N

N

Enhanced representation & learning of magnetic
resonance signatures in multiple sclerosis
Yogesh Karpate

» To cite this version:

Yogesh Karpate. Enhanced representation & learning of magnetic resonance signatures in multiple
sclerosis. Medical Imaging. Université de Rennes, 2015. English. NNT: 2015REN1S068 . tel-
01270533v2

HAL Id: tel-01270533
https://theses.hal.science/tel-01270533v2
Submitted on 7 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01270533v2
https://hal.archives-ouvertes.fr

ANNEE (2015)

P i

. UEh

RENNES 1 u\__e_/h

THESE / UNIVERSITE DE RENNES 1

sous le sceau de [’Université Furopéenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITE DE RENNES 1

Mention : Traitement du Signal et Télécommunications
Ecole doctorale MATISSE

présentée par
Yogesh Karpate

préparée a l'unité de recherche UMR CNRS 6074/CRIRBA

Nom développé de I'unité : VisAGes-INSERM U746
Composante universitaire : IFSIC

Enhanced Representation These soutenue a Rennes
le 14/09/2015

& Learning Of Magnetic devant le jury composé de :
Olivier COLLIOT

Rapporteur
Resonance Image Jean-Philippe RANJEVA

Rapporteur

Signatures in Multiple Koen VAN LEEMPUT

Examinateur

Frangois ROUSSEAU

Examinateur

Patrick BOUTHEMY

Examinateur

Gilles EDAN

Examinateur

Christian BARILLOT

Directeur de thése

Olivier COMMOWICK

Co-directeur de thése

Sclerosis



Acknowledgments

I am profoundly grateful to my supervisors, Olivier Commowick and Christian
Barillot. Their tireless pursuit of excellence in research, teaching, advising, and
every other aspect of their academic work is truly inspirational. I am indebted
to my supervisors for priceless advice about selecting interesting problems,
making progress on difficult ones, pushing ideas to their full development,
writing and presenting results in an engaging manner.

Many thanks to my friends who have had nothing to do with work in this
thesis, but worked hard to keep my relative sanity throughout. I will not list
all of you here, but my gratitude to you is immense.

My parents have given me unbending support and constant encouragement.
I thank them for all the sacrifices they have made to ensure that their children
would have better education they never had at their time. To my sister, Monali,
my brother Rahul I am grateful for bringing me so much joy and love.






Contents

Résumé en Francgais 1
Introduction 9
Background 13
3.1 Imtroduction . . . . . . . . ... 13
3.1.1 Causes . . . ... 14
3.1.2 Disease Course and Clinical Subtypes . . . . . . . . .. 16
3.2 Roleof MRI'in MS . . . . .. ... .. ... ... ...... 17
3.2.1 MRI Sequences . . . . . ... .. ... ... 18
3.2.2 Diagnosis . . . . . ... o 19
3.2.3 MS Lesions (MSL) . . . ... ... ... . ... ... 20
3.3 Conclusion . . . . . .. ... 21
MS Lesions Segmentation 23
4.1 Introduction . . . . . . . . ... o 23
4.2 Manual Segmentation . . . . . .. ..o 25
4.3 Semi-Automatic Segmentation . . . . . . ... ... ... 25
4.4  Automatic Segmentation . . . . ... ... 26
4.4.1 Multi-Sequence Information . . . . ... ... .. ... 27
4.4.2 Unsupervised approaches for MS lesions segmentation . 28
4.4.3 Supervised Approaches . . . . . .. ... 29
4.4.4 Gd-Enhancing Lesion Detection . . . . . . .. .. ... 30
4.4.5 Miscellaneous Approaches . . . . . ... .. ... ... 31
4.5 Performance Metrics . . . . . . ... ..o 32
4.5.1 Publicly Available Resources . . . . .. .. ... ... 35
4.6 Challenges . . . . . . .. .. 35
Longitudinal Intensity Normalization in Multiple Sclerosis Pa-
tients 39
5.1 Introduction . . . . . . . ... 40
5.2 Methodology . . . . . . .. ... 44
5.2.1 ~-Divergence . . . .. . ... ..o 44
5.2.2 ~-Loss Function . . . . . . ... ..o 45
5.2.3 Brain Tissue Intensity Modeling . . . . . . . .. .. .. 45
5.2.4  ~-loss Function for the Normal Distribution . . . . . . 46

5.2.5 Selection of Parameter v . . . . . . . ... ... L. 47



iv Contents
5.2.6 Intensity Correction . . . . .. .. ... .. ... ... 48
5.2.7 MR Serial Change Detection . . . . . . . ... ... .. 48
5.2.8  Detection of active lesions in T1-w Gadolinium (Gd)

Images . . . . . . .. 51

5.3 Experiments and Results . . . . . ... ... ... ... .... 52
5.3.1 Dataset and Preprocessing . . . . . . .. ... ... .. 52
5.3.2 Intialization of GMM . . . . . . ... ... ... 53
5.3.3 Intensity Correction Evaluation . . . . . ... ... .. 54
5.3.4 Longitudinal Lesion Detection . . . . . . ... ... .. 56
5.3.5  Active Gd-Enhanced Lesions Detection . . . . . . . .. 60
5.3.6  Computational Complexity . . . . . . .. .. ... ... 61

5.4 Discussion and Conclusion . . . . . .. ... .. ... ... .. 62

Robust Detection of Multiple Sclerosis Lesions from Intensity-

Normalized Multi-Channel MRI 63
6.1 Introduction . . . . . . . . ... 63
6.2 Methodology . . . . . . . . . ... 64
6.2.1  Multiple Sclerosis Lesions (MSL) Detection . . . . . . . 64
6.2.2 Multiple Comparisons Correction . . . . . .. ... .. 65
6.3 Data Processing . . . . . . . .. .. Lo 65
6.4 Results. . . .. . ... . 66
6.4.1 Quantitative Results . . . . ... ... ... ... ... 66
6.4.2 Qualitative Results . . . . .. ... ... ... ... .. 71
6.5 Conclusion . . . . ... . ... .. 71

Probabilistic One Class Learning for Multiple Sclerosis Le-

sions Detection 77
7.1 Introduction . . . . . . .. ... 78
7.2 State-of-the-art Methods for One Class Learning . . . . . . . . 79
7.2.1 Review of Binary SVM . . . . . . ... ... ... 79
7.2.2 Kernel Function . . . . . .. ..o 80
7.2.3 OneclassSVM . . . ... ... oo 81
7.2.4  Minimum Covariance Determinant (MCD) . . . . . .. 81
7.3 Methodology . . . .. . . .. ... 82
7.3.1 Framework . . .. ... ..o 82
7.3.2  Probabilistic Classification . . . . . .. .. ... ... 82
7.4 Lesion Detection Model . . . . . ... ... ... ... ... 83
7.4.1 Aggregate Probability Score . . . . . .. ... ... .. 84
7.4.2 Thresholding Guided Detection . . . . . ... ... .. 84
7.5 Experiments . . . . . ... oo 84

7.5.1 Selection of NABT Patches . . . . ... .. ... ... 84



Contents v

752 Data . ... ... 88

7.5.3 Experimental Setup . . . . . . ... ... 89

7.6 Results and Discussion . . . . . . . . ... . ... ... .... 89

7.7 Conclusion . . . . . . . . ... 96

8 Summary and Perspective 97

8.1 Longitudinal Intensity Normalization . . . . . . .. .. .. .. 97
8.2 Robust Detection of Multiple Sclerosis Lesions from Intensity-

Normalized Multi-Cha-nnel MRI . . . . . .. ... ... ... 98

8.3 Probabilistic One Class Learner for MS Lesion Detection . . . 99

84 Conclusion . . . . . . . . . . . 99

Bibliography 103






CHAPTER 1

Résumé en Francais

Introduction

La sclérose en plaques (SEP) est une maladie neuro-dégénérative caractérisée
par une évolution hétérogéne entre les patients. L’origine et 1’évolution de
la maladie sont encore mal comprises, et de nombreuses études ont ainsi
été conduites afin d’ évaluer cette évolution et I'influence de la SEP sur les
tissus du cerveau environnants. La caractéristique principale de la SEP est la
démyél inisation, c’est-a-dire la destruction progressive de la myéline entourant
les axones et participant au transport de l'influx nerveux. Dans la SEP, de
nombreuses lésions sont présentes en supplément des tissus sains. L’imagerie
par résonance magnétique (IRM) joue un roéle crucial dans la clinique de la
SEP, grace & la possibilité de caractériser la progression spatiale des lésions
et un éventuel dommage microstructurel. Une meilleure compréhension de la
maladie & travers la découverte de ses mécanismes permettra de mieux adapter
les thérapies afin de mieux soulager le patient.

Bien que la segmentation manuelle des 1ésions de SEP par des experts soit
considérée comme la vérité terrain (gold standard), I’évaluation objective de
celles-ci devient difficile pour le radiologiste lorsque le nombre de modalités
d’IRM disponibles grandit. De plus, il s’agit d'une tache peu reproductible
et son processus est fastidieux. Ainsi, de nombreuses études ont considéré la
possibilité d'une segmentation automatique ou semi-automatique des lésions de
SEP utilisant pour cela plusieurs modalités IRM. Le besoin de telles nouvelles
méthodes d’analyse d’image est trés important afin de pouvoir fournir des
mesures quantitatives des lésions de SEP aux radiologistes.

Défis

De nombreux radiologistes plaident pour ’évaluation objective de la charge
lésionnelle comme critére diagnostic et de suivi, ce qui reste a accomplir via
les méthodes de la littérature. Bien que les techniques de segmentations visent
a produire des masques exacts des lésions, elles manquent parfois totalement
certaines lésions. Dans de telles situations, la détection de lésions SEP et leur
localisation plutot que leur segmentation précise peut aider a détecter toutes
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les 1ésions. Bien que de nombreux algorithmes aient étudié la segmentation de
lésions SEP; ils ne prennent pas en compte tous les aspects de I’anatomie du

cerveau en présence de lésions. Voici certains de ces défis, classés selon leur
ordre de considération dans la littérature.

e Segmentation en présence de volumes partiels

Lors de I'acquisition de I'TRM, un voxel comprend une résolution finie, de
sorte qu’il peut contenir un ensemble de différents tissus. Ce phénoméne
est connu sous le nom de volumes partiels. La bordure d’une lésion
peut ainsi étre floue a cause de ce probléme inhérent a I'acquisition. Ce
phénomene a été modélisé dans le contexte de la SEP [Dugas-Phocion 2004].
La segmentation de lésions peut devenir difficile en présence de volumes
partiels, spécialement pour les méthodes utilisant un modele de distribu-
tion d’intensités de chaque tissu.

Méthodes reposant sur le recalage

Des atlas anatomiques peuvent étre utilisés pour certaines méthodes de
segmentation. Ils sont construits a partir d’TRM de volontaires sains. Ces
atlas sont ensuite comparés aux images du patient et il est ainsi possible
de traiter les 1ésions comme des points aberrants. Cependant, construire
de tels atlas est une tache complexe. De plus, ce type de méthodes
introduit également le probléme de recalage dans la segmentation de
lésions SEP. Cette étape de recalage est d’autant plus difficile en présence
d’une atrophie sévére du cerveau, d’un large nombre de lésions.

