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Chapter 1

Introduction and Background

1.1 Introduction

There is an increasing demand for computing power in many applications, ranging from scien-

tific computing to gaming and embedded systems. This is leading the hardware manufacturers

to design architectures with increasing degrees of parallelism and more complex memory hier-

archies. A recent graphics card such as the Nvidia GeForce GTX Titan Z, for example, has a

theoretical peak performance of 2707 GFLOPS (Giga FLoating-point Operations Per Second)

in double precision, such a graphics card is higher in performance than the most powerful

supercomputer listed on the TOP500 list of June 2000 [71], which had a peak performance of

2379 GFLOPS and is 4× higher in performance than the most powerful supercomputer listed

on the TOP500 list of June 1997 [33].

With this increasing degree of parallelism and complex memory hierarchies, writing and

debugging parallel programs is becoming more and more challenging. First, because thinking

about the execution of parallel threads is not intuitive, which makes the process of writing

parallel programs difficult and error prone. Second, getting good performance is not easy,

especially when it comes to writing a program for an architecture that has a complex memory

hierarchy and strict resource limits. Third, the problem of portability: a parallel program

written and optimized for a specific architecture, cannot, in general, take advantage of the

characteristics of another architecture without being modified (a different implementation of

the program should be provided for each target architecture). These problems make parallel

programming and code maintenance quite expensive in time and in resources.

An emerging solution to these problems is the use of higher level programming languages

and the use of compilers to efficiently compile them into parallel and highly optimized low

level code. There are many advantages of using a high level language. First, such a language

is easy to use and more intuitive. Second, the parallel code is generated automatically by the
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optimizing compiler which reduces the amount of bugs in the generated parallel code. Third,

a high level language is architecture independent in general and thus it does not suffer from

the problem of portability. Leaving the tedious, low level and architecture-specific optimiza-

tions to the compiler enables programmers to focus on higher level optimizations, leading to

reduced development costs, shorter time-to-market and better optimized code.

Many approaches have been proposed to address the problem of lowering (compiling) a

high level code into a parallel and highly optimized low level code. Most of the existing ap-

proaches focus on the optimization of loops (loop nests) since these are, in general, the most

time consuming parts of a program. Early work in this area focused on the problem of data

dependence analysis [15, 98], it was followed by the introduction of many loop transforma-

tions designed to enhance program performance, examples of these transformations include

loop blocking (also known as tiling), which enhances data locality [12, 87, 108], vectorization,

which transforms scalar operations into vector operations [1, 2], and automatic paralleliza-

tion [16, 32, 34].

Although classical loop transformations are well understood in general, the design of a

model that allows an effective application of a large set of loop transformations is not an

easy task. Finding the right sequence of transformations that should be applied is even more

challenging. To address these problems, researchers have investigated the possibility of using

more expressive models and the possibility of deriving combinations of classical loop trans-

formations using a single unified loop transformation framework. As a result of this research

the polyhedral framework evolved [37, 38]. The polyhedral framework is an algebraic pro-

gram representation and a set of analyses, transformations and code generation algorithms

mainly dedicated to the optimization and automatic parallelization of loop nests. It enables

a compiler to reason about advanced optimizations and program transformations addressing

the parallelism and locality-enhancing challenges in a unified loop transformation framework.

The polyhedral framework relies mainly on static analysis, although some efforts are being

made to add support for dynamic analysis to the polyhedral model [5, 53, 93]. Static analysis

is the process of extracting semantic information about a program at compile time whereas

dynamic (or runtime) analysis extracts information at runtime. One classical example of static

analysis is deciding whether two pointers may-alias: names a and b are said to may-alias each

other at a program point if there exists a path P from the program entry to that program point,

such that a and b refer to the same location after execution along path P.

In polyhedral compilation, an abstract mathematical representation is first extracted from

the program, then data dependences are computed based on this representation. Loop trans-

formations satisfying these dependences can be applied, and finally code is generated from

the transformed polyhedral representation. Significant advances were made in the past two
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decades on dependence analysis [36, 82], automatic loop transformation [40, 64, 65] and

code generation [11, 54] in the polyhedral model. Examples of recent advances include au-

tomatic loop transformations and code generation for shared memory [18], distributed mem-

ory [17] and for complex architectures such as GPGPUs (General Purpose Graphics Process-

ing Units) [10, 104].

Among the strengths of the polyhedral framework:

• It allows precise data dependence analysis and fine grain scheduling i.e., the ability to

change the order of execution of only one or a few execution instances of a statement.

An execution instance or an iteration of the statement S (the statement labeled with S) in

the following loop nest

for (int i = 1; i < n; i++)

S: A[i℄ = 0;

is an execution of the statement in one of the iterations of the loop. Each iteration of the

loop executes one instance of the statement.

• The polyhedral framework provides a unified framework in which a large set of trans-

formations can be modeled and in which a compiler can reason about complex loop

transformations.

• The algebraic representation of a program in the polyhedral model captures the seman-

tics of the program. Loop transformations operate on this representation instead of

operating on the syntax (code) of the program, and thus loop transformations are robust

and would operate in the same way on programs that have the same semantics but are

written differently.

Among the limitations of the polyhedral framework:

• Limitations that are common to all static analysis frameworks:

– Static analysis frameworks do not accurately model programs with dynamic con-

trol. For example a conditional such as if (A[i℄) cannot be represented accurately

and cannot be analyzed at compile time since the value of A[i℄ is only known at

runtime. Many extensions to the classical polyhedral model were developed in

order to overcome this limitation, some of these extensions use exit/control pred-

icates and over-approximations to the iteration domain (the set of the execution

instances of a statement) [14, 41], and other extensions encapsulate the dynamic

control in macro-statements [102].
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– Automatic optimization and parallelization frameworks that rely on static analysis

have limited ability in performing accurate dependence analysis and in optimiz-

ing code that manipulates dynamic data structures such as lists, graphs and trees

(which all heavily use pointers). This is mainly because an effective optimization

requires an accurate dependence analysis which in turn requires an accurate alias

analysis, but alias analysis is undecidable in languages that permit recursive data

structures (multilevel pointer indirection) [58, 86], thus the dependence analysis is

not accurate in such a context which reduces the effectiveness of automatic opti-

mization and parallelization.

• Limitations that are specific to the polyhedral framework:

– Many algorithms in the polyhedral model are computationally expensive as they

rely on the use of integer linear programming (existing algorithms to solve ILP

problem have an exponential complexity in the worst case).

Although the polyhedral model has some weaknesses, it is showing promising results in

many contexts and is being gradually included in industrial compilers such as IBM XL [19]

and R-Stream [70]. The key to take full benefit from the polyhedral model is to use it in

the right context. In this dissertation, we consider the following context: we do not address

the problem of optimizing legacy code and we assume that the optimized code does not use

pointers except in very few cases that we present in Chapter 4. We do not use the polyhedral

model to optimize code that manipulates graphs, lists or trees, we rather use it in code that

mainly manipulates arrays.

In this dissertation, we aim to widen the scope in which polyhedral loop optimizations

can be used effectively. Our work was motivated by the use of the polyhedral model in two

contexts:

• The use of the polyhedral model in the GCC compiler (the GRAPHITE polyhedral

framework [81, 95]): we particularly address a classical technical problem in applying

tiling in this context (tiling is an optimization that enhances data locality).

• The use of the polyhedral framework in DSL (Domain Specific Language) compilers:

we particularly address two classical limitations (mentioned above) that became appar-

ent in this context.

The work presented in this dissertation is an attempt to address these three problems. This

work is often the result of collaborative research, development and experiments. We will

acknowledge the key contributors and their respective roles in each technical chapter. In the
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rest of this chapter we will introduce some key concepts and then we will provide an outline

of the dissertation and a high level overview of the three problems that we address.

1.2 Background and Notations

Let us now introduce the basic concepts and notations used throughout the rest of the docu-

ment.

1.2.1 Maps and Sets

The notations used in this dissertation for sets and maps are those used by ISL (Integer Set

Library) [101] (these notations are also close to those used in the Omega project [109]).

i. Set

An integer set as defined in ISL is a set of integer tuples from Z
d that can be described using

Presburger formulas [89] (presented later). d is the dimensionality of the set (the number of

integers in each tuple). An n-tuple is represented in ISL with [a1,a2, . . . ,an].

Supposing that we have a set of objects β1,β2, . . . ,βn. We represent this set as follows:

{β1;β2; . . . ;βn}. An example of a set of integer tuples is:

{[1,1]; [2,1]; [3,1]; [1,2]; [2,2]; [3,2]}

Instead of listing all the integer tuples of the set, the integer tuples can be described using

Presburger formulas (presented later). The two-dimensional set can be written as follows

{S[i, j] : 1≤ i≤ 3∧1≤ j ≤ 2}

i and j are the the dimensions of the set. The tuples of a set can optionally have a common

name: S in the example. Figure 1.1 shows a graphical representation of the set.

In general, an integer set has the form

S = {N[~s]| f (~s,~p)}

with ~s representing the integer tuples of the integer set (~s ∈ Z
d), N, a common name for all

the tuples ~s, d the dimensionality of the set, ~p ∈ Z
e a vector of e parameters and f (~s,~p) a

Presburger formula that evaluates to true, if and only if ~s is an element of S for the given

parameters ~p.
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Figure 1.1 Graphical representation of a set

Presburger formula We define a Presburger formula using an EBNF (Extended Backus-Naur

Form) grammar [106].

<formula> ← <formula>∧<formula> | <formula>∨<formula>

| ¬<formula> | ∃<var>.<formula>

| ∀<var>.<formula> | <atom>

<atom> ← <term><relop><term>

<term> ← <numeral> | <term>+<term> | −<term>

| <numeral>∗<term> | <var>

<relop> ← < | ≤ | = | > | ≥

<var> ← x | y | z | . . .

<numeral> ← 0 | 1 | 2 | . . .

<numeral>∗<term> is not a general multiplication operator; it is a short-cut for<term>+

· · ·+<term>.

Presburger arithmetic (in which Presburger formulas are used) is used mainly because it is

a decidable arithmetic. That is, there exists an algorithm which decides whether an arbitrary

Presburger formula is true (valid) or not. The best known upper bound on the complexity

of such an algorithm is O(222pn

) where p is a positive constant and n is the length of the

formula [80]. The length of a formula is the number of its atoms. An atom is an expression of

one of the forms (t1 < t2), (t1 ≤ t2), (t1 = t2), (t1 > t2) or (t1 ≥ t2) where t1 and t2 are terms.

Operations on sets. Examples of operations that can be done on sets include checking whether

a set is empty, computing the union and the intersection of two sets and checking whether two

sets are equal.
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ii. Map

A map is a relation between two sets. For example

M = {S1[i, j]→ S1[i+2, j+2] : 1≤ i≤ 3∧1≤ j ≤ 2}

represents a relation between two sets, the first is called the domain or the source and the

second is called the range or the sink.

Figure 1.2 shows a graphical representation of the map M.

Figure 1.2 Graphical representation of a map

In general, a map has the form

M = {A[~s]→ B[~o],(~s,~o) ∈ Z
d1×Z

d2 | f (~s,~o,~p)}

where A[~s] represents the domain or the source and B[~o] represents the range or the sink. d1

and d2 are the dimensionalities of~s and~o, ~p ∈ Ze is a vector of e parameters and f (~s,~o,~p) is a

Presburger formula that evaluates to true, if and only if there is a relation from~s to ~o in M for

the given parameters ~p.

Among the operations on maps and sets, there is the operation of application of a map to

a set. The application of the map map1 to the set set1 is written as map1(set1). The function

calls Soure(map1) and Sink(map1) return respectively the source and sink of the map map1.

1.2.2 Additional Definitions

Lexicographic Order An iteration vector [i1, . . . , ik, . . . , in] precedes another iteration vector

[i′1, . . . , i
′
k, . . . , i

′
n] if and only if ∃k ∈ N such that i1 = i′1∧ i2 = i′2∧· · ·∧ ik < i′k. This is denoted

as follows

[i1, i2, . . . , ik, . . . , in]≪ [i′1, i
′
2, . . . , i

′
k, . . . , i

′
n]
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Quasi-affine expressions A quasi-affine expression is a formula in Presburger arithmetic that

cannot have quantifiers and that has the operators ==, !=, /, % and the ternary ?: operator in

addition to the classical operations supported in Presburger arithmetic.

More explicitly, a quasi-affine expression is any expression over integer values and integer

variables involving only the operators +, - (both unary and binary), *, /, %, &&, ||, <, <=, >,

>=, ==, != or the ternary ?: operator. The second argument of the / and the % operators is

required to be a (positive) integer literal, while at least one of the arguments of the * operator

is required to be piecewise constant expression. An example of a quasi-affine expression is:

15*i+12*j+10.

for (int i = 1; i < n; i++) {

A[10*i+20℄ = 0; // The subsript of A[℄ is quasi-affine

A[i*n℄ = 0; // The subsript of A[℄ is not quasi-affine

B[i*i℄ = 0; // The subsript of B[℄ is not quasi-affine

C[t[i℄℄ = 0; // The subsript of C[℄ is not quasi-affine

D[foo(i)℄ = 0; // The subsript of D[℄ is not quasi-affine

}

Static-affine control In order to be able to extract the polyhedral representation, all loop

bounds and conditions need to be quasi-affine expressions with respect to the loop iterators

and a fixed set of symbolic constants, i.e., variables that have an unknown but fixed value

throughout execution. A code is static-affine if it only contains control that respects this condi-

tion. In Chapter 2 we assume that the code that we treat is static-affine, but we do not assume

this for Chapters 3 and 4.

1.2.3 Polyhedral Representation of Programs

In polyhedral compilation, an abstract mathematical representation is used to model programs,

each statement in the program is represented using three pieces of information: an iteration

domain, access relations and a schedule. This representation is first extracted from the pro-

gram AST (Abstract Syntax Tree), it is then analyzed and transformed (this is the step where

loop transformations are performed). Finally the polyhedral representation is converted back

into an AST.

i. Iteration Domains

The iteration domain of a statement is a set that contains all the execution instances of that

statement. Each execution instance (or dynamic execution) of the statement in the loop is



1.2 Background and Notations 9

represented individually by an identifier for the statement (the name of the statement) and an

iteration vector, which is tuple of integers that uniquely identifies the execution instance.
for (i=1; i<=2; ++i)

for (j=1; j<=2; ++j)

S: a[i℄ = 0;

Figure 1.3 Example of a kernel

The iteration domain for the statement S, called Ds, is the following set

Ds = {S[1,1],S[1,2],S[2,1],S[2,2]},

where each tuple in the set represents a possible value for the loop iterators i and j. The

iteration domain for the statement S can also be written as follows

Ds = {S[i, j] : 1≤ i≤ 2∧1≤ j ≤ 2}

We use Ds to refer to the iteration domain of a statement S.

Figure 1.4 shows a graphical representation of the iteration domain of the statement S1 in

the following loop .

for (i=1; i<=n; ++i)

. for (j=1; j<=n; ++j)

. . if (i<=n-j+2)

S1: . s[i℄ = ...

Figure 1.4 Iteration domain of S1

ii. Access Relations

Access relations are a set of read, write and may-write access relations that capture memory

locations on which statements operate. They map statement execution instances to the array
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elements that are read or written by those instances. They are used mainly in dependence

analysis.

for (int i=1; i<=99; i++)

S: A[i℄ = B[i℄;

In the previous example, the set of read access relations is

R = {S[i]→ B[i] : i≥ 1∧ i≤ 99}

which means that the statement S in iteration i reads the array element B[i] and that this is true

for each i≥ 1∧ i≤ 99.

The set of write access relations is

W = {S[i]→ A[i] : i≥ 1∧ i≤ 99}

and the set of may-write access relations (i.e., writes that may happen) is equal to the set of

writes.

iii. Dependence Relations

Dependence. A statement S′ depends on a statement S (we write δS→S′) if there exists a

statement instance S′(~i′) and a statement instance S(~i) and a memory location m such that:

• S′(~i′) and S(~i) (may) access the same memory location m and at least one of them is a

write access;

• ~i′ and~i respectively belong to the iteration domains of S and S′;

• in the original sequential order, S(~i) is executed before S′(~i′).

Dependence Relation. Many formalisms can be used to represent dependences, some of these

formalisms are precise and some formalisms are imprecise. Dependence relations are an ex-

ample of precise formalisms and are the formalism that we use throughout this dissertation.

They map statement instances (called source statements) to statement instances that depend

on them for their execution (which are called sink statements). These dependence relations

are derived from the access relations and the original execution order. A dependence relation

is represented using a map and thus it has the following general form (the same general form

of a map):
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δS→S′ = {S[~i]→ S′[~i′],(~i,~i′) ∈ Z
d1×Z

d2 | f (~i,~i′,~p)}

where S[~i] represents the source statement and S′[~i′] represents the sink statement. ~p ∈ Z
e is a

vector of e parameters and f (~i,~i′,~p) is a Presburger formula that evaluates to true if and only

if S′[~i′] depends on S[~i] for the given parameters ~p.

In the following example

for (int i=1; i<=99; i++)

S: A[i℄ = A[i-1℄;

the value written in A[i℄ in the iteration (i) is read in the following iteration (i+1). This

dependence can be represented using the following map:

δS→S = {S[i]→ S[i+1] : i≥ 1∧ i≤ 98}

Computing Dependences. Many tests have been designed for dependence checking between

statement instances. Some of these tests give an exact solution and some of them only provide

approximative but conservative solutions (they overestimate data dependences). Examples

of these tests include the GCD-test [8] and the Banerjee test [9] which provide approximate

solutions. The Omega-test [83] on the opposite is an example of tests that provide exact

solutions.

Dependence Graph. The dependence graph ∆ = (V,E) is a directed graph where the vertices

V are the statements of the program and where the edges E are the dependence relations (maps)

between these statements.

Classification of Dependences Program dependences can be classified into:

• Flow dependences (also known as true dependences and as read after write depen-

dences), in which the write to a memory cell occurs before the read.

• Output dependences (also known as write after write dependences) in which both ac-

cesses are writes.

• Anti-dependences (also known as write after read dependences) in which the read occurs

before the write.

• In some contexts (e.g., when discussing data locality), one may consider read after read

dependences, which do not constrain parallelization.
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Some flow dependences are spurious in general. Let us consider a memory cell and an

execution instance of a statement that reads it (let us call it S'). There may be many writes to

this cell. The only one on which S' really depends is the last one S which is executed before

S'. The dependence from S to S' is a direct dependence. If the source program is regular,

direct dependences can be computed using a technique such as array dataflow analysis [36].

iv. Schedule

While iteration domains define the set of all dynamic instances of an instruction, they do not

describe the execution order of these instances. In order to define the execution order we need

to assign an execution time (date) to each dynamic instance. This is done by constructing

a schedule representing the relation between iteration vectors and time stamp vectors. The

schedule determines the relative execution order of the statement instances. Program transfor-

mations are performed through modifications to the schedule.

A one-dimensional affine schedule for a statement S is an affine function defined by:

θS(~is) = (cs
1,c

s
2, . . . ,c

s
ms
)(~is)+ cs

0 (1.1)

where cs
0,c

s
1,c

s
2, . . . ,c

s
ms
∈ Z are called schedule coefficients and~is is the iteration vector.

A multi-dimensional affine schedule can be represented as a sequence of such θ ’s for each

schedule dimension. We use a superscript to denote the scheduling dimension. θ k
s represents

the schedule at the schedule dimension k for the statement S. If 1 ≤ k ≤ d, all the θ k
s can be

represented by a single d-dimensional affine function Ts given by

Ts(~is) = Ms
~is+~ts,

where Ms ∈ Z
d×ms ,~ts ∈ Z.
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The Pluto algorithm [18] is an example of an algorithm designed to find, for each state-

ment in the program, an affine schedule that maximizes parallelism and data locality. It is an

example of affine scheduling algorithms.
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Static dimensions. If ms is the dimensionality of the statement S and d is the dimensionality

of Ts, it is possible in general that d is greater than ms as some rows in Ts serve the purpose of

representing partially fused or unfused dimensions at a level. Such a row has (c1, . . . ,cms
) =~0,

and a constant value for c0. We call such a dimension a static dimension.

Dynamic dimensions. Any schedule dimension that is not a static dimension is a dynamic

dimension.

1.2.4 Data Locality

The performance of a computer highly depends on the ability of the memory system to provide

data to the processing unit at the required speed. Unfortunately the speed of microprocessors

(processing units) is increasing much faster than the speed of memories, which creates a gap

between the two. This is known as the memory gap. One solution to avoid the memory gap is

the use of cache memories which are intermediate memories smaller and faster than the main

memory. The idea is to take advantage of the speed of the cache memory by putting the most

frequently used data in the cache: the frequently used data is loaded from the main memory

to the cache, it is used many times and then it is copied back to the main memory.

During a given period of time, a given program in general accesses only a small fraction

of their address space. This is called the principle of data locality. Data locality can be either:

• temporal locality: once a given data is accessed, it will tend to be accessed again during

the next clock cycles;

• spatial locality: once a given data is accessed, nearby data in the address space will tend

to be accessed during the next clock cycles.

Two main families of techniques can be used to improve data locality:

• data transformations: these techniques aim at changing the data layout;

• program transformations: these techniques aim at finding a better execution order for

statements by modifying control statements. The goal of program transformations is to

maximize temporal and/or spatial locality. Tiling is one of the main methods used in

this context.

In the remaining of this section we will introduce tiling since this concept is used in Chap-

ter 3.
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Loop Tiling Tiling is a transformation that partitions a loop into blocks of computations in

order to enhance data locality. The following code fragments show an example of tiling.

// Original ode

for (i=0; i<1024; i+=1)

for (j=0; j<1024; j+=1)

[i℄ = [i℄ + a[i℄[j℄ * b[j℄;

// Tiled ode

for (ti=0; ti<1024; ti+=4)

for (tj=0; tj<1024; tj+=4)

for (i=tj; i<ti+4; i+=1)

for (j=tj; j<tj+4; j+=1)

[i℄ = [i℄ + a[i℄[j℄ * b[j℄;

In the original code (left), each iteration of the outermost loop accesses the whole array

b[℄ and one row of the array a[℄[℄, this means that the whole array b[℄ and a row of the

array a[℄[℄ will be loaded gradually from the main memory into the cache memory. Since the

whole array b[℄ is read in each iteration of the outermost loop, it would be useful to keep such

array in cache memory. If the size of the array a[℄[℄ is quite large, then loading this array

into cache memory may overwrite the array b[℄ and thus b[℄ will need to be loaded for each

iteration which is not efficient. To avoid this problem, one can apply tiling. In tiling (code on

the right), only a small block (tile) of the array b[℄ is loaded into cache memory and is reused

multiple times before the next block (tile) is loaded. This new access has the advantage of

reusing data in the cache memory and thus it is much more efficient than the first access.

The classical criterion that a compiler must check before being able to apply tiling is the

following: a band of consecutively nested loops is tilable if it has forward dependences only

for every level within the band [18, 107]. In chapter 3 we extend this criterion so that we can

tile codes that contain false dependences (dependences induced by memory reuse) and which

cannot be tiled with the classical criterion.

1.2.5 Loop Transformations

Loop transformations are performed by changing the order of execution of statement instances.

The goal is to transform the loops, while preserving the semantics of the original program,

into a form that minimizes the execution time of the program or that minimizes the energy

consumption, or to minimize/maximize any other objective function. In this dissertation, the

main goal of the loop transformations that we apply is to minimize the execution time of the

optimized program. Examples of loop transformations include the following.

Loop Distribution/Fusion. Loop distribution splits a single loop into multiple loops by dis-

tributing the statements of one loop across multiple loops. Each of the new loops has the same

iteration domain as the original, but contains a subset of the statements of the original loop.

This transformation is also known as loop fission or loop splitting.
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// Original loops

for (i=0; i<N; i+=1)

for (j=0; j<M; j+=1)

{

S1;

S2;

}

// Loops after distribution

for (i=0; i<N; i+=1)

for (j=0; j<M; j+=1)

S1;

for (i=0; i<N; i+=1)

for (j=0; j<M; j+=1)

S2;

Loop fusion is the opposite transformation. It fuses multiple loops into one loop.

Loop Interchange. Also known as permutation. It is a transformation that exchanges two

loops in a loop nest.

// Original loops

for (i=0; i<N; i+=1)

for (j=0; j<M; j+=1)

S1;

// Loops after loop interhange

for (j=0; j<M; j+=1)

for (i=0; i<N; i+=1)

S1;

Loop Reversal. It is a transformation that reverses the order of execution of the iterations of

a loop nest.

// Original loop

for (i=0; i<N; i+=1)

S1;

// Loop after loop reversal

for (i=N-1; i>=0; i--)

S1;

Loop Peeling. It is a transformation that peels some iterations of the loop and executes them

separately.

