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Subject : Strongly Correlated Topological Phases

Résumé : This thesis is dedicated largely to the study of theoretical models describing
interacting fermions with a spin-orbit coupling. These models (i) can describe a class of 2D
iridate materials on the honeycomb lattice or (ii) could be realized artificially in ultra-cold
gases in optical lattices. We have studied, in the first part, the half-filled honeycomb lattice
model with on-site Hubbard interaction and anisotropic spin-orbit coupling. We find sev-
eral different phases: the topological insulator phase at weak coupling, and two frustrated
magnetic phases, the Néel order and spiral order, in the limit of strong correlations. The
transition between the weak and strong correlation regimes is a Mott transition, through
which electrons are fractionalized into spins and charges. Charges are localized by the in-
teractions. The spin sector exhibits strong fluctuations which are modeled by an instanton
gas. Then, we have explored a system described by the Kitaev-Heisenberg spin Hamil-
tonian at half-filling, which exhibits a zig-zag magnetic order. While doping the system
around the quarter filling, the band structure presents novel symmetry centers apart from
the inversion symmetry point. The Kitaev-Heisenberg coupling favors the formation of
triplet Cooper pairs around these new symmetry centers. The condensation of these pairs
around these non-trivial wave vectors is manifested by the spatial modulation of the super-
conducting order parameter, by analogy to the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO)
superconductivity. The last part of the thesis is dedicated to an implementation of the
Haldane and Kane-Mele topological phases in a system composed of two fermionic species
on the honeycomb lattice. The driving mechanism is the RKKY interaction induced by
the fast fermion species on the slower one.

Keywords : Strongly Correlated Fermions; Spin-Orbit Coupling; Topological Phases;
Frustrated Magnetism; Kitaev-Heisenberg Spin Hamiltonian; FFLO Superconductivity.



Contents

1 Introduction 1

1.1 Topology in Condensed Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Quantum Hall System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Haldane Model and Chern Number . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Kane-Mele Model and Z2 Topological Invariant . . . . . . . . . . . . . . 8

1.2 Mott Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Doped Mott Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Frustrated Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Geometrical Frustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Order by Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Spin Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 Kane-Mele-Hubbard Model. . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Introduction to Iridate System . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Balents’ Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.2 The Honeycomb Iridates . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Doped Honeycomb Iridates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Iridates on Honeycomb Lattice at Half-filling 29

2.1 Topological Insulator Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Numerical Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 Edge State Solution via Transfer Matrix . . . . . . . . . . . . . . . . . . 37

2.2 The Frustrated Magnetism in Strong Coupling limit . . . . . . . . . . . . . . . 39

2.2.1 Néel Phase for J1 > J2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Non-Colinear Spiral Phase for J1 < J2 . . . . . . . . . . . . . . . . . . . 42

2.2.3 Phase Transition at J1 = J2 . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Intermediate Interaction Region - Mott Transition . . . . . . . . . . . . . . . . 49

2.3.1 Slave Rotor Representation for the Mott Transition . . . . . . . . . . . 50

2.3.2 Gauge Fluctuation Upon Mott Transition . . . . . . . . . . . . . . . . . 53

2.3.3 Spin Texture upon Insertion of Flux . . . . . . . . . . . . . . . . . . . . 54

2.4 Lattice Gauge Field by Construction of Loop Variables . . . . . . . . . . . . . . 61

2.5 Spin Texture under Two Adjacent Monopoles . . . . . . . . . . . . . . . . . . . 63

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Doping Iridates on the Honeycomb Lattice - t − J Model 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Duality between Heisenberg and Kitaev-Heisenberg model . . . . . . . . . . . . 69

i



ii CONTENTS

3.2.1 Duality at Half-filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Duality beyond Half-filling . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Exact Diagonalization on one Plaquette - Triplet Pairings . . . . . . . . . . . . 74
3.3.1 Half-filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Doped System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Band Structure of the Spin-Orbit Coupling System . . . . . . . . . . . . . . . . 77
3.5 FFLO Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.1 The Spin-Orbit Coupling Limit t = J1 = 0 . . . . . . . . . . . . . . . . . 83
3.5.2 Near the Spin-Orbit Coupling Limit t, J1 → 0 . . . . . . . . . . . . . . . 86

3.6 Numerical Proofs of the FFLO Superconductivity . . . . . . . . . . . . . . . . . 88
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Engineering Topological Mott Phases 95

