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La professione del ricercatore deve
tornare alla sua tradizione di
ricerca per 'amore di scoprire
nuove verita. Poiché in tutte le
direzioni siamo circondati
dall’ignoto e la vocazione
dell’uomo di scienza e di spostare
in avanti le frontiere della nostra
conoscenza in tutte le direzioni,
non solo in quelle che promettono
pitu immediati compensi o
applausi.

The work of the researcher has to
come back to its tradition of
research for the love of discovering
new truths. Since we are
surrounded by the unknown in all
the directions, the vocation of the
scientist is to advance the frontiers
of our knowledge in all the
directions, not only in those that
promise more immediate rewards
or approvals.

Enrico Fermi
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Résumé

La dynamique de particules colloidales a I'interface entre deux fluides joue un role
central dans la micro-rhéologie, I’encapsulation, I’émulsification, la formation de
biofilms et la décontamination de I'eau. En outre, ce sujet est également stimulant
d’un point de vue théorique en raison de la complexité de I’hydrodynamique a
I'interface et du role de la ligne de contact. Malgré ce grand intérét, le comporte-
ment d’une particule a une interface fluide n’a jamais été caractérisé directement.
Dans cette these, nous étudions le mouvement brownien de billes micrométriques
de silice et de sphéroides de polystyrene a une interface eau—air. Nous controlons
expérimentalement tous les parametres d’intéret. L’angle de contact des billes
est finement ajusté dans la gamme 30° — 140° par des traitements chimiques de
surface et mesuré in situ par interférométrie. Le rapport d’aspect de particules
sphéroidales varie dans la gamme 1 - 10 par étirage de billes sphériques commer-
ciales. Les dynamiques de translation et de rotation sont suivies par particle track-
ing. Contre intuitivement et contre tous les modeles hydrodynamiques la diffusion
est beaucoup plus lente que prevu. Pour expliquer cette dissipation supplémentaire
nous concevons un modele tenant compte de la contribution des fluctuations ther-
miques de 'interface a la ligne de contact. Les fluctuations donnent origine a des
forces aléatoires qui s’ajoutent a celles dues aux chocs de molécules. Le théoreme
de fluctuation—dissipation permet d’obtenir la friction supplémentaire associée a
ces forces flottantes. La friction totale est discutée en termes d’hétérogénéités de
la surface des particules et d’ondes capillaires a l'interface.

Mots clés: colloides, mouvement brownien, interface






Abstract

The dynamics of colloidal particles at the interface between two fluids plays a cen-
tral role in micro-rheology, encapsulation, emulsification, biofilms formation and
water remediation. Moreover, this subject is also challenging from a theoretical
point of view because of the complexity of hydrodynamics at the interface and of
the role of the contact line. Despite this great interest, the behavior of a single
particle at a fluid interface was never directly characterized. In this thesis, we
study the Brownian motion of micrometric spherical silica beads and anisotropic
polystyrene spheroids at a flat air-water interface. We fully characterize and con-
trol all the experimentally relevant parameters. The bead contact angle is finely
tuned in the range 30-140 by surface treatments and measured in situ by a home-
made Vertical Scanning Interferometer. The spheroid aspect ratio varies in the
range 1 10 by stretching of commercial beads. The translational and the rota-
tional dynamics are followed by particle tracking. Counter-intuitively, and against
all hydrodynamic models, the diffusion is much slower than expected. To explain
this extra dissipation we devised a model considering the contribution of thermally
activated fluctuations of the interface at the triple line. Such fluctuations couple
with the lateral movement of the particle via random forces that add to the ones
due to the shocks of surroundings molecules. Fluctuation-dissipation theorem al-
lows obtaining the extra friction associated to this additional mechanism. The
fitting values of the total friction are discussed in term of the typical scales of
particle surface heterogeneities and of surface capillary waves.

Key words: colloid, Brownian motion, interface
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Facesti come quei che va di notte,
che porta il lume dietro e sé non
giova, ma dopo sé fa le persone
dotte.

Thou didst as he who walketh in
the night, who bears his light
behind, which helps him not, but
wary makes the persons after him.

Dante Alighieri, Purgatorio XXII






Introduction

Looking at micrometric particles suspended in a fluid phase, a random and ir-
regular motion is observed. This observation was firstly made in 1827, and the
behavior was named Brownian motion after by the Scottish botanist Robert Brown
that investigated it. The mechanism was understood by Einstein and explained in
one of the four Annus Mirabilis papers in 1905 [1], where the thermal origin of the
dynamics was pointed out. Its experimental confirmation took a long time and it
is still in progress. In 1909 Perrin [2] provided the very first particle tracking ex-
perience to find the diffusion coefficient of spherical bead immersed in a fluid. One
century after, such a measurement was extended to more natural anisotropic mor-
phologies, as spheroidal particles. Such dynamics was quantified by digital video
microscopy for spheroids in water confined in a two—dimensional geometry [3, 4]
and by using holography and confocal microscopy in the volume [5]. A crucial
characteristic predicted by Einstein as the very short time transition between the
ballistic and the diffusive motion was recently investigated using optical tweezers
in both air [6] and liquid [7]. The effect at small length scales, where Einstein
relations are not totally fulfilled, was also explored in the past few years and the
Brownian diffusion was studied in the case of nanoparticles [8, 9, 10, 11].

All these recent works show that Brownian motion is still a topical subject
in soft matter and still a fruitful playground for new researches. One of such
particularly important fields is the dynamics of particles at fluid interfaces. On one
hand, from a practical point of view, it governs the behavior of kinetically arrested
colloidal gels [12], the formation of bacteria based biofilm [13], and the cellular
signaling via membrane proteins [14]. On the other hand, it is also challenging
from a more fundamental point of view, as it allows to probe different interfacial
hydrodynamics phenomena, as surface viscosity and eventually visco-elasticity,
and the role of the contact line, where the three phases meet together [15].

The work performed during this PhD thesis could be seen as a first step to fill
the gap in this direction. For spherical colloids, we propose a model for the friction
acting at the interface taking into account the effect of thermal fluctuations at the
contact line. Our model is able to capture the unexpected slowed-down diffusion
of a particle at an air-water interface. The same theoretical approach is followed



also for anisotropic spheroidal particles, where the presence of an additional drag is
experimentally much more evident: our measurements show a rotational diffusion
coefficient at the interface one order of magnitude slower than in the bulk, and
a translational diffusion coefficients two times smaller, for the most elongated
particle. Geometrical considerations about the distribution of thermal fluctuating
torques and forces along an elliptic contact line are able to catch such a dynamics.

Plan of the thesis

The thesis starts with a theoretical overview on the main treated topics (chapter
1). Basic notions about fluid dynamics, interfacial properties and wetting phe-
nomena are presented in order to define the background from which the present
work has been developed. Moreover, the state of arts in the field is reported.

Chapter 2 is focused on the measurements of the diffusion of micrometric
spherical particles at an air—water interface. The particle immersion depth in wa-
ter is tuned by chemical treatments of the bead surface, and measured by gel
trapping and interferometric techniques. The dynamics is followed by particle
tracking and the corresponding translational diffusion coefficients are measured.

In a similar way, in chapter 3 the Brownian motion of partially immersed
spheroidal colloids is considered, as a function of their aspect ratio. The parti-
cles are prepared by stretching of commercial polystyrene beads in a homemade
apparatus. Deformations of the interface induced by the particle are observed by
interferometry. Particle tracking allows to recover both translational and rota-
tional dynamics.

In both cases, a counter-intuitively, slow diffusion is observed and existing
hydrodynamics theories are not able to catch this behavior.

The hydrodynamics features associated to the presence of a particle at the in-
terface are taken into account as attempts to describe the slowed-down dynamics.
All of them fail since the corresponding dissipations are too small than the ones
measured. A new paradigm is so required, and a new model is conceived in chap-
ter 4 for the case of spherical particles. In the model, the contribution of thermal
fluctuations of the interface translates in random forces that affect the dynamics.
Fluctuation—dissipation theorem allows to obtain the friction associated to these
additional random forces, as at thermal equilibrium the particle kinetic energy
remains fixed by the equipartition theorem. The obtained friction is discussed in
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two regimes, for a moving or a pinned contact line. In any cases, fluctuations of
the interface at the nanometric scales are able to catch the measured dynamics
and provide an additional drag in the right order of magnitude.

In chapter 5 the solution obtained for spheres is generalized for the more
complex morphology of spheroidal particles. Assuming the same physical origin of
the additional drag, we are able to fit both translational and rotational dynamics of
the particle, leading again to the reasonable nanometric range for the fluctuations.
Such results point out the central role played by thermally activated fluctuations
at the contact line on the Brownian dynamics of micrometric particles at a fluid
interface.






Quelli che s’innamoran di pratica
sanza scienzia son come ’l nocchier
ch’entra in navilio senza timone o
bussola, che mai ha certezza dove
si vada.

Those who fall in love with
practice without knowledge are like
the coxswain that sails without
rudder or compass, and never has
for sure where hes going.

Leonardo Da Vinci






Chapter 1

State of art and theoretical
background

Introduction

An overview of the state of art in Brownian dynamics and of the theoretical back-
ground is here proposed as a starting point of this thesis.

First of all, the definition of Brownian motion and the mathematical derivation
of the diffusion coefficient D are presented (par. 1.1). Such a coefficient is already
known from Stokes—Einstein relation, and experimentally verified, for beads fully
immersed in a fluid (par. 1.2). In the case of spherical particles straddled at
an interface between two fluids their position, in terms of immersion depth and
contact angle, are discussed in par. 1.3. Then, the particle lateral dynamics is
analyzed considering the viscous drag at the interface, as computed by numerical
predictions and measured in few experiments in literature (par. 1.4). In same
way, anisotropic spheroidal particles are considered. We show their diffusion in
the volume, from both a theoretical and an experimental point of view (par. 1.5).
Finally, the basic features concerning spheroids at the interface, as the interface
deformation and the coupling with interface curvature, are addressed (par. 1.6).

1.1 Definition of Brownian motion

A colloidal particle immersed in a fluid phase shows an irregular and random walk,
due to the collision between the molecules of the surrounding fluid and the particle
itself. Such an effect is known as Brownian motion, named after the Scottish
botanist Robert Brown that firstly observed the erratic movement of pollen grains
in water. Each molecular collision provides a random kick that boosts particle
motion and that can be quantified by a random force F,.(t). At the same time, a

9



viscous force F, which opposes to the particle motion, is acting on the particle:

F,=—Cv (1.1)

where v is the velocity of the particle and ( is the friction coefficient.
The equations of motion of the Brownian particle, known as Langevin equations,
describe the evolution in time of the particle position z(t):

0 — i) = ot
do(t)
m— == F.(t) — Cu(t) (1.2)

An exact solution cannot be found, since the random force lacks of an analytical
expression. However, an alternative approach can be followed. Let multiply both
sides of eq. 1.2 by z, and consider the ensemble average of all the terms:

dx .
m<xa> = (zF,) — ((z) (1.3)
The first term in the right hand side is always null, since F, is defined as a
random force. The term in the left hand side is instead developed as
de d, . .9
T = a(xx) —
Taking into account the equipartition theorem, i.e. kT ~ (mi?), eq. 1.3
becomes

(1.4)

d, . :
m£<:cx) = kT — ((xx) (1.5)

and it can be solved with respect to the variable (xi):

kgT

S

with 7, = m/( and C an arbitrary constant of integration. C'is recovered imposing
the initial condition x =0 at t = 0: C' = —kgT'/(. Note also:

(xd) = Ce ™ 4 (1.6)

(o) = 2 ()

After integration of eq. 1.6:



At short times, i.e. at t < 7,, the exponential function in eq. 1.7 is safely
approached by its development in the Taylor series:

t o 1¢
—t/mp 1 _ _
e =1 - + 52 (1.8)
p P
and eq. 1.7 is written:
kgT
(%) = %ﬂ (1.9)

Thus, for short time scales with respect to 7,, the particle shows a ballistic mo-

tion at constant velocity v = /kgT/m, as expected from equipartition theorem.
A direct verification of such a prediction has been recently provided by a measure-

ment of the instantaneous velocity of silica beads trapped in optical tweezers (fig.
1.1) [6].

160 . .

O 99.8 kPa
0 2.75kPa ]

0 5 10 15 20 25 30
Time (us)

Figure 1.1: Mean Square Displacements (MSDs) of 3 um silica beads, at short time scales
(t < 7). The particles are trapped in air at different pressures (99.8 kPa for red squares and
2.75 kPa for black circles). The motion is not dependent on the external pressure and shows,
in both cases, a quadratic behavior (dash-dotted line) typical of a ballistic motion, as expected
from the theory. The fit is in agreement with the predictions and leads to the thermal velocity
v = /kgT/m. Measurements and graph from Li et al., Science 328, 1673 (2010) [6].

In the opposite case, t > 7, e~/ — 0 and

(z?) = 2kBth = 2Dt (1.10)
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Here, the effect of several random molecular collisions translates in a diffusive
regime, where the Mean Square Displacement (MSD) (x?) linearly increases in
time. In eq. 1.10 D is the diffusion coefficient

kgT

D=7 (1.11)

The friction coefficient ( is considered in the following paragraphs for different
systems (spheres and spheroids, immersed in a fluid and trapped at the interface
between two fluids) in order to predict the diffusive dynamics.

1.2 Spherical particles fully immersed in a fluid

1.2.1 Friction coefficient: the Stokes-Einstein equation

We consider the prediction of the diffusion coefficient of a spherical bead totally
immersed in a fluid phase. For this purpose, we need to write the friction coefficient
¢, provided in this case by Stokes—FEinstein equation. The complete derivation
reported here follows the discussion of Landau and Lifshitz [16].

We start from the Navier—Stokes equation, written for incompressible fluids and
at low Reynolds number (pvl/n < 1, where p is the density and 7 the viscosity of
the fluid, v the velocity of flow and [ a typical length scale):

nV*v — gradp = 0 (1.12)

The equation can be expressed using the operator

E2_82 sim98< 1 a)

— — — 1.13

o2 " 2 90 \sm®oow (1.13)

and in terms of the Stokes stream function v; in polar coordinates (r,9) (fig.
1.2), it is related to the flow velocity components in the following way:

1 oy 1 oy

= -~ = 7 1.14

U T 2sing 9 v rsind Or (1.14)

Hence, eliminating the pressure between these two components, eq. 1.12 be-

comes

E? (E*p) =0 (1.15)
We impose the no-slip condition, i.e. null radial and angular velocities, at the
sphere surface (r = R, with R radius of the sphere):

Vyr = 0 Vy — 0 (1.16)
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Figure 1.2: Polar coordinates system (r,v), used in the solution of Stokes-Einstein equation.
The particle is assumed moving at constant velocity v along the x—axis.

and a velocity v of the flow at great distance from the particle (r — o0); for
the function 1, this condition translates in

Y — 272 sin? o (1.17)

A solution in the form 1 = f(r)sin?¥ is so expected and, taking into account
the boundary conditions shown above, a suitable solution for ¢ is

2 3
vr*  3uRr vR )sin219 (1.18)

MWF<2‘4+@1

From the definition of ¥ (eq. 1.14), the velocity components are recovered

2r  2r3
vy = —v 1—%4—&3 sin ¥ (1.19)
v 4r  4r3 '

Since the shear strain rate 7,y is defined by

0 [vy 1 0v,
o= (3) + 750 (1:20)
the shear stress on the surface (r = R) is
(= R) = ==L sin v (1.21)
Try = NYr9\T" = = UQRSIH .
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To determine the pressure p on the particle, we use eq. 1.12; its solution leads
to
3
D =po— 77% cos v (1.22)
where pg is the fluid pressure at infinity.
The friction drag F' exerted by the fluid on the particle is thus given by

F= f(—p cos ¥ — Ty sin)dS = 6mnRv (1.23)

where both the pressure and the tangential stress, projected on the direction
of the motion, are integrated over the whole spherical surface.
The drag coefficient for a sphere moving in fluid phase, defined by the ratio { =
F/v, is finally expressed as:
¢ =6mnR (1.24)

Replacing ¢ in eq. 1.11, a theoretical prediction of the diffusion coefficient, in
the case of a spherical bead totally immersed in volume, is provided by
kgT
6T R

Dsphere = (125)

The same approach is followed to compute the rotational friction coefficient
(o~ We consider a sphere that slowly rotates with a constant angular velocity w
around an axis z.

