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Subject : Strongly Correlated Topological Phases

Résumé : This thesis is dedicated largely to the study of theoretical models describing
interacting fermions with a spin-orbit coupling. These models (i) can describe a class of 2D
iridate materials on the honeycomb lattice or (ii) could be realized arti•cially in ultra-cold
gases in optical lattices. We have studied, in the •rst part, the half-•lled honeycomb lattice
model with on-site Hubbard interaction and anisotropic spin-orbit coupling. We •nd sev-
eral di!erent phases: the topological insulator phase at weak coupling, and two frustrated
magnetic phases, the Néel order and spiral order, in the limit of strong correlations. The
transition between the weak and strong correlation regimes is a Mott transition, through
which electrons are fractionalized into spins and charges. Charges are localized by the in-
teractions. The spin sector exhibits strong ‚uctuations which are modeled by an instanton
gas. Then, we have explored a system described by the Kitaev-Heisenberg spin Hamil-
tonian at half-•lling, which exhibits a zig-zag magnetic order. While doping the system
around the quarter •lling, the band structure presents novel symmetry centers apart from
the inversion symmetry point. The Kitaev-Heisenberg coupling favors the formation of
triplet Cooper pairs around these new symmetry centers. The condensation of these pairs
around these non-trivial wave vectors is manifested by the spatial modulation of the super-
conducting order parameter, by analogy to the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO)
superconductivity. The last part of the thesis is dedicated to an implementation of the
Haldane and Kane-Mele topological phases in a system composed of two fermionic species
on the honeycomb lattice. The driving mechanism is the RKKY interaction induced by
the fast fermion species on the slower one.

Keywords : Strongly Correlated Fermions; Spin-Orbit Coupling; Topological Phases;
Frustrated Magnetism; Kitaev-Heisenberg Spin Hamiltonian; FFLO Superconductivity.
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Chapter 1

Introduction

Solids are composed of atoms disposed in an array with electrons hopping between them. Anal-
ysis of the band structure historically provides a preliminary classi•cation of solids. Solids
are basically categorized into metals, semi-conductors and insulators depending on the Fermi
level and the gap between bands [1]. Recent developments in condensed matter physics delve
into materials which are beyond this simple classi•cation according to band theory. Transition
element compound displays a signi•cant correlation between electrons, entailing the Coulumb
interaction and Hund coupling [2, 3, 4, 6]. The correlation between electrons can localize
electron charges and order spins, entailing the Mott physics. Spin-orbit coupling, designat-
ing the coupling between the angular momentum of the orbitals and the magnetic moment
of the electrons, comes also into play in these compounds. A major interest has been the
implementation of topological insulators by means of the spin-orbit coupling[11]. Topological
condensed matter systems are gapped in the bulk while hosting a gapless conducting mode on
the edge. The appearance of edge states in such systems is independent of the band structure
details, disorder and small deformation of the system. In spite of one possible explanation of
the topological system through band inversion[13, 14], a more generic feature characterizing
these systems is attributed to topology.

This thesis is dedicated largely to the study of theoretical models describing interacting
fermions with a spin-orbit coupling. These models (i) can describe a class of 2D iridate mate-
rials on the honeycomb lattice or (ii) could be realized arti•cially in ultra-cold gases in optical
lattices. The competition of the band structure, the spin-orbit coupling and electron corre-
lation makes iridates and systems likewise an arena with a number of exotic phases in com-
petition. Iridate compound has aroused particular interests because the Kitaev-Heisenberg
coupling stemming from the spin-orbit coupling implies possible realisation of the Kitaev
model on honeycomb lattice [15], a theoretical model with spins fractionalised into Majorana
fermions triggering a liquid phase. The Kitaev model enables probably quantum computation
in certain regime, motivating the search for materials with ferromagnetic Kitaev coupling.
The anisotropy of the Kitaev spin coupling and the link dependent anisotropic spin-orbit
coupling may bring about a number of new phases both in the weakly or strongly correlated
regime.

The manuscript is organized in the following way: In chapter 1, we give •rstly a brief
introduction of topology in condensed matter and a succinct presentation of the Mott physics
triggered by correlations; then we present a general review of iridates with a schematic phase
diagram indicating various phases in di!erent iridate compounds. In chapter 2, we present
our work on the half-•lled iridate model on the honeycomb lattice in the limit of weak spin-
orbit coupling [36]. In chapter 3, we present the doped honeycomb iridate system in the limit
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2 Chapter 1. Introduction

of strong spin-orbit coupling, with the possible realization of an inhomogeneous spin-triplet
superconductor phase [37]. In chapter 4, we account for our work on the possible realization of
topological phases via the engineering of RKKY interaction on a honeycomb heterostructure
with two copies of fermions [38].

1.1 Topology in Condensed Matter

Topology is the branch of mathematics that studies the properties of spatial objects from their
inherent connnectivity while ignoring the detailed form. Physical phenomemon depending
only on the topology of the system are particularly interesting because of its robustness and
its exactitude: physical phenomena is free from detailed properties such as disorder, geometry
or deformation of the system and observables are quantized with a high precision. One simple
quantity that characterizes the topology of a surface is the Chern number which depicts the
winding behavior of the surface’s tangent bundles.

One of the earlies important discovery in the condensed matter theory related to topology
was in quantum Hall systems, in which a 2D electron gas subject to a magnetic •eld sees
a transversal conduction [7, 8]. The Hall conductance in low temperature is quantized with
an extremely re•ned exactitude, independent of disorder and the geometry of the sample.
This robust property of the conductance was later understood through its implication with
the topology of the system: the electrons in cyclotron motion have a Chern number1 for
each Landau level and the quantization of the Hall conductance is related to the number of
Landau levels below the Fermi level in the bulk. In 1998, Haldane proposed another model
with zero net magnetic ‚ux, in which chiral anomaly breaks the time-reversal symmetry [10].
Electrons in this model travel with a certain chirality depending on the sign rather than
the magnitude of the Haldane mass, which we will explain in the following. The quantum
anomalous Hall system illustrated by the Haldane model, though insulating in the bulk, has
a chiral edge mode which is conducting. Band electrons in the lower band in the Haldane
model has a Chern number1, which coincide with 1 conducting mode on the edge. In 2005,
Kane and Mele proposed a quantum spin Hall model consisting of two Haldane models with
opposite Haldane masses, restoring the time-reversal symmetry [11]. The Kane-Mele model
has a helical spin current that is conducting on the edge with spin up and spin down move
in opposite directions on the edge. The Kane-Mele model has a total Chern number zero,
but the Z2 topological invariant characterizing the twisting of the rank 2 bundle related to
time-reversal symmetry illustrates the topology of the quantum spin Hall e!ect. The topology
of the condensed matter systems has also its arena in superconductivity. Superconductor with
p-wave orbital symmetry has been theoretically proposed which has a Chern number1 for the
lower Bogoliubov band, and there exists a zero energy mode on the edge for the quasi-particle
(Bogoliubon) as a manifestation of the topology of the system [16].

In a general sense, there are systems in condensed matter physics that are insulating in the
bulk and metallic on the edge thus enabling the edge transport. The edge transport is robust
against impurity, disorder and deformation of the sample, and such a property is related to the
topology of the bulk which is characterized by a topological invariant either the Chern number
or the Z2 invariant. Intuitively, two insulators juxtaposed (the world outside the sample is
also insulating) both gapped in the bulk with di!erent topological invariant have necessarily
a band closure on the edge giving rise to the edge transport, because insulators with di!erent
topology cannot be connected to each other without band closure. In Fig. 1.1, we show an
example of conducting edge mode for a system characterized by the Chern number.

Generically, there are systems in condensed matter with gapped band that can be described
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Figure 1.1: Two insulators with di!erent topological invariants juxtaposed has necessarily
band closure on the edge, and then metallic edge transport.

by a spin or an isospin that lives on a unit sphere as in equation 1.1.1. The topology of the
system is determined by the number of times that the spin or isospin wraps around the unit
sphere when electrons are situated in di!erent part of the band or the •rst Brillouin zone.
The wraping behavior of the mapping from the band to the unit sphere can be described by
the Chern number, which determines the number of conducting edge mode in such a waythat
the conductance of a topological system is quantized with regard to the Chern number.

H = þd(k) · þà þd(k) : FBZ or band ¾ S2 (1.1.1)

in which þà is the Pauli matrix characterizing the spin or the isospin.
Mathematically speaking, the function þd(k) which maps one space (the band) into a

number of copies of space (unit sphere wrapped around for a certain number of times) is the
inverse of the covering map, and Chern numberC in this context characterizes the degree of
the cover (or the cardinality of •ber.) We will try to show through several examples, that
the conductanceàxy of the system is quantized by the Chern numberC with the resistance
quantum e2

h [17].

àxy = C
e2

h
(1.1.2)

1.1.1 Quantum Hall System

Topology in the •eld of condensed matter prospers from the study of quantum Hall e!ect.
The Hall e!ect appears in 2D electrons subject to magnetic •eld and transversal electrical •eld
[7]. Electron transport in the perpendicular direction to the electrical magnetic •eld emerges,
which allows us to de•ne a Hall conductanceàxy = I Ü

E = BqV
neqV = B

ne
, in which þE = qþB × þV

the electric •eld compensates the Lorentz force of electrons in motion, and the perpendicular
electric current I Ü = neqV in which ne is the electron density, e the electrical charge for one
electron and V the velocity of the electrons in motion. The Hall e!ect under classical regime
tells us that the Hall resistance is proportional to the magnetic •eld. However, experiments
in the quantum regime of electrons in the 2D GaAs atT = 85mK show di!erent behavior.
Instead of the linear relation, the Hall conductance forms plateaus which are integer multiples
of the conductance quantum e2

h .
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Figure 1.2: The quantum Hall resistanceRxy as a function of magnetic •eld from Tsui et
al [8]: The quantum Hall e!ect consists of 2D electrons under magnetic •eld, and the Hall
conductance as a function of the magnetic •eld forming the quantum Hall plateaus rather
than linear as is the case with classical Hall e!ect [7, 8]. Electrons in the quantum Hall
system undergo a cyclotron motion, with conducting edge mode.

