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Résumé 
Ce travail s’intéresse à l’organisation fonctionnelle du système sensorimoteur.

La somatotopie est une caractéristique essentielle de M1, mais l'organisation fonctionnelle des 

autres aires motrices (PM, SMA, et IPL) n’est pas encore clairement établie. Premièrement, nous 

avons exploré par IRMf l'organisation fonctionnelle sensorimotrice chez des sujets sains 

exécutant des mouvements simples. Nos résultats montrent que les représentations motrices sont 

organisées selon des synergies musculaires et qu’une organisation somatotopique, différente de 

celle de M1, existe dans l’IPL. 

Bien qu’elle fasse régulièrement l’objet de critiques, la DES est à la base de la plupart de nos 

connaissances sur le cortex moteur, que confirme les études en IRMf. Ainsi, en réponse au débat 

en cours, nous avons passé en revue les arguments récents confortant la confiance que nous 

pouvons accorder à la DES.

Des études récentes concluent à l’implication du PPC dans l'intention motrice, mais le débat reste 

ouvert sur la relation entre intention et préparation motrices. Certains prétendent que l'intention 

serait le sous-produit de la préparation motrice, ne laissant aucune place à la volonté dans le 

contrôle moteur. Pour étudier cette question, nous avons mis en place une expérience 

comportementale, incluant des tâches de réaction simple et de Libet pour comparer les deux 

processus cognitifs. Nos résultats montrent que le temps de réaction entre intention interne et 

réaction motrice est égal à celui séparant commande externe et réaction motrice. Cela contredit 

donc l’affirmation selon laquelle la préparation motrice précèderait l’intention et donc que 

l'intention émergerait du processus d'intention motrice.

Mots clés: organisation fonctionnelle, somatotopie, cortex motrice primaire, cortex prémoteur, 

aire motrice supplémentaire, aire patrietale inférieure, intention motrice, préparation motrice, 

tâche de Libet, temps de réaction.
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Summary 
In this thesis, I am interested in the functional organization of human cortical sensorimotor

system.

Somatotopy is the prominent structure  of the functional organization in sensory and motor 

cortex. However, the structure of the functional organization in higher order motor area, such as 

IPL is little known. Therefore, in the first part, I study the functional organization of human 

sensory- and motor- related brain regions using fMRI, by guiding healthy subjects to perform 

simple repetitive movements of different body parts. Our results demonstrate that, 1)  motor

synergy is the neural basis represented in the motor cortex; and 2) somatotopic organization also 

exists in IPL but with different structure from that of sensorimotor cortex.

Despite continuous criticism on DES, most of our primitive knowledge of the sensorimotor 

cortex comes from DES studies, and our fMRI result supports the findings of DES. In response 

to the ongoing debate on DES, in the second study, we review recent evidence to re-establish the 

confidence on DES. 

Accumulating evidence indicates that PPC is related to the emergence of motor intention. 

However, debate on the relation between motor intention and preparation never stops, some 

claims that motor intention is the byproduct from motor preparation, thus denying the volition of 

human motor control. Besides this complexity, we design a straightforward behavior experiment,

including simple reaction task and Libet task, in order to compare the cognitive process of  motor 

preparation and motor intention. Our result shows that RT from internal motor intention to motor 

output is equal to the RT from external cue to motor output, thus rejecting the possibility that 

motor preparation starts in advance of motor intention and doesn't support that motor intention 

arises from the process of motor intention. 

Key words: functional organization, somatotopy, primary motor area, premotor cortex, 

supplementary motor area, inferior parietal area, motor intention, motor preparation, Libet task, 

reaction time.   
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The highest level in the human sensorimotor system occupies several macro-anatomical 

regions of the cerebral cortex, which contains the primary motor cortex (M1)(Sanes and 

Donoghue, 2000)(Graziano et al., 2002)(Aflalo and Graziano, 2007), the premotor cortex 

(PM)(Graziano et al., 1994; Wiesendanger, 2011)(Graziano and Cooke, 2006), the 

supplementary motor area (SMA)(Tanji, 1994), the cingulate motor area (CMA)(Dum and Strick, 

1993; Paus, 2001; Shima and Tanji, 1998), the posterior parietal cortex (PPC), (Mattingley et al., 

1998)(Aflalo et al., 2015; Cui and Andersen, 2007; Desmurget et al., 1999; Fernandez-Ruiz et al., 

2007; Thoenissen et al., 2002), as well as the cerebellum(Schmahmann et al., 1999)(Mottolese et 

al., 2013; van der Zwaag et al., 2013).

The primitive evidence of functional specificity in the brain derives from the study by 

Fritsch and Hitzig in 1870s on the motor cortex of canine (York and Steinberg, 2011). Their 

pioneering work demonstrates the electrical excitability of cerebral cortex, which could generate 

muscle twitches by directly delivering electrical stimulation on it. The functional localization in 

human cerebral cortex, a fundamental research direction in cognitive neuroscience, dates back to 

the study by Ferrier (Ferrier, 1873) . Thanks to the improvement of electrical stimulation 

technique, more and more evidence of functional localization emerges, not only on that of motor 

cortex (Penfield and Boldrey, 1937), but also on visual (Humayun MS et al., 1996)(Brindley and 

Lewin, 1968), and language-related brain regions (Ojemann et al., 2009)(Ojemann, 1983)(Kim et 

al., 1997).

The systematical examination of human motor and sensory cortex by Penfield and his 

colleagues extradinarily advanced our understanding on the functional organization of cerebral 

cortex (Penfield and Rasmussen, 1950). Following their work, for a long time, movement was 

considered as the motor unit being represented in the sensorimotor cortex (Kakei et al., 1999).

Until recently, the neural basis of functional organization in cortical sensorimotor cortex with 

respect to the complex musculoskeletal system is still under debate. 

Nowadays, in primate, studies at more micro-level starts to provide more solid and direct 

evidence on the innervation of muscular system from central nervous system (CNS) (Rathelot 

and Strick, 2009). Recently, neural imaging technique gives access to non-invasively study brain 

functions with healthy subjects, in both lower sensory and motor processing related brain areas,
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such as somatomotor, somatosensory and primary visual cortex, and higher cognitive brain areas,

such as prefrontal cortex and parietal cortex (Brett et al., 2002).
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I.1 The functional organization of M1: its structure and neural basis

I.1.1 Somatotopic organization in M1

The functional organization in M1 has a prominent feature, termed as somatotopy by 

neuroscientists. It implies that the functional localization of each body part follows its sequential 

order of the body schema. In 1870s, the neurologist John Hughlings Jackson initially observes 

somatotopy on epileptic patients. He notices that that epileptic patients always has convulsions 

beginning unilaterally and spreading orderly, for example, if the seizure begins in face, it would 

spread to arm then leg sequentially, but never in reversed order (York and Steinberg, 2011).

Half a century later, Canadian neurosurgeon Penfield and his colleagues propose a more 

systematic illustration of the somatotopic structure in motor and sensory cortex with a large 

sample of patients (Penfield and Boldrey, 1937)(Penfield and Rasmussen,1950). In their

pioneering work, multiple electrodes are planted along the precentral gyrus (PrG), postcentral 

gyrus (PoG) in the brain of epileptic patients. And by delivering electrical stimulation at each 

electrode site one by one, they could observe the muscular responses or ask the awaking patients 

to report their sensational feeling (Figure 1). With this procedure, they are able to map different 

body parts to corresponding sites on the sensorimotor cortex, which demonstrates the specific 

localization of motor or sensory function on the cortical surface. Within Penfield’s illustration, 

functional localization of different body parts are arranged along the ribbon of PrG and PoG in 

somatotopic order. For example, tongue and foot representations lie on the most ventral and 

dorsal part respectively, whileas face and hand representations are in-between. Also, the zone of 

functional representation is not proportional to the surface of body part, such as that face and 

hand representations are emphasized to be significantly larger than those of arm, leg and foot; 

similarly, within the hand region, thumb representation is comparatively larger than that of any 

other finger. In this way, Penfield’s illustration is figuratively called the ‘homunculus’ (Figure 

2).
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Figure1. An illustration of the stimulation sites in the brain of one patient. From 

Penfield and Boldrey, 1937. 
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Figure 2. ‘Homunculus’. The motor map from Penfield and Rasmussen (1950).

Adopted from motor cortex, by David Rosenblum, in Human motor control (second 

edition), page 70. Copyright © 2010 Elsevier Inc.

Beyond the description in the manuscript of Penfield’s, the somatotopy in M1 is interpreted 

to be an sequentially ordered, point-to-point map, within which different body parts, ranging

from face to lower limb, are progressively arranged from the medial to lateral portion of the

precentral lobe. 

However, in both primate and human, accumulating evidence from stimulation, positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI) researches,

challenges this simplified organization of simple movements in M1 (Sanes and Schieber, 2001; 

Schieber, 2001) in two aspects, the overlapped representations between body parts, and the less 

sequentially ordered representation within small body part, i.e. hand region.

In primate, intra-cortical micro-stimulation (ICMS) is used to excite the motor cortex with 

optimized precision. In the study of Stepniewska (Stepniewska et al., 1993), researchers aim to 
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explore not only the representation of different body parts in M1, but also its connection with 

non-primary motor cortex. Their result mirrors the general organization in human motor cortex, 

with face representation occupies the most ventral part of M1, tail and hindlimb lie on the most 

dorsal part, and the forelimb is represented in-between (Figure 3). Interestingly, in this study, 

two subregions are identified at rostral-caudal level in M1, which are a caudal region with larger 

pyramidal cells and a rostral M1. This local anatomical uniform in M1 is also reflected on 

distinct ipsilateral connections:  caudal M1 is primarily connected with somatosensory areas

while as rostral M1 is connected with non-primary motor regions and somatosensory cortex.

Therefore, the functional organization in Penfield’s map is somehow too simplified which 

doesn’t reflect the difference in somatotopy with respect to distinct functional subregions.
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Figure 3. The stimulation sites on the architectonic map of the right frontal cortex of one

owl monkey. From the study of Stepniewska (1993).

At the same time, PET (Corbetta et al., 1993) and fMRI (Ogawa et al., 1990) studies aim to 

explore the functional organization of voluntary movements in human sensorimotor cortex, with 

larger sample size than primate and patient studies. Most of these studies have special focus on 

the representations between limbs, i.e. hand vs. mouth, hand vs. elbow etc., or within-limb, i.e. 

fingers, wrist and elbow.
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In the early 1990s, Grafton and colleagues did a series of studies in order to explore the 

functional organization of simple movement by imaging the cerebral blood flow (CBF) using 

PET scan. Studies of this kind interpret the changes of task-specific regional cerebral blood flow 

(rCBF) as the indicator to find the anatomical region specific to a certain motor or cognitive 

function. (Corbetta et al., 1993). At first, they recruit healthy subjects and guide them to perform 

motor tracking task with arm, finger, tongue and foot separately. rCBF is compared with control 

group in different task conditions and they discover some brain foci having reproducible relative 

increases of rCBF specific to certain movement condition (Grafton et al., 1991). The 

arrangement of these foci along the precentral lobe is similar with somatotopic organization of 

evoked movements of different body parts in Penfield’s study.

Then, using the same motor tracking task and PET scan procedure, Grafton and colleagues 

further explore the somatotopy within-limb (Grafton et al., 1993). In this following study, 

movements of index finger, thumb, wrist, and elbow are executed independently, changes of 

relative CBF is measured in the contralateral M1 and SMA. Result indicated that the 

representation foci of shoulder, elbow, wrist and index finger and thumb arrange progressively in 

M1 at superior- inferior level (Figure 4B). Also, despite the overlap between the representations 

of different movement conditions, they also report a significant difference in the locations of the 

peak activations at medial-lateral and superior-inferior levels, indicating independent functional

localization between- and within- limbs.
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Figure 4. the location of peak relative CBF with movement of shoulder(s), elbow (e), 

wrist(w),index finger(f) and thumb(t). From the study by Grafton (Grafton et al., 1993,

Figure1)

The fMRI technique with better spatial resolution than PET is also used to identify the 

functional localization of voluntary simple movements of healthy human subjects. Rao and 

colleagues map the voluntary movements of hand, arm and foot of healthy subjects, and their 

result confirms that fMRI is capable of displaying the general somatotopic organization in M1 in 

individual subject (Rao et al., 1995).

Later, with the progress of data analysis methods, in the 2000s, a series of fMRI studies take

advantage of high-resolution MRI and aim to study the somatotopy in M1. Some studies pay 

attention on the existence of within-limb somatotopy. Indovina and colleagues (Indovina and 

Sanes, 2001) examine the within-limb functional localization by calculating the geographic 

center of clusters that are specific to simple digit movements, including the movements of thumb, 

index and middle finger. In this experiment, subjects are guided to perform flexion/extension of 

each digit independently. Researchers report statistical separable geographic center for each 

movement in motor cortex; however, the statistical power for the homunculus pattern is weak. 

That is to say, the relative larger representation of thumb, which is obvious in Penfield’s map, is

not exhibited in this fMRI study. 
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Figure 5. An example of the result from fMRI study (Lotze et al., 2000). Activation volumes of 

within-limb movements occupy brain regions with relative overlapping (C, see elbow, thumb and 

index finger).

However, the results from fMRI studies also exhibit an complicated issue on the functional 

organization in sensorimotor cortex, which is the overlapping of representations between 

activation volumes, especially for within-limb movements (Beisteiner et al., 2001; Hluštík et al., 

2001; Indovina and Sanes, 2001; Lotze et al., 2000; Rao et al., 1995) (Figure 5). This kind of 

overlapping could also be seen in PET study, where rCBF specific to one movement type also 

overlaps with another (Grafton et al., 1993). In fact, if we read the report of stimulation study in 

both primate and human carefully, the stimulation sites almost all intermingle (Figure 1 for 

human M1, Figure 3 for monkey M1). Particularly, due to the advantage of human study in 

probing the sensory representation in cerebral cortex, it is obvious that not only the movement 

sites but also the sensation sites interleave between adjacent body parts (Penfield and Boldrey, 

1937) (Figure 1). 
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Extreme caution should be taken when we extract information and interpret the result of

Penfield’s work. In his original study, Penfield doesn’t propose a map with sharp border between 

body parts, in contrary, he emphasizes in his manuscript that ‘movement appears at more than 

one joint simultaneously when stimulation was applied’. Apparently, distributing and also 

overlapping maps of functional localization already exist ever since the discovery of 

‘homunculus’.

Does an orderly somatotopy of simple body movement exist in motor cortex? How can we 

couple the both distributing and overlapping neural responses observed in MRI studies? These 

questions seem to be beyond the capability of imaging study in human. In fact, under these

doubts, we ask a more fundamental question: in fMRI study, what does the neural response of 

simple movement represent on earth? Is it the basic functional unit with respect to movement?

In fact, as has been shown early in the recording study by Kakei and colleagues, in M1, both 

neurons displaying muscle-like activities and neurons displaying movement-related activities can 

be found (Kakei et al., 1999). Thus, M1 is considered to involve in the process of not only low-

level parameter like muscle force, but also the absolute direction of the movement.

By far, two distinct theories concerning the motor unit in M1 exist. One hypothesis is that 

single muscle is innervated by motor cortex in terms of small ‘cortical efferent zones’, which 

indicate separate and distributing region in the motor cortex sending motor command to a single 

motoneuron pool (Asanuma and Rosén, 1972a, 1972b); this hypothesis is made mostly based on

the result from stimulation studies. The other hypothesis (Andersen et al., 1975) claims that each

colony of cortical efferent zones distributing in motor cortex innervates one single motoneuron 

pool, and this cortical colony is called ‘motor synergy’. Recently, ICMS and histological studies 

come up with accumulating evidence to support the later view.
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I.1.2 Motor synergy in motor cortex: synergetic organization of muscular control

Synergetic control of muscle group is not a new assumption in motor control theory, it is 

adapted to address the degrees of freedom issue in human motor control (Bernstein, 1967). The 

hypothesis is that functional linkage between different motor units reduces the degrees of 

freedom when an action is called up. This structure of functional organization underlies 

synergetic motor control.

On the spinal cord level in vertebrate, microstimulation has been used to identify the map of 

behavior repertoires, (Bizzi et al., 1991)(Giszter et al., 1993) (Tresch et al., 1999)(Lemay and 

Grill, 2004). In studies of this kind, researchers found that when stimulating on one foci of spinal 

cord, discrete and specific muscular output could be decomposed into an invariant group of force 

filed. Interestingly, when two stimulations are applied at two sites simultaneously, the pattern of 

force field could be explained by the linear summation of the force field generated from each of 

those sites independently (Mussa-Ivaldi et al., 1994). These observations support the hypothesis 

that, at the spinal cord level, a discrete group of muscles that is called muscular synergy could 

the basic unit pf motor apparatus innervated by the motor command from spinal cord.

While on the level of cerebral cortex, motor synergy is also identified in the motor cortex of 

primate and human. Electrical stimulation on sensory and motor cortex always evokes some 

multi-joint movements (Penfield and Boldrey, 1937) (Stepniewska et al., 2005) (Graziano et al., 

2002) (Haiss and Schwarz, 2005; Ramanathan et al., 2006), the relevance of these passively 

evoked actions with those naturalistic actions is examined. For the first time, Graziano and 

colleagues apply electrical stimulations lasting for 500ms on different sites distributing on the 

motor cortex of primates (Graziano et al., 2002). According to their rationale, the long-duration 

stimulations are more physiologically realistic than those brief ones. With electrical stimulation 

of this kind, they manage to evoke some intriguing actions in behaving monkeys. An example is 

shown in the figure 6G, when electrical stimulation is applied on a specific site, monkey always 

adopts a mouth/tongue posture that is similar with its ‘apple-eating’ posture in natural condition, 

no matter the initial position of its mouth and tongue before the electrical stimulation is applied.

