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Je souhaite également remercier mes collègues et collaborateurs proches des projets EFAA puis
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Mais au delà du travail je souhaite remercier particulièrement Florian et Marwin auquel je souhaite

rajouter Cédric Manesse, pour les moments passés pendant ma thèse avec eux. Ils sont dotés d’une
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créer cette ambiance scientifique dans laquelle nous baignons tous les jours. Merci donc à Löıc, le
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Je voudrai maintenant remercier spécialement Alice Julien-Laferrière. Il me faudrait bien plus

que ces 160 pages pour te dire tout ce pourquoi je tiens à toi. Je te dois cette thèse pour tous les

matins ou tu es à mes cotés depuis ces années. Dans ces pages, il y a ton sourire, ton intelligence,
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Abstract

The objective of the following study is to define the influence of an Autobiographical Memory

and its two main components : the Episodic Memory and the Semantic Memory in the emergence

of the notion of “self”. I will focus on the functional part of the autobiographical memory rather

that on its technical and neuronal aspect. Then I will describe the implementation of an synthetic

autobiographical memory in an Humanoid Robot : the iCub. I will show how this synthetic auto-

biographical memory can participate with the help of several reasoning modules, in the emergence

of the self. Concerning the aspect of self, we decided to work about Ulric Neisser’s four components

of the self described in 1995 : the Ecological Self, the Interpersonal Self, the Conceptual Self and

the Temporally Extended Self.

I will present the technical platform we use. This system is composed at its center by the

humanoid robot iCub, interacting through a reactive table (the ReacTable) with a Human Agent.

The interaction is mainly through speech. The world as it is perceived by the robot is constantly

updated in its internal “working memory” (the Objects Properties Collector : OPC).

I will then describe our Synthetic Autobiographical Memory, composed of two part, an Episodic-

Like Memory and a Synthetic Semantic Memory that model respectively the Episodic and Semantic

human memories. The Episodic-Like Memory will store snapshots of the working memory, while

the Synthetic Semantic Memory stores information related to knowledge extracted by the reasoning

modules through a mental working memory.

Next I will for each level of self that we examined, explained how a Synthetic Autobiographical

Memory could contribute to its emergence, starting by the Ecological Self which concerns someone’s

impact and direct influence on the world. Concerning the Ecological Self, I will show a system of

forward model through mental imagery. This forward model allows the robot to simulate through

its mental working memory the consequences of his physical action on the world, such as it is

defined by Neisser.

After that I will focus on the Interpersonal Self which is related to the social interaction. I

will first show how the system of mental working memory developed previously could help to

understand a social interaction and the role effect of each agent. Secondly, I will explain the “I and

You Experiment” which consists in understanding and using correctly a personal pronoun given

its context. Our specificity is that we extended the work from Gold and Scassellati not only to

personal pronouns but to proper nouns too. At last for the Interpersonal Self, I will describe a

system of Shared Plans as part of social ritual.

I will then developed the Conceptual Self. The first part of it is an “high level reasoning” : using

the mental working memory to simulate and predict complex plans. I will give two examples of



it : the ABCD game, and the Table of Hanoi. Then, as second part of the Conceptual Self, I will

develop the use of the mental working memory in the Theory of Mind. It consists in using the

mental working memory to predict the mental state of another agent and the experiment we used

for it was the Sally-Anne task modified for the iCub.

The last level of self that I will develop in this thesis is the Temporally Extended Self. There will

be no proper demonstration of its functioning because I will show that the Temporally Extended

Self emerges as the three other level are active. However, I will show two manifestations of it : one is

the Synthetic Autobiographical Memory running on the long term, and the second is an interaction

with the robot about his own personal history.

At the end of my thesis, I will discuss several points : the limitation of our model, the Private Self

which is a component also defined by Neisser but that we decided voluntarily to put aside, the

differentiation between the robot self and the human self, some aspect of plasticity of the Human

memory. I will then conclude with an opening on the futures possibilities of our system.



Résumé

L’objectif de l’étude suivante est de déterminer l’influence de la mémoire autobiographique

et de ses deux principaux composants : la mémoire épisodique et la mémoire sémantique dans

l’émergence de la notion de soi. Je vais me concentrer sur la composante fonctionnelle de la mémoire

autobiographique davantage que sur ses aspects anatomiques et neuronaux. Je vais ensuite décrire

l’implémentation d’une mémoire autobiographique synthétique chez un robot humanöıde : l’iCub.

Puis, je vais montrer comment cette mémoire synthétique peut participer avec l’aide de procédés

de raisonnement, à l’émergence d’un “soi”. Concernant cet aspect du soi, nous avons décidé de

concentrer notre travail sur la définition d’Ulric Neisser de 1995 de quatre composants du soi : le

“Soi Ecologique”, le “Soi Interpersonnel”, le “Soi Conceptuel” et le “Soi Etendu dans le Temps”.

Je vais dans un premier temps décrire la plateforme technique mise en place. Notre système

est composé à son centre du robot Humanöıde iCub, interagissant à travers une table réactive (la

ReacTable) avec un agent Humain. L’interaction est majoritairement vocale. Le monde perçu par le

robot est constamment mis à jour dans sa “mémoire de travail” interne (appelée OPC pour Objects

Properties Collector).

Je vais ensuite décrire la Mémoire Autobiographique Synthétique (SABM), composée d’une

Episodic-Like Memory (ELM) et d’une Synthetic Semantic Memory (SSM) qui vont modéliser

respectivement les mémoires épisodique et sémantique de l’Homme. La ELM va stocker des “instan-

tanés” de l’état de la mémoire de travail, alors que la SSM va stocker les informations relatives au

savoir, extraites par les modules de raisonnement au travers d’une mémoire de travail mentale.

Ensuite, je vais pour chaque niveau de soi expliquer en quoi, notre SABM pourrait contribuer à

l’émergence en commençant par le “Soi Ecologique”, qui concerne l’impact personnel physique et

l’influence direct d’une personne sur le monde. Concernant ce “Soi Ecologique”, je vais présenter

un system de “forward model” à travers une imagerie mentale. Ce “forward model” va permettre

au robot de simuler à travers son imagerie mentale, les conséquences de ses actions physiques sur le

monde, tel que défini par Neisser.

Après cela, je vais présenter le “Soi Interpersonnel” qui est relié aux interactions sociales. Je

vais donc dans premier temps montrer comment notre système de mémoire de travail mentale

précédemment introduite, pourrait aider à comprendre une interaction social et le rôle de chaque

agent. Dans un second temps, je vais expliquer l’expérience “I and You” qui consiste à comprendre

et utiliser correctement un pronom personnel en fonction du contexte de l’interaction. La spécificité

de ce travail qui est une extension du travail de Gold et Scassellati est qu’il est dirigé envers non

seulement les pronoms personnels mais également les noms propres. Enfin dans un troisième temps

je vais présenter un système de “Plans Partagés” comme partie prenante d’un rituel social.



Je vais ensuite développer le “Soi Conceptuel”. Ce développement se fera d’abord par la

présentation d’un système de “Raisonnement de Haut Niveau” qui utilise notre système de mémoire

de travail mentale pour simuler et prédire des plans complexes. Je donnerai deux exemples de son

utilisation : le “Jeu ABCD” et les “Tables de Hanöı”. Ensuite dans une seconde partie, je présenterai

l’utilisation de cette mémoire de travail mentale dans le contexte de la Théorie de l’Esprit. Cela

consiste en l’utilisation d’une imagerie mentale pour prédire l’état d’esprit d’un agent. Nous avons

pour cela repris l’expérience de la “Poupée de Sally” adaptée pour le robot.

Enfin, le dernier niveau que je vais développer dans cette thèse et le “Soi Etendu dans le Temps”.

Il n’y aura pas de démonstration à proprement parlé de son fonctionnement car je vais montrer que

ce niveau semble émerger par l’activité des niveaux précédents. Toutefois je vais présenter deux de

ses manifestations : l’une étant la SABM sur le long terme, et la seconde étant une interaction avec

le robot au sujet de son histoire personnelle.

A l’issue de ma thèse, je vais discuter plusieurs points : les limitations de notre modèle, le “Soi

Privé” qui est défini comme un composant du “Soi” par Neisser et que nous avons délibérément

laissé de côté, la distinction qu’il peut être faite entre le “soi” du robot et le “Soi” de l’Homme, et

enfin certain aspects de plasticité de la mémoire Humaine. Je vais finalement conclure avec une

ouverture sur les possibilités futures de notre système.
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1
Introduction

In a world where the digital systems are more and more present, a new challenge has

risen over the last decades : artificial intelligence, and more than this, artificial beings. The

world is looking for artificial beings, or at least artificial like-beings. The automates of

tomorrow need not only to answer correctly to a task that have been assigned to them,

but also to behave with humans.

In this context, the scientists face a huge challenge. Our society is expecting machines

that could not only understand classical problems as it is nowadays (like building a car)

but to understand humans, their will, their needs, their feelings. But how could a man

or a woman trust a robot, or a program, about its decisions if it is not able to show the

same capabilities ? If we want the robot to understand someone’s will, the robot needs to

differentiates each of us as we do every day. Each of us, the humans, are different. This is

one of the most basic human skills, to recognize each other easily, and our society is based

on this fact : I am someone different from my neighbor and I deserve acknowledgment for

who I am. My story is different from my neighbor’s story, and we expect, as for the human,

that the robot to be able to make this distinction.

Here again, to be fully integrated in our every day life, the robots should be able to

react differently with each of us, to react like one of us, to anticipate our needs, as much

as we anticipate theirs. This problem is not just for the robot with a body, but also all the

computer program that we use every day : phone, computer, car. We want the robot to

recognize us as someone, and behave also like one of us, to be themselves !

1
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But why am I myself ? What do I call myself ? Why are people so unique ? Of course

the genetic code can explain certain physical differences. But what will push someone

to react differently from his neighbor ? Even twins don’t have the same behavior where

they share almost the same genetic heritage. Why can one say that he can predict the

action of another ? Because they have known each other for a long time, and have a shared

experience. After a trauma, we can hear one say : “He will never be the same”. This

sentence is symptomatic of the importance of experience for someone’s self. The experience

that one can have is what will define who he is.

This experience can be observed at different scales. We can decide to look at it from

the scale of a population as did Tomasello [Tomasello, 2009]. Tomasello claims that the

memory can be observed at the scale of a population, and that the Humans are able to

transmit knowledge from one generation to another, and to create some kind of shared me-

mory, that anyone in the society can access. This is what can give a society a “self” (culture).

The memory can be also studied from a smaller scale : the individual scale. Even if this

topic has been studied extensively in the past decades (even centuries), many processes

are still blurred. However, great scientists and psychologists as Tulving [Tulving, 1985],

Cohen [Cohen and Conway, 2007], Conway [Conway and Pleydell-Pearce, 2000], and many

others, have permitted the new scientist to have a clear view of what are the main functions

of memory. The goal now of the new generation, is to continue the research on the memory

itself on one hand. And on the other hand, we have to be able to recreate a memory, to

model the more precisely as possible each aspect of it.

But memory is not just a “big bag” of events or concept or even knowledge. The history

of a man, is anchored in his body, and in his interaction with the world and more of it, in

the interaction with other agents. Wilson claims that cognition, and memory as part of it,

is embodied [Wilson, 2002]. We thus need a support to embody this memory if we want to

be able to reach the first sight of “self”. It allows us to perform some prediction in time or
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space, to know what and why to learn [Vernon et al., 2007].

In this context, Asada claims that certain types of behaviors are better learned than

pre-programmed [Asada et al., 2009]. This is particularly true in the case of social behavior

of social convention. The robot iCub, is a humanoid robot of the size of a 3 years old child,

with 53 degrees of freedom and is a state of the art (even more) robot [Metta et al., 2008].

The iCub is thus a perfect candidate for our studies about the memory, the self and their

modeling. He allows us to have an embodied system, and also, thanks to his humanoid

form, a good candidate for Human-Robot interaction about sociability.

During this thesis I will develop the concept of memory, and more particularly the

concept of Autobiographical Memory (ABM) as an embodied faculty. I will also explain

the reasoning tools that we developed for the robot in order to be able to manipulate

his autobiographical memory, create new knowledge, and re-organize his memory. In or-

der to provide a coherent structure to the presentation of this work, I will organize the

progressive development accordingly to the levels of self as proposed by Neisser. I’ll thus

develop the concept of self, or the 4 concepts of selves, as defined by Neisser in his book

of 1995 : “Criteria for an Ecological Self” [Neisser, 1995]or in [Neisser, 1988] : ecological

self, interpersonal self, conceptual self, and temporally extended self. We will put aside the

private self (the fifth level of self for Neisser) that appears later in the development of the

child. Finally, I will explain the reasoning functioning that we developed, how and why we

can say that we reach the first sight of notion of self with the robot. I must stress that I

do not claim to have implemented the self in a robot. Rather developed and implemented

algorithms that make specific contributions to the capabilities corresponding to Neisser

levels of self.

As the introduction of robots into our daily life becomes a reality, the social compatibility

of such robots gains importance. In order to meaningfully interact with humans, robots

must develop an advanced real-world social intelligence that includes novel perceptual,
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behavioural, emotional, motivational and cognitive capabilities. The Experimental Func-

tional Android Assistant (EFAA) and the What You Say Is What You Did (WYSIWYD)

projects both contribute to the development of socially intelligent humanoids by advancing

the state of the art in both single human-like social capabilities and in their integration in

a consistent architecture.

In the context of these two projects, we propose a biomimetic, brain-inspired approach.

The central assumption is that social robots must develop a sense of self as to overcome

the fundamental problem of social inference. It is only in possessing the core aspects

of a human-like self, that inferences about others can be made through analogy. The

EFAA/WYSIWYD Architecture, is based on our growing understanding of the neuronal

mechanisms and psychological processes underlying social perception, cognition and action

and will exploit the availability, among the members of the consortium, of a number

of complementary prototype robot-based perceptual, cognitive and motor architectures.

Theses projects are integrating across these existing architectures, by directing focused

effort on specific core problems, and by exploiting the availability of unique advanced

real-time neuronal simulation and hardware.

This thesis project is more specifically situated in the context of work on Reasoning

and Planning, and the impact of Memory (more particularly an Autobiographical Memory).

Our objective was to provide the system with the capability to exploit its previous

experience in order to prepare for future experiences within the local peripersonal space.

Thus we shall maintain a spatially coherent representation of its relation to the task

environment using a combination of cues derived from path integration and distal sensing

based on our understanding of the neuronal mechanisms underlying spatial cognition.

Within this context we shall be able to learn and use action plans that represent the iCub

and its interaction with object and with other agents. These plans will refer to the iCub

in the context of an internal representation the self, and other agents and objects within
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peripersonal space. The flow of interactions, guided in part by these plans will be under

the control of a limited spoken language interaction capability, extending the state of the

art in this domain . By maintaining an explicit autobiographical memory, the system will

begin to develop an integrated model of itself. This will include representation of actions,

their required initial conditions and resulting conditions. These capabilities will provide

the basis for goal directed reasoning based on the sequencing of state-action-state links

from the current state to the goal state. As the basis of these capabilities is memory.

1.1 Memory

Every person’s lifestory is different one from another. Even the way two people will

recall a same story will be different, given their emotional states or internal feelings such

as pain. The way we will reconstruct a past event will also vary given our knowledge at

the time we rebuild it. Before describing the technical details of my work, I will make first

a rapid overview of the human side of memory.

The pathologies linked to memory cover also a very wild scale. It can impact our

capacity to recall old event, or our ability to fix new memory, or just with time, fade one’s

ability for example to play piano... The field of the memory is very large, and can be

apprehended from many directions : psychology, cognition, social, developmental, clinical,

and neuropsychology at least.

The field of memory has been extensively explored since the beginning of human history.

For the ancient Greeks, the titanide Mnemosyne (see Fig 1.1), the daughter of Gäıa and

Ouranos, the goddess of Memory. She gave birth to the nine Muses for whom Zeus was the

father and invented words and language. She is the one that gave a name to all the things.

Mnemosyne is also the holder of all the legends.

This vision is the more accurate and poetic definition of the memory. Indeed by naming
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Figure 1.1: Mnemosyne the personification of memory by Dante Gabriel Rossetti.

all things and creating language, Mnemosyne gave the humans a way to communicate and to

talk about them and the world, about their past, their present and their future. But also by

giving birth to the nine Muses, she gave to the men the arts. It can not be any story, any art,

any social discussion and any taste without memory. It can not be any self without memory.

In Edda, the Nordic mythology, Mimir is the god of memory and knowledge. Mimir is

the keeper of a fountain of knowledge under the tree Yggdrasill. This fountain contained

the knowledge of all things but to have access to it, Odin had to pay the price of one eye

to taste the memory of the world (see Fig 1.2). Here also, the memory and the knowledge

are very close.

First under the view of philosophy and theology, then through psychology and nowadays

mainly through biology, memory has always been a huge question for the men.
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Figure 1.2: Representation of the myth of Mimir and Odin.

In 1891, Théodule Ribot, the future fonder of the journal “Revue”, develops his “Law

of Retrograde Amnesia”. He conjectures that the aging memory deteriorates orderly and

not anarchically. This order is from the most recent to the oldest memory, and from the

most complex to the simplest [Ribot, 1891]. One explication of it is that the storage in

the brain of old memories might be different than the recent ones. This would imply

that in case of mental decline of disease young memories are more likely to be distur-

bed than old memories. This can be seen in the case of Alzheimer’s patient : they can

recall of memories such as childhood event, but express more difficulty to recall recent events.

In 1885, the first experiment study of human memory and of forgetting is publi-

shed by Hermann Ebbinghaus in his book “Über das gedächtnis : untersuchungen zur

experimentellen psychologie” (Memory : A Contribution to Experimental Psychology)

(citeebbinghaus1885gedachtnis (reedited in English in 1913). His contribution was huge in

term of methodology : he wanted to study memory without any cognitive or semantic priors

on the stimulus. He thus created a system of non-sens syllable : consonant-vowel-consonant.

After removing the syllable that could have a prior meaning (DOT, BUT, HIM...) the list

of non-sens syllable has vocation to be used to study memory process.
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Figure 1.3: Human memory system from [Atkinson and Shiffrin, 1968].

Later, in 1938, the neurosurgeon Wilder Penfield during his studies about epilepsy, makes

the first hypothesis of a link between the temporal lobe and memory [Penfield, 1938]. In-

deed, the recall of memories can be induced by an electric stimulation of the temporal lobes.

The first general model of the human memory system was made by Atkinson and

Shiffrin in 1968 [Atkinson and Shiffrin, 1968]. They claim that the memory is divided in 3

component : a sensory register, a short-term store (working memory or short term memory)

and a long term store. These three component are linked as described in Fig 1.3. They use

as evidence for their theory some lesions in the hippocampus that induce a separation of

the two memory system (short term and long term).



CHAPTER 1. INTRODUCTION 9

Figure 1.4: According to Tulving, animals such as the cat do not have episodic memory, and
although they can learn many things they do not remember past experiences as we do. They just
“know”. Drawing from his wife, Ruth Tulving.

One of the biggest impact on the study of memory was made by perhaps the most famous

researcher about memory : the Estonian-Canadian Endel Tulving, in 1972 [Tulving and Donaldson, 1972].

Indeed, Tulving is the first to make a distinction between Episodic and Semantic memory.

Episodic memory would be the conscious recollection of previous experiences (event with

context) while semantic memory is the recollection of facts and general knowledge (see Fig

1.4).

Two years later, in 1974 Alan Baddeley divide the short term memory in seve-

ral sub-systems of “working memory”, including a phonological loop that treats the

speech, and a visuo-spatial sketch pad that manipulates the visual inputs (see Fig 1.5

[Baddeley and Hitch, 1974]). It has to be noted, that these systems should be independent

and with a limited capacity.

In 1980 with the help of the new techniques of neuro-imaging, Neal Cohen and Larry
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Figure 1.5: Components of the working memory, from [Baddeley and Hitch, 1974].

Squire introduce the concepts of a procedural memory (implicit for the skills and habits)

and a declarative memory which is an explicit memory [Cohen and Squire, 1980].

Today, a continuous and ongoing research effort tries to understand the functioning of

memory and diverse aspects of the system of Human memory remain unknown. The

study of memory continues to maintain a prominent place in modern neurosciences

[Binder and Desai, 2011].

It is interesting to see the embodied aspect of the concept of memory that is, the physical

substrate in which the memory is implemented Whatever may be the field, the term of

memory is more or less never put into question : we can talk about “collective memory” as

well as the “memory of the computer” or even the “cellular memory”. Whatever may be

the context, the term of memory is always understandable. But it is also clear that all these

memories are different in everything but the goal. This simple fact highlight the impact

of the body, from a material point of view (such as computer memory) or immaterial
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(collective memory, or tradition). The functioning of a memory depends mostly of its body.

But even if I said that all the memory systems have a same goal, they don’t all reach it,

or maybe not of the same way. We will study the impact of the body on memory, and of

memory on the body. For this reason, we decided to focus our work on the functioning of a

memory system, inspired by the human memory system, that can allow the humanoid iCub

to learn from it interaction with people, to begin to take steps towards constructing a self.

1.2 Self

We have seen that the field of memory has fascinated humanity since always. In every

mythology, in every culture, memory has been a subject of myth and of study. But the

topic of the self and beyond it, of Humanity, is something even bigger. A quick comparison

using google scholar gives use the following results : “autobiographical memory” : 178 000

results, “stem cell” (a field growing exponentially since a few decades) : 2 700 000 results,

“sense of self” (which is a precise request, “self” cannot be searched alone it would have

no sense) : 3 870 000 results. This illustrates the vast ocean on which we are sailing when

we try to deal with the “self”.

Many religions have argued that the self was something divine, that it cannot be

observed or studied from a scientific and experimental point of view. It is true that the

topic of the self is something very controversial, but also very complex to study. What is

the part of the self that can be explained by the neurology, but before this, the self can

it be explained or at least studied from a scientific and pragmatic point of view ? To this

question, the life of Phineas Gage begins to provide us some light.

1.2.1 The life of Phineas Gage

The story of Phineas Gage is well known in the scientific world (and even in popular

culture). It is the story of a man that lived in the 19th century. Phineas Gage was a humble
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Figure 1.6: Frontispiece, showing multiple views of the exhumed skull, and tamping iron, of brain
injury survivor Phineas Gage, from [Jackson, 1870].

American railroad construction foreman. He was liked by his family, his friends, and the

people who worked for him talked about a nice man. Phineas Gage was working on the

railroad and was manipulating explosives daily.

On day, while he was manipulating a small charge, there was an accident and the

charge blew, projecting an iron rod through his head. The rod was 1.1m long, and 3.2cm

of diameter and sharped at its extremity. The iron crossbar of 6kg was found 25m away

from Gage (see Fig 1.6 and 1.7). Gage miraculously survive and moreover, he didn’t even

faint, and even if he was in shock, he managed to speak in only a few minutes. However

Gage shown some convulsive motions after the impact.

After a recovery period of less than two months, Phineas Gage retrieved his physical
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Figure 1.7: Photograph of cased-daguerreotype studio portrait of brain-injury survivor Phineas P.
Gage (1823–1860) shown holding the tamping iron which injured him. Includes view of original
embossed brass mat. Color, unretouched. From the collection of Jack and Beverly Wilgus. Because
a daguerreotype is almost always laterally (left-right) reversed, a second, compensating reversal has
been applied to produce this image, so as to show Gage as he appeared in life ; that this shows
Gage correctly is confirmed by contemporaneous medical reports describing his injuries, as well as
from the injuries visible in Gage’s skull, still preserved. Photograph by Jack and Beverly Wilgus of
daguerreotype from their collection.

abilities, and sensory perceptions. He was able to speak, to maintain a conversation, to

understand complex situation, to recognize his family or friends, to understand other people

behavior, but Gage wasn’t Gage anymore. For the Doctor Harlow [Harlow, 1869] that was

in charge of him at this time :

“The equilibrium or balance, so to speak, between his intellectual faculties

and animal propensities, seems to have been destroyed. [...] In this regard his

mind was radically changed, so decidedly that his friends and acquaintances said

he was no longer Gage.”

Gage became rude with the people around him. He was now an egocentric man unable

to carry a project to its term. The respectful man had disappeared and now was a man

that didn’t care about his relative and couldn’t stand the critics especially directed against

his desires.
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Gage lived a few times as a horse breeder or stagecoach driver, but it was not very

successful, and he finished at the Barnum Museum of New-York as an attraction. Gage

died at the age of 37 of an epilepsy attack stronger than the others. During 12 years after

his accident, Gage hasn’t been able to have a social behavior appropriate.

The case of Phineas Gage is quite interesting for us and several points need to be

highlighted. First of all, this case put in light the part of the social behavior in Human

evolution. Phineas Gage died alone and even his family had given up on him in the end. He

had lost his ability to bond with people. He was unable to keep any friend or girlfriend, and

thus wasn’t able to reproduce. For Damasio [Damasio, 2008], this ability to make friend

and to be social is a plus for the survival of Human, and may be an inherited characteristic.

This is a step forward in the view of Aristote about men :

“Man is by nature a social animal ; an individual who is unsocial naturally

and not accidentally is either beneath our notice or more than human. Society

is something that precedes the individual. Anyone who either cannot lead the

common life or is so self-sufficient as not to need to, and therefore does not

partake of society, is either a beast or a god.”

It has to be noted that Aristote to define a man that is not in the society (such as

Phineas Gage) is defined as either a “beast”, which is the term used by Phineas Gage

contemporaries to describe him after his accident, or a god but I have serious doubts about

it...

Another fact, linked to the social aspect of men, is that this social abilities seem to be si-

tuated in a precise place in the brain. Indeed, the area of the brain damaged by the cross bar

has been precisely defined : the temporal lobes (mainly the left one, but also a bit the right

one) [Damasio et al., 1994]. Antonio and Hanna Damasio don’t claim that the frontal lobe

might be the “brain area for the self” in any case, but it seems to be involved in the process

of social understanding which modify the self. Other cases similar to Gage’s case have been

reported with the same consequences : when the frontal lobe is injured, the patient expresses
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difficulties to understand others and his behavior is radically different from before the injury.

Thirdly but not least, we can see with the case of Phineas Gage that the brain is

clearly responsible for our behavior (and thus our self) and a modification of it implies a

modification of the self. We can thus study the self from an anatomical and neurological

point of view. Neurological and anatomical of course, but not alone, it has to be done with

also the psychology and even anthropology if the Men are such a social animal. We will

see later on, that the understanding of other is a major component of what we will define

as levels of self.

1.2.2 Neisser’s levels of self

It is easy to get lost while attempting to characterize a clear definition of the self. For

this reason, we decided to direct our research upon the works of one of the most influential

psychologist of the last century : Ulric Neisser.

Ulric Neisser was born in 1928 in a Jewish family of Kiel in Germany. In 1933, with

the rise of the third Reich, his family decided to move to the United States where he

will discover both baseball (he refers to it very often in his writings) and psychology.

He graduated from Harvard in the department of Social Relations in 1956. The social

and cultural aspect of Men will follow him all along his career. He then moved to the

University of Pennsylvania where he wrote is famous book : “Cognitive Psychology”

[Neisser, 1967]. In 1967, while the field of the same name was trying to expend, it took a

huge boost with the publication of this book that gives the bases of the cognitive psychology.

In his following book in 1976 : “Cognition and Reality” [Neisser, 1976], Neisser both

attacked the contemporary field of cognitive psychology, and argued his theory of an

ecological self. Indeed, Neisser rejected the experimental method of his peers which was

for him, too much directed toward laboratory experiments. He thus started to develop

his idea of the importance of the ecological factor as part of the cognition. Ecological



CHAPTER 1. INTRODUCTION 16

should here be interpreted coherent in a “natural way”, which implies the environment, the

body state and the cultural state. In particular Neisser defends the idea of a perception

not only as external (such as vision or hearing), but also as internal (the metabolic network).

Neisser died in 2012 but he left a definition of the self as a decomposition of five different

levels.

From [Neisser, 1995] :

– The Ecological Self is the individual situated in and acting upon the

immediate physical environment. That situation and that activity are conti-

nuously specified by visual/acoustic/kinesthetic/vestibular information. As

we shall see, infants perceive themselves to be ecological selves from a very

early age.

– The Interpersonal self is the individual engaged in social interaction

with another person. Such interactions are specified (and reciprocally

controlled) by typically human signals of communication and emotional

rapport : voice, eye, contact, body contact, etc. This mode of self-knowledge,

too, is available from earliest infancy.

– The conceptual self or self-concept, is a person’s mental representation

of his/her own (more or less permanent) characteristics. That representa-

tion, which varies from one culture to another as well as from one person

to the next, is largely based on verbally acquired information. Hence, we

can think of it as beginning in the second year of life.

– The temporally extended self is the individual’s own lifestory as he/she

knows it, remembers it, tells it, projects it into the future. It cannot appear

until the child already has a conceptual self, a narratively organized episodic

memory, and an explicit understanding of the continuity of persons over
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time - say, until the fourth year.

– The private self appears when the child comes to understand and value

the privacy of conscious experience ; when it becomes important that no

one else has access to his/her thoughts, dreams, and interpretations of

experience. I do not know whether this insight appears regularly enough to

be counted as a developmental milestone, but it surely requires a temporally

extended self which to reflect.

We can already see here the hierarchy put in place by these levels. We will thus follow

this order in our work. As Neisser claimed it in “Cognition and Reality”, the first and

most elementary level of self, is the Ecological Self (ES), that will be in our case, for the

robot, the ability to understand the direct world, and the direct consequences of his action.

Then, the the robot need to have a sense of Interpersonal Self (IS) and to understand

his social interactions mainly through language. Building on this, the Conceptual Self

(CS) can arise. It will be manifested as some insights of Theory of Mind, and mental

representation of other people’s belief, and by high level reasoning implying understanding

the complex implications of an action. Finally, we will show the manifestation of the sense

of the Temporally Extended Self (TES) that can manifest as a way to recall the past, to

bend it from imagination, and to consciously access to the robot life story.

As we stated earlier, we decided to put aside the Private Self. Indeed, the private self is

not as well defined by Neisser, and appears later in the child development. We want to

focus her on our work about the development of the child until 41
2 years old. Also, the

Private Self can be seen as an “super extension” of the TES, and thus we decided to focus

on the four other levels of self.

The implication of an ABM in the emergence of the senses of self can be, like in the case

of the TES, evident. Indeed we intuitively see how the ABM will feed the TES and how
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the memories will be bricks of the life story. But in some cases, the use of the ABM is more

uncertain. We will thus explain how, directly or indirectly the memories of the ABM will be

use to understand the world, for each person in his own way, to develop these notions of self.

Accordingly to these four levels of self and the prominent role of the ABM, I will

divide this thesis in five chapters. The first chapter will be dedicated to the Synthetic

Autobiographical-Memory (SABM) : what is the functioning of the Human ABM, and

how to model it on an Humanoid robot ? The four next chapter will then describe the

progressive emergence of the 4 level of self we decided to focus about : ES, IS, CS and TES.

I will then conclude about the model we proposed and how these four levels can be rela-

ted one with another. Finally I will discuss our results, our limitations, and our perspectives.

Again, I want to stress the this thesis does not attempt to address the question of

creating a self in a robot. Rather, it provides a set of concrete new development in the state

of the art of robot cognitive systems and link these to the levels of self defined by Neisser.

1.3 Context and objectives of the thesis

1.3.1 Context of the Thesis : the EFAA and WYSIWYD European projects.

As I said, this thesis has been realized as part of two European Projects : EFAA for

the period 2011-2013, and WYSIWYD for the period 2014-2016. The objective of these

two projects are the following (extracted from the description of work, included in the

appendices 9.4) :

EFAA : “The Experimental Functional Android Assistant (EFAA) project

will contribute to the development of socially intelligent humanoids by advancing

the state of the art in both single human-like social capabilities and in their

integration in a consistent architecture.”
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WYSIWYD : “[the WYSIWYD Project] will create a new transparency in

human robot interaction (HRI) by allowing robots to both understand their own

actions and those of humans, and to interpret and communicate these in human

compatible intentional terms expressed as a language-like communication channel

we call WYSIWYD Robotese”

These projects regroup 5 European laboratories for EFAA, and 6 for WYSIWYD. The

partners of the projects are the following :

– Istituto Italiano de Tecnologia - Genoa - Italy. PI : Giorgio Metta. The IIT is

the laboratory that developed the robot iCub that is the core of the project. Their

part in the projects is a technological support, and the link between the hardware,

and the “low level software”. They are involved in the motor command, vision, and

global informatic architecture of the robot and of the project (technical tools such as

Git for versioning, Travis or AppVeyor for the automatic verification of code). They

are present is both EFAA and WYSIWYD. My interaction with them was mainly

about technical support, help for the development, and hardware-related problems.

– University of Sheffied - United Kingdom. PI : Tony Prescott. USFD was dedicated

to the tactile interface of the robot in the EFAA project while in the WYSIWYD

project, they are more focused in the autobiographical memory, at the scale of

streamed data (more a machine learning work). My interaction with them was mostly

about the complementarity between our and their SABM : the SABM from INSERM

is more action-based and “high level”, while the USFD SABM will be directed about

movement and continuous stream of data.

– IMPERIAL College - London - United Kingdom. PI : Yiannis Demeris. Imperial is

focus about machine learning, and perception through kinect or through the cameras

of the robot. My interaction with them was to create a common format from what they

detect, to what could fit in our SABM. They are part of both EFAA and WYSIWYD
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– Universitat Pompeu Fabra - Barcelona - Spain. PI : Paul Verschure. The team

SPECS (Synthetic Perceptive, Emotive and Cognitive Systems) is involved in the

cognitive architecture, and in the Human-Robot Interaction : development of a reactive

layer, of a social perception and of action-intention grammar. They are present of both

EFAA and WYSIWYD and are also the coordinators of the projects. My interaction

with UPF was important and in particular for the development of the cognitive

architecture of the robot (to define the place of the SABM and the reasoning modules

in the global architecture).

– University of LUND - Department of Philosophy - Sweden. PI : Peter Gärdenfors.

The university of Lund arrived in 2014 for the WYSIWYD project. Their work is in

the robot understanding of the Human. This work is directed both on the language

understanding, and also in the visual analysis of a scene. My collaboration with them

started later, and is mainly focused about the language understanding.

All the partners are developing on a common open source c++ project. Some c++

libraries have been developed and are used by all the partners to command the robot,

to make some speech recognition, to record a memory in the SABM or to get a memory

(this will be detailed later). Each laboratory has a team of two or three PhD Student or

post-doc, dedicated to the project, and we meet around five times per year to integrate

the specific work of each laboratory.

The role of the INSERM in Lyon in theses two projects is displayed in the Fig 1.8,

1.9, 1.11 and 1.10. The objectives of the two projects are focused as we can see, about

the development of an autobiographical memory, that will set the basis of the technical

architecture of the SABM we will develop and that will be articulated around language.

The WYSIWYD project will be more related to the “self”, and particularly to the narrative

self, that can be seen as the Temporally Extended Self.
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Figure 1.8: List of the deliverables of the work package dedicated to INSERM in the EFAA project

Figure 1.9: List of the main tasks of the work package dedicated to INSERM in the EFAA project

Figure 1.10: Objectives of the work package dedicated to INSERM in the WYSIWYD project
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Figure 1.11: Description of the task 3.3 of the work package dedicated to INSERM in the WYSIWYD
project

Being part of these two European projects gives a significant help in many aspects.

They indeed provide a technical support for the state of the art robot that is the iCub. It

allows also to share point of view and ideas with scientists from all Europe. It gives also a

technical context well defined while being free to develop whatever could be useful for the

projects. These European projects allow to start such an ambitious and complex work not

from the beginning. In Lyon, we were just one team of the project but the context was

such as every pieces could work one with another. For instance, the detection of a human

agent is not one of our competence but is one of the Imperial College of London. I could

thus rely on their work to focus only on my part of the work.

1.3.2 Objectives

All the work that will be presented in this thesis (the modules developed and expe-

riment) have been developed in Lyon at the INSERM by me. In the context of these two

European Project, my thesis work will be directed in three main directions and under some

constraints. Firstly, the development of an synthetic autobiographical memory, based on

the knowledge of the functioning of the Human memory in term of architecture and of

goals. Technically, this development should follow the EFAA and WYSIWYD software

architecture (especially the YARP framework that will be detailed in 2.2.1, and the EFAA-

WYSIWYD architecture). This corresponds to the EFAA deliverable 3.2, and task 3.3.

The second objective is the development of a set of reasoning modules, based on the
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SABM. These modules should be able to create some knowledge related to a Human-Robot

Interaction in the human world. This knowledge can be the understanding of an action

such as : “putting an object to the left”, that the robot should be able to understand, and

to recognize. This knowledge can also be related to the HRI itself and the result would be

for the robot to understand the role of each person during a shared interaction, and be

part of it. This corresponds to the EFAA deliverable 3.1 and 3.2, task 3.1, and WYSIWYD

objective 3.2.

The third objective is the elaboration and realization of experiments that would show

the ability of the robot to develop a behavior characteristic to each of the levels of self

defined by Neisser in the context of a Human-Robot Interaction. These experiment should

show the ability of the robot to understand in the case of the ES the consequence of its

own action (“What would happen if I move this object to the left”), for the IS the role of

each person during an interaction (“Who is the agent of each action ?”, the robot should

understand the statement of a plan with several agents and the role of each person), for

the CS the robot should be able to predict someone else’s state of mind(“I think that he

thinks that...”) and for the TES the robot should be able to refer to his own past and to

analyze it using the three other levels. This work corresponds to the WYSIWYD objective

3.2 and task 3.3.

1.3.3 Publications

The work presented in the following chapters has been published in the following articles

(they can be found entirety in the appendices) :

– Pointeau, G., Petit, M., and Dominey, P. F. (2014a). “Successive Develop-

mental Levels of Autobiographical Memory for Learning Through Social Interaction.”

IEEE Transactions on Autonomous Mental Development, 6(3) :200-212.
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– Pointeau, G., Petit, M., and Dominey, P. F. (2013). “Embodied simulation

based on autobiographical memory.” In Biomimetic and Biohybrid Systems, pages

240-250. Springer.

– Pointeau, G., Petit, M., Gibert, G., and Dominey, P. F. (2014b). “Emer-

gence of the use of pronouns and names in triadic human-robot spoken interaction.” In

Development and Learning, 2014. ICDL 2014. IEEE 13th International Conference on.

– Petit, M., Lallée, S., Boucher, J.-D., Pointeau, G., Cheminade, P., Ogni-

bene, D., Chinellato, E., Pattacini, U., Gori, I., Martinez-Hernandez, U.,

et al. (2013). “The coordinating role of language in real-time multimodal learning of

cooperative tasks.” Autonomous Mental Development, IEEE Transactions on, 5(1) :3-

17.

– Petit, M., Pointeau, G., and Dominey, P. F. (”accepted”). “Reasoning ba-

sed on consolidated real world experience acquired by a humanoid robot.” Interaction

Studies.

– Hinaut, X., Petit, M., Pointeau, G., and Dominey, P.F. (2014). “Exploring

the acquisition and production of grammatical constructions through human-robot

interaction with echo state networks.” Frontiers in neurorobotics, 8.
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2
A Synthetic Autobiographical Memory for

Reasoning

As stated in [Pointeau et al., 2014a], one of the principal arguments for developmental

robotics is that certain types of behavior are perhaps better learned (adapted, acquired,

developed) than pre-programmed. This applies particularly to situations in which the

robot is expected to acquire knowledge about the world and how to perform in the world

via interacting with humans. In human developmental studies, significant attention has

been allocated to the mechanisms that underlie the ability to acquire and build knowledge

and encode the individuals accumulated experience, and to use this accumulated expe-

rience to adapt to novel situations ([Wells, 1981] [Kolb, 2014] [Nelson, 2009] [Siegler, 1976]

[Piaget and et Niestlé, 1948]). In particular we consider research on ABM and mechanisms

by which ABM can be used to generate new knowledge.

In this chapter, I will define the model of Synthetic Autobiographical Memory (SABM)

that we developed, and the reasoning tools that operate on it. I’ll first address the concept

of memory, that we will divide in two parts, the Episodic-Like Memory (ELM) and the

Synthetic Semantic Memory (SSM). Then, I’ll explain the creation of knowledge and the

reasoning tools that allows passage from the ELM to the SSM.

2.1 Concepts of Memory

When one ears memory, a diversity of aspects can come to the mind. Tulving in 1985

has defined the memory as the six following functions [Tulving, 1985] :

1. neurocognitive capacity to encode, store, and retrieve information

25
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Figure 2.1: Representation of the Striatum (labeled here as Basal Ganglia), Hippocampus and
Cerebellum in the Human Cortex. From a internal UCLA review from Allison K. Krupa.

2. hypothetical storage in which information is held

3. information in that store

4. some property of the information

5. componential process of retrieval of that information

6. individual’s phenomenal awareness of remembering something

In this definition we can see two opposing concepts. We have on one side, something

about action or behavior, and on the other hand we have something about cognition and

thought. This is the first level of division of the memory : declarative (thought, cognition)

and nondeclarative (action, behavior).

2.1.1 Declarative versus non-declarative Memory

The memory is not unique. One cannot talk about one memory but should talk about

memories. Indeed, experimental animal studies and human neuro-imaging studies have

shown that the brain contains multiple memory system. All this memory system are different

functionally, but also are located at different places in the brain ([Poldrack et al., 2001],

and Fig 2.1). The main distinction made is between declarative and nondeclarative memory.
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Figure 2.2: Representation of the Amygdala, Hippocampus and Cerebellum in the Human Cortex.

These two kind of memory have different capacity to recall stored information.

First of all, in term of location in the brain. We know from neuro-biological, neuro-

imaging, or pathological studies [Squire, 1992], that these two components are implemented

in distinct brain systems. While simplifying for the sake of clarity, we can say that decla-

rative memory involves the hippocampus of the medial temporal lobe (Fig 2.2), and the

nondeclarative memory involves the Striatum of the Basal Ganglia (Fig 2.4).

Again, simplifying, neuro-scientists have studied patients with amnesia (hippocam-

pal damage) and with Parkinson disease (striatal damage) to have more information

about the relation between these areas. Parkinson ’s disease patients shown impaired

procedural learning (nondeclarative memory) however, they still have declarative memory

[Knowlton et al., 1996]. One the other hand, Amnesic patient shown a normal learning

of tasks (nondeclarative memory) but have shown problem concerning the declarative

knowledge [Tranel et al., 1994].

As I stated earlier and as we can instinctively remark, the declarative memory function

will be related to cognition and though where the nondeclarative memory will be dedicated

to actions and behaviors. Squire defines the declarative memory as : [Squire, 2004].
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Figure 2.3: Taxonomy of the division of mammalian long-term memory system, from [Squire, 2004].

“the kind of memory that is meant when the term � memory � is used in

everyday language. It refers to the capacity for conscious recollection about facts

and events [...]. declarative memory allows remembered material to be compared

and contrasted. It supports the encoding of memories in terms of relationships

among multiple items and events. Declarative memory is representational”

Squire here gives us an enlightened version of declarative memory concept. He justifies his

use of the term “representational” by the fact that declarative memory is a model of the

world and thus can be right of wrong as any model. The nondeclarative on the other hand

cannot be wrong or false, it “is” and the recall of information is done “by rote”.

According to Cohen and Squire [Cohen and Squire, 1980] the declarative memory is

described as “a flexible memory for past events and facts”, and the nondeclarative memory

is “characterized by relatively inflexible knowledge”.

The time required to “fix” a memory also varies. In the case of the nondeclarative

memory, Poldrack claims that the nondeclarative memory is a gradual learning system
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Figure 2.4: Representation in the Human Cortex, of the Striatum (in the Basal Ganglia).

among many trials, whereas the declarative memory seems to be involved in the rapid

learning even about individual trials [Poldrack et al., 2001].

This can been seen with the following example : Basketball. To learn the rules of basketball,

or even the concept of “to put the ball in the basket”, I don’t need thousand or trials,

after only 2 trials, one failed, one successful, I can understand what I have to do to win :

put the ball in the basket. This is declarative memory. To have the exact good movement

to put the ball in the basket, I’ll need thousand of trials (in my case, many more than a

thousand I think...) to reach the perfect hand and body movement. This is the work of the

nondeclarative memory.

The nondeclarative memory will thus “store” the procedural memory that will be

skills and habits : the “how to” (ex : basketball shooting, riding a bike). The procedural

memory will also contain the very basic “every day” knowledge as walking of using a

key. The second part of the nondeclarative memory is the priming (related to perceptual

representation system). The Human as many animal is “primed”. The term priming here

is for the capacity to access quickly to a conscious memory with a primer. For example,

if we ask the name of a tool to a child, most of the answer will be “a hammer”, and

if we ask for a color, we might have a big proportion of “red”. But this is variable. If

a child is submitted to another stimuli very often (as living in a snowy landscape) the
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answer can vary. Another component is the system of non associative learning. This is a

permanent system of habituation that will change the weight of response to any external

stimulus. The non associative learning is mainly the management of reflexes and can

be found a different time scale : minutes, hours, days or even weeks.. The last part of

the nondeclarative memory is the simple classical conditioning. For more details, see Fig 2.3.

The declarative and nondeclarative memory have different purposes and Sherry and

Schacter have shown that these systems would have evolved in parallel to serve these different

goals ([Sherry and Schacter, 1987]). However, one can replace another in case of failure

as in the case of a pathology. Many neuro-imaging ([Dagher et al., 2001] [Owen et al., 1998]

[Moody et al., 2004] [Poldrack and Packard, 2003]) and animal neuro-physiology ([Squire and Zola, 1996]

[Packard and McGaugh, 1996]) experiments have shown that these two system are : inde-

pendent (anatomically and functionally distinct), work together and interfere (communicate

between each other). This implies that in particular in the case of Parkinson’s disease

patients, the Hippocampus can take partially the relay of the Striatum in the case of a

cognitive task such as the Tower of London, but of course this replacement (on one side or

the other) has a cost for the organism.

2.1.2 Episodic Memory versus Semantic Memory

We will now focus about the declarative memory and its components. Schacter et al.

have listed five memory systems [Schacter et al., 2000] from neural imaging studies :

– working memory

– semantic memory

– episodic memory

– perceptual representation system

– procedural memory
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Figure 2.5: Representation of the Human frontal lobe.

The working memory, semantic memory and episodic memory, are considered as part of

the declarative memory whereas the perceptual and procedural memory are nondeclarative.

The episodic memory and the semantic memory will be the two main part of the SABM

that I implemented as we will see later on. But what are the differences between these two

conscious memory systems ?

In 1972, Tulving brought to light the differences between an episodic memory and a

semantic memory [Tulving, 1972]. These distinctions are in term of information processed

and in the general functioning. The semantic memory will “store” the general knowledge

base, while the episodic memory will “store” events being given a time and a space. The

difference for Tulving, is as the difference between declarative and nondeclarative, also

anatomic. Indeed, in 2002, he showed [Tulving, 2002] that the pathways used for the

semantic memory may be localized in the frontal lobes of the left hemisphere of the brain

and the inferior parietal lobe, while the pathways used for the episodic memory involve

additional process in the right hemisphere (see Fig 2.5). Since, more recently (2011), Bin-

der has shown that the semantic systems seems widely distributed [Binder and Desai, 2011].

But the differentiation between these two memory system are also (from Tulving) to

be put under the light of evolution. The semantic memory under its form and function

may be common to other animal, and phylogeneticaly ancient. The episodic memory on



CHAPTER 2. A SYNTHETIC AUTOBIOGRAPHICAL MEMORY FOR REASONING 32

the other hand is “recently evolved, late developing, and early deteriorating past oriented

memory system, more vulnerable than other memory system to neuronal dysfunction, and

probably unique to Humans” (from [Tulving, 2002]).

To come back to the example that I gave for the difference between declarative and

nondeclarative memory with the rules of basketball (see 2.1.1), lets get back to the day

we learned basketball. To remember the gymnasium, the people present, the color or the

jersey, the odour of the ball, will involve the episodic memory. To remember the rules of

basketball will be semantic memory.

But Brewer makes a very important point on the impact of the self between semantic

and episodic memory [Brewer, 1986]. He reminds us that many of self-related fact are

not totally autobiographical memory or episodic memory per say, but are more semantic

memories. For example our date and place of birth, or the name of school we attended are

semantic knowledge even if they are self related.

It has to be noted also that there is a difference of development of these anatomical

structure. Indeed after the first year of life, the medial temporal lobe is mature and func-

tional while the frontal lobe will continue its development until the 5 of 6 years of life

[Nelson and Fivush, 2004].

Concerning what Tulving says about the fragility of episodic memory, Damasio made

some observations going in this direction in 1999 [Damasio and Dolan, 1999]. Damasio has

studied a patient with retrograde amnesia. The patient met a new doctor. The doctor

introduced a new game to the patient. The doctor left, and after a few minutes, came back.

The patient couldn’t recognize the doctor, but knew the rules of the game.

At this point, one can say that we didn’t gave an exact distinction between episodic

and autobiographical memory. Episodic memory is a part of the ABM, actually it is the
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more evident part of it. But the difference lies in the fact that episodic memory is a well

defined neurological structure and function, while ABM is more a functional system that

will encompass the episodic memory. I need to make clear also at this point that we want

to keep for our system the functionality (the goal) and the architecture of the system of

memory : the ELM and the SSM are two separated systems, that communicate but work

independently.

2.1.3 Autobiographical Memory

What is an autobiographical-memory ? Conway and Rubin define the ABM as follow

[Conway et al., 1993] :

“Autobiographical memory is memory for the event of one’s life... It consti-

tutes a major crossroads in human cognition where considerations relating to the

self, emotions, goals, and personal meanings all intersect”.

Nelson proceeds in this way [Nelson and Fivush, 2004] :

“... we assume that autobiographical memory depends partly on neurological

developments necessary for the development of memory and, specifically, episodic

memory, but that autobiographical memory emerges from interactive development

across social, cognitive, and communicative domains to serve functional goals”.

But she insists in adding the a social component to the ABM :

“We define autobiographical memory as declarative, explicit memory for

specific points in the past, recalled from the unique perspective of the self in

relation to others.”.

This social component is essential in our following definition of the ABM. We can-

not remove the relation to others in this definition. Indeed the emergence of the ABM

is done during pre-school years and is induced by social interaction. Nelson uses the
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term emergence in reason of the ABM as a dynamic developmental system. This point is

further developed by several scientist ([Oyama, 2000], [Gottlieb, 1997]) that claims that

anatomically, the system of the memory growths in size and in complexity at the same time.

Many authors highlight the impact of goals and self in the mechanism of memory. When

we talk about self, in this case, we talk about a sense of self that experiences, at special

time and space, the event : autonoesis. Indeed, ABM is not only a reference to the self, but

can have event that have a personal meaning that can be driven by goals, motivation or

emotions [Conway et al., 1993], constructed by social interaction, and by interaction with

the world.

For Nelson and Fivush, the ABM “is a type of declarative memory, and its most

distinctive form is episodic in Tulving’s sense” and it is explicit. However, where episodic

memory has a specific neurological structure, the neurological roots of the ABM are still

unclear. Also, as precised earlier, some event of our life such as dates of birth, are semantic

memory, but are part of the ABM which makes the ABM more complex and more complete

than just an episodic memory.

2.1.4 Development of the ABM and cultural differences

Even before birth, there is some evidence of sign of type of memory. In particular a child is

able a few hours after birth to recognize his or her mother’s voice ([DeCasper and Fifer, 1980],

[DeCasper and Spence, 1986]). Also, after a few months (around 6) it is possible to show

that a child is able to recall short events and routines [Nelson and Fivush, 2004].

The ABM is not something fixed. It is important to keep in mind that is varies over

time, social and cultural origin : (from [Nelson and Fivush, 2004])

“(a) There is a gradual emergence of autobiographical memory across the

preschool years rather that a point before witch there are no autobiographical
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memories and after witch there are. (b) language is a fundamental social cultural

tool in the development of an autobiographical memory system ; and (c) there are

cultural, gender and individual differences in autobiographical memory across

the life span that need to be explained.”

Concerning the time of development of the ABM, the Figure 2.6 present a baseline of

the timescale of its emergence. This representation and all the date that will follow must

be taken carefully and in any case represent the truth. These markers are general insight

to understand the chronology of the ABM but vary, as I said, between individuals.

During the first year the medial temporal brain structures grows until reaching its

full size and functional maturity. The child reach very quick two main notions : the in-

tentionality of others and self [Tomasello, 2009], and what Damasio called a “core self”

[Damasio, 2000]. These notions are both related to goal-directed actions (intentionality).

Damasio claims that the emergence of the faculty of differentiation of the child own action

and action of others is the basis of his core self. This implies also a physical self-awareness.

This “comprehension” of the goal of the action of others and self, comes from the social

and cultural context and interaction experienced by the baby during his or her first year.

This goal-directed action will be develop later, in the part 4.3 with the introduction of the

notion of “shared plan”. It has been shown also that during this first year, the child start

to “record” some event for short periods of time.

In the continuation of this, rises during the second year more interactions and in par-

ticular spoken interaction between mainly the parents and the child. During this period,

the child will develop his/her first representation of self in the way that he/she starts to

understand himself or herself as “me”. During this period of time also emerges the language.

Now, the child has a tool to communicate with the others. He or she starts to unders-

tand sentences, syntax and a bit of semantic. This understanding leads the child to the
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Figure 2.6: Hypothetical relations in developments from 1 to 5 years of age leading to the emergence
of the autobiographical memory. Larger arrows indicate more direct influences ; double-headed
arrows indicate reciprocal influences. Years (yr.) in the bottom scale indicate approximate ages
when influences come into play on average in normal development. Areas above the center are
presumed to be more endogenous and those below more exogenous as sources of development. From
[Nelson and Fivush, 2004].

understanding of dialogue and stories. This will build the foundation for what we will call

the “narrative self” or “temporally extended self”. We will developed this topic in the part 6.

Nelson has shown that it is after the beginning of the second year that the child starts

to develop a sense of the “conceptual self” (that will be discussed in the part 5). Around

three years marks the beginning of the self-recognition among others, in particular the

false belief understanding and the emergence of theory of mind (the ability to understand

other people’s intention [Nelson, 2003a], [Nelson, 2003b]).