Déséquilibre de classes (méthodes supervisées)

Les méthodes de segmentation basées sur un apprentissage supervisé
demandent de larges bases de données afin d’étre efficaces. Dans le cas
de la SEP, les deux classes sont inégales: la classe de tissus normaux
est toujours largement plus nombreuse que la classe de lésions ce qui
cause des problémes & la plupart des algorithmes produisant des résultats
biaisés vers la classe majoritaire (tissus sains). Ainsi, ceux-ci ont une
performance faible sur la classe d’intérét (lésions SEP) [Chawla 2005].
Ce probleme de déséquilibre est souvent associé a des couts asymétriques
dans la mauvaise classification des éléments dans les différentes classes.
De plus, la distribution des données test peut différer de celle de la base
de données d’entrainement et les cotits d’une mauvaise classification étre
inconnus au moment de ’apprentissage. Bien que connu, ce probléme clé
est toujours un probléme ouvert et est souvent rencontré, particuliére-
ment pour des bases de données massives. Une solution potentielle est
la considération d’approches mono-classe, réalisant leur apprentissage



uniquement sur les tissus sains. Ces approches proposent une alternative
intéressante aux approches discriminatives traditionnelles, dans lesquelles
I'apprentissage est réalisé uniquement a partir des lésions [Tax 2004].

e Données multicentriques

Lors de larges études IRM, des données de différents scanners sont
utilisées. Celles-ci peuvent comporter différents contrastes et intensités
et ce méme si le méme protocole d’acquisition est utilisé. Des méthodes
doivent alors étre développées afin de prendre en compte cette variation,
et ce sans biaiser les études cliniques.

e Atteinte diffuse

La majorité de la littérature se concentre sur I'analyse des lésions focales
en SEP. Cependant, dans certains cas, il est impossible de trouver une
frontiére claire entre les lésions et la matiére blanche avoisinante. Aucune
méthode n’a a ce jour considéré explicitement ces problémes d’atteinte
diffuse de la matiére blanche.

e Segmentation longitudinale de lésions SEP

Pour le moment, un nombre restreint de méthodes est défini spécifique-
ment dans le but de détecter les nouvelles lésions apparaissant dans le
temps. Un challenge de segmentation de lésions SEP orienté spécifique-
ment sur cet aspect longitudinal s’est tenu a la conférence ISBI 2015
(International Symposium on Biomedical Imaging). !

Les techniques et algorithmes issus du domaine de I’apprentissage (ma-
chine learning) sont un outil puissant permettant de résoudre des taches
de classification. Ces techniques permettent également de définir des outils
automatiques de prédiction d’un phénomeéne reposant sur des observations
connues. De plus, 'objectif du machine learning est non seulement de fournir
des prédictions les plus exactes possible mais également de fournir une com-
préhension de la structure des données. Ces méthodes sont particuliérement
adaptées au domaine de la vision par ordinateur. L’état de l'art dans ce
domaine considére de larges volumes de données pour la détection d’objets
[Dalal 2005, Felzenszwalb 2010, Uijlings 2013| et les techniques de machine
learning y sont donc particuliérement adaptées. Ces méthodes emploient des
techniques de recherche de données avancées afin de trouver parmi des millions
d’occurrences négatives les occurrences importantes qui sont ensuite utilisées
pour entrainer un classificateur. Une approche de fenétre glissante traite la
détection d’objet comme un probléme de classification, explorant plusieurs

http://iacl.ece.jhu.edu/MSChallenge
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échelles & chaque position de I'image afin de détecter si I'objet est présent.
Un tel détecteur aura ainsi souvent plusieurs détections proches a différentes
échelles pour le méme objet.

Inspiré de ces méthodes, nous proposons un cadre permettant ’apprentissage
discriminatif basé sur des patchs extraits des images, permettant de propager
des annotations riches et nombreuses issues de modalités multiples afin d’entrainer
un détecteur de lésions SEP. Ce cadre est proche des méthodes de segmentation
dans sa philosophie de recherche voxel a voxel. Cependant, des différences
existent: la segmentation a pour objectif I'obtention de contours précis; nous
sommes plutot intéressés ici par le probléeme de détection et de localisation
de ces lésion en accordant moins d’importance a leur définition précise. Une
telle détection ne conduit alors pas & une segmentation précise mais plutot un
masque d’intérét au sein duquel les lésions sont localisées. Cette localisation
des lésions SEP est cruciale, permettant de fournir au clinicien un chiffre im-
portant pour le diagnostique (nombre de lésions). Pour cette localisation, nous
reposons sur une approche de fenétre glissante se reposant sur I'information du
patch pour discriminer 'existence d’une lésion. Ce type d’approche fonctionne
mais est trés couteuse car chacun des millions de pixels de I'image du patient
doit étre testé.

L’état de 'art des méthodes de segmentation fait également face & des
problémes d’extension a de larges bases de données en termes de temps de
calcul, de robustesse et de complexité. Des algorithmes efficaces sont ainsi
nécessaires afin de prendre en compte des représentations d’images de haute
dimension et de permettre la recherche dans de grandes masses d’images. De
plus, 'obtention des données d’entrainement peut étre trés consommatrice
de temps, celles-ci requérant d’étre annotées par un radiologiste. Ainsi, les
méthodes de 'état de 'art doivent également faire un compromis entre les
données d’entrainement labellisées requises et la flexibilité de ’apprentissage.
Dans ce contexte, 'objectif de cette thése est également de fournir un cadre
basé sur un ensemble bien analysé et limité d’algorithmes.

Organisation de la thése

Cette thése est organisée en deux parties. La premiére partie consiste en
trois chapitres et présente le contexte et le raisonnement derriére les travaux
présentés. En particulier, le chapitre 2 présente ’architecture et 1’organisation
générale de la thése. Le chapitre 3 aborde le contexte clinique de la sclérose
en plaques et le role de I'imagerie médicale (IRM) dans la prise en charge des
patients et leur diagnostic. Le chapitre 4 se focalise quant & lui sur une étude
large de la littérature en segmentation de lésions de SEP. Ce chapitre fournit



également un préambule aux expérimentations réalisées dans la thése.

Dans une seconde partie, quatre chapitres couvrent les contributions réal-
isées dans cette thése ainsi que les expérimentations réalisées et leurs résultats.
Le chapitre 5 présente une technique de normalisation d’intensité en IRM
permettant d’aider dans le suivi de I’évolution de la SEP pour un patient
a différents temps successifs. Se reposant sur cette technique de normalisa-
tion, le chapitre 6 présente une technique de détection de lésions SEP via un
cadre statistique de comparaison entre le patient et une population de sujets
controles. Ensuite, le chapitre 7 considére la détection comme un probléme
d’apprentissage a une classe (celle des tissus sains), considérant les lésions
comme des éléments aberrants de cette classe. Enfin, le chapitre 8 conclue la
thése par des perspectives sur les travaux accomplis.

Contributions

Chapitre 3 (Contexte). Ce chapitre présente une introduction au contexte
clinique et la physiopathologie de la sclérose en plaques. Nous y décrivons
aussi 'importance qu’a prise l'imagerie par résonance magnétique (IRM) dans
son étude et son diagnostic. Ainsi, les différentes séquences IRM utilisées
en routine clinique sont étudiées, et les différents aspects et types de lésions
visibles dans ces images sont investigués.

Chapitre 4 (Revue des techniques de segmentation de lésions).
Ce chapitre présente une revue de 1’état de I’art en segmentation de lésions.
Cette revue catégorise les différentes techniques en plusieurs sous groupes et
présente leurs avantages et inconvénients. Ainsi, une large variété de méthodes
manuelles, semi-automatiques et automatiques est étudiée. Dans tous les cas,
I’étape automatique de segmentation est trés dépendante de la qualité des im-
ages d’entrée. Dans la mesure ou elles requiérent un degré divers d’interaction
humaine, les méthodes manuelles / semi-automatiques ne sont en général
pas applicables a de larges bases de patients du fait du temps nécessaire et
de la fatigue de 'utilisateur. Le paradigme de la segmentation totalement
automatique a donc pris une large part des recherches effectuées. Les avancées
récentes dans ce domaine ont montré la faisabilité de ’apprentissage de modéles
précis pour la détection de lésions. D’un point de bue général, la segmentation
automatique peut étre classifiée en deux catégories:(1) supervisée et (2) non
supervisée. Les cadres de segmentation supervisée sont principalement basés
sur un apprentissage de patchs d’images. Ces méthodes comprennent les
support vector machine (SVM), les arbres et foréts de décisions ou aléatoires,
et des modeles graphiques probabilistes comme les conditional random fields
(CRF). De récentes avancées dans le domaine de la parcimonie ont conduit au
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développement de détection de lésion reposant sur un apprentissage de diction-
naire. A l'inverse, la segmentation non supervisée considére principalement des
modeéles génératifs des intensités des tissus sains du cerveau en IRM (mixture
finie de modeles) et décrivent les lésions comme des points aberrants de ces
modeéles. D’autres méthodes non supervisées incluent des étapes ou éléments
supplémentaires comme les MRF ou les Graph cuts. Une autre approche
populaire utilise des atlas ou des méthodes de classification floues. La majorité
de toutes ces approches considérent I'information de multiples modalités (T1-w,
T2-w et FLAIR) pour effectuer la détection ou la segmentation des lésions.
Un apercu rapide de la détection de lésion prenant le produit de contraste
Gadolinium est enfin présentée, ces méthodes reposant pour la plupart sur
des CRF. Afin de valider ces approches, un large nombre de métriques ont
été envisagées, et incluent le score de Dice, la sensibilité, la valeur prédictive
positive, la distance de Hausdorff. Malgré cette large littérature, de nombreux
défis restent & aborder et ceux-ci sont présentés afin d’exposer le raisonnement
du reste de la theése.

Chapitre 5 (Normalisation longitudinale d’intensités). L'IRM con-
ventionnelle ne fournit pas de valeurs quantitatives telles que les unités
Hounsfield en tomographie. Ceci peut causer des problémes & des appli-
cations de suivi des intensités dans les images acquises au cours du temps,
notamment en détection ou segmentation, dans la mesure ou ces opérations
de post-processing dépendent des différences relatives d’intensité. Dans ce
chapitre, nous proposons une technique de normalisation d’intensité pour des
données multimodales d’IRM, et ce en étant robuste a la présence de 1ésions
variables. Les intensités des IRM de multiples modalités sont modélisées
via une transformation paramétrique et une estimation robuste d’un modéle
de mixture de Gaussiennes, en utilisant la y-divergence, non affectée par la
présence de lésions. Ainsi, les intensités des 1ésions ne seront pas affectées par
la normalisation. L’évolution de lésions peut alors étre suivie par une simple
soustraction d’images et un seuillage automatique de Otsu. Cette méthode est
comparée a diverses techniques de I'état de I'art [Nyul 2000, Hellier 2003| sur
deux jeux de données comportant respectivement 18 et 40 patients, chacun
avec au minimum 3 points temporels. La distance du x? pour le matching
d’histogrammes et des courbes ROC sont utilisées pour I’évaluation. L’aire
sous la courbe ROC est bien meilleure pour la méthode proposée comparée
aux autres approches évaluées.La méme méthode est appliquée a la détection
de lésions prenant le contraste Gadolinium (lésions actives) en considérant la
normalisation d’images pré- et post-contraste.

Chapitre 6 (Détection robuste de lésions de sclérose en plaques
sur des images multimodales normalisées). Nous présentons ici une nou-
velle méthode de détection de lésions de SEP basée sur une analyse voxel a



voxel comparant les images d’un patient par rapport & un ensemble de sujets
controle. Ce chapitre a pour objectif d’étudier les bénéfices de I'imagerie
multimodale afin de détecter des différences significatives entre un patient et
la base de controles. Cet algorithme comprend deux parties. Tout d’abord,
une normalisation d’intensité telle que décrite dans le chapitre précédent est
effectuée afin de minimiser les différences inter-sujet liées a la variabilité de
I’acquisition et aux différentes machines IRM. La seconde partie repose sur la
définition d’un cadre statistique pour la comparaison multimodale du patient
et d’un atlas construits a partir des images des controles. La méthode proposée
est évaluée sur deux jeux de données constitués respectivement de 16 et 40
patients. Les détections obtenues ont été comparées pour diverses combi-
naisons de modalités, par exemple T1-w, T2-w ou FLAIR individuellement,
et une combinaison des trois modalités. Les détections ont été également
comparées avec et sans normalisation. L’aire sous la courbe ROC est employée
comme élément d’évaluation et a démontré une meilleure performance avec
normalisation et en utilisant la séquence T2.

