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La professione del ricercatore deve
tornare alla sua tradizione di
ricerca per l’amore di scoprire
nuove verità. Poiché in tutte le
direzioni siamo circondati
dall’ignoto e la vocazione
dell’uomo di scienza è di spostare
in avanti le frontiere della nostra
conoscenza in tutte le direzioni,
non solo in quelle che promettono
più immediati compensi o
applausi.

The work of the researcher has to
come back to its tradition of
research for the love of discovering
new truths. Since we are
surrounded by the unknown in all
the directions, the vocation of the
scientist is to advance the frontiers
of our knowledge in all the
directions, not only in those that
promise more immediate rewards
or approvals.

Enrico Fermi
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Résumé

La dynamique de particules collöıdales à l’interface entre deux fluides joue un rôle
central dans la micro-rhéologie, l’encapsulation, l’émulsification, la formation de
biofilms et la décontamination de l’eau. En outre, ce sujet est également stimulant
d’un point de vue théorique en raison de la complexité de l’hydrodynamique à
l’interface et du rôle de la ligne de contact. Malgré ce grand intérêt, le comporte-
ment d’une particule à une interface fluide n’a jamais été caractérisé directement.
Dans cette thèse, nous étudions le mouvement brownien de billes micrométriques
de silice et de sphéröıdes de polystyrène à une interface eau–air. Nous contrôlons
expérimentalement tous les paramètres d’intérêt. L’angle de contact des billes
est finement ajusté dans la gamme 30◦ − 140◦ par des traitements chimiques de
surface et mesuré in situ par interférométrie. Le rapport d’aspect de particules
sphéröıdales varie dans la gamme 1 - 10 par étirage de billes sphériques commer-
ciales. Les dynamiques de translation et de rotation sont suivies par particle track-
ing. Contre intuitivement et contre tous les modèles hydrodynamiques la diffusion
est beaucoup plus lente que prèvu. Pour expliquer cette dissipation supplémentaire
nous concevons un modèle tenant compte de la contribution des fluctuations ther-
miques de l’interface à la ligne de contact. Les fluctuations donnent origine à des
forces aléatoires qui s’ajoutent à celles dues aux chocs de molécules. Le théorème
de fluctuation–dissipation permet d’obtenir la friction supplémentaire associée à
ces forces flottantes. La friction totale est discutée en termes d’hétérogénéités de
la surface des particules et d’ondes capillaires à l’interface.

Mots clês: collöıdes, mouvement brownien, interface
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Abstract

The dynamics of colloidal particles at the interface between two fluids plays a cen-
tral role in micro-rheology, encapsulation, emulsification, biofilms formation and
water remediation. Moreover, this subject is also challenging from a theoretical
point of view because of the complexity of hydrodynamics at the interface and of
the role of the contact line. Despite this great interest, the behavior of a single
particle at a fluid interface was never directly characterized. In this thesis, we
study the Brownian motion of micrometric spherical silica beads and anisotropic
polystyrene spheroids at a flat air-water interface. We fully characterize and con-
trol all the experimentally relevant parameters. The bead contact angle is finely
tuned in the range 30-140 by surface treatments and measured in situ by a home-
made Vertical Scanning Interferometer. The spheroid aspect ratio varies in the
range 1 10 by stretching of commercial beads. The translational and the rota-
tional dynamics are followed by particle tracking. Counter-intuitively, and against
all hydrodynamic models, the diffusion is much slower than expected. To explain
this extra dissipation we devised a model considering the contribution of thermally
activated fluctuations of the interface at the triple line. Such fluctuations couple
with the lateral movement of the particle via random forces that add to the ones
due to the shocks of surroundings molecules. Fluctuation-dissipation theorem al-
lows obtaining the extra friction associated to this additional mechanism. The
fitting values of the total friction are discussed in term of the typical scales of
particle surface heterogeneities and of surface capillary waves.

Key words: colloid, Brownian motion, interface
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Facesti come quei che va di notte,
che porta il lume dietro e sé non
giova, ma dopo sé fa le persone
dotte.

Thou didst as he who walketh in
the night, who bears his light
behind, which helps him not, but
wary makes the persons after him.

Dante Alighieri, Purgatorio XXII
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Introduction

Looking at micrometric particles suspended in a fluid phase, a random and ir-
regular motion is observed. This observation was firstly made in 1827, and the
behavior was named Brownian motion after by the Scottish botanist Robert Brown
that investigated it. The mechanism was understood by Einstein and explained in
one of the four Annus Mirabilis papers in 1905 [1], where the thermal origin of the
dynamics was pointed out. Its experimental confirmation took a long time and it
is still in progress. In 1909 Perrin [2] provided the very first particle tracking ex-
perience to find the diffusion coefficient of spherical bead immersed in a fluid. One
century after, such a measurement was extended to more natural anisotropic mor-
phologies, as spheroidal particles. Such dynamics was quantified by digital video
microscopy for spheroids in water confined in a two–dimensional geometry [3, 4]
and by using holography and confocal microscopy in the volume [5]. A crucial
characteristic predicted by Einstein as the very short time transition between the
ballistic and the diffusive motion was recently investigated using optical tweezers
in both air [6] and liquid [7]. The effect at small length scales, where Einstein
relations are not totally fulfilled, was also explored in the past few years and the
Brownian diffusion was studied in the case of nanoparticles [8, 9, 10, 11].

All these recent works show that Brownian motion is still a topical subject
in soft matter and still a fruitful playground for new researches. One of such
particularly important fields is the dynamics of particles at fluid interfaces. On one
hand, from a practical point of view, it governs the behavior of kinetically arrested
colloidal gels [12], the formation of bacteria based biofilm [13], and the cellular
signaling via membrane proteins [14]. On the other hand, it is also challenging
from a more fundamental point of view, as it allows to probe different interfacial
hydrodynamics phenomena, as surface viscosity and eventually visco–elasticity,
and the role of the contact line, where the three phases meet together [15].

The work performed during this PhD thesis could be seen as a first step to fill
the gap in this direction. For spherical colloids, we propose a model for the friction
acting at the interface taking into account the effect of thermal fluctuations at the
contact line. Our model is able to capture the unexpected slowed–down diffusion
of a particle at an air–water interface. The same theoretical approach is followed

3



also for anisotropic spheroidal particles, where the presence of an additional drag is
experimentally much more evident: our measurements show a rotational diffusion
coefficient at the interface one order of magnitude slower than in the bulk, and
a translational diffusion coefficients two times smaller, for the most elongated
particle. Geometrical considerations about the distribution of thermal fluctuating
torques and forces along an elliptic contact line are able to catch such a dynamics.

Plan of the thesis

The thesis starts with a theoretical overview on the main treated topics (chapter
1). Basic notions about fluid dynamics, interfacial properties and wetting phe-
nomena are presented in order to define the background from which the present
work has been developed. Moreover, the state of arts in the field is reported.

Chapter 2 is focused on the measurements of the diffusion of micrometric
spherical particles at an air–water interface. The particle immersion depth in wa-
ter is tuned by chemical treatments of the bead surface, and measured by gel
trapping and interferometric techniques. The dynamics is followed by particle
tracking and the corresponding translational diffusion coefficients are measured.

In a similar way, in chapter 3 the Brownian motion of partially immersed
spheroidal colloids is considered, as a function of their aspect ratio. The parti-
cles are prepared by stretching of commercial polystyrene beads in a homemade
apparatus. Deformations of the interface induced by the particle are observed by
interferometry. Particle tracking allows to recover both translational and rota-
tional dynamics.

In both cases, a counter-intuitively, slow diffusion is observed and existing
hydrodynamics theories are not able to catch this behavior.

The hydrodynamics features associated to the presence of a particle at the in-
terface are taken into account as attempts to describe the slowed–down dynamics.
All of them fail since the corresponding dissipations are too small than the ones
measured. A new paradigm is so required, and a new model is conceived in chap-
ter 4 for the case of spherical particles. In the model, the contribution of thermal
fluctuations of the interface translates in random forces that affect the dynamics.
Fluctuation–dissipation theorem allows to obtain the friction associated to these
additional random forces, as at thermal equilibrium the particle kinetic energy
remains fixed by the equipartition theorem. The obtained friction is discussed in

4



two regimes, for a moving or a pinned contact line. In any cases, fluctuations of
the interface at the nanometric scales are able to catch the measured dynamics
and provide an additional drag in the right order of magnitude.

In chapter 5 the solution obtained for spheres is generalized for the more
complex morphology of spheroidal particles. Assuming the same physical origin of
the additional drag, we are able to fit both translational and rotational dynamics of
the particle, leading again to the reasonable nanometric range for the fluctuations.
Such results point out the central role played by thermally activated fluctuations
at the contact line on the Brownian dynamics of micrometric particles at a fluid
interface.

5





Quelli che s’innamoran di pratica
sanza scienzia son come ’l nocchier
ch’entra in navilio senza timone o
bussola, che mai ha certezza dove
si vada.

Those who fall in love with
practice without knowledge are like
the coxswain that sails without
rudder or compass, and never has
for sure where hes going.

Leonardo Da Vinci
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Chapter 1

State of art and theoretical
background

Introduction

An overview of the state of art in Brownian dynamics and of the theoretical back-
ground is here proposed as a starting point of this thesis.

First of all, the definition of Brownian motion and the mathematical derivation
of the diffusion coefficient D are presented (par. 1.1). Such a coefficient is already
known from Stokes–Einstein relation, and experimentally verified, for beads fully
immersed in a fluid (par. 1.2). In the case of spherical particles straddled at
an interface between two fluids their position, in terms of immersion depth and
contact angle, are discussed in par. 1.3. Then, the particle lateral dynamics is
analyzed considering the viscous drag at the interface, as computed by numerical
predictions and measured in few experiments in literature (par. 1.4). In same
way, anisotropic spheroidal particles are considered. We show their diffusion in
the volume, from both a theoretical and an experimental point of view (par. 1.5).
Finally, the basic features concerning spheroids at the interface, as the interface
deformation and the coupling with interface curvature, are addressed (par. 1.6).

1.1 Definition of Brownian motion

A colloidal particle immersed in a fluid phase shows an irregular and random walk,
due to the collision between the molecules of the surrounding fluid and the particle
itself. Such an effect is known as Brownian motion, named after the Scottish
botanist Robert Brown that firstly observed the erratic movement of pollen grains
in water. Each molecular collision provides a random kick that boosts particle
motion and that can be quantified by a random force Fr(t). At the same time, a
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viscous force Fv which opposes to the particle motion, is acting on the particle:

Fv = −ζv (1.1)

where v is the velocity of the particle and ζ is the friction coefficient.
The equations of motion of the Brownian particle, known as Langevin equations,
describe the evolution in time of the particle position x(t):

dx(t)

dt
= ẋ(t) = v(t)

m
dv(t)

dt
= Fr(t)− ζv(t) (1.2)

An exact solution cannot be found, since the random force lacks of an analytical
expression. However, an alternative approach can be followed. Let multiply both
sides of eq. 1.2 by x, and consider the ensemble average of all the terms:

m
⟨
x
dẋ

dt

⟩
= ⟨xFr⟩ − ζ⟨xẋ⟩ (1.3)

The first term in the right hand side is always null, since Fr is defined as a
random force. The term in the left hand side is instead developed as

x
dẋ

dt
=

d

dt
(xẋ)− ẋ2 (1.4)

Taking into account the equipartition theorem, i.e. kBT ∼ ⟨mẋ2⟩, eq. 1.3
becomes

m
d

dt
⟨xẋ⟩ = kBT − ζ⟨xẋ⟩ (1.5)

and it can be solved with respect to the variable ⟨xẋ⟩:

⟨xẋ⟩ = Ce−t/τp +
kBT

ζ
(1.6)

with τp = m/ζ and C an arbitrary constant of integration. C is recovered imposing
the initial condition x = 0 at t = 0: C = −kBT/ζ. Note also:

⟨xẋ⟩ = 1

2

d

dt
⟨x2⟩

After integration of eq. 1.6:

⟨x2⟩ = 2kBT

ζ

[
t− τp

(
1− e−t/τp

)]
(1.7)

10



At short times, i.e. at t ≪ τp, the exponential function in eq. 1.7 is safely
approached by its development in the Taylor series:

e−t/τp = 1− t

τp
+

1

2

t2

τ 2p
(1.8)

and eq. 1.7 is written:

⟨x2⟩ = kBT

m
t2 (1.9)

Thus, for short time scales with respect to τp, the particle shows a ballistic mo-

tion at constant velocity v =
√
kBT/m, as expected from equipartition theorem.

A direct verification of such a prediction has been recently provided by a measure-
ment of the instantaneous velocity of silica beads trapped in optical tweezers (fig.
1.1) [6].

Figure 1.1: Mean Square Displacements (MSDs) of 3 µm silica beads, at short time scales
(t ≪ τp). The particles are trapped in air at different pressures (99.8 kPa for red squares and
2.75 kPa for black circles). The motion is not dependent on the external pressure and shows,
in both cases, a quadratic behavior (dash-dotted line) typical of a ballistic motion, as expected
from the theory. The fit is in agreement with the predictions and leads to the thermal velocity
v =

√
kBT/m. Measurements and graph from Li et al., Science 328, 1673 (2010) [6].

In the opposite case, t≫ τp, e
−t/τp → 0 and

⟨x2⟩ = 2
kBT

ζ
t = 2Dt (1.10)
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Here, the effect of several random molecular collisions translates in a diffusive
regime, where the Mean Square Displacement (MSD) ⟨x2⟩ linearly increases in
time. In eq. 1.10 D is the diffusion coefficient

D =
kBT

ζ
(1.11)

The friction coefficient ζ is considered in the following paragraphs for different
systems (spheres and spheroids, immersed in a fluid and trapped at the interface
between two fluids) in order to predict the diffusive dynamics.

1.2 Spherical particles fully immersed in a fluid

1.2.1 Friction coefficient: the Stokes-Einstein equation

We consider the prediction of the diffusion coefficient of a spherical bead totally
immersed in a fluid phase. For this purpose, we need to write the friction coefficient
ζ, provided in this case by Stokes–Einstein equation. The complete derivation
reported here follows the discussion of Landau and Lifshitz [16].
We start from the Navier–Stokes equation, written for incompressible fluids and
at low Reynolds number (ρvl/η ≪ 1, where ρ is the density and η the viscosity of
the fluid, v the velocity of flow and l a typical length scale):

η∇2v − gradp = 0 (1.12)

The equation can be expressed using the operator

E2 =
∂2

∂r2
+

sinϑ

r2
∂

∂ϑ

(
1

sin2 ϑ

∂

∂ϑ

)
(1.13)

and in terms of the Stokes stream function ψ; in polar coordinates (r, ϑ) (fig.
1.2), it is related to the flow velocity components in the following way:

vr =
1

r2 sinϑ

∂ψ

∂ϑ
vϑ = − 1

r sinϑ

∂ψ

∂r
. (1.14)

Hence, eliminating the pressure between these two components, eq. 1.12 be-
comes

E2
(
E2ψ

)
= 0 (1.15)

We impose the no-slip condition, i.e. null radial and angular velocities, at the
sphere surface (r = R, with R radius of the sphere):

vr = 0 vϑ = 0 (1.16)
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θ

x

r

z

v

Figure 1.2: Polar coordinates system (r, ϑ), used in the solution of Stokes–Einstein equation.
The particle is assumed moving at constant velocity v along the x–axis.

and a velocity v of the flow at great distance from the particle (r → ∞); for
the function ψ, this condition translates in

ψ → v

2
r2 sin2 ϑ (1.17)

A solution in the form ψ = f(r) sin2 ϑ is so expected and, taking into account
the boundary conditions shown above, a suitable solution for ψ is

ψ(r, ϑ) =

(
vr2

2
− 3vRr

4
+
vR3

4r

)
sin2 ϑ (1.18)

From the definition of ψ (eq. 1.14), the velocity components are recovered

vr = v

(
1− 3R

2r
+
R3

2r3

)
cosϑ

vϑ = −v
(
1− 3R

4r
+
R3

4r3

)
sinϑ (1.19)

Since the shear strain rate γrϑ is defined by

γrϑ = r
∂

∂r

(
vϑ
r

)
+

1

r

∂vr
∂ϑ

(1.20)

the shear stress on the surface (r = R) is

τrϑ = ηγrϑ(r = R) = −η 3v
2R

sinϑ (1.21)

13



To determine the pressure p on the particle, we use eq. 1.12; its solution leads
to

p = p0 − η
3v

2R
cosϑ (1.22)

where p0 is the fluid pressure at infinity.
The friction drag F exerted by the fluid on the particle is thus given by

F =
∮
(−p cosϑ− τrϑ sinϑ)dS = 6πηRv (1.23)

where both the pressure and the tangential stress, projected on the direction
of the motion, are integrated over the whole spherical surface.
The drag coefficient for a sphere moving in fluid phase, defined by the ratio ζ =
F/v, is finally expressed as:

ζ = 6πηR (1.24)

Replacing ζ in eq. 1.11, a theoretical prediction of the diffusion coefficient, in
the case of a spherical bead totally immersed in volume, is provided by

Dsphere =
kBT

6πηR
(1.25)

The same approach is followed to compute the rotational friction coefficient
ζφ. We consider a sphere that slowly rotates with a constant angular velocity ω
around an axis z.

In spherical coordinates system (fig. 1.3), the velocity v is in the form

v = [vr, vφ, vϑ] = [0, vφ(r, ϑ), 0] (1.26)

and all the quantities are symmetric about the z–axis, i.e. there is no depen-
dence on φ.

The Navier-Stokes equation (eq. 1.12) is thus reduced to

0 = ∇2vφ =
1

r2
∂

∂r

(
r2
∂

∂r
vφ

)
+

1

r2
∂

∂ϑ

(
1

sinϑ

∂

∂ϑ
vφ sinϑ

)
(1.27)

Imposing the boundary conditions

vφ = ωR sinϑ r = R

vφ → 0 r → +∞ (1.28)
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Figure 1.3: Spherical coordinates system (r, φ, ϑ), used in the computation of the rotational
friction coefficient. The particle is assumed rotating around the axis z.

the solution for the velocity field is achieved

vφ = ωR
(
R

r

)2

sinϑ (1.29)

The shear stress

τrφ = ηr
∂

∂r

(
vφ
r

)
(1.30)

is integrated on the particle surface (r = R) and leads to the friction drag
torque Γ:

Γ =
∮
τrφR sinϑdS = 8πηR3ω (1.31)

The corresponding rotational friction coefficient is ζφ = Γ/ω, thus

ζφ =
Γ

ω
= 8πηR3 (1.32)

providing the corresponding theoretical prediction of the rotational diffusion
coefficient of a spherical bead totally immersed in volume:

Dφ,sphere =
kBT

8πηR3
(1.33)
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1.2.2 Experimental measurements of diffusion in bulk

The first experimental observation of Brownian dynamics was done by Jean Perrin
in 1909 [2]. In his experiment, microscopic latex particles were immersed in water
at constant temperature. Using an optical microscope in a camera lucida set-up, a
2-D projection of particle trajectories on a paper sheet was obtained. The particle
position was marked every 30 seconds for 24 minutes. An example of this first
particle tracking is reported in fig. 1.4.

Figure 1.4: Hand-drawn particle trajectories obtained by J. Perrin. The sample was observed
by optical microscopy, and the image was projected on a paper sheet. The position was marked
with a time interval ∆t = 30s.

From such trajectories, the mean square displacement in 2-D is computed as a
function of the time lag. The resulting diffusion coefficient was found in agreement
with Stokes-Einstein relation.

1.3 Spherical particles at a fluid interface: con-

tact angles

1.3.1 Equilibrium position for ideal surfaces: Young’s con-
tact angle

The equilibrium position of a particle straddled at a fluid interface is firstly re-
covered in the ideal case of a flat and homogeneous particle surface, where the
interface can slide on the particle without any constriction. The pinning of the
contact line or the solid friction on the substrate are not considered here. We take
into account all the contributions to the surface free energy and look for the con-
figuration that minimizes it [17]. In fact, when a solid particle is at the air-water
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interface, three surfaces have to be considered (fig. 1.5):

1. the lower spherical cap, corresponding to the wetted part of the colloid (S1);

2. the upper spherical cap, where the solid is in contact with the air (S2);

3. the missing air-water interface, due to the presence of the bead (S3).

airσ

σ

SV

z

0

water

R SL
σ

θ

z

LV
S

S

S

1

2

3

Figure 1.5: Spherical bead with radius R at the air-water interface. Three different surface are
considered in the system: solid-water (S1), solid-air (S2), missing air-water (S3) surfaces. Each
one contributes to the total free surface energy, according to the corresponding surface tensions.
The position of the center of the particle is defined with respect to the vertical axis z. z = 0
corresponds to the water level; the equilibrium position of the center of the particle is denoted
with z̄. In a similar approach, the equilibrium of the three interfacial forces at the contact line
leads to the definition of the contact angle θ.

Let us denote with z the vertical position of the center of the particle with
respect to the water level; R is the radius of the particle. The three surfaces,
and the corresponding energy contributions, are recovered from simple geometric
arguments:

1. ESL = σSL2πR
2 (1− z/R)

2. ESV = σSV 2πR
2 (1 + z/R)

3. ELV = −σLV πR2 (1− z2/R2)
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where σ denotes the surface tensions of the solid-liquid (SL), solid-vapor (SV)
and liquid-vapor (LV) interfaces.

The total surface free energy is thus:

E = ESL + ESV + ELV

E = πR2σLV

[
z2

R2
+
z

R

(
σSV − σSL

σLV

)
+

2σSL + 2σSV − σLV
σLV

]
(1.34)

With respect to the normalized vertical position z/R, the total surface free
energy E has a parabolic profile; the particle is trapped in a potential well, whose
equilibrium position z̄ is obtain from the condition ∂E

∂z
= 0:

z̄

R
= −σSV − σSL

σLV
(1.35)

Since the contact angle θ can be defined, from trigonometry, as (see fig. 1.5)

cos θ = − z̄

R
(1.36)

eq. 1.35 is re-written as a function of θ:

σLV cos θ = σSV − σSL (1.37)

Eq. 1.37 represents the Young’s law [18] and can be retrieved by considering
the equilibrium of the three interfacial forces (per unit length) acting at the contact
line, on the surface of the particle (fig. 1.5).

The contact angle is related to the surface tensions of the considered phases:

θ = arccos
σSV − σSL

σLV
(1.38)

Different experimental techniques, as Gel Trapping and Vertical Scanning In-
terferometry (see chapter 2 for a detailed explanation of their working principles)
are used to recover a direct measurement of θ.

1.3.2 Equilibrium position for heterogeneous surfaces

Young’s equation (eq. 1.37) provides an equilibrium contact angle and a corre-
sponding equilibrium immersion depth in the case of an ideal homogeneous surface.
Nevertheless, in many practical applications, we have to handle more complex sur-
faces, as heterogeneous substrates. For these cases, Cassie and Baxter [19] devel-
oped a model for the contact angle θ.
Let us consider a spherical bead at the air-water interface, at an equilibrium con-
tact angle θ that is hitherto unknown. The three areas pertinent in the problem
can be written as a function of θ:
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• ASV = 2πR2(1− cos θ)

• ASL = 2πR2(1 + cos θ)

• ALV = πR2(1− cos2 θ)

where the indexes denote the solid-vapor (SV), solid-liquid (SL) and liquid-
vapor (LV) interfaces, respectively. Here, we suppose that the solid surface consists
of n different materials, uniformly distributed over the substrate. Each material
has its own surface tensions σi,SV , σi,SL and occupies a given fractional area fi;
such a value is the same at both solid-vapor and solid-liquid interfaces. For the
sake of simplicity, we discuss the case n = 2. The total surface free energy is
written (see eq. 1.34 for comparison):

E = 2πR2
[
(1− cos θ) (f1σ1,SV + f2σ2,SV )+

+ (1 + cos θ) (f1σ1,SL + f2σ2,SL)−
1

2

(
1− cos2 θ

)
σLV

]
(1.39)

We recover θ from the minimization of the free surface energy, i.e.

∂E

∂θ
= 2πR2 sin θ [f1σ1,SV + f2σ2,SV − f1σ1,SL − f2σ2,SL + cos θσLV ] = 0 (1.40)

that leads to

cos θ = f1
σ1,SV − σ1,SL

σLV
+ f2

σ2,SV − σ2,SL
σLV

= f1 cos θ1 + f2 cos θ2 (1.41)

where θi is the equilibrium contact angle of the ideal homogeneous surface
composed only by the material i. In other words, in Cassie–Baxter model the
macroscopic contact angle of an heterogeneous substrate is given by the average
of the contact angles of the composing materials, weighted by the fractional area
occupied by each one.

1.3.3 Microscopic contact angles

So far, the discussion on the energies involved and on the equilibrium contact
angle was in the far field where the relevant parameters are simply the interfacial
tensions. Thus, the equilibrium contact angle θ (eqs. 1.37, 1.41) is identical to
the angle θap that one measures by macroscopic techniques such the sessile drop
method (fig. 1.6) or, as done in this thesis, interferometric techniques (par. 2.2.2).
However when going down in length scales close to the triple line, local contact
angles may differ from the far-field equilibrium contact angle. Two additional
regimes have been discussed in the literature [20, 21]. At length scales 1 nm
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< ℓ < 1 µm, colloidal forces such as Van der Waals (VdW) and Electrostatic
double layer (EDL) interactions will affect the contact angle profile. VdW includes
intermolecular dipole–dipole, dipole–induced dipole, and induced dipole–induced
dipole interactions. Electrostatic double layer depends on the surface potential
and electrolyte concentration. The Debye screening length sets the length scale of
this interaction, which for pure water is about 1µm [22]. A new microscopic angle
θm, slightly different from θap is present. The microscopic angle θm is related to
the macroscopic angle θ by considering the dissipation at the local scale. At length
scales ℓ < 1 nm , θm will be affected by the thermal fluctuations and short range
chemical forces. However, in most common cases, such as wetting theories [23],
θm ≃ θ.

 

 

far �eld (> 1 mm)

mean �eld (< 1 µm), VdW and EDL

k  T vs. short range forcesB

Figure 1.6: Schematic view of the different length scale at the contact line. In the far field the
contact angle (θap in this figure) is the same that one measures with macroscopic techniques,
such as sessile drop method. In the mean field, Van der Waals and Electrostatic double layer
interactions slightly modify the contact angle profile. At nanometric length scales, the local
contact angle θm is affected by thermal fluctuations.