// Original loop

for (i=0; i<=N; i+=1)

S1[i℄= 0;

// Loop after loop peeling

S1[0℄ = 0;

for (i=1; i<=N-1; i+=1)

S1[i℄= 0;

S1[N℄ = 0;

1.3 Outline

In this dissertation we address three problems:

• The first problem (Chapter 2) is related to the ability to apply loop tiling on code that

has false dependences. The application of tiling is severely limited if the code contains

false dependences. False dependences (dependences induced by the reuse of a memory
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location multiple times) are frequently found in programs that are transformed by the

compiler into three address code (3AC). Three-address code is an intermediate represen-

tation used by compilers to aid in the implementation of optimizations. An example of

a polyhedral framework that operates on three-address code is the GRAPHITE frame-

work used in GCC. While a transformation such as array expansion, which transforms

program scalars into arrays and arrays into higher dimensional arrays, removes all false

dependences and thus enables tiling, the overhead of such a transformation on memory

and the detrimental impact on register-level reuse can be catastrophic. We propose and

evaluate a technique that enables a compiler to safely ignore a large number of the false

dependences of the program in order to enable loop tiling in the polyhedral model. This

technique is based on a criterion that allows a compiler to identify which false depen-

dences can be safely ignored during tiling and which cannot, and it does not incur any

scalar or array expansion.

• The second problem (Chapter 3) is related to the long compilation time that one may

experience when using polyhedral tools to optimize a program. Particularly, the long

execution time of the Pluto scheduling algorithm [18], a widely used algorithm for

automatic parallelization and locality optimization. We propose and evaluate a tech-

nique called offline statement clustering, a practical technique designed to reduce the

execution time of the Pluto scheduling algorithm without much loss in optimization

opportunities. Using this technique, the statements of the program are clustered into

macro-statements, the Pluto affine scheduling algorithm is then used to schedule the

macro-statements instead of scheduling the original statements of the program. Since

the number of macro-statements is less than the number of statements in the original pro-

gram, scheduling the macro-statements is, in general, faster than scheduling the original

statements of the program.

• The third problem (Chapter 4) is related to two limitations:

– The limited ability to optimize programs that contain dynamic control and which

cannot be represented accurately in the polyhedral model.

– The limited ability of the tools to generate efficient code and to do some optimiza-

tions due to the lack of some information. Deducing such information automati-

cally by the compiler is difficult in general and thus such information needs to be

provided by the programmer.

To address these two limitations, we present PENCIL (Platform-Neutral Compute Inter-

mediate Language), a language designed to simplify code analysis and code optimiza-
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tion for the optimizing compiler. It is a rigorously-defined subset of GNU C99 [50] with

specific programming rules and few extensions. Adherence to this subset and the use

of these extensions enable compilers to exploit parallelism and to better optimize code

when targeting accelerators such as GPGPUs. We intend PENCIL both as a language

to program accelerators, and as an intermediate language for DSL (Domain Specific

Language) compilers.





Chapter 2

Tiling Code With Memory-Based

Dependences

2.1 Introduction and related work

To guarantee that loop transformations are correct, the compiler needs to preserve data-dependences

between statements. Two types of data dependences exist, true (also known as data-flow) and

false (also know as memory-based) dependences [55]. False dependences have two types:

output-dependences and anti-dependences. They are induced by the reuse of temporary vari-

ables across statement instances. In the presence of these false dependences compilers may

conservatively avoid the application of some loop transformations such as tiling. Tiling is pos-

sible when a band 1 of consecutively nested loops is fully permutable. A band is permutable

if it is possible to permute two loop levels with each other in that band. This is possible if all

the dependences within that band of consecutive loop nests are forward dependences only, i.e.,

dependences with non-negative distance for every loop level within the band [18, 107]. The

presence of backward false dependences, i.e., dependences with a negative distance in some

loop levels, prevents tiling. Backward false dependences are actually very common, especially

in code that defines and uses scalar variables or array elements as in the example in Figure 2.1

where backward dependences are induced by the reads and writes to s[t℄.

In this work, we introduce a new validity criterion for tiling that allows the tiling of loop

nests even in the presence of some patterns of false dependences as in the example of Fig-

ure 2.1.

Scalar and array expansion [35] is a classical solution that can be used to remove false

dependences and enable tiling. Expansion transforms scalars into arrays and transforms arrays

1The term band in the literature refers to a set of consecutive loop levels in a loop nest.
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for (t = 0; t < nt; t++)

for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++)

{

S1: s[t℄ = alpha * A[t℄[i℄[j℄ + beta;

S2: B[t℄[i℄[j℄ = s[t℄;

}

Figure 2.1 A code with false dependences that prevent tiling

into higher dimensional arrays and thus eliminates memory reuse. The terms expansion and

privatization are sometimes used by the community interchangeably to refer to expansion. In

this work we make a clear distinction between the two terms. In privatization [45, 63, 97], a

private copy of the variables is created for each thread executing some iterations of the loop

in parallel. In expansion, a private copy is created for each loop iteration [35]. This usage is

consistent with the use of the two terms privatization and expansion in [68, 72]. In particular,

privatization creates, for each thread cooperating on the execution of the loop, private copies

of scalars (or arrays) [45, 63, 97]. The number of private copies is equal to the number of

parallel threads. Although privatization is required to enable parallelism, it is not sufficient

to enable tiling, because privatization only creates private copies of scalars and arrays for

each thread, eliminating false dependences crossing the boundary of data-parallel blocks of

iterations. Classical tiling techniques require the elimination of all (false) negative-distance

dependences [18, 40, 49, 55], which is the domain of scalar or array expansion.

Although scalar and array expansion eliminates false dependences and enables loop tiling,

it incurs high footprint on memory and degrades temporal locality [94]. Scalar expansion is

particularly harmful as it converts register operations into memory operations [21]. A family

of array contraction techniques attempts to reduce the memory footprint without constraining

loop transformations [31, 61, 84]: the compiler performs a maximal expansion, applies loop

transformations including tiling, and then attempts to contract the arrays. By performing a

maximal expansion, false dependences are eliminated, but when unrestricted loop transforma-

tions are applied after expansion, contraction is not always possible as the set of simultane-

ously live values may effectively require high-dimensional arrays to store them. Loop distri-

bution is an example of a widely applied loop transformation that prevents array contraction

and thus disables the effectiveness of this technique as we show in an example in Section 2.7.

We propose and evaluate a technique allowing compilers to tile and parallelize loop nests,

even in the presence of false dependences that would violate existing validity criteria for loop

tiling. The technique enables the compiler to decide which false dependences can be safely

ignored in the context of loop tiling. The proposed technique does not incur any costs of scalar

or array expansion.
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The main contributions are the following:

• We propose a relaxed permutability criterion that allows loop tiling to be applied with-

out the need for any expansion or privatization, the impact on the memory footprint is

minimized, and the overheads of array expansion are avoided.

• Our criterion allows the tiling of programs that privatization does not allow.

Section 2.2 presents the possible sources of false dependences. Section 2.3 shows that

existing tiling algorithms are too restrictive and miss safe tiling opportunities. Section 2.4

introduces a new tiling test that avoids this problem and allows the tiling of kernels with

false dependences. Section 2.5 proves that, by ignoring false dependences, tiling before 3AC

transformation is equivalent to tiling after 3AC transformation. Sections 2.6 and 2.7 show an

evaluation of the proposed technique.

2.2 Sources of False Dependences

One common source of false dependences is found in temporary variables introduced by pro-

grammers in the body of a loop.

A second source of false dependences is the compiler itself. Even in source programs

that do not initially contain scalar variables, compiler passes may introduce false dependences

when upstream transformations introduce scalar variables. This is a practical compiler con-

struction issue, and a high priority for the effectiveness of loop optimization frameworks im-

plemented in production compilers [96]. Among upstream compiler passes generating false

dependences, we will concentrate on the most critical ones, as identified by ongoing devel-

opment on optimization frameworks such as the GRAPHITE polyhedral loop optimization

framework in GCC [81, 95]:

• Transformation to Three-Address Code (3AC). Three-address code is an intermediate

code used by compilers to aid in the implementation of optimizations. Each 3AC in-

struction has at most three operands and is typically a combination of assignment and a

binary operator. For example: temp_1 := temp_2 + temp_3;

In 3AC transformation, each instruction that has more than three operands is trans-

formed into a sequence of instructions, and temporary scalar variables are used to hold

the values calculated by new instructions. The GRAPHITE polyhedral pass in GCC

is an example of a loop optimization framework operating on low level three-address

instructions. It is affected by the false dependences that result from a conversion to

three-address code.
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• Partial Redundancy Elimination (PRE) This is a transformation that can be applied to

array operations to remove invariant loads and stores, and transform array accesses into

scalar accesses [57, 74]. Figures 2.2 and 2.3 show an example of this optimization.

• Loop-invariant code motion is a common compiler optimization that moves loop-invariant

code outside the loop body eliminating redundant calculations. An example is shown in

Figures 2.4 and 2.5 where tiling of the outer two loops is inhibited by the extra depen-

dences on t after the application of loop-invariant code motion.

for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++) {

S1: C[i℄[j℄ = C[i℄[j℄ * beta;

for (k = 0; k < nk; ++k)

S2: C[i℄[j℄ += alpha * A[i℄[k℄ * B[k℄[j℄;

}

Figure 2.2 Gemm kernel

for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++) {

S1: t = C[i℄[j℄ * beta;

for (k = 0; k < nk; k++)

S2: t += alpha * A[i℄[k℄ * B[k℄[j℄;

S3: C[i℄[j℄ = t;

}

Figure 2.3 Gemm kernel after applying PRE

for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++)

for (k = 0; k < nk; k++)

A[i℄[j℄[k℄ = B[i℄[j℄ * C[i℄[j℄ * D[i℄[j℄;

Figure 2.4 Three nested loops with loop-invariant code

for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++) {

t = B[i℄[j℄ * C[i℄[j℄ * D[i℄[j℄;

for (k = 0; k < nk; k++)

A[i℄[j℄[k℄ = t;

}

Figure 2.5 Three nested loops after loop-invariant code motion
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In the case of GCC and LLVM, performing loop optimizations directly on three-address

code provides many benefits. Mainly because at this level also the representation is in Static

Single Assignment form (SSA), where each variable is assigned exactly once, and every vari-

able is defined before it is used. Many compiler optimizations such as constant propagation,

dead code elimination and partial redundancy elimination are performed on the code when it is

in SSA form. The main advantage of this is the improved performance of the algorithms [55].

Loop transformations on three-address code also enable a tight integration of loop optimiza-

tion techniques with the other compilation passes, including automatic vectorization, paral-

lelization and memory optimizations. The ideal case for an optimization framework is to

operate on a representation that is low enough so that this optimization framework benefits

from all the passes operating on three-address code, and at the same time the optimization

framework should be able to ignore spurious false dependences generated by these passes.

Note that transforming the code into SSA form removes some false dependences, but does not

remove all the false dependences in the program.

Loop tiling is of utmost importance to exploit temporal locality [18]. Unfortunately, this

transformation is also highly sensitive to the presence of false dependences. Although it is

possible to perform PRE and loop-invariant code motion after tiling in some compiler frame-

works such as LLVM. Transformation to 3AC must happen before any loop optimization in

order to benefit from all the passes operating on three-address code, and this limits the chances

to apply tiling.

Finally, enabling tiling on 3AC automatically extends its applicability to “native 3AC lan-

guages” and environments, such as Java bytecode and general-purpose accelerator languages

such as PTX (which is a low-level parallel instruction set proposed by Nvidia). This may con-

tribute to offering some level of performance portability to GPGPU programming and would

have higher impact when integrated in the just-in-time compilers of languages such as PTX

and Java bytecode [28].

Our goal is to propose and evaluate a technique allowing compilers to escape the problems

described previously, providing a more relaxed criterion for loop tiling in the presence of false

dependences. Such a validity criterion for tiling does not require a priori expansion of specific

variables.

2.3 Motivating Example

The usual criterion to enable tiling is that none of the loops involved should carry a backward

dependence (a dependence with a negative distance). The kernel presented in Figure 2.3 has

backward dependences. These dependences stem from the fact that the same scalar t is over-
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written in each iteration of the loop and enforce a sequential execution. In this example, the

forward dependence condition prohibits the application of tiling, although the transformation

is clearly valid as we show in Figure 2.6.
#define B 32

for (t1=0; t1<=floor((ni-1)/B); t1++)

for (t2=0; t2<=floor((nj-1)/B); t2++)

for (t3=B*t1; t3<=min(ni-1,B*t1+B-1); t3++)

for (t4=B*t2; t4<=min(nj-1,B*t2+B-1); t4++)

{

S1: t = C[t3℄[t4℄ * beta;

for (t6=0; t6<nk; t6++)

S2: t = t + alpha * A[t3℄[t6℄ * B[t6℄[t4℄;

S3: C[t3℄[t4℄ = t;

}

Figure 2.6 Tiled version of the gemm kernel.

Our goal is to enable the compiler to perform tiling on code that contains false depen-

dences, by ignoring false dependences when this is possible, and not by eliminating them

through array and scalar expansion. In the next section, we introduce the concept of live range

non-interference. We use this concept later to justify the correctness of the proposed technique

and to decide when is it safe to ignore false dependences.

2.4 Live Range Non-Interference

In this section we present the concept of live range non-interference, which is then used to

establish a relaxed validity criterion for tiling.

2.4.1 Live ranges

We borrow some terminology from the register allocation literature where live ranges are

widely studied [20, 24, 46], but we extend the definition of live ranges to capture the execution

instances of statements instead of the statements in the program. In a given sequential program,

a value is said to be live between its definition instance and its last use instance. Since tiling

may change the order of statement instances, we conservatively consider live ranges between

a definition and any use, which includes the last use under any reordering. The definition

instance is called the source of the live range, marking its beginning, and the use is called the

sink, marking the end of the live range.

{Sk(~I)→ Sk′(~I′)} defines an individual live range beginning with an instance of the write

statement Sk and ending with an instance of the read statement Sk′ . ~I and~I′ are iteration vectors
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for (i = 0; i < n; i++)

for (j = 0; j < n; j++) {

S1: t = A[i℄[j℄ * y_1[j℄;

S2: x1[i℄ = x1[i℄ + t;

}

Figure 2.7 One loop from the mvt kernel

identifying the specific instances of the two statements. For example, the scalar t of the mvt

kernel shown in Figure 2.7 induces several live ranges, including

{S1[0,0]→ S2[0,0]}

This live range begins in the iteration i = 0, j = 0 and terminates in the same iteration.

Since the execution of a given program generally gives rise to a statically non-determinable

number of live range instances, we cannot enumerate them individually, but rather we provide

“classes” of live ranges defined with affine constraints. For example, the live range above is

an instance of the following live range class

{S1[i, j]→ S2[i, j] : 0≤ i≤ n∧0≤ j ≤ n},

where 0 ≤ i ≤ n∧ 0 ≤ j ≤ n are affine constraints defining the domain of i and j. For each

iteration of i and j, there is a live range that begins with the write statement S1 and terminates

with the read statement S2. To be able to describe such classes using affine constraints, we

only consider loop nests with static-affine control.

2.4.2 Construction of live ranges

Live ranges form a subset of the read-after-write dependences. In the following, we assume

that each sink in a dependence has only one source. We construct the live ranges using the

array data-flow analysis described in [36] and implemented in the isl library [101] using

parametric integer linear programming. Array data-flow analysis answers the following ques-

tion: given a value v that is read from a memory cell m at a statement instance r, compute the

statement instance w that is the source for the value v. The result is a (possibly non-convex)

affine relation mapping read accesses to their source. The live ranges are then computed by

reversing this relation, mapping sources to all their reads.

This systematic construction needs to be completed with the special treatment of live-in

and live-out array elements. Array data-flow analysis provides the necessary information for

live-in ranges, but inter-procedural analysis of array regions accessed outside the scope of the

code being optimized is needed for live-out properties. This is an orthogonal problem, and for



26 Tiling Code With Memory-Based Dependences

the moment we conservatively assume that the program is manually annotated with live-out

arrays (the live-in and live-out scalars are explicit from the SSA form of the loop).

2.4.3 Live range non-interference

Any loop transformation is correct if it respects dataflow dependences and does not lead to

live range interference (no two live ranges overlap) [95, 96, 99]. If we want to guarantee the

non-interference of two live ranges, we have to make sure that the first live range is scheduled

either before or after the second live range. Figure 2.8 shows two examples where pairs of

live ranges do not interfere. Figure 2.9 shows two examples where these pairs of live ranges

do interfere. We will now take a closer look at the conditions for preserving non-interference

across loop tiling.

Figure 2.8 Examples where {S1→ S2} and {S3→ S4} do not interfere

Figure 2.9 Examples where {S1→ S2} and {S3→ S4} interfere
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Figure 2.10 An example illustrating the adjacency concept

2.4.4 Live range non-interference and tiling: a relaxed permutability cri-

terion

Tiling is possible when a band of consecutively nested loops is tilable. Using state-of-the-

art tiling algorithms, the compiler looks for a band with forward dependences only for every

level within the band [18, 107]. This can be done by calculating dependence directions for

all dependences and for each loop level. A tilable loop band is composed of consecutive loop

levels with no negative loop dependence. When a loop band is identified, dependences that

are strongly satisfied by this band are dropped before starting the construction of a new inner

loop band (a dependence is strongly satisfied if the sink of the dependence is scheduled strictly

after the source of the dependence in one of the loop levels that are a part of that band). Loop

levels that belong to the identified loop bands are tilable.

The main contribution of our work is a relaxation of this tilability criterion, based on a

careful examination of which false dependences can be ignored. In particular, our criterion

ignores anti-dependences (write-after-read dependences) that are adjacent to iteration-private

live ranges. We say that a live range is iteration-private at level k if it begins and ends in the

same iteration of a loop at level k.

We say that an anti-dependence and a live range are adjacent if the source of one of them

is equal to the sink of the other and if the anti-dependence and live range derive from the same

memory location. For example, in Figure 2.10, the dependence δS1→S2
is adjacent to the live

ranges {S0→ S1} and {S2→ S3} but is not adjacent to {S4→ S5}. The dependence δS3→S4
is

adjacent to {S2→ S3} and to {S4→ S5} but is not adjacent to {S0→ S1}.

Definition of the relaxed permutability criterion A band of loops is fully permutable if the

relaxed permutability criterion holds on that band. The relaxed permutability criterion holds

on a band if and only if for every dependence in the band one (or several) of the following

conditions hold(s):
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1. the dependence is forward for each level within the band;

2. it is an output-dependence between statement instances that only define values that are

local to the region of code being analyzed, in the sense that the values defined are used

inside the region and are not used after the region;

3. it is an anti-dependence, and it is adjacent only to live ranges that are iteration private

within the band.

The first condition is inherited from the classical tiling criterion. The writes involved in

the output dependences eliminated by the second condition are also involved in live ranges

and are therefore guaranteed not to interfere with each other because of the third condition,

as explained below. Moreover, the output dependences that are needed to ensure that values

assigned by the last write to a given location (live-out values) will not be overwritten are not

eliminated by the second condition. The third condition stems from the following observa-

tions:

1. Any affine transformation—including tiling—is valid if it preserves data flow depen-

dences and if it does not introduce live range interferences.

2. Tiling is composed of two basic transformations: loop strip-mining and loop inter-

change.

• Strip-mining is always valid because it does not change the execution order of

statement instances and thus it can be applied unconditionally.

• Loop interchange changes the order of iterations, hence may introduce live range

interferences. But a closer look shows that it never changes the order of statement

instances within one iteration of the loop body.

3. If live ranges are private to one iteration of a given loop (i.e., live ranges begin and

terminate in the same iteration of that loop), changing the order of iterations of the

present loop or any outer loop preserves the non-interference of live ranges.

4. We can ignore an anti-dependence only when it is adjacent to iteration-private live

ranges (i.e., not adjacent to any non-iteration-private live range). This is correct for the

following reason: an anti-dependence δ between two live ranges (S1,S2) and (S3,S4)

is used to guarantee the non-interference of the two live ranges during loop transforma-

tions. If the two live ranges (S1,S2) and (S3,S4) are iteration-private, then they will not

interfere when tiling is applied, regardless of the presence of the anti-dependence δ . In

other words, δ is useless in this case. And thus ignoring this anti-dependence during
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tiling is safe as long as all statements in this live range are subject to the same affine

transformation. If one of the live ranges is non-iteration-private, then there is no guaran-

tee that they will not interfere during tiling, and thus, conservatively, we do not ignore

the anti-dependence between the two live ranges in this case.

Comparison with the criterion for privatization Reformulated in our terminology, a variable

can be privatized in a loop if all the live ranges of this variable are iteration private within

that loop[68]. This condition is the same as the third condition of our relaxed permutability

criterion, except that we only impose this condition on live ranges that are adjacent to back-

ward anti-dependences. Our relaxed permutability criterion can therefore be considered as a

hybrid of the classical permutability criterion and the privatization criterion. In particular, our

criterion will allow tiling if either of these two criteria would allow tiling or privatization, but

also if some dependences are covered by one criterion and the other dependences are covered

by the other criterion.

In particular, the privatization criterion cannot privatize the scalar t in the following exam-

ple and thus some false dependences cannot be ignored and thus tiling cannot be applied.

for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++)

{

if (!(j == 0 && i == 0))

t = alpha * A[i℄[j℄;

B[i℄[j℄ = t;

}

With our criterion, the false dependences can be ignored and thus tiling can be applied.

The importance of adjacency Note that it is not safe to ignore an anti-dependence that is

adjacent to a tile-private live range but that is also adjacent to a non-tile-private live range.

Tiling is not valid in this case.

2.4.5 Illustrative examples

i. The mvt and gemm kernels

We consider again the mvt kernel of Figure 2.7. The false dependences created by the t scalar

inhibit the compiler from applying tiling, although tiling is valid for mvt.

Figure 2.11 represents the live ranges of t and x[i℄ for a subset of the iterations. The

figure shows the statements that are executed in each iteration (S1 and S2) and the live ranges
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Figure 2.11 Live ranges for t and x1[i℄ in mvt

generated by these statements. The original execution order is as follows: live range A of t

is executed first (this is the live range between S1 and S2 in the iteration i = 0, j = 0), then live

range B is executed (this is the live range for iteration i = 0, j = 1), then C , D , E , F , G ,

etc.

We notice that each live range of t is iteration-private. Each of these live ranges starts

and terminates in the same iteration (no live range spans more than one iteration). The order

of execution after applying a 2× 2 tiling is as follows: ( A , B , E F ), ( C , D , G , H ).

Tiling changes the order of execution of live ranges, but it does not break any live range of t.

The false dependences generated by the array access x1[i℄ do not inhibit loop tiling as

all of these false dependences are forward on both levels. The live ranges of x1[i℄ satisfy the

first condition of the relaxed tilability criterion (they are all forward) and therefore also do not

inhibit tiling.

Although tiling is valid in the case of mvt, the classical tiling algorithm would fail to tile

this code because of the false dependences induced by t. A similar reasoning applies to tiling

of the gemm kernel shown in Figure 2.3: tiling is valid because the live ranges generated by

the scalar t are iteration-private.

ii. An example where tiling is not valid

Consider the example in Figure 2.12. Similarly to the previous examples, the false depen-

dences created by the scalar t on the j loop prevent the compiler from applying loop tiling.

But is it correct to ignore the false dependences?
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Figure 2.13 shows the live ranges of t. The original execution order is: A , B , C , D ,

E , F , G , H . After a 2× 2 tiling, the new execution order is: A , B , E , F , etc. This

means that the value written in B on the scalar t will be overwritten by the write statement

in E . This tiling breaks the live range {S2(~I)→ S2(~I′)}.

Tiling in this case is not valid because the live ranges are not iteration-private and thus we

should not ignore the false dependences on t.

for (i = 0; i <= 1; i++)

for (j = 0; j <= 3; j++) {

if (j==0)

S1: t = 0;

if (j>0 && j<=2)

S2: t = t + 1;

if (j==3)

S3: A[i℄ = t;

}

Figure 2.12 Example where tiling is not possible

Figure 2.13 Live ranges for the example in Figure 2.12

2.4.6 Parallelism

Besides tiling, we are also interested in the extraction of data parallelism and in generating

OpenMP directives for parallelism. In order to parallelize a loop, the variables inducing false

dependences in this loop need to be privatized.

