4.15 shows the 

radial profiles of the local gas hold-up scaled by its value measured on the column axis 

for superficial gas velocities of 9, 16 and 35 cm/s at a dimensionless height of h/D=2.5 

for the columns Phi 150, 400 and 1000. In the Phi 3000 the local gas hold-up was 

measured only at vsg=12 cm/s, and the radial profile is presented in Figure 4.16. 
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C 

 

Figure 4.15 – Void fraction radial profiles in the columns Phi 150, Phi 400 and Phi 1000 at h/D=2.5 

for superficial gas velocities: A) 9 cm/s; B) 16 cm/s; C) 35 cm/s. (line – Eq (1.1)). The void fraction is 

scaled by its value measured on the column axis. 
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Figure 4.16 - Void fraction radial profile in the column Phi 3000 at h/D=2.5 for vsg=12 cm/s. (line – 

Eq (1.1)). The void fraction is scaled by its value measured on the column axis. 

 

As can be seen in Figure 4.13 and Figure 4.14, at a superficial gas velocity of 3 

cm/s the gas hold-up profiles are flat for all the columns, as expected for the homogeneous 

regime. At higher superficial gas velocities (9cm/s and above), the profiles have a 

parabolic-like shape with the maximum gas hold-up in the center of the column, as shown 

in Figure 4.15 A, B and C. As previously referred to in chapter 1, the column diameter 

does not have a significant impact on the gas hold-up profiles, as shown by the normalized 

radial profiles plotted in Figure 4.15 A, B and C. Concluding, it can be stated that the 

local gas hold-up values are a function of the superficial gas velocity and of the radial 

position only: they do not depend on the column diameter. 

Additionally, the normalized radial gas hold-up profiles can be computed by Eq. 

(1.1), that is a function of the global gas hold-up (𝜀�̅�), as previously presented in section 

1.2. This correlation was established from experiments carried out in columns with a 

diameter up to 0.4 m and using optical probes for local gas hold-up measurements. Thus, 

the calculated profiles are also plotted in Figure 4.15 and Figure 4.16, using the global 

gas hold-up values reported in Figure 4.9. For this estimate, we considered that the void 

fraction on the axis can be deduced from the global hold-up using εg(0)= 1.5 <εg> as 

given by the fit Eq.(1.1) . However, experiments indicate that this ratio is somewhat 

sensitive to the column diameter: as shown in Figure 4.17, it monotonously decreases 

from 1.5 in the Phi 150 column down to 1.15 in the Phi 1000 column. In the following, 

we keep the 1.5 coefficient whenever the fitted void fraction profile is used. 
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Figure 4.17 - Relationship between the local gas hold-up measured on the axis of the column and the 

global gas holp-up for three column diameters and for vsg between 3 cm/s and 35 cm/s. 

 

Overall, a good agreement is found between the experimental void fraction values 

and the predicted ones (Eq. (1.1)) for all the tested positions and for all superficial gas 

velocities. The case vsg=3 cm/s is here excluded from the discussion since the Eq. (1.1) 

predicts parabolic shaped profiles and thus it is not adapted for the flat profiles observed 

in the homogeneous regime. The averaged discrepancies found between the 

measurements and the values Eq. (1.1) are shown in Table 4.25: these discrepancies have 

been estimated as the difference between the experimental values and predicted values. 

The typical deviation is about a few % in void fraction while the largest difference amount 

for 7% in void. 

 

Table 4.25 – Average differences between the experimental data and the predicted radial profiles of 

εg (Eq. (1.1)) Units = absolute void fraction 

  Phi 150 Phi 400 Phi 1000 Phi 3000 

9 cm/s 0.03 0.01 0.01  

12 cm/s - - - 0.001 

16 cm/s 0.05 0.06 0.07  

35 cm/s 0.02 0.02 0.05  

 

Yet, one expects uncertainties in local void fraction measurements at large radial 

distances for the reasons detailed in Chap.3. Since the measurements are more reliable in 

the central, upward directed zone, let us analyze the mean void fraction 〈𝜀𝑔0−0.7〉 between 

x/R=0 and x/R=0.7. Starting from Eq.(1.1) written as  

𝜀𝑔(
𝑥
𝑅⁄ ) = 〈𝜀𝑔〉 [𝑎(

𝑥
𝑅⁄
6
− 1) + 𝑏(𝑥 𝑅⁄

4
− 1) + 𝑐(𝑥 𝑅⁄

2
− 1)], where a=-1.7889, 

b=1.228 and c=0.939, one has: 
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〈𝜀𝑔0−0.7〉

=
2𝜋𝑅2〈𝜀𝑔〉 ∫ 𝑎(𝑥 𝑅⁄

6
− 1) + 𝑏(𝑥 𝑅⁄

4
− 1) + 𝑐(𝑥 𝑅⁄

2
− 1)𝑑 𝑥 𝑅⁄

0.7

0

2𝜋 ∫ 𝑟𝑑𝑟
0.7𝑅

0

= 1.315〈𝜀𝑔〉 

(4.1) 

We estimated 〈𝜀𝑔0−0.7〉 using its definition above: the resulting void fraction 

〈𝜀𝑔0−0.7〉 happens to evolve also as vsg0.4 with minor difference in the exponent 

depending on the range of vsg considered. All data fall within -11%, +17% of the 

correlation 〈𝜀𝑔0−0.7〉 ≈ 0.557𝑣𝑠𝑔
0.4. Again, no clear dependency to the column diameter D 

can be detected, as seen in Figure 4.18. As these measurements are more reliable in that 

zone, that gives extra credit to the proposed scaling. 

 

 

Figure 4.18 – Log-log representation of the 〈𝜺𝒈𝟎−𝟎.𝟕〉 as a function of the superficial gas velocity for 

the columns Phi 150, Phi 400 and Phi 1000. (Measurements obtained at h/D=2.5) 

 

As detailed in section 4.3, the increase of the global gas hold-up with vsg can be 

described with a power law with an exponent between 0.45 and 0.35 depending on the 

range of vsg considered. So, it is interesting to verify if the local gas hold up in the column 

center (εg(0)) and in the exterior part of the column (εg(0.6)) follow the same scaling. 

Additionally, in section 4.3 it has been concluded that the global gas hold-up does not 

depend on the column diameter, that feature should also be verified on the local gas hold-

up values. Therefore, Figure 4.19 presents a log-log representation of the variation of 

εg(0) as a function of the superficial gas velocity for the columns Phi 150, Phi 400 and 

Phi 1000. 
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Figure 4.19 – Log-log representation of the local gas hold up at x/R=0 for the columns Phi 150, Phi 

400 and Phi 1000 at range of vsg : A)from 3 cm/s up to 35 cm/s; B) from 9 cm/s up to 35 cm/s 

 

Accounting for all available data, εg(0) follows a power law with an exponent 

ranging between 0.47 and 0.5, similar to what has been seen for the global gas hold-up. 

Discarding the smallest vsg, i.e. for vsg ≥ 5-6cm/s, the data are fitted within ±4% by the 

expression 𝜀𝑔(0) = 0.0982𝑣𝑠𝑔
0.4019 for all columns, namely Phi 150, 400 and 1000 

columns (only one local void fraction data was available for the Phi 3000). That behavior 

is very close to the one found for the global void fraction with vsg ≥ 5-6cm/s, and again, 

there is no perceivable sensitivity to the column diameter. A similar analysis of the 

evolution of the local gas hold-up with the superficial gas velocity was performed for the 

radial position x/R=0.6 for the columns Phi 150, Phi 400 and Phi 1000, as can be seen in 

Figure 4.20. 
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Figure 4.20 - Log-log representation of the local gas hold up at x/R=0.6 for the columns Phi 150, Phi 

400 and Phi 1000 at range of vsg : A)from 3 cm/s up to 35 cm/s; B) from 9 cm/s up to 35 cm/s 

 

 If all the vsg are taken in to account, the power laws that arises for all the columns 

have an exponent ranging between 0.37 and 0.5, however if only the vsg>5-6 cm/s are 

accounted for, the exponent ranges between 0.35 and 0.43. These values are quite close 

to the exponent found for global gas hold-up and for 𝜀𝑔(0), and once again no significant 

effect of the column diameter is detected. The fact that the same scaling holds for local 

and global gas hold-up arises, and inversely confirms, the similarity of void fraction radial 

distributions. 

In the above section, the evolution of the void fractions either global or local with 

the control parameters D and vsg has been discussed: clearly these void fractions do not 

depends on the column diameter. Yet, they increase as vsgn with an exponent in the range 

0.35 - 0.43. In addition, the empirical fit Eq.(1.1) to the void fraction profile has been 

validated over an enlarged set of conditions and in particular in the largest column 
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available (Phi 3000). Yet, some uncertainties persist on the precise shape of the void 

fraction profiles in bubble columns. Indeed, although the global hold-up was recovered 

within ±15%, uncertainties arise when the flow direction is changing (in Chap.3, we have 

seen that an improper probe orientation can lead to a 40% underestimation of the void 

fraction). Thus, one may expect that void fractions at large radial distances and notably 

for x/R above 0.7 are underestimated. If so, the actual profiles should be steeper near the 

walls. It would be worthwhile to clarify this question in the future, using an alternate 

technique based, for example, on a spatially well resolved X or gamma ray tomography. 

 

4.5 Liquid velocity 

 

The liquid velocity was measured using a Pavlov tube with two different sets of 

pressure sensors, as detailed in section 3.1. The 8 Hz bandwidth pressure sensors were 

used in the Phi 150 (h/D=2.5), Phi 400 (h/D=2.5 and 3.75) and Phi 3000 (h/D=1.5) where 

only the axial component of the liquid velocity was measured. The 100 Hz bandwidth 

pressure sensors were used to perform measurements in the Phi 400 column (h/D=2.5) 

and in the Phi 1000 column (h/D=3.75). 

 

Stabilized flow region 

 

As previously demonstrated, the bubble Dh32 and the local gas hold-up are invariant 

over the column cross-section the between h/D ratios of 2.5 and 3.75. In order to verify 

if the mean liquid velocity is also invariant along the column axis, radial profiles of the 

mean axial liquid velocity were measured at h/D=2.5 and 3.75 in the Phi 400 column, as 

can be seen in Figure 4.21. 
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Figure 4.21 – Radial profiles of axial liquid velocity at several superficial gas velocities in the Phi 

400 column at h/D ratios of 2.5 and 3.75. (Measurements with 8 Hz bandwidth pressure sensors) 

 

 The results show that for superficial gas velocities between 9 cm/s and 25 cm/s, 

globally there is no significant evolution of the axial liquid velocity radial profiles in the 

Phi 400 column, between the h/D ratios of 2.5 and 3.75 (coherent with measurement in 

the Phi 1000 column, Forret, 2006). The differences between the measurements at h/D 

2.5 and 3.75 are quantified for the radial positions of x/R=0 and x/R=0.6 in Table 4.26. 

 

Table 4.26 – Differences between the axial liquid velocity at h/D=2.5 and h/D=3.75 for the radial 

positions x/R=0 and 0.6. Units= Units=m/s 

 Radial position (x/r) 

 0 0.6 

9 cm/s 0.01 0.01 

16 cm/s -0.09 0.05 

25 cm/s -0.06 -0.01 

 

The results show that the maximum difference between the axial liquid velocity in 

the positions x/R=0 and 0.6 is about 0.09 m/s, while the average difference on the radial 

profile was typically 0.06 m/s. Therefore, it is possible to conclude that, similarly to the 

gas hold-up and the bubble Dh32, the mean liquid velocity is also constant between these 

two elevations in the Phi 400 column. 

The liquid velocity on the Phi 150 and Phi 3000 columns was measured only at one 

elevation, consequently it was not possible to verify if the liquid velocity was also 

constant between h/D=2.5 and 3.75. Thus, it will be considered that the stabilized flow 

region detected in the Phi 400 column was also valid for the other columns. 
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Radial axial liquid velocity profiles 

 

 The radial profiles of the mean axial liquid velocity were measured in the Phi 150 

(h/D=2.5), Phi 400, Phi 1000 (h/D=3.75) and Phi 3000 (h/D=1.5) for superficial gas 

velocities from 9 cm/s up to 25 cm/s, as shown in Figure 4.22 A, B, C and D, respectively. 

All the measurements were performed with the 8 Hz bandwidth pressure sensor, except 

the ones obtained in the Phi 1000 column. 
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D 

 

Figure 4.22 – Radial profiles of mean axial liquid velocity at several superficial gas velocities in the 

columns: A) Phi 150 (h/D=2.5); B) Phi 400 (h/D=2.5); C) Phi 1000 (h/D=3.75); D) Phi 3000 

(h/D=1.5).(Phi 150, 400, 1000, 3000 - 8 Hz bandwidth pressure sensors, Phi 1000 – 100 Hz 

bandwidth pressure sensors) 

 

Figure 4.22 shows that, regardless of the column diameter, the radial profiles 

present a similar evolution with the superficial gas velocity: there is an increase of the 

velocity in the center of the column, and all radial profiles show that the direction of the 

mean axial liquid velocity is inverted at x/R=0.7. Forret et al (2006) have proposed a 

correlation to determine the radial profiles of the axial liquid velocity as a function of the 

velocity in column center: 

 𝑢𝑙(𝑥/𝑅) =
𝑢𝑙(0)

𝑎 − 𝑐
[𝑎𝑒(−𝑏(𝑥/𝑅)

2
− 𝑐] (4.2) 

where a=2.976, b=0.943 and c=1.848, and was established based in measurements 

of the axial liquid velocity with a Pavlov tube in columns with a diameter between 0.15 

m and 1 m. The correlation is plotted against the experimental radial profiles of the axial 
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liquid velocity obtained in the Phi 150, Phi 400, Phi 1000 and Phi 3000 columns for a 

vsg=16 cm/s in Figure 4.23. 

 

 

Figure 4.23 – Radial profiles of the mean axial velocity in the columns Phi 150, Phi 400, Phi 1000 and 

Phi 3000 at vsg=16 cm/s. The mean axial velocity is scaled by its value measured on the column axis. 

(Line – Eq. (4.1)) 

 

Figure 4.23 shows that globally the correlation is in reasonable agreement with the 

experimental data, additionally shows that the axial liquid radial profiles, normalized by 

the u(0) present no evolution with the column diameter. The fitting of the correlation with 

the experimental data is detailed in Table 4.27 for all columns and for vsg= 9 cm/s, 16 

cm/s and 35 cm/s. 

 

Table 4.27 – Averaged differences between the experimental and predicted normalized axial liquid 

velocity profiles. 

 Phi 150 Phi 400 Phi 1000 Phi 3000 

9 cm/s 0.13 0.10 0.08 - 

16 cm/s 0.11 0.08 0.06 0.12 

25 cm/s 0.12 0.04 0.03 0.09 

 

First, one should notice that the differences presented in Table 4.27 correspond to 

a function that varies between 1 and -0.7 (Figure 4.23). Thus, the results show that the 

Eq. (4.1) has a better agreement with the measurements in the larger columns, namely Phi 

1000 and Phi 3000, and at vsg=25 cm/s. Additionally, the maximal differences found, for 

all the tested vsg, were 0.34, 0.31, 0.27 and 0.44 for the columns Phi 150, Phi 400, Phi 

1000 and Phi 3000, respectively. Let us now address the evolution of the axial liquid 
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velocity in the center of the column with the column diameter and the superficial gas 

velocity. 

Impact of vsg and bubble column diameter on the axial liquid velocity 

 

In order to determine the evolution of the mean axial liquid velocity with the 

column diameter, a log-log representation of u(0) as a function of the column diameter is 

plotted Figure 4.24 for superficial gas velocities of 9 cm/s, 16 cm/s and 25 cm/s.  

 

 

Figure 4.24 – Log-log representation of u(0) as a function of the column diameter, at iso-vsg. 

 

The results show that the variation of u(0) as a function of D for a superficial gas 

velocity in the range between 9 cm/s to 25 cm/s can be fitted by a power law with an 

exponent that ranges between 0.44±0.1. The limited variation of the exponent with the 

superficial gas velocity is a remarkable result. Since the scaling of liquid velocity in the 

center of the column with the column diameter has been determined as 𝑢(0) ∝ 𝐷0.44, one 

should verify its dependency with the superficial gas velocity. Thus, Figure 4.25 presents 

a log-log representation of the mean axial liquid velocity in the center of the column 

u(0)/D0.44 as a function of the vsg. 
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Figure 4.25 – log-log representation the evolution of u(0)/D0.44 as a function of the superficial gas 

velocity for all the columns. 

