Packaging for Power Electronics "Habilitation à Diriger des Recherches"

Cyril BUTTAY

Laboratoire Ampère, Lyon, France

2015

Professional Record

Background

Contributions

Perspectives

Conclusion

Professional Record

Background

Contributions

Packaging for High Temperatures

New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

- 1996 2001: Electrical Engineer training (INSA Lyon)
- 2001 2004: PhD thesis (CIFRE grant with Valeo) at CEGELY
- 2004 2005: Teaching assistant (ATER at INSA Lyon), LGEF
- 2005 2007: Research Associate with Sheffield and Nottingham Universities
- 2008 ...: Researcher (Chargé de recherche) with CNRS.
- → From pure Electrical Engineering to Packaging

Type of classes

Student Level (Licence/Bachelor or Master)

Total 2001–2015: 645 h

	WOS	Google
Citations	182	610
h-index	6	12

Supervision

- Shared supervision, various degrees
- Funded by the industry or by research projects
- Increase in Master's projects

Research Projects

- Some projects with lower involvment not mentionned
- Various funding schemes:
 - European: Euripides-Catrene (THOR)
 - National: Agency for Research (ETHAER, ECLIPSE), Aerospace and Space –FNRAE– (EPAHT, ACCITE)
 - Local fundings: BQR, Carnot institute (SuMeCe)
 - Direct funding by the industry (5 companies)

- In the lab
 - Member of the laboratory board
 - Installation and management of shared equipment:
 - Packaging lab (≈ 300k€)
 - Computer cluster (2009–2014)
- In the research community
 - Reviewer for journals/conferences (20-30 publications/year)
 - Reviewer for projects proposals (Cleansky, 7 days)
 - Member of 3 selection panels (hiring of lecturers)
 - Member of PhD jurys (10)
 - Member of an evaluation committee (LN2, Sherbrooke)
 - Management of the "3DPHI" platform on power integration (Toulouse) with 2 colleagues.

Professional Record

Background

Contributions

Packaging for High Temperatures

New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

- Many functions:
 - Thermal management
 - Electrical insulation
 - Interconnects
 - Mechanical/chemical protection
- Many materials:
 - Ceramics
 - Metals
 - Organics...

Many functions:

- Thermal management
- Electrical insulation
- Interconnects
- Mechanical/chemical protection
- Many materials:
 - Ceramics
 - Metals
 - Organics...

ver metal layer

- Many functions:
 - Thermal management
 - Electrical insulation
 - Interconnects
 - Mechanical/chemical protection
- Many materials:
 - Ceramics
 - Metals
 - Organics...

Lower solder

- Many functions:
 - Thermal management
 - Electrical insulation
 - Interconnects
 - Mechanical/chemical protection
- Many materials:
 - Ceramics
 - Metals
 - Organics...

Lower solder

- Many functions:
 - Thermal management
 - Electrical insulation
 - Interconnects
 - Mechanical/chemical protection
- Many materials:
 - Ceramics
 - Metals
 - Organics…

- Many functions:
 - Thermal management
 - Electrical insulation
 - Interconnects
 - Mechanical/chemical protection
- Many materials:
 - Ceramics
 - Metals
 - Organics…

Source: C. Raynaud et al. "Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices" Diamond and Related Materials, 2010, 19, 1-6

Some limits:

660 °C Aluminium melts ≈ 300 °C Die Solder melts 200 – 250 °C Silicone gel degrades ≈ 200 °C Board solder melts

- ► For Wide-Bandgap devices, limits set by packaging
- Additional packaging issues with thermal cycling

Effect of the Packaging on Electrical Performance

- Stray inductances cause ringing and switching losses
- Parasitic capacitances cause common-mode current
- Both are caused by packaging

Effect of the Packaging on Electrical Performance

- Stray inductances cause ringing and switching losses
- Parasitic capacitances cause common-mode current
- Both are caused by packaging

Effect of the Packaging on Electrical Performance - 2

- Low voltage switching cell (30 V Si MOSFETs) simulations
- Most of the losses can be attributed to circuit layout
- Here all stray inductances 1 nH, except L_D