In spherical coordinates system (fig. 1.3), the velocity v is in the form

V = [0y, Uy, V9| = [0, 0,(r, ), 0] (1.26)

and all the quantities are symmetric about the z-axis, i.e. there is no depen-
dence on .
The Navier-Stokes equation (eq. 1.12) is thus reduced to

gy 10 (20 Y 10 (10
O_v%_ﬂar 5 Ve +r2819 sinﬁ@ﬁ%Slnﬁ (1.27)

Imposing the boundary conditions
v, = wlsin?d r=R

v, — 0 r — 400 (1.28)
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ZA

)y

Z > I

X ¢

Figure 1.3: Spherical coordinates system (7, ,1), used in the computation of the rotational
friction coefficient. The particle is assumed rotating around the axis z.

the solution for the velocity field is achieved

2

v, = wR <R> sin v (1.29)
r
The shear stress
0 (v
Trp =105 (;’ (1.30)

-
is integrated on the particle surface (r = R) and leads to the friction drag
torque I

r= ]4 ToRsindds = 8mpRiw (1.31)

The corresponding rotational friction coefficient is ¢, = I'/w, thus
r
(p = — = 8m R’ (1.32)
W

providing the corresponding theoretical prediction of the rotational diffusion
coefficient of a spherical bead totally immersed in volume:

kT

Dcp,sphe’re = W (133)
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1.2.2 Experimental measurements of diffusion in bulk

The first experimental observation of Brownian dynamics was done by Jean Perrin
in 1909 [2]. In his experiment, microscopic latex particles were immersed in water
at constant temperature. Using an optical microscope in a camera lucida set-up, a
2-D projection of particle trajectories on a paper sheet was obtained. The particle
position was marked every 30 seconds for 24 minutes. An example of this first
particle tracking is reported in fig. 1.4.
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Figure 1.4: Hand-drawn particle trajectories obtained by J. Perrin. The sample was observed
by optical microscopy, and the image was projected on a paper sheet. The position was marked
with a time interval At = 30s.

From such trajectories, the mean square displacement in 2-D is computed as a
function of the time lag. The resulting diffusion coefficient was found in agreement
with Stokes-Einstein relation.

1.3 Spherical particles at a fluid interface: con-
tact angles

1.3.1 Equilibrium position for ideal surfaces: Young’s con-
tact angle

The equilibrium position of a particle straddled at a fluid interface is firstly re-
covered in the ideal case of a flat and homogeneous particle surface, where the
interface can slide on the particle without any constriction. The pinning of the
contact line or the solid friction on the substrate are not considered here. We take
into account all the contributions to the surface free energy and look for the con-
figuration that minimizes it [17]. In fact, when a solid particle is at the air-water
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interface, three surfaces have to be considered (fig. 1.5):

1. the lower spherical cap, corresponding to the wetted part of the colloid (S7);
2. the upper spherical cap, where the solid is in contact with the air (S);

3. the missing air-water interface, due to the presence of the bead (S3).

Figure 1.5: Spherical bead with radius R at the air-water interface. Three different surface are
considered in the system: solid-water (S7), solid-air (S2), missing air-water (S3) surfaces. Each
one contributes to the total free surface energy, according to the corresponding surface tensions.
The position of the center of the particle is defined with respect to the vertical axis z. z =0
corresponds to the water level; the equilibrium position of the center of the particle is denoted
with Z. In a similar approach, the equilibrium of the three interfacial forces at the contact line
leads to the definition of the contact angle 6.

Let us denote with z the vertical position of the center of the particle with
respect to the water level; R is the radius of the particle. The three surfaces,
and the corresponding energy contributions, are recovered from simple geometric
arguments:

1. ESL:O'SL27TR2 (1—Z/R)
2. ESV = 05V27TR2 (1 + Z/R)
3. ELV = —O'Lv7TR2 (]. - 22/R2)
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where o denotes the surface tensions of the solid-liquid (SL), solid-vapor (SV)
and liquid-vapor (LV) interfaces.
The total surface free energy is thus:

22z (ogy —0Og 2051, + 205y — 0
E = 1R,y lR2+R< v L>_|_ L vV — 0LV

With respect to the normalized vertical position z/R, the total surface free
energy F has a parabolic profile; the particle is trapped in a potential well, whose

(1.34)

oLv oLv

equilibrium position z is obtain from the condition %—f =0
z osy — O
£ __J8v Y81 (1.35)
R oLv

Since the contact angle 6 can be defined, from trigonometry, as (see fig. 1.5)

z
0=—— 1.36
COS 7 ( )
eq. 1.35 is re-written as a function of 6:
ULVcosezagv—O'SL (137)

Eq. 1.37 represents the Young’s law [18] and can be retrieved by considering
the equilibrium of the three interfacial forces (per unit length) acting at the contact
line, on the surface of the particle (fig. 1.5).

The contact angle is related to the surface tensions of the considered phases:

osv — 0SL,

0 = arccos (1.38)

oLv
Different experimental techniques, as Gel Trapping and Vertical Scanning In-
terferometry (see chapter 2 for a detailed explanation of their working principles)
are used to recover a direct measurement of 6.

1.3.2 Equilibrium position for heterogeneous surfaces

Young’s equation (eq. 1.37) provides an equilibrium contact angle and a corre-
sponding equilibrium immersion depth in the case of an ideal homogeneous surface.
Nevertheless, in many practical applications, we have to handle more complex sur-
faces, as heterogeneous substrates. For these cases, Cassie and Baxter [19] devel-
oped a model for the contact angle 6.

Let us consider a spherical bead at the air-water interface, at an equilibrium con-
tact angle 6 that is hitherto unknown. The three areas pertinent in the problem
can be written as a function of 6:
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o Agy =271 R*(1 — cosf)
[ ASL = 27TR2<1 + cos 6)
o Ary = mR*(1 — cos? )

where the indexes denote the solid-vapor (SV), solid-liquid (SL) and liquid-
vapor (LV) interfaces, respectively. Here, we suppose that the solid surface consists
of n different materials, uniformly distributed over the substrate. Each material
has its own surface tensions o; gy, 0; g1, and occupies a given fractional area f;;
such a value is the same at both solid-vapor and solid-liquid interfaces. For the
sake of simplicity, we discuss the case n = 2. The total surface free energy is
written (see eq. 1.34 for comparison):

E =21 R? { (1 —cos0) (fiorsv + faoasv) +

1
+ (1 + cosb) (fio1.s1 + fao2s1) — 3 (1 — cos? 6) aLV} (1.39)
We recover 6 from the minimization of the free surface energy, i.e.
oF 5 .
% =27 R*sinf [f10'17sv + f20'27sv - flo-l,SL - f20-2’SL -+ cos QO'L\/] =0 (140)

that leads to

f 01,V — 01,8L 02,5V — 028L
1

cosf =

+ fo

= f1cosb + fycosbs (1.41)
oLv oLv

where 6; is the equilibrium contact angle of the ideal homogeneous surface
composed only by the material . In other words, in Cassie-Baxter model the
macroscopic contact angle of an heterogeneous substrate is given by the average
of the contact angles of the composing materials, weighted by the fractional area
occupied by each one.

1.3.3 Microscopic contact angles

So far, the discussion on the energies involved and on the equilibrium contact
angle was in the far field where the relevant parameters are simply the interfacial
tensions. Thus, the equilibrium contact angle 6 (eqs. 1.37, 1.41) is identical to
the angle 0,, that one measures by macroscopic techniques such the sessile drop
method (fig. 1.6) or, as done in this thesis, interferometric techniques (par. 2.2.2).
However when going down in length scales close to the triple line, local contact
angles may differ from the far-field equilibrium contact angle. Two additional
regimes have been discussed in the literature [20, 21]. At length scales 1 nm
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< ¢ < 1 pm, colloidal forces such as Van der Waals (VAW) and Electrostatic
double layer (EDL) interactions will affect the contact angle profile. VAW includes
intermolecular dipole-dipole, dipole-induced dipole, and induced dipole-induced
dipole interactions. Electrostatic double layer depends on the surface potential
and electrolyte concentration. The Debye screening length sets the length scale of
this interaction, which for pure water is about 1um [22]. A new microscopic angle
O, slightly different from 6,, is present. The microscopic angle 0, is related to
the macroscopic angle 0 by considering the dissipation at the local scale. At length
scales ¢ < 1 nm , 6, will be affected by the thermal fluctuations and short range

chemical forces. However, in most common cases, such as wetting theories [23],
0, ~0.

kgl vs. short range forces

= mean field (< 1T um), VdW and EDL

_f;irﬁeld (> 1 mm)

f\f:'lll/ drop \&a

Figure 1.6: Schematic view of the different length scale at the contact line. In the far field the
contact angle (6,p in this figure) is the same that one measures with macroscopic techniques,
such as sessile drop method. In the mean field, Van der Waals and Electrostatic double layer
interactions slightly modify the contact angle profile. At nanometric length scales, the local
contact angle 6, is affected by thermal fluctuations.
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1.3.4 Triple line dynamics: advancing and receding con-
tact angles

Let us consider a contact line pinned at a given position on the solid substrate. In
the case of a relative motion of the fluid with respect to the particle surface, such
a pinning translates in an increase of the contact angle when the fluid advances;
similarly, the contact angle decreases when the fluid recedes in the opposite direc-
tion (fig. 1.7). Thus, a finite interval of contact angles, around the equilibrium
value @, provided by Young's law, is allowed [24]:

0. <0<4, (1.42)

where 0, and 6, are the advancing and the receding contact angles, respectively.
This range is known as contact angle hysteresis.

solid
particle

Figure 1.7: Advancing (a) and receding (b) fluid, with respect to the solid substrate. A pinned
contact line induces an increasing (6,) or a decreasing (6,). The range of allowed contact angle
0. < 0 < 6, is known as contact angle hysteresis.

Such a hysteresis is induced by surface effects, as roughness or chemical het-
erogeneities, which produce new local minima in the surface free energy, resulting
in metastable equilibrium positions. The energy barriers to reach these minima
in the surface free energy are large enough to allow the advancing and receding
contact angles [25].

In the case of rough silica surface, the maximum achievable value of contact
angle hysteresis is A0 = 0, — 0, ~ 14° [26].

1.3.5 Relaxation to the equilibrium position

Young’s law (eq. 1.37) and its modified expression for heterogeneous surfaces
(eq. 1.41) provide the equilibrium position of a bead at the interface, but little is
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known about how this equilibrium is reached. Recently Kaz et al. [15] observed the
breaching dynamics of a micrometric particle at a decane-water interface and the
successive relaxation toward the equilibrium position (fig. 1.8a). This relaxation
shows a logarithmic behavior with characteristic times of months (fig. 1.8b).
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Figure 1.8: a. Typical immersion depth of a 1.9um-diameter bead at an decane—water interface.
Three different time phases are visible: approach, breach and relaxation. b. Semi-log plot of
the position as a function of time, when the particle relaxes to the equilibrium position: the
relaxation is approximately logarithmic. Data and graphs from Kaz et al., Nat. Mater. 11, 2
(2012) [15].

This dynamics was explained with a model that takes into account thermally
activated jumps of the contact line over surface defects. Each defect is considered
as a site where the contact line is pinned with an energy e [23] (see also par.
4.4.1). The velocity of the contact line is expressed by an Arrhenius-like term,
and depends on a Boltzmann factor representing the probability to hop the site:
exp (—€/kgT). The rate of hopping is biased by the force acting on the contact
line f = opy (0(t) — 6.), where 0, is the equilibrium contact angle, provided by
Young’s law, and 6(t) is the instantaneous contact angle. Such a driving force f
is maximum at the breaching and decrease to zero at the equilibrium position,
providing a justification to the logarithmic behavior. This experience shows that,
in many practical applications, the bead is far from equilibrium and the observed
contact angle can significantly differs from the Young’s value.

1.4 Lateral motion of spherical particles at a fluid
interface

1.4.1 Theoretical models

The viscous drag of spherical beads at a fluid interface has to be computed in order
to obtain the interfacial diffusion coefficient. This approach is the same as previ-
ously proposed for particles fully immersed in the fluid phase. From a qualitative
point of view, the drag (g exerted on the bead must be reduced with respect to

22



one obtained in the volume, due to the lower amount of surrounding water (eq.
1.24). Hydrodynamic theories, developed by Danov et al. [27], Pozrikidis [28] and
Fischer et al. [29], provide quantitative expressions for (y (fig. 1.9). All these
models agree with the expected behavior described above, i.e. the viscous drag is
reduced when the particle is at the interface, and it is decreasing when it is more
in air.

air air

1,00 fom oo

0.75

0.50

G, /6mR

0.25

0.00 - ' - ' - ' -
30 60 90 120 150

Contact angle, 0 (degree)

Figure 1.9: Viscous drag (g at the interface, normalized by the friction coefficient in the volume
(v = 6mnR, dashed line) versus contact angle 6. Higher contact angles correspond to less
immersed particle. (p is computed using hydrodynamic theories of Danov et al. [27] (green
line), Pozrikidis [28] (red line) and Fischer et al. [29] (black line). The different hypotheses lead
to slight differences in the quantitative values, but they all qualitatively decrease, in a similar
way, with the contact angle.

In more detail, Pozrikidis [28] took into account the asymmetric deformation of
the interface due to the motion of the particle. The drag force was written in the
form F' = f6mnRv, where (8 is the dimensionless drag coefficient at the interface.
£ was numerically computed at 5 values of 6, covering all the range of possible
contact angles, in the case 74 /Mwater =~ 0. In fig. 1.9 (red line), a fit for the surface
viscous drag normalized by the bulk value, according to the 5 values in table 1.1,
is plotted.
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O] 9 | 45 [ 90 | 135 | 171
3 0721067050 | 0.25 | 0.05

Table 1.1: Dimensionless drag coefficient 5 in the expression of the drag force (F' = S6mnRv),
as computed by Pozrikidis [28] at 5 values of 6, covering all the range of contact angle.

Danov et al. [27] computed the pressure field and the local velocities at low
Reynolds and low capillary numbers (nv/ory < 1) for a Newtonian viscous inter-
face. The obtained numerical results in the range 30° — 90° of € are reported in
fig. 1.9 (green line).

Fischer et al. [29] considered a flat and incompressible interface; an analytical
expression for # was obtained from the fit of the numerical solution of the Navier-
Stokes equation at the interface (black line in fig. 1.9):

B = \/tanh [32 (1 + cos ) / (972)] (1.43)

Here we report some additional information about the derivation of the model
proposed by Fischer et al. [29], that will be used in the following chapters to predict
the Brownian dynamics at the interface.

Fischer et al. [29] numerically calculated the drag of a sphere at a flat and in-
compressible interface. The case of a flat interface leads also to the suppression of
the rotation of the sphere, in order to avoid any diverging tangential stress at the
contact line. The hypothesis of an incompressible interface is justified since surface
compression waves, due to the motion of surface phonons, are faster that the col-
loidal particle. The complete discussion includes also the role of Marangoni stress,
tangential to the surface and generated by gradients in surface surfactant /pollutant
density. Since we are here considering a free and clean air-water interface, such
a contribution can be reasonably neglected. The flow in the bulk phase is still
described by Stokes equation, as in eq. 1.12. In this case, an inverse approach,
with respect to the one proposed in par. 1.2.1, has been followed: an external
force (per unit volume) f is supposed to act on the fluid, and the resulting velocity
field v is found. Eq. 1.12 is thus slightly modified:

f +n(2)V?v — gradp =0 (1.44)

Moreover, the viscosity 7(z) is now a function of the vertical position, because
of the presence of two different fluid:

N(2) = Nwater©(—2) + 10ir©(2) (1.45)
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where the symbol ©(z) denotes the Heaviside function and the position z = 0
correspond to the interface. The boundary conditions include the no-slip at the
particle surface and an incompressible two-dimensional Stokes flow at the air-water
interface:

divvy =0

v,(2=0)=0

0
f, — gradm, +7,Vv, + Hna‘z’

| =0 (1.46)

f, is the component of the external force f, introduced above, tangential to the
surface, 7, is the surface pressure and vy is the velocity of the fluid at the surface
plane. The symbol ||-||, denotes the jump of the considered quantity across the
interface.