This final posture effect is also found on other sites of motor cortex where monkey’s forelimb 

movement can be evoked (Figure6 A-F).
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Figure 6. Six characteristic postures evoked when stimulate different sites in motor cortex of 

monkey (A-F). Black dots indicate the pathways of movements; they all lead to a final posture 

for one specific stimulation site. G. One example of the final mouth/tongue posture when 

stimulation is applied on one site in motor cortex of monkey, no matter the initial position of its 

mouth and tongue. (Graziano et al., 2002).
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In a following-up study, Aflalo and Graziano further explore the neuronal mechanism

underlying these effects (Aflalo and Graziano, 2007). They analyze the activity of single-neuron 

in relation with several main models tuning to movements, such as hand speed, hand direction, 

final posture of hand and final multi-joint posture of arm. The result indicates that among these 

models, the final multi-joint posture of arm accounts for most of the neuronal variance (36%) 

compared to other models (8%-22%), which implies that neurons in motor cortex codes 

predominantly the final posture of movement. The authors also argue that this character of motor 

neuron is of ethological meaning for daily life, because it is important to maintain a stable 

posture and make focal adjustment of movement parameters when perform a motor task.

Recently, motor synergy is also found in human motor cortex. In the study by Desmurget 

and colleagues, when direct electrical stimulation (DES) is delivered to some sites distributing

along the precentral gyrus (PrG), action such as closing hand and moving towards opening 

mouth could be evoked (see figure 7C, right panel) (Desmurget et al., 2014). The stimulation site 

of this kind is called hand/mouth motor synergy by the authors. In this study, hand/mouth motor 

synergy could be found in both child and adult (see figure 7A).

Throughout its history, DES has been frequently criticized to be not appropriate in 

exploring cognitive functions of the brain (Strick, 2002)(Borchers et al., 2012), especially when 

intriguing effects such as ethological actions (Graziano and Aflalo, 2007) and conscious motor 

intention (Desmurget et al., 2009) are triggered, and have never been observed with traditional 

method. Most of those arguments concentrate on the mechanism underlying electrical

stimulation, such as the artificial effect caused by current spreading. 
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Figure 7. Hand/mouth motor synergy in precentral gyrus (Desmurget et al., 2014). Cortical 

stimulation sites of hand/mouth motor synergies distributing on PrG of adults and children(A) .

mean EMG latencies recorded from muscles involved in hand/mouth action (B). one case

example of a 8 year-old participant (patient), the stimulation site in PrG and the evoked EMG 

form of related muscles(C).
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Muscle synergy is proposed as the unit of the musculoskeletal apparatus that is innervated 

by CNS to simplify the motor control. According to this concept, it is the synchronous and 

invariant activation pattern of a group of muscles. Overduin and colleagues systemically study

the muscle synergy recruitment in grasping behavior of primate, and they are able to identify a

limited number of muscle synergies that could account for most of the variation in muscle 

activity across two rhesus monkeys and different task variables depending the size and shape of 

objects to grasp (Overduin et al., 2008).

Following this finding, they further explore the physiological basis of muscle synergy in 

primate (Overduin et al., 2012). By delivering long-duration, ICMS to different sites on motor 

cortex (Figure 8), they evoke postural movements similar to those evoke by Graziano (Graziano 

et al., 2002). A comparison of  the muscle activations between ICMS-evoked and naturalistic 

postural  movements (Figure 9 A) reveal very high similarity between the two, in both the 

numbers of decomposed muscle synergy (Figure 9 B and C) and the pattern of these motor 

synergies (Figure 9 D). This is consistent with the finding by Graziano, in which they also 

confirmed some common character between the spontaneous behavior  and the stimulation-

evoked postural movements of primate (Graziano et al., 2003). These limited and small number 

of decomposed motor synergies, on which stimulation could evoke naturalistic like postures, 

distribute in the motor cortex and premotor region.

Figure 8. Electromyograms of ICMS-evoked muscle activation (Overduin et al., 2012).

Muscles(vertical axis) activations recorded from one stimulation site on the motor cortex of one 

rhesus monkey (A). Mean (gray bar) and SD of muscles activations of all 13 stimulation sites in 

one monkey.
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Figure 9. Comparison of  muscle activation patterns between ICMS-evoked and 

naturalistic movements of monkey (Overduin et al., 2012).

Recently, computational algorithms(Avella et al., 2003) (Ting and Macpherson, 2005; 

Torres-Oviedo et al., 2006), such as non-negative matrix factorization algorithm (NMF), 

independent factor analysis and independent component analysis, are adapted to identify the 

25 
 



pattern of muscle synergies based on complex electromyography (EMG) data that are obtained 

during natural movements.

In human, this kind of computational analysis also provides rich results. In a study by 

Torres-Oviedo and colleagues, healthy human subjects are guided to make postural responses 

involving the movements of ankle and hip,  meanwhile, EMG of related muscle activations are 

recorded (Torres-Oviedo and Ting, 2007). Researchers find that very few numbers of muscle 

synergies could be decomposed with specific computational method to account for variation of 

muscle activation patterns. Similar analysis are also used to exam the vulnerability of muscle 

synergy after cortical brain lesion caused by unilateral stroke (Cheung et al., 2009). Very 

interestingly, muscular synergies extracted from the EMG data of affected- and unaffected arms 

don’t demonstrate much differences despite the impairment on motor performance. This result 

support the view that muscle synergy is specified in the lower level of motor system, possibly in 

spinal cord or brainstems. Indeed, electrophysiological experiments confirm that the neuronal 

activity in spinal cord is related to the activation of muscular synergies but not single muscle 

(Hart and Giszter, 2010). Under such cases, motor cortex that sends descending signal to the 

interneurons or motor neurons might play a role in selecting and/or activating the muscle 

synergies specified in lower level. How does the interruption of descending motor signals effect 

the selecting of muscle synergies? The same group further explores this question with respect to 

the severity of functional impairment and the stroke onset time. Apparently, basic independent 

muscle synergies are not all preserved in severely impaired patients (Cheung et al., 2012).

Indeed, the factorization of postural movements, evoked by stimulation or spontaneously 

executed, into limited muscle synergies facilitates our understanding of functional organization 

of sensorimotor system, for example, by combining this method with stimulation studies 

(Overduin et al., 2008, 2012) and lesion studies(Cheung et al., 2012). However, the somatotopy 

of simple movements of different body parts, which we consistently observe in motor cortex 

since Penfield, has not been well merged with the concept of motor synergy (Desmurget et al., 

2014).

One motor neuron and the muscle fibers it innervates are called a motor unit (Rosenbaum, 

2009). In a delicate design, subjects are trained to single out motor units, for example, the 

control of abductors pollicis abbrevis independently(Basmajian, 1963). However, even simple 
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finger movement requires the control by multiple motor unit (Lang and Schieber, 2004; Reilly 

and Schieber, 2003) . On one hand, physiological examination in primate could uncover direct 

innervation relationship between cortical neurons and motoneurons, but fail to explain the data in 

the larger scope such as simple movement; on the other hand, DES with restricted effect on small 

cortical sites provide the map of simple movements(Penfield and Boldrey, 1937) and postural 

movements (Desmurget et al., 2014) but demands tremendous amount of data and tests to obtain

a full description involving all body parts.  All methods display a common feature that is the 

overlap between functional representations of  different motor units or different body parts. 

Under such circumstance, some efforts are made to keep digging the fMRI data (Cunningham et 

al., 2013; Meier et al., 2008), and researchers start to try to figure out the mechanism underlying 

the volume overlap of activations. Thus, further study is in need to reveal the physiological basis 

of  activation volume of different simple movements and the overlapping patterns.

As human, we have dexterous finger movement that is the key for using tools. Many 

researches have investigated the musculoskeletal mechanism (Lang and Schieber, 2004; Reilly 

and Schieber, 2003; Schieber, 1995) , the kinematic and dynamic control by CNS (Beisteiner et 

al., 2001; Olman et al., 2012; Shibasaki et al., 1993). However, there are inevitable constraints 

when exploring the neural basis of so-called independent finger movements, due to the passive 

mechanical coupling of neighboring fingers, the multi-tendons control by extrinsic muscles, etc.

In retrospect of previous fMRI studies, evidence is in favor of the existence of independent 

representation and somatotopic organization of large body parts in motor cortex, despite the 

complicated results of peak activation, geographic center and activation volumes (figure 10)

(Indovina and Sanes, 2001) , across study and task design (Sanes and Schieber, 2001) (Olman et 

al., 2012). Also, researchers have reached a consensus that the selective representations of simple 

finger movements are not orderly organized but overlap extensively. Thus, alternatively, future 

fMRI studies should focus on the organization pattern of activation volumes, within hand region 

and within-limb.  Together with the independent peak activation or geographic center, overlap 

activation volumes of simple finger movements could provide more information of the neural 

basis of M1 functional organization.
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Figure 10. Geographic centers of simple flexion/extension movements of independent 

fingers in M1 (A) and SMA (B)(Indovina and Sanes, 2001) . Blue, green and red dots represent 

first to third finger.
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I.1.3 Two anatomical subdivisions in M1

Some other features of the functional organization in M1 are also discovered. As we have 

discussed above that the M1 of primate is not an uniformed brain region (Stepniewska et al., 

1993) (Matelli et al., 2004). It contains two subregions with distinct cytoarchitectonic features

and connectivity pattern. Similarly, in human,  area 4 can be subdivided into an anterior(4a)  and 

a posterior (4p) part  also based on quantitative cytoarchitecture differences (Geyer et al., 1996).

In this study, using PET scan, researchers revealed representations of fingers in 4a and 4p 

separately. A following-up study further examine the modulation by attention in 4a and 4p 

during right index finger movement(Binkofski et al., 2002). The task is to move right index 

finger to draw a well-shaped ‘U’ at constant amplitude and speed, thus requires certain level of 

attention to this action. Result indicates that only area 4p is effected by the modulation of 

attention to action thus these  two subdivisions of M1 contributes differently to skilled movement. 

Recently, probabilistic cytoarchitectonic map has been widely used in functional imaging 

study (Eickhoff et al., 2005, 2006a, 2007a). Assignment of functional activation to anatomical 

atlas with subdivisions that could better couple with the functional complexity is in need. To this 

end, in our fMRI experiment, the functional organization in M1 of simple movements is re-

examined with respect to the subdivision based on the probabilistic cytoarchitectonic map 

obtained with quantitative analysis of cytoarchitecture in human (Amunts et al., 2007).
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I.2 Posterior parietal cortex in action

The posterior parietal cortex (PPC) is considered part of the motor system (Rizzolatti et 

al., 1997)(Fogassi and Luppino, 2005). Its involvement in sensory and motor processing has 

been investigated mainly in three aspects, including sensory-motor integration (Andersen et al., 

1997; Colby and Duhamel, 1991; Rizzolatti et al., 1997)(Andersen and Buneo, 2002), action 

organization (Fogassi and Luppino, 2005), as well as action understanding (Rizzolatti and 

Craighero, 2004).

The human parietal cortex locates between frontal and occipital lobes. On the lateral 

surface, it is separated from frontal lobe by the central sulcus, but there is no clear macro-

anatomical separation of it from occipital and temporal lobe. On the medial surface, it could be 

distinct from occipital lobe by the occipital-parietal sulcus, and from the cingulate gyrus by the 

sub-parietal sulcus. Also, on the lateral surface, the intraparietal (IPS) that contains an oblique 

and a horizontal portion grossly divides the parietal cortex into the superior parietal cortex (SPL) 

and the inferior parietal cortex (IPL). 

Three major schools propose their cytoarchitectonic maps that subdivide human parietal 

cortex in different ways. Brodmann brings up the most adopted one in 1909 (Figure 11A), which 

distinguishes parietal cortex into four subregions, namely area 5 and 7 in the SPL, as well as area 

40 and 39 that constitute IPL. A second influential map is made by von Economo and Koskinas 

in 1925(Figure 11 B), in which parietal cortex is divided anterior-posteriorly into PDE, PEm, 

PEp, PEg, PFt, PFop, PFcm, and PG. However, the lateral bank of IPS, although on which 

variant involvements in cognitive tasks have been discovered in both behaving animal and 

human, is not well described in neither of the two maps. Thus, a detailed subdivision of IPS is 

also in need to explain its functional complexity.

A third school provides more completed parcellation based on cyto- and myelo-

architectures, one of the most recent is the work by Caspers and his colleagues, they normalize

their map into MNI space (Caspers et al., 2006)(Choi et al., 2006). They identifie six subregions 

at the anterior-posterior level, which are PFop, PFt, PF, PFm, PFcm, PFa and PFp (Caspers et al., 

2006) (Figure 11 C), and in IPS, two subregions are also identified by the same team, which are 

hIP1 and hIP2 (Choi et al., 2006).
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Figure 11. Architectonic subdivisions of human parietal cortex, by Brodmann(1909) 

(F), von Economo and Koskinas (1925) (G) (adapted from Zilles in 2001) and Caspers et.al 

(2006) (A-E).
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In primate, the IPL comprises the gyri surface, the lateral bank of the IPS, the anterior 

bank of the caudal third of the superior temporal sulcus (STS), and a small portion of the medial 

wall. Based on cytoarchitectonic characters, it is defined as one single region by Brodmann 

(1905) as area 7. Vogt and Vogt (1919) further divide it into two subregions, a caudal-medial 

part 7a and a rostral-lateral part 7b. Later, adopting the nomenclature of von Economo and 

Koskinas (1925), von Bonin & Bailey (1947) confirm the existence of two subregions, which are

a rostral portion PF and a caudal portion PG. However, these relative simple distinctions could 

not account for the intricate afferent and efferent connections with IPL. In the study of Pandya 

and Seltzer (Pandya and Seltzer, 1982), they explore the anatomical complexity of IPL in rhesus 

monkey by examining its architectonics and intrinsic connection pattern the same time. Based on 

distinct connectivity signatures, they are able to distinguish four subregions on the lateral 

convexity of IPL at rostral-caudal levels, which are PF, PFG, PG and Opt. This map is close to 

the result of a recent work by Gregoriou and colleagues, who combined the examination of the 

cytoarchitecture and myeloarchitecture of IPL convexity in 17 macaque monkeys (Gregoriou et 

al., 2006). In the map of Gregoriou, at rostral-caudal levels, the convexity of IPL is divided into 

PF, PFG, PG and Opt progressively from the most rostral portion to the most caudal portion. 
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Do these anatomical distinctions correspond to functional complexity found in PPC?

Single neuron in area 7 of behaving monkey displays both sensory and motor properties 

(Mountcastle et al., 1975) (Andersen et al., 1987). Also, neurons in parietal cortex discharge 

differently in distinct locations and tasks (Hyvärinen and Shelepin, 1979) (Lynch et al., 1977)

(Robinson et al., 1978). Thus it is considered having higher-cognitive function such as sensory-

motor integration.

From recording studies in primate, so far it is well known that the neuronal response in 

the caudal portion of IPL is mostly visual and visuomotor, whiles in the rostral portion it is more 

somatosensory and somatomotor. In an early neurophysiological study, Hyvärinen and

colleagues confirm the functional distinction of two cytoarchitectonic subregions in IPL by 

Bonin & Bailey (Hyvärinen, 1981). They systematically investigate the functional organization

of IPL by presenting visual, somatomotor or somatosensory stimuli to awaking macaque

monkeys. According to their results, in general, visual and oculomotor responses occurred in 

PG(7a), somatosensory responses concentrated mostly in PF(7b).What’s more, somatomotor 

responses distribute across area 7 in somatotopic manner, such as that the activities of mouth 

and hand actions could be found in a rostral portion of PF(7b), whileas the activities of eye 

movements occur in the PG (7a) regions. Recently, another neurophysiolocal study further 

examine the effects of visual, cutaneous and motor stimuli on the convexity of IPL in relation 

with the recent subdivision by Gregoriou (Gregoriou et al., 2006) (Rozzi et al., 2008). In this

study, Rozzi and colleagues train monkeys to perform naturalistic actions related to objects, such 

as biting, hand-mouth grasping, grasping, bringing to mouth, reaching-grasping, reaching etc.. 

Similar with the findings of  Hyvärinen, they find motor responses distributing across the 

convexity of IPL, visual and oculomotor responses mostly concentrating in PG region and 

somatosensory responses mostly occurring in PF region. What’s more, the motor responses 

distributing in IPL has a somatotopic organization, such as that actions related to mouth mostly 

activating the PF region, actions related to hand distributing across PFG and PG regions but most 

concentrating in PFG region, actions related to arm exciting more the PG region. That is to say,

distinct functional organizations with respect to different stimulation modalities are found in 

different anatomical subdivisions, with relative overlap.
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In primate, IPL is widely connected with brain regions of multiple sensory modality and 

of higher cognitive function. For example, the rostral most region, area PF, has afferent 

connection with the ventral part of post central gyrus (Brodmann area 2)(Pandya and Seltzer, 

1982), the extrastriate parietal-occipital sulcus (POa) receives rich inputs from visual cortex V1, 

V2, V3 and MT, and has connection with several IPS subregions (Pandya and Seltzer, 

1982)(Colby et al., 1988), meanwhile, the subregions of IPL convexity also send distinct output 

connections to the frontal lobe (Petrides and Pandya, 1984), including frontal motor areas. The 

PF region is the most anterior portion projects mainly to the ventral part of area 6, the PFG and 

PG regions that are in the middle of IPL have major output connections with the ventral parts of 

area 46 and area 8, while the caudal part of PG region and the Opt region send projections 

mainly to the dorsal portions of area 46 and area 8,  as well as the dorsal area 6 and area 24 in the 

cingulate cortex. Thus, the efferent and afferent connectivity of IPL as well as its intrinsic 

connections provide the neural basis of its role in visuo-motor control in the space. 

