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À mon grand-père.





REMERCIEMENTS

Au terme de ces trois années de thèse, je souhaiterais remercier toutes les personnes qui m’ont
aidées, qui ont cru en moi, et qui m’ont permis d’arriver au bout de cette thèse.
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ments. Merci également à mon frère et mon père pour leurs avis et leur aide en matière de
graphismes et d’esthétique pour mon manuscrit !
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1.1 Traitement d’images et cadre mathématique . . . . . . . . . . . . . . . . . . . 1

1.2 Le recalage d’images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Interpolation et approximation des images . . . . . . . . . . . . . . . . 4
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CHAPTER 1

INTRODUCTION GÉNÉRALE

1.1 Traitement d’images et cadre mathématique

L’imagerie est un domaine qui ne cesse de se développer et dont les applications sont nom-
breuses, telles

• la photographie, avec l’argentique depuis les années 1800 et la photographie numérique,

• l’imagerie médicale depuis le premier échographe en 1960, puis l’échographie numérique
dans les années 1990,

• la biométrie, avec la reconnaissance d’empreintes depuis les années 1970,

• l’imagerie satellitaire, avec les premiers satellites numériques en 1976,

pour n’en citer que quelques unes. Afin d’aborder l’ensemble des problèmes rencontrés,
l’utilisation des mathématiques se révèle précieuse depuis la fin des années 90 (pour le formal-
isme mathématique relatif aux modèles d’imagerie, on pourra se référer à [3], [4] et [20]). En
effet, une image de taille N ×M , c’est-à-dire contenant N ×M pixels, est modélisée comme
une fonction u :

u : {1, . . . , N} × {1, . . . ,M} 7−→ {0, . . . , 255}.
Une image numérique est donc un tableau où chaque entité correspond à un pixel et

contient une valeur comprise entre 0 et 255 : c’est son intensité lumineuse ou niveau de gris.

Figure 1.1: Exemple d’une image en niveaux de gris. Issue de http://images.math.cnrs.fr/Le-
traitement-numerique-des-images.html (rédigé par Gabriel Peyré)

1



2 CHAPTER 1. INTRODUCTION GÉNÉRALE

Grâce à cette fonction u on peut, par exemple, en déduire les contours des objets dans
l’image en calculant les gradients discrets, c’est-à-dire les différences de deux pixels consécutifs.

Figure 1.2: Exemple de carte des contours. Issue de http://images.math.cnrs.fr/Le-
traitement-numerique-des-images.html (rédigé par Gabriel Peyré)

Parmi les tâches fréquemment rencontrées en traitement d’images, on compte:

• la détection de contours et la segmentation qui consiste à partitionner l’image en un
ensemble de régions d’intérêt ([44], [19], [17], [77], [46]),

• la restauration et le débruitage qui consistent à réduire le bruit ou le flou dûs par
exemple au système d’acquisition de l’image ([61], [18] [15], [39], [21] [59]),

• l’inpainting qui consiste à reconstruire une zone endommagée de l’image à partir des
données présentes ([5], [7], [10], [11], [65]),

• la compression d’images ([49], [8]),

• le recalage qui consiste à trouver une déformation optimale de sorte que l’image template
déformée s’aligne sur une image de référence.

1.2 Le recalage d’images

Le recalage d’images ([53], [54], [14]) est une tâche fondamentale rencontrée dans un grand
éventail d’applications comme l’imagerie médicale, le suivi de forme, la comparaison de
données, etc. Étant données deux images appelées Template et Reference (définies sur un
domaine ouvert borné Ω - en général un rectangle), le recalage consiste à déterminer une
transformation difféomorphique optimale telle que l’image Template déformée s’aligne sur
l’image Reference.
Pour les images de même modalité, le but du recalage est de corréler les caractéristiques
géométriques et les niveaux d’intensité de l’image Template déformée et l’image Reference.
Quand les images ont été obtenues via des mécanismes différents et ont des modalités différentes,
le recalage a pour but de corréler les deux images en préservant la modalité de l’image Tem-
plate.
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Dans [66], Sotiras et al. fournissent un aperçu des différentes méthodes de recalage exis-
tantes. D’après les auteurs, un algorithme de recalage d’images se compose de trois principaux
éléments :

1. un modèle de déformation, c’est-à-dire la signification physique que l’on donne à la
déformation recherchée,

2. une fonction objectif, c’est-à-dire un critère dit de fidélité ou d’attache aux données
que l’on vise à minimiser,

3. et une méthode d’optimisation, c’est-à-dire la méthode numérique mise en œuvre
pour résoudre le problème de minimisation.

Les modèles de déformations (ou transformations) sont organisés en trois classes:

1. les transformations géométriques dérivant d’un modèle physique,

2. les transformations géométriques dérivant de la théorie de l’interpolation,

3. les transformations géométriques fondées sur des connaissances a priori.

D’après [53], les modèles physiques peuvent eux-mêmes être séparés en cinq catégories :
les modèles élastiques ([13], [31], [60], [78]), les modèles fluides ([22]), les modèles de diffusion
([36]), le recalage par courbure ([38]) et les flots de difféomorphismes ([9]).

Ensuite, parmi les plus importantes familles de stratégies d’interpolation, on peut citer :
les fonctions de base radiales ([80]), les splines élastiques ([32]), les déformations de forme libre
([62]), les fonctions de base du traitement du signal ([2]) et les modèles affines par morceaux.
Ces modèles sont assez riches pour décrire les transformations, en ayant peu de degrés de
liberté.

La troisième catégorie de modèle de déformation permet d’introduire des connaissances
par rapport à la déformation grâce à des transformations géométriques contraintes statistique-
ment ou grâce à des modèles biomécaniques/biophysiques (modèle de croissance de tumeur
ou modèle biomécanique de la poitrine par exemple) ([28]).

La deuxième composante d’une méthode de recalage d’images est la fonction objectif ou
critère d’attache aux données. Il existe de nombreux types de critères de fidélité qui peuvent
être repartis en trois catégories :

1. les méthodes géométriques : elles consistent à apparier des primitives géométriques
de l’image, par exemple des points d’intérêt ([24]),

2. les méthodes iconiques : elles concernent les méthodes fondées sur la comparaison des
intensités ([34]), des attributs ([64]), les approches fondées sur la théorie de l’information
([75]),

3. les méthodes hybrides, qui combinent les méthodes géométriques et iconiques ([42],
[67]).

Finalement, la dernière composante est la méthode d’optimisation :

1. les méthode continues : descente de gradient ([9]), gradient conjugué ([52]), méthode
de Quasi-Newton ([74]), descente de gradient stochastique ([75]) . . . C’est le problème
continu qui est discrétisé.
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2. les méthodes discrètes : méthodes fondées sur la théorie des graphes ([68]), belief
propagation, méthodes de programmation linéaire,

3. les algorithmes gloutons et évolutionnistes.

Dans [54], Modersitzki fournit également un aperçu des méthodes de recalage paramétriques
et non paramétriques (incluant les méthodes géométriques avec appariement de points d’intérêt,
les méthodes iconiques avec la dissimilarité fondée sur la norme L2 par exemple, les modèles
d’élasticité linéaire, la diffusion linéaire, les modèles fluides, . . . ).

Dans le cas des méthodes paramétriques, un ensemble de caractéristiques de l’image Tem-
plate est défini et le but est de trouver une déformation appariant ces caractéristiques avec
leur homologue dans l’image Reference. De plus, l’ensemble des transformations admissibles
est restreint à une certaine classe d’applications (applications polynomiales, splines, etc. . . )
en exprimant la transformation à l’aide de fonctions de base.

Dans le cas des méthodes non paramétriques (notre cadre), la transformation n’est pas
restreinte à un ensemble paramétrisable et le problème est formulé en termes de minimi-
sation de fonctionnelle (avec le champ de déformation inconnu ϕ) comprenant un critère
de mesure de distance et un régularisateur portant sur le champ de déformation afin que le
problème soit bien posé. Le plus souvent, des arguments physiques motivent la construction du
régularisateur. Des régularisateurs classiques comme ceux fondés sur la théorie de l’élasticité
linéaire ne sont pas adaptés à des problèmes impliquant de grandes déformations (notre cas
d’étude) puisqu’ils supposent de petites déformations et la validité de la loi de Hooke. Cette loi
de comportement énoncée par Robert Hooke en les termes latins ”ut tensio sic vis” traduit la
relation de proportionnalité entre la force exercée sur un solide et l’allongement qui en résulte.

Dans la suite, les problématiques relatives à la mise en œuvre pratique des méthodes de
recalage sont examinées, la question de l’interpolation des images (en effet, si ϕ désigne la
déformation recherchée, il nous faut évaluer T ◦ ϕ), la conception du critère d’attache aux
données (les critères classiques et les critères plus évolués fondés sur des modèles combinés
de segmentation et recalage) et la construction de régularisateur portant sur la déformation.

1.2.1 Interpolation et approximation des images

Au cours de l’algorithme mis en œuvre dans le cadre du recalage, il faut calculer l’image
déformée T ◦ϕ. Un point y ∈ Ω fixé de l’image Template déformée (de coordonnées entières en
pratique) est lié au point x = ϕ(y) (de coordonnées non nécessairement entières) et l’intensité
lumineuse de l’image déformée en y, T̃ = T ◦ϕ(y) est donnée par : T ◦ϕ(y) = T (x). Le point
x n’étant pas nécessairement situé à un nœud de la grille discrète, il est alors nécessaire de
mettre en œuvre une méthode d’interpolation (on pourra se référer à [40] pour plus de détails
sur les cadres eulérien et lagrangien).
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Figure 1.3: Déformation considérée dans le cadre eulérien.

Les valeurs aux positions entières de la grille seront calculées à partir de la version con-
tinue de l’image. Parmi les nombreuses méthodes d’interpolation existantes, les plus utilisées
en recalage d’images médicales sont l’interpolation linéaire et l’interpolation par splines et
par B-splines cubiques [54]. On pourra se référer à Lehmann et al. [48] pour un état de l’art
et une comparaison des méthodes d’interpolation et d’approximation. Pour l’implémentation
de nos différentes méthodes, nous utilisons une approximation de l’image par B-splines cu-
biques. Comme décrit dans [54], commençons par introduire ce modèle en dimension un. Le
problème d’interpolation peut s’écrire comme un problème de minimisation de fonctionnelle
sous contraintes. On cherche à réécrire les données dans une base de fonctions splines. On vise
en particulier à minimiser la norme L2 de la dérivée seconde de la fonction interpolante afin
que celle-ci oscille le moins possible. Pour des points xi ∈ Ω donnés, on vise à ce que la fonc-
tion f satisfasse les conditions d’interpolation f(xi) = data(i), ∀i ∈ {1, . . . , N}, où data(i)
correspond aux valeurs connues que l’on souhaite interpoler. En dimension 1, le problème de
minimisation considéré est alors le suivant :

min
ck

{∫
(f ′′(x))2

∣∣∣ f(x) =
N∑

k=1

ckb(x− k), f(xi) = data(i), ∀i ∈ {1, . . . , N}
}
, (1.1)

où b est une spline de base. Comme dans [54], on choisit de prendre :

b =





(x+ 2)3 −2 ≤ x < −1,

− x3 − 2(x+ 1)3 + 6(x+ 1) −1 ≤ x < 0,

x3 + 2(x− 1)3 − 6(x− 1) 0 ≤ x < 1,

(2− x)3 1 ≤ x < 2

0 sinon.

En pratique, les données à interpoler peuvent être bruitées, dans ce cas une stricte inter-
polation des données n’est pas pertinente. Une solution intermédiaire consiste à remplacer le
problème (1.1) par un problème dit relaxé en introduisant un paramètre θ qui pondère le terme
d’attache aux données et la régularisation. Fixer θ à 0 conduit à la définition du problème
pur d’interpolation, tandis qu’une valeur de θ élevée induit une solution plus régulière. Soit
à considérer
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min
ck

{
‖f − data‖2

RN + θ

∫

Ω
(f ′′)2

∣∣∣ f(x) =
N∑

k=1

ckb(x− k)

}
(1.2)

où ‖f − data‖2
RN =

N∑

i=1

(f(xi)− data(i))2.

La résolution de ce problème conduit à résoudre un système linéaire que l’on peut écrire sous
la forme suivante :

(BTB + θM)c = BT data

avec B =
(
bk(xi) = b(xi − k)

)
1≤i≤N
1≤k≤N

, c =
(
ck
)
1≤k≤N et Mjk =

∫
Ω(bj)

′′(bk)′′dx.

Une approche plus générale consiste à remplacerM par une matrice arbitraire symétrique
semi-définie positiveW . Le choixW =M est théoriquement bien justifié puisque l’optimisation
est réalisée dans l’espace de splines. Cependant, d’autres régularisations sont possibles :
W = I appelée régularisation de Tychonoff ou W = DTD appelée régularisation de Ty-

chonoff–Phillips avec D =



−1 1

. . .
. . .

−1 1


 ∈ R

N−1,N .

Pour des images en dimension deux, l’interpolation bicubique est utilisée et l’extension au
cas bidimensionnel est immédiat. La formulation matricielle du problème permet de simplifier
les écritures. Pour d’avantage de détails, on renvoie le lecteur à l’ouvrage [54], Chapitre 3,
section 3.6.1.

1.2.2 La mesure de similarité

Comparaison des intensités

La norme L2 (ou SSD pour Sum of Squared Distance) correspond à la somme des erreurs au
carré pixel par pixel. On la calcule grâce à la formule suivante :

DSSD(R, T ◦ ϕ) = 1

2
‖R− T ◦ ϕ‖2L2(Ω) =

1

2

∫

Ω
(R(x)− T ◦ ϕ(x))2 dx,

où R correspond à l’image Reference et T ◦ ϕ correspond à l’image Template déformée.
Ce critère est le critère le plus utilisé pour recaler des images de même modalité bien qu’il
soit assez sensible aux valeurs aberrantes.

Coefficient de corrélation linéaire

Il est parfois nécessaire de remettre à l’échelle les valeurs des images considérées, par exem-
ple dans le cas où elles ont été obtenues par des instruments de mesure différents. Cette
remise à l’échelle se fait au moyen d’une relation affine entre les intensités des deux images.
Pour évaluer l’existence de cette relation affine entre deux images, on utilise le coefficient de
corrélation linéaire :

σ2(R, T ◦ ϕ) = cov(R, T ◦ ϕ)
var(R)var(T ◦ ϕ) ,

où var et cov représentent respectivement la variance et la covariance des intensités. Si le
coefficient de corrélation est nul, cela signifie qu’il n’existe pas de relation affine entre les deux
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images et donc que les deux images sont des réalisations aléatoires non corrélées. Le but est
alors de déterminer ϕ maximisant ce terme.

Information mutuelle

L’information mutuelle est un critère qui provient de la théorie de l’information et qui
s’applique couramment au recalage multi-modal (dans le cas où les images sont de modalités
différentes) depuis 1995 (Wells [75], Collignon [29]).
Ce critère est utilisé pour le recalage multi-modal puisqu’il ne nécessite aucune connaissance
a priori sur les intensités et il ne suppose pas de relation affine entre les images. L’idée est de
maximiser l’information mutuelle des images par rapport à la transformation.

Definition 1.2.1

Soit q ∈ N et ρ une densité sur Rq, ie, ρ : Rq → R, ρ(x) ≥ 0,

∫

Rq

ρ(x)dx = 1.

L’entropie (différentielle) de la densité est définie par

H(ρ) = −Eρ[log ρ] = −
∫

Rq

ρ log ρ dx

L’entropie se mesure donc à partir de l’histogramme des niveaux de gris. Si l’image est la
réalisation d’une variable aléatoire ne privilégiant aucune valeur de pixel alors l’histogramme
de l’amplitude sera relativement plat et l’entropie maximale.
L’information mutuelle est alors définie par :

MI(R, T ) = H(ρR) +H(ρT )−H(ρR,T )

où ρR, ρT et ρR,T représentent les densités des niveaux de gris de R, T et la densité conjointe
des niveaux de gris. L’information mutuelle correspond alors à la réduction d’entropie ap-
portée par leur apparitions communes.
En imagerie médicale, l’information mutuelle est un critère particulièrement adapté aux
images n’ayant pas les mêmes modalités. Cependant, cette mesure possède certains in-
convénients : elle est coûteuse en temps de calcul, elle est non convexe et possède un nombre
important de minima locaux. Sa complexité en termes de coût de calcul vient du fait que
l’information mutuelle nécessite d’évaluer les probabilités conjointes pour chaque niveau de
gris sur l’ensemble de l’image. Mais malgré ces limites, elle reste très utilisée pour le recalage
multi-modal.

Champ de gradients

Il est aussi possible de comparer les champs de gradients des deux images. C’est ce qui a été
fait par Haber et Modersitzki ([41]) et par Droske et Rumpf ([35]). Dans [41], Haber et al.
utilisent les champs de gradients pour comparer deux images, en s’appuyant sur l’idée que
deux images sont similaires si les changements d’intensité ont lieu à la même position. Pour
cela, ils apparient les champs de gradients normalisés des deux images.

Le champ de gradients normalisés est défini comme suit :

nε(I, x) =
∇I(x)√

∇I(x)T∇I(x) + ε2
,
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avec ε une constante strictement positive. La mesure de similarité entre les deux images est
alors évaluée comme suit :

Dc(T,R) =
1

2

∫

Ω
‖nε(R, x)× nε(T ◦ ϕ, x)‖2dx,

où × représente le produit vectoriel.

Lignes de niveau

Dans [35], Droske et Rumpf proposent un critère fondé sur la notion de morphologie mathématique
([63]). La morphologie mathématique d’une image est définie comme la collection des courbes
de niveau :

M [I] =
{
MI

c

∣∣∣ c ∈ R

}
, MI

c =
{
x ∈ Ω

∣∣∣ I(x) = c
}
.

On peut définir de manière équivalente le vecteur normal à une courbe de niveau
quelconque :

NI : Ω −→ R
d; x 7−→ ∇I

‖∇I‖ .

On cherche alors une déformation telle que M [T ◦ ϕ] = M [R]. Cette mesure a l’avantage
d’être invariante par une reparamétrisation des niveaux de gris, ce qui la rend adaptée au
recalage multi-modal.

Modèles conjoints de segmentation et de recalage

Le recalage d’images peut également être réalisé simultanément avec la segmentation. Yezzi
et al. [79] proposent une approche variationnelle conjointe de segmentation et de recalage.
Les deux images Template et Reference sont supposées contenir un objet commun visualisé
avant et après avoir été soumis à une déformation que l’on cherche à apparier et à segmenter.
L’objectif est de définir une courbe fermée C capturant les bords de l’objet dans l’image Ref-
erence et une courbe Ĉ capturant son homologue dans l’image Template, telles que Ĉ = g(C),
où g est un élément d’un groupe de dimension finie par exemple l’ensemble des déformations
rigides. Il y a alors deux inconnues : la courbe C et la déformation g.
Les auteurs formulent le problème comme la minimisation d’une fonctionnelle d’énergie dont
la construction est fondée sur le modèle des contours actifs sans bord de Chan et Vese [19] :

E(g, C) = E1(C) + E2(g(C))

=

∫

Cin
(R− u)2dx+

∫

Cout
(R− v)2dx+

∫

Ĉin
(T − û)2dx+

∫

Ĉout
(T − v̂)2dx,

=

∫

Cin
findx+

∫

Cout
foutdx+

∫

Ĉin
f̂indx+

∫

Ĉout
f̂outdx,

avec Cin et Cout les régions à l’intérieur et à l’extérieur de C, u et v la moyenne des valeurs
de R dans Cin et Cout, Ĉin et Ĉout les régions à l’intérieur et à l’extérieur de Ĉ, et û et v̂ la
moyenne des valeurs de T dans Ĉin et Ĉout.
Comme Ĉ = g(C), on peut réécrire la fonctionnelle de la façon suivante, en exprimant les
intégrales seulement sur l’ouvert Ω sur lequel est défini l’image Reference R :

E(g, C) =
∫

Cin
(fin(x) + f̂in(g(x))|g′(x)|)dx+

∫

Cout
(fout(x) + f̂out(g(x))|g′(x)|)dx.
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Ce modèle a été étendu aux déformations non rigides dans [70], [73] et [76].

Dans [71], [72], Vemuri et al. proposent un modèle d’équations aux dérivées partielles pour
réaliser conjointement la segmentation et le recalage. Dans la première EDP, les level sets de
l’image source évoluent selon leur normale avec une vitesse définie comme la différence entre
l’image cible et l’image source déformée. La deuxième EDP permet de retrouver explicitement
le champ de vecteurs déplacement. Le modèle est fondé sur la minimisation de la fonctionnelle
suivante inspirée du modèle de segmentation proposé par Chan et Vese dans [19] et intégrant
un a priori de forme :

E(φ, u+, u−, µ,R, T ) =α

∫

Ω
|u+ − I|2H(φ)dx+ α

∫

Ω
|u− − I|2(1−H(φ))dx

+ β

∫

Ω
|∇u+|2H(φ)dx+ β

∫

Ω
|∇u−|2(1−H(φ))dx

+

∫

Ω
d2(µRx+ T )δ(φ)|∇φ|dx,

où I est l’image à segmenter, φ la fonction level set inconnue, d la fonction distance à un a
priori de forme, µ un paramètre d’échelle, R et T une matrice de rotation et un vecteur de
translation.

Dans [50], Lord et al. traitent le problème de quantification de la différence de deux
formes. Leur travail s’inscrit dans le contexte de l’analyse de forme de l’hippocampe et est
motivé par le fait que la classification de maladies est facilitée par la comparaison d’asymétries.
Pour effectuer ces analyses comparatives, les auteurs proposent une méthode traitant simul-
tanément le processus de segmentation et de recalage en introduisant deux inconnues : le
champ de déformation et la courbe réalisant la segmentation. La segmentation est guidée
par la déformation, et le critère d’attache aux données, contrairement aux méthodes clas-
siques de recalage, s’appuie sur la comparaison des structures métriques des deux surfaces et
plus précisément sur la minimisation de la déviation par rapport à une isométrie. Le critère
d’attache aux données est basé sur la comparaison des structures métriques des surfaces, plus
précisément sur leur première forme fondamentale (FFF) et sur une contrainte d’homogénéité
de type Chan-Vese.

Dans [47], Le Guyader et Vese proposent un modèle de recalage et de segmentation si-
multanés. Les auteurs proposent de joindre le modèle des contours actifs sans bord de Chan
et Vese [19] à un recalage d’images dont le terme de régularisation est fondé sur la théorie
de l’élasticité non linéaire. Les formes à apparier sont assimilées à des matériaux homogènes,
isotropes, hyperélastiques de type Ciarlet-Geymonat. Le problème est formulé comme la min-
imisation d’une fonctionnelle composée d’un terme lié à la segmentation et d’un second terme
lié au modèle de déformation :

E(c1, c2, u) =Ed(c1, c2, u) + Ereg(u),

=ν1

∫

Ω
|R(x)− c1|2H(Φ0(x− u(x)))dx

+ ν2

∫

Ω
|R(x)− c2|2 (1−H(Φ0(x− u(x)))) dx+ Ereg(u),
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où Φ0 est une level set fixée dont le niveau zéro est une courbe segmentant l’image Template
T , c1 et c2 sont respectivement la moyenne des niveaux de gris à l’intérieur et à l’extérieur de
la courbe, u = ϕ− Id est le vecteur déplacement.

1.2.3 Le modèle de déformation

Le modèle de déformation ou régularisateur est généralement motivé par des arguments
physiques et définit l’espace fonctionnel dans lequel évolue la déformation ϕ.

Modèle élastique linéaire

Le modèle élastique a été introduit par Broit [13], puis développé par Bajcsy [6]. Les images
sont appréhendées comme les observations d’un même corps élastique, l’une avant et l’autre
après avoir été soumis à une déformation. Le terme de régularisation est le potentiel élastique
linéaire du déplacement u:

P(u) =

∫

Ω

µ

4

d∑

j,k=1

(∂xjuk + ∂xkuj)
2 +

λ

2
(div u)2dx,

où µ et λ sont les constantes de Lamé. L’utilisation de l’élasticité linéaire présente deux
inconvénients : la topologie n’est pas nécessairement préservée, et le modèle est restreint au
cas de petites déformations.

Modèle fluide

Dans [22], Christensen et al. proposent un modèle fluide visqueux sous forme non vari-
ationnelle. Les objets à apparier sont assimilés à des fluides évoluant selon les équations
de Navier-Stokes. Si le modèle élastique est caractérisé par une régularisation spatiale du
déplacement, le modèle fluide, lui, est caractérisé par une régularisation de la vitesse :

µ∆v + (λ+ µ) div v + F = 0,

avec v = ∂tu et F , la mesure de similarité choisie. Avec le temps, u = ϕ − Id devient
stationnaire et de larges déformations sont théoriquement possibles.

Modèle de diffusion

Dans [69], Thirion et al. proposent d’assimiler le recalage non rigide à un modèle de diffusion
qui est un cas particulier des méthodes de flot optique utilisées en traitement d’images pour
évaluer le mouvement. Il introduit de nouvelles entités appelées démons qui sont en fait des
effecteurs poussant localement l’image. Les contours des objets présents dans l’image sont
appréhendés comme des membranes semi-perméables pouvant se mouvoir sous l’action de
démons. Cet algorithme montre des résultats très satisfaisants avec des temps de calcul réduits
et il permet d’avoir de larges déformations. Cependant, le comportement de cet algorithme
n’est pas encore bien compris (voir [58] et [37] pour plus de détails). Dans [37], Fischer et
Modersitzki introduisent un nouveau modèle de diffusion dans lequel le régularisateur s’écrit
:

S[u] = 1

2

d∑

l=1

∫

Ω
‖∇ul‖2dx.
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Dans cette méthode aussi, les transformations sont restreintes à de petites déformations,
mais le modèle peut être combiné avec l’idée précédente de fluide pour générer de plus larges
déformations.

Modèle par courbure

Dans [38], Fischer et Modersitzki introduisent un modèle de recalage fondé sur la courbure.
Le régularisateur est défini par :

S[u] = 1

2

d∑

l=1

∫

Ω
(∆ul)

2 dx,

(∆ul)
2 pouvant être appréhendé comme une approximation de la courbure. Ainsi l’idée du

régularisateur est de minimiser la courbure des composantes de la déformation.
Encore une fois, les transformations sont restreintes à de petites déformations, et ce modèle
peut être combiné avec l’idée précédente de fluide pour générer de plus larges déformations.

Modèles élastiques non linéaires

Afin d’obtenir de larges déformations, l’utilisation de l’élasticité non linéaire se révèle nécessaire
(voir [27] et [26] pour plus de détails). En effet, la théorie de l’élasticité linéaire n’est pas
adaptée à des problèmes impliquant de grandes déformations puisque cette théorie suppose de
petites déformations et la validité de la loi de Hooke. On peut remarquer que le caoutchouc,
les tissus biologiques, les élastomères sont fréquemment modélisés par des matériaux hy-
perélastiques. En élasticité, on introduit souvent le tenseur de déformation de Green-Saint
Venant :

E(u) =
1

2
(∇u+∇uT ) + 1

2
∇uT∇u,

qui constitue une mesure de la déviation de la déformation associée ϕ = Id+u par rapport à
une déformation rigide. La partie linéaire du tenseur de Green-Saint Venant :

e(u) =
1

2
(∇u+∇uT ),

est ce que l’on appelle le tenseur de déformation linéarisé que l’on retrouve dans le cadre de
la théorie de l’élasticité linéaire.

Dans le cadre du recalage d’images fondé sur des principes d’élasticité non linéaire, Droske
et Rumpf [35] traitent le problème du recalage non rigide d’images multi-modales. Le critère
de similarité inclut les dérivées du premier ordre de la déformation et est complété par une
régularisation élastique non linéaire basée sur une densité d’énergie polyconvexe. Dans [47],
Le Guyader et Vese introduisent un modèle couplé de segmentation et recalage dans lequel
les objets à apparier sont assimilés à des matériaux de type Ciarlet-Geymonat. On peut
également mentionner [51] et [9] pour une méthode variationnelle de recalage dans le cas
de grandes déformations (Large Deformation Diffeomorphic Metric Mapping - LDDMM),
ainsi que [60] qui présente également une méthode utilisant une régularisation élastique non
linéaire.

Plus récemment, dans [16], les auteurs construisent une densité d’énergie hyperélastique
pénalisant les variations de longueur et d’aire, et ajoutent une pénalisation sur le jacobien de
la déformation de telle sorte que l’énergie tende vers l’infini quand le jacobien tend vers zéro.
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1.2.4 La préservation de la topologie

Il est également possible d’ajouter certaines contraintes sur la déformation recherchée. Une des
plus importantes propriétés qu’un algorithme de recalage doit satisfaire est la préservation de
la topologie ou de l’orientation. La préservation de la topologie est équivalente à l’inversibilité
du champ de déformation. Le jacobien de la déformation contient l’information concernant
les propriétés locales du champ de déformation. En effet, si le jacobien de la déformation
devient négatif alors la déformation perd son caractère injectif et cela traduit physiquement
une interpénétration de la matière.

Afin d’éviter des singularités dans le champ de déformation, Christensen et al. [22] pro-
posent de contrôler les valeurs du jacobien au fur et à mesure de l’algorithme. Lorsque
sa valeur est inférieure à un seuil prédéfini, une image déformée intermédiaire est créée et
l’algorithme de recalage est réinitialisé.
Une autre façon de préserver la topologie est d’inclure des contraintes, c’est-à-dire d’ajouter
dans la fonction objectif un terme contrôlant le jacobien. Dans [23], Christensen and Johnson
ajoutent un terme à la fonction objectif qui pénalise les petites et les grandes valeurs du
jacobien.
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1.3 Contribution

Cette thèse se divise en trois parties dont les résultats ont été exposés dans les articles [56],
[57] et [55].
Dans [56], on s’intéresse à la construction d’une méthode de correction du champ de déformation
associé à un algorithme de recalage d’images afin que celui-ci préserve la topologie ou l’orientation.
La violation de cette contrainte de préservation de la topologie se manifeste, numériquement,
par la présence de chevauchements ou de plis sur la grille de déformation (cf Figure 3.1 page
42). La méthode se compose de deux étapes : la première consiste à détecter et corriger les
zones où le jacobien discret est négatif. La deuxième consiste à reconstruire la déformation à
partir des valeurs de ses gradients discrets. Le problème est formulé comme la minimisation
d’une fonctionnelle sous contraintes de type interpolation de Lagrange.
Dans [57], on introduit un modèle conjoint de segmentation et de recalage fondé sur l’élasticité
non linéaire. On construit une mesure de similarité basée sur la variation totale pondérée et un
régularisateur faisant intervenir la densité d’énergie d’un matériau de Saint Venant-Kirchhoff.
Le fait d’ajouter le terme de variation totale pondérée permet d’aligner les bords des objets
même si les modalités sont différentes.
Dans [55], on construit également un modèle conjoint de segmentation et de recalage. Dans
cette partie, les objets à apparier sont modélisés par des fonctions level sets et évoluent de
façon à minimiser une fonctionnelle contenant un régularisateur fondé sur l’élasticité non
linéaire et un critère de similarité basé sur des résultats intermédiaires de segmentation.

Dans ce qui suit, on donne un résumé de chacune de ces contributions qui seront développées
respectivement dans les chapitres 3, 4 et 5.

1.3.1 Préservation de la topologie du champ de déformation associé au

recalage d’images

Cette méthode visant à obtenir un champ de déformation préservant la topologie se divise en
deux étapes : la première consiste à localiser les chevauchements de la grille de déformation et
à appliquer un paramètre de correction aux jacobiens discrets de la déformation. La deuxième
étape consiste à reconstruire la déformation à partir des gradients discrets corrigés.

Correction du jacobien

La première étape est fondée sur cette proposition de Karaçali et Davatzikos :

Proposition 1.3.1 (De Karaçali et Davatzikos [43])

Soit C la classe de déformations h = (f, g) définies sur un rectangle discret Ω = [0, 1, . . . ,M1]×
[0, 1, . . . , N1] ⊂ N

2 pour lesquelles Jff , Jfb, Jbf , Jbb sont positifs pour tout (x, y) ∈ Ω.
Soit h = (f, g) une déformation appartenant à C. Alors son équivalent continu déterminé
par l’interpolation de h sur le domaine ΩC = [0,M1]×[0, N1] ⊂ R

2 en utilisant l’interpolant
Φ donné par Φ(x, y) = Ψ(x)Ψ(y) avec

Ψ :





1 + t si − 1 ≤ t ≤ 0
1− t si 0 ≤ t ≤ 1
0 sinon

préserve la topologie avec le schéma backward et forward de différences finies fbx, f
f
x , fby, f

f
y
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pour approximer les dérivées partielles de f (de même pour g) et :





Jff = ffx (p1)g
f
y (p1)− ffy (p1)g

f
x(p1)

Jbf = fbx(p2)g
f
y (p2)− ffy (p2)g

b
x(p2)

Jfb = ffx (p3)g
b
y(p3)− fby(p3)g

f
x(p3)

Jbb = fbx(p4)g
b
y(p4)− fby(p4)g

b
x(p4).

On rappelle : 



ffx (x, y) = f(x+ 1, y)− f(x, y)

fbx(x, y) = f(x, y)− f(x− 1, y)

ffy (x, y) = f(x, y + 1)− f(x, y)

fby(x, y) = f(x, y)− f(x, y − 1).

Figure 1.4: Disposition des points sur un carré de référence [0, 1]×[0, 1]. Ces points cöıncident
avec les centres de gravité des pixels.

L’idée résultant de cette proposition est donc de pondérer au niveau discret et en chaque
point de la grille, les gradients du champ de déplacement par un paramètre α ∈]0, 1[ afin de
satisfaire les conditions de positivité des jacobiens discrets. La construction de l’algorithme
est motivée par l’observation suivante. Dans le domaine continu, si l’on décompose une
déformation h = (f, g) en h = Id+u avec u = (u1, u2) le champ de vecteurs déplacement, on
peut calculer le jacobien J(x, y) en tout point (x, y) du domaine. Si maintenant on considére
le champ de déformation associé

hα : (x, y) −→ (Id+αu)(x, y) = (fα(x, y), gα(x, y)) = (x+ αu1(x, y), y + αu2(x, y)) ,

on peut de façon analogue calculer le jacobien Jα(x, y) en chaque point (x, y) du domaine :

Jα(x, y) =

(
1 + α

∂u1
∂x

(x, y)

)(
1 + α

∂u2
∂y

(x, y)

)
− α2∂u2

∂x
(x, y)

∂u1
∂y

(x, y).

Il revêt les propriétés suivantes : Jα(x, y) est un polynôme de degré 2 en α, lim
α→0

Jα(x, y) = 1

et lim
α→1

Jα(x, y) = J(x, y).

Si on suppose que J(x, y) < 0, alors en utilisant le théorème des valeurs intermédiaires,
il existe α∗ ∈]0, 1[ tel que Jα∗(x, y) = ε ∈ [0, 1]. L’idée est donc de confiner les valeurs du
jacobien à un intervalle positif en corrigeant les gradients du champ de vecteur déplacement
(c’est-à-dire, en les affectant d’un poids positif compris entre 0 et 1).
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Grâce à ce paramètre α, on peut calculer les matrices jacobiennes corrigées (quand cela est
nécessaire) en chaque point de la grille discrète. Le résultat de cette première étape de
l’algorithme est donc l’ensemble discret des matrices jacobiennes éventuellement corrigées
notées {ωi} dans la suite.

Reconstruction de la déformation

Pour la seconde étape, on suppose que l’on a identifié (manuellement pour le moment) N
sous-espaces connexes non vides Ωi de Ω, i ∈ {1, . . . ,N} sur lesquels la préservation de
l’orientation n’est pas satisfaite. Nous introduisons ensuite notre modèle mathématique de
reconstruction, valide pour chaque sous-domaine Ωi, i ∈ {1, . . . ,N}. Une approche Dm-spline
est retenue (voir [1] pour plus de détails).

Soient A = {ai}i=1,··· ,N un ensemble de N points de Ων contenant un sous-ensemble P1-
unisolvant. Dans notre cas, l’ensemble A contient les coordonnées des pixels de l’image inclus
dans Ων .
Soient {ωi}i=1,··· ,N l’ensemble des N matrices jacobiennes de la déformation données aux
points {ai}i=1,··· ,N . Cet ensemble contient les gradients corrigés de la déformation obtenus à
l’étape de correction de l’algorithme.
Enfin, soient {bi}i=1,··· ,l l points de Ων où les gradients sont restés inchangés. En pra-
tique, ces points appartiennent à la frontière du domaine Ων , ∂Ων . On fixe des contraintes
d’interpolation de Lagrange en ces points. Cela signifie que si h représente la déformation
non altérée et v la déformation inconnue du problème de minimisation, on doit avoir

∀i ∈ {1, . . . , l}, v(bi) = h(bi).

Soit K l’ensemble défini par K = {v ∈ H3(Ων ,R
2), β(v) = η}, avec β l’application :

β :

∣∣∣∣∣
H3(Ων ,R

2) → R
2l

v 7→ β(v) =
(
v(b1), · · · , v(bl)

)T

et η =
(
h(b1), · · · , h(bl)

)T
.

On définit également :

ρ :

∣∣∣∣∣
H2(Ων ,R

2×2) → (R2×2)N

v 7→ ρ(v) =
(
v(a1), v(a2), · · · , v(aN )

)T . (1.3)

Le problème, formulé au moyen de la fonctionnelle Jǫ (| · |3,Ων ,R2 désignant la semi-norme sur
H3(Ων ,R

2)),

Jǫ :
∣∣∣∣
H3(Ων ,R

2) → R

v 7→ 〈ρ(Dv)− w〉2N + ǫ |v|23,Ων ,R2 ,

est défini par : {
Trouver σǫ ∈ K telle que

∀v ∈ K,Jǫ(σǫ) ≤ Jǫ(v).
(1.4)

On peut également définir un problème équivalent au moyen des multiplicateurs de Lagrange.
Si σǫ est l’unique solution du problème (1.4), on démontre que σǫ est aussi la solution du



16 CHAPTER 1. INTRODUCTION GÉNÉRALE

problème suivant avec multiplicateurs de Lagrange :

{
Trouver (σǫ, λ) ∈ K × R

2l,

∀v ∈ H3(Ων ,R
2), a(σǫ, v)− L(v) + 〈λ, β(v)〉2l = 0,

(1.5)

avec a la forme bilinéaire symétrique définie par :

a :

∣∣∣∣
H3(Ων ,R

2)×H3(Ων ,R
2) → R

(u, v) 7→ 〈ρ(Du), ρ(Dv)〉N + ǫ (u, v)3,Ων ,R2 ,

et L la forme linéaire définie par :

L :

∣∣∣∣
H3(Ων ,R

2) → R

v 7→ 〈ρ(Dv), ω〉N .

Il faut ensuite discrétiser le problème (1.5). Pour ce faire, nous utilisons la théorie des
éléments finis (voir [1] et [25]).

1.3.2 Modèle conjoint de segmentation et recalage fondé sur la variation

totale pondérée et l’élasticité non linéaire

Dans cette méthode, le modèle de déformation choisi est un modèle élastique non linéaire.
Plus particulièrement, les objets à apparier sont assimilés à des matériaux de type Saint
Venant-Kirchhoff. On introduit également un terme d’attache aux données fondé sur la vari-
ation totale pondérée afin d’apparier les bords des objets contenus dans les images.

On note ϕ : Ω̄ → R
2 la déformation recherchée, et T et R les images Template et Refer-

ence.
La densité d’énergie d’un matériau de type Saint Venant-Kirchhoff est définie par :

WSV K(F ) = Ŵ (E) =
λ

2
(trE)2 + µ trE2.

Pour s’assurer que le jacobien de la déformation ne présente pas de trop grandes expansions
ou contractions, on ajoute à cette densité le terme µ (detF − 1)2 contrôlant que le jacobien
reste proche de 1.
Le terme de régularisation de notre fonctionnelle s’écrit donc :

W (F ) =WSV K(F ) + µ (detF − 1)2.

De même, le critère de similarité s’écrit :

Wfid(ϕ) = varg T ◦ ϕ+
ν

2

∫

Ω
(T ◦ ϕ−R)2 dx, (1.6)

avec

varg(u) = sup

{∫

Ω
u div(ϕ) dx : |ϕ| ≤ g partout, ϕ ∈ Lip0(Ω,R

2)

}
<∞, (1.7)
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g est une fonction edge detector et Lip0(Ω,R
2) est l’espace des fonctions lipschitziennes à

support compact. Le problème de minimisation (P ) s’écrit :

inf
ϕ∈Id+W1,4

0 (Ω,R2)

{
I(ϕ) = varg T ◦ ϕ+

∫

Ω
f(x, ϕ(x),∇ϕ(x)) dx

= varg T ◦ ϕ+

∫

Ω

[ν
2
(T (ϕ)−R)2 +W (∇ϕ(x))

]
dx

}
.

(P)

Cependant f n’est pas quasiconvexe (voir [30] Chapitre 9 pour plus de détails sur cette
notion) ce qui pose un problème de nature théorique puisqu’on ne peut établir la semi-
continuité inférieure faible de la fonctionnelle et subséquemment l’existence de minimiseurs.
Pour pallier ce problème, nous avons défini un problème relaxé associé au problème initial en
remplaçant f par son enveloppe quasiconvexe.

Cette enveloppe quasiconvexe Qf de f est définie par Qf(x, ϕ, ξ) =
ν

2
(T (ϕ)−R)2 +QW (ξ)

avec QW (ξ) =





W (ξ) si ‖ξ‖2 ≥ 2
λ+ µ

λ+ 2µ
,

Ψ(det ξ) si ‖ξ‖2 < 2
λ+ µ

λ+ 2µ
,

et Ψ, l’application convexe telle que Ψ : t 7→ −µ
2
t2 + µ (t− 1)2 +

µ(λ+ µ)

2(λ+ 2µ)
.

Le problème relaxé (QP ) introduit est alors défini par :

inf

{
Ī(ϕ) = varg T ◦ ϕ+

∫

Ω
Qf(x, ϕ(x),∇ϕ(x)) dx

}
, (QP)

avec ϕ ∈ Id +W 1,4
0 (Ω,R2).

On peut, entre autres, établir un résultat d’existence de minimiseurs de ce problème relaxé,
et avec une hypothèse de convergence L1 supplémentaire, on peut montrer que les solutions
du problème relaxé sont des solutions dites généralisées du problème initial.

1.3.3 Modèle conjoint de segmentation et recalage non local

Dans ce chapitre, on utilise le même modèle de déformation que dans le chapitre précédent, à
savoir un modèle élastique non linéaire. En ce qui concerne le terme d’attache aux données,
sa construction est liée à une équation d’évolution issue d’un problème de segmentation sous
contraintes topologiques. Plus précisément, on définit Φ0 une fonction level set dont le niveau
zéro représente le bord des objets contenus dans l’image Template.
On se propose d’étudier le problème de minimisation suivant :

inf

{
Ī(ϕ) =

∫

Ω
f(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ Id +W 1,4

0 (Ω,R2)

}
, (1.8)
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avec f(x, ϕ, ξ) =
ν

2
‖Φ0◦ϕ−Φ̃(·, T )‖2+QW (ξ), où Φ̃ est une solution de l’équation d’évolution

provenant du modèle de segmentation préservant la topologie de Le Guyader et Vese ([46])





∂Φ̃

∂t
= |∇Φ̃|

[
div

(
g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)]
+ 4

µ′

d2
H̄(Φ̃(x) + l)H̄(l − Φ̃(x))

∫

Ω

[
〈x− y,∇Φ̃(y)〉 e−‖x−y‖22/d2H̄(Φ̃(y) + l)H̄(l − Φ̃(y))

]
dy ,

Φ̃(x, 0) = Φ0(x) ,

∂Φ̃

∂~ν
= 0, on ∂Ω .

(E)

La fonction g̃ est un fonction edge detector classique.
On peut établir un résultat d’existence de solutions pour ce problème de minimisation.
On étudie ensuite le caractère bien posé de Φ̃. Pour cela, le cadre de la théorie des solutions de
viscosité est un cadre approprié du fait de la non linéarité due au terme de courbure pondérée
et de la singularité en ∇Φ̃ = 0.

1.4 Organisation de la thèse

Dans le chapitre 2, nous présentons les outils mathématiques nécessaires à l’introduction et
à l’étude des modèles proposés. Ces rappels concernent les espaces fonctionnels de Lebesgue
et de Sobolev, les fonctions à variation bornée, l’analyse convexe, ainsi que la théorie de
l’élasticité en suivant principalement [12], [30], [33] et [45].

Dans le chapitre 3, nous présentons la méthode de correction de champ de déformation
préservant la topologie développée dans [56].

Dans le chapitre 4, nous étudions un modèle conjoint de segmentation et recalage fondé
sur la variation totale pondérée et sur l’élasticité non linéaire suivant [57].

Dans le chapitre 5, nous introduisons un modèle conjoint de segmentation et recalage non
local avec une régularisation élastique non linéaire comme présenté dans [55].

Les chapitres 6 et 7 constituent des pistes de recherche qui n’ont été que partiellement
abouties à ce jour et qui feront l’objet d’études ultérieures. Le chapitre 6 présente l’ajout de
contraintes géométriques au critère de similarité L2 classique. Dans le chapitre 7, nous avons
tenté de construire un critère de similarité basé sur la comparaison des gradients normalisés
des images en nous inspirant du modèle d’inpainting introduit par Ballester et al. [7].
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2004).



22 BIBLIOGRAPHY

[46] C. Le Guyader and L. Vese, Self-repelling snakes for topology-preserving segmenta-
tion models, Image Processing, IEEE Transactions on, 17 (2008), pp. 767–779.

[47] C. Le Guyader and L. Vese, A combined segmentation and registration framework
with a nonlinear elasticity smoother, Computer Vision and Image Understanding, 115
(2011), pp. 1689–1709.

[48] T. M. Lehmann, C. Gönner, and K. Spitzer, Survey: Interpolation methods in
medical image processing, Medical Imaging, IEEE Transactions on, 18 (1999), pp. 1049–
1075.

[49] A. S. Lewis and G. Knowles, Image compression using the 2-d wavelet transform,
Image Processing, IEEE Transactions on, 1 (1992), pp. 244–250.

[50] N. Lord, J. Ho, B. Vemuri, and S. Eisenschenk, Simultaneous registration and par-
cellation of bilateral hippocampal surface pairs for local asymmetry quantification, IEEE
Trans Med Imaging., 26 (2007), pp. 471–478.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, we provide definitions and theorems that are needed to introduce our prob-
lems and prove the existence of solutions. First, we make a brief reminder about functional
spaces, in particular Sobolev spaces and the space of bounded variation functions. Next, we
summarize some relevant facts in the theory of calculus of variations. At last, we give a brief
exposition of elasticity and hyperelasticity theory.

2.1 Lp Spaces

In a first time, we introduce Lp space. Definitions and theorems of this section are extracted
from [3].

In the sequel, we denote by Ω an open set of RN endowed with the Lebesgue measure dx.

Definition 2.1.1 (Lp Space)

Let p ∈ R with 1 ≤ p <∞. We set

Lp(Ω) =
{
f : Ω → R, f measurable and |f |p ∈ L1(Ω)

}
.

We denote by

‖f‖Lp(Ω) =

(∫

Ω
|f(x)|p dx

)1/p

.

Definition 2.1.2 (L∞ Space)

We set

L∞(Ω) = {f : Ω → R, f measurable and ∃ a constant C such that |f(x)| ≤ C a.e. on Ω} .

We denote by
‖f‖L∞(Ω) = inf {C, |f(x)| ≤ C a.e. on Ω} .

25
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Theorem 2.1.3

Lp(Ω) is a vector space and ‖.‖Lp(Ω) is a norm for all 1 ≤ p ≤ ∞.

We start with important integration results.

Theorem 2.1.4 (Monotone Convergence Theorem of Beppo-Levi)

Let (fn) be an increasing sequence of functions in L1(Ω) such that sup
n

∫

Ω
fn < ∞. Then

fn(x) converges a.e. on Ω to a finite limit denoted by f(x).
Moreover, f ∈ L1(Ω) and ‖fn − f‖L1(Ω) −→ 0.

Theorem 2.1.5 (Lebesgue Dominated Convergence Theorem)

Let (fn) be a sequence of functions in L1(Ω). We assume that

1. fn(x) −→ f(x) a.e. on Ω,

2. there exists a function g ∈ L1(Ω) such that for every n, |fn(x)| ≤ g(x) a.e. on Ω.
Then f ∈ L1(Ω) and ‖fn − f‖L1(Ω) −→ 0.

Lemma 2.1.6 (Fatou Lemma)

Let (fn) be a sequence of functions in L1(Ω) such that

1. for every n, fn(x) ≥ 0 a.e. on Ω,

2. sup
n

∫
fn <∞.

For every x ∈ Ω we set f(x) = lim inf
n→+∞

f(x). Then f ∈ L1(Ω) and

∫
f ≤ lim inf

n→+∞

∫
fn.

Theorem 2.1.7 (Hölder inequality)

Let f ∈ Lp(Ω) and g ∈ Lq(Ω) with 1 ≤ p ≤ ∞ and q be the conjugate exponent of p, i.e.,
1

p
+

1

q
= 1.

Then fg ∈ L1(Ω) and ∫

Ω
|fg| ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).
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Theorem 2.1.8 (Generalized Hölder inequality)

Let 1 ≤ r ≤ ∞ and 1 ≤ pj ≤ ∞ with

n∑

j=1

1

pj
=

1

r
≤ 1. Let fj ∈ Lpj (Ω) for j = 1 . . . n.

Then

n∏

j=1

fj ∈ Lr(Ω) and

‖
n∏

j=1

fj‖Lr(Ω) ≤
n∏

j=1

‖fj‖Lpj (Ω).

Theorem 2.1.9 (Young inequality)

Assume that 1 < p <∞ and q is the conjugate exponent of p, then

ab ≤ 1

p
ap +

1

q
bq, ∀a ≥ 0, ∀b ≥ 0.

Theorem 2.1.10 (Young inequality with ε)

Assume that 1 < p <∞ and q is the conjugate exponent of p, then

ab ≤ εap + C(ε)bq, for C(ε) = (εp)−q/pq−1.

Theorem 2.1.11

Let (fn) be a sequence of Lp and f ∈ Lp, such that ‖fn − f‖Lp → 0. Then there exists a
subsequence (fnk

) such that

1. fnk
(x) → f(x) a.e. on Ω

2. |fnk
(x)| ≤ h(x) ∀k and a.e. on Ω, with h ∈ Lp.

Theorem 2.1.12 (Fisher-Riesz )

Lp is a Banach space for 1 ≤ p ≤ ∞.

Theorem 2.1.13

Lp is a reflexive space for 1 < p <∞.

Theorem 2.1.14

Lp is a separable space for 1 ≤ p <∞.
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Theorem 2.1.15 (Compactness properties)

(i) Let X be a reflexive Banach space and let C > 0 be a positive real constant. Let
also (un) be a sequence of X such that ‖un‖X ≤ C. Then there exists ū ∈ X and a

subsequence (unk
) of (un) such that unk

X−⇀ ū when k → +∞.

(ii) Let X be a separable Banach space and let C > 0 be a positive real constant. Let
also (ln) be a sequence of X ′ such that ‖ln‖X′ ≤ C. Then there exists l̄ ∈ X ′ and a

subsequence (lnk
) of (ln) such that lnk

∗−⇀
X

l̄ when k → +∞.

2.2 Sobolev spaces

Definition 2.2.1

The Sobolev space W1,p(Ω) is defined by

W1,p(Ω) =



u ∈ Lp(Ω)

∣∣∣∣∣∣

∃g1, . . . gN ∈ Lp(Ω) such that∫

Ω
u
∂ϕ

∂xi
= −

∫

Ω
giϕ, ∀ϕ ∈ C∞

c (Ω), ∀i = 1, 2, . . . , N



 .

We set
H1(Ω) = W1,2(Ω).

For u ∈ W1,p(Ω), we denote by

∂u

∂xi
= gi and ∇u =

(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xN

)
.

The space W1,p(Ω) is equipped with the norm

‖u‖W1,p(Ω) = ‖u‖Lp(Ω) +
N∑

i=1

‖ ∂u
∂xi

‖Lp(Ω),

or sometimes with the equivalent norm

(
‖u‖pLp(Ω) +

N∑

i=1

‖ ∂u
∂xi

‖pLp(Ω)

)1/p

(if 1 ≤ p <∞).

In particular, H1(Ω) is equipped with the inner product

(u, v)H1(Ω) = (u, v)L2(Ω) +

N∑

i=1

(
∂u

∂xi
,
∂v

∂xi

)

L2(Ω)

and the associated norm ‖u‖H1(Ω) =

(
‖u‖2L2(Ω) +

N∑

i=1

‖ ∂u
∂xi

‖2L2(Ω)

)1/2

is equivalent to the

norm of W1,2(Ω).
Unless mentioned otherwise, W1,p will denote W1,p(Ω).
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Proposition 2.2.1

The space W1,p is a Banach space for 1 ≤ p ≤ ∞.
It is a reflexive space for 1 < p <∞ and a separable space for 1 ≤ p <∞.
The space H1 is a separable Hilbert space, that is a vector space endowed with an inner
product (u, v) complete for the induced norm (u, u)1/2.

Definition 2.2.2

(i) C0(Ω) = C(Ω) is the set of continuous functions u : Ω −→ R.

(ii) C0(Ω̄) = C(Ω̄) is the set of continuous functions u : Ω −→ R, which can be continu-
ously extended to Ω̄. The norm over C(Ω̄) is given by

‖u‖C0 = sup
x∈Ω̄

|u(x)|.

(iii) The support of a function u : Ω −→ R is defined as

supp u := {x ∈ Ω : u(x) 6= 0}.

(iv) Cc(Ω) = {u ∈ C(Ω) : supp u ⊂ Ω is compact } .

(iv) For all k ∈ N, we denote by Ck(Ω) the space of continuous functions whose all partial
derivatives up to order order k are continuous.