A solution of eq. 1.44, taking into account boundary conditions in eq. 1.46,
can be expressed in the form

v(x) =0(z- Z/)/dSX/OQ(X —x')-f(x) + /d2X/SOS(X —x.)-f,(x))  (1.47)

where Oy and O, are the Oseen tensors in the bulk and at the interface, re-
spectively. Every component of the tensors can be determined, via a mathematical
derivation that is not reported here for the sake of simplicity. For our purpose, it is
sufficient to point out that the integral in 1.47 can be simplified in the hypothesis
ns = 0 (in agreement with a free air-water surface) and solved numerically. The
results of the viscous drag ( = F'/v, as a function of the contact angle 6, were
fitted with an accuracy of 3% by the formula

(= 67r\/tanh [32 (1 + cos®) / (972)|nR (1.48)

1.4.2 Experimental measurements

Petkov et al. [30] determined the drag coefficient of millimetric glass beads (0.4
mm in diameter) at a pure air—water interface, cleaned by suction before the ex-
periment. A lateral capillary force F' was applied to the beads by a deformation
of the water surface, controlled by a vertical Teflon barrier. The resulting motion
of the particle was observed by a vertical long—focus microscope and recorded by
a CCD camera. The velocity v was measured, and the relation F' = 67nRv pro-
vided the drag coefficient (/3 is the dimensionless drag coefficient at the interface).
A second, horizontal long—focus microscope was used to measure the size of the
particles and their immersion depths in water. At the three considered contact
angles (0 = 48.7°,53°,82°) the drag coefficient at the interface is lower than the
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one predicted by Stokes—Einstein relation in volume (table 1.2). The values are
compared with the results of the theory by Fischer et al. [29], as the one that
predicted the maximum viscous drag.

Radoev et al. [31] considered the case of micrometric spheres at an air-water
interface, but without any information about the immersion depth. Polymer beads
(melamin, diameter 1 - 1.8 pum) were deposited by a glass fiber on a slightly
concave meniscus. The surface was preliminary cleaned since otherwise the particle
motion would be practically immobilized. The light of a laser beam, scattered
by the particle, was observed by microscopy and allowed to trace the particle
trajectory. From the Mean Square Displacement analysis, the diffusion coefficient
at the interface was measured Dg = 0.4um?/s. The corresponding value in the
bulk is not clear: in the considered range of particle size the Stokes—Einstein bulk
diffusion is Dy ~ 0.42 — 0.24pum? /s (viscosity n ~ 1 mPa-s and T' = 300 K). The
direct measurements in bulk were instead Dy ., = 0.6um?/s. The uncertainty on
particle radius and the absence of values for the immersion depth do not allow a
quantitative analysis of such results.

Sickert et al. [32, 33] studied the Brownian motion of micrometric polystyrene
beads (0.4pm in diameter) in a Langmuir monolayer at different surface viscosities.
Such values are compared with the one at a pure air—-water interface. The contact
angle in clean water was not measured on 0.4 pum beads, but on larger beads
made of the same material (diameter 6 - 10 pm) by optically observing their
immersion depth at the meniscus of a sessile drop. On those large beads, they found
0 = 50° £ 5°. The motion of 0.4 um beads was detected by optical microscopy.
In order to discard drift effect, the particles were grouped in pairs and their mean
square relative separation (Ax?) was measured as a function of time. The averaged
diffusion coefficient was measured Dg = 1.26 & 0.19um?/s, when the diffusion in
volume is calculated Dy = 1.06um? /s by Stokes—Einstein relation. The diffusion is

faster at the interface than in volume, but not as much as predicted by theoretical
models [27, 28, 29] (par. 1.4.1).

Chen and Tong [34] focused on the interface diffusion on multiple particles sys-
tems, where the diffusion coefficient is written as a function of the area fraction n
occupied by the particles. In order to recover the case of single particle treated in
this thesis, we extrapolate the results at n — 0. Three silica bead samples were
used (diameter 0.73 pm, 0.97 pum, 1.57 pm). The experimental procedures were
the same as described in the previous cases. Great care was taken to clean the par-
ticles and the air—water interface, the beads were observed by optical microscopy
and the MSD was measured as the function of the time lag. The experimental
dimensionless drag coefficients S are reported in table 1.2. A contact angle of
0 = 64° was found comparing the result on the set of beads at diameter 0.97 pym
(8 = 0.69) with theoretical prediction [29]. For the other two sets of beads, the ob-
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tained values are larger than the expected one. Possible causes were investigated,
but without achieving a solution. Surface contamination was ruled out, since its
effect is expected to be random, whilst the measurement shows consistent results
for all the samples. A suggestion provided by the authors was to consider compli-
cations near the contact line, not considered in all the developed hydrodynamics
theories.

In the last example provided in this short overview on micrometric beads,
Peng et al. [35] considered two sets of polymethylmethacrylate (PMMA) micro-
metric spheres (diameter 1.19um and 0.66um) at a decalin-water interface. In
both cases, the contact angle was not measured, but the beads were expected to
have their larger part in decalin. The 2-D dynamics of the particle trapped at
the interface was followed by using optical microscopy. Multi-particle tracking
allowed to recover the trajectories and to measure the diffusion coefficient Dg at
the interface, as a function of the area fraction n occupied by the particles. As
above, we look at n — 0 for single particle diffusion. The measured drag force at
the water—decalin interface is F' = 67, Rv, where n; = 2.5 mPa-s is the viscosity
of decalin. Despite the partial immersion in water, the diffusion at the interface is
very close to the one in decalin, suggesting that the drag on the particle is much
larger than the one expected at the interface. In terms of dimensionless drag
coefficients, 8 = 0.95 for 0.66pum bead and 5 = 1.02 for 1.19um bead.

All these measurements on millimetric and micrometric beads show two im-
portant features about the state of art in such a field. First, the contact angle was
marginally considered and not well defined in literature. It was directly measured
only with millimetric particles, when it is macroscopically visible, and generally
estimated with different methods (using larger particles or by comparison with
models). The dependence of the dynamics in a large range of contact angles was
also not investigated. Secondly, the results are not univocally understood, and
this makes the problem still open. In several cases, we read that the measured
drag coefficients at the interface are underestimated by existing theoretical mod-
els [27, 28, 29]. This aspects are considered instead in this thesis, in which we
attempt to fill the gap in these directions.

Several recent works extend the range of particle sizes and probed also the
Brownian dynamics of nanoparticles at fluid interfaces. Wang et al. [8] studied the
mobility of four types of quantum dots, different for size (in the range 5 <+ 11 nm)
and surface functionality, at a water-alkane interface by fluorescence-correlation
spectroscopy.

Surface diffusion coefficient Dg was measured for different alkane viscosity and
compared with the volume diffusion Dy of nanoparticle totally immersed in alkane
(fig. 1.10). The diffusion coefficient at the interface Dg is 1.5 - 2 times slower than
the corresponding value in the bulk, against the theoretical prediction reported
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ref. 0 [O] Bewp Bth
Petkov et al. [30] | 48.7 | 0.68 0.73

Petkov et al. [30] 53 | 0.66 0.72
Petkov et al. [30] 82 | 0.54 0.62
Radoev et al. [31] - 106-1.5| <0.79
Sickert et al. [32] 50 | 0.84 0.73
Chen and Tong [34] | 64 | 0.69 0.69
Chen and Tong [34] | 64 | 0.84 0.69
Chen and Tong [34] | 64 | 0.85 0.69

Table 1.2: Overview of the results on diffusion of beads, as found in literature. For each
measurement, we report the author, the contact angle 8, the experimental dimensionless drag
coefficient S, and its theoretical prediction S, as expected by Fischer et al. [29].
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Figure 1.10: Diffusion coefficients at the water-alkane interfaces (circle) as a function of the
viscosity of the alkane phase. Such values are compared with the corresponding diffusion coef-
ficient for the same particle, but totally immersed in the alkane. The diffusion is slower at the
interface, against any theoretical prediction. Measurements and graph from Wang et al., Small
7, 24 (2011) [8]

above.

The anomalous behavior of nanoparticles at the interface was confirmed also
by other works. Zheng et al. [10] measured the diffusion coefficient of gold NP
(diameter in the range 5 — 15 nm) at the interface of a water—glycerol mixture.
They found that the diffusion coefficient increases with particle size, violating the
Stokes—Einstein equation that predicts the opposite behavior (fig. 1.11a). A simi-
lar behavior was found also by Du et al. [11] for particles at an oil-water interface
(fig. 1.11b), in a wide range of particle diameters (24 — 2000 nm). Larger par-
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Figure 1.11: a. Mean Square Displacements of 3 gold nanoparticles (diameter: 5 - 10 -15 nm)
as a function of the time lag. The particles are straddled at the interface of a water—glycerol
mixture. The slope of the MSDs increases with the NP diameter, when a decreasing is instead
expected by Stokes—Einstein equation. Measurements and graph from Zheng et al., Nanoletters
9, 6 (2009) [10]. b. Experimental diffusion coefficient for polystyrene particles, in a wide range
of diameter (24 — 2000 nm). The predictions of Stokes—Einstein equation for a particle fully
immersed in water (dashed line) and in oil (solid line) are reported. In the first case, a direct
measurement (yellow diamonds) confirms the prediction. For particles straddled at an oil-water
interface (blue circles) the diffusion coefficient does not follow the Stokes—Einstein behavior. The
same result is observed when the charge on the particles is neutralized by changing the pH value
to 4 (red triangles). Measurements and graph from Du et al., Langmuir 28, 25 (2012) [11].

ticles exhibit an intermediate diffusion coefficient, between the values of diffusion
in water and in oil. A typical scaling as R~!, in agreement with Stokes-Einstein
equation, was also found. For smaller particles Stokes—Einstein equation is not
followed and an unexpected increase in drag force at the interface occurs.

All these recent works, at both nanometric and micrometric scales and in dif-
ferent systems, point out a slowing—down of the diffusion at a fluid interface,
suggesting that additional dissipation mechanisms enter into play at the interface.

1.5 Spheroidal particles fully immersed in a fluid

1.5.1 Theoretical model of friction coefficient

The calculation described in previous section for spherical beads can be extended
to more complex morphologies. In the present work (see chapter 3) we are in-
terested to the case of prolate spheroids with semiaxes (a,b,b). We discuss first
the translational motion along the two main directions, that we denote with the
indexes a (along the long axis) and b (along the short axis). In each case, the par-
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ticle is moving at a given velocity v. The corresponding shear stress and pressure
at the particle surface can be computed, in a similar way as done for a sphere.
The integration in the spheroidal geometry provides the friction drags F, and Fy,
as computed for the first time by F. Perrin [36, 37].

For the sake of simplicity, the detailed derivation is not reported in this thesis, but
it is sufficient to point out that the role of anisotropic shapes is taken into account
by geometric factors. In fact, the friction drags in the two cases are written

Fa,b = 6’/T77bGa7b<¢)U (149)

where the geometric factors G,;(¢) are functions of the aspect ratio ¢ = a/b.
They were analytically derived from Perrin’ s equations [38] and plotted in fig.
1.12:
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For a sphere (¢ = 1, a = b = R), we have G, = G, = 1: from eq. 1.49, it is
evident that the usual Stokes—Einstein expression is recovered. At ¢ > 1, the drag
forces increase with the aspect ratio, more rapidly along the short axis.

The rotational dynamics is also considered: for a spheroid, rotating at an
angular velocity w around the short axis b (fig. 1.13), the friction drag torque is
given by the same approach [36]:

I'=6nVG,(o)w (1.52)

where V' denotes the volume of the particle and the geometric factor G, (¢)
(fig. 1.14) is [39]

¢ — 1
¢[\2/¢;;_111n(¢+\/m)—¢}

2

The theoretical expressions for the viscous drag for spheroidal particles im-
mersed in a fluid phase allow to write the corresponding diffusion coefficients,
according to eq. 1.11. The diffusion coefficients D,, Dy, along the long and short
axis respectively, are

kgT D kgT

a p— 77 p— 1- 4
6mnbG, b 6mnbG,, (1.54)
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Figure 1.12: Geometric factors G, (black line) and G} (red line), as computed by Perrin in
[36, 37] and reported in eqgs. 1.50, 1.51, as a function of the aspect ratio ¢ = a/b. Their role
is to take into account the anisotropic shape of spheroids on friction drag. At ¢ = 1, both the
geometric factors are equal to 1, and we recover the expression for the sphere. For elongated
particle, an increasing of the drag is expected.

Figure 1.13: Prolate spheroid of axes (a, b, b) rotating at an angular velocity w around a short
axis b.

Similarly, the rotational diffusion coefficient D, around one short axis is

kgT

_D = —m—m- ].-
7 VG, (1.55)

1.5.2 Experimental measurements of friction coefficient

Even if the theoretical predictions are well-known and generally accepted since
longtime, the experimental confirmation of the Brownian dynamics for anisotropic
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Figure 1.14: Geometric factor G, as computed in [39] and reported in eq. 1.53, as a function
of the aspect ratio ¢ = a/b. Also in this case, the drag is an increasing function of the aspect
ratio ¢.

particles is a really recent achievement. In 2007, Mukhija and Solomon [5] pro-
posed a method for a fully three-dimensional characterization of colloidal spheroids
dynamics by using confocal microscopy.

Prolate spheroids were obtained from uniaxially stretched beads, in the same
way as described in chapter 3 in our experiments, and dispersed in a solution of
polydimethylsiloxane and CXB/decaline, with a viscosity of 2.0 £ 0.03 Pa s (2000
times larger than the water viscosity). Such a viscous medium allowed slowing
down the Brownian dynamics to time scales compatible to confocal laser scan-
ning microscopy. The Mean Square Displacements, as a function of the time lag,
gave the diffusion coefficients along the long axis D, and along the short one D,.
Such measurements were performed for two sets of prolate spheroids, with aspect
ratio ¢ = 3.1 £ 0.2 and ¢ = 7.0 + 0.6, respectively. The MSDs are plotted for
the translational dynamics along the long (fig. 1.15a) and the short (fig. 1.15b)
axis respectively for both the aspect ratios (red points for ¢ = 3.1, blue points
for ¢ = 7.0). The data are then compared with the theoretical predictions (solid
lines), according to the model proposed above. Their strong agreement confirms
the reliability of the theory.
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Figure 1.15: MSD vs. time lag for spheroidal particles totally immersed in a fluid, viscous phase.
The displacements are here directly measured, by confocal microscopy, along the long (a) and
the short (b) axes of the particle. Two aspect ratios are considered in this experience: ¢ = 3.1
(red points) and ¢ = 7.0 (blue points). The experimental data are compared with the theoretical
predictions (solid lines), showing a strong agreement. Measurements and graphs from Mukhija
et al., J Colloid Interface Sci, 314, 98106 (2007) [5].