20



1.3.4 Triple line dynamics: advancing and receding con-
tact angles

Let us consider a contact line pinned at a given position on the solid substrate. In
the case of a relative motion of the fluid with respect to the particle surface, such
a pinning translates in an increase of the contact angle when the fluid advances;
similarly, the contact angle decreases when the fluid recedes in the opposite direc-
tion (fig. 1.7). Thus, a finite interval of contact angles, around the equilibrium
value θe provided by Young’s law, is allowed [24]:

θr < θ < θa (1.42)

where θa and θr are the advancing and the receding contact angles, respectively.
This range is known as contact angle hysteresis.

water

air

solid 

particle

θa

water

air

solid 

particle

θ r

a b

Figure 1.7: Advancing (a) and receding (b) fluid, with respect to the solid substrate. A pinned
contact line induces an increasing (θa) or a decreasing (θr). The range of allowed contact angle
θr < θ < θa is known as contact angle hysteresis.

Such a hysteresis is induced by surface effects, as roughness or chemical het-
erogeneities, which produce new local minima in the surface free energy, resulting
in metastable equilibrium positions. The energy barriers to reach these minima
in the surface free energy are large enough to allow the advancing and receding
contact angles [25].

In the case of rough silica surface, the maximum achievable value of contact
angle hysteresis is ∆θ = θa − θr ≃ 14◦ [26].

1.3.5 Relaxation to the equilibrium position

Young’s law (eq. 1.37) and its modified expression for heterogeneous surfaces
(eq. 1.41) provide the equilibrium position of a bead at the interface, but little is
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known about how this equilibrium is reached. Recently Kaz et al. [15] observed the
breaching dynamics of a micrometric particle at a decane–water interface and the
successive relaxation toward the equilibrium position (fig. 1.8a). This relaxation
shows a logarithmic behavior with characteristic times of months (fig. 1.8b).

a b

Figure 1.8: a. Typical immersion depth of a 1.9µm–diameter bead at an decane–water interface.
Three different time phases are visible: approach, breach and relaxation. b. Semi–log plot of
the position as a function of time, when the particle relaxes to the equilibrium position: the
relaxation is approximately logarithmic. Data and graphs from Kaz et al., Nat. Mater. 11, 2
(2012) [15].

This dynamics was explained with a model that takes into account thermally
activated jumps of the contact line over surface defects. Each defect is considered
as a site where the contact line is pinned with an energy ϵ [23] (see also par.
4.4.1). The velocity of the contact line is expressed by an Arrhenius–like term,
and depends on a Boltzmann factor representing the probability to hop the site:
exp (−ϵ/kBT ). The rate of hopping is biased by the force acting on the contact
line f = σLV (θ(t)− θe), where θe is the equilibrium contact angle, provided by
Young’s law, and θ(t) is the instantaneous contact angle. Such a driving force f
is maximum at the breaching and decrease to zero at the equilibrium position,
providing a justification to the logarithmic behavior. This experience shows that,
in many practical applications, the bead is far from equilibrium and the observed
contact angle can significantly differs from the Young’s value.

1.4 Lateral motion of spherical particles at a fluid

interface

1.4.1 Theoretical models

The viscous drag of spherical beads at a fluid interface has to be computed in order
to obtain the interfacial diffusion coefficient. This approach is the same as previ-
ously proposed for particles fully immersed in the fluid phase. From a qualitative
point of view, the drag ζH exerted on the bead must be reduced with respect to
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one obtained in the volume, due to the lower amount of surrounding water (eq.
1.24). Hydrodynamic theories, developed by Danov et al. [27], Pozrikidis [28] and
Fischer et al. [29], provide quantitative expressions for ζH (fig. 1.9). All these
models agree with the expected behavior described above, i.e. the viscous drag is
reduced when the particle is at the interface, and it is decreasing when it is more
in air.

water water

air air

Figure 1.9: Viscous drag ζH at the interface, normalized by the friction coefficient in the volume
(ζV = 6πηR, dashed line) versus contact angle θ. Higher contact angles correspond to less
immersed particle. ζH is computed using hydrodynamic theories of Danov et al. [27] (green
line), Pozrikidis [28] (red line) and Fischer et al. [29] (black line). The different hypotheses lead
to slight differences in the quantitative values, but they all qualitatively decrease, in a similar
way, with the contact angle.

In more detail, Pozrikidis [28] took into account the asymmetric deformation of
the interface due to the motion of the particle. The drag force was written in the
form F = β6πηRv, where β is the dimensionless drag coefficient at the interface.
β was numerically computed at 5 values of θ, covering all the range of possible
contact angles, in the case ηair/ηwater ≃ 0. In fig. 1.9 (red line), a fit for the surface
viscous drag normalized by the bulk value, according to the 5 values in table 1.1,
is plotted.

23



θ[◦] 9 45 90 135 171
β 0.72 0.67 0.50 0.25 0.05

Table 1.1: Dimensionless drag coefficient β in the expression of the drag force (F = β6πηRv),
as computed by Pozrikidis [28] at 5 values of θ, covering all the range of contact angle.

Danov et al. [27] computed the pressure field and the local velocities at low
Reynolds and low capillary numbers (ηv/σLV ≪ 1) for a Newtonian viscous inter-
face. The obtained numerical results in the range 30◦ − 90◦ of θ are reported in
fig. 1.9 (green line).
Fischer et al. [29] considered a flat and incompressible interface; an analytical
expression for β was obtained from the fit of the numerical solution of the Navier-
Stokes equation at the interface (black line in fig. 1.9):

β =
√
tanh [32 (1 + cos θ) / (9π2)] (1.43)

Here we report some additional information about the derivation of the model
proposed by Fischer et al. [29], that will be used in the following chapters to predict
the Brownian dynamics at the interface.

Fischer et al. [29] numerically calculated the drag of a sphere at a flat and in-
compressible interface. The case of a flat interface leads also to the suppression of
the rotation of the sphere, in order to avoid any diverging tangential stress at the
contact line. The hypothesis of an incompressible interface is justified since surface
compression waves, due to the motion of surface phonons, are faster that the col-
loidal particle. The complete discussion includes also the role of Marangoni stress,
tangential to the surface and generated by gradients in surface surfactant/pollutant
density. Since we are here considering a free and clean air-water interface, such
a contribution can be reasonably neglected. The flow in the bulk phase is still
described by Stokes equation, as in eq. 1.12. In this case, an inverse approach,
with respect to the one proposed in par. 1.2.1, has been followed: an external
force (per unit volume) f is supposed to act on the fluid, and the resulting velocity
field v is found. Eq. 1.12 is thus slightly modified:

f + η(z)∇2v − gradp = 0 (1.44)

Moreover, the viscosity η(z) is now a function of the vertical position, because
of the presence of two different fluid:

η(z) = ηwaterΘ(−z) + ηairΘ(z) (1.45)
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where the symbol Θ(z) denotes the Heaviside function and the position z = 0
correspond to the interface. The boundary conditions include the no-slip at the
particle surface and an incompressible two-dimensional Stokes flow at the air-water
interface:

divvs = 0

vz(z = 0) = 0

fs − gradπs + ηs∇2vs +

∣∣∣∣∣
∣∣∣∣∣η∂v∂z

∣∣∣∣∣
∣∣∣∣∣
s

= 0 (1.46)

fs is the component of the external force f , introduced above, tangential to the
surface, πs is the surface pressure and vs is the velocity of the fluid at the surface
plane. The symbol ||·||s denotes the jump of the considered quantity across the
interface.

A solution of eq. 1.44, taking into account boundary conditions in eq. 1.46,
can be expressed in the form

v(x) = Θ(z · z′)
∫
d3x′O0(x− x′) · f(x′) +

∫
d2x′

sOs(x− x′
s) · fs(x′

s) (1.47)

where O0 and Os are the Oseen tensors in the bulk and at the interface, re-
spectively. Every component of the tensors can be determined, via a mathematical
derivation that is not reported here for the sake of simplicity. For our purpose, it is
sufficient to point out that the integral in 1.47 can be simplified in the hypothesis
ηs = 0 (in agreement with a free air-water surface) and solved numerically. The
results of the viscous drag ζ = F/v, as a function of the contact angle θ, were
fitted with an accuracy of 3% by the formula

ζ = 6π
√
tanh [32 (1 + cos θ) / (9π2)]ηR (1.48)

1.4.2 Experimental measurements

Petkov et al. [30] determined the drag coefficient of millimetric glass beads (0.4
mm in diameter) at a pure air–water interface, cleaned by suction before the ex-
periment. A lateral capillary force F was applied to the beads by a deformation
of the water surface, controlled by a vertical Teflon barrier. The resulting motion
of the particle was observed by a vertical long–focus microscope and recorded by
a CCD camera. The velocity v was measured, and the relation F = β6πηRv pro-
vided the drag coefficient (β is the dimensionless drag coefficient at the interface).
A second, horizontal long–focus microscope was used to measure the size of the
particles and their immersion depths in water. At the three considered contact
angles (θ = 48.7◦, 53◦, 82◦) the drag coefficient at the interface is lower than the
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one predicted by Stokes–Einstein relation in volume (table 1.2). The values are
compared with the results of the theory by Fischer et al. [29], as the one that
predicted the maximum viscous drag.

Radoev et al. [31] considered the case of micrometric spheres at an air–water
interface, but without any information about the immersion depth. Polymer beads
(melamin, diameter 1 - 1.8 µm) were deposited by a glass fiber on a slightly
concave meniscus. The surface was preliminary cleaned since otherwise the particle
motion would be practically immobilized. The light of a laser beam, scattered
by the particle, was observed by microscopy and allowed to trace the particle
trajectory. From the Mean Square Displacement analysis, the diffusion coefficient
at the interface was measured DS = 0.4µm2/s. The corresponding value in the
bulk is not clear: in the considered range of particle size the Stokes–Einstein bulk
diffusion is DV ∼ 0.42 − 0.24µm2/s (viscosity η ∼ 1 mPa·s and T = 300 K). The
direct measurements in bulk were instead DV,exp = 0.6µm2/s. The uncertainty on
particle radius and the absence of values for the immersion depth do not allow a
quantitative analysis of such results.

Sickert et al. [32, 33] studied the Brownian motion of micrometric polystyrene
beads (0.4µm in diameter) in a Langmuir monolayer at different surface viscosities.
Such values are compared with the one at a pure air–water interface. The contact
angle in clean water was not measured on 0.4 µm beads, but on larger beads
made of the same material (diameter 6 - 10 µm) by optically observing their
immersion depth at the meniscus of a sessile drop. On those large beads, they found
θ = 50◦ ± 5◦. The motion of 0.4 µm beads was detected by optical microscopy.
In order to discard drift effect, the particles were grouped in pairs and their mean
square relative separation ⟨∆x2⟩ was measured as a function of time. The averaged
diffusion coefficient was measured DS = 1.26 ± 0.19µm2/s, when the diffusion in
volume is calculated DV = 1.06µm2/s by Stokes–Einstein relation. The diffusion is
faster at the interface than in volume, but not as much as predicted by theoretical
models [27, 28, 29] (par. 1.4.1).

Chen and Tong [34] focused on the interface diffusion on multiple particles sys-
tems, where the diffusion coefficient is written as a function of the area fraction n
occupied by the particles. In order to recover the case of single particle treated in
this thesis, we extrapolate the results at n → 0. Three silica bead samples were
used (diameter 0.73 µm, 0.97 µm, 1.57 µm). The experimental procedures were
the same as described in the previous cases. Great care was taken to clean the par-
ticles and the air–water interface, the beads were observed by optical microscopy
and the MSD was measured as the function of the time lag. The experimental
dimensionless drag coefficients β are reported in table 1.2. A contact angle of
θ = 64◦ was found comparing the result on the set of beads at diameter 0.97 µm
(β = 0.69) with theoretical prediction [29]. For the other two sets of beads, the ob-
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tained values are larger than the expected one. Possible causes were investigated,
but without achieving a solution. Surface contamination was ruled out, since its
effect is expected to be random, whilst the measurement shows consistent results
for all the samples. A suggestion provided by the authors was to consider compli-
cations near the contact line, not considered in all the developed hydrodynamics
theories.

In the last example provided in this short overview on micrometric beads,
Peng et al. [35] considered two sets of polymethylmethacrylate (PMMA) micro-
metric spheres (diameter 1.19µm and 0.66µm) at a decalin-water interface. In
both cases, the contact angle was not measured, but the beads were expected to
have their larger part in decalin. The 2-D dynamics of the particle trapped at
the interface was followed by using optical microscopy. Multi-particle tracking
allowed to recover the trajectories and to measure the diffusion coefficient DS at
the interface, as a function of the area fraction n occupied by the particles. As
above, we look at n → 0 for single particle diffusion. The measured drag force at
the water–decalin interface is F = β6πηdRv, where ηd = 2.5 mPa·s is the viscosity
of decalin. Despite the partial immersion in water, the diffusion at the interface is
very close to the one in decalin, suggesting that the drag on the particle is much
larger than the one expected at the interface. In terms of dimensionless drag
coefficients, β = 0.95 for 0.66µm bead and β = 1.02 for 1.19µm bead.

All these measurements on millimetric and micrometric beads show two im-
portant features about the state of art in such a field. First, the contact angle was
marginally considered and not well defined in literature. It was directly measured
only with millimetric particles, when it is macroscopically visible, and generally
estimated with different methods (using larger particles or by comparison with
models). The dependence of the dynamics in a large range of contact angles was
also not investigated. Secondly, the results are not univocally understood, and
this makes the problem still open. In several cases, we read that the measured
drag coefficients at the interface are underestimated by existing theoretical mod-
els [27, 28, 29]. This aspects are considered instead in this thesis, in which we
attempt to fill the gap in these directions.

Several recent works extend the range of particle sizes and probed also the
Brownian dynamics of nanoparticles at fluid interfaces. Wang et al. [8] studied the
mobility of four types of quantum dots, different for size (in the range 5 ÷ 11 nm)
and surface functionality, at a water-alkane interface by fluorescence-correlation
spectroscopy.

Surface diffusion coefficient DS was measured for different alkane viscosity and
compared with the volume diffusion DV of nanoparticle totally immersed in alkane
(fig. 1.10). The diffusion coefficient at the interface DS is 1.5 - 2 times slower than
the corresponding value in the bulk, against the theoretical prediction reported
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ref. θ [◦] βexp βth
Petkov et al. [30] 48.7 0.68 0.73
Petkov et al. [30] 53 0.66 0.72
Petkov et al. [30] 82 0.54 0.62
Radoev et al. [31] - 0.6-1.5 < 0.79
Sickert et al. [32] 50 0.84 0.73

Chen and Tong [34] 64 0.69 0.69
Chen and Tong [34] 64 0.84 0.69
Chen and Tong [34] 64 0.85 0.69

Table 1.2: Overview of the results on diffusion of beads, as found in literature. For each
measurement, we report the author, the contact angle θ, the experimental dimensionless drag
coefficient βexp and its theoretical prediction βth, as expected by Fischer et al. [29].

Figure 1.10: Diffusion coefficients at the water-alkane interfaces (circle) as a function of the
viscosity of the alkane phase. Such values are compared with the corresponding diffusion coef-
ficient for the same particle, but totally immersed in the alkane. The diffusion is slower at the
interface, against any theoretical prediction. Measurements and graph from Wang et al., Small
7, 24 (2011) [8]

above.

The anomalous behavior of nanoparticles at the interface was confirmed also
by other works. Zheng et al. [10] measured the diffusion coefficient of gold NP
(diameter in the range 5 – 15 nm) at the interface of a water–glycerol mixture.
They found that the diffusion coefficient increases with particle size, violating the
Stokes–Einstein equation that predicts the opposite behavior (fig. 1.11a). A simi-
lar behavior was found also by Du et al. [11] for particles at an oil–water interface
(fig. 1.11b), in a wide range of particle diameters (24 – 2000 nm). Larger par-
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Figure 1.11: a. Mean Square Displacements of 3 gold nanoparticles (diameter: 5 - 10 -15 nm)
as a function of the time lag. The particles are straddled at the interface of a water–glycerol
mixture. The slope of the MSDs increases with the NP diameter, when a decreasing is instead
expected by Stokes–Einstein equation. Measurements and graph from Zheng et al., Nanoletters
9, 6 (2009) [10]. b. Experimental diffusion coefficient for polystyrene particles, in a wide range
of diameter (24 – 2000 nm). The predictions of Stokes–Einstein equation for a particle fully
immersed in water (dashed line) and in oil (solid line) are reported. In the first case, a direct
measurement (yellow diamonds) confirms the prediction. For particles straddled at an oil–water
interface (blue circles) the diffusion coefficient does not follow the Stokes–Einstein behavior. The
same result is observed when the charge on the particles is neutralized by changing the pH value
to 4 (red triangles). Measurements and graph from Du et al., Langmuir 28, 25 (2012) [11].

ticles exhibit an intermediate diffusion coefficient, between the values of diffusion
in water and in oil. A typical scaling as R−1, in agreement with Stokes–Einstein
equation, was also found. For smaller particles Stokes–Einstein equation is not
followed and an unexpected increase in drag force at the interface occurs.

All these recent works, at both nanometric and micrometric scales and in dif-
ferent systems, point out a slowing–down of the diffusion at a fluid interface,
suggesting that additional dissipation mechanisms enter into play at the interface.

1.5 Spheroidal particles fully immersed in a fluid

1.5.1 Theoretical model of friction coefficient

The calculation described in previous section for spherical beads can be extended
to more complex morphologies. In the present work (see chapter 3) we are in-
terested to the case of prolate spheroids with semiaxes (a, b, b). We discuss first
the translational motion along the two main directions, that we denote with the
indexes a (along the long axis) and b (along the short axis). In each case, the par-
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ticle is moving at a given velocity v. The corresponding shear stress and pressure
at the particle surface can be computed, in a similar way as done for a sphere.
The integration in the spheroidal geometry provides the friction drags Fa and Fb,
as computed for the first time by F. Perrin [36, 37].
For the sake of simplicity, the detailed derivation is not reported in this thesis, but
it is sufficient to point out that the role of anisotropic shapes is taken into account
by geometric factors. In fact, the friction drags in the two cases are written

Fa,b = 6πηbGa,b(ϕ)v (1.49)

where the geometric factors Ga,b(ϕ) are functions of the aspect ratio ϕ = a/b.
They were analytically derived from Perrin’ s equations [38] and plotted in fig.
1.12:
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For a sphere (ϕ = 1, a = b = R), we have Ga = Gb = 1: from eq. 1.49, it is
evident that the usual Stokes–Einstein expression is recovered. At ϕ > 1, the drag
forces increase with the aspect ratio, more rapidly along the short axis.

The rotational dynamics is also considered: for a spheroid, rotating at an
angular velocity ω around the short axis b (fig. 1.13), the friction drag torque is
given by the same approach [36]:

Γ = 6ηV Gφ(ϕ)ω (1.52)

where V denotes the volume of the particle and the geometric factor Gφ(ϕ)
(fig. 1.14) is [39]

Gφ =
2

3

ϕ4 − 1

ϕ
[

2ϕ2−1√
ϕ2−1

ln
(
ϕ+

√
ϕ2 − 1

)
− ϕ

] (1.53)

The theoretical expressions for the viscous drag for spheroidal particles im-
mersed in a fluid phase allow to write the corresponding diffusion coefficients,
according to eq. 1.11. The diffusion coefficients Da, Db, along the long and short
axis respectively, are

Da =
kBT

6πηbGa

, Db =
kBT

6πηbGb

(1.54)
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Figure 1.12: Geometric factors Ga (black line) and Gb (red line), as computed by Perrin in
[36, 37] and reported in eqs. 1.50, 1.51, as a function of the aspect ratio ϕ = a/b. Their role
is to take into account the anisotropic shape of spheroids on friction drag. At ϕ = 1, both the
geometric factors are equal to 1, and we recover the expression for the sphere. For elongated
particle, an increasing of the drag is expected.
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Figure 1.13: Prolate spheroid of axes (a, b, b) rotating at an angular velocity ω around a short
axis b.

Similarly, the rotational diffusion coefficient Dφ around one short axis is

Dφ =
kBT

6ηV Gφ

(1.55)

1.5.2 Experimental measurements of friction coefficient

Even if the theoretical predictions are well-known and generally accepted since
longtime, the experimental confirmation of the Brownian dynamics for anisotropic
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φ

Figure 1.14: Geometric factor Gφ, as computed in [39] and reported in eq. 1.53, as a function
of the aspect ratio ϕ = a/b. Also in this case, the drag is an increasing function of the aspect
ratio ϕ.

particles is a really recent achievement. In 2007, Mukhija and Solomon [5] pro-
posed a method for a fully three-dimensional characterization of colloidal spheroids
dynamics by using confocal microscopy.
Prolate spheroids were obtained from uniaxially stretched beads, in the same

way as described in chapter 3 in our experiments, and dispersed in a solution of
polydimethylsiloxane and CXB/decaline, with a viscosity of 2.0± 0.03 Pa s (2000
times larger than the water viscosity). Such a viscous medium allowed slowing
down the Brownian dynamics to time scales compatible to confocal laser scan-
ning microscopy. The Mean Square Displacements, as a function of the time lag,
gave the diffusion coefficients along the long axis Da and along the short one Db.
Such measurements were performed for two sets of prolate spheroids, with aspect
ratio ϕ = 3.1 ± 0.2 and ϕ = 7.0 ± 0.6, respectively. The MSDs are plotted for
the translational dynamics along the long (fig. 1.15a) and the short (fig. 1.15b)
axis respectively for both the aspect ratios (red points for ϕ = 3.1, blue points
for ϕ = 7.0). The data are then compared with the theoretical predictions (solid
lines), according to the model proposed above. Their strong agreement confirms
the reliability of the theory.
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Figure 1.15: MSD vs. time lag for spheroidal particles totally immersed in a fluid, viscous phase.
The displacements are here directly measured, by confocal microscopy, along the long (a) and
the short (b) axes of the particle. Two aspect ratios are considered in this experience: ϕ = 3.1
(red points) and ϕ = 7.0 (blue points). The experimental data are compared with the theoretical
predictions (solid lines), showing a strong agreement. Measurements and graphs from Mukhija
et al., J Colloid Interface Sci, 314, 98106 (2007) [5].

1.6 Spheroidal particles at a fluid interface

1.6.1 Equilibrium position and deformation of the inter-
face

The equilibrium position of a particle at an interface between two fluids comes
from the equilibrium of the interfacial forces, as found in par. 1.3.1. The interface
needs to fulfill the condition θ = const., where θ is the equilibrium contact angle.
For the sake of simplicity, the hysteresis of the contact angle is here neglected. For
a spheroidal particle, where different radii of curvature are present, a planar cut
of the particle body yields an ellipse, which does not generally meet the condition
of a constant contact angle. A saddle–like distortion of the contact line is thus
necessary to fulfill the Young’s condition. A profile of the deformed contact line,
with special regard to the difference ∆h between the highest and the lowest points,
was derived by Loudet et al. [40]. They recovered the numerical solution of the
Laplace equation for the interface height using a boundary element method. A
solution of the deformation of the contact line, as a function of both the aspect
ratio and the contact line, was finally achieved: L(ϕ, θ) (line in fig. 1.16c).

Loudet et al. [40] provided also a direct measurement of the topography of
the air-water interface around floating spheroids. Uniaxially stretched polystyrene
beads were deposited at the interface and an optical trap was used to grab a single
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particle, at a fixed position and angular orientation. The interface profile was
acquired by Phase Shifting Interferometry, whose general working principles will
be detailed in chapter 2. Experimental data clearly show a deformation of the air-

aspect ratio, φ

Δ
h

/R

c

Figure 1.16: a.-b. False color maps of a spheroid (a) and a sphere (b) at the air-water interface,
measured by J.-C. Loudet et al. via PSI technique. In the first case, a deformation of the
interface is observed: the contact line is pushed down at the tips and pulled up near the middle
of the particle, according to Young’s law. The interface around the sphere stays instead flat.
c. Points: experimental deformation ∆h, normalized by the radius R of the initial spherical
bead, as a function of the aspect ratio ϕ. Solid line: predicted deformation of the contact line,
computed using the numerical method described in the text. Both theory and experiments show
a flat interface for spherical bead, and an increasing distortion for prolate spheroids. Images
from Loudet et al., PRL 97, 018304 (2006) [40].

water interface, which is pushed down at the tips and pulled up near the middle of
the particle (false color map in fig. 1.16a). A characteristic quadrupolar symmetry
is also observed, suggesting that such an effect is the result of the particle shape,
and not of surface roughness. This trend is not observed for spherical beads, where
the interface remains flat to within the experimental resolution of 1 nm (fig. 1.16b).
The analysis was performed in a full range of different aspect ratios, measuring the
difference ∆h between the highest and the lowest level of the interface (points in fig.
1.16c). These data confirm the presence of circular, flat contact line for spheres
(ϕ = 1) and a saddle–shape contact line for spheroids (ϕ > 1). Moreover, the
distortion of the interface increases with ϕ. Such experimental measurements are
compared with the theoretical prediction of the distortion (solid line in fig. 1.16),
showing the same increasing behavior predicted by the numerical simulation.

The measurement of such a deformation is also used for an estimation of the
contact angle of the particle [40, 41]. It is known, from the numerical solution of
the Young equation around the elliptical contact line, that the maximal interface
distortion ∆h is a function of both the aspect ratio ϕ and the contact angle θ.
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By using such a dependence, it should be possible to derive the contact angle θ
from experimental measurement of ∆h via PSI technique for a known aspect ratio.
The contact angle obtained by this method, as a function of the aspect ratio, is
reported in fig. 1.17. Since the distortion is a non–monotonous function, two
different solutions for θ, at a given ∆h and ϕ, could be possible (two branches in
fig. 1.17). The upper branch weakly depends on the aspect ratio. In the lower
branch, a slightly decreasing contact angles is observed, from θ = 55◦ for spheres,
to θ = 35◦ at the maximum considered ϕ.

Loudet, PRL 2006

Loudet, EPJE 2011
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Figure 1.17: Contact angle θ as a function of the aspect ratio ϕ, obtained via PSI measurements of
the distortion ∆h and numerical solution of the interfacial profile. Since ∆h is a non–monotonous
function, two possible branches for θ are derived. Image from Loudet and Pouligny, EPJE 34,
76 (2011) [41].

1.6.2 Coupling with interface curvatures: lateral interac-
tion

The deformation due to the spheroidal morphologies leads to an increase of the air-
water interface area, with respect to the ideal (and most energetically favorable)
case of a flat surface. The system tends to minimize the extension of this extra
area. An example is provided by the capillary attraction of neighboring spheroids.
In this case, if two spheroids are close enough, they tend to overlap their interfacial
distortions and reduce the extra area, as described by Loudet et al. [42].