4.1 RKKY Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Haldane Mass Induced by the RKKY Interaction. . . . . . . . . . . . . . . . . . 97
4.3 Mott Transition Induced by the RKKY Interaction. . . . . . . . . . . . . . . . 101
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Conclusion 105

A Annexe 107

A.1 Loop Variables Construction: Curl and Divergence on a Lattice . . . . . . . . . 107



Chapter 1

Introduction

Solids are composed of atoms disposed in an array with electrons hopping between them. Anal-
ysis of the band structure historically provides a preliminary classification of solids. Solids
are basically categorized into metals, semi-conductors and insulators depending on the Fermi
level and the gap between bands [1]. Recent developments in condensed matter physics delve
into materials which are beyond this simple classification according to band theory. Transition
element compound displays a significant correlation between electrons, entailing the Coulumb
interaction and Hund coupling [2, 3, 4, 6]. The correlation between electrons can localize
electron charges and order spins, entailing the Mott physics. Spin-orbit coupling, designat-
ing the coupling between the angular momentum of the orbitals and the magnetic moment
of the electrons, comes also into play in these compounds. A major interest has been the
implementation of topological insulators by means of the spin-orbit coupling[11]. Topological
condensed matter systems are gapped in the bulk while hosting a gapless conducting mode on
the edge. The appearance of edge states in such systems is independent of the band structure
details, disorder and small deformation of the system. In spite of one possible explanation of
the topological system through band inversion[13, 14], a more generic feature characterizing
these systems is attributed to topology.

This thesis is dedicated largely to the study of theoretical models describing interacting
fermions with a spin-orbit coupling. These models (i) can describe a class of 2D iridate mate-
rials on the honeycomb lattice or (ii) could be realized artificially in ultra-cold gases in optical
lattices. The competition of the band structure, the spin-orbit coupling and electron corre-
lation makes iridates and systems likewise an arena with a number of exotic phases in com-
petition. Iridate compound has aroused particular interests because the Kitaev-Heisenberg
coupling stemming from the spin-orbit coupling implies possible realisation of the Kitaev
model on honeycomb lattice [15], a theoretical model with spins fractionalised into Majorana
fermions triggering a liquid phase. The Kitaev model enables probably quantum computation
in certain regime, motivating the search for materials with ferromagnetic Kitaev coupling.
The anisotropy of the Kitaev spin coupling and the link dependent anisotropic spin-orbit
coupling may bring about a number of new phases both in the weakly or strongly correlated
regime.

The manuscript is organized in the following way: In chapter 1, we give firstly a brief
introduction of topology in condensed matter and a succinct presentation of the Mott physics
triggered by correlations; then we present a general review of iridates with a schematic phase
diagram indicating various phases in different iridate compounds. In chapter 2, we present
our work on the half-filled iridate model on the honeycomb lattice in the limit of weak spin-
orbit coupling [36]. In chapter 3, we present the doped honeycomb iridate system in the limit
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2 Chapter 1. Introduction

of strong spin-orbit coupling, with the possible realization of an inhomogeneous spin-triplet
superconductor phase [37]. In chapter 4, we account for our work on the possible realization of
topological phases via the engineering of RKKY interaction on a honeycomb heterostructure
with two copies of fermions [38].

1.1 Topology in Condensed Matter

Topology is the branch of mathematics that studies the properties of spatial objects from their
inherent connnectivity while ignoring the detailed form. Physical phenomemon depending
only on the topology of the system are particularly interesting because of its robustness and
its exactitude: physical phenomena is free from detailed properties such as disorder, geometry
or deformation of the system and observables are quantized with a high precision. One simple
quantity that characterizes the topology of a surface is the Chern number which depicts the
winding behavior of the surface’s tangent bundles.