The privatization of variables for parallelism is much less intrusive than actual scalar or

array expansion. The former only makes variables thread-private, not impacting address com-
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putation and code generation inside the loop body, while the latter involves generating new ar-

ray data declarations, rewriting array subscripts, and recovering the data flow across renamed

privatized structures [36]. In addition, marking a scalar variable as thread-private does not

result in the conversion of register operands into memory accesses, unlike the expansion of a

scalar variable along an enclosing loop. In practice, support for privatization is implemented

as a slight extension to the state-of-the-art violated dependence analysis [96, 100].

Figure 2.14 compares between the number of private copies that have to be created for a

given scalar (or array) in order to enable parallelization, to enable tiling or to enable both. N

is the number of loop iterations and T is the number of parallel threads that execute the loop.

In general T is significantly smaller than N.

number of private scalar and arrays

when expansion when false

is applied dependences are ignored

parallelization only N T

tiling only N 0

tiling + parallelization N T

Figure 2.14 Comparing the number of private copies of scalars and arrays created to enable

parallelization, tiling or both

Interestingly, the transformation of source code to three address code does not impact

parallelism detection as it only induces intra-block live ranges. Section 2.5 proves a similar

result about the impact of our technique on the applicability of loop tiling.

2.5 Effect of 3AC on the Tilability of a Loop

This section investigates the effect of 3AC transformation on the tilability of a loop (i.e., on

whether we can tile it or not). Can the transformation of a code into 3AC from result in

dependences that prevent tiling?

We use our relaxed permutability criterion to show that, in fact, the transformation of code

into 3AC form does not have any effect on the tilability of a loop. In other words, whether

tiling is applied before or after three-address lowering, we always get the same result. Consider

the following example:

for (i1=...; i1<n1; i1++) {

for (i2=...; i2<n2; i2++) {

...

for (im=...; im<nm; im++) {
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...

S1: x = expr_1 + expr_2 + expr_3;

...

}

}

}

Let ∆ be the set of all dependences induced by S1. After transforming this statement to

3AC, we get two new statements: S2 and S3.

for (i1=...; i1<n1; i1++) {

for (i2=...; i2<n2; i2++) {

...

for (im=...; im<nm; im++) {

...

S2: x1 = expr_2 + expr_3;

S3: x = expr_1 + x1;

...

}

}

}

Variable x1 introduced by the three-address transformation is a new variable and thus it

does not have any dependence with the other variables of the program (the variables that

were already in the program before three-address transformation), but it induces three new

dependences between the two newly introduced statements. These dependences are:

• A flow dependence: δS2→S3
;

• A write-after-write dependence: δS2→S2
;

• A write-after-read dependence: δS3→S2
;

Before three-address transformation the set of dependences was ∆. After three-address

transformation the set of dependences is ∆∪δS2→S3
∪δS2→S2

∪δS3→S2
.

The flow dependence δS2→S3
constitutes a set of live ranges that are iteration-private (they

begin and terminate in the same iteration) and thus, by applying our relaxed permutability

criterion, we can ignore the dependences δS2→S2
and δS3→S2

during tiling. The dependence

that remains is ∆∪δS2→S3
. Since this dependence is iteration-private (because its dependence
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distance is zero), it will have no effect on tiling2, and thus applying tiling on the transformed

code is exactly equivalent to applying tiling on the original source-level code (since in both

cases the ability to apply tiling will depend on the set of dependences ∆).

This rationale can be generalized to the case where the right side of a statement has more

than 3 expressions.

2.6 Experimental Evaluation

We implemented the relaxed permutability criterion on top of the Pluto polyhedral source to

source compiler [18] (version 0.6) and evaluated the proposed criterion on a modified version

of the Polybench 3.2 benchmark suite3.

The original Polybench suite was not initially designed to expose the problem of false

dependences. Among all of the benchmarks of the suite, scalar variables are used in only 5

benchmarks, the remaining benchmarks do not use scalars.

To stress the proposed technique on realistic false dependences, we chose to introduce

scalar variables in each one of the kernels of Polybench instead of designing a new bench-

mark suite. These scalar variables were introduced either by transforming the source program

into Three-Address Code (3AC) or by applying Partial Redundancy Elimination (PRE). Both

transformations (3AC and PRE) have been manually applied to Polybench. Note that Pluto

is a source-to-source compiler and that it does not convert the code to three address form in-

ternally, it does not apply PRE, nor does it privatize or rename variables to eliminate false

dependences.

In order to transform the benchmarks into 3AC, each instruction that has more than three

operands is transformed into a sequence of instructions, where each one of these new instruc-

tions has at most three operands. Temporary scalar variables are used to hold the values

calculated by new instructions, each temporary scalar is assigned only once. Figures 2.15 and

2.16 show an example of transforming the gesummv kernel into 3AC.

The second transformation is PRE. We apply PRE to eliminate expressions that are redun-

dant. We apply it whenever it is possible, ignoring any cost/benefit analysis to decide whether

applying PRE is profitable for performance or not. Note that we do not apply 3AC when we

apply PRE. Figures 2.17 and 2.18 show an example of applying PRE on the gemm kernel.

2Because tiling is possible in two cases: either if the dependence distance is zero (weakly satisfied) or if it is

positive (strongly satisfied). The dependence distance in this case is zero so the tiling possibility does not depend

on δS2→S3
but on other dependences in the kernel

3http://www.cse.ohio-state.edu/~pouchet/software/polybench

http://www.cse.ohio-state.edu/~pouchet/software/polybench
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Throughout the following sections, Polybench-3AC is used to refer to Polybench in three-

address form, Polybench-PRE to refer to Polybench after applying PRE and Polybench-original

to refer to the original Polybench.

To compare the proposed technique with expansion, we apply expansion on Polybench-

3AC manually. This manual expansion is performed as follows: each scalar in the benchmarks

of Polybench-3AC is transformed into an array. The dimension of the resulting array is the

minimal dimension that makes tiling possible. Figures 2.19 and 2.20 show an example of

applying expansion on the three-address form of the matmul kernel. We call the resulting

benchmark Polybench-expanded. Expansion is not applied on Polybench-PRE, because after

expanding the Polybench-PRE benchmark we get Polybench-original.

The manually transformed benchmarks (Polybench-3AC, Polybench-PRE and Polybench-

expanded) are publicly available for reference.4

for (i = 0; i < N; i++) {

tmp[i℄ = 0;

y[i℄ = 0;

for (j = 0; j < N; j++) {

tmp[i℄ = A[i℄[j℄ * x[j℄ + tmp[i℄;

y[i℄ = B[i℄[j℄ * x[j℄ + y[i℄;

}

y[i℄ = alpha * tmp[i℄ + beta * y[i℄;

}

Figure 2.15 Original gesummv kernel.

for (i = 0; i < N; i++) {

tmp[i℄ = 0;

y[i℄ = 0;

for (j = 0; j < N; j++) {

temp1 = A[i℄[j℄ * x[j℄;

tmp[i℄ = temp1 + tmp[i℄;

temp2 = B[i℄[j℄ * x[j℄;

y[i℄ = temp2 + y[i℄;

}

temp3 = alpha * tmp[i℄;

temp4 = beta * y[i℄;

y[i℄ = temp3 + temp4;

}

Figure 2.16 gesummv in 3AC form.

/* C := alpha*A*B + beta*C */

for (i = 0; i < NI; i++)

for (j = 0; j < NJ; j++) {

C[i℄[j℄ = C[i℄[j℄ * beta;

for (k = 0; k < NK; ++k)

C[i℄[j℄ += alpha*A[i℄[k℄*B[k℄[j℄;

}

Figure 2.17 Original gemm kernel.

/* C := alpha*A*B + beta*C */

for (i = 0; i < NI; i++)

for (j = 0; j < NJ; j++) {

temp0 = C[i℄[j℄;

temp0 = temp0 * beta;

for (k = 0; k < NK; ++k)

temp0 += alpha*A[i℄[k℄*B[k℄[j℄;

C[i℄[j℄ = temp0;

}

Figure 2.18 gemm after applying PRE.

4https://github.com/rbaghdadi/polybench-3.2-3AC

https://github.com/rbaghdadi/polybench-3.2-3AC
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/* Salar version of 2mm */

/* D := alpha*A*B*C + beta*D */

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

tmp0 = 0;

for (k = 0; k < N; k++) {

tmp1 = alpha*A[i℄[k℄;

tmp2 = tmp1*B[k℄[j℄;

tmp0 += tmp2;

}

E[i℄[j℄=tmp0;

}

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

D[i℄[j℄ *= beta;

for (k = 0; k < N; k++) {

tmp3 = E[i℄[k℄*C[k℄[j℄;

D[i℄[j℄ += tmp3;

}

}

Figure 2.19 2mm-3AC (2mm in 3AC

form).

/* Expanded version of 2mm */

/* D := alpha*A*B*C + beta*D */

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

tmp0[i℄[j℄ = 0;

for (k = 0; k < N; k++) {

tmp1[i℄[j℄ = alpha*A[i℄[k℄;

tmp2[i℄[j℄ = tmp1[i℄[j℄*B[k℄[j℄;

tmp0[i℄[j℄ += tmp2[i℄[j℄;

}

E[i℄[j℄=tmp0[i℄[j℄;

}

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

D[i℄[j℄ *= beta;

for (k = 0; k < N; k++) {

tmp3[i℄[j℄ = E[i℄[k℄*C[k℄[j℄;

D[i℄[j℄ += tmp3[i℄[j℄;

}

}

Figure 2.20 Expanded version of 2mm-3AC.

2.7 Experimental Results

for (i = 0; i < _PB_N; i++) {

temp0 = 0;

temp1 = 0;

for (j = 0; j < _PB_N; j++) {

temp0 = temp0 + A[i℄[j℄ * x[j℄;

temp1 = temp1 + B[i℄[j℄ * x[j℄;

}

y[i℄ = alpha * temp0 + beta * temp1;

}

Figure 2.21 gesummv kernel after applying PRE.

The experiments were performed on a dual-socket AMD Opteron (Magny-Cours) blade

with 2×12 cores at 1.7GHz, 2×12MB L3 cache and 16GB of RAM running with Linux ker-

nel 2.6.32. The baseline is compiled with GCC 4.4, with optimization flags -O3 -ffast-math.

This version of GCC performs no further loop optimization on these benchmarks, and does

not perform any tiling, but it succeeds in automatically vectorizing the generated code in many

cases. We use OpenMP as the target of automatic transformations. We compare the original
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pluto –tile –parallel

Polybench-original Polybench-3AC Polybench-3AC
–ignore-false-deps

Polybench-
expanded

2mm yes no yes yes

3mm yes no yes yes

gemm yes no yes yes

gemver yes no yes yes

gesummv yes no yes yes

mvt yes no yes yes

gramschmidt yes no yes yes

dynprog yes no yes yes

fdtd-2d yes no yes yes

trisolv yes no yes yes

trmm yes no yes yes

syr2k yes no yes yes

syrk yes no yes yes

covariance yes no yes yes

correlation yes no yes yes

atax yes no yes yes

fdtd-apml yes no yes yes

bicg yes no yes yes

lu yes no no yes

jacobi-2d-imper yes no no yes

jacobi-1d-imper yes no no yes

seidel yes no no yes

symm no no yes yes

cholesky no no yes yes

ludcmp no no no yes

durbin no no no no

Table 2.1 A table showing which 3AC kernels were tiled

pluto –tile –parallel

Polybench-original Polybench-PRE Polybench-PRE

- - –ignore-false-deps

2mm yes no yes

3mm yes no yes

gemm yes no yes

gemver yes no no

gesummv yes no no

mvt yes no no

syr2k yes no yes

syrk yes no yes

correlation yes no no

Table 2.2 A table showing which PRE kernels were tiled.
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Figure 2.22 The effect of 3AC transformation on tiling

Pluto implementation with our modified version, reporting the median of the speedups ob-

tained after 30 runs of each benchmark. The pass that implements the relaxed permutability

criterion is activated in the modified Pluto through the option --ignore-false-dependenes.

The options --tile and --parallel are used to enable tiling and parallelization in Pluto

(OpenMP code generation). All the tests are performed using the big datasets in Polybench.

2.7.1 Evaluating the Effect of Ignoring False Dependences on Tiling

To evaluate the proposed technique, we perform a set of experiments. The results of these

experiments are summarized in Table 2.1. We report for each experiment whether Pluto suc-

ceeded to perform tiling or not. The first column lists the different benchmarks, classified

into 4 classes. The second column shows the result of optimizing Polybench-original with

Pluto (pluto --tile --parallel). It shows that all the kernels are tiled, except 4 kernels

(symm, cholesky, ludcmp and durbin). symm, cholesky and ludcmp are not tiled because the

original version of the benchmarks already contains scalar variables that induce false depen-
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Figure 2.23 Speedup against non-tiled sequential code for Polybench—3AC

dences and prevent tiling. These benchmarks are examples where the original code written

by the programmer contains scalar variables even before any 3AC or PRE code transforma-

tions. In the third column, we show the results of optimizing Polybench-3AC with Pluto

(pluto --tile --parallel). In this experiment, Pluto systematically reports the presence of

negative dependences, due to the extra scalar variables introduced by 3AC transformation, and

fails to tile the Polybench-3AC benchmarks. None of these benchmarks is tiled.

When we repeat the previous experiment but add the option --ignore-false-dependenes

together with the options --tile --parallel, Pluto ignores the false dependences introduced

by the transformation to 3AC, recovering the ability to tile Polybench-3AC (the results are

presented in the fourth column). Most of the benchmarks are tiled except lu, jacobi-2d-imper,

jacobi-1d-imper, seidel, ludcmp and durbin (the explanation comes later). In the last experi-

ment (fifth column), Polybench-expanded is compiled with pluto --tile --parallel. The

expansion succeeded in enabling the tiling of all the kernels, except the durbin kernel. Tiling

for durbin is not possible, because it would lead to an incorrect schedule.
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#define B 32

#pragma omp parallel for private(t3,t4,t5,t8)

for (t2=0; t2<=floor((N-1)/B);t2++)

for (t3=0;t3<=floor((N-1)/B);t3++)

for (t4=B*t2;t4<=min(N-1,B*t2+B-1);t4++)

for (t5=B*t3;t5<=min(N-1,B*t3+B-1);t5++) {

tmp0=0;

for (t8=0;t8<=N-1;t8++) {

tmp1=alpha*A[t4℄[t8℄;

tmp2=tmp1*B[t8℄[t5℄;

tmp0+=tmp2;

}

E[t4℄[t5℄=tmp0;

}

#pragma omp parallel for private(t3,t4,t5,t8)

for (t2=0; t2<=floor((N-1)/B);t2++)

for (t3=0;t3<=floor((N-1)/B);t3++)

for (t4=B*t2;t4<=min(N-1,B*t2+B-1);t4++)

for (t5=B*t3;t5<=min(N-1,B*t3+B-1);t5++)

for (t8=0;t8<=N-1;t8++) {

tmp3=E[t4℄[t5℄*C[t5℄[t8℄;

D[t4℄[t8℄+=tmp3;

}

Figure 2.24 2mm-3AC optimized while false depen-

dences are ignored.
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#define B 32

#pragma omp parallel for private(t3,t4,t5)

for (t2=0; t2<=floor((N-1)/B);t2++)

for (t3=0;t3<=floor((N-1)/B);t3++)

for (t4=B*t2;t4<=min(N-1,B*t2+B-1);t4++)

for (t5=B*t3;t5<=min(N-1,B*t3+B-1);t5++) {

D[t4℄[t5℄*=beta;

tmp0[t4℄[t5℄=0;

}

#pragma omp parallel for private(t3,t4,t5,t8)

for (t2=0; t2<=floor((N-1)/B);t2++)

for (t3=0;t3<=floor((N-1)/B);t3++)

for (t4=B*t2;t4<=min(N-1,B*t2+B-1);t4++)

for (t5=B*t3;t5<=min(N-1,B*t3+B-1);t5++) {

for (t8=0;t8<=N-1;t8++) {

tmp1[t4℄[t5℄=alpha*A[t4℄[t8℄;

tmp2[t4℄[t5℄=tmp1[t4℄[t5℄*B[t8℄[t5℄;

tmp0[t4℄[t5℄+=tmp2[t4℄[t5℄;

}

E[t4℄[t5℄=tmp0[t4℄[t5℄;

for (t8=0;t8<=N-1;t8++)

tmp3[t4℄[t8℄=E[t4℄[t5℄*C[t5℄[t8℄;

for (t8=0;t8<=N-1;t8++)

D[t4℄[t8℄+=tmp3[t4℄[t8℄;

}

Figure 2.25 Optimizing the expanded version of 2mm-

3AC.
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Figure 2.26 Speedup against non-tiled sequential code for Polybench—PRE

We repeat later another set of experiments where we focus on performance and show that

although expansion enables tiling, it leads in many cases to worse performance due to its high

memory footprint compared to the technique of ignoring false dependences.

Similar results are found when the same experiments are applied on Polybench-PRE (Ta-

ble 2.2). Since PRE is only effective for some loop nests, this figure does not show all Poly-

bench kernels. The original Pluto fails to tile the kernels. When the --ignore-false-dependenes

is used, Pluto succeeds in tiling 5 kernels out of 9. Gemm is a representative example of the

kernels that were tiled and is presented in Figure 2.18.

In the other kernels that were not tiled (gemver, gesummv, mvt and correlation) the origi-

nal loop depth is exactly 2 and applying the PRE optimization introduces a temporary scalar

variable (to hold invariant data across the iterations of the inner loop); this variable induces

false dependences that cannot be ignored by our criterion their adjacent live ranges are not

iteration-private. This prevents Pluto from applying tiling. Gesummv, a representative exam-

ple of kernels with a loop depth equal to 2, is presented in Figure 2.21.
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2.7.2 Performance evaluation for Polybench-3AC

The following experiments focus on performance. In all of the experiments, the benchmark is

first compiled with the Pluto source to source compiler, and then the resulting optimized code

is compiled with GCC. The figures show different speedups compared to the baseline. Each

speedup is the execution time of the kernel being tested normalized to the execution time of the

baseline. The baseline is compiled with GCC 4.4, with optimization flags -O3 -ffast-math.

Values greater than 1 indicate speedups, values smaller than 1 indicate slowdowns (the speedup

of the baseline is 1).

Figure 2.22 shows the difference in performance between the optimization of Polybench-

original with pluto --parallel --tile and the optimization of Polybench-3AC with the

same options. As presented in Table 2.1, Pluto fails to tile Polybench after three-address

code transformation.

Figure 2.23 shows the difference in performance between optimizing Polybench-3AC with

and without the --ignore-false-dependenes option. The figures compare also between

ignoring false dependences and applying array and scalar expansion.

The results shown in Table 2.1 are important to understand these figures. Four classes of

kernels can be identified by analyzing the figures. While some of the kernels show slowdowns,

many kernels show a speedup. This speedup is obtained only when false dependences are

ignored or when expansion is applied. The explanation for the slowdowns is presented in

Section 2.7.3.

1. The first and largest class is represented by 2mm, 3mm, gemm, gemver, gesummv, mvt,

covariance, correlation, syrk and syr2k. The --ignore-false-dependenes option, ap-

plied to 3AC, restores the full tiling potential of Pluto. While expansion was effective

in enabling tiling, the performance obtained with expansion is lower compared to the

performance obtained when false dependences are ignored. The performance when

expansion is applied is lower, because, with expansion, Pluto gets more freedom in ap-

plying loop transformations, and thus it applies transformations that on one hand enable

better vectorization and parallelism but on the other hand prevent array contraction.5 We

explain this in the example presented in Figures 2.19, 2.20, 2.24 and 2.25. Figure 2.19

shows 2mm in 3AC form, Figure 2.20 shows 2mm after expansion (expansion is applied

on the 2mm 3AC code by transforming the scalars tmp0, tmp1, tmp2 and tmp3 into ar-

rays). Figures 2.24 and 2.25 show 2mm after applying loop transformations with Pluto.

To optimize the expanded 2mm, Pluto chose to apply loop distribution and to reschedule

5Contraction is used to transform the expanded arrays back into scalars. This transformation eliminates the

memory overhead created by expansion but is not always possible.
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statements moving the statement tmp0 into a separate loop. Although loop distribution

enables better vectorization and parallelism in general, in this example, it prevents the

compiler to contract the tmp0 array (i.e., transform the tmp0 array into an array with

fewer dimensions or into a scalar) and thus the memory overhead created by expansion

is not eliminated. Loop distribution was also applied on the last loop of 2mm leading to a

scheduling of the statements manipulating tmp3 into two separate loops which prevents

the contraction of tmp3.

2. The second class contains 7 kernels (see Table 2.1): atax, fdtd-apml, bicg, lu, jacobi-

2d-imper, jacobi-1d-imper and seidel. The kernels in this class are either kernels where

we have better performance for expansion over ignoring false dependences (atax, fdtd-

apml and bicg) or where ignoring false dependences does not enable tiling (lu, jacobi-

2d-imper, jacobi-1d-imper, seidel). These kernels are a part of the same class because

in all of these kernels, the Pluto algorithm which is supposed to perform a set of loop

transformations that enable parallelism and enable tiling is not able to do so due to the

false dependences in these kernels. Skewing is an example of these code transforma-

tions that need to be applied before the compiler can perform tiling. Since loop skewing

is performed during the Pluto algorithm, and since we do not ignore false dependences

during the Pluto algorithm, skewing is not performed and thus tiling is not possible. The

expanded code has no false dependences which gives much freedom for the Pluto algo-

rithm to perform the adequate affine transformations including skewing. The application

of skewing in this case enables tiling.

jacobi-2d-imper is a good representative of the kernels where false dependences limit

the ability of the Pluto algorithm to perform loop transformations. To be able to tile

the code and to extract outermost parallelism in jacobi-2d-imper, the Pluto algorithm

has to perform loop skewing. Due to false dependences in three-address code, the Pluto

algorithm could not apply skewing and thus tiling was not applied and only innermost

loops could be parallelized which led to a loss in performance. This class of benchmarks

motivates future work towards the integration of non-interference constraints into the

Pluto algorithm itself.

3. In the third class, represented by cholesky and symm, the original code contains scalar

variables, and thus Pluto fails to find tilable loop bands (Table 2.1). Ignoring false

dependences enables Pluto to find tilable bands, resulting in performance improvements.

Although the proposed technique enables loop tiling in symm, the performance obtained

with expansion is better than the performance obtained with ignoring false dependences,

because expansion enables the compiler to perform loop distribution which helps Pluto
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to find more profitable, outermost parallelism on the newly created loops instead of a less

profitable, innermost parallelism on the original loop. Finding outermost parallelism in

the case of symm is not possible without expansion. This is an interesting example that

shows that expansion can, in fact, enable aggressive loop transformations and that the

gain from these transformations can bypass the loss of performance induced by memory

footprint after expansion. This benchmark motivates future work towards studying the

synergy between using expansion and ignoring false dependences to reach higher orders

of performance gains.

4. In the fourth class, represented by ludcmp, and durbin, tiling is not possible as tiling is

not a valid transformation for these kernels (tiling will break live ranges). The original

code contains negative dependences that cannot be ignored even when our relaxed per-

mutability criterion is used since these false dependences are adjacent to live ranges that

are not iteration private (in both, Polybench-original and in Polybench-3AC). In durbin,

even after expansion, the application of tiling remains impossible since the code con-

tains false dependences that cannot be removed even by the application of expansion.

Such a code cannot be tiled.

2.7.3 Reasons for slowdowns

In kernels such as atax, fdtd-2d, trisolv, bicg, lu, jacobi-2d-imper, jacobi-1d-imper, seidel,

and cholesky, the overhead of parallelization is higher than the benefit of parallelization. In

trmm, for example (presented in Figure 2.27), the overhead of synchronization at the end of

each iteration of the loop t2 (the loop with induction variable t2) is higher than the benefit

of the parallel execution especially in the case of a small number of iterations in the inner

loop. Although the parallelization is not profitable, Pluto parallelized the inner loop because

it lacks an adequate profitability model. In some other kernels, the Pluto algorithm performs

partial loop distribution creating many parallel inner loops nested in an outer sequential loop.

Parallelizing many inner loops impacts performance negatively, and leads to more slowdowns.

Having a model that helps Pluto to decide when the parallelization is profitable and when it is

not would enable Pluto to avoid such slowdowns, but this is orthogonal to our contributions.