Chapitre 7 (Détection de lésions par apprentissage d’une classe).
L’apprentissage pour la détection n’utilisant qu’une classe peut Attre vu comme
un sous ensemble spécifique des problémes de classification a deux classes,
mais ot seule une des deux classes est disponible pour la phase d’entrainement.
Dans le cas de I'imagerie médicale, 'obtention de ces données d’apprentissage
est une tache particulierement longue et fastidieuse et de telles méthodes a une
classe sont donc d’un intérét certain. Il est relativement simple d’obtenir dans
notre cas les données de la classe de tissus sains via 1'utilisation de données de
volontaires sains. Ainsi, ce chapitre présente un algorithme de détection de
lésions SEP reposant sur cette approche. Les contributions sont ici doubles:
(1) la construction d’'un algorithme automatique et probabiliste permettant de
discriminer les 1ésions des tissus sains, se basant sur une représentation simple
des intensités des images (utilisées pour 'entrainement d’'un classificateur
probabiliste au niveau du voxel); (2) la génération d’une carte de probabilité a
partir du classificateur pour déterminer pour un patient donné la probabilité
d’occurrence d’une lésion, carte ensuite seuillée par un seuillage automatique
d’Otsu afin d’obtenir les détections. Ce cadre a été évalué sur deux jeux de
données de 16 et 40 patients respectivement. Notre analyse des résultats basée
sur 'aire sous la courbe ROC réveéle une bonne capacité de détection des
lésions, et notamment meilleure que d’autres approches telles que la méthode
du minimum du déterminant de la covariance ou encore les SVM a une classe.

Chapitre 8 (Conclusion et perspectives). Ce dernier chapitre résume
les contributions de cette th'ese et ouvre des perspectives et travaux futurs
reliés a chaque chapitre.
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Conclusion

Cette thése adresse principalement le probléme de représentation de I'image
appliqué a la détection de lésions de SEP. Les études longitudinales en SEP
deviennent de plus en plus prépondérantes et 'IRM y joue un réle crucial dans
le diagnostic et I’adaptation des thérapeutiques au patient et a son évolution.
Dans un futur proche, il sera crucial de définir des représentations et des
algorithmes de détection adaptés afin d’analyser précisément ces images. Les
méthodes statistiques et de machine learning y jouent un réle prépondérant.
L’analyse de données d’'IRM longitudinales sera également de plus en plus
importante pour suivre I’évolution de la maladie. Dans ces objectifs, nous
avons proposé de nouvelles méthodes de représentation d’images et de machine
learning étendant les méthodes de I'état de 'art afin de mieux exploiter
la distribution spatiale des intensités de I'image ou en fournissant un test
statistique de voisinages trés proches des pixels. Ces méthodes ont été éprouvées
via des expériences sur plusieurs bases de données et ont démontré une meilleure
performance que les méthodes issues de I’état de 'art.



CHAPTER 2

Introduction

Multiple Sclerosis (MS) is a disease with heterogeneous evolution among the
patients. In MS, White Matter (WM) lesions are also present in addition
to healthy brain tissues. The origin and evolution of this disease are still
not well understood, and numerous studies have been conducted to evaluate
its evolution and its influence on neighboring brain structures. Quantitative
analysis of longitudinal Magnetic Resonance Images (MRI) provides a spatial
analysis of the brain tissues which may lead to the discovery of putative
biomarkers of disease evolution. Better understanding of the disease will lead
to a better discovery of pathogenic mechanisms, allowing suitable therapies to
alleviate patient’s sufferings.

Although manual lesion detection by experts is the Gold Standard, the
objective evaluation of lesions becomes difficult for the radiologist when the
number of MR sequences grows dramatically. Consequently, several studies
investigated the automatic/semi-automatic segmentation of MS lesions using
multi-channel MR images. Therefore, there is a strong demand for automated
MS lesions detection algorithms to assist radiologists.

Over the past decades, scientists have addressed problems of prediction
by deriving theoretical frameworks from empirical studies or have learned
prior knowledge in order to model, analyze and understand the phenomenon
under study. For example, medical practitioners know from past experience
that persons with high blood sugar are generally at high risk of diabetes.
For an increasing number of problems however, standard techniques limit
the success of the study under consideration. For example, identification
and correlation of the genetic risk factors for cancers, where knowledge is
still very sparse, is nearly impractical for the cognitive abilities of human
beings. This is essentially because of the very high complexity and intricacies
of interactions that exist among DNA. Similarly, for very fine-grained near
future financial market forecasts, a large number of variables need to be
taken into account, which quickly goes beyond the capabilities of experts
to put them all into a mathematical model. To improve the reasoning and
knowledge behind such problems and further advance science, machines of
high speed and capacity have been built and designed since the twentieth
century to assist humans in their calculations. With the advent of technology
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in terms of hardware, developments in theoretical computer science, artificial
intelligence and statistics have made machines to become more than calculators.
Recent advances have made them experts of their own kind, capable to learn
from data and to unleash by themselves the predictive structure of problems.
Methodologies and algorithms that have stemmed from the field of statistics,
machine learning have indeed now become a powerful tool for the analysis of
complex and large data, successfully assisting practitioners and scientists in
numerous breakthroughs in various fields of computer vision. The MS lesions
and other tissues are often complex, and difficult to analyze. In this thesis,
the complexity of the MS lesions and other brain tissues are brought forth
with analysis, illustration and visualization. The objective is to simplify the
processing of large patient databases and assist the radiologist in decision
making, which would increase the statistical power of clinical trials. This thesis
has endeavored to develop MS lesion detection techniques within a principled
framework, based on the development of appropriate medical vision analysis
and machine learning.

The thesis is organized as follows:

Chapter 3: Background

MS is one of the main causes for developing physical and cognitive disabili-
ties in young adults both in developed and developing world. MRI has emerged
as a non-invasive imaging technique that offers the possibility of visualizing
the brain. Recently, it ha been identified as a biomarker tool for MS and used
extensively in diagnosis, follow-up and prognosis. In this chapter, we introduce
the role of MRI in MS. Formally, MS and its main characteristics are studied.

Chapter 4: Multiple Sclerosis Lesions Segmentation

MS lesion segmentation suffers from many practical and theoretical prob-
lems. Despite these problems, MS lesion segmentation research has made
notable strides within the last decades. Recent advances have shown the
feasibility of learning accurate models for detecting MS lesions. Within the
last few years, thanks in part to work developing standardized benchmark
databases and MS lesion detection challenges, researchers have set their sights
on more complex problems that involve detecting MS lesions within realistic
settings. This chapter presents a comprehensive review of the current state-of-
the art methods as well as their strong and weak points. Further, it builds the
rationale for the thesis.

Chapter 5: Longitudinal Intensity Normalization in Multiple
Sclerosis

MRI lacks a standard MR-sequence dependent intensity scale like the
Hounsfield units in computed tomography. This may hamper the subsequent
applications of the acquired images like detection, segmentation and registra-
tion. Since these post processing operations may depend on intensity space of
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the acquired images. Numerous approaches to cope with this problem were
proposed recently. In this chapter we propose a new intensity normalization
framework for longitudinal MR images and compare with two state-of-the-art
standardization methods regarding applicability and accuracy. As a part of
performance metrics, the y? distance for histogram and longitudinal lesion
detection are employed.

Chapter 6: Robust Detection of Multiple Sclerosis Lesions from
Intensity-Normalized Multi-Channel MRI

In this chapter, to characterize MS lesions, we propose a novel paradigm
to detect white matter lesions based on a statistical framework. It aims
at studying the benefits of using multi-channel MRI to detect statistically
significant differences between each individual MS patient and a database of
control subjects. This framework consists in two components. First, intensity
standardization is conducted based on the technique developed in chapter 4.
The second part studies the comparison of multi-channel MRI of MS patients
with respect to an atlas built from the control subjects, thereby allowing us
to look for differences in normal appearing white matter, in and around the
lesions of each patient.

Chapter 7: Probabilistic One Class Learning for Multiple Sclero-
sis Lesion Detection

This chapter presents an automatic algorithm for the detection of multiple
Sclerosis lesions (MS Lesions) from multi-sequence magnetic resonance imaging
(MRI). We build a probabilistic classifier that can recognize MS Lesions as a
novel class, trained only on Normal Appearing Brain Tissues (NABT). Patch
based intensity information of MRI images is used to train a classifier at the
voxel level. The classifier is in turn used to compute a probability characterizing
the likelihood of each voxel to be a lesion.

Chapter 8: Summary and Perspective This chapter deals with per-
spectives on the problems addressed in thesis and possible future directions.
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Multiple sclerosis (MS) is a chronic progressive disabling auto-immune
disorder of the central nervous system with considerable social impact and
economic consequences. It is a major cause of non-traumatic disability in
young adults [Sadovnick 1993|. The socio-economic costs of MS are high. They
are higher than those for stroke and Alzheimer’s disease because of the long
disease course, its higher prevalence and incidence among young adults, the
subsequent early loss of productivity because of physical disability, fatigue and
co-morbidity. Managing MS is an ongoing process, beginning with the very
first symptoms and continuing throughout the disease course.

We first introduce the role of Magnetic Resonance Imaging (MRI) in MS.
The first part of thsi chapter describes MS. Next, we describe how and why
MRI has emerged as a para-clinical tool in MS.

3.1 Introduction

MS involves an immune mediated process in which an abnormal response of
the body immune system is directed against the central nervous system (CNS),
which is made up of the brain, spinal cord and optic nerves. The exact antigen
or target that the immune cells are sensitized to attack are still unknown,
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which is why MS is considered by many experts to be immune-mediated rather
than autoimmune [Weiner 2004].

Myelin is a material that forms a layer, the myelin sheath, usually around
only the axon of a neuron. The formation of the myelin sheath is called
myelination. Within the CNS, the immune system attacks myelin the fatty
substance that surrounds and insulates the nerve fibers as well as the nerve
fibers themselves. It is essential for the proper functioning of the nervous
system. It is an outgrowth of a type of glial cell.

CNS myelin is produced by special cells called oligodendrocytes. It plays
an instrumental role in proper functioning of CNS. The main purpose of a
myelin layer (or sheath) is to increase the speed at which electrical impulses
propagate along the myelinated fiber. Myelin decreases capacitance and
increases electrical resistance across the cell membrane. Thus, myelination
helps prevent the electrical current from leaving the axon. It has been suggested
that myelin permits larger body size by allowing fast communication among
distant body parts. Demyelination is the loss of the myelin sheath insulating
the nerves, and is the hallmark of MS. When any part of the myelin sheath or
nerve fiber is damaged or destroyed, nerve impulses traveling to and from the
brain and spinal cord are distorted or interrupted, producing a wide variety
of symptoms. Damaged myelin forms scar tissue (sclerosis), which gives the
disease its name. The expression of pathological feature in the form of MS
lesion is essentially demyelination phenomenon. Both the myelin sheath and
the oligodendrocyte itself are impaired within lesions. Consequently, it leads
to attacks by cells of the immune system that react with myelin-related sites,
such as myelin basic protein. Immune attack consists of two types of attacks
upon: (1) T cells directed at myelin and oligodendrocytes in cellular immunity
thus leading to phagocytosis by macrophages; (2) humoral immunity, with
the secretion of anti-myelin antibodies from B cells and subsequent fixation of
complement of the myelin sheath along with possibility of making it vulnerable
to phagocytosis and the oligodendrocyte by macrophages [Briick 2005|. Figure
3.1 depicts the demyelinated neuron to be the primary consequence of MS.
The disease is thought to be triggered in a genetically susceptible individual
by a combination of one or more environmental factors [Ebers 2008].