1.6 Spheroidal particles at a fluid interface

1.6.1 Equilibrium position and deformation of the inter-
face

The equilibrium position of a particle at an interface between two fluids comes
from the equilibrium of the interfacial forces, as found in par. 1.3.1. The interface
needs to fulfill the condition # = const., where 6 is the equilibrium contact angle.
For the sake of simplicity, the hysteresis of the contact angle is here neglected. For
a spheroidal particle, where different radii of curvature are present, a planar cut
of the particle body yields an ellipse, which does not generally meet the condition
of a constant contact angle. A saddle-like distortion of the contact line is thus
necessary to fulfill the Young’s condition. A profile of the deformed contact line,
with special regard to the difference Ah between the highest and the lowest points,
was derived by Loudet et al. [40]. They recovered the numerical solution of the
Laplace equation for the interface height using a boundary element method. A
solution of the deformation of the contact line, as a function of both the aspect
ratio and the contact line, was finally achieved: L(¢,0) (line in fig. 1.16¢).
Loudet et al. [40] provided also a direct measurement of the topography of
the air-water interface around floating spheroids. Uniaxially stretched polystyrene
beads were deposited at the interface and an optical trap was used to grab a single
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particle, at a fixed position and angular orientation. The interface profile was
acquired by Phase Shifting Interferometry, whose general working principles will
be detailed in chapter 2. Experimental data clearly show a deformation of the air-
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Figure 1.16: a.-b. False color maps of a spheroid (a) and a sphere (b) at the air-water interface,
measured by J.-C. Loudet et al. via PSI technique. In the first case, a deformation of the
interface is observed: the contact line is pushed down at the tips and pulled up near the middle
of the particle, according to Young’s law. The interface around the sphere stays instead flat.
c. Points: experimental deformation Ah, normalized by the radius R of the initial spherical
bead, as a function of the aspect ratio ¢. Solid line: predicted deformation of the contact line,
computed using the numerical method described in the text. Both theory and experiments show
a flat interface for spherical bead, and an increasing distortion for prolate spheroids. Images
from Loudet et al., PRL 97, 018304 (2006) [40].

water interface, which is pushed down at the tips and pulled up near the middle of
the particle (false color map in fig. 1.16a). A characteristic quadrupolar symmetry
is also observed, suggesting that such an effect is the result of the particle shape,
and not of surface roughness. This trend is not observed for spherical beads, where
the interface remains flat to within the experimental resolution of 1 nm (fig. 1.16b).
The analysis was performed in a full range of different aspect ratios, measuring the
difference Ah between the highest and the lowest level of the interface (points in fig.
1.16¢). These data confirm the presence of circular, flat contact line for spheres
(¢p = 1) and a saddle-shape contact line for spheroids (¢ > 1). Moreover, the
distortion of the interface increases with ¢. Such experimental measurements are
compared with the theoretical prediction of the distortion (solid line in fig. 1.16),
showing the same increasing behavior predicted by the numerical simulation.

The measurement of such a deformation is also used for an estimation of the
contact angle of the particle [40, 41]. It is known, from the numerical solution of
the Young equation around the elliptical contact line, that the maximal interface
distortion Ah is a function of both the aspect ratio ¢ and the contact angle 6.
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By using such a dependence, it should be possible to derive the contact angle 6
from experimental measurement of Ah via PSI technique for a known aspect ratio.
The contact angle obtained by this method, as a function of the aspect ratio, is
reported in fig. 1.17. Since the distortion is a non-monotonous function, two
different solutions for 6, at a given Ah and ¢, could be possible (two branches in
fig. 1.17). The upper branch weakly depends on the aspect ratio. In the lower
branch, a slightly decreasing contact angles is observed, from 6 = 55° for spheres,
to 6 = 35° at the maximum considered ¢.
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Figure 1.17: Contact angle 6 as a function of the aspect ratio ¢, obtained via PSI measurements of
the distortion Ah and numerical solution of the interfacial profile. Since Ah is a non—monotonous
function, two possible branches for 6 are derived. Image from Loudet and Pouligny, EPJE 34,
76 (2011) [41].

1.6.2 Coupling with interface curvatures: lateral interac-
tion

The deformation due to the spheroidal morphologies leads to an increase of the air-
water interface area, with respect to the ideal (and most energetically favorable)
case of a flat surface. The system tends to minimize the extension of this extra
area. An example is provided by the capillary attraction of neighboring spheroids.
In this case, if two spheroids are close enough, they tend to overlap their interfacial
distortions and reduce the extra area, as described by Loudet et al. [42].

Another case is the coupling of the particle dynamics with the curvature of the
interface, as described by Cavallaro et al. [43]. They designed an air-water interface
with a radial gradient in Gaussian curvature, by pinning the surface at a vertical
cylindrical micropost (fig. 1.18). A cylindrical microparticle was deposited at such
a curved interface. The coupling between the quadrupolar deformation induced by
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the particle, and the curved interface led to a lateral force and a vertical torque.
The particle rapidly rotated in order to orient its axis along the principal axes of
curvature (circle of a constant radius); thereafter, it moved along the radial line
toward to the center of the sample.

A curved interface adds undesirable effects to a pure diffusive motion, as an-
gular confinement of the diffusion and/or drift. These observations justify the
great attention paid to minimize the curvature of the air-water interface in the
measurement performed in this thesis.

a frontal view b topview

Figure 1.18: a. Frontal view: a cylindrical micropost is used to pin the air-water interface and
induce a curvature. The slope of the interface at the micropost is given by tan. b. Top view:
in a polar coordinates system (r,1), the principal directions of curvature are circle of constant
radius r and radial lines of constant ¢ (blue lines). ¢ denotes the orientation of the principal axes
of curvature, and ¢, the orientation of the particle (cylindrical microrod in this experiment). c.
Time-lapsed images of the microparticle position every 1 s. Image from Cavallaro et al., PNAS
108, 52 (2011) [43].
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Non basta guardare, occorre
guardare con occhi che vogliono
vedere, che credono in quello che
vedono.

It is not sufficient to look, you
must look with eyes that want to
see, that believe in what they see.

Galileo Galilei
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Chapter 2

Measurement of the diffusion of
spherical beads at an air—water
interface

Introduction

It is well known that the motion of particles in a fluid phase is strongly affected
by the viscosity of the surrounding medium. In fact, everyone is familiar with
the fact that gas bubbles rise faster in champagne than in honey. A more rig-
orous example is provided by the Brownian motion of a colloidal particle, where
the diffusion coefficient D is inversely proportional to the viscosity n of the fluid.
For this same reason, in the case of a colloid straddled at the interface between
two immiscible fluids, we can expect that its motion depends on the viscosity of
both the phases. At the interface between air and water, where the viscosity of
the air is much smaller than the viscosity of water, the effect of the former is
negligible. The viscous drag is expected to be lower than the one observed for
a particle fully immersed in water. Current hydrodynamic theories predict this
behavior [27, 28, 29], but an experimental test of the prediction was provided just
for a few set of hydrophilic particles (see par. 1.4.2).

In the present chapter, a complete study of the particle diffusion in a wide
range of contact angle is addressed. Silica spherical beads with different contact
angles in water are prepared and deposited at a flat air-water interface (par. 2.1).
The equilibrium position of the particle at the interface and a possible particle
induced deformation are measured by using interferometric techniques (par. 2.2).
The diffusion coefficients D as a function of the contact angle 6 is then measured
(par. 2.3). The preparation of the beads and the measurements of their dynamics
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at the interface in the full range of contact angles have been carried out by D.
Fedorenko, a former post-doc in the team. They are reported in this chapter as
they guide the development of a new theoretical model, proposed in chapter 4.
The measurements are repeated during this thesis at few contact angles in order
to confirm the results.

2.1 Preparation of the sample

2.1.1 Particle surface treatment

The immersion depth of silica particles in water is controlled by chemically treat-
ing the silica surface. The validity of the methods is checked by Gel Trapping
method [44] and the contact angle is measured for all the beads by a homemade
interferometric set-up developed by C. Blanc. [45].

Figure 2.1: Spherical bead of radius R at the air-water interface. Its immersion depth & is a
consequence of the equilibrium between the three surface forces per unit length at the contact
line: ogy, osr, and ory. Such a condition leads to the contact angle 6.

The wettability of silica particles can be changed tuning the grafting density
of hydrophobic silane agents on their substrate. For this purpose, commercial
silica beads with diameter of about 2um and 4um and purchased from Bangs Lab-
oratories, Inc. (product code SS04N, SSO5N, respectively) are used. They are
sold in water solution, with concentration of 9.8% solids. Beads are first washed
in a sulfochromic acid solution and then thoroughly cleaned with 5 centrifuga-
tion/cleaning cycles. After a centrifugation (4000rpm for 5 minutes) the super-
natant is replaced by Millipore water and the beads redispersed in ultrasonic bath.
The deionized water is produced by a Millipore Milli-Q filtration system, and has
a resistivity of 18 MQ-cm. A solution of DMOAP (N,N-Dimethyl-N-octadecyl-
3-aminopropyltrimethoxysilyl chloride), 0.1 — 5% wt in demineralized water and

40



methyl alcohol (10% — 90%) is used. The beads are added into the silane solu-
tion (approximately 0.5 ml of beads in water per 1 ml of silane solution). The
solution is then mixed with a vortex mixer during a variable time interval, ac-
cording to the wettability we want to achieve. Particles left for 1 minute in silane
solution give a contact angle § = 68°; particles left from 30 to 120 minutes give
0 = 95° = 120°. Solvents and exceeding silane molecules are removed by 10 cen-
trifugation/cleaning cycles. The resulting contact angle ranges from 6 = 30° (pure
silica particle, only washed with sulfochromic acid) to # = 120°. Higher contact
angles (up to # = 140°) are achieved by using the same procedure as for obtaining
6 = 120° contact angles but a different deposition process: beads are first dried in
an oven at 120°C for 2 hours and deposited dried at the interface.

2.1.2 Interface preparation

Sets of particles with different surface wettability are deposited at the air-water
interface in order to analyze their dynamics. We use a small cylindrical container
of 10 mm in diameter, fixed on a microscope glass slide. During particle tracking
experiments (par. 2.3), the container is covered by a thin flat piece of borosilicate
glass, in order to avoid contamination of the interface or evaporation of the water.
Such a coverture is not used during interferometric measurements (par. 2.2.2),
when a direct contact between the light beam and the sample is needed. Deionized
water partially fills up to 0.8 mm in height the container. Smaller quantities do
not allow to fill homogeneously the container and obtain a flat interface. Larger
quantities of water cannot be used in order to minimize convective flow in the
sample. Beads dispersed in water are sprayed on the interface with an airbrush
or directly dried to avoid any possible surface contaminants. Most of the beads
stay trapped at the interface, and just a little portion sinks down into the bulk.
Very dilute bead surface concentrations (less than 0.01% s/s) are used to get rid
of possible interactions between them. The air-water surface tension is directly
measured by Wilhelmy plate method at a free interface, with and without silanized
beads. Both the measurements are in agreement with the literature value of the
air-water surface tension (opy = 0.072 N/m).

2.2 Techniques for contact angle measurement

2.2.1 Gel Trapping technique

The efficiency of the surface treatment to tune the contact angle is verified by
the Gel Trapping technique. In this method, the bead is trapped at the interface
between air and gelled water. The surface tension of gelled water is the same as
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Figure 2.2: SEM images of beads trapped in polymerized NOA81. Their contact angles at
air-water interface are 6 = 30° (a) and § = 90° (b). The visible part of the beads is the one
previously immersed in water. The contact angles can be recovered from their immersion in the
polymer, with respect to their size. Such images show the validity of chemical surface treatment
in tuning the contact angle. Courtesy M. Medfai and C. Blanc.

pure water (ory = 0.072 N/m), so we expect that the immersion depth is not
changed. The gelling agent used here is Phytagel, purchased from Sigma-Aldrich
(product code P8169). A Phytagel solution at 2% wt in Millipore water is prepared
by heating at 90°C and mixing by magnetic stirrer. The solution is cooled to room
temperature to allow the gel to set. Spherical beads are spread on the gel surface
and then the system is heated again at 90°C in order to trap the particles at the
interface. Norland Optical Adhesive 81 (NOAS81) is poured over the gelled water
with the particles trapped at its interface and photopolymerized by ultraviolet
light in 2 minutes. The polymerized NOAS8I is peeled off the gel surface, leaving
the beads at a complementary position with respect to the air-water interface. The
sample is finally prepared to be observed by Scanning Electron Microscopy (SEM)
(fig. 2.2). From these images, the microspheres immersion in water (corresponding
to the visible part of the bead) can be easily measured. Since this quantity is
2R — h (R and h have been shown in fig. 2.1), the contact angle is recovered by
the expression:
h

0=1—— 2.1
cos 7 (2.1)

2.2.2 In situ interferometric techniques

Interferometric techniques allow to reconstruct a 3-D profile of the interface. The
measurements are performed by an optical microscope (LEICA DM 2500P), equipped
with a digital camera and a Mirau interferometry objective.
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Figure 2.3: Scheme of the Mirau interferometry objective. A semi-transparent mirror splits
the white light into two arms. L is the fixed distance between the beamsplitter and a reference
mirror, inside the objective. d is the distance between the beamspitter and the surface of the
sample. The objective is shifted vertically by a piezo-electric device. See the main text for the
details of its operating condition.

The Mirau interferometry objective is produced by Nikon and it has a 20X
magnification. A scheme is shown in fig. 2.3.

A light beam passes through a semi-transparent mirror and it is split into two
arms: a sample arm directed to the particle and to the interface and a reference
arm directed to a built-in reference mirror. The two beams, reflected by the
respective surfaces, recombine on a charge-coupled device (CCD) camera creating
a fringe interference pattern. This pattern depends on the difference of the optical
paths between the two arms, i.e. on the topography of the surface of the sample.
The objective is then displaced along the optical axis by a piezoelectric nano-
positioner (Nano-Drive from MCL) and a new pattern is taken. The acquisition
of the images and the displacement of the objective are both driven by a Labview
software. The analysis of the evolution of the pattern as a function of the position
of the reference mirror allows us to visualize the topography of the sample surface.
The interferometer can be used in two different operating modes: Vertical Scanning
Interferometry (VSI) and Phase Shifting Interferometry (PSI). VSI is here used to
measure the contact angle at a fluid interface, whilst PSI allows to detect interface
deformation.

Working principle of Vertical Scanning Interferometry (VSI)

In Vertical Scanning Interferometry (VSI), white light from a microscope bulb is
used. An external power supply provides a constant 12V tension during the mea-
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surement to ensure constant light intensity. For each wavelength A, the intensity
I\(z,y,d) detected at the pixel (z,y) of the CCD camera, when d is the distance
between the beamsplitter and the sample, is written:

I\(z,y,d) = Io(A)[1 + v cos Ag(z,y, d)] (2.2)

Is(X) denotes the intensity of the incident beam, 7y is a coherence function and
Ag¢(x,y,d) is the phase shift due to the difference of the optical paths:

where L is the fixed distance between the beamsplitter and the reference mirror
(see fig. 2.3).

The overall intensity is given by summing on all the wavelengths in the whole
spectrum [Aq, Ao

A
I(z,y,d) = /)\ : Io(MN)[1 4+ o cos Ag(x, y, d)]d\ (2.4)
1

The intensity in each pixel (x,y) is analyzed separately. A vertical scanning
of the reference mirror, controlled by the piezo-electric positioner, provides the
behavior of I(x,y, d) as a function of the distance d. For each pixel (z,y), the curve
I vs. d has a Gaussian envelope with a periodical modulation (fig. 2.4), due to the
superposition of the interference of several wavelengths. The maximum intensity
is obtained when a constructive interference is achieved at all the wavelengths, i.e.
when there is no difference between the two optical paths: d = L.

intensity, /

distance, d

Figure 2.4: Typical measured evolution of the overall intensity I detected at a generic pixel
of the CCD camera, as a function of the distance d between the beamsplitter and the sample,
during a vertical displacement of the Mirau objective. The recorded intensity has a Gaussian
envelope with a periodical modulation, due to the superposition the wavelengths in the whole
spectrum. The maximum intensity is achieved when the optical paths of the two arms are equal,
i.e. when d = L.
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Figure 2.5: a. False color maps of the height profile of the sample. Each pixel has a color
corresponding to the detected height, with respect to the flat interface, ranging from dark blue
(interface, h = 0) to yellow (top of the bead, h = 0.6um). b. 3-D reconstruction (not in scale)
of the interface profile. The distance h between the top of the bead and the flat interface is
recovered.

An IDL software finds the peak of intensity for the position (x,y), i.e. the cor-
responding value of the distance d. Since the position of the objective is controlled
by the piezo-electric device, a 3-D profile h(z,y) of the interface is reconstructed.