2.7.4 Performance evaluation for Polybench-PRE

Figure 2.26 shows the effect of optimizing the Polybench-PRE with and without the option

--ignore-false-dependenes. Tiling for the kernels gemver, gesummv and fdtd-apml is not

valid, consequently these kernels do not show any speedup. For the other kernels, the tests
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for (t1=1;t1<=NI-1;t1++)

for (t2=eil((t1-31)/32);t2<=floor((t1+NI-2)/16);t2++) {

lb1=max(eil(t2/2),eil((t1-31)/32));

ub1=min(floor((t1+NI-1)/32),floor((t1+32*t2+31)/64));

#pragma omp parallel for shared(t1,t2,lb1,ub1) private(t3,t4,t5,t6)

for (t3=lb1; t3<=ub1; t3++)

for(t4=max(-t1+32*t3,32*t2-32*t3);

t4<=min(min(32*t3+30,t1+NI-2),32*t2-32*t3+31);

t4++)

for(t5=max(max(t1,32*t3),t4+1);

t5<=min(min(t1+t4,32*t3+31),t1+NI-1);

t5++) {

temp1[t1℄[-t1+t5℄=A[t1℄[t1+t4-t5℄*B[-t1+t5℄[t1+t4-t5℄;;

B[t1℄[-t1+t5℄+=alpha*temp1[t1℄[-t1+t5℄;;

}

}

Figure 2.27 Innermost parallelism in the expanded version of trmm.

show that the use of the option --ignore-false-dependenes restores Pluto’s ability to iden-

tify tilable bands despite the application of PRE.

2.8 Conclusion and Future Work

Loop tiling is one of the most profitable loop transformations. Due to its wide applicability,

any relaxation on the safety criterion for tiling will impact a wide range of programs. The pro-

posed technique allows the compiler to ignore false dependences between iteration-private live

ranges, allowing the compiler to discover larger bands of tilable loops. Using our technique,

loop tiling can be applied without any expansion or privatization, apart from the necessary

marking of thread-private data for parallelization. The impact on the memory footprint is

minimized, and the overheads of array expansion are avoided.

We have shown that ignoring false dependences for iteration-private live ranges is partic-

ularly effective to enable tiling on three-address code, or after applying scalar optimizations

such as partial redundancy elimination and loop invariant code motion. Ignoring false depen-

dences for tile-private live ranges is also an effective technique but such a criterion is beneficial

only in a very small number of kernels.

Investigating how to integrate non-interference constraints into the Pluto algorithm itself

is done in a separate work [102]. The goal here is to ignore false dependences on a more

general class of affine transformations and avoid the performance degradation observed when

converting a few benchmarks (such as lu and jacobi-2d) to three-address code. We are also
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interested in combining this technique with on-demand array expansion, to enable the maximal

extraction of tilable parallel loops with a minimal memory footprint.





Chapter 3

Scheduling Large Programs

3.1 Introduction

The polyhedral framework has shown an interesting success in modeling and applying com-

plex loop transformations for complex architectures. As different polyhedral frameworks are

becoming more and more mature, and as they are being used more and more to optimize

large programs, there is a need to explore ways to reduce the compilation time of such large

programs.

The Pluto algorithm [18] for affine scheduling is an example of a widely used scheduling

algorithm. It is used in the PPCG [104] source to source polyhedral compiler, in the Pluto [18]

source to source compiler and in Polly [42], a pass for polyhedral compilation in the LLVM

compiler infrastructure [59]. This is an algorithm that modifies the schedules of statements

(order of execution of statements) in order to apply loop transformations and enhance the per-

formance of the generated code. Reducing the execution time of this algorithm is an important

step towards reducing the overall compilation time in many polyhedral compilers.

In this work, we introduce a technique called offline statement clustering. This technique is

motivated by a practical study of 27 numerical kernels from the polybench1 benchmark suite:

we noticed that statements that are a part of the same SCC (Strongly Connected Components)

in the dependence graph in a given loop level are very likely to have almost the same schedule

for that loop level (the only difference between the schedules is in the lexicographical order of

these statements in the innermost loop level). A natural question to ask is whether we can take

advantage of this remark in order to reduce the execution time of the affine scheduling step. If

the schedules of some statements are usually almost equal, then there is no point in computing

a separate schedule for each one of these statements (since all of them will have almost the

1http://web.cse.ohio-state.edu/~pouchet/software/polybench

http://web.cse.ohio-state.edu/~pouchet/software/polybench
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same schedule anyway). It would be less expensive to represent all of these statements as one

statement (we call this statement a macro-statement) and only schedule that macro-statement.

This is what we call statement clustering.

In statement clustering, the original polyhedral representation of a program is transformed

into a new representation where some statements are clustered together into macro-statements.

Deciding which statements should be clustered together is done through a clustering heuristic.

Then, instead of scheduling the original statements of the program, we schedule the macro-

statements. Assuming that D is the set of the program statements, the Pluto affine scheduling

algorithm is estimated to have an average complexity of O(|D|5) [69], i.e., a quintic com-

plexity in the number of statements on average. Since, in general, the number of macro-

statements is less than the number of the original statements of the program, scheduling the

macro-statements should take less time than scheduling the original statements of the program.

This can be explained in more details as follows: the Pluto affine scheduling algorithm relies

on creating an ILP (Integer Linear Programming) problem and on solving that ILP problem

using an ILP solver in order to find new schedules for the statements. The number of variables

in the ILP problem depends on the number of statements of the program being optimized

and the number of constraints depends on the number of dependences of the program. Using

statement clustering, we create a new representation of the program that has fewer statements

and fewer dependences which reduces the total number of variables and the total number of

constraints in the ILP problem. This simplification leads to a much smaller constraint system,

that in general, is more likely to be solved more quickly by the ILP solver.

Note that in this work, we only focus on reducing the time for the step of affine scheduling.

Reducing the time of the other steps is not in the scope of this work. Note also that we

do not change the complexity of the Pluto affine scheduling algorithm, we rather suggest a

practical technique to reduce its execution time. Although reducing the size of the input of

the scheduling algorithm reduces the scheduling time in general (as we show experimentally),

there is no theoretical guarantee about this. The reason is that the time needed by the ILP

solver to find new schedules does not depend only on the number of variables and on the

number of constraints in the constraint system but depends also on other factors.

The contributions of this chapter are the following:

• We present an algorithm for statement clustering. We make a clear distinction between

the clustering algorithm and the clustering heuristics (used to decide which statements

should be clustered together).

• We present two clustering heuristics: the basic-block heuristic and the SCC heuristic,

and present a criterion to decide about the validity (correctness) of a given clustering

decision (i.e., the decision of which statements should be clustered together).
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• We show that the only optimization that cannot be done when SCC clustering is used is

the ability to shift some statements in the SCC without shifting the other statements.

• We show experimentally that statement clustering helps in reducing the affine schedul-

ing time by a factor of 6 (median) without a significant loss in optimization opportuni-

ties.

3.2 Definitions

Macro-statement A macro-statement is a virtual statement used to represent a cluster or a

group of statements. A macro-statement is represented using an iteration domain. We say that

a statement S corresponds to a macro-statement M if the macro-statement M was created by

clustering S and probably some other statements in the same macro-statement. We need to

keep track of which statements correspond to which macro-statements as this information is

needed later.

Clustering Decision A clustering heuristic decides which statements should be clustered or

grouped together. The output of the heuristic algorithm is a clustering decision. It is a set of

clusters, where each cluster represents a macro-statement. Each cluster is a set of iteration

domains (i.e., a set of statements).

3.3 Example of Statement Clustering

We illustrate the idea of statement clustering on the code in Figure 3.1.

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

S1: temp1 = A[i℄[j℄ * B[i℄[j℄;

S2: C[i℄[j℄ = temp1;

S3: temp2 = A[i℄[j℄ * C[i℄[j℄;

S4: D[i℄[j℄ = temp2;

}

Figure 3.1 Illustrative example for statement clustering

This program has 4 statements and 7 dependence relations. The dependence graph of the

program is presented in Figure 3.2. To apply statement clustering on this program, first we

need to use a clustering heuristic which produces a clustering decision. Let us suppose that
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the heuristic suggests the following clustering decision:

{{DS1;DS2};{DS3;DS4}}

This clustering decision indicates that the two statement domains DS1 and DS2 should be clus-

tered together and that the two statement domains DS3 and DS4 should be clustered together.

Figure 3.2 Original program dependence graph

Figure 3.3 Dependence graph after clustering

If we apply this clustering decision, we get new iteration domains and a new dependence

graph for the program that we present in Figure 3.3. The old dependence graph is transformed

into a new dependence graph where the vertices are the macro-statements and the edges are

the dependences between these macro-statements. In the new dependence graph, we have 3

dependence relations and 2 macro-statements: M1 which represents the clustering of DS1 and

DS2 and M2 which represents the clustering of DS3 and DS4.
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3.4 Clustering Algorithm

The goal of the clustering algorithm is to construct a set of macro-statements and a dependence

graph between these macro-statements. The clustering algorithm does not decide which state-

ments should be clustered together, such a decision is taken by a separate heuristic that we

describe in Section 3.6. Note that the clustering algorithm clusters only statements that are

a part of the same basic-block and does not cluster statements that belong to different basic-

blocks together.

The clustering algorithm takes as input:

• The set of statement iteration domains of the original program.

• The graph of dependences between these statements.

• A clustering decision: a set of clusters of statements.

The clustering algorithm returns:

• The set of macro-statement domains.

• The graph of dependences between the macro-statements.

In this work we only consider the clustering of statements that are a part of the same basic-

block as the algorithms in this case are simpler. Thus we assume that all the statements that

are clustered together have the same number of dimensions. A more generic clustering that

handles statements that are not a part of the same basic-block is left for a future work.

The clustering algorithm is described in Algorithm 1. It has three main steps:

• First, we create a mapping, M, that maps the iteration domain of each statement in the

program into the iteration domain of the corresponding macro-statement. This mapping

will be used to transform the statements into macro-statements. It is created as follows:

for each cluster in the clustering decision, we start by generating a new name for the

macro-statement (let us assume that N is the generated name), for each statement in the

cluster, we create a map from the iteration domain of that statement into a new iteration

domain that has the same dimensions but has N as a name. This is the iteration domain

of the corresponding macro-statement.

• In the second step, D′, the set of iteration domains of the macro-statements is created.

This is done by applying the mapping M to the iteration domains of the program state-

ments. D′ is the union of all the resulting dependences.
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• In the third step, ∆′, the set of dependences between the macro-statements is created.

This is done by applying the mapping M to each one of the dependences of the program.

∆′ is the union of all the resulting dependences. The number of dependences in ∆′ is

less than the number of dependences in the original dependence graph because after

transforming the original dependences of the program, we may get some redundant

dependences.

3.5 Using Offline Clustering with the Pluto Affine Schedul-

ing Algorithm

No modification to the Pluto affine scheduling algorithm is needed to take advantage of offline

clustering. We only need to apply offline clustering before calling the Pluto affine scheduling

algorithm. The general work-flow is as follows:

1. Call the clustering heuristic. This heuristic creates a clustering decision. The output of

this step is passed as an argument to the clustering algorithm.

2. Perform offline clustering to create a new dependence graph, and a set of macro-statements.

3. Call the Pluto affine scheduling algorithm with the new macro-statements and depen-

dence graph as inputs. The Pluto affine scheduling algorithm returns a new schedule for

the macro-statements.

4. We deduce the schedule of the original statements of the program as follows:

• For each macro-statement M:

– For each statement S that corresponds to M, the schedule of S is equal to the

schedule of M except that a static dimension is added to the schedule of S. This

static dimension is used to order the statements of the same macro-statement

among themselves lexicographically in the same basic-block according to

their original lexicographical order (or in any order that satisfies the depen-

dences between these statements).

5. The original representation along with the newly computed schedule of the program are

used in the rest of the polyhedral compilation flow.
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Input:

D: a set of the iteration domains of the program statements.

∆: a set of the dependences between the program statements.

ClusteringDecision: a set of sets of iteration domains.

Output:

D′: a set of the macro-statement iteration domains.

∆′: a set of the dependences between the macro-statements.

// Step 1: reate a mapping

foreach cluster ∈ ClusteringDecision do

// Generate a name (identifier) for the new maro-statement

N← GenerateName();

M← {} ;

foreach DS ∈ cluster do

// We assume that S is the name of the statement represented

by DS, and n is the number of dimensions of DS

// Create a map M that maps the iteration domain of S into a

new iteration domain (maro-statement's iteration domain)

m←{S[i1, . . . , in]→ N[i1, . . . , in]};
M←M∪m ;

end

end

// Step 2: reate maro-statements

foreach cluster ∈ ClusteringDecision do

D′← {} ;

foreach DS ∈ cluster do

// apply M to DS

D′S←M(DS);
D′← D′∪D′S ;

end

end

// Step 3: transform ∆ from a graph of dependenes between

statements into a graph of dependenes between maro-statements

∆′← {} ;

foreach δ ∈ ∆ do

δ ′← apply M to the source and sink of δ ; // this returns a map from

M(Source(δ )) to M(Sink(δ ))
∆′← ∆′∪δ ′;

end

Algorithm 1: High Level Overview of the Clustering Algorithm
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3.5.1 Correctness of Loop Transformations after Clustering

A loop transformation is correct if it does not violate the order of execution imposed by the

dependences of the program. Let us assume that a statement S1 is part of a macro-statement

M1 and that the statement S1 is the source (or the sink) of a dependence δ in the original

program dependence graph. If we apply clustering, the source of the dependence δ (or its

sink) becomes M1 and the schedule of M1 will be constrained by the dependence δ which

means that the schedules of all the statements that correspond to M1 are constrained also by the

dependence δ . This means that statement clustering, in fact, only adds additional constraints

on the schedules but does not remove any existing constraint. In any case, a statement is never

going to be less constrained than it should be and thus a correct transformation is still assured

after statement clustering.

3.6 Clustering Heuristics

The goal of a clustering heuristic is to decide which statements should be clustered together

in the same macro-statement. The clustering heuristic only clusters statements that belong to

the same basic-block together and thus it needs to know which statement belongs to which

basic-block. This information is not encoded in the iteration domains of the statements but is

extracted from the original AST of the program.

3.6.1 Clustering Decision Validity

Clustering a given set of statements together is not always valid. In this section we show

when is it valid to cluster a given set of statements in the same macro-statement. Although

the clustering algorithm is defined only for the case where statements are a part of the same

basic-block, the validity criterion is defined for the general case (i.e., when statements to be

clustered together are not necessarily in the same basic-block).

To reason about the clustering validity criterion, let us consider the following example:

for (i = 0; i < N; i++)

S1: A[i℄ = B[i℄ + 1;

for (i = 0; i < N; i++)

S2: C[i℄ = A[i℄ + C[i - 1℄;

for (i = 0; i < N; i++)

S3: D[i℄ = A[i℄ + C[i℄;
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Figure 3.4 shows the flow dependences between the statements S1, S2 and S3.

If the two statements S1 and S3 are clustered together, there are two possibilities regarding

the order of execution of S2 with regard to the two statements S1 and S3: S2 may be scheduled

to be executed before the two statements or after them. Either ordering violates a dependence

and thus clustering S1 and S3 is not valid in this case.

In general, given a dependence graph, it is not possible to cluster two statements if there is

a path of dependences, in the dependence graph, between these two statements that passes by

a third statement that is not being clustered with them.

This criterion needs always to be verified to check whether a given clustering decision is

valid unless the clustering heuristic is guaranteed always to produce valid clustering decisions

(such as the SCC clustering heuristic).

s�✁✂✄

s☎✁✂✄ s✆✁✂✄

Figure 3.4 Flow dependence graph

In the following two sections we present examples of clustering heuristics.

3.6.2 SCC Clustering

Let ∆k =(V,E) be the dependence graph of the program restricted to the statements that belong

to one basic-block (let us call it BB1) and restricted to the loop depth k (k is between 1 and

the maximal depth of the loop). The vertices V of ∆k are the statements of BB1 and the edges

E are the dependence relations between these statements projected on the k dimension.

Let ∆′k = (V ′,E ′) be a dependence restricted also to the statements of BB1 and to the

loop level k. This graph is the graph of dependences between the execution instances of the

statements of BB1 (unlike ∆k which is the graph of dependences between the statements of

BB1). The vertices V ′ of ∆′k are the execution instances of the statements of BB1 and the edges

E ′ are the dependences between these execution instances.

Let us assume that ∆k has an SCC that we call ω . Let Vω be the set of vertices (statements)

of this SCC. We say that ω is dense if for each two statements in Vω , for each two instances

of these two statements, there is a directed path in ∆′k between these two instances.

To perform SCC based clustering, we compute Ω, the set of strongly connected compo-

nents (SCCs) in the dependence graph ∆k. For each ω ∈ Ω (i.e., for each SCC in Ω), if ω is

dense, we mark the statements of ω as candidates for clustering together at depth k. If a set
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of statements are marked as candidates for clustering together at all the loop depths of a given

loop, then those statements are marked by the heuristic to be actually clustered together. We

do the previous procedure for all the basic-blocks of the program.

i. Validity of SCC Clustering

The SCC clustering heuristic always produces valid clustering decisions. To verify this, we

need to verify that for any two statement instances S(~I) and S′(~I′) that are a part of an SCC,

any third statement instance S′′(~I′′) that is a part of a path that goes from S(~I) to S′(~I′) must

also be clustered with S(~I) and S′(~I′). Indeed, this is the case because if there is a path that

goes from S(~I) to S′(~I′) that includes S′′(~I′′) then S′′(~I′′) is also a part of the SCC and thus

S′′(~I′′) is also clustered with S(~I) and S′(~I′).

ii. Characterization of Possible Losses in Optimization Opportunities

Without statement clustering, the scheduling algorithm is free to assign any valid schedule to

the statements of the program. But with statement clustering, this is not the case anymore. The

use of statement clustering implies that all the statements that are a part of the same cluster

will have the same schedule (more precisely, these statements will have the same schedule

coefficients for the dynamic schedule dimensions). This means that we may lose some op-

timization opportunities. An important question, that arises here, is how much optimization

opportunities we may lose.

Let us consider the following program:

for (i = 0; i < N; i++) {

S1: t = A[i℄;

S2: B[i℄ = t;

}

The dependence graph of this program, restricted on the two statements S1 and S2 at the

loop level 1, has a dense SCC. Since the two statements S1 and S2 are part of the SCC, and

since the SCC is dense, then there exists δ
S1(~I)→S2(~I′)

, a dependence (or a path of dependences)

from S1(~I) to S2(~I′) and there exists δ
S2(~I′)→S1(~I′′)

, another dependence (or a path of depen-

dences) from S2(~I′) to S1(~I′′). This is true for any S1(~I) ∈DS1, S2(~I′)∈DS2 and S1(~I′′) ∈DS1

such that S1(~I)≪ S2(~I′)≪ S1(~I′′). This means that S2(~I′) has to be executed between S1(~I)

and S1(~I′′). Any schedule for S1 and S2 must preserve this property.

Supposing that statement clustering is not used, the only possible transformation that the

Pluto algorithm can do in the previous example, without violation the previous property, is to

shift S2 one or more iterations as in the following example
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for (i = 0; i < 2*N; i++) {

if (i%2 == 0)

S1: t = A[i℄;

else

S2: B[i℄ = t;

}

Such an optimization is not possible if statement clustering is applied.

In fact, the only optimization opportunity that we may lose if we apply SCC clustering is

the ability to shift some of the statements that are a part of the SCC without shifting all the

other statements. In practice, this is not a harmful restriction as we show in section 3.7.

Note that, when we apply SCC clustering, we do not lose the ability to distribute statements

into separate loops, since it is not possible to distribute statements that are a part of the same

SCC into two separate loops anyway [55].

3.6.3 Basic-block Clustering

In this clustering heuristic, all the statements that are a part of the same basic-block are clus-

tered together in one macro-statement. We abbreviate the basic-block clustering with BB

clustering.

Let us consider the example in Figure 3.5, applying the basic-block clustering heuristic on

this code gives the following clustering: {{DS0,DS1},{DS2,DS3},{DS4}}

for (i=0; i<N; i++) {

S0;

S1;

for (j=0; j<N; j++) {

S2;

S3;

if (l>0)

S4;

}

}

Figure 3.5 Illustrative example for basic-block clustering

i. Possible Losses in Optimization Opportunities

Basic-block clustering prevents the scheduler from assigning different schedule coefficients

to the statements that are a part of the same basic-block. The same schedule coefficients (for
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the dynamic schedule dimensions) must be assigned to all the statements of a basic-block.

Loop transformations such as loop distribution, loop shifting of only some statements of the

basic-block are no more possible when this clustering is applied. Although this may seem to

be restrictive, the experimental section (Section 3.7) shows that there is no significant loss in

performance due to these restrictions.

3.7 Experiments

We implemented the algorithm of statement clustering on top of the PPCG [104] source-to-

source polyhedral compiler (version 0.02). PPCG takes C code as input and generates opti-

mized C+OpenMP or CUDA [76] (Compute Unified Device Architecture) code or OpenCL [92]

(Open Computing Language) code. It relies on the pet library [103] to extract the iteration do-

mains and the access relations while the dependence analysis is performed by the isl library

[101]. A new schedule is computed by isl using a variant of the Pluto affine scheduling algo-

rithm [18]. Code is generated from the polyhedral representation using an algorithm derived

from the ClooG algorithm [11]. The algorithm is described in detail in [44].

We use a command line argument to our tool to specify which statements should be clus-

tered together. The tool reports the scheduling time, the original number of statements and

dependences of the program and the number of macro-statements and dependences after the

application of statement clustering. We evaluate statement clustering on a set of benchmarks

that represent a variety of applications including linear algebra, image processing, stencils

. . . For each benchmark we measure the performance of the generated code when statement

clustering is used and when statement clustering is not used in order to assess how much op-

timization opportunities may have been lost due to statement clustering. We use the PPCG

options --target= --openmp to generate C code annotated with OpenMP directives for par-

allelism.

We use the following benchmarks to evaluate statement clustering:

Image processing benchmark suite. This is a set of benchmarks that includes 7 image

processing kernels (color conversion, dilate, 2D convolution, gaussian smoothing, basic his-

togram, resize and affine warping). This suite covers the computationally intensive parts of a

computer vision stack used by Realeyes, a leader in recognizing facial emotions (http://www.

realeyesit.com).

Polybench-3AC benchmark suite. When a program is transformed into 3AC (Three Address

Code), the number of statement increases considerably. It would be interesting to assess how

much statement clustering would help in such a context. Since PPCG is a source-to-source

compiler that does not convert its input code into three address form internally, and since no

http://www.realeyesit.com
http://www.realeyesit.com
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automatic source-to-source tool, that converts C code into 3AC form, is available to us, we

chose to convert the Polybench benchmark suite 3.2 into 3AC code manually. The goal is to

assess how would statement clustering help in reducing the scheduling time when it is applied

on a three-address-code.

This is the same benchmark used in Chapter 2. The process of converting Polybench into

3AC is described in Section 2.6. 2

Swim benchmark. A benchmark extracted from the SPEC CPU2000 [47] benchmark rewrit-

ten in C (the original benchmark is written in Fortran).

Table 3.1 shows the amount of reduction of the number of statements of the program after

statement clustering (SCC and BB clustering). A value such as 4 for the trmm kernel (SCC-

clustering) indicates that the number of statements of the program is reduced by a factor of

4, i.e., for each 4 statements of the original program, one macro-statement is created. A high

value in the table indicates an aggressive reduction in the number of statements of the original

program after statement clustering.

In median, the number of macro-statements is 2.5× less than the original number of state-

ments when SCC clustering is enabled and is 3× less than the original number of statements

for BB clustering. The number of dependences is 3.67× less than the original number of de-

pendences for SCC clustering and is 4× less than the original number of dependences for BB

clustering. Statement clustering reduces the number of statements by a factor reaching 17×

and 25× in resize and affine warping.

The numbers in Table 3.1 confirm the fact that BB clustering is more aggressive than

SCC clustering since the SCC heuristic only considers clustering SCCs that are a part of the

same basic-block and in general one basic-block may contain multiple SCCs, thus it is natural

that the number of statements when BB clustering is applied is smaller than the number of

statements when SCC clustering is applied (i.e., BB clustering is more aggressive than SCC

clustering).

In Table 3.1, for the image processing benchmarks, the amount of reduction in the number

of statements after SCC and BB statement clustering is identical. In fact both heuristics cluster

statements exactly in the same way and yield exactly the same macro-statements in the image

processing benchmarks. This is because in each one of these benchmarks, all the statements

of a basic-block are a part of the same SCC for all the loop levels.