Based on abovementioned anatomical and neurophysiological evidence, multiple theories 

exist regarding the role of IPL in behavior. Mountcastle et al. proposes that PPC is the command 

center issuing motor command in initiating motor behavior (Mountcastle et al., 1975)

(Mountcastle, 1995). This theory of IPL is supported by the observation that neuronal activity 

preceding EMG activity could be recorded in IPL when monkeys perform oculomotor or hand 

movements (Mountcastle et al., 1975). However, many researches argue against this theory and 

propose that motor-related response is the efference copy of motor command organized in frontal 

lobe rather than motor command per se. An intuitive evidence is that although motor responses 

in area 7  are indeed preceding EMG activity, it is still slower than the motor responses recorded 

from M1, thus echoed with the hypothesis that motor-related response in IPL are likely the 

efference copy of motor command formed in frontal cortex.

Alternatively, another hypothesis is that IPL operates as a sensorimotor interface. As 

revealed by Andersen in 1980s, in primate, neurons of area 7 activate by both visual stimuli and 

oculomotor behavior (Andersen et al., 1987). Similarly, in human, lesion to IPL often interrupts

both sensory and motor functions. Unilateral neglect of extrapersonal visual field is a symptom 

frequently observed in patients with right IPL lesion (Vallar and Perani, 1986). Patients exhibited

selective difficulty in initiation and execution leftward movements towards targets in left visual 
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field (Mattingley et al., 1992, 1998). This observation demonstrates that the human IPL serves as 

an interface where visual information and directional motor command communicates to serve the 

behavior. Some studies focus on the integration of multimodal sensory information and 

transformation from perceptual coordinate to spatial coordinate needed to form early motor plan

(Andersen and Buneo, 2002). The others are interested in the internal representation copied from

motor command (Wolpert and Flanagan, 2001; Wolpert et al., 1995). Parietal lesion damages the 

internal mental representation and execution of movement (Sirigu et al., 1995), possibly because 

of its role in motor prediction. In the study by Sirigu et al. , patients with selective lesion in 

unilateral left or right PPC (area 7 and area 40, 39), and exhibiting impairment of hand 

movement execution, are guided to perform motor imagery task (Sirigu et al., 1996). Compared 

to normal control, these patients make incongruence estimations of their maximum speed in 

thumb-finger opposition task between imagery and actual movement conditions. Indeed, in 

primate, some parietal neurons predict the sensory changes before an eye movement by 

transiently shifting the receptive field (Duhamel et al., 1992), implicating the role of IPL in 

monitoring motor plan. In human, stimulation study also revealed the existence of abstract 

internal representations of movement in the IPL (Desmurget et al., 2009). In a pioneering study, 

DES delivered at IPL triggers motor intention without any movement being executed eventually.

This abstract motor intention could be considered as an early plan of movement (Andersen and 

Buneo, 2002);  and very interesting, in same subjects, stimulations on PM produces overt 

movements but without conscious awareness of doing so. Thus, the internal representation or 

motor intention in IPL is distinct from the motor command from frontal motor regions; also, 

since that the stimulation-triggered movements in PM bypass the IPL (Histed et al., 

2009)(Desmurget et al., 2013), in which efference copy of motor command is processed, it is 

likely that conscious experience of motor intention is not related to motor preparation. 

Although in primate, the anatomical complexity of IPL has been investigated relatively 

completely from many respects, such as cytoarchitecture, connectivity as well as 

myeloarchitecture, there are no clear homologies between the subdivision of IPL in primate and 

in human, which makes the inference from primate study even harder. Grossly, the subdivisions 

of IPL (PF and  PG) by  von Bonin & Bailey (1947) in primate are good homologues to those of 

von Economo and Koskinas (1925).  

35 
 



Despite the limitation of neurophysiological and DES studies, nowadays, the neuronal 

responses in human IPL during motor and cognitive tasks can only be noninvasively detected 

using fMRI and dedicated experiment design of mental chronometry. Besides, fMRI provides a 

better spatial resolution to localize functions to anatomical regions based on progressively well-

defined atlas.

First, repetitive simple movements of different body parts, namely finger, elbow and 

ankle, have been found to have topographic representations on human IPL (Cunningham et al., 

2013). In this study, researchers locate the geographic centers for each repetitive simple 

movement, and they found that the geographic centers of finger, elbow and ankle form two 

clusters separately within IPL. This structure of topographic map is quite different from that of 

somatomotor and somatosensory maps in M1 and S1, possibly implying different functional 

organization role in IPL.

Second, further studies focus on the representation of actions on IPL. Marc Jeannerod 

once proposes that mental motor imagery gives access to the internal representational stages of 

action (Jeannerod and Decety, 1995). To this end, neural response to in simulation 

conditions(Jeannerod, 2001), such as action observation and action imagery, as well execution of 

intended action are extensively examined in the past two decades. Buccino and colleagues 

studied the activations in PM and parietal cortex by asking participants to observe object-related 

and non-object-related action (Buccino et al., 2001), and they found that observation of mouth, 

arm/hand, and foot actions activated distinct foci in IPL, anterior IPS, and SPL. Later, in a recent 

study, Lorey and colleagues compare the action- and effector-specific maps on IPL, under action 

observation and motor imagery conditions separately (Lorey et al., 2014), and they find that 

during action-observation condition, action-specific maps are dominantly found in PPC, thus

they argue that both action-specific and effector-specific maps exist in parietal cortex and the 

recruitment of certain map depends on several factors, including the forms of simulation 

(observation, imagery) etc.

Apparently, the topographic maps in terms of BOLD-signal changes depends on the task 

modality that is more complex than the motor-, sensory, cutaneous- related stimuli used in 

primate studies. Consequently, the nature of the neural responses manifest as BOLD-signal 

changes can not be easily attributed to sensory-related or efference copy of motor command,
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because as has been indicated in primate, both could be recorded in parietal neurons. Under this 

circumstance, connectivity pattern could provide insight on this issue from another aspect. In 

primate, IPL has rich connections with visual cortex, frontal cortex as well as somatosensory 

cortex. Several groups investigated the functional and anatomical connectivity of parietal cortex

in human. In a series of studies by Eickhoff and colleagues, they used probalistic tractography on 

diffusion tensor imaging (DTI) data, as well as functional connectivity analysis on fMRI data. 

Firstly, from histological defined distinct areas in parietal operculum(PO) that is considered as 

the secondary somatosensory cortex (SII) and comprises several subregions (Eickhoff et al., 

2006b, 2006c), they found that anatomically and functionally, area PO1 is closer connected with 

the anterior IPL, IPS, thalamus and the opposite hemisphere, whileas PO4 has closer 

connectivity with postcentral gyrus , M1, PM and IPL(Eickhoff et al., 2010). These distinct 

connectivity patterns of IPL with SII and frontal motor regions could be the neural basis of the 

dinstinc functions of its subregions, for example, the anterior IPL.

However, the most recent subdivision in human IPL (Gregoriou et al., 2006) has not been 

well examined with corresponding functional complexity. Therefore, in this thesis, I investigated 

the representation map of simple movement in IPL, with special focus on the rostral part, 

including the PF regions defined by Gregorious’s map. This region is likely the homology of 

monkey PF where complete somatosensory representation and motor responses of mouth, hand 

are both found (Hyvärinen, 1981)(Rozzi et al., 2008).
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I.3 Motor intention and motor preparation 

Accumulating evidence indicates that parietal cortex is related to motor intention.

Researchers found that observation of others’ action evoked neural responses in PM and parietal 

regions (Buccino et al., 2001). In primate, evidence indicates that neurons in IPL response 

differently to the goal of actions performed by the experimenter, for example, grasping action for 

eating or for placing evoked different motor responses of IPL neurons (Fogassi et al., 2005).

In human, the classic paradigm used to isolate conscious motor intention in cognitive task

is ‘Libet task’. Three decades ago, Benjamin Libet design a delicate psychophysiological 

experiment to measure the subject feeling of conscious intention (Libet et al., 1983). He asked 

subjects to voluntarily press a button at any time when they had an conscious intention to do so, 

and reported it according to clock presenting in front of them all through the experiment. Patients 

with selective lesion in parietal cortex has difficulty to report this conscious event (Sirigu et al., 

2004), indicates the role of parietal cortex in generating conscious intention.

With Libet task, on average, subjects reported their motor intention approximately 200 

ms in advance of movement onset. And very interesting, an electrophysiological marker could be 

detected as early as 1s before movement onset by Libet and other researchers using this 

paradigm (Haggard and Eimer, 1999; Sirigu et al., 2004). Thus, one may speculate the relation 

between this early unconscious neural activity and forthcoming conscious events. Contradict 

theories exist on the nature of the unconscious neural activity. the ‘action then intention’ view 

assumes that it reflects the preparation of upcoming button press movement (Haggard and Eimer, 

1999; Hallett, 2007), therefore, conscious intention should be the consequence from this process. 

Alternatively, the ‘intention then action’ view assumes that unconscious neural activity doesn’t 

reflect movement per se (Trevena and Miller, 2010), but the buildup to conscious intention and 

in turn triggers action (Fried et al., 2011).

In many studies using Libet paradigm, the motor task is simply press the button. Whileas 

the objective of these researches are usually more complex as to examine the causal relation of

unconscious neural activity, conscious intention, and moor preparation. According to our 

knowledge of simple reactive movement, motor plan could be loaded in motor cortex during the 

stage of motor preparation before go cue; meanwhile. higher-order cognitive brain regions is 
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considered to exert proactive inhibitory control on the motor cortex to prevent overt movement 

before go cue. Similarly, when subjects are asked to perform voluntary index finger flexion, we 

assume that corresponding abstract motor plan could be also loaded when subjects placed the 

index finger on the button. It has been found that approximately 120ms before movement onset, 

the intermediate part of SMA triggers actual movement via release inhibition on M1 (Jaffard et 

al., 2008). Unfortunately, classic response task or go/no go task is not able to demonstrate the 

neural correlates of conscious intention because no demand of reporting this internal event.

Based on the existing literature, it can be observed that RT/int and RT/ext are generally of 

similar magnitude (Desmurget and Sirigu, 2009; Desmurget et al., 2013). This temporal 

proximity could reflect the similarity in neural correlates of the two delays (Desmurget and 

Sirigu, 2012).

Therefore, despite this complexity, we designed a straightforward behavior experiment 

including simple reaction task and Libet task, in order to compare the cognitive process of motor 

intention and motor preparation.
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Chapter II.  Experimental contribution
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II.1 Study 1- Somatotopy in human cortical motor system

1. Introduction 

Somatotopy is the prominent feature of the functional organization in motor cortex. It has 

been examined using different techniques, such as electrical stimulation, PET, and fMRI, in 

primate and human. However, debate on the within limb somatotopy in M1 still exists. Previous 

fMRI studies showed extensively overlapping of activation volumes in motor cortex between 

pairs of single finger movements (Rao et al., 1995)(Beisteiner et al., 2001; Indovina and Sanes, 

2001) (Figure 10), while the coordinates of peak activation or the geographic center of the 

activations demonstrate separate representation of fingers. Despite this contradiction, there are 

two different theories concerning the functional organization  in M1, one proposes that there is 

cortical efferent zones within which neurons that innervate a single motoneuron pool resides in a 

small zone in M1(Asanuma and Rosén, 1972a) , and the other theory claims that there are 

overlapped colonies of cortical efferent in M1, and  within each colony, neurons innervates a  

single motoneuron pools concentrates (Andersen et al., 1975) .

According to the ‘cortical efferent zone’ view, we can make the hypothesis that if the 

activation volumes evoked by flexion/extension movement of single finger is related to the 

recruitment of a common ‘cortical efferent zone’, we should expect different level of overlapping 

between any two finger pairs. Thus, in this study, we will examine the somatotopy of single 

fingers in terms of geographic center and the overlapping pattern of their activation volumes.

Also, with recent findings in primate (Rizzolatti et al., 1997) and human (Culham and 

Valyear, 2006), IPL is  also considered as part of the cortical motor system, however, its 

structure of the functional organization of simple movement is still not fully 

depicted(Cunningham et al., 2013). In primate, somatosensory and somatomotor organization 

have been discovered in relation the complex cytoarchitectonic subdivisions(Rozzi et al., 2008).

And recently, an advanced subdivision of IPL based on architecture and connectivity is also 

proposed(Caspers et al., 2006), therefore, further study aiming to couple the anatomical and 

functional complexity of IPL is in need. In this experiment, we also studied the functional 

organization of simple movements in IPL, and we compared the location of its functional map 

with respect to this subdivision (Caspers et al., 2008).
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2. Materials and methods 

2.1 Subjects

Fifteen subjects (7 men, 8 women) participate in this study with written informed consent,

experiment procedures are approved by the local ethical committee (CCPRB, Centre Léon 

Bérard, lyon). Subjects are all right-handed, with mean age of 23 years old ( 1.8yrs), before 

the recruitment, subjects are screened for neurological conditions as well as contraindications for 

MRI.

2.2 Experimental design and Data acquisition

Subjects are guided to performed repetitive simple movements of different body parts in 

independent session: 1) thumb flexion/extension, 2) index flexion/extension, 3) little finger

flexion/extension, 4) elbow flexion/extension, 5) foot flexion/extension and 6) tongue 

protrusion/intrusion. Within each session, blocks of ‘movement’ and ‘rest’ are interleaved, with 

seven 10-second movement-blocks alternating with seven 20-second rest-blocks (Figure 12).

Each type of movement is performed in two separate sessions, and sessions of 6 different 

movement types are counterbalanced. At the beginning and the end of each movement-block , 

visual signals of go and stop are delivered though a screen placed at the end of the MRI scanner 

tunnel. Between conditions, subjects are instructed by the experimenter outside the scanning 

room through microphone.

Figure 12. Experimental design. Individuated movement is performed in each independent 

session (e.g. thumb abduction/adduction). Movement blocks are interleaved with rest blocks, 

each block lasts 10s. Within each block, movement is executed for 10 seconds.

Functional whole-brain imaging was performed using a Bruker Medspec 30/80 AVANCE 

(Bruket®, Ettlingten, Germany), with an 8-channel phased-array head coil. Each acquisition 
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included 160 (to be changed) dynamic scans, using a gradient-echo echo-planar sequence 

sensitive to blood-oxygenation level-dependent (BOLD) contrast. Sequence parameters were: TR 

= 3000 ms, TE = 35 ms, matrix size 64 x 64, 35 slices, slice thickness 3 mm, field of view 

192x192mm. 

An anatomical image was also acquired for each subject using a sagittal 3-dimensional T1-

weighted MPRAGE sequence covering the whole brain volume (field of view 256x230x180mm3,

matrix 256x192x104, TR/TE/flip angle 25 ms/5 ms/20°, slice thickness 1 mm).

1.3 MRI data analysis

The fMRI data are analyzed to answer two main questions: 1) the functional organization

in in each sensory- and motor-related brain region, in terms of center of gravity (COG) and of 

activation volumes, and  2) the effect of different body part on the COG and volume overlapping.

Firstly, in order to describe the functional organization, random effect of each movement 

type is explored within each region of interests (ROI), namely M1, S1, SMA, SPL and IPL, 

separately. Then, COGs of significant clusters in each cluster is computed to demonstrate the 

functional organization. It has been proposed that COG is more reliable value than peak 

activation across sessions in somatotopic study(Alkadhi et al., 2002), and it has been used widely 

in many fMRI studies to indicate the location of the neural representation underlying simple 

movement (Indovina and Sanes, 2001; van der Zwaag et al., 2013) .

Tunctional organization is also analyzed in terms of activation volume. To this end, we

merge the significant activation volumes of all six movements in a same anatomical map by 

using winner-take-all procedure in 3D space to determine the category of each voxel 

significantly activated by the movement of more than one body part.

Although as we have introduced above, in previous fMRI studies (Indovina and Sanes, 

2001; Olman et al., 2012; Rao et al., 1995), independent COG supports the view that simple 

movement is represented in the sensory- and motor related brain regions, whileas the extensive 

spatial overlap between the activation volumes of different body parts seems to complicate this 

view, there has not been any good explanation on these observations. However, according the 
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hypothesis of synergetic control of M1, overlapped volumes could reflect the spatial overlap of 

motor synergies in M1. 

Thus, secondly, in this study,  in order to explore the effect of different body part 

(movement type) on COG and volume overlapping, individual data, which include the individual 

values of COG and statistical parameter maps of significant volumes under all six movement 

conditions separately, are pooled into statistical analysis. Detailed description of the data 

analysis is as following.

1.3.1 Preprocessing of fMRI data

We used Matlab 7.1 and SPM toolbox (version 12) (http://www.fil.ion.ucl.ac.uk/spm/) to 

analyze fMRI data. 

Before preprocessing, the first 5 volumes of each scanning session are discarded to avoid 

the disequilibrium of signal at beginning of the scan.

First, ‘slice timing’ correction is performed to correct the slightly time discrepancy when 

collecting each slice of a volume (Kiebel et al., 2007). All slices are resliced according to the 

acquisition time of the middle slice.

Then, it is very important to correct motion in our data set because the task require 

repetitive movements through the session. One of the task demand is tongue protrusion/intrusion

that may especially increase the head motion between volumes. Thus, we perform a ‘realignment’ 

procedure to correct motion of our dataset (Friston et al., 1995). The translations and rotations of 

each volume are estimated. Sessions with translations more than 3mm and rotation more than 3 

degrees will be discarded. 

Third, intra-subject registration is performed in order to match the position of structural 

scan (the anatomical images) and the functional images. Co-registered structural image will be 

used later to normalize functional images.

The fourth step is to perform inter-subject registration to match subjects. This is realized 

with normalization procedure of SPM (Ashburner, 2007).

At last, to increase the signal-to-noise ratio and improve the ability to detect true 

activation in the following statistical process, we use a   6mm- width Gaussian kernel for spatial 

smoothing .