 

 The results show that u(0)/D0.44 is somewhat sensitive to vsg, the dependency can 

also be fitted with a power law with an exponent ranging between 0.18 and 0.31 for a 

column diameters range from 0.15 m up to 3 m, which is a smaller factor than for the 

column diameter. We do not perceive any clear trend of that sensitivity with the column 

diameter. Concluding, the previous analysis showed that the scaling of the experimental 

axial liquid velocity in the center of the column corresponds to : 

 𝑢(0) = 1.62 ± 0.3𝐷0.44𝑣𝑠𝑔
0.25 (4.3) 

Some studies in the literature focus on the correlation of the mean axial liquid 

velocity in the centre of the column with column diameter, vsg and liquid density and 

viscosity, as presented in Table 4.28.  

 

Table 4.28 – Correlations of the mean axial liquid velocity in the centre of the column 

Correlation Author 

𝑢(0) = 2.47𝑣𝑠𝑔0.5𝐷0.28 Miyauchi and Shyu (1970) 

𝑢(0) = 0.27(𝑔𝐷)
1
2⁄ (
𝑣𝑠𝑔3𝜌𝑙
𝑔𝜇𝑙

)

1
8⁄

 Zehner (1980) 

𝑢(0) = 0.737(𝑣𝑠𝑔𝐷)
1
3⁄  Riquarts (1981) 

𝑢(0) = 𝑄𝑙 + 0.66𝐷
0.69 + 1.11𝑣𝑠𝑔 Nottenkamper et al. (1983) 

 

One can notice the strong differences in the correlations proposed in the literature: 

the exponents of D range from 0.28 to 0.69, and the one for vsg between 1/8 and 1. 
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Therefore, taking in consideration the range of variation of u(0) with the vsg and D 

and the correlations presented in Table 4.28, the correlation of Nottenkamper et al. (1983) 

is the farthest from our experimental results. The correlations of Miyauchi and Shyu 

(1970) and Riquarts (1981) are the ones with exponents closer to our results. Zehner 

correlation (1980) presents a good fit for the column diameter, but the impact of the vsg is 

underestimated. In order to test which correlation better predicts our experimental results, 

the experimental results of u(0), Eq. (4.3) and the above correlations are plotted in Figure 

4.26 A, B and C as a function of the column diameter for the superficial gas velocities of 

9 cm/s, 16 cm/s and 25 cm/s, respectively. 
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A 

 

B 

 

C 

 

Figure 4.26 – Evolution of u(0) with the column diameter for a vsg of: a) 9 cm/s; B)16 cm/s; C)25 

cm/s according to correlations proposed in the literature. 

 

Figure 4.26 shows similar trends regardless of the superficial gas velocities: the 

correlation of Miyauchi and Shyu (1970) is the one, between the literature correlations, 

that has the best fit with the experimental results, while the correlation of Riquarts (1981) 

strongly underestimates the u(0) for all the conditions, except for the column Phi 3000 at 
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vsg= 25 cm/s. On the contrary the correlation of Zehner (1986) overestimates u(0) for all 

the columns except for the Phi 150 column. The mean difference between the correlations 

predictions and the experimental results are presented in Table 4.29. 

 

Table 4.29 – Average difference between experimental values of u(o) and correlations (Figure 4.26). 

Units= m/s. 

 9 cm/s 16 cm/s 25 cm/s 

Miyauchi and Shyu (1970) 0.13 0.13 0.19 

Riquarts (1981) 0.57 0.49 0.34 

Zehner (1986) 0.33 0.39 0.58 

Eq (4.3) 0.08 0.08 0.14 

 

As expected, the results presented in Table 4.29 show that the correlation of 

Miyauchi and Shyu (1970) presents the best fit of our experimental results. Nevertheless, 

the maximum difference found was 0.4 m/s for the Phi 3000 column at a vsg=9 cm/s. 

Regarding the remaining correlations the maximum differences found were 0.76 m/s and 

1.16 m/s for the correlations of Riquarts and Zehner, respectively. It should be notice that 

Eq. (4.3) presents somewhat smaller errors than all the others correlations regardless the 

superficial gas velocity. 

 

As previously referred to, the liquid flow rate descending in the column is equal to 

the liquid flow rising in the column. Therefore, it is interesting to evaluate if the negative 

liquid velocity measured at x/R=0.8 has the same evolution with the column diameter as 

the ascending velocity in the column center. Thus, a log-log representation of -u(0.8) as 

a function of the column diameter was plotted in Figure 4.27 for the superficial gas 

velocities of 9 cm/s, 16 cm/s and 25 cm, respectively. 
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Figure 4.27 – Log-log representation of -u(0.8) as a function of the column diameter, at iso-vsg.. 

 

The results show that at x/R=0.8 the power laws fitted to the results of –u(0.8) as a 

function of D have quite different slopes for the tested vsg, compared with the liquid 

behavior on the axis shown in Figure 4.24. For the superficial gas velocities of 16 cm/s 

and 25 cm/s, the mean axial liquid velocity has similar evolution with the column 

diameter in both tested radial positions (0.34 and 0.42), however a stronger evolution was 

noted at vsg=9 cm/s. 

 

Concluding, the results showed that the evolution of the liquid velocity in the 

column center with the column diameter and with vsg corresponds to 𝑢(0) =

1.62𝐷0.44𝑣𝑠𝑔
0.25 for vsg ranging from 9 cm/s up to 25 cm/s in columns with a diameter 

ranging from 0.15 m up to 3 m. Moreover, the experimental results were compared with 

correlations reported in the literature: the correlation of Miyauchi and Shyu (1970) 

presented the best fit with the experimental results in all the tested conditions. However, 

Eq.(4.3) presented somewhat smaller errors in all the tested conditions Finally, the 

evolution of the axial mean liquid velocity with the column diameter for the radial 

positions x/R=0 and x/R=0.8 have been compared: at vsg=3 cm/s -u(0.8) presented a 

stronger evolution than u (0), however for the vsg of 16 cm/s and 25 cm/s, u has globally 

a similar evolution with the column diameter. 
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Net upward liquid flux  

 

The impact of the superficial gas velocity can also be studied regarding the liquid flow 

rate (𝑄𝑙) rising in the core of the column i.e. the region where the mean flow is directed 

upward. Note that in that region, both velocity and gas hold up measurements are quite 

reliable In particular, the optical probe is properly oriented with respect to the main flow.  

QL is thus found by solving the following equation between x=0 and 0.7: 

 𝑄𝑙 = ∫ 2𝜋𝑟𝑢(𝑥)(1 − 𝜖𝑔(𝑥))𝑑𝑟
𝑟

0

 (4.4) 

for sake of simplicity, and owing to the conclusion of section 4.4 on the similarity of void 

fraction profiles, the local void fraction 𝜖𝑔(𝑥) needed in Eq.4.3 has been computed using 

Eq. (1.1) together with the global void fractions for each column provided in section 4.3. 

The resulting rising liquid flow rates are presented in Table 4.30. 

 

Table 4.30 – Rising liquid flow rate in the columns for several vsg, m3/s. 

 Phi 150 Phi 400 Phi 1000 Phi 3000 

9 cm/s 0.0011 0.0108 0.1035  

16 cm/s 0.0011 0.0109 0.1107 2.0146 

25 cm/s 0.0010 0.0149 0.1007 2.0270 

 

 The results show that, for a given column diameter, the upward liquid flow rate 

rising in the column does not significantly evolve with the superficial gas velocity. Since 

the local liquid velocity increases with vsg, this phenomenon could only be explained by 

a reduction of the surface available to the liquid, because of the increase of the local gas 

hold-up with vsg (c.f. section 4.4). However, at iso-vsg, there is a neat increase of the liquid 

flow rising in the column with the column diameter. The above data plotted versus D, in 

Figure 4.28 clearly show that the liquid flow rate increases as D2.5. All data irrespective 

of vsg collapse almost perfectly on the same curve, and the liquid flow rate (m3/s) rising 

in the column can be estimated as a function of the column diameter D (m) by the 

following fit. 

 𝑄𝑙
𝑢𝑝 = 0.123𝐷2.5 (4.5) 
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Figure 4.28 – Log-log representation of the liquid flow rate Ql in the ascending region as a function 

of the column diameter (from Phi 150 to Phi 3000). 

 

Eq.(4.5) provides the magnitude of the liquid entrainment in our bubble columns 

due to the action of the gas. If the liquid flow rate is divided by the column cross-section, 

a quantity that represents the superficial liquid velocity in the central ascending part of 

the flow, the later increases as D0.5: one can said that the entrainment “efficiency” 

increases with the size of the system. Oddly, that efficiency does not depend on vsg, i.e. 

on the injected gas flow rate. A probable reason for that could be the self-organization of 

the flow already seen on the fixed boundary of the ascending region at 0.7R and on the 

similarity of local velocity and void fraction profiles. 

The above result can be tentatively put in a non-dimensional form. As a first crude 

dimensional analysis, one expects four independent non-dimensional parameters to 

govern the system. Indeed, the involved physical quantities are the injected gas flow rate 

(or equivalently the superficial gas velocity), the column diameter, the fluids properties 

(liquid density l, liquid viscosity l and surface tension , the gas density is neglected 

since the low density ratio gas/liquid is considered to behave as an asymptotic parameter), 

gravity and bubble size. Note that the liquid static height H0 in the column is discarded 

since according to Forret (2008), local variables are no longer sensitive to H0 provided 

that H0>4D, a condition fulfilled in all our experiments. As for a single bubble dynamics 

in still liquid, Morton and Eötvös parameters characterize the bubble dynamics. A natural 

velocity scale is (gD)1/2 and one can built a Reynolds number on that scale, namely Re = 

D (gD)1/2 /  (another option can be the ratio of the relative velocity to vsg). The last 

parameter must be connected with the gas superficial velocity: for such gravity driven 

flows, it is tentatively taken as a Froude number vsg/(gD)1/2.  
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For the range of bubbles dynamics considered here, the relative velocity does not 

evolve much with size, and thus the parameters characterizing the bubbles are not 

expected to play a key role over the experimental range considered. Besides, it has been 

shown that the upward liquid flow rate does not depend on vsg. Thus, the only 

dimensionless scaling left is: 

 𝑄𝑙
𝑢𝑝 ≈ 𝐷2(𝑔𝐷)

1
2⁄  (4.6) 

As shown in Figure 4.29, the mean prefactor in Eq.(4.6) is close to 0.0377, and the 

maximum deviations are -15/+25% for all the conditions considered. 

 

 

Figure 4.29 - Plot of Qlup/[D2(gD)0.5] versus the superficial velocity for all flow conditions available 

with vsg ≥ 9cm/s. 

 

Although part of these deviations may arise from measurement uncertainties (also, 

we do not correct for the actual ratio g(0)/<g> but we took a fixed value =1.5, see 

section 4.4), there is a possibility that extra parameters, those influence was not neatly 

detected, may affect the liquid flow rate. In this respect, it is worth testing the consistency 

of the various scalings discussed above for the void fraction, the liquid velocity and the 

liquid flow rate. By integrating the fitted profiles of void fraction and liquid velocity 

between 0 and 0.7R, ones gets from Eq.(4.2): 

 
𝑄𝑙
𝑢𝑝 = 2𝜋𝑅2𝑢(0)(0.118 − 0.163〈𝜀𝑔〉)

= 0.236𝜋𝑅2𝑢(0)(1 − 1.1381〈𝜀𝑔〉) 
(4.7) 

We closely recover the proper dependency of the liquid flow rate with (QLup ≈ 

D2.5) as the centerline liquid velocity has been seen to evolve as 𝑢(0) ∝ 𝐷0.44𝑣𝑠𝑔
0.25. Yet, 

there is a dependency with vsg present in right hand side of the equation but not on its 

left hand side. Considering that a correct fit for the global hold-up is 〈𝜀𝑔〉 ≈
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0.0812𝑣𝑠𝑔
0.395, and analyzing the resulting dependency of the r.h.s. with vsg, one find a 

trend close to vsg0.12: thus, even though u(0) and <g> significantly evolve with vsg, their 

combination in Eq.(4.6) is almost insensitive to the superficial velocity as expected from 

the scaling of the liquid flow rate. This slight difference observed arises from 

uncertainties on measurements, from the limited range in vsg we have explored (a factor 

less than 10) and also from numerical approximations. Hence, one can conclude that the 

empirical fits derived for u(0) and for <g> are consistent with the, more solid, scaling 

proposed for the liquid flow rate. 

 

Radial velocity component 

 

The mean radial liquid velocity was also measured along the column radius for the 

Phi 400 (h/D=2.5) and the Phi 1000 (h/D=3.75) columns, using the 100 Hz bandwidth 

pressure sensors. However, the registered mean radial velocities were smaller than the 

pressure sensors resolution (0.12 m/s, see section 3.1), consequently the measurements 

cannot be considered for the analysis.  
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A 

 

B 

 

Figure 4.30 – Radial profiles of mean radial liquid velocity at several superficial gas velocities in the 

columns: A) Phi 400 (h/D=2.5); B) Phi 1000 (h/D=3.75) (measurements performed with the 100 Hz 

bandwidth pressure sensors) 

 

The results show that, contrary to the axial component, the mean radial liquid 

velocity does not evolve with the superficial gas velocity. Moreover, the radial profiles 

are flat except close to the column wall in the Phi 400 column. Additionally, the mean 

radial velocities in the Phi 400 column are higher than the ones detected in the Phi 1000 

column. These results bring credit to the presence of a quasi 1D mean motion in the 

central portion of the columns. 

Concluding, the results show that the liquid recirculation increases with vsg in all 

the columns. Moreover, the increase in the liquid velocity on the column axis with the 

superficial gas velocity follows a power law with an exponent ranging typically between 

0.2 and 0.3 for vsg from 9 cm/s up to 25 cm/s and D from 0.15m to 3m. Additionally, the 
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-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1 -0.5 0 0.5 1
R

ad
ia

l l
iq

u
id

 v
e

lo
ci

ty
 (m

/s
)

Radial position (x/R)

9 cms-1 16 cms-1 35 cms-1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1.00 -0.50 0.00 0.50 1.00

R
ad

ia
l l

iq
u

id
 v

e
lo

ci
ty

 (m
/s

)

Radial position (x/R)

9 cms-1 16 cms-1 25 cms-1



263 

 

and over a range of column diameters from 0.15 m up to 3 m, it was found that the liquid 

flow does not change significantly with vsg, but it increases with the column diameter (c.f. 

Eq. (4.5)): a scaling as QLup ≈ D2 (gD)1/2 is tentatively proposed with a prefactor about 

0.038.  

 

 

4.6 Bubble velocity 

 

The bubble velocity is an important parameter in the local hydrodynamics of bubble 

columns. Consequently, a comprehensive study was carried out in the columns Phi 150, 

Phi 400 and Phi 1000 for a range of superficial gas velocities from 3 cm/s up to 35 cm/s. 

These measurements were made with the 1C mono-fiber optical probe, which can 

measure the bubble velocity component along the probe axis. The presented velocities 

are the arithmetical mean velocities along the probe axis direction of T1 bubbles. For the 

reasons discussed in section 3.5 these measurements are poorly reliable. In particular, 

they do not account for the sign of the velocity. Yet, we attempted to examine these data.  

 

Bubble velocity evolution along the column axis 

 

 Up to this point it has been shown that the bubble Dh32, the local gas hold-up and 

the axial liquid velocity were constant between h/D=2.5 and h/D=3.75. Therefore, it was 

expected that the bubble velocity remained constant along the column axis. Nevertheless, 

one should verify the validity of the invariance of the velocity along the column axis 

assumption. Thus, in Figure 4.31 A and B are presented the radial profiles of the 

arithmetical averaged bubble velocity on the Phi 400 and Phi 1000 for the h/D ratios of 

2.5 and 3.75. No results are presented for the column Phi 150, since it was not possible 

to perform measurements at h/D=3.75 due to the limited column height (1 m). 
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A 

 

B 

 

Figure 4.31 – Evolution of the arithmetical average bubble velocity as a function of radial position 

at h/D=2.5 and 3.75 in the column: A) Phi 400; B) Phi 1000 (1C probe).  

 

 Figure 4.31 A shows that in the column Phi 400, at iso-vsg, the mean bubble 

velocity neatly decreases with the elevation on the column, for all the tested conditions. 

