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Abstract

The most general black hole solution of Einstein–Maxwell theory has been discovered by
Plebański and Demiański in 1976. This thesis provides several steps towards generalizing
this solution by embedding it into N = 2 gauged supergravity. The (bosonic fields of the)
latter consists in the metric together with gauge fields and two kinds of scalar fields (vector
scalars and hyperscalars); as a consequence finding a general solution is involved and one
needs to focus on specific subclasses of solutions or to rely on solution generating algorithms.

In the first part of the thesis we approach the problem using the first strategy: we
restrict our attention to BPS solutions, relying on a symplectic covariant formalism. First we
study the possible Abelian gaugings involving the hyperscalars in order to understand which
are the necessary conditions for obtaining N = 2 adS4 vacua and near-horizon geometries
associated to the asymptotics of static black holes. A preliminary step is to obtain covariant
expressions for the Killing vectors of symmetric special quaternionic-Kähler manifolds. Then
we describe a general analytic solutions for 1/4-BPS (extremal) black holes with mass, NUT,
dyonic charges and running scalars in N = 2 Fayet–Iliopoulos gauged supergravity with a
symmetric very special Kähler manifold.

In the second part we provide an extension of the Janis–Newman algorithm to all bosonic
fields with spin less than 2, to topological horizons and to other dimensions. This provides
all the necessary tools for applying this solution generating algorithm to (un)gauged super-
gravity, and interesting connections with the N = 2 supergravity theory are unravelled.

Résumé

La solution des équations d’Einstein–Maxwell décrivant le trou noir le plus général a été
découverte par Plebański et Demiański en 1976. Cette thèse accomplit plusieurs étapes en
vue d’intégrer une généralisation de cette solution en supergravité jaugée N = 2. Le contenu
bosonique de cette dernière comprend la métrique assortie de champs de jauge et de deux
types de champs scalaires (appelés scalaires-vecteurs et hyperscalaires) ; cela implique qu’il
est beaucoup plus compliqué de trouver une solution générale et l’on doit se restreindre à des
classes particulières de solutions ou bien utiliser des algorithmes pour générer des solutions.

Dans la première partie de cette thèse nous approchons ce problème grâce à la première
stratégie en nous restreignant aux solutions BPS. Dans un premier temps nous étudions
les jaugeages abéliens qui impliquent les hyperscalaires afin de comprendre quelles sont
les conditions nécessaires pour obtenir des vides N = 2 adS4 ainsi que des géométries de
proche-horizon associées à des trous noirs statiques. Par la suite nous décrivons une solution
générale et analytique pour des trous noirs (extrémaux) 1/4-BPS qui possèdent une masse,
une charge de NUT, des charges dyoniques et des champs scalaires non-triviaux dans le
contexte de la supergravité N = 2 jaugée à la Fayet–Iliopoulos.

Dans la seconde partie nous obtenons une extension de l’algorithme de Janis-Newman
afin de prendre en compte tous les champs bosoniques de spin inférieur à 2, les horizons
topologiques et le cas des autres dimensions. Ainsi cela met à disposition tous les outils
nécessaires pour appliquer cet algorithme à la supergravité (jaugée ou non).
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Introduction

0.1 Background

0.1.1 Quantum gravity and string theory

Finding a theory of quantum gravity is a major goal of theoretical physics. Indeed the
20th century has seen the discovery of two great theories – quantum field theory (QFT)
and general relativity (GR) – that both work extremely well in their respective domains of
application but which cannot be reconciled on the overlap. The main difficulty resides in
the fact that QFT rely heavily on the concept of renormalization in order to obtain sensible
results from the computations that would otherwise yield divergences. On the other hand
GR is non-renormalizable and leads to incurable divergences.

A theory of quantum gravity is needed in order to answer some of the most important
questions concerning our universe. In particular primordial cosmology and the origin of the
universe can be properly address only within this context as they touch the very nature
of spacetime and the latter require a complete theory of quantum gravity to be properly
understood. Similarly black holes are objects formed by a huge concentration of matter and
they cannot be properly described in general relativity. For the moment these problems get
only partial answers by using semi-classical methods. Both cases are linked to the presence
of singularities (the Big-Bang and the center of the black hole) that should be resolved by
a proper quantum treatment of gravity.

Another interesting quest is the unification of the forces and the understanding of the
very nature of interactions and matter. The current knowledge culminates in the standard
model of particle physics which describe all matter and non-gravitational forces that have
been measured. But this theory is still unsatisfactory for several reasons: there are many
free parameters (19 plus 7-8 neutrino masses) that are lacking theoretical interpretation.
Similarly the hierarchy problem states that the Higgs mass should be of the same order
of the cut-off scale where new physics appear (or the Planck mass otherwise), and in the
current framework this value can be understand only by a very fine-tuning of the parameters,
which is not natural. Another problem is the prediction of a huge value for the cosmological
constant. The two last points are related to the question of naturalness which asks that
parameters have natural values (in the correct units). Finally the standard model does not
explain why there are three generations of fermions, the mass of the neutrinos nor why the
gauge group is

SU(3) × SU(2) × U(1). (0.1.1)

A satisfying theory should be able to provide the derivation of the parameters from more
fundamental properties (for examples through the dynamics of background fields) and to
explain why one observes this field content. A first possibility is to unify the gauge group
into one unique group at higher energy which would reduce the number of gauge couplings
and unify matter families (through the embedding into representations of this group).

String theory is a promising candidate for a consistent quantum gravity theory which
provides a grand unification framework at the same time. In this theory the fundamental
constituents are strings and the usual fields appear as excitation modes of these strings.
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The interactions of the strings are non-local in spacetime and this smearing reduces the
UV divergences as interactions cannot be concentrated at a point. The very existence of a
fundamental string puts very stringent constraint on the structure of spacetime: supersym-
metry is necessary for having a consistent theory, and spacetime should have 10 dimensions
(for the five possible superstring theories). Hence one needs to hide these dimensions, either
by compactification (with Kaluza–Klein dimensional reduction) or by using a braneworld
scenario [1–3]. On the bright side string theory is unique and it describes quantum gravity
unified to matter and interactions, and there are no free parameters (before compactifica-
tion).

For decades the developments of string theory were limited to a perturbative analysis.
Recently the understanding of string theory has been deepened by a series of discoveries
concerning its non-perturbative structure: all five superstring theories (type II A and B,
type I and two heterotic) are related by dualities to each other, and to an 11-dimensional
theory called M-theory. The latter is unique and is believed to be the fundamental theory,
but its definition is not known, and only some of its aspects are understood in some limits.
Finally the previous analysis yielded the existence of branes which are extended objects
generalizing particles and strings. They proved to be fundamental in the realization of black
holes from string theory.

0.1.2 Supersymmetry and supergravity

In order to pursue the goal of unification one could ask if the internal gauge symmetry can
be unified with spacetime symmetries. A no-go theorem from Coleman and Mandula [4]
stated that it was impossible and the symmetry group is necessary a direct product

conformal × internal (0.1.2)

(in general one considers the Poincaré subgroup of the conformal group). But Haag, Ło-
puszański and Sohnius discovered a loophole in the argument [5]: the above group can
be extended into the superconformal group (which includes the super-Poincaré group) by
adding anticommuting generators. This group contains an automorphism subgroup called
the R-symmetry group that acts both on the fermionic generators and as an internal sym-
metry.

Supersymmetry is generated by fermionic generators Q and it relates bosons to fermions,
and conversely

Q |fermion〉 = |boson〉 , Q |boson〉 = |fermion〉 , (0.1.3)

and the anticommutator of these generators is equivalent to a translation

{Q,Q} ∼ P. (0.1.4)

Fields of different spins are gathered into multiplets that transform irreducibly under super-
Poincaré transformations. A theory with supersymmetry is characterized by the number N
of fermionic generators; in d = 4 the condition that no spin higher than 2 are generated
implies that N ≤ 8 (when N ≥ 2 one speaks about extended supersymmetry). This sym-
metry is very powerful and imposes constraints – the higher N is, the more severe they are
– on the theory. For example N = 1 is already sufficient for curing some of the problems of
the standard model (even if these extensions suffer from other problems): the Higgs mass
is stabilized as it inherits the mass protection from its partner. For extended supersymme-
try exact solutions could be derived, see for example the work of Seiberg and Witten on
N = 2 [6, 7] and the integrability of N = 4 [8–10]. The reason is that the scalar fields φi

parametrizes a non-linear sigma model

L = −1
2
gij(φ) ∂φi∂φj (0.1.5)
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whose target manifold with metric gij is very constrained by supersymmetry, and other
fields of the multiplets inherits these properties. In particular the isometry group of this
manifold translates (mostly) into the global symmetry of the Lagrangian.

Interestingly local supersymmetry includes general relativity: indeed the fact that the
anticommutators of two supersymmetries close on the momentum implies that one can-
not make local supersymmetry without making local the Poincaré group. This theory is
called supergravity. In this context the R-symmetry group is made local and provides gauge
interactions: this leads to a unification of spacetime and internal gauge symmetries!

As seen in the previous section, supersymmetry is necessary ingredient of string the-
ory for including fermions in the spectrum and for removing inconsistencies (such as the
tachyons). In this case supergravity corresponds to the low-energy approximation of super-
string theories.

In this thesis we focus on N = 2 supergravity. The latter admits three main multiplets:
the gravity multiplet (containing the metric and a vector field called the graviphoton), the
vector multiplet (containing a vector field and a complex scalar field) and the hypermultiplet
(containing four real scalar fields). This theory has more symmetries than N = 1 and the
additional structures facilitate the computations, but it is also less constrained than higher
N theories (such as the maximal N = 8 supergravity) and as a consequence it has a richer
dynamics and admits more different models. The scalar manifold in N = 1 is only Kähler,
while in N = 2 additional conditions imply that it is a direct product

special Kähler × quaternionic, (0.1.6)

and there is little freedom in their definition (for example a unique holomorphic function
is sufficient to define a special Kähler manifold). Finally the scalar manifolds of N > 2
supergravity are all symmetric and fixed once the number of vector multiplets is given
(hence the manifold is unique for N > 4). These spaces possess very interesting geometrical
properties which all have an interpretation from supersymmetry.

Currently supersymmetry has not been found in nature, which means that it should
be broken at an energy higher than those accessible in the current experiments. From the
phenomenological point of view theories with a low number of supersymmetries (N = 1, 2)
are preferable since they are closer to the standard model. Moreover N = 2 supergravity
corresponds to the effective action of the low-energy limit of type II string theory compact-
ified on a Calabi–Yau manifold. These models present some interest because they are very
similar to the N = 1 theories resulting from the compactification of the heterotic string
theory on a Calabi–Yau manifold [11–13].

The simplest version of these theories are called ungauged theories because the only local
symmetry corresponds to the local super-Poincaré group. The N = 2 theory is quite simple
in this case as some fields decouple from the others due to the absence of scalar potential
(this also imply a vanishing cosmological constant). In order to get a richer dynamics
one needs to deform the theory by using some of the vector fields as gauge fields for a
local gauge symmetry – one then obtains a gauged supergravity. In the context of string
compactification, this corresponds to some p-forms which are not vanishing along cycles of
the internal manifold.

Finally supergravity is interesting by itself as a theory of quantum gravity: it is known
that supersymmetry improves the ultraviolet behaviour of a theory. For example N = 4
super Yang–Mills is perturbatively finite. There is hope that a similar property is true
for the maximal N = 8 supergravity: in particular recent studies have shown by explicit
computations that expected loop divergences (from symmetry arguments) do not appear,
for example at 3-loops in N = 4 (see for example [14–17]).

0.1.3 Black holes

General relativity is the theory of gravitational phenomena. It describes the dynamical evo-
lution of spacetime through the Einstein–Hilbert action that leads to Einstein equations.
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The latter are highly non-linear differential equations and finding exact solutions is a no-
toriously difficult problem. There are different types of solutions but this thesis will cover
only black-hole-like solutions (type-D in the Petrov classification) which can be described
as particle-like objects that carry some charges, such as a mass or an electric charge.

Black holes are very specific entities that put a lot of strain on theories of quantum
gravity, and as such they are useful sandboxes where one can test the properties and the
predictions of the theory. Rotating black holes are the most relevant subcases for astro-
physics as it is believed that most astrophysical black holes are rotating. These solutions
may also provide exterior metric for rotating stars.

They resemble a lot a particle in the sense that they do not seem to have a structure:
they are defined by few parameters – such as the mass, the electric charge or the angular
momentum –, and any perturbation of a black hole dies off quickly. The most general solution
of this type in pure Einstein–Maxwell gravity is the Plebański–Demiański metric [18, 19]: it
possesses six charges: mass m, NUT charge n, electric charge q, magnetic charge p, rotation
j and acceleration a.

Classically a black hole is a region delimited by an horizon where the gravitational field is
so strong that nothing can escape from it (not even light), and they can be formed from the
gravitational collapse of a supermassive star. At the center of the black hole is a singularity
where the curvature of spacetime becomes infinite. Such divergence indicates a breakdown
of the theory: indeed gravitational effects are so important close to the origin that classical
GR is not sufficient and one needs a full quantization of gravity in order to account for
quantum effects.

Bekenstein and Hawking discovered that a black hole behaves like a thermodynamical
system in the sense that it has a temperature T , an entropy S, and each charge is associated
to a potential. A black hole emits a perfect black body radiation at the temperature T
which is related to the gravity on the horizon (called the surface gravity). Then the entropy
can be derived from the first law using the relation between the mass and the energy. This
picture explains the apparent simplicity of black holes: a statistical ensemble made of a
great number of particles moving in a box is determined only by few parameters (temper-
ature, pressure. . . ). Statistical physics teaches us that entropy is related to the number of
microstates of a system, and it is very natural to ask from a theory of quantum gravity
what are these states for the black holes. A specific subclass consists of extremal black holes
which have a vanishing temperature.

Usual systems have accustomed us to think that the entropy of a system should be
proportional to its volume. This is not the case in gravity where the entropy follows an area
law

S =
Akb
4ℓ2
p

, (0.1.7)

where A is the area of the horizon. This means that there is far less degrees of freedom than
what one would think, and these would live on the horizon of the black hole. This suggests
the existence of an holographic principle which states that (some) gravitational systems can
be entirely described by data on their boundary. This principle has seen a nice realization
within string theory under the adS/CFT correspondence.

Black holes are such special that it is always useful to classify all possible black hole
solution that can be found in a given theory or in its low-energy limit. Hence studying black
holes in supergravity gives indirect clues on the structure of string theory. In their seminal
paper [20], Strominger and Vafa set up a framework where the microstates were identified
with branes. The agreement between the microscopic counting and the macroscopic entropy
computed in the corresponding supergravity have been shown to hold for many BPS or
extremal black holes.
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0.1.4 BPS solutions and adS black holes

A BPS solution of supergravity is a solution of the equations of motion which preserves
some supersymmetry (indicated as a fraction), i.e. it is annihilated by the action of some
supersymmetry generators and it defines a background with its own supersymmetry algebra.
Extremal black holes form long BPS representations and the action of supersymmetry is
well defined, which is not the case for finite temperature black holes [21, p. 8], and for this
reason they share similar properties.1 These solutions are very useful because some of their
properties are protected by non-renormalization theorem due to supersymmetry, and this
makes it possible to infer their behaviour at strong coupling. In particular this last property
is essential for comparing the entropy with the microstate counting.

Extremal black holes can be seen as solitons, i.e. solutions interpolating between two
vacua, one sitting at the radial infinity (called the UV), the other being the near-horizon
geometry (the IR) – both are solutions of the BPS equations. They are subject to the
so-called attractor mechanism [22–26]: the scalar fields take on the horizon constant values
which depends only of the electromagnetic charges of the solution. This is as if the fields were
forgetting everything about their radial evolution outside the black hole, and in particular
the corresponding values do not depend on the values at infinity.

We will mainly focus on adS black holes which have a negative cosmological constant. The
first motivation is to provide solutions that can be used in the context of the adS/CFT corre-
spondence, and in particular for the application to condensed matter through adS/CMT [27–
29]. Moreover solutions with a negative cosmological constant are more natural in the con-
text of gauged supergravity and string theory. AdS black holes present a richer thermo-
dynamics [30, 31] than their asymptotically flat cousins; this results from the cosmological
constant which acts as a space cut-off, the black hole does not feel the entire spacetime and
is more stable as a consequence. Another interesting property of adS space is that a field
can have a negative mass without being unstable if it satisfies the BreitenLohner–Freedman
(BF) bound [32, 33].

Strictly speaking adS black holes are not asymptotic to adS space: if magnetic charges
are present then the asymptotic space is deformed to the so-called magnetic adS (madS).
It can be shown that to each madS vacuum is associated an adS vacuum. 1/2-BPS black
holes are asymptotically adS but they correspond typically to a naked singularity, and for
this reason we will concentrate on 1/4-BPS black holes.

0.1.5 Taub–NUT spacetime

The Taub–NUT spacetime is very peculiar and Misner said it was “a counterexample to
almost anything” believed in general relativity. For example it can be BPS without being
extremal. This solution is characterized by the NUT charge n which plays the same role as
the magnetic charge in electromagnetism (in this analogy the usual mass corresponds to the
electric charge) and for this reason one also refers to it as a magnetic mass.

This spacetime is a solution of the vacuum Einstein equation with no cosmological con-
stant. In this case the space is not asymptotically flat and it is characterized by the value
of n, the off-diagonal component of the metric giving a vector potential

Aφ ∼ gtφ = 2n cos θ. (0.1.8)

This is recognized as being the potential of a magnetic-like monopole. On the other hand
the solution can also include a mass m which asymptotically gives the usual scalar potential

φ ∼ 1
2

(1 − gtt) = −m

r
(0.1.9)

which is the potential of an electric-like point source. Then the Taub–NUT solution with
mass is a gravitational dyon.

1Moreover a static BPS black hole is necessarily extremal.
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The metric does not have any curvature singularity, in particular the space is regular at
r = 0. But the metric suffers from a worse pathology which is the presence of Misner strings
due to wire-like singularities (this is similar to the Dirac strings that one introduces with
magnetic monopoles). These strings can be removed by using two patches of coordinates,
but as a consequence closed timelike curves appear, with the periodicity of the time given
by

∆t = 8πn. (0.1.10)

Closed timelike curve may not appear for hyperbolic black holes if the NUT charge lies in
some range [34, 35].

The solution is better behaved in Euclidean signature. There it corresponds to a gravi-
tational instanton, which is a non-singular solution of the equations of motion with a finite
action that contributes to the computation of the partition function in the saddle point
approximation.

The NUT charge can be incorporated in more general solutions, for example in super-
gravity and with a non-vanishing cosmological constant.

0.2 Motivations

0.2.1 Supergravity

The last decades has seen a lot of works on N = 2 gauged supergravity for its applications
on string phenomenology, holography and black holes. While many the ungauged theory
has been deeply studied and understood, much less is known on the gauged version. For
example a complete classification of BPS solutions exist [36–39], the attractor mechanism
has received a lot of attention [40–42]), and fairly general non-extremal solutions have been
found [43, 44].

The first step is to study the vacua that can be obtained in this theory. In particular
the most natural one is the N = 2 adS4 vacua which have been discussed in [45–49], while
adS4 vacua with less supersymmetries were found in [48, 50, 51]. Another important type
of vacua consists in the near-horizon geometries adS2 × Σg where Σg is a Riemann surface
of genus g, and it has also received attention recently [46, 49, 52, 53]. Some steps towards
a classification of the BPS solutions have been taken in [54–57]. The equations for more
specific ansatz have also been studied, for example static black holes [58–63] or maximally
supersymmetric solutions [47]. The supersymmetry algebras associated to BPS solutions
were worked out in [64, 65]. Finally the attractor mechanism also takes place in these
theories [52, 58, 66–71].

As reviewed above the archetypal black hole of Einstein–Maxwell theory with cosmolog-
ical constant is the Plebański–Demiański (PD) solution [18, 19] which contains six charges:
mass m, NUT n, electric q and magnetic p charges, spin j and acceleration a. In the
context of supergravity on adS space and of adS/CFT it is natural to consider topological
horizons, which are not only spherical, but also flat or hyperbolic (or a compact Riemann
surface obtained by quotienting with a discrete group) [72–74]; indeed the usual wisdom
about horizon topology in asymptotically flat spaces does not hold for adS spaces [75]. The
supersymmetry of the (topological) PD solution and its truncations has been studied in [31,
75–78] by embedding it into pure N = 2 gauged supergravity, which is equivalent to taking
constant scalars. Non-BPS solutions with running scalars have been studied in the STU
model (which includes three vector multiplets) and its truncations [79–83]. Constructing
the general solution with non-constant scalars in general N = 2 gauged supergravity is an
outstanding goal, and a first step is to look at the BPS subclass which is simpler to study.

In ungauged supergravity static black holes are 1/2-BPS. The corresponding solutions
in gauged supergravity are naked singularity (but there are regular 1/2-BPS rotating black
holes) and cannot have magnetic charges [60, 61, 63, 75]. A static 1/4-BPS black hole with
constant scalars was found in [59] where it was put forward that the solution is regular
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only if the horizon is hyperbolic. An important step has been taken by Cacciatori and
Klemm who found the first regular 1/4-BPS black holes with running scalars in the STU
model [58], and it was generalized to any symmetric very special manifold in [46] in the
case of vanishing axions. In particular it was shown in [52, 60] that spherical horizons are
possible if the scalars are non-trivial. These solutions have no flat space limit and are thus
very different from the 1/2-BPS solutions [60]; as explained above they have a madS vacua.
Finally the general analytic 1/4-BPS solution of Fayet–Iliopoulos (FI) gauged supergravity
with a symmetric scalar manifold (with an arbitrary number of vector multiplets, running
scalars and dyonic charges) was built in [84] using a formalism developed in [85] which rely
heavily on the properties of very special Kähler manifolds. A 1/4-BPS black hole with
NUT and magnetic charges was constructed in the case of only one vector multiplet [86].
All the previous discussion apply to FI gauged supergravity, but very few solutions with
hypermultiplets have been found: recently an analytic BPS solution have been described
in [67], while some numerical 1/4-BPS solutions were built in [62] (1/2-BPS solutions with
pathological behaviour have been discussed in [61]). Finally 1/8-BPS solutions were classified
in [57].

Solutions with a NUT charge are interesting in the fluid/gravity correspondence where a
NUT charge in spacetime translates to vorticity in the dual fluid [87–90]. Another interesting
path is to perform a Wick rotation and to compare the free energy with the result in the
dual CFT using localization. Indeed it was put in evidence in a series of papers by Martelli
and collaborators on minimal N = 2 gauged supergravity that the NUT charge and the
acceleration correspond to the two squashing parameters of the boundary S3 [91–94].

0.2.2 Demiański–Janis–Newman algorithm

As the complexity of the equations of motion increase, it is harder to find exact analytical so-
lutions, and one often consider specific types of solutions (extremal, BPS), truncations (some
fields are constant, equal or vanishing) or solutions with restricted number of charges. Then
it is interesting to find solution generating algorithms which are procedures which transform
a seed configuration to another configuration with a greater complexity (for example with
a higher number of charges).

An algorithm which is on-shell is very previous because one is sure to obtain a solution
when starting with a seed configuration which solves the equations of motion. On the other
hand off-shell algorithms do not necessarily preserve the equations of motion, but they are
nonetheless very precious: they provide a motivated ansatz, and it is always easier to check
if an ansatz satisfy the equations than solving them from scratch. Even if in practice this
kind of solution generating technique does not provide so many new solutions, it can help to
understand better the underlying theory (which can be general relativity, modified gravities
or even supergravity) [95] and it may shed light on the structure of gravitational solutions.

Janis–Newman (JN) algorithm is one of these (off-shell) solution generating techniques,
which – in its original formulation – could be used to generate rotating metrics from static
ones. It was used by Janis and Newman to give another derivation of the Kerr metric [96],
while shortly after it has been used again to discover the Kerr–Newman metric [97].

This algorithm provides a way to generate axisymmetric metrics from a spherically sym-
metric seed metric through a particular complexification of radial and (null) time coordi-
nates, followed by a complex coordinate transformation. Often one performs a change of
coordinates to write the result in Boyer–Lindquist coordinates. The original prescription
uses the Newman–Penrose tetrad formalism, which appears to be very tedious since it re-
quires to invert the metric, to find a null tetrad basis where the transformation can be
applied, and lastly to invert again the metric. In [98] Giampieri introduced another formu-
lation of the JN algorithm which avoids gymnastics with null tetrads and which appears to
be very useful for extending the procedure to more complicated solutions (such as higher
dimensional ones). However it has been so far totally ignored in the literature and the
first published and widely accessible paper on this topic is [99]. We stress that all results
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are totally equivalent in both approaches, and every computation that can be done with
Giampieri’s prescription can be done with the other.

In order for the metric to be still real, the seed metric functions2 must be transformed
such that reality is preserved.3 Despite that there is no rigorous statement concerning
the possible complexification of these functions, some general features have been worked
out in the last decades and a set of rules has been established. Note that this step is
the same in both prescriptions. In particular these rules can be obtained by solving the
equations of motion for some examples and by identifying the terms in the solution [100].
Another approach consists in expressing the metric functions in terms of the Boyer–Lindquist
functions – that appear in the change of coordinates and which are real –, the latter being
then determined from the equations of motion [101, 102].

It is widely believed that the JN algorithm is just a trick without any physical or math-
ematical basis, which is not accurate. Indeed it was proved by Talbot [103] shortly after its
discovery why this transformation was well-defined, and he characterizes under which con-
ditions the algorithm is on-shell for a subclass of Kerr–Schild (KS) metrics (see also [104]).4

KS metrics admit a very natural formulation in terms of complex functions for which (some)
complex change of coordinates can be defined. Note that KS metrics are physically inter-
esting as they contain solutions of Petrov type II and D. Another way to understand this
algorithm has been provided by Schiffer et al. [105] who showed that some KS metrics can
be written in terms of a unique complex generating function, from which other solutions can
be obtained through a complex change of coordinates. In various papers, Newman shows
that the imaginary part of complex coordinates may be interpreted as an angular momen-
tum, and there are similar correspondences for other charges (magnetic. . . ) [106–108]. More
recently Ferraro shed a new light on the JN algorithm using Cartan formalism [109]. A
recent account on these points can be found in [110].

Other solution generating algorithm rely on a complex formulation of general relativ-
ity which allows complex changes of coordinates. This is the case of the Ernst potential
formulation [111, 112] or of Quevedo’s formalism who decomposes the Riemann tensor in
irreducible representations of SO(3,C) ∼ SO(3, 1) and then uses the symmetry group to
generate new solutions [113, 114].

The JN algorithm has been used to find new solutions as well as to show that known
solutions could be derived in this way. For instance it has been applied to dilatonic grav-
ity [115], interior solutions [101, 102, 116–121] and other dimensions [122–124].5 The list is
short because the algorithm could be used only to derive the metric, and all other fields had
to be found using equations of motion. Moreover many works [125–130, 131, sec. 5.4.2] (to
cite only few) are wrong or not reliable because they do not check the equations of motion
or they perform non-integrable Boyer–Lindquist changes of coordinates [99, 121, 132, 133].

The algorithm has later been extended to what we call the Demianski–Janis–Newman
(DJN) algorithm, when Demiański (and partially Newman) showed that other parameters
can be added [100, 134], even in the presence of a cosmological constant.6

More recently it has been investigated whether the JN algorithm can be applied in
modified theories of gravity. Pirogov put forward that rotating metrics obtained from the
JN algorithm in Brans–Dicke theory are not solutions if α 6= 1 [138]. Similarly Hansen and

2We call a "seed/stationary metric function" a function that appears in the seed/stationary metric. The
term "stationary" is used to describe the metric resulting from the DJN algorithm, which generically is
non-static.

3For simplifying, we will say that we complexify the functions inside the metric when we perform this
transformation, even if in practice we "realify" them.

4It has not been proved that the KS condition is necessary, but all known examples seem to fit in this
category.

5A general strategy for interior solutions is the following: find the stationary metric, and then describe
the fluid stress-energy tensor that allows to solve the equations of motion. Note that here the fluid is in
general not present and the algorithm is just seen as a way to provide a motivated ansatz for the metric. As
a consequence one can also add angular momentum with non-vanishing cosmological constant, despite the
Demiański’s result [100] (more details later).

6Demiański’s metric has been generalized in [135–137].
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Yunes have shown a similar result in quadratic modified gravity (which includes Gauss–
Bonnet) [139].7 These do not include Sen’s dilaton–axion black hole for which α = 1
(section 16.3.4), nor the BBMB black hole from conformal gravity (section 16.2.3). Finally
it was proved in [140] that it does not work either for Einstein–Born–Infled theories. We
note that all these no-go theorem have been found by assuming a transformation with only
rotation.

Detailed reviews on generalizations and explanations of the JN algorithm can be found
in [110, 142, chap. 19, 101, 131, sec. 5.4] (see also [143]).

0.3 Content

0.3.1 Supergravity

An important motivation of this work is to study black holes which can be embedded into
M-theory, such as the STU model with a specific choice of gaugings which is a dimensional
reduction of d = 11 supergravity on S7. In presence of a NUT charge the holographic duals
correspond to the ABJM theory on a curved manifold. In particular after the Euclidean
continuation these contain Seifert spaces (given by a U(1) bundle over Σg), including the
Lens spaces S3/Zn, where supersymmetry has been preserved by twisting the theory with
respect to a general U(1) ⊂ SU(4)R × U(1)R. From an N = 2 point of view this includes
flavour as well as R-symmetries.

The goal of this work is to deepen the understanding of BPS solutions in (matter-coupled)
N = 2 gauged supergravity with abelian gaugings. When there are no hypermultiplet this
corresponds to Fayet–Iliopoulos (FI) gauging.

In the case where hypermultiplets are present, the hyperscalars are the only scalar fields
to be charged. Fortunately the isometries of homogeneous (symmetric or not) special quater-
nionic manifolds have been classified by de Wit and van Proeyen [12, 144–146]. These man-
ifolds are constructed as a fibration over a special Kähler manifold through the c-map, and
some isometries of the latter can be lifted to the full quaternionic spaces. In this work we are
building on these results to provide symplectic covariant expressions for the Killing vectors
and prepotentials for symmetric spaces only. This helps to clarify a conceptual point on the
so-called hidden Killing vectors: they must act symplectically on the coordinates of the base
special Kähler space and this was not evident in the analysis of de Wit and van Proeyen.
Symmetric manifolds are coset spaces for which all possible isometries are realized and form
a semi-simple Lie algebra.

The holonomy group of quaternionic manifolds contains an SU(2) factor which corre-
sponds to the SU(2) R-symmetry of the N = 2 super-Poincaré algebra. A Killing vector
does not need to preserve the SU(2) connections and it can induce a rotation given by a
3-vector called the compensator. It was already known that a necessary condition for get-
ting a N = 2 adS4 vacua is that at least one isometry with a non-trivial compensator be
gauged [48, 50]. In particular we list the isometries with such compensators, and all of them
are model-dependent (the isometries of the Heisenberg algebra associated to the Ramond
scalars).

We also analyse adS2 × Σg vacua. In the case of FI gaugings this was solved in [53].
Since the equations for the vector and hyperscalars are decoupled we find that the entropy
is given by the same formulas in both cases, except for the replacement of the FI parameters
by the Killing prepotentials.

The idea in these two cases is to first solve the problem in FI supergravity by treating
the prepotentials as constants. This provides a solution for the vector scalars in terms of

7There are some errors in the introduction of [139]: they report incorrectly that the result from [138]
implies that Sen’s black hole cannot be derived from the JN algorithm, as was done by Yazadjiev [115]. But
this black hole corresponds to α = 1 and as reported above there is no problem in this case (see [141] for
comparison). Moreover they argue that several works published before 2013 did not take into account the
results of Pirogov [138], published in 2013. . .
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the charges, gauging parameters and hyperscalars which can be fed into the other equations.
We give examples for models which correspond to consistent truncations of M-theory.

Solutions with less charges are easier to find and we focus on NUT charged ones. The
addition of this charge is very natural because it preserves the SU(2) isometry and the hope
is that BPS equations are not much different from the static case. The simple adS–NUT
Schwarzschild black hole can be obtained from a limit of the PD solution, and there are two
BPS branches preserving a half and quarter of the supersymmetry. An intriguing property
in the presence of a NUT charge is the existence of BPS solutions that are not extremal and
without horizons. On the other hand if there is an horizon then the solution is necessarily
extremal. We discuss the root structure of the metric functions in order to clarify the
different possibilities.

Then we compute the 1/4-BPS equations for NUT black hole in FI gauged supergravity
and we look for solutions by using the techniques of [84]. In the case of extremal black hole
we arrive at an analytic solution with running scalars and dyonic charges which generalize
the one of [84]. In particular the near-horizon geometry does not feel the NUT charge. We
were not able to find the general solution in the case where the black hole is not extremal,
and it is not known if there are solutions with different near-horizon geometries or if they
would simply be without horizons. Nonetheless we construct the constant scalar solutions
in this formalism.

Symmetric Kähler manifolds are endowed with a invariant symmetric 4-tensor because
the isometry group are of type E7 [147, 148]. This quartic invariant appears in the expres-
sions of the Killing vectors of symmetric special quaternionic manifolds, of the black hole
entropy and the radius of adS4, of the BPS equations and of the analytic solutions for static
and NUT-charged dyonic 1/4-BPS black holes [53, 84, 144, 149–151].

In conclusion the achievements of the current work are:

• symplectic covariant expressions for the quaternionic isometries;

• BPS equations with magnetic gaugings for matter-coupled N = 2 gauged supergravity;

• a framework for studying N = 2 adS4 and adS2 × Σg vacua with abelian gaugings;

• quite generic solution for 1/4-BPS black holes with FI gaugings;

As a future direction one can extend the analysis of the BPS black holes (both static and
with a NUT charge) in order to include hypermultiplets. A simpler intermediate goal would
be to find an analytic solution of the scalars in terms of the charges for the vacua. Another
topic which has recently benefited from the study of quaternionic isometries is inflation in
N = 2 supergravity where it was shown that at least one hidden isometry needs to be gauged
in order to construct a physical model [152, 153].

Despite the fact that it would be very interesting to find the most general 1/4-BPS
NUT solution when the horizon is not adS2 × Σg, it may be more important to look first to
solutions with rotation and acceleration8 or at 1/2-BPS NUT solutions with running scalars.

With more supersymmetry it would be easier to compute the microstates of these black
holes.

It is not clear how the solution of Chow and Compère [80] is related to the known 1/4-
BPS solutions and this point calls for an explanation. Finally computing the holographic
free energy of the NUT charged solution is an interesting problem.

In all cases keeping the symplectic covariance of the equations by considering the general
case was a key step in order to build the solutions by exploiting the power of the special
geometry, and in particular of the quartic invariant. In the same idea it would be useful to
extend the symplectic covariance of the Killing vectors to the case of homogeneous spaces
and for non-abelian gaugings.

8In particular solutions with acceleration has been discovered recently [154, 155], and the rotating black
holes from [79, 80] may give some intuitions. Also in this case the near-horizon geometries will certainly be
different and a first analysis would be to look at these solutions.
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0.3.2 Demiański–Janis–Newman algorithm

As explained in the previous section, the JN algorithm was formulated only for the metric
and all other fields had to be found using the equations of motion (with or without using an
ansatz). For example neither the Kerr–Newman gauge field or its associated field strength
could be derived in [97]. The solution to this problem is to perform a gauge transformation
in order to remove the radial component of the gauge field in null coordinates [99]. It is
then straightforward to apply the JN algorithm in either prescription.9

Another problem was exemplified by the derivation of Sen’s axion–dilaton rotating black
hole [157] by Yazadjiev [115], who could find the metric and the dilaton, but not the axion
nor the gauge field. The reason is that while the JN algorithm applies directly to real scalar
fields, it does not for complex scalar fields (or for a pair of real fields that can naturally be
gathered into a complex scalar). Then it is necessary to consider the complex scalar as a
unique object and to perform the transformation without trying to keep it real [158].

Hence this completes the JN algorithm for all bosonic fields with spin less than 2.
Demiański’s analysis reveals itself to be very useful in order to find the most general

transformation. We have extended its analysis to Einstein–Maxwell gravity and to topo-
logical horizons [159], fixing also some errors that appeared in his work due to an hidden
hypothesis. This has also been the occasion to provide very generic formulas for the configu-
rations obtained after performing the DJN algorithm. A long standing issue of this analysis
was to find how one should complexify the metric function: the usual rules do not work in
presence of a NUT charge, and if there is no way to obtain the function by complexification
it would imply that the most general transformation are useless because they can not be
used in other cases (except if one is willing to solve Einstein equations, which is not the goal
of a solution generating technique). We have found that it is necessary to complexify also
the mass and to consider the complex parameter m+ in [158, 159]. Similarly configurations
with magnetic charges were out of reach, and we have shown that one needs to consider the
complex charge q + ip [158]. Such a complex combination is quite natural from the point
of view of Plebański–Demiański solution [18, 19]. It is to notice, that the appearance of
complex coordinate transformations mixed with complex parameter transformations was a
feature of Quevedo’s solution generating technique [113, 114]. Yet it is unclear what the link
with our approach really is, despite the fact that it may probably provide some clues for
generalizing further the DJN algorithm (higher dimensions, cosmological backgrounds. . . ).

Hence the final metric may contain (for vanishing cosmological constant) five of the six
Plebański–Demiański parameters [18, 19] along with Demiański’s parameter. It is intriguing
that one could get all Plebański–Demiański parameters but the acceleration, which appears
in the combination a+ iα.

We also comment the group properties that some of the DJN transformations pos-
sess [159]. This observation can be useful for chaining several transformations or to add
parameters to solutions that already contain some of the parameters (for example adding a
rotation to a solution that already contains a NUT charge).

We also extended the algorithm to five dimensions [160], where the key idea is to perform
the transformation only on the metric parts that describe the rotation plane that we are
looking for. We also give a proposal for the metric in higher dimensions but we could not
transform the function itself.

Finally a very general Mathematica package has been written for the DJN algorithm in
Einstein –Maxwell theory and it is available on demand.

All these results provide a complete framework for most of the theories of gravity that are
commonly used. A major playground for this modified Demiański–Janis–Newman (DJN)
algorithm would be (gauged) supergravity where many interesting solutions remain to be
discovered.

As a conclusion we summarize the features of our new results:
9Another solution has been proposed by Keane [156], but it is applicable only to the Newman–Penrose

coefficients of the field strength.
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• all bosonic fields with spin ≤ 2;

• topological horizons;

• charges m,n, q, p, a (with a only for Λ = 0);

• group properties;

• extend to d = 3, 5 dimensions (and proposal for higher).

Here is a list of new examples that have been derived using the previous results (all in 4d
except when said explicitly):

• Kerr–Newman–NUT;

• dyonic Kerr–Newman;

• Yang–Mills Kerr–Newman black hole [161];

• adS–NUT Schwarzschild;

• ungauged N = 2 BPS solutions [36];

• non-extremal solution in T 3 model [157] (partly derived in [115]);

• SWIP solutions [162];

• charged Taub–NUT–BBMB with Λ [35];

• 5d Myers–Perry [163];

• 5d BMPV [164].

We also found [160] a more direct derivation of the rotating BTZ black hole (derived in
another way by Kim [123, 124]). Moreover Klemm and Rabbiosi showed how to recover the
NUT charged black hole in gauged N = 2 sugra with F = −iX0X1 from [82].10 Note that
all these examples appear to be related to N = 2 supergravity.

Despite the fact that the JN algorithm is partly understood, a better understanding is
called for. In particular it seems linked with (N = 2) supergravity and it is possible that
a natural explanation could be found in supersymmetry. Another interesting application
would be to derive generating functions (e.g. the fake superpotential in N = 2 supergravity)
for rotating black holes from static ones. Moreover another question is to understand which
1/4-BPS static black holes from section 12.3 can be mapped to the solutions of section 13.4.
Finally the question of acceleration remains open.

0.4 Structure

In part I we review the ungauged and gauged N = 2 supergravity: it describes the mul-
tiplets, the bosonic Lagrangian, the supersymmetry variations and the gauging procedure.
These chapters are mostly self-contained and include a minimal description of the scalar
manifolds. Next in part II we describe the properties of the scalar manifolds: this corre-
sponds to a special Kähler manifold for the vector scalars, and to a quaternionic manifold
for the hyperscalars. We describe the Riemannian properties of these manifolds and we
build the isometries, focusing particularly on symmetric spaces. Then in part III we look
at the BPS equations and their static and NUT charged solutions. We start this part with
a chapter on the general properties of adS–NUT black holes. Finally part IV is devoted
to the Demiański–Janis–Newman algorithm. We start by a simple presentation of the al-
gorithm before giving general formulas for all fields with spins less than two. Conventions,
background informations, long formulas and computations are relegated in appendix V.

10Private communication by D. Klemm.
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Part I

N = 2 supergravity
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Chapter 1

Introduction to N = 2

supergravity

Four-dimensional N = 2 supergravity can be obtained as the low-energy effective action of
type II superstring theory compactified on Calabi–Yau 3-fold [165, sec. 21.4.3, 166, sec. 5]
or on a N = (2, 2) superconformal theory with c = 9 [12, 13, 167]. This case is interesting
because heterotic string theory can be compactified on these manifolds and give rise to N = 1
supergravity in four dimensions, and some details of the resulting theory are independent of
the number of supersymmetries [12, 13]. Finally N = 2 supergravity can also be found from
M-theory on a 7-dimensional manifold with SU(3) structure [168, 169]. If fluxes are present
then one gets gauged supergravity and we address this topic in the next chapter.

In this section we present the supersymmetry algebra and the corresponding multiplets.
We then display the Lagrangian that describes the interaction of the hyper-, vector and
gravity multiplets and we comment the electromagnetic duality of this theory. Finally we
present the main details of the manifolds described by the scalar fields – the special Kähler
and quaternionic geometries – which described in more details in later chapters.

General introductions can be found in the classical references [165, 170–172].1 Several
thesis have been written recently on the topic [173–175].

1.1 Algebra and multiplets

The N = 2 supersymmetry algebra corresponds to [165, app. 6A]

[Jµν , Pρ] = ηµρPν − ηνρPν , (1.1.1a)

[Jµν , Jρσ] = ηµρJνσ − ηµσJνρ + ηνρJµσ − ηνσJµρ, (1.1.1b)
{
Qα, Q̄

β
}

= − i

2
δ β
α PLγµ P

µ,
{
Qα, Q̄β

}
= − i

2
δαβ PRγµ P

µ, (1.1.1c)
{
Qα, Q̄β

}
= 0,

{
Qα, Q̄β

}
= 0, (1.1.1d)

[Pµ, Qα] = 0, [Pµ, Qα] = 0, (1.1.1e)

[Jµν , Qα] = − i

2
γµνQα, [Jµν , Qα] = − i

2
γµνQ

α, (1.1.1f)

{Qα, Qβ} = −1
2
εαβPL Z,

{
Qα, Qβ

}
= −1

2
εαβPR Z̄, (1.1.1g)

[
RA, Qα

]
= (UA) β

α Qβ,
[
RA, Qα

]
= (UA)αβQ

β, (1.1.1h)
[
T a, T b

]
= fabcT

c, (1.1.1i)

1In particular an summary of the historical works may be found in [170, sec. 4].
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where Pµ and Jµν generate translation and Lorentz transformations and form the Poincaré
algebra, Qα are the fermionic generator of supersymmetry, RA are the generator of the
U(2)R R-symmetry represented by the matrices UA, T a are generators of the internal sym-
metry, and finally Z is the central charge. The index α corresponds to the fundamental
representation of U(2)R.

Note that Jµν and Pµ describe the Poincaré subalgebra. The commutators of Jµν with
respectively itself, Pµ and Qα show that they behave as an antisymmetric 2-tensor, a vector
and a spinor. Two supersymmetric transformations close on a translation: as a consequence
if supersymmetry is made local, so are the translations and one cannot have local supersym-
metry without gravity. The R-symmetry group corresponds to the automorphism group:
this is the only internal group that does not commute with the supersymmetry generators.

The algebra is given in terms of Weyl spinors (Qα, Qα) where the position of the index
gives the chirality (see appendix A.5)

Qα = PLQα, Qα = PRQ
α. (1.1.2)

Poincaré fields are organized into multiplets in this extended algebra. One of the con-
straint for building these representations is that the highest spin should not exceed s = 2
as interacting higher-spin theories (with a finite number of fields) are not consistent. The
different multiplets are summarized in table 1.1. Using the table A.2 one can see that the
bosonic and fermionic on-shell degrees of freedom match in each multiplets.

There are additional multiplets that we will not discuss, the tensor (or hypertensor,
scalar-tensor) multiplet [49, 176–182], the double tensor multiplet [178] and the vector-
tensor multiplet [176, 177, 183, 184]. While it is possible to always dualize the tensor into
scalars in ungauged supergravity (where the vector-tensor and (double) tensor multiplets give
respectively the vector and hyper-multiplets), this is not the case in gauged supergravity
where the coupling of the multiplets with and without tensors are different. For example the
masses of the tensor multiplets give magnetic gaugings. These multiplets have their interest
in the context of flux compactifications where p-forms naturally arise.

multiplet smax s = 2 s = 3/2 s = 1 s = 1/2 s = 0
gravity 2 1 2 1

3/2 1 2 1
vector 1 1 2 2
hyper 1/2 2 4

Table 1.1 – N = 2 supergravity multiplets and spin content.

We consider the following field content:

• Gravity multiplet
{gµν, ψαµ, ψαµ , A0

µ}. (1.1.3)

• nv vector multiplets
{Aiµ, λαi, λı̄α, τ i}, (1.1.4)

with τ i ∈ C.

• nh hypermultiplets
{ζA, ζA, q

u}, (1.1.5)

with qu ∈ R.

The fields ψαµ, λαi and ζA are respectively called gravitini, gaugini and hyperini. The
ranges of the indices are

α = 1, 2, i = 1, . . . , nv, u = 1, . . . , 4nh, A = 1, . . . , 2nh. (1.1.6)

The index α corresponds to the fundamental representation of SU(2) ∼ Sp(1) and A to the
fundamental of Sp(nh).
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1.2 Lagrangian

It is natural to gather gauge fields into one vector of dimension nv + 1

AΛ = (A0, Ai), Λ = 0, . . . , nv. (1.2.1)

The bosonic part of the Lagrangian is given by

Lbos =
R

2
+

1
4

Im N (τ)ΛΣ F
Λ
µν F

Σµν − 1
8

Re N (τ)ΛΣ
εµνρσ√−g F

Λ
µν F

Σ
ρσ

− gi̄(τ) ∂µτ i∂µτ̄ ̄ − 1
2
huv(q) ∂µqu∂µqv

(1.2.2)

where the field strengths are defined by

FΛ = dAΛ. (1.2.3)

All fields are minimally coupled to gravity (through the factor
√−g in the action). Both

vector- and hyperscalars describe a non-linear sigma model since the coefficient of the ki-
netic term is field-dependent. Moreover the gauge fields are coupled to the vector scalars
through the period matrix N : the imaginary and real parts correspond respectively to a
generalization of the gauge coupling and of the topological θ-term. Finally the hyperscalars
do not interact with the gauge fields nor the vector scalars.

Supersymmetry dictates the form of the various functions that appear. In particular the
period matrix N and the metric gi̄ can be derived from a unique holomorphic function F
called the prepotential (see section 1.4).2

All the kinetic terms should be positive definite [185, sec. 2], and this imposes some
restrictions on the scalar fields. The normalisation of the curvature term corresponds to
a gauge choice.3 Moreover the kinetic term for the gauge field has the correct signature
because Im N is negative definite (see section 4.4).

The Lagrangian is invariant under the local R-symmetry with gauge group U(2)R for
which there are two composite gauge fields Aµ(τ, τ̄ ) and Vxµ(q) with x = 1, 2, 3. Their origin
can be seen most clearly from the superconformal tensor calculs. The scalar fields are neutral
under this group.

We are not interested in the fermionic part of the Lagrangian but we will comment
some of its properties. Fermions are coupled to the gauge fields through Pauli terms Fψψ
(and so on) which give rise to anomalous magnetic moments – in particular for the gaugini
they are given by the quantity Wijk (see section 4.5) [171, sec. 4.3]. Moreover the fermions
are minimally coupled to the composite U(2)R gauge fields. The Lagrangian includes four-
fermion terms, but there are no mass terms.

The full Lagrangian is invariant under supersymmetry variations, we will give them only
in the case of gauged supergravity (section 2.4).

1.3 Electromagnetic duality

Electromagnetic duality with and without scalars was studied in full generality by Gaillard
and Zumino [187] (see also [21, sec. 3]). For a review of this topic see [170, sec. 2, 188, sec. 3,
189, 186, sec. 2, 165, sec. 4.2].

Recall that the field strength are determined from the gauge potential by

FΛ = dAΛ. (1.3.1)

2There are formulation of the theory without prepotential but we will not worry about this subtlety.
3In particular the term which appears before gauge fixing is −i

〈
V , V̄
〉

R, and we recover R by setting〈
V , V̄
〉

= i as in (4.2.25) [186, sec. 4].
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Dual (magnetic) field strengths are given by

GΛ = ⋆

(
δLbos

δFΛ

)
= Re NΛΣ F

Λ + Im NΛΣ ⋆FΛ. (1.3.2)

It is also possible to introduce magnetic gauge potential AΛ such that

GΛ = dAΛ. (1.3.3)

Both types of field strengths and gauge fields form together a symplectic vector

F = dA =
(
FΛ

GΛ

)
, A =

(
AΛ

AΛ

)
. (1.3.4)

The self-dual and anti-self-dual field strength is defined by

F± =
1
2

(F ∓ i ⋆F ), (1.3.5)

and similarly for G±. Using equation (4.3.3) one finds

G+ = NF+, G− = N̄F−. (1.3.6)

Using these fields the kinetic term for the gauge fields can be rewritten as [170, p. 5, 165,
p. 446]

Lvec =
1
2

Im(NΛΣF
+ΛF+Σ) = − i

4
NΛΣF

+ΛF+Σ + c.c. = − i

4
G+

ΛF
+Λ + c.c. (1.3.7)

This can be proven using the fact that

F+
µνF

+µν =
1
2

(FµνFµν − iFµν ⋆F
µν), (1.3.8)

then one ends up with

Lvec = −1
4

Re
(
iNΛΣ(FµνFµν − iFµν ⋆F

µν)
)
. (1.3.9)

Maxwell equations and Bianchi identities

dFΛ = 0, dGΛ = 0 (1.3.10)

can be gathered as
dF = 0. (1.3.11)

Note also that they can be traded for their dual

d ⋆FΛ = 0, d ⋆GΛ = 0 =⇒ d ⋆F = 0. (1.3.12)

They can also be rewritten as
d Im F± = 0. (1.3.13)

These equations are invariant under linear transformations from GL(2nv + 2,R), which
reduces to symplectic transformations

F −→ UF , U =
(
A B
C D

)
∈ Sp(2nv + 2,R) (1.3.14)

if one wants to preserve the relation between F and G

GΛ = NΛΣF
Σ =⇒ G′

Λ = N ′
ΛΣF

′Σ. (1.3.15)
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This is a consequence of the fact that a symplectic transformation of the various sections
will induce a diffeomorphism of the scalar manifold, and the action will be of the same form
only if both transformations are consistent together. The fact that both scalar and gauge
fields transform can be seen as a consequence of supersymmetry which relates both fields:
indeed if only the vector fields were transforming then the supersymmetry transformation
would not be consistent anymore.

In presence of matter the dualities of the full equations of motion are restricted to a
subgroup G ⊂ Sp(2nv + 2,R), called the U-duality group, because the self-interaction terms
are not invariant under the full symplectic group (see section 1.4).

It is important to note that the equations of motion – but not the action — are only
covariant with respect to these symplectic transformations (called also duality-rotations or
field-redefinitions), and as a consequence these are not symmetries of the action. [170, p. 7].
Symmetries of the equations of motion (and Bianchi identities) correspond to the subgroup
of the symplectic transformation that leaves the equations invariant, and they are called
duality transformations. We used this word duality because in general the action is not
invariant, only the equations of motion are [165, p. 84].

The gauge field Lagrangian (1.3.7) transforms according to [170, p. 7, 186, p. 3]

2Lvec = Im(G+
ΛF

+Λ) −→ Im(G′+
Λ F ′+Λ) = Im

(
G+

ΛF
+Λ + 2F−CtBG−

+ F−CtAF− +G−DBG−
)
.

(1.3.16)

Then a symmetry of the Lagrangian is possible only if B = 0 since the last term was not
present in the original Lagrangian – these symmetries are called electric. Moreover it seems
that we would have to require also C = 0, this is not necessary if one asks only for a
symmetry of the action: the term (CtA)ΛΣF

−ΛF−Σ, which corresponds to a constant shift
of N

N −→ At−1NA−1 + CAt−1, (1.3.17)

is a topological density since the coefficient is constant. Nonetheless this term would have
a quantum effect as it modifies the θ-angle of the theory. In particular the path integral
is invariant only if the coefficients are integer multiples of 2π, which restricts the U-duality
groupG to a discrete subgroup [170, p. 27]. In the case C 6= 0 the prepotential is shifted [165,
sec. 21.1.2], from (5.1.22)

δF =
1
2
XStQX. (1.3.18)

The transformation for which B 6= 0 are non-perturbative because they mix the electric
and magnetic field strengths into the Lagrangian which does not involve the latter. From
the microscopic point of view this is equivalent to exchanging the electric and magnetic
currents, and then the elementary states with the soliton states [170, p. 28].

The electric and magnetic charges qΛ and pΛ contained in a volume V with boundary Σ
are defined by

Q =
(
pΛ

qΛ

)
=

1
Vol(Σ)

∫

Σ

F . (1.3.19)

The charges are defined as densities to avoid infinite charges in the case of non-compact
surfaces. For compact horizons one takes

Vol(Σ) = Vol(S2) = 4π. (1.3.20)

Note also that the charges are a priori not constant. Since the charges Q are obtained by
integrating the field strengths F , they also transform under symplectic transformations [186,
sec. 2]. Let us stress that identifying charges as being magnetic or electric is a frame-
dependent question as a consequence of the previous point.

The graviphoton dressed field strength T and its (anti-)self-dual parts are defined by

T+ = −
〈
V̄ ,F+

〉
, T− = −

〈
V ,F−

〉
(1.3.21)
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since [165, p. 478] 〈
V ,F+

〉
=
〈
V̄,F−

〉
= 0. (1.3.22)

Similarly one defines the dressed field strengths T i of the vector multiplet fields as

T+
i = −

〈
Uj,F+

〉
, T−

ı̄ = −
〈
Ūı̄,F−

〉
, (1.3.23)

while the tensors with the upper index are T ı̄+ = gı̄jT+
j and T i− = gi̄T−

̄ .
Important quantities are the central and matter charges defined by

Z = −1
2

∫

Σ

T−, Zi = −1
2

∫

Σ

T−
i . (1.3.24)

If V does not depend on the coordinates on Σ, one can move V outside the integral in
(1.3.24). Then the central and matter charges correspond to the components of Q along the
basis (V , Ui) following (4.4.14)

Z = Γ(Q) = 〈V ,Q〉 , Zi = DiZ = 〈Ui,Q〉 . (1.3.25)

1.4 Scalar geometry

Scalar fields describe a non-linear sigma model with target space

M = Mv(τ i) × Mh(qu) (1.4.1)

where supergravity imposes constraints on the manifold holonomies which determine their
types:4

• Mv: special Kähler (SK) manifold (chapter 4), dimR = 2nv [167];

• Mh: quaternionic Kähler (QK) manifold (chapter 8), dimR = 4nh [190].

The R-symmetry group of the supersymmetry algebra can be split as

U(2)R = SU(2)R × U(1)R, (1.4.2)

and this is mirrored in the structure of the multiplets: SK manifolds have a U(1) bundle
while QK manifolds have an SU(2) bundle. In particular if the manifolds Mv and Mh are
cosets G/H , then their maximal compact subgroup H contains respectively a factor U(1)
or SU(2).

In considering the fields as coordinates for the non-linear sigma model all relevant for-
mulas are obtained through a pull-back, in particular

dτ i = ∂µτ
i dxµ, dqu = ∂µq

u dxµ. (1.4.3)

1.4.1 Isometries

The isometry group5

G ≡ ISO(M) (1.4.4)

of this manifold translates into an invariance of the scalar kinetic term which is just the
pullback of the metric on M. On the other hand through its embedding into the symplectic
group (as explained in section 1.3) it defines the global symmetry group of the equations
of motion and it is called the U-duality group. A subgroup of G can be gauged in order to
generate new interactions, and this is the topic of chapter 2.

According to the discussion of section 1.3, an isometry can be of one of the three following
types [170, sec. 6, 189]:

4The manifold described by the scalars of nt vector-tensor multiplets is real.
5We will also use the notations Gv ≡ ISO(Mv) and Gh ≡ ISO(Mh).
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• Classical symmetries: the matrix U is block diagonal

U =
(
A 0
0 At−1

)
, (1.4.5)

(where the lower component follows from the constraints (5.1.3)), and it is a true
symmetry of the Lagrangian.

• Perturbative symmetries: the matrix U is lower triangular

U =
(
A 0
C At−1

)
. (1.4.6)

At the classical level the action is invariant, while at the quantum level only the path
integral is invariant for a subgroup G(Z) ⊂ G(R).

• Non-perturbative symmetries: the matrix U has the general form (1.3.14)

U =
(
A B
C D

)
(1.4.7)

and they are symmetries of the quantum theory but they cannot be defined perturba-
tively.

Isometries of the scalar manifold extend to a symmetry of the Lagrangian if all cou-
plings are diffeomorphism invariant, which means that they depend only on the metric, the
curvature and Christoffel symbols [170, sec. 7.1].

In d = 4 all symmetries of the scalar manifold extend to symmetries of the full Lagrangian
(as opposed to d = 5) [144, 191] and this is a consequence of supersymmetry.6

If one considers models obtained from compactification of type II, then the corresponding
SK manifold Mv is symmetric and the QK is special, which means that it entirely specified
by another SK manifold Mz which is also symmetric. Moreover the manifolds Mv and Mz

are interchanged when compactifying type II A and B on the same manifold [144].
We review the main properties of these manifolds and we refer the reader to part II for

more details.

1.4.2 Special Kähler manifolds

A special Kähler manifold is a Kähler manifold with a bundle with group Sp(2nv + 2,R).
SK manifolds are better described in terms of projective coordinates XΛ where

τ i =
X i

X0
. (1.4.8)

Then the prepotential is a holomorphic function F = F (XΛ) of weight 2. The gradient of
the prepotential gives a set of functions

FΛ =
∂F

∂XΛ
(1.4.9)

that together with XΛ form a section of the symplectic bundle

v =
(
XΛ

FΛ

)
. (1.4.10)

Then the Kähler potential reads

K = − ln i
(
X̄ΛFΛ −XΛF̄Λ

)
(1.4.11)

6This was proved only for cubic prepotentials, but no counter-example is known [144, p. 15].
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from which derives the metric
gi̄ = ∂i∂̄K. (1.4.12)

It is always possible to describe the SK manifold in terms of a prepotential and we will
focus on this case [186]. But this does not mean that symplectically rotated theories are
equivalent (for example different theories with the same geometry may have different gauge
groups, and partial symmetry breaking from N = 2 to N = 1 in FI gauged supergravity is
impossible if a superpotential exists) [186, sec. 4.2].

The pull-back of the U(1) connection (3.2.46) is

Aµ = − i

2

(
Ki∂µτ

i −Kı̄∂µτ̄
ı̄
)
. (1.4.13)

1.4.3 Quaternionic manifolds

The quaternionic manifold with metric huv has a triplet of structures Jx satisfying the
quaternionic algebran SU(2) ∼ Sp(1)

JxJy = −δxy + εxyzJz (1.4.14)

where x = 1, 2, 3 is the vector representation of SO(3) ∼ SU(2). They define a triplet of
2-forms

Kx = Jxuv dqu ∧ dqv, Jxuv = huw(Jx) w
v . (1.4.15)

The manifold has an SU(2) bundle with connection ωx and a curvature proportional to
the quaternionic 2-forms

Ωx = ∇ωx = λKx (1.4.16)

These forms are covariantly closed

∇Ωx = ∇Kx = 0. (1.4.17)

Finally one can introduce vielbeine

huv = CABεαβU
αA
u UBβ

v , (1.4.18)

where the indices A and α run respectively in the fundamental representations of Sp(nh)
and Sp(1), where the corresponding symplectic metrics are C and ε. This splitting of the
indices is a consequence of the holonomy of the manifold.