After above steps of preprocessing, imaging data are ready for further statistical analysis.
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1.3.2 Definition of ROI

This experiment aims to explore the representations of voluntary individuated movement 

in motor-related brain regions, and to compare the structure of their organization across these 

brain regions.

Based on the cytoarchitectonic and functional variances, M1 has been proposed to have 

two different subregions, namely area 4a and 4p (figure 12)(Geyer et al., 1996)(Binkofski et al., 

2002). The same methodology has been used to delineate complex subregions of S1(Geyer et al., 

1999, 2000; Grefkes et al., 2001), SPL (Scheperjans et al., 2008) and IPL (Caspers et al., 2006, 

2008). In this study, we performed small volume correction with each of these regions of 

interests. To generate masks for small volumes, we adopted the atlas based on the probabilistic 

cytoarchitectonic map (Eickhoff et al., 2005, 2006a, 2007a) in Anatomy toolbox. Although this 

atlas is being updated to include more brain regions, however, we were not able to have SMA 

with the it the moment we were performing this analysis. Thus, alternatively, the volume of 

SMA was determined from the newly released atlas used in SPM12 toolbox. 

Figure 12. Coronal (left) and axial (right) illustration of two architectonic subdivisions in M1, 

area 4a (red) and 4p (blue). Figure is made according to the subdivision by 

Forschungszentrum Jülich GmbH (Geyer et al., 1996)(Eickhoff et al., 2005).

1.3.3 Statistical analysis of fMRI data on individual level

A general linear model (GLM) of design matrix is specified for each movement condition 

for each subject. Estimation of statistical parameters is performed based on GLM model using 
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classic approach. Then, one sample t-test is performed to explore movement-specific activation 

by contrasting the movement with rest phases. In the end, thresholding procedure with false 

discovery rate (FDR) at 0.01 and minimum cluster size of 10 voxels is applied on individual 

statistical parametric map (t map) to determine significant activated voxels and clusters.

Thresholding procedure is performed within each ROI, namely M1, S1, SMA, SPL and IPL.

a) Center of gravity is defined by 3D MNI coordinates, in which the x, y and z-axis indicate the 

medio-lateral, antero-posterior and supero-inferior planes respectively. It has been widely 

used to describe the pattern of somatotopic arrangement and has demonstrated high intra-

session reliability (Alkadhi et al., 2002). In our study, the COG of each significant cluster is 

computed using home-written Matlab function. 

b) Overlapped voxels of two or more movement types are attributed to the one with highest t 

value in this voxel. This ‘winner-take-all’ method provides arbitrary description of the 

functional organization patterns within one ROI, especially when movement type specific 

activations overlapped extensively. This method has been adopted in previous studies and 

demonstrates somatotopic arrangement similar with that from Penfield’s stimulation study

(Meier et al., 2008)

c) Volume overlapping. In order to explore the character of volume overlapping across brain 

regions, we introduced an index to demonstrate the level of overlapping, in the following part 

of the thesis, I will use the term ‘ratio of overlapping’ (RO%) to indicate it.

RO% = Number of overlapped voxels/ Total number of activated voxels

Within each ROI, ROs within-limb and between limb were calculated, which were the RO 

between each two fingers, between one of three fingers with elbow, between one of three 

fingers with tongue, between elbow and tongue, separately.

1.3.4 Second level analysis

In order to explore the random effect of movement type, factorial design is defined in the 

second level analysis in SPM for each movement condition independently. Contrasts between 

movement and rest phase of each subject from first-level analysis were put into the design matrix, 
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and the t test is conducted to explore significant activation volumes specific to each movement 

type.

In the end, thresholding procedure with false discovery rate (FDR) at 0.01 and minimum 

cluster size of 10 voxels is applied on individual statistical parametric map (t map) to determine 

significant activated voxels and clusters.  Thresholding procedure is performed within each ROI, 

namely M1, S1, SMA, SPL and IPL.

1.4 Statistical analysis in group

In the group level analysis, peak activation could be located in each ROI for each type of 

movement. The brain voxel with peak activation indicates where the most prominent BOLD 

signal change occurs, and the activation volume could reflect a concentration of neuronal 

population underlying the control of a specific cognitive function. However, in previous 

literature, it has been demonstrated that that the coordinate of peak activation is less robust than 

the geographic center of the activation volume across sessions. Thus, in the following, any 

discussion on the functional organization will be based on COG.

In order to explore the effect of movement type on COG and effect of ROI on RO, further 

statistical analysis is performed with Statistica software, using individual values from the above 

first level analysis, which were the individual COG of each movement type, and the RO in each 

ROI. 

1.4.1 The effect of movement type on COGs within each ROI

In each ROI, repeated ANOVA is performed to explore the effect of movement type on 

the x, y and z value of COG respectively. This analysis is aimed to determine whether 

representations of different body parts are separable, thus provide statistic evidence on whether 

there is somatotopic arrangement in that particular brain region.
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1.4.2 The effect of ROI on volume overlapping

In order to examine the existence of significant volume overlapping for each pair of 

movement types (as described in 2.3.3) within each ROI, firstly, we performed one-sample t test 

with individual RO%.

Secondly, for those pairs of movements that were significantly overlapped, to examine 

whether the level of volume overlapping differs across brain regions, we performed repeated 

ANOVA with ROIs as the factor.
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3. Result

In this experiment, we found that 1) significant functional representation of simple 

movements exist not only in contralateral M1, S1 SMA, but also in higher cognitive region IPL; 

but in SPL, only elbow movement elicited significant changes in BOLD responses; 2) in M1, 

within-limb, representation of fingers and elbow overlapped extensively, with winner-take-all 

procedure, activation volumes of fingers interleaved, while activation volumes of elbow lies 

superior to those of fingers;  3) in M1, fingers have innervation of common intrinsic muscle

don’t exhibit higher RO% than fingers don’t have; 4) the arrangements of COGs in IPL indicate 

that somatotopic organization exists but with different structures as in M1, such as single 

repetitive movements of fingers don’t generate independent representation, and  the 

representation of mouth is close to the representation of upper limb. 

The activation volumes specific to each movement type distributed at contralateral M1 S1, 

PM and SMA, as well as parietal cortex, are shown in Figure 13.

Figure 13. Activation volumes of left- (column C and D) and right-side (column A and B) 

individuated movements.
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3.1 Movement-specific activations in motor-related brain regions

3.1.1 representations of simple movements in M1: COG and activation volumes

The 2nd level analysis of fMRI data indicated that all six movements of both the left- and 

right-side elicited significant changes of BOLD responses in contralateral M1(FDR 0.01, cluster 

size>10 voxels) (table 1). According to the anatomical and functional subdivision of M1 by 

Geyer and the followers (Caspers et al., 2006; Geyer et al., 1996), the peak activation of foot lies

uniquely on the medial surface of precentral lobe which is considered as area 4a; for elbow and 

the three fingers, each has two activated clusters with one lies in 4a and the other in 4p; mouth 

movement has one single activation centered in area 4p (table 1).

Table 1.  Coordinates of peak activation and volume size in M1 (area 4a and 4p)

Left hemisphere Right hemisphere

Peak activation

(x,y,z)

Nb.Vx* Peak activation

(x,y,z)

Nb.Vx

Thumb -33, -20, 46

-39, -26, 58

63

45

33, -29, 52

42, -23, 55

69

20

Index -36, -32, 58

-36, -27, 61

54

43

33, -26, 52 56

Little finger -36, -20, 52

-39, -17, 52

57

45

33, -23, 49

42, -23, 55

45

13

Elbow -36, -34, 61

-36, -39, 66

61

61

30, -29, 55

27, -29, 67

48

54

Tongue -57,   -8, 31 16 54,   -5, 28 15

Foot -15, -35, 73 143 3, -26, 67 137

* Nb.Vx, number of voxel.

As described in the method, COGs are used to describe the geographic location of each 

movement representations and to make statistical comparison (table2). Non-parametric ANOVA 

revealed that, for both left and right-side movements, movement type has significant effect on

COG on contralateral M1 at all three axis in the MNI space (right-side movement, x-axis,
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X2(4,N=10)=36.2,  p<0.001, y-axis, X2(4,N=10)=35.04, p<0.001, z-axis, X2(4,N=10)=34.96,

p<0.001; left-side movement, x-axis, X2(4,N=4)=13, p<0,05; y-axis, X2(4,N=4)=15.2, p<0.01; z-

axis, X2(4,N=4)=14.6 ,p<0.01). 

These results indicate that in M1, 1) the structure of functional localization of simple 

movement revealed in fMRI study mirrors the classic somatotopy described by Penfield

(Penfield and Boldrey, 1937) and others. In general, foot lies most superior and caudal at the 

paracentral lobule, while the tongue localizes in most ventral and rostral portion the lateral 

surface of precentral lobe; 2) within-limb, the geographic centers of small body parts, such as 

individual finger and elbow, also arranged in somatotopic order(see table 2, figure 14, figure 

result 14).

Table 2. COGs of each simple movement in M1 (area 4p and 4a) on group level.

Area Right-side movement

(x,y,z)

Left-side movement

(x,y,z)

Thumb 4p

4a

-35, -25, 50

-37, -27, 59

36, -24, 48

37, -30, 60

Index 4p

4a

-35, -26, 51

-37, -27, 59

36, -24, 49

NaN

Little finger 4p

4a

-34, -26, 51

-37, -27, 59

36, -23, 49

37, -28, 60

Elbow 4p

4a

-34, -27, 52

-30, -28, 61

35, -25, 51

26, -30, 62

Tongue 4p -51, -10, 31 49, -11, 33

Foot 4a -7, -32, 67 7, -31, 68
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Figure 14. COGs in contralateral M1 of right-side (A) and left-side (B) simple movements.

Figure 15. Activation volumes in contralateral M1 of right-side (A) and left-side (B) simple 

movements. Red, fingers; blue, elbow; green, foot; yellow, tongue.
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However, considering the arrangement of activation volumes, within-limb , small body 

parts do not exhibit a strict somatotopic order (figure 16). In this map, activation volumes of 

three individual fingers 1) overlapped extensively and 2) interleaved to exhibit no somatotopic 

order. In fact, the activation volume of elbow lies superior to three fingers and forms a core-

surrounding structure.
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Figure 16. Activation volumes of individual thumb(A), index(B) and little finger (C) 

movements in M1. Extensive overlapping exists among three fingers. Interleaved volume 

representation is shown for three fingers after winner-take-all procedure (D).With winner-take-

all procedure, each overlapped voxel is assigned to the movement type with highest t value, 

indicating higher neural activity in this voxel for that movement type. Red, thumb, green, index, 

blue, little finger.
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Within-limb, fingers representation also overlapped extensively with that of elbow (Figure 

17). However, after winner-take-all processing, the representation of elbow doesn’t interleave 

with those of fingers, but lies superior to them.

Figure result 17. Activation volumes of 3 fingers(red), elbow (blue) in M1. Extensive 

overlapping (purple) exists between fingers and elbow (A), after winner-take-all procedure, 

overlapped voxels are mostly assigned to finger movement.

First, these results are consistent with the well accepted somatotopy in M1 that arrangement 

between limbs follows the order of peripheral body parts, however, within the large subregions, 

for example the hand in our experiment, fingers are not arranged in sequential order. Second, we 

found an interleaved pattern of individual fingers, which is similar with the neurophysiological 

findings in primate and has not been well described in human .This implicates similar functional 

basis of human M1 in generating motor output as of primate (Rathelot and Strick, 2009). Third, 

we didn’t find any overlap between the representations of upper extremity and tongue, this is not 

consistent with the DES finding that implying the existence of hand/mouth synergy (Desmurget 

et al., 2014). In the end, the ‘homunculus’ pattern is also not significant in our result, since we 

didn’t find a significant larger activation volume of thumb than the other two fingers(table 1).
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This kind functional organization in M1, orderly arranged COGs and interleaved activation 

volume, could be the neural basis of skilled simple movements such typing and skilled 

coordinate movements such as reaching to grasp .
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3.1.2 Representations of simple movement of in S1: COGs and activation volumes

All six simple movements of both the left and right sides of the body, elicited significant

changes of BOLD responses in S1 (FDR 0.01, cluster size>10 voxels)(table3).

Table 3.  Coordinates of peak activation and volume size in S1 on group level

Left Hemisphere Right Hemisphere

Peak activation

(x,y,z)

Nb.Vx* Peak activation

(x,y,z)

Nb.Vx*

Thumb -33, -35, 46 219 48, -20, 34 174

Index -33, -35, 52 225 42, -20, 52 36

Little finger -33, -41, 61 236 42, -20, 46 51

Elbow -36, -44, 61 306 33, -38, 55 155

Tongue -57,  -8, 28 80 48, -20, 31 78

Foot -12, -38, 58 10 9, -44, 67 10

* Nb.Vx, number of voxel.

Table s01.  COGs of each simple movement in S1 on group level.

Right-side movement

(x,y,z)

Left-side movement

(x,y,z)

Thumb -42, -29, 50 43, -27, 47

Index -43, -29, 49 44, -24, 50

Little finger -42, -30, 50 45, -21, 48

Elbow -39, -31, 52 33, -37, 56

Tongue -54, -14, 32 54, -12, 29

Foot -12, -39, 62 11, -42, 65

Non-parametric ANOVA demonstrated that movement type has significant effect on the 

location of COG on all three axis (x-axis, X2(5,N=6)=24.6, p<0,001; y-axis, X2(5,N=6)=26,

p<0,001; z-axis, X2(5,N=6)=20.4, P<0,01) for right-side individuated movements, and on two of 

the three axis for left-side movement (x-axis, X2(5,N=5)=10.8, p=0.055; y-axis, X2(5,N=5)=14,

p<0,05; z-axis, X2(5,N=5)=13.9, p<0,05), indicating somatotopic representations of simple 

movements in S1. Further post-hoc analysis demonstrated independent functional localization of 
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thumb and little finger on Y axis (Wilcoxon rank test, Z=2.4,p<0.05) of right hand, but not of left 

hand.

The functional localizations of six simple movements in S1 in terms of COGs have similar 

structure with that in M1, for both sides of movement (Figure 18). In S1, 1) foot representation 

localizes in most dorsal and caudal part of S1 while mouth representation lies on the most ventral 

and rostral region, 2) fingers and elbow representations lie in between. This mirrors the classic 

map of Penfield’s and others (Penfield and Boldrey, 1937). Differently, the COGs of simple 

repetitive finger movements are not as segregated as in M1, showing as that only the right-side 

thumb and little finger movements evoked separable COGs, but no other fingers pairs having 

distinct COGs.

Figure 18. COGs of each simple movement in S1, on left and right hemisphere.
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Considering the activation volumes, first, similarly as in M1, within the hand region, thumb, 

index and little finger overlapped and interleaved (Figure 19). Also, differently, these activation 

volumes of upper limb are much larger in volume size (table 3) than those in M1, with the foot 

activation having the smaller size which is just the opposite as in M1(see in table1 and table 3).

These results are consistent with other MRI study, in which the neural representations 

elicited by simple movements are different in M1 and S1(Hluštík et al., 2001).

Figure 19. Activation volumes on left S1 evoked by right-side repetitive simple movements of 

little finger separately(A-C) and the arrangement after winner-take-all process (D). Red, thumb, 

green, index, blue, little finger.
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3.1.3 Representations of simple movement of in parietal cortex

In parietal cortex, repetitive simple movements evoked significant changes of BOLD 

response in both SPL (table 5) and IPL (table 6). But SPL is less excitable than IPL by this kind 

of simple motor task, because only elbow movement has significant functional representation on

both sides of the SPL. This result resembles the findings in primate, when monkeys were guided 

to perform simple, non-objected related movement, no motor responses could be recorded from 

the parietal cortex (Rozzi et al., 2008). Therefore, further analysis focus on the IPL.

Table 5.  Coordinates of peak activation and volume size in SPL

Right body Left body

Peak activation

(x,y,z)

Nb.Vx Peak activation

(x,y,z)

Nb.Vx

elbow -30, -44, 55

-6, -29,46

124

29

24, -47, 70 35

Table 6. Coordinates of peak activation and volume size in IPL

Right body Left body

peak activation

(x,y,z)

Nb.Vx Peak activation

(x,y,z)

Nb.Vx

Thumb -48, -32, 31 10 51, -32, 43

54, -29, 25

24

42

Index -54, -29, 19

-48, -23, 34

26

42

66, -26,22 51

Little finger -54, -26, 28 103 NaN NaN

elbow -51, -32, 19

-54, -26, 43

73

43

60, -29, 22 164

tongue -54, -26, 34 16 60, -32, 16

48, -20, 28

111

12

foot -60, -29, 16 35 69, -29, 19 49
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First, IPL has relative complete functional representations on both hemisphere.

For the right-side movements, on individual level, 3 of 12 subjects who had significant

activation of little finger movement displayed two activation volumes of it,1 of 12 subjects who 

had significant activation of index finger displayed two activation volume of it , and 6 of 12 

subjects who had significant activation of elbow movement displayed two activation volumes of 

it. Further, 2nd level analysis of fMRI data showed that all of the six right-side movements have 

significant activation on contralateral IPL (table 6), within them, only simple index and elbow 

movements have double activation volumes in IPL (Figure 20). Thus, during statistical analysis,

for elbow movement, we  consider the activation volume closer to IPS as cluster 1 (mean COG 

=-55, =-31, =30)and the other as cluster 2 (mean COG =-49, =-50, =20)for 6 subjects 

who have double representations of it. Also, non-parametric ANOVA indicated that the COGs of  

three fingers movements demonstrate no significant difference at any of the three axis in MNI 

space thumb=- index=- little_finger=-56; thumb=-28, index=-29, little_finger=-27, , 

p=0.5; thumb=32, index=33, little_finger=34, Friedman-test by rank, p=0.7), therefore, in further 

statistical analysis, we consider the overall activation of three fingers as ‘fingers movement’, and 

the COG of finger is used in the comparison with elbow, tongue and foot in the following 

between-limb analysis (see in table 7 and figure result 20). Non-parametric ANOVA between-

limbs revealed significant effects of movement types, namely fingers, elbow_c1, elbow_c2,

tongue and foot, at x- (X2(4,N=5)=10.1, p<0.05), y- (X2(4,N=5)=13.6, p<0.01) and z-

(X2(4,N=5)=15.5, p<0.01) axis separately, indicating somatotopic arrangement of fingers, elbow, 

tongue and foot in left IPL.
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Table 7. COGs of each movement and corresponding architectonic subdivisions in left IPL.