Since the mean axial liquid velocity is constant between both positions on the column, 

and the bubble Dh32 did no present an evolution between both elevations, the bubble 

velocity should be also constant. The difference between the mean bubble velocities 

detected at h/D=2.5 and h/D=3.75 in the Phi 400 column for the superficial gas velocities 

from 3 cm/s up to 35 cm/s are presented in Table 4.31. 
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Table 4.31 – Differences between the between the mean bubble velocities detected at h/D=2.5 and at 

h/D=3.75 in the Phi 400 column. Units= m/s 

 Position Radial (x/R) 

Vsg (cm/s) 0 0.5 

3 0.15 0.10 

9 0.27 0.06 

16 0.35 0.18 

25 0.40 0.17 

35 0.50 0.28 

 

 The results show that the difference between the velocities at two elevations 

increase with the superficial gas velocity for both radial positions, up to a maximum of 

0.5 m/s at vsg=35 cm/s in the column axis. Therefore the difference between the 

measurements found in Figure 4.31 can be related with a degradation of the optical probe, 

as presented in section 3.5. This degradation is a result of the fouling on the probe tip that 

can lead to lower bubble velocities measurements. In consequence, these measurements 

will not be considered in the analysis of the evolution of the bubble velocity along the 

column axis. 

Figure 4.31 B shows that in Phi 1000 column, the measurements performed at 

h/D=2.5 and 3.75 for all the tested superficial gas velocities presented a good agreement. 

A more detailed analysis, presented in Table 4.32, gives the difference between the mean 

bubble velocities detected at h/D=2.5 and  at h/D=3.75 in the Phi 1000 column for the 

superficial gas velocities from 3 cm/s up to 35 cm/s and again for the two radial positions. 

 

Table 4.32 – Differences between the between the mean bubble velocities detected at h/D=2.5 and 

h/D=3.75 in the Phi 1000 column. Units=m/s 

 Position Radial (x/R) 

Vsg (cm/s) 0 0.5 

3 0.00 0.22 

9 0.02 0.04 

16 -0.02 0.34 

25 -0.35 0.25 

35 -0.23 -0.07 

 

 

The result shows that contrary to the results of Phi 400 column the difference 

between the measurements did not evolve linearly with the superficial gas velocity. 
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Moreover, a very good agreement is found between the measurements in the column 

centre for vsg<25 cm/s. Still, the maximum difference between the measurements was 

0.34 m/s. Concluding, these results together with the local gas hold-up, the bubble size 

and the liquid velocity measurements show that the flow in the columns was fully 

established between the elevations of h/D=2.5 and 3.75. 

 

 

Radial bubble velocity profiles 

 

 Likewise the gas hold-up, the bubble velocity was measured in the Phi 150, Phi 

400 and Phi 1000 columns at dimensionless height h/D=2.5, along the column radius as 

can be seen in Figure 4.32 A, B and C, respectively. The measurements obtained in the 

column Phi 400 at h/D=2.5, were obtained with a probe in normal functioning conditions, 

contrarily to the data obtained in the same column at h/D=3.75. Hence, they are taken into 

account in the following analysis. 
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A 

 

B 

 

C 

 

Figure 4.32 – Radial profiles of the axial mean velocity of bubbles at several the superficial gas 

velocity in: A) Phi 150 (h/D=2.5); B) Phi 400 (h/D=2.5) C) Phi 1000 (h/D=2.5) (1C probe) 
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In the homogeneous regime (vsg=3 cm/s) a flat profile around 0.2 m/s is observed 

in all the columns, as expected. At these conditions, the liquid velocity is negligible, so 

the bubbles velocity is mainly due to the bubble drift velocity.  

At higher superficial gas velocities, the profiles present a parabolic-like shape, since 

there is a larger increase of the bubble velocity in the inner zone of the column than in the 

outside zone (x/R>0.7).  One explanation for this behavior can be the appearance of liquid 

recirculation in the bubble column. In the column center, the bubbles can be transported 

by the upward liquid velocity, in the outer zone, they are transported by the downward 

liquid flux. This phenomenon is verified for all the tested superficial gas velocities in the 

three columns. However, the Phi 150 column presents more linear velocity profiles along 

the column radius, as can be seen in Figure 4.32 A. It should be noticed that the bubble 

velocity was only measured up to the dimensionless radial position x/R=0.75, which 

could explain the absence of low velocities at the extremities of the radial profile. 

 

Impact of the column diameter and vsg on the bubble velocity 

 

 We have seen in section 4.4 that an increase in the column diameter, at iso-vsg, 

does not affect the gas hold-up profile. However, as referred to in section 4.5, there is an 

increase in the liquid recirculation within the column. Since the bubble velocity is the 

sum of the bubble drift velocity and the liquid velocity, it is important to understand how 

the mean bubbles velocity is impacted by the column size. 

  The arithmetical mean of bubble vertical velocity in the column centre vb(0) at a 

h/D=2.5 for the column Phi 150, Phi 400, Phi 1000 for superficial gas velocities ranging 

between 3 cm/s and 35 cm/s are plotted in Figure 4.33.  
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Figure 4.33 – Evolution of the axial mean velocity of bubbles in the column center as a function of 

the superficial gas velocity for the Phi 150, Phi 400 and Phi 1000 columns at h/D=2.5.  

 

At 3 cm/s the bubble velocity does not present a significant evolution with the 

column diameter. This is an expected result, since at vsg of 3cm/s the liquid velocity is 

quite low, the gas injection on the columns was proven to be homogeneous (c.f. section 

2.3) and there was not significant evolution on the bubble size along the column axis (cf. 

section 4.1). However, for superficial gas velocities higher than 3 cm/s, there is a neat 

increase of the bubble velocity with the column diameter, especially between the column 

Phi 150 and the column Phi 400. 

Moreover, the bubble velocity profiles, at iso-vsg, are more parabolic with the 

increase of the column diameter, as can be seen in Figure 4.32. This is agreement with 

the fact that the liquid recirculation rate also increases with the column diameter. As 

previously referred, the descending flow located at x/R≥0.7 can slow down and/ or entrain 

the bubbles on the external part of the column.  

Unexpectedly, the results obtained in the Phi 1000 column show that mean bubble 

velocity maximum is located at x/R=0.2 and not in the center. This observation is valid 

for all vsg above or equal to 9 cm/s. Since the liquid maximum velocity is located in the 

column center (c.f. section 4.5) and larger Dh32 were also detected in the column center, 

this phenomenon may be due to the probe sensitivity to lateral bubble motion. Indeed, if 

the bubble approaches the probe with an angle larger than 30° a significant error can be 

done in the velocity estimation, as detailed in section 3.5. Therefore, this local increase 

of the measured velocity vsg can be related with the presence of strong lateral bubble 

motions that impose a non mono-directional rising path of bubbles. Indeed, and as it will 
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be seen in section Fig.4.30, the turbulent intensity is minimum along the axis and 

increases steeply with the radial distance. 

Since the evolution of the mean axial liquid velocity with the column diameter 

followed a power law, it is important to verify if the mean bubble velocity presents the 

same trend. So, the evolution of bubble velocity in the column center vb(o) as a function 

of the column diameter D has been plotted in a log-log representation in Figure 4.34, for 

superficial gas velocities in the range from 3 cm/s to  35 cm/s. 

 

 

Figure 4.34 – Log-log representation of vb(0) as a function of the column diameter (D) in a range 

between 0.15 m and 1 m for vsg ranging from 3 cm/s up to 35 cm/s. (Measurements obtained at 

h/D=2.5) 

 

 The results show that, considering all the vsg the evolution of vb(0) with the D 

follows a power law with an exponent ranging from 0.13 up to 0.54. However, 

considering only the conditions such that vsg>3-5 cm/s, all the results are fitted with the 

power law 𝑣𝑏(0) = (1.34 ± 0.35)𝐷0.52±0.02. The exponent of D found here is slightly 

higher, but quite close to the one found for the mean axial liquid velocity (𝐷0.44). This 

difference may be due to some quick fluctuations in the flow that are detected by the 

probe but not by the Pavlov tube due to the low bandwidth (8 Hz) of the pressure sensors. 

Nevertheless, the agreement between the evolutions of the gas and the liquid velocities 

with the column diameter show the consistency of the measurements. 

Taking into account the evolution of vb(0) with the column diameter, we will 

analyze now the evolution of the mean bubble velocity in the column center (vb(0)) with 

the superficial gas velocity. So, a log-log representation of the evolution of the bubble 

velocity at x/R=0 with the superficial gas velocity for the column Phi 150, Phi 400 and 

Phi 1000 is plotted in Figure 4.35.  
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A 

 

B 

 

 

Figure 4.35 - Log-log representation of vb(0)/(1.34D0.52) as a function of the superficial gas velocity 

for the Phi 150, Phi 400, Phi 1000 columns: A) 3 cm/s <vsg< 35 cm/s B) 9 cm/s<vsg<35 cm/s 

(measurements obtained at h/D=2.5) 
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The fitting obtained by the Eq. (4.4) with our experimental data, is analyzed in the 

parity plot presented in the Figure 4.36. 

 

Figure 4.36 – Parity plot between the experimental vb(0) and the predictions of Eq. (4.8). (solid line 

– bisection line, dashed line- ±30%)  

 

 The results show that Eq. (4.8) provides the mean bubble velocity vb(0) in 

columns with a diameter ranging from 0.15 m up to 1 m and for a vsg ranging from 9 

cm/s up to 35 cm/s within a relative error within ±30 %. 

 

Upward gas flux 

 

In section 3.5 the gas flux has been computed by integration over the entire cross-

section of the column in order to deduce the superficial gas velocity, and the results 

presented considerable deviations. Indeed, to deduce the total gas flux one should use the 

local gas flux measurements obtained in the outer zone of the column (x/R>0.7). 

However, at larger radial distances above 0.7, the flow has a mean descending direction 

and, since the optical probe has always been facing downwards, the local gas flux 

measurements are poorly reliable in the outer zone. So, it is interesting to analyze the 

evolution of the average upward gas flux in the central zone i.e. for 0<x/R<0.7, with the 

superficial gas velocity. Therefore upward gas flux was estimated according to: 

 Qg𝑢𝑝 = ∫ 2𝜋𝑟𝑗𝑔(𝑥)𝜕𝑥
0.7

0

 (4.9) 

where 𝑗𝑔(𝑥) represents the local gas flux. The results are presented in the Figure 4.37 for 

a vsg ranging between 3 cm/s and 35 cm/s and for the columns Phi 150, Phi 400 and Phi 

1000.  
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Figure 4.37 – Representation of the upward gas flux (𝐐𝐠
𝒖𝒑

) with the superficial gas velocity for the 

columns Phi 150, Phi 400 and Phi 1000 (measurementsd obtained for at h/D=2.5) 
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Figure 4.38 – Log-log representation of the evolution of the  𝐐𝐠
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 as a function of the column 

diameter for superficial gas velocities from 3 cm/s up to 35 cm/s. (measurements obtained at 

h/D=2.5) 
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 (1.25 ± 0.065)𝐷2.47±0.06. Both trends are in a good agreement with the variation of the 

net liquid flux (D2.5) observed in section 4.5. Since the scaling of the Qg𝑢𝑝 with the 

column diameter is known, one can now study the evolution of Qg𝑢𝑝 with the vsg. 
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B 

 

Figure 4.39 - Log-log representation of the evolution of the  𝐐𝐠𝒖𝒑 as a function of the superficial gas 

velocities for the columns Phi 150, Phi 400 and Phi 1000 and a range of vsg:A) from 3 cm/s up to 35 

cm/s; B) from 9 cm/s up to 35 cm/s. (measurements obtained at hD=2.5) 
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As for the liquid phase, the consistency of the fits proposed for the gas flow rate, 

the gas velocity and the void fraction can be checked since Qg𝑢𝑝 ∝ 𝐷2𝑣𝑏𝜀𝑔. Collecting 

the fits for the bubble velocity and the void fraction is possible to find Qg𝑢𝑝 ∝

𝐷2.5𝑣𝑠𝑔
0.7−0.8 that is in a good agreement with Eq.(4.10). Thus, the trends are consistent 

with each over. 

If the Qgup is correctly measured it should be larger than the flux of gas injected in 

the column. However, as can be seen in Figure 4.40 the ratio between the Qg𝑢𝑝 deduced 

and the gas flow injected into the column is always inferior to 1, except for the column 

Phi 1000 at a superficial gas velocity of 3 cm/s. Indeed, even in the zone of the column 

where the flow is mostly directed upward, the local gas flux measurements are 

underestimated. However, even if the absolute values are not reliable, we observe 

convincing trends in the evolutions of Qg𝑢𝑝/Qg𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 with the column diameter and the 

superficial gas velocities, namely in agreement with the scaling found for the net upward 

flux.  

 

 

Figure 4.40 – Evolution of the ratio Qgup/Qginjected as a function of the superficial gas velocity for the 

column Phi 150, Phi 400 and Phi 1000. (measurements obtained at h/D=2.5) 
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the radial liquid velocities (u) were not exploitable, the radial liquid velocity fluctuations 

(v’) have not been analysed. Moreover, due to technical problems the liquid velocities 

fluctuations measured with the 100 Hz bandwidth pressure sensors were not well resolved 

and cannot be exploited either. In addition, since the measurements obtained in the Phi 

1000 column were obtained with only a 100 Hz bandwidth pressure sensors, no data will 

be presented regarding the Phi 1000 column. 

The radial profiles of the root mean square of the axial liquid velocity fluctuations 

(r.m.s.(u’)) on the Phi 150, Phi 400 and Phi 3000 columns are plotted in Figure 4.41 for 

the superficial gas velocities of 9 cm/s, 16 cm/s and 25 cm/s. 
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C 

 

Figure 4.41 – Radial profiles of the axial liquid velocity r.ms (u’) for several superficial gas velocities 

in the columns: A) Phi 150 (h/D=2.5); B) Phi 400 (h/D=2.5) C) Phi 3000 (h/D=1.5) (measurements 

obtained using the 8Hz bandwidth pressure sensors) 
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radius up to approximately x/R=0.7, and a decrease for further radial positions. This is an 

expected result, since x/R=0.7 is the location where the mean axial liquid velocity 

reverses its direction and where the velocity gradient is maximum. Moreover, at all radial 

positions in the three columns, the velocities fluctuations generally increase with the 

superficial gas velocity. Let us now analyse the dependence of u’ on the superficial gas 

velocity and the column diameter. 

 

Impact of the vsg and D on the liquid velocity fluctuations 

 

 In order to further investigate the variation of the velocity fluctuations with the 

vsg, the evolution of the r.m.s.(u’[0.7]) at the radial position x/R=0.7 is plotted versus vsg 

in Figure 4.42 for the columns Phi 150, Phi 400 and Phi 3000. 

 

 

 

Figure 4.42 – Log-log representation of the evolution of r.m.s.(u’) at the radial position x/R=0.7 as a 

function of the vsg for the columns Phi 150, Phi 400 and Phi 3000. (Measurements obtained at h/D=2.5) 
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mean axial liquid velocity (Figure 4.25), the liquid velocity fluctuations have an 

equivalent evolution (≈ vsg 0.28) with the superficial gas velocity. Let us now analyse the 

variation of u’ with the column diameter. 

Figure 4.41 has already shown that the liquid velocity fluctuations also increase 

with the column diameter. To quantify this evolution, r.m.s.(u’) measured at the radial 

position x/R=0.7 are plotted versus the column diameter as shown in Figure 4.43. 
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Figure 4.43 – Log-log representation of the evolution of r.m.s.(u’) measured at x/R=0.7 as a function 

of the column diameter for vsg=9 cm/s, 16 cm/s and 25 cm/s. (Measurements obtained at h/D=2.5). 

 

 For all tested superficial gas velocities, the r.m.s.(u’) exhibit quite similar trends 

with the column diameter, with a scaling evolving from D0.43 to D0.47: i.e. the larger the 

column, the more intense the velocity fluctuations. It can be also pointed out that the 

velocity fluctuations and the mean velocities have very similar dependencies with the 

column diameter. Consequently, the turbulence intensity u’/u is expected to be 

independent (or nearly independent) on the column size. The axial turbulent intensity is 

quite strong in our flow conditions: on the axis, as shown in Figure 4.44, u’/u is always 

above 25-30%. Note that the few values above unity in Figure 4.44 correspond to very 

low vsg for which the pdfs of the absolute liquid velocity extend to both negative and 

positive values, and are affected by the poor resolution of the sensors in the vicinity of a 

zero velocity (see Figure 4.45). 
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Figure 4.44 – Evolution of the axial turbulent intensity on the column axis versus the gas superficial 

velocity as measured in the columns Phi 150, Phi400 and Phi 3000. 