In supergravity one has the restriction [171, p. 6, 192, p. 719]

λ = −1 (1.4.19)

which implies that the quaternionic spaces have negative curvature

R = −8nh(nh + 2). (1.4.20)

The pull-back of the SU(2) connection corresponding to the composite SU(2)R gauge
field is

Vxµ = −ωxu ∂µqu. (1.4.21)

In most of the cases that are of interest to us the quaternionic manifold is special (see
chapter 8.5) and all its properties are given by a special Kähler manifold Mz of dimension
2(nh − 1) with prepotential G. These manifolds are constructed from the c-map: d = 4
supergravity is reduced to d = 3 where all vectors can be dualized to scalar fields. Since there
are only scalar fields (coming from the original vector and hypermultiplets, and from the
reduction) the geometry can only be quaternionic. Then the manifold that are constructed
in this way can be used for Mh in d = 4 [12, 13, 145]. The idea is that dualities of the d = 4
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equations of motion will translate into invariance of the d = 3 Lagrangian since there are no
more gauge fields [12, 144, sec. 2.3].

In this case the fields are denoted by (φ, σ, ξA, ξ̃A) where A = 0, . . . , nh − 1. Physically φ
is the dilaton (coming from the metric), σ is the axion (coming from dualization of the NS
B-field) and the (ξA, ξ̃A) corresponds to the RR scalars (coming from the reduction of the
RR forms) [50, p. 5].
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Chapter 2

Gauged supergravity

A gauged supergravity is obtained from an ungauged theory by using some of the gauge
fields in order to introduce a local gauge symmetry. In this chapter we describe the two
main possibilities which consists in gauging a subgroup of the isometry group of the scalar
manifolds or in introducing Fayet–Iliopoulos gaugings (both are not exclusive). The gauging
procedure is described in [170, sec. 7, 165, chap. 21, 174, chap. 2, 175, chap. 1] (see also [57,
193]).

Gauged supergravities typically appear in flux compactifications which refers to com-
pactifications where some p-form field of the higher-dimensional theory has a value along a
(non-trivial) cycle of the internal manifold [166, sec. 5, 194, sec. 4].

In order to understand the details of the gauging one needs to understand the isometries
of the SK and QK scalar manifolds, which are the topics of chapters 7 and 7. Our study of
the BPS solutions will rely heavily on a symplectic covariant formalism: this requires us to
introduce magnetic gaugings in order to treat equally electric and magnetic field strengths.
Constructing a Lagrangian with magnetic gaugings is a difficult task and we will restrict
ourselves to a simple case involving only the equations of motion/BPS.

2.1 Generalities

Since the Lagrangian (1.2.2) is invariant under the global isometry group G of the scalar
manifold M (section 1.4) one can gauge a subgroup K of the global symmetry group G such
that part of the symmetries are made local

K ⊂ G. (2.1.1)

The group should be at most nv + 1, which corresponds to the number of gauge fields

m = dimK ≤ nv + 1. (2.1.2)

This produces typically a non-abelian theory with gauge fields AΛ in the adjoint represen-
tation, and by supersymmetry the fields XΛ also sits in the adjoint representation. Vector
scalar and hyperscalars are minimally coupled to the gauge fields through the Killing vectors
of SK and QK geometries respectively, and they are in some representation of the gauge
group. The fermions are coupled through the Killing prepotentials (or moment maps) act-
ing as a deformation of the composite U(2)R connections and derivatives of the SK/QK
Killing vectors for the gaugini/hyperini. If the SK P 0

Λ and QK P xΛ moment maps are non-
zero then the fermions are charged respectively under the U(1)R and SU(2)R factors of the
R-symmetry which are gauged by physical gauge fields (in particular this is the only cou-
pling for the gravitini), while only non-dynamical gauge fields were gauging it in ungauged
supergravity [165, sec. 19.5, 193].
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If only QK isometries are made local then the gauge group is necessarily abelian

K = U(1)m, m ≤ dimGh. (2.1.3)

Indeed since the fieldsXΛ are in the adjoint representation, non-abelian gaugings are possible
only if a subgroup of Gv is gauged.

If there are hypermultiplets then the quaternionic moment maps are fully determined
from Killing vectors. On the other hand if nh = 0 then the quaternionic moment maps
can still be (non-vanishing) constants called Fayet–Iliopoulos parameters. They correspond
to the coupling constants of the gravitini to the gauge fields using the R-symmetry group
SU(2)R.1 If one is not gauging a subgroup of Gv then the resulting group is abelian and for
each gauge field this amounts to consider a U(1) inside the SU(2)R

U(1) ⊂ SU(2)R. (2.1.4)

Then one often considers the maximal case with

K = U(1)nv+1, (2.1.5)

(it is convenient to consider the diagonal U(1) inside SU(2)R), which is referred to as
Fayet–Iliopoulos gauging. Minimal gauged supergravity is constructed in this way.

Gauging adds complexity to the theory and additional terms are generated in order to
preserve supersymmetry:

• a scalar potential V (τ, q);

• (scalar-dependent) fermion masses;

• Chern–Simons terms for AΛ.

The hypermultiplets are not spectators anymore and the dynamics is much richer. Moreover
a non-trivial potential is necessary for obtaining AdS4 vacua.

In section 1.4.1 we explained that the isometry group is embedded into the symplectic
group, and that different types of symmetries can be distinguished. In particular within the
current formalism it is possible to gauge only isometries which correspond to perturbative (or
electric) symmetries, i.e. those which have a lower triangular embedding into the symplectic
group; this issue will discussed further in section 2.5.

Hence the choice of the symplectic frame is important for determining the gauging. In
particular it is always possible to find a frame where the gaugings are electric. On the other
hand a prepotential may not exist in this frame, or it can be ugly, and there is a trade-of
between having electric gaugings and the existence of a prepotential [165, sec. 21.2.2].

As soon as the theory is gauged, models related by symplectic transformations are not
equivalent anymore because the gauging breaks the symplectic invariance. Indeed even if
the bosonic part of the Lagrangian is invariant, minimal coupling of the gauge fields to the
fermions breaks this duality invariance [195].

2.2 Gaugings

2.2.1 Isometries

Except in the FI case, the gauging is encoded by nv + 1 Killing vectors

kΛ = kiΛ(τ) ∂i + kı̄Λ(τ̄ ) ∂ı̄ + kuΛ(q) ∂u (2.2.1)

1We stress that this is compatible with the previous option of gaugings a sugroup of Gv. This procedure
amounts to gauge the R-symmetry by physical gauge fields furthermore with constant couplings.
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which act on the fields as

δτ i = αΛkiΛ(τ), δqu = αΛkuΛ(q). (2.2.2)

where αΛ are the parameters of the gauge transformation. The vectors {kiΛ, kı̄Λ, kuΛ} cor-
respond to linear combinations of the Killing vectors generating the isometries of Mv and
Mh

kΛ = θαΛ kα, α = 1, . . . ,dimG. (2.2.3)

The coefficients θαΛ of the linear combination are called the gauging parameters and the
vectors kα span the algebra of the full isometry group.

The Killing vectors form a Lie algebra

[kΛ, kΣ] = f Ω
ΛΣ kΩ (2.2.4)

where f Ω
ΛΣ are the structure constants. This provides constraints for the gauging parame-

ters which are not all independent [194, sec. 3.1, 179, sec. 3]: the constraints can be worked
out by using the explicit algebras gv and gh on the LHS and by identifying the coefficients
with the RHS. In particular if no isometries of Mv are gauged then the Killing vector alge-
bra is necessarily abelian (but this does not mean that the isometries of the manifolds are
abelian: only their linear combination needs to be abelian, see section 2.6 for an example).

The isometry induces a symplectic T = αΛTΛ and a Kähler f = αΛfΛ transformation

δV = TV + f(τ)V , (2.2.5)

where TΛ is lower triangular

TΛ =
(
AΛ 0
CΛ At−1

Λ

)
, (2.2.6)

and CΛ is symmetric. This transformation needs to be consistent with the transformation
of the field strength FΛ under a non-abelian gauge transformation [165, p. 474]

δFΛ = αΩFΣf Λ
ΣΩ . (2.2.7)

In particular this justifies the restriction to electric gaugings with BΛ = 0, and this indicates
that TΛ should be

TΛ =
(

−fΛ 0
CΛ f tΛ

)
=
(

−f Ω
ΛΣ 0

CΛΣΩ f Σ
ΛΩ

)
. (2.2.8)

These generators satisfy the Lie algebra under the conditions

C(ΛΣΩ) = 0, (2.2.9a)

f Γ
ΞΩ CΓΛΣ = 2f Γ

Λ[Ξ CΩ]ΣΓ + 2f Γ
Σ[Ξ CΩ]ΛΓ. (2.2.9b)

If the second term is present it induces a Kähler transformation

δK = αΛ(fΛ + f̄Λ). (2.2.10)

This implies the constraint

kiΛ∂ifΣ − kiΣ∂ifΛ = f Ω
ΛΣ fΩ. (2.2.11)

In the kinetic term of the scalar fields the partial derivatives are modified to covariant
derivatives through minimal coupling

Dµ = ∂µ −AΛ
µkΛ. (2.2.12)
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The fact that only the electric gauge field AΛ are introduced implies that one breaks the
symplectic covariance. Moreover the field strengths of the gauge fields are modified by a
non-abelian piece

FΛ
µν = ∂µA

Λ
ν − ∂νA

Λ
µ + f Λ

ΣΩ AΣ
µA

Ω
ν . (2.2.13)

Moment maps are real functions that can be built from special and quaternionic Killing
vector

P 0
Λ = i

(
kiΛ∂iK − fΛ), P xΛ = kuΛikω

x
u +W x

Λ (2.2.14)

where fΛ is the shift of the Kähler potential and W x
Λ the SU(2) rotation of the triplet of

hyperkähler structures induced by the isometry.
There are two important relations

kiΛL
Λ = 0, P 0

ΛL
Λ = 0. (2.2.15)

The Kähler U(1) connection (1.4.13) is modified to

Aµ = − i

2

(
KiDµτ

i −Kı̄Dµτ̄
ı̄
)

− 1
4
AΛ
µ(fΛ − f̄Λ) (2.2.16a)

= − i

2

(
Ki∂µτ

i −Kı̄∂µτ̄
ı̄
)

− i

2
AΛ
µP

0
Λ, (2.2.16b)

while the SU(2) connection becomes

Vxµ = −ωxu Dµq
u +

1
2
AΛ
µW

x
Λ (2.2.17a)

= −ωxu ∂µqu − 1
2
AΛ
µP

x
Λ . (2.2.17b)

The fact that spinors are charged implies Dirac-like quantization conditions on the Killing
prepotentials

pΛP 0
Λ ∈ Z, pΛP xΛ ∈ Z. (2.2.18)

where pΛ are the magnetic charges.
One defines the prepotential charges (also called the superpotential)

Lx = −P xΛLΛ (2.2.19)

(see (2.5.5) for a symplectic covariant definition).

2.2.2 Fayet–Iliopoulos gauging

A good reference is [83, sec. 2] (see also [165, sec. 21.5.1]).
In Fayet–Iliopoulos (FI) gauging the fermions become charged under a subgroup KFI of

the R-symmetry group
KFI ⊂ SU(2)R (2.2.20)

This corresponds to constant quaternionic moment maps ξxΛ called the FI parameters

ξxΛ ≡ P xΛ = cst, (2.2.21)

which is possible only if nh = 0 (otherwise they are determined by the quaternionic geome-
try and they are non-constant). These moment maps can be non-vanishing even if nh = 0
because there is always a compensating hypermultiplet, which was fixed during the con-
struction of the theory. If one gauges also a subgroup K ⊂ Gv, then a necessary condition
is [174, p. 35]

KFI ⊂ K. (2.2.22)

If one considers abelian isometries, then the equivariance condition (8.3.26) reads

εxyzξyΛξ
z
Σ = 0. (2.2.23)
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As a consequence it is possible to choose a direction for the SU(2) vector

ξxΛ = (0, 0, gΛ) (2.2.24)

which corresponds to
U(1) ⊂ SU(2)R (2.2.25)

(U(1) being the diagonal subgroup). The parameters gΛ are the electric charges of the
gravitini under this U(1) symmetry: the gauge fields are coupled to the gravitini through
the linear combinations gΛA

Λ, and the two gravitini have opposite charges ±gΛ. Note that
the vector scalars are neutral. In general speaking about FI gauging refers to this latter
case.

Pure supergravity is a subcase of (abelian) FI gauged supergravity.

2.3 Lagrangian

2.3.1 General case

The bosonic part of the Lagrangian is given by

Lbos =
R

2
+

1
4

Im N (τ)ΛΣ F
Λ
µν F

Σµν − 1
8

Re N (τ)ΛΣ
εµνρσ√−g F

Λ
µν F

Σ
ρσ

− gi̄(τ) Dµτ
iDµτ̄ ̄ − 1

2
huv(q) Dµq

uDµqv

+
2
3
CΛ,ΣΞ

εµνρσ√−g A
Λ
µA

Σ
ν

(
∂ρA

Ξ
σ +

3
8
f Ξ

ΩΓ AΩ
ρA

Γ
σ

)
− V (τ, τ̄ , q).

(2.3.1)

The term proportional to CΛΣΩ is necessary to compensate the transformation of the
matrix N

δNΛΣ = −αΓ(f Ω
ΓΛ NΣΩ + f Ω

ΓΣ NΛΩ + CΓΛΣ). (2.3.2)

under a gauge transformation.
The scalar potential reads

V =
(
fΛ
i g

i̄f̄Σ
̄ − 3LΛL̄Σ

)
P xΛP

x
Σ + L̄ΛLΣ

(
2 huvkuΛk

v
Σ + gi̄k

i
Λk

̄
Σ

)
. (2.3.3)

Note that there is only one negative term in the potential. Another expression for the
potential is

V =
(

−1
2

Im N ΛΣ − 4LΛL̄Σ

)
P xΛP

x
Σ + 2L̄ΛLΣ huvk

u
Λk

v
Σ + 2 ImFΛΣP 0

ΛP
0
Σ (2.3.4)

using (4.3.6) to rewrite the first term and writing the SK Killing vectors in terms of their
prepotentials [165, p. 475].

We will not describe the full Lagrangian which is complicated and instead we refer the
reader to [170, sec. 8, 165, sec. 21.3]. We are only interested in the mass terms of the
fermions

Lm =
1
2
Sαβ ψ̄

α
µγ

µνψβν − 1
2
mαβ
ij λ̄iαλ

j
β −mA

αı̄ λ̄
αı̄ζA − 1

2
mAB ζ̄

AζB − ψ̄µαγ
µχα + c.c. (2.3.5)

In the last term χα corresponds to the gravitini

χα =
1
2
Wαβ
i λiβ + 2Nα

Aζ
A. (2.3.6)
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The various mass matrices are given by

Sαβ = i L̄ΛP xΛσ
x γ
α εγβ, (2.3.7a)

mαβ
ij =

i

2
Cijkg

kk̄f̄Λ
k̄
P xΛ ε

αγσx β
γ + εαβgjı̄k

ı̄
Λf

Λ
i , (2.3.7b)

mA
αı̄ = 2ikuΛ εαβU

βA
u f̄Λ

ı̄ , (2.3.7c)

mAB = −2LΛ εαβUvαAU
u
βB∇vkuΛ, (2.3.7d)

Wαβ
i = i

(
εαβP 0

Λ − P xΛ ε
αγσx β

γ

)
fΛ
i , (2.3.7e)

Nα
A = −iCAB U

αB
u kuΛL

Λ. (2.3.7f)

Another expression for Wαβ
i is

Wαβ
i = −εαβgi̄k̄ΛLΛ − P xΛ ε

αγσx β
γ fΛ

i (2.3.8)

These masses are related to the fermion shift that appears in the supersymmetric variations.
Through Ward identities for supersymmetry the superpotential is also given by [170, sec. 9]

V δαβ = −3SαγSγβ +Wαγ
i gi̄W̄βγ + 4Nα

AN̄
A
β . (2.3.9)

2.3.2 Fayet-Iliopoulos gaugings

The scalar potential reads

V (τ, τ̄ ) =
(
gi̄fΛ

i f̄
Σ
̄ − 3L̄ΛLΣ

)
gΛgΣ. (2.3.10)

2.3.3 Minimal gauged sugra

Pure supergravity corresponds to nv = nh = 0. Its bosonic action is equivalent to Ein-
stein–Maxwell theory. Its prepotential reads [165, ex. 21.3]

F = − i

2
(X0)2. (2.3.11)

Gauge fixing gives

X0 =
1√
2

(2.3.12)

which gives the value of N
N = −i, (2.3.13)

which implies in particular
G = − ⋆F . (2.3.14)

The Tµν tensor equals simply the field strength up to a factor

Tµν = 2
√

2Fµν . (2.3.15)

The scalar potential is constant

V = Λ = −6g2 (2.3.16)

with Λ the cosmological constant.
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2.4 Supersymmetry variations

The bosonic part of the supersymmetry variations with parameter εα of the fermionic fields
is given by

δψαµ = D̂µε
α = Dµε

α − i

8
T−
ab γ

abγµε
αβεβ +

1
2
γµS

αβεβ , (2.4.1a)

δλiα = Dµτ
i εα +

1
4
T−i
ab γ

abεαβε
β + gi̄W̄̄βαε

β, (2.4.1b)

δζA =
i

2
UαA
u Dµq

u εα + N̄A
α ε

α. (2.4.1c)

The additional terms are quadratic in the fermions and can be found in [170, sec. 8].
We denote by D̂µ the supercovariant derivative. The gauge and spacetime covariant

derivatives are

Dµε
α = ∇µε

α + iVxµσxαβεβ , (2.4.2a)

∇µε
α =

(
∂µ +

1
4
ωµabγ

ab − iAµ

)
εα. (2.4.2b)

The (bosonic part of) the anti-self-dual field strengths Tab and T iab were defined in (1.3.21)

T− = −
〈
V ,F−

〉
, T−

i = −gi̄
〈
Ū̄,F−

〉
. (2.4.3)

Finally the composite U(1) and SU(2) connections were given in (2.2.16) and (2.2.17).
A BPS solution is a field configuration that solves the equations of motion and which

preserves some amount of supersymmetry, which is equivalent to the invariance of the con-
figuration under supersymmetry variations. Moreover for classical solutions the fermionic
fields typically vanish which ensures that the variations of the bosonic fields are zero. Then
we just need to compute the variations of the fermionic fields (if they were not vanishing
they would acquire a non-zero value after a supersymmetry transformation)

δψαµ = δλαi = δζA = 0. (2.4.4)

These equations will typically separate into matrix equations, which project out some com-
ponents of the parameter εα, and scalar equations, which can be differential or algebraic.
Together with Maxwell equations they provide a solution to the equations of motion.

The condition for εα to be a Killing spinor is equivalent to εα being covariantly constant
with respect to the supercovariant derivative. In particular by taking the commutator of
this equation one obtains the integrability condition

[
D̂µ, D̂ν

]
εα = R̂µνε

α = 0 (2.4.5)

which is necessary but not sufficient. This equation is non-differential and gives constraints
and projectors.

2.5 Magnetic gaugings

In order to obtain symplectic covariant expressions it is also possible to introduce magnetic
gauging parameters such that the magnetic gauge fields AΛ from (1.3.4) will be coupled to
the scalars through the covariant derivatives. A Lagrangian description of this theory is
quite involved as one needs to introduce new (tensor) fields and gauge invariances, and this
is better formulated with the embedding tensor formalism [49, 179, 194]. When gaugings are
abelian another possibility is to work directly with the BPS equations and the equations of
motion since on-shell quantities are easier to deal with: these equations are completed such
that they become symplectic covariant [52, 149]. For other works on magnetic gaugings, see
also [176, 178, 180, 196].
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2.5.1 Generalities

Introducing magnetic Killing vectors kΛ that are paired with the electric ones kΛ into a
symplectic vector

K =
(
kΛ

kΛ

)
, K = Ki ∂i + Kı̄ ∂ı̄ + Ku ∂u, (2.5.1)

the covariant derivative of the scalar fields becomes

Dµ = ∂µ −AµΩK = ∂µ −AΛ
µkΛ +AΛµk

Λ (2.5.2)

in order to respect symplectic covariance [169, sec. 4.2, 196, sec. 3]. The Killing vectors can
be expanded on the set of Killing vectors kα generating the isometries of M (these are the
same as the one appearing at the beginning of section 2.2.1)

K = Θα kα, Θα =
(
θαΛ

θαΛ

)
. (2.5.3)

Hence the coefficients of the linear combination are symplectic vectors, and θαΛ and θαΛ
being respectively the magnetic and electric gauging parameters.

The Killing vectors satisfy constraints from closure of the algebra. There are three
possibilities, depending if the vectors are both electric, both magnetic, or one electric and
one magnetic.

The symplectic Killing prepotentials are given by

Px = Kuωxu − Wx, (2.5.4a)

or in components
P xΛ = kΛuωxu − W xΛ, P xΛ = kuΛω

x
u −W x

Λ , (2.5.4b)

One defines the prepotential charges (also called the superpotential)

Lx = 〈V ,Px〉 , Lxi = 〈Ui,Px〉 . (2.5.5)

In the case of FI gauging (section 2.2.2), one adds the constants gΛ which correspond to
the magnetic charges of the gravitini under the local U(1). The symplectic vector is denoted
by

G ≡ P3 =
(
gΛ

gΛ

)
. (2.5.6)

2.5.2 Constraints from locality

To ensure the existence of a Lagrangian and, more importantly, of an electric frame (since
we derived the BPS equations from an electric frame, before doing a symplectic rotation), we
must impose locality conditions on the parameters [179, sec. 3]. Then the locality constraints
read [149, sec. 6.1, app. C] (see also [169, sec. 2])

〈
Θα,Θβ

〉
= 0. (2.5.7)

It is necessary to impose this condition only when the gauge group is abelian, which is the
case here [49, sec. 5]. This constraint is also a consequence of the Ward identity from which
the scalar potential (2.3.9) is obtained [180].

The constraints imply that
〈Ku,Px〉 = 0. (2.5.8)

First we denote by kuα the generic set of Killing vectors such that

Ku = Θα kuα, Wx = Θαwxα, (2.5.9)
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then using the formula (2.5.4) for the prepotential we have

〈Ku,Px〉 = 〈Ku,Kvωxv − Wx〉
= kuα(ωxvk

v
β − wxβ)

〈
Θα,Θβ

〉
,

and this vanishes from the locality constraint.

2.6 Quaternionic gaugings

In this section we consider only abelian gaugings of the isometries of special quaternionic
manifolds [149].

The Killing vector kuΛ∂u can be expanded on the basis of Killing vectors on Mh (studied
in section 9.1)

kα = {kU, kξ, k̂ξ, k+, k0, k−} (2.6.1)

with the coefficients
θαΛ = {UΛ, αΛ, α̂Λ, ǫΛ+, ǫΛ0, ǫΛ−}, (2.6.2)

using the notations of [12, 144, 145] for the parameters. Note that αΛ and α̂Λ are symplectic
vectors (of the base SK space Mz) of dimensions 2nh

αΛ =
(
αAΛ
αAΛ

)
, α̂Λ =

(
α̂AΛ_α̂AΛ

)
. (2.6.3)

Explicitly this reads

kΛ = kuΛ ∂u = kUΛ
+ αtΛC kξ + α̂tΛC k̂ξ + ǫ+Λk+ + ǫ0Λk0 + ǫ−Λk−. (2.6.4)

Similarly the magnetic Killing vector is written kuΛ and all the magnetic parameters have
the index Λ up.

All these parameters are not independent and consistency conditions impose relations
between them (see also appendix E.2). The number of constraints can be much greater than
the number of parameters, showing that some of these constraints are redundant.

The Killing algebra is abelian if the right hand side of (2.2.4) vanishes. From the algebra
with electric/electric Killing vectors we derive the following constraints [149, sec. 6.1, app. C]

0 = T(αΛ, α̂Σ) − T(αΣ, α̂Λ), (2.6.5a)

0 = −(UΛαΣ − UΣαΛ) + (ǫ0ΛαΣ − ǫ0ΣαΛ) + (ǫ+Λα̂Σ − ǫ+Σα̂Λ), (2.6.5b)

0 = (UΛα̂Σ − UΣα̂Λ) + (ǫ−ΛαΣ − ǫ−ΣαΛ) + (ǫ0Λα̂Σ − ǫ0Σα̂Λ), (2.6.5c)

0 = αtΛCαΣ + 2(ǫ+Σǫ0Λ − ǫ+Λǫ0Σ), (2.6.5d)

0 = (α̂tΛCαΣ − αtΛCα̂Σ) + 2(ǫ+Σǫ−Λ − ǫ+Λǫ−Σ), (2.6.5e)

0 = α̂tΛCα̂Σ + 2(ǫ0Λǫ−Σ − ǫ0Σǫ−Λ). (2.6.5f)

And we recall the definition of Tα,α̂ from (9.2.4a) We have defined

T(αΛ, α̂Σ) = (αtΛC∂ξ)(α̂
t
ΣC∂ξ)S. (2.6.6)

For the details of the computations, see appendix F.2. It is straightforward to obtain all
the other constraints (electric/magnetic and magnetic/magnetic) from the electric/electric
ones.

Without hidden vectors it reduces to

0 = UΛαΣ − UΣαΛ + ǫ0ΛαΣ − ǫ0ΣαΛ, (2.6.7a)

0 = αtΛCαΣ + 2(ǫ+Σǫ0Λ − ǫ+Λǫ0Σ) (2.6.7b)
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and for ǫ0Λ = 0 furthermore to

0 = UΛαΣ − UΣαΛ, (2.6.8a)

0 = αtΛCαΣ, (2.6.8b)

which can be found in [169, eq. (2.20)].
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Part II

Kähler geometries
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Chapter 3

Hermitian and Kähler manifolds

In N = 2 supergravity the manifold described by the vector scalars is special Kähler: hence
we first start by describing separately the Kähler manifold and the more generic Hermitian
and complex manifolds of which a Kähler manifold is a subcase. Then in chapter 4 we will
explain what are the additional conditions for making a Kähler manifold special.

Great references for this section and the next one are [165, chap. 13, 197, chap. 8] (see
also [198, sec. 9.A, 199]).

3.1 Hermitian manifold

3.1.1 Definition and properties

Consider a manifold (M, g) of (real) dimension 2n and with metric

ds2 = gab dφadφb, a = 1, . . . , 2n, (3.1.1)

endowed with a torsionless Levi–Civita covariant derivative, i.e.

Dkgij = 0. (3.1.2)

Definition 3.1 (Almost-complex manifold) The manifold M is almost-complex if it
admits an almost-complex structure J b

a (φ) which square to −δ b
a

J c
a J

b
c = −δ b

a . (3.1.3)

An almost-complex manifold is necessarily even-dimensional (in fact it can be shown that
any such manifold is almost-complex). The definition (3.1.3) implies that the eigenvalues of
J are ±i (and of equal numbers).

From the almost-complex structure one defines the Nuijenhuis tensor

N c
ab = J d

a ∂[cJ
k

b] − J d
b ∂[cJ

k
a] . (3.1.4)

The qualifier "almost" is used to indicate that J may not be defined globally.

Definition 3.2 (Complex manifold) An almost-complex manifold (M, J) is said to be
complex if J is integrable, i.e. if it can be defined globally.

For a complex manifold the Nijenhuis tensor vanishes

N c
ab = 0. (3.1.5)
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Definition 3.3 (Hermitian manifold) A manifold (M, J) is said to be hermitian if J is
compatible with the metric

J c
a gcdJ

d
b = gab ⇐⇒ J g J t = g. (3.1.6)

Using the metric to lower an index produces the antisymmetric tensor

Jab = J c
a gcb, Jab = −Jba (3.1.7)

as can be seen by multiplying (3.1.6) by J b
e

gabJ
b
e = Jea,

J c
a gcdJ

d
b J

b
e = −J c

a gcdδ
d
e = gabJ

b
e = −J c

a gce = −Jae
(in one word, hermicity implies antisymmetry). Thus it defines a 2-form called the funda-
mental form of M, denoted by Ω

Ω = −Jab dφa ∧ dφb. (3.1.8)

Note that Ω is real.
Since Ωn is a (2n)-form nowhere vanishing it can serves as a volume element on the

manifold [197, sec. 8.4.2].

3.1.2 Complex coordinates

Locally it is possible to introduce complex coordinates

φa = (τ i, τ̄ ı̄), i, ı̄ = 1, . . . , n (3.1.9)

such that the metric reads

ds2 = gi̄ dτ id̄τ ̄ + gı̄j dτ̄ ı̄dτ j = 2 gi̄ dτ idτ̄ ̄. (3.1.10)

Note that this metric is real since it was in the original coordinates, and as a consequence

gi̄ = g∗
jı̄. (3.1.11)

A generic complex manifold that is not hermitian cannot be set in this form [165, sec. 13.1].
Conversely it can be shown that in coordinates where J is diagonal, the definition (3.1.6)
implies that gij and its conjugate vanish. In matrix form one has

gab =
(

0 gi̄
gjı̄ 0

)
. (3.1.12)

The index i and ı̄ are called holomorphic and antiholomorphic. The convention is to write
the holomorphic index first. Moreover it is always possible to use the metric to convert a
(anti)holomorphic index into its counterpart. For example one can use the metric on A ̄

i to
get Aij

Aij = gj̄A
̄
i (3.1.13)

or ∂ı̄ to ∂i. Vectors of dimension nv will sometimes be denoted in boldface, for example τ .
In these coordinates the almost-complex structure takes the diagonal form

J b
a = i diag(δ ji ,−δ ̄ı̄ ). (3.1.14)

Inserting this expression into (3.1.8), one obtains the fundamental form in complex coordi-
nates

Ji̄ = −i gi̄, (3.1.15a)

Ω = 2i gi̄ dτ i ∧ dτ̄ ̄. (3.1.15b)
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Due to the hermicity some Christoffel symbols vanish

Γi
̄k̄

= Γı̄jk = 0. (3.1.16)

The Dobeault operators are defined by

d = ∂ + ∂̄, ∂ = dτ i ∂i, ∂̄ = dτ̄ ı̄ ∂ı̄. (3.1.17)

A useful relation is

∂∂̄ = −1
2

d(∂ − ∂̄). (3.1.18)

3.2 Kähler manifold

3.2.1 Definition

Definition 3.4 (Kähler manifold) A hermitian manifold M is said to be Kähler if the
fundamental form Ω is closed

dΩ = 0. (3.2.1)

In this case Ω is also called the Kähler 2-form.

This is equivalent to J being covariantly constant1

DkJij = 0. (3.2.2)

A Kähler manifold has a holonomy group U(n). The Kähler form is a symplectic form,
and as such Kähler manifolds also have a symplectic structure [199, p. 20].

Example 3.1 Examples of Kähler manifolds include:

• Calabi–Yau manifolds, for which the holonomy is restricted to SU(n). They have a
vanishing first Chern class c1 and admit a non-vanishing holomorphic n-form [199,
sec. 5].

• All Hermitian manifolds of real dimension 2 due to the fact that any 2-form in 2
dimensions is closed [199, p. 20].

• The complex projective planes CPn.

In complex coordinates the condition (3.2.1) translates to

dΩ = −i(∂igjk̄ − ∂jgik̄)dτ i ∧ dτ j ∧ dτ̄ k̄ + c.c. = 0 (3.2.3)

where the expression (3.1.15) of Jab was used. Then the Kähler form is closed if

∂igjk̄ − ∂jgik̄ = 0. (3.2.4)

The latter implies the existence of a real function K(τ, τ̄ ) called the Kähler potential that
determines the metric

gi̄ = ∂i∂̄K. (3.2.5)

This presents a huge simplification since a single function gives the full metric. The Kähler

cone is defined as the range of coordinates τ i for which the metric is positive definite.

1Indeed if a form is closed, then one gets derivatives of the components which can be transformed to
covariant ones since the Christoffel symbols will vanish by antisymmetry.
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This function is not unique as shifts – called Kähler transformations – by holomorphic
and antiholomorphic functions f(τ) and f̄(τ̄ )

K(τ, τ̄ ) −→ K(τ, τ̄) + f(τ) + f̄(τ̄ ) (3.2.6)

leave the metric invariant. Moreover K does not need to be defined globally, and the Kähler
potentials on various patches are related by Kähler transformations

Kj(τ, τ̄ ) = Ki(τ, τ̄ ) + fij(τ) + f̄ij(τ̄ ). (3.2.7)

Using Dobeault operators (3.1.17) one can write the Kähler form as

Ω = 2i ∂∂̄K. (3.2.8)

3.2.2 Riemannian geometry

Recall that
Γi
̄k̄

= Γı̄jk = 0 (3.2.9)

because the manifold is hermitian. Additional symbols vanish because of the Kähler condi-
tion

Γi
jk̄

= Γı̄̄k = 0. (3.2.10)

Then the only non-vanishing symbols are

Γijk = giℓ̄∂jgkℓ̄ = giℓ̄∂j∂k∂ℓ̄K (3.2.11)

and their conjugates. The trace of the Christoffel is particularly simple

Γjij = ∂i ln det g. (3.2.12)

Similarly only the component Ri̄kℓ̄ of the Riemann tensor and its permutations do not
vanish

Ri
jkℓ̄

= −∂ℓ̄Γijk, (3.2.13a)

Ri̄kℓ̄ = ∂i∂̄gkℓ̄ − gmn̄∂̄gmℓ̄ ∂igkn̄ (3.2.13b)

= ∂i∂̄∂k∂ℓ̄K − gmn̄(∂̄∂ℓ̄∂mK)∂i∂n̄∂kK. (3.2.13c)

The Ricci tensor
Ri̄ = Rkki̄ = −gkℓ̄Riℓ̄k̄ (3.2.14)

can be obtained directly from
Ri̄ = −∂i∂̄ ln det g. (3.2.15)

3.2.3 Symmetries

To each symmetry of the manifold preserving both structures g (in order to be an isometry)
and J corresponds an holomorphic Killing vector k which generates infinitesimal transfor-
mations (or holomorphic isometries) through Lie derivative [170, sec. 7.1, 200, sec. 2]: its
Lie derivative acting on g and J should vanish

Lkgij = ∇akb + ∇bka = 0, (3.2.16a)

LkJ b
a = J b

c ∇ak
c − J c

a ∇cka = 0. (3.2.16b)

Together these implies the invariance of the Kähler form

LkΩ = 0. (3.2.17)
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In fact the last requirement is more fundamental than the vanishing of LkJ j
i , since it means

that the volume is invariant (the Lie derivative of the volume element Ωn vanishes) and we
will see that a condition similar to LkΩ = 0 is the correct on in the case of quaternionic
manifold.

Using the explicit formula (A.2.11) for Lk and the fact that dΩ = 0 gives

dikΩ = 0. (3.2.18)

Then the Poincaré lemma states that it exists a (real) function P called the moment map
(or Killing potential) such that

ikΩ = −2 dPk. (3.2.19)

Pk is not unique as it can be shifted by a constant (note that it depends on k)

Pk −→ Pk + ξk. (3.2.20)

In the rest of this section we omit the index k.
In complex coordinates the condition (3.2.16b) gives the constraints

∂ı̄k
j = 0, ∂ik

̄ = 0, (3.2.21)

which mean that the Killing vector (with the index up) splits into a holomorphic and an
antiholomorphic parts

k = ka(φ)∂a = ki(τ)∂i + kı̄(τ̄ )∂ı̄. (3.2.22)

Then a variation of the coordinates with parameter θ reads

δτ i = θ ki(τ), δτ̄ ı̄ = θ kı̄(τ̄ ) (3.2.23)

and the transformation preserves the split in holomorphic and antiholomorphic coordinates.
On the other hand the Killing equation (3.2.16a) gives two conditions

∇ikj + ∇jki = 0, ∇ik̄ + ∇̄ki = 0. (3.2.24)

The first equation is trivial since

∇ikj = gjk̄∇ik
k̄ = gjk̄∂ik

k̄ = 0 (3.2.25)

In coordinates the definition (3.2.19) of the moment map reads (from now on we remove
the index k denoting the vector)

ki = gi̄k
̄ = i ∂iP, kı̄ = −i ∂ı̄P. (3.2.26)

Then the second equation of (3.2.24) is immediately satisfied. An equation for P can be
obtained from the first condition in (3.2.24)

∇i∂jP = 0. (3.2.27)

Kähler manifolds are simpler than arbitrary manifolds because a Killing vector is fully
determined by one unique real function, mirroring the fact that the metric is given by the
Kähler potential.

In general the Kähler potential is not invariant under Killing transformation which can
induces a Kähler transformation

LkK = (ki∂i + kı̄∂ı̄)K = f + f̄ , (3.2.28)

which leaves the metric invariant. This makes possible to find an explicit expression for P .
Indeed using the expression of the metric, (3.2.26) can be rewritten as

k̄ = gi̄k
i = ki∂i∂̄K, (3.2.29)
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and comparing with (3.2.26) gives

P = i
(
ki∂iK − r) (3.2.30)

where r = r(τ). This last function can be identified by requiring the reality of P

P + P̄ = 2P =⇒ (ki∂i + kı̄∂ı̄)K = r + r̄. (3.2.31)

Then the equation (3.2.28) implies that r = f and one obtains

P = i
(
ki∂iK − f) = −i

(
kı̄∂ı̄K − f̄). (3.2.32)

In particular any constant shift ξ of the prepotential can be taken into account by shifting
f to f + iξ. There will be an ambiguity only for U(1) factors.

In general a metric admits several Killing vectors kΛ that generate a non-abelian group
with Lie algebra

[kΛ, kΣ] = f Ω
ΛΣ kΩ. (3.2.33)

All quantities then get a Λ index. The bracket does not mix holomorphic and antiholomor-
phic vectors, and in components they read

kjΛ∂jk
i
Σ − kjΣ∂jk

i
Λ = f Ω

ΛΣ kiΩ (3.2.34)

with LΛ ≡ LkΛ
.

For a simple non-abelian group the moment map can be shifted by the constants such
that they transform into the adjoint

LΛPΣ = (kiΛ∂i + kı̄Λ∂ı̄)PΣ = f Ω
ΛΣ PΩ. (3.2.35)

This last condition, which is also called the equivariance condition, can be rewritten as

kiΛgi̄k
̄
Σ − kiΣgi̄k

̄
Λ = if Ω

ΛΣ PΩ. (3.2.36)

There are four families and two exceptional cases of symmetric Kähler space [165, p. 270]

SU(p, q)
SU(p) × SU(q) × U(1)

,
SO∗(2n)

U(n)
,

Sp(2n)
U(n)

,
SO(n, 2)

SO(n) × SO(2)
,

E6,−14

SO(10) × U(1)
,

E7,−25

E6 × U(1)
.

(3.2.37)

3.2.4 Kähler–Hodge manifold

Kähler–Hodge manifolds (or Kähler manifold of restricted type) are discussed in [171, sec. 2,
170, sec. 4.1, 4.2, 186, sec. 4.1, 165, sec. sec. 17.3.6, 17.5.1, app. 17A]. In the context of
supergravity, the presence of fermions implies a Dirac-like quantization condition on the
Kähler form and this is equivalent to the Hodge condition [186, sec. 4.1].

Definition 3.5 (Kähler–Hodge manifold) A Kähler–Hodge manifold M is a Kähler
manifold for which it exists a line bundle L → M such that the first Chern class is equal to
the (de Rham) cohomology class of the Kähler form

c1(L) = [Ω]. (3.2.38)

Given a metric h(zi, z̄ ı̄) on the fiber, the connection reads2

θ = ∂ lnh = h−1∂h (3.2.39)
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and similarly for θ̄. Then the cohomology class is

c1(L) = 2i [∂̄θ] = 2i [∂̄∂ ln h]. (3.2.40)

Recalling (3.2.8)
Ω = 2i ∂∂̄K, (3.2.41)

the definition implies that the metric is given by the exponential of the Kähler potential

h = eK =⇒ θ = ∂K. (3.2.42)

Note that a Kähler transformation corresponds to a gauge transformation on θ

θ −→ θ + ∂f, (3.2.43)

since the derivative of the Kähler potential transforms as

∂iK −→ ∂iK + ∂if. (3.2.44)

Then the transition function between two patches if given by ef which corresponds to
a Kähler transformation. A line bundle can be mapped to a U(1) bundle U → M, and the
corresponding transition function is exp(i Im f). The connection on the line and on the U(1)
bundles are related by

A = Im θ =
i

2
(θ − θ̄). (3.2.45)

A way to motivate this result is that ∂if = 2i∂i Im f , whereas taking the real part would
give a total derivative and thus a vanishing curvature [165, p. 379]. Using the expression for
θ, one obtains

A = − i

2

(
∂iK dτ i − ∂ı̄K dτ̄ ı̄

)
. (3.2.46)

In real coordinates this can be written

Aa = −1
2
J b
a ∂bK. (3.2.47)

A field ψi (corresponding to a section of U) is said to be of weight (p, p̄) if it transforms
as

ψi −→ ψ′i = e− 1
2

(pf+p̄f̄)ψi (3.2.48)

under a Kähler transformation (3.2.6). Then the covariant derivative is

Diψ
j = ∂iψ

j + Γjikψ
k +

p

2
∂iK ψj , Dı̄ψ

j = ∂ı̄ψ
j +

p̄

2
∂ı̄K ψj . (3.2.49)

Moreover the conjugate field ψ̄ī has weight (−p,−p̄). In general one has p̄ = −p from the
fact that the derivative of a section φ on U is

Dφ = (d + ipA)φ. (3.2.50)

Then one can map the sections of U into sections of L through

Ψi = e− p̄

2
Kψi, (3.2.51)

such that the covariant derivatives are

DiΨj = ∂iΨj + ΓjikΨk + p ∂iK Ψj , Dı̄ψ
j = ∂ı̄Ψj. (3.2.52)

If ψi is holomorphic then the field Ψi is covariantly holomorphic

∂ı̄ψ
j = 0 =⇒ Dı̄Ψj = 0. (3.2.53)

Note also that
Ri̄ = [Di,D̄] = i gi̄ = −Ji̄ (3.2.54)

meaning that the curvature of the bundle is the Kähler form.

2h is just a function since the line is 1-dimensional, such that h−1 = 1/h.
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Chapter 4

Special Kähler geometry

Special Kähler (SK) manifolds appear as target spaces of non-linear sigma models of the
vector scalars in N = 2 supergravity. These spaces correspond to Kähler–Hodge manifolds
endowed with a symplectic bundle. The U(1) bundle associated to the Hodge condition has
the interpretation of the U(1)R R-symmetry of the supersymmetry algebra. The simplest
formulation is using projective coordinates which are necessary for using a symplectic covari-
ant formalism, which can then be used to formulate more efficiently the N = 2 theory. In
particular many analytic results for BPS and non-BPS solutions rely heavily on this formu-
lation, and additionally some quaternionic Kähler (QK) manifolds – and more specifically
most of those of interest in N = 2 supergravity – can be described as a fibration over a SK
manifold (see chapter 8.5). Finally both for SK and QK manifolds the isometries are more
easily understood using symplectic covariant expressions. For these reasons we propose to
review these manifolds in some details: we first start by defining the manifold, its projective
parametrization and its Riemannian properties. Then in the following chapters we cover in
details other important aspects such as the symplectic invariants, the classification of the
homogeneous spaces and the most important models (called quadratic and cubic) and at
the end the isometries.

The first axiomatic definition was given in [167], and it was refined in [186] (see also [201]).
Major references on the topic are the book [165] and the papers [170, 188, 189].

4.1 Definition

Definition 4.1 (Special Kähler manifold) A special Kähler (SK) manifold (Mv, g) of
real dimension 2nv with complex (or special) coordinates {τ i, τ̄ ı̄}, i = 1, . . . , nv, is a Käh-
ler–Hodge manifold equipped with a (flat) holomorphic vector bundle with group Sp(2nv +
2,R), and for which there exists a section v such that the exponential of the Kähler potential
is given by

K = − ln(−i 〈v, v̄〉) (4.1.1)

where 〈·, ·〉 denotes the symplectic inner product [170, sec. 4, 186, sec. 4.2.2, 167, sec. 4]. An
additional necessary property is1

〈v, ∂iv〉 = 0. (4.1.2)

Other equivalent definitions can be found in [186, sec. 4.2]. Since this manifold is Käh-
ler–Hodge it satisfies all the properties from chapter 3.

The line and vector bundles are respectively denoted by L → Mv and SV → Mv. The
section v is an element of the tensor bundle L ⊗ SV .

1This condition was missing in [167].
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The metric is written

ds2 = 2 gi̄ dτ idτ ̄, i = 1, . . . , nv (4.1.3)

4.2 Homogeneous coordinates and symplectic structure

4.2.1 Vectors

Let’s denote the components of the section v by

v =
(
XΛ

FΛ

)
, Λ = 0, . . . , nv. (4.2.1)

The XΛ are called homogeneous coordinates (or projective) coordinates and they provide a
projective parametrization of the manifold such that

τ i =
X i

X0
. (4.2.2)

The special coordinates are left unchanged by rescaling of the homogeneous coordinates XΛ.
As a consequence the section v are defined up to rescaling

v −→ e−f(τ)v. (4.2.3)

A convenient gauge choice is2

X0 = 1, X i = τ i. (4.2.4)

The transformation properties of this section will be addressed in more details in section 5.1.
We restrict ourselves to the case where the components FΛ can be derived from a pre-

potential F which is an homogeneous (holomorphic) function of order 2 in the XΛ

F (λX) = λ2F (X). (4.2.5)

Then one has

FΛ =
∂F

∂XΛ
≡ ∂ΛF. (4.2.6)

One can write [170, sec. 4.5, 185, sec. 5]

F (X0, τ) = (X0)2f(τ) (4.2.7)

where f(τ) is invariant under rescaling of the coordinates due to the property (4.2.5).
More generally a symplectic vector A of dimension 2(nv + 1) is defined by

A =
(
AΛ

AΛ

)
, (4.2.8)

where the upper and lower components are distinguished only by the positions of the index
(and from the vector itself by the presence of the index).

The symplectic 2-form Ω reads explicitly

Ω =
(

0 1
−1 0

)
. (4.2.9)

It defines a scalar product

〈A,B〉 ≡ AtΩB = AΛBΛ −BΛAΛ. (4.2.10)

Sometimes we will need to write explicitly the symplectic indices

AM =
(
AΛ

AΛ

)
, ΩMN =

(
0 1

−1 0

)
, M = 1, . . . , 2(nv + 1). (4.2.11)

With these notations the symplectic product is

〈A,B〉 = AMΩMNB
N . (4.2.12)

2Sometimes the name "special coordinates" is used to designate explicitly this gauge choice.
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4.2.2 Metric and Kähler potential

The Kähler potential is

K = − ln(−i 〈v, v̄〉) = − ln i
(
X̄ΛFΛ −XΛF̄Λ

)
. (4.2.13)

This definition can be understood from the following fact: the inner product between v
and its conjugate transforms as

〈v, v̄〉 −→ e−f−f̄ 〈v, v̄〉 , (4.2.14)

under rescaling of v (4.2.3), and one recognizes in the exponential a possible Kähler trans-
formation [188, p. 4, 167, sec. 2].

The metric is derived from the Kähler potential

gi̄ = ∂i∂̄K. (4.2.15)

An expression in homogeneous coordinates is given by [165, p. 445]

gi̄ = 2 ImFΛΣ ∂iX
Λ∂̄X

Σ. (4.2.16)

The metric is invariant under Kähler transformations

K −→ K ′ = K + f + f̄ . (4.2.17)

Let’s come back to the condition (4.1.2): despite that v is a section of the bundle, the
covariant derivative is not necessary because

〈v,Div〉 = 〈v, ∂iv〉 (4.2.18)

since the symplectic product is antisymmetric [186, sec. 4.2.2].

4.2.3 Covariant holomorphic fields

The manifold is Kähler–Hodge which means that there is a U(1) bundle (see section 3.2.4
for more details). The section v has weight p = 1

Div = ∂iv +
1
2
∂iK v (4.2.19)

and is holomorphic
∂ı̄v = 0, (4.2.20)

such that one can define the holomorphic section

V = e
K
2 v ≡

(
LΛ

MΛ

)
(4.2.21)

and its covariant derivative

Ui = DiV ≡
(
f iΛ
hiΛ

)
. (4.2.22)

One then has
Dı̄V = 0. (4.2.23)

Note that the coordinates τ i can also be written as

τ i =
Li

L0
. (4.2.24)

Moreover the section V is invariant under Kähler transformations by construction (see the
previous section).
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Taking the exponential of the Kähler potential (4.2.13) and using the expression of the
sections (4.2.21) give the normalizations

〈
V , V̄

〉
= i,

〈
Ui, Ū̄

〉
= −i gi̄. (4.2.25)

The last relation can be used to obtain the metric if one knows Ui.
Decomposing V into its real and imaginary part, (4.2.25) implies that

〈Re V , Im V〉 = −1
2
,

〈
ReUi, Im Ū̄

〉
=

1
2
gij . (4.2.26)

The symplectic product of a vector A with V and Ui are defined by

Γ(A) = 〈V , A〉 , Γi(A) = DiΓ(A) = 〈Ui, A〉 (4.2.27)

and similarly for the complex conjugates Γ̄(A) and Γ̄ı̄(A). Note that these operators are
linear and Γi(A) can be defined only if the vector A is independent of τ i. In particular one
has

Γ(V̄) = i, Γ(Re V) =
i

2
, Γ(Im V) = −1

2
, Γ(Ui) = 0. (4.2.28)

Note that as a consequence of the previous relations one has

Dı̄Γ(A) = 0, D̄DiΓ(A) = gi̄ Γ(A). (4.2.29)

4.2.4 Prepotential properties

The nth derivative of the prepotential is

FΛ1···Λn
≡ ∂F

∂XΛ1 · · · ∂XΛn
. (4.2.30)

The homogeneity of the prepotential implies several identities for its derivatives [185,
sec. 2, 165, p. 433]

XΛn FΛ1···Λn
= (3 − n)FΛ1···Λn−1

(4.2.31)

(for n = 1 we define FΛ1Λ0
≡ F ) and in particular [12]

F =
1
2
FΛX

Λ, FΛ = FΛΣX
Σ, FΛΣ∆X

∆ = 0. (4.2.32)

The special case n = 3 implies the following relation

dFΛ = FΛΣdXΣ (4.2.33)

since

dFΛ = d(FΛΣX
Σ) = FΛΣdXΣ +XΣdFΛΣ = FΛΣdXΣ +✭✭✭✭✭✭✭

XΣFΛΣΞdXΞ. (4.2.34)

Two prepotentials that differ by a quadratic polynomial in XΛ with real coefficients are
equivalent as they do not contribute to the Kähler potential [202, p. 5, 144, p. 5]. Moreover
such terms can be removed/added by a symplectic transformation (see section 5.1).

4.3 Homogeneous matrices

4.3.1 Hessian matrix

The Hessian matrix F of the prepotential F is written

FΛΣ = ∂ΛFΣ = ∂ΣFΛ. (4.3.1)

In section 4.4 we will prove that Im F has nv positive and one negative eigenvalues.
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4.3.2 Period matrix

The period matrix3 [165, p. 448]

NΛΣ = F̄ΛΣ + 2i
ImFΛ∆ ImFΣΞ X∆XΞ

ImF∆Ξ X∆XΞ
(4.3.2)

is symmetric and is an object that allows to lower the index of LΛ as

MΛ = NΛΣL
Σ. (4.3.3)

On the other hand f iΛ and hiΛ are related by

hiΛ = N̄ΛΣf
Σ
i . (4.3.4)

This means that N is not a metric for Λ index. Note also that I is negative definite, which
is a consequence of the positivity of the metric. The real and imaginary parts of this matrix
are written as R and I

NΛΣ = RΛΣ + i IΛΣ. (4.3.5)

The inverse of the matrices is denoted with upper indices.
There are some useful identities

LΛIΛΣL̄
Σ = −1

2
, fΛ

i IΛΣf̄
Σ
̄ = −1

2
gi̄, LΛIΛΣf

Σ
i = 0, (4.3.6a)

UΛΣ = fΛ
i g

i̄f̄Σ
̄ = −1

2
IΛΣ − L̄ΛLΣ. (4.3.6b)

4.4 Symplectic matrices

Let’s denote by TΛΣ a symmetric matrix of dimension (nv + 1), and define its real and
imaginary parts4

T = R + i I. (4.4.1)

Then the (real) symplectic matrix M(T ) is defined by [203, sec. 3.2, 40, sec. 1] (see also [52,
p. 5, 165, p. 514, 46, app. A, 53, app. A])

M(T ) =
(

1 −R
0 1

)(
I 0
0 I−1

)(
1 0

−R 1

)
=
(

I + RI−1R −RI−1

−I−1R I−1

)
, (4.4.2)

of dimension 2(nv + 1), where 1 denotes the identity matrix of dimension (nv + 1). The
matrix is symmetric since R and I are symmetric. It is also symplectic because it satisfies
the relation

MtΩM = Ω =⇒ MΩM = Ω, (4.4.3)

the second relation following from the symmetric shape of the matrix.
The product5 of Ω with this matrix M

ΩM = −
(

I−1R −I−1

I + RI−1R −RI−1

)
(4.4.4)

is also symplectic
(ΩM)t Ω (ΩM) = Ω. (4.4.5)

Two matrices of this type are of interest

M+ ≡ M(N ) ≡ M, M− ≡ M(F), (4.4.6)

3This expression could also be given in terms of LΛ because it has weight 0.
4Later we will use normal letters instead of curly ones for the real and imaginary parts.
5Some authors call this product M [169, sec. 2.2].
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where F and N are respectively the period (4.3.2) and Hessian (4.3.1) matrices. Similarly
by convention R and I without further specifications are the real and imaginary parts of
N .

The product ΩM defines a complex structure on the bundle [52, sec. 2.2]

ΩMV = iV , ΩMUi = −iUi. (4.4.7)

For this reason eigenvalues of ΩM are ±i (nv + 1 of each). This matrix squares to −1

(ΩM)2 = −1. (4.4.8)

This last expression gives the inverse of ΩM as

(ΩM)−1 = −ΩM (4.4.9)

and this can be rewritten (4.4.5) as

(ΩM)tΩ = −Ω(ΩM). (4.4.10)

Since M and ΩM are symplectic they preserve the inner product and they can be moved
inside

〈ΩMA,ΩMB〉 = 〈A,B〉 , 〈ΩMA,B〉 = 〈A,ΩMB〉 . (4.4.11)

Since the vectors (V , V̄, Ui, Ūi) form a complete basis of Mv [204, app. A], the identity
and M can be expanded

1 = iVV̄tΩ − i V̄VtΩ − i gi̄ UiŪ
t
̄Ω + i gi̄ Ū̄U

t
iΩ, (4.4.12a)

−ΩM = VV̄tΩ + V̄VtΩ + gi̄ UiŪ
t
̄Ω + gi̄ Ū̄U

t
iΩ. (4.4.12b)

The decompositions of Ω and M are straightforward. These relations can be checked by
multiplying them on the right by V and Ui and their conjugates before using the orthonor-
mality (4.2.25) (implying that only one term of the sum contributes) and the properties of
the complex structure (4.4.7); as an example multiply the second one by V

MV = −iV = VV̄tΩV . (4.4.13)

In particular any (real) vector A on can be expanded on the basis (V , V̄, Ui, Ūi) through
(4.4.12a) [53, app. A]

A = i
〈
V̄ , A

〉
V − i 〈V , A〉 V̄ + i gi̄ 〈Ui, A〉 Ū̄ − i gı̄j

〈
Ūı̄, A

〉
Uj (4.4.14a)

= i Γ̄(A) V − iΓ(A) V̄ + i gi̄ Γi(A) Ū̄ − i gı̄j Γ̄ı̄(A)Uj (4.4.14b)

= 2 Im
(
V̄ 〈A, 〉 V

)
− 2gi̄ Im

( 〈
Ū̄, A

〉
Ui
)

(4.4.14c)

= 2 Im
(
Γ̄(A) V

)
− 2gi̄ Im

(
Γ̄̄(A)Ui

)
. (4.4.14d)

From Ω and M another matrix can be defined [52, sec. 2.2]

C =
1
2

(M − εΩ iΩ) (4.4.15)

This matrix is hermitian [205, sec. 3]
C† = C. (4.4.16)

and from (4.4.7) it satisfies the twisted self-duality

CV = −εΩ iΩV . (4.4.17)

Using equation (4.4.3) one can show that

CΩC = εΩ i C. (4.4.18)
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Taking a symplectic vector A, the decomposition (4.4.12b) implies the sum rule [203,
sec. 3.2]

− 1
2
AtMA = |Γ(A)|2 + |Γi(A)|2 . (4.4.19)

Hence M defines a quadratic form which is negative definite if the metric is positive defi-
nite [165, p. 448], which reflects the fact that Im N is negative definite. This is a consequence
of the fact that R does not play any role since, defining the vector

Ã =
(

1 0
−R 1

)
A, (4.4.20)

one can rewrite the previous relation as

AtMA = Ãt
(

I 0
0 I−1

)
Ã. (4.4.21)

Similarly M(F) defines a quadratic form through another sum rule

− 1
2
AtM(F)A = |Γ(A)|2 − |Γi(A)|2 . (4.4.22)

This shows that Im F has one negative and nv positive eigenvalues.
Note also the relation

− 1
2
AtM(F)A =

1
2
AtMA+ 2 |Γ(A)|2 . (4.4.23)

4.5 Structure coefficients

For a summary of this section, see [170, sec. 4.3, 206, sec. 4] (and also [171, sec. 2, 167,
sec. 2]).

The structure constant of the SK space is a symmetric 3-tensor defined by

Cijk = 〈DiUj , Uk〉 (4.5.1)

and it is covariantly holomorphic of weight 2

Dm̄Cijk = 0. (4.5.2)

(this covariant derivative does not involve Christoffel symbol). Notice that, as it is a 3-tensor,
the covariant derivative reads explicitly

DiCjkℓ = ∂iCjkℓ + (∂iK)Cjkℓ + ΓmijCmkℓ + ΓmikCjmℓ + ΓmiℓCjkm (4.5.3)

(this expression is symmetric in ij), and we recall the expression of the Christoffel symbol

Γ
i

jk = −giℓ̄∂jgkℓ̄. (4.5.4)

From this tensor one defines the rescaled structure constant

Wijk = e−KCijk (4.5.5)

which satisfies
∂m̄Wijk = 0. (4.5.6)

The complex conjugate is written C̄ı̄̄k̄, and the quantities with upper indices are obtained
from

C ı̄̄k̄ = giı̄gj̄gkk̄Cijk, C̄ijk = giı̄gj̄gkk̄C̄ı̄̄k̄. (4.5.7)
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The corresponding rescaled quantities are

W̄ ijk = giı̄gj̄gkk̄W̄ı̄̄k̄ = e−KC̄ijk. (4.5.8)

As a consequence one finds

DiUj = i Cijkg
kk̄Ūk̄ (4.5.9)

which implies

DiDjΓ(A) = i Cijkg
kk̄Γ̄k̄(A). (4.5.10)

Given a vector A the so-called cubic norm reads [207, sec. 2.1, 40, sec. 5]

N(A) = CijkΓ̄i(A)Γ̄j(A)Γ̄k(A), N̄(A) = C̄ı̄̄k̄Γı̄(A)Γ̄(A)Γk̄(A). (4.5.11)

Note that
N(V) = 0 =⇒ N(Re V) = N(Im V) = 0 (4.5.12)

because of the orthogonality conditions (4.2.25).
One defines finally the rank 5 E-tensor

Emijkℓ = gmm̄Em̄ijkℓ, Em̄ijkℓ =
1
3

D̄m̄DiCjkℓ. (4.5.13)

It is symmetric in all covariant indices. An explicit expression can be computed

Emijkℓ +
4
3
C(ijkδ

m
ℓ) = gmm̄gnn̄gpp̄Cn(ijCkℓ)pC̄m̄n̄p̄. (4.5.14)

4.6 Riemannian geometry

The Riemann geometry of SK manifolds is described in [202, 185, sec. 2, 167, sec. 2], and
additional details on symmetric spaces are in [40, sec. 5, 144, 208].

4.6.1 General properties

Since the space is Kähler, the expressions from section 3.2.2 can be used. But the additional
properties give alternative expressions.

The Riemann tensor read

Ri̄kℓ̄ = gi̄gkℓ̄ + giℓ̄gk̄ − gmn̄CikmC̄̄ℓ̄n̄, (4.6.1)

the sign being chosen such that R < 0 [206, sec. 4]. In the rigid limit only the last term
survives.

Contracting with the metric gives the Ricci tensor

Ri̄ = gkℓ̄Riℓ̄k̄ = −(nv + 1)gi̄ + gkℓ̄gmn̄CikmC̄̄ℓ̄n̄. (4.6.2)

And finally one finds the curvature

R = gi̄Ri̄ = −nv(nv + 1) + gi̄gkℓ̄gmn̄CikmC̄̄ℓ̄n̄. (4.6.3)
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4.6.2 Symmetric space

The space Mv is symmetric if the Riemann tensor is covariantly constant

DmRi̄kℓ̄ = 0. (4.6.4)

This implies that6

DℓCijk = D(ℓCi)jk = 0, (4.6.5)

and as a consequence the E-tensor (4.5.13) vanishes

Emijkℓ = 0. (4.6.6)

From (4.5.14) this implies the relation

4
3
C(ijkgℓ)m̄ = gnn̄gpp̄Cn(ijCkℓ)pC̄m̄n̄p̄, (4.6.7)

and thus

gnn̄R(i|m̄|j|n̄Cn|kℓ) = −2
3
g(i|m̄C|jkℓ). (4.6.8)

6Note that the next two equations are necessary conditions for the manifold to be symmetric, but they
are not sufficient [206, sec. 4].
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Chapter 5

Symplectic transformations and

invariants

The description of SK manifolds in terms of the section and its derivative is symplectic co-
variant and we are free to change the parametrization of the bundle section V by performing
a Sp(2nv+2,R) rotation. This means that the expressions are not invariant when written in
coordinates (for example the prepotential changes) but they keep the same form when given
in terms of symplectic vectors. This can be compared to general relativity where expressions
are covariant/invariant with respect to diffeomorphisms/isometries. A given basis is called
a (symplectic) frame.