The Hamiltonian of electrons under magnetic •eld is !H = 1
2m (!p q !A/c )2, and this quantum

harmonic oscillator has only one good quantum numberpx if we take the Landau gauge

Ax = By, Ay = 0 : !H =
!p2

y
2m + 1

2m (!px  qBy
c )2. Electrons in this quantum harmonic oscillator

undergo the cyclotron motion, and the spectrum of the harmonic oscillator form gapped
Landau levels:

En = ~æc(n +
1
2

) (1.1.3)

in which æc = qB
mc is the cyclotron frequency, andn is the Landau level index. The Landau

level is highly degenerate with translational invariance in the kx direction and the harmonic

oscillator is in the y direction Hy =
!p2

y
2m + 1

2mæ2
c (!y  y0)2 in which y0 = qBpx

c = l2px with

the magnetic length l =
ñ

qB
c . If the quantum Hall sample has a dimension ofL x × L y

and we have the quantized momentumpx = 2Þm
L x

, then we have the magnetic translation

" y = l2" px = 2Þl2
L x

. Then we obtain the degeneracy of one Landau level# n = L y
" L y

= L x L y
2Þl2

and the •lling factor:

Ü=
number of electrons

# n
= 2Þl2ne =

2ÞneqB
c

(1.1.4)

By adjusting the magnetic •eld, we can alter the •lling factor of the quantum Hall sys-
tem. The Hall conductance is proportional to the •lling factor with a quantized conductance
quantum as shown in experiment (See Fig. 1.2). Filling factor indicates us the number of
•lled Landau levels, and because of the existence of con•ning potential (see Fig.1.3), the Lan-
dau levels are metallic on the edge giving rise to conducting edge modes and number of edge
modes is equal to the number of entirely •lled Landau levels, thus leading to the quantized
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Figure 1.3: Landau levels for a quantum Hall system with periodic condition in the x direction
and two edges in the y direction (Figure from Klitzing [9]): 2D electrons under magnetic •eld
form Landau levels, with only one good quantum numberkx . The system is insulating in the
bulk and Landau levels crosses the Fermi level on the edge because of the disappearance of
the con•ning energy leading to a metallic edge mode, and the quantized Hall conductance for
the edge conduction is proportional to the •lling factor of the system: if two Landau levels
are •lled, the Hall conductance is two times the conductance quantum.

Hall plateaus. Each of these conduction channel contributes one conductance quantum.

àxy =
1

Rxy
= Ü

e2

h
(1.1.5)

The role of topology is obvious in the quantum Hall e!ect in that electrons in each Landau
level are in cyclotron motion with winding number 1, giving a Chern number 1. Since Landau
levels are ‚at band, the Fermi level normally lies in the gap, and the Chern number is just
equal to the number of bands below the Fermi level. However, we shall proceed to present a
few examples revealing the topological nature of such a phenomenon.

1.1.2 Haldane Model and Chern Number

In order to illustrate the fact that the generic feature in the Hall conductance is the topology
rather than the magnetic •eld, we present here brie‚y the Haldane model for the quantum
anomalous Hall e!ect with zero magnetic ‚ux [10]. The Haldane model consists of electrons
hopping on a graphene lattice which are subject to opposite ‚uxes on di!erent sublattices
(see Fig. 1.4). The total net magnetic ‚ux is zero on the lattice, however the time-reversal
symmetry is broken.

HH =
Ø

éi,j ê

t(cø
i dj + dø

j ci ) +
Ø

ééi,j êê

it Í(cø
i cj  dø

i dj )  M S
Ø

i

(cø
i ci  dø

i di ) (1.1.6)

in which ci and dj are electron annihilator operator on the two sublattices A and B, andM S

is the Semeno! mass (See Fig. 1.4). We can diagonalize the Hamiltonian with the Fourier
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A

B

t

t '

Figure 1.4: The Haldane model consists of electrons hopping on a honeycomb lattice subject
to opposite ‚uxes on the two sublattices. The net magnetic ‚ux is zero but the time reversal
symmetry is broken.

transformation, and write the Hamiltonian in terms of the spinor $ k = ( ck , dk )T

HH =
Ø

k

$ ø
kH H (k )$ k H H (k ) =

A
dzH (k ) dxH (k )  idyH (k )

dxH (k ) + idyH (k )  dzH (k )

B

= þdH (k ) · þá

(1.1.7)
in which g(k) =

q
Ð= x,y,z ei k ·ÓÐ . Óx = (0 , 0)a, Óy = ( 

ï
3, 0)a and Óz = (

ï
3

2 ,  3
2)a. a is the

inter-atomic distance, dxH (k ) = tÙeg(k), dyH (k ) = tÚmg(k) and dzH (k ) = t Í(sin
ï

3kxa 

2 sin
ï

3
2 kxa cos3

2kya)  M S. þá = ( áx , áy , áz) are the Pauli matrices for the sublattices. The
function g(k) is written in such a way that after a lattice translation the function g(k) is
gauge invariant.

We have plotted the band structure of Haldane model at t Í = 0 .1t in comparison with
graphene whent Í = 0 in Fig. 1.5. There are two bands for the Haldane model and the band
projectors are:

EH (k ) = ± E0H (k ) = ±
ñ

|g(k)|2 + ( dz(k ))2 = ±| þdH (k )|

P± H (k ) =
1
2

(1 ž !þdH (k ) · þá) !þdH (k ) =
þdH (k )

|þdH (k )|

(1.1.8)

The graphene band structureEgraphene (k ) = ±| g(k)| has gap closure at particular points
in the •rst Brillouin zone called Dirac points, and the dispersion relation is linear around these
points. There are six of them, separated into two valleys which we denote asK i ± (i=1,2,3),
around which we have the expansiong(K i ± + k) Ä 3ta

2 (kx ± ik y) and the energy dispersion is
photon like:

Egraphene (K ± + k) = ±
3ta
2

|k | (1.1.9)

The topology of the system either in the graphene model or the Haldane model is mani-

fested by the mapping !þdH (k ) : F BZ ¾ S2 from the •rst Brillouin zone to the unit sphere S2.

We can see that around the Dirac cones of the two valleys,!þdH (K i ± + k) rotates respectively
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Figure 1.5: Left panel: the •rst Brillouin zone for the honeycomb lattice with Dirac cones at
two di!erent valleys K i ± in which ± designates the valley.Right panel: the ‚ux in the lattice
(proportional to the t Í next-nearest-neighbour terms ) opens a gap at the Dirac cones on the
base of the graphene band structure.

in the clockwise and counterclockwise direction in thex  y plane or the opposite chirality.
The rotation orientation of a vector is also called chirality. For both graphene and Haldane

model, the total chirality is zero for the vector !þdH (k ); however, we can de•ne the helicity or
the Chern number of the system as follows, which is zero for the graphene model, and non
zero for the Haldane model depending on the magnitude of the Semeno! mass.

C =
1

2Þ

�

F BZ
d2k !dzH (k ) · (ökx

!dyH (k )  öky
!dxH (k )) , (1.1.10)

which is the generic Chern number of the mapping!þd(k). Speci•cally, for the Haldane model
we have

CH =

I
sign[t Í] |M S| < 3

ï
3

2 t Í

0 |M S| > 3
ï

3
2 t Í

(1.1.11)

We remark that there exists a quantum phase transition namely when|M S| < 3
ï

3
2 t Í,

the Chern number equals± 1 depending on the sign oft Í regardless of its magnitude, while
the Chern number is zero when|M S| > 3

ï
3

2 t Í. Graphically, the topological invariant (Chern

number) characterizes whether the unit sphere depicted by!þd wraps around the origin in the
3D space as shown in right panel of Fig. 1.6.

Numerically, we can generalize the above Chern number calculation to any problem with
band electrons, because band projectors are inherently gauge invariant projectors which avoids
the ambiguity of the gauge at the border of the •rst Brillouin zone. Speci•cally, if we have
the band electron projector Pi  for the electron band with index i which is under the Fermi
level, and the Chern number is:

C =
1

2Þi

�

F BZ
d2k

Ø

i

Tr[ P i (þk)(ökx P i (þk)  öky P i (þk))] (1.1.12)
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Figure 1.6: The Chern number of the Haldane model as a function of the Semeno! massM S

calculated numerically by the discretization of 100× 100 of the •rst Brillouin zone. There is
a quantum phase transition at |M S| = 3

ï
3

2 t Í noted by the dashed line. The Chern number

counts whether the vector !þdH wraps around the origin.

The numerical calculation of the Chern number is shown in the right panel of Fig. 1.6 as
a function of the Semeno! massM S, which coincides with the prediction in equation 1.1.11.

As a consequence of the non-zero Chern number of the Haldane model, we have a zero
energy edge mode when the model is placed on the cylinder geometry. The more detailed
treatment of Hamiltonian on cylinder and the transfer matrix method for the edge state is
presented in Sec. 2.1. The zero net magnetic ‚ux in the Haldane model of quantum anomalous
Hall e!ect demonstrates the Chern number as a more intrinsic property for the appearance
of the metallic edge mode.

In a general sense, if we have some functiondz(k ) = dzo(k )+ dze(k ) which is the coe"cient
in front of the matrix áz, we call the odd parity part dzo(k ) =  dzo( k ) the Haldane mass
and the even parity part dze(k ) = dze( k ) Semeno! mass. These two notions will be useful in
chapter 4. Since the two valleys of the Dirac points have opposite helicity,dz(k ) has to have
opposite sign in the two valley in order that the system is topological with non-zero Chern
number.

1.1.3 Kane-Mele Model and Z2 Topological Invariant

Besides Chern number, there exists also another topological invariant identifying the topology
of a system. Spin-orbit coupling can result from the hybridization of the higher angular
momentum orbit and it exerts, in fact, opposite magnetic •elds upon electrons with opposite
spin polarizations, thus making the system two copies of Haldane model coupled together. We
introduce the Kane-Mele model consisting of electrons on graphene with spin-orbit coupling
[11, 12, 20].