In color conversion, statement clustering does not reduce the original number of statements

and dependences because this code is composed of only one statement. In affine warping,

statement clustering reduces the number of statements from 25 statements into only 1 macro-

statement and reduces the number of dependences from 72 into 1. In swim, which is a time-

2Polybench-3AC is publicly available on https://github.com/rbaghdadi/polybench-3.2-3AC

https://github.com/rbaghdadi/polybench-3.2-3AC
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SCC-clustering BB-clustering

Code macro statements dependences macro statements dependences

2mm 3.5 5.86 3.5 5.86
3mm 3.33 6.33 3.33 6.33
atax 3.5 8.2 3.5 8.2
bicg 3.5 10 4.67 13.33
cholesky 1.83 1.59 1.83 1.59
doitgen 1.67 3.67 1.67 3.67
gemm 2.5 6 2.5 6
gemver 3.75 5 3.75 5
gesummv 2.2 4.43 2.2 4.43
mvt 3 7 3 7
symm 3 3.18 4 3.89
syr2k 3.5 7.5 3.5 7.5
syrk 3 5 3 5
trisolv 2 2.83 2 2.83
trmm 4 12 4 12
durbin 2.14 2.6 2.5 2.6
dynprog 1.6 1.56 1.6 1.56
gramschmidt 1.86 2.06 1.86 2.06
lu 2.5 3.5 2.5 3.5
ludcmp 1.5 1.42 1.5 1.42
correlation 1.57 2.13 1.83 2.33
fwarshall 2 4 2 4
reg_detect 1.33 1.27 1.33 1.27
fdtd-2d 3.5 4.6 3.5 4.6
fdtd-apml 12.5 12.1 18.75 22
jacobi-1d-imper 2 3.5 2 3.5
jacobi-2d-imper 3 5.5 3 5.5
seidel-2d 9 35 9 35

color conversion 1 1 1 1
dilate 3.33 2 3.33 2
2D convolution 1.67 1.86 1.67 1.86
gaussian smoothing 1.33 1.33 1.33 1.33
basic histogram 1.5 2.5 1.5 2.5
resize 17 64 17 64
affine warping 25 72 25 72

Swim 1 1 17.33 84.44

Median 2.5 3.67 3 4
Average 3.83 8.5 4.6 11.22

Table 3.1 The factor of reduction in the number of statements and dependences after applying

statement clustering

iterated stencil code, SCC clustering does not help in reducing the number of statements since

one of the conditions of applying the SCC heuristic does not apply in this code: only the

dependence graph that is restricted to the outermost loop level (time loop level) has SCCs, the

other graphs restricted to the inner loop levels do not have any SCC (in the inner loop levels

each SCC has only one statement).

In these experiments we use a 10 minutes time out for PPCG. If PPCG takes more than 10

minutes while scheduling a code, the PPCG process is killed. The default PPCG fails to compile
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the Swim benchmark before the 10 minutes time-out. While enabling SCC statement cluster-

ing in PPCG does not solve the problem (since SCC clustering does not have any effect on the

Swim benchmark), BB statement clustering succeeds in reducing the number of statements in

the Swim benchmark by a factor of 17.33× which enables PPCG to compile the benchmark in

25 seconds only.

Figure 3.6 Speedup in scheduling time obtained after applying statement clustering

Figure 3.6 shows the speedups of the scheduling when statement clustering is applied over

the case when statement clustering is not applied. We take in count the overhead of the clus-

tering algorithm when we measure the scheduling time in the case of statement clustering (i.e.,

we sum the scheduling time and the clustering time when statement clustering is applied). The

baseline is the scheduling time without clustering. Speedups higher than 1 indicate that state-

ment clustering succeeded in reducing the scheduling time of the program. The experiments
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were conducted on a system with a 64 bit Intel Core i5 CPU U470 at 1.33 GHz (4 cores) and

2 GB of RAM.

In the image processing benchmarks (Figure 3.6), the scheduling time for the BB heuristic

is identical to the scheduling time for the SCC heuristic. This is in line with the previous results

indicating that the two heuristics (SCC and BB) yield exactly the same clustering decisions

in the image processing benchmarks. Statement clustering for resize reduces the scheduling

time by a factor reaching 82×, and a factor reaching 149× for affine warping and by a median

factor of 5.61× for the whole set of the image processing benchmarks. The speedups for affine

warping and resize are due to the fact that statement clustering in these two cases reduces the

number of statements by a factor of 25× and 16× respectively which is a quite high reduction

in the number of statements compared to a factor of 1.16× for basic histogram for example.

In the Polybench-3AC benchmark suite (Figure 3.6), the speedups when the BB heuristic

is applied are identical to the speedups when the SCC heuristic is applied. This is true for all

the kernels except for 4 kernels: symm, durbin, correlation and fdtd-apml where the speedups

for BB clustering are higher than the speedups for SCC clustering because BB clustering is

more aggressive than SCC clustering in reducing the number of the statements of the program.

In dynprog, although statement clustering reduces the number of statements by a factor of

1.6×, the scheduling of the clustered program is slower than the scheduling of the original

program. This is a case that confirms that the scheduling time does not depend only on the

number of statements and on the number of constraints but also depends on other factors and

thus reducing the number of statements does not guarantee a reduction in the scheduling time

(although it is the case in general).

In all the kernels, the benefit from statement clustering is higher than the overhead of

the clustering algorithm (clustering time). The only exception to this is color conversion,

where statement clustering does not reduce the number of statements of the original program

since the original program has only one statement. There is not benefit in applying statement

clustering in this case while there is an overhead in applying statement clustering and this is

why there is a slowdown in color conversion.

Figure 3.7 measures the effect of statement clustering on the quality of the PPCG generated

code (we generate C + OpenMP using PPCG). The figure compares the execution time of the

PPCG generated code when statement clustering is enabled with the execution time of the same

code when statement clustering is not enabled. The baseline is the execution time of the PPCG

generated code when statement clustering is not enabled. Values that are equal to 1 indicate

that statement clustering does not deteriorate the quality of the generate code.

The figure indicates that the performance of the code generated when statement clustering

is applied is very close (almost equal) to the performance of the code generated when state-
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Figure 3.7 Execution time when clustering is enabled normalized to the execution time when

clustering is not enabled (lower means faster)

ment clustering is not used. In a few cases, there is a small difference between the two, but

this difference is not due to a loss in optimization opportunities. In fact, there is no difference

in the schedule coefficients for the dynamic schedule dimensions for each one of these bench-

marks. The difference is in the schedule coefficients for the static schedule dimensions. This

difference is orthogonal to the application of statement clustering because the choice of the

values of the static schedule dimensions by PPCG is arbitrary as long as the values chosen do

not lead to a violation of the program dependences. In some kernels, the values of the static

schedule dimensions, when clustering is enabled and when it is not, happen to be different

and thus there is a small difference in the performance of the generated code. Our algorithm

chooses values for the static schedule dimensions that preserve the original order of statements

in the basic-block (since we only cluster statements that are part of the same basic-block). This

order is valid because the original order is valid.

3.8 Related Work

Many alternative solutions can be applied to enhance the affine scheduling time in polyhedral

compilation.
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The first technique is to avoid the use of a general purpose affine scheduling algorithm

that uses ILP (such as the Pluto [18] algorithm) and to apply instead a predefined set of loop

transformations. An example of a compiler that used this technique is PolyMage [75]. A

polyhedral compiler for an image processing DSL. In this compiler, two algorithms for loop

transformations are used: the first algorithm applies overlapped tiling [48] (if possible) and

the second algorithm groups different stages of a pipeline together to enhance data locality.

No other loop transformation (loop interchange, loop shifting, . . . ) is applied. This approach

relies on algorithms that were designed for image processing applications and in the context

of DSL compilation where there is no need to discover parallelism since the information about

parallelism comes from the DSL language itself. Although the algorithm used in the PolyMage

compiler scales better than the Pluto algorithm, it suffers from being non generic, unlike the

Pluto algorithm which can be applied in a variety of contexts.

The GRAPHITE polyhedral pass in GCC [95] and the Polly polyhedral pass in LLVM [42]

both treat each basic-block in the program as a macro-statement and schedule the basic-blocks

instead of scheduling the statements individually, but they do not use any clustering algorithm

or clustering heuristic. The macro-statements are simply created during the creation of the

polyhedral representation of the program. In a similar way, Mehta et al. [69] also represent

basic-blocks as macro-statements (they call them super-statements), and propose an algorithm

for reducing the number of statements and dependences but their algorithm only performs a

clustering that is equivalent to our basic-block clustering. They do not make a distinction

between the clustering algorithm and clustering heuristics. Our approach can be seen as a gen-

eralization of both approaches. Unlike [42, 95], we suggest an algorithm to perform clustering.

Unlike [69] we make a clear distinction between the clustering algorithm and the heuristics

that decide which statements should be clustered together, we suggest examples of heuristics

and provide a criterion to decide whether a given clustering decision is correct or not (previous

work did not need such a criterion since it focused only on basic-block clustering).

Feautrier proposes the use of Communicating Regular Processes (CRP) [39]. He uses a

C-like specification language, in which smaller modules, comparable to functions in C, could

be defined. The modules communicate with each other through communication channels,

and communication channels between two modules are multi-dimensional arrays. Feautrier’s

technique sees processes as gray boxes, exposing constraints for coarse grain scheduling of

the CRP. These constraints are much simpler than the original problem for the full program:

coefficients and Farkas multipliers internal to the processes have been eliminated. But the

constraints on the communication channels remain. The modules in CRP could be sched-

uled independently from each other, leading to smaller size linear programming problems and

hence better compilation times.
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3.9 Conclusion and Future Work

We presented the basic idea of statement clustering along with an algorithm to perform state-

ment clustering and two clustering heuristics. We proposed a criterion that can be used to

decide whether a given clustering decision is valid or not. The advantage of applying state-

ment clustering is that it integrates well and transparently with the widely-used Pluto affine

scheduling algorithm and that it can be combined with other techniques. We suggest this

method as a practical, easy to implement solution that enables polyhedral tools to schedule

programs more efficiently.

We provide an experimental evaluation on a variety of benchmarks and show experimen-

tally that statement clustering succeeds in reducing the scheduling time by more than 10× in

many of the benchmarks and by a median factor of 6× across all the benchmarks. In practice,

the technique does not lead to any significant loss in optimization opportunities. We were able

to match the performance of the code generated by PPCG for all the 34 benchmarks that we

used to evaluate statement clustering.

A possible improvement for this work would be to extend the current clustering algorithm

to enable the clustering of statements that are a part of different basic-blocks. Another im-

provement would be to explore new clustering heuristics, and to try to use the idea of statement

clustering during the steps of code generation and dependence analysis in a polyhedral model

(if statement clustering is to be used before the step of dependence analysis, the clustering

heuristic should not rely on the use of dependences but on other means).





Chapter 4

The PENCIL Language

4.1 Introduction

Many systems — from supercomputer installations to embedded systems-on-chip — benefit

from using special-purpose accelerators which can significantly outperform general-purpose

processors in terms of energy efficiency as well as execution speed. Software for such sys-

tems, however, is currently written using low-level APIs such as OpenCL (Open Computing

Language) [92] and CUDA (Compute Unified Device Architecture) [76], which increases the

cost of its development and maintenance. A compelling alternative for developers is to work

with higher-level programming languages, and to leverage compilation technology to automat-

ically generate efficient low level code.

For general-purpose languages in the C family, this approach is hindered by the difficulty

of static analysis in the presence of pointer aliasing, data-dependent array accesses and dy-

namic control. For example, the possibility of aliasing often forces a parallelizing compiler to

assume that it is not safe to parallelize a region of source code, even though aliasing might not

actually occur at runtime.

Domain-specific languages (DSLs) can circumvent this problem: it is often clear how

parallelism can be exploited given high-level knowledge about standard operations in a given

domain such as linear algebra [13], image processing [85] or partial differential equations [3].

The drawback of the DSL approach is the significant effort required to lower code all the way

from the DSL level to highly optimized OpenCL or CUDA. The effort involved is even more

significant if optimization is required for multiple platforms. Given typical budget constraints,

the DSL implementers will likely limit their efforts to a set of techniques useful for a small

number of target platforms, thus compromising on performance portability. Moreover, the

implementers of different DSLs will likely spend their efforts on implementing an overlapping

set of techniques. The existence of a common intermediate language serving as a target for
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DSL compilers would reduce considerably the development costs. In addition, if this language

is a high level language, it can also be used directly by domain experts to target accelerators

and the advantage is doubled.

We present the design and implementation of PENCIL, a platform-neutral compute interme-

diate language. PENCIL aims to serve both as a portable implementation language to facilitate

the acceleration of new and legacy applications on modern accelerators, and as an intermediate

language for DSL compilers.

The contributions of this chapter are the following:

• the design of PENCIL, a platform-neutral compute intermediate language for direct ac-

celerator programming and DSL compilation; thanks to the extensions of PENCIL, it is

possible for a polyhedral compilation framework to generate more efficient code and to

handle applications that do not fit in the classical restrictions of the polyhedral model;

• the evaluation of PENCIL on multiple GPUs and on several real-world, non-static-control

applications that were previously out of scope for polyhedral compilation.

4.2 PENCIL Language

4.2.1 Overview of PENCIL

PENCIL is a rigorously-defined subset of C99 [50]. It enforces a set of coding rules principally

related to restricting the manner in which pointers can be manipulated. These restrictions make

PENCIL code “static analysis-friendly”: the rules are designed to enable a compiler to perform

better optimization and parallelization when translating PENCIL to a lower-level formalism

such as OpenCL. PENCIL is also equipped with specific language constructs, including assume

predicates and side effect summaries for functions, that enable communication of domain-

specific information and static properties to the PENCIL compiler, to be used for parallelization

and optimization. These specific constructs provide information that is difficult for a compiler

to extract from arbitrary code but that can be easily captured from a DSL, or expressed by

a programmer. Although the target platforms are highly parallel, PENCIL deliberately has

sequential C99 semantics in order to simplify DSL compiler development and the work of a

domain expert directly developing in PENCIL, and more importantly, to avoid committing to

any particular pattern(s) of parallelism.

Where necessary, PENCIL exploits the flexibility of non-C99 extensions, and particularly

GNU C extensions [105] such as type attributes. A design goal was to avoid pragma-based

directives as directives are still not considered to be first class citizens by many compilers.
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However, in very few cases, PENCIL relies on directives to attach properties to a control flow

region of the code, no better C-compatible alternative being available. These directives have

been inspired by standard directives used for vectorization and thread-level parallelism, but

retain a strictly sequential semantics in PENCIL.

Because it is based on C, the learning curve for PENCIL is gentle. By design, PENCIL

interfaces with C code, so that legacy C applications can be incrementally ported to PENCIL.

From the point of view of DSL compilation, PENCIL offers an easy-to-target intermediate

language because all a DSL-to-PENCIL compiler must do is faithfully encode the semantics

of the input DSL program into PENCIL; auto-parallelization and optimization for multiple

accelerator targets is then taken care of by the downstream PENCIL compiler. Because DSL-

to-PENCIL compilers have tight control over the code they generate, such compilers can aid

the effectiveness of the downstream PENCIL compiler by careful generation of code, and by

communicating domain-specific information via the language constructs PENCIL provides for

this purpose.

Design considerations The design of PENCIL is guided by the following considerations:

• PENCIL should have sequential semantics to facilitate the design and implementation of

domain-specific compilers targeting PENCIL, to ease the work of PENCIL programmers,

and to avoid committing early to target-specific patterns of parallelism.

• PENCIL should simplify static code analysis for the optimizing compiler. For example,

the use of pointers is disallowed, except in specific cases, relieving the compiler from

issues related to aliasing.

• PENCIL should provide facilities that allow a DSL-to-PENCIL compiler to convey, in the

PENCIL code that it generates, domain-specific information that can be exploited by the

compiler to perform better optimizations. For example, PENCIL should allow the user

to indicate that the size of an array does not exceed a specific size to enable the compiler

to place that array in the shared memory of a GPU (Graphics Processing Unit).

• For compatibility reasons, a standard C99 compiler that supports GNU C attributes [105]

should be able to compile PENCIL, this allows for greater portability and makes the

debugging of PENCIL code easier.

• The subset of C99 that constitutes PENCIL should be as large as the above design con-

siderations permit. A very small and restrictive subset of C99 limits the reuse and mod-

ularity of PENCIL code, and makes PENCIL less attractive to programmers and DSL

compiler-writers.
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• Language extensions (compared to C99) should be minimized. Too many extensions

make it harder for compilers to support PENCIL.

• PENCIL code should be able to interface with non-PENCIL code and external library

functions.

Three possible scenarios of using PENCIL are possible:

1. PENCIL code is generated by a DSL compiler;

2. PENCIL code is written by a programmer;

3. a mixture of both scenarios.

GPUs

(Nvidia, AMD,

ARM, . . . )

CPUs

(Intel, AMD, . . . )

FPGAs

(Altera, Xilinx, . . . )
Other

accelerators

OpenCL

PENCIL

Platform-Neutral Compute

Intermediate Language

Domain Specific Languages

Optimizing, auto-parallelizing

PENCIL → OpenCL compiler

DSL→ PENCIL compilers

Direct OpenCL

programming

Direct PENCIL

programming

(hand written

PENCIL code)

Figure 4.1 High level overview of our vision for the use of PENCIL

Figure 4.1 shows a high level overview of how we envision PENCIL to be used. First, a

program written in a domain specific language is compiled into PENCIL. Domain specific

optimizations are applied during this translation, and the DSL compiler may add domain spe-

cific information during this step through specific PENCIL language constructs. Second, the

generated PENCIL code is combined with hand-written PENCIL code that implements specific

library functions. PENCIL is used here as a standalone language. The combination of the two
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pieces of code is then optimized and parallelized. Finally, highly specialized low-level code is

generated. In Figure 4.1, we illustrate the case where the generated low-level code is OpenCL,

allowing the compiled code to run across a range of OpenCL-compliant devices. We hereafter

assume that OpenCL is the target language for PENCIL compilation, but in principle PENCIL

can target any suitable low-level representation.

The design of the extensions to C99 that are a part of PENCIL went through two steps.

First numerous DSLs (and benchmarks) were analyzed, and based on this analysis, a list of

the properties that are expressed in these DSLs was created. This list was then filtered and only

few properties were kept. Deciding which properties were supposed to be expressed in PEN-

CIL was guided by the following design choice: all domain-specific optimizations should be

performed at the DSL compiler level, while the PENCIL compiler should be responsible only

for parallelization, data locality optimization, loop transformations, and mapping to OpenCL.

This separation meant that, in PENCIL, only the properties that are necessary to enhance static-

analysis and enable mapping to accelerator platforms are needed. This choice has the advan-

tage of keeping PENCIL general-purpose, semantically sequential and lightweight.

This chapter is mainly based on a research report written in collaboration with other part-

ners in the PENCIL project [7]. Section 4.2.2 presents the subset of C99 that defines the core

of PENCIL, while Section 4.2.3 presents the extensions to C99 that are a part of PENCIL. The

language syntax is defined in detail in Appendix A as an EBNF (Extended Backus-Naur Form)

grammar [106].

4.2.2 PENCIL Definition as a Subset of C99

i. Program Scope

The following C99 [50] global definitions and declarations are allowed inside a PENCIL pro-

gram: type definition, function declaration and definition, and constant declaration. PENCIL

allows users to declare global constants as in C99, but it does not allow users to declare non-

constant variables as global variables. This restriction enables PENCIL compilers to assume

that PENCIL code does not have any side effect on global variables.

ii. Expressions

PENCIL supports a strict subset of C99 expressions: arithmetic, logical, bit and comparison op-

erations, array and member operators ([℄,.), ternary conditional (ond?op1:op2), sizeof(arg),

scalar conversion ((type)arg), PENCIL function calls, and C function calls (when a summary

function is provided, details in Section 4.3.2).
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iii. Types

Unlike C99, unions and bitfields are not supported in PENCIL. Only the following C99 types

are allowed.

• Scalar types: scalar data types in PENCIL are the same as in C99, with the addition of

the optional half float type (PENCIL compilers are not required to support the half float

type).

• Structural types (same as in C99)

• Array types

– Arrays (including array function arguments) must be declared using the C99 variable-

length array syntax [50]. For example an array should be declared with int A[N℄

instead of being declared with int *A.

– Array function arguments must be declared using the stati keyword and the

onst and restrit type qualifiers described later (the macro penil_array can

be used to abbreviate stati onst restrit).

– Array accesses should not be linearized, as this tends to obfuscate affine subscript

expressions and may reduce the quality of the data dependence analysis. Multidi-

mensional C99 arrays (C99 variable-length arrays syntax) should be used instead.

– In order to have a precise dependence analysis, it is recommended to use quasi-

affine array subscripts whenever this is possible.

• Pointer types

– The declaration of pointers is allowed in PENCIL. The main motivation is to pro-

vide PENCIL users with the ability to use non-PENCIL libraries in a PENCIL code.

Forbidding pointer declarations makes the use of non-PENCIL libraries difficult

since the header files of such libraries may contain pointer declarations.

– Pointer manipulation (including pointer arithmetic and reading or writing to a

pointer) is not allowed. There is one exception to this restriction, reading an

array reference is allowed when the reference is passed in a function call (e.g.,

mat_add(C, A, B)).

The main motivation is to guarantee that the following property is preserved: through-

out the life of a PENCIL program, separate array references never alias for write

accesses and remain constant. Preserving this property is necessary to avoid the
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need for an advanced pointer analysis in PENCIL compilers. Passing an array refer-

ence to a function is allowed in PENCIL as it does not violate the previous property.

The property is not violated because function arguments in PENCIL are required

to be qualified with restrit and onst: if two separate arrays are passed to a

function and if they are qualified with the restrit type qualifier then they are

guaranteed not to alias for write accesses withing that function. Moreover, the

onst type qualifier guarantees that those array references remain constant within

that function.

– Pointer dereferencing is not allowed. The only exception to this is accessing arrays

using array subscripts (e.g., A[i℄[j℄).

Forbidding pointer arithmetic and forbidding pointer dereferencing (except deref-

erencing through array subscripts) makes the use of array subscripts to access an

array element the unique way to do so which simplifies compiler analyses.

The restricted use of pointers is important for dependence analysis and for moving data

between different address spaces of hardware accelerators, as it essentially eliminates

aliasing problems.

Scalar type conversion and type definition (through typedef) in PENCIL both follow the

same rules as in C99.

iv. Functions

Function definition and declaration in PENCIL follow the same rules as in C99. A function

defined in PENCIL can be called from PENCIL or from C99 code. Function recursion is not

allowed in PENCIL since OpenCL does not support recursion. Function overloading is also

not allowed as the C99 standard does not allow it.

v. Statements

Unlike C99, goto and swith statements are not allowed in PENCIL as these two constructs

make code analyses unnecessarily complicated without any benefit in expressiveness. Only

the following C99 statements are allowed.

Assignment Statement Both, basic assignment (=) and compound assignment (+=, -=, *=, /=, %=,

|=, &=, ^=, <<=, >>=) are supported in PENCIL.
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For Loop A PENCIL for loop must have a single iterator, an invariant start value, an invariant

stop value and a literal constant increment (step). Invariant in this context means that the value

does not change within the loop body. The iteration variable must not be visible (defined)

outside the loop and cannot be modified inside the loop body.

for (type iter = init; iter [<|<=|>|>=℄ bound; iter[+|-℄=step)

{

//Body

}

By precisely specifying the loop format, we avoid the need for a sophisticated induction vari-

able analysis. Such an analysis is not only complex to implement, but more importantly results

in compiler analyses succeeding or failing under conditions unpredictable to the user.

While Loop The same as in C99.

If Statement The same as in C99.

Break and Continue Statements The same as in C99.

Return Statement The same as in C99 except that it can be used only at the end of a function

(i.e., as the last statement in a function body). This allows PENCIL compilers to assume that

they work on SESE (Single-Entry Single-Exit) regions of the control flow.

Call Statement The same as in C99 except that

• Calling a non-PENCIL function from PENCIL is allowed only if its summary function is

provided (details about summary functions are presented in Section 4.3.2).

• Recursive function calls are not allowed.

vi. Identifiers, Declarations and Initializations

The naming of identifiers, the scope of identifiers, identifier declaration and initialization, in

PENCIL, all follow the same rules as in C99.

vii. Preprocessor

PENCIL provides preprocessing directives equivalent to the C99 preprocessing directives. A

normal C99 preprocessor can be used to preprocess PENCIL code.
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4.2.3 PENCIL Extensions to C99

This section provides a list of PENCIL extensions. A detailed description of these extensions

is provided in Section 4.3.

Directives

• #pragma penil independent [redution(op: sal_1, . . ., sal_n)]*

• #pragma penil ivdep

• #pragma penil region

Function Attributes

__attribute__((penil_aess())), __attribute__((onst)), and __attribute__((penil))

Builtin Functions

__penil_kill, __penil_use, __penil_def, __penil_maybe, __penil_assume, __penil_assert,

and PENCIL math, common and integer builtin functions.