One of the earlies important discovery in the condensed matter theory related to topology
was in quantum Hall systems, in which a 2D electron gas subject to a magnetic field sees
a transversal conduction [7, 8]. The Hall conductance in low temperature is quantized with
an extremely refined exactitude, independent of disorder and the geometry of the sample.
This robust property of the conductance was later understood through its implication with
the topology of the system: the electrons in cyclotron motion have a Chern number 1 for
each Landau level and the quantization of the Hall conductance is related to the number of
Landau levels below the Fermi level in the bulk. In 1998, Haldane proposed another model
with zero net magnetic flux, in which chiral anomaly breaks the time-reversal symmetry [10].
Electrons in this model travel with a certain chirality depending on the sign rather than
the magnitude of the Haldane mass, which we will explain in the following. The quantum
anomalous Hall system illustrated by the Haldane model, though insulating in the bulk, has
a chiral edge mode which is conducting. Band electrons in the lower band in the Haldane
model has a Chern number 1, which coincide with 1 conducting mode on the edge. In 2005,
Kane and Mele proposed a quantum spin Hall model consisting of two Haldane models with
opposite Haldane masses, restoring the time-reversal symmetry [11]. The Kane-Mele model
has a helical spin current that is conducting on the edge with spin up and spin down move
in opposite directions on the edge. The Kane-Mele model has a total Chern number zero,
but the Z2 topological invariant characterizing the twisting of the rank 2 bundle related to
time-reversal symmetry illustrates the topology of the quantum spin Hall effect. The topology
of the condensed matter systems has also its arena in superconductivity. Superconductor with
p-wave orbital symmetry has been theoretically proposed which has a Chern number 1 for the
lower Bogoliubov band, and there exists a zero energy mode on the edge for the quasi-particle
(Bogoliubon) as a manifestation of the topology of the system [16].

In a general sense, there are systems in condensed matter physics that are insulating in the
bulk and metallic on the edge thus enabling the edge transport. The edge transport is robust
against impurity, disorder and deformation of the sample, and such a property is related to the
topology of the bulk which is characterized by a topological invariant either the Chern number
or the Z2 invariant. Intuitively, two insulators juxtaposed (the world outside the sample is
also insulating) both gapped in the bulk with different topological invariant have necessarily
a band closure on the edge giving rise to the edge transport, because insulators with different
topology cannot be connected to each other without band closure. In Fig. 1.1, we show an
example of conducting edge mode for a system characterized by the Chern number.

Generically, there are systems in condensed matter with gapped band that can be described



1.1. Topology in Condensed Matter 3

Figure 1.1: Two insulators with different topological invariants juxtaposed has necessarily
band closure on the edge, and then metallic edge transport.

by a spin or an isospin that lives on a unit sphere as in equation 1.1.1. The topology of the
system is determined by the number of times that the spin or isospin wraps around the unit
sphere when electrons are situated in different part of the band or the first Brillouin zone.
The wraping behavior of the mapping from the band to the unit sphere can be described by
the Chern number, which determines the number of conducting edge mode in such a way that
the conductance of a topological system is quantized with regard to the Chern number.

H = þd(k) · þσ þd(k) : FBZ or band → S2 (1.1.1)

in which þσ is the Pauli matrix characterizing the spin or the isospin.

Mathematically speaking, the function þd(k) which maps one space (the band) into a
number of copies of space (unit sphere wrapped around for a certain number of times) is the
inverse of the covering map, and Chern number C in this context characterizes the degree of
the cover (or the cardinality of fiber.) We will try to show through several examples, that
the conductance σxy of the system is quantized by the Chern number C with the resistance

quantum e2

h [17].

σxy = C e2

h
(1.1.2)

1.1.1 Quantum Hall System

Topology in the field of condensed matter prospers from the study of quantum Hall effect.
The Hall effect appears in 2D electrons subject to magnetic field and transversal electrical field
[7]. Electron transport in the perpendicular direction to the electrical magnetic field emerges,
which allows us to define a Hall conductance σxy = I⊥

E = BqV
neqV = B

ne
, in which þE = q þB × þV

the electric field compensates the Lorentz force of electrons in motion, and the perpendicular
electric current I⊥ = neqV in which ne is the electron density, e the electrical charge for one
electron and V the velocity of the electrons in motion. The Hall effect under classical regime
tells us that the Hall resistance is proportional to the magnetic field. However, experiments
in the quantum regime of electrons in the 2D GaAs at T = 85mK show different behavior.
Instead of the linear relation, the Hall conductance forms plateaus which are integer multiples
of the conductance quantum e2

h .
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Figure 1.2: The quantum Hall resistance Rxy as a function of magnetic field from Tsui et
al [8]: The quantum Hall effect consists of 2D electrons under magnetic field, and the Hall
conductance as a function of the magnetic field forming the quantum Hall plateaus rather
than linear as is the case with classical Hall effect [7, 8]. Electrons in the quantum Hall
system undergo a cyclotron motion, with conducting edge mode.