(vi) Ck(Ω̄) is the set of Ck(Ω) functions whose derivatives up to order k can be extended
continuously to Ω̄. It is equipped with the following norm

‖u‖Ck = max
0≤α≤k

sup
x∈Ω̄

|Dαu(x)|.

Theorem 2.2.3

Assume that 1 ≤ p <∞.

(i) (Product Rule) If u, v ∈ W1,p(Ω) ∩ L∞(Ω), then uv ∈ W1,p(Ω) ∩ L∞(Ω) and

∂(uv)

∂xi
=

∂u

∂xi
v + u

∂v

∂xi
, i = 1, 2, . . . N.

(ii) (Chain Rule) Let G ∈ C1(R) such that G(0) = 0 and |G′(s)| ≤ M ∀s ∈ R. Let
u ∈ W1,p(Ω), then

G ◦ u ∈ W1,p(Ω) and
∂

∂xi
(G ◦ u) = (G′ ◦ u) ∂u

∂xi
.
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Theorem 2.2.4 (Trace Theorem)

Assume that Ω is bounded and of class C1, and 1 ≤ p <∞. There exists a bounded linear
operator T : W1,p(Ω) → Lp(∂Ω) such that Tu = u on ∂Ω for all u ∈ W1,p(Ω) ∩ C(Ω̄).
Furthermore, for all φ ∈ C∞

c (RN ,RN ) and u ∈ W1,p(Ω),

∫

Ω
u div φ dx = −

∫

Ω
∇u · φ dx+

∫

∂Ω
(φ · ν)Tu dHN−1,

ν denoting the unit outer normal to ∂Ω.

Theorem 2.2.5 (Generalized Poincaré inequality, [6])

Let Ω be a Lipschitz bounded domain in R
N . Let p ∈ [1,∞) and let N be a continuous

seminorm on W1,p(Ω), that is, a norm on the constant functions. Then there exists a
constant C > 0 that depends only on Ω, N, p, such that

‖u‖W1,p(Ω) ≤ C

((∫

Ω
|∇u|p dx

)1/p

+N (u)

)
.

We apply this result to N (u) =

∫

∂Ω
|u(x)| dx.

Theorem 2.2.6 (Friedrichs)

Let u ∈ W1,p(Ω) with 1 ≤ p < ∞. Then there exists a sequence (un) of C∞
c (RN ) such

that

1. un|Ω −→ u in Lp(Ω)

2. ∇un|ω −→ ∇u|ω in Lp(ω)N for all ω ⊂⊂ Ω

(the notation ω ⊂⊂ Ω means that ω is an open such that ω̄ ⊂ Ω and ω̄ is a compact set).

Theorem 2.2.7 (Density)

We assume Ω to be of class C1. Let u ∈ W1,p(Ω) with 1 ≤ p < ∞. Then there exists a
sequence (un) ∈ C∞

c (RN ) such that un|Ω −→ u in W1,p(Ω). In other words, the restrictions

to Ω of the functions of C∞
c (RN ) are dense in W1,p(Ω).
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Theorem 2.2.8

We assume Ω to be of class C1, with ∂Ω bounded (or Ω = R
N
+ ). Then there exists a linear

extension operator
P : W1,p(Ω) −→ W1,p(RN ),

such that ∀u ∈ W1,p(Ω)

(i) Pu|Ω = u,

(ii) ‖Pu‖Lp(RN ) ≤ C‖u‖Lp(Ω),

(iii) ‖Pu‖W1,p(RN ) ≤ C‖u‖W1,p(Ω),

where C depends only on Ω.

Theorem 2.2.9 (Sobolev, Gagliardo, Nirenberg)

Let 1 ≤ p < N , then

W1,p(RN ) ⊂ Lp
∗
(RN ) where p∗ is given by

1

p∗
=

1

p
− 1

N
, (2.1)

and there exists a constant C = C(p,N) such that

‖u‖Lp∗ ≤ C‖∇u‖Lp ∀u ∈ W1,p(RN ).

Corollary 2.2.2

Let 1 ≤ p < N . Then
W1,p(RN ) ⊂ Lq(RN ) ∀q ∈ [p, p∗]

with continuous embedding.

Corollary 2.2.3

In the case of p = N , we have

W1,N (RN ) ⊂ Lq(RN ) ∀q ∈ [N,+∞[

with continuous embedding.

Theorem 2.2.10 (Morrey)

Let p > N , then
W1,p(RN ) ⊂ L∞(RN )

with continuous embedding.
Moreover, for all u ∈ W1,p(RN ), we have

|u(x)− u(y)| ≤ C|x− y|α‖∇u‖Lp a.e. x, y ∈ R
N

with α = 1− N
p and C is a constant (depending only on p and N).
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Corollary 2.2.4

Let m ≥ 1 be an integer and 1 ≤ p <∞. We have

if
1

p
− m

N
> 0, then Wm,p(RN ) ⊂ Lq(RN ) where

1

q
=

1

p
− m

N
,

if
1

p
− m

N
= 0, then Wm,p(RN ) ⊂ Lq(RN ) where ∀q ∈ [p,∞[,

if
1

p
− m

N
< 0, then Wm,p(RN ) ⊂ L∞(RN ),

with continuous embeddings.

Moreover, if m− N

p
> 0 is not an integer, we set

k =

[
m− N

p

]
and θ = m− N

p
− k (0 < θ < 1).

We have, for all u ∈ W1,p(RN ),

‖Dαu‖L∞ ≤ C‖u‖Wm,p ∀α with |α| ≤ k

and

|Dαu(x)− dαu(y)| ≤ C‖u‖Wm,p |x− y|θ ae. x, y ∈ R
N , ∀α, |α| = k.

In particular, Wm,p(RN ) ⊂ Ck(RN ).

In what follows, we assume that Ω is an open space of class C1, with bounded boundary
∂Ω, or Ω = R

N
+ .

Corollary 2.2.5

Let 1 ≤ p ≤ ∞. We have

• if 1 ≤ p < N , then W1,p(Ω) ⊂ Lp
∗
(RN ) where

1

p∗
=

1

p
− 1

N
,

• if p = N , then W1,p(Ω) ⊂ Lq(RN ) where ∀q ∈ [p,∞[,

• if p > N , then W1,p(Ω) ⊂ L∞(Ω),

with continuous embeddings.
Moreover, if p > N we have for all u ∈ W1,p(Ω)

|u(x)− u(y)| ≤ C‖u‖W1,p |x− y|α ae.x, y ∈ Ω,

with α = 1− N

p
and C depends only on Ω, p, and N .

In particular, W1,p(Ω) ⊂ C(Ω̄).

Corollary 2.2.6

The conclusion of Corollary 2.2.4 remains true if we replace R
N by Ω.
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Theorem 2.2.11 (Rellich-Kondrachov)

Assume that Ω is an open bounded space of class C1. We have

• if p < N , then W1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1, p∗[ where
1

p∗
=

1

p
− 1

N
,

• if p = N , then W1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1,+∞[,

• if p > N , then W1,p(Ω) ⊂ C(Ω̄),

with compact embeddings.

2.3 Functions of bounded variation

As stressed in [1], the discontinuities in the images are significant and important features.
However, classical Sobolev spaces are not suitable spaces to take into account this phe-
nomenon. When u is discontinuous, the gradient of u has to be understood as a measure
and the space BV (Ω) of functions of bounded variation is well adapted to this purpose. Def-
initions and theorems of this section are extracted from [6] and [7].

Definition 2.3.1 (BV (Ω) space)

We define u ∈ BV (Ω) as the set of u in L1(Ω) such that

‖Du‖(Ω) = |u|BV (Ω) := sup{
∫

Ω
u div φ dx, φ ∈ C1

c (Ω,R
N ), |φ(x)| ≤ 1} <∞.

‖Du‖(Ω) is called the total variation of u in Ω.

Definition 2.3.2 (Weak-∗ convergence in BV (Ω))

Let u ∈ BV (Ω), (un)n∈N ⊆ BV (Ω). We say that the sequence (un) converges weakly-∗
to u in BV (Ω) if (un) converges to u in L1(Ω) and (Dun) converges to Du weakly-∗ in
M(Ω) (space of Radon measures), i.e.,

lim
n→+∞

‖un − u‖L1(Ω) and lim
n→+∞

∫

Ω
vDun =

∫

Ω
vDu, ∀v ∈ Cc(Ω,R2).

Theorem 2.3.3 (Lower Semicontinuity of Total Variation)

Suppose un ∈ BV (Ω) (n = 1, 2, . . . ) and un −→ u in L1(Ω). Then

‖Du‖(Ω) ≤ lim inf
n→+∞

‖Dun‖(Ω).
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Theorem 2.3.4 (Compactness)

Let Ω ⊂ R
N be an open bounded set, with Lipschitz boundary ∂Ω. Assume {un}∞n=1 is a

sequence in BV (Ω) satisfying
sup
n

‖un‖BV (Ω) <∞.

Then there exists a subsequence {unj
}∞j=1 and a function u ∈ BV (Ω) such that

unj

j→+∞−−−−→ u in L1(Ω).

Theorem 2.3.5 (Embedding Theorem)

Let Ω ⊂ R
N be an open and bounded set, with a Lipschitz boundary ∂Ω.

Then the embedding BV (Ω) −→ LN/(N−1)(Ω) is continuous and BV (Ω) −→ Lp(Ω) is
compact for all 1 ≤ p < N

N−1 .

2.4 Direct methods in the calculus of variations

This section is based on the book of B. Dacorogna [5].
The calculus of variation is the set of the methods designed to find extrema of functionals of
the form:

I(u) =

∫

Ω
f(x, u(x),∇u(x)) dx

where

• Ω ⊂ R
N , N ≥ 1, is an open bounded set and a point in Ω is denoted by x =

(x1, x2, . . . , xN );

• u : Ω → R
M , M ≥ 1, and hence

∇u =

(
∂uj

∂xi

)1≤j≤M

1≤i≤N
∈ R

M×N ;

• f : Ω× R
M × R

M×N → R, f = f(x, u, ξ), is a given function.

Associated with the functional I is the minimization problem

m := inf{I(u) : u ∈ X}, (P)

meaning that we wish to find ū ∈ X such that

m = I(ū) ≤ I(u) for every u ∈ X.

Here, X is the space of admissible functions, in most parts, it is the Sobolev space u0 +
W1,p

0 (Ω,RM ), where u0 is a given function. We say that the problem under consideration is
scalar if M = 1 or N = 1; otherwise we speak of the vectorial case.

As reminded in [1], proving the existence of a solution is usually achieved by the following
steps, which constitute the direct method of the calculus of variations:
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1. One constructs a minimizing sequence un ∈ X, i.e., a sequence satisfying

lim
n→+∞

I(un) = inf
x∈X

I(u).

2. One obtains a uniform bound on ‖un‖X by deriving a coercivity inequality. Indeed, if I
is coercive, meaning that lim

‖u‖X→+∞
I(u) = +∞, this uniform bound is straightforwardly

extracted. (Arguing by contradiction, let us assume that ∀C > 0, ∃n ∈ N, ‖un‖X > C.
We prove, by construction that there exists a subsequence (unk

) of (un) such that
lim

k→+∞
I(unk

) = +∞ owing to the coercivity of I, which contradicts the fact that

lim
k→+∞

I(unk
) = inf

u∈X
I(u)).

If I is reflexive, then by Theorem 2.1.15, one can thus find ū ∈ X and a subsequence

(unk
) of (un) such that unk

X−⇀ ū when k −→ +∞.

3. To prove that x̄ is a minimizer of F it suffices to have the inequality

I(ū) ≤ lim inf
k→+∞

I(unk
).

The latter property is called weak lower semi-continuity.

Definition 2.4.1 (Sequential weak lower semi-continuity)

Let p ≥ 1 and Ω, u, f be as above. We say that I is sequentially weakly lower semi-

continuous in W1,p(Ω) if for every sequence un
W1,p(Ω)−−−−−⇀ ū, then

I(ū) ≤ lim inf
n→+∞

I(un).

If p = ∞, we say that I is sequentially weak-∗ lower semi-continuous in W1,∞(Ω) is the

same inequality holds for every sequence un
∗−−−−−−⇀

W1,∞(Ω)
ū

2.4.1 Quasiconvexity, Polyconvexity and Rank one convexity

We turn our attention to the vectorial case. The convexity of ξ −→ f(x, u, ξ) plays a central
role in the scalar case (M = 1 or N = 1). In the vectorial case, it is still a sufficient condition
to ensure weak lower semi-continuity of I, however, it is not a necessary one. Such a condition
is the so-called quasiconvexity introduces by Morrey.

f quasiconvex ⇔ I weakly lower semi-continuous.

But the quasiconvexity is difficult to characterize, therefore one is led to introduce a slightly
weaker condition, known as rank one convexity. We also introduce a stronger condition, called
polyconvexity.

Definition 2.4.2 (Rank one convex function, [5])

A function f : RM×N → R ∪ {+∞} is said to be rank one convex if

f(λξ + (1− λ)η) ≤ λf(ξ) + (1− λ)f(η)

for every λ ∈ [0, 1], ξ, η ∈ R
M×N with rank(ξ − η) ≤ 1.
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Definition 2.4.3 (Quasiconvex function, [5])

A Borel measurable and locally bounded function f : RM×N → R is said to be quasi-
convex if

f(ξ) ≤ 1

measD

∫

D
f(ξ +∇ϕ(x)) dx

for every open bounded setD ⊂ R
N , for every ξ ∈ R

M×N and for every ϕ ∈ W1,∞
0 (D,RM ).

Definition 2.4.4 (Polyconvex function, [5])

A function f : RM×N → R ∪ {+∞} is said to be polyconvex if there exists
F : Rτ(N,M) → R ∪ {+∞} convex such that

f(ξ) = F (T (ξ)),

where T : RM×N → R
τ(N,M) is such that

T (ξ) := (ξ, adj2 ξ, . . . , adjN∧M ξ) .

We recall that adjs ξ stands for the matrix of all s × s minors of ξ ∈ R
M×N , 2 ≤ s ≤

N ∧M = min(N,M) and

τ(N,M) =

N∧M∑

s=1

σ(s), where σ(s) :=

(
M

s

)(
N

s

)
=

M !N !

(s!)2(M − s)!(N − s)!
.

In the case N =M = 2, T (ξ) = (ξ, det ξ).

Proposition 2.4.1

Let f : RM×N −→ R. Then

f convex =⇒ f polyconvex =⇒ f quasiconvex =⇒ f rank one convex.

Definition 2.4.5 (Quasiconvex Envelope)

The quasiconvex envelope of f denoted by Qf is the quasiconvex function:

Qf = sup
g
{g ≤ f, g quasiconvex}.

2.5 Tridimensional elasticity

In this section, we recall some definitions of the theory of tri-dimensional elasticity extracted
from [8] and [4].

Let Ω be an open bounded connected space of R3. We consider that the points x ∈ Ω̄
represent the points of a material. Ω is said to be the reference configuration of the material.
The map ϕ : Ω̄ −→ R

3 is a deformation. We also introduce the displacement u = ϕ− Id.
The matrix (∇ϕ)ij = ∂jϕi is called the gradient of the deformation.
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Remark 2.5.1

The preservation of the orientation corresponds to the condition

detϕ(x) > 0, x ∈ Ω.

Definition 2.5.1

(i) The deformation tensor or right Cauchy-Green tensor associated with the deforma-
tion ϕ is defined by:

C = ∇ϕT∇ϕ.
It can be interpreted as a quantifier of the square of local change in distances due
to deformation.

(ii) The Green-Saint Venant tensor is defined by:

E =
1

2
(C − I) =

1

2
(∇u+∇uT ) + 1

2
∇uT∇u.

It is a measure of the deviation between ϕ and a rigid deformation.

Definition 2.5.2

A deformation ϕ is said to be rigid if it can be written

ϕ(x) = a+Qx,

where a ∈ R
3 and Q ∈ SO(3) are respectively a given vector and a rotation matrix.

Definition 2.5.3

Let Tϕ : ϕ(Ω) −→M3 be a tensor field on the deformed configuration ϕ(Ω). We define
its Piola transform by

T (x) = [Tϕ ◦ ϕ(x)]cof∇ϕ(x).

Definition 2.5.4

An application tϕ : ϕ(Ω) × S2 → R
3 is called the Cauchy strain vector (where S2 is

the unit sphere of R3).
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Theorem 2.5.5 (Cauchy’s theorem)

Assume that the applied body force density fϕ : ϕ(Ω) → R
3 is continuous and that the

Cauchy stress vector field

tϕ : (y, n) ∈ ϕ(Ω)× S2 −→ tϕ(y, n) ∈ R
3

is C1 with respect to y and continuous with respect to n. The Cauchy’s axiome implies
that there exists a continuously differentiable tensor field Tϕ : ϕ(Ω) →M3 such that

∀y, n, tϕ(y, n) = Tϕ(y)n,

and such that
Tϕ(y) = Tϕ(y)T .

Moreover, Tϕ is of class C1 and satisfies

− divy T
ϕ = fϕ.

The tensor Tϕ is called the Cauchy stress tensor.

Definition 2.5.6

The behavior law of a material is defined by:

T̂ : Ω× {deformations} −→ S3,

where S3 is the space of 3× 3 symmetric matrices, such that for every deformation ϕ and
every point x ∈ Ω, we have:

Tϕ(y) = T̂ (x, ϕ) for y = ϕ(x).

Definition 2.5.7

(i) A material is said to be elastic if its behavior law can be written:

T̂ : Ω̄×M+
3 −→ S3

with
Tϕ(y) = T̂ (x,∇ϕ(x)).

In other words, a material is said to be elastic if its behavior law depends only on
the gradient of the deformation.

(ii) A material is said to be isotropic if it has the same mechanical properties in every
direction.

(iii) A material is said to be homogeneous if its behavior law does not depend on x.
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CHAPTER 3

TOPOLOGY PRESERVATION FOR
IMAGE-REGISTRATION-RELATED DEFORMATION FIELDS

In this chapter, we address the issue of designing a theoretically well-motivated and com-
putationally efficient method ensuring topology preservation on image-registration-related
deformation fields. The model is motivated by a mathematical characterization of topology
preservation for a deformation field mapping two subsets of Z2, namely, positivity of the four
approximations to the Jacobian determinant of the deformation on a square patch. The first
step of the proposed algorithm thus consists in correcting the gradient vector field of the
deformation (that does not comply with the topology preservation criteria) at the discrete
level in order to fulfill this positivity condition. Once this step is achieved, it thus remains
to reconstruct the deformation field, given its full set of discrete gradient vectors. A func-
tional minimization problem under Lagrange interpolation constraints is introduced and its
well-posedness is studied.

The remainder of the chapter is organized as follows. In section 3.1, the first step of
the method is recalled. Section 3.2 is dedicated to the modelling of the reconstruction step.
Theoretical results are established such that the result of existence/uniqueness of the solu-
tion of the involved minimization problem, the characterization of the solution, a result of
convergence as well as the discretization of the problem. Section 3.3 is devoted to numerical
simulations demonstrating the ability of the model to handle large deformations and the in-
terest of having decomposed the problem into independent smaller ones from a computational
viewpoint.

Introduction

Given two images called Template and Reference, image registration consists in determining
an optimal diffeomorphic transformation ϕ such that the deformed Template image is aligned
with the Reference. This technique is encountered in a wide range of fields, such as medical
imaging, when comparing data to a common Reference frame, when fusing images that have
not necessarily been acquired through similar sensors, or when tracking shapes. For images
of the same modality, the goal of registration is to correlate the geometrical features and the
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intensity level distribution of the Reference and those of the Template. For images produced
by different mechanisms and possessing distinct modalities, the goal of registration is to cor-
relate the images while maintaining the modality of the Template. For an extensive overview
of existing parametric and non-parametric registration methods, we refer the reader to the
work by Modersitzki [28] and [29].
Generally, a physical interpretation is given to the problem of registration: the shapes to be
matched are considered to be the observations of a body subjected to deformations. The
deformation must thus remain physically and mechanically meaningful, and reflect material
properties: self-penetration of the matter (indicating that the transformation is not injective,
which is not physically consistent) should be prohibited. Mathematically, topology preser-
vation (or orientation preservation) for a deformation field mapping two subdomains of Z2

can be expressed by the following equivalent statements (see [25] for further details): positiv-
ity of the four approximations to the Jacobian determinant of the deformation on a square
patch, corresponding angles of the deformed configuration between 0 and π, or positivity
of the signed areas of triangles defined on the deformed configuration. When any of these
characterizations is violated, the convexity of the deformed region is infringed, signifying that
the images of the corner points of a square patch cross over the diagonal connecting their
neighbors. Visually, the deformation field exhibits overlaps (see Fig. 3.1 for such an example).
This currently occurs when dealing with problems involving large magnitude deformations.

Figure 3.1: Academic example: Registration of a black disk to the letter C without topology-
preserving conditions. From left to right: Template image, Reference image and deformation
field. The deformation map clearly exhibits overlaps.

The necessity of preserving topology arises in brain mapping for instance. It is well-
known that the cortical surface has a spherical topology (i.e., is homeomorphic to the sphere
or equivalently, the cortical surface has genus zero), so throughout the registration process,
this feature must be preserved. This medical illustration, among others, constitutes a mo-
tivation for our work. We refer the reader to [23] and [24] for further discussion about this
anatomical property. Generally speaking, as soon as the shapes to be correlated are homeo-
morphic, the preservation of orientation must be ensured.
Thus, the aim of this chapter is to design a theoretically well-motivated and computationally
efficient method taking as input the deformation field that does not comply with the topology
preservation criteria, and giving as output, a corrected version of this deformation, as faithful
as possible to the original one.
Prior related works addressed this question of maintaining topology. In variational frame-
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works, the main idea is to control the Jacobian determinant of the deformation, proper
measure for the local volume transformation under the considered deformation. We would
like to mention the work by Ashburner et al. (see [7], [5] and [6]) and the work by Musse et
al. (see [30]). In [30], the deformation map is modeled as a hierarchical displacement field
decomposed on a multiresolution B-splines basis. Topology preservation is enforced by con-
trolling the Jacobian of the transformation. The problem amounts to solving a constrained
optimization problem: the residual energy between the target and the deformed source image
is minimized under constraints on the Jacobian. This paper is then extended to the 3D case
by Noblet et al. (see [32]). The main difference with the proposed approach is that, in our
case, the set of feasible transformations is not restricted to a certain class of mappings.
In [14] (work dedicated to registration under nonlinear elasticity principles), Droske and
Rumpf address the issue of non-rigid registration of multi-modal image data. A suitable de-
formation is determined via the minimization of a morphological matching functional which
locally measures the defect of the normal fields of the set of level lines of the Template image
and the deformed Reference image. The matching criterion includes first order derivatives
of the deformation and is complemented by a nonlinear elastic regularization of the form∫

Ω
W (DΦ,CofDΦ, detDΦ) dx, where W : R3×3 × R

3×3 × R → R is supposed to be convex,

DΦ is the Jacobian matrix of the deformation Φ, CofDΦ, the cofactor matrix of DΦ and
detDΦ, the Jacobian determinant.
In [27], Le Guyader and Vese introduce a non-parametric combined segmentation/registration
model in which the shapes to be matched are viewed as Ciarlet-Geymonat materials. The
stored energy function of such a material is built so that it becomes infinite when the Jaco-
bian determinant of the deformation tends to 0+. In [21], Haber and Modersitzki address the
issue of non-parametric image registration under volume-preserving constraints. They pro-
pose to restrict the set of feasible mappings by adding a volume-preserving constraint which
forces the Jacobian of the deformation to be equal to 1. In [22], the authors pursue in the
same direction: they propose to keep the Jacobian determinant bounded, which leads to an
inequality-constrained minimization problem.
An information-theoretic-based approach is proposed in [34] to generate diffeomorphic map-
pings and to monitor the statistical distribution of the Jacobian determinant. The authors
propose to quantify the magnitude of the deformation by means of the Kullback-Leibler
distance between the probability density function associated with the deformation and the
identity mapping.
Although theoretically well-motivated, the above mentioned models are hard to handle nu-
merically, requiring for instance, the use of optimization techniques such as logarithmic barrier
methods or special discretization schemes (see [33] or [29]). This observation led us to dis-
connect the registration problem from the topology-preserving question.
An alternative to the straight penalization of the Jacobian of the deformation was proposed
by Christensen and collaborators. In [11], they introduce a viscous fluid registration model
in which objects are viewed as fluids evolving in accordance with the fluid dynamics Navier-
Stokes equations. This model is complemented by a regridding technique ensuring positivity
of the Jacobian determinant. The method consists in monitoring the values of the Jacobian
determinant of the deformation. If the values drop below a defined threshold, the process
is reinitialized taking as initialization the last computed deformed Template. However, for
problems involving large deformations, numerous regridding steps might be required, which is
memory-consuming since one needs to store the last computed deformation field before each
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reinitialization. Numerically, the resulting deformation field (computed as the composite of
intermediate deformations) may not fulfill the topology-preserving conditions, even if the in-
termediate ones do.
In this chapter, we propose a theoretically well-motivated algorithm that falls within the
framework of a previous work by Le Guyader ([26]). In this preliminary work, the authors,
inspired by [25], design a two-step-algorithm enforcing topology preservation, independently
of the registration technique used. The algorithm is thus independent of the selected regis-
tration model. It can be applied at intermediate steps of the registration process or at the
end.
The first step consists in correcting the gradient vector field of the deformation (that does
not comply with the topology preservation criteria) at the discrete level in order to fulfill
a set of conditions ensuring topology preservation in the continuous domain after bilinear
interpolation (see also [25]). Basically, it consists in balancing the gradient vectors of the
displacement field u (related to the deformation field ϕ by the relation ϕ = Id+u) by a pa-
rameter α belonging to ]0, 1[. The proposed algorithm provides a unique optimal parameter α
at each node of the grid. Once the correction stage is achieved, it remains to reconstruct the
deformation field, given its full set of discrete gradient vectors. The problem is phrased as a
regularized least-squares problem but as is, one would fail to get the uniqueness of the solution
(the solutions would be defined up to a constant). It is thus complemented by a constraint
on the mean of the deformation field, thus ensuring uniqueness of the solution. The algo-
rithm is shown to be efficient and has demonstrated its ability to handle large deformations.
Also, it has been compared with Christensen et al.’s regridding technique on complex slices
of brain data in the case of brain mapping to a disk. In many cases, the proposed algorithm
outperforms the regridding technique. Nevertheless, some criticisms can be raised:

• First of all, the computations are carried out on the whole image domain, even though
the regions exhibiting overlaps are generally very few and localized on the image do-
main, which leads to superfluous calculations and strays us from real-time computation
requirements. In practice, the deformation components are recomputed over the whole
domain, altering somewhat the physics of the problem.

• Besides, the constraint that complements the approximation problem (being about the
mean of the deformation) is rather artificial and cannot be physically interpreted. It is
global and may not render well the complexity of variations of the deformation compo-
nents.

We thus propose in this chapter to decompose the original reconstruction problem into inde-
pendent problems of smaller dimensions, yielding a natural parallelization of the computa-
tions. We localize the regions exhibiting overlaps, and formulate for each domain a functional
minimization problem equipped with interpolation constraints on the boundary, reproducing
more accurately the physics of the problem. The algorithm acts locally (the deformation
is left unaltered where the topology-preserving criterion is fulfilled) and the obtained result
thus remains more consistent with the physics of the problem (due also to the Lagrange in-
terpolation constraints stemming from the unaltered deformation field). One could object
that when applied at the end of the process, the obtained deformation field is no longer a
solution of the optimization process. This is indeed true, but as previously mentioned, the
proposed algorithm acts locally and the minimization problems are constrained with Lagrange
interpolation constraints stemming from the unaltered deformation. Besides, the proposed
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algorithm is applied when the registration process produces a deformation field that is itself
mechanically and physically meaningless (a minimization problem in registration can be well-
posed with the guarantee of existence of minimizers -for instance in the nonlinear elasticity
framework-, but may numerically generate overlaps). It thus makes sense to correct the ob-
tained deformation field. At last, the algorithm acts on the magnitude of the displacement
vectors, not on their direction.
One could also claim that registration models involving controls on the Jacobian determinant
are more relevant than the proposed modelling. We answer first, that for many of those
methods, no theoretical result of existence of minimizers is provided (or theoretical results
are given but the theoretical model is not the one that is implemented in practice). It thus
means that the numerical scheme, at best, makes the energy decrease to the infimum, but
the optimization problem does not necessarily admit a minimizer. Besides, some numerical
artifices are often used. For instance, for the fluid registration model by Christensen et al., a
detailed algorithm is provided in [28]. In the main loop, the displacement vector field is up-

dated in the following way: ~U (k+1) = ~U (k)+δt(k)δ~U (k) with

{
δu

(k)
max = ||δ~U (k)||V ,

δt(k) = min
(
1, tolu/δu

(k)
max

) .

It means that this procedure has the same effect as the method we propose: the direction
of the obtained displacement vector field is preserved while the magnitude can be modified.
This strategy of rescaling is further discussed p. 183 of [28] for variational non parametric
registration methods.
The implementation of such methods (without heavy numerical artifices) does not guarantee
either that the obtained deformation field is topology-preserving and fails to correctly align
the shapes when the deformations are too large. That is why we took the side of decoupling
the registration process from the topology-preserving question. When applied at intermedi-
ate steps of the registration process, the corrected deformation field can be interpreted as
a new initial condition of the problem. At last, one could also argue that decomposing the
original problem into smaller dimension independent ones may destroy the global coupling.
For the reasons stated above, we believe that this decoupling does not affect the result. In
particular, the proposed results are qualitatively comparable to those presented in [26], when
no decomposition into subproblems is considered.
The novelty of the chapter thus rests upon:

• the decomposition of the original problem into independent problems of smaller dimen-
sions, enabling us to reduce significantly the computational time (up to a factor 80 for
some critical applications),

• the proof of the existence/uniqueness of the solution of the introduced functional mini-
mization problem on each subdomain,

• a theoretical result of convergence when the size of the data to approximate increases
to infinity, ensuring the well-posedness of the problem,

• a result of convergence of the method in the discrete setting,

• a precise depiction of the discretization of the problem: generic finite element, basis
functions, properties of the systems to be solved, and in particular a result of nonsin-
gularity of the symmetric indefinite matrix involved in the linear systems.
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3.1 Correction of the deformation

The first step consists in applying the same procedure as the one adopted by Le Guyader et
al. in [26] (inspired by prior related work [25] but slightly different). For the sake of com-
pleteness, we remind the reader about this correction stage.
Let Ω be a connected bounded open subset of R2 representing the reference configuration,
with Lipschitz boundary ∂Ω.

Let h :

∣∣∣∣∣
Ω → R

2

(x, y) 7→ h(x, y) =
(
f(x, y), g(x, y)

)T be the deformation of the reference configu-

ration.
A deformation is a smooth mapping that is orientation-preserving and injective except pos-
sibly on ∂Ω. We denote by u the displacement field associated with h, i.e., h = Id+u.
The deformation gradient is ∇h : Ω → M2(R) defined by ∇h = I2 +∇u with M2(R) the set
of 2× 2 real square matrices.
The correction algorithm is based on the following proposition that provides a set of condi-
tions to be fulfilled in the discrete setting to ensure topology preservation in the continuous
domain. More precisely, Proposition 3.1.1 relates conditions of positivity of some discrete
Jacobians to a property of topology-preservation in the continuous domain after bilinear in-
terpolation. This approach seems relevant since we work in practice with digital images: the
centers of gravity of the pixels coincide with the nodes of the discrete domain.

Proposition 3.1.1 (From Karaçali and Davatzikos in [25])

Let C be the class of deformation fields h = (f, g) defined over a discrete rectangle
Ω = [0, 1, . . . ,M ] × [0, 1, . . . , N ] ⊂ N

2 for which Jff , Jfb, Jbf , Jbb are positive for all
(x, y) ∈ Ω.
Let h = (f, g) be a deformation field belonging to C. Then its continuous counterpart
determined by the interpolation of h over the domain ΩC = [0,M ]× [0, N ] ⊂ R

2 using the
interpolant Φ given by Φ(x, y) = Ψ(x)Ψ(y) with

Ψ(t) =





1 + t if −1 ≤ t < 0
1− t if 0 ≤ t < 1
0 otherwise

preserves topology, with the backward and forward finite difference schemes fbx, f
f
x , fby, f

f
y

to approximate the partial derivatives of f (similarly for g) and
∣∣∣∣∣∣∣∣∣∣

Jff = ffx (p1)g
f
y (p1)− ffy (p1)g

f
x(p1)

Jbf = fbx(p2)g
f
y (p2)− ffy (p2)g

b
x(p2)

Jfb = ffx (p3)g
b
y(p3)− fby(p3)g

f
x(p3)

Jbb = fbx(p4)g
b
y(p4)− fby(p4)g

b
x(p4).

We recall (similarly for g) that:
∣∣∣∣∣∣∣∣∣∣

ffx (x, y) = f(x+ 1, y)− f(x, y)

fbx(x, y) = f(x, y)− f(x− 1, y)

ffy (x, y) = f(x, y + 1)− f(x, y)

fby(x, y) = f(x, y)− f(x, y − 1).
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Figure 3.2: Layout of the points on a reference square [0, 1] × [0, 1]. This representation is
given as an example: only the order of the points p1, p2, p3 and p4 matters for the definition
of the discrete Jacobians. These points coincide with the centers of gravity of the pixels. In
the sequel, these will be denoted by ai.

Remark 3.1.2

It is shown in [25] that if a deformation field is continuous and globally one-to-one, it
preserves topology. This is from this angle that the issue of topology preservation is
addressed here. By construction, the continuous counterpart of h denoted by hc is contin-
uous. The one-to-one property is conditional to the local behavior of hc: if the continuous
deformation field hc is one-to-one over all square patches that partition the continuous
domain defined by the discrete grid, then hc is globally one-to-one. If we go back to
Proposition 3.1.1, it involves discrete Jacobians, that is, differences. The continuity of
the function is thus sufficient to ensure that the mathematical writing is correct. More
precisely, inside a given square (for the purpose of illustration [0, 1]× [0, 1] and p1 = (0, 0),
p2 = (1, 0), p3 = (0, 1) and p4 = (1, 1)), the components of hc = (fc, gc) are differentiable
(as polynomials) and more precisely, with the notations of Proposition 3.1.1,

∂fc
∂x

(x, y) = (f(1, 0)− f(0, 0))(1− y) + (f(1, 1)− f(0, 1))y,

∂gc
∂x

(x, y) = (g(1, 0)− g(0, 0))(1− y) + (g(1, 1)− g(0, 1))y,

∂fc
∂y

(x, y) = (f(1, 1)− f(1, 0))x+ (f(0, 1)− f(0, 0))(1− x),

∂gc
∂y

(x, y) = (g(1, 1)− g(1, 0))x+ (g(0, 1)− g(0, 0))(1− x),

and after intermediate computations, the Jacobian determinant J = J(x, y) is given by:

J(x, y) = Jbf x(1− y) + Jff (1− x)(1− y) + Jbb xy + Jfb (1− x)y,

that is, a convex combination of the 4 positive discrete Jacobians. It means that the
Jacobian determinant J is positive everywhere inside the square patch. Continuity of the
bilinear interpolant provides continuity of hc over the square and hc is locally one-to-one
over all such squares and globally one-to-one over the domain.

The general idea resulting from Proposition 3.1.1 is to balance, at the discrete level and at
each node of the grid, the gradients of the displacement vectors by a parameter α ∈]0, 1[,
in order to comply with the above conditions of positivity of the discrete Jacobians. The
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construction of the algorithm is motivated by the following observation. In the continuous
domain, if we decompose the deformation field h = (f, g) into h = Id+u with u = (u1, u2)
the displacement vector field, we can compute the Jacobian J(x, y) at any point (x, y).
If now we focus on the related deformation field hα : (x, y) 7→ (Id+αu) (x, y) = (fα(x, y), gα(x, y)) =
(x+ αu1(x, y), y + αu2(x, y)), we can similarly calculate the Jacobian Jα(x, y) at any point
(x, y) by:

Jα(x, y) =

(
1 + α

∂u1
∂x

(x, y)

)(
1 + α

∂u2
∂y

(x, y)

)
− α2∂u2

∂x
(x, y)

∂u1
∂y

(x, y).

It exhibits the following properties:

• Jα(x, y) is a polynomial of order 2 in α,

• lim
α→0

Jα(x, y) = 1,

• lim
α→1

Jα(x, y) = J(x, y).

If we suppose that J(x, y) < 0 then, according to the intermediate value theorem, there exists
α∗ ∈]0, 1[ such that Jα∗(x, y) = ε ∈ [0, 1]. The idea is thus to confine the Jacobian values to
a positive interval by correcting the gradients of the displacement vector field.
Strictly, we should consider the deformation field defined by
hα : (x, y) 7→ (x+ α(x, y)u1(x, y), y + α(x, y)u2(x, y)) in the continuous domain.
But the aim is to adapt the previous idea to the discrete setting. At each node of the grid, a
correction parameter is computed and applied not to the displacement vector field itself, but
to the gradients of the displacement vector field. Note that applying the correction stage at
the level of the displacement vector field itself would not guarantee that the discrete Jacobians
obtained fulfill the conditions of Proposition 3.1.1.
We adapt the previous idea to the discrete setting: the algorithm produces a unique optimal
correction parameter α at each node. If J(x, y) < 0, there are four possible shapes for Jα(x, y):

1. Jα(x, y) reaches its minimum over ]0, 1] (cf. Fig. 3.3, solid line),

2. Jα(x, y) reaches its minimum over ]1,+∞] (cf. Fig. 3.3, dotted line),

3. Jα(x, y) reaches its maximum over [0, 1[ (cf. Fig. 3.3, dashed line),

4. Jα(x, y) reaches its maximum over ]−∞, 0[ (cf. Fig. 3.3, dash-dotted line).

Consequently, if α∗ ∈]0, 1[ is such that Jα∗(x, y) = 0, then for 0 < α < α∗, Jα(x, y) > 0.
For instance, suppose that for a given node, the four Jacobians are negative (in practice, this
is the most spread case). Then we compute four correction parameters α∗

ff , α
∗
fb, α

∗
bf and

α∗
bb associated to each combination. It suffices to take the minimum of these four values to

guarantee that the four Jacobians are positive.
Now suppose that three Jacobians are negative, for instance, Jff , Jbf and Jfb. Then we
compute α∗

ff , α
∗
fb and α

∗
bf , and we set αint = min(α∗

ff , α
∗
fb, α

∗
bf ).

The second-degree polynomial in α, Jαbb is computed for αint.
If Jαint

bb (x, y) > 0, then α∗ = αint, otherwise we take α∗ = min
(
roots(Jαbb(x, y))

)
.
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Figure 3.3: The four possible representations of the Jacobian.

And so on for the other cases.
The algorithm thus provides a unique optimal correction parameter per grid node (when
necessary) and the approximated gradients of the displacement vector field are corrected in
compliance with the obtained correction parameters.
Thanks to this parameter α, we can compute the corrected (when necessary) Jacobian matrix
at the considered grid node: the output of the first step is then this discrete set of corrected
(when necessary) Jacobian matrices denoted by {ωi} in the sequel.

3.2 Deformation reconstruction

The issue to be addressed now lies in the reconstruction of the deformation field, given its dis-
crete set of gradients, with the fewest computations possible (real-time computations should
be expected).
Unlike our previous model on this topic, formulated as a functional minimization problem
on the whole domain Ω (-meaning in particular that the computations were made even on
regions of the deformation map complying with the orientation-preserving requirement), we
propose to concentrate the computational effort on the subdomains of the deformation grid
exhibiting overlaps and to set Lagrange interpolation conditions on the boundary of the sub-
domains, reproducing more faithfully the physics of the problem. This allows to apply the
reconstruction process on each region independently and to reduce significantly the compu-
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tational cost. In the sequel, we assume that we have identified (manually for the moment) N
nonempty connected bounded open subsets Ωi of Ω with Lipschitz boundary, i ∈ {1, · · · ,N}
on which orientation preservation is violated. ∀i ∈ {1, · · · ,N}, Ωi ⊂ Ω and Ωi ∩ Ωj = ∅ for
i 6= j. We then introduce our mathematical model of reconstruction, valid for each subdo-
main Ωi, i ∈ {1, · · · ,N}. A Dm-spline approach is retained (cf. [2]). Generally speaking, the
Dm-splines over an open subset of Rn are multidimensional minimizing splines, i.e., functions
defined on Ω subjected to interpolation or smoothing conditions and that minimize an energy
functional involving derivatives of order m. This choice of methodology is guided by the
authors’ experience in the field of approximation. This technique proves to be very satisfac-
tory both in terms of theory (convergence results validate the approach) and applications: it
provides accurate results. Here again we refer the reader to [2] for more details. Of course,
other strategies could have been considered.

3.2.1 Functional to be minimized

We remind the reader that ∀i ∈ {1, · · · ,N}, Ωi is a nonempty connected bounded open subset
of Ω ⊂ R

2 with Lipschitz boundary. Let ν be an integer such that ν ∈ {1, · · · ,N}. Inspired
by the Dm-spline approach, we introduce a regularized least-squares problem defined on a
space of vector-valued functions, in order to fit the discrete set of corrected gradient vectors
of the deformation and to satisfy Lagrange interpolation constraints. More precisely, the
problem is phrased as a constrained functional minimization problem on a convex subspace
of the Hilbert space H3(Ων ,R

2) so that the Sobolev’s embedding H3(Ων ,R
2) 	 C1(Ων ,R

2)
holds (it means that the inclusion of H3(Ων ,R

2) into C1(Ων ,R
2) is continuous, that is to

say : H3(Ων ,R
2) ⊂ C1(Ων ,R

2) and there exists C > 0, depending only on Ων , such that
∀u ∈ H3(Ων ,R

2), ‖u‖C1(Ων ,R2) ≤ C‖u‖H3(Ων ,R2), see [1] or [8]). It guarantees, in particular,
that the pointwise fitting term dealing with the derivatives of the unknown is well-defined.
We thus rebuild a smoother-than-required deformation field (by smoother, we mean more
regular) but retain only the values of the deformation components obtained at the grid nodes
(centers of gravity of the pixels). Before depicting our model, we introduce some fundamental
mathematical notions that will be useful to state the functional minimization problem.

For any γ = (γ1, γ2) ∈ N
2, we write |γ| = γ1+γ2 and ∂γ =

∂|γ|

∂xγ11 ∂xγ22
. We recall the standard

inner product and the induced norm on H3(Ων ,R
2):

((u, v))H3(Ων ,R2) =
∑

|γ|≤3

∫

Ων

〈∂γu, ∂γv〉2 dx1 dx2 and ‖v‖2H3(Ων ,R2) = ((v, v))H3(Ων ,R2),

and the semi-inner product and the semi-norm:

(u, v)3,Ων ,R2 =
∑

|γ|=3

∫

Ων

〈∂γu, ∂γv〉2 dx1 dx2 and |v|23,Ων ,R2 = (v, v)3,Ων ,R2 ,

where 〈·, ·〉2 denotes the Euclidean scalar product in R
2. For the sake of clarity, we recall the

general definition of a P -unisolvent set.
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Definition 3.2.1 (see [2])

For any l ∈ N, we denote by Pl the space of polynomial functions defined over Rn of
degree ≤ l with respect to the set of variables, and for any l ∈ N and for any nonempty
connected open subset Ω in R

n, by Pl(Ω) the space of restrictions to Ω of the functions
in Pl. A set A = {a1, · · · , aN} of N points of Rn is Pl-unisolvent if ∀ {α1, · · · , αN} ⊂ R,
∃!Ψ ∈ Pl, ∀i ∈ {1, · · · , N}, Ψ(ai) = αi.
In particular, ∃!Ψ ∈ Pl, ∀i ∈ {1, · · · , N}, Ψ(ai) = 0 (Ψ ≡ 0). It is clear that a necessary
condition for the set A to be Pl-unisolvent is that N = dimPl.

Let A = {ai}i=1,··· ,N be a set of N points of Ων containing a P1-unisolvent subset (As the set
A contains a P1-unisolvent subset, we can only infer that N ≥ dim P1). In our application,
the set A is made of the coordinates of the image pixels included in Ων .
Let also {ωi}i=1,··· ,N be the set ofN Jacobian matrices of the deformation given at {ai}i=1,··· ,N .
This set is made of the corrected gradient vectors of the deformation obtained at the correction
step of the algorithm. At last, let {bi}i=1,··· ,l be l points of Ων where the discrete gradient
vectors of the deformation have been unaltered (so the deformation is unchanged). In all
our applications, these points will belong to the boundary ∂Ων of Ων . We set Lagrange
interpolation constraints at these points (see Fig. 3.4). It means that if h denotes the unaltered
deformation and v denotes the unknown deformation of the minimization problem, we must
have:

∀i ∈ {1, · · · , l} , v(bi) = h(bi).

Figure 3.4: Example of a subdomain (white zone) Ω1 ⊂ Ω on the boundary of which, inter-
polation conditions are prescribed (black dots representing the bi, i ∈ {1, · · · , l}).

Let K be the set defined by K = {v ∈ H3(Ων ,R
2), β(v) = η}, with β the mapping:

β :

∣∣∣∣∣
H3(Ων ,R

2) → R
2l

v 7→ β(v) =
(
v(b1), · · · , v(bl)

)T
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and η =
(
h(b1), · · · , h(bl)

)T
. The convex set K is closed as the reciprocal image of a closed

set by a continuous mapping (see [8]). The approximation problem can be stated as follows:
given the set of N Jacobian matrices defined at {ai}i=1,··· ,N , search for v sufficiently smooth
such that ∀i ∈ {1, · · · , N}, the Jacobian matrix Dv evaluated at ai is close to wi and such that
∀i ∈ {1, · · · , l}, v(bi) = h(bi). In this purpose, we need the following additional notations.
We denote by ρ the operator defined by:

ρ :

∣∣∣∣∣
H2(Ων ,R

2×2) → (R2×2)N

v 7→ ρ(v) =
(
v(a1), v(a2), · · · , v(aN )

)T . (3.1)

The problem is then cast as an optimization one by means of functional Jǫ defined by:

Jǫ :
∣∣∣∣
H3(Ων ,R

2) → R

v 7→ 〈ρ(Dv)− w〉2N + ǫ |v|23,Ων ,R2 ,

with ǫ > 0 a tuning parameter and with w =
(
w1, w2, · · · , wN

)T ∈
(
R
2×2

)N
. The opera-

tor 〈·, ·〉N is defined as follows: ∀ξ ∈
(
R
2×2

)N
, ∀η ∈

(
R
2×2

)N
, 〈ξ, η〉N =

N∑

i=1

4∑

j=1

ξijηij and

〈ξ〉N = 〈ξ, ξ〉
1
2
N . The first term of functional Jǫ ensures closeness to the data while the second

component is a regularizing component. We consider the following minimization problem :

{
Search for σǫ ∈ K such that

∀v ∈ K,Jǫ(σǫ) ≤ Jǫ(v).
(3.2)

We can notice that minimizing Jǫ with respect to v is equivalent to minimizing:

〈ρ(Dv)〉2N − 2〈ρ(Dv), ω〉N + ǫ |v|23,Ων ,R2 .

From now on, we thus denote by Jǫ the new functional:

Jǫ :
∣∣∣∣
H3(Ων ,R

2) → R

v 7→ 〈ρ(Dv)〉2N − 2〈ρ(Dv), ω〉N + ǫ |v|23,Ων ,R2 .

Our goal being to prove the existence/uniqueness of the solution of the introduced functional
minimization problem, we rephrase functional Jǫ in terms of the bilinear form a and the linear
form L defined hereafter. Let a be the symmetric bilinear form such that:

a :

∣∣∣∣
H3(Ων ,R

2)×H3(Ων ,R
2) → R

(u, v) 7→ 〈ρ(Du), ρ(Dv)〉N + ǫ (u, v)3,Ων ,R2 .

Let also L be the linear form defined by:

L :

∣∣∣∣
H3(Ων ,R

2) → R

v 7→ 〈ρ(Dv), ω〉N .

The minimization problem thus becomes:

{
Search for σǫ ∈ K such that

∀v ∈ K, a(σǫ, σǫ)− 2L(σǫ) ≤ a(v, v)− 2L(v).
(3.3)
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The mappings a and L are continuous, but the trouble is that the bilinear form a is not
H3(Ων ,R

2)-elliptic, which prevents us from applying Stampacchia’s theorem ([8]) straightfor-
wardly. To circumvent this issue, we introduce an artificial term in the minimization problem
formulation as follows:

{
Search for σǫ ∈ K such that

∀v ∈ K, a(σǫ, σǫ)− 2L(σǫ) + ‖β(σǫ)‖22l ≤ a(v, v)− 2L(v) + ‖β(v)‖22l.
(3.4)

This new phrasing involves the bilinear form denoted by â defined by

â :

∣∣∣∣
H3(Ων ,R

2)×H3(Ων ,R
2) → R

(u, v) 7→ a(u, v) + 〈β(u), β(v)〉2l
and the following propositions hold.

Proposition 3.2.1

The mapping ‖̂.‖ defined on H3(Ων ,R
2) by

‖̂.‖ :

∣∣∣∣
H3(Ων ,R

2) → R

v 7→
√
â(v, v)

is a Hilbertian norm.

Proof : The proof is based on the argument of connectedness of Ων and the property of
P1-unisolvence of the set A.

• It is obvious that ‖λ̂v‖ = |λ|‖v̂‖, ∀λ ∈ R according to the definition of â.

• The triangle inequality is also obvious as a result of the definition of â and the
inner product.

• Let us prove that ‖v̂‖ = 0 ⇒ v ≡ 0.
Let v ∈ H3(Ων ,R

2) be such that ‖v̂‖ = 0.
It implies that:

X |v|3,Ων ,R2 = 0 and as Ων is connected, it yields v ∈ P2(Ων ,R
2).

X Also, 〈ρ(Dv)〉N = 0. As v ∈ P2(Ων ,R
2), it follows that Dv ∈ P1(Ων ,R

2×2)
and from the unisolvence property we conclude that Dv = 0R2×2 . The map-

ping v can thus be written as v =

(
c1
c2

)
where c1 and c2 are constants.

X At last, 〈β(v)〉2
R2l = 0 ⇔ β(v) = 0R2l and so c1 = c2 = 0.

It yields v ≡ 0.

Proposition 3.2.2

The norm ‖̂.‖ is equivalent to the norm ‖.‖H3(Ων ,R2) on H3(Ων ,R
2).
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Proof : The proof is based on a theorem of equivalence of norms by Nec̆as (Theorem 7.1.,
[31]) and on the continuity of the bilinear form â on H3(Ων ,R

2)×H3(Ων ,R
2).

Theorem 3.2.2 (Nec̆as [31, Theorem 7.1])

Let Ω ∈ N
(0) (with a continuous boundary), fi functionals satisfying

l∑

i=1

|fiv|p = 0 ⇔ v ≡ 0.

Let p ≥ 1, and k ≥ 1 an integer. We have the inequality:

c1‖u‖Wk,p(Ω) ≤
[ ∑

|α|=k
‖Dαu‖pLp(Ω) +

l∑

i=1

|fiu|p
] 1

p ≤ c2‖u‖Wk,p(Ω).

The continuity of the bilinear form â results from the continuity of a and the following
inequality: ∀(u, v) ∈ H3(Ων ,R

2)×H3(Ων ,R
2),

|〈β(u), β(v)〉R2l | ≤ |β(u)|R2l |β(v)|R2l (Cauchy-Schwarz inequality)

with |β(u)|R2l =

√
l∑

i=1
〈u(bi)〉22.

But 〈u(bi)〉2 ≤ ‖u‖C0(Ων ,R2) with ‖u‖C0(Ων ,R2) = sup
x∈Ων

〈u(x)〉2
and using the Sobolev’s embedding theorem, we have: 〈u(bi)〉2 ≤ C‖u‖H3(Ων ,R2).

Therefore, |β(u)|R2l ≤
√
lC‖u‖H3(Ων ,R2) and

|〈β(u), β(v)〉R2l | ≤ lC2‖u‖H3(Ων ,R2)‖v‖H3(Ων ,R2).

The bilinear form â being continuous on H3(Ων ,R
2)× H3(Ων ,R

2), there exists a con-
stant c > 0 such that ∀v ∈ H3(Ων ,R

2):

â(v, v) = ‖v̂‖2 ≤ c‖v‖2H3(Ων ,R2).

For the second part of the inequality, we use Nec̆as’ theorem with k = 3 and p = 2. We

take f1 : v 7→ 1√
ǫ
ρ(Dv) and f2 : v 7→ 1√

ǫ
β(v). ∀v ∈ P2(Ων ,R

2),
2∑
i=1

|fiv|2 = 0 ⇔ v ≡ 0

from the unisolvence property of the set A. From Nec̆as’ theorem, we then get that
there exists a constant c1 > 0 such that:
c21‖v‖2H3(Ων ,R2) ≤ |v|23,Ων ,R2 +

1
ǫ 〈ρ(Dv)〉2N + 1

ǫ‖β(v)‖2R2l

⇔ ǫ c21‖v‖2H3(Ων ,R2) ≤ ǫ |v|23,Ων ,R2 + 〈ρ(Dv)〉2N + ‖β(v)‖2
R2l

⇔ ‖v‖2H3(Ων ,R2) ≤ 1
ǫc21

‖v̂‖2

It results in the following theorem.
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Theorem 3.2.3

Problem (3.2) admits a unique solution σǫ ∈ K. This solution is characterized by the
variational inequality: ∀v ∈ K, â(σǫ, v − σǫ) ≥ L(v − σǫ).

Proof : The proof is based on Stampacchia’s theorem ([8]).

3.2.2 Characterization of the solution

Let K0 be the vector subspace of H3(Ων ,R
2) defined by

K0 = {v ∈ H3(Ων ,R
2) | β(v) = 0R2l}.

Let S be the set defined by

S = {u ∈ H3(Ων ,R
2) | ∀v ∈ K0, a(u, v) = L(v)}.

Then the following proposition holds.