Experimental results from VSI technique

For a VSI measurement, the objective is displaced over 2um, in order to get the
whole profile of the emerging particle and the surrounding interface. For each
position of the objective, 15 images are taken (acquisition rate of the CCD camera:
30 frame/s) and they are averaged to rule out the effect of electronic noise. The
vertical scanning is effectuated for 100 different positions d of the reference mirror.
It follows that the time required for a complete measurement is about 50 s. The
resulting length of a single step of the objective, and the vertical resolution of the
measurement, is so fixed to 20 nm. Note that this value is not the best achievable
resolution (minimum displacement of the piezo-electric positioner: 1 nm), but it is
sufficient for our purpose, as explained in the following, and it allows to explore the
suitable spatial range in a relatively short time. The lateral resolution is limited
by the optical resolution of the objective (size of a pixel: 0.228um). The set of
100 averaged images is analyzed via IDL and the 3-D profile of the particle at the
interface is then reconstructed (fig. 2.5).

Such a profile is used to determine the contact angle #. The height h of the
top of the bead, with respect to the flat interface, is computed. If we denote with
R the radius of the sphere, we obtain, via trigonometry:
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h
0=1—— 2.5
cos 7 (2.5)

The uncertainty on the contact angle estimation is due to both the vertical
resolution of VSI Ah = 20 nm, as reported above, and from the uncertainty on
the beads radius: AR =~ 0.1R for the typical beads used. The error is then

AG = (2.6)

R+R2

1 [Ah hAR
sin

The main contribution to the error is given by AR. This circumstance jus-
tifies the large step value Ah = 20 nm of the vertical piezo—scan chosen in VSI
experiments.

Such errors strongly increase with the contact angle. The error is Af = +2.7°
at 6 = 30° and Af = +19.3° for 6 = 145°.

Working principle of Phase Shifting Interferometry (PSI)

In Phase Shifting Interferometry (PSI), the experimental set-up is the same as for
VSI, except for the light beam that is involved [40]. Here, the light passes through
an interference filter (spectral band: 5 nm) centered at the wavelength of 633 nm.
The light is so considered monochromatic. The intensity detected by the CCD
camera is the one shown in eq. 2.2:

AL — d(z,y)]

I(z,y,d) = Io(\) |1+ 7 cos 3

(2.7)

where A = 633 nm.

The intensity is a sinusoidal function of the vertical displacement d with period
A/2 (fig. 2.6). Contrary to the VSI, the periodicity of the signal is conserved due
to the light coherence. For each pixel (x,y) the signal is shifted, with respect to a
reference curve (h = 0), by a phase

Ah(z,y)

Ap= ==

(2.8)

related to the profile of the reflective surface of the sample. Since a phase shift
is defined in the range [0, 27], the profile h(z, y) can be recovered just over a vertical
displacement A/2. This limitation does not allow to detect the absolute position
of the surface of the bead, but it is sufficient for characterizing the deformations
of the air-water interface. Note that the characteristic of this technique enhances
the vertical resolution up to 1 nm. Lateral resolution is, as in the case of VSI,
given by the optical resolution of the objective.
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Figure 2.6: Typical theoretical behavior of the normalized intensity /Iy as a function of the
displacement d, expressed in unit of wavelength A. The intensity has a sinusoidal behavior,
according to eq. 2.2, when a single wavelength is used. The intensities reflected by two points
with different heights are considered: h = 0 (black curve, reference position) and h = 80 nm
(red curve). The differences in the values of h translate in the phase shift of the signal A¢ =
drh(x,y)/A.

Experimental results from PSI technique

For a PSI measurement, the reference mirror is displaced over a distance equal to
the wavelength of light beam, i.e. A = 633 nm, corresponding to 2 periods of the
intensity signal. The interference intensity on each pixel is sampled in 20 points
and the phase shift between pixels is calculated. Asin VSI, for each point (position
of the reference mirror), 15 images are taken (acquisition rate of the CCD camera:
30 frame/s) and averaged to rule out the effect of electronic noise. A measurement
of the interface deformation is achieved in less than 10 s due to the small number
of acquisition points that is required.

A typical PSI measurement for a spherical particle shows that the interface
is flat and no deformations are detected to within the experimental resolution
(Ah ~ 1 nm). This result is expected by a constant macroscopic contact angle
condition at the contact line [40]. Only the air-water interface profile is visible and
analyzed. The zone occupied by the bead is out of scale and it is not accounted
by the PSI measurement.
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2.3 Dynamics of the particle

2.3.1 Particle tracking

The motion of individual beads at the air-water interface is followed by bright field
microscopy. The optical microscope (LEICA DM 2500 P) is mounted on an anti-
vibration table. The focal plane is at the same height of the air-water interface.
Since the particles are trapped at the interface, they stay in the focal plane during
the whole measurement. The dynamics is observed for 10 minutes approximately
in each measurement and a digital video is recorded by a firewire charge-coupled
device (CCD) camera at 30 frame/s. In each video, a region of 120 x 90um?
(1024 x 768 px?) is explored. We apply standard particle tracking methods [46] to
get the position (x,y) of the intensity center of mass of the bead in each frame.
Repeating the procedure for all the frames of the recorded video, the evolution
in time of the particle trajectory is obtained. These operations are performed by
using an IDL software (see appendix A.1), whose operating principles are here
briefly resumed.

A frame recorded by the used CCD camera is an 8-Bit grayscale image. This
means that image pixels are stored in binary, quantized form and 256 (2%) intensity
values are allowed, ranging between 0 (black) and 255 (white). The precision
provided by this format is barely sufficient to avoid visible banding artifacts, but
very convenient for programming due to the fact that a single pixel then occupies a
single byte. In this kind of recorded images, a particle looks like a dark circle over
a gray-white background. First of all, the negative image is created ([i(x,y) =
255 — Iy(z,y)), where Iy(x,y) is the field of intensity in the recorded image. A
value corresponding to the actual average background intensity I, is subtracted:
Iy(z,y) = Li(z,y) — Ly, with I, ~ 20 — 30. In this way, we obtain a new image
where the intensities I5(x,y) are non-null at the particle and 0 elsewhere, if I,
has been chosen properly. The (Z,7) position of each particle is then calculated
by the intensity center of mass expression (eq. 2.9):

Zlffz(xay) nyz(xay)

T L@y VT Shiny)

This position is expressed in pixel units in the lab frame and refers to the time
tn, = n(1/30) s, where n is number of the considered frame.

With the proposed method, a spatial resolution of 4 nm in the detection of
the particle position is achieved. This value has been checked applying particle
tracking to beads stuck on a microscope glass slide. Their position, taken at
different times, has a normal distribution with a 4 nm-width.

The displacements Ax = x — (z) and Ay = y — (y), where (z) and (y) are
the mean positions averaged in time, are considered after a numerical treatment

(2.9)
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of the trajectories, in order to discard the contribution of drift motion (see par.
2.3.2). Two typical Az-Ay trajectories for hydrophilic (fig. 2.7a) and hydrophobic
(fig.2.7b) particles, during the same time interval of At = 100s, are reported.

a

Figure 2.7: Auxz-Ay trajectories recorded with the proposed techniques during the same time
interval At =100 s of a hydrophilic (# = 30°) (a) and of a hydrophobic particle (6 = 138°) (b).
The hydrophilic bead, having its larger part in water, explores a larger area than the hydrophobic
one, against the reasonably expected behavior.

Surprisingly, the more hydrophilic bead (fig. 2.7a), having its larger part in
the high viscosity medium (water), explores a larger area than the hydrophobic
one (fig. 2.7b).

2.3.2 Drift removal statistical technique

The motion of colloidal particle at an air-water interface is often affected by con-
vective flows, which add to the Brownian motion described above. The reasons of
such a motion are still unclear, but possible sources can be found in radial gradient
of curvature [43] (see par. 1.6.2) or local thermal gradient induced by microscope
lightening. The resulting dynamics recorded during particle tracking experiments
is thus the sum of two different contributions: diffusive motion, at which we are
interested, and drift motion. In order to rule out the latter, an algorithm has been
conceived and implemented by an IDL software. The purpose is to find the best
approximation for drift trajectories and subtract them from the recorded ones.
This operation is possible and justified since the two mechanisms take place at
different time scales.

Let us consider the position of the particle as a function of time (black line in

2.8). In a first stage, a constant drift is considered. It appears as a straight line in
the position—time plot, connecting the first and the last points. If we assume that
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the drift velocity changes in time, such a motion is represented by a polygonal
chain (blue lines in fig. 2.8).

80

y [um]

-80 - ' - '
0 500 1000

t[s]

Figure 2.8: Black line: y—position of a particle, as a function of the time ¢, recorded in particle
tracking experiment. Blue lines: drift approximations yq(¢;t4) assuming three different time
interval ¢4 (tq4 = 60 s, 500 s, 1000 s).

To be more quantitative, the drift velocity in the interfacial plane is denoted
as u = [uy, u,]. We assume that the drift velocity changes every time t4. For the
time interval j the velocity is written as:

_ zjta] — 2[(j — Dta] ylita] — yl(j — Dtd]

i = . — 2.10
Uy, j i Uy, j t ( )

where z(t) and y(t) denote the position of the particle at the time ¢. The drift
curves xq4(t;tq) and y,(t;tq), as a function of time ¢ and at a given ¢4, write:

wq(t;ita) = 2[(§ — Dta) + uay [t — (5 — 1)t4] (2.11)

Ya(t;ta) = yl(J — Dta] +uy; [t — (5 — 1)t4] (2.12)

Different estimations for ¢4 are considered. For each one, a corrected trajectory,
corresponding in principle to a diffusive dynamics, is recovered:

(Z(t;ta), y(t;ta)) = (2(t) = zalt;ta), y(t) — ya(t; a))

The Mean Square Displacement (AZ?) is computed as a function of the time
lag 7, following the techniques described in par. 2.3 (fig. 2.9).
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Figure 2.9: MSD as function of the time lag 7 for the same particle trajectory, corrected using
different ¢4: tq4 = 5 s (green points), 60 s (blue points), 500 s (red points), and 1000 s (black
points). Inset: detail of MSD at very short time lags, where the slope is not affected by the drift
correction.

All of them show the same slope at very short time lags (inset in fig. 2.9) since,
at these scales, the dynamics is not affected by the drift. At larger time lags, the
MSD behavior depends on the chosen drift correction. The best drift correction is
the one that provides a linear dependence MSD vs. 7, as expected in a Brownian
regime: (Ax?)y, = At, where A is the fitting parameter. A linear fit is proposed
for all the corrected trajectories, and the x? function is calculated:

=Y ((Ar%) - A7) (2.13)

The value of t4 that minimizes x? is chosen to write the best approximation of
the drift trajectory and to recover the Brownian trajectories analyzed.

Typical drift velocities, found with the described method, are around 0.1pm/s
and do not depend on the bead contact angle.

2.3.3 Statistical analysis of the particle dynamics

The Ax — Ay trajectories of the particles are used to extract information about
the dynamics of the beads. The analysis of the distribution of the displacements
and of the behavior of the Mean Square Displacements (MSDs) as a function of
the time lag allows to achieve this purpose. The input for this analysis is a set
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of N couples (x(t,),y(t,)), i.e. the position of the center of the bead in the n-th
frame, where n goes from 0 to N — 1. The time ¢, is simply related to the index
of each frame n: t, = n(1/30). Let us now consider a given time lag 7;; the
minimum achievable value is fixed by the time resolution 1/30 s. All the possible
displacements that occur during such a time 7; are calculated:

[Azi(ty), Ayi(tn)] = [2(tn + 1) — 2(tn), y(tn +73) — y(ts)] (2.14)

where 0 < t,, < N(1/30)s — 7; and the index ¢ denotes the dependence on the
chosen time lag.

The displacements [Az;(t,,), Ay;(t,)] are normally distributed around the mean
position (Az;), = (Ay;), = 0 (fig. 2.10). The symbol (-),, stands for the aver-
age over all the displacements at different time ¢,. Such a Gaussian distribution
suggests a randomized origin of the motion and the presence of a diffusive regime.
Moreover, due to the isotropy of the system, the distributions for Az and Ay at
the same contact angle have similar behavior (see fig. 2.10a,c and 2.10b,d). For
the sake of clarity, the distribution of Az and of Ay are reported here for two
characteristic contact angle, # = 30° and 6 = 138°.

Since a diffusive regime is observed, the translational diffusion coefficient D is
considered. The width of each distribution is related to such a coefficient and to
the considered time lag 7;. In this case, the standard deviation o; can be written

as:
o; = /2D (2.15)

where D = D, = D, is the measured translational diffusion coefficient.
The same value can be computed as the Mean Square Displacements (MSDs):

o; = (Ax}), = 2D7; (2.16)

(Ax?), and (Ay?), are estimated for different values of 7;; the results are
plotted in 2.11 for 4 sample beads with different contact angles.

We recover the linear behavior predicted in 2.16, typical of a diffusive regime,
and we use the slope of each curve to get the corresponding diffusion coefficient D
at a given contact angle (table 2.1).

As seen for the trajectories, the results are counter-intuitive: the slopes, i.e.
the diffusion coefficients, decrease when the particle is less immersed in water.

2.3.4 Diffusion coefficient vs. particle contact angle

These unexpected results motivate a complete study of the diffusion at the interface
in the full range of accessible contact angles.

In fig. 2.12 the ratio between the diffusion coefficients at the surface and in
the bulk r = Dg/Dp is reported versus the contact angle §. Each point on the
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Figure 2.10: Distribution of the displacements Az, Ay at time lag 7 = 2(1/30) s, in a semi-log
scale. The shapes of all the four graphs confirm the Gaussian distribution of the displacements.
Such displacements are recovered from the two trajectories previously shown in fig. 2.7, con-
sidering the same time interval At = 100 s. a. Az for the hydrophilic bead (§ = 30°); b. Ax
for the hydrophobic bead (6 = 138°); c¢. Ay for the hydrophilic bead (6 = 30°); d. Ay for the
hydrophobic bead (# = 138°). The distributions Az and Ay at the same contact angle show the
same width. Hydrophilic beads have a wider distribution than the hydrophobic ones.

0 D

] (pm? /5]
30+2.6 | 0.272+0.007
68+ 4.4 | 0.266 = 0.009
110 £8.2 | 0.234 +0.010
138 £ 15.0 | 0.148 + 0.012

Table 2.1: Diffusion coefficients at the air—water interface for particles with different contact

angles (6 = 30°,68°,110°,138°). The data are

recovered from the MSD curves in fig. 2.11.
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Figure 2.11: MSD as function of the time lag 7 for particles with different contact angles (6 =
30°,68°,110°,138°). The linear behavior denotes the diffusive regime. The slope of each curve
corresponds to 2D, where D is the diffusion coefficient at a given contact angle. A decreasing of
the slope, i.e. a slower dynamics, is observed for less immersed particles (higher contact angles),
against common intuition.

fig. 2.12 corresponds to average values on 5 to 10 different beads with the same
surface treatment. The contact angle 6 is measured via VSI technique. Dg is
achieved by particle tracking and statistical analysis of the trajectories, as shown
above. Diffusion coefficients in the volume Dy are known from Stokes-Einstein
theory (par. 1.2.1) and they are calculated for each particle using the expression:

kgl
Vo 67T77wR

(2.17)

where ny = 1.001 - 1073 Pa-s is the viscosity of the water at T = 25°C and
R is the radius of the beads. To give robustness to the measurements, such a
theoretical prediction is experimentally verified for few sample particles, treated to
give different contact angles when at the interface. Two beads with diameter 2R =
4pm and 6 = 60°,110° at room temperature (7' = 25°C) show an experimental
bulk diffusion coefficient of Dy ., = 0.108 £ 0.006pm?/s and Dy erp = 0.111 +
0.007um? /s, respectively. These measurements provide the same value for Dy: as
expected, different surface treatments have no role in the diffusion in the volume.
This means that surface treatments play a role just in the immersion depth of the
particle, and not in its dynamics. Moreover, such experimental values are in fairly
agreement with Stokes-Einstein prediction: Dy, = 0.106um?/s.