HKM = 
Ø

éi,j ê,à

tcø
ià djà  it Í

Ø

ééi,j êê,à,à Í

àz
àà Í (cø

ià cjà Í  dø
ià djà Í ) + h.c. (1.1.13)

Again, we can do the Fourier transformation and write down the spinor$ ø
k = ( cø

k¿, dø
k¿, cø

kÀ, dø
kÀ):

HKM =
Ø

k

$ ø
kH KM (k )$ k H KM (k ) =

Q

c
c
c
a

t Ígz(k ) tgœ(k ) 0 0
tg(k)  t Ígz(k ) 0 0

0 0  t Ígz(k ) tgœ(k )
0 0 tg(k) t Ígz(k )

R

d
d
d
b

(1.1.14)
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in which g(k) =
q

j ei k ·Ój and gz(k ) = (sin
ï

3kx  2 sin
ï

3
2 kx cos3

2ky). The energy levels are
all doubly degenerate:

E = ±
ñ

(t|g(k)|)2 + ( t Ígz(k ))2 (1.1.15)

The Kane-Mele model respects the time-reversal symmetry, which is absent in the Haldane
model. If we denote the time-reversal operator asT, then for spinfull system, the time reversal
operator writes as:

T = ià y !C & T2 =  1

T !XT  1 = !X T !PT  1 =  !P T !þLT  1 =  !þL T !þàT 1 =  !þà
(1.1.16)

in which the operator !C is the complex conjugate operator, and!þL the angular momentum
operator. We can see that the Kane-Mele model consists of actually two copies of Haldane
model with Haldane masses with opposite signs. In other words, the spin up model has a
Chern number +1 and the spin down model has a Chern number of 1 (see Fig. 1.7). On
one given edge, we have spin up transport in one direction and spin down transport in the
opposite direction. We can therefore construct the e!ective edge model for only 1 pair of edge
states :

H edge(k ) =

A
vF k 0

0  vF k

B

= vF kàz (1.1.17)

Figure 1.7: The quantum spin Hall e!ect consists of electrons with opposite spin polarizations
travelling in opposite directions on the edge Figure from David Carpentier [139]. The theo-
retical model for such an e!ect is the Kane-Mele model which is actually 2 copies of Haldane
model with Haldane masses with opposite signs. The Kane-Mele model is protected by the
time-reversal invariant symmetry, which entails a Z2 symmetry.

We can see that any process that opens a gap involves a spin ‚ip term proportional toàx ,
ày which breaks the time-reversal symmetry. Therefore, the edge remains metallic for 1 pair
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of edge states, which is protected by the time-reversal symmetry. However, if we study the
e!ective Hamiltonian for 2 pairs of edge states, Chern number for spin up is+2 and Chern
number for spin down is  2. We can write down the e!ective Hamiltonian:

H edge(k ) = $ ø
k

Q

c
c
c
a

vF 1k 0 0 0
0 vF 2k 0 0
0 0  vF 1k 0
0 0 0  vF 2k

R

d
d
d
b

$ k $ ø
k = ( cø

1k¿, cø
2k¿, cø

1kÀ, cø
2kÀ) (1.1.18)

In this case, we can however have one spin scattering processes preserving the time-reversal
symmetry which opens the gap, making the edge an insulator, then the topological edge state
is not protected by the time-reversal symmetry.

H edge(k ) = $ ø
k

Q

c
c
c
a

vF 1k 0 0 m
0 vF 2k  m 0
0  m  vF 1k 0
m 0 0  vF 2k

R

d
d
d
b

$ k $ ø
k = ( cø

1k¿, cø
2k¿, cø

1kÀ, cø
2kÀ) (1.1.19)

In general, a system with odd number of time-reversal pairs has a metallic edge state
and system with even number of pairs can be smoothly deformed into a trivial insulator
everywhere gapped. The concerned topology is theZ2 topology: we can choose a phase such
that $ k = $ œ

 k and for a TI we •nd that there is no way to de•ne a wave function for every k
and the •rst Brillouin zone needs to be cut into di!erent regions. The gauge transformations
around the boundaries of these regions de•nes a winding number. TheZ2 invariant arises
from the calculation of the winding number of the gauge •eld around the •rst Brillouin zone:
if it is odd, the system is topological; if even, trivial.

In summary, we have shown several examples ranging from band electron problems such
as quantum (anomalous) Hall system and quantum spin Hall system to superconductivity
with p-wave symmetry. The quantum anomalous Hall e!ect can be viewed as a mapping
from the band or the •rst Brillouin zone to the SU(2) sphere in the sublattice isospin space.
The topology of the system refers to speci•cally the number of times that the mapping wraps
around the SU(2) sphere. The quantum spin Hall e!ect involves theZ2 symmetry, a residual
symmetry of the SU(2) symmetry related to the time-reversal symmetry. If we view the world
as an insulator separated from the topological system by the edges, then there is necessarily
band closure on the edge, since two systems with di!erent topology cannot be connected to
each other without band closure.
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1.2 Mott Physics

Solids are made of atoms aligned in arrays whose hybridized electron orbitals enables electron
hopping from one atom to another, which is •rstly described by band theories. Real world
materials can be classi•ed according to band theories into four major categories: metal, semi-
metal, semi-conductor and insulators. We call the closest superior and inferior band to the
Fermi level respectively the conduction and valence band. If the Fermi level lies in the band
or the band is partially •lled in other terms, we have the conducting metal in which electron
propagate in the form of Bloch waves. When the overlap of the conduction band and the
valence band is very small, we have a semi-metal with very limited density of states at the
Fermi level participating in the conduction. When the Fermi level lies in between the valence
and conduction band while the two bands are energetically not very far from each other, we
have a semi-conductor with electron and hole like excitation at •nite temperature. And when
the Fermi level lies in between the two bands that are isolated from each other, we have an
insulator in which electron conduction is very hard.

Figure 1.8: From Kittel [5]: Band structure of metal, semi-metal, semi-conductor and insu-
lator.

In spite of its simplicity, the band theories do not manage to categorize the transitional
metal compounds, in which there are several orbitals participating in the hybridization. Due
to the Coulomb interaction between the electrons, there exists a non-negligible e!ect of cor-
relation in these transitional metal compounds. People have introduced the Hubbard model
in the •rst place to characterize the behavior of these materials[2]:

H = 
Ø

éi,j ê

t(cø
ià cjà + cø

jà cià ) + U
Ø

i

ni ¿ni À (1.2.1)

in which electron hopping between nearest-neighbour sites is described by the •rst two terms
and the Hubbard onsite interaction depicts the electron-electron interaction on each given site
or in each atom. We discuss •rstly the half-•lled Hubbard model here.

When the Hubbard interaction is strong enough (the strongly correlated regime), we enter
the Coulomb blockade regime in which the Hubbard interaction forbids two electrons on the
same site, killing the electron hoppings since electrons exchanging their positions is energet-
ically penalized by the Hubbard interaction. The electron charges are therefore localized in
this regime making the material an insulator (Mott insulator) and injection of one electron or
hole will cost an energy in the order ofU. The new origin of this insulating behavior makes
the Mott insulator di!erent from the normal insulator in the frame of band theory. In the
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weakly correlated regime, the correlation renormalizes the conducting behavior predicted by
the band theory and this regime is baptized Fermi liquid and the injection of one electron
or hole cost nearly zero energy since the band is partially •lled. Therefore, there exists a
transition between the weakly correlated regime with small Hubbard interaction described
largely by the band theory and the strongly correlated regime of Mott insulator vis-à-vis the
injection of one electron. This metal-insulator transition is baptized the Mott transition [4].
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Figure 1.9: Figure from thesis of Cyril Martins [115]: The spectral function of the Fermi
liquid in the upper panel, in which intermediate Hubbard interaction widen the spectral peak
around zero energy and the spectral function of the Coulomb blockade regime in the lower
panel when Hubbard interaction is signi•cant enough.

We introduce the spectral function to describe the low energy excitation which corresponds
to adding one electron or hole to the system, that quantitatively characterizes the di!erent
regimes described above[21, 22].

A(k, æ) =

Y
]

[

q
Ð | é$ 0| ck |$ Ðê |2Ó(æ+ Û+ E (N )

0  E (N +1)
0 ) (æ > 0)

q
Ð | é$ 0| cø

k |$ Ðê |2Ó(æ+ Û+ E (N )
0  E (N +1)

0 ) (æ < 0)
(1.2.2)

in which the matrix elements é$ 0| ck |$ Ðê measure the overlap between the wave function
obtained by injection of one electron with momentum k into the ground state wave function
with N particles and the excitated state |$ Ðê with N+1 particles.

Experimentally, the ARPES can measure the spectral function directly. In the Fermi
liquid regime, the density of states is concentrated around zero energy, while in the strongly
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correlated limit the density of states is concentrated around the energy scale of the Hubbard
interaction due to the Coulomb blockade as shown in Fig. 1.9. The Mott transition is
characterized by the splitting of peak at zero energy in the spectral function into two peaks
centering around the Hubbard interaction.

In the Mott insulator regime, electrons are localized because of the energy penalisation
of the Hubbard interaction. We have one electron per site incapable of propagating in the
material, however, virtual processes of electrons exchanging positions are allowed. Knowing
that the electron is composed of spin and electron charge, we have, as a result, the spin
exchanging places while the charges remain localized. The lowest order of the virtual electron
exchange is of second order, and by applying the second order perturbation theory based on
the in•nite Hubbard limit, we can establish the e!ective theory for the spins. The e!ective
spin theory indicates us the magnetism in the Mott insulator. In the case of Hubbard model
in equation 1.2.1, we can derive the super-exchange Heisenberg model hosting the Néel order:

Hex =
Ø

éi,j ê

J Si · Sj (1.2.3)

We have shown in Fig. 1.10 the bipartite Néel order on the square lattice which minimizes
the classical energy of the anti-ferromagnetic Heisenberg model derived above. Spins for the
Néel order in the two sublattices point in the opposite direction for the ground state.

Figure 1.10: The bipartite Néel order on the square lattice which minimizes the classical
energy of the anti-ferromagnetic Heisenberg model.