The next question is to construct objects that are invariant under isometries. It appears
that a quartic symmetric tensor exist for SK symmetric manifolds G/H since the group G
is of type E7. This invariant tensor plays an important role in many places, such as the
definition of isometries of special quaternionic manifolds (see chapter 9), in the construction
of analytic solutions to the BPS equations or in some important quantities defining the
black holes, such as the area of the adS4 radius. This structure is most clearly seen using a
symplectic covariant formalism, which also simplifies the formulation of the equations and
of the Lagrangian.

5.1 Symplectic transformations

References include [170, sec. 2, 188, 189, 186, sec. 2, app. A].

5.1.1 Holomorphic section

A matrix U is symplectic if
U tΩU = Ω. (5.1.1)

Parametrizing the matrix as

U =
(
Q R
S T

)
=
(
QΛ

Σ RΛΣ

SΛΣ T Σ
Λ

)
. (5.1.2)

this implies the following constraints

QtS − StQ = 0, RtT − T tR = 0, QtT − StR = 1. (5.1.3)

From these one can determine the dimension of the group [165, p. 85]

dim Sp(2nv + 2,R) = (nv + 1)(2nv + 3). (5.1.4)
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The matrix U acts on V as

V ′ = UV =⇒
{
L′Λ = QΛ

ΣL
Σ +RΛΣMΣ,

M ′
Λ = SΛΣL

Σ + T Σ
Λ MΣ.

(5.1.5)

Since the matrix is constant it acts in the same way on Ui

U ′
i = UUi = Di(UV). (5.1.6)

In order to preserve the relation (4.3.3) in the new frame

MΛ = NΛΣL
Σ =⇒ M ′

Λ = N ′
ΛΣL

′Σ (5.1.7)

it is necessary for the matrix N to transform as

N ′ = (S + TN )(Q+RN )−1. (5.1.8)

For this one needs to replace MΛ in (5.1.5)

L′ = (Q+RN )L, M ′ = (S + TN )M = N ′L′. (5.1.9)

For some applications it is convenient to consider infinitesimal transformations

U = eU ∼ 1 + U (5.1.10)

where U ∈ sp(2nv + 2,R) and one writes

δV = UV . (5.1.11)

The condition (5.1.1) translates into

UtΩ + ΩU = 0, (5.1.12)

or as
t = −qt, r = rt, s = st (5.1.13)

in terms of the parametrization

U =
(
q r
s t

)
. (5.1.14)

5.1.2 Section and coordinates

The variation of the homogeneous coordinates can be written as [185, sec. 6, 209]

δXΛ = qΛ
ΣX

Σ + rΛΣFΣ =
(
qΛ

Σ + rΛΞFΞΣ

)
XΣ (5.1.15)

using the homogeneity of F . One sees that δX0 6= 0 which implies that the two sets of
special coordinates

τ i =
X i

X0
, τ ′i =

X ′i

X ′0
(5.1.16)

are not equivalent anymore, i.e. the transformation does not preserve the gauge choice
imposed on X0 for defining the special coordinates. For this reason one needs to rescale the
coordinates XΛ by multiplying by X ′0/X0. Infinitesimally this implies

δτ i =
(
qiΣ + riΞFΞΣ

)
τΣ − τ i

(
q0

Σ + r0ΞFΞΣ

)
τΣ (5.1.17)

where τ0 = 1.
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A first condition on these transformations is that [144, app. C]

∂X ′Λ

∂XΣ
6= 0 (5.1.18)

is non-singular, which means that the transformation of X ′Λ in terms of XΛ (with FΛ taken
as a function of XΛ) is invertible.

If one wants to keep the same class of Lagrangian – derivable from a prepotential – then
one also needs that it exists a function F ′ such that

F ′
Λ =

∂F ′(X ′)
∂X ′Λ

. (5.1.19)

This is the case when

F ′
ΛΣ =

∂F ′
Λ

∂X ′Σ
(5.1.20)

is symmetric.
The new prepotential F ′ is obtained by using the relation

F ′ =
1
2
F ′

ΛX
′Λ (5.1.21)

and the explicit expression for F ′
Λ and X ′Λ.

The expression for the new prepotential is

F ′(X ′) = F (X) +XStRF +
1
2
XStQX +

1
2
FT tRF (5.1.22)

where all F except in the first term are denoting the vector FΛ.
It is always possible to find a frame where a prepotential exists [186, sec. 4.2].

5.2 Symplectic invariants

Any quantity made from symplectic products behaves as a scalar under symplectic trans-
formations – and by an abuse of language we write sometimes "symplectic invariant". This
corresponds to H-invariance [210, sec. 1]. In particular this is the case of the structure
constant (4.5.1) since it is defined as a symplectic product, and – given a vector A – of the
products Γ(A) and Γi(A), and of the cubic norm N(A), given by (4.2.27) and (4.5.11).

If the manifold is a coset Mv ≡ G/H , then symplectic scalars with no free (anti)holo-
morphic indices are only H-invariant if the coordinates are fixed. Conversely H-invariant
expressions are also symplectic covariant.

In the following invariants associated to a vector A are built, and we write Γ ≡ Γ(A),
Γi ≡ Γi(A) and N(A) ≡ N . The independent invariants were listed in [40, sec. 5] (see
also [210, 42, sec. 2]). Two invariants are given by

I±(A,V) = −1
2
AtM± = |Γ|2 ± |Γi|2 . (5.2.1)

They can be written in terms of the two invariants

i1 = |Γ|2 , (5.2.2a)

i2 = |Γi|2 . (5.2.2b)

Two others can be introduced

i3 =
1
3!

(ΓN + Γ̄ N̄), (5.2.2c)

i4 =
i

3!
(ΓN − Γ̄ N̄), (5.2.2d)

along with the Poisson bracket

i5 =
{
N, N̄

}
= giı̄

∂N

∂Γ̄i
∂N̄

∂Γı̄
= giı̄CijkC̄ı̄̄k̄ Γ̄jΓ̄kΓ̄Γk̄. (5.2.2e)
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5.3 Duality invariants

In this section we assume that the SK space is symmetric

Mv =
G

H
, (5.3.1)

where G is called the duality group.

5.3.1 General definition

A duality invariant
In = In(A,V) = In

(
Γ(A),Γi(A)

)
(5.3.2)

(where A is any symplectic vector) is a homogeneous polynomial of order n which is invariant
under G-transformations (i.e. under the isometries). One consequence is that it does not
depend on the manifold coordinates [40, 210, footnote 1]

∂iIn = 0 ⇐⇒ In = In(A). (5.3.3)

In d = 4 duality invariants for all symmetric manifolds G/H are quartic,1 i.e. n = 4.
This is a consequence of the fact that the group G is always of type E7 [148, 151, 211].

Definition 5.1 (E7-type Lie group) A group of type E7 is a Lie groups for which there
exists a representation R such that (Ai ∈ R in the following) [147, sec. 4, 148, sec. 2.1]:

1. R is symplectic, which means that the singlet 1 sits into the antisymmetric product

1 = (R × R)a, (5.3.4)

and the associated invariant tensor C corresponds to the symplectic metric (skew-
symmetric 2-form). The latter defines a symplectic product for vectors in R

〈A1, A2〉 = CMNA
M
1 AN2 . (5.3.5)

2. There exists a unique invariant symmetric 4-tensor t (called a primitive G-invariant
structure)

1 = (R × R × R × R)s, (5.3.6)

and then one can define the map I4 : R4 → R

I4(A1, A2, A3, A4) = tMNPQA
M
1 AN2 A

P
3 A

Q
4 . (5.3.7)

3. The trilinear map I ′
4 : R3 → R defined by

〈I ′
4(A1, A2, A3), A4〉 = I4(A1, A2, A3, A4), (5.3.8)

satisfies

〈I ′
4(A1, A1, A1), I ′

4(A2, A2, A2)〉 = −2 I4(A1, A1, A2, A2) 〈A1, A2〉 . (5.3.9)

These properties are linked to the connection between Jordan algebras (and Freudenthal
triple system) and special Kähler manifolds. They imply various identities for the quartic
invariant.

1As we will see later, the groups are degenerate for quadratic prepotential, and there is a quadratic
invariant.
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5.3.2 Quartic invariant

A quartic invariant can be defined for symmetric SK manifold [40, sec. 5] (for other refer-
ences, see [207, sec. 2.1, 151, sec. 4, 212, sec. 4.3, 85, app. A])

I4 = (i1 − i2)2 − 4 i4 − i5 (5.3.10a)

or using explicit expression

I4 =
(

|Γ|2 − |Γi|2
)2 − 2i

3

(
ΓN − Γ̄ N̄

)
− giı̄CijkC̄ı̄̄k̄ Γ̄jΓ̄kΓ̄Γk̄. (5.3.10b)

This expression does not depend of the symplectic frame and is invariant under diffeomor-
phisms of Mv (detailed in section 7) [151, sec. 4].

The above general expression is sometimes said to be given in the complex basis [207] (as
opposed to its expression for cubic prepotentials which is real). In [212, sec. 4.3] it is called
the "entropy functional". This quartic invariant can be built directly from the generators of
the group G [213, sec. 3, 211].

5.3.3 Invariant tensor

Then one can define a symmetric 4-tensor [151, sec. 4, 85, app. B]

tMNPQ =
∂4I4(A)

∂AM∂AN∂AP∂AQ
. (5.3.11)

Explicit expressions for this tensor can be found in [212, sec. 4.3].
Then one can define a function I4 that takes four arguments

I4(A,B,C,D) = tMNPQA
MBNCPDQ (5.3.12)

along with its gradient

I ′
4(A,B,C)M = ΩMR tRNPQA

NBPCQ (5.3.13)

where Ω is used to get a vector and not a form.
Finally one defines the formulas for equal arguments

I4(A) =
1
4!
I4(A,A,A,A), I ′

4(A) =
1
3!
I ′

4(A,A,A). (5.3.14)

Since I ′
4 defines a vector it is possible to nest expressions. These expressions can be

simplified using identities for the product tMNPQΩMRtRSTU , which depend on the type of
the manifold under consideration (magical, cubic non-magical and quadratic models) [148,
sec. 2] (see also [147]).

By definition one has

〈A1, I
′
4(A2, A3, A4)〉 = I4(A1, A2, A3, A4). (5.3.15)

From (4.2.25) one finds that

I4(Re V) = I4(Im V) =
1
16

(5.3.16)

using (4.2.28) and the fact that all other terms vanish.
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5.3.4 Freudenthal duality

The Freudenthal dual f(A) of a vector A is defined by [151]

f(A)M = ΩMN
∂
∣∣∣
√
I4(A)

∣∣∣
∂AN

. (5.3.17)

This operator f is an anti-involution and preserves the quartic invariant

f(f(A)) = −A, I4(f(A)) = I4(A). (5.3.18)

Then f is a complex structure.

5.4 Non-symmetric spaces

The function I4 can be defined for non-symmetric spaces, but then it depends on the scalars
and does not provide an invariant. Nonetheless it can be useful.

For an example with cubic prepotential, see section 6.3.4.
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Chapter 6

Special Kähler classification.

Quadratic and cubic

prepotentials

We provide elements concerning the classification of homogeneous symmetric and non-
symmetric spaces, and we give more details on quadratic and cubic models. Both these
models appear frequently in N = 2 supergravity and they contain all the possible symmet-
ric spaces: we will use them frequently in our study of BPS solutions and we will also classify
the isometries in these two cases.

6.1 Classification of spaces

Spaces with cubic prepotentials are referred to as very special Kähler spaces. They are
obtained from the dimensional reduction of d = 5 N = 2 supergravity for which the scalar
manifold is real; this operation is called the r-map. As a consequence they have real structure
constants.

The classification of symmetric spaces have been done in [208, 214], while homogeneous
spaces were described in [13, 215] (see also [144–146]). Other useful references include [152,
p. 78, tab. 2, 165, p. 443, tab. 20.5].

6.1.1 Symmetric spaces

For all symmetric SK spaces there exists a symplectic basis where the prepotential is
quadratic or cubic [40, p. 29]. Properties of the Riemann tensor and the curvature of
theses spaces are described in [208].

Spaces with quadratic prepotentials correspond to complex projective spaces (see sec-
tion 6.2) [208]

CPnv ≡ SU(nv, 1)
SU(nv) × U(1)

(6.1.1)

(for nv = 1 there is only one U(1) in the denominator). They originally appeared in [216].
Günaydin, Sierra and Townsend obtained all symmetric spaces with cubic prepotentials

by studying the link between Jordan algebra and symmetric real geometries in d = 5 N = 2
supergravity and reducing to d = 4 [214]. It was proven by Cremmer and van Proeyen that
this list was indeed complete, using a classification of symmetric Kähler spaces (3.2.37) and
imposing the "special" conditions [208] (see also [185, sec. 5, app.]).
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There is an infinite family of cubic spaces (sometimes called the generic Jordan se-

quence [206])
SU(1, 1)

U(1)
× SO(nv, 2)

SO(nv) × SO(2)
(6.1.2)

(for nv = 1 there is only the first factor), along with four exceptional cases (sometimes called
magical models) [208, 214, sec. 5]

Sp(6)
U(3)

,
SU(3, 3)

SU(3) × SU(3) × U(1)
,

SO∗(12)
SU(6) × U(1)

,
E7,−25

E6 × U(1)
(6.1.3)

for nv = 6, 9, 15, 27 respectively (related to the magic square – they are linked with the
division algebras R,C,Q,O). An interesting point of the generic sequence is that they are
the only SK spaces with a direct product structure [170, p. 11].

Note that
SU(1, 1) ∼ SL(2,R). (6.1.4)

The cubic case nv = 3 (called the STU model) is very special because [165, p. 452]

Mv =
SU(1, 1)

U(1)
× SO(2, 2)

SO(2) × SO(2)
∼
(

SU(1, 1)
U(1)

)3

. (6.1.5)

This implies that the geometry will factorize and this manifold exhibits very interesting
properties.

In the case nv = 1, the manifolds are SU(1, 1)/U(1) for both the quadratic and cubic
prepotentials, but they are different since they have different curvature [208, p. 451]

Rquad = −2, Rcubic = −2
3
. (6.1.6)

Symmetric spaces are also Einstein

Ri̄ = Λgi̄, Λ =
R

nv
, (6.1.7)

where [206, sec. 5]

Λquad = −(nv + 1), Λcubic = −n2
v − 2nv + 3

nv
, Λmagic = −2

3
nv. (6.1.8)

6.1.2 Homogeneous spaces

The classification of homogeneous SK spaces with cubic prepotential was started by Ce-
cotti [215] and completed by de Wit and van Proeyen [13]. As reviewed in section 8.5, QK
manifolds can be obtained from SK manifolds through the c-map. Homogeneous quater-
nionic spaces were classified by Alekseevskii and Cecotti used this fact to obtain homoge-
neous SK manifolds as the inverse of the c-map. In their paper de Wit and van Proeyen
discovered new SK spaces, showing that Alekseevskii’s classification was incomplete (since
new QK manifolds could be derived from the c-map).

De Wit and van Proeyen found interesting links with Clifford algebras, while Cecotti
showed that these spaces were related to T -algebras, which are a generalization of Jordan
algebras.

6.2 Quadratic prepotential

For references see [212, sec. 4.2, 165, sec. 13.3].
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Quadratic prepotentials

F =
i

2
ηΛΣ X

ΛXΣ (6.2.1)

correspond to the complex projective spaces CPnv

Mv =
SU(nv, 1)

SU(nv) × U(1)
(6.2.2)

which are maximally symmetric. The flat metric on this space is given by

ηΛΣ = diag(−1, 1, . . . , 1). (6.2.3)

The coefficients of F are imaginary because real quadratic terms are irrelevant as seen in
section 4.2.4.

Because the isotropy group is SU(nv)×U(1) there is a natural split between the timelike
direction Λ = 0 and the spacelike ones Λ = i.

6.2.1 General formulas

In special coordinates [149, app. A.1]

XΛ =
(

1
τ i

)
(6.2.4)

the FΛ are given by

FΛ = i ηΛΣX
Σ = i

(
−1
τ i

)
(6.2.5)

The "spatial" indices are raised and lowered with δi̄ and δi̄.
The Kähler potential is given by

e−K = 2(|τ |2 − 1) (6.2.6)

where τ is the vector with components τ i. The metric reads

gi̄ =
δi̄

1 − |τ |2
+

τ̄iτ̄

(1 − |τ |2)2
. (6.2.7)

The structure constants vanish
Cijk = 0 (6.2.8)

and for this reason these models in supergravity are called minimally coupled. This implies
that three invariants from (5.2.2) are zero [148, sec. 8.4]

i3 = i4 = i5 = 0. (6.2.9)

The curvature of these spaces is read from (4.6.3)

R = −nv(nv + 1). (6.2.10)

Quadratic spaces can be obtained as a truncation from symmetric cubic spaces since [148,
sec. 8.3]

SU(nv, 1)
SU(nv) × U(1)

⊂ SU(1, 1)
U(1)

× SO(2nv, 2)
SO(2nv) × SO(2)

(6.2.11)
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6.2.2 Quartic and quadratic invariants

The groups SU(nv, 1) are degenerate groups of type E7, as is seen in the vanishing of the
structure constants [148]. As a consequence the quartic invariant I4 becomes the square of
a quadratic invariant I2 [12, p. 227, 149, sec. 3.2]

I4(A) = I2(A)2. (6.2.12)

The quadratic invariant reads [148, sec. 8.4]

I2 = i1 − i2 (6.2.13)

and one denotes by θMN the associated tensor

I2(A1, A2) = θMNA
M
1 AN2 , θMN =

1
2

∂2I2(A)
∂AM∂AN

. (6.2.14)

The quartic tensor (6.2.12) can be derived from this 2-tensor

tMNPQ = 4! θMNθPQ. (6.2.15)

Using (4.4.22) I2 can also be written

I2(A) = −1
2
AtM(F)A, (6.2.16)

where M(F ) was defined in section 4.4.
Writing explicitly the components with Q = (pΛqΛ), the quadratic invariant is [40, sec. 5,

149, sec. 3.2, 212, sec. 1]

I2(Q) =
i

2
pΛηΛΣ p

Σ +
i

2
qΛη

ΛΣqΣ. (6.2.17)

Note that I2 can be rewritten as

I2(Q) =
1
2
TΛΣT∆Ξ ηΛ∆ηΣΞ, TΛΣ = pΛqΣ − pΣqΛ. (6.2.18)

This implies

θ =
i

2

(
ηΛΣ 0 Σ

Λ

0Λ
Σ ηΛΣ

)
. (6.2.19)

The gradient defines a new vector

I ′
2(A)M = ΩMNθNPA

P . (6.2.20)

Because of the existence of I2, the Freudenthal operator (see section 5.3.4) becomes [148,
sec. 10]

f(A)M = ΩMN ∂I2(A)
∂AN

(6.2.21)

while using the definition of the gradient gives

f(A) =
1
2
I ′

2(A). (6.2.22)

It preserves the quadratic invariant

I2(f(A)) = I2(A). (6.2.23)

In this context the operator I ′
2 also defines a complex structure (up to a normalization) since

we have seen that f defines one.
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6.3 Cubic prepotential

6.3.1 General case

Manifolds with cubic prepotential are called very special Kähler manifolds or d-geometries.
These manifolds can be obtained by reducing d = 5 supergravity to d = 4 through the
r-map.

For details see [206, 185, sec. 5, 144, p. 7, sec. 4, 149, sec. 3.1, app. A].
For space with cubic prepotential there is a frame where F can be put in the form1

F = −Dijk
X iXjXk

X0
(6.3.1)

where Dijk is a symmetric 3-tensor. The associated f function is

f(τ) = −Dijkτ
iτ jτk. (6.3.2)

We will use the abbreviations

Dτ = Dτττ = Dijk τ
iτ jτk, Dτ,i = Dijk τ

jτk (6.3.3)

and similarly for other quantities like Dy (y being the imaginary part of τ).
The (rescaled) structure constant are given in terms of the D-tensor

Wijk = Dijk, (6.3.4)

and it is convenient to define the tensor D̂ijk [149, sec. 3.1]

D̂ijk =
1
D2
y

giℓgjmgknDℓmn (6.3.5)

which corresponds to e2KW̄ ijk up to a normalization. The tensor Dijk (and hence Wijk) is

always constant, but this is not necessarily the case for D̂ijk [50, app. D]. Since D̂ijk is real
we use also holomorphic indices.

In special coordinates, the conjugates are

FΛ =
(

Dτ

−3Dτ,i

)
. (6.3.6)

The Kähler potential is

e−K = 2
(

Im f + 2i Im τ i Re(∂if)
)

= 8Dy (6.3.7)

since

e−K = −i
(
XΛF̄Λ − X̄ΛFΛ

)
= i(Dτ −Dτ̄ ) − 3i(Dττ τ̄ −Dτ̄ τ̄τ )

= −2 ImDτ + 6 ImDττ τ̄ = 2(Dy − 3Dxxy) + 6(Dxxy +Dy).

The metric is [84, app A.1]

gij = −3
2
Dy,ij

Dy
+

9
4
Dy,iDy,j

D2
y

(6.3.8)

The Riemann tensor is

Ri ℓ
jk = δijδ

ℓ
k + δikδ

ℓ
j − 9

16
D̂iℓmDmjk. (6.3.9)

1The minus sign is conventional, other factors can be found in the literature, such as ±1, ±i, along with
some different normalization, for example 1/3! [42, 185].
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The E-tensor (4.5.13) reads [149, sec. 3.1]

Eijkℓm = D̂ijkDj(ℓmDnp)k − 64
27

δi(mDnpℓ). (6.3.10)

If Mv is symmetric, then D̂ijk entries are constant and they satisfy

D̂ijkDjℓ(mDnp)k =
16
27

(
δiℓDmnp + 3 δi(mDnp)ℓ

)
(6.3.11a)

D̂ijkDj(ℓmDnp)k =
64
27

δi(ℓDmnp). (6.3.11b)

6.3.2 Generic symmetric models

As explained in section 6.1.1, the generic cubic symmetric models are the manifolds

Mv =
SU(1, 1)

U(1)
× SO(nv, 2)

SO(nv) × SO(2)
. (6.3.12)

In this case again there is a natural split between the timelike direction Λ = 0 and spacelike
ones Λ = i because the isotropy group is SO(nv) × SO(2) .

6.3.3 Jordan algebras and quartic invariant

The existence and the form of the quartic invariant for symmetric very special Kähler man-
ifolds is related to Freudenthal triple systems and the associated Jordan algebra; good
references includes [148, 207] (for a mathematical paper, see [147]).

For symmetric cubic spaces the quartic invariant is given by [207, sec. 2.1, 40, sec. 5,
149, sec. 3.1, 144, p. 26] (see also [147, sec. 3])

I4(Q) = −(qΛp
Λ)2 +

1
16
p0 D̂ijkqiqjqk − 4 q0 Dijkp

ipjpk +
9
16
D̂ijkDkℓmqiqj p

ℓpm (6.3.13)

with Q = (pΛ, qΛ).
The explicit components of the tensor tMNPQ are [50, app. D, 84, app. A.3]

t 00
00 = −4, t 0j

0i = −2δ ji , t kℓ
ij = −4δ (k

i δ
ℓ)
k +

9
4
DijmD̂

kℓm,

t ijk0 = −3
8
D̂ijk , t 0

ijk = 24Dijk.

(6.3.14)

A fundamental identity is [207, sec. 2.1, 85, app. B]

I ′
4(I ′

4(A), A,A) = −8AI4(A) (6.3.15)

which is called the Freudenthal identity and is a consequence of the Jordan algebra structure
of the space. Some identities that are satisfied by combinations of the invariant evaluated
with two vectors are given in the appendix E.1.

One of the most useful identity is [85, app. B]

I ′
4(A, Im V , Im V) = −4 〈Im V , A〉 Im V − 8 〈Re V , A〉 Re V − ΩMA. (6.3.16)

ans from it one deduces the relation

Re V = −2 I ′
4(Im V) = − I ′

4(Im V)

2
√
I4(Im V )

. (6.3.17)

It is remarkable that none of these identities changes when V is multiplied by a phase.
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6.3.4 Non-symmetric spaces

As shown in [202, 206], spaces with a cubic prepotential have a least the isometry group

G = SO(1, 1) × Rnv (6.3.18)

where the first factor is related to overall rescaling while the second corresponds to nv shifts
of the axions Re τ i. As we will see in the section 7.2, these isometries correspond to the
universal transformations associated to parameters {β, bi}. As a consequence the quartic
function can depend only on the dilatons Im τ i, and the terms that are scalar-dependent
will be proportional to the E-tensor (4.5.13)

I4(A, τ i) ∼ I4(A) + (Dy)5/3Emijkℓp
jpkpℓqmqn

∂Dp

∂pi∂pn
(6.3.19)

with I4(A) is the quartic invariant (6.3.13).
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Chapter 7

Special Kähler isometries

The main motivation of this chapter is to understand the isometries of the quadratic and
cubic models. This is an important step in order to construct gauged supergravities based
on these models as one needs to know the correspoding Killing vectors that appear in the
covariant derivatives. Moreover some isometries of the QK manifolds are inherited from its
base SK space.

7.1 General case

Special Kähler isometries were worked out in [185, sec. 6, 12, p. 222, 146] (see also [149,
sec. 3]).

Isometries (also called duality transformations) on special Kähler manifolds are given
by symplectic transformations (see section 5.1) that are consistent with the symplectic vec-
tors [165, p. 450, 209]. In particular this means that the duality transformation of FΛ agrees
with the transformation induced by the fact that FΛ is a function of XΛ [12, p. 222]. For
homogeneous spaces some isometries are constrained while other are universal and their ex-
istence is always guaranteed. In the case of symmetric spaces all isometries are realized [12,
p. 222]. These isometries are generated by holomorphic Killing vectors since the manifold
is Kähler, and all the properties described in section 3.2.3 also apply.

The isometry group is denoted by

Gv = ISO(Mv). (7.1.1)

The variation of the section is
δv = U v (7.1.2)

with

U =
(
q r
s t

)
∈ sp(2nv + 2) (7.1.3)

and the constraints
t = −qt, r = rt, s = st. (7.1.4)

Consistency of the transformation of the vector v with the expression FΛ(X) implies that
the prepotential keeps the same functional form [144, p. 6, app. C]

F ′(X ′) = F (X ′). (7.1.5)

In supergravity this condition implies that the Lagrangian is invariant. Note that this does
not mean that the function itself is invariant, and one finds that [185, sec. 6]

δF (X) = F (X ′) − F (X) = i

(
XsX − 1

4
FrF

)
. (7.1.6)
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As said in section 4.2.4 pure imaginary quadratic terms have no effect.
This is equivalent to the chain rule

δFΛ =
∂FΛ

∂XΣ
δXΣ = FΛΣδX

Σ. (7.1.7)

Contracting this equation with XΛ and using the homogeneity of F gives

XΛδFΛ = FΛδX
Λ. (7.1.8)

This last condition is sufficient to classify all the isometries and it reads explicitly [185,
sec. 6, 12, p. 223]

XΛsΛΣX
Σ − 2XΛ(qt) Σ

Λ FΣ − FΛr
ΛΣFΣ = 0. (7.1.9)

From the relation

F =
1
2
FΛX

Λ (7.1.10)

one obtains the variation

δF =
1
2

(
δFΛX

Λ + FΛδX
Λ
)

= δFΛX
Λ = FΛδX

Λ, (7.1.11)

the last two equalities coming from (7.1.8).
The number of isometries is given by the number of independent parameters ωm in the

matrix U and they can be found by expanding (7.1.9) in τ i. Then the Killing vectors and
the symplectic matrix can be written as linear combinations

ki = ωm kim, U = ωm Um (7.1.12)

where each kim and Um generates an independent isometry.
Also the Kähler potential (4.2.13)

e−K = −i 〈v, v̄〉 (7.1.13)

is obviously invariant under isometries since it is written only in terms of symplectic invariant
quantities, but this does not need to be the case in special coordinates: there may be a
compensating Kähler transformation

LkK = 2 Re fk (7.1.14)

associated to the transformation with Killing vector k. The reason is that a transformation
may change X0 = 1 to another value X ′0 6= 1, and one needs to perform a compensating
Kähler transformation in order to set X ′0 = 1 [186].

7.2 Cubic prepotential

Let’s consider the cubic prepotential

F = −Dijk
X iXjXk

X0
. (7.2.1)

The isometries were studied in [185, sec. 6, 13, 144] (see also [149, sec. 3.1]).
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7.2.1 Parameters

The matrix U is parametrized as [149, sec. 3.1, 144, p. 7, sec. 4.2]

qΛ
Σ = −(tt)Λ

Σ =
(
β aj
bi Bij + 1

3 β δ
i
j

)
,

sΛΣ =
(

0 0
0 −6Dijkb

k

)
, rΛΣ =

(
0 0
0 − 3

32D̂
ijkak

)
.

(7.2.2)

In special coordinates the variation of τ i is given by

δτ i = bi − 2
3
β τ i +Bij τ

j − 1
2
Ri ℓ
jk τ jτkaℓ (7.2.3)

and the Killing vector is

k = ki∂i = kβ + bi kb,i + ai k
i
a + Bij (kB) ji . (7.2.4)

The unconstrained symmetries associated to β and bi generate respectively a rescaling
and a shift of the axions.

The other rescaling symmetries associated to Bij are constrained by1

B ℓ
(i Djk)ℓ = 0. (7.2.5)

Finally the non-linear symmetries must satisfy

aiE
i
jkℓm = 0 (7.2.6)

where the E-tensor is given by (4.5.14) or (6.3.10). This condition is necessary and sufficient

for having D̂ijkak = cst (which is needed because the matrix U is constant) [144, sec. 4.2].

If Mv is symmetric, then D̂ijk is constant and Eijkℓm = 0 such that ai is unconstrained.

Then the symmetry group will be a simple Lie algebra, with bi and ai being associated to
lowering and raising operators, while (β,Bij ) are associated to Cartan elements.

7.2.2 Lie derivative

Transformation associated to β and ai induce a Kähler transformation of the potential
with [149, sec. 3.3, app. A.1]

f = β + aiτ
i. (7.2.7)

7.2.3 Algebra

The algebra can be found in [185, sec. 6, 144, sec. 4.2]

[kβ , kb,i] =
2
3
kb,i,

[
kβ , k

i
a

]
= −2

3
kia,

[
kb,i, k

j
a

]
= δijkβ + R̃i ℓ

jk (kB) kℓ , (7.2.8a)
[
(kB) ji , kb,k

]
= R̃i ℓ

jk kb,ℓ,
[
(kB) ji , k

k
a

]
= −R̃i k

jℓ k
ℓ
a (7.2.8b)

where

R̃i ℓ
jk = Ri ℓ

jk +
2
3
δijδ

ℓ
k . (7.2.9)

Due to the form of the algebra the existence of a transformation with parameter ai imply
one of the form B j

i .

1This constraint is discussed more deeply in [13, 144, sec. 5] in which the authors study which dijk

satisfy it, and this has some link with Clifford algebra.
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The algebra gv of Gv can be decomposed in eigenspaces associated to the symmetry
β [144, sec. 2.2]

gv = g−2/3 + g0 + g2/3 (7.2.10)

where
[kβ , ga] = a ga. (7.2.11)

The space g0 contains β and Bij while g2/3 contains bi, and as a result

dim g2/3 = nv. (7.2.12)

Hidden symmetries ai are in g−2/3 and the associated roots are located on the left of the
root diagram, while the dimension of the space

dim g−2/3 ≤ nv (7.2.13)

According to the denomination of [144, sec. 2.2], symmetries associated to ai are hidden
ones. This bound is saturated – meaning that ai exist – for symmetric spaces, in which case
the curvature and D̂ijk are constant, or equivalently when Eijkℓm = 0. Otherwise the Lie
algebra is not semisimple.

7.3 Quadratic prepotential

Now one considers quadratic prepotentials

F =
i

2
ηΛΣ X

ΛXΣ. (7.3.1)

7.3.1 Parameters

The solution to the constraints (7.1.9) is given by [149, sec. 3.2, app. A.1]

sΛΣ = −ηΛΞ r
ΞΥ ηΥΣ, ηΛ(Σq

Λ
Ξ) = 0 (7.3.2)

where there is no sum on Λ in the last constraint (i.e. all diagonal elements are vanishing).
The second constraint is equivalent to

q0
i = qi0 , qij = −qji, qΛ

Λ = 0. (7.3.3)

The variations of the coordinates is given by

δτ i = Ai0 + (Aij −A0
0δ
i
j )τ

j −A0
jτ
jτ i (7.3.4)

where
A = q + i r η. (7.3.5)

Looking at the variation of τ i, the trace of A and A0
0 have the same action and one

should be removed, and this is equivalent to removing one of them for r. The number of
parameters contained in each matrices is

r :
1
2

(nv + 1)(nv + 2) − 1, q :
1
2
nv(nv − 1) + nv, (7.3.6)

giving a total number of nv(nv + 2) which agrees with the number of Killing vectors on
CPnv .

7.3.2 Lie derivative

A Kähler transformation is induced for some of the isometries [149, sec. 3.3, app. A.1]

f = 2 Ā0
i τ
i. (7.3.7)
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Chapter 8

Quaternionic geometry

Quaternionic Kähler manifold (QK) manifolds form the target manifold of hypermultiplets
in N = 2 supergravity. These manifolds possess a SU(2) bundle which correspond to the
SU(2)R symmetry of the supersymmetry algebra, and as a consequence there is a triplet
of complex structures that obey the quaternionic algebra. After giving the definition of
these manifolds we describe their geometrical properties followed by a general description
of isometries. In particular we describe the SU(2) compensator which is interpreted as a
rotation of the complex structures under a transformation, and it will be an important
ingredient in the construction of BPS vacua. Finally we describe the special quaternionic
manifolds that are constructed as a fibration over a SK manifolds and which are simpler
than generic QK spaces, and in the following chapter we build the isometries of these spaces.

General references include [170, sec. 5, 171, 165, chap. 13 and 20, 217, sec. 2] (see
also [218, 199, sec. 5]). Some historical and mathematical references are [200, 219–224].

8.1 Definitions

Definition 8.1 (Quaternionic manifold) A quaternionic Kähler (QK) manifold (Mh, h)
is a 4nh-dimensional real manifold with metric

ds2 = huv dqudqv, u = 1, . . . , 4nh (8.1.1)

endowed with three (almost-)complex structures Jx, x = 1, 2, 3, satisfying the quaternionic
algebra

JxJy = −δxy + εxyzJz. (8.1.2)

Alternatively a QK manifold is characterized by its holonomy group [220, 221]

Hol(Mh) = H · Sp(1) ≡ H × Sp(1)/Z2, H ⊂ Sp(nh). (8.1.3)

Locally the coordinates qu can be gathered into quaternions, but in general this is not
possible globally [200, p. 126–127]. Similarly these spaces are not Kähler strictly speaking
in general and this is an abuse of language.

We note that Sp(nh) ⊂ SO(4nh) and it is the subgroup that leaves invariant the Jx.
Sp(nh) · Sp(1) is a maximal subgroup of SO(4n) [220]. We recall that Sp(1) ∼ SU(2).

The connection 1-form of the SU(2) factor is denoted by

ωx = (ωx)u dqu, (8.1.4)

and the associated curvature is

Ωx = ∇ωx = dωx +
1
2
εxyzωy ∧ ωz. (8.1.5)
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Moreover the metric must be hermitian with respect to the three Jx (denoted collectively
as J), i.e.

∀x : Jx h (Jx)t = h (8.1.6)

(no sum over x) and they should be covariantly constant

∇wJ
v
u = DwJ

v
u + 2ωw × J

v
u = 0 (8.1.7a)

∇w(Jx) v
u = Dw(Jx) v

u + εxyz(ωy)w(Jz) v
u = 0, (8.1.7b)

where Du is the covariant derivative associated to huv. This relation means that the Jx are
covariantly constant with respect to Du up to an SU(2) rotation with vector (ωx)u(q).

The triplet of hyperkähler 2-forms

Kx = Jxuv dqu ∧ dqv, Jxuv = huw(Jx) w
v . (8.1.8)

have to be closed with respect to Sp(1) connection

∇Kx = dKx + εxyzωy ∧Kz = 0. (8.1.9)

For a quaternionic manifold the SU(2) curvature 2-form needs to be proportional to the
hyperkähler 2-form

Ωx = λKx. (8.1.10)

In supergravity λ = −1 [171, p. 6], but we will keep it general for two reasons:

• some authors use different normalizations;

• the limit λ = 0 corresponds to hyperkähler manifolds and rigid supersymmetry.

Because of the connection the covariant exterior derivative does not square to zero but
to [200, sec. 4, 224, sec. 4]

∇2fx = εxyzΩyfz (8.1.11)

for any p-form fx.
The fundamental (quaternionic) 4-form is defined as [219, 221, 224]

Ω = Kx ∧Kx =
1
λ2

Ωx ∧ Ωx, (8.1.12)

it is globally defined, non-vanishing and covariantly closed (i.e. parallel)

∇Ω = 0 (8.1.13)

since it is invariant under Sp(nh) · Sp(1) [219, 222] (or in the opposite sense, a manifold is
quaternionic if Ω is covariantly closed). This implies that Ω is closed and harmonic (this is
equivalent to Kx = λΩx) [200, sec. 4]

dΩ = 0, ∆Ω = 0. (8.1.14)

This is automatic for nh = 1 since Ω = 3ε (ε being the volume form of the space, not to be
counfounded with εxyz) [224, sec. 2]. Recall that the laplacian on forms is defined by

∆ = dδ + δd (8.1.15)

where δ is the codifferential.
We want to prove that Ω is closed. Using the definition (8.1.5) of Ωx we have

λ2 Ω =
(

dωx +
1
2
εxyzωy ∧ ωz

)
∧
(

dωx +
1
2
εxuvωu ∧ ωv

)

= dωx ∧ dωx + εxyzdωx ∧ ωy ∧ ωz + εxuvεxyzωu ∧ ωv ∧ ωy ∧ ωz.
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The last term vanishes because the ε will give a symmetric factor, so we have [225, sec. 3]

λ2 Ω = d
(
ωx ∧ dωx +

1
3
εxyzωx ∧ ωy ∧ ωz

)
. (8.1.16)

This implies that Ω is closed as announced. For nh > 2 this is a necessary and sufficient
condition for the manifold to be quaternionic and dΩ determines entirely ∇Ω, while for
nh = 2 we need to take some care [224, sec. 2, app. A].

The volume element on Mh is given by Ωnh .
Closely related to the quaternionic manifolds are the hyperkähler ones, for which the

SU(2) bundle is trivial, and the holonomy group is contained in Sp(nh).

8.2 Geometry

8.2.1 Vielbein

Let’s introduce the vielbein 1-form UαA

UαA = UαA
u dqu (8.2.1)

such that
huv = CABεαβU

αA
u UBβ

v . (8.2.2)

The flat coordinates have been split in two indices due to the fact that the holonomy group
is Sp(nh) · Sp(1): A and α runs respectively in the fundamental representations of Sp(nh)
and Sp(1)

α = 1, 2, A = 1, . . . , 2nh, (8.2.3)

where the corresponding symplectic flat metrics are C and ε (see the appendix A.3 for
conventions)

εαβ = −εβα, CAB = −CBA. (8.2.4)

The inverse vielbein UuαA is defined such that

UαA
u UvαA = δ v

u , UαA
u UuβB = δ β

α δ B
A (8.2.5)

and it obeys the reality condition

(UαA)∗ = UαA = CABεαβU
Bβ
v . (8.2.6)

These conditions imply

2UαA
u UvβA = δ v

u δ β
α + i σx α

β (Jx) v
u , (8.2.7a)

(Jx) v
u = −i σx β

α UαA
u UvβA. (8.2.7b)

Other relations are satisfied, such as

CAB(UαA
u UβB

v + UαA
v UβB

u ) = εαβ huv, (8.2.8a)

εαβ(UαA
u UβB

v + UαA
v UβB

u ) =
1
nh

CAB huv. (8.2.8b)

The vielbein is covariantly constant

∇vU
αA
u = ∂vU

αA
u + ω α

vβ UβA
u + ∆ A

vB UαB
u − Γwvu U

αA
w = 0, (8.2.9)

where ω and ∆ are the SU(2) and Sp(nh) (Lie algebra valued) connections

ω α
β = ω α

uβ dqu = i ωx σx α
β , ∆ A

B = ∆ A
vB dqu, (8.2.10)

and ωx is the connection (8.1.4).
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8.2.2 Curvature

Due to the holonomy of the manifold the Riemann tensor factorizes. Its precise form can
be found from (8.2.9) and it reads

R w
uv s = UwαAU

αB
s R B

uvA − J
w
s · Ωuv, (8.2.11a)

R B
uvA = 2 ∂[u∆ A

v]B + 2 ∆ A
[u|C| ∆ C

v]B , (8.2.11b)

Ωuv = 2 ∂[uωv] + 2 ωu × ωv (8.2.11c)

where Ωx is the SU(2) curvature (8.1.5), and we recall that it is proportional to the hyper-
kähler 2-form (8.1.10).

Quaternionic manifolds are Einstein [224]

Ruv =
R

4nh
huv (8.2.12)

and thus have constant curvature. Moreover the latter is related to the coefficient of pro-
portionality between Ωx and Kx

λ =
R

8nh(nh + 2)
. (8.2.13)

Even stronger one can prove that the Riemann tensor decomposes as (we omit the in-
dices) [165, p. 455, 200, sec. 4]

R = 2λRHP +R0 (8.2.14)

where RHP is the curvature on quaternionic projective space, and R0 is the Ricci-flat cur-
vature part (related to the Weyl tensor) of Sp(nh) (it behaves as a curvature tensor for a
Riemannian manifold whose holonomy is a subgroup of Sp(nh)).

8.3 Symmetries

As for the case of Kähler manifold a Killing vector k acts with a Lie derivative to generate
isometries. It should preserve the metric huv and the fundamental 4-form Ω [200, sec. 4],
that is

Lkhuv = LkΩ = 0. (8.3.1)

We have proved that dΩ = 0 so we have

LkΩ = dikΩ = 0. (8.3.2)

Invoking the Poincaré lemma, it exists a 2-form Pk such that [224, sec. 4]

ikΩ = dPk (8.3.3)

generalizing the moment map from the Kähler manifolds. We can decompose it (locally) as

Pk = P xk Ωx. (8.3.4)

Instead of continuing on this path, we introduce the definitions as in [170, sec. 7.3]. We
assume that the action of the Lie group generates triholomorphic isometries, which means
that Lk acts on Ωx and ωx [192]

LkΩx = εxyzW y
kΩz, Lkωx = ∇W x

k (8.3.5)

where W x
k is an SU(2) compensator.1 The reason is that the Sp(1) curvature being nonzero,

we cannot trivialize the Sp(1) bundle: then all quantities that transform under this group

1With respect to [170, 192] we have W → −W since they define it by LkΩx = εxyzΩyW z
k

.
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(such as Kx) are defined on this bundle, and not just on the quaternionic base space, and
thus they are subject to local Sp(1) gauge transformations [226, sec. 1] or, said another way,
they must transform covariantly.

In the same way we associated a prepotential to a Killing vector of Kähler manifolds, we
would like to introduce triholomorphic prepotentials (or moment maps) P xk satisfying [224,
sec. 4]

ikK
x = ∇P xk . (8.3.6)

We can express them in terms of the hyperkähler forms (under certain conditions of regu-
larity) [200, sec. 4]. Introduce first the 1-form

βx = ikK
x =

1
λ
ikΩx = ∇P xk , (8.3.7)

and take its covariant derivative

∇βx = ∇2P xk =⇒ dβx + εxyzωy ∧ βz = εxyzΩyP zk (8.3.8)

using (8.1.11). Applying ik and noting that ikβ
x = 0 since i2k = 0 (and ikf = 0 for f a

0-form) we get
ikdβx + εxyzikω

y βz = εxyzikΩy P zk . (8.3.9)

We can introduce the Lie derivative in the first term since

ikdβx = ik dikΩx = ikLkΩx (8.3.10)

again because i2k = 0. The we use (8.3.5) to replace the Lie derivative

ikdβx = εxyzW y
k ikΩ

z = εxyzW y
k ikβ

z. (8.3.11)

Replacing ikΩy = λβy in the last term and switching y and z, we finally find

εxyz(W y
k + ikω

y βz + λP yk )βz = 0. (8.3.12)

Under certain condition on ikΩx [200, sec. 4] this implies

P xk =
1
λ

(
− ikω

x −W x
k

)
. (8.3.13)

We deduce that any isometry is associated to a triplet of moment maps, and moreover we
can rewrite (8.3.5) as [226, sec. 2]

LkΩx = εxyz(ikωx − λP xk )Ωz , (8.3.14)

In terms of the triplet of complex structures this gives

LkJ = 2λJ × P k. (8.3.15)

The statement (8.3.5) that a Killing vector is triholomorphic means that its covariant
derivative commutes with all three complex structures (we omit the index k in the rest of
the section)

∇uk
w

J
v

w = J
w
u ∇vk

w (8.3.16)

In coordinates equation (8.3.6) reads

λ∇uP
x = kv Ωuv. (8.3.17)

The moment map can also be found from

4λnh P = J
v
u ∇vk

u. (8.3.18)
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From Killing equation
∇ukv + ∇vku = 0, (8.3.19)

using the commutator
[∇u,∇v] kw = R w

uv sk
s (8.3.20)

and the explicit value of the Ricci, one finds that ku satisfy a Poisson equation [218, app. A]

∇v∇vku + 2λ(nh + 2)ku = 0. (8.3.21)

Then using the relation with the prepotentials implies that the latter also satisfy a Poisson
equation (but with different eigenvalues) The prepotentials are harmonic functions

∇u∇uP x + 4nhλP x = 0. (8.3.22)

Note that the commutator on P x yields

[∇u,∇v]P x = 2εxyzΩyuvP
z. (8.3.23)

Then the Poisson equation can be used to find a direct expression for the Killing vector

ku = − 1
6λ2

huvΩxvw∇wP x. (8.3.24)

Let’s denote by {kΛ} the set of Killing vectors generating the isometries on Mh (we will
use an index Λ as a shortcut for kΛ in the compensator, etc.). Then one has the cocycle
identity

LΛW
x
Σ − LΣW

x
Λ + εxyzW y

ΛW
z
Σ = f Ξ

ΛΣ W x
Ξ (8.3.25)

where f Ξ
ΛΣ are the structure constants of the algebra. There is also an equivariance condi-

tion

Jxuvk
u
Λk

v
Σ =

1
2
f Ω

ΛΣ P xΩ +
λ

2
εxyzP xΛP

y
Σ. (8.3.26)

8.4 Classification of spaces

Homogeneous QK manifolds have been classified by Alekseevsky [227], but it was shown by
de Wit and van Proeyen that it was incomplete [13, 228]. The symmetric manifolds (called
Wolf spaces) were given by Wolf [229] (see also [190, 222]). Useful references include [170,
p. 77, tab. 2, 152, p. 78, tab. 2, 165, p. 443, tab. 20.5].

The symmetric spaces that are special (i.e. which can be obtained from the c-map, see
chapter 8.5) consist in two families

SU(nh, 2)
SU(nh) × SU(2) × U(1)

,
SO(nh, 4)

SO(nh) × SO(4)
, (8.4.1)

(when nh = 1 the factor SU(nh) is not present) given respectively by the quadratic and
cubic models (section 6.1.1), and five exceptional cases

G2,2

SO(4) × SO(2)
,

F4,4

USp(6) × SU(2)
,

E6,2

SU(6) × SU(2)
,

E7,−5

SO(12) × SU(2)
,

E8,−24

E7 × SU(2)

(8.4.2)

for nh = 7, 10, 16, 28 respectively. The first of these exceptional spaces corresponds to the
c-map with a cubic model since the spaces of the two families are isomorphic for nh = 2 and
it is given by a quadratic model [169, p. 5, tab. 2]. Note that SU(2) ⊂ SO(4).

Finally the only symmetric spaces that cannot be obtained from the c-map are the
projective quaternionic manifolds

HPnh ≡ Sp(nh, 1)
Sp(nh) × Sp(1)

, (8.4.3)

and recall that Sp(1) ∼ SU(2).

60



8.5 Special quaternionic manifolds

Special (or dual) quaternionic manifolds Mh are a subclass of quaternionic manifolds which
fully specified by a special Kähler manifold Mz [11, 13, 144, 165]. The map Mz → Mh is
called the c-map. The latter is useful for determining the isometries of the QK manifold; in
particular if Mz is symmetric then Mh is also symmetric [12, pp. 222, 224].

8.5.1 Quaternionic metric from the c-map

We recall that dim Mh = 4nh. A special quaternionic manifold is made of a base special
Kähler manifold Mz of dimension 2(nh − 1) with a fibration. Homogeneous coordinates on
Mz are denoted by ZA, and the fibers are (φ, σ, ξA, ξ̃A) where

A = 0, . . . , nh − 1. (8.5.1)

Physically φ is the dilaton (coming from the metric), σ is the axion (coming from dualization
of the B-field) and the (ξA, ξ̃A) corresponds to the NS scalars (coming from the reduction
of the NS forms).

The explicit construction can be found in [11, 152, sec. 4].
Sometimes we will parametrize the dilaton as

ρ = e−2φ. (8.5.2)

The special coordinates are

za =
Za

Z0
, a = 1, . . . , nh − 1. (8.5.3)

Finally we group the Ramond coordinates into a symplectic vector

ξ =
(
ξA

ξ̃A

)
(8.5.4)

Before describing the metric and other geometrical objects we set up the notation for
the base special Kähler manifold.

8.5.2 Base special Kähler manifold

The properties of this embedded manifold are exactly the same as the ones described in
chapter 4. In this section we are just recalling the main quantities and defining the notations:
instead of curly letters A we will use blackboard bold letter A.

The prepotential is denoted by G and its derivatives together with ZA form the sym-
plectic vector

Z =
(
ZA

GA

)
. (8.5.5)

The symplectic metric is C.
We obtain the Kähler potential from

Kz = − ln
(

− iZ̄tCZ
)

= − ln i
(
Z̄AGA − ZAḠA

)
(8.5.6)

from which we obtain the metric
gab̄ = ∂a∂b̄Kz. (8.5.7)

We obtain the period matrix

NAB = ḠAB + 2i
ImGAC ImGBD ZCZD

ImGCD ZCZD
. (8.5.8)
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and the complex structure

M =
(

ImN + ReN(ImN)−1 ReN − ReN(ImN)−1

−(ImN)−1 ReN (ImN)−1

)
. (8.5.9)

Cubic prepotentials will be written as

G = −dabc
ZaZbZc

Z0
. (8.5.10)

The associated manifolds are called very special quaternionic.

8.5.3 Geometrical structures

The metric Mh is given by

ds2
h = dφ2 + gab̄ dzadz̄ b̄ +

1
4

e4φ

(
dσ +

1
2
ξtCdξ

)2

− 1
4

e2φ dξtMdξ. (8.5.11)

Note that the second term in parenthesis can be rewritten as

ξtCdξ = ξAdξ̃A − ξ̃AdξA. (8.5.12)

The spin connection ωxu is given2 by [169, sec. 4.2, 62, sec. 3.1, 51, sec. 4]

ω+ =
√

2 eφ+Kz/2 ZtCdξ,

ω3 =
e2φ

2

(
da+

1
2
ξtCdξ

)
− 2 eKz Im

(
ZA ImGABdZ̄B

)
.

(8.5.13)

where we defined
ω± = ω1 ± i ω2 (8.5.14)

which are complex conjugate. These expressions are not invariant under SU(2) transforma-
tions.

We can also rewrite [149, app. B]

Im
(
ZA ImGABdZ̄B

)
=

1
4
ZCdZ̄ + c.c. (8.5.15)

since

Im
(
ZA ImGABdZ̄B

)
= Im

(
1
2i
ZA(GAB − ḠAB)dZ̄B

)
= −1

2
Re
(
GAdZ̄A − ZAdḠA

)

= −1
4

(
GAdZ̄A − ZAdZ̄A + ḠAdZA − Z̄AdGA

)

where we used the homogeneity of G (4.2.31)

GABZ
B = GA, GABdZB = dGA. (8.5.16)

2Note that this involves a choice of SU(2) basis. Other possibilities are also fine.
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Chapter 9

Quaternionic isometries

In this chapter we focus on the isometries of special quaternionic manifolds. As reviewed
in the chapter 7 on SK isometries, knowing the Killing vectors of the target space of the
non-linear sigma models involved in the N = 2 supergravity is necessary in order to write
the gauged theory. Since there is a base SK space we are able to use symplectic covariant
expressions which simplify the construction of the Killing vectors and which provide a nice
interpretation of them.

The isometries of special quaternionic manifolds were classified by de Wit and Van
Proeyen [12, 144–146]. There are three kinds of isometries [144, 149]:

• duality symmetries, inherited from the base special Kähler manifolds;

• extra symmetries, whose origin is seen directly from the gauge transformations;

• hidden symmetries, which are not generic and whose existence depends on specific
properties of the manifold.

9.1 Killing vectors

We will denote the isometry group by

Gh = ISO(Mh). (9.1.1)

In order to simplify the notation, we define

∂ξ =
(
∂A
∂A

)
, ∂A = ∂ξA =

∂

∂ξA
, ∂A = ∂ξ̃A

=
∂

∂ξ̃A
. (9.1.2)

We will also make use of

C∂ξ =
(
∂A

−∂A

)
. (9.1.3)

Similarly we write

∂Z =
(
∂ZA

∂GA

)
, ∂ZA =

∂

∂ZA
, ∂GA

=
∂

∂GA
. (9.1.4)

9.1.1 Duality symmetries

Isometries of the base SK space (described in section 7) can be lifted to the full quaternionic
space by adding a transformation of the fibers [12, p. 223]. They consist in symplectic
(infinitesimal) transformations U ∈ sp(2nH ,R) that leave invariant the prepotential. Since
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the metric is made only of symplectic products, it is easy to see that the Killing vector on
the full space is [169, sec. 4.2]

kU = (UZ)t ∂Z + (UZ̄)t ∂Z̄ + (Uξ)t∂ξ. (9.1.5)

Writing explicitly the product gives

kU = (UZ)A∂ZA + (UZ)A∂GA
+ (Uξ)A∂A + (Uξ)A∂A + c.c. (9.1.6)

In order to use conventions similar to the other Killing vectors we should write this vector
as a linear combination of each Killing vector associated to independent parameters, but
this is not the usual approach taken in the literature.

The matrix U is parametrized by (see section 7)

U =
(
vAB tAB

sAB u B
A

)
, tAB = tBA, sAB = sBA, vAB = −u A

B (9.1.7)

where the constraint are equivalent to

UtC + CU = 0. (9.1.8)

We refer to section 7 for more details on the classification of duality isometries. Since
the parameters are subject to the constraints not all these symmetries are universal.

9.1.2 Extra symmetries

These symmetries act on the Heisenberg fiber: they originate from the gauge symmetry of
gauge fields that have been dualized to scalar fields [12, p. 223]. Only the derivative of the
scalar fields that have been dualized from vector fields appear, and shift symmetries result
from this.

The first symmetry is a translation of the axion [169, sec. 4.2]

k+ = ∂σ. (9.1.9)

In general nothing depends on the axion and everything is invariant under shift of this field.
Then there is a scaling symmetry of all the fields

k0 = ∂φ − 2σ∂σ − ξt∂ξ. (9.1.10)

Expanding the product gives explicitly

k0 = ∂φ − 2σ∂σ − ξ̃A∂
A − ξA∂A. (9.1.11)

Finally there are 2nh translations of the Ramond fields ξ accompanied by a transforma-
tion of σ [169, sec. 4.2] (this is really a 2nh-dimensional vector)

kξ = C∂ξ +
1
2
ξ ∂σ (9.1.12)

or more explicitly1

kA = ∂A +
1
2
ξA∂σ, (9.1.13a)

kA = −∂A +
1
2
ξ̃A∂σ. (9.1.13b)

The shift of the fibers can be written

kξ = C∂ξ +
1
2
ξ ∂σ. (9.1.14)

All these symmetries are universal and do not depend on the model.

1Note that kA gets a minus sign with respect to the definition in [169, sec. 4.2].
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9.1.3 Hidden vectors

There are several hidden symmetries [12, 144, 145, sec. 3]. In [149, sec. 4] these vectors have
been expressed in a symplectic covariant form.2

Since the quaternionic metric does not contain linear term in dza, any isometry of the
full space needs to be an isometry of the base SK space when the vector is restricted to the
latter

Lkhuv = 0 =⇒ Lk|Mz
gab̄ = 0. (9.1.15)

In particular this implies that the transformation of the homogeneous SK coordinates are
of the form

δZ = SZ (9.1.16)

where S ∈ sp(2nh) and it satisfies the equivalent of (7.1.9). In particular this matrix can
depend on all the fields of the fiber

S = S(φ, σ, ξA, ξ̃A) (9.1.17)

as they are just constant from the point of view of the base SK space, but it appears that
S depends only on ξ.

The first vector is given by

k− = −σ ∂φ + (σ2 − e−4φ −W )∂σ + (σξ − C∂ξW )t∂ξ − (SZ)t∂Z + c.c. (9.1.18a)

Then there are 2nh vectors

k̂ξ = −1
2
ξ ∂φ +

(
σ

2
ξ − 1

2
C∂ξW

)
∂σ + σC∂ξ +

(
1
2
ξtξ − C∂ξ(C∂ξW )t

)
∂ξ

− (C∂ξSZ)t∂Z + c.c.
(9.1.18b)

Explicitly they are given by

k̂A = −1
2
ξA ∂φ +

(
σ

2
ξA − 1

2
∂AW

)
∂σ + σ ∂A +

(
1
2
ξA ξ − C∂ξ∂

AW

)t
∂ξ

− (∂ASZ)t∂Z + c.c.

(9.1.18c)

k̂A = −1
2
ξ̃A ∂φ +

(
σ

2
ξ̃A +

1
2
∂AW

)
∂σ − σ ∂A +

(
1
2
ξ̃A ξ + C∂ξ∂AW

)t
∂ξ

+ (∂ASZ)t∂Z + c.c.

(9.1.18d)

We have used several quantities

W =
1
4
h(ξ) − 1

2
e−2φ ξtCMξ, (9.1.19a)

S =
1
2

(
ξξt +

1
2
H

)
C, (9.1.19b)

H = C∂ξ(C∂ξh)t =
(
∂A∂Bh −∂A∂Bh

−∂A∂Bh ∂A∂Bh

)
. (9.1.19c)

h is a homogeneous quartic polynomial constructed from the quartic invariant [151, sec. 4],
while S is a symplectic matrix

St = CSC. (9.1.20)

H is a symmetric matrix.
Some of the quantities involved are homogeneous in ξ:

2Also this paper provides corrections to the expression from [144] that were incorrect.

65



• h: order 4;

• S, H : order 2.

This means that
ξt∂ξh = 4h, ξt∂ξH = 2H, ξt∂ξS = 2S. (9.1.21)

When the space is symmetric the quartic invariant h is independent of the fields zi [144,
pp. 13, 17]. In particular it is possible to obtain conditions by taking derivatives. If h depends
on zi then some symmetries of g−1/2 can still exist if some linear combinations of ∂Ah and
∂Ah are independent of zi. For this last reason it may be interesting to keep parameters in
Killing vectors since the Killing vectors k̂A and k̂A may not exist by themselves, but only
linear combinations.

Some interesting results on possible hidden vectors are proved in [144, sec. 4.3] for Mz

with cubic prepotential. For example α̂0 always exists, whereas α̂0 exists only for symmetric
spaces, and the others exist if

Eabcde α̂
e = 0, Eabcde α̂a = 0. (9.1.22)

Note that the second constraint coincides with the one for the existence of aa, such that if
the later exist, then there also exist symmetries such that α̂a ∝ aa.