COG

(x,y,z)

Anatomical

Label
Nb.Vx Volume extent (most)

Tongue -55 -24 37 PFt 16 73.6% in PFt

Finger -51 -27 30 PFt 139 47.3% in PFt

Elbow -52 -26 39 PFcm 78 38.3% in PFcm

-54 -31 21 PFt 40 65.8% in PFt

Foot -56 -30 19 PFop 35 33.8% in PFcm

Figure 20. Peak activations of all six simple movements on left IPL.
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Figure 21. COGs of fingers, elbow, tongue and foot of right side movements on left IPL.

This result indicates a complete somatotopic arrangement of the neural responses of 

repetitive simple movement, including fingers, elbow, tongue and foot, in the most anterior 

subdivisions of IPL (Caspers et al., 2006, 2008). This map is different from the motor response 

maps from primate study, within which recorded motor responses distributed along the IPL(both 

PF and PG regions), but similar with the somatosensory map in primate’s IPL that concentrates 

in the PF region.
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Activation volumes also overlap in IPL. Within limb, representations of elbow overlap with and 

surround  representation of fingers (Figure 22A).  Interestingly, the representation  of simple 

tongue movement lies within the region of fingers. This kind of organization probably relates to 

the  role of IPL in action intention and organization. 

Figure 22. Representations of fingers and elbow movement (A), fingers and mouth movement 

(B). Activation volumes overlapped extensively between fingers and elbow (A), and between 

fingers and mouth (B).

In summary, four findings in IPL are of particular interests,  1) repetitive 

extension/flexion of individual finger doesn’t have independent functional representations in IPL; 

2) neural response of repetitive simple movements of fingers, elbow, mouth and foot have are 

organized in somatotopic manner in contralateral PFt and PFcm regions, which are the two most 

rostral architectonic subregions of IPL (Caspers et al., 2006), 3) repetitive simple movement of 

elbow has double representations that surrounds the representation of finger 19 and 20)

differently with in M1 the representation of mouth has significant overlap with that of fingers in 

IPL (figure result 22 B).
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3.2 Volume overlapping across motor-related brain regions

In fMRI studies intending to localize the functional specialty of simple movement, one 

prominent feature is the extensively volume overlapping within each motor and sensory-related 

brain region, such as in M1, S1, PM and SMA.

In this study, with ‘winner-take-all’ method (see in method), we managed to make an 

arbitrary illustration of the somatotopy of the six simple movements within the territory of each 

ROI (Figure 23). Although with this computation, some information like the effect of multiple 

movements in single voxel is concealed(Meier et al., 2008) this illustration could still 

demonstrate some basic features functional organization, 1) in contralateral M1, foot, elbow, 

fingers and tongue are represented progressively from dorsal to ventral portion of precentral lobe,

and the fingers entangling without sequential order but represented a interleaved pattern of 

organization with finger interleaved within the hand region; 2) in contralateral S1, similar dorsal 

to ventral organization also exists, but the activation volumes are larger and with different 

proportion between body surface and volume size as in M1; 3) in IPL, simple movements of 

large body parts such as hand, elbow, tongue and foot, also have distributed representations in 

the most anterior PF regions , also, we found significant overlap of activation volume between 

tongue and hand that is not represented in M1.
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Figure 23. Somatotopic organizations of six simple movements across multiple motor-related 

brain regions. The category of overlapped voxels is determined by ‘winner-take-all’ procedure.
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3.2.1 Volume overlapping within-limb

RO% of three fingers, as well as between pairs of fingers, are computed separately for each 

subject using home-written Matlab function. Within the overall activation region of all three 

fingers in each ROI, those voxels which are activated by more than one finger movements are 

assigned to the finger with the highest t value in this voxel. In this way, we computed the mean 

RO for each ROI for left and right hand separately. 

Although in M1, simple repetitive flexion/extension of individual finger could evoke 

independent representations in terms of COG, is it appropriate to infer that movement is the basic

unit underlying the organization in M1 in generating motor output?  We further explored the 

volume overlapping of different finger pairs in M1, in order to test the hypothesis that if the 

volume overlapping simply implying the recruitment of common muscles between different 

movements, we could expected different degree of overlapping between different finger pairs.

Repeated ANOVA indicates that, in area 4p,  the values of RO% of thumb vs. index(65%), 

thumb.vs little finger(69%) and index vs. little finger (68%) are statistically identical. This result 

doesn’t support the hypothesis that RO% reflects the neural response of commonly recruited 

muscle (Figure 24).
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Figure 24. Volume overlapping (RO%) of each pairs of right-side finger movements across 

contralateral brain regions having independent representation of fingers. The category of 

overlapped voxels are determined by winner-take-all procedure. 

Repeated ANOVA indicates that for all three finger pairs, RO% is significant higher in 4p 

than in S1 and SMA(thumb vs. index,  F(2,26)=7, p<0.01; thumb vs. little finger, F(2,24)=11.5, 

p<0.001; index vs. little finger, F(2,26)= 6.4, p<0.01), which means that compared to M1, 

activation volumes of individual finger movements are more distributed and segregated in S1 

and SMA, this is contradicted with the result of COG (see in part 3.2.1) (Figure 23).

Also, within limb, the representation of fingers and elbow overlapped in M1, S1, SMA, and 

IPL. Because there is no separable representation of individual finger in IPL, we compare only 

the individual finger and elbow in area 4p, S1 and SMA (Figure 23).
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After, we examined the RO% of 3 pairs of fingers, namely thumb and index, thumb and 

little finger and index and little finger. Non-parametric ANOVA indicates that for right hand, 

ROI had significant effect on volume overlapping between thumb and index (X2(2,N=14)=10.9, 

p<. 01), between thumb and little finger (X2(2,N=14)=7.4, p<. 05), as well as on that between 

index and little finger (X2(2,N=14)=7, p<.05) (Figure 23). The cooperation of thumb with index 

is supposed to be more frequently than that of index with little finger, however, for the right hand, 

we didn’t find any statistical difference on the ROs of the two pairs of fingers, on any one of the 

ROIs.Therefore, the volume overlapping between finger pairs on motor related regions can not 

reflect the difference on the movement coordination between finger pairs.

In summary, within-limb, the volume overlapping across five motor-related brain regions 

exhibits three main character, 1) overall speaking, both three fingers and finger-elbow pairs are 

less overlapped in IPL and SMA than in M1 and SMA, 2) three digits overlap with equal amount

in area 4p and S1, but overlapping between index and little finger are significantly higher than

that other two finger pairing in SMA and IPL (Figure 23); 3) finger-elbow pairs overlap with 

equal amount in M1, S1, and SMA, however differently, in IPL index and little finger overlap 

with elbow more than thumb and elbow. These discrepancies of RO% across motor related 

regions implying that the neural basis underlying the representations of individuated finger 

movements in 4p and S1 might be different from that in SMA and IPL.
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Abstract 

In the past decades, direct electrical stimulation (DES) has been a key method not only in 

determining the organization of brain networks mediating movement, language and cognition but 

also in establishing many central concepts of modern neuroscience, such as the electrical nature 

of neural transmission, the localization of brain functions and the homuncular arrangement of 

sensorimotor areas. However, recent criticisms have questioned the utility of DES and argued 

that data collected with this technique may be flawed and unreliable. Like any other 

neuroscientific method, DES does have limitations. However, existing evidence argues strongly 

for its validity and usefulness by demonstrating that DES produces highly specific outcomes at 

well-defined anatomical sites and significantly minimizes post-operative deficits in brain-

damaged patients.
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Worthiness of Electrical Brain Stimulation: a long-standing controversy

Approximately 150 years ago Fritsch and Hitzig discovered that direct electrical 

stimulation (DES) of the cerebral cortex of dogs evokes localized, topographically organized 

muscles contractions in the contralateral hemibody [1]. This discovery led several researchers to 

use electrical stimulation to probe the anatomic and functional organization of the brain [2, 3].

David Ferrier was perhaps one of the most famous. Using DES in various animal species, he 

reported that complex, ethologically relevant movements were represented in specific cortical 

areas [4]. However, these results were promptly challenged by critics who argued that such a 

somatotopic arrangement was artifactual and related to some uncontrolled spread of current [2].

Strikingly, things have not really changed since the pioneering ages of DES. For the last 

century, this method has kept providing unique clinical and fundamental knowledge with regard 

to the anatomo-functional organization of the brain [5-11]. However, at the same time, critics 

have kept challenging the relevance of this knowledge [12-14]. Although formulated in 

contemporary terms, the core arguments against DES remain mostly similar to the arguments 

originally encountered by Fritsch, Hitzig, and Ferrier. They are centered around the idea that 

DES outcomes cannot be convincingly interpreted because the electrical current artificially 

delivered at a specific brain location has unknown effects at local and distant neural sites [13, 14].

In line with this reservation, some eminent neuroscientists gone as far as to wonder whether DES 

was an adequate tool for probing cortical functions [12].

The major strength of these criticisms, and the reason for their recurrence, lies in the fact 

that they are hardly falsifiable. Whatever the outcomes of a stimulation experiment, it is always 

possible to argue that DES acts through some unknown saturating, activating or inhibiting 

influences at local and/or distant sites. For instance, if a specific behavioral effect is observed 
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following stimulation of the parietal cortex, it is always possible to argue that this effect does not 

reflect a parietal involvement for the considered behavior but rather the role of some obscure 

remote region activated/inhibited through stimulation of axonal pathways [13]. No matter what 

one does, this type of argument is irrefutable [15]. However, does this status of irrefutability 

mean that the argument is likely or plausible? The aim of this review is to address this issue. 

Below, we argue that DES offers a unique opportunity to examine neural functions and hence to 

probe the anatomo-functional organization of the brain. We provide evidence that, even though 

DES is not devoid of limitations and shortcomings, the major recurrent criticisms faced by this 

method are essentially unfounded. When objectively evaluated, these criticisms appear to be, for 

the most part, unsupported by the actual effects of DES as they are reported in the clinical and 

basic neuroscientific literature. On the contrary, DES evokes reliable and highly specific 

outcomes that are unlikely to be artifactual and associated with an anarchic spread of current. In 

relation to this point, one may note that critics of DES often have a tendency to interpret the 

outcomes of electrical stimulation in isolation, without considering complementary observations 

provided by other methods such as neuroimaging or brain lesions [13]. However, such 

observations are essential for interpreting DES effects and distinguish between purely theoretical 

criticisms and objectively valid reservations.

DES and the sensorimotor system

In humans, several motor-related cortical areas (designated "motor areas" hereafter) have 

been shown to evoke movements when electrically stimulated [5], including the primary motor 

cortex (M1) [16], the primary somatosensory cortex (S1) [17], the premotor cortex (PMC) [6],

the supplementary motor area (SMA) [18], and the cingulate cortex (CC) [19]. Interestingly, 
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these areas are widely interconnected with each other and they all have direct efferent projections 

to the spinal cord [20-23]. As a consequence, it can easily be argued that any artificial mix of

direct and indirect activations can mediate any motor effect of electrical stimulation [12]. For 

instance, movements evoked by stimulating PMC can reflect a direct recruitment of the 

corticospinal projections emanating from this structure and/or an indirect activation of remote 

pathways originating from M1, S1, the SMA and CC [13].

Although there is no doubt that even single stimulation pulses propagate laterally through 

cortico-cortical connections [24], there is little evidence that this spread of current can evoke 

muscle activations through the recruitment of remote structures with descending projections to 

the spinal cord. This can be seen, for instance, in the fact that many parietal and prefrontal 

structures, known to be heavily and reciprocally connected with motor areas [25-28], do not 

trigger movements when electrically stimulated [29]. As initially shown by Penfield, in a large 

series of patients, the only cortical regions that consistently evoke movements in response to 

DES, in humans, have direct access to the spinal cord [5]. This observation is consistent with a 

recent study showing that the type of long train high-frequency electrical stimulation used in 

surgical mapping procedures in humans [30] tends to silence distant cortical sites, which predicts 

that functional activation of remote descending pathways will be prevented [31].

The claim that DES anarchically recruits direct and indirect descending pathways seems 

also hardly compatible with the functional specificity of the movements evoked by this technique. 

Indeed, in contrast to what has recently been suggested [14], DES effects are highly specific to 

the cortical region being stimulated [29]. Clearly, the argument of behavioral syncretism only 

holds, at first glance, when the functional characteristics of the evoked responses are disregarded. 

For instance, as shown in fine-grained studies, the motoneurons controlling upper-limb muscles 
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exhibit a distinct pattern of activations following stimulation of M1 or SMA [32, 33]. In the same 

vein, the movements triggered by stimulating the precentral gyrus or the cerebellar cortex are 

dramatically different. While stimulation of the cerebellar cortex evokes highly focal single joint 

responses [7], stimulation of the precentral gyrus often elicits complex multijoint synergies [6,

10, 34] (Figure 1). Interestingly, it has been suggested that these synergies could be the trivial 

biomechanical outcome of tetanically recruiting spinal interneurons (which would cause an 

artificial tonic cocontraction of the limb muscles). In support of this view, it was reported that 

upper-limb movements achieving a constant final posture were also evoked by stimulating the 

corticospinal tract at medullary levels [12]. This is true. However, the criticism overlooks two 

important facts. First, within the precentral gyrus, stimulation at different -but spatially close-

sites evoke movements that have very different functional characteristics [35] (Figure 1), which 

would not be expected if these movements did represent a mere artifact of anarchically activating 

spinal motoneurons. In agreement with this claim, it has been shown, within precentral regions, 

that motor sites are organized in a manner that optimizes topographic continuity of common 

motor behaviors [36]. Second, complex movements triggered by stimulating the precentral gyrus 

and the spinal cord have fundamentally different characteristics. Movements evoked through 

spinal stimulation have no biological plausibility at all. They consist of brisk flexions of the 

entire limb, that are highly variable from trial to trial and occur with exorbitant latency (up to 

several seconds) [37]. By contrast, the responses elicited by cortical stimulation have short 

latencies, a high degree of inter-trial reproducibility and an electromyographic (EMG) pattern 

that is strikingly similar to the pattern of natural movements [10, 34]. In agreement with this 

point, one may emphasize that the complex movements reported following stimulation of the 

precentral gyrus are not arbitrary, as would be expected from a blind recruitment of motoneurons. 
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They have a clear ethological value [38], as can be seen clearly for hand-to-mouth synergies in 

which the closing hand to approach the face while the mouth is opening [10]. These synergies 

are already expressed by human fetuses during gestation, which makes it tempting to speculate 

that they are genetically prewired [39, 40]. If one assumes that this type of movements result 

from a simple spread of current, one should predict the occurrence of similar responses evoking 

unnatural synergies in which, for instance, the hand would move away from the opening mouth 

or the mouth would close while the hand is approaching. Also, one would expect high intensity 

stimulations to systematically evoke motor responses at different joints and limbs. None of these 

predictions is verified: first, sites evoking focal and complex movements intermingle in the 

precentral gyrus, which suggests that local and distributed motor representations co-exist in this 

region [41, 42]; second, unnatural uncoordinated synergies have not been observed in response 

to electrical stimulations that evoke natural coordinated responses [10]. Note that this ability of 

electrically stimulated responses to closely mimic the characteristics of endogenous movements 

has also been documented for various regions of the saccadic and gaze orienting systems [43].

At a more general level, the idea that DES produces local effects is also supported by 

studies in which this technique was paired with single-cell recordings [44, 45], pharmacological 

inactivations [45, 46] or anatomical lesions [4, 47-49]. For instance, in his pioneering work, 

Ferrier himself reported that stimulation and lesions of a given precentral area affected the exact 

same muscles [4]. Further experiments confirmed this result by showing that a lesion of a 

precentral area identified as the "hand knob" on the basis of electrical stimulation, resulted in a 

severe, localized, impairment of manual dexterity [47, 48]. Additional studies confirmed this 

local action of DES for other brain regions. In PMC, for instance, it was demonstrated that the 

neurons triggering limb movements when electrically stimulated are the same as the neurons 

76 
 



activated during natural goal-directed reaches [44]. Likewise, in the cerebellum it was found, 

using focal anatomical lesions, that movements evoked by stimulation of the cortex [7] or output 

nuclei [50] of this structure were not mediated by the heavy projections from the cerebellum to 

M1 [51], but by descending cerebello-spinal pathways going through the reticular formation [49].

Overall, all these results show that electrical stimulation of motor areas has astonishingly 

specific and local effects that closely mimic the characteristics of endogenous responses. 

Formally, the hypothesis that DES-evoked movements reflect a tetanic activation of the spinal 

interneurons [12] or the anarchical recruitment of some remote corticospinal projections [14],

cannot be rejected. Pragmatically, however, this widely-spread criticism is clearly not supported 

by the experimental evidence.