Proposition 3.2.4

The unique solution σǫ of problem (3.2) is characterized by:

{σǫ} = K ∩ S.

This is mainly an abstract result that will be useful to prove Theorem 3.2.3.

Proof : First, let us prove that {σǫ} ⊂ K ∩ S.
From Stampacchia’s theorem, we have ∀v ∈ K:

â(σǫ, v − σǫ) ≥ L(v − σǫ).

But v − σǫ ∈ K0 so â(σǫ, v − σǫ) = a(σǫ, v − σǫ) ≥ L(v − σǫ).
Moreover, −(v − σǫ) ∈ K0 since K0 is a vector space, so ∀v ∈ K:

â(σǫ,−(v − σǫ)) ≥ L(−(v − σǫ)) ⇐⇒ â(σǫ, v − σǫ) ≤ L(v − σǫ).

By gathering the two above results, it yields â(σǫ, v − σǫ) = L(v − σǫ), which means
that ∀v0 ∈ K0, a(σǫ, v0) = L(v0).
Therefore σǫ ∈ K ∩ S.
Now, let us prove that K ∩ S ⊂ {σǫ}.
Let w ∈ K ∩ S. So w ∈ K and ∀v0 ∈ K0, a(w, v0) = L(v0).
∀v ∈ K, v − w ∈ K0 so:

â(w, v − w) = a(w, v − w) = L(v − w) ≥ L(v − w).

Therefore, w is a solution of Problem (3.2) and by uniqueness of the solution, w = σǫ.
It yields K ∩ S ⊂ {σǫ}.
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3.2.3 Lagrange multipliers

We now introduce Lagrange multipliers, which enables us to define the variational formulation
of problem (3.2) on the whole space H3(Ων ,R

2) and to obtain a variational equality (efficiently
tractable in the context of the Finite Element Method) instead of a variational inequality.
Let K⊥

0 be the orthogonal complement of K0 in H3(Ων ,R
2) for the scalar product â(·, ·):

K⊥
0 = {u ∈ H3(Ων ,R

2) | â(u, v) = 0, ∀v ∈ K0}.

The space H3(Ων ,R
2) can be written as the direct sum H3(Ων ,R

2) = K⊥
0 ⊕K0.

Let us denote by β|K⊥
0

the restriction of β to K⊥
0 . Then β|K⊥

0
is a topological isomorphism

(in particular, it is obvious that kerβ|K⊥
0
= K0 ∩K⊥

0 = {0}. Moreover, β|K⊥
0

is onto since K

is non-empty). The main theorem is stated as follows.

Theorem 3.2.3

If σǫ is the unique solution of problem (3.2), then σǫ is also the solution of the following
problem with Lagrange multipliers:

{
Search for (σǫ, λ) ∈ K × R

2l,

∀v ∈ H3(Ων ,R
2), a(σǫ, v)− L(v) + 〈λ, β(v)〉2l = 0.

(3.5)

Proof : Assume that (u, λ) ∈ K × R
2l is a solution of problem (3.5). Then ∀v ∈ K0, we

have:
a(u, v)− L(v) = 0,

since β(v) = 0R2l . Thus u ∈ K ∩ S and from Proposition 3.2.4, u = σǫ.
Conversely, from Proposition 3.2.4, {σǫ} = K ∩ S so ∀v0 ∈ K0, a(σǫ, v0) = L(v0).
Let us consider the linear form defined ∀w ∈ K⊥

0 by:

L :

∣∣∣∣
K⊥

0 → R

w 7→ −a(σǫ, w) + L(w).

We remind the reader that, denoting by E and F two normed vector spaces and by A
a continuous linear mapping from E to F , the adjoint operator At : F ′ → E′ is defined
by:

∀v ∈ E, ∀w ∈ F ′, 〈Atw, v〉EE = 〈w,Av〉F ′F ,

〈·, ·〉G′G denoting the dual pairing.
The mapping β|K⊥

0
: K⊥

0 → R
2l is a topological isomorphism and consequently so is

the mapping βt|K⊥
0
: R2l → (K⊥

0 )′.

As L ∈ (K⊥
0 )′, there exists a unique λ ∈ R

2l such that βt|K⊥
0
(λ) = L. It means that:

L(w) = −a(σǫ, w) + L(w) = 〈βt|K⊥
0
(λ), w〉(K⊥

0 )′K⊥
0
,

⇐⇒ a(σǫ, w)− L(w) + 〈βt|K⊥
0
(λ), w〉(K⊥

0 )′K⊥
0
= 0,

⇐⇒ a(σǫ, w)− L(w) + 〈λ, β|K⊥
0
(w)〉(R2l)′R2l = 0.
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Let v ∈ H3(Ων ,R
2). Since H3(Ων ,R

2) = K⊥
0 ⊕K0, ∃!(v0, w) ∈ K⊥

0 ×K0, v = v0 + w.
From the last equality, it yields ∃!λ ∈ R

2l, such that ∀v ∈ H3(Ων ,R
2):

a(σǫ, v)− L(v)− a(σǫ, v0) + L(v0) + 〈λ, β(w)〉(R2l)′R2l = 0,

⇐⇒a(σǫ, v)− L(v) + 〈λ, β(w)〉(R2l)′R2l = 0,

since v0 ∈ K0, and a(σǫ, v0) = L(v0) from Proposition 3.2.4.
To conclude, β(w) = β(v − v0) = β(v) since β(v0) = 0R2l .
Finally,

∃!λ ∈ R
2l, ∀v ∈ H3(Ων ,R

2), a(σǫ, v)− L(v) + 〈λ, β(v)〉(R2l)′R2l = 0

3.2.4 Theoretical convergence result

We now provide a theoretical convergence result that is an abstract result highlighting the
well-posedness of the modelling.
Let D be a subset of ]0,+∞[ admitting 0 as accumulation point (this implies that 0 ∈ D).
For each d ∈ D, let Ad be a set of N = N(d) distinct points of Ων containing a P1-unisolvent
subset (we cannot say much on N except that N ≥ dimP1 and as d tends to 0, N(d) increases
to +∞).
We suppose that

sup
x∈Ων

δ(x,Ad) = d, (3.6)

where δ is the Euclidean distance in R
2. Let us observe that the left-hand side of (3.6) is just

the Hausdorff distance between Ad and Ων . Consequently, it implies that D is bounded and
that this distance tends to 0 as d does. Thus d is the radius of the largest sphere included
in Ων that contains no point from Ad (Hausdorff distance). Let us remark the ambiguity in
the meaning of d defined first as an index and next, independently, in (3.6). This situation is
analogous to that found in the Finite Element theory (see [2] and [12]).
We point out that the hypotheses 0 ∈ D and (3.6) imply the weaker condition

lim
d→0

sup
x∈Ων

δ(x,Ad) = 0. (3.7)

For all d ∈ D, we denote by ρd the mapping defined by:

ρd :

∣∣∣∣∣
H2(Ων ,R

2×2) → (R2×2)N(d)

v 7→ ρd(v) =
(
(v(a))a∈Ad

)T .

Then we introduce the norm ‖̂·‖d equivalent to the norm ‖ · ‖H3(Ων ,R2) on H3(Ων ,R
2) defined

by: ∀v ∈ H3(Ων ,R
2),

‖v̂‖d =
[
〈ρd(Dv)〉2N(d) + ǫ |v|23,Ων ,R2 + ‖β(v)‖22l

] 1
2
.

(It is possible to check that ‖̂·‖d is a norm by applying similar arguments to those in Propo-
sition 3.2.1). The following lemma holds and allows to state Theorem 3.2.5.
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Lemma 3.2.4

Suppose that (3.7) holds. Let A0 = {b01, . . . , b0ℵ} be a fixed P1-unisolvent subset of Ων
(in this case ℵ = dimP1).

∀j = 1, . . . ,ℵ, ∃
(
ad0j

)
d∈D,

(
∀d ∈ D, ad0j ∈ Ad

)
and

(
b0j = lim

d→0
ad0j

)
. (3.8)

For all d ∈ D, let Ad0 be the set {ad01, . . . , ad0ℵ} and ‖.‖Ad
0
be the mapping defined by:

∀v ∈ H3(Ων ,R
2),

‖v‖Ad
0
=




ℵ∑

j=1

〈Dv(ad0j)〉24 + ǫ |v|23,Ων ,R2 + ‖β(v)‖22l




1
2

,

(where 〈ξ, η〉4 =
4∑
j=1

ξjηj ,with ξ, η ∈ R
2×2).

Then, there exists µ > 0 such that for all d ≤ µ, the set Ad0 is P1-unisolvent and ‖ · ‖Ad
0
is

a norm on H3(Ων ,R
2) uniformly equivalent on D∩]0, µ] to the norm ‖ · ‖H3(Ων ,R2).

Proof : According to the Sobolev embedding:

∃C1 > 0, ∀d ∈ D, ∀v ∈ H3(Ων ,R
2), ‖v‖Ad

0
≤ C1‖v‖H3(Ων ,R2)

Constant C1 does not depend on d, it only depends on ℵ, l and ǫ.
Now, it suffices to find a constant C2 > 0 independent of d such that ‖v‖H3(Ω,R2) ≤
C2‖v‖Ad

0
.

For v ∈ H3(Ων ,R
2),

1

2

ℵ∑

j=1

〈Dv(b0j)〉24 =
1

2

ℵ∑

j=1

〈Dv(b0j)−Dv(ad0j) +Dv(ad0j)〉24

≤
ℵ∑

j=1

〈Dv(b0j)−Dv(ad0j)〉24 +
ℵ∑

j=1

〈Dv(ad0j)〉24. (3.9)

Also, the Hölder inclusion gives:

∃λ ∈]0, 1],H3(Ων ,R
2) 	 C1,λ(Ων ,R

2).

Thus v ∈ C1,λ(Ων ,R
2) and ∃C > 0, ∀j = 1, . . . ,ℵ, ∀d ∈ D,

〈Dv(b0j)−Dv(ad0j)〉24 ≤ ‖v‖2
C1,λ(Ων ,R2)

〈b0j − ad0j〉2λ2 ≤ C2‖v‖2H3(Ων ,R2)〈b0j − ad0j〉2λ2 .
(3.10)

Moreover, by (3.8), it comes: ∀j = 1, . . . ,ℵ,

∀γj > 0, ∃µγj , ∀d ∈ D,
(
d ≤ µγj ⇒ 〈ad0j − b0j〉2 ≤ γj

)
.
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Then

∀γj > 0, ∃µγj , ∀d ∈ D,
(
d ≤ µγj ⇒ 〈Dv(b0j)−Dv(ad0j)〉24 ≤ C2γ2λj ‖v‖2H3(Ων ,R2)

)
.

Let γ > 0 and taking γj = γ, ∀j = 1, . . . ,ℵ and µ = min(µγ1 , . . . , µγℵ) then

∀d ∈ D,


d ≤ µ⇒

ℵ∑

j=1

〈Dv(b0j)−Dv(ad0j)〉24 ≤ C2ℵγ2λ‖v‖2H3(Ων ,R2)


 .

Finally,
∀γ > 0, ∃µ > 0, ∀d ∈ D, ∀v ∈ H3(Ων ,R

2),

d ≤ µ⇒

ℵ∑

j=1

〈Dv(b0j)−Dv(ad0j)〉24 ≤ C2γ2λℵ‖v‖2H3(Ων ,R2)




Using (3.9), we obtain:

∀γ > 0, ∃µ > 0, ∀d ∈ D, ∀v ∈ H3(Ων ,R
2),


d ≤ µ⇒ 1

2

ℵ∑

j=1

〈Dv(b0j)〉24 + ǫ|v|23,Ων ,R2 + ‖β(v)‖2
R2l ≤ ‖v‖2

Ad
0
+ C2γ2λℵ‖v‖2H3(Ων ,R2)


 ,


d ≤ µ⇒ 1

2

ℵ∑

j=1

〈Dv(b0j)〉24 + ǫ|v|23,Ων ,R2 + ‖β(v)‖2
R2l − C2γ2λℵ‖v‖2H3(Ων ,R2) ≤ ‖v‖2

Ad
0


 .

The map v ∈ H3(Ων ,R
2) 7→

[
1

2

ℵ∑
j=1

〈Dv(b0j)〉24 + ǫ|v|23,Ων ,R2 + ‖β(v)‖2
R2l

] 1
2

is an equiv-

alent norm on H3(Ων ,R
2) to the norm ‖.‖H3(Ων ,R2), then:

∀γ > 0, ∃µ > 0, ∀d ∈ D, ∀v ∈ H3(Ων ,R
2),

(
d ≤ µ⇒ (C ′2 − C2γ2λℵ)‖v‖2H3(Ων ,R2) ≤ ‖v‖2

Ad
0

)
.

It suffices to choose a right γ to obtain the equivalence of norms. We notice that ‖·‖Ad
0

is clearly a semi-norm. Thanks to the double inequality obtained, this is a norm on
H3(Ων ,R

2) since ‖v‖Ad
0
= 0 ⇒ v = 0.

Theorem 3.2.5

Suppose that there exists a function f̂ ∈ K such that for all d ∈ D: ρd(Df̂) = ω, and
ǫ = ǫ(d) ∈]0, ǫ0], ǫ0 > 0.
For all d ∈ D, we denote by udǫ the unique solution of problem (3.2), then under the above
assumptions we have:

lim
d→0

‖udǫ − f̂‖H3(Ων ,R2) = 0.
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Proof : The proof is divided into four steps.

First step

We start by proving that the sequence
(
udǫ

)
d∈D∩]0,µ]
ǫ∈]0,ǫ0]

is bounded in H3(Ων ,R
2) inde-

pendently of d. By taking v = f̂ in problem (3.2), we obtain :

〈ρ
(
Dudǫ −Df̂

)
〉2N(d) + ǫ|udǫ |23,Ων ,R2 + ‖β(udǫ )‖2R2l ≤ ǫ|f̂ |23,Ων ,R2 + ‖β(f̂)‖2

R2l .

We deduce that: 



|udǫ |3,Ων ,R2 ≤ |f̂ |3,Ων ,R2 ,

〈ρ
(
Dudǫ −Df̂

)
〉2N(d) ≤ ǫ0|f̂ |23,Ων ,R2 .

As Ad0 ⊂ Ad then:

∑

a∈Ad
0

〈Dudǫ (a)−Df̂(a)〉24 ≤
∑

a∈Ad

〈Dudǫ (a)−Df̂(a)〉24 = 〈ρd
(
Dudǫ −Df̂

)
〉2N(d) ≤ ǫ0|f̂ |23,Ων ,R2 .

Moreover,
∑

a∈Ad
0

〈Dudǫ (a)〉24 =
∑

a∈Ad
0

〈Dudǫ (a)−Df̂(a) +Df̂(a)〉24,

≤
∑

a∈Ad
0

〈Dudǫ (a)−Df̂(a)〉24 +
∑

a∈Ad
0

〈Df̂(a)〉24,

≤ ǫ0|f̂ |23,Ων ,R2 + 2ℵ‖f̂‖2C1(Ων ,R2)
,

and using the equivalence of norm given in Lemma 3.2.4, we establish that:

∃ν̃ > 0, ∀d ∈ D, ∀ǫ ∈]0, ǫ0],
(
d ≤ µ⇒ ‖udǫ‖H3(Ων ,R2) ≤ ν̃

)
.

The sequence
(
udǫ

)
d∈D∩]0,µ]
ǫ∈]0,ǫ0]

is bounded in H3(Ων ,R
2), so one can extract a subsequence

(
udlǫl

)
l∈N with lim

l→∞
dl = 0 (since 0 is an accumulation point of D) and ǫl ∈]0, ǫ0], ∀l ∈ N

(-we assume that ǫ = ǫ(d)-) that weakly converges to an element of H3(Ων ,R
2) denoted

by f∗.

Second step

In this step, we argue by contradiction and prove that Df∗ = Df̂ using compact-
ness arguments (Sobolev’s embeddings in Hölder’s spaces and Rellich-Kondrachov’s
theorem, see [8]). Finally, the Lagrange interpolation constraints give us that f∗ = f̂ .

We start by proving that Df̂ = Df∗.
We argue by contradiction. We assume that Df̂ 6= Df∗, then there exists an open set
ω non empty included in Ω and a positive number α such that:

∀x ∈ ω, 〈Df̂(x)−Df∗(x)〉4 > α.
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Let ξ = 1 + E

[
ǫ0|f̂ |3,Ων ,R2

α2

]
where E[.] represents the integer part.

Let B0 = {p01, . . . , p0ξ} a subset of ξ points of ω, we have:

∀i = 1, . . . , ξ, ∃(pd0i)d∈D,
(
∀d ∈ D, pd0i ∈ Ad

)
and

(
p0i = lim

d→0
pd0i

)

For all d ∈ D, let Bd
0 be the set {pd01, . . . , pd0ξ}.

As previously shown and knowing that Bd
0 ⊂ Ad, we have

ξ∑

i=1

〈Dudlǫ (pdl0i)−Df̂(pdl0i)〉24 ≤ ǫ0|f̂ |23,Ων ,R2 . (3.11)

Moreover, ∀i = 1, . . . , ξ,

〈Dudlǫ (pdl0i)−Df∗(p0i)〉4 = 〈Dudlǫ (pdl0i)−Dudlǫ (p0i) +Dudlǫ (p0i)−Df∗(p0i)〉4
≤ 〈Dudlǫ (pdl0i)−Dudlǫ (p0i)〉4 + 〈Dudlǫ (p0i)−Df∗(p0i)〉4.

As ∃λ ∈]0, 1],H3(Ων ,R
2) 	 C1,λ(Ων ,R

2), there exists a constant C3 such that:

(
‖udlǫl ‖C1,λ(Ων ,R2) ≤ C3‖udlǫl ‖H3(Ων ,R2)

)
.

Consequently,
〈Dudlǫl (p

dl
0i)−Dudlǫl (p0i)〉4 ≤ C3〈pdl0i − p0i〉λ2 .

But lim
l→∞

dl = 0 and p0i = lim
l→∞

pdl0i, we deduce that:

lim
l→∞

〈Dudlǫl (p
dl
0i)−Dudlǫl (p0i)〉4 = 0.

By Rellich-Kondrachov theorem, H3(Ων ,R
2)

c⊂ C1(Ων ,R
2), then

lim
l→∞

〈Dudlǫl (p0i)−Df∗(p0i)〉4 = 0. Therefore lim
l→∞

〈Dudlǫl (p
dl
0i)−Df∗(p0i)〉4 = 0.

So
lim
l→∞

Dudlǫl (p
dl
0i) = Df∗(p0i).

Letting l −→ ∞ in equation (3.11), yields to:

ξ∑

i=1

〈Df∗(p0i)−Df̂(p0i)〉24 ≤ ǫ0|f̂ |23,Ων ,R2

and then,
ξα2 ≤ ǫ0|f̂ |23,Ων ,R2

This inequality is in contradiction with the choice of ξ. Thus Df∗ = Df̂ .
To conclude, ∀i ∈ {1, . . . , l}, f∗(bi) = f̂(bi) = ηi hence f

∗ = f̂ .



62 CHAPTER 3. TOPOLOGY PRESERVATION

Third step

The aim is to prove that
(
udlǫl

)
l∈N strongly converges to f̂ in H3(Ων ,R

2).

Thanks to Rellich-Kondrachov’s compact embedding theorem, we obtain that
(
udlǫl

)
l∈N

strongly converges to f̂ in H2(Ων ,R
2). Since

‖udlǫl − f̂‖2H3(Ων ,R2) = ‖udlǫl − f̂‖2H2(Ων ,R2) + |udlǫl − f̂ |23,Ων ,R2 ,

we just need to prove that lim
l→∞

|udlǫl − f̂ |3,Ων ,R2 = 0. We have:

|udlǫl − f̂ |23,Ων ,R2 = |udlǫl |
2
3,Ων ,R2 + |f̂ |23,Ων ,R2 − 2(udlǫl , f̂)3,Ων ,R2 .

But |udlǫl |3,Ων ,R2 ≤ |f̂ |3,Ων ,R2 , so

|udlǫl − f̂ |23,Ων ,R2 ≤ 2|f̂ |23,Ων ,R2 − 2(udlǫl , f̂)3,Ων ,R2 .

Moreover, udlǫl
H3(Ων ,R2)−−−−−−⇀ f̂ , consequently

∀ϕ ∈ L2(Ων ,R
2), (∂αudlǫl , ϕ)L2(Ων ,R2) −→

l→+∞
(∂αf̂ , ϕ)L2(Ων ,R2), ∀α ∈ N, |α| = 3. Taking

ϕ = ∂αf̂ with |α| = 3, yields to:
(∂αudlǫl , ∂

αf̂)L2(Ων ,R2) −→
l→+∞

||∂αf̂ ||2L2(Ων ,R2) and (udlǫl , f̂)3,Ων ,R2 −→ |f̂ |3,Ων ,R2 when l

tends to +∞.
It follows from the previous inequality that lim

l→∞
‖udlǫl − f̂‖H3(Ων ,R2) = 0.

Fourth Step

Assume that ‖udǫ − f̂‖H3(Ων ,R2) does not tend to 0 when d tends to 0.
It means that there exist a real number α > 0 and two sequences (dk)k∈N and (ǫk)k∈N
such that dk −→

k→+∞
0 and ǫk = ǫ(dk), and ∀k ∈ N,

‖udkǫk − f̂‖H3(Ων ,R2) > α. (3.12)

Following the same steps as previously done, there exists a subsequence of
(
udkǫk

)
k∈N

that strongly converges to f̂ in H3(Ων ,R
2), which is in contradiction with (3.12).

3.2.5 Discretization

We now discretize the variational problem (3.5). To do so, we will use classical notations used
in the Finite Element theory (similar to those in [2] and [12]). Let H be an open bounded
subset of ]0,+∞[ admitting 0 as accumulation point. Let us recall that the elements of class
Ck

′
can be used for the computation of discreteDm-splines (in our casem = 3) withm ≤ k′+1

(where k′ is an integer). Consequently, (k′,m) = (2, 3) is a satisfactory combination. We also
recall that for all n ∈ N and for all subset E of R2, Ql(E) denotes the space of the restrictions
to E of the polynomial functions over R2 of degree ≤ l with respect to each variable. ∀h ∈ H,
let (Vh)

2 be the subspace of H3(Ων ,R
2) of finite dimension with (Vh)

2 	 C1(Ων ,R
2). The

reference finite element is the Bogner-Fox-Schmit C2 rectangle (cf. [12]). It is defined as the
following triplet (K,PK ,ΣK):
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• Let b00 =
(
b100, b

2
00

)
∈ R

2, h1, h2 > 0. K ⊂ Ων is the rectangle with vertices bγ =
b00 + γ1 h1 ~e1 + γ2 h2 ~e2 with γ = (γ1, γ2) ∈ N

2 such that 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1, and
(~e1, ~e2) the canonical basis of R2.

• PK = Q5(K).

• The set of linear mappings ΣK is defined by: ΣK = {v 7→ ∂αv(bγ) | |α|∞ ≤ 2}, where,
if α = (α1, α2), |α|∞ = max (α1, α2).

The number of degrees of freedom of the Bogner-Fox-Schmit rectangle of class C2 is thus equal
to 36.

The basis functions are defined by pγα(x1, x2) = hα1
1 hα2

2 qγ1α1

(
x1 − b100
h1

)
qγ2α2

(
x2 − b200
h2

)
with:

q00(t) = (1− t)3(6t2 + 3t+ 1), q01(t) = t(1− t)3(3t+ 1), q02(t) =
1

2
t2(1− t)3

q10(t) = t3(6t2 − 15t+ 10), q11(t) = t3(1− t)(3t− 4), q12(t) =
1

2
t3(t− 1)2.

We can prove that problem (3.5) is decoupled with respect to each component. Let (vq)q=1,2

be the components of v ∈ H3(Ων ,R
2), ((ωiq)

T )q=1,2 the qth row of ωi, ∀i ∈ {1, . . . , N}, and
λ = (λq)q=1,2 with λq ∈ R

l.
Problem (3.5) can therefore be stated as:





Search for (σǫ = (σqǫ )q=1,2, λ = (λq)q=1,2) ∈ H3(Ων ,R
2)× R

2l such that

σǫ ∈ K,

∀v = (vq)q=1,2 ∈ H3(Ων ,R
2),

∀q ∈ {1, 2} ,
N∑

i=1

〈∇σqǫ (ai),∇vq(ai)〉2 + ǫ (σqǫ , v
q)3,Ων ,R +

l∑

i=1

λqi v
q(bi) =

N∑

i=1

〈∇vq(ai), ωiq〉2.

(3.13)

We solve (3.13) in Vh for q = 1, 2. Let Mh be the dimension of Vh and {P hj }j=1,...,Mh
be basis

functions (for the sake of clarity, from now on, we use this notation for the basis functions).

We denote by (σh,qǫ )q=1,2 the approximate solution of (3.13) in (Vh)
2; σh,qǫ is decomposed into

the basis {P hj }j=1,...,Mh
as follows:





∀q = 1, 2,

∃(αqj)j=1,...,Mh
∈ R such that

σh,qǫ =

Mh∑

j=1

αqjP
h
j .

(3.14)
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For q = 1, 2, taking successively vq = P hk , k = 1, . . . ,Mh in (3.13), the studied problem
becomes:





Search for αq ∈ R
Mh such that

Mh∑

i=1

αqiP
h
i (bj) = ηqj , ∀j ∈ {1, · · · , l} ,

∀k = 1, . . . ,Mh,

N∑

i=1

Mh∑

j=1

αqj〈∇P hj (ai),∇P hk (ai)〉2 + ǫ

Mh∑

j=1

αqj(P
h
j , P

h
k )3,Ων ,R −

N∑

i=1

〈∇P hk (ai), ωiq〉2

+
l∑

i=1

λqiP
h
k (bi) = 0.

(3.15)

The numerical problem amounts to solving two decoupled sparse linear systems of dimension
(Mh + l)× (Mh + l) which can be written by means of matrices Ah, Bh and Rh,

Ah =

(
∂P hj
∂x1

(ai)

)

1≤i≤N,
1≤j≤Mh

, Bh =

(
∂P hj
∂x2

(ai)

)

1≤i≤N,
1≤j≤Mh

∈ (MN×Mh
(R))2 ,

Rh =

((
P hj , P

h
i

)
3,Ων ,R

)

1≤i≤Mh,1≤j≤Mh

∈ MMh×Mh
(R).

Both systems are written in the following way:




(
(Ah)TAh + (Bh)TBh + ǫR

)
αq + (P h)Tλq = ξq,

with P hαq = ηq, ∀q ∈ {1, 2} ,
(3.16)

where P h =
(
P hj (bi)

)
1≤i≤l,

1≤j≤Mh

∈ Ml×Mh
(R) and ξq =

(
N∑
i=1

〈∇P hk (ai), ωiq〉2
)

1≤k≤Mh

. We group

the unknown αq and λq in a single unknown vector, and we write the system as a matrix
equation of the form:

κh





Mh l






Mh (Ah)TAh + (Bh)TBh + ǫR (P h)T

l P h 0




αq

λq




=




ξq

ηq




Remark 3.2.5

A result of convergence analogous to the one in Theorem 3.2.5 can be obtained in the
discrete setting.

Remark 3.2.6

The matrix κh of the system is symmetric indefinite.
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Remark 3.2.7

In practice, the interpolation conditions are set on the boundary nodes of the finite element
mesh. In this case, we have the following result:

Proposition 3.2.8

Matrix κh is nonsingular.

Proof : For the sake of clarity, we denote by Ch the matrix Ch = (Ah)TAh+(Bh)TBh+
ǫR. The proof is based on Lemma 16.1 of [33] that states that if Z is a basis for the

null space of P h and if the reduced Hessian ZTChZ is positive definite and
(
P h

)T
has

full rank, then κh is nonsingular.
As the interpolation conditions are set on the boundary of the finite element mesh,

the columns of
(
P h

)T
are made of l independent vectors of the canonical basis of

R
Mh , so

(
P h

)T
has full rank. More precisely, if the column of index p of

(
P h

)T
de-

noted by
(
P h

)T
p
is related to node q(p) of the finite element mesh, one has:

(
P h

)T
j,p

=∣∣∣∣
1 if j = 9(q − 1) + 1,
0 otherwise

, j ∈ {1, · · · ,Mh}.
The columns (Z1, · · · , ZMh−l) of Z are thus made of the Mh− l (independent) vectors

of the canonical basis of RMh orthogonal to the columns of
(
P h

)T
.

The matrix Ch is semi-positive definite. Indeed, ∀α ∈ R
Mh , αT Ch α = a(vh, vh) ≥ 0

with vh =

Mh∑

j=1

αj P
h
j . From what was previously done, the quantity a(vh, vh) van-

ishes when vh is a constant c1, which corresponds to α = (αj)
Mh

j=1 such that αj =∣∣∣∣∣
c1 if j = 1 + 9s, s ∈

{
0, · · · , Mh

9 − 1
}
,

0 otherwise
. In particular, the vector ξ ∈ R

Mh defined

by ξj =

∣∣∣∣∣
1 if j = 1 + 9s, s ∈

{
0, · · · , Mh

9 − 1
}
,

0 otherwise
is not spanned by (Z1, · · · , ZMh−l).

Let us now takeX ∈ R
Mh−l\

{
0
R
Mh−l

}
. It is clear that ZX /∈ span (ξ) soXTZTChZX >

0, which achieves the proof.

A large variety of methods can be found in the literature to solve the considered linear sys-
tems: null-space methods ([17], [3]), direct solvers ([9]), the classical Uzawa algorithm ([4]),
the inexact Uzawa algorithm ([16]), splitting schemes ([15]), augmented Lagrangian approach
([18]). In our application, we use the diagonal pivoting method due to Bunch and Parlett
([9]) which computes a permutation P such that PAP T = LDLT - when solving a linear
system whose symmetric definite matrix is A-, where D is a direct sum of 1 by 1 and 2 by
2 pivot blocks and L is unit lower triangular (see also [19]). P is chosen so that the entries

in the unit lower triangular L satisfy |lij | ≤ 1. This factorization involves n3

3 flops and once
computed can be used to solve Ax = b with O(n2) work.
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Remark 3.2.9

Extension of the algorithm to the 3D case
The main brake to the straight extension of the model to 3D is the phase of identification
of subdomains (in practice small cubes) where the computations need to be done. (In
2D, visual inspection suffices to determine these regions). The semi-automation of this
process, based on segmentation techniques, is a project in progress. The idea is to work
with the 3D images of the discrete Jacobians and to partition the images into two smooth
regions: a region for which the discrete Jacobians are greater than a defined threshold and
a region for which they are lower (region that thus needs to be processed). This binary
partition of the data can be performed using a Chan-Vese like ([10]) segmentation criterion
in a level set framework. This step is done for each discrete Jacobian. The regions to be
processed are thus localized and are embedded in cubes. The derivation of the topology-
preserving conditions in the 3D case is quite analogous to the 2D case. We impose that
the 8 corner Jacobians are positive (see [25] for justifications). The Jacobian Jα(x, y, z) is
now a polynomial of degree 3 in α but the method, as in the 2D case, amounts to studying
the roots of polynomials, here of degree 3. The theoretical results in the reconstruction
stage hold in three dimensions. The numerical problem consists in solving three decoupled
sparse linear systems of dimension (Mh + l) × (Mh + l) but this time there are 33 basis
functions per node so Mh = dimVh = 33 × number of mesh nodes. The basis functions
are still obtained by tensor product from the 1D case and the system matrix structure is
the same, except that the block (1,1) is of the form (Ah)TAh+(Bh)TBh+(Ch)TCh+ ǫR,

with Ch =

(
∂P hj
∂x3

(ai)

)

1≤i≤N,
1≤j≤Mh

. The optimization computational tools are the same as the

ones in Section 3.3. Some very preliminary experiments have been made on cubes of size
36× 36× 36 and the computational time decreases to 23 seconds.

3.3 Numerical experiments

In the sequel, we provide numerical simulations. Classically, in the Dm-spline setting, param-
eter ǫ balancing the semi-norm is set to 10−6. (There also exist methods for an automatic
choice of ǫ mainly based on statistical considerations as the generalized cross-validation and
the generalized maximum likelihood methods (see [13] and [20])). From our experience, we
have realized that it suffices to fix the value ǫ in a neighborhood of 10−6 to produce satisfactory
results. Besides, the method proves to be not too sensitive to the choice of this parameter.
That is why we did not resort to the generalized cross-validation method to set parameter ǫ.
Owing to the fact that the proposed algorithm calls basic linear algebra functions such that
transposing matrices, summing matrices, multiplying matrices or solving linear systems, it
appeared relevant to use LAPACK and Basic Linear Algebra Subprogram routines (official
websites: http://www.netlib.org/blas/ and http://www.netlib.org/lapack/). BLAS
is a corpus of routines that provides standard building blocks for performing basic vector
and matrix operations. LAPACK (designed at the outset to exploit BLAS routines) pro-
vides routines for solving systems of linear equations among others. For each subdomain Ων ,
ν ∈ {1, · · · ,N}, we obtain two disconnected linear systems to be solved with the same matrix.
Our resorting to BLAS/LAPACK thus seems apposite. We particularly focused on the dsysv
function provided by the software package LAPACK which computes the solution of a real



3.3. NUMERICAL EXPERIMENTS 67

system of linear equations AX = B (where A is an N -by-N symmetric matrix and X and B
are N -by-NRHS matrices) using the diagonal pivoting method. Also, we capitalized on the
dgemm routine to perform matrix-matrix operations. The computations on each subdomain
Ων being independent, the use of OpenMP appeared relevant. The OpenMP Application
Program Interface supports multi-platform shared-memory programing in C/C++ and For-
tran on all architectures (see the official website http://openmp.org/wp/). In the sequel, the
OMP NUM THREADS environment variable sets the number of threads that the program
uses. The MKL NUM THREAD environment variable enables to MKL threading inside the
threading of the application. For our configuration, the maximal number of threads is equal
to 12.

Experiment

Number
of regions
exhibiting
overlaps

OMP

NUM

THREADS

MKL

NUM

THREADS

Computation
time

Depleting
factor

Slice of the brain 1.
Size 120× 190

2 regions:
Size 30× 30 &
Size 80× 40

2 6 0.63 s 80

Slice of the brain 2.
Size 61× 81

2 regions:
Size 53× 61 &
Size 21× 61

2 6 0.66 s 4

Disks.
Size 100× 100

2 regions:
Size 50× 50 &
Size 50× 50

2 6 0.52 s 6.9

Table 3.1: Summary of the various parameters involved in the experiments.

3.3.1 First example : a slice of the brain

In the first application, the goal is to map a disk to a slice of the brain (courtesy of the Lab-
oratory of Neuro-Imaging, School of Medicine, University of California) defined on the same
image domain (size 120 × 190), while preserving topology (see Fig. 3.5 (a)). In this example,
we only aim to align the shapes, i.e. the contour of the slice of brain with the boundary of
the disk (whatever the genus of the shapes is).
When applying the combined segmentation/registration model developed in [27] without re-
gridding steps, we obtain a deformation field exhibiting two regions with overlaps as depicted
in Fig. 3.5 (b)–(d). If we merely apply the method developed in [26] (which consists in apply-
ing the correction/reconstruction algorithm on the whole image domain with global condition
on the deformation component means), the execution time reaches 50.9 seconds. By applying
our proposed method, the computational time drops to 0.63 second, which means a depletion
by a factor 80. We display the obtained topology-preserving deformation fields together with
the values of the discrete Jacobians in Fig. 3.6.
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(a) Reference image and
boundary (in red) of
the disk constituting
the Template image.

(b) Obtained global deformation field
when topology preservation

is not enforced.

(c) Zoom on the first region
exhibiting overlaps.

(d) Zoom on the second region
exhibiting overlaps.

Figure 3.5: Example of the slice of the brain: obtained uncorrected deformation field.
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(a) Global obtained deformation field.

min:0.045

max:3.002

(b) Jacobian determinant of the ob-
tained deformation field.

(c) Zoom on the corrected first region:
min (Jff ) = 0.20, min (Jfb) = 0.21,
min (Jbf ) = 0.17 and min (Jbb) = 0.19.

(d) Zoom on the cor-
rected second region:
min (Jff ) = 0.13,
min (Jfb) = 0.19,
min (Jbf ) = 0.21 and
min (Jbb) = 0.23.

Figure 3.6: Example of the slice of the brain: obtained orientation-preserving deformation
field.
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3.3.2 Second example : brain mapping

A second example still dedicated to brain mapping (courtesy of the Laboratory of Neuro-
Imaging, School of Medicine, University of California) is given in Fig. 3.7, demonstrating
the ability of the method to handle high-magnitude deformations. The goal is to register
a disk to the outer boundary of the brain, both defined on the same image domain of size
61×81, while maintaining topology. When applying the combined segmentation/registration
model developed in [27] without regridding steps, we obtain a deformation field exhibiting
two regions with overlaps as depicted in Fig. 3.7.

(a) Boundary of the disk
constituting the Template
image superimposed on the
Reference image.

(b) Obtained global deformation field
when topology preservation is not en-
forced.

(c) Zoom on the first region exhibiting over-
laps.

(d) Zoom on the second region exhibiting over-
laps.

Figure 3.7: Example of the slice of the brain with large deformations: obtained uncorrected
deformation field.

Applying the algorithm developed in [26] on the whole image domain yields a computational
time of 2.62 seconds. By comparison, when the proposed algorithm is applied simultaneously
on the two regions depicted in Fig. 3.7(c) and Fig. 3.7(d) (respectively of size 53 × 61 and
21×61), the computational time drops to 0.66 second, which means a depletion by a factor 4.
We display the obtained topology-preserving deformation field together with the values of the
discrete Jacobians in Fig. 3.8. With Christensen et al.’s regridding technique ([11]) (in the
spirit of our methodology, we compared what was comparable, namely the topology-preserving
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method: we applied Christensen et al.’s regridding technique within the registration model
[26]), 3 regridding steps were necessary: the transformation was considered as admissible if
the Jacobian exceeded 0.075. Unfortunately, at the end of the process, the minimum of the
Jacobian of the transformation is equal to -0.5288 and overlaps are still visible on the grid
(see Fig. 3.8) (d).

(a) Global obtained deformation
field.

(b) Zoom on the corrected first re-
gion: min (Jff ) = 0.21, min (Jfb) =
0.20, min (Jbf ) = 0.21 and
min (Jbb) = 0.20.

(c) Zoom on the corrected sec-
ond region: min (Jff ) = 0.24,
min (Jfb) = 0.19, min (Jbf ) = 0.31
and min (Jbb) = 0.30.

(d) Obtained result with Chris-
tensen et al ’s regridding technique
([11])

Figure 3.8: Example of the slice of the brain with large deformations: obtained orientation-
preserving deformation field.

3.3.3 Third example: the disks

Another application involving large deformations is provided in Fig. 3.9 and is similar to
an application given in [27] in the case of topology-preserving segmentation. The synthetic
Reference image represents two disks. The Template image, which is defined on the same
image domain (100 × 100), is made of a black ellipse such that when superimposed on the
Reference image its boundary encloses the two disks (see Fig. 3.9 (a)). The application of the
combined segmentation-registration process alone yields to two regions exhibiting overlaps
(Fig. 3.9(b)): the upper part of the image including the upper disk (size 50 × 50) and the
lower part of the image containing the lower disk (size 50 × 50). We thus propose to apply
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our proposed algorithm on each region independently. The computational time drops to 0.52
second, which means a depletion by a factor 6.9 in comparison to the computational time
inherent to the application of the method [26] on the whole domain. We display the obtained
topology-preserving deformation fields together with the values of the discrete Jacobians in
Fig. 3.9 (c) and Fig. 3.9 (d).

(a) Reference image and boundary of
the ellipse constituting the Template
image superimposed.

(b) Obtained global deformation field
when topology preservation is not en-
forced.

(c) Corrected first region: min (Jff ) =
0.06, min (Jfb) = 0.08, min (Jbf ) =
0.09 and min (Jbb) = 0.11.

(d) Corrected second region:
min (Jff ) = 0.33, min (Jfb) = 0.31,
min (Jbf ) = 0.35 and min (Jbb) = 0.29.

Figure 3.9: Example of the disks.
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CHAPTER 4

JOINT SEGMENTATION/REGISTRATION MODEL BY SHAPE
ALIGNMENT VIA WEIGHTED TOTAL VARIATION

MINIMIZATION AND NONLINEAR ELASTICITY

This work falls within the scope of joint segmentation-registration using nonlinear elasticity
principles. We introduce a variational model combining a measure of dissimilarity based on
weighted total variation and a regularizer based on the stored energy function of a Saint
Venant-Kirchhoff material. Adding a weighted total variation based criterion enables us to
align the edges of the objects even if the modalities are different.
We derive a relaxed problem associated to the initial one for which we are able to provide
a result of existence of minimizers. A description and analysis of a numerical method of
resolution based on a decoupling principle is then provided including a theoretical result of
Γ-convergence. Applications on academic and biological images are provided.

Introduction

In [40], Sotiras et al. provide an overview of the different existing registration methods.
According to the authors, an image registration algorithm consists of three main components:

1. a deformation model,

• geometric transformations derived from physical models,

• geometric transformations derived from interpolation theory,

• and knowledge-based geometric transformations,

2. an objective function,

• geometric methods: the criterion takes into account landmark information ([14]),

• iconic methods: it concerns intensity-based methods ([19]), attribute-based meth-
ods ([39]), information-theoretic approaches ([44]),

• and hybrid methods.

3. and an optimization method,

77
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• continuous methods: gradient descent ([3]), conjugate gradient ([31]), Quasi-Newton
([43]), stochastic gradient descent methods ([44])...

• discrete methods: graph-based ([41]), belief propagation, linear programming meth-
ods,

• greedy approaches and evolutionary algorithms.

Our method falls within the scope of geometric transformations derived from physical
models in particular from nonlinear elasticity based regularization and the iconic methods
since we introduce an intensity-based criterion as well as a shape-based criterion. The chosen
optimization method is incorporated within the framework of the continuous model since we
use a gradient descent method.
The scope of the proposed work is first to devise a theoretically well-motivated registration
model in a variational formulation, authorizing large and smooth deformations. In addition,
to handle a large class of images, we propose defining a geometric dissimilarity measure based
on shape comparisons. This work follows on from that of Derfoul and Le Guyader in [19]
in which basic similarity measures are incorporated and a Saint Venant-Kirchhoff like stored
energy function is considered. It enriches [19] by treating simultaneously the question of
segmentation and registration, by involving new mathematical tools and by broadening the
class of considered images. The mathematical treatment proposed in this work introduces the
weighted total variation, entailing substantial modifications in the mathematical proofs and
in the design of the algorithm. In [19], theoretical results such as the explicit expression of
the quasiconvex envelop of this modified Saint Venant-Kirchhoff stored energy function are
established as well as a Γ-convergence result.

Thus in addition to devising a theoretically well-motivated registration model, we also
design an original dissimilarity measure based on segmentation principles (more precisely,
on the weighted total variation stemming from Bresson et al.’s unified active contour model
([6])), unlike classical measures such as intensity-based measures or mutual-information-based
techniques. Registration is thus jointly performed with segmentation, which means that the
algorithm produces both a smooth mapping between the two shapes, and the segmentation
of the object contained in the Reference image. Prior related works (different from the
proposed approach) suggest to jointly treat segmentation and registration: [45] in which a
curve evolution approach is retained, formulated in a level set framework, [42] in which the
authors propose a coupled PDE model to perform both segmentation and registration by
evolving the level sets of the source image, [27] in which the model combines a matching
criterion founded on the active contours without edges ([11]) and a nonlinear elasticity-based
regularizer, [29], model based on metric structure comparisons, or more recently [23].
To summarize, the novelty of the proposed work rests upon:

(i) an original modelling based on the stored energy function of a Saint Venant-Kirchhoff
material (isotropic, homogeneous, hyperelastic material) and on the weighted total vari-
ation. Note that rubber, filled elastomers, biological tissues are often modeled within
the hyperelastic material, which motivates our modelling,

(ii) the introduction of a relaxed problem for which we can provide theoretical results,

(iii) the introduction of an original numerical method of resolution based on the dual for-
mulation of the weighted total variation and on a decoupling principle with a result of
Γ-convergence.
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4.1 Mathematical Modelling

4.1.1 General mathematical background

Let us denote by

• Ω a connected bounded open subset of R2 with boundary ∂Ω of class C1,

• R : Ω̄ −→ R, the Reference image,

• T : Ω̄ −→ R, the Template image assumed to be compactly supported and Lipschitz
continuous (we denote by kT the Lipschitz constant),

• ϕ : Ω̄ −→ R
2 the sought deformation with prescribed values on the boundary: ϕ = Id

on ∂Ω.

There are forward and backward transformations: the former is done in the Lagrangian frame-
work where a forward transformation ψ is sought and grid points x with intensity values T (x)
are moved and arrive at non-grid points y = ψ(x) with intensity values T (x) = T (ψ−1(y)). In
the Eulerian framework (considered here), we find a backward transformation ϕ = ψ−1 such
that grid points y in the deformed image originate from non-grid points x = ϕ(y) = ψ−1(y)
and are assigned intensity values T (ϕ(y)) = T (ψ−1(y)) = T (x). We thus compare a point
(y,R(y)) with

(
y, T (ψ−1(y)) = T (ϕ(y))

)
. We refer the reader to [24] in which both frame-

works are clearly stated.

For theoretical and numerical purposes, we assume that T is compactly supported on Ω
to ensure that T ◦ ϕ is always defined and we assume that T is Lipschitz continuous. It can
thus be considered as an element of W1,∞(R2,R). Also, R is supposed to be smooth enough.
The expression smooth enough is a convenient way of saying that in a given definition, the
smoothness of the involved variables or data is such that all arguments make sense.
We recall that, in the general case, if U is an open subset of RN , for 1 ≤ p ≤ +∞, the Sobolev
space denoted by W1,p(U) consists of the functions in Lp(U) whose partial derivatives up to
order 1, in the sense of distributions, can be identified with functions in Lp(U). In the
considered case, N = 2, U = R

2 and p = ∞ so that one has the following Sobolev embedding
theorem (see [18, Theorem 2.31]):

0 < λ ≤ 1 ⇒ W1,∞(R2) := W1,∞(R2,R) 	 C0,λ
b (R2),

with C0,λ
b (R2) the functional space that consists of functions in

C0
b (R

2) =
{
u ∈ C0(R2) | ∃K, ‖u‖∞ ≤ K

}

such that

∃Cλ, ∀x, y ∈ R
2, |u(x)− u(y)| ≤ Cλ |x− y|λ.

Let ϕ : Ω̄ → R
2 be the sought transformation. (Of course, in practice, the sought trans-

formation ϕ should be with values in Ω̄ but from a mathematical point of view, if we work
with such spaces of functions we loose the structure of vector space). A deformation is a
smooth enough mapping that is orientation-preserving and injective, except possibly on ∂Ω.
As stressed by Ciarlet ([16, p. 26]), the reason a deformation may loose its injectivity on
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the boundary of Ω is that self-contact must be allowed. We also denote by u the associated
displacement such that ϕ = Id+ u. The deformation gradient is ∇ϕ = I +∇u : Ω̄ →M2(R),
the set M2(R) being the set of all real square matrices of order 2 identified to R

4. Thus the
idea is to find a smooth deformation field ϕ such that the deformed Template matches the
Reference.

4.1.2 Depiction of the original model

The model is phrased as a functional minimization problem whose unknown is ϕ. It combines
a regularizer on the deformation field and a distance measure criterion. To allow large defor-
mations, we introduce a nonlinear-elasticity-based smoother (see [16], [15] for further details),
the theory of linear elasticity being unsuitable in this case since assuming small strains and
the validity of Hooke’s law. We propose viewing the shapes to be warped as isotropic, homo-
geneous, hyperelastic materials and more precisely as Saint Venant-Kirchhoff materials. Note
that rubber, filled elastomers, biological tissues are often modeled within the hyperelastic
framework, which motivates our modelling.
For the sake of completeness, we would like to refer the reader to previous works related to
registration based on nonlinear elasticity principles. In [21], Droske and Rumpf address the
issue of non-rigid registration of multi-modal image data. The matching criterion includes
first order derivatives of the deformation and is complemented by a nonlinear elastic regular-
ization based on a polyconvex stored energy function, which is different from our proposed
approach. We also mention the combined segmentation/registration model introduced by Le
Guyader and Vese ([27]) in which the shapes to be matched are viewed as Ciarlet-Geymonat
materials, the works [3] and [30] for a variational registration method for large deformations
(Large Deformation Diffeomorphic Metric Mapping - LDDMM), and refer to [36] for a much
related work that also uses nonlinear elasticity regularization but implemented by the finite
element method.
In [7], the authors design an hyperelastic regularizer. More precisely, they build an hyper-
elastic stored energy function penalizing variations of lengths and areas, and add a penalty
term on the Jacobian determinant such that the energy tends to infinity as det∇ϕ tends to
0 and such that shrinkage and growth have the same price. The numerical implementation is
based on a discretize-then-optimize strategy and the authors use a generalized Gauss-Newton
scheme to compute a numerical minimizer. In our case, we add a penalty term to the Saint
Venant-Kirchhoff stored energy function but we have chosen to force the Jacobian to remain
close to 1.

Before depicting the mathematical material, we review some fundamental concepts and
notations (see [16] for further details). We recall that the right Cauchy-Green strain tensor
is defined by

C = ∇ϕT∇ϕ = F TF ∈ S2

with S2 =
{
A ∈M2(R), A = AT

}
, set of all real symmetric matrices of order 2. Physically,

the right Cauchy-Green tensor can be interpreted as a quantifier of the square of local change
in distances due to deformation. The Green- Saint Venant strain tensor is defined by

E =
1

2

(
∇u+∇uT +∇uT∇u

)
.

Associated with a given deformation ϕ, it is a measure of the deviation between ϕ and a rigid
deformation. We also need the following notations: A : B = trATB the matrix inner product
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and ‖A‖ =
√
A : A, the related matrix norm (Frobenius norm). The stored energy function

of an isotropic, homogeneous, hyperelastic material, if the reference configuration is a natural
state, is of the form:

W (F ) = Ŵ (E) =
λ

2
(trE)2 + µ trE2 + o

(
‖E‖2

)
, F TF = I + 2E, (4.1)

with I the identity matrix. The stored energy function of a Saint Venant-Kirchhoff material
is the simplest one that agrees with expansion (4.1). It is defined by

WSV K(F ) = Ŵ (E) =
λ

2
(trE)2 + µ trE2.

To ensure that the distribution of the deformation Jacobian determinants does not exhibit
contractions or expansions that are too large, we complement the stored energy function
WSV K(F ) by the term µ (detF − 1)2 controlling that the Jacobian determinant remains
close to 1. The weighting of the determinant component by parameter µ is justified in the
proof of Proposition 4.1.3. Therefore, the regularization can be written as:

W (F ) =WSV K(F ) + µ (detF − 1)2.

The regularizer on the deformation ϕ is complemented by a dissimilarity measure based on
the unified active contour model developed by Bresson et al. ([6] - designed to overcome
the limitation of local minima and to deal with global minimum-) and more precisely, on
the unification of the Rudin-Osher-Fatemi model for image restoration ([38]) and the active
contour model ([8]).
To this purpose, let g : R+ → R

+ be an edge detector function satisfying

• g(0) = 1,

• g strictly decreasing,

• and lim
r→+∞

g(r) = 0.

We apply the edge detector function to the norm of the Reference image gradient: g(|∇R|)
with |∇R| : Ω̄ → R

+. From now on, for the sake of conciseness, we set g := g(|∇R|) so
that g : Ω̄ → R

+, and for theoretical purposes, we assume that ∃c > 0 such that 0 < c < g
and that g is Lipschitz continuous. We then use the generalization of the notion of function
of bounded variation to the setting of BV -spaces associated with a Muckenhoupt’s weight
function depicted in [2]. We follow Baldi’s arguments and notations to define the weighted
BV -space related to weight g. As noticed by Baldi, the following definition coincides with
the BV functions defined in [4].
For a general weight w, some hypotheses are required. More precisely, Ω0 being a neighbor-
hood of Ω̄, the positive weight w ∈ L1

loc(Ω0) is assumed to belong to the global Muckenhoupt’s
A1 = A1(Ω) class of weight functions, i.e., w satisfies the condition:

C w(x) ≥ 1

|B(x, r)|

∫

B(x,r)
w(y) dy a.e. (4.2)

in any ball B(x, r) ⊂ Ω0. Now, denoting by A∗
1 the class of weight w ∈ A1, w lower semi-

continuous (lsc) and that satisfy condition (4.2) pointwise, the definition of the weighted
BV -space related to weight w is given by:
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Definition 4.1.1 ([2, Definition 2])

Let w be a weight function in the class A∗
1. We denote by BV (Ω, w) the set of functions

u ∈ L1(Ω, w) (set of functions that are integrable with respect to the measure w(x) dx)
such that:

sup

{∫

Ω
u div(ϕ) dx : |ϕ| ≤ w everywhere, ϕ ∈ Lip0(Ω,R

2)

}
<∞, (4.3)

with Lip0(Ω,R
2) the space of Lipschitz continuous functions with compact support. We

denote by varw u the quantity (4.3).

Due to the properties of function g (it is obviously L1, continuous and it suffices to set

C =
1

c
to satisfy (4.2) pointwise) that enable us to define the weighted BV -space, BV (Ω, g),

and equipped with the above notations, we propose introducing as dissimilarity measure the
following functional:

Wfid(ϕ) = varg T ◦ ϕ+
ν

2

∫

Ω
(T ◦ ϕ−R)2 dx. (4.4)

(We justify in the sequel that the function T ◦ ϕ belongs to BV (Ω, g)).
Adding the term varg T ◦ ϕ enables us to consider a larger class of images and to compare
shapes (alignment of level curves) rather than intensities. We recall that if v is a characteristic
function, 1ΩC

, of a closed set ΩC ⊂ Ω with C the boundary of ΩC ,

varg (v = 1ΩC
) =

∫

C
g ds.