The Hamiltonian of electrons under magnetic field is Ĥ = 1
2m(p̂−qÂ/c)2, and this quantum

harmonic oscillator has only one good quantum number px if we take the Landau gauge

Ax = By, Ay = 0: Ĥ =
p̂2

y

2m + 1
2m(p̂x − qBy

c )2. Electrons in this quantum harmonic oscillator
undergo the cyclotron motion, and the spectrum of the harmonic oscillator form gapped
Landau levels:

En = ~ωc(n +
1

2
) (1.1.3)

in which ωc = qB
mc is the cyclotron frequency, and n is the Landau level index. The Landau

level is highly degenerate with translational invariance in the kx direction and the harmonic

oscillator is in the y direction Hy =
p̂2

y

2m + 1
2mω2

c (ŷ − y0)2 in which y0 = qBpx

c = l2px with

the magnetic length l =
√

qB
c . If the quantum Hall sample has a dimension of Lx × Ly

and we have the quantized momentum px = 2πm
Lx

, then we have the magnetic translation

∆y = l2∆px = 2πl2

Lx
. Then we obtain the degeneracy of one Landau level Ωn =

Ly

∆Ly
=

LxLy

2πl2

and the filling factor:

ν =
number of electrons

Ωn
= 2πl2ne =

2πneqB

c
(1.1.4)

By adjusting the magnetic field, we can alter the filling factor of the quantum Hall sys-
tem. The Hall conductance is proportional to the filling factor with a quantized conductance
quantum as shown in experiment (See Fig. 1.2). Filling factor indicates us the number of
filled Landau levels, and because of the existence of confining potential (see Fig.1.3), the Lan-
dau levels are metallic on the edge giving rise to conducting edge modes and number of edge
modes is equal to the number of entirely filled Landau levels, thus leading to the quantized
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Figure 1.3: Landau levels for a quantum Hall system with periodic condition in the x direction
and two edges in the y direction (Figure from Klitzing [9]): 2D electrons under magnetic field
form Landau levels, with only one good quantum number kx. The system is insulating in the
bulk and Landau levels crosses the Fermi level on the edge because of the disappearance of
the confining energy leading to a metallic edge mode, and the quantized Hall conductance for
the edge conduction is proportional to the filling factor of the system: if two Landau levels
are filled, the Hall conductance is two times the conductance quantum.

Hall plateaus. Each of these conduction channel contributes one conductance quantum.

σxy =
1

Rxy
= ν

e2

h
(1.1.5)

The role of topology is obvious in the quantum Hall effect in that electrons in each Landau
level are in cyclotron motion with winding number 1, giving a Chern number 1. Since Landau
levels are flat band, the Fermi level normally lies in the gap, and the Chern number is just
equal to the number of bands below the Fermi level. However, we shall proceed to present a
few examples revealing the topological nature of such a phenomenon.

1.1.2 Haldane Model and Chern Number

In order to illustrate the fact that the generic feature in the Hall conductance is the topology
rather than the magnetic field, we present here briefly the Haldane model for the quantum
anomalous Hall effect with zero magnetic flux [10]. The Haldane model consists of electrons
hopping on a graphene lattice which are subject to opposite fluxes on different sublattices
(see Fig. 1.4). The total net magnetic flux is zero on the lattice, however the time-reversal
symmetry is broken.

HH =
∑

〈i,j〉
t(c†

i dj + d†
jci) +

∑

〈〈i,j〉〉
it′(c†

i cj − d†
i dj) − MS

∑

i

(c†
i ci − d†

i di) (1.1.6)

in which ci and dj are electron annihilator operator on the two sublattices A and B, and MS

is the Semenoff mass (See Fig. 1.4). We can diagonalize the Hamiltonian with the Fourier
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A

B

t

t '

Figure 1.4: The Haldane model consists of electrons hopping on a honeycomb lattice subject
to opposite fluxes on the two sublattices. The net magnetic flux is zero but the time reversal
symmetry is broken.

transformation, and write the Hamiltonian in terms of the spinor Ψk = (ck, dk)T

HH =
∑

k

Ψ†
kHH(k)Ψk HH(k) =

(
dzH(k) dxH(k) − idyH(k)

dxH(k) + idyH(k) −dzH(k)

)
= þdH(k) · þτ

(1.1.7)

in which g(k) =
∑

α=x,y,z eik·δα . δx = (0, 0)a, δy = (−
√

3, 0)a and δz = (
√

3
2 , −3

2)a. a is the

inter-atomic distance, dxH(k) = tℜeg(k), dyH(k) = tℑmg(k) and dzH(k) = t′(sin
√

3kxa −
2 sin

√
3

2 kxa cos 3
2kya) − MS . þτ = (τx, τy, τz) are the Pauli matrices for the sublattices. The

function g(k) is written in such a way that after a lattice translation the function g(k) is
gauge invariant.