DES and cognitive functions

While most authors agree that DES is a unique tool for identifying causal links between 

neural processes and specific cognitive functions [29, 43, 52-54], detractors of this technique 

assert that the propensity of electrical current to spread in a random, unpredictable manner within 

brain networks precludes any possibility of causal reasoning [13, 14]. This criticism is mainly 

based on the claim that stimulation outcomes are dramatically variable and heterogeneous. In 

support of this view, it is argued that DES at one site can sometimes generate opposite results 

while DES at distinct sites can sometimes have identical effects [14]. Although these arguments 

need to be carefully considered, it does not seem that the examples put forward to support them 

are totally fair and convincing (Boxes 1 and 2). In fact, a general evaluation of the literature 

seems to show the contrary, namely that electrical stimulation has, in general, highly specific and 

(based on data gathered from other methods) predictable effects on non-motor functions. For 
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instance, in human patients, conscious desires to act, formulated as general action categories 

("move the arm"), have only been reported in response to stimulations of neural populations 

linked to movement intention in the inferior parietal lobule [6, 15]. By contrast, irrepressible 

impulses to act, expressed as finely characterized movements ("urge to lift right elbow" or "move 

right arm away"), have only been observed following stimulation of the SMA [18]. Likewise, in 

subjects with subdural electrodes in the inferior temporal gyrus, deficits in face perception have 

been shown to occur only in response to electrical stimulation of the exact neural populations 

that are involved in the process of facial recognition [55]. A similar observation was reported for 

motion detection in the medial temporal area (MT) [29, 43, 54]. The production of language 

offers another example of this high level of specificity. Dense connections are known to exist 

between frontal and temporal language-related regions [56, 57]. However only frontal areas 

disrupt speech when stimulated, while, on the other hand, only stimulation of temporal structures 

consistently causes alexia [58]. The same type of dissociation has been reported for the 

production of saccadic sequences. While strong interconnections link the supplementary (SEF) 

and frontal (FEF) eye fields, only the former region biases the order in which animals perform 

memorized saccades [59], an outcome that agrees with the results of single-cell recordings [60].

As shown in recent reviews [29, 43, 54], such results, which cannot be exhaustively reviewed 

here, are not epiphenomena. They fairly illustrate the general reality of the scientific literature on 

electrical stimulation, which shows that, in most cases, the behavioral effects of DES reflect 

disruption of neural activity at the stimulated site (see also [29]).

Of course, it may happen that roughly comparable behavioral deficits are evoked through 

stimulations of different areas. However, this does not necessarily mean that current anarchically 

spreads from the stimulated regions to a remote area that would subserve the observed behavior 
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[14]. The existence of multiple disruptive sites for a given function may just reflect the fact that 

complex cognitive responses are rarely mediated by a single brain area. Disrupting any region 

within a functional network is expected to prevent the correct expression of the overt behavior 

mediated by this network. For instance, face recognition is known to involve a distributed set of 

interconnected areas [61]. Consequently, it is not surprising that stimulation at different sites 

within this network (but not outside) disrupt face recognition [55].

It may also happen that behavioral deficits occur following electrical stimulation but not 

ablation of a given region. This is not surprising, considering that the brain is a highly plastic 

structure with high redundancy and can radically rearrange its organization in response to 

injuries [62]. The basal temporal language area (BTLA) is an interesting example. Stimulation, 

but not resection of this region has been reported to produce aphasic symptoms [63], which has 

been said to constitute a direct proof that DES can operate remotely through generating neural 

perturbations at distant sites [14]. However, neuroimaging data have linked BTLA to language 

processing [64] and some studies have described transient aphasic symptoms in some patients 

following spontaneous seizures [65] or ablation [66, 67] of this region. It is therefore plausible 

that the absence of long-term clinical effects when BTLA is resected echoes the existence of 

postoperative plastic adaptations rather than the artifactual nature of the deficits observed in 

response to DES. In agreement with this hypothesis, the literature provides a few other examples 

showing that resecting or inactivating an eloquent brain region can have little functional impact. 

For instance, it is now well established that ablation of the FEF induces only minor changes in 

saccade metrics, although electrical stimulation of this oculomotor region that projects to the 

brainstem oculomotor nuclei evoke saccades that resemble endogenous saccades [43]. In the 

same vein, resection of the SMA, a major motor area that projects to the spinal cord and triggers 
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movements when stimulated (see above), results in severe but highly transient behavioral deficits 

[68, 69]. Even, Broca's area, a region that clearly perturbs language production when stimulated 

[58], can be removed in some patients without inducing permanent language deficits [62].

Still, the data above do not mean that remote effects never drive DES outcomes. However, 

even in this case, the evoked behaviors are unlikely to reflect an aberrant, meaningless jumble of 

current spread. Convincing evidence exists that DES propagates within physiological pathways 

in a way that mimics the neural recruitment observed in natural situations [29, 52]. In V1, for 

instance, DES generates activity in specific, topographically related sites of the extrastriate 

cortex [70]. Likewise, in the ventral visual pathway, stimulation of a given point within the 

neural network mediating face recognition produce activations in a restricted set of regions 

containing face-selective neurons [61] (Figure 2). So, at worst, it may be said that DES allows to 

map anatomical nodes within structured functional networks. From an interpretative perspective, 

such a conservative claim does not challenge the view that DES exerts a causal action on the 

observed behavior (see also [29]). 

In practice, these data raise the question how to distinguish between direct and remote 

effects of DES. Although there is no perfect way to do so, a powerful approach, illustrated in 

several examples above, is to combine DES results with observations from others experimental 

techniques, including neuroimaging, anatomical tracers, single-cell recordings, pharmacological 

inactivation studies, and anatomical lesions. It should be clear that DES outcomes cannot be 

unambiguously interpreted in isolation. However, this should not be used to dismiss DES 

observations as uninterpretable a priori. For instance, in awake patients, electrical stimulation 

delivered over the inferior parietal lobe triggers feelings of conscious intention [6]. Numerous 

data from various fields link this region to the emergence of conscious motor intention [71, 72].
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So, the conclusion that DES has a direct causal effect on the observed behavior seems far more 

plausible than the ritualistic standpoint that the effect is mediated by another, so far unknown,

brain structure [13]. A revealing example of how data from various fields can help distinguishing 

between direct and remote effects of DES can be found in studies describing the occurrence of 

organized defensive movements after stimulation of the ventral intraparietal area (VIP) in 

monkeys [73]. Because VIP has no direct access to motoneurons, these defensive movements 

have to be mediated by some remote region. Interestingly, VIP is monosynaptically connected 

with a precentral area (PZ) that projects to motoneurons and evokes similar defensive responses 

when stimulated [10]. As a consequence, the most plausible hypothesis would be that DES over 

VIP triggers sensory signals that are conveyed to PZ, where they activate neural representations 

of defensive behaviors which, in turn, recruit descending projections associated with the 

expression of these behaviors [74, 75]. In this example however, movement does not result from 

a blind artificial spread of current in some distant area, but from the recruitment of an organized 

functional circuit that supports the production of endogenous defensive actions. Inactivating PZ 

while stimulating VIP would make it possible to directly test this hypothesis. 

DES and clinical mapping

Probably the most direct and convincing evidence that DES has specific, highly reliable 

effects comes from the successful use of this technique during functional peri-operative mapping 

in human patients with brain tumors. Since the pioneering work of Penfield, DES has proved 

highly efficient for identifying eloquent regions related to motor and cognitive functions [5, 53,

76, 77], which allows to dramatically reduce the occurrence of permanent postoperative sequelae 

in the patients while significantly improving their long-term survival [78-80]. Regarding 
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language, for instance, partial resection of neural sites identified as eloquent by DES gives rise to 

permanent deficits [81]. By contrast, preservation of these sites allows complete recovery of 

linguistic functions within 6 months, in almost 99 % of the subjects [58]. As shown by a recent 

study, although preoperative neuroimaging techniques can be helpful for guiding the surgical act, 

they are, by far, not as effective as DES for ensuring a safe and complete ablation of the tumor 

[82].

In light of these results, DES critics have recently suggested that a conceptual boundary 

should be drawn between the clinical and fundamental merits of DES [14]. While this technique 

would be valid for causally identifying eloquent regions in surgical setups, it would represent an 

equivocal and unreliable approach for studying brain functions in fundamental contexts. The 

reason for such a conceptual segregation seems quite obscure. If, as claimed with respect to 

fundamental neuroscience, DES effects are so unreliable and reflective of an artificial spread of 

current at local and distant sites, then we must ask how it can be that this technique is so 

effective at preventing postoperative deficits in neurosurgical contexts. In other words, if the 

result of stimulating a given area cannot tell us anything about the functional role of this area, 

then one should expect DES to have no significant clinical benefits. Clearly, this is not what the 

literature demonstrates. The clinical effectiveness of DES is highly consistent with one of the 

key hypotheses of the present paper, namely that this technique offers critical insights into brain 

functions.

Concluding remarks

To summarize, it appears that, during the last century, DES has provided a unique body 

of knowledge about the anatomo-functional organization of the brain [29, 43, 52-54, 58].
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However, despite this extremely valuable contribution, the same criticisms keep appearing in the 

literature to challenge the relevance and reliability of DES results (Box 3). The evidence 

reviewed in this paper show that these ritualistic, knee-jerk criticisms are no longer tenable when 

the actual scientific literature on DES is considered. The view that current delivered at a given 

brain site spreads in a meaningless jumble cannot be reconciled with the striking specificity of 

DES outcomes and the fact that electrical stimulation dramatically minimizes post-operative 

deficits during brain surgery. From a functional point of view, the body of knowledge provided 

by converging experimental approaches allows, in most cases, to convincingly interpret DES 

outcomes and distinguish between local and remote influences. 

Like any other neuroscientific technique, DES is certainly not flawless. However, it is 

also not as indecisive and equivocal as it is sometimes said to be on the basis of purely 

theoretical considerations. It is our belief that actual data should be given more credibility than 

conceptual constructs when evaluating the merits of any experimental approach.
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Box 1: Can DES at one site give rise to opposite behavioral effects?

A major argument against the specificity of DES states that stimulating a given site with 

different parameters (frequency, duration) can generate contradictory behavioral outcomes [14].

Although attractive at first glance, this argument may not be as strong as it seems. Indeed, 

strictly speaking, opposite behaviors are not observed "at the same site". At best, they are found 

within the same broad region, generally in different subjects. To make this point clear, let us 

evaluate the evidence put forward by Borchers et al. [14] to support this claim that opposite 

effects can be evoked from a given cortical site (Figure Box 1). In this review, the authors 

consider several examples such as vocalization and inability to speak, conscious motor intention 

and anomia, and paresthesia and numbness. It is explicit from Penfield's pioneering work (which 

is cited by the authors of the review) that vocalization and inability to speak are not found at the 

same locations [5]. Also, to the best of our knowledge, no evidence is available, to date, that a 

single neural site can evoke conscious motor intentions while also causing anomia (a possibility 

that was directly investigated by Desmurget et al. [6]). Finally, it is unclear why paresthesia 

would be a positive behavioral sign while numbness would be a negative one. Classically, 

numbness is considered a manifestation of paresthesia. Penfield himself (whose data are used by 

the authors of the review) makes it clear that numbness and other type of sensations (in particular 

tingling) cannot be segregated from his study [5]. According to this author "in 204 responses 

[the quality of sensation resulting from cortical stimulation] was called tingling or electricity, 

131 times numbness, which at times was explained to mean numbness with tingling, at other 

times absence of all sensation" ([5], p 433). One patient, for instance, reported a sensation in the 

hand and finger, "when asked what the sensation was like she replied: 'like going to sleep.' When 

asked if it was numbness or tingling, she replied "Both' " ([5], p 400). In light of these results, it 
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seems that a fair account of the existing literature would not state that DES at one site can have 

opposite behavioral effects, but rather that broad cortical regions can be involved in more than 

just one cognitive or motor function. 

Box 2: Does DES at different sites evoke similar behavioral effects?

Another major argument against the specificity of DES states that stimulating distant 

areas can evoke identical behavioral outcomes [14]. This is a puzzling claim for at least two 

reasons. First, most motor and cognitive functions does not rely on the recruitment of a single 

brain region but rather on the recruitment of distributed networks of distant areas. So, it does not 

seem unreasonable at all to assume that the stimulation of distant regions may affect the same 

general behavior [83]. Second, studies reporting that DES delivered at distant sites has similar 

effects do not seem common in the literature, especially in the cognitive domain. As a matter of 

fact, we were unable to find a totally convincing example in which DES would evoke strictly 

identical cognitive outcomes for stimulations delivered over different brain regions. To illustrate 

this point let us consider the evidence that is said to contradict this assertion in the review of 

Borchers and colleagues [14] (Figure Box 2). According to these authors, three areas evoke an 

identical "desire to move" when electrically stimulated: the inferior parietal lobule (IPL), the 

supplementary motor area (SMA), the precentral gyrus (PG). Technically, this claim of similarity 

cannot be evaluated for PG since Penfield did not provide any precise information regarding the 

sensation experienced by his subjects for this site [5]. What about SMA and IPL? In the former

region, the patients typically report a compulsive desire to act with no sense of agency [18]. The 

movements are described in very accurate terms (e.g. an "urge to move right leg inward") and 

when the intensity of the current is increased, a motor response actually occurs. IPL stimulation 
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provides a very different picture in which the patients report their motor intentions in very 

general terms with a strong sense of agency [6]. When prompted to describe the exact movement 

they wanted to execute, they either say that they "don't know" or they only provide a vague 

description evoking, for instance, "a desire to move the hand". No movement is ever evoked at 

these sites even at high intensities. Together, these data indicate that the effects of stimulating 

IPL and SMA are not similar at all. The contrasting responses observed for these regions are 

consistent with the conclusion that intentions in IPL are related to the early selection of a motor 

response not yet constructed, whereas the urge to move found in SMA is related to the late 

imminent release of an already planned movement [6, 72].

Box 3: Outstanding Questions

) Does DES spread blindly within cerebral networks?

) Does DES evoke variable (sometimes opposite) effects at the same cortical site?

) Does DES evoke identical effects at distant cortical sites?

) If DES if so unreliable how can we explain its remarkable ability to minimize postoperative 

deficits in brain damaged patients?
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Figure 1: Functional and spatial specificity of the DES-evoked movements. Left panels show: 

(A) EMG signals related to a multijoint movement typically evoked by stimulating the precentral 

sulcus -flexion of the left wrist, fingers, and elbow, as well as a rotation of the forearm-

(individual brain of the patient; blue area represents the premotor cortex; adapted from [6]. (B) 

EMG signals related to a focal single-joint response typically evoked by stimulating the 

cerebellar cortex in patients with extracebellar tumors -flexion/abduction of the thumb-

(individual cerebellum of the patient; bright area represents the surgical bone flap; adapted from 

[7]). Right panels display maps of complex movements in the precentral gyrus (adapted from 

[35]). (C) Simulations at various sites in the precentral gyrus cause the hand to move to different 

spatial locations (the shaded region displays the cortex normally buried in the anterior bank of 

the central sulcus); (D) Subregions displaying specific functional properties within the general 

map of hand positions. T, tumor; DE, deltoid; TR, triceps; BI, biceps; FDS, flexor digitorium 

superficialis; EDC, extensor digitorium communis; ADM, abductor digiti minimi; FDI, first 

dorsal interosseous; OP, opponens pollicis; THE, Thenar.

Figure 2: Illustration, for an individual monkey, of the selective propagation of DES within 

meaningful physiological pathways. (A) Face-related areas are identified by fMRI (regions more 

activated by faces than by other objects) and reported on the flattened cortical surfaces for the 

right hemisphere. (B) Areas significantly activated by stimulating the site 'x' within area ML. For 

the sake of legibility, face-related areas identified with fMRI (left panel) are indicated by the 

green outlines. Anatomical labels: IPS, intraparietal sulcus; SF, Sylvan fissure; STS, superior 

temporal sulcus; LS, lunate sulcus; IOS, inferior occipital sulcus; and OTS, occipitotemporal

sulcus. Designation of face-selective areas: “PL,” posterior lateral; “MF,” middle fundus; “ML,” 
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middle lateral; “AF,” anterior fundus; “AL,” anterior lateral; “AM,” anterior medial. Adapted 

from [61].

Figure Box 1: It is argued that opposite behavioral outcomes can be evoked by stimulating the 

same cortical site (panel A adapted from [14]). This assertion seems questionable as illustrated in 

two examples. First, the actual data from Penfield and Boldrey show clearly that the "inability to 

speak" and "vocalization" behaviors are mostly evoked in the same broad precentral region but at 

different sites and generally in different subjects (panel B adapted from [5]). Second, direct 

comparison between the sites evoking "anomia" (panel C adapted from [77]) and "conscious 

motor intention" (panel D adapted from [6]) shows some degree of anatomical overlap. However, 

this overlap does not seem to warrant the strong conclusion that the "same sites" are involved. 

Blue triangles in panel D represent sites that were positive for motor intention but negative for 

anomia in one subject with a left side tumor. 

Figure Box 2: It is argued that identical behavioral outcomes can be evoked by electrical 

stimulation from distant cortical site (panel A adapted from [14]). A close inspection of the 

actual data does not seem to support this view. Panels B (adapted from [6]) and C (adapted from 

[18]}) show typical verbatim reported by subjects stimulated respectively in the inferior parietal 

lobule (IPL) and supplementary motor area (SMA) (verbatim were not available for the 

precentral site). While IPL stimulation evokes general desires to move with a high sense of 

agency, SMA stimulation evokes urges to perform highly specific movements. When the 

intensity of the stimulation is increased movements occur in SMA but not IPL.
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Abstract  
 

Since Libet seminal observations, it is often assumed that conscious intention emerges during 

motor preparation, when neural activity reaches a sufficient threshold. If this hypothesis is valid, 

the time required to prepare a movement should be longer than the time elapsing between the 

emergence of conscious intention and the onset of this particular movement. To investigate this 

prediction we measured, in the same subjects: (1) the time of movement onset with respect to the 

time of emergence of conscious intention (RT/int) using Libet's original press-button paradigm; (2) 

the time of movement onset with respect to the appearance of a visual stimuli (RT/ext) using the 

same press-button task. Results indicate that RT/int (273 ms) was close and not statistically 

different from RT/ext (264 ms). This statistical identity is not consistent with the widespread idea 

that conscious intention emerges progressively during motor preparation.