The term

∫

C
g ds is a new definition of the curve length with a metric that depends on the

Reference image content. We thus aim to locate the curve C where g is close to zero, that
is, on the boundary of the shape contained in the Reference image. In the end, the global
minimization problem (P ) is stated by:

inf

{
I(ϕ) = varg T ◦ ϕ+

∫

Ω
f(x, ϕ(x),∇ϕ(x)) dx

= varg T ◦ ϕ+

∫

Ω

[ν
2
(T (ϕ)−R)2 +W (∇ϕ(x))

]
dx

}
,

(P)

with ϕ ∈ Id + W1,4
0 (Ω,R2) and f(x, ϕ, ξ) =

ν

2
(T (ϕ)−R)2 + WSV K(ξ) + µ (det ξ − 1)2 =

ν

2
(T (ϕ)−R)2 + W (ξ). Also, ϕ ∈ Id + W1,4

0 (Ω,R2) means that ϕ = Id on ∂Ω and ϕ ∈
W 1,4(Ω,R2). W1,4(Ω,R2) denotes the Sobolev space of functions ϕ ∈ L4(Ω,R2) with distri-
butional derivatives up to order 1 which also belong to L4(Ω). Note that from generalized
Hölder’s inequality, if ϕ ∈ W1,4(Ω,R2), then det∇ϕ ∈ L2(Ω). It is clear later that W1,4(Ω,R2)
is a suitable functional space for the considered problem. Now we justify that varg T ◦ ϕ is
well-defined. In [1], Ambrosio and Dal Maso prove a general chain rule for the distribution
derivatives of the composite function v(x) = f(u(x)), where u : Rn → R

m has bounded varia-
tion and f : Rm → R

k is Lipschitz continuous. A simpler result is given when u ∈ W1,p(Ω,Rm)
for some p, 1 ≤ p ≤ +∞ as follows:
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Corollary 4.1.1 ([1, Corollary 3.2])

Let p ∈ [1,+∞], u ∈ W1,p(Ω,Rm) (open set Ω ⊂ R
n) and let f : Rm → R

k be a Lipschitz
continuous function such that f(0) = 0. Then v = f(u) belongs to W1,p(Ω,Rk), for almost
every x ∈ Ω the restriction of f to the affine space

T ux = {y ∈ R
m : y = u(x) + 〈∇u(x), z〉 for some z ∈ R

n}
is differentiable at u(x) and,

∇v = ∇(f|Tu
x
)(u)∇u a.e. in Ω.

Assuming T (0) = 0, it follows that T ◦ϕ ∈ W1,4(Ω) := W1,4(Ω,R) ⊂ BV (Ω). As g ≤ w∗ with
w∗ = 1, BV (Ω) ⊂ BV (Ω, g) and T ◦ ϕ ∈ BV (Ω, g).

4.1.3 Mathematical obstacle and derivation of a relaxed problem

We start by expressing the main technical difficulty related to this problem that led us to
introduce a relaxed problem related to (P ). It is this relaxed problem that is then studied
throughout the chapter.

Proposition 4.1.2

Function f is not quasiconvex (see [17, Chapter 9] for a complete review of this notion).

Proof : The proof is based on the argument that the stored energy function W is not
rank-1 convex and consequently neither quasiconvex, nor polyconvex. To prove this
statement, a technique similar to the one applied by Raoult in [37] to demonstrate that
the stored energy function of a Saint Venant-Kirchhoff material is not rank-1 convex
is employed. The Saint Venant-Kirchhoff stored energy function reads equivalently

WSV K(ξ) =
λ

8

(
‖ξ‖2 − 2

)2
+
µ

4
‖ξT ξ − I‖2.

The characteristic polynomial of ξT ξ is defined by

χξT ξ(X) = X2 − tr
(
ξT ξ

)
X + det ξT ξ

and using Cayley-Hamilton theorem, it can be proved that

(det ξ)2 =
1

2
‖ξ‖4 − 1

2
‖ξT ξ‖2.

After some intermediate computations, one then has:

W (ξ) =
λ+ 2µ

8
‖ξ‖4 − λ+ µ

2
‖ξ‖2 +Φ(det ξ) +

λ+ µ

2

with Φ the convex mapping defined by Φ : s 7→ µ

2
s2 − 2µ s + µ. For the sake of

simplicity, we set: W (ξ) = a1 ‖ξ‖4 + a2 ‖ξ‖2 + Φ(det ξ) +
λ+ µ

2
with a1 > 0 and

a2 < 0.
We argue by contradiction and assume that W is rank-one convex. Let us set ξ = ε I
and ξ′ = ε diag (1, 3) with ε > 0. Obviously, rank (ξ − ξ′) = 1 and according to the
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hypothesis of rank-1 convexity, one should have:

W

(
ξ + ξ′

2

)
≤ 1

2
W (ξ) +

1

2
W (ξ′). (4.5)

Standard computations give that

W (ξ) = 4a1 ε
4 + 2a2 ε

2 +Φ(ε2) +
λ+ µ

2
,

W (ξ′) = 100a1 ε
4 + 10a2 ε

2 +Φ(3ε2) +
λ+ µ

2
,

W

(
ξ + ξ′

2

)
= 25a1 ε

4 + 5a2 ε
2 +Φ(2ε2) +

λ+ µ

2
.

Inequality (4.5) thus amounts to:
(
27a1 +

µ

2

)
ε2 + a2 ≥ 0,

which raises a contradiction for ε small enough.
Then by definition (see [17, Chapitre 9, p. 432]), for almost every x ∈ Ω and for
every (ϕ, ξ) ∈ R

2×R
4, the quasiconvex envelope of f with respect to the last variable,

denoted by Qf , is defined by:

Qf(x, ϕ, ξ) = inf

{
1

meas(D)

∫

D
f(x, ϕ, ξ +∇Φ(y)) dy : Φ ∈ W1,∞

0 (D,R2)

}
,

D ⊂ R
2 being a bounded open set. Consequently, in our case,

Qf(x, ϕ, ξ) =
ν

2
(T (ϕ)−R)2 +QW (ξ).

It ensues that Qf 6= f and f is not quasiconvex.

Proposition 4.1.2 raises a drawback of a theoretical nature since we cannot obtain the weak
lower semicontinuity of the introduced functional. The idea is thus to replace the original
problem (P ) by a relaxed one denoted by (QP ) formulated in terms of the quasiconvex
envelope Qf of f . We draw the reader’s attention on the fact that the introduced problem
(QP ) is not the relaxed problem associated to (P ) in the sense of Dacorogna ([17, chapter 9],
definition that applies to problems phrased in the form of integral).
As stressed in [25], the derivation of the relaxed problem associated to a given problem in the
sense of Dacorogna entails the computation of the quasiconvex envelope of a function defined
on a space of matrices, which is generally an hopeless task. We dwell on this point at the
end of subsection 4.1.4 and the proposed relaxation technique is justified. In any case, one
has inf (QP ) ≤ inf (P ). The infimum of (QP ) is reached and with additional hypotheses the
equality inf (QP ) = inf (P ) can hold.

4.1.4 Theoretical results

In what follows, we start by establishing the explicit expression of the quasiconvex envelope
of f and derive the considered relaxed problem.
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Proposition 4.1.3

The quasiconvex envelope Qf of f is defined by Qf(x, ϕ, ξ) =
ν

2
(T (ϕ)−R)2 + QW (ξ)

with QW (ξ) =





W (ξ) if ‖ξ‖2 ≥ 2
λ+ µ

λ+ 2µ
,

Ψ(det ξ) if ‖ξ‖2 < 2
λ+ µ

λ+ 2µ
,

and Ψ, the convex mapping such that

Ψ : t 7→ −µ
2
t2 + µ (t− 1)2 +

µ(λ+ µ)

2(λ+ 2µ)
.

The relaxed problem (QP ) is chosen to be:

inf

{
Ī(ϕ) = varg T ◦ ϕ+

∫

Ω
Qf(x, ϕ(x),∇ϕ(x)) dx

}
, (QP)

with ϕ ∈ Id+W1,4
0 (Ω,R2).

Proof : As previously shown, Qf(x, ϕ, ξ) =
ν

2
(T (ϕ)−R)2 +QW (ξ).

After some intermediate computations, one has

W (ξ) = β
(
‖ξ‖2 − α

)2
+ ψ(det ξ)

with α = 2
λ+ µ

λ+ 2µ
and β =

λ+ 2µ

8
.

Let us denote by W1 : ξ 7→ β
(
‖ξ‖2 − α

)2
and by g : ξ 7→ ψ(det ξ). It is well-known

that QW1(ξ) =W1(ξ) if ‖ξ‖2 ≥ α and QW1(ξ) = 0 if ‖ξ‖2 < α. Also, it is not difficult
to see that QW1 + g ≤ QW . Indeed, QW1 = Q (W − g) and for any D ⊂ R

2 bounded
open set,

1

meas(D)

∫

D
g(ξ +∇Φ(y)) dy =

1

meas(D)

∫

D
Ψ(det (ξ +∇Φ(y))) dy,

≥ Ψ

(
1

meas(D)

∫

D
det (ξ +∇Φ(y)) dy

)
,

from Jensen’s inequality. In addition, from [17, lemma 5.5, p. 160],
1

meas(D)

∫

D
det (ξ +∇Φ(y)) dy = det ξ, so:

1

meas(D)

∫

D
g(ξ +∇Φ(y)) dy ≥ ψ(det ξ).

Consequently, according to the definition of the quasiconvex envelope of a function, it
follows that QW1 + g ≤ QW .
The most difficult part of the proof lies in the derivation of the inequality QW ≤
QW1+ g when ‖ξ‖2 < α, the case ‖ξ‖2 ≥ α being obvious. As the following inequality
holds, QW ≤ RW ≤ W with RW the rank one convex envelope of W , it suffices to
prove that RW ≤ QW1 + g. Let us consider ξ ∈ R

4 such that 0 < ‖ξ‖2 < α. In [5,
lemma 3.2], Bousselsal proves that one can always decompose ξ into ξ = λ ξ1+(1−λ) ξ2
with λ ∈]0, 1[ and such that rank(ξ1−ξ2) ≤ 1, ‖ξ1‖2 = ‖ξ2‖2 = α and det ξ1 = det ξ2 =
det ξ. With this decomposition it is now easy to conclude. By definition of the rank-one
convexity,

RW (ξ) ≤ λW (ξ1) + (1− λ)W (ξ2) = ψ(det(ξ)) = QW1(ξ) + g(ξ).

We provide a detailed review of the quasiconvex envelop of W in Chapter 6.
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Remark 4.1.4

This judicious rewriting of W (ξ) into W (ξ) = β
(
‖ξ‖2 − α

)2
+ψ(det ξ) allows to see that

W 1,4(Ω,R2) is a suitable functional space for ϕ. Indeed, it can easily be proved that




β
(
‖ξ‖2 − α

)2 ≤ β ‖ξ‖4 + β α2,

ψ(det ξ) ≤ µ (det ξ)2 + 3µ+
µ (λ+ µ)

2(λ+ 2µ)
,

so that if ϕ ∈ W1,4(Ω,R2),

∫

Ω
f(x, ϕ(x),∇ϕ(x)) dx < ∞. Recall that from generalized

Hölder’s inequality, if ϕ ∈ W1,4(Ω,R2), then det∇ϕ ∈ L2(Ω).

Remark 4.1.5

In fact, we can prove a stronger result, namely, that the polyconvex envelope of W , PW ,
coincides with the quasiconvex envelope of W : PW = QW .

Remark 4.1.6

We understand better through this proof, the choice of the weighting parameter balancing
the component (det ξ − 1)2; it has been chosen in order that the mapping ψ is convex.

Remark 4.1.7

We emphasize that the extension of the model to the 3D case is not straightforward.
Indeed, in three dimensions, the expression of WSV K(ξ) involves the cofactor matrix
denoted by Cof ξ as follows:

WSV K(ξ) =
λ

8

(
‖ξ‖2 −

(
3 +

2µ

λ

))2

+
µ

4

(
‖ξ‖4 − 2 ‖Cof ξ‖2

)
− µ

4λ
(2µ+ 3λ) ,

and it is not clear that one can derive the explicit expression of the quasiconvex envelope
QW of W .

We now prove that the infimum of (QP ) is attained. Note that one always has inf(QP ) ≤
inf(P ).

Theorem 4.1.2

Assume that there exists ϕ̂ ∈ Id+W1,4
0 (Ω,R2) such that Ī(ϕ̂) < +∞. Then the infimum

of (QP ) is attained.

Before giving the sketch of the proof, we introduce a useful lemma.
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Lemma 4.1.3 (Generalized Poincaré’s inequality, taken from [18, p. 106 –107] )

Let Ω be a Lipschitz bounded domain in R
N . Let p ∈ [1,+∞[ and let N be a continuous

semi-norm on W1,p(Ω); that is, a norm on the constant functions. Then there exists a
constant C > 0 depending only on Ω, N and p such that:

‖u‖W 1,p(Ω) ≤ C

((∫

Ω
|∇u(x)|p dx

) 1
p

+N (u)

)
.

In practice, we will take N (u) =

∫

∂Ω
|u(x)| dσ, (Ω being of class C1).

Proof of Theorem 4.1.2 :
We assume that there exists ϕ̂ ∈ Id+W1,4

0 (Ω,R2) such that Ī(ϕ̂) < +∞.
The first step rests upon the derivation of the following coerciveness inequality:

Qf(x, ϕ, ξ) ≥ µ

4
(det ξ)2 +

β

2
‖ξ‖4 − βα2 − 3µ+

µ(λ+ µ)

2(λ+ 2µ)
, (4.6)

ensuring that the infimum is finite.
Then we introduce a minimizing sequence (ϕk) ∈ Id + W1,4

0 (Ω,R2). We can always
assume that Ī(ϕk) ≤ 1 + Ī(ϕ̂). From estimation (4.6) and the generalized Poincaré’s
inequality, it follows that ϕk is bounded in W1,4(Ω,R2) and det (∇ϕk) is bounded in
L2(Ω). We can thus extract a subsequence, still denoted by (ϕk), such that:

{
ϕk ⇀ ϕ̄ in W1,4(Ω,R2),
det (∇ϕk)⇀ δ̄ in L2(Ω).

From Theorem 1.14, p. 16 of [17], if ϕk ⇀ ϕ in W1,4(Ω,R2), then det (∇ϕk) ⇀
det (∇ϕ) in L2(Ω), yielding to δ̄ = det (∇ϕ̄) by uniqueness of the weak limit in L2(Ω).
The last step consists in letting k tend to +∞.

The mapping F 7→ h(F ) =

∣∣∣∣
β

(
‖F‖2 − α

)2
if ‖F‖2 ≥ α

0 if ‖F‖2 < α
is continuous and convex

on M2(R) ∼ R
4.

Let (Ψk) be a given sequence that strongly converges to Ψ in W1,4(Ω,R2) (so ∇Ψk →
∇Ψ in L4(Ω,M2(R)). One can always extract a subsequence still denoted by (Ψk)
such that ∇Ψk → ∇Ψ almost everywhere. According to the continuity of h, it follows
that:

h(∇Ψk(x)) → h(∇Ψ(x))

and Fatou’s lemma ensures that:

lim inf
k→+∞

∫

Ω
h(∇Ψk(x)) dx ≥

∫

Ω
h(∇Ψ(x)) dx.

By employing this technique, one proves that functional J defined on

W1,4(Ω,R2)× L2(Ω) by J(Φ, δ) =

∫

Ω
W

∗(∇Φ, δ) dx with

W
∗(∇Φ, δ) =

∣∣∣∣
β

(
‖∇Φ‖2 − α

)2
+ ψ(δ) if ‖∇Φ‖2 ≥ α

ψ(δ) if ‖∇Φ‖2 < α
is convex (thanks to the ar-

gument of polyconvexity) and strongly sequentially lower semicontinuous since W
∗ is

convex and continuous. It is thus weakly lower semicontinuous and

J(ϕ̄, det (∇ϕ̄)) ≤ lim inf
k→+∞

J(ϕk, det (∇ϕk)).
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The Rellich-Kondrachov embedding theorem gives that W1,4(Ω,R2) 	
c
C0(Ω̄,R2) with

compact injection, so (ϕk) uniformly converges to ϕ̄ and of course in L1(Ω,R2). Due
to the hypothesis of Lipschitz continuity of T , T ◦ ϕk strongly converges to T ◦ ϕ̄ in
L1(Ω) and finally in L1(Ω, g). The semicontinuity theorem ([2, Theorem 3.2]) enables
us to conclude that:

varg T ◦ ϕ̄ ≤ lim inf
k→+∞

varg T ◦ ϕk,

and Lebesgue’s dominated convergence theorem that

lim
k→+∞

‖T ◦ ϕk −R‖2L2(Ω) = ‖T ◦ ϕ̄−R‖2L2(Ω),

and conclusively,

Ī(ϕ̄) ≤ lim inf
k→+∞

Ī(ϕk).

It remains to prove that ϕ̄ ∈ Id+W1,4
0 (Ω,R2), which is guaranteed due to the continuity

of the trace map.

We now concentrate upon the relation between inf(QP )(= min(QP )) and inf(P ) when addi-
tional hypotheses are assumed. In this prospect, we investigate the auxiliary problem (4.7)
studied in [19] and defined by:

inf

{
F(ϕ) =

∫

Ω
f(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ Id +W1,4

0 (Ω,R2)

}
, (4.7)

with f given in (P). The following results can be established successively (see [19]):

Proposition 4.1.8

The relaxed problem in the sense of Dacorogna associated to (4.7) is defined by:

inf

{
F̄(ϕ) =

∫

Ω
Qf(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ Id+W1,4

0 (Ω,R2)

}
, (4.8)

with Qf given in Proposition (4.1.3).

Theorem 4.1.4

The infimum of (4.8) is attained. Let then ϕ∗ ∈ W1,4(Ω,R2) be a minimizer of the
relaxed problem (4.8). Then there exists a sequence {ϕν}∞ν=1 ⊂ ϕ∗ + W1,4

0 (Ω,R2) such
that ϕν → ϕ∗ in L4(Ω,R2) as ν → +∞ and F(ϕν) → F̄(ϕ∗) as ν → +∞, yielding to
min(4.8) = inf(4.7).
Moreover, the following holds: ϕν ⇀ ϕ∗ in W1,4(Ω,R2) as ν → +∞.
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Remark 4.1.9

In fact, the result is even stronger and can be stated as follows (see [17, Theorem 9.8]).
Let 4 ≤ q ≤ ∞ and u ∈ W1,q(Ω,R2). Then there exists a sequence {uν}∞ν=1 ⊂ u +

W1,q
0 (Ω,R2) such that:

uν → u in Lq(Ω,R2) as ν → ∞,∫

Ω
f(x, uν(x),∇uν(x)) dx→

∫

Ω
Qf(x, u(x),∇u(x)) dx,

as ν → +∞. In addition to the above conclusions, the following holds:

uν ⇀ u in W1,4(Ω,R2) as ν → +∞.

With these elements in hand, we now provide a result relating inf(QP )(= min(QP )) and
inf(P ) when additional hypotheses are assumed.

Proposition 4.1.10

Let us assume that T ∈ W2,∞(R2,R), ∇T being Lipschitz continuous with Lipschitz
constant κ′.
Let ϕ̄ ∈ Id + W1,4

0 (Ω,R2) be a minimizer of the relaxed problem (QP ). Due to Re-

mark 4.1.9, there exists a sequence {ϕν}∞ν=1 ⊂ ϕ̄+W1,4
0 (Ω,R2) such that

ϕν ⇀ ϕ̄ in W1,4(Ω,R2) as ν → ∞
and ∫

Ω
f(x, ϕν(x),∇ϕν(x)) dx→

∫

Ω
Qf(x, ϕ̄(x),∇ϕ̄(x)) dx.

If moreover ∇ϕν strongly converges to ∇ϕ̄ in L1(Ω,M2(R)), then one has I(ϕν) → Ī(ϕ̄)
as ν → ∞ and therefore inf(QP ) = min(QP ) = inf(P ).

Proof : The mapping T ◦ϕ belongs to W1,4(Ω) := W1,4(Ω,R) and since T has continuous
first order partial derivatives, the chain rule holds almost everywhere on Ω. Also, as
T ◦ ϕ ∈ W1,1(Ω), Ω being bounded, it also belongs to W1,1(Ω, g) and the norms on

BV (Ω, g) and W1,1(Ω, g) are equivalent, i.e., varg T ◦ ϕ =

∫

Ω
|∇(T ◦ ϕ)|g(x) dx. We

now aim to estimate:

|varg T ◦ ϕν − varg T ◦ ϕ̄| =
∣∣∣∣
∫

Ω
|∇(T ◦ ϕν)|g(x) dx−

∫

Ω
|∇(T ◦ ϕ̄)|g(x) dx

∣∣∣∣ .

We denote by x = (x1, x2). Then

|varg T ◦ ϕν − varg T ◦ ϕ̄| ≤
∫

Ω
|∇(T ◦ ϕν)−∇(T ◦ ϕ̄)| g(x) dx,

≤
∫

Ω

(∣∣∣∣∇T (ϕν)
∂ϕν
∂x1

−∇T (ϕ̄) ∂ϕ̄
∂x1

∣∣∣∣+
∣∣∣∣∇T (ϕν)

∂ϕν
∂x2

−∇T (ϕ̄) ∂ϕ̄
∂x2

∣∣∣∣
)
dx.
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We focus on the former component, the reasoning being the same for the latter one.
∫

Ω

∣∣∣∣∇T (ϕν)
∂ϕν
∂x1

−∇T (ϕ̄) ∂ϕ̄
∂x1

∣∣∣∣ dx ≤
∫

Ω

∣∣∣∣∇T (ϕν)
(
∂ϕν
∂x1

− ∂ϕ̄

∂x1

)∣∣∣∣ dx

+

∫

Ω
|∇T (ϕ̄)−∇T (ϕν)|

∣∣∣∣
∂ϕ̄

∂x1

∣∣∣∣ dx,

≤ ‖∇T‖L∞(R2,R2)‖
∂ϕν
∂x1

− ∂ϕ̄

∂x1
‖L1(Ω,R2)

+ κ′ ‖ϕ̄− ϕν‖L4(Ω,R2)‖
∂ϕ̄

∂x1
‖
L

4
3 (Ω,R2)

,

from Hölder’s inequality and owing to the hypotheses on T . The conclusion is straight-
forward.

We now propose a numerical method for the resolution of the relaxed problem. It is motivated
by a prior related work by Negrón Marrero ([34]).

4.2 Numerical method of resolution

4.2.1 Description and Analysis of the Proposed Numerical Method

In [34], Negrón Marrero describes and analyzes a numerical method that detects singular
minimizers and avoids the Lavrentiev phenomenon for three dimensional problems in non-
linear elasticity. This method consists in decoupling the function ϕ from its gradient and in
formulating a related decoupled problem under inequality constraints. With this in mind, we
introduce two auxiliary variables: T̃ simulating the deformed Template T ◦ϕ and V simulat-
ing the Jacobian deformation field ∇ϕ (-the underlying idea being to remove the nonlinearity
in the derivatives of the deformation-) and derive a functional minimization problem phrased
in terms of the variables ϕ, V and T̃ . Nevertheless, our approach is different from that in [34]
in several points: first, we do not formulate a minimization problem under constraints but
incorporate Lp-type penalizations (p = 1 or 2 - the choice of the L1-penalization is discussed
in Subsection 4.2.2) in the functional to be minimized. In [34], the author focuses on the de-
coupled discretized problem (discretized with the finite element method - the paper provides
neither numerical applications, nor details of the implementation) for which the existence
of minimizers is guaranteed, while we consider the continuous problem. Also, the author as-
sumes that the finite element approximations satisfy some convergence hypotheses. Moreover,
in our case, (as we work in two dimensions) less regularity is required for the formulation of
the penalization (see in particular Remark 4.2.1).

The decoupled problem is thus defined by means of the following functional:

Īγ(ϕ, V, T̃ ) =varg T̃ +
ν

2
‖T (ϕ)−R‖2L2(Ω) +

∫

Ω
QW (V ) dx

+
γ

2
‖V −∇ϕ‖2L2(Ω,M2)

+ γ ‖T̃ − T ◦ ϕ‖L1(Ω). (4.9)

We set Ŵ = Id+W1,2
0 (Ω,R2) and χ̂ =

{
V ∈ L4(Ω,M2(R))

}
. The decoupled problem consists

in minimizing (4.9) on Ŵ × χ̂×BV (Ω, g). Then the following theorem holds.
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Theorem 4.2.1

Let (γj) be an increasing sequence of positive real numbers such that lim
j→+∞

γj = +∞.

Let also
(
ϕk(γj), Vk(γj), T̃k(γj)

)
be a minimizing sequence of the decoupled problem with

γ = γj . Then there exist a subsequence denoted by(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
of

(
ϕk(γj), Vk(γj), T̃k(γj)

)
and a mini-

mizer ϕ̄ of Ī (ϕ̄ ∈ Id+W1,4
0 (Ω,R2)) such that:

lim
j→+∞

Īγζ(j)

(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
= Ī(ϕ̄).

Proof : Let ǫ > 0 be given, ǫ ∈]0, ǫ0], ǫ0 > 0 fixed. Without loss of generality, we assume
that meas(Ω) = 1. There exists ϕ̂ǫ ∈ W = Id +W1,4

0 (Ω,R2) such that:

inf
(ϕ,V,T̃ )∈Ŵ×χ̂×BV (Ω,g)

Īγ(ϕ, V, T̃ ) ≤ Īγ(ϕ̂ǫ,∇ϕ̂ǫ, T ◦ ϕ̂ǫ) = Ī(ϕ̂ǫ),

< inf
ϕ∈W

Ī(ϕ) + ǫ ≤ inf
ϕ∈W

Ī(ϕ) + ǫ0.

Consequently,

inf
(ϕ,V,T̃ )∈Ŵ×χ̂×BV (Ω,g)

Īγ(ϕ, V, T̃ ) ≤ inf
ϕ∈W

Ī(ϕ) + ǫ. (4.10)

The second part of the proof consists in taking an increasing sequence (γj) of positive
real numbers such that lim

j→+∞
γj = +∞. We then consider a minimizing sequence

denoted by
(
ϕk(γj), Vk(γj), T̃k(γj)

)
for the decoupled problem with γ = γj , that is:

lim
k→+∞

Īγj

(
ϕk(γj), Vk(γj), T̃k(γj)

)
= inf

(ϕ,V,T̃ )∈Ŵ×χ̂×BV (Ω,g)
Īγj (ϕ, V, T̃ ).

In particular, ∀ǫ > 0, ∃N(ǫ, γj) ∈ N, ∀k ∈ N,
(
k ≥ N(ǫ, γj) =⇒ Īγj

(
ϕk(γj), Vk(γj), T̃k(γj)

)
≤ inf

(ϕ,V,T̃ )∈Ŵ×χ̂×BV (Ω,g)
Īγj (ϕ, V, T̃ ) + ǫ

)
.

Let us take in particular ǫ = 1
γj
. There exists N(γj) ∈ N such that ∀k ∈ N,

(
k ≥ N(γj) =⇒ Īγj

(
ϕk(γj), Vk(γj), T̃k(γj)

)
≤ inf

(ϕ,V,T̃ )∈Ŵ×χ̂×BV (Ω,g)
Īγj (ϕ, V, T̃ ) +

1

γj

)
.

We then set k = N(γj) and we obtain:

Īγj

(
ϕN(γj)(γj), VN(γj)(γj), T̃N(γj)(γj)

)
≤ inf

(ϕ,V,T̃ )∈Ŵ×χ̂×BV (Ω,g)
Īγj (ϕ, V, T̃ ) +

1

γj
,

≤ inf
ϕ∈W

Ī(ϕ) +
2

γj
≤ inf

ϕ∈W
Ī(ϕ) +

2

γ0
< +∞,

(4.11)
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from (5.10).
Similarly to the coercivity inequality obtained in the proof of Theorem 4.1.2, the
following inequality holds:

µ

4
(det (V ))2 +

β

2
‖V ‖4 − β α2 − 3µ+

µ(λ+ µ)

2(λ+ 2µ)
≤ QW (V ).

As a consequence,
{
VN(γj)(γj) is uniformly bounded in L4(Ω,M2) (so in L2(Ω,M2) with M2 =M2(R) ∼ R

4) and

det(VN(γj)(γj)) is uniformly bounded in L2(Ω).

We can thus extract a subsequence denoted by
(
VN(γΨ(j))(γΨ(j))

)
such that:





VN(γΨ(j))(γΨ(j)) ⇀
j→+∞

V̄ in L4(Ω,M2),

det(VN(γΨ(j))(γΨ(j))) ⇀
j→+∞

δ̄ in L2(Ω).

In addition,

γΨ(j)

2
‖VN(γΨ(j))(γΨ(j))−∇ϕN(γΨ(j))(γΨ(j))‖2L2(Ω,M2)

≤ βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)
+ inf
ϕ∈W

Ī(ϕ) +
2

γ0
,

so,

‖VN(γΨ(j))(γΨ(j))−∇ϕN(γΨ(j))(γΨ(j))‖2L2(Ω,M2)
≤ 2

γ0

(
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)
+ inf
ϕ∈W

Ī(ϕ) +
2

γ0

)
,

and

| ‖∇ϕN(γΨ(j))(γΨ(j))‖L2(Ω,M2) − ‖VN(γΨ(j))(γΨ(j))‖L2(Ω,M2) |
≤ ‖VN(γΨ(j))(γΨ(j))−∇ϕN(γΨ(j))(γΨ(j))‖L2(Ω,M2),

≤
(

2

γ0

(
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)
+ inf
ϕ∈W

Ī(ϕ) +
2

γ0

)) 1
2

.

The sequence
(
ϕN(γΨ(j))(γΨ(j))

)
is thus uniformly bounded in W1,2(Ω,R2) according

to the generalized Poincaré inequality. (Recall that ϕN(γΨ(j))(γΨ(j)) = Id on ∂Ω). We

can therefore extract a subsequence denoted by
(
ϕN(γΨ◦g(j))(γΨ◦g(j))

)
such that:

ϕN(γΨ◦g(j))(γΨ◦g(j)) ⇀
j→+∞

ϕ̄ in W1,2(Ω,R2).

Similarly, varg T̃N(γΨ◦g(j))(γΨ◦g(j)) is bounded independently of j as well as ‖T̃N(γΨ◦g(j))(γΨ◦g(j))‖L1(Ω).
For the latter case, the uniform bound is obtained remarking that

‖T ◦ ϕN(γΨ◦g(j))(γΨ◦g(j))‖L1(Ω) ≤ κ ‖ϕN(γΨ◦g(j))(γΨ◦g(j))‖L1(Ω,R2).

As function g satisfies g ≤ 1, it follows that T̃N(γΨ◦g(j))(γΨ◦g(j)) is uniformly bounded

in L1(Ω, g) and consequently in BV (Ω, g) (- this space being equipped with the norm
‖ · ‖BV (Ω,g) = ‖ · ‖L1(Ω,g) + varg · -).
We now need the following theorem from [2].
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Theorem 4.2.2 (Theorem 3.4 of [2])

Let Ω be an open set in R
n. Suppose w ∈ Lip(Ω), w ∈ A1 is a weight function. Let

u ∈ BV (Ω, w), then there exists a sequence {uk} ⊂ C∞(Ω) ∩BV (Ω, w) such that:

(i) ‖uk − u‖L1(Ω,w) → 0 as k → +∞.

(ii) varw uk → varw u as k → +∞.

From Theorem 4.2.2, for each j, there exists {gj} such that gj ∈ C∞(Ω) and




∫

Ω
g |T̃N(γΨ◦g(j))(γΨ◦g(j))− gj | dx ≤ 1

j
,

sup
j

∫

Ω
g |∇gj | dx <∞.

As function g satisfies 0 < c ≤ g, it follows that:



∫

Ω
|T̃N(γΨ◦g(j))(γΨ◦g(j))− gj | dx ≤ 1

cj
,

sup
j

∫

Ω
|∇gj | dx <∞.

Consequently, there exist ¯̃T ∈ BV (Ω) ⊂ BV (Ω, g) and a subsequence of {gj} still
denoted by {gj} such that:

gj → ¯̃T in L1(Ω), so in L1(Ω, g).

But,

‖T̃N(γΨ◦g(j))(γΨ◦g(j))− ¯̃T‖L1(Ω,g) ≤ ‖T̃N(γΨ◦g(j))(γΨ◦g(j))− gj‖L1(Ω,g) + ‖gj − ¯̃T‖L1(Ω,g),

so it implies that T̃N(γΨ◦g(j))(γΨ◦g(j)) → ¯̃T in L1(Ω, g). We have proved that there exists

a subsequence of T̃N(γΨ◦g(j))(γΨ◦g(j)) denoted by T̃N(γζ(j))(γζ(j)) := T̃N(γΨ◦g◦h(j))(γΨ◦g◦h(j))

and a function ¯̃T in BV (Ω, g) such that T̃N(γζ(j))(γζ(j)) →
¯̃T in L1(Ω, g) and so in L1(Ω).

Let us now set xj = T̃N(γζ(j))(γζ(j))− T ◦ ϕN(γζ(j))(γζ(j)). Since,

‖T̃N(γζ(j))(γζ(j))− T ◦ ϕN(γζ(j))(γζ(j))‖L1(Ω)

≤ 1

γζ(j)

(
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)
+ inf
ϕ∈W

Ī(ϕ) +
2

γ0

)
,

it implies that xj →
j→+∞

0 in L1(Ω) and consequently, T̃N(γζ(j))(γζ(j)) → T ◦ ϕ̄ in L1(Ω)

as

‖T̃N(γζ(j))(γζ(j))− T ◦ ϕ̄‖L1(Ω) ≤ ‖T̃N(γζ(j))(γζ(j))− T ◦ ϕN(γζ(j))(γζ(j))‖L1(Ω)

+ ‖T ◦ ϕN(γζ(j))(γζ(j))− T ◦ ϕ̄‖L1(Ω),

≤ ‖T̃N(γζ(j))(γζ(j))− T ◦ ϕN(γζ(j))(γζ(j))‖L1(Ω)

+ κ ‖ϕN(γζ(j))(γζ(j))− ϕ̄‖L1(Ω,R2),

and ϕN(γζ(j))(γζ(j)) strongly converges to ϕ̄ in L1(Ω,R2). By uniqueness of the limit,

it yields to ¯̃T = T ◦ ϕ̄. Also, as T̃N(γζ(j))(γζ(j)) ∈ BV (Ω, g) and T̃N(γζ(j))(γζ(j)) → T ◦ ϕ̄
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in L1(Ω, g) as j → +∞, varg T ◦ ϕ̄ ≤ lim inf
j→+∞

varg T̃N(γζ(j))(γζ(j)).

To summarize at this stage,



VN(γζ(j))(γζ(j)) ⇀
j→+∞

V̄ in L4(Ω,M2),

det(VN(γζ(j))(γζ(j))) ⇀
j→+∞

δ̄ in L2(Ω),

ϕN(γζ(j))(γζ(j)) ⇀
j→+∞

ϕ̄ in W1,2(Ω,R2),

and T̃N(γζ(j))(γζ(j)) →
j→+∞

T ◦ ϕ̄ in L1(Ω).

Let us now set zj = ∇ϕN(γζ(j))(γζ(j))− VN(γζ(j))(γζ(j)). Since

‖VN(γζ(j))(γζ(j))−∇ϕN(γζ(j))(γζ(j))‖
2
L2(Ω,M2)

≤
2

γζ(j)

(
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)
+ inf
ϕ∈W

Ī(ϕ) +
2

γ0

)
,

it implies that zj →
j→+∞

0 in L2(Ω,M2) and consequently,

∇ϕN(γζ(j))(γζ(j)) ⇀
j→+∞

V̄ in L2(Ω,M2).

Indeed, ∀Φ ∈ L2(Ω,M2),

∫

Ω
zj : Φ dx →

j→+∞
0. So,

∫

Ω

(
∇ϕN(γζ(j))(γζ(j))− VN(γζ(j))(γζ(j))

)
: Φ dx →

j→+∞
0.

But VN(γζ(j))(γζ(j)) ⇀
j→+∞

V̄ in L4(Ω,M2) so in L2(Ω,M2) and ∀Φ ∈ L2(Ω,M2),

∫

Ω
∇ϕN(γζ(j))(γζ(j)) : Φ dx →

j→+∞

∫

Ω
V̄ : Φ dx.

In addition, ∇ϕN(γζ(j))(γζ(j)) ⇀
j→+∞

∇ϕ̄ in L2(Ω,M2), and by uniqueness of the weak

limit in L2(Ω,M2), ∇ϕ̄ = V̄ ∈ L4(Ω,M2).
As previously mentioned, VN(γζ(j))(γζ(j)) = ∇ϕN(γζ(j))(γζ(j)) − zj with zj →

j→+∞
0 in

L2(Ω,M2). Consequently,

det(VN(γζ(j))(γζ(j))) = det(∇ϕN(γζ(j))(γζ(j))) + dj ,

with

dj =(zj)11(zj)22 − (zj)21(zj)12 − (zj)22
∂ϕ1

N(γζ(j))
(γζ(j))

∂x

− (zj)11
∂ϕ2

N(γζ(j))
(γζ(j))

∂y
+ (zj)21

∂ϕ1
N(γζ(j))

(γζ(j))

∂y

+ (zj)12
∂ϕ2

N(γζ(j))
(γζ(j))

∂x
,

((zj)kl denoting the element of the kth row and the lth column of the matrix zj and with

ϕN(γζ(j))(γζ(j)) =
(
ϕ1
N(γζ(j))

(γζ(j)), ϕ
2
N(γζ(j))

(γζ(j))
)
). The following inequality holds:

∫

Ω
|dj | dx ≤ 1

2
‖zj‖2L2(Ω,M2)

+ ‖zj‖L2(Ω,M2)‖∇ϕN(γζ(j))(γζ(j))‖L2(Ω,M2),
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‖∇ϕN(γζ(j))(γζ(j))‖L2(Ω,M2) being bounded independently of j. As a consequence,

dj →
j→+∞

0 in L1(Ω). Let us now gather all the previous results:





det(VN(γζ(j))(γζ(j))) ⇀
j→+∞

δ̄ in L2(Ω),

ϕN(γζ(j))(γζ(j)) ⇀
j→+∞

ϕ̄ in W1,2(Ω,R2),

and det(VN(γζ(j))(γζ(j))) = det(∇ϕN(γζ(j))(γζ(j))) + dj with dj →
j→+∞

0 in L1(Ω).

From Theorem 1.14 from [17], if ϕN(γζ(j))(γζ(j)) ⇀
j→+∞

ϕ̄ in W1,2(Ω,R2), then

det(∇ϕN(γζ(j))(γζ(j))) ⇀
j→+∞

det(∇ϕ̄) in the sense of distributions.

Also, ∀Φ ∈ D(Ω),
∫

Ω
det(VN(γζ(j))(γζ(j))) Φ dx →

j→+∞

∫

Ω
δ̄Φ dx,

since det(VN(γζ(j))(γζ(j))) weakly converges to δ̄ in L2(Ω).
In addition:∫

Ω
det(VN(γζ(j))(γζ(j))) Φ dx =

∫

Ω
det(∇ϕN(γζ(j))(γζ(j))) Φ dx+

∫

Ω
dj Φ dx,

and 



∫

Ω
det(∇ϕN(γζ(j))(γζ(j))) Φ dx →

j→+∞

∫

Ω
det(∇ϕ̄) Φ dx,

∣∣∣∣
∫

Ω
dj Φ dx

∣∣∣∣ ≤ ‖dj‖L1(Ω) ‖Φ‖C0(Ω̄) →
j→+∞

0 from Hölder’s inequality.

Consequently, ∀Φ ∈ D(Ω),
∫

Ω
δ̄Φ dx =

∫

Ω
det(∇ϕ̄) Φ dx

and det(∇ϕ̄) = δ̄ in the sense of distributions. As det(∇ϕ̄) ∈ L2(Ω) (since ϕ̄ ∈
W1,4(Ω,R2) -recall that if Φn weakly converges to Φ in W1,p and Φn = Id on ∂Ω, then
Φ = Id on ∂Ω - ) and as δ̄ ∈ L2(Ω), it results in det(∇ϕ̄) = δ̄ almost everywhere.

The mapping J(V, δ) =

∫

Ω
W

∗(V, δ) dx with

W
∗(V, δ) =

∣∣∣∣
β

(
‖V ‖2 − α

)2
+Ψ(δ) if ‖V ‖2 ≥ α

Ψ(δ) if ‖V ‖2 < α
is defined on L4(Ω,M2) × L2(Ω).

It is convex and strongly sequentially lower semi-continuous since W
∗ is convex and

continuous. It is thus weakly sequentially lower semi-continuous.
The Rellich-Kondrachov compact embedding theorem gives that
W1,2(Ω,R2) 	

c
Lq(Ω,R2), ∀q ∈ [1,+∞[. In particular, ϕN(γζ(j))(γζ(j)) strongly con-

verges to ϕ̄ in L2(Ω,R2). As T is assumed to be Lipschitz continuous with Lipschitz
constant κ, it can be proved that:

lim
j→+∞

∫

Ω

(
T
(
ϕN(γζ(j))(γζ(j))

)
−R

)2
dx =

∫

Ω
(T (ϕ̄)−R)2 dx.

By passing to the limit when j goes to +∞, it yields to:

inf
ϕ∈W

Ī(ϕ) ≤ Ī(ϕ̄) ≤ lim inf
j→+∞

Īγζ(j)

(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
,



96CHAPTER 4. JOINT SEGMENTATION/REGISTRATIONMODEL BY SHAPE ALIGNMENT

since

varg T̃N(γζ(j))(γζ(j))) +
ν

2
‖T (ϕN(γζ(j))(γζ(j)))−R‖2L2(Ω) +

∫

Ω
QW (VN(γζ(j))(γζ(j))) dx

≤ Īγζ(j)

(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
.

In conclusion, we have obtained the two following inequalities:




inf
ϕ∈W

Ī(ϕ) ≤ Ī(ϕ̄) ≤ lim inf
j→+∞

Īγζ(j)

(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
and

Īγζ(j)

(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
≤ inf

ϕ∈W
Ī(ϕ) +

2

γζ(j)

,

that is,

lim sup
j→+∞

Īγζ(j)

(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
≤ inf

ϕ∈W
Ī(ϕ),

and finally:

lim
j→+∞

Īγζ(j)

(
ϕN(γζ(j))(γζ(j)), VN(γζ(j))(γζ(j)), T̃N(γζ(j))(γζ(j))

)
= Ī(ϕ̄) = inf

ϕ∈W
Ī(ϕ).

Remark 4.2.1

We remark that we gain some regularity: indeed, ϕN(γζ(j))(γζ(j)) is only W1,2(Ω,R2) and

T̃N(γζ(j))(γζ(j)) ∈ BV (Ω, g) but when passing to the limit when j → +∞, we prove that

ϕN(γζ(j))(ǫζ(j)) ⇀ ϕ̄ in W1,2(Ω,R2) with ϕ̄ ∈ W1,4(Ω,R2) and T̃N(γζ(j))(γζ(j)) → T ◦ ϕ̄ in

L1(Ω) with T ◦ ϕ̄ ∈ W1,4(Ω).

Inspired by this theoretical result, we now turn to the discretization of the considered problem.

4.2.2 Numerical Scheme

The algorithm requires the evaluation of the Template T at ϕ(x). We thus assume that T
is a smooth mapping that has been obtained by interpolating the image data provided on
the grid. As an additional convention, T is supposed to vanish outside the domain, i.e.,
T (x) = 0 if x /∈ Ω. As suggested by Modersitzki in [33], Chapter 3, subsection 3.6.1, for the
interpolation stage we apply a multiscale interpolation technique which includes a weighting
parameter controlling smoothness versus data proximity. Also, for the sake of optimization,
a multilevel representation of the data is adopted (see Chapter 3, section 3.7 of [33]).
We first solve inf

T̃
E(T̃ ) = varg T̃ + γ ‖T̃ − T ◦ ϕ‖L1(Ω), for fixed ϕ, the minimization being

based on a convex regularization as done in [6], on the dual formulation of the weighted total
variation and on Chambolle’s projection algorithm ([9]). An important result (see again [10]
and [6]) is that if T ◦ ϕ is a characteristic function, if T̃ is a minimizer of E then for almost
every µ0 ∈ [0, 1], one has that the characteristic function 1{x | T̃ (x)>µ0} is a global minimizer

of E.
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Then we solve (for fixed T̃ ): inf
ϕ,V

J̄ǫ(ϕ, V ) +
γ

2
‖∇ϕ− V ‖2L2(Ω,M2(R))

+ γ ‖T̃ − T ◦ϕ‖L1(Ω), with

J̄ǫ(ϕ, V ) =

∫

Ω
W (V )Hǫ

(
‖V ‖2 − α

)
dx

+

∫

Ω
Ψ(det V )Hǫ

(
α− ‖V ‖2

)
dx+

ν

2

∫

Ω
(T (ϕ)−R)2 dx,

where γ is a positive constant big enough to ensure that V and ∇ϕ, respectively, T̃ and
T ◦ ϕ are sufficiently close in the sense of the L2-norm, respectively the L1-norm. Hǫ is the
regularized one-dimensional Heaviside function defined by Hǫ : z 7→ 1

2

(
1 + 2

π Arctan zǫ
)
. The

edge detector function g is defined by

g(s) =
1

1 + as2
where a is a positive constant.

These schemes are easy to implement and very fast compared with usual ones.
Fixing ϕ and V , we minimize the following functional with respect to T̃ :

inf
T̃

{
vargT̃ + γ‖T̃ − T ◦ ϕ‖L1(Ω)

}
. (4.12)

Following the same strategy as Bresson et al.’s one in [6], we introduce an auxiliary variable
f (different from the f in section 4.1) such that the problem amounts to minimizing:

inf
T̃ ,f

{
vargT̃ + γ‖f‖L1(Ω) +

1

2θ
‖T̃ − T ◦ ϕ+ f‖2L2(Ω)

}
,

problem decoupled into the two following subproblems:

inf
T̃

{
vargT̃ +

1

2θ
‖T̃ − T ◦ ϕ+ f‖2L2(Ω)

}
,

inf
f

{
γ‖f‖L1(Ω) +

1

2θ
‖T̃ − T ◦ ϕ+ f‖2L2(Ω)

}
.

(4.13)

(4.14)

Proposition 4.2.2

The solution of (4.13) is given by

T̃ = T ◦ ϕ− f −ΠθK (T ◦ ϕ− f) ,

where Π represents the orthogonal projection, and K is the closure of{
div ξ : ξ ∈ C1

c (Ω,R
2), |ξ(x)| ≤ g(x), ∀x ∈ Ω

}
, | · | being the Euclidean norm in R

2.

Proof : The proof is inspired by [22]. Writing the associated Euler-Lagrange equation, T̃
is solution of (4.13) is equivalent to :

0 ∈ ∂varg(T̃ ) +
1

θ
(T̃ − T ◦ ϕ+ f),

where ∂varg is the sub-differential of varg.
Equivalently,

− 1

θ
(T̃ − T ◦ ϕ+ f) ∈ ∂varg(T̃ )

⇐⇒ T̃ ∈ ∂var∗g

(
− T̃ − T ◦ ϕ+ f

θ

)
,

where var∗g is the Legendre-Fenchel transform of varg.
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Therefore,

0 ∈ −T̃ + ∂var∗g

(
T ◦ ϕ− T̃ − f

θ

)

⇐⇒ 0 ∈ T ◦ ϕ− T̃ − f

θ
− T ◦ ϕ− f

θ
+

1

θ
∂var∗g

(
T ◦ ϕ− T̃ − f

θ

)
.

We get that w =
T ◦ ϕ− T̃ − f

θ
is a minimizer of

1

2

∥∥∥∥w −
(
T ◦ ϕ− f

θ

)∥∥∥∥
2

L2(Ω)

+
1

θ
var∗g(w).

According to general convex analysis results, the Legendre-Fenchel transform of a
convex and one-homogeneous functional is the characteristic function of a closed convex
set K:

var∗g(v) = χK(v) =

{
0 if v ∈ K

+∞ otherwise.

Then w = ΠK

(
T ◦ ϕ− f

θ

)
=

1

θ
ΠθK (T ◦ ϕ− f), where ΠK represents the orthogonal

projection on K, and K is the closure of
{
div ξ : ξ ∈ C1

c (Ω,R
2), |ξ(x)| ≤ g(x), ∀x ∈ Ω

}
.

Hence the solution is given by

T̃ = T ◦ ϕ− f −ΠθK (T ◦ ϕ− f) .

Proposition 4.2.3

The solution of (4.14) is given by

f =





T ◦ ϕ− T̃ − θγ if T ◦ ϕ− T̃ ≥ θγ,

T ◦ ϕ− T̃ + θγ if T ◦ ϕ− T̃ ≤ −θγ,
0 otherwise .

Remark 4.2.4

Numerically, computing ΠθK (T ◦ ϕ− f) amounts to solving:

min{‖θ div p− (T ◦ ϕ− f)‖2L2(Ω) : |p(x)|2 − g(x)2 ≤ 0}.
The Karush-Kuhn-Tucker conditions yield to the following equation satisfied by p:

g(x)∇(θ div p− (T ◦ ϕ− f))− |∇(θ div p− (T ◦ ϕ− f))|p = 0.

The previous equation can be solved by a fixed point method:




p0 = 0,

pn+1 =
pn + τ∇(div pn − (T ◦ ϕ− f)/θ)

1 + τ
g(x) |∇(div pn − (T ◦ ϕ− f)/θ)| .
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The Euler-Lagrange equation for ϕ is defined by:

0 = ν(T ◦ ϕ−R)∇T (ϕ)− γ∆ϕ+ γ

(
div V1
div V2

)
− 1

θ
(f − T ◦ ϕ+ T̃ )∇T (ϕ),

and the system of equations for V is:



0 = 2βc0V11 (2Hε(c0) + c0δε(c0)) + µV22(detV − 2) + γ(V11 −
∂ϕ1

∂x
),

0 = 2βc0V12 (2Hε(c0) + c0δε(c0))− µV21(detV − 2) + γ(V12 −
∂ϕ1

∂y
),

0 = 2βc0V21 (2Hε(c0) + c0δε(c0))− µV12(detV − 2) + γ(V21 −
∂ϕ2

∂x
),

0 = 2βc0V22 (2Hε(c0) + c0δε(c0)) + µV11(detV − 2) + γ(V22 −
∂ϕ2

∂y
),

where c0 = (‖V ‖2 − α), Vi denotes the i
th row of V and V = (Vij)1≤i,j≤2.

These equations are solved by a gradient descent method using an implicit scheme of finite
differences for ϕ and a semi-implicit scheme for V .

Remark 4.2.5

In practice, we take two different parameters γ:

inf
ϕ,V

J̄ǫ(ϕ, V ) + γ1 ‖T̃ − T ◦ ϕ‖L1(Ω) +
γ2
2

‖∇ϕ− V ‖2L2(Ω,M2(R))
.

4.3 Numerical experiments

We now present some results. Prior to this, we introduce the regridding technique employed,
comment on the choice of the tuning parameters and propose an assessment of the registration
accuracy.

4.3.1 Regridding technique, choice of the parameters and registration ac-

curacy

The deformation must remain physically and mechanically meaningful, and reflect material
properties: self-penetration of the matter (indicating that the transformation is not injective)
should be prohibited. The penalty term (det∇ϕ− 1)2 does not guarantee that the Jacobian
determinant remains positive. That is the reason why we have implemented the regridding
algorithm proposed by Christensen and his collaborators in [12] to ensure the positivity of
the Jacobian. Indeed, we have chosen the regridding method described in [12] because the
implementation is quite simple and is performed simultaneously with the resolution. The
method consists in monitoring the values of the Jacobian at each step of the descent gradient.
If the Jacobian drops below a defined threshold, then the process is reinitialized taking as
new Template the previous computed deformed Template.
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Algorithm 1 Regridding method.

1. Initialization: V 0 = I, ϕ0 = Id, regrid count=0.

2. For k = 0, 1, . . .

(ϕk+1, V k+1) = argmin
ϕ,V

J̄ε(ϕ, V ) +
γ

2
‖∇ϕ− V ‖2L2(Ω,M2(R))

+ γ ‖T̃ − T ◦ ϕ‖L1(Ω)

if det∇ϕk+1 < tol

• regrid count=regrid count+1

• T = T ◦ ϕk

• save tab ϕ(regrid count) = ϕk, ϕk+1 = Id, V k+1 = I

3. If regrid count>0
ϕfinal = tab ϕ(1) ◦ · · · ◦ tab ϕ(regrid count)

An alternative method would consist in applying a correction step when the Jacobian is
not positive as done by Ozeré and Le Guyader in [35].
For each pair, we provide the Reference and the Template images, the deformed Template,
that is to say T ◦ϕ, the deformed grid associated with ϕ (Reference to Template, straightfor-
wardly given by ϕ), the deformed grid associated with ϕ−1 (Template to Reference, computed
using interpolation techniques) and the distortion map drawing the displacement vectors at-
tached to the grid points of the Reference image and pointing towards non-grid points after
registration. We also display the segmentation of the Reference image obtained thanks to T̃ .
For applications not requiring regridding steps (see Figs. 4.4 and 4.6), we display the com-

ponents V11, V12, V21, and V22 versus
∂ϕ1

∂x
,
∂ϕ1

∂y
,
∂ϕ2

∂x
, and

∂ϕ2

∂y
respectively.