In Fig. 1.11, we have shown the periodic table and this thesis is mainly dedicated to
the physics of iridates, the iridium-oxide compounds, which belongs to the transitional metal
elements, in which correlation plays an important role. Besides the complication of correlation,
the signi•cant spin of the 4d and 5d elements leads to the essential intervention of the spin-
orbit coupling in this family of materials. Typical energy scales for this family of material
are very close to each other,W Ä Ú Ä U in which W is the band width proportional to
the hopping amplitude t for the material, Ú is the amplitude of the spin-orbit coupling while
U is the on site Hubbard interaction mimicking the Coulomb interaction between electrons.
The closeness of the three energy scale makes iridates an arena with several exotic phases in
competition.
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Figure 1.11: The periodic table of elements and the highlighted iridium in the class of tran-
sitional metal belonging to the 4d and 5d elements.

1.2.1 Doped Mott Insulators

The half-•lled Mott insulator as explained previously hosts an anti-ferromagnetic order stem-
ming from the super-exchange processes while the charges are localized. However, if we dope
the system with holes or electrons, states with zero or two electrons on one site will be allowed
in the system. If we look at only the HeisenbergJ coupling term, states with one surplus
electron or one surplus hole on one site contributes zero energy for the links connecting the
given site, while the coupling energy for the links connecting two sites both with one electron
gives energy J (anti-ferromagnetism). In order to minimize the energy of the spin coupling
interaction J Si · Sj , doped electrons and holes tend to form pairs. The hopping terms which
are forbidden in the half-•lled Mott insulator because of the energy penalisation will re-enter
into play in the doped system. The kinetic and coupling term cause respectively the motion
and formation of electron or hole pairs, leading to superconductivity in certain conditions.

One e!ective model for the doped Mott insulator is the t-J model in which the t kinetic
term allows for the motion of doped electrons and holes and theJ spin-spin coupling favors
the coupling of the electron or hole pairs[23]:

H tJ = 
Ø

éi,j ê

t(cø
ià cjà + cø

jà cià ) + J
Ø

éi,j ê

Si · Sj (1.2.4)

In Fig. 1.12, we have shown one representative phase diagram of doped Mott insulator,
which is indicative and not complete: we have not taken in account here all sophisticated
physics in the intermediate regime including the quadruple state, the spin and charge density-
wave, etc [26, 27, 189, 193, 194]. We merely try to highlight the fact that doping the Mott
insulator may give rise to superconductivity in certain conditions considering the intuitive
argument that we gave with the two-fold interplay of the kinetic term and the coupling term.
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Figure 1.12: Figure from Philip Phillips [19]: The phase diagram of the doped Mott insulator.

1.3 Frustrated Magnetism

We try to show in this section several elements of the magnetic frustration and its complica-
tion in a few magnetic orders more complicated than the Néel order (anti-ferromagnetism).
Frustration refers to spins in non-trivial positions with underlying con‚icting couplings on the
lattice, which may lead to complex structures or a plethora of ground states. Some of them
exhibits a liquid behavior (alias spin liquid).

1.3.1 Geometrical Frustration

We show a brief formulation of various magnetic frustration scenarios in this section following
the review of J.T. Chalker [29]. The •rst category of frustration comes from the geometry: the
real lattice is composed by larger clusters in which antiferromagnetism cannot be satis•ed on
every links. We de•ne a cluster as a subset of the lattice in which one spin interacts with every
other spin in the same cluster. We give two examples here: the honeycomb or Kagomé lattices
are composed of triangles while the pyrochlore lattice is composed of tetrahedrons, and the
triangles and tetrahedrons satisfy the de•nition of cluster given above. The minimization of
the classical energy retracts to the minimization of the classical energy in the cluster rather
than a simple link. We start with the nearest-neighbour Heisenberg model on two di!erent
lattices, the triangular and pyrochlore lattices:

H =
Ø

éi,j ê

J Si · Sj (1.3.1)

The classical energy minimization can be carried out in the following way: since the lattice
consists of clusters, it su"ces to study the magnetism in one cluster, speci•cally we can rewrite
the cluster Heisenberg model :

Hc =
1
2

J [(
Ø

i ÏC

Si )2  NcS2] (1.3.2)
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Figure 1.13: The geometrical frustration on the triangular and pyrochlore lattice. The •gure
of the pyrochlore lattice from E. Choi et al. [140].

in which C denotes the cluster andNc the number of spins in the cluster. And naturally we
have the condition of the ground state and the ground state energy of the cluster:

Ø

i ÏC

Si = 0 Ec0 = 
JN c

2
S2 (1.3.3)

H

S

S S

S

q f

1 2

34

Figure 1.14: Figure from J.T. Chalker [29]: One realisation of the ground state of anti-
ferromagnetism on respectively the triangular and the pyrochlore lattice.

The condition in 1.3.3 gives a plethora of states for the ground state. We have shown in
Fig. 1.14 one realisation of the ground state on the triangular and pyrochlore lattice. The
ground state of the Heisenberg model on the triangular lattice is the 120 degree Néel state
with a rotational degree of freedom around the center of the triangle while the ground state of
anti-ferromagnetism on the pyrochlore lattice has two degrees of freedom described by angles
× and ã. Geometrical frustration in clusters can bring about additional degeneracy (degrees
of freedom) in the system; one cluster consisting ofN (N > 2) spins will have N  2 degrees
of freedom.

1.3.2 Order by Disorder

Without losing any generality, we have seen in the previous section the emergence of de-
generacy due to the geometry of the lattice, speci•cally the frustration in the cluster. The
geometrical frustration gives us a plethora of ground states (the ground state manifold), in-
dicating that the system is plausibly disordered. However, these classical degenerate ground
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states may be situated in very di!erent regimes: they experience di!erent classical and quan-
tum ‚uctuations lifting the degeneracy among them. Thereafter, the ground state manifold
may be reduced to a smaller manifold or even simply several points. The system, instead
of disordered because of the degeneracy, is probably •nally ordered due to the ground state
selection in the classical or quantum level [30, 31], which we call order by disorder.
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Figure 1.15: The J1  J2 model on the square lattice with ã designating the angle between
the two copies of the tilted sublattices.

We give here a simple example of theJ1  J2 XY model in the two dimensional square
lattice, in which there exists a nearest-neighbour anti-ferromagneticJ1 coupling and a next-
nearest-neighbour anti-ferromagneticJ2 coupling. The J1 coupling favors the bipartite Néel
state while the J2 coupling favors a bipartite Néel state in the two tilted sublattices which
are also square lattice as shown in Fig. 1.15. The system is frustrated because of the con‚ict
between the two di!erent scénarios. WhenJ2 > J 1/ 2, there is a continuous family of classical
ground states, notably the surplus degrees of freedom of the angleã designating the angle
of the Néel order between the two copies of the tilted sublattices. However, if we take into
account the classical ‚uctuation of the Néel order in the tilted square sublattice, then the
classical ‚uctuation of the J1  J2 (J2 > J 1/ 2) model will select a subset of the ground state
manifold. Speci•cally, if we denote the two tilted square sublattices as A and B, and we
attribute a little variation on each sublattice such that the angle between the two antiparallel
spins is Þ + Ñ instead of Þ, then in the limit of Ñ ¾ 0 the classical energy variation will be
proportional to:

" EXY = [2J2 + J1 cos2 ã]Ñ2 (1.3.4)

The classical variational energy is proportional to the entropy S, then the free energy is
F = E  T S. In order to minimize the free energy, the entropy should be maximized and the
maximum is reached atã = 0 , Þ. Instead of the wholeU(1) symmetry of ã, the minimization
of the free energy reduces the ground state manifold fromU(1) to two points.

We list below a number of possible ingredients that can break the degeneracy to trigger
the order by disorder phenomenon:

1. Further neighbour interactions (dipolar, exchange)

2. spin-orbit coupling & crystal •elds

3. spin-phonon coupling
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4. multiple-spin terms.

The quantum ‚uctuations can be manifested through the spin wave analysis in the large
S limit: around the possible order, we apply a Holstein-Primako! transformation: we de•ne
the z axis as the direction of the order parameterSz = S  aøa, S+ =

ï
2Sa and S =

ï
2Saø

thereafter, we describe the quantum ‚uctuation as a quantum harmonic oscillator problem
whose Casimir energy refers to the zero point ‚uctuation. We can therefore calculate the
expectation value of the spin Sz out of this quantum expansion. Speci•cally, we calculate
the value of the expectation value of the observableéSzê. In some frustrated magnetism
model, this value éSzê will vanish indicating a total disordered state with a large number of
degeneracy [40].

1.3.3 Spin Liquid

Despite the order by disorder phenomenon, some frustrated magnetism model still retains a
large number of degeneracy, with soft Goldstone modes connecting various possible degenerate
states [32]. The disordered state with a liquid behavior is baptized a spin liquid. Emergence
of spin liquid is also closely related to the Mott physics: upon Mott transition electron charges
are localized while spins can still exchange their position. One point of view is the spin-charge
separation: the physical electrons are cracked into chargeon and spinon and there exists an
attractive force between the chargeon and spinon in the form of a gauge •eld. The spinon
has also a band structure: if the spinon band structure is gapless we will have possibly a spin
liquid. The gauge •eld as a clinging force between the chargeon and the spinon is also an
important factor in the emergence of spin liquid: if monopoles are con•ned, the spinons are
decon•ned and we will probably have a spin liquid, while if the monopoles are decon•ned,
the spinons are con•ned, and we will possibly have a long range order. People have proposed
a number of quantum spin liquid such as VBS,Z2 spin liquid, quantum dimer model, etc,
which we try not to elaborate here [192, 152, 153, 54].

1.3.4 Kane-Mele-Hubbard Model.

We present in this section a brief review of the Kane-Mele-Hubbard model, which describes the
physics of a correlated topological insulator [62]. We have the Hubbard interaction describing
the Coulomb interaction between electrons in equation 1.3.5. We try to explain in details
the phase diagram of this model and how di!erent phases in the di!erent region of the phase
diagram are connected together.

H = HKM + H I H I =
Ø

i

Uni ¿ni À

HKM = 
Ø

éi,j ê,à

tcø
ià djà  it Í

Ø

ééi,j êê,à,à Í

àz
àà Í (cø

ià cjà Í  dø
ià djà Í ) + h.c.