 

A 

 

B 

 

Figure 4.45 – Liquid velocity PDFs for several superficial gas velocities, measured in the column 

Phi 400 at the radial position: A)x/R=0; x/R=0.8 (measurements obtained with the 8 Hz bandwidth 

pressure sensor) 
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Liquid velocity fluctuations are expected to arise from the turbulence generated in 

the liquid phase, but also from the presence of bubbles. In spatially homogeneous 

conditions, the contribution of a swarm of bubbles is known to depend on the void 

fraction, with scalings varying according to the range of particulate Reynolds numbers 

considered (Biesheuvel & Van Wijngaarden, 1984, Cartellier & Rivière, 2001, Lance & 

Bataille, 1991, Garnier et al., 2002, Hunt and Eames, 2002; Risso et al., 2008, Cartellier 

et al., 2009, Riboux et al., 2013 to quote a few). Complex interactions between somewhat 

homogeneous turbulence and pseudo-turbulence have also been reported (see notably 

Lance & Bataille, 1991, Spelt and Biesheuvel, 1997, Rensen et al., 2005). In the present 

flow conditions, and as already evoked, one expects significant void fraction gradients to 

be present in the flow: such in-homogeneities, connected to convective instabilities, are 

known to induce strong velocity fluctuations. Thus, as a first tentative, it is worth 

analyzing the evolution of the liquid velocity fluctuations with the local void fraction.  

For that, and to compare with previous results, the r.m.s. of the axial liquid velocity u’ is 

scaled by the relative velocity. Let us first consider the terminal velocity vr0 of an isolated 

bubble: the ratio u’/vr0 is comprised between 0.5 and 2 as seen in Figure 4.46 (No data 

are available for the Phi 1000 column because of the low resolution of the Pavlov @ 

100Hz sensor).  

 

 
Figure 4.46 - Evolution of the r.m.s. of the axial liquid velocity u’ scaled by the relative velocity of 

an isolated bubble (here ≈ 0.3 m/s) versus the local void fraction at two radial positions in the 

columns Phi 150, Phi400 and Phi 3000. For this set of data, vsg ranges from 3 to 25cm/s. 
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number (typically O(1000)), one founds (
𝑢′

𝑣𝑟0
)
2

≈ 0.5 − 1𝜀𝑔 Here, (
𝑢′

𝑣𝑟0
)
2

 is of the order 

of 3-10 𝜀𝑔i.e. much larger than in homogeneous conditions. Such a feature may 

tentatively be attributed to the presence of large scale meso-structures. If so, it is more 

appropriate to consider the average relative velocity estimated from measurements as will 

be presented in section 4.9, to be a better adapted velocity scale. Considering the scenario 

QGup=QGinjection, that provides the lowest average relative velocity, the ratio u’/vr apparent 

is plotted in Figure 4.47. The number of flow conditions is here even more limited as 

some information are lacking to evaluate the apparent relative velocity (see Table 4.33 

section 4.9).  

 

 

Figure 4.47 – Evolution of the r.m.s. of the axial liquid velocity u’ scaled by the estimated average 

relative velocity (with the scenario QGup=QGinjection, see Table 4.33 section 4.9) versus the local 

void fraction at two radial positions in the columns Phi 150 and Phi 400. For this set of data, vsg 

ranges from 9 to 25cm/s 

 

Despite this limited number of data, the magnitude of u’/vr apparent is now 

comprised between 0.1 and 0.8 which can be considered as encouraging. Oddly, 

compared to the behavior of u’/vr0, the trend is now reversed as u’/vr decreases with the 

local void fraction. Although this trend is clearly due to the neat increase of the apparent 

relative velocity with the void fraction (see Figure 4.55 section 4.9), it may traduce a 

complex coupling between density gradients, fluctuations and mean transport. Further 

analysis is clearly required to understand the origin of such fluctuations in dense bubbly 

columns. As a first step, section 4.10 will bring some pieces of information regarding the 

characteristics of the meso-scale structures. 
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The turbulent viscosity is an important parameter in the flow modeling, however 

it was not accounted for in our studies since it has been detailed studied in the work of 

Forret (2008) in quite similar experimental conditions. 

 

Gas velocity fluctuations 

 

The bubble velocity fluctuations (vb’) can by computed recurring to the bubble 

velocities (vb) performed by the 1C mono-fiber optical probe, as it was done for the liquid 

velocities. However, it should be noticed that contrary to liquid velocity measurements, 

where the velocity is continuously measured at a certain frequency, the bubble velocity 

measurements are discrete since they arise only when a bubble is detected by the probe. 

Nevertheless, the lowest bubble detection rate in our experiments was 30 bubbles/s, a 

value obtained for vsg=9 cm/s and at the farthest radial position: this rate is more than 3 

times larger than the rate of liquid velocity measurements (8 Hz). 

The bubble velocity fluctuations at vsg= 9 cm/s, 16 cm/s and 25 cm/s obtained at 

h/D=2.5 in the columns Phi 150, Phi 400 and Phi 1000 are plotted in Figure 4.48 A, B 

and C, respectively. 
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A 

 

B 

 

C 

 

Figure 4.48 – Radial profiles of bubble velocity fluctuations for several vsg in the columns: A) Phi 

150, B) Phi 400; C) Phi 1000. (Measurements obtained at h/D=2.5). 
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Figure 4.48 A, shows that in the Phi 150 column, the radial profiles of vb’ are flat 

at all the tested vsg, contrary to the u’ radial profiles that present clear maxima at x/R=0.7. 

Moreover, for a given vsg, the gas velocity fluctuations are much higher than the liquid 

velocity fluctuations (Figure 4.41 A). These higher fluctuations can be generated by some 

bubble swarms rising quickly through the column, and the corresponding liquid velocity 

fluctuations can be not detected by the Pavlov tube due to the low bandwidth (8 Hz). 

Therefore, these phenomena can explain the stronger increase of mean bubble velocity 

with the superficial gas velocity than the liquid velocity. 

Regarding the Phi 400 column, the radial profiles experience a slight increase up 

to the radial position x/R=0.5, while smaller values are detected at x/R=0.8. As for the 

Phi 150 column measurements, the velocity gas fluctuations are neatly higher than the 

liquid velocity fluctuations. Similar conclusions can be drawn for the Phi 1000 column, 

since the radial profiles also pass through a maximum around the radial position x/R=0.5, 

and increases with the superficial gas velocity. 

For all conditions, the gas velocity fluctuations happen to be much higher than the 

liquid velocity fluctuations. This behavior may be related to flow in-homogeneities, such 

as dense bubble swarms. This could also be due to measurement difficulties. Indeed, and 

as seen in Chap.3, incorrect data leading to an overestimation of the bubble velocity are 

sometimes detected using the single probe: hence, the bubble velocity fluctuations are 

probably overestimated. On another hand, for the liquid, quick fluctuations in velocity 

could be filtered by the low bandwidth (8 Hz) of the Pavlov tube. We have some evidence 

when comparing the frequency spectrum between the 8Hz and the 100Hz sensors. Thus, 

these defects of the measuring techniques may explain that bubble velocity fluctuations 

exceed those in the liquid, but a physical origin cannot be set aside. 

Although these data may not be fully reliable, it is worth examining how the 

bubble velocity fluctuations evolve with D and with vsg. 
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Impact of the vsg and D on the gas velocity fluctuations 

 

 Let us start by the analysis of the variation of vb’ with vsg Figure 4.49 present the 

gas velocity fluctuations on the column axis (vb’(0)) as a function of the vsg in a range 

between 9 cm/s and 25 cm/s for the columns Phi 150, Phi 400 and Phi 1000 . 

 

Figure 4.49 – Log-log representation of vb’(0) as a function of the vsg in a range between 9 cm/s and 

25 cm/s for the columns Phi 150, Phi 400 and Phi 1000. (Measurements obtained at h/D=2.5) 

 

 The results show that the gas velocity fluctuations evolution with the vsg follow 

the power law 𝑣𝑏′ = (1.2 ± 0.4)𝑣𝑠𝑔
0.43±0.1 whatever the column diameter. Therefore, vb’ 

has a somewhat higher dependency of vsg than mean bubble velocity vb, so the gas 

turbulent intensity (vb’/vb) marginally increase with vsg, at iso-D. The evolution of vb’ 

with the column diameter is presented in Figure 4.50 for the superficial gas velocities of 

9 cm/s, 16 cm/s and 25 cm/s. 

 

 

Figure 4.50 - Log-log representation of vb’(0) as a function of the D for a vsg range between 9 cm/s 

and 25 cm/s. (Measurements obtained at h/D=2.5) 
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 The results show that the dependence of vb’(0) on D is not well fitted by a power 

law (very few data available here), regardless the superficial gas velocity. Moreover, this 

dependence show no sensibility to the vsg of all the column diameter studied. However, it 

is possible to conclude that vb’(0) increases somehow with the column diameter.  

 

4.8 Comparison with Xue et al. data base 

 

Xue et al. (2008) have also measured the mean bubble velocity in a 0.16 m diameter 

column with an air/water system, using a four point optical probe. The bubble column 

was equipped with a perforated plate with 163 0.5 mm i.d. injectors, and the 

measurements were made recurring to a four-point optical probe at h/D=5.1. Xue et al. 

(2008) have measured the ascending and descending velocity of bubbles along the column 

diameter, thus the presented mean velocity accounts for both measurements. Figure 4.52 

depicts a comparison between the measurements of Xue et al (2008) and the 

measurements performed in the Phi 150 column.  

 

 

Figure 4.51 – Comparison between bubble size measurements of this work (Phi 150) and Xue et al. 

(2008). 

 

The results show that for the superficial gas velocity of 3 cm/s there is a very good 

agreement between both measurements. However, at higher superficial gas velocities the 

radial profiles of the mean bubble velocity performed by Xue et al. (2008) present a 

parabolic shape. As a result, at column center Xue et al. (2008) have reported higher 

velocities, but near to the wall there is a better agreement between both measurements. In 
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order to understand the difference between the velocity measurements both local gas 

hold-up profiles can be compared, as done in Figure 4.52. 

 

Figure 4.52 - Comparison between local gas gold-up measurements of this work (Phi 150) and Xue et 

al. (2008). 
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similar gas hold-up values were measured in the column center, there was a considerable 

deviation x/R≥0.3. Xue et al. (2008) have also reported the C10 on the column center and 

at x/R=0.9 as a function of the vsg, therefore a comparison between the C10 obtained in 

our experiments and the reported values are presented in Figure 4.53. 
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A 

 

B 

 

Figure 4.53 - Comparison between mean bubble chord measurements of this work (Phi 150) and Xue 

et al. (2008) at A) x/R=0 B)x/R= 0.9 for Xue et al. (2008) and x/R=0.8 for this work. 
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liquid recirculation was also stronger which explain the more parabolic-like gas hold-up 

profiles. The spatial bubble size segregation in the experiments of Xue et al. (2008) 

reached a difference of 4 mm between the C10 detected in column axis and at x/R=0.9. In 

our experiments the difference of the C10 was typically < 1 mm: this difference may also 

be due to the higher liquid recirculation on the Xue et al. (2008) experiments.  

Concluding, a good agreement was found between both measurements for a 

superficial gas velocity of 3 cm/s. However, at higher vsg, Xue et al (2008) detected larger 

bubbles in the column center that may be linked with the water quality that changed the 

rate of bubble coalescence/breakage relatively to our experiments, which lead to a higher 

bubble velocities in inner zone of the column (x/R<0.6). Consequently, one can infer that 

the liquid recirculation was higher in the experiments of Xue et al. (2008) for superficial 

gas velocities of 16 and 35 cm/s, which may explain both the higher spatial bubble size 

segregation and the more parabolic-like gas hold-up profiles in the data of Xue et al. 

(2008) than in our experiments.  

 

4.9 Relative velocity between phases 

 

One of the initial objectives was to measure the mean relative velocity of the gas 

phase relative to the liquid phase inside the various columns. This parameter is indeed an 

essential element in modeling: in particular, it has a direct influence on the gas hold-up. 

The relative velocity was to be deduced from independent measurements of each 

phasic velocities. Yet, and as seen in the previous sections, the magnitude of bubble 

velocities derived from single probe measurements are not reliable, even though 

consistent trends with control parameters have been identified (see section 4.6). The 

relative velocities (vr) along the column radius in the columns Phi 150, Phi 400 and Phi 

1000 are plotted in Figure 4.54: huge differences in the outer zone of the column 

(x/R>0.6) are due to the sign of the velocity, therefore we will only analyse the measured 

relative velocity in the inner zone of the column.  
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A 

 

B 

 

C 

 

Figure 4.54 – Evolution of the measured relative velocity along the column axis for vsg of 9 cm/s, 16 

cm/s, 25 cm/s in the columns: A) Phi 150; B) Phi 400; C)Phi 1000. 
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Figure 4.54 shows the measure relative velocity could be negative, a drawback that 

can be linked with the already mentioned bubble velocity underestimation. However, 

analyzing Figure 4.54 A and B, it is possible to conclude that the relative velocity increase 

with vsg and with the column diameter. Additionally, vr can reach severe values up to 

0.8m/s, namely at x/R=0.2 at vsg=25 cm/s. These values are more than 2.5 times higher 

than the bubble velocity predicted for a single bubble in a stagnant liquid (c.f. section 

2.3).  

Another way to evaluate a “mean” relative velocity is to consider the kinematic 

relationship connecting the gas flow rate fraction  with the void fraction. Such an 

approach requires a quasi-established 1D flow. This was what we had in mind when we 

considered the mean variables integrated between 0 and 0.7 R. That region is indeed co-

current upward directed two-phase flow, almost 1D as discussed on section 4.5. 

Let us briefly recall the origin of the kinematic relationship. Starting with volumic 

flow rates Q
g 
and Q

l
 injected in a tube of cross-section S, the mean phasic velocities <U

g
> 

and <U
l
> averaged over the cross-section, are by definition:  

 

 𝑄𝑔 = ∮𝜀𝑔𝑣𝑏(𝑥)𝑑𝑥 = 𝜀𝑔𝑆〈𝑈𝑔〉 (4.11) 

 
𝑄𝑙 = ∮(1 − 𝜀𝑔)𝑢(𝑥)𝑑𝑥 = (1 − 𝜀𝑔)𝑆〈𝑈𝑙〉 

(4.12) 

where for the last equalities the local void fraction 𝜀𝑔 has been assumed to be uniformly 

distributed over the cross-section. Starting from the relative velocity of the gas phase, 

namely U
r  

= U
G
 – U

L
 and averaging this relation over the cross-section, one obtains: 

 〈𝑈𝑟〉 =
Qg
𝜀𝑔𝑆

−
Ql

(1 − 𝜀𝑔)𝑆
 (4.13) 

Introducing the gas flow rate fraction  defined as  
QG

(QG+ QL)
, one has 

𝑄𝐺
QL
=

𝛽

(1−𝛽)
, and the 

above equation can be transformed into: 

 

〈𝑈𝑟〉

〈𝑈𝑙〉

𝜀𝑔

(1 − 𝜀𝑔)
=

𝛽

(1 − 𝛽)
−

𝜀𝑔

(1 − 𝜀𝑔)
⇔𝜀𝑔 =

𝛽

[1 + (1 − 𝛽)
〈𝑈𝑟〉
〈𝑈𝑙〉

]
 

(4.14) 

That equation relates the void fraction with the gas flow rate fraction. The slip ratio 
〈𝑈𝑟〉

〈𝑈𝑙〉
, 

which is the ratio of the relative velocity to the continuous phase velocity (both averaged 

over a cross-section), controls the difference between 𝜀𝑔 and 𝛽. When the relative 

velocity is zero, then 𝜀𝑔 = 𝛽. If the velocity of the dispersed phase exceeds that of the 
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continuous phase (i.e. 〈𝑈𝑟〉 positive), then the dispersed phase is diluted in the flow and 

𝜀𝑔 becomes less than 𝛽. The opposite holds if the dispersed phase lags behind the flow 

(i.e. 〈𝑈𝑟〉 negative). Putting into another form, the average slip ratio is given by: 

 
〈𝑈𝑟〉

〈𝑈𝑙〉
=
(𝛽 − 𝜀𝑔)

𝜀𝑔(1 − 𝛽)
 (4.15) 

The above equation provides a way to evaluate the relative velocity <U
r
> averaged 

over a cross-section once 𝜀𝑔,  and 〈𝑈𝑙〉 are known. Applied to the core region of the 

bubble column, i.e. for 0< x/R < 0.7, the gas flow rate fraction writes:  

 𝛽𝑐𝑜𝑟𝑒 =
Qg

𝑢𝑝

(Qg
𝑢𝑝 + Ql

𝑢𝑝)
 (4.16) 

 

We have already evaluated Ql
𝑢𝑝 in section 4.5, and we have determined the 

average void fraction 〈𝜀𝑔0−0.7〉 in the core zone (Eq. (4.1)). The remaining unknown is 

Qg
𝑢𝑝 that was evaluated in section 4.6 but it proves to be strongly underestimated. We 

nevertheless attempted to analyze the kinematic considering two assumptions for the 

magnitude of Qg
𝑢𝑝. Before that, let us note that for a given liquid flow rate, the gas flow 

rate fraction increases with the gas flow rate. Besides, for a given void fraction, the slip 

ratio increases with 𝛽. Therefore, the slip ratio is an increasing function of Qg
𝑢𝑝 for values 

of the given liquid flow rate and of the void fraction. Alternately, the minimum slip ratio 

is obtained for the minimum gas flow rate. In that perspective, we considered two 

scenarios: 

 i) the gas flow rate is given by the measured value (strongly underestimated), 

ii) the gas flow rate in the core region equals its minimum that is the total injected gas 

flow rate in the column. 