Another case is the coupling of the particle dynamics with the curvature of the
interface, as described by Cavallaro et al. [43]. They designed an air-water interface
with a radial gradient in Gaussian curvature, by pinning the surface at a vertical
cylindrical micropost (fig. 1.18). A cylindrical microparticle was deposited at such
a curved interface. The coupling between the quadrupolar deformation induced by
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the particle, and the curved interface led to a lateral force and a vertical torque.
The particle rapidly rotated in order to orient its axis along the principal axes of
curvature (circle of a constant radius); thereafter, it moved along the radial line
toward to the center of the sample.

A curved interface adds undesirable effects to a pure diffusive motion, as an-
gular confinement of the diffusion and/or drift. These observations justify the
great attention paid to minimize the curvature of the air-water interface in the
measurement performed in this thesis.

θ
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b     top view

φ
φ
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c         

Figure 1.18: a. Frontal view: a cylindrical micropost is used to pin the air-water interface and
induce a curvature. The slope of the interface at the micropost is given by tanψ. b. Top view:
in a polar coordinates system (r, ϑ), the principal directions of curvature are circle of constant
radius r and radial lines of constant ϑ (blue lines). φ denotes the orientation of the principal axes
of curvature, and φp the orientation of the particle (cylindrical microrod in this experiment). c.
Time–lapsed images of the microparticle position every 1 s. Image from Cavallaro et al., PNAS
108, 52 (2011) [43].
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Non basta guardare, occorre
guardare con occhi che vogliono
vedere, che credono in quello che
vedono.

It is not sufficient to look, you
must look with eyes that want to
see, that believe in what they see.

Galileo Galilei
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Chapter 2

Measurement of the diffusion of
spherical beads at an air–water
interface

Introduction

It is well known that the motion of particles in a fluid phase is strongly affected
by the viscosity of the surrounding medium. In fact, everyone is familiar with
the fact that gas bubbles rise faster in champagne than in honey. A more rig-
orous example is provided by the Brownian motion of a colloidal particle, where
the diffusion coefficient D is inversely proportional to the viscosity η of the fluid.
For this same reason, in the case of a colloid straddled at the interface between
two immiscible fluids, we can expect that its motion depends on the viscosity of
both the phases. At the interface between air and water, where the viscosity of
the air is much smaller than the viscosity of water, the effect of the former is
negligible. The viscous drag is expected to be lower than the one observed for
a particle fully immersed in water. Current hydrodynamic theories predict this
behavior [27, 28, 29], but an experimental test of the prediction was provided just
for a few set of hydrophilic particles (see par. 1.4.2).

In the present chapter, a complete study of the particle diffusion in a wide
range of contact angle is addressed. Silica spherical beads with different contact
angles in water are prepared and deposited at a flat air-water interface (par. 2.1).
The equilibrium position of the particle at the interface and a possible particle
induced deformation are measured by using interferometric techniques (par. 2.2).
The diffusion coefficients D as a function of the contact angle θ is then measured
(par. 2.3). The preparation of the beads and the measurements of their dynamics
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at the interface in the full range of contact angles have been carried out by D.
Fedorenko, a former post-doc in the team. They are reported in this chapter as
they guide the development of a new theoretical model, proposed in chapter 4.
The measurements are repeated during this thesis at few contact angles in order
to confirm the results.

2.1 Preparation of the sample

2.1.1 Particle surface treatment

The immersion depth of silica particles in water is controlled by chemically treat-
ing the silica surface. The validity of the methods is checked by Gel Trapping
method [44] and the contact angle is measured for all the beads by a homemade
interferometric set-up developed by C. Blanc. [45].

water

θ

airσ

σ

σ

SV

SL

LV

SV

R

h

Figure 2.1: Spherical bead of radius R at the air-water interface. Its immersion depth h is a
consequence of the equilibrium between the three surface forces per unit length at the contact
line: σSV , σSL and σLV . Such a condition leads to the contact angle θ.

The wettability of silica particles can be changed tuning the grafting density
of hydrophobic silane agents on their substrate. For this purpose, commercial
silica beads with diameter of about 2µm and 4µm and purchased from Bangs Lab-
oratories, Inc. (product code SS04N, SS05N, respectively) are used. They are
sold in water solution, with concentration of 9.8% solids. Beads are first washed
in a sulfochromic acid solution and then thoroughly cleaned with 5 centrifuga-
tion/cleaning cycles. After a centrifugation (4000rpm for 5 minutes) the super-
natant is replaced by Millipore water and the beads redispersed in ultrasonic bath.
The deionized water is produced by a Millipore Milli-Q filtration system, and has
a resistivity of 18 MΩ·cm. A solution of DMOAP (N,N-Dimethyl-N-octadecyl-
3-aminopropyltrimethoxysilyl chloride), 0.1 − 5% wt in demineralized water and
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methyl alcohol (10% − 90%) is used. The beads are added into the silane solu-
tion (approximately 0.5 ml of beads in water per 1 ml of silane solution). The
solution is then mixed with a vortex mixer during a variable time interval, ac-
cording to the wettability we want to achieve. Particles left for 1 minute in silane
solution give a contact angle θ = 68◦; particles left from 30 to 120 minutes give
θ = 95◦ ÷ 120◦. Solvents and exceeding silane molecules are removed by 10 cen-
trifugation/cleaning cycles. The resulting contact angle ranges from θ = 30◦ (pure
silica particle, only washed with sulfochromic acid) to θ = 120◦. Higher contact
angles (up to θ = 140◦) are achieved by using the same procedure as for obtaining
θ = 120◦ contact angles but a different deposition process: beads are first dried in
an oven at 120◦C for 2 hours and deposited dried at the interface.

2.1.2 Interface preparation

Sets of particles with different surface wettability are deposited at the air-water
interface in order to analyze their dynamics. We use a small cylindrical container
of 10 mm in diameter, fixed on a microscope glass slide. During particle tracking
experiments (par. 2.3), the container is covered by a thin flat piece of borosilicate
glass, in order to avoid contamination of the interface or evaporation of the water.
Such a coverture is not used during interferometric measurements (par. 2.2.2),
when a direct contact between the light beam and the sample is needed. Deionized
water partially fills up to 0.8 mm in height the container. Smaller quantities do
not allow to fill homogeneously the container and obtain a flat interface. Larger
quantities of water cannot be used in order to minimize convective flow in the
sample. Beads dispersed in water are sprayed on the interface with an airbrush
or directly dried to avoid any possible surface contaminants. Most of the beads
stay trapped at the interface, and just a little portion sinks down into the bulk.
Very dilute bead surface concentrations (less than 0.01% s/s) are used to get rid
of possible interactions between them. The air-water surface tension is directly
measured by Wilhelmy plate method at a free interface, with and without silanized
beads. Both the measurements are in agreement with the literature value of the
air-water surface tension (σLV = 0.072 N/m).

2.2 Techniques for contact angle measurement

2.2.1 Gel Trapping technique

The efficiency of the surface treatment to tune the contact angle is verified by
the Gel Trapping technique. In this method, the bead is trapped at the interface
between air and gelled water. The surface tension of gelled water is the same as
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Figure 2.2: SEM images of beads trapped in polymerized NOA81. Their contact angles at
air-water interface are θ = 30◦ (a) and θ = 90◦ (b). The visible part of the beads is the one
previously immersed in water. The contact angles can be recovered from their immersion in the
polymer, with respect to their size. Such images show the validity of chemical surface treatment
in tuning the contact angle. Courtesy M. Medfai and C. Blanc.

pure water (σLV = 0.072 N/m), so we expect that the immersion depth is not
changed. The gelling agent used here is Phytagel, purchased from Sigma-Aldrich
(product code P8169). A Phytagel solution at 2% wt in Millipore water is prepared
by heating at 90◦C and mixing by magnetic stirrer. The solution is cooled to room
temperature to allow the gel to set. Spherical beads are spread on the gel surface
and then the system is heated again at 90◦C in order to trap the particles at the
interface. Norland Optical Adhesive 81 (NOA81) is poured over the gelled water
with the particles trapped at its interface and photopolymerized by ultraviolet
light in 2 minutes. The polymerized NOA81 is peeled off the gel surface, leaving
the beads at a complementary position with respect to the air-water interface. The
sample is finally prepared to be observed by Scanning Electron Microscopy (SEM)
(fig. 2.2). From these images, the microspheres immersion in water (corresponding
to the visible part of the bead) can be easily measured. Since this quantity is
2R − h (R and h have been shown in fig. 2.1), the contact angle is recovered by
the expression:

cos θ = 1− h

R
(2.1)

2.2.2 In situ interferometric techniques

Interferometric techniques allow to reconstruct a 3-D profile of the interface. The
measurements are performed by an optical microscope (LEICA DM 2500P), equipped
with a digital camera and a Mirau interferometry objective.
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Figure 2.3: Scheme of the Mirau interferometry objective. A semi-transparent mirror splits
the white light into two arms. L is the fixed distance between the beamsplitter and a reference
mirror, inside the objective. d is the distance between the beamspitter and the surface of the
sample. The objective is shifted vertically by a piezo-electric device. See the main text for the
details of its operating condition.

The Mirau interferometry objective is produced by Nikon and it has a 20X
magnification. A scheme is shown in fig. 2.3.

A light beam passes through a semi-transparent mirror and it is split into two
arms: a sample arm directed to the particle and to the interface and a reference
arm directed to a built-in reference mirror. The two beams, reflected by the
respective surfaces, recombine on a charge-coupled device (CCD) camera creating
a fringe interference pattern. This pattern depends on the difference of the optical
paths between the two arms, i.e. on the topography of the surface of the sample.
The objective is then displaced along the optical axis by a piezoelectric nano-
positioner (Nano-Drive from MCL) and a new pattern is taken. The acquisition
of the images and the displacement of the objective are both driven by a Labview
software. The analysis of the evolution of the pattern as a function of the position
of the reference mirror allows us to visualize the topography of the sample surface.
The interferometer can be used in two different operating modes: Vertical Scanning
Interferometry (VSI) and Phase Shifting Interferometry (PSI). VSI is here used to
measure the contact angle at a fluid interface, whilst PSI allows to detect interface
deformation.

Working principle of Vertical Scanning Interferometry (VSI)

In Vertical Scanning Interferometry (VSI), white light from a microscope bulb is
used. An external power supply provides a constant 12V tension during the mea-
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surement to ensure constant light intensity. For each wavelength λ, the intensity
Iλ(x, y, d) detected at the pixel (x, y) of the CCD camera, when d is the distance
between the beamsplitter and the sample, is written:

Iλ(x, y, d) = I0(λ)[1 + γ0 cos∆ϕ(x, y, d)] (2.2)

I0(λ) denotes the intensity of the incident beam, γ0 is a coherence function and
∆ϕ(x, y, d) is the phase shift due to the difference of the optical paths:

∆ϕ(x, y, d) = 4π[L− d(x, y)]/λ (2.3)

where L is the fixed distance between the beamsplitter and the reference mirror
(see fig. 2.3).

The overall intensity is given by summing on all the wavelengths in the whole
spectrum [λ1, λ2]:

I(x, y, d) =
∫ λ2

λ1

I0(λ)[1 + γ0 cos∆ϕ(x, y, d)]dλ (2.4)

The intensity in each pixel (x, y) is analyzed separately. A vertical scanning
of the reference mirror, controlled by the piezo-electric positioner, provides the
behavior of I(x, y, d) as a function of the distance d. For each pixel (x, y), the curve
I vs. d has a Gaussian envelope with a periodical modulation (fig. 2.4), due to the
superposition of the interference of several wavelengths. The maximum intensity
is obtained when a constructive interference is achieved at all the wavelengths, i.e.
when there is no difference between the two optical paths: d = L.
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Figure 2.4: Typical measured evolution of the overall intensity I detected at a generic pixel
of the CCD camera, as a function of the distance d between the beamsplitter and the sample,
during a vertical displacement of the Mirau objective. The recorded intensity has a Gaussian
envelope with a periodical modulation, due to the superposition the wavelengths in the whole
spectrum. The maximum intensity is achieved when the optical paths of the two arms are equal,
i.e. when d = L.

44



0,5 µm

0

0,5

0,4

0,3

0,2

0,1

bead at the 

air-water interface

0,6 µm
aa b

h

0,6 µm

0,5

0,4

0,3

0,2

0,1

0

Figure 2.5: a. False color maps of the height profile of the sample. Each pixel has a color
corresponding to the detected height, with respect to the flat interface, ranging from dark blue
(interface, h = 0) to yellow (top of the bead, h = 0.6µm). b. 3-D reconstruction (not in scale)
of the interface profile. The distance h between the top of the bead and the flat interface is
recovered.

An IDL software finds the peak of intensity for the position (x, y), i.e. the cor-
responding value of the distance d. Since the position of the objective is controlled
by the piezo-electric device, a 3-D profile h(x, y) of the interface is reconstructed.

Experimental results from VSI technique

For a VSI measurement, the objective is displaced over 2µm, in order to get the
whole profile of the emerging particle and the surrounding interface. For each
position of the objective, 15 images are taken (acquisition rate of the CCD camera:
30 frame/s) and they are averaged to rule out the effect of electronic noise. The
vertical scanning is effectuated for 100 different positions d of the reference mirror.
It follows that the time required for a complete measurement is about 50 s. The
resulting length of a single step of the objective, and the vertical resolution of the
measurement, is so fixed to 20 nm. Note that this value is not the best achievable
resolution (minimum displacement of the piezo-electric positioner: 1 nm), but it is
sufficient for our purpose, as explained in the following, and it allows to explore the
suitable spatial range in a relatively short time. The lateral resolution is limited
by the optical resolution of the objective (size of a pixel: 0.228µm). The set of
100 averaged images is analyzed via IDL and the 3-D profile of the particle at the
interface is then reconstructed (fig. 2.5).

Such a profile is used to determine the contact angle θ. The height h of the
top of the bead, with respect to the flat interface, is computed. If we denote with
R the radius of the sphere, we obtain, via trigonometry:
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cos θ = 1− h

R
(2.5)

The uncertainty on the contact angle estimation is due to both the vertical
resolution of VSI ∆h = 20 nm, as reported above, and from the uncertainty on
the beads radius: ∆R ≈ 0.1R for the typical beads used. The error is then

∆θ =
1

sin θ

[
∆h

R
+
h∆R

R2

]
(2.6)

The main contribution to the error is given by ∆R. This circumstance jus-
tifies the large step value ∆h = 20 nm of the vertical piezo–scan chosen in VSI
experiments.

Such errors strongly increase with the contact angle. The error is ∆θ = ±2.7◦

at θ = 30◦ and ∆θ = ±19.3◦ for θ = 145◦.

Working principle of Phase Shifting Interferometry (PSI)

In Phase Shifting Interferometry (PSI), the experimental set-up is the same as for
VSI, except for the light beam that is involved [40]. Here, the light passes through
an interference filter (spectral band: 5 nm) centered at the wavelength of 633 nm.
The light is so considered monochromatic. The intensity detected by the CCD
camera is the one shown in eq. 2.2:

Iλ(x, y, d) = I0(λ)

[
1 + γ0 cos

4π[L− d(x, y)]

λ

]
(2.7)

where λ = 633 nm.
The intensity is a sinusoidal function of the vertical displacement d with period

λ/2 (fig. 2.6). Contrary to the VSI, the periodicity of the signal is conserved due
to the light coherence. For each pixel (x, y) the signal is shifted, with respect to a
reference curve (h = 0), by a phase

∆ϕ =
4πh(x, y)

λ
(2.8)

related to the profile of the reflective surface of the sample. Since a phase shift
is defined in the range [0, 2π], the profile h(x, y) can be recovered just over a vertical
displacement λ/2. This limitation does not allow to detect the absolute position
of the surface of the bead, but it is sufficient for characterizing the deformations
of the air-water interface. Note that the characteristic of this technique enhances
the vertical resolution up to 1 nm. Lateral resolution is, as in the case of VSI,
given by the optical resolution of the objective.
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Figure 2.6: Typical theoretical behavior of the normalized intensity I/I0 as a function of the
displacement d, expressed in unit of wavelength λ. The intensity has a sinusoidal behavior,
according to eq. 2.2, when a single wavelength is used. The intensities reflected by two points
with different heights are considered: h = 0 (black curve, reference position) and h = 80 nm
(red curve). The differences in the values of h translate in the phase shift of the signal ∆ϕ =
4πh(x, y)/λ.

Experimental results from PSI technique

For a PSI measurement, the reference mirror is displaced over a distance equal to
the wavelength of light beam, i.e. λ = 633 nm, corresponding to 2 periods of the
intensity signal. The interference intensity on each pixel is sampled in 20 points
and the phase shift between pixels is calculated. As in VSI, for each point (position
of the reference mirror), 15 images are taken (acquisition rate of the CCD camera:
30 frame/s) and averaged to rule out the effect of electronic noise. A measurement
of the interface deformation is achieved in less than 10 s due to the small number
of acquisition points that is required.

A typical PSI measurement for a spherical particle shows that the interface
is flat and no deformations are detected to within the experimental resolution
(∆h ≃ 1 nm). This result is expected by a constant macroscopic contact angle
condition at the contact line [40]. Only the air-water interface profile is visible and
analyzed. The zone occupied by the bead is out of scale and it is not accounted
by the PSI measurement.
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2.3 Dynamics of the particle

2.3.1 Particle tracking

The motion of individual beads at the air-water interface is followed by bright field
microscopy. The optical microscope (LEICA DM 2500 P) is mounted on an anti-
vibration table. The focal plane is at the same height of the air-water interface.
Since the particles are trapped at the interface, they stay in the focal plane during
the whole measurement. The dynamics is observed for 10 minutes approximately
in each measurement and a digital video is recorded by a firewire charge-coupled
device (CCD) camera at 30 frame/s. In each video, a region of 120 × 90µm2

(1024× 768 px2) is explored. We apply standard particle tracking methods [46] to
get the position (x, y) of the intensity center of mass of the bead in each frame.
Repeating the procedure for all the frames of the recorded video, the evolution
in time of the particle trajectory is obtained. These operations are performed by
using an IDL software (see appendix A.1), whose operating principles are here
briefly resumed.

A frame recorded by the used CCD camera is an 8-Bit grayscale image. This
means that image pixels are stored in binary, quantized form and 256 (28) intensity
values are allowed, ranging between 0 (black) and 255 (white). The precision
provided by this format is barely sufficient to avoid visible banding artifacts, but
very convenient for programming due to the fact that a single pixel then occupies a
single byte. In this kind of recorded images, a particle looks like a dark circle over
a gray-white background. First of all, the negative image is created (I1(x, y) =
255 − I0(x, y)), where I0(x, y) is the field of intensity in the recorded image. A
value corresponding to the actual average background intensity Ibg is subtracted:
I2(x, y) = I1(x, y) − Ibg, with Ibg ∼ 20 − 30. In this way, we obtain a new image
where the intensities I2(x, y) are non-null at the particle and 0 elsewhere, if Ibg
has been chosen properly. The (x, y) position of each particle is then calculated
by the intensity center of mass expression (eq. 2.9):

x =

∑
xI2(x, y)∑
I2(x, y)

y =

∑
yI2(x, y)∑
I2(x, y)

(2.9)

This position is expressed in pixel units in the lab frame and refers to the time
tn = n(1/30) s, where n is number of the considered frame.

With the proposed method, a spatial resolution of 4 nm in the detection of
the particle position is achieved. This value has been checked applying particle
tracking to beads stuck on a microscope glass slide. Their position, taken at
different times, has a normal distribution with a 4 nm-width.

The displacements ∆x = x − ⟨x⟩ and ∆y = y − ⟨y⟩, where ⟨x⟩ and ⟨y⟩ are
the mean positions averaged in time, are considered after a numerical treatment
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of the trajectories, in order to discard the contribution of drift motion (see par.
2.3.2). Two typical ∆x-∆y trajectories for hydrophilic (fig. 2.7a) and hydrophobic
(fig.2.7b) particles, during the same time interval of ∆t = 100s, are reported.
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Figure 2.7: ∆x-∆y trajectories recorded with the proposed techniques during the same time
interval ∆t = 100 s of a hydrophilic (θ = 30◦) (a) and of a hydrophobic particle (θ = 138◦) (b).
The hydrophilic bead, having its larger part in water, explores a larger area than the hydrophobic
one, against the reasonably expected behavior.

Surprisingly, the more hydrophilic bead (fig. 2.7a), having its larger part in
the high viscosity medium (water), explores a larger area than the hydrophobic
one (fig. 2.7b).

2.3.2 Drift removal statistical technique

The motion of colloidal particle at an air–water interface is often affected by con-
vective flows, which add to the Brownian motion described above. The reasons of
such a motion are still unclear, but possible sources can be found in radial gradient
of curvature [43] (see par. 1.6.2) or local thermal gradient induced by microscope
lightening. The resulting dynamics recorded during particle tracking experiments
is thus the sum of two different contributions: diffusive motion, at which we are
interested, and drift motion. In order to rule out the latter, an algorithm has been
conceived and implemented by an IDL software. The purpose is to find the best
approximation for drift trajectories and subtract them from the recorded ones.
This operation is possible and justified since the two mechanisms take place at
different time scales.

Let us consider the position of the particle as a function of time (black line in
2.8). In a first stage, a constant drift is considered. It appears as a straight line in
the position–time plot, connecting the first and the last points. If we assume that
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the drift velocity changes in time, such a motion is represented by a polygonal
chain (blue lines in fig. 2.8).
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Figure 2.8: Black line: y–position of a particle, as a function of the time t, recorded in particle
tracking experiment. Blue lines: drift approximations yd(t; td) assuming three different time
interval td (td = 60 s, 500 s, 1000 s).

To be more quantitative, the drift velocity in the interfacial plane is denoted
as u = [ux, uy]. We assume that the drift velocity changes every time td. For the
time interval j the velocity is written as:

ux,j =
x[jtd]− x[(j − 1)td]

td
uy,j =

y[jtd]− y[(j − 1)td]

td
(2.10)

where x(t) and y(t) denote the position of the particle at the time t. The drift
curves xd(t; td) and yd(t; td), as a function of time t and at a given td, write:

xd(t; td) = x[(j − 1)td] + ux,j [t− (j − 1)td] (2.11)

yd(t; td) = y[(j − 1)td] + uy,j [t− (j − 1)td] (2.12)

Different estimations for td are considered. For each one, a corrected trajectory,
corresponding in principle to a diffusive dynamics, is recovered:

(x̄(t; td), ȳ(t; td)) = (x(t)− xd(t; td), y(t)− yd(t; td))

The Mean Square Displacement ⟨∆x̄2⟩ is computed as a function of the time
lag τ , following the techniques described in par. 2.3 (fig. 2.9).
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Figure 2.9: MSD as function of the time lag τ for the same particle trajectory, corrected using
different td: td = 5 s (green points), 60 s (blue points), 500 s (red points), and 1000 s (black
points). Inset : detail of MSD at very short time lags, where the slope is not affected by the drift
correction.

All of them show the same slope at very short time lags (inset in fig. 2.9) since,
at these scales, the dynamics is not affected by the drift. At larger time lags, the
MSD behavior depends on the chosen drift correction. The best drift correction is
the one that provides a linear dependence MSD vs. τ , as expected in a Brownian
regime: ⟨∆x2⟩th = Aτ , where A is the fitting parameter. A linear fit is proposed
for all the corrected trajectories, and the χ2 function is calculated:

χ2 =
∑(

⟨∆x2⟩ − Aτ
)2

(2.13)

The value of td that minimizes χ2 is chosen to write the best approximation of
the drift trajectory and to recover the Brownian trajectories analyzed.

Typical drift velocities, found with the described method, are around 0.1µm/s
and do not depend on the bead contact angle.

2.3.3 Statistical analysis of the particle dynamics

The ∆x − ∆y trajectories of the particles are used to extract information about
the dynamics of the beads. The analysis of the distribution of the displacements
and of the behavior of the Mean Square Displacements (MSDs) as a function of
the time lag allows to achieve this purpose. The input for this analysis is a set
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of N couples (x(tn), y(tn)), i.e. the position of the center of the bead in the n-th
frame, where n goes from 0 to N − 1. The time tn is simply related to the index
of each frame n: tn = n(1/30). Let us now consider a given time lag τi; the
minimum achievable value is fixed by the time resolution 1/30 s. All the possible
displacements that occur during such a time τi are calculated:

[∆xi(tn),∆yi(tn)] = [x(tn + τi)− x(tn), y(tn + τi)− y(tn)] (2.14)

where 0 < tn < N(1/30)s− τi and the index i denotes the dependence on the
chosen time lag.

The displacements [∆xi(tn),∆yi(tn)] are normally distributed around the mean
position ⟨∆xi⟩n = ⟨∆yi⟩n = 0 (fig. 2.10). The symbol ⟨·⟩n stands for the aver-
age over all the displacements at different time tn. Such a Gaussian distribution
suggests a randomized origin of the motion and the presence of a diffusive regime.
Moreover, due to the isotropy of the system, the distributions for ∆x and ∆y at
the same contact angle have similar behavior (see fig. 2.10a,c and 2.10b,d). For
the sake of clarity, the distribution of ∆x and of ∆y are reported here for two
characteristic contact angle, θ = 30◦ and θ = 138◦.

Since a diffusive regime is observed, the translational diffusion coefficient D is
considered. The width of each distribution is related to such a coefficient and to
the considered time lag τi. In this case, the standard deviation σi can be written
as:

σi =
√
2Dτi (2.15)

where D = Dx = Dy is the measured translational diffusion coefficient.
The same value can be computed as the Mean Square Displacements (MSDs):

σi = ⟨∆x2i ⟩n = 2Dτi (2.16)

⟨∆x2i ⟩n and ⟨∆y2i ⟩n are estimated for different values of τi; the results are
plotted in 2.11 for 4 sample beads with different contact angles.

We recover the linear behavior predicted in 2.16, typical of a diffusive regime,
and we use the slope of each curve to get the corresponding diffusion coefficient D
at a given contact angle (table 2.1).

As seen for the trajectories, the results are counter-intuitive: the slopes, i.e.
the diffusion coefficients, decrease when the particle is less immersed in water.

2.3.4 Diffusion coefficient vs. particle contact angle

These unexpected results motivate a complete study of the diffusion at the interface
in the full range of accessible contact angles.