3.1.1 Causes

The cause of MS is not fully understood; however, it is believed to occur
as a result of some combination of environmental factors such as infectious
agents and genetics [DH 2005]. MS affects more than 2.3 million people
worldwide. While the disease is not contagious or directly inherited, epidemi-
ologists have identified factors in the distribution of MS around the world
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Figure 3.1: Image showing the demyelinated axons. Courtesy:http://www.
nationalmssociety.org/

that may eventually help determine what causes the disease. These factors
include gender, genetics, age, geography and ethnic background. MS is not
considered a hereditary disease; however, a number of genetic variations have
been shown to increase the risk [Dyment 2004]. The probability is higher in
relatives of an affected person, with a greater risk among those more closely
related. Specific genes that have been linked with MS include differences in
the human leukocyte antigen (HLA) system a group of genes on chromosome 6
that serves as the major histocompatibility complex (MHC) [Compston 2008|.
The abnormal deviation of gene expression in the MHC and HLA region are
related to has been known identified as one of the main factor for susceptibility
of the disease. Females are more often affected than males by a ratio of 2:1
[Mumford 1992|, and age at clinical onset is typically between 20 and 40 years
of age. The risk factors include the alleles associated with major histocompati-
bility complex molecules, infectious agents such as the EpsteinBarr virus and
Chlamydia pneumoniae, lack of exposure to sunlight and vitamin D, and smok-
ing [Levin 2005, Lincoln 2005, Pekmezovic 2006|. Different populations and
ethnic groups have a different prevalence of MS. In France alone, there exists
94.7 MS patient per 100000 people [Fromont 2010]. The spatial distribution
of MS patients density around the world is shown in Figure 3.2. MS is more
common in people who live farther from the equator. MS is more common in
regions with northern European populations and the geographic variation may
simply reflect the global distribution of these high-risk populations.
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Figure 3.2: High regional prevalence of MS across the world. Courtesy :
[Pietrangelo 2015]

3.1.2 Disease Course and Clinical Subtypes

A survey of international MS experts proposed the guidelines to describe
types of the disease [Lublin 1996]. Patients usually suffer a first neurological
event suggestive of MS known as Clinically Isolated Syndrome (CIS). It lasts
for at least a day, with symptoms and signs indicating either a single lesion
(monofocal) or more than one lesion (multifocal) within the central nervous
system. Four types of MS have been established: relapsing-remitting MS
(RRMS), primary-progressive MS (PPMS), secondary-progressive MS (SPMS),
and progressive-relapsing MS (PRMS). Each of these disease courses might
be mild, moderate or severe. Around 85% of patients initially suffer from a
relapsing remitting disease type. RRMS consists of clearly defined disease
relapses with full or partial recovery and no further progression of disease
between relapses. Inflammation and lesion formation are likely to be the
precursor to relapses. Of those patients with RRMS, most will go on to develop
a progressive form of the disease within an average of 20 years [Vukusic 2003].
This is called SPMS and these patients may have occasional superimposed
relapses, minor remissions and plateaus during the progressive phase. PPMS
describes the 15% of people who have a progressive form of the disease from
onset with gradual but almost continuous worsening of disability and only
occasional plateaus and temporary minor improvements in function. New
inflammatory lesions are seen less in the progressive stages of the disease. A
progressive relapsing disease course has also been described and is seen in a
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minority of patients. It is characterized by progressive disease from onset, but
with clear acute relapses and continued progression between relapses. The
progression of MS subtypes is shown in Figure 3.3.

Progressive-relapsing multiple sclerosis

Steady decline since onset with super-
imposed attacks.

Secondary progressive multiple sclerosis

Initial relapsing-remitting multiple sclerosis
that suddenly begins to have decline without
periods of remission.

Primary progressive multiple sclerosis
Steady increase in disability without attacks.

Relapsing-remitting multiple sclerosis

Increasing Disability

I\ [

Unpredictable attacks which may or may not
leave permanent deficits followed by periods
of remission

Time >

Figure 3.3: The progression of MS subtypes. Courtesy: http://en.wikipedia.
org/wiki/Multiple_sclerosis

3.2 Role of MRI in MS

In order to acquire MRI, the patient is positioned inside a MRI machine which
uses a strong magnetic field around the area to be imaged. In most medical
applications, protons (hydrogen atoms) in tissues containing water molecules
are used to create a signal that is processed to form an image of the tissues.
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With the advent of technology, sophisticated techniques added to MRI made it
possible to detect MS lesions earlier and with more precision than ever. It has
emerged as a key principal tool in the diagnosis of MS and is increasingly used
in studies seeking to monitor disease progression. It is a non-invasive technique
and does not utilize ionizing radiation like computerized tomography, making
it more practical for repeated examination of people with a condition that
may persist for long years. Technological advances of MR in recent years have
dramatically improved our understanding of MS disease. MRI scanning gave
researchers faster and more sophisticated ways of testing drugs to treat MS.
The benefits of a new drug can be seen on MRI scans before they can be seen
in patients themselves |Ge 2006].

3.2.1 MRI Sequences

Different MRI sequences provide different information on the anatomy. The
following sequences are complementary and routinely used in clinical practice:

1. A T1-w brain MRI scan, enhanced with gadolinium (injected intra-
venously for enhancement of scan), provides prognosis of disease activity
by highlighting areas of active inflammation. Gadolinium (Gd) is a
contrast agent that marks blood activities. Due to the large size of
the Gd molecule, it cannot normally penetrate the blood-brain barrier.
The blood-brain barrier is a highly selective permeability barrier that
separates the circulating blood from the brain extracellular fluid in the
central nervous system. However, in case of active inflammation, the
blood brain barrier is broken and Gd can penetrate and highlight the
inflamed areas. These areas of inflammation appear as active lesions,
meaning that they are new or getting bigger or active. T1-weighted
images without contrast agent depict dark areas (black-holes) that are
suggestive areas of permanent nerve damage.

2. Fluid-attenuated inversion-recovery (FLAIR) images, in which the white
matter lesions appear as bright spots, reflecting different levels of myelin
loss and inflammatory activity. The sensitivity of the sequence is high
but its specificity is low, as other lesions (e.g. vascular lesions) can mimic
MS Lesions. Besides these, some part of healthy brain tissues like also
exhibit the similar intesnity profile as MS lesions.

3. Dual-echo T2- and proton density-weighted images, in which the white
matter lesions appear hyper-intense similarly to FLAIR images. They
can be particularly useful in the posterior fossa, where FLAIR images
have limited sensitivity.
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4. Magnetization transfer (MT-MRI) is a scan which provides information
about tissue damage associated to the disease. The sequences mentioned
above are sensitive for detecting lesions and track their evolution over
time. Lesions do not adhere to single-phenomenon of deviation from
normal brain tissue. They are indicators of various areas of inflamma-
tion, demyelination, ischemia, edema, cell loss and gliosis. Sequences
decscribed as above are unable to differentiate among these different
pathologies. Conventional imaging also poorly characterizes the degree
of injury in demyelinated lesions. In addition, conventional imaging does
not identify all of the pathology in MS: there are widespread abnormali-
ties in the white matter which appears normal on T2- and T1-weighted
images. This problem is alleviated by M'T because of its higher specificity
than conventional T2-weighted scans |Filippi 2007, Fox 2011].

5. Diffusion-weighted imaging (DWI) MR scans provide a contrast that
enables the diffusional motion of water molecules to be quantitatively
measured. DWI provides information about of the brain micro structures.
It is helpful to quantify apparent mean diffusion coefficient (MD) and
Fractional Anisotropy (FA). The values for MD and FA are larger and
smaller for lesion areas than for the normal appearing white matter
[Filippi 2001].

3.2.2 Diagnosis

The diagnostic criteria for MS in conjunction with MRI observations with
clinical and other para-clinical tools were introduced in 2001. The diagnosis
of MS requires elimination of more likely diagnoses and demonstration of
dissemination of lesions in space and time. The McDonald criteria shown
in Figure 3.4 for MS were recommended in 2001 [McDonald 2001] by an
international panel and revised in 2005 [Polman 2005] and 2010 [Polman 2011].

The McDonald criteria take into account the clinical presentation and MRI.
When a patient experiences two or more episodes with clinical evidence of two
or more neurological deficits, there is no need for additional requirements to
make the diagnosis of MS, because there is dissemination in space and time.
In all other cases, which are less than two episodes or less than two clinical
significant lesions, there arises a need for MRI to fulfill the diagnostic criteria
by demonstrating dissemination in space, in time or both. The McDonald
criteria are quite specific pertaining to the fact that use of MRI to diagnose MS
is only utilized when patient is screened for MS. Typical types of lesions which
are suggestive of MS are shown in Figure 3.5. An involvement of the temporal
lobe is shown by the red arrow, the green arrow indicates juxtacortical lesions
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Mc Donald criteria for MS

Dissemination in space Dissemination in time

172 lesion or more in at least two * Simultaneous asymptomatic
MS typical CNS regions: contrast-enhancing and non-
Periventricular enhancing lesions at any time
OR
Juxtacortical
o A new T2 and/or contrast-
Infratentorial enhancing lesions(s) on
spinal cord follow-up MRI, irrespective of
its timing OR

® Await a second clinical attack

Figure 3.4: McDonald criteria for MS. Courtesy:http://www.
radiologyassistant.nl/

touching the cortex, involvement of the corpus callosum is depicted as blue
arrow and periventricular lesions touching the ventricles. The lesions in the
deep white matter which are non specific to MS are shown by yellow arrow.

Figure 3.5: Coronal PD image of a brain specimen with MS involvement.
Courtesy: http://www.radiologyassistant.nl/

3.2.3 MS Lesions (MSL)

Several MR sequences are necessary in order to detect the MS lesions. These
lesions are classified into three subtypes of MS lesions depending upon the
peculiar intensity characteristics they possess on respective sequences. They
are Active/Gd-Enhancing lesions, black-holes and T2-w as shown in Figure
3.7.
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e T2w lesions: These lesions exhibit a hyper intensity profile compared
to normal-appearing white matter on T2w, PDw and FLAIR sequences.
They may be iso- or hypo-intense in T1w images. T2w lesions are not
clinically specific and can result from inflammation, edema, demyelina-
tion, or axonal loss. New contrast-enhanced lesions with hyper intensity
also corroborate for the same location with a hyperintense lesion on
T2-weighted images. These new T2 hyperintense lesions tend to reduce
in size over time and their intensity decreases because of tissue repair
[Meier 2007b, Meier 2007a).

e (Gd Enhancing lesions: Longitudinal and cross-sectional MRI studies have
demonstrated that formation of new MSL can strongly be linked with a
focal area of contrast enhancement on T1-weighted images obtained after
GGd injected intravenously. Typically, it can be observed in patients with
RR or SP MS [Lassmann 2008|. This enhancement correlates with altered
blood brain barrier permeability in the setting of acute perivascular
inflammation and enables differentiation between acute, active lesions
and chronic, inactive ones. In Figure 3.6, FLAIR image shows multiple
focal demyelinating lesions that are hyperintense relative to the normal
appearing brain tissue. After contrast administration, some of the
lesions are hyperintense on T1-weighted images, indicating increased
permeability of the bloodbrain barrier, a feature that distinguishes acute
from chronic demyelinating lesions. The Gd enhancement varies in size
and shape, and usually lasts from a few days to weeks, with an average
duration of 3 weeks (97 % of lesions enhance during less than 2 months)
[Cotton 2003|. Lesions which are new and increase in size are classified
as active lesions.

e Black Holes: A T1-weighted MRI scan shows black holes which are
suggestive areas of permanent axonal damage. These are hypo-intense
lesions because of their dark intensity profile. To be a candidate for
black hole, a T1-w lesion should not enhance with gadolinium and should
generally be persistent for at least several months.

3.3 Conclusion

The origin and evolution of MS are still not well understood, and numerous
studies have been conducted to evaluate its evolution and its influence on
neighboring brain structures. Nowadays, a strong emphasis is put on early
detection to slow down the disability and disease.

