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Chapter 1

Résumé en Français

Introduction

La sclérose en plaques (SEP) est une maladie neuro-dégénérative caractérisée
par une évolution hétérogéne entre les patients. L’origine et l’évolution de
la maladie sont encore mal comprises, et de nombreuses études ont ainsi
été conduites afin d’ évaluer cette évolution et l’influence de la SEP sur les
tissus du cerveau environnants. La caractéristique principale de la SEP est la
démyél inisation, c’est-à-dire la destruction progressive de la myéline entourant
les axones et participant au transport de l’influx nerveux. Dans la SEP, de
nombreuses lésions sont présentes en supplément des tissus sains. L’imagerie
par résonance magnétique (IRM) joue un rôle crucial dans la clinique de la
SEP, grâce â la possibilité de caractériser la progression spatiale des lésions
et un éventuel dommage microstructurel. Une meilleure compréhension de la
maladie â travers la découverte de ses mécanismes permettra de mieux adapter
les thérapies afin de mieux soulager le patient.

Bien que la segmentation manuelle des lésions de SEP par des experts soit
considérée comme la vérité terrain (gold standard), l’évaluation objective de
celles-ci devient difficile pour le radiologiste lorsque le nombre de modalités
d’IRM disponibles grandit. De plus, il s’agit d’une tâche peu reproductible
et son processus est fastidieux. Ainsi, de nombreuses études ont considéré la
possibilité d’une segmentation automatique ou semi-automatique des lésions de
SEP utilisant pour cela plusieurs modalités IRM. Le besoin de telles nouvelles
méthodes d’analyse d’image est très important afin de pouvoir fournir des
mesures quantitatives des lésions de SEP aux radiologistes.

Défis

De nombreux radiologistes plaident pour l’évaluation objective de la charge
lésionnelle comme critère diagnostic et de suivi, ce qui reste à accomplir via
les méthodes de la littérature. Bien que les techniques de segmentations visent
à produire des masques exacts des lésions, elles manquent parfois totalement
certaines lésions. Dans de telles situations, la détection de lésions SEP et leur
localisation plutôt que leur segmentation précise peut aider à détecter toutes
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les lésions. Bien que de nombreux algorithmes aient étudié la segmentation de
lésions SEP, ils ne prennent pas en compte tous les aspects de l’anatomie du
cerveau en présence de lésions. Voici certains de ces défis, classés selon leur
ordre de considération dans la littérature.

• Segmentation en présence de volumes partiels

Lors de l’acquisition de l’IRM, un voxel comprend une résolution finie, de
sorte qu’il peut contenir un ensemble de différents tissus. Ce phénomène
est connu sous le nom de volumes partiels. La bordure d’une lésion
peut ainsi être floue à cause de ce problème inhérent à l’acquisition. Ce
phénomène a été modélisé dans le contexte de la SEP [Dugas-Phocion 2004].
La segmentation de lésions peut devenir difficile en présence de volumes
partiels, spécialement pour les méthodes utilisant un modèle de distribu-
tion d’intensités de chaque tissu.

• Méthodes reposant sur le recalage

Des atlas anatomiques peuvent être utilisés pour certaines méthodes de
segmentation. Ils sont construits à partir d’IRM de volontaires sains. Ces
atlas sont ensuite comparés aux images du patient et il est ainsi possible
de traiter les lésions comme des points aberrants. Cependant, construire
de tels atlas est une tâche complexe. De plus, ce type de méthodes
introduit également le problème de recalage dans la segmentation de
lésions SEP. Cette étape de recalage est d’autant plus difficile en présence
d’une atrophie sévère du cerveau, d’un large nombre de lésions.

• Déséquilibre de classes (méthodes supervisées)

Les méthodes de segmentation basées sur un apprentissage supervisé
demandent de larges bases de données afin d’être efficaces. Dans le cas
de la SEP, les deux classes sont inégales: la classe de tissus normaux
est toujours largement plus nombreuse que la classe de lésions ce qui
cause des problèmes à la plupart des algorithmes produisant des résultats
biaisés vers la classe majoritaire (tissus sains). Ainsi, ceux-ci ont une
performance faible sur la classe d’intérêt (lésions SEP) [Chawla 2005].
Ce problème de déséquilibre est souvent associé à des couts asymétriques
dans la mauvaise classification des éléments dans les différentes classes.
De plus, la distribution des données test peut différer de celle de la base
de données d’entrainement et les coûts d’une mauvaise classification être
inconnus au moment de l’apprentissage. Bien que connu, ce problème clé
est toujours un problème ouvert et est souvent rencontré, particulière-
ment pour des bases de données massives. Une solution potentielle est
la considération d’approches mono-classe, réalisant leur apprentissage
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uniquement sur les tissus sains. Ces approches proposent une alternative
intéressante aux approches discriminatives traditionnelles, dans lesquelles
l’apprentissage est réalisé uniquement à partir des lésions [Tax 2004].

• Données multicentriques

Lors de larges études IRM, des données de différents scanners sont
utilisées. Celles-ci peuvent comporter différents contrastes et intensités
et ce même si le même protocole d’acquisition est utilisé. Des méthodes
doivent alors être développées afin de prendre en compte cette variation,
et ce sans biaiser les études cliniques.

• Atteinte diffuse

La majorité de la littérature se concentre sur l’analyse des lésions focales
en SEP. Cependant, dans certains cas, il est impossible de trouver une
frontiére claire entre les lésions et la matière blanche avoisinante. Aucune
méthode n’a à ce jour considéré explicitement ces problèmes d’atteinte
diffuse de la matière blanche.

• Segmentation longitudinale de lésions SEP

Pour le moment, un nombre restreint de méthodes est défini spécifique-
ment dans le but de détecter les nouvelles lésions apparaissant dans le
temps. Un challenge de segmentation de lésions SEP orienté spécifique-
ment sur cet aspect longitudinal s’est tenu à la conférence ISBI 2015
(International Symposium on Biomedical Imaging). 1

Les techniques et algorithmes issus du domaine de l’apprentissage (ma-
chine learning) sont un outil puissant permettant de résoudre des tâches
de classification. Ces techniques permettent également de définir des outils
automatiques de prédiction d’un phénomène reposant sur des observations
connues. De plus, l’objectif du machine learning est non seulement de fournir
des prédictions les plus exactes possible mais également de fournir une com-
préhension de la structure des données. Ces méthodes sont particulièrement
adaptées au domaine de la vision par ordinateur. L’état de l’art dans ce
domaine considère de larges volumes de données pour la détection d’objets
[Dalal 2005, Felzenszwalb 2010, Uijlings 2013] et les techniques de machine
learning y sont donc particulièrement adaptées. Ces méthodes emploient des
techniques de recherche de données avancées afin de trouver parmi des millions
d’occurrences négatives les occurrences importantes qui sont ensuite utilisées
pour entrainer un classificateur. Une approche de fenêtre glissante traite la
détection d’objet comme un problème de classification, explorant plusieurs

1http://iacl.ece.jhu.edu/MSChallenge

http://iacl.ece.jhu.edu/MSChallenge
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échelles à chaque position de l’image afin de détecter si l’objet est présent.
Un tel détecteur aura ainsi souvent plusieurs détections proches à différentes
échelles pour le même objet.

Inspiré de ces méthodes, nous proposons un cadre permettant l’apprentissage
discriminatif basé sur des patchs extraits des images, permettant de propager
des annotations riches et nombreuses issues de modalités multiples afin d’entrainer
un détecteur de lésions SEP. Ce cadre est proche des méthodes de segmentation
dans sa philosophie de recherche voxel à voxel. Cependant, des différences
existent: la segmentation a pour objectif l’obtention de contours précis; nous
sommes plutôt intéressés ici par le problème de détection et de localisation
de ces lésion en accordant moins d’importance à leur définition précise. Une
telle détection ne conduit alors pas à une segmentation précise mais plutôt un
masque d’intérêt au sein duquel les lésions sont localisées. Cette localisation
des lésions SEP est cruciale, permettant de fournir au clinicien un chiffre im-
portant pour le diagnostique (nombre de lésions). Pour cette localisation, nous
reposons sur une approche de fenêtre glissante se reposant sur l’information du
patch pour discriminer l’existence d’une lésion. Ce type d’approche fonctionne
mais est très couteuse car chacun des millions de pixels de l’image du patient
doit être testé.

L’état de l’art des méthodes de segmentation fait également face à des
problèmes d’extension à de larges bases de données en termes de temps de
calcul, de robustesse et de complexité. Des algorithmes efficaces sont ainsi
nécessaires afin de prendre en compte des représentations d’images de haute
dimension et de permettre la recherche dans de grandes masses d’images. De
plus, l’obtention des données d’entrainement peut être très consommatrice
de temps, celles-ci requérant d’être annotées par un radiologiste. Ainsi, les
méthodes de l’état de l’art doivent également faire un compromis entre les
données d’entrainement labellisées requises et la flexibilité de l’apprentissage.
Dans ce contexte, l’objectif de cette thèse est également de fournir un cadre
basé sur un ensemble bien analysé et limité d’algorithmes.

Organisation de la thèse

Cette thèse est organisée en deux parties. La première partie consiste en
trois chapitres et présente le contexte et le raisonnement derrière les travaux
présentés. En particulier, le chapitre 2 présente l’architecture et l’organisation
générale de la thèse. Le chapitre 3 aborde le contexte clinique de la sclérose
en plaques et le rôle de l’imagerie médicale (IRM) dans la prise en charge des
patients et leur diagnostic. Le chapitre 4 se focalise quant à lui sur une étude
large de la littérature en segmentation de lésions de SEP. Ce chapitre fournit
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également un préambule aux expérimentations réalisées dans la thèse.
Dans une seconde partie, quatre chapitres couvrent les contributions réal-

isées dans cette thèse ainsi que les expérimentations réalisées et leurs résultats.
Le chapitre 5 présente une technique de normalisation d’intensité en IRM
permettant d’aider dans le suivi de l’évolution de la SEP pour un patient
à différents temps successifs. Se reposant sur cette technique de normalisa-
tion, le chapitre 6 présente une technique de détection de lésions SEP via un
cadre statistique de comparaison entre le patient et une population de sujets
contrôles. Ensuite, le chapitre 7 considère la détection comme un problème
d’apprentissage à une classe (celle des tissus sains), considérant les lésions
comme des éléments aberrants de cette classe. Enfin, le chapitre 8 conclue la
thèse par des perspectives sur les travaux accomplis.

Contributions

Chapitre 3 (Contexte). Ce chapitre présente une introduction au contexte
clinique et la physiopathologie de la sclérose en plaques. Nous y décrivons
aussi l’importance qu’a prise l’imagerie par résonance magnétique (IRM) dans
son étude et son diagnostic. Ainsi, les différentes séquences IRM utilisées
en routine clinique sont étudiées, et les différents aspects et types de lésions
visibles dans ces images sont investigués.

Chapitre 4 (Revue des techniques de segmentation de lésions).
Ce chapitre présente une revue de l’état de l’art en segmentation de lésions.
Cette revue catégorise les différentes techniques en plusieurs sous groupes et
présente leurs avantages et inconvénients. Ainsi, une large variété de méthodes
manuelles, semi-automatiques et automatiques est étudiée. Dans tous les cas,
l’étape automatique de segmentation est très dépendante de la qualité des im-
ages d’entrée. Dans la mesure où elles requièrent un degré divers d’interaction
humaine, les méthodes manuelles / semi-automatiques ne sont en général
pas applicables à de larges bases de patients du fait du temps nécessaire et
de la fatigue de l’utilisateur. Le paradigme de la segmentation totalement
automatique a donc pris une large part des recherches effectuées. Les avancées
récentes dans ce domaine ont montré la faisabilité de l’apprentissage de modèles
précis pour la détection de lésions. D’un point de bue général, la segmentation
automatique peut être classifiée en deux catégories:(1) supervisée et (2) non
supervisée. Les cadres de segmentation supervisée sont principalement basés
sur un apprentissage de patchs d’images. Ces méthodes comprennent les
support vector machine (SVM), les arbres et forêts de décisions ou aléatoires,
et des modèles graphiques probabilistes comme les conditional random fields
(CRF). De récentes avancées dans le domaine de la parcimonie ont conduit au
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développement de détection de lésion reposant sur un apprentissage de diction-
naire. A l’inverse, la segmentation non supervisée considère principalement des
modèles génératifs des intensités des tissus sains du cerveau en IRM (mixture
finie de modèles) et décrivent les lésions comme des points aberrants de ces
modèles. D’autres méthodes non supervisées incluent des étapes ou éléments
supplémentaires comme les MRF ou les Graph cuts. Une autre approche
populaire utilise des atlas ou des méthodes de classification floues. La majorité
de toutes ces approches considèrent l’information de multiples modalités (T1-w,
T2-w et FLAIR) pour effectuer la détection ou la segmentation des lésions.
Un aperçu rapide de la détection de lésion prenant le produit de contraste
Gadolinium est enfin présentée, ces méthodes reposant pour la plupart sur
des CRF. Afin de valider ces approches, un large nombre de métriques ont
été envisagées, et incluent le score de Dice, la sensibilité, la valeur prédictive
positive, la distance de Hausdorff. Malgré cette large littérature, de nombreux
défis restent à aborder et ceux-ci sont présentés afin d’exposer le raisonnement
du reste de la thèse.

Chapitre 5 (Normalisation longitudinale d’intensités). L’IRM con-
ventionnelle ne fournit pas de valeurs quantitatives telles que les unités
Hounsfield en tomographie. Ceci peut causer des problèmes à des appli-
cations de suivi des intensités dans les images acquises au cours du temps,
notamment en détection ou segmentation, dans la mesure où ces opérations
de post-processing dépendent des différences relatives d’intensité. Dans ce
chapitre, nous proposons une technique de normalisation d’intensité pour des
données multimodales d’IRM, et ce en étant robuste à la présence de lésions
variables. Les intensités des IRM de multiples modalités sont modélisées
via une transformation paramétrique et une estimation robuste d’un modèle
de mixture de Gaussiennes, en utilisant la γ-divergence, non affectée par la
présence de lésions. Ainsi, les intensités des lésions ne seront pas affectées par
la normalisation. L’évolution de lésions peut alors être suivie par une simple
soustraction d’images et un seuillage automatique de Otsu. Cette méthode est
comparée à diverses techniques de l’état de l’art [Nyul 2000, Hellier 2003] sur
deux jeux de données comportant respectivement 18 et 40 patients, chacun
avec au minimum 3 points temporels. La distance du χ2 pour le matching
d’histogrammes et des courbes ROC sont utilisées pour l’évaluation. L’aire
sous la courbe ROC est bien meilleure pour la méthode proposée comparée
aux autres approches évaluées.La même méthode est appliquée à la détection
de lésions prenant le contraste Gadolinium (lésions actives) en considérant la
normalisation d’images pré- et post-contraste.

Chapitre 6 (Détection robuste de lésions de sclérose en plaques
sur des images multimodales normalisées). Nous présentons ici une nou-
velle méthode de détection de lésions de SEP basée sur une analyse voxel à
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voxel comparant les images d’un patient par rapport à un ensemble de sujets
contrôle. Ce chapitre a pour objectif d’étudier les bénéfices de l’imagerie
multimodale afin de détecter des différences significatives entre un patient et
la base de contrôles. Cet algorithme comprend deux parties. Tout d’abord,
une normalisation d’intensité telle que décrite dans le chapitre précédent est
effectuée afin de minimiser les différences inter-sujet liées à la variabilité de
l’acquisition et aux différentes machines IRM. La seconde partie repose sur la
définition d’un cadre statistique pour la comparaison multimodale du patient
et d’un atlas construits à partir des images des contrôles. La méthode proposée
est évaluée sur deux jeux de données constitués respectivement de 16 et 40
patients. Les détections obtenues ont été comparées pour diverses combi-
naisons de modalités, par exemple T1-w, T2-w ou FLAIR individuellement,
et une combinaison des trois modalités. Les détections ont été également
comparées avec et sans normalisation. L’aire sous la courbe ROC est employée
comme élément d’évaluation et a démontré une meilleure performance avec
normalisation et en utilisant la séquence T2.

Chapitre 7 (Détection de lésions par apprentissage d’une classe).
L’apprentissage pour la détection n’utilisant qu’une classe peut Ãłtre vu comme
un sous ensemble spécifique des problèmes de classification à deux classes,
mais où seule une des deux classes est disponible pour la phase d’entrainement.
Dans le cas de l’imagerie médicale, l’obtention de ces données d’apprentissage
est une tâche particulièrement longue et fastidieuse et de telles méthodes à une
classe sont donc d’un intérêt certain. Il est relativement simple d’obtenir dans
notre cas les données de la classe de tissus sains via l’utilisation de données de
volontaires sains. Ainsi, ce chapitre présente un algorithme de détection de
lésions SEP reposant sur cette approche. Les contributions sont ici doubles:
(1) la construction d’un algorithme automatique et probabiliste permettant de
discriminer les lésions des tissus sains, se basant sur une représentation simple
des intensités des images (utilisées pour l’entrainement d’un classificateur
probabiliste au niveau du voxel); (2) la génération d’une carte de probabilité à
partir du classificateur pour déterminer pour un patient donné la probabilité
d’occurrence d’une lésion, carte ensuite seuillée par un seuillage automatique
d’Otsu afin d’obtenir les détections. Ce cadre a été évalué sur deux jeux de
données de 16 et 40 patients respectivement. Notre analyse des résultats basée
sur l’aire sous la courbe ROC révèle une bonne capacité de détection des
lésions, et notamment meilleure que d’autres approches telles que la méthode
du minimum du déterminant de la covariance ou encore les SVM à une classe.

Chapitre 8 (Conclusion et perspectives). Ce dernier chapitre résume
les contributions de cette th‘ese et ouvre des perspectives et travaux futurs
reliés à chaque chapitre.
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Conclusion

Cette thèse adresse principalement le problème de représentation de l’image
appliqué à la détection de lésions de SEP. Les études longitudinales en SEP
deviennent de plus en plus prépondérantes et l’IRM y joue un rôle crucial dans
le diagnostic et l’adaptation des thérapeutiques au patient et à son évolution.
Dans un futur proche, il sera crucial de définir des représentations et des
algorithmes de détection adaptés afin d’analyser précisément ces images. Les
méthodes statistiques et de machine learning y jouent un rôle prépondérant.
L’analyse de données d’IRM longitudinales sera également de plus en plus
importante pour suivre l’évolution de la maladie. Dans ces objectifs, nous
avons proposé de nouvelles méthodes de représentation d’images et de machine
learning étendant les méthodes de l’état de l’art afin de mieux exploiter
la distribution spatiale des intensités de l’image ou en fournissant un test
statistique de voisinages très proches des pixels. Ces méthodes ont été éprouvées
via des expériences sur plusieurs bases de données et ont démontré une meilleure
performance que les méthodes issues de l’état de l’art.



Chapter 2

Introduction

Multiple Sclerosis (MS) is a disease with heterogeneous evolution among the
patients. In MS, White Matter (WM) lesions are also present in addition
to healthy brain tissues. The origin and evolution of this disease are still
not well understood, and numerous studies have been conducted to evaluate
its evolution and its influence on neighboring brain structures. Quantitative
analysis of longitudinal Magnetic Resonance Images (MRI) provides a spatial
analysis of the brain tissues which may lead to the discovery of putative
biomarkers of disease evolution. Better understanding of the disease will lead
to a better discovery of pathogenic mechanisms, allowing suitable therapies to
alleviate patient’s sufferings.

Although manual lesion detection by experts is the Gold Standard, the
objective evaluation of lesions becomes difficult for the radiologist when the
number of MR sequences grows dramatically. Consequently, several studies
investigated the automatic/semi-automatic segmentation of MS lesions using
multi-channel MR images. Therefore, there is a strong demand for automated
MS lesions detection algorithms to assist radiologists.