All of this different blocks that will constitute the ABM are, if not directly or anato-

mically related, very inter-dependent. The development of each level is dependent of the

previous one, and the emergence of the ABM is continue and influenced by numerous factor.
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I need to make a clarification at this point, the work that is presented here is biologically

motivated rather that bio-mimetic. For this reason, the system described is not accurate

from a neurological or physiological point of view. Many studies have been made about

the faithful modeling of the mnesic system, most of them about the working memory

([Fix et al., 2007a] [Fix et al., 2007b] [O’Reilly et al., 1999]). We here do not claim to have

a biologically plausible system in term of interaction between the different part of our

ABM, or by the type of data flowing from one part to another. However, we try to fit

as much as possible on the architecture of the memory as described by Tulving, with an

episodic memory distinct from the semantic memory.

2.2 A Synthetic Autobiographical Memory

2.2.1 System Overview

Now that we defined the ABM, we will detail the Synthetic Autobiographical Memory

(SABM) that we developed for our robot.

The iCub First of all, we have to give the reader an overview of the conditions in which

the system is supposed to work. In term of physical interaction, the iCub, and the Human

(also referred as “Agent”) are physically engaged in an interaction around a reactive table :

the ReacTable. The iCub (see Fig 2.7) is an open source robotic platform with morphology

similar to a 31
2 years old child (about 104 cm tall) and is carried by a autonomous kart

(iKart) that will allows the iCub to interact face to face with a human agent at a relatively

good height.

Working with the iCub means having to deal with different level of actions or functions.

We use level, not in the sense of complexity, but in the sense of “cognitive complexity”. For

example, the vision, is a very complex aspect of robotics, but in our global architecture, it

is an input and thus at the base. Reasoning capacity will be what we will call “high level”.

Once again, I want to be very clear on the fact that these levels don’t imply complexity
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Figure 2.7: The humanoid robot iCub.

but a place in the chain of reasoning. Vision, or motor command are fields that can reach

an absolutely massive level of complexity.

The iCub is thus driven by a set of c++ libraries of primitives actions (grasp(x, y,

z), release (x, y, z), look (x, y, z)). these libraries are represented in purple as “iCub

Motor Cmd” in the Fig 2.8. Working with primitive actions allow us to free from the “low

level” problems of motor control. Our problem will be : when to send a command and

which command to send ? The execution of the command itself isn’t our main goal. I am

not saying that the body is not important for the use of the self or memory (see 7.5 for

the impact of the embodiment) but the effect of the body will be more visible and more

important for a learning phase. We will discuss this later, I just need to make clear that

the details of execution of the action is not the primary goal.
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Figure 2.8: System architecture overview. Human and iCub interact face-to-face across the ReacTable,
which communicates object locations via ReactVision to the object property collector (OPC). The
Supervisor coordinates spoken language and physical interaction with the iCub via spoken language
technology in the Audio interface. The ABM system encodes world states and their transitions due
to human and robot action as encoded in the OPC. Adapted from [Pointeau et al., 2014a].

The ReacTable In the current research we extend the perceptual capabilities of the iCub

with the ReacTable [Geiger et al., 2010]. The ReacTable has a translucid surface, with an

infra-red (IR) illumination beneath the table, and an IR camera that perceives tagged

objects on the table surface with an accuracy of mm. Thus, tagged objects can be placed on

the table, and their location accurately captured by the IR camera (see Fig 2.9 and Fig 2.10).

Interaction with the external world requires that the robot is capable of identifying its

spatial reference frame with the objects that it interacts with. In the human being, aspects of

this functionality is carried out by the dorsal stream, involving areas in the posterior parietal

cortex which subserve complex aspects of spatial perception [Shmuelof and Zohary, 2005].

In our system, the 2-D surface of the table is calibrated into the joint space of the iCub

by a linear transformation calculated based on a sampling of calibration points on the
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Figure 2.9: Representation of the functioning of the ReacTable.

Figure 2.10: View of the functioning of the ReacTable from the iCub point of view.
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table surface that are pointed to by the iCub. These points are physically identified in the

Cartesian space of the iCub, and on the surface of the ReacTable, thus providing the basis

for calculation of a transformation matrix which allows the projection of object coordinates

in the space of the table into the Cartesian space of the iCub. These coordinates can

then be used as spatial arguments by any action system of the iCub, which provides basic

physical actions including point-to (x,y,z), put(source X, Y, Z ; target x, y, z),grasp (x,y,z),

and release (x, y, z).

The Objects Properties Collector As we’ve seen previously, the robot needs an Episodic

Memory, a Semantic Memory, a Working Memory (WM), and some functions to access

any of this components. The WM is not a part of the ABM, and it will be treated externally.

The WM in our case will be represented by the Objects Properties Collector (OPC). The

OPC is a real time repository for all state information related to objects in the environment.

Object position data from the ReacTable is for matted and stored in the OPC in a name

referenced manner. The motor control level allows processing of commands like “put guitar

left” by querying the OPC to determine the location of the guitar in iCub coordinates in

order to perform the grasp action using the motor command. Likewise, spatial location

names like “left” are stored as entities in the OPC with their coordinates generated and

stored in the OPC bases.

The OPC is constituted of Entities with for each Entity, an proper ID (OPCid) and a

name. We then have three classes inherit from the Entities : Action Object and Adjective.

All of them have the properties of the entities (see Fig 2.11).

The action and adjective have also an argument that will characterize the action or

adjective. We have then the Objects that define an object physical (like the ReacTable

itself) or not (like a location on the table). Each object has different properties : the

presence which is a boolean (true if present, false if absent), the position which is a triplet
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Figure 2.11: Organization of the objects properties collector.

(x, y, z) in the coordinate frame of the iCub (ego-position), the orientation which is also a

triplet (x, y, z) in the coordinate of the iCub, the dimension which is a triplet (x, y, z), the

color which is a triplet (R, G, B) and the salience.

The salience is something specific : it define the attractiveness of the object. This value

is a number that can change dynamically according to the environment. An object moving

fast with high acceleration will have a strong salience. When the robot ears about a known

object, this will also increase the salience of the object .

The salience is handled by a small module called PASAR, that will just calculate the

acceleration of the objects present and take into account the burst of appearance and

disappearance in the computation of the salience.

On one hand, the salience will enable the robot to know which are the objects of focus

during an interaction. If there is an interaction without vocal clues, the robot will focus

his attention of the object with the biggest salience. He will also direct his gaze toward the

object with the biggest focus.

On the other hand there is an “inhibition of return”. This system will lower the salience
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Figure 2.12: Example of representation of the content of the OPC for the robot. We can see the
robot with three concrete RTObject (cross in red, circle in blue and eraser in yellow) and abstract
object which are locations : north, south, east, west and center.

of the object that is looked at by the robot. This models the disinterest of the robot for an

object after a few time.

”Beneath” the objects, we have to classes of entities : Agent and RTObject. The agents

are of course the different humans or robots present (the iCub itself, has his own agency,

but we will come back to this later). An agent is an object because he has every pro-

perties of the objects : a spatial position, a size, a color, an orientation in space and

a presence. But the agents also have emotions. An emotion consist of a name (of the

emotion : i.e. anger), and a value of this emotion. The emotions are in our system not

yet totally functional. The RTObjects (for ReacTable Object) are every object that is

detected by the ReacTable. The RTObjects have, in addition to the properties of the

objects, the rtposition which is a triplet (x, y, z). This triplet indicate the location in

the frame of the ReacTable. One can claim that a RTObject is by fact, always at the

height of the ReacTable and thus the z coordinate is useless. That is true, but we keep the

rtposition z for practical reasons (offset of the iKart, of for some offset for grasping function).

A finger on the ReacTable can be detected and will be set as a RTObject. An agent

can thus show a position of the ReacTable just by pointing at it.
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The last possible entries of the OPC are the Relations. A relation is composed by an

OPCid, a Subject, a Verb that are mandatory. Then we can add to the relation some

complement of Time, Place, or Manner. All these relations have a life time : Timmer, that

will allow to a dynamic relations. these relations will help mainly for the action of the

agents for example : “Agent - Wave - Slowly”.

The representation of this OPC can be display on a GUI (Graphical User Interface),

and we can thus see the world as it is perceived by the robot (see Fig 2.12). The robot has

the perception of his sensors, but also can add some abstract objects (as a location).

From a technical point of view, the WYSIWYD and EFAA project are made in

collaboration with different European laboratories. We agreed to use the language c++ for

the implementation.

Audio Interface To interact with an agent in a human way, we use an audio interface

to make the bridge between the robot and any vocal command of the agent. The audio

interface and speechRecognizer used are based on Microsoft speech recognizer SAPI5.1.

The system, given a grammar, can detect the semantic role of each word in a sentence. For

example, we used sentences like : “Peter put the cross to the left” or “You point the circle”.

In these sentences, the first word will be extracted as the subject (or pronoun), the second

as a verb, and the last one as the object of the sentence.

Once again this system allows us to detach from the problems posed by low-level speech

recognition. One can say that we recognize only what we want to recognize, which is

partially true, but we can argue that the problem of speech recognition is a full part

problem and we have to choose where to put the threshold between vocal recognition and

sentence recognition. We decided to put it on sentence recognition.
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Supervisor To make the link between the different component of our system, we need

a module that can handle the information of the different other module and triggers

the corresponding behavior. This module has been the object of many changes during

the last few years. It has been first developed using the programming language RAD

[Sutton et al., 1998]. Then this system has been replace by a module called MainLoop, that

was handling a majority of all module of the EFAA project. Now, we use a module called

qRM for Quick Robot Manager. The term Supervisor will refer to any of this three system.

The Supervisor provides the general management function for the human-robot interac-

tion, via a state-based dialog management system. This allows the user to enter different

interaction states. The Supervisor is state based, with specific responses and commands

from the user. It analyzes the input from the Audio Interface, and for example, queries the

SABM, or use the Reasoning tools, and creates an answer that can be a vocal command

synthesized by a state-of-the-art speech synthesis, or a motor command.

The connectivity between these different functional modules is implemented in an inter-

process communication protocol, YARP for Yet Another Robot Platform [Metta et al., 2006].

Each module has ports, that can send or receive Bottle, which will content a message of

any kind of data (numbers, images, sentences...). Yarp is a system platform independent.

Thus one of the big advantage of our system is that we can put it on (almost) any robot.

The only thing to modify to pass from, for example, the iCub to a Nao Aldebaran, is to

change the Motor Command module. Everything else can remain the same.

Synthetic Autobiographical Memory We will now detail the architecture of our SABM.

Technically the SABM is set as a Functionally, the SABM is composed of two memory sub-

systems as described by above, an episodic-like memory, and a synthetic semantic memory.

In terms of implementation the ABM content storage is managed by a PostgreSQL data

base manager [Momjian, 2001], and access requests are handled by a c++ SABM module.

The ELM and the SSM are thus PostgreSQL database, that will contain the memory of

the robot. As for every component of the declarative memory, we want to be able to access
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the ELM or SSM on purpose. For this we have a module called SABM which is a c++

program with a wrapper for PostregreSQL. The figure 2.13 represent the functioning of the

SABM with the rest of the system. We can see that the Supervisor can act in two different

ways. At first, it can send command to the SABM directly (arrow 3) to trigger a snapshot

for example at the beginning or the end of an action, or to get precise information about

the content of the ELM. Once this request is send to the SABM c++ module, the SABM

will in the case where it has to create a new memory, take a snapshot of the OPC (arrows

7 and 8). As we explained the OPC is already pre-processed data, and this content will

be store in the (arrow 1.a) ELM, with the information related to the objects (position,

presence ...) but also with the “meta information” given by the supervisor about the action.

The request from the Supervisor can also be a “question” (and not a snapshot). In this

case the SABM module in c++ will ask the ELM for a precise (or several) event in (arrow

1.b) and will get an answer under the form of an OPC content (arrow 2). This system will

allow the iCub to manipulate always the same format of data (under the form of an OPC).

The second possibility of the Supervisor is to query the Reasoning module (arrow 4). This

query can be for example to ask the reasoning module to create some knowledge. This

creation will be explain in more details in the part 2.2.3. In term of communication, the

reasoning will ask to the SABM c++ module information (arrow 5) related to the actions.

The reasoning module will thus get information under the form of OPC content (arrow

6) and will be able to manipulate it easily. Once the robot will have created knowledge,

it will send it back to the SLM or directly to the Supervisor to be used (arrow 9). This

knowledge will be mainly under the form of point cloud, or vector of data and will not be

interpretable at first glance.

My personal work during this thesis was thus the development of the component of this

Fig 2.13 at the exception of the OPC.
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Figure 2.13: Overview of the memory functioning including the SABM PostgreSQL Database, the
Supervisor, the Reasoning Module, and the OPC. Arrows 1-2 : SQL queries, and replies to SABM
are managed by a Autobiographical Memory interface module. Arrow 3 : User interacts with SABM
related to action status, and 4 : Memory content. Arrows 5-6 : SABM reasoning requests and receives
content via YARP connections. Arrows 7-8 : ABMmanager requests and receives state data from
OPC. Arrow 9 : Final response of SABM Reasoning to the supervisor. From [Pointeau et al., 2014a]

2.2.2 Episodic-like Memory

When the Human performs an action, a message is sent to the ABM which saves

the current state of the world for the robot (the current OPC) in the episodic memory

in SQL. In the context of the interactions with the human the robot is informedat the

beginning and at the end of each action. With the state of the OPC before and after an

action, the robot can extract the preconditions and effects for that action, as inspired

from [Mirza et al., 2008]. The SQL structure of the ABM is illustrated in Fig 2.14 and

corresponds mainly to the structure of the OPC but with a few additions.

The ELM is divided in 12 tables that can be divided in 3 parts : the “self related”,

the “action related” and the “world related”. The table main is above the other and

contain the “contextual information” of the event : the time where the event occurred, the

name and type of the action, the number of instance that we will use a primary key to

link each table, and a tag begin to precise if the event is the beginning or the end of the action.
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Figure 2.14: Architecture of the episodic like memory storage in PostgreSQL. The main data type
is specified as ContentArg, ContentOPC. Each interaction has the content of the OPC at a given
time (state of the world), but also, information concerning the context of the action (who, what,
when. . . ). The content of a memory can be divided in 3 sections : self-related, world-related, and
action-related. From [Pointeau et al., 2014a]

World Related : In this part, we found the tables that will save the state of the world at

a given time. This state of the world is given by the WM, in our case the OPC. We thus

have the tables : Relation, Entity, Action, Object, Adjective, RTObject, and Agent with

the proper inheritance. Each entity has thus a doublet instance-OPCid which is unique

and that allow us to retrieve the state of any entity at any time given these parameters.

Above the seven table of the OPC, we have the table ContentOPC which will for each

instance store the doublet instance-OPCid, and will add a type and subtype (mainly use

for research purpose in the ELM). The type will distinguish between relation and entity,

while subtype will define the precise type of entity (RTObject, Object, Agent, Action or

Adjective). We could access these information with the table, but the research a facilitated

a lot with this system.



CHAPTER 2. A SYNTHETIC AUTOBIOGRAPHICAL MEMORY FOR REASONING 49

name type subtype role
Grégoire entity agent agent1
put external default verb
croco entity rtobject object1
south external default adjective
quickly external default adjective

Tableau 2.1: Content of the table contentArg for one instance. The corresponding action is :
“Grégoire put the croco quickly to the south.”

Action Related : this part is composed only of the table ContentArg. In this table we

will put the information concerning the event. We store the arguments of the action. Each

argument has a name, a role, a type and a subtype. these information are given by the

supervisor, or by any module calling the remembering function. For example for the action :

“Grégoire put the croco quickly to the south”, we will have three argument. See table 2.1

Self Related : In this part, we have to tables : Emotions and Drives. In the table emotion,

we put the different emotions of the robot given by a name and a scalar value. In the table

drives, we put the different drives with their value and for each drive the homoeostasis

maximum and minimum. To satisfy a drive, the value should be between the maximum

and the minimum. these two tables have not been totally used yet.

Each time we want to “save a memory”, we will make a “snapshot” of the OPC into the

ELM, with the appropriate contextual information about the action to fill the ContentArg

table and the Main table. The time of saving a memory is around 100 to 200ms which

doesn’t allow us to make a “steaming recorder”. This is why we decided to focus on the

contextual information more that the frequency.

2.2.3 Synthetic Semantic Memory

The second part of the declarative memory that we want to model here is the semantic

memory. We thus has created an Synthetic Semantic Memory (SSM). The SSM is created

on the same concept as the ELM. It is a set of PostgreSQL data base tables. The structure
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of the SSM is illustrated in the Fig 2.15.

The semantic memory is built from the contents of the ELM that have been processed

by the reasoning tools that we will explain later. The role of our SSM is to store easily

knowledge for the robot. We will explain later how the knowledge is created, for now we

will explain the form of the data we store. We use mainly 2 tables for each knowledge :

one to store the name and/or argument of the knowledge (example north for a spatial

knowledge, before for a temporal knowledge), and a second one with the data, for example

some time stamps for the temporal data or some spatial data for the spatial knowledge.

This knowledge is under different form :

Spatial Knowledge : it consists of two table : SpatialKnowledge and SpatialData. Each

qpatial knowledge correspond at an action and an argument (for example : “put north”).

SpatialKnowledge will store the name and argument and associate an ID (instance). In

SâtialData, we will store the data relative to each time this doublet action-argument has

been seen. We dissociate the vX, vY data that are the final (x, y) location of the object

involved in the action, and the vDX, vDY which is the (x, y) displacement of the object of

focus of the action (relative displacement).

Temporal Knowledge : We will store here the time stamp of different action with a

common temporal argument.

2.3 Creation of Knowledge

What is the knowledge ? This only question would be a full topic of research and might

be to long to explore here. I will thus summarize this question to the following : what is

the knowledge inside the semantic memory ? Binder gives us a first definition :

“Semantic memory includes all acquired knowledge about the world and

is the basis for nearly all human activity. [....] semantic memory is one of
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Figure 2.15: Architecture of the synthetic semantic memory storage in PostgreSQL. For each type of
knowledge, a first table stores the general information concerning the knowledge (name, argument...)
while a second table stores the “technical information” : the positions of each move in the case of a
spatial knowledge, or the time-stamp in the case of a temporal knowledge. Each Spatial Knowledge
contains 2 vectors : the coordinates of the shift of the object of focus of the action, and the final
state of the object of focus. Each Time Knowledge entry contains 2 vectors : the timestamps of the
beginning of the action, and the timestamps of the end of the action. From [Pointeau et al., 2014a].

our most defining human traits, encompassing all the declarative knowledge we

acquire about the world. A short list of examples includes the names and physical

attributes of all objects, the origin and history of objects, the names and attributes

of actions, all abstract concepts and their names, knowledge of how people behave

and why, opinions and beliefs, knowledge of historical events, knowledge of causes

and effects, associations between concepts, categories and their bases, and on

and on.” [Binder and Desai, 2011].

Here Binder gives a list (not exhaustive) of what can be store in the semantic memory,

and we will build on this our SSM. In our case this will be for the robot to store his own

definition of an action (simple or complex) and of an adjective. This will be put under the

view of a HRI.

Jouen has shown that the modality of learning and of restitution of the knowledge

were independent from the capacity to have access to it [Jouen et al., 2015]. She shown
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with a study by fIRM that the comprehension of an image or a sentence involve the same

areas of the brain. This goes in the same direction that the study of Markov about the

organization of the brain in “bottleneck” [Markov et al., 2013], that correlates the study

from Martin [Martin et al., 2008] about a continuity of the treatment of knowledge in the

brain regardless of the modality of the information. In our case, the OPC will play the role

of this centralization of information before its integration in the SSM.

Different level of reasoning : We have developed in our system different levels of reasoning.

The levels refer to the data which will be used for the reasoning. The first level of reasoning

will be the work on the raw data of the ELM to create a first level of knowledge. The other

levels of reasoning will work on the knowledge created at the level just bellow. Each time,

will will use the knowledge of level i-1 to create the knowledge of level i.

2.3.1 First level : Extraction of Knowledge from the ABM

In order to adapt to novel situations a system must have memory of its experience, but

this is not sufficient. The system must be able to extract regularities from specific cases,

that can then be applied to the general case. We have developed some reasoning tools

that we will describe here. They are contained in a c++ program called abmReasoning

(ABMR). The ELM provides a record of experience, ABMR will operate on the content

of the ELM to structure this information and create the SSM. The ABMR module will

extracts spatial, temporal and contextual structure, by looking at preconditions and effects

of the actions that have been performed by the human and/or the robot. A simplification

of the functioning of the CKF can be found in the Fig 2.16.
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Figure 2.16: First level of reasoning (CKF). The iCub gets the events in the ELM, and create the

simple meanings associated. This first level use mainly clustering-like tools.

Getting the data : The first part of the learning will be the gathering of the data for a

simple action. As we explained in the part 2.2.1, we have the iCub and the Agent interacting

around the Reactable. The vocal input in taken by a microphone and a speech recognizer.

The sentence we will say to the robot are of the following kind : “I put the croco slowly

to the left” or “Carol push quickly the cube left”. The iCub makes then a “snapshot” of

the world and save his memory (get the dynamical content of the OPC in the ELM).

The Agent indicates to the robot the end of the action, and the iCub will make a second

snapshot of the OPC with the final state of the world after the action in the ELM. The

robot have thus the raw data of the objects in the OPC, but also some contextual informa-

tion about the action given by the speech recognizer or any module of treatment of language.

We will have a set of action that the robot has witnessed. We will then run a function

that we call Consolidation of Knowledge Function (CKF). The functioning of the first level

of reasoning is summarized in the Fig 2.16. This CKF is based on the mammalian sleep-

based memory consolidation ([Payne and Nadel, 2004] [Frank and Benington, 2006]).

At the shutdown of the system, the robot will enter in a form of “dream” mode which is in
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reality a function of consolidation of his knowledge. During this mode, the robot will go

through all his actions performed in the current session, and will generalize over this data,

and consolidate the resulting semantic knowledge in the database. At the initialization of

the system, the ABM Reasoning module will load the semantic knowledge that has been

previously stored in the autobiographical memory through consolidation.

We get a set of 53 sentences for the first draft of the experiment. The subjects used

were : “Carol”, “I”, or “Grégoire”. The verb used were : “put” or “push”. The objects used

were : “croco”, “mouse”, “cube”. And finally, the adjectives used were : “slowly”, “north”,

“center”, “south”, “east”, “quickly” and “west”. The list of the argument and combination

used can be seen in the table 9.1.

Getting the temporal adjective : This consolidation will focus on the adjectives and

verbs of the actions in a first time. The concept is to gather all action related to an adjective,

and to find the common denominator between all this action. We only have access to

information about the spatial position of the objects and the timing of the action. We

thus consider that the adjective the robot ears are related to time or space in the case

of a simple action. One could argue that the adjective could be about many other thing

(as manner) but we decided to focus on adjective that the robot can perceive the action.

However this limitation will be addressed in the discussion.

But what define the influence of an adjective on the related actions ? There is an

influence is on a particular property, the actions related to an adjectives are different of the

action in general. To do so, we will for each adjective heard plot the histogram of the timing

of the actions, and compare it to the distribution of the timing of all the other actions.

The robot will thus calculate an ANOVA or a Wilcoxon test to compare the distribution,

and we fix a threshold as internal parameter (in general 0.05) and if the p-value of the test

is significant according to our threshold, we can thus conclude that the adjective concerned

as an effect about the timing of the action related.
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However, the effect of an adjective can stay unnoticed in the case where the range of

timing of the action is bigger than the difference itself. For example in the case of an action

fast like “pointing” which will last 2s if done quickly of 4s if done slowly, an action as put

(which include a grasp and a release) can last for the robot between 20s to 30s. In this case,

it will be complicated to detec a general effect of the timing, we have to compare the ti-

ming for a couple : adjective + action. We can thus see the effect on each verb of an adjective.

The expected results are that for an temporal adjective we will have a significant

differences between the distribution related to the adjective and the general distribution,

while for another type of adjective (”left”, “near” ...) we won’t have any differences.

The different distribution and p-values of the Wilkoxson test can be found in the Fig 2.17.

In the case of a significant p-value, the robot will store the knowledge related to the

coherent label as the timing distribution for this label.

Getting the spatial adjective : The second step of this first level of reasoning will be

focus on the spatial redundancies. The concept will be the same that for the temporal

properties. For each entry in the ELM, the iCub will get the vector of displacement (relative

move) of the object of focus during the action (i.e. the difference between the final position

and the initial position) and the final vector of the location of the object (absolute move).

For each adjective ( “quickly”, “left”) in an action that involve an object of focus( “put”,

“push”... but not “waving” for example), the iCub calculate the distribution ellipse for the

relative, and absolute move. The robot will next compare the dispersion of each ellipse and

according to a threshold, the iCub will determinate the relation between an action and a

spatial property. The dispersion score is given by the determinant of the covariance matrix

of the scatter.

But in most cases, the adjective alone, in not related to spatiality directly. We have
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Figure 2.17: Compared distribution of the timing of every actions in blue, and a precise event in
red. The score is the p-value of the Wilcoxson test. The hypothesis H0 is : “the two populations are
similar”. Top left : case of the word “West”. The distribution of the time of action associated to
the word “west” is the same that any other action : timing is not related to the word “west”. Top
right : case of the word “Slowly”. The distribution of the time of action associated to the word
“slowly” is different from the distribution of timing of all the other action (p-valueof Wilcoxson test
is 2.75.10−5 : timing is related to the word “Slowly”. Bottom left : case of the word “Center”. The
distribution of the time of action associated to the word “center” is the same that any other action :
timing is not related to the word “Center”. Bottom right : case of the word “Quickly”. The
distribution of the time of action associated to the word “quickly” is different from the distribution
of timing of all the other action (p-valueof Wilcoxson test is 2.56.10−4 : timing is related to the
word “Quickly”.
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to give a couple “action” + “label”. And we apply the same concept to each couple. The

plots of the dispersion ellipses can be found in the Fig 2.18.

On the Fig 2.18, we can clearly see on the 4 labels that the first one, the dispersions for

the label “quickly”is unexploitable. All the properties that we can take into account have

the same redundancy. We can thus conclude that “quickly” is not an adjective related to

spatiality. The adjective “north” or “west” for example show some very low dispersion for

2 properties : put-XY and push-DELTA. Indeed the ellipses related to these properties

have some very low dispersion. We can thus conclude that the label “north” is related to

the final location of an object on the reactable if it is used with the verb “put”, while, it is

related to the relative displacement if it is use with the verb “push”.

Based on this spatial knowledge, the robot can now discriminate between spatially

oriented actions such as “push” and “put”. For actions in which the property of interest

which is the final state, the system will learn the corresponding absolute location. The

ABMR will then insert this location in the OPC. The ellipse of the property of interest

will become the “mental representation” of the robot for that location. This is illustrated

in Fig 2.19.

The learning of a spatial knowledge is summarized in the Table 2.2
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Figure 2.18: Compared dispersion of the the space data for 4 labels : “quickly” (top left), “west”
(top right), “east” (bottom left) and “north” (bottom right). We remind that the Reactable is
oriented along the x axis in front of the robot (”north” in the x axis). In green are the ellipses of
the relative move (delta) related to the action put (put-delta). In red are the ellipses of the relative
move (delta) related to the action push (push-delta). In orange are the ellipses of the absolute
move related to the action put (put-XY). In blue are the ellipses of the absolute move related to
the action push (push-XY).
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Figure 2.19: Illustration of the internal representations of the learned positions for “north”, “west”,
“east, “south” and “center” as white rectangles in the robot’s peripersonal space. The colored objects
are representations of the RTObjects on the reactable that have been placed à West (yellow), South
(blue) and East (red) respectively. From [Pointeau et al., 2014a]

Pseudo-code for Learning Spatial Actions and Locations

extract spatial regularities(ELM, SSM) {
for each spatial action in the ELM

{
extract (x,y) coords of object before and after each case of this action

calculate relative displacement of the object

update absolute and relative coords in SSM

calculate the dispersion of the absolute final position and relative displacements

if dispersionfinal position < threshold

then { action is absolute

update location definition in OPC

}
if dispersion displacement < threshold

then action is relative

update action definition in SSM

}
}

Tableau 2.2: Pseudo code of the learning of spatial knowledge during the CKF.
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Spatial Discrimination : Now that the robot has this spatial knowledge, he can use it,

of course, to act, but also to recognize an action of an agent. Indeed, we want the robot

to be able to understand the action of an agent in order to later, understand his goals.

To determine this, for each move that the robot has to discriminate, the ABMR extracts

the position of the object of focus before and after the action. The ABMR then for each

candidate spatial-knowledge calculates the Mahalanobis distance to the scatter of interest.

The Mahalanobis distance permits one to check the distance tof a point to the center of an

ellipse according its dispersion. The Mahalanobis distance (D) is given by the equation 2.1

where x is the position of the point (either the final state or the relative displacement) of

the move which we want to discriminate. Σ is the covariance matrix of the scatter of the

spatial knowledge we want to compare to, and μ is its mean.

DM (x) =
√

(x− μ)TΣ−1(x− μ) (2.1)

ABMR thus obtains N different Mahalanobis distances where N is the number of

spatial-knowledge elements that the robot knows (the couple “verb”+”label” that have a

property with a low dispersion). ABMR will then rank all the possible actions according

to their Mahalanobis distance, and finally calculate a score of confidence given by the

ratio of the second smaller distance by the smaller distance. If this ratio is low (close to 1)

this means that the robot cannot discriminate with precision between at least 2 different

actions. If the score is high (superior to a confidence threshold i.e. : 5), the robot can

discriminate with confidence the move it just observed.

The pseudo-code of the discrimination process is given in the Table 2.3
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Pseudo-code for Spatial Actions Discrimination

Discriminate action (focus object) {
for each spatial-knowledge in the SSM

{
calculate the Mahalanobis Distance (MD) between the

focus object (final or shift) and the corresponding spatial-knowledge

if MD < minMD

{
confidence = minMD/MD

minMD = MD

recognized spatial action = spatial-knowledge

}
}

return (recognized spatial action, confidence)

}

Tableau 2.3: Pseudo code of the discrimination of an agent’s move.

Link with the SSM We have seen how the robot can create his first level of knowledge in

term of spatial and temporal knowledge. But now, we want to write it in our SSM to rapidly

have access to it. Indeed, the time needed to parse the ELM to create the temporal and

spatial knowledge is not compatible with a real time execution and a normal HRI. The robot

will thus write in the SSM the distribution corresponding to each label. The iCub will have

in his SSM the usable data. Indeed, with directly the scatter of interest for each label, the ro-

bot can easily extract the information of interest and use it for a discrimination or an action.

But why do we write this data (the temporal distribution, or the spatial distribution)

in the SSM? As I said we want the robot to act in a laps of time compatible with a HRI.

To parse his memory (ELM) to create a clean the raw data, the robot need around 0.5s

per action. In the case of the 52 actions. The robot can create his knowledge “on the fly”
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while he witness actions. But if we shut down the robot and restart the next day, the robot

would need around 25s just to recreate these knowledge. To “load” the knowledge itself

takes around 0.5s per knowledge. On a big set of action (several hundred in the case of the

ELM after more than one year) we cannot afford to loose 5 minutes at each restart, while

10s maximum would load all the knowledge ready to use, for the robot.

2.3.2 Retro Reasoning

Who has never experienced to replay a event of his life in his head, with light of new

knowledge ? That could be just to watch “The Planet of the Ape” and to realize it was

Earth all along, and to replay all the movie in his head, but not happening on a far far

planet, but on Heart. But it can also be calling a friend, having no response, meeting this

friend that explain that he changed his number. Our memory of this event will be changed.

This is a concept that we wanted to use for the robot. Now that he has some first level

of knowledge, the iCub can use it to replay his ELM and modifying it with new contextual

information given by his SSM. The main concept of this retro reasoning can be found in

the Fig 2.20.

2.3.2.1 Second level of Reasoning

The second level of reasoning will thus be just parsing the ELM and adding some

contextual information mainly as relation. For example in the case of an action “Carol put

the croco to the west”, at first the croco was on the location “center”. We thus add the

relation related to this snapshot : “croco is center”. At the end of the action, the state of

the world is such as the croco is on the location “west”. Also the robot can analyze the

timing of an action and can had a temporal label to an action after it.

This second level of reasoning is not the more important, and is sometime useless after a

long time of learning. Indeed, if the robot has already the knowledge of a location, and that
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Figure 2.20: Retro reasoning for levels 2 to n. Once the first level of knowledge has been created by
the CKF, the next levels are a recursive loop that will use the (i− 1) level of knowledge created, as
new data, to create the level i of knowledge

an object is on this location, a relation will be added to the OPC automatically. The se-

cond level of reasoning is useful when the robot learn a new knowledge (spatial or temporal).

To do this second level of reasoning, the iCub need to replay the events of the ELM

“in his head”. We thus plugged a second OPC to the robot, that we call “mentalOPC”

(MOPC). This MOPC is not plugged to any sensor and can be accessed only by the

ABMR module. The iCub will get the state of the world of the real world at a certain time

through the ELM, load it in the MOPC and will reanalyze it with his new knowledge in the

SSM, and will add information concerning this event in the ELM. This level of knowledge

correpond to adding the context to the memories. We will come back more in detail about

this MOPC in the part 3.2.2, all we need to now at this step, his that it is a kind of sand

box for the robot to reanalyze the past or simulate according to his will.

2.3.2.2 Third level of Reasoning

Once we have “updated” the memory of the robot with some new knowledge, we have

“updated” the event and the data present in the ELM. The third level of reasoning will

be based on the same principle that the first level. The robot will try to extract some
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contextual regularities.

This level of reasoning will be based only (at this stage of work) on the locations. For

each action, we will get the contextual information given by the second level of reasoning

(such as : “croco is left”). The iCub will then gather for each type of action or couple

acion+label (as for the first level of reasoning) this contextual information and will just

get the percentage of each relation before and after each action.

For example, in the case of the action “Carol put the croco to the west”, the couple

“put+west” will be analyze. A high percent (almost all, except for some noise) of this actions

will have a post condition : “croco is west”. Concerning the pre condition, we will have low

but a non null percent for any other relation that “croco is west”. The pre condition of

“put croco west” will however give a pre condition which is : “croco is not west”. This third

level of reasoning we allow the robot to learn that : “put an object to the west” is not

to grasp an object and to release it in some particular (x,y,z) condition, but on a clearly

define location : “west”.

Autobiographical Memory is the basis of higher cognitive function in man, including

aspects of language and the emergence of self [Nelson and Fivush, 2004]. We will now see

how this emergence can be achieve on the first level of self : the Ecological Self.
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3
Ecological Self

3.1 Ecological Self

“The ecological self is the individual situated in and acting upon the imme-

diate physical environment. That situation and that activity are continuously

specified by visual/acoustic/kinesthetic/vestibular information. [...] infants per-

ceive themselves to be ecological selves from a very early age.”

This definition of the Ecological Self (ES) is given by Neisser in his article : “Criteria for

an ecological self” of 1995 ([Neisser, 1995]). Neisser seems to put this level of self as the

first self developed by the child, and somehow, the more prominent in the development.

Indeed, this level refers to the relation between the person as a physical body, and his direct

environment. Before going further in the understanding of the world, the other agents,

their action, and trying to predict some high level knowledge, one has to develop a sense

of self related to his direct physical body.

The goal of the following experiment will be for the robot, to be able to predict correctly

(according to his experience) the impact of his action on the world. Concretely, it will be

for the robot to predict for example was is to “put an object to the left”, and to be able to

correlate his prediction with his action.

3.2 Forward Model Through Mental Imagery

The robot of tomorrow needs to behave freely in their environment and their first

level of it is through their actions and body. Neisser refers much on vision and body

65
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to define the ES. In our case and due to hardware limitation (the skin of the iCub

was delivered only on January 2015 and after much of these experiments), we decided

to focus the ES on the iCub’s action because this will be his first contact to its environment.

From a very young age the child is able to understand the consequences of simple

movements on the world. In a frame of evolution, it is crucial for survival to be able to

generate and exploit internal models of the body, the environment, and of their interaction.

As it has been shown by Friston and others ([Bubic et al., 2010] [Friston, 2005]), one of

the central function of the brain is to allow prediction. These prediction in the early age

concern mostly our ES and the interaction of the body with the world.

3.2.1 System Description

As we has seen in 2.2.1, our iCub is doted of an OPC, as a working memory. But

[Bubic et al., 2010] has shown the interest of a “mental world” to allow mental simulation.

We then decided to give to the iCub, a second OPC (the MOPC described briefly in 2.3.2.2)

that it could manipulate at will. This MOPC will be available as a “sandbox” for the

iCub to reanalyze the past and extract redundancy as for the retro-reasoning. In our case,

we will use it not to go back in past, but to travel in the future and to make some prediction.

The iCub can load in this MOPC a previous memory stored in the ELM, and manipulate

it as a human would anticipate an action of “think about something”. We thus developed a

small program called “OPCManager” that will be able to manipulate this mental OPC, to

synchronize it with the real one, or to compare them if needed. To avoid any confusion, for

this part only we will use the terms ROPC for the real OPC and MOPC for the mental OPC.

The OPC manager ensures the proper functioning of the ROPC and the MOPC. The

ROPC should maintain an accurate reflection of the physical state of the world. This

state will be modified after the execution of actions. Thus, when the robot or the human
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Figure 3.1: Illustration of the forward model in the context of motor control. The motor command
is sent to the motor command system and to the internal model. Subsequent comparison allows the
system to determine if the grasp was correctly executed. Figure from From [Bubic et al., 2010].

perform an action of the type “put the triangle on the left”, the physical state changes

that result from this will be that the triangle is at the north location. For the ROPC, these

changes will occur as part of the normal functioning as it is updated by perceptual inputs

from the ReacTable. This corresponds to the update of an internal model (the ROPC) via

perception (ReactVision inputs to ROPC).

Except this addition of MOPC and OPCManager, the system is similar to the one

described previously : iCub and Human interacting around the reactable, the ABM, ABMR

and a supervisor.

3.2.2 Mental Imagery : Experiment

We decided to give to our iCub a MOPC, but how to use it in the context of the ES ?

We have seen that the robot is able to create some “high level knowledge” using this MOPC

by resimulating the past to analyze it to the light of “middle level knowledge”. Now we

want to use this high level knowledge. To do so we will use the MOPC in the context of a

classical forward model (see Fig 3.1).

Before executing an action, the iCub will try to predict the consequence of its action. To

do so, he will a first synchronize the MOPC on the ROPC to have the same initial situation.
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Then, the robot will use the knowledge create by the third level of reasoning corresponding

to the action required. For example, the iCub has an object in front of him, and want

to put it on his left. The second level of reasoning gave him the location “left” that is

now an abstract object of the ROPC, and the third level gave that the consequence of the

action “put-object-left”, is that the object intersect the location “left”. I insist that all

this information are extracted through experience in the ELM and then, stocked in the SSM.

The robot will thus in his MOPC simulate this consequence by moving the object

onto the location “left” in his MOPC. Then, the iCub will execute the action, and he can

compare the result of his action. The Fig 3.2 and 3.3 respec. gives us an overview of the

awareness of the robot for this same action successful and respec. failed. This figure are

the content of both ROPC (bottom) and MOPC (top) before (left) and after (right) the

action.
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Figure 3.2: Simulation of the action “Put the circle to the left”. The circle is the blue object. This
is the mental image (above) and the actual physical state of the world (bellow). Before the action
is the left column, and after the action is the right column. In this case the action was successful :
the final state (after) of the mental and actual world are the same. We have no semantic difference.
From [Pointeau et al., 2013a]

Figure 3.3: Simulation of the action “Put the cross to the left”. The cross is the red object. This is

the mental image (above) and the actual physical state of the world (bellow). Before the action

is the left column, and after the action is the right column. In this case the action was a failure :

the final state (after) of the mental and actual world are not the same. In the mental world, the

cross intersect the location “left” while in the real world it is not the case. We have thus a semantic

difference. From [Pointeau et al., 2013a]
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Figure 3.4: Computed differences between the MOPC and the ROPC after the successful action
“put-circle-left”. robot position is the position of the object in the referential of the robot, while rt
position is the position of the object in the referential of the reactable. The semantic information
are high level information such as intersections.

In the case of the successful action (Fig 3.2), if we ask the OPCManager for the diffe-

rences between the two OPCs we will have the following results (Fig 3.4) :

We have a few differences due to the fact that in the simulation, the robot puts the

object in the middle of the location left, while is reality, even if the iCub tries to reach it,

there is always a small deviation due to motor control. We thus have some insignificant

differences but no high level differences (such as intersection of an object with a location

or near another object, presence or absence, no new relation in the OPC). The robot can

conclude that his action was successful and that he reached his goal (put the circle on the

location “left”). He successfully predicted the impact of his body on his direct environment.

In the case of a failed action Fig 3.3, if we ask the OPCManager for the differences

between the two OPCs we will have the following results (Fig 3.5) :

As before, we have a few low level differences in the location of the object cross, but if

we update the beliefs of the iCub in both case (high level knowledge) and we compare it,

we have a difference : the relation “cross is left” has been removed in the ROPC. This is a

high level differences and on this information, the robot can conclude that his action failed,

and he can adapt his behavior in consequence.
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Figure 3.5: Computed differences between the MOPC and the ROPC after the failed action “put-
cross-left”. robot position is the position of the object in the referential of the robot, while rt
position is the position of the object in the referential of the reactable. The semantic information
are high level information such as intersections.

3.2.3 Discussion

With the help of a forward model mechanism, we can provide the iCub of a way to

interpret the consequences of his action upon the world. This is the case for simple action,

has we have seen, but it can also be used in the case of more complex plan of action (the

shared plan : see 4.3).

Our system require several component to run :

– a full system of ABM to collect the experience in the ELM, and to store the knowledge

in the SSM.

– a Reasoning module (ABMR) to parse it the experience in the ELM to create this

high level knowledge.

– a mental world to be able to manipulate the concept learned and to predict the next

state of the world.

However in this study, we don’t rely on the vision as mentioned Neisser, but we can ask

if the vision is preponderant for humans in its development is not the fact that it is the
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more developed sensor we have ? For the robot the most accurate sensor that we have in

our system is the ReacTable and taking our data from here is almost equivalent to taking

data from another visual sensor.

Another notion that could be discussed is about the fact that we don’t rely on the body

per say in our study. Indeed, the body is not very involved. However we are talking here

about action that are in the set of primitives action doable by the robot. From this fact,

most of the information in the ELM then in the SSM are based about movement done

either by the Human or by the robot itself. Thus for achieving an action with the process

of forward model, we don’t rely much on the body of the iCub, but for setting this forward

model, and to gather the data that we will use, we need this embodied actions.
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4
Interpersonal Self

What are the tools that allow one to react in a direct social interaction ? From the very

young age, humans are able to detect if someone’s acts or movements are directed toward

him or not. This is the part that Neisser qualifies of Interpersonal Self (IS). In his article :

“Five kinds of self-knowledge”, Neisser defines the IS as :

“The interpersonal self is the self as engaged in immediate unreflective social

interaction with another person” (from [Neisser, 1988]).

We can find an analog definition in his book of 1995 :

The interpersonal self is the individual engaged in social interaction with

another person. Such interactions are specified (and reciprocally controlled) by

typically human signals of communication and emotional rapport : voice, eye

contact, body contact, etc. This mode of self-knowledge, too is available from

earliest infancy (from [Neisser, 1995]).

The IS will be included in what is called inter-subjectivity. The inter-subjectivity is

a big word to consider that we have at least 2 subjects interacting. But this interaction

need to be based on joint and mutual “nature/direction/timing/intensity” from the two

agents. Joint : because of the “synchronization” needed to interpret the actions of other as

related to mine. Mutual because both of the agents have to be aware and perceive the other

in term of action and “interactive responses”. But this inter-subjectivity is not exclusive in

term of agent involved and this joint interaction should also be perceived from an external

73
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agent.

Murray and Trevarthen have shown that infants of a very young age (between 6 to 12

weeks old), can detect this kind of reciprocal interaction. Indeed in their experiment of 1986

[Murray and Trevarthen, 1986] they brought to light this phenomena in light. The set-up

was the following : a mother and her 6 to 12 weeks child were in two separated rooms. The

baby and the mother were interacting through a live-size closed-circuit televisions. The

real-size television coupled to a set of microphone allow a live interaction. The first minute

of interaction is live. The interaction between the mother and the child proceeds naturally.

Indeed the babies : “looked intently at their mothers with open and relaxed mouth, slightly

raised eyebrows, and other sign of interest”. The first minute of the mother side is recorded,

and replayed to the child. This is exactly the same moves, the same words and the same

behavior of the mother, however : “the babies that have been happy a minute ago now

exhibited signs of distress : they turned away from the mother’s image, frowned, grimaced,

and fingered their clothing”. Neisser explains it as :

“so the interpersonal self is specified by the orientation and flow of the

other individual’s expressive gestures [...] the interpersonal self is developed and

confirmed by the effects of our own expressive gestures on our partner”... These

examples [...] show again that inter-subjectivity is an emotional business : the

two partners are obviously sharing an affect”.

This inter-subjectivity cannot be faked : a subject with whom I’m engaged in an

interaction is or isn’t part of this interaction. This is a reason of why children develop

this ability to interact so early.

Neisser also brings to light the “organized” nature of this level of self : “... most of

the relevant information is essentially kinetic, i.e. consists of structures over time”. This

structural component will be at the core of our studies on the IS. In our case, we decided

not to focus on the emotional part of the IS, but mainly on the structural part of the IS,
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which means, to focus on the “high level” relation of the robot with his social environment.

Indeed, Neisser draws a link between autism and a “failure” of the IS :

“The mechanism can fail, and it has often been suggested that the dramatic

condition called infantile autism, characterized from the outset by a lack of

interest in relationships with people, results from just such a failure”.

The IS implies that the agent (child or robot), in contact with other agents, “looks

for - and finds - the social consequences of its own social behavior”. Neisser thus refuses

as evidence the ability of very young infants to recognize their mother’s voice or even the

innate imitation because their is no part of this “social consequences”.

In term of child development, Neisser fixes that : “The interpersonal self begins just

as early as the ecological self ; both are based on perceptually available information”. This

is why, we will first see how the mental imagery developed in the previous chapter can

also be use to understand other people ’s behavior. In the second part, we will discuss this

vision from Neisser of the ability to understand “social consequences” in the “I and You

experiment”. And finally, later in his development, the IS gets another form, and the child

starts to learn that “people are not just participants in our interactions but have beliefs,

intentions, and feeling of their own”. This topic will be addressed in the third part of this

chapter about the “Shared Plans”.

The objective of the following experiments will be for the robot to understand through

language the statement of a plan. This plan can involve one agent (as for the part 4.1)

where the robot will need to understand the consequence of the actions of this agent and

if according to his experience, his prediction of the plan fits with its execution. But the

plan can involve several agents (including the robot) and the robot will thus need to first

understand, the role of each agent in the interaction (as for 4.2), and finally to integrate

both of these aspect to be able to create and be part of a Shared Plan (as for 4.3).
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4.1 Mental Imagery Extended to Interaction

Now that the robot is able to understand through language the deidic information of

an interaction (“who is supposed to do what ?”), we need a way to verify this information.

And to do so, we can use the mental imagery developed for the ES in 3.2.2.

The concept will be the same that for the ES : a forward model, but this time not

applied to the robot itself, but in the perspective of his interaction. After hearing a sentence

such as : “I put the cross to the west”, the robot can analyze the situation. He will quickly

understand that the Human in front of him, who is the speaker will be the agent of the

action. The robot doesn’t need to move. Now with his forward model, the robot can

predict the result of the action of the Human in his mental world (MOPC), and reuse the

OPCManager to differentiate both OPCs to check the action (see Fig 4.1).

The result of the difference between the 2 OPCs will be of the same form as for the

actions of the robot (see Fig 4.2) :

Figure 4.2: Computed differences between the MOPC and the ROPC after the human action

“put-cross-west”. The human actually put the cross onto the location “east” instead of “west” as

announced.

In our case, the robot can detect a mismatch between the declaration of the action of

the agent, and its realization. Now the robot can act in consequence and different reactions

are possibles :

– The prediction is wrong or incomplete : The knowledge of the iCub is too
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Figure 4.1: Simulation of the action of an external agent : “I put the cross to the west”. The cross
is the red object. The green parallelepiped is the agent detected by the kinect. On top is the mental
simulation of the action : before (left) the cross is at the location south, and after (right) the cross
is indeed at the location “west”. On bottom is the actual world : before the action, the object is
“south” (left) and after (right) the object is “east”.

limited to fully understand the action, the action is correct but the robot cannot

understand it yet. The iCub could ask for some complementary information concerning

the action. This can also be a mismatch between the concept of the Human and of

the iCub. For example for some people “fast” will not be “as fast” as for other people.

– The Human motor action failed : The Human failed in his action : the robot can

ask if he wants help to perform his action, of just notify him that his action failed.

– Both the prediction and the motor action are successful : The Human was

lying on purpose.

This “feature” will allows the robot to analyze now the connection between language

and action for the human. We have seen that we already have a tool to discriminate simple

action (see 2.3.1) but this mental imagery extended to Human action allows to analyze

higher level action. The robot is able, to immediately analyze and reinforce the social
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interaction he is in.
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4.2 Language and social references : the “I and You Experiment”

This level of self is mainly based on the understanding of direct interaction of the other.

Neisser places it on several plans including many “body languages clues”. As we already

explain, we decided not to work on sensory exploration of the Human body. Yet we don’t

have access to face detection or recognition, neither that emotion. The main input that

we have concerning Human behavior is language and we decided to focus on it. It has to

be noted that also for Imbens-Bailey, a tool to understand social references as pronoun is

mandatory in the expression of the self ([Imbens-Bailey and Pan, 1998]).

The interpersonal self is related to deixis in its more social part (see Fig 4.3). In-

deed the future of social robotic lies in social interaction. This means not in one-to-one,

but with a robot as part of a social group, and able to interact with several persons.

Most of the common researches in social robotic or in HRI in general are in the un-

derstanding of one-to-one interaction ([Roy and Pentland, 2002] [Steels and Kaplan, 2002]

[Hinaut et al., 2014] [Dominey and Boucher, 2005]). Yet, Gold and Scassellati have shown

that this kind of interaction are insufficient to learn a correct use of personal pronouns

[Gold and Scassellati, 2006a].

Oshima-Takane claims that the use of pronoun as “I” or “You” are learned by ob-

servation of a student in a (at least) triadic interaction ([Oshima-Takane et al., 1999]

[Shultz et al., 1994]). It has been in this way some model already created to understand the

use of this two pronoun by Gold and Scasselatti using fast mapping ([Gold and Scassellati, 2006c]

[Gold et al., 2007] [Gold and Scassellati, 2006b]). We decided to start from this system

and to extend it to the learning of both personal and impersonal pronoun, but also to

use it in a reversible way : to understand it, and to use it correctly. Once again here, our

objective is not only to create knowledge, but to be able to use it for discrimination of for

acting.

As for our other problem, we have to set a limit of what are the capacities that the robot
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Figure 4.3: Description of the deixis. It consists of the relations that an agent has with the world
and with others.

has, and what he should be able to develop. Corkum and Moore ([Corkum and Moore, 1998])

have shown that at about 9 months, children can detect the direction of an adult’s gaze.

This age has been put in evidence by Tomasello [Tomasello, 2009] as the “Nine month

revolution” and is the starting point of a full understanding of a complex interaction,

including triadic interaction. Thus, this will be the starting point of our system. We will

give the robot the possibility to detect these interaction properties.

Our experiment will be the following : The iCub will witness one or two agents, engaged

in a dyadic or triadiac interaction. The data we will for each action the collection of the

following properties : Who speaks to whom? Who makes the action ? What is the pronoun

used ? Concretely, the robot will be with one or two agent, that will say a sentence such

as : “You put the block to the west” to the another agent that will perform the action.

This work has been the subject of a paper published in 2014 at the : 4th International
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Conference on Development and Learning and on Epigenetic Robotics (ICDL EPIROB)

[Pointeau et al., 2014b]. The following part will retake most of this work plus some that

has been done since.

4.2.1 System Specificities

The technical system for this experiment is a bit more complex than the classical system

we use. Indeed, as we explain earlier, we need to have access to certain body-language

clues. To do so, we decided to use not only one Kinect placed above the iCub as usual,

but two Kinects (see Fig 4.4). The Kinect 1, fixed above the iCub will detect the agent

and will allow the iCub to follow their movement. The iCub will detect who is acting, by

looking at the acceleration of each agent. This implies that if an agent is not acting, we

have to ask him to stay still.

The Kinect 2 will be placed at around 90cm in front of the robot, directed toward the

human agent(s). It will detect the rigid head motion of several human partners by using

the Random Forest algorithm developed by Fanelli [Fanelli et al., 2011]. We will thus have

access to the orientation of each agent, and with it to the interlocutor of the speaker.

In summary : Kinect 1 gives us the agent (who act), while the Kinect 2 gives us the receiver

of the speech information (to who an agent speaks).

Another change to the usual system, is the addition of two binaural microphones placed

in the robot’s ears. The acoustic signals were retrieved in real-time thanks to the Jack

library. The Interaural Intensity Difference (IID) was computed. In fact, sound coming

from the right has a higher intensity in the right ear microphone than on the left ear one.

This difference allowed us to determine if the sound was coming either from left or right.

In the triadic setup, the robot was able to determine who the speaker was (see Fig 4.5).

With our usual system (ReacTable + speechRecognizer) and this few additions, we are

able to detect the four element of interaction that will be important for our study :

– Speaker : (Sp) detected with the binaural microphone

– Addressee : (Ad) the person to whom the speaker talks, detected with the Kinect
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Figure 4.4: Physical and software architecture of the system used for the “I and You Experiment”.
From [Pointeau et al., 2014b]

2 (orientation of the head)

– Subject : (Su) grammatical subject of the sentence, detected through the speech

recognizer (grammar parser)

– Agent : (Ag) detected with the Kinect 1, by calculating the acceleration of each

agent in the OPC.