Professional Record

Background

Contributions

Packaging for High Temperatures New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

Professional Record

Background

Contributions Packaging for High Temperatures

New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

- Actuators and electronics close to the jet engine
- ► Deep thermal cycling (-55/+225 °C)
- Long operating life (up to 30 years)

- Actuators and electronics close to the jet engine
- ► Deep thermal cycling (-55/+225 °C)
- Long operating life (up to 30 years)
- Share the cooling system between electrical and internal combustion engines.
- ► Cooling fluid temperature: 120 °C

- Actuators and electronics close to the jet engine
- ► Deep thermal cycling (-55/+225 °C)
- Long operating life (up to 30 years)
- Share the cooling system between electrical and internal combustion engines.
- ► Cooling fluid temperature: 120 °C
- ► NASA mission to Venus: up to 480 °C
- ▶ Mission to Jupiter: 100 bars, 400 °C

- Actuators and electronics close to the jet engine
- ► Deep thermal cycling (-55/+225 °C)
- Long operating life (up to 30 years)
- Share the cooling system between electrical and internal combustion engines.
- ► Cooling fluid temperature: 120 °C
- ► NASA mission to Venus: up to 480 °C
- ► Mission to Jupiter: 100 bars, 400 °C
- Oil, gas and geothermal drilling
- ► Low thermal cycling, high ambient temp. (200 to >300 °C)

Static Characterization of 490 m Ω JFET

Large increase in on-state resistance with temperature;

Strong sensitivity of conduction losses to temperature.

Static Characterization of 490 mΩ JFET

- Large increase in on-state resistance with temperature;
- Strong sensitivity of conduction losses to temperature.

Thermal Run-away mechanism

The device characteristic

- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Always stable

Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Always stable

Always unstable

Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Always stable

Always unstable

Becomming unstable with ambient temperature rise

14/45
Power dissipation as a function of the junction temp.

15/45

Power dissipation as a function of the junction temp.

High Temperature Thermal Management

High temperature capability \neq reduced cooling needs! SiC JFETs must be attached to a low- R_{Th} cooling system.

The problem with solders

Homologous temperature:

$$T_{H} = \frac{T_{Oper}[K]}{T_{Melt}[K]}$$

Example:

AuGe solder: $T_{Melt} = 356 \,^{\circ}\text{C} = 629 \,\text{K}$

►
$$T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 \text{ °C}$$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy

The problem with solders

Homologous temperature:

$$T_{H} = \frac{T_{Oper}[K]}{T_{Melt}[K]}$$

Example:

• AuGe solder: $T_{Melt} = 356 \,^{\circ}\text{C} = 629 \,^{\circ}\text{K}$

►
$$T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 \text{ °C}$$

High temperature solder alloys not practical

- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point allo

The problem with solders

Homologous temperature:

$$T_{H} = \frac{T_{Oper}[K]}{T_{Melt}[K]}$$

Example:

• AuGe solder: $T_{Melt} = 356 \,^{\circ}\text{C} = 629 \,^{\circ}\text{K}$

►
$$T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 \text{ °C}$$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

The problem with solders

Homologous temperature:

$$T_{H} = \frac{T_{Oper}[K]}{T_{Melt}[K]}$$

Example:

• AuGe solder: $T_{Melt} = 356 \,^{\circ}\text{C} = 629 \,^{\circ}\text{K}$

►
$$T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 \text{ °C}$$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

The problem with solders

Homologous temperature:

$$T_{H} = \frac{T_{Oper}[K]}{T_{Melt}[K]}$$

Example:

• AuGe solder: $T_{Melt} = 356 \,^{\circ}\text{C} = 629 \,^{\circ}\text{K}$

►
$$T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 \text{ °C}$$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy,)

High Temperature Die Attaches - PhD A. MASSON

- development of the sintering process
- Nano-particles paste from NBE Tech

Evaluation of many parameters

- Sintering pressure
- Surface roughness
- Thickness of stencil
- Substrate finish....

Once set, process is robust

High Temperature Die Attaches - PhD A. MASSON

- development of the sintering process
- Nano-particles paste from NBE Tech

Evaluation of many parameters

- Sintering pressure
- Surface roughness
- Thickness of stencil
- Substrate finish...