Over the past decades, scientists have addressed problems of prediction
by deriving theoretical frameworks from empirical studies or have learned
prior knowledge in order to model, analyze and understand the phenomenon
under study. For example, medical practitioners know from past experience
that persons with high blood sugar are generally at high risk of diabetes.
For an increasing number of problems however, standard techniques limit
the success of the study under consideration. For example, identification
and correlation of the genetic risk factors for cancers, where knowledge is
still very sparse, is nearly impractical for the cognitive abilities of human
beings. This is essentially because of the very high complexity and intricacies
of interactions that exist among DNA. Similarly, for very fine-grained near
future financial market forecasts, a large number of variables need to be
taken into account, which quickly goes beyond the capabilities of experts
to put them all into a mathematical model. To improve the reasoning and
knowledge behind such problems and further advance science, machines of
high speed and capacity have been built and designed since the twentieth
century to assist humans in their calculations. With the advent of technology
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in terms of hardware, developments in theoretical computer science, artificial
intelligence and statistics have made machines to become more than calculators.
Recent advances have made them experts of their own kind, capable to learn
from data and to unleash by themselves the predictive structure of problems.
Methodologies and algorithms that have stemmed from the field of statistics,
machine learning have indeed now become a powerful tool for the analysis of
complex and large data, successfully assisting practitioners and scientists in
numerous breakthroughs in various fields of computer vision. The MS lesions
and other tissues are often complex, and difficult to analyze. In this thesis,
the complexity of the MS lesions and other brain tissues are brought forth
with analysis, illustration and visualization. The objective is to simplify the
processing of large patient databases and assist the radiologist in decision
making, which would increase the statistical power of clinical trials. This thesis
has endeavored to develop MS lesion detection techniques within a principled
framework, based on the development of appropriate medical vision analysis
and machine learning.

The thesis is organized as follows:
Chapter 3: Background
MS is one of the main causes for developing physical and cognitive disabili-

ties in young adults both in developed and developing world. MRI has emerged
as a non-invasive imaging technique that offers the possibility of visualizing
the brain. Recently, it ha been identified as a biomarker tool for MS and used
extensively in diagnosis, follow-up and prognosis. In this chapter, we introduce
the role of MRI in MS. Formally, MS and its main characteristics are studied.

Chapter 4: Multiple Sclerosis Lesions Segmentation
MS lesion segmentation suffers from many practical and theoretical prob-

lems. Despite these problems, MS lesion segmentation research has made
notable strides within the last decades. Recent advances have shown the
feasibility of learning accurate models for detecting MS lesions. Within the
last few years, thanks in part to work developing standardized benchmark
databases and MS lesion detection challenges, researchers have set their sights
on more complex problems that involve detecting MS lesions within realistic
settings. This chapter presents a comprehensive review of the current state-of-
the art methods as well as their strong and weak points. Further, it builds the
rationale for the thesis.

Chapter 5: Longitudinal Intensity Normalization in Multiple
Sclerosis

MRI lacks a standard MR-sequence dependent intensity scale like the
Hounsfield units in computed tomography. This may hamper the subsequent
applications of the acquired images like detection, segmentation and registra-
tion. Since these post processing operations may depend on intensity space of
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the acquired images. Numerous approaches to cope with this problem were
proposed recently. In this chapter we propose a new intensity normalization
framework for longitudinal MR images and compare with two state-of-the-art
standardization methods regarding applicability and accuracy. As a part of
performance metrics, the χ2 distance for histogram and longitudinal lesion
detection are employed.

Chapter 6: Robust Detection of Multiple Sclerosis Lesions from
Intensity-Normalized Multi-Channel MRI

In this chapter, to characterize MS lesions, we propose a novel paradigm
to detect white matter lesions based on a statistical framework. It aims
at studying the benefits of using multi-channel MRI to detect statistically
significant differences between each individual MS patient and a database of
control subjects. This framework consists in two components. First, intensity
standardization is conducted based on the technique developed in chapter 4.
The second part studies the comparison of multi-channel MRI of MS patients
with respect to an atlas built from the control subjects, thereby allowing us
to look for differences in normal appearing white matter, in and around the
lesions of each patient.

Chapter 7: Probabilistic One Class Learning for Multiple Sclero-
sis Lesion Detection

This chapter presents an automatic algorithm for the detection of multiple
Sclerosis lesions (MS Lesions) from multi-sequence magnetic resonance imaging
(MRI). We build a probabilistic classifier that can recognize MS Lesions as a
novel class, trained only on Normal Appearing Brain Tissues (NABT). Patch
based intensity information of MRI images is used to train a classifier at the
voxel level. The classifier is in turn used to compute a probability characterizing
the likelihood of each voxel to be a lesion.

Chapter 8: Summary and Perspective This chapter deals with per-
spectives on the problems addressed in thesis and possible future directions.
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Multiple sclerosis (MS) is a chronic progressive disabling auto-immune
disorder of the central nervous system with considerable social impact and
economic consequences. It is a major cause of non-traumatic disability in
young adults [Sadovnick 1993]. The socio-economic costs of MS are high. They
are higher than those for stroke and Alzheimer’s disease because of the long
disease course, its higher prevalence and incidence among young adults, the
subsequent early loss of productivity because of physical disability, fatigue and
co-morbidity. Managing MS is an ongoing process, beginning with the very
first symptoms and continuing throughout the disease course.

We first introduce the role of Magnetic Resonance Imaging (MRI) in MS.
The first part of thsi chapter describes MS. Next, we describe how and why
MRI has emerged as a para-clinical tool in MS.

3.1 Introduction

MS involves an immune mediated process in which an abnormal response of
the body immune system is directed against the central nervous system (CNS),
which is made up of the brain, spinal cord and optic nerves. The exact antigen
or target that the immune cells are sensitized to attack are still unknown,
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which is why MS is considered by many experts to be immune-mediated rather
than autoimmune [Weiner 2004].

Myelin is a material that forms a layer, the myelin sheath, usually around
only the axon of a neuron. The formation of the myelin sheath is called
myelination. Within the CNS, the immune system attacks myelin the fatty
substance that surrounds and insulates the nerve fibers as well as the nerve
fibers themselves. It is essential for the proper functioning of the nervous
system. It is an outgrowth of a type of glial cell.

CNS myelin is produced by special cells called oligodendrocytes. It plays
an instrumental role in proper functioning of CNS. The main purpose of a
myelin layer (or sheath) is to increase the speed at which electrical impulses
propagate along the myelinated fiber. Myelin decreases capacitance and
increases electrical resistance across the cell membrane. Thus, myelination
helps prevent the electrical current from leaving the axon. It has been suggested
that myelin permits larger body size by allowing fast communication among
distant body parts. Demyelination is the loss of the myelin sheath insulating
the nerves, and is the hallmark of MS. When any part of the myelin sheath or
nerve fiber is damaged or destroyed, nerve impulses traveling to and from the
brain and spinal cord are distorted or interrupted, producing a wide variety
of symptoms. Damaged myelin forms scar tissue (sclerosis), which gives the
disease its name. The expression of pathological feature in the form of MS
lesion is essentially demyelination phenomenon. Both the myelin sheath and
the oligodendrocyte itself are impaired within lesions. Consequently, it leads
to attacks by cells of the immune system that react with myelin-related sites,
such as myelin basic protein. Immune attack consists of two types of attacks
upon: (1) T cells directed at myelin and oligodendrocytes in cellular immunity
thus leading to phagocytosis by macrophages; (2) humoral immunity, with
the secretion of anti-myelin antibodies from B cells and subsequent fixation of
complement of the myelin sheath along with possibility of making it vulnerable
to phagocytosis and the oligodendrocyte by macrophages [Brück 2005]. Figure
3.1 depicts the demyelinated neuron to be the primary consequence of MS.
The disease is thought to be triggered in a genetically susceptible individual
by a combination of one or more environmental factors [Ebers 2008].

3.1.1 Causes

The cause of MS is not fully understood; however, it is believed to occur
as a result of some combination of environmental factors such as infectious
agents and genetics [DH 2005]. MS affects more than 2.3 million people
worldwide. While the disease is not contagious or directly inherited, epidemi-
ologists have identified factors in the distribution of MS around the world
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Figure 3.1: Image showing the demyelinated axons. Courtesy:http://www.
nationalmssociety.org/

that may eventually help determine what causes the disease. These factors
include gender, genetics, age, geography and ethnic background. MS is not
considered a hereditary disease; however, a number of genetic variations have
been shown to increase the risk [Dyment 2004]. The probability is higher in
relatives of an affected person, with a greater risk among those more closely
related. Specific genes that have been linked with MS include differences in
the human leukocyte antigen (HLA) system a group of genes on chromosome 6
that serves as the major histocompatibility complex (MHC) [Compston 2008].
The abnormal deviation of gene expression in the MHC and HLA region are
related to has been known identified as one of the main factor for susceptibility
of the disease. Females are more often affected than males by a ratio of 2:1
[Mumford 1992], and age at clinical onset is typically between 20 and 40 years
of age. The risk factors include the alleles associated with major histocompati-
bility complex molecules, infectious agents such as the EpsteinBarr virus and
Chlamydia pneumoniae, lack of exposure to sunlight and vitamin D, and smok-
ing [Levin 2005, Lincoln 2005, Pekmezovic 2006]. Different populations and
ethnic groups have a different prevalence of MS. In France alone, there exists
94.7 MS patient per 100000 people [Fromont 2010]. The spatial distribution
of MS patients density around the world is shown in Figure 3.2. MS is more
common in people who live farther from the equator. MS is more common in
regions with northern European populations and the geographic variation may
simply reflect the global distribution of these high-risk populations.

http://www.nationalmssociety.org/
http://www.nationalmssociety.org/
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Figure 3.2: High regional prevalence of MS across the world. Courtesy :
[Pietrangelo 2015]

3.1.2 Disease Course and Clinical Subtypes

A survey of international MS experts proposed the guidelines to describe
types of the disease [Lublin 1996]. Patients usually suffer a first neurological
event suggestive of MS known as Clinically Isolated Syndrome (CIS). It lasts
for at least a day, with symptoms and signs indicating either a single lesion
(monofocal) or more than one lesion (multifocal) within the central nervous
system. Four types of MS have been established: relapsing-remitting MS
(RRMS), primary-progressive MS (PPMS), secondary-progressive MS (SPMS),
and progressive-relapsing MS (PRMS). Each of these disease courses might
be mild, moderate or severe. Around 85% of patients initially suffer from a
relapsing remitting disease type. RRMS consists of clearly defined disease
relapses with full or partial recovery and no further progression of disease
between relapses. Inflammation and lesion formation are likely to be the
precursor to relapses. Of those patients with RRMS, most will go on to develop
a progressive form of the disease within an average of 20 years [Vukusic 2003].
This is called SPMS and these patients may have occasional superimposed
relapses, minor remissions and plateaus during the progressive phase. PPMS
describes the 15% of people who have a progressive form of the disease from
onset with gradual but almost continuous worsening of disability and only
occasional plateaus and temporary minor improvements in function. New
inflammatory lesions are seen less in the progressive stages of the disease. A
progressive relapsing disease course has also been described and is seen in a
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minority of patients. It is characterized by progressive disease from onset, but
with clear acute relapses and continued progression between relapses. The
progression of MS subtypes is shown in Figure 3.3.

Figure 3.3: The progression of MS subtypes. Courtesy: http://en.wikipedia.
org/wiki/Multiple_sclerosis

3.2 Role of MRI in MS

In order to acquire MRI, the patient is positioned inside a MRI machine which
uses a strong magnetic field around the area to be imaged. In most medical
applications, protons (hydrogen atoms) in tissues containing water molecules
are used to create a signal that is processed to form an image of the tissues.

http://en.wikipedia.org/wiki/Multiple_sclerosis
http://en.wikipedia.org/wiki/Multiple_sclerosis


18 Chapter 3. Background

With the advent of technology, sophisticated techniques added to MRI made it
possible to detect MS lesions earlier and with more precision than ever. It has
emerged as a key principal tool in the diagnosis of MS and is increasingly used
in studies seeking to monitor disease progression. It is a non-invasive technique
and does not utilize ionizing radiation like computerized tomography, making
it more practical for repeated examination of people with a condition that
may persist for long years. Technological advances of MR in recent years have
dramatically improved our understanding of MS disease. MRI scanning gave
researchers faster and more sophisticated ways of testing drugs to treat MS.
The benefits of a new drug can be seen on MRI scans before they can be seen
in patients themselves [Ge 2006].

3.2.1 MRI Sequences

Different MRI sequences provide different information on the anatomy. The
following sequences are complementary and routinely used in clinical practice:

1. A T1-w brain MRI scan, enhanced with gadolinium (injected intra-
venously for enhancement of scan), provides prognosis of disease activity
by highlighting areas of active inflammation. Gadolinium (Gd) is a
contrast agent that marks blood activities. Due to the large size of
the Gd molecule, it cannot normally penetrate the blood-brain barrier.
The blood-brain barrier is a highly selective permeability barrier that
separates the circulating blood from the brain extracellular fluid in the
central nervous system. However, in case of active inflammation, the
blood brain barrier is broken and Gd can penetrate and highlight the
inflamed areas. These areas of inflammation appear as active lesions,
meaning that they are new or getting bigger or active. T1-weighted
images without contrast agent depict dark areas (black-holes) that are
suggestive areas of permanent nerve damage.

2. Fluid-attenuated inversion-recovery (FLAIR) images, in which the white
matter lesions appear as bright spots, reflecting different levels of myelin
loss and inflammatory activity. The sensitivity of the sequence is high
but its specificity is low, as other lesions (e.g. vascular lesions) can mimic
MS Lesions. Besides these, some part of healthy brain tissues like also
exhibit the similar intesnity profile as MS lesions.

3. Dual-echo T2- and proton density-weighted images, in which the white
matter lesions appear hyper-intense similarly to FLAIR images. They
can be particularly useful in the posterior fossa, where FLAIR images
have limited sensitivity.
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4. Magnetization transfer (MT-MRI) is a scan which provides information
about tissue damage associated to the disease. The sequences mentioned
above are sensitive for detecting lesions and track their evolution over
time. Lesions do not adhere to single-phenomenon of deviation from
normal brain tissue. They are indicators of various areas of inflamma-
tion, demyelination, ischemia, edema, cell loss and gliosis. Sequences
decscribed as above are unable to differentiate among these different
pathologies. Conventional imaging also poorly characterizes the degree
of injury in demyelinated lesions. In addition, conventional imaging does
not identify all of the pathology in MS: there are widespread abnormali-
ties in the white matter which appears normal on T2- and T1-weighted
images. This problem is alleviated by MT because of its higher specificity
than conventional T2-weighted scans [Filippi 2007, Fox 2011].

5. Diffusion-weighted imaging (DWI) MR scans provide a contrast that
enables the diffusional motion of water molecules to be quantitatively
measured. DWI provides information about of the brain micro structures.
It is helpful to quantify apparent mean diffusion coefficient (MD) and
Fractional Anisotropy (FA). The values for MD and FA are larger and
smaller for lesion areas than for the normal appearing white matter
[Filippi 2001].

3.2.2 Diagnosis

The diagnostic criteria for MS in conjunction with MRI observations with
clinical and other para-clinical tools were introduced in 2001. The diagnosis
of MS requires elimination of more likely diagnoses and demonstration of
dissemination of lesions in space and time. The McDonald criteria shown
in Figure 3.4 for MS were recommended in 2001 [McDonald 2001] by an
international panel and revised in 2005 [Polman 2005] and 2010 [Polman 2011].
The McDonald criteria take into account the clinical presentation and MRI.

When a patient experiences two or more episodes with clinical evidence of two
or more neurological deficits, there is no need for additional requirements to
make the diagnosis of MS, because there is dissemination in space and time.
In all other cases, which are less than two episodes or less than two clinical
significant lesions, there arises a need for MRI to fulfill the diagnostic criteria
by demonstrating dissemination in space, in time or both. The McDonald
criteria are quite specific pertaining to the fact that use of MRI to diagnose MS
is only utilized when patient is screened for MS. Typical types of lesions which
are suggestive of MS are shown in Figure 3.5. An involvement of the temporal
lobe is shown by the red arrow, the green arrow indicates juxtacortical lesions
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Figure 3.4: McDonald criteria for MS. Courtesy:http://www.
radiologyassistant.nl/

touching the cortex, involvement of the corpus callosum is depicted as blue
arrow and periventricular lesions touching the ventricles. The lesions in the
deep white matter which are non specific to MS are shown by yellow arrow.

Figure 3.5: Coronal PD image of a brain specimen with MS involvement.
Courtesy: http://www.radiologyassistant.nl/

3.2.3 MS Lesions (MSL)

Several MR sequences are necessary in order to detect the MS lesions. These
lesions are classified into three subtypes of MS lesions depending upon the
peculiar intensity characteristics they possess on respective sequences. They
are Active/Gd-Enhancing lesions, black-holes and T2-w as shown in Figure
3.7.

http://www.radiologyassistant.nl/
http://www.radiologyassistant.nl/
http://www.radiologyassistant.nl/
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• T2w lesions: These lesions exhibit a hyper intensity profile compared
to normal-appearing white matter on T2w, PDw and FLAIR sequences.
They may be iso- or hypo-intense in T1w images. T2w lesions are not
clinically specific and can result from inflammation, edema, demyelina-
tion, or axonal loss. New contrast-enhanced lesions with hyper intensity
also corroborate for the same location with a hyperintense lesion on
T2-weighted images. These new T2 hyperintense lesions tend to reduce
in size over time and their intensity decreases because of tissue repair
[Meier 2007b, Meier 2007a].

• Gd Enhancing lesions: Longitudinal and cross-sectional MRI studies have
demonstrated that formation of new MSL can strongly be linked with a
focal area of contrast enhancement on T1-weighted images obtained after
Gd injected intravenously. Typically, it can be observed in patients with
RR or SP MS [Lassmann 2008]. This enhancement correlates with altered
blood brain barrier permeability in the setting of acute perivascular
inflammation and enables differentiation between acute, active lesions
and chronic, inactive ones. In Figure 3.6, FLAIR image shows multiple
focal demyelinating lesions that are hyperintense relative to the normal
appearing brain tissue. After contrast administration, some of the
lesions are hyperintense on T1-weighted images, indicating increased
permeability of the bloodbrain barrier, a feature that distinguishes acute
from chronic demyelinating lesions. The Gd enhancement varies in size
and shape, and usually lasts from a few days to weeks, with an average
duration of 3 weeks (97 % of lesions enhance during less than 2 months)
[Cotton 2003]. Lesions which are new and increase in size are classified
as active lesions.

• Black Holes: A T1-weighted MRI scan shows black holes which are
suggestive areas of permanent axonal damage. These are hypo-intense
lesions because of their dark intensity profile. To be a candidate for
black hole, a T1-w lesion should not enhance with gadolinium and should
generally be persistent for at least several months.

3.3 Conclusion

The origin and evolution of MS are still not well understood, and numerous
studies have been conducted to evaluate its evolution and its influence on
neighboring brain structures. Nowadays, a strong emphasis is put on early
detection to slow down the disability and disease.
Quantitative analysis of MRI of different patients provides a spatial analysis
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Figure 3.6: Conventional magnetic resonance imaging in multiple sclerosis.
FLAIR (left) and gadolinium-enhanced T1-weighted (right) sequences. Cour-
tesy: [Rovira 2013]

Figure 3.7: Example of MS lesions on MRI. From left to right: FLAIR,
PDw, Gd-enhanced T1w, T1w, and T2w images. Several types of MS le-
sions can be observed: Enhancing lesions (blue), lesions visible only on T2w
(green), black holes (red). In Gd-enhanced T1w and FLAIR images, multi-
ple bright regions are observed that may be mislabeled as lesions. courtesy:
[Garcia-Lorenzo 2013]

of the brain tissues, which may lead to the discovery of putative biomark-
ers of disease evolution. Nowadays, clinical trials use the total lesion load
in conventional images. In the next chapter, we will focus on the state of
the art methods of MS lesion segmentation and detection on conventional MRI.
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4.1 Introduction

MRI is playing an increasing role in the scientific investigation and clinical
management of MS. Conventional MRI sequences are highly sensitive for
detecting brain pathologies, like MS lesions and can provide quantitative
assessment of inflammatory activity and lesion load. Quantitative MRI provides
assistance for a large variety of applications, e.g. to predict brain lesion load
and monitoring, longitudinal studies of cognitive aging [Bakshi 2008], or even
the analysis of the fetal brain development [Rousseau 2013]. MRI achieves a
great tissue contrast enabling the distinction between brain tissues; namely
gray matter (GM), white matter (WM), and the cerebrospinal fluid (CSF).