4.2.2 Method

In our study, the robot will have a set of training data. For each set of learning data,

we will use the pronouns : “I” and “You”, and the proper names : “Peter”, “Maxime” and

“Grégoire” (will be referred as “known names”). The robot will witness and mark in his

ELM the events with the four properties filled. This learning phase can be simulated by

directly inject some artificial data in the ELM (see 4.2.4).
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Figure 4.5: System running when the robot is interacting with 2 agents around the Reactable for
the “I and You Experiment”. From [Pointeau et al., 2014b]

After a learning phase, to test the system, we will for each of the four possible modalities

(Sp, Ad, Ag, Su) give a random but doable (ie : Sp different of Ad) set of the three other

modalities, and ask for the fourth one. For example, we want the robot to analyze the

following situation : Peter looks at the iCub and says to the iCub “I put the croco to

the west” and we want that the robot understand who is putting the croco to the west.

We will give the system : Su = “I” ; Sp = “Peter” ; Ad = “iCub” and the system should

return : Ag = “Peter”. Another example would that the robot sees Maxime moving (Ag

= “Maxime”) and he wants to describe it (Sp = “iCub”) to Peter (Ad = “Peter”). The

system should return : Su = “Maxime”. With any 3 of the 4 properties (Sp, Ag, Ad, Su),

the iCub should be able to return the fourth property when possible.

During all the learning phase, the robot will remain silent. We consider that the robot

doesn’t have the knowledge yet to speak. This is why during this learning phase, the robot

will be only observer which means in term of condition : Sp �= iCub.

To test the system, we decided”John” and “Mark” will never appear during the learning

phase, but only the testing phase and will be referred as “unknown names”. We want the
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Figure 4.6: Example of all available interaction for one of the learning conditions (left). Right :
black arrows mean that the origin agent speak to the target agent (origin = Sp, target = Ad).
Red arrows mean that the origin agent speak of the target agent’s action (target = Ag). From
[Pointeau et al., 2014b]

robot to be able to understand the meaning of these two words as a third person pronoun,

that refer to a precise agent.

This system allows us to test different condition of learning easily, just by simulating

the learning data by adding “fake memories” in the ELM. This will allow us to determine

how the system learn with constrained conditions such as autism or blindness. But it will

also help us to determine which kind of interaction are needed the child to learn the use

and understanding of personal and impersonal pronoun.

As we said earlier, Tomasello has shown that the child is not able before the “nine

month revolution” to fully understand a spoken interaction where he/she is not invol-

ved (neither speaker nor addressee). This is what Oshima-Takane calls the “Addressee

Condition” [Oshima-Takane et al., 1999], and will be summarized by : Ad = iCub. Ano-

ther kind of condition that we tested is the case of “blind” children. The particularity

of “blind” children is that they can only detect the actions related to them : Ag = iCub

[Gold and Scassellati, 2009]. We will have two conditions with respectively two or three

agents, where the Ag of the action is always the iCub. The Fig 4.6 is an example of a

tested condition with the corresponding legend.
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4.2.3 Learning Mechanism

Data formalization : Before starting to exploit the data, we need to parse them correctly.

As we said, for each interaction, we have 4 properties : Sp, Su, Ag and Ad. We take the Su

as the property of higher level. For each Su, we build a cubic N3 matrix (three dimensions :

one for Sp,one for Ad and one for Ag), where N is the number of label encountered. A label

can be any Ag, Ad or Sp encountered (i.e. : “Maxime”, “Greg”. . . ). A label corresponds to

a way to refer to a person for the robot. In most cases, the label will correspond to the

proper name of the person (e.g. Peter), but it can be something generic (e.g. Agent 5).

However, Su include personal pronouns (“I”, “You”) and proper names that have been

used in a sentence. The matrix is then filled with the number of events encountered. The

notation MSu(Sp,Ad,Ag) gives us the number of events encountered with a particular set

of Su, Sp, Ad and Ag.

For example, in the case of the sentence : “You point the toy”, where : Su=“You”,

Sp=“Greg”, Ad=“Maxime”, Ag=“Maxime”, we will add 1 in the matrix :MY ou(Greg,Maxime,Maxime),

and for “John pushes the cross”, where : Su=“John”, Sp=“Peter”, Ad=“Greg”, Ag=“John”,

we will add 1 in the matrix : MJohn(Peter,Greg, John). We can expect to have only zero

in the case of Sp = Ad, because we consider the case where one doesn’t talk to himself.

In the case of the apparition of a new label, the matrix will grow and fill the new case

according to the number of utterances. After the learning phase, we will have as many

matrices as we have of different Su, and each matrix will be of size N3 with N the number

of label encountered.

We said that Su is the property of higher level because the data are made of the way to

have easily access to the data relative to the Su. However if we want to have access to

the data concerning another property, we need to consider all of our data as a matrix of 4

dimension MxN3 with N the number of label and M the number of known subject.

For the present study, we used 7 different conditions. One of them is made with the

system described above, while the other are simulated. In the case of the simulated data, we

just fill the ELM with the kind of interaction we want. Each different situation is repeated
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Figure 4.7: Setup of the whole interaction : 1) The robot witness a scene and memorizes it in his
ELM. 2) The external sensors get the information relative to the interaction. 3) The robot builds
his maps of contingencies. 4) The robot calculates the likelihood for each association of a pronoun
or label (name) with a context.

5 times. For example we want to test a dyadic spectator condition. We will create the event

of an interaction where two agent are interacting in front of the iCub. Agent 1 will be for

example Ag, and Sp, he will use Su=”I” and Ad is the Agent 2. This interaction will be

repeated 5 times in the ELM in order to have enough data to be able to analyze it.

Fast mapping : The learning system per say, is based on the system developed by Gold

and Scassellati as briefly explain Fig 4.8. The idea will be to calculate the likelihood of

using a certain property (result) given a certain context (the 3 given properties). To find a

missing label (Sp, Ad, Ag) or a respectively a pronoun (Su), we list all the labels (resp.

pronouns) known, and for each, we calculate a Chi Square associated to the corresponding

situation (see Fig 4.8 and Table 4.1). With the p-value associated to this Chi Square we

have access the presence or not of a link between the property and the context. If the

p-value is lower than a threshold (fixed at 5%) we take into account the distribution of the

event. The pseudo code of a decision is shown in the Table 4.2 and the setup of the system
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Figure 4.8: Fast mapping of the system of Gold and Scassellati. From [Gold and Scassellati, 2006a])

Label/Pronoun ∼Label/Pronoun

Context A B

∼Context C D

Tableau 4.1: Table of fast mapping for a specific label/pronoun and a specific context. A correspond
to the number of event witnessed with the use of a specific label in a specific context. B is the
number of event with another label for this context. C is the number of use of the label in another
context, and D is the use of another label for another context.

can be found in the Fig 4.7.

4.2.4 Experiment and results

As we said earlier, for this experiment, we tested 7 different conditions. For one, the

data where collected through real interactions. The 6 other conditions were simulated : we

injected directly in the system the memory of the events with the condition we wanted to

test. For each of these condition we will test 6 functionality of the system :

– Understanding “I” : The pronoun “I” is used as context and we want the robot

to find the corresponding Ad, Ag or Sp. We want the robot to understand correctly a

sentence with “I” as Su.

– Correct use of “I” : We give a situation as “I” is the lacking property for Su
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Pseudo-code For the decision in the fast mapping

for each Known lab./pro.

{
If : p-value(χ2

) < Threshold

- Don’t change the lab./pron. score

Else :

- Add to the score of the lab./pron. the distribution of the property : (A/C - B/D) }
If : One or More lab./pron has a score > 0

- Return the lab./pron. with the higher score

Else :

- Remove lab./pron with score < 0

Tableau 4.2: Pseudo code corresponding to the searching part of the fast mapping. The result will
be either the more likely label (resp. pronoun), or it will be the list of the label (resp pronoun)
known without the impossible ones (I don’t know what to use, but I know what I cannot use).

and we want the robot to be able to use “I” correctly in a sentence.

– Understanding “You” : The pronoun “I” is used as context and we want the

robot to find the corresponding Ad, Ag or Sp. We want the robot to understand

correctly a sentence with “You” as Su.

– Correct use of “You” : We give a situation as “I” is the lacking property for Su

and we want the robot to be able to use “You” correctly in a sentence.

– Understanding a known or unknown name : We use a name as Su of a sentence,

and we want the robot to be able to find the corresponding situation. If the name is

unknown, the robot should understand that this name doesn’t have the same meaning

as “I” or “You”.

– Correct use of a known or unknown name : We give a situation as the Su to

use is a known or unknown name, and we want the robot to be able to formulate a

sentence with this name as Su.

A) Triadic Spectator

This first condition Correspond to a complete triadic condition where every one talk to

every one about every one (see Fig 4.9. This is the condition with the “real collected data”.

Indeed this condition was made with 3 subjects in front of the robot with the full system.
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Interaction Sp Ad Ag Su
1 Greg Maxime Greg “I ”
2 Greg Maxime Maxime “You”
3 Greg Maxime Peter “Peter
4 Greg Peter Greg “I ”
5 Greg Peter Maxime “Maxime”
6 Greg Peter Peter “You”
7 Maxime Peter Greg “Greg”
8 Maxime Peter Maxime “I ”
9 Maxime Peter Peter “You”
10 Maxime Greg Greg “You”
11 Maxime Greg Maxime “I ”
12 Maxime Greg Peter “Peter”
13 Peter Maxime Greg “Greg”
14 Peter Maxime Maxime “You”
15 Peter Maxime Peter “I ”
16 Peter Greg Greg “You”
17 Peter Greg Maxime “Maxime”
18 Peter Greg Peter “I ”

Tableau 4.3: Set of interaction witnessed by the robot in the case of the condition “triadic spectator”.
The three agents where interacting in front of the Reactable.

We used a set of 18 sentences that are described in the Table 4.3 that are not repeated.

This set of data is “perfect” in the sense where all the possible interactions (except iCub

acting, but we will see it is not important) are witnessed.

Figure 4.9: Condition : triadic spectator. Three agents that are not the iCub, talk to each other,

about each other.

As expected with this “perfect” set of data, the robot learns perfectly all he was suppo-

sed to :
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Understanding of “I” �
Correct use of “I” �
Understanding of “You” �
Correct use of “You” �
Understanding of a Known Name �
Correct use of a Known Name �

The robot indeed clearly learn to use or understand “I” and “You” or even a known

name ( “Peter”...). However of course, the robot is unable to understand an unknown name

or to use it correctly. Indeed for us, the understanding of a unknown name needs a bit of

knowledge (”I don’t know the agent, but I know that this word is a name, therefor it refers

to an agent”) but we will talk more about it later.

B) Dyadic Spectator

This condition refers to the iCub watching to agent talking to each other about each other

(see Fig 4.10). This is a spectator condition. That means that the iCub will never be

involved in any interaction. He will neither act (Ag�= “iCub), talk (Sp �= “iCub), be the

direct interlocutor (Ad �= “iCub) or be involved in a sentence (Su �= “iCub).

Figure 4.10: Condition : dyadic spectator. The iCub watches two agents, talking to each other,

about each other.

The agents only use “I” and “You”. They never use any name. We have thus a total

of 4 possible sentences, repeated 5 times each, for a total of 20 training sentences.
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Understanding of “I” �
Correct use of “I” �
Understanding of “You” �
Correct use of “You” �
Understanding of a Known Name �

Correct use of a Known Name �

The robot understands and uses correctly the pronouns “I” and “You” but as expected,

doesn’t understand the names (all unknown for this trial).

C) Triadic Agent

In this condition, the iCub will be interacting with two human agents (see Fig 4.11). The

three of them can act, the three of them can be addressee, but the iCub doesn’t speak

(Sp �= “iCub). Concerning the Su possible, “I” and “You” will be use, and also the names

of the two agent present. We have a set of 12 different combination, repeated 5 times each,

for a total of 60 training sentences.

Figure 4.11: Condition : triadic agent. Two agents talk to each other and to the iCub about the

three of them.

The results are similar to those for the triadic spectator, except that this time the robot

is unable to use correctly the pronoun “I”. When the robot is talking about him doing an

action, he will prefer using “iCub” rather than “I” while for the other agent, he can use it

correctly. But an interesting fact is that if we ask the robot who would be the agent in

the case of a sentence said by the iCub using “I”, the robot correctly understands that “I”

refers to him.
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Understanding of “I” �
Correct use of “I” �

Understanding of “You” �
Correct use of “You” �
Understanding of a Known Name �
Correct use of a Known Name �

D) Triadic Blind

This condition is a bit special. It refers to a system with agents with the iCub. A blind

iCub (see Fig 4.12). Therefor, the iCub can only detect action where he is the agent

(Ag= “iCub”. However we consider that the iCub can detect whether the agent is talking

to him, or to someone else by the intensity of the auditory signal. Thus, in this condi-

tion one agent can talk to the other or to the iCub, about the iCub (third person). We

have a set of 4 different sentences, repeated 5 times each, for a total of 20 training sentences.

Figure 4.12: Condition : triadic blind. Two agents talk to each other and to the iCub, about the

iCub’s actions.

The results for this conditions are a bit odd. The robot understands and uses correctly

“You” but not “I” (because he has never heard it). Also, the robot is confused with

understanding and using the name “iCub”. It could be the same as “he” or could just refer

to “someone else”. We will discuss the result more in details later.
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Understanding of “I” �

Correct use of “I” �

Understanding of “You” �
Correct use of “You” �
Understanding of a Known Name �

Correct use of a Known Name �

E) Blind dyadic

The iCub is alone with another agent (see Fig 4.13). This is a “blind” condition. The robot

is the only one to act (Ag= “iCub”). The agent talk (Sp= “Agent”) to the iCub (Ad=

“iCub”) about the iCub’s action (Su= “You”). We have only one sentence possible ( “You

... “ ) repeated 5 times.

Figure 4.13: Condition : dyadic blind. An agent talks to the iCub about the iCub’s actions.

As expected for this learning phase, the robot is unable to learn anything. Neither the

use or the understanding of any name or pronoun. This is evident because he doesn’t have

access to many different interaction due to the learning condition.

Understanding of “I” �

Correct use of “I” �

Understanding of “You” �

Correct use of “You” �

Understanding of a Known Name �

Correct use of a Known Name �

F) Addressee triadic agent

The addressee condition corresponds to what we defined in the method (4.2.2) as a condition
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that is anterior to the “nine months revolution” where the child is only able to detect an

interaction directed toward him (Ad= “iCub”, see Fig 4.14). We will thus have two human

agents with the iCub, talking only to the iCub, about the action of the three of them. We

have a set of 6 different sentences (2 Sp talking to 1 Ad about 3 Ag), repeated 5 times, for

a total of 30 training sentences.

Figure 4.14: Condition : addressee triadic. Two agents talks to the iCub about the actions of

everyone.

The results are that the robot correctly understands and uses “I” and “You” and

understand a known name as pronoun (ie : “Peter does . . . ”) but not an unknown name.

In this condition, the robot never hears his own name. We will discuss later of a strange

fact, that is that the robot understand and use correctly the pronoun “You” while he

shouldn’t have enough information to discriminate between his name of a pronoun.

Understanding of “I” �
Correct use of “I” �
Understanding of “You” �
Correct use of “You” �
Understanding of a Known Name �
Correct use of a Known Name �

G) Addressee dyadic

In this condition, an agent will be with the iCub and talk to him about the actions of the

two of them (voir Fg 4.15). We have 1 Sp, talking to 1 Ad, about 2 Ag, thus 2 different
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sentences repeated 5 times for a total of 10 training sentences.

Figure 4.15: Condition : addressee dyadic. An agent talks to the iCub about the actions of the both

the human and the robot.

The results once again are a bit odd. Indeed, one notable thing in this condition is that

the robot fully understands and uses correctly “I” and “You”, even if he did not hear them

in at least two different situations, where we could expect the robot to understand that,

as a child does sometimes, his name is “You” and the name of the human is “I”. We will

discuss it in the following section.

Understanding of “I” �
Correct use of “I” �
Understanding of “You” �
Correct use of “You” �
Understanding of a Known Name �

Correct use of a Known Name �

4.2.5 Discussion of the results

From a global point of view, the result obtained by our system of cross validation are

the ones we expected based on the child development studies. The main positive result is

the case of a full interaction learning with 3 different agents. This condition provides the

more information to the robot, and with a few number of sentences (18) but all different,

we have a perfect mastery of the knowledge by the robot. This comfort us in the idea that

a rich environment, not in term of number of instance, but in term of diversity, is better for

the development of the child. This system is mainly done to put the robot in the middle of
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many person, with a full sensitivity (neither blind or “addressee”). All the system work in

real time : either the filling of the matrices (learning phase) or the computation (working

phase) are in real time. Also the system is not greedy in term of computation capacity,

and a simple “every day” laptop can run the system in real time. However we have a list

of limitations that should be discussed.

A) Problem of the non-generalization of plural

For now the system is limited to singular form, and we consider that for each property (Ag,

Su, Sp or Ad) we can only have one person. The reality is different. We can have the robot

in an interaction with several person, and we can have 1 to n agent for each property. In

the case of Ag, it is easy to get. For Su, it begins to become more complicated, but we

can access the information with our speech recognizer (i.e. : “You, John, Mary and July

are playing outside”), but we will have to ask ourselves how to segment this information :

as one group, or as three sentences of one Su different each times ? I think the answer

should be in the between to extract each Su independently then to perform a treatment on

each to get the meaning of each known Su, and then start filling the matrices. For the Ad,

it start to become more complex. How the robot can detect who are the addressee of a

sentences from a sensory point of view ? This is not my precise field, but I would say that

the best idea would be to integrate a Human feedback, at least in the learning phase. The

idea of a Human feedback will be discussed more in details later. And finally concerning

the multiple Sp, this part is a bit more tricky. Indeed the use of the pronoun “we” is

complicated. Only one person is the speaker per say, but then who should we consider as Sp.

We have to improve the system to allows it to pass from a one-to-one mapping to a

n-to-m mapping. This will be quiet interesting in the treatment of “You” that should rely

only on the way to formalize the matrices.

B) Generalization to unknown names
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We have seen that the robot cannot generalize a sentences where the Su is an unknown

name. But as human, we are able to understand, even in the case of a name we never

heard, that it is a name. There is multiple fact that lead us to such a capacity. The first

is that we are, as the iCub able to parse a sentence in order to extract the Su easily. For

example if I say the sentence : “Bixente plays with the ball”, the grammatical subject of

the sentence is Bixente. It is neither “I” or “You”, which means that neither the Sp

or the Ad are the agent. It is therefor a third external person. There is a limited set of

pronoun, and during school and life, we learned all the existing one, and Bixente is not

one of them. Thus, we assume that Bixente is a name, and is also the Ag of the sentence.

C) Gender or social relationship

During a real Human-Human interaction, we use not only deictic information such as Sp,

Ad, Ag... But we also use a lot of more social or contextual information. For example we

take into account the sex of the agent present to determine the target of “she” or “he”. We

also have some more complex social relationship such as parent/child, professor/student. A

improvement of the system in this way would be the same as the preview point, and could

be solve by changing the format of the labels in the matrices. We need to find a way to

pass from simple textual label, to maybe a relation of the OPC. However, before being

able to understand complicated subject such as “professor” or “dad”, we need to be able

to understand the relationship that it implies which is not the case in the robot for now.

D) Properties focus and weight

The result found in the condition “Adresse dyadic” are however a bit strange. The iCub has

only witnessed the Human saying “I” for himslef, and “You” for the iCub. We where expec-

ting the robot to understand that “You” refers to him and was not relative. But the iCub is

able to understand a sentence with “You” that is not directed toward him. We thus expected

the robot to be confused between the use of “I” for Sp=Ag and when it refers to the Human,

and vice versa for “You” and the robot. Why the robot does not think he is “You” and the

Human is “I” ? The answer, is because we put the same weight to each property. The simple

properties like : “Ag=Human” have as much weight as a property “double” like “Sp=Ag”,
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or a property “triple” like “Sp fixed, Ad fixed, Su fixed”. A “triple” property corresponds to

an exact known situation, and a “simple” property to a simple fact. A “double” property is

less intuitive : the robot searches a more complex correspondence between different contex-

tual information. In our case, when the robot has to use “I”, he checks for example the case

where he has to talk about his own actions : “Sp=Ag” ; “Ad !=Ag” ; “Ag=iCub”. These

three properties are true. The first two will be in favor or using “I” and the third one is in

favor of “You”. Because each property has the same weight, the robot will choose to use “I”.

With a bigger weight to the simplest properties, and for the exact known situation, we

could solve this kind of situation and recreate the ambiguity seen in children as shown by

Gold and Scassellati [Gold and Scassellati, 2009]. We tried thus to put some different weight

to the different properties. With a triplet 5-2-5 corresponding to the simple-double-triple

contextual property, we finally retrieve the developmental observation of Oshima-Takane

in the case of the “blind” or “addressee” condition. However for now, this solution is not

totally satisfying and a bit too much artificial.
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4.3 Shared Plan

The ability to cooperate through shared action is one of the main distinction between

Human and the other non-human primates ([Tomasello et al., 2005]). A shared plan (SP)

is a structured sequence of actions each of which is allocated to one of the multiple partners

who are using this shared plan to achieve a shared goal that would not be achievable by

a single person. All the agents respect and understand a turn-taking, even very young

children (see Fig 4.16).

Tomasello and his colleagues have shown the ability of young children that don’t master

language yet, to understand the role of each agent in some simple plan of cooperation,

without any instruction ([Warneken and Tomasello, 2007] [Sisbot et al., 2007]). However,

if the plan becomes too complicated, most of the time the use of language is requi-

red, in particular if the plan need to be negotiated in real-time ([Warneken et al., 2006]

[Warneken and Tomasello, 2007]). Tomasello goes further by suggesting that language’s

main function relies in this capacity to elaborate, negotiate and execute shared plan

([Tomasello et al., 2005]). However, language is not the only tool used to communicate while

performing a cooperation. Gaze is one of the most reliant communication tool used in this

kind of interaction ([Bampatzia et al., 2014] [Lallée et al., 2013] [Boucher et al., 2012]).

A SP (also called cooperative plan) can be defined as a : “goal directed action plan,

consisting of interlaced turn-taking actions by two cooperating agents, in order to achieve a

common goal that could not be achieved individually” (see Fig 4.17). As we can see, the

basic element of our system is an action. We have see earlier how we segment the actions

and store them in the ELM ; we will based our SP on the actions defined in the ELM. The

turn taking can be discussed because, an agent can perform several actions before that

the other agent has to act, and this criteria varies in function of the segmentation of the

actions. The core notions of this definition are the need of a cooperation, and a common goal.

In our case, we will use mainly the language and the action discrimination descri-
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Figure 4.16: Representation of two agent involved in a common shared plan. From
[Tomasello et al., 2005]

.

Figure 4.17: A Shared plan execution with a Nao and an agent. Up left : Human takes the toy, Up
right, Nao opens the box, Bottom left : Human places the toy in the box. Bottom right : Nao closes
the box. From [Petit et al., 2013]

.
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bed above (see part 2.3). Indeed, the study of the gaze of even any body movement,

and all the behavioral clues given by an silent agent could be very useful (for example :

[Lallée et al., 2010] or [Lallée et al., 2012]). But this need to work at a lower level and to

integrate tools that are not part of our direct field of research. This tools can be plugged

to our system through the OPC as relation (i.e. : “Agent is looking at object”) but this is

a very vast an very complex field that we only want the results.

Our interest in shared plans is motivated by extensive developmental studies which

indicate that such shared plans are at the heart of the human ability to cooperate

([Hamann et al., 2011] [Tomasello et al., 2005]). The core unit of these SP are actions

[Petit et al., 2013]. Carey claims that the ability to segment a SP into action is innate for

Human [Carey, 2000]. Tomasello indicates also the core goal of language for Humans is to

be able to share intentions and will to cooperate.

However, to work, this system needs a notion of intentional agency. As we have seen

previously, the notion of agents are already define in the OPC and accessible at any time

by the iCub. The segmentation of the SP into actions is done by the “supervisor”.

For example, let’s say that we want to teach the robot what is it to “swap” to objects

on the table. The agent present will the specify to to the robot the name and arguments of

the plan : “You and I will swap the ball and the toy”. The grammar parser will give use

the following information :

agent1 ”I”

agent2 ”You”

plan ”swap”

object1 ”ball”

object2 ”toy”

Lets take the example of an agent that would like to swap to objects on the table with
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the iCub. The initial situation is the following : the ball is on the left, while the toy is on the

right. To teach a shared plan “swap”, the human initially specifies “You and I will swap the

ball and the toy”. This specifies the name of the plan, “swap”, and the arguments (which

are recognized as known objects and agents). The human will enumerate the corresponding

actions : “I put the ball center. You put the toy left. I put the ball right”. The system

automatically matches the arguments of the initial specification with the arguments of the

component actions. This way, the system can generalize over these arguments. Thus, the

shared plan “swap” for 2 objects can be generalized at several levels. A generalization can

be made at the level of the agents (any agent can be involved in a swap), and the objects

(swapping an eraser and a box, in the same way as for a ball and a toy).

4.3.1 Learning Phase

The learning phase of a SP is done naturally just by using language. The Human will

first explain the plan and the arguments used for the plan (agents, objects, arguments),

then he will according to the plan, ask the robot to perform an action, or perform it himself,

until the end of the plan. Then the Human will announce the end of the shared plan. The

iCub will then generalize each action according to the role of each argument, and store in

the ABM the list of actions to perform with which argument. For example the plan “swap

– iCub Human – ball toy” will be saved by name as :

Swap / Ball - Toy / iCub - Human

Swap(Agent1, Agent2, Object1, Object2)

Default :

Object1 = Ball

Object2 = Toy

Agent1 = iCub

Agent2 = Human

PUT(Agent2, Object1, Center)

PUT(Agent1, Object2, Left)

PUT(Agent2, Object1, Right)
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4.3.2 Execution and Generalization

Now that our robot has witnessed a SP, we want him to be able to be part of it with

another agent. When the Human asks the robot to execute a SP, he can give the robot

specific arguments or not. In the case where the Human gives arguments to the iCub

in the command to execute a SP, the robot will execute the actions of the shared plan,

mapping the arguments onto the parameters of the plan. In the case where the Human

doesn’t provide arguments, the iCub will use by default the arguments used the first time

it learned the shared plan. The robot can integrate any agent to a shared plan, and also

switch the roles.

If the Human now says : “You and Maxime swap the eraser and the guitar”, the speech

recognizer in the supervisor will extract the role of each word of the sentence, and map

them respectively : $Shared Plan = swap, $Agent1 = You (iCub), $Agent2 = Maxime,

$Agent1 = eraser, $Agent1 = guitar. It will then invoke the SP “swap” with these arguments.

The shared plan is thus a function with multiple arguments, constructed of multiple

actions that take different combinations of these arguments. Because of this function

based definition, the shared plan can be used to execute behaviors beyond those that were

previously learned, by applying the function with new arguments.

4.3.3 Conclusion about Shared Plans

We have seen in this study a simple way for a robot to recall SP, and to analyze them

easily. Our system presents multiple advantages in term of functioning, but also a set of

limitation that we will develop now. We will also try to analyze how this system help in

the development of an interpersonal self.

One of the obvious positive point of our system relies in its simplicity. Once the ELM

has been set, the system runs autonomously, and for a very low set of instructions (state

the plans through the speech recognizer), the system is able to recall and generalize plans
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using a very low memory space or computation capabilities. This system has to be thought

of as part of a bigger system. It relies on the “I and You” module developed earlier, that

will get the good references at the statement of the plan, but also on the forward model

(see part 3.2.2) to be able to renegotiate the plan according to the success or not of each

action.

This system can be seen as a platform for applying many tools. One of them is the

reasoning system developed in part 2.3. The robot can analyze a plan according to the goal

of it. Swapping to object is no more, put obj1 center - put obj2 left - put obj 1 right, but

with the help of the retro reasoning, the robot can understand the goal of it : the location

of begging and end have been switched for the two object, and the robot can be able to

extend the meaning of “swap” not only for objects or agent as it is in its first version, but

also in term of goal.

Another tool that can be plugged is anticipation (as in [Dominey et al., 2005] and

[Dominey et al., 2008]). The robot can use its reasoning and forward model, to discrimi-

nate the action of the agent with who he is interacting, and try to find the matching SP to

anticipate the next action and thus limit the verbal interaction and the need for verification,

giving a smoother dialogue.

On another hand, a point that would need to be improve is the fact that for now,

4.4 Contribution of these systems to the Interpersonal Self :

Conclusion and Discussion

We have seen in this chapter three systems, that are somehow interconnected, where

one can help the other and vice versa. We claim that these systems bring to the robot a

sense of interpersonal self. We will see how these contributions are made and what are

their limitations. But first, for all of these systems a few questions and remarks can arise

for an external eye :
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A) Protocol of Interaction :

One can say that the protocols of interactions are handcrafted, e.g., consisting of speech-

based instructions where the meanings of each sentence are known to the programmer.

That is the case for the segmentation of actions, meaning of the word and of the sentence,

but also at a larger scale, to trig either the learning or execution phase. All of these points

are not unknown to us and are of course legit. Indeed, the segmentation by sentence of

our system, and also, the system of speech recognition itself is a bias in the interaction

in the sense where we have to define the incoming sentence (see 2.2.1). First, concerning

sending the corresponding grammar to each “node” of the interaction, where the system

can recognize only the precise sentence that could be heard at this given time, this has

been done only to avoid the problems of misrecognition that are not in our field of interest.

The day where we will find a perfect speech recognizer able to ear all of our words in the

good order, and taking into account the punctuation, we won’t need our system of inde-

pendent grammar anymore, especially with a poor English accent that you can find in the

french laboratories. We only send a set of construction of sentences with a list of vocabulary.

Concerning the fact that the speech recognizer return not only the word recogni-

zed, but also its role in the sentence (example : “Peter agent” / “Ball object” ...),

we developed in the team a method for learning grammars in a usage-based manner :

[Dominey and Boucher, 2005] [Hinaut and Dominey, 2013] [Hinaut et al., 2014] [Lallée et al., 2010].

This system is a recurrent neuronal network model, used with our robotic platform to

match a grammatical sentence construction to a meaning form : predicate-argument-object-

recipient. During the learning phase, the network gets as input the sentence stated by the

agent with all the words in the corresponding order : “To the left, Peter put the ball” and

the meaning associated under the form PAOR : (put-Peter-ball-∅). The sentence is parsed

sentence using closed class word (grammatical clues such as : “to, the, as, was, -ed, ., ...”)

and open class word (any other word, mainly vocabulary : “Peter, ball, put, left, cat...”).

The input of the reservoir will be the list of closed class word in the corresponding order,

and a signal of open class word when one is encountered. The robot will learn the mapping
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between the order of the word of the sentence and the PAOR structure. Once a sentence

is heard we can send it to the reservoir, and get the PAOR meaning of it. This system

can also be used in reverse (from a PAOR to a sentence). The reservoir can also be fed

with the sentences and meaning that are already in the ELM. From a very pragmatical

point of view, the ABM is still evolving in its development, and we don’t have access to

all the sentence ever heard by the robot and their meaning. However, this system is now

functional. Even with this system of mapping of word/role, we recall that our goal here is

to extract social and global meaning to be able to perform an interaction. The meaning of

the word matters here more than how to extract his role.

B) Link to the Interpersonal Self

The notion of IS is embedded in the social interaction with other, and getting the ability

to understand the social clues given by other. These two studies have shown a way for the

robot to understand and to be both conscious spectator and actor of his social environment.

This complex understanding allows us to free ourselves from the classical HRI with one

robot, one human, to go to more realistic interaction, and a better understanding of the

robot of the world and agents in front of him. Even if for some technical issues (we are

limited to language clues for our social interaction) the robot is able to understand the

premises of the typically human signals of communication : relative role of the subject of a

sentence, role of an agent during a complex task of cooperation.

All this language tools help the robot to coordinate joint action with one or several

agent with the appropriates Human and this relationship between an individual, robot or

human, and his social environment is a part of what Neisser define as the Interpersonal

Self.

However, we admit that this 3 studies are just some proof of concept. Our fast mapping

system, that relies on a recurrent neural network (that are both based on the data contained

in the ELM) help the SP analyzer. But this 3 systems are still at an experimental aspect,
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and the next step is the fully integration of all these systems.

We gave earlier a definition from Neisser of the involvement of the IS : “That attribution

is justified only if the infant looks for - and finds - the social consequences of its own social

behavior”. In our case, we can say that we solve (at least at our level of perception and

action) this condition.

Now that our system has been given an ES and IS, we will see how these two levels

coupled to the SABM can help in the emergence of the Conceptual Self.
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Conceptual Self

The next step in the emergence of Neisser’s sense of self will explore the Conceptual Self

(CS). We often refer to the CS in every days life, when we talk about the “self”. Indeed,

Neisser claims that the other levels are also represented in the CS :

“The conceptual self, or self-concept, is a person’s mental representation

of his/her own (more or less permanent) characteristics. That representation

which varies from one culture to another as well as from one person to the next,

is largely based on verbally acquired information. Hence, we can think of it as

beginning in the second year of life.”

The CS corresponds to the notion of “having a concept of himself as a particular person”.

We are distinct agents of the same environment. We have a set of intrinsic “properties”

that define us, and that differ from the neighbor. And Neisser goes further by putting into

light the contribution of experience in the development of CS :

“Where do cognitive models come from? Like all other theories, they are

based on a mixture of instruction and observation. We acquire concepts from

our parents and our peers and our culture, and in some cases from reading and

schooling as well.” [Neisser, 1988]

This definition of Neisser goes in the way we have been developing our system : from

experience to sense of self. Neisser also divide the CS in many distinct parts. We will focus

108
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on the two main of it :

A) Role Theories

The “Role Theories” correspond to our place in the society. This part is in link with

the Interpersonal Self and the relation to others. But this time it is not as much about

understanding the other, but more about : “How do I fit with the social interaction”. We

want to understand other and to adapt our behavior in consequence.

B) Internal models

This part concerns “our bodies and our minds”. It refers to the way to represent more “low

level” information and can be refereed as the input from the Ecological Self in the CS, but

this time it is at a more “high level” understanding. In include among others the Theories

of the Mind that represent our ability to put ourselves into someone else’s cognitive shoes.

Neisser makes also references to the Trait attributions that are situated at the boundary

between the two other parts (social role and internal model). This aspect is in cause in the

case of false beliefs (the internal model doesn’t transmit the corresponding information to

the social role).

Our work concerning the CS will be based on this two part 1. The first will focus on

the understanding of how to build model of representation and “high level” reasoning.

The robot through interaction and learning is asked to solve the Tower of Hanöı problem

[Petit et al., ming]. The second one will an experimentation of Theories of the Mind and

will be based on the Sally-Anne experiment [Pointeau et al., 2013a].

1. At this step of the manuscript, I would like to make a quick digression for a personal opinion. During my PhD,
I have been working with the robot, on the robot to fix it, with simulation, with real data, on psychological effects of
memory, even with naive subjects... And even if I loved all the work I’ve done in general, from all the studies we
have made, the part that exited me the most was this Conceptual Self. We were finally putting the finger where we
wanted : to the “most common” definition of the “self”. Maybe not the definition of the scientist, but certainly the
one known from the public. The scientist in my have been happy all along in this PhD, but the non scientist in me,
has been fascinated and excited about this.
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This first experiment is not per say a manifestation of the CS and is situated at its

border. Indeed this High Level Reasoning as we will see will use part of the previous levels

of self to emerge. It is not by itself a manifestation of the CS but it will be a part of the

link between the previous levels and the CS. The objective is to provide the system with

the appropriate tools to reason using some concepts that are more advanced than just the

immediate impact of someone on the world (as it is the case for the ES). For this reason I

decided to put this experiment in this chapter about the CS because even if it isn’t exactly

a manifestation of it, the CS will be built on it.

The goal of the second experiment will be to test the ability of the robot to take someone

else’s point of view (the Theory of Mind). Our criteria of success will thus be the famous

Sally-Anne task that will be detailed in 5.2.

5.1 High Level Reasoning and Prediction Based on Experience

The ability to reason can be considered to rely on two complimentary components. First,

a system must have access to some form of knowledge or expertise from which it can reason,

e.g. the autobiographical memory of artificial system ([Dore et al., 2010] [Ho et al., 2009]).

Second, the system must have some form of reasoning capability that allows that know-

ledge to be used in a systematic way ([Hayes-Roth, 1997] [Alami et al., 1998]). We already

developed this aspect in the part 2.3. In this experiment, we wanted to go further in the

learning, and we wanted to give the robot an ability to reason that would be based on high

level of abstraction to be able to adapt his behavior and his reasoning to the state of the

world. To express his part of ES, the robot needs to re-adapt, and to free himself from an

explicit, innate knowledge, given by the programmer. The reasoning and the behavior of

the robot should come from his own experience.

At the light of child development, Carey has shown that the infant begins to extract

regularities from his environment, and in a recursive manner to further extract structure

based on this growing repertoire ([Carey and Xu, 2001] [Carey, 2009]). In this context and
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to learn through social interaction, there are three main components that have to be taken

into account : the action, the goal state and the situational constraints [Gergely et al., 1995].

Once learned, the child can reason and select actions in order to achieve a goal, in particular

when the other is explicitly stating his intentions [Gergely and Csibra, 2003].

The goal of this research is to provide a real-time goal-directed reasoning capability to

the iCub, loosely based on a developmental trajectory where knowledge, from successively

refined levels, contributes to the ability to reason, based on this teleological stance. When we

reach the highest level of this representational hierarchy, the information will be appropriate

for reasoning, not only at the spatial level as previously investigated ([Kalkan et al., 2013]

[Takács and Demiris, 2008] [Welke et al., 2013]) but also on the contextual level (e.g. effect

of an object on another one).

We will first test these reasoning abilities on a simple game where the robot should

rotate an object on the table always in the same direction. Then, we will go on a more

complex interaction where the robot has to solve the “Tower of Hanoi” without ever having

see the solution.

5.1.1 Planning and Goal Directed Reasoning

We already briefly explained in 2.3.2.2 how the system could be able to make some

“retro reasoning”. We will now show a concrete example of its use. Indeed the retro reasoning

is an internal tool using mental imagery, to create high level knowledge in the SSM. But

this knowledge can be used not only in the same case than for the ES as a forward model,

but also to create some building blocks for some higher level reasoning. This will give to

the iCub at each moment, what actions are available, and what will be the consequences

of them, and to predict the state of the world at several action steps. We will thus plug a

planner of action : a standardized planning language PDDL (Planning Domain Definition

Language).
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PDDL is a framework in which the domain of a task can be described (including

specification of the “rules” in terms of pre- and post-conditions for actions), and in which

a given problem or goal can be specified ([Helmert, 2009] [Ghallab et al., 1998]). This can

then be provided as input to a planner, which will attempt to find a sequence of action

executions that takes the system from the current state to the specified goal state. Thus,

in order to be used, a PDDL planner needs this information, as specified in two different

files : a domain and a problem definition. The domain file contains the set of known actions,

including their respective preconditions and effects, whereas in the problem file, we have

the current situation description (i.e. the list of all initial conditions) and the desired goal.

Traditionally, these files are hand-coded, with fixed set of actions given to a robot in

order to solve a precise kind of problem with variable initial conditions. In our system, these

data will be automatically generated in real-time by the iCub, allowing a developmental

inspired approach based on experience that accumulates and becomes successively refined

via the level 1 to 3 of reasoning. This is possible by extracting knowledge from the Semantic

Memory to produce well-formed PDDL domain definition. The problem definition will be

made by a direct request to the SABM about the current situation and the goal is defined

from interaction with the human.

The global architecture of our system is now thus extended as display on the Fig 5.1.

As we can see, we added in the loop the PDDL that will get information from the ABMR

(and by extension to the SABM).

5.1.2 Proof of Concept : the ABCD game

In order to provide a concrete domain in which to pursue this work, we elaborated a

simple board-game interaction scenario, illustrated in Fig 5.2. In this game, four spatial

locations will be learned by the iCub, via observation of the human actions. In addition,
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Figure 5.1: Extended architecture with rule extraction and rule based planning and reasoning. At
first, is the Human “order”. The Human will announce a sentence such as : “I want the circle
on B and I do not want the cross on C” (1). The information is then transmitted to the SABM
which has to solve that problem (2). The system will then establish the state of the current world
state by querying the OPC (3.a, 3.b), and writing it into the problem PDDL file, along with
the human’s stated goal. Then, the system will interrogate the SSM to retrieve the contextual
knowledge corresponding to the pre- and post-conditions of all the known actions, and use this to
build the PDDL domain file (5). The AI Planner is then executed, to produce a plan (6), made
up of the sequence of action which needs to be performed in order to achieve the goal from the
current situation. This file is parsed and the action sequence is sent to the Supervisor (7), which
then controls the iCub to execute the moves (8), and thus to achieve the human’s goal without any
explicit information from him about “how to” do it.

the iCub learns regularities concerning how objects can be moved between these locations.

The demonstrated moves form a circular game path, meaning pieces can only move from A

to B, from B to C, from C to D and from D to A. For instance, if the object is on A, a

player must make 3 successive moves to put it at D. This provides a simple scenario for

testing the ability to learn from experience and reason on the acquired knowledge.

The learning of this action is the same that for any other action, with the supervisor

that will trigger a first snapshot, the agent executes the action, then a second snapshot.
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Figure 5.2: Example of definition of different moves in the ABCD experiment. To be able to
perform the action “Move B - Object”, the object needs to be at location A. There is a pre- and
post-condition for each action.

Figure 5.3: Interaction scenario schema. Four learned locations on the ReacTable with a human
agent (oval body), the iCub (rectangular body), and an object (dark square). The learned locations
are labeled A to D. i) Object is off the table. ii) Human has placed the object on the table, in an
undefined location. iii) Human or the iCub has placed the object on the location A. iv) Human or
the iCub has placed the object at B. v-vi) Human has placed the object at C, then D, respectively.

The characteristic regularity is that actions can be performed with any objects, but there

is a “from-to” structure that to go to B you must be at A, to C you must be at B,

etc. as illustrated in Fig 5.2. The ABMR module collects the statistics on the pre- and

post-conditions of these movements, and generates a set of entries in the SSM “Context”

entry, for each type of move, according to its initial and final location. The Fig 5.3 show a

full cycle of actions in the ABCD Game.

Now that the robot as extracted the pre- and post-conditions of the actions, and expli-
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citly put them in the SSM, he can start to create the PDDL files that he needs. These two

files are : the “domain file” and the “problem file”.

A) The Domain File

The domain file will be for the robot, the “field of possible”, with the list of all the known

actions, with their pre- and post-condition and arguments. For example in the case of the

action “Move B - obj” the pre- condition is : “isAtLoc obj A” whereas the post-condition

is : “isAtLoc obj B”.

Each action can have arguments (like the object in the case of “move” or “push”). This

field of possible will be modified according to the parameters (for example, in the case

of “add object” : we will have as pre-condition : object is absent, and as post-condition :

object is present, no matter what the object is).

All this knowledge about pre- and post-condtions is extracted from the ContextualK-

nowledge classe of the SSM. Indeed the robot will parse for each action, the properties

(relations of the OPC such as : “obj isAtLoc North”) that are above (or below) an empiri-

cally determined threshold for positive (or negative) conditions. The domain file for the

ABCD game can be found in the Fig 5.4

B) The Problem File

Once we set this field of possible of the robot, we will create a Problem File that will be

both the current state and the final goal. The current state of the world include the objects

present in the OPC with their type (”objects” for “circle” or “croco”, and location for “A”

or “north”). We will also get the relation from the OPC at the initial situation : “cross

isAtLoc A” “cross isPresent”.

The goal of the problem will be specified by speech by the Human, and announced as a set

of conditions. The goal will also be represented as relations for the OPC. In the case : “I

want the circle on D”, the final goal will be “circle isAtLoc D”. An example of problem file
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Figure 5.4: Domain file from the ABCD game.

can be found in the Fig 5.5.

C) PDDL Run

Once we have the problem and domain files created, the iCub can start to reason on it. To

do so, he will run the PDDL planner to get a sequence of actions from the domain, to go

from the initial to final state of the problem. We decided to use the LPG-td planner from

[Fern et al., 2002]. In our case, we have the cross in position A, and we ask the iCub : “I

want the cross in D”. We set the planner to 2 second maximum of search, and to keep the

30 best solution from lower to better quality. The quality of a plan depends of the cost of

each plan We can put a different cost (energy, or time...) per action, and we will search for



CHAPTER 5. CONCEPTUAL SELF 117

Figure 5.5: Problem file from the ABCD game.

Figure 5.6: Solution in the case of the ABCD game.

the plan that cost the less. In our case, all the actions have the same cost, so the best plan

will be the one with less action. Either after the 2s, or when all possibilities have been tries,

the planner return a file with the at more the 30 best plan (see Fig 5.6). The robot will

then extract the list of action of the best plan, and execute them. In our example of the

ABCD game, we have shown that the robot was able to understand the rules of the game,

and to play it. Indeed, if the cross is on A and we want it on D, the robot will first move it

to B, then to C and finally to D.
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Figure 5.7: Principle of the “Tower of Hanoi” problem. We have a set of disks of different sizes. A
disk cannot be above a smaller disk. The objective is to move a ordered pile of disks from one stick
to another, with the less moves possible.

5.1.3 The Table of Hanoi

5.1.3.1 System and Learning Phase

We have been able to show that our system was working for a problem with a small set

of possibilities. We want now to test it on a more complex problem. We decided to use

the Tower of Hanoi (ToOH) to test our model. The ToOH is a game invented by a french

mathematician Edouard Lucas in 1892, that consist in moving several disks of different

diameters from a starting tower to final another using a intermediate tower, and this, with

a minimum of steps (see Fig 5.7). There is only two requirements, we can move one disk at

the time, and we cannot put a disk above a disk with a smaller diameter. The minimum

number of step for each game with n disks is 2n − 1. Indeed, for each disk that we add, we

have to move once the n− 1 stack, move the nth disk, then move the n− 1 stack again on

it. For example, for 3 disks, the minimum of step required is thus 27 − 1 = 7. This will be

our objective.

Due to the motor capabilities of the iCub, we decided to modify a bit the Tower of

Hanöı to the Table of Hanöı (TaOH). The principle will be the same but horizontal instead

of vertical. The robot will have to learn 3 locations : “left”, “middle” and “right”, then

the different moves allowed. Instead of disks, the robot will use rtObjects : block that can
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Figure 5.8: Set of the seven moves used to teach the robot the rules of the TaOH.

be easily manipulate on the ReacTable, that will be labeled as “small”, “medium” and “big”.

After a small phase of teaching the robot the different locations (as seen in the part

2.3.1), we started to show the robot the moves in the context of the TaOH.

The human demonstration of these moves (HANOI-BIG ?FROM?TO, HANOI-MEDIUM?FROM?TO,

HANOI-SMALL?FROM?TO) is done in the same way as for Experiment 1. It should be

noted that, because of the generalization of learning, we need only to perform the moves

from “Left” to “Middle”, and the iCub will be able to generalize to other move locations.

In particular, it has never seen an actual Hanoi game, from the beginning to the end, only

a set of illustrative moves : we used a minimal and predefined set of actions to show that

the iCub can learn to solve TaOH without any need for seeing the actual solution, but the

same results can been achieved by observing a real attempt of TaOH realized by a naive

subject. These locations can then be used to demonstrate the moves that allow the system

to learn the rules governing how object positions influence legal moves. The set of moves

witness by the robot is shown in the Fig 5.8.

A summary of the learning flow concerning the learning of the rules and the stream of

information from extraction of knowledge to the planner can be found in the Fig 5.9 and 5.10.
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Figure 5.9: Effect of the different levels of reasoning to solve the problem of the “Table of Hanoi”
using CKF and Retro-Reasoning.

Figure 5.10: Overview of the flow of information in refinement of knowledge
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Figure 5.11: Domain file generated for the TaOH

Figure 5.12: Problem file generated for the TaOH

5.1.3.2 Results

The Domain File for the problem of the TaOH is produced exactly as for the ABCD

game. The file can be seen in the Fig 5.11. As we can see, the rules are objects-related and

no more locations-related.

We then set the initial situation : the three objects were set on the location “middle”,

and ask for the final goal. The goal is stated by speech : “I want the big on the left, and, I

want the medium on the left, and I want the small on the left”. The robot will automatically

with these information create the Problem file (see Fig 5.12).

The planner will then find the best solution to solve the problem knowing the domain.

This solution is shown in the Fig 5.13. The robot will then execute the best solution and

solve the TaOH with 3 objects in indeed 7 steps as expected. The execution is displayed in

the Fig 5.14 and conclude the loop from Human interaction for the learning of low level
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Figure 5.13: Solution file generated for the TaOH

Figure 5.14: Different step of the execution of the solution for the TaOH. (1) objects are middle.
(2) moving small to the left. (3) moving medium to the right. (4) moving small to the right. (5)
moving big to the left. (6) moving small to the middle. (7) moving medium to the left. (8) moving
small to the left. (9) all the objects are left.

knowledge (location) to high level knowledge (TaOH rules), solving complex problem asked

by a Human, and acting to execute the corresponding task.
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5.2 Theory of Mind

We have seen in the part 3.2.2 that a forward model could allow one to simulate the

result of his own actions, or actions of others. But we discovered that this mental world

that we use for the simulations of action, can also be use in the context of Theory of

Mind ToM. The robot will use his “mental sand box” to represent the mental state of others.

5.2.1 The ability to “Mentalize” : developmental Aspect

Frith explain the success of human social interactions as “depending of the development

of a social intelligence”. He gives it several components : “recognize conspecifics, to know

one’s place in the society, to learn from the others and to teach novel skills to others,

the capability to understand and manipulate the mental states of other people and thereby

to alter their behavior” [Frith and Frith, 1999]. We will focus particularly one this last point.

Frith give to the aspect of ToM the following definition : “The awareness that other

people have beliefs and desires different from our own and that their behavior can be explai-

ned by these beliefs and desires has been referred to as theory of mind or intentional stance”.

One of the main distinction between Human and other animals is this ability to re-

present the mental state of other at a high level. It however has been shown that monkeys

can use the direction of the gaze to adapt their behavior [Emery et al., 1997]. Indeed the

great apes are social animals like the Human and behave accordingly but for Byrne and

Whiten [Byrne and Whiten, 1990] the events where apes use deception to manipulate the

behavior of others, can be attributed to some kind of rapid learning about coincident

events rather than the ability to mentalize. For Heyes [Heyes, 1993], there is not enough

evidence (particularly in laboratories) to show that the great apes are able to mentalize or

use intentional deception.

We use every day our beliefs rather than reality to act (for example Descartes said :
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Figure 5.15: Representation of pretense : “Calvin and Hobbes” from Bill Watterson

“when a put a stick in the water, my reason unbend it.”). But false beliefs can be also

implanted by deception, or removed by education.

From a developmental point of view some first insights of the ToM can be witnessed

from 18 months. Around this age, Leslie has shown that infant are able to represent an

agent’s informational relation to an event, that will lead him to the understanding pretense

[Leslie, 1987]. This is also around this age that if an infant witnesses an adult attempt to

complete an action, but fail to finish, the child is able to imitate and complete this action

([Meltzoff, 1995] [Tomasello et al., 2005]). This mark the age of “pretense”. As Calvin and

Hobbes walk by his snowmen in his garden, and imagine himself as a dinosaur eating

people (see Fig 5.15), pretense is defined by Leslie as : “Pretend is a special case of acting

as if where the pretender correctly perceives the actual situation”. Fein insists on the role of

the memory into this pretense as a catalog where the child will compare different object

and decide to apply some transformations [Fein, 1975]. These transformations will select

some of the feature of a situation or an object and will ignore the others.

Leslie claims that this pretense is the first step toward the ToM :
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“The emergence of pretense is not seen as a development in the understan-

ding of objects and events as such but rather as the beginning of a capacity to

understand cognition itself. It is an early symptom of the human mind’s ability

to characterize and manipulate its own attitudes to information. Pretending

oneself in thus a special case of the ability to understand pretense in others [...].

In short, pretense is an early manifestation of what has been called theory of

mind”.

The ToM can be defined as the ability of a person to “impute mental states to self and to

others and to predict behavior on the basis of such states” [Premack and Woodruff, 1978].

We will see later one of his most classical way of representation under the form of the

“Sally-Anne” experiment.

For Leslie, the pretense, and then the ToM needs several components. At first, the

child needs primary representations defined as : “transparent, [...] they directly represent

objects, states of affairs, and situations in the world.”. These primary representations are

somehow linked to the ES, as being the relation between and individual and its direct and

immediate physical environment. It is the sum of all the senses and analysis of the world

at a given time. These primary representations will lead to direct action on the world and

and vice-versa, the child’s actions on the world will impact his primary representations.

The child needs also the pretend representations that will be : “opaque [...]. They are

in effect not representations of the world but representations of representations”. These

pretend representations described by Leslie are what Pylyshyn call : metarepresentation

[Pylyshyn, 1978]. The child will also be able to act upon these metarepresentations. This

full architecture can be found described in the Fig 5.16.

This system is the first step toward the pretense and thus the ToM. While going

further in his development, the child reaches at the age of three years old, the proper
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Figure 5.16: A general model for pretend play (adapted from [Leslie, 1987])

vocabulary to express mental states during a conversation ([Bretherton and Beeghly, 1982]

[Shatz et al., 1983]). These verbs are such as : “think, know, remember, pretend, dream,

wonder, believe” and are used correctly during spontaneous speech between 21/2 and 3

years old.

The age of four marks another important step in the capacity to mentalize. Indeed, at

the age of four, the ability to mentalize is almost fully operational [Sodian, 1991] and as

Leslie notices it, this ability to mentalize and pretend will stop developing any further once

it have emerge to this point. Several studies have shown that from (around) the age of

four, most of the children are able to solve a tasks as described in the Fig 5.17 that we will

call the “Sally-Anne task” ([Baron-Cohen et al., 1985] [Wimmer and Perner, 1983]). An

experimenter and a child (to test) are across a table. On the table are two dolls, Sally and

Anne, a basket and a box. At first Sally puts a toy in the basket and close it. Then Sally

leaves and Anne moves the toy from the basket to the box. Both the basket and the box

are closed. Sally comes back and shouldn’t remark the change. Then the test is to ask to

the child where Sally would look for her toy. The expected answer from a child able to

manipulate mental states of other people is : in the box. We will focus our following study

on this particular point : the understanding of a false belief.