Cubic prepotential

For cubic prepotential the quartic invariant is given by (6.3.13)

h(ξ, ξ̃) = −(ξ̃AξA)2 +
1
16
ξ0 d̂abcξ̃aξ̃bξ̃c − 4 ξ̃0 dabcξ

aξbξc +
9
16
d̂abcdcdeξ̃aξ̃b ξ

dξe. (9.1.23)

The parameters of the matrix S as written in section 7.2 are

β = −1
2

(
3 ξ̃0ξ

0 + ξ̃aξ
a
)
, (9.1.24a)

ba = −1
2

(
2 ξ̃0ξ

a − 3
32
d̂abcξ̃bξ̃c

)
, (9.1.24b)

aa = −1
2

(
2 ξ0ξa + 6 dabcξbξc

)
, (9.1.24c)

Bab = −1
2

(
2
3
δab ξ̃cξ

c − 9
8
d̂acddbdeξ̃dξ

e

)
. (9.1.24d)

Quadratic prepotential

For quadratic prepotential the quartic invariant is given by (6.2.12) and (6.2.17)

h(ξ, ξ̃) = I2(ξ, ξ̃)2, I2(ξ, ξ̃) =
i

2
ξAηAB ξ

B +
i

2
ξ̃Aη

AB ξ̃B. (9.1.25)

The parameters of the matrix S as written in section 7.3 are

rAB = −1
2

(
−ξAξB − i I2(ξ, ξ̃) ηAB + (η−1ξ̃)A(η−1ξ̃)B

)
, (9.1.26a)

sAB = −1
2

(
ξ̃Aξ̃B + i I2(ξ, ξ̃) ηAB − (ηξ)A(ηξ)B

)
, (9.1.26b)

qAB = −1
2

(
−ξAξ̃B − (η−1ξ̃)A(ηξ)B

)
. (9.1.26c)
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Some relations

For later computations we look at various expressions involving the previous objects.
The φ derivative of W is equal to

∂φW = e−2φ ξtCMξ. (9.1.27)

W is not homogeneous (since it has quadratic and quartic pieces) but using the last
equation we have

(ξt∂ξ − ∂φ)W = 4W, (9.1.28)

or written in various other ways

ξt∂ξW = 2W +
1
2
h = 4W + e−2φ ξtCMξ = 4W + ∂φW. (9.1.29)

Similarly for the derivative of W we get

(ξt∂ξ − ∂φ)∂ξW = 3 ∂ξW (9.1.30)

or differently

(ξt∂ξ)∂ξW = W +
1
2
∂ξh = 3∂ξW +

1
2

e−2φ ∂ξ(ξtCMξ) = 3∂ξW + e−2φ CMξ (9.1.31)

using the relation (9.1.32) proved below.
The derivative with respect to ξ of the second term in W reads

e2φ ∂ξ(∂φW ) = ∂ξ(ξtCMξ) = 2CMξ (9.1.32)

since
∂ξ(ξtCMξ) = CMξ + ξtCM = CMξ − MtCξ = 2CMξ.

Equivalently
(C∂ξ)(ξtCMξ) = −2Mξ. (9.1.33)

Taking the derivative a second time gives

∂ξ[∂ξ(ξtCMξ)]t = 2CM, C∂ξ[C∂ξ(ξtCMξ)]t = −2CM, (9.1.34)

On the other hand we defined

H = C∂ξ(C∂ξh)t (9.1.35)

so we get that

C∂ξ(C∂ξW )t = H − 2 e−2φCM = −2ξξt − 4SC − 2 e−2φCM. (9.1.36)

9.1.4 Summary

As a summary, the list of all the Killing vectors is

kU = (UZ)t ∂Z + (UZ̄)t ∂Z̄ + (Uξ)t∂ξ, (9.1.37a)

kξ = C∂ξ +
1
2
ξ ∂σ, (9.1.37b)

k0 = ∂φ − 2σ ∂σ − ξt∂ξ, (9.1.37c)

k+ = ∂σ, (9.1.37d)
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for the normal symmetries and

k− = −σ∂φ + (σ2 − e−4φ −W )∂σ + (σξ − C∂ξW )t∂ξ − (SZ)t∂Z + c.c., (9.1.37e)

k̂ξ = −1
2
ξ ∂φ +

(
σ

2
ξ − 1

2
C∂ξW

)
∂σ + σC∂ξ +

(
1
2
ξξt − C∂ξ(C∂ξW )t

)
∂ξ (9.1.37f)

− (C∂ξSZ)t∂Z + c.c.

for the hidden symmetries.
We have used several quantities

W =
1
4
h(ξA, ξ̃A) − 1

2
e−2φ ξtCMξ, (9.1.38a)

S =
1
2

(
ξξt +

1
2
H

)
C, (9.1.38b)

H = C∂ξ(C∂ξh)t =
(
∂A∂Bh −∂A∂Bh

−∂A∂Bh ∂A∂Bh

)
. (9.1.38c)

9.2 Algebra

We define the commutator of two vectors of Killing vectors k1 and k2 as

[
k1, k

t
2

]
= k1k

t
2 − (k1k

t
2)t. (9.2.1)

Another possibility is to introduce one parameter for each Killing vector which turns the
previous matrix commutator into a normal scalar commutator

[
ǫt1k1, ǫ

t
2k2

]
= ǫt1k1k

t
2ǫ2 − ǫt2(k1k

t
2)tǫ1 (9.2.2)

and specific commutators can be extracted by taking all parameters to zeros except those
we are interested in which are set to one.3

The non-vanishing commutators of the algebra are [149, sec. 4.3, 144, sec. 3]

[k0, k+] = 2k+, [k0, kξ] = kξ,
[
kξ, k

t
ξ

]
= C k+, [kU, kξ] = U kξ,

[k0, k−] = −2 k−,
[
k0, k̂ξ

]
= −k̂ξ, [k−, kξ] = −k̂ξ,

[k+, k−] = −k0,
[
k+, k̂ξ

]
= kξ,

[
kU, k̂ξ

]
= U k̂ξ,

[
k̂ξ, k̂

t
ξ

]
= C k−,

[
α̂tk̂ξ, α

tkξ

]
=

1
2
α̂Cαk0 + kTα,α̂

(9.2.3)

with

Tα,α̂ = (αtC∂ξ)(α̂tC∂ξ)S = −1
2
C(α̂αt + αα̂t) +

1
4
H ′′
α,α̂C, (9.2.4a)

H ′′
α,α̂ = C∂ξ(C∂ξh′′

α,α̂)t = (αtC∂ξ)(α̂tC∂ξ)H, (9.2.4b)

h′′
α,α̂ = (αtC∂ξ)(α̂tC∂ξ)h. (9.2.4c)

Some commutators are computed in appendix F.1, others have been checked with Mathe-
matica.

We see that there are two Heisenberg subalgebra, one generated by {kξ, k+} [169, sec. 4],

the other by {k̂ξ, k−}.

3The same idea is used for supersymmetry where ǫQ can be used to turn anticommutators into commu-
tators.
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The algebra gh corresponding to these Killing vectors can be decomposed into eigenspaces
of k0 [12, pp. 222–223, 144, sec. 2.3]

gh = g−1 + g−1/2 + g0 + g1/2 + g1 (9.2.5)

where the Killing vectors contained in ga satisfy

[k0, ga] = a ga. (9.2.6)

We note that the dimensions of extra symmetry subspaces are

dim g1/2 = 2nh, dim g1 = 1 (9.2.7)

while for hidden symmetries the dimensions are

symmetric Mh: dim g−1 = 1, dim g−1/2 = 2nh, (9.2.8a)

otherwise: dim g−1 = 0, dim g−1/2 ≤ nh. (9.2.8b)

Note that the algebra of Mz is contained in g0. As a conclusion very special quaternionic
manifolds have at least 2nh + 2 isometries (k0, kξ and k+) [11]

dim g ≥ 2nh + 2. (9.2.9)

Using the algebra we can obtain some information about the number of symmetries that
will be realized. For example if for a given A the symmetries k̂A and K̂A exist, then from
the algebra we deduce that k− exists also and the space is symmetric [12, p. 228]. Similarly
the bound on the dimension of g−1/2 is obtained from the commutators with kU, so if we
have one symmetry of this subspace we can build other by taking the commutator.

Projective quaternionic space

Mh =
Sp(nh, 1)

Sp(nh) × Sp(1)
(9.2.10)

are associated to the algebra C1
1 are not in the image of the c-map since

dim g1 = 3 (9.2.11)

which is in contradiction with what we have seen above [144, p. 12].

9.3 Compensators

The expressions for the compensators are not invariant under SU(2) transformations, and
they depend on the choice of the spin connection.

We recall that the compensators are defined by

Lkω+ = dW+
k − i ω+W 3

k + i ω3W−
k , (9.3.1)

and also
ω+ =

√
2 eφ+Kz/2 ZtCdξ. (9.3.2)

In homogeneous coordinates, ωxu is explicitly invariant and the compensator vanishes

W x = 0. (9.3.3)

Then for getting their expressions one needs to compute the Lie derivative in special coor-
dinates.
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Figure 9.1 – G2 root diagram [144, sec. 2.3], see [230, sec. 3.1] for the construction. This
corresponds to nh = 2, and in this case B1

1 = 0.

9.3.1 Duality symmetries

Cubic prepotential

The only non-zero compensator is [149, sec. 5.1.1, app. B.3.1]

W 3
U = ac Im zc. (9.3.4)

from
LUω

+ = −i ac Im zc ω+. (9.3.5)

Quadratic prepotential

The only non-zero compensator is [149, sec. 5.1.1]

W 3
U = Im(Aa0z

a) = qa0 Im za + ra0 Re za (9.3.6)

from
LUω

+ = −i (qa0 Im za + ra0 Re za
)
ω+. (9.3.7)

9.3.2 Hidden symmetries

Compensators for hidden symmetries are [149, sec. 5.1.2, app. B.3.2]

W+
− = 2i

√
2 eKz−φ ZCξ, (9.3.8a)

W 3
− = −W 3

S − e−2φ, (9.3.8b)

Ŵ+
ξ = −C∂ξW

+
− , (9.3.8c)

Ŵ 3
ξ = −2C∂ξW 3

−. (9.3.8d)
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9.4 Prepotentials

The expressions for the prepotentials are not invariant under SU(2) transformations, and
they depend on the choice of the spin connection.

We recall that Killing prepotentials are given by

P xΛ = kuΛω
x
u −W x

Λ (9.4.1)

and they are real. We will sometimes use

P± = P 1 ± i P 2. (9.4.2)

The prepotentials for the universal symmetries are

P+
+ = 0, P 3

+ =
1
2

e2φ, (9.4.3a)

P+
0 =

√
2 eKz/2+φ ZCξ, P 3

0 = −σ e2φ, (9.4.3b)

P+
ξ =

√
2 eKz/2+φ Z, P 3

ξ =
1
2

e2φ Z, (9.4.3c)

while those for the base SK isometries are

P+
U

=
1
2

eKz/2+φ ξCUZ, P 3
U =

1
4

e2φ ξCUξ +
1
2

eKz ZCUZ̄, (9.4.3d)

and those for the hidden isometries are

P+
− = −1

2
e−2φ +

σ2

2
e2φ(2W − ξ∂ξW ) − 1

2
eKz Z̄CSZ, (9.4.3e)

P 3
− =

√
2 eKz/2+φ(σ ZCξ + Z∂ξW ), (9.4.3f)

P̂+
ξ =

1√
2

eKz/2+φ (ZCξ) ξ + C∂ξP
+
− , (9.4.3g)

P̂ 3
ξ =

σ

2
e2φ ξ + C∂ξP

3
−. (9.4.3h)
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Part III

BPS equations for black holes
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Chapter 10

Generalities on AdS–NUT black

holes

10.1 Ansatz

In this section we consider asymptotically adS and adS–NUT black holes. The goal is to
provide an overview of the structure of these solutions [150].

We take the following ansatz for the metric and the gauge fields

ds2 = − e2U
(
dt+ 2nH(θ) dφ

)2
+ e−2Udr2 + e2(V−U) dΣ2

g, (10.1.1a)

AΛ = q̃Λ
(
dt+ 2nH(θ) dφ

)
+ p̃ΛH(θ) dφ. (10.1.1b)

The functions U, V, q̃ and p̃ depend only on r, and n is the NUT charge. The space Σg is
defined in section A.7

dΣ2
g = dθ2 +H ′(θ)2 dφ2, H(θ) =





− cos θ κ = 1,
θ κ = 0,
cosh θ κ = −1.

(10.1.2)

We mainly work with κ = ±1, but one can check that key equations are also valid for
κ = 0, possibly with a rescaling of the Maxwell and NUT charges.

10.2 Motivation: constant scalar black holes

10.2.1 Solution

In order to motivate our general analysis let us start with the adS–NUT charged black hole
in Einstein–Maxwell theory with a cosmological constant Λ = −3g2, which corresponds to
minimal gauged supergravity with coupling g (nv = nh = 0), following [150, sec. 2].

The metric and the gauge field read [76]

ds2 = − e2V

r2 + n2

(
dt+ 2nH(θ) dφ

)2
+
r2 + n2

e2V
dr2 + (r2 + n2) dΣ2

g, (10.2.1a)

A =
Qr − nP

r2 + n2

(
dt+ 2nH(θ) dφ

)
+ P H(θ) dφ. (10.2.1b)
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using the functions

e2V = g2(r2 + n2)2 + (κ+ 4g2n2)(r2 − n2) − 2mr + P 2 +Q2, (10.2.2a)

e2(V−U) = r2 + n2, (10.2.2b)

q̃ =
Qr − nP

r2 + n2
, (10.2.2c)

p̃ = P. (10.2.2d)

The φ-component of the gauge field reads

Aφ =
P (r2 − n2) + 2nQr

r2 + n2
H(θ). (10.2.3)

The parameters P and Q are the magnetic and electric charges, and m is the mass. The
ADM mass and charges depend on the genus of the surface [75, p. 5].

It it well-known that Taub–NUT spacetimes have closed timelike curve (which are present
in order to avoid Misner strings), and the periodicity is related to the NUT charge [231, 39,
chap. 9]. The only exception to the previous statement is for κ = −1 where there is a range
for n where the solution is free of closed timelike curves [34]

0 ≤ 2g2n2 ≤ 1. (10.2.4)

When the NUT charge is set to zero the solution corresponds to the adS Reissner–
Nordström.

10.2.2 Root structure and supersymmetry

The supersymmetric properties of adS black holes (n = 0) were first studied by Romans in
its seminal paper [31]. He found two classes of BPS solutions

1
2

-BPS : m = |Q| , P = 0, (10.2.5a)

1
4

-BPS : m = 0, P = ± 1
2g
, (10.2.5b)

and only Q is not constrained. The 1/2-BPS solution has a naked singularity for any κ,
while the 1/4-BPS solution also has a naked singularity, except for κ = −1 and Q = 0, in
which case it has a horizon adS2 ×H2.

This has been generalized in [76] which found again two classes

1
2

-BPS : m = |Q|
√
κ+ 4g2n2, P = ±n

√
κ+ 4g2n2, (10.2.6a)

1
4

-BPS : m = |2gnQ| , P = ±κ+ 4g2n2

2g
, (10.2.6b)

where q and n are not constrained.
On these two BPS branches the root structure corresponds to

e2V = g2 (r − r+
1 )(r − r−

1 )(r − r+
2 )(r − r−

2 ), (10.2.7)

where

1
2

-BPS : r±
1 =

i

2g

(√
κ+ 4g2n2 ±

√
κ+ 8g2n2 + 4igQ

)
, (10.2.8a)

1
4

-BPS : r±
1 = i

(
n± 1√

2g

√
κ+ 4g2n2 + 2igQ

)
, (10.2.8b)
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and in both cases one has r±
2 (Q) = −r±

1 (−Q).
The 1/4-BPS branch has a real root only if

Q2 = −2n2(κ+ 2g2n2), (10.2.9)

which requires κ = −1. Then the solution possesses an extremal horizon located at

r−
1 = r−

2 =

√
1 − κ− 4g2n2

2
√

2g
> 0. (10.2.10)

Note that the squareroot is well defined only if n is situated in the range (10.2.4) where
there is no closed timelike curve according to [34]. One can see that if one of the root is
real, then another root is automatically real and the black hole is extremal.

On the other hand for the 1/2-BPS solution a real root exists if

Q2 = −n2(κ+ 4g2n2) (10.2.11)

but this is in contraction with the requirement that the magnetic charge is real

κ+ 4g2n2 > 0. (10.2.12)

In this case the spacetime can reach negative r and there is no horizon. This should be
contrasted with the Euclidean analysis where the associated solutions have a single root
(corresponding to a bolt). This quantitative difference is due to the fact that one continues
also the NUT charge when performing the Wick rotation from Lorentzian to Euclidean
signatures.

10.3 Root structure and IR geometry

In general e2V could be any function; nonetheless from known examples it seems that the
most general form is a quartic polynomial [150, sec. 4] (see for example [18, 19, 76])

e2V =
4∑

p=0

vp r
p. (10.3.1)

The root structure of this functions is particularly important as it determines the existence
and the location of horizons, along which other properties such as extremality. Before pro-
ceeding remember that it is possible to shift the radial coordinates. Finally the temperature
of the black hole is proportional to ( eV )′.

The various possibilities are:

• Naked singularity: pair of complex conjugate roots, v3 = 0.

The solution has no horizon.

• Black hole: two real roots, v0 = 0.

There is at least one horizon and the black hole has a finite temperature.

• Extremal black hole: real double root, v0 = v1 = 0.

Two horizons of the previous case coincide, which implies that the first derivative
vanishes, and the temperature is zero. We also recall that static BPS black holes are
extremal.

• Double extremal black hole [58]: pair of real double roots, v0 = v1 = 0 and v3 =
√
v2v4.

• Ultracold black hole [31, sec. 3.1]: real triple root, v0 = v1 = v2 = 0.
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It is implicit that the other roots are different, and they may be real (giving additional
horizons) or in complex conjugate pairs. Shifting r has been used to set v0 = 0 – which is
equivalent to move one of the root to r = 0 – when at least one root is real, or to set v3 = 0.
It is possible that for some special values of the vi the class of a black hole changes, as we
have seen in the previous section.

Extremal black holes which have

v0 = v1 = 0, v2 6= 0 (10.3.2)

possess a near-horizon geometry of the form adS2 × Σg with respective radii R1 and R2.
They are related to the metric functions by

e2V ∼0 v2 r
2, e2(V−U) ∼0 R

2
2, v2 =

R2

R1
. (10.3.3)

Plugging these functions into (10.1.1a) gives

ds2 = − r2

R2
1

(
dt+ 2nH(θ) dφ

)2
+
R2

1

r2
dr2 +R2

2 dΣ2
g (10.3.4)

which approaches adS2 × Σg after the rescaling

r −→ ǫr, t −→ t/ǫ, (10.3.5)

followed by ǫ → 0.
In order to find BPS solutions without NUT charge, Cacciatori and Klemm used an

ansatz with two double roots [58]

eV =
r2

R
− v (10.3.6)

where R is the radius of the asymptotic adS4 vacua, and v > 0 is fixed by the near-horizon
geometry [84]. Hence the function V is completely fixed by the boundary conditions in the
IR and in the UV. Solutions in this category include [46, 58]; in the symplectic frame where
the gaugings are electric they have magnetic charges.
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Chapter 11

Static BPS equations

We are looking for static 1
4 -BPS solutions of N = 2 matter-coupled gauged supergravity. As

it is well known [57, 69], BPS equations imply the equations of motion for the metric and
for the scalar fields, but not Maxwell equations which need to be solved separately.1

11.1 Ansatz

The ansatz for the metric and for the gauge fields are

ds2 = − e2Udt2 + e−2Udr2 + e2(V−U) dΣ2
g, (11.1.1a)

AΛ = q̃Λ dt− pΛF ′(θ)dφ. (11.1.1b)

The functions U, V, q̃ and p depend only on r, while Σg is a Riemann surface of genus g (see
appendix A.7) with metric

dΣ2
g = dθ2 +H ′(θ)2 dφ2, H ′(θ) =





sin θ κ = 1,
1 κ = 0,
sinh θ κ = −1.

(11.1.2)

All scalars are function only on r

τ i = τ i(r), qu = qu(r). (11.1.3)

We consider only abelian gaugings.
The magnetic field strength reads

GΛ = RΛΣF
Σ − IΛΣ ⋆F

Σ. (11.1.4)

The electric and magnetic charges are given explicitly by

pΛ =
1

4π

∫

Σg

FΛ, (11.1.5a)

qΛ =
1

4π

∫

Σg

GΛ = − e2(V−U) IΛΣq̃
′Σ + κRΛΣp

Σ. (11.1.5b)

The latter can be used for deriving an expression for q̃′Λ

q̃′Λ = e2(U−V ) IΛΣ
(
RΣ∆p

∆ − qΣ

)
. (11.1.6)

1In this section we follow the conventions of [62, 149].
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The central and matter charges are2

Z = 〈Q,V〉 = pΛMΛ − qΛL
Λ, Zi = 〈Q, Ui〉 . (11.1.7)

Similarly one defines the prepotential charges

Lx = 〈Px,V〉 = −P xΛLΛ, Lxi = 〈Px, Ui〉 . (11.1.8)

Another expression for the central charge is

Z = LΛIΛΣ

(
e2(V−U)q̃Σ + i pΣ

)
. (11.1.9)

11.2 Equations

BPS equations for N = 2 matter-coupled gauged supergravity have been derived in [62,
sec. 2.2, app. B] (see also [149, app. D]).

For deriving the equations one choose a frame where the gaugings are purely electric

P xΛ = 0 (11.2.1)

such that
Lx = −P xΛLΛ. (11.2.2)

The Killing spinor reads
εα = eU/2 eiψ/2 ε0α (11.2.3a)

where ε0α is a constant spinor satisfying the two projection conditions

ε0α = i γ0εαβε
β
0 , (11.2.3b)

ε0α = −pΛP xΛ γ01σx β
α ε0β . (11.2.3c)

Each projection halves the number of independent components. If pΛ = 0 then the second
projection is removed and one obtains 1/2-BPS solutions.

There are algebraic equations

(pΛP xΛ)2 = κ2, (11.2.4a)

pΛkuΛ = 0, (11.2.4b)

Re( e−iψLx) pΛP xΛ = − e2(U−V ) Im( e−iψZ) (11.2.4c)

and differential equations

p′Λ = 0, (11.2.4d)

ψ′ = −Ar + 2 pΛP xΛ e−U Re( e−iψLx), (11.2.4e)

( eU )′ = −pΛP xΛ Im( e−iψLx) + e2(U−V ) Re( e−iψZ), (11.2.4f)

( eV )′ = −2 eV−UpΛP xΛ Im( e−iψLx), (11.2.4g)

τ ′i = e−U eiψgi̄
(

e2(U−V )D̄Z − i pΛP xΛ D̄Lx
)
, (11.2.4h)

q′u = −2 e−U huv∂v
(
pΛP xΛ Im( e−iψLx)

)
, (11.2.4i)

q′
Λ = 2 e−U e2(V−U) huvk

u
Λk

v
Σ Re( e−iψLΣ), (11.2.4j)

the primes denoting the radial derivative, and Ar is the composite U(1) connection. The
equation (11.2.4a) corresponds to Dirac quantization condition (2.2.18) for the particular
cases where the integer of the RHS is ±1. The last equation (11.2.4j) corresponds to Maxwell

2There is a minus sign with respect to the notations of appendix A.6.
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equation: the fact that its RHS is non-trivial implies that some electric charges will not be
conserved (they correspond to massive vector fields).

The equations for the vector scalars can also be written in terms of Lxi and Zi.
Combining the equations nv (complex) equations for τ i, the one for U and the one for

ψ, one can obtain nv + 1 complex equations for the sections [84]

2 e2U∂r
(

e−U Im( e−iψLΛ)
)

= − e2(U−V )pΛ + p∆P x∆ IΛΣP xΣ (11.2.5a)

− 8 pΣP xΣ Re( e−iψLx) Re( e−iψLΛ),

2 ∂r
(

eU Re( e−iψLΛ)
)

= e2(U−V )IΛΣRΣ∆p
∆ − IΛΣqΣ. (11.2.5b)

One can also derive equations for MΛ

2 e2U∂r
(

e−U Im( e−iψMΛ)
)

= − e2(U−V )qΛ + p∆P x∆RΛΣI
ΣΞP xΞ (11.2.6a)

− 8 pΣP xΣ Re( e−iψLx) Re( e−iψMΛ),

2 ∂r
(

eU Re( e−iψMΛ)
)

= e2(U−V )
(
RΛΣI

Σ∆
(
R∆Ξp

Ξ − qΣ

)
+ IΛΣp

Σ
)

+ pΣP xΣ P
x
Λ

(11.2.6b)

which are not independent.
One finds that

q̃Λ = 2 eU Re( e−iψLΛ). (11.2.7)

Let’s define
P xp = pΛP xΛ . (11.2.8)

Then if pΛ 6= 0 one can use a local SU(2) transformation in order to set [149, app. D]

P 1
p = P 2

p = 0, (11.2.9)

which is a weaker condition than setting P 1
Λ = P 2

Λ = 0 as was done in [62]. This is possible
only because pΛ is constant. Then all remaining P 1

Λ and P 2
Λ in the BPS equations disappear,

and the above equations can be rewritten uniquely in terms of PΛ ≡ P 3
Λ (this should not be

confound with the momentum map of the SK gauged symmetries), and similarly we write
L ≡ L3.

Then the Dirac condition can be rewritten as

pΛPΛ = ǫD κ (11.2.10)

with ǫD = ±1 (a common choice is ǫD = −1 [52, 149]). Replacing this in all equations one
sees that κ only appears in the Dirac condition, meaning that solutions are independent of
the curvature of the horizon, but regularity does depend on it [46, p. 6].

If pΛ = 0 then the Dirac condition should not be imposed.

11.3 Symplectic extension

In this section we introduce magnetic gaugings by performing a symplectic transformation
(see section 2.5). Most parts of the equations (11.2.4) are already written in a symplectic
form.

One can see that q̃′Λ from (11.1.6) corresponds to the first row of the −ΩMQ, where M
was defined in (4.4.2). Then symplectic equations can be obtained from the replacement

q̃′Λ = − e2(U−V )(ΩMQ)Λ. (11.3.1)

Similarly terms involving the electromagnetic charges and the gaugings, such as I−1P , can
be replaced (missing terms due to the fact we had PΛ = 0 can be guessed).
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We now list the symplectic algebraic equations

〈Q,P〉 = ǫD κ, (11.3.2a)

〈Q,Ku〉 = 0, (11.3.2b)

ǫD Re( e−iψL) = − e2(U−V ) Im( e−iψZ) (11.3.2c)

and differential equations

( eU )′ = −ǫD Im( e−iψL) + e2(U−V ) Re( e−iψZ), (11.3.2d)

( eV )′ = −2ǫD eV−U Im( e−iψL), (11.3.2e)

τ ′i = e−U eiψgi̄
(

e2(U−V )D̄Z − i ǫD D̄L
)
, (11.3.2f)

q′u = −2ǫD e−U huv∂v
(

Im( e−iψL)
)
, (11.3.2g)

Q′ = 2 e−U e2(V−U) huvKu Re( e−iψ 〈V ,Ku〉), (11.3.2h)

ψ′ = −Ar + 2ǫD e−U Re( e−iψL). (11.3.2i)

We note that the symplectic Maxwell equations correctly reduce to (11.2.4d) and (11.2.4j)
in a symplectic frame since kuΛ = 0.

Instead of working with the real and imaginary parts of e−iψ e−UV as independent
equations as in (11.2.5), one can combine (11.2.5a) and (11.2.6a) in the symplectic equation

2 e2U∂r Im( e−iψ e−UV) = − e2(U−V )Q + ǫD ΩMP − 8 ǫD Re( e−iψL) Re( e−iψV). (11.3.3a)

We stress that this equation is totally equivalent to (11.3.2d), (11.3.2f) and (11.3.2i). Then
the remaining equations are combined as

2 ∂r Re( e−iψ eUV) = − e2(U−V ) ΩMQ + ǫD P (11.3.3b)

and they are redundant since Im V already exhausts the 2nv+2 variables τ i, ψ and U . Here
it is useful to have the equations (11.2.6b) for MΛ because the second term is not visible in
(11.2.5b).

For a future purpose we want to obtain another form of (11.3.3a). Multiplying by
e2(V−U), we want to rewrite the LHS with a factor eV inside the derivative

e2V ∂r Im( e−iψ e−UV) = eV ∂r Im( e−iψ eV−UV) − eV−U Im( e−iψV) ∂r eV

= eV ∂r Im( e−iψ eV−UV) + 2 ǫD e2(V−U) Im( e−iψL) Im( e−iψV),

and this combines with the RHS as

2 eV ∂r Im( e−iψ eV−UV) = −Q + ǫD e2(V−U)
(

ΩMP − 8 Re( e−iψL) Re( e−iψV)

− 4 Re( e−iψL) Re( e−iψV)
)
.

(11.3.4)

Equation (11.3.2c) can be directly integrated to get the phase in terms of L and Z [52,
eq. (2.39)]

e2iψ =
Z − i ǫD e2(V−U)L
Z̄ + i ǫD e2(V−U)L̄ . (11.3.5)

This is obtained by writing explicitly the real and imaginary parts in order to get a second
order equation for eiψ, which then can be solved.

11.4 Symmetric Mv with FI gaugings

In this section we consider only FI gaugings such that P = cst. A seminal approach de-
veloped in [85] allows to greatly simplify the equations and this lead to complete analytical
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solution of a full 1/4-BPS black hole in [84]. The idea is to rewrite the equations in terms
of the quartic invariant (and its gradient) and to exploit the power of special geometry.

First let’s define a rescaled section

Ṽ = eV−U e−iψ V . (11.4.1)

The equation (11.3.4) can be simplified using relation (E.1.2c)

2 eV ∂r Im Ṽ = −Q + ǫD I
′
4(P , Im Ṽ , Im Ṽ). (11.4.2)

In these terms equation (11.3.2e) reads

( eV )′ = −2ǫD
〈

Ṽ,P
〉
, (11.4.3)

while the constraint (11.3.2c) becomes

2ǫD I4(Im Ṽ, Im Ṽ , Im Ṽ ,P) =
〈

Im Ṽ,Q
〉

(11.4.4)

using (E.1.2b) to replace Re Ṽ

Re Ṽ = 2 e2(U−V ) I ′
4(Im Ṽ). (11.4.5)

A more convenient form for this equation can be achieved by writing

I4(Im Ṽ , Im Ṽ, Im Ṽ,P) =
〈

Im Ṽ , I ′
4(Im Ṽ, Im Ṽ,P)

〉
(11.4.6)

and by inserting (11.4.2)

eV
〈

Im Ṽ , ∂r Im Ṽ
〉

=
〈

Im Ṽ,Q
〉
. (11.4.7)

Let’s summarize the equations that have been obtained

2 eV ∂r Im Ṽ = −Q + ǫD I
′
4(P , Im Ṽ , Im Ṽ), (11.4.8a)

( eV )′ = −2ǫD
〈

Ṽ ,P
〉
, (11.4.8b)

eV
〈

Im Ṽ, ∂r Im Ṽ
〉

=
〈

Im Ṽ ,Q
〉
, (11.4.8c)

〈Q,P〉 = ǫD κ. (11.4.8d)

The main advantage of these equations is that they do not involve Re Ṽ , U or ψ, they only
contain Im Ṽ and V (as dynamical objects). Another useful point is the removal of the
matrix M whose explicit form is involved in the general case. All other objects can be
deduced from them, for example one can obtain Re Ṽ from (11.4.5).
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Chapter 12

Static BPS solutions

We will focus on solutions that are black holes interpolating between a (magnetic) adS4 (of
radius R) for r → ∞ and a topological horizon of Bertotti–Robinson type adS2 × Σg (with
respective radius R1 and R2) for r → 0. Both these spacetimes are also BPS solutions and
can be studied separately, and for this reason the full black hole can be seen as a soliton (or
a domain wall) [84].

12.1 N = 2 adS4

An anti-de Sitter vacua is characterized by constant scalars and vanishing charges

τ i(r) = τ i0, qu(r) = qu0 , Q = 0, (12.1.1)

which implies in particular Z = 0. The metric functions are

eU =
r

R
, eV =

r2

R
(12.1.2)

giving the metric

ds2 = − r2

R2
dt2 +

R2
1

r2
dr2 +

r2

R2
dΣ2

g (12.1.3)

As discussed in the previous section vanishing charges imply that the solution is 1/2-
BPS. Moreover in the case of adS4 vacua there is a special enhancement of supersymmetry
which increases it to a full BPS solution. Moreover one cannot use the trick of the SU(2)
rotation to set P1 = P2 = 0.

Typically the asymptotic geometry of a 1/4-BPS black hole will be a madS vacua. There
is a one-to-one relationship between adS and madS vacua.

From (11.3.2f) one gets the equation

Lxi = 〈Ui,Px〉 = 0. (12.1.4)

In a frame where the gaugings are purely electric, this equation is equivalent to

P xΛf
Λ
i = 0. (12.1.5)

In the space spanned by the nv + 1 directions of Λ, fΛ
i represents nv vectors indexed by i.

Then the previous equation implies that, for fixed x, P xΛ is orthogonal to these nv vectors
and thus

P xΛ = cx(qu)PΛ. (12.1.6)

Then a local SU(2) rotation can be used to set

c1 = c2 = 0. (12.1.7)
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Note that the latter equations must be enforced as they are not a generic consequence of
the theory. We then denote P ≡ P3 and L ≡ L3 as usual.

The BPS equations are

Re( e−iψL) = 0, (12.1.8a)

Im( e−iψL) =
1
R
, (12.1.8b)

Li = 0, (12.1.8c)

ψ′ = 0, (12.1.8d)

〈V ,Ku〉 = 0. (12.1.8e)

From (11.3.2h) one obtains

Re( e−iψ 〈V ,Ku〉) = 0, (12.1.9)

while the derivative in (11.3.2g) can be used to replace the prepotential by the Killing vector

Im( e−iψ 〈V ,Ku〉) = 0. (12.1.10)

Combining both equations gives (12.1.8e).
The equations for the sections are

2 Re( e−iψV) = RP , 2 Im( e−iψV) = RΩMP . (12.1.11)

Using the matrix C defined in (4.4.15) this can be rewritten as

e−iψV = i RΩCP . (12.1.12)

All the equations but the last one in (12.1.8) do not involve the Killing vectors. Hence
a strategy to solve these equations is to consider P as a constant (which is the case for the
FI gaugings P → G and nh = 0) and to solve for the vector scalars in terms of P . Then the
remaining equation (12.1.8e) can be used to solve for the hyperscalars which can be replaced
at the end in the vector scalars.

Following this strategy we first analyse the equations for the vector scalar sector [46,
sec. 3]. Equation (12.1.8d) means that the phase is constant

ψ(r) = ψ0. (12.1.13)

We rewrite (12.1.8b) as

L =
i

R
eiψ0 . (12.1.14)

Because of (12.1.8c) the prepotentials have components only in the direction of V and its
conjugate

P = −2 Im(L̄V). (12.1.15)

Note that these equations are identical to those of the adS2 × S2 near-horizon in ungauged
N = 2 supergravity, with the replacement P → Q, which can be solved explicitly in some
cases (such as symmetric cubic Mv) [232]. The value for the phase is taken to be

ψ0 = −π

2
(12.1.16)

which implies

L =
1
R
, (12.1.17)

and also

P = − 2
R

Im V . (12.1.18)
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These equations are consistent with (12.1.11).
Let’s turn to the last equation (12.1.8e)

〈V ,Ku〉 = 0 (12.1.19)

following the analysis of [149, sec. 2.2].
First we want to clarify this equation. Using the results of section 8.3, the spin connec-

tion ωx is invariant under symmetry transformation generated by k only up to an SU(2)
transformation (we consider only the electric frame here)

Lkωx = ∇W x
k (12.1.20)

where W x
k is an SU(2) vector called the compensator. This allows to relate directly the

Killing vector and prepotential
P x = kuωxu +W x. (12.1.21)

Contracting (12.1.8e) with ωxu and plugging this last result gives

e−iψL − e−iψ 〈V ,W〉 = 0. (12.1.22)

If the compensator vanishes W = 0 one obtains a singular solution since L = 0 implies
R → ∞. Then a necessary condition for having a N = 2 adS4 vacua is that at least one
isometry with a non-trivial compensator is gauged [48, 50]. In the case of special quaternionic
manifold, isometries with compensators are not generic as only the isometries inherited from
the base special Kähler space and the hidden symmetries have compensators (see section 9).

It may seem that (12.1.8e) are too many equations since there are 2nh equations (V
being complex) for the nh variables qu. But in fact the imaginary part is already implied
by (12.1.18)

〈Im V ,Ku〉 ∼ 〈P ,Ku〉 = 0 (12.1.23)

where the last equality follows from the locality constraints (2.5.7). Then the only equations
that we need to solve are

〈Re V ,Ku〉 = 0. (12.1.24)

We restrict ourselves to the case of symmetric very special Kähler manifold (section 6.3).
Using the relation (6.3.17)

Re V = −1
8
I ′

4(Im V) (12.1.25)

the previous equation can be rewritten as

〈I ′
4(Im V),Ku〉 = I4(Ku, Im V , Im V , Im V) = 0 (12.1.26)

and then as
I4(Ku,P ,P ,P) ∼ ∇uI4(P) = 0 (12.1.27)

thanks to (12.1.15).
As a summary the equations to solve for are

P = −2 Im(L̄V), (12.1.28a)

L =
1
R
, (12.1.28b)

0 = ∇uI4(P). (12.1.28c)

The first two equations in the case of FI gaugings were explicitly solved in some cases in [46].
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12.2 Near-horizon adS2 × Σg

These equations have been studied with nh = 0 and FI gaugings in [58, sec. 4, 52, sec. 3],
and further in [53] (see also [46, sec. 5]). For nh 6= 0 they were studied in the electric frame
in [62, sec. 2.3] and in general in [149, sec. 2.3].

There is a supersymmetry enhancement at the horizon because there are two extra
superconformal charges [149, p. 6].

Denoting the horizon radius by rh and by rΛ the radius where the scalars τ i vanish, the
solution is regular only if rh > rΛ for all Λ [46, p. 15].

Scalars and charges are constant for near-horizon geometries

τ i(r) = τ i0, qu(r) = qu0 , Q = cst. (12.2.1)

The metric functions are

eU =
r

R1
, eV =

R2

R1
r (12.2.2)

giving the metric

ds2 = − r2

R2
1

dt2 +
R2

1

r2
dr2 +R2

2 dΣ2
g (12.2.3)

The BPS equations are

〈Q,P〉 = ǫD κ, (12.2.4a)

Im( e−iψZ) = ǫD R
2
2 Re( e−iψL), (12.2.4b)

Re( e−iψZ) =
R2

2

2R1
, (12.2.4c)

ǫD Im( e−iψL) = − 1
2R1

, (12.2.4d)

Zi = i ǫDR
2
2 Li, (12.2.4e)

ψ′ = 2ǫD
R1

r
Re( e−iψL), (12.2.4f)

〈Q,Ku〉 = 0, (12.2.4g)

〈V ,Ku〉 = 0. (12.2.4h)

We can adopt the same strategy as in the previous section: all equations except the
last two do not contain the Killing vectors, such that they can be solved as if P was con-
stant, giving a solution for the vector scalars in terms of the charges, the gaugings and the
hyperscalars

τ i = τ i(P ,Q, qu). (12.2.5)

Then the remaining equations can be used to solve for the hyperscalars in terms of the
charges and the gaugings

qu = qu(P ,Q), =⇒ τ i = τ i(P ,Q). (12.2.6)

From the equations one can also write

Re( e−iψZ) = −ǫD R2
2 Im( e−iψL). (12.2.7)

Combining this with (12.2.4b) gives

Z = i ǫD R
2
2 L. (12.2.8)

Since R2
2 is real this means that the phases of Z and L differ by π/2 [52, p. 12]. Plugging

the relation (12.2.8) into (11.3.5) implies that ψ is a multiple of π

ψ(r) = π. (12.2.9)
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Another way to see this is by taking the imaginary part of (12.2.8): this is consistent with
(12.2.4b) only if ψ = π. Then inserting this result into (12.2.4f) gives

Re( e−iψL) = 0 =⇒ Im( e−iψZ) = 0, (12.2.10)

and as a consequence

Z =
R2

2

2R1
, L = −ǫD

i

2R1
. (12.2.11)

Instead of working with (12.2.4e) it is easier to work with the sections. Using the previous
elements one has

2R2
2

R1
Im V = Q − ǫD R

2
2 ΩMP , (12.2.12a)

2R2
2

R1
Re V = ΩMQ + ǫD R

2
2 P . (12.2.12b)

Adding the two equations gives

V = i
R1

2R2
2

ΩC(Q + ǫD R
2
2 ΩMP) (12.2.13)

where C was defined in (4.4.15). Note the similarity with (12.1.12).
Another way to derive the equation for the section is to contract (12.2.4e) with ΩM.

Using the relation (4.4.7)
ΩMUi = −iUi (12.2.14)

one obtains

0 = 〈Ui,Q〉 − i ǫDR
2
2 〈Ui,P〉 = 〈Ui,Q〉 + ǫD R

2
2 〈ΩMUi,P〉

= 〈Ui,Q〉 + ǫD R
2
2 〈Ui,ΩMP〉 =

〈
Ui,Q + ǫD R

2
2 ΩMP

〉

because of (4.4.11). As a consequence the quantity Q + ǫD R
2
2 ΩMP has no components

along the direction Ui in the basis (V , Ui) such that

Q + ǫD R
2
2 ΩMP = −2 Im(

〈
V̄ ,Q + ǫD R

2
2 ΩMP

〉
V). (12.2.15)

Now we can introduce the central charge and after using the relation (12.2.8) one obtains

Q + ǫD R
2
2 ΩMP = −4 Im(Z̄ V). (12.2.16)

This is equivalent to (12.2.12a) once Z is replaced by its value.
Contracting (12.2.16) with P gives

〈Q,P〉 + ǫDR
2
2 〈ΩMP ,P〉 = −4 Im(Z̄ L), (12.2.17)

while with Q one gets
〈ΩMP ,Q〉 = 0. (12.2.18)

Then using the relation (12.2.8) modifies the first equation to

〈Q,P〉 − ǫD R
2
2 PMP = 4ǫDR2

2 |L|2 , (12.2.19)

and using (4.4.23) one obtains [52, p. 13]

ǫD
R2

2

〈Q,P〉 = −PM(F)P = 2(|L|2 − |Li|2). (12.2.20)

A similar relation for Z follows directly

ǫD R
2
2 〈Q,P〉 = −QM(F)Q = 2(|Z|2 − |Zi|2). (12.2.21)
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These formulas are helpful for understanding why it is not possible to find asymptotically
adS4 solutions with spherical horizon and constant scalars: the adS4 vacua has Li = 0 from
(12.1.8b), and the previous equations give

R2
2 = − ǫD

2 |L|2
〈Q,P〉 = − κ

2 |L|2
. (12.2.22)

The latter is positive only for κ = −1.
As a summary the equations to solve are

Q + iǫDR
2
2 ΩMP− = −4 Im(Z̄ V), (12.2.23a)

Z =
R2

2

2R1
, (12.2.23b)

〈Q,P〉 = ǫD κ, (12.2.23c)

〈Q,Ku〉 = 0, (12.2.23d)

〈V ,Ku〉 = 0. (12.2.23e)

The first two equations were solved for FI gaugings with cubic Mv explicitly in the case of
symmetric spaces and implicitly otherwise in [62]. Note that for P = 0 it reduces to the
attractor equations of ungauged supergravity.

After some work one can see that the vector scalar equations imply [149, p. 7, 53]

I4(Q − iR2
2 P) = 0. (12.2.24)

In particular this gives the radius of Σg (and hence the entropy)

R4
2 = I4(Im Ṽ) =

1
I4(P)

(
I4(Q,Q,P ,P) ±

√
I4(Q,Q,P ,P)2 − I4(Q)I4(P)

)
. (12.2.25)

At this point P depends on qu, which needs to be solved for using the other equations.
The entropy is

S = πR2
2 = π

√
I4(Im Ṽ). (12.2.26)

One finds also the constraint

0 = 4 I4(P)I4(P ,Q,Q,Q)2 + 4 I4(Q)I4(Q,P ,P ,P)2

− I4(P ,Q,Q,Q)I4(P ,P ,Q,Q)I4(Q,P ,P ,P).
(12.2.27)

12.3 General solution

A general solution to the set of BPS equations for FI gauged supergravity (11.4.8) was
provided in [84]. We will only give the most important details of the analysis.

As explained in section 10.3, BPS static black holes are extremal and we are considering
near-horizon geometry adS2 × Σg. As a consequence the ansatz for eV is

e2V = r2(v4r
2 + v3r + v2). (12.3.1)

This root structure and the degenerate double extremal case are the only ones allowed for
this type of black holes [150, p. 11].

The ansatz for Im Ṽ is more involved

Im Ṽ = e−V (A3r
3 +A2r

2 +A1r) (12.3.2)

where the Ai are symplectic vectors.
The next steps is to expand each of the equations (11.4.8) in powers of r and to identify

the coefficients. In principle one should be able to find the constraint (12.2.27) from the
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analysis, but this did not appear feasible, and for this reason it is used as an input for
simplifying the equations, using it for replacing I4(P ,P ,Q,Q).

Note also that the system contains much more equations than variables, and there is a
lot of redundancy. In particular (11.4.8b) implies the following relations

vi+1 =
4

i+ 1
〈P , Ai〉 . (12.3.3)

The UV boundary condition can be read from (11.4.8a) and gives

A3 =
I ′

4(P)

4
√
I4(P)

, v4 =
1

R2
adS

=
√
I4(P). (12.3.4)

The overall normalization was not fixed and it was determined by comparison with [46].
The solution for A2 and A3 is found by expanding these vectors on the basis (E.1.1),

and it can be found that only third order terms are non-vanishing

Ai = ai1 I
′
4(P) + ai2 I

′
4(P ,P ,Q) + ai3 I

′
4(P ,Q,Q) + ai4 I

′
4(Q). (12.3.5)

Explicit formulas can be found in [84, sec. 3], and one needs to use the identities of ap-
pendix E.1.

The real part of Ṽ can be found from

Re Ṽ = 2 e2(U−V ) I ′
4(Im Ṽ), (12.3.6)

then the function U from

I4(Im Ṽ) =
1
16

e4(V−U), (12.3.7)

and finally the physical scalars from

τ i =
L̃i

L̃0
(12.3.8)

(the overall rescaling are cancelling).
The solution has 2nv charges since Q has 2nv + 2 components and there are two con-

straints, the Dirac condition (11.4.8d) and the constraint (12.2.27). This is the maximum
number from the near-horizon analysis from [53].

As a conclusion, it is much easier to find a general solution using a symplectic formalism
where the underlying structure simplifies the computations rather than choosing a particular
model with electric gaugings.

12.4 Examples

In this section we work through two examples of gauged supergravity theories which arise
from M-theory and which have Mh = G2(2)/SO(4), reproducing the N = 2 adS4 vacuum
and then look at black hole horizons. It is well known that when a FI-gauged supergravity
theory (i.e. with nh = 0 and U(1)R gauging) admits an N = 2 adS4 vacuum it also admits a
constant scalar flow to adS2 ×H2/Γ̃ (one can find a very general proof of this in [52]). With
the addition of hypermultiplets, one can set them also constant and then the only additional
constraints are 〈Ku,Q〉 = 0. Subject to this condition being solved, the hypermultiplets
decouple and the constant scalar flow is also a solution of the theory with hypermultiplets.
We demonstrate this in our two examples.

Our first example was obtained in [169] corresponding to the invariant dimensional re-
duction of M-theory on V5,2. Our second example comes from [233] and corresponds to a
consistent truncation of the dimensional reduction of maximal gauged supergravity on the
Einstein three-manifold M3 ∈ {H3/Γ, T 3, S3}, where Γ is a discrete subgroup of SL(2,C).
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12.4.1 V5,2

The invariant reduction of M-theory on seven-dimensional cosets was performed in [169]
where in addition the general reduction on SU(3)-structure manifolds was found. All the
resulting four dimensional gauged supergravity models found in that work fall into the class
studied here, namely the hypermultiplet scalar manifold is a symmetric space which lies in
the image of a c-map. Black hole solutions in many of these models were studied in [62].
We restrict ourselves to the example where Mh = /SO(4) corresponding to the reduction
on V5,2.

The following data specifies the four dimensional supergravity theory [169]

nv = 1, Mv =
SU(1, 1)

U(1)
, F = − (X1)3

X0
, XΛ =

(
1
τ

)
(12.4.1a)

nh = 2, Mh =
G2(2)

SO(4)
, Mz =

SU(1, 1)
U(1)

, G = − (Z1)3

Z0
, ZA =

(
1
z

)
.

(12.4.1b)

The non-vanishing electric gaugings are given by

b1
Λ =

4√
3
δΛ0, a1,Λ = − 4√

3
δΛ0, ε+Λ = −e0 δΛ0. (12.4.2)

The non-vanishing magnetic gauging is given by

εΛ
+ = −2δΛ1. (12.4.3)

The constant e0 has its origin in the M-theory three-form with legs in the external four
dimensional spacetime which has been dualized to a constant [169].

We note that the gaugings which specify this model were incorrectly reported in [169]
to have vanishing compensator W x

Λ . This of course is incompatible with the existence of a
supersymmetric adS4 vacuum. The solution is that the Killing vectors kU with ai 6= 0 have
non-trivial compensators and we now see this is nontrivially gauged. In fact this is the only
gauging with a non-trivial compensator in this reduction.

AdS4 vacua

The Killing prepotentials P±
Λ are set to vanish by the condition

ξA = ξ̃A = 0 (12.4.4)

Then from
〈
KA, Im V

〉
= 0 (in the direction of Mz) we get

KA = 0 =⇒ z = i
√

3, (12.4.5)

and from 〈Kσ, Im V〉 = 0 (in the direction of the axion σ) we get

eφ =

√
6
e0

(12.4.6)

while the axion is unfixed. As a result we have the Killing prepotentials

P 3
Λ = (1, 0), P̃ 3Λ = (0,−6/e0). (12.4.7)

The vector multiplet scalars are then given by

x = 0, y =

√
e0

6
(12.4.8)

and the adS4 radius is given by

R2 =
12

√
6

e
3/2
0

. (12.4.9)
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AdS2 × Σg vacua

There is a related adS2 × H2/Γ̃ vacuum at the same point on the scalar moduli spaces
Mv × Mh. The charges are

Q = (1/4, 0, 0, e0/8) (12.4.10)

and the radii are

R1 =
e

3/4
0

8 21/4 33/4
, R2 =

e
3/4
0

4 21/4 33/4
. (12.4.11)

12.4.2 SO(5) gauged supergravity on M3

The maximal gauged supergravity in seven dimensions has been dimensionally reduced on
three-dimensional constant curvature Einstein manifold and consistently truncated to a four
dimensional gauged supergravity theory in [233]. The resulting theory is given by the fol-
lowing data

nv = 1, Mv =
SU(1, 1)

U(1)
, F = −4

(X1)3

X0
, XΛ =

(
1
τ

)
(12.4.12a)

nh = 2, Mh =
G2(2)

SO(4)
, Mz =

SU(1, 1)
U(1)

, G = − (Z1)3

Z0
, ZA =

(
1
z

)
.

(12.4.12b)

We have computed the gaugings in our terminology by careful comparison with [233].
We find that k1 = 0 and the non-vanishing electric components are in k0

α0
0 =

1
2
, α̂0,0 = 33/4, α1,0 =

33/4ℓ

4
. (12.4.13)

Likewise we find that k0 = 0 and the non-vanishing magnetic components are in k1

α 1
1 = − 1

2
√

3
. (12.4.14)

The integer ℓ = {−1, 0, 1} corresponds to the reduction on M3 = {H3/Γ, T 3, S3} respec-
tively. The gauging from α̂0,0 provides the non-trivial compensator required to have a
supersymmetric adS4 vacuum.

We write
z = χ+ i e−2ϕ. (12.4.15)

This yields the magnetic Killing prepotentials

P x,0 = 0, P 1,1 =
31/4

2
eφ+3ϕχ, P 2,1 =

31/4

2
eφ+ϕ, P 3,1 =

31/4

2
e2φξ1 (12.4.16)
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and the electric Killing prepotentials

P 1
0 =

1
4 33/4

[
− 9 e4ϕχℓ+ 2χ( e4ϕχ2 − 3) + 33/2

(
6ξ0(ξ1 − χξ0) (12.4.17a)

+ e4ϕ
(

− 2σ + ξ0(ξ̃0 + 2χ3ξ0) + ξ̃1ξ
1 − 6χ2ξ0ξ1 + 6χ(ξ1)2

))]

P 2
0 =

1
4 33/4

[
− 9 eφ+ϕℓ+ 2 e−φ−3ϕ

(
e2φ(3 e4ϕχ2 − 1) (12.4.17b)

+ 33/2
(

e2φ(3 e4ϕ(−χξ0 + ξ1)2) − (ξ0)2 − e6ϕ
))]

P 3
0 =

1
4 33/4

[
18

√
3 e2ϕ(χξ0 − ξ1) + e2φ

(
ξ̃0(2 + 33/2(ξ0)2) − 9ℓξ1 (12.4.17c)

+ 33/2
(
ξ̃1ξ

0ξ1 + 2(ξ1)3 − 2σξ0
))]

P x1 = 0. (12.4.17d)

AdS4 vacua

The supersymmetric adS4 vacuum is at

ξA = ξ̃A = χ = σ = φ = 0, eϕ =
1

31/4
, τ =

i

2
√

2
(12.4.18)

and in particular requires ℓ = −1, corresponding to a reduction on H3/Γ. The adS4 radius
is

R =
1√
2
. (12.4.19)

Evaluated at this vacuum the Killing prepotentials become

P 1
Λ = P 3

Λ = P 1,Λ = P 3,Λ = 0, P 2
0 = −1

4
, P 2,2 =

1
2
. (12.4.20)

AdS2 × Σg vacua

The adS2 × Σg vacuum is located at the same point on the scalar manifold. The charges are
given by

p0 = −1, p1 = 0, q0 = 0, q1 = −3
2
. (12.4.21)

The radii are given by

R1 =
1

23/4
, R2 =

1
21/4

. (12.4.22)

When lifted to M-theory this is a solution of the form

adS2 ×H2/Γ̃ × (H3 ×w S
4) (12.4.23)

where the S4 is fibered non-trivially over H3. It arises as the IR of a domain wall adS4 →
adS2 ×H2 where the scalar fields take constant values along the whole flow.
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Chapter 13

BPS AdS–NUT black holes

We focus on 1/4-BPS adS–NUT black holes. BPS equations for N = 2 FI gauged super-
gravity and several classes of analytical solutions were derived in [150].1

13.1 Ansatz

We consider the ansatz from section 10 where the metric and for the gauge fields are

ds2 = − e2U
(
dt+ 2nH(θ) dφ

)2
+ e−2Udr2 + e2(V−U) dΣ2

g, (13.1.1a)

AΛ = q̃Λ
(
dt+ 2nH(θ) dφ

)
+ p̃ΛH(θ) dφ. (13.1.1b)

The functions U, V, q̃ and p̃ depend only on r, while Σg is a Riemann surface of genus g (see
appendix A.7) with metric

dΣ2
g = dθ2 +H ′(θ)2 dφ2, H ′(θ) =





sin θ κ = 1,
1 κ = 0,
sinh θ κ = −1.

(13.1.2)

All scalars are function only on r

τ i = τ i(r), qu = qu(r). (13.1.3)

We consider only abelian gaugings.
The magnetic field strength reads

GΛ = RΛΣF
Σ − IΛΣ ⋆F

Σ. (13.1.4)

The electric and magnetic charges are given explicitly by

pΛ =
1

4π

∫

Σg

FΛ = p̃Λ − 2nq̃Λ, (13.1.5a)

qΛ =
1

4π

∫

Σg

GΛ = − e2(V−U) IΛΣq̃
′Σ + κRΛΣp

Σ. (13.1.5b)

Using these expressions one can rewrite the gauge field as

AΛ = q̃Λ dt+ pΛ H(θ) dφ, (13.1.6)

and finds again an expression for q̃′Λ

q̃′Λ = e2(U−V ) IΛΣ
(
RΣ∆p

∆ − qΣ

)
. (13.1.7)

1In this section we follow the conventions of [150]. The main difference is the replacement of Ω by −Ω.
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The central and matter charges are2

Z = 〈Q,V〉 , Zi = 〈Q, Ui〉 . (13.1.8)

Similarly one defines the prepotential charges

Lx = 〈Px,V〉 , Lxi = 〈Px, Ui〉 . (13.1.9)

13.2 BPS equations

For the following we consider FI gaugings and nh = 0.
The Killing spinor has the same form (11.2.3) as for n = 0

εα = eU/2 eiψ/2 ε0α, (13.2.1a)

ε0α = i γ0εαβε
β
0 , (13.2.1b)

ε0α = −pΛP xΛ γ01σx β
α ε0β , (13.2.1c)

ε0α being a constant spinor.
The symplectic covariant equations are

〈Q,G〉 + 4n eU Re( e−iψL) = εD κ, (13.2.2a)

εD Re( e−iψL) = e2(U−V ) Im( e−iψZ) + n e3U−2V (13.2.2b)

2 e2V ∂r
(

e−U Im( e−iψV)
)

=
(
4n eU − 8εD e2(V−U) Re( e−iψL)

)
Re( e−iψV)

− Q − εD e2(V−U)ΩMG, (13.2.2c)

( eV )′ = −2εD eV−U Im( e−iψL), (13.2.2d)

Q′ = −2n e2(U−V ) ΩMQ. (13.2.2e)

At the end one finds Maxwell equations, while the first one is a generalization of the Dirac
condition.

We also have the equation for the real part of V

2 ∂r
(

eU Re( e−iψV)
)

= −G − e2(U−V )ΩMQ. (13.2.3)

Finally we recall the equations for ψ′, U ′ and z′i

ψ′ = −Ar − 2 e−U Re( e−iψL) − n e2(U−V ), (13.2.4a)

( eU )′ = −εD Im( e−iψL) + e2(U−V ) Re( e−iψZ), (13.2.4b)

(zi)′ = e−U eiψgi̄
(

e2(U−V ) D̄Z + iD̄L
)
. (13.2.4c)

The equation (13.2.2c) can be modified using (F.3.30e) to include one factor eV inside
the derivative

2 eV ∂r
(

eV−U Im( e−iψV)
)

= 4
(
n eU − 2 e2(V−U) Re( e−iψL)

)
Re( e−iψV)

− 4 e2(V−U) Im( e−iψL) Im( e−iψV)

− Q − e2(V−U)ΩMG.
(13.2.5)

One can also use Maxwell equation (13.2.2e) to rewrite (13.2.3) as

2 ∂r
(

eU Re( e−iψV)
)

=
1

2n
Q′ − G. (13.2.6)

2There is a minus sign with respect to the notations of appendix A.6.
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It is then straightforward to integrate this equation

4n eU Re( e−iψV) = Q − 2nG r − Q̂ (13.2.7)

where Q̂ is the integration constant

Q̂ =
(
PΛ

QΛ

)
. (13.2.8)

In turn one can use this to get the expression for Q if one knows the other quantities.
Moreover plugging this result into Dirac quantization equation (F.3.30a) gives

〈
Q̂,G

〉
= εD κ (13.2.9)

where the LHS is constant and Q̂ corresponds to the conserved charges.
Finally one can use this expression for Q in order to rewrite the equations for Im V

(13.2.2c)

2 e2V ∂r
(

e−U Im( e−iψV)
)

= 8
(
n eU − εD e2(V−U) Re( e−iψL)

)
Re( e−iψV)

− 2nG r − Q̂ − εD e2(V−U)ΩMG.
(13.2.10)

and (13.2.5)

2 eV ∂r
(

eV−U Im( e−iψV)
)

= 8
(
n eU − e2(V−U) Re( e−iψL)

)
Re( e−iψV)

− 4 e2(V−U) Im( e−iψL) Im( e−iψV)

− 2nG r − Q̂ − e2(V−U)ΩMG.
(13.2.11)

The main advantage is that Q has been replaced by the constant Q̂, while the extra term
G r is not a big problem.

Note that we can use (13.2.2b) in order to get an expression for eiψ . This last expression
will not help to solve the equation since it is complicated, but it means that we can always
integrate the differential equation for the phase (13.2.4a), and we can obtain the expression
if we know all other quantities. The result is3

eiψ = − n e3U−2V

L̄ − i e2(U−V )Z̄ ± 2

√(
n e3U−2V

L̄ − i e2(U−V )Z̄

)2

− L + i e2(U−V )Z
L̄ − i e2(U−V )Z̄ . (13.2.12)

which is a consequence of the second order equation

e2iψ
(
L̄ − i e2(U−V )Z̄

)
− 2n e3U−2V eiψ +

(
L + i e2(U−V )Z

)
= 0 (13.2.13)

obtained by writing explicitly the real and imaginary parts. For n = 0 it reduces to (11.3.5).