Detecting and localizing MS lesions in MRI is a hard task and generally
requires an expert neurologist or radiologist. The detection process is also
time consuming and includes some subjectivity in interpreting the images. It
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requires multi-sequence intensity fusion, deep anatomical knowledge and solid
spatial awareness. MS lesions do not exhibit peculiar shapes and geometries.
They possess nodular and oval like, ring to hole like shapes. Consequently,
the MS Lesions detections performed by different experts can vary in the
number and size of MS Lesions identified. Consequently, the MS Lesions
detection performed by different experts can vary in the number and size
of MS Lesions identified. As statistics reveal that eye fatigue is commonly
encountered problem with radiologists as they visually need to inspect copious
imaging data.1 This becomes more prevalent when the imaging modalities grow
dramatically. Due to the volume overload and constrained clinical information
available as part of imaging studies, there may be room for diagnosis errors.
Radiologists are a scarce resource in many countries. Therefore, it is of
paramount importance to reduce the burden of data to be investigated by
radiologists. To alleviate this problem, many computer assisted methods have
been proposed for diagnostic interpretation of medical imaging datasets guided
by clinical knowledge. These methods have the advantage to be consistent and
repeatable, although they do not always achieve results as good as manual
expert annotations.

In spite of these clear challenges, MS lesion segmentation research has
made notable strides within the last decades. The techniques take different
approaches to the problem of MS Lesions segmentation and consist of compre-
hensive frameworks made of several steps, including pre- and post-processing.
Recent advances have shown the feasibility of learning accurate models for
detecting MS lesions. Adapting various methodologies from different streams of
science, researchers are making efforts for detecting MS lesions within realistic
settings. As a part of the effort, various standardized benchmark databases
and MS lesion detection challenges have been developed. While a numerous
studies have been done, they all must make a few common choices: how will the
MR images be represented? using that representation, how is a model learned?
Given a new MR image, how is detection carried out? This chapter reviews
state-of-the-art of strategies for MS lesions detection/segmentation methods
with the aim of pointing out their strengths and weaknesses which in turn
explains the rationale behind the proposed methods for this thesis. Further, it
concludes with a discussion of the techniques as well as the perspectives on
future improvements.

There are three main types of segmentation approaches depending on the
user intervention: manual, semi-automatic, and automatic.

1http://researcher.watson.ibm.com/researcher/view_group.php?id=4384

http://researcher.watson.ibm.com/researcher/view_group.php?id=4384
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4.2 Manual Segmentation

The first method to delineate MSL is manual segmentation. An expert rater
examines different MR sequences to identify the lesion voxels. Unfortunately,
the manual process is time consuming and somewhat subjective. Different
experts (inter-rater variability) and even the same expert (intra-rater variabil-
ity) may therefore provide different segmentations for the same data. Even so,
manual annotations are considered the best results available and usually serve
as the baseline for evaluating other methods. The expert segmentations can
be considered as a silver standard since they are not perfect representations of
the ground truth but provide the best estimates available. Automatic meth-
ods provide some assistance to MSL segmentation. Where experts can have
difficulty in infusing multi modal MRI information, well designed frameworks
can efficiently blend this data. As a result, it is interesting to pursue the
development of semi-automatic and automatic lesion segmentation methods.

4.3 Semi-Automatic Segmentation

In order to reduce the inter- and intra- rater variability in segmentation of
MSL, several semi-automatic methods have been developed. Semi automatic
techniques need some human input as the prior knowledge for additional
automatic processing steps. This knowledge could be an input in the form
of focused region of interests (fROI) or a coarse-grained selection of object
of interest. Though semi-automatic methods can relieve some of the work
from radiologists, they do require some human interaction. A method based
on prior knowledge with fuzzy logic is presented in [Horsfield 2007]. The
prior knowledge resides in the form of probabilistic feature distribution and
feature size maps, in a standard anatomical space. The fuzzy affinity between
pixels is modified to capture this information. Here, the user is required to
identify each lesion with a mouse click, to provide a set of seed pixels. The
algorithm then grows the features from the seeds to define the lesions as a
set of objects with fuzzy connectedness above a preset threshold. Ruben et
al. [Cárdenes 2003] proposed the technique for interactive segmentation. It
consists of three steps. First, a KNN classifier is applied to classify brain tissues
in CSF, GM, WM and MS lesions on template based on user input. The second
step concerns the detection of MS lesion which is done by computing a fast
distance transformation in conjunction with intensity information on template.
Last, a connected component technique is used to refine the voxels detected as
MS lesions. Another approach proposed by [Derraz 2010] was segmentation
based upon Active Contour Model and statistic prior knowledge of MS lesions
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in fROI within MRI. In particular, the user selects coarse fROI that encloses
potential MS lesions and a sufficient background of the healthy White Matter
tissues (WM). Texture features corresponding to Normal Appearing Brain
Tissues and MS lesions were incorporated to achieve final segmentation. Graph
Cuts (GC) algorithm is a method for finding the maximum a posteriori (MAP)
estimate of a binary image [Boykov 2006]. The method treats the image like
a flow graph with two nodes, the source and the sink. The source represents
the object class in the image, in this case the lesions. The sink represents the
background: the NABT. The other nodes of the graph are the image voxels. A
network of weighted and directed edges connects the nodes in the graph. The
GC makes use of regional and voxel-neighborhood information to differentiate
between the two classes. The MAP estimate corresponds to the maximum
flow through the node network. The result is two sets of strongly connected
nodes that correspond to the MSL and NABT [Biediger 2014]. Some authors
[Lecoeur 2009] proposed to use GC with spectral gradient and multi-sequence
MRI for lesions segmentation. All these methods need seed points defined by
the user.

In any case, the automated step of the framework is highly dependent on
the quality of the input. Since they require some level of user intervention,
the semi-automatic methods may not cater the needs of large patient studies
because they are still time consuming and tedious for the user.

4.4 Automatic Segmentation

Automatic methods require no user intervention. The comprehensive surveys
of [Lladó 2012b, Garcia-Lorenzo 2013] provide the different types of segmen-
tation frameworks. In general, there are three main types of fully automated
segmentation schemes: data guided methods, learning based methods, and
statistical methods. The data dependent methods use thresholding and region
growing to segment the lesions in an image, like the watershed and graph
cut methods. The learning based methods require a training set and some
feature extraction. These methods learn the characteristics of lesions and then
classify based on discriminative learning approaches. The statistical meth-
ods involve estimations of probability density functions of intensity of voxels.
These methods are based on inference methods with some neighborhood or
classification examples and include probabilistic graphical models and support
vector machines. All have pros and cons in their use and the results they
provide. Figure 4.1 shows the broad range of methods based on supervised
and unsupervised techniques. It helps to take a glimpse on the huge literature
of automatic MSL segmentation.
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Figure 4.1: The various approaches for MSL detection based on their charac-
teristics

4.4.1 Multi-Sequence Information

By and large, a typical MRI under consideration can be a representation in one
or combination of the four possible sequences, namely, PD-w, T1-w, T2-w, and
FLAIR. The objective is to find the various MS lesions through the use of these
sequences. Prior works in the context of MS lesion detection deal with either
single or multi-sequence approaches i.e. the use of a single MRI sequence or
combination of several MRI sequences respectively. Single-sequence approaches
are mainly used to segment the brain tissues.

For instance, T1-w sequences are widely used for this purpose, since they
show the best contrast between the three main brain tissues: WM, GM and
CSF. Another example of the single-sequence approach is the segmentation of
MS lesions using just the FLAIR sequence [Khayati 2008]. The multi-sequence
approaches, on the other hand, use at least two sequences. One of the benefits
of using more than one of the different MRI sequences is that it increases
the intensity feature space, producing a better discrimination between brain
tissues. Garcia et al. [Garcia-Lorenzo 2011] propose a typical example of this
approach which uses T1-w, T2-w, and FLAIR to detect MS lesions. There
is also a method to make use of the initial single sequence approach to be
used as a basis for further analysis in multi-sequence context to obtain the
final lesion map. For example, the T1-w sequence could be used to influence a
multi-sequence approach using T2-w and PD-w.
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4.4.2 Unsupervised approaches for MS lesions segmenta-
tion

Generative methods remain the popular choice for MS lesions segmentation.
It consists of tissue classification with an expectation maximization (EM)
[McLachlan 2008] algorithm. The approaches based on EM typically modify
the EM algorithm to factor it into their classification methodologies.

These EM derived algorithms are typically modified to be robust against
lesion affected regions. The outcome is then parsed in order to detect outliers
which, in this case, coincide with MS lesions. In their seminal work, Van
Leemput et al. [Leemput 2001] developed a framework for segmentation of MS
lesions based on multi-sequence information. It relies on classification based
upon the intensity information of tissues using a stochastic model for normal
brain sequences. Furthermore, it models MS lesions as outliers. It removes
MR field inhomogeneities and incorporates contextual information in the clas-
sification of lesions using a Markov random field (MRF). Another similar work
proposed by Garcia et al. [AïtAli 2005, Garcia-Lorenzo 2011] incorporates a
tissue classification methodology based on a model of intensities of the normal
appearing brain tissues. In order to estimate the model parameters, a trimmed
likelihood estimator [Neykov 2007] is initialized with a hierarchical random
approach in order to be robust to MS lesions and other outliers present in MR
sequences. An iterative scheme of recursive EM was then used to compute this
estimator. It is a robust algorithm using 3D+t MR data to segment MS lesions
over time in a standardized clinical protocol. In the last step, refinement of
the segmentation was done using both the Mahalanobis distance of intensity
of WM voxels and prior information coming from clinical knowledge on lesion
appearance across sequences. Another approach considers the EM with a
partial volume model among tissue classes in conjunction with a Mahalanobis
distance thresholding which detects MS lesions [Dugas-Phocion 2004]. A post-
processing morphological operation was performed to refine the segmentation
from regions of interest in order to improve the classification performance
[Souplet 2008]. Freifeld et al. [Freifeld 2009] proposed a Constrained Gaussian
Mixture Model (CGMM) technique based on a mixture of multiple spatially
oriented Gaussians per tissue. The intensity of a tissue remains unchanged over
the entire set of Gaussians for that tissue. MS lesions are modeled explicitly as
an extra class by GMM in addition to healthy tissue classes. MS lesions were
detected by estimation of parameters for outlier class followed by the refinement
of lesion contours based upon the probability-based curve evolution technique.
Rather than estimating the distribution of lesions, [Harmouche 2006] proposed
to cast lesions as a separate class. It is based on unsupervised Bayesian frame-
work. It models the different intensity distributions for different tissues of
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the brain. MS lesion detection was performed using posterior probabilities
along with entropy based features. Khayati et al. [Khayati 2008] classified
MS lesions voxels based upon adaptive mixtures method (AMM) and a MRF
model from a FLAIR sequence. The intensity of each lesion voxel is modeled
as a linear combination of intensities related to the normal and pathological
tissues. Applying an optimal threshold, the voxels with new intensities are
primarily classified into two stages: chronic and acute MS lesions. Finally,
the acute lesions are classified into two new stages based upon their activities,
early- and recent acute. Schmidt et al. [Schmidt 2012] developed MS lesion
detection using three-dimensional (3D) gradient echo (GRE) T1-w and FLAIR
sequences. It initially classifies the three tissue classes of CSF, WM and GM
from the T1-weighted image. In the subsequent stage, the FLAIR intensity
distribution of each tissue class is taken into account to detect outliers, which
are called lesion beliefs. The neighboring voxels in lesion belief maps are
analyzed and assigned to lesions. This is done for all voxels that are associ-
ated with the MS lesions. A fuzzy C-Means algorithm was also investigated
[Aymerich 2010a, Aymerich 2010b]. These approaches pursue the grouping of
voxels into a number of clusters, which maximize inter-cluster variability while
minimizing intra-cluster variability. Rather than a crisp or hard classification,
the fuzzy approach establishes the degree to which a pixel belongs to a given
cluster. In this way, a voxel can belong to more than one cluster to varying
degrees.

4.4.3 Supervised Approaches

Machine learning plays an essential role in the medical imaging field, including
computer-aided diagnosis, image segmentation, image registration, image
fusion, image-guided therapy, image annotation, and image database retrieval.
The objects such as lesions and organs may not be represented accurately
by a simple models; thus, medical computer vision requires learning from
training examples. One of the most popular uses of machine learning is
classification of objects such as tissues into certain classes (e.g., pathological
or non-pathological) based on input features obtained from segmented object
candidates.

Support vector machines (SVM) [Vapnik 1995] is a popular and widely used
supervised learning algorithm. It has also been used in the context of MS lesion
detection [Fiot 2008, Abdullah 2011]. The method extracts intensity values
as features from examples of lesion and non-lesion voxels. It then attempts to
divide the two classes by dividing the hyper-plane of features in a discriminating
fashion. While there are many possible dividing planes, the method seeks
the plane with the widest margin between classes. SVM in conjunction with
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various kernels facilitates the non-linear classification by projecting the features
into Reproducible Kernel Hilbert Space (RKHS) [Shawe-Taylor 2004]. One
problem with the SVM approach in MS lesion detection is the imbalance
between class representations. In general, the number of voxels that represent
normal brain tissue far exceeds the number of voxels that represent MS lesions.
This can lead to the over fitting of the classifier.

Ensemble learning is the process by which multiple models, such as classifiers
or experts, are strategically generated and combined to solve a classification
problem. Two ensemble learning approaches were studied in the context of MS
lesions detection. In a first study, Geremia et al. [Geremia 2010] proposed to
build a discriminative random decision forest framework to provide a voxel-wise
probabilistic classification of the image. The method uses multi-sequence data
(T1, T2, FLAIR), a prior knowledge of tissue classes and long-range spatial
context to distinguish lesions from healthy tissues. The authors also utilize
a symmetry feature, which takes into account the fact that MS lesions tend
to develop in an asymmetric way compared to healthy brain which remains
approximately symmetric with respect to the mid-sagittal plane. In a second
study, [Wels 2008] developed a framework based on the probabilistic boosting
trees technique. It incorporates the context of a voxel under consideration
and its transformation into feature space of an over-complete set of Haar-
like features. This information establishes the class specific characteristics.
A discriminative model for voxel classification was developed based upon
boosting within a tree structure. It consists of selection and combination
of most discriminative features which are established recursively in cascade.
Consequently it yields posterior probabilities for voxels in learning phase.
The final segmentation was obtained after refining the preliminary result by
stochastic relaxation and a standard level set approach.

Further, a multi-scale segmentation can be combined with discriminative
classification to take into account regional properties [Akselrod-Ballin 2006]. It
relies on a combination of segmentation by Soft Weighted Aggregation (SWA),
a rich feature vocabulary describing the segments, and a decision tree-based
classification of the segments. Then, successively selecting and combining the
most discriminative features during ensemble, the overall procedure was able
to learn in terms of posterior probabilities. Beyond the information introduced
via the spatial prior atlases, these methods are limited in their ability to take
advantage of long-range spatial context in the classification task.

4.4.4 Gd-Enhancing Lesion Detection

All approaches mentioned above work on the conventional MRI sequences
without contrast agent. However, it must be noted that in the context of active
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MS lesions, the initial T1-w sequences can be enhanced using Gadolinium (Gd).
Hence, the initial data to be analyzed would be different in a Gd-enhanced T1-w
sequence. He et al. [He 2002] put forth the preliminary research incorporating
the detection of MS lesions in a Gd-enhanced sequence. Using this as a base,
the authors were able to overcome some of the deficiencies of the regular T1-w
sequences. It must be noted that the authors use a standard methodology
based on adaptive local segmentation that would work even with the regular
MRI sequences. A Gd-enhanced sequence would consequently also affect the
non-lesion parts of the brain. The authors identify the non-lesion voxels from
the vasculature and extrameningeal tissues by exploiting their topological
relationship to the brain mask. In these cases, there is hence a need to
quantify the dynamics of lesion which is computed by using fuzzy connectivity.
Karimaghaloo et al. [Karimaghaloo 2012] proposed a supervised-learning
approach that uses Gd-enhanced sequences. This technique learns information
pertaining to MS lesions by using Conditional Random Field (CRF). The
novelty of the approach relies on applying the CRF two times in different
contexts and has been termed as a Hierarchical CRF (HCRF) approach. The
contexts that form the basis for training the CRF are based on voxel intensities
and lesion-specific features. Karimaghaloo et al. [Karimaghaloo 2013] then
extended this work on HCRF [Karimaghaloo 2012] using temporal information
for longitudinal lesion segmentation. In this case the authors change the second
stage of the HCRF mechanism to refine the candidate regions with rotation
invariant texture features of the sequence. This methodology has been termed
as Adaptive Multi-level CRF (AMCRF).

4.4.5 Miscellaneous Approaches

Recently, signal modeling using sparse representations (SR) has gained tremen-
dous attention and is an area of active research. SR allows coding data as
sparse linear combinations of the elements of an over-complete dictionary. It
learn a class specific dictionaries for healthy brain tissues and lesions that
promote their sparse representation. The lesion patches are well adapted to
their own class dictionary, as opposed to the other. Weiss et al. [Weiss 2013]
proposed an unsupervised approach for MS lesion segmentation, in which a
dictionary learned using healthy brain tissue and lesion patches is used as
basis for classification. On the other hand, [Deshpande 2014] achieved the
detection using a supervised technique based on reconstruction error derived
from sparse decomposition of test patches to learned dictionaries. Further
[Deshpande 2015] introduced a framework for classification of MS lesions us-
ing adaptive dictionary learning. The MS lesions classification is based on
multiple MR modalities including T1-w MPRAGE, T2-w, PD-w and FLAIR.
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The method is based on sparse coding and dictionary learning. The authors
propose that learning dictionaries with adaptive sizes for different classes
can achieve better classification result. Their experimental results show that
learning more dictionaries for each anatomical structure in the brain and
adapting the dictionary sizes for different classes can improve the classifica-
tion. Few authors evaluated manifold learning to distinguish MS lesions from
NABT [Kadoury 2012, Kayhan 2008]. But all of these methods have huge
computational complexity and do not scale to large data easily.

4.5 Performance Metrics

The evaluation comprises many evaluation measures, each of them highlighting
different aspects of the segmentation quality. We describe four principal
evaluation measures that are employed to evaluate the quality of a segmentation
compared to a reference ground-truth: the dice coefficient (DC) denotes the
volume overlap, the average symmetric surface distance (ASSD) the surface
fit, the Hausdorff distance (HD) the maximum error and precision & recall
the volume overlap.

• Dice Coefficient: DC measures the similarity between two datasets.
Considering two sets of volume voxels A and B as shown in Figure 4.2,
the DC value is given as:

DC =
2|A ∩B|
|A|+ |B|

(4.1)

where | · | denotes the cardinality. A value of 0 indicates no overlap, a
value of 1 perfect similarity. During interpretation, it should be kept in
mind that the DC is known to yield higher values for larger volumes i.e.
a DC of 0.9 for lung segmentation is considered average, as is a DC of
0.7 for MS lesions.