CHAPTER 5. CONCEPTUAL SELF 127

Figure 5.17: Definition of the Sally-Anne experiment. 1 : An experimenter is in a room with a child
and two “human” dolls : Sally and Anne. In front of Sally is a basket and in front of Anne is a
closed box. The child sees a “toy” doll in the basket then the experimenter closes it. 2 : Sally leaves
the room. 3 : Anne transfers the “toy” doll to the box and closes it. The child witnesses the transfer.
4 : Sally comes back in the room, the basket and the box are closed and no one can see inside. The
experimenter asks the child where Sally will look for her doll.

However it may appears that the development of mentalizing doesn’t occurs as we

described here and the children diagnosed with autism are part of it [Fombonne, 1999].

Indeed, Fritz explain as following [Frith and Frith, 1999] :

“In certain cases the development of mentalizing is severely compromised.

This is the case for children diagnosed with autism. In infancy, these children are

remarkable by not appearing to orient toward other people’s focus of attention, by

not showing or pointing out things, and by not engaging in pretend play. Many

individuals with the diagnosis of autism remain unable to understand the concept

of a false belief.”
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Figure 5.18: Right : Representation of the prefrontal cortex, including the medial and ventromedial
prefrontal. Left : Superior Temporal Sulcus

This inability to understand and/or manipulate other people’s mental state his however

not related to other mental abilities such as “intelligence”. Studies have been made with

autistic, normal and retarded children implying manipulation of mental state, and it shows

that the only group that failed the test were the autistic children that had an higher IQ

that the retarded children group [Sodian and Frith, 1992].

From an anatomical point of view, the brain region related to the ToM is not yet totally

defined. However several regions have been identified as implied in process of mentalizing or

using mental state. These regions are mainly situated in the prefrontal cortex (concerning

thoughts : [Nancy Kanwisher, 1997], pain and action : [Rainville et al., 1997]) and in the

superior temporal sulcus [Leslie, 1994] (see Fig 5.18).

5.2.2 The the iCub performing the Sally-Anne experiment

Now that we have seen the required component to allow one to mentalize, we want

to use it for the robot in order to solve the Sally-Anne experiment, or at least an “robot

version” of this test. To do so, we have seen that we required some primary representations

that will be the OPC plugged on the classical sensors that we have (ReacTable, Kinect,

sensory motors, audition), and our metarepresentations will be the MOPC as presented

earlier.
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Figure 5.19: Contents of the MOPC and the real OPC in the Sally-Anne task. In the “Before”
column is represented the contents of both OPC when the toys has been placed at the first location.
The MOPC is the metarepresentations of the iCub and therefor of what Sally has seen. In the
“After” column is the actual situation represented the world as perceived by the robot (real OPC)
where the toy is on the location North, while in the Mental situation is still the situation as seen by
Sally before leaving.

The experiment itself was the following : the iCub and a Human agent (labeled as Sally)

are interacting across the ReacTable. The agent puts an object on the location “left”. the

iCub will synchronize the MOPC on the OPC, and block the MOPC to the state of the

world as it appears while the agent is still present. The agent leaves and another agent

moves the object to the location “north”. This situation can be seen on the Fig 5.19.

If we ask the iCub the differences between both OPCs at the end of the experiment, we

obtain the following results (see Fig 5.20) :

– iCub’s beliefs : the Toy is now at the location “column” and “north”, Sally is no
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Figure 5.20: Results returned by comparing the real OPC and MOPC. The comparison indicates a
significant difference, corresponding to difference between the “false belief” attributed to Sally in
the MOPC and the “true beliefs” attributed to Anne in the OPC.

more present.

– Sally’s belief : They are still the same as when she was here : the Toy is at the

location “left”.

These differences show that the use of our MOPC as a tool for handling the metare-

presentations allows our system to mentalize the believed state of another agent. This

experiment has potential impact on the ongoing debate of what is required for passing

false belief tasks will be discussed in the next section. The differences of the OPCs are also

more detailed in the Fig 5.20.

As we can see the robot is thus able to pass a simplified version of the Sally-Anne task,

and is able to project someone else’s beliefs in its own internal representation.

5.3 Discussions about the Conceptual Self

These two experiments (the high level reasoning and the Sally-Anne task) both give us

a direction to research, but also a first step to continue toward a conceptual self. We have

seen how we could answer to the two problematic of Neisser : the Role Theories and the

Internal Models.

Our system is however not yet fully functional and would need a set of improvements.
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Part of this improvements could be a more a more complete perceptual system to allow

the reasoning system to work not only on space but also on other modalities. Also, for now,

this reasoning is triggered by a Human command and should be integreated as automatic

for the robot : to go from an event to a routine for the reasoning. This remark could be

extend to the part about the ToM, where for now, the robot needs a special command to

create someone else’s list of beliefs.

Being given this technical details and the potential lack of scale of the system, we clearly

show a significant breakthrough in the field of robot understanding a human agent based

on his experience.

But this reasoning about agents and the implication of actions can be seen at a larger

time scale, from a backward perspective : the Temporally Extended Self.
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Temporally Extended Self

This fourth level of self can be seen as the “highest level of self” in our autobiographical

hierarchy. Neisser gives two first short definitions as follow :

“The temporally extended self is the individual’s own lifestory as he/she

knows it, remembers it, tells it, projects it into the future. It cannot appear until

the child already has a conceptual self, a narratively organized episodic memory,

and an explicit understanding of the continuity of persons over time - say, until

the fourth year.” [Neisser, 1995]

“The extended self is the self as it was in the past and as we expect it to be

in the future, known primarily on the basis of memory.” [Neisser, 1988]

This notion of continuity applies at the individual level as the notion of psychological

continuity. This notion of TES can be related to the notion of the narrative self of Bruner or

Gergen ([Bruner and Bruner, 2009] [Gergen and Gergen, 1988]). A central aspect of this

narrative self construction concerns how the narrative includes the interaction between self

and others over time. It is apparently this relational aspect that is crucial in defining the self.

For Neisser, the TES includes the ability to “remember”, and maybe the definition of am-

nesia as “the pathology of the extended self”, is the best definition of the TES [Neisser, 1988].

132
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However, the TES needs to be separated from the others uses of the past, particularly

the ones that don’t involved past self. For example the case of learning from experience is

a manifestation of the memory, but not a proper manifestation of the TES, and Neisser

distinguishes the “knowing how” from the “knowing that”. The first be part of the

nondeclarative memory, while the second will be a manifestation of the TES.

As we already talked about in the part about semantic and episodic memory (2.1.2), I

can remember that my birthday is the 5th of December of 1988, but this is not properly

speaking due to my episodic memory, but more to my semantic memory, this manifestation

of knowledge about my lifestory is a part of this lifestory, but not a first plan level of

manifestation of my TES. Neisser focuses more about what he calls “scripts” or “routines”

which are regular events of one’s life.

The way of remembering events should thus be a mix of process : on one hand, the

“remembering” per say of something I did, and on the other hand, the remembering that

I did something. If I want to remember the time I went to the restaurant for my father

50th birthday, I will have an episodic memory. But the development of the lunch will

be a familiar routine as follow : we went to the restaurant, we get seated, we ordered

an apéritif, we ordered the food, we waited for the food, we ate the food, we ordered a

dessert, we ate the dessert, paid the restaurant and we left. This more general repre-

sentation is what Neisser calls “script”. Both process are part of the TES, and Neisser

insists on the fact that TES can be though “as a kind of accumulated total of such memo-

ries : the things I remember having done, and the things I think of myself as doing regulary”.

We see here clearly the implication of the ABM in the TES, directly, and indirectly.

The direct part is evident, it is the calls to the episodic memory or semantic memory for

“recalling” events. But indirectly also for the creation of these scripts.
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From a developmental point of view, there are several steps that lead to the TES. We

have already seen that the episodic and semantic memories arise during early childhood

(before around 21
2). This “script knowledge” of regular, sequenced events of the life (such

as going to the restaurant) arises during the third year of life first with a basic form, then

around 41
2 with a more complete form [Gruendel and Nelson, 1986]. A child of 3 years old,

knows many scripts such as getting up, getting dressed, having breakfast.

However for Neisser the important part of the TES, is not only being able to remember

an event under the form of a script or routine, but it is to be able “to remember [this

routine] when it is not being executed”. This includes the ability of being aware of “oneself

as existing outside the present moment, and hence of the extended self”. We clearly see

here the implication of both the conceptual and interpersonal selves in this understanding.

As the opposite of the other levels of self and especially the conceptual self and the

ability of pretense, Neisser explains that theTES grows together with one individual life

and on can recall more easily emotional events of life. Indeed I remember very clearly

the time I’ve read the book 1984 from Georges Orwell and the sentence “To die hating

them, that was freedom”. I remember having be shaken by this sentence and today, I can’t

really remember the exact condition I was before reading, or even the previous or the next

sentence, but I know that this sentence changed me as part of my self.

We can consider that the cooperative joint plans that the robot learns (SP) through its

interaction with the human, correspond in some way to his TES, as well as the IS, but the

aim of the experiment about the SP, was to prove the ability of the robot to analyze each

agent’s role in such scripts and to understand how each person could influence the SP.
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6.1 SABM

The first manifestation of the TES can be at the very first level of our SABM. In

november 2012 the SABM system became sufficiently reliable (technically) that it was

enabled and since than, has been continuously encoding the experience of the iCubLyon01.

That encoded experience provides a record of the different kinds of interactions that has

had, with different people, over time. As illustration in the Fig 6.1, we can see that at

different periods, different type of experience has been acquired. Learning about object

and the results of actions provides the basis for further learning about how to combine

these actions into SP, or high level reasoning, of every level of knowledge that we have seen

previously.

These records are a clear manifestation of the TES of the robot. And by looking the

lifespan of the robot in the Fig 6.1, one can ask a few questions. What is this big empty

gap between months 9 and 10 and between the months 13 and 23 ? The answer is that

the SABM is plugged on the real robot in our laboratory of Lyon. The months 9 and

10 correspond to mid-July to mid-September 2013. For many European Projects such as

EFAA or WYSIWYD, we have what we call some “integrations” where all the partners

meet for a few weeks, and integrate the work of each laboratory. In our case, we went to

Genoa, in the laboratory of IIT for a summer School called Veni Vedi Vici the two last

weeks of July 2013, and for the two first weeks of September 2013, we where in Barcelona in

UPF for the summer School BCBT. The month of August is the main month for vacation

in France. This explain the gap for the months 9 and 10.

But what about the gap for the months 13 to 23 ? The iCub as we said is an experimental

robot, and we had a big hardware problem with the boards (embarked controllers) of the

iCub, and on several cables of both arms. Then we moved from one room to another in our

Laboratory of Lyon. During this time, most of the experiments with the SABM were done

but without using the iCub itself (for example the elaboration of the “I-You experiment”).

These explications are neither an excuse or a justification, but more a illustration of
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Figure 6.1: Illustration of the lifespan of the iCubLyon01 from the 13th November 2012 to the 20th
March 2013. Top left : number of action witnessed (white) or executed (red) by the iCub. Top right :
type of the actions recorded in the ELM (in majority they are simple actions in blue). Bottom left :
agent interaction with the iCub. During the first weeks, the agents were always : “Agent1”, then
we can see the elaboration of the functionality of naming the agents. Bottom right : argument used
as spatial during the lifetime of the robot. Full size images can be found in appendix (9.1).

the aspect of narrative self that emerge from the ELM. Indeed what the robot recall, is

what he really witnessed.

6.2 The TES as integration of all the other levels of self.

The TES can be seen also as the integration of the three other levels of self. Actually,

every result we shown earlier, are a manifestation of the TES. When the robot is able to

understand the meaning of an action, and the consequences of his own movements through
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his ES, it is indirectly a part of the TES because it is the expansion of his long term

memory (ELM) into an understanding of his body and his interaction to the world. When

the robot is able to understand the different social interactions, and the different roles

that an agent can have in for example a SP, as part of his IS, it is also a manifestation of

his TES. And finally, when the robot is able to create some high level knowledge, and to

simulate someone else’s internal mental state, it is once again an indirect manifestation of

the TES as in the sense of Neisser : “The extended self is the self as it was in the past and

as we expect it to be in the future”.

An experiment to put in light the role of the TES has been done in the laboratory (but

is not yet the subject of a publication). It consists of a dialogue with the robot concerning

his memories. The final dialogue is transcript in the Table 6.1 and in the Fig 6.2.

If we decide to decompose this interaction, we can see several levels of implication of

the TES. On of them is the use of the ELM to recall a precise even such as : “When

was the last time you saw Peter ?”, where the robot reloads the correspondent memory in

his MOPC. He recreates the situation, and now can act on it. The robot can simulate an

action given this context : “The last time Peter was here, the cross was on the location

east. If I had pushed it to the west, the cross would not be at the location east anymore”.

This kind of situation (which is not fully described in the video) could allow the robot to

re-experiment a situation, and to try to find the possible consequences of another action

given a initial situation. The robot could experiment a kind of high level “babbling” based

on a situation and his experience.

Another manifestation of the TES in this video, his the ability of the robot to simulate

in his MOPC a SP. When asked to explain a SP, the robot is not only able to enunciate

the corresponding “script”, but also to simulate it in his MOPC. An important fact to be

noted is that the simulation in the MOPC is not in this case the memories in the ELM that

compose the SP, but a full execution of the SP in the MOPC. The robot doesn’t simulate
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.2: Dialogue with the iCub about his memory. (a) The iCub enunciates the SP he knows.
(b) the iCub explains the SP “play-music” and loads the steps in his MOPC. (c) and (d) the iCub
keeps enunciating “play-music” and simulates it in his MOPC.(e) the iCub explains “swap”. (f) the
Agent asks a precise event in the ELM. (g) the iCub answers the question and re-simulate the past
situation in his MOPC. (h) the Agent asks for another precise event. (i) the iCub simulates the
past event in his MOPC. The images can be found in the appendix (9.2).
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Timing Agent Sentence
0 :08 G “Do you know any shared plan ?”
0 :11 R “I know four shared-plan : play ; play-music ; split ;

swap”
0 :19 G “Can you explain me play-music ?”
0 :23 OPC loading in the mental OPC
0 :28 R “iCub put the cross to the left

then Agent1 put the cross to the east
then iCub put the circle to the left
then Agent1 put the circle to the south

0 :52 G “Who was present ?”
0 :54 R “You were present”
1 :02 G “Let’s talk about something else.

Can you explain me swap ?”
1 :06 OPC loading in the mental OPC
1 :10 R “Agent1 put the circle to the center

iCub put the cross to the west
Agent1 put the circle to the east

1 :35 G “Let’s talk about something else.
When was the first time I used north ?”

1 :37 OPC loading in the mental OPC
1 :39 R “It was the 13th of November of 2012.”
1 :49 G “How many times this happened ?”
1 :53 R “It happened 22 times.”
1 :58 G “When was the last time you saw Peter ?”
2 :01 R “It was the 12th of December of 2013”

Tableau 6.1: Retranscription of a dialogue with an human agent (G) and the iCub (R).

the corresponding situation, but the action themselves.

6.3 Conclusion on the TES

It is difficult to design a experiment that shows a clear manifestation of the TES because.

By definition, the TES is built on the three other levels of self seen previously. But a

manifestation of the TES couldn’t be simply these three other levels working jointly with

the SABM? Neisser uses the term of “emergence” to characterize the different level of

self, and this term is especially strong in the case of the TES : we see here clearly that its

manifestation appears through the interactions or the changes of these lower levels and

makes arise a level of complexity that is difficult to predict or describe by the analysis of
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these systems in isolation.

These two simple situations correspond exactly to the definition of Neisser of the TES :

the robot sees himself in the past, and from this past simulate the future. He can analyze

his everyday life scripts not from a episodic perspective but from a semantic perspective,

and as Neisser declared, he can remember them and simulate them while he is not living

them.
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Discussion

Now that we have seen how technically our robot could with the help of a SABM,

express at his own way different levels of self, we can take a step back and discuss several

point that can be important in our case.

7.1 Summary of the study

In this thesis I have first defined an ABM and its two main components the Episodic

Memory and the Semantic Memory. We have seen how the architecture of the SABM could

help to create different notion of self. I have then defined these notions of self with the

work of Endel Tulving and categorized its manifestation in 4 plus 1 parts, the Ecological

Self (ES), the Interpersonal Self (IS), the Conceptual Self (CS), the Temporally Extended

Self (TES) and the Private Self. I will explain why we had put aside the Private Self and

focus on the four other levels in this study.

I have presented the technical platform we use. This system is composed at its center

by the humanoid robot iCub, interacting through a ReacTable with a Human Agent. The

interaction is mainly through speech. The world as it is perceived by the robot is constantly

updated in its Objects Properties Collector (OPC).

I have then described our SABM, composed of two part, an ELM and a SSM that

model respectively the Episodic and Semantic human memories. The ELM stores snap-

shots of the OPC, while the SSM stores information related to knowledge extracted by

the Autobiographical Memory Reasoning (ABMR) through a Mental Objects Properties

141
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Collector (MOPC) and various techniques of reasoning.

Next I have for each level of self that we examined, explained how a SABM could

contribute to its emergence, starting by the ES which concerns the impact and direct

influence of someone on the world. Concerning the ES, I have shown a system of forward

model through mental imagery. This forward model allows the robot to simulate through

its MOPC the consequences of his physical action on the world, such as it is defined by

Neisser.

After that I focused on the IS which is related to the social interactions. I have firstly

shown how the system of MOPC developed previously could help to understand a social

interaction and the role/effect of each agent. Secondly, I explained the “I and You Expe-

riment” which consists in understanding and using correctly a personal pronoun given its

context. Our specificity is that we extended the work from Gold and Scassellati not only

to personal pronouns but to proper nouns too. At last for the IS, I showed a system of

Shared Plan (SP) as part of social ritual.

I then developed the CS. The first part of it it a “high level reasoning” : using the

MOPC to simulate and predict complex plans. I gave two examples of it : the ABCD game,

and the Table of Hanoi. Then, as second part of the CS, I developed the use of the MOPC

in Theory of Mind (ToM). It consists in using the MOPC to predict the mental state of ano-

ther agent and the experiment we used for it was the Sally-Anne task modified for the iCub.

The last level of self that I developed in this thesis was the TES. There is no proper

demonstration of its functioning because I showed that the TES emerge as the three other

levels are active. However, I showed two manifestations of it : one was the SABM running

on the long term, and the second was an interaction with the robot about his own personal

history.
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There are still some discussion possible about our model, and some improvement could

be find.

7.2 The private self

The first point I would like to address in the case of the “Private Self”. I recall the

definition given by Neisser of the Private Self :

The private self “appears when the child comes to understand and value

the privacy of conscious experience ; when it becomes important that no one

else has access to his/her thoughts, dreams, and interpretations of experience.

I do not know whether this insight appears regularly enough to be counted as a

developmental milestone, but it surely requires a temporally extended self which

to reflect.” [Neisser, 1995]

All along our work, we claim to work on the levels of self defined by Neisser but we put

aside this level. Now is the time I would like to come back on it. The PS seems to develop

around 41
2 years old and correspond to a notion of “free will” and to the fact that a person

is the own keeper of his memories, thoughts and dream.

In the case of the iCub, we, researchers, have access all time to any data of the robot,

and the notion of privacy (in the frame of Neisser’s PS) is difficult to reach in a robot.

However, going in the direction of the PS, or at least addressing the topic of conscious

experience, several experiments have been run in our laboratory under the Super Wizard of

Oz (SWoOz) Project. The aim of the project (as described in the Fig 7.1) is to teleoperate

the iCub, while interacting with a human partner ([Gibert et al., 2013] [Gibert et al., ]

[Gibert et al., 2014]). The aim of the project is focused about Human-Human, Human-

Robot and Human-Avatar interaction.
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Figure 7.1: Concept of the SWoOz Project. Human partner will interact with a robot : the iCub.
The iCub is teleoperated by an agent (the Wizard). This plateform can thus be used to analyze
Human-Human interaction as well as Human-Robot interaction.

Yet, we could see here a way to teach the robot to act, by acting for him. By taking the

control of the robot, we could increase significantly the experience of the robot. The would

result in a “mix” interaction where the robot would be witnessing his experience instead of

being actor of it.

What could be the difference between being actor or spectator of his experience ? The

robot would learn the “way of thinking” and solving problem of one person. Maybe in

a precise situation it might have several possibilities and maybe several solution. If the

robot doesn’t have this capability of exploring his range of possible, might result a learning

much slower. The differentiation between being spectator or actor of his learning have been

shown many times ([Prince, 2004] [Grabinger and Dunlap, 1995] [Pointeau et al., 2013b]).

Without any initiative, will the robot be able to develop a PS, or more generally, will

this self be the self of the robot, or the self of the human ?
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7.3 Robot Self vs Human Self

This question is in my opinion the most difficult questions we had about the self of the

robot, and I am not sure I have an answer. We thus can try to have a reflection about this

point.

We have shown that the robot was extracting his self from his experience. His experience

comes mainly from human actions, but also from his own. But what is the root of his

own action ? Does our robot have a free will ? I would answer no to this question without

hesitation. The range of possible for a robot is at some point (even very low) given by the

Human. The iCub’s action happen in a Human world. The robot is depending a lot on

Human actions that can be from the teaching to the robot to the programming itself or

even the conception. This would turn the scale in favor of a human self for the robot. Yes

but...

Yes but, in the end the robot has his own hardware conception, his own sensor, he “un-

derstands” the world in our case mainly through an interactive table and has a dissociation

of his body (hardware and sensors) and his “mind” (computers). The actions made by the

iCub, happen in a Human world, but made by a robot and interpreted by a robot. This

would turn the scale in favor of a robot self.

But if we come back to this idea of a “free will” of the robot, we could ask the question,

does a Human have a free will ? Or does the biology and the neural system “chooses” for

us ? A answer to this question would be that, the complexity of the neural system gives us

(right or wrong) the sensation of free will. Maybe this is an answer to the question of a

robot self and free will. We have shown that the robot could express behavior characteristic

of the human self, but concerning the free will, we could argue. And maybe this human

neural complexity could also be an answer for the free will of the robot.

I would like to share at this point a personal opinion concerning the role of the human
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in autonomous robotic. For the same reason that the complexity of the nature itself, and

the complexity of the neural system gives us a impression (once again right or wrong, the

problem is not here) of free will, I would say that, the iCub, and autonomous robot in gene-

ral are like a solid in space : it will move forever is there is at first even a very insignificant

force to push it. The role of the Human in the development of autonomous robot, is to give

to the robot this ability to travel endlessly, but also to give this first impulsion, as tiny as it is.

7.4 Other aspect of the memory system as builder of the self

I would like now to address several points that are linked to the memory system, and

that can have an impact on the way the levels of self are expressed.

7.4.1 Tuning of the robot

One important part of the programming that we showed, is that it needs the declaration

of many internal parameters and thresholds for many reason. Most of them are used for the

differentiation of actions : for example a threshold to determine that the adjectives “quickly”

and “slowly” are related to time and not “south” or “east”. The statistical test will return a

p-value, but the robot need to make the decision to consider this p-value as significant or not.

It cannot be denied that this thresholds and parameters will have an impact on the

behavior of the robot in his decision making. For example, by manipulating these threshold,

we can easily change a slow learner, into a fast learner robot.

We can however put so “dynamic” threshold that could evolve given the experience

of the robot (this is one of the axis of work with the Europeans partner of the project

WYSIWYD).
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7.4.2 Plasticity of the memory

We have in this thesis established a model a memory absolute and infallible : what is

perceived is recorded, and can be found at any time. But the human memory seems not to

be so perfect.

We can cite many diseases linked to memory such as amnesia (anterograde or retrograde)

that can be caused by brain damage, psychological trauma or disease [Nadel and Moscovitch, 1997].

Roughly, amnesia is a loss of memory that can be manifested in both ways : backward

(impossibility to recall old memories) or forward (impossibility to fix new memory).

Agnosia is another of this memory’s disease. It manifests itself by an incapacity to

recognize some normally known stimulus and it is a disease of the nondeclarative memory,

but it seems also to manifest itself through speech [Heilman et al., 1975]. Here again the

origins of agnosia can be multiple but most of them seem involve the ventral stream of the

brain [Cavina-Pratesi et al., 2009].

Alzheimer disease one of the most known memory disease [Querfurth and LaFerla, 2010].

Even if main causes of the diseases are still unknown, it seems that its origin might be

genetic although many factor seem to come from lifestyle. We could add other example of

memory disease, but what is important to see in these disease, is the fact that they seem

to be caused by either external factor such as accident, or by a genetic dysfunction. Theses

disease don’t seem to be caused by the natural functioning of the memory.

This bring us to another important property of the memory : the construction of false

memories. The creation of fake memory from the brain has been studied a lot and Bernstein

states the following :

“In essence, all memory is false to some degree. Memory is inherently a

reconstructive process, whereby we piece together the past to form a coherent
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narrative that becomes our autobiography. In the process of reconstructing the

past, we color and shape our life’s experiences based on what we know about the

world. Our job as memory researchers and as human beings is to determine the

portion of memory that reflects reality and the portion that reflects inference and

bias.” [Bernstein and Loftus, 2009]

Bernstein here puts in light an important fact : the part of reconstruction of a memory.

Once again, our SABM is “absolute” in the sense that it will reconstruct the exact same

memory if asked. It can of course extrapolate and simulate from it, but it will recall a

memory perfectly (at least as good as it was recorded).

The Human brain doesn’t seem to have this functioning and it may lead to the crea-

tion of false or at least re-arranged memories. Several studies have treated this topic of

creation of false memories, and the impact it can have in society ([Porter et al., 1999]

[Loftus et al., 1997] [Gudjonsson and Pearse, 2011]). I would like to report in more de-

tails one of theses studies, an article published recently by Julia Shawn (early 2015) :

[Shaw and Porter, 2015]. In this study, Shaw and her colleagues have taken 60 students

on average 20 years old that have never been involved in any crime. The student met the

experimenters three times for 40 minutes in the laboratory at weekly interval.

The caregivers were asked to fill out a questionnaire to give the experimenters some

details about specific events the students might have experienced between 11 to 14 years

old. These details were about a specific event of the student life, but also about their lifestyle.

During the first interview, the experimenters told the students 2 stories : one true

(given by the caregiver) and a second false but enriched by details from the caregivers.

The false stories were divided in two categories : the first was a set of events that involved

the Police (theft, assault or assault with a weapon) while the second set had a strong

emotional valence (loss of a huge amount of money, serious personal injury or an attack by
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a dog). When asked to explain the false event, the student had some difficulties but were

encouraged by the experimenters and reassured by the experimenters. At the end of the

session, the experimenters asked the student to work on it for the next interview.

The second and third interview were based on the same principle. At the end of the

third session, the students were informed that the memory was false and were asked how

often they had visualized the memory at home, and they had to rate on a scale from 1

to 7 how surprised they were that the memory was false, and how suspicious the inter-

viewer was. They were of course also asked if they though the memory was real, and paid $50.

The results of the experiments are startling. Indeed over the 30 subjects that were faced

with a false assault involving the Police, 71% (21) declared that they believed the event

occurred and they forgot it. Concerning the 20 that were confronted to the false assault

(assault without weapon and assault with a weapon), 11 of them gave precise details of

the encounter with the Police (such as physical description of the officers). Concerning the

students confronted to the events with high emotional valence, this proportion rises to

76,76% (23).

The student were also asked to compare the vividness of the sensory component of the

memories (the visual, auditory, olfactory and tactile part of the memory) between the true

and the false event and the results are very similar (see Fig 7.2).

Shaw concludes her article by the following statement :

“A number of current theories, such as fuzzy-trace theory (Brainerd &

Reyna, 2002), propose that a memory may be retrieved not by accessing a fixed

representation of a past event, but rather by reactivating incomplete fragments

that can be either distorted or accurate, and that may have arisen from other

real events (Stark et al., 2010). This implies that false memories may actually

be recalled in a way that is surprisingly similar to how memories for real events
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Figure 7.2: Table of results concerning the experiment from [Shaw and Porter, 2015].

are retrieved”.

In contrary to the other deficiencies of memory that I talked before, the creation of false

memory doesn’t seem to have an external origin such as a cerebral or physical accident, or

any disease, but seems to be a natural process.

In our objective to create a memory the closer that we can in the functioning (from a

macro scale I remind), our system should be able to be “fooled” and to create false memory.

On direction of work could be in the reconstruction of memories in the the MOPC, that

could be more “relation-based” that “stated-based” : to rely more on the SSM that on the

ELM.

7.5 Importance of the embodiment

This work claims to be done on a humanoid robot, the iCub. But one could argue that

the embodied part of the study is not needed for most of the reasoning part, or even for the

simulation. This is right concerning the computation itself, and also the sensors. We have

seen here that most of our sensors are external to the robot (the Kinect or the ReacTable

for example). Since the month of March of 2015 (while I finish writing this document), we

started to rely on the vision of the robot to detect both agents and object. This is a good

argument against the use of a body for the robot. Indeed we get the same results because

the information located in the OPC are the same, just coming from different sensor. The
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computation also is delocalized and the POSTGRESQL server or any c++ module can

be run externally. Why do we thus talk of an embodied system ? We will now discuss the

importance of the body in our study.

7.5.1 A Human-Like Concept

As Asada claimed, some behavior are better learn than pre-programmed [Asada et al., 2009].

In our case the robot will learn his behavior through Human-Robot Interactions and through

World-Robot Interactions. These interactions happen of course in the Human world and

as we have seen are often part of shared plan where the robot can and should take the

different roles possible. The robot needs to experiment both Human-Robot and World-

Robot Interactions, in order to adapt to the human world and to the object world. As

so, he will be able to actively participate to many plans, including the “shared plans”.

But the interaction the robot has to witness, needs to be real and formated toward a

Human perspective if we want to be able to make emerge some “human-like” senses of

self as I shown in the different chapters of this thesis. This “human-like sense of self”,

built on the SABM, needs some “human-like” interactions to emerge. This was our very

own goal, and the nature of the different experiment justify the use of the term “embodied”.

To go further in this way, Pfeifer says [Pfeifer et al., 2007] :

“Biological organisms have evolved to perform and survive in a world cha-

racterized by rapid changes, high uncertainty, indefinite richness, and limited

availability of information. Industrial robots, in contrast, operate in highly control-

led environments with no or very little uncertainty.”

Pfeifer here clearly shows the impact of the embodiment in robotics, and as we want

to have a robot with a sense of self the closer of the human as possible, the humanoid

embodiedment is necessary. He shows it more clearly on the Fig 7.3. We can clearly

see that the robot need to be at the border of the ecological niche, that in our case is
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Figure 7.3: From [Pfeifer et al., 2007]

the physical world (need for an embodied system). But we go further in the sense that

we need not only for the robot to be part of it, but to be part of it in a certain way :

a human way, and this leads us to embodied and humanoid. Especially, we have seen

for example that the iCub learns spatial location, action or rules (as in the case of the

TaOH) by observing the human and then after learning, performs the same action. Thus the

iCub most be physically embodied in this ecological niche to interact and learn from humans.

However we can talk about an embodied system not only as the scale of the robot itself

and its humanoid aspect, but also concerning the way our whole system is running. Of

course the term embodied is voluntarily too strong, but I would like to put in light the

importance to have a system based on a human model, as much physically that more

deeply in the concept. As I said in the introduction, the goal of this thesis was to create a

system of autobiographical memory, based on the human autobiographical memory, that

could contribute to the emergence of human levels of self. We thus needed to create a

SABM formatted to human event and to human world. That means having a system able

to understand the perception not only under an computational format, but also under
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a more “human-understanding” format. Many choices have been made in this direction,

to create a SABM directed toward a human understanding of the world. We decided on

purpose, not to create a most efficient system of learning, that could be totally wrong in

cases, but that would be coherent with the human experience of the robot.

7.5.2 The limit of the embodiment

Even very complex, the iCub has some limitations for this kind of study. One of them is

of course the absence of human-like physiology. Indeed, the state of the metabolic system im-

pact a lot on the performances of the memory system. When I talk about metabolism here,

it can be induced by hormones [McGaugh, 1989], drugs [McGaugh and Petrinovich, 1965],

sleep [Walker and Stickgold, 2014] or any event that could lead to a change in the meta-

bolic system. In 2003, Sommerfield has shown the negative impact of hypoglycemia on

working-memory, inducing problem in the long term memory [Sommerfield et al., 2003].

The whole metabolism has an impact on our memory system and we are not able to

model it. Steffen Klamt has shown that the study of metabolic networks is confronted to a

combinatorial explosion in term of complexity [Klamt and Stelling, 2002].

But there is also higher process (that will impact of the metabolism) that can induce

also impairment or improvement in the memory system. It can be the effect of the age

[Park et al., 1997], of stress [Lupien et al., 2005], of emotions [LeDoux, 1994] an particu-

larly of fear [Fanselow and Gale, 2003].

We can however try to model some of this aspect with for example the use of the salience

and of return of inhibition as explained in 2.2.1. We can also use the part of novelty in an

action to regulate its strength in the memory system (we recall more easily our first kiss,

that the second). It exists solution to model (or at least to start to model) the impact of

the body or at least of the “state of mind” on the memory.

I have explained earlier the importance to have an embodied system and moreover, a
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humanoid one, but the complexity of the human metabolic network is another giant step

required for the understanding and the modeling of the human self.
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Conclusion

The topic of the self in man is a ongoing topic for philosophers, psychologists, neurolo-

gists, anthropologists, even jurists and many others. Claiming to have created a self in a

robot would be very pretentious and I hope I have made clear all along this manuscript

that in any case we contend having created a self in a robot.

The objective stated at the beginning of this thesis was to provide the system with

the capability to exploit its previous experience in order to prepare for future experiences

within the local peripersonal space.

All along this document I showed how a SABM working together with a reasoning

system, could result in the emergence of Neisser’s level of self. I tried to make clear that

we do not claim that we achieved to give our robot any sense of self. We gave our robot

several essential component in its emergence.

I have shown also a set of limitations of our system. Concerning the content itself, we

have seen that the recording of event of the ELM could be modified in order to map to

the Human memory system as explained by Tulving or Squire, meaning a more abstract

recording of event. Concerning the form of the system, we have seen that many of its

limitation lie in the robot perception. But this shouldn’t be an excuse for us not to develop

more sophisticated reasoning of encoding system. The interactions also are for now still a

bit scripted and would gain a lot by being more natural. But these two last remarks are

more related to the form that to the content of the system.
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Put aside these limitations, the different experiments that I showed, and that have

been published and thus accepted by the scientific community, are undoubtedly a step

forward the emergence of sense of self for the robots of tomorrow. This sense may be

slightly different from a Human self as we discussed in the part 7.3.

I believe that one of the biggest difference that can rise between the Human self and

our robot self lies in the emotional valence of each memory. Indeed an memory with a

high emotional valence can be either strongly anchored in the memory, or at contrary put

aside from conscious memory [Cahill and McGaugh, 1995]. In our system, all memories

have the same emotional valence and the robot has never “lived a huge joy” or a trauma.

This emotional event can lead to a distinct manifestation of someone’s self (for example as

a phobia) [Squire, 2004].

What we have shown in this research is the importance of an organized system of

memory, based on the human system of memory, for the analyze and the understanding of

the world through experience, in order to be able to develop the firstfruit of the manifesta-

tion of the different senses of self. Likewise, once our system will be more reliable from a

technical aspect, it could be used for several applications that I will develop now.

A third field is the study of the Human. This may seem very pretentious, but as Richard

Feynman said in 1988 :

“What I cannot create, I do not understand.”

A first application of our model is of course commercial, in every day Human-Robot

Interaction. Indeed a robot able to remember a precise customer, that knows how to behave

with each of them differently has a significant added value. This applies in a classical

commercial use (such as in a mall) but also in the medical field. Lets imagine a wing of

an hospital that need sterile room. Having an autonomous, intelligent robot that behave

(almost) as a Human could be a huge help for the hospital staff, as much as for the patients.
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Figure 8.1: The three possible interactions developed by Kim and colleagues in [Kim et al., 2013].

A second application is in the field of study of the Human-Robot Interaction. This

field has been studied a in the last decades : [Robins et al., 2004] [Robins et al., 2005].

An interesting part of this possible Human-Robot Interaction are with autistic children.

Indeed, the autistic children may have difficulties to interact with people partially because

of the unpredictable Human behavior [Feil-Seifer and Matarić, 2009]. A robot could have

a specific and adapted response to the autistic child while remaining into borders. Here

the goal of the robot is not so much to interact with the child, but to be a catalyst of

the interaction, then a vector of it to redirect it with another Human agent present (for

example the parent, see Fig 8.1). This field seems very promising as the study of Kim

attests [Kim et al., 2013].

Our model could be a first step in a more elaborate and a even more realistic system

to study the memory system, and the ability to develop a sense of self. We are maybe



yet far from this objective but other projects such as the Human Brain Project go in this

direction.

The complexity of the human brain is far beyond us at every level. But each day, we go

a bit further in its direction. Robotics is one of the step we have to make to reach it. The

human brain is fascinating at all levels and the more I work on the human brain the more

I realize its superb complexity, and the more I work with robot, the more I love Humans.
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Tableau 9.1: List of the arguments used in the sentences collected
by the ABM.

Agent Verb Object Adjective 1 Adjective 2
Carol put croco south slowly
Carol put mouse east slowly
You put croco west quickly
I push croco north quickly
I put croco south slowly
I push mouse west slowly
I put croco north quickly
I put croco east quickly
I push mouse west slowly
Carol push croco north slowly
Carol put croco north quickly
Carol push mouse north slowly
Carol put mouse north quickly
Carol push croco north quickly
Carol push croco north quickly
Carol push croco south quickly
Carol push croco south quickly
Carol push croco west quickly
Carol push croco west quickly
Carol push croco east quickly
Carol push croco east quickly
Carol push croco west slowly
Carol push croco west slowly
Carol push mouse east slowly
I push mouse east slowly
I put croco west slowly
I put croco west slowly
Carol put mouse west slowly
Carol put croco north slowly
Greg put croco north slowly
Greg put mouse north slowly
I put croco east slowly
Carol put mouse east slowly
Carol put croco east slowly
Carol put cube south slowly
Carol put croco south slowly
Carol put mouse south slowly
I put mouse west quickly
Carol put cube west quickly
Carol put croco west quickly

Continued on next page
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Tableau 9.1 – continued from previous page
Agent Verb Object Adjective 1 Adjective 2
Carol put mouse north quickly
Carol put cube north quickly
Carol put croco north quickly
Carol put cube east quickly
Carol put mouse east quickly
Greg put croco east quickly
Greg put croco south quickly
Carol put cube south quickly
Carol put mouse south quickly
Carol put cube center quickly
Greg put croco center quickly
Carol put mouse center quickly
Carol put mouse center quickly

9.1 Lifespan
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Successive Developmental Levels of
Autobiographical Memory for Learning Through

Social Interaction
Grégoire Pointeau, Maxime Petit, and Peter Ford Dominey

Abstract—A developing cognitive system will ideally acquire
knowledge of its interaction in the world, and will be able to use
that knowledge to construct a scaffolding for progressively struc-
tured levels of behavior. The current research implements and
tests an autobiographical memory system by which a humanoid
robot, the iCub, can accumulate its experience in interacting with
humans, and extract regularities that characterize this experi-
ence. This knowledge is then used in order to form composite
representations of common experiences. We rst apply this to
the development of knowledge of spatial locations, and relations
between objects in space. We then demonstrate how this can be
extended to temporal relations between events, including “before”
and “after,” which structure the occurrence of events in time. In
the system, after extended sessions of interaction with a human,
the resulting accumulated experience is processed in an of ine
manner, in a form of consolidation, during which common ele-
ments of different experiences are generalized in order to generate
new meanings. These learned meanings then form the basis for
simple behaviors that, when encoded in the autobiographical
memory, can form the basis for memories of shared experiences
with the human, and which can then be reused as a form of game
playing or shared plan execution.

Index Terms—Autobiographical memory, cooperation, develop-
ment, interaction, learning, shared plans.

I. INTRODUCTION

O NE of the principal arguments for developmental
robotics is that certain types of behavior are perhaps

better learned (adapted, acquired, and developed) than prepro-
grammed [1]. This applies particularly to situations in which
the robot is expected to acquire knowledge about the world and
how to perform in the world via interacting with humans. In
robotic systems based on human-inspired robot task learning
[2], signi cant attention has been allocated to the mechanisms
that underlie the ability to acquire knowledge from and encode
the individual’s accumulated experience [3], and to use this
accumulated experience to adapt to novel situations [4]. In
this context we consider research on autobiographical memory

Manuscript received March 24, 2013; revised July 23, 2013; accepted Feb-
ruary 18, 2014. Date of publication April 08, 2014; date of current version
September 09, 2014. This work was supported by the European Commission
under Grant EFAA (ICT-270490).
The authors are with the Robot Cognition Laboratory of the INSERM U846

Stem Cell and Brain Research Institute, Bron 69675, France (e-mail: Gregoire.
pointeau@inserm.fr; maxime.petit@inserm.fr; peter.dominey@inserm.fr).
Color versions of one or more of the gures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identi er 10.1109/TAMD.2014.2307342

(ABM) and mechanisms by which ABM can be used to gen-
erate new knowledge [5].
The objective of the current research is to demonstrate how

an autobiographical memory system, coupled with mechanisms
for detecting and extracting regularities, can be used to construct
a progressive hierarchy of spatial, and temporal relations that
provide the basis for learning and executing shared plans. A
shared plan is a structured sequence of actions each of which
is allocated to one of the multiple partners who are using this
shared plan to achieve a shared goal. Our interest in shared plans
is motivated by extensive developmental studies which indicate
that such shared plans are at the heart of the human ability to
cooperate [6], [7].
In order to most clearly describe the system and its opera-

tion, the rest of the paper is structured as follows: Section II
describes the architecture. Section III describes the learning
methods for extracting knowledge about space, time, actions
and shared plans, and explains how this semantic knowledge is
consolidated from experience encoded in the episodic memory.
Section IV describes detailed demonstration examples with
the data in the episodic and semantic memory. At the end of
section IV we provide links to several video demonstrations.
The paper concludes with the discussion in Section V.

II. SYSTEM ARCHITECTURE
Here we present the architecture for a system that imple-

ments an autobiographical memory (ABM) and processes that
operate on the contents of that memory in order to extract and
render useful its inherent structure. The system is designed to
allow face-to-face physical interaction between the iCub and the
human, using the instrumented ReacTable for joint object ma-
nipulation. These interactions form the source for the contents of
the ABM. The view of objects on the ReacTable, and the iCub,
as seen from the perspective of the human user is illustrated in
Fig. 1. An overview of the interaction between component ele-
ments of the system is provided in Fig. 2. Connectivity between
the different functional modules is implemented in an interpro-
cess communication protocol, YARP [8].

A. Physical Robot Platform
The current work was performed on the iCubLyon01 at the

INSERM Robot Cognition Laboratory in Lyon, France. The
iCub is a 53 DOF humanoid platform developed within the EU
consortium RobotCub. The iCub [9] is an open-source robotic
platformwithmorphology approximating that of a 31/2 year-old
child (about 104 cm tall), with 53 degrees of freedom distributed
on the head, arms, hands and legs. The head has 6 degrees of

1943-0604 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. iCub robot manipulating an object on the ReacTable, from the perspec-
tive of the human who is engaging in a face-to-face interaction with the robot.
The screen behind displays the inner perception of the world of the robot.

freedom (roll, pan and tilt in the neck, tilt and independent pan
in the eyes). Three degrees of freedom are allocated to the waist,
and 6 to each leg (three, one, and two, respectively, for the hip,
knee,and ankle). The arms have 7 degrees of freedom, three in
the shoulder, one in the elbow and three in the wrist. The iCub
has been speci cally designed to study manipulation, for this
reason the number of degrees of freedom of the hands has been
maximized with respect to the constraint of the small size. The
hands of the iCub have ve ngers and 19 joints. Motor control
is provided by a dynamic force eld controller (DForC) [10]
which performs inverse kinematics and spatially oriented ac-
tions including point-to, put, grasp, and release.

B. Perceptual, Motor, and Interaction Capabilities
1) ReacTable: In the current research we extend the percep-

tual capabilities of the iCub with the ReacTable. The ReacTable
has a translucid surface, with an infrared (IR) illumination be-
neath the table, and an IR camera that perceives tagged objects
on the table surface with an accuracy of mm. Thus, tagged
objects can be placed on the table, and their location accurately
captured by the IR camera.
Interaction with the external world requires that the robot is

capable of identifying its spatial reference frame with the ob-
jects that it interacts with. In the human being, aspects of this
functionality is carried out by the dorsal stream, involving areas
in the posterior parietal cortex which subserve complex aspects
of spatial perception [11]. In our system, the 2-D surface of the
table is calibrated into the joint space of the iCub by a linear
transformation calculated based on a sampling of four calibra-
tion points on the table surface that are pointed to by the iCub.
Thus, four points are physically identi ed in the Cartesian space
of the iCub, and on the surface of the ReacTable, thus providing
the basis for calculation of a transformationmatrix which allows

Fig. 2. System architecture overview. Human and iCub interact face-to-face
across the ReacTable, which communicates object locations via ReactVision
to the object property collector (OPC). The Supervisor coordinates spoken lan-
guage and physical interaction with the iCub via spoken language technology in
the Audio interface. The autobiographical memory system encodes world states
and their transitions due to human and robot action as encoded in the OPC.

the projection of object coordinates in the space of the table into
the Cartesian space of the iCub. These coordinates can then be
used as spatial arguments to the DForC action system of the
iCub, which provides basic physical actions including point-to
(x, y, z), put (source X, Y, Z; target x, y, z), grasp (x, y, z), and
release (x, y, z).
2) Supervisor: The Supervisor provides the general man-

agement function for the human-robot interaction, via a
state-based dialog management system. This allows the user
to enter different interaction states related to teaching spatial,
temporal primitives and shared plans. The Supervisor is imple-
mented with the CSLU rapid application development (RAD)
Toolkit [12], a state-based dialog system which combines
state-of-the-art speech synthesis (Festival) and recognition
(Sphinx-II) in a GUI programming environment. RAD allows
scripting in the TCL language and permits easy and direct
binding to the YARP domain, so that all access from the
Supervisor with other modules in the architecture is via YARP.
The Supervisor is state based, such that by speci c responses

and commands from the user, the system can enter states for
teaching new spatial and temporal primitives, specifying the
shared plan, and nally, executing the shared plan during the
cooperative task execution.
In the mixed-initiative interaction, the Supervisor asks the

human what they will do together. This leads to the possible
entry into different dialog states. Each state contains a grammar
that allows the human to pronounce new sentences that have not
previously been used (e.g., “I put the eraser on the left” during
spatial interaction, “Before I put the toy north I put the trumpet
west” during interaction related to temporal processing). The
grammars process well-formed English sentences, and extract
the appropriate arguments. Importantly, these grammars allow
the human teacher the ability to specify completely new and
unanticipated (by the programmer) de nitions for locations, ac-
tions, temporal relations, and then use all these to specify unan-
ticipated (by the programmer) shared plans built from these
novel learned components.
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Fig. 3. Overview of the memory functioning including the ABM SQL Data-
base, the Supervisor, the Reasoning module, and the OPC. This provides a par-
tial zoom in on Fig. 2. 1-2. SQL queries, and replies to ABM are managed by
a Autobiographical Memory interface module. 3. User interacts with
ABM related to action status, and 4. Memory content. 5-6. ABM reasoning re-
quests and receives content via YARP connections. 7-8. ABMmanager requests
and receives state data from OPC. 9 Final response of ABM Reasoning to the
supervisor.

3) Object Properties Collector (OPC): The OPC is a real-
time repository for all state information related to objects in the
environment. Object position data from the ReacTable is for-
matted and stored in the OPC in a name referenced manner.
The motor control level allows processing of commands like
“put guitar left” by querying the OPC to determine the location
of the guitar in iCub coordinates in order to perform the grasp
action using DForC.
Likewise, spatial location names like “left” are stored as en-

tities in the OPC with their coordinates generated and stored in
the OPC based on statistical learning (described below).

C. Autobiographical Memory (ABM) and Reasoning

The organization of the ABM within the system is illustrated
in Fig. 3. The purpose of the ABM is to encode the robot’s ex-
perience, including input from the human, actions performed by
the human, actions performed by the robot itself, and the state of
the world before and after such actions [13]. Reasoning mech-
anisms can then operate on this content, in order to extract reg-
ularities such as spatial location names, action plans etc. Func-
tionally, the ABM [14] is composed of two memory subsystems
as described by Tulving [15], an episodic-like memory, and a se-
mantic memory. In terms of implementation the ABM content
storage is managed by a PostgreSQL data base manager, and
access requests are handled by the Autobiographical Memory

module.
1) Episodic-Like Memory (ELM): When the Human per-

forms an action, a message is sent to the ABM which saves the
current state of the world for the robot (the current OPC) in the
episodic memory in SQL. In the context of the interactions with
the human the robot is informed at the beginning and at the end
of each action. With the state of the OPC before and after an
action, the robot can extractthe preconditions and effects for
that action [16]. The SQL structure of the ABM is illustrated
in Fig. 4.
2) Semantic Memory(SM) and Reasoning: The SQL struc-

ture of the SM is illustrated in Fig. 5. The semantic memory is
built from the contents of the ELM that have been processed
by ABM Reasoning. ABMReasoning is coded in , and its

Fig. 4. Architecture of the episodic memory storage in PostgreSQL. The main
data type is speci ed as ContentArg, ContentOPC. Each interaction has the con-
tent of the OPC at a given time (state of the world), but also, information con-
cerning the context of the action (who, what, when…). The content of a memory
can be divided in 3 sections: self-related, world-related, and action-related.

Fig. 5. Architecture of the semantic memory storage in PostgreSQL. For each
type of knowledge, a rst table stores the general information concerning the
knowledge (name, argument…) while a second table stores the “technical in-
formation”: the positions of each move in the case of a spatial knowledge, or
the time-stamp in the case of a temporal knowledge. Each Spatial Knowledge
contains 2 vectors: the coordinates of the shift of the object of focus of the action,
and the nal state of the object of focus. Each Time Knowledge entry contains
2 vectors: the timestamps of the beginning of the action, and the timestamps of
the end of the action.

role is to retrieve the information stored in the ELM and to gen-
eralize over this information, in order to extract the pertinent
information of each action. The ABMReasoning Module thus
constructs a Semantic Memory with the pertinent information
related to context/spatial/temporal information, but also, related
to the different shared plans known by the robot.
3) Consolidation of Semantic Memory: The robot will thus

store individual memory elements in his episodic memory.
However, each time the cognitive system is initialized, it must
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recompute over the entire episodic memory to build the se-
mantic memory, as outlined above. To avoid this reprocessing,
we build and save the semantic memory in a manner similar
to the way that the human does, based on consolidation. At
the shutdown of the system, the robot will enter in a form of
“dream” mode which is in reality a function of consolidation
of his knowledge [17], [18]. During this mode, the robot will
go through all his actions performed in the current session,
and will generalize over this data, and consolidate the resulting
semantic knowledge in the database. At the initialization of
the system, the ABM Reasoning module will load the semantic
knowledge that has been previously stored in the autobiograph-
ical memory through consolidation. Consolidation employs the
learning capabilities described in section III.

III. LEARNING CAPABILITIES

In order to adapt to novel situations a system must have
memory of its experience, but this is not suf cient. The system
must be able to extract regularities from speci c cases, that can
then be applied to the general case. The ELM thus provides
a record of experience, and ABM Reasoning operates on the
contents of the ELM to structure this information and create the
SM. The ABMReasoning module extracts spatial and temporal
structure, and preconditions and effects of the actions that have
been performed by the human and the robot. To do so actions
are discriminated according to their “type.” We have thus:
1- action: a simple action involving one object, one agent and
one argument (i.e.: “iCub put the toy north”). These actions
will refer to spatial knowledge, and to contextual knowl-
edge;

2- complex: a complex will be the addition of 2 actions with
a temporal argument. (i.e.: before “action A,” “action B”),
the temporal argument will be extracted and the robot will
build his temporal knowledge;

3- shared Plan: a sequence of several actions or complex, with
arguments including: agents and objects.

A. Learning Spatial Actions and Location Meanings

The understanding of spatial knowledge is based on spatial
coordinate information coming from the ReacTable and stored
in the OPC. With the ReacTable, the robot can have access to
the exact position of an object before and after an action. We
can thus extract nal position and the relative move (i.e., the
difference between the nal position and the initial position).
1) Learning: A spatially oriented action will be determined

with parameters including a name (i.e.: “put” or “push”) and a
spatial argument (i.e.: “north” “east” “near”…). For each named
action, ABM Reasoning will create a spatial knowledge entry
(see Fig. 5). Each spatial knowledge entry will include the set
of coordinates of the manipulated object before and after the
action. From at least 3 occurrences of an action, the robot will
calculate the distribution ellipse for the nal location, and the
relative movement. The robot will next compare the dispersion
of each ellipse and will determine the property of interest (i.e.,

Fig. 6. Figure illustrating the internal representations of the learned positions
for North, West, South, East, and Center as white rectangles in the robot’s
peripersonal space. The colored objects are representations of objects on the
ReacTable that have been placed at West (yellow), South (blue), and East (red),
respectively.

Fig. 7. Absolute spatial knowledge of the robot, after learning North, West,
South, East, and Center in the context of the action “put.” The robot is centered
in (0, 0) and looking to the south. We can see that the axes are not totally perpen-
dicular, due to a bias in the orientation of the robot and the inherent coordinate
axis of the table.

the property with minimal dispersion or variability) for the ac-
tion. This dispersion score is given by the determinant of the
covariance matrix of the scatter. For example in the case of a
“put”, the important property that is discovered by this analysis
is the nal position of the object while in the case of a “push” the
important property is the relative movement. Thus, the system
automatically can determine whether a spatial property is an ab-
solute nal location, or a relative displacement vector. This dis-
tinction is illustrated in Figs. 6, 7, and 8.
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Fig. 8. Relative spatial knowledge of the robot after learning North, West,
South, East, and Near, in the context of the action “push.” The vectors displayed
are the relative movement needed to perform the corresponding action. In the
case of the “put near,” the vector is null because the relative placement of the
two objects has to be null.