4.3 Detailed Description

4.3.1 stati, onst and restrit

i. stati Keyword

The stati keyword is used when declaring an array argument of a PENCIL function. It has

the same semantics as the stati keyword in C99. All array arguments of a PENCIL function

must be declared using this keyword. The use of this keyword is important to implement array

expansion or data transfers when subscripts are not affine.1

ii. onst Type Qualifier

The onst type qualifier is used when declaring an array argument of a PENCIL function. It

has the same semantics as the onst type qualifier in C99. All array arguments of a PENCIL

function must be declared using this type qualifier. It is used to make sure that array arguments

1An array expansion maps an array to a larger array, typically by adding extra dimensions. The mapping may

depend on the statement instance and can be used to remove some memory reuse.
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behave as closely as possible to array variables, and to forbid that array arguments (the base

pointer, not individual elements) occur at the left-hand side of an expression. This rule elim-

inates the risk of inducing array aliasing through the assignment of an arbitrary base address

to an array argument.

iii. restrit Type Qualifier

The restrit type qualifier is used when declaring an array argument of a PENCIL function.

It has the same syntax and semantics as in C99. All array arguments of a PENCIL function

must be declared using this type qualifier. The use of restrit guarantees that the array

arguments of the function may only alias if they are being used for read only. This allows

PENCIL compilers to perform more precise dependence analysis.

Note that making the use of restrit mandatory in PENCIL requires upstream versioning

of functions: if two arguments of a function are known to alias, then the two arguments must

be transformed into one argument to avoid the aliasing problem.

Examples

Here is a correct PENCIL function declaration and call.

/* PENCIL ode.

* a and b are restrited arrays (analogous to restrited pointers in C99).

*/

void foo(int n, float a[stati onst restrit n℄

float b[stati onst restrit n℄);

void bar()

{

int n = 42;

float pa[n℄, d[n℄;

foo(n, pa, d);

}

penil_array is a macro that abbreviates stati onst restrit.

4.3.2 Description of the Memory Accesses of Functions

The effect of a function call on its array arguments is derived from an analysis of the called

function. In some cases, the results of this analysis may be too inaccurate. In the extreme case,
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no code may be available for the function and the compiler can then only assume that every

element of the passed arrays is accessed. In order to obtain more accurate information on

memory accesses, the user may tell the compiler to derive the memory accesses not from the

actual function body, but from some other function with the same signature. Such a function

is called a summary function.

Summary functions are used to:

• Describe the memory accesses of library functions called from PENCIL code — as li-

brary functions cannot be analyzed at compile time.

• Describe the memory accesses of non-PENCIL functions called from PENCIL code —

as they are difficult to analyze.

The use of summary functions in these cases enables more precise static analysis. To indi-

cate the summary function of a function foo(), one uses the attribute penil_aess(summary),

where summary is the name of the summary function that describes the memory accesses in

foo().

A summary function is not meant to be executed, and is instead only used for the analysis

of memory footprints. It has the same arguments as the qualified function. Each and every

array element accessed in a function should be accessed in its summary. Yet a summary is

generally simpler than the function it summarizes: it only captures sets of accesses, not their

ordering and number of occurrences.

The polymorphic builtin functions __penil_use and __penil_def must be used in sum-

mary functions to mark memory access information (and to protect them from aggressive,

PENCIL-agnostic upstream passes). The builtin function __penil_use, abbreviated with USE,

annotates read accesses, while __penil_def, abbreviated with DEF, annotates (must-)write

accesses. The polymorphic argument of these builtin functions may be a scalar, dereferenced

pointer argument, or array element. It may also be a complete array when the dimension and

size of the array are statically known: e.g., __penil_use(A) marks the use of the complete

array A, alleviating the need to list every element.

A summary function can contain calls to other functions, indicating that the corresponding

calls are present on the original function. Example:

void foo(int N, int A[penil_array N℄);

void bar_summary(int N, int A[penil_array N℄)

{

foo(N, A);
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for (int i = 0; i < N; i ++)

{

USE(A[i℄);

DEF(A[i℄);

}

}

void bar(int N, int A[penil_array N℄)

__attribute__((penil_aess(bar_summary)))

{

foo(N, A);

for (int i = 0; i < N; i ++)

{

int t = A[i℄;

t = t + 1;

A[i℄ = t;

}

}

To express may-write accesses, the boolean builtin __penil_maybe should be used to

guard these accesses in an if (__penil_maybe()) conditional. Example:

if (__penil_maybe()) __penil_def(v))

Summary functions were chosen over other formalisms (e.g., C++11 lambda functions [52],

the use of directives, etc.) to express the memory accesses of a function because summary

functions are based on the C syntax and thus can be parsed and analyzed easily using existing

C compiler APIs. Moreover, summary functions are expressive and allow a fine-grained spec-

ification of memory accesses. In addition, summary functions are intuitive to C programmers,

who do not have to learn a dedicated specification syntax or sub-language.

A summary function should be PENCIL compliant so that PENCIL tools can analyze it.

Writing the summaries of library functions is the library developer’s responsibility. Such

summary functions should be provided in the library’s header files and are used directly by

the DSL compilers or PENCIL programmers. This is the most common case. In other less

common cases, summary functions are either written by the PENCIL programmer himself or

generated automatically by the DSL compiler (only the sets of read and written elements for

each function argument need to be provided in this case).

The attribute penil_aess is abbreviated with the ACCESS macro.
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Example 1

__attribute__((penil_aess(summary_fft32)))

void fft32(int i, int j, int n,

float in[penil_attributes n℄[n℄[n℄);

int ABF(int n, float in[penil_attributes n℄[n℄[n℄)

{

// ...

for (int i = 0; i < n; i++)

{

// ...

for (int j = 0; j < n; j++)

fft32(i, j, n, in);

}

// ...

}

void summary_fft32(int i, int j, int n,

float in[penil_attributes n℄[n℄[n℄);

{

for (int k = 0; k < 32; k++)

__penil_use(in[i℄[j℄[k℄);

for (int k = 0; k < 32; k++)

__penil_def(in[i℄[j℄[k℄);

}

This example shows a loop extracted from ABF (Adaptive Beamformer), a signal process-

ing kernel used in radar systems. The code calls the function fft32 (Fast Fourier Transform)

which only reads and modifies (in place) 32 elements of its input array in, rather than mod-

ifying the whole input array. Such a function is not analyzed by the PENCIL compiler as it

is not a PENCIL function. Without a summary function, the compiler assumes conservatively

that the whole array passed to fft32 is accessed for read and for write. Such a conservative

assumption prevents the parallelization of the code. The use of a summary function in this

case indicates to the compiler that each iteration of the loop reads and writes 32 elements of

the input array. This information allows the compiler to parallelize and optimize the loop.

Example 2

strut omplex {

int image;

int real;
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};

typedef strut omplex Cplx;

void foo_summary(int n, int A[penil_array n℄,

Cplx d[penil_array n℄)

{

for (int i = 0; i < n; i++)

USE(A[i℄);

/* Note that i starts from 10. */

for (int i = 10; i < n; i++)

if (__penil_maybe())

DEF(d[i℄.real);

DEF(A[15℄);

}

void foo(int n, int A[penil_array n℄,

Cplx d[penil_array n℄)

ACCESS(foo_summary(n,A,Cplx))

{

int t;

for (int i = 0; i < n; i++)

printf("Value=%d", A[i℄);

for (int i = 0; i < n; i++)

{

if (A[i℄)

printf("%d", i);

t += A[i℄;

}

for (int i = 0; i < n; i++)

if (A[i℄ && i>10)

d[i℄.real = t;
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A[15℄ = 0;

}

In the above example, the summary function foo_summary indicates that the function foo

reads the values of A[i℄ for i from 0 to n−1 and writes to A[15℄. foo may write to d[i℄.real

for i from 10 to n−1.

4.3.3 onst Function Attribute

The onst attribute used in the GCC compiler is allowed in PENCIL for compatibility with

existing onst-annotated library functions (e.g., os, sin, min, max, etc.). It indicates that the

function does not read any value except its arguments, and does not have any effects except its

return value [105]. The CONST macro can be used to abbreviate __attribute__((onst)).

4.3.4 Pragma Directives

PENCIL defines several directives inspired by OpenMP [79] and OpenACC [22] and com-

monly found in advanced vectorizing compilers.

i. independent Directive

The independent directive is used to annotate loops. It has the following form:

#pragma penil independent [redution(op: sal_1, . . ., sal_n)]*

The directive indicates that the desired result of the annotated loop does not depend upon

the execution order of data accesses from different iterations. The definition of data accesses

encompasses all memory accesses enclosed by the loop, either directly or indirectly through

calls to PENCIL or non-PENCIL functions. In particular, data accesses from different iterations

may be executed simultaneously. The definition of desired result is algorithm- and application-

dependent.

The independent directive currently has informal semantics only. There are plans for more

formal semantics in future revisions of PENCIL. External non-PENCIL functions called from

the annotated loops may employ target-dependent constructs to protect the atomicity of their

data access sequences, or to refine their parallel semantics regarding relaxed memory ordering,

sound implementation of benign races, etc. Reductions implemented as atomic regions in the

generated code are one typical example. Low-level atomics in C11 [51] or OpenCL 2.0 are

another one (e.g., to give semantics to benign races). Such an approach is currently necessary

to allow benign races (when the same value is written by multiple threads), to parallelize asso-
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ciative and commutative operations, and more generally for any parallel algorithm tolerating

the unordered execution of intermediate steps.

The independent directive has an effect only on the marked loop and does not have an

effect on any other loop. It is typically used to indicate that the annotated loop does not

carry any dependence. It allows the compiler to ignore all loop carried dependences of the

annotated loop, including those that may be introduced by the compiler due to conservative

assumptions (for example, if the code contains non affine write accesses). Note that no implicit

privatization of scalars and arrays is assumed when the independent directive is used. Instead,

scalars and arrays that are privatizable should be declared as local variables within the scope

of the annotated loop. This may sound overly restrictive, but it ensures the portability of

PENCIL when targeting languages and architectures where races have undefined semantics

(C11, OpenCL 2.0).

Example 1 The following example shows a code fragment of a PENCIL implementation of

the breadth-first search algorithm. This algorithm computes the minimal distance from a given

source node to each node of the input graph. The algorithm maintains a frontier and computes

the next frontier by examining all unvisited nodes adjacent to the nodes of the current frontier.

All nodes in a frontier have the same distance from the source node.

The for loop shown in the example can be parallelized since each node of the current

frontier can be processed independently. This creates a possible race condition on the ost and

next_frontier arrays. The race condition can be ignored, however, because each conflicting

thread will write the same values to the arrays. By specifying the independent pragma, the

programmer guarantees that the race condition is benign, which enables a PENCIL compiler

to parallelize the loop.

We plan also to add a built-in (__penil_store_atomi) for concurrent writes. This

would improve portability of concurrent writes, matching the design of standards like OpenCL

2.0 [60].

/* Examine nodes adjaent to urrent frontier */

#pragma penil independent

for (int i = 0; i < n_nodes; i++) {

if (frontier[i℄ == 1) {

frontier[i℄ = 0;

/* For eah adjaent edge j */

for (int j = edge_idx[i℄;

j < edge_idx[i℄ + edge_nt[i℄; j++) {

int dst_node = dst_node_index[j℄;

if (visited[dst_node℄ == 0) {
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ost[dst_node℄ = ost[i℄ + 1;

next_frontier[dst_node℄ = 1;

}

}

}

}

Example 2 The following example illustrates the use of the directive in a typical context

where the code executed in the loop body executes target-dependent, non-PENCIL code, e.g.,

code with atomic execution constraints that are currently not expressible in PENCIL.

void in_summary(float A[256℄, int )

{

if (MAYBE)

{

USE(A);

DEF(A);

}

}

void in(float A[penil_array 256℄, int ) ACCESS(in_summary);

void foo(int N, float A[penil_array 256℄, int t[penil_array N℄)

{

#pragma penil independent

for (int i = 0; i < N; i++)

in(A, t[i℄);

}

The following non-PENCIL C code implements in, and is provided in a different file and

compiled separately.

void in(float A[256℄, int )

{

atomi_in(&A[℄);

}

In this case, the user needs to provide an OpenCL implementation for in.
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Example 3 In the following example, the writes to t induce loop carried dependences and

thus the use of independent is incorrect because there are at least two iterations that may

write different values to t.

int t;

#pragma penil independent

for (int i = 0; i < N; i++) {

t = foo(i);

A[B[i℄℄ = t;

}

To be able to use independent in the previous example, the scalar t has to be declared in

the loop body. This way, each iteration will have its own copy of t and thus the writes to t by

different iterations will not induce any loop carried dependence. This is possible because t is

privatizable (i.e., can be made private) [68]. The following example is correct (assuming that

the elements of B are all different).

#pragma penil independent

for (int i = 0; i < N; i++) {

int t = foo(i);

A[B[i℄℄ = t;

}

redution Clause Adding the redution clause to the independent directive restricts the

execution order of data accesses with respect to independent alone: considering the execution

order of data accesses to the reduction variables (sal_1, . . ., sal_n), the compiler must

preserve the atomicity of side effects on these variables within a given loop iteration. This

in turn widens the applicability of the directive, compared to independent alone. The reduc-

tion operator (op) itself is only useful to indicate how partial results on a reduction variable

resulting from any interleaving should be combined.

Aside from extending the applicability of the independent directive, one motivation for

introducing the redution clause in PENCIL is to eliminate the need for having a sophisticated

analysis to detect reductions in PENCIL compilers.

In order to simplify code generation for PENCIL compilers, only scalar variables can be

used as reduction variables. Multiple reduction clauses can be used for different reduction

operators. The syntax of this clause is equivalent to the syntax of the reduction clause defined

in OpenMP. As in OpenMP, the reduction variables should not be used anywhere outside the

reduction statement. Example:

#pragma penil independent redution(+: result)

for (int i = 0; i < n; i++) {
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B[T[i℄℄ = foo(i);

result += A[i℄;

}

In the above example, the compiler will ignore all the loop carried dependences of the loop

except the loop carried dependences induced by the reduction variable result in the second

statement.

The following reduction operators are supported: +, -, *, min, max.

ii. ivdep Directive

The ivdep directive is used to annotate innermost loops that are candidates for vectorization.

If applied on a loop nest, it is effective only on the innermost loops of the nest.

It has the following form:

#pragma penil ivdep

It allows the compiler to ignore all the loop-carried dependences in the loop marked with

the directive from one statement to a textually earlier one (Cray semantics for ivdep [29]).

This is generally sufficient to enable the vectorization of loops when the compiler is taking

conservative assumptions.

The independent directive is stronger than the ivdep directive, as the latter only guarantees

the correctness of a lock-step parallel execution (i.e., an implicit synchronization barrier in

between every pair of statements in the loop body).

Example 1

#pragma penil ivdep

for (int i = 0; i < m; i++)

{

float t = a[i + k℄ * ;

a[i℄ = t;

}

In this example, vectorization would be invalid if k < 0. The ivdep directive allows the com-

piler to ignore the assumed loop carried dependences that may exist if k < 0.2

2Ignore possible out-of-bound errors in this example.
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iii. PENCIL Region Directive

The PENCIL region directive is used to delimit PENCIL code within C code. It is used for

compatibility with legacy C code. The PENCIL compiler in this case is supposed to only

optimize the region delimited with the penil region directive.

Any array used within a PENCIL region should be declared using the same rules used to

declare an array in PENCIL (i.e. the C99 VLA syntax and the macro penil_array should be

used).

Example

int foo(int m, int a[penil_array m℄,

int b[penil_array m℄)

{

/* Non PENCIL ode. */

int * = mallo (100*sizeof(int));

/* ... */

/* PENCIL ode. */

#pragma penil region

{

for (int i = 0; i < m; i++)

a[i℄ = a[i℄ * ;

for (int i = 0; i < m; i++)

b[i℄ = b[i℄ + 1;

}

}

4.3.5 Builtin Functions

In this section, T represents any valid PENCIL type.

i. __penil_use, __penil_def and __penil_maybe Builtins

These builtins should be used in summary functions (a detailed description is provided in

Section 4.3.2). They have the following prototypes:

void __penil_use(T loation);

void __penil_def(T loation);

int __penil_maybe();



4.3 Detailed Description 89

ii. __penil_kill Builtin

The __penil_kill builtin function has the following prototype:

void __penil_kill(T loation);

It allows the user to refine dataflow information within and across any control flow region

in the program. It is a polymorphic function that signifies that its argument (a variable or an

array element) is dead at the program point where __penil_kill is inserted, meaning that

no data flows from any statement instance executed before the kill to any statement instance

executed after.

This information is used in two ways.

• In eliminating dataflow dependences within the control flow region.

• To determine which array elements may have their contents preserved by the region. In

particular, when the region is mapped to a device kernel, then data that may be written

inside the region and is possibly needed afterwards has to be copied back from the device

to the host. The region of the array that is copied back to the host may however be larger

than the set of elements that are known to be written by the region, either because some

elements may only be written under certain circumstances or because the region that is

copied back is an over-approximation. In such cases, the region first needs to be copied

into the device to ensure that the elements within the array region that are not actually

written by the code region preserve their original values. This latter step is not needed

if these values were not preserved by the original code region. Such information can be

passed to the compiler using __penil_kill.

Example In the following code, the elements of A may be written inside the loop. This means

that if the loop is mapped to a device kernel, then this array needs to be copied out from the

device to the host. Since not all elements may be written by the loop, the array would in

principle also need to be copied in first. The __penil_kill(A) statement is used to indicate

that the data is not expected to be preserved by the region and that therefore this copy-in can

be omitted.

__penil_kill(A);

for (int i = 0; i < n; i++) {

if (B[i℄ > 0)

A[i℄ = B[i℄;

}
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iii. __penil_assume Builtin

The __penil_assume builtin function has the following prototype:

void __penil_assume(int expression);

The intrinsic allows the optimizer to assume that its argument (which is a logical ex-

pression) is true whenever the control flow reaches the intrinsic call. No code is generated

for this intrinsic. If the condition is violated during execution, the behavior is undefined.

__penil_assume(exp) does not instruct the compiler to check at run time whether exp is ac-

tually true or not. One may use __penil_assert(exp) for that purpose instead. In the context

of DSL compilation, an assume statement allows a DSL-to-PENCIL compiler to communicate

high level facts in the generated code.

The argument of __penil_assume does not need to be a quasi-affine expression. But as of

today, our PENCIL compiler will not attempt to exploit __penil_assume unless its argument

is a quasi-affine expression.

Example 1 The code in Figure 4.2 (a general 2D convolution) is a good example where the

assume builtin can be used. It is an image processing kernel that computes the weighted sum

of the area around each pixel using a kernel matrix for weights. In this code, it is sufficient

to consider that the size of the array kern_mat does not exceed 15× 15 (such information is

used implicitly in the OpenCV OpenCL image processing library for example). In fact, most

convolutions do not exceed a kernel matrix size of 5×5

While this information is well known for an image processing expert, the compiler does

not have this knowledge and must assume that the kernel matrix can be arbitrarily large. When

compiling for a GPU target, the compiler must thus allocate the kernel matrix in GPU global

memory, rather than fast shared memory, or must generate multiple variants of the kernel —

one to handle large kernel matrix sizes and another optimized for smaller kernel matrix sizes

— selecting between variants at runtime. The use of __penil_assume in this case tells the

compiler about the limits on the size of the array, allowing it to store the whole array in shared

memory.

Example 2

void foo(int n, int m, int S, int D[penil_array S℄)

{

__penil_assume(m > n);

for (int i = 0; i < n; i++) {

D[i℄ = D[i+m℄;

}

}
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1 #define lampi(val, min, max) \

2 (val < min) ? (min) : (val > max ) ? (max):(val)

3

4 __penil_assume(ker_mat_rows <= 15);

5 __penil_assume(ker_mat_ols <= 15);

6

7 for (int i = 0; i < rows; i++)

8 for (int j = 0; j < ols; j++) {

9 float prod = 0.;

10 for (int e = 0; e < ker_mat_rows; e++)

11 for (int r = 0; r < ker_mat_ols; r++) {

12 row = lampi(i+e-ker_mat_rows/2, 0, rows-1);

13 ol = lampi(j+r-ker_mat_ols/2, 0, ols-1);

14 prod += sr[row℄[ol℄ * kern_mat[e℄[r℄;

15 }

16 onv[i℄[j℄ = prod;

17 }

Figure 4.2 General 2D convolution

The loop above cannot be parallelized since it might have loop carried dependences (if the

step m is less than the number of iterations n). The __penil_assume builtin can be used to

inform the compiler that m is greater than n, which allows the compiler to parallelize the loop.

An alternative solution in this particular case is to explicitly mark the loop as independent.

void foo(int n, int m, int S, int D[penil_array S℄)

{

#pragma penil independent

for (int i = 0; i < n; i++) {

D[i℄ = D[i+m℄;

}

}

iv. __penil_assert Builtin

The __penil_assert builtin function has the following prototype:

void __penil_assert(int expression);

It instructs the compiler to insert a run-time check of whether its argument (which is a

boolean expression) is true at the program point where __penil_assert is inserted. If the

target architecture does not support the assert builtin (OpenCL for example), the PENCIL com-

piler should emit a warning message.
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v. PENCIL Math, Common and Integer Builtin Functions

PENCIL supports a set of the OpenCL builtin functions:

• all OpenCL integer functions (abs, lz, popount, . . . );

• all OpenCL common functions (min, max, lamp, sign, . . . );

• all OpenCL math functions (sin, exp, os, log, . . . ).

The full list of OpenCL integer, common and math builtin functions is available in [56].

As PENCIL does not support function overloading (to be consistent with C99), every

OpenCL builtin integer, common or math function has multiple equivalent functions in PEN-

CIL with prefixes and suffixes for the different argument types. For example, the OpenCL max

function has the following equivalent PENCIL functions

• max: used for int arguments;

• smax: used for short arguments;

• bmax: used for char arguments;

• fmax: used for double arguments;

• lmax: used for long arguments;

• fmaxf : used for float arguments;

• unsigned versions have a u prefix (ubmax, usmax, umax, ulmax).

PENCIL includes scalar builtin functions to help vectorize specific idioms. In particular,

saturated and clamped arithmetic, absolute value, min, max, etc. Developers and DSL front-

ends can use these functions and rely on the PENCIL compiler to generate a vectorized version

of these functions.

Floating point operations are considered associative by default in PENCIL. PENCIL builtin

functions do not have side-effects (on errno

3) and floating point operations do not trigger ex-

ceptions (note that these assumptions match the effects of the -fno-math-errno -fno-signaling-nans

GCC flags [105]).

3
errno is an integer variable set by system calls and some library functions in case of an error to indicate

what went wrong.
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4.4 Examples of PENCIL and non-PENCIL Code

4.4.1 BFS Example

The following example is a parallel breadth-first search implementation in PENCIL. The pro-

gram takes as input a graph and a start node and performs a breadth-first search. The order

in which the nodes are visited (BFS order) is stored in the array ost. The algorithm has two

steps which repeat one after the other until all nodes have been explored.

In the first step, each node n which is on the frontier (array front in the code) inspects its

neighbors. The neighbor of n, if not visited previously, is put on updating_front, which is

the set of nodes that will be on the next front. The cost of the neighbor is the cost of the node

n plus one. Each node can perform this operation independently. It is possible that two nodes,

both on the frontier, have an edge to the same neighbor m. In that case, both update the cost of

this neighbor m (Line 41 in the example). This is a race (hazard) but it is a benign one since

both will attempt to write the same value.

In the second step, the nodes which have been put on updating_front are moved to the

frontier (array front). Each node can perform this step independently from the others.

One must note that the PENCIL code below is much easier to read and understand than the

equivalent OpenCL code.

1

2 void parallel_version(int no_of_nodes,

3 int edge_start_no[penil_array no_of_nodes℄,

4 int edge_ount[penil_array no_of_nodes℄,

5 int no_of_edges,

6 int dst_node_index[penil_array no_of_edges℄,

7 int ost[penil_array no_of_edges℄,

8 har front[penil_array no_of_nodes℄,

9 har updating_front[penil_array no_of_nodes℄,

10 har visited[penil_array no_of_nodes℄,

11 int sr_index, int quiet)

12 {

13 unsigned int arry_on = 1;

14

15 for (int i = 0; i < no_of_nodes; i++)

16 {

17 front[i℄= 0;

18 updating_front[i℄ = 0;

19 visited[i℄ = 0;
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20 ost[i℄ = -1;

21 }

22

23 front[sr_index℄ = 1;

24 visited[sr_index℄ = 1;

25 ost[sr_index℄ = 0;

26

27 #pragma penil region

28 {

29 while (arry_on == 1)

30 {

31 arry_on = 0;

32

33 #pragma penil independent

34 for (int i = 0; i < no_of_nodes; i++) {

35 if(front[i℄ == 1) {

36 front[i℄ = 0;

37 for (int j = edge_start_no[i℄;

38 j < (edge_start_no[i℄ + edge_ount[i℄); j++) {

39 int dst_node = dst_node_index[j℄;

40 if (visited[dst_node℄ == 0) {

41 ost[dst_node℄ = ost[i℄ + 1;

42 updating_front[dst_node℄ = 1;

43 }

44 }

45 }

46 }

47

48 for (int i = 0; i < no_of_nodes; i++) {

49 if (updating_front[i℄ == 1) {

50 front[i℄ = 1;

51 visited[i℄ = 1;

52 arry_on = 1;

53 updating_front[i℄ = 0;

54 }

55 }

56 } //while.