For all applications, the ranges of the parameters are the same. Parameter ν balancing the
intensity L2 distance is between 0.5 and 1, the Lamé coefficient λ is set to 10. The physical
meaning of Lamé’s parameter λ is not straightforward: Lamé’s parameter λ is related to the
bulk modulus which measures the substance resistance to uniform compression. This numer-
ical value of λ is not physically inconsistent. The Lamé coefficient µ is between 1000 and
3500. It is the shear modulus, that is to say that µ measures the resistance of the material.
From our experience, the parameter that proves to be the most sensitive is the Lamé param-
eter µ. It can be seen as a measure of rigidity. The greater parameter µ is, the more rigid the
deformation is (which can be relevant if we aim to obtain a smooth and topology-preserving
deformation map). The issue is thus to find a proper trade-off between accurate image align-
ment (which means authorizing large deformations) and topology or orientation preservation
(which means monitoring the Jacobian determinant by limiting shrinkage and growth). To
get a clearer picture of the range of the different parameters, a table summarizes the selected
values.
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ν θ γ1 γ2 µ λ a

Letter C 1 1 0.1 60 000 3500 10 1

Triangle 1.5 1 0.1 90 000 500 10 1

Mouse brain 1 0.5 1 0.1 80 000 1000 10 10

Mouse brain 2 0.5 1 0.1 80 000 2000 10 10

Slice of brain 1 1 0.1 80 000 1000 10 10

Heart ED-ES 1 0.1 0.1 90 000 1000 10 10

Heart slices 120-140 2 0.1 0.1 40 000 500 10 10

Table 4.1: Values of involved parameters

In order to obtain the segmentation of the Reference image, we display the contour corre-

sponding to the level line
{
T̃ = 0.3

}
of T̃ .

To assess registration and segmentation accuracy, we compute the Dice coefficient ([20])
which measures set agreement (after binarizing R, T ◦ϕ and T̃ by thresholding). The Dice sim-
ilarity coefficient is a measurement of spatial overlap widely used for comparing segmentation
results. The formula is given by:

Dice(A,B) = 2|A ∩B|/(|A|+ |B|),
where A and B are two sets and where | · | denotes the cardinality. The more Dice(A,B) is
close to 1, the better is the matching between the two sets. We compute the Dice coefficient
between R and T ◦ ϕ to measure the quality of the registration, as well as between R and T̃
to evolve the quality of the segmentation.

Dice(R, T ) Dice(R, T ◦ ϕ) Dice(R, T̃ )

Letter C 0.878 0.968 0.975

Triangle 0.900 0.990 0.993

Mouse brain 1 0.939 0.988 0.988

Mouse brain 2 0.921 0.982 0.983

Slice of brain 0.797 0.967 0.972

Heart ED-ES 0.771 0.929 0.942

Heart slices 120-140 0.777 0.931 0.942

Table 4.2: Dice coefficients.

4.3.2 Letter C

First, the method is applied on an academic example (Fig 6.1) taken from [13] for mapping a
disk to the letter C, demonstrating the ability of the algorithm to handle large deformations.
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Note that with linear elasticity model, diffusion model or curvature-based model, registration
cannot be successfully accomplished (see [32]). As in [13], the right part of the disk is stretched
into the shape of the interior edge of the letter C, and then moves outward to align the interior
boundary of the letter C. Nevertheless, our deformation field is smoother (see in particular
[13, p. 88]). In [7], the authors also apply their method on a similar example. We can
notice that the deformed Template cannot reach the end of the hollow of the C, while our
method handles very well deep concavities. At last, compared to [27], the algorithm requires
fewer regridding corrections (2 versus 4 in [27]) and the range of the Jacobian determinant is
smaller.

(a) Template (b) Reference (c) Deformed Template
T ◦ ϕ

(d) Segmented Refer-
ence by means of the

level line
{

T̃ = 0.3
}

(e) T̃ (f) Deformed grid:
Template to Reference

(g) Deformed grid: Ref-
erence to Template

(h) Distortion map
drawing the displace-
ment vectors attached
to the grid points of the
Reference image

Figure 4.1: Mapping of a disk to letter C.
Execution time: 19 seconds for 40×40 pixel images. 2 regridding steps. min det∇ϕ =
0.002,maxdet∇ϕ = 2.32.
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4.3.3 Noisy triangle

Another toy example is provided to emphasize again the capability of the model to generate
large deformations even on data corrupted by noise. The algorithm produces both a smooth
deformation field and a simplified (thus here denoised) version of the Reference image allowing
for its segmentation.

(a) Template (b) Reference (c) Deformed Tem-
plate T ◦ ϕ

(d) Segmented
Reference by means
of the level line
{

T̃ = 0.3
}

(e) T̃ (f) Deformed grid:
Template to Refer-
ence

(g) Deformed grid:
Reference to Tem-
plate

(h) Distortion map
drawing the dis-
placement vectors
attached to the
grid points of the
Reference image

Figure 4.2: Mapping of a disk to a noisy triangle.
Execution time: 53 seconds for 54×50 pixel images. min det∇ϕ = 0.37, max det∇ϕ = 2.25.
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4.3.4 Mouse brain gene expression data

Then the method was applied on medical images (Figs 6.3, 6.4) with the goal to map a
2D slice of mouse brain gene expression data (Template T) to its corresponding 2D slice of
the mouse brain atlas, in order to facilitate the integration of anatomic, genetic and physi-
ologic observations from multiple subjects in a common space. Since genetic mutations and
knock-out strains of mice provide critical models for a variety of human diseases, such linkage
between genetic information and anatomical structure is important. The data are provided
by the Center for Computational Biology, UCLA. The mouse atlas acquired from the LONI
database was pre-segmented. The gene expression data were segmented manually to facilitate
data processing in other applications. Some algorithms have been developed to automatically
segment the brain area of gene expression data. The non-brain regions have been removed to
produce better matching. Our method qualitatively performs as the one in [28] and produces
a smooth deformation field but also provides both a simplified version of the Reference image
and its segmentation. In order to assess the closeness of V and ∇ϕ and to underline that
we have indeed a good match between these two variables, we display their components in
Fig. 4.4 and Fig. 4.6. Compared to the results obtained in [27], [28] or [19], the deformation
grid is more regular and does not exhibit shrinkage or growth. For Fig. 6.3, the Jacobian
determinants mass around the value 1 (range [0.63,1.28]) versus [0.28,2.09] in [27], [0.15,2.40]
in [28] or [0.09,2.47] in [19]. The same remark can be done for Fig. 6.4: the Jacobian deter-
minants remain close to 1 (range [0.68, 1.42]) versus [0.03,3.48] in [27], [0.18,3.23] in [28] or
[0.01,2.18] in [19]. At last, contrary to [27], no regridding correction is required.
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(a) Template (b) Reference (c) Deformed Template T ◦ϕ

(d) Segmented Reference
by means of the level line
{

T̃ = 0.3
}

(e) T̃

(f) Deformed grid : Template
to Reference

(g) Deformed grid: Reference
to Template

(h) Distortion map drawing
the displacement vectors at-
tached to the grid points of
the Reference image

Figure 4.3: Mapping of a 2D slice of mouse brain gene expression data to its
counterpart in an atlas.
Execution time: 5 minutes for 200×200 pixel images. min det∇ϕ = 0.63, max det∇ϕ = 1.28.
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(a) V11 (b)
∂ϕ1

∂x

(c) V12 (d)
∂ϕ1

∂y

(e) V21 (f)
∂ϕ2

∂x

(g) V22 (h)
∂ϕ2

∂y

Figure 4.4: Display of V11 versus
∂ϕ1

∂x
,V12 versus

∂ϕ1

∂y
,V21 versus

∂ϕ2

∂x
,V22 versus

∂ϕ2

∂y
related to the

application of Fig. 6.3. ‖V11 −
∂ϕ1

∂x
‖∞ = 0.09, ‖V12 −

∂ϕ1

∂y
‖∞ = 0.03, ‖V21 −

∂ϕ2

∂x
‖∞ = 0.06,‖V22 −

∂ϕ2

∂y
‖∞ = 0.07
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(a) Template (b) Reference (c) Deformed Template T ◦ϕ

(d) Segmented Reference
by means of the level line
{

T̃ = 0.3
}

(e) T̃

(f) Deformed grid: Template
to Reference

(g) Deformed grid: Reference
to Template

(h) Distortion map drawing
the displacement vectors at-
tached to the grid points of
the Reference image

Figure 4.5: Mapping of a 2D slice of mouse brain gene expression data to its
counterpart in an atlas.
Execution time: 3 minutes for 200×200 pixel images. min det∇ϕ = 0.68, max det∇ϕ = 1.42.
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(a) V11 (b)
∂ϕ1

∂x

(c) V12 (d)
∂ϕ1

∂y

(e) V21 (f)
∂ϕ2

∂x

(g) V22 (h)
∂ϕ2

∂y

Figure 4.6: Display of V11 versus
∂ϕ1

∂x
,V12 versus

∂ϕ1

∂y
,V21 versus

∂ϕ2

∂x
,V22 versus

∂ϕ2

∂y
related to

the application of Fig. 6.4. ‖V11 − ∂ϕ1

∂x
‖∞ = 0.09, ‖V12 − ∂ϕ1

∂y
‖∞ = 0.03, ‖V21 − ∂ϕ2

∂x
‖∞ = 0.06,

‖V22 −
∂ϕ2

∂y
‖∞ = 0.07
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4.3.5 Slices of the brain

The method has also been applied to complex slices of brain data (Fig 4.7) (courtesy of
Laboratory Of Neuro-Imaging, UCLA). We aim to register a torus to the slice of brain with
topology preservation to demonstrate the ability of the algorithm to handle complex topolo-
gies. The results are very satisfactory on this example since the deformed Template matches
very well the convolutions of the brain. The interior contour of the right part of the torus
moves to the upper boundary of the hole, while the exterior contour moves towards the upper
envelope, entailing large deformations since the thickness of this part of the brain is much
greater than the thickness of the torus.

(a) Template (b) Reference (c) Deformed Template T ◦ϕ

(d) Segmented Reference
by means of the level line
{

T̃ = 0.3
}

(e) T̃

(f) Deformed grid: Template
to Reference

(g) Deformed grid: Reference
to Template

(h) Distortion map drawing
the displacement vectors at-
tached to the grid points of
the Reference image

Figure 4.7: Mapping of a torus to a slice of a brain.
Execution time: 5 minutes for 128×192 pixel images. 2 regridding steps. min det∇ϕ =
0.06,maxdet∇ϕ = 14.8.
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4.3.6 MRI images of cardiac cycle

Finally, numerical simulations on MRI images of a patient cardiac cycle have been carried out.
We were supplied with a whole cardiac MRI examination of a patient (courtesy of the LITIS,
University of Rouen, France). It is made of 280 images divided into 14 levels of slice and
20 images per cardiac cycle. The numbering of the images goes from 0 to 279, and includes
both the slice number and the time index. The image 0 is set at the upper part of the heart
and the sequence from image 0 to image 19 contains the whole cardiac cycle for this slice.
The sequence from images 20 to 39 contains the whole cardiac cycle for the slice underneath
the previous one and so on. A cardiac cycle is composed of a contraction phase (40% of the
cycle duration), followed by a dilation phase (60% of the cycle duration). The first image of
the sequence (frames 0, 20, 40, etc.) is when the heart is most dilated (end diastole - ED)
and the 8th of the sequence (end systole - ES) is when the heart is most contracted. It thus
seemed relevant, in order to assess the accuracy of the proposed algorithm in handling large
deformations, to register a pair of the type: Reference corresponding to end diastole (ED),
that is the first image of a sequence, and Template corresponding to end systole (ES), that
is the 8th frame of the same sequence. Besides, due to the patient’s breathing, images from a
slice to another are not stackable (whereas they should be) so we also registered pairs of the
form 120-140, that thus correspond to two images taken when the heart is most dilated but
at different levels of slice.
We provide extra numerical results on the webpage http://lmi.insa-rouen.fr/31.html
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(a) Template (ES) (b) Reference (ED) (c) Deformed Template T ◦ϕ

(d) Segmented Reference
by means of the level line
{

T̃ = 0.3
}

(e) T̃

(f) Deformed grid: Template
to Reference

(g) Deformed grid: Reference
to Template

(h) Distortion map drawing
the displacement vectors at-
tached to the grid points of
the Reference image

Figure 4.8: Mapping of MRI images. Reference corresponding to end diastole
(ED) and Template corresponding to end systole (ES) of a same sequence.
Execution time: 13 minutes for 150×150 pixel images. 1 regridding step. min det∇ϕ =
0.01,maxdet∇ϕ = 3.83.
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(a) Template (ED) at a
given slice

(b) Reference (ED) at a dif-
ferent slice

(c) Deformed Template T ◦

ϕ

(d) Segmented Reference
by means of the level line
{

T̃ = 0.3
}

(e) T̃

(f) Deformed grid: Template
to Reference

(g) Deformed grid: Reference
to Template

(h) Distortion map drawing
the displacement vectors at-
tached to the grid points of
the Reference image

Figure 4.9: Mapping of MRI images. Heart slices of the form 120-140 correspond-
ing to two images taken when the heart is most dilated but at different levels of
slice.
Execution time: 15 minutes for 150×150 pixel images. min det∇ϕ = 0.18, max det∇ϕ = 2.92.



4.3. NUMERICAL EXPERIMENTS 113

4.3.7 Comparisons with prior related works

The question of comparing the proposed model with prior ones is legitimate but difficult to
address since the goal of the model is twofold (producing a smooth deformation map and
obtaining a simplified version of the Reference image yielding to its segmentation) and since
encompassing 3 levels of discussion :

1. the relevance of the nonlinear elasticity based regularizer compared to classical regular-
ization terms (diffusion, biharmonic, linear elasticity models) that lead to linear terms
with respect to derivatives in the Euler-Lagrange equations,

2. the relevance of the dissimilarity measure based on the weighted total variation,

3. the accuracy of the segmentation, which is already addressed in subsections 4.3.2 and
4.3.4.

To tackle the two previous points (keeping in mind that we implement the computer codes
ex-nihilo by ourselves) in depth, we have investigated several angles of inquiry.
Due to the large amount of literature in the field of registration, we had to make a choice
as for the alternative methods to be compared with our model. First, we decided to focus
on non parametric registration methods, category of methods we are familiar with. In [28],
Lin et al. first review the most common and simplest regularization terms (diffusion, bihar-
monic, linear elasticity models) that lead to linear terms with respect to derivatives in the
Euler-Lagrange equations. Then they introduce a nonlinear elasticity regularization based
on the basic Saint Venant-Kirchhoff stored energy function in order to allow for larger and
smoother deformations. The first conclusion is that, by comparison with image registration
models involving linear regularization, the nonlinear-elasticity-based model renders better
ground truth, produces larger mutual information and requires fewer numerical corrections
such as regridding steps. The second conclusion is that the biharmonic model is more compa-
rable to the nonlinear elasticity model, which motivates us to further examine its behaviour
compared with our model. Three kinds of experiments have been conducted: the first kind
consisted in replacing the nonlinear-elasticity-based regularizer by the biharmonic one, keep-
ing the dissimilarity measure untouched. The second kind of experiments consisted both in
replacing the nonlinear-elasticity-based regularizer by the biharmonic one and in removing
the weighted total variation in order to assess its relevance. In both cases (even if including
the weighted total variation yields to better results, see the webpage), the obtained deformed
Template exhibits artefacts on the boundary of the brain slice, and the hole is not satisfacto-
rily reproduced (after 40000 iterations for this algorithm versus 100 iterations for our model,
see Fig. 4.10). To conclude, in order to assess the relevance of the weighted total variation
(in addition to allowing for the segmentation of the Reference image), we turned it off in the
original nonlinear-elasticity-based model. We see that including the weighted total variation
term increases the speed of convergence of the algorithm. For a same number of iterations, the
L2-fidelity term alone cannot achieve the joint registration/segmentation process (Fig. 4.11).
Moreover, in the regions where the matching is achieved, the circumvolutions of the brain are
not as clearly reproduced as in the model including the weighted total variation.
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Figure 4.10: Obtained result with the biharmonic model after 40000 iterations

(a) Deformed Template (b) Deformed grid: Template
to Reference

(c) Deformed grid: Reference
to Template

(d) Zoom on the circumvolutions when weighted TV is on

(e) Zoom on the circumvolutions when weighted TV is off

Figure 4.11: Obtained results when the weighted total variation is turned off in the nonlinear
elasticity based model. The thin concavities are better delineated when the weighted total
variation is on.
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Remark 4.3.1

Two alternative models have been experimented and give similar results. These are anal-
ogously built on Bresson et al.’s ones in [6]. The first one consists in minimizing the
following functional :

G(T̃ , V ) = ν

∫

Ω
|T̃ −R|dx+ varg(T̃ ) +

∫

Ω
QW (V )dx

subjected to ‖T̃ − T ◦ ϕ‖2L2(Ω) ≤ ε,

‖∇ϕ− V ‖2L2(Ω,M2)
≤ ε,

(4.15)

(4.16)

with the idea to let ε tend to 0. The second one, also based on [6], employs Chan-Vese
segmentation principles:

H(T̃ , V ) = ν

∫

Ω

(
(c1 −R)2 − (c2 −R)2

)
T̃ dx+ varg(T̃ ) +

∫

Ω
QW (V )dx

subjected to ‖T̃ − T ◦ ϕ‖L1(Ω) ≤ ε,

‖∇ϕ− V ‖2L2(Ω,M2)
≤ ε,

where c1 =

∫
ΩR(x)H(T̃ )∫

ΩH(T̃ )
and c2 =

∫
ΩR(x)(1−H(T̃ ))∫

Ω(1−H(T̃ ))
.

(4.17)

(4.18)

This is still a work in progress.

Conclusion

We therefore have designed functionals for image joint registration/segmentation problem,
not only based on intensity differences but also on weighted total variation in order to favor
shape alignment rather than intensity matching. Moreover, we overcome the obstacle of
non quasiconvexity of the stored energy function of Saint Venant-Kirchhoff using a relaxed
problem associated with the original one. Then we provide theoretical results as existence of
minimizers for the relaxed problem and equality of the two infima under certain conditions.
Also a Γ-convergence result for the decoupled problem is established.
Our future work consists in extending the problem to the 3D case, using the formulation of
the Saint Venant-Kirchhoff stored function in terms of the singular values of ∇ϕ and a finite
element approach for the numerical discretization as done by Le Dret in [26].
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Rouen, France) for providing us with the cardiac cycle MRI images. Her help has been much
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[30] M. Miller, A. Trouvé, and L. Younes, On the Metrics and Euler-Lagrange Equa-
tions of Computational Anatomy, Annu. Rev. B. Eng., 4 (2002), pp. 375–405.

[31] M. I. Miller and L. Younes, Group actions, homeomorphisms, and matching: A
general framework, International Journal of Computer Vision, 41 (2001), pp. 61–84.

[32] J. Modersitzki, Numerical Methods for Image Registration, Oxford University Press,
2004.

[33] , FAIR: Flexible Algorithms for Image Registration, Society for Industrial and Ap-
plied Mathematics (SIAM), 2009.

[34] P. Negrón Marrero, A numerical method for detecting singular minimizers of multidi-
mensional problems in nonlinear elasticity, Numerische Mathematik, 58 (1990), pp. 135–
144.
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CHAPTER 5

NONLOCAL JOINT SEGMENTATION REGISTRATION MODEL

In this chapter, we address the issue of designing a theoretically well-motivated joint segmentation-
registration method capable of handling large deformations. The shapes to be matched are
implicitly modeled by level set functions and are evolved in order to minimize a functional
containing both a nonlinear-elasticity-based regularizer and a criterion that forces the evolv-
ing shape to match intermediate topology-preserving segmentation results.

The chapter is organized as follows. First, we present the mathematical modelling and we
introduce the nonlinear-elasticity-based regularizer. Then we are concerned with the design
of the fidelity term inspired by a topology-preserving segmentation model. Next, we proceed
with the study of theoretical results encompassing existence of minimizers, a Γ-convergence
result and the existence of a weak viscosity solution of the related evolution problem. Finally,
we provide a discretization method and implementation details as well as some numerical
results.

Introduction

Image segmentation aims to partition a given image into meaningful constituents or to find
boundaries delineating such objects (see [1, Chapter 4] for instance, for a relevant analysis of
this problem), while registration, given two images called Template and Reference, consists
in determining a smooth deformation field ϕ such that the deformed Template is aligned with
the Reference. According to the modalities of the involved images, the goal of registration
might differ: for images of the same modality, the purpose of registration is to match the
geometrical features, the shapes and the intensity level distribution of the Reference with
those of the Template. When the images have been acquired through different mechanisms
and have different modalities, registration aims to correlate both images in terms of shapes
and salient components, while preserving the modality of the Template image. In this paper,
instead of considering these two tasks, segmentation and registration, as independent ones,
we propose to jointly treat them: the segmentation result obtained at intermediate steps will
serve as a target to reach in the registration process and will guide it. The scope of the
proposed work is thus first to devise a theoretically well-motivated registration model in a
variational formulation, authorizing large and smooth deformations. In particular, classical
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regularizers such as linear elasticity (see [6]) are not suitable for this kind of problems involving
large deformations since assuming small strains and the validity of Hooke’s law. In addition,
to handle a large class of images, we propose defining a geometric dissimilarity measure based
on shape comparisons thanks to successive segmentation results that will serve as inputs
in our registration model. Thus the algorithm produces both a smooth mapping between
the two shapes as well as a segmentation of the Reference image. The idea of combining
segmentation and registration is not new. Prior related works suggest to take advantage of
both processes: in [28], a curve evolution approach is used and phrased in terms of level set
functions. In [26], Vemuri et al. propose a coupled PDE model to perform both segmentation
and registration. In the first PDE, the level sets of the source image are evolved along their
normals with a speed defined as the difference between the target and the evolving source
image. In [18], the model combines a matching criterion based on the active contours without
edges ([9]) and a nonlinear-elasticity-based regularizer. In [19], Lord et al. propose a unified
method that simultaneously treats segmentation and registration based on metric structure
comparisons. In [15], Droske et al. aim to match the edges and the normals of the two
images by applying a Mumford-Shah type free discontinuity problem. More recently, Ozeré
et al. ([22]) have introduced a variational joint segmentation/registration model combining
a measure of dissimilarity based on weighted total variation and a regularizer based on the
stored energy function of a Saint Venant-Kirchhoff material.

5.1 Mathematical Modelling

Making the same assumptions as those in the previous chapters, let us denote by:

• Ω a connected bounded open subset of R2 with Lipschitz boundary ∂Ω,

• R : Ω̄ −→ R, representing the Reference image,

• T : Ω̄ −→ R, the Template image assumed to be compactly supported and Lipschitz
continuous (we denote by kT the Lipschitz constant),

• ϕ : Ω̄ −→ R
2 the sought deformation with prescribed values on the boundary: ϕ = Id

on ∂Ω.

The shape contained in the Template image is supposed to be modeled by a Lipschitz con-
tinuous function Φ0 whose zero level line is the shape boundary. Denoting by C the zero level
set of Φ0 and by w ⊂ Ω the open set it delineates, Φ0 is chosen such that

C = {x ∈ Ω |Φ0(x) = 0} ,
w = {x ∈ Ω |Φ0(x) > 0} ,
Ω \ w̄ = {x ∈ Ω |Φ0(x) < 0} .

For theoretical and numerical purposes, we may consider a linear extension operator (see [5,
p. 158]) P : W1,∞(Ω) → W1,∞(R2) such that for all Φ ∈ W1,∞(Ω),

(i) PΦ|Ω = Φ,

(ii) ‖PΦ‖L∞(R2) ≤ C ‖Φ‖L∞(Ω),

(iii) ‖PΦ‖W1,∞(R2) ≤ C ‖Φ‖W1,∞(Ω), with C depending only on Ω.
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By this extension process, we consider then that Φ0 ∈ W1,∞(R2) to ensure that Φ0 ◦ϕ – with
ϕ introduced later – is always defined.
Let ϕ : Ω̄ → R

2 be the sought deformation. A deformation is a smooth mapping that is
orientation-preserving and injective, except possibly on ∂Ω. We also denote by u the associ-
ated displacement such that ϕ = Id+u, Id denoting the identity mapping. The deformation
gradient is ∇ϕ = I+∇u, Ω̄ →M2(R), the set M2(R) being the set of all real square matrices
of order 2 identified to R

4.
The idea is thus to find a smooth deformation field ϕ such that the zero level line of Φ0◦ϕ gives
a relevant partition of the Reference image R, relating then segmentation and registration.
The model is phrased as a functional minimization problem with unknown ϕ; it combines a
smoother on the deformation field, and a distance measure criterion between Φ0 ◦ ϕ and an
input resulting from the topology-preserving segmentation process of Le Guyader and Vese
([17]).

In many applications, such as medical imaging, topology preservation is a desirable prop-
erty: when the shape to be detected has a known topology (e.g. spherical topology for the
brain), or when the resulting shape must be homeomorphic to the initial one. In other words,
an initial contour should be deformed without change of topology as merging or breaking.
We expect this property to be inherited by the registration process. This measure constitutes
an alternative to classical intensity-based/information-theoretic-based matching measures,
mutual information – suitable when dealing with images that have been acquired through
different sensors –, measures based on the comparison of gradient vector fields of both im-
ages, metric structure comparisons, mass-preserving measures, etc. The proposed matching
criterion is complemented by a nonlinear-elasticity-based regularizer on the deformation field
ϕ. To allow large and nonlinear deformations, we propose to view the shapes to be warped as
isotropic, homogeneous, hyperelastic materials and more precisely as Saint Venant-Kirchhoff
materials (see [11] for further details and [7] for an alternative hyperelastic model). A moti-
vation for this choice is that the stored energy function of such materials is the simplest one
that agrees with the generic expression of the stored energy of an isotropic, homogeneous,
hyperelastic material. To ensure that the distribution of the deformation Jacobian determi-
nants does not exhibit shrinkages or growths, we propose complementing the model by a term
controlling that the Jacobian determinant remains close to 1. At this stage, the considered
regularizer would be, setting F = ∇ϕ

W (F ) =WSV K(F ) + µ (detF − 1)2 ,

with WSV K(F ) =
λ

2
(trE)2 +µ trE2, the stored energy function of a Saint Venant-Kirchhoff

material, λ and µ the Lamé coefficients, E =
(
F TF − I

)
/2 the Green-Saint Venant stress

tensor measuring the deviation between ϕ and a rigid deformation, and with the following
notation A : B = trATB, the matrix inner product and ‖A‖ =

√
A : A the related matrix

norm (Frobenius norm).
Nevertheless, the stored energy function W written as is exhibits undesirable properties:
it is not rank-1 convex (as the density WSV K), and consequently neither quasiconvex, nor
polyconvex, which raises a drawback of theoretical nature since we cannot obtain the weak
lower semicontinuity of the introduced functional. The idea is thus to replace W by its
quasiconvex envelope QW (see [13] for a deeper presentation of these notions). In general,
deriving the explicit expression of this envelope is an hopeless task, but in this case, using
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Jensen’s inequality and a decomposition result by Bousselsal ([4]), one can establish that

QW (F ) =

∣∣∣∣
W (F ) = β

(
‖F‖2 − α

)2
+ ψ(detF ) if ‖F‖2 ≥ α ,

ψ(detF ) if ‖F‖2 < α ,

with α = 2
λ+ µ

λ+ 2µ
, β =

λ+ 2µ

8
and ψ the convex mapping defined by

ψ : t 7→ −µ
2
t2 + µ (t− 1)2 +

µ (λ+ µ)

2(λ+ 2µ)
.

Remark 5.1.1

In fact, we can prove a stronger result, namely, that the polyconvex envelope of W , PW ,
coincides with the quasiconvex envelope of W : PW = QW .

Ultimately, we propose to consider the following minimization problem, with T > 0 fixed

inf

{
Ī(ϕ) =

∫

Ω
f(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ Id +W1,4

0 (Ω,R2)

}
, (5.1)

with f(x, ϕ, ξ) =
ν

2
‖Φ0 ◦ ϕ − Φ̃(·, T )‖2 +QW (ξ) and Φ̃ a solution of the evolution equation

stemming from the topology-preserving segmentation model by Le Guyader and Vese ([17])





∂Φ̃

∂t
= |∇Φ̃|

[
div

(
g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)]
+ 4

µ′

d2
H̄(Φ̃(x) + l)H̄(l − Φ̃(x))

∫

Ω

[
〈x− y,∇Φ̃(y)〉 e−‖x−y‖22/d2H̄(Φ̃(y) + l)H̄(l − Φ̃(y))

]
dy ,

Φ̃(x, 0) = Φ0(x) ,

∂Φ̃

∂~ν
= 0, on ∂Ω .

(E)

Function g̃ is an edge-detector function satisfying

(i) g̃(0) = 1,

(ii) g̃ strictly decreasing,

(iii) lim
r→+∞

g̃(r) = 0.

This evolution equation results from the minimization of functional J(Φ̃) + µ′L(Φ̃) (µ′ > 0,

tuning parameter), combination of J(Φ̃) =

∫

Ω
g̃(|∇R|)|DH̄(Φ)| coming from the classical

geodesic active contour model ([8]) (H̄ being the one-dimensional Heaviside function) and L,
related to the topological constraint:

L(Φ̃) = −
∫

Ω

∫

Ω

[
exp

(
−‖x− y‖22

d2

)
〈∇Φ̃(x),∇Φ̃(y)〉 H̄(Φ̃(x) + l)H̄(l − Φ̃(x))

H̄(Φ̃(y) + l)H̄(l − Φ̃(y))
]
dx dy. (5.2)

The Euclidean scalar product in R
2 is denoted by 〈·, ·〉 and ‖ · ‖2 is the associated norm.

A geometrical observation motivates the introduction of L. Indeed, in the case when Φ is a
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signed-distance function, |∇Φ| = 1 and the unit outward normal vector to the zero level line at
point x is −∇Φ(x). Let us now consider two points (x, y) ∈ Ω×Ω belonging to the zero level
line of Φ, close enough to each other, and let −∇Φ(x) and −∇Φ(y) be the two unit outward
normal vectors to the contour at these points. When the contour is about to merge or split,
that is, when the topology of the evolving contour is to change, then 〈∇Φ(x),∇Φ(y)〉 ≃ −1.
This remark justifies the construction of L.

-

-

(a)

-

-

(b)

Figure 5.1: Geometrical characterization of points in a zone where the curve is to split, merge,
or have a contact point.

The registration process is then fed by the knowledge of the segmentation of the Reference
image at time T . In practice, we may apply several times this step.
Also, ϕ ∈ Id + W1,4

0 (Ω,R2) means that ϕ = Id —the identity mapping— on ∂Ω and
ϕ ∈ W1,4(Ω,R2). W1,4(Ω,R2) denotes the Sobolev space of functions ϕ ∈ L4(Ω,R2) with
distributional derivatives up to order 1 which also belong to L4(Ω). (The rewriting of W (F )

into β
(
‖F‖2 − α

)2
+ Ψ(detF ) allows to see that W1,4(Ω,R2) is a suitable functional space

for the considered minimization problem (5.1): from Hölder’s inequality, if ϕ ∈ W1,4(Ω,R2),
then det∇ϕ ∈ L2(Ω)).
In the next section, we prove that the infimum of problem (5.1) is attained and that if ϕ̄ is a
solution of (5.1), then there exists a minimizing sequence {ϕν} of problem (P ) defined by

inf
ϕ∈Id+W1,4

0 (Ω,R2)
I(ϕ) with I(ϕ) =

ν

2
‖Φ0 ◦ ϕ− Φ̃(·, T )‖2L2(Ω) +

∫

Ω
W (∇ϕ) dx ,

(i.e., the functional expressed in terms of the Saint Venant-Kirchhoff stored energy function)
such that ϕν weakly converges to ϕ̄ and I(ϕν) → Ī(ϕ̄). The solutions of (5.1) are considered
as generalized solutions of (P ), in the sense of weak convergence. We also ensure that Φ̃(·, T )
is well-defined, using the viscosity solution theoretical framework.

5.2 Theoretical results

5.2.1 Existence of minimizers and relaxation theorem

We state the main theoretical result related to the existence of minimizers, following argu-
ments similar to those used in [14].
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Theorem 5.2.1

The infimum of (5.1) is attained. Let then ϕ̄ ∈ W1,4(Ω,R2) be a minimizer of the
relaxed problem (5.1). Then there exists a sequence {ϕν}∞ν=1 ⊂ ϕ̄+W1,4

0 (Ω,R2) such that
ϕν → ϕ̄ in L4(Ω,R2) as ν → ∞ and I(ϕν) → Ī(ϕ̄) as ν → ∞. Moreover, the following
holds: ϕν ⇀ ϕ̄ in W1,4(Ω,R2) as ν → ∞.
It means in particular that inf

ϕ∈Id+W1,4
0 (Ω,R2)

I(ϕ) = min
ϕ∈Id+W1,4

0 (Ω,R2)
Ī(ϕ),

as QW ≤ W . The solutions of (5.1) are considered as generalized solutions of problem
(P).

Proof : The proof is similar to the one of Theorem 6.1.8 in Chapter 6.

We now investigate the well-definedness of Φ̃(·, T ).

5.2.2 Well-definedness of Φ̃

Problem (E) is hard to handle from a theoretical point of view. A suitable setting would be the
one of the viscosity solution theory ([12]) (owing to the nonlinearity induced by the modified
mean curvature term), but the dependency of the nonlocal term on the gradient ∇Φ̃(y)
and the failure to fulfill the monotony property in Φ̃ make it difficult. For this reason, for
the theoretical part, we consider a slightly modified problem: we assume that the topological
constraint is only applied to the zero level line. Assuming that Φ̃ is a signed-distance function,
the topological constraint L is then rephrased as

L(Φ̃) = −
∫

Ω

∫

Ω

[
exp

(
−‖x− y‖22

d2

)
〈∇Φ̃(x),∇Φ̃(y)〉δ(Φ̃(x))δ(Φ̃(y))dx dy ,

with δ the Dirac measure.
The evolution equation coming from the Euler-Lagrange equation associated to J(Φ̃)+µL(Φ̃)
is computed. It can be formally obtained as follows: let us denote by Γ(ν) = J (ν) + µL(ν)
with J (ν) = J(Φ̃ + νΨ) and L(ν) = L(Φ̃ + νΨ), ν being a small parameter and Ψ a function
like Φ̃. A minimizer Φ̃ will satisfy Γ′(0) = J ′(0) + µL′(0) = 0 for all functions Ψ.

We set G(x − y) = exp

(
−‖x− y‖22

d2

)
and h(∇Φ̃(x),∇Φ̃(y)) = −〈∇Φ̃(x),∇Φ̃(y)〉. We will

use the following notations h = h(z1, z2, z3, z4) and we will denote by ∇z1z2h = (hz1 , hz2)
T

and ∇z3z4h = (hz3 , hz4)
T .

L(ν) =
∫

Ω

∫

Ω
G(x− y)h

(
∇Φ̃(x) + ν∇Ψ(x),∇Φ̃(y) + ν∇Ψ(y)

)

δ(Φ̃(x) + νΨ(x))δ(Φ̃(y) + νΨ(y)) dx dy.
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One has,

L′(0) =
∫

Ω

∫

Ω
G(x− y)h

(
∇Φ̃(x),∇Φ̃(y)

)

(
δ′(Φ̃(x))δ(Φ̃(y))Ψ(x) + δ′(Φ̃(y))δ(Φ̃(x))Ψ(y)

)
dx dy

+

∫

Ω

∫

Ω
G(x− y)δ(Φ̃(x))δ(Φ̃(y))

(
〈∇z1z2h(∇Φ̃(x),∇Φ̃(y)),∇Ψ(x)〉+ 〈∇z3z4h(∇Φ̃(x),∇Φ̃(y)),∇Ψ(y)〉

)
dx dy.

Switching x and y and assuming we can interchange the order of integration, we obtain

L′(0) =2

∫

Ω

{∫

Ω

[
G(x− y)h(∇Φ̃(x),∇Φ̃(y))δ′(Φ̃(x))δ(Φ̃(y))

]
dy

}
Ψ(x) dx

+ 2

∫

Ω

∫

Ω
G(x− y)δ(Φ̃(x))δ(Φ̃(y))〈∇z1z2h(∇Φ̃(x),∇Φ̃(y)),∇Ψ(x)〉 dx dy,

and integrating by parts and setting the necessary boundary conditions to zero,

L′(0) =2

∫

Ω

{∫

Ω

[
G(x− y)h(∇Φ̃(x),∇Φ̃(y))δ′(Φ̃(x))δ(Φ̃(y))

]
dy

}
Ψ(x)dx

− 2

∫

Ω

{∫

Ω
div

(
G(x− y)δ(Φ̃(x))δ(Φ̃(y))∇z1z2h(∇Φ̃(x),∇Φ̃(y))

)
dy

}
Ψ(x)dx.

Finally, we obtain the following Euler-Lagrange equation

−δ(Φ̃(x)) div
(
g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)
− 4µ

d2
δ(Φ̃(x))

∫

Ω

(
〈x− y,∇Φ̃(y)〉e

−‖x−y‖22
d2 δ(Φ̃(y))

)
dy = 0.

Then applying an integration by parts, a gradient descent method and a rescaling by re-
placing δ(Φ̃) by |∇Φ̃|, yields to the evolution problem (defined on R

2 for the space coordinates
for the sake of simplicity)

∂Φ̃

∂t
= |∇Φ̃|

{
div

(
g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)
+ c0 ∗

[
Φ̃(·, t)

]}
, (5.3)

with
[
Φ̃(·, t)

]
the characteristic function of the set

{
Φ̃(·, t) ≥ 0

}
and

c0 :





R
2 → R

x 7→ 4µ

d2

(
2− 2

d2
‖x‖22

)
exp

(
−‖x‖22

d2

)
. (5.4)

Remark 5.2.1

A sample of experiments shows that this simplified model qualitatively performs in a
similar way to [17] (see [16] in particular).
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We now describe the general framework our equation falls within, recall the definition of
weak solutions in this context, give the general existence theorem (in the unbounded case)
introduced by Barles et al. ([2]) and check whether it applies to the considered problem (5.3).
Note that the proposed result, which is a result of existence of weak solutions to problem
(5.3)– with no restriction on time T – is different from the one obtained in [16], which is a
short-time existence/uniqueness result in the classical sense.

General framework

We follow the notations of [2]. Let us consider the class of nonlocal and nonlinear parabolic
equations which can be rewritten as

{
ut = H[1{u≥0}]

(
x, t, u,Du,D2u

)
in R

N × (0, T ) ,

u(·, 0) = u0 in R
N ,

(5.5)

where ut, Du and D2u stand respectively for the time derivative, gradient and Hessian matrix
with respect to the space variable x of u : RN×[0, T ] → R, and where 1A denotes the indicator
function of a set A. The initial datum u0 is a bounded and Lipschitz continuous function on
R
N .

For any indicator function χ : RN × [0, T ] → R, or more generally for any χ ∈ L∞(RN ×
[0, T ]; [0, 1]), H[χ] denotes a function of (x, t, r, p, A) ∈ R

N × [0, T ]×R×R
N \{0}×SN where

SN is the set of real, N ×N symmetric matrices.
For almost any t ∈ [0, T ], (x, r, p, A) 7→ H[χ](x, t, r, p, A) is a continuous function on R

N×R×
R
N \ {0} × SN with a possible singularity at p = 0, while t 7→ H[χ](x, t, r, p, A) is a bounded

measurable function for all (x, r, p, A) ∈ R
N × R× R

N \ {0} × SN .
The equation is said to be degenerate elliptic if, for any χ ∈ L∞(RN × [0, T ]; [0, 1]), for any
(x, r, p) ∈ R

N × R× R
N \ {0}, for almost every t ∈ [0, T ] and for all A,B ∈ SN , one has:

H[χ](x, t, r, p, A) ≤ H[χ](x, t, r, p, B) if A ≤ B ,

with ≤ the usual partial ordering for symmetric matrices.
The notion of viscosity solutions for equations with a measurable dependence in time (called
L1-viscosity solution) is needed to define weak solutions. For a complete presentation of the
theory, the reader may refer to [3]. The following definition of weak solutions is introduced
in [2].

Definition 5.2.2 (Taken from [2])

Let u : RN × [0, T ] → R be a continuous function. u is said to be a weak solution of (5.5)
if there exists χ ∈ L∞(RN × [0, T ]; [0, 1]) such that:

i) u is a L1-viscosity solution of

{
ut(x, t) = H[χ](x, t, u,Du,D2u) in R

N × (0, T ) ,
u(·, 0) = u0 in R

N .
(5.6)

ii) For almost all t ∈ [0, T ],

1{u(·,t)>0} ≤ χ(·, t) ≤ 1{u(·,t)≥0} a.e. in R
N . (5.7)
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Moreover, we say that u is a classical solution of (5.5) if in addition, for almost every
t ∈ [0, T ],

1{u(·,t)>0} = 1{u(·,t)≥0} a.e in R
N .

We now state some assumptions (still following [2]) that are needed to establish the result of
existence of at least one weak solution to general problem (5.5).

[A1] i) For any χ ∈ X ⊂ L∞(RN × [0, T ]; [0, 1]), equation (5.6) has a bounded uniformly
continuous L1-viscosity solution u. Moreover, there exists a constant L > 0 inde-
pendent of χ ∈ X such that |u|∞ ≤ L.

ii) For any fixed χ ∈ X, a comparison principle holds for equation (5.6): if u is a
bounded, upper semi-continuous L1-viscosity subsolution of (5.6) in R

N × (0, T )
and v is a bounded, lower semi-continuous L1-viscosity supersolution of (5.6) in
R
N × (0, T ) with u(·, 0) ≤ v(·, 0) in R

N , then u ≤ v in R
N × (0, T ).

[A2] i) For any compact subset K ⊂ R
N × R × R

N \ {0} × SN , there exists a (locally
bounded) modulus of continuity mK : [0, T ] × R

+ → R
+ such that mK(·, ε) → 0

in L1(0, T ) as ε→ 0, and

|H[χ](x1, t, r1, p1, A1)−H[χ](x2, t, r2, p2, A2)| ≤
mK(t, |x1 − x2|+ |r1 − r2|+ |p1 − p2|+ |A1 −A2|) ,

for any χ ∈ X, for almost all t ∈ [0, T ] and all (x1, r1, p1, A1),
(x2, r2, p2, A2) ∈ K.

ii) There exists a bounded function h(x, t, r), which is continuous in x and r for
almost every t and measurable in t, such that: for any neighborhood V of (0, 0) in
R
N \ {0} × SN and any compact subset K ⊂ R

N × R, there exists a modulus of
continuity mK,V : [0, T ]×R

+ → R
+ such that mK,V (·, ε) → 0 in L1(0, T ) as ε→ 0,

and
|H[χ](x, t, r, p, A)− h(x, t, r)| ≤ mK,V (t, |p|+ |A|) ,

for any χ ∈ X, for almost all t ∈ [0, T ], all (x, r) ∈ K and (p,A) ∈ V .

iii) If χn ⇀ χ weakly-∗ in L∞(RN × [0, T ]; [0, 1]) with χn, χ ∈ X for all n, then for all
(x, t, r, p, A) ∈ R

N × [0, T ]× R× R
N \ {0} × SN ,

∫ 1

0
H[χn](x, s, r, p, A) ds →

n→+∞

∫ 1

0
H[χ](x, s, r, p, A) ds ,

locally uniformly for t ∈ [0, T ]

[A3] For any χ ∈ X, for almost every t ∈ [0, T ], for all (x, p,A) ∈ R
N × R

N \ {0} × SN , and
for any r1 ≤ r2,

H[χ](x, t, r1, p, A) ≥ H[χ](x, t, r2, p, A) .

The general existence theorem proposed by Barles et al. ([2]) is then:

Theorem 5.2.3 (General existence theorem by Barles et al. [2])

Assume that [A1], [A2] and [A3] hold. Then there exists at least a weak solution to (5.5).



130 CHAPTER 5. NONLOCAL JOINT SEGMENTATION REGISTRATION MODEL

Existence of weak solutions of the considered evolution problem

Equipped with these theoretical elements, we now state the main theoretical result regarding
the existence of at least one weak solution to problem (5.3).

Theorem 5.2.4

Assuming that g := g̃(|∇R|), g 1
2 and ∇g are bounded and Lipschitz continuous on R

2,
problem (5.3) admits at least one weak solution.

Proof : First, one can easily check that setting C(p) := (I − p
⊗
p

|p|2 ),

H[χ](x, t, p, A) =g(x)tr (C(p)A) + 〈∇g(x), p〉+ |p|
∫

R2

c0(x− y)χ(y, t) dy .

We give the sketch of the proof by mainly checking that the assumptions of Theorem
5.2.3 are fulfilled.

For assumption [A1], we have both to prove the existence of a L1-viscosity solution
and a comparison principle (following the Perron method). This result is obtained by
combining the results of Bourgoing in [3] and Nunziante in [21].

Let us now focus on assumption [A2] i).
M > 0 denotes a positive constant that may change line to line and that may depend
on K, g, ∇g, ‖c0‖L1(R2) or ‖∇c0‖L1(R2). Recall that (xi, pi, Ai) belongs to the compact
subset K. One then has

|〈∇g(x1), p1〉 − 〈∇g(x2), p2〉| =|〈∇g(x1)−∇g(x2), p1〉+ 〈∇g(x2), p1 − p2〉|
≤M (|x1 − x2|+ |p1 − p2|) ,

due to the properties of ∇g. Also,

∣∣∣∣|p1|
∫

R2

c0(x1 − y)χ(y, t) dy − |p2|
∫

R2

c0(x2 − y)χ(y, t) dy

∣∣∣∣

≤ ||p1| − |p2||
∣∣∣∣
∫

R2

c0(x1 − y)χ(y, t) dy

∣∣∣∣

+ |p2|
∣∣∣∣
∫

R2

(c0(x1 − y)− c0(x2 − y))χ(y, t) dy

∣∣∣∣ ,

≤ |p1 − p2| ‖c0‖L1(R2)‖χ‖L∞(R2×[0,T ])

+ |p2|
∣∣∣∣
∫

R2

(∫ 1

0
〈∇c0((x2 − y) + s(x1 − x2)), x1 − x2〉 ds

)
χ(y, t) dy

∣∣∣∣ .
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A change of variable in the integral allows to conclude that

∣∣∣∣|p1|
∫

R2

c0(x1 − y)χ(y, t) dy − |p2|
∫

R2

c0(x2 − y)χ(y, t) dy

∣∣∣∣
≤ |p1 − p2| ‖c0‖L1(R2)‖χ‖L∞(R2×[0,T ])

+ |p2| |x1 − x2| ‖χ‖L∞(R2×[0,T ]) ‖∇c0‖L1(R2) ,

≤M (|p1 − p2|+ |x1 − x2|) .

It remains to estimate |g(x1)tr (C(p1)A1)− g(x2)tr (C(p2)A2)|. One has

|g(x1)tr (C(p1)A1)− g(x2)tr (C(p2)A2)| ≤ |g(x1)− g(x2)| |tr (C(p1)A1)|
+ g(x2) |tr (C(p1)A1)− tr (C(p2)A2)| ,
≤M |x1 − x2| ‖C(p1)‖F ‖A1‖F + g(x2) |tr ((C(p1)− C(p2))A1)

+ tr (C(p2) (A1 −A2))| ,

‖ · ‖F denoting the Frobenius norm. Remarking that ‖C(p1)‖F = 1 and that one has
‖A1‖F ≤

√
2‖A1‖2 =

√
2|A1|, it yields to

|g(x1)tr (C(p1)A1)− g(x2)tr (C(p2)A2)| ≤M (|x1 − x2|+ |A1 −A2|)
+ g(x2) |tr ((C(p1)− C(p2))A1)| . (5.8)

One can notice that C(p) = σ(p)σ(p)T with σ(p) =

(
p02
|p| 0

−p01
|p| 0

)
, p = (p01, p02)

T 6= 0.

Consequently,

g(x2) |tr ((C(p1)− C(p2))A1)| ≤
M

∣∣tr
(
(σ(p1)− σ(p2))σ(p1)

TA1

)
+ tr

(
σ(p2)

(
σ(p1)

T − σ(p2)
T
)
A1

)∣∣ .

Focusing on the first term of the right part of the inequality, the result being similar
for the second component, one obtains

∣∣tr
(
(σ(p1)− σ(p2))σ(p1)

TA1

)∣∣ ≤ ‖A1‖F ‖σ(p1)− σ(p2)‖F ‖σ(p1)T ‖F ,

≤M

∣∣∣∣
p1
|p1|

− p2
|p2|

∣∣∣∣ ≤
|p1 − p2|

min (|p1|, |p2|)
,

so ∣∣tr
(
(σ(p1)− σ(p2))σ(p1)

TA1

)∣∣ ≤M |p1 − p2| .
Including this result in equation (5.8) yields to the desired estimation.

The two remaining assumptions are checked using the same arguments as above and
taking h the null function for assumption [A2] ii) and by definition of the L∞-weak ∗
convergence for assumption [A2] iii).

Assumption [A3] is obviously fulfilled, H[χ] being independent of r in the considered
problem.
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5.3 Numerical Method of Resolution

In [20], Negrón Marrero describes and analyzes a numerical method that detects singular
minimizers and avoids the Lavrentiev phenomenon for three dimensional problems in non-
linear elasticity. This method consists in decoupling the function ϕ from its gradient and
in formulating a related decoupled problem under inequality constraint. In the same spirit,
we introduce an auxiliary variable V simulating the Jacobian deformation field ∇ϕ (–the
underlying idea being to remove the nonlinearity in the derivatives of the deformation–) and
derive a functional minimization problem phrased in terms of the two variables ϕ and V . The
decoupled problem is thus defined by means of the following functional:

Īγ(ϕ, V ) =
ν

2
‖Φ0 ◦ ϕ− Φ̃(·, T )‖2L2(Ω) +

∫

Ω
QW (V ) dx+

γ

2
‖V −∇ϕ‖2L2(Ω,M2)

, (5.9)

the idea being to let γ tend to +∞. Let us now denote by Ŵ the functional space defined by
Ŵ = Id +W1,2

0 (Ω,R2) and by χ̂, the functional space χ̂ =
{
V ∈ L4(Ω,M2)

}
. The decoupled

problem consists in minimizing (5.9) on Ŵ × χ̂. Then the following theorem holds.

Theorem 5.3.1

Let (γj) be an increasing sequence of positive real numbers such that lim
j→+∞

γj = +∞.

Let also (ϕk(γj), Vk(γj)) be a minimizing sequence of the decoupled problem with γ = γj .
Then there exist a subsequence denoted by(
ϕN(γΨ◦ζ(j))(γΨ◦ζ(j)), VN(γΨ◦ζ(j))(γΨ◦ζ(j))

)
of (ϕk(γj), Vk(γj)) and a minimizer ϕ̄ of Ī (ϕ̄ ∈

Id+W1,4
0 (Ω,R2)) such that:

lim
j→+∞

ĪγΨ◦ζ(j)

(
ϕN(γΨ◦ζ(j))(γΨ◦ζ(j)), VN(γΨ◦ζ(j))(γΨ◦ζ(j))

)
= Ī(ϕ̄).

Proof : Let ǫ > 0 be given, ǫ ∈]0, ǫ0], ǫ0 > 0 fixed. There exists ϕ̂ǫ ∈ W = Id+W1,4
0 (Ω,R2)

such that:
inf

(ϕ,V )∈Ŵ×χ̂
Īγ(ϕ, V ) ≤ Īγ(ϕ̂ǫ,∇ϕ̂ǫ) = Ī(ϕ̂ǫ)

< inf
ϕ∈W

Ī(ϕ) + ǫ ≤ inf
ϕ∈W

Ī(ϕ) + ǫ0.

Consequently,

inf
(ϕ,V )∈Ŵ×χ̂

Īγ(ϕ, V ) ≤ inf
ϕ∈W

Ī(ϕ) + ǫ. (5.10)

The second part of the proof consists in taking an increasing sequence (γj) of positive
real numbers such that lim

j→+∞
γj = +∞. We then consider a minimizing sequence

denoted by (ϕk(γj), Vk(γj)) for the decoupled problem with γ = γj , that is:

lim
k→+∞

Īγj (ϕk(γj), Vk(γj), ) = inf
(ϕ,V )∈Ŵ×χ̂

Īγj (ϕ, V ).

In particular, ∀ǫ > 0, ∃N(ǫ, γj) ∈ N, ∀k ∈ N,
(
k ≥ N(ǫ, γj) =⇒ Īγj (ϕk(γj), Vk(γj)) ≤ inf

(ϕ,V )∈Ŵ×χ̂
Īγj (ϕ, V ) + ǫ

)
.
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Let us take in particular ǫ = 1
γj
. There exists N(γj) ∈ N such that ∀k ∈ N,

(
k ≥ N(γj) =⇒ Īγj (ϕk(γj), Vk(γj)) ≤ inf

(ϕ,V )∈Ŵ×χ̂
Īγj (ϕ, V ) +

1

γj

)
.

We then set k = N(γj) and we obtain:

Īγj

(
ϕN(γj)(γj), VN(γj)(γj)

)
≤ inf

(ϕ,V )∈Ŵ×χ̂
Īγj (ϕ, V ) +

1

γj
,

≤ inf
ϕ∈W

Ī(ϕ) +
2

γj
≤ inf

ϕ∈W
Ī(ϕ) +

2

γ0
< +∞, (5.11)

from (5.10).
Similarly to the coercivity inequality obtained in the proof of Theorem 5.2.1, the
following inequality holds:

µ

4
(det (V ))2 +

β

2
‖V ‖4 − β α2 − 3µ+

µ(λ+ µ)

2(λ+ 2µ)
≤ QW (V ).

As a consequence,

{
VN(γj)(γj) is uniformly bounded in L4(Ω,M2) (so in L2(Ω,M2) with M2 =M2(R) ∼ R

4) and

det(VN(γj)(γj)) is uniformly bounded in L2(Ω).

We can thus extract a subsequence denoted by
(
VN(γΨ(j))(γΨ(j))

)
such that:





VN(γΨ(j))(γΨ(j)) −−−−⇀
j→+∞

V̄ in L4(Ω,M2),

det(VN(γΨ(j))(γΨ(j))) −−−−⇀
j→+∞

δ̄ in L2(Ω).