Pseudo-code for Learning Spatial Actions and Locations

extract_spatial_regularities(ELM, SM){
for each spatial action in the ELM
{
extract (x,y) coords of object before and after each
case of this action
calculate relative displacement of the object
update absolute and relative coords in SM
calculate the dispersion of the absolute nal position
and relative displacements
if dispersion nal position

then {action is absolute
update location de nition in OPC
}

elseif dispersion displacement
then action is relative

update action de nition in SM
}

ABM Reasoningwill iterate through all its spatial Knowledge
as indicated in the pseudocode above. For actions in which the
property of interest which is the nal state, the system will learn
the corresponding absolute location. The ABM Reasoning will
then insert this location in the OPC. The ellipse of the property
of interest will become the “mental representation” of the robot
for that location. This is illustrated in Fig. 6.
In the case where there is more than one spatial argument,

especially when the second spatial argument is another object
(for example: “put the toy near the cross”) the ABM Reasoning
will take the distance between the 2 objects before and after
the action. We can thus extract relative locations such as:
“near”“above”“under.”

This method thus allows the system to learn spatial actions
with nal position or relative movements. Once such an action
is learned, the robot can execute the action: either with the nal
location of the object in case of an absolute move, or with the
vector shift in the case of a relative action.
Once the ABM Reasoning has determined if the pertinent

property of a move is its nal absolute position or its relative
movement, it can use this information to extract locations and
actions.
2) Action Discrimination: Once theABMReasoning has built

the spatial knowledge in the SM from the data stored in the
ELM, the system can use this knowledge to discriminate new
actions performed by the Human. For example, did the human
make an action directed towards a xed location, or was it a
relative movement? To determine this, for each move that the
robot has to discriminate, the ABM Reasoning extracts the posi-
tion of the object of focus before and after the action. The ABM
Reasoning then for each candidate spatial-knowledge calculates
the Mahalanobis distance to the scatter of interest. The Maha-
lanobis distance permits one to check the distance of a point to
an ellipse according to the dispersion of the ellipse. The Maha-
lanobis distance (D) is given by the following formula:

(1)

where is the position of the point (either the nal state, or the
relative movement) of the move which we want to discriminate.
is the covariance matrix of the scatter of the spatial knowledge

we want to compare to, and is its mean.
ABM Reasoning thus obtains different Mahalanobis dis-

tances, where is the number of spatialKnowledge elements
that the robot knows, as indicated in the pseudocode above.
ABM Reasoning ranks all the possible actions according to their
Mahalanobis distance, and nally calculates a score of con -
dence given by the ratio of the two smaller distances. If this
score is low (close to 1), this means that the robot cannot dis-
criminate with precision between at least 2 different actions.
If the score is high (superior to a con dence threshold i.e.: 5),
the robot can discriminate with con dence the move it just ob-
served.

Simpli ed Pseudo-code for Spatial Action Discrimination

Discriminate_action(focus_object){
for each spatialKnowledge in SM
{
Calc Mahalanobis distance (MD) between the focus
object ( nal or shift) and spatialKnowledge ( nal or
shift)
if MD minMD

{
con dence minMD
minMD
recognized_spatial_action = spatialKnowledge
}

}
return(recognized_spatial_action, con dence)
}
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Based on learned spatial knowledge, the robot can now dis-
criminate between spatially oriented actions such as push and
put. In action recognition mode, the human will indicate the ob-
ject of focus, e.g., “Watch the circle” and will then perform the
move. As described, the system will iterate through the different
spatial actions to determine that which has the lowest Maha-
lanobis with the target action, and return that as the recognized
action.

B. Learning Temporal Relation Meanings

The learning of temporal knowledge is similar to the learning
of spatial knowledge, with one important distinction. We imple-
mented an a-priori consideration related to the distinction be-
tween space and time. If the human produces a description that
refers to a single event, then we assume that the domain of in-
terest is space. If multiple events are concerned then we assume
that the domain of interest is the temporal relation between those
events. This is intuitive, as a single action cannot have an effect
of time, but only on the context and the spatial position of the
objects. The Human will announce the complex action he wants
to teach in the following form:
(Temporal Argument, Action A, Action B)
For example: “Before I put the circle to the left, I push the

cross to the north”. The human will then perform the two ac-
tions in the correct order he wants to teach. The robot will rst
discriminate the two actions it observes (as just described), and
then compare the difference of time of execution which cor-
responds to the time of the execution of the Action B minus the
time of the execution of the Action A. For the case of a tem-
poral relation such as “after,” the ABM Reasoning will have

, and in the case of “before”, the ABM Reasoning will
have . The ABM Reasoning calculates for each tem-
poral argument encountered the mean . Generally the sign
is enough, but the robot can determine if there was a pause
between the 2 actions. In this manner the system can acquire
knowledge of temporal terms including “before” and “after”.
This processing is summarized in the pseudo-code below.

Pseudo-code for Learning Temporal Relation

extract_temporal_regularities(ELM, SM){
for each temporal relation in the ELM

{
extract timestamps for each of the two actions
populate Timeact1 and Timeact2 vectors in SM
calculate between Timeact1 and Timeact2
update temporal de nition in SM
}

Once several examples of the same form (e.g., “Before I put
the toy north, I put the trumpet West”) the system will encode
that the second action in the statement actually occurs rst in
time, that is, the is negative. This knowledge can then be
used in execution, and in recognition.

C. Learning Shared Plans

As stated above, a shared plan is a plan that includes actions
that will be performed by the robot and the human as part of

a structured cooperative activity [19], [20]. To teach a shared
plan “swap,” the human initially speci es “You and I will swap
the ball and the toy.” This speci es the name of the plan, swap,
and the arguments (which are recognized as known objects and
agents.) The human will enumerate the corresponding actions:
“I put the ball center. You put the toy left. I put the ball right.”
The system automatically matches the arguments of the initial
speci cation with the arguments of the component actions. This
way, the system can generalize over these arguments. Thus, the
shared plan “swap” for 2 objects can be generalized at several
levels. A generalization can be made at the level of the agents
(any agent can be involved in a swap), and the objects (swapping
an eraser and a box, in the same way as for a ball and a toy).
1) Learning: During the learning, the Human will rst ex-

plain the plan and the arguments used for the plan (agents, ob-
jects, arguments), then he will according to the plan ask the
robot to perform an action, or perform it himself, until the end of
the plan. Then the Human will announce the end of the shared
plan. The iCub will then generalize each action according to the
role of each argument, and store in the ABM the list of actions to
perform with which argument. For example the plan “swap–ball
- toy–iCub - Human” will be saved by name as:

Swap(Agent1, Agent2, Object1, Object2) {
Default: Object ,
Object Toy, Agent ,
Agent Human

PUT (Agent2, Object1, Center)
PUT (Agent1, Object2, Left)
PUT (Agent2, Object1, Right) }

2) Execution and Generalization: When the Human asks the
robot to execute a shared plan, he can give the robot speci c ar-
guments or not. In the case where the Human gives arguments to
the iCub in the command to execute a shared plan, the robot will
execute the actions of the shared plan, mapping the arguments
onto the parameters of the plan. In the case where the Human
doesn’t provide arguments, the iCub will use by default the ar-
guments used the rst time it learned the shared plan.
If the human now says “You andMaximeswap the eraser and

the guitar,” the speech recognition in the Supervisor will ex-
tract the following mappings: share swap, Agent
robot, Agent Maxime, Object eraser, Object
guitar. It will then invoke the Swap plan with these arguments.
The shared plan is thus a function with multiple arguments,

constructed of multiple actions that take different combinations
of these arguments. Because of this function based de nition,
the shared plan can be used to execute behaviors beyond those
that were previously learned, by applying the function with new
arguments.

D. Contextual Knowledge

Contextual knowledge refers to the context or state of the
world before, and after an action has taken place (e.g.: “The toy
is present”, “The ball is on the west”). The same kind of training
examples that are used for learning spatial concepts are also
used here, but instead of storing the position, the iCub will store
the contextual information: e.g., “Is the object present before?”
(pre-condition) “Is the object present after?” (effect).
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The system will extract properties of each action. For the ac-
tion “put,” the object has to be present before the action, and
will be present after the action. For the action “remove” the ob-
ject has to be present initially, and will not be present after the
action. For the action “add” the object has to initially not be
present, and will then be present after the action. This informa-
tion can be used in goal based reasoning, and in allowing the
system to determine if a requested action can be performed.

E. Knowledge Consolidation Function (KCF)

In consolidation, the robot will iterate through the new con-
tents of its episodic memory and update the semantic memory
in the autobiographical memory using the learning capabilities
described above that generate spatial, temporal, and conceptual
knowledge. The robot will replay all of the episodic memory in
its internal representation. In order to allow generalization, the
KCF will systematically replace the objects of focus by neutral
objects. For example for the learning of the spatial primitives,
the object of focus will always be a neutral object. The KCF can
then extract the regular properties for named spatial and tem-
poral primitives using themethods described in the pseudo-code
above. The robot will also build and display during this time the
learned locations (e.g., East, West, etc. as illustrated in Fig. 6.)
andwe can see the evolution of these locations (size, con dence,
orientation) during the chronological restitution of the memo-
ries. During the KCF the robot will also consolidate knowledge
that can’t be displayed, including temporal knowledge, contex-
tual knowledge, and shared plans.
The interest of this consolidation function is to extract reg-

ularities from speci c examples in the ABM so that they are
available for generalization to new examples, thus taking the
form of a semantic memory [17], and to do this in a way that
saves this information for future use. For example, for the spa-
tial-knowledge, the robot will directly have the coordinates of
all the points of the ellipses needed for each learned spatial lo-
cation. When we start the system, the iCub will have access to
all the semantic knowledge previously consolidated from its ex-
perience. If during the current session the robot acquires new
knowledge, it will be able to use this knowledge, but only while
the system is running. In order to retain this knowledge for the
future, the acquired knowledge must be consolidated and saved
to the semantic memory.
The system functions in real-time. The only process that has

any noticeable delay is the consolidation, which is performed
incrementally, at the end of each interaction session. The con-
struction of the semantic memory is thus a cumulative and it-
erative process that lasts between 1 and 2 second per action (or
roughly 5 minutes for a ELM of 300 interactions), depending of
the capabilities of the computer.

IV. DEMONSTRATION EXAMPLES

Here we provide details on the functioning of the different
algorithms with speci c examples. These examples are taken
from interactions that have occurred over the lifespan of the
robot encoded in the ABM system. The rst entry in the ELM
was November 13, 2012. At the time of submission, the ELM
contained 470 main entries; with 235 interactions, and over
15 000 entries in the SQL contentOPC table. The SM contained

TABLE I
ELM CONTENTS (SEE FIG. 4) FOR A “PUT CROSS NORTH” ACTION, BEFORE

THE ACTION

TABLE II
ELM CONTENTS FOR A “PUT CROSS NORTH” ACTION, AFTER THE ACTION

27 actions (contextual knowledge), 6 shared plans, 25 spatial
knowledge and 2 temporal knowledge entries.

A. Spatial Knowledge: “put north” and “push east”

1) Learning: We will now observe how the system will learn
two separate actions: “put north” and “push east”. The Human
announces the action that he will demonstrate to the robot, e.g.,
“I put the cross to the north” or “I push the circle to the east.”
The ABM Reasoning rst extracts the position of the object of
focus before and after the demonstrated action. The data con-
tained in the ELM SQL tables for a “put_north” are illustrated
in Table I.
ABM Reasoning then computes the changes between before

and after the move, yielding the coordinates of the nal state
and the shift in position:
• nal position (x,y):-0.383123, 0.110094;
• shift (x,y): 0.554375, -0.103076.
ABM Reasoning then inserts this data into the shift and
nal state vectors in the spatial knowledge table of the SM
for put_north. For these two example cases, we respectively
performed 8 “put north” and 8 “push east” actions. The contents
of the SM representation for the 8 repetitions of “put north” is
represented in Table III. A demonstration of spatial learning is
provided in a video in section IV.E.
2) Action Discrimination: With the 8 values of each move,

the ABM Reasoning is now able to calculate the covariance of
each set of data. Based on the determinant of each matrix, the
ABM Reasoning can determine the dispersion of each ellipse.
We can see in Fig. 9 that the dispersion of the relative move
in the case of a “put_ north” is bigger than the dispersion of
the nal state. The important property of a “put_north” is thus
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TABLE III
: SM CONTENTS (SEE FIG. 5). COORDINATES OF THE FINAL STATES AND THE
SHIFTS OF OBJECT DURING THE ACTION “PUT_NORTH”. THE DETERMINANT

CORRESPONDS TO THE DETERMINANT OF THE ASSOCIATED MATRIX
COVARIANCE. THE BOLD TEXT (-0.38 … ETC) CORRESPONDS TO THE VALUES

EXTRACTED FROM ELM, ILLUSTRATED IN TABLE II

TABLE 4
: SM CONTENTS. COORDINATES OF THE FINAL STATES AND THE SHIFTS OF

OBJECT DURING THE ACTION “PUSH_EAST”. THE DETERMINANT CORRESPONDS
TO THE DETERMINANT OF THE COVARIANCE MATRIX ASSOCIATE

the nal state, and not the relative move. In the case of the
“push_east”, the opposite effect is observed in Fig. 10.
Now, wewant the robot to determine the type of two unknown

actions. We thus present a “put_north” and a “push_east” and
test whether the system can make the correct discrimination.
The (x,y) coordinates for the two moves are:
Move 1:
• Origin: (-0.485323; 0.336908);
• End: (-0.332629; 0.082922);
• Relative Shift: (0.152694; -0.253986).
Move2:
• Origin: (-0.6746665, 0.026064);
• End: (-0.605602, -0.156417);
• Relative Shift: (0.0690645, -0.1824810).

Fig. 9. Distribution of the relative and absolute characterization of a set of
“put_north” actions. In blue is the nal position in the referential of the iCub
of the object in the case of a “put north”. The red dots correspond to the dis-
placement of the object in the case of a “put_north”.

Fig. 10. Distribution of the relative and absolute move of a “push_east”. In
blue is the nal position in the referential of the iCub of the object in the case of
a “push east”. The red dots correspond to the displacement of the object in the
case of a “push east”.

The ABM Reasoningwill now calculate the Mahalanobis dis-
tance of each new move to the respective clusters. To recog-
nize “put_north” the ABM Reasoning will calculate the Maha-
lanobis distance from the End position of the movement (X,Y)
to the ellipse of the Final states (X,Y), while for “push_east the
ABM Reasoning will calculate the Mahalanobis distance from
the Relative Shift of the movement ( and ).
We obtain the following Mahalanobis distances:
• Move1 to “put_north”: 1.084648;
• Move1 to “push_east”: 9.296242;
• Move2 to “put_north”: 94.61302;
• Move2 to “push_east”: 4.196914.

185



208 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 3, SEPTEMBER 2014

According to these results, and looking for the interpretations
with minimal Mahalanobis distances, we can clearly determine
that Move1 is a “put_north” and Move2 is a “push_east.” This
demonstrates how movements can be identi ed based on the
spatial characteristics of their displacement and nal position.

B. Temporal Knowledge: “before”

1) Learning: Here we demonstrate how we can teach the
robot the notion of “before”. In order to do this, we rst ex-
plain to the robot the two actions that the Human will perform,
using the term to be learned “before”. In our case: “Before I
put the circle to the north, I push the cross to the east”. Then
for each action the Human will announce the object of focus,
and then perform the action. For this example will we obtain:
“Watch the cross”–Human pushes the cross east–“Watch the
circle”–Human puts the circle north. The ABM Reasoning will
discriminate the two actions and retrieve the absolute time of
each action. The time stamps are the following:
• “Action1: put–circle–north: 15:48:50”;
• “Action2: push–cross–east: 15:48:32.”
After subtraction of the two timers, the ABM Reasoning can

determine that the difference of timer value of Action2–Action1
is negative. This is the important property of the temporal “be-
fore”.
2) Execution: Once the robot has learned the concept of “be-

fore” or “after.” we can ask it to execute a complex action using
these terms. We will ask the robot the following sentence: “Be-
fore you push the cross to the south, I put the circle to the west”.
The ABM Reasoning will extract the 2 actions with the corre-
sponding arguments and the temporal argument:
• Action1: “iCub–push–cross–south”;
• Action2: “Human–put–circle–west”;
• Temporal: before.
Once the ABMReasoning has obtained this information it can

return the answer which will be the list of action to execute in
the proper order:
• human put circle west: absolute (-0.77072; 0.393074);
• iCub push cross south: relative (-0.21070; -0.034001).
This information can now be used by DForC to perform the

action. The robot will wait for the human to perform the put
action. When this is detected, the robot will then perform its
push action.

C. Shared Plan: “swap”

1) Learning: We now want the robot to learn a shared plan
and to generalize it. To illustrate, we will teach the plan “swap”.
The concept is the following: there are two objects in opposite
location on the table (west and east) and we want to swap them.
The Human announces the full shared plan: “You and I swap the
cross and the circle”. Then, the human has two choices:
• explain the full plan;
• explain action by action.
In the rst case, the Human will announce: “I put the cross

center, then you put the circle west, then I push the cross east”.
In the second case the human will simply announce the object of
focus and execute an action, or ask only one action to the robot,
and repeat this until the plan has been speci ed. In this second
case, the human has to specify the end of the shared plan, as a
teacher would do for a student.

Fig. 11. Different steps of the iCub during the execution of a shared plan for
the music game. A. Initial con guration of 3 elements. Robot places object 1
north. B. Human takes this object and places it west. C. Robot places object
2 North, for the human, who then puts it East (not shown). D. Robot places
nal object north. E. Human takes object and places it South. F. Final internal
representation of objects on ReacTable to produce the song as the joint goal of
the shared plan.

The ABM Reasoning will extract the role of each argument
(for example: Human Agent ; iCub Agent ; cross
object ; circle object …) and build a shared plan according
to these roles:
1. Agent1–put–Object1–center;
2. Agent2–put–Object2–west;
3. Agent1–push–Object1–east.
2) Execution and generalization: Consider that now we want

to execute a swap, but with the iCub acting rst, and with two
other objects: “toy” and “drum”, and also we want to change
the agents. We will announce the following plan: “Peter and
you swap the toy and the crocodile”. The iCub will extract the
role of each argument and build the following plan:
1. iCub–put–toy–center;
2. Peter–put–crocodile–west;
3. iCub–push–toy–east.
The iCub will then build the corresponding actions with the

coordinates of the moves for DForC and the acting module.

D. Shared Plan: “Cooperative musical plan”
It is important to note that the shared plan learning capability

allows for the learning of an arbitrary number and variety of
shared plans.
1) Learning: In this example we will focus on a more com-

plex and cooperative goal. We said earlier that the ReacTable is
a tool developed initially for musical entertainment. Each object
corresponds to a different sound or auditory function, and a par-
ticular con guration of objects on the table will correspond to a
particular music form. In this example we create an interactive
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plan with the iCub passing the objects to the Human, one after
the other, to the north of the table, where the Human can reach
them. The Human will then place them at the appropriate loca-
tions on the ReacTable in order to generate the desired musical
con guration.
The plan is taught by the human announcing the sequence of

actions to the robot. As described above, the system generates
a shared plan in the same way as for the shared plan “swap”.
The resulting shared plan is presented below. A demonstration
of learning such a plan is provided in the video in section IV.E.2.

music(Agent1, Agent2, Object1, Object2, Object3) {
Default: Object Drum,
Object Guitar, Object Keyboard,
Agent Human, Agent iCub

put (Agent1, Object1, North)
put (Agent2, Object1, South)
put (Agent1, Object2, North)
put (Agent2, Object2, West)
put (Agent1, Object3, North)
put (Agent2, Object1, East)
}

2) Execution and Generalization: Fig. 9 illustrates succes-
sive steps in the execution of this shared plan, after the human
announces “you and I play music game.” As stated, the robot
can generalize this shared plan in two distinct ways: First, the
agents can be changed–the plan could be executed with any
pair of known agents. Second, the objects that are used in the
shared plan can be changed, so the human could say “You and
I play music with the keyboard, the eraser and the triangle”.
The system will map keyboard, eraser and triangle onto Ob-
ject1, Object2 and Object3 arguments in the shared plan de -
nition. Demonstration of the execution of such a shared plan is
provided in the video in Section IV-E.3.

E. Video Demonstrations

In order to illustrate the functioning of the system, we include
here links to demonstrations of: 1) learning a spatial location;
2) learning a shared plan; and 3) executing the shared plan.
1) Learning Spatial Location “south-west”.: In this demon-

stration, we observe the human interacting with the robot, and
we see the contents of the OPC in real-time on the GUI. As the
human demonstrates actions directed to this location, we see the
formation of the representation of this location, based on the
learning mechanisms described in Section III-A.
http://youtu.be/AYjciXmlAxY
2) Learning a Shared Plan with Two Agents and Two Objects:

In this demonstration, we observe the human demonstrating a
new shared plan to the robot, based on the learning mechanisms
described in Section III-C.
http://youtu.be/GhlKHPZZn30
3) Executing a Shared Plan with Two Agents and Two Ob-

jects: In this demonstration, we observe the human requesting
the robot to perform the new shared plan using different argu-
ments than those used in teaching. This demonstrates the capa-
bility to generalize a shared plan to new objects.
http://youtu.be/eFeD-2S-V7M

V. DISCUSSION

Robots that will interact with humans in novel environments
must be prepared to adapt to new contexts. This will require
the structured use of memory acquired over the lifespan [21]. In
this research, we have demonstrated the construction of a system
for the acquisition and synthesis of memory of experience, par-
tially inspired by aspects of the architecture of human memory.
The path of the storage of information follows that for human
memory as described by Tulving [22]. First in an episodic-like
memory described as a “autobiographical stream” by Battaglia
et al.[23], and then a semantic memory that is built or consoli-
dated from the episodic-like memory.
Episodic memory is about speci c events in time, whereas

semantic memory includes the memory necessary for the use
of language including the meaning of words [15]. Interestingly,
in building a system that can make use of its memory, we have
“rediscovered” or “reinvented” aspects of this distinction in
human memory systems rst proposed by Tulving. That is,
the system must have a veridical record of its experience (the
episodic memory) then a “digested” version of this information
that has been re ned and formatted so that it can be used for
perception and action in new situations, and can be communi-
cated about with language (the semantic memory).
The current research is novel for two reasons. First, it demon-

strates how an autobiographical memory can be used to store
speci c perceptual episodes, and how these can be used in order
to generate categorical representations of space, time and ac-
tion. This is the rst robotic implementation of a combined
episodic and semantic memory system. This is signi cant be-
cause it allows robots to learn from their experience, and it also
can help to provide insight into the processes necessary for in-
fants to make the transition from perceptual to conceptual rep-
resentations [24], as we make the transition from episodic to se-
mantic memory. The second signi cant contribution is that we
then demonstrate how these learned action concepts can be fur-
ther structured into more temporally extended interaction sce-
narios, in the form of shared plans. Together, this means that the
system is entirely open ended–it allows the robot to learn new
spatio-temporal primitives, and then allows it to structure these
interaction primitives into cooperative plans, so that through this
learning, the robot can acquire arbitrary new tasks (within its
physical capabilities).
Indeed, it is impossible for the system to store every possible

internal representation and to associate it with an action output.
Therefore, the system must be capable of generalization. We
have demonstrated this generalization at multiple levels. First,
in terms of spatial locations, the system learns both absolute po-
sitions, as well as relative displacements. These spatial notions
can generalize over all manipulable objects. The system can thus
recognize a previously unseen object–location pair, and perform
previously unlearned object location actions (e.g. “put the tri-
angle north”). Likewise, the system can learn temporal relations
between actions, and use this temporal relational knowledge to
recognize these relations between actions, and also to perform
new actions based on these temporal relations. This generaliza-
tion capability extends up to the shared plans that are learned.
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Once the human has taught the robot the “swap” plan, the robot
can then apply this plan to objects that were not used in the
teaching. Thus, via generalization, the system can accommodate
an open set of possible states that had not been experienced in
training.
In terms of performance evaluation, we have demonstrated

that the system is capable of learning a diverse set of spatial lo-
cations, and relative displacements. In parallel, the system has
learned that the action “put” is associated with absolute loca-
tions, whereas the action “push” is associated with relative dis-
placement vectors. The system has also learned temporal re-
lations including before and after. Once these spatio–temporal
primitives have been acquired, the system is then able to com-
bine them into novel cooperative action sequences including a
swapping procedure, and a “music game”. This evaluation al-
lows us to con rm the open ended learning capabilities of the
system, and its ability to transform the perceptual experience of
the robot into exploitable knowledge. Future studies will eval-
uate the robustness of the system in more extended user studies.
One of the perceived limitations of the current work is the rel-

atively reduced environment and the apparent simplicity of the
concepts that are being learned. However, while the spatial rela-
tions that we examine (absolute positions and relative displace-
ments) are fairly simple, they allow for increasing complexity in
two distinct manners. From a developmental perspective, chil-
dren learn spatial relations in a perceptually anchored manner,
so that at 6–7 months, spatial relations are speci c to the objects
they are learned with. Later, by 9-10 months, children begin
to generalize over objects [24]. In our system, the consolida-
tion of experience from multiple examples allows the system
to develop representations that generalize over objects. Thus,
while these relations may be simple, they generalize, and they
allow the system to develop a rich vocabulary of spatial knowl-
edge. The second way in which these simple relations allow for
increasing complexity, is that they provide the basis for repre-
senting actions that can be combined into more elaborate ways,
by using learned temporal relations like before and after, and in
shared action plans, which allow for the coordination of action
between the human and the robot. Thus, the learned primitives
may be relatively simple, but they can be used to build up rich
and complex behavior.
One might argue that because our environment is relatively

simple, the system may fail to scale to more complex envi-
ronments. This raises general issues about learnability. In our
system, as for the child, the role of the teacher in structuring in-
formation for the robot is crucial. Previous research has demon-
strated how indeed, the way that actions are demonstrated to
children tends to emphasize the initial and nal states [25].More
generally, based on the organization of joint experience around
the objects of shared interest, we argue that even in a richer en-
vironment, these mechanisms of joint attention will eliminate
the construction of irrelevant associations [26].
In the context of assessing our work in the framework of au-

tonomous mental development (AMD), we can consider a set of
possible gaps or challenges between this work and true AMD.
Here we pose these challenges, and our position.

(a) Challenge: The protocols of interactions are handcrafted,
e.g., consisting of speech-based instructions where the
meanings of each sentence are known to the programmer.
Response: No–the language interactions employ a
grammar that allows the user to create new sentences
that are not handcrafted. These new sentences cannot be
known to the programmer of the system, and they con-
tribute to the open exibility of the system. The grammar
is prespeci ed. We have developed methods for learning
grammars in a usage-based manner [27], [28], and such
systems should be integrated into an AMD approach.

(b) Challenge: Each of the displacements is marked by
speech instructions whose meanings are known to the
programmer.
Response: No–none of the meanings of the spatial action
terms are known to the programmer. It is the user who
will determine the meaning of locations, displacements
and actions. However, the instructions that allow the user
to initiate and terminate the demonstration are built into
the interaction grammar. Again, ideally even these would
be learned from experience.

(c) Challenge: Each task consists of a sequence of displace-
ment segments.
Response: In the current “world” of interaction, the tasks
are performed on the ReacTable, and involve the move-
ment of objects by the human and the robot. We are cur-
rently extending this to include a more extended environ-
ment through the use of vision and 3D perception.

(d) Challenge: The start and end of task sequence are marked
by speech instructions whose meanings are known to the
programmer.
Response: Yes, as stated above, language is used to pro-
vide segmentation information to the system. Future work
will incorporate more autonomous methods including
temporal and spatial grouping [29].

(e) Challenge: It is assumed that there is no error in the recog-
nition of all the speech commands. Otherwise, consolida-
tion is mixed up.
Response:No–therecanbeerrorsinthedemonstrations.The
consolidationisbasedonastatisticalprocessinginwhichthe
errorswillbedominatedbycorrectdemonstrations.

(f) Challenge: The role of human and robot in each displace-
ment of the plan sequence is speci ed by speech com-
mands whose meanings are known to the programmer.
Response. No - The individual commands, like “put” or
“push” that will make up the plan sequence must rst
be learned. They are known to the human teacher–who
teaches them to the robot, but they are not known (they
cannot be known) by the programmer. However, under-
standing of language related to the speci cation of who
does what, using “I” and “you”, is built-in by the pro-
grammer. Future work will address the robot learning of
the perspectival use of “I” and “you” [30].

(g) Challenge: The training phase and the performance phase
need to be switched by instructions to enter different pro-
gram modes.
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Response: Yes. Future research should address how
training and performance become intermingled, as the
robot gracefully determines when it has suf cient ability
to make the transition to performance without speci c
instruction. We have made progress in this automatic
learning in [31]

(h) Challenge: The consolidation is of ine in a separate op-
eration phase.
Response: No–consolidation also occurs online, but for
the consolidation results to be written permanently into
the semantic memory requires the of ine processing.

(i) Challenge: The semantic memory corresponds to the clas-
si cation of displacements and/or sequences where each
class is speci ed by the human teacher.
Response: No - The semantic memory contains informa-
tion about spatial locations and displacements, actions
(including pre and postconditions), and temporal relation
that are demonstrated by the human teacher. So what is
speci ed by the teacher is the physical demonstration
of the action, location etc., accompanied by a name for
the demonstrated element. The semantic content of the
demonstrated location, action, etc. is extracted by the
system from the perceptual information. Interestingly,
the use of word labels to invite the child to form new
categories has been demonstrated in children [32], [33].
We will further investigate this symbiosis between devel-
opment of language and development of the conceptual
system.

(j) Challenge: The learned sensory input consists of a pair of
2-D coordinates plus a known object label, so the system
does not do or learn object recognition in terms of type,
shape, size, orientation, etc.
Response: Yes–in this research, the system does not learn
about the physical properties of objects. This is a limi-
tation of the use of the ReacTable where gain in spatial
accuracy versus perceptual richness. Future research will
employ a richer perceptual domain.

Overall, the current research represents part of a series of
developments that gradually steps towards true AMD. Several
lines of research will take us in this direction. Importantly, we
must address how language and the conceptual system code-
velop, including how the structure of language can in uence
the structure of the conceptual system. A rst step in this di-
rection has been characterized by Waxman [32], [33], who sees
that words are an invitation to the infant to form categories [re-
lated to points (a) and (f)]. This has recently been exploited in
the context of AMD [34]. We must improve the richness of the
perceptual system, including vision, so that the system has ac-
cess to the rich structure in the surrounding world [see points
(c) and (j)], and we must consider how the inherent structure of
spatio–temporal action can be used for the segmentation of dis-
tinct actions (d).
When situating this work in the context of AMD, two distinc-

tions must be made. The rst concerns how humans - the pro-
grammer and the teacher - are involved in the system. The pro-
grammer has created an interaction infrastructure (coordinated

by the Supervisor program), and an autobiographical memory
system. The human teacher (who is referred to simply as the
human) uses the interaction infrastructure to communicate new
knowledge to the system. This results in the population of the
episodic memory. The second distinction has to do with seg-
mentation and consolidation. The segmentation of interactions
is partially constrained by the interaction system, and so we
can consider that it is not fully autonomous. This must be ad-
dressed, related to point (g). Where we have concentrated on
autonomy is in the consolidation of knowledge to create the se-
mantic memory, and the hierarchical use of knowledge at one
level to be integrated at the next, which allows the system to
acquire new meanings, new behaviors and new cooperative in-
teractions with the human, none of which were known to the
programmer.
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Abstract—One of the de ning characteristics of human cog-
nition is our outstanding capacity to cooperate. A central
requirement for cooperation is the ability to establish a “shared
plan”—which de nes the interlaced actions of the two cooperating
agents—in real time, and even to negotiate this shared plan during
its execution. In the current research we identify the requirements
for cooperation, extending our earlier work in this area. These
requirements include the ability to negotiate a shared plan using
spoken language, to learn new component actions within that
plan, based on visual observation and kinesthetic demonstration,
and nally to coordinate all of these functions in real time. We
present a cognitive system that implements these requirements,
and demonstrate the system’s ability to allow a Nao humanoid
robot to learn a nontrivial cooperative task in real-time. We
further provide a concrete demonstration of how the real-time
learning capability can be easily deployed on a different platform,
in this case the iCub humanoid. The results are considered in the
context of how the development of language in the human infant
provides a powerful lever in the development of cooperative plans
from lower-level sensorimotor capabilities.

Index Terms—Cooperation, humanoid robot, shared plans, situ-
ated and social learning, spoken language interaction.

I. INTRODUCTION

T HE ability to cooperate, creatively establish, and use
shared action plans is, like language and the underlying

social cognitive and motivational infrastructure of commu-
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nication, one of the major cognitive capacities that separates
humans from nonhuman primates [1]. In this context, language
itself is an inherently cooperative activity in which the listener
and speaker cooperate, in order to arrive at the shared goal
of communication. Tomasello et al. make the foundational
statement that language is built on the uniquely human ability
to read and share intentions, which is also the foundation for the
uniquely human ability and motivation to cooperate. Indeed,
Tomasello goes one step further, suggesting that the principal
function of language is to establish and negotiate cooperative
plans [1].
The building blocks of cooperative plans are actions. In this

context, it has been suggested that we are born with certain
systems of “core cognition,” which are “identi ed by modular
innate perceptual-input devices” [2]. One of the proposed el-
ements of core cognition is agency. This includes an innate
system for representing others in terms of their goal directed
actions, and perceptual mechanisms such as gaze following that
allow the developing child to monitor the goal directed actions
of others. Thus we consider that these notions of agency are
given in the system, though the degree to which they may actu-
ally be developed versus innate remains an open question [2].
A cooperative plan (or shared plan) is de ned as a goal di-

rected action plan, consisting of interlaced turn-taking actions
by two cooperating agents, in order to achieve a common goal
that could otherwise not have been achieved individually [1].
Interestingly, infants can establish shared plans without the use
of language, if the shared goal and corresponding plan are suf -
ciently simple. However, once the plans reach a certain level of
complexity, and particularly if the plan must be renegotiated in
real-time, then language is often invoked to establish and nego-
tiate who does what [3], [4]. Thus, cooperation requires commu-
nication, and when things get complex, language is the preferred
communication method. Indeed, much of early language maps
onto physical parameters of goal directed action [5], [6].
In the construction grammar framework, Goldberg identi es

how the structure of language is mapped onto the structure of
meaning such that “constructions involving basic argument
structure are shown to be associated with dynamic scenes
such as that of someone volitionally transferring something to
someone else, someone causing something to move or change
state” [5]. Thus, grammatical constructions implement the
mapping from linguistic utterances to meaning, in the form
of action and perceptual scene speci cations. The nature of
the link between language and action, and how that link is
established, is an open topic of research in child development
and developmental robotics [7].

1943-0604/$31.00 © 2012 IEEE
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In the context of this debate, following a usage-based ap-
proach [6], we have demonstrated how such constructions
can be learned in a usage-based approach, as the mapping
between the argument structure of sentences and argument
structure of robotic representations of action meanings [8].
This “usage-based” development of grammatical constructions
(versus a more nativist approach) is also a topic of debate,
similar to the case for agency cited above.
Independent of the nativist vs. usage-based debate, we

can take the position that via such constructions, language is
uniquely situated in its capability to allow agents to construct
and negotiate shared cooperative plans. Our approach is to
implement a scaffolded system based on this capability. In this
scaffolding, we build in simple grammatical constructions that
map onto the argument structure of actions that can be per-
formed by the robot. This allows a scaffolding for the creation
of action plans. We have previously used spoken language to
construct diverse action plans for a robot cooperating with a
human [9], [10], but the plans were not shared, in that they
only speci ed the robot’s actions. We then introduced a shared
planning capability where a robot could observe a sequence
of actions, with an agent attributed to each by the user via
language. This generated a true shared plan, that could pass
the test of role reversal [11]. Role reversal occurs when the
two participants in a cooperative task can exchange roles,
thus indicating that they both have a “bird’s eye view” of the
shared plan, which is a central part of the requirements for true
cooperation [12].
In a series of studies we then more carefully reexamined the

bases of shared planning. In the rst study [13], we implemented
a capability for learning to perceive and recognize novel human
actions based on the structure of perceptual primitive consti-
tuting those actions. We next implemented the corresponding
ability to learn to execute complex actions based on the com-
position of motor primitives, and to make the link between per-
ception and action via imitation [14]. Finally, we extended this
capability to multiple actions in shared plans, where the human
could use spoken language to specify a shared plan that could
then be executed by the robot, again displaying role reversal
[15].
While this work represented signi cant progress, it left

several issues unanswered. First, when a shared plan “goes
wrong” there is no mechanism to x it. Language can ful ll
this role-indeed much of human language is about coordinating
and correcting shared plans [16]. Second, in our previous work,
teaching the shared plan was in a xed modality, typically with
the human speaking the shared plan, action by action. Here we
extend this so that language becomes the central coordinator,
a scaffold, which allows the user to then specify individual
actions by: 1) kinesthetically demonstrating the action; 2)
performing the action himself so the robot can perceive and
imitate; or 3) for known actions—to specify the action verbally.
Learning by visual and kinesthetic demonstration are highly
developed and well documented means for transmission of skill
from human to robot, e.g., [17]–[19]. We will demonstrate how
this provides a novel interaction framework that where lan-
guage coordinates these three potential modalities for learning
shared plans.

The transmission of knowledge from humans to robots can
take multiple forms. We consider three speci c forms. “Imita-
tion” will refer to learning in which the human performs the
action to be learned, and the robot observes this and performs
a mapping from observation space onto its execution space, as
de ned in [20]. Likewise, based on [20] we will refer to “kines-
thetic teaching” as a form of “demonstration” where the pas-
sive robot is moved through the desired trajectory by the human
teacher. Finally we will refer to “spoken language program-
ming” [21] as the method described above where well-formed
sentences are used to speci c robot actions and arguments, ei-
ther in isolation or in structured sequences. Language has been
used to explain new tasks to robots [22], and is especially useful
for scaffolding tasks, when the teacher uses previously acquired
skills to resolve a new and more complex tasks [23].
Imitation has been successfully used on diverse platforms

[24]–[29]. It is an easy way for the teacher to give the robot
the capacity to perform novel actions, and is ef cient in high
dimensional spaces, and as a mechanism for communication
[30]. It also speeds up the learning time by reducing the repe-
titions required for trial-and-error learning [31], and it can lead
to open-ended learning without previous knowledge of the tasks
or the environment [32].
Demonstration (also called self-imitation) [33], [34] avoids

the problem of mapping from teacher to observer space. While
this problem exists during imitation, it is eliminated in demon-
stration, as the human directly move the limbs of the robot [20]
thus avoiding the “Correspondance Problem” [28]. It also does
not require expert-knowledge of the domain dynamics, allowing
the teacher to be a nonexpert [20].
Some authors have also studied multimodal learning, com-

bining these techniques; including imitation and instructions
[35]–[37] or demonstration and instruction [38]. In this research
we build upon and extend these multimodal approaches. We im-
plement a multimodal learning architecture which allow a user
to teach action to robots (iCub and Nao) using one or a combina-
tion of language instructions, demonstration or imitation. More
precisely, demonstration is a form of “tele-operation” by “kines-
thetic teaching” and imitation is mediated by “external sensor”
as de ned in [20]: demonstration by kinesthetic teaching be-
cause the teacher operates directly on the robot learner platform,
and imitation by external sensor because we are using kinect as
perceptual device to encode the executing body’s moves.
Thus the novelty of the current research is threefold— rst

it demonstrates a rich language capability for establishing and
negotiating shared plans in real time. Second, it does this by
allowing a multimodal combination of spoken language pro-
gramming, imitation and demonstration based learning. Finally,
it demonstrates that, with an appropriate robotic platform, lan-
guage can be used as the glue that binds together learning from
these different modalities. These capabilities are demonstrated
on two robots, the Nao and the iCub, which allow us to take ad-
vantage of the speci c motor capabilities of each, including the
more dexterous manipulation capabilities of the iCub.

II. SYSTEM REQUIREMENTS AND DESIGN
The goal of the current research is to demonstrate that a

learning system that is based on the human developmental
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capability to map language onto action can provide the basis
for a multimodal shared plan learning capability. In order to
proceed with this analysis, we consider a scenario that involves
multimodal learning. This will allow us in particular to deter-
mine the requirements involved in a human–robot cooperation
to achieve an unknown task with real-time learning.
Consider a scenario where a humanoid robot and a human are

in a face-to-face interaction, with a box and a toy put on a table.
The human wants to clean the table, by putting the toy in the
box. In order to do that, he must rst grasp the toy, then open
the box, then put the toy in the box, and nally close the box.
Let us further consider that the human cannot grasp the toy and
open the box at the same time, and that he thus needs help in
performing this task. The human will ask the robot to “clean the
table.” The robot doesn’t yet know the plan so it will ask the
human to explain. The user will describe each step of the plan,
which is composed by several sequential actions:
— “I grasp the toy, then;
— you open the box, then;
— I put the toy in the box, then;
— you close the box.”
After checking whether the stated shared plan has been under-

stood correctly, the robot will check each action that it should
perform. The robot recognizes that there are some problems be-
cause it does not know how to open or close the box. It will ask
for the help of the human, who has to teach it however he wants.
For opening the box, the human will decompose the teaching

in two parts: at rst, going to a safe initial position and next
imitating him. After the opening action is learned, the user will
teach the closing behavior, by directly demonstrating the motion
by moving the arm of the robot. Finally, the robot has learned
the whole shared plan and each action it should perform, and
so the two agents can proceed and clean the table together. This
scenario allows us to identify the functional requirements for
the system. The system should:
1) inderstand human language, including mapping grammat-
ical structure onto internal representation of action;

2) appropriately distinguish the de nition of self and the other
for relative pronouns (e.g., “I,” “You”);

3) manage a memory of known shared plan and actions;
4) become active in the discussion by asking human when a
problem occurred;

5) perform Inverse kinematics mapping to learn from human
action by imitation;

6) encode proprioception induced when the human is moving
the robot to teach;

7) perceive the state of objects in the world.
In the following sections, we will de ne an overall system ar-
chitecture that accommodates requirements 1)–4) in a platform
independent manner, suggesting that these are the core learning
functions. We will further demonstrate how this system can be
used for real-time multimodal shared plan learning on the Nao
with requirements 5) and 6), and on the iCub with point 7).

III. SYSTEM DESIGN OVERVIEW

Here, we present the system architecture for the learning and
execution of cooperative shared plans. We begin with the com-

Fig. 1. Biomimetic Architecture for Situated Social Intelligence Systems
(BASSIS).

ponents that are independent of the physical platform, and then
introduce the platform speci c components.
The BASSIS architecture (see Fig. 1) is a multiscale archi-

tecture organized at three different levels of control—reactive,
adaptive, and contextual, where the different levels of self are all
based on the physical instantiation of the agent through its body
(soma). It is based on the distributed adaptive control architec-
ture [39]–[41]. Soma corresponds to the physical platform, in-
stantiated as the Nao or iCub in our experiments. The Reactive
or sensorimotor layer employs Kinect for perception and Chore-
ograph™ (Aldebaran) for motor control on the Nao, and the Re-
acTable sensitive table, and the passive motion planner (PMP)
and iKin inverse kinematic solver for iCub. The Adaptive layer
de nes adaptive motor capabilities for each robot. In the cur-
rent context, this adaptation can take place through learning
within the human–robot interaction. The Contextual layer is
platform independent, and implements a Supervisor function,
with a grammar-based Interaction Manager, and a Shared Plan
Manager. Within the BASSIS framework, the Contextual layer
implements a form of long term memory that we exploit here in
the context of learning shared action plans.

A. Supervisor

The Supervisor function consists in two related capabilities.
The rst is general management of the human–robot interaction
via a state-based dialog management capability. The second is
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capability to learn and execute shared plans. Both of these func-
tions are platform independent.
1) Interaction Management: Interaction management is

provided by the CSLU Toolkit [42] rapid application devel-
opment (RAD) state-based dialog system which combines
state-of-the-art speech synthesis (Festival) and recognition
(Sphinx-II recognizer) in a GUI programming environment.
RAD allows scripting in the TCL language and permits easy
and direct binding to the YARP domain, so that all access from
the Interaction Management function with other modules in the
architecture is via YARP.
The system is state-based with states for specifying the shared

plan, modifying the shared plan, if there are errors, teaching
speci c actions within the shared plan, and nally, executing the
shared plan during the cooperative task execution. Interaction
management also allows the system to indicate error states to
the user, and to allow him to explore alternate possibilities to
rectify such errors, as illustrated in Section IV-A.2.
2) Shared Plan Learning: The core aspect of the learning ca-

pability is the capability to learn and execute shared plans, and
to learn constituent actions that can make up those plans. As
de ned above, a shared plan is a sequence of actions with each
action attributed to one of two agents in a turn-taking context.
Shared plans can be learned via two complimentary learning
mechanisms. The rst method involves a form of spoken lan-
guage programming, in which the user verbally describes the
succession of action-agent components that make up the shared
plan. Recognition is based on a grammar that we have devel-
oped for this purpose:
1) %% %%

;
2) ;
3)

a. %%
b. %% ;

4) %% %% %% ;
5) ;
6) ;
7)

a.
b.
c.
d.
e. ;

8)
%% ;

9) ;
Line (1) speci es that a shared plan begins with the “imper-

ative” “Pedro” (the robot’s name) followed by an optional si-
lence (*sil%%), then an agent and command, followed by [0-n]
groups made of a link word, an agent and a command. Agent
terminals are identi ed in (2). Commands can take 1 or two ar-
guments, as speci ed, respectively, in 7) and 8). Interestingly, in
this grammar, the set of terminal nodes (actual words to be rec-
ognized) is only 16 distinct words. Thus, the speaker indepen-
dent recognition system is in a well-de ned recognition niche,
and the system works with few to no errors.
In the case that errors are made, either in recognition, or by

the user forgetting a command, saying a wrong command etc.

we have a “spoken language programming” editing capability.
Editing can involve the following edits: replace one command
with another. In this case the user repeats the faulty command,
and then the correct one (in cooperation with the dialog system
of the robot). Delete a command, in which case the user stats
the command to be deleted. Insert a command, in which case
the user says before or after a given command, and then the new
command.
The second learning mechanism is evoked at the level of in-

dividual actions, and allows the user to teach new component
actions to the robot. This involves a combination of spoken lan-
guage programming and perceptual action recognition. Percep-
tual action recognition can occur via action recognition with
the Kinect, and via kinesthetic demonstration, which will be de-
tailed below. The robot can then use the resulting shared plan
to take the role of either agent, thus demonstrating the crucial
role-reversal capability that is the signature of shared planning
[1], [12].
As illustrated in the example dialog with the Nao below, this

provides a rich capability to negotiate a complex cooperative
task using spoken language. The resulting system can learn
how to perform novel component actions (e.g., open, close),
and most importantly, it can learn arbitrary novel turn-taking
sequences—shared plans—that allow the user to teach in any
novel cooperative behavior to the robot in real-time. The only
constraint is on the set of composite actions from which the
novel behavior can be constructed.

B. YARP

Softwaremodules in the architecture are interconnected using
YARP [43], an open source library written to support software
development in robotics. In brief YARP provides an intercom-
munication layer that allows processes running on different ma-
chines to exchange data. Data travels through named connec-
tion points called ports. Communication is platform and trans-
port independent: processes are not aware of the details of the
underlying operating system or protocol and can be relocated at
will across the available machines on the network. More impor-
tantly, since connections are established at runtime it is easy to
dynamically modify how data travels across processes, add new
modules or remove existing ones. Interface between modules
is speci ed in terms of YARP ports (i.e., port names) and the
type of data these ports receive or send (respectively for input
or output ports). This modular approach allows minimizing the
dependency between algorithm and the underlying hardware/
robot; different hardware devices become interchangeable as
long as they export the same interface.

C. Humanoid Robot Nao and Kinect

The Nao (Fig. 3) is a 25 degrees of freedom humanoid robot
built by the French company Aldebaran. It is a medium size
(57 cm) entertainment robot that includes an onboard computer
and networking capabilities at its core. Its open, programmable
and evolving platform can handle multiple applications. The on-
board processor can run the YARP server (described below) and
can be accessed via telnet connection over the internet via WiFi.
More speci cally, the Nao is equipped with the following:

CPU x86 AMD Geode with 500 MHz, 256 MB SDRAM
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and 1 Gb Flash memories, WiFi (802.11g) and Ethernet,
2 640 480 camera with up to 30 frames per second, inertial
measurement unit (2 gyro meters and 3 accelerometers), 2
bumper sensors and 2 ultrasonic distance sensors.
In this research, we extend the perceptual system of the Nao

to include a 3D motion capture capability implemented with the
Kinect™ system. The Kinect recognizes a human body image
in a con guration posture (see Fig. 3), and then continuously
tracks the human body. Joint angles for three degrees of freedom
in the shoulder and one in the elbow are extracted from the
skeleton model, and mapped into the Nao joint space to allow
real-time telecommand of the two arms.

D. iCub Humanoid and Reactable Perceptual System
The iCub is a 53 DOF humanoid platform developed within

the EU consortium RobotCub. The iCub [44] is an open-source
robotic platform with morphology approximating that of a
3(1/2) year-old child (about 104 cm tall), with 53 degrees of
freedom distributed on the head, arms, hands and legs. The cur-
rent work was performed on the iCubLyon01 at the INSERM
laboratory in Lyon, France. The head has 6 degrees of freedom
(roll, pan and tilt in the neck, tilt and independent pan in the
eyes). Three degrees of freedom are allocated to the waist, and
6 to each leg (three, one and two respectively for the hip, knee
and ankle). The arms have 7 degrees of freedom, three in the
shoulder, one in the elbow and three in the wrist. The iCub
has been speci cally designed to study manipulation, for this
reason the number of degrees of freedom of the hands has been
maximized with respect to the constraint of the small size. The
hands of the iCub have ve ngers and 19 joints.
1) Motor Control: Motor control is provided by PMP. The

passive motion paradigm (PMP) [45] is based on the idea of em-
ploying virtual force elds in order to perform reaching tasks
while avoiding obstacles, taking inspiration from theories con-
ceived by Khatib during 80s [46]. Within the PMP framework
it is possible to describe objects of the perceived world either
as obstacles or as targets, and to consequently generate proper
repulsive or attractive force elds, respectively. A meaningful
example of attractive force eld that can be produced is the so
called spring-mass-damper eld; in this case the relevant param-
eters are the stiffness constant and the damping factor, which
regulate the force exerted by a target placed in a given spa-
tial location. An effective model that represents repulsive force
elds is the multivariate Gaussian function, which accounts for
a eld centred at an obstacle and is characterized by the typ-
ical bell-shaped decay. According to the composition of all ac-
tive elds, the manipulator’s end-effector is eventually driven
towards the selected target while bypassing the identi ed obsta-
cles; evidently, its behavior and performances strictly depend on
the mutual relationship among the tuneable eld’s parameters.
However, in order to tackle the inverse kinematics problem

and compute the nal trajectory of the end-effector, the orig-
inal PMP makes use of the Transposed Jacobian algorithm; this
method is well known to suffer from a number of weaknesses
[47] such as the dif culty to treat constraints of complex kine-
matic structures as the iCub arm turns to be [48], [49]. There-
fore, we have decided to replace the Transposed Jacobian ap-
proach with a tool that relies on a powerful and fast nonlinear

optimizer, namely Ipopt [50]; the latter manages to solve the
inverse problem while dealing with constraints that can be ef-
fectively expressed both in the robot’s con guration space (e.g.,
joints limits) and in its task-space. This new tool [49] represents
the backbone of the Cartesian Interface, the software component
that allows controlling the iCub directly in the operational space,
preventing the robot from getting stuck in kinematic singulari-
ties and providing trajectories that are much smoother than the
pro les yielded by the rst implementation of PMP.
In this changed context, the Cartesian Interface lies at the

lowest level of the revised PMP architecture, whose simpli ed
diagram is show in Fig. 3. At higher level the pmpServer ele-
ment is responsible of composing the nal force eld according
to the objects currently stored in an internal database. Users can
add, remove or modify this database in the easiest way by for-
warding requests to the server through a dedicated software in-
terface, made available by the pmpClient component. It is im-
portant to point out that the properties of objects stored in the
database can be retrieved for modi cation in real-time in order
to mirror the environment as it evolves over time. All the soft-
ware components of the revised PMP architecture can be openly
accessed from the iCub repository.
2) Perception: In the current research we extend the per-

ceptual capabilities of the iCub with the ReacTable™. The Re-
acTable is licensed by Reactable Systems. The ReacTable has
a translucid surface, with an infrared illumination beneath the
table, and detection system that perceives tagged objects on the
table surface with an accuracy of mm. Thus, tagged objects
can be placed on the table, and their location accurately captured
by the infrared camera.
Interaction with the external world requires that the robot is

capable of identifying its spatial reference frame with the ob-
jects that it interacts with. In the human being, aspects of this
functionality is carried out by the dorsal stream, involving areas
in the posterior parietal cortex which subserve complex aspects
of spatial perception [51]. In our system, the 2D surface of the
table is calibrated into the joint space of the iCub by a linear
transformation calculated based on a sampling of three cali-
bration points on the table surface that are pointed to by the
iCub. Thus, three points are physically identi ed in the Carte-
sian space of the iCub, and on the surface of the ReacTable, thus
providing the basis for calculation of a transformation matrix
which allows the projection of object coordinates in the space of
the table into the Cartesian space of the iCub. These coordinates
can then be used as spatial arguments to the PMP action system
of the iCub, described above, which provides basic physical ac-
tions including point-to(x, y, z), put(source X, Y, Z; target x, y,
z), grasp(x, y, z), release(x, y, z).

IV. MULTIMODAL LEARNING I: NAO & KINECT
Here we demonstrate the system functionality for real-time

learning, in which language, spatial perception (via Kinect), and
proprioception are combined to allow the Nao to learn a shared
plan which is then executed in real-time with the human teacher.
The idea is to solve a common problem encountered during
daily life which is cleaning a table with some objects on it. As
de ned in the requirements analysis in Section II, the goal is to
place the object from the table to a chest. However, the chest
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needs to be opened before doing that, and we need to close it
afterward to complete the task.

A. Learning the Shared Plan and Component Actions

Here we present the time-tagged unfolding of the cooperative
dialog where the shared plan is established, and indicate how
the system components are engaged to permit the corresponding
interaction, and learning and execution of the shared plan.
1) Establishing the Shared Plan: The user begins by giving

the name of the cooperative shared plan:
00:25 Nao: Tell me what I have to do.
00:26 Human: “Pedro, help me to clean
the table.”

TheNao recognizes the spoken order and checks in the shared
plan manager if it knows this plan, and determines that there is
no de nition for such a plan

00:30 Nao: “The shared plan is clean.
00:36 Nao: “Please explain me.”