• Precision and Recall: The precision (also called positive predictive value)
and recall (also known as sensitivity) of two sets are defined as:

precision =
TP

TP + FP

and
recall =

TP

TP + FN
(4.2)

where TP (true positive) denotes the overlapping points, FP (false
positives) that are absent in the ground truth but present in algo-
rithm/framework generated segmentation. FN (false negatives) are
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Figure 4.2: The two sets A, B and their intersection, where B is the reference
segmentation.

points which are part of ground but absent in algorithm/framework
generated segmentation. Both measures take values in the range of
[0, 1]. A relatively high precision compared to the recall reveals under-
segmentation and vice-versa, as depicted in the following Figure 4.3.

Figure 4.3: Gray circle: Segmented points. Green circle: Reference points.

• Average symmetric surface distance (ASSD): the ASSD denotes the
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average distance between the volumes surface points averaged over both
directions. Considering two sets of surface points A and B, the average
surface distance (ASD) is given as:

ASD(A,B) =

∑
a∈Aminb∈Bd(a, b)

|A|
(4.3)

with d(a, b) being the Euclidean distance between the points a and b.
Since ASD(A,B) 6= ASD(B,A), the ASSD is given by

ASSD(A,B) =
ASD(A,B) + ASD(B,A)

2
(4.4)

It is given in mm, the lower the better, and works equally well for large
and small objects. However, it is sensitive to surface extraction from
binary images.

• Hausdorff distance (HD): the HD denotes the maximum distance between
two volumes of surface points and hence is sensitive to outliers, especially
when multiple objects are considered. It is defined as:

HD(A,B) = max{max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(b, a)} (4.5)

Similar to the ASSD, the HD is given in mm and a lower value denotes
a better segmentation.

• True Positive Rate : This is measured by dividing the number of lesions in
the segmentation that overlap with a lesion in the reference segmentation
with the number of overall lesions in the reference segmentation. This
evaluates whether all lesions have been detected that are also in the
reference segmentation. It is given in %, although it is possible to have
a perfect score of 100% and have additional lesions as compared to
the reference segmentation. A caveat for this measurement is further
that if correctly detected lesions are fused as compared to the reference
segmentation, then this is considered as a partial error.

• False Positive Rate: This is measured by dividing the number of lesions
in the segmentation that do not overlap with any lesion in the reference
segmentation with the number of overall lesions in the segmentation.
This rate represents whether any lesions are detected that are not in the
reference. A method that oversegments lesions would have a low value
for this method, whereas a very conservative method would have high
values. It is given in %, an empty image would always score a perfect
score of 0%.
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4.5.1 Publicly Available Resources

The inability to compare evaluation results due to the use of different data
sets and different evaluation measures has been a major drawback to evaluate
MS lesion segmentation methods. Very few methods are available as open
source methods. Consequently, reproducing such methods is a very hard task.
Majority of the segmentation algorithms are accompanied by heuristics rules.
When heuristics fail, they fail catastrophically. Parameter tuning, change
of heuristics are not easily generalized across the datasets. Some methods
only work on specific datasets and their generalization on other data sets
is a cumbersome task. Ideally, methods should be applied to a common
database and compared to a ground truth. Moreover, for many researchers it
is difficult to obtain a sizable amount of training and test scans with reference
segmentation. Not only is the number of available methods increasing, more
and more methods are, or claim to be, generic and applicable to multiple
segmentation tasks, usually after applying some suitable modifications or
tweaks. Even for experienced researchers in the field it is difficult to choose the
appropriate technique for a particular problem. The competition/challenge
serves purposes other than as a comparative study of a range of algorithms on
a common database. It also provides a snapshot of currently popular methods
for medical image analysis. This is however very difficult due to the lack of
common public databases of real images along with their ground truth and
the fact that only few methods are publicly available. Furthermore, the MS
Lesion Segmentation Challenge [Styner 2008] provided a common framework
for evaluating MS lesion segmentation algorithms, but data is old and image
quality is poor to get adequate results. The MS lesions segmentation/detection
field has continued to develop new approaches in recent years, and another
challenge has been organized by the adding longitudinal dimension in the
data which provides a new element for the researchers to consider in their
algorithm development 2. In that competition, participating teams were asked
to evaluate their automatic lesion segmentation algorithms to MR neuroimaging
data acquired at multiple time points from MS patients.

4.6 Challenges

Many radiologists advocated the objective evaluation of total lesion load which
yet to be achieved with current segmentation techniques. Though segmentation
techniques yield exact lesion masks, they fail to delineate all lesions successfully.
In such situations, MS lesions detection and localization is setting trend with

2http://iacl.ece.jhu.edu/MSChallenge

http://iacl.ece.jhu.edu/MSChallenge
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its usefulness in identifying MS lesions instances considerably. Though many
MS lesion segmentation frameworks are developed, they do not address some
of the aspects of brain anatomy in presence of MS lesion. Following are the
challenges which have been addressed from few to none:

• Segmentation in presence of partial volumes (PV): Due to the finite
spatial resolution of imaging devices, a single voxel in a medical image
may be composed of a mixture of tissue types, an effect known as partial
volume effect (PVE). The border of lesions is fuzzy in part due to
acquisition parameters of the MR scan. It was modeled explicitly in
the context of MS [Dugas-Phocion 2004]. Lesion segmentation becomes
quite difficult in presence of PVE; especially with methods which model
the tissue distribution.

• Registration based methods: Anatomical atlases may be used for some
methods. They are built from MR scans of healthy volunteers. These
atlases are compared with patient images and thus it is possible to treat
the lesions as outliers in the tissue. However, building atlases is a hard
task. In addition, they also introduce the registration problem into the
MS lesion segmentation. Note that this registration step is even more
difficult when dealing with cases with severe atrophy, large numbers of
lesions and inter-subject registration etc.

• Class Imbalance in supervised methods: Supervised learning methods
require large training datasets. Compared to NABT data, MSL is always
a sparse class leading to class imbalance problems. The majority of dis-
criminative learning algorithms suffers from this problem. They produce
suboptimal models which are biased towards the majority class (NABT)
and have low performance on the minority class (MSL) [Chawla 2005].
The problem of imbalanced data is often associated with asymmetric
costs of misclassifying elements of different classes. Additionally, the
distribution of the test data may differ from that of the learning sample
and the true misclassification costs may be unknown at learning time.
Although much awareness of the issues related to data imbalance has
been raised, many of the key problems still remain open and are in fact
often encountered, especially when applied to massive datasets. Yet
another school of thought is a recognition based approach in the form of
a one-class (NABT) learner. The one-class learners provide an interest-
ing alternative to the traditional discriminative approach, in which the
classifier is learned on the target class alone [Tax 2004].

• Multi-center datasets: Images from different scanners have different con-
trasts or intensities, even when the same protocol is employed. Methods
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should be designed specifically to deal with this variation without biasing
the posterior clinical studies.

• Diffuse disease: The majority of the literature focuses on focal lesions
but in some cases it is impossible to find the border between lesions
and the neighboring diffuse white matter. No method has attempted to
address these issues with the diffused white matter explicitly.

• Longitudinal MS Lesion segmentation: So far, very few methods are
specifically tailored to detect newly appearing MS lesions for longitudinal
MR scans. A longitudinal MS lesion segmentation challenge has been
organized which took place at International Symposium on Biomedical
Imaging (ISBI) 2015 conference this year.3

Techniques and algorithms that have stemmed from the field of machine
learning have now become a powerful tool for the analysis of complex and
large data, successfully assisting scientists in numerous breakthroughs of
various fields of science and technology. In particular, machine learning
provides algorithms that are able to solve classification or regression tasks,
hence bringing automated procedures for the prediction of a phenomenon
based on past observations. However, the goal of machine learning is not
only to produce algorithms making accurate predictions, it is also to provide
insights on the predictive structure of the data. One of the beneficiaries
of machine learning field is computer vision. The current state-of-the-art
methods from main stream computer vision in object detection and their
derivatives [Dalal 2005, Felzenszwalb 2010, Uijlings 2013] are particularly well
suited for handling large amounts of training data. They employ data mining
to iteratively sift through millions of negatives and find the hard ones which
are then used to train a discriminative classifier. The sliding window approach
treats object detection as classification, and checks at every position and scale
within the image whether the object is present. To run a multi-scale search,
the input image is resampled into a pyramid. The window of interest is then
slid through each level, and the classifier outputs are stored. A detector will
usually have positive responses at multiple windows nearby the true detection.

Inspired from this, we propose an inclusive framework of the discriminative
patch based learning methodology, which allows us to propagate rich anno-
tations from exemplars onto detection windows, with discriminative training,
which allows us to learn powerful exemplar-based classifiers from vast amounts
of positive and negative data. Note that our framework is closely related to
MS lesion segmentation with classification at voxel level. There exists subtle
differences, though: segmentation is a symmetric setting for obtaining exact or

3http://iacl.ece.jhu.edu/MSChallenge

http://iacl.ece.jhu.edu/MSChallenge
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near exact, crisp contours of the lesion whereas we are interested in addressing
the implicit problem of detecting and localizing MS lesions instances with
discriminative learning based upon the patch information. Such detection may
not yield exact lesion delineations, but a rough segmentation mask or bounding
box around the lesion. The localization of MS Lesions is crucial, but for some
applications a rough localization using a bounding box is enough. This is the
task considered for MS Lesions detection. Most of the existing methods cast
detection as a classification problem. Every possible window in the image is
considered, and given to a classifier that decides if the window contains an MS
Lesion or not. This type of approach is successful but extremely costly as such
a sequential system has to classify thousands if not millions of windows for a
single input image.

Aside from these issues relating to robustness, current state of the art seg-
mentation algorithms also face notable challenges in computational complexity
and scalability. Highly efficient algorithms are necessary to accommodate
rich high-dimensional image representations, to search large image databases.
In addition, scalability concerns also arise when designing a recognition sys-
tem’s training data: while expert annotations by radiologists tend to be most
informative, they are also most expensive to obtain. Thus, methods today
must consider the trade-off between the extent of expert annotations that an
algorithm requires, and the advantages given to the learning process. Unfortu-
nately, the current state-of-the-art in machine learning often makes it difficult
for non-experts to understand and interpret the results of an algorithm. While
considerable efforts have been put to improve their prediction accuracy, it is
still not clearly understood what makes machine learning algorithms truly work,
and under what assumptions. Likewise, few of them actually provide clear and
insightful explanations about the results they generate. In this context, the
goal of this thesis is to provide frameworks based on comprehensive and self
contained analysis of a set of algorithms.
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In recent years, there have been many Multiple Sclerosis (MS) studies using
longitudinal MR images to study and characterize the MS lesion patterns.
The intensity of similar anatomical tissues in MR images is often different
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because of the variability of the acquisition process and different scanners. This
chapter proposes a novel methodology for a longitudinal lesion analysis based
on intensity standardization to minimize the inter-scan intensity difference.
The intensity normalization maps parameters obtained using a robust Gaussian
Mixture Model (GMM) estimation not affected by the presence of MS lesions.
Experimental results demonstrate that our technique accurately performs the
task of intensity standardization. In this chapter, we show consequently how
the same technique can improve the results of longitudinal MS lesion detection.

5.1 Introduction

Quantitative analysis of longitudinal Magnetic Resonance Images (MRI) of
subjects taken at different time points provides a time varying analysis of the
brain tissues which may lead to the discovery of new biomarkers of disease
evolution. In MS, White Matter (WM) lesions are also present in addition
to healthy brain tissues. Lesions can remain stationary, change of volume, or
disappear in later time points depending upon the state of MS. MRI suffers from
two drawbacks: (1) intensity variations due to magnetic field in-homogeneities;
(2) scanner-related intensity artifacts. Therefore, it is very difficult to create
standardized intensity range for particular sequence. Algorithms dealing with
the problem of the correction of signal intensity inhomogeneities (bias field
correction) usually deal with intra-volume signal intensity distortions and do
not account for native cause of lack of intensity standardization. Hence, MRI
acquired from different patients may have different intensity ranges related
to a specific anatomical tissue even if they are acquired on the same MRI
scanner. Consequently, this has a direct impact on the accuracy and precision
of following image processing, analysis, segmentation and registration methods
relying on intensity similarity. Furthermore, standard presets cannot be used
to display MR images or to visualize certain tissue classes and/or pathologies.
These settings need to be tuned for each patient. Due to such protocol
variations in the scanners, following the evolution of tissue intensities in a
patient (e.g. changing appearance of lesions) makes quantitative evaluation of
lesions difficult. In order to alleviate this problem, intensity normalization is
necessary.

Histogram matching is a widely used technique in intensity standardization.
In their seminal work, Nyul et al. [Nyul 2000] proposed landmark based meth-
ods. Essentially the method is based on a multi-segment linear transformation
model. A standard intensity space (or common intensity space) is defined by
an intensity value range. During the training phase, the intensity values at
certain cut-off percentiles of each image are computed and a single-segment
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linear mapping from them to the standard intensity space range limits is
created. Then the image intensity values at a number of landmark percentiles
are extracted and passed to the linear mapping to be transfered roughly to the
standard intensity space. The mean of all these mapped landmark intensities
form the learned model. When presented with an image to transform, these
images intensity values are extracted at the cut-off percentile as well as at the
landmark percentile positions. This results in a number of segments. Using
these, corresponding standard intensity space range values and learned mean
landmark values, a multi-segment linear transformation model is created for
the image. It is then applied to the target images intensity values to map them
to the standard intensity space. The images intensity values that lie outside
of the cut-off percentiles i.e, outliers, are treated separately. Note that this
does not mean the transformed images intensity values always reside inside
the standard intensity space range, but are fitted as close as possible.

Jäger et al. [Jäger 2006] showed that a normalization can be achieved by
finding a deformation of the joint histograms of two sets of images pertaining
to certain divergence metrics. Each of these histograms should be at least
two dimensional and contain the intensity information of multi-sequence MRI.
If the probability density functions are considered as images, the intensity
normalization boils down to a registration problem. The resulting non-linear
correction function is used to adjust the image intensities of the longitudinal
MRI. Furthermore, Jäger et al. [Jäger 2007] extended this approach to a whole
body MRI scan. In this approach, the image volume is split up into K sub
volumes for which intensity standardization is performed independently. In
order to include the influence of small local structures the other K − 1 sub
volumes are used as regularizer.

Cox et al. [Cox 1995] studied the intensity standardization problem as
dynamic histogram warping closely related to histogram specification task
often studied in early computer vision. Dynamic programming can be used to
find an optimal alignment between two images constrained by a monotonic and
separable cost function. Let hAm and hBn represent the histogram of image A and
B respectively. Let HA

m and HB
n represents the cumulative distribution function

such that HA
m =

∑m
i=1 h

A
i and HB

n =
∑n

i=1 h
B
i . The cost function of matching

intensity IAm of image A with respect to intensity IBn of image B is simply
|hAm−hBn |. Since, the histogram is nothing but the frequency of intensity values,
for one-to-one mapping the cost function should be |hAm− (hBn + hBn−1)| and for
one-to-k mapping |hAm−

∑k−1
i=1 h

B
n−1|. The fact that the cost function of matching

hAm+1 to hBn depends on whether or not hAm was matched to hBn , may cause prob-
lem to dynamic programming. However, the upper bound on size of increase
or decrease of histogram is always finite. In general the cost of k-to-l mapping
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is dk,l =
∣∣∣∑k−1

i=1 h
A
m−i −

∑j−1
j=1 h

B
n−j

∣∣∣ =
∣∣(HA

m −HA
m−k)− (HB

n −HB
n−l)

∣∣, where
m and n represent the maximum allowable shrinking of respective histogram.
This can be computed by dynamic programming.

An algorithm proposed by Wang et al. [Wang 1998] expands or shrinks
a windowed part of the input image histogram with a multiplicative factor,
found by minimizing the bin-count difference between the source and moving
images histograms. The window is used to include only voxels of interest and
exclude the background. This makes the technique linear in the intensity range
of interest. Other techniques use parametric models, such as the technique
proposed by Hellier [Hellier 2003]. This intensity normalization method is
applicable only to brain images. This is done by matching intensities of head
specific anatomical tissue classes. It consists of two stages. In the first step
the histograms from a source and a target data set, i.e. two 3D images, are
approximated by a Gaussian Mixture Model with five classes i.e. background,
WM, GM, CSF and a mixture of fat and muscle. Each tissue class k is modeled
by a Gaussian probability density function which has a mean µk and variance σk
that is approximated using the Expectation-Maximization (EM) algorithm. In a
second step, a polynomial correction function fp of order p is used to interpolate
the correction of the intensities smoothly:fp(x) =

∑p
i=0 Θix

i. By minimizing
the the cost function

∑n
k=1(f

p(µk) − vk)
2 the coefficients Θi are obtained,

where µk and vk are the means of the source and target image respectively.
Weisenfeld et.al. [Weisenfeld 2004] have proposed to estimate a multiplicative
correction field that alters the intensity statistics of an image or set of images
to best match those of a model. In that paper, the Kullback-Leibler divergence
between the source and moving images is minimized iteratively to estimate
the parameters of a model, thus histograms are equalized. All these methods
may be affected by the presence of white matter lesions.

Recently, Robitaille et al. [Robitaille 2012] developed an automatic inten-
sity standrdization technique STandardization of Intensities (STI) based on
Nyul’s method. It consists of (1) using both histogram and tissue-specific
intensity information; (2) providing a nonlinear intensity transformation be-
tween images. In that technique, a target image is aligned with respect to
the source image using global nonlinear registration which establishes spatial
alignment between tissues in the source and moving images. Due to the
spatial spatial correspondence, a joint intensity histogram of the frequency
distribution of intensity correspondences can be computed. From the most
frequent tissue-specific correspondences, an intensity transfer function can
be computed to transform the nonlinearly registered input image onto the
source, which is then applied to the linearly registered target image to com-
pute the desired standardized image, in the standard intensity space. Roy et
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al.[Roy 2013a, Roy 2013c] proposed an intensity standardization framework
based patch matching technique that takes patches from the atlas (source)
image and finds its best matching patches in target image. Let X = xi and
Y = yj be the collection of target and source patches. To match the target
intensities to the source, X → Y matching is done. It makes two assumptions:
(1) WM peaks of both the source and the target image are nearly same; (2)
each target patch xi is a realization of a Gaussian random vector whose mean
is one of the atlas patches i.e. xi ∼ N (yj,Σj) for some j. Then both the best
matching source patch for each target patch and the covariances of all source
patches are defined by maximum likelihood and found using an expectation
maximization algorithm. The normalized image is produced by replacing the
center pixel of each observed patch by the corresponding value of the matching
source patch. Both of these methods assume that MR image does not contain
any pathology. In the same year, Roy et al. [Roy 2013b] introduced longi-
tudinal intensity normalization in the presence of multiple sclerosis lesions.
The framework consists of two steps: (1) the longitudinal transformation of
intensities of the normal tissues of different time-points for T1-w MPRAGE
sequence using a first order Auto Regressive model; (2) a prior knowledge for
the lesions at each time-point is incorporated from an atlas based topology
preserving lesion segmentation method, called Lesion-TOADS [Shiee 2010],
which takes both the T1w-MPRAGE and the FLAIR scans of a subject and
provides fuzzy lesion memberships at every voxel.

In this chapter, propose a longitudinal intensity normalization algorithm
for multichannel MRI in the presence of MS lesions, which provides consistent
and reliable longitudinal detections. The tissue intensities from multichannel
MRI are modeled with parametric transform using a robust GMM estimation
based on γ-divergence, thereby keeping the lesions unaffected. The proposed
technique is built on ideas similar to Hellier [Hellier 2003] but taking into
account the presence of pathological tissues in the intensity transformation
function. It provides a technique that (1) uses tissue-specific intensity informa-
tion by modeling them using a robust GMM; (2) provides a consistent intensity
normalization between longitudinal images. Subsequently, we demonstrate its
crucial role for further lesion analysis.