Quantitative analysis of MRI of different patients provides a spatial analysis
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Figure 3.6: Conventional magnetic resonance imaging in multiple sclerosis.
FLAIR (left) and gadolinium-enhanced T1-weighted (right) sequences. Cour-
tesy: [Rovira 2013|

Figure 3.7: Example of MS lesions on MRI. From left to right: FLAIR,
PDw, Gd-enhanced T1w, Tlw, and T2w images. Several types of MS le-
sions can be observed: Enhancing lesions (blue), lesions visible only on T2w
(green), black holes (red). In Gd-enhanced T1w and FLAIR images, multi-
ple bright regions are observed that may be mislabeled as lesions. courtesy:
|Garcia-Lorenzo 2013]

of the brain tissues, which may lead to the discovery of putative biomark-
ers of disease evolution. Nowadays, clinical trials use the total lesion load
in conventional images. In the next chapter, we will focus on the state of
the art methods of MS lesion segmentation and detection on conventional MRI.
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4.1 Introduction

MRI is playing an increasing role in the scientific investigation and clinical
management of MS. Conventional MRI sequences are highly sensitive for
detecting brain pathologies, like MS lesions and can provide quantitative
assessment of inflammatory activity and lesion load. Quantitative MRI provides
assistance for a large variety of applications, e.g. to predict brain lesion load
and monitoring, longitudinal studies of cognitive aging [Bakshi 2008], or even
the analysis of the fetal brain development |[Rousseau 2013]. MRI achieves a
great tissue contrast enabling the distinction between brain tissues; namely
gray matter (GM), white matter (WM), and the cerebrospinal fluid (CSF).
Detecting and localizing MS lesions in MRI is a hard task and generally
requires an expert neurologist or radiologist. The detection process is also
time consuming and includes some subjectivity in interpreting the images. It
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requires multi-sequence intensity fusion, deep anatomical knowledge and solid
spatial awareness. MS lesions do not exhibit peculiar shapes and geometries.
They possess nodular and oval like, ring to hole like shapes. Consequently,
the MS Lesions detections performed by different experts can vary in the
number and size of MS Lesions identified. Consequently, the MS Lesions
detection performed by different experts can vary in the number and size
of MS Lesions identified. As statistics reveal that eye fatigue is commonly
encountered problem with radiologists as they visually need to inspect copious
imaging data.! This becomes more prevalent when the imaging modalities grow
dramatically. Due to the volume overload and constrained clinical information
available as part of imaging studies, there may be room for diagnosis errors.
Radiologists are a scarce resource in many countries. Therefore, it is of
paramount importance to reduce the burden of data to be investigated by
radiologists. To alleviate this problem, many computer assisted methods have
been proposed for diagnostic interpretation of medical imaging datasets guided
by clinical knowledge. These methods have the advantage to be consistent and
repeatable, although they do not always achieve results as good as manual
expert annotations.

In spite of these clear challenges, MS lesion segmentation research has
made notable strides within the last decades. The techniques take different
approaches to the problem of MS Lesions segmentation and consist of compre-
hensive frameworks made of several steps, including pre- and post-processing.
Recent advances have shown the feasibility of learning accurate models for
detecting MS lesions. Adapting various methodologies from different streams of
science, researchers are making efforts for detecting MS lesions within realistic
settings. As a part of the effort, various standardized benchmark databases
and MS lesion detection challenges have been developed. While a numerous
studies have been done, they all must make a few common choices: how will the
MR images be represented? using that representation, how is a model learned?
Given a new MR image, how is detection carried out? This chapter reviews
state-of-the-art of strategies for MS lesions detection/segmentation methods
with the aim of pointing out their strengths and weaknesses which in turn
explains the rationale behind the proposed methods for this thesis. Further, it
concludes with a discussion of the techniques as well as the perspectives on
future improvements.

There are three main types of segmentation approaches depending on the
user intervention: manual, semi-automatic, and automatic.

http://researcher.watson.ibm.com/researcher/view_group.php?id=4384
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4.2 Manual Segmentation

The first method to delineate MSL is manual segmentation. An expert rater
examines different MR sequences to identify the lesion voxels. Unfortunately,
the manual process is time consuming and somewhat subjective. Different
experts (inter-rater variability) and even the same expert (intra-rater variabil-
ity) may therefore provide different segmentations for the same data. Even so,
manual annotations are considered the best results available and usually serve
as the baseline for evaluating other methods. The expert segmentations can
be considered as a silver standard since they are not perfect representations of
the ground truth but provide the best estimates available. Automatic meth-
ods provide some assistance to MSL segmentation. Where experts can have
difficulty in infusing multi modal MRI information, well designed frameworks
can efficiently blend this data. As a result, it is interesting to pursue the
development of semi-automatic and automatic lesion segmentation methods.

4.3 Semi-Automatic Segmentation

In order to reduce the inter- and intra- rater variability in segmentation of
MSL, several semi-automatic methods have been developed. Semi automatic
techniques need some human input as the prior knowledge for additional
automatic processing steps. This knowledge could be an input in the form
of focused region of interests (fROI) or a coarse-grained selection of object
of interest. Though semi-automatic methods can relieve some of the work
from radiologists, they do require some human interaction. A method based
on prior knowledge with fuzzy logic is presented in [Horsfield 2007]. The
prior knowledge resides in the form of probabilistic feature distribution and
feature size maps, in a standard anatomical space. The fuzzy affinity between
pixels is modified to capture this information. Here, the user is required to
identify each lesion with a mouse click, to provide a set of seed pixels. The
algorithm then grows the features from the seeds to define the lesions as a
set of objects with fuzzy connectedness above a preset threshold. Ruben et
al. [Cardenes 2003] proposed the technique for interactive segmentation. It
consists of three steps. First, a KNN classifier is applied to classify brain tissues
in CSF, GM, WM and MS lesions on template based on user input. The second
step concerns the detection of MS lesion which is done by computing a fast
distance transformation in conjunction with intensity information on template.
Last, a connected component technique is used to refine the voxels detected as
MS lesions. Another approach proposed by |[Derraz 2010] was segmentation
based upon Active Contour Model and statistic prior knowledge of MS lesions
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in fROI within MRI. In particular, the user selects coarse fROI that encloses
potential MS lesions and a sufficient background of the healthy White Matter
tissues (WM). Texture features corresponding to Normal Appearing Brain
Tissues and MS lesions were incorporated to achieve final segmentation. Graph
Cuts (GC) algorithm is a method for finding the maximum a posteriori (MAP)
estimate of a binary image [Boykov 2006]. The method treats the image like
a flow graph with two nodes, the source and the sink. The source represents
the object class in the image, in this case the lesions. The sink represents the
background: the NABT. The other nodes of the graph are the image voxels. A
network of weighted and directed edges connects the nodes in the graph. The
GC makes use of regional and voxel-neighborhood information to differentiate
between the two classes. The MAP estimate corresponds to the maximum
flow through the node network. The result is two sets of strongly connected
nodes that correspond to the MSL and NABT |Biediger 2014]. Some authors
[Lecoeur 2009] proposed to use GC with spectral gradient and multi-sequence
MRI for lesions segmentation. All these methods need seed points defined by
the user.

In any case, the automated step of the framework is highly dependent on
the quality of the input. Since they require some level of user intervention,
the semi-automatic methods may not cater the needs of large patient studies
because they are still time consuming and tedious for the user.

4.4 Automatic Segmentation

Automatic methods require no user intervention. The comprehensive surveys
of [Llado6 2012b, Garcia-Lorenzo 2013] provide the different types of segmen-
tation frameworks. In general, there are three main types of fully automated
segmentation schemes: data guided methods, learning based methods, and
statistical methods. The data dependent methods use thresholding and region
growing to segment the lesions in an image, like the watershed and graph
cut methods. The learning based methods require a training set and some
feature extraction. These methods learn the characteristics of lesions and then
classify based on discriminative learning approaches. The statistical meth-
ods involve estimations of probability density functions of intensity of voxels.
These methods are based on inference methods with some neighborhood or
classification examples and include probabilistic graphical models and support
vector machines. All have pros and cons in their use and the results they
provide. Figure 4.1 shows the broad range of methods based on supervised
and unsupervised techniques. It helps to take a glimpse on the huge literature
of automatic MSL segmentation.
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Figure 4.1: The various approaches for MSL detection based on their charac-
teristics

4.4.1 Multi-Sequence Information

By and large, a typical MRI under consideration can be a representation in one
or combination of the four possible sequences, namely, PD-w, T1-w, T2-w, and
FLAIR. The objective is to find the various MS lesions through the use of these
sequences. Prior works in the context of MS lesion detection deal with either
single or multi-sequence approaches i.e. the use of a single MRI sequence or
combination of several MRI sequences respectively. Single-sequence approaches
are mainly used to segment the brain tissues.

For instance, T1-w sequences are widely used for this purpose, since they
show the best contrast between the three main brain tissues: WM, GM and
CSF. Another example of the single-sequence approach is the segmentation of
MS lesions using just the FLAIR sequence [Khayati 2008]. The multi-sequence
approaches, on the other hand, use at least two sequences. One of the benefits
of using more than one of the different MRI sequences is that it increases
the intensity feature space, producing a better discrimination between brain
tissues. Garcia et al. |Garcia-Lorenzo 2011] propose a typical example of this
approach which uses T1-w, T2-w, and FLAIR to detect MS lesions. There
is also a method to make use of the initial single sequence approach to be
used as a basis for further analysis in multi-sequence context to obtain the
final lesion map. For example, the T1-w sequence could be used to influence a
multi-sequence approach using T2-w and PD-w.
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4.4.2 Unsupervised approaches for MS lesions segmenta-
tion

Generative methods remain the popular choice for MS lesions segmentation.
It consists of tissue classification with an expectation maximization (EM)
[McLachlan 2008] algorithm. The approaches based on EM typically modify
the EM algorithm to factor it into their classification methodologies.

These EM derived algorithms are typically modified to be robust against
lesion affected regions. The outcome is then parsed in order to detect outliers
which, in this case, coincide with MS lesions. In their seminal work, Van
Leemput et al. [Leemput 2001] developed a framework for segmentation of MS
lesions based on multi-sequence information. It relies on classification based
upon the intensity information of tissues using a stochastic model for normal
brain sequences. Furthermore, it models MS lesions as outliers. It removes
MR field inhomogeneities and incorporates contextual information in the clas-
sification of lesions using a Markov random field (MRF). Another similar work
proposed by Garcia et al. [ATtAli 2005, Garcia-Lorenzo 2011] incorporates a
tissue classification methodology based on a model of intensities of the normal
appearing brain tissues. In order to estimate the model parameters, a trimmed
likelihood estimator [Neykov 2007] is initialized with a hierarchical random
approach in order to be robust to MS lesions and other outliers present in MR
sequences. An iterative scheme of recursive EM was then used to compute this
estimator. It is a robust algorithm using 3D+t MR data to segment MS lesions
over time in a standardized clinical protocol. In the last step, refinement of
the segmentation was done using both the Mahalanobis distance of intensity
of WM voxels and prior information coming from clinical knowledge on lesion
appearance across sequences. Another approach considers the EM with a
partial volume model among tissue classes in conjunction with a Mahalanobis
distance thresholding which detects MS lesions [Dugas-Phocion 2004]. A post-
processing morphological operation was performed to refine the segmentation
from regions of interest in order to improve the classification performance
[Souplet 2008]. Freifeld et al. [Freifeld 2009| proposed a Constrained Gaussian
Mixture Model (CGMM) technique based on a mixture of multiple spatially
oriented Gaussians per tissue. The intensity of a tissue remains unchanged over
the entire set of Gaussians for that tissue. MS lesions are modeled explicitly as
an extra class by GMM in addition to healthy tissue classes. MS lesions were
detected by estimation of parameters for outlier class followed by the refinement
of lesion contours based upon the probability-based curve evolution technique.
Rather than estimating the distribution of lesions, [Harmouche 2006] proposed
to cast lesions as a separate class. It is based on unsupervised Bayesian frame-
work. It models the different intensity distributions for different tissues of
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the brain. MS lesion detection was performed using posterior probabilities
along with entropy based features. Khayati et al. [Khayati 2008] classified
MS lesions voxels based upon adaptive mixtures method (AMM) and a MRF
model from a FLAIR sequence. The intensity of each lesion voxel is modeled
as a linear combination of intensities related to the normal and pathological
tissues. Applying an optimal threshold, the voxels with new intensities are
primarily classified into two stages: chronic and acute MS lesions. Finally,
the acute lesions are classified into two new stages based upon their activities,
early- and recent acute. Schmidt et al. [Schmidt 2012] developed MS lesion
detection using three-dimensional (3D) gradient echo (GRE) T1-w and FLAIR
sequences. It initially classifies the three tissue classes of CSF, WM and GM
from the T1-weighted image. In the subsequent stage, the FLAIR intensity
distribution of each tissue class is taken into account to detect outliers, which
are called lesion beliefs. The neighboring voxels in lesion belief maps are
analyzed and assigned to lesions. This is done for all voxels that are associ-
ated with the MS lesions. A fuzzy C-Means algorithm was also investigated
[Aymerich 2010a, Aymerich 2010b]. These approaches pursue the grouping of
voxels into a number of clusters, which maximize inter-cluster variability while
minimizing intra-cluster variability. Rather than a crisp or hard classification,
the fuzzy approach establishes the degree to which a pixel belongs to a given
cluster. In this way, a voxel can belong to more than one cluster to varying
degrees.