Once set, process is robust

High Temperature Die Attaches - PhD A. MASSON

- development of the sintering process
- Nano-particles paste from NBE Tech

Evaluation of many parameters

- Sintering pressure
- Surface roughness
- Thickness of stencil
- Substrate finish...

Once set, process is robust

High Temperature Die Attaches - PhD S. HASCOËT

- "Pressureless" sintering process
- Based on micro-particles
- ► Findings:
 - Oxygen is necessary
 - Bonding on copper (oxide)
 - Standard Ni/Au finish not ideal
 - Confirmed by several teams
 - weak bonds at Ag/Au interface
 - Bond strength lower
 - Porosity higher
 - Can be used to attach fragile components

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

High Temperature Die Attaches - Silver migration, R. RIVA

- Causes: electric field, high temperature and oxygen
- Large differences between similar test vehicles:
- Short life without encapsulation (100–1000 h)
- Much longer life with parylene HT protection

High Temperature Die Attaches - Silver migration, R. RIVA

- Causes: electric field, high temperature and oxygen
- Large differences between similar test vehicles:
- Short life without encapsulation (100–1000 h)
- Much longer life with parylene HT protection

Conclusion on Packaging for High Temperature

SiC devices can operate at high temperature (>300 °C)

- With efficient thermal management!
- *R_{Th}* must remain low

Silver sintering for high temperature die attaches

- Compatible with standard die finishes
- Very good results
- High thermal/electrical performance
- Industry is catching on
- Research: long-term behaviour at elevated temperature
 - pressureless processes are a good model

Professional Record

Background

Contributions

Packaging for High Temperatures New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

New Structures

23/45

New Structures

New Structures

23/45

- ▶ Dies soldered to two DBC substrates to form a "sandwich" module;
- Power module clamped between heat-exchangers;
- Connection to DC capacitors using a low inductance link.

24/45

Dies soldered to two DBC substrates to form a "sandwich" module;

- Power module clamped between heat-exchangers;
- Connection to DC capacitors using a low inductance link.

- Dies soldered to two DBC substrates to form a "sandwich" module;
- Power module clamped between heat-exchangers;
- Connection to DC capacitors using a low inductance link.

- Dies soldered to two DBC substrates to form a "sandwich" module;
- Power module clamped between heat-exchangers;
- Connection to DC capacitors using a low inductance link.

"top" heat-exchanger;

- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- ► driver cover
- capacitor board;
- power terminals;
- ▶ busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
 - "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- ► driver cover
- ► capacitor board;
- power terminals;
- ▶ busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- ► capacitor board;
- power terminals;
- ▶ busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- ► driver cover
- capacitor board;
- power terminals;
- ▶ busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- ▶ busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- ▶ busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- ▶ busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover.

- Switching speed limited by switches (Si IGBTs, SiC diodes);
- No ringing measured at the terminals of the modules;
- DC link inductance estimated at 10 nH.

- Two ceramic substrates, in "sandwich" configuration
- Two SiC JFET dies (SiCED)
- assembled using silver sintering
- ► 25.4 mm×12.7 mm (1 in×0.5 in)

Scale drawing for 2.4 $\times 2.4~\text{mm}^2$ die

- Etching accuracy exceeds standard design rules
- Double-step copper etching for die contact
- → Custom etching technique

- Two-step etching of copper
- Ti/Ag PVD using shadow mask on dies
- Set of aligment jigs for assembly
- Proper drying of silver paste
- First electrical tests on 300 Ω load

- Good form factor achieved using the two-step copper etching process
- Satisfying alignment
- Poor quality of Al-Cu attach

- First studies during L. MÉNAGER PhD
 - Copper posts growth on die (electroplating)
 - Original die/DBC assembly technology: SnCu diffusion bonding
- Proposition of M. SOUEIDAN: direct copper bonding

Parameters:

- SPS press
- Cu/Cu bonding
- ▶ 5 or 20 min
- ▶ 200 or 300 °C
- 16 or 77 MPa
- ► Very good bond, without any interface material
 - All configuration but one yield to bonding
 - Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)
- Parameters compatible with the process of a semiconductor die
- Bonding mechanism still unclear
 - Some investigations performed, much more needed

Parameters:

- SPS press
- Cu/Cu bonding
- ▶ 5 or 20 min
- ▶ 200 or 300 °C
- 16 or 77 MPa
- Very good bond, without any interface material
 - All configuration but one yield to bonding
 - ► Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)
- Parameters compatible with the process of a semiconductor die
- Bonding mechanism still unclear
 - Some investigations performed, much more needed

33/45

Parameters:

- SPS press
- Cu/Cu bonding
- ▶ 5 or 20 min
- ▶ 200 or 300 °C
- 16 or 77 MPa
- Very good bond, without any interface material
 - All configuration but one yield to bonding
 - Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)
- Parameters compatible with the process of a semiconductor die
- Bonding mechanism still unclear
 - Some investigations performed, much more needed

33/45

Parameters:

- SPS press
- Cu/Cu bonding
- ▶ 5 or 20 min
- ▶ 200 or 300 °C
- 16 or 77 MPa
- Very good bond, without any interface material
 - All configuration but one yield to bonding
 - Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)
- > Parameters compatible with the process of a semiconductor die
- Bonding mechanism still unclear
 - Some investigations performed, much more needed

- "Wafer"-level process
- Based on copper electroplating
- Assembly of DBC/die/DBC "sandwiches"
- No damage to dies

34/45

Higher resistance than expected

- Due to seed layer/die topside interface
- Would not happen with suitable dies

Simple and reproducible process

Tens of sample assembled, with good yield

Conclusions on New Packaging Structures

Several sandwich configurations:

- Solder
- Silver sintering
- Direct Cu/Cu bonding (Micro-posts)
- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness
- Remaining issues:
 - Dies topside finish.
 - Mechanical relief structures.
 - Intrinsic thermo-mechanical reliability

Conclusions on New Packaging Structures

Several sandwich configurations:

- Solder
- Silver sintering
- Direct Cu/Cu bonding (Micro-posts)
- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness

Remaining issues:

- Dies topside finish
- Mechanical relief structures
- Intrinsic thermo-mechanical reliability

Conclusions on New Packaging Structures

Several sandwich configurations:

- Solder
- Silver sintering
- Direct Cu/Cu bonding (Micro-posts)
- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness
- Remaining issues:
 - Dies topside finish
 - Mechanical relief structures
 - Intrinsic thermo-mechanical reliability
 - Need for further investigation

Professional Record

Background

Contributions Packaging for High Temperatures New Packaging Structures for Power Modules

Perspectives

New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

Professional Record

Background

Contributions Packaging for High Temperatures New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

New Packaging Structures for Power Modules

- Simulation-based design to evaluate
 - ► Thermo-mechanical stress in assemblies (esp. "Sandwiches")
 - Thermal resistance
 - Parasitic inductance/capacitance
- Development of structures for fast wide-bandgap devices:
 - Die stacking (Chip-On-Chip, G2ELab) for low EMI
 - PCB Embedding

New Packaging Structures for Power Modules

- Simulation-based design to evaluate
 - Thermo-mechanical stress in assemblies (esp. "Sandwiches")
 - Thermal resistance
 - Parasitic inductance/capacitance
- Development of structures for fast wide-bandgap devices:
 - ► Die stacking (Chip-On-Chip, G2ELab) for low EMI
 - PCB Embedding

J.-L. Marchesini et al., "Realization and Characterization of an IGBT Module Based on the Power Chip-on-Chip 3D Concept", ECCE 2014

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

38/45

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- ► Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

Flex-based SiC half-bridge interconnect (Industrial project)

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- ► Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

Flex-based SiC half-bridge interconnect (Industrial project)

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- ► Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

Flex-based SiC half-bridge interconnect (Industrial project)

PCB Embedding, ANR Project

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- ► Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

Flex-based SiC half-bridge interconnect (Industrial project)

PCB Embedding, ANR Project
New Packaging Structures – PCB Embedding

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- ► Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

Flex-based SiC half-bridge interconnect (Industrial project)