(1.3.5)

Deep in the strongly correlated region, the second order super-exchange processes mediates
the magnetism. As a result, we have theJ1  J2 model for the in•nite U limit for the Kane-
Mele-Hubbard model:

HJ 1J 2 =
Ø

éi,j ê

J1þSi · þSj +
Ø

ééi,j êê

J2(Sz
i Sz

j  Sx
i Sx

j  Sy
i Sy

j ) (1.3.6)
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The J2 term stabilizes antiferromagnetism in the z component and ferromagnetism in the
xy direction while the J1 term favors antiferromagnetism on the bipartite lattice. Consequen-
tially, the magnetism is Néel order on the bipartite lattice with spins on the same sublattice
lying in the X  Y plane. Hartree-Fock approximation has been applied in [62] in order to
determine the critical value of the critical U that stabilizes the spin-density wave.
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Figure 1.16: The phase diagram of the Kane-Mele-Hubbard model from Rachel and Le Hur
[62] in which Ú = t Í/t . We have spin density wave in the strongly coupling limit , and
topological band insulator for the weakly correlated limit. The real dashed line is the limit of
the spin density wave phase (SDW) estimated using Hartree-Fock approximation. The Mott
transition line (blue) is obtained within the slave rotor mean-•eld approximation.

On the other side of the weakly coupling limit whenU ¾ 0, we have the phase of quantum
spin Hall e!ect, in which we have the Kane-Mele model with helical edge state. Two spin
current with opposite polarization along the z axis counter-propagate on the edge. The spin
observableSz

i = cø
ià cià Í àz

àà Í commutes with the Hamiltonian. We can therefore explore the
spin transport on the edge using the Kubo formula because of spin conservation.

The Mott physics is related to the separation of spin and charge, which are connected by
an emergent gauge •eld. The charge particle acquires a gap upon Mott transition, while the
spin particle are subject to the large gauge •eld ‚uctuation. In order to study the physics of
the Mott insulator, we can write down the following action for the spin particle:

L f =
1
2

mz(f ø
k¿f k¿  f ø

kÀf kÀ) (1.3.7)

Under insertion of one 2Þ ‚ux, it is equivalent to the transport of one spin up and the
transport of one spin down in the opposite direction by the Laughlin argument [144]. As a
result, the relevent operator isS+

k = f ø
k¿f kÀ, which designates the spin response under the ‚ux

insertion. This operator S+
k corresponds to the magnetic order in the planeX  Y , which is

compatible with the magnetic coupling Sz
i Sz

j  Sx
i Sx

j  Sy
i Sy

j in the in•nite U limit.
To summarize, we have the quantum spin Hall e!ect at the weakly correlation region, spin

density at the strongly correlated region. The two are connected together by the gauge •eld
argument all due to the conservation of the spin observable in the system.
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1.4 Introduction to Iridate System

Iridates have attracted the attention of condensed matter physicists because of the possibility
of the realisation of Kitaev spin liquid which has its implications in quantum computation.
As an introduction, we follow the presentation of the review paper by W. Witczak-Krempa
et al [42]. Apart from the Hubbard interaction and band structure elucidated in the previous
section, one particularity about iridate compound is the presence of the strong spin-orbit
coupling, another complication that might induce new phases. Spin-orbit coupling is normally
considered as a small perturbation to the system. However, such e!ect becomes signi•cant
in heavy metals since it increases proportionally toZ 4, in which Z is the atomic number.
Descending from 3d to 4d and to 5d series, the d orbitals become more extended, reducing
the Coulomb interaction or the Hubbard interaction in other terms. The increasing tendency
of the spin-orbit coupling also reduces the kinetic energyt via splittings between degenerate
and nearly degenerate bands. As a result, the energy scales of the three factors mentioned
above in the iridate compounds are very closeW Ä Ú Ä U, in which W is the band width.

1.4.1 Balents’ Diagram

We can write down the generic model Hamiltonian comprising all the three elements:

H =
Ø

i,j,Ð,Ñ

t i,j,Ð,Ñ cø
iÐcjÑ + h.c. + Ú

Ø

i

L i · Si + U
Ø

i,Ð

niÐ (niÐ  1) (1.4.1)

whereÐ is the orbital index and niÐ = cø
iÐciÐ and Ú is the amplitude of the spin-orbit coupling

with L i the orbital angular momentum and Si the electron spin. A schematic phase diagram
is given in Fig.1.17 in terms of the two ratiosU/t and Ú/t , and this phase diagram is •gurative
in the sense that it is independent of lattice and band structure details.

When Ú ¾ 0, we have the conventional Hubbard model with two phases: the simple metal
or band insulator depending on the band structure detail when the Hubbard interaction is
small compared to the band width W ; and the Mott insulator when the Hubbard interaction
becomes bigger or comparable to the band widthU ¯ W . Another simple limit is the free
fermion limit where U ¾ 0. The increase of the spin-orbit coupling induces the emergence
of a semi-metal or topological insulator phase depending on whether the spin-orbit coupling
opens a gap in the spectrum. When spin-orbit coupling and Hubbard interaction are equally
signi•cant, there are a plethora of exotic phases. We will proceed by listing a number of
e!ective interactions that the spin-orbit coupling might induce. Then, we will enumerate
various iridates exhibiting possibly di!erent exotic phases.

1. The super-exchange processes of the spin-orbit coupling may induce a Kitaev-Heisenberg
coupling. If we write the spin-orbit coupling as: H ijÐ

SO = Úcøià djà Í àÐ
àà Í , then the super-

exchange coupling is:

HKH =  H ijÐ
SO H jiÐ

SO /U = J2(SÐ
i SÐ

j  SÑ
i SÑ

j  SÒ
i SÒ

j ) (Ñ, ÒÓ= Ð, J2 = 4Ú2/U ) (1.4.2)

2. The super-exchange processes of the spin-orbit coupling and the normal hopping term
may induce a Dzyaloshinskii-Moriya interaction. If we write the spin-orbit coupling as
%H ijÐ

SO = iÚcø
ià djà Í àÐ

àà Í and the normal hopping as:H ij
0 = cø

ià djà , then the D-M interaction
originates from the second order processes consisting of electron hopping from site i to
j with normal hopping and hopping back from site j to i with spin-orbit coupling:

H ijÐ
DM =  H ij

0
%H jiÐ

SO /U = J3eÐ · (Si × Sj ) J3 = 4 tÚ/U (1.4.3)
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Figure 1.17: The Balents’ phase diagram of the instructive model in equation 1.4.1 describing
iridate materials. [42]

in which eÐ is a unity vector pointing along the Ð axis.

3. Zeeman interaction in 2D: %HSO = HRashba + HDresselhaus = Ð(àxky  àykx ) + Ò(àxkx 
àyky) Ä !à · B ef f the combination of a Rashba interaction and Dresselhaus interaction
will generate an e!ective Zeeman interaction that will split the degeneracy in the spin
subspace shifting the Fermi surface for the two spin species in theÐ polarization. The
mixed super-exchange processes of this term with the normal hopping will not generate
any exotic e!ective magnetic coupling.

We have included in table 1.1 di!erent phases suggested by the •gurative phase diagram
by Leon Balents identi•ed in di!erent materials. One crucial property of some of these phases
is topology induced by the essential ingredient of the spin-orbit coupling. The bulk is gapped
by the spin-orbit coupling while the surface state is metallic and topologically protected by
the time-reversal symmetry. Topological phases can only arise when correlation is not very
strong so as to localize electrons to single atoms. In the bulk, correlations may enhance the
gap in some cases, while on the surface, time-reversal symmetry may be spontaneously broken,
with the emergence of magnetism. In this scenario, Chern insulators may occur [89]. In the
presence of crystalline symmetries, notably inversion, theZ2 symmetry may reappear [90].
Such is the case with the axion insulator which is characterized by a quantized magnetoelectric
e!ect: the electric polarization P can be generated by applying a magnetic •eldB , P = ×

(2Þ)2 B
with × = Þ such that the ratio P/B is universal and quantized [91].

Non-trivial topology can also emerge in gapless phases, such as Weyl semi-metals [94],
with a Fermi surface consisting of points, where only two bands meet linearly, as a three-
dimensional analog of Dirac fermions. Such phenomenon only appears at su"ciently large
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U where either TRS or inversion symmetry is broken, since all bands would be two-fold
degenerate otherwise. Around the band closure point, the band electron winds around the
Dirac points with certain orientation in the X  Y plane or chirality. The band touchings
always come in pairs with opposite chirality. An example of a Weyl fermion is given by the
following Bloch Hamiltonian:

H (k) = ± v(Ókxàx + Ókyày + Ókzàz) Ók = k  kw (1.4.4)

where kw are the two band touching points and àÐ are Pauli matrices acting on the touching
point subspace. The two Weyl points behave like topological objects - monopoles or hedgehogs
in momentum space- they have opposite chiralities acting like positive and negative monopole
charges, contributing to the non-trivial bulk topology resulting in the non-trivial surface states
on certain boundaries.

Phase Symmetry Correlation Property
Proposed
Materials

TI TRS W-I
Bulk gap, TME, protected
surface state

many

Axion
Insulator

P I
Magnetic Insulator, TME, no
protected surface state

R2Ir 2O7

A2Os2O7

WSM
Not both
TRS & P

W-I
Dirac-like bulk states, surface
Fermi arcs, anomalous Hall

R2Ir 2O7

HgCr 2Se4

LAB
Semi-metal

cubic+TRS W-I non-Fermi liquid R2Ir 2O7

Chern
Insulator

broken
TRS

I Bulk gap, QHE
Sr[Ir/T i ]O3

R2[B/B Í]207

FCI
Broken
TRS

I-S Bulk gap, FQHE Sr[Ir/T i ]O3

FTI, TMI TRS S
Several possible phases.
Charge gap, fractional
excitations

Sr[Ir/T i ]O3

QSL any S
Several possible phases.
Charge gap, fractional
excitations

(Na, Li )2IrO 3

Ba2Y MoO6

Multiple
order

various S
Suppressed or zero magnetic
moments. Exotic order
parameters.