4.4.3 Supervised Approaches

Machine learning plays an essential role in the medical imaging field, including
computer-aided diagnosis, image segmentation, image registration, image
fusion, image-guided therapy, image annotation, and image database retrieval.
The objects such as lesions and organs may not be represented accurately
by a simple models; thus, medical computer vision requires learning from
training examples. One of the most popular uses of machine learning is
classification of objects such as tissues into certain classes (e.g., pathological
or non-pathological) based on input features obtained from segmented object
candidates.

Support vector machines (SVM) [Vapnik 1995] is a popular and widely used
supervised learning algorithm. It has also been used in the context of MS lesion
detection [Fiot 2008, Abdullah 2011|. The method extracts intensity values
as features from examples of lesion and non-lesion voxels. It then attempts to
divide the two classes by dividing the hyper-plane of features in a discriminating
fashion. While there are many possible dividing planes, the method seeks
the plane with the widest margin between classes. SVM in conjunction with
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various kernels facilitates the non-linear classification by projecting the features
into Reproducible Kernel Hilbert Space (RKHS) [Shawe-Taylor 2004]. One
problem with the SVM approach in MS lesion detection is the imbalance
between class representations. In general, the number of voxels that represent
normal brain tissue far exceeds the number of voxels that represent MS lesions.
This can lead to the over fitting of the classifier.

Ensemble learning is the process by which multiple models, such as classifiers
or experts, are strategically generated and combined to solve a classification
problem. Two ensemble learning approaches were studied in the context of MS
lesions detection. In a first study, Geremia et al. [Geremia 2010| proposed to
build a discriminative random decision forest framework to provide a voxel-wise
probabilistic classification of the image. The method uses multi-sequence data
(T1, T2, FLAIR), a prior knowledge of tissue classes and long-range spatial
context to distinguish lesions from healthy tissues. The authors also utilize
a symmetry feature, which takes into account the fact that MS lesions tend
to develop in an asymmetric way compared to healthy brain which remains
approximately symmetric with respect to the mid-sagittal plane. In a second
study, [Wels 2008| developed a framework based on the probabilistic boosting
trees technique. It incorporates the context of a voxel under consideration
and its transformation into feature space of an over-complete set of Haar-
like features. This information establishes the class specific characteristics.
A discriminative model for voxel classification was developed based upon
boosting within a tree structure. It consists of selection and combination
of most discriminative features which are established recursively in cascade.
Consequently it yields posterior probabilities for voxels in learning phase.
The final segmentation was obtained after refining the preliminary result by
stochastic relaxation and a standard level set approach.

Further, a multi-scale segmentation can be combined with discriminative
classification to take into account regional properties [Akselrod-Ballin 2006]. It
relies on a combination of segmentation by Soft Weighted Aggregation (SWA),
a rich feature vocabulary describing the segments, and a decision tree-based
classification of the segments. Then, successively selecting and combining the
most discriminative features during ensemble, the overall procedure was able
to learn in terms of posterior probabilities. Beyond the information introduced
via the spatial prior atlases, these methods are limited in their ability to take
advantage of long-range spatial context in the classification task.

4.4.4 Gd-Enhancing Lesion Detection

All approaches mentioned above work on the conventional MRI sequences
without contrast agent. However, it must be noted that in the context of active
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MS lesions, the initial T1-w sequences can be enhanced using Gadolinium (Gd).
Hence, the initial data to be analyzed would be different in a Gd-enhanced T1-w
sequence. He et al. [He 2002] put forth the preliminary research incorporating
the detection of MS lesions in a Gd-enhanced sequence. Using this as a base,
the authors were able to overcome some of the deficiencies of the regular T1-w
sequences. It must be noted that the authors use a standard methodology
based on adaptive local segmentation that would work even with the regular
MRI sequences. A Gd-enhanced sequence would consequently also affect the
non-lesion parts of the brain. The authors identify the non-lesion voxels from
the vasculature and extrameningeal tissues by exploiting their topological
relationship to the brain mask. In these cases, there is hence a need to
quantify the dynamics of lesion which is computed by using fuzzy connectivity.
Karimaghaloo et al. [Karimaghaloo 2012| proposed a supervised-learning
approach that uses Gd-enhanced sequences. This technique learns information
pertaining to MS lesions by using Conditional Random Field (CRF). The
novelty of the approach relies on applying the CRF two times in different
contexts and has been termed as a Hierarchical CRF (HCRF') approach. The
contexts that form the basis for training the CRF are based on voxel intensities
and lesion-specific features. Karimaghaloo et al. [Karimaghaloo 2013| then
extended this work on HCRF [Karimaghaloo 2012 using temporal information
for longitudinal lesion segmentation. In this case the authors change the second
stage of the HCRF mechanism to refine the candidate regions with rotation
invariant texture features of the sequence. This methodology has been termed
as Adaptive Multi-level CRF (AMCRF).

4.4.5 Miscellaneous Approaches

Recently, signal modeling using sparse representations (SR) has gained tremen-
dous attention and is an area of active research. SR allows coding data as
sparse linear combinations of the elements of an over-complete dictionary. It
learn a class specific dictionaries for healthy brain tissues and lesions that
promote their sparse representation. The lesion patches are well adapted to
their own class dictionary, as opposed to the other. Weiss et al. [Weiss 2013]
proposed an unsupervised approach for MS lesion segmentation, in which a
dictionary learned using healthy brain tissue and lesion patches is used as
basis for classification. On the other hand, [Deshpande 2014| achieved the
detection using a supervised technique based on reconstruction error derived
from sparse decomposition of test patches to learned dictionaries. Further
[Deshpande 2015] introduced a framework for classification of MS lesions us-
ing adaptive dictionary learning. The MS lesions classification is based on
multiple MR modalities including T1-w MPRAGE, T2-w, PD-w and FLAIR.
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The method is based on sparse coding and dictionary learning. The authors
propose that learning dictionaries with adaptive sizes for different classes
can achieve better classification result. Their experimental results show that
learning more dictionaries for each anatomical structure in the brain and
adapting the dictionary sizes for different classes can improve the classifica-
tion. Few authors evaluated manifold learning to distinguish MS lesions from
NABT [Kadoury 2012, Kayhan 2008]. But all of these methods have huge
computational complexity and do not scale to large data easily.

4.5 Performance Metrics

The evaluation comprises many evaluation measures, each of them highlighting
different aspects of the segmentation quality. We describe four principal
evaluation measures that are employed to evaluate the quality of a segmentation
compared to a reference ground-truth: the dice coefficient (DC) denotes the
volume overlap, the average symmetric surface distance (ASSD) the surface
fit, the Hausdorff distance (HD) the maximum error and precision & recall
the volume overlap.

e Dice Coefficient: DC measures the similarity between two datasets.
Considering two sets of volume voxels A and B as shown in Figure 4.2,
the DC value is given as:

2|AN B
DC = —— (4.1)
Al + B
where | - | denotes the cardinality. A value of 0 indicates no overlap, a

value of 1 perfect similarity. During interpretation, it should be kept in
mind that the DC is known to yield higher values for larger volumes i.e.
a DC of 0.9 for lung segmentation is considered average, as is a DC of
0.7 for MS lesions.

e Precision and Recall: The precision (also called positive predictive value)
and recall (also known as sensitivity) of two sets are defined as:

o TP
recision = ——————
b TP+ FP
and Tp
[ = ——— 4.2
recal TPLFN (4.2)

where TP (true positive) denotes the overlapping points, FP (false
positives) that are absent in the ground truth but present in algo-
rithm /framework generated segmentation. FN (false negatives) are
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A B

Figure 4.2: The two sets A, B and their intersection, where B is the reference
segmentation.

points which are part of ground but absent in algorithm/framework
generated segmentation. Both measures take values in the range of
[0,1]. A relatively high precision compared to the recall reveals under-
segmentation and vice-versa, as depicted in the following Figure 4.3.

Recall ~ 0.3 Recall = 1
Precsion = 1 Precsion ~ 0.3

Figure 4.3: Gray circle: Segmented points. Green circle: Reference points.

e Average symmetric surface distance (ASSD): the ASSD denotes the
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average distance between the volumes surface points averaged over both
directions. Considering two sets of surface points A and B, the average
surface distance (ASD) is given as:

Y aca Minyepd(a,b)
Al

ASD(A, B) = (4.3)

with d(a,b) being the Euclidean distance between the points a and b.
Since ASD(A, B) # ASD(B, A), the ASSD is given by

ASD(A, B) + ASD(B, A)

ASSD(A, B) = .

(4.4)

It is given in mm, the lower the better, and works equally well for large
and small objects. However, it is sensitive to surface extraction from
binary images.

Hausdorff distance (HD): the HD denotes the maximum distance between
two volumes of surface points and hence is sensitive to outliers, especially
when multiple objects are considered. It is defined as:
HD(A,B) = ind(a,b ind(b 4.5
(4, B) = max{maxmin d(a,b), maxmind(b,a)}  (4.5)

Similar to the ASSD, the HD is given in mm and a lower value denotes
a better segmentation.

True Positive Rate : This is measured by dividing the number of lesions in
the segmentation that overlap with a lesion in the reference segmentation
with the number of overall lesions in the reference segmentation. This
evaluates whether all lesions have been detected that are also in the
reference segmentation. It is given in %, although it is possible to have
a perfect score of 100% and have additional lesions as compared to
the reference segmentation. A caveat for this measurement is further
that if correctly detected lesions are fused as compared to the reference
segmentation, then this is considered as a partial error.

False Positive Rate: This is measured by dividing the number of lesions
in the segmentation that do not overlap with any lesion in the reference
segmentation with the number of overall lesions in the segmentation.
This rate represents whether any lesions are detected that are not in the
reference. A method that oversegments lesions would have a low value
for this method, whereas a very conservative method would have high
values. It is given in %, an empty image would always score a perfect
score of 0%.
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4.5.1 Publicly Available Resources

The inability to compare evaluation results due to the use of different data
sets and different evaluation measures has been a major drawback to evaluate
MS lesion segmentation methods. Very few methods are available as open
source methods. Consequently, reproducing such methods is a very hard task.
Majority of the segmentation algorithms are accompanied by heuristics rules.
When heuristics fail, they fail catastrophically. Parameter tuning, change
of heuristics are not easily generalized across the datasets. Some methods
only work on specific datasets and their generalization on other data sets
is a cumbersome task. Ideally, methods should be applied to a common
database and compared to a ground truth. Moreover, for many researchers it
is difficult to obtain a sizable amount of training and test scans with reference
segmentation. Not only is the number of available methods increasing, more
and more methods are, or claim to be, generic and applicable to multiple
segmentation tasks, usually after applying some suitable modifications or
tweaks. Even for experienced researchers in the field it is difficult to choose the
appropriate technique for a particular problem. The competition/challenge
serves purposes other than as a comparative study of a range of algorithms on
a common database. It also provides a snapshot of currently popular methods
for medical image analysis. This is however very difficult due to the lack of
common public databases of real images along with their ground truth and
the fact that only few methods are publicly available. Furthermore, the MS
Lesion Segmentation Challenge [Styner 2008] provided a common framework
for evaluating MS lesion segmentation algorithms, but data is old and image
quality is poor to get adequate results. The MS lesions segmentation /detection
field has continued to develop new approaches in recent years, and another
challenge has been organized by the adding longitudinal dimension in the
data which provides a new element for the researchers to consider in their
algorithm development 2. In that competition, participating teams were asked
to evaluate their automatic lesion segmentation algorithms to MR neuroimaging
data acquired at multiple time points from MS patients.