This chapter is organized as follows. The modeling and parameter estima-
tion of multi-sequence MRI with γ divergence followed by intensity normaliza-
tion are reviewed in Section 5.2. The details of experiments and their results
on longitudinal MS patients are discussed in Section 5.3.
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5.2 Methodology

5.2.1 γ-Divergence

The aim of this section is to give a general introduction to the γ-divergence and
the γ-loss function [Eguchi 2010]. Suppose a random sample is generated from
a population distribution with density function z. Let {f(·, θ)} be a family of
density functions indexed by parameter θ. The γ cross entropy between z and
f(·, θ) is defined as

Cγ (z, f(·, θ)) = −κγ(θ)
∫
z(x)f(x, θ)γdx (5.1)

with power index γ > 0, where κγ(θ) is the normalizing constant defined as

κγ(θ) =

(∫
f(x, θ)1+γdx

) −γ
1+γ

(5.2)

The Boltzmann-Shannon cross entropy between z and f(·, θ) is defined as

−
∫
z(x)logf(x, θ)dθ (5.3)

The γ-cross entropy and the Boltzmann-Shannon entropy have the following
relationship since κγ(θ) converges to 1 if γ tends to 0.

lim
γ→0

Cγ (z, f(·, θ)) + 1

γ
=

∫
z(x) lim

γ→0

f(x, θ)γ − 1

γ
dx = −

∫
z(x)logf(x, θ)dx

(5.4)
Hence the Boltzmann-Shannon cross entropy can be seen as the 0-cross entropy,
and the γ-cross entropy can be regarded as an extension of the Boltzmann-
Shannon cross entropy. γ entropy of z is defined as

Hγ(z) = Cγ(z, z) (5.5)

And the γ-divergence between z and f(·, θ) is defined as

Dγ(z, f(·, θ)) = Cγ(z, f(·, θ))−Hγ(z) (5.6)

Note that the γ-divergence Dγ(z, f(·, θ)) is nonnegative and Dγ(z, f(·, θ)) is
equal to 0 if and only if θ satisfies that z(x) = f(x, θ) for almost every x. From
these properties Dγ(z, f(·, θ)) can be seen as a distance between z and f(·, θ)
although it does not satisfy the symmetry condition. The objective is to find
the closest distribution to z in model f(·, θ) with respect to γ-divergence. In
order to accomplish this task, we only need to find the global minimum point
of Dγ(z, f(·, θ)) with respect to θ which is equal to one of Cγ(z, f(·, θ)).
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5.2.2 γ-Loss Function

The γ-loss function is defined by an estimator of γ-cross entropy. Let u1, u2, ..., un
be a random sample generated from population distribution with density func-
tion z and f(·, θ) be the model under consideration. The γ-loss function for
f(·, θ) associated to the γ-divergence is given by

Lγ(θ) = −κγ(θ)
1

n

n∑
i=1

f(ui, θ)
γ (5.7)

For any distribution function G, the γ-cross entropy between G and f(·, θ) is
defined as

Cγ(G, f(·, θ)) = −κγ(θ)
∫
f(u, θ)γdG(u) (5.8)

Note that Lγ(θ) equals to Cγ(Ĝ, f(·, θ)) with empirical distribution Ĝ and
Lγ(θ) almost converges to Cγ(z, f(·, θ)). The γ-loss function and the log
likelihood function satisfy the following relation

lim
γ→0

Lγ(θ) + 1

γ
= − 1

n

n∑
i=1

logf(ui, θ) (5.9)

Hence maximum likelihood estimation (MLE) can be regarded as 0-estimator
and γ-estimator can be seen as extension of MLE.

5.2.3 Brain Tissue Intensity Modeling

Given two MR images of a single MS patient at time instant t1 and t2, we
seek to estimate a correction factor such that corresponding anatomical tissues
adopt the same intensity profile. We model the image intensities of a healthy
brain with a 3-class GMM, where each Gaussian represents one of the brain
tissues White Matter (WM), Gray Matter (GM) and Cerebrospinal fluid (CSF).
We consider the m MR sequences as a multidimensional image with n voxels.
Each voxel i is represented as xi = [xi1...xim]. The probability of intensity xi
is calculated as follows:

f(xi|θ) =
3∑

k=1

πkN (µk,Σk) (5.10)

where the mean µk and covariance Σk define the parameters N (µk,Σk) of each
Gaussian of the model along with their mixing proportions πk merged into
parameter θ. If the proportions were known, θ could be estimated through the
Maximum Likelihood Estimator (MLE):
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θ̂ = argmax
θ

L(θ) = argmax
θ

n∏
i=1

f(xi|θ) (5.11)

Where xi are considered as i.i.d. samples. However, as πk are unknown, an
Expectation Maximization (EM) algorithm [Dempster 1977] is used to estimate
the parameters.

5.2.4 γ-loss Function for the Normal Distribution

The parameter estimation with classic MLE for GMM can deviate from its
true estimation in presence of outliers. In MS patients, such outliers may be
of crucial importance as they may denote appearing or disappearing lesions.
Notsu et al. [Notsu 2014] proposed a modification of the MLE in order to
make it more robust to outliers. The basic idea is to maximize equation (5.11)
in the form of γ-divergence. We consider the γ-loss function for the Normal
distribution with mean vector µ and covariance matrix Σ.

Lγ(µ,Σ) =
∣∣Σ− γ

2(1+γ)
∣∣ n∑
i=1

exp
(
− γ

2
(xi − µ)TΣ−1(xi − µ)

)
(5.12)

Where |.| indicates the determinant. The bounded influence function of an
estimator is an indicator of its robustness to outliers. The influence function
for GMM with γ-loss function is bounded whereas the one for regular GMM
is unbounded. As γ grows larger, bounds become tighter. For a sufficiently
large γ, (γ ≥ 0.1), the estimating equation has little impact from outliers in
the data set. Equation (5.12) can be casted to yield an EM style algorithm as
follows:

Expectation Step. In the case of a GMM, the latent variables are the
point-to-cluster assignments ki, i = 1, ..., n, one for each of n data points. The
auxiliary distribution q(ki|xi) = qik is a matrix with n×K entries. Each row
of qi can be thought of as a vector of soft assignments of the data points xi to
each of the Gaussian modes.

qik =
πkexp

(
− γ

2
(xi − µk)TΣ−1k (xi − µk)

)
K∑
l=1

πl exp
(
− γ

2
(xi − µl)TΣ−1l (xi − µl)

) (5.13)
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Maximization Step. The maximization step estimates the parameters of
the Gaussian mixture components and the mixing proportions πk, given the
auxiliary distribution on the point-to-cluster assignments computed in the
expectation step. The mean µk of a Gaussian mode is obtained as the mean
of the data points assigned to it (accounting for the strength of the soft
assignments). The other quantities are obtained in a similar manner, yielding

µk =

∑n
i=1 qikxi∑n
i=1 qik

(5.14)

Σk = (1 + γ)

∑n
i=1 qik(xi − µk)(xi − µk)

T∑n
i=1 qik

(5.15)

πk =

∑n
i=1 qik∑n

i=1

∑K
l=1 qil

(5.16)

5.2.5 Selection of Parameter γ

The estimation of power index γ plays a critical role in our approach, since
γ affects the estimated parameters in the presence of outliers. Notsu et al.
[Notsu 2014] suggested the selection of γ as a model selection problem based
on Akaike information criterion (AIC) [Akaike 1974]. It is simply the sum of
the negative log likelihood of the observed data under the current model plus
the number of its fitted parameters. The first term of this function reflects
the quality of fitting, whilst the second penalizes overly complex models. AIC
is based on the Kullback-Leibler divergence - a (non-symmetric) measure of
difference between two probability distributions. AIC is a measure of the
relative quality of a statistical model for a given set of data. That is, given
a collection of models for the data, AIC estimates the quality of each model,
relative to each of the other models. Hence, AIC provides a means for model
selection.

Let K be the number of clusters, pk be the total numbers of parameters of
a model and (µk,Σk), k = 1, .., K be the means and the covariance matrices of
the clusters respectively. From equation(5.10), the AIC is defined as follows:

AICγ = −2
n∑
i=1

log fγ(xi|θ) + 2

{
K
p(p+ 3)

2
+K − 1

}
(5.17)

The value of γ which minimizes AIC is used as the optimal γ. For various
values of γ, equation (5.17) is evaluated in a cross validation manner and the γ
which results in minimum value is chosen for the experiment. Mathematically,
it can be put as

γ̂ = arg min
γ

AICγ (5.18)
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5.2.6 Intensity Correction

We obtain the means and covariances of tissues for the source and target images
using the procedure mentioned above. We chose a linear correction function
such that g(x) = Σiβ

i=1
i=0xi. The coefficients βi are estimated to minimize

the following cost function: ΣK
k=1(g(µsource,k)− µtarget,k)2. This function can

be solved by linear regression. Using the results of the linear regression, the
intensity profiles of the two images are normalized by mapping the intensity
of the source image to the target image. The resulting correction function
is smooth and interpolates the intensity correction. Figure 5.1 depicts the
intensity correction method.

Intensity Normalization

Source Image Moving Image

Parameters
θsource

Parameters
θmoving

Mapping (Linear Regression)

Figure 5.1: Schematic description of intensity normalization.

5.2.7 MR Serial Change Detection

Longitudinal studies for MS patients are frequently performed on patients with
diseases of the brain, to track and observe changes. MRI provides comprehen-
sive and valuable information to study brain evolution over a period of time.
There exist many studies which discuss the MS lesion detection problem, very
few of them target the lesion evolution studies. The comprehensive review
of the state-of-the-art methods for automated detection of multiple sclerosis
lesions in serial brain MRI is done in [Lladó 2012a]. Analyzing literature,
broadly, three categorizes of (semi)automatic methods exist: intensity based
point-to-point comparison, deformation field based and temporal analysis
based methods. Their brief description is shown in Figure 5.2. The most
routine approach for the detection of change on imaging studies is manual
inspection. However, this approach suffers from a number of problems. One of
the most important of these is the number of images that the radiologist has to
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investigate. With growing number of MR sequences at each acquisition time,
data grows dramatically. Curati et al. [Curati 1996] studied the serial MRI

(a) (b)

(c)

Figure 5.2: Schematic description of change detection approaches: (a) Intensity-
based techniques; (b) temporal analysis; (c) deformable approaches. Courtesy:
[Lladó 2012a].

study. In that method, the baseline and repeat scan images were registered
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to sub-voxel accuracy using rigid registration and subtraction images were
obtained from these. Normal contrast enhancement was demonstrated better
with registered volume and subtraction images than with conventional images.
Abnormal enhancement was seen better in meningeal disease, multiple sclerosis
and tumors.

Evolution can be expressed in many ways, to different degrees spread across
various MR sequences. The radiologist is required to look at all of this data
in order to perform diagnosis, which often is quite difficult [Moraal 2009].
Moraal et al. [Moraal 2010] extended this approach on 2D and 3D subtraction
methods and conclude that 3D subtraction techniques, after image registration,
provided greater inter-observer agreement. Furthermore, they evaluated several
image sequences (3D DIR, 3D FLAIR, 3D T2-w, 3D T1w-MPRAGE) and
concluded that even small active lesions could be detected using the 3D T1w-
MPRAGE sequence because of its good contrast among tissues. However, the
manual detection of change is not only time-consuming; it is also constrained
by intra-observer and inter-observer variability. On the other hand, it is a
well proven fact that automatic systems may outperform the human expert.
Bosc et al. [Bosc 2003] showed that those small and subtle changes in lesion
evolution missed by the expert, are correctly detected by the automated
change detection algorithm. Change detection based methods are intensity-
based approaches based on subtracting two successive images in order to find
intensity differences due to evolving lesions. Tan et al. [Tan 2002] observed
that after the subtraction of two consecutive temporal images, unchanged
areas (normal tissue) appear as gray areas, while changed areas are due to the
appearance or disappearance of lesions. Hence, the positive activity (new or
enlarging lesions) appears as a bright area while the negative activity (resolving
or shrinking lesions) appears as a dark area against the gray background.

Thirion et al. [Thirion 1999] advocated MS lesions is observed as phe-
nomenon of the combination of two different factors. First is the tissue
transformation (image intensity changes without deformation) and second is
the expansion or contraction effects reflecting a change of mass within the
tissue. Therefore, using only approaches based on intensity changes between
serial scans to evaluate the evolution of lesions may not give satisfactory results,
since the surrounding tissue deformation due to the presence of the lesion is
not taken into account. In order to account for the mass effect of the lesions,
deformation-based approaches should be employed. In deformation field-based
approaches, a nonlinear registration is performed between successive scans, and
the structural changes are determined based on the local deformation of voxels.
A semiautomatic approach using vector displacement fields obtained by a
nonrigid registration of two successive scans to track MS lesions [Thirion 1999].
The method makes use of both the divergence and the norm of the displacement
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vector fields to capture deformation and intensity transformation. The high
values of the norm are an indicator of large areas undergoing large deformation,
while high divergence indicate evolving lesions.The sign of the divergence
operator suggests whether the lesion is shrinking or expanding.

In their seminal work, Meier at al. [Meier 2003] assessed the longitudinal
MRI intensity profiles in MS patients. Multiple serial MRI scans were concate-
nated into a spatio-temporal volume for direct quantitative evaluation of the
temporal intensity profiles. The dynamics of temporal intensity signal threw
the light on MS pathogenesis and exploits the possibility for MRI biomarkers
of disease activity and progression. The framework consists of five steps: (1)
spatial alignment: rigid and non-rigid registration of follow-up scans to baseline
scan; (2) intensity normalization: to account for similarity of intensity distribu-
tions among corresponding tissues; (3) artifact removal: Partial Volume Effect
removal; (4) information fusion: point-to-point comparison using subtraction;
(5) parametric analysis: analysis of time series of intensities and formation of
feature maps.

Note, however, the all these approaches are based on the differences between
the successive scans, lesions which remain stationary cannot be detected. We
propose a novel MR serial change detection approach based on intensity
approach which provides consistent and reliable longitudinal detections. The
tissue intensities from multichannel MRI are modeled with a parametric
transform using a robust GMM estimation based on γ divergence, thereby
keeping the lesions unaffected. The framework consists of (1) tissue-specific
intensity normalization of target image with respect to source image; (2)
point-to-point comparison subtraction; (3) Otsu thresholding to get final lesion
change detection. The block diagram of the approach is shown in Figure 5.3.

5.2.8 Detection of active lesions in T1-w Gadolinium
(Gd) Images

To keep track of the active lesions, contrast agent (Gd) is administered and
subsequently T1-w images are acquired. Detection of Gd-enhancing lesion
is challenging task because lesions and other brain parts like vessels and fat
tissues exhibit the very similar intensity profiles. To alleviate this problem, for
detecting lesions in T1w-Gd images, T2-w lesions masks are used to cancel out
the effect of Gd-absorbing tissues in lesion detection. The rest of the process
is the same as in Section 5.2.7 except that the two time points are replaced by
pre-abd post-contrast images.
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Image at 
Time-point 1

Image at 
Time-point 2

Voxel-to-Voxel 
Comparison (Subtraction)

Otsu Thresholding

Lesion Change Detection &
Interpretation  

Intensity 
Normalization

Figure 5.3: Block diagram for pipeline of the proposed architecture.

5.3 Experiments and Results

5.3.1 Dataset and Preprocessing

Two datasets were chosen to evaluate intensity normalization. The first dataset
consists of 18 MS patients having 4 time-points each, approximately separated
by a period of three to six months. The second dataset consists of 40 patients
having 3 time points, approximately separated by a period of three months.
Whole-brain MR images were acquired on MS patients in both datasets. T1-
w MPRAGE, T2-w and FLAIR modalities were chosen for the experiment.
Expert annotations of lesions were carried out by an expert radiologist on all
MS patients. The volume size for T1-w MPRAGE and FLAIR is 256×256×160
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and voxel size is 1×1×1 mm3. For T2-w, the volume size is 256×256×44
and voxel size is 1×1×3 mm3. All imaging experiments for dataset 1 were
performed on a 3T Siemens Verio (VB17) scanner with a 32-channel head
coil. Dataset 2 consists of multi site data in which imaging experiments were
performed on two 3T Siemens Verio (VB17) scanners and a 3T Philips Achieva
scanner, both of them having 32-channel head coil.

For Gd related experiments, the acquired volumes were: a T1-w volume
without contrast agent (pre-contrast) and T1-w Gd-enhanced (post-contrast).
For dataset 1, the volume size of images is 256×256×44 and voxel size is 1×1×3
mm3. For dataset 2, the volume size of images is 240×240×44 and voxel size
is 1×1×3 mm3. For dataset 1, radiologist performed the manual delineation of
the enhanced lesions on T1 whereas for dataset 2 expert annotations of lesions
for T1 Gd images are unavailable.

MR images from each patient are de-noised [Coupe 2008], bias field cor-
rected [Tustison 2010] and registered with respect to T1-w MPRAGEvolume
[Ourselin 2000, Commowick 2012a]. All the images are processed to extract
intra-cranial region using BET (Brain Extraction Tool) [Smith 2002]. The
block diagram for the pre-processing pipeline is shown in Figure 5.4.

We show the effect of longitudinal intensity normalization followed by
detection on both normal tissues and lesions for MS subjects. The first time
point is considered as the reference point to which the subsequent time points
(moving ones) are aligned using intensity normalization. First, the parameters
of reference and moving images are estimated using γ-divergence GMM esti-
mator as described in Section 5.2.4. Secondly, the voxels of the moving image
are aligned with respect to the reference image using the procedure in Section
5.2.6. Each patient and each time point t = 2, ..., tn, are rigidly registered to
the T1-w MPRAGE of the first time instance. The obtained difference image
is processed further to obtain a soft detection by using heuristic thresholding
iteratively (1) by Otsu’s threshold [Otsu 1979]; (2) erosion of image by one
voxel. The detections from this difference image are compared with difference
image of ground truth at corresponding time points.

5.3.2 Intialization of GMM

Starting with some initial mixture model, the EM algorithm alternates between
computing a lower bound of the log-likelihood and improving the current
model with respect to this lower bound. The algorithm converges to a certain
stationary point of the likelihood function. Unfortunately, the likelihood
function is generally non-convex, possessing many stationary points, including
small local maxima, and even worse, local minima and saddle points. Moreover,
the convergence of the EM algorithm to either type of point highly depends
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Figure 5.4: Block diagram pre-processing pipeline.

on the chosen initial mode. We obtain initial values for these parameters by
running KMeans [MacQueen 1967] first.

5.3.3 Intensity Correction Evaluation

To evaluate the quality of intensity normalization, we compare the histograms
of reference, moving and intensity normalized moving image using chi-squared
distance given by χ2

x,y = 1
2

∑ (xi−yi)2
xi+yi

. Lower values of this distance indicate
better alignment of intensities. Tables 5.1 and 5.2 report the chi-squared
distance for datasets 1 and 2 for various imaging sequences. Different methods
are compared against the proposed one. For first dataset, we report the mean
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χ2 distance for our method as 0.18(±0.045), 0.28(±0.037) and 0.32(±0.038)
for T1-w MPRAGE, T2-w and FLAIR respectively. For the second dataset, we
report the mean χ2 distance for our method as 0.16(±0.062), 0.26(±0.027) and
0.30(±0.048) for T1-w MPRAGE, T2-w and FLAIR respectively. These per-
formance metrics being χ2 distance, it is evident that our proposed framework
performs better than the rest.

For T1w-Gd dataset 1 and dataset 2, results are reported in Table 5.3. We
report the mean χ2 distance for our method as 0.12(±0.062), 0.16(±0.03) for
dataset 1 and 2 respectively.

Table 5.1: Chi-squared distance analysis for histogram matching for dataset 1.

Before Normalization After Normalization
Modality Proposed Hellier Nyul

T1-w 0.56 (±0.03) 0.18 (±0.045) 0.35 (±0.029) 0.3 (±0.019)
T2-w 0.62 (±0.029) 0.28 (±0.037) 0.414 (±0.03) 0.315 (±0.042)

FLAIR 0.56 (±0.027) 0.32 (±0.038) 0.45 (±0.051) 0.39 (±0.045)

Table 5.2: Chi-squared distance analysis for histogram matching for dataset 2.