In fig. 2.12 the ratio between the diffusion coefficients at the surface and in
the bulk r = DS/DB is reported versus the contact angle θ. Each point on the

52



-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

101

102

103

  

 

x (µm)
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

101

102

103

 

 

 

x (µm)

a b

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

101

102

103

  

 

y (µm)
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

101

102

103

  

 

y (µm)

dc

θ = 30°

θ = 30°

θ = 138°

θ = 138°

Figure 2.10: Distribution of the displacements ∆x, ∆y at time lag τ = 2(1/30) s, in a semi-log
scale. The shapes of all the four graphs confirm the Gaussian distribution of the displacements.
Such displacements are recovered from the two trajectories previously shown in fig. 2.7, con-
sidering the same time interval ∆t = 100 s. a. ∆x for the hydrophilic bead (θ = 30◦); b. ∆x
for the hydrophobic bead (θ = 138◦); c. ∆y for the hydrophilic bead (θ = 30◦); d. ∆y for the
hydrophobic bead (θ = 138◦). The distributions ∆x and ∆y at the same contact angle show the
same width. Hydrophilic beads have a wider distribution than the hydrophobic ones.

θ D
[◦] [µm2/s]

30± 2.6 0.272± 0.007
68± 4.4 0.266± 0.009
110± 8.2 0.234± 0.010
138± 15.0 0.148± 0.012

Table 2.1: Diffusion coefficients at the air–water interface for particles with different contact
angles (θ = 30◦, 68◦, 110◦, 138◦). The data are recovered from the MSD curves in fig. 2.11.
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Figure 2.11: MSD as function of the time lag τ for particles with different contact angles (θ =
30◦, 68◦, 110◦, 138◦). The linear behavior denotes the diffusive regime. The slope of each curve
corresponds to 2D, where D is the diffusion coefficient at a given contact angle. A decreasing of
the slope, i.e. a slower dynamics, is observed for less immersed particles (higher contact angles),
against common intuition.

fig. 2.12 corresponds to average values on 5 to 10 different beads with the same
surface treatment. The contact angle θ is measured via VSI technique. DS is
achieved by particle tracking and statistical analysis of the trajectories, as shown
above. Diffusion coefficients in the volume DV are known from Stokes-Einstein
theory (par. 1.2.1) and they are calculated for each particle using the expression:

DV =
kBT

6πηWR
(2.17)

where ηW = 1.001 · 10−3 Pa·s is the viscosity of the water at T = 25◦C and
R is the radius of the beads. To give robustness to the measurements, such a
theoretical prediction is experimentally verified for few sample particles, treated to
give different contact angles when at the interface. Two beads with diameter 2R =
4µm and θ = 60◦, 110◦ at room temperature (T = 25◦C) show an experimental
bulk diffusion coefficient of DV,exp = 0.108 ± 0.006µm2/s and DV,exp = 0.111 ±
0.007µm2/s, respectively. These measurements provide the same value for DV : as
expected, different surface treatments have no role in the diffusion in the volume.
This means that surface treatments play a role just in the immersion depth of the
particle, and not in its dynamics. Moreover, such experimental values are in fairly
agreement with Stokes-Einstein prediction: DV,th = 0.106µm2/s.

The diffusion is measured for beads of 2µm, 4µm and 8µm in diameter (circle,
square and triangle points respectively in fig. 2.12). At a given contact angle θ,
the same values for the ratio DS/DV (in the limit of the error bars) is achieved
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for all the sizes. A strong variation of almost two orders of magnitude of the
particle mass makes no difference in dynamics, ruling out any gravitational effect
(e.g., formation of a particle induced meniscus). The diffusion of silica beads
at an air–hexanol interface (θ = 83◦) is also measured (red point in fig. 2.12).
The normalized diffusion coefficient, when the role of bulk viscosity is discarded,
agrees with the data at the air–water interface, indicating that the measured effect
is not water–dependent. To exclude possible artifacts, as interface contaminations
by silane agent, the diffusion coefficients of the two sets of beads, respectively
at θ = 28◦ and θ = 90◦, sharing exactly the same interface are measured (open
points in fig. 2.12). The values of the diffusion coefficient at θ = 28◦ in presence
of silanized particles is the same as the one when the beads at θ = 28◦ are alone
at the interface, indicating that the interface is not contaminated by the release of
silane from hydrophobic beads. Moreover, such a value agrees with the theoretical
predictions (solid lines in fig. 2.12), in which a clean interface is considered. The
slowed–down diffusion of the bead at θ = 90◦, deposited at the same interface,
cannot be attributed to surface contaminations.

The ratio r = DS/DV is analyzed as a function of the contact angle θ. For
this purpose, we keep in mind our initial considerations, i.e. that an increasing
diffusion is suggested by common intuition when the particle is less immersed in
water. Hydrodynamics theories (solid lines in fig. 2.12), that will be discussed
later, qualitatively confirm this prediction. For a bare silica particle (θ = 30◦),
we have r ≃ 1.25: thus, the beads diffuse more at the interface than in the bulk.
In a small range of contact angle (θ ∼ 30◦ − 60◦), r slightly agrees with the the-
oretical predictions. This is the only region in which experimental measurements
on micrometric beads [32, 34] were available before the present work. For larger
contact angles (60◦ < θ < 120◦) r remains roughly constant around r ∼ 1.1− 1.2,
but lower than the previous one: this trend disagrees with the expected theoreti-
cal values, that are instead rapidly increasing with the contact angle. Finally, for
the most hydrophobic particles (θ > 120◦) the ratio r decreases below the unity.
The diffusion of a bead that is 3/4 in air is slower than the diffusion in water.
Compared with the expected theoretical values, the measured value is 400% lower.

Available models [27, 28, 29] (see par. 1.4.1) predict instead that the move-
ment at the interface is less viscous than in water, in agreement with common
intuition. They all fail in catching the Brownian dynamics at the interface. For
the sake of comparison, the few data available in literature (see par. 1.4.2) are
also plotted (cross points in fig. 2.12). Except for the millimetric beads, the other
two points [32, 34] agree with our measurements and the corresponding diffusion
coefficients are overestimated by theories. A new theoretical paradigm will be
necessary to explain our experiment and it will be treated in next chapters.
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Figure 2.12: DS/DV versus contact angle θ for particles with diameter 2µm (circle), 4µm
(square) and 8µm (square). Open points corresponds to couples of beads sharing the same inter-
face. Red point is the averaged values for silica beads at an air–hexanol interface. Also reported
predictions from existing hydrodynamics theories: Danov et al. [27] (green line), Pozrikidis [28]
(red line), Fischer et al. [29] (black line). Cross points are measurements from previous works:
Petkov et al. [30], millimetric beads (green), Sickert et al. [32] (gray), Chen and Tong [34] (black).

2.4 Conclusions

In this chapter we report a full characterization of the diffusion of micrometric
spherical particles straddled at an air–water interface as a function of their con-
tact angle. The latter is related to the immersion depth in water and it was
tuned by chemical treatment of the silica surface of the bead, using hydrophobic
silane agents. The effect of the surface treatment was checked by the gel trap-
ping technique [44] on few sample particles, and the contact angle was measured
by in situ interferometry for all beads. The diffusion coefficients at the interface
were measured in a wide range of contact angles (30◦ − 150◦) by using particle
tracking methods [46]. Counter-intuitively, and against hydrodynamics predic-
tions [27, 28, 29], particles diffuse more rapidly when they are more immersed in
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water. The diffusion coefficient slightly decreases with the contact angle, whilst a
strong increase is instead attended. Hydrophobic particles, with their larger part
in air, exhibit a diffusion coefficient even lower than the one predicted for fully im-
mersed particles. To explain this intriguing behavior, a new theoretical approach
to the problem will be discussed in the following chapters.
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Solo dopo aver conosciuto la
superficie delle cose, ci si può
spingere a cercare quel che c’è
sotto. Ma la superficie delle cose è
inesauribile.

Only after knowing the surface of
things, one can go to seek what is
underneath. But the surface of
things is inexhaustible.

Italo Calvino
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Chapter 3

Measurement of the diffusion of
spheroidal colloids at an
air–water interface

Introduction

Most of the studies performed until now on colloidal dynamics, both in volume
and at the interface, mainly focused on spherical beads because of their ideal
shape. However, the real colloidal morphologies that we can find in nature and
in common industrial or biological applications have more complex morphologies.
A first step toward this direction is provided by considering the simplest case of
anisotropy, given by prolate spheroidal particle. The dynamics of such colloids
trapped at a fluid interface is studied in this chapter. The particles are obtained
from commercial polystyrene spheres, stretched with different elongations to obtain
a wide range of aspect ratio (par. 3.1). The particles are then sprayed on the air-
water interface (par. 3.2). The induced deformation of the contact line (par. 3.3)
and the immersion depth in water (par. 3.4) are measured via interferometric
techniques. Finally, the translational and the rotational diffusion coefficients are
measured as a function of the aspect ratio by particle tracking (par. 3.5).

3.1 Preparation of the particles

A prolate spheroid is a geometrical object in the three-dimensional space, whose
equation in a Cartesian coordinates system is

x2

a2
+
y2

b2
+
z2

b2
= 1 (3.1)
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where a and b are the long and the short principal axis respectively. In order
to achieve the spheroidal shape, commercial spherical beads are stretched by a
homemade apparatus [47]. We use amidine and sulfate latex spheres, purchased
from Invitrogen (product code A37325 and S37500 respectively), with a radius
r0 = 0.975µm. They are sold in water solution at a concentration of 4%w/v.
Few drops (15-20) are initially dispersed in 40 ml of Poly(vinyl alcohol) (PVA)
in deionized water (10% − 90%). The PVA is purchased from Sigma Aldrich
(product code 363081) and deionized water is produced by a Millipore Milli-Q
filtration system, with a resistivity of 18 MΩ·cm. PVA and DI water are mixed by
several cycles of shaking at 300 rpm and heating at 90− 100◦C (1/2 - 1h for each
operation), until a homogenous phase is obtained. The solution is finally filtrated
by using a hydrophobic filter PTFE (pores dimension: 5µm) to remove impurities
before adding the beads. The 40 ml PVA-water solution, including the beads, is
slowly poured in a Petri dish (diameter: 100 mm) which, before the use, has been
carefully cleaned with sulfochromic acid and distilled water. Great attention is
paid to avoid the formation of air bubbles that can affect the stretching procedure
in an uncontrolled way. By evaporation in 1-2 days on a flat surface, we get a
thin film of PVA (thickness ∼ 0.2 mm) containing the spherical particles. Strips
are cut from the dried film, with special regard to the central region that must be
extremely regular; otherwise, a non-homogeneous stretching can distort the final
shape of the colloids. The strips are clamped into a metal frame, heated in oven
above the temperature of glass transition of polystyrene (Tg = 100◦C) and then
stretched. The stretching of both the strip and the particles included inside is
achieved by displacing the upper part of the metal frame by a tension-controlled
screw, with a displacing rate of 12 mm/min. In this way, the spherical beads
undergo an affine transformation and a spheroidal shape is achieved (fig. 3.1a).
The strips are finally soaked in deionized water and PVA is removed by at least 5
cycles of centrifugation (4000 rpm for 10-15 min), replacing the supernatant with
Millipore water at the end of each cycle. At the end, the spheroids are re-dispersed
in deionized water with the aid of an ultrasonic bath. A SEM picture of typical
particles obtained after such a procedure is shown in fig. 3.1b.

We can denote with Λ the elongation imposed at both the strip and the parti-
cles. It is defined as the ratio between the final and the initial length of the strip
(fig. 3.1a): Λ = l/l0. It follows that, along the stretching direction, a long axis is
obtained: a = Λr0. Since the total volume of the particle remains constant, i.e.
ab2 = r30, the two short axes, in the perpendicular plane, are b = r0/

√
Λ. We can

quantify the degree of anisotropy of each particle using the aspect ratio ϕ = a/b.
Sets of particle with the same initial size, and so the same volume, but different
elongation are prepared and used in our experiences. The range for ϕ can vary
from 1 (unstretched spherical beads) to about 10, that is the upper limit imposed
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Figure 3.1: a. Sketch of a PVA strip, containing spherical beads. The initial length of the
strip is l0. A stretching of the strip along the vertical axis is imposed; the new length is then
l. We define an elongation parameter Λ = l/l0. The same elongation is imposed also to the
particles, which now show a spheroidal shape. b. SEM (Scanning Electron Microscopy) image
of the spheroidal particles obtained by the technique described in par. 3.1 (Courtesy C. Blanc).

by the stretching method.

3.2 Experimental set-up

A wide container is used to work in a flat interface, at the center of of the sample
and avoid the coupling with the curved interface (see appendix A.2). The cuvette
is shown in fig. 3.2.

We use a 60 mm diameter Petri dish. Since the sample will be covered during
the particle tracking experiences, the air-water interface has to be as close as
possible to the glass coverture at the top of the sample. Otherwise, due to limited
working distance of the optical objective (7 mm), the focal plane cannot reach the
interface and the particle will be out of focus. However small quantities of liquid
are required, in order to reduce any convective flows in the sample. Thus, a thick
piece of glass is added in the Petri dish to fulfill these two conditions. A piano-
convex spherical lens is used for this purpose; it measures 58 mm in diameter and
8.2 mm in height at its center. Note that the lens has just a geometrical role to
achieve the optimum working distance and water depth. No optical effects are
needed here and deformations or aberrations of the image due to the presence of
the lens are negligible. A metal ring with a sharp profile is also added in the gap
between the lens and the wall of the Petri dish. In fact, where an air-water-glass
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Figure 3.2: Sketch of the cuvette used for the study of spheroidal particles. The container is a
Petri dish, 60 mm in diameter, covered by a glass slide to avoid surface contaminations. A thick
glass piece (as a lens) is added to minimize the quantity of water involved in the experiment.
Such a lens measures 58 mm in diameter and 8.2 mm in height. A metal ring encloses the lens;
it has a sharp profile that pins the air-water interface. The deionized water is poured into the
sample up to the internal edge of the ring (height: 9 mm). These features assure a 0.8 mm water
layer, as close as possible to the microscope objective.

contact line is present on the container walls, non-controlled fluctuations of the
surface occur, due to random detachment of the line. The metal ring prevents such
detachments and pins the interface at its edge. Moreover, the pinning at such a
sharp profile allows an exceptionally large contact angle hysteresis. A 90◦ contact
angle is so permitted, drastically reducing the interface deformation. Deionized
water is poured into the sample up to the internal edge of the ring until a flat
surface is achieved. A 0.8 mm water layer is thus obtained as close as possible to
the microscope objective.

The particles, dispersed in water, are sprayed on the interface by an airbrush,
to avoid any possible surface contaminations. Very dilute surface concentrations
(less than 0.01% s/s) are used to rule out any possible interaction between colloids.
The air-water surface tension is directly measured by Wilhelmy plate method at a
free interface, with and without particles. Both the measurements are in agreement
with the literature value of the air-water surface tension (σLV = 0.072 N/m).
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3.3 Interface deformation induced by spheroidal

particles

The interface deformation induced by the non–spherical particle (see par. 1.3.1)
is measured by using PSI. In particular, an estimation of the amplitude A2 (see
eq. 3.5 in the following) of such a deformation is required to understand its role
in particle dynamics. A measurement for a spheroidal particle with aspect ratio
ϕ = 2.7 is here reported.

a b

Figure 3.3: a. False color image of the interface around a spheroidal particle with aspect ratio
ϕ = 2.7. To achieve a constant macroscopic contact angle around a particle with a non–constant
curvature radius, the interface needs to be higher at the center of the spheroid (yellow zone)
and lower at the tips (dark blue zone). The difference between the heights of these two zones
is around 80 nm. b. 3-D reconstruction (vertical scale does not correspond to the one in the
horizontal plane) of the interface for the same sample, recovered from the data in a.

The parameters of the measurement are the same as the one reported in par.
2.2.2. The Mirau interferometry objective is vertically displaced over 633 nm
(wavelength of the involved light beam) in 20 steps. For each step, 15 images
are taken (acquisition rate of the CCD camera: 30 frame/s) and their average
image is used. At a given pixel, the sinusoidal behavior of the detected intensity is
recovered. The phase shift ∆ϕ provides the vertical position h of the corresponding
point at the interface:

∆ϕ =
4πh

λ
(3.2)

The results are shown in a false color image (fig. 3.3a) and in a 3-D reconstruc-
tion of the interface (the colloid is removed because it is out of scale) (fig. 3.3b).
The maximum deviation from the flat interface (at the tips and in the middle of
the particle) is of the order of 40 nm, when the vertical extension of the particle
is 2b = 1.3µm.
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This relatively weak deformation will be an essential ingredient to guide the
model developed in chapters 4 and 5.

3.4 In situ measurement of the contact angle

Vertical Scanning Interferometry is used to provide an estimation of the immersion
depth of the particles.

 1µm

Figure 3.4: Interferometric image of a spheroidal particle at the air-water interface, obtained
via VSI technique. Elliptical interference fringes, due to the curvature at the top of the particle,
are visible. A series of such images, taken at different objective positions, provides the profile of
the particle at the air-water interface.

Interferometric images of the particle at the interface are taken (see an example
in fig. 3.4) via VSI and the topography is reconstructed. We can notice an elliptic
interference pattern in correspondence of the particle, due to its three-dimensional
profile.

As a consequence of the geometry of a spheroidal particle and of the deformed
interface [40] (par. 1.6), the computation of the exact value of θ is more compli-
cated. Here we report a method to achieve a good approximation of the contact
angle. First of all, let us consider a 2-D elliptic coordinates system (s, t) (fig. 3.5)
for the horizontal plane of the interface. The coordinate s has the same role as a
radial coordinate in a polar system and t is the elliptic angular coordinate. They
are related to a Cartesian coordinate system (x, y) by the relations:

x = c cosh s cos t y = c sinh s sin t (3.3)

where ±c is the position of the two foci.
Oettel [48] provided an expansion for the vertical displacement of the interface

u in the variables (s, t):
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Figure 3.5: Elliptic coordinates system (s, t), as defined in eq. 3.3. The coordinate s has the
same role played by a radial distance in polar coordinates system. Each confocal ellipse in dashed
blue line is obtained for a constant value of s. Hyperbolas in solid red line are obtained for a
given value of the elliptic angular coordinate t.

u(s, t) = A0
s

s0
+
∑
m>0

e−m(s−s0) [Am cos(mt) + Bm sin(mt)] (3.4)

where Am and Bm are elliptic multipole moments of order m and s = s0 is the
ellipse on the surface of the particle.

Some conditions are known or imposed to the solution:

1. far from the particle, the interface is unperturbed and stays at a reference
height: for s→ ∞, u(s, t) → 0;

2. from Loudet [40] and direct PSI measurements (par. 3.3), we know that
u(s, t) has minima at the tips of the particle (t = 0, π) and maxima at its
middle (t = π/2, 3π/2);

3. as reported in [48], the quadrupole (m = 2) is the leading multipole.

These conditions allow to rewrite eq. 3.4, leading to a simpler approximation
for the interface profile:

u(s, t) = −A2 cos(2t)e
−2(s−s0) (3.5)

with A2 > 0.
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The derivative of eq. 3.5 in s = s0 gives the slope of the interface at each point
of the contact line. For our calculation, we are interested in regions of the contact
line where the interface is flat, i.e.:

∂u

∂s

∣∣∣∣∣
s=s0

= 0 (3.6)

This condition is obtained at the angular positions t = π
4
, 3π

4
, 5π

4
, 7π

4
(red hyper-

bolas in fig. 3.6a).
A x̃-axis, that intersects the ellipse in two of these points (t = π

4
, t = 5π

4
), is

introduced (solid green line in fig. 3.6a). The plane (x̃, z) is now considered (fig.
3.6b).

b
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t = π/4
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top view intersection plane

Figure 3.6: a. Top view of a spheroid (a, b, b) at the air-water interface. The contact line results
in an ellipse of axis (a, b) in a Cartesian coordinates system, or in s = s0 in an elliptic coordinates
system. For our purpose, we are interested in the angular coordinate t = π/4 (red hyperbola).
A x̃-axis, passing for (0, 0) and (s0, π/4), is defined (green line). We denote with ã the distance
between such points. b. Intersection of the spheroid with the plane (x̃, z): the result is an ellipse
of axes (ã, b). Because of eq. 3.6, the air-water interface is flat in this intersection; the contact
angle θ is thus recovered from the tangent at the ellipse. We also denote with z0 the height of
the interface with respect to the center of the particle and with h = b− z0.

The frontal view in such an intersection plane provides the ellipse with axes

(ã, b), where ã =
√
(a2 + b2)/2 (fig. 3.6b). The contact line passes in the points

(±x̃0, z0) of the ellipse, where z0 = b−h and h is measured via VSI. The condition
of a flat interface at these points (solutions of eq. 3.6) allows to recover θ from
the slope of the tangent at the ellipse. From trigonometric arguments, θ is the
supplementary angle of such a slope, i.e. θ = π − arctanm, where m denotes the
angular coefficient of the tangent. It follows that tan θ = −m. In our case, with
the (x̃, z) variables and at the point z0, we have:

tan θ =
b2x̃0
ã2z0

(3.7)
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ϕ θ[◦]
1 52.4± 3.4

2.7± 0.3 48.4± 10.6
7.9± 0.7 37.7± 5.1

Table 3.1: Contact angle θ, measured via VSI technique, at three characteristic aspect ra-
tios, ranging from sphere to elongated particle. In agreement with previous measurements in
literature [40, 41], a slight decrease of θ, around 15◦, is observed.

Substituting the expressions of z0, x̃0 and ã as a function of the initial param-
eters in eq. 3.7, we finally have

tan θ =

√
2

ϕ2 + 1

√
2bh− h2

b− h
(3.8)

The error on the determination of the contact angle is given by:

∆θ =

∣∣∣∣∣∂θ∂b
∣∣∣∣∣∆b+

∣∣∣∣∣∂θ∂ϕ
∣∣∣∣∣∆ϕ+

∣∣∣∣∣∂θ∂h
∣∣∣∣∣∆h (3.9)

The leading term in eq. 3.9 is given by the error on the particle size, ∆b = 60
nm. An enhanced resolution of the VSI measurement, reducing ∆h, will not
significantly affect the uncertainty of θ. For this reason, the chosen resolution
∆h ∼ 20 nm is sufficient.

As shown in par. 1.6, the contact angle slightly depends on the aspect ratio [40,
41]. In table 3.1 we measure by VSI the contact angle for the spheroids in our
system as a function of the aspect ratio. In the range from 1 to 8 of aspect ratio,
the contact angle variation is moderated in the range 37◦ − 52◦. Differently from
the methods of Loudet [41], our technique univocally determines the contact angle,
since the relative position of the top of the particle, with respect to the interface, is
detected. Our measurements are in agreement with one set of values proposed in
[41]: we recover the lower branch of data (fig. 1.17 in chapter 1), with a decreasing
θ in almost the same range.

3.5 Dynamics of the particle

3.5.1 Particle tracking

Particle tracking for ellipsoidal particles is similar to the one presented for spherical
beads in par. 2.3 (see appendix A.1). Digital videos are recorded by a firewire
charge-coupled device (CCD) camera at 30 frame/s over a region of 120× 90µm2
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(1024 × 768 px2). The images are processed by an IDL software in order to have
a non-null intensity at the particle and I = 0 in the background. The coordinates
of the center-of-mass positions in the lab frame at a given times are recovered as
the average (x, y) of the position coordinates of every pixels, weighted by their
corresponding intensities:

x =

∑
xI(x, y)∑
I(x, y)

y =

∑
yI(x, y)∑
I(x, y)

(3.10)

as done in par 2.3 for spherical beads. The trajectories are numerically cor-
rected in order to remove the drift contribution, using the same technique described
in par. 2.3.2 for spheres. Drift velocities are around 0.1µm/s and are not related
to the aspect ratio ϕ of the spheroid. The displacements ∆x = x − ⟨x⟩ and
∆y = y−⟨y⟩, where ⟨x⟩ and ⟨y⟩ are the mean positions averaged in time, are con-
sidered. Two typical ∆x-∆y trajectories for spheroids with different aspect ratio ϕ
are reported in fig. 3.7a, 3.7b, measured during the same time interval ∆t = 55s.
Different spheroidal shapes are able to affect the interfacial particle dynamics: the
most elongated particles diffuse less than the ones with a lower aspect ratio.
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Figure 3.7: ∆x-∆y trajectories recorded during the same time interval ∆t = 55 s of two spheroids
with different aspect ratios: ϕ = 1.4 (a) and ϕ = 8.7 (b).

In addition, in the case of anisotropic particle, we are also interested in infor-
mation about the orientation of the colloid and the rotational dynamics. For this
purpose the angle φ between the main axis of the ellipsoids and the x-axis of the
lab frame (fig. 3.8) needs to be measured.

The technique used is the bisection method (fig. 3.9).
Let us shift the lab frame so that the origin corresponds to the center of mass

of the particle, whose coordinates were obtained in the previous step. This new
frame is called (x̃, ỹ). First of all, the IDL software counts the number of non-null
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Figure 3.8: a. Typical image for a frame of a spheroidal particle at the air–water interface,
recorded by a CCD camera. The particle looks like a black spot over a grey background. b.
After image processing, the intensity center of mass is found: (x̄, ȳ). This coordinate corresponds
to the position of the center of the particle. The main axes are also recovered, in order to get
rotational dynamics. We denote with φ the angle between the long main axis and the horizontal
one.
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Figure 3.9: Scheme of bisection method. a. The orientation φ of the long main axis is in the
range [φ1, φ2]. In the reported case, φ1 = 0 (horizontal axis) and φ2 = π/4 (red line axis).
For a generic point i in the ellipse, the distances d1,i from axis φ1, and d2,i from axis φ2 are
calculated (solid blue segments). The summation over all the points i of the ellipse are compared:
d1 =

∑
i d1,i < d2 =

∑
i d2,i. b. Since the ellipse is closer to the axis φ1, the upper limit φ2 is

replaced by the midpoint value (φ1 + φ2)/2.
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intensity points, corresponding to the image of the projected ellipse, in the first
(x̃ > 0, ỹ > 0) and in the second quadrant (x̃ < 0, ỹ > 0). The result gives a
preliminary information about the range in which the angle φ is: [0, π/2] if most
of the points are in the first quadrant, [π/2, π] if most of the points are in the
second one. In any case, such a range can be written in the form [φ1, φ2]. For each
point i of the projected ellipse in the image, the distance d1,i (d2,i) from the axis φ1

(φ2) is calculated. We consider now the sum of all the calculated distances, with
respect to the axis φ1: d1 =

∑
i d1,i; and to the axis φ2: d2 =

∑
i d2,i. In this way

we can get an average distance of the ellipse from each axis. If d1 < d2, we can
state that the ellipse is closer to the axis φ1. From a more rigorous point of view,
this means that the angle φ is in the lower half of the proposed range [φ1, φ2].
Otherwise, if d1 > d2, φ is in the upper half of [φ1, φ2]. This statement allows to
repeat the same procedure in a smaller, halved range, where the farthest extreme
is replaced by the midpoint value (φ1 + φ2)/2. The iteration continues until the
width of the range is of the order of 2 degrees, that is considered an acceptable
resolution for φ.