57 } //#pragma penil region

58 }
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4.4.2 Image Resizing Example

The following example implements an image resizing kernel, a common image processing

kernel.

1 #inlude <penil.h>

2

3 #define bilinear(A00, A01, A11, A10, r, ) \

4 ((1-) * ((1-r) * A00 + r*A10) + *((1-r)*A01 + r*A11))

5

6 stati void resize(onst int rows,

7 onst int ols,

8 onst int step,

9 onst unsigned har original[penil_array rows℄[step℄,

10 onst int r_rows,

11 onst int r_ols,

12 onst int r_step,

13 unsigned har resampled[penil_array r_rows℄[r_step℄)

14 {

15 __penil_assume(rows > 0);

16 __penil_assume(ols > 0);

17 __penil_assume(step >= ols);

18 __penil_assume(r_rows > 0);

19 __penil_assume(r_ols > 0);

20 __penil_assume(r_step >= r_ols);

21

22 __penil_kill(resampled);

23

24 int o_h = rows;

25 int o_w = ols;

26 int n_h = r_rows;

27 int n_w = r_ols;

28

29 for (int n_r = 0; n_r < r_rows; n_r++)

30 {

31 for (int n_ = 0; n_ < r_ols; n_++)

32 {

33 float o_r = (n_r + 0.5) * (o_h) / (n_h) - 0.5;
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34 float o_ = (n_ + 0.5) * (o_w) / (n_w) - 0.5;

35

36 float r = o_r - floor(o_r);

37 float  = o_ - floor(o_);

38

39 int oord_00_r = lamp((int) floor(o_r), 0, o_h - 1);

40 int oord_00_ = lamp((int) floor(o_), 0, o_w - 1);

41

42 int oord_01_r = oord_00_r;

43 int oord_01_ = lamp(oord_00_ + 1, 0, o_w - 1);

44

45 int oord_10_r = lamp(oord_00_r + 1, 0, o_h - 1);

46 int oord_10_ = oord_00_;

47

48 int oord_11_r = lamp(oord_00_r + 1, 0, o_h - 1);

49 int oord_11_ = lamp(oord_00_ + 1, 0, o_w - 1);

50

51 unsigned har A00 = original[oord_00_r℄[oord_00_℄;

52 unsigned har A10 = original[oord_10_r℄[oord_10_℄;

53 unsigned har A01 = original[oord_01_r℄[oord_01_℄;

54 unsigned har A11 = original[oord_11_r℄[oord_11_℄;

55

56 resampled[n_r℄[n_℄ = bilinear(A00, A01, A11, A10, r, );

57 }

58 }

59 __penil_kill(original);

60 }

4.4.3 Recursive Data Structures and Recursive Function Calls

The following code is not valid PENCIL code. The problems in this code are the following.

• PENCIL does not allow recursive function calls;

• pointer dereferencing is not allowed in PENCIL (except in a few cases cited in Sec-

tion 4.2.2.iii.);

• in PENCIL, the return statement should be used only at the end of the function.
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1 strut node

2 {

3 int value;

4 strut node* left;

5 strut node* right;

6 };

7

8 strut node* find(strut node* node, int value)

9 {

10 if (!node)

11 return NULL;

12 if (node->value == value)

13 return node;

14 if(value > node->value)

15 return find(node->left);

16 else

17 return find(node->right);

18 }

4.5 Polyhedral Compilation of PENCIL code

The PENCIL language design was validated through the PPCG compiler (Polyhedral Parallel

Code Generator) [104]. PPCG is a source-to-source polyhedral compiler that takes C code as

input and generates OpenCL, CUDA and C code. PPCG transforms a program through the

following steps.

1. Model extraction. This step takes C code as input and produces a polyhedral model

consisting of an iteration domain, access relations and a schedule. The extraction of this

model is performed using the pet library (Polyhedral Extraction Tool) [103].

2. Dependence analysis. This step takes an iteration domain, access relations and the

schedule produced in Step 1 as input and produces the dependences between statement

instances (i.e., which statement instances depend on which other statement instances).

This step is performed using the isl library (Integer Set Library) [101].

3. Scheduling. In this step a new schedule that exposes parallelism and tiling opportunities

is constructed by isl using a variant of the Pluto algorithm [18]. This is followed by

the actual application of tiling and mapping to blocks and threads.
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4. Memory management. It includes transfer to/from GPU and allocation to registers and

shared memory.

5. Code generation. Code generation takes a schedule and generates code that visits each

element in the iteration domain in the order specified by the schedule. The code genera-

tor used in PPCG is part of the isl library and is similar to CLooG [11].

The rest of this chapter shows how PPCG was modified to support PENCIL. Only a very

short description of these modifications is provided here, since PENCIL support in PPCG was

implemented by Sven Verdoolaege. For a detailed description of these changes we refer to

[102]. The solutions proposed in this chapter for handling dynamic control (and especially

while loops) are basic solutions. More sophisticated solutions can be developed and imple-

mented but this is not the goal of this work.

Assume builtin. The pet library already keeps track of constraints on the symbolic con-

stants of the program (variables that have an unknown but fixed value throughout the execu-

tion). These constraints are automatically derived from array declarations and index expres-

sions. In particular, the values of the symbolic constants that necessarily result in negative

array sizes or negative array indices are excluded (negative indices are not allowed because

they could result in aliasing within an array).

__penil_assume allows the user to provide additional constraints on the symbolic con-

stants of the program that cannot be derived automatically from the code, For example, Line 4,

and Line 5 in Figure 4.2 provide additional constraints on the symbolic constants ker_mat_rows

and ker_mat_ols that are used throughout code generation whenever needed.

Kill builtin. A kill statement in pet represents the fact that no dataflow on the killed data

elements can pass through any instance of the kill statement. This information can be used

during dataflow analysis to stop the search for potential sources on data elements killed by the

statement.

Whenever pet comes across a variable declaration, two kill statements that kill the entire

array are introduced, one at the location of the variable declaration and one at the end of the

block that contains the variable declaration. A user can introduce explicit kills by adding a

__penil_kill.

Non static-affine array accesses. In order to handle accesses that may not be static-

affine, pet has been modified to make a distinction between may-writes and must-writes. Any

index expression that cannot be statically analyzed or that is not affine, is treated as possibly

accessing any index. This typically results in more dependences as more pairs of statement

instances may possibly access the same array element.
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Non static-affine conditionals and loop bounds, while loops, break and continue. A

non static-affine conditional or a loop with non static-affine loop bounds is treated by PPCG

as follows: the statement and its body are all treated as one macro-statement (i.e., as one

statement that encapsulates the control statement and its body). Any write inside this macro-

statement is treated as a may-write. For example, the statement in Line 2 of Figure 4.3 is

governed by the condition in Line 1 which cannot be analyzed. The if-statement and its body

therefore are considered as one macro-statement and the access to sup is treated as a may-

write.
1 if (se[e℄[r℄ != 0)

2 sup = max(sup, img[and_row℄[and_ol℄);

Figure 4.3 Code extracted from Dilate (image processing)

While-loops and loops containing a break or a continue statement are treated similarly: the

loop and its body are treated as one macro-statement (one single statement). For example, due

to the break statement in Line 7 in Figure 4.4, the whole loop in Line 3 is treated by PPCG

as a single statement. This means that PPCG can schedule (i.e., change the order of execution

of) the loop in Line 3 and its body as a whole, but cannot schedule the statements in the body

individually.

1 for (int i = 0; i < N; i++)

2 for (int j = 0; j < M; j++)

3 for (int k = 0; k < M; k++) {

4 B[i℄[j℄[k℄ = 0;

5

6 if (A[i℄[j℄[k℄ == 0)

7 break;

8 }

Figure 4.4 Example of code containing a break statement

Handling while loops is currently very basic in PPCG. The current work does not have any

contribution in that direction.

Independent directive. When the independent directive is used to annotate a loop, the

iterations of that loop may be freely reordered with respect to each other, including reorderings

that result in (partial) overlaps of distinct iterations. In particular, the user asserts through this

directive that no dependences need to be introduced to prevent such reorderings. The directive

assumes that a variable that is declared inside the loop is considered private to any given

iteration. pet currently handles the independent directive by building a relation between

the statement instances that are excluded from depending on each other, as well as the set

of variables that are local to the marked loop. This set of local variables is used by PPCG to
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ensure that their live ranges do not overlap in any affine transformation, and to privatize them

if needed when generating parallel code.

Summary functions. pet has been modified to extract access information from called

functions. Whenever a summary function is provided, this information is extracted from the

summary function instead of the actually called function.

4.6 Related Work

PENCIL language constructs such as the independent directive are inspired from directive-

based languages such as OpenMP [79] and OpenACC [22], but unlike those, PENCIL has

sequential semantics. In PENCIL, the independent directive describes the absence of loop car-

ried dependences and such information can be used to enable a range of loop transformations

rather than enabling loop parallelization alone. A semantically similar directive, also called

independent, has been part of High Performance Fortran [66]. Despite also being defined

with parallelism in mind, its definition allows compilers to derive information that enables

additional sequential loop transformations.

The __penil_assume construct, not defined in OpenMP or in OpenACC, allows the com-

piler to receive additional information from the DSL (or directly from a programmer), and to

exploit this information to enable further optimizations. Microsoft Visual C supports a propri-

etary __assume statement and a __builtin_assume statement has been introduced in clang 3.6.

Such builtins have semantics identical to __penil_assume and could be used as substitutes if

available. As a subset of C, PENCIL is designed to allow advanced compilers to perform better

static analysis, enabling automatic parallelization which is not addressed by OpenMP and Ope-

nACC. Certain C compilers (gcc, clang, icc) support builtins such as __builtin_unreahable

which can be used to communicate assumptions that the compiler can exploit in a best-effort

way. However, supporting these builtins in the PENCIL compiler is undesirable as it requires

more pattern matching, which means it is more fragile and difficult to define formally.

DSL compilers in general map the DSL code directly to GPU relying on parallelism infor-

mation provided by the domain specific language constructs that express parallelism. Using

such an approach, DSL compilers like Halide [85] and Diderot [26], designed for image pro-

cessing, and OoLaLa [67], designed for linear algebra, show promising results. Our goal is

complementary, as we aim to build a more generic and reusable framework and intermediate

language that can be used for different domain specific optimizers.

Delite [23] is a more generic DSL framework and run-time designed to simplify building

DSL compilers. It uses Lightweight Modular Staging (LMS) [88], a compiler framework

designed for embedding DSLs into Scala. Delite relies on information from the DSL to
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decide whether a loop is parallel and does not use any framework for advanced loop trans-

formations. We believe that the use of PENCIL and the polyhedral framework with generic

DSL frameworks like Delite can leverage automatic parallelism detection and more complex

loop transformations. One example of such complex loop transformations is the use of hy-

brid hexagonal/classical tiling [43] in stencils. A transformation that favors data reuse in

local/shared-memory, avoidance of thread divergence, concurrency, and combines hexagonal

tile shapes along the time and one spatial dimension with classical tiling along the other spatial

dimensions.

In the next chapter, we evaluate PENCIL on code with irregular, data-dependent control

including a set of standard benchmark suites (Rodinia and SHOC), image processing kernels,

and a DSL compiler for linear algebra (BLAS). To assess performance portability, we perform

the experiments on four GPU platforms: AMD Radeon HD 5670 and Radeon R9 285, Nvidia

GTX470, and ARM Mali-T604 GPU.





Chapter 5

Evaluating PENCIL

5.1 Introduction

We evaluate the performance of OpenCL code generated from PENCIL using a development

version of PPCG [104]. To show that PENCIL can be used as a standalone language as well as

an intermediate language for DSL compilers, we present experimental results covering bench-

mark suites (written in PENCIL) and code generated automatically by a DSL compiler. The

benchmark suites written in PENCIL are the RealEyes image processing benchmark suite (Sec-

tion 5.2.1), and a selected set of benchmarks from Rodinia and SHOC (Section 5.2.2). The

DSL compiler is the VOBLA DSL compiler (Section 5.2.3). This chapter is mainly based

on a paper written in collaboration with other partners of the PENCIL project [6]. A part of

the image processing benchmark was developed by Robert David from RealEyes, a company

working in automatic emotion detection. Partners from ARM did the evaluation of PENCIL on

the Rodinia/SHOC benchmarks and developed the VOBLA DSL compiler. The experiments

on the VOBLA DSL were performed in collaboration with these partners. Michael Kruse did

many experiments on the SpearDE DSL compiler (a DSL compiler for signal processing ap-

plications), the results of that evaluation are not presented in this manuscript but are available

in [6].

The experiments evaluate whether PENCIL enables the parallelization (mapping to OpenCL)

of kernels that cannot be parallelized with the current state-of-the-art polyhedral compilers

such as the Pluto compiler [18]. They also evaluate whether PENCIL enables the generation

of more efficient code and how close the performance of the automatically generated code is

to hand-crafted code. The experiments evaluate the whole PENCIL framework on a relatively

large set of real world applications and test platforms.

We developed an autotuning compiler framework to facilitate the retargeting of our frame-

work to very different GPU architectures. We only apply autotuning to the PPCG-generated
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code. For one, autotuning the reference code (which is mostly implemented as libraries) does

not make sense because library code is not designed to be autotuned (for example, work-

group sizes are hard-coded in the libraries, the use of shared and private memory requires

manual code modification of the kernels, etc.). Moreover, BLAS libraries (clMath [27] and

cuBlas [77]) do not require autotuning because these libraries are already configured with a

set of optimal parameters for their target architectures. Our autotuning framework searches

for the most appropriate optimizations (compiler flags) by generating many different code

variants and executing each of them on the target hardware. It searches through combinations

of PPCG’s compiler flags that include the work group sizes, tile sizes, whether to use shared

memory, whether to use private memory and which loop distribution heuristic to use (out of

two possible heuristics). The autotuning of each benchmark suite takes several hours (except

for the six kernels generated from VOBLA, which altogether take up to two days as the search

space is larger).

The code generated by PPCG for a given kernel is optionally instrumented to measure the

wall clock execution time of that kernel. This time includes kernel execution, data copy (be-

tween host memory and GPU device memory), and any kernel code executed on the host

CPU. It does not include device initialization and release, nor kernel compilation time. This

measured wall clock execution time is the time we report below. In order to exclude compi-

lation time, we either invoke a dry-run computation that is not timed beforehand (caching the

compiled kernels), or subtract the compilation time from the total duration, depending on how

the reference benchmark compiles and invokes its kernels. We use OpenCL profiling tools to

further analyze the performance of the reference code and the PPCG generated code (to get the

number of cache misses, the number of device global memory accesses, the GPU occupancy,

etc.). Each test is run 30 times and the median of the speedups over the reference benchmark

is reported.

We use four GPU platforms for the experimental evaluation: an Nvidia GTX470 GPU

(with AMD Opteron Magny-Cours, 2× 12 cores and 16GB of RAM), an ARM Mali T604

GPU (with dual-core ARM Cortex-A15 CPU and 2 GB of RAM), an AMD Radeon HD 5670

GPU (with Intel Core2 Quad CPU Q6700 and 8 GB RAM) and an AMD Radeon R9 285 GPU

(with Intel Xeon CPU E5-2640, 8 cores and 32 GB of RAM).
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5.2 Benchmarks

5.2.1 Image Processing Benchmark Suite

We studied a set of image processing kernels covering computationally intensive parts of a

computer vision stack of RealEyes. The benchmark suite includes simple image filters as well

as composite image processing algorithms. This is the same benchmark used in the evaluation

section in Chapter 3. For each kernel in the benchmark suite, we compare a straightforward

PENCIL implementation of the kernel (without any optimization), with a call to the equivalent

kernel in the OpenCL implementation of the OpenCV image processing library [78].

The benchmark suite contains 7 image processing kernels:

Color conversion. A pixel-wise operation that changes the color representation of each pixel

in an image.

Image resize. A common image manipulation step used to resize images.

General 2D convolution. A two-dimensional convolution of the image implemented by cal-

culating the weighted sum of the area around the pixel using a kernel matrix for weights.

It is used to perform a wide range of image processing operations.

Gaussian smoothing. A process of blurring an image by a Gaussian function. It is often used

before edge filtering as it helps in a better detection of the more prominent edges on the

image.

Affine warping. Affine transformations in two dimensions include translation, scaling, rota-

tion, reflection. This operation is often used to revert the effects of an unwanted transfor-

mation, such as image stabilization of shaky videos. In this transformation, each pixel

of the source image is moved to a position on the destination image, determined by the

transformation matrix, then using interpolation the pixel values are calculated on the

target image.

Dilate. A morphological operator where the output at a given pixel position is the maximum

value within the neighborhood. It is used to extend or add a border to white areas on the

image.

Basic image histogram. A widely used kernel that computes the tonal distribution in a digital

image.
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One important characteristic of image processing kernels is that they contain non static-

affine code: non static-affine array accesses, non static-affine if conditionals and non static-

affine loop bounds that a classical polyhedral compiler does not handle efficiently since they do

not fit the traditional restrictions of the polyhedral model. The conditional if (se[e℄[r℄ != 0)

in Figure 4.3 is an example of such non static-affine code.

Benchmark Non static-affine conditionals Non static-affine read accesses Non static-affine write accesses

resize 6 4 0
dilate 3 0 0
color conversion 0 0 0
affine warping 16 4 0
2D convolution 4 1 0
gaussian smoothing 8 2 0
basic histogram 0 1 1

Table 5.1 Statistics about patterns of non static-affine code in the image processing benchmark

Table 5.1 shows statistics about the patterns of non static-affine code in the image process-

ing benchmark.

The benchmark exhibits many patterns of non static-affine code: 5 out of 7 kernels have

non static-affine conditionals, 5 out of 7 kernels have non static-affine read accesses, 1 kernel

has non static-affine write accesses. To be able to efficiently handle these kernels, a polyhedral

compiler needs to be able to handle not only the non static-affine conditionals, and the non

static-affine read accesses, but also the non static-affine write accesses. Write array accesses

are more difficult to handle because they prevent the compiler, in general, from determining

whether the loop is parallel or not.

Benchmark support for non static-affine code independent assume kill

resize required - - 33% ↑
dilate required - - 10% ↑
color conversion - - - 34% ↑
affine warping required - - 23% ↑
2D convolution required - 20% ↑ 21% ↑
gaussian smoothing required - - 47% ↑
basic histogram - required - -

Table 5.2 Effect of enabling support for individual PENCIL features on the ability to generate

code and on gains in speedups

The kernels in this benchmark require the following PENCIL features: support for non

static-affine code, independent directive, and the __penil_assume and __penil_kill builtins.

Table 5.2 shows the list of PENCIL features that were useful in the image processing bench-

mark suite. It shows whether a given PENCIL feature is required for OpenCL code generation
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and shows the gain in speedup obtained when support for that feature is enabled (compared to

the case where support for that feature is disabled). We only show the effect on performance

on one test platform (Nvidia GTX), the effect on the other platforms is similar. The symbol

“-” indicates that the absence of the feature does not have any effect on the generated code.

The table shows that support for non static-affine code is required to be able to generate

OpenCL code for 5 out of 7 kernels in the benchmark. In basic histogram, the use of the

independent directive enables the parallelization and OpenCL code generation for the kernel

which is difficult otherwise. In dilate, assuming that the size of the structuring element (the

array that represents the neighborhood used to compute each pixel) is less than 16×16 enables

PPCG to map that array to shared memory. This assumption allows PPCG to generate code that

is 20% faster compared to the case where the assumption is not used. The __penil_kill

builtin allows PPCG to generate code that is 28% faster compared to the case where the kill

builtin is not used. __penil_kill in this case mainly eliminates extra data copies that PPCG

generates to move data between host and device memories.

Table 5.3 shows the speedups of the PPCG generated OpenCL code over the baseline

OpenCV 2.4.10 OpenCL implementation. We use the same image to evaluate all the kernels

(2880×1607, 1.5 MB image).

Benchmark Nvidia GTX
470

ARM Mali
T604

AMD Radeon HD
5670

AMD Radeon R9
285

resize 1.00 1.25 2.47 8.09
dilate 0.59 0.32 0.25 2.91
color conversion 1.32 2.37 1.56 1.11
affine warping 1.06 1.93 2.44 2.85
2D convolution 0.91 - 0.95 2.53
gaussian smoothing 0.92 0.97 0.51 1.61
basic histogram 0.45 0.42 0.16 4.34

Table 5.3 Speedups of the OpenCL code generated by PPCG over OpenCV

__penil_kill helps PPCG to eliminate spurious data copies but no other optimization on

the data copies is applied by PPCG. In all the kernels, the amount of data copied by the PPCG

generated code (when __penil_kill is used) is exactly equal to the amount of data copied

by the reference benchmark code. As a consequence, the speedups (or slowdowns) listed in

the table are due to faster (or slower) kernel executions and not to a difference in data copy

time. This is true for all the test platforms except for the AMD Radeon R9 285 platform. The

particularity of this platform is discussed later in this section.

The speedup in color conversion and in resize for the Nvidia, ARM and AMD Radeon

HD 5670 test platforms is due to the tiling of the 2D loop in each of these two kernels which

enhances data locality considerably (up to 56% less L1 cache misses on the Nvidia platform

for color conversion). In affine warping, the speedup is due to two optimizations: thread



108 Evaluating PENCIL

coarsening where multiple work-items are merged together leading to less redundant compu-

tations and tiling which enhances data locality (up to 65% less L1 cache misses on the Nvidia

platform).

In the basic histogram kernel, the code automatically generated by PPCG still does not meet

the performance of the hand optimized OpenCV implementation of the histogram for all the

test platforms. The OpenCV code is faster because each workgroup computes its own local

histogram placed in shared memory, and then the different local histograms are combined into

one final histogram (a reduction). Automatic generation of OpenCL code that exploits this

kind of reductions is not yet supported by PPCG.

For dilate, the OpenCV code is vectorized while the current PPCG OpenCL backend still

does not support the generation of vectorized code. The lack of vectorization in the PPCG gen-

erated code affects the performance more on the AMD and the ARM test platforms. Moreover,

in the OpenCV code for dilate, the input image array is mapped into shared memory while

PPCG’s shared memory heuristic decides not to map this array into shared memory. As a con-

sequence, the PPCG generated code accesses global GPU memory 175×more often compared

to the OpenCV code, which leads to a decrease in performance. The same problem in the

shared memory heuristic applies to gaussian smoothing.

While PPCG can generate code for 2D convolution, the OpenCV reference implementation

for 2D convolution could not be run on the ARM Mali GPU, as it uses hardcoded shared

memory and workgroup sizes that both exceed the limits of ARM Mali.

On the AMD Radeon R9 285 platform, the speedups of the PPCG generated kernels over

the OpenCV kernels are due to the slow data copies that OpenCV performs. The data copies

are slower because OpenCV, on this platform, decides to add padding to the input image to get

aligned memory accesses. In order to do that, OpenCV uses the OpenCL lEnqueueWriteBufferRet

function which copies data from host to device memory and adds padding at the same time.

PPCG in contrast uses the lEnqueueWriteBuffer OpenCL function which only copies data

from host to device memory. Using lEnqueueWriteBufferRet is 7× slower than the use

of lEnqueueWriteBuffer. This difference explains the high speedups that were obtained

for the PPCG generated code on this platform. Other than this difference in data copies,

there is no other significant difference between the speedups obtained on the AMD Radeon

R9 285 platform and the AMD Radeon HD 5670 platform. Note that, although the use of

lEnqueueWriteBufferRet may be less efficient in these tests, it may be more efficient in

other cases where only one data copy is performed and many filters are applied on the same

input image.
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5.2.2 Rodinia and SHOC Benchmark Suites

When choosing benchmarks from the Rodinia [25] and SHOC [30] benchmark suites for writ-

ing in PENCIL (reverse-engineering from OpenCL to PENCIL), we decided to focus our re-

sources on a selection of benchmarks that offer diversity (cover different Berkeley "motifs" [4]

such as dense and sparse linear algebra, structured grids, and graph traversal), and pose a chal-

lenge to traditional polyhedral compilers arising from non static-affine code. We chose five

benchmarks (presented in Table 5.4). Three of these benchmarks are particularly challenging

for a polyhedral compiler as they exhibit patterns of non static-affine code. We show the bene-

fit of using PENCIL to implement these benchmarks and compare the performance of the PPCG

generated code for each benchmark with the reference Rodinia/SHOC implementations.