A2BB ÍO6

Table 1.1: Emergent quantum phases in correlated spin-orbit coupled materials. All phases
have U(1) particle-conservation symmetry – i.e. superconductivity is not included. Abbrevi-
ations are as follows: TME = topological magnetoelectric e!ect, TRS = time reversal sym-
metry, P = inversion (parity), (F)QHE = (fractional) quantum Hall e!ect, LAB = Luttinger-
Abrikosov-Beneslavskii, WSM=Weyl Semi-Metal. Correlations are W-I = weak-intermediate,
I = intermediate (requiring magnetic order, say, but mean •eld-like), and S = strong. [A/B]
in a material’s designation signi•es a heterostructure with alternating A and B elements.
TI=topological insulator, FTI= fractional topological insulator, TMI=topological Mott insu-
lator, QSL=quantum spin liquid and FCI=fractional Chern insulator.

Correlations can also trigger exotic phases such as fractional Chern insulators which display
a fractional quantum Hall e!ect without an external magnetic •eld and topological Mott
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insulator which exhibits spin-charge separation and TI-like surface states composed of neutral
fermions [93].

1.4.2 The Honeycomb Iridates

The hexagonal iridatesNa2IrO 3 and Li 2IrO 3 realize a layered structure consisting of a hon-
eycomb lattice of Ir 4+ ions, and they provide a concrete example of the full orbital degeneracy
lift with a maximally quantum e!ective spin-1/2 Hamiltonian. Both compounds appear to be
in the strong Mott regime. As shown by Jackeli and Khaliullin [43, 44], the edge sharing octa-
hedral structure and the structure of the entangledJef f = 1 / 2 orbitals leads to a cancellation
of the usually dominant antiferromagnetic oxygen-mediated exchange interactions. A sub-
dominant term is generated by Hund’s coupling, which takes the form of a highly anisotropic
Kitaev exchange coupling:

HK =  K
Ø

Ð= x,y,z

Ø

éi,j êÏ Ð

SÐ
i SÐ

j , (1.4.5)

whereSi are the e!ective spin-1/2 operators and Ð = x, y, z labels both spin components and
the three orientations of links on the honeycomb lattice. This particular Hamiltonian realizes
the exactly solvable model of the quantum spin liquid phase proposed by Alexei Kitaev[15],
which describes the fractionalization of the spins into Majorana fermions, stemming from the
geometry and entanglement in the strong spin-orbit coupling limit. In Chapter 3 section 3.2,
we have shown how this geometry and orbital entanglement brings extra symmetry, endowing
the Kitaev model a self-duality point with extra symmetry. In antiferromagnets, spin-orbit
coupling will remove accidental degeneracy and favor order via the Dzyaloshinskii-Moriya
interaction, while the Kitaev model is a counterexample, in which spin-orbit coupling can
suppress ordering. The experimental studies through neutron scattering and other studies
show that the ground state of Na2IrO 3 displays a collinear magnetic order, the zigzag state
with a four-sublattice structure, arising from possible Heisenberg coupling [116, 117]. However,
the Kitaev coupling might be much larger in Li 2IrO 3 and the system may be closer to the
quantum spin liquid phase. There has also been proposition in ultra cold atoms for the the
realization of the Kitaev model [46].

We have shown here the geometric con•guration of the two honeycomb iridate compound
Na2IrO 3 and Li 2IrO 3 in Fig. 1.18 from the paper [111, 122].
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Figure 1.18: The geometric structure of the two honeycomb iridatesNa2IrO 3 (left and middle
panel) and Li 2IrO 3 (right panel). (Figures from [111, 122])

The Na2IrO 3 compound has one sodium atom in the center surrounded by6 iridium
atoms, linked by oxygen atoms. The hybridization of orbitals is complicated: it is a mix-
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ture of overlap of d orbitals of the iridium atoms and the overlap of the oxygen p orbital
with the d orbital of the iridium atoms. A 90¦ overlap of the orbitals induces a Kitaev cou-
pling of SÒ

i SÒ
j and a 180¦ overlap of the orbitals induces a Heisenberg coupling ofSi · Sj .

The Kitaev Heisenberg coupling favors a spin liquid phase [15], which is paramagnetic with
magnetic susceptibility obeying the Curie law ä ³ 1

T while the Heisenberg coupling favors
Néel antiferromagnetism with a certain Néel temperature below which the sample is ordered
anti-ferromagnetically with •nite susceptibility.

Figure 1.19: The magnetic susceptibility of the two honeycomb iridate compoundsNa2IrO 3

and Ð  Li 2IrO 3 [114].

We have shown the magnetic susceptibility in Fig. 1.19 given in the paper [114]. We spot
similar behavior of the two iridate compoundsNa2IrO 3 and Li 2IrO 3: (1) above the Néel tem-
perature TN , the magnetic susceptibility behaves according to the Curie lawä = ä0 + C

T  × in
which × is the Curie temperature; × < 0 indicates that the interaction is antiferromagnetic.
(2) the two compounds share the same Néel temperature, at which the susceptibility sees an
anomaly, and the susceptibility remains •nite below TN , which is related to the antiferro-
magnetic order at low temperature. One model describing the mixture of the two kinds of
magnetic couplings is given:

HHK = (1  Ð)
Ø

éi,j ê

Si · Sj  2Ð
Ø

Ò
SÒ

i SÒ
j (0 ® Ð ® 1) (1.4.6)

in which the antiferromagnetic Heisenberg term is on the links between nearest neighbours
while the spin componentÒis in accordance with the link type denoted byÒ. The Curie Weiss
temperature is found to be Ä  120K for Na2IrO 3 and Ä  33K for Li 2IrO 3. The increase
of the Curie Weiss temperature indicates thatLi 2IrO 3 is closer to paramagnetism indicating
an increase of the ferromagnetic Kitaev coupling. This is in agreement with the ab-initio
calculation [114] that the parameter Ð Li 2IrO 3 is found to be in the range of0.6 ® Ð ® 0.7
which is quite close to the limit of Kitaev spin liquid phase Ð > 0.8.

One still pending debate is whether the Kitaev couplingÒis between nearest-neighbours or
the next-nearest-neighbours. On the one hand, the next-nearest-neighbour hopping comes into
play when the d orbitals hybridize with the sodium atom in the center of the six surrounding
iridium atoms and electrons can hop between the iridium atom generating an e!ective spin-
orbit coupling. On the other hand, the spinorial anisotropy from the d-orbitals and the
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hybridization of the iridium atoms with the oxygen atoms constitutes a nearest-neighbour
anisotropic coupling. In the paper [122], authors have argued that the nearest hopping term
is found to be Ä 270meV and the next nearest neighbour hoppingÄ 75meV. The Kitaev
coupling is on the nearest-neighbour. This model is also con•rmed by Chaloupka et al [43]
who predicted a zigzag order which is con•rmed by experiments. However, in the theoretical
paper [101] and the experimental paper [127], people have identi•ed a topological insulator
phase with time-reversal symmetry, which is only possible when the spin-orbit coupling is
between the next-nearest-neighbours.

In this thesis, we have taken into account both possibilities mentioned above: in chapter
2, we consider a model Hamiltonian with spin-orbit coupling between next-nearest-neighbors
hosting a correlated topological insulator phase, while in chapter 3, we consider the spin-
orbit coupling model on the nearest-neighbors hosting the zigzag magnetic order. We have
identi•ed new exotic phases in the phase diagrams of both the two di!erent models.

1.5 Doped Honeycomb Iridates

One model including this mixture of Kitaev coupling and Heisenberg coupling is the honey-
comb lattice model for iridate hosting the zig-zag order with both coupling on the nearest-
neighbour links [43]. Following the idea of equation 1.4.6, Chaloupka et al have written down
the Hamiltonian in the form:

HKH = A
Ø

éi,j ê

(2 sin ìS Ò
i SÒ

j + cos ì Si · Sj ) =
Ø

éi,j ê

(JK SÒ
i SÒ

j + 2JH Si · Sj ) (1.5.1)

in which A =
ñ

J 2
K + 4J 2

H and Ò= x, y, z respectively on x, y and z links as shown in •gure
1.20. With the change of the variableì , we have di!erent magnetic phases for the model: 1.
the zigzag phase. 2. the Néel phase. 3. the ferromagnetic phase. 4. the liquid phase around
JH ¾ 0. It is worth noting that the Kitaev anyon liquid phase was located around JH ¾ 0
while JK < 0.
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Figure 1.20: The Kitaev Heisenberg nearest-neighbour model on the honeycomb lattice with
SÐ

i SÐ
j  SÑ

i SÑ
j  SÒ

i SÒ
j on di!erent correspondent links in which Ð = x,y, z respectively on the

red, green and blue links andÑ, Òtake other spin components thanÐ.

We know that doping a spin liquid leads to superconductivity; for example, we can obtain
the d-wave superconductivity by doping the VBS spin liquid[192]. With this theoretical
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Figure 1.21: Left panel: The phase diagram of the Kitaev Heisenberg model with nearest-
neighbour magnetic coupling on the honeycomb lattice as function of the angleì in the mag-
netic coupling modelHKH = A

q
éi,j ê(2 sin ìS Ò

i SÒ
j +cos ì Si ·Sj ) from the paper of Chaloupka

et al [43]. Right panel: The phase diagram of the doped iridate system from Scherer et al [41]
in which the Kitaev coupling JK =  t0 is •xed to be ferromagnetic.

motivation, Scherer et al have studied the doped Kitaev-Heisenberg model with ferromagnetic
Kitaev coupling:

HScherer = 
Ø

éi,j ê

t0(cø
ià djà + dø

jà cià ) +
Ø

éi,j ê

(JK SÒ
i SÒ

j + 2JH Si · Sj ) (1.5.2)

in which they have •xed the Kitaev coupling JK =  t0 to be ferromagnetic in order to have
the Kitaev spin liquid in the limit of JH ¾ 0. Ò= x, y, z respectively on the x, y and z links.
The kinetic term proportional to t0 describes the motion of the holes. In accordance with the
model, they have found the corresponding phase diagram (Fig. 1.21) for the superconductivity
in which the emergent superconductivity is thep wave phase with which when the doping is
beyond quarter •lling, the superconductivity becomes topological. On the other limit where
JH º JK , we have thed  wave superconductivity in the t0  JH model on the honeycomb
lattice.