The predicted slip ratio is given in Table 4.33 for the two scenarios: in all cases, this ratio 

is above unity, it reaches values up to 2.5 when using measured gas flow rates and up to 

nearly 10 when considering the injected gas flow rate.  
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Table 4.33 – Comparison of both scenarios on the calculus of 〈𝑼𝒓〉. 

  Measured Obtained with Qgup Obtained with Qginjected 

 D(m) vsg (cm/s) Qlup
 (m3/s) Qgup

 (m3/s) εg0-0.7 (-) β0.7 <Ur>/<Ul> Ur (m/s) β0.7 <Ur>/<Ul> Ur (m/s) 

Phi 150 0.15 

3 - 0.00027 0.13 - - - -   - 

9 0.00110 0.00068 0.22 0.38 1.22 0.2 0.59 4.18 0.68 

16 0.00108 0.00097 0.26 0.47 1.57 0.27 0.72 6.49 1.1 

25 0.00098 0.00142 0.31 0.59 2.17 0.36 0.82 8.88 1.47 

35 - 0.00180 0.36 - -   -   - 

Phi 400 0.4 

3 - 0.00212 0.15 - -   -   - 

9 0.01078 0.01035 0.24 0.49 1.98 0.46 0.51 2.26 0.52 

16 0.01088 0.01603 0.30 0.6 2.52 0.63 0.65 3.41 0.86 

25 0.01492 0.02539 0.38 0.63 1.81 0.71 0.68 2.48 0.96 

35 - 0.03114 0.39 - - - -   - 

Phi 1000 1 

3 - 0.02881 0.12 - - - -   - 

9 0.10349 0.05844 0.19 0.36 1.34 0.45 0.41 1.84 0.61 

16 0.11070 0.09677 0.24 0.47 1.83 0.69 0.53 2.68 1.01 

25 0.10068 0.13835 0.28 0.58 2.46 0.9 0.66 3.91 1.43 

35 - 0.19021 0.33 - - - - - - 

 

The results show that the predicted slip ratio when transformed into an average 

relative velocity, the latter far exceeds the terminal velocity of isolated bubbles (about 0.3 

cm/s in our conditions) in most cases. The relative velocity values increases up to nearly 

1 m/s at large vsg and/or in large columns when considering the injected gas flow rate. 

The situation is worse when using the measured gas flow rate, with relative velocities 

reaching 1.4 m/s. The reality is probably between these two estimates as the gas flow rate 

in the core region exceeds the injected flow rate due to the recirculation. 

Plotted against the mean void fraction in the core (Figure 4.55), the average 

relative velocity happens to neatly increase with the gas content. It departs significantly 

from the terminal velocity in still fluid for void fractions above about 20-25%. Note that, 

although the relative velocity estimates presented above are not very precise, the limited 

uncertainties on the measured liquid flow rate and void fraction in the central region of 

the flow as precludes any flaw in the above analysis. 
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Figure 4.55 – Evolution of the relative velocity with εg0-0.7 for the columns Phi 150, Phi 400 and Phi 

1000. (Calculated by Eq. (4.16)) 

 

The physical origin of such a behavior could be seek on interaction of bubbles 

with turbulence and/or on collective effects. Pair interactions alone are not likely to 

explain such relative velocities (Yuan and Prosperetti, 1994; Ruzicka, 2000). Instead, 

collective behavior involving a significant number of bubbles are to be preferred. One 

may indeed expect the existence of meso-scale structures associated with significant void 

fraction gradients such as those detected along the walls (c.f. section 3.6): the latter could 

be the result of convective instabilities due to differential buoyancy, similar to what is 

observed in sedimentation (see also Brenner, 1999). In addition, meso-scale turbulent 

structures interacting with these clusters can lead to significant non trivial interactions 

between the two-phases. Such effects are well documented (but not fully understood) in 

turbulent flows laden with much more dense particles (even though the mechanisms 

cannot be directly transposed to bubbly flows), and it has been shown that particle 

clustering has a strong impact on the settling velocity (Aliseda et al, 2000; Monchaix et 

al, 2012; Balanchandar and Eaton, 2010): the latter is significantly speeded up by the 

turbulent field. In the gravity driven bubbly flows considered here, it is thus possibly that 

interactions between turbulent structures and bubble clusters are at also play and induce 

a larger foaming velocities. The section 4.10 will be devoted to some tentatives to identify 

such meso-scale structures. 

A second consequence of the above observations, is that such a behavior has to be 

accounted for when simulating bubble columns: in chapter 5, a preliminary analysis of 

the sensitivity of Eulerian two-fluid model prediction to the relative velocity will be 

proposed. 
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4.10 Characterization of flow structures 

 

We have seen that the mean relative velocity of the dispersed phase significantly 

exceeds (up to a factor 2-3) the terminal velocity of isolated bubbles. In addition, the 

mean relative velocity increases both with vsg and D (see Table 4.33): alternately, the 

data indicate that the mean relative velocity increases with the average void fraction but 

that it evolves also with the column size as well. Similarly, velocity fluctuations scaled 

by the actual relative velocity are changing with the void fraction (see Figure 4.55) but 

seem to evolve also with the column size, even if the evidence is slim due to the limited 

number of data available. As already suggested, such behaviours may be related with the 

existence of bubble swarms or denser regions in the flow, those relative motion with 

respect to the liquid exceeds the bubble terminal velocity. In order to check the existence 

of such structures, and possibly to determine their characteristics size and time scales, 

various data processing options have been envisioned by, due to lack of time, only a few 

have been quantitatively exploited. 

 

A first option was based on the analysis of images either of the flow along the walls 

or of oscillations arising of on top of the column. Some illustrations are provided in Figure 

4.56. Qualitatively, turbulent structures of large size are easily detected: in the example 

of Figure 4.56 A, their typical extend is 15-20 cm. In addition, regions of high and low 

void fraction seem to be present, but they are more difficult to detect (there are more 

visible on movies) and to quantify. Another clue about the presence of large scale 

structures arises when observing from the top as shown Figure 4.56 B, but these structures 

are seen at the free surface and they may not be representative of the interior of the flow. 
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A 

 

B 

 

Figure 4.56 - A) Lateral image of the flow near the wall of the Phi 400 (vsg= 25 cm/s, h/D=2.5); 

 B) Top-view of the Phi 3000 (vsg = 16 cm/s) 
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To extract some information from the interior of the flow, two techniques were used 

which are presented hereafter. 

 

Characterization of the size of meso-scale structures  

 

 As seen in section 3.6, and for a distance between two optical probes larger than 

the bubbles horizontal diameter, a cross-correlation higher than the local gas hold-up 

implies that there is a higher probability of detecting a bubble at both locations. Such a 

behaviour could be the mark of the existence of high void fraction regions in the flow. If 

so, analysing the variation of the cross-correlation with the distance between probes will 

give access to some characteristic dimension of these structures. 

The spatial cross-correlations were measured for probes distances ranging from 

0.8 mm up to 5 mm, 10 mm and 800mm in the Phi 150, Phi 400 and Phi 1000 columns, 

respectively. Moreover, in all the measurements, both probes were located at the same 

elevation in the column, symmetrically located with respect to the column axis, in order 

to ensure the same local gas hold-up on both probes. These measurements were carried 

out at superficial gas velocities ranging between 3 cm/s and 35 cm/s at h/D=2.5. A typical 

evolution of such correlations at large distances is exemplified in Figure 4.57. 

 

 

Figure 4.57 – Evolution of the cross-correlation with the distance between the probes. The dash line 

indicates the local gas hold-up at the probes positions. (Measurements obtained in the column Phi 

400, at h/D=2.5 and for vsg=16 cm/s). 
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  Figure 4.58 provides plots of the difference between the cross-correlation value 

minus the local gas hold-up (CC-εg(x)), for the vsg values of 3 cm/s, 16 cm/s and 25 cm/s, 

respectively. At large distances that quantity drops to zero as expected. 
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A 

 

B 

 

C 

 

Figure 4.58 – Evolution of the difference (CC-εg(x)) with the probe distance in the columns Phi 150, 

Phi 400 and Phi 1000 for superficial gas velocities of: A) 3 cm/s; B) 16 cm/s; C) 25 cm/s. 

 

 For vsg=3 cm/s, the results show that in the Phi 150 and Phi 400 columns, the 

quantity CC-εg(x) converges to zero for probe distances close to the typical bubble 
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horizontal diameter (i. e.6-8 mm). In the Phi 1000, the quantity CC-εg(x) becomes zero 

at larger distances between probes, but the spatial discretisation was not sufficient since 

measurements are lacking between 0.0015 and 0.007 mm. So, it is possible to affirm that 

no evidence was found of the presence of bubble swarms at vsg=3 cm/s.  

However, at 16 cm/s and 25 cm/s, the cross-correlation remains higher than the 

local void fraction for probe distances significantly larger than the typical bubble 

horizontal diameter. Furthermore, the results of the three columns present a similar trend 

both at for a given vsg for vsg=16 cm/s or 35 cm/s. So, it seems that the mean size of the 

bubble swarm is independent on the column diameter. In an attempt to found some 

characteristic size of these structures, we set an arbitrary criteria at a value of CC-

εg(x)=0.1, estimating that at this level the signals remain slightly correlated. Therefore, 

an approximated size of the structures can be determined by the distance between the 

probes at which the CC-εg(x) reaches the value of 0.1. The corresponding data, scaled by 

the average Dh32 (6 mm) on the flow, are presented Figure 4.59 versus the superficial 

velocity. 

. 

 

 

Figure 4.59 – Evolution of the mean structure size scaled by the average Dh on the flow (6 mm) 

with the superficial gas velocity for the columns Phi 150, Phi 400 and Phi 1000. 

 

 Figure 4.59 shows that the mean structure size linearly increases with the 

superficial gas velocity and that it is almost independently of the column diameter. 

Moreover, as previously stated, at vsg=3 cm/s the signals are only correlated up to the 

typically one horizontal diameter of a bubble. For vsg=16 cm/s and 25 cm/s, the size of 

the structures is approximately 20 mm and 30-35 mm, respectively. That amount for 3-4 
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to 5-6 bubbles horizontal diameters respectively. This amount seems significantly lower 

than the magnitudes of the vertical structures detected from images. 

 

Characterization of the structures time scale 

 

We considered the frequency analysis of the continuous Pavlov signals. The 

Pavlov tube was equipped with an enlarged bandwidth (100 Hz) sensor precisely to ensure 

a better time resolution. As already indicated, these sensors were not functioning in a 

differential mode and they prove to be much less reliable than the original 8Hz version. 

Thus, the spectrum analyses were not exploited (some examples are given in annex 1). 

An alternate option consists in exploiting the signals delivered by optical probes. 

Indeed, bubble swarms or at least denser regions in the flow should be identifiable from 

the time variation of an “instantaneous” gas hold-up. Since the local gas hold-up, 

measured by the optical probe is computed by the integration in time of the optical probe 

signal, it is necessary to define an adapted time interval for the analysis. The result is 

expected to depend on that time window: the later has to be selected between the residence 

time of inclusions and the larger duration for which the void fraction converges. Note that 

an alternative would be to exploit the auto-correlation of a single probe signal by varying 

time delay as already practiced to identify micro-structures in bubbly flows (Cartellier et 

al., 1991). 

As a preliminary analysis of the optical probe output, an “instantaneous” void 

fraction has been estimated using averaging over a sliding window of duration ∆T. One 

second of signal treated that way is shown Figure 4.60. Two durations have been 

considered, namely ∆T=40ms and ∆T=100ms. In the selected flow conditions, the 

average residence time of the gas phase on the probe tip was 2.3 ms, the selected time 

windows correspond thus to about 20 and 100 mean residence time respectively. As 

expected, the fluctuations are smoothed down when increasing ∆T but they are present at 

both scales. Moreover, their amplitude is quite large: gas concentrations typically evolve 

between 0.2 to 0.7, to be compared with the (converged) local void fraction equal to 0.39. 

This result provides a first indication of the strong concentration gradients existing in the 

flow. Besides, the typical time scales associated with these fluctuations are about 0.05-

0.2 second. For the flow conditions considered, the typical phasic velocities were slightly 

above 1 m/s: that leads to meso-scale structures of the order of 5-20 cm, a magnitude 
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similar to the size of vertical structures visually detected near walls. In terms of bubble 

size, these lengths represent 10 to 40 Sauter mean horizontal diameters. Compared with 

the spatial cross-correlation technique, the above figures are neatly larger. Even though 

the correlation technique could damp the fluctuations in concentration, we must point out 

that we are comparing here a few realisations with a fully converge information so that 

no definitive conclusion can be draw. A statistical analysis is clearly required to conclude, 

but these observations seem consistent. 

 

 

Figure 4.60 - Time history of “instantaneous” void fractions averaged over windows of duration ∆T. 

(flow conditions: Phi 1000, x/R=0, h/D=2.5, vsg=35cm/s). 

 

We also took advantage of this analysis to evaluate the average bubble velocity 

within the same time windows. The results are shown Figure 4.61 for ∆T=100ms in the 

same flow conditions as above. A significant correlation arises since local concentration 

peaks correspond to maxima in bubble velocity. Clearly, a statistical analysis is required 

to confirm that point, but the observation is consistent with the existence of collective 

effects and also with the fact that these structures can have a drastic impact on the rising 

velocity of bubbles.  
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Figure 4.61 - Time history of “instantaneous” void fraction and bubble velocity averaged over a 

sliding windows of duration ∆T=100ms. (flow conditions: Phi 1000, x/R=0, h/D=2.5, vsg=35cm/s).  

 

  Although limited to a single flow condition, the above analysis demonstrates its 

usefulness for the investigation of these dense bubbly flows. Such an investigation 

deserves to be pursued in order to confirm the above behaviors in a statistical sense and, 

if meaningful, in order to quantify how the scales evolve with to flow conditions, how 

concentrations and velocities are correlated. 

Others possibilities to characterize such structures would have been possible but 

were not exploited due to lack of time. Some quantifications of the fraction of time the 

flow remains directed upward (or downward) have been discussed in Chap.3: that 

analysis could have been extended to the determination of the distributions of the waiting 

times between zero crossings of the Pavlov signal. Spatial correlations of Pavlov signals 

(technically difficult to implement) have been envisioned but were technically 

challenging. An electrical tomography technique that maps the void fraction over a certain 

area has been also considered but preliminary measurements have shown that its response 

time was far too low. Preliminary attempts have been also made to exploit an ultra-sound 

Doppler velocimetry that were encouraging. 

 

4.11 Conclusions 

 

In the present chapter, we have analysed various global and local variables 

measured in different bubble columns, studied their scaling within the column diameter 

(varied in a 1:20 range) and the superficial gas velocity (varied over a 1:10 range) and we 
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have exploited the available results to try to better understand the hydrodynamics of these 

bubbly flows.  

First, we have analysed the possible presence of coalescence through a detailed 

scrutiny of the bubble chords PDFs obtained at different heights in each column. No 

evidence of bubble coalescence was found in the columns Phi 150, Phi 400 and Phi 1000 

for superficial gas velocities comprised between 3 cm/s and 25 cm/s. Additionally, no 

strong evidence of bubble breakage was detected. Concerning the characteristics of 

bubbles, the average eccentricity was found to be 0.7 in all conditions. The mean bubble 

size was determined using the spatial cross-correlation technique developed in Chapter 3. 

The Sauter mean diameter was found relatively constant whatever the flow conditions, its 

extreme values ranging between 6mm and 9 mm on the symmetry axis. Information have 

also been collected on the lateral bubble size segregation: the later amounts to 2-3 mm 

except in the Phi 3000 column where it reaches 5mm. Therefore, the initial objective of 

ensuring a quasi constant bubble size in the various columns and over a significant range 

of gas flow rate was satisfactorily fulfilled. 

The axial evolutions of all the main variables, namely bubble size, void fraction 

and phasic velocities indicate that the zone of quasi fully-developed flow extends at least 

from h/D= 2.5 to h/D=3.75 (this was not tested in the Phi 3000). The analysis of the flow 

was then based on local data collected in that zone. 