In addition,

γΨ(j)

2
‖VN(γΨ(j))(γΨ(j))−∇ϕN(γΨ(j))(γΨ(j))‖2L2(Ω,M2)

≤
(
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)

)
meas(Ω)

+ inf
ϕ∈W

Ī(ϕ) +
2

γ0
,

so,

‖VN(γΨ(j))(γΨ(j))−∇ϕN(γΨ(j))(γΨ(j))‖2L2(Ω,M2)
≤ 2

γ0

((
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)

)
meas(Ω)

+ inf
ϕ∈W

Ī(ϕ) +
2

γ0

)

and

| ‖∇ϕN(γΨ(j))(γΨ(j))‖L2(Ω,M2) − ‖VN(γΨ(j))(γΨ(j))‖L2(Ω,M2) |
≤ ‖VN(γΨ(j))(γΨ(j))−∇ϕN(γΨ(j))(γΨ(j))‖L2(Ω,M2)

≤
(

2

γ0

((
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)

)
meas(Ω) + inf

ϕ∈W
Ī(ϕ) +

2

γ0

)) 1
2

.
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The sequence
(
ϕN(γΨ(j))(γΨ(j))

)
is thus uniformly bounded in W1,2(Ω,R2) according

to the generalized Poincaré inequality. (Recall that ϕN(γΨ(j))(γΨ(j)) = Id on ∂Ω). We

can therefore extract a subsequence denoted by
(
ϕN(γΨ◦ζ(j))(γΨ◦ζ(j))

)
such that:

ϕN(γΨ◦ζ(j))(γΨ◦ζ(j)) −−−−⇀
j→+∞

ϕ̄ in W1,2(Ω,R2).

To summarize at this stage,




VN(γΨ◦ζ(j))(γΨ◦ζ(j)) −−−−⇀
j→+∞

V̄ in L4(Ω,M2),

det(VN(γΨ◦ζ(j))(γΨ◦ζ(j))) −−−−⇀
j→+∞

δ̄ in L2(Ω),

ϕN(γΨ◦ζ(j))(γΨ◦ζ(j)) −−−−⇀
j→+∞

ϕ̄ in W1,2(Ω,R2).

For the sake of clarity, we denote by h(j) := Ψ ◦ ζ(j).
Let us now set zj = ∇ϕN(γh(j))(γh(j))− VN(γh(j))(γh(j)).
Since

‖VN(γh(j))(γζ(j))−∇ϕN(γh(j))(γh(j))‖L2(Ω,M2) ≤
1

γh(j)

((
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)

)
meas(Ω)

+ inf
ϕ∈W

Ī(ϕ) +
2

γ0

)
,

it implies that zj →
j→+∞

0 in L2(Ω,M2) and consequently,

∇ϕN(γh(j))(γh(j)) −−−−⇀j→+∞
V̄ in L2(Ω,M2).

Indeed, ∀Φ ∈ L2(Ω,M2),

∫

Ω
zj : Φ dx −→

j→+∞
0. So,

∫

Ω

(
∇ϕN(γh(j))(γh(j))− VN(γh(j))(γh(j))

)
: Φ dx −→

j→+∞
0.

But VN(γh(j))(γh(j)) ⇀
j→+∞

V̄ in L4(Ω,M2) so in L2(Ω,M2) and ∀Φ ∈ L2(Ω,M2),

∫

Ω
∇ϕN(γh(j))(γh(j)) : Φ dx −→

j→+∞

∫

Ω
V̄ : Φ dx.

In addition, ∇ϕN(γh(j))(γh(j)) −−−−⇀j→+∞
∇ϕ̄ in L2(Ω,M2), and by uniqueness of the weak

limit in L2(Ω,M2), ∇ϕ̄ = V̄ ∈ L4(Ω,M2).
As previously mentioned, VN(γh(j))(γh(j)) = ∇ϕN(γh(j))(γh(j)) − zj with zj −→

j→+∞
0 in

L2(Ω,M2). Consequently,

det(VN(γh(j))(γh(j))) = det(∇ϕN(γh(j))(γh(j))) + dj ,

with

dj =(zj)11(zj)22 − (zj)21(zj)12 − (zj)22
∂ϕ1

N(γh(j))
(γh(j))

∂x

− (zj)11
∂ϕ2

N(γh(j))
(γh(j))

∂y
+ (zj)21

∂ϕ1
N(γh(j))

(γh(j))

∂y

+ (zj)12
∂ϕ2

N(γh(j))
(γh(j))

∂x
,
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((zj)kl denoting the element of the kth row and the lth column of the matrix zj and

with ϕN(γh(j))(γh(j)) =
(
ϕ1
N(γh(j))

(γh(j)), ϕ
2
N(γh(j))

(γh(j))
)
). The following inequality

holds:
∫

Ω
|dj | dx ≤ 1

2
‖zj‖2L2(Ω,M2)

+ ‖zj‖L2(Ω,M2)‖∇ϕN(γh(j))(γh(j))‖L2(Ω,M2),

‖∇ϕN(γh(j))(γh(j))‖L2(Ω,M2) being bounded independently of j. As a consequence,

dj −→
j→+∞

0 in L1(Ω). Let us now gather all the previous results:





det(VN(γh(j))(γh(j))) −−−−⇀j→+∞
δ̄ in L2(Ω),

ϕN(γh(j))(γh(j)) −−−−⇀j→+∞
ϕ̄ in W1,2(Ω,R2),

and det(VN(γh(j))(γh(j))) = det(∇ϕN(γh(j))(γh(j))) + dj with dj −→
j→+∞

0 in L1(Ω).

From Theorem 1.14 from [13], if ϕN(γh(j))(γh(j)) −−−−⇀j→+∞
ϕ̄ in W1,2(Ω,R2), then

det(∇ϕN(γh(j))(γh(j))) −−−−⇀j→+∞
det(∇ϕ̄) in the sense of distributions.

Also, ∀Φ ∈ D(Ω),

∫

Ω
det(VN(γh(j))(γh(j))) Φ dx −→

j→+∞

∫

Ω
δ̄Φ dx,

since det(VN(γh(j))(γh(j))) weakly converges to δ̄ in L2(Ω).
In addition:

∫

Ω
det(VN(γh(j))(γh(j))) Φ dx =

∫

Ω
det(∇ϕN(γh(j))(γh(j))) Φ dx+

∫

Ω
dj Φ dx

and




∫

Ω
det(∇ϕN(γh(j))(γh(j))) Φ dx −→

j→+∞

∫

Ω
det(∇ϕ̄) Φ dx,

∣∣∣∣
∫

Ω
dj Φ dx

∣∣∣∣ ≤ ‖dj‖L1(Ω) ‖Φ‖C0(Ω̄) −→
j→+∞

0 from Hölder’s inequality.

Consequently, ∀Φ ∈ D(Ω),

∫

Ω
δ̄Φ dx =

∫

Ω
det(∇ϕ̄) Φ dx

and det(∇ϕ̄) = δ̄ in the sense of distributions. As det(∇ϕ̄) ∈ L2(Ω) (since ϕ̄ ∈
W1,4(Ω,R2) -recall that if Φn weakly converges to Φ in W1,p and Φn = Id on ∂Ω, then
Φ = Id on ∂Ω - ) and as δ̄ ∈ L2(Ω), it results in det(∇ϕ̄) = δ̄ almost everywhere.

The mapping J(V, δ) =

∫

Ω
W

∗(V, δ) dx with

W
∗(V, δ) =

∣∣∣∣
β

(
‖V ‖2 − α

)2
+Ψ(δ) if ‖V ‖2 ≥ α

Ψ(δ) if ‖V ‖2 < α
is defined on L4(Ω,M2) × L2(Ω).

It is convex and strongly sequentially lower semi-continuous since W
∗ is convex and

continuous. It is thus weakly sequentially lower semi-continuous.
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The Rellich-Kondrachov compact embedding theorem gives that
W1,2(Ω,R2) 	

c
Lq(Ω,R2), ∀q ∈ [1,+∞[. In particular, ϕN(γh(j))(γh(j)) strongly con-

verges to ϕ̄ in L2(Ω,R2). As Φ0 is assumed to be Lipschitz continuous, it can be proved
that:

lim
j→+∞

∫

Ω

(
Φ0

(
ϕN(γh(j))(γh(j))

)
− Φ̃(., T )

)2
dx =

∫

Ω

(
Φ0(ϕ̄)− Φ̃(., T )

)2
dx.

By passing to the limit when j goes to +∞, it yields to:

inf
ϕ∈W

Ī(ϕ) ≤ Ī(ϕ̄) ≤ lim inf
j→+∞

Īγh(j)

(
ϕN(γh(j))(γh(j)), VN(γh(j))(γh(j))

)
,

since

ν

2
‖Φ0(ϕN(γh(j))(γh(j)))− Φ̃(., T )‖2L2(Ω) +

∫

Ω
QW (VN(γh(j))(γh(j))) dx

≤ Īγh(j)

(
ϕN(γh(j))(γh(j)), VN(γh(j))(γh(j))

)
.

In conclusion, we have obtained the two following inequalities:




inf
ϕ∈W

Ī(ϕ) ≤ Ī(ϕ̄) ≤ lim inf
j→+∞

Īγh(j)

(
ϕN(γh(j))(γh(j)), VN(γh(j))(γh(j))

)
and

Īγh(j)

(
ϕN(γh(j))(γh(j)), VN(γh(j))(γh(j))

)
≤ inf

ϕ∈W
Ī(ϕ) +

2

γh(j)
,

that is,

lim sup
j→+∞

Īγh(j)

(
ϕN(γh(j))(γh(j)), VN(γh(j))(γh(j))

)
≤ inf

ϕ∈W
Ī(ϕ),

and finally:

lim
j→+∞

Īγh(j)

(
ϕN(γh(j))(γh(j)), VN(γh(j))(γh(j))

)
= Ī(ϕ̄) = inf

ϕ∈W
Ī(ϕ).

5.4 Discretization and Implementation

5.4.1 Introduction of an AOS scheme for the evolution problem

For the discretization of the evolution problem (E), an Additive Operator Splitting (AOS)
scheme is implemented (see the seminal work [27] and [17]), requiring a linear computational
cost at each step. The matrices involved in the sub-problems are monotone and their inverse
matrices are such that the sum of the coefficients of each row is equal to 1. The scheme is
thus unconditionally stable for the L∞-norm.

First of all, we recall the classical scheme of discretization of div (c∇Φ)

div (c∇Φ) ≃ ∂x

(
ci,j

Φi+ 1
2
,j − Φi− 1

2
,j

h

)
+ ∂y

(
ci,j

Φi,j+ 1
2
− Φi,j− 1

2

h

)

≃ ci+ 1
2
,j

Φi+1,j − Φi,j
h2

− ci− 1
2
,j

Φi,j − Φi−1,j

h2

+ ci,j+ 1
2

Φi,j+1 − Φi,j
h2

− ci,j− 1
2

Φi,j − Φi,j−1

h2
,
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where ci± 1
2
,j and ci,j± 1

2
are determined by bilinear interpolation. We use a vectorial repre-

sentation of our function Φ̃ by concatenation of the rows. Now we denote by Φ̃ ∈ R
M×N ,

where M is the number of rows and N is the number of columns. Thus Φ̃ni corresponds to an
approximation of Φ̃(xi, tn).
We apply a semi-implicit finite differences scheme and using the previous discretization of

div (c∇Φ) with c(x) =
g̃(|∇R(x)|)
|∇Φ̃(x)|

, we obtain the following discretization:

Φ̃n+1
i =Φ̃ni + τ |∇Φ̃|ni

∑

j∈Λ(i)

(
g

|∇Φ̃|

)n
i
+

(
g

|∇Φ̃|

)n
j

2

Φ̃n+1
j − Φ̃n+1

i

h2

+
4µ′τ
d2

Hε(Φ̃
n
i + l)Hε(l − Φ̃ni )

∫

Ω
〈x− y,∇Φ̃n(y)〉e−‖x−y‖22/d2

Hε(Φ̃
n(y) + l)Hε(l − Φ̃n(y)) dy,

where τ is the time step, Λ(i) corresponds to the neighbours of i and Hε is a C∞-regularization
of the Heaviside function:

Hε(x) =
1

2

(
1 +

2

π
arctan(

x

ε
)

)
.

If we directly implement this scheme, the term |∇Φ̃| can be a problem in particular when
|∇Φ̃| = 0. That is the reason why Weickert et al. in [27] propose to replace the arithmetic
mean by the harmonic mean. Thus we obtain:

Φ̃n+1
i =Φ̃ni + τ |∇Φ̃|ni

∑

j∈Λ(i)

2(
|∇Φ̃|
g

)n
i
+

(
|∇Φ̃|
g

)n
j

Φ̃n+1
j − Φ̃n+1

i

h2

+
4µ′τ
d2

Hε(Φ̃
n
i + l)Hε(l − Φ̃ni )

∫

Ω
〈x− y,∇Φ̃n(y)〉e−‖x−y‖22/d2

Hε(Φ̃
n(y) + l)Hε(l − Φ̃n(y)) dy.

If |∇Φ̃|ni = 0 or gi = 0, we set Φ̃n+1
i = Φ̃ni . The previous equation can be rewritten as

follows:
Φ̃n+1 = Φ̃n + τ

∑

l∈{x,y}
Al(Φ̃

n)Φ̃n+1

+
4µ′τ
d2

Hε(Φ̃
n + l)Hε(l − Φ̃n)

∫

Ω
〈x− y,∇Φ̃n(y)〉e−‖x−y‖22/d2

Hε(Φ̃
n(y) + l)Hε(l − Φ̃n(y)) dy

with

aijx(Φ̃
n)





|∇Φ̃|ni
2(

|∇Φ̃|
g

)n
i
+

(
|∇Φ̃|
g

)n
j

, j ∈ Λx(i),

− |∇Φ̃|ni
∑

m∈Λx(i)

2(
|∇Φ̃|
g

)n
i
+

(
|∇Φ̃|
g

)n
m

, i = j,

0 otherwise.
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Λx(i) is the set of neighbors of i in the direction x. Matrix Ay(Φ̃
n) is determined in the same

way. For the sake of conciseness, we denote by Gtopo(Φ̃
n), the term corresponding to the

topological constraint:

Gtopo(Φ̃
n) =

4µ′τ
d2

Hε(Φ̃
n + l)Hε(l − Φ̃n)

∫

Ω
〈x− y,∇Φ̃n(y)〉e−‖x−y‖22/d2

Hε(Φ̃
n(y) + l)Hε(l − Φ̃n(y)) dy.

Therefore, we have to solve the following linear system:

I − τ

∑

l∈{x,y}
Al(Φ̃

n)


 Φ̃n+1 = Φ̃n +Gtopo(Φ̃

n). (5.12)

Let us consider the matrix


I − τ

∑

l∈{x,y}
Al(Φ̃

n)


, where I is the identity matrix. This ma-

trix is strictly diagonally dominant, pentadiagonal, tridiagonal per block (and so invertible).
However, due to the structure of the matrix, the computation cost remains high: the matrix
is sparse by bands with at most 5 non zero coefficients per row. The resolution requires the
use of iterative methods whose convergence is slow owing to the condition number of the
matrix that increases when τ increases. That is the reason why Weickert et al. ([27]) propose
to apply an AOS (Additive Operator Splitting) scheme. Instead of applying the following
scheme:

Φ̃n+1 =


I − τ

∑

l∈{x,y}
Al(Φ̃

n)




−1 (
Φ̃n +Gtopo(Φ̃

n)
)
,

Weickert et al. consider the following AOS scheme:

Φ̃n+1 =
1

2

∑

l∈{x,y}

(
I − 2τAl(Φ̃

n)
)−1 (

Φ̃n +Gtopo(Φ̃
n)
)
, (5.13)

Let us set Bl(Φ̃
n) = I − 2τAl(Φ̃

n). We obtain two disconnected linear systems that are both
tridiagonal if one reorders the nodes of the mesh in a different way for the second system.
Matrix Bl(Φ̃

n) is strictly diagonally dominant and monotone. Therefore, we can solve the
systems computing by means of Thomas algorithm with a linear complexity. The algorithm
can be summarized as follows:

Algorithm 2 Algorithm for the AOS scheme.

1. Solve
(
I − 2τAx(Φ̃

n)
)
vn+1 = Φ̃n +Gtopo(Φ̃

n)

2. Solve
(
I − 2τAy(Φ̃

n)
)
wn+1 = Φ̃n +Gtopo(Φ̃

n)

3. Φ̃n+1 =
1

2
(vn+1 + wn+1).

We observe that the AOS schemes separate the treatment of the axis x and y, and are
additive. Moreover, these schemes are unconditionally stable.
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Remark 5.4.1

In practice, we also add a balloon force term: kg̃(|∇R|)|∇Φ̃| in order to increase the speed
of convergence. A classical discretization of the gradient can lead to the creation of loops.
The condition of entropy of Sethian [24] prevents the curve from propagating where it has
already been and thus avoids loop formation. The hyperbolic conservation laws enable to
obtain the discretization of the gradient:

(
|∇Φ̃|ni

)2
≃

[
max(D−xΦ̃ni , 0)

2 +min(D+xΦ̃ni , 0)
2

+max(D−yΦ̃ni , 0)
2 +min(D+yΦ̃ni , 0)

2
]
, if k < 0

≃
[
max(D+xΦ̃ni , 0)

2 +min(D−xΦ̃ni , 0)
2

+max(D+yΦ̃ni , 0)
2 +min(D−yΦ̃ni , 0)

2
]
, if k > 0.

Lastly, we have assumed that Φ̃ is a signed distance function. Thus we need to periodically
apply a reinitialization process. We have used the scheme obtained by Russo and Smereka in
[23], defined by:

Φ̃n+1
i,j =





Φ̃ni,j −
∆t

∆x

(
sign(Φ̃0

i,j)|Φ̃ni,j | −Di,j

)
if Φ̃0

i,jΦ̃
0
i−1,j < 0 or Φ̃0

i,jΦ̃
0
i+1,j < 0

or Φ̃0
i,jΦ̃

0
i,j−1 < 0 or Φ̃0

i,jΦ̃
0
i,j+1 < 0,

Φ̃ni,j −∆t sign(Φ̃0
i,j)G(Φ̃)i,j otherwise,

with Dij , the distance of node (i, j) from the interface and where, if Φ̃0
i,j > 0,

G(Φ̃)i,j =

(
max

(
(max(D−

x Φ̃i,j , 0))
2, (min(D+

x Φ̃i,j , 0))
2

)

+max

(
(max(D−

y Φ̃i,j , 0))
2, (min(D+

y Φ̃i,j , 0))
2

)
− 1

) 1
2

,

and if Φ̃0
i,j < 0,

G(Φ̃)i,j =

(
max

(
(min(D−

x Φ̃i,j , 0))
2, (max(D+

x Φ̃i,j , 0))
2

)

+max

(
(min(D−

y Φ̃i,j , 0))
2, (max(D+

y Φ̃i,j , 0))
2

)
− 1

) 1
2

.
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5.4.2 Thomas algorithm

We provide a brief description of the algorithm. Let us consider the following linear system:

Bu = d, with B ∈MN (R) defined by:

B =




α1 β1
γ1 α2 β2

γ2 α3 β3
. . .

. . .
. . .

γN−2 αN−1 βN−1

γN−1 αN




The first step consists in obtaining the LR decomposition of B, where L is a lower bidiagonal
matrix and R is a upper bidiagonal matrix:

L =




1
l1 1

. . .
. . .

lN−1 1


 , R =




m1 r1
m2 r2

. . .
. . .

mN−1 rN−1

mN




Then we have: {
∀k ∈ {1, . . . , N − 1}, rk = βk,

m1 = α1.





∀k ∈ {1, . . . , N − 1}, lk =
γk
mk

,

mk+1 = αk+1 − βklk.

The second step consists in solving:
Ly = d.

It yields to: {
y1 = d1

∀k ∈ {2, . . . , N}, yk = dk − yk−1lk−1.

Thirdly, we solve:
Ru = y.

We obtain: 



uN =
yN
mN

∀k ∈ {1, . . . , N − 1}, uN−k =
yN−k − βN−kuN−k+1

mN−k
.

If we have a look at the computational cost, we observe that:

• for the decomposition LR: 2(N − 1) divisions/multiplications and N − 1 subtractions
are required,

• for the resolution of Ly = d: (N−1) multiplications and N−1 subtractions are required,
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• for the resolution of Ru = y: (N−1) multiplications, N−1 subtractions and N divisions
are required.

Thus the global cost is 3N − 3 subtractions and 5N − 4 multiplications/divisions.

5.4.3 Euler-Lagrange equations for functional Īγ

The Euler-Lagrange equation associated with (5.9) in ϕ is defined by:

ν(Φ0 ◦ ϕ− Φ̃(., T ))∇Φ0(ϕ) + γ

(
div V1
div V2

)
− γ∆ϕ = 0,

and the system of equations for V is given by:





0 = 2βc0V11 (2Hε(c0) + c0δε(c0)) + µV22(detV − 2) + γ(V11 −
∂ϕ1

∂x
),

0 = 2βc0V12 (2Hε(c0) + c0δε(c0))− µV21(detV − 2) + γ(V12 −
∂ϕ1

∂y
),

0 = 2βc0V21 (2Hε(c0) + c0δε(c0))− µV12(detV − 2) + γ(V21 −
∂ϕ2

∂x
),

0 = 2βc0V22 (2Hε(c0) + c0δε(c0)) + µV11(detV − 2) + γ(V22 −
∂ϕ2

∂y
),

where c0 = (‖V ‖2 − α), Vi denotes the i
th row of V and V = (Vij)1≤i,j≤2.

The equation for ϕ is discretized using an implicit finite difference scheme with a 5 point
centered scheme for the Laplacian and the equation for V is discretized using a semi-implicit
finite difference scheme. The construction of the matrix of the linear system and its resolution
is similar to the one described in Chapter 6.

5.5 Numerical results

In this section, we present some numerical results. For each example, we provide the Tem-
plate and Reference images superimposed with the initial contour given by Φ0, the deformed
Template, the Reference image segmented by Φ̃ (result of the segmentation process) and by
Φ0 ◦ ϕ. As well, both deformed grids (from Template to Reference and from Reference to
Template) and the displacement vector field are displayed.
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5.5.1 Letter C

The method is applied on a first academic example inspired from [10] for mapping a disk to
the letter C, demonstrating the ability of the algorithm to handle large deformations.
First, we illustrate the segmentation process by giving some intermediate steps of the algo-
rithm (60, 120, 180, 210 and 300 iterations) that can be used for the registration process.

(a) Initilization (b) 60 iterations (c) 120 iterations (d) 180 iterations (e) 210 iterations (f) 300 iterations

Figure 5.2: Evolution of the level sets of Φ̃. Display of the zero level line (red) and the levels
2 and -2 (green and yellow).

(a) Template (b) Reference (c) Deformed Tem-
plate T ◦ ϕ

(d) Distortion map
drawing the displace-
ment vectors attached
to the grid points of
the Reference image

(e) Segmented Refer-
ence by means of the
zero level line of Φ̃

(f) Segmented Refer-
ence by means of the
zero level line of Φ0◦ϕ

(g) Deformed grid:
Template to Refer-
ence

(h) Deformed
grid: Reference to
Template

Figure 5.3: Mapping of a disk to letter C.
Execution time: 16 seconds for 40×40 pixel images. min det∇ϕ = 0.0005,maxdet∇ϕ = 2.51.
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5.5.2 Triangle

The method is applied on another toy example to emphasize again the capability of the model
to generate large deformations even on noisy data.

(a) Template (b) Reference (c) Deformed Template
T ◦ ϕ

(d) Segmented Refer-
ence by means of the
zero level line of Φ̃

(e) Segmented Refer-
ence by means of the
zero level line of Φ0 ◦ ϕ

(f) Deformed grid:
Template to Reference

(g) Deformed grid: Ref-
erence to Template

(h) Distortion map
drawing the displace-
ment vectors attached
to the grid points of the
Reference image

Figure 5.4: Mapping of a disk to a triangle.
Execution time: 13 seconds for 54×50 pixel images. min det∇ϕ = 0.026,maxdet∇ϕ = 2.95.
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5.5.3 Mouse brain gene expression

The method has been applied on medical images with the goal to map a 2D slice of mouse
brain gene expression data (Template T ) to its corresponding 2D slice of mouse brain atlas
in order to facilitate the integration of anatomic, genetic and physiologic observations from
multiple subjects in a common space. Since genetic mutations and knock-out strains of mice
provide critical models for a variety of human diseases, such linkage between genetic in-
formation and anatomical structure is important. The data are provided by the Center for
Computational Biology, UCLA. The mouse atlas acquired from the LONI database was pre-
segmented. The gene expression data were segmented manually to facilitate data processing
in other applications. Some algorithms have been developed to automatically segment the
brain area of gene expression data. The non-brain regions have been removed to produce
better matching.

(a) Template (b) Reference (c) Deformed Template
T ◦ ϕ

(d) Segmented Refer-
ence by means of the
zero level line of Φ̃

(e) Segmented Refer-
ence by means of the
zero level line of Φ0 ◦ ϕ

(f) Deformed grid:
Template to Reference

(g) Deformed grid: Ref-
erence to Template

(h) Displacement vec-
tors attached to the grid
points of R

Figure 5.5: Mapping of a mouse brain gene expression to an atlas.
Execution time: 10 minutes for 200×200 pixel images. min det∇ϕ = 0.36,maxdet∇ϕ = 2.18.
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5.5.4 Slices of brain

We also applied the method to complex slices of brain data (courtesy of Laboratory Of Neuro-
Imaging, UCLA). We aim to register a disk to the slice of brain. The results demonstrate the
ability of the obtained contour to fit very well the convolutions of the brain.

(a) Template (b) Reference (c) Deformed grid: Ref-
erence to Template

(d) Displacement vec-
tors attached to the grid
points of R

(e) Segmented Refer-
ence by means of the
zero level line of Φ̃

(f) Segmented Reference
by means of the zero
level line of Φ0 ◦ ϕ

(g) Deformed grid:
Template to Reference

Figure 5.6: Mapping of a disk to a slice of brain. Execution time: 9 minutes for 148×192
pixel images.

Conclusion

We therefore have designed a functional for image joint registration/segmentation problem
based on the comparison of level sets so that the registration process does not depend on
the intensity differences but only on shape alignment. Moreover, we overcome the obstacle of
non quasiconvexity of the stored energy function of Saint Venant-Kirchhoff using the relaxed
problem associated with the original one. We also study the well-definedness of the evolution
problem, study involving the theory of viscosity solutions. Numerically, the model enables
us to obtain large deformations and an accurate segmentation. The only limitation of this
model comes from the evolution equation: this segmentation method is sensitive to the initial
condition and the direction of propagation is enforced by the parameter balancing the balloon
force term. The initial condition being the contour of the object in the Template image, we
may have tuned, in certain circumstances, the parameter balancing the balloon force during
the evolution process.
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CHAPTER 6

REGISTRATION PROBLEM BASED ON GEOMETRIC
CONSTRAINTS AND SAINT VENANT-KIRCHHOFF MATERIAL

In this chapter, we introduce a registration model under constraints based on nonlinear elas-
ticity theory. In particular, we choose to view the shapes to be matched as hyperelastic,
isotropic and homogeneous materials. The choice of a hyperelastic material can be explained
by two reasons: on the one hand, this kind of regularizer enables us to handle large and non-
linear deformations, on the other hand, in the literature, biological tissues are often modelled
as hyperelastic materials.
Moreover, we introduce geometrical constraints, that is to say that we seek to match pairs of
control points on the Reference image and the Template image.

The chapter is organized as follows. In a first section, we present the mathematical
modelling of our method based on the stored energy function of the Saint Venant-Kirchhoff
material. We formulate our problem as a functional minimization problem. Next, we establish
theoretical results such as the existence of so-called generalized solutions (solutions of an
associated relaxed problem). We also establish a convergence result when the number of
control points increases to infinity. Finally, we are concerned with the discretization and the
implementation of the model, and we conclude the chapter with some numerical experiments.

Introduction

Image registration is a fundamental task encountered in a large range of applications such as
medical imaging, when comparing an image to an atlas or when fusing two images. Given
two images, registration consists in determining an optimal diffeomorphic transformation ϕ
such that the deformed Template image is aligned with the Reference. For images of the same
modality, the goal of registration is to correlate the geometrical features and the intensity level
distribution of the Reference and those of the deformed Template. When the images have
been acquired through different mechanisms and have different modalities, registration aims
to correlate both images while preserving the modality of the Template image. Sometimes, in
medical image registration, geometrical constraints such as landmark points can complement
the image data. In this case, relevant points on the Reference image are manually selected and
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their counterparts on the Template are identified by an expert (see [19] for details and [17]
for applications to registration of mouse brain gene expression data to an atlas). This prior
knowledge allows, in particular, to increase the reliability of the obtained results. The quality
of the obtained deformation can thus be measured by comparing the position of the landmark
points on the Template and the position of the associated deformed landmark points. In this
chapter, we propose a nonlinear elasticity based registration method including geometrical
constraints manually selected on the images. The energy to be minimized consists of three
terms: the L2 distance of the grey levels, the elasticity-based regularizer and the geometrical
constraint term (denoted respectively by Fid,Reg, Const). The minimization problem can
be written in the form

inf
ϕ

{Fid(ϕ) +Reg(ϕ) + Const(ϕ)} .

To allow large deformations, we introduce a nonlinear-elasticity-based smoother (see [8],
[9] for further details), the theory of linear elasticity being unsuitable in this case since as-
suming small strains and the validity of Hooke’s law. We propose viewing the shapes to be
warped as isotropic, homogeneous, hyperelastic materials and more precisely as Saint Venant-
Kirchhoff materials. Note that rubber, filled elastomers, biological tissues are often modeled
within the hyperelastic framework, which motivates our modelling.
For the sake of completeness, we would like to refer the reader to previous works related to
registration based on nonlinear elasticity principles. In [13], Droske and Rumpf address the
issue of non-rigid registration of multi-modal image data. The matching criterion includes
first order derivatives of the deformation and is complemented by a nonlinear elastic regular-
ization based on a polyconvex stored energy function, which is different from our proposed
approach. We also mention the combined segmentation/registration model introduced by Le
Guyader and Vese ([16]) in which the shapes to be matched are viewed as Ciarlet-Geymonat
materials, the works [2] and [18] for a variational registration method for large deformations
(Large Deformation Diffeomorphic Metric Mapping - LDDMM), and refer to [22] for a much
related work that also uses nonlinear elasticity regularization but implemented by the finite
element method.
In [5], the authors design an hyperelastic regularizer. More precisely, they build an hyper-
elastic stored energy function penalizing variations of lengths and areas, and add a penalty
term on the Jacobian determinant such that the energy tends to infinity as det∇ϕ tends to
0 and such that shrinkage and growth have the same price. The numerical implementation is
based on a discretize-then-optimize strategy and the authors use a generalized Gauss-Newton
scheme to compute a numerical minimizer.

6.1 Mathematical modelling

6.1.1 Preliminaries

Before introducing the model, let us make a short reminder on nonlinear elasticity and on
the Saint Venant-Kirchhoff material. Denoting by ϕ a deformation, we recall that the right
Cauchy-Green strain tensor is defined by

C = ∇ϕT∇ϕ = F TF ∈ S2

with S2 =
{
A ∈M2(R), A = AT

}
, set of all real symmetric matrices of order 2. Physically,

the right Cauchy-Green tensor can be interpreted as a quantifier of the square of local change
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in distances due to deformation. The Green-Saint Venant strain tensor is defined by

E =
1

2
(∇u+∇uT +∇uT∇u).

Associated with a given deformation ϕ = Id+u, it is a measure of the deviation between ϕ
and a rigid deformation. We also provide the following notations:

• A : B = trATB the matrix inner product

• ‖A‖ =
√
A : A, the related matrix norm (Frobenius norm).

The stored energy function of an isotropic, homogeneous, hyperelastic material, if the refer-
ence configuration is a natural state, is of the form:

W (F ) = Ŵ (E) =
λ

2
(trE)2 + µ trE2 + o

(
‖E‖2

)
, F TF = I + 2E, (6.1)

with I the identity matrix. The Saint Venant-Kirchhoff material is the simplest homogeneous,
isotropic, hyperelastic material with a natural reference configuration complying with the
previous expansion (6.1). The stored energy function is defined by

WSV K(F ) = ŴSV K(E) =
λ

2
(trE)2 + µ tr(E2).

The coefficients λ and µ are the Lamé constants. The first Lamé parameter λ has no straight-
forward physical interpretation, but is related to the bulk modulus. The second Lamé pa-
rameter µ is the shear modulus. That is to say that µ measures the resistance of a material:
the greater µ, the stronger the applied force to obtain the same deformation. If a material
had a null shear modulus, it would not be stable.

6.1.2 Depiction of the model

We focus on a registration problem based on the L2-norm of the difference between the Tem-
plate and the Reference images. Concerning the regularizer, we choose a nonlinear elastic
regularizer, in particular, the stored energy function of a Saint Venant-Kirchhoff material.
Moreover, from a numerical viewpoint, this choice of regularizer enables us to deal with high-
magnitude deformations. Also, we add a penalty term to force the Jacobian to be close to 1
in order to obtain a homogeneous deformation that is to say to prevent the deformation map
from exhibiting contractions and expansions that are too large.
Moreover, we propose to include geometrical constraints to match some interest points. In-
deed, we manually choose a finite number of points on the Template image and on the Refer-
ence image and we want every point on the Reference image to be mapped to its counterpart
on the Template image.

Let us denote by:

• Ω a connected bounded open subset of R2 with Lipschitz boundary ∂Ω,

• R : Ω̄ −→ R, the Reference image,

• T : Ω̄ −→ R, a Lipschitz continuous function (we denote by kT the Lipschitz constant)
with compact support, representing the Template image,

• ϕ : Ω̄ −→ R
2 the sought deformation with ϕ = Id on ∂Ω.
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Geometrical constraints

The geometrical constraints correspond to selected landmark points on R and their corre-
sponding counterpart on T . We denote by ω = (ω1, . . . , ωN ) ∈ (R2)N , the landmark points
on R and ω̃ = (ω̃1, . . . , ω̃N ) ∈ (R2)N their counterparts on T .
We define the linear mapping ρ by:

ρ : W1,4(Ω,R2) −→ (R2)N

ϕ 7−→ (ϕ(ω1), . . . , ϕ(ωN ))
T .

We justify the choice of the functional space W1,4(Ω,R2) in the sequel. The mapping ρ is
well defined since we have the continuous embedding W1,4(Ω,R2) →֒ C0(Ω̄,R2). The purpose
is to minimize

〈ρ(ϕ)− ω̃〉22N ,
with respect to ϕ where 〈.〉2N is the Euclidean norm in R

2N and N is the number of con-
straints.
In fact, we aim to minimize the distance between ϕ(ωi) and ω̃i, i = 1 . . . N , ie, we search for
the deformation such that the points in the Reference image are mapped to the points of the
Template image though this smooth deformation. We can notice that minimizing 〈ρ(ϕ)−ω̃〉22N
with respect to ϕ is equivalent to minimizing 〈ρ(ϕ)〉22N − 2〈ρ(ϕ), ω̃〉2N .

Elastic regularization

As already mentioned, we choose to view the shapes to be matched as Saint Venant-Kirchhoff
materials. In addition, we complement the stored energy function WSV K by the term
µ(det∇ϕ− 1)2 controlling that the Jacobian remains close to 1. The weighting of the deter-
minant component by parameter µ is justified in the proof of 6.1.1.
We set W (∇ϕ) =WSV K(∇ϕ)+µ(det∇ϕ− 1)2 where WSV K is the stored energy function of
a Saint Venant-Kirchhoff material, defined by

WSV K(F ) = ŴSV K(E) =
λ

2
(trE)2 + µ tr(E2), with E =

1

2
(F TF − I).

We first rewrite WSV K(∇ϕ) in a more simplified way. In two dimensions, we have:

WSV K(F ) =
λ

2
(trE)2 + µ tr(E2),

=
λ

8
(‖F‖2 − 2)2 +

µ

4
(‖F TF‖2 − 2‖F‖2 + 2),

= −λ+ µ

2︸ ︷︷ ︸
a1<0

‖F‖2 + λ+ 2µ

8︸ ︷︷ ︸
a2

‖F‖4 − µ

2
(detF )2 +

λ+ µ

2
.

(6.2)

Indeed, considering the characteristic polynomial χFTF of F TF , we have:

χFTF (X) = X2 − tr(F TF )X + det(F TF )I.

Moreover, according to Cayley-Hamilton theorem, χFTF (F
TF ) = 0, then

(F TF )2 − tr(F TF )F TF + det(F TF )I = 0.
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Passing to the trace we obtain: ‖F TF‖2 − ‖F‖4 + 2(detF )2 = 0. Replacing ‖F TF‖2 by
‖F‖4 − 2(detF )2, we obtain the desired expression of WSV K .

Therefore,

W (F ) = a1‖F‖2 + a2‖F‖4 +
λ+ µ

2
+ φ(detF ),

with φ : s 7−→ −µ
2
s2 + µ(s− 1)2.

Functional to be minimized

Finally, we aim to minimize the following functional:

inf
ϕ∈W

{
I(ϕ) =

ν

2

∫

Ω
(T ◦ ϕ−R)2 dx+

∫

Ω
W (∇ϕ)dx+ η〈ρ(ϕ)〉22N − 2η〈ρ(ϕ), ω̃〉2N

}
(P)

with W =
{
ϕ ∈ Id+W1,4

0 (Ω,R2)
}
, where ν, η are positive parameters. ϕ ∈ Id+W1,4

0 (Ω,R2)

means that ϕ = Id on ∂Ω and ϕ ∈ W1,4(Ω,R2), W1,4(Ω,R2) denoting the Sobolev space of
functions ϕ ∈ L4(Ω,R2) with distributional derivatives up to order 1 which also belong to
L2(Ω).

The functional is well defined for ϕ ∈ W1,4(Ω,R2). Indeed, we have the continuous
embedding W1,4(Ω,R2) →֒ C0(Ω̄,R2) ensuring that the geometrical term makes sense and the
generalized Hölder inequality ([4]) guarantees that det∇ϕ ∈ L2(Ω).

6.1.3 Mathematical obstacle and relaxed problem

We are faced with a theoretical problem with problem (P).

Proposition 6.1.1

W is not rank 1-convex.

Proof : The proof is based on the same technique as the one applied by A. Raoult in [23].

Let ε > 0. We set F = εI and F ′ = ε diag(1, 3). Then F − F ′ =

(
0 0
0 −2ε

)
and we

have rank(F − F ′) = 1.
We have detF = ε2, detF ′ = 3ε2, ‖F‖2 = 2ε2, ‖F ′‖2 = 10ε2, det(F+F ′

2 ) = 2ε2, ‖F+F ′

2 ‖2 =
5ε2.
We argue by contradiction and assume that W is rank 1-convex, then

W

(
F + F ′

2

)
≤ 1

2

(
W (F ) +W (F ′)

)
,
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⇐⇒ 5a1ε
2 + 25a2ε

4 − 2µε4 + µ(2ε2 − 1)2 ≤ 1

2

(
2a1ε

2 + 4a2ε
4 − µ

2
ε4 + µ(ε2 − 1)2

+10a1ε
2 + 100a2ε

4 − 9

2
µε4 + µ(3ε2 − 1)2

)
,

⇐⇒ ε2(5a1 − 4µ) + ε4(25a2 + 2µ) ≤ 1

2

(
ε2(12a1 − 8µ) + ε4(104a2 + 5µ)

)
,

⇐⇒ a1ε
2 + 27a2ε

4 +
1

2
µε4 ≥ 0,

⇐⇒ a1︸︷︷︸
<0

+ε2(27a2 +
1

2
µ) ≥ 0.

which raises a contradiction for ε small enough.

The stored energy function W is not rank 1-convex so it is not quasiconvex, which raises a
drawback of theoretical nature since we cannot obtain the weak sequential lower semicon-
tinuity of the functional (quasiconvexity is a necessary and sufficient condition to get weak
lower semicontinuity). This prevents us from applying the direct method. As stressed by
Dacorogna ([10, page 17]), the general rule is that in this case the considered problem has no
minimizers.

Proposition 6.1.2

The stored energy function W (F ) can be written as follows:

W (F ) = β(‖F‖2 − α)2 + ψ(detF ),

with β > 0, α > 0, and where ψ is a convex function.

Proof :

W (F ) = a2‖F‖4 + a1‖F‖2 + φ(detF ) +
λ+ µ

2
,

= a2

(
‖F‖2 − (− a1

2a2
)

)2

− a2

(
a1
2a2

)2

+
λ+ µ

2
+ φ(detF ),

= β
(
‖F‖2 − α

)2
+ ψ(detF ),

with β = a2 =
λ+ 2µ

8
, α = − a1

2a2
= 2

λ+ µ

λ+ 2µ

and ψ : s 7−→ −µ
2
s2 + µ(s− 1)2 +

µ(λ+ µ)

2(λ+ 2µ)︸ ︷︷ ︸
γ

convex.
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Theorem 6.1.1 (Bousselsal [3, Theorem 3.1])

Let W : Rn×n −→ R. Let ψ : R −→ R be a convex function such that

W (F ) = β(‖F‖2 − α)2 + ψ(detF ), α, β ∈ R
∗
+.

Then

PW (F ) = QW (F ) = RW (F ) =

{
W (F ) if ‖F‖2 ≥ α

ψ(detF ) if ‖F‖2 < α.

Before proving Theorem 6.1.1, we give the following lemmas:

Lemma 6.1.2 (Bousselsal [3, Lemma 3.1])

Let f : Rn×n −→ R and ψ : R −→ R such that

f(F ) = ψ(detF ).

Then

f polyconvex ⇐⇒ f quasiconvex ⇐⇒ f rank-1 convex ⇐⇒ ψ convex.

Proof (taken from [3]) : By definition, we have f polyconvex ⇐⇒ ψ convex.
Moreover, we know that f polyconvex =⇒ f quasiconvex =⇒ f rank-1 convex.
Thus we just need to prove that f rank-1 convex=⇒ ψ convex.
Let A and B ∈ R

n×n be such that rank(A−B) ≤ 1.
We suppose that f is rank 1-convex then for λ ∈ [0, 1]:

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B)

⇐⇒ ψ(det(λA+ (1− λ)B)) ≤ λψ(detA) + (1− λ)ψ(detB)

We use the following lemma.

Lemma 6.1.3 (Dacorogna [10, Lemma 5.5])

Let ξ ∈ R
N×n and T : RN×n −→ R

τ(n,N) is such that T (ξ) = (ξ, adj2 ξ, . . . , adjn∧N )

with τ(n,N) =
n∧N∑
s=1

σ(s) where σ(s) =
(
N
s

)(
n
s

)
.

For every ξ, η ∈ R
N×n with rank(ξ− η) ≤ 1 and for every λ ∈ [0, 1], the following identity

holds:
T (λξ + (1− λ)η) = λT (ξ) + (1− λ)T (η).

Then we obtain that det(λA+ (1− λ)B) = λ detA+ (1− λ) detB. Therefore

ψ(λ detA+ (1− λ) detB) ≤ λψ(detA) + (1− λ)ψ(detB).

Then ψ is convex.
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Lemma 6.1.4 (Bousselsal [3, Lemma 3.2])

Let F ∈ R
n×n be such that 0 ≤ ‖F‖2 < α. Then there exist B,C ∈ R

n×n, λ ∈]0, 1[ such
that

F = λB + (1− λ)C,

rank(B − C) ≤ 1,

‖B‖2 = ‖C‖2 = α,

detF = detB = detC.

Proof (taken from [3]) :

If rank(F ) = 1, the result is immediate taking B = −√
α
F

‖F‖ , C =
√
α
F

‖F‖
and λ =

1

2
(1− ‖F‖√

α
).

If rank(F ) = 0, which means that F is the null matrix, it suffices to take for example

B = (B1, 0, . . . , 0) with B1 =
√
α(1, 0, . . . , 0)T , C = −B, and λ =

1

2
.

If rank(F ) 6= 1, we denote by Fj the j
th column of F . Then there exists j0 such that

Fj0 6= 0. We can suppose that F2 6= 0 without loss of generality, then we set E = aG
with G = (F2, 0, . . . , 0) ∈ R

n×n, a 6= 0.
We choose

B = F − (1− λ)E,

C = F + λE.

Matrix E has rank equal to 1, and we have F = λB+ (1− λ)C and rank(B−C) ≤ 1.
Moreover, detF = detB = detC.
It remains to prove that ‖B‖2 = ‖C‖2 = α, which is equivalent to

{
‖F‖2 − 2(1− λ)(F,E) + (1− λ)2‖E‖2 = α

‖F‖2 + 2λ(F,E) + λ2‖E‖2 = α,

⇐⇒
{
‖F‖2 − 2(1− λ)a(F,G) + (1− λ)2a2‖G‖2 = α

‖F‖2 + 2λa(F,G) + λ2a2‖G‖2 = α.

(6.3)

(6.4)

We set Σ = 2(F,G), (·, ·) denoting the inner product.
The last step consists in finding λ ∈]0, 1[ and a such that (6.3) and (6.4) are satisfied.
We can notice that if λ̄ and λ̄− 1 are solutions of (6.4), then (6.3) is satisfied. This is
the case if

λ̄+ λ̄− 1 =
−aΣ
a2‖G‖2 ,

⇐⇒λ̄ =
1

2
(1− aΣ

a2‖G‖2 ).

The equations are satisfied if

λ̄(λ̄− 1) =
‖F‖2 − α

a2‖G‖2 ,

⇐⇒
(

aΣ

a2‖G‖2
)2

+
4(α− ‖F‖2)
a2‖G‖2 = 1.
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We assume that we can find an a ∈ R such that

(
aΣ

a2‖G‖2
)2

+
4(α− ‖F‖2)
a2‖G‖2 = 1 (6.5)

then

−1 ≤ aΣ

a2‖G‖2 ≤ 1

and so λ̄ ∈]0, 1[. It remains to be proved that there exists a ∈ R such that (6.5) holds.
To do so, we notice that

• if a −→ 0 the left member of (6.5) tends to +∞,

• if a −→ +∞ the left member of (6.5) tends to 0.

By continuity, there exists a value of a such that (6.5) is satisfied. Therefore, we obtain
the desired result.

Theorem 6.1.5 (Bousselsal [3, Theorem 3.2])

We assume that g is a non-negative function such that g = 0 on ‖F‖2 = α, and g is
convex outside Bα = {F : ‖F‖2 ≤ α}.
Then

Cg = Pg = Qg = Rg =

{
g outside Bα

0 inside Bα.

Proof : We denote by

g̃ =

{
g outside Bα

0 inside Bα.

By construction, we have g̃ ≤ g.
We begin by proving that the function g̃ is convex.
On the one hand, if λF1 + (1− λ)F2 ∈ Bα, λ ∈ [0, 1], and since g̃ ≥ 0, we have

0 = g̃(λF1 + (1− λ)F2) ≤ λg̃(F1) + (1− λ)g̃(F2).

On the other hand, we focus on the outside of Bα.
Function g is convex outside Bα and non-negative so if there exists a convex function
ĝ such that ĝ = g outside Bα, necessarily by convexity of ĝ, ĝ ≤ 0 on Bα.
If λF1 + (1− λ)F2 /∈ Bα, we have

g̃(λF1 + (1− λ)F2) = ĝ(λF1 + (1− λ)F2)

and

ĝ(λF1 + (1− λ)F2) ≤ λĝ(F1) + (1− λ)ĝ(F2) ≤ λg̃(F1) + (1− λ)g̃(F2).

Therefore, we have proved that

g̃(λF1 + (1− λ)F2) ≤ λg̃(F1) + (1− λ)g̃(F2)



160 CHAPTER 6. NONLINEAR ELASTICITY AND GEOMETRIC CONSTRAINTS

for all F1, F2 ∈ R
n×n, λ ∈ [0, 1], then g̃ is convex.

Next, if h is a convex function such that h ≤ g, by convexity, we also have h ≤ g̃ and
by definition of the convex envelop Cg = g̃. Since Cg ≤ Pg ≤ Qg ≤ Rg ≤ g and g̃ = g
outside Bα, then

Cg = Pg = Qg = Rg = g outside Bα.

Inside Bα, we have Cg = g̃ = 0. Moreover, according to lemma 6.1.4, for F ∈ Bα,
there exist B,C ∈ (Rn×n)2 and λ ∈]0, 1[ such that F = λB+(1−λ)C, rank(B−C) ≤ 1
and ‖B‖2 = ‖C‖2 = α.
Therefore,

Rg(F ) = Rg(λB + (1− λ)C) ≤ λRg(B) + (1− λ)Rg(C) ≤ λg(B) + (1− λ)g(C).

But, g(C) = g(B) = 0, since ‖B‖2 = ‖C‖2 = α, so Rg(F ) ≤ 0. We obtain

0 = Cg ≤ Rg ≤ 0 inside Bα.

In conclusion,
Cg = Pg = Qg = Rg = g̃.

Proof of Theorem 6.1.1 (from [3]) :
Let f(F ) = ψ(detF ) and g(F ) = β(‖F‖2 − α)2 then W (F ) = f(F ) + g(F ). The
function ψ being convex, f is polyconvex. According to Theorem 6.1.5, we can deduce
that

Cg(F ) = Pg(F ) = Qg(F ) = Rg(F ) =

{
g(F ) if ‖F‖2 ≥ α

0 if ‖F‖2 < α.

Moreover, g = W − f ≥ Cg = Pg and f is polyconvex so f + Pg is polyconvex and
W ≥ f + Pg = f + Cg then by definition of the polyconvex envelop, we obtain:

PW (F ) ≥ (f + Cg)(F ) =

{
W (F ) if ‖F‖2 ≥ α

f(F ) if ‖F‖2 < α.

In particular we have

PW (F ) = RW (F ) =W (F ) if ‖F‖2 ≥ α

and
f(F ) ≤ PW (F ) ≤ QW (F ) ≤ RW (F ) if ‖F‖2 < α.

It remains to prove the inequality RW (F ) ≤ f(F ) in the case ‖F‖2 < α.
According to lemma 6.1.4, there exist B,C ∈ R

n×n and λ ∈]0, 1[ such that F =
λB + (1− λ)C, rank(B − C) ≤ 1, detB = detC = detF , and ‖B‖2 = ‖C‖2 = α. By
definition, RW (F ) is rank-one convex, we obtain:

RW (F ) ≤ λRW (B)+(1−λ)RW (C) ≤ λW (B)+(1−λ)W (C) = λf(B)+(1−λ)f(C) = ψ(detF )

According to the two previous inequalities, we can conclude that RW (F ) = f(F ) if
‖F‖2 < α. Therefore,

PW (F ) = QW (F ) = RW (F ) =

{
W (F ) if ‖F‖2 ≥ α

ψ(detF ) if ‖F‖2 < α.
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Remark 6.1.3

We can show the same result using Dacorogna’s arguments.

Alternative proof : The proof is based on a property of invariance of the considered
stored energy function. We first recall a few definitions.

Definition 6.1.6 (Dacorogna [10])

• The set of orthogonal matrices is denoted by O(n). It is the set of matrices R ∈
Mn(R) such that

RRt = I.

• The set of special orthogonal matrices, denoted by SO(n), is the subset of O(n) such
that the matrices satisfy

detR = 1.

• Let ξ ∈Mn(R). The singular values of ξ, denoted by

0 ≤ λ1 ≤ · · · ≤ λn,

are defined to be the square root of the eigenvalues of the symmetric positive semidef-
inite matrix ξξt ∈Mn(R).

• The signed singular values of ξ, denoted by

0 ≤ |µ1(ξ)| ≤ µ2(ξ) ≤ · · · ≤ µn(ξ),

are defined by

µ1(ξ) = λ1(ξ) sign(det ξ) and µj(ξ) = λj(ξ), ∀j = 2, . . . , n.

• A function f :Mn(R) → [−∞,+∞] is said to be SO(n)× SO(n) invariant if:

∀ξ ∈Mn(R), ∀Q,R ∈ SO(n)× SO(n), f(QξR) = f(ξ).

According to the singular value theorem (Theorem 13.3 in [10]), for all ξ ∈Mn(R), we
can findQ andR in SO(n) such that ξ = QΛR where Λ = diag(sign(det ξ)λ1, λ2, . . . , λn).
In terms of singular values, function W can be rewritten

W (ξ) = β(λ21 + λ22 − α)2 + ψ(sign(det ξ)λ1λ2) = β(λ21 + λ22 − α)2 + ψ(µ1µ2).

Let

g(ξ) =

{
W (ξ) if ‖ξ‖2 ≥ α

ψ(ξ) if ‖ξ‖2 < α.

In view of the general results, we have:

PW ≤ QW ≤ RW ≤W.

Therefore, we only need to prove that

RW (ξ) = PW (ξ) = g(ξ), ∀ξ ∈Mn(R).
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The stored energy function W (ξ) is SO(2)× SO(2) invariant as function of the trace
and the determinant. Indeed,





‖ξ‖2 = tr(ξT ξ),

‖QξR‖2 = tr(RT ξTQTQξR) = tr(RT ξT ξR) = tr(ξT ξRRT ) = ‖ξ‖2,
det(QξR) = det(ξ).

Hence, according to Theorem 6.20 in [10], PW , QW and RW are SO(2) × SO(2)
invariant. Therefore, we can restrict ourselves to the case of matrices of the form:

ξ =

(
x 0
0 y

)
where |x| ≤ y.

Then we have: det ξ = xy and ‖ξ‖2 = x2 + y2.
Before proceeding further, it is convenient to introduce the two following functions
defined on R

2 by





χ(x, y) = β(x2 + y2 − α)2 + µ(xy − 1)2 − µ

2
x2y2 + γ

φ(x, y) = β[x2 + y2 − α]2+ + µ(xy − 1)2 − µ

2
x2y2 + γ

with [z]2+ =

{
z2 if z ≥ 0

0 otherwise.

A simple calculation leads toW

(
x 0
0 y

)
= χ(x, y) and g

(
x 0
0 y

)
= φ(x, y). According

to Definition 5.42 of [10], φ is polyconvex, then g is polyconvex ([10, Theorem 5.43]).
Since g(ξ) ≤W (ξ) and PW = sup{h ≤W,h polyconvex }, we have

g(ξ) ≤ PW (ξ).

Case 1: ‖ξ‖2 < α.