However, the Kitaev coupling in the iridate compounds has proved to be anti-ferromagnetic
in the experiments [125] and the half-•lled Mott insulator hosts a zigzag magnetic order in
the quartet of JK > 0, JH < 0. This disparity between the doped iridates from a theoretical
point of view [41] and the experiment [125] motivates largely the study of doped iridate in
Chapter 3, in which we study the exotic superconductivity from doping the zigzag order.

1.6 Summary

Iridates (Iridium compounds) incorporate at the same time signi•cant spin-orbit coupling
and Hubbard interaction. The iridate compound has attracted attention from condensed
matter physicists because of its possible realization in the real world material of Kitaev anyon
model [15]. The coexistence of di!erent kinds of interaction along with the complication of
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geometrical factors of the lattice leads to di!erent physics at di!erent regimes: (1) Topological
insulator physics at the weak correlated regime, (2) Frustrated magnetism at the strongly
correlated regime (3) Exotic superconductivity in the doped Mott insulators.

Iridate compounds have been approached with di!erent point of view: (1) Correlated topo-
logical insulators (2) frustrated magnetism. In analogy with traditional correlated systems,
the di"culties in the study of iridate compounds lie in the incorporation of di!erent regimes.
The correlated topological insulator has been previously studied in the Kane-Mele-Hubbard
model [62], in which spin current along the z polarization is a well de•ned quantity. The
Polyakov gauge theory argument [146] allows for the connection of the topological insulator
phase to the magnetic phase, in which the gauge ‚uctuation triggers spin transport to the
bulk. However, spin observable is not a well de•ned observable in the context of iridates,
in that the anisotropic spin-orbit coupling renders the description of spin transport more
tricky than in the Kane-Mele model. The frustrated magnetism model has been studied by
Chaloupka et al [43], in which they identi•ed di!erent magnetic phases as a function of the
mixture of the Kitaev and Heisenberg magnetic coupling with enlarged unit cells. However,
the detailed analyses of the order by disorder of the frustrated magnetism are still absent.

The compound Na2IrO 3 and Li 2IrO 3 are the two compounds on the honeycomb lat-
tice under investigation in this thesis. However, whether the spin-orbit coupling physics
reside between nearest-neighbours or next-nearest-neighbours is still an open question : dif-
ferent experimental groups have observed respectively delocalisation e!ect of electrons [127],
which indicates a topological insulator phase, and zigzag magnetic phase of2D thin •lms
of Na2IrO 3, which indicates anti-ferromagnetic Kitaev coupling and ferromagnetic Heisen-
berg coupling [43, 113]. Doped Mott phase has been previously studied with the theoretical
motivation with ferromagnetic Kitaev coupling [41] which is believed to be related to doped
iridate, however the ferromagnetic Kitaev coupling is in disparity with the experimental fact
showing anti-ferromagnetic Kitaev coupling.

In Chapter 2, we study a model with spin-orbit coupling between next-nearest neighbours
[101] with interaction. We used di!erent approaches in di!erent regions of the phase diagram.
In Chapter 3, we have presented our work of doped iridates, with anti-ferromagnetic Kitaev
coupling hosting the zigzag magnetic order at half-•lling. We deduce the hopping term with
an itinerant magnetism point of view with which the second order super-exchange processes
induce an anti-ferromagnetic Kitaev-Heisenberg coupling. We focus on the regime around
quarter-•lling, in which emergence of new symmetry centers of the Fermi surface leads to an
FFLO superconductivity. The Chapter 4 contains the study of one di!erent model, which
is constituted with two fermion species. The RKKY interaction induced by the fast fermion
opens a gap for the slow species and attaches a Haldane mass to the slow fermion thus inducing
a topological phase.

The three di!erent systems studied in these thesis incorporate all di!erent aspects of Mott
physics, in which correlation plays di!erent roles. In Chapter 2, the correlation modi•es the
Fermi velocity of the edge mode in the topological insulator phase, and localizes charges
upon the Mott transition. Deep in the Mott phase, charges are totally localized and spins
are separated from the charges, inducing the super-exchange magnetism. In Chapter 3, the
magnetic coupling induced by correlation couples holes together in the doped regime and
brings about superconductivity. However, in Chapter 4, interaction plays a totally di!erent
role and introduces topology into the system by opening a gap and inducing a Haldane mass
of the electron system on graphene lattice.

The spin-orbit coupling physics intervenes in the three model in di!erent ways: in Chapter
2, the anisotropic spin-orbit coupling makes the spin current a non conserved observable, which
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manifests di!erent physical properties than the Kane-Mele Hubbard model. In Chapter 3,
the spin orbit coupling might induce other exotic superconductivity than the conventional
spin-singlet electron pairing with zero Cooper pair momentum. In Chapter 4, the spin-orbit
coupling is induced spontaneously by correlation. And this spin-orbit coupling then triggers
a topological phase in the system.



Chapter 2

Iridates on Honeycomb Lattice at Half-
•lling

In this chapter we present our studies on one (sodium-iridate) model on the honeycomb
lattice (graphene lattice) with spin orbit coupling and the Hubbard on-site interaction. This
potentially describes 2D iridates with the motivation that experimental realisation of a thin
layer of such compounds reveals a topological insulator phase [127]. The hybridization of
orbitals between atoms gives a tight binding model with a mixture of normal electron hopping
between the nearest-neighbour (NN) similar to graphene, and spin-orbit coupling within the
next-nearest neighbours (NNN) which consists of a complex and anisotropic strength ofit Íàx ,
it Íày and it Íàz in the counter-clockwise direction as in Fig. 2.1. We include also a Hubbard
on-site interaction mimicking the Coulomb interaction of electrons within the orbitals of one
atom. The interplay of the above mentioned three elements may give rise to di!erent exotic
phases in competition. Such a model is believed to be a good description of electrons behavior
in the correlated Na2IrO 3 sodium iridate compound [101] and possibly to other materials with
spin-orbit coupling.

d1
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Figure 2.1: Illustration of the tight-binding model on the honeycomb lattice with complex
next-nearest-neighbor spin-orbit couplings entailing hopping ofit Íàx on the x red link, it Íày

on the y green link, and it Íàz on the blue z link, in which àw , w = x,y,z is the Pauli matrix
acting on the space of spins. The anisotropic spin-orbit coupling makes the spin no longer a
conserved quantity in the system.
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Speci•cally, the (sodium-iridate) model Hamiltonian is written as:

H0 =
Ø

<i,j>

tcø
ià cjà +

Ø

¹ i,j º

it ÍàÐ
àà Í cø

ià cjà Í

H = H0 + H I

H I =
Ø

i

Uni ¿ni À,

(2.0.1)

whereéi,j êdenotes a sum over the nearest neighbor and¹ i,j º denotes a sum over the next-
nearest-neighbors, andàÐ

àà Í is a Pauli matrix with Ð = x on the x link painted in red, Ð = y on
the y link painted in green and Ð = z on the z link painted in blue as in Fig. 2.1. To be precise,
the hopping strengths of electrons on the next-nearest-neighbor links are denotedit Íàx on the
red link it Íày on the green link and it Íàz on the z link (t Í is real). The free electron model
is a topological insulator [101]. Here, the electrons travel in a counterclockwise orientation.
The second nearest-neighbor hopping strengths pick a minus sign if electrons travel in the
clockwise orientation. This model has been previously studied in the context of Quantum
Spin Hall physics and magnetism [95, 101, 105], which respect the time-reversal symmetry.

Figure 2.2: Our Phase diagram [36]. WhenU < U c (red line), the system is in the class of a
Z2 two-dimensional topological band insulator. The edge modes are embodied by a peculiar
spin texture as a result of the anisotropic spin-orbit coupling. We then refer to this phase
as Anisotropic Quantum Spin Hall (AQSH) phase. Above the Mott critical point Uc(t Í) as
function of the spin-orbit coupling amplitude t Í, the spin texture now progressively develops
into the bulk when increasing the spin-orbit coupling strength. At large interactions U, we
identify two magnetic phases, the Néel and the Spiral phase.

Hereafter, combining theoretical and numerical procedures, our primary goal is to carefully
address the phase diagram summarized in Fig. 2.2 of the quite generic tight-binding model
in equation 2.0.1 at half-•lling on the honeycomb lattice with an Hubbard on-site interaction
and next-nearest-neighbor anisotropic spin-orbit coupling. The di"culty of this anisotropic
spin-orbit coupling - Hubbard model lies in the non-conservation of the spin observable which
renders the spin current a not well de•ned quantity. This di"culty intervenes both in the
topological insulator physics and the intermediate interaction region where spin (spinon) are
subject to large gauge ‚uctuation.
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In section 2.1, we explain the physics of topological insulator situated in the lower area
of the phase diagram 2.2. The di"culty of the treatment in this regime comes from the non
conservation of spin observables, which makes the spin current a not well-de•ned quantity.
We used respectively transfer matrix and exact diagonalization of Schrödinger equation in
this regime to explicitly study the anisotropic spin transport on the edge. The anisotropy of
the transporting spin texture on the edge depends on the amplitude of the spin-orbit coupling
as shown in •gure 2.6. The Hubbard interaction only modi•es the fermi velocity of the
transporting edge states and shifts the e!ective chemical potential in the bulk.

In section 2.2, we explore the in•nite U limit of the phase diagram 2.2: (1) Néel order at
J1 > J 2 (2) Spiral order at J1 < J 2. We carefully examine the phase diagram of the magnetic
coupling model given in •gure 2.8, in which we have identi•ed di!erent results from Reuther
et al [105]. We study the classical ground state of the magnetism and study the frustration
phenomena through analyses of order by disorder in both the classical and quantum level
in addition to the magnetic phases already clari•ed in [105]. We also looked at the energy
variation on the basis of the spiral phase in the regimeJ2 > J 1 and identi•ed the •rst order
phase transition at J1 = J2. The frustration makes the goldstone mode (soft mode) disappear
in both phases, which we will explain in detail.