Before Normalization After Normalization
Modality Proposed Hellier Nyul

T1-w 0.3 (±0.08) 0.16 (±0.062) 0.25 (±0.039) 0.22 (±0.016)
T2-w 0.45 (±0.039) 0.26 (±0.027) 0.312 (±0.04) 0.325 (±0.034)

FLAIR 0.58 (±0.031) 0.30 (±0.048) 0.38 (±0.041) 0.41 (±0.055)

dataset 1

Before Normalization Method After Normalization
Nyul 0.29(±0.01)

0.34(±0.06) Proposed 0.12(±0.06)
Hellier 0.22(±0.03)

dataset 2

Nyul 0.31(±0.01)
0.38(±0.04) Proposed 0.16(±0.03)

Hellier 0.27(±0.04)

Table 5.3: Chi-squared distance analysis for histogram matching for T1-w Gd
dataset 1 and 2.

Figures 5.5 and 5.6 show the intensity correction results for T1-w MPRAGE,
T2-w and FLAIR images. Three time points and their corresponding MR
modalities of a subject are shown before and after normalization. Each row
represents the imaging modality and each column depicts the first time point,
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Figure 5.5: Intensity correction for one of the patient from dataset 1.

second time point, the absolute difference image without and with intensity
normalization respectively. This figure demonstrates visually the ability of
our approach to normalize intensities. As seen from the difference image of
the first and second time points, intensity alignment reduces significantly the
difference in intensities without affecting the lesion appearance. It will be
easier to automatically detect evolving lesions on the images in the last column.

5.3.4 Longitudinal Lesion Detection

To show the quantitative improvement for identification of lesions, we report in
Table 5.4 and 5.5 the precision (Positive Predicted Value) and recall (Sensitivity)
of lesion detection averaged across the patients for various overlap thresholds.
The lesion is said to be detected if Rc∩RGT

RGT
≥ ϕ where Rc, RGT and ϕ are

respectively the candidate region in the image, the ground truth and a threshold.
For datasets 1 and 2, Table 5.4 reports values of precision and recall for various
thresholds. As from the figures, our approach outperforms other methods. For
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Figure 5.6: Intensity correction for one of the patients from dataset 2.

the dataset 1, we have a very high recall of 0.90 at ϕ = 0.2 and 0.82 even at
ϕ = 0.4 where as for the dataset 2, high recall of 0.94 at ϕ = 0.2 and 0.78 even
at ϕ = 0.4 is reported.

For evaluating the quality of MS lesion detection proposals, we follow the
overlap criterion as described above. We compare the proposed method against
Nyul and Hellier method using 1− Precision Vs Recall curves. 1−Precision
is also known as False Discovery Rate (FDR) . We report Area Under Curve
(AUC) as described for various overlap thresholds (ϕ) ranging from 0.1 to
0.8. Figures 5.7 and 5.8 demonstrate the AUC for dataset 1 and dataset 2
respectively. For proposed method, we report the AUC as 0.78 for dataset 1
and 0.74 for dataset 2. Both these plots clearly shows that our method as a
better choice compared to other baseline approaches.

Table 5.4: Performance analysis for lesion detection on dataset 1.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

Nyul 0.47±0.5 0.52±0.4 0.63±0.01 0.60±0.02 0.58±0.03 0.54±0.03

Proposed 0.61±0.04 0.62±0.05 0.73±0.04 0.90±0.05 0.63±0.03 0.82±0.01
Hellier 0.59±0.04 0.65±0.02 0.65±0.02 0.74±0.03 0.62±0.03 0.59±0.05
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Figure 5.7: Precision vs 1-Recall curve for dataset 1.

Table 5.5: Performance analysis for lesion detection on dataset 2.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

Nyul 0.50±0.04 0.61±0.04 0.62±0.04 0.72±0.08 0.51±0.01 0.55±0.03

Proposed 0.58±0.05 0.62±0.05 0.76±0.06 0.94±0.07 0.56±0.04 0.78±0.03
Hellier 0.41±0.08 0.56±0.03 0.69±0.03 0.78±0.02 0.56±0.03 0.62±0.08

Table 5.6: Performance analysis for lesion detection on Gd-dataset 1.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

Nyul 0.42±0.04 0.53±0.6 0.060±0.04 0.64±0.04 0.62±0.02 0.55±0.04

Proposed 0.59±0.03 0.68±0.03 0.77±0.05 0.92±0.06 0.65±0.04 0.79±0.04
Hellier 0.56±0.05 0.62±0.04 0.63±0.01 0.75±0.02 0.61±0.04 0.57±0.03
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Figure 5.8: Precision vs 1-Recall curve for dataset 2.

Figure 5.9: Precision vs 1-Recall curve for Gd dataset 1.

Figure 5.10 depicts the detected lesions for a representative image. The
green label shows new lesions at t3, orange shows stationary lesions which are
also a part of t1; blue shows false positive detections. We are able to accurately
detect appearing and disappearing lesions thanks to the proposed method.
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5.3.5 Active Gd-Enhanced Lesions Detection

Table 5.6 reports values of precision and recall for various thresholds for Gd-
dataset 1. For this dataset, a high recall is achieved at 0.92 at ϕ = 0.2 and
0.79 even at ϕ = 0.4. Figure 5.11 shows the active lesion in T1-w Gd image
and its detection. The 1−Precision vs Recall plot is constructed as described
in Section 5.3.4. We report the AUC for proposed method as 0.73. It is evident
from the plot that our proposed method outperforms other methods even for
Gd dataset.

Figure 5.10: Lesion detection examples. For top and bottom, from left to right:
Slice of FLAIR for t0, t3, |t0 − t3(Normalized)|, ground truth and lesions detected
by our algorithm.
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Figure 5.11: Top row: from left to right is the slice of T1-w SE(pre-contrast),
T1-w Gd(post-contrast), T1-w Gd with its ground truth (red) respectively.
Bottom row: left to right is difference image and detected active lesion (green)
respectively.

5.3.6 Computational Complexity

The computational complexity of GMM using EM-algorithm is O(klmn3)

where k is the number of clusters, l is a number of iterations, m is a number of
samples and n is the number of dimensions in a data [Bishop 2006]. The C++
implementation of our intensity normalization framework takes 5 minutes on
a single core machine (3.8 GB RAM, Intel Core i7 @2.40GHz, with 8 cores)
per sequence. Here it should be noted that it is very fast compared to other
techniques for robust GMM e.g. [Neykov 2007] with computational complexity
of O((klmn3)2).
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5.4 Discussion and Conclusion

The method proposed in this chapter builds on the robust GMM estimation
with γ divergence and addresses fundamental limitations of most of the state-
of-the art algorithms i.e. intensity normalization without harming the lesion
information. We have proposed an efficient change detection algorithm to track
MS lesion evolution, based on subtraction images after intensity normalization
accompanied by Otsu thresholding, which in turn allow to adapt the spatial
information to the lesions unaffected. Furthermore, we have experimentally
showed that our representation, compared to Nyul and Hellier method, is more
suitable for longitudinal MS lesion analysis because of its ability to preserve
the intensity variations caused by pathological changes.

The lesion information is very important for longitudinal studies. Our
method is able to capture such information and adds performance to the MR
serial change detection representation. However, the proposed method model is
built only on difference of images. Thus, the static lesions do not get detected.
Furthermore, we proposed a semi-automatic framework for the detection of
Gd-Enhancing lesions which can be a very important tool for the assessment
of active lesions.

Making each patient image adapt to the intensity space of an unbiased
atlas is an interesting idea which could be then pursued to detect the lesion
voxels based upon voxel-wise comparisons using statistical methods. However,
since such a method can be very naive to lesion information, we propose in
the next chapter a new method in the spirit of per image per patient intensity
adaptation with respect to an atlas to detect the MS lesions.
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6.1 Introduction

To characterize MS lesions, we propose a novel paradigm based on a statistical
patient to population comparison framework. It aims at studying the benefits of
using multi-channel MRI to detect statistically significant differences between
each individual MS patient and a database of control subjects. This framework
consists in two components. First, intensity standardization is conducted to
minimize the inter-subject intensity difference arising from the variability of
the acquisition process and different scanners. The intensity normalization
maps parameters obtained using a robust Gaussian Mixture Model (GMM)
estimation not affected by the presence of MS lesions as described in chapter 5.
The second part studies the comparison of multi-channel MRI of MS patients
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with respect to an atlas built from the control subjects, thereby allowing us
to look for differences in normal appearing white matter, in and around the
lesions of each patient.

This chapter deals with a detection method based on the comparison
between a set of controls and one MS patient. In their pioneering work of
usage of Diffusion Tensor Imaging (DTI) in MS, Filippi et al. [Filippi 2001]
evaluated the differences in fractional anisotropy (FA) between MS patients
and controls on normal appearing white matter regions. Commowick et al.
[Commowick 2008] proposed the use of the whole diffusion tensor information
(DTI) to detect statistically significant differences between MS patients and
controls. We propose a framework that relies on the multi-channel MRI
information to detect statistically significant differences between MS patients
and controls. The proposed technique is built on ideas similar to Commowick
et al. [Commowick 2008] but but using conventional multi-channel MRI. Such
an approach provides consistent and reliable lesion detections.

The proposed framework consists of two major parts. First, intensity
standardization technique as described in Chapter 5 is incorporated for mini-
mizing the inter subject intensity differences which may occur due to protocol
variations across the scanners. Since in MS, White Matter (WM) lesions are
also present in addition to healthy brain tissues, the intensities from multi-
channel MRI are modeled with a parametric transform using a robust GMM
estimation based on γ divergence. Such a formulation allows for keeping
the lesions unaffected. It provides a technique that (1) uses tissue-specific
intensity information by modeling them using a robust GMM; (2) provides a
consistent intensity normalization between inter-subject images. The second
part concerns the computation and use of an unbiased atlas of multi-channel
MRI from a database of controls. Based on this atlas, we show how to compute
statistical differences between a patient and the atlas using a Mahalanobis
distance derived from the multi-channel MRI. Subsequently, we demonstrate
its crucial role for further lesion analysis.

6.2 Methodology

6.2.1 Multiple Sclerosis Lesions (MSL) Detection

Our framework relies on the voxel-wise comparison of multi-channel MRI of
an MS patient against a set of controls. Here, we assume that all images
(patients and controls) are aligned into a common space where each voxel
of each image describes the exact same spatial position. Commowick et
al. [Commowick 2008, Commowick 2015] introduced a methodology for the
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comparison of diffusion tensors between a patient and a group of controls.
We aim at comparing, for each voxel, the patient vector of intensities xp and

intensity vectors from control subjects xq, q = 1, ...,M . The control population
X = xq, q = 1, ...,M is assumed to follow a multivariate Normal distribution
N (X̄,ΣX), where X̄,ΣX denote respectively the average and covariance matrix
of populationX. Following this assumption, we compute the difference statistic
between xp and N (X̄,ΣX) as a Mahalanobis distance as

d2(xp) = (xp − X̄)TΣ−1X (xp − X̄) (6.1)

where d2 will vary between 0 and +∞, getting smaller as the patient vector
gets likely to belong the multivariate Normal distribution of the controls. A
p-value can then be computed from this distance as the statistic T = M(M−h)

h(M2−1)d
2

follows a Fisher distribution with parameters h and M − h: T ∼ F (h,M − h)

where h is the vector dimension (1 for scalar images). The difference test
p-value is therefore written as:

p(xp) = 1− Fh,M−h

(
M(M − h)

h(M2 − 1)
d2(xp)

)
(6.2)

where Fh,M−h is the cumulative distribution function of a Fisher distribution
with parameters h and M − h.

6.2.2 Multiple Comparisons Correction

Finally, as we are computing voxel-wise comparisons, a final step is to correct
for multiple comparisons utilizing FDR correction as introduced by Benjamini
et al. [Benjamini 1995].

It is a set of tools of controlling the false discovery rate (FDR) in a set of
statistical tests. FDR is the mean proportion of statistically significant test
results that are really false positives. When we perform multiple statistical
tests, the probability of false positive results rapidly increases. FDR control,
like Bonferroni correction, reduces the probability of false positive results by
using a more conservative alpha level for each test. FDR attempts to ensure
that the great majority of statistically significant results are accurate but
generally lets in a small proportion of false positives in the process.

6.3 Data Processing

Two datasets were chosen to evaluate intensity normalization. The first dataset
consists of 18 MS patients while the second dataset consists of 40 patients.
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Whole-brain MR images were acquired on MS patients in both datasets. T1-
w MPRAGE, T2-w and FLAIR modalities were chosen for the experiment.
Expert annotations of lesions were carried out by an expert radiologist on all
MS patients. The volume size for T1-w MPRAGE and FLAIR is 256×256×160
and voxel size is 1×1×1 mm3. For T2-w, the volume size is 256×256×44
and voxel size is 1×1×3 mm3. All imaging experiments for dataset 1 were
performed on a 3T Siemens Verio (VB17) scanner with a 32-channel head
coil. Dataset 2 consists of multi site data in which imaging experiments were
performed on two 3T Siemens Verio (VB17) scanners and a 3T Philips Achieva
scanner, both of them having 32-channel head coil.

MR images from each patient are de-noised [Coupe 2008], bias field cor-
rected [Tustison 2010] and registered with respect to T1w-MPRAGE volume
[Ourselin 2000, Commowick 2012a]. All the images are processed to extract
intra-cranial region [Smith 2002]. We built a geometrically unbiased atlas for
each sequence from dataset of controls [Guimond 2000]. For each MS patient,
nonlinear registration of the T1-w MPRAGE image onto the atlas was done
[Commowick 2012b]. Patient to atlas registration consists in two steps. First,
a global affine transformation was computed between the T1 images. Then,
nonlinear registration was performed to locally align the anatomies of the atlas
and the patient. The final transformations were then applied to T2-w and
FLAIR images.

We built a composite vector image for each patient and control from T1-w
MPRAGE, T2-w and FLAIR. The atlas is considered as the reference image to
which all controls and patient images are aligned using intensity normalization
as described in Chapter 5. Finally, we applied our framework (Section 6.2.1)
to compare the differences in images and report the results in the next section.

We performed experiments of lesion detection, to enhance the interest of our
approach with respect to (1) intensity normalization and (2) to combine several
modalities for lesion detection. To this end, we compared detections using each
individual sequence i.e. T1-w MPRAGE, T2-w or FLAIR individually with
and without intensity normalization; and then on composite vector images
formed from all sequences with and without intensity normalization. Figure
6.1 explains the architecture of the proposed framework.

6.4 Results

6.4.1 Quantitative Results

To show the quantitative improvement for identification of lesions, we report
in Tables 6.1, 6.2, 6.3 and 6.4 show the precision (Positive Predicted Value)
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Figure 6.1: Block diagram of proposed framework.

and recall (Sensitivity) of lesion detection averaged across the patients for
various overlap thresholds. The lesion is said to be detected if Rc∩RGT

RGT
≥ ϕ

where Rc, RGT and ϕ are respectively the candidate region in the image, the
ground truth and a threshold.

For dataset 1, we report in Tables 6.1 and 6.2 the precision and recall
score average across 16 patients with and without intensity normalization
respectively. For dataset 2, we report in Tables 6.3 and 6.4 the precision and
recall score average across 40 patients with and without intensity normalization
respectively. For dataset 1 , we report the best mean precision and recall
score which is of T2-w as 0.75(±0.064) and 0.92(±0.041) respectively. For
dataset 2, the best mean precision and recall score reported are for T2-w as
0.78(±0.044) and 0.94(±0.038) respectively are identified. From all the tables,
it is clear that intensity normalization plays crucial role in our framework.
The lesion detection of T2-w achieves good performance because some lesions
may not be found on T1-w MPRAGE and FLAIR. For dataset 1, we report
the mean precision and recall score of 0.61 (±0.02) and 0.64 (±0.03) on
vector images without intensity normalization and 0.72 (±0.057) and 0.89
(±0.087) with intensity normalization. For dataset 2, we report mean precision
and recall score of 0.63 (±0.012) and 0.66 (±0.04) on vector images without
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Figure 6.2: Precision vs 1-Recall curve for dataset 1 without intensity normal-
ization.

Figure 6.3: Precision vs 1-Recall curve for dataset 1 with intensity normaliza-
tion.

intensity normalization and 0.76 (±0.047) and 0.92 (±0.075) with intensity
normalization. Clearly, these results show a clear improvement on the best
detection score from individual modalities. For evaluating the quality of
MS lesion detection proposals, we follow the overlap criterion as described
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Figure 6.4: Precision vs 1-Recall curve for dataset 2 without intensity normal-
ization.

Figure 6.5: Precision vs 1-Recall curve for dataset 2 with intensity normaliza-
tion.

above. We compare the different image sequences using Receiver Operating
Characteristic (ROC) for Precision Vs 1−Recall curves. We report Area Under
Curve (AUC) as described for various overlap thresholds (ϕ) ranging from 0.1
to 0.8. Figures 6.2 and 6.3 demonstrate the ROC-AUC for T2-w of 0.48 and
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0.74 for dataset 1 with and without intensity normalization. Figures 6.4 and
6.5 demonstrate the ROC-AUC for T2-w of 0.76 and 0.40 dataset 2 with and
without intensity normalization. The plots 6.3 and 6.5 clearly show that T2-w
as a better choice compared to other imaging sequences. The primary reason
of better performance of T2-w sequence may be due to the fact that lesions
are more pronounced on T2-w sequence compared to other sequences.

Table 6.1: The performance analysis of various image sequences for lesion
detection on dataset 1 without intensity normalization. T1-w MPRAGE is
denoted as T1-w MP.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

T1-w MP 0.71±0.04 0.32±0.04 0.55±0.03 0.58±0.04 0.54±0.02 0.52±0.04

T2-w 0.66±0.05 0.40±0.03 0.62±0.05 0.67±0.04 0.58±0.05 0.61±0.03
FLAIR 0.64±0.03 0.45±0.05 0.58±0.03 0.63±0.03 0.55±0.04 0.60±0.06

Vector 0.69±0.04 0.35±0.03 0.66±0.02 0.64±0.03 0.62±0.03 0.58±0.04

Table 6.2: The performance analysis of various image sequences for lesion
detection on dataset 1 with intensity normalization. T1-w MPRAGE is denoted
as T1-w MP.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

T1-w MP 0.68±0.03 0.35±0.04 0.59±0.04 0.61±0.03 0.56±0.03 0.59±0.04

T2-w 0.81±0.04 0.42±0.05 0.75±0.06 0.92±0.04 0.73±0.05 0.90±0.04
FLAIR 0.72±0.03 0.38±0.02 0.68±0.08 0.88±0.04 0.65±0.03 0.80±0.05

Vector 0.82±0.03 0.45±0.04 0.72±0.04 0.89±0.04 0.68±0.05 0.84±0.03

Table 6.3: The performance analysis of various image sequences for lesion
detection on dataset 2 without intensity normalization. T1-w MPRAGE is
denoted as T1-w MP.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

T1-w MP 0.51±0.05 0.52±0.06 0.52±0.04 0.55±0.05 0.50±0.01 0.59±0.03

T2-w 0.55±0.05 0.68±0.05 0.65±0.06 0.70±0.07 0.62±0.04 0.58±0.03
FLAIR 0.51±0.08 0.54±0.03 0.56±0.03 0.64±0.02 0.55±0.03 0.60±0.06

Vector 0.58±0.04 0.62±0.03 0.64±0.03 0.68±0.02 0.60±0.03 0.63±0.04
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Table 6.4: The performance analysis of various image sequences for lesion
detection on dataset 2 with intensity normalization. T1-w MPRAGE is denoted
as T1-w MP.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

T1-w MP 0.75±0.03 0.20±0.04 0.63±0.04 0.65±0.03 0.60±0.04 0.58±0.03

T2-w 0.82±0.03 0.50±0.03 0.72±0.03 0.94±0.05 0.70±0.04 0.86±0.03
FLAIR 0.7±0.03 0.3±0.04 0.70±0.04 0.86±0.03 0.68±0.03 0.80±0.04

Vector 0.85±0.03 0.35±0.03 0.76±0.03 0.92±0.03 0.74±0.03 0.88±0.05

6.4.2 Qualitative Results

Figure 6.6 and 6.8 show the lesion detection results for T2-w where as 6.7 and
6.9 show the lesion detection results for composite vector image. These figures
demonstrate visually the ability of our approach to detect lesions. As seen
from the figures, there is considerable improvement of lesion detection, thanks
to intensity normalization.