Let us set

ξ1 =




x 0

−
√
α− (x2 + y2) y


 , ξ2 =




x 0

√
α− (x2 + y2) y




Then 



ξ =
1

2
ξ1 +

1

2
ξ2,

‖ξ1‖2 = ‖ξ2‖2 = α,

and rank(ξ1 − ξ2) = 1.

This implies that

g(ξ) ≤ PW (ξ) ≤ RW (ξ) ≤ 1

2
RW (ξ1) +

1

2
RW (ξ2) ≤

1

2
W (ξ1) +

1

2
W (ξ2) = g(ξ).
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Case 2: ‖ξ‖2 ≥ α.

W (ξ) = g(ξ) ≤ PW (ξ) ≤ QW (ξ) ≤ RW (ξ) ≤W (ξ),

which concludes the proof.

As established in Proposition 6.1.1, the functional to be minimized is not quasiconvex,
therefore we cannot prove the existence of minimizers of the functional using the direct
method. Indeed, quasiconvexity is a necessary and sufficient condition to get (sequentially)
weak lower semicontinuity. To overcome this issue, we propose to deal with a relaxed problem
associated with the original problem obtained by taking the quasiconvex envelop of W . In
the sequel, we prove that the initial and this relaxed problem both admit the same infimum.

6.1.4 Theoretical results

Definition 6.1.7 (Dacorogna [10])

Given the problem

inf

{
I(u) =

∫

Ω
f(x, u(x),∇u(x))dx : u ∈ u0 +W1,p(Ω,RN )

}
, (P)

where

• Ω ⊂ R
n, n ≥ 1, is a bounded open set,

• u : Ω → R
N , N ≥ 1 and u0 ∈ W1,p(Ω,RN ) is a given function,

• f : Ω× R
N × R

N×n, f = f(x, u, ξ), is a given non-quasiconvex function.

There is a way of defining generalized solutions of (P) via the so-called relaxed problem

inf

{
Ī(u) =

∫

Ω
Qf(x, u(x),∇u(x))dx : u ∈ u0 +W1,p(Ω,RN )

}
, (QP)

where Qf is the quasiconvex envelop of f with respect to the last variable.

Applying this definition to our problem, we can define a relaxed problem (not exactly the
relaxed problem in the sense of Dacorogna since our functional cannot be written in integral
form). Therefore, we define our relaxed problem.
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Proposition 6.1.4

The relaxed problem associated to (P) we consider hereafter is defined by:

inf
ϕ∈W

{
Ī(ϕ) =

ν

2

∫

Ω
(T ◦ ϕ(x)−R(x))2 dx+

∫

Ω
QW (∇ϕ) dx+ η〈ρ(ϕ)〉22N − 2η〈ρ(ϕ), ω̃〉2N

}

(QP)

where W =
{
ϕ ∈ Id+W1,4

0 (Ω,R2)
}
, and QW is the quasiconvex envelop of W given by:

QW (F ) =

{
β(‖F‖2 − α)2 + ψ(detF ) if ‖F‖2 ≥ α,

ψ(detF ) if ‖F‖2 < α,

with ψ : s 7−→ −µ
2
s2 + µ(s− 1)2 + γ convex.

Theorem 6.1.8

Assume that Ī is proper. Then functional Ī admits minimizers in W.

Proof : The proof is divided into three steps.

Coercivity inequality

In the first step, we demonstrate that the infimum is finite by establishing a coercivity
inequality.
First, we have

β(‖∇ϕ‖2 − α)2 ≥ β

2
‖∇ϕ‖4 − βα2.

It could be recalled that ψ(s) = −µ
2
s2 + µ(s− 1)2 + γ =

µ

4
s2 +

µ

4
s2 − 2µs+ µ+ γ ≥

µ

4
s2 − 3µ+ γ. Consequently,

QW (∇ϕ) ≥ β

2
‖∇ϕ‖4 − βα2 +

µ

4
(det∇ϕ)2 − 3µ+ γ. (6.6)

We know that W1,4(Ω,R2) is continuously embedded in C0(Ω̄,R2) endowed with the
norm ‖ϕ‖C0(Ω̄,R2) = sup

x∈Ω̄
〈ϕ(x)〉2.

That is to say that there exists a constant C depending only on Ω such that

∀ϕ ∈ W1,4(Ω,R2), ‖ϕ‖C0(Ω̄,R2) ≤ C‖ϕ‖W1,4(Ω,R2).
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Since the term 〈ρ(ϕ)〉22N is positive, we just have to bound from below the term
−2η〈ρ(ϕ), ω̃〉2N . Indeed,

〈ρ(ϕ), ω̃〉2N ≤ 〈ρ(ϕ)〉2N 〈ω̃〉2N (by Cauchy-Schwartz)

≤
√
N〈ω̃〉2N‖ϕ‖C0(Ω̄,R2)

≤ C1(N,Ω)‖ϕ‖W1,4(Ω,R2).

Hence,

Ī(ϕ) ≥ C2‖∇ϕ‖4L4(Ω,M2)
− C1‖ϕ‖W1,4(Ω,R2) +

µ

4
‖ det∇ϕ‖2L2(Ω) +K,

where C2 =
β
2 , and K ∈ R. The constant K may change line to line.

We use the generalized Poincaré inequality ([15]):

‖ϕ‖4L4(Ω,R2) ≤ c

(
‖∇ϕ‖4L4(Ω,M2)

+

∣∣∣∣
∫

∂Ω
ϕdσ

∣∣∣∣
4
)
.

Since ϕ is known on ∂Ω,

‖ϕ‖4W1,4(Ω,R2) ≤ (c+ 1)‖∇ϕ‖4L4(Ω,M2)
+ k,

which implies that

Ī(ϕ) ≥ C2

c+ 1

(
‖ϕ‖4W1,4(Ω,R2) − C ′

1‖ϕ‖W1,4(Ω,R2) +
µ(c+ 1)

4C2
‖ det∇ϕ‖2L2(Ω)

)
+K.

Using Young inequality, ab ≤ ap

p
+
bq

q
, taking a = ‖ϕ‖W1,4(Ω,R2), b = C ′

1, p = 4,

q = 4
3 , we obtain

C ′
1‖ϕ‖W1,4(Ω,R2) ≤

1

4
‖ϕ‖4W1,4(Ω,R2) + Cq.

To conclude,

Ī(ϕ) ≥ C3

(
‖ϕ‖4W1,4(Ω,R2) + ‖ det∇ϕ‖2L2(Ω)

)
+K. (6.7)

Therefore, the infimum of Ī is finite.

Convergence of a minimizing sequence in W

Let (ϕk) ∈ W be a minimizing sequence of the problem, that is:

Ī(ϕk) −→ inf
Ψ∈W

Ī(Ψ) when k −→ +∞.

We have assumed that Ī is proper so ∃ϕ̃ ∈ W such that Ī(ϕ̃) < +∞. For k large
enough: Ī(ϕk) ≤ Ī(ϕ̃) + 1. Thanks to the coercivity inequality,

C3

(
‖ϕk‖4W1,4(Ω,R2) + ‖ det∇ϕk‖2L2(Ω)

)
+K ≤ Ī(ϕk) ≤ Ī(ϕ̃) + 1,
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and we can deduce that
{
ϕk is bounded in W1,4(Ω,R2) independently of k,

det(∇ϕk) is bounded in L2(Ω) independently of k.
(6.8)

Therefore, we can extract a subsequence of ϕk (still denoted by ϕk) such that:

{
ϕk ⇀ ϕ̄ in W1,4(Ω,R2),

det(∇ϕk)⇀ δ in L2(Ω).
(6.9)

We have the following theorem:

Theorem 6.1.9 ([10, Theorem 8.20])

Let Ω be a bounded open set, 1 < p <∞, and let

uν ⇀ u in W1,p(Ω,RN ).

• Let N = n = 2 and p ≥ 2. Then

det∇uν ⇀ det∇u in D′(Ω),

and if p > 2, then
det∇uν ⇀ det∇u in Lp/2(Ω).

• Let N = n = 3. If p ≥ 2 then

adj2∇uν ⇀ adj2∇u in D′(Ω,R9),

and if p > 2, then
adj2∇uν ⇀ adj2∇u in Lp/2(Ω,R9).

If p ≥ 3, then
det∇uν ⇀ det∇u in D′(Ω),

and if p > 3, then
det∇uν ⇀ det∇u in Lp/3(Ω).

• Let N = n and p ≥ n. Then

det∇uν ⇀ det∇u in D′(Ω),

and if p > n, then
det∇uν ⇀ det∇u in Lp/n(Ω).

• Let N, n ≥ 2, 2 ≤ s ≤ n ∧N = min(n,N) and p ≥ s. Then

adjs∇uν ⇀ adjs∇u in D′(Ω,Rσ(s)),

where σ(s) =
(
N
s

)(
n
s

)
= N !n!

(s!)2(N−s)!(n−s)! .
Furthermore, if p > s, then

adjs∇uν ⇀ adjs∇u in Lp/s(Ω,Rσ(s)),
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• Let N, n ≥ 2, 2 ≤ s ≤ n ∧N and assume that

adjs−1∇uν ⇀ adjs−1∇u in Lr(Ω,Rσ(s−1)),

where r > 1 with 1
p +

1
r ≤ 1. Then

adjs∇uν ⇀ adjs∇u in D′(Ω,Rσ(s)).

Hence, by uniqueness of the weak limit in L2(Ω), we can conclude that δ = det(∇ϕ̄).

Lower semicontinuity of Ī

Let J(Ψ, δ) be the functional defined by

J(Ψ, δ) =

∫

Ω
W ∗(∇Ψ(x), δ(x)) dx

with W ∗(∇Ψ, δ) =

{
β(‖∇Ψ‖2 − α)2 + ψ(δ) if ‖∇Ψ‖2 ≥ α,

ψ(δ) otherwise.

J is defined on W1,4(Ω,R2)× L2(Ω) with values in R.
It is convex and strongly sequentially lower semi-continuous since W ∗ is convex and
continuous.

Thus it is weakly lower semicontinuous and

J(ϕ̄, det∇ϕ̄) ≤ lim inf
k→+∞

J(ϕk, det∇ϕk).

We recall that W1,4(Ω,R2) →֒ C0(Ω̄,R2) with compact embedding so (ϕk) strongly
converges to ϕ̄ in C0(Ω̄,R2), therefore, ϕk uniformly converges to ϕ̄ and we have:

|〈ρ(ϕk)− ρ(ϕ̄), w̃〉2N | ≤ 〈ρ(ϕk)− ρ(ϕ̄)〉2N︸ ︷︷ ︸
k→+∞
��

0

〈w̃〉2N and 〈ρ(ϕk)〉22N −→ 〈ρ(ϕ̄)〉22N .

According to Fatou’s Lemma:

∫

Ω
(T ◦ ϕ̄−R)2 dx ≤ lim inf

k→+∞

∫

Ω
(T ◦ ϕk −R)2 dx.

Finally,
Ī(ϕ̄) ≤ lim inf

k→+∞
Ī(ϕk).

The space W is a closed affine subspace of W1,4(Ω,R2) by continuity of the trace on
∂Ω, then W is a strongly closed convex subspace. According to Theorem III.7 in [4],
W is a weakly closed convex subspace. Therefore, we obtain that ϕ̄ ∈ W, that is to
say that: ϕ̄ = Id on ∂Ω.
To conclude, the relaxed problem admits at least one solution ϕ̄ ∈ W.
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6.1.5 Relaxation theorem

Theorem 6.1.10

Let ϕ̄ ∈ W1,4(Ω,R2) be a minimizer of the relaxed problem (QP). Then there exists a
sequence

{ϕk}∞k=1 ⊂ ϕ̄+W1,4
0 (Ω,R2) such that ϕk

k→∞−→ ϕ̄ in L4(Ω,R2)

and
I(ϕk) −→ Ī(ϕ̄).

Moreover, the following holds:

ϕk ⇀ ϕ̄ in W1,4(Ω,R2).

Solutions of problem (QP) are said to be generalized solutions of problem (P).

Proof : The proof is based on Theorem 9.8 in [10] and on the compact embedding of
W1,4(Ω,R2) in C0(Ω̄,R2) for the geometric constraints.

6.2 A convergence result

In this section, we establish a result of convergence when the number of geometrical con-
straints increases to infinity. The proof is based on prior related works developed in [1]
dedicated to applications of Dm-splines in the theory of approximation.

Let D be a subset of ]0,+∞[ admitting 0 as accumulation point (this implies that 0 ∈ D).
For each d ∈ D, let Ad be a set of N = N(d) distinct points of Ω.
We assume that

sup
x∈Ω

δ(x,Ad) = d, (6.10)

where δ is the Euclidean distance in R
2. Let us observe that the left-hand side of (6.10) is

just the Hausdorff distance between Ad and Ω. Consequently, it implies that D is bounded
and that this distance tends to 0 as d does. Thus d is the radius of the largest sphere included
in Ω that contains no point from Ad (Hausdorff distance).

For all d ∈ D, we denote by ρd the mapping defined by:

ρd :

∣∣∣∣∣
W1,4(Ω,R2) → (R2)N(d)

ϕ 7→ ρd(ϕ) =
(
(ϕ(a))a∈Ad

)T .

We denote by ω̃d = (ω̃1, . . . , ω̃N(d)) the corresponding landmark points on the Template
image T .
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Theorem 6.2.1

Assume that there exists ϕ̂ ∈ W1,4(Ω,R2) such that for any d ∈ D, ρd(ϕ̂) = ω̃d, ϕ̂ = Id
on ∂Ω. For any d ∈ D, let us denote by ϕd a minimizer of (QP). Under the above
assumptions, we have:

lim
d→0

‖ϕd − ϕ̂‖C0(Ω̄,R2) = 0.

Proof : The proof is divided into three steps.

First step: We start by proving that the sequence
(
ϕd

)
d∈D∩]0,η′] (η

′ fixed) is bounded

in W1,4(Ω,R2) independently of d. By definition of a minimizer, we have:

ν

2

∫

Ω
(T ◦ ϕd −R)2dx+

∫

Ω
QW (∇ϕd)dx+ η〈ρd(ϕd)− ω̃d〉22N(d) ≤

ν

2

∫

Ω
(T ◦ ϕ̂−R)2dx

+

∫

Ω
QW (∇ϕ̂)dx

Using the coercivity inequality previously established (∀V ∈ L4(Ω,M2),
QW (V ) ≥ −µ+ γ < 0), we obtain that

{
ϕd is bounded in W1,4(Ω,R2) independently of d,

det∇ϕd is bounded in L2(Ω) independently of d.

Therefore, we can extract a subsequence (ϕdl) that weakly converges to ϕ∗ in
W1,4(Ω,R2):

(ϕdl)⇀ ϕ∗ in W1,4(Ω,R2), with lim
l→+∞

dl = 0.

Second step: The second step consists in proving that ϕ∗ = ϕ̂.
We argue by contradiction, by assuming that ϕ∗ 6= ϕ̂. It means that there exists a
non-empty open subset of Ω denoted by ℵ and a positive real α > 0 such that

∀x ∈ ℵ, 〈ϕ̂(x)− ϕ∗(x)〉2 > α.

Let us set

ξ = 1 + E

[
1

ηα2

(
ν

2

∫

Ω
(T ◦ ϕ̂−R)2dx+

∫

Ω
QW (∇ϕ̂)dx+ µ− γ

)]
,

where E denotes the integer part.
Let B0 = {p01, . . . , p0ξ} be a subset of ξ distinct points of ℵ, we have:

∀i = 1, . . . , ξ, ∃
(
pd0i

)
d∈D

(
∀d ∈ D, pd0i ∈ Ad

)
and

(
p0i = lim

d→0
pd0i

)



170 CHAPTER 6. NONLINEAR ELASTICITY AND GEOMETRIC CONSTRAINTS

For all d ∈ D, let Bd
0 be the set {pd01, . . . , pd0ξ}. As Bd

0 ⊂ Ad, we have:

η

ξ∑

i=1

〈ϕdl(pdl0i)− ϕ̂(pdl0i)〉22 ≤
ν

2

∫

Ω
(T ◦ ϕ̂−R)2dx+

∫

Ω
QW (∇ϕ̂)dx+ µ− γ. (6.11)

Moreover,

〈ϕdl(pdl0i)− ϕ∗(p0i)〉2 = 〈ϕdl(pdl0i)− ϕdl(p0i) + ϕdl(p0i)− ϕ∗(p0i)〉2,
≤ 〈ϕdl(pdl0i)− ϕdl(p0i)〉2 + 〈ϕdl(p0i)− ϕ∗(p0i)〉2.

On the one hand, according to the compact embedding W1,4(Ω,R2) 	 C0, 1
2 (Ω̄,R2),

there exists a constant k2 such that

〈ϕdl(pdl0i)− ϕdl(p0i)〉2 ≤ k2〈pdl0i − p0i〉
1
2
2 .

But lim
l→+∞

dl = 0 and p0i = lim
d→0

pd0i, then

lim
l→+∞

〈ϕdl(pdl0i)− ϕdl(p0i)〉2 = 0.

On the other hand, according to Rellich-Kondrachov Theorem, we have the compact
embedding W1,4(Ω,R2) 	 C0(Ω̄,R2). Therefore, weak convergence in W1,4(Ω,R2)
implies uniform convergence:

lim
l→+∞

〈ϕdl(p0i)− ϕ∗(p0i)〉2 = 0.

Hence,

lim
l→+∞

〈ϕdl(pdl0i)− ϕ∗(p0i)〉2 = 0,

That is to say

lim
l→+∞

ϕdl(pdl0i) = ϕ∗(p0i).

Letting l → +∞ in (6.11), we conclude that

η

ξ∑

i=1

〈ϕ∗(p0i)− ϕ̂(p0i)〉22 ≤
ν

2

∫

Ω
(T ◦ ϕ̂−R)2dx+

∫

Ω
QW (∇ϕ̂)dx+ µ− γ,

and then

ηα2ξ ≤ ν

2

∫

Ω
(T ◦ ϕ̂−R)2dx+

∫

Ω
QW (∇ϕ̂)dx+ µ− γ,

which is in contradiction with the definition of ξ.
Therefore, ϕ∗ = ϕ̂ and

(
ϕdl

)
weakly converges to ϕ̂ in W1,4(Ω,R2) and uniformly as

a result.
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Third step: We now prove that
(
ϕd

)
d∈D∩]0,η′] uniformly converges to ϕ̂ arguing by

contradiction.
We suppose that ‖ϕd − ϕ̂‖C0(Ω̄,R2) does not tend to 0 when d→ 0, that is to say, that
there exists a constant α > 0 and a sequence (dk)k∈N such that lim

k→+∞
dk = 0 and

∀k ∈ N, ‖ϕdk − ϕ̂‖C0(Ω̄,R2) > α. (6.12)

Following the same previous steps, we build a subsequence of (ϕdk) uniformly converg-
ing to ϕ̂, which is in contradiction with the hypothesis (6.12).

6.3 Discretization and Implementation

6.3.1 Augmented Lagrangian

The computation of the Euler-Lagrange equations satisfied by u (we recall that ϕ = Id+u)
turns out to be cumbersome. That is the reason why we introduce an auxiliary variable V ,
such that V = ∇ϕ. Therefore, we consider the following constrained optimization problem

min
ϕ,V

J̄ε(ϕ, V )

such that V = ∇ϕ,
(6.13)

with

J̄ε(ϕ, V ) =
ν

2

∫

Ω
(T ◦ ϕ(x)−R(x))2 dx+

∫

Ω
β(‖V ‖2 − α)2Hε(‖V ‖2 − α) + ψ(detV ) dx

+η〈ρ(ϕ)− ω̃〉22N .
The function Hε is the regularized one-dimensional Heaviside function, defined by

Hε : z 7−→
1

2
(1 +

2

π
Arctan

z

ε
) and we denote by δε the regularized Dirac defined by

δε : z 7−→
ε/π

z2 + ε2
.

We propose to solve (6.13) by an augmented Lagrangian method which aims to solve:

min
ϕ,V

max
β

Lα,ε(ϕ, V, β) = J̄ε(ϕ, V ) +
α

2

∫

Ω
‖V −∇ϕ‖2 dx+

∫

Ω
β : (V −∇ϕ) dx,

where β ∈ M2(R) is the Lagrangian multiplier (we think that there is confusion with the
previously introduced coefficient β) and α is a positive constant.
The goal is thus to search for a saddle point of Lα,ε. We can summarize the algorithm as
follows:

Algorithm 3 Augmented Lagrangian Method.

1. Initialization: β0 = 0, V 0 = I, ϕ0 = Id.

2. For k = 0, 1, . . .

(ϕk+1, V k+1) = argmin
ϕ,V

Lα,ε(ϕ, V, βk) (6.14)

Update βk+1 = βk + α(V k+1 −∇ϕk+1).
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To solve (6.14), the problem is divided into two subproblems:

min
V

∫

Ω
QW (V ) dx+

α

2
‖V −∇ϕ‖2 +

∫

Ω
β : V dx, (6.15)

for fixed ϕ, and then

min
ϕ

ν

2

∫

Ω
(T ◦ ϕ(x)−R(x))2 dx+

α

2
‖V −∇ϕ‖2 −

∫

Ω
β : ∇ϕdx+ η〈ρ(ϕ)− ω̃〉22N , (6.16)

for fixed V .

Numerically, the Euler-Lagrange equations in V and ϕ are alternatively solved using a
gradient descent method, parameterizing the descent direction by an artificial time t ≥ 0. We

set V =

(
V11 V12
V21 V22

)
and β =

(
β11 β12
β21 β22

)
.

The Euler-Lagrange equations for problem (6.15) are given by:





∂Lα,ε
∂V11

=µV22(detV − 2) + 4β(‖V ‖2 − α)V11Hε(‖V ‖2 − α)+

2β(‖V ‖2 − α)2V11δε(‖V ‖2 − α) + β11 + α(V11 −
∂ϕ1

∂x
) = 0,

∂Lα,ε
∂V12

=− µV21(detV − 2) + 4β(‖V ‖2 − α)V12Hε(‖V ‖2 − α)

+ 2β(‖V ‖2 − α)2V12δε(‖V ‖2 − α) + β12 + α(V12 −
∂ϕ1

∂y
) = 0,

∂Lα,ε
∂V21

=− µV12(detV − 2) + 4β(‖V ‖2 − α)V21Hε(‖V ‖2 − α)

+ 2β(‖V ‖2 − α)2V21δε(‖V ‖2 − α) + β21 + α(V21 −
∂ϕ2

∂x
) = 0,

∂Lα,ε
∂V22

=µV11(detV − 2) + 4β(‖V ‖2 − α)V22Hε(‖V ‖2 − α)

+ 2β(‖V ‖2 − α)2V22δε(‖V ‖2 − α) + β22 + α(V22 −
∂ϕ2

∂y
) = 0.

The descent gradient method gives:





∂V11
∂t

= −∂Lα,ε
∂V11

,

∂V12
∂t

= −∂Lα,ε
∂V12

,

∂V21
∂t

= −∂Lα,ε
∂V21

,

∂V22
∂t

= −∂Lα,ε
∂V22

,

and using semi-implicit finite difference schemes with a time step dt, we obtain the following
discretized equations for V :
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



(1 + αdt)V k+1
11 =V k

11 − dt

[
µV k

22(detV
k − 2) + 4β(‖V k‖2 − α)V k

11Hε(‖V k‖2 − α)

+2β(‖V k‖2 − α)2V k
11δε(‖V k‖2 − α) + β11 − α

∂ϕ1

∂x

]
,

(1 + αdt)V k+1
12 =V k

12 − dt

[
− µV k

21(detV
k − 2) + 4β(‖V k‖2 − α)V k

12Hε(‖V k‖2 − α)

+2β(‖V k‖2 − α)2V k
12δε(‖V k‖2 − α) + β12 − α

∂ϕ1

∂y

]
,

(1 + αdt)V k+1
21 =V k

21 − dt

[
− µV k

12(detV
k − 2) + 4β(‖V k‖2 − α)V k

21Hε(‖V k‖2 − α)

+2β(‖V k‖2 − α)2V k
21δε(‖V k‖2 − α) + β21 − α

∂ϕ2

∂x

]
,

(1 + αdt)V k+1
22 =V k

22 − dt

[
µV k

11(detV
k − 2) + 4β(‖V k‖2 − α)V k

22Hε(‖V k‖2 − α)

+2β(‖V k‖2 − α)2(V k
22δε(‖V k‖2 − α) + β22 − α

∂ϕ2

∂y

]
.

The Euler-Lagrange equations for (6.16) are given by

ν(T ◦ ϕ−R)∇T (ϕ) + 2η

N∑

i=1

(ϕ(ωi)− ω̃i)δωi
+ α

(
div V1
div V2

)
− α∆ϕ+

(
div β1
div β2

)
= 0,

where V1 and V2 are respectively the first row and the second row of V , and β1 and β2 are
the first row and the second row of β.
The equations are discretized using an implicit finite difference scheme with a 5 point scheme
for the Laplacian (in practice, we search for u instead of ϕ). That is to say that we have to
solve a linear system of the form:

AUk+1
l = B(Ukl ),

with A ∈ M(M−2)×(N−2)(R), U
k+1
l , Ukl , B ∈ R

(M−2)×(N−2), l = 1, 2. We denote by M,N

the dimensions of the grid which correspond to the image size. We only solve Ukl for i =
2 . . .M − 1, j = 2 . . . N − 1 since the displacement is supposed to be null on the boundary.

Ukl =




ukl,2,2
ukl,3,2
...

ukl,i,2
...

ukl,i−1,j

ukl,i,j
ukl,i+1,j

...
ukl,M−1,N−1




, Uk+1
l =




uk+1
l,2,2

uk+1
l,3,2
...

uk+1
l,i,2
...

uk+1
l,i−1,j

uk+1
l,i,j

uk+1
l,i+1,j
...

uk+1
l,M−1,N−1



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B(Ukl ) = Ukl + dt

(
−ν(T ◦ ϕk −R)

∂T

∂xl
(ϕk)− α div Vl − div βl − 2η

N∑

i=1

(
ϕk(ωi)− ω̃i

)
l
δωi

)

Matrix A is a symmetric block tridiagonal matrix:

A =




D −γIM−2 0M−2 . . . 0M−2

−γIM−2 D −γIM−2 0M−2
...

0M−2 −γIM−2
. . .

. . . 0M−2

... 0M−2
. . . D −γIM−2

0M−2 . . . 0M−2 −γIM−2 D








(N − 2)

with

D =




d −γ 0 0

−γ d
. . . 0

0
. . .

. . . −γ
0 0 −γ d




∈M(M−2)(R).

Also d = 1 + 4
αdt

h2
, γ =

αdt

h2
where h is the spatial step and IM−2 is the identity matrix

and 0M−2 the zero matrix of order M − 2 .

6.3.2 Implementation details

The algorithm requires the evaluation of the Template T at ϕ(x). We thus assume that T
is a smooth mapping that has been obtained by interpolating the image data provided on
the grid. As an additional convention, T is supposed to vanish outside the domain, i.e.,
T (x) = 0 if x /∈ Ω. As suggested by Modersitzki in [20], Chapter 3, subsection 3.6.1, for the
interpolation stage we apply a multiscale interpolation technique which includes a weighting
parameter controlling smoothness versus data proximity. Also, for the sake of optimization,
a multilevel representation of the data is adopted (see Chapter 3, section 3.7 of [20]).

Concerning the resolution of the linear system, the matrix being sparse we choose to keep
in memory only non-zero elements. Indeed, if we store the whole matrix in the case of a
200 × 200 pixel image, the matrix will be composed of (198 × 198)2 elements. The data we
use are double precision, then there are coded on 8 bytes. The necessary memory to store
the whole matrix is then more than 12 Gigabytes. That is the reason why we have chosen
a method enabling us to store only non-zero elements. The necessary memory to store non-
zero element is about 1 Megabyte. The library MUMPS enables us to store only non-zero
elements and in the case of a symmetric matrix, only the upper or lower triangular part. We
also store the corresponding coordinates of the non-zero elements in integer tables. Moreover,
the library MUMPS uses MPI to parallelize the computations during the resolution of the
linear system.
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6.4 Numerical experiments

First, we have experimented our method on an academic example which consists in mapping
a disk to the letter C, this example being inspired from [7]. We compute for each example,
the average distance between the landmarks:

LD =
1

N
〈ρ(ϕ)− ω̃〉2N .

In each case, we display the Template image with the control points in blue diamonds, the
Reference image with the control points in green squares, and the deformed Template T ◦ ϕ.
Then, on the Template image, we display the deformed control points ρ(ϕ) in red circles. The
green points move to red spots and these red spots should be as close as possible to the blue
spots. We also provide the deformation from Template to Reference and the deformation from
Reference to Template, as well as the displacement vector field, and the difference between R
and T ◦ ϕ.
Concerning the parameters, the Lamé coefficients are fixed to µ = 3000 and λ = 10, the time
step is dt = 0.01 and the space step is h = 1. Finally, the weight of the geometrical term is
between 20000 and 60000 and ν = 1.

For this example, we also estimate the contribution of the geometrical constraints by
comparing the mutual information with and without the geometrical term. In information
theory, the mutual information (MI) between two random variables is a measure of the
variable mutual dependence and is defined as follows:

MIX,Y =

∫

Y

∫

X
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dx dy,

where p(x, y) is the joint probability density function of X and Y , and p(x) and p(y) are the
marginal probability density functions ofX and Y respectively. Mutual information quantifies
the dependence between X and Y , that is, in our case, the intensity maps of R and T ◦ ϕ.
Larger mutual information indicates better registration.
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(a) Template (b) Reference (c) Deformed Tem-
plate

(d) Template with
control points

(e) Difference be-
tween R and T ◦ ϕ

(f) Deformation
from Reference to
Template

(g) Deformation
from Template to
Reference

(h) Distortion map
drawing the dis-
placement vectors
attached to the
grid points of the
Reference image

Figure 6.1: Letter C.
Execution time: 2 seconds for 40×40 pixel images. 2 regridding steps. min det∇ϕ =
0.002,maxdet∇ϕ = 2.31. LD = 0.89.

MIR,T MIR,T◦ϕ with constraints MIR,T◦ϕ without constraint MIR,R

0.1342 0.1506 0.1437 0.1559

Table 6.1: Mutual Information.

We observe that the geometrical constraints enable us to obtain a slightly better result,
as the mutual information is greater with this term.
In this example, we observe that the algorithm can deal with large deformations, but due to
these large deformations the Jacobian may become negative, that is the reason why we have
applied the regridding step proposed by Christensen and his collaborators in [6]. The method
consists in monitoring the values of the Jacobian at each step of the descent gradient. If
the Jacobian drops below a defined threshold, then the process is reinitialized taking as new
Template the previous computed deformed Template.
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Algorithm 4 Regridding method.

1. Initialization:β0 = 0, V 0 = I, ϕ0 = Id, regrid count=0.

2. For k = 0, 1, . . .
(ϕk+1, V k+1) = argmin

ϕ,V
Lα,ε(ϕ, V, βk)

if det∇ϕk+1 < tol

• regrid count=regrid count+1

• T = T ◦ ϕk

• save tab ϕ(regrid count)=ϕk, ϕk+1 = Id, V k+1 = I, βk = 0.

Update βk+1 = βk + α(V k+1 −∇ϕk+1).

3. If regrid count>0
ϕfinal = tab ϕ(1) ◦ · · · ◦ tab ϕ(regrid count)

An alternative method would consist in applying a correction step when the Jacobian is
negative as done in Chapter 3 ([21]).

Then we have applied the method on medical images (Figs 6.2, 6.3, 6.4) with the goal to
map a 2D slice of mouse brain gene expression data (Template T) to its corresponding 2D
slice of the mouse brain atlas, in order to facilitate the integration of anatomic, genetic and
physiologic observations from multiple subjects in a common space. Since genetic mutations
and knock-out strains of mice provide critical models for a variety of human diseases, such
linkage between genetic information and anatomical structure is important. The data are
provided by the Center for Computational Biology, UCLA. The mouse atlas acquired from
the LONI database was pre-segmented.
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(a) Template (b) Reference (c) Deformed Tem-
plate

(d) Template with
control points

(e) Difference be-
tween R and T ◦ ϕ

(f) Deformation
from Reference to
Template

(g) Deformation
from Template to
Reference

(h) Displacement
vectors attached to
the grid points of
the Reference image

Figure 6.2: Atlas08.
Execution time: 22 seconds for 200×200 pixel images. min det∇ϕ = 0.16,maxdet∇ϕ = 2.17.
LD = 1.21.

(a) Template (b) Reference (c) Deformed Tem-
plate

(d) Template with
control points

(e) Difference be-
tween R and T ◦ ϕ

(f) Deformation
from Reference to
Template

(g) Deformation
from Template to
Reference

(h) Displacement
vectors attached to
the grid points of
the Reference image

Figure 6.3: Atlas11.
Execution time: 16 seconds for 200×200 pixel images. min det∇ϕ = 0.58,maxdet∇ϕ = 1.36.
LD = 0.58.
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(a) Template (b) Reference (c) Deformed Tem-
plate

(d) Template with
control points

(e) Difference be-
tween R and T ◦ ϕ

(f) Deformation
from Reference to
Template

(g) Deformation
from Template to
Reference

(h) Displacement
vectors attached to
the grid points of
the Reference image

Figure 6.4: Atlas12.
Execution time: 23 seconds for 200×200 pixel images. min det∇ϕ = 0.27,maxdet∇ϕ = 1.62.
LD = 1.12.

Conclusion

In this chapter, we have proposed a registration model under geometrical constraints. We
have proved the existence of generalized solutions and a convergence result when the number
of landmark points increases to infinity. Numerically, the model enables us to obtain large
deformations thanks to the nonlinear elasticity-based regularization, and the constraints im-
prove the similarity between the Reference image and the deformed Template.
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[1] R. Arcangéli, M. C. L. de Silanes, and J. J. Torrens, An extension of a bound for
functions in sobolev spaces, with applications to (m, s)-spline interpolation and smooth-
ing, Numerische Mathematik, 107 (2007), pp. 181–211.
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[21] S. Ozeré and C. Le Guyader, Topology preservation for image-registration-related
deformation fields, Communications in Mathematical Sciences, 13 (2015), pp. 1135–1161.

[22] R. Rabbitt, J. Weiss, G. Christensen, and M. Miller, Mapping of Hyperelastic
Deformable Templates Using the Finite Element Method, in Proceedings SPIE, vol. 2573,
SPIE, 1995, pp. 252–265.

[23] A. Raoult, Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff
material, Aplikace matematiky, 31 (1986), pp. 417–419.



CHAPTER 7

REGISTRATION BASED ON GRADIENT COMPARISON

In this chapter, we introduce a registration model based on the comparison of the gradients
of the involved images. Indeed, in the case of multi-modal images, we would like to match
the edges of the objects regardless of intensity levels.

The chapter is organized as follows. In a first section, we present the proposed model.
Then we establish the existence of minimizers for this problem. Due to computational issues,
we have to find an alternative method to minimize the functional. To do so, we propose
two methods: the first one consists in introducing an auxiliary variable and in this case, we
demonstrate the existence of solutions for this decoupled problem. The second one consists
in approximating the term that raises issues using a sequence of integral operators involving
a differential quotient and a suitable sequence of radial mollifiers, and we also demonstrate
existence results as well as a result of Γ-convergence.

This chapter provides a complete theoretical study of the method, however, no satisfactory
numerical result has been obtained for the moment. This study could constitute the beginning
of future lines of research and perspectives.

Introduction

We plan to compare the gradients of the images instead of the gray levels, which would enable
us to compare images with different modalities. Indeed, an important challenge is to compare
multiple images obtained with different devices for example in medical imaging. In particular,
this idea has been investigated by Haber and Modersitzki in [12] and by Droske and Rumpf in
[10]. In [12], Haber et al. use derivatives to characterize similarity between two images. They
base their work on the following observation: ”Two images are considered similar, if intensity
changes occur at the same location”. To do so, they aim to match the normalized gradient
vector fields of the two considered images. They define the normalized gradient vector field
as follows:

n(I, x) =





∇I(x)
‖∇I(x)‖ if ∇I(x) 6= 0,

0 otherwise.

The purpose is to align n(T ◦ϕ, x) and n(R, x). The angle between the two vectors is denoted
by θ(x). The distance measure is then based on the angle θ(x): it is equivalent to minimizing

183
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sin2 θ(x) or maximizing cos2 θ(x) to align the two vector fields. This observation comes from
the definition of the inner product or the cross product. Therefore, they define the following
distance measures:

Dc(T,R) =
1

2

∫

Ω
‖n(R, x)× n(T ◦ ϕ, x)‖2dx,

Dd(T,R) = −1

2

∫

Ω
〈n(R, x), n(T ◦ ϕ, x)〉2dx.

In [10], Droske et al. develop a similar idea but use the notion of morphologies. The
morphology of an image I is the collection of the level sets of the image:

M [I] =
{
MI

c |c ∈ R
}
, MI

c =
{
x ∈ Ω ⊂ R

d|I(x) = c
}
.

They also use the normal field NI on MI
c defined by:

NI : Ω −→ R
d; x 7−→ ∇I

‖∇I‖ .

They search for a deformation ϕ such that M [T ◦ ϕ] =M [R], that is to say that they try to
align the normal fields. The energy functional to be minimized can be written as follows:

Em[ϕ] =

∫

Ω
g(NT ◦ ϕ,NR,Cof∇ϕ)dµ,

with g(v, w,A) =
(
v − Aw

‖Aw‖

)
, which corresponds to the energy

∫

Ω
‖NT ◦ ϕ−Nϕ

R‖2,

whereNϕ
R is the transformed normal of the reference image on Tϕ(x)ϕ(MR

R(x)) at position ϕ(x).

In order to build our functional based on gradient vector field comparison of the images,
we have been inspired by [4]. In [4], Ballester et al. are interested in an inpainting problem.
They consider an image u0 containing a hole of missing data, Ω, that they aim to fill-in. The
energy functional they propose is minimized with respect to two variables: a vector field θ
which represents the directions of the level lines of u, and the grey level u. Moreover, θ should
satisfy |θ| ≤ 1 on Ω and should be related to u by trying to impose θ · ∇u = |∇u|.
They thus propose to minimize a functional of the form

∫

Ω̃
| div θ|p(a+ b|∇k ∗ u|dx

+α

∫

Ω̃
(|∇u| − θ · ∇u) dx,

where a, b and α are positive constants and k is a smoothing kernel.
Inspired by this model, we have tried to adapt the second term of this functional to our
registration problem. We would like to match ∇(T ◦ ϕ) and ∇R. Following [4], T ◦ ϕ is a
substitute for u, the unknown corresponding to the grey level and ∇R

|∇R| a substitute for θ,
normalized vector field. Then we propose the following distance measure:

∫

Ω

(
|∇(T ◦ ϕ)| − 〈 ∇R

|∇R| ,∇(T ◦ ϕ)〉
)
.
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7.1 Mathematical modelling

We make the same hypotheses as previously done. Let:

• Ω be a connected bounded open subset of R2 of class C1,

• R : Ω̄ −→ R, be the Reference image,

• T : Ω̄ −→ R, be a Lipschitz continuous function compactly supported, defining the
Template image,

• ϕ : Ω̄ −→ R
2 the sought deformation with ϕ = Id on ∂Ω.

As mentioned above, the data fidelity term will be written as follows:

∫

Ω
|∇(T ◦ ϕ)| − 〈∇(T ◦ ϕ), ∇R

|∇R| 〉.

As Ballester et al. in [4], we introduce θ a vector field with values in R
2 satisfying

θ(x) · ∇R(x) = |R(x)| and |θ(x)| ≤ 1.

The vector field of normal θ can be defined as the Radon-Nikodyn derivative of the measure
∇R with respect to |∇R|. We assume that θ ∈ L∞(Ω,R2) and div θ ∈ L2(Ω) for theoretical
purposes.

For the regularizer term, we can choose for instance: ‖∇ϕ‖2L2(Ω,M2)
. Indeed, in this section,

we focus primarily on the dissimilarity measure based on the gradient vector fields.
The problem is then phrased as follows:

inf
ϕ∈Id+W1,2

0 (Ω,R2)

{
E(ϕ) =

∫

Ω
|∇(T ◦ ϕ)| − 〈∇(T ◦ ϕ), θ〉+ α

2

∫

Ω
‖∇ϕ‖2

}
. (7.1)

According to the following corollary:

Corollary 7.1.1 (Ambrosio [1])

Let Ω ⊂ R
n. Let p ∈ [1,+∞], u ∈ W1,p(Ω,Rm), and let f : Rm → R

k be a Lipschitz
continuous function such that f(0) = 0. Then v = f(u) belongs to W1,p(Ω,Rk), for almost
every x ∈ Ω the restriction of the function f to the affine space

T ux = {y ∈ R
m : y = u(x) + 〈∇u(x), z〉 for some z ∈ R

n}

is differentiable at u(x), and

∇v = ∇(f|Tu
x
)(u)∇u a.e in Ω.

Then T ◦ϕ ∈ W1,2(Ω) and so T ◦ϕ ∈ BV (Ω) since W1,2(Ω) ⊂ BV (Ω) and our functional
is well defined.
We start by proving the existence of minimizers for the initial problem (7.1).
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7.2 Existence minimizers for the initial problem

Theorem 7.2.1

Assuming that E is proper, the functional

E(ϕ) =

∫

Ω
|∇(T ◦ ϕ)| − 〈∇(T ◦ ϕ), θ〉+ α

2

∫

Ω
‖∇ϕ‖2

admits minimizers on Id+W1,2
0 (Ω,R2).

Proof :

Coercivity inequality
First, ∫

Ω
|∇(T ◦ ϕ)| − 〈∇(T ◦ ϕ), θ〉 ≥ 0.

Using the generalized Poincaré inequality: ‖ϕ‖2L2(Ω,R2) ≤ c

(
‖∇ϕ‖2L2(Ω,M2)

+

∣∣∣∣
∫

∂Ω
ϕdσ

∣∣∣∣
2
)
,

so ‖ϕ‖2W1,2(Ω,R2) ≤ (c+ 1)‖∇ϕ‖2L2(Ω,M2)
+ k, then we obtain:

E(ϕ) ≥ c‖ϕ‖2W1,2(Ω,R2) + k, k ∈ R,

c denoting a constant depending on Ω that may change line to line.
Therefore, E being proper, the infimum denoted by d is finite.

Convergence of a minimizing sequence
Let (ϕn) be a minimizing sequence of E, that is a sequence such that

E(ϕn)
n→∞−→ inf

ψ∈Id+W1,2
0 (Ω,R2)

E(ψ).

Since E is assumed to be proper, there exists ϕ̃ ∈ Id+W1,2(Ω,R2) such that E(ϕ̃) <
+∞. From the previous coercivity inequality, we can deduce that, for n large enough,

c‖ϕn‖2W1,2(Ω,R2) + k ≤ E(ϕn) ≤ E(ϕ̃) + 1,

which means that ϕn is uniformly bounded in W1,2(Ω,R2).
Therefore, since W1,2(Ω,R2) is a reflexive space, we can extract a subsequence of ϕn
(still denoted by ϕn) such that:

ϕn ⇀ ϕ̄ in W1,2(Ω,R2).

It remains to prove that E is sequentially lower semi-continuous to conclude to the
existence of minimizers.
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Lower semicontinuity of E
The L2-norm is convex, lower semi-continuous for the weak topology in L2, since

strongly sequentially continuous.
Since ϕn ⇀ ϕ̄ in W1,2(Ω,R2), using Rellich-Kondrachov Theorem we obtain that
ϕn −→ ϕ̄ in L2(Ω,R2) and then

ϕn −→ ϕ̄ in L1(Ω,R2),

since Ω is a bounded subset.
Moreover, T is a Lipschitz continuous function (of Lipschitz constant kT ) so

∫

Ω
|T ◦ ϕn − T ◦ ϕ̄| ≤

∫

Ω
kT |ϕn − ϕ| =⇒ T ◦ ϕn −→ T ◦ ϕ̄ in L1(Ω).

According to Corollary 7.1.1, T ◦ ϕ̄ ∈ W1,2(Ω) and so it belongs to the space of
bounded variation functions BV(Ω). The strong convergence of T ◦ ϕn to T ◦ ϕ̄ in
L1(Ω) enables us to conclude that

∫

Ω
|∇(T ◦ ϕ̄)| ≤ lim inf

n→+∞

∫

Ω
|∇(T ◦ ϕn)|. (7.2)

The proof of (7.2) is rather classical.

Proof : Let φ ∈ C1
c (Ω,R

2) and |φ(x)| ≤ 1 everywhere, then
∫

Ω
T ◦ ϕ̄(x) div φ(x) dx = lim

k→∞

∫

Ω
T ◦ ϕk(x) div φ(x) dx.

Consequently, ∀ε > 0, ∃N(ε, φ), ∀k ∈ N,
(
k ≥ N =⇒

∣∣∣∣
∫

Ω
T ◦ ϕk(x) div φ(x) dx−

∫

Ω
T ◦ ϕ̄(x) div φ(x) dx

∣∣∣∣ ≤ ε,

=⇒
∫

Ω
T ◦ ϕ̄(x) div φ(x) dx− ε ≤

∫

Ω
T ◦ ϕk(x) div φ(x) dx ≤

∫

Ω
T ◦ ϕ̄(x) div φ(x) dx+ ε

)
.

Since

∫

Ω
|∇u| = sup

{∫

Ω
u div φ, |φ(x)| ≤ 1 e., φ ∈ C1

c (Ω,R
2)

}
, we have

∫

Ω
T ◦ ϕk(x) div φ(x) dx ≤

∫

Ω
|∇(T ◦ ϕk)|.

Then ∀k ≥ N(ε, φ),
∫

Ω
T ◦ ϕ̄(x) div φ(x) dx− ε ≤

∫

Ω
|∇(T ◦ ϕk)|,

which implies that
∫

Ω
T ◦ ϕ̄(x) div φ(x) dx ≤ lim inf

k→∞

∫

Ω
|∇(T ◦ ϕk)|.

Taking the supremum over all φ ∈ C1
c (Ω,R

2), we conclude that
∫

Ω
|∇(T ◦ ϕ̄)| ≤ lim inf

k→∞

∫

Ω
|∇(T ◦ ϕk)|.
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Finally, we can apply the following theorem from [2]:

Theorem 7.2.2 (Anzellotti [2, Theorem 1.9])

Let Ω ∈ R
N with N ≥ 2 be a bounded open set with Lipschitz boundary. Let us

denote by ν the outward unit normal to ∂Ω. If one of these conditions is satisfied :

1. u ∈ BV(Ω) ∩ Lq(Ω), ψ ∈ {ξ ∈ L∞(Ω,RN ), div ξ ∈ Lp(Ω)}, 1 < p ≤ N, 1p +
1
q = 1,

2. u ∈ BV(Ω) ∩ L∞(Ω), ψ ∈ {ξ ∈ L∞(Ω,RN ), div ξ ∈ L1(Ω)},
3. u ∈ BV(Ω)∩L∞(Ω)∩C0(Ω), ψ ∈ {ξ ∈ L∞(Ω,RN ), div ξ is a bounded measure in Ω},

then one has ∫

Ω
u divψ +

∫

Ω
(∇u, ψ) =

∫

∂Ω
[ψ.ν]udHN−1.

Therefore, we obtain:

∫

Ω
〈∇(T ◦ ϕn), θ〉 = −

∫

Ω
T ◦ ϕn div θ +

∫

∂Ω
[θ, ν]T ◦ ϕn dH1

︸ ︷︷ ︸
known on ∂Ω and

independent of n since
ϕn|∂Ω = Id.

,

and we know that lim
n→∞

∫

Ω
T ◦ϕn div θ =

∫

Ω
T ◦ ϕ̄ div θ since T ◦ϕn strongly converges

to T ◦ ϕ̄ in L2(Ω) and div θ ∈ L2(Ω). Gathering all this results, we obtain that E is
sequentially lower semi-continuous.
Moreover, Id+W1,2

0 (Ω,R2) is a closed convex subspace of W1,2(Ω,R2) by continuity
of the trace, thus it is a weakly closed convex space according to Theorem III.7 in [6].
We obtain that ϕ̄ ∈ Id+W1,2

0 (Ω,R2) and finally ϕ̄ = Id on ∂Ω. This completes the

proof showing that E admits minimizers on Id+W1,2
0 (Ω,R2).

Numerically, the total variation of T ◦ ϕ may turn out to be complicated to compute, that is
the reason why we have to find a suitable way to compute this term efficiently. To do so, we
have investigated two methods.

7.3 Introduction of an auxiliary variable

Firstly, we propose to introduce an auxiliary variable to handle the term in T ◦ ϕ.

inf
W×X

{
Eγ(ϕ, T̃ ) =

∫

Ω
|∇T̃ | − 〈∇T̃ , θ〉+ α

2

∫

Ω
‖∇ϕ‖2 dx+ γ‖T ◦ ϕ− T̃‖L1(Ω)

}
(7.3)

with W = {ϕ ∈ Id+W1,2
0 (Ω,R2)}, X = {T̃ ∈ BV (Ω) with T̃ = T on ∂Ω }.

However, the trace of BV functions is not continuous for the BV weak-∗ topology, which is an
obstacle to prove that a minimizing sequence converges in W×X . Indeed, as seen previously,
the weak and strong topology are equivalent on a closed convex subspace but this property
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does not hold for the weak-∗ topology.
That is the reason why, inspired by [9], we define two equivalent problems. Before, we use the

formula introduced in Theorem 7.2.2, namely:

∫

Ω
〈∇T̃ , θ〉 = −

∫

Ω
T̃ div θ +

∫

∂Ω
[θ, ν] T̃ dH1

︸ ︷︷ ︸
known on ∂Ω

.

Therefore, problem (7.3) is equivalent to:

inf
W×BV0(Ω)

{
Eγ(ϕ, T̃ ) =

∫

Ω
|∇T̃ |+

∫

Ω
T̃ div θ +

α

2

∫

Ω
‖∇ϕ‖2 dx+ γ‖T ◦ ϕ− T̃‖L1(Ω)

}
(7.4)

(recalling the T is compactly supported and ϕ|∂Ω = Id), and we define an associated relaxed
problem:

inf
W×BV (Ω)

{
Ẽγ(ϕ, T̃ ) =

∫

Ω
|∇T̃ |+

∫

Ω
T̃ div θ+

∫

∂Ω
|T̃ | dH1

+
α

2

∫

Ω
‖∇ϕ‖2 dx+ γ‖T ◦ ϕ− T̃‖L1(Ω)

}
.

(7.5)

We aim to prove in a first step that

inf
W×BV0(Ω)

Eγ(ϕ, T̃ ) = inf(7.4)= inf
W×BV (Ω)

Ẽγ(ϕ, T̃ ) = inf(7.5).

In this prospect, we need the following density result:

Theorem 7.3.1 (Demengel [9, Theorem 6.70, Chapter 6, page 322])

Let Ω be an open subset of RN of class C1 and let u ∈ BV (Ω). Then there exists a
sequence {un} of functions in C∞

c (Ω) such that

‖un − u‖L1(Ω)
n→+∞−→ 0 and

∫

Ω
|∇un| n→+∞−→

∫

Ω
|∇u|+

∫

∂Ω
|u|.

First, as W ×BV0(Ω) is included in W ×BV (Ω) it is clear that

inf (7.5)≤ inf (7.4).

Let us denote by (ϕ̄, ¯̃T ) a minimizing pair of problem (7.5) (we prove further that such a
minimizing pair exists). According to Theorem 7.3.1, there exists a sequence (T̃n) ∈ C∞

c (Ω)
such that: 




T̃n −→ ¯̃T in L1(Ω),∫

Ω
|∇T̃n| −→

∫

Ω
|∇ ¯̃T |+

∫

∂Ω
| ¯̃T | dH1.

(7.6)

Also, there exists (ϕn) ∈ W1,2(Ω,R2)∩C∞
c (Ω̄,R2) (as Ω is bounded, of class C1, [6, Corollary

IX.8]), such that

ϕn
n→+∞−→ ϕ̄ in W1,2(Ω,R2).
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As T̃n is uniformly bounded in BV (Ω) and thus in L2(Ω) (due to the continuous embedding
of BV (Ω) in L2(Ω) - recall that Ω ⊂ R

2), we can extract a subsequence of T̃n, still denoted

by T̃n, such that T̃n converges to T ∗ in L2(Ω). It is not difficult to prove that T ∗ = ¯̃T .
Consequently,

∫

Ω
|∇T̃n|+

∫

Ω
T̃n div θ +

α

2

∫

Ω
‖∇ϕn‖2 + γ‖T ◦ ϕn − T̃n‖L1(Ω)

n→+∞−→
∫

Ω
|∇ ¯̃T |+

∫

∂Ω
| ¯̃T | dH1 +

∫

Ω

¯̃T div θ +
α

2

∫

Ω
‖∇ϕ̄‖2 dx+ γ‖T ◦ ϕ̄− ¯̃T‖L1(Ω).

In conclusion,

inf (7.4) = inf (7.5).

7.3.1 Existence of minimizers for the decoupled problem

Theorem 7.3.2

Assuming that Ẽγ is proper. The decoupled problem

inf
ϕ∈Id+W1,2

0 (Ω,R2)

T̃∈BV(Ω)

{
Ẽγ(ϕ, T̃ ) =

∫

Ω
|∇T̃ |+

∫

Ω
T̃ div θ +

∫

∂Ω
|T̃ | dH1

+
α

2

∫

Ω
‖∇ϕ‖2 dx+ γ‖T ◦ ϕ− T̃‖L1(Ω)

}
,

admits at least one solution.

Remark 7.3.1

We can check that the problem is well defined since as Ω ⊂ R
2 is bounded with Lipschitz

boundary, we have BV(Ω) ⊂ L2(Ω).

Proof :
Coercivity inequality

M is a positive constant that may change line to line and that may depend on γ
(here, γ is fixed).