Over the range of conditions considered, the global gas hold-up increased up to 

35%. The transition between the homogeneous and heterogeneous regimes was 

determined to occur for superficial gas velocities about 3-4 cm/s. In the heterogeneous 

regime, the empirical fit proposed by Schweitzer et al. (2001) for the radial profiles of 

local gas hold-up normalized by the void fraction on the axis ( Eq.(1.1) ) was found to be 

in quite good agreement with experiments: its validity has thus been extended to larger 

column diameters (i.e. up to 3m). We then investigated the evolution of global and local 

gas hold-up with the two main parameters that were varied in the present study, namely 

the column diameter and the superficial gas velocity. 

Global and local gas hold-ups were found independent of the column diameter. When all 

regimes are considered, they increase with the superficial gas velocity according to 

 〈𝜀𝑔〉 ∝ 𝑣𝑠𝑔
𝑛 , with an exponent n comprised between 0.40 and 0.45. This is close to the 

proposals of Hikita and Kikukawa (1974) or of Reilly et al. (1986). Yet, when restricting 

the conditions to the heterogeneous regime only, the exponent neatly decreases, down to 

≈ 0.35. 
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 Similarly, the mean axial liquid velocity scaled by its value on the axis happens 

to be reasonably well predicted by the empirical fit Eq. (4.2) proposed by Forret el al. 

(2006), regardless of the column diameter. Besides, the mean liquid velocity on the 

column axis is found to evolve as 𝑢(0) ≈ 𝑣𝑠𝑔
0.5𝐷0.28 in partial agreement with the 

correlation of Miyauchi and Shyu (1970) Note that the exact exponent of D is 0.5. Indeed, 

we focused on the central portion of the column where the mean flow is directed upward 

 (i.e. -0.7 ≤ x/R ≤ 0.7) and is quasi 1D, the measured mean radial liquid velocity being 

close to zero. Surprisingly, the corresponding liquid flow rate (𝑄𝑙
𝑢𝑝

) only depends on the 

column diameter and does vary with the superficial gas velocity. In non-dimensional 

terms 𝑄𝑙
𝑢𝑝 ≈ 𝐷0.5√𝑔𝐷. That non-trivial result states that the entrainment capacity in a 

bubble column of a sufficient height compared to its diameter and for large (6-8mm) 

bubbles, is a function of its size and not of the injected gas flow rate.  

 Despite serious issues on bubble velocity measurements with optical probes in 

such flow conditions, meaningful trends were obtained. The mean axial bubble velocity 

on the symmetry axis consistently evolves as  𝑣𝑏(0) ≈ 𝐷0.5𝑣𝑠𝑔
0.34. That trend was 

established for D in the interval [0.15 m, 1 m] and for vsg between 9 cm/s and 35 cm/s. 

Moreover, the upward gas flux (𝑄𝑔𝑢𝑝) in the core region increases as Qg𝑢𝑝 =

0.51𝐷2.47𝑣𝑠𝑔
0.79: its sensitivity to the column diameter is the same as for the liquid flow 

rate, but, and as expected, it increases with the gas superficial velocity as well. A 

comparison with the injected gas flow reveals that the measured gas flow rate 𝑄𝑔𝑢𝑝 is 

strongly underestimated. Therefore, convincing trends were extracted for the above 

variables, but their magnitudes are not available. 

 The velocity fluctuations in the liquid and gas phases were then considered. 

Regarding the former, the radial profiles exhibit maxima at the radial position x/R=0.7, 

the location where the mean liquid velocity reverses its direction. At this location, the 

sensitivities of the liquid axial velocity fluctuations (u’(0.7)) to D and vsg parameters are 

found to be very similar to those of the mean liquid velocity . Consequently, the 

turbulence intensity remains nearly constant, around 25-30% in all conditions. We then 

tested if the liquid velocity fluctuations are related with the local void fraction, as it 

happens in pseudo-turbulence. When scaling u’ with the terminal velocity of a single 

bubble, the fluctuations do increase with the local gas hold-up but their magnitude 

exceeds by far those found in homogeneous systems. Therefore, as convective type 

instabilities related to concentration gradients are know to led to strong pulsations in 
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velocities, one anticipates the presence of meso-scale in-homogeneities in the flow. 

Consequently, we considered the actual relative velocity (vr) estimated in section 4.9 

from kinematic considerations as a more appropriate velocity scale: the magnitude of 

u’/vr is found to be O(1) which is encouraging. Yet, the trend with the void fraction is 

inverted as u’/vr is now decreasing with εg: this behavior probably arises from the strong 

and complex coupling between the void fraction and the actual relative velocity in these 

gravity driven bubbly flows. In addition, let us emphasis that when convective type 

instabilities are at play, a more appropriate scaling should involve the magnitude of 

concentration gradients instead of the mean gas content. For the gas phase, the velocity 

fluctuations are nearly uniform along the column radius, a behavior that may be due to 

bubble velocity measurements limitations. The gas velocity fluctuations on the column 

axis were found to evolve as 𝑣𝑏′(0) ≈ 𝑣𝑠𝑔
0.43, and no clear influence of the column 

diameter was identified: owing to limitations on the measuring technique, the results 

relative to the gas phase velocity fluctuations are to be considered with caution.  

 Our measurements were also compared with Xue et al. (2008) database: a good 

agreement was found between these two sets of data at vsg=3 cm/s. However, at larger 

vsg, the presence of larger bubbles (by a factor close to 2) and of stronger spatial 

segregation in Xue et al. experiments lead to differences in the local void fraction 

measurements up to 0.10. Consequently the liquid velocity measurements could not be 

compared. 

 The mean relative velocity was then deduced from a kinematic approach applied 

to the core region using the measured liquid flow rate and gas hold up combined with 

realistic guesses for the gas flow rate. That analysis demonstrates that, at large gas 

concentrations, the mean relative velocity is several times higher (typ. 2-3 times) than the 

terminal velocity of a single bubble in a stagnant liquid (≈30 cm/s in our conditions). 

Again, the physical origin of such a behavior could be connected with flow in-

homogeneities, either due to collective effects and/or interactions with powerful 

turbulence structures. 

 The presence of meso-scale structures is therefore suspected both from the 

analysis of the turbulence in the liquid and from the estimated magnitude of the relative 

velocity. Aside examining images of the flow near walls, we attempted to detect and to 

characterize these in-homogeneities in the interior of the flow. Using the cross-correlation 

of signals from optical probes separated by a distances larger than a bubble horizontal 

diameter, regions denser than the average concentration were perceived for vsg ≥16 cm/s: 
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their spatial extension was found to be about 4 to 6 times the averaged bubble diameter 

Dh32. An alternate analysis of the fluctuations in concentration over time indicates that 

the void fraction strongly fluctuates, with amplitudes comparable to the mean 

concentration. Besides, the associated meso-scale structures have a typical length about 

10 to 40 Sauter mean horizontal diameters. Although a detailed statistical analysis is 

required, these first evidences clearly support that meso-scale structures are indeed 

present in the flow. In addition, they are expected to play a key role on the value of the 

actual relative velocity of the dispersed phase.  

 The above features must be accounted for in the flow modeling since, and as 

shown in section 4.9, predictions grounded on the terminal bubble velocity become 

erroneous at large void fractions. Therefore, in chapter 5, we attempted to represent these 

complex dynamics by way of a modified drag law. The analysis is first achieved using a 

1D model, and it leads to a drag law correction by way of a swarm factor.  A preliminary 

sensitivity study to the proposed correction implemented in a 3D unsteady simulation 

based on an Eulerian two-fluid is then presented and discussed. 
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5 Looking for a relevant drag law for bubble column 

simulations 

 

Bubble diameter measurements are of first importance to study and model the 

interaction between gas and liquid in bubble flows. As explained in chapter 1, the bubble 

diameter plays a key role in the expression of the momentum exchange between phases. 

Especially concerning the drag force that is proportional to the projected surface of 

bubbles in the direction of the flow. The drag force is considered as the main force that 

has to be taken into account for CFD simulations (Laborde-Boutet et al, 2009; Jakobsen 

et al. 2005). 

Bubble diameters have been previously successfully measured in various bubble columns 

and superficial velocities, so they can be used to calculate relative gas velocities as it will 

be detailed below. The objective of this chapter is to compare the relevance of existing 

drag law formulations that are picked up from literature. The chapter is structured as 

following:  

i) Establish the relation between bubble diameter, drag coefficient and 

relative velocity in bubbly flows. 

ii) Compare different drag law formulations for a given criteria of comparison 

(gas flow rate). 

iii) Estimate and discuss the relevance of the selected drag law(s) once 

implemented in 3D CFD RANS simulations. 

 

This chapter is primarily based on the work of Luca Gemello, Master internship student 

in 2015 at IFPEN. 

 

5.1 Estimation of the relative velocity inside bubble columns 

 

As complex heterogeneous regimes are involved in bubble columns at high void 

fraction, i.e. velocity and gas hold-up gradients are present. As consequence, is not 

possible to simply assume a local equilibrium between drag and Archimedes forces. 

Therefore complete momentum balance equations have to be solved to estimate the local 

relative velocity. The following approach is based on different assumptions:  

- Only average lengths are solved, Reynolds equations are considered. 
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- The axial pressure gradient is constant along the radius of the column. 

- The flow is invariant in the vertical direction. 

- The flow is axisymmetric. 

 

The axial component of the momentum balance on each phase K (K=G or L) is written 

as below:  

 0 = −𝜀𝐾
𝑑𝑃

𝑑𝑧
+ 𝜀𝐾. 𝜌𝐾. 𝑔 −

1

𝑟
.
𝑑

𝑑𝑟
(𝜀𝐾. 𝑟. 𝜏𝐾) + 𝐼𝐾 (5. 50) 

with g=-9.81m/s². Other components of the momentum balance are null. 𝜏𝐾 is the stress 

tensor of the phase K, and can be modeled with the turbulent viscosity concept :  

 𝜏𝐾 = 𝜌𝐾 . µ𝑡,𝐾.
𝑑𝑈𝐾
𝑑𝑟

 (5. 51) 

µt,K is the turbulent viscosity in the phase K. UK is the mean axial velocity of the phase 

K. IK is the exchange term between both phases (IG = -IL). G is noted  thereafter. Only 

the drag is considered in this term. The drag force applied on a single bubble is written 

as: 

 �⃗� = −
1

2
𝜌𝐿 ∙ 𝑆 ∙ 𝐶𝐷 ∙ 𝑉𝑅⃗⃗⃗⃗⃗|𝑉𝑅| (5. 52) 

 where S is the projected area of the bubble in the flow direction. In case of a spherical 

bubbles of diameter d, 𝑆 = 𝜋𝑑² 4⁄ . It is easy to link the local gas fraction to the diameter 

and the number of bubbles per unit of volume nv (m
-3) :  

 𝑛𝑣 =
6𝜀

𝜋𝑑3
 (5. 53) 

 As a consequence, the force density (N/m3) that is involved in the momentum balance 

axial component is written as following. 

 𝐼𝐿 = 𝑛𝑣 ∙ ‖�⃗�‖ =  
3𝜀𝐶𝐷
4𝑑

𝜌𝐿𝑉𝑅
2 (5. 54) 

And in case of a bubble size distribution, it is known (and not demonstrated here)  that 

the appropriate bubble diameter is the Sauter Diameter d32. The case of non-spherical 

bubbles is less known. If oblate bubbles are considered, with an horizontal (dh) and a 

vertical (dv) diameter, the projected surface of bubble is proportional to dh², and the bubble 

volume is proportional to dh²dv. As a consequence the equation is replaced by  

 𝐼𝐿 =
6𝜀

𝜋𝑑𝑣𝑑ℎ²
∙
1

2
𝜌𝐿 ∙

𝜋

4
𝑑ℎ² ∙ 𝐶𝐷 ∙ |𝑉𝑅|

2 = 
3𝜀𝐶𝐷
4𝑑𝑣

𝜌𝐿𝑉𝑅
2 (5. 55) 

So the vertical diameter of bubbles seems to be the pertinent one for the calculation of the 

drag force. IL is positive at any point of the column, as only phase averaged velocities are 
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considered. VR is the relative velocity (=VG-VL). Summing Eq. (5.1) for the gas and liquid 

phase lead to  

 0 = −
𝑑𝑃

𝑑𝑧
+ (1 − 𝜀). 𝜌𝐿 . 𝑔 + 𝜀. 𝜌𝐺 . 𝑔 −

1

𝑟
.
𝑑

𝑑𝑟
(𝜀. 𝑟. 𝜏𝐺 + (1 − 𝜀). 𝑟. 𝜏𝐿) (5. 56) 

A classical assumption (Uyema and Miyauchi, 1979) consists to consider the gas stress 

tensor as negligible compared to the liquid one. As a consequence:  

 0 = −
𝑑𝑃

𝑑𝑧
+ (1 − 𝜀). 𝜌𝐿 . 𝑔 + 𝜀. 𝜌𝐺 . 𝑔 −

1

𝑟
.
𝑑

𝑑𝑟
((1 − 𝜀). 𝑟. 𝜏𝐿) (5. 57) 

(1 − 𝜀). 𝜏𝐿 is noted  as the « mean flow » stress tensor. Following the calculation of 

Uyema and Miyauchi (1979), the pressure gradient term can be calculated by integrating 

the equation 8 between 0 and R. We obtain :  

 
𝑑𝑃

𝑑𝑧
= 𝜌𝐿 . 𝑔. (1 − 𝜖)̅ −

2

𝑅
. 𝜏𝑊 (5. 58) 

W is the shear stress at wall. 𝜖 ̅is the averaged gas hold-up overall the column. The Figure 

5.1 represents the mean liquid flow inside a bubble column under heterogeneous regime. 

Always following cited authors, W is linked to the velocity of liquid at the boundary of 

the laminar sublayer (). By assuming that this velocity is the minimal liquid velocity 

measurable close to the wall, it is proposed to estimate W by :  

 𝜏𝑊 = 𝜌𝐿 (
𝑈𝑊
11.63

)
2

at r = R (5. 59) 

 

 

Figure 5.1 - Liquid velocity profile inside a bubble column in the heterogeneous regime. 

 



312 

 

The Figure 5.1 represents the mean liquid velocity profile in a column and maximum (U0) 

and minimum velocity (UW). Following Forret et al. (2003), in the heterogeneous regime 

the liquid velocity profile are all similar when normalized by the maximum velocity at 

the center and expressed as function of the normalized position (x=r/R). A good 

agreement is obtained with the following fitting function:  

 𝑢(𝑥) =
𝑢0
𝑎 − 𝑐

(𝑎. 𝑒−𝑏.𝑥
2−𝑐) (5. 60) 

With a=2.976, b=0.943, c=1848. This equation involves that Uw-0.6. U0.and eq.10 can 

be replaced by  

 𝜏𝑊 = 𝜌𝐿 (
𝑈0
19.38

)
2

 (5. 61) 

And Eq. (5.9) by 

 
𝑑𝑃

𝑑𝑧
= 𝜌𝐿 . 𝑔. (1 − 𝜖)̅ −

2

𝑅
. 𝜌𝐿 (

𝑈0
19.38

)
2

 (5. 62) 

The Eq.(5.7 ) can be now replaced by  

 

1

𝑟
.
𝑑

𝑑𝑟
((1 − 𝜀). 𝑟. 𝜏𝐿)

= (𝜀̅ − 𝜀). 𝜌𝐿 . 𝑔 + 𝜀. 𝜌𝐺 . 𝑔 +
2

𝑅
. 𝜌𝐿 (

𝑈0
19.38

)
2

 

(5. 63) 

The last two equations are now used in Eq. (5.1) for the liquid phase that lead to  

 0 = 𝜀. (1 − 𝜀)̅. 𝜌𝐿 . 𝑔 − 𝜀. 𝜌𝐺 . 𝑔 − 𝜀
2

𝑅
. 𝜌𝐿 (

𝑈0
19.38

)
2

+ 𝐼𝐿 (5. 64) 

The momentum exchange term between phases is developed to let appear the drag 

coefficient and the relative velocity:  

 0 = (1 − 𝜀)̅. 𝜌𝐿 . 𝑔 − 𝜌𝐺 . 𝑔 −
2

𝑅
. 𝜌𝐿 (

𝑈0
19.38

)
2

+
3𝐶𝐷
4𝑑

𝜌𝐿𝑉𝑅
2 (5. 65) 

This equation can be either used in its complete form or can be simplified. The 

gas density is negligible except for very high pressure applications. The term associated 

to the shear stress at wall is also very low compared to others, and can be neglected. This 

lead to the following expression 

 0 = (1 − 𝜀)̅. 𝑔 +
3𝐶𝐷
4𝑑

𝑉𝑅
2 (5. 66) 

Or 

 𝑉𝑟 = √
4(1 − 𝜀)̅. (−𝑔). 𝑑

3𝐶𝐷
 (5. 67) 
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This expression is very easy to use in order to estimate the relative velocity at any 

radial position in the column. For a given Cd coefficient, the mean gas velocity can thus 

be calculated only from liquid velocity profile and average gas hold-up. If the drag 

coefficient depends on the local gas hold-up, measurements can be used. But similar gas 

hold-up profiles have also been measured in various bubble columns, when normalized 

by the average gas hold-up (Schweitzer et al., 2001). The following expression can be 

used for example:  

 𝜀(𝑥) = 𝜀.̅ [𝐴(𝑥6 − 1) + 𝐵(𝑥4 − 1) + 𝐶(𝑥2 − 1)] (5. 68) 

with A=-1.7989, B=1.228, C=-0.939 

 

Notes  

In case of equilibrium between the drag and Archimed forces, the addition of equations 

Eq.1L multiplied by  plus Eq.(5.1) for the gas phase multiplied by (1-) leads to  

 IL + (1 − ε). ε. g. Δρ = 0 (5. 69) 

or 

 Vr = −√
4(1 − ε). (−g). d

3CD
 (5. 70) 

This equation is similar to Eq.18 but the local void fraction is involved and not the 

average over all the column. 