13.3 Symmetric Mv with FI gaugings

Using techniques similar to section 11.4 one obtains the following equations for symmetric
cubic Mv

2 eV ∂r Im Ṽ = −Q̂ + ǫD I
′
4(P , Im Ṽ , Im Ṽ) + 2nPr, (13.3.1a)

( eV )′ = −2ǫD
〈

Im Ṽ ,P
〉
, (13.3.1b)

eV
〈

Im Ṽ, ∂r Im Ṽ
〉

=
〈

Im Ṽ , Q̂
〉

+ 3n eV + 4nr
〈

P , Im Ṽ
〉
, (13.3.1c)

〈
Q̂,P

〉
= εD κ (13.3.1d)

where we defined
Ṽ = eV−U e−iψ V . (13.3.2)

3To lighten notations we take gΛp̃Λ = κ.
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13.4 Solutions

In this section we are looking for solutions of the previous equations. Following section 10.3
and the example of section 10.2, we will consider first extremal black holes (of general and
CK types), and then solutions with complex roots. Indeed other cases do not seem to appear.

The derivation uses techniques that are similar to those described in section 12.3. In
particular one imposes the near-horizon constraint (12.2.27), and the identities from ap-
pendix E.1 are used.

13.4.1 Pair of double roots

When there is a pair of double roots our ansatz is:

e2V = r2(v4r
2 + 2

√
v2v4 r + v2), (13.4.1)

Im Ṽ =
1

ǫ
√

2 〈G, A1〉
A1 +A3 r (13.4.2)

where (A1, A3) are symplectic vectors which we must determine and we include a sign
ǫ = ±1 to keep track of both branches of the square root. We have introduced this particular
normalization ofA1 to make contact with expressions elsewhere. The IR and UV asymptotics
completely fix the solution, the BPS equations then over-constrain this ansatz and for a
solution to exist there must be significant cancellations.

We first solve the second equation of (13.3.1b) to get

√
v2 = ǫ

√
2 〈G, A1〉, √

v4 = 〈G, A3〉 , (13.4.3)

and then expand the BPS equations (13.3.1a) in r to get

0 = I ′
4(G, A3, A3) − 2 〈G, A3〉A3, (13.4.4a)

0 = I ′
4(G, A1, A3) − 2 〈G, A1〉A3 + nκǫ

√
2 〈G, A1〉 G, (13.4.4b)

0 = I ′
4(G, A1, A1) − 2 〈G, A1〉 Q. (13.4.4c)

The constraint (13.3.1c) is also expanded and we get

0 =
√

2 〈A1, A3〉 − nκǫ
√

〈G, A1〉, (13.4.5a)

0 = 〈Q, A1〉 + 2 〈A1, A3〉 , (13.4.5b)

0 =
√

2nκǫ 〈G, A1〉3/2 + 〈G, A3〉 〈Q, A1〉 + 2 〈G, A1〉
(

〈Q, A3〉 + 〈A1, A3〉
)
, (13.4.5c)

0 = 〈Q, A1〉 . (13.4.5d)

All the free parameters are fixed by the UV and IR asymptotics. From the UV we get

A3 =
I ′

4(G)
4I4(G)1/4

, v4 =
√
I4(G) (13.4.6)

where we have appealed to [53] to fix the normalization of A3. The solution for A1, found
from the IR equation (13.4.4c), is the same as in [84]

A1 = a1 I
′
4(G,G,G) + a2 I

′
4(G,G,Q) + a3 I

′
4(G,Q,Q) + a4 I

′
4(Q,Q,Q) (13.4.7)
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with

a1 = −a3

3
I4(G,Q,Q,Q)
I4(G,G,G,Q)

, (13.4.8a)

a2 =
a3

6
I4(G,G,G,Q)I4(G,Q,Q,Q)2

I4(G,G,G,Q)2I4(Q) − I4(G)I4(G,Q,Q,Q)2
, (13.4.8b)

a3 =
9
(
I4(G,Q,Q,Q)I4(G) − I4(G,G,G,Q)I4(Q)

)

I4(G,Q,Q,Q)I4(G,Q,Q,Q)(〈I ′
4(G,G,G), I ′

4(Q,Q,Q)〉 + κI4(G,G,Q,Q))
, (13.4.8c)

a4 = −a2

3
I4(G,G,G,Q)
I4(G,Q,Q,Q)

. (13.4.8d)

The effect of the NUT charge is through (13.4.4b) as well as the constraints (13.4.5a) and
(13.4.5c). We find that these three equations are redundant and there is a single non-trivial
constraint on the system

nκǫ = −I4(G,G,G,Q)2I4(G,Q,Q,Q)

144
√

2 I4(G)1/4
×

×
√

18 〈G,Q〉 I4(G,G,Q,Q) − 〈I ′
4(Q,Q,Q), I ′

4(G,G,G)〉
(
I4(G)I4(G,Q,Q,Q)2 − I4(G,G,G,Q)2I4(Q)

)2
+ 16I4(G,G,G,Q)3I4(G,Q,Q,Q)3

.

(13.4.9)

When n = 0 then (13.4.9) is solved by I4(G,Q,Q,Q) = I4(G,G,G,Q) = 0 and the
solutions reduce to those in [46, 58, 85].

13.4.2 Single double root

Only a single double root is required in e2V in order to have an adS2 × Σg vacuum in the
IR but this more general solution is somewhat more complicated. We found that in order
to have a pair of double roots, there is a relation between the NUT charge and the electro-
magnetic charges (13.4.9), whereas there is no such constraint when requiring a single double
root. The only constraint is that for adS2 × Σg vacua (12.2.27).

We take the same ansatz as in section 12.3

e2V = r2(v2 + v3r + v4r
2) (13.4.10)

Im Ṽ = e−V Â (13.4.11)

Â = A1r +A2r
2 +A3r

3 (13.4.12)

where Ai are constant symplectic vectors whose dependence on G and Q we seek to deter-
mine.

We first solve (13.3.1b) with

vi+1 =
4

i+ 1
〈G, Ai〉 , i = 2, 3, 4. (13.4.13)

The symplectic vector of BPS equations (13.3.1a) is then

2 e2V Â′ − ( e2V )′Â = I ′
4(G, Â, Â) + e2V (2nGr − Q) (13.4.14)
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which breaks up into five components from different powers of r

0 = I ′
4(G, A3, A3) − 2 〈G, A3〉A3, (13.4.15)

0 = I ′
4(G, A2, A3) + nκ 〈G, A3〉 G − 2 〈G,A2〉A3, (13.4.16)

0 = 2I ′
4(G, A1, A3) + I ′

4(G, A2, A2) − 8 〈G, A1〉A3 − 〈G, A3〉 Q (13.4.17)

+ 2 〈G, A3〉A1 +
4
3

〈G, A2〉
(
2G −A2

)
,

0 = I ′
4(G, A1, A2) + 2 〈G, A1〉

(
nκG −A2

)
+ 〈G, A2〉

(
A1 − Q

)
, (13.4.18)

0 = I ′
4(G, A1, A1) − 2 〈G, A1〉 Q. (13.4.19)

We also need to the expansion of the single real constraint (13.3.1c)

O(r4) : 0 = 2 〈A2, A3〉 − nκ 〈G, A3〉 , (13.4.20)

O(r3) : 0 = 2 〈A1, A3〉 + 〈Q, A3〉 , (13.4.21)

O(r2) : 0 = 〈A1, A2〉 + nκ 〈G, A1〉 + 〈Q, A2〉 , (13.4.22)

O(r1) : 0 = 2 〈Q, A1〉 . (13.4.23)

Note that once again, the highest order in r components of (13.4.14) and (13.3.1c) are
independent of the NUT charge and therefore the solution for A3 can be taken from [84]

A3 =
1
4
I ′

4(G)√
I4(G)

, v4 =
√
I4(G). (13.4.24)

We solve these equations with the ansatz

A1 = a1 I
′
4(G,G,G) + a2 I

′
4(G,Q,Q) + a3 I

′
4(G,Q,Q) + a4 I

′
4(Q,Q,Q), (13.4.25)

A2 = b1 I
′
4(G,G,G) + b2 I

′
4(G,Q,Q) + b3 I

′
4(G,Q,Q) + b4 I

′
4(Q,Q,Q), (13.4.26)

where {ai, bj} are real constants with a non-trivial dependence on (G,Q). The IR conditions
which give ai in terms of (G,Q) are the same we obtained for the case when e2V had a pair
of double roots and are thus given by (13.4.8a)-(13.4.8d).

Then from (13.4.18) we find the solution for {b1, b2, b4} in terms of b3

b1 =
b3I4(Q)I4(G,G,G,Q)
3I4(G)I4(G,Q,Q,Q)

− 2b3I4(G,Q,Q,Q)
3I4(G,G,G,Q)

+
nκI4(G,Q,Q,Q)2

18Π3
(13.4.27a)

+
b3κI4(G,G,G,Q)I4(G,Q,Q,Q)2

54I4(G)Π3
,

b2 =
I4(G,G,G,Q)

(
6nI4(G)I4(Q) − b3Π2

)

6I4(G)Π3
, (13.4.27b)

b4 = −I4(G,Q,Q,Q)
(
3nI4(G) + b3I4(G,G,G,Q)κ

)

9Π3
. (13.4.27c)

Finally from (13.4.17) we solve for b3 and find the rather lengthy expression

b3 =
bn
bd

where the numerator and denominator are given by

bn = 6nκI4(G)I4(G,G,G,Q)I4(G,Q,Q,Q)2 〈I ′
4(G,G,G), I ′

4(Q,Q,Q)〉 Π7

+ 3
[

− I4(G)3/2I4(G,G,G,Q)I4(G,Q,Q,Q)Π2
3Π8

[
− 18I4(G)Π2

3

+ (κ+ 4n2I4(G)1/2)I4(G,G,G,Q)1/2I4(G,Q,Q,Q)Π5

− 8n2I4(G)3/2
[
144κI4(Q)2I4(G,G,G,Q)2 − κI4(G,G,G,Q)I4(G,Q,Q,Q)3

+ 72I4(Q)I4(G,Q,Q,Q)Π6

]]]1/2

(13.4.28)
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and

bd = 8I4(G)
[
I4(G,G,G,Q)

[
2κI4(Q)I4(G,G,G,Q)2(144I4(Q)2I4(G,G,G,Q)

− I4(G,Q,Q,Q)3) + I4(G,G,G,Q)I4(G,Q,Q,Q)(288I4(Q)2I4(G,G,G,Q)

− I4(G,Q,Q,Q)3) 〈I ′
4(G,G,G), I ′

4(Q,Q,Q)〉
+ 90κI4(Q)I4(G,G,G,Q)I4(G,Q,Q,Q)2 〈I ′

4(G,G,G), I ′
4(Q,Q,Q)〉2

+ 9I4(G,Q,Q,Q)3 〈I ′
4(G,G,G), I ′

4(Q,Q,Q)〉3
]

+ 18κI4(G)I4(G,Q,Q,Q)2Π3

]

− 4κI4(G,G,G,Q)3I4(G,Q,Q,Q)Π5.
(13.4.29)

We have used the notation

Π1 = I4(G,Q,Q,Q) 〈I ′
4(G), I ′

4(Q)〉 + 2κI4(G,G,G,Q)I4(Q), (13.4.30a)

Π2 = I4(G,G,G,Q) 〈I ′
4(G), I ′

4(Q)〉 + 2κI4(G,Q,Q,Q)I4(Q), (13.4.30b)

Π3 = I4(G,Q,Q,Q) 〈I ′
4(G), I ′

4(Q)〉 + 4κI4(G,G,G,Q)I4(Q), (13.4.30c)

Π4 = 2κI4(Q)I4(G,G,G,Q)2 + I4(G,Q,Q,Q)Π1, (13.4.30d)

Π5 = I4(G,Q,Q,Q) 〈I ′
4(G), I ′

4(Q)〉 + 2κI4(G,G,G,Q)I4(Q), (13.4.30e)

Π6 = I4(G,G,G,Q) 〈I ′
4(G), I ′

4(Q)〉 + 2κI4(G,Q,Q,Q)I4(G), (13.4.30f)

Π7 = 2κI4(G)I4(G,Q,Q,Q)2 + I4(G,G,G,Q)Π5, (13.4.30g)

Π8 = 2κI4(G)I4(G,G,G,Q)2 + I4(G,Q,Q,Q)Π6. (13.4.30h)

These expression are fairly lengthy but in fact their derivation in Mathematica starting
from (13.4.15)-(13.4.23) is quite straightforward when using the identities in appendix E.1.
The n → 0 limit of these expressions agrees with those found in [84].

13.4.3 Four independent roots

While extremal black holes necessarily have a double real root in e2V , more general con-
figurations are possible. For example we could have one or two pairs of complex conjugate
roots. A natural ansatz for such solutions is

e2V = v0 + v1r + v2r
2 + v4r

4, (13.4.31a)

Im Ṽ = e−V Â, (13.4.31b)

Â = A0 +A1r +A2r
2 +A3r

3. (13.4.31c)

We have used a shift symmetry in r to set v3 = 0 but one cannot in general use a real shift
in r to set v0 = 0.

An example of such solutions is the constant scalar asymptotically adS4 solution of
section 10, corresponding to the STU-model with

P 0 = Qi = P, Q0 = −P i = Q. (13.4.32)

In our formalism we find this constant scalar example to be given by the following data

A0 =
nκ(P − 1)

2g
G +

nκ

8g3
I ′

4(G), (13.4.33a)

A1 =
Q

2g
G +

P − 3gn2

8g3
I ′

4(G), (13.4.33b)

A2 =
nκ

2
G, (13.4.33c)

A3 =
I ′

4(G)

4
√
I4(G)

, (13.4.33d)
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and the metric is given by

e2(V−U) = r2 + n2 (13.4.34a)

e2V = 2
(
P 2 +Q2 + g2n4 − 2gn2P + 4gnκQr+ 2(3gn2 − gP )r2 + gr4

)
. (13.4.34b)

The phase of the spinor is given by

sinψ = eU−2V
(
gr3 + (−P + 3gn2)r + nκQ

)
. (13.4.35)

We have tried to obtain generalizations of this solution using the ansatz (13.4.31a)-
(13.4.31c) but have not managed to decouple the set of algebraic equations. However this
should not be seen as evidence that such solutions do not exist. Such solutions would not
necessarily correspond to black holes since that requires the existence of a horizon. Since
we expect BPS black holes to have extremal horizons, these solutions are covered by our
analysis in section 13.4.2. Nonetheless looking ahead to possible extensions to Euclidean
solutions, it is of some interest to have more general solutions with single real roots of e2V .

13.5 Examples

13.5.1 T
3 model

We now write down a non-trivial example by restricting to the T 3 model and allowing for
dyonic charges. One might first try to find the solution with the same charges (p1, q0) = (0, 0)
as Cacciatori–Klemm solution [58] but we find quite straight-forwardly that this requires
n = 0 and thus does not admit a generalization with NUT charge.

For simplicity, such that the resulting expressions are not too cumbersome, we set p1 = 0.
We can solve the constraint (12.2.27) with

q0 =
(p0 − q1)3/2

√
2p0

, (13.5.1)

then the imaginary parts of the sections are given by

Im Ṽ0 =
ǫp0

√
g
√

5p0 + 3q1

+
g2r√

2
, Im Ṽ i =

ǫ
√
p0
√
p0 − q1√

8g
√

5p0 + 3q1

, (13.5.2)

Im Ṽ0 =
ǫ(2p0 + q1)

√
p0 − q1√

8g
√
p0
√

5p0 + 3q1

, Im Ṽi =
ǫ(p0 + q1)

2
√
g
√

5p0 + 3q1

+
g2r√

2
, (13.5.3)

and the metric components are given by

e2V = r2
[
2
√

2 g3 r + ǫ
√
g
√

5p0 + 3q1

]2
. (13.5.4)

The NUT charge is given by the relation

nκǫ =
g3/2

2
√
p0

(p0 − q1)3/2

√
5p0 + 3q1

(13.5.5)

and the BPS Dirac quantization condition is

− κ = g(p0 + 3q1). (13.5.6)

When ǫ = +1, the horizon is at r = 0 and we find that regular solutions exist for both
κ = ±1. When ǫ = −1 the horizon is at

r =

√
5p0 + 3q1

g5/2
√

8
(13.5.7)
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and for the absence of zeros in Im Ṽ we need

g(p0 + 3q1) > 0 (13.5.8)

which implies κ = −1.

13.5.2 Constant scalar solution

One can observe the limit p1 = q0 which gives the constant scalar solution. The combination
of constant scalar fields and a pair of double roots in eV forces n = 0 and as is well-known
we have a hyperbolic horizon κ = −1. The solution data is given by

Im Ṽ0 = Im Ṽi =
1

2
√

2 g

(
2g3r +

√
p0g
)
, Im Ṽ0 = Im Ṽi = 0, (13.5.9)

and the metric components are

e2V = 2
√

2r2
(
g3 r +

√
p0g
)2
, e2(V−U) =

1
g

(
2g3r +

√
p0g
)2
. (13.5.10)

13.5.3 F = −X
0
X

1

We can write quite explicitly the solution when

p0 = −q1, p1 = q0, p3 = p2, q3 = q2 (13.5.11)

which is equivalent to considering the prepotential

F = −X0X1 (13.5.12)

and allowing for four arbitrary charges. The solution to the constraint (12.2.27) is taken to
be

p0 =
p2q0

q2
(13.5.13)

and we then find the following data:

(A0)0 = −(A0)1 = − q2(p2 − q0)2

2((p2)2 + q2
2)(p2q0 + q2

2)(q2
0 + q2

2)
× (13.5.14)

×
[
(q2

0 − q2
2)2q2

2 + (p2)2(q2
0 + 4q0q2 + q2

2) + 2q2p
2(2q2

2 − q0q2)
]
,

(A0)2 = −(A0)3 =
p2(p2 − q0)2q0q2

((p2)2 + q2
2)(q2

0 + q2
2)
, (13.5.15)

(A0)0 = −(A0)1 =
(p2 − q0)q3

2

((p2)2 + q2
2)(q2

0 + q2
2)
, (13.5.16)

(A0)2 = −(A0)3 = − q2(p2 − q0)2

2((p2)2 + q2
2)(p2q0 + q2

2)(q2
0 + q2

2)
× (13.5.17)

×
[
(q2

0 + q2
2)2(p2)2 + 2p2q2(q2

2 − 2q2
0) + q2

2(q2
0 − 4q0q2 + q2

2)
]
.

The NUT charge is given by

nκ = − g3/2

q2(q2 − q0) + p2(q0 + q2)

√
− ((p2)2 + q2

2)(p2q0 + q2
2)(q2

0 + q2
2)

2q2
(13.5.18)

and the metric components can be obtained from

v2 = (q0 − p2)

√
−2gq2

[
(p2)2q2

0 + 4p2(p2 − q0)q0q2 + ((p2)2 + q2
2)q2

2 + 4(p2 − q0)q3
2 + q4

2

]

(p2)2 + q2
2)(p2q0 + q2

2)(q2
0 + q2

2)
(13.5.19)

and
v4 =

√
8g3. (13.5.20)
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Chapter 14

Janis–Newman algorithm

In this chapter we recall the original Janis–Newman algorithm, followed by Giampieri’s
prescription [99]. We stress that both prescriptions are perfectly equivalent and each step
can be matched; in particular the only arbitrary point – present in both approach – is the
complexification of the metric function.

Then we describe the complexification of the gauge field in both prescriptions [99], show-
ing that a simple gauge transformation brings the field in a form compatible with the algo-
tihm. In this context the transformation cannot be performed directly on the field strength.

For flat space the JN algorithm reduces to a change of coordinates, from spherical
to oblate ones. Finally we review the transformation from Reissner–Nordström to Kerr–
Newman.

14.1 Original prescription

In their original paper [96], Janis and Newman demonstrated how to recover the Kerr metric
from the Schwarzschild one, and they extended it to discover the Kerr–Newman metric
in [97].

In this section we outline the procedure with the seed metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2, dΩ2 = dθ2 + sin2 θ dφ2. (14.1.1)

This simple model is sufficient to illustrate the main features of the algorithm, while more
general transformations, metrics and matter contents will be the topic of the chapters 15
and 16. This approach relies on the Newman–Penrose null tetrads formalism and more
details can be found in [96, 97, 101, 110, 131].

The algorithm proceeds as follows (explicit formulas are given in the next section):

1. Introduce the null coordinate
du = dt− f−1 dr. (14.1.2)

The metric becomes
ds2 = −f du2 − 2 dudr + r2 dΩ2. (14.1.3)

2. Find the contravariant form of the metric, introduce a set of null tetrads

Zµa = {ℓµ, nµ,mµ, m̄µ} (14.1.4)

with expressions

ℓµ = δµr , nµ = δµu − f

2
δµr , mµ =

1√
2r̄

(
δµθ +

i

sin θ
δµφ

)
, (14.1.5)
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and rewrite the inverse metric under the form

gµν = ηabZµaZ
ν
b = −ℓµnν − ℓνnµ +mµm̄ν +mνm̄µ, (14.1.6)

with the flat metric

ηab =




0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0


 . (14.1.7)

At this point r is real such that r̄ = r, the latter is introduced in view of the next
steps.

3. Allow the coordinates u and r to take complex values together with the conditions:

• ℓµ and nµ must be kept real;

• mµ and m̄µ must still be complex conjugated to each other;

• one should recover the previous basis for u, r ∈ R.

The previous conditions imply that the function f(r) should be replaced by a new
function f̃(r, r̄) ∈ R such that f̃(r, r) = f(r). This step is the hardest to perform be-
cause there is no a priori rule to choose any particular complexification and one needs
to check systematically if Einstein equations are satisfied. Examples have provided a
set of rules that can be used [96, 97, 99, 101]

r −→ 1
2

(r + r̄) = Re r, (14.1.8a)

1
r

−→ 1
2

(
1
r

+
1
r̄

)
=

Re r

|r|2
, (14.1.8b)

r2 −→ |r|2 . (14.1.8c)

All other functions can be reduced to a combination of them. For example 1/r2 is

complexified as 1/ |r|2.

4. Carry out a complex change of coordinates

u = u′ + ia cos θ, r = r′ − ia cos θ, θ′ = θ, φ′ = φ, (14.1.9)

a being a parameter (with the interpretation of angular momentum per unit of mass),
with the restriction that r′, u′ ∈ R. The tetrads transform as vectors

Z ′µ
a =

∂x′µ

∂xν
Zνa , (14.1.10)

and now f̃ = f̃(r′, θ′) (but note that the θ′ dependence is not arbitrary and comes
solely from Im r).

Explicitly one gets (forgetting the primes on the coordinates for convenience)

ℓ′µ = δµr , n′µ = δµu − f̃

2
δµr ,

m′µ =
1√

2(r + ia cos θ)

(
δµθ +

i

sin θ
δµφ − ia sin θ (δµu − δµr )

)
.

(14.1.11)

5. Construct the metric gµν from the new set of tetrads and obtain its covariant expression
gµν by inverting it.

6. Eventually change the coordinates into any other preferred system, e.g. Boyer–Lind-
quist. If the transformation is infinitesimal then one should check that it is a valid
diffeomorphism, i.e. that it is integrable.

The two last steps are common with Giampieri’s prescription and will be detailed in the
next section.
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14.2 Giampieri’s prescription

In the former approach it is very tedious to invert twice the metric and find out the right
tetrad basis. In an essay submitted only to the Gravity Research Foundation [98], Giampieri
proposed a simplification to this algorithm: the complexification of u and r and the change
of coordinates are done directly in the metric. Then all complex i factors are removed using
a specific ansatz for the coordinate transformation. It is important that both approaches
are equivalent since the ansatz can be recovered by direct comparison with the tetrad com-
putations [98, 99].

Giampieri applied his method only to the Schwarzschild metric, thus it is worth to detail
it in the more general context of (14.1.1) with arbitrary f . The procedure is the following:

1. Introduce the null coordinate u

ds2 = −f du2 − 2 dudr + r2 dΩ2. (14.2.1)

2. Allow the coordinates u and r to take complex values and complexify the metric
(14.2.1) to

ds′2 = −f̃ du2 − 2 dudr + |r|2 dΩ2, (14.2.2)

using the rules (C.1.1c) for the coefficient of dΩ2 and where again f̃ = f̃(r, r̄) is the
real-valued function which is replacing f . At this step the metric continues being real.

3. Apply the change of coordinates (14.1.9)

u = u′ + ia cosψ, r = r′ − ia cosψ, θ′ = θ, φ′ = φ, (14.2.3)

where a new angle ψ is introduced. This amounts to embedding the spacetime in a 5-
dimensional complex spacetime and the final metric will correspond to a 4-dimensional
real slice. The differentials read

du = du′ − ia sinψ dψ, dr = dr′ + ia sinψ dψ, (14.2.4)

and one gets the metric

ds′2 = −f̃(du− ia sinψ dψ)2 − 2 (du− ia sinψ dψ)(dr + ia sinψ dψ)

+ (r2 + a2 cos2 θ) dΩ2.
(14.2.5)

4. As one can easily notice, this metric cannot be correct because it has to be real.
Giampieri found that this metric reduces to the result from the original formulation if
one uses the ansatz

i dψ = sinψ dφ (14.2.6a)

followed by the replacement
ψ = θ. (14.2.6b)

Deleting all the primes, the metric obtained in the Kerr coordinates [96] is

ds2 = −f̃ (du− a sin2 θ dφ)2 − 2 (du− a sin2 θ dφ)(dr + a sin2 θ dφ) + ρ2dΩ2 (14.2.7)

where we have introduced
ρ2 = r2 + a2 cos2 θ. (14.2.8)

5. Finally one can go to Boyer–Lindquist coordinates with

du = dt′ − g(r)dr, dφ = dφ′ − h(r)dr. (14.2.9)
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The conditions gtr = grφ′ = 0 are solved for

g =
r2 + a2

∆
, h =

a

∆
(14.2.10)

where we have defined
∆ = f̃ρ2 + a2 sin2 θ. (14.2.11)

As indicated by the r-dependence this change of variable is integrable provided that
g and h are functions of r only. However ∆ as given in (14.2.11) could in principle
contain a dependence on θ, thus it is absolutely essential that one checks that this is
not the case.

Given this condition one gets the metric (deleting the prime) [234, p. 14]

ds2 = −f̃ dt2 +
ρ2

∆
dr2 + ρ2dθ2 +

Σ2

ρ2
sin2 θ dφ2 + 2a(f̃ − 1) sin2 θ dtdφ (14.2.12)

with
Σ2

ρ2
= r2 + a2 + agtφ. (14.2.13)

The rr-term has been computed from

g − a sin2 θ h =
ρ2

∆
. (14.2.14)

We stress that the order of the steps should be respected, otherwise the ansatz (14.2.6)
cannot be consistently applied. The second important point is that JN and Giampieri’s
prescriptions differ only in the computation of the metric since the rules (C.1.1) are identical
in both cases. Therefore this new approach is not adding nor removing any of the ambiguity
that is already present and well-known in JN algorithm. In particular the ansatz (14.2.6) is
a direct consequence of the fact that the 2-dimensional slice (θ, φ) is given by

dΩ2 = dθ2 + sin2 θ dφ2, (14.2.15)

the function in the RHS of (14.2.6) corresponding to
√
gΩ
φφ (where g is the static metric) as

can be seen by doing the computation with i dψ = H(ψ)dφ and identifying H at the end
(in particular see section 15.2.1).

Another peculiar feature of this approach is that one should consider the complexification
of the differentials and the complexification of the metric functions as two different processes:
one can derive general formula as we did by taking f arbitrary while the differentials are
transformed. From this point of view the r2 factor in front of dΩ2 can also be considered as
a function with its own complexification.

Comparing (14.2.1) and (14.2.7) makes clear that the effect of the ansatz (14.2.6) can be
reduced to modifying the formula (14.2.4) into

du = du′ − a sin2 θ dφ, dr = dr′ + a sin2 θ dφ. (14.2.16)

Using directly these expressions allows to avoid introducing the angle ψ altogether. Al-
though some authors [109, 119] mentioned the equivalence of these formulae and the result
from the tetrads as a curiosity, it is surprising that this direction has not been followed
further.
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14.3 Validity

It is not necessary to specify the action for performing the algorithm as one needs only the
expressions of the various seed fields, but one must check that the result is a solution of the
equations of motion. Indeed it is not fully understood under which conditions the algorithm
will send a solution to another solution since the complex transformation does not preserve
Einstein equations in general.

Another important point is to check that the Boyer–Lindquist transformation (14.2.10)
is integrable, i.e. that the function g and h depends only on r.

14.4 Gauge field

As already mentioned in the introduction, the authors of [97] face serious difficulties while
trying to derive the field strength of the Kerr–Newman black hole from the Reissner–
Nordström one. Indeed, in the null tetrad formalism, the field strength is given in terms of
Newman–Penrose coefficients and problems arise when trying to generate the rotating solu-
tion since one of the coefficients, vanishing in the case of Reissner–Nordström, is non-zero
for Kerr–Newman.

Three different prescriptions have been proposed recently: two works in the Newman–
Penrose formalism – one with the field strength [156] and one with the gauge field [99] –
while the third extends Giampieri’s approach to the gauge field [99].

Our formulation is much more natural because it is more convenient to work with the
gauge field rather than using the field strength or its Newman–Penrose coefficients (for
example in view of matter coupling). Moreover it is also closer to the original spirit of the
algorithm as one works with contravariant components (written with tetrads) for both the
metric and the gauge field, and the transformation follows the same pattern.

Let’s consider the simple gauge field

A = fA(r) dt, (14.4.1)

the most general case being discussed in chapter 15 and in section 16.2.

14.4.1 Giampieri’s prescription

We show that using Giampieri’s prescription allows to circumvent the problem in a very
simple way.

Expressing the gauge field (14.4.1) in terms of the (u, r) coordinates gives

A = fA (du + f−1 dr). (14.4.2)

The second term actually does not contribute to the field strength since Ar = Ar(r) and
one can remove it by a gauge transformation, getting

A = fA du. (14.4.3)

Applying the transformations (14.2.16) gives

A′ = fA (du − a sin2 θ dφ). (14.4.4)

Going to Boyer–Lindquist coordinates, using (14.2.10), provides

A′ = f̃A

(
dt− ρ2

∆
dr − a sin2 θ dφ

)
(14.4.5)
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where the relation (14.2.14) has been used. Generically the only θ-dependence of the function
f̃A is in a factor 1/ρ2 which cancels the one in front of dr. Then we are left with A′

r = A′
r(r),

and it can again be removed by a gauge transformation, leaving (omitting the prime)

A = f̃A (dt− a sin2 θ dφ). (14.4.6)

Notice that before the transformation Ar/At = grr = f−1, while after the transformation
A′
r/A

′
t = g′

rr = ρ2/∆.

14.4.2 Newman’s prescription

Expression (14.4.3) for the static gauge potential – after the gauge transformation – can be
rewritten as

Aµ = fA δ
u
µ. (14.4.7)

Using the inverse of the metric (14.2.1) with function (14.5.3) one obtains the contravariant
expression

Aµ = −fA δµr = −fA ℓµ (14.4.8)

where ℓµ = δµr , see (14.1.5).
The JN transformation applied to the previous expression yields

A′µ = −f̃A ℓ′µ = −f̃A δµr (14.4.9)

with ℓ′µ = ℓµ is defined in (14.1.11). Finally the 1-form

A′ = f̃A (du− a sin2 θ dφ) (14.4.10)

is retrieved using the metric (14.2.7) with the function (14.5.5).
The result is identical to the one derived with Giampieri’s formalism, showing again

that the two approaches are totally equivalent, and that it was not necessary to use the
null Lorentz rotation from [156]. It is possible to check that the transformation cannot be
performed without first removing the r-component with the gauge transformation.

14.4.3 Keane’s prescription

It is worth mentioning that another solution was recently proposed in [156], where a null
Lorentz transformation on the tetrads is used to obtain the correct Newman–Penrose coef-
ficients for the field strength.

14.5 Examples

14.5.1 Flat space

It is straightforward to check that the algorithm applied to the flat Minkowski metric –
which has f = 1 – in spherical coordinates

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θ dφ2

)
(14.5.1)

gives again the Minkowski metric but in spheroidal coordinates (after a Boyer–Lindquist
transformation) (B.2.9)

ds2 = −dt2 +
ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, (14.5.2)

recalling that ρ2 = r2 + a2 cos2 θ. The metric is exactly diagonal because gtφ = 0 for f̃ = 1
from (14.2.12). Hence for flat space the JN algorithm reduces to a change of coordinates,
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from spherical to spheroidal coordinates (the 2-spheres foliating the space in the radial
direction are deformed to ellipses).

This fact is an important consistency check that will be useful when extending the
algorithm to higher dimensions (chapter 18) or to other coordinate systems (such as one
with direction cosines). Moreover in this case one can forget about the time direction and
consider only the transformation of the radial coordinate.

14.5.2 Kerr–Newman black hole

In this section we apply the formalism to the Reissner–Nordström black hole in order to
get the Kerr–Newman rotating black hole [97, 156], both of which are solutions of Ein-
stein–Maxwell theory.

The seed solution corresponds to the metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2, f(r) = 1 − 2m
r

+
q2

r2
(14.5.3)

and to the gauge field

A =
q

r
dt (14.5.4)

where the parametersm and q correspond respectively to the mass and to the electric charge.

Metric

Using the rules (C.1.1b) and (C.1.1c) for the second and third terms respectively, the function
f can be complexified as

f̃(r, θ) = 1 +
q2 − 2mr

ρ2
(14.5.5)

where we recall that ρ2 = |r|2 = r2 + a2 cos2 θ.
As already described in [97, 101], plugging this function into (14.2.12) gives the well-

known Kerr–Newman metric

ds2 = −f̃ dt2 +
ρ2

∆
dr2 + ρ2dθ2 +

Σ2

ρ2
sin2 θ dφ2 + 2a(f̃ − 1) sin2 θ dtdφ, (14.5.6)

where functions ∆ and Σ are given by

Σ2

ρ2
= r2 + a2 − q2 − 2mr

ρ2
a2 sin2 θ, (14.5.7a)

∆ = r2 − 2mr + a2 + q2, (14.5.7b)

and it is to point out that ∆ depends only on r so that the transformation (14.2.10) to
Boyer–Lindquist coordinates is well defined.

Gauge field

Applying the recipe of section 14.4, the potential (14.5.4) of the Reissner–Nordström black
hole leads directly to

A =
qr

ρ2

(
dt− ρ2

∆
dr − a sin2 θ dφ

)
, (14.5.8)

where as usual ρ2 = r2 + a2 cos2 θ. The prefactor has been transformed using the rule
(C.1.1b). Finally, the factor ρ2 in front of dr cancels with the prefactor, and we are left with

Ar =
qr

∆
(14.5.9)
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which depends only on r. After a gauge transformation one obtains the traditional form of
the electromagnetic gauge field for the Kerr–Newman black hole

A =
qr

ρ2
(dt− a sin2 θ dφ). (14.5.10)
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Chapter 15

Extended algorithm

In the previous chapter we chose a very specific complex change of coordinates (14.1.9). A
natural question is to ask whether one can perform other changes of coordinates, and to find
how to interpret them. Demiański gave an answer by considering a transformation with two
unknown θ-dependent functions and by solving the equations of motion in a simple case [100]
– we will call this version the Demiański–Janis–Newman (DJN) algorithm. Then one can
hope that these transformations will be the most general ones (under the assumptions that
are made), and one can use these transformations in other cases without having to solve
the equations. The latter claim can be justified by looking at the equations of motions
for more complex examples: even if one cannot find directly a solution, one finds that the
same structure persists [159] (this is also motivated by the solutions in [136, 137]). Another
strength of this approach is to remove the ambiguity of the algorithm since the functions
are found from the equations of motion, and this may help when one does not know how to
perform precisely the algorithm (for example in higher dimensions, see chapter 18).

In his analysis, Demiański finds that very few transformations can be done: they contain
three parameters (rotation a, NUT charge n and c) when the cosmological constant is zero,
and only one for non-vanishing cosmological constant (NUT charge n). At this point a new
problem arises: when the transformation implies the NUT charge the usual rules (C.1.1) are
not sufficient to transform the seed function. This lack would seriously reduce the utility
of this improved algorithm because one cannot use it to discover new solutions without
solving the equations of motion, which is not the goal of the algorithm. We demonstrate
in section 15.4 that the transformation can be achieved by a complexification of the mass
together with a shift of the horizon curvature [159]

m = m′ + iκ n, κ −→ κ− 4Λ
3
n2, (15.0.1)

establishing that Demiański’s transformations can be interpreted as an extension of the usual
JN algorithm.

Demiański’s paper [100] is short and results are extremely condensed and we explain in
more details his approach. In particular we uncover an hidden assumption on the form of
the metric function which explains the error in his formula (14) [113, 159]. A generalization
of this hypothesis leads to other equations that we could not solve analytically, but this
would lead to another solution. A result from Demiański’s analysis is the impossibility to
find Kerr–AdS from the DJN algorithm and it is often quoted as a no-go theorem. But this
outcome relies on the assumption that no parameter already present in the static metric is
complexified, which may not be justified.

One of the obvious generalization is the inclusion of a gauge field which is needed to
obtain (electrically) charged solutions [159]. It appears that the analysis is left unchanged,
the Maxwell equations being also integrable within Demiański’s ansatz. This solution was
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already found in [136] but we demonstrate how to perform the full computation using the
DJN algorithm, having in mind the possible generalizations to other cases.

Another improvement of the DJN algorithm that results from our analysis is the gen-
eralization of all formula to topological horizons [159]. In particular all existing formula
can be straightforwardly generalized to the case of hyperbolic horizons,1 and we prove all
formula by solving explicitly Einstein equations. Topological horizons are of particular in-
terest in supergravity models since asymptotically AdS black holes can possess non-spherical
horizons.

We end the introduction by describing our ansatz. We consider the most general seed
metric for which (θ, φ)-section are 2-dimensional maximally symmetric spaces (it can be the
sphere S2 or the hyperboloidH2). Similarly the gauge field contains only one unknown radial
function and it is purely electric. The DJN algorithm generates a stationary metric coupled
to a gauge field for a total of six unknown functions (with only five being independent).
We provide several formula in (u, r) and (t, r) coordinates that should be suitable for any
application of the DJN algorithm.2 Similar formula for subcases have been obtained
in [101, 102, 121, 131]. All these computations are gathered in a Mathematica file (available
on demand) which includes the computations of Einstein–Maxwell equations. We insist on
the fact that all these results can also be derived from the tetrad formalism.

15.1 Setting up the ansatz

Einstein–Maxwell gravity with cosmological constant Λ reads [165, chap. 22]

S =
∫

d4x
√−g

(
1

2κ2
(R − 2Λ) − 1

4
F 2

)
, (15.1.1)

where κ2 = 8πG is the Einstein coupling constant, g is the metric with Ricci scalar R and
F = dA is the field strength of the Maxwell field. In our conventions the spacetime signature
is mostly plus and in the following we set κ to 1.

The associated equations of motion are

Gµν + Λgµν = 2Tµν , ∇µF
µν = 0, (15.1.2)

where the stress–energy tensor for the electromagnetic field is

Tµν = FµρF
ρ

ν − 1
4
gµνF

2. (15.1.3)

The static electromagnetic one-form is taken to be

A(r) = fA(r) dt. (15.1.4)

This ansatz is purely electric since only the time component is non-zero.
The static metric ansatz in coordinates (t, r, θ, φ) reads

ds2 = −ft(r) dt2 + fr(r) dr2 + fΩ(r) dΩ2. (15.1.5)

One of the functions is redundant since we are free to redefine the radial coordinate.
The (θ, φ) sections correspond to 2-dimensional maximally symmetric spaces, which are

the sphere S2, the euclidean plane R2 and the hyperboloid H2 respectively for positive,
vanishing and negative curvature [76].3 Defining κ as the sign of the surface curvature, the
uniform metric dΩ2 is given by

dΩ2 = dθ2 +H(θ)2 dφ2 (15.1.6)

1We do not treat the case of flat horizon but this could be obtained from some easy reparametrization.
2We stress that at this stage these formula do not satisfy Einstein equations, they are just proxy to

simplify later computations.
3The convention are slightly different from the one in the appendix A.7. One needs to make the replace-

ment (H, H′) → (−κH′, H).
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with

H(θ) =

{
sin θ κ = 1,
sinh θ κ = −1.

(15.1.7)

We focus on κ = ±1, the case κ = 0 can be deduced easily.
Introducing the null coordinates u through the change of coordinates

dt = du+

√
fr
ft

dr, (15.1.8)

the static metric (15.1.5) becomes

ds2 = −ft du2 − 2
√
ftfr dudr + fΩ

(
dθ2 +H2 dφ2

)
, (15.1.9)

while the gauge field (15.1.4) is found to be

A = fA

(
du+

√
fr
ft

dr

)
. (15.1.10)

Since the component Ar depends only on r it can be removed by a gauge transformation [99]
such that

A = fA du. (15.1.11)

This step is primordial for having a consistent DJN transformation.

15.2 Demiański–Janis–Newman algorithm

In this section we apply the Janis–Newman algorithm to the ansatz of the previous section.
Using arbitrary functions for the complex transformation and for the functions inside the
metric, we obtain a very general ansatz; then we will solve Einstein–Maxwell equations in the
next section in order to find their forms. We will directly use Giampieri’s prescription [98,
99] in order to avoid the introduction of tetrads and the computation of the contravariant
components of the metric and of the gauge field.

15.2.1 Janis–Newman transformation

The Janis–Newman algorithm can be summarized as the following sequence of steps:

1. Start with a seed metric in (u, r) coordinates.

2. Let the coordinates u and r become complex.

3. Replace the functions inside the metric by other functions depending on r and its
conjugate.

4. Make a change of coordinates (r, u) → (r′, u′), the new coordinates being real.

5. Apply Giampieri’s ansatz to recover a real metric.

The complex change of coordinates is given by4 [100]

r = r′ + i F (θ), u = u′ + i G(θ), (15.2.1)

4Similar transformations have been studied by Talbot [103].
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where u′, r′ ∈ R, and F (θ) and G(θ) are two arbitrary functions.5 Usually these functions
are taken to be

F (θ) = −a cos θ, G(θ) = a cos θ, (15.2.2)

but here they are kept general and the most general transformation will be determined by
Einstein equations.

As given by
dr = dr′ + i F ′(θ) dθ, du = du′ + i G′(θ) dθ, (15.2.3)

(the prime on F and G denoting the differentiation with respect to θ), the differentials
of the coordinates are complex which is not coherent with having a complex metric. The
(generalized) Giampieri’s ansatz consists in the replacement

i dθ =
√
gΩ
φφ dφ = H(θ) dφ, (15.2.4)

where the RHS is given by comparison of the final result with the tetrad formalism [98, 99,
109]. As a consequence the transformation of the differentials are

dr = dr′ + F ′(θ)H(θ) dφ, du = du′ +G′(θ)H(θ) dφ. (15.2.5)

Finally the four functions
fi(r) = {ft, fr, fΩ, fA} (15.2.6)

are transformed to
f̃i(r, r̄) = {f̃t, f̃r, f̃Ω, f̃A}. (15.2.7)

There are only two conditions that we impose on these functions

f̃i = f̃i(r, r̄) = f̃i
(
r′, F (θ)

)
∈ R, f̃i(r′, 0) = fi(r′). (15.2.8)

The first relation means that the dependence in θ is solely contained in the functional
dependence of F (θ).6 On the other hand we do not try to get the functions f̃i from the
complexification of the static functions [100]; this is the topic of section 15.4.

As a consequence the θ-derivative of f̃i reads

∂θ f̃i = F ′ ∂F f̃i (15.2.9)

such that it is sufficient to obtain the dependence of f̃i in term of F .
Note that general conditions that need to be satisfied by F and G can be found in [110,

sec. 2.3, 103].

15.2.2 Metric

Applying the transformations (15.2.1) and (15.2.5) and replacing the functions, the resulting
stationary metric in Eddington–Finkelstein coordinates is

ds2 = −f̃t(du+ α dr + ωH dφ)2 + 2β drdφ + f̃Ω

(
dθ2 + σ2H2dφ2

)
(15.2.10)

where we defined the quantities

ω = G′ +

√
f̃r

f̃t
F ′, σ2 = 1 +

f̃r

f̃Ω

F ′2, α =

√
f̃r

f̃t
, β = f̃r F

′H. (15.2.11)

The transformation

du = dt− g(r)dr, dφ = dφ′ − h(r)dr (15.2.12)

5In his paper [100] Demiański considers functions that depend on θ and φ, but he drops the φ-dependence
at an intermediate step. In our case we want to keep the U(1) isometry so we do not consider this case.

6This assumption is not explicit in Demiański’s paper [100].
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can be used to set the coefficient gur and grφ to zero and to cast the metric in Boyer–Lindquist
(BL) coordinates. The solution to these two conditions is

g(r) =

√(
f̃tf̃r

)−1
f̃Ω − F ′G′

∆
, h(r) =

F ′

H(θ)∆
(15.2.13)

with

∆ =
f̃Ω

f̃r
+ F ′2 =

f̃Ω

f̃r
σ2. (15.2.14)

We stress that the functions g and h cannot depend on θ, otherwise the change of variables
(15.2.12) is not integrable. It is thus necessary to check for given functions f̃i, F and G that
all the θ-dependence cancels.

Finally the metric in (t, r) coordinates can be written (removing the prime on φ)

ds2 = −f̃t
(
dt+ ωH dφ

)2
+
f̃Ω

∆
dr2 + f̃Ω

(
dθ2 + σ2H2dφ2

)
. (15.2.15)

15.2.3 Gauge field

Applying the DJN transformations (15.2.5) to the gauge field (15.1.11)

A = fA du (15.2.16)

gives7

A = f̃A (du+G′H dφ). (15.2.17)

Using the explicit formula (15.2.13), the previous expression becomes in Boyer–Lindquist
coordinates

A = f̃A

(
dt− f̃Ω√

f̃tf̃r ∆
dr +G′H dφ

)
. (15.2.18)

Here the function

Ar = − f̃Af̃Ω√
f̃tf̃r ∆

= − grr√
f̃tf̃r

At (15.2.19)

may depend on θ in which case it would not be possible to remove it by a gauge transfor-
mation.8

15.3 Charged topological solution

In this section we solve Einstein–Maxwell equations (15.1.2) for the system

ft = f, fr = f−1, fΩ = r2. (15.3.1)

First the static solution is recalled for later comparison – it corresponds to the static limit
of the stationary solution. The stationary solution is derived in (u, r) coordinates in order
to avoid the question of the validity of the Boyer–Lindquist transformation and because the
metric looks simpler.

7This may also be derived from the tetrad formalism [99, 110, 156].
8In several examples where BL coordinates exist, Ar depends only on r. This seems to be the generic

case.
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15.3.1 Static case

Consider the static metric (15.1.5) and gauge field (15.1.4).
Only the (t) component of Maxwell equations is non trivial

2f ′
A + rf ′′

A = 0, (15.3.2)

the prime being a derivative with respect to r, and its solution is

fA(r) =
q

r
(15.3.3)

where q is a constant of integration that is interpreted as the charge (we set the additional
constant to zero since it can be removed by a gauge transformation).

The only relevant Einstein equation is

q2

r2
− κ+ r2Λ + f + rf ′ = 0 (15.3.4)

whose solution reads

f(r) = κ− 2m
r

+
q2

r2
− Λ

3
r2, (15.3.5)

m being a constant of integration that is identified to the mass.
We stress that we are just looking to solutions of Einstein equations and we are not

concerned with regularity (in particular it is well-known that only κ = 1 is well-defined for
Λ = 0).

15.3.2 Simplifying the equations

The component (rθ) gives the equation

F ′

(
G′′ +

H ′

H
G′

)
= 2FF ′ (15.3.6)

which depends only on θ and it allows to solve for G in terms of F . If F ′ 6= 0 it implies the
equation (rr) which is

G′′ +
H ′

H
G′ = ±2F. (15.3.7)

If F ′ = 0 this last equation should be used instead and the sign can be absorbed into F
since it is an arbitrary constant. As a result the equation in both cases is

G′′ +
H ′

H
G′ = 2F. (15.3.8)

The r-component of the Maxwell equation can be integrated to

f̃A =
q r

r2 + F 2
+ α

r2 − F 2

r2 + F 2
. (15.3.9)

We can remove the constant α by matching with the static case in the limit F → 0, but we
can also get this result from the θ-equation

αF ′ = 0. (15.3.10)

The (tr) equation contains only r-derivative of f̃ and it can be integrated to9

f̃ = κ− 2mr − q2 + 2F (κF +K)
r2 + F 2

− Λ
3

(r2 + F 2) − 4Λ
3
F 2 +

8Λ
3

F 4

r2 + F 2
(15.3.11)

9In [100] the last term of f̃ is missing [113], as can be compared with other references on
(A)dS–Taub–NUT, see for example [76].

115



where again m is a constant of integration interpreted as the mass. The function K is
defined by

2K = F ′′ +
H ′

H
F ′. (15.3.12)

This implies the equations (rφ) and (θθ).
As explained in section 15.2.1 the θ-dependence should be contain in F (θ) only. The

second term of the function f̃ contains some lonely θ from the H(θ) in the function K:
this means that they should be compensated by the F , and we therefore ask that the sum
κF +K be constant10

κF ′ +K ′ = 0 =⇒ κF +K = κn. (15.3.13)

The parameter n is interpreted as the NUT charge.
The components (tθ) and (θφ) give the same equation

ΛF ′ = 0. (15.3.14)

Finally one can check that the last three equations (tt), (tφ) and (φφ) are satisfied.
Let’s summarize the equations

2F = G′′ +
H ′

H
G′, (15.3.15a)

κn = κF +K, (15.3.15b)

0 = ΛF ′ (15.3.15c)

and the function f̃

f̃ = κ− 2mr − q2 + 2F (κF +K)
r2 + F 2

− Λ
3

(r2 + F 2) − 4Λ
3
F 2 +

8Λ
3

F 4

r2 + F 2
. (15.3.15d)

We also defined

2K = F ′′ +
H ′

H
F ′. (15.3.15e)

As explained in the introduction, a major issue of Demiański’s approach is the impos-
sibility to obtain – at least in a direct manner – the stationary f̃ function (15.3.15d) as a
complexification of the static f function (15.3.5). Not being able to reproduce the stationary
function from the static one is equivalent to a failure because it would not be possible to
apply the algorithm to other cases. This is one of the reason explaining why applications
of the JN algorithm have been limited to adding a rotation parameter. We address this
question in section 15.4 and show how to recover f̃ from f .

In the next sections we solve explicitly the equations (15.3.15), and because the case
Λ = 0 and Λ 6= 0 are really different we consider them separately.

15.3.3 Solution for Λ 6= 0

Equation (15.3.15c) implies that F ′ = 0 and then

F (θ) = n (15.3.16)

by compatibility with (15.3.15b) and since K(θ) = 0.
Solution to (15.3.15a) is

G(θ) = c1 − 2κn lnH(θ) + c2 ln
H(θ/2)
H ′(θ/2)

(15.3.17)

10In section 15.3.5 we relax this last assumption by allowing non-constant κF + K. In this context the
equations and the function f̃ are modified and this provides an explanation for the error in f̃ of Demiański’s
paper [100].
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where c1 and c2 are two constants of integration. Since only G′ appears in the metric we
can set c1 = 0. On the other hand the constant c2 can be removed by the transformation

du = du′ − c2 dφ. (15.3.18)

We summarize the solution to the system (15.3.15)

F (θ) = n, G(θ) = −2κn lnH(θ). (15.3.19)

The function f̃ then takes the form

f̃ = κ− 2mr − q2 + 2κn2

r2 + n2
− Λ

3
(r2 + 5n2) +

8Λ
3

n4

r2 + n2
(15.3.20a)

= κ− 2mr − q2 + 2κn2

r2 + n2
− Λ

3
r4 + 6n2 − 3n4

r2 + n2
. (15.3.20b)

The transformation to BL coordinates is well defined (and h = 0)

g =
r2 + n2

∆
, ∆ = κr2 − 2mr + q2 + Λn4 − Λ

3
r4 − n2(κ+ 2Λr2). (15.3.21)

As noted by Demiański the only parameters that appear are the mass and the NUT
charge, and it is not possible to add an angular momentum for non-vanishing cosmo-
logical constant.11 As a consequence the JN algorithm cannot provide a derivation of
(A)dS–Kerr–Newman.

15.3.4 Solution for Λ = 0

The solution to the differential equation (15.3.15b) is

F (θ) = n− aH ′(θ) + κ c

(
1 +H ′(θ) ln

H(θ/2)
H ′(θ/2)

)
(15.3.22)

where a and c denote two constants of integration.
We solve the equation (15.3.15a) for G

G(θ) = c1 + κ aH ′(θ) − cH ′(θ) ln
H(θ/2)
H ′(θ/2)

− 2κn lnH(θ)

+ (a+ c2) ln
H(θ/2)
H ′(θ/2)

(15.3.23)

and c1, c2 are constants of integration. Again since only G′ appears in the metric we can set
c1 = 0. We can also remove the last term with the transformation

du = du′ − (c2 + a)dφ. (15.3.24)

We arrive at

F (θ) = n− aH ′(θ) + κ c

(
1 +H ′(θ) ln

H(θ/2)
H ′(θ/2)

)
, (15.3.25a)

G(θ) = κ aH ′(θ) − κ cH ′(θ) ln
H(θ/2)
H ′(θ/2)

− 2n lnH(θ). (15.3.25b)

The Boyer–Lindquist transformation is well defined only for c = 0, in which case

g =
r2 + a2 + n2

∆
, h =

κa

∆
, ∆ = κr2 − 2mr + q2 − κn2 + κa2. (15.3.26)

11In [95] Leigh et al. generalized Geroch’s solution generating technique and also found that only the
mass and the NUT charge appear when Λ 6= 0. We would like to thank D. Klemm for this remark.
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The function f̃ reads [76, sec. 2.2]

f̃ = κ− 2mr − q2

ρ2
+
κn(n− aH ′)

ρ2
, ρ2 = r2 + (n− aH ′)2. (15.3.27)

The constant a corresponds to the angular momentum (and one recognizes the usual
JN algorithm). The interpretation is difficult because there is a wire-like singularity that
extends to infinity [110, sec. 2.3, 235, sec. 5.3]. The spacetime is of type II if c 6= 0, otherwise
it is of type D.

This solution was already found in [136] for the case κ = 1 by solving directly Ein-
stein–Maxwell equations, starting with a metric ansatz of Demiański’s form. In our case we
wish to show that the same solution can be obtained by applying Demiański’s method on
all the quantities, including the gauge field.

15.3.5 Hidden assumptions in Demiański’s paper

Demiański’s paper is short and results are extremely condensed. In particular we uncover a
hidden assumption on the form of the metric function which explains the error in his formula
(14) [113].

In section 15.3.2 we obtained the equation (15.3.15b)

κF +K = κn, 2K = F ′′ +
H ′

H
F ′ (15.3.28)

by asking that the function (15.3.15d)

f̃ = κ− 2mr − q2 + 2F (κF +K)
r2 + F 2

− Λ
3

(r2 + F 2) − 4Λ
3
F 2 +

8Λ
3

F 4

r2 + F 2
(15.3.29)

depends on θ only through F (θ).
A more general assumption would be that κF +K is some function χ = χ(F )

κF +K = κχ(F ). (15.3.30)

The (tθ)-component gives the equation

4ΛF 2F ′ = F ′ ∂Fχ. (15.3.31)

If F ′ = 0 or Λ = 0 we found that

∂Fχ = 0 =⇒ χ = n (15.3.32)

which reduces to the case studied in section 15.3.2.
On the other hand if F ′ 6= 0 then the previous equation becomes

∂Fχ = 4ΛF 2 (15.3.33)

which can be integrated to

χ(F ) = n+
4
3

ΛF 3 (15.3.34)

(notice that the limit Λ → 0 is coherent). Plugging this function into equation (15.3.30) one
obtains

κF +K = κ

(
n+

4
3

ΛF 3

)
. (15.3.35)

This differential equation is non-linear and we were not able to find an analytical solution.
Nonetheless by inserting the expression of χ in f̃ we see that the last term is killed

f̃ = κ− 2mr − q2 + 2κnF
r2 + F 2

− Λ
3

(r2 + F 2) − 4Λ
3
F 2. (15.3.36)

One can recognize the function given by Demiański [100]. Then this function is valid at the
condition that equation (15.3.15b) is modified to (15.3.35), but in this case the solution is
not the general (A)dS–Taub–NUT anymore.
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15.4 Finding the complexification

At the end of section 15.3.2, we mentioned the issue of finding the complexification of
the stationary function from the static one. The rules (C.1.1) continue to apply with the
parameter c, but they are not sufficient when one is considering the NUT charge n. Indeed
the last case also requires the complexification of the mass parameter. In what follows we
ignore the electric charge since it does not modify the discussion.

15.4.1 Λ = 0

The static Schwarzschild function (15.3.5)

f = κ− 2m
r

(15.4.1)

is complexified as

f̃ = κ−
(
m

r
+
m̄

r̄

)
= κ− 2 Re(mr̄)

|r|2
. (15.4.2)

Performing the transformation

m = m′ + iκ n, r = r′ + iF (15.4.3)

gives

f̃ = κ− 2mr + 2κnF
r2 + F 2

(15.4.4)

which corresponds to the correct function (15.3.15d).

15.4.2 Λ 6= 0

The procedure is less straightforward in this case and we only give some preliminary steps
towards the solution.

The static Schwarzschild function (15.3.5)

f = κ− 2m
r

− Λ
3
r2 (15.4.5)

is complexified as

f̃ = κ− 2 Re(mr̄)

|r|2
− Λ

3
|r|2 . (15.4.6)

The complexification of the mass parameter is12

m = m′ + in

(
κ− 4Λ

3
n2

)
, r = r′ + in. (15.4.7)

Moreover comparing the imaginary part of m with the previous case (15.4.3) suggests the
replacement of the curvature sign13 (only in the one appearing in f , not the one in (15.4.7))

κ −→ κ− 4Λ
3
n2. (15.4.8)

Note that the κ which appears in F and G are not shifted.

12The imaginary part of the new mass term appears in other contexts [18, 114, 236, 237]. In particular
this corresponds to a condition of regularity in Euclidean signature.

13Notice that AdS–Taub–NUT (for κ = −1, m = 0) is supersymmetric for n = ±1/(2g) where g2 =
−Λ/3 [76, tab. 1].
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Presented in another way, the algorithm is to first perform the transformation (15.4.3)
followed by the above replacement for κ everywhere

m = m′ + iκ n, κ −→ κ− 4Λ
3
n2. (15.4.9)

One can notice that the limit Λ → 0 agrees with the previous section (upon replacing n by
F ).

Inserting these transformations into f̃ gives the result

f̃ = κ− 2mr + 2κn2

r2 + n2
− Λ

3
(r2 + 5n2) +

8Λ
3

n4

r2 + n2
(15.4.10)

and we retrieve (15.3.20).
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Chapter 16

Algorithm with matter fields

Supergravity rotating solutions is an intense field of research, and it is surprising that the
(D)JN algorithm has almost never been applied in this context (with the exception of [115]).
One explanation is that such theories present a number of gauge fields and complex scalar
fields that could not be transformed in the original formulation of the DJN algorithm. For
instance, Yazadjiev [115] showed that it was possible to obtain the metric and the dilaton
of Sen’s dilaton–axion charged rotating black hole [157] (non-extremal solution of the T 3

model), but did not succeed in finding the axion nor the gauge field.
Each of these problems possess a different explanation. First of all, it was not known

how to perform the transformation on the gauge field until recently, where two different
prescriptions have been proposed [99, 110, 156].

The second problem is that you cannot transform independently the dilaton and the
axion because they are naturally gathered into a complex scalar field. In particular the
axion is vanishing for the static configuration, while it is non-zero for the rotating black
hole. Moreover the usual transformation rules cannot be applied to complex scalar fields
because they include a reality condition which is a too strong requirement for transforming
complex fields, and one of our goal is to show how to modify the original prescription to
accommodate this new fact [158]. We will illustrate this proposal on several examples, all
taken from N = 2 ungauged supergravity, completing Yazadjiev’s analysis [115] of Sen’s
rotating black hole, and showing how some BPS rotating black holes from [36] can be
obtained (which include solutions from pure supergravity and from the STU model).

Another issue arises when one considers the NUT charge n. Indeed the usual rules (C.1.1)
do not hold and it was shown in [159] that one needs to complexify the mass as m = m′ + in
(see section 15.4).

A related case concerns dyonic solutions with electric and magnetic charges q and p,
which can be used as a seed metric. It is necessary to follow the recipe of the previous
examples, since the original JN rules are failing again. This is related to the fact that the
electric and magnetic charges are naturally associated into the (complex) central charge
Z = q + ip. In this way we succeed in performing the JN algorithm to a solution with
magnetic charges.

First we describe explicitly the Kerr–Newman–Taub–NUT solution to recall the methods
of the previous section, and then we turn to the more interesting dyonic Kerr–Newman–
Taub–NUT and charged Taub–NUT–BBMB with Λ [35].