As

∣∣∣∣
∫

Ω
T̃ div θ

∣∣∣∣ ≤ ‖T̃‖L2(Ω)‖ div θ‖L2(Ω), then

∫

Ω
T̃ div θ ≥ −‖T̃‖L2(Ω)‖ div θ‖L2(Ω) ≥ −κ‖ div θ‖L2(Ω)‖T̃‖BV (Ω),

κ > 0, still due to the continuous embedding BV (Ω) ⊂ L2(Ω). It follows that

Ẽγ(ϕ, T̃ ) ≥
∫

Ω
|∇T̃ | − κ‖T̃‖BV (Ω)‖ div θ‖L2(Ω) + γ‖T̃‖L1(Ω) − γ‖T ◦ ϕ‖L1(Ω) +

α

2
‖∇ϕ‖2L2(Ω,M2)

,

≥
(
min(1, γ)− κ‖ div θ‖L2(Ω)

)
‖T̃‖BV (Ω) − γ‖T ◦ ϕ‖L1(Ω) +

α

2
‖∇ϕ‖2L2(Ω,M2)

.

T is assumed to be Lipschitz continuous and compactly supported. For theoretical
and numerical purposes, we may consider a linear extension operator ([6, Theorem
IX.7, page 158]) P : W1,∞(Ω) −→ W1,∞(R2) such that
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(i) PT|Ω = T ,

(ii) ‖PT‖L∞(R2) ≤ C‖T‖L∞(Ω) and

(iii) ‖PT‖W1,∞(R2) ≤ C‖T‖W1,∞(Ω) with C depending only on Ω.

Thus

Ẽγ(ϕ, T̃ ) ≥
(
min(1, γ)− κ‖ div θ‖L2(Ω)

)
‖T̃‖BV (Ω)−γ|Ω|‖PT‖L∞(R2)+

α

2
‖∇ϕ‖2L2(Ω,M2)

.

Finally, using the generalized Poincaré inequality:

Ẽγ(ϕ, T̃ ) ≥
(
min(1, γ)− κ‖ div θ‖L2(Ω)

)
‖T̃‖BV (Ω) − γ|Ω|‖PT‖L∞(R2) +A‖ϕ‖2W1,2(Ω,R2) −K

with A > 0,K ∈ R and if ‖ div θ‖L2(Ω) <
min(1, γ)

κ
, the infimum is finite.

Convergence of a minimizing sequence

Let (ϕn, T̃n) be a minimizing sequence of Ẽγ(ϕ, T̃ ). Since Ẽγ is proper, for n large
enough,(
min(1, γ)− κ‖ div θ‖L2(Ω)

)
‖T̃‖BV (Ω)+A‖ϕ‖2W1,2(Ω,R2)−K ≤ Ẽγ(ϕn, T̃n) ≤M , which

implies that (ϕn) is uniformly bounded in W1,2(Ω,R2). We can thus extract a subse-
quence, still denoted by ϕn, such that

ϕn ⇀ ϕ̃γ in W1,2(Ω,R2).

Also, T̃n is uniformly bounded in BV (Ω) (thus in L2(Ω)) and we can extract a subse-
quence, still denoted by T̃n, of T̃n such that:





T̃n ⇀ T̃γ in L2(Ω)

and

T̃n
∗
⇀ T̃γ in BV (Ω),

which means, for the weak-∗ convergence in BV (Ω), that T̃n converges strongly in
L1(Ω) to T̃γ and for all φ in (C0(Ω))2,

∫

Ω
φ∇T̃n −→

∫

Ω
φ∇T̃γ .

In summary, working with a common extraction mapping (we do not change the
notations for the common extraction mappings),

{
ϕn ⇀ ϕ̃γ in W1,2(Ω,R2)

T̃n
∗
⇀ T̃γ in BV (Ω).

Rellich-Kondrachov embedding theorem gives that ϕn strongly converges to ϕ̃γ in
L2(Ω,R2) (and thus in L1(Ω,R2)).
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Lower semicontinuity of Ẽγ

By lower semicontinuity of the total variation,
∫

Ω
|∇T̃γ | ≤ lim inf

n→∞

∫

Ω
|∇T̃n|.

The L2-norm being convex and strongly sequentially lower semi-continuous, it is lower
semi-continuous and ∫

Ω
‖∇ϕ̃γ‖2 ≤ lim inf

n→+∞

∫

Ω
‖∇ϕn‖2.

As div θ is assumed to belong to L2(Ω) and T̃n weakly converges to T̃γ in L2(Ω),

lim
n→+∞

∫

Ω
T̃n div θ =

∫

Ω
T̃γ div θ.

At last,

‖T ◦ ϕn − T̃n − (T ◦ ϕ̃γ − T̃γ)‖L1(Ω) ≤ ‖T ◦ ϕn − T ◦ ϕ̃γ‖L1(Ω) + ‖T̃n − T̃γ‖L1(Ω),

≤ kT ‖ϕn − ϕ̃γ‖L1(Ω) + ‖T̃n − T̃γ‖L1(Ω),

which implies that lim
n→+∞

‖T ◦ ϕn − T̃n‖L1(Ω) = ‖T ◦ ϕ̃γ − T̃γ‖L1(Ω).

Now, denoting by T̂n an extension of T̃n by 0 outside of Ω, we have, according to the
extension theorem ([11, Theorem 1, page 183]), that T̂n ∈ BV (R2) and

∫

R2

|∇T̂n| =
∫

Ω
|∇T̃n|+

∫

∂Ω
|T̃n| dH1.

If T̃n converges weakly-∗ to T̃γ in BV (Ω), then T̂n converges weakly-∗ to an element
u of BV (R2). We must have u = 0 in the complement of Ω̄ and u = T̃γ in Ω. In
particular, ∫

R2

|∇u| =
∫

Ω
|∇T̃γ |+

∫

∂Ω
|T̃γ | dH1.

By the weak lower semicontinuity property,
∫

R2

|∇u| ≤ lim inf
n→+∞

∫

R2

|∇T̂n|,

that is ∫

Ω
|∇T̃γ |+

∫

∂Ω
|T̃γ | dH1 ≤ lim inf

n→+∞

∫

R2

T̃n +

∫

∂Ω
|T̃n|dH1.

In conclusion,
∫

Ω
|∇T̃γ |+

∫

∂Ω
|T̃γ | dH1 +

∫

Ω
T̃γ div θ

+
α

2

∫

Ω
‖∇ϕ̃γ‖2 + γ‖T ◦ ϕ̃γ − T̃γ‖L1(Ω)

≤ lim inf
n→+∞

(∫

Ω
|∇T̃n|+

∫

Ω
T̃n div θ +

∫

∂Ω
|T̃n| dH1

+
α

2

∫

Ω
‖∇ϕn‖2 + γ‖T ◦ ϕn − T̃n‖L1(Ω)

)
,

which implies that (ϕ̃γ , T̃γ) is a minimizing pair of problem (7.5).
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7.4 Approximation method of the total variation of T ◦ ϕ
We now come to the second method to overcome the difficulties revealed by the total variation
of T ◦ ϕ.

As described in [3], Aubert and Kornprobst use an approximation of the semi-norm on

W1,p(Ω): |u|p
W1,p =

∫

Ω
|∇u|p, ∀p. They propose an alternative method based on a character-

ization of the Sobolev spaces by Bourgain et al. in [5] and extended by Ponce in [13]. Before
providing approximation results, we introduce a sequence (ρn) of radial mollifiers, i.e.,

ρn(x) = ρn(|x|),

ρn ≥ 0,

∫

RN

ρn(x)dx = 1,

and for every δ > 0, we assume that lim
n→∞

∫ ∞

δ
ρn(r)r

N−1dr = 0 (Ω ⊂ R
N ).

(7.7)

In [5], the authors provide the following theorem:

Theorem 7.4.1 ([5, Theorem 2])

Assume u ∈ Lp(Ω), 1 < p <∞. Then

lim
n→∞

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|p ρn(x− y) dx dy = Kp,N

∫

Ω
|∇u|p dx = Kp,N |u|pW1,p (7.8)

with the convention that |u|W1,p = ∞ if u /∈ W1,p(Ω). Here Kp,N depends only on p and
N .

In [13], Ponce provides a follow-up to [5], replacing |.|p with a continuous function w and
using functions ρn that are no longer assumed to be radial. He also focuses on the BV -case
and provides the following corollary:

Corollary 7.4.1 ([13, Corollary 1])

Suppose that ρn is radial for each n > 0. If u ∈ W1,p(Ω), p > 1 or if u ∈ BV (Ω) and
p = 1, then

lim
n→∞

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|p ρn(x− y) dx dy = Kp,N

∫

Ω
|Du|p,

where Kp,N = −
∫

SN−1

|e · σ|p dHN−1.

In our work, we use this characterization to approximate the total variation.
Then we propose minimizing the following functional:

inf
ϕ∈W

{
En(ϕ) =

1

K1,N

∫

Ω

∫

Ω

|T ◦ ϕ(x)− T ◦ ϕ(y)|
|x− y| ρn(x− y) dx dy −

∫

Ω
〈∇(T ◦ ϕ), θ〉 dx

+
α

2

∫

Ω
‖∇ϕ‖2 dx

}
,

(7.9)
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with W =
{
Id+W1,2

0 (Ω,R2)
}
.

Functional En is well defined for ϕ ∈ W1,2(Ω), since T is Lipschitz continuous, T ◦ϕ ∈ W1,2(Ω)
according to Theorem 7.1.1, and then T ◦ ϕ ∈ BV (Ω).

For the sake of clarity, we denote by Fn(u) the approximation:

Fn(u) =

∫

Ω

∫

Ω

|u(x)− u(y)|
|x− y| ρn(x− y) dx dy.

7.4.1 Existence of minimizers for the Problem with approximation of the

total variation

Theorem 7.4.2

Assuming En is proper, for n large enough, Problem (7.9) admits at least one solution.

Proof :

Coercivity inequality
Let us fix ε = 1. According to Corollary 7.4.1,

∃n0 ∈ N, ∀n ∈ N,
(
n ≥ n0 =⇒

∣∣∣∣Fn(T ◦ ϕ)−K1,N

∫

Ω
|∇(T ◦ ϕ)|

∣∣∣∣ ≤ 1

)

so

(
n ≥ n0 =⇒

∫

Ω
|∇(T ◦ ϕ)| − 1

K1,N
≤ 1

K1,N
Fn(T ◦ ϕ) ≤

∫

Ω
|∇(T ◦ ϕ)|+ 1

K1,N

)
.

Therefore, we obtain

1

K1,N
Fn(T ◦ ϕ)−

∫

Ω
〈∇(T ◦ ϕ), θ〉 dx ≥

∫

Ω
|∇(T ◦ ϕ)| −

∫

Ω
〈∇(T ◦ ϕ), θ〉 dx− 1

K1,N
,

for n large enough.

Since

∫

Ω
|∇(T ◦ ϕ)| −

∫

Ω
〈∇(T ◦ ϕ), θ〉 dx ≥ 0, it yields to

En(ϕ) ≥
α

2
‖∇ϕ‖2L2(Ω,M2)

− 1

K1,N
.

At last, using the generalized Poincaré inequality, we obtain:

En(ϕ) ≥ c‖ϕ‖2W1,2(Ω,R2) + κ , κ ∈ R. (7.10)

Therefore, En being proper, the infimum of En is finite.

Convergence of a minimizing sequence
Let (ϕkn) ∈ Id+W1,2

0 (Ω,R2) be a minimizing sequence of En(ϕ).

En(ϕ
k
n)

k→∞−→ inf
Ψ∈Id+W1,2

0 (Ω,R2)
En(Ψ).
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We have assumed that En is proper that is to say that there exists ϕ̃n such that
En(ϕ̃n) < ∞, then for k large enough we have En(ϕ

k
n) ≤ En(ϕ̃n) + 1. So, from

the coercivity inequality, (ϕkn) is bounded in W1,2(Ω,R2), we can therefore extract a
subsequence still denoted by (ϕkn) such that:

(ϕkn)k ⇀ ϕ̄n in W1,2(Ω,R2).

And by continuity of the trace: ϕ̄n = Id on ∂Ω.

Lower semicontinuity
According to Rellich-Kondrachov theorem, we also have ϕkn −→ ϕ̄n in L2(Ω,R2) and

so in L1(Ω,R2).
T being a Lipschitz continuous function: T ◦ϕkn −→ T ◦ ϕ̄n in L2(Ω). So T ◦ϕkn weakly
converges to T ◦ ϕ̄n in L2(Ω). Consequently, since it is assumed that div θ ∈ L2(Ω),

∫

Ω

(
T ◦ ϕkn

)
div θ dx

k→+∞−→
∫

Ω
(T ◦ ϕ̄n) div θ dx.

Recalling that

∫

Ω
〈∇

(
T ◦ ϕkn

)
, θ〉 dx = −

∫

Ω
T ◦ϕkn div θ dx+

∫

∂Ω
[θ, n]T ◦ϕkn dH1, we

obtain that

∫

Ω
〈∇

(
T ◦ ϕkn

)
, θ〉 dx k→+∞−→

∫

Ω
〈∇ (T ◦ ϕ̄n) , θ〉 dx,

since again ϕkn = Id on ∂Ω and T is assumed to be compactly supported.
Thanks to Theorem 2.1.11 ([6, Theorem IV.9]), we also have the convergence almost ev-

erywhere of a subsequence of T ◦ϕkn to T ◦ϕ̄n. Therefore
|T ◦ ϕkn(x)− T ◦ ϕkn(y)|

|x− y| ρn(x−

y) converges to
|T ◦ ϕ̄n(x)− T ◦ ϕ̄n(y)|

|x− y| ρn(x−y) almost everywhere. Moreover, we use

the following proposition:

Proposition 7.4.2 ([3, Proposition 2.1])

Assume 1 ≤ p ≤ ∞ and u ∈ W1,p(Ω) and let ρ ∈ L1(RN ), ρ > 0. Then

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|p ρ(x− y) dx dy ≤ C|u|p

W1,p‖ρ‖L1(RN ),

where |u|p
W1,p denote the semi-norm defined by |u|p

W1,p =

∫

Ω
|∇u|p dx and C depends only

on p and Ω.
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Thus,

∫

Ω

∫

Ω

|T ◦ ϕkn(x)− T ◦ ϕkn(y)|
|x− y| ρn(x− y) dx dy

≤kT
∫

Ω

∫

Ω

|ϕkn(x)− ϕkn(y)|
|x− y| ρn(x− y) dx dy

≤kT
∫

Ω

∫

Ω

|
(
ϕkn

)1
(x)−

(
ϕkn

)1
(y)|

|x− y| ρn(x− y) dx dy

+ kT

∫

Ω

∫

Ω

|
(
ϕkn

)2
(x)−

(
ϕkn

)2
(y)|

|x− y| ρn(x− y) dx dy,

≤kTC
(
‖
(
ϕkn

)1
‖W1,2(Ω,R2) + ‖

(
ϕkn

)2
‖W1,2(Ω,R2)

)
,

which is bounded independently of k ((ϕkn)
1 and (ϕkn)

2 denoting the components of
ϕkn).
Then according to the dominated convergence theorem:

∫

Ω

∫

Ω

|T ◦ ϕ̄n(x)− T ◦ ϕ̄n(y)|
|x− y| ρn(x− y) dx dy

= lim
k→+∞

∫

Ω

∫

Ω

|T ◦ ϕkn(x)− T ◦ ϕkn(y)|
|x− y| ρn(x− y) dx dy.

To conclude, the functional is weakly sequentially lower semicontinuous and

En(ϕ̄n) ≤ lim inf
k→∞

En(ϕ
k
n).

Therefore, there exists at least one minimizer of En on Id+W1,2
0 (Ω,R2).

7.4.2 Study of lim
n→∞

ϕ̄n and Γ-convergence

According to Theorem 3 in [5]:

Theorem 7.4.3 ([5, Theorem 3])

Assume f ∈ W1,1(Ω), Ω ⊂ R
N . Then

lim
j→∞

∫

Ω

∫

Ω

|f(x)− f(y)|
|x− y| ρεj (x− y) dx dy = K1,N |f |W1,1(Ω) .

K1,N only depends on N .

Proof (inspired of [5]) : As N = 2 in practice, we restrict ourselves to this case in the
proof.
For f ∈ W1,1(Ω), let

Fn(x, y) =
|f(x)− f(y)|

|x− y| ρn(x− y).
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We have to prove that

lim
n→∞

‖Fn‖L1(Ω×Ω) = K1,N |f |W1,1(Ω).

Theorem 7.4.4 ([5, Theorem 1])

Assume f ∈ W1,p(Ω), 1 ≤ p <∞, and let ρ ∈ L1(RN ), ρ ≥ 0. Then

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|p ρ(x− y) dx dy ≤ C |f |p

W1,p ‖ρ‖L1 ,

where C depends only on p and Ω.

The proof of Theorem 7.4.4 relies on Proposition IX.3 in [6].
By Theorem 7.4.4 and using the fact that ρn is radial, we have for any n and f, g ∈
W1,1(Ω),

∣∣‖Fn‖L1(Ω×Ω) − ‖Gn‖L1(Ω×Ω)

∣∣ ≤ ‖Fn −Gn‖L1(Ω×Ω) ≤ C |f − g|W1,1(Ω) ,

with C being independent of f, g and n thanks to the properties of radial functions.
Therefore, it suffices to establish the result for f ∈ C2(Ω̄) and by density, it will be
satisfied for f ∈ W1,1(Ω). Indeed, ∀f ∈ W1,1(Ω), there exists a sequence (fk) ∈ C2(Ω̄)
such that

fk
k→+∞−→ f in W1,1(Ω).

Then |f − fk|W1,1(Ω)
k→+∞−→ 0 implies

∣∣‖Fn‖L1(Ω×Ω) − ‖Fk,n‖L1(Ω×Ω)

∣∣ k→+∞−→ 0, which

yields to the validity of the result for f ∈ W1,1(Ω) if the result holds for f ∈ C2(Ω̄).

Fix some f ∈ C2(Ω̄), then

|f(x)− f(y)|
|x− y| =

∣∣∣∣(∇f)(x) ·
x− y

|x− y|

∣∣∣∣+O(|x− y|).

For each fixed x ∈ Ω, let us set R = dist(x, ∂Ω). Denoting by B(x,R) the open ball
with center x and radius R,

∫

Ω

|f(x)− f(y)|
|x− y| ρn(x− y) dy =

∫

B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy

+

∫

Ω\B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy.

∫

Ω\B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy ≤

2‖f‖C0(Ω̄)

R

∫

Ω\B(x,R)
ρn(x− y) dy,

≤
2‖f‖C0(Ω̄)

R
|S1|

∫ +∞

R
rρn(r) dr,

which tends to 0 as n −→ ∞, as a result of the properties of ρn. Let us now make the

expression of

∫

B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy explicit. Denoting by y = (y1, y2) and
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x = (x1, x2), we make the change of variables

{
y1 = x1 + r cos θ

y2 = x2 + r sin θ, with θ ∈ [0, 2π] and r ∈ [0, R].

Then

∫

B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy =

∫

B(x,R)

(∣∣∣∣(∇f)(x) ·
x− y

|x− y|

∣∣∣∣

+O(|x− y|)
)
ρn(x− y) dy,

=

∫ R

0
rρn(r)

∫ 2π

0

(∣∣∣∣(∇f)(x) ·
(
cos θ

sin θ

)∣∣∣∣
)
dθ dr

+ |S1|O
(∫ R

0
r2ρn(r) dr

)
.

Then setting ∇f(x) = |∇f(x)|e with e a unit vector (here e depends on x), it yields
to:

∫

B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy = |∇f(x)|

∫ R

0
rρn(r)

∫ 2π

0

(
|e ·

(
cos θ

sin θ

)
|
)
dθ dr,

+ |S1|O
(∫ R

0
r2ρn(r) dr

)
,

First of all,

∫ 2π

0

(
|e ·

(
cos θ

sin θ

)
|
)
dθ is independent of the unit vector e.

Secondly,

|S1|
∫ R

0
rρn(r) dr = |S1|

∫ +∞

0
rρn(r) dr

︸ ︷︷ ︸
= 1

according to the

hypotheses

on ρn

− |S1|
∫ +∞

R
rρn(r) dr.

︸ ︷︷ ︸
n→+∞
��

0

Thirdly, as proved by Spector in his PhD manuscript ([15, page 58]), if E ⊂ R
N is

bounded and measurable, then

lim
n→+∞

∫

E
|x|ρn(x) dx = 0.

In our case, taking E = B(0, R) and making the change of variables

{
x1 = r cos θ
x2 = r sin θ,

we get ∫

B(0,R)
|x|ρn(x) dx = |S1|

∫ R

0
r2ρn(r) dr,
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which tends to 0 when n tends to +∞.
In conclusion,

∫

B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy =

|∇f(x)|
|S1|

(∫ 2π

0

(
|e ·

(
cos θ

sin θ

)
|
)
dθ

)∫ R

0
|S1|rρn(r) dr,

+ |S1|O
(∫ R

0
r2ρn(r) dr

)
,

and with the material above,

lim
n→+∞

∫

B(x,R)

|f(x)− f(y)|
|x− y| ρn(x− y) dy = K1,2|∇f(x)|, (7.11)

with K1,2 =
1

|S1|

∫ 2π

0
|e ·

(
cos θ

sin θ

)
| dθ and e any unit vector of R2.

Since f ∈ C2(Ω̄), there exists L such that |f(x)− f(y)| ≤ L|x− y|, ∀x, y ∈ Ω, then

∫

Ω

|f(x)− f(y)|
|x− y| ρn(x− y) dy ≤ L, ∀x ∈ Ω, (7.12)

(one assume that Ω is connected, which is the case in practice).
Using the dominated convergence theorem, with (7.11) and (7.12), we conclude that
for f ∈ C2(Ω̄), lim

n→∞
‖Fn‖L1(Ω×Ω) = K1,N |f |W1,1(Ω). That is to say

lim
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|
|x− y| ρn(x− y) dx dy = K1,N |f |W1,1(Ω) .

We complete the proof thanks to the density of C2(Ω̄) in W1,1(Ω) (corollary IX.8 in
[6]).

We have provided the proof in the case of f ∈ W1,1(Ω), which is sufficient in our case since
T ◦ ϕ ∈ W1,2(Ω) so T ◦ ϕ ∈ W1,1(Ω). However, in [8], Davila provides the proof for the BV
case:

Theorem 7.4.5 ([8, Theorem 1])

Let Ω ⊂ R
N be open bounded with a Lipschitz boundary and let f ∈ BV (Ω). Consider a

sequence ρn satisfying (7.7). Then

lim
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|
|x− y| ρn(x− y) dx dy = K1,N |f |BV (Ω)

with |f |BV (Ω) =

{∫

Ω
f divϕ ∈ C1

c (Ω,R
N ), |ϕ| ≤ 1 in Ω

}
.

For n fixed, we have proved the existence of a solution ϕ̄n in Id+W1,2(Ω,R2) to problem
(7.9) for n large enough.

∀v ∈ Id+W1,2
0 (Ω), En(ϕ̄n) ≤ En(v).
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From this inequality and the coercivity inequality, ϕ̄n is bounded independently of n then,
up to a subsequence, ϕ̄n weakly converges to ϕ̄ in W1,2(Ω,R2).
We would like to prove that En(ϕ̄n) converges to E(ϕ̄) when n tends to +∞.
By definition of ϕ̄n, one has En(ϕ̄n) ≤ En(ϕ̄), thus by passing to the upper limit when n
tends to +∞,

lim sup
n→+∞

En(ϕ̄n) ≤ lim sup
n→+∞

En(ϕ̄)

= lim
n→+∞

1

K1,2

∫

Ω

∫

Ω

|T ◦ ϕ̄(x)− T ◦ ϕ̄(y)|
|x− y| ρn(x− y) dx dy

+

∫

Ω
T ◦ ϕ̄ div θ dx+

α

2

∫

Ω
‖∇ϕ̄‖2 dx,

=

∫

Ω
|∇(T ◦ ϕ̄)|+

∫

Ω
T ◦ ϕ̄ div θ dx+

α

2

∫

Ω
‖∇ϕ̄‖2 dx,

= E(ϕ̄).

Thus,

lim sup
n→+∞

En(ϕ̄n) ≤ E(ϕ̄).

It remains to prove that
E(ϕ̄) ≤ lim inf

n→+∞
En(ϕ̄n).

Due to compactness properties, it suffices to prove that
∫

Ω
|∇(T ◦ ϕ̄)| ≤ lim inf

n→+∞
Fn(T ◦ ϕ̄n).

In that purpose, let us introduce some notations.
For r > 0, we define the two following sets:

Ωr = {x ∈ Ω : dist(x, ∂Ω) > r},

Ωr = {x ∈ R
2 : dist(x,Ω) < r}.

Let η ∈ C∞
0 (R2) be a nonnegative radial function such that

∫

Ω
η = 1, Supp η ⊂ B(0, 1), and

let us define

fδ(x) =
1

δ2

∫

Ω
f(y) η(

x− y

δ
) dy, ∀x ∈ Ωδ,

where fδ is a regularization of f .
For the sake of clarity, we set f = T ◦ ϕ̄, and due to the properties of T , fn = T ◦ ϕ̄n strongly
converges to f = T ◦ ϕ̄ in L1(Ω).
From Lemma 4 in [13], for each r > 0:

Fn(fn) ≥
∫

Ωr

∫

Ωr

|fn,δ(x)− fn,δ(y)|
|x− y| ρn(x− y) dx dy, ∀δ ∈ (0, r).

We first aim to prove that

lim
n→+∞

∫

Ωr

∫

Ωr

|fn,δ(x)− fn,δ(y)|
|x− y| ρn(x− y) dy dx = lim

n→+∞

∫

Ωr

∫

Ωr

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx

= K1,2

∫

Ωr

|∇fδ|.
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We start by proving that

lim
n→+∞

∣∣∣∣
∫

Ωr

∫

Ωr

( |fn,δ(x)− fn,δ(y)|
|x− y| − ∇fδ(x) ·

x− y

|x− y|

)
ρn(x− y) dy dx

∣∣∣∣ = 0.

It is easily seen that

∣∣∣∣
∫

Ωr

∫

Ωr

( |fn,δ(x)− fn,δ(y)|
|x− y| −

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣
)
ρn(x− y) dy dx

∣∣∣∣

≤
∫

Ωr

∫

Ωr

∣∣∣∣
|fn,δ(x)− fn,δ(y)|

|x− y| −
∣∣∣∣∇fδ(x) ·

x− y

|x− y|

∣∣∣∣
∣∣∣∣ ρn(x− y) dy dx,

≤
∫

Ωr

∫

Ωr

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ρn(x− y) dy dx.

Let us take η such that η ∈ (0, r − δ). Then if x ∈ Ωr and y ∈ (Ωr)
η, if |x − y| < η, the

segment of endpoints x and y is contained in (Ωr)η so that, fn,δ being sufficiently smooth,
from Taylor’s expansion:

fn,δ(y)− fn,δ(x) =

∫ 1

0
(y − x) · ∇fn,δ(x+ s(y − x)) ds,

then,

fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y) =

∫ 1

0
(x− y) · (∇fn,δ(x+ s(y − x))−∇fδ(x)) ds,

and

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)| ≤ |x− y|
∫ 1

0
|∇fn,δ(x+ s(y − x))−∇fδ(x)| ds,

≤ |x− y|
∫ 1

0
|∇fn,δ(x+ s(y − x))−∇fδ(x+ s(y − x))

+∇fδ(x+ s(y − x))−∇fδ(x)| ds.

We know that fn,δ converges to fδ in C2(Ωr), then

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)| ≤ |x− y|‖∇fn,δ −∇fδ‖L∞((Ωn)η)

+ |x− y|
∫ 1

0
|∇fδ(x+ s(y − x))−∇fδ(x)| ds,

≤ |x− y|‖∇fn,δ −∇fδ‖L∞((Ωn)η)
+

1

2
|x− y|2‖∇2fδ‖L∞((Ωn)η)

.

Thus,

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ≤ ‖∇fn,δ −∇fδ‖L∞((Ωn)η)

+
1

2
|x− y|‖∇2fδ‖L∞((Ωn)η)

.
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Now,

∫

Ωr

∫

Ωr

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ρn(x− y) dy dx

≤
∫

Ωr

∫

(Ωr)η

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ρn(x− y) dy dx,

≤
∫

Ωr

∫

(Ωr)η∩|x−y|<η

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ρn(x− y) dy dx

+

∫

Ωr

∫

(Ωr)η∩|x−y|≥η

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ρn(x− y) dy dx.

We consider each component of the right-hand side of the inequality.

∫

Ωr

∫

(Ωr)η∩|x−y|<η

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ρn(x− y) dy dx

≤
∫

Ωr

∫

(Ωr)η∩|x−y|<η

(
‖∇fn,δ −∇fδ‖L∞((Ωr)η)

+
1

2
|x− y|‖∇2fδ‖L∞((Ωr)η)

)
ρn(x− y) dy dx,

≤ |Ωr| ‖∇fn,δ −∇fδ‖L∞((Ωr)η)︸ ︷︷ ︸
n→+∞
��

+
|Ωr|
2

‖∇2fδ‖L∞((Ωr)η)

∫

|h|≤η
|h|ρn(h) dh

︸ ︷︷ ︸
.

n→+∞
��

0 0

since fn,δ converges due to the result by D. Spector[15]
to fδ in C2((Ωr)η)
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∫

Ωr

∫

(Ωr)η∩|x−y|≥η

|fn,δ(x)− fn,δ(y)−∇fδ(x) · (x− y)|
|x− y| ρn(x− y) dy dx

≤1

η

∫

Ωr

∫

(Ωr)η∩|x−y|≥η
|fn,δ(x)− fn,δ(y)| ρn(x− y) dy dx

+

∫

Ωr

∫

(Ωr)η∩|x−y|≥η

∣∣∣∣∇fδ(x) ·
(x− y)

|x− y|

∣∣∣∣ ρn(x− y) dy dx,

≤1

η

∫

Ωr

∫

(Ωr)η∩|x−y|≥η

(
|fn,δ(x)− fδ(x)|+ |fδ(x)− fδ(y)|

+ |fδ(y)− fn,δ(y)|
)
ρn(x− y) dy dx

+ ‖∇fδ‖L∞((Ωr)η)

∫

Ωr

∫

(Ωr)η∩|x−y|≥η
ρn(x− y) dy dx,

≤ 2

η
‖fn,δ − fδ‖L∞((Ωr)η)

|Ωr|
∫

|h|≥η
ρn(h) dh

+
2

η
‖fδ‖L∞((Ωr)η)

|Ωr|
∫

|h|≥η
ρn(h) dh

+ ‖∇fδ‖L∞((Ωr)η)
|Ωr|

∫

|h|≥η
ρn(h) dh.

We thus have proved that

lim
n→+∞

∣∣∣∣
∫

Ωr

∫

Ωr

|fn,δ(x)− fn,δ(y)|
|x− y| ρn(x− y) dy dx

−
∫

Ωr

∫

Ωr

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx

∣∣∣∣ = 0.

Now it suffices to prove that the limit of

∫

Ωr

∫

Ωr

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x − y) dy dx when n

tends to +∞ exists and compute it.

∫

Ωr

∫

R2

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx =

∫

Ωr

∫

Ωr

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx

+

∫

Ωr

∫

R2\Ωr

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx.
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Fixing λ > 0,

∫

Ωr

∫

R2\Ωr

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx

≤|Ωr|‖∇fδ‖L∞(Ωr)

∫

|h|>λ
ρn(h) dh

+ ‖∇fδ‖L∞(Ωr)

∫

Ωr\Ωr+λ

∫

|x−y|≤λ
ρn(x− y) dy dx,

≤|Ωr|‖∇fδ‖L∞(Ωr)

∫

|h|>λ
ρn(h) dh

+ |Ωr \ Ωr+λ|‖∇fδ‖L∞(Ωr)

∫

|h|≤λ
ρn(h) dh.

By letting n tend to +∞, and then λ tend to 0, it follows that:

lim
n→+∞

∫

Ωr

∫

R2\Ωr

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx = 0,

(using again the properties of ρn).
Now,

∫

Ωr

∫

R2

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx =

∫

Ωr

∫ 2π

0

∫ +∞

0

∣∣∣∣∇fδ(x) ·
(
cos θ

sin θ

)∣∣∣∣ ρn(r)r dr dθ dx,

with the change of variables

{
y1 = x1 + r cos θ
y2 = x2 + r sin θ, θ ∈ [0, 2π] and r ∈ [0,+∞[.

That is, ∫

Ωr

|∇fδ(x)|
∫ +∞

0

[∫ 2π

0
|e ·

(
cos θ

sin θ

)
| dθ

]
rρn(r) dr dx,

with e any unit vector in R
2.

In the end,

lim
n→+∞

∫

Ωr

∫

R2

∣∣∣∣∇fδ(x) ·
x− y

|x− y|

∣∣∣∣ ρn(x− y) dy dx =
1

|S1|

∫ 2π

0
|e ·

(
cos θ

sin θ

)
| dθ

∫

Ωr

|∇fδ(x)| dx,

= K1,2

∫

Ωr

|∇fδ(x)| dx.

In particular,

K1,2

∫

Ωr

|∇fδ| dx = lim inf
n→+∞

∫

Ωr

∫

Ωr

|fn,δ(x)− fn,δ(y)|
|x− y| ρn(x− y) dx dy ≤ lim inf

n→+∞
Fn(fn).

Using the fact that fδ strongly converges to f in L1(Ωr) when δ −→ 0+,

K1,2

∫

Ωr

|∇(T ◦ ϕ̄)| ≤ K1,2 lim inf
δ→0+

∫

Ωr

|∇fδ|

≤ lim inf
n→+∞

Fn(fn).
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Following Ponce [13], we obtain that sup
A⊂⊂Ω

∫

A
|∇f | =

∫

Ω
|∇f |, then

lim inf
n→∞

Fn(ϕn) ≥ K1,2

∫

Ω
|∇(T ◦ ϕ̄)|.

Combining the two previous results allows to conclude that

lim
n→+∞

En(ϕ̄n) = E(ϕ̄).

7.4.3 Euler-Lagrange equation

Let us assume that ϕn minimizes Fn. Consequently, Gn defined below is minimum for ε = 0.
We define the functional Gn(ε) by

Gn(ε) = Fn(ϕn + εφ) =

∫

Ω

∫

Ω

|T ◦ (ϕn + εφ)(x)− T ◦ (ϕn + εφ)(y)|
|x− y| ρn(x− y) dx dy,

∀φ ∈ W1,2(Ω,R2). So necessarily,
∂Gn
∂ε

∣∣∣∣
ε=0

= 0.

To do so, we have to establish a chain rule for T ◦ ϕn. We need further regularity on T than
Lipschitz continuity.

Theorem 7.4.6

We assume that T ∈ W2,∞(Ω,R2), T is compactly supported and T (0) = 0. Let ϕ ∈
W1,p(Ω,R2), then

T ◦ ϕ ∈ W1,p and





∂(T ◦ ϕ)
∂x

=
∂T

∂x
(ϕ)

∂ϕ1

∂x
+
∂T

∂y
(ϕ)

∂ϕ2

∂x
,

∂(T ◦ ϕ)
∂y

=
∂T

∂x
(ϕ)

∂ϕ1

∂y
+
∂T

∂y
(ϕ)

∂ϕ2

∂y
.

Proof : For ϕ ∈ W1,p(Ω,R2), T ◦ ϕ ∈ W1,p(Ω) and
∂T

∂xi

∂ϕj

∂xk
∈ Lp(Ω).

Let (ϕk) be a sequence of C∞
c (R2,R2) such that

ϕk −→ ϕ in Lp(Ω,R2),

∇ϕk −→ ∇ϕ in Lp(ω,R2), ∀ω ⊂⊂ Ω,

according to Theorem IX.2 in [6]. (For a subsequence, ϕk and ∇ϕk converge almost
everywhere to ϕ and ∇ϕ).
We have ∀φ ∈ C1

c (Ω),

∫

Ω
T ◦ ϕk

∂φ

∂x
dx = −

∫

Ω

[
∂T

∂x
(ϕk)

∂ϕ1
k

∂x
+
∂T

∂y
(ϕk)

∂ϕ2
k

∂x

]
φ dx.
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But T ◦ ϕk k→+∞−→ T ◦ ϕ in Lp(Ω) then

∫

Ω
T ◦ ϕk

∂φ

∂x

k→+∞−→
∫

Ω
T ◦ ϕ∂φ

∂x
, ∀φ ∈ C1

c (Ω),

and
∂T

∂x
(ϕk)

∂ϕ1
k

∂x

k→+∞−→ ∂T

∂x
(ϕ)

∂ϕ1

∂x
in Lp(ω) by dominated convergence.

Therefore,
∫

Ω
T ◦ ϕ∂φ

∂x
dx = −

∫

Ω

[
∂T

∂x
(ϕ)

∂ϕ1

∂x
+
∂T

∂y
(ϕ)

∂ϕ2

∂x

]
φ dx.

Now we can compute the Euler-Lagrange equation:

∂Gn
∂ε

∣∣∣∣
ε=0

= lim
ε→0

Fn(ϕn + εφ)− Fn(ϕn)

ε
,

∂Gn
∂ε

∣∣∣∣
ε=0

=

∫

Ω

∫

Ω

T ◦ ϕn(x)− T ◦ ϕn(y)
|T ◦ ϕn(x)− T ◦ ϕn(y)|

(
∇T (ϕn(x))φ(x)−∇T (ϕn(y))φ(y)

)ρn(x− y)

|x− y| dx dy,

=

∫

Ω

∫

Ω

T ◦ ϕn(x)− T ◦ ϕn(y)
|T ◦ ϕn(x)− T ◦ ϕn(y)|

∇T (ϕn(x))φ(x)
ρn(x− y)

|x− y| dx dy

−
∫

Ω

∫

Ω

T ◦ ϕn(x)− T ◦ ϕn(y)
|T ◦ ϕn(x)− T ◦ ϕn(y)|

∇T (ϕn(y))φ(y)
ρn(x− y)

|x− y| dx dy.

We exchange x and y in the second integral, and assuming that the order of integration does
not matter,

∂Gn
∂ε

∣∣∣∣
ε=0

=

∫

Ω

∫

Ω

T ◦ ϕn(x)− T ◦ ϕn(y)
|T ◦ ϕn(x)− T ◦ ϕn(y)|

∇T (ϕn(x))φ(x)
ρn(x− y)

|x− y| dx dy

−
∫

Ω

∫

Ω

T ◦ ϕn(y)− T ◦ ϕn(x)
|T ◦ ϕn(y)− T ◦ ϕn(x)|

∇T (ϕn(x))φ(x)
ρn(y − x)

|y − x| dy dx

=2

∫

Ω

∫

Ω

T ◦ ϕn(x)− T ◦ ϕn(y)
|T ◦ ϕn(x)− T ◦ ϕn(y)|

∇T (ϕn(x))φ(x)
ρn(x− y)

|x− y| dx dy.

If ϕn is a minimizer, necessarily:

2

K1,2
∇T (ϕn(x))

∫

Ω
sign (T ◦ ϕn(x)− T ◦ ϕn(y))

ρn(x− y)

|x− y| dy +∇T (ϕn) div (θ)− α∆ϕ = 0.

7.5 Implementation details

In this section, implementation details are provided to compute numerically the Euler-Lagrange
equation obtained in the previous section. Indeed, a nonlocal term whose discretization re-
quires special care appears in the Euler-Lagrange equation, making the implementation dif-
ficult.
To do so, we take a simple example stemming from a restoration problem and then, we apply
the method to our problem.
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7.5.1 Experiments on a restoration problem

Problem

As Aubert and Kornprobst in [3], we have implemented a classical model for image restoration
problem to understand the approximation method and its performances.
Let u : Ω ⊂ R

2 −→ R be an original image describing a real scene, and let u0 be the observed
image of the same scene. We assume that the degradation model reads as

u0 = Ru+ η,

where η stands for a white additive Gaussian noise and where R is a linear operator repre-
senting the blur. Given u0, the problem is then to reconstruct u. The following minimization
problem is proposed :

inf
u

∫

Ω
|u0 −Ru|2 dx+ λ

∫

Ω
|∇u|p dx. (7.13)

The idea developed by Aubert and Kornprobst is to replace the smoothing term

∫

Ω
|∇u|p dx

by the considered sequence of integral operators. Without loss of generality, the operator R
is supposed to be the identity operator.
We have implemented the model introduced by Rudin, Osher and Fatemi in [14] for p = 1.

Implementation

The Euler-Lagrange equation of (7.13) is defined by:

2pλ

∫

Ω

|u(x)− u(y)|p−2

|x− y|p (u(x)− u(y)) ρn(x− y)dy − 2(u0 − u) = 0. (7.14)

Using a gradient descent method, we obtain:




uk+1(x)− uk(x)

dt
= −2pλIuk(x) + 2(u0(x)− uk(x)),

u0(x) = u0(x). (7.15)

with

Iuk(x) =

∫

Ω

|uk(x)− uk(y)|p−2

|x− y|p
(
uk(x)− uk(y)

)
ρn(x− y) dy,

and dt is the discrete time step.

The problem is to discretize in space the integral Iuk which has a singular kernel, not
defined when x = y. The authors introduce the function Juk(x, y) such that:

Iuk(x) =

∫

Ω

Juk(x, y)

|x− y| dy, (7.16)

with

Juk(x, y) =
|uk(x)− uk(y)|p−2

(
uk(x)− uk(y)

)
ρn(x− y)

|x− y|p−1
.

Because of the singularity, the schemes using finite differences and integral approximations
will not lead to a suitable numerical solution. That is the reason why, the method proposed
by the authors in [3] is the following:



208 CHAPTER 7. REGISTRATION BASED ON GRADIENT COMPARISON

• The discretization in space is performed using a triangulation. The family of triangles
covering Ω is denoted by T .

• For x fixed, the function Juk(x, y) is linearly interpolated on each triangle.

• On each triangle Ti ∈ T , explicit expressions for

∫

Ti

Juk(x, y)

|x− y| dy are provided.

Then, the integral Iuk(x) becomes

Iuk(x) =
∑

Ti∈T

∫

Ti

Juk(x, y)

|x− y| dy.

Given a triangle T ∈ T , let us denote the three nodes of T by
{
yi = (y1i , y

2
i )
T
}
i=1...3

where
the superscript indicates the components.

Then the authors define the 3-D points

{
Ai =

(
(yi)

T , Juk(x, yi)
)T}

.

To make things clear, we provide a scheme of the triangulation. The pixels are represented
as plain squares. We represent in red dotted line the two kinds of triangle. For a point
x = (i0, j0), the integral Iuk(x) is computed on each triangle included in a window of size
2m× 2m, with yi = (i0 + n, j0 + l), n = −m. . .m− 1, l = −m+ 1 . . .m.

Figure 7.1: Scheme of the mesh definition.

In the case where x 6= yi, Juk(x, yi) is well defined, otherwise (it means that x is in fact a
node of T ), we use a linear interpolation algorithm: using a point M ∈ T close to x = yi, the
value of Juk(M,yi) is estimated and the value of J(x, yi) is deduced by interpolation.
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Figure 7.2: Scheme of the interpolation (from [3]).

Given {Aj}j=1...3 and any node yi, we have

J(x, y) = J(x, yi)−
1

n3

(
n1

n2

)
(y − yi),

where n = (n1, n2, n3) is the normal to the triangle A1A2A3 as displayed on Fig 7.2.
Then

∫

T

J(x, y)

|x− y| dy = J(x, yi)

∫

T

1

|x− y| −
1

n3

(
n1

n2

)∫

T

(y − yi)

|x− y| dy,

= J(x, yi)

∫

T

1

|x− y|dy −
1

n3

(
n1

n2

)[∫

T

(y − x)

|x− y| + (x− yi)

∫

T

1

|x− y|dy
]
.

Therefore, the computation of the integral over the triangle T only requires the computation
of the two following integrals:

∫

T

1

|x− y|dy and

∫

T

(y − x)

|x− y| dy.

The authors introduce the distance function:

Dist(x, y) = |x− y| =
√
(x1 − y1)2 + (x2 − y2)2,

and

∇yDist(x, y) =
y − x

|x− y| ,

∆yDist(x, y) =
1

Dist(x, y)
.

Hence ∫

T

1

|x− y|dy =

∫

T
∆yDist(x, y)dy =

∑

i=1,2

∫

∂T

∂Dist(x, y)

∂yi
N ids,

∫

T

y − x

|x− y|dy =

∫

T
∇yDist(x, y)dy =

∫

∂T
Dist(x, y)Nds,

when N is outer the normal to the edges of the triangle T .
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Lemma 7.5.1

Let us consider a segment S = (α, β) of extremities α = (α1, α2), β = (β1, β2), N the
normal to this segment, and x a given point. Let us define:

a = |αβ|, δ = a2b2 − c2, l1 = c/
√
δ,

b = |xα|, d = ~xα.N, l2 = (a2 + c)/
√
δ,

c = ~xα. ~αβ.

We have

I1 =
∑

i=1,2

∫

S

∂Dist(x, y)

∂yi
N ids =

{
0 if x is aligned with S,
d(asinh(l2)− asinh(l1)) otherwise,

(7.17)

and

I2 =

∫

S
Dist(x, y)ds =





a2/2 if x = α or x = β,

a2/2 + c if c = ab (x aligned with ~αβ and c > 0),

− a2/2− c if c = −ab (x aligned with ~αβ and c < 0),

δ

2a2
(l2

√
1 + l22 + asinh(l2)− l1

√
1 + l21 − asinh(l1)) otherwise,

(7.18)

Proof : First, let us parametrize the segment S so that:

S =

{
y(t) = t

(
β1

β2

)
+ (1− t)

(
α1

α2

)
: t ∈ [0, 1]

}
.

The unit normal to the segment S can be written as follows: N =
1

a

(
β2 − α2

−(β1 − α1)

)

and the distance function can be expressed with respect to t :

Dist(x, y(t)) =

√
(tβ1 + (1− t)α1 − x1)2 + (tβ2 + (1− t)α2 − x2)2,

=
√
a2t2 + 2ct+ b2,

=

√
a2(t+

c

a2
)2 − c2

a2
+ b2,

=

√
δ

a

√
a4

δ
(t+

c

a2
)2 + 1, if δ 6= 0.
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• To start with, let us prove the result for I1.

– In the case where x is not aligned with S.

I1 =
1

a

∫ 1

0

(
(tβ1 + (1− t)α1 − x1)(β2 − α2)− (tβ2 + (1− t)α2 − x2)(β1 − α1)

Dist(x, y(t))

)
a dt,

=
1

a

∫ 1

0

(
(β2 − α2)(α1 − x1)− (β1 − α1)(α2 − x2)

Dist(x, y(t))

)
a dt,

= ~αβ · ~xα⊥
∫ 1

0

1

Dist(x, y(t))
dt,

= ~αβ · ~xα⊥
∫ 1

0

1
√
δ
a

√
a4

δ (t+
c
a2
)2 + 1

dt,

and using the change of variable z =
a2√
δ
(t+

c

a2
) it yields to:

I1 =
~αβ ~xα⊥

a

∫ l2

l1

dz√
z2 + 1

,

=
~xαN

a

∫ l2

l1

dz√
z2 + 1

,

= d(asinh(l2)− asinh(l1)).

– In the case where x is aligned with S, then ~xα and N are orthogonal and
~xα.N = 0 =⇒ I1 = 0.

• We now prove the result for I2.

I2 =

∫

S
Dist(x, y)ds =

∫ 1

0
aDist(x, y(t)) dt.

– If x = α,

b = 0

c = 0

δ = 0





=⇒ Dist(x, y(t)) = at.

Then

I2 =

∫ 1

0
a2tdt =

a2

2
.

– If x = β

b = a

c = −a2 = −b2
δ = 0





=⇒ Dist(x, y(t)) = −a(t− 1).

Then

I2 =

∫ 1

0
−a(t− 1)dt =

a2

2
.
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– If c = −ab (it means that x is aligned with S but ~xα and ~αβ have opposite
direction)

So b ≥ a and Dist(x, y(t)) = −at+ b.

Then

I2 =

∫ 1

0
a(−at+ b)dt = −a

2

2
− c.

– If c = ab (it means that x is aligned with S but ~xα and ~αβ have the same
direction)

Dist(x, y(t)) = at+ b.

Then

I2 =

∫ 1

0
a(at+ b)dt =

a2

2
+ c.

– Otherwise,

I2 =

∫ 1

0

√
δ

√
a4

δ
(t+

c

a2
)2 + 1 dt, using the change of variable z =

a2√
δ
(t+

c

a2
),

=

∫ l2

l1

√
δ

√
δ

a2

√
z2 + 1dz

=

∫ l2

l1

δ

a2

√
z2 + 1dz, using the change of variable z = sinh(u),

=
δ

a2

∫ asinh(l2)

asinh(l1)
cosh(u)2du =

δ

a2

∫ asinh(l2)

asinh(l1)

1

2
(1 + cosh(2u))du

=
δ

2a2

[
u+

1

2
sinh(2u)

]asinh(l2)

asinh(l1)

,

=
δ

2a2
(l2

√
1 + l22 + asinh(l2)− l1

√
1 + l21 − asinh(l1)).

To summarize, we recall that

Iuk(x) =
∑

Ti∈T

∫

Ti

Juk(x, y)

|x− y| dy,

with T is a family of triangles, and

Juk(x, y) =
|uk(x)− uk(y)|p−2

(
uk(x)− uk(y)

)
ρn(x− y)

|x− y|p−1
.

We can simplify the previous expression as follows:

∫

T

J(x, y)

|x− y| dy = J(x, yi)I1 −
1

n3

(
n1

n2

)
[I2 + I1(x− yi)] ,

with T ∈ T ,and I1 and I2 explicitly given in the previous proposition.
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Numerical results

In this section, we compare two implementations of the total variation: the approximation
proposed by Aubert et al. in [3] and the classical Chambolle’s projection algorithm [7].
We can say that the approximation method performs very well the restoration, however this
method tends to smooth more than the projection algorithm.

(a) u0 (b) u restored
with the proposed
approximation
method

(c) residual noise (d) u restored with
Chambolle’s pro-
jection algorithm

(e) residual noise

Figure 7.3: Restoration results with the proposed approximation method and Chambolle
projection algorithm on a toy example.

(a) u0 (b) u restored
with the proposed
approximation
method

(c) residual noise

(d) u restored with
Chambolle’s pro-
jection algorithm

(e) residual noise

Figure 7.4: Restoration results with the proposed approximation method and Chambolle’s
projection algorithm on Barbara example.



214 CHAPTER 7. REGISTRATION BASED ON GRADIENT COMPARISON

7.6 Implementation of the registration problem

7.6.1 Scheme for the auxiliary variable method

We recall that the problem is the following

inf
Ŵ×BV0(Ω)

{
Eε(ϕ, T̃ ) =

∫

Ω
|∇T̃ |+

∫

Ω
T̃ div θ +

α

2

∫

Ω
‖∇ϕ‖2 + γ‖T ◦ ϕ− T̃‖L1(Ω)

}
(7.19)

In practice, we use the non linear elastic regularization used in the previous chapter:
the quasiconvex envelope of the stored energy function of a Saint Venant-Kirchhoff material
supplemented with the penalty term on the Jacobian. Moreover, we decouple the problem
with an auxiliary variable V to eliminate the non linearity in ∇ϕ:

inf
Ŵ×BV0(Ω)

{∫

Ω
|∇T̃ |+

∫

Ω
T̃ div θ +

∫

Ω
QW (V )dx+

α

2

∫

Ω
||V −∇ϕ||2dx+ γ‖T ◦ ϕ− T̃‖L1(Ω)

}

(7.20)

with QW (V ) =





W (V ) if ‖V ‖2 ≥ 2
λ+ µ

λ+ 2µ
,

Ψ(det V ) if ‖V ‖2 < 2
λ+ µ

λ+ 2µ
.

Similar numerical tools to those implemented in Chapter 4 are used to design the associ-
ated algorithm. To avoid redundancy, we do not go into details.

7.6.2 Scheme for the approximation method

In practice, we would like to minimize

En(ϕ) =
1

K1,2

∫

Ω

∫

Ω

|T ◦ ϕ(x)− T ◦ ϕ(y)|
|x− y| ρn(x− y) dx dy

+

∫

Ω
T ◦ ϕ div θ dx+

∫

Ω
QW (∇ϕ) dx,

(7.21)

with ϕ ∈ Id+W1,4
0 (Ω,R2).

As already mentioned, we decouple the problem by introducing the auxiliary variable V
simulating ∇ϕ and we solve:

En(ϕ, V ) =
1

K1,2

∫

Ω

∫

Ω

|T ◦ ϕ(x)− T ◦ ϕ(y)|
|x− y| ρn(x− y) dx dy

+

∫

Ω
T ◦ ϕ div θ dx+

∫

Ω
QW (V ) dx+

α

2

∫

Ω
‖V −∇ϕ‖2 dx,

(7.22)

with ϕ ∈ Id+W1,2
0 (Ω,R2), V ∈ L4(Ω,M2). The corresponding Euler-Lagrange equation for ϕ

is the following:

0 =
2

K1,2
∇T (ϕn(x))

∫

Ω
sign (T ◦ ϕn(x)− T ◦ ϕn(y))

ρn(x− y)

|x− y| dy

+∇T (ϕn) div (θ)− α∆ϕ+ α

(
div V1
div V2

)
.

The system of equations satisfied by V remains unchanged.
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7.6.3 Numerical results

We have implemented both methods for our problem, that is to say, the decoupled problem
with an auxiliary variable and the approximation method of the total variation by the sequence
of integral operators.
Unfortunately, we have not been able to obtain satisfactory results. This could partly be
explained by the fact that the gradient information is meaningful in texture regions and close
to 0 in homogeneous areas, then there is not enough information to match.

Conclusion

To conclude this chapter, we have designed a theoretically well-motivated method, and proved
several interesting theoretical results. This model is inspired by other works which are not
registration models but inpainting ones and we have tried to apply these methods to our
problem. We have also proposed two alternative solutions which have been theoretically
justified. However, we have been unable to obtain satisfactory numerical results although the
computing codes are consistent with the theory.
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