The shared plan manager creates an empty shared plan called
“clean the table” and it is ready to be lled with the human
description.
The user verbally explains all the steps of the shared plan,

including both moves of the robot and himself. It is worth noting
that the shared plan is initially speci ed in s.

00:37 Human: “I reach the toy, then
I reach the trash box then you open
the trash box then I put the toy in
the trash box then you close the trash
box.”

The Nao will segments the global shared plan in a sequential
set of 3 actions using the grammar built in the spoken language
interface, and then repeats it to be sure it has perfectly under-
stood the whole interaction:

00:50: Nao: “I reach the toy, you
reach the trash box, then I open the
trash box, you put the toy in the
trash box, I close the trash box. Do
you agree with this plan?”

Two remarks should be made. First, note that in order to be
intuitive and understandable, for relative pronouns “You” or “I”
rather than repeating these literally, the Nao has created the plan
by replacing the relative agent by the absolute ones: the human
for “I” and the Nao for “You” because the human was speaking.
2) Correcting the Shared Plan: The second remark here is

that there is in fact an error in the plan. Nao states that it should
reach for the toy, rather than the human doing so. When the Nao
is repeating the plan, it is not only to check if it has understood
the orders but it also provides the human a way to verify his
plan.
The user has here the possibility to edit the shared plan (Sec-

tion II.A.2), and will do it by answering that he does not agree
with this, for instance:

Human: “No I do not”.
Thus the robot will ask where the problem is:
01:05 Nao: “So, What did I misunder-
stand?”.

Here, the human has several ways to edit the plan:

— he could specify that there is a problem with a speci c
action by repeating it and could, after that, remove it or
replace it by another one;

— he could erase everything and describe the plan again from
scratch;

— he could insert a missing action.
In this dialogue example described below, the problem is with

the agent of the rst action. The Nao said “I reach the toy”,
but the intended action was “You reach the toy,” with “you”
referring to the human, so in response to the robot’s question
“what did I misunderstand?” the human names the erroneous
action:

01:08 Human: “I reach the toy.”
Thus, this dialog is motivated by the user’s recognition that

an error has occurred, followed by his speci cation of the erro-
neous component. This will trigger an editing of the plan, with
the Nao asking

01:10 Nao: “What do you want me to do
instead?”

A new command can now be inserted to replace the erroneous
one.

01:13 Human: “I reach the toy.”
This illustrates the detailed manipulation of relative pro-

nouns, as the human is now speaking from his own perspective,
and thus refers to himself as “I”. To con rm the edit, the Nao
then places a “virtual cursor” after the element to be replaced,
and before the next action, and veri es that the new command
should be inserted there:

01:15 Nao: “So where—I reached the
toy, instead, you will reach the toy.
Do you agree with this plan?
01:24 Human: “Yes, I do.”

The robot now has a complete shared plan including tasks for
the user and for itself. The next step is to verify that all of the
tasks assigned to the robot are known.
3) Learning Component Actions: The Nao iterates through

the shared plan until it encounters an action assigned to it, de-
termines if it knows the action, and informs the user if not. A
query is made to the Motor Primitive Library where the list of
current known behaviors of the Nao is stored into. There may
be several unknown behaviors in a new plan, thus to keep the
interaction more animated the system selects one of the three
interrogatory sentences at random.
Here, the Nao recognizes that it has to perform the “open”

action, which is unknown for now and will call the human for
help:

01:26 Nao: “Behavior ‘open’ is un-
known. I am going to learn ‘open’”

This will put the supervisor in the learning state. The human
could create the behavior in the Motor Sequence Learning with
one or a combination of these methods (see Fig. 2):
— calling a known behavior by language;
— asking the robot to imitate him;
— physically demonstrating the action by moving the robot’s
arms.

As illustrated in Fig. 4 (left column), the chest can be opened
by pushing a lever, and the human will choose to teach “open”
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Fig. 2. Shared Plan Manager. In the initial state, the user describes the entire shared plan. The robot repeats the understood plan, allowing editing. Then, for each
action, if it is unknown, the system enters speci c states for learning by language, imitation or demonstration. When all actions are learned, the shared plan is
executed.

by decomposing the action in two steps: First, the robot needs
to move its arms up in the air, before, second, going down to
push the lever. The “put-the-hands-up” is a known action, so
the human will command this action.

01:34 Nao: “Tell me what to do.”
01:36 Human:“Move to Kinect init.”

This is recognized to be a known behavior in Motor Primitive
Library, so the robot asks for a con rmation before performing
the action:

01:38 Nao: “I am going to move to
Kinect init. Are you sure?”
01:42 Human: “Yes I am.”

After the user’s acknowledgment, Nao executes the behavior
and the resulting joint angle trajectory will be stored in the new
“open” behavior of motor sequence learning to begin the con-
struction of this action.
The robot informs the user that the action is nished and it is

waiting for the following command:
01:51 Nao: “Tell me what to do.”

The human proceeds to the second step of the teaching by
calling the imitation method:

01:53 Human:“Imitate me.”
01:56 Nao: “Imitation activated. Tell
me when it is finished.”

The system then enters the state (see Fig. 2) where joint angles
are read from the Kinect device based on the observed human
demonstrator (which is calibrated in the hands up position). The
user then demonstrates the motion required to open the box,
using visual feedback from the Nao in real-time. The corre-
sponding joint angle trajectory is concatenated to those from the
previous method. The user then terminates the imitation:

02:17 Human: “It is finished.”
The “open” behavior has thus been learned by the Nao in

real-time as a complex joint trajectory, and is transferred from
Motor Sequence Learning to Motor Primitive Library so that it
is now available as a command.

Following the ow outlined in Fig. 2, the Nao proceeds to the
next behavior it should perform in the shared plan, and again
there is an unknown action: “close”:

02:20 Nao: “The behavior ‘close’ is
unknown. I am going to learn ‘close.’”
02:27 Nao: “Tell me what to do.”

An empty “close” behavior is created in motor sequence
learning. This time, the human chooses to teach the action
using the demonstration method:

02:29 Human: “Let me move your arms.”
This places the supervisor in a state where it commands the

Nao to set the stiffness of the arms to zero so that they can be
manipulated by the human:

02:33 Nao: “Stiffness changed. Tell me
when it is finished.”

As illustrated in Fig. 4 (right column) the human then physi-
cally demonstrates the action, pushing the Nao’s hand and arm
through a trajectory that closes the box. Once the demonstra-
tion is nished, the human terminates the learning, and asks the
robot to proceed with the shared plan execution:

02:46 Human : “It is finished.”
Thus, this dialog fragment, and Fig. 4, illustrate two com-

plimentary learning methods: imitation of an action trajectory
performed by the human, and physical demonstration where the
human physically guides the learned trajectory of the robot. De-
pending on the nature of what is to be learned, the user can
choose the more appropriate method.

B. Executing the Shared Plan
The shared plan is now fully speci ed, and the Nao begins

execution, illustrated in Fig. 5.
02:56 Nao: “The current step is you
reach toy. You are supposed to reach.
Tell me when it is done.”
03:01 Human: “It is done.”
03:03 Nao: “The current step is I open
trash box.”
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Fig. 3. PMP software architecture.

Fig. 4. Multimodal learning. (Left column) Using perceptual based imitation,
the human demonstrates to the Nao how to open the box, and the Nao performs
the action in real-time, mirroring the action of the human. (Right column) Using
kinesthetic demonstration the human teaches the Nao how to close the box.

Here the robot uses the learned action trajectory to reproduce
the “open” movement:

03:27 Nao: “The current step is you
put the toy trash box. You are sup-
posed to put. Tell me when it is
done.”
03:34 Human: “It is done.”
03:37 Nao: “The current step is I
close trash box.”

The Nao then uses the joint trajectory that was taught by
kinesthetic demonstration, to close the box. At this point the toy
has successfully been closed in the box, and the shared plan is
nished”

03:52 Nao: “This was the last com-
mand.”

Fig. 5. Shared plan execution. Left column: Human takes toy, Nao opens box,
human places toy in box. Right column: Nao closes box.

C. Performance Analysis
We analyze performance from three separate executions of

the learning task described above. Two were performed in the
laboratory, and the third was performed during the Robocup
@home Open Challenge 2011 in Istanbul, July 2011. In this
case, we were required to install and set up the system in 3
minutes, and then had ve minutes to perform the task, with no
possibility to shift to a different time, or to have another 5 min-
utes in case of failure. The task was successfully completed, and
our “Radical Dudes” team placed 4th/19 in the Open Challenge.
This demonstrates the robustness of the system.
For each of the three sessions where the shared plan was

learned and then executed, we measured the time to complete
the open-the-box and close-the-box actions during the learning
phase, and then during execution of the learned shared plan.
Execution time is measured from the onset of the human
command, to the execution of the action and onset of next
request by the Nao. Thus, during learning, the execution time
includes the teaching component. In order to compare the effect
of learning on the time to complete individual actions, we per-
formed nonparametric Wilcoxon signed-rank test comparing
each action when it was being learned vs. when it had been
learned, collapsing across sessions. There were two actions
per session (open and close), each performed once in learning
and once in execution after learning. With the three sessions,
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Fig. 6. Effects of shared plan learning on overall action execution time in sec-
onds.

this provided a total of 6 learning-learned comparisons. As
illustrated in Fig. 6, there is a signi cant reduction in execution
time during the shared plan execution. This was con rmed in
a signi cant learning effect in the Wilcoxon signed-rank test,

. We thus demonstrated that the
system can learn to produce arbitrary sequences of actions with
a turn-taking structure. The principle limiting factor is simply
the set of basic level actions from which the shared plans can
be constructed. Three repetitions of the “clean-up” shared plan,
including one during the Robocup@Home Open Challenge,
demonstrate the reliability of the system. Over these three trials,
we also demonstrated a signi cant effect of this learning (as
opposed to simply commanding the robot) in terms of behavior
execution time after learning.

D. Nao Experiment Discussion
We have previously demonstrated how the user can employ

language to teach new actions [13], [14], and then combined
the previously learned actions into a new shared plan [11], [15].
The current research extends this shared plan learning. For the
rst time, we demonstrate how spoken language can be used
to coordinate online multimodal learning for a shared coopera-
tive plan. The multiple modalities include imitation of actions
performed by the human (using the Kinect), human demonstra-
tion of a desired trajectory by physically manipulating the robot
arm, and nally, spoken language based invocation of known
actions, with all of these modalities contributing to a coherent
and integrated plan. We should stress that learning by imitation,
demonstration and spoken language programming all have been
extensively studied in the past. What is new here is the combi-
nation of these multiple modalities in a coherent and seamless
manner, under the control of language. It is worth noting that
while we emphasize the learning of the “clean the table” shared
plan, the grammar-based learning capability allows for the con-
struction of arbitrary turn-taking action sequences.

V. MULTIMODAL LEARNING II: ICUB & REACTABLE
While the learning that we observed in the previous section

has certain components that are platform speci c (e.g., the mor-

phology of the Nao, and the mapping of the Kinect to that mor-
phology), the principal learning component which is based on
spoken language is platform independent. Indeed, it provides a
method for the linking together of action primitives into shared
plans that can subsequently be used to achieve cooperative ac-
tivity.

A. Learning the Shared Plan and Component Actions

In the rst experiment with the iCub, the human explains a
shared cooperative task similar to that used with the Nao, where
the goal is to “hide” a toy under a box. The grammar is of the
same structure as that used for the Nao. The principal differ-
ence is that it is constructed so that the plan is successively con-
structed from single actions that are concatenated with the pre-
vious actions (4):
1)

;
2)

;
3) :

a) %% %%
%% %% ;

b) %% %%
%% %% ;

c) %% %% %% %%
d) %% %% %% %%

4) .
Here we illustrate how by exploiting this grammar, the shared

plan manager can construct the shared plan from the sequence
of actions described by the subject:

00:00 ICub: “What can I help you
with?”
00:02 Human: “Shared Plan.”
00:05 ICub: “Shared Plan menu.”
00:07 Human: “You and I hide the toy
with the box.”

The Supervisor consults the Shared Plan Manager, and deter-
mines that there is no de nition for this plan:

00:11 ICub: “Tell me how you and I can
hide toy box?”
00:13 ICub: “What is next?”
00:17 Human: “You put box left.”
00:20 ICub: “Did you say ‘you put box
left’?”
00:23 Human: “Yes I did.”
00:25 ICub: “What is next?”
00:27 Human:“I put toy middle.”
00:30 ICub: “Did you say ‘I put toy
middle’?”
00:32 Human: “Yes I did.”
00:35 ICub: “What is next?”
00:38 Human:“You put box toy.”
00:40 ICub: “Did you say ‘You put box
toy’?”
00:43 Human: “Yes I did.”
00:46 ICub: “What is next?”
00:48 Human: “Finished.”
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The successive actions of the shared plan have now been ex-
tracted, and the plan is stored as

In the de nition, the four arguments to hide are instantiated
with the “you, I, toy, box.” When the shared plan is used in the
future, it can be called with different arguments, e.g., hide (John,
you, trumpet, carton) for “John and you hide the trumpet with
the carton,” and these new arguments will be systematically sub-
stituted into the component actions of the shared plan. This pro-
vides the ability generalize to new objects and agents, including
providing a capability for role reversal as speci ed in Section C.

B. Executing the Shared Plan

01:00 Human: “You and I hide the
trumpet with the box.”

Note here that the system allows arguments to be used in the
“hide” shared plan. Here trumpet will be hidden.

01:04 ICub: “I will put the box on
the left. You will put the trumpet on
the middle. I will put the box on the
trumpet. Should we proceed?”
01:24 Human: “Yes we should.”
01:26 ICub: “I will put the box on the
left.“.

The robot performs its action, illustrated in Fig. 7(A)–(B).
02:02 ICub: “You will put the trumpet
on the middle.”.

The human makes the move, and the robot detects the change
of position of the trumpet to the middle [see Fig. 7(C)].

02:12 ICub: “I will put the box on the
trumpet.”.

The iCub performs the nal move, covering the trumpet with
the box (Fig. 7(D)–(E)), completing the shared plan.

02:48 ICub: “Shared Plan menu.”.

C. Role Reversal

In the cooperative task, the user can decide who takes which
role. This implies the principal of role reversal. As stated in the
introduction, role reversal is taken as evidence that the agent
has a global representation of the actions that both agents will
perform. This representation allows the agent to take on the role
of either of the two participants in the shared plan [12].
In order to reverse roles, the human can use the same shared

plan, and indicate role reversal by specifying the arguments in
the reversed order. He can say “you and I hide the toy in the
box” or “I and you hide the toy in the box.” As speci ed in
Section V-A above, depending on how the pronouns I and you
are ordered in the speci cation, the roles of the human and robot
will be reversed.

00:08 Human: “I and You will hide the
toy in the box.”

Fig. 7. Learning and performing the “hide the toy” cooperative plan. Setupwith
the “toy” on the left of the table, and “box” on the right. Spatial representation
on iCub GUI left rear. B. iCub puts the box on its left. C. human put the toy in
the middle. D. iCub reaches for the box, and F. puts the box on the toy. Note
the grasping precision.

00:13 ICub: “You will put the box on
the left. I will put the toy on the
middle. You will put the box on the
toy. Should we proceed?”.
00:29 Human: “Yes we should.”
00:31 ICub: “You will put the box on
the left.“.

Here the robot detects the change of position of the box to the
left.

00:37 ICub: “I will put the toy on the
middle.”.
01:13 ICub: “You will put the box on
the toy.”.
01:19 ICub: “Shared Plan menu.”.

Role reversal is a speci c instance of a more general capa-
bility that is provided by the system. That is, once a shared plan
has been learned with a given set of agent arguments, the ar-
guments for the two agents can be instantiated with different
instances, e.g., I and you vs. you and I.

D. Performance Analysis

We repeated the shared plan learning, execution and role re-
versal twice each. The timing of the principal events is illus-
trated in Fig. 8. It is noteworthy that the system allows the
multiple-action shared plan to be speci ed in well-under one
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Fig. 8. Event durations (in seconds:minutes) for two trials (Trial 1 in black, trial 2 in grey) of the learning, execution and role reversal for the “hide the toy” shared
plan.

minute, and then executed in this same time scale, both in the
standard format, and the role reversal.
Note that in Fig. 8, the role reversal condition is executed

more rapidly than the standard condition. This is due to the rel-
ative slowness of the robot actions, with respect to those of the
human. In the standard sequence, the robot performs two actions
(moving the box away from the center, and then over the toy)
while the human performs only one action (placing the toy in
the middle to be covered). This is reversed in the role, reversal,
and thus the effect of the slowness of the robot is reduced.

E. iCub Discussion

These experiments extend the results with the Nao, which is
in part achieved because of the more dexterous grasping ca-
pabilities of the iCub. In the current experiments we demon-
strated how an arbitrary shared plan could be established in less
than one minute, and then immediately be used to execute the
cooperative task. In addition, we demonstrate how this shared
plan can be used to allow role reversal, in which the two agents
swap roles. Again, for Carpenter et al. [12] this is a hallmark of
shared plan use, as it clearly demonstrates that the agents have
a “bird’s eye view” or global view, of the shared activity. Tech-
nically this requires that all of the actions that can take place in
the shared plan can be executed physically by both the human
and the robot. Because of the high spatial precision of the Re-
acTable, and the precision grasping capabilities of the iCub, this
is a technical reality.

VI. DISCUSSION AND FUTURE WORK

The current research can be situated within the larger con-
text of cognitive developmental robotics [52], with physical em-
bodiment playing a central role in structuring representations
within the system, through interaction with the environment,

including humans. In development, the early grammatical con-
structions that are acquired and used by infants de ne struc-
tural mappings between the underlying structure of everyday ac-
tions, and the expression of this structure in language [6], [53].
We have exploited this mapping, in building systems that can
learn grammatical constructions from experience with the en-
vironment [8], [54]. Here we exploit this type of grammatical
construction, by building such constructions into the grammars
that are used for speech recognition. These constructions that
map onto the basic structure of action (e.g., agent action ob-
ject) correspond to the basic argument constructions that are the
workhorses of initial language [6], [53]. The “ditransitive” con-
struction is a good example that has been extensively studied
[5]. In a canonical form of this construction “Subject Verb
Recipient Object” (e.g., John gave Sally a ower), Sub-
ject maps onto the agent of the transitive action speci ed by
Verb, and Recipient receives the Object via that tran-
sitive action. The current research demonstrates how language,
based on these constructions, can be used to coordinate real-time
learning of cooperative actions, providing the coordination of
multiple demonstration modalities including vision-like percep-
tion, kinesthetic demonstration [13], [29], [55]–[58], and com-
mand execution via spoken language. In this sense, language
serves a dual purpose: First and most important, it provides the
mechanism by which a cooperative plan can be constructed and
modi ed. Second, during the construction of the shared plan,
one of the modalities by which actions can be inserted into the
plan is via the spoken issue of a command. We demonstrate
that in this framework, the constructive features of language
can be mapped onto different robot platforms. This requires the
mapping of the argument structure of grammatical constructions
onto the predicate-argument structure of the command and per-
ceptual operators of the given platform [13], [55]. Doing so, we
subsequently achieve performance, where the systems can learn
and perform new cooperative behaviors in the time frame of
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2–3 minutes. The introduction of structured language provides
a powerful means to leverage sensory-motor skills into coopera-
tive plans, re ecting how the development of language in human
children is coincident with an explosion in their social devel-
opment in the context of triadic relations between themselves,
another person and a shared goal [1]. We should note that the
“ecological validity” of the kind of language that the user can
employ is somewhat restricted to simple grammatical construc-
tions. That is, people cannot use fully unconstrained natural lan-
guage, such as relative clauses, and pronouns. Still, this allows
suf cient expressive ability for the user to construct elaborated
shared plans.
The approach to learning that we have taken thus consists

in the implementation of a highly structured scaffolding that al-
lows the user to teach the robot new action components, and then
to teach the robot how to organize these actions into more elab-
orate turn-taking sequences that constitute shared plans. The ad-
vantage of this approach is that it is powerful and scales well.
It is powerful because it allows the user to specify arbitrary
turn-taking sequences (which can even include solo sequences
that are performed only by one of the agents), and the set of ele-
mentary actions can also be augmented through learning. All of
this learning can be done with a single trial. The advantage of
this is that learning is rapid. Indeed, related studies have demon-
strated that for complex tasks such as those used here, human
and neural network simulations fare better with high level in-
struction (imitation or verbal instruction) than with lower level
instruction (reinforcement learning) [59]. The disadvantage is
that the teaching must be perfect. Thus, in demonstrating a tra-
jectory, the system cannot bene t from a successive re nement
over multiple trials [60].
One of the limitations of this work is that there is not a system-

atic mechanism for the long-term accumulation and synthesis of
such learning. In the future it will be important for these devel-
opmental acquisitions to be integrated into the system over a
life-time scale [61]. Another limitation is that in the current re-
search the behavior is determined by the shared plan, and there
is no choice. To cope with changing task contingencies, the
system will require more adaptive behavior including the ability
to choose between competing options [62]. Perhaps one of the
most fundamental limitations of the current research, which lays
a foundation for future research, has to do with the deeper na-
ture of the shared plan. This is the notion of the shared intention.
Our robots can learn a plan that allows them to perform a coop-
erative task, and event to demonstrate role reversal. Yet the true
notion of the actual nal goal, the shared intention, to get that
toy into the box, is currently not present. We have started to ad-
dress this issue by linking actions to their resulting states, within
the action representation [56]. We must go further, in order to
now expand the language capability to address the expression
and modi cation of internal representations of the intentional
states of others.
The current research proposes an interaction architecture, for

on-line multimodal learning, and demonstrates its functionality.
It is not an extended user study that allows for the collection of
data whose variability can be statistically analyzed in a popu-
lation of subjects. Within the interactions that we test, the most
pertinent parameter that re ects the change in the real-time ow

and uidity of the interactions is related to the time required
for different component actions, and their changes as a func-
tion of learning. We thus demonstrate the feasibility of using
spoken language to coordinate the creation of arbitrary novel
turn-taking action sequences (which we refer to as shared plans).
This includes the ability to create new actions (through demon-
stration and imitation), and to embed these actions in new turn-
taking shared plans. Clearly a more robust demonstration of the
performance of the architecture (and effective time gains be-
fore/after learning) should use naïve users and include metrics
related to interaction quality, success etc. This is a topic of our
ongoing research.
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Abstract.  45 

The development of reasoning systems that can exploit expert knowledge 46 

from interaction with humans is a non-trivial problem, particularly investigating 47 

how the information can be coded in the knowledge representation. For example, 48 

as in human development, the acquisition of knowledge at one level requires the 49 

consolidation of knowledge from a lower level. How is the accumulated experi-50 

ence structured to allow the individual to apply knowledge to new situations, thus 51 

reasoning and adapting?  52 

We investigate how this can be done automatically by a robotic system iCub 53 

that interacts with humans to acquire knowledge via demonstration. Once consol-54 

idated, this knowledge can be used in further acquisition of experience concerning 55 

the preconditions and consequences of actions. Finally, this knowledge is translat-56 

ed into rules that are used for reasoning and planning in novel problem solving 57 

situations, including a Tower of Hanoi scenario. We thus demonstrate proof of 58 

concept for an interaction system that uses knowledge acquired from human inter-59 

action to reason about new situations. 60 

1 Introduction 61 

The ability to reason can be considered to rely on two complimentary components. 62 

First, a system must have access to some form of knowledge or expertise from which it 63 

can reason, e.g. the autobiographical memory of artificial system (Dore, Cattoni, & 64 

Regazzoni, 2010; Ho et al., 2009). Second, the system must then have some form of 65 

reasoning capability that allows that knowledge to be used in a systematic way (Hayes-66 

Roth, 1997). Within this context, the current research attempts to determine how experi-67 
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ence that a robot can acquire through interaction with a human can be used as the basis 68 

for knowledge-based reasoning. Allowing robots to learn from experience has been a 69 

long-term goal in cognitive robotics (Cangelosi et al., 2010; Crangle & Colleen, 1994; 70 

Wood, Baxter, & Belpaeme, 2011). Spoken language has been used to “program” ro-71 

bots, that is, to specify procedures for how to achieve tasks, including navigation 72 

(Lauria, Bugmann, Kyriacou, & Klein, 2002), interaction (Dominey, Mallet, & 73 

Yoshida, 2007a, 2007b; Dominey & Mallet, 2009; Doshi & Roy, 2008; McGuire et al., 74 

2002) and more elaborate shared plans for joint cooperative action with the human 75 

(Lallee et al., 2011, 2012; Lallee et al., 2010; Lallee, Warneken, & Dominey, 2009; 76 

Petit et al., 2013). In this framework, knowledge is transferred from the human to the 77 

robot in a direct manner. Ideally, the robot should be able to extract information from its 78 

experience rather than having the knowledge explicitly specified. This knowledge could 79 

then be used order in to allow the robot to reason about new situations. Indeed, in tradi-80 

tional AI (Hayes-Roth, 1997), knowledge engineers would elicit expert knowledge from 81 

experienced people, and codify it so that this expert knowledge would allow the system 82 

to reason. In the modern context of adaptive cognitive systems for robots, the goal is to 83 

allow the robot itself to become an expert by accumulating knowledge, especially se-84 

mantic knowledge, from its own experience ( Roy, 2002a, 2002b, Gorniak & Roy, 85 

2004). 86 

 87 

We focus on knowledge generation and representation, and in particular, how 88 

knowledge about the domain can be acquired in an autonomous manner. Based on ob-89 

servations of events and their variations or co-variations, human adults can use the 90 
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powerful reasoning tool of inference about the causes or consequences of events 91 

(Cheng, 1996).  92 

From the outset of development, the infant begins to extract regularities from the en-93 

vironment, and in a recursive manner to further extract structure based on this growing 94 

repertoire (Carey & Xu, 2001; Carey, 2009). We consider that the child takes a teleolog-95 

ical stance (Gergely, Nádasdy, Csibra, & Bíró, 1995) by taking into account three com-96 

ponents : the action, the goal state and the situational constraints, learning them through 97 

social learning by observing other’s actions and inferring their goal. Once learned, the 98 

child can then reason and select actions in order to achieve a goal, in particular when the 99 

other is explicitly stating his intentions (Gergely & Csibra, 2003). 100 

The goal of this research is to provide a real-time goal-directed reasoning capability 101 

to robots, loosely based on a developmental trajectory where knowledge from succes-102 

sively refined levels contributes to the ability to reason, based on this teleological 103 

stance. When we reach the highest level of this representational hierarchy, the infor-104 

mation will be appropriate for reasoning, not only at the spatial level as previously in-105 

vestigated (Kalkan, Dag, Yürüten, Borghi, & Sahin, 2013; Takács & Demiris, 2008; 106 

Welke et al., 2013) but also on the contextual level (e.g. effect of an object on another 107 

one). 108 

Actions encountered by the robot are stored in its AutoBiographical-like Memory 109 

(ABM) and then statistically processed in order to extract contextual knowledge about 110 

them (Pointeau, Petit, & Dominey, 2013a, 2013b, 2014). This knowledge is formatted 111 

into rules (based on the Planning Domain Definition Language (PDDL) format 112 

(Helmert, 2009; McDermott et al., 1998)) allowing an AI planner to produce the se-113 

quence of actions allowing the robot to fulfill a goal. We will demonstrate the system 114 
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capabilities with two concrete example tasks, where the robot learns the physical struc-115 

ture of the environment, the rules of the tasks, and then demonstrates its ability to use 116 

this knowledge to reason in novel situations. The first task, or game, involves rules 117 

about how objects can be displaced from one location to another in terms of pre- and 118 

post-conditions for actions. The second game is more involved, based on the Tower of 119 

Hanoi, adapted to our environment and here called the “Table of Hanoi”. In this context 120 

the system must learn about the particular properties of objects in terms of when and 121 

where they can move, based on the presence of other objects at the source and target 122 

destinations. 123 

 124 

Figure 1: LEFT. Human-robot physical interaction platform, with the iCub and ReacTable.  RIGHT:  125 
Physical interaction architecture.  Human and robot interact by co-manipulating objects. ReactVision detects 126 
objects on the table surface and populates the OPC. Supervisor manages spoken language interaction. ABM 127 
Reasoning manages the autobiographical memory. 128 

2 Robot System Description 129 

We first describe the global architecture of the robot and control system, and then 130 

provide a more detailed description of the memory and reasoning systems. The human-131 

robot interaction set-up is illustrated in Figure 1. ICub interacts with humans, using an 132 

interactive table allowing precise object localization. As seen in the figure, a Graphical 133 

User Interface displays the robot and the positions of recognized objects on the table. 134 
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An overview of the system architecture is illustrated in Figure 1. Part of the core basis 135 

of our research is the implementation of a multi-level memory system, shown in Figure 136 

2.  137 

 138 

Figure 2 : Overview of the flow of information in refinement of knowledge.  139 

Following Figure 2, direct perceptual experience is represented in the episode-like 140 

memory (ELM), and through the detection and extraction of recurring regularities (e.g. 141 

the word “left” and spatial coordinates within a certain dispersion ellipse), a higher level 142 

semantic memory is generated through a process referred to as consolidation (inspired 143 

by the same term in animal physiology). This accumulated knowledge (e.g. meaning of 144 

the term “left”) can lead to a reinterpretation of past experiences in the ELM, in a pro-145 

cess that we refer to as “retro-reasoning”. Using this knowledge about spatial locations, 146 

the system can begin to extract regularities about pre-and post-conditions that hold be-147 

fore and after acting, respectively. This information can be transformed into a format 148 
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compatible for AI planners, thus allowing iCub to use its accumulated experience to 149 

reason about new situations. Given this overview, we now describe the system in more 150 

detail. 151 

2.1 iCub 152 

The current work was performed on the iCubLyon01 at the INSERM Robot Cogni-153 

tion Laboratory in Lyon, France. ICub (Metta, Sandini, Vernon, Natale, & Nori, 2008) 154 

is an open-source robotic platform, developed in the EU consortium Robotcub, with 155 

morphology approximating that of a 3½ year-old child (104cm tall), and 53 degrees of 156 

freedom distributed on the head, arms, hands and legs. Motor control for iCub requires 157 

identification of object locations in space, and computation of the required joint trajec-158 

tories (Gori, Pattacini, Nori, Metta, & Sandini, 2012). As part of the iCub software ar-159 

chitecture the YARP communication protocol is used throughout the system, in order to 160 

allow well defined port-based client-server connections between the different compo-161 

nents described below. 162 

2.2 ReacTable 163 

In order to allow high precision perception of objects, both for understanding scenes 164 

and events, we have adopted the ReacTable™ interactive table. ReacTable has a trans-165 

lucid surface, with infrared (IR) illumination and IR camera detection systems beneath 166 

the table that perceives tagged objects on the table surface with an accuracy of ~5mm. 167 

Thus, tagged objects can be placed on the table, and their location accurately captured 168 

by the IR camera.  169 
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Interaction with the external world requires that iCub is capable of identifying its spa-170 

tial reference frame with the objects that it interacts with.  This is similar to the human, 171 

where aspects of this functionality is carried out by the dorsal visual stream, involving 172 

areas in the posterior parietal cortex which subserve complex aspects of spatial percep-173 

tion (Shmuelof & Zohary, 2005). In our system, the 2D surface of the table is calibrated 174 

into the joint space of iCub by a transformation calculated based on a sampling of cali-175 

bration points on the table surface that are pointed to by iCub. These coordinates can 176 

then be used as spatial arguments to the action system of iCub, described below, which 177 

provides basic physical actions including point-to(vector), put(vectorSource, vectorTar-178 

get), grasp(vector), release(vector). In the current experiments, all objects can be 179 

grasped with the same grasp parameters, so these are not independently specified. 180 

2.3 Object Properties Collector 181 

The common space in which the human and robot interact with objects is on the sur-182 

face of the ReacTable. The current state of the world, in terms of those objects, the hu-183 

man and iCub, is stored in the Object Properties Collector (OPC) which thus contains 184 

all the information about objects, agents, entities or relations. The OPC can be consid-185 

ered as the mental representation for iCub: all the information gathered by the Reac-186 

Table, or any other sensor will be stored in the OPC in real time.  187 

The ReacTable2OPC client receives the data about the position of objects from the 188 

ReacTable software and stores this in the OPC. The data acquired from each object once 189 

on the table includes: unique ID, position, angle, speed, rotation and whether the object 190 

is still present on the table or not.  191 
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2.4 Interaction Supervisor 192 

The Supervisor (Figure 1 and Figure 3) provides the general management function 193 

for the human-robot interaction, implemented using a state-based dialog management 194 

capability. This allows the user to enter different interaction states related to teaching 195 

spatial location, action and temporal primitives and shared plans. The Supervisor func-196 

tion is implemented with the CSLU Rapid Application Development Toolkit (Sutton et 197 

al., 1998), a state-based dialog system which combines speech synthesis (Festival) and 198 

recognition (Sphinx-II) in a GUI programming environment.  199 

We have previously explored how the argument structure of sentences (e.g. “Put the 200 

circle on the left”)  allows for a structured mapping onto the argument structure of per-201 

ceptual and motor commands for robots, and we use such mappings here (Dominey, 202 

2003; Dominey et al., 2007a, 2009; Lallee, Madden, Hoen, & Dominey, 2010; Petit et 203 

al., 2013). 204 
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 205 

Figure 3: Overview of the memory architecture including the SQL Database,  Supervisor,  ABM Reasoning, 206 
and  OPC. 1-2. SQL queries, and replies to ABM are managed by a C++ Autobiographical Memory module. 3. 207 
User interacts with ABM related to action status, and 4. Memory content. 5-6. ABM reasoning requests and 208 
receives content via YARP connections. 7-8. ABM manager requests and receives state data from OPC. 9 Final 209 
answer of ABM Reasoning to the supervisor 210 

3 Autobiographical Memory and Reasoning 211 

A central aspect of this research is that the experience of the robot shall be captured in 212 

a structured, time ordered record, and that this record can be used to generate appropri-213 

ate behavior in the future. We previously implemented an autobiographical memory 214 

(ABM) that consists of an episodic-like memory (ELM) and a semantic memory (SM) 215 

based on successive developmental levels through social interactions (Pointeau et al., 216 

2014) schematized in Figure 3, which has been extended to add a level 3 reasoning loop 217 

to the existing consolidation and retro-reasoning (explained in 3.2 and 3.3). 218 

The ABM is a PostgreSQL database storing data from the OPC each time an action 219 

occurs (episodic memory).  It also encodes the knowledge extracted after reasoning 220 
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about this data (semantic memory). Thus, the Episodic-Like Memory is a component of 221 

the ABM containing data from the OPC (i.e. current state of the world) before and after 222 

each action performed either by iCub or the human. The Semantic Memory is a compo-223 

nent of the ABM built after reasoning about past experience, based on statistical analy-224 

sis of data from ELM. Both are implemented in PostgreSQL. The Autobiographical 225 

memory (ABM) is a set of functions that operate on these SQL tables, and interact with 226 

the ABM Reasoning module which performs reasoning over past experience and 227 

memory consolidation in order to generate the SM and update the ELM. The Supervisor 228 

provides the spoken language interface with the human, and manages high level interac-229 

tion.  230 

3.1 Episodic-Like Memory 231 

The ELM is organized around actions and the state of the world before and after ac-232 

tions. The SQL data structure of the ELM is illustrated in Figure 4. This action-centered 233 

approach is useful in that it helps to solve the problem of how to segment the perceptual 234 

stream of events (Zacks, Speer, Swallow, Braver, & Reynolds, 2007). When the human 235 

announces that he will perform an action, a message is sent to the ABM Reasoning, and 236 

the current state of the world (snapshot of the current state of OPC) is stored in the epi-237 

sodic memory in the ELM SQL tables, before the action occurs. Likewise, the system is 238 

informed at the end of each action, and takes an OPC snapshot. With the state of the 239 

OPC before and after an action, the system can extract the pre-conditions and effects for 240 

actions (Mirza, Nehaniv, Dautenhahn, & Boekhorst, 2008; Payne & Nadel, 2004).  241 
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 242 

Figure 4 : SQL format of the Episodic memory, with in light gray unused data from the current research. 243 
The main data type is specified as ContentArg which defines arguments for actions, and ContentOPC defines 244 
entities that are in the OPC. Each interaction has the content of the OPC at a given time (state of the world) 245 
but also, information concerning the arguments of the action (who, what, when…).  246 

3.2 Semantic Memory  247 

The semantic memory is derived by ABM Reasoning, from experience encoded in the 248 

ELM. ABM Reasoning is coded in C++, and its role is to retrieve the information stored 249 

in the ELM and to generalize over this information, in order to extract the pertinent in-250 

formation of each action. The ABM Reasoning thus constructs a Semantic Memory 251 

with the pertinent information related to context/spatial/temporal information. The sys-252 

tem will then store its semantic knowledge into the appropriate part of the ABM, i.e. the 253 

SM.  254 

We refer to this generation of semantic memory as “consolidation”, derived from 255 

mammalian sleep-based memory consolidation (Payne & Nadel, 2004). During consoli-256 
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dation, the system will iterate through all actions performed in the current session, and 257 

will generalize over this data, and consolidate the resulting semantic knowledge in the 258 

database (See (Pointeau et al., 2014) for details). This consolidation is the first level of a 259 

system of Retro Reasoning (described in the section 3.3) and is displayed in Figure 6.  260 

CONSOLIDATION (level 1 reasoning) pseudocode: 261 

For each ACTION in the ELM 262 

 { 263 

Retrieve the COORDINATES of the object of focus before and after the move. 264 

Calculate the DISPLACEMENT of the object 265 

Populate the corresponding SPATIAL KNOWLEDGE entry and ACTION DEFINITION 266 

in the SM. 267 

Calculate the DISPERSION of the displacement to determine if the action is abso-268 

lute or relative. 269 

If the ACTION is absolute (is location): 270 

 Update the LOCATION DEFINITION in the OPC. 271 

 } 272 

  273 

This pseudo code describes how the encoding of in the ELM of multiple repetitions 274 

of actions with spatial parameters like “put to north” can be processed to determine us-275 

ing Mahalanobis distance that north here refers to an ellipse fixed location (as opposed 276 

to “push toward north”, producing a relative displacement), which can be learned, and 277 

stored in the OPC as a new, learned, named location. This information is also coded in 278 

the semantic memory (illustrated in Figure 5) in the spatial data component. 279 
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 280 

Figure 5 : SQL format of the Semantic Memory, with in light gray unused data from the current research. 281 
For each type of knowledge, a first table stores the general information concerning the knowledge (name, ar-282 
gument…) while a second table stores the “technical information”: the positions of each move in the case of a 283 
spatial knowledge, or the time-stamp in the case of a temporal knowledge. For each memory is created an 284 
instance (corresponding to a given time). 285 

3.3 Retro Reasoning 286 

Once the system has extracted these initial concepts, including spatial properties re-287 

lated to locations, displacements and actions, it can use this knowledge to construct 288 

higher level knowledge representations. ABM reasoning will once again iterate through 289 

the contents of the ELM, and for actions, will be able to extract knowledge about the 290 

pre- and post- conditions. For example, in the case where a move has a precondition 291 

(e.g. for a board game in which the only legal move to location B is from location A), 292 

iCub will observe the moves made by the human, and then learn the locations A and B 293 

(as outlined in the pseudocode above and detailed in (Pointeau et al., 2014)). Once iCub 294 
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knows locations A and B, it can then perform retro reasoning, and observe that each 295 

time the action: “move-B object” was performed, the object was always first at A. This 296 

leads to the extraction of the pre-condition: “Object is at A”, and similarly for the post 297 

condition “Object is at B”. Based on this retro reasoning, the system will know that to 298 

perform the action “move-B”, the condition “Object is in A” is mandatory. Also, iCub 299 

will know that the action to perform in order to have “Object is in B” is “move-B ob-300 

ject”. This information is coded in the context data (before and after fields) of the SM 301 

(see Figure 5). 302 

3.4 Level 3 Reasoning 303 

The knowledge that has been acquired through retro reasoning now makes it possible 304 

to perform more pertinent reasoning about the conditions that hold before and after ac-305 

tions. The ABM Reasoning will again iterate through the ELM and match this with the 306 

knowledge stored in the SM and will extract new regularities at a higher level. The dif-307 

ference with the first level reasoning is that the ABM Reasoning will now write high 308 

level relations in the ELM such as: “Object is at Location A” that iCub could not have 309 

known at the time of the initial observations, because the location A had not yet been 310 

learned. The system can also create higher level knowledge in the SM. For example, in 311 

the case of the move of the medium object of the Hanoi Tower, the knowledge will be: 312 

“Big object can be at location From or location To, but the small object can’t be at loca-313 

tion From nor location To.” The function of this level of reasoning is described in the 314 

pseudo code. 315 

 316 

LEVEL 3 REASONING (pseudo code) 
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For each ACTION 

 {  

 for STATE before and after the action 

  { 

determine ALL RELATIONS between the object of focus and all objects that hold before 

and after  

calculate PROBABILITY/PERCENTAGE for each relation over all instances in ELM 

store appropriately in before and after FIELDS OF CONTEXT in SM  

} 

 } 

3.5 From interaction to successive level of representation 317 

We show in Figure 6 the link between these reasoning layers from interaction experi-318 

ence to levels of representations. Human demonstrations lead to changes in the states of 319 

objects as represented in the OPC. Level-one reasoning detects spatial regularities in 320 

terms of the elliptical forms of point cloud distributions of objects in the demonstrated 321 

actions and creates this new spatial knowledge. The second level allows to detect the 322 

starting location and final location of each move independently. The third level will get 323 

these starting and final locations (and no more the coordinates) and extract regularities 324 

with them. These states are recorded in the ELM, associated in time with the named 325 

actions, and locations.  326 
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 327 

 328 

Figure 6 : Example of the effect of the different levels of the retro reasoning (case of the Tower of Hanoi) 329 

4 Planning and Goal Directed Reasoning  330 

The previously explained Retro-Reasoning, based on the ELM and SM allows iCub 331 

to obtain information about its known actions, in particular pre-conditions, which have 332 

to be true if iCub wants to execute the actions, and effects, which will be the changes in 333 

the world because of these actions. 334 

This gives iCub the capacity to know, for a given current state of affairs, what actions 335 

are available, and to predict the successive states of the world after several actions. By 336 

using these two features, and checking pre-conditions of the next actions against the 337 

state of the world attained with the effect of the previous action, the system will be able 338 

to reason about a goal and plan successive actions in order to achieve the goal. This re-339 
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quires the representation of the acquired knowledge of pre- and post-conditions in a 340 

format that can be used for reasoning. This is implemented on the robot by extracting 341 

and formatting pre- and post-conditions as rules compatible with the standardized plan-342 

ning language PDDL (Planning Domain Definition Language). 343 

4.1 Planning Domain Definition Language (PDDL) Framework 344 

PDDL is a framework in which the domain of a task can be described (including 345 

specification of the “rules” in terms of pre- and post-conditions for actions), and in 346 

which a given problem or goal can be specified (Helmert, 2009; McDermott et al., 347 

1998). This can then be provided as input to a planner, which will attempt to find a se-348 

quence of action executions that takes the system from the current state to the specified 349 

goal state. Thus, in order to be used, a PDDL planner needs this information, as speci-350 

fied in two different files: a domain and a problem definition. The domain file contains 351 

the set of known actions, including their respective preconditions and effects, whereas 352 

in the problem file, we have the current situation description (i.e. the list of all initial 353 

conditions) and the desired goal. 354 

Traditionally, these files are hand-coded, with fixed set of actions given to a robot in 355 

order to solve a precise kind of problem with variable initial conditions. In our system, 356 

these data will be automatically generated in real-time by iCub, allowing a developmen-357 

tal inspired approach based on experience that accumulates and becomes successively 358 

refined via the level 1-3 reasoning. This is possible by extracting knowledge from the 359 

Semantic Memory to produce well-formed PDDL domain definition. The problem defi-360 

nition will be made by a direct request to the ABM about the current situation and the 361 

goal is defined from interaction with the human. In order to provide a concrete domain 362 
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in which to pursue this work, we elaborated a simple board-game interaction scenario, 363 

illustrated in Figure 7.  In this game, four spatial locations will be learned by iCub, via 364 

observation of the human actions.  In addition, iCub learns regularities concerning how 365 

objects can be moved between these locations. The demonstrated moves form a circular 366 

game path, meaning pieces can only move from A to B, from B to C, from C to D and 367 

from D to A. For instance, if the object is on A, a player must make 3 successive moves 368 

to put it at D. This provides a simple scenario for testing the ability to learn from expe-369 

rience and reason on the acquired knowledge.  370 

 371 

Figure 7 : Interaction scenario schema. Four learned locations  on ReacTable with human (oval body), iCub 372 
(rectangular body) and object (dark square). The learned locations are labeled A-D. i. Object is off the table. 373 
ii. Human has placed the object on the table, in an undefined location. iii. Human or iCub has placed the ob-374 
ject location A. iv. Human or iCub has placed the object at B. v-vi. Human has placed the object at C, then D, 375 
respectively. 376 

We have extended the architecture from Figure 3, as now illustrated in Figure 8, to al-377 

low for the PDDL rule extraction and planning for on-line problem solving. Figure 8 378 

illustrates in more detail the flow of information from the human interaction to the plan 379 

execution, with the different representations of knowledge, starting in the lowest level 380 

“perceptual” representations in the ELM, to the pre-condition, post-condition represen-381 

tations of actions in the PDDL format, appropriate for use with available state of the art 382 

reasoning engines. The process begins by the expression of the human's desired goal, 383 

using speech, indicated by the keyword "want", followed by the goal to reach (1). The 384 
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Supervisor handles this request and sends it to the ABM module of iCub (2) which has 385 

to solve that problem. The system will then establish the state of the current world state 386 

by querying the OPC (3.a, 3.b), and writing it into the problem PDDL file, along with 387 

the human's stated goal. Then, the system will interrogate the semantic memory to re-388 

trieve the contextual knowledge corresponding to the pre- and post-conditions of all the 389 

known actions, and use this to build the PDDL domain file (5). The AI Planner is then 390 

executed, to produce a plan (6), made up of the sequence of action which needs to be 391 

performed in order to achieve the goal from the current situation. This file is parsed and 392 

the action sequence is sent to the Supervisor (7), which then controls iCub to execute 393 

these moves (8), and thus to achieve the human's goal without any explicit information 394 

from him about "how to" do it. 395 

 396 
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 397 

Figure 8 : Extended architecture with rule extraction and rule based planning and reasoning. 398 

5 Experiments 399 

We now demonstrate the operation of the system with two experiments that exercise 400 

the ability of the system to extract the structure of knowledge derived from experience, 401 

and to reason based on that experience. Both experiments involve interaction tasks that 402 

can be organized according to rules or actions that have pre- and post-conditions. 403 

5.1 Experiment 1: Learning Rules About Spatial Movement – Proof of Concept 404 

The goal of the first experiment is to demonstrate that the system is capable of ex-405 

tracting pre-conditions and post-conditions for learned actions, and is then able to use 406 

these in the PDDL environment for goal based reasoning in real-time. iCub will learn 407 
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two types of actions. The first action is to add an object into the interaction space, by 408 

putting it on the table. By definition, in terms of our physical constraints, this action can 409 

only be performed by the human. The second action is to move an object from one loca-410 

tion to another. The two actions will be learned independently. The link between them 411 

will be that the precondition of one is the effect of the other. In the first experiment, the 412 

initial state will be with the object off the table, as illustrated in Figure 7i, and goal state 413 

will be announced to iCub to put the object at location D as illustrated in Figure 7vi. 414 

iCub should be able to reason from experience that to put the object at “D”, it must be 415 

moved from “C”, and so on, chaining from the initial state to the final goal state.  416 

 417 

Figure 9 : Example of definition of different moves in the ABCD experiment. As illustrated, the Move_B ac-418 
tion has the precondition that the object must be at location A before Move_B can be executed. 419 

Figure 9 illustrates how the action of moving an object to location B is learned. First, 420 

the human has to show iCub how the new actions work by example. He will say to iCub 421 

what he will do (e.g. “I move the circle to B”). The sentence is parsed with the Supervi-422 

sor, and the recognized action, with the name and the arguments (e.g. “Peter” as agent, 423 
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“circle” as object, “A” as spatial location), is sent to the ABM, indicating that this ac-424 

tion will happen. A snapshot of the OPC is then taken from ABM producing the state of 425 

the world before the named action. Again this illustrates how the human interaction al-426 

lows the system to segment the perceptual flow, here to identify the beginning and end-427 

ing for actions. Control is returned to the human who can then proceed and execute the 428 

action before given a signal to the system (“Done”). This triggers the end of the action, 429 

which is written into the ELM, and a second snapshot, this time after the action execu-430 

tion, is then taken. Thus within the ELM there is a specification of the action and its 431 

arguments, and snapshots of the state of the world before and after the action. This pro-432 

cedure is repeated several times for the same action (with different arguments) in order 433 

to have a set of data where statistical tools can be used for extracting regularities (or 434 

“rules”), as described in Section 3. 435 

The characteristic regularity is that actions can be performed with any objects, but 436 

there is a “from-to” structure that to go to B you must be at A, to C you must be at B, 437 

etc. as illustrated in Figure 9. The ABM Reasoning module collects the statistics on the 438 

pre- and post-conditions of these movements, and generates a set of entries in the se-439 

mantic memory “Context” entry, for each type of move, according to its initial and final 440 

location. 441 

Once the pre-conditions and effect of actions have been extracted and made explicit 442 

in the semantic memory, the system can use them in order to produce the two PDDL 443 

files needed for reasoning. The first one, the domain file, is the list of all the known ac-444 

tions, including preconditions and effects, arguments. The ABM Reasoning module be-445 

gins by writing a “skeleton” of the PDDL, everything which does not change: the do-446 

main (“efaa”), the requirements (“:strips :typing :equality”), the predicates (isPresent, 447 
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isAtLoc, Objects and Locations). Then the system iterates through the known actions 448 

that are stored in ContextualKnowledge class. For each action the system will write in 449 

the files the required components: action, parameters, precondition and effect, which are 450 

directly translated from the ContextualKnowledge of the Semantic Memory. 451 

The action name is extracted by combining the verb (e.g. “add”, “move”) with the 452 

none-generalizable arguments (nothing for “add”, the location for “move”). That allows 453 

for the possibility that actions can have different rules according to the location to where 454 

an object is to be moved. The precondition for “move-B” is “isAtLoc obj A”, whereas 455 

the precondition is “isAtLoc obj C” for “move-D”. 456 

Parameters are the arguments over which the action can generalize (e.g. object for 457 

“add” and “move”). One can perform these actions with different parameter values, and 458 

the rules will be the same (for add, the object is not present at first, and is present after, 459 

no matter what the object is). 460 

Preconditions are extracted from the ContextualKnowledge class. The system checks 461 

for properties which are above an empirically determined maximum threshold for posi-462 

tive conditions and below an inferior threshold for negative conditions, before the action 463 

is executed. These properties are the presence of the object (which has to be present for 464 

“move” but has not to be for “add”) and its location of (for “move-B” the object has to 465 

be in location A), as illustrated in Figure 10. The effects or post-conditions are deter-466 

mined in the same way, except that instead of using the regularities before the action is 467 

done, the system computes over the data after the action’s execution.  468 

 469 
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 470 

Figure 10 : Domain file with actions learned by iCub for this game, with theirs precondition and effets. 471 

 472 

After the creation of the domain file specifying the known actions, the problem file 473 

must be produced. The problem is defined by the current state and the goal that is to be 474 

achieved. As for the domain extraction, the system begins to write the skeleton of the 475 

problem file, with the problem name (“efaa-prob”) and the domain name (same as for 476 

the domain file, “efaa”). The objects (all the locations and objects known by iCub) are 477 

extracted by a SQL query to the ABM in order to have their name (circle, cross, A, B, 478 

233



27 
 

…) and their types (object for circle and cross, location A and B). These pairs are added 479 

in the “init” section, along with the initial condition. 480 

This PDDL creation is performed when the human asks iCub to reason about a situa-481 

tion, i.e. to attain a particular world state.  An OPC snapshot is taken, which correspond 482 

to the state of the world before iCub preforms the reasoning. This snapshot is obtained 483 

through an SQL query in order to extract all objects present or absent from the table and 484 

if present, their locations. This gives the system the initial situation, which is written in 485 

the problem file.  486 

The “goal” part is produced from the human request to iCub to reason about a situa-487 

tion, i.e. to attain a particular world state. Indeed, the human must specify to iCub that 488 

he wants something, and enumerate conditions he desires (or does not desire). These are 489 

extracted and put inside the goal (e.g. “I want the cross on D” gives “(isAtLoc cross 490 

D)”). An example of an automatically generated problem file can be seen in Figure 11. 491 

 492 

Figure 11 : example of a problem file for the game, including the initial condition and the goal to achieve 493 

 494 

Both the domain and problem PDDL files are now written. ICub can run the PDDL 495 

planner in order to know what actions he has to do if he wants to execute the human 496 

wishes. We use the LPG-td planner (Fern, Givan, & Siskind, 2002), with options to find 497 
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the best of 30 generated solutions, and a computation time limit of 2 seconds. Thus, the 498 

system will take a maximum of two seconds or 30 solution files, from lower quality to 499 

better quality before finding the best solution. After execution, the files matching “solu-500 

tionEFAA_X.SOL” are searched, as X goes from 1 to the maximum number of solu-501 

tions, to identify the file with the best solution (if there is a solution). This file is 502 

scanned until the actions are found. They are then put together, stored in a YARP “bot-503 

tle” and sent back to the Supervisor, which will launch the motor command of iCub to 504 

execute them, one by one.  As shown in Figure 12, we demonstrate that the system is 505 

indeed able to learn the rules of the game, and to appropriately find solutions to sample 506 

problems. 507 

 508 

Figure 12 : example of a solution file produced to solve the problem 509 

5.2 Experiment 2: The Table of Hanoi 510 

We now consider a more strenuous test of the system.  The Table of Hanoi (TaOH) is 511 

based on the Tower of Hanoi (ToOH), adapted to the constraints of the ReacTable. In 512 

particular this implies that objects cannot be stacked, but rather they can be placed in 513 

zones, following the rules of the Tower of Hanoi, i.e. an object cannot be moved from 514 

its current location if there is a smaller object at that same location (because in the 515 