4.6 Challenges

Many radiologists advocated the objective evaluation of total lesion load which
yet to be achieved with current segmentation techniques. Though segmentation
techniques yield exact lesion masks, they fail to delineate all lesions successfully.
In such situations, MS lesions detection and localization is setting trend with

2http://iacl.ece.jhu.edu/MSChallenge
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its usefulness in identifying MS lesions instances considerably. Though many
MS lesion segmentation frameworks are developed, they do not address some
of the aspects of brain anatomy in presence of MS lesion. Following are the
challenges which have been addressed from few to none:

e Segmentation in presence of partial volumes (PV): Due to the finite
spatial resolution of imaging devices, a single voxel in a medical image
may be composed of a mixture of tissue types, an effect known as partial
volume effect (PVE). The border of lesions is fuzzy in part due to
acquisition parameters of the MR scan. It was modeled explicitly in
the context of MS [Dugas-Phocion 2004|. Lesion segmentation becomes
quite difficult in presence of PVE; especially with methods which model
the tissue distribution.

e Registration based methods: Anatomical atlases may be used for some
methods. They are built from MR scans of healthy volunteers. These
atlases are compared with patient images and thus it is possible to treat
the lesions as outliers in the tissue. However, building atlases is a hard
task. In addition, they also introduce the registration problem into the
MS lesion segmentation. Note that this registration step is even more
difficult when dealing with cases with severe atrophy, large numbers of
lesions and inter-subject registration etc.

e (Class Imbalance in supervised methods: Supervised learning methods
require large training datasets. Compared to NABT data, MSL is always
a sparse class leading to class imbalance problems. The majority of dis-
criminative learning algorithms suffers from this problem. They produce
suboptimal models which are biased towards the majority class (NABT)
and have low performance on the minority class (MSL) [Chawla 2005].
The problem of imbalanced data is often associated with asymmetric
costs of misclassifying elements of different classes. Additionally, the
distribution of the test data may differ from that of the learning sample
and the true misclassification costs may be unknown at learning time.
Although much awareness of the issues related to data imbalance has
been raised, many of the key problems still remain open and are in fact
often encountered, especially when applied to massive datasets. Yet
another school of thought is a recognition based approach in the form of
a one-class (NABT) learner. The one-class learners provide an interest-
ing alternative to the traditional discriminative approach, in which the
classifier is learned on the target class alone [Tax 2004].

e Multi-center datasets: Images from different scanners have different con-
trasts or intensities, even when the same protocol is employed. Methods
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should be designed specifically to deal with this variation without biasing
the posterior clinical studies.

e Diffuse disease: The majority of the literature focuses on focal lesions
but in some cases it is impossible to find the border between lesions
and the neighboring diffuse white matter. No method has attempted to
address these issues with the diffused white matter explicitly.

e Longitudinal MS Lesion segmentation: So far, very few methods are
specifically tailored to detect newly appearing MS lesions for longitudinal
MR scans. A longitudinal MS lesion segmentation challenge has been
organized which took place at International Symposium on Biomedical
Imaging (ISBI) 2015 conference this year.?

Techniques and algorithms that have stemmed from the field of machine
learning have now become a powerful tool for the analysis of complex and
large data, successfully assisting scientists in numerous breakthroughs of
various fields of science and technology. In particular, machine learning
provides algorithms that are able to solve classification or regression tasks,
hence bringing automated procedures for the prediction of a phenomenon
based on past observations. However, the goal of machine learning is not
only to produce algorithms making accurate predictions, it is also to provide
insights on the predictive structure of the data. One of the beneficiaries
of machine learning field is computer vision. The current state-of-the-art
methods from main stream computer vision in object detection and their
derivatives [Dalal 2005, Felzenszwalb 2010, Uijlings 2013| are particularly well
suited for handling large amounts of training data. They employ data mining
to iteratively sift through millions of negatives and find the hard ones which
are then used to train a discriminative classifier. The sliding window approach
treats object detection as classification, and checks at every position and scale
within the image whether the object is present. To run a multi-scale search,
the input image is resampled into a pyramid. The window of interest is then
slid through each level, and the classifier outputs are stored. A detector will
usually have positive responses at multiple windows nearby the true detection.

Inspired from this, we propose an inclusive framework of the discriminative
patch based learning methodology, which allows us to propagate rich anno-
tations from exemplars onto detection windows, with discriminative training,
which allows us to learn powerful exemplar-based classifiers from vast amounts
of positive and negative data. Note that our framework is closely related to
MS lesion segmentation with classification at voxel level. There exists subtle
differences, though: segmentation is a symmetric setting for obtaining exact or

3http://iacl.ece.jhu.edu/MSChallenge
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near exact, crisp contours of the lesion whereas we are interested in addressing
the implicit problem of detecting and localizing MS lesions instances with
discriminative learning based upon the patch information. Such detection may
not yield exact lesion delineations, but a rough segmentation mask or bounding
box around the lesion. The localization of MS Lesions is crucial, but for some
applications a rough localization using a bounding box is enough. This is the
task considered for MS Lesions detection. Most of the existing methods cast
detection as a classification problem. Every possible window in the image is
considered, and given to a classifier that decides if the window contains an MS
Lesion or not. This type of approach is successful but extremely costly as such
a sequential system has to classify thousands if not millions of windows for a
single input image.

Aside from these issues relating to robustness, current state of the art seg-
mentation algorithms also face notable challenges in computational complexity
and scalability. Highly efficient algorithms are necessary to accommodate
rich high-dimensional image representations, to search large image databases.
In addition, scalability concerns also arise when designing a recognition sys-
tem’s training data: while expert annotations by radiologists tend to be most
informative, they are also most expensive to obtain. Thus, methods today
must consider the trade-off between the extent of expert annotations that an
algorithm requires, and the advantages given to the learning process. Unfortu-
nately, the current state-of-the-art in machine learning often makes it difficult
for non-experts to understand and interpret the results of an algorithm. While
considerable efforts have been put to improve their prediction accuracy, it is
still not clearly understood what makes machine learning algorithms truly work,
and under what assumptions. Likewise, few of them actually provide clear and
insightful explanations about the results they generate. In this context, the
goal of this thesis is to provide frameworks based on comprehensive and self
contained analysis of a set of algorithms.



CHAPTER 5

Longitudinal Intensity
Normalization in Multiple
Sclerosis Patients

Contents

5.1 Introduction . ............ ... 00000, 40
5.2 Methodology . .. .... ... ... 0. 44
5.2.1 ~-Divergence . . . . . .. ... oo 44
5.2.2 ~-Loss Function . . . . . ... ... ... ... .. ... 45
5.2.3 Brain Tissue Intensity Modeling . . . . ... ... ... 45
5.2.4  ~-loss Function for the Normal Distribution . . . . . .. 46
5.2.5  Selection of Parameter v . . . . . . ... ... 47
5.2.6 Intensity Correction . . . . . . ... ... ... .. ... 48
5.2.7 MR Serial Change Detection . . ... .. .. ... ... 48

5.2.8  Detection of active lesions in T1-w Gadolinium (Gd)
Images . . . . . .. .. o1
5.3 Experiments and Results . . . . ... ... ....... 52
5.3.1 Dataset and Preprocessing . . . . . . ... ... ... .. 52
5.3.2 Intialization of GMM . . . . . . . .. ... ... .. 53
5.3.3 Intensity Correction Evaluation . . . . . . .. ... ... 54
5.3.4 Longitudinal Lesion Detection . . . . . . . .. . ... .. 56
5.3.5 Active Gd-Enhanced Lesions Detection . . . . . . . . .. 60
5.3.6 Computational Complexity . . . .. ... .. ... ... 61
5.4 Discussion and Conclusion . . . ... .. ... ..... 62

In recent years, there have been many Multiple Sclerosis (MS) studies using
longitudinal MR images to study and characterize the MS lesion patterns.
The intensity of similar anatomical tissues in MR images is often different
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because of the variability of the acquisition process and different scanners. This
chapter proposes a novel methodology for a longitudinal lesion analysis based
on intensity standardization to minimize the inter-scan intensity difference.
The intensity normalization maps parameters obtained using a robust Gaussian
Mixture Model (GMM) estimation not affected by the presence of MS lesions.
Experimental results demonstrate that our technique accurately performs the
task of intensity standardization. In this chapter, we show consequently how
the same technique can improve the results of longitudinal MS lesion detection.

5.1 Introduction

Quantitative analysis of longitudinal Magnetic Resonance Images (MRI) of
subjects taken at different time points provides a time varying analysis of the
brain tissues which may lead to the discovery of new biomarkers of disease
evolution. In MS, White Matter (WM) lesions are also present in addition
to healthy brain tissues. Lesions can remain stationary, change of volume, or
disappear in later time points depending upon the state of MS. MRI suffers from
two drawbacks: (1) intensity variations due to magnetic field in-homogeneities;
(2) scanner-related intensity artifacts. Therefore, it is very difficult to create
standardized intensity range for particular sequence. Algorithms dealing with
the problem of the correction of signal intensity inhomogeneities (bias field
correction) usually deal with intra-volume signal intensity distortions and do
not account for native cause of lack of intensity standardization. Hence, MRI
acquired from different patients may have different intensity ranges related
to a specific anatomical tissue even if they are acquired on the same MRI
scanner. Consequently, this has a direct impact on the accuracy and precision
of following image processing, analysis, segmentation and registration methods
relying on intensity similarity. Furthermore, standard presets cannot be used
to display MR images or to visualize certain tissue classes and/or pathologies.
These settings need to be tuned for each patient. Due to such protocol
variations in the scanners, following the evolution of tissue intensities in a
patient (e.g. changing appearance of lesions) makes quantitative evaluation of
lesions difficult. In order to alleviate this problem, intensity normalization is
necessary.

Histogram matching is a widely used technique in intensity standardization.
In their seminal work, Nyul et al. [Nyul 2000] proposed landmark based meth-
ods. Essentially the method is based on a multi-segment linear transformation
model. A standard intensity space (or common intensity space) is defined by
an intensity value range. During the training phase, the intensity values at
certain cut-off percentiles of each image are computed and a single-segment
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linear mapping from them to the standard intensity space range limits is
created. Then the image intensity values at a number of landmark percentiles
are extracted and passed to the linear mapping to be transfered roughly to the
standard intensity space. The mean of all these mapped landmark intensities
form the learned model. When presented with an image to transform, these
images intensity values are extracted at the cut-off percentile as well as at the
landmark percentile positions. This results in a number of segments. Using
these, corresponding standard intensity space range values and learned mean
landmark values, a multi-segment linear transformation model is created for
the image. It is then applied to the target images intensity values to map them
to the standard intensity space. The images intensity values that lie outside
of the cut-off percentiles i.e, outliers, are treated separately. Note that this
does not mean the transformed images intensity values always reside inside
the standard intensity space range, but are fitted as close as possible.

Jager et al. [Jager 2006] showed that a normalization can be achieved by
finding a deformation of the joint histograms of two sets of images pertaining
to certain divergence metrics. Each of these histograms should be at least
two dimensional and contain the intensity information of multi-sequence MRI.
If the probability density functions are considered as images, the intensity
normalization boils down to a registration problem. The resulting non-linear
correction function is used to adjust the image intensities of the longitudinal
MRI. Furthermore, Jager et al. [Jager 2007] extended this approach to a whole
body MRI scan. In this approach, the image volume is split up into K sub
volumes for which intensity standardization is performed independently. In
order to include the influence of small local structures the other K — 1 sub
volumes are used as regularizer.

Cox et al. [Cox 1995] studied the intensity standardization problem as
dynamic histogram warping closely related to histogram specification task
often studied in early computer vision. Dynamic programming can be used to
find an optimal alignment between two images constrained by a monotonic and
separable cost function. Let h”A and hZ represent the histogram of image A and
B respectively. Let H and HP represents the cumulative distribution function
such that HA =>"" h and H? =" | hP. The cost function of matching
intensity I of image A with respect to intensity IZ of image B is simply
|h2t —hP|. Since, the histogram is nothing but the frequency of intensity values,
for one-to-one mapping the cost function should be |h2 — (hZ + k2 )| and for
one-to-k mapping |hﬁ—2f:11 hZ ||. The fact that the cost function of matching
ha . to h2 depends on whether or not k7, was matched to hZ, may cause prob-
lem to dynamic programming. However, the upper bound on size of increase
or decrease of histogram is always finite. In general the cost of k-to-l mapping
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is dy,; = ’Zf:_f hfz—i - Zi;i hf—j’ = ’(HnA; - Hf:—k) - (Hr? - Hf—l)’a where
m and n represent the maximum allowable shrinking of respective histogram.
This can be computed by dynamic programming.