We study the Mott transition using the slave rotor formalism in section 2.3 which is
shown as the red line separating the colored Mott phase and the quantum spin Hall phase in
the weakly correlated regime in •gure 2.2. Correlation localizes charges and spins can still
exchange position in the strongly correlated limit. Slave particle formalism aims to describe
the related physics by splitting the physical electrons into chargeons and spinons. Chargeons
acquire a gap upon Mott transition while spinons are subject to the emergent gauge •eld
serving as a glue between the two particles. At the limit of zero spin-orbit coupling, we have
the Mott transition of the traditional correlated system at Uc = 1 .68t found by Lee and Lee
[132]. This value Uc Ä 4.3t found within QMC [39] is underestimated by slave rotor theory
while it is overestimated by the slave spin approach (Uc Ä 8t) [95]. There exists still a pending
debate on whether the emergent gauge •eld should beU(1) or Z2. In the U(1) phase, the
weakly correlated phase is in the ordered ‘super‚uid’ phase with one well de•ned phase in
the whole system while the strongly correlated phase concerns a disordered phase for the
slave rotors. The emergentU(1) gauge •eld concerns a Maxwellian •eld in2 + 1D. The Z2

representation describes the Mott transition using the image of Ising model and its ordered and
disordered phase, however the emergentZ2 gauge •eld exhibits di!erent physical phenomena
regarding the Mott transition [95], in which there exist topological vison excitations. Here,
we choose the conventionalU(1) representation which gives di!erent Mott transition critical
value than the Z2 representation [95]. The anisotropic spin orbit coupling does not change
signi•cantly the Mott transition value Uc compared to the Kane-Mele model, however the
spinons’ response to the ‚uctuating gauge •eld shows totally di!erent behavior.

In Section 2.3.3, we address the problem of spinon response to the insertion of one
monopole in the emergent gauge •eld above the Mott transition in the parameter region
denoted as ‘spin texture’ in •gure 2.2. Using the linear response formalism in the presence
of one and two monopoles, we showed that a spin texture takes form around the ‚ux. Using
the Laughlin topological argument, we showed that the spin texture of the transporting edge
states is pumped around the ‚uctuating ‚ux in the bulk. The spin texture embodies the
anisotropy analogously to the edge states: the dominant spin component on a given site coin-
cides with the type of links intersecting the line connecting the site and the core of the vortex.
And the anisotropy ampli•es when spin-orbit coupling becomes more and more signi•cant.
This anisotropic spin texture can be associated with the spiral phase in the in•niteU limit.
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2.1 Topological Insulator Phase

In this section, we explore the physics in the weakly correlated regime, namely physics in
the limit of U ¹ t, t Í. The normal hopping between nearest-neighbours (NN) with strength
t gives a graphene band structure with Dirac cones at the corners of the •rst-Brillouin zone,
while the spin-orbit coupling with strength t Í opens a gap for the band electrons at the Dirac
cones. The spin-orbit coupling introduces into the system opposite e!ective magnetic •elds
for spins with opposite polarizations pointing along di!erent directions on di!erent links. In
the presence of time-reversal symmetry (TRS), Kramers Theorem states that system of spin
1/ 2 with time-reversal symmetry (TRS) is necessarily doubly degenerate, with one sector odd
under TRS, and another even under TRS. The symmetry group related to TRS isZ2, and
the gaplessness of the edge mode is ensured by the TRS in that any processes opening a gap
for the edge mode breaks the TRS. The topological aspect of the Kane-Mele model can be
easily illustrated by studying the spin transport on the edge knowing that the Pauli matrix àz

commutes with the Hamiltonian, indicating well-de•ned spin current along the Z direction,
in other words quantum spin Hall e!ect.

The anisotropic spin-orbit coupling model in the weakly correlated regime describes quan-
tum spin Hall e!ect with the same Z2 topological index as the Kane-Mele model. Neglecting
the Hubbard interaction in the •rst place, we diagonalize the tight binding model H0 by
Fourier transformation: 2.1.1:

H0 =
Ø

<i,j>

tcø
ià cjà +

Ø

¹ i,j º

it ÍàÐ
àà Í cø

ià cjà Í =
Ø

þk

$ ø
þk
h(þk)$ þk (2.1.1)

in which the wave function in the momentum representation exhibits four components$ ø
þk

=

(aø
þk¿

, bø
þk¿

,aø
þkÀ

,bø
þkÀ

) and the two sublattices of the honeycomb (A and B) give rise to the corre-

sponding electron creation operatorsaø and bø. We then identify

h(þk) = ( áxÙe+ áyÚm)g(þk) + ( mxàx + myày + mzàz)áz, (2.1.2)

where áx , áy and áz are Pauli matrices acting on the sublattice isospin A & B while àx , ày

and àz are Pauli matrices acting on the spin space¿ and À.
For convenience, we have introduced the notationsg(þk) =

q
i teiþk·þÓi and mx = 2 t Í sin(þk ·

þRx ), my = 2 t Í sin(þk · þRy), mz = 2 t Í sin(þk · þRz).

Here, þÓ1 = ( 
ï

3
2 ,  1

2)a, þÓ2 = (
ï

3
2 ,  1

2)a and þÓ3 = (0 ,1)a refer to vectors connecting the

nearest neighbours (see Fig. 2.1), whileþRx = ( 
ï

3
2 ,  3

2)a, þRy = ( 
ï

3
2 ,3

2)a and þRz = (
ï

3,0)a
represent vectors connecting next nearest neighboring sites. Moreover,a is the closest inter-
atomic distance and we set it equal to1 for convenience.

The Hamiltonian represents a two band system with the energy levels:

E (þk) = ± E0(þk) = ±
ñ

m2
x (þk) + m2

y(þk) + m2
z(þk) + |g(þk)|2. (2.1.3)

The system is an insulator with a gap"( k) = 2 E0(k), in which E0(k) > 0 in the •rst Brillouin
zone.

Each band is doubly degenerate and it is convenient to introduce the band projectors
associated to the upper and lower bandP± respectively:

P± =
1
2

5
1 ±

3
áxÙeg

E0
+

áyÚmg
E0

+
áz

E0
(mxàx + myày + mzàz)

46
. (2.1.4)



2.1. Topological Insulator Phase 33

We can illustrate the non-trivial topology by the Z2 invariant for system with inversion
symmetry [12] namely the product of the time-reversal polarization for the four time-reversal
and inversion symmetric points:

( 1)Ü =
4Ù

i =1

Òi =  1; (2.1.5)

here, we have de•nedÒi =  sgn(Ùeg(' i )) and ' i = (0 ,0); (0,2Þ
3 ); ( ± Þï

3
,2Þ

3 ). The Z2 topological
invariant depicts a twist of the rank 2 ground-state wave function in the •rst Brillouin zone.
The anisotropic spin-orbit coupling model in the weak correlated limit shares the sameZ2

topological invariant as the Kane-Mele model, implying similar physical consequences on the
edge, however the sodium-iridate model di!ers from the Kane-Mele model in that spin is not
conserved and spin current is not a well-de•ned quantity because of the anisotropic spin-orbit
coupling. The spin physics depends on the edge con•guration of the system and the ratiot Í/t ,
thus implicating an anisotropic quantum spin Hall e!ect.

To illustrate this point, we have studied the edge transport in the case of zigzag boundaries
as in Fig. 2.3 applying numerical diagonalization of the system on a cylinder in section 2.1.1
and the transfer matrix method summarized in section 2.1.2.
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Figure 2.3: Left panel: The lower edge of the semi-in•nite system with edges parallel to
the x-type links. The system consists of layers of one-dimensional chains coupled together,
and the edge mode decays exponentially when moving into the bulk. Right panel: the chiral
edge transport corresponding to the boundary con•guration. Two helical edge modes with
opposite spin polarization counter-propagate on the boundary of the system.

2.1.1 Numerical Diagonalization

As a result of the non-conservation of the spin of the anisotropic spin-orbit coupling model, the
spin polarization of the helical edge states is more sophisticated than in the Kane-Mele model.
To thoroughly analyze this point, we consider a system with two zigzag boundaries as layers
of one-dimensional chains coupled together as illustrated in Fig. 2.3. The existence of the two
edges breaks the translational symmetry along one direction leaving only one good quantum
number kx . Intuitively, the edges also break the equivalence of the three links connected by
Þ/3 rotation, triggering the helical emergent spin texture on the edge.

If we denote å n
A/B as the wave function of then th layer in A or B sublattice, then the
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Schrödinger equation of such a system takes the form:

Q

a  it Í(e i
ï

3
2 kx àz  ei

ï
3

2 kx ày)  t

0 it Í(e i
ï

3
2 kx àz  ei

ï
3

2 kx ày)

R

b

A
å n+1

A
å n+1

B

B

+

A
E + 2 t Í sin

ï
3kxàx  2t cos

ï
3

2 kx

 2t cos
ï

3
2 kx E  2t Í sin

ï
3kxàx

B A
å n

A
å n

B

B

+

Q

a it Í(ei
ï

3
2 kx àz  e i

ï
3

2 kx ày) 0

 t  it Í(ei
ï

3
2 kx àz  e i

ï
3

2 kx ày)

R

b

A
å n 1

A
å n 1

B

B

= 0 .

(2.1.6)
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Figure 2.4: The edge states of the anisotropic spin-orbit coupling model with zigzag boundary
and x links parallel to the boundary. (a): Spectrum of the system on a cylinder att Í/t = 0 .5
obtained from numerical diagonalization of 70 layers of a one-dimensional system described
by the Schrödinger equation 2.1.6. The non-trivialZ2 topological invariants ensures an helical
edge states with opposite spin polarization. The energy dispersion obtained analytically using
transfer matrix in section 2.1.2 •ts well the numerics. The discrepency is most pronounced
when the edge states enter the bulk band because of the •nite scaling e!ect. (b): The di!erent
components of the spin polarization measured on the lower edge of the state with the lowest
positive energy in the spectrum as a function of momentum, obtained from diagonalization
of the system. We observe that states with opposite Fermi velocities on both sides ofkx =
Þï
3

have opposite spin polarizations, thus implying helical spin transport on the edge. The
dominant spin component corresponds to the type of links parallel to the boundary.












































































































































