Finally let’s note that Kerr–Newman solution and its extensions can be embedded into
N = 2 supergravity [76, 77]. Another interesting point is that most of the examples presented
in this chapter are truncations of the Chow–Compère black hole [44], and it would be useful
to understand in which cases the DJN algorithm can be applied to this solution.

Moreover we describe two results which did not appear elsewhere before: the discus-
sion of the Yang–Mills Kerr–Newman black hole [161] and Taub–NUT–BBMB solution of
section 16.2.3.
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16.1 Real scalar fields

Given a set of real scalar fields χa(r), they are complexified and transformed exactly as a
metric function, see section 15.2.1

χa(r) −→ χ̃a(r, θ). (16.1.1)

16.2 Gauge fields

16.2.1 Kerr–Newman–Taub–NUT black hole

A long-standing difficulty of Demiański’s extension of the JN algorithm [100] was the impossi-
bility to find the complexification of the metric function that was leading from Schwarzschild
to Kerr–Taub–NUT. In this section we recall the solution to this problem that we gave in a
previous paper [99], where we extended Demiański’s result to Kerr–Newman–Taub–NUT.

Reissner–Nordström metric is given by

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2, f(r) = 1 − 2m
r

+
q2

r2
, (16.2.1a)

m and q being the mass and the electric charge, and the electromagnetic gauge field reads

A =
q

r
dt. (16.2.1b)

As explained in section 15.4 it is necessary to complexify the mass. In this case the
function f is complexified as

f̃ = 1 −
(
m

r
+
m̄

r̄

)
+

q2

|r|2
= 1 − 2 Re(mr̄) + q2

|r|2
, (16.2.2)

and performing the transformation

m = m′ + in, r = r′ + iF (16.2.3)

gives (omitting the primes)

f̃ = 1 − 2mr + 2nF
ρ2

, ρ2 = r2 + F 2. (16.2.4)

Considering the transformations (16.2.3) leads to

f̃ = 1 − 2mr − q2 + n(n− a cos θ)
ρ2

, ρ2 = r2 + (n− a cos θ)2. (16.2.5)

The metric and the gauge fields in BL coordinates can be read from (C.3.3) to be

ds2 = −f̃ (dt+ Ω dφ)2 +
ρ2

∆
dr2 + ρ2(dθ2 + σ2H2dφ2), (16.2.6a)

A =
q

ρ2

(
dt− (a sin2 θ + 2n cos θ)dφ

)
+Ar dr. (16.2.6b)

One can check that Ar is a function of r only

Ar = − q

∆
(16.2.7)

and it can be removed by a gauge transformation. The various quantities that appear are
given by

Ω = −2n cos θ − (1 − f̃−1) a sin2 θ, σ2 =
∆

f̃ρ2
, ∆ = f̃ρ2 + a2 sin2 θ. (16.2.8)

This corresponds to the Kerr–Newman–Taub–NUT solution [76].
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16.2.2 Dyonic Kerr–Newman black hole

The dyonic Reissner–Nordström metric is obtained from the electric one (16.2.1) by the
replacement [238, sec. 6.6]

q2 −→ |Z|2 = q2 + p2 (16.2.9)

where Z corresponds to the central charge [76]

Z = q + ip. (16.2.10)

This is particularly useful when looking at the dyonic RN as a solution of pure N = 2
ungauged supergravity. Then the metric function reads

f(r) = 1 − 2m
r

+
|Z|2
r2

. (16.2.11)

On the other hand the gauge field receives a new φ-component [76]

A =
q

r
dt+ p cos θ dφ =

q

r
du+ p cos θ dφ (16.2.12)

(the last equality being valid after a gauge transformation).
For simplifying the computations we only consider the case n = 0 with

F = −a cos θ, G = a cos θ, (16.2.13)

but the general case n 6= 0 follows directly. The transformation of the metric is totally
identical to the previous case (section 16.2.1) and one needs only to focus on the gauge field.

One has to rewrite first the gauge field as

A = Re
(
Z

r

)
dt+ p cos θ dφ (16.2.14)

before performing the JN transformation. The first term is complexified as

Re
(
Z

r

)
=

Re(Zr̄)

|r|2
(16.2.15)

and inserting the above transformation gives

A =
qr − pa cos θ

ρ2
(du − a sin2 θ dφ) + p cos θ dφ. (16.2.16)

After changing coordinates into the BL system, the Ar term is

∆Ar = −qr − pa cos θ
ρ2

ρ2 − pa cos θ = −qr (16.2.17)

(∆(r) is the denominator of the BL functions, not the Laplacian). Since Ar = Ar(r) one
can remove it and obtains finally

A =
qr − pa cos θ

ρ2
(dt− a sin2 θ dφ) + p cos θ dφ. (16.2.18)

Using the fact that
a2 sin2 θ = r2 + a2 − ρ2 (16.2.19)

we rewrite it as

A =
qr − pa cos θ

ρ2
dt+

(
−qr

ρ2
a sin2 θ +

p(r2 + a2)
ρ2

cos θ
)

dφ (16.2.20a)

=
qr

ρ2
(dt− a sin2 θdφ) +

p cos θ
ρ2

(
a dt+ (r2 + a2) dφ

)
(16.2.20b)

as it is presented in [76, 238, sec. 6.6].
The Yang–Mills Kerr–Newman black hole found by Perry [161] can also be derived in

this way.
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16.2.3 Charged BBMB–NUT black hole with cosmological con-

stant

We consider Einstein–Maxwell theory with cosmological constant conformally coupled to a
scalar field [35]

S =
1
2

∫
d4x

√−g
(
R− 2Λ − 1

6
Rφ2 − (∂φ)2 − 2αφ4 − F 2

)
, (16.2.21)

where α is a coupling constant, and we have set 8πG = 1.
For F, α,Λ = 0, the Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB) solution [239,

240] is static and spherically symmetric – it can be seen as the equivalent of the Schwarzschild
black hole in conformal gravity.

The general charged solution with cosmological constant and quartic coupling reads

ds2 = −f dt2 + f−1 dr2 + r2 dΩ2, (16.2.22a)

A =
q

r
dt, φ =

√
− Λ

6α
m

r −m
, (16.2.22b)

f = −Λ
3
r2 + κ

(r −m)2

r2
, (16.2.22c)

where dΩ2 is S2 or H2 (see section 15.1). There is one constraint on the parameters

q2 = κm2

(
1 +

Λ
36α

)
(16.2.23)

and one has αΛ < 0 in order for φ to be real.
In order to add a NUT charge one performs the DJN transformation1

u = u′ − 2n lnH(θ), r = r′ + in, m = m′ + in (16.2.24)

together with the shift (15.4.8)

κ −→ κ− 4Λ
3
n2. (16.2.25)

Using the result (C.3.5) one obtains the metric (omitting the primes)

ds2 = −f̃
(
dt− 2nH ′ dφ

)2
+ f̃−1 dr2 + (r2 + n2) dΩ2 (16.2.26)

where the function f̃ is

f̃ = −Λ
3

(r2 + n2) +
(
κ− 4Λ

3
n2

)
(r −m)2

r2 + n2
, (16.2.27)

where the term r −m is invariant. Similarly one obtains the scalar field

φ =

√
− Λ

6α

√
m2 + n2

r −m
(16.2.28)

where the m in the numerator as been complexified as |m|.
Finally it is trivial to find the gauge field using the formula (C.3.3b)

A =
q

r2 + n2

(
dt− 2n cos θ dφ

)
(16.2.29)

and the constraint (16.2.23) becomes

q2 =
(
κ− 4Λ

3
n2

)
(m2 + n2)

(
1 +

Λ
36α

)
. (16.2.30)

1Due to the convention of [35] there is no κ in the transformations.

124



An interesting point is that the radial coordinate is redfined in [35] when obtaining the
stationary solution from the static one.

Note that the BBMB solution and its NUT version are obtained from the limit

Λ, α −→ 0, with − Λ
36α

−→ 1, (16.2.31)

which also implies q = 0 from the constraint (16.2.23). Since no other modifications are
needed, the derivation from the DJN algorithm also holds.

16.3 Complex scalar fields: rotation

In this section we expose the main ingredient for applying the JN transformation with a 6= 0
(but n = 0) on complex scalar fields: one needs to transform together the real and imaginary
parts without enforcing any reality condition. Solutions with n 6= 0 require a more careful
treatment and are studied in appendix 16.4.

We will give examples from ungauged N = 2 supergravity coupled to nv = 0, 1, 3 vector
multiplets (pure supergravity, STU model and T 3 model). Our aim is not to give a detailed
account of supergravity, and more details can be found in the usual references [165, 170,
171].

16.3.1 Rule for complex fields

Let’s consider a complex scalar field χ such that

χ(r) = 1 +
R

r
(16.3.1)

for the static configuration, R being a parameter. This is a very typical behaviour, where
the imaginary part vanishes and the real part is harmonic with respect to the 3-dimensional
spatial metric.

The first step of the JN algorithm is to complexify all the fields, using only the fact that
r is complex. Namely, performing the JN transformation

r = r′ − ia cos θ (16.3.2)

gives

χ̃ = 1 +
R

r′ − ia cos θ
= 1 +

R (r′ + ia cos θ)
ρ2

, (16.3.3)

where as usual ρ2 = r′2 + a2 cos2 θ.
The imaginary part is thus proportional to the angular momentum a. Consequently it

is impossible to generate the latter only from the static imaginary part since the traditional
JN algorithm cannot generate a non-zero rotating field from a null static one. The main
argument for this new rule is that one should not enforce any reality condition on the real or
imaginary parts because they naturally form a pair. In other words, imaginary and real parts
of the scalar fields naturally form a pair which cannot be reduced by any reality condition.
Splitting a complex fields into its real and imaginary parts may hence obscure its structure
and leads to a failure of the transformation (as it shows up in [115]). Note also that χ̃ is
now a complex harmonic function.

16.3.2 Review of N = 2 ungauged supergravity

In order for this chapter to be self-contained we recall the basic elements ofN = 2 (ungauged)
supergravity. The gravity multiplet contains the metric and the graviphoton

{gµν , A0} (16.3.4)
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while each of the vector multiplets contains a gauge field and a complex scalar field

{Ai, zi}, i = 1, . . . , nv. (16.3.5)

The scalar fields zi (we denote the conjugate fields by z̄i = z ı̄) parametrize a special Kähler
manifold with metric gi̄. This manifold is uniquely determined by an holomorphic function
called the prepotential F . The latter is better defined using the homogeneous (or projective)
coordinates XΛ such that

zi =
X i

X0
. (16.3.6)

The first derivative of the prepotential with respect to XΛ is denoted by

FΛ =
∂F

∂XΛ
. (16.3.7)

Finally it makes sense to regroup the gauge fields into one single vector

AΛ = (A0, Ai). (16.3.8)

One needs to introduce two more quantities, respectively the Kähler potential and the
Kähler connection

K = − ln i(X̄ΛFΛ −XΛF̄Λ), Aµ = − i

2
(∂iK ∂µz

i − ∂ı̄K ∂µz
ı̄). (16.3.9)

The Lagrangian of this theory is given by

L = −R

2
+ gi̄(z, z̄) z∂µzi∂νz ı̄ + RΛΣ(z, z̄)FΛ

µνF
Σµν − IΛΣ(z, z̄)FΛ

µν ⋆F
Σµν (16.3.10)

where R is the Ricci scalar and ⋆FΛ is the Hodge dual of FΛ. The matrix

N = R + i I (16.3.11)

can be expressed in terms of F . From this Lagrangian one can introduce the symplectic
dual of FΛ

GΛ =
δL
δFΛ

= RΛΣF
Σ − IΛΣ ⋆F

Σ. (16.3.12)

16.3.3 BPS solutions

A BPS solution is a classical solution which preserves a part of the supersymmetry. The BPS
equations are obtained by setting to zero the variations of the fermionic partners under a
supersymmetric transformation. These equations are first order and under some conditions
their solutions also solve the equations of motion.

In [36, sec. 3.1] (see also [61, sec. 2.2] for a summary), Behrndt, Lüst and Sabra obtained
the most general stationary BPS solution for N = 2 ungauged supergravity. The metric for
this class of solutions reads

ds2 = f−1(dt+ ω dφ)2 + f dΣ2, (16.3.13)

with the 3-dimensional spatial metric given in spherical or spheroidal coordinates

dΣ2 = hij dxidxj = dr2 + r2(dθ2 + sin2 θ dφ2) (16.3.14a)

= dr2 + r2dΩ2 =
ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, (16.3.14b)

where i, j, k are flat spatial indices (which should not be confused with the indices of the
scalar fields). The functions f and ω depend on r and θ only.
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Then the solution is entirely given in terms of two sets of (real) harmonic functions2

{HΛ, HΛ}
f = e−K = i(X̄ΛFΛ −XΛF̄Λ), (16.3.15a)

εijk∂jωk = 2 e−KAi = (HΛ∂iH
Λ −HΛ∂iHΛ), (16.3.15b)

FΛ
ij =

1
2
εijk∂kH

Λ, GΛ ij =
1
2
εijk∂kHΛ, (16.3.15c)

i(XΛ − X̄Λ) = HΛ, i(FΛ − F̄Λ) = HΛ (16.3.15d)

The only non-vanishing component of ωi is ω ≡ ωφ.
Starting from the metric (16.3.13) in spherical coordinates with ω = 0, one can use the

JN algorithm of section 15.2 with

ft = f−1, fr = f, fΩ = r2f (16.3.16)

in order to obtain the metric (16.3.13) in spheroidal coordinates with ω 6= 0 given by

ω = a(1 − f̃) sin2 θ. (16.3.17)

Then one needs only to find the complexification of f and to check that it gives the correct
ω, as would be found from the equations (16.3.15). However it appears that one cannot
complexify directly f . Therefore one needs to complexify first the harmonic functions HΛ

and HΛ (or equivalently XΛ), and then to reconstruct the other quantities. Nonetheless,
equations (16.3.15) ensure that finding the correct harmonic functions gives a solution, thus
it is not necessary to check these equations for all the other quantities.

In the next subsections we provide two examples,3 one for pure supergravity as an ap-
petizer, and then one with nv = 3 multiplets (STU model).

Pure supergravity

As a first example we consider pure (or minimal) supergravity, i.e. nv = 0 [36, sec. 4.2].
The prepotential reads

F = − i

4
(X0)2. (16.3.18)

The function H0 and H0 are related to the real and imaginary parts of the scalar X0

H0 =
1
2

(X0 + X̄0) = ReX0, H̄0 = i(X0 − X̄0) = −2 ImX0, (16.3.19)

while the Kähler potential is given by

f = e−K = X0X̄0. (16.3.20)

The static solution corresponds to [36, sec. 4.2]

H0 = X0 = 1 +
m

r
(16.3.21)

Performing the JN transformation with the rule (16.3.3) gives

X̃0 = 1 +
m(r + ia cos θ)

ρ2
. (16.3.22)

This corresponds to the second solution of [36, sec. 4.2] which is stationary with

ω =
m(2r +m)

ρ2
a sin2 θ. (16.3.23)

2We omit the tilde that is present in [36] to avoid the confusion with the quantities that are transformed
by the JNA. No confusion is possible since the index position will always indicate which function we are
using.

3They correspond to singular solutions, but we are not concerned with regularity here.
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STU model

We now consider the STU model nv = 3 with prepotential [36, sec. 3]

F = −X1X2X3

X0
. (16.3.24)

The expressions for the Kähler potential and the scalar fields in terms of the harmonic
functions are complicated and will not be needed (see [36, sec. 3] for the expressions).
Various choices for the functions will give different solutions.

A class of static black hole-like solutions are given by the harmonic functions [36, sec. 4.4]

H0 = h0 +
q0

r
, Hi = hi +

pi

r
, H0 = Hi = 0. (16.3.25)

These solutions carry three magnetic pi and one electric q0 charges.
Let’s form the complex harmonic functions

H0 = H0 + iH0, Hi = Hi + iHi. (16.3.26)

Then the rule (16.3.3) leads to

H0 = h0 +
q0(r + ia cos θ)

ρ2
, Hi = hi +

pi(r + ia cos θ)
ρ2

, (16.3.27)

for which the various harmonic functions read explicitly

H0 = h0 +
q0r

ρ2
, Hi = hi +

pir

ρ2
, H0 =

q0a cos θ
ρ2

, Hi =
pia cos θ
ρ2

. (16.3.28)

This set of functions corresponds to the stationary solution of [36, sec. 4.4] where the mag-
netic and electric dipole momenta are not independent parameters but obtained from the
magnetic and electric charges instead.

16.3.4 Dilaton–axion black hole – T
3 model

Sen derived his solution using the fact that Einstein–Maxwell gravity coupled to an axion
σ and a dilaton φ (for a specific value of dilaton coupling constant) can be embedded in
heterotic string theory. This model can also be embedded in N = 2 ungauged supergravity
with nv = 1, equal gauge fields A ≡ A0 = A1 and prepotential4

F = −iX0X1, (16.3.29)

The dilaton and the axion corresponds to the complex scalar field

z = e−2φ + i σ. (16.3.30)

The static metric, gauge field and the complex field read respectively

ds2 = −f1

f2
dt2 + f2

(
f−1

1 dr2 + r2 dΩ2
)
, (16.3.31a)

A =
fA
f2

dt, (16.3.31b)

z = e−2φ = f2 (16.3.31c)

4This model can be obtained from the STU model by setting the sections pairwise equal X2 = X0 and
X3 = X1 [44]. It is also a truncation of pure N = 4 supergravity.
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where
f1 = 1 − r1

r
, f2 = 1 +

r2

r
, fA =

q

r
. (16.3.32)

The radii r1 and r2 are related to the mass and the charge by

r1 + r2 = 2m, r2 =
q2

m
. (16.3.33)

Applying now the Janis–Newman algorithm, the two functions f1 and f2 are complexified
with the usual rules (C.1.1b)

f̃1 = 1 − r1r

ρ2
, f̃2 = 1 +

r2r

ρ2
. (16.3.34)

The final metric in BL coordinates is given by

ds2 = − f̃1

f̃2

[
dt− a

(
1 − f̃2

f̃1

)
sin2 θ dφ

]2

+ f̃2

(
ρ2dr2

∆
+ ρ2dθ2 +

∆

f̃1

sin2 θ dφ2

)
(16.3.35)

for which the BL functions (C.3.4) are

g(r) =
∆̂
∆
, h(r) =

a

∆
(16.3.36)

with
∆ = f̃1ρ

2 + a2 sin2 θ, ∆̂ = f̃2ρ
2 + a2 sin2 θ. (16.3.37)

Once fA has been complexified as

f̃A =
qr

ρ2
(16.3.38)

the transformation of the gauge field is straightforward

A =
f̃A

f̃2

(dt− a sin2 θ dφ) − qr

∆
dr. (16.3.39)

The Ar depending solely on r can again be removed thanks to a gauge transformation.
One cannot complexify the scalar z using the previous function f̃2 since the latter is real

and not complex. Instead one needs to follow the rule (16.3.3) a new time in order to obtain

z = 1 +
r2

r
= 1 +

r2r̄

ρ2
. (16.3.40)

The explicit values for the dilaton and axion are then

e−2φ = f̃2, σ =
r2a cos θ

ρ2
. (16.3.41)

We have been able to find the full Sen’s solution, completing the computations from [115].
It is interesting to note that for another value of the dilaton coupling we cannot use the
transformation [138, 141].5 Finally the truncation σ = 0 is also a solution of dilatonic
gravity [141], but the JN algorithm generates directly the axion–dilaton metric such that
we cannot recover the vanishing axion case [115].

5The authors of [139] report incorrectly that [138] is excluding all dilatonic solutions.
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16.4 Complex scalar fields: NUT charge

16.4.1 Pure supergravity

In [36, sec. 4.2] a solution of pure supergravity (see 16.3.3 for the notations) with a NUT
charge is presented. In this case the solution reads

X0 = 1 +
m+ in

r
, ω = 2n cos θ. (16.4.1)

The question is whether this configuration can be obtained from the n = 0 solution
(16.3.21)

X0 = 1 +
m

r
(16.4.2)

from the transformation (15.4.3)

m = m′ + in, r = r′ + in. (16.4.3)

It is straightforward to check that the full metric (16.3.13) is recovered, while the field X0

in (16.4.1) follows from the rule (C.1.1a)

r −→ 1
2

(r + r̄) = Re r = r′ (16.4.4)

applied in the denominator. Hence a DJN transformation with the NUT charge does not act
in the same way as a transformation with an angular momentum, since the transformation
rule is different from (16.3.3).

16.4.2 SWIP solutions

Let’s consider the action [162, 39, sec. 12.2]

S =
1

16π

∫
d4x

√
|g|
(
R − 2(∂φ)2 − 1

2
e4φ (∂σ)2 − e−2φF iµνF

iµν + σ F iµν F̃
iµν

)
(16.4.5)

where i = 1, . . . ,M . When M = 2 and M = 6 this action corresponds respectively to N = 2
supergravity with one vector multiplet and to N = 4 pure supergravity, but we keep M
arbitrary. The axion σ and the dilaton φ are naturally paired into a complex scalar

z = σ + i e−2φ. (16.4.6)

In order to avoid redundancy we first provide the general metric with a, n 6= 0, and we
explain how to find it from the restricted case a = n = 0.

Stationary Israel–Wilson–Perjés (SWIP) solutions correspond to

ds2 = − e2UW (dt+Aφ dφ)2 + e−2UW−1dΣ2, (16.4.7a)

Ait = 2 e2U Re(kiH2), Ãit = 2 e2U Re(kiH1), z =
H1

H2
, (16.4.7b)

Aφ = 2n cos θ − a sin2 θ( e−2UW−1 − 1), (16.4.7c)

e−2U = 2 Im(H1H̄2), W = 1 − r2
0

ρ2
. (16.4.7d)

This solution is entirely determined by the two harmonic functions

H1 =
1√
2

eφ0

(
z0 +

z0M + z̄0Υ
r − ia cos θ

)
, H2 =

1√
2

eφ0

(
1 +

M + Υ
r − ia cos θ

)
. (16.4.8)
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The spatial 3-dimensional metric dΣ2 reads

dΣ2 = hij dxidxj =
ρ2 − r2

0

r2 + a2 − r2
0

dr2 + (ρ2 − r2
0)dθ2 + (r2 + a2 − r2

0) sin2 θ dφ2. (16.4.9)

Finally, r0 corresponds to

r2
0 = |M|2 + |Υ|2 −

∑

i

∣∣Γi
∣∣2 (16.4.10)

where the complex parameters are

M = m+ in, Γi = qi + ipi, (16.4.11)

m being the mass, n the NUT charge, qi the electric charges and pi the magnetic charges,
while the axion/dilaton charge Υ takes the form

Υ = −1
2

∑

i

(Γ̄i)2

M . (16.4.12)

The latter together with the asymptotic values z0 comes from

z ∼ z0 − i e−2φ0
2Υ
r
. (16.4.13)

The complex constant ki are determined by

ki = − 1√
2

MΓi + ῩΓ̄i

|M|2 − |Υ|2
. (16.4.14)

As discussed in the previous section, the transformation of scalar fields is different
whether one is turning on a NUT charge or an angular momentum. For this reason, starting
from the case a = n = 0, one needs to perform the two successive transformations

u = u′ − 2in ln sin θ, r = r′ + in, m = m′ + in, (16.4.15a)

u = u′ + ia cos θ, r = r′ − ia cos θ, (16.4.15b)

the order being irrelevant (for definiteness we choose to add the NUT charge first). As
explained in section 17.3, group properties of the DJN algorithm ensure that the metric will
be transformed as if only one transformation was performed, and one can use the formula
of section 15.2. Then the formulas (C.3.3) for the metric and for the gauge field directly
apply, which ensures that the general form of the solution (16.4.7) is correct.6 Since all
the functions and the parameters depend only on M, H1 and H2, it is sufficient to explain
their complexification.

The function W is easily transformed, whereas H1 and H2 are more subtle since they are
complex harmonic functions. Let’s consider first the NUT charge with the transformation
(16.4.15a). According to the previous appendix, the r in the denominator of both functions
is transformed according to (C.1.1a)

r −→ 1
2

(r + r̄) = Re r = r′. (16.4.16)

Then one can perform the second transformation (16.4.15b) in order to add the angular
momentum. Using the recipe from section 16.3.1, one obtain the correct result (16.4.8) by
just replacing r with (16.4.15b).

Finally let’s note that it seems possible to also start from pi = 0 and to turn them on
using the transformation

qi = q′i = qi + ipi, (16.4.17)

using different rules for complexifying the various terms (depending whether one is dealing
with a real or a complex function/parameter).

6For that one needs to shift r2 by r2
0 in order to bring the metric (16.4.9) to the form (16.3.14). This

modifies the function but one does not need this fact to obtain the general form. Then one can shift by −r2
0

before dealing with the complexification of the functions.
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Chapter 17

Technical properties

In this chapter we describe few technical properties of the algorithm. In particular some
DJN transformations have an interesting group structure that allows to chain several trans-
formations [159]. Another useful property of Giampieri’s prescription is to allow to chain
all coordinate transformation, making computations easier [99]. Then finally we discuss the
fact that not all the rules (C.1.1) are independent and several choices of complexification
are equivalent [99], contrary to what is widely believed.

17.1 Chaining transformations

The JN algorithm is summarized by the following table

t → u → u ∈ C → u′ → t′

r → r ∈ C → r′

φ → φ′

f → f̃
gµν → g′

µν

(17.1.1)

where the arrows correspond respectively to the steps 1, 2, 4 and 5 of section 14.2 (and 1,
3, 4 and 6 of section 14.1).

A major advantage of Giampieri’s prescription is that one can chain all these transfor-
mations since it involves only substitutions and no tensor operations. For this reason it is
much easier to implement on a computer algebra system such as Mathematica. It is then
possible to perform a unique change of variables that leads directly from the static metric
to the rotating metric in any system defined by the function (g, h)

dt = dt′ +
(
ah sin2 θ (1 − f̃−1) − g + f̃−1

)
dr′ + a sin2 θ (f̃−1 − 1) dφ′, (17.1.2a)

dr = (1 − ah sin2 θ) dr′ + a sin2 θ dφ′, (17.1.2b)

dφ = dφ′ − h dr′, (17.1.2c)

where the complexification of the metric function f can be made at the end. It is impressive
that steps 1 to 5 from section 14.2 can be written in such a compact way.

17.2 Arbitrariness of the transformation

We provide a short comment on the arbitrariness of the complexification rules. In particular
let’s consider the functions

f1(r) =
1
r
, f2(r) =

1
r2
. (17.2.1)
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The usual rule is to complexify these two functions as

f̃1(r) =
Re r

|r|2
, f̃2(r) =

1

|r|2
(17.2.2)

using respectively the rules (C.1.1b) and (C.1.1c) (in the denominator).
But it is possible to arrive at the same result with a different combinations of rules. In

fact the functions can be rewritten as

f1(r) =
r

r2
, f2(r) =

1
r

1
r
. (17.2.3)

The following set of rules results again in (17.2.2):

• f1: (C.1.1a) (numerator) and (C.1.1c) (denominator);

• f2: (C.1.1a) (first fraction) and (C.1.1b) (second fraction).

17.3 Group properties

In this section we want to show that (some of) DJN transformations form a group.
After a first transformation

r = r′ + i F1, u = u′ + i G1 (17.3.1)

one obtains the metric

ds2 = − f̃
{1}
t (du+HG′

1 dφ)2 + f̃
{1}
Ω (dθ2 +H2dφ2)

− 2
√
f̃

{1}
t f̃

{1}
r (du+G′

1H dφ)(dr + F ′
1H dφ)

(17.3.2)

where
f̃

{1}
i = f̃

{1}
i (r, F1). (17.3.3)

Applying a second transformation

r = r′ + i F2, u = u′ + i G2 (17.3.4)

the previous metric becomes

ds2 = − f̃
{1,2}
t

(
du+H(G′

1 +G′
2) dφ

)2
+ f̃

{1,2}
Ω (dθ2 +H2dφ2)

− 2
√
f̃

{1,2}
t f̃

{1,2}
r

(
du+ (G′

1 +G′
2)H dφ

)(
dr + (F ′

1 + F ′
2)H dφ

) (17.3.5)

where this time
f̃

{1,2}
i = f̃

{1,2}
i (r, F1, F2). (17.3.6)

As for the first transformation we only ask for the following conditions

f̃
{1,2}
i (r, F1, 0) = f̃

{1}
i (r, F1), f̃

{1,2}
i (r, F1, F2) = f̃

{2,1}
i (r, F2, F1). (17.3.7)

In one word a zero transformation should just give back the old metric, and the two trans-
formations should commute.

Looking at the expression of the metric, it is obvious that the DJN transformations which
are such that

f̃
{1,2}
i (r, F1, F2) = f̃

{1}
i (r, F1 + F2) (17.3.8)
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form an (Abelian) group if the functions F and G are linear in the parameters (i. e. the
group is additive). This last condition means that we can decompose them on a basis of
generators {FA(θ)} and {GM (θ)}, where A and M are (different) indices, such that

F (θ) = fAFA(θ), G(θ) = gMGM (θ), (17.3.9)

fA and gM being the parameters of the transformations. It is possible that fA = gM

and FA ∝ GM for some A and M (as we obtained in section 15.3) which means that the
corresponding parameters fA and gM are not independent.

These transformations form a group because composing two transformations (F1, G1)
and (F2, G2) gives a third transformation (F3, G3) according to

F3 = F1 + F2, G3 = G1 +G2 (17.3.10)

with the parameters combining linearly. Moreover there an identity (0, 0) and also an inverse
(−F,−G).

All this structure implies that we can first add one parameter, and later another (say first
the NUT charge, and then an angular momentum). Said another way this group preserves
Einstein equations when the seed metric is a known (stationary) solution. But note that it
may be very difficult to do it as soon as one begins to replace the F in the functions by their
expression, because it obscures the original function – in one word we cannot find f̃i(r, F )
from f̃i(r, θ).

Another point worth mentioning is that not all DJN transformation are in this group
since it may happen that the condition (17.3.8) is not satisfied. Such an example is provided
in 5d where the function fΩ(r) = r2 is successively transformed as [160]

r2 −→ |r|2 = r2 + a2 cos2 θ −→ |r|2 + a2 cos2 θ = r2 + a2 cos2 θ + b2 sin2 θ, (17.3.11)

where the two transformations were

F1 = a cos θ, F2 = b sin θ, (17.3.12)

and
f̃

{1,2}
Ω = r2 + F 2

1 + F 2
2 . (17.3.13)

The condition (17.3.8) is clearly not satisfied. These group properties may explain why the
JN algorithm is not working for d > 5, or maybe give a clue to solve this problem.
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Chapter 18

Other dimensions

While in four dimensions we have at our disposal many theorems on the classification of
solutions, this is not the case for higher dimensions and the bestiary for solutions is much
wider and less understood [110, 241]. In particular important solutions have not yet been
discovered, such as charged rotating black holes with several angular momenta (in pure
Einstein–Maxwell gravity).

Generalizing the (D)JN algorithm in other dimensions is challenging and only small steps
have been taken in this direction. For instance Xu recovered Myers–Perry solution [163] with
one angular momentum from the Schwarzschild–Tangherlini solution [122] (see also [242]),1

and Kim showed how the rotating BTZ black hole [243] can be obtained from its static
limit [123, 124].

We first analyse the case d = 5 and we show how to generate solutions with two angular
momenta from a static solution in the case of two examples [160]: the Myers–Perry black
hole [163] and the Breckenridge–Myers–Peet–Vafa (BMPV) extremal black hole [164].

Parametrizing the metric on the sphere by direction cosines is a key step in order to
generalize the transformation to any dimension since these coordinates are totally symmetric
under interchange of angular momenta (at the opposite of the spherical coordinates). Despite
the fact that it is possible to obtain the correct structure of the metric (for Myers–Perry-like
metrics), it is very challenging to determine the functions inside the metric. Nonetheless
this provides a unified view of the JN algorithm for d = 3, 4, 5. Indeed our formalism can
be used to recover the rotating BTZ black hole more directly.

Here Giampieri’s prescription simplifies greatly the computations as the tetrad formalism
would imply working with matrices of size d. Note also that we could not reproduce the
derivation using the tetrad formalism as some terms do not seem to cancel in this case.

A major application of our work would be to find the charged solution with two angular
momenta of the 5d Einstein–Maxwell. This problem is highly non-trivial and there is few
chances that this technique would work directly [242], but one can imagine that a generaliza-
tion of Demiański’s approach [100] (see chapter 15) could lead to new interesting solutions
in five dimensions. An intermediate step is represented by the CCLP metric [244] which
is a solution of Einstein–Maxwell together with a Chern–Simons term, but it cannot be
obtained from the JN algorithm. Moreover it would be very desirable to derive the general
d-dimensional Myers–Perry solution [163], or at least to understand why only the metric can
be found, and not the function inside. Slowly rotating metrics could in principle be derived
easily [242, sec. 4] using our prescriptions and could be a nice playground to understand
better higher dimensional solution with d ≥ 6. Finally one can ask whether the algorithm
can be used to derive black rings [241, 245].

1Note that [127, 129] obtain higher dimensional metric with one angular momentum, but they are not
solutions of the equations of motion.
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18.1 Five-dimensional applications

We first look at the simple case of five dimensions, and later we generalize to any dimension.

18.1.1 Myers–Perry black hole

In this section we show how to recover Myers–Perry black hole in five dimensions through
Giampieri’s prescription. This is a solution of 5-dimensional pure Einstein theory which
possesses two angular momenta and it generalizes the Kerr black hole. The importance of
this solution lies in the fact that it can be constructed in any dimension.

Let us start with the five-dimensional Schwarzschild–Tangherlini metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2
3 (18.1.1)

where dΩ2
3 is the metric on S3, which can be expressed in Hopf coordinates (see section B.3.2)

dΩ2
3 = dθ2 + sin2 θ dφ2 + cos2 θ dψ2, (18.1.2)

and the function f(r) is given by

f(r) = 1 − m

r2
. (18.1.3)

An important feature of the JN algorithm is the fact that a given set of transformations
in the (r, φ)-plane generates rotation in the latter. Generating several angular momenta in
different 2-planes would then require successive applications of the JN algorithm on different
hypersurfaces. In order to do so, one has to identify what are the 2-planes which will be
submitted to the algorithm. In five dimensions, the two different planes that can be made
rotating are the planes (r, φ) and (r, ψ). We claim that it is necessary to dissociate the radii
of these 2-planes in order to apply separately the JN algorithm on each plane and hence to
generate two distinct angular momenta. In order to dissociate the parts of the metric that
correspond to the rotating and non-rotating 2-planes, one can protect the function r2 to
be transformed under complex transformations in the part of the metric defining the plane
which will stay static. We thus introduce the function

R(r) = Re(r) (18.1.4)

such that the metric in null coordinates reads

ds2 = −du (du+ 2dr) + (1 − f) du2 + r2(dθ2 + sin2 θ dφ2) +R2 cos2 θ dψ2. (18.1.5)

The first transformation – hence concerning the (r, φ)-plane – is

u = u′ + ia cosχ1, r = r′ − ia cosχ1,

i dχ1 = sinχ1 dφ, with χ1 = θ,

du = du′ − a sin2 θ dφ, dr = dr′ + a sin2 θ dφ,

(18.1.6)

and f is replaced by f̃{1} = f̃{1}(r, θ). Indeed we need to keep track of the order of the
transformation, since the function f will be complexified twice consecutively. On the other
hand R(r) = Re(r) transforms into R(r) = r′ and we find (omitting the primes)

ds2 = −du2 − 2 dudr +
(
1 − f̃{1}

)
(du− a sin2 θ dφ)2 + 2a sin2 θ drdφ

+ (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2.
(18.1.7)

The function f̃{1} is

f̃{1} = 1 − m

|r|2
= 1 − m

r2 + a2 cos2 θ
. (18.1.8)
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There is a cancellation between the (u, r) and the (θ, φ) parts of the metric

ds2
u,r = (1 − f̃{1}) (du − a sin2 θ dφ)2 − du(du+ 2dr) + 2a sin2 θ drdφ + a2 sin4 θ dφ2,

(18.1.9a)

ds2
θ,φ = (r2 + a2 cos2 θ)dθ2 +

(
r2 + a2(1 − sin2 θ)

)
sin2 θ dφ2. (18.1.9b)

In addition to the terms present in (18.1.5) we obtain new components corresponding
to the rotation of the first plane (r, φ). We find the same terms as in (18.1.5) plus other
terms that corresponds to the rotation in the first plane. Transforming now the second one
– (r, ψ) – the transformation is2

u = u′ + ib sinχ2, r = r′ − ib sinχ2,

i dχ2 = − cosχ2 dψ, with χ2 = θ,

du = du′ − b cos2 θ dψ, dr = dr′ + b cos2 θ dψ,

(18.1.10)

can be applied directly to the metric

ds2 = −du2 − 2 dudr +
(
1 − f̃{1}

)
(du − a sin2 θ dφ)2 + 2a sin2 θ dRdφ

+ ρ2dθ2 + (R2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2
(18.1.11)

where we introduced once again the function R(r) = Re(r) to protect the geometry of the
first plane to be transformed under complex transformations.

The final result (using again R = r′ and omitting the primes) becomes

ds2 = −du2 − 2 dudr +
(
1 − f̃{1,2}

)
(du − a sin2 θ dφ− b cos2 θ dψ)2

+ 2a sin2 θ drdφ + 2b cos2 θ drdψ

+ ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + (r2 + b2) cos2 θ dψ2

(18.1.12)

where
ρ2 = r2 + a2 cos2 θ + b2 sin2 θ. (18.1.13)

Furthermore, the function f̃{1} has been complexified as

f̃{1,2} = 1 − m

|r|2 + a2 cos2 θ
= 1 − m

r′2 + a2 cos2 θ + b2 sin2 θ
= 1 − m

ρ2
. (18.1.14)

The metric can then be transformed into the Boyer–Lindquist (BL) using

du = dt− g(r) dr, dφ = dφ′ − hφ(r) dr, dψ = dψ′ − hψ(r) dr. (18.1.15)

Defining the parameters3

Π = (r2 + a2)(r2 + b2), ∆ = r4 + r2(a2 + b2 −m) + a2b2, (18.1.16)

the functions can be written

g(r) =
Π
∆
, hφ(r) =

Π
∆

a

r2 + a2
, hψ(r) =

Π
∆

b

r2 + b2
. (18.1.17)

We get the final metric

ds2 = −dt2 +
(
1 − f̃{1,2}

)
(dt− a sin2 θ dφ− b cos2 θ dψ)2 +

r2ρ2

∆
dr2

+ ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + (r2 + b2) cos2 θ dψ2.

(18.1.18)

2The easiest justification for choosing the sinus here is by looking at the transformation in terms of
direction cosines, see section 18.3.3. Otherwise this term can be guessed by looking at Myers–Perry non-
diagonal terms.

3See (18.2.17) for a definition of ∆ in terms of f̃ .
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One recovers here the five dimensional Myers–Perry black hole with two angular mo-
menta [163].

It is important to mention that following the same prescription in dimensions higher than
five does not lead as nicely as we did in five dimensions to the exact Myers–Perry solution.
Indeed we show in section 18.2 that the transformation of the metric can be done along
the same line but that the only – major – obstacle comes from the function f that cannot
be complexified as expected. Finding the correct complexification seems very challenging
and it may be necessary to use a different complex coordinate transformation in order to
perform a completely general transformation in any dimension. It might be possible to gain
insight into this problem by computing the transformation within the framework of the
tetrad formalism.

One may think that a possible solution would be to replace complex numbers by quater-
nions, assigning one angular momentum to each complex direction but it is straightforward
to check that this approach is not working.

18.1.2 BMPV black hole

Few properties and seed metric

In this section we focus on another example in five dimensions, which is the BMPV black
hole [164, 246]. This solution possesses many interesting properties, in particular it can be
proven that it is the only rotating BPS asymptotically flat black hole in five dimensions with
the corresponding near-horizon geometry [241, sec. 7.2.2, 8.5, 247].4 It is interesting to
notice that even if this extremal solution is a slowly rotating metric, it is an exact solution
(whereas Einstein equations need to be truncated for consistency of usual slow rotation).

For a rotating black hole the BPS and extremal limits do not coincide [241, sec. 7.2, 246,
sec. 1]: the first implies that the mass is related to the electric charge,5 while extremality6

implies that one linear combination of the angular momenta vanishes, and for this reason
we set a = b from the beginning.7 We are thus left with two parameters that we take to be
the mass and one angular momentum.

In the non-rotating limit BMPV black hole reduces to the charged extremal Schwarz-
schild–Tangherlini (with equal mass and charge) written in isotropic coordinates. For non-
rotating black hole the extremal and BPS limit are equivalent.

Both the charged extremal Schwarzschild–Tangherlini and BMPV black holes are solu-
tions of minimal (N = 2) d = 5 supergravity (Einstein–Maxwell plus Chern–Simons) whose
action is [246, sec. 1, 248, sec. 2, 249, sec. 2]

S = − 1
16πG

∫ (
R ⋆1 + F ∧ ⋆F +

2λ

3
√

3
F ∧ F ∧A

)
, (18.1.19)

where supersymmetry imposes λ = 1.
Since extremal limits are different for static and rotating black holes we can guess that

the black hole we will obtain from the algorithm will not be a solution of the equations of
motion and we will need to take some limit.

The charged extremal Schwarzschild–Tangherlini black hole is taken as a seed metric [249,
sec. 3.2, 250, sec. 4, 251, sec. 1.3.1, 252, sec. 3]

ds2 = −H−2 dt2 +H (dr2 + r2 dΩ2
3) (18.1.20)

4Other possible near-horizon geometries are S1 × S2 (for black rings) and T 3, even if the latter does not
seem really physical. BMPV horizon corresponds to the squashed S3.

5It is a consequence from the BPS bound m ≥
√

3/2 |q|.
6Regularity is given by a bound, which is saturated for extremal black holes.
7If we had kept a 6= b we would have discovered later that one cannot transform the metric to

Boyer–Lindquist coordinates without setting a = b.
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where dΩ2
3 is the metric of the 3-sphere written in (18.1.2). The function H is harmonic

H(r) = 1 +
m

r2
, (18.1.21)

and the electromagnetic field reads

A =

√
3

2λ
m

r2
dt = (H − 1) dt. (18.1.22)

In the next subsections we apply successively the transformations (18.1.6) and (18.1.10)
with a = b in the case λ = 1 because we are searching a supersymmetric solution.

Transforming the metric

The transformation to (u, r) coordinates of the seed metric (18.1.20)

dt = du+H3/2 dr (18.1.23)

gives

ds2 = −H−2 du2 − 2H−1/2 dudr +Hr2 dΩ2
3 (18.1.24a)

= −H−2
(
du− 2H3/2 dr

)
du+Hr2 dΩ2

3. (18.1.24b)

For transforming the above metric one should follow the recipe of the previous section:
transformations (18.1.6)

u = u′ + ia cos θ, du = du′ − a sin2 θ dφ, (18.1.25)

and (18.1.10)
u = u′ + ia sin θ, du = du′ − a cos2 θ dψ (18.1.26)

are performed one after another, transforming each time only the terms that pertain to the
corresponding rotation plane.8 In order to preserve the isotropic form of the metric the
function H is complexified everywhere (even when it multiplies terms that belong to the
other plane).

Since the procedure is exactly similar to the Myers–Perry case we give only the final
result in (u, r) coordinates

ds2 = − H̃−2
(
du− a(1 − H̃3/2)(sin2 θ dφ+ cos2 θ dψ)

)2

− 2H̃−1/2
(
du− a(1 − H̃3/2) (sin2 θ dφ+ cos2 θ dψ)

)
dr

+ 2aH̃ (sin2 θ dφ+ cos2 θ dψ) dr − 2a2H̃ cos2 θ sin2 θ dφdψ

+ H̃
(

(r2 + a2)(dθ2 + sin2 θ dφ2 + cos2 θ dψ2) + a2(sin2 θ dφ+ cos2 θ dψ)2
)
.

(18.1.27)
After both transformations the resulting function H̃ is

H̃ = 1 +
m

r2 + a2 cos2 θ + a2 sin2 θ
= 1 +

m

r2 + a2
(18.1.28)

which does not depend on θ.
It is easy to check that the Boyer–Lindquist transformation (18.1.15)

du = dt− g(r) dr, dφ = dφ′ − hφ(r) dr, dψ = dψ′ − hψ(r) dr (18.1.29)

is ill-defined because the functions depend on θ. The way out is to take the extremal limit
alluded above.

8For another approach see section 18.1.3.
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Following the prescription of [164, 246] and taking the extremal limit

a,m −→ 0, imposing
m

a2
= cst, (18.1.30)

one gets at leading order

H̃(r) = 1 +
m

r2
= H(r), a (1 − H̃3/2) = −3ma

2 r2
(18.1.31)

which translate into the metric

ds2 = −H−2

(
du+

3ma
2 r2

(sin2 θ dφ+ cos2 θ dψ)
)2

− 2H−1/2

(
du+

3ma
2 r2

(sin2 θ dφ+ cos2 θ dψ)
)

dr

+H r2(dθ2 + sin2 θ dφ2 + cos2 θ dψ2).

(18.1.32)

Then Boyer–Lindquist functions are

g(r) = H(r)3/2, hφ(r) = hψ(r) = 0 (18.1.33)

and one gets the metric in (t, r) coordinates

ds2 = − H̃−2

(
dt+

3ma
2 r2

(sin2 θ dφ+ cos2 θ dψ)
)2

+ H̃
(

dr2 + r2
(
dθ2 + sin2 θ dφ2 + cos2 θ dψ2

))
.

(18.1.34)

We recognize here the BMPV solution [164, p. 4, 246, p. 16]. The fact that this solution has
only one rotation parameter can be seen more easily in Euler angle coordinates [246, sec. 3,
253, sec. 2] or by looking at the conserved charges in the φ- and ψ-planes [164, sec. 3].

Transforming the Maxwell potential

Following the procedure described in [99] and recalled in section 14.5.2, one can also derive
the gauge field in the rotating framework from the original static one (18.1.22). The latter
can be written in the (u, r) coordinates

A =

√
3

2
(H − 1) du, (18.1.35)

since we can remove the Ar(r) component by a gauge transformation. One can apply the
two JN transformations (18.1.6) and (18.1.10) with b = a to obtain

A =

√
3

2
(H̃ − 1)

(
du− a (sin2 θ dφ+ cos2 θ dψ)

)
. (18.1.36)

Then going into BL coordinates with (18.1.15) and (18.1.33) provides

A =

√
3

2
(H̃ − 1)

(
dt− a (sin2 θ dφ+ cos2 θ dψ)

)
+Ar(r) dr. (18.1.37)

Again Ar depends only on r and can be removed by a gauge transformation. Applying the
extremal limit (18.1.30) finally gives

A =

√
3

2
m

r2

(
dt− a (sin2 θ dφ+ cos2 θ dψ)

)
, (18.1.38)
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which is again the result presented in [164, p. 5].
Despite the fact that the seed metric (18.1.20) together with the gauge field (18.1.22)

solves the equations of motion for any value of λ, the resulting rotating metric solves the
equations only for λ = 1 (see [246, sec. 7] for a discussion). An explanation in this re-
duction can be found in the limit (18.1.30) that was needed for transforming the metric to
Boyer–Lindquist coordinates and which gives a supersymmetric black hole – which neces-
sarily has λ = 1.

18.1.3 Another approach to BMPV

In section 18.1.2 we applied the same recipe given in section 18.1.1 which, according to our
claim, is the standard procedure in five dimensions.

There is another way to derive BMPV black hole. Indeed, by considering that terms
quadratic in the angular momentum do not survive in the extremal limit, they can be added
the metric without modifying the final result. Hence we can decide to transform all the
terms of the metric9 since the additional terms will be subleading. As a result the BL
transformation is directly well defined and overall formulas are simpler, but we need to take
the extremal limit before the end (this could be done either in (u, r) or (t, r) coordinates).
This section shows that both approaches give the same result.

Applying the two transformations

u = u′ + ia cos θ, du = du′ − a sin2 θ dφ, (18.1.39a)

u = u′ + ia sin θ, du = du′ − a cos2 θ dψ (18.1.39b)

successively on all the terms one obtains the metric

ds2 = − H̃−2
(
du− a(1 − H̃3/2)(sin2 θ dφ+ cos2 θ dψ)

)2

− 2H̃−1/2
(
du− a(sin2 θ dφ+ cos2 θ dψ)

)
dr

+ H̃
(

(r2 + a2)(dθ2 + sin2 θ dφ2 + cos2 θ dψ2) + a2(sin2 θ dφ+ cos2 θ dψ)2
)
,

(18.1.40)
where again H̃ is given by (18.1.28)

H̃ = 1 +
m

r2 + a2
. (18.1.41)

Only one term is different when comparing with (18.1.27).
The BL transformation (18.1.15) is well-defined and the corresponding functions are

g(r) =
a2 + (r2 + a2)H̃(r)

r2 + 2a2
, hφ(r) = hψ(r) =

a

r2 + 2a2
(18.1.42)

which do not depend on θ. They lead to the metric

ds2 = − H̃−2
(
dt− a(1 − H̃3/2)(sin2 θ dφ+ cos2 θ dψ)

)2

+ H̃

[
(r2 + a2)

(
dr2

r2 + 2a2
+ dθ2 + sin2 θ dφ2 + cos2 θ dψ2

)

+ a2(sin2 θ dφ+ cos2 θ dψ)2

]
.

(18.1.43)

At this point it is straightforward to check that this solution does not satisfy Einstein
equations and we need to take the extremal limit (18.1.30)

a,m −→ 0, imposing
m

a2
= cst (18.1.44)

9In opposition to our initial recipe, but this is done in a controlled way.
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in order to get the BMPV solution (18.1.34)

ds2 = − H̃−2

(
dt+

3ma
2 r2

(sin2 θ dφ+ cos2 θ dψ)
)2

+ H̃
(

dr2 + r2
(
dθ2 + sin2 θ dφ2 + cos2 θ dψ2

))
.

(18.1.45)

It is surprising that the BL transformation is simpler in this case. Another point that
is worth stressing is that we did not need to take the extremal limit in this computation,
whereas in section 18.1.2 we had to in order to get a well-defined BL transformation.

18.1.4 CCLP black hole

It would be very interesting to find the CCLP black hole [244] (see also [248, sec. 2]), which
is the corresponding non-extremal solution with four independent charges: two angular
momenta a and b, an electric charge q and the mass m. This black hole is also a solution of
d = 5 minimal supergravity (18.1.19).

The solution reads

ds2 = −dt2 + (1 − f̃)(dt− a sin2 θ dφ − b cos2 θ dψ)2 +
r2ρ2

∆r
dr2

+ ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + (r2 + b2) cos2 θ dψ2

− 2q
ρ2

(b sin2 θ dφ+ a cos2 θ dψ)(dt− a sin2 θ dφ− b cos2 θ dψ),

(18.1.46a)

A =

√
3

2
q

ρ2
(dt− a sin2 θ dφ− b cos2 θ dψ), (18.1.46b)

where the function are given by

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, (18.1.47a)

f̃ = 1 − 2m
ρ2

+
q2

ρ4
, (18.1.47b)

∆r = Π + 2abq + q2 − 2mr2. (18.1.47c)

Yet, using our prescription, it appears that the metric of this black hole cannot entirely be
recovered. Indeed all the terms but one are generated by our algorithm, which also provides
the correct gauge field. The missing term (corresponding to the last one in (18.1.46a)) is
proportional to the electric charge and the current prescription cannot generate it.

This issue may be related to the fact that the CCLP solution cannot be written as a
Kerr–Schild metric but as an extended Kerr–Schild one [254–256], which includes an addi-
tional term proportional to a spacelike vector. It appears that the missing term corresponds
precisely to this additional term in the extended Kerr–Schild metric, and it is well-known
that the JN algorithm works mostly for Kerr–Schild metrics. Moreover the ∆ computed
from (18.2.17) depends on θ and the BL transformation would not be well-defined if the
additional term is not present to modify ∆ to ∆r.

18.2 Transformation in any dimension

In this appendix we consider the JN algorithm applied to a general static d-dimension metric.
As we argued in a previous section it is important to consider separately the transformation
of the metric and the complexification of the functions inside. Hence we are able to derive
the general form of a rotating metric with the maximal number of angular momenta it can
have in d dimensions, but we are not able to apply this result to any specific example for
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d ≥ 6, except if all momenta but one are vanishing [122]. Despite this last problem, this
computation provides a unified framework for d = 3, 4, 5 (see section 18.3.4 for the BTZ
black hole).

In the following the dimension is taken to be odd in order to simplify the computations,
but the final result holds also for d even.

18.2.1 Metric transformation

Seed metric and discussion

Consider the d-dimensional static metric (notations are defined in appendix B.1)

ds2 = −f dt2 + f−1 dr2 + r2 dΩ2
d−2 (18.2.1)

where dΩ2
d−2 is the metric on Sd−2

dΩ2
d−2 = dθd−2 + sin2 θd−2 dΩ2

d−3 =
n∑

i=1

(
dµ2

i + µ2
idφ

2
i ). (18.2.2)

The number n = (d− 1)/2 denotes the number of independent 2-spheres.
In Eddington–Finkelstein coordinates the metric reads

ds2 = (1 − f) du2 − du (du+ 2dr) + r2
∑

i

(
dµ2

i + µ2
i dφ2

i

)
. (18.2.3)

The metric looks like a 2-dimensional space (t, r) with a certain number of additional
2-spheres (µi, φi) which are independent from one another. Then we can consider only the
piece (u, r, µi, φi) (for fixed i) which will transform like a 4-dimensional spacetime, while the
other part of the metric (µj , φj) for all j 6= i will be unchanged. After the first transformation
we can move to another 2-sphere. We can thus imagine to put in rotation only one of these
spheres. Then we will apply again and again the algorithm until all the spheres have angular
momentum: the whole complexification will thus be a n-steps process. Moreover if these 2-
spheres are taken to be independent this implies that we should not complexify the functions
that are not associated with the plane we are putting in rotation.

To match these demands the metric is rewritten as

ds2 = (1−f) du2 −du (du+2dri1)+r2
i1 (dµ2

i1 +µ2
i1 dφ2

i1 )+
∑

i6=i1

(
r2
i1 dµ2

i +R2µ2
i dφ2

i

)
. (18.2.4)

where we introduced the following two functions of r

ri1 (r) = r, R(r) = r. (18.2.5)

This allows to choose different complexifications for the different terms in the metric. It
may be surprising to note that the factors in front of dµ2

i have been chosen to be r2
i1 and

not R2, but the reason is that the µi are all linked by the constraint

∑

i

µ2
i = 1 (18.2.6)

and the transformation of one i1-th 2-sphere will change the corresponding µi1 , but also all
the others, as it is clear from the formula (B.1.14) with all the ai vanishing but one (this
can also be observed in 5d where both µi are gathered into θ).
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First transformation

The transformation is chosen to be

ri1 = r′
i1 − i ai1

√
1 − µ2

i1
, u = u′ + i ai1

√
1 − µ2

i1
(18.2.7a)

which, together with the ansatz

i
dµi1√
1 − µ2

i1

= µi1 dφi1 , (18.2.7b)

gives the differentials

dri1 = dr′
i1 + ai1µ

2
i1 dφi1 , du = du′ − ai1µ

2
i1 dφi1 . (18.2.7c)

It is easy to check that this transformation reproduces the one given in four and five
dimensions.

The complexified version of f is written as f̃{i1}: we need to keep track of the order in
which we gave angular momentum since the function f̃ will be transformed at each step.

We consider separately the transformation of the (u, r) and {µi, φi} parts. Inserting the
transformations (18.2.7) in (18.2.3) results in

ds2
u,r = (1 − f̃{i1})

(
du− ai1µ

2
i1 dφi1

)2

− du (du+ 2dri1 ) + 2ai1µ
2
i1 dri1 dφi1 + a2

i1µ
4
i1 dφ2

i1 ,

ds2
µ,φ =

(
r2
i1 + a2

i1

)
(dµ2

i1 + µ2
i1 dφ2

i1 ) +
∑

i6=i1

(
r2
i1 dµ2

i +R2µ2
i dφ2

i

)
− a2

i1µ
4
i1 dφ2

i1

+ a2
i1

[
− µ2

i1 dµ2
i1 + (1 − µ2

i1 )
∑

i6=i1

dµ2
i

]
.

The term in the last bracket vanishes as can be seen by using the differential of the
constraint ∑

i

µ2
i = 1 =⇒

∑

i

µidµi = 0. (18.2.9)

Since this step is very important and non-trivial we expose the details

[· · · ] = µ2
i1 dµ2

i1 − (1 − µ2
i1 )
∑

i6=i1

dµ2
i =


∑

i6=i1

µidµi




2

−
∑

j 6=i1

µ2
j

∑

i6=i1

dµ2
i

=
∑

i,j 6=i1

(
µiµjdµidµj − µ2

jdµ
2
i

)
=
∑

i,j 6=i1

µj
(
µidµj − µjdµi

)
dµi = 0

by antisymmetry.
Setting ri1 = R = r one obtains the metric

ds2 = (1 − f̃{i1})
(

du− ai1µ
2
i1 dφi1

)2

− du (du+ 2dr) + 2ai1µ
2
i1 drdφi1

+
(
r2 + a2

i1

)
(dµ2

i1 + µ2
i1 dφ2

i1 ) +
∑

i6=i1

r2
(
dµ2

i + µ2
i dφ2

i

)
.

(18.2.10)

It corresponds to Myers–Perry metric in d dimensions with one non-vanishing angular mo-
mentum. We recover the same structure as in (18.2.4) with some extra terms that are
specific to the i1-th 2-sphere.
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Iteration and final result

We should now split again r in functions (ri2 , R). Very similarly to the first time we have

ds2 = (1 − f̃{i1})
(

du− ai1µ
2
i1 dφi1

)2

− du (du+ 2dri2 ) + 2ai1µ
2
i1 dRdφi1

+
(
r2
i2 + a2

i1

)
dµ2

i1 +
(
R2 + a2

i1

)
µ2
i1 dφ2

i1 + r2
i2 (dµ2

i2 + µ2
i2 dφ2

i2 )

+
∑

i6=i1,i2

(
r2
i2 dµ2

i +R2µ2
i dφ2

i

)
.

(18.2.11)

We can now complexify as

ri2 = r′
i2 − iai2

√
1 − µ2

i2
, u = u′ + i ai1

√
1 − µ2

i2
. (18.2.12)

The steps are exactly the same as before, except that we have some inert terms. The
complexified functions is now f̃{i1,i2}.

Repeating the procedure n times we arrive at

ds2 = − du2 − 2dudr +
∑

i

(r2 + a2
i )(dµ

2
i + µ2

idφ
2
i ) − 2

∑

i

aiµ
2
i drdφi

+
(

1 − f̃{i1,...,in}
)(

du+
∑

i

aiµ
2
i dφi

)2

.

(18.2.13)

One recognizes the general form of the d-dimensional metric with n angular momenta [163].
Let’s quote the metric in Boyer–Lindquist coordinates (omitting the indices on f̃) [163]

ds2 = −dt2+(1−f̃)

(
dt−

∑

i

aiµ
2
idφi

)2

+
r2ρ2

∆
dr2+

∑

i

(r2+a2
i )
(

dµ2
i+µ

2
i dφ2

i

)
(18.2.14)

which is obtained from the transformation

du = dt− g dr, dφi = dφ′
i − hi dr (18.2.15)

with functions

g =
Π
∆

=
1

1 − F (1 − f̃)
, hi =

Π
∆

ai
r2 + a2

i

, (18.2.16)

and where the various quantities involved are (see appendix B.1.4)

Π =
∏

i

(r2 + a2
i ), F = 1 −

∑

i

a2
iµ

2
i

r2 + a2
i

= r2
∑

i

µ2
i

r2 + a2
i

,

r2ρ2 = ΠF, ∆ = f̃ r2ρ2 + Π(1 − F ).

(18.2.17)

Before ending this section, we comment the case of even dimensions: the term ε′ r2dα2

is complexified as ε′ r2
i1 dα2, since it contributes to the sum

∑

i

µ2
i + α2 = 1. (18.2.18)

This can be seen more clearly by defining µn+1 = α (we can also define φn+1 = 0), in which
case the index i runs from 1 to n+ ε, and all the previous computations are still valid.

145



18.3 Examples in various dimensions

18.3.1 Flat space

A first and trivial example is to take f = 1. In this case one recovers Minkowski metric in
spheroidal coordinates with direction cosines (appendix B.1.4)

ds2 = −dt2 + F dr̄2 +
∑

i

(r̄2 + a2
i )
(

dµ̄2
i + µ̄2

i dφ̄2
i

)
+ ε′ r2dα2. (18.3.1)

In this case the JN algorithm is equivalent to a (true) change of coordinates [109] and there
is no intrinsic rotation. The presence of a non-trivial function f then deforms the algorithm.