An algorithm proposed by Wang et al. [Wang 1998| expands or shrinks
a windowed part of the input image histogram with a multiplicative factor,
found by minimizing the bin-count difference between the source and moving
images histograms. The window is used to include only voxels of interest and
exclude the background. This makes the technique linear in the intensity range
of interest. Other techniques use parametric models, such as the technique
proposed by Hellier [Hellier 2003|. This intensity normalization method is
applicable only to brain images. This is done by matching intensities of head
specific anatomical tissue classes. It consists of two stages. In the first step
the histograms from a source and a target data set, i.e. two 3D images, are
approximated by a Gaussian Mixture Model with five classes i.e. background,
WM, GM, CSF and a mixture of fat and muscle. Each tissue class £ is modeled
by a Gaussian probability density function which has a mean p; and variance oy,
that is approximated using the Expectation-Maximization (EM) algorithm. In a
second step, a polynomial correction function f? of order p is used to interpolate
the correction of the intensities smoothly: fP(z) = Y7, ©;2'. By minimizing
the the cost function Y, (fP(ux) — vi)? the coefficients ©; are obtained,
where p and vy, are the means of the source and target image respectively.
Weisenfeld et.al. [Weisenfeld 2004] have proposed to estimate a multiplicative
correction field that alters the intensity statistics of an image or set of images
to best match those of a model. In that paper, the Kullback-Leibler divergence
between the source and moving images is minimized iteratively to estimate
the parameters of a model, thus histograms are equalized. All these methods
may be affected by the presence of white matter lesions.

Recently, Robitaille et al. [Robitaille 2012| developed an automatic inten-
sity standrdization technique STandardization of Intensities (STI) based on
Nyul’s method. It consists of (1) using both histogram and tissue-specific
intensity information; (2) providing a nonlinear intensity transformation be-
tween images. In that technique, a target image is aligned with respect to
the source image using global nonlinear registration which establishes spatial
alignment between tissues in the source and moving images. Due to the
spatial spatial correspondence, a joint intensity histogram of the frequency
distribution of intensity correspondences can be computed. From the most
frequent tissue-specific correspondences, an intensity transfer function can
be computed to transform the nonlinearly registered input image onto the
source, which is then applied to the linearly registered target image to com-
pute the desired standardized image, in the standard intensity space. Roy et
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al.[Roy 2013a, Roy 2013c| proposed an intensity standardization framework
based patch matching technique that takes patches from the atlas (source)
image and finds its best matching patches in target image. Let X = x; and
Y = y; be the collection of target and source patches. To match the target
intensities to the source, X — Y matching is done. It makes two assumptions:
(1) WM peaks of both the source and the target image are nearly same; (2)
each target patch x; is a realization of a Gaussian random vector whose mean
is one of the atlas patches i.e. z; ~ N (y;,%;) for some j. Then both the best
matching source patch for each target patch and the covariances of all source
patches are defined by maximum likelihood and found using an expectation
maximization algorithm. The normalized image is produced by replacing the
center pixel of each observed patch by the corresponding value of the matching
source patch. Both of these methods assume that MR image does not contain
any pathology. In the same year, Roy et al. |[Roy 2013b] introduced longi-
tudinal intensity normalization in the presence of multiple sclerosis lesions.
The framework consists of two steps: (1) the longitudinal transformation of
intensities of the normal tissues of different time-points for T1-w MPRAGE
sequence using a first order Auto Regressive model; (2) a prior knowledge for
the lesions at each time-point is incorporated from an atlas based topology
preserving lesion segmentation method, called Lesion-TOADS [Shiee 2010],
which takes both the T1w-MPRAGE and the FLAIR scans of a subject and

provides fuzzy lesion memberships at every voxel.

In this chapter, propose a longitudinal intensity normalization algorithm
for multichannel MRI in the presence of MS lesions, which provides consistent
and reliable longitudinal detections. The tissue intensities from multichannel
MRI are modeled with parametric transform using a robust GMM estimation
based on vy-divergence, thereby keeping the lesions unaffected. The proposed
technique is built on ideas similar to Hellier [Hellier 2003] but taking into
account the presence of pathological tissues in the intensity transformation
function. It provides a technique that (1) uses tissue-specific intensity informa-
tion by modeling them using a robust GMM; (2) provides a consistent intensity
normalization between longitudinal images. Subsequently, we demonstrate its
crucial role for further lesion analysis.

This chapter is organized as follows. The modeling and parameter estima-
tion of multi-sequence MRI with ~ divergence followed by intensity normaliza-
tion are reviewed in Section 5.2. The details of experiments and their results
on longitudinal MS patients are discussed in Section 5.3.
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5.2 Methodology

5.2.1 ~-Divergence

The aim of this section is to give a general introduction to the y-divergence and
the 7-loss function [Eguchi 2010]. Suppose a random sample is generated from
a population distribution with density function z. Let {f(-,0)} be a family of
density functions indexed by parameter . The v cross entropy between z and
f(-,0) is defined as

C. (2, f(-,6)) = —m(e)/z(x)f(a;,e)vdx (5.1)

with power index v > 0, where x(6) is the normalizing constant defined as

1 (8) = < / f(x,e)lﬂd:c)lg” (5.2)

The Boltzmann-Shannon cross entropy between z and f(-,0) is defined as

- /Z(x)logf(m,ﬁ)de (5.3)

The v-cross entropy and the Boltzmann-Shannon entropy have the following
relationship since &, (6) converges to 1 if v tends to 0.

lim Cy (2 f(0)+1 /Z@) lim flx,0) —1

v—0 y ¥—0 y

dr = — / z(x)logf(z,0)dx

(5.4)
Hence the Boltzmann-Shannon cross entropy can be seen as the 0-cross entropy,
and the y-cross entropy can be regarded as an extension of the Boltzmann-
Shannon cross entropy. 7 entropy of z is defined as

H,(2) = O, (2,2) (5.5)
And the v-divergence between z and f(+,#) is defined as
D.,(z, f(-,0)) = C\(z, f(-,0)) — H,(2) (5.6)

Note that the v-divergence D, (z, f(-,0)) is nonnegative and D, (z, f(-,0)) is
equal to 0 if and only if 0 satisfies that z(x) = f(z, 8) for almost every x. From
these properties D, (z, f(-,6)) can be seen as a distance between z and f(-, )
although it does not satisfy the symmetry condition. The objective is to find
the closest distribution to z in model f(-,#) with respect to y-divergence. In
order to accomplish this task, we only need to find the global minimum point
of D.(z, f(-,0)) with respect to § which is equal to one of C,(z, f(-,6)).
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5.2.2 ~-Loss Function

The 7-loss function is defined by an estimator of y-cross entropy. Let uy, ug, ..., u,
be a random sample generated from population distribution with density func-
tion z and f(-,0) be the model under consideration. The ~-loss function for
f(-,0) associated to the y-divergence is given by

L.(0) __"f'y Zf u;, 0 (5.7)

For any distribution function G, the y-cross entropy between G and f(-,0) is
defined as

C.(G.f(.0) = =, (0) [ (w07 dGlw (5.5)

Note that L.(#) equals to C’,Y(@, f(-,8)) with empirical distribution G and
L.(0) almost converges to C,(z, f(-,6)). The 7-loss function and the log
likelihood function satisfy the following relation

lim % - —% > " logf(us,0) (5.9)
=1

v—0

Hence maximum likelihood estimation (MLE) can be regarded as 0-estimator
and ~-estimator can be seen as extension of MLE.

5.2.3 Brain Tissue Intensity Modeling

Given two MR images of a single MS patient at time instant ¢; and ¢y, we
seek to estimate a correction factor such that corresponding anatomical tissues
adopt the same intensity profile. We model the image intensities of a healthy
brain with a 3-class GMM, where each Gaussian represents one of the brain
tissues White Matter (WM), Gray Matter (GM) and Cerebrospinal fluid (CSF).
We consider the m MR sequences as a multidimensional image with n voxels.
Each voxel i is represented as x; = [;1...2;,|. The probability of intensity x;
is calculated as follows:

F(xi|0) = ZWV i, S (5.10)

where the mean j;, and covariance Y define the parameters N (uy, X1, of each
Gaussian of the model along with their mixing proportions m; merged into
parameter 6. If the proportions were known, # could be estimated through the
Maximum Likelihood Estimator (MLE):
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0 = argmax L(0) = argmax [ [ f(xi[0) (5.11)
0 0 i=1

Where x; are considered as i.i.d. samples. However, as m; are unknown, an
Expectation Maximization (EM) algorithm [Dempster 1977] is used to estimate
the parameters.

5.2.4 ~v-loss Function for the Normal Distribution

The parameter estimation with classic MLE for GMM can deviate from its
true estimation in presence of outliers. In MS patients, such outliers may be
of crucial importance as they may denote appearing or disappearing lesions.
Notsu et al. [Notsu 2014| proposed a modification of the MLE in order to
make it more robust to outliers. The basic idea is to maximize equation (5.11)
in the form of v-divergence. We consider the ~-loss function for the Normal
distribution with mean vector p and covariance matrix 3.

Ly(1,%) = |50 | Zexp (- %<xi — )" (% — ) (5.12)

Where |.| indicates the determinant. The bounded influence function of an
estimator is an indicator of its robustness to outliers. The influence function
for GMM with ~-loss function is bounded whereas the one for regular GMM
is unbounded. As v grows larger, bounds become tighter. For a sufficiently
large v, (7 > 0.1), the estimating equation has little impact from outliers in
the data set. Equation (5.12) can be casted to yield an EM style algorithm as
follows:

Expectation Step. In the case of a GMM, the latent variables are the
point-to-cluster assignments k;, 7 = 1, ..., n, one for each of n data points. The
auxiliary distribution q(k;|x;) = ¢ is a matrix with nx K entries. Each row
of ¢; can be thought of as a vector of soft assignments of the data points x; to
each of the Gaussian modes.

meexp (— 2(x; — ) T8 (% — pu
ik = (=3 )% ) (5.13)

z;m exp (— 2(x; — )78 (% — )
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Maximization Step. The maximization step estimates the parameters of
the Gaussian mixture components and the mixing proportions 7, given the
auxiliary distribution on the point-to-cluster assignments computed in the
expectation step. The mean pu; of a Gaussian mode is obtained as the mean
of the data points assigned to it (accounting for the strength of the soft
assignments). The other quantities are obtained in a similar manner, yielding

Z?_l qikXq

Wy = == (5.14)

Z?:l dik

T
D i Gin(Xi — ) (X — i)

Z?:l ik
n

—nzlfl?g’“ (5.16)
D et D il

S o= (1+7) (5.15)

Tk

5.2.5 Selection of Parameter

The estimation of power index v plays a critical role in our approach, since
~ affects the estimated parameters in the presence of outliers. Notsu et al.
[Notsu 2014 suggested the selection of v as a model selection problem based
on Akaike information criterion (AIC) [Akaike 1974]. It is simply the sum of
the negative log likelihood of the observed data under the current model plus
the number of its fitted parameters. The first term of this function reflects
the quality of fitting, whilst the second penalizes overly complex models. AIC
is based on the Kullback-Leibler divergence - a (non-symmetric) measure of
difference between two probability distributions. AIC is a measure of the
relative quality of a statistical model for a given set of data. That is, given
a collection of models for the data, AIC estimates the quality of each model,
relative to each of the other models. Hence, AIC provides a means for model
selection.

Let K be the number of clusters, p, be the total numbers of parameters of
a model and (ux, Xg), kK = 1,.., K be the means and the covariance matrices of
the clusters respectively. From equation(5.10), the AIC is defined as follows:

AIC, = -2 log f,(xi|6) + 2 {KM
=1

+ K — 1} (5.17)
The value of v which minimizes AIC is used as the optimal . For various
values of «y, equation (5.17) is evaluated in a cross validation manner and the =
which results in minimum value is chosen for the experiment. Mathematically,

it can be put as
~ = argmin AIC, (5.18)
8!
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5.2.6 Intensity Correction

We obtain the means and covariances of tissues for the source and target images