6.5 Conclusion

A novel paradigm for detection of MS lesions has been proposed. We devised a
two layers strategy, first intensity standardization of images with respect to an
atlas; and then computation of difference scores of a specific patient to a pop-
ulation of controls. Such comparisons allowed the accurate detection of lesions
or other diffuse pathology-related changes. The efficacy of our method was
evaluated though detection with and without intensity correction. Compared
to un-normalized images, detection with intensity correction is a better choice
for MS lesion analysis thanks to its ability to preserve the intensity variations
caused by pathological changes while normalizing healthy tissue intensities.
The resulting system is both efficient and accurate. This performance suggests
that it can provide valuable assistance in detecting MS lesions in clinical rou-
tine with high reliability. The proposed method, however requires controlled
environment of preprocessing techniques, specifically construction of atlases.
In next chapter, we will study the lesion detection framework in adaptive
settings.
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Figure 6.6: Top row : from left to right, a slice of MRI from T2-w Sequence from
dataset 1, corresponding ground truth (red). Bottom row: from left to right,
MSL detection (green) obtained by without and with intensity normalization.
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Figure 6.7: Top row : from left to right, a slice of MRI from composite vector
image from dataset 1, corresponding ground truth (red). Bottom row: from
left to right, MSL detection (green) obtained by without and with intensity
normalization.
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Figure 6.8: Top row : from left to right, a slice of MRI from T2-w Sequence from
dataset 2, corresponding ground truth (red). Bottom row: from left to right,
MSL detection (green) obtained by without and with intensity normalization.
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Figure 6.9: Top row : from left to right, a slice of MRI from composite vector
image from dataset 2, corresponding ground truth (red). Bottom row: from
left to right, MSL detection (green) obtained by without and with intensity
normalization.
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7.1 Introduction

The aim of any classification algorithm can be stated as a problem of assigning
an object represented by a feature vector to a category of objects i.e. class.
Using a set of training dataset examples, a classifier learns to label previously
unseen objects from the test set. One class classification can be viewed as
a special type of two-class classification problem, where data only from a
single class is available for training the classifier. One class classifiers are
applied when the data from other classes is extremely hard or impossible to
collect. In the case of medical computer vision, obtaining ground truth data
for big datasets is a cumbersome task. It is relatively easy to form training
data for healthy volunteers. On the other side, collecting example data for
the pathology can be rather expansive, since images need to be manually
delineated by radiologists. Even if pathology examples are used in training,
there is no way to guarantee that all types of pathology are included and
thus recognized in a traditional binary classification problem. To cope with
this problem, one-class classification problems are particularly adapted.. By
just providing the non-pathological training data, one-class classifier learns
a representative model of this data. If test sample is too different from the
learned model, it is labeled as out-of-class with some degree of confidence.

This chapter presents an automatic algorithm for the detection of multiple
sclerosis lesions (MS Lesions) from multi-sequence magnetic resonance imaging
(MRI). We propose to use simple intensity features extracted from multi-
parametric MRI for lesion detection. The contributions of our work are two-
fold: (1) to build an automatic, probabilistic framework to discriminate NABTs
and MS Lesions based on simple image representation i.e. bag of words features
which is used to train a classifier at the voxel level; (2) generate probability map
from the classifier and used to guide detection for a lesion voxel based on Otsu
thresholding. Note that our framework is closely related to binary classification
between two classes (NABT and MS Lesions) of observations. There exist
subtle differences, though: binary classification is a symmetric setting for
discrimination between two sets whereas we are interested in addressing the
asymmetric problem of finding novel instances in one set relative to another.
We focus on the form of the problem in which training samples (NABT)
without anomalies (MS Lesions) are provided, and we calculate a lesion score
(anomaly scores) for test data. The proposed framework is evaluated for two
datasets consisting of 16 and 40 patients respectively. Our analysis reveals
that our approach is well suited for MS Lesions detection and outperforms
other benchmark approaches.

The chapter is organized as follows. In section 7.3, the framework for
MS Lesions detection is presented. Section 7.4 gives the details of classifier,
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development of probability score and detection based on probability score.
Results and conclusion of the proposed methods are presented in sections 7.6
and 7.7.

7.2 State-of-the-art Methods for One Class Learn-
ing

In machine learning, one-class classification, also known as unary classification,
attempts to identify objects of a specific class amongst all objects, by learning
from a training set containing only the objects of that class. In this section,
we discuss the major benchmark methods for one class learners.

7.2.1 Review of Binary SVM

Let us first take a look at the traditional two-class linear support vector machine
(SVM) [Vapnik 1995]. Consider a data setD =

{
(xi, yi)|xi ∈ <d, yi ∈ (−1, 1)

}N
i=1

where yi is either −1 or +1, indicating the class to which the point xi belongs.
We want to find the maximum-margin hyperplane that divides the points

having yi = 1 from those having yi = −1. Any hyperplane can be written as
the set of points x satisfying

w · x− b = 0 (7.1)

where · denotes the dot product and w a normal vector to the hyperplane.
The parameter b

‖w‖ determines the offset of the hyperplane from the origin
along the normal vector w. If the training data are linearly separable, we can
select two hyperplanes in a way that they separate the data and there are no
points between them, and then try to maximize their distance. The region
bounded by them is called the margin. These hyperplanes can be described by
the equations

w · x− b = 1 (7.2)

and
w · x− b = −1 (7.3)

By using geometry, the distance is found out between these two hyperplanes
as 2
‖w‖ , so the objective is to minimize ‖w‖. As we also have to prevent data

points from falling into the margin, we add the following constraint:

yi(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n. (7.4)
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The quadratic form of the optimization is given as follows

arg min
(w,b)

1

2
‖w‖2 subject to (for any i = 1, . . . , n) yi(w · xi − b) ≥ 1.

(7.5)
By introducing Lagrange multipliers α, the previous constrained problem can
be expressed as

arg min
w,b

{
1

2
‖w‖2 −

n∑
i=1

αi[yi(w · xi − b)− 1]

}
(7.6)

Now we briefly discuss about non-linear SVM [Shawe-Taylor 2004]. A very
nice property of SVMs is that it can create a non-linear decision boundary by
projecting the data through a non-linear function φ to a space with a higher
dimension. This means that data points which can’t be separated by a straight
line in their original space I are projected to a feature space F where there
can be a straight hyperplane that separates the data points of one class from
an other. When that hyperplane is projected back to the input space I, it will
have the form of a non-linear curve. The hyperplane is represented with the
equation wTx+ b = 0, w ∈ F and b ∈ <.

arg min
w,b,ξi

||w||2

2
+C

n∑
i=1

ξi, subjected to yi(w
Tφ(xi)+b) > 1−ξi ∀i = 1, ..., n

(7.7)
with constraints ξi > 0 ∀i = 1, ..., n. This minimization problem is solved
using Lagrange multipliers with quadratic programming. The decision function
(classification) rule for a data point x then becomes: f(x) = sgn(

∑n
i=1 αiyiK(x, xi)+

b). The function K(x, xi) = φ(x)Tφ(xi) is known as the kernel function. Here
αi are the Lagrange multipliers; every αi > 0 is weighted in the decision
function and thus supports the machine; therefore it is called Support Vector
Machine. Since support vectors are considered to be sparse, there will be
relatively few Lagrange multipliers with a non-zero value.

7.2.2 Kernel Function

The outcome of the decision function only relies on the dot-product of the
vectors in the feature space F i.e. all the pairwise distances for the vectors, it
is not necessary to perform an explicit projection to that space. As long as
a function K has the same results, it can be used instead. This is known as
the kernel trick and it is what gives SVM such a great power with non-linear
separable data points; the feature space F can be of a very large dimension
and thus the hyperplane separating the data can be very complex. Popular
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choices for the kernel function are linear, polynomial and Gaussian radial
basis function (RBF); amongst which RBF is used widely because of its single
parameter σ to be optimized.

K(x, x
′
) = exp

(
−
∥∥x− x′∥∥2

2σ2

)
(7.8)

With this set of formulas and concepts, we are able to classify a set of data
points into two classes with a non-linear decision function.

7.2.3 One class SVM

One class SVM was introduced in [Schölkopf 2001]. It tries to approximate the
function which captures regions in the input space where the probability density
of the data resides. Thus the function returns −1 in a small region (capturing
the training data points) and +1 elsewhere. The quadratic programming
minimization function is slightly different from the original stated above, but
the similarity is still clear:

arg min
w,b,ξi

‖w‖2

2
+

1

νn

n∑
i=1

ξi − ρ (7.9)

subjected to (wTφ(xi)) > ρ−ξi for all i = 1, ..., n and ξi > 0 for all i = 1, ..., n.
In two-class SVM, the parameters C decides the smoothness. In this formula,
it is the parameter ν that characterizes the solution. It does two things:(1) it
sets an upper bound on the fraction of outliers (training examples regarded
out-of-class); (2) it is a lower bound on the number of training examples used
as Support Vector. Therefore, this algorithm is often referred to as ν-SVM.
A standard Gaussian kernel is used for projecting feature vector into high
dimensional space φ(x).

7.2.4 Minimum Covariance Determinant (MCD)

Rousseeuw et al. [Rousseeuw 1999] introduced the Minimum Covariance Deter-
minant (MCD) estimator which is a robust estimator of a dataset covariance.
The idea is to find a given proportion observations which are not outliers
and compute their empirical covariance matrix. This empirical covariance
matrix is then rescaled to compensate the performed selection of observations.
Having computed the Minimum Covariance Determinant estimator, one can
give weights to observations according to their Mahalanobis distance, leading
the a reweighted estimate of the covariance matrix of the data set.
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7.3 Methodology

7.3.1 Framework

We introduce a novel framework to identify MS lesions, as illustrated in Figure
7.1. It is based on two main stages. The first stage consists of two parts: (1)
extraction of feature vectors from multi-channel MRI and their dimensionality
reduction using Principle Component Analysis (PCA); (2) training a classifier
as described in current and next sections. The second stage consists of testing
patches from the patient image by applying the learned model. The feature
designing from the patient patches is the same as mentioned above. Testing
is performed by doing full search over an image by placing a patch at every
voxel.

T1
T2

FLAIR

Dimensionality
Reduction

PCA

Classifier LPSC

Probability
Score

Aggregation

OTSU
Multi-level

Thresholding

Lesion
Detection

Trained
Classifier LPSC

Figure 7.1: Workflow for the proposed MS Lesions detection.

7.3.2 Probabilistic Classification

We consider training data formed at each voxel by stacking local intensities
from multiple modalities inside a surrounding patch of M voxels. To reduce
the dimensionality of each vector, PCA is performed on these vectors, leading
to a training set D =

{
(xi, yi)|xi ∈ Rd, yi ∈ Y

}N
i=1

where yi ∈ Y is the corre-
sponding class label and Y = (−1,+1) is the set of classes. The objective of
probabilistic classification is to learn the class-posterior probability p(y|x) of
the training samples D. Based on the class-posterior probability, classification
of a new sample x can be carried out

ŷ := arg max
y∈{−1,+1}

p(y|x) (7.10)
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with confidence p(ŷ|x). One approach to tackle this problem is Least Squares
Probabilistic Classification (LSPC) [Sugiyama 2010]. It employs the linear
combination of kernel functions and its parameters are learned by regularized
least-squares fitting of the true class-posterior probability.

It is possible to construct functions q(y = i|x, θi) to estimate p(y = i|x) for
each i ∈ Y using the approximation form

q(y = i|x, θi) = θTi φ(x) (7.11)

where θi = (θi,1, . . . , θi,B)T ∈ RB for some number of B parameters, and
φ(x) = (K(x,x1), . . . , K(x,xB)T ∈ RB) is a vector of kernel basis functions.
Here, the Gaussian kernel K(x,x

′
) = exp(− 1

2ρ2

∥∥x− x
′∥∥2), where ρ is the

width of the kernel. By setting B = N , a kernel basis function at every
training data sample is computed and for B < N , some random subset of the
training data samples is used to obtain the vector of kernel basis function.

The analytical solution for θi is given by

θ̂i = (ΦTΦ + ρIB)−1Φπi (7.12)

where Φ = (φ(x1), . . . , φ(xN))T is the design matrix, IB denotes B dimensional
identity matrix, πi is a column vector indicating membership of class i such
that the j th element is one if yj = i and zero otherwise. In Equation (7.12), the
effect of increasing the size of parameter ρ is both to regularize and to decrease
the sensitivity to outliers. Finally, a posterior is obtained by normalizing over
all classes as follows For y ∈ {−1,+1}, p(y|x) can be estimated as follows

p̂(y = i|x) =
q(y = i|x, θ̂i)∑

j∈{−1,+1} q(y = j|x, θ̂j)
(7.13)

LSPC is a consistent estimator and is very fast to compute in practice, finding
a global optimum for θ in a single step.

7.4 Lesion Detection Model

The framework in Section 7.3 was extended to one class learning in [Quinn 2014].
The basic premise holds an assumption that MS Lesions occupy low-density
regions of the data space and that a kernel model can be used to characterize
the high-density regions of NABT. We consider the case where MS Lesions are
not present in the training data but present in the test data. Let y = {−1,+1}
be the NABT and MS Lesions class respectively. The task of MS Lesions
detection is to assign a value to the estimate p̂(y = +1|x) for test data x given
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training data. The conditional probability of MS Lesions p(y = +1|x, θ) with
q(y = +1|x, θ+1) = 1− θT−1φ(x) can be expressed as

q(y = +1|x, θ+1) = 1− q(y = −1|x, θ−1) (7.14)

This can be estimated as discussed in Section 7.3. The parameters learned to
model the NABT can therefore be used for MS Lesions detection.

7.4.1 Aggregate Probability Score

Since the probability map generated by the classification output scores of LSPC
is noisy, we adopted the technique from [Reddy 2012] to rectify the probability
score obtained from the classifier by smoothing it using a 3D Gaussian. For
each voxel, its probability score is propagated to the neighborhood by using
an isotropic Gaussian kernel. It produces a weighted average of each voxel’s
neighborhood, with the average weighted more towards the value of the central
voxels. The Gaussian kernel for a voxel has a zero mean and standard deviation
defined by the probability score of that particular voxel. The advantage of
this method is that it establishes the spatial connectivity among voxels.

7.4.2 Thresholding Guided Detection

Automatic thresholding is used in final lesion detection. The basic idea is to
automatically select an optimal probability threshold value for separating MS
Lesions from the NABT based on their probability distribution. A common
thresholding technique, the Otsu method [Otsu 1979], provides satisfactory
results for thresholding an image with a histogram of bimodal distribution.
This method however fails if the histogram is unimodal or close to unimodal.
We used the revised Otsu method [Ng 2004] for selecting optimal threshold
values for both unimodal and bimodal distributions. Figure 7.2 shows the
pictorial representation of the proposed framework.

7.5 Experiments

7.5.1 Selection of NABT Patches

Over the years, researchers have proposed numerous approaches to represent
visual information in form of feature representation spanning a wide spectrum,
from local to global level and from low-level (bottom-up) to semantics (top-
down). As far as spatial resolution is concerned, at one end, a voxel can be
considered for representing the visual information. But there is generally not
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Figure 7.2: From top to bottom and left to right: Slice of FLAIR, aggre-
gated probability map, ground truth and obtained lesion mask after Otsu
thresholding.



86
Chapter 7. Probabilistic One Class Learning for Multiple

Sclerosis Lesions Detection

enough information at the voxel level to make a useful feature for further
learning frameworks. At other end, features computed on a whole image can
be incorporated for training procedure, as for instance, Gabor and Wavelets
based features. However, such a framework requires extraordinarily large
amounts of training data, since one needs to represent all possible spatial
configurations (scales and rotations) of images. Consequently, most of the
studies use feature at intermediate scale i.e. features based on image patches.
We use a representation based on the appearance of the patches. These patches
can correspond to parts, objects called as visual words or visual phrases. They
possess both representative and discriminative property such that they can be
detected in a large number of images with high recall and precision.

The selection of patches plays a crucial role in training the classifier.
Random patch selection may lead to over-fitting or under-fitting the classifier.
Patches should cover all the regions of the brain anatomy. We select the
NABT patches from the brain using the super-voxel technique. We briefly
discuss the super-voxel technique. Simple Linear Iterative Clustering (SLIC)
[Achanta 2012] is a simple and efficient method to decompose an image in
visually homogeneous regions which yield super-voxels. It is based on a spatially
localized version of k-means clustering.

The first phase is the initialization phase. The creation of cluster centers
begins with an initialization of k clusters equally spaced throughout the volume,
where k represents the desired approximate number of equally sized super-
voxels. Taking Ini to be the MRI signal intensity for the cluster center i
in modality n and x, y, z being the spatial coordinates, the cluster centers
Ci = [I1iI2i...Inixiyizi]

T are sampled on a lattice, spaced S voxels apart, where
S = 3

√
N
k
, and N is the total number of voxels in the volume. Centers are

moved to the lowest gradient position within their local 33 neighborhood to
avoid centering a super-voxel on an edge and to reduce the chance that the
seed voxel is a noisy voxel.

The next phase is the assignment phase, where each voxel i is associated
with the nearest cluster center whose search region overlaps voxel i. The
distance measure D determines the nearest cluster center for each voxel. Given
that the expected spatial extent of a super-voxel is a volume of approximately
S3, the search for similar voxels is performed in a region of around 2S×2S×2S

the super-voxel center. SLIC combines the intensity distance di and spatial
distance ds into a single metric, D. In order to combine the two distances into
this single metric it is necessary to normalize both the spatial and intensity
distances by their respective maximum distances within a cluster Ns and Ni.
Therefore the normalized metric D′ is formed by combining the spatial and
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intensity distances:

di =
√

(I1i − I1j)2 + (I2i − I2j)2 + ...+ (Ini − Inj)2 (7.15)

ds =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (7.16)

D
′
=

√(
di
Ni

)2

+

(
ds
Ns

)2

(7.17)

The maximum spatial distance expected within a given super-voxel corresponds
to the sampling interval

S =
3

√
Ns

k
(7.18)

Determining the maximum intensity distance is not as straightforward however,
as intensity distances vary from super-voxel to super-voxel. This problem is
solved by setting the normalized intensity distance to a constant m so that
the distance equation becomes:

D =

√
d2i +

d2s
D′
m2 (7.19)

Creating the distance measure in this way allows for m to be used to weigh the
relative importance of the intensity similarity and the spatial proximity. When
m is large, spatial proximity is weighed more heavily and this produces compact
super-voxels. Conversely, whenm is small the super-voxels created follow image
boundaries closely and have more irregular sizes and shapes. S and m can
be thought of as the average expected spatial and intensity distances inside
a super-voxel, respectively. Compact super-voxels can be desirable because
they more often correspond to a lattice structure in the volume, and their
boundaries are simpler which leads to more regular neighborhood relationships.
The compactness parameter m can also be described in relation to the intensity
range in the volume m = range% · (max(I)−min(I)). This definition yields
a more intuitive procedure for the user as now the user needs to input a
target average intensity range for the super-voxels, and this is scaled to each
particular volume. The assignment and update phases are repeated iteratively
until the L2 norm error between the new cluster center locations and the old
locations converge. Alternatively, a fixed number of iterations can be used.

The final phase is a post-processing phase to enforce connectivity by
reassigning any disjoint voxels to nearby super-voxels, and ensuring that all
voxels within a label are connected components within 26-neighbor connectivity.
In this process, a minimum super-voxel size can also be enforced.
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The patches from boundary of super-voxels and its centroid are chosen
as shown in the Figure 7.3. We used the python-implementation of SLIC
from sci-kit image [van der Walt 2014]. The number of super-voxels k in the
segmented output image is chosen as 5000. The compactness factor m is kept
as 30. The contours of the segmented output image is obtained by connected
component labeling. The patches which overlap by more than 50% are removed
from the training.