The diffusion is measured for beads of 2um, 4ym and 8um in diameter (circle,
square and triangle points respectively in fig. 2.12). At a given contact angle 6,
the same values for the ratio Dg/Dy (in the limit of the error bars) is achieved
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for all the sizes. A strong variation of almost two orders of magnitude of the
particle mass makes no difference in dynamics, ruling out any gravitational effect
(e.g., formation of a particle induced meniscus). The diffusion of silica beads
at an air-hexanol interface (6 = 83°) is also measured (red point in fig. 2.12).
The normalized diffusion coefficient, when the role of bulk viscosity is discarded,
agrees with the data at the air—water interface, indicating that the measured effect
is not water—dependent. To exclude possible artifacts, as interface contaminations
by silane agent, the diffusion coefficients of the two sets of beads, respectively
at @ = 28° and 6 = 90°, sharing exactly the same interface are measured (open
points in fig. 2.12). The values of the diffusion coefficient at § = 28° in presence
of silanized particles is the same as the one when the beads at 6 = 28° are alone
at the interface, indicating that the interface is not contaminated by the release of
silane from hydrophobic beads. Moreover, such a value agrees with the theoretical
predictions (solid lines in fig. 2.12), in which a clean interface is considered. The
slowed—down diffusion of the bead at 8 = 90°, deposited at the same interface,
cannot be attributed to surface contaminations.

The ratio r = Dg/Dy is analyzed as a function of the contact angle 6. For
this purpose, we keep in mind our initial considerations, i.e. that an increasing
diffusion is suggested by common intuition when the particle is less immersed in
water. Hydrodynamics theories (solid lines in fig. 2.12), that will be discussed
later, qualitatively confirm this prediction. For a bare silica particle (§ = 30°),
we have r ~ 1.25: thus, the beads diffuse more at the interface than in the bulk.
In a small range of contact angle (# ~ 30° — 60°), r slightly agrees with the the-
oretical predictions. This is the only region in which experimental measurements
on micrometric beads [32, 34] were available before the present work. For larger
contact angles (60° < # < 120°) r remains roughly constant around r ~ 1.1 — 1.2,
but lower than the previous one: this trend disagrees with the expected theoreti-
cal values, that are instead rapidly increasing with the contact angle. Finally, for
the most hydrophobic particles (6 > 120°) the ratio r decreases below the unity.
The diffusion of a bead that is 3/4 in air is slower than the diffusion in water.
Compared with the expected theoretical values, the measured value is 400% lower.

Available models [27, 28, 29] (see par. 1.4.1) predict instead that the move-
ment at the interface is less viscous than in water, in agreement with common
intuition. They all fail in catching the Brownian dynamics at the interface. For
the sake of comparison, the few data available in literature (see par. 1.4.2) are
also plotted (cross points in fig. 2.12). Except for the millimetric beads, the other
two points [32, 34] agree with our measurements and the corresponding diffusion
coefficients are overestimated by theories. A new theoretical paradigm will be
necessary to explain our experiment and it will be treated in next chapters.
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Figure 2.12: Dg/Dy versus contact angle 6 for particles with diameter 2um (circle), 4pum
(square) and 8um (square). Open points corresponds to couples of beads sharing the same inter-
face. Red point is the averaged values for silica beads at an air-hexanol interface. Also reported
predictions from existing hydrodynamics theories: Danov et al. [27] (green line), Pozrikidis [28]
(red line), Fischer et al. [29] (black line). Cross points are measurements from previous works:
Petkov et al. [30], millimetric beads (green), Sickert et al. [32] (gray), Chen and Tong [34] (black).

2.4 Conclusions

In this chapter we report a full characterization of the diffusion of micrometric
spherical particles straddled at an air-water interface as a function of their con-
tact angle. The latter is related to the immersion depth in water and it was
tuned by chemical treatment of the silica surface of the bead, using hydrophobic
silane agents. The effect of the surface treatment was checked by the gel trap-
ping technique [44] on few sample particles, and the contact angle was measured
by in situ interferometry for all beads. The diffusion coefficients at the interface
were measured in a wide range of contact angles (30° — 150°) by using particle
tracking methods [46]. Counter-intuitively, and against hydrodynamics predic-
tions [27, 28, 29], particles diffuse more rapidly when they are more immersed in
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water. The diffusion coefficient slightly decreases with the contact angle, whilst a
strong increase is instead attended. Hydrophobic particles, with their larger part
in air, exhibit a diffusion coefficient even lower than the one predicted for fully im-
mersed particles. To explain this intriguing behavior, a new theoretical approach
to the problem will be discussed in the following chapters.
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Solo dopo aver conosciuto la
superficie delle cose, ci si puo
spingere a cercare quel che c’e
sotto. Ma la superficie delle cose &
inesauribile.

Only after knowing the surface of
things, one can go to seek what is
underneath. But the surface of
things is inexhaustible.

Italo Calvino
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Chapter 3

Measurement of the diffusion of
spheroidal colloids at an
air—water interface

Introduction

Most of the studies performed until now on colloidal dynamics, both in volume
and at the interface, mainly focused on spherical beads because of their ideal
shape. However, the real colloidal morphologies that we can find in nature and
in common industrial or biological applications have more complex morphologies.
A first step toward this direction is provided by considering the simplest case of
anisotropy, given by prolate spheroidal particle. The dynamics of such colloids
trapped at a fluid interface is studied in this chapter. The particles are obtained
from commercial polystyrene spheres, stretched with different elongations to obtain
a wide range of aspect ratio (par. 3.1). The particles are then sprayed on the air-
water interface (par. 3.2). The induced deformation of the contact line (par. 3.3)
and the immersion depth in water (par. 3.4) are measured via interferometric
techniques. Finally, the translational and the rotational diffusion coefficients are
measured as a function of the aspect ratio by particle tracking (par. 3.5).

3.1 Preparation of the particles

A prolate spheroid is a geometrical object in the three-dimensional space, whose
equation in a Cartesian coordinates system is

”Z—+—+Z—=1 (3.1)



where a and b are the long and the short principal axis respectively. In order
to achieve the spheroidal shape, commercial spherical beads are stretched by a
homemade apparatus [47]. We use amidine and sulfate latex spheres, purchased
from Invitrogen (product code A37325 and S37500 respectively), with a radius
ro = 0.975um. They are sold in water solution at a concentration of 4%w/v.
Few drops (15-20) are initially dispersed in 40 ml of Poly(vinyl alcohol) (PVA)
in deionized water (10% — 90%). The PVA is purchased from Sigma Aldrich
(product code 363081) and deionized water is produced by a Millipore Milli-Q
filtration system, with a resistivity of 18 MQ2-cm. PVA and DI water are mixed by
several cycles of shaking at 300 rpm and heating at 90 — 100°C (1/2 - 1h for each
operation), until a homogenous phase is obtained. The solution is finally filtrated
by using a hydrophobic filter PTFE (pores dimension: 5um) to remove impurities
before adding the beads. The 40 ml PVA-water solution, including the beads, is
slowly poured in a Petri dish (diameter: 100 mm) which, before the use, has been
carefully cleaned with sulfochromic acid and distilled water. Great attention is
paid to avoid the formation of air bubbles that can affect the stretching procedure
in an uncontrolled way. By evaporation in 1-2 days on a flat surface, we get a
thin film of PVA (thickness ~ 0.2 mm) containing the spherical particles. Strips
are cut from the dried film, with special regard to the central region that must be
extremely regular; otherwise, a non-homogeneous stretching can distort the final
shape of the colloids. The strips are clamped into a metal frame, heated in oven
above the temperature of glass transition of polystyrene (7, = 100°C') and then
stretched. The stretching of both the strip and the particles included inside is
achieved by displacing the upper part of the metal frame by a tension-controlled
screw, with a displacing rate of 12 mm/min. In this way, the spherical beads
undergo an affine transformation and a spheroidal shape is achieved (fig. 3.1a).
The strips are finally soaked in deionized water and PVA is removed by at least 5
cycles of centrifugation (4000 rpm for 10-15 min), replacing the supernatant with
Millipore water at the end of each cycle. At the end, the spheroids are re-dispersed
in deionized water with the aid of an ultrasonic bath. A SEM picture of typical
particles obtained after such a procedure is shown in fig. 3.1b.

We can denote with A the elongation imposed at both the strip and the parti-
cles. It is defined as the ratio between the final and the initial length of the strip
(fig. 3.1a): A =1/ly. It follows that, along the stretching direction, a long axis is
obtained: a = Ary. Since the total volume of the particle remains constant, i.e.
ab®* = 13, the two short axes, in the perpendicular plane, are b = ry/ VA. We can
quantify the degree of anisotropy of each particle using the aspect ratio ¢ = a/b.
Sets of particle with the same initial size, and so the same volume, but different
elongation are prepared and used in our experiences. The range for ¢ can vary
from 1 (unstretched spherical beads) to about 10, that is the upper limit imposed
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Figure 3.1: a. Sketch of a PVA strip, containing spherical beads. The initial length of the
strip is lg. A stretching of the strip along the vertical axis is imposed; the new length is then
I. We define an elongation parameter A = [/ly. The same elongation is imposed also to the
particles, which now show a spheroidal shape. b. SEM (Scanning Electron Microscopy) image
of the spheroidal particles obtained by the technique described in par. 3.1 (Courtesy C. Blanc).

by the stretching method.

3.2 Experimental set-up

A wide container is used to work in a flat interface, at the center of of the sample
and avoid the coupling with the curved interface (see appendix A.2). The cuvette
is shown in fig. 3.2.

We use a 60 mm diameter Petri dish. Since the sample will be covered during
the particle tracking experiences, the air-water interface has to be as close as
possible to the glass coverture at the top of the sample. Otherwise, due to limited
working distance of the optical objective (7 mm), the focal plane cannot reach the
interface and the particle will be out of focus. However small quantities of liquid
are required, in order to reduce any convective flows in the sample. Thus, a thick
piece of glass is added in the Petri dish to fulfill these two conditions. A piano-
convex spherical lens is used for this purpose; it measures 58 mm in diameter and
8.2 mm in height at its center. Note that the lens has just a geometrical role to
achieve the optimum working distance and water depth. No optical effects are
needed here and deformations or aberrations of the image due to the presence of
the lens are negligible. A metal ring with a sharp profile is also added in the gap
between the lens and the wall of the Petri dish. In fact, where an air-water-glass
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Figure 3.2: Sketch of the cuvette used for the study of spheroidal particles. The container is a
Petri dish, 60 mm in diameter, covered by a glass slide to avoid surface contaminations. A thick
glass piece (as a lens) is added to minimize the quantity of water involved in the experiment.
Such a lens measures 58 mm in diameter and 8.2 mm in height. A metal ring encloses the lens;
it has a sharp profile that pins the air-water interface. The deionized water is poured into the
sample up to the internal edge of the ring (height: 9 mm). These features assure a 0.8 mm water
layer, as close as possible to the microscope objective.

contact line is present on the container walls, non-controlled fluctuations of the
surface occur, due to random detachment of the line. The metal ring prevents such
detachments and pins the interface at its edge. Moreover, the pinning at such a
sharp profile allows an exceptionally large contact angle hysteresis. A 90° contact
angle is so permitted, drastically reducing the interface deformation. Deionized
water is poured into the sample up to the internal edge of the ring until a flat
surface is achieved. A 0.8 mm water layer is thus obtained as close as possible to
the microscope objective.

The particles, dispersed in water, are sprayed on the interface by an airbrush,
to avoid any possible surface contaminations. Very dilute surface concentrations
(less than 0.01% s/s) are used to rule out any possible interaction between colloids.
The air-water surface tension is directly measured by Wilhelmy plate method at a
free interface, with and without particles. Both the measurements are in agreement
with the literature value of the air-water surface tension (o7, = 0.072 N/m).
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3.3 Interface deformation induced by spheroidal
particles

The interface deformation induced by the non-spherical particle (see par. 1.3.1)
is measured by using PSI. In particular, an estimation of the amplitude Ay (see
eq. 3.5 in the following) of such a deformation is required to understand its role
in particle dynamics. A measurement for a spheroidal particle with aspect ratio
¢ = 2.7 is here reported.

X: 121 ‘\\/

Figure 3.3: a. False color image of the interface around a spheroidal particle with aspect ratio
¢ = 2.7. To achieve a constant macroscopic contact angle around a particle with a non—constant
curvature radius, the interface needs to be higher at the center of the spheroid (yellow zone)
and lower at the tips (dark blue zone). The difference between the heights of these two zones
is around 80 nm. b. 3-D reconstruction (vertical scale does not correspond to the one in the
horizontal plane) of the interface for the same sample, recovered from the data in a.

The parameters of the measurement are the same as the one reported in par.
2.2.2. The Mirau interferometry objective is vertically displaced over 633 nm
(wavelength of the involved light beam) in 20 steps. For each step, 15 images
are taken (acquisition rate of the CCD camera: 30 frame/s) and their average
image is used. At a given pixel, the sinusoidal behavior of the detected intensity is
recovered. The phase shift A¢ provides the vertical position h of the corresponding

point at the interface:
Amh
Ap= 1 (3.2)
A
The results are shown in a false color image (fig. 3.3a) and in a 3-D reconstruc-
tion of the interface (the colloid is removed because it is out of scale) (fig. 3.3b).
The maximum deviation from the flat interface (at the tips and in the middle of
the particle) is of the order of 40 nm, when the vertical extension of the particle
is 2b = 1.3pm.
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This relatively weak deformation will be an essential ingredient to guide the
model developed in chapters 4 and 5.
3.4 In situ measurement of the contact angle

Vertical Scanning Interferometry is used to provide an estimation of the immersion
depth of the particles.

Figure 3.4: Interferometric image of a spheroidal particle at the air-water interface, obtained
via VSI technique. Elliptical interference fringes, due to the curvature at the top of the particle,
are visible. A series of such images, taken at different objective positions, provides the profile of
the particle at the air-water interface.

Interferometric images of the particle at the interface are taken (see an example
in fig. 3.4) via VSI and the topography is reconstructed. We can notice an elliptic
interference pattern in correspondence of the particle, due to its three-dimensional
profile.

As a consequence of the geometry of a spheroidal particle and of the deformed
interface [40] (par. 1.6), the computation of the exact value of # is more compli-
cated. Here we report a method to achieve a good approximation of the contact
angle. First of all, let us consider a 2-D elliptic coordinates system (s,¢) (fig. 3.5)
for the horizontal plane of the interface. The coordinate s has the same role as a
radial coordinate in a polar system and ¢ is the elliptic angular coordinate. They
are related to a Cartesian coordinate system (z,y) by the relations:

x = ccosh scost y = csinh ssint (3.3)

where =£c is the position of the two foci.
Oettel [48] provided an expansion for the vertical displacement of the interface
w in the variables (s,t):
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Figure 3.5: Elliptic coordinates system (s,t), as defined in eq. 3.3. The coordinate s has the
same role played by a radial distance in polar coordinates system. Each confocal ellipse in dashed
blue line is obtained for a constant value of s. Hyperbolas in solid red line are obtained for a
given value of the elliptic angular coordinate t.

u(s, t) = AO; + 37 em0) (4, cos(mt) + By, sin(mt)] (3.4)

m>0

where A,, and B,, are elliptic multipole moments of order m and s = sg is the
ellipse on the surface of the particle.
Some conditions are known or imposed to the solution:

1. far from the particle, the interface is unperturbed and stays at a reference
height: for s — oo, u(s,t) — 0;

2. from Loudet [40] and direct PSI measurements (par. 3.3), we know that
u(s,t) has minima at the tips of the particle (¢ = 0,7) and maxima at its
middle (t = 7/2,37/2);

3. as reported in [48], the quadrupole (m = 2) is the leading multipole.

These conditions allow to rewrite eq. 3.4, leading to a simpler approximation
for the interface profile:

u(s,t) = — Ay cos(2t)e257%0) (3.5)
with Ay > 0.
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The derivative of eq. 3.5 in s = sy gives the slope of the interface at each point
of the contact line. For our calculation, we are interested in regions of the contact
line where the interface is flat, i.e.:

ou

35| = 0 (3.6)

=50

This condition is obtained at the angular positions ¢t = 7, %’T, %’T,

bolas in fig. 3.6a).