ToOH that smaller object would be on top). Also, an object cannot be moved to a loca-516 
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tion if there is a smaller object at that location. Thus, the goal of the current experiment 517 

is to determine if the ABM and domain extraction functions are suitable for learning 518 

such rules, and if so, whether the system can learn these rules and then correctly play 519 

the TaOH. 520 

In the ABCD experiment, the system had to learn that the constraints on actions in-521 

volve where objects come from and where they go, but there were no constraints on the 522 

objects themselves.  The move-A action was demonstrated with different objects, thus 523 

there was high variability in the object parameter, and so the object identity was not 524 

considered as part of the action, but rather as a free parameter. Thus, the moves could be 525 

learned with one set of objects and generalized to another. In the Table of Hanoi exper-526 

iment, the difference is that, as they are demonstrated, the actions will be location-527 

generalizable instead of object-generalizable. The Hanoi moves have the same rules 528 

from one location to another (between the left, middle and right positions) but they de-529 

pend on the object involved (small, medium, big), such that small can move to locations 530 

with the medium or big object, medium can move to the big object, and all objects can 531 

move to empty locations. Moreover, because the status of the different locations, the 532 

origin place (from) and the destination place (to) are particular and have to be managed 533 

instead of just working on fixed locations.  534 

The human demonstration of these moves (HANOI-BIG ?FROM ?TO, HANOI-MEDIUM 535 

?FROM ?TO, HANOI-SMALL ?FROM ?TO) is done in the same way as for Experiment 1, 536 

with only a modification to the lexical entries of the speech recognition grammar (for 537 

the new names of objects and locations). It should be noted that, because of the general-538 

ization of learning, we need only to perform the moves from “Left” to “Middle”, and 539 

iCub will be able to generalize to other move locations. In particular, it has never seen 540 
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an actual Hanoi game, from the beginning to the end, only a set of illustrative moves. 541 

We first teach iCub the locations left, right and middle by moving each of the three ob-542 

jects three times to each of the locations. This makes 9 moves per location, for a total of 543 

27 moves, which is sufficient to allow the consolidation to extract the location defini-544 

tions.  545 

It has to be noted that we used this minimal and predefined set of actions to show 546 

that iCub can learn to solve TaOH without any need for seeing the actual solution, but 547 

the same results can been achieved by observing a real attempt of TaOH realized by a 548 

naïve subject. 549 

 These locations can then be used to demonstrate the moves that allow the system to 550 

learn the rules governing how object positions influence legal moves. 551 

 552 

Figure 13 : Minimal set of moves to learn the rules for the Table of Hanoi. S,M, B stand for Small, Medium, 553 
Big respectively. Colored areas correspond to left, middle and right locations. 554 

These moves are illustrated in Figure 13. The three moves executed with the small 555 

object indicate that it can move from an occupied or a free position to a free position or 556 

an occupied position, thus there are no constraints on where it can come from or go to. 557 

This is revealed in the rule that is extracted from the SM illustrated in Table 1. For the 558 

Medium object, the three demonstrations indicate that it cannot move from or to the 559 

same location as the Small. Recall that when calculating the pre-conditions, the system 560 

examines all possible relations between objects, and then looks for probabilities that 561 
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approach 0 (corresponding to a “never” or “not” condition, and probabilities that ap-562 

proach 1 (corresponding to a positive constraint). 563 

For building the domain, the procedure is exactly the same, except the fact that, in-564 

stead of providing absolute locations intersected by object, through several reasoning 565 

layer (Figure 6) and due to the fact that the TaoH rules are objects but not location de-566 

pendent, the ContextualKnowledge can generalize the actions of TaoH with two spatial 567 

concepts “from” and “to”. An example of a produced file is shown in Figure 14. 568 

 569 

Figure 14 : Domain file automatically produced from human interactions in a TaoH game. 570 

 571 

To specify a problem or goal, the user can set the objects at the desired initial location 572 

(left location, for example), so that the system can determine the current state.  The user 573 

can then explain the final state, in terms of the positions of the objects (e.g. that all three 574 

objects should be on the right location). This yields the automatic construction of the 575 

domain and goal. Figure 15 illustrates a domain and goal specification that was auto-576 

matically generated from ABM (initial conditions) and spoken language interaction 577 

with the human (goal). Then the planner can be executed to generate a solution.  The 578 

solution is presented in Figure 16. Again, the sequence of commands is then automati-579 

cally transformed into the equivalent commands for iCub, then the problem is physical-580 

ly solved. 581 
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 582 

 583 

Figure 15 : Example of a problem file produced in a TaoH game 584 

 585 

Figure 16 : Example of a solution file produced in a TaoH game 586 

Figure 17 illustrates the performance of the solution that was generated. Here we see 587 

the completion of the embodied reasoning loop: Experience gained by interacting with 588 

the human allows iCub to learn the locations, and the rules about different objects and 589 

their ability to move to these locations based on the status of other objects in the context 590 

(i.e. the rules of the Hanoi game). Once this knowledge has been extracted it can be au-591 

tomatically formatted into a PDDL description, which can then be executed on standard 592 
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robust planners. The plan is then automatically transformed into the corresponding se-593 

quence of physical actions that can be realized by iCub. 594 

 595 

Figure 17 : iCub solving the Table of Hanoi. Initial state: small, medium and big objects at Middle position. 596 
Goal state: small, medium and big objects at Left position. The problem is solved in 7 moves. (1) small to left, 597 
(2) medium to right, (3) small to right, (4) big to left,  (5) small to middle, (6) medium to left, (7) small to left. 598 
The task is solved based on learning the rules of the game, without ever seeing a complete solution. 599 

6 Discussion and Conclusion 600 

Reasoning requires some form of inference engine, and equally important, a base of 601 

structured knowledge from which the system can reason. In the current research, we 602 

have conceived and implemented a framework for human-robot interaction, in which, 603 

through interaction with the human, the robot acquires experience, and then organizes 604 

this experience in order to create a structured knowledge base from which it can reason. 605 

We demonstrate the functioning of the system with two experiments. In the second ex-606 

periment, from a small set of examples the system learns the rules for moving objects in 607 
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a Tower of Hanoi – like problem. The system then demonstrates that it can use these 608 

rules with a standard AI planner to solve arbitrary problems in the Tower of Hanoi do-609 

main. This is of interest, as it illustrates a concrete example where real-world experi-610 

ence, extracted from interaction with a human, can provide a knowledge base upon 611 

which a robotic intelligent system can reason to solve new problems. 612 

 613 

When learning new actions, the identification of action parameters is one of the cen-614 

tral problems that must be addressed. The difficulty is to determine what are the signifi-615 

cant aspects of an action, and what can be ignored, potentially leading to “forgetting” 616 

data allowing the robot to remember only pertinent information (Broz, Nehaniv, Kose-617 

Bagci, & Dautenhahn, 2012; Ho et al., 2009). For example, Siskind demonstrated how 618 

cross situational reasoning can be applied in this context during the acquisition of word 619 

meanings (Siskind, 1996). The same kind of statistics can be applied to learning the ar-620 

gument structure of actions (Fern et al., 2002). In an effort to determine how to reduce 621 

the scope of what should be considered during learning, we previously determined that 622 

the focus can be placed on all objects whose state changes as a result of the action 623 

(Lallee et al., 2010). 624 

The developing infant faces the same problem, which is, how to know what is the 625 

pertinent aspect of a given scene that should be learned. Extensive behavioral studies 626 

and observations suggest that in many interactions between adults caregivers and chil-627 

dren, the adult creates a very focused context of joint attention with the child in order to 628 

supervise in a certain sense what the child will focus on (Rader & Zukow-Goldring, 629 

2012). This motivates us to allow the robot to have knowledge from the user about 630 
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when demonstrated actions begin and end, particularly when the user is also naming the 631 

objects. 632 

In our previous research, iCub was learning about actions, and we introduced a bias 633 

such that actions would generalize over objects. By performing actions such as moving 634 

different objects from different starting locations to a fixed target location and calling 635 

that “move A to B”, the system detected the variability in the A argument, and thus 636 

learned that the move command could take arbitrary arguments for the object. The sys-637 

tem thus learned to generalize over objects. 638 

As we have seen, for objects in the Table of Hanoi experiment, the situation is differ-639 

ent. Objects are not of a single form of equivalence class. Rather, there are specific rules 640 

associated with each object and its movement with respect to the presence and absence 641 

of other objects at the source and target destinations. Interestingly, these constraints are 642 

coded in the statistical structure of the data in the ELM, and they are extracted by the 643 

multi-level reasoning, to become reflected as pre- and post-conditions of the action rep-644 

resentations in the SM.  645 

A principal limitation of the current system is the restrained environment in which it 646 

is demonstrated. One can ask whether the current system could generalize to a much 647 

more open and high dimensional world, where the focus of interaction would not be so 648 

obvious. It has been stated by Levi-Strauss that the objective of man is to understand the 649 

world around him (Lévi-Strauss, 1979). Beneath this objective lies a set of tools for at-650 

tempting to impose structure on the world. The degrees of freedom for the possible 651 

structures that could be imposed on the observables in the world is quite large, and in 652 

the absence of constraints, the resulting models or explanations can deviate substantially 653 

from the truth, or never converge. This is essentially related to issues of learnability in 654 
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language, where it has been claimed that the training data that the child is exposed to is 655 

so highly under-constrained, that there must be some highly specialized language spe-656 

cific learning capability (reviewed in detail in (Dominey & Dodane, 2004)) along with 657 

human ‘pedagogy’ (Gergely & Csibra, 2005, 2006). However, in the presence of proper 658 

constraints, the problem changes, any typical interactions between infants and caretak-659 

ers are characterized by behavior that creates joint attention around the object of inter-660 

est, thus effectively reducing the search space to something very tractable. It has to be 661 

noted that, as joint attention need intentional understanding (Kaplan & Hafner, 2006) 662 

these notions works in a “transitive” way, and thus the intention of a human (extracted 663 

here from the reasoning part) helps the robot to engage in a joint attention episode with 664 

the agent and thus retrieve the most relevant visual information (Demiris & Khadhouri, 665 

2006; Ognibene, Chinellato, Sarabia, & Demiris, 2013). 666 

This gives us hope that the current approach can scale. By including the human in the 667 

learning context, we exploit the notion that the human will perform this search space 668 

reduction, by making pertinent demonstrations, and by using language to identify the 669 

objects of focus. Still, we remain humble, as the current research is far from a user-670 

study. Rather it serves as a proof of concept that through interaction with humans, cog-671 

nitive systems can extract knowledge that serves as the basis for reasoning on future 672 

situations. 673 
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Abstract. The ability to generate and exploit internal models of the body, the 
environment, and their interaction is crucial for survival. Referred to as a 
forward model, this simulation capability plays an important role in motor 
control. In this context, the motor command is sent to the forward model in 
parallel with its actual execution. The results of the actual and simulated 
execution are then compared, and the consequent error signal is used to correct 
the movement. Here we demonstrate how the iCub robot can (a) accumulate 
experience in the generation of action within its Autobiographical memory 
(ABM), (b) consolidate this experience encoded in the ABM memory to 
populate a semantic memory whose content can then be used to (c) simulate the 
results of actions. This simulation can be used as a traditional forward model in 
the control sense, but it can also be used in more extended time as a mental 
simulation or mental image that can contribute to higher cognitive function such 
as planning future actions, or even imagining the mental state of another agent. 
We present the results of the use of such a mental imagery capability in a 
forward modeling for motor control task, and a classical mentalizing task. Part 
of the novelty of this research is that the information that is used to allow the 
simulation of action is purely acquired from experience. In this sense we can 
say that the simulation capability is embodied in the sensorimotor experience of 
the iCub robot. 

Keywords: Humanoid robot, perception, action, mental simulation, mental 
imagery, forward model. 

1 Introduction 

One of the central capabilities that cognitive systems provide to living organisms is 
the ability to “travel in time,” that is, to imagine the future, and recall the past, in 
order to better anticipate future events [1]. This can be considered in the context that 
one of the central functions of the brain is to allow prediction [2, 3]. One of the most 
classical uses of prediction in the context of control is the forward model, which 
allows a system to predict responses to a motor command, and then compare the 
predicted and actual outcome. This notion has been extensively applied in the 
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neuroscience of motor control [4]. At a more extended time scale, a suitably detailed 
forward model can be used as a simulation system for allowing the system to image 
how things might have been, or how they might be in the future. This can allow 
perspective taking, as required for solving tasks in which one must take the 
perspective of another. In the “Sally – Anne” task, a child is shown a set-up with two 
dolls, Sally and Anne. Sally puts her ball in a basket, and then leaves. Meanwhile, 
Anne moves Sally’s ball into a box. Then Sally returns, and we can ask the child 
“where will Sally look for her ball?” Frith and Frith demonstrated [5] that before a 
certain age, children will “mistakenly” indicate that Sally will look in the box, the 
ball’s actual location, rather than in the basket, where she put it. They suggest that the 
ability to mentalize – to represent other’s mental states – relies on a system that has 
evolved for representing actions and their consequences. Such a capability to compare 
representations of others mental states with reality can form the basis for detecting 
that another agent is not telling the truth [6]. In the current study, we present a 
capability that allows the development of an internal simulation function, based on 
experience acquired by the agent, which allows the generation of mental simulations 
that can be used both in low level motor control. 

The Experimental Functional Android Assistant (EFAA) system functions in a 
domain of physical interaction with a human as illustrated in Figure 1. Objects are 
manipulated by the robot and the human in cooperative interactions, and thus it is 
important that the EFAA system can accurately perform these manipulations and 
keep track of the actual and predicted physical state of itself and the human in their 
shared space. 

2 System Description 

The system provides control for real-time human interaction with the iCub robot that is 
achieved by articulation of three software modules: Autobiographical Memory, 
abmReasoning and OPCManager. The two first modules (AutobiographicalMemory 
and abmReasoning) have been previously described [7, 8]. They provide the ability for 
the system to store the history of all interactions in the ABM, and to extract conceptual 
information from the ABM, including the meaning of spatial and temporal referencing 
terms. We will briefly describe these functions, and then focus on the OPCManager 
(OPCM). Our complete system is developed in the context of the emergence of a self of 
the robot (use of an autobiographical episodic-like memory and a reasoning based on 
the experience) but an important property of the self is the ability to mentally simulate 
and predict consequences of the actions of himself or of other. 

Illustrated in Figure 1, the Objects Properties Collector (OPC), contains the world-
related knowledge of the robot at the current time. Here, we use two different OPCs. 
One will be related to the “real” world (realOPC), and the second one to the ”mental” 
picture of the robot and to his imagination (mentalOPC). The main purpose of the 
OPCmanager module will be to simulate in the mentalOPC activities previously 
learned through the joint action of the AutobiographicalMemory and the 
ambReasoning, then to observe the possible implication of these activities, and to 
compare this with the final state of the same activities in the real world.  
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2.1 Autobiographical Memory and ABM Reasoning 

The Autobiographical memory (ABM) is made up of an episodic memory and a 
semantic memory. The Episodic memory consists of 12 SQL tables, and stores the 
content of the OPC, with related contextual knowledge. The information will be: 
content of the realOPC, time, date, agent performing an action, semantic role of the 
argument of an action (i.e.: "ball": object, "north": spatial).  

The Semantic Memory is made up of 12 SQL tables and stores the knowledge of 
the iCub related to different levels. Levels are: spatial, temporal, contextual, shared 
plan, behaviors. The semantic memory is constructed by extracting regularities from 
the episodic memory as human and robot actions cause changes to the states of 
objects on the ReacTable. 

As such actions take place during the course of ongoing interactions, these events 
are stored in the episodic memory. The ABMreasoning function then extracts 
regularities that are common to experiences that are encoded in the episodic memory, 
to populate the semantic memory. The semantic memory thus includes the names and 
locations corresponding to locations taught by the human, and actions (e.g. put an 
object at a location) and their pre-conditions (e.g. that the object should be present) 
and post-conditions (e.g. that the object is now at location). Thus, through interaction, 
the system learns about the pre- and post-conditions of actions. This knowledge will 
be crucial in allowing the system to mentally simulate action. 

2.2 OPC Management of Physical Reality and Mental Simulations 

The OPC manager ensures the proper functioning of the realOPC and the mental 
OPC. The realOPC should maintain an accurate reflection of the physical state of the 
world. This state will be modified after the execution of actions. Thus, when the robot 
or the human perform an action of the type “put the triangle on the left”, the physical 
state changes that result from this will be that the triangle is at the north location. For 
the realOPC, these changes will occur as part of the normal functioning of the OPC as 
it is updated by perceptual inputs from the ReacTable. This corresponds to the update 
of an internal model (the realOPC) via perception (ReactVision inputs to realOPC). 

The novel aspect concerns the updating and maintenance of the mentalOPC. The 
function simulateActivity will simulate an action by retrieving its pre-conditions and 
post-conditions from the Semantic memory, and then “executing” this action by 
checking that its pre-condtions hold in the mentalOPC, and then updating the 
mentalOPC so that the post-condtions now hold, and the pre-conditions are removed. 
Thus, we emphasize that mental simulation is based on experience, initially encoded 
in the episodic memory and then extracted in the semantic memory. 

3 Experiments 

Here we report on two experimental evaluations of the use of the real and mental 
OPCs in different contexts. 
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3.1 Forward Model in Grasp Control 

A current problem in robotics is the use of feedback in motor control, for example, 
when a robot attempts to grasp an object and the grasp fails, feedback can be used to 
detect the failure [9]. Such a feedback control look is illustrated in Figure 3. The 
motor command is sent to the forward model, and to the body, and the resulting 
predicted sensory feedback and actual sensory feedback are compared. If they match, 
the movement has been successfully completed, and if not, a failure is detected. We 
can use this method in the dispositive described above with the iCub. After 
experience producing the “put object at location” action, the system has acquired 
semantic information that the result of this action is that the object is now positioned 
at the specified location.  

Functionally, the mentalOPC is used as the forward model. The “put” command is 
sent for execution to the ICubMotorCmd module, and it is also sent for simulation to 
the SimulatActivity function of the OPCmanager. The realOPC and mentalOPC can 
then be compared to assess the success of the action. 

 

Fig. 2. Illustration of the forward model in the context of motor control. The motor command is 
sent to the motor command system and to the internal model. Subsequent comparison allows 
the system to determine if the grasp was correctly executed. Figure from [2]. 

Figure 4 illustrates the contents of the realOPC and mentalOPC before and after a 
successful “put circle left” action is executed by the iCub. The circle is indicated in 
the OPCs by a blue cube. In the Before panels it is at the “North” location near the 
robot’s midline, and in the After panels it is displaced to the robot’s left, to the 
location labeled Left. The diffOPC function produces a report indicating that there is 
no significant difference in the two positions, as illustrated in Table 1. 

Figure 5 illustrates the mentalOPC and realOPC before and after “put cross left” 
action in which there is a physical disturbance during the execution by the iCub. In 
the lower right panel (Actual – After) we can observe that the representation of the 
cross object is not positioned on the localization “Left” in contrast to the predicted 
location that can be visualized in the upper right panel (Mental – After). During the 
execution a perturbation occurred and the put action resulted in a final positioning of 
the object that does not match with the predicted location. This mismatch is detected 
by the diffOPC function, as illustrated in Table 2. 
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Table 3. Results returned from diffOPC comparing realOPC and mentalOPC. The comparison 
indicates a significant difference, corresponding to difference between the “false belief” 
attributed to Sally in the mentalOPC and the “true beliefs” attributed to Anne in the realOPC. 

 

realOPC we see that Sally is no longer present, and the object has been moved to the 
North location. The mentalOPC is the same image as seen when Sally was present, 
and it is not updated. The ability to maintain this representation allows the system to 
recognize the mismatch between what Sally saw, and the actual state of the world. 

Here we see that the use of the mentalOPC allows the system to “mentalize” about 
the belief state of another agent. This experiment has potential impact in the context 
of the ongoing debate on what is required for passing false belief tasks, and will be 
addressed in the discussion. 

4 Discussion 

The human cognitive system allows us to travel in time and space – we can imagine 
possible futures, and relive and analyze the past [1]. To do so, the system requires the 
ability to simulate itself and its activity in the world. We hypothesize that this 
simulation capability derives from the long evolved capability for forward modeling 
that was crucial for the ability of advanced primates to navigate through a complex 
world where real-time sensorimotor was crucial to survival. In the current research we 
demonstrate a developmental mechanism that could contribute to the emergence of 
such a simulation capability. 

Through the accumulation of its own experience, the iCub EFAA can extract the 
regularities that define the pre- and post-conditions of its physical actions, and those 
of the human. This knowledge is then used to drive the mental simulation of action, 
which can actually operate faster than real-time, and generate predictions of expected 
outcome before the real movement is achieved. We demonstrate the functionality of 
this mechanism in two settings: Forward modeling in sensory-motor control, 
mentalizing in a false-belief task. 

Learning forward models has been successfully applied in robotics [11, 12]. In the 
context of forward modeling, it is important for the system to detect that inconsistent 

3 entities changed : 
Entity : toy  
  robot_position_x -0.034557 
  robot_position_y 0.276599 
  robot_orientation_z -0.042716 
  rt_position_x -0.118581 
  rt_position_y -0.252269 
Entity : icub 
  Beliefs added :toy is column toy is north (after) 
  Beliefs removed :toy is left, Sally is isPresent (before) 
Entity : Sally 
The beliefs of Sally didn't change, because she wasn't here. 
Her beliefs are : toy is left. 
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information is being provided. This can be important in the ongoing learning of the 
system based on experience. Thus, if the human says that it will perform an action, 
and then the system can detect a difference between the actual and predicted action, 
then it can mark this experience as suspect, and not include it in future learning, thus 
not contaminating experience with questionable content. 

In the context of mentalizing and the false belief task, the current research has 
significant potential impact. There is an ongoing debate concerning the nature of the 
mental processes that are required to take the mental perspective of another agent. 
This includes discussion of whether distinct language capabilities are required [10]. 
Our research provides insight into this question, by illustrating how a simulation 
capability that is directly derived from experience can be used to provide an agent 
with the basic representational capabilities to perform the false belief task.  

It can be considered that the mere notion of “autobiographical memory” 
presupposes that the system must have a first person perspective, from which that 
memory is situated. The notion of first person perspective is in fact a deep 
philosophical issue (see eg. [13]). From the perspective of the current research, we 
can say that the robot has taken steps towards achieving a minimal form of 1PP in that 
it has developed an integrated representation of itself within the peripersonal space. 
This is also related to the notion of ecological self as defined by Neisser, which is the 
individual situated in and acting on the immediate environment [14]. What is 
currently missing with respect to these notions of self is a reflective capability, where 
the system reasons on a self-model as an integrated model of the very representational 
system, which is currently activating it within itself, as a whole [15]. 

In summary, the current research makes a significant contribution to the cognitive 
systems research. It allows the iCub EFAA system to autonomously generate an 
internal simulation capability based on its own personal experience. This simulation 
capability can operate at the level of physical control, and at high levels of cognition 
including mentalizing about the belief states of others. Our current research integrates 
this capability in the context of simulated situations models and language 
comprehension [16, 17]. 

Acknowledgements. This research has been funded by the European Commission 
under grant EFAA (ICT-270490). 
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Abstract We present here a system capable of learning to 

extract the correct comprehension and production of personal 

pronouns and proper nouns during Human-Robot or Human-

Human interactions.  We use external 3D spatial and acoustic 

sensors with the robot iCub to allow the system to learn the 

proper mapping between different pronouns and names to their 

properties in different interaction contexts.  The properties are 

Subject (Su), Speaker (Sp), Addressee (Ad) and Agent (Ag). A 

fast mapping system is used to extract correlation between the 

different properties. After a learning phase, the robot is able to 

find the missing property when only 3 out of 4 are known, or at 

least to discriminate which word cannot be used to be the 

lacking property.  We present results from a set of experiments 

that provide some insight into aspects of human development.  

 

Index Terms Embodied robotic, functional language 

learning, real-time learning, fast mapping, human-robot 

interaction.  

I. INTRODUCTION  

 The future of social robotics will be written in the 

understanding of complex relations, where robots will 

interact not only with one user, but also with multiple agents. 

The classical learning of language through one-to-one 

spoken interactions has been studied for some time ([1] [4]), 

but it has been shown that these interactions are insufficient 

to learn or use correctly personal pronouns [5]. According to 

Oshima-Takane, learning to use personal pronoun like  

 is done through observation and with the involvement 

of the student with several agents ([6], [7]). Gold and 

Scassellati have made several models using fast mapping for 

[8] [10], but here, we propose a system able 

to extend the learning from personal, to both personal and 

impersonal pronoun. This understanding is also an important 

step for the emergence of self [11]. 

If we want robots able to be in the middle of humans, 

behaving as one of them, we need these robots to understand 

human interactions. In fact, human interactions can be very 

complex and robots need a robust system able to understand 

and to acquire the knowledge of directed human interaction 

in order to be part of the interaction. The goal is not only to 

extract knowledge and to be able to create new knowledge, 

but also to use this knowledge at the proper moment for 

example to understand the type of relationship between 

different persons. In the future, robots should be able to 

behave in a human environment, and to get clues about the 

different relationship between the people present like 

humans do. This is why we decided to focus about the 

development of children, and try to apply it to our system, to 

get a robot with the same developmental results. 

To do so, we present here a fast mapping system able to 

understand the use of different pronouns during a classical 

interaction either dyadic or triadic. We use a fast mapping 

system between the use of a pronoun and the context in 

which it has been used to classify the different subjects of 

the pronounced entences. The model is based on child 

development. The pre-required for the understanding of a 

triadic interaction is to be able to detect the Sp (speaker), Ad 

(addressee), Ag (agent) and Su (subject) of an action. 

Corkum & Moore [12] have shown that at about 9 months, 

children   can detect the age 

has been put in evidence by Tomasello [13] as the 

month revol and is the starting point of a full 

understanding of a complex interaction, including triadic 

interaction. Thus, this will be the starting point of our 

system. We will give the robot the possibility to detect these 

interaction properties. 

The section II will explain the method and system used 

(the physical and software architecture), the section III will 

explain the learning mechanism through fast mapping. The 

section IV will summarize the experiments and the 

conditions we tested, and the results obtained. Finally, we 

will have a discussion part (section V) about the results and 

limitations of the system and what are our next steps in this 

field of research, before concluding (section VI). 

II. METHOD AND SYSTEM USED 

A. Physical Architecture 

In this section we will present the system we used for our 

work. The following study has been realized on the robot 

iCubLyon01 [14] at the INSERM Robot Cognition 

Laboratory in Lyon, France. The physical architecture is 

centered on the robot iCub, and the Reactable (an interactive 

table), to allow face-to-face physical interaction [15]. We use 
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a first Kinect above the head of the robot to detect the 

movements of the present agents. A second Kinect will be 

used to detect the orientation of each agent, and binaural 

microphones placed on each ear of the robot to localize the 

origin of the sound (see Figure 1). This second Kinect needs 

to be placed at less than 1m from the subject for good results. 

This is the reason of the use of 2 Kinects. 

 
Figure 1: Physical and software architecture of the 

system used. 

 

The software architecture is centered on an Objects 

Properties Collector (OPC) which can be considered as a 

working memory, and that represent the state of the world at 

a given time. In this OPC the contextual data from the 

different sensors will be stored and all this information will 

be stored in an episodic-like memory (ELM) and be parsed 

by a reasoning module (abmReasoning) to create some 

knowledge relative to the heard sentences, and store it in a 

semantic memory (SM). The ELM and SM will form the 

auto-biographical Memory (ABM). More information about 

ABM can be found in [16], [17]. 

B. Software Architecture and Sensors 

The audio interface and speechRecognizer used are based 

on Microsoft speech recognizer SAPI5.1. The system, given a 

grammar, can detect the semantic role of each word in a 

sentence. For example, we used sentences like:  

the cross to the left  or You point the circle . In these 

sentences, the first word will be extracted as the subject (or 

pronoun), the second as a verb, and the last one as the object 

of the sentence. 

The rigid head motion of several human partners can be 

estimated using the Random Forest algorithm developed by 

[18]. In fact, a depth camera (Asus Xtion) was placed on the 

Reactable close to the robot and facing the human partners. 

Given the depth image provided by the sensor, the Random 

Forest Head tracking algorithm provided the position and 

This information was used to estimate where the visual 

attention of each partner was directed to. 

signals coming from the binaural microphones placed in the 

ieved in real-time 

thanks to the Jack library (http://jackaudio.org/). The 

Interaural Intensity Difference (IID) was computed. In fact, 

sound coming from the right has a higher intensity in the 

right ear microphone than on the left ear one. This difference 

allowed us to determine if the sound was coming either from 

left or right. In the triadic setup, the robot was able to 

determine who the speaker was (see Figure 2). 

 

 
Figure 2: System running when the robot is interacting 

with 2 agents around the Reactable. 

C. Method 

In our study, the robot will have a set of training data. For 

each set of learning data, we will use the I

You and the proper names: and 

  

and  will never appear during the learning phase 

 

Then for each of the four possible modalities (Sp, Ad, Ag, 

Su) we give a random but doable (ie: Sp different of Ad) set 

of the three other modalities, and ask for the fourth one. For 

example, we will give the system: 

 and the system should return: 

. Another example would be: we give the system: 

 and 

the system should return: . 

 

We will test different learning conditions (that we can 

easily simulate see Section IV) in order to i) determine how 

the system learn with constrained conditions, potentially 

simulating constrained real solution and ii) investigating 

what kind of interaction is needed for the child to learn 

personal and impersonal pronoun use.  We will test a set of 7 

different conditions. These conditions involved two or three 

agents, the robot can be either spectator or actor. The precise 

conditions will be explicated in the section IV, at the 

beginning of each sub section. An agent can talk to someone 

or not, and an agent can talk about the action of someone 

(himself included) or not.  

As we said earlier, Tomasello has shown in [13] that the 

child is not able before the to fully 
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understand a spoken interaction where he/she is not involved 

(neither speaker nor addressee). This is what Oshima-Takane 

[6], and will be summarized 

by: Ad= iCub. Another kind of condition that we tested is 

the case of «blind» children. The particularity of «blind» 

children is that they can only detect the actions related to 

them: Ag = iCub [19]. We will have two conditions with 

respectively two or three agents, where the Ag of the action is 

always the iCub. The Figure 3 is an example of a tested 

condition with the corresponding  legend . 

 

Figure 3: Example of all available interaction for one of 

the learning conditions (left). Right: black arrows mean 

that the origin agent SPEAKS TO the target agent (origin = 

Sp, target = Ad). Red arrows mean that the origin agent 

SPEAKS OF the target agent  (target = Ag). 

III. LEARNING MECHANISM 

A. Data formalization 

For each encountered interaction, we can have access to the 

four contextual properties of interest: Speaker (Sp), 

Addressee (Ad), Agent (Ag) and Subject or Pronoun (Su). 

We take the Su as higher level of property. For each Su, we 

build a cubic N
3
 matrix (three dimensions: one for Sp,one for 

Ad and one for Ag), where N is the number of label 

encountered. A label can be any Ag, Ad or Sp encountered 

(i.e.: , . A label corresponds to a way 

to refer to a person for the robot. In most cases, the label will 

correspond to the proper name of the person (e.g. Peter), but 

it can be something generic (e.g. Agent_5). However, Su 

include personal pronouns ( ) and proper names 

that have been used in a sentence. The matrix is then filled 

with the number of events encountered. The notation (1) 

gives us the number of events encountered with a particular 

set of Su, Sp, Ad and Ag. 

MSu(Sp,Ad,Ag)   (1) 
 

For example, in the case of the sentence: You point the 

Su= You , Sp= , Ad= , 

Ag= , we will add 1 in the matrix: 

MYou(Greg,Maxime,Maxime), and for pushes the 

cross Su= , Sp= , Ad= , 

Ag= John , we will add 1 in the matrix: 

MJohn(Peter,Greg,John). We can expect to have only zero in 

the case of Sp is Ad, because we consider the case where one 

 talk to himself. In the case of the apparition of a new 

label, the matrix will grow and fill the new case according to 

the number of utterances. 

After the learning phase, we will have as many matrices as 

we have of different Su, and each matrix will be of size N
3
 

with N the number of label encountered. 

B. Fast Mapping 

As we have seen earlier, the goal of the system is to retrieve 

the fourth property of an interaction, where the robot knows 

three properties. It can be used for the example when the 

robot sees Maxime moving (Maxime = Ag), and want to 

explain the situation (iCub = Sp) to Peter (Ad = Peter). 

What Su should he use in this context (iCub = Sp, Ad = 

Peter, Maxime = Ag)? Another utilization could be when the 

robot hears Maxime speaking (Maxime = Sp) while looking 

at the robot (Ad = iCub Su = 

), and the iCub wants to find who is the agent to know 

if he is concerned (context: Maxime = Sp, Ad = iCub, Su = 

). 

To find a missing label (Sp, Ad, Ag) or a respectively a 

pronoun (Su), we list all the labels (resp. pronouns) known, 

and for each, we calculate a Chi Square associated to the 

corresponding situation (see Table 1). The p-value relative to 

the Chi-Square will give us some information about the 

distribution of event (context or no-context) given the label. 

If this p-value is strong, the two distribution are different and 

there is an effect of the context on the use or not of the 

pronoun. The score of the Chi Square will determine the 

likelihood to use (or not) a specific label or pronoun in a 

specific context. For a specific context, and a specific label 

(or pronoun) the Chi Square will be calculated with the data 

shown in the Table 1, where A is the number of sentences 

heard with this label (or pronoun) in this context, B is the 

number of sentences with a different label (or pronoun) is 

this context. C is the number of sentence with this label (or 

pronoun) in a different context and D the use of a different 

label (or pronoun) in a different context. 

 

Table 1: Table of fast mapping for a specific 

label/pronoun and a specific context 
 LABEL/PRONOUN ~LABEL/PRONOUN 

CONTEXT A B 

~CONTEXT C D 

 

The Table 1 can correspond to the following situation: 

Can I use this label (resp. pronoun) in this context?  If 

the p-value associated to the Chi Square is above a threshold, 

the property is rejected. If the p-value is under this threshold, 

we add the distribution of the property to the score of the 

label (resp. pronoun) as shown in the pseudo code of the 

Figure 4. 
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GET THE SPECIFIC CONTEXT. 
FOR EACH KNOWN LAB./PRON.: 
{ 

IF: P-VALUE( ²) < THRESHOLD 

- DON T CHANGE THE LAB./PRON. SCORE 
ELSE: 

- ADD TO THE SCORE OF THE LAB./PRON., THE DISTRIBUTION OF 
THE PROPERTY: (A/C  B/D) 

} 
IF: ONE OR MORE LAB./PRON. HAS A SCORE > 0 
- RETURN THE LAB./PRON. WITH HIGHER SCORE 
ELSE: 
- REMOVE LAB./PRON. WITH SCORE < 0 

Figure 4: Pseudo code corresponding to the searching 

part 

C. Data Collection 

In this section we will explain how we manage the 

collection of learning data. During an interaction with one or 

several agents around the Reactable, the different modalities 

will be retrieved as follows: 

- Sp: We identify the speaker by using the binaural 

microphones placed on the iCub. 

- Ad: As described in the section II-A, we use a Kinect to 

detect the orientation of the head of each speaker. 

- Ag: We use the Kinect placed above the iCub to detect 

who is moving, or when the agent is the iCub, he will 

use proprioception (i.e. check if motors are moving). 

- Su: The speechRecognizer is used to extract the subject 

of the sentence, and to return it. 

All this contextual information is collected from the OPC, 

and stored in the ABM. Once all the information is in the 

ABM, the reasoning module can create the matrices. In the 

case of simulated data, each sentence is repeated 5 times in 

order to simulate the redundancy present in language 

IV. EXPERIMENTS AND RESULTS 

In this section, we will present the 7 conditions tested and 

the results. Each subsection will detail one specific condition 

and the results obtained. We consider that the robot 

understands a subject when he can retrieve the Ag of the 

action with a Su, Sp and Ad, and that he has a correct use of 

a subject when given Sp, Ad and Ag he retrieves the correct 

Su.  

A. Triadic spectator 

 
Figure 5: triadic spectator condition. Three agents talk 

to each other, about each other. 

This first and complete  situation is the one we recorded 

with real data and is the only condition where the sentences 

are not repeated (see Figure 5). We have three agents: Peter, 

Maxime and Grégoire. Each agent talks to the other two, 

about his own action, the action of the addressee, and the 

action of the third agent. We thus have a total of 18 different 

sentences. ut repetition. 

With this set of 18 sentences, the system is able to 

understand and to correctly use the pronouns I  and You  

and also the use and the understanding of a known name 

(Peter, Maxime or Grégoire) but not of an unknown name. 

UNDERSTANDING I   

CORRECT USE OF I   

UNDERSTANDING YOU   

CORRECT USE OF YOU   

UNDERSTANDING A KNOWN NAME  

CORRECT USE OF KNOWN NAME  

 

The learning data for this condition are summed up here: 

 

Interaction Sp Ad Ag Su 

1 Greg Maxime Greg I  

2 Greg Maxime Maxime You  

3 Greg Maxime Peter  

4 Greg Peter Greg I  

5 Greg Peter Maxime  

6 Greg Peter Peter You  

7 Maxime Peter Greg  

8 Maxime Peter Maxime I  

9 Maxime Peter Peter You  

10 Maxime Greg Greg You  

11 Maxime Greg Maxime I  

12 Maxime Greg Peter  

13 Peter Maxime Greg  

14 Peter Maxime Maxime You  

15 Peter Maxime Peter I  

16 Peter Greg Greg You  

17 Peter Greg Maxime  

18 Peter Greg Peter I  

B. Dyadic spectator 

 
Figure 6: dyadic spectator condition. Two agents talk to 

each other, about each other. 

This condition refers to the iCub watching two persons 

talking to each other about each other (see Figure 6). The 

iCub is only spectator and in no way involved in the 

sentences. The agent uses only I  and You  and never an 
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 4 different 

sentences repeated 5 times, for 20 training sentences. The 

results show that the robot can understand correctly the use 

of I  and You . That means that in the case where the 

robot wants to describe (Sp=iCub) what he or his addressee 

does (Ag=iCub or Ag=Peter) to someone (Ad=Peter) he will 

correctly use the pronoun or . The robot is also 

able to understand I and You  in a sentence (ie: when we 

give the robot Su = I , resp. Su = You , Sp and Ad, the 

robot assumes that the Ag is the Sp for I  resp. Ag = Ad for 

You . 

UNDERSTANDING   

CORRECT USE OF   

UNDERSTANDING OU   

CORRECT USE OF OU   

UNDERSTANDING A NAME  

CORRECT USE OF A NAME  

C. Triadic agent 

 
Figure 7: triadic agent condition. Two agents talk to each 

other and to the iCub about the three of them. 

This condition is similar to the previous one (Triadic 

Spectator) but this time, one of the agent is the iCub, and 

does not speak (see Figure 7). We have thus not 18 but 12 

different sentences that we repeated 5 times each for a total 

of 60 learning sentences. The results are similar to those for 

the triadic spectator, except that this time the robot is unable 

to use correctly the pronoun I . When the robot is talking 

about him doing an action, he will prefer using  

rather than I  while for the other agent, he can use it 

correctly. But an interesting fact is that if we ask the robot 

who would be the agent in the case of a sentence said by the 

iCub using I , the robot correctly understands that I  

refers to him. 

UNDERSTANDING I   

CORRECT USE OF I   

UNDERSTANDING YOU   

CORRECT USE OF YOU   

UNDERSTANDING A KNOWN NAME  

CORRECT USE OF KNOWN NAME  

D. «Blind» three agents 

 
Figure 8: «blind» three agents condition. Two agents talk 

to each other and to the iCub, about the . 

This condition is a triadic condition with the robot and 

two agents (see Figure 8). The two agents can only talk about 

the action of the robot (Ag = iCub). In this condition one 

agent can talk to the other or to the iCub, about the iCub 

(third person). We have a set of 4 different sentences 

repeated 5 times for a total of 20 learning sentences.  The 

results are that the robot understands and uses correctly 

You  but not I  (because he has never heard it). Also, the 

robot is confused with  understanding and using the name 

.  It could be the same as  or could just refer to 

 

UNDERSTANDING I   

CORRECT USE OF I   

UNDERSTANDING YOU   

CORRECT USE OF YOU   

UNDERSTANDING A NAME  

CORRECT USE OF NAME  

E. «Blind» two agents 

 
Figure 9: «blind» two agents condition. An agent talks to 

the iCub about the iCub's actions. 

In this condition, we have only two agents: the iCub and a 

human agent (see Figure 9). The human only talks to the 

robot, about the robot. We have thus only one sentence 

possible ( You ), repeated 5 times. With this learning 

data, as expected, the robot is unable to understand or use 

I  or You  Also, the 

knowledge about the use of any name. 

UNDERSTANDING I   

CORRECT USE OF I   

UNDERSTANDING YOU   

CORRECT USE OF YOU   

UNDERSTANDING A NAME  

CORRECT USE OF NAME  
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F. «Addressee» three agents 

 
Figure 10: «addressee» three agents condition. Two 

agents talk to the iCub about the action of everyone. 

In this condition, the robot is in presence of two agents 

(see Figure 10). The robot only perceives the sentences 

directed to him (Ad = iCub). But an agent can talk of the 

action of a third person, while he is talking to the robot. We 

have a set of 6 different sentences (2 Sp, talking to 1 Ad, 

about 3 different Ag), repeated 5 times, for a total of 30 

sentences. The results are that the robot correctly 

understands and uses I  and You  and understand a 

known name as pronoun (ie: ) but not an 

unknown name. In this condition, the robot never hears his 

own name. 

UNDERSTANDING I   

CORRECT USE OF I   

UNDERSTANDING YOU   

CORRECT USE OF YOU   

UNDERSTANDING A KNOWN NAME  

CORRECT USE OF KNOWN NAME  

G. «Addressee» two agents 

 
Figure 11: «addressee» two agents condition. A agent 

talks to the iCub about the actions of both the human 

and the robot. 

In this condition, the robot is in presence of one other 

agent (see Figure 11). This human agent talks to the robot 

about the actions of both human and robot. We have a set of 

2 different sentences ( I  You ) repeated 5 

times for a learning set of 10 sentences. One notable thing in 

this condition is that the robot fully understands and uses 

correctly I  and You , even if he did not hear them in at 

least two different situations, where we could expect the 

robot to understand that, as a child does sometimes, his name 

is You  and the name of the human is I . We will discuss 

it in the following section. 

UNDERSTANDING I   

CORRECT USE OF I   

UNDERSTANDING YOU   

CORRECT USE OF YOU   

UNDERSTANDING A NAME  

CORRECT USE OF NAME  

V. DISCUSSION 

The results we obtain with our cross validation system are 

primarily those that we expected based on child 

development. Indeed, we have seen that the case of a full 

triadic interaction observed by the robot provides the most 

information about the use of a personal pronoun (or proper 

noun). A fast mapping system allows the detection of the 

situation where a certain pronoun should be use. The 

learning phase (filling the matrices) and the working phase 

(finding the good lacking property) work in real time. The 

system is not greedy in computation or memory, but allows 

the understanding of an interaction with several agents, and 

to use correctly different subjects for a sentence according to 

the situation. However we can see a few limitations with our 

system. 

The first limitation is the non-generalization of plural 

pronouns like  or . This is in current 

development, and will need a processing of several Sp, Ad, 

Ag and not a one-to-one system as we have currently. 

The second limitation is in the gender or social relation. 

One of our future research axis is to work on the 

 and  but also more social 

relation has: parent/child professor/student. To do so, we 

will have to extend our matrix system for a more dynamical 

system extensible to more properties than the 4 that we have 

now (Su, Sp, Ad, Ag). 

The third limitation is observed on the result that we 

obtained in the condition «addressee» two a . The 

robot only witnesses a Human saying I  when he refers to 

himself, and You  when he talks to and about the iCub. We 

thus expected the robot to be confused between the use of 

I  for Sp=Ag and when it refers to the Human, and vice 

versa for You  and the robot. Why the robot does not think 

he is You  and the Human is I ? The answer, is because 

we put the same weight to each property. The simple 

properties like: Ag  have as much weight as a 

Sp=Ag ke 

Sp fixed, Ad fixed, Su 

is less 

intuitive: the robot searches a more complex correspondence 

between different contextual information. In our case, when 

the robot has to use I , he checks for example the case 

where he has to talk about his own actions: Sp=Ag

Ad!=Ag Ag . These three properties are true. The 

first two will be in favor or using I  and the third one is in 

favor of You . Because each property has the same weight, 

the robot will choose to use I . With a bigger weight to the 

simplest properties, and for the exact known situation, we 
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could solve this kind of situation and recreate the ambiguity 

seen in children as shown by Gold and Scassellati [8]. 

The fourth limitation is the fact that the robot cannot 

generalize to an unknown name. Indeed, if one hears a 

know that Mark will be the agent of the action. We do so, 

because we know that Mark is not another unknown pronoun 

until now, but is a name. The robot does not know if what he 

hears is a name or a pronoun. The first time he hears Mark, 

he could try to analyze it as he would do for . This is 

another limitation also experienced, until we reach the 

knowledge of all existing pronouns, and we categorize every 

other subject as a name, especially if we know that the word 

is a name. 

With this system as a proof of concept, we can now in the 

future generalize the learning of the nomination of any agent 

according to the context. The future step in our work will 

lead to the good use or the good understanding of the 

appropriate word for a more complex interaction. For 

example, a child will address to his father with the word 

, while a friend will call him by his name. With this 

concept we will now be able to extract more advanced 

relationship between people, and also we will be able to use 

this knowledge for a better interaction. However, the first 

step that we showed in this study, is needed in order to 

develop more complex reasoning and knowledge. 

VI. CONCLUSION 

We provide here a simple system to learn correctly 

different personal or impersonal pronouns, through fast 

mapping. A small amount of data is required in the memory 

to have the expected result and a good comprehension of 

different pronouns. Indeed 18 sentences are enough. This 

system is easily embodied and allows the robot to be more 

efficient in the case of a complex interaction (several agents 

present). We can free ourselves from the classical HRI with 

one robot, one human, to go to more realistic interaction, and 

a better understanding of the robot of the world in front of 

him. Even if the system is not yet totally accomplished, this 

first version is a good step forward for the robot in term of 

understanding other, and situating himself in a complex 

world made of several agents. 
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Abstract 

One of the principal functions of human language is to allow people to coordinate joint 

action.  This includes the description of events, requests for action, and their organization in 

time. A crucial component of language acquisition is learning the grammatical structures that 

allow the expression of such complex meaning related to physical events. The current 

research investigates the learning of grammatical constructions and their temporal 

organization in the context of human-robot physical interaction with the embodied 

sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena.  

First, we demonstrate that a recurrent network model can be used in conjunction with this 

robotic platform to learn the mappings between grammatical forms and predicate-argument 

representations of meanings related to events, and the robot’s execution of these events in 

time.  Second, we demonstrate that this learning mechanism can function in the inverse sense, 

i.e. in a language production mode, where rather than executing commanded actions, the robot 

will describe the results of human generated actions.  Finally, we collect data from naïve 

subjects who interact with the robot via spoken language, and demonstrate significant learning 

and generalization results.  This allows us to conclude that such a neural language learning 

system not only helps to characterize and understand some aspects of human language 

acquisition, but also that it can be useful in adaptive human-robot interaction. 

 

1. Introduction 
1.1 Issues in language acquisition 

The ability to learn any human language is a marvelous demonstration of adaptation.  The 

question remains, what are the underlying mechanisms, and how do humans make the link 

between the form of a sentence and its meaning? Enormous debate has ensued over this 

question.  The debate can be characterized with one end of the continuum, Piaget’s 

constructivism,  holding that language can be learned with general associative mechanisms, 270
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and the other end, Chomsky’s innatism, holding that the stimulus is so poor, that language 

could only be learned via a highly specialized universal grammar system (Piattelli-Palmarini, 

1980).   We and others have argued that linguistic environment is rich – in response to the 

“Poverty of stimulus hypothesis” (reviewed in (Peter F. Dominey & Dodane, 2004)). As the 

child is situated in the environment, it has access to massive non-linguistic information that 

can aid in constraining the possible meanings of phonemes, words or sentences that it hears 

(Peter F. Dominey & Dodane, 2004). In this context, social interaction is clearly an important 

factor that helps the child to acquire language, by focusing its attention on the same object or 

event as the person he is interacting with via joint attention. Joint attention permits one to 

considerably reduce the possible mappings between what is said and what is happening in the 

environment.  Joint attention happens sufficiently often to assume it as one of the reliable 

ways to help the child to acquire language: for instance when playing a game, showing an 

object, ritualized situations including bathing and feeding, etc. (Carpenter, Nagell, & 

Tomasello, 1998; Peter F. Dominey & Dodane, 2004; Knoblich & Sebanz, 2008; Ricciardelli, 

Bricolo, Aglioti, & Chelazzi, 2002; Sebanz, Bekkering, & Knoblich, 2006; Tomasello, 2003; 

Tomasello & Hamann, 2012). 

Despite the potential aid of joint attention, mapping the surface form onto the meaning (or 

deep structure) of a sentence is not an easy task.  In a first step in this direction, Siskind 

demonstrated that simply mapping all input words to all possible referents allows a first level 

of word meaning to emerge via cross-situational statistics  (Siskind, 1996).  However, simply 

associating words to specific actions or objects is not sufficient to take into account the 

argument structure of sentences in language.  For instance given these two sentences “Mary 

hit John.” and “John was hit by Mary.” which have the same meaning but with a different 

focus or point of view, how could a purely word-based system extract the exact meaning of 

the sentence? How could an infant determine who is doing the action (the agent) and who 

endures the action (the object)? As simple this example is, relying only on the semantic 

words, and their order in the sentence, will not permit to reliably distinguish the agent from 

the object. 

To begin to answer this question, we consider the notion of grammatical construction as  

the mapping between a sentence’s form and its meaning (A. Goldberg, 1995; A. E. Goldberg, 

2003). Goldberg defines constructions as “stored pairings of form and function, including 

morphemes, words, idioms, partially lexically filled and fully general linguistic patterns” (A. 

E. Goldberg, 2003). Constructions are an intermediate level of meaning between the smaller 

constituents of a sentence (grammatical markers or words) and the full sentence itself. 271
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Typical grammatical constructions could be used to achieve thematic role assignment, that 

is answering the question “Who did what to whom”. This corresponds to filling in the 

different slots, the roles, of a basic event structure that could be expressed in a predicate form 

like predicate(agent, direct object, indirect object or recipient). A simplified summary of 

characterization of grammatical constructions can be seen in Figure 1. 

 

 
 

Figure 1:  Schematic characterization of the thematic role assignment task. Solving this task consists in finding 

the adequate mapping between the content words (i.e. semantic words) and their roles in the meaning of a given 

sentence. This mapping is represented by the set of arrows (here three) for each sentence surface-meaning 

mapping. 

 

Solving the thematic role assignment problem consists in finding the correct role for each 

semantic word (i.e. content word or open class word). It thus consists in finding the predicate, 

the agent, the object, and the recipient for a given action. In the preceding example this means 

that hit is the predicate, Mary is the agent and John is the object.  How could one use 

grammatical constructions to solve this thematic role task for different surface forms as 

illustrated in Figure 1?  According to the cue competition hypothesis of Bates and 

MacWhinney (E Bates & MacWhinney, 1987; E. Bates, McNew, MacWhinney, Devescovi, 

& Smith, 1982) the identification of distinct grammatical structures is based on combinations 

of cues including grammatical words (i.e. function words), grammatical morphemes, word 

order and prosody. Thus the mapping between a given sentence and its meaning could rely on 

the ordered  pattern of words, and particularly on the pattern of function words and markers 

(P. F. Dominey, 2003; P. F. Dominey, Hoen, Blanc, & Lelekov-Boissard, 2003). As we will 

see in the Material and Method section, this is the assumption we make in the model in order 272
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to resolve the thematic role assignment task, that is, binding the sentence surface to its 

meaning.  In English, function words include “the”, “by”, “to” ; grammatical markers include 

verb inflexions “-ing”, “-ed” or “-s”.  One interesting aspect of grammatical words and 

markers is that there are relatively few of them, compared to the potentially infinite number of 

content words (i.e. semantic words). Hence the terms “closed class” for grammatical words 

and “open class” for semantic words.   As these closed class words are not numerous and are 

often used in language, it could be hypothesized that children would learn to recognize them 

very quickly only based on statistical speech processing. This argument is reinforced by the 

fact that such words or markers are generally shorter (in number of phonemes) than content 

words. This notion of prosodic bootstrapping (Morgan & Demuth, 1996) is reviewed and 

modeled in Blanc et al. 2003 (Blanc, Dodane, & Dominey, 2003). 

 

1.1 Overview of the tasks 

 

In this study we investigate how a humanoid robot can learn grammatical constructions by 

interacting with humans, with only a small prior knowledge of the language. This includes 

having a basic joint attention mechanism that allows the robot to know for instance what is 

the object of focus: this particular example will serve in the “scene description” task.  We 

approach our simplified study of language acquisition via two conditions: language 

comprehension and language production. Both conditions will have two modes: a training 

mode, when the human acts as a kind of teacher, and a testing mode, where the human could 

test the language capabilities of the robot as in child-caregiver interactions.  The experimental 

tasks will test the ability of our neural network model of language acquisition to understand 

and to produce meaningful language. 

We have shown in previous studies that the neural model used (1) can learn grammatical 

constructions correctly generated with a context-free grammar (with one main and one 

relative clause), (2) can show interesting performance in generalizing to not learned 

constructions, (3) can show predictive activity during the parsing of a sentence and in some 

cases give the final correct parse before the sentence ended, and (4) that the neural activity 

may be related to neurophysiological human recording (Xavier Hinaut & Dominey, 2012; X. 

Hinaut & Dominey, 2013). We believe that these results demonstrate that the model may be 

suitable to a developmental robotic approach, extending our previous work in this domain (P. 

Dominey & Boucher, 2005a, 2005b). 