Figure 7.3: Super-voxels using SLIC on control subject on FLAIR sequence.

7.5.2 Data

Two datasets were chosen to evaluate intensity normalization. The first dataset
consists of 18 MS patients while the second dataset consists of 40 patients.
Whole-brain MR images were acquired on MS patients in both datasets. T1-
w MPRAGE, T2-w and FLAIR modalities were chosen for the experiment.
Expert annotations of lesions were carried out by an expert radiologist on all
MS patients. The volume size for T1-w MPRAGE and FLAIR is 256×256×160
and voxel size is 1×1×1 mm3. For T2-w, the volume size is 256×256×44
and voxel size is 1×1×3 mm3. All imaging experiments for dataset 1 were
performed on a 3T Siemens Verio (VB17) scanner with a 32-channel head
coil. Dataset 2 consists of multi site data in which imaging experiments were
performed on two 3T Siemens Verio (VB17) scanners and a 3T Philips Achieva
scanner, both of them having 32-channel head coil. MR images from each
patient are de-noised [Coupe 2008], bias field corrected [Tustison 2010] and
registered with respect to T1-MPRAGE volume. All images are processed to



7.6. Results and Discussion 89

extract the intra-cranial region. Intensity normalization with respect to an
unbiased atlas is performed as described in chapter 5.

7.5.3 Experimental Setup

NABT patches were collected from 20 healthy volunteers. The trained classifiers
were tested on MS subjects. The features are intensity values extracted from
33 patches. The concatenated feature vector was formed using voxel values by
extracting patches from FLAIR, T2-w and T1-w MPRAGE. The dimensionality
reduction of feature vector was done using PCA. The number of components
was decided by keeping 90% of the total variance.

In this experiment, in context of Equation (7.12), we searched the regu-
larization parameter ρ and Gaussian kernel width σ over a range of 10[−3:1:2]

and {m/10,m/5,m/2,m, 3m/2} respectively, where m is the median of kernel
matrix φ(x) as described in Section 7.2.2. We chose the best ρ according to
the validation set. This set consists of two MS patients which are not included
in the test dataset.

We compared results with other benchmark methods: One Class SVM
(OSVM) [Section 7.2.3] and the Minimum Covariance Determinant estimator
(MCD) [Section 7.2.4]. For both OSVM and MCD, we chose the best parameters
ν for OSVM and concentration of contamination according to the validation
set. The validation set is same as used in proposed method. For OSVM, the
Gaussian width is set to the median distance between samples, which has
been shown to be a useful heuristic [Schölkopf 2001]. We report the results
for ν = 0.2 for OSVM. For MCD, the amount of contamination of the data set
is assumed to be 0.30.

7.6 Results and Discussion

Table 7.1: Performance analysis for lesion detection on dataset 1 with intensity
normalization.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

OCSVM 0.32±0.04 0.52±0.08 0.63±0.01 0.65±0.02 0.56±0.03 0.60±0.03

Proposed 0.35±0.08 0.55±0.04 0.79±0.02 0.94±0.03 0.7±0.02 0.83±0.01
MCD 0.28±0.04 0.39±0.05 0.55±0.02 0.65±0.03 0.40±0.03 0.52±0.05

In order to investigate the effect of intensity normalization on classifier to
distinguish between lesion and NABT, we conducted lesion detection experi-
ments with and without intensity normalization. We report the quantitative
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Table 7.2: Performance analysis for lesion detection on dataset 1 without
intensity normalization.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

OCSVM 0.27±0.02 0.54±0.09 0.58±0.02 0.64±0.05 0.53±0.04 0.58±0.02

Proposed 0.30±0.09 0.53±0.04 0.75±0.04 0.89±0.02 0.72±0.04 0.79±0.02
MCD 0.26±0.04 0.40±0.05 0.51±0.02 0.61±0.04 0.35±0.05 0.45±0.05

Table 7.3: Performance analysis for lesion detection on dataset 2 with intensity
normalization.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

OCSVM 0.38±0.08 0.55±0.06 0.66±0.04 0.70±0.07 0.54±0.08 0.63±0.04

Proposed 0.42±0.06 0.52±0.06 0.76±0.04 0.96±0.04 0.70±0.05 0.82±0.04
MCD 0.26±0.03 0.46±0.06 0.56±0.02 0.65±0.06 0.48±0.02 0.49±0.04

Table 7.4: Performance analysis for lesion detection on dataset 2 without
intensity normalization.

ϕ = 0.1 ϕ = 0.2 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

OCSVM 0.29±0.04 0.40±0.05 0.62±0.04 0.64±0.04 0.51±0.05 0.58±0.03

Proposed 0.55±0.04 0.48±0.05 0.72±0.05 0.82±0.03 0.64±0.06 0.76±0.04
MCD 0.25±0.02 0.44±0.04 0.53±0.01 0.62±0.04 0.44±0.04 0.45±0.07
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improvement for identification of lesions for two datasets. For dataset 1, we
report in Tables 7.1 and 7.2 the precision and recall score average across 16
patients with and without intensity normalization respectively. For dataset 2,
we report in Tables 7.3 and 7.4 the precision and recall score average across 40
patients with and without intensity normalization respectively. The lesion is
said to be detected if Rc∩RGT

RGT
≥ ϕ where Rc, RGT and ϕ are respectively the

candidate region in the image, the ground truth and a threshold. As from the
figures, our approach outperforms other methods. For intensity-normalized
dataset 1 and dataset 2, we have a very high recall of 0.94 and 0.96 at ϕ = 0.2

and even 0.83 and 0.82 at ϕ = 0.4. On other hand, For un-normalized dataset
1 and dataset 2, we have a very high recall of 0.89 and 0.82 at ϕ = 0.2 and
even 0.79 and 0.76 at ϕ = 0.4. From all the tables, it is clear that intensity
normalization plays crucial role in our framework. For evaluating the quality
of MS lesion detection proposals, we follow the overlap criterion as described
above. We compare the different benchmark methods using Receiver Operating
Characteristic (ROC) for Precision Vs 1−Recall curves. We report Area Under
Curve (AUC) as described for various overlap thresholds (ϕ) ranging from 0.1
to 0.8. Figures 7.5 and 7.4 demonstrate the ROC-AUC for proposed framework
of 0.71 and 0.65 for dataset 1 with and without intensity normalization. Figures
7.7 and 7.6 demonstrate the ROC-AUC for proposed framework of 0.76 and
0.56 for dataset 2 with and without intensity normalization.

Both benchmark methods have a lower performance. A potential reason
for OSVM to perform slightly worse is because it is not easily scalable. It
becomes very slow when there are more than 10 or 20 thousand training points.
Besides, the NABT class has a large intra class variance. MCD also results in
lower performance as it may fail to capture the multi-modal distribution of
data. Our framework alleviates these problems by including a large training
dataset estimating correct data distribution.

Figures 7.8 and 7.9 show the lesion detection results for FLAIR sequence .
The detections are shown in three different orientations. In each of the image,
the top row represents the image, image embedded with ground truth and
lesion detections obtained by OCSVM. Bottom row shows detections obtained
by MCD and proposed framework respectively. These figure demonstrates
visually the ability of our approach to detect lesions. As seen from the last
column of bottom row, there is considerable improvement of lesion detection,
thanks to the proposed framework.
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Figure 7.4: Precision vs 1-Recall curve for dataset 1 without intensity normal-
ization.

Figure 7.5: Precision vs 1-Recall curve for dataset 1 with intensity normaliza-
tion.
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Figure 7.6: Precision vs 1-Recall curve for dataset 2 without intensity normal-
ization.

Figure 7.7: Precision vs 1-Recall curve for dataset 2 with intensity normaliza-
tion.
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(a) (b)

(c)

Figure 7.8: From dataset 1, a slice of FLAIR with lesion detection in three
different orientations : (a) axial; (b) coronal ; (c) sagittal. In each image:
(1) top row: a slice of FLAIR, same slice overlayed with ground truth (red),
detections (green) obtained by OCSVM; (2) Bottom row: from left to right,
detection obtained by MCD and proposed method.



7.6. Results and Discussion 95

(a) (b)

(c)

Figure 7.9: From dataset 2, a slice of FLAIR with lesion detection in three
different orientations : (a) axial; (b) coronal ; (c) sagittal. In each image:
(1) top row: a slice of FLAIR, same slice overlayed with ground truth (red),
detection (green) obtained by OCSVM; (2) Bottom row: from left to right,
detection obtained by MCD and proposed method.
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7.7 Conclusion

We have introduced a novel method for MS Lesions detection based on
Least Squares Probabilistic Classifier. The efficacy of our method was evalu-
ated though rigorous evaluation on multi-site multi-scanner data from multi-
sequence MRI volumes of patients with variable MS lesion load. We have
demonstrated that our method achieves better performance compared to bench-
mark methods: OSVM and MCD. This observation is consistent in both type
of data e.g. intensity-normalized and un-normalized. Our results demonstrate
that intensity normalization has a instrumental role to play in both enabling
efficient NABT learning and classification ability. Our methodology is more
suitable for MS lesion analysis because of its ability to capture NABT dis-
tribution correctly. This performance suggests that it can provide valuable
assistance in detecting the MS lesions in clinical routine with high reliability.

The method has wide applicability as was demonstrated with experiments
on two datasets. The proposed framework is generic in nature and can be
extended beyond MS Lesions detection e.g. ischemic strokes, tumor. The
framework described here allows for exploration of additional MR sequences
with or without contrast agents.
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Summary and Perspective

In this thesis, we have presented methods for longitudinal intensity normal-
ization, change detection of lesion activity and MS lesion detection. Image
representation and learning is a critical component of any pathology recognition
task and has been an active research problem in the medical vision community.
The publications which were stemmed out of this thesis so far are as follows:

• Christian Barillot, Yogesh Karpate, Alessandro Crimi and Olivier Com-
mowick. Analyse d’images spatio-temporelles dans la Sclérose en Plaques.
In Reconnaissance de Formes et Intelligence Artificielle (RFIA) 2014,
Rouen, France, June 2014

• Yogesh Karpate, Olivier Commowick, Christian Barillot and Gilles Edan.
Longitudinal Intensity Normalization in Multiple Sclerosis Patients. In
Clinical Image-Based Procedures. Translational Research in Medical
Imaging held in conjunction with MICCAI 2014, volume 8680 of Lec-
ture Notes in Computer Science, pages 118–125. Springer International
Publishing, 2014

• Yogesh Karpate, Olivier Commowick and Christian Barillot. Robust
detection of multiple sclerosis lesions from intensity-normalized multi-
channel MRI. In Proc. SPIE, volume 9413, pages 941314–941314–7,
2015

• Yogesh Karpate, Olivier Commowick and Christian Barillot. Probabilistic
One Class Learning for Automatic Detection of Multiple Sclerosis Lesions.
In IEEE International Symposium on Biomedical Imaging (ISBI), pages
486–489, Brooklyn, United States, April 2015

We now summarize the contributions made in this thesis and then present
some directions of possible future work.

8.1 Longitudinal Intensity Normalization

In Chapter 5, we proposed a novel framework for longitudinal intensity nor-
malization to derive a more discriminative image representation for tracking
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disease evolution. The proposed method addresses two limitations of the
standard techniques i.e. (i) robust yet sensitive estimation of tissue parameters
with γ divergence, (ii) disease evolution tracking based on subtraction and
thresholding.

We showed that the method performs better than current state of the art
algorithms. The method has general applicability to other tasks where the
tracking of lesions is important e.g. we demonstrated the method on active
lesions with T1-Gd as well.

Future work: We considered a single value of γ-parameter as we expected
the scans to adapt to the content and hence adapt automatically to the modes
in the distribution of tissue parameters, even if multiple tuning parameters
provide different information. However, in more complicated scenarios, we can
consider different values of tuning parameters for the same image. The best
one or a weighted combination of all of them may then be considered for the
final decision.

Another path could be a simple extension to validate the framework on
another contrast agent ultra small super-paramagnetic iron oxide (USPIO)
which generally exhibits hypo intense lesions on T1 image. This is particularly
challenging because CSF and lesions enhanced by USPIO share a similar
intensity space. Currently, the proposed intensity normalization method
considers only a single sequence at a time. A possible direction could be to
extend this representation for multi sequence approach by considering their
information simultaneously. This may lead to better intensity normalization.

8.2 Robust Detection of Multiple Sclerosis Le-
sions from Intensity-Normalized Multi-Cha-
nnel MRI

It aims at studying the benefits of using multi-channel MRI to detect statisti-
cally significant differences between each individual MS patient and a database
of control subjects. This framework consists in two components. First, intensity
standardization is conducted to minimize the inter-subject intensity difference
arising from variability of the acquisition process and different scanners. Based
on 5, the intensity normalization method maps parameters obtained using a ro-
bust Gaussian Mixture Model (GMM) estimation not affected by the presence
of MS lesions. The second part studies the comparison of multi-channel MRI
of MS patients with respect to an atlas built from the control subjects, thereby
allowing us to look for differences in normal appearing white matter, in and
around the lesions of each patient. Experimental results demonstrate that
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our technique accurately detects significant differences in lesions consequently
improving the results of MS lesion detection.

Future Work: The work presented demonstrated that statistical compar-
isons based on voxel wise comparison achieve very high performance, however,
the overall global structure is still missing. One can consider to infuse statisti-
cal comparison of patches using kernel methods, i.e. two sample test based on
kernel methods.

8.3 Probabilistic One Class Learner for MS Le-
sion Detection

In Chapter 7, we proposed a method to learn a bag of words representation
from multi-sequence MRI for a given classification task. We demonstrated that,
only by learning on data of healthy volunteers by one class learner, we can
detect the MS lesions from a patient. This is particularly important because
standard binary classifiers suffer from class imbalance problem generating
bias towards healthy class under-fitting the minority class i.e MS lesions. We
proposed to learn such discriminative distribution for MS lesion detection. The
proposed method addresses an important issue of adaptation of the represen-
tation pathological tissues based on the specific distribution of discriminative
information in healthy tissues. We showed that the method achieves better or
comparable results with respect to benchmark methods on our dataset.

Future work: The method uses T1-w-MPRAGE, T2-w and FLAIR-w
sequences. One can include more sequences like DTI and MTR. The probability
maps obtained from classifier are smoothed using simple Gaussian kernel to
establish spatial connectivity. This can be replaced with a more sophisticated
approach like Conditional Random Fields. This is an interesting direction to
follow. Besides, the evaluation of performance metrics for different patch sizes
will yield an insight into classifier behavior.

With existing framework, only raw intensity patches are taken into account.
Another possible direction is to extend this framework on data based on
features. For example, one can think to include scale and rotational invariant
features of images for better detection of MS lesions.

8.4 Conclusion

In the present thesis we have mainly addressed the problem of image repre-
sentation, with MS lesion detection. Many longitudinal MS investigations are
coming up. MR images play crucial role in diagnosis and better therapeutic
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management of the disease. In the near future, it will be critical to have good
representations and detection frameworks in order to be able to accurately
analyze and understand MS lesions using automatic statistical and machine
learning based techniques. Analyzing longitudinal MR scans will also become
an important technology owing to its numerous important applications e.g.
tracking disease evolution. Towards these goals, we have proposed image
representations and learning methods which extend the current state-of-the-art
either by better exploiting the spatial distribution of discriminative information
or by providing a statistical test of highly local pixel neighborhoods. We have
demonstrated, with experiments on challenging datasets, that our proposed
methods perform better or comparable to the state-of-the-art methods.

We have proposed three different MS lesions detection approaches which
can be utilized in different scenarios. First method is useful to track the lesion
evolution in longitudinal studies. Though this method detects appearing or
vanishing lesions quite effectively, there is no provision to detect static lesions.
The second method is based on patient to group comparison methodology,
which can detect lesions on voxel level. This method works very well in
a controlled environment. The method is highly dependent on data pre-
processing pipeline. Another factor which may affect this method is atlas
construction. The last one is based on probabilistic one class learner. The
prime advantage of this approach is that there is no need to include MS
lesion data in training. The approach is flexible to accommodate the different
nature of dataset. The parameter tuning of this approach need to be handled
carefully. The choice of methodology for MS lesion detection between last
two approaches depends on the different use cases. They may be used as
complementary to each other. For ex. detections obtained by patient to group
comparison method can be used as a prior in probabilistic one class learning
framework. Consequently, this will reduce the search space to look for probable
lesion locations and will accelerate the method. Patient to group comparison
method can be extended to another application. It may be used to detect
other abnormal changes in the brain e.g. atrophy.

An efficient MS lesion segmentation can be obtained by detection. The
core idea is to generate around few hundred candidate MS lesion segments
per image that with high probability coarsely capture most of the lesions
in the image. MS lesion detection search must be performed over position,
scale and aspect ratio. The resulting four dimensional search space is large
and difficult to search over exhaustively. For MSL detection, the most of the
state-of-the-art is based on exhaustive search. In order to enable the use of the
more expensive features and classifiers, selective search sampling can be used
instead of sliding window technique. The candidate segments themselves may
be noisy and overlapping and in general need not capture the objects perfectly.
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Then such detection can be improved to yield MS lesions segmentation masks.
The proposed framework can also be used for localization of MS lesions where
detected lesions can be represented by the bounding boxes. The appearance
and contextual knowledge of anatomy can be effectively incorporated to obtain
a better MS lesion segmentation.
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Résumé: La sclérose en plaques (SEP) est une maladie auto-immune
inflammatoire du jeune adulte causant des handicaps variables et progressifs
irréversibles. Cette maladie est présente de manière prépondérante dans
l’hémisphère nord. Cette thèse s’attache à la caractérisation et à la modélisation
de signatures IRM multimodales des lésions de sclérose en plaques. L’objectif
est d’améliorer les modèles de représentation de l’image et d’adapter les
méthodes d’apprentissage pour la reconnaissance visuelle, dans le cas où des
informations de haut niveau telles que les lésions SEP incluses dans l’IRM
sont extraites.

Nous proposons dans cette thèse un nouvel algorithme de normalisation
d’intensité en IRM, particulièrement centré sur la normalisation d’images lon-
gitudinales multimodales, afin de produire des détections d’évolution de lésion
robustes. Cette normalisation est centrée sur la modélisation de l’histogramme
de l’image par un modèle de mixture de Gaussiennes robuste à la présence
de lésions. Faisant suite à cet algorithme, nous proposons également deux
nouvelles méthodes de détection de lésions SEP basées sur (1) une compara-
ison statistique du patient vis à vis d’une population de sujets contrôle et
(2) un cadre probabiliste de détection basé sur un apprentissage d’une classe
(tissus sains). Nous avons évalué les algorithmes proposés sur plusieurs jeux de
données multi-centriques et vérifié leur efficacité dans la détection de lésions.
Mot clés: IRM, sclérose en plaques, statistiques, apprentissage.

Abstract: Multiple Sclerosis (MS) is an acquired inflammatory dis-
ease, which causes disabilities in young adults and it is common in northern
hemisphere. This PhD work focuses on characterization and modeling of
multidimensional MRI signatures in MS Lesions (MSL). The objective is to
improve image representation and learning for visual recognition, where high
level information such as MSL contained in MRI are automatically extracted.

We propose a new longitudinal intensity normalization algorithm for multi-
channel MRI in the presence of MSL, which provides consistent and reliable
longitudinal detections. This is based on learning the tissue intensities from
multichannel MRI using robust Gaussian Mixture Modeling. Further, we pro-
posed two MSL detection methods based on a statistical patient to population
comparison framework and probabilistic one class learning. We evaluated our
proposed algorithms on multi-center databases to verify its efficacy.
Key Words: MRI, Multiple Sclerosis, Statistics, Machine Learning.