Benchmark Suite dataset sizes Description / notes

2D Stencil SHOC 100 iterations, 4096×4096 grid On structured grid

Gauss. Elim. Rodinia 1024×1024 matrix Dense matrix

SRAD Rodinia 100 iterations, 502×458 image Image enhancement

SpMV SHOC 16384 rows Sparse matrix-vector multiplication

BFS Rodinia 4 million nodes Breadth-first search on a graph

Table 5.4 Selected benchmarks from Rodinia and SHOC

Benchmark support for non static-affine code independent

2D Stencil - -
Gauss. Elim. - -
SRAD required -
SpMV required -
BFS required required

Table 5.5 PENCIL Features that are useful for SHOC and Rodinia benchmarks

The benchmarks require support for non static-affine code and the use of the independent

directive. Table 5.5 shows the effect of these features on the ability of PPCG to generate

OpenCL code. Other PENCIL features do not have any effect on these benchmarks.

The table shows that supporting non static-affine code is required for OpenCL code gen-

eration in 3 out of 5 benchmarks. The non static-affine code patterns in these benchmarks

include non-affine read accesses, non-affine conditionals and non-affine write accesses. The

non-affine write accesses in BFS are particularly difficult to handle since they prevent the

compiler from parallelizing the code, requiring the use of the independent directive.

Table 5.6 shows speedups. The speedups in Stencil and Gaussian are mainly due to tiling

which enhances data locality and reduces cache misses (4× less L1 cache misses for Stencil on

Nvidia GTX 470). For SRAD, the PENCIL-generated OpenCL code is significantly slower than

the reference benchmark, mainly because PPCG did not map a reduction in SRAD to OpenCL
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(as PPCG does not support the generation of parallel reductions yet). This leads to unneces-

sary data transfers between the part of SRAD mapped to host and the part of SRAD mapped

to device hence the slowdown. In BFS, the generated OpenCL code is slightly slower than

the reference code also due to unnecessary data transfers that PPCG generates. This happens

because PPCG does not handle while loops yet (currently only the while loop body is mapped

to GPU, which makes PPCG generate a data copy between host and device at the beginning

and end of each while loop iteration).

Benchmark Nvidia GTX 470 ARM Mali T604 AMD Radeon HD 5670 AMD Radeon R9 285

2D Stencil 3.44 3.04 2.68 5.76
Gauss. Elim. 0.67 1.54 4.39 2.58
SRAD 0.22 0.34 0.43 0.56
SpMV 1.17 1.67 1.04 1.08
BFS 0.65 0.78 0.43 0.72

Table 5.6 Speedups for the OpenCL code generated by PPCG for the selected Rodinia and

SHOC benchmarks

Rodinia and SHOC as well as the previously analyzed image processing benchmarks are

examples of the use of PENCIL as a standalone language. In the next section, we show an

example where PENCIL is used as an intermediate language for DSL compilers.

5.2.3 VOBLA DSL for Linear Algebra

VOBLA is a domain specific language designed by ARM for implementing linear algebra

algorithms [13]. It provides a compact and generic representation for linear algebra algorithms

using an imperative programming style.

The main idea behind VOBLA is to decouple the description of algorithms from the im-

plementation details. VOBLA programs are compiled into PENCIL and this PENCIL code is

compiled to OpenCL code for a wide range of platforms. The generated OpenCL code is

competitive with hand-optimized OpenCL code while it requires much less effort from the

programmer. A template system allows to define generic functions on generic types and ac-

cess patterns. Each instance of a template function specifies the types to be used (single or

double precision, real or complex numbers) and how arrays are stored (row or column major

order, sparse or dense matrix). This makes the code more generic. Any parallelism or possible

optimization inherent to the algorithm is not obscured by implementation details.

The main control flow operators defined in VOBLA include if, for, forall and while.

The if and the while operators have semantics similar to their counterparts in C and PENCIL.

The for and forall operators are used to iterate over a scalar range (using a multi-dimensional

iteration space) or over an array. forall loops are used to indicate that the iterations of a loop

can be executed in any order.
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To access arrays with a common interface, VOBLA mainly uses array iterators. They

enumerate the elements or sub-structures (e.g., the rows of a matrix) of an array. A template

function only sees the iterators available for a particular array but not the implementations of

these iterators. The implementation is specified in the layout description and can be tuned

separately for each storage format. Some storage formats also provide a way to access an

element by its coordinates, allowing more complicated algorithms to be expressed. Array

iterators benefit both the compactness and the clarity of the code, providing an easy, compact

and standardized way to iterate over arrays.

For very regular code, the programmer can also use array operators. They provide basic

operations on arrays (addition, multiplication, etc) in an even more compact and clean way.

The compiler automatically chooses the best access pattern to implement them.

The following VOBLA example first defines a template function that iterates over the

non-zero elements of the X matrix and adds each X[i℄[j℄ element to Y[i℄[j℄. The template

function is then instantiated and named add_mat_sr.

// A simple VOBLA template funtion

funtion add_mat(in X: Sparse<Value>[n℄[n℄,

out Y: Value[n℄[n℄) {

// Iterate over the non-zero elements of X

// and add eah X[i℄[j℄ to Y[i℄[j℄

Y[i℄[j℄ += Xij forall i, j, Xij in X.sparse;

}

// Instantiate the template

export add_mat<Float>(

X is Csr, // X: a sparse matrix in CSR format

Y is Transposed Array) // Y: a transposed matrix

as add_M_sr; //Name of PENCIL generated funtion

We only provide a brief description of VOBLA and its compilation into PENCIL. A de-

tailed description is available in [13].

The VOBLA-to-PENCIL compiler is quite simple. It does not perform any sophisticated

analyses or optimizations. Advanced loop optimizations and the mapping to OpenCL code

are all handled by the PENCIL compiler. The VOBLA-to-PENCIL compiler generates only the

following PENCIL features: the independent directive, the assume builtin and the restrit

type qualifier. No other PENCIL feature needs to be generated. The kill builtin is only useful

to eliminate spurious data copies in non-static control code and is not needed for the purely
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static control code generated by VOBLA. Summary functions are only needed when library

functions are called from PENCIL which is not the case in the VOBLA generated code.

The independent directive, the assume builtin and the restrit type qualifier are gener-

ated in the following way:

• forall VOBLA operators are translated into for loops that are annotated with the

independent directive.

• assume builtins are inferred from the relations between array sizes in the VOBLA pro-

gram. Such information allows the PENCIL compiler to simplify the generated code and

avoid unnecessary checks.

For example, thanks to the statement C = A + B, the compiler can infer that the sizes of

A and B are equal and can generate a __penil_assume to indicate that. This information

enables the PENCIL compiler to avoid handling the case where (size_A != size_B).

This information is useful for instance if the PENCIL compiler decides to fuse two loops

over A and B.

• The VOBLA compiler annotates all the arrays with the restrit type qualifier in the

PENCIL generated code. This is correct because of the way VOBLA is designed. In

VOBLA, the only way to create aliasing is by calling a function and passing the same

array to that function more than once in the same call. But even in this case, there is no

aliasing in the generated pencil function because the compiler creates a new version of

that function where the different arrays that actually represent the same array are merged

into a single array.

We used VOBLA to implement a set of linear algebra kernels including gemver (vector

multiplication and matrix addition), 2mm (2 matrix multiplications), 3mm (3 matrix multipli-

cations), gemm (general matrix multiplication), atax (matrix transpose and vector multiplica-

tion) and gesummv (scalar, vector and matrix multiplication). Many of these kernels are a

sequence of BLAS function calls.

We compare the code generated from PPCG for these kernels with equivalent code that

calls BLAS library functions. The VOBLA implementation is first compiled to PENCIL using

the VOBLA-to-PENCIL compiler and then PENCIL is mapped to the GPU using PPCG. We

compare the generated code with two highly optimized BLAS library implementations.

• We use the clMath 2.2.0 [27] BLAS library provided by AMD for comparison on AMD

platforms.
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• We use the cuBlas 5.5 [77] BLAS library provided by Nvidia for comparison on the

Nvidia platform. In this case we use PPCG to generate CUDA code instead of OpenCL

code.

We do not provide a comparison on the Mali GPU as no reference BLAS library is avail-

able for Mali to this date. We use 4096×4096 as a matrix size for all the benchmarks.

The only PENCIL features that are beneficial to the VOBLA generated code are the assume

builtin and the restrit type qualifier. The independent directive is not needed as the kernels

do not contain any non-affine write accesses. The restrit type qualifier is mandatory to

eliminate aliasing problems.

Writing a hand-tuned kernel in OpenCL is a complicated task which requires deep knowl-

edge of the target architecture and requires significant time dedicated by a specialized engineer.

When the kernels are written in VOBLA, no OpenCL knowledge is necessary, which, in our

experience, notably simplifies linear algebra code writing and reduces development time.

Table 5.7 shows the gains in speedups obtained when support for the assume builtin is

enabled (measured on the Nvidia platform). When the assume builtin is used, the generated

code is significantly faster. For example, the generated code for gemm, when assume is used,

is 71% faster than the generated code without assume. This happens because PPCG simplifies

the control flow in the generated kernels using the information provided through the assume

builtin.

Benchmark assume

gemver 06% ↑
2mm 84% ↑
3mm 91% ↑
gemm 71% ↑
atax 13% ↑
gesummv 02% ↑

Table 5.7 Gains in performance obtained when support for the assume builtin is enabled in

VOBLA

Benchmark Nvidia GTX 470 AMD Radeon HD
5670

AMD Radeon R9 285

gemver 1.17 2.14 0.39
2mm 0.91 0.62 0.14
3mm 0.87 0.66 0.12
gemm 1.09 0.69 0.19
atax 0.88 1.79 0.37
gesummv 1.03 1.83 0.33

Table 5.8 Speedups obtained with PPCG over highly optimized BLAS libraries

Table 5.8 shows the speedups of the kernels generated by PPCG over BLAS libraries. The

PPCG generated kernels for the Nvidia and the AMD HD 5670 platforms were close in perfor-
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mance to the highly optimized BLAS library calls for 2mm, 3mm, atax and gemm (e.g., 0.69×

for gemm on the AMD platform). The main optimizations applied in these kernels are loop

fusion, tiling, and the use of shared and private memories. The BLAS code still outperforms

the PPCG generated code as it implements many other optimizations including vectorization

(clMath) and the use of register tiling (cuBlas) which are not yet supported by PPCG. The

speedups for gesummv and gemver are due to loop fusion and tiling that are performed across

different library calls. The gemver kernel, for example, is a sequence of 6 BLAS library calls.

Although the individual BLAS library functions are highly optimized, better performance can

be obtained by fusing and tiling across function calls. PPCG is able to perform these optimiza-

tions, and thus outperforms the sequence of BLAS library calls by a factor of 2.14× on AMD

Radeon. clMath is highly vectorized and tuned for the AMD Radeon R9 285, since PPCG

still does not support vectorization it fails to reach the performance levels for clMath on this

platform.

5.2.4 SpearDE DSL for Data-Streaming Applications

SpearDE [62] is a domain-specific modeling and programming framework for signal process-

ing applications, designed by Thales Research and Technology. An evaluation of PENCIL on

two representative SpearDE applications is provided in [6]. The two applications are: Space-

Time Adaptive Processing (STAP) and Adaptive Beamformer (ABF). Both are common signal

processing applications for radar systems.

5.3 Discussion of the Results

The evaluation section shows how PENCIL features improve the ability of PPCG to generate

OpenCL code in two ways:

• By enabling the generation of OpenCL through features such as the independent direc-

tive, and summary functions and through support for non static-affine code. Support for

non static-affine code was required in 52% of the benchmarks. The independent direc-

tive was required in basic histogram and bfs while summary functions were required in

ABF (from SpearDE, which is not discussed in detail in this dissertation).

• By enhancing the quality of the generated code through features such as the assume

and kill builtins. The assume builtin improved performance in 33% of the benchmarks

while the kill builtin improved performance in 38% of the benchmarks.

The experiments also provide an assessment about the efficiency of the generated code

compared to a large set of highly optimized reference codes: 47% of the generated kernels
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outperform the reference implementations. Yet, the evaluation also shows some limitations in

the current tools including limitations in generating parallel reductions, loop fusion heuristics,

in handling while loops and the lack of vectorization and register tiling. This motivates more

work on the tool chain itself to address these issues.

Currently, our framework uses autotuning to select the most appropriate work group sizes,

tile sizes, to decide whether to use shared memory, whether to use private memory and which

loop distribution heuristic to use. Although exhaustive search using this framework may be

suitable for small applications, it is not suitable for larger applications as the exploration of

all the possible optimizations for each kernel would create a large search space (since there

are many kernels in each one of those applications). This motivates the integration of better

heuristics and the integration of parametric tiling in the compilation flow in order to reduce

the size and the overall time of the autotuning.

5.4 Conclusion and Future Work

We presented PENCIL, an intermediate language for DSL compilers and for accelerator pro-

gramming, designed to simplify static code analysis. The design of PENCIL is unique in its

combination of sequential semantics, strict compliance with the syntax and semantics of C,

and a rich set of static analysis helpers through attributes and pragmas. It makes many forms

of non static-affine code and access patterns amenable to advanced loop transformation and

parallelization techniques based on the polyhedral framework. We ported a representative

set of benchmarks to PENCIL, some of which written in a DSL and compiled to PENCIL. We

parallelized these applications automatically on GPU platforms, demonstrating unprecedented

expressiveness capabilities for a polyhedral framework. Our experiments validate the use of

PENCIL together with an optimizing compiler as building blocks for the implementation of

languages and compilers aiming for performance portability.





Chapter 6

Conclusions and Perspectives

This dissertation presented three limitations in polyhedral compilation along with a practical

solution to each one of these.

6.1 Contributions

• We proposed a relaxed permutability criterion that allows a compiler to ignore false

dependences between iteration-private live ranges, allowing the compiler to discover

larger bands of tilable loops. We presented the rationale that led to the design of this

criterion along with an experimental evaluation. The main contributions of this work are

the following: (1) using our relaxed permutability criterion, loop tiling can be applied

without the need for any expansion or privatization, the impact on the memory footprint

is minimized, and the overheads of array expansion are avoided, (2) our criterion allows

the tiling of programs that privatization does not allow.

• We presented a statement clustering algorithm and two clustering heuristics. The exper-

imental evaluation showed that statement clustering succeeded in reducing the schedul-

ing time by a median factor of 8× across all the benchmarks and by more than 1000×

for some benchmarks. Moreover, the evaluation showed that the technique does not lead

to any significant loss in optimization opportunities. The main contributions of this work

are the following: (1) we proposed an algorithm that makes a clear distinction between

the clustering itself and the clustering heuristic, and (2) we proposed an algorithm to

decide about the validity of a given clustering decision.

• We presented PENCIL, an intermediate language for DSL compilers and for accelerator

programming. PENCIL is a subset of the C99 language carefully designed to capture

static properties essential to enable more precise data dependence analysis. It provides



118 Conclusions and Perspectives

also a set of language constructs that includes the independent directive, the assume

and kill builtins and summary functions. These language constructs enable paralleliz-

ing compilers to generate more efficient code. We evaluated PENCIL on a representative

set of benchmarks: 47% of the generated kernels outperform the reference implementa-

tions. Our experiments validate the use of PENCIL together with an optimizing compiler

as building blocks for the implementation of languages and compilers aiming for perfor-

mance portability.

This work was partly supported by the European FP7 project CARP id. 287767, and many

contributions resulted from fruitful discussions and close collaboration among the CARP

project partners.

6.2 Future Directions

Currently, statement-clustering is used only to speed up the affine scheduling step. An inter-

esting extension of this work is to use the idea of statement clustering to speed up the steps

of dependence analysis and code generation in a polyhedral compiler. To do this, the macro-

statements need to be constructed during the extraction of the polyhedral representation of the

program. The SCC clustering heuristic cannot be used in this case since it relies on the use of

the dependence graph which is not available during the step of the extraction of the polyhedral

representation.

In addition to the SCC and the BB heuristics, another heuristic that can be used is a heuris-

tic that groups similar statements into one macro-statement. Two statements are similar if the

only difference between them is in their access relations (array subscripts). The following

example shows a set of statements that are similar.

for (i=0; i<N; i++)

{

A[i℄[0℄ = B[i℄[0℄;

A[i℄[1℄ = B[i℄[1℄;

A[i℄[2℄ = B[i℄[2℄;

A[i℄[3℄ = B[i℄[3℄;

A[i℄[4℄ = B[i℄[4℄;

A[i℄[5℄ = B[i℄[5℄;

}

Regarding the PENCIL tool chain, the evaluation showed some limitations, including lim-

itations in the support for parallel reductions, loop fusion heuristics, in handling while loops
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and the lack of vectorization. This motivates more work on the tool chain to address these

issues.

An autotuning framework that uses heuristics instead of exhaustive search is also needed

in order to be able to handle large applications (applications with multiple kernels). The use

of such an autotuning framework will make autotuning more usable in the context of large

applications.

Many extensions to the PENCIL language are being considered. Among these extensions:

• A builtin function to mark a given array element as being unused after some PENCIL

regions and as being used only after a specific PENCIL region. This information allows

the PENCIL compiler to avoid copying the array into host memory after the end of the

PENCIL region (performing a copy back to the host memory is the default behavior since

the compiler cannot figure out whether an array element is unused after the PENCIL

region as the compiler cannot analyze non PENCIL code).

• A builtin to indicate that an operation is atomic (atomic add, atomic write, . . . ). The

semantics of such an operation are not yet defined, since the concept of “atomicity” is

only defined for languages with parallel semantics which is not the case of PENCIL. Yet,

we want to enable the user to indicate that a given operation should be implemented as

an atomic operation if the PENCIL code gets parallelized. We are investigating how this

can be done.

Apart from these short-term perspectives, we believe that the polyhedral framework is

very promising for many reasons. It provides powerful algorithms to reason about and for

implementing loop nest transformations. Thanks to its fine grain code representation, exact

dependence analysis and fine grain scheduling are possible. In addition to this, during the last

few years, many tools around polyhedral compilation have been developed by the research

community which facilitates research in the polyhedral model. In our experience, the proposed

extensions that enable the polyhedral frameworks to handle non static-affine code [14, 41],

seem to address their goals reasonably successfully, thus we do not consider this problem as a

high priority.

Although polyhedral compilation is showing good results, more work is still needed to

make use of its full potential in production compilers. One of the most urgent problems is

the problem of scalability. This problem mainly appears in the step of scheduling as we have

shown in Chapter 3. The solution we proposed can be combined with a stack of other practical

solutions to reduce the scheduling time of programs. More ambitious work should focus

on developing new scheduling algorithms that inherently do not suffer from this scalability

problem (probably such algorithms will not rely on ILP – Integer Linear Programming).
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One other urgent issue in the current polyhedral compilers is related to the need of heuris-

tics that guide the search for optimizations. Manually designing a heuristic is a tedious task.

Such a heuristic is in general designed for a specific architecture and new heuristics need to be

crafted continuously for new architectures. Developing automatic methods for the creation of

heuristics that extend the existing techniques such as the use of machine learning [73, 90, 91]

is a possible solution to this problem.
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Appendix A

EBNF Grammar for PENCIL

The reserved words are in bold.

<penil> ← <top level de�nition>∗
<top level de�nition> ← <funtion> | <type de�nition> | <global onstant>
<global onstant> ← <variable delaration>‘=’<init expression>‘;’

<type de�nition> ← (<typedef> | <strut de�nition>)‘;’
<typedef> ← typedef<base type><name><array su�x>∗
<strut de�nition> ← struct<name>‘{’(<variable delaration>‘;’)∗ ‘}’

<array su�x> ← ‘[’(<array attribute>∗)<expression>‘]’

<array attribute> ← const | restrict | static

<pointer> ← ‘*’

<delarator> ← (<pointer>∗)<diret delarator>
<diret delarator> ← <name>(<array su�x>∗) | ‘(’<delarator>‘)’<array su�x>∗
<base type> ← <salar type fragment>+ | <type attribute> ∗ struct?<name>

<salar type fragment> ← <type spei�er> | <type attribute>
<type attribute> ← const

<type spei�er> ← bool | _Bool | char | short | int | long |
float | half | double | signed | unsigned

<variable delaration> ← <base type><delarator>

<init expression> ← <expression> | <array init expression>
<array init expression> ← ‘{’<onstant>(‘,’<onstant>)∗ ‘}’

<funtion> ← static?<funtion type>

<name>‘(’<funtion args>‘)’<attribute>∗
<funtion body>

<funtion type> ← <base type> | void

Figure A.1 PENCIL syntax as an EBNF.
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<funtion body> ← <blok> | ‘;’
<attribute> ← __attribute__‘(’‘(’<attr>‘)’‘)’

<attr> ← const | pencil | pencil_access‘(’<name>‘)’

<funtion args> ← | <variable delaration>(‘,’<variable delaration>)∗
<blok> ← ‘{’<statement> ∗ ‘}’

<statement> ← <assignment>‘;’ | <for> | <while> | <if> | <blok> | <return>
| <blok variable delaration> | <all statement>
| break‘;’ | continue‘;’

<assignment> ← <lvalue>

(‘=’ | ‘+=’ | ‘-=’ | ‘%=’ | ‘*=’ | ‘/=’ | ‘^=’ |
‘&=’ | ‘|=’ | ‘»=’ | ‘«=’)
<expression>

| <lvalue>‘++’ | <lvalue>‘--’

| ‘++’<lvalue> | ‘--’<lvalue>
<while> ← while‘(’<expression>‘)’<blok>

<if> ← if‘(’<expression>‘)’<blok>(else<blok>)?
<return> ← return<expression>?‘;’

<blok variable delaration> ← <variable delaration>(‘=’<init expression>)?‘;’

<all statement> ← <all expression>‘;’

<for diretive> ← ‘#’pragma pencil(ivdep | <independent>)
<independent> ← independent(<redution>)∗
<name list> ← <name>(‘,’<name>)∗
<redution> ← reduction‘(’(‘+’ | ‘-’ | ‘*’ |min | max)‘:’<name list>‘)’

<for step> ← ‘++’<name> | ‘--’<name> | <name>‘++’ | <name>‘--’

| <name>‘+=’<onstant> | <name>‘-=’<onstant>

<for> ← <for diretive>∗
for‘(’<base type>?<name>‘=’<expression>‘;’

<name>(‘>’ | ‘<’ | ‘>=’ | ‘<=’)<expression>‘;’

<for step>‘)’

<blok>

<expression> ← <ternary expression>

<ternary expression> ← <LOR expression>(‘?’<expression>‘:’<ternary expression>)?
<LOR expression> ← <LAND expression>(‘||’<LAND expression>)∗
<LAND expression> ← <BitOR expression>(‘&&’<BitOR expression>)∗
<BitOR expression> ← <BitXOR expression>(‘|’<BitXOR expression>)∗
<BitXOR expression> ← <BitAND expression>(‘^’<BitAND expression>)∗

Figure A.1 PENCIL syntax as an EBNF continued overleaf.
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<BitAND expression> ← <EQ expression>(‘&’<EQ expression>)∗
<EQ expression> ← <CMP expression>((‘=’ | ‘!=’)<CMP expression>)∗
<CMP expression> ← <shift expression>((‘>’ | ‘<’ | ‘>=’ | ‘<=’)<shift expression>)∗
<shift expression> ← <plus expression>((‘«’ | ‘»’)<plus expression>)∗
<plus expression> ← <mult expression>((‘+’ | ‘-’)<mult expression>)∗
<mult expression> ← <ast expression>((‘*’ | ‘/’ | ‘%’)<ast expression>)∗
<ast expression> ← (‘(’<salar type fragment>+ ‘)’)∗<unary expression>
<unary expression> ← ‘ ’<ast expression> | ‘-’<ast expression>

| ‘+’<ast expression> | ‘!’<ast expression>
| <sizeof expression> | <post�x expression>

<lvalue> ← <subsription>

<post�x expression> ← <all expression> | <subsription>
<all expression> ← <name>‘(’(<expression>(‘,’<expression>)∗)?‘)’

<subsription> ← <term>(‘[’<expression>‘]’ | ‘.’<name>)∗
<term> ← <name> | <onstant> | ‘(’<expression>‘)’

<onstant> ← <HEX humber> | <DEC number> | <OCT number>

| <Floating point number>

Figure A.1 PENCIL syntax as an EBNF continued overleaf.
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