18.3.2 Myers–Perry black hole with one angular momentum

The derivation of the Myers–Perry metric with one non-vanishing angular momentum has
been found by Xu [122].

The transformation is taken to be in the first plane

r = r′ − ia
√

1 − µ2 (18.3.2)

where µ ≡ µ1. The transformation to the mixed spherical–spheroidal system (appendix B.1.5
is obtained by setting

µ = sin θ, φ1 = φ. (18.3.3)

In these coordinates the transformation reads

r = r′ − ia cos θ. (18.3.4)

We will use the quantity

ρ2 = r2 + a2(1 − µ2) = r2 + a2 cos2 θ. (18.3.5)

The Schwarzschild–Tangherlini metric is [252]

ds2 = −f dt2 + f−1 dr2 + r2 dΩ2
d−2, f = 1 − m

rd−3
. (18.3.6)

Applying the previous transformation results in

ds2 = (1 − f̃)
(

du− aµ2 dφ
)2

− du (du+ 2dr) + 2aµ2 drdφ

+
(
r2 + a2

)
(dµ2 + µ2dφ2) +

∑

i6=1

r2
(
dµ2

i + µ2
i dφ2

i

)
.

(18.3.7)

where f has been complexified as

f̃ = 1 − m

ρ2rd−5
. (18.3.8)

In the mixed coordinate system one has [122, 242]

ds2 = − f̃ dt2 + 2a(1 − f̃) sin2 θ dtdφ+
rd−3ρ2

∆
dr2 + ρ2dθ2

+
Σ2

ρ2
sin2 θ dφ2 + r2 cos2 θ2 dΩ2

d−4.

(18.3.9)

where we defined as usual

∆ = f̃ρ2 + a2 sin2 θ,
Σ2

ρ2
= r2 + a2 + agtφ. (18.3.10)
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This last expression explains why the transformation is straightforward with one angular
momentum: the transformation is exactly the one for d = 4 and the extraneous dimensions
are just spectators.

We have not been able to generalize this result for several non-vanishing momenta for
d ≥ 6, even for the case with equal momenta .

18.3.3 Five-dimensional Myers–Perry

We take a new look at the five-dimensional Myers–Perry solution in order to derive it in
spheroidal coordinates because it is instructive.

The function
1 − f =

m

r2
(18.3.11)

is first complexified as

1 − f̃{1} =
m

|r1|2
=

m

r2 + a2(1 − µ2)
(18.3.12)

and then as

1 − f̃{1,2} =
m

|r2|2 + a2(1 − µ2)
=

m

r2 + a2(1 − µ2) + b2(1 − ν2)
. (18.3.13)

after the two transformations

r1 = r′
1 − ia

√
1 − µ2, r2 = r′

2 − ib
√

1 − ν2. (18.3.14)

For µ = sin θ and ν = cos θ one recovers the transformations from sections 18.1.1 and 18.1.2.
Let’s denote the denominator by ρ2 and compute

ρ2

r2
= r2 + a2(1 − µ2) + b2(1 − ν2) = (µ2 + ν2)r2 + ν2a2 + µ2b2

= µ2(r2 + b2) + ν2(r2 + a2) = (r2 + b2)(r2 + a2)
(

µ2

r2 + a2
+

ν2

r2 + b2

)
.

and thus
r2ρ2 = ΠF. (18.3.15)

Plugging this into f̃{1,2} we have [163]

1 − f̃{1,2} =
mr2

ΠF
. (18.3.16)

18.3.4 Three dimensions: BTZ black hole

As another application we show how to derive the d = 3 rotating BTZ black hole from its
static version [243]

ds2 = −f dt2 + f−1 dr2 + r2dφ2, f(r) = −M +
r2

ℓ2
. (18.3.17)

In three dimensions the metric on S1 in spherical coordinates is given by

dΩ2
1 = dφ2. (18.3.18)

Introducing the coordinate µ we can write it in oblate spheroidal coordinates

dΩ2
1 = dµ2 + µ2dφ2 (18.3.19)

with the constraint
µ2 = 1. (18.3.20)
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Application of the transformation

u = u′ + ia
√

1 − µ2, r = r′ − ia
√

1 − µ2 (18.3.21)

gives from (18.2.13)

ds2 = − du2 − 2dudr + (r2 + a2)(dµ2 + µ2dφ2) − 2aµ2 drdφ

+ (1 − f̃)(du + aµ2dφ)2.
(18.3.22)

We still need to give the complexification of f which is

f̃ = −m+
ρ2

ℓ2
, ρ2 = r2 + a2(1 − µ2). (18.3.23)

The transformation (18.2.16)

g =
ρ2(1 − f̃)

∆
, h =

a

∆
, ∆ = r2 + a2 + (f̃ − 1)ρ2 (18.3.24)

to Boyer–Lindquist coordinates leads to the metric (18.2.14)

ds2 = −dt2 + (1 − f̃)(dt+ aµ2dφ)2 +
ρ2

∆
dr2 + (r2 + a2)(dµ2 + µ2 dφ2). (18.3.25)

Finally we can use the constraint µ2 = 1 to remove the µ. In this case we have

ρ2 = r2, ∆ = a2 + f̃r2 (18.3.26)

and the metric simplifies to

ds2 = −dt2 + (1 − f̃)(dt+ adφ)2 +
r2

a2 + r2f̃
dr2 + (r2 + a2)dφ2. (18.3.27)

We define the function

N2 = f̃ +
a2

r2
= −M +

r2

ℓ2
+
a2

r2
. (18.3.28)

Then redefining the time variable as [123, 124]

t = t′ − aφ (18.3.29)

we get (omitting the prime)

ds2 = −N2dt2 +N−2 dr2 + r2(Nφdt+ dφ)2 (18.3.30)

with the angular shift

Nφ(r) =
a

r2
. (18.3.31)

This is the solution given in [243] with J = −2a.
This has already been done by Kim [123, 124] in a different settings: he views the d = 3

solution as the slice θ = π/2 of the d = 4 solution. Obviously this is equivalent to our
approach: we have seen that µ = sin θ in d = 4 (appendix B.2), and the constraint µ2 = 1
is solved by θ = π/2. Nonetheless our approach is more direct since the result just follows
from a suitable choice of coordinates and there are no need for advanced justification.

Starting from the charged BTZ black hole

f(r) = −M +
r2

ℓ2
−Q2 ln r2, A = −Q

2
ln r2, (18.3.32)

it is not possible to find the charged rotating BTZ black hole from [257, sec. 4.2]: the solution
solves Einstein equations, but not the Maxwell ones. This has been already remarked using
another technique in [258, app. B]. It may be possible that a more general ansatz is necessary,
following chapter 15 but in 3d.
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Appendix A

Conventions

A.1 Generalities

We mostly follow the conventions of [165] (see also [170, app. C]).
Greek indices are curved, roman indices are flat (local Lorentz). Specific names for

curved indices are given, such as (t, r, θ, φ), and numbers are reserved for flat indices, such
as (0, 1, 2, 3). In most of the text we use Planck units

8πG = ~ = c = k = 1. (A.1.1)

The signature of spacetime metric

ηab = ǫη diag(−1, 1, 1, 1) (A.1.2)

is taken to be mostly plus ǫη = 1. The Levi–Civita symbol εabcd (in flat indices) is

ε0123 = ǫε, ε0123 = −ǫε (A.1.3)

and we will use ǫε = 1.
Given a Lagrangian L the action reads

S =
∫

ddx
√−gL. (A.1.4)

Partial derivatives are abbreviated as

∂µ ≡ ∂

∂xµ
. (A.1.5)

The (anti)symmetrization is done with unit weight

A[ab] =
1
2

(Aab −Aba), A(ab) =
1
2

(Aab +Aba). (A.1.6)

We summarize the number of degrees of freedom in tables A.1 and A.2.

field spin off-shell on-shell
φ 0 1 1

λ 1/2 2⌊d/2⌋ 2⌊d/2⌋−1

Aµ 1 d− 1 d− 2
ψµ 3/2 (d− 1) 2⌊d/2⌋ (d− 3) 2⌊d/2⌋−1

gµν 2 1
2 d(d − 1) 1

2 d(d − 3)

Table A.1 – Degrees of freedom off-shell and on-shell for the fields with spin ≤ 2 [165,
tab. 6.2].
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field spin off-shell on-shell
φ 0 1 1
λ 1/2 4 2
Aµ 1 3 2
ψµ 3/2 12 2
gµν 2 6 2

Table A.2 – Degrees of freedom off-shell and on-shell for the fields with spin ≤ 2 for d = 4.

fields ψαµ , λ
αi XΛ, AΛ

µ Aiµ, λ
αi, τ i ζA qu ZA, ξA za σx

here α Λ i A u A a x
[165] i I α A u
[170, 171] A Λ i α u
[50] A a I i
range 1, 2 0, . . . , nv 1, . . . , nv 1, . . . , 2nh 1, . . . , 4nh 0, . . . , nh 1, . . . , nh 1, 2, 3

Table A.3 – Indices of the N = 2 fields in various conventions. nv and nh are the numbers of vector and
hypermultiplets. The last column x corresponds to SU(2) index (σx are the Pauli matrices).

signs ǫη ǫε ǫΩ ǫC
here +1 +1 +1 +1
[165] +1 +1 +1
[170, 171] −1
[50] +1 +1

Table A.4 – Sign conventions. For other comparisons of conventions see [259, problem C.1,
p. 449–453, 165, app. A].

A.2 Differential geometry

Given a metric
ds2 = gµν dxµdxν , (A.2.1)

the Christoffel symbol and the Riemann tensor are

Γµνρ =
1
2
gµσ
(
∂νgρσ + ∂ρgνσ − ∂σgνρ

)
, (A.2.2)

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓµρτΓτνσ − ΓµστΓτνρ. (A.2.3)

The Ricci tensor and the curvature are

Rµν = Rρµρν , R = gµνRµν . (A.2.4)

A manifold is said to be Einstein if

Rµν = Λ gµν, Λ =
R

d
, (A.2.5)

d being the spacetime dimension. In the case Λ = 0 it is said to be Ricci flat

Rµν = 0. (A.2.6)

A Killing vector kµ generates an isometry of the corresponding manifold and it is defined
by the equation

∇µkν + ∇νkµ = 0. (A.2.7)
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A p-form Ap with components Aµ1···µp
is defined by

Ap =
1
p!
Aµ1···µp

dxµ1 ∧ · · · ∧ dxµp . (A.2.8)

The exterior derivative d is nilpotent and maps a p-form into a (p+ 1)-form (example with
a 1-form)

F = dA = ∂µAν dxµ ∧ dxν , (A.2.9a)

Fµν = 2 ∂[µAν]. (A.2.9b)

The interior derivative ik by a vector k maps a p-form into a (p− 1)-form (example with a
1-form)

ikA = kyA = kµAµ. (A.2.10)

The Lie derivative Lk acting on forms is defined as

Lk = ikd + dik (A.2.11)

and it commutes with the differential [260, sec. 4.21]

[Lk, d] = 0. (A.2.12)

The integration of a d-form A reads
∫
A =

1
d!

∫
Aµ1···µd

dxµ1 ∧ · · · ∧ dxµd =
∫
A0···D−1 dx0 ∧ · · · ∧ dxd−1. (A.2.13)

Levi–Civita tensor is given in curved coordinates by

εµ1···µd
= e−1 ea1

µ1
· · · ead

µd
εa1···ad

, εµ1···µd = e eµ1

a1
· · · eµd

ad
εa1···ad , (A.2.14)

where eaµ is the vielbein. Contraction of two symbols is

εµ1···µnν1···νp
εµ1···µnρ1···ρp = −n!p! δ [ρ1

ν1
· · · δ ρp]

νp
. (A.2.15)

Using this tensor one can define the Hodge operation

⋆(dxµ1 ∧ · · · ∧ dxµp ) =
√−g

(d− p)!
ε
µ1···µp

µp+1···µd
dxµp+1 ∧ · · · ∧ dxµd , (A.2.16a)

⋆(ea1 ∧ · · · ∧ eap) =
1

(d− p)!
ε
a1···ap

ap+1···ad
eap+1 ∧ · · · ∧ ead , (A.2.16b)

and the dual of a p-form will produce a (d− p)-form. This operation squares to −1

⋆ ⋆F = −F. (A.2.17)

One has the formula
∫

⋆F (p) ∧ F (p) =
1
p!

∫
ddx

√−g Fµ1···µpFµ1···µp
. (A.2.18)

In particular the dual of a 2-form for d = 4 is denoted by [165, sec. 4.2.1]

H̃ab = − i

2
εabcdHcd = −i ⋆Fµν . (A.2.19)

Them one can define the self-dual and anti-self-dual of this tensor as

H±
ab =

1
2

(Hab ± H̃ab) (A.2.20)
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with the properties
H±
ab = ±H̃±

ab, H±
ab = (H∓

ab)
∗. (A.2.21)

Moreover the dual operation is an involution (thanks to the factor i). In the curved frame
one has

⋆Fµν =
1
2

√−g εµνρσF ρσ, ⋆Fµν =
1

2
√−g ε

µνρσFρσ. (A.2.22)

Given two tensors F and G one has the following identities

F̃µνG̃µν = FµνGµν , F̃µνGµν = FµνG̃µν , (A.2.23a)

F+
µνG

−µν = 0, gµνF+
µ[ρG

−
σ]ν = 0, gµνF+

µ(ρG
+
σ)ν = −1

4
gρσ F

+
µνG

+µν . (A.2.23b)

A.3 Symplectic geometry

Let’s consider a space of dimension 2n. We use indices M,N = 1, . . . , 2n.
Define the 2-dimensional antisymmetric matrix

ε = ǫ

(
0 1

−1 0

)
(A.3.1)

where ǫ = ±1. Then the (flat) symplectic metric is defined by

ω = ε⊗ 1n = ǫ

(
0 1n

−1n 0

)
, (A.3.2)

1n denoting the n-dimensional identity. An alternative representation is the block-diagonal
form

ω′ = 1n ⊗ ε =



ε 0 0

0
. . . 0

0 0 ε


 , (A.3.3)

The symplectic metric squares to −1

ω2 = −1 (A.3.4)

and the inverse is simply −ω
ω−1 = −ω. (A.3.5)

Let’s consider a vector with contravariant components AM . We are using the NW–SE
convention [170, app. C, 165, p. 421, 471]

ωMNω
NP = −δ P

M , AM = −ǫ ωMNA
N , AM = ǫ ωMNAN . (A.3.6)

This implies that ωMN = ωMN (in components) and ωMN does not correspond to the
components of ω−1. In particular with ǫ = 1 this implies

AM = ANωNM , AM = ωMNAN . (A.3.7)

and the symplectic inner product of two vectors A and B is

〈A,B〉 = AMωMNB
N = AMB

M . (A.3.8)

In the course of this thesis we will have several different symplectic spaces: Ω, C, ε. Each
will have a different sign ǫΩ, ǫC, etc. We choose ǫΩ = ǫC = 1. The sign is reversed with
respect to [46, 53, 85, 150, 170, 171], but the same as in [62, 149, 165, 169].
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A.4 Gamma matrices

Gamma matrices form a Clifford algebra

[γµ, γν ] = 2 gµν , [γa, γb] = 2 ηab. (A.4.1)

The Hermitian conjugate of γµ is

(γµ)† = γ0γµγ0. (A.4.2)

Antisymmetric products are denoted by

γa1···an
= γ[a1

· · · γan]. (A.4.3)

Finally in four dimensions one defines

γ5 = i γ0γ1γ2γ3, εabcdγ
d = i γ5γabc. (A.4.4)

The left and right projectors are defined by

PL =
1 + γ5

2
, PR =

1 − γ5

2
. (A.4.5)

A.5 Spinors

Given a Majorana spinor ǫα, the chiral left and right Weyl spinors are denoted by [65,
sec. 2.1]

εα = PL ǫ
α, εα = PR ǫ

α. (A.5.1)

The Majorana and Dirac conjugates are

λ̄ = λtC, λ̄ = i λ†γ0. (A.5.2)

The charge conjugation is
λC = B−1λ∗, B = iCγ0. (A.5.3)

The matrix C satisfy

C2 = −1, Ct = −C, (Cγµ)t = Cγµ. (A.5.4)

A.6 Supergravity

Given a Lagrangian L the dual of the field strength FΛ is defined by

GΛ = ⋆

(
δL
δFΛ

)
. (A.6.1)

The electric and magnetic charges qΛ and pΛ contained in a volume V with boundary Σ
are defined by

Q =
(
pΛ

qΛ

)
=

1
Vol(Σ)

∫

Σ

F (A.6.2)

where F = (FΛ, GΛ) are the field strengths. The charges are defined as densities to avoid
infinite charges in the case of non-compact surfaces. For compact horizons one takes

Vol(Σ) = Vol(S2) = 4π. (A.6.3)
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The central charge is defined by

Z = ǫΩ Γ(Q) = ǫΩ 〈V ,Q〉 (A.6.4a)

= LΛqΛ −MΛp
Λ = eK/2 (XΛqΛ − FΛp

Λ). (A.6.4b)

Note that there is a factor 2 in [165, p. 480].1

Similarly one defines

Lx = ǫΩ Γ(Px) = ǫΩ 〈V ,Px〉 (A.6.5a)

= LΛP xΛ −MΛP̃
xΛ. (A.6.5b)

A.7 Topological horizons

Black hole horizons correspond to 2-dimensional (θ, φ) sections Σ with spherical, planar or
hyperbolic topology [75, 76]. The sign of the curvature is denoted by κ and correspond to

κ =





+1 spherical,

0 planar,

−1 hyperbolic.

(A.7.1)

In the case κ = 0,−1 the horizon is non-compact and the full solution describes a black
membrane [75].

For a static spacetime the 2-dimensional section is maximally symmetric. The corre-
sponding spaces are the sphere S2, the euclidean plane R2 and the hyperboloid H2 respec-
tively for positive, vanishing and negative curvature (see table A.5). In these cases the
uniform metric on Σ reads

dΣ2 = dθ2 +H ′(θ)2 dφ2 (A.7.2)

where

H(θ) =





− cos θ κ = 1,
θ κ = 0,
cosh θ κ = −1,

H ′(θ) =





sin θ κ = 1,
1 κ = 0,
sinh θ κ = −1.

(A.7.3)

The function H(θ) may be defined by the differential equation

H ′′ + κH = 0, H(0) = 0, H ′(0) = 1. (A.7.4)

topology Σ κ ISO(Σ)
spherical S2 +1 SO(3)
planar R2 0 R2

cylindrical R × S1 0 R × SO(2)
toroidal T 2 0 SO(2)2

hyperbolic H2 −1 SO(2, 1)
Riemann surface (g > 1) Σg −1 SO(2, 1)/Γ

Table A.5 – Horizon topology for static spacetime. The last row corresponds to hyperbolic
Riemann surfaces; non-hyperbolic surfaces are the sphere S2 for g = 0 and the torus T 2 for
g = 1.

By definition black holes have a compact (orientable) horizon. These can be obtained
by taking the quotient of the isometry group ISO(Σ) by a discrete subgroup Γ. In this case
taking the quotient is a global effect and does not affect the fields, and in particular one

1For ǫΩ = −1 one writes Z = 〈Q, V〉.
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can work with the above metric. An intermediate case corresponds to a cylindrical black
hole with horizon R × S1 when the direction φ is made compact using the quotient R/Z.
Compact horizons are Riemann surfaces Σg where g ∈ N denotes the genus. The sphere
g = 0 is already compact so we do not need to take a quotient. The surface g = 1 corresponds
to the 2-torus T 2 ∼ S1 × S1 obtained by the quotient (R/Z)2, while higher genus surfaces
g > 1 are obtained by taking the quotient of H2 by a Fuchsian group Γ, which is a discrete
subgroup of PSL(2,R) (see table A.5). The sign of the curvature reads

κ = sign(1 − g). (A.7.5)

If the black hole is spinning then Σ is deformed as the isometry group is reduced. For
example in the case of spherical topology one obtains a spheroid and the isometry is only
SO(2) (corresponding to the Killing vector ∂φ).
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Appendix B

Coordinate systems

This appendix is partly based on [163, 261]. We present formula for any dimension before
summarizing them for 4 and 5 dimensions.

B.1 d-dimensional

Let’s consider d = N + 1 dimensional Minkowski space whose metric is denoted by

ds2 = ηµν dxµdxν , µ = 0, . . . , N. (B.1.1)

In all the following coordinates systems the time direction can separated from the spatial
(positive definite) metric as

ds2 = −dt2 + dΣ2, dΣ2 = γab dxadxb, a = 1, . . . , N, (B.1.2)

where x0 = t.
We also define

n =
⌊
N

2

⌋
(B.1.3)

such that
d+ ε = 2n+ 2, N + ε = 2n+ 1, ε′ = 1 − ε (B.1.4)

where

ε =
1
2

(1 − (−1)d) =

{
0 d even (or N odd)

1 d odd (or N even),
(B.1.5)

and conversely for ε′.

B.1.1 Cartesian system

The usual Cartesian metric is

dΣ2 = δabdxadxb = dxadxa = dx
2. (B.1.6)

B.1.2 Spherical

Introducing a radial coordinate r, the flat space metric can be written as a (N − 1)-sphere
of radius r [252]

dΣ2 = dr2 + r2dΩ2
N−1. (B.1.7)
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The term dΩ2
N−1 corresponds the metric on the unit (N −1)-sphere SN−1, which is parame-

trized by (N − 1) angles θi and is defined recursively as

dΩ2
N−1 = dθ2

N−1 + sin2 θN−1 dΩ2
N−2. (B.1.8)

This surface can be embedded in N -dimensional flat space with coordinates X i con-
strained by

XaXa = 1. (B.1.9)

B.1.3 Spherical with direction cosines

In d-dimensions there are n orthogonal 2-planes,1 thus we can pair 2n of the embedding
coordinates Xa (B.1.9) as (Xi, Yi) which are parametrized as

Xi + iYi = µi eiφi , a = 1, . . . n. (B.1.10)

For d even there is an extra unpaired coordinate that is taken to be

XN = α. (B.1.11)

Each pair parametrizes a 2-sphere of radius µi. The µi are called the direction cosines

and satisfy ∑

i

µ2
i + ε′α2 = 1 (B.1.12)

since there is one superfluous coordinate from the embedding.
Finally the metric is

dΩ2
N−1 =

∑

i

(
dµ2

i + µ2
i dφ2

i

)
+ ε′ dα2. (B.1.13)

The interest of these coordinates is that all rotational directions are symmetric.

B.1.4 Spheroidal with direction cosines

From the previous system we can define the spheroidal (r̄, µ̄i, φ̄i) system – adapted when
some of the 2-spheres are deformed to ellipses – by introducing parameters ai such that (for
d odd)

r2µ2
i = (r̄2 + a2

i )µ̄
2
i ,

∑

i

µ̄2
i = 1. (B.1.14)

This last condition implies that

r2 =
∑

i

(r̄2 + a2
i )µ̄

2
i = r̄2 +

∑

i

a2
i µ̄

2
i . (B.1.15)

In these coordinates the metric reads

dΣ2 = F dr̄2 +
∑

i

(r̄2 + a2
i )
(

dµ̄2
i + µ̄2

i dφ̄2
i

)
+ ε′ r2dα2 (B.1.16)

and we defined

F = 1 −
∑

i

a2
i µ̄

2
i

r̄2 + a2
i

=
∑

i

r̄2µ̄2
i

r̄2 + a2
i

. (B.1.17)

Here the ai are just introduced as parameters in the transformation, but in the main
text they are interpreted as "true" rotation parameters, i.e. angular momenta (per unit of
mass) of a black hole. They all appear on the same footing.

Another quantity of interest is

Π =
∏

i

(r̄2 + a2
i ). (B.1.18)

1Note that this is linked to the fact that the little group of massive representation in D dimension is
SO(N), which possess n Casimir invariants [163].
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B.1.5 Mixed spherical–spheroidal

We consider the deformation of the spherical metric where one of the 2-sphere is replaced
by an ellipse [242, sec. 3].

To shorten the notation let’s define

θ = θN−1, φ = θN−2. (B.1.19)

Doing the change of coordinates

sin2 θ sin2 φ = cos2 θ. (B.1.20)

the metric becomes

dΣ2 =
ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2 + r2 cos2 θ2 dΩ2

d−4 (B.1.21)

where as usual
ρ2 = r2 + a2 cos2 θ. (B.1.22)

Except for the last term one recognize 4-dimensional oblate spheroidal coordinates (B.2.9).

B.2 4-dimensional

In this section one considers
d = 4, N = 3, n = 1. (B.2.1)

B.2.1 Cartesian system

dΣ2 = dx2 + dy2 + dz2 (B.2.2)

B.2.2 Spherical

dΣ2 = dr2 + r2dΩ2, (B.2.3a)

dΩ2 = dθ2 + sin2 θ dφ2, (B.2.3b)

where dΩ2 ≡ dΩ2
2.

B.2.3 Spherical with direction cosines

dΩ2 = dµ2 + µ2 dφ2 + dα2, (B.2.4a)

µ2 + α2 = 1, (B.2.4b)

where
x+ iy = rµ eiφ, z = rα, (B.2.5)

Using the constraint one can rewrite

dΩ2 =
1

1 − µ2
dµ2 + µ2 dφ2. (B.2.6)

Finally the change of coordinates

α = cos θ, µ = sin θ. (B.2.7)

solves the constraint and gives back the spherical coordinates.
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B.2.4 Spheroidal with direction cosines

The oblate spheroidal coordinates from the Cartesian ones are [234, p. 15]

x+ iy =
√
r2 + a2 sin θ eiφ, z = r cos θ, (B.2.8)

and the metric is

dΣ2 =
ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2, ρ2 = r2 + a2 cos2 θ. (B.2.9)

In terms of direction cosines one has

dΣ2 =
(

1 − r2µ2

r2 + a2

)
dr2 + (r2 + a2)

(
dµ2 + µ2 dφ2

)
+ r2dα2. (B.2.10)

B.3 5-dimensional

In this section one consider
d = 4, N = 3, n = 1. (B.3.1)

B.3.1 Spherical with direction cosines

dΩ2
3 = dµ2 + µ2 dφ2 + dν2 + ν2 dψ2, µ2 + ν2 = 1 (B.3.2)

where for simplicity

µ = µ1, µ = µ2, φ = φ1, ψ = φ2. (B.3.3)

B.3.2 Hopf coordinates

The constraint (B.3.2) can be solved by

µ = sin θ, ν = cos θ (B.3.4)

and this gives the metric in Hopf coordinates

dΩ2
3 = dθ2 + sin2 θ dφ2 + cos2 θ dψ2. (B.3.5)
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Appendix C

DJN algorithm: summary

C.1 Complexification

r −→ 1
2

(r + r̄) = Re r , (C.1.1a)

1
r

−→ 1
2

(
1
r

+
1
r̄

)
=

Re r

|r|2
, (C.1.1b)

r2 −→ |r|2 . (C.1.1c)

C.2 Transformations

Coordinates:

r = r′ + i F (θ), u = u′ + i G(θ), (C.2.1a)

dr = dr′ + F ′(θ)H(θ) dφ, du = du′ +G′(θ)H(θ) dφ. (C.2.1b)

Mass and horizon curvature:

m = m′ + iκ n, κ −→ κ− 4Λ
3
n2, (C.2.2)

Functions:

• Λ 6= 0
F (θ) = n, G(θ) = −2κn lnH(θ). (C.2.3)

• Λ = 0

F (θ) = n− aH ′(θ) + κ c

(
1 +H ′(θ) ln

H(θ/2)
H ′(θ/2)

)
, (C.2.4a)

G(θ) = κ aH ′(θ) − κ cH ′(θ) ln
H(θ/2)
H ′(θ/2)

− 2n lnH(θ). (C.2.4b)

C.3 Metric and gauge field

Static:

ds2 = −ft(r) dt2 + fr(r) dr2 + fΩ(r) dΩ2, (C.3.1a)

dΩ2 = dθ2 +H(θ)2 dφ2, H(θ) =

{
sin θ κ = 1,
sinh θ κ = −1,

(C.3.1b)

A = fA dt. (C.3.1c)
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Non-static (null coordinates):

ds2 = −f̃t(du + α dr + ωH dφ)2 + 2β drdφ + f̃Ω

(
dθ2 + σ2H2dφ2

)
, (C.3.2a)

A = f̃A (du+G′H dφ), (C.3.2b)

ω = G′ +

√
f̃r

f̃t
F ′, σ2 = 1 +

f̃r

f̃Ω

F ′2, α =

√
f̃r

f̃t
, β = f̃r F

′H. (C.3.2c)

Non-static (Boyer–Lindquist):

ds2 = −f̃t
(
dt+ ωH dφ

)2
+
f̃Ω

∆
dr2 + f̃Ω

(
dθ2 + σ2H2dφ2

)
, (C.3.3a)

A = f̃A

(
dt− f̃Ω√

f̃tf̃r ∆
dr +G′H dφ

)
, (C.3.3b)

ω = G′ +

√
f̃r

f̃t
F ′, σ2 = 1 +

f̃r

f̃Ω

F ′2, ∆ =
f̃Ω

f̃r
σ2. (C.3.3c)

Boyer–Lindquist functions:

g(r) =

√(
f̃tf̃r

)−1
f̃Ω − F ′G′

∆
, h(r) =

F ′

H(θ)∆
. (C.3.4)

When F ′ = 0 the metric takes a simple form

ds2 = −f̃t
(
dt+G′H dφ

)2
+ f̃r dr2 + f̃Ω dΩ2. (C.3.5)
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Appendix D

Group theory

D.1 Group classification

For some elements see [165, app. B].

D.1.1 Symplectic groups

Given a vector space of dimension 2n over a field K endowed with a skew-symmetric product
defined by the 2-form Ω, the set of transformations that preserve this product define the
symplectic group Sp(2n,K) ⊂ SL(2n,K)

S ∈ Sp(2n,K) =⇒ StΩS = Ω. (D.1.1)

The three symplectic groups of interest to us are: Sp(2n,R), Sp(2n,C) and Sp(n) ≡
USp(2n). The first two are non-compact while the latter is compact: USp(2n) is the compact
form of Sp(2n,R), both being real Lie groups. On the other hand Sp(2n,C) is complex. They
all have n generators and are of dimension (real or complex) n(2n+ 1).

The Lie algebra sp(2n,C) corresponds to the semi-simple complex algebra Cn, while the
others are real forms: usp(n) is the compact form and sp(2n,R) is the normal (or split)
form.

The compact group is isomorphic to

U(n,H) ≡ USp(2n) ∼ U(2n) ∩ Sp(2n,C). (D.1.2)

Note also the isomorphism

sp(1) ∼ su(2) ∼ so(3), sp(2) ∼ so(5) (D.1.3)

Group Matrices Group type compact π1

Sp(2n,R) R real no Z

Sp(2n,C) C complex no 1
Sp(n) ≡ USp(2n) H real yes 1

Table D.1 – Symplectic groups.
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D.1.2 Groups on quaternions

Several matrix groups on the quaternions can be defined

SO∗(2n) = O(n,H), (D.1.4a)

SU∗(2n) = SL(n,H), (D.1.4b)

USp(2n) = U(n,H), (D.1.4c)

USp∗(2n+, 2n−) = U(2n+, 2n−) ∩ Sp(2n+, 2n−,C). (D.1.4d)

D.2 Homogeneous space

A homogeneous space M of dimension n is a coset manifold

M =
G

H
, n = dimG− dimH. (D.2.1)

It admits n(n+ 1)/2 Killing vectors which is the maximum number in dimension n. In such
a space all points are equivalent, i.e. it is always possible to find an isometry transformation
that takes a point p to a point p′. Its isometry group is G

ISO(G/H) = G (D.2.2)

only if the normalizer of H in G is the trivial group [170, p. 8].
A symmetric space is a homogeneous space for which the algebra of G can be decomposed

as [208]
g = h + k (D.2.3)

with
[h, h] ⊂ h, [h, k] ⊂ k, [k, k] ⊂ h. (D.2.4)
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Appendix E

Formulas

E.1 Quartic invariant identities

The formulas given in this appendix are a consequence of the Jordan algebra’s structure of
very special geometry and the fact that the duality groups are of E7-type [147]. While they
can be proved using techniques from [147, sec. 4] (see also [213, sec. 3, 207, sec. 2.2, 148,
211]), they have been determined by matching both sides on Mathematica. Some of them
appeared already in [84, 85, 150].

The quartic invariant possesses many identities, some of them being given in [207,
sec. 2.2].

Given two vectors A and B, any vectors built from them and from I ′
4(·, ·, ·) can be

expanded on the following basis

{
A,B, I ′

4(A), I ′
4(A,A,B), I ′

4(A,B,B), I ′
4(B), I ′

4

(
A,A, I ′

4(B)
)
, I ′

4

(
B,B, I ′

4(A)
)}
, (E.1.1)

where there are 1, 3 or 5 vectors.
Below is the full list of identities involving respectively 5, 7 and 9 vectors. They were

computed using Mathematica by matching coefficients of both sides by using the explicit
expressions of I4. This has been checked for several cubic models and for the quadratic
nv = 1.

We recall two equations involving the section

I4(Re V) = I4(Im V) =
1
16
, (E.1.2a)

Re V = 2 ǫΩ I
′
4(Im V) = ǫΩ

I ′
4(Im V)

2
√
I4(Im V )

, (E.1.2b)

I ′
4(A, Im V , Im V) = −4 〈Im V , A〉 Im V − 8 〈Re V , A〉 Re V − ΩMA. (E.1.2c)

None of these identities changes when V is multiplied by a phase.

E.1.1 Symplectic product

〈I ′
4(A,A,B), I ′

4(A)〉 = −8 I4(A) 〈A,B〉 (E.1.3a)

〈I ′
4(A,B,B), I ′

4(A)〉 = −2
3
I4(A,A,A,B) 〈A,B〉 (E.1.3b)

〈I ′
4(A,B,B), I ′

4(A,A,B)〉 = 12 〈I ′
4(A), I ′

4(B)〉 − 4 I4(A,A,B,B) 〈A,B〉 (E.1.3c)
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E.1.2 Order 5

I ′
4(I ′

4(A), A,A) = −8AI4(A)

I ′
4(I ′

4(A), A,B) = 2 I ′
4(A) 〈A,B〉 − 1

3
AI4(A,A,A,B)

I ′
4(I ′

4(A,A,B), A,A) = −4
3
AI4(A,A,A,B) − 8 I ′

4(A) 〈A,B〉 − 16BI4(A)

I ′
4(I ′

4(A,A,B), A,B) = −1
3

2BI4(A,A,A,B) − 2AI4(A,A,B,B) + 2 I ′
4(A,A,B) 〈A,B〉

− 2 I ′
4(I ′

4(A), B,B)

I ′
4(I ′

4(A,B,B), A,A) = −4
3
BI4(A,A,A,B) − 4 I ′

4(A,A,B) 〈A,B〉 + 2 I ′
4(I ′

4(A), B,B)

E.1.3 Order 7

I ′
4(I ′

4(A), I ′
4(A), A) = 8 I4(A)I ′

4(A)

I ′
4(I ′

4(A), I ′
4(A), B) = 4 I4(A)I ′

4(A,A,B) − 2
3
I ′

4(A)I4(A,A,A,B) − 16AI4(A) 〈A,B〉
I ′

4(I ′
4(A), I ′

4(A,A,B), A) = 2 I ′
4(A)I4(A,A,A,B) + 16AI4(A) 〈A,B〉

I ′
4(I ′

4(A), I ′
4(A,B,B), A) = 2 I ′

4(A)I4(A,A,B,B) +
4
3
AI4(A,A,A,B) 〈A,B〉

I ′
4(I ′

4(A), I ′
4(A,A,B), B) = 8 I4(A)I ′

4(A,B,B) − 2 I ′
4(A)I4(A,A,B,B) +

1
3
I4(A,A,A,B)I ′

4(A,A,B)

− 16BI4(A) 〈A,B〉 − 8
3
AI4(A,A,A,B) 〈A,B〉

I ′
4(I ′

4(A,A,B), I ′
4(A,A,B), A) = −16 I4(A)I ′

4(A,B,B) + 8 I ′
4(A)I4(A,A,B,B) +

4
3
I4(A,A,A,B)I ′

4(A,A,B)

+ 64BI4(A) 〈A,B〉 +
16
3
AI4(A,A,A,B) 〈A,B〉

I ′
4(I ′

4(A), I ′
4(B), A) =

1
3
I ′

4(A)I4(A,B,B,B) + 2A 〈I ′
4(A), I ′

4(B)〉

I ′
4(I ′

4(A), I ′
4(A,B,B), B) = −2

3
I ′

4(A)I4(A,B,B,B) +
1
3
I4(A,A,A,B)I ′

4(A,B,B)

− 4
3
BI4(A,A,A,B) 〈A,B〉 − 8A 〈I ′

4(A), I ′
4(B)〉 + 16 I4(A)I ′

4(B)

I ′
4(I ′

4(A,A,B), I ′
4(A,A,B), B) = −16

3
I ′

4(A)I4(A,B,B,B) +
8
3
I4(A,A,A,B)I ′

4(A,B,B)

− 16AI4(A,A,B,B) 〈A,B〉 − 16
3
BI4(A,A,A,B) 〈A,B〉

+ 32A 〈I ′
4(A), I ′

4(B)〉 + 32 I4(A)I ′
4(B)

I ′
4(I ′

4(A,A,B), I ′
4(A,B,B), A) =

16
3
I ′

4(A)I4(A,B,B,B) + 2 I4(A,A,B,B)I ′
4(A,A,B)

− 2
3
I4(A,A,A,B)I ′

4(A,B,B) +
16
3
BI4(A,A,A,B) 〈A,B〉

+ 8AI4(A,A,B,B) 〈A,B〉 − 8A 〈I ′
4(A), I ′

4(B)〉 − 32 I4(A)I ′
4(B)
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E.1.4 Order 9

I ′
4(I ′

4(A)) = −16 I4(A)2A

I ′
4(I ′

4(A), I ′
4(A), I ′

4(A,A,B)) = −64BI4(A)2 − 64
3
I4(A,A,A,B)AI4(A)

I ′
4(I ′

4(A), I ′
4(A), I ′

4(A,B,B)) = −16
3
BI4(A)I4(A,A,A,B) +

8
3

〈A,B〉 I ′
4(A)I4(A,A,A,B)

− 16 I4(A)I4(A,A,B,B)A − 16 〈A,B〉 I4(A)I ′
4(A,A,B)

+ 8 I4(A)I ′
4(B,B, I ′

4(A))

I ′
4(I ′

4(A), I ′
4(A,A,B), I ′

4(A,A,B)) = −32
9
AI4(A,A,A,B)2 − 32BI4(A)I4(A,A,A,B)

− 16
3

〈A,B〉 I ′
4(A)I4(A,A,A,B) − 32 I4(A)I4(A,A,B,B)A

+ 32 〈A,B〉 I4(A)I ′
4(A,A,B) − 16 I4(A)I ′

4(B,B, I ′
4(A))

I ′
4(I ′

4(A), I ′
4(B,B, I ′

4(A)), A) = 32AI4(A) 〈A,B〉2 +
4
3
I4(A,A,A,B)I ′

4(A) 〈A,B〉

− 2
9
I4(A,A,A,B)2A+ 8AI4(A)I4(A,A,B,B)

I ′
4(I ′

4(A), I ′
4(A), I ′

4(B)) = −8
3
I4(A)AI4(A,B,B,B) + 4 〈I ′

4(A), I ′
4(B)〉 I ′

4(A)

+ 4 I4(A)I ′
4(A,A, I ′

4(B))

I ′
4(I ′

4(A), I ′
4(A,A,B), I ′

4(A,B,B)) = −1
9

8BI4(A,A,A,B)2 − 8
3
I4(A,A,B,B)AI4(A,A,A,B)

− 4
3

〈A,B〉 I ′
4(A,A,B)I4(A,A,A,B)

+
4
3
I ′

4(B,B, I ′
4(A))I4(A,A,A,B) − 64

3
I4(A)I4(A,B,B,B)A

− 32 I4(A)I4(A,A,B,B)B − 24 〈I ′
4(A), I ′

4(B)〉 I ′
4(A)

+ 8 〈A,B〉 I4(A,A,B,B)I ′
4(A) − 16 I4(A)I ′

4(A,A, I ′
4(B))

− 16 〈A,B〉 I4(A)I ′
4(A,B,B)

I ′
4(I ′

4(A), I ′
4(B,B, I ′

4(A)), B) = −32 I4(A)B 〈A,B〉2 +
2
9
BI4(A,A,A,B)2 − 8 I4(A)I4(A,A,B,B)B

+
16
3
AI4(A)I4(A,B,B,B) − 12 〈I ′

4(A), I ′
4(B)〉 I ′

4(A)

− 8 I4(A)I ′
4(A,A, I ′

4(B)) +
1
3
I4(A,A,A,B)I ′

4(B,B, I ′
4(A))
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I ′
4(I ′

4(A,A,B), I ′
4(B,B, I ′

4(A)), A) = 128BI4(A) 〈A,B〉2 +
16
3
AI4(A,A,A,B) 〈A,B〉2

+
4
3
I4(A,A,A,B)I ′

4(A,A,B) 〈A,B〉 − 8
9
I4(A,A,A,B)2B

+ 32BI4(A)I4(A,A,B,B) +
16
3
AI4(A)I4(A,B,B,B)

+ 48 〈I ′
4(A), I ′

4(B)〉 I ′
4(A) + 16 I4(A)I ′

4(A,A, I ′
4(B))

− 2
3
I4(A,A,A,B)I ′

4(B,B, I ′
4(A))

I ′
4(I ′

4(A), I ′
4(A,A, I ′

4(B)), A) =
8
3
I4(A)I4(A,B,B,B)A − 12 〈I ′

4(A), I ′
4(B)〉 I ′

4(A)

I ′
4(I ′

4(A), I ′
4(B), I ′

4(A,A,B)) = −64 I4(A)AI4(B) − 4
9
I4(A,A,A,B)I4(A,B,B,B)A

− 16
3
I4(A)I4(A,B,B,B)B +

4
3

〈A,B〉 I4(A,B,B,B)I ′
4(A)

− 16 〈A,B〉 I4(A)I ′
4(B) + 2 〈I ′

4(A), I ′
4(B)〉 I ′

4(A,A,B)

+
2
3
I4(A,A,A,B)I ′

4(A,A, I ′
4(B))

I ′
4(I ′

4(A), I ′
4(A,B,B), I ′

4(A,B,B)) = −128 I4(A)AI4(B) − 16
9
I4(A,A,A,B)I4(A,B,B,B)A

− 8
3
I4(A,A,A,B)I4(A,A,B,B)B − 64

3
I4(A)I4(A,B,B,B)B

+
16
3

〈A,B〉 I4(A,B,B,B)I ′
4(A) − 16 〈I ′

4(A), I ′
4(B)〉 I ′

4(A,A,B)

− 8
3
I4(A,A,A,B)I ′

4(A,A, I ′
4(B))

− 8
3

〈A,B〉 I4(A,A,A,B)I ′
4(A,B,B)

+ 4 I4(A,A,B,B)I ′
4(B,B, I ′

4(A))

I ′
4(I ′

4(A,A,B), I ′
4(A,A,B), I ′

4(A,B,B)) = −16AI4(A,A,B,B)2 − 16 I4(A,A,A,B)BI4(A,A,B,B)

− 8 I ′
4(B,B, I ′

4(A))I4(A,A,B,B)

− 64
9
I4(A,A,A,B)I4(A,B,B,B)A+ 256AI4(A)I4(B)

− 64
3

〈A,B〉 I4(A,B,B,B)I ′
4(A) + 128 〈A,B〉 I4(A)I ′

4(B)

+ 16 〈I ′
4(A), I ′

4(B)〉 I ′
4(A,A,B) +

16
3

〈A,B〉 I4(A,A,A,B)I ′
4(A,B,B)
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I ′
4(I ′

4(A,A,B), I ′
4(B,B, I ′

4(A)), B) = −1
3

16 I4(A,A,A,B)B 〈A,B〉2 − 16
3
I4(A,B,B,B)I ′

4(A) 〈A,B〉

+ 64 I4(A)I ′
4(B) 〈A,B〉 − 16

3
I4(A)I4(A,B,B,B)B

+ 128AI4(A)I4(B) +
8
9
AI4(A,A,A,B)I4(A,B,B,B)

− 4 〈I ′
4(A), I ′

4(B)〉 I ′
4(A,A,B) − 4

3
I4(A,A,A,B)I ′

4(A,A, I ′
4(B))

+ 2 I4(A,A,B,B)I ′
4(B,B, I ′

4(A))

I ′
4(I ′

4(A,B,B), I ′
4(B,B, I ′

4(A)), A) =
32
3
BI4(A,A,A,B) 〈A,B〉2 + 16A 〈I ′

4(A), I ′
4(B)〉 〈A,B〉

+
16
3
I4(A,B,B,B)I ′

4(A) 〈A,B〉 − 64 I4(A)I ′
4(B) 〈A,B〉

+
4
3
I4(A,A,A,B)I ′

4(A,B,B) 〈A,B〉

− 4
9
I4(A,A,A,B)I4(A,B,B,B)A +

64
3
BI4(A)I4(A,B,B,B)

+ 16 〈I ′
4(A), I ′

4(B)〉 I ′
4(A,A,B) +

4
3
I4(A,A,A,B)I ′

4(A,A, I ′
4(B))

− 2 I4(A,A,B,B)I ′
4(B,B, I ′

4(A))

I ′
4(I ′

4(A), I ′
4(A,A, I ′

4(B)), B) = 16A 〈A,B〉 〈I ′
4(A), I ′

4(B)〉 − 4 I ′
4(A,A,B) 〈I ′

4(A), I ′
4(B)〉

− 8
3
I4(A)I4(A,B,B,B)B + 64AI4(A)I4(B)

+
4
3

〈A,B〉 I4(A,B,B,B)I ′
4(A) − 32 〈A,B〉 I4(A)I ′

4(B)

− 1
3
I4(A,A,A,B)I ′

4(A,A, I ′
4(B))

I ′
4(I ′

4(A,A,B), I ′
4(A,A, I ′

4(B)), A) = −16 〈A,B〉A 〈I ′
4(A), I ′

4(B)〉 − 4 I ′
4(A,A,B) 〈I ′

4(A), I ′
4(B)〉

+
32
3
BI4(A)I4(A,B,B,B) +

4
9
AI4(A,A,A,B)I4(A,B,B,B)

− 16
3

〈A,B〉 I4(A,B,B,B)I ′
4(A) + 64 〈A,B〉 I4(A)I ′

4(B)

+
2
3
I4(A,A,A,B)I ′

4(A,A, I ′
4(B))

E.2 Quaternionic gaugings: constraints

For completeness the full set of constraints for the (symplectic) gaugings parameters is listed
below [149, sec. 6.1, app. C].

The set of parameters
Θα = {U, α, α̂t, ǫ+, ǫ0, ǫ−} (E.2.1)

reads explicitly

α =
(
αΛ

αΛ

)
,=




(
αAΛ

αΛ
A

)

(
αAΛ
αAΛ

)


 , α̂ =

(
α̂Λ

α̂Λ

)
,=




(
α̂AΛ

α̂Λ
A

)

(
α̂AΛ
α̂AΛ

)


 ,

U =
(
UΛ

UΛ

)
, ǫ± =

(
ǫΛ

±

ǫ±Λ

)
, ǫ0 =

(
ǫΛ

0

ǫ0Λ

)
,

(E.2.2)
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where UΛ and UΛ are matrices whose parameters depend on the model.
The number of parameters is (approx.)

#(params) = nv(x+ 4nh + 3), (E.2.3)

x being the number of independent isometries of the base (this can be of order n2
h, nh or 1).

E.2.1 Constraints from abelian algebra

The constraints from the closure of the abelian algebra are

• electric/electric

0 = T(αΛ, α̂Σ) − T(αΣ, α̂Λ), (E.2.4a)

0 = −(UΛαΣ − UΣαΛ) + (ǫ0ΛαΣ − ǫ0ΣαΛ) + (ǫ+Λα̂Σ − ǫ+Σα̂Λ), (E.2.4b)

0 = (UΛα̂Σ − UΣα̂Λ) + (ǫ−ΛαΣ − ǫ−ΣαΛ) + (ǫ0Λα̂Σ − ǫ0Σα̂Λ), (E.2.4c)

0 = αtΛCαΣ + 2(ǫ+Σǫ0Λ − ǫ+Λǫ0Σ), (E.2.4d)

0 = (α̂tΛCαΣ − αtΛCα̂Σ) + 2(ǫ+Σǫ−Λ − ǫ+Λǫ−Σ), (E.2.4e)

0 = α̂tΛCα̂Σ + 2(ǫ0Λǫ−Σ − ǫ0Σǫ−Λ). (E.2.4f)

• electric/magnetic

0 = T(αΛ, α̂
Σ) − T(αΣ, α̂Λ), (E.2.4g)

0 = −(UΛα
Σ − UΣαΛ) + (ǫ0Λα

Σ − ǫΣ
0 αΛ) + (ǫ+Λα̂

Σ − ǫΣ
+α̂Λ), (E.2.4h)

0 = (UΛα̂
Σ − UΣα̂Λ) + (ǫ−Λα

Σ − ǫΣ
−αΛ) + (ǫ0Λα̂

Σ − ǫΣ
0 α̂Λ), (E.2.4i)

0 = αtΛCα
Σ + 2(ǫΣ

+ǫ0Λ − ǫ+Λǫ
Σ
0 ), (E.2.4j)

0 = (α̂tΛCα
Σ − αtΛCα̂

Σ) + 2(ǫΣ
+ǫ−Λ − ǫ+Λǫ

Σ
−), (E.2.4k)

0 = α̂tΛCα̂
Σ + 2(ǫ0Λǫ

Σ
− − ǫΣ

0 ǫ−Λ). (E.2.4l)

• magnetic/magnetic

0 = T(αΛ, α̂Σ) − T(αΣ, α̂Λ), (E.2.4m)

0 = −(UΛαΣ − UΣαΛ) + (ǫΛ
0α

Σ − ǫΣ
0 α

Λ) + (ǫΛ
+α̂

Σ − ǫΣ
+α̂

Λ), (E.2.4n)

0 = (UΛα̂Σ − UΣα̂Λ) + (ǫΛ
−α

Σ − ǫΣ
−α

Λ) + (ǫΛ
0 α̂

Σ − ǫΣ
0 α̂

Λ), (E.2.4o)

0 = αtΛCαΣ + 2(ǫΣ
+ǫ

Λ
0 − ǫΛ

+ǫ
Σ
0 ), (E.2.4p)

0 = (α̂tΛCαΣ − αtΛCα̂Σ) + 2(ǫΣ
+ǫ

Λ
− − ǫΛ

+ǫ
Σ
−), (E.2.4q)

0 = α̂tΛCα̂Σ + 2(ǫΛ
0 ǫ

Σ
− − ǫΣ

0 ǫ
Λ
−). (E.2.4r)

We recall the expression of the matrix

Tα,α̂ = (αt∂ξ)(α̂t∂ξ)S. (E.2.5)

The number of (electric) constraints is (approx.)

#(constraints) =
nv(nv − 1)

2
(x+ 2nh + 3) , (E.2.6)

where the front factor comes from the antisymmetric equations on (Λ,Σ), and x is the
number of independent entries in the matrix S (this can be of order n2

h, nh or 1).
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E.2.2 Locality constraints

The constraints from locality are

0 =
〈
α, αt

〉
= αΛαtΛ − αΛα

tΛ, (E.2.7a)

0 =
〈
α, α̂t

〉
= αΛα̂tΛ − αΛα̂

tΛ, (E.2.7b)

0 =
〈
α̂, α̂t

〉
= α̂Λα̂tΛ − α̂Λα̂

tΛ, (E.2.7c)

0 = 〈α, ǫ+〉 = αΛǫ+Λ − αΛǫ
Λ
+, (E.2.7d)

0 = 〈α, ǫ0〉 = αΛǫ0Λ − αΛǫ
Λ
0 , (E.2.7e)

0 = 〈α, ǫ−〉 = αΛǫ−Λ − αΛǫ
Λ
−, (E.2.7f)

0 = 〈α̂, ǫ+〉 = α̂Λǫ+Λ − α̂Λǫ
Λ
+, (E.2.7g)

0 = 〈α̂, ǫ0〉 = α̂Λǫ0Λ − α̂Λǫ
Λ
0 , (E.2.7h)

0 = 〈α̂, ǫ−〉 = α̂Λǫ−Λ − α̂Λǫ
Λ
−, (E.2.7i)

0 = 〈ǫ+, ǫ−〉 = ǫΛ
+ǫ−Λ − ǫ+Λǫ

Λ
−, (E.2.7j)

0 = 〈ǫ+, ǫ0〉 = ǫΛ
+ǫ0Λ − ǫ+Λǫ

Λ
0 , (E.2.7k)

0 = 〈ǫ0, ǫ−〉 = ǫΛ
0 ǫ−Λ − ǫ0Λǫ

Λ
−, (E.2.7l)

0 = 〈U, ǫ+〉 = αΛǫ+Λ − αΛǫ
Λ
+, (E.2.7m)

0 = 〈U, ǫ0〉 = αΛǫ0Λ − αΛǫ
Λ
0 , (E.2.7n)

0 = 〈U, ǫ−〉 = αΛǫ−Λ − αΛǫ
Λ
−, (E.2.7o)

0 = 〈U, α〉 = αΛǫ0Λ − αΛǫ
Λ
0 , (E.2.7p)

0 = 〈U, α̂〉 = αΛǫ−Λ − αΛǫ
Λ
− (E.2.7q)

where 〈
α, αt

〉
=
(〈
αA, αB

〉 〈
αA, αB

〉
〈
αA, α

B
〉

〈αA, αB〉

)
, 〈α, ǫ+〉 =

(〈
αA, ǫ+

〉

〈αA, ǫ+〉

)
(E.2.8)

and similarly for the others. The notation 〈U, X〉 is a shortcut for the product of X with all
parameters of U (by linearity). For example with a cubic prepotential one of the constraint
is

〈β,X〉 = 0, β =
(
βΛ

βΛ

)
. (E.2.9)

The numbers of locality constraints is (approx.)

#(locality constraints) = 3(nh + 1)2 + xnh(2nh + 3). (E.2.10)
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Appendix F

Computations

In this section we are collecting long and cumbersome computations.

F.1 Quaternionic isometries: Killing algebra

F.1.1 Computations: duality and extra commutators

The non-vanishing commutators of the algebra are

[k0, k+] = 2k+, [k0, kα] = kα,
[
kα, k

t
α

]
= C k+, [kU, kα] = U kα. (F.1.1)

The evaluation of the last commutator proceeds as

[
kU, k

A
]

=
1
2

(Uξ)B(∂BξA)∂a −
([
∂A(Uξ)B

]
∂B +

[
∂A(Uξ)B

]
∂B
)

=
1
2

(
vABξ

B + tAB ξ̃B
)
∂a − tBA∂B − u A

B ∂B

= vAB

(
∂B +

1
2
ξB∂a

)
− tAB

(
∂B − 1

2
ξ̃B∂a

)
.

In components we have

[
kA, h

B
]

= −δ B
A k+,

[
k0, k

A
]

= kA, [k0, kA] = kA,[
kU, k

A
]

= (UCh)A, [kU, kA] = (UCh)A.
(F.1.2)

F.1.2 Computations: hidden and mixed commutators

We now compute the commutators between hidden and duality symmetries

[k0, k−] = −2 k−, [k0, kα̂] = −kα̂, [k−, kα] = −kα̂,
[k+, k−] = −k0, [k+, kα̂] = kα, [kU, kα̂] = U kα̂,

[
kα̂, k

t
α̂

]
= C k−,

[
α̂tkα̂, α

tkα
]

=
1
2
α̂Cαk0 + kTα,α̂

(F.1.3)

where

Tα,α̂ = (αtC∂ξ)(α̂tC∂ξ)S = −1
2
C(α̂αt + αα̂t) +

1
4
H ′′
α,α̂C, (F.1.4a)

H ′′
α,α̂ = C∂ξ(C∂ξh′′

α,α̂)t = (αtC∂ξ)(α̂tC∂ξ)H, (F.1.4b)

h′′
α,α̂ = (αtC∂ξ)(α̂tC∂ξ)h. (F.1.4c)
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We have

[
kA, k−

]
= a∂A − (C∂ξ∂AW )t∂ξ − (∂ASZ)t∂Z + c.c.− 1

2
ξA ∂φ + aξA∂a

+
1
2
ξAξt∂ξ − 1

2
(aξA − ∂AW )∂a.

(F.1.5)

Another commutator:

[k0, k−] = 4 e−4φ ∂a − 2a(−∂φ + 2a∂a + ξt∂ξ) + (ξt∂ξ − ∂φ)W ∂a

−
(
aξ − C(ξt∂ξ − ∂φ)∂ξW

)t
∂ξ +

(
(ξt∂ξ)SZ

)t
∂Z + c.c.

+ 2(a2 − e−4φ −W )∂a + (aξ − C∂ξW )t∂ξ

= 4( e−4φ − a2)∂a + 2a∂φ − 2a ξt∂ξ + 4W ∂a −
(
aξ − 3C∂ξW

)t
∂ξ

+ 2(SZ)t∂Z + c.c.+ 2(a2 − e−4φ −W )∂a + (aξ − C∂ξW )t∂ξ

= −2
[

− a∂φ + (a2 − e−4φ −W )∂a + (aξ − C∂ξW )t∂ξ − (SZ)t∂Z + c.c.
]

= −2 k−,

where we used the "homogeneity" of W (9.1.27).
Introducing a set of parameters α, α̂, then we have

[
αt kα, α̂

t kα̂
]

=
1
2

(−∂φ + a∂a) (αtC∂ξ)α̂tξ − 1
2

(αtC∂ξ)(α̂tC∂ξW ) ∂a

+
1
2

(αtC∂ξ)(α̂tξξt∂ξ) − (αtC∂ξ)
[
α̂tC∂ξ(C∂ξW )t∂ξ

]

− (αtC∂ξ)
[
α̂t(C∂ξSZ)t∂Z

]
+✘✘✘✘✘✘1

4
(αtξ) (α̂tξ) ∂a +

1
2

(αtξ) (α̂tC∂ξ)

− a

2
(α̂tC∂ξ)αtξ ∂a − 1

2

[
α̂t
(

�
��

1
2
ξξt − C∂ξ(C∂ξW )t

)
∂ξ

]
(αtξ) ∂a.

The two terms cancel because

α̂tξξtα = (α̂tξ)(ξtα) = (αtξ)(ξtα̂). (F.1.6)

We have
(αtC∂ξ)α̂tξ = αtCα̂t (F.1.7)

as can be seen by writing the indices explicitly

αiCij∂j α̂kξk = αiCijδjkα̂k = αiCijα̂j . (F.1.8)

Moreover we can rewrite
α̂tξξt∂ξ = (α̂tξ)(ξt∂ξ). (F.1.9)

and then
(αtC∂ξ)(α̂tξξt∂ξ) = (αtCα̂)(ξt∂ξ) + (αtC∂ξ)(α̂tξ). (F.1.10)

The expression simplifies to

[αkα, α̂ kα̂] = − 1
2
αtCα̂ (∂φ − 2a∂a − ξt∂ξ) − 1

2✭✭✭✭✭✭✭✭✭
(αtC∂ξ)(α̂tC∂ξW ) ∂a

+
1
2

(αtC∂ξ)(α̂tξ) +
1
2

(αtξ)(α̂tC∂ξ)

− (αtC∂ξ)
[
α̂tC∂ξ(C∂ξW )t∂ξ

]
− (αtC∂ξ)

[
α̂t(C∂ξSZ)t∂Z

]

+
1
2✭✭✭✭✭✭✭✭✭✭(

(α̂tC∂ξ)(C∂ξW )tα
)
∂a.
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The cancellation occurs since

(α̂tC∂ξ)(C∂ξW )tα = (α̂tC∂ξ)(αtC∂ξW )t = (α̂tC∂ξ)(αtC∂ξW ) (F.1.11)

the last parenthesis being just a number.
The penultimate in the first expression gives a factor 2 in 2a∂a since

− a

2
(α̂tCα) ∂a =

a

2
(αtCα̂) ∂a (F.1.12)

by antisymmetry of C.
Then we can write

(αtC∂ξ)(α̂tξ) + (αtξ)(α̂tC∂ξ) = (ξtα̂)(αtC∂ξ) + (ξtα)(α̂tC∂ξ)

= ξt(α̂αt + αα̂t)C ∂ξ

= −
[
C(α̂αt + αα̂t)ξ

]t
∂ξ.