3.5.2 Statistical analysis of the translational dynamics

The trajectory of the center of mass is used to study the translational dynamics
of the particle. Contrary to isotropic systems, the motion of spheroidal colloids
in 3-D depends also on the chosen direction: the diffusion along the long axis is
different from the diffusion along the short one, as predicted by modified Stokes-
Einstein equation [36] and experimentally verified in the volume [5]. We expect
the same behavior also for particles straddled at the interface. For this reason,
both the positions and the displacements are here referred to a local coordinates
system (xa, xb) where xa denotes the direction of the long axis and xb the one of
the short axis (fig. 3.10). The local frame is re-defined at each time tn = n(1/30)
s according to the new orientation φ(tn) of the particle. Note that the frame
(xa,n, xb,n) is simply obtained by rotating (xn, yn) of an angle φ(tn).

We can calculate the displacement over a time lag τi:

[∆xa,i(tn),∆xb,i(tn)] = [xa(tn + τi)− xa(tn), xb(tn + τi)− xb(tn)] (3.11)

∆xa,i(tn) and ∆xb,i(tn) are normally distributed and their average over all the
possible displacements ⟨∆xa,i⟩n = ⟨∆xb,i⟩n = 0, as expected from a random walk
(fig. 3.11).

The width of the Gaussian curve is related to the diffusion coefficient in the
corresponding direction and to the considered time lag τi. In this case, the standard
deviations σa,i and σb,i write as:

σa,i =
√
2Daτi σb,i =

√
2Dbτi (3.12)
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Figure 3.10: Local coordinates system (xa, xb), where the axes have the same orientation as the
main axes of the ellipsoid. The indexes a, b denote the long and the short axis, respectively. The
(xa, xb) system is obtained by rotating the lab frame (x, y) by the angle φ, around the center of
the particle. A new local coordinates system is defined at each frame, since the position of the
particle center and its orientation change in time.

Da and Db are translational diffusion coefficients along the long and short axes
respectively. For a small aspect ratio (ϕ = 1.4, fig. 3.11a, 3.11c) the displacements
in the two directions a and b have almost the same distribution, due to the weak
anisotropy. For more elongated particles (ϕ = 8.7, fig. 3.11b, 3.11d) distributions
differ in width, with a wider distribution for the movement along the long axis,
pointing out a faster diffusion along such an axis.

The terms σa,i and σb,i, and the corresponding diffusion coefficients Da and Db,
can be also computed via the analysis of the Mean Square Displacements (MSDs):

σa,i = ⟨∆x2a,i⟩n = 2Daτi

σb,i = ⟨∆x2b,i⟩n = 2Dbτi (3.13)

Such quantities are calculated for different time lag τi in order to plot the curves
⟨∆x2a⟩ vs. τ , ⟨∆x2b⟩ vs. τ . Both of them are reported in fig. 3.12 for 4 particles
covering all the accessible aspect ratios.

The linear behavior for all the curves denotes a diffusive regime. The analysis
of the slopes at different aspect ratios confirms our previous observations: a slower
diffusion for more elongated particle, in particular along the short axis b (fig. 3.13).
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Figure 3.11: Distribution of the displacement ∆xa, ∆xb at time lag τ = 1/30 s, in a semi-log
scale, for spheroidal particles. The shapes of all the four graphs confirm the Gaussian distribution
of the displacements. Such displacements are recovered from the two trajectories previously
shown in fig. 3.7, considering the same time interval ∆t = 55 s. The spheroids have aspect ratio
ϕ = 1.4 (a. ∆xa, c. ∆xb) and ϕ = 8.7 (b. ∆xa, d. ∆xb). The widths of the distributions in the
two directions a and b are really close for the small aspect ratio (a and c). At large aspect ratio
(b and d), the distributions clearly differ in width, with a wider distribution for the movement
along the long axis, and the anisotropy of the motion is evident. The distribution widths are
smaller at high ϕ than at low ϕ.
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Figure 3.12: MSD as a function of the time lag τ for spheroids at different aspect ratios (ϕ =
1.1, 4.3, 7.3, 10.0). The translational dynamics in both the main directions is considered: ⟨∆x2a⟩
(a) and ⟨∆x2b⟩ (b). The linear behavior denotes the diffusive regime. The slope of each curve
corresponds to 2D, whereD is the translational diffusion coefficient in the corresponding direction
and at a given aspect ratio. A decreasing of the slope, i.e. a slower dynamics, is observed for
more elongated particles.
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Figure 3.13: MSD as a function of the time lag τ , along long axis (open points) and short axis
(full points), for spheroids at ϕ = 4.3 and ϕ = 10.0. A slower diffusion is always measured with
respect to the short axis.
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3.5.3 Statistical analysis of the rotational dynamics

The same theoretical background can be applied also to a statistical analysis of
the evolution of φ in time. The angular displacement during τi is defined:

∆φi(tn) = φ(tn + τi)− φ(tn) (3.14)

Also in this case, the random origin of the dynamics translate in a Gaussian
distribution of the angular variation ∆φ, centered in ⟨∆φ⟩ = 0, and with a width
related the rotational diffusion coefficient Dφ (fig. 3.14):

σφ,i =
√
2Dφτi (3.15)
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Figure 3.14: Distribution of the angular variation ∆φ over a time interval ∆t = 55 s, at time lag
τ = 2/30 s, in a semi-log scale. We consider two spheroidal particles with aspect ratio ϕ = 1.4
(a) and ϕ = 8.7 (b). Both distributions are Gaussian and the one at lower aspect ratio shows a
larger width with respect to more elongated colloids, revealing a huge difference in the rotational
diffusion coefficients.

The rotational MSDs, calculated at 4 different aspect ratios, are plotted in fig.
3.15.

The rotational diffusion coefficient is calculated by the typical expression:

⟨∆φ2⟩ = 2Dφτ (3.16)

Since a strong variation of the rotational dynamics as a function of the aspect
ratio is observed, a log-log plot of the MSD is proposed. In this case, we have

log⟨∆φ2⟩ = log 2Dφ + log τ (3.17)
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1

Figure 3.15: Angular MSDs vs. the time lag τ in a log-log scale. Spheroids with different aspect
ratios (ϕ = 1.1, 4.3, 7.3, 10.0) are considered. All the curves show a constant slope, equal to 1:
this characteristic denotes a linear behavior of the MSD, corresponding to a diffusive regime. The
intercepts at τ = 1 is proportional to logDφ. We observe that the rotational diffusion coefficient
strongly decreases, over few orders of magnitude, with the aspect ratio ϕ.

A slope equal to 1 corresponds to the linear behavior, due to the diffusive
regime. No variation of the slope is recovered in this system, excluding here the
presence of an angular confinement. At τ = 1, log⟨∆φ2⟩ = log 2Dφ. From fig.
3.15, we observe a strong decrease, over few orders of magnitude, of the rotational
diffusion, with the aspect ratio ϕ.

3.5.4 Translational diffusion coefficients vs. aspect ratio

The dynamics for spheroidal particles are observed in a wide range of aspect ratio,
1 < ϕ < 10. The value ϕ = 1 corresponds to spherical beads, and ϕ = 10 is the
maximum aspect ratio achievable with our stretching method. Other parameters,
such as the material, the volume or the immersion depth, remain constants and
they are equal to the ones for an unstretched commercial bead. Translational
diffusion coefficients along the local axes are shown in fig. 3.16 (long axis) and in
fig. 3.17 (short axis).

Each point in the curves corresponds to the average values on 3 to 6 different
particles with the same elongation. For the sake of comparison, the theoretical
estimation for the same colloid, but totally immersed in the volume (water), is
also reported (continuous lines in figs. 3.16, 3.17). These curves are calculated
from Stokes-Einstein equation, modified by the geometric factors Ga and Gb, to
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Figure 3.16: Translational diffusion coefficient Da vs. aspect ratio ϕ. Points for each ϕ are direct
measurements of the diffusion coefficients along the long axis, averaged on the values on 3 to 6
particles. Error bars correspond to the standard deviation on the average. At ϕ ∼ 1 we recover
the same translational diffusion coefficient measured for a partially immersed bead (see chapter
2). Then, the diffusion coefficient decreases; the most elongated spheroid (ϕ = 10) diffuses almost
2 times slower than the spherical-like particle. For the sake of clarity, the experimental data are
compared with the theoretical estimation for same particles, but totally immersed in water (solid
line). The diffusion at the interface is slower than in the bulk, when common intuition suggests
the opposite behavior.

take into account the effect of the anisotropic shape [36] (see par. 1.5.1 for a
detailed discussion):

Da,V =
kBT

6πηWGa(ϕ)b

Db,V =
kBT

6πηWGb(ϕ)b
(3.18)

with ηW viscosity of the water. At ϕ = 1, Da,V = Db,V and we recover the
same expression as for spherical beads. When the aspect ratio increases, a slight
decreasing of both the translational diffusion coefficients is predicted, except for
Da,V in a small region around ϕ = 1.3, where a maximum appears. The reason of
the presence of the maximum is that the range of ϕ is explored at constant initial
volume. In this case, both the geometric factor Ga and the spheroid short axis b
which enter in the definition of the diffusion coefficient depend on ϕ. Predictions
about the dynamics of spheroids at the interface are not available, but common
intuition suggests a faster diffusion than in the bulk. As in the case of spheres,
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Figure 3.17: Translational diffusion coefficient Db vs. aspect ratio ϕ. Points for each ϕ are
direct measurements of the diffusion coefficients along the short axis, averaged on the values on
3 to 6 particles. Error bars correspond to the standard deviation on the average. The data are
compared with the theoretical estimation for the particles totally immersed in water (solid line).
The diffusion coefficient Db shows the same behavior reported for Da (see fig. 3.16).

experimental data are in disagreement with this picture. In fact, for small aspect
ratio (ϕ ≃ 1), i.e. for spherical-like particles, we recover the same behavior mea-
sured for spheres (see chapter 2) at similar contact angle θ ≃ 50◦: the diffusion
coefficient at the interface is slightly larger than in the bulk. Moreover, Da = Db

since long and short axes cannot be distinguished (fig. 3.18). For increasing as-
pect ratios, both the translational diffusion coefficients decrease more rapidly than
in the bulk: at ϕ ≃ 10 the interfacial diffusion is 2 times slower than the corre-
sponding one in the bulk. In any case, Da/Db > 1, i.e. the dynamics is always
faster along the long axis a, and the anisotropy of the motion increases with the
anisotropy of the particle (fig. 3.18). However, such a ratio varies more slowly
when the colloid is straddled at the interface.
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Figure 3.18: Ratio Da/Db, showing the anisotropy of the translational diffusion, measured at
the interface (points) and predicted in the bulk (continuous line). The values are reported as
a function of the aspect ratio ϕ of spheroidal particles. In both the case, Da/Db > 1, i.e. the
dynamics is always faster along the long axis a, and the anisotropy of the motion increases with
the anisotropy of the particle. However, such a ratio varies more slowly when the colloid is
straddled at the interface.
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3.5.5 Rotational diffusion coefficient vs. aspect ratio

φ

Figure 3.19: Rotational diffusion coefficient Dφ vs. aspect ratio ϕ in semi-log scale. Points
are direct measurements of the rotational diffusion coefficient, averaged on the values on 3 to 6
particles. Error bars are the standard deviation of the average. At ϕ ≃ 1 the trend of the curve
recovers the value for the optically anisotropic Janus particle (red point). When the aspect ratio
increases, the rotational diffusion coefficient varies over 2 decades. This behavior differs from the
one predicted when the particle is immersed in water (solid line).

The measured rotational diffusion at the interface (black points in fig. 3.19) is
analyzed with respect to the aspect ratio ϕ. Each point at a given ϕ corresponds
to the average on 3 to 6 values. The diffusion coefficient rapidly decreases with
the aspect ratio and varies over 2 order of magnitude in the range ϕ = 1 ÷ 10.
Measurements at ϕ ≃ 1 have been performed with optically anisotropic spheres
(Janus particles), in which the orientation is easily recognized. The obtained
diffusion coefficient (red point in fig. 3.19) does not differ significantly from the
rotational diffusion in the volume. As in the previous case, the rotational diffusion
in the volume is plotted as a reference (solid line in fig. 3.19). Such a value, as a
function of ϕ, writes [36]:

Dφ,V =
kBT

6ηWGφ(ϕ)V
(3.19)

where Gφ(ϕ) is the geometric factor and V is the volume of the particle. A decreas-
ing diffusion coefficient, introduced by the geometric factor Gφ(ϕ), is expected also
in the bulk, but it is much weaker than the one we measure at the interface. We
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recover again the counter–intuitive results of a slower dynamics at the interface,
despite the effect of the partial immersion; the diffusion is one order of magnitude
slower than the one in the bulk. As previously presented (par. 1.6 and 3.4), the
immersion depth of a spheroids changes with the aspect ratio: more elongated
particles result more immersed in water. One can ask if such effect will be re-
sponsible of the measured increase of the drag. However, the slight variation of
the contact angle (less than 15◦) and the viscosity ratio of the two fluid phases
(ηwater/ηair ≃ 50) are incompatible with the huge difference (around 70 times)
between the first and the last points in the accessible range of aspect ratio. A
different approach to the problem has to be used.

A theoretical model able to explain these observations is needed and it will be
devised in the next chapters.

3.6 Conclusions

The full characterization of the diffusion of spherical particles at an air–water fluid
interface, proposed in chapter 2, was here extended to prolate spheroidal colloids.
The tunable parameter was not yet the immersion depth in water (that remained
almost constant in all the measurements), but the degree of anisotropy, expressed
by the aspect ratio ϕ. Translational and rotational diffusion coefficients at the
interface were measured in the range 1÷ 10 of ϕ. Lower diffusion coefficients were
found for more elongated particles, in qualitatively agreement with what is ex-
pected in the bulk. However, the dynamics is always slower at the interface than
in bulk, as in the case of spherical beads. The translational diffusion coefficients
at the interface are two times smaller than in the volume, and rotational diffusion
coefficient, especially at high aspect ratios, is measured to be one order of magni-
tude slower than in the bulk. This dynamical slowing–down is reminiscent of the
one measured for beads, pointing out that such behaviors would share the same
physical mechanism. In order to capture it, we propose in the following chapters
a new theoretical approach to the problem.
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Il buon senso c’era; ma se ne stava
nascosto, per paura del senso
comune.

Wisdom was there. But it was
hidden, scared by common
intuition.

Alessandro Manzoni, Promessi
Sposi, cap. XXXII
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Chapter 4

Explanation of slowed-down
diffusion: fluctuation of the
contact line

Introduction

The results reported in the previous chapters show that, for both spherical and
prolate spheroidal particles, a pure hydrodynamics approach accounting the effect
of partial immersion of a particle in water is not sufficient to catch their dynamics
at a fluid interface. All the theories [27, 28, 29] underestimate the measured vis-
cous drag exerted on the particle: both spheres with different immersion depths
and spheroids with different aspect ratios diffuse more slowly than existing hy-
drodynamics theories predict. A new paradigm is thus demanded to explain our
experimental observations.

Additional sources of dissipation that have been neglected in the theoretical
predictions are first considered in this chapter and their contribution is estimated
(par. 4.1). However, all this classical hydrodynamic approaches could not explain
our measured results. Therefore, we adopt a different point of view. All the
existing models consider the contact line in a sort of mean field way, neglecting
the effect of its fluctuations. In fact, it is well–known that the line is driven out of
equilibrium by thermally activated fluctuations of the air–water interface. Here we
investigate the contribution of such fluctuations and their coupling with the lateral
movement of the particle. Random forces produced by such fluctuations add to
the ones due to the shocks of surrounding molecules (par. 4.2). Fluctuation-
dissipation theorem allows to obtain the friction associated to these additional
random forces, as at the thermal equilibrium the particle kinetic energy remains
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fixed by the equipartition theorem to kBT/2 per degree of freedom (par. 4.3).
The corresponding contribution to the particle drag is discussed in two opposite
limiting cases: in the case of a moving contact line, where the fluctuations are
due to molecular jumps (par. 4.4) and in the regime of a pinned line where
fluctuations are associated to capillary waves (par. 4.5). Both mechanisms lead
to the right order of magnitude for the viscous drag, reproducing the measured
particle diffusion and recovering the increasing viscous drag at large contact angles.

4.1 Possible extra dissipation sources

4.1.1 Deformation of the interface

mg

~ 1 mm

water

air

Figure 4.1: Heavy particle (copper bead in the millimetric range) at the air–water interface.
Gravity forces, much larger than the interfacial ones, induce a curved meniscus around the
particle.

The effect of an interface deformation on the lateral dynamics of a particle at
the interface was analyzed by Petkov et al. [30]. In their work they studied the
motion of millimetric spherical particles attached to an air–water interface. Their
method consisted in the measurement of the particle velocity v under the action of
a defined lateral capillary force F . The drag coefficient ζ exerted by the fluid on
the particle was then obtained from the ratio ζ = F/v. As we showed in par. 1.4.2,
the drag coefficient ζ of glass beads (radius 0.2 mm, density ρg ∼ 2.5 · 103 kg/m3)
is in agreement with the numerical predictions. However, when they considered a
heavy copper spherical particle (radius 0.52 mm, density ρc = 8.9 · 103 kg/m3), a
strongly slowed–down dynamics was found. At a contact angle θ = 78◦, the viscous
drag at the interface is 1.75 larger than the one for a particle totally immersed
in water. The qualitative solution proposed in [30] considered the role of a large
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hydrodynamic resistance induced by the curved meniscus around the heavy particle
(fig. 4.1a). The curved meniscus has to move together with the particle, leading
to the motion of the water in the whole region below the meniscus. The total
volume that is displaced during the Brownian motion is thus increased. One can
ask if the same effect plays a role in the micrometric particles in our experiments,
in order to explain the experimental results in chapters 2 and 3.

Let us start with the case of silica micrometric beads. Our particle are much
smaller and lighter (103 times smaller in radius, 109 times in mass) with respect
to the millimetric glass beads used in [30]. Any meniscus–induced additional drag
can be definitely discarded.

The case of spheroidal particles is instead different, since the deformation of
the interface is induced by the shape of the particle, and not by gravity. A char-
acteristic quadrupolar deformation is observed (see par. 3.3 and fig. 4.2). Note
that a typical interfacial profile shows a rise at the center of the particle (yellow
zones) and a decrease at the tips (dark blue zones). Such a deformation relaxes at
the equilibrium level of water (unperturbed interface far from the colloid) along a
distance equal to the radius of curvature of the particle. Due to the anisotropic
shape of the spheroid and to the non–constant radius of curvature, the deformation
at the middle relaxes at longer distances than the one at the tips. As a result, the
whole deformed region can be approximated as an isotropic disk (white dashed line
in fig. 4.2). Its radius is on the order of the long axis a, and the height corresponds
to the distortion measured via PSI.

If we consider the argument of Petkov, the spheroid has to induce the rotation
of the water disk at its same angular velocity. The required additional viscous
torque will be proportional to the disk volume, which is rounded up by:

Vdisk ∼ πa2
b

10
(4.1)

In eq. 4.1 we have considered the maximum disk volume, obtained by the
spheroid with the highest aspect ratio (ϕ = 10), in which the maximal distortion
is around 0.1b (par. 1.6).

With respect to the particle volume, we obtain:

Vdisk
Vspheroid

∼ πa2b/10

4/3πab2
∼ 3

4

ϕ

10
∼ 3

4
(4.2)

In the case of maximum deformation of the interface, the proposed overesti-
mation of the displaced volume, in which the presence of air is not taken into
account, is comparable with the volume of the particle. A volume more than 10
times larger would be instead required to explain our enhanced rotational drag,
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Figure 4.2: False color image of the typical interface deformation around a spheroidal particle.
The interface is higher at the center of the spheroid (yellow zone) and lower at the tips (dark
blue zone). The deformed region around the particle can be approximated by an isotropic disk
(white dashed line).

as found in the experiments (see fig. 3.19). We conclude that particle–induced
deformations cannot be used as an argument for the comprehension of the results
presented in this thesis.

4.1.2 Wedge flow at the interface

It is easy to see that, when a particle is straddled at the interface, the fluid profile
is very close to a wedge. When the particle moves or rotates, such a wedge profile
slides on the particle surface. Dussan and Davis [49] probed the motion of the
liquid in a region in similar condition (moving fluid on a solid substrate), by
marking the upper surface of the wedge with small spots of a dye. They found a
very characteristic rolling motion, reminiscent of a caterpillar vehicle, which gives
rise to a viscous friction (fig. 4.3).

De Gennes [20] computed the corresponding dissipation per unit length due to
such a motion of the contact line. The wedge is treated as a nearly flat film where
the velocity v has a Poiseuille profile, given by the boundary conditions: on the
solid side (z = 0), the velocity vanishes, v = 0; on the gas side (z = ξ(x)), no
tangential stress are present, ∂v/∂z = 0. If we denote with U the average velocity
of the wedge, i.e.

U =
1

ξ

∫ ξ

0
v(z)dz (4.3)
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Figure 4.3: Sketch of the motion of a fluid wedge on a solid substrate, according to the picture
proposed by Dussan and Davis [49] and by De Gennes [20]. The presence of a contact angle θ
between the solid substrate and the fluid gives rise to a fluid wedge. It is moving on the solid
substrate at an average velocity U . The wedge shows a characteristic rolling motion, which is
responsible of the dissipation.

the velocity profile writes

v(z) =
3U

2ξ2

(
−z2 + 2ξz

)
(4.4)

The total dissipation per unit length of the contact line is recovered by:

Pl =
∫ xmax

xmin

∫ ξ(x)

0
η

(
∂v

∂z

)2

dzdx =

∫ xmax

xmin

3ηU2

ξ(x)
dx =

3ηU2

θ
ln
∣∣∣∣xmax

xmin

∣∣∣∣ (4.5)

since ξ(x) = xθ, when θ is sufficiently small; xmin and xmax are cutoff distances.
We will not enter into the details of the discussion, but it is sufficient to note few
characteristic dependencies. First of all, the dissipation depends on U2, and so it
is invariant for advancing and receding wedges. Moreover, such a term is directly
proportional to the viscosity η of the fluid.

Let move on the case we are interested in: a fluid wedge moving on a spherical
bead. The physics is exactly the same as shown for a flat substrate, and so we
recover the corresponding dissipation, proportional to the fluid viscosity. For the
sake of simplicity, we focus into two cases of hydrophilic and of hydrophobic beads.
In the first case (fig. 4.4a), a water wedge is moving on the particle surface. In the
second one (fig. 4.4b), at a complementary position of the interface, the dissipation
on a hydrophobic bead can be obtained considering an air wedge. A much smaller
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water

aira b

water

air

Figure 4.4: A spherical bead at a fluid interface gives rise to a fluid wedge profile at the contact
line. For a hydrophilic particle (a) a water wedge is obtained. For a hydrophobic bead (b) the
air-water interface is at the complementary position; an air wedge can be so pictured. Since the
wedge dissipation [20] (eq. 4.5) is proportional to the fluid viscosity, a larger effect is attended
for hydrophilic bead. This statement is in contradiction with experimental observation.

viscosity (ηair ≪ ηwater) is here present, leading to a negligible dissipation. It
follows that the dissipation due to the motion of a wedge flow is more relevant for
hydrophilic particles, but this result is in contradiction with the experimental data
that we want to explain. Consequently, this is not the effect that we are looking
for.

Such possible extra dissipation sources fail to reach the measured required ad-
ditional drag. In the same way, we can show the contact line friction has no
role in dynamics (see appendix A.3). The effect of a curved meniscus, accounted
for a similar dynamics of heavy millimetric beads, is not suitable for particle in
the micrometer range. The wedge hydrodynamic effects fail to reproduce the be-
havior of the particle diffusion with the immersion depth. The dissipation of a
contact line, moving on the solid substrate, does not increase the total drag of
the particle. A new theoretical paradigm needs thus to be conceived, as it will be
done in the next paragraphs considering the role of fluctuations at the contact line.

4.2 Fluctuating forces at the triple line

Let us consider a top view of a spherical bead; we focus on the contact line and
on the interface at its vicinity. A cylindrical coordinate system (r, φ, z) is defined
(fig. 4.5). r is the radial distance from the normal z to the interface, centered on
the bead. φ is the angular position with respect to an arbitrary axis w over the
interface.

A fluctuation i can occur at a random position of the contact line. Let us
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φ w

r

z

top view

Figure 4.5: Cylindrical coordinate system (r, φ, z), shown in top view of the particle at the
interface. The vertical axis z is perpendicular to the interface and centered on the bead. The
angle φ is defined with respect to the arbitrary axis w, that lies on the interface. The radial
coordinate r is the distance between a generic point and the center of the bead.

consider a line fluctuation having a mean length λ and centered at the angular
position φi. Two types of fluctuations can be involved:

• in the case of a moving line, a local displacement of the contact line on the
particle surface (fig. 4.6a);

• in the case of a pinned line, a local capillary deformation of the interface
profile (fig. 4.6b).