 

The physical meaning of the momentum exchange term may be discussed. A strong 

assumption is done when the formalism of drag force is used to model the totality of the 

momentum exchange. As equations are phase averaged and steady state profiles are 

considered, the drag has to be interpreted as a macroscopic apparent friction force that 

encompasses very complex small scale interactions between bubbles and the surrounding 

liquid flow. Gas and liquid velocity fluctuations may interact and contribute to the total 

momentum exchange between phases, but these interactions, if any, are not considered 

besides the apparent drag law. 

 

5.2 Identification of relevant drag law formulation 
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The method 

 

Available experimental data that may be used for validation are:  

- Geometry of the columns and operating conditions (including gas flow rate). 

- Liquid velocity measurement, especially at the center of the column. 

- Gas hold-up measurement, average and local. 

- Sauter bubble diameter (vertical/horizontal, eccentricity). Data provided by the cross 

correlation method are used because they are the only ones available at any bubble 

column diameter. At any rate, the eccentricity is known and it is constant for all 

experiments except in the Phi 3000 column. 

 

If only the liquid velocity at the center of the column and the average gas hold-up 

are available, previously validated correlations Eq.(5.11) and Eq.(5.19) are used to 

estimate liquid velocity and gas hold-up radial profiles. Ideally, local relative velocity 

measurements may be used to study the drag law. This would need to measure accurately 

the gas phase velocity in the bubbly flows. Although the bubble diameters measured by 

the single probe method are assessed as relevant, the measured velocities have to be 

considered very carefully as explained in section 3.5. For this reason it has been decided 

not to use gas velocity measurements but only the injected gas flow rate for drag law 

validation.  

As a consequence the following sequence is followed to estimate the relevance of 

a given drag law:  

For a given operating condition and bubble column, for a given drag law: 

 

a) Calculation / measurement of local gas hold-up and liquid velocity profiles. 

 

b) Estimation of the relative velocity using Eq.18. This is used to estimate the local 

gas velocity VG(r) = VL(r) + VR(r). This is based on cross correlation 

measurements of horizontal diameters, and estimation of vertical diameters by 

using the measured eccentricity (Ecc  0.7). 

 

c) Integration of the gas flow rate on the column section and calculate the associated 

superficial gas velocity. 
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 𝑉𝑠𝑔 =
∫ 2𝜋𝑟 ∗ 𝜀𝐺(𝑟) ∗ 𝑉𝐺(𝑟)𝑑𝑟
𝑅

0

∫ 2𝜋𝑟𝑑𝑟
𝑅

0

 (5. 71) 

d) Compare the calculated vsg to the experimental one. 

 

The vertical bubble Sauter diameter is used, based on the horizontal diameter 

measurement and the eccentricity. The calculated vsg is interpreted as the vsg that would 

be coherent with a given choice of drag law. A good agreement between calculated and 

experimental vsg does not validate the drag law formulation as only average gas velocity 

are compared, but on the contrary a large difference between vsg excludes the relevance 

of the considered drag law. Otherwise, it is reasonable to think that a good estimation of 

vsg signifies that the considered drag law delivers relative velocities that are in the good 

range of magnitude. 

 

As almost flat bubble diameter profiles have been measured in the different bubble 

columns, only average bubble diameters are used to estimate the relevance of drag laws. 

This simplification is also justified by the fact that in case of ellipsoidal bubbles in the 

range of diameters [6-8mm], the terminal velocity of bubbles is almost constant. 

 

A last assumption is to consider that the average gas hold-up does not depend on the 

bubble column diameter. This result has been validated by Forret et al (2003), and verified 

during the present study (see Chap.4, Figure 4.9). 

 

Considered drag laws 

 

As discussed in the chapter 1, various drag laws are available in literature to model 

the friction between bubbles and surrounding liquid. They are generally validated in a 

given range of bubble size or shape and interface properties (clean / contaminated 

interfaces). The terminal velocity of single bubbles is computed for different drag laws in 

Figure 5.2.  

 

A 
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B 

 

Figure 5.2: Terminal velocity associated to various single bubble drag laws (cd0) (air in water): A) 

Full range B) focus on [4-8mm] bubbles. 

 

The Schiller & Naumann correlation is usable with spherical bubbles, i.e. small 

bubbles (< 3mm). Above this value, terminal velocity is overestimated. Recent drag laws 

of Tomiyama, Dijkhuisen and Zhang produce similar terminal velocities in the range of 

interest [4-8mm]. The single bubble drag laws are not sufficient to describe the friction 

between phases when the gas fraction exceed a few percent of hold-up, and swarm factors 

are used to take into account the collective effect of neighboring bubbles. The swarm 

factor (h) is thus multiplied to the single bubble drag law (Cd0). Different swarm factors 

are also reported in Figure 5.3. 
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Figure 5.3: Comparison of swarm factors versus the gas hold-up. 

 

Major part of swarm factors proposed in literature increases the drag law with the 

gas hold-up. The Ishii-Zuber swarm factor slightly decreases the drag laws. The 

Simmonet drag law is completely different. It is based on direct measurements of relative 

velocities in a bubble column, regardless the flow regime (homogeneous or 

heterogeneous). It shows a first classical behavior at low gas hold-up, which is similar to 

the swarm factor of Wallis. But above 15% of gas fraction, the swarm factor falls down 

to zero. 

 

Results 

 

Single bubble drag laws are considered in a first step in the Phi 400mm column. 

Results are presented in term of parity diagram in Figure 5.4. Perfect results would fit 

with the diagonal of the graph, indicating that calculated vsg are equal to the corresponding 

experimental vsg. Calculation values are reported in Table 5.1 to easier the reading. 
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Figure 5.4 : Parity diagram concerning single bubble drag laws 

 

Table 5.1 : calculated values of vsg (column Phi 400mm) 

vsg (cm/s) 3 9 16 25 35 

Schiller Naumann 
(1935) 

5.21 9.98 12.32 14.68 18.94 

Tomiyama et al. (1998) 3.91 8.08 9.91 11.93 15.49 

Dijkhuizen et al. (2010) 4.25 8.71 10.51 12.52 16.11 

Maxworthy et al. 
(1996) 

3.54 7.54 9.21 11.11 14.45 

Zhang et al. (2006) 3.85 7.92 9.80 11.82 15.40 
 

At low gas flow rate all drag laws have a good agreement with experimental data, 

except the Schiller and Naumann law that overestimates the gas flow rate. This is due to 

the overestimation of the relative velocity associated to this law, as it is validated only for 

rigid spheres but very famous also for many dispersed two-phase flow simulations. Here, 

the measured bubble diameters are in the range of [3-7mm], as a consequence bubble 

velocities are higher than those deduced from other drag laws. 

At high gas flow rate every law strongly underestimates the gas velocity. This 

shows that single bubble drag laws are not usable in dense flows, i.e. at vsg > 10cm/s or 

g > 15-20% approximately. Results are similar in other columns and are not detailed. 

A very important point has to be noticed at this step of the study. The underestimation of 

gas velocities at high gas flow rates proves that involved drag coefficients are too high 
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and lead to too low relative velocities. Only swarm factors able to decrease strongly the 

drag coefficient at high gas hold-up have to be considered to improve results. This is 

illustrated in Figure 5.5 below where the Tomiyama (1998) Cd0 drag law is used 

associated with different swarm factors, always on the Phi 400mm column.  

We observe that the swarm factors of Bridge and Wallis does not change significantly the 

quality of the comparison, whereas the Simonnet swarm factor delivers very good results 

with an average error on vsg below 10%. 

 

 

 

Figure 5.5: Parity diagram on vsg with Cd0 (Tomiyama (1998) with different swarm factors (data 

from the Phi 400 bubble column) 

 

The same drag law is used with data from other bubble columns (Phi 150 – 400 – 1000 – 

3000mm). Results are presented in Figure 5.6. We observe a very good agreement for all 

the bubble columns, with an average error of 13%. 
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Figure 5.6: Parity diagram on vsg with Cd0 (Tomiyama (1998) plus Swarm factor of Simmonet 

(2008). Data from the bubble columns (Phi 150 – 400 – 1000- 3000) 

 

Conclusions 

 

Different drag laws have been evaluated in term of ability to simulate the 

superficial gas velocities operated in the tested bubble columns. Results show that: 

- Different laws can be used to model bubbly flows at low gas fraction and involving 

bubbles of several millimeters, as the law of Tomiyama (1998) but another choice would 

lead to similar results. 

- At high gas fraction (g>15%) it is necessary to involve a swarm factor that is able to 

decrease dramatically the drag coefficient compared to single bubble drag. The Simmonet 

swarm factor is the only identified one that delivers a good agreement between 

experimental and calculated gas flow rates. 

The physical meaning of the adopted swarm factor is not clear and may be 

investigated in future works. At this step it can be interpreted as an apparent swarm factor 

that may encompass complex microscale interactions between phases.  

The next step consists in the evaluation of the relevance to use the proposed drag law for 

3D transient CFD simulations of bubble columns. 
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5.3 3D CFD Simulations of bubble columns 

 

The objective of this part is to evaluate if the drag law identified by using a very 

simple (steady-state 1D) model is still appropriate when involved in more realistic CFD 

simulations wherein hydrodynamics of both phases is simulated and not forced by a 

profile correlation. 

This is done with the help of a commercial CFD software used commonly at IFPEN 

research center. The objective was also to validate a tool for engineers in order to assist 

scale-up and design of gas-liquid bubbly reactors. As a consequence, benefits and 

disadvantages of commercial CFD codes are incurred: it has been possible to perform 

CFD simulations of bubble columns in a very short time, i.e. several weeks, and to 

implement successfully the identified drag law, but in the other hand some solving 

parameters and equations are just chosen by users and have to be used without a total 

control of them. The global philosophy was also to follow the “rule of thumbs” or state-

of-the-art concerning the use of 2-fluid models and to focus on the impact of the drag law 

modeling. Therefore turbulence modeling is not studied, nor the influence of other forces 

exerted on the bubbles as lift or added mass. 

 

5.4 CFD implementation 

 

Calculation Domain 

 

CFD simulations are performed using ANSYS Fluent 14.5. The initial studied 

case is the Phi 400mm column, and other column diameters are then studied by applying 

homothetic modifications of the established calculation domain and mesh. The column is 

modeled as a cylinder with an initial height of liquid equal to 4 diameters. In order to 

ensure that the column can be used with void fraction up to 50%, the total height of the 

column should be at least twice of the initial height of the liquid; conservatively, it was 

decided to use a ratio of the total height of the column and the initial height of the liquid 

amounts to approximately 2.2 (Troshko, 2006). Whereas gas is injected through different 
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holes at the bottom of the column, the gas sparging device is modeled by a porous surface 

that generates an homogeneous gas dispersion at the bottom of the column. This 

simplification is mandatory to keep the computing time coherent with the computing 

power available at IFPEN, and is very classical in literature (MClure et al., 2015). As 

experimentally no holes are present below a distance of 1cm from the wall, the gas-inlet 

zone is modeled as a circular area of diameter 380 mm. The gas volume fraction in the 

inlet zone is set arbitrary to 0.544. The outlet zone at the top of the column has a backflow 

volume fraction of gas equal to 1. The Figure 5.7 illustrates the calculation geometry used 

for CFD simulations. 

 

 

 

Figure 5.7: ideal axial section and bottom of the column Phi  400 mm 

 

Mesh 

 

The meshes are elaborated with Fluent Gambit 2.4. Using a tetrahedral mesh leads to 

completely wrong results and the column lost water, i.e. the total amount of water present 

within the column decreases. Using a homogeneous cooper mesh the results are better. 

The cooper mesh is a hexahedral mesh where initially an unstructured tetragonal 2D mesh 

is mapped at the bottom and is extruded along the column. With a cooper mesh of 20 mm 

for the column Phi  400 mm, the interface between the two phases is not well defined and 

the results are far from the experimental data. Using a finer cooper mesh of 10 mm (Figure 

5.8), the lost amount of water is null and the interphase profile between gas and liquid is 

H 

H0 
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well defined. In all the simulations with the column Phi  400 mm this mesh is used. For 

the other columns the same number of cells is used, scaling the column Phi  400 mm. The 

number of cells is approximately 106. 

 

 

(a)                                                                           (b) 

Figure 5.8: Cooper mesh 10 mm, (a) axial and (b) bottom view 

 

Physical modeling and Solver parameters 

 

Studying high gas fraction systems in heterogeneous regime, the simulations must 

be transient and 3D, since the movements of the bubble is chaotic. Instantaneous 

properties must be averaged on a sample time. The multiphase Eulerian model is used, 

with an implicit scheme. The primary phase is liquid water. The secondary and dispersed 

phase is air, with bubbles having a constant diameter of 6 mm that is the measured mean 

equivalent diameter under the operating conditions studied. The bubbles of the secondary 

phase are monodispersed, assuming the same size for all of them. The constant bubble 

diameter used during simulations is motivated by the fact that using the Tomiyama law 

for single bubble drag, the effect of bubble diameter appears to have a very small effect 

on the terminal velocity (see Figure 5.2).  
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The RNG k-ϵ model is used with the dispersed turbulence model. The RNG k-ϵ 

model capture better unsteady motions of bubbles caused by the churn turbulent regime. 

The dispersed turbulence model is suitable since the two phases have a completely 

different density. Standard wall functions are considered. The lift force is not necessary 

since it is required only for 2D simulation; in a 3D simulation the effect is really low and 

it is very more difficult to reach convergence. The virtual mass is not enabled. The 

QUICK method is used. A courant number of 1 is imposed for simulations. The time step 

is generally equal to 0.005s. 

As the 2 fluid model provide unsteady flows, averaged lengths are calculated by 

applying averaging processing on a time of simulation of 30s. 

 

5.5 Results 

 

Results in the medium column of Phi 400mm are first discussed. In a second step 

simulations performed in other columns are presented. 

 

Phi 400 Column 

First simulations are performed in the range of vsg [3-25cm/s]. 3 drag laws are 

compared:  

-Schiller & Naumann. This drag law is commonly used to simulate bubbly flows. It is 

validated for spherical bubbles only. 

-Tomiyama (1998). This drag law has been developed to model the drag of deformable 

bubbles. 

-Tomiyama with the Simmonet swarm factor. This drag laws has been previously 

identified as pertinent to represent the average slip velocity between gas and liquid. 

Average gas hold-ups resulting from these 3 series of CFD simulations are reported in 

Figure 5.9. The Schiller and Naumann drag law provides underestimated gas hold-up at 

low gas velocity. This is coherent with previous results of Figure 5.4 suggesting also that 

this drag law generates too high relative velocity. This is linked to the assumption of 

spherical bubbles that is not verified in our conditions. However, the trend reverses at 

high gas velocity and CFD simulations overestimated the gas hold-up within the same 
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drag law. This suggests the necessity to modify the drag law to take into account for the 

high volume fraction of gas. 

Using the Tomiyama drag law leads to similar results but shifted to higher gas fractions. 

At the lower vsg, the CFD simulation fits well with experiments, but for high vsg the hold-

up is always overestimated. 

 

 

Figure 5.9 - Global gas hold-up comparison in the Phi 400mm column.  