 273



5 
 

Here we have four goals: (1) to determine if it is possible to use the model in an interactive 

fashion with humans, that is, to integrate this neural model in the robotic architecture and 

make it communicate and work in real-time with the other components of the architecture 

(speech recognition tool, etc.); (2) test the model in a productive manner, that is instead of 

“understanding” a sentence, it will be able to produce one, that is, to produce the sequence of 

words of the grammatical structure given the thematic roles and the sentence type (canonical 

or non-canonical); this has not been done in our previous experiments with the neural model; 

(3) in the comprehension task, test if the neural model can learn constructions that allow for 

commands that manipulate the temporal structure of multiple events.  For instance to correctly 

respond to the sentence “before you put the guitar on the left put the trumpet on the right”.  

Finally, (4) we test the model with language input from naïve subjects, in order to determine 

if indeed this adaptive approach is potentially feasible in less structured environments. 

In the Material and Methods section we will first briefly present the robotic platform and 

the interaction environment.  We will then describe the two neural models used for the 

comprehension and production tasks. Finally, the integration of these components will be 

presented. In the Experiment section we will describe the experimental procedures for the 

scene describer task, and the action performer task. In Results section we will illustrate the 

functioning of the system in these two modalities, including figures illustrating the human-

robot interactions, and figures illustrating typical neural activation recorded for both models. 

We then present the data and learning and generalization results for an extended experiment 

with 5 naïve subjects.  In the last section, we will discuss the results and interesting aspects 

that the combination of a comprehension and production neural models provide. Training and 

testing data used in the experiments, and corresponding to the figures showing the output 

neural activity of the models are provided in Appendices section. 

 

2. Material and Methods 

 

2.1 iCub platform and interaction architecture 

The platform that we used is the iCub, furnished by the FP6 EU consortium RobotCub (see 

Figure 2). The iCub (G. Metta et al., 2010) is a 53 DOF humanoid robot build by the Italian 

Institute of Technology (IIT) with the size of a three and a half year-old child. We use YARP 

(Giorgio Metta, Fitzpatrick, & Natale, 2006) as the robotic middleware with the Biomimetic 

Architecture for Situated Social Intelligence Systems (BASSIS architecture) built for the FP7 

Experimental and Functional Android Assistant project (Petit et al., 2013).  274
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The Supervisor module is implemented with the CSLU Toolkit (Sutton et al., 1998) Rapid 

Application Development for spoken language interaction.  It uses the Festival system for 

speech synthesis (Taylor, Black, & Caley, 1998) and Sphinx II for spoken language 

recognition (Huang et al., 1993).  The Supervisor provides a dialog management capability 

built as a finite-state system.  This capability allows the user to guide the robot into the 

different states of behavior, but is distinct from the neural language model, described below.  

The Supervisor/Manager orchestrates the communication and exchange of data between 

speech recognition and synthesis, the neural models for language comprehension and 

generation, and the robot perception and action systems. 

The ability of the iCub to perceive physical objects and their manipulation in the context 

of action performance and description is provided by the ReacTable, which detects objects on 

a translucid table based on detection of fiducial markers on the object bases, using an infra-

red camera(Bencina, Kaltenbrunner, & Jorda, 2005).The ReacTable thus provides data on the 

type and position of objects on the table with high precision.  The ReacTable is calibrated into 

the motor space of the iCub, so that object locations can be used for physical interaction. 

The motor control for iCub reaching, grasping and object manipulation is provided by 

DForC – Dynamic Force Field Controller – (Gori, Pattacini, Nori, Metta, & Sandini, 2012), 

based upon dynamic force control.  The robot has a small set of primitive actions: put(object, 

location), grasp(object), point(object). 

 

 

 

 

 

 

 

 

 

 

Figure 2: Robotic Platform.  (A) iCub humanoid robot with the ReacTable. (B) System architecture overview.   

The Supervisor coordinates all interactions between the human and the different components of the system.  

When the human moves an object on the ReacTable, the coordinates are transformed into the robot space, and 

stored in the Object Properties Collector (OPC).  For Action Performance when the human speaks, the words are 

recognized by the audio interface, then they are packaged and sent to the Neural Network by the Supervisor.  

Resulting commands from the Neural Network are processed and forwarded to the iCub Motor Cmd interface by 

B A 
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the Supervisor for execution on the robot.  For Scene Description, the spatial relations between objects are taken 

from the OPC through the Supervisor and sent to the Neural Network together with the sentence type (canonical 

or non-canonical).  The sentence generated by the Neural Network is sent to the Audio interface for speech 

synthesis, again under the control of the Supervisor. 

 

2.2 Neural language model 

 

The neural language processing model represents the continued development of our work 

based on the underlying concept of a recurrent network with modifiable readout connections 

for grammatical construction processing (P. F. Dominey, 2003; P. F. Dominey et al., 2003; 

Xavier Hinaut & Dominey, 2012; X. Hinaut & Dominey, 2013).  As described in the context 

of grammatical constructions above, for sentence processing we have shown that the pattern 

of open and closed class word order could be used to correctly identify distinct grammatical 

constructions and extract their meaning for a small set of sentences.  More recently we have 

demonstrated the extension of this ability to larger corpora from several hundreds of uniquely 

defined construction-meaning pairs, to tens of thousands distinct constructions including 

redundant and ambiguous meanings (X. Hinaut & Dominey, 2013). 

The core of the language model is a recurrent neural network, with fixed random 

connections, which encodes the spatio-temporal context of input sequences.  This sequence-

dependant activity then projects via modifiable connections to the read-out layer. 

Modification of these read-connections by learning allows the system to learn arbitrary 

functions based on the sequential input.  This framework has been characterized as Reservoir 

Computing (Lukosevicius & Jaeger, 2009; Verstraeten, Schrauwen, D’Haene, & Stroobandt, 

2007), where the recurrent network corresponds to the reservoir, and has been developed in 

different contexts.  The first expression of the reservoir property with fixed recurrent 

connections and modifiable readout connections, was developed in the context of primate 

neurophysiology, with the prefrontal cortex as the reservoir, and modifiable cortico-striatal 

connections as the modifiable readout (P. F. Dominey, 1995; P.F. Dominey, Arbib, & Joseph, 

1995).  Further development was realized in related systems including the Liquid State 

Machine (Maass, Natschlager, & Markram, 2002), and Echo State Network (Herbert Jaeger, 

2001; H. Jaeger & Haas, 2004). 

The model employed in the current research (X. Hinaut & Dominey, 2013) pursues this 

parallel between brain anatomy and the reservoir computing framework. Prefrontal cortex is 

modeled as a fixed recurrent network and striatum as a separate population connected to 
276
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cortex via modifiable synapses, corresponding respectively to the reservoir and readout.  The 

reservoir is composed of leaky neurons with sigmoid activation. The following equation 

describes the internal update of activity in the reservoir: 

 ))u(tW+x(t)αf(W+α)x(t)(=)x(t inres 111  (1) 

where x(t) represents the reservoir state; u(t) denotes the input at time t; α is the leak rate; 

and f(∙) is the hyperbolic tangent (tanh) activation function. Win is the connection weight 

matrix from inputs to the reservoir and Wres represents the recurrent connections between 

internal units of the reservoir.  In the initial state, the activation of all internal units of the 

reservoir is zero. The inverse of the leak rate (1/α) could be interpreted as the time constant of 

the system. 

By definition, the matrices Win and Wres are fixed and randomly generated. Internal 

weights (Wres) are drawn from a normal distribution with mean 0 and standard deviation 1 

and then rescaled to the specified spectral radius (the largest absolute eigenvalue of a matrix – 

here Wres –; This will be referred to as the spectral radius parameter). The input weight 

matrix Win was first generated with values drawn chosen randomly between -1 and 1 with a 

50% probability. The Win matrix was then rescaled depending on the experiment (input 

scaling parameter). The density of the input connections is 100%. 

The output vector of the system which models the striatum is called the readout. Its activity 

is expressed by the following equation: 

 

)()( txWty out          (2) 

 

with Wout the matrix of weights from the reservoir to the readout (output). The activation 

function of readout units is linear: interestingly readout activity gives a pseudo-probabilistic 

response for each output unit. To train the read-out layer (i.e. compute Wout), we use a linear 

regression with bias and pseudo-inverse method (Herbert Jaeger, 2001).  This general model 

is applied in two distinct model instantiations.  One model processes commands (sentences) 

and generates a predicate-argument representation of the meaning.  The second describes 

observed actions, i.e. given a predicate-argument meaning as input, it generates a sentence 

describing that meaning.  Thus, the comprehension system learns to map semantic words of 

input sentences onto an output that characterizes the role (action, agent, object, recipient) of 

each of these semantic words, based on the structure of grammatical words in the 
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sentence.   The production system learns the inverse mapping, from the meaning (i.e. 

specification of the role of each semantic word) onto a sentence form. 

 

2.2.1 Comprehension model for Action Performing task 

The architecture of the comprehension model is illustrated in Figure 3. 

Preprocessing: Before being provided as input to the neural model, the sentence must 

be transformed by extracting the open-class (i.e. semantic) words. The resulting grammatical 

form is characterized by the sequential pattern of closed-class (i.e. grammatical) words. This 

operation is performed by replacing all open class words by 'SW' markers (SW: semantic 

words).  The semantic words removed from the sentence are stored in a working memory. The 

working memory acts as a first-in-first-out (FIFO) stack: the words will be retrieved in the 

same order in the output.  For example, when semantic word 2 (SW2) is determined by the 

model to be the agent, the actual word corresponding to SW2 will be retrieved as the agent of 

the described action.  The closed class words used were: 'after', 'and', 'before', 'it', 'on', 'the', 

'then', 'you'. 

 

 
Figure 3: Neural comprehension model for the Action Performing task. Sentences spoken by the user are first 

transformed into grammatical forms, i.e. all semantic words (SW) are replaced by a SW marker. The 

reservoir is given the grammatical form word by word. Each word activates a different input unit. Based on 

training, the readout connections from the reservoir provide the coding of the meaning in the readout 

neurons, thus forming the grammatical construction as a mapping from grammatical form to meaning. 
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Reservoir parameters: The number of unit used in the reservoir is 100. The leak rate used is 

1/6 (=0.1666…). The input scaling was set to 0.75. The spectral radius is set to 1. 

Sentence input parameters:  Given an input sentence, the model should assign appropriate 

thematic roles to each semantic word. The presentation of inputs is illustrated in Figure 3. 

Sentences are represented in the input as grammatical forms, where specific instances of noun 

and verb words (semantic words – SW) are replaced by a 'SW' marker. Thus, a given 

grammatical construction can code for multiple sentences, simply by filling in the 'SW' 

markers with specific words. In this way of coding, the reservoir cannot distinguish between 

nouns or verbs, they have the same input neuron.  This is an interesting characteristic when 

using the model within a robotic platform, because when a sentences are processed there is no 

need to do a preprocessing in order to classify words as nouns or verbs. 

The total number of input dimension is 9; 8 for closed class words, 1 for the semantic word 

marker.  Each word is coded as a square wave of 1 time step.  There is no pause between 

successive word presentations (the use of pauses does not have significant influence on the 

results), but there is a final pause at the end of the sentence in order to inform the model that 

the sentence is finished; This final pause could be replaced by a dot, it would have the same 

function.  An offset of the sentence was added at the beginning of the inputs if they were not 

of maximal length, in this way the correct final meaning is always given at the last time step.  

Desired meaning output coding: Making the analogy with an infant who is learning 

language, we consider that the system is exposed to a meaningful scene while the input 

sentence is being presented.  Thus, the system has access to the meaning starting at the 

beginning of the presentation of the sentence, and the desired output teacher signal is provided 

from the beginning of the first word until the end of the input.  All the output neurons that are 

part of the meaning are clamped at 1, all other output neurons are clamped to 0. By forcing 

the outputs on from the onset of the sentence, we obtain predictive activation when processing 

(i.e. testing) a sentence after the learning phase.  This can be seen in the results section in 

Figure 8, below (see (X. Hinaut & Dominey, 2011, 2013) for more details). The output 

dimension is 36 (=6*3*2): 6 semantic words that each could have 3 possible thematic role 

assignment (predicate, agent or location), and each could have a role with at maximum 2 

verbs. 

Post processing: The activity of the output at the last time step is thresholded. For each 

SW, we take the role that has the maximum activation (if there are several). Each semantic 

word in the FIFO stack is then bound with its corresponding role(s). The full predicative 
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meaning is then obtained and written in the output data file in order to be processed by the 

Supervisor module, and then used to command the robot. 

 

2.2.2 Production model for Scene Description task 

We have described the functioning of the language model that learns to map input 

sentences onto a predicate-argument representation of their meaning.  Now we consider the 

reverse case, where given a meaning, the model should produce a sentence.  This model thus 

employs the same principals as the language comprehension model, but we now perform the 

reverse operation -  from a meaning we want to generate the corresponding sentence (see 

Figure 4).  It is important to recall that there are potentially multiple possible sentences for 

describing a given scene or meaning (as illustrated in Figure 1).  To resolve this ambiguity, 

we provide additional input to the model, to indicate if we want a canonical (e.g. standard, 

active voice) or a non-canonical (e.g. passive voice). 

 

 
Figure 4: Neural production model for Scene Description task.  The input has 2 components: (1) meaning format 

{Predicate(Agent, Object) - left(toy, drums)} corresponding to relation toy to the left of drums, and (2) 

construction format with {SW1 – Predicate, SW2 – Object, SW3 - Agent} which could be written in a compact 

way as SW1(SW3, SW2). The full input information could be represented as {SW1_Predicate – left}, 

{SW2_Object – drums},  and {SW3_Agent – toy}.  The system must find a construction that allows this 

mapping of SWs to thematic roles. The meaning is expressed as a predicate-argument representation P(A, O), 

with P predicate, A agent and O object. SW#_θ: Semantic Word # has thematic role θ, with # the relative 

position in the sentence among all Semantic Words.  
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Preprocessing:  The model is given the meaning and the sentence type desired (canonical 

or non-canonical) by the manager program.  This information is converted in the 

corresponding coded meaning. The semantic words of the meaning are stored in the FIFO 

memory. 

Reservoir parameters:  The number of unit used in the reservoir is 500. The leak rate used 

was 0.75. The input scaling was set to 0.01. The spectral radius was set to 2. 

Input and output coding:  The coded meaning was given, for all the input units concerned, 

as a constant input activation set to 1. Remaining input units were set to 0. This is consistent 

with the output representation of the meaning in the first model presented in 2.2.1 

(comprehension model).  As illustrated in Figure 4 the desired mapping of the open class 

words onto thematic roles is specified by activating the appropriate input neurons.  The input 

activation lasted during all the input presentation. The input dimension is the same as the 

output dimension of the comprehension model 6*3*2=36: 6 semantic words that each could 

have 3 possible thematic role assignment (predicate, agent or object), and each could have a 

role with at maximum 2 verbs.  Table 1 illustrates how different coded-meanings can be 

specified for the same input meanings.  This allows us to specify in the input if the sentence 

should be of a canonical or non-canonical form. 

 

 Meaning Sentence Coded-meaning 

Canonical left(toy, drum) The toy is left of the drums SW2(SW1, SW3) 

Non-Canonical left(toy, drum) To the left of the drums is 

the toy 

SW1(SW3, SW2) 

Double 

Canonical 

left(violin, trumpet); 

right(violin, trumpet) 

The violin is to the left of the 

trumpet and to the right of 

the guitar   

SW2(SW1,SW3); 

SW4(SW1, SW5) 

Double Non-

Canonical 

right(violin, trumpet); 

left (violin, guitar) 

To the right of the trumpet 

and to the left of the guitar is 

the violin 

SW1(SW5,SW2); 

SW3(SW5, SW4) 

Table 1. Representation and form of canonical and non-canonical sentences.  Both examples have the same 

meaning.  The sentences are different, and the mapping of semantic words onto the thematic roles in the meaning 

is different, as specified in the coded-meaning or sentence form. Both Meaning and Coded-meaning use the 

convention Predicate(Agent, Object). SW#: Semantic Word #, with # the relative position in the sentence among 

all Semantic Words. 
      281
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Activation of the output units corresponds to the successive words in the retrieved 

construction. The closed class words used were: 'and', 'is', 'of', 'the', 'to', '.' (dot). The dot is 

optional and was not used for the experiments shown in Figure 9; it could be used in the 

future if several sentences has to be produced. The total  number of output dimension is 7: 6 

for closed class words and one for the SW marker. 

The output teacher signal is as the following: each word is coded as a square wave of 5 

time steps.  Each word was separated with a pause of 5 time step. We used 5 time steps for 

each word and a pause of same duration between them in order to have an output activity that 

last a sufficiently long time; in this way each word could be detected more easily in the post-

processing process. There is a final pause at the end of the teacher signal.  All the teacher 

signals were of maximal length corresponding to the longest sentence. 

Post processing:  Once again, the output activity is first thresholded. Then each time an 

output exceeds the threshold, the corresponding word is added to the final construction (if the 

activity of this word last 4 or 5 time steps above the word it is considered only once). If 

several outputs are above the threshold, the word of maximal value is kept. Finally, the 

sentence is reconstructed replacing the SW makers with the semantic words kept in memory. 

 

2.3 Integrated System 

 

The system operates in real-time in a human-robot interaction. Figure 5 shows how the 

communication between modules is performed.  Again, the system can operate in “action 

performer” (AP) and in  “scene description” (SD) tasks, and the Supervisor module allows the 

user to specify which of these tasks will be used. The Supervisor interacts with the human 

through spoken language to determine if he wants to run the system in train mode – to teach 

the robot new <meaning, sentence> pairings – or in test mode – to use the corpus of pairings 

already learned by the robot –.  Thus there is two tasks (AP or SD), each of which could be 

run in two execution modes (train or test).  Details for AP and SD tasks are provided in the 

next section. Now we briefly describe train and test modes. 

In train mode, the Supervisor generates incrementally one of the two training data files 

depending on the task (AP or SD). The human speech is transformed into text via the speech-

to-text tool, and the meaning is given by the robotic platform: the <meaning, sentence> 

pairing is then written in the training data text file. In order to not populate the training files 

with bad examples in case of incorrect speech recognition, before writing the file the robot 
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ask the user for a checking (e.g. if it understood well the meaning). If the user wants the 

example to be added to the data file he answers “yes”, otherwise he answers “no”. 

In test mode, the Supervisor processes the test example given by the user: in AP task the 

example is a sentence; in the SD task the example is a meaning (i.e. the user places objects in 

particular positions relative to the object of focus). This test example is a half-pairing of a 

complete sentence-meaning pair. First, the Supervisor generates a file containing the 

previously established training data, and the test example.   It then launch the corresponding 

neural model (comprehension or production) depending on the task (respectively AP or SD). 

The neural model is trained with the training data, and then it processes the test half-pairing 

and generates the “missing half” in a text file. The Supervisor processes the file given by the 

neural model and executes the action in the AP task or produces the sentence in the SD task. 

 

 

 

 
Figure 5: Communication between modules. The Supervisor manages the spoken interaction with the user and 

controls the robotic platform, providing different behaviors in SD and AP tasks. Depending on the mode selected 

by the user, train or test, it launches the neural model or not. In the train mode, pairs of <meaning, sentence> are 

stored in the train data file. In test mode, the sentence to be tested is written in the test data file, and both train 

and test files are sent as once to the Neural model. See Figure 2 for complementary information. 

 

3. Experiments 

We now illustrate in detail how the system works in two distinct modes: training and 

testing for the AP and SD tasks.  An overview is provided in Table  1.  In both tasks, 
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meanings are expressed in a predicate-argument form: for instance put(toy, left) (for Action 

Performing task; see Figure 3), or left(toy, drums)  (for the Scene Description task; see Figure 

4).  During training, meaning is produced by transforming the events and relative position of 

objects into the respective action and scene meanings. This is achieved by analyzing the 

change in object positions on the ReacTable (in order to get scene meanings) and by 

interrogating the program generating random robot action (for action meanings).  Spoken 

sentences are transformed from a speech record into a list of words (using the Sphinx II 

recognizer) and paired with the associated meaning to populate the training database.  The 

training mode is responsible for building a corpus of <sentence, meaning> pairs which will be 

fed to the neural model in order to train it.  The human is then invited to build the database by 

interacting with the robotic platform.  The type of interaction is different according to the 

task, AP or SD, as indicated in Table 2.  In testing mode, the human provides one component 

of a <sentence, meaning> pair, and gets the missing component of the pair in return. 

 

 

 

 

 

 Action Performer (AP) Scene Describer (SD) 

 

Training 

1. Robot generates random action(s) 
[meaning] 

2. Human says a corresponding 
command [sentence] 

1. Human arranges objects on the table 
[meaning] 

2. Human describes the scene 
[sentence] 

 

Testing 

1. Human says a command [sentence] 

2. Robot performs corresponding 
action(s) [meaning] 

1. Human arranges objects on the table 
[meaning] 

2. Robot describes the scene [sentence] 

Table 2. Summary of events in Training and Testing modes for the Action Performer (AP) 

and Scene Describer (SD) tasks. In brackets is indicated the half-pairing generated 

corresponding to each event. 

 

3.1  Experiment Scenario 1: Action Performing task 

 

In the following X, Y and Z are arbitrary objects (e.g. guitar, trumpet, violin), and, L and 

R are different locations (e.g. left, right, middle).  In the training mode, one or two random 

action(s) are generated by the iCub using available objects (e.g. <put X on the R>, <grasp Y, 284
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point Z>, …).  This produces the meaning. At the same time, the human user observes and 

then says the order (i.e. command) which, according to him, should command the robot to 

perform the(se) action(s): this corresponds to the sentence.  The <sentence, meaning> pair 

can thus be constructed. The robot continues to randomly select possible actions and execute 

them, and the user provides the corresponding command, thus populating the database with 

<sentence, meaning> pairs. 

In testing mode, the system uses the data generated in the learning mode in order to 

fully interact with the human, whereas in the training mode the system is more passive.  In the 

Action Performing task the human says a command to the robot (providing the sentence). This 

test sample is passed to the neural model (Figure 3). The neural model produces the 

corresponding meaning, which is sent back to the Supervisor which translates the meaning 

into the corresponding robot command(s). The robot then produces the desired action(s). 

 

3.2  Experiment Scenario 2: Scene Description task 

 

During the training phase for Scene Description task the user puts several objects on the 

table and specifies the focus object.  Then he describes orally one or two spatial relations 

relative to the focus object (e.g. <the X is to the L of Y and to the R of Z>, …), providing the 

sentence.  The robot then uses the coordinates of the objects and the knowledge of the focus 

objects to find the relationships between the focus element and the other element(s) on the 

table, providing the meaning. 

During the testing phase for the Scene Description task the user puts some objects on the 

table in a particular spatial relation, producing the meaning. This test example is passed to the 

neural model. The latter produces the corresponding sentence that is sent back to the 

Supervisor which produces the sentence via the audio interface (text-to-speech tool). 

 

For both tasks during testing phase the data file that is transmitted to the neural model 

contains both the testing data and the training data. This permits to avoid executing the neural 

model each time one example is learned.  Thus the model learns the whole data set and then 

applies this to the test data (on which it is not trained).   

 

3.3  Experiment Scenario 3: Naïve Subject Action Performer task 
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In order to test the robustness of the system, we tested learning and generalization with 

data produced by 5 naïve subjects.  In order to standardize the experiment we made a movie 

of a human performing a set of behaviors: 5 single actions and 33 double actions.  For 

instance {point(guitar)} is an example of a single action: a corresponding sentence could be 

“Point to the guitar”; And {point(guitar), put(toy, left)} is an example of a double action: a 

corresponding sentence could be “Point to the guitar then put the toy on the left”.  For each 

behavior (i.e. one scene of the movie), we asked the subjects to give a “simple” command, 

and then a more “elaborate” one corresponding to the observed action(s). The subjects looked 

at the same scene twice, once before giving a “simple” command (i.e. order), and once before 

giving an “elaborate” one. Subjects saw movies twice in order to obtain more spontaneous 

responses from them, instead of having to try to remember the movie scene and try to 

formulate the simple and elaborate commands in a row. This resulted in a corpus of 5 

(subjects) x 38 (behaviors) x 2 (canonical and non-canonical) = 380 sentences.  The 

<sentence, meaning> corpus was obtained by joining corresponding meanings to these 

sentences.  First in order to assess the learnability of the whole corpus,  where the training and 

testing data sets were the same.  Then generalization capability was tested using “leaving one 

out” method (i.e. cross validation with as many folds as data examples): for each <sentence, 

meaning> pair, the model was trained on the rest of the corpus, and then tested on the 

removed <sentence, meaning> pair. 

 

4. Results 

4.1 Human robot interaction 

The iCub robot learns in real-time from human demonstration.  This allows the robot to 

(1) perform complex actions requested by the user, and (2) describe complex scenes.  Here 

“complex” means multiple actions with temporal (chronological) relations.  The system can 

for instance execute commands like: “Before you put the guitar on the left put the trumpet on 

the right.” We demonstrate how this form of temporally structured language can be learned 

and used in the context of human-robot cooperation. 

In Figures 6 and 7, we can see images extracted during human-robot interactions for the two 

tasks.  In Figure 6, the robot is performing the motor commands corresponding to the sentence 

“Point the guitar before you put on the left the violin.” (A) the robot is pointing the “guitar” 

(blue object), (B) the robot is finishing the displacement of the “violin” (red object). In Figure 

7, the robot has to describe the scene relative to the object of focus: (A) the user sets the 

286



18 
 

object of focus in the scene, where other objects are already present; (B) the robot is 

describing the position of the focus object relative to the other objects. 

 

 

 

 

 

 

 

 

 
Figure 6.  Action Performing task. The robot is performing the motor commands corresponding to the sentence 

“Point the guitar before you put on the left the violin.”: (A) the robot is pointing “guitar” (blue object), (B) the 

robot is finishing the displacement of the “violin” (red object). 

 

 

 

 

 

 

 

 

 

 
Figure 7: “Scene Description” condition. The robot have to describe the scene relative to the object of focus: (A) 

the user sets the object of focus in the scene, where other objects are already present; (B) the robot is describing 

the position of the focus object relative to the other objects. 

 

In the following subsections we describe events and human-robot interactions during 

testing mode. They correspond to the transcript of parts of the videos for the Action Performer 

and Scene Describer tasks: movies are available in the supplementary materials. 

 

4.2 Trials for Execution of Action Performing task 

 

B A 

B A 
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For illustrating the Action Performer task, we will use the same initial positions for the 

objects across trials, and vary the oral description made by the user.  The initial positions of 

objects are the following: the guitar is on the right and the violin is on the left.  Absolute and 

relative positions are defined relative to the user.  For the first trial, the action the user asked 

the iCub to perform was put (violin, left). The user told the robot the non-canonical sentence 1 

in Table 2. The robot then put the violin on the left.  For trials 2, 3 and 4, the desired first 

action was point (guitar) and the second action was put (violin, left).  The robot first pointed 

to the guitar and then put the violin on the left.  In this way, we could test for different ways 

of saying the same meaning but with different grammatical forms of sentences (i.e. with 

different grammatical constructions).  For each sentence spoken to the robot, we indicate in 

Table 2 for clarification the type of sentence (canonical or non-canonical word order) and the 

order of actions (chronological or non-chronological order of actions). 

 

Example Sentence Type 

1 on the left put the violin non-canonical 

2 after you point the guitar put the violin on the left canonical,  

chronological 

3 before you put the violin on the left point the guitar canonical, non 

chronological 

4 point the guitar before you put on the left the violin canonical & non-

canonical, 

chronological 

Table 2.  Example sentences used during testing mode of Action Performer task. 

 

4.3 Trials for Scene Description task 

 

For the Scene Describer task, the user was first asked to set the initial position of the 

objects (this is indicated by “set objects”). Then the user was asked to identify the focus 

object ( “focus”). The latter is what should be in focus in the sentence, i.e. the subject (i.e the 

agent in this case) of the sentence.  After that, the robot asked the user if it should produce a 

usual (i.e. canonical) or non-canonical sentence.  Then the robot processed all the information 

and described the scene by producing a sentence (“robot sentence”). 
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Trial Set objects Focus Sentence 

Type 

Robot Sentence 

1 guitar middle trumpet right canonical The trumpet is to the right of the guitar 

2 trumpet middle guitar left non-
canonical 

To the left of the trumpet is the guitar 

3 guitar left, 
trumpet right 

violin middle canonical The violin is to the right of the guitar 
and to the left of the trumpet 

4 guitar left, 
violin right 

trumpet 
middle 

non-
canonical 

To the left of the violin and to the right 
of the guitar is the trumpet 

 

Table 2.  Example trials for the Scene Describer task. 

 

In order to get an appreciation for the near real-time behavior of the system, we examined 

experimental data logs and collected data from 22 experiments with the scene describer and 

from 66 experiments with the action performer.   

The execution times for the Scene Describer task are recorded since the subject places the 

objects on the table, until the system responds with the description.  This includes file transfer 

time from the Supervisor to the neural network model, and back, along with the model 

processing.  Despite these delays, the total time of execution is around 30 seconds, which is 

near-real time performance.  Likewise, for the action performer, processing of the spoken 

sentence by the model takes place within approximately 20 seconds, and then the execution of 

the actions by the robot is slower. This long time for executing actions is due to (a) safety 

limits on velocity, and the fact that (b) many of the commanded actions include two distinct 

actions.  Still, from spoken command to completed action, the execution is less than a minute, 

again, within the bounds of near-real time performance.   

Looking in more detail at the time used by actually running the neural network, we 

measured the time from sending the file to the network, to the time to retrieve the file 

containing the actions to be sent to the robot.  For 66 trials of the AP task this required on 

average 6.02 seconds (SD + 0.33 sec), and for 22 trials of the SD task the file transfer and 

neural network execution required 9.42 seconds (SD + 0.96 sec).  This can be considerably 

improved by replacing the file based communication with a client-server communication in 

the YARP framework. 

 

4.4 Neural output activity of the models 
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In this section we will illustrate the activity of the neural network model for the two tasks.  

One has to recall that the output of the neural network is used to generate the behavioral and 

spoken responses.   

4.4.1 Comprehension model neural activity for Action Performing task 

In Figure 8 we illustrate the output activity for two example trials on the Action Performer 

task.  From the beginning of the grammatical construction the read-out activity starts to 

change and is updated each time a new word is presented in input. This activity can be 

interpreted as an estimated prediction given the inputs thus far.  These estimations are related 

to sentence forms statistics of the training corpus (see (X. Hinaut & Dominey, 2013) for 

details).  In Figure 8A, the model correctly determines that there is only one meaning-

predicate put (trumpet, left).  We see  that at the last time step the neural activations 

concerning the on-going predictions on a potential 2nd predicate-meaning all fall below the 

threshold of 0.5, and as a consequence only one predicate-meaning is considered. 

In some cases, this activity can be used to know the correct response before the end of the 

sentence.  In later experiments, this could potentially allow the robot to start moving the 

object before the end of the sentence. This is actually a behavior that seems natural in human 

interaction when one give the other a series of orders: when the first order is given the human 

can start to do the 1st action while listening to the rest of the orders (for instance when 

someone lists what has to be done for a cake recipe, while another one is making the cake). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Example of output activity of the comprehension neural model for the “Action Performing” task. Each 

colored line indicates the pseudo-probability for each semantic word to have a given role (predicate, agent, 

location) for each of the two specified actions. (A) The input sentence was “put on the left the trumpet”.   The 

B A 
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model correctly determines that there is only one meaning-predicate put (trumpet, left). X-1, X-2, X-3 … 

indicate the 1st , 2nd, 3rd, … SW markers. For X-5 and X-6 plots are superimposed, as the output neurons “X-

5:location2” and “X-6:agent2” have the same activity for this sentence. (B) The input sentence was “before you 

put on the right the guitar push the trumpet on the left”: the model correctly determines the two meanings in the 

right order push (trumpet, left) and then put (guitar, right). 

 

For the Action Performer task, we show the activity for sentences that were not learned 

(i.e. not seen beforehand): constructions shown on Figure 8 where not in the training data, but 

only in the test data.  Even though the constructions were not pre-learned, the model was still 

able to correctly recognize them, demonstrating generalization capabilities.  For more 

information on the model generalization performances see (Xavier Hinaut & Dominey, 2012; 

X. Hinaut & Dominey, 2013) 

 

4.4.2 Production model neural activity for Scene Description task 

 

Figure 9 illustrates the readout unit activations for two different meanings and different 

sentence forms in the Scene Description task.  In Figure 9A, the meaning given in input was 

right (trumpet, guitar) with the sentence form SW1(SW3, SW2). The model correctly 

generated the sentence “to the right of the guitar is the trumpet”.  In Figure 9B, the meaning 

given in input was {right (violin, trumpet), left (violin, guitar)} with the sentence form 

{SW1(SW5, SW2), SW3(SW5, SW4)}.  The model correctly generated the sentence “to the 

right of the trumpet and to the left of the guitar is the violin”. 
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Figure 9: Output (read-out) unit activations of the production neural model in the Scene Description task. Each 

colored line represents a different read-out neuron. Each read-out neuron corresponds to a different word: either 

a grammatical word or a SW marker. On the x-axis is indicated the number of time steps. On the y-axis is 

indicated the neural activity for output neurons. X indicates the semantic word (SW) marker. (A) The 

construction found is “To the X of the X is the X”. The sentence correctly recovered after replacement of the SW 

markers is “To the right of the guitar is the trumpet”. (B) The construction found is “To the X of the X and to the 

X of the X is the X”. The sentence correctly recovered after replacement of the SW markers is “To the right of 

the trumpet and to the left of the guitar is the violin”. 

 

 

These results indicate that the system works correctly in the SD and AP tasks, under 

controlled conditions.  We should also evaluate the capacity of the system to accommodate 

less controlled conditions.   

 

4.5  Action Performing Training with Naïve Subjects 

Here we report on the results of the Action Performer model, when trained and tested with 

a set of sentences from five naïve subjects.  From the initial set of 380 sentences, 22 were 

eliminated from further analysis because their did not fulfill the minimal conditions in order 

to be processed correctly by the system: for instance (1) they did not describe the actions 

properly (e.g. “make a U-turn”: invention of new actions instead of using the atomic actions 

proposed), or (2) they did not refer to the objects by their name (e.g. “touch both objects”).  

The remaining corpus of 358 <sentence, meaning> pairs were included in the study (see 

supplementary material # containing included and excluded sentences).  Examination revealed 

that several additional closed-class words were used by our subjects.  They were used to 

define the set of possible inputs to the model.  Here is the extended list of closed-class words:  

'after', 'and', 'before', 'it', 'on', 'in', 'to', 'the', 'then', 'you', 'please', 'twice', 'both', 'objects', 

'having', 'again', 'time', 'firstly', 'first', 'over', 'at', 'followed', 'once'. 

The analysis of the naïve subject data proceeded in two steps.  We first tested the 

learnability capability of the complete set of sentences: the reservoir was trained and then 

tested on the same set of sentences.  Because of the increase in size and complexity of the 

training corpus compared to experiment 1, we increased the reservoir size to 2000 neurons.  

We created 6 instances of the model (i.e. different random generator seeds were used to 

generate the weight connections).  Sentences are considered learnable if they were correctly 

learned at least once: if a sentence was successfully learned by one of model instances, it was 

considered as learnable.  The results for this learnability capability is illustrated in the 
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“Learnability” column in Table 2.  Only 25 sentences of the whole 358 corpus (i.e. 6.96%) 

were considered not learnable: thus the vast majority of utterances produced by the naïve 

users were exploitable and learnable; this confirms the viability of the approach. 

 

 Learnability  Generalization Error 

Global 25/358 (6.96%)  40% 

 Single Action Double Action  Single Action Double Action 

Simple  
Sentence 

4/27 
(14.8%) 

2/151 
(1.32%) 

 6/27 
(22.2%) 

38/151 
(25.2%) 

Elaborate 
sentence 

0/16 
(0%) 

19/164 
(11.6%) 

 8/16 
(50%) 

92/164 
(60.4%) 

 
Table 2.  Learnability and generalization capabilities on the naïve subject data set.  (left) Number of non-

learnable sentences for different sentence categories.  For each category,  the number of non-learnable sentences 

is divided by the total number of sentences for that category, with the corresponding percentage in parentheses.  

Only 6.9% of sentences are not learnable: this indicates that most of the corpus is learnable.  (right) 

Generalization error for different sentence categories.  For any category  the neural model is able to generalize to 

some not learned sentences. As expected, generalization performances are better for Simple sentences than for 

Elaborate sentences. 

 

This learnability test is important to demonstrate the difficulty of the task, and it constitutes 

a preliminary step before looking at the generalization capability; because sentences that are 

not learnable have a priori no chance for being part of the group of sentences that the neural 

system could “understand” (i.e. generalize on) without learning them.  Of course the 

“learnability” of a sentence is dependent of other sentences in the corpus: in this view, if one 

sentence is not learnable, it means that it is an outlier in this corpus.  Here, an outlier is a 

sentence that have a grammatical structure different from other sentences. The majority of 

non-learnable sentences are Elaborate - Double Action sentences, but proportionally Simple - 

Single Actions have about the same rate of non-learnability. This “unexpected” high non-

learnability of Simple - Single Actions could be explained by the fact that half of Elaborate - 

Single Action have been removed from the initial corpus: this category contains only 16 

sentences instead of 27 for the Simple - Single Actions.    

 

In a second step we tested the ability of the model to generalize to sentences not used in 

training.  We used a standard “leaving one out” (L1O) method: the model is trained on nearly 

all sentences and then tested on the sentence left out of the training data.  It corresponds to the 
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case were the robot-neural system has been taught hundreds of sentences and we want to test 

its ability to understand correctly a sentence given by a naïve user. This is considered more 

difficult than an usual 10-fold cross-validation as the learning system is more likely to have 

overfitted the data.  Even if that test sentence has a grammatical structure different from those 

in the training set, the system could nevertheless generalize to this untrained structure in some 

cases.  For this study, we used a reservoir with 1500 neurons. We runned 12 instances of the 

model.  Of the 358 sentences, 144 failed the L1O test in all 12 simulations (i.e. for all 12 

instances).  We can consider that the corpus did not have sufficient grammatical information 

to allow generalization to these sentences.  Of the remaining sentences, 18 succeeded in the 

L1O at least once, 14 twice, 7 three times, 28 were correctly processed in L1O four or more 

times, and 146 were correctly processed in all 12 L1O simulations.  In Table 2, generalization 

errors for different sentence categories are provided in the left column.  Considering the 

learnability results, which could lead to 14.8% error for Simple – Single Action category, the 

system have a good ability to generalize to unseen sentences.  In particular, for the simple 

sentences (both single and double actions) the system is able to generalize to more than 75% 

of unseen sentences: this is an important result as in a natural conditions subjects will tend to 

produced spontaneously this type of sentences (that we categorized as “Simple”). 

Some of the sentences that produced successful generalization are worth noting. Sentences 

(12), (27), (264) and (322) (see Table 3) illustrate the use of the impersonal pronoun “it” in 

various configurations of distinct constructions.  Processed as a closed-class (i.e. 

grammatical) word, it indicates the appropriate role for the referent open class (i.e. semantic) 

element: the system is able to generalize correctly the function of the grammatical word “it” 

and bind to the correct role the semantic word it refers to.  In a sentence like (12) (see Table 

3) the semantic word 2 “circle” will be considered as the “object” of both actions, “grasp” and 

“point”.  Sentence (19) illustrates a similar situation, where the closed class word “twice” 

informs the system that the same action is repeated two times.  Thus, in a certain sense, the 

system has learned the non-trivial meaning of the word “twice”. The system also acquires 

non-trivial use of the temporal relatives “before” and “after”.  In (229), (264) and (332), 

“before” is used in such a way that the first action appearing in the sentence is actually to be 

performed second.  Thus in these situations, the presence of “before” results in a temporal 

inversion of the commanded actions.  Interestingly, the system can also master a different use 

of “before” as illustrated in (258): here “before” does not result in an inversion, the order of 

actions in the sentence is preserved in the execution of actions.  Sentences such a (322) 

illustrate how these different properties – “it”: reference, “before”: inversion – can be 294
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combined.  Although the system has not been designed to reach this level of “interpretation” 

of close class words, it is able to generalize its use in not learned sentences. This ability of the 

system to work with non-predefined cases demonstrates its flexibility. 

 

 

(12)  grasp the circle and then point to it 

(19)  point to the cross twice 

(27) touch the triangle then move it to the left 

(188) point to the circle after having grasped it 

(229) before you touch the cross touch the triangle 

(258) point the triangle before grasping the circle 

(264) before grasping the triangle point at it 

(322) before pushing the circle to the left please push it to the right 

Table 3. Example sentences produced by naïve subjects, and understood by the system. 

 

5. Discussion 

The current research makes several distinct contributions to language-based human-robot 

interaction.  Previous research has used language to command humanoids e.g.(P. Dominey, 

Mallet, & Yoshida, 2007; Lallée et al., 2012; Petit et al., 2013), and to allow robotic systems 

to describe actions (P. Dominey & Boucher, 2005b).  The current research for the first time 

demonstrates real-time acquisition of new grammatical constructions for comprehension and 

production that can be used respectively in commanding the robot and in asking the robot to 

describe the physical world.  This is of interest both in theory and in practice.  In theory, it 

demonstrates that the form-to-meaning mapping that we have employed in learning 

grammatical constructions can be used in both directions, to generate meaning from form, and 

to generate form from meaning.  In practice, this means that the system can adapt to 

individual differences in the way users employ language to describe and request actions.  The 

current research also addresses how language can allow for the coordination of multiple sub-

actions in time, using the prepositions “before,” and “after.”  Learning of these terms has a 

long history of research in child language development, and it poses an interesting problem 

because of the interaction with non-temporal event ordering and non-canonical syntactic 

structure (Carni & French, 1984).  Our work can contribute to the debate by indicating that a 

system that is sufficiently powerful to handle canonical and non-canonical events in single 

event sentences can do the same in multiple event sentences in which order is expressed with 295
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prepositions including “before” and “after”.  Interestingly, the key assumption is that these 

prepositions are processed in the model as closed class or grammatical words, which can then 

directly contribute to the elaboration of the form to meaning mapping. 

Because of this flexibility, the framework that we have developed potentially enables naive 

users to interact with the robot, indeed there is no "predefined" way of giving a command or 

description of an action such as put (toy, left) ; the user could say "put the toy on the left" or 

"on the left put the toy". In this way, we are able to escape from a 1-to-1 sentence-action 

correspondence: several sentences could indicate the same meaning. 

Concerning the production model we partly escape the 1-to-1 sentence-action (or sentence-

scene) limitation because we can specify if we want a canonical or non-canonical sentence 

type. We could specify more precise sentence type, for instance by specifying the semantic 

word of focus.  But this problem could be tackled in a more general way.  In order to be able 

to generate several sentences with the same meaning, we could consider 2 alternatives. (1) We 

could add feedback connections from the readout layer to the reservoir with the addition of 

noise either in the reservoir states or in these feedback connections. Thus the network would 

not produce every time the same pattern of words, but different ones. The noise would enable 

the network to be driven by one of the possible learned sentences (word patterns). (2) Use an 

additional self-organization map (SOM) based on the semantic words. During training this 

SOM will tend to organize words that appear in the same sentences in the same area of the 

map. During testing, the SOM activation will provide a supplementary input to the sentence 

production model in order to give a kind of "context" and enable the model to generate one 

pattern of words that is context relevant. In this way, if some sentence constructions are 

commonly used with certain semantic words, it will produce the more common sentences. 

Both alternative solutions may enable the production of constructions that were not learned, 

i.e. give the production generalization capabilities (like the comprehension model).  Finally, 

the generation of different non-canonical forms allows the system to manipulate the 

grammatical focus while describing the same situation, as illustrated in Table 1. 

The production model introduced here is able learn to produce grammatical constructions 

when given the meaning, coded in the same way that the comprehension model output is 

coded. This is the first time that we demonstrate that the input and output of the 

comprehension model could be reversed in order to do the “inverse” task (i.e. production 

instead of comprehension).  This is an interesting property that may be useful in further 

understanding human language.  Indeed, we have here a system that is able to do grammatical 

construction comprehension and production with a common coded meaning representation 296
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(which corresponds to the output of the comprehension model, and to the input of the 

production model).  We can imagine that the two models can be running in parallel, with the 

outputs of the production model connected to the inputs of the comprehension model. In this 

way, when the production model would be generating a sentence, the latter could be decoded 

in real-time and fed to the inputs of the comprehension model. Thus the comprehension model 

will reconstruct in real-time the meaning of the sentence produced by the production model. 

Consequently this would allow the system to check if the produced sentence is correct or not 

to the original meaning (i.e. input of the production model).  A correction mechanism could 

be added to compensate when errors of productions are made.  Such a correction mechanism 

appears to exist in human language behavior, as when one notices that they have produced a 

word instead of another in the middle of a sentence, they correct their sentence production in 

real-time accordingly.  Detection of such a production error would likely be accompanied by 

specific brain response, as it is the case for the P600 event related scalp potential when an 

ungrammatical word or complex sentence is processed. In a previous study using our 

comprehension model (X. Hinaut & Dominey, 2013) we showed that a kind of instantaneous 

derivative of the output values – the sum of absolute change of all outputs – could be related 

with a P600-like event.  In the reverse sense, the output of the comprehension model could be 

input to the production model, allowing the listener to predict the upcoming words of the 

speaker.  Another alternative would be to combine both comprehension on production within 

a same model, with feedback connections from both discovered thematic roles and produced 

words: a unique reservoir would do both tasks at the same time; this would probably require 

an online learning algorithm. 

The experiment with the naïve subjects is particularly interesting, as it provides the model 

with a form of “cognitive variability” in the language used, which goes beyond that employed 

when “insider” researchers interact with the robot.  The use of the impersonal pronoun “it”, 

words like “twice”, the use of “before,” and “after,” in the diverse configurations allowed a 

test and finally an illustration of the adaptability of the language model.  The good learnability 

of the sentences – 93% of the corpus is learnable – indicates that the naïve subjects can make 

really complicated sentences that may contain only partial information.  The relatively robust 

generalization, particularly for the “simple” sentences (>75% generalization) indicates that the 

model was able to extract the relevant information from this relatively small (< 400 sentences) 

corpus; it also indicates that the naïve subjects are “playing the game,” i.e. they are attempting 

to speak in a reasonable way to the robot in the “simple” sentence condition.  Future research 
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should asses how, as such corpora increase in size, generalization improves (for a given 

corpus complexity), as indicated in (X. Hinaut & Dominey, 2013). 
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7. Video links 

Video demonstration of the scene description in Experiment 1 can be seen at: 

http://youtu.be/AUbJAupkU4M 

Video demonstration of the action performer in Experiment 2 can be seen at: 

http://youtu.be/3ZePCuvygi0 

 

Supplementary Material 
SM1.  File for Action Performer task with train and test data used for Figure 8. 

 

Lines or end of lines after character # indicate commentaries that are not taken into account 

by the file parser. The coding is in the format “meaning; sentence”.  
 

<train data> 

######################################### 
put trumpet left;put the trumpet on the left  

put trumpet left;on the left put the trumpet  

put trumpet left;put on the left the trumpet  

put trumpet left;the trumpet put it on the left   

graspguitar;grasp the guitar  

graspguitar;the guitar grasp it  

put trumpet left,put guitar right;put the trumpet on the left and then put the guitar on the right  

put trumpet left,put guitar right;after you put the trumpet on the left put the guitar on the right  

put trumpet left,put guitar right;put the trumpet on the left before you put the guitar on the right  

put trumpet left,put guitar right;before you put the guitar on the right put the trumpet on the left 

put trumpet left,put guitar right;put on the left the trumpet and then put the guitar on the right  

put trumpet left,put guitar right;after you put on the left the trumpet put the guitar on the right  

put trumpet left,put guitar right;put on the left the trumpet before you put the guitar on the right  

put trumpet left,put guitar right;before you put the guitar on the right put on the left the trumpet 

put trumpet left,put guitar right;put the trumpet on the left and then put on the right the guitar  
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put trumpet left,put guitar right;after you put the trumpet on the left put on the right the guitar  

put trumpet left,put guitar right;put the trumpet on the left before you put on the right the guitar  

put trumpet left,put guitar right;before you put on the right the guitar put the trumpet on the left 

put trumpet left,put guitar right;put on the left the trumpet and then put on the right the guitar  

put trumpet left,put guitar right;after you put on the left the trumpet put on the right the guitar  

put trumpet left,put guitar right;put on the left the trumpet before you put on the right the guitar  

put trumpet left,put guitar right;before you put on the right the guitar put on the left the trumpet  

#new sentences not in fig9 and 10 

pointguitar,put trumpet left;before you put the trumpet on the left point the guitar  

pointguitar,put trumpet left;before you put on the left the trumpet point the guitar  

point guitar, grasp trumpet;before you grasp the trumpet point the guitar  

put trumpet left, point guitar;before you point the guitar put the trumpet on the left  

</train data> 

<test data> 

before you grasp the cross put the circle on the right 

</test data> 

######################################### 

 

SM2 File for Scene Description task with train and test data used for Figure 9 

######################################### 
<train data> 

left violin trumpet;the violin is left of the trumpet 

left violin trumpet;the violin is to the left of the trumpet   

left violin trumpet;to the left of the trumpet is the violin   

left violin trumpet,right violin guitar;the violin is to the left of the trumpet and to the right of the guitar   

left violin trumpet,right violin guitar;to the left of the trumpet and to the right of the guitar is the violin   

</train data> 

<test data> 

right eraser cross , left eraser circle :N 

</test data> 

######################################### 

 

 

SM3: Instructions given to the users. 

######################################### 
Introduction 

Notre robot veut apprendre à parler. Pour l'instant il en est à un stade précoce. Il sait dire quelques phrases 
qu'il a appris par coeur qui lui permettent d'interagir un peu avec une personne, comme par exemple : « I see 
all the objects » ou « Set the relative objects ». Mais il n'est pas encore capable de faire le lien entre une phrase 299
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qu'on lui dit et des actions (qu'il fait ou qu'il a vu faire) ou une description spatiale des objets les uns par 
rapport aux autres. 

Votre but est de lui apprendre l'Anglais avec des phrases simples et des phrases « plus complexe » que celles 
qu'il connait peut être déjà. Les phrases que vous allez dire au robot sont des ordres : vous allez dire au robot 
les actions qu'il doit utiliser. Car pour l'instant il ne connait que de simples phrases apprises par coeur qui 
n'utilisent pas tout le potentiel du langage, c'est-à-dire de pouvoir décrire une même chose de plusieurs façons 
différentes. Pensez par exemple à la célèbre réplique du Maître de Philosophie à M. Jourdain dans le Bourgeois 
gentilhomme : 

 Belle Marquise, vos beaux yeux me font mourir d'amour. 

 Ou bien: D'amour mourir me font, belle Marquise, vos beaux yeux. 

 Ou bien: [...] 

Ainsi vous pourrez faire des phrases de tous types, à la forme « active » et à la forme « passive » : 

1. « Put the trompet on the right », ou bien 
2. « On the right put the trompet » 

Et aussi des phrases qui impliquent une ou deux actions à la fois : 

[1] « Put the drums on the right » 
2. « Point the trompet and on the left put the trompet » 

Vous pouvez aussi faire des variations chronologiques : 

 « Before you grasp the toy put the trompet on the right » 
 « Put the drums on the right and then put the toy on the right » 

Remarque : lorsque vous imaginerez les ordres, faites-le en pensant par rapport à votre droite / votre gauche, 
ceci afin de ne pas compliquer votre tâche. 

On souhaite également apprendre un vocabulaire particulier au robot, correspondant à différents objets, 
positions ou actions. 

Description de l'expérience même 

Vous allez visionner une vidéo comprenant 35 actions ou séquence (i.e. suite) d’actions répétées 2 fois. Il 
faudra appuyer sur pause (espace) à la fin de chaque scène et dire à l’expérimentateur l’ordre qui aurait pu 
permettre d’obtenir l’action. La première fois (X. Simple), contentez-vous de l’ordre le plus simple qui vous 
vienne à l’esprit. La deuxième fois, essayer de créer un ordre plus élaboré (X. Elaborate). Vous pouvez vous 
inspirez des exemples ci-dessus. 

« X. » correspond simplement au numéro de la séquence. 

Afin d'apprendre un vocabulaire particulier au robot, il est nécessaire de restreindre seulement le vocubulaire 
concernant les actions, les objets et les positions (de destination) que vous allez utiliser. Pour les autres mots 
(par ex. you, the, on, it, then, after ...) vous pouvez utiliser ceux que vous souhaitez, en les faisant varier autant 
que vous le désirez. Voici les différents mots de vocabulaire à utiliser : 

 Pour les actions : point, touch, grasp, push, put  
 Pour les objets : cross, circle, triangle 
 Pour les localisations/positions (pour les destinations des actions push et put) : left, middle, right 

(Demandez à l’experimentateur de vous montrer à quoi correspondent ces différentes actions, objets et 
localisation.) 
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Les positions (ou localisations) indiquées servent à indiquer au robot la position finale de l'objet (destination) 
seulement pour les actions push et put. Car étant donné que chaque objet est différent (cross, circle, triangle) il 
n'est pas nécessaire d'indiquer la position initiale de l'objet, il suffit d'indiquer simplement le nom de l'objet. 

######################################### 
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0IJNY�a:=G83GL67FH3B72�;1;G6C�7@?�LG725?361B=1?�617EG@3@L[�a:=G83GL67FH3B72�;1;G6C�7@?�LG725?361B=1?

617EG@3@L[�01;G@E=67=3G@�GA�=H1�78323=C�=G�:E1�7:=G83GL67FH3B72�;1;G6C�AG6�617EG@3@L�78G:=�@G412�E3=:7=3G@E[

Q1FG6=�BG;F63E3@L�7�;7@:EB63F=�E:8;3==1?�AG6�F:823B7=3G@̂�7@?�43?1GJ�_;G@=H�Nb̀

0IJIY�K@=1L67=1?�B7F78323=31E�7@?�?1;G@E=67=3G@[�K@=1L67=1?�B7F78323=31E�7@?�?1;G@E=67=3G@[�Q1FG6=�BG;F63E3@L

?1;G@E=67=3G@�GA�3@=1L67=1?�B7F78323=31E�_;G@=H�IÒ
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à

(#�%-0-!#$%�.5��%�$#,'�
`̀ ('�.�$�,�$%5.�!'��!#�%-0-!#$%

�K(L �;66

�K�L� �;66

���= 6;66

+�,!'�-#" 7;66

7�F�HIJ +b;66

�EKF� c;66

=�%#" b�;66

d̂UZ�Ve�fSĝhST]igSU
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