Both fluctuations lead to a variation of the slope of the interface at the contact
line, and so give rise to an unbalanced lateral force σLV λ(1 − cosα). We have
denoted with α the average slope of the interface after a fluctuation, defined as the
angle between the tangent to the interface at the particle and the horizontal (fig.
4.6) and with σLV the liquid-vapor surface tension. At nanometric length scales,
where hydrodynamics meets molecular approach, it is still physically possible to
define such interface slope. With reference to the arbitrary direction w (fig. 4.5)
the net force FL,i is written:

FL,i = σLV λ(1− cosα) cosφi (4.6)

In practice, this single line fluctuation translates in an extra random kick to the
particle, in addition to the ones provided by molecular collisions. The random force
depends on α and λ. They are random variables distributed around an average
value. For the sake of simplicity, only the mean value is considered. Let us consider
now the effect of a large number of fluctuations on the motion of the bead. Since
there are no preferred position along the contact line, the angular position φi of a

91



water

θairσ

σ

σ

SV

SL

LV

α

w

σ

σ

σ

SV
σσ

SL
σσ

LV

αF

water

θairσ

σ

σ

SV

SL

LV

wate

airσ

σ

σ

SV
σσ

SL
σσ

LV

α

a

F

b 

Figure 4.6: Sketch of local fluctuations at the interface: a. displacement of a segment of the
contact line; b. local capillary deformation at a pinned contact line. Both of them lead to a
variation of the slope of the interface at the contact line, denoted by the angle α. This effect
gives rise to an unbalanced lateral interfacial force F on the bead.

fluctuation is uniformly distributed in the range [0, 2π]. Considering the length of
the contact line 2πa0, where a0 = R sin θ, and λ the average lateral length of each
fluctuation, the number of possible fluctuations at a given time is

n = 2πa0/λ (4.7)

Summing over n, we obtain thus the total force:

FL =
n∑

i=0

FL,i = σLV λ(1− cosα)
n∑

i=0

cosφi (4.8)

The random distribution of the fluctuations along the contact line, i.e. of the
angular position φi of FL,i, translates in a null ensemble average ⟨FL⟩ = 0 and in

⟨F 2
L⟩ = n⟨F 2

L,i⟩ =
1

2
n [σLV λ(1− cosα)]2 (4.9)

FL is so a fluctuating force with a null ensemble average and a non-null squared
ensemble average. It adds to the other random force usually considered in pure
hydrodynamics approaches, due to the collisions between the molecules of the
surrounding fluid and the particle itself. To relate this new fluctuating force to
the particle viscous dissipation we use the fluctuation-dissipation theorem.
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4.3 Particle drag via fluctuation-dissipation the-

orem

Fluctuation-dissipation theorem allows to associate a general fluctuating force F
to a drag ζ [50, 51]:

ζ =
1

2kBT

∫ +∞

0
⟨F (0)F (t′)⟩dt′ (4.10)

In practice, the theorem states that if the power injected by the fluctuating
force increases, the dissipated power due to friction has also to increase, as the
final energy of the particle remains fixed by the equipartition theorem to kBT/2
per degree of freedom. Here we use the expression in eq. 4.10 to recover the total
friction exerted on a particle at the interface. In such a case, we have showed that
the random force at a given time t comes from two different contributions; it can
be so written as:

F (t) = FH(t) + FL(t) (4.11)

where FH is the hydrodynamic term due to molecular collisions and FL has
been introduced in eq. 4.8 as the random contribution of the contact line.

The term in the integral in eq. 4.10 is so developed:

⟨F (0)F (t′)⟩ = ⟨[FH(0) + FL(0)] [FH(t
′) + FL(t

′)]⟩ =

⟨FH(0)FH(t
′)⟩+ ⟨FH(0)FL(t

′)⟩+ ⟨FL(0)FH(t
′)⟩+ ⟨FL(0)FL(t

′)⟩ (4.12)

Here we assume the uncorrelated nature of the two types of forces, that leads
to a null ensemble average for the last two, mixed terms. This hypothesis is cor-
roborated by some considerations. In the case of a moving line, the contact line
fluctuations are provided by tangential movements of water molecules, with re-
spect to the particle surface, while FH comes from normal molecular collisions. In
the case of a pinned line, a local capillary deformation of the interface is given by
molecules far from the particle, while molecular collisions are at its vicinity.

Substituting the expression 4.12 in eq. 4.10, we note that the two random
forces FH and FL contributes separately to the total friction ζ. Thus, the friction
is expressed in the form:

ζ = ζH + ζL (4.13)

where the term ζH (ζL) depends just on the integral of the force FH (FL).

The two terms in eq. 4.13 are now discussed separately.

93



4.3.1 Calculation of the hydrodynamics drag ζH

The first term in eq. 4.13 is defined as

ζH =
1

2kBT

∫ +∞

0
⟨FH(0)FH(t

′)⟩dt′ (4.14)

where FH is the force due to the collision between the molecules of the fluid and
the particle. For this reason, FH has a non-trivial expression and the integral in eq.
4.14 cannot be analytically solved. However, this solution is not necessary since
ζH has been already calculated otherwise. In fact, from Stokes-Einstein equation
(par. 1.2.1) we know that the viscous drag for a particle totally immersed in water
is

ζV = 6πηWR (4.15)

where ηW is the viscosity, R is the radius of the particle and the index V stands
for the diffusion in volume.

Figure 4.7: Viscous drag ζH at the interface, normalized by the corresponding value in the volume
(ζV = 6πηR - dashed line) versus contact angle θ. ζH is predicted by existing hydrodynamics
theories, under different approximation (see main text for more details): Danov et al. [27] (green
line), Pozrikidis [28] (red line), Fischer et al. [29] (black line). They agree from a qualitatively
point of view. They follow common intuition: a decreasing drag is expected when the bead is
less immersed in water.

At the interface, the effect of a partial immersion is discussed and predicted
by hydrodynamic theories using different approximations [27, 28, 29] (see chapter
1, par. 1.4.1). All such theories predict, in agreement with common intuition,
a decreasing viscous drag when the particle is less immersed in water (fig. 4.7).
Among the available models, we use the one provided by Fischer et al. [29] as it
is the only one able to analytically compute the values of ζH as a function of the
contact angle θ in the whole experimentally accessible range. In [29] ζH writes as:

ζH = 6π
√
tanh [32 (1 + cos θ) / (9π2)]ηR (4.16)
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4.3.2 Calculation of the contact line contribution ζL

The second term in eq. 4.13 is

ζL =
1

2kBT

∫ +∞

0
⟨FL(0)FL(t

′)⟩dt′ (4.17)

where FL is defined in eq. 4.8. Also in this case the random nature of the force
makes the analytic solution of eq. 4.17 extremely difficult to obtain. However, the
integral can be safely approached by considering the following arguments:

• a new fluctuation at the contact line occurs after an average time τ , charac-
teristic of the considered mechanism;

• each new fluctuation changes the global random force FL on the particle;

• between two successive fluctuations, i.e. during a time τ , the force FL re-
mains constant.

In this way, for t′ > τ , we can state that the two considered forces at different
times F (0) and F (t′) are generated by different fluctuations. Since each fluctuation
is independent and uncorrelated to the others, this means

⟨F (0)F (t′)⟩ = 0 t′ > τ (4.18)

A non–null contribution to the integral in 4.17 is provided only when t′ < τ ,
i.e. when F (0) = F (t′). Consequently, an approximated form for ζL is

ζL ≃ 1

2kBT
⟨FL(0)

2⟩τ. (4.19)

The term ⟨FL(0)
2⟩ has been computed in eq. 4.9. Substituting in eq. 4.19, ζL

is finally written as a function of the parameters α, λ and τ :

ζL ≃ 1

2kBT
σ2
LV (1− cosα)2 λπR sin θτ (4.20)

This is the expression for the drag contribution due to a generic fluctuation at
the interface, characterized by:

• an average slope α of the interface after the fluctuation;

• a typical lateral extension λ of the fluctuation;

• a correlation time τ of the fluctuating force.
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No other assumptions are made on these parameters until this point of the dis-
cussion. Their physical meaning is here discussed in the two limits: of a moving
line using the theoretical background of Molecular Kinetic Theory proposed by
Blake [52] (par. 4.4) and of a pinned line taking into account local capillary fluc-
tuations of the interface (par. 4.5). In a general case, both of them do contribute
to the additional drag but here, in the interest of clarity, they will be discussed
separately.

4.4 Particle drag due to thermal hopping of the

contact line
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Figure 4.8: Sketch of local fluctuations at the interface in the case of a moving line. The line
jumps over a distance λ on the particle substrate, resulting in a variation α of the interface slope
at the contact line. Such a deformation gives rise to the random force FL on the bead.

In Molecular Kinetic Theory (MKT), Blake [52] assumed that the contact line is
constantly moving around its equilibrium position because of thermally activated
jumps of water molecules between hydrophilic sites of the bead surface. In his
work, this hypothesis is then used to derive the displacement of the contact line
under the effect of a driving force on the line. On the contrary, in our case no
external forces are applied and the contact line stays, in average, at the same
position. However, if molecular jumps are present according to MKT, they induce
fluctuations of the interface at the vicinity of the triple line, giving rise to the effect
described in the previous paragraphs.

4.4.1 Molecular Kinetic Theory

Let us consider now a non-ideal solid substrate, where defects or chemical hetero-
geneities are present. The contact line can jump between such sites, providing two
effects:
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• thermal fluctuations of the contact line;

• a solid friction of a moving contact line, due to the pinning energy of the
defects.

The first one will be here used in order to describe the dynamics at the interface.
A theoretical derivation of such dissipation is here described [23].
The main assumption of Blake model is that the molecules of the fluid phases can
jump, because of thermal excitations, between adsorption sites on the solid surface,
spaced by a distance λ. In particular, we are interested to the case of adsorbed
molecules of a species interchanging with those of the other one, when they are close
enough to the contact line. As a consequence, thermally activated fluctuations of
the contact line around its equilibrium position appear at a molecular scale (fig.
4.9). The number of molecular jumps, in unit time and in unit length, from water
to air can be written as an Arrhenius-like term, by using the absolute reaction
rate [53]:

κ+ =
kBT

hp

Z∗

Z+

exp
(−ϵ+
kBT

)
(4.21)

where ϵ+ is the activation energy for a molecular jump in the considered di-
rection, Z∗ and Z+ are the partition function that take into account the number
of the activated and the initial states respectively, hp is the Planck constant and
kBT the thermal energy. The term kBT/hp gives thus the frequency of a thermal
photon. In the same way, the jump rate per unit length in the opposite direction
(from air to water) is

κ− =
kBT

hp

Z∗

Z−
exp

(−ϵ−
kBT

)
(4.22)

with ϵ+ ̸= ϵ−. At the equilibrium, the net jump rate has to be null, so

κ+ = κ− = κ0

Z−

Z+

= exp
(
ϵ+ − ϵ−
kBT

)
(4.23)

The jump rate at the equilibrium κ0 can be finally expressed in the form:

κ0 ≃
kBT

hp
exp− ∆ϵ

kBT
(4.24)

i.e. the frequency of the thermal photon times a Boltzmann factor representing
the probability of a molecular jump. ϵ is here used as an effective activation energy.

In presence of an external force (per unit length) f , the jump rate depends on
the force orientation. This effect translates in an alteration of the energy barriers,
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Figure 4.9: Schematic picture of the region around the contact line, in the framework of the
Molecular Kinetic Theory. The molecules of the fluid phases (spheres) can jump from one phase
to the other, between adsorption sites on the solid substrate. Such sites are spaced by an average
distance λ. We denote with κ+ the number of molecular jump, in unit time and in unit length,
from water to air; κ− is the same term, but in the opposite direction. At the equilibrium, i.e.
when no external forces act on the contact line, the net jump rate is null, so κ+ = κ−. When
the equilibrium is broken, a displacement of the contact line occurs.

lowered in the same orientation of the force and raised in the opposite one. For
a single adsorption site of length λ, the work δw done to displace the line to the
following site at a distance λ is:

δw = fλ2 (4.25)

The net jump rate is thus

κnet =
kBT

hp

[
Z∗

Z+

exp

(
δw − ϵ+
kBT

)
− Z∗

Z−
exp

(
−δw − ϵ−
kBT

)]
=

= κ+ exp

(
δw

kBT

)
− κ− exp

(
−δw
kBT

)
(4.26)

From eq. 4.23,

κnet = 2κ0 sinh

(
δw

kBT

)
(4.27)

98



The velocity of the contact line, given by v = λκnet, is fully expressed by using
eqs. 4.27, 4.25:

v = 2κ0λ sinh

(
fλ2

kBT

)
(4.28)

For low values of the argument in the sinh function, the linearization leads to

v = κ0λ
3 f

kBT
(4.29)

The velocity v is thus proportional to the applied external force f ; a corre-
sponding friction coefficient (per unit length) ζ0 is so introduced

ζ0 =
f

v
=
kBT

κ0λ3
(4.30)

Such a friction coefficient is a function of the average distance λ between ad-
sorption sites, i.e. it depends on the properties of the solid substrate.
The jump rate κ0 has been detailed in further developments of theory. Blake [54]
proposed to write the activation energy ϵ in eq. 4.24 as the free energy of wetting
∆gW . ∆gW has two contributions, from both surface (∆gS) and viscous (∆gV )
energy:

∆gW = ∆gS +∆gV (4.31)

According to Eyring theory [55], ∆gV is related to the liquid viscosity η via:

∆gV = kBT ln
ηυm
hp

(4.32)

υm is the volume of the unit flow that, in our case, correspond to the molecular
volume of the liquid (υm = 4 · 10−29 m3). Taking ∆gS ∼ Ea, i.e. the energy of
adhesion of an element of fluid on the solid substrate (this term will be better
defined in a further discussion), the final expression for κ0 is

κ0 ≃
kBT

ηυm
exp− Ea

kBT
(4.33)

The characteristic length λ here corresponds to the mean distance between hy-
drophilic sites on the surface of the particle and it is used as a free parameter. Its
value as a function of θ is calculated according to the experimental data. The de-
formation α imposed to the interface and the correlation time τ of the fluctuations
are both dependent on λ and they are discussed in details.
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Figure 4.10: Schematic view (not in scale) of the contact line displacement at the interface. A
line jump occurs at the angular position φi, defined with respect to an arbitrary axis w. For the
sake of simplicity, a stepwise fluctuation of the contact line is considered. A segment of length λ
is displaced over a length λ on the surface. The jump results in the deformation of the interface
at the contact line in the position φi.

4.4.2 Interface slope α at the particle

For the sake of simplicity, we assume a stepwise jump (fig. 4.10) of the contact
line on the particle with respect to the equilibrium height z = 0. In cylindrical
coordinates z = z(r, φ), the line is displaced along an arc of length λ centered at the
arbitrary position φi over a distance λ on the particle surface. This displacement
on the particle surface induces a deformation of the air-water interface which, in
the limit of small deformation of the considered thermal process, obeys the Laplace
equation:

∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2
∂2z

∂φ2
= 0 (4.34)

The stepwise deformation of the contact line is developed in eigen–modes and
used as a boundary condition for the solution [48] of eq. 4.34:

z(r, φ) =
uλ

2πa0
ln
(
r

a0

)
+

+∞∑
n=1

u

πn
sin

(
λn

2a0

)
cos(nφ)

(
a0
r

)n

(4.35)

where a0 is the radius of the contact line and u = λ sin θ is the projection of
the displacement on the z-axis. The slope α (see fig. 4.6a) of the interface at
the contact line (r = a0) and in the point where the jump occurs (due to the
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arbitrariness of the choice, we take φ = 0) is recovered from:

tanα = −∂z
∂r

∣∣∣∣
r=a0,φ=0

= − uλ

2πa20
+

u

πa0

+∞∑
n=1

sin

(
λn

2a0

)
= −λ

2 sin θ

2πa20
+

4 sin θ

π
(4.36)

In the assumption that the displacement λ is much smaller than the size of the
contact line, i.e. λ≪ a0, eq. 4.36 is simplified

tanα ≃ 4 sin θ

π
(4.37)

This means that α ∼ 0.6− 0.9 rad for any contact angle θ in the experimental
accessible range [30◦, 140◦].

The line jump on the bead changes also the projection on the plane z = 0 of
the other two interfacial forces (per unit length), σSL and σSV (fig. 4.11), since
they are always tangent at the particle surface. If we denote with the angle β the
angular jump with respect to the bead center (fig. 4.11), we have

β =
λ

R
≪ 1 (4.38)

much smaller than α. This variation is negligible and it is not considered in
our model.

β

σ
SV

σ
SL

λ

R

σ
LV α

θ

Figure 4.11: Schematic picture (not in scale) of the change of the projection of the two interfacial
forces (per unit length) σSL and σSV on the equilibrium interface plane. When the line jumps
over a distance λ on the bead surface, it describes an angle β = λ/R with respect to the bead
center.

4.4.3 Line hopping characteristic time τ

Since the line jump is a thermally activated mechanism, an Arrhenius-like [56]
jump rate κ0 can be introduced:

κ0 ∝ exp− Ea

kBT
(4.39)
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where Ea is the activation energy necessary to allow the line jump. In a simple
picture, Blake suggested modeling Ea as the work needed to detach an area of water
from the particle surface at the vicinity of the contact line [57]. The size of such
an area is fixed by the characteristics of the substrate. Since λ is the characteristic
length in both direction, the area is λ2. The activation energy writes (fig. 4.12):

Ea = E2 − E1 = λ2 [(σLV + σSV )− σSL] = λ2σLV (1 + cos θ) (4.40)

where the latter term is obtained by using the equilibrium contact angle θ from
Young’s law.

S L

L

S
λ

S V

L V

S
λ

L

E E
1 2

Figure 4.12: Schematic view of the work involved in the detachment of an area λ×λ from the solid
substrate. λ is here considered as a characteristic length in both the directions. In the initial state
(E1), the water wets the solid substrate, and a liquid-solid interface is considered. When the area
λ× λ is detached (E2), the previous interface is suppressed and two new interfaces are created:
liquid-vapor and solid-vapor. Each interface has its own surface tension. The activation energy
is thus the difference of the two configurations, i.e. Ea = E2 − E1 = λ2 [(σLV + σSV )− σSL].
Such an energy corresponds to the adhesion work for the area λ2.

Note that Ea does not correspond to the energy gap ∆E between the final and
the initial configuration of the triple line, i.e. the energy needed to wet an area
λ2 (fig. 4.13). Thermal agitation is involved in the detachment of the contact line
and needs to overcome the barrier potential Ea.

The coefficient of proportionality in eq. 4.39 has been deduced from experi-
mental observations [54] and a final expression for the jump rate κ0 is:

κ0 =
kBT

ηυm
exp−λ

2σLV (1 + cos θ)

kBT
(4.41)

where υm = 4 · 10−29 m3 denotes the molecular volume of water. It simply
follows that the characteristic time of the fluctuations is τ = 1/κ0, i.e.:

τ =
ηυm
kBT

exp
λ2σLV (1 + cos θ)

kBT
(4.42)
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Figure 4.13: Behavior of the free surface energy as a function of the different configurations
of the contact line (qualitative picture). At the initial configuration (E1), corresponding to a
straight contact line and a flat interface, the line stays at its equilibrium position. When an area
λ2 is detached (E2), an additional work Ea = E2 − E1, corresponding to the adhesion energy,
is needed (see fig. 4.12). Finally, the line lays on the particle surface, but at a non-equilibrium
position (E3). The energy gap between the final and the initial configuration ∆E = E3 − E1

is the energy needed to wet an area λ2. This behavior shows that Ea has the role of a barrier
potential in a line displacement process.

For nanometric length scales, as found in our experiments (see par. 4.4.4),
typical τ ∼ 10−11 − 10−10 s. Such times are comparable with the mean time
between molecular collisions [58]. Moreover, τ ≪ τb, where τb is the ballistic time:
such condition allows considering interfacial deformations as a random contribution
in particle dynamics, as the one due to molecular collision.

4.4.4 Fitting of the friction term ζL due to thermal hopping

The contribution ζL of the triple line can be extract from the experimental data
shown in chapter 2 (fig. 2.12). Starting from the ratio r = DS/DV we write:

r =
kBT

ζS

ζV
kBT

=
6πηR

ζH + ζL(λ)
(4.43)

Hence,

ζL(λ, θ) =
1

r(θ)
6πηR− ζH(θ) (4.44)

The resulting ζL versus θ is plotted in fig. 4.14 (points). ζH is also reported
for comparison (solid line in fig. 4.14). At small contact angles (30◦ − 60◦) the
line contribution to particle drag is negligible with respect to the viscous drag.
In fact, in this range, hydrodynamic theories are able to describe the colloidal
dynamics [6]. Then, ζL increases with the contact angle and its effect becomes
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Figure 4.14: Points: additional drag ζL versus contact angle θ, in a semi-log scale. The values
are recovered from experimental measurements (fig. 2.12), according to eq. 4.44. Solid line:
hydrodynamics drag at the interface ζH versus θ, computed from the model provided by Fischer
et al. [29]. ζL is negligible for small contact angles (30◦ − 60◦), but it is comparable to, and also
overcomes, the hydrodynamics drag for θ > 90◦.

more important: at θ = 95◦, ζL is just 2 times smaller than ζH . Finally, for
hydrophobic beads, ζL is comparable to, and even overcomes at larger contact
angles, ζH and its contribution to the drag becomes dominant. We can use the
discussion in previous paragraphs to catch the behavior of such points. α in eq.
4.37 and τ in eq. 4.42 are replaced in eq. 4.20, leaving λ as the only free parameter:

ζL =
(1− cosα)2

2

(
σLV
kBT

)2

λπR sin θηυm exp
λ2σLV (1 + cos θ)

kBT
(4.45)

A constant λ cannot fit the data. Thus, we assume a dependence λ vs. θ. It is
deduced combining the values in fig. 4.14 with eq. 4.45 and plotted in fig. 4.15a.

λ is in the nanometric range, as expected for a heterogeneous surface. The
point at θ = 30◦, corresponding to bare silica surface, gives λ = 0.48 nm, in
agreement with the measured spacing between hydrophilic SiOH groups [59]. After
hydrophobic surface treatments, silane chains are added on the silica substrate,
resulting in a decreasing of the number of free OH groups per area, i.e. an increase
of the mean distance between them. Such an expected trend [59] is recovered
(see fig. 4.15a). However, this behavior, and also the corresponding values for
the jump rate κ0, are different from the one calculated by Petrov et al. [60]. This
discrepancy can be justified by the different nature of the considered substrate and
by the small range of contact angles accessible in their experiments.
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Figure 4.15: a. Average size of line jumps λ versus the contact angle θ. Points are obtained
from the measured ratio r (fig. 2.12) via the proposed model (eq. 4.20). b. Fractional area f of
free silica substrate in the Cassie–Baxter model versus contact angle θ, recovered from eq. 4.46.
f = 1 is a bare silica substrate (θ = 30◦). f decreases when hydrophobic silane agents are added
on the surface. c. Fractional area f versus the corresponding jump length λ. On a bare silica
substrate (f = 1) λ = 0.48 nm, corresponding to the mean distance between OH groups. d. Red
points: fractional silica area f versus λ−2. λ−2 corresponds to the number of free OH groups
per unit area. Solid line: best fit of the plotted values, showing the linear behavior of f vs. λ−2.
The fractional area follows a dilution law f = (λ0/λ)

2.

The dependence λ versus θ in fig. 4.15a can be tentatively explained in the
framework of the Cassie–Baxter model for heterogeneous surfaces. In our case we
assume that, after adding silane, the particle surface is made of two sorts of regions:
a hydrophilic region 1 and a hydrophobic region 2. The macroscopic contact angle
of such substrate is given by the average of the contact angles of the two regions,
weighted by the fractional area f1 = f and f2 = 1− f occupied by each one:

cos θ = f cos θ1 + (1− f) cos θ2 (4.46)

In our case, θ1 = 30◦ corresponds to the contact angle of bare silica beads
(first point in fig. 4.15a), where no surface treatment was performed. θ2 = 155◦
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is slightly larger than the one usually found for silane treated surfaces. It can be
considered as an effective value due to the presence of air bubbles between silane
chains and water [61]. Using eq. 4.46, we recover f versus θ (fig. 4.15b). It
simply follows from its definition that f = 1 at θ = 30◦ (bare silica substrate) and
then it decreases when hydrophobic silane agents are added on the surface. The
measured dependence of λ versus θ (fig. 4.15a) leads to a relation between the
fractional silica area f and the jump length λ (fig. 4.15c). An increasing of the
distance between hydrophilic sites translates in a more hydrophobic substrate, i.e.
a decreasing f . To better analyze this dependence, let us plot the previous graph
in a different scale, f versus λ−2 (fig. 4.15d). Note that λ−2 has the meaning
of number of free OH groups per unit area. The linear behavior observed in fig.
4.15d allows writing the dependence

f =

(
λ0
λ

)2

(4.47)

where the constant λ0 = 0.48 nm is the value of the jump length when f = 1.
Let us discuss a possible physical picture elucidating such dependence. In the

case of the most hydrophilic beads (θ = 30◦), no silane is added and a bare silica
substrate is considered (fig. 4.16a). The contact line can jump between OH groups,
λ0 = 0.48 nm apart, in agreement with the value provided in literature [59]. The
addition of silane progressively covers such hydrophilic sites, since OH groups are
substituted by a silane chains (fig. 4.16b). Here, the average distance between
OH groups, and the corresponding line jump, corresponds to a new value λ∗ > λ0.
This means that the average jump length λ increases with the number of covered
sites. Over a surface, this mechanism have to follow a dilution law of hydrophilic
regions in (λ0/λ)

2, as experimentally found.

4.5 Particle drag due to capillary waves

We assume now a strongly pinned contact line, that it is not able to fluctuate
anymore. However, the interface at its vicinity can fluctuate, because of thermal
excitation. Such a deformation can be discussed in term of thermal capillary waves,
as done by Smoluchowski [62]. The capillary fluctuations modify the interface slope
(fig. 4.17) and give rise to random forces, as depicted in par. 4.2.

The line contribution ζL to the particle drag is still written as in eq. 4.20:

ζL ≃ 1

2kBT
σ2
LV (1− cosα)2 λπR sin θτ

With respect to the previous case, just the physical meaning of the parameters
α, τ and λ is changed.
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Figure 4.16: 1D Microscopic picture of line jumps and their dependence on the surface topog-
raphy and hydrophobicity. a, At θ = 30◦, the displacement of the contact line is given by a
characteristic size λ0, i.e. the distance of OH groups on the bare silica substrate. b, Increasing
hydrophobicity, added silane chains can randomly cover hydrophilic sites, which become unable
to pin the line. Here, the new jump length is λ∗ > λ0. Elsewhere, this distance remains the
same. Consequently, the average distance between pinning sites, and the mean jumps λ with it,
increases with the hydrophobicity.
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Figure 4.17: Sketch of local fluctuations at the interface in the case of a pinned line. A local
capillary deformation of the interface is induced by thermal energy. The interface slope at the
contact line is so changed of an average angle α, that gives rise to the random force FL on the
bead.

The distance λ denotes the size of the local capillary deformation and cor-
responds to the correlation length of a capillary wave [63], λ = 1/kmax, where
kmax = 2π/ℓ is the largest wave-vector of capillary waves and ℓ is a molecular
distance. A more detailed discussion is needed for an estimation of the slope of
the interface and of the life–time of the fluctuation.
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4.5.1 Interface slope α at the particle

The profile of the fluctuating interface depends on two energy contributions:

• the gravitational energy ∆Eg due to the displacement of matter along the
vertical axis;

• the surface energy ∆Ec, related to the extra interface area generated by the
waves.

Let us denote the local interface position with the coordinate r = (x, y, h(x, y)),
where h = 0 is the mean position of the interface. In order to displace water over
a distance h along g, in an infinitesimal area dxdy, gravity contributes

δEg =
∫ h

0
h′g(ρ− ρ′)dxdydh′ =

1

2
g(ρ− ρ′)h2dxdy (4.48)

where g is gravity acceleration and ρ > ρ′ are the densities of the two fluid
phases.