A 7-axis, that intersects the ellipse in two of these points (t = 7§, t = %), is
introduced (solid green line in fig. 3.6a). The plane (Z, z) is now considered (fig.
3.6b).

™ (red hyper-

a b

/N [ 7 NG
a x k/a

top view intersection plane

XY

Figure 3.6: a. Top view of a spheroid (a, b, b) at the air-water interface. The contact line results
in an ellipse of axis (a,b) in a Cartesian coordinates system, or in s = s in an elliptic coordinates
system. For our purpose, we are interested in the angular coordinate ¢ = 7/4 (red hyperbola).
A Z-axis, passing for (0,0) and (sg,7/4), is defined (green line). We denote with a the distance
between such points. b. Intersection of the spheroid with the plane (Z, z): the result is an ellipse
of axes (a,b). Because of eq. 3.6, the air-water interface is flat in this intersection; the contact
angle 6 is thus recovered from the tangent at the ellipse. We also denote with zy the height of
the interface with respect to the center of the particle and with h = b — z.

The frontal view in such an intersection plane provides the ellipse with axes
(@,b), where a = \/(a? +b%)/2 (fig. 3.6b). The contact line passes in the points
(£2o, o) of the ellipse, where zg = b— h and h is measured via VSI. The condition
of a flat interface at these points (solutions of eq. 3.6) allows to recover 6 from
the slope of the tangent at the ellipse. From trigonometric arguments, 6 is the
supplementary angle of such a slope, i.e. § = m — arctan m, where m denotes the
angular coefficient of the tangent. It follows that tanf = —m. In our case, with
the (Z, z) variables and at the point zy, we have:

9
tanf = i) (3.7)

a? 20
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¢ o]

1 52.4 + 3.4
27403 | 484+ 106
79+0.7 | 37.7£5.1

Table 3.1: Contact angle 6, measured via VSI technique, at three characteristic aspect ra-
tios, ranging from sphere to elongated particle. In agreement with previous measurements in
literature [40, 41], a slight decrease of 6, around 15°, is observed.

Substituting the expressions of zy, o and a as a function of the initial param-
eters in eq. 3.7, we finally have

2 \/2bh — h?
tanﬁz\/¢2+1 — (3.8)

The error on the determination of the contact angle is given by:

00 00 00
AG—‘ab Ab+‘8¢ A(;H—’ah Ah (3.9)

The leading term in eq. 3.9 is given by the error on the particle size, Ab = 60
nm. An enhanced resolution of the VSI measurement, reducing Ah, will not
significantly affect the uncertainty of #. For this reason, the chosen resolution
Ah ~ 20 nm is sufficient.

As shown in par. 1.6, the contact angle slightly depends on the aspect ratio [40,
41]. In table 3.1 we measure by VSI the contact angle for the spheroids in our
system as a function of the aspect ratio. In the range from 1 to 8 of aspect ratio,
the contact angle variation is moderated in the range 37° — 52°. Differently from
the methods of Loudet [41], our technique univocally determines the contact angle,
since the relative position of the top of the particle, with respect to the interface, is
detected. Our measurements are in agreement with one set of values proposed in
[41]: we recover the lower branch of data (fig. 1.17 in chapter 1), with a decreasing
f in almost the same range.

3.5 Dynamics of the particle

3.5.1 Particle tracking

Particle tracking for ellipsoidal particles is similar to the one presented for spherical
beads in par. 2.3 (see appendix A.1). Digital videos are recorded by a firewire
charge-coupled device (CCD) camera at 30 frame/s over a region of 120 x 90um?
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(1024 x 768 px?). The images are processed by an IDL software in order to have
a non-null intensity at the particle and I = 0 in the background. The coordinates
of the center-of-mass positions in the lab frame at a given times are recovered as
the average (Z,7) of the position coordinates of every pixels, weighted by their
corresponding intensities:

> xl(z,y) S yl(x,y)

= > 1(z,y) V= > 1(z,y)

as done in par 2.3 for spherical beads. The trajectories are numerically cor-
rected in order to remove the drift contribution, using the same technique described
in par. 2.3.2 for spheres. Drift velocities are around 0.1um/s and are not related
to the aspect ratio ¢ of the spheroid. The displacements Az = x — (z) and
Ay =y — (y), where () and (y) are the mean positions averaged in time, are con-
sidered. Two typical Az-Ay trajectories for spheroids with different aspect ratio ¢
are reported in fig. 3.7a, 3.7b, measured during the same time interval At = 55s.
Different spheroidal shapes are able to affect the interfacial particle dynamics: the
most elongated particles diffuse less than the ones with a lower aspect ratio.

(3.10)

Ay (um)
Ay (um)

e
2 -1 0 1 2 2 -1 0 1 2
Ax (um) Ax (um)

J

Figure 3.7: Axz-Ay trajectories recorded during the same time interval At = 55 s of two spheroids
with different aspect ratios: ¢ = 1.4 (a) and ¢ = 8.7 (b).

In addition, in the case of anisotropic particle, we are also interested in infor-
mation about the orientation of the colloid and the rotational dynamics. For this
purpose the angle ¢ between the main axis of the ellipsoids and the x-axis of the
lab frame (fig. 3.8) needs to be measured.

The technique used is the bisection method (fig. 3.9).

Let us shift the lab frame so that the origin corresponds to the center of mass
of the particle, whose coordinates were obtained in the previous step. This new
frame is called (Z, 7). First of all, the IDL software counts the number of non-null
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image
processing

Figure 3.8: a. Typical image for a frame of a spheroidal particle at the air—water interface,
recorded by a CCD camera. The particle looks like a black spot over a grey background. b.
After image processing, the intensity center of mass is found: (X, y). This coordinate corresponds
to the position of the center of the particle. The main axes are also recovered, in order to get
rotational dynamics. We denote with ¢ the angle between the long main axis and the horizontal
one.

>

Figure 3.9: Scheme of bisection method. a. The orientation ¢ of the long main axis is in the
range [p1,@2]. In the reported case, ¢1 = 0 (horizontal axis) and @2 = 7/4 (red line axis).
For a generic point ¢ in the ellipse, the distances d;; from axis o1, and da; from axis o are
calculated (solid blue segments). The summation over all the points i of the ellipse are compared:
di =3 ,di; <dy=7),ds;. b. Since the ellipse is closer to the axis o1, the upper limit ¢, is
replaced by the midpoint value (¢1 + ¢2)/2.

71



intensity points, corresponding to the image of the projected ellipse, in the first
( > 0,9 > 0) and in the second quadrant (z < 0,7 > 0). The result gives a
preliminary information about the range in which the angle ¢ is: [0, 7/2] if most
of the points are in the first quadrant, [7/2, 7] if most of the points are in the
second one. In any case, such a range can be written in the form [py, ¢s]. For each
point i of the projected ellipse in the image, the distance dy ; (ds;) from the axis ¢,
(o) is calculated. We consider now the sum of all the calculated distances, with
respect to the axis p1: di = ), di;; and to the axis w91 do = 32, do;. In this way
we can get an average distance of the ellipse from each axis. If d; < ds, we can
state that the ellipse is closer to the axis ¢;. From a more rigorous point of view,
this means that the angle ¢ is in the lower half of the proposed range [¢1, a].
Otherwise, if d; > ds, o is in the upper half of [p1, ps]. This statement allows to
repeat the same procedure in a smaller, halved range, where the farthest extreme
is replaced by the midpoint value (¢ + ¢2)/2. The iteration continues until the
width of the range is of the order of 2 degrees, that is considered an acceptable
resolution for .

3.5.2 Statistical analysis of the translational dynamics

The trajectory of the center of mass is used to study the translational dynamics
of the particle. Contrary to isotropic systems, the motion of spheroidal colloids
in 3-D depends also on the chosen direction: the diffusion along the long axis is
different from the diffusion along the short one, as predicted by modified Stokes-
Einstein equation [36] and experimentally verified in the volume [5]. We expect
the same behavior also for particles straddled at the interface. For this reason,
both the positions and the displacements are here referred to a local coordinates
system (x,,x,) where x, denotes the direction of the long axis and x; the one of
the short axis (fig. 3.10). The local frame is re-defined at each time ¢, = n(1/30)
s according to the new orientation ¢(t,) of the particle. Note that the frame
(Zans o) is simply obtained by rotating (z,,y,) of an angle ¢(t,).
We can calculate the displacement over a time lag 7;:

[Azgi(tn), Axy;(tn)] = [Ta(tn + Ti) — Taltn), To(tn, + 7)) — 2p(5)] (3.11)

Az, ;(t,) and Axy;(t,) are normally distributed and their average over all the
possible displacements (Az,;), = (Azp;)n = 0, as expected from a random walk
(fig. 3.11).

The width of the Gaussian curve is related to the diffusion coefficient in the
corresponding direction and to the considered time lag 7;. In this case, the standard
deviations o, ; and o} ; write as:

Oai = \/2D.T; O = \/2DyT; (3.12)
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Figure 3.10: Local coordinates system (x4, xp), where the axes have the same orientation as the
main axes of the ellipsoid. The indexes a, b denote the long and the short axis, respectively. The
(24, xp) system is obtained by rotating the lab frame (z,y) by the angle ¢, around the center of
the particle. A new local coordinates system is defined at each frame, since the position of the
particle center and its orientation change in time.

D, and D, are translational diffusion coefficients along the long and short axes
respectively. For a small aspect ratio (¢ = 1.4, fig. 3.11a, 3.11c) the displacements
in the two directions a and b have almost the same distribution, due to the weak
anisotropy. For more elongated particles (¢ = 8.7, fig. 3.11b, 3.11d) distributions
differ in width, with a wider distribution for the movement along the long axis,
pointing out a faster diffusion along such an axis.

The terms o, ; and 0} ;, and the corresponding diffusion coefficients D, and D,
can be also computed via the analysis of the Mean Square Displacements (MSDs):

Oai = (A2 ;) = 2D,T;
ob; = (Ax} ) = 2DyT; (3.13)

Such quantities are calculated for different time lag 7; in order to plot the curves
(Az?) vs. 7, (Ax}) vs. 7. Both of them are reported in fig. 3.12 for 4 particles
covering all the accessible aspect ratios.

The linear behavior for all the curves denotes a diffusive regime. The analysis
of the slopes at different aspect ratios confirms our previous observations: a slower
diffusion for more elongated particle, in particular along the short axis b (fig. 3.13).
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Figure 3.11: Distribution of the displacement Ax,, Az, at time lag 7 = 1/30 s, in a semi-log
scale, for spheroidal particles. The shapes of all the four graphs confirm the Gaussian distribution
of the displacements. Such displacements are recovered from the two trajectories previously
shown in fig. 3.7, considering the same time interval At = 55 s. The spheroids have aspect ratio
¢ =14 (a. Az,, c. Azp) and ¢ = 8.7 (b. Az, d. Axp). The widths of the distributions in the
two directions a and b are really close for the small aspect ratio (a and c). At large aspect ratio
(b and d), the distributions clearly differ in width, with a wider distribution for the movement
along the long axis, and the anisotropy of the motion is evident. The distribution widths are
smaller at high ¢ than at low ¢.
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Figure 3.12: MSD as a function of the time lag 7 for spheroids at different aspect ratios (¢ =
1.1,4.3,7.3,10.0). The translational dynamics in both the main directions is considered: (Ax?2)
(a) and (Az?) (b). The linear behavior denotes the diffusive regime. The slope of each curve
corresponds to 2D, where D is the translational diffusion coefficient in the corresponding direction
and at a given aspect ratio. A decreasing of the slope, i.e. a slower dynamics, is observed for
more elongated particles.
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Figure 3.13: MSD as a function of the time lag 7, along long axis (open points) and short axis
(full points), for spheroids at ¢ = 4.3 and ¢ = 10.0. A slower diffusion is always measured with
respect to the short axis.
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3.5.3 Statistical analysis of the rotational dynamics

The same theoretical background can be applied also to a statistical analysis of
the evolution of ¢ in time. The angular displacement during 7; is defined:

Api(tn) = p(tn + 1) — @(tn) (3.14)

Also in this case, the random origin of the dynamics translate in a Gaussian
distribution of the angular variation Ay, centered in (Ap) = 0, and with a width
related the rotational diffusion coefficient D, (fig. 3.14):

Op,i = \/2D<p7—i (315)

10° 10° |

0.5 1.0 -1.0 -0 0.0 0.5 1.0

" Ao (rad)

-1.0 -0.

" Ao (rad)

Figure 3.14: Distribution of the angular variation Ay over a time interval At = 55 s, at time lag
7 =2/30 s, in a semi-log scale. We consider two spheroidal particles with aspect ratio ¢ = 1.4
(a) and ¢ = 8.7 (b). Both distributions are Gaussian and the one at lower aspect ratio shows a
larger width with respect to more elongated colloids, revealing a huge difference in the rotational
diffusion coefficients.

The rotational MSDs, calculated at 4 different aspect ratios, are plotted in fig.
3.15.
The rotational diffusion coefficient is calculated by the typical expression:

(Ap?) = 2D,7 (3.16)

Since a strong variation of the rotational dynamics as a function of the aspect
ratio is observed, a log-log plot of the MSD is proposed. In this case, we have

log(Ap?) =log2D, + log T (3.17)
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Figure 3.15: Angular MSDs vs. the time lag 7 in a log-log scale. Spheroids with different aspect
ratios (¢ = 1.1,4.3,7.3,10.0) are considered. All the curves show a constant slope, equal to 1:
this characteristic denotes a linear behavior of the MSD, corresponding to a diffusive regime. The
intercepts at 7 = 1 is proportional to log D,. We observe that the rotational diffusion coefficient
strongly decreases, over few orders of magnitude, with the aspect ratio ¢.

A slope equal to 1 corresponds to the linear behavior, due to the diffusive
regime. No variation of the slope is recovered in this system, excluding here the
presence of an angular confinement. At 7 = 1, log(Ap?) = log2D,. From fig.
3.15, we observe a strong decrease, over few orders of magnitude, of the rotational
diffusion, with the aspect ratio ¢.

3.5.4 Translational diffusion coefficients vs. aspect ratio

The dynamics for spheroidal particles are observed in a wide range of aspect ratio,
1 < ¢ < 10. The value ¢ = 1 corresponds to spherical beads, and ¢ = 10 is the
maximum aspect ratio achievable with our stretching method. Other parameters,
such as the material, the volume or the immersion depth, remain constants and
they are equal to the ones for an unstretched commercial bead. Translational
diffusion coefficients along the local axes are shown in fig. 3.16 (long axis) and in
fig. 3.17 (short axis).