New Packaging Structures – PCB Embedding

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- ► Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

Flex-based SiC half-bridge interconnect (Industrial project)

New Packaging Structures – PCB Embedding

PCB technology offers:

- ▶ High interconnect density (multilayers, < 50 µm tracks)
- Advanced design tools
- ► Simple process (can be performed in-house, 3DPHI, industry)

To take advantage of previous developments

- Silver sintering for accurate positionning of devices
- Adaptation of die topside metallization
- Advanced DBC etching for thermal management

Flex-based SiC half-bridge interconnect (Industrial project)

PCB Embedding, ANR Project

Professional Record

Background

Contributions Packaging for High Temperatures New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

Reliability of High Temperature Packaging

Source: Pressureless Sintering of Microscale Silver Paste for 300 °C Applications, Fang Yu et al., IEEE trans. on CMPT, vol. 5, No.9, p 1258-1264

- ► Silver sintered assemblies are increasingly available in the industry
- Need to assess its reliability for high temperature
 - Assessment of migration phenomenon
 - Next step: effect of atmosphere (oxygen content)
 - Use of pressureless sintered silver as a material model
 - Behaviour in high temperature storage conditions
 - Mechanisms are accelerated and highlighted

- Other elements of packaging:
 - High temperature ageing of PCBs
 - Thermo-mechanical analysis of structures
 - Manufacturing of integrated inductors (C. MARTIN)

Professional Record

Background

Contributions Packaging for High Temperatures New Packaging Structures for Power Modules

Perspectives

New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

Packaging of high voltage power devices

- Context: Supergrid Institute
- Development of HVDC networks
- ► Need for HV devices (>10 kV) and packaging

- Increase in switching speed
 - Ensure low inductance
 - Large creepage distance (> 8 cm !)
- High conversion efficiency
- Trade-off: Insulation/Junction temp.
- → (Very) efficient cooling required!

Special Features of High Voltage Packaging

- Series connexions of many switches
- A single failed switch should not stop the converter
- ➔ Fail-to-short behaviour
 - ► For Si dies:
 - Melting of silicon
 - Alloying with surrounding metals
 - Formation of conductive area
 - SiC only sublimes at > 2500 °C!

Special Features of High Voltage Packaging

- Series connexions of many switches
- A single failed switch should not stop the converter
- ➔ Fail-to-short behaviour
- For Si dies:
 - Melting of silicon
 - Alloying with surrounding metals
 - Formation of conductive area

SiC only sublimes at > 2500 °C!

Source Gunturi, S. et al. "Innovative Metal System for IGBT Press Pack Modules", ISPSD, 2003, 4

Special Features of High Voltage Packaging

- Series connexions of many switches
- A single failed switch should not stop the converter
- ➔ Fail-to-short behaviour
- For Si dies:
 - Melting of silicon
 - Alloying with surrounding metals
 - Formation of conductive area
- ► SiC only sublimes at > 2500 °C!

Source Gunturi, S. et al. "Innovative Metal System for IGBT Press Pack Modules", ISPSD, 2003, 4 **Professional Record**

Background

Contributions Packaging for High Temperatures New Packaging Structures for Power Modules

Perspectives New Packaging Structures for Power Modules Packaging for High Temperature Packaging for High Voltages

Conclusion

PhD 11 years ago

- From electrical engineering to packaging
- 11 PhD students supervised (5 theses defended)
- Until recently, most activity on high temperature packaging
- Broadening of my research focus
 - High temperature packaging
 - High voltage packaging
 - Integration for WBG devices
- Packaging is an active domain
 - Strong support from the industry
 - Many scientific challenges

Acknowledgements

44/45

- picture of the Airbus A350: airbus
- picture of the Toyota Prius: Picture by Pawel Golsztajn, CC-SA, available on Wikimedia Commons http: //commons.wikimedia.org/wiki/File:Toyota_Prius.2.JPG
- geothermal power plant: http://energy.gov/eere/ geothermal/photos/geothermal-photo-gallery
- picture of Jupiter: NASA http://en.wikipedia.org/wiki/File:PIA04866_modest.jpg