 

The first results provided by the Tomiyama drag law with the Simmonet swarm factor are 

disappointing except at vsg=3cm/s where the swarm factor plays a negligible role, CFD 

simulations always underestimate the gas hold-up. This suggests that this drag law 

provides too high relative velocities.  

Fortunately this is easily explained if we take a look at the instantaneous CFD snapshots 

of gas fraction, as reported in Figure 5.10. We observe that the CFD model generates 

clusters of bubbles. Big pockets of gas of approximately 20 cm are observed. Close to 

100% of gas volume fraction is reached inside the pockets. This is not physical, since 

coalescence is not simulated and the bubble diameter is a priori imposed by. This behavior 

is supposed to be linked with the formalism of the drag law, since it has not been observed 

with other drag laws.  
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Figure 5.10 - CFD snapshot of gas hold-up at vsg=16cm/s, with Tomiyama drag law with the 

Simmonet swarm (before correction). 

 

The Simmonet swarm factor tends to zero at high gas fraction, which may modify locally 

the gas velocity and promote the clustering of gas. If we look at the work of Simmonet et 

al. (2007) we can notice that the swarm factor is described as valid for bubbles from 5 to 

10 mm and for local void fractions less than 30%. Above this limit, the swarm factor is 

extrapolated outside its range of validation. But at high gas flow rate, the local gas fraction 

can widely exceed this boundary and move the h factor towards zero. During CFD 

simulation, the use of this swarm factor may lead to very high gas velocity at high gas 

fraction. 

It is proposed to correct the swarm factor in order to avoid this problem. A simple 

possibility consists to apply a threshold on the swarm factor in order to limit the decrease 

of the drag coefficient above a given value of h, as illustrated in Figure 5.11. This 

modification is empirical and is not based on physical considerations other than the 

necessity to maintain the drag coefficient at a minimal value. After several tries, it is 

proposed to retain the value of hmin = 0.08 which give satisfactory results. In the same 

figure is illustrated a snapshot of gas fraction, and gas pockets have disappeared. 

As the threshold is applied at high gas fraction (>38%), it has no effect on the average 

gas flow rate calculation involved in the first part of the chapter. Resulting calculations 

are identical to those presented in Figure 5.6 (parity diagram on vsg) and are thus not 

reported here. 
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Figure 5.11 - Modification of the Simmonet swarm factor with hmin=0.08, and snapshot of CFD 

simulations at vsg=16cm/s. 

 

CFD simulated radial profiles of gas hold-up and liquid velocity are in acceptable 
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gas hold-up profiles, the largest deviations are observed close to the walls, where 

measurements are difficult to be performed. The interpolation of experimental data tends 

smoothly to zero at the wall, but the real hold-up profile may be sharper. 

 

 

Figure 5.12 : Comparison between experimental hold-up (measurements, interpolated profile) and 

CFD simulations. Phi 400mm column at vsg = 16cm/s, with the drag law of Tomiyama and the 

modified Simmonet swarm factor 

 

 

Figure 5.13 : Comparison between experimental liquid velocity profiles and CFD simulations. Phi 

400mm column at vsg = 16cm/s, with the drag law of Tomiyama and the modified Simmonet swarm 

factor. 

 

As good CFD results have been obtained at vsg=16cm/s, the gas velocity is 

extended to other values in the global range of measurement. The CFD and experimental 

gas hold-ups are compared in Figure 5.14. A good agreement is found for any gas inlet 

conditions. 
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The comparison of the simulated and experimental liquid axial velocities is also 

satisfactory, excepted at low vsg (< 8cm/s) where the axial velocity is underestimated by 

CFD (Figure 5.15). These results validate also the turbulent viscosity model (RNG-K-) 

because big bias on this length may lead to deviations on the liquid velocity gradients. 

Deviations at low gas velocity may also be explained by the turbulent viscosity model, 

because it is poorly suitable when the flow is not fully turbulent.  

 

 

Figure 5.14 : Comparison between experimental global hold-up and CFD simulations (continuous 

line), with the drag law of Tomiyama and the modified Simmonet swarm factor, Phi 400 column in 

the range of vsg [3-35 cm/s]. 

 

Figure 5.15 : Comparison between experimental liquid axial velocity and CFD simulations (with the 

drag law of Tomiyama and the modified Simmonet swarm factor, Phi 400 column in the range of 

vsg [3-35 cm/s]. 
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modified swarm factor of Simonnet), they are now extended to other bubble columns 

investigated during the study. 

 

Scale-up considerations 

 

Similar CFD simulations are performed now in the Phi 150, Phi 1000 and Phi 

3000mm columns. Results are compared with the experimental data of the present study 

and with the experimental data of Forret et al. (2003) when available. Gas hold-up and 

axial liquid velocities are discussed separately.  

The Figure 5.16 reports the CFD results concerning the global gas fraction, and 

compares them to experimental measurements, the latter being supposed to be equal in 

the different columns (as presented in Figure 4.9). Results show that the agreement 

between CFD and experiments increases with the column diameter.  The gas hold-up is 

underestimated in the smaller column, but it is well predicted at higher scales. A parity 

diagram is reported in Figure 5.17. It shows that except for the smallest column, 

experimental hold-ups are fairly well simulated at any vsg, the error being less than 15%. 

 

 

Figure 5.16 : Comparison between experimental hold-up and CFD simulations (lines) with the drag 

law of Tomiyama and the modified Simmonet swarm factor, Phi 150-400-1000-3000 columns in the 

range of vsg [3-35 cm/s]. 
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Figure 5.17 : Parity diagram of the comparison between experimental hold-up and CFD 

simulations, with the drag law of Tomiyama and the modified Simmonet swarm factor, Phi 150-

400-1000-3000 columns in the range of vsg [3-35 cm/s]. 
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predict quantitatively. As good radial velocity profiles have been calculated in the column 

400mm, only liquid axial velocity at the center of the column are presented here. Figure 

5.18, Figure 5.19 and Figure 5.20 report the comparison between experimental and 
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35cm/s], and the Figure 5.21 presents the parity diagram of the liquid velocity profiles 

for every columns. At Phi 150mm, CFD slightly underestimates the axial liquid velocity 

for a gas velocity above 5 cm/s, but simulations at higher scales are in good agreement 

with experiments. The mean difference between CFD and experiments at any scale is 
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Figure 5.18 : Comparison between experimental liquid axial velocity on the column axis and CFD 

simulations, with the drag law of Tomiyama and the modified Simmonet swarm factor, Phi 150 

column in the range of vsg [3-35 cm/s]. 

 

 

Figure 5.19 : Comparison between experimental liquid axial velocity on the column axis and CFD 

simulations, with the drag law of Tomiyama and the modified Simmonet swarm factor, Phi 1000 

column in the range of vsg [3-35 cm/s]. 
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Figure 5.20 : Comparison between experimental liquid axial velocity on the column axis and CFD 

simulations, with the drag law of Tomiyama and the modified Simmonet swarm factor, Phi 3000 

column in the range of vsg [3-35 cm/s]. 

 

 

 

 

Figure 5.21 : Parity diagram of the comparison between experimental axial velocity on the column 

axis and CFD simulations, with the drag law of Tomiyama and the modified Simmonet swarm 

factor, Phi 150-400-1000-3000 columns in the range of vsg [3-35 cm/s]. 
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5.6 Conclusions 

 

The objective of this chapter was to use the experimental bubble diameter 

measurements to compare the relevance of different drag law formulations. In a first step, 

gas flow rates generated by different drag laws are calculated and compared to 

experiments. This calculation is based on the prior knowledge of average liquid velocity, 

gas hold-up and bubble diameter profiles. At this step, it has been observed that: 

 Different single bubble drag laws may be good candidates to simulate dilute 

flows, and the law of Tomiyama (1998) has been chosen for the following of the 

study 

 It is necessary to account for a swarm factor to represent the drag law at high gas 

hold-up. The Simmonet (2007) swarm factor has been identified as very relevant 

with our data. 

In a second step, 3D CFD Unsteady RANS simulations have been performed with a 

commercial software to validate or not the choice of drag law. CFD simulations have 

been performed in a wide range of column scales and gas flow rates. Comparisons 

between CFD and experiments show that: 

 The swarm factor of Simmonet is not appropriate to simulate bubbly flows at gas 

fraction above 40%, because it induces the formation of non-physical gas 

pockets during simulations. 

 

 We propose to modify the Simmonet swarm factor by applying a threshold hmin 

equal to 0.08 in order to cap the relative velocity during simulations. 

 

 The Tomyiama drag law associated to the modified Simmonet swarm factor 

appears as a very robust empirical drag law, able to simulate the major part of 

present data with a very good agreement. The error on the gas hold-up and liquid 

axial velocity is below 15%.  

As this CFD study was conducted on a relatively short time, a perspective of this work 

would be to study more in detail the effect of the choice of the turbulence model (not 

studied here). Another important point would be to evaluate the effect of the bubble size 

on the CFD simulations, because it has not been considered here (as the Tomiyama drag 
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coefficient is quite insensitive to the bubble diameter in the range [5-8mm]). Slight hold-

up modifications may be possible. 

Finally, the identified drag law formulation being empirical, it would be very 

interesting to investigate the drag inside dense bubbly flows, by means of DNS 

simulations or local fluid measurements, if possible. This may help to understand why 

the drag coefficient decreases in heterogeneous regime.  
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Conclusions 

 

Bubble column reactors are widely used in chemical industry to provide large 

interfacial areas, strong liquid agitation and efficient thermal exchanges. Yet, the complex 

hydrodynamics of gravity driven bubbly flows, together with the lack of adapted 

correlations imposes that the scale-up procedures for bubble columns is still a very 

“empirical” and somewhat uncertain process. CFD simulations could be a possible 

alternative: for an industrial-like bubble column, involving large column dimensions and 

high void fractions, the most common approach is based on Eulerian two-phase models. 

However, these models require closing laws for quantities such as the Reynolds stress 

sensor or the interphase momentum exchanges, which are not fully established. 

Consequently, to solve the up-scaling problems, the usual practice is either to recur to 

semi-empirical correlations validated over a limited range of parameters, and/or to fit 

some parameters such as the bubble size in order to obtain realistic (but may poorly 

correct) solutions in simulations.  

 In that context, the objective of this work was to construct and analyze a database 

of local hydrodynamics properties that could help improving our understanding of bubbly 

flows dynamics, that could contribute to identify the relevant scale-up laws, and also that 

would help developing more adapted closures.  

Accordingly, experiments have been undertaken over extended ranges in terms of 

column diameter (from 0.15 m up to 3 m) and of superficial gas velocities (from 3cm/s 

to 35 cm/s). In addition, to access the intrinsic dynamics of these systems, very significant 

efforts have been dedicated to the control of flow conditions. A specific attention has 

been paid to ensure a fairly constant mean bubble size as well as spatially homogeneous 

injection over the whole set of flow conditions considered. Quantitatively, the bubble 

eccentricity remained constant (0.7) in all experimental conditions. The vertical Sauter 

mean diameter Dh32 on the column axis varied between 6 mm and 9 mm, while the radial 

size segregation amounted to 2-3 mm, except in the Phi 3000 column, where it reaches 5 

mm (it has not been possible to change the injector in that column). Even though all 

experiments were using air and water, coalescence, which is often invoked as the origin 

of incorrect predictions from averaged models, proves negligible in all conditions, except 

perhaps in the Phi 3000 column where it was not thoroughly tested. 
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A battery of measuring techniques has been implement to access various local 

quantities: void fraction as well as bubble size and axial velocity distributions from 

conical optical probes, bubble horizontal and vertical diameters from an endoscopic 

imaging technique, axial and radial liquid velocities from Pavlov tubes. In these drastic 

flow conditions involving flow reversal and unsteady 3D structures, the conical probe 

was surprisingly efficient for void fraction and for mean size measurements, while the 

bubble velocity happened to be strongly underestimated. To measure the bubble 

horizontal diameter (Dh32), a new method based on the cross-correlation of the signals 

delivered by closely separated optical probes has been proposed: it proves to be well 

adapted even in the challenging conditions encountered in bubble columns at large gas 

fraction. That method also provides an interesting extension of the measurement 

capabilities of optical probes. 

With these sensors, a number of experimental results have been gathered at 

different heights along the columns. The main outcomes are the following. First, the 

existence of a quasi fully-established flow region previously identified in the literature 

was confirmed here in all conditions except in the Phi 3000 where it was not tested: that 

zone extends at least from h/D= 2.5 to h/D=3.75. Within that region for all columns and 

for vsg>9 cm/s, the local gas hold-up profiles normalized by the void fraction on the axis 

happen to be reasonably well fitted by the empirical correlation of Schweitzer et al. (2001) 

given by Eq.(1.1). Similarly, the liquid velocity profiles scaled by the velocity on the axis 

are quite close to the empirical fit proposed by Forret et al. (2003) given by Eq.(4.2). 

Hence, these two proposals have been proved valid over an extended range of column 

diameters. These results indicate that, when in the heterogeneous regime, the flow are 

self-similar whatever the column size and the superficial gas velocity. Hence, the 

sensitivity to these two parameters of the void fraction as well as liquid and gas mean 

velocities estimated on the symmetry axis has been investigated: clear and consistent 

trends have been identified. These results brought clarification among the diverse 

correlations proposed in the literature. Owing to the observed self-similarity, the analysis 

was then focused on the upward directed inner zone, defined between -0.7R and 0.7R. 

The upward directed liquid flow rate (𝑄𝑙
𝑢𝑝) in that inner zone was shown to growth as 

𝑄𝑙
𝑢𝑝 ≈ 𝐷2√𝑔𝐷 , indicating that the entrainment capability in our bubble columns of is 

set by the column diameter only and - surprisingly- not by the gas superficial velocity. 

Yet, the upward directed gas flow rate increases with D but also with the injected gas 
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flow rate, as expected. There is thus some global flow organization that forces the solution 

such that the mean flow reversal occurs at an “universal” radial position 0.7R, and that 

sets an upward liquid flow rate controlled by the column diameter only: the adjustment is 

then supported by the change in the gas hold-up. Even though no simple model was 

proposed to predict this behavior, the above information are believed to be of practical 

interest for the up-scaling of bubble columns. 

 Pursuing on the analysis of the core region, the mean relative velocity of the gas 

phase was deduced from a kinematic approach: as the void fraction increases, the mean 

relative velocity becomes up to several times higher than the terminal velocity of a single 

bubble in stagnant liquid. This result was tentatively linked with the existence of 

concentration gradients, and pieces of experimental evidence were provided in support to 

that. In addition, phasic velocity fluctuations were also found significant, with a typical 

turbulent intensity in the liquid close to 25-30% on the column axis. These fluctuations 

seem to be closely related with the observed mean relative velocity, both in terms of their 

evolution with the control parameters and in terms of magnitude. Besides, a few 

measurements indicate that the fluctuations in the bubble velocity are also well correlated 

with local changes in density. All together, we gather some evidence that convective type 

instabilities do arise in bubble columns in the heterogeneous regime, that they lead to 

strong concentration fluctuation at a scale comprised between a few and a few tens of 

bubble sizes. An analogy with the convective instabilities observed in sedimentation 

could be pursued provided that information is made available on the magnitude of density 

gradients with respect to flow conditions. Another open question is how to connect these 

meso-scale structures with the increase in the mean relative velocity of bubbles: similar 

questions have been notably addressed in turbulent flows laden with dense particles but 

the mechanisms are not directly transposable to bubble columns. 

 Finally, and in order to account for the observed relative velocities, we have 

proposed to introduce a swarm factor in order to correct the drag law: the proposed factor 

forces a drastic drag reduction for void fractions above about 15%. A preliminary 

sensitive study of the modified drag law was performed in 3D URANS simulations: the 

results are quite encouraging even though it is an indirect way to represent complex 

underlying mechanisms. This proposal has to be more thoroughly tested in particular in 

relation with the modeling of turbulence: it provides already useful hints for the 

simulation of bubble columns. 
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Various perspectives can be drawn from this work. First, many data remain to be 

analyzed concerning notably the density fluctuation and their associated time and space 

characteristics. In addition, conditional statistics would be quite useful to understand the 

connection between the structures and the mean flow behavior. Extra experiments could 

be also envisioned to specifically address this question.  

On the measuring techniques, using differential pressure sensors with better 

resolutions and bandwidths for the Pavlov tube would be quite useful to characterize the 

liquid velocity statistics. It will also be useful to use alternate techniques such as 

ultrasounds or tomography. One of the weakest aspect is indisputably the poor reliability 

of local gas velocity measurements. 

 On modeling, the construction of a dedicated 1D model may provide some clues 

on the origin of the observed scaling for the entrained liquid flow rate. For simulations, 

the acquired database deserves to be exploited further including in the framework of 

EDQNM approaches. 
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