We need to simplify the terms with W and S. Starting with W : this function contains
quartic and quadratic terms in ξ, so (αtC∂ξ) (α̂tC∂ξ)(C∂ξW )t is linear in ξ, which implies
that it is homogeneous of first order. This linear term is given by the third derivative of h,
such that

(αtC∂ξ)
[
α̂tC∂ξ(C∂ξW ) =

1
4
C∂ξh

′′
α,α̂ (F.1.13)

and we have defined
h′′
α,α̂ = (αtC∂ξ)(α̂tC∂ξ)h. (F.1.14)

As we said its derivative is homogeneous, thus

C∂ξh
′′
α,α̂ = ξt∂ξ(C∂ξh′′

α,α̂)t = −ξtCH ′′
α,α̂. (F.1.15)

The new symbol we have defined is

H ′′
α,α̂ = C∂ξ(C∂ξh′′

α,α̂)t = (αtC∂ξ)(α̂tC∂ξ)H. (F.1.16)

Note that the matrix H ′′
α,α̂ is constant and symmetric.

Using all this we can simplify the W term as

(αtC∂ξ)
[
α̂tC∂ξ(C∂ξW )t∂ξ

]
=

1
4

(H ′′
α,α̂Cξ)

t∂ξ. (F.1.17)

After all this the computation for S is straightforward:

(αtC∂ξ)(α̂tC∂ξ)S =
1
2

(αtC∂ξ)(α̂tC∂ξ)
(
ξξt +

1
2
H

)
C

= −1
2
C(α̂αt + αα̂t) +

1
4
H ′′
α,α̂C.

The new expression is

[αkα, α̂ kα̂] = − 1
2
k0 +

1
2

[
C(α̂αt + αα̂t)ξ

]t
∂ξ

− 1
4

(H ′′
α,α̂Cξ)

t∂ξ +
1
2

[
C(α̂αt + αα̂t)Z

]t
∂Z − 1

4
(H ′′

α,α̂CZ)t∂Z .

We recognize the vector k−Uα,α̂
with parameters

Uα,α̂ = −1
2
C(α̂αt + αα̂t) +

1
4
H ′′
α,α̂C. (F.1.18)
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F.2 Gauged supergravity

F.2.1 Computations : constraints from algebra closure

We compute first the various pieces:

[kUΛ
, kΣ] =

[
kUΛ

, αtΣCkα + α̂tΣCk̂α

]
= αtΣCUΛ kα + α̂tΣCUΛ k̂α,

[
αtΛCkα, kΣ

]
=
[
αtΛCkα, kUΣ

+ αtΣCkα + α̂tΣCk̂α + ǫ0Σk0 + ǫ−Σk−

]

= −αtΛCUΣ kα + αtΛCαΣ k+ − 1
2
αtΛCα̂Σ k0 − kU(αΛ,α̂Σ)

− ǫ0Σα
t
ΛC kα + ǫ−Σα

t
ΛC k̂α,[

α̂tΛCk̂α, kΣ

]
=
[
α̂tΛCk̂α, kUΣ

+ αtΣCkα + α̂tΣCk̂α + ǫ+Σk+ + ǫ0Σk0

]

= −α̂tΛCUΣ k̂α +
1
2
α̂tΛCαΣ k0 + kT(αΛ,α̂Σ) + α̂tΛCα̂Σ k−

− ǫ+Σα̂
t
ΛC kα + ǫ0Σα̂

t
ΛC k̂α,

[ǫ+Λk+, kΣ] =
[
ǫ+Σk+, α̂

t
ΣCk̂α + ǫ0Σk0 + ǫ−Σk−

]

= ǫ+Λα̂
t
ΣC kα − 2ǫ+Λǫ0Σ k+ − ǫ+Λǫ−Σ k0,

[ǫ0Λk0, kΣ] = ǫ0Λα
t
ΣC kα − ǫ0Λα̂

t
ΣC k̂α + 2ǫ+Σǫ0Λ k+ − 2ǫ0Λǫ−Σ k−,

[ǫ−Λk−, kΣ] =
[
ǫ−Σk−,Cα

t
Σkα + ǫ0Σk0 + ǫ+Σk+

]

= −ǫ−Λα
t
ΣC k̂α + 2ǫ0Σǫ−Λ k− + ǫ+Σǫ−Λ k0.

Adding everything we get

[kΛ, kΣ] = kT(αΛ,α̂Σ) +
(
αtΣCUΛ + ǫ+Λα̂

t
ΣC + ǫ0Λα

t
ΣC
)
kα

+
(
α̂tΣCUΛ + ǫ−Σα

t
ΛC + ǫ0Σα̂

t
ΛC
)
k̂α

+
(
αtΛCαΣ + 2ǫ+Σǫ0Λ

)
k+ +

(
1
2
α̂tΛCαΣ + ǫ+Σǫ−Λ

)
k0

+
(
α̂tΛCα̂Σ + 2ǫ0Λǫ−Σ

)
k− − (Λ ↔ Σ).

(F.2.1)

We will take the transpose and use that

UtC + CU = 0. (F.2.2)

F.3 Static BPS solutions

F.3.1 Ansatz

We take the following ansatz for the metric and the gauge fields

ds2 = e2Udt2 − e−2Udr2 − e2(V−U) dΣ2
g, (F.3.1a)

AΛ = q̃Λ dt− κpΛF ′(θ)dφ. (F.3.1b)

The functions U, V, q̃ and p depend only on r. The space Σg is a Riemann surface.1

1The convention are slightly different from the one in the appendix A.7. One needs to make the replace-
ment (H, H′) → (−κH′, H).
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Ansatz: Vierbein and spin connections

Recall the metric

ds2 = e2Udt2 − e−2Udr2 − e2(V−U)
(
dθ2 + F 2dφ2

)
. (F.3.2)

We introduce the following vierbein

e0 = eUdt, e1 = e−Udr, e2 = eV−Udθ, e3 = F eV−Udφ. (F.3.3)

We compute the differential

de0 = U ′dr ∧ e0,

de1 = 0,

de2 = (V ′ − U ′) eV−Udr ∧ dθ,

de3 = F (V ′ − U ′) eV−Udr ∧ dφ+ F ′ eV−Udθ ∧ dφ.

Using (A.7.4) and the vierbein expressions (F.3.3), we can replace all the differentials by the
vierbein

de0 = U ′ eUe1 ∧ e0, (F.3.4a)

de1 = 0, (F.3.4b)

de2 = (V ′ − U ′)eUe1 ∧ e2, (F.3.4c)

de3 = (V ′ − U ′)eUe1 ∧ e3 +
F ′

F
eU−V e2 ∧ e3. (F.3.4d)

Using Cartan formula
dea + ωab ∧ eb = 0 (F.3.5)

we obtain the following spin connections

ω0
1 = U ′ eUe0, ω2

1 = (V ′ − U ′) eUe2,

ω3
1 = (V ′ − U ′) eUe3, ω3

2 =
F ′

F
eU−V e3.

(F.3.6)

The explicit components
ωab = ω a

µ b dxµ (F.3.7)

are

ω001 = U ′ eU , ω212 = ω313 = (V ′ − U ′) eU , ω323 =
F ′

F
eU−V . (F.3.8)

Field strength

Recall the gauge fields
AΛ = q̃Λ dt− κpΛF ′ dφ. (F.3.9)

In terms of the vierbein (F.3.3) we have

AΛ = q̃Λ eUe0 − κ
F ′

F
eU−V pΛ e3. (F.3.10)

Now we compute the field strength as

FΛ = dAΛ = q̃′Λ dr ∧ dt+ (pΛ − 2bq̃Λ)F dθ ∧ dφ− κp′ΛF ′ dr ∧ dφ (F.3.11a)

= −q̃′Λ e0 ∧ e1 − κ
F ′

F
p′Λ e2U−V e1 ∧ e3 + pΛ e2(U−V )e2 ∧ e3. (F.3.11b)
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The Hodge dual field strength is

⋆FΛ = q̃′Λ e2 ∧ e3 + κ
F ′

F
p′Λ e2U−V e0 ∧ e2 + pΛ e2(U−V )e0 ∧ e1 (F.3.12a)

= q̃′Λ e2(V−U)F dθ ∧ dφ+ κ
F ′

F
p′Λ e2U dt ∧ dθ − pΛ e2(U−V )dr ∧ dt. (F.3.12b)

Finally the anti-self dual form is

F−Λ =
1
2

(
FΛ − i ⋆FΛ

)
= F̃Λ(e0 ∧ e1 + i e2 ∧ e3) +

F ′

F
G̃Λ(e1 ∧ e3 + i e0 ∧ e2) (F.3.13)

where

F̃Λ = −1
2
q̃Λ − i

2
pΛ e2(U−V ), G̃Λ = −κ e2U−V p′Λ. (F.3.14)

The symplectic dual GΛ of FΛ is defined by

GΛ =
δL
δFΛ

= RΛΣ F
Σ − IΛΣ ⋆FΣ. (F.3.15)

It reads explictly (with a matrix/vector notation)

G = R (q̃′ dr ∧ dt+ pF dθ ∧ dφ− κp′F ′ dr ∧ dφ)

− I
(
q̃′ e2(V−U)F dθ ∧ dφ+ κ

F ′

F
p′ e2U dt ∧ dθ − p e2(U−V )dr ∧ dt

)
,

(F.3.16)

or after simplification

G =
(
Rq̃′ + Ip e2(U−V )

)
dt+

(
Rp− I q̃′ e2(V−U)

)
F dθ ∧ dφ

− κF ′
(
R dr ∧ dφ+ I e2U dt ∧ dθ

)
p′.

(F.3.17)

The "conserved" electric and magnetic charges are defined by [62]

pΛ =
1

4π

∫

S2

FΛ, qΛ =
1

4π

∫

S2

GΛ. (F.3.18)

The pair

Q =
(
pΛ

qΛ

)
(F.3.19)

forms the correct symplectic vector of charges.2

We obtain the explicit expressions

qΛ = RΛΣ p
Σ − e2(V−U)IΛΣ q̃

′Σ. (F.3.20)

We can solve for q̃′Λ in terms of pΛ and qΛ

q̃′Λ = e2(U−V )(I−1)ΛΣ(RΣ∆ p∆ − qΣ). (F.3.21)

If p′Λ = 0 we can obtain the field strength and its Hodge dual in terms of the symplectic
charges (we use a matrix/vector notation)

F = e2(U−V )(I−1R p− I−1q) dr ∧ dt+ pF dθ ∧ dφ,

⋆F = −p e2(U−V )dr ∧ dt+ I−1(Rp− q)Fdθ ∧ dφ.

2Note that [62] forgets to add κ in the formula: the presence of κ here can be traced to the fact that it
is absent in (F.3.1b), and ultimately the reason is that the gauge field should be defined with the integral of
F , and not its derivative; see [76] for comparison.
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From here we compute the symplectic dual of FΛ

G = R
(

e2(U−V )I−1(Rp− q) dr ∧ dt+ pF dθ ∧ dφ
)

− I
(

−p e2(U−V )dr ∧ dt+ I−1(Rp− q)Fdθ ∧ dφ
) (F.3.23)

and after replacing the charges

G = e2(U−V )
(
(I + RI−1R)p− RI−1q

)
dt+ qF dθ ∧ dφ. (F.3.24)

We can gather both vectors into a symplectic vector using the expression of M [165,
p. 515]

F =
(
FΛ

GΛ

)
= e2(V−U)MQ dr ∧ dt+ QF dθ ∧ dφ. (F.3.25)

Note that it does not seem possible to write such an expression if p′ 6= 0.
Dirac quantization condition implies that [62, sec. 2]

pΛP 3
Λ ∈ Z, pΛkuΛ ∈ Z. (F.3.26)

Supersymmetry restricts the integers to be

pΛP 3
Λ = κ, pΛkuΛ = 0. (F.3.27)

It seems that for P 1, P 2 6= 0 one has [149, app. D]

(pΛP xΛ)2 = κ2. (F.3.28)

F.3.2 Symplectic extension

Almost all the BPS equations we obtained in the previous sections are already symplectic
invariant since they are given in terms of symplectic invariant quantities.

We replace the charges by Q. To replace q̃′Λ we note that

e−2(U−V )q̃′Λ = (I−1)ΛΣ(RΣ∆ p∆ − qΣ) (F.3.29)

corresponds to the first component of −MQ.
The symplectic invariant equations are

〈Q,G〉 = −κ, (F.3.30a)

Re( e−iψL) = e2(U−V ) Im( e−iψZ) (F.3.30b)

ψ′ = −Ar + 2 e−U Re( e−iψL), (F.3.30c)

2 e2V ∂r
(

e−U Im( e−iψV)
)

= −8 e2(V−U) Re( e−iψL) Re( e−iψV)

− Q − e2(V−U)MG, (F.3.30d)

( eV )′ = −2 eV−U Im( e−iψL). (F.3.30e)

We also have the equation

2 ∂r
(

eU Re( e−iψV)
)

= e2(U−V )MQ + G. (F.3.31)

The second term cannot be seen from the original equation since gΛ was set to zero, but we
could get it by computing explicitly the derivative of MΛ.

The equation (F.3.30d) can be modified using (F.3.30e) to include one factor eV inside
the derivative. The LHS is

2 e2V ∂r
(

e−U Im( e−iψV)
)

= 2 eV ∂r
(

eV−U Im( e−iψV)
)

− 2 eV−U∂r( eV ) Im( e−iψV)

= 2 eV ∂r
(

eV−U Im( e−iψV)
)

+ 4 e2(V−U) Im( e−iψL) Im( e−iψV)
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and it combines with the RHS to

2 eV ∂r
(

eV−U Im( e−iψV)
)

= − 8 e2(V−U) Re( e−iψL) Re( e−iψV)

− 4 e2(V−U) Im( e−iψL) Im( e−iψV)

− Q − e2(V−U)MG.
(F.3.32)

Finally we recall the equations for U ′ and z′i

( eU )′ = −gΛp̃
Λ Im( e−iψL) + e2(U−V ) Re( e−iψZ), (F.3.33a)

(zi)′ = e−U eiψgi̄
(

e2(U−V ) D̄Z + i gΛp̃
Λ D̄L

)
. (F.3.33b)

F.3.3 Fayet–Iliopoulos gauging

We write

G = P3 =
(
gΛ

gΛ

)
(F.3.34)

to really distinguish between non-constant and constant prepotentials.

Equations from special geometry

We can use several identities involving the quartic invariant in order to express all equations
in terms of Im V and V uniquely.

We define
Ṽ = eV−U e−iψ V . (F.3.35)

The first step is to use the identity (6.3.16) in (F.3.32)

2 eV ∂r Im Ṽ = −Q + I ′
4(Im Ṽ , Im Ṽ ,G), (F.3.36)

Then using (5.3.16) and (6.3.17) as

I4(Im Ṽ) =
1
16

e4(V−U), Re Ṽ = −2 e2(U−V ) I ′
4(Im Ṽ). (F.3.37)

we can replace Re(Ṽ) and eU

e2U−V Re Ṽ = −2 e4U−3V I ′
4(Im Ṽ) = −1

8
eV

I ′
4(Im Ṽ)

I4(Im Ṽ)
. (F.3.38)

In terms of this new variable the equations (F.3.30d) and (F.3.30e) become

2 eV ∂r
(

Im Ṽ)
)

= −Q + I ′
4(Im Ṽ , Im Ṽ,G), (F.3.39a)

( eV )′ = −2
〈

G, Im Ṽ
〉
. (F.3.39b)

F.4 NUT black hole

F.4.1 Ansatz

We considerN = 2 gauged supergravity with nv vector multiplets. Fayet–Iliopoulos gaugings
are denoted by gΛ.

We take the following ansatz for the metric and the gauge fields3

ds2 = e2U
(
dt+ 2κnF ′(θ) dφ

)2 − e−2Udr2 − e2(V−U)
(
dθ2 + F (θ)2dφ2

)
, (F.4.1a)

AΛ = q̃Λ
(
dt+ 2κnF ′(θ) dφ

)
− κp̃ΛF ′(θ)dφ. (F.4.1b)

3Nick is defining N = κn.
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U, V, q̃ and p are only function of r, while

F (θ) =





sin θ κ = 1
θ κ = 0
sinh θ κ = −1

, κ = sign(1 − g) (F.4.2)

where g is the genus of the surface. We note that the second derivative of F satisfies

F ′′ = −κF. (F.4.3)

F.4.2 Vierbein and spin connections

Recall the metric

ds2 = e2U
(
dt+ 2κnF ′ dφ

)2 − e−2Udr2 − e2(V−U)
(
dθ2 + F 2dφ2

)
. (F.4.4)

We introduce the following vierbein

e0 = eU
(
dt+ 2κnF ′ dφ

)
, e1 = e−Udr, e2 = eV−Udθ, e3 = F eV−Udφ. (F.4.5)

We compute the differential

de0 = U ′dr ∧ e0 + 2κnF ′′ eUdθ ∧ dφ,

de1 = 0,

de2 = (V ′ − U ′) eV−Udr ∧ dθ,

de3 = F (V ′ − U ′) eV−Udr ∧ dφ+ F ′ eV−Udθ ∧ dφ.

Using (F.4.3) and the vierbein expressions (F.4.5), we can replace all the differential by the
vierbein

de0 = U ′ eUe1 ∧ e0 − 2n e3U−2V e2 ∧ e3, (F.4.6a)

de1 = 0, (F.4.6b)

de2 = (V ′ − U ′)eUe1 ∧ e2, (F.4.6c)

de3 = (V ′ − U ′)eUe1 ∧ e3 +
F ′

F
eU−V e2 ∧ e3. (F.4.6d)

Using the Cartan formula
dea + ωab ∧ eb = 0 (F.4.7)

we obtain the following spin connections

ω0
1 = U ′ eUe0, ω0

2 = −n e3U−2V e3, ω0
3 = n e3U−2V e2,

ω2
1 = (V ′ − U ′) eUe2, ω3

1 = (V ′ − U ′) eUe3,

ω3
2 =

F ′

F
eU−V e3 + n e3U−2V e0.

(F.4.8)

The last term in ω3
2 comes from the fact that

0 = de3 + ω3
2e

2 + ω3
0e

0 = de3 + ω3
2e

2 + n e3U−2V e2 ∧ e0. (F.4.9)

since ω3
0 = ω0

3 .
The explicit components

ωab = ω a
µ bdx

µ (F.4.10)

are
ω001 = U ′ eU , ω203 = −ω302 = n e3U−2V ,

ω212 = ω313 = (V ′ − U ′) eU , ω323 =
F ′

F
eU−V ,

ω023 = n e3U−2V .

(F.4.11)
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F.4.3 Gauge fields

Recall the gauge fields

AΛ = q̃Λ
(
dt+ 2κnF ′ dφ

)
− κp̃ΛF ′ dφ (F.4.12a)

= q̃Λ dt− κpΛF ′ dφ. (F.4.12b)

where we have defined
pΛ = p̃Λ − 2nq̃Λ. (F.4.13)

For n = 0 we obviously recover the formula from [62], and for this reason formulas written
in terms of Λ in terms of p̃Λ should be equivalent to this case.

In terms of the vierbein (F.4.5) we have

AΛ = q̃Λ eUe0 − κ
F ′

F
eU−V p̃Λ e3. (F.4.14)

Field strengths

Electric field strength Now we compute the field strength

FΛ = dAΛ (F.4.15)

and we get

FΛ = q̃′Λ dr ∧
(
dt+ 2κnF ′ dφ

)
+ pΛF dθ ∧ dφ− κp̃′ΛF ′ dr ∧ dφ (F.4.16a)

= −q̃′Λ dt ∧ dr + pΛ F dθ ∧ dφ− κp′ΛF ′ dr ∧ dφ, (F.4.16b)

or in terms of the tetrads

FΛ = −q̃′Λ e0 ∧ e1 + pΛ e2(U−V )e2 ∧ e3 − κ p̃′ΛF
′

F
e2U−V e1 ∧ e3. (F.4.16c)

In particular it is trivial to see that the Bianchi identity is satisfied

dF = p′Λ F dr ∧ dθ ∧ dφ+ p′ΛF dθ ∧ dr ∧ dφ = 0. (F.4.17)

Hodge field strength Using the facts that

⋆(eµ ∧ eν) =
1
2
εµνρσ e

ρ ∧ eσ, (F.4.18)

and
ε01

23 = ε13
02 = −1, ε23

01 = 1, (F.4.19)

the Hodge dual field strength is found to be

⋆FΛ = pΛ e2(U−V )e0 ∧ e1 + q̃′Λ e2 ∧ e3 + κ p̃′ΛF
′

F
e2U−V e0 ∧ e2 (F.4.20a)

or by replacing the tetrads

⋆FΛ = − pΛ e2(U−V )dr ∧
(
dt+ 2κnF ′ dφ

)
+ q̃′Λ e2(V−U)F dθ ∧ dφ

− κ p̃′ΛF
′

F
e2U

(
dt+ 2κnF ′ dφ

)
∧ dθ.

(F.4.20b)

We can also expand in order to get all components

⋆FΛ = pΛ e2(U−V )dt ∧ dr +
(
q̃′Λ e2(V−U) + 2n p̃′ΛF

′2

F 2
e2U

)
F dθ ∧ dφ

− 2κn pΛ e2(U−V )F ′ dr ∧ dφ− κ p̃′ΛF
′

F
e2U dt ∧ dθ.

(F.4.20c)
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(Anti-)self dual field strength The anti-self dual form is

F−Λ =
1
2

(
FΛ − i ⋆FΛ

)
= F̃Λ(e0 ∧ e1 + i e2 ∧ e3) +

F ′

F
G̃Λ(e1 ∧ e3 + i e0 ∧ e2) (F.4.21)

where

F̃Λ = −1
2
q̃Λ − i

2
pΛ e2(U−V ), G̃Λ = −κ e2U−V p̃′Λ. (F.4.22)

Magnetic field strength The symplectic dual GΛ of FΛ is defined by

GΛ = ⋆

(
δL
δFΛ

)
= RΛΣ F

Σ − IΛΣ ⋆FΣ. (F.4.23)

It reads explictly (with a matrix/vector notation)

G = R
(
q̃′ dr ∧

(
dt+ 2κnF ′ dφ

)
+ pF dθ ∧ dφ− κp̃′F ′ dr ∧ dφ

)

− I
(
q̃′ e2(V−U)F dθ ∧ dφ+ κ

F ′

F
p̃′ e2U

(
dt+ 2κnF ′ dφ

)
∧ dθ

+ p e2(U−V )dr ∧
(
dt+ 2κnF ′ dφ

))
,

(F.4.24)

or after simplication (in the last term we moved p̃′ in front of the expression since all matrices
are symmetric)

G =
(
Rq̃′ + Ip e2(U−V )

)
dr ∧

(
dt+ 2κnF ′ dφ

)
+
(
Rp− I q̃′ e2(V−U)

)
F dθ ∧ dφ

− κ p̃′ F ′
(
R dr ∧ dφ + I e2U

(
dt+ 2κnF ′ dφ

)
∧ dθ

)
.

(F.4.25)

Electromagnetic charges

The electric and magnetic charges are defined by [62]

pΛ =
1

4π

∫

S2

FΛ, qΛ =
1

4π

∫

S2

GΛ. (F.4.26)

The pair
Q = (pΛ, qΛ) (F.4.27)

forms the correct symplectic vector of charges.4

We obtain the explicit expressions

pΛ = p̃Λ − 2n q̃Λ, (F.4.28a)

qΛ = RΛΣ p
Σ − e2(V−U)IΛΣq̃

′Σ + 2n IΛΣp̃
′Σ e2U

∫
F ′2

F
dθ, (F.4.28b)

which justify a posteriori that we identified pΛ above.
The last integral can be done as

∫ θmax

0

F ′2

F
dθ =

∫ Fmax

0

F ′

F
dF = lnF (θmax) − lnF (0). (F.4.29)

Since F (0) = 0 the last piece is divergent so we should require that

n = 0 or p̃′Λ = 0. (F.4.30)

4Note that [62] forgets to add κ in the formula: the presence of κ here can be traced to the fact that it
is absent in (F.4.1b), and ultimately the reason is that the gauge field should be defined with the integral of
F , and not its derivative; see [76] for comparison.
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Since we want that our black holes carry a NUT charge we require

p̃′Λ = 0. (F.4.31)

Another evidence for imposing this equation is that the field strength (F.4.16) and its dual
(F.4.20) do not respect the isometries of the spacetime if p̃Λ 6= 0. Moreover if this equation
does not hold it is not possible to construct the symplectic vector of field strengths. Finally
we will see that supersymmetry imposes naturally this constraint. For the rest of the section
we will consider that this term is absent.

Imposing (F.4.31) we obtain the electromagnetic charges

pΛ = p̃Λ − 2n q̃Λ, (F.4.32a)

qΛ = RΛΣ p
Σ − e2(V−U)IΛΣq̃

′Σ. (F.4.32b)

We can solve for q̃′Λ in terms of pΛ and qΛ

q̃′Λ = e2(U−V )(I−1)ΛΣ(RΣ∆ p∆ − qΣ). (F.4.33)

We note that the above relation corresponds to

q̃′Λ = − e2(U−V )(MQ)Λ, (F.4.34)

and we may use this relation for obtaning symplectic covariant formulas.

Symplectic field strengths

Imposing the condition (F.4.31), the expression (F.4.16) for the field strength becomes

FΛ = q̃′Λ dr ∧
(
dt+ 2κnF ′ dφ

)
+ pΛF dθ ∧ dφ. (F.4.35)

The Bianchi identity reads

dFΛ = (p′ + 2n q̃′Λ)F dr ∧ dθ ∧ dφ = p̃′ΛF dr ∧ dθ ∧ dφ = 0 (F.4.36)

which is solved by (F.4.31) and this is consistent.
The Hodge dual (F.4.20) reads

⋆FΛ = −pΛ e2(U−V )dr ∧
(
dt+ 2κnF ′ dφ

)
+ q̃′Λ e2(V−U)F dθ ∧ dφ. (F.4.37)

Finally the magnetic field strength (F.4.25) is

G =
(
Rq̃′ + Ip e2(U−V )

)
dr ∧

(
dt+ 2κnF ′ dφ

)
+
(
Rp− I q̃′ e2(V−U)

)
F dθ ∧ dφ. (F.4.38)

Then we can use the expression (F.4.33) for removing q̃′ in FΛ and GΛ (we use a ma-
trix/vector notation)

F = e2(U−V )(I−1R p− I−1q) dr ∧
(
dt+ 2κnF ′ dφ

)
+ pF dθ ∧ dφ, (F.4.39a)

G = e2(U−V )
(
(I + RI−1R)p− RI−1q

)
dr ∧

(
dt+ 2κnF ′ dφ

)
+ q F dθ ∧ dφ, (F.4.39b)

where G is obtained from the simplification of

G = R
(

e2(U−V )I−1(Rp− q) dr ∧
(
dt+ 2κnF ′ dφ

)
+ pF dθ ∧ dφ

)

− I
(

−p e2(U−V )dr ∧
(
dt+ 2κnF ′ dφ

)
+ I−1(Rp− q)Fdθ ∧ dφ

)
.

(F.4.40)

Note that we also have

⋆F = −p e2(U−V )dr ∧
(
dt+ 2κnF ′ dφ

)
+ I−1(Rp− q)Fdθ ∧ dφ. (F.4.41)

Looking at (F.4.39) we can gather F and G into a symplectic vector using (F.4.34)

F =
(
FΛ

GΛ

)
= e2(V−U)MQ dr ∧

(
dt+ 2κnF ′ dφ

)
+ QF dθ ∧ dφ. (F.4.42)

As explained above we cannot obtain this symplectic vector if p̃′ 6= 0.
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Maxwell equation

Maxwell equation reads
dGΛ = 0. (F.4.43)

From the expression (F.4.39) we obtain

dG =
[
2n e2(U−V )

(
(I + RI−1R)p− RI−1q

)
+ q′

]
F dr ∧ dθ ∧ dφ, (F.4.44)

or in components
q′ = −2n e2(U−V )

(
(I + RI−1R)p− RI−1q

)
. (F.4.45)

This computation is much more complicated if one keeps p̃′ 6= 0 (the hope would be to get
p̃′ = 0 as a second equation).

The constraint (F.4.31) and the Bianchi identity

dFΛ = 0 (F.4.46)

both read
p̃′ = p′ + 2n q̃′ = 0. (F.4.47)

Using the expression (F.4.33) one obtains

p′ = −2n e2(U−V )I−1(R p− q). (F.4.48)

The equations for p′ and q′ can be gathered into a symplectic equation as

Q′ = −2n e2(U−V ) MQ (F.4.49)

using the expression for M. This result can also be straightforwardly derived from the
symplectic field strength (F.4.42).

Central charge

The central charge is defined by

Z = 〈Q,V〉 = pΛMΛ − qΛL
Λ. (F.4.50)

where Q = (pΛ, qΛ). Using (F.4.32), the symmetry of NΛΣ and MΛ = NΛΣL
Σ we can find

another expression

Z = pΛ(RΛΣ + iIΛΣ)LΣ −
(
RΛΣ p

Λ − e2(V−U)IΛΣq̃
′Λ
)
LΣ,

and after simplifcation we get

Z = IΛΣ

(
e2(V−U)q̃′Λ + ipΛ

)
LΣ. (F.4.51)

Now we can deduce its relation with F̃Λ from (F.4.22)

Z = −2 e2(V−U)IΛΣF̃
ΛLΣ. (F.4.52)

Let’s now compute the derivative of the central charge

Zi ≡ DiZ = 〈Q, Ui〉 . (F.4.53)

We have
Zi = pΛ(RΛΣ − iIΛΣ)fΣ

i −
(
RΛΣ p

Λ − e2(V−U)IΛΣ q̃
′Λ
)
fΣ
i ,

since now hiΛ = N̄ΛΣf
Σ
i , simplification gives

Zi = IΛΣ

(
e2(V−U)q̃′Λ − ipΛ

)
fΣ
i . (F.4.54)
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On the other hand we will have

Zı̄ = IΛΣ

(
e2(V−U)q̃′Λ + ipΛ

)
f̄Σ
ı̄ . (F.4.55)

Finally we introduce a last quantity

L = 〈G,V〉 = gΛMΛ − gΛL
Λ. (F.4.56)

where G = (gΛ, gΛ) (recall that gΛ = 0 for the moment).
Inverting (F.4.50) we get

IΛΣF̃
ΛLΣ = −1

2
e2(U−V )Z. (F.4.57)

We also define

IΛΣG̃
ΛLΣ = −1

2
Y. (F.4.58)

F.5 BPS equations for NUT black hole

We obtain the equation from [62] by taking P 3
Λ = gΛ. We take the scalars and spinors to

depend only on r. The ansatz for the spinors is

εA(r) = e
1
2

(H+iα)ε0A (F.5.1)

with H and α both functions of r, and ε0A is a constant spinor.

F.5.1 Gravitino equation

The gravitino variation is

δψµA = DµεA + iSAB γµε
B + T−

µνγ
νεABε

B = 0 (F.5.2)

where

DµεA = DµεA +
i

2
gΛA

Λ
µσ

3 B
A εB, (F.5.3a)

Dµ = ∂µ +
1
4
ωµabγ

ab +
i

2
Aµ, (F.5.3b)

Aµ =
1
2i

(Ki∂µz
i −Kı̄∂µz

ı̄), (F.5.3c)

SAB = − i

2
L σ3 C

A εBC , (F.5.3d)

T−
µν = 2i IΛΣL

ΣF−Λ
µν . (F.5.3e)

More precisely we will look at the components of γaδψaA (no sum over a).
We can obtain another expression for T− from (F.4.21)

T− = 2i IΛΣL
ΣF−Λ

= 2i IΛΣF̃
ΛLΣ(e0 ∧ e1 + i e2 ∧ e3) + 2i

F ′

F
IΛΣG̃

ΛLΣ(e1 ∧ e3 + i e0 ∧ e2)

= −i e2(U−V )Z (e0 ∧ e1 + i e2 ∧ e3) − i
F ′

F
Y (e1 ∧ e3 + i e0 ∧ e2)

using the expressions (F.4.52) and (F.4.58). By contracting this expression with γb and
multiplying by γa (thus with no sum over a) with

γaγb =
1
2
γab, (F.5.4)
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we can see that only one term will remain for each value of a, and the factor will be ±1 or
±i.

The components of the variation read

γ0δψ0A =
1
2

(
U ′ eUγ1 + n e3U−2V γ023

)
εA +

i

2
gΛq̃

Λ e−Uγ0σ3 B
A εB + iSABε

B (F.5.5a)

− i

2
e2(U−V )Z γ01εABε

B − F ′

F
Y γ02εABε

B,

γ1δψ1A = eU
(
∂r +

i

2
Ar

)
γ1εA + iSABε

B − i

2
e2(U−V )Z γ01εABε

B (F.5.5b)

+ i
F ′

F
Y γ13εABε

B,

γ2δψ2A =
1
2

(
(V ′ − U ′)eUγ1 − n e3U−2V γ023

)
εA + iSABε

B (F.5.5c)

+
1
2

e2(U−V )Z γ23εABε
B − F ′

F
Y γ02εABε

B,

γ3δψ3A =
1
2

(
(V ′ − U ′)eUγ1 − n e3U−2V γ023 +

F ′

F
eU−V γ2

)
εA + iSABε

B (F.5.5d)

− i

2
F ′

F
κ gΛp̃

Λ eU−V γ3σ3 B
A εB +

1
2

e2(U−V )Z γ23εABε
B + i

F ′

F
Y γ13εABε

B.

We use the fact that γaγb = γab/2 in all the last terms. Also we introduce curved index r
for derivatives by using the inverse tetrad for the 1-component. We can rewrite γ023 and
γ13, and we simplify the equations

γ0δψ0A =
eU

2

(
U ′ − in e2(U−V )

)
γ1εA +

i

2
gΛq̃

Λ e−Uγ0σ3 B
A εB + iSABε

B (F.5.6a)

− i

2
e2(U−V )Z γ01εABε

B − F ′

F
Y γ02εABε

B,

γ1δψ1A = eU
(
∂r +

i

2
Ar

)
γ1εA + iSABε

B − i

2
e2(U−V )Z γ01εABε

B (F.5.6b)

− F ′

F
Y γ02εABε

B,

γ2δψ2A =
eU

2

(
(V ′ − U ′) + in e2(U−V )

)
γ1εA + iSABε

B +
i

2
e2(U−V )Z γ01εABε

B (F.5.6c)

− F ′

F
Y γ02εABε

B,

γ3δψ3A = γ2δψ2A +
1
2
F ′

F
eU−V

(
γ2εA − iκ gΛp̃

Λ γ3σ3 B
A εB

)
. (F.5.6d)

First we see that each equation contains a θ-dependent term which should vanish since
we have only r-dependent functions, thus

Y = IΛΣG̃
ΛLΣ = 0 =⇒ IΛΣp̃

′ΛLΣ = 0. (F.5.7)

We note that (F.5.6d) and (F.5.6c) differ only by a θ-dependent term, which gives a first
projector equation

γ2εA − iκ gΛp̃
Λ γ3σ3 B

A εB = 0. (F.5.8)

Taking the difference of (F.5.6a) and (F.5.6b) gives

eU
(
∂r +

i

2
Ar

)
εA =

eU

2

(
U ′ − in e2(U−V )

)
εA +

i

2
gΛq̃

Λ e−Uγ01σ3 B
A εB. (F.5.9)

Finally we need to take (F.5.6a) minus (F.5.6c)
(
2U ′ −V ′ −2in e2(U−V )

)
γ1εA+i gΛq̃

Λ e−2U γ0σ3 B
A εB−2i eU−2VZγ01εABε

B = 0. (F.5.10)
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We multiply (F.5.6c) by gamma matrices and we replace SAB to get

i

2
L γ01σ3 C

A εBCε
B =

1
2

e2(U−V )Z εABε
B +

i

2
eU
(
V ′ − U ′ + in e2(U−V )

)
γ0εA. (F.5.11)

Let’s summarize the equations we need to solve5

0 = IΛΣp̃
′ΛLΣ, (F.5.12a)

(
∂r +

i

2
Ar

)
εA =

1
2

(
U ′ − in e2(U−V )

)
εA +

i

2
gΛq̃

Λ e−2Uγ01σ3 B
A εB, (F.5.12b)

(
2U ′ − V ′ − 2in e2(U−V )

)
εA = −2i eU−2V Zγ0εABε

B − i gΛq̃
Λ e−2U γ01σ3 B

A εB, (F.5.12c)

εA = −κ gΛp̃
Λ γ01σ3 B

A εB, (F.5.12d)

iL γ01σ3 C
A εBCε

B = e2(U−V )Z εABε
B − i eU

(
V ′ − U ′ + in e2(U−V )

)
γ0εA. (F.5.12e)

These equations are equivalent to the ones in [62] if we replace

U ′ −→ U ′ − in e2(U−V ). (F.5.13)

There are four equations with projectors, and we need to reduce two of them to bosonic
equations in order to get 1/4-BPS solutions.

We can plug (F.5.12d) into itself and find the following consistency condition6

(κgΛp̃
Λ)2 = 1 =⇒ gΛp̃

Λ = ±κ. (F.5.14)

For simplicity we will keep the expression

εA = −κ gΛp̃
Λγ01σ3 B

A εB (F.5.15)

for the projector and simplify the sign only at the end. If gΛ is fixed, then we can pick a sign
and obtain the other just by inverting the other charges. An equivalent formulation gives

κ gΛp̃
Λ εA = −γ01σ3 B

A εB (F.5.16)

by multiplying (F.5.15) on both side by κgΛp
Λ and using (F.5.14).

We can use it to simplify (F.5.12c)

(
2U ′ − V ′ − 2in e2(U−V )

)
εA = −2i eU−2V Z γ0εABε

B + i c εA (F.5.17)

where we have introduced the shortcut notation

c = κ gΛp̃
Λ gΣq̃

Σ e−2U = ±gΛq̃
Λ e−2U . (F.5.18)

We rewrite the equation as

(
2U ′ − V ′ − ic̃

)
εA = −2i eU−2VZ γ0εABε

B (F.5.19)

where
c̃ = c+ 2n e2(U−V ) = κ gΛp̃

Λ gΣq̃
Σ e−2U + 2n e2(U−V ). (F.5.20)

Hence we can interpret the effect of n as shifting c instead of U ′.
We can now look for consistency of this last equation by plugging it into itself. First

take the complex conjugate

(2U ′ − V ′ + ic̃)εA = 2i eU−2V Z̄ γ0εABεB. (F.5.21)

5We obtain five equations from four because we got one additional constraint by requiring that the
θ-dependent term in each equation vanishes.

6We could have not included κ into this equation but this choice allows to remove all κ from the equations,
and it appears that it is necessary for finding a solution.
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Now use this result into the first equation

|2U ′ − V ′ + ic̃|2 = 4 |Z|2 e2U−4V , (F.5.22)

or written differently

|Z|2 =
e4V−2U

4

(
(2U ′ − V ′)2 + c̃2

)
. (F.5.23)

We define the phase7 ψ(r) by the equation

2 eU−2V e−iψZ = 2U ′ − V ′ − ic̃, (F.5.24)

or by replacing c̃

2 eU−2V e−iψZ = 2U ′ − V ′ − i
(
κ gΛp̃

Λ gΣq̃
Σ e−2U + 2n e2(U−V )

)
. (F.5.25)

The real and imaginary parts of this equation are respectively

2 eU−2V Re( e−iψZ) = 2U ′ − V ′, (F.5.26a)

2 eU−2V Im( e−iψZ) = −κ gΛp̃
Λ gΣq̃

Σ e−2U − 2n e2(U−V ). (F.5.26b)

The second equation will help us to replace q̃Λ everywhere.
The projector then becomes

εA = i eiψ γ0εABε
B. (F.5.27)

The version with indices up is
εA = i e−iψ γ0εABεB. (F.5.28)

The phase ψ which appears here is the same as the one of the spinor in (F.5.1), as can be
seen by comparing the phases of (F.5.27), thus

α = ψ. (F.5.29)

Inserting the projector (F.5.15) into (F.5.12b) turns it into a bosonic equation

∂rεA =
1
2

(
U ′ − i

(
Ar + c+ n e2(U−V )

))
εA (F.5.30a)

=
1
2

(
U ′ − i

(
Ar + c̃− n e2(U−V )

))
εA. (F.5.30b)

Plugging the ansatz (F.5.1) for the spinor, we get a differential equation for the phase

ψ′ = −
(
Ar + c+ n e2(U−V )

)
(F.5.31)

from the imaginary part, while the real part tells us that H ′ = U ′, and setting to zero the
integration constant we have

H = U. (F.5.32)

Replacing c we have

ψ′ = −
(
Ar + κ gΛp̃

Λ gΣq̃
Σ e−2U + n e2(U−V )

)
. (F.5.33)

and it simplifies with (F.5.26b)

ψ′ = −Ar + 2 eU−2V Im( e−iψZ) + n e2(U−V ). (F.5.34)

7We know that both sides of the equation differ by this phase because of the above value for |Z|.
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The last step is to simplify (F.5.12e)

iL γ01σ3 C
A εBCε

B = e2(U−V )Z εABε
B − i eU

(
V ′ − U ′ + in e2(U−V )

)
γ0εA,

−iL γ01σ3 C
A γ0εCBε

B = e2(U−V )Z γ0εABε
B − i eU

(
V ′ − U ′ + in e2(U−V )

)
εA,

− e−iψL γ01σ3 C
A εC = −i e2(U−V ) e−iψZ εA − i eU

(
V ′ − U ′ + in e2(U−V )

)
εA,

κ gΛp̃
Λ e−iψL εA = −i e2(U−V ) e−iψZ εA − i eU

(
V ′ − U ′ + in e2(U−V )

)
εA.

In the first step we multiplied by γ0 and reversed εBC , then we used the projector (F.5.27),
and finally we used the other projector (F.5.16). After simplifcation we obtain a bosonic
equation

iκ gΛp̃
Λ e−iψL = e2(U−V ) e−iψZ + eU

(
V ′ − U ′ + in e2(U−V )

)
. (F.5.35)

The real part and imaginary parts read

κ gΛp̃
Λ Im( e−iψL) = − e2(U−V ) Re( e−iψZ) − eU (V ′ − U ′), (F.5.36a)

κ gΛp̃
Λ Re( e−iψL) = e2(U−V ) Im( e−iψZ) + n e3U−2V . (F.5.36b)

From the equation (F.5.26a)

eUV ′ = 2
(
( eU )′ − e2(U−V ) Re( e−iψZ)

)
, (F.5.37)

we can simplify the first equation

κ gΛp̃
Λ Im( e−iψL) = − e2(U−V ) Re( e−iψZ) −

(
2( eU )′ − 2 e2(U−V ) Re( e−iψZ) − ( eU )′

)

(F.5.38)
and get a differential equation for U ′

( eU )′ = −κ gΛp̃
Λ Im( e−iψL) + e2(U−V ) Re( e−iψZ). (F.5.39)

Plugging this equation back we obtain a differential equation for V ′

( eV )′ = −2κ gΛp̃
Λ eV−U Im( e−iψL). (F.5.40)

We can solve these two equations instead of (F.5.26a) and (F.5.36a).
Adding (F.5.35) to (F.5.25) gives

e2(U−V ) e−iψZ + iκ gΛp̃
Λ e−iψL = eU

(
U ′ − i

(
κ gΛp̃

Λ gΣq̃
Σ e−2U + n e2(U−V )

))
. (F.5.41)

This equation is just a rewriting of previous equations.

F.5.2 Gaugino variation

The gaugino variation is given by

δλiA = i∂µz
i γµεA − gi̄f̄Σ

̄ IΛΣF−Λ
µν γµνεABεB + igΛg

i̄f̄Λ
̄ σ3 B

C εCAεB = 0. (F.5.42)

The variation becomes8

δλiA = i eU∂rzi γ1εA +
1
2

e2(U−V ) gi̄D̄Z(γ01 + iγ23)εABεB + igi̄D̄L σ3 B
C εCAεB

+ 2
F ′

F
gi̄D̄Y(γ13 + i γ02)εABεB.

(F.5.43)

8The contraction is antisymmetric and should give a factor 2; but we wrote F̃ e0e1, and we did not write
the component e1e0, thus we do not take it into account (or we could by multiplying by a factor 1/2).
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The last term is the only θ dependence and it should cancel

gi̄D̄Y = gi̄ IΛΣG̃
Λf̄Σ

̄ = 0 =⇒ IΛΣG̃
Λf̄Σ

̄ = 0. (F.5.44)

Adding this to the previous equation (F.5.12a), we see that GΛ is orthogonal to the nv + 1
base vectors (LΛ, fΛ

̄ ) which implies that it vanishes. We deduce that

p̃′Λ = 0 =⇒ p̃ = cst. (F.5.45)

We can simplify the rest of (F.5.43)

i eU∂rzi γ1εA = −1
2

e2(U−V ) gi̄D̄Z(γ01 + iγ23)εABεB − igi̄D̄L σ3 B
C εCAεB

i eU∂rzi γ1εA = − e2(U−V ) gi̄D̄Z γ01εABεB − igi̄D̄L σ3 B
C εCAεB

i eU∂rzi εA = e2(U−V ) gi̄D̄Z γ0εABεB + igi̄D̄L γ0εCAγ01σ3 B
C εB

i eU∂rzi εA = i e2(U−V ) eiψ gi̄D̄Z εA − iκ gΛp̃
Λ gi̄D̄L γ0εCAεC

i eU∂rzi εA = i e2(U−V ) eiψ gi̄D̄Z εA − κ gΛp̃
Λ eiψ gi̄D̄L εA.

First we replaced γ23 by γ01, then we multiplied by γ1 and we introduced (γ0)2 = 1, after
what we used projectors (F.5.27) and (F.5.16) respectively for the first and second terms of
the RHS, and finally we used again (F.5.27) for the last term after changing εCA = −εAC .

Cleaning up this equation gives finally

e−iψ eU∂rzi = gi̄
(

e2(U−V ) D̄Z + i κ gΛp̃
Λ D̄L

)
. (F.5.46)

We want to rewrite it in terms of the sections. It is easier to proceed if we replace

DiZ = IΛΣ

(
e2(V−U)q̃′Λ + ipΛ

)
fΣ
i , DiL = −gΣf

Σ
i , (F.5.47)

using (F.4.54), to get

e−iψ eU∂rzi = gi̄fΣ
̄

(
e2(U−V ) IΛΣ

(
e2(V−U)q̃′Λ + ipΛ

)
− i κ gΛp̃

Λ gΣ

)
(F.5.48)

We contract both sides with f∆
i . Using the relation

− gi̄fΣ
̄ f

∆
i =

1
2

(I−1)Σ∆ + LΣL̄∆ (F.5.49)

we find

e−iψ eUf∆
i ∂rz

i = −
(

1
2

(I−1)Σ∆ + LΣL̄∆

)(
e2(U−V ) IΛΣ

(
e2(V−U)q̃′Λ + ipΛ

)
− i κ gΛp̃

Λ gΣ

)

= −1
2

(
q̃′∆ + i e2(U−V )p∆

)
+
i

2
κ gΛp̃

Λ (I−1)Σ∆gΣ + i κ gΛp̃
Λ L̄∆ LΣgΣ

− e2(U−V ) IΛΣL
ΣL̄∆

(
e2(V−U)q̃′Λ + ipΛ

)

= −1
2

(
q̃′∆ + i e2(U−V )p∆

)
+
i

2
κ gΛp̃

Λ (I−1)Σ∆gΣ − i κ gΛp̃
Λ L̄∆ L

− e2(U−V ) L̄∆Z
where we used the expression of Z and L

= −1
2

(
q̃′∆ + i e2(U−V )p∆

)
+
i

2
κ gΛp̃

Λ (I−1)Σ∆gΣ

− L̄∆
(

e2(U−V ) Z + i κ gΛp̃
Λ L
)

= −1
2

(
q̃′∆ + i e2(U−V )p∆

)
+
i

2
κ gΛp̃

Λ (I−1)Σ∆gΣ

− L̄∆ eiψ eU
(
U ′ − i

(
c+ n e2(U−V )

))
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by using (F.5.41). We now consider the LHS

fΛ
i ∂rz

i = ∂rz
i

(
∂iL

Λ +
1
2

(∂iK)LΛ

)
= ∂rL

Λ +
1
2

(z′i∂iK − z ′̄ı∂ı̄K)LΛ

= ∂rL
Λ + iArL

Λ = ∂rL
Λ − i

(
ψ′ + c+ n e2(U−V )

)
LΛ

from (F.5.34) and from

∂rL
Λ = z′i∂iL

Λ + z ′̄ı∂ı̄L
Λ = z′i∂iL

Λ + z ′̄ı∂ı̄( e
K
2 XΛ) = z′i∂iL

Λ +
1
2
z ′̄ıLΛ∂ı̄K

(explained with words, LΛ depends on z̄ by the Kähler potential).
Gluing the two sides we find

e−iψ eU
(
∂rL

∆ − i
(
ψ′ + c+ n e2(U−V )

)
L∆
)

+ L̄∆ eiψ eU
(
U ′ − i

(
c+ n e2(U−V )

))

= −1
2

(
q̃′∆ + i e2(U−V )p∆

)
+
i

2
κ gΛp̃

Λ (I−1)Σ∆gΣ. (F.5.50)

We focus on the LHS

e−iψ eU
(
∂rL

∆ − i
(
ψ′ + c+ n e2(U−V )

)
L∆
)

+ L̄∆ eiψ eU
(
U ′ − i

(
c+ n e2(U−V )

))

= e−iψ eU
(
∂rL

∆ − iψ′L∆
)

+ U ′ eU eiψL̄∆ − i eU
(
c+ n e2(U−V )

)(
e−iψL∆ + eiψL̄∆

)

= eU∂r
(

e−iψL∆
)

+ U ′ eU eiψL̄∆ + 2i eU
(
2 eU−2V Im( e−iψZ) + n e2(U−V )

)
Re( e−iψL∆)

= eU∂r
(

e−iψL∆
)

+ U ′ eU
(

Re( e−iψL∆) − i Im( e−iψL∆)
)

+ 2i eU
(
2 eU−2V Im( e−iψZ) + n e2(U−V )

)
Re( e−iψL∆)

using (F.5.26b) and that Im(x∗) = − Imx to replace c. We multiply each side by 2 and
using the fact that ( e±U )′ = ±U ′ eU we decompose this equation into real and imaginary
parts9

2 ∂r
(

eU Re( e−iψLΛ)
)

= −q̃′Λ, (F.5.51a)

2 e2V ∂r
(

e−U Im( e−iψLΛ)
)

= −pΛ + κ e2(V−U)g∆p̃
∆ (I−1)ΣΛgΣ (F.5.51b)

− 4
(
2 Im( e−iψZ) + n eU

)
Re( e−iψL∆).

The first equation is directly integrated to give

q̃Λ = −2 eU Re( e−iψLΛ). (F.5.52)

Finally we can use (F.5.36b) to get

2 e2V ∂r
(

e−U Im( e−iψLΛ)
)

= − 4
(
2κg∆p̃

∆ e2(V−U) Re( e−iψL) − n eU
)

Re( e−iψL∆)

− pΛ + κ e2(V−U)g∆p̃
∆ (I−1)ΣΛgΣ.

(F.5.53)

F.5.3 Summary

We found two projectors

εA = i e−iψ γ0εABεB, (F.5.54a)

εA = −κgΛp̃
Λ γ01σ3 B

A εB. (F.5.54b)

9For the imaginary part we need to multiply by e2(V −U).
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We have algebraic

gΛp̃
Λ = εDκ, (F.5.55a)

κ gΛp̃
Λ Re( e−iψL) = e2(U−V ) Im( e−iψZ) + n e3U−2V (F.5.55b)

and differential equations

ψ′ = −Ar + 2 eU−2V Im( e−iψZ) + n e2(U−V ), (F.5.55c)

( eU )′ = −κ gΛp̃
Λ Im( e−iψL) + e2(U−V ) Re( e−iψZ), (F.5.55d)

( eV )′ = −2κ gΛp̃
Λ eV−U Im( e−iψL), (F.5.55e)

(zi)′ = e−U eiψgi̄
(

e2(U−V ) D̄Z + i κ gΛp̃
Λ D̄L

)
. (F.5.55f)

We have
εD = ±1 (F.5.56)

and both signs correspond to different branches of BPS solutions. In general one can study
the solution with εD = −1 [46, 52, 84] and the other branch can be found by flipping the
sign of the charges – and apparently eU – once G is fixed (see [81, app. B, 62, p. 6]). In
particular this choice agrees with [58, p. 8]. Note that setting κ to the RHS is necessary (if
one wants a solution) even if we do not see this from the equations.

The equations (F.5.55d) and (F.5.55f) can be gathered into

2 e2V ∂r
(

e−U Im( e−iψLΛ)
)

= − 8κ g∆p̃
∆ e2(V−U) Re( e−iψL) Re( e−iψLΛ)

+ 4n eU Re( e−iψLΛ) − pΛ + κ g∆p̃
∆ e2(V−U)(I−1)ΣΛgΣ.

(F.5.57)
One needs also to impose Maxwell equations (F.4.49)

Q′ = −2n e2(U−V ) MQ. (F.5.58)

It includes the equation
p̃′Λ = 0 (F.5.59)

and the charges q̃Λ are given by the equation (F.5.52)

q̃Λ = −2 eU Re( e−iψLΛ). (F.5.60)

Note that (F.5.55a) reduces to Dirac quantization condition from [62] when n = 0. Using
the definition (F.4.32)

p̃Λ = pΛ + 2n q̃Λ (F.5.61)

and the equation (F.5.60)
q̃Λ = −2 eU Re( e−iψLΛ), (F.5.62)

we obtain10 a new expression for (F.5.55a) which depends only on the electromagnetic
charges

gΛp
Λ − 4n eUgΛ Re( e−iψLΛ) = κ. (F.5.63)

We can use (F.5.55b) in order to get an expression for eiψ . This last expression will not
help to solve the equation since it is complicated, but it means that we can always integrate
the differential equation for the phase (F.5.55c), and we can obtain the expression if we
know all other quantities. From (F.5.55b) we have11

(
e−iψL + eiψL̄

)
= −i e2(U−V )

(
e−iψZ − eiψZ̄

)
+ 2n e3U−2V . (F.5.64)

10Since the formula contained q̃ and not q̃′ we could not use (F.4.34) to replace it.
11To lighten notations we take gΛp̃Λ = κ
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We multiply by eiψ in order to get a second order equation

e2iψ
(
L̄ − i e2(U−V )Z̄

)
− 2n e3U−2V eiψ +

(
L + i e2(U−V )Z

)
= 0 (F.5.65)

whose solutions are

eiψ = − n e3U−2V

L̄ − i e2(U−V )Z̄ ± 2

√(
n e3U−2V

L̄ − i e2(U−V )Z̄

)2

− L + i e2(U−V )Z
L̄ − i e2(U−V )Z̄ . (F.5.66)

For n = 0 it reduces to [52, eq. (2.39)]

e2iψ =
e2(U−V )Z − iL
e2(U−V )Z̄ + iL̄ . (F.5.67)

F.5.4 Symplectic extension

Almost all the BPS equations we obtained in the previous sections are already symplectic
invariant since they are given in terms of symplectic invariant quantities. The symplectic
covariant expression of Dirac quantization condition can be read from (F.5.63).

The symplectic invariant equations are

〈Q,G〉 + 4n eU Re( e−iψL) = εD κ, (F.5.68a)

εD Re( e−iψL) = e2(U−V ) Im( e−iψZ) + n e3U−2V (F.5.68b)

2 e2V ∂r
(

e−U Im( e−iψV)
)

=
(

4n eU − 8εD e2(V−U) Re( e−iψL)
)

Re( e−iψV)

− Q − εD e2(V−U)MG, (F.5.68c)

( eV )′ = −2εD eV−U Im( e−iψL), (F.5.68d)

Q′ = −2n e2(U−V ) MQ. (F.5.68e)

We also have the derivative of equation (F.5.60)

2 ∂r
(

eU Re( e−iψV)
)

= −G − e2(U−V )MQ. (F.5.69)

The first term cannot be seen from (F.5.60) since gΛ was set to zero, but we could get it by
computing explicitly the derivative of MΛ.

Finally we recall the equations for ψ′, U ′ and z′i

ψ′ = −Ar − 2 e−U Re( e−iψL) − n e2(U−V ), (F.5.70a)

( eU )′ = −εD Im( e−iψL) + e2(U−V ) Re( e−iψZ), (F.5.70b)

(zi)′ = e−U eiψgi̄
(

e2(U−V ) D̄Z + iD̄L
)
. (F.5.70c)

Other equations

The equation (F.5.68c) can be modified using (F.5.68d) to include one factor eV inside the
derivative. The LHS is

2 e2V ∂r
(

e−U Im( e−iψV)
)

= 2 eV ∂r
(

eV−U Im( e−iψV)
)

− 2 eV−U∂r( eV ) Im( e−iψV)

= 2 eV ∂r
(

eV−U Im( e−iψV)
)

+ 4 e2(V−U) Im( e−iψL) Im( e−iψV)

and it combines with the RHS to

2 eV ∂r
(

eV−U Im( e−iψV)
)

= 4
(
n eU − 2 e2(V−U) Re( e−iψL)

)
Re( e−iψV)

− 4 e2(V−U) Im( e−iψL) Im( e−iψV)

− Q − e2(V−U)MG.
(F.5.71)
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One can also use Maxwell equation (F.5.68e) to rewrite (F.5.69) as

2 ∂r
(

eU Re( e−iψV)
)

=
1

2n
Q′ − G. (F.5.72)

It is then straightforward to integrate this equation

4n eU Re( e−iψV) = Q − 2nG r − Q̂ (F.5.73)

where Q̂ is the integration constant. In turn one can use this to get the expression for Q
if one knows the other quantities. Moreover plugging this result into Dirac quantization
equation (F.5.68a) gives

〈Q,G〉 + 4n eU Re( e−iψL) =
〈

Q̂,G
〉

= εD κ (F.5.74)

which shows that the LHS of Dirac equation is constant.
Finally one can use this expression for Q in order to rewrite the equation (F.5.68c) for

the imaginary part of V

2 e2V ∂r
(

e−U Im( e−iψV)
)

=
(

8n eU − 8εD e2(V−U) Re( e−iψL)
)

Re( e−iψV)

− 2nG r − Q̂ − εD e2(V−U)MG.
(F.5.75)

The main advantage is that Q has been replaced by the constant Q̂, while the extra term
G r is not a big problem.

Another formulation

We can use the second equation to replace n everywhere: we then get a set of equations
which is the same as for n = 0, and any solution of this set should satisfy the additional
constraint (F.5.68b). The new equations are

ψ′ = −Ar + eU−2V Im( e−iψZ) + e−U Re( e−iψL), (F.5.76a)

2 e2V ∂r
(

e−U Im( e−iψV)
)

= −4
(

e−U Re( e−iψL) + eU−2V Im( e−iψZ)
)

Re( e−iψV)

− Q − e2(V−U)MG, (F.5.76b)

Q′ = 2
(

e−U Re( e−iψL) − eU−2V Im( e−iψZ)
)

MQ. (F.5.76c)

If we multiply (F.5.76b) by M (which is real) we get

2 e2V ∂r
(

e−U Im( e−iψMV)
)

= −2
(

e2(V−U) Re( e−iψL) + Im( e−iψZ)
)

Re( e−iψMV)

− MQ + e2(V−U)MMG
+ 2 e−U Im

(
e−iψ∂r( e2V M)V

)

−2 e2V ∂r
(

e−U Im(i e−iψV)
)

= −2
(

e−U Re( e−iψL) + eU−2V Im( e−iψZ)
)

Re(i e−iψV)

− MQ − e2(V−U)G + 2 e−U Im
(

e−iψ∂r( e2V M)V
)

since M2 = −1. We obtain

2 e2V ∂r
(

e−U Re( e−iψV)
)

= − 2
(

e−U Re( e−iψL) + eU−2V Im( e−iψZ)
)

Im( e−iψV)

+ MQ + e2(V−U)G + 2 e−U Im
(

e−iψ∂r( e2V M)V
)
.
(F.5.77)
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Equations from special geometry

We can use several identities involving the quartic invariant in order to express all equations
in terms of Im V and V uniquely.

We define
Ṽ = eV−U e−iψ V . (F.5.78)

The first step is to use the identity (E.1.2c) in (F.5.71)

2 eV ∂r Im Ṽ = −Q + I ′
4(Im Ṽ, Im Ṽ ,G) + 4n e2U−V Re Ṽ , (F.5.79)

Then using (E.1.2a) and (E.1.2b) as

I4(Im Ṽ) =
1
16

e4(V−U), Re Ṽ = −2 e2(U−V ) I ′
4(Im Ṽ). (F.5.80)

we can replace Re(Ṽ) and eU

e2U−V Re Ṽ = −2 e4U−3V I ′
4(Im Ṽ) = −1

8
eV

I ′
4(Im Ṽ)

I4(Im Ṽ)
. (F.5.81)

In terms of this new variable the equations (F.5.68c) and (F.5.68d) become

2 eV ∂r
(

Im Ṽ)
)

= −Q + I ′
4(Im Ṽ , Im Ṽ ,G) − n

2
eV

I ′
4(Im Ṽ)

I4(Im Ṽ)
, (F.5.82a)

( eV )′ = −2
〈

G, Im Ṽ
〉
. (F.5.82b)
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