Each point in the curves corresponds to the average values on 3 to 6 different
particles with the same elongation. For the sake of comparison, the theoretical
estimation for the same colloid, but totally immersed in the volume (water), is
also reported (continuous lines in figs. 3.16, 3.17). These curves are calculated
from Stokes-Einstein equation, modified by the geometric factors G, and Gy, to
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Figure 3.16: Translational diffusion coeflicient D, vs. aspect ratio ¢. Points for each ¢ are direct
measurements of the diffusion coefficients along the long axis, averaged on the values on 3 to 6
particles. Error bars correspond to the standard deviation on the average. At ¢ ~ 1 we recover
the same translational diffusion coefficient measured for a partially immersed bead (see chapter
2). Then, the diffusion coefficient decreases; the most elongated spheroid (¢ = 10) diffuses almost
2 times slower than the spherical-like particle. For the sake of clarity, the experimental data are
compared with the theoretical estimation for same particles, but totally immersed in water (solid
line). The diffusion at the interface is slower than in the bulk, when common intuition suggests
the opposite behavior.

take into account the effect of the anisotropic shape [36] (see par. 1.5.1 for a
detailed discussion):

b kT

@V = 6w Ga()b
kT

D= —2°

PV 6w Gy(0)b

with 7y viscosity of the water. At ¢ = 1, D,y = D,y and we recover the
same expression as for spherical beads. When the aspect ratio increases, a slight
decreasing of both the translational diffusion coefficients is predicted, except for
D,y in a small region around ¢ = 1.3, where a maximum appears. The reason of
the presence of the maximum is that the range of ¢ is explored at constant initial
volume. In this case, both the geometric factor G, and the spheroid short axis b
which enter in the definition of the diffusion coefficient depend on ¢. Predictions
about the dynamics of spheroids at the interface are not available, but common
intuition suggests a faster diffusion than in the bulk. As in the case of spheres,

(3.18)
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Figure 3.17: Translational diffusion coefficient D; vs. aspect ratio ¢. Points for each ¢ are
direct measurements of the diffusion coefficients along the short axis, averaged on the values on
3 to 6 particles. Error bars correspond to the standard deviation on the average. The data are
compared with the theoretical estimation for the particles totally immersed in water (solid line).
The diffusion coefficient D;, shows the same behavior reported for D, (see fig. 3.16).

experimental data are in disagreement with this picture. In fact, for small aspect
ratio (¢ ~ 1), i.e. for spherical-like particles, we recover the same behavior mea-
sured for spheres (see chapter 2) at similar contact angle § ~ 50°: the diffusion
coefficient at the interface is slightly larger than in the bulk. Moreover, D, = D,
since long and short axes cannot be distinguished (fig. 3.18). For increasing as-
pect ratios, both the translational diffusion coefficients decrease more rapidly than
in the bulk: at ¢ ~ 10 the interfacial diffusion is 2 times slower than the corre-
sponding one in the bulk. In any case, D,/D, > 1, i.e. the dynamics is always
faster along the long axis a, and the anisotropy of the motion increases with the
anisotropy of the particle (fig. 3.18). However, such a ratio varies more slowly
when the colloid is straddled at the interface.
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Figure 3.18: Ratio D,/D;, showing the anisotropy of the translational diffusion, measured at
the interface (points) and predicted in the bulk (continuous line). The values are reported as
a function of the aspect ratio ¢ of spheroidal particles. In both the case, D,/Dy > 1, i.e. the
dynamics is always faster along the long axis a, and the anisotropy of the motion increases with
the anisotropy of the particle. However, such a ratio varies more slowly when the colloid is
straddled at the interface.
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3.5.5 Rotational diffusion coefficient vs. aspect ratio
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Figure 3.19: Rotational diffusion coefficient D, vs. aspect ratio ¢ in semi-log scale. Points
are direct measurements of the rotational diffusion coefficient, averaged on the values on 3 to 6
particles. Error bars are the standard deviation of the average. At ¢ ~ 1 the trend of the curve
recovers the value for the optically anisotropic Janus particle (red point). When the aspect ratio
increases, the rotational diffusion coefficient varies over 2 decades. This behavior differs from the
one predicted when the particle is immersed in water (solid line).

The measured rotational diffusion at the interface (black points in fig. 3.19) is
analyzed with respect to the aspect ratio ¢. Each point at a given ¢ corresponds
to the average on 3 to 6 values. The diffusion coefficient rapidly decreases with
the aspect ratio and varies over 2 order of magnitude in the range ¢ = 1 = 10.
Measurements at ¢ ~ 1 have been performed with optically anisotropic spheres
(Janus particles), in which the orientation is easily recognized. The obtained
diffusion coefficient (red point in fig. 3.19) does not differ significantly from the
rotational diffusion in the volume. As in the previous case, the rotational diffusion
in the volume is plotted as a reference (solid line in fig. 3.19). Such a value, as a
function of ¢, writes [36]:

kT

B 677WG¢(¢)V
where G,(¢) is the geometric factor and V' is the volume of the particle. A decreas-

ing diffusion coefficient, introduced by the geometric factor G,(¢), is expected also
in the bulk, but it is much weaker than the one we measure at the interface. We

Dy (3.19)
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recover again the counter—intuitive results of a slower dynamics at the interface,
despite the effect of the partial immersion; the diffusion is one order of magnitude
slower than the one in the bulk. As previously presented (par. 1.6 and 3.4), the
immersion depth of a spheroids changes with the aspect ratio: more elongated
particles result more immersed in water. One can ask if such effect will be re-
sponsible of the measured increase of the drag. However, the slight variation of
the contact angle (less than 15°) and the viscosity ratio of the two fluid phases
(Nwater /Mair = D0) are incompatible with the huge difference (around 70 times)
between the first and the last points in the accessible range of aspect ratio. A
different approach to the problem has to be used.

A theoretical model able to explain these observations is needed and it will be
devised in the next chapters.

3.6 Conclusions

The full characterization of the diffusion of spherical particles at an air—water fluid
interface, proposed in chapter 2, was here extended to prolate spheroidal colloids.
The tunable parameter was not yet the immersion depth in water (that remained
almost constant in all the measurements), but the degree of anisotropy, expressed
by the aspect ratio ¢. Translational and rotational diffusion coefficients at the
interface were measured in the range 1+ 10 of ¢. Lower diffusion coefficients were
found for more elongated particles, in qualitatively agreement with what is ex-
pected in the bulk. However, the dynamics is always slower at the interface than
in bulk, as in the case of spherical beads. The translational diffusion coefficients
at the interface are two times smaller than in the volume, and rotational diffusion
coefficient, especially at high aspect ratios, is measured to be one order of magni-
tude slower than in the bulk. This dynamical slowing-down is reminiscent of the
one measured for beads, pointing out that such behaviors would share the same
physical mechanism. In order to capture it, we propose in the following chapters
a new theoretical approach to the problem.
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Il buon senso c’era; ma se ne stava
nascosto, per paura del senso
comune.

Wisdom was there. But it was
hidden, scared by common
intuition.

Alessandro Manzoni, Promessi
Sposi, cap. XXXII
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Chapter 4

Explanation of slowed-down
diffusion: fluctuation of the
contact line

Introduction

The results reported in the previous chapters show that, for both spherical and
prolate spheroidal particles, a pure hydrodynamics approach accounting the effect
of partial immersion of a particle in water is not sufficient to catch their dynamics
at a fluid interface. All the theories [27, 28, 29] underestimate the measured vis-
cous drag exerted on the particle: both spheres with different immersion depths
and spheroids with different aspect ratios diffuse more slowly than existing hy-
drodynamics theories predict. A new paradigm is thus demanded to explain our
experimental observations.

Additional sources of dissipation that have been neglected in the theoretical
predictions are first considered in this chapter and their contribution is estimated
(par. 4.1). However, all this classical hydrodynamic approaches could not explain
our measured results. Therefore, we adopt a different point of view. All the
existing models consider the contact line in a sort of mean field way, neglecting
the effect of its fluctuations. In fact, it is well-known that the line is driven out of
equilibrium by thermally activated fluctuations of the air—water interface. Here we
investigate the contribution of such fluctuations and their coupling with the lateral
movement of the particle. Random forces produced by such fluctuations add to
the ones due to the shocks of surrounding molecules (par. 4.2). Fluctuation-
dissipation theorem allows to obtain the friction associated to these additional
random forces, as at the thermal equilibrium the particle kinetic energy remains
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fixed by the equipartition theorem to kgT/2 per degree of freedom (par. 4.3).
The corresponding contribution to the particle drag is discussed in two opposite
limiting cases: in the case of a moving contact line, where the fluctuations are
due to molecular jumps (par. 4.4) and in the regime of a pinned line where
fluctuations are associated to capillary waves (par. 4.5). Both mechanisms lead
to the right order of magnitude for the viscous drag, reproducing the measured
particle diffusion and recovering the increasing viscous drag at large contact angles.

4.1 Possible extra dissipation sources

4.1.1 Deformation of the interface

air

water

Figure 4.1: Heavy particle (copper bead in the millimetric range) at the air—water interface.
Gravity forces, much larger than the interfacial ones, induce a curved meniscus around the
particle.

The effect of an interface deformation on the lateral dynamics of a particle at
the interface was analyzed by Petkov et al. [30]. In their work they studied the
motion of millimetric spherical particles attached to an air-water interface. Their
method consisted in the measurement of the particle velocity v under the action of
a defined lateral capillary force F'. The drag coefficient ( exerted by the fluid on
the particle was then obtained from the ratio ( = F'/v. As we showed in par. 1.4.2,
the drag coefficient ¢ of glass beads (radius 0.2 mm, density p, ~ 2.5-10° kg/m?)
is in agreement with the numerical predictions. However, when they considered a
heavy copper spherical particle (radius 0.52 mm, density p. = 8.9 - 10% kg/m?), a
strongly slowed—-down dynamics was found. At a contact angle # = 78°, the viscous
drag at the interface is 1.75 larger than the one for a particle totally immersed
in water. The qualitative solution proposed in [30] considered the role of a large
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hydrodynamic resistance induced by the curved meniscus around the heavy particle
(fig. 4.1a). The curved meniscus has to move together with the particle, leading
to the motion of the water in the whole region below the meniscus. The total
volume that is displaced during the Brownian motion is thus increased. One can
ask if the same effect plays a role in the micrometric particles in our experiments,
in order to explain the experimental results in chapters 2 and 3.

Let us start with the case of silica micrometric beads. Our particle are much
smaller and lighter (10 times smaller in radius, 10° times in mass) with respect
to the millimetric glass beads used in [30]. Any meniscus-induced additional drag
can be definitely discarded.

The case of spheroidal particles is instead different, since the deformation of
the interface is induced by the shape of the particle, and not by gravity. A char-
acteristic quadrupolar deformation is observed (see par. 3.3 and fig. 4.2). Note
that a typical interfacial profile shows a rise at the center of the particle (yellow
zones) and a decrease at the tips (dark blue zones). Such a deformation relaxes at
the equilibrium level of water (unperturbed interface far from the colloid) along a
distance equal to the radius of curvature of the particle. Due to the anisotropic
shape of the spheroid and to the non—constant radius of curvature, the deformation
at the middle relaxes at longer distances than the one at the tips. As a result, the
whole deformed region can be approximated as an isotropic disk (white dashed line
in fig. 4.2). Its radius is on the order of the long axis a, and the height corresponds
to the distortion measured via PSI.

If we consider the argument of Petkov, the spheroid has to induce the rotation
of the water disk at its same angular velocity. The required additional viscous
torque will be proportional to the disk volume, which is rounded up by:

b
2
Viisle ~ TQ 10 (4.1)
In eq. 4.1 we have considered the maximum disk volume, obtained by the
spheroid with the highest aspect ratio (¢ = 10), in which the maximal distortion
is around 0.1b (par. 1.6).

With respect to the particle volume, we obtain:

13

Vdisk‘ 7ra2b/10 §
410

Vtspheroid ~ 4/37Tab2

~Y

(4.2)

A~

In the case of maximum deformation of the interface, the proposed overesti-
mation of the displaced volume, in which the presence of air is not taken into
account, is comparable with the volume of the particle. A volume more than 10
times larger would be instead required to explain our enhanced rotational drag,
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Figure 4.2: False color image of the typical interface deformation around a spheroidal particle.
The interface is higher at the center of the spheroid (yellow zone) and lower at the tips (dark
blue zone). The deformed region around the particle can be approximated by an isotropic disk
(white dashed line).

as found in the experiments (see fig. 3.19). We conclude that particle-induced
deformations cannot be used as an argument for the comprehension of the results
presented in this thesis.

4.1.2 Wedge flow at the interface

It is easy to see that, when a particle is straddled at the interface, the fluid profile
is very close to a wedge. When the particle moves or rotates, such a wedge profile
slides on the particle surface. Dussan and Davis [49] probed the motion of the
liquid in a region in similar condition (moving fluid on a solid substrate), by
marking the upper surface of the wedge with small spots of a dye. They found a
very characteristic rolling motion, reminiscent of a caterpillar vehicle, which gives
rise to a viscous friction (fig. 4.3).

De Gennes [20] computed the corresponding dissipation per unit length due to
such a motion of the contact line. The wedge is treated as a nearly flat film where
the velocity v has a Poiseuille profile, given by the boundary conditions: on the
solid side (z = 0), the velocity vanishes, v = 0; on the gas side (z = £(z)), no
tangential stress are present, dv/0z = 0. If we denote with U the average velocity
of the wedge, i.e.

1 r¢€
U=¢ /0 v(2)dz (4.3)
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Figure 4.3: Sketch of the motion of a fluid wedge on a solid substrate, according to the picture
proposed by Dussan and Davis [49] and by De Gennes [20]. The presence of a contact angle 6
between the solid substrate and the fluid gives rise to a fluid wedge. It is moving on the solid
substrate at an average velocity U. The wedge shows a characteristic rolling motion, which is
responsible of the dissipation.

the velocity profile writes

o(z) = ;’gg (=22 + 2¢2) (4.4)

The total dissipation per unit length of the contact line is recovered by:

Tmaz &(z) 2
P = / / n (81}) dzdx =
Tomin 0 (921

Tmaz InU> 3nU*?
/ dr = In
since £(x) = x0, when 0 is sufficiently small; x,,;, and 2,,,, are cutoff distances.
We will not enter into the details of the discussion, but it is sufficient to note few
characteristic dependencies. First of all, the dissipation depends on U2, and so it
is invariant for advancing and receding wedges. Moreover, such a term is directly
proportional to the viscosity 1 of the fluid.

Let move on the case we are interested in: a fluid wedge moving on a spherical
bead. The physics is exactly the same as shown for a flat substrate, and so we
recover the corresponding dissipation, proportional to the fluid viscosity. For the
sake of simplicity, we focus into two cases of hydrophilic and of hydrophobic beads.
In the first case (fig. 4.4a), a water wedge is moving on the particle surface. In the
second one (fig. 4.4b), at a complementary position of the interface, the dissipation
on a hydrophobic bead can be obtained considering an air wedge. A much smaller

a:max

(4.5)

Tmin
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Figure 4.4: A spherical bead at a fluid interface gives rise to a fluid wedge profile at the contact
line. For a hydrophilic particle (a) a water wedge is obtained. For a hydrophobic bead (b) the
air-water interface is at the complementary position; an air wedge can be so pictured. Since the
wedge dissipation [20] (eq. 4.5) is proportional to the fluid viscosity, a larger effect is attended
for hydrophilic bead. This statement is in contradiction with experimental observation.

Viscosity (Nair <€ Nwater) 1S here present, leading to a negligible dissipation. It
follows that the dissipation due to the motion of a wedge flow is more relevant for
hydrophilic particles, but this result is in contradiction with the experimental data
that we want to explain. Consequently, this is not the effect that we are looking
for.

Such possible extra dissipation sources fail to reach the measured required ad-
ditional drag. In the same way, we can show the contact line friction has no
role in dynamics (see appendix A.3). The effect of a curved meniscus, accounted
for a similar dynamics of heavy millimetric beads, is not suitable for particle in
the micrometer range. The wedge hydrodynamic effects fail to reproduce the be-
havior of the particle diffusion with the immersion depth. The dissipation of a
contact line, moving on the solid substrate, does not increase the total drag of
the particle. A new theoretical paradigm needs thus to be conceived, as it will be
done in the next paragraphs considering the role of fluctuations at the contact line.

4.2 Fluctuating forces at the triple line

Let us consider a top view of a spherical bead; we focus on the contact line and
on the interface at its vicinity. A cylindrical coordinate system (r, ¢, z) is defined
(fig. 4.5). r is the radial distance from the normal z to the interface, centered on
the bead. ¢ is the angular position with respect to an arbitrary axis w over the
interface.

A fluctuation ¢ can occur at a random position of the contact line. Let us
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Figure 4.5: Cylindrical coordinate system (r,p, z), shown in top view of the particle at the
interface. The vertical axis z is perpendicular to the interface and centered on the bead. The
angle ¢ is defined with respect to the arbitrary axis w, that lies on the interface. The radial
coordinate r is the distance between a generic point and the center of the bead.

consider a line fluctuation having a mean length A and centered at the angular
position ;. Two types of fluctuations can be involved:

e in the case of a moving line, a local displacement of the contact line on the
particle surface (fig. 4.6a);

e in the case of a pinned line, a local capillary deformation of the interface
profile (fig. 4.6b).

Bo