Key words: motor intention, conscious intention, motor reaction time, motor preparation, Libet 
task.1   

Abbreviations. RT/int: internal reaction time, defined as the duration between the time of conscious 
intention and movement onset; RT/ext: external reaction time, defined as duration between presentation of 
the visual stimuli and movement onset; WT: time of emergence of a will to move with respect to 
movement onset in Libet paradigm ( -RT/int); MT: duration between the estimated and actual times of 
movement; RP: Readiness Potential; EOG: Electrooculography; IPL: Inferior Parietal Lobule; SMA:
Supplementary Motor Area.
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1. Introduction 

Does motor preparation lead to conscious intention? The debate on this issue has been 

vivid since the pioneering experiment of Libet and his colleagues. In this work, human subjects 

kept watching a clock and reported the time when they felt a ‘will to move’ (W-judgment Time; 

WT) [26]. Two main findings were reported. First, WT occurred approximately 250 milliseconds 

prior movement onset. Second, an early marker of motor preparation, the readiness potential

(RP), emerged around 1 second before the time of button press. Since their publication, these 

results have been widely replicated [13, 19, 32] and interpreted in reference to the idea that 

conscious intention is an emergent outcome of motor preparation (for reviews [17, 18]). 

According to this view, "the brain begins the preparation to move prior to the conscious 

appreciation that this is happening, and the sense of volition gradually develops in conscious 

awareness thereafter" [29]. However, an alternative hypothesis was recently put forward in 

which it was claimed that the existence of an early brain activity did not reflect motor 

preparation per se, but rather the buildup of the neural signal that leads to the emergence of 

conscious intention [13]. Within this framework, actual movement preparation does not precede 

but follow the conscious decision to act [6, 8, 13]. Recently, these views were both challenged by 

a third hypothesis according to which the neural activity that precedes the time of conscious 

intention reflects spontaneous neural fluctuations which could bias the decision to move but is 

not the pre-conscious process of making intentional decision [30].

Although disentangling, the different hypothesis above is not simple, it has been argued 

that directly comparing WT with the motor reaction time observed in response to an external 

stimuli (RT/ext) might be of interest [5, 8]. Indeed, RT/ext reflects the time between cue onset and 

movement onset and this variable is commonly thought to indicate the duration of motor 

preparation. As a consequence, if conscious intention emerges during motor preparation, then for 

a given movement, RT/ext should be significantly longer than the time elapsing between the 

emergence of conscious intention and the onset of the movement. Thereafter, this time is 

designated RT/int (RT/int is positive and equal to -WT; it can be readily compared to RT/ext). 

Based on the existing literature, it can be observed that RT/int and RT/ext are generally of 

similar magnitude [5, 8]. However, to be trustworthy, the comparison between these two 

measures needs to be performed in the same subjects under similar experimental conditions. 
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Indeed, due to variations in subjects’ samples and/or in experimental conditions, highly variable 

values have been reported from study-to-study in the literature for RT/ext and RT/int. Regarding 

RT/int, for instance, the mean value, averaged across subjects, was reported to be 204 ms by Libet 

et al. [26], 240 ms by Sirigu et al. [32], and 355 ms by Haggard et al. [19]. For RT/ext even larger 

changes were found, with mean variation ranging from 170ms [34] to 450ms[23].

In this study, we instructed the same subjects to perform a strictly identical press button 

task in two randomly ordered conditions: (1) Libet’s condition in which RT/int was measured; (2) 

A visually-triggered condition in which RT/ext was measured. Using the same motor task in both 

conditions was important to ensure that potential differences in RT values were not related to 

disparities in the processes of motor planning. Indeed, in this behavioral experiment, our goal 

was to determine whether RT/ext is significantly longer than RT/int, as is predicted by the classical 

idea that conscious intention emerges from the process of motor preparation [5].

2. Methods 

2.1 Participants 

Twenty-one right-handed subjects (19-31 years old, 13 women) with normal- or corrected-to-

normal vision participated in the experiment. The protocol was approved by the local ethical 

committee and all subjects gave their informed consent prior to the experiment.

2.2 Apparatus and Procedures 

In the first task, we reproduced Libet’s original protocol [26]. In brief, subjects were comfortably 

seated in front of a computer screen. In their right hand, they held a small button to be pressed 

with the right thumb (Fig. 1A). Each trial involved 4 steps (Fig. 1B-G): (1) an analog clock 

appeared on the screen with the clock’s hand starting to rotate immediately from a randomly 

selected location; (2) subjects were instructed to wait, at least, for one complete rotation of the 

clock’s hand, before pressing the button as quickly and as abruptly as possible when they first 

felt a desire to do so; (3) before stopping, the clock kept rotating for a randomly selected duration 

of 800 to 2100ms; (4) An instruction screen was then presented instructing the subjects to report 
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either the time when they pressed the button or the time when they had the “intention” to press 

the button. To allow direct comparison with the reaction time data collected in the visually 

triggered press button-task (RT/ext, see below), we defined reaction time for Libet task as the 

duration between the time of conscious intention and movement onset (RT/int; Fig. 1). RT/int is 

the opposite of the WT variable typically used by Libet and his followers. The same approach 

was used to define the estimated instant of key press (MT): MT represents the duration between 

the estimated and actual instants of key-press (Fig. 1). The conditions of estimated key press or 

conscious intention were presented in two independent blocks of 60 trials each, and randomly 

counterbalanced across subjects. Each complete rotation period of the clock's hand lasted 

3000ms. The clock figured 60 time point intervals each corresponding to a 50 ms increment.

The second task was a simple visual reaction time task. A schematic representation of the 

experimental apparatus is presented in Fig. 2. Subjects were comfortably seated in front of a 

horizontal circular array of light emitting diodes. As in the previous task, they held a small 

button to be pressed with the right thumb. The center diode was used as the fixation point. The 

other diodes (n = 24) were used as visual cues. They were positioned around 3 circles centered 

on the fixation point. The circles had different radii of 4, 8 and 12 cm. Cues were positioned at 0, 

45, 90, 135, 180, 225, 270 and 315 degree with respect to the sagittal direction. The fixation 

diode was illuminated at the onset of the trial and maintained on until its completion. After a 

delay, randomly chosen within a range of 1 to 2 s, one of the visual diodes was pseudo randomly 

selected and turned on. Each target was presented 5 times, leading to a total of 120 trials. 

Randomization of target locations and time to stimulus onset was used to minimize the risk of 

motor anticipation. RT/ext was defined as the time between stimulus onset and key-press. The 

subjects were instructed to keep visual fixation throughout the trial and to press the button as 

quickly as possible in response to the visual cue. In this task, eye movements were monitored on-

line using electrooculography (EOG) at a sampling frequency of 1000 Hz [9]. EOG signal was 

displayed on a control screen at the end of the trial.  3.6% of the trials were discarded on-line and 

presented again later in the session because the subjects broke eye fixation or were holding the 

press button down at the appearance of the fixation cue.
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2.3 Data analysis 

In both conditions, further off-line analyses were performed to identify erroneous RT 

values. For Libet's task, the trials in which subjects pressed the button before one full rotation of 

the clock’s hand were discarded (estimated key-press trials: 3.1%; estimated conscious intention 

trials: 3.5%). For the visual reaction time task, trials with aberrantly short (< 100 ms) or long (> 

1000 ms) RT were discarded from data analysis. Also, for each subject, outliers with values 

above or below 3 standard deviations of the mean were removed. Applying these criteria led to a 

rejection rate of less than 2 %. Mean RT/int, RT/ext and MT were determined from the valid trials. 

With respect to this point, it may be worth noting that statistical results were not affected when 

analyses were performed without rejecting any trial or using slightly different rejection criteria 

(e.g. 2 SD instead of 3 SD or 150 ms for identifiying anticipated responses instead of 100 ms).

Because Levene's test for heterodasticity of variance between groups was significant (p 

< .005)[31], the non-parametric Friedman ANOVA (one-way repeated measures ANOVA on 

ranks) [14] was used to identify significant differences between the experimental conditions. The 

Wilcoxon rank test [36] was then used for post-hoc comparisons. Because 3 comparisons were 

planned, the statistical threshold (p < .05) was corrected for multiple comparisons using 

Bonferroni procedure (corrected p = .017)[37]. The Wilcoxon rank test was also used to test 

whether MT was significantly different from the time of movement onset (i.e. significantly 

different from zero).

3. Results 
In agreement with the results of previous studies [13, 19, 32], our subjects exhibited a 

good ability to estimate movement onset. The instant of button press occurred slightly after the 

instant estimated by the subjects (MT = 43 ±61 ms), which indicates that the participants were 

able to use the clock's hand accurately to estimate time events (Fig. 3). Still, MT was 

significantly different from zero (Wilcoxon, z= 2.7, p < .01), showing that the subjects slightly 
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anticipated the actual time of button press. This anticipation might reflect, at least for a part, 

conduction delays and muscle inertia.

Regarding intention to move, the subjects reported that their decision to act occurred 273 

ms (±129) before movement onset, which agrees with the results of prior studies [13, 19, 32]. 

This value is remarkably close to the 264 ms (±33) reaction time found in the visual task 

condition. Statistical analysis revealed the existence of a significant difference between the 3 

experimental conditions (Friedman ANOVA, F= 32, p < .0001) (Figure 3). Post-hoc 

comparisons indicated that RT/ext and RT/int were significantly different from MT (Wilcoxon 

Rank test, z > 4.0, p < .0001) but not from each other (Wilcoxon Rank test, z > 0.71, p > .45).

Additional analyses were conducted at the individual level under the assumption that if 

motor preparation leads to the emergence of conscious intention, RT/ext should be longer than 

RT/int in most (if not all) subjects. Results indicated that this was not the case. In fact, more than 

half of the subjects (12 / 21) exhibited longer RT/int than RT/ext.

In a last analysis, we tried to correlate RT/int and RT/ext assuming that if motor preparation 

starts after cue onset (whether internal or external), one may observe a tendency for the subjects 

who need more time to initiate their movement, to do so in both conditions. Correlation failed to 

reach statistical significance (Spearman's rho = 0.11, p > .60). This inability to reject the null 

hypothesis is not totally surprising given the existence of a high variability in the estimation of 

RT/int. To evaluate this claim we performed a power analyses using the spearman's rho value 

found in our sample and a power of 90 % (Statistica 8.0®). Results indicated that a sample of 

more than 460 subjects would be required to reject the null hypothesis. 

4. Discussion 

Our data show that there is no significant difference, on average, between the time 

required to initiate a movement in response to a visual cue (RT/ext) and the time required to 

initiate the same movement in response to an internal intention to act (RT/int). This observation 

does not support the claim that conscious intention to act emerges in response to the neural 

activity mediating motor preparation [17, 20, 29]. Although our data could be compatible with 
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the alternative view that a conscious intention to act triggers motor preparation, at least in the 

context of Libet's protocol [5, 8, 13], they do not directly support this idea. It could be, for 

instance that these two processes are largely parallel, as could be suggested by the theory of 

distinct pathways for perception and action [4, 15]. With respect to this point, one should 

acknowledge that our inability to identify a significant difference between RT/int and RT/ext could 

reflect a lack of statistical power [28]. However, even if this is the case, the magnitude of the 

difference we observed between RTs seems too small (9 ms) to be compatible with the results of 

EEG studies suggesting that RP (considered as a marker of motor preparation) precedes the 

emergence of motor preparation by several hundreds of milliseconds [19, 26].

The absence of a causal link from motor preparation to conscious intention is consistent 

with a recent study showing that motor intentions can arise independently of motor preparation 

in humans [7]. Following electrical stimulation of the inferior parietal lobule (IPL) during awake 

brain surgeries (BA 39-40), patients report conscious intentions to move or talk. These intentions 

are formulated in very broad and general terms ("a will to move the chest" or "a desire to move 

the foot") and the patients do not spontaneously describe the exact movement they want to 

perform. When prompted to do so, they report that they "don't know" which, clearly, would not 

be expected in a conceptual framework where movement intention results from the unconscious 

neural processes mediating the planning of a specific motor response. Strikingly, such an 

accurate description of the movement to be performed arises in response to sub-motor-threshold 

stimulations of the supplementary motor area (SMA)[12]. In this case, the subjects report

compulsive urges to move "the right leg inward" or "the right thumb and index finger". In 

contrast to what is observed following parietal stimulations, when the intensity of the stimulation 

is slightly increased, the intended movement actually occurs. In light of these observations, it has 

been suggested that conscious intentions in IPL are related to the initial selection of a motor 

response not yet planned, whereas the urges to move in SMA are associated with the release of 

inhibition that occurs in this region when the intended movement has been planned and is ready 

to be performed [2, 7, 8]. 

These data seem consistent with recent observations that challenge Libet's original 

assumption that the readiness potential (RP) is an early marker of motor preparation [5, 8, 13, 

16]. Anatomically, the medial prefrontal region, and more precisely the SMA, is thought to be 
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the main source of RP [11, 22]. In patients with lesions of IPL, the motor part of Libet's task (i.e. 

pressing the button and estimating the time of button press) is correctly executed although no RP 

is observed [32]. In the same way, in healthy humans, RP has been associated with the process of 

paying attention to the timing of movement [1] or the rotating clock [27]. It emerges whether the 

subjects plan a movement or not [21, 33]. This latter observation seems in line with recent 

computational data indicating that the gradual buildup of RP prior to initiation of self-initiated 

movements could be mostly artifactual and related to flucutations of neural activity [24, 29]. 

At a more "philosophical" level, it has been suggested that free will is a mere illusion 

because we only become aware of our intention to move after the desired action has already been 

planned in our brain [17, 18, 35]. Our data challenge this claim, at least in the context of Libet's 

paradigm. Indeed, we have shown that the actual implementation of a simple motor response 

does not precede the conscious intention of performing this action. This does not mean, of course, 

that unconscious processing are not involved in the emergence of a conscious intention to do 

something [3, 10, 25]. However, this challenges the common view that we become aware of our 

intention to act during the course -and as a result of- motor preparation.
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Figures 

Figure 1. Schematic representation of Libet’s press-button task. (A) Movement in this task is to 

voluntarily press a button with the right thumb. (B) The trial begins with a clock appearing in the 

center of a computer monitor. The clock's hand starts to rotate from a random location. (C-F) 

Subjects are instructed to wait for, at least, one complete rotation of the clock’s hand before 

pressing the button as quickly and as abruptly as possible, when they first feel a desire to do so. 

After the movement has been performed, the clock's hand continues to rotate for a random 

duration ranging from 800 to 2100 ms. (G) Following the stop of the clock's hand, the subjects 

are asked to report, depending on the experimental condition, the time point when they pressed 

the button or the time when they had the “intention” to press the button. MT : movement time. 

RT/int: duration between the time of conscious intention and button press.

Figure 2. Schematic representation of the experimental apparatus used for the visual task. 

Subjects were seated in front of the table with their gaze anchored on the central fixation diode 

(fixation point, F). Eye movements were not allowed. 24 light emitting diodes (blackpoints) were 

positioned around 3 circles (dash line) having a common center (F) but 3 different radii and 8 

directions.

Figure 3. Chronometric results for each experimental condition. (< .05 indicates statistical 

significance of post-hoc comparison ; ns : non significant).
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Chapter III.  General Discussion
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The neural basis of functional organization in human sensorimotor system is not yet clear. 

Recent histological and physiological studies in primate shed light on this issue by indicating that 

motor synergy is the possible structure underlying functional organization in M1(Overduin et al., 

2008; Rathelot and Strick, 2006, 2009). In human, evidence of motor synergy in M1 is also

reported in stimulation study (Desmurget et al., 2014). We notice that the volume overlapping 

observed in fMRI study is hard to be explained as direct representation of simple movement, but 

in turn resembles the interleaved organization of CM cells innervating different muscles. Thus in 

our study, we re-examine the pattern of volume overlapping with winner-take-all procedure and 

we find an interleaved pattern of activation volumes within hand region. 

Although in behaving monkey, the parietal cortex has been systematically mapped with 

sensory and motor stimuli (Hyvärinen, 1981; Rozzi et al., 2008), in human, the functional 

organization of simple movement hasn’t  been examined in detail with respect to the modern 

subdivisions (Scheperjans et al., 2008)(Caspers et al., 2006). In our fMRI study, we 

systematically examine and confirm the existence of a somatotopic map of voluntary simple 

movements of different body parts in the most anterior subdivisions, including area PFt, PFcm 

and PFop(Caspers et al., 2006). This result implies that human anterior most part of IPL could be 

the homologue of monkey IPL.

The emergence of conscious motor intention is related to the neural process of the 

posterior part of IPL (Desmurget and Sirigu, 2012; Desmurget et al., 2009; Sirigu et al., 2004).

But its relationship with motor preparation is not clear (Desmurget and Sirigu, 2012). One of the 

hypothesis claims that motor intention emerges during the process of motor preparation, however, 

we confirm that for the motor task with minimum cognitive demand, for example, simple button 

press, the duration between the emergence of motor intention and motor output is identical with 

the duration between external go cue and motor output, thus denies the possibility that motor 

preparation starts before the emergence of motor intention. 

Human sensorimotor system comprises the primary sensorimotor cortex, the secondary 

motor areas, cerebellum and IPL. They contribute to different aspects of human motor control

and have different structures of functional organization. Further study is needed to clarify the 

intra-hemisphere connections of IPL with other sensorimotor brain areas, which will help us 
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understanding 1) the functional complexity of IPL, and 2) the different contribution of each 

subregions of IPL in human motor control.
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III.1 Somatotopic organization in human sensorimotor system: revisited and new evidence

1. Functional organization in sensorimotor cortex

1.1 Somatotopy of simple repetitive movements in M1 and S1

In M1 and S1, with our data obtained in the first fMRI experiment, we found that although 

considerable volume overlapping exists between the neural representations of proximal limbs,

such as fingers and elbow, the geographic centers (i.e. COG) of these activation volumes are

statistically independent and organized in somatotopic manner. This observation is consistent 

with the findings of previous stimulation studies (Penfield and Boldrey, 1937) (Penfield, 1950)

and fMRI studies (Rao et al., 1995) (Meier et al., 2008) (Beisteiner et al., 2001; Hluštík et al., 

2001; Indovina and Sanes, 2001).