The contribution of the interfacial tension, due to the extra area in the same
infinitesimal region, is

δEc = σLV δA = σLV dxdy
(√

1 + h2x + h2y − 1
)
≃ 1

2
σLV dxdy

(
h2x + h2y

)
(4.49)

where hi = ∂h/∂i (i = x, y), with the hypothesis that h2x ≪ 1, h2y ≪ 1.
In an arbitrary region L×L, the energy contributions ∆Eg, ∆Ec are obtained

from integration of eqs. 4.48, 4.49.
By expanding in a Fourier series:

h =
∑
k

hke
i(kxx+kyy) (4.50)

and using the Parseval’s identity

1

L2

∫
L2
h2dxdy =

∑
k

|hk|2

we obtain

∆E = ∆Eg +∆Ec =
1

2
L2
∑
k

|hk|2
[
g(ρ− ρ′) + σLV k

2
]

(4.51)

According to equipartition theorem, the work necessary to create one mode is
kBT/2 [64]; from eq. 4.51 we thus recover the thermal average of the square of
each Fourier component [65]:
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⟨|hk|2⟩ =
kBT

L2σLV

1

k2 + ℓ−2
c

(4.52)

where ℓc is the capillary length: ℓc =
√
σLV /[g(ρ− ρ′)].

Using again the Parseval’s identity, eq. 4.52 is related to the mean square
interfacial roughness after a capillary deformation:

∑
k

⟨|hk|2⟩ =
1

L2

∫
L2
h2dxdy = ⟨h2⟩ (4.53)

The summation in eq. 4.53 is approximated by the integral

∑
k

⟨|hk|2⟩ ≃
L2

4π2

∫ kmax

kmin

|hk|2 dk2 (4.54)

Combining eqs. 4.52, 4.53, 4.54

⟨h2⟩ = kBT

4π2σLV
ln

[
k2max + ℓ−2

c

k2min + ℓ−2
c

]
(4.55)

kmax and kmin are cut–off values for the wavevector. We have kmax = 2π/ℓ,
where ℓ is a molecular length, and kmin = 2π/L, with L a typical system size, as
introduced above.

These results are used to find the slope of a thermally deformed interface at
the contact line [63]. For the sake of simplicity, the dissertation is reduced to a
1D system and the interface is considered pinned at the particle surface: h = 0 at
x = a0 (fig. 4.18).

Eq. 4.50 is so expressed in a simplified form:

h =
∑
k

hk sin (k(x− a0)) (4.56)

and the slope of the interface at the contact line (x = a0) is thus:

tanα =
∂h

∂x

∣∣∣∣∣
x=a0

=
∑
k

hkk (4.57)

A strong approximation is here required, since the amplitude of each mode is

unknown. Hence, we roughly assume ⟨hk⟩ ∼
√
⟨h2k⟩ and eq. 4.57 becomes

tanα ∼
∑
k

√
⟨h2k⟩k ∼

∑
k

√
kBT

σLV

1

L
∼ n

√
kBT

σLV

1

L
(4.58)

i.e. the sum of a constant term over the n modes of the capillary wave.
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Figure 4.18: 1-D schematic view of a capillary deformation of an air-water interface. The new
interface profile is denoted by h(x). The interface fluctuates around the mean position h = 0
and it is pinned at the contact line h(x = a0) = 0. We are interested in the slope of the air-water
interface at the particle surface: the corresponding average angle α is estimated in the text.

If n = kmax/kmin = L/ℓ, according to previous definitions, we finally have an
estimation of the magnitude of the interface slope:

tanα ∼
√
kBT

σLV

1

ℓ
(4.59)

The corresponding mean value at room temperature (T = 25◦C) at the air–
water interface (σLV = 0.072 N/m), for a nanometric λ, is α ∼ 0.5− 1 rad. Such
a value for the slope of the interface is comparable to the one provided in the case
of a moving line. This means that also capillary waves deform significantly the
interface and their effect in particle dynamics, via contact line fluctuations, has to
be considered.

4.5.2 Characteristic time τ of capillary fluctuations

In order to find the life–time of fluctuations, one need to calculate the fluctuation
correlation time. We assume a non-Markovian process (the interface height at a
time t depends on the random forces Fk(s) at all the previous times s < t) and,
according to Langevin theory, an alternative form for h is written [66]:

hk(t) =
∫ t

−∞
dsχk(t− s)Fk(s) (4.60)

where χk is the response function. In the Fourier space, this term is given by
[67, 68]:
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χk(ω) =
1

−iωγk(ω) + σLV k2
(4.61)

and

γk(ω) =
2ωρ

k
[
i+

(
iω
νk2

− 1
)−1/2

] (4.62)

with ν the kinematic viscosity of the liquid.
The thermal, random force Fk is provided taking into account fluctuation-

dissipation relation and equipartition theorem:

⟨Fk(t)F
∗
k(0)⟩ = kBTγk(t) (4.63)

In the strong damping limit (νk2 ≫ 1), eqs. 4.61, 4.62, 4.63 are simplified:

γk(ω) = 4ρνk − 3ρiω

k
+

ρω2

4k3ν
+O(ν−2) ≃ 4ρνk (4.64)

χk(ω) ≃
1

−i4ωρνk + σLV k2
(4.65)

and

⟨Fk(ω)F
∗
k(0)⟩ ≃ 4ρνkωkBT (4.66)

The inverse Fourier transform allows to return in time domain; eq. 4.65 be-
comes

χk(t) ≃
1

4ηk
exp

(
−σLV k

4η
t

)
Θ(t) (4.67)

where Θ(t) is the Heaviside function, and

⟨Fk(t)F
∗
k(0)⟩ ≃ 4ρνkkBTδ(t) (4.68)

with δ(t) Dirac delta function.
Using eq. 4.60, the height-correlation function results as

⟨|hk(t)|2⟩ =
kBT

σLV k2

[
1− exp

(
−σLV k

2η
t

)]
(4.69)

At long time scales, we recover the expression found in eq. 4.52; the life–time
for each mode of the capillary wave is thus
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τk =
2ρν

σLV k
=

2η

σLV k
(4.70)

In a rough approximation we state that, when the fastest mode vanishes, a dif-
ferent capillary deformation, not yet correlated with the previous one, is occurring.
The resulting correlation time τ is written:

τ = τk,min =
2η

σLV kmax

(4.71)

As in the previous case, typical values of τ (τ ∼ 10−11 − 10−10 s ≪ τb) justify
to treat the capillary waves contribution as a random force on the particle.

4.5.3 Fitting of the friction term ζL provided by capillary
waves

The discussion in the previous sections allows to express eq. 4.20 in the form:

ζL =
(1− cosα)2

2kBT
ησLV πa0λ

2 (4.72)

Two different approaches are used in order to obtain an estimation of λ. In
the first one (fig. 4.19), λ is considered independent of the surface properties of
the particle. Constant values of λ (0.5 nm, 1 nm, 2 nm), in agreement with the
molecular scale, provide the right order of magnitude for ζL (∼ 10−9−10−8N s/m),
but they are not able to catch the dependence on the contact angle θ.

In the second one (points in fig. 4.20), a variable λ is used to get the measured
additional friction drag, according to eq. 4.72.

Also in this case, λ is found in the nanometric range. A curve λ = A/ (1 + cos θ)
fits reasonably the experimental data (solid line in fig. 4.20). The 1

1+cos θ
depen-

dence is found from few considerations. In the present model, we consider the effect
of interface fluctuations around a pinned contact line. For large fluctuations, the
line can eventually de–pin and move on the particle surface with a negligible dis-
sipation. It follows that fluctuations that induce the detachment of the contact
line do not contribute to ζL. The condition under which this effect occurs is here
discussed in terms of a cut–off wavevector. The notion of contact angle hysteresis
does not apply to such a nanometric scale [21], so the detachment of the line needs
to be treated with a different approach.
A thermal capillary force Fth acting on the contact line is considered. The line stays
pinned when Fth do not overcome the adhesion force Fa on a segment ℓn = 1/kn, i.e.
the lateral extension of the capillary deformation [63] at the selected wavevector
kn. According to eq. 4.40, proposed in the regime of a moving line, the adhesion
force Fa is calculated from:
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Figure 4.19: Points: additional drag ζL versus contact angle θ, computed from eq. 4.72. Lines:
the parameter λ is here considered constant to the reasonable values of λ = 0.5 nm (dash–dotted
line), 1 nm (solid line), 2 nm (dashed line), in agreement with molecular distances. All of them
provide the right order of magnitude for ζL (∼ 10−9 N s/m), but they are not able to catch the
dependence on θ.
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Figure 4.20: Points: lateral correlation length λ of the capillary waves, here used as free parame-
ter, as a function of the contact angle θ. Values of λ are computed according to eq. 4.72 in order
to recover the measured additional drag (see fig. 4.19). Solid line: the behavior λ ∼ 1/(1+cos θ)
is proposed to fit the experimental data (eq. 4.75).
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ℓnFa = Ea = ℓ2nσLV (1 + cos θ) (4.73)

The condition Fa ≥ Fth becomes:

ℓn =
1

kn
≥ Fth

σLV

1

1 + cos θ
(4.74)

The term in the right hand side corresponds thus to a threshold value 1/kmax.
Since the correlation length of the capillary fluctuation was defined as λ = 1/kmax,
as stated at the beginning of this section, the behavior plotted in fig. 4.20 (solid
line) is recovered:

λ =
Fth

σLV

1

1 + cos θ
(4.75)

This argument could be a starting point for future deeper analyses.

4.6 Conclusion

In this chapter, a theoretical discussion of the diffusion of spherical beads at the
air–water interface was proposed. The purpose was to find an explanation for
intriguing behavior observed in our experiments: an increasing viscous drag when
the particles are less immersed in water. Here we explored the role of random forces
on the bead due to thermally activated fluctuations of the interface at the contact
angle, that add to the usual ones due to the molecular shocks. Such fluctuations
were associated to molecular jumps in the case of a moving contact line and to
capillary waves in the regime of a pinned line. Using the fluctuation-dissipation
theorem and the equipartition theorem we introduced an additional drag able to
catch the colloidal dynamics at the interface. This term is written as a function of
the characteristic size of the fluctuation, which is left as the only free parameter.
In order to recover the measured additional drag, such a length needs to be in
the nanometric range, in agreement with the molecular origin of the phenomenon.
Moreover, in both the regimes we are also able to associate the enhancement of the
drag for hydrophobic beads to an increase of the correlation length, considering
the non–ideal properties of the solid substrate.
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Quando cos̀ı il mio dramma si
complicò, cominciarono le mie
incredibili pazzie.

When the drama became
complicated, my incredible acts of
madness began.

Luigi Pirandello
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Chapter 5

Fluctuation of the contact line in
spheroidal colloids

Introduction

In the present chapter, we generalize the model of drag enhancement due to inter-
face fluctuations at the contact line to the more complex morphology of prolate
spheroidal colloids. The drag coefficient ζ is computed as the sum of the two
contributions, ζH and ζL, as we have done for spherical beads. We consider their
dependence on the aspect ratio ϕ for both rotational (par. 5.1) and translational
(par. 5.2) dynamics. Since the contact line length varies with the aspect ratio, we
can expect an enhancement of the drag for more elongated colloids.

5.1 Rotational diffusion at the interface

We consider the rotational motion of a spheroidal particle around a vertical z–axis,
with respect to the azimuthal angle φ. The corresponding rotational diffusion
coefficient is known when the colloid is totally immersed in the fluid [36] (see par.
1.5.1):

ζφ,V = 6ηV Gφ (5.1)

η is the viscosity of the fluid, V denotes the volume of the particle and the
geometric factor Gφ depends on the aspect ratio ϕ.

Very few works considered the rotational motion at the interface [69, 70], but a
qualitative argument can be used. Given the partial immersion in water, we expect
a reduced hydrodynamic drag ζφ,H at the interface with respect to the value in the
volume ζφ,V . However, the measured drag at the interface is much larger (from
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5 to 10 times, going from 3 to 10 in aspect ratio) than the one in volume (fig.
3.19 in chapter 3, or see fig. 5.4 par. 5.1.2). In such a range of aspect ratio,
the hydrodynamic drag can be safely neglected. In the following, we will compute
the drag ζφ,L from interfacial deformations, as dominant term in the rotational
dynamics.

5.1.1 Calculation of the contact line contribution ζφ,L to
rotational drag

For the sake of simplicity, we compute the effect of interfacial fluctuations in the
case of a flat contact line. This is a first–order approximation, since a constant
macroscopic contact angle at a non–spherical particle induces a deformation of the
contact line [40] and, consequently, of the air-water interface at its vicinity (see
par. 1.6). PSI measurements of the interface height around a spheroidal particle
(par. 3.3) confirm this theoretical prediction and quantify the gap ∆z between
the lowest and the highest points of the interface (fig. 5.1a). As an example, at
ϕ = 2.7 we measure ∆z = 80 nm. Such a deformation amplitude is negligible
with respect to the particle extension 2b = 1.38µm on the vertical axis (fig. 5.1b).
The same behavior has been measured by Loudet et al. [40] in the whole range
of experimentally accessible aspect ratios. For this reason, our approximation is
valid for a first estimation of the rotational drag. A second order correction due
to a non-planar line could be then considered, but it is not subject of the present
study.

Δz = 80 nm
2b = 1.38 µm

water

air

a b

Figure 5.1: a. False color image of the interface around a spheroidal particle with aspect ratio
ϕ = 2.7. To achieve a constant contact angle at a particle with a non-constant curvature radius,
the interface needs to be higher at the center of the spheroid (yellow zone) and lower at the
tips (dark blue zone). b. Sketch (not in scale) of the front view of a spheroidal particle at the
interface. The distance between the highest and lowest points of the interface is ∆z = 80nm,
recovered from PSI measurement. The vertical size of the particle is 2b = 1.38µm, so ∆z ≪ 2b.

In such hypothesis, a net horizontal component of a force applied at the contact
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line exerts a torque that makes the spheroid rotate on the interfacial plane. In the
case of a random force FL,i due to a generic line fluctuation i, the corresponding
torque is

ΓL,i = ri × FL,i (5.2)

ri is the distance between the site i on the contact line and the center of the
particle (fig. 5.2) and it is a function of the angular position φi. The symbol ×
stands for cross product.

Such a random torque ΓL along the vertical axis, due to interface fluctua-
tions, is associated to the particle rotational drag ζφ,L, via Langevin equation and
fluctuation-dissipation theorem:

ζφ,L ≃ 1

2kBT
⟨ΓL(0)

2⟩τ (5.3)

The term ⟨ΓL(0)
2⟩ is thus estimated.

The magnitude of the torque is written in the form:

ΓL,i = FLri(φi) sin νi(φi) (5.4)

where νi is the angle between the random force and the vector ri, as depicted in
fig. 5.2; both of them are a function of φi. The magnitude FL of the random force
is instead not dependent on the angular position, since it rises from a local fluc-
tuation. We recall the expression provided in the previous chapter, as a function
of the parameters λ (mean length of a fluctuation) and α (average slope of the
deformation):

FL = σLV λ (1− cosα) (5.5)

where σLV is the air-water surface tension.

The quantities ri and νi are calculated as a function of the parameter φ and
of the aspect ratio ϕ. First of all, we parameterize the contact line as an ellipse
in a Cartesian coordinate system (x, y), with axes ã = a sin θ and b̃ = b sin θ. θ is
the contact angle and a, b the axes of the spheroid. The relation with the angular
coordinate φ is given by

x = ã cosφ y = b̃ sinφ (5.6)

The distance r of a generic point of the contact line from the center (fig. 5.2) has
a modulus:

r2 = x2 + y2 = ã2 cos2 φ+ b̃2 sin2 φ = b̃2
(
ϕ2 cos2 φ+ sin2 φ

)
(5.7)
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Figure 5.2: Top view of the contact line of a spheroidal particle. The contact line is an ellipse of
axes (ã, b̃) in a Cartesian coordinate system (x, y). A random force FL acts on a generic point of
the contact line, at a distance ri from the center of the particle. We have so a resulting torque,
whose magnitude is Γi = FLri sin νi, where νi is the angle between the vectors FL and ri, for a
given fluctuation i. Inset : detail of the line force on the contact line. ςi is the orientation of the
distance ri, with respect to the horizontal axis. In the same way, ς∗i gives the orientation of the
line force. The angle νi is finally recovered as ς∗i − ςi.

The orientation of the vector r, with respect to the horizontal axis x, is provided
by the angle ς:

tan ς =
y

x
=

1

ϕ
tanφ (5.8)

To obtain the orientation ς∗ of the line force FL, we consider that FL is normal at
the contact line in the considered point. If we call m the angular coefficient of the
tangent of the ellipse, we have:

tan ς∗ = − 1

m
=
ã2y

b̃2x
=
ã sinφ

b̃ cosφ
= ϕ tanφ (5.9)

The angle ν between the two vectors is thus

ν = ς∗ − ς (5.10)

Now that all the physical quantities are defined, we can consider the total
random torque, given by all the possible fluctuations at a fixed time:

ΓL =
∑
i

ΓL,i (5.11)

The random origin of the fluctuations translates in a null ensemble average

⟨ΓL⟩ = 0 (5.12)

but in a non–null squared ensemble average
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⟨Γ2
L⟩ =

∑
i,j

⟨FiFjrirj sin νi sin νj⟩ = ⟨F 2
i ⟩

n∑
i=0

r2i sin
2 νi (5.13)

with n number of possible fluctuations.
The summation in eq. 5.13 can be written as an integral along the contact

line, since the mean length λ of a fluctuation is much smaller than the contact line
perimeter (λ ≃ dℓ).

n∑
i=0

r2i sin
2 νi =

1

λ

∮
r2i sin

2 νidℓ (5.14)

where the infinitesimal arc length on the ellipse perimeter is known

dℓ = b̃
√
ϕ2 sin2 φ+ cos2 φdφ (5.15)

Substituting in eq. 5.14 and using previous definitions (eqs. 5.7, 5.8, 5.9), we
obtain

n∑
i=0

r2i sin
2 νi =

b̃

λ

∫ 2π

0
r2i sin

2 νi

√
ϕ2 sin2 φ+ cos2 φdφ =

b̃3

λ

∫ 2π

0

(
ϕ2 cos2 φ+ sin2 φ

)
sin2 (ς∗ − ς)

√
ϕ2 sin2 φ+ cos2 φdφ (5.16)

We denote with I(ϕ) the integral:

I(ϕ) =
∫ 2π

0

(
ϕ2 cos2 φ+ sin2 φ

)
sin2 (ς∗ − ς)

√
ϕ2 sin2 φ+ cos2 φdφ (5.17)

which is numerically solved taking into account the extended expressions for r2

(eq. 5.7) and ν (eq. 5.10).
We can now express ζφ,L as:

ζφ,L = fl
I(ϕ)

ϕ
(5.18)

where fl contains all the local terms and constants related to the fluctuations.
According to the previous discussion, fl writes:

fl =
1

2kBT
σ2
LV (1− cosα)2 r30 sin

3 θ [λτ(λ)] (5.19)

since b̃3 =
r30
ϕ
sin3 θ, where r0 is the radius of the spherical bead before the

stretching process.
The dependence on the aspect ratio, provided by I(ϕ)/ϕ, is plotted in fig. 5.3.
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Figure 5.3: Numerical solution of the integral I(ϕ) (eq. 5.16), divided by ϕ, as a function of the
aspect ratio. This term provides the dependence ζφ,L vs. ϕ. I(ϕ = 1) = 0 (no contribution at
spherical beads), then the integral increases over 2 orders of magnitude in the accessible range
of aspect ratio.

At ϕ = 1, i.e. for spherical beads, the term is null. A radial random force FL

is parallel to the radius r. Thus, the cross product Γ = r× FL is identically null.
It follows that fluctuations of the interface at the contact line do not affect the
rotation of a sphere around a vertical z–axis. Their contribution is instead rapidly
increasing with the aspect ratio, and I(ϕ)/ϕ varies over 2 orders of magnitude in
the experimentally accessible range 1− 10 of aspect ratio.

5.1.2 Experimental versus calculated rotational diffusion
coefficient

The rotational diffusion coefficient Dφ for a spheroidal colloid at the interface is
expressed, according to previous sections, as:

Dφ ≃ kBT

ζφ,L
=
kBT

fl

ϕ

I(ϕ)
(5.20)

since ζφ,V is negligible with respect to the other terms, except for small aspect
ratios (ϕ ≃ 1) (fig. 5.4a). The dependence on the aspect ratio ϕ is provided only
by the term I(ϕ)/ϕ, that is able to catch the qualitatively behavior of the measured
diffusion coefficient Dφ (fig. 5.4b). Note that no free parameters are contained in
I(ϕ)/ϕ and that it has been computed without any assumptions on the nature of
the fluctuations. These considerations give robustness to the proposed idea of an
interfacial dynamics driven by the triple line. The term kBT/fl is instead constant
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Figure 5.4: a. Rotational drag ζφ on the spheroidal colloid, as a function of the aspect ratio
ϕ. Points: direct measurement of the drag, obtained from the experimental diffusion coefficients
(see chapter 3). Blue line: rotational drag coefficient ζφ,V for a spheroid totally immersed in
water. Such a term is negligible with respect to the measured values. Green line: fluctuation line
contribution ζφ,L = flI(ϕ)/ϕ. fl is here a best fit parameter. b. Rotational diffusion coefficient
Dφ vs. the aspect ratio ϕ in semi-log scale, for a spheroidal particle at the air–water interface.
Black points are the average values on 3 to 6 direct measurements of the rotational diffusion
coefficient, as already reported in chapter 3, fig. 3.19. The error bars correspond to the standard
deviation of the averaged values. The red point is a measure of the rotational diffusion coefficient
for a Janus sphere (ϕ = 1). Solid blue line is the diffusion coefficient Dφ,V for particles totally
immersed in water, and it is here used just for comparison. Solid green line is the estimation
recovered by the proposed model for the rotational diffusion at the interface:kBT/ζφ,L.

with respect to ϕ and depends on all the parameters λ, τ and α characteristic of the
fluctuations (see eq. 5.19). For a particle at the air–water interface (σLV = 0.072
N/m), with an initial radius r0 = 0.98µm and a contact angle θ ≃ 50◦, and
considering that α ∼ 0.5 rad, only the quantity λτ(λ) is unknown. Such a term is
used as a free parameter to fit the experimental Dφ (points in fig. 5.4b), except
the first one. In fact, at low aspect ratios, the hydrodynamics drag ζφ,H is not
negligible with respect to ζφ,L and the present model does not apply. The best fit
(green lines in fig. 5.4) leads to

λτ(λ) = (3.59± 0.13) 10−20m · s (5.21)

Such a value is discussed in the two regimes of a moving and of a pinned line,
as done for spherical beads in the previous chapter.

In the framework of Molecular Kinetic Theory [52], where the contact line is
moving around its equilibrium position because of thermally activated jumps, the
correlation time τ is the inverse of an Arrhenius-like jump rate. The characteristic
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length λ is instead left as the only free parameter.
In order to fit the experimental data (eq. 5.21), we need an average jump size

λ = 0.52± 0.01 nm. This value is in agreement with the ones usually proposed in
literature [52] for a mean molecular jump.

For fluctuations induced by capillary wave, τ is the damping time of the fastest
mode. We recover, from the fit in eq. 5.21, λ = 1.13±0.02 nm. This value is again
in agreement with the proposed molecular scale of the capillary deformation.

5.2 Translational diffusion at the interface

5.2.1 Estimation of the translational hydrodynamic drag

Differently from the case of spheres, no complete theories have been developed for
the case of spheroidal particles at the interface. For this reason we propose here
a qualitative method to estimate the translational hydrodynamic drag coefficient
ζT,H at an air–water interface. In the case of spherical particles, all the theories
state that the interfacial drag is proportional to the Stokes-Einstein friction in the
volume:

ζV,sphere = 6πηR (5.22)

reduced by the dimensionless drag coefficient β (β < 1), function of the im-
mersion depth in the more viscous medium:

ζH,sphere = βζV,sphere (5.23)

In the hydrodynamic view provided by Fischer [29] and used in the previous
chapter, β is a function of the contact angle θ:

β =
√
tanh[32(1 + cos θ)/(9π2)] (5.24)

The expression of β is not known for spheroidal particles. For the sake of
simplicity, we assume that the dimensionless drag only depends on the immersion
depth of the particle, and not on the particle shape:

β(θ, ϕ) ≃ β(θ, ϕ = 1) (5.25)

Substituting eq. 5.24 in eq. 5.23 and using the drag coefficient for a fully
immersed spheroid (par. 1.5.1), an estimation for the hydrodynamic term ζT,H in
translational dynamics, along the long and the short axes, is obtained:

ζT,H = 6π
√
tanh[32(1 + cos θ)/(9π2)]ηbGa,b (5.26)
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5.2.2 Calculation of the contact line contribution in trans-
lational drag

As reported in the discussion of rotational dynamics, a local fluctuation gives rise
to an average random force FL,i, independent on its angular position φi and on
the shape of the particle:

FL,i = σLV λ(1− cosα)ûi (5.27)

where ûi is the unit vector normal to the contact line (fig. 5.5). As usual, σLV is
the air-water surface tension, λ is the mean length of a line fluctuation and α is the
average slope of the interface after a fluctuation. The random force is associated
to a translational drag via Langevin equation and fluctuation-dissipation theorem,
as proposed in the previous chapter and in [71] for spherical beads (eq. 4.19):

ζT,L ≃ 1

2kBT
⟨FL(0)

2⟩τ (5.28)

where the index T denotes translational dynamics and τ is the correlation time
of the fluctuation.
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Figure 5.5: Top view of the contact line of a spheroidal particle. The contact line is an ellipse of
axes (ã, b̃). A random force FL acts on a generic point of the contact line. Its direction is defined
by the unit vector û, normal to the contact line. For our purpose, we consider the components
of the random force parallel to the main axes: FLa and FLb.

The components along the main axes a and b write

FLa,i = σLV λ(1− cosα) cosφi

FLb,i = σLV λ(1− cosα) sinφi (5.29)
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Let now consider the effect of a large number of fluctuations on the motion of
the bead:

FLa =
∑
i

FLa,i FLb =
∑
i

FLb,i (5.30)

Contrary to the case of random torques in the previous section, here we can
easily manage the summatories. We consider the number n of possible fluctuations
at a given time as

n = p/λ (5.31)

where the perimeter p of the contact line is divided by the average lateral length
of each fluctuation λ. Note that the contact line length, that is the circumference
of an ellipse of axes (ã, b̃), is a function of the aspect ratio ϕ. To compute such a
length, we need to solve the complete elliptic integral of the second kind. However,
a good approximation was provided by Ramanujan [72]:

p = π

[
3
(
ã+ b̃

)
−
√(

3ã+ b̃
) (
ã+ 3b̃

)]
(5.32)

Taking into account that the aspect ratio ϕ = a/b and the volume of the initial
bead of radius r0 is conserved during the stretching process, i.e. r30 = ab2, eq. 5.32
is re-written as a function of the aspect ratio:

p(ϕ) =
πr0 sin θ

3
√
ϕ

[
3 (ϕ+ 1)−

√
(3ϕ+ 1) (ϕ+ 3)

]
(5.33)

where r0 is constant in our experiments. The contact line length as a function
of ϕ, for particles with the same volume, is plotted is fig. 5.6. The contact line
length is increasing with the aspect ratio, when we consider spheroids with the
same volume. For the highest experimentally achievable aspect ratio, ϕ = 10,
the contact line is 3 times longer with respect to the unstretched spherical bead.
In the same way, also the number of possible fluctuations n = p/λ occurring at
the same time, is increasing with ϕ. This result suggests that the contact line
contributes more in translational dynamics when the particle is more elongated
and an enhancement of the corresponding drag is attended.

To quantify this effect, we compute the total random force by summing over
the n(ϕ) possible fluctuations. Their random nature translates in null ensemble
averages:

FLa =
n∑

i=0

FLa,i = σLV λ(1− cosα)
n(ϕ)∑
i=0

cosφi = 0

FLb =
n∑

i=0

FLb,i = σLV λ(1− cosα)
n(ϕ)∑
i=0

sinφi = 0 (5.34)
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Figure 5.6: Normalized contact line length, calculated as the perimeter of the ellipse of axes
(ã, b̃), as a function of the aspect ratio ϕ. At ϕ = 1, we recover the circumference of a circle:
p/2πr0 sin θ = 1, where r0 is the radius of the bead and θ its contact angle. Spheroidal parti-
cles with the same volume, but increasing aspect ratios, have longer contact lines: for rod-like
particles, with ϕ = 10, the contact line is 3 times longer with respect to a sphere and more
fluctuations at the triple line are possible.

The squared ensemble averages are instead non-null:

⟨F 2
La⟩ = n(ϕ)⟨F 2

La,i⟩ =
1

2
n(ϕ) [σLV λ(1− cosα)]2

⟨F 2
Lb⟩ = n(ϕ)⟨F 2

Lb,i⟩ =
1

2
n(ϕ) [σLV λ(1− cosα)]2 (5.35)

and they are used in the expression for the contact line contribution ζT,L to the
particle drag

ζLa ≃
1

2kBT
⟨FLa

2⟩τ

ζLb ≃
1

2kBT
⟨FLb

2⟩τ (5.36)

5.2.3 Experimental versus calculated translational diffu-
sion coefficients

The translational diffusion coefficients Da and Db for a spheroid at the interface
are then calculated as a function of the aspect ratio ϕ:

Da,b =
kBT

ζT,H + ζT,L
(5.37)
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Figure 5.7: Translational diffusion coefficients Da along the long axis (a) and Db along the short
axis (b), vs. the aspect ratio ϕ, for a spheroidal particle at the air–water interface. Black points
are direct measurements of the Da and Db, as already reported in chapter 3 (figs. 3.16, 3.17).
Solid blue lines are the diffusion coefficient DV for particles totally immersed in water, used here
just for comparison. Solid green lines are the estimation recovered by the proposed model for
the translational diffusion at the interface. We considered both the effect of a partial immersion
in hydrodynamics drag (ζT,H) and the additional dissipation due to the contact line (ζT,L).

where ζT,H and ζT,L have the form discussed in the previous sections. The latter
depends on the product λτ(λ). We use the same value obtained from the best fit
of the rotational diffusion coefficient Dφ (eq. 5.21). No free parameters are used in
this discussion. The theoretical predictions are compared with the experimental
values, already shown in chapter 3, and plotted in fig. 5.7.

The contribution of the fluctuations at the contact line provides the additional
drag that was needed to explain the initially unexpected slowed-down diffusion.
The model curves well agree, in both the case, with the measured values and they
are able to catch the slower dynamics when the aspect ratio is increasing. Note
that no free parameters are used: λ is here fixed by the value obtained by the best
fit for rotational diffusion. This crucial feature adds consistency to the proposed
approach.
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5.3 Conclusion

Starting from the experimental data shown in chapter 3 we conceived a model
to predict the slowed–down diffusion coefficients of spheroidal particles at the air–
water interface. We followed the same arguments that drive the model for spherical
beads (see chapter 4): fluctuations of the interface at the contact line gives rise
to random forces and torques that affect particle motion and are responsible of
an additional dissipation. For what concerns the rotational dynamics, the random
torque due to line fluctuation strongly depends on the considered geometry, and
varies over 3 orders of magnitude in the experimentally accessible range 1÷ 10 of
aspect ratio. In this way, we were able to catch the measured, extremely slowed–
down rotational diffusion coefficient Dφ, without assuming any hypothesis about
the nature of the fluctuation. The characteristic size of the fluctuation was left
as the only free parameter, and discussed in the two regimes of a moving and of
a pinned contact line. From the best fit of the data we obtained such a length
in the nanometric range in both cases, in agreement with the molecular origin of
the phenomenon. The same fit value was used in the model for the translational
dynamics, obtaining a good agreement between the model and the data of the
diffusion coefficients Da and Db.
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Forsan et haec olim meminisse
iuvabit. - Forse un giorno ci
allieterà ricordare tutto questo.

Probably, in the future, it will be
pleasing to remember these things.

Virgilio, Eneide I
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Conclusion and outlook

In this thesis, the Brownian motion of colloidal particles at an air–water inter-
face was deeply investigated. Two kinds of system were considered. In the first
experiences, performed before the beginning of this thesis, the translational dif-
fusion coefficient of spherical beads was measured as a function of the immersion
depth, tuned by silanization treatments of the particle surface. Thereafter, in this
PhD work, the diffusion at the interface was extended to anisotropic polystyrene
spheroids. Different aspect ratios were obtained, ranging from spherical–like to
rod–like particles, by stretching spherical beads in a homemade apparatus. This
morphology allowed to analyze the translational diffusion coefficients along the
particle main axes, and the rotational diffusion coefficient on the interfacial plane.
The immersion depth and the eventual deformation of the interface around the
particle were measured by interferometry. The dynamics was followed by particle
tracking techniques using a bright field optical microscope equipped with a CCD
camera.

The experimental results were surprising and thought–provoking, since they
are contrary to common intuition and established models: the diffusion at the
interface was found slower than expected. Spherical particles with their larger
part in air exhibited a diffusion coefficient even lower than the one expected for
a sphere totally immersed in water. Theories that take into account the partial
immersion in water, but neglect the role of the contact line, overestimated the
diffusion coefficient.
A huge slowed diffusion was measured for spheroidal colloids, especially in the
rotational degree of freedom. At large aspect ratios, the rotational dynamics is
one order of magnitude slower than predicted for a particle totally immersed in
the bulk. The translational diffusion is founded two times lower than the one in
the volume.

These considerations demanded a different theoretical paradigm able to cap-
ture these unexpected dynamics. Additional sources of dissipation, as wedge flow
and curved meniscus were taken into account, but their values fail to reproduce
the measured ones.
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Fluctuations of the contact line were then considered. Two kinds of fluctuations
are possible: a fluctuating contact line on the particle surface, due to molecular
jumps between surface adsorption sites, and capillary fluctuations of the interface
in the case of a pinned contact line. Both of them locally change the orientation
of the interfacial forces at the particle, resulting in a random force that affects the
particle dynamics. Langevin equation and fluctuation–dissipation theorem relate
such a fluctuating contribution to an additional drag, able to catch the experi-
mental results. This term is written as a function of only one free parameter, a
characteristic correlation length λ of the fluctuation. We recovered the measured
additional drag, by using a λ in the nanometer range, in agreement with the molec-
ular origin of the phenomenon.
For prolate spheroidal particles, the extremely slowed–down rotational dynam-
ics as a function of the aspect ratio were well reproduced just using geometrical
considerations, without any assumption about the nature of the fluctuation. A
quantitative agreement with the experimental data is achieved using the correla-
tion length λ as a fit parameter: a reasonable nanometric length is obtained. The
same value is able to fit also the translation diffusion along both the long and the
short axis.
These considerations show that line fluctuations are an important and general
mechanism that strongly affect the dynamics of partially wetted colloid at the
interface.

This work opens highways of research in the field of interfacial particle dy-
namics. First of all, we plan to extend our investigations to the case of super–
hydrophobic beads, in order to explore very large contact angles (θ > 150◦), where
the beads are almost completely in air. A fresh collaboration started with the
group of H.–J. Butt in Max Planck Institute of Mainz (Germany), that made
super–hydrophobic raspberries colloids with, in principle, very high contact an-
gles.
The size effect will be also addressed. In fact, in our model we considered a sort
of mean field of a large number of fluctuations. For particle sizes of the order of
surface heterogeneities (∼ 1 nm) we expect that the mean field approach breaks
down and an enhanced contribution of line fluctuations to particle dynamics oc-
curs.
In the case of spheroidal particles, future studies will consider the effect of the
interface curvature on the lateral forces and on the Brownian dynamics of the
colloid. We plan to measure the morphologic torque induced by the interface de-
formation, produced by the spheroid, and the imposed interface curvature. Such
a torque will be also measured in the case of new fabricated anisotropic particles,
made by a cylinder with two hemispherical heads, presenting a constant curvature
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and thus not deforming the interface. This new system will allow also to address
the role of interface deformation in Brownian motion.
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Appendix

A.1: Particle tracking

As described in chapters 2 and 3, the dynamics of a single particle is observed by
bright field microscopy and a digital video is recorded by a CCD camera at 30
frame/s. Particle tracking methods [46] are implemented in an IDL software. For
the sake of simplicity, we report just the main steps of the analysis. The first one
is the determination of the position (x, y) of the intensity center of mass of the
bead in each frame.

sXi = 0.0

sYi = 0.0

Int = 0.0

sI = 0.0

for j = IObj(i-1)+1, IObj(i) do begin

Int = 1.0*Img(IObj(j))

x = IObj(j) mod npx

y = (IObj(j)-x)/npx

sI = sI + 1*Int

sXi = sXi + x*Int

sYi = sYi + y*Int

endfor

XObj = 1.0*sXi/sI

YObj = 1.0*sYi/sI

The terms XObj and Y Obj in the software correspond to the position (x, y)
of the center of the particle. The process is repeated in the whole stack to recover
the particle trajectory. In the same way, the orientation of a spheroidal particle is
obtained at a given frame. See chapter 3, par. 3.5 and fig. 3.9 for more details.

137



A preliminary analysis counts the number of non-null pixels in the first (x −
XObj > 0, y−Y Obj > 0) and in the second quadrant (x−XObj < 0, y−Y Obj >
0). The range of values for the orientational angle φ is so reduced: [0, π/2] if most
of the points are in the first quadrant, [π/2, π] otherwise. In any case, such a range
is written in the form [f1, f2].

sX = 0.0

for j = IObj(i-1)+1, IObj(i) do begin

Int = 1.0*Img(IObj(j))

x = IObj(j) mod npx

y = (IObj(j)-x)/npx

if y gt YObj then sX = sX + (x - XObj)

endfor

if sX gt 0 then begin

f1 = 0

f2 = !pi/2

endif else begin

f1 = !pi/2

f2 = !pi

endelse

The sum N1 and N2 of the distances of each point j of the projected ellipse
in the image, with respect to the axis f1 and f2 respectively, are calculated.

N1 = 0.0

N2 = 0.0

for j = IObj(i-1)+1, IObj(i) do begin

Int = 1.0*Img(IObj(j))

x = IObj(j) mod npx

y = (IObj(j)-x)/npx

y1 = -(x-XObj)*sin(f1) + (y-YObj)*cos(f1)

N1 = N1 + y1^2

y1 = -(x-XObj)*sin(f2) + (y-YObj)*cos(f2)

N2 = N2 + y1^2

endfor

N1 and N2 are compared and the farthest extreme is replaced by the midpoint
value (f1 + f2)/2. The same procedure is so repeated in a smaller, halved range.

for o = 1, 40 do begin

if N2 lt N1 then begin
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f3 = (f1 + f2)/2

f1 = f2

f2 = f3

N1 = N2

endif else f2 = (f1 + f2)/2

N2 = 0.0

for j = IObj(i-1)+1, IObj(i) do begin

Int = 1.0*Img(IObj(j))

x = IObj(j) mod npx

y = (IObj(j)-x)/npx

y1 = -(x-XObj)*sin(f2) + (y-YObj)*cos(f2)

N2 = N2 + y1^2

endfor

endfor

A.2: Angular confinement of a spheroidal colloid

In the first measurements we take the same container used with spherical beads
and described in par. 2.1.2. It is a cylindrical container fixed on a microscope
glass slide. The diameter is 10 mm and it is partially filled up to 0.8 mm in height
with deionized water. During particle tracking measurements (par. 3.5), the top
of the cylinder is covered by a thin flat piece of borosilicate glass, in order to
avoid contamination of the interface or evaporation of the water. Particles are
sprayed on the interface by an airbrush and at very dilute surface concentrations
(less than 0.01% s/s). We focus our attention in a tiny central area, far from
the meniscus on the container walls. However, if the container radius is of the
order of 2ℓc (where ℓc ≃ 2.7mm is the capillary length), as in this case, a slight
slope due to the meniscus is still present. This slope has a negligible effect on
the translational motion, as confirmed by measurements with both spherical and
spheroidal colloids. Aberrations can appear instead when we analyze rotational
dynamics. In this case, a coupling between the curvature of the interface and the
orientation of the particle, leading to an orientational confinement, is expected [43]
and measured in our experiment. We analyze the behavior of ∆φ measured in the
small cuvette. The typical curve for the MSD ⟨∆φ2⟩ vs. time lag τ in this case is
reported in fig. A.1 (red points).

For small time lag τ < τ1, a linear behavior, characteristic of Brownian motion,
is measured. For larger time lag, the MSD flattens and reaches a plateau, indicating
an angular confinement of the particle. This orientational confinement is probably
due to the coupling between the curvature of the interface and the orientation
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Figure A.1: Rotational MSD vs. time lag τ for spheroidal particles with aspect ratio ϕ = 3.
Red points: particle in a small container of 10 mm in diameter. The linear behavior, denoting
Brownian diffusion, is observed at small time lag, τ < τ1. At a larger time, τ > τ1, the curve
flattens until reaching a plateau, corresponding to an angle of

√
⟨φ2⟩ ≃ 0.14 rad (≃ 9◦). Black

points: particle in the large container of 6 cm in diameter (fig. 3.2, chapter 3). The angular
confinement is ruled out. Inset : detail of MSD at small time lags, where the linear behavior is
measured for both the samples.

of the particle [43], since it is not observed in larger containers (black points in
fig. A.1). Further works will verify this hypothesis and we will use this effect for
quantitative measurements of such a curvature induced torque on the spheroids.

This effect motivates the upgrade of the experimental set-up shown in chapter
3 (fig. 3.2), in order to explore the rotational dynamics in the case of spheroids.

A.3: Possible contribution at the viscous drag of

a moving contact line

We consider the role of the line friction as an additional source of dissipation in
the particle Brownian dynamics. Such a dynamics is composed by a sequence of
linear ballistic trajectories, characterized by an instantaneous velocity [6]

v =

√
2kBT

m
≃ 1mm/s

and a ballistic time

τp =
m

ζ
≃ 0.1µs

where m is the particle mass and ζ is the total friction felt by the bead. This
means that, over a time τp, the particle is moving on a straight line at a constant
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velocity v; after τp, the direction of the motion is changed due to molecular colli-
sion. There are two possible ways in which such a motion can interfere with the
contact line:

• the motion of the bead induces a pressure field that deforms the interface.
The unbalanced interfacial forces are so acting on the contact line;

• a rotational motion couples with the translation of the particle. Since the
interface stays flat, the contact line needs to move with respect to the surface
of the particle.

In both cases, a relative velocity vL between the contact line and the solid
substrate is deduced; the corresponding power dissipation P is computed by inte-
gration on the whole perimeter:

P =
∮
fvLdℓ =

∮ 1

2
ζ0v

2
Ldℓ

For the sake of simplicity, the two dissipations are here discussed only for a
contact angle θ = 90◦.

A.3.1: Effect of the pressure field

Let us consider a rectilinear and uniform motion of the bead immersed in an
incompressible fluid. The small Reynolds number

Re =
ρvR

η
∼ 103 · 10−3 · 10−6

10−3
∼ 10−3 ≪ 1

with ρ and η density and viscosity of the fluid respectively, v velocity of the particle
and R radius of the bead, allows to simplify the Navier-Stokes equation [73]:

η∇2v − gradp = 0

where p denotes the pressure.
Landau [16] provided a solution of the Navier–Stokes equation in order to get

the 3-D pressure field induced by the moving particle:

p = p0 −
3

2
η
v · n
r2

R

p0 is the fluid pressure at infinity, r is the distance from the center of the
particle (fig. A.2a) and n is the unit vector parallel to r.

When the particle is at the interface, such a profile is modified by boundary
conditions and a general solution is not available. The only case that we can easily
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treat is at θ = 90◦ where, due to the symmetry of the problem, both the pressure
and the shear stress fields are unperturbed (fig. A.2b).

In such a case, the 2-D pressure field on the plane of the interface can be
obtained and expressed in polar coordinates (r, φ) (fig. A.2a):

p = p0 −
3

2
η
vR

r2
cosφ

The pressure deforms the profile z of the interface, according to Young-Laplace
equation:

σLV∇2z = (p− p0) + ρgz

that, in polar coordinates and taking the 2-D equation of the pressure field, is:

∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2
∂2z

∂φ2
= −β cosφ

r2
+
z

ℓ2c

where ℓc =
√
σLV /(ρg) is the capillary length and β = 3

2
ηvR/σLV .

v
v

r

φ

a b

top view side view

R

z

Figure A.2: a. Top view of a moving spherical bead of radius R at the air–water interface. The
polar coordinates system (r, φ) is reported. The polar angle φ is defined with respect to the
direction of the velocity v. The vertical axis z is perpendicular to the figure. b. Schematic view
of the shear stress around a spherical bead, moving at a velocity v (side view). In the volume,
both the pressure and the shear stress fields induced by the motion are symmetric with respect
to θ = 90◦. If an interface at θ = 90◦ is considered, the pressure and shear stress fields in each
fluid are the same as the ones in the corresponding volume.

With the ansatz z(r, φ) = z̃(r) cosφ, the angular part is easily solved. We
obtain the equation for the radial part z̃(r):
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z̃′′ +
1

r
z̃′ −

(
1

r2
+

1

ℓ2c

)
z̃ = − β

r2

that can be solved in the two extreme cases:

• r ≫ ℓc

z̃′′ − 1

ℓ2c
z̃ = 0 z̃(r) = k1e

r
ℓc + k2e

− r
ℓc

• r ≪ ℓc

z̃′′ +
1

r
z̃′ − 1

r2
z̃ = − β

r2
z̃(r) =

c1
r
+ c2r + β

The constants k1, k2, c1, c2 are recovered from boundary conditions:

1. at r → ∞, z̃(r) = 0

2. at r = R cosα, z̃(r) = R sinα, where α is the angular position of the contact
line (see fig. A.3a)

3. z̃1(ℓc) = z̃2(ℓc), where z̃1, z̃2 are the solutions of the Young–Laplace equations
in the two extreme cases

4. z̃′1(ℓc) = z̃′2(ℓc)

The first condition stands for an unperturbed interface at long distance from
the particle; condition 2 states that the contact line has to lie on the particle
surface at the angular position α (see fig. A.3a). This angle changes in time,
because of the motion of the contact line, according to the equation

vL = R
dα

dt
Finally, conditions 3 and 4 impose the continuity of the solutions in the two

regimes.

An approximated solution for profile z(r, φ), in the limit R ≪ ℓc, α ≪ 1, is:

z(r, φ) =


[
3
2
ηvR
σLV

(
1− R

r

)
+ R2α

r

]
cosφ r ≪ ℓc

3
4
ηvR
σLV

e1−
r
ℓc cosφ r ≫ ℓc

We are interested in the deformation of the surface around the particle, at the
contact line (r = R cosα ≃ R). The variation of contact angle ∆θ (fig. A.3a) will
be

∆θ ≃ ∂z

∂r

∣∣∣∣∣
r=R

=
(
3

2

ηv

σLV
− α

)
cosφ
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For thermal velocities v ≃ 1 mm/s, typical values for ∆θ are around 2 · 10−5

rad.
Thus, according to Young’s equation, we calculate the force per unit length f

acting on the contact line (fig. A.3b,c):

f(φ) = σLV [cos (θ +∆θ)− cos θ] ≃ σLV∆θ

since θ = 90◦ and ∆θ ≪ 1. Using the expression for ∆θ we write:

f(φ, α) = σLV

(
3

2

ηv

σLV
− 2α

)
cosφ

Since vL = f/ζ0 and taking into account the expression of vL as a function of
α, we recover the evolution in time of the position of the contact line:

3

4

ηv

σLV
(1− exp(−t/τ))

where τ = Rζ0/2σLV denotes the characteristic time for the motion of the line.
The dissipation per unit length of the contact line at a given time t is

dP = vL(α)f(α)dℓ

We need to average in time over a period τp and to integrate along the contact
line perimeter to find the total dissipation. The average dissipation per unit line
is then:

⟨Pline⟩ =
1

τp

∫ τp

0
dP =

1

τp

∫ α(τp)

α(0)
vLf

R

vL
dα

i.e.,

⟨Pline⟩ =
9

16

η2Rv2

τpσLV
(1− exp(−2τp/τ)) cos

2 φ

Finally, the total dissipation is

⟨Ptot⟩ = R
∫ 2π

0
⟨Pline⟩dφ =

9

16
π
η2R2v2

τpσLV
(1− exp(−2τp/τ))

In the considered case, a bead with radius R ∼ 1µm is moving at the air–water
interface (σLV = 0.072 N/m, η = 1.001 · 10−3 Pa·s). In the ballistic regime, we
have a thermal velocity v ∼ 1mm/s with a characteristic time τp = 0.1µs. In these
conditions the dissipation is at least 50 times lower than the one that it is needed
to explain the observed dynamics. The role of solid dissipation induced by the
rotation of the beads is not sufficient to explain the measured drag coefficient. Such
a dissipation is much smaller (at least 50 times smaller) than the hydrodynamic
contribution usually considered. The variation of the pressure field induced by the
motion of the bead is thus not able to significantly modify the particle dynamics.
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Figure A.3: a. Angular position α of the contact on the particle surface. The equilibrium
position corresponds to the value α = 0. The slope of the interface at the contact line is
provided by z′, i.e. the derivative of the interface profile. The difference between the two angles,
arctan z′ − α corresponds to the variation ∆θ of contact angle. b. Schematic picture (not in
scale) of the deformation of the interface profile, induce by the pressure field of the particle
moving at velocity v, at the initial time t = 0. The contact line lays on its equilibrium position
α = 0 and the variation of the contact angle is ∆θ = arctan z′. The interfacial force (per unit
length) σLV has a component f parallel to the particle surface. Such a force makes the contact
line move at a velocity vL. c. At a generic time, the contact line is in a new angular position α,
due to the action of the line force f . The slope of the interface is reduced, but the force f is still
present and pushes the contact line.

A.3.2: Contact line friction coupled with particle rotation

A linear motion of a bead in a viscous fluid induces also a variation of the stress
field around the bead itself. Landau [16] found the components of the stress tensor
at the surface of the particle as a solution of Navier-Stokes equation:

σ′
rr = 0, σ′

rϑ = − 3η

2R
v sinϑ

where v is the velocity of the particle and the coordinates are shown in fig.
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Figure A.4: Spherical coordinates system (r, ϑ, φ) for a particle of radius R at the air-water
interface. For the sake of simplicity, we consider a contact angle θ = 90◦. The bead is moving at
a velocity v on the interfacial plane: such a motion induces a stress σ′

rϑ on the particle surface,
according to [16]. The result is the rotation of the sphere around an horizontal axis (yellow
dashed line in frontal view) at an angular velocity ω. L = R sinφ gives the distance between a
generic point on the particle surface and the axis of rotation.

A.4.
The action of the stress σ′

rϑ on the particle surface results in the rotation
around an horizontal axis (fig. A.4). If we consider an infinitesimal element dA of
the particle surface, the corresponding torque is

dΓ = σ′
rϑLdA

where L = R sinφ is the distance between dA and the axis of rotation (fig.
A.4).

Since dA = R2 sinϑdϑdφ, the total torque exerted on the lower hemisphere
(the part of the bead that is immersed in water) is obtained by integration of dΓ:

Γ =
∫
hemisph

σ′
rϑLdA =

∫ π

0

∫ π

0
− 3η

2R
v sinϑR sinφR2 sinϑdϑdφ

= −3

2
ηR2v

∫ π

0
sin2 ϑdϑ

∫ π

0
sinφdφ = −3

2
πηR2v

Hence, the final expression for the torque Γ exerted by the fluid on the moving
bead is

Γ = −3

2
πηR2v

The viscous drag of the water makes the bead rotate as a sort of wheel, leading
to a steady angular velocity ω, recovered by the condition:
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3

2
πηR2v = 4πηR3ω

i.e. the equilibrium between the viscous drag of the water and the torque due
to the motion of the particle. The right hand side of the equation is a rough
approximation for the viscous drag: the term 4πηR3 is the half of the rotational
drag coefficient for a sphere, since θ = 90◦.

The resulting angular velocity ω (fig. A.4) around an horizontal axis is:

ω =
3

8

v

R

Now, we assume that the interface remains flat. The contact line lays at its
equilibrium position and slides on the rotating particle. The relative velocity vL
between the triple line and the solid substrate is so written as:

vL = Rω cosφ =
3

8
v cosφ

related to a dissipation power of

P =
∮ 1

2
ζ0v

2
Ldℓ

where ζ0 is the friction coefficient per unit length introduced in Blake’s the-
ory [23, 52].

Using the expression for vL, it finally results in

P =
1

2
πR

kBT

κ0λ3
9

64
v2

For a micrometric bead (R ∼ 1µm) moving at a thermal velocity (v ∼ 1mm/s),
with λ in a nanometric range, the dissipation is too small (at least 50 times)
compared to the one that it is needed to explain the observed dynamics. The role
of solid dissipation induced by the rotation of the beads is not sufficient to explain
the measured drag coefficient.
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dépolarisation des fluorescences. translation et diffusion de molécules ellip-
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