The somatotopy in M1 and S1 of large body parts is merely challenged in last half century,

however, in fMRI studies, the extensive spatial overlapping between independent movements of 

different body parts implies that the basic motor unit in M1 may not be organized to serve the 

innervation of simple movements. An alternative hypothesis is motor synergy (Rathelot and 

Strick, 2006). Several observations related to this issue are also found in our experiment, and 

could be explained by some most recent findings in primate.

First, although the neural representations of three individual fingers overlapped more the 60% 

of their volume size, the overlapped regions exhibiting an interleaved pattern (Figure 15).

Therefore, this result doesn’t support the theory that the basic neural organization in M1 is in 

terms of single finger movement which should be arranged orderly in M1(Asanuma and Ward, 

1971) (Asanuma and Rosén, 1972a), that is to say, there is no independent zone for innervating 

each simple finger movement. Alternatively, this observation echoes the recent findings in 

primate that the cortico-motoneuron (CM) cells of one digit muscle intermingle with those of 

another digit muscle and they all distributed widely within the hand regions (Figure 25)

(Rathelot and Strick, 2006) . Also, similar examination is also made between-limbs in a 

following study(Rathelot and Strick, 2009). In this study,  the CM cells innervating fingers, 

elbow and shoulder are found to be overlapped, but at the same time, the CM cells innervating 
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elbow and shoulder localize superior to those of fingers (Figure 26), which is similar to the 

pattern of activation volume observed in fMRI study (Figure14 and 15).

Therefore, it is reasonable to infer that the widely distributed and interleaved neural 

representations evoked by simple finger movements (Figure 15) as well as the less intermingled 

representation of elbow that localizes superior to the representation of fingers (figure 15),

represent the neuronal innervation of muscular synergies under simple movements.
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Figure 25. Left: Maps of the CM cells that innervate the motoneurons for digit muscles. 

Right: Maps of the cortical stimulation sites of digits (A) and shoulder (B) movements, and the 

spatial location of CM cells innervating digits on the same map (C). Revised from Rathelot 

(Rathelot, 2006). Abbreviations: ArS, arcuate sulcus; CS, central sulcus; M, medial; R, rostral; 

SPcS, superior precentral sulcus; ADP, adductor pollicis, ABPL, abductor
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pollicis longus; EDC, extensor digitorum communis; JA3,JA25 and JA30 indicate three 

animals recruited in the experiment.

Figure 26. Overlaps map of CM cells innervating shoulder, finger and elbow muscles.

Adopted from Rathelot (Rathelot and Strick, 2009). Abbreviations: CS, central sulcus; M, medial; 

C, caudal;

126 
 



1.2 Representation of single finger movement in M1:neural basis of muscle synergy

The observation that representations of simple individual finger movements interleave in 

the small territories of area 4p (see figure 15) is consistent with the observation from histologic 

studies (Rathelot and Strick, 2006) that CM cells of single muscle intermingle, therefore 

indicating that the nature of these neural representations are related to direct control of muscles. 

Because single finger movements always involve the neuromuscular control of intrinsic muscle,

extrinsic muscle (Schieber, 1995), as well as inevitable passive mechanical coupling (Lang and 

Schieber, 2004; Schieber, 1995), thus it is readily to presume that the volume overlapping of two 

fingers observed in fMRI study may be simply due to the recruitment of common extrinsic 

muscle and mechanical coupling.

However, even single M1 neuron innervate multiple muscles. There are two main different 

theories concerning how muscles are innervated in M1, one proposes that there is cortical 

efferent zones within which neurons that innervate a single motoneuron pool resides in a small 

region in M1(Asanuma and Rosén, 1972a) , and the other theory claims that there are overlapped

colonies of cortical efferent in M1, also in which neurons innervates a  single motoneuron pools 

concentrates (Andersen et al., 1975) .

if M1 represents individual muscle by sharply discrete cortical efferent zone (Asanuma and 

Rosén, 1972a) and the spatial volume overlapping we observed between separate finger 

movements should be due to the recruitment of the same muscle.

Indeed, mechanically, in both primate and human, the flexion and extension of single finger 

are largely dependent on the extrinsic muscles, for example, the flexor pollicis longus (FPL),  

and the flexor digitorum profoundus (FDP) that sends multiple tendons to four digits except 

thumb (Schieber, 1995)(Reilly and Schieber, 2003). An EMG study indicates that the 

flexion/extension of a single digit always facing the mechanical ‘connection’ of extrinsic 

muscles (Kilbreath and Gandevia, 1994). In this study, researchers record the EMG activity of 

FPL while guiding participant to flex (lift) the distal interphalangeal joint of other fingers. The 

result shows that the threshold lifting weight needed in producing EMG activity at FPL is very 

low for index finger (around 10% of maximum voluntary force ) and much higher for little 

finger(around 10% of maximum voluntary force). Also, when recording from the index portion 
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of FDP and guiding subject to lift thumb, similarly, co-activation of FDP could been produced at 

low lifting weight on thumb. This indicates two facts, first, the independent flexion of thumb, 

index and little finger is very limited; second, co-activation of  thumb extrinsic muscle (FPL) 

requires different efforts for index and little finger.  

Thus, according the view of cortical efferent zone, one may expect different level of overlap 

of different finger pairs, for example, the RO between thumb and index movement should be 

different from the RO between thumb and little finger. However, the statistical results indicates 

identical RO% (Figure 24), thus M1 does not innervate single motoneuron pool by independent 

cortical efferent zones.

In primate, researches are in favor of the alternative ‘overlapped colonies’ control of 

motoneurons (Rathelot and Strick, 2006, 2009), some indirect evidence also indicate the 

existence of motor synergies in motor cortex and premotor which underlies muscular activity 

(Overduin et al., 2012) resembling the naturalistic muscular activity(Overduin et al., 2008)

(Figure6-8).

However, with the result of this experiment, it is impossible to make direct inference that 

the activation volumes are the representation of muscular synergies used for each single 

movement, because of the mechanical limitation of independent single finger movement(Lang 

and Schieber, 2004) as well as the sluggish nature of fMRI signal(Logothetis et al., 2001).

128 
 



2. Functional organization in parietal cortex

Plenty of researches in IPL indicated its involvement in action control (Rizzolatti et al., 

1997) (Fogassi and Luppino, 2005)(Culham and Valyear, 2006). In primate, a map of intentional 

actions is found in parietal cortex(Andersen and Buneo, 2002). Simple movement is also 

important for skilled actions and coordinated actions. The somatotopic representation of action in 

IPL has been extensively investigated in physiological study of primate (Hyvärinen, 1981; Rozzi 

et al., 2008), and imaging studies of human (Buccino et al., 2001), with special interest for its 

role in action organization, observation and motor intention (Buccino et al., 2001; Fogassi and 

Luppino, 2005; Rizzolatti et al., 2001). These topics have been examined a lot in the literature by 

examining the neural responses of those actions such as grasping, kicking, chowing and reaching, 

which require cooperation of single movements of fingers, elbow, shoulder etc. However, it is 

still not clear that whether those simple movements are also represented in human parietal cortex.

In the fMRI study, we found a complete somatotopic map evoked by simple movements in 

IPL (see table 6, figure 19). The repetitive movement of fingers, elbow, mouth and foot elicited 

neural responses concentrating in the most anterior and rostral region of IPL, which are assigned 

as PFt and PFcm subdivisions based their distinct architectonic characters (Caspers et al., 2006).

The structure of this somatotopic map in IPL demonstrates some differences with that in M1 and 

S1. 

First, single fingers are not represented in IPL, which implies the role of IPL in higher 

motor control compared to M1. This is consistent with the deficits of patients with parietal lesion 

that injury in IPL merely produces isolated motor deficits as in M1, but impairments related to 

spatial awareness(Mattingley et al., 1998), action organization(Sirigu et al., 1995),  internal 

action representation (Sirigu et al., 1996) , motor intention(Sirigu et al., 2004) are observed with 

related patients. 

Second, the arrangement of mouth, elbow, fingers and foot is not following their sequence 

of body parts  in a strict order; double presentations of elbow are prominent in this map with one 

closer to mouth and finger. This implies that these neural representations evoked by simple 

movement might be arranged to serve the organization of action, thus, simple movements of 

different body parts which could corporate to form ethological actions are arranged closer in 
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terms of COG. The activation volumes of mouth, fingers and elbows in IPL supports this view. 

Different from M1, our result indicates the neural representation of mouth overlapped with those 

of fingers and elbow(Figure 22). This kind of arrangement could be seen in primate IPL, where

the motor responses of actions related with mouth, hand, and more proximal limbs are  

distributed  progressively from anterior to posterior in the convexity of IPL (Figure 28).
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Figure 27. Neuronal representations of motor response in the convexity of IPL in primate. 

Different actions distributed along IPL. Adopted from (Rozzi et al., 2008) Abbreviations: IPS, 

intraparietal sulcus; LS, lateral sulcus; STS, superior temporal sulcus;  M medial; L, lateral; R, 

rostral; C, caudal.M1 and M2 indicates two animals in this experiment.
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The somatotopy of simple movement representation in IPL also sheds lights on the 

comparative difference between human and primate parietal cortex. Although the exact 

homologue of IPL between human and primate is not clear, our data doesn’t support that PF and 

PG of primate IPL is approximately the homologue of those of human. Because in primate, 

simple non-object related actions could not evoke any motor- or sensory responses in primate 

IPL, this resembles our finding in human SPL (Hyvärinen, 1981; Rozzi et al., 2008).

Intuitively, one may ask the question that what are the nature of the neural responses evoked 

by simple movements in rostral IPL, PFt, PFcm and PFop (Figure 28)? Variant functions have 

been found in human IPL, such as that DES evokes motor intention in human PPC(Desmurget et 

al., 2009), action observation  also elicits neural response in IPL (Buccino et al., 2001).Such 

complexity of function has not been well coupled with advanced anatomical subdivisions.
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Figure 28. The architectonic subdivision of IPL in human (A-E) (Caspers et al., 2006) and 

in monkeys (F)(Gregoriou et al., 2006).

In fact, neuronal responses recorded in primates indicates that it is sensory response

(Hyvärinen, 1981) and concentrates in the rostral portion of IPL in a somatotopic manner (Rozzi 

et al., 2008). Thus, the neural responses we observed in this fMRI study could be either motor 

responses or sensory feedback. 

Motor system has been found to be less serially organized than previously hypothesized 

(Georgopoulos, 1991), because of its the complex intra-cortical connections (Wise et al., 1997).

In primate, the connectivity of area PF provides the anatomical basis for the somatosensory map 

in this region, indicating its possible role in sensorimotor transformation, especially in guiding 

the the movement of mouth and hand.

In an early series studies by Petrides and Pandya, the anterior most regions in IPL, area PF, 

was found to have connection with post central gyrus (area 2) (Pandya and Seltzer, 1982) parietal 
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opercular regions and the ventral area 6 and ventral area 46 of rhesus monkey (Petrides and 

Pandya, 1984). Rozzi and colleagues further systematically examine the cortical connection of 

IPL in macaque monkey with a histological l procedure in the beginning of the experiments on

same monkeys to parcellate the IPL to four cytoarchitectonic subdivisions-area Opt, PG, PFG 

and PF (Rozzi et al., 2006). By retrograde labeling, they found the most dense and confined 

connections of PF are to the ventral part of area 2 and SII region in the parietal operculum, 

relative week labeling is with ventral F5 and area 46 in the frontal cortex. Considering the 

connection with frontal motor regions, in particular with the premotor cortex, Gregoriou and 

colleagues found that these four subdivisions of IPL project to premotor cortex in different ways, 

with ventral premotor mostly connects with area PF and dorsal PM mostly connect with area Opt

(Gregoriou et al., 2006). Also, within the posterior parietal cortex, PF is also connected with 

somatosensory face area VIP(Colby et al., 1993) and hand area AIP (Murata et al., 2000).

In summary, the cortical connections of PF with SI, SII and PM regions and the ‘feedback’ 

and feedforward’ laminar distribution of these projections(Gregoriou et al., 2006) in primate 

provide the anatomical basis of its somatosensory map and imply its role in sensorimotor 

transformation, particular for mouth and hand movement.

In human, systematic evidence involving both the function and connection of the 

anteriormost regions in IPL that are probably the homologues of primate PF,  has not been 

provided. In this fMRI study, we show that a complete functional somatotopic map of mouth, 

fingers(hand), elbow and foot could be found covering the human PFt and PFcm regions (Figure 

22). Thanks to recent progress of  imaging technique and computational method,  evidence on

human cortical connection shed light on the question I brought up early, what is the nature of this 

somatotopic map in human. Eickhoff’s team examined the anatomical connectivity of parietal 

opercula areas having cytoarchitectonic distinctions, and discovered in human a white matter 

pathway between the OP1 and the anterior IPL (Eickhoff et al., 2010). What’s more, in human, 

area OP4 has been confirmed to have somatotopic representations of contralateral body when 

tactile stimulation to the skin is applied at face, hands, trunk and legs (Eickhoff et al., 2007b).

Therefore, the anterior IPL-OP1 network could serve the higher order somatosensory processing. 
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III.2Motor intention and motor preparation

Our data show that there is no significant difference, on average, between the time 

required to initiate a movement in response to a visual cue (RT/ext) and the time required to 

initiate the same movement in response to an internal intention to act (RT/int). This observation 

does not support the claim that conscious intention to act emerges in response to the neural 

activity mediating motor preparation (Haggard, 2005; Hallett, 2007; Miller et al., 2011).

Although our data could be compatible with the alternative view that a conscious intention to act 

triggers motor preparation, at least in the context of Libet's protocol (Desmurget, 2013; 

Desmurget and Sirigu, 2009; Fried et al., 2011), they do not directly support this idea. It could be, 

for instance that these two processes are largely parallel, as could be suggested by the theory of 

distinct pathways for perception and action(Castiello et al., 1991; Goodale and Milner, 1992).

With respect to this point, one should acknowledge that our inability to identify a significant 

difference between RT/int and RT/ext could reflect a lack of statistical power (Rohenkohl et al., 

2011). However, even if this is the case, the magnitude of the difference we observed between 

RTs seems too small (9 ms) to be compatible with the results of EEG studies suggesting that RP 

(considered as a marker of motor preparation) precedes the emergence of motor preparation by 

several hundreds of milliseconds (Haggard and Eimer, 1999; Libet et al., 1983).

The absence of a causal link from motor preparation to conscious intention is consistent 

with a recent study showing that motor intentions can arise independently of motor preparation 

in humans (Desmurget and Sirigu, 2012). Following electrical stimulation of the inferior parietal 

lobule (IPL) during awake brain surgeries (BA 39-40), patients report conscious intentions to 

move or talk. These intentions are formulated in very broad and general terms ("a will to move 

the chest" or "a desire to move the foot") and the patients do not spontaneously describe the 

exact movement they want to perform. When prompted to do so, they report that they "don't 

know" which, clearly, would not be expected in a conceptual framework where movement 

intention results from the unconscious neural processes mediating the planning of a specific 

motor response. Strikingly, such an accurate description of the movement to be performed arises 

in response to sub-motor-threshold stimulations of the supplementary motor area (SMA)(Fried et 

al., 1991). In this case, the subjects report compulsive urges to move "the right leg inward" or 

"the right thumb and index finger". In contrast to what is observed following parietal 

135 
 



stimulations, when the intensity of the stimulation is slightly increased, the intended movement 

actually occurs. In light of these observations, it has been suggested that conscious intentions in 

IPL are related to the initial selection of a motor response not yet planned, whereas the urges to 

move in SMA are associated with the release of inhibition that occurs in this region when the 

intended movement has been planned and is ready to be performed(Ball et al., 1999; Desmurget 

and Sirigu, 2009, 2012).

These data seem consistent with recent observations that challenge Libet's original 

assumption that the readiness potential (RP) is an early marker of motor preparation (Desmurget, 

2013; Desmurget and Sirigu, 2009; Fried et al., 2011; Guggisberg and Mottaz, 2013). 

Anatomically, the medial prefrontal region, and more precisely the SMA, is thought to be the 

main source of RP (Eimer, 1998; Ikeda et al., 1992). In patients with lesions of IPL, the motor 

part of Libet's task (i.e. pressing the button and estimating the time of button press) is correctly 

executed although no RP is observed(Sirigu et al., 2004). In the same way, in healthy humans, 

RP has been associated with the process of paying attention to the timing of movement(Baker et 

al., 2012) or the rotating clock (Miller et al., 2011). It emerges whether the subjects plan a 

movement or not (Herrmann et al., 2008; Trevena and Miller, 2010). This latter observation 

seems in line with recent computational data indicating that the gradual buildup of RP prior to 

initiation of self-initiated movements could be mostly artifactual and related to flucutations of 

neural activity (Jo et al., 2013; Schneider et al., 2013).

At a more "philosophical" level, it has been suggested that free will is a mere illusion 

because we only become aware of our intention to move after the desired action has already been 

planned in our brain (Haggard, 2005, 2008; Wegner, 2003). Our data challenge this claim, at 

least in the context of Libet's paradigm. Indeed, we have shown that the actual implementation of 

a simple motor response does not precede the conscious intention of performing this action. This 

does not mean, of course, that unconscious processing are not involved in the emergence of a 

conscious intention to do something(Bargh et al., 2012; Dijksterhuis and Bargh, 2001; 

Jahanshahi et al., 1992). However, this challenges the common view that we become aware of 

our intention to act during the course -and as a result of- motor preparation.
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