We have plotted the band structure of Haldane model at t′ = 0.1t in comparison with
graphene when t′ = 0 in Fig. 1.5. There are two bands for the Haldane model and the band
projectors are:

EH(k) = ±E0H(k) = ±
√

|g(k)|2 + (dz(k))2 = ±|þdH(k)|

P±H(k) =
1

2
(1 ∓ þ̂dH(k) · þτ) þ̂dH(k) =

þdH(k)

|þdH(k)|

(1.1.8)

The graphene band structure Egraphene(k) = ±|g(k)| has gap closure at particular points
in the first Brillouin zone called Dirac points, and the dispersion relation is linear around these
points. There are six of them, separated into two valleys which we denote as Ki± (i=1,2,3),
around which we have the expansion g(Ki± + k) ≃ 3ta

2 (kx ± iky) and the energy dispersion is
photon like:

Egraphene(K± + k) = ±3ta

2
|k| (1.1.9)

The topology of the system either in the graphene model or the Haldane model is mani-

fested by the mapping þ̂dH(k) : FBZ → S2 from the first Brillouin zone to the unit sphere S2.

We can see that around the Dirac cones of the two valleys, þ̂dH(Ki± + k) rotates respectively
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4 Π

3 3
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t’=0.1t

t’=0

Figure 1.5: Left panel: the first Brillouin zone for the honeycomb lattice with Dirac cones at
two different valleys Ki± in which ± designates the valley. Right panel: the flux in the lattice
(proportional to the t′ next-nearest-neighbour terms ) opens a gap at the Dirac cones on the
base of the graphene band structure.

in the clockwise and counterclockwise direction in the x − y plane or the opposite chirality.
The rotation orientation of a vector is also called chirality. For both graphene and Haldane

model, the total chirality is zero for the vector þ̂dH(k); however, we can define the helicity or
the Chern number of the system as follows, which is zero for the graphene model, and non
zero for the Haldane model depending on the magnitude of the Semenoff mass.

C =
1

2π

ˆ

F BZ
d2kd̂zH(k) · (∂kx

d̂yH(k) − ∂ky
d̂xH(k)), (1.1.10)

which is the generic Chern number of the mapping þ̂d(k). Specifically, for the Haldane model
we have

CH =

{
sign[t′] |MS | < 3

√
3

2 t′

0 |MS | > 3
√

3
2 t′ (1.1.11)

We remark that there exists a quantum phase transition namely when |MS | < 3
√

3
2 t′,

the Chern number equals ±1 depending on the sign of t′ regardless of its magnitude, while

the Chern number is zero when |MS | > 3
√

3
2 t′. Graphically, the topological invariant (Chern

number) characterizes whether the unit sphere depicted by þ̂d wraps around the origin in the
3D space as shown in right panel of Fig. 1.6.

Numerically, we can generalize the above Chern number calculation to any problem with
band electrons, because band projectors are inherently gauge invariant projectors which avoids
the ambiguity of the gauge at the border of the first Brillouin zone. Specifically, if we have
the band electron projector Pi− for the electron band with index i which is under the Fermi
level, and the Chern number is:

C =
1

2πi

ˆ

F BZ
d2k

∑

i

Tr[P−i(þk)(∂kx
P−i(þk) − ∂ky

P−i(þk))] (1.1.12)
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Figure 1.6: The Chern number of the Haldane model as a function of the Semenoff mass MS

calculated numerically by the discretization of 100 × 100 of the first Brillouin zone. There is

a quantum phase transition at |MS | = 3
√

3
2 t′ noted by the dashed line. The Chern number

counts whether the vector þ̂dH wraps around the origin.

The numerical calculation of the Chern number is shown in the right panel of Fig. 1.6 as
a function of the Semenoff mass MS , which coincides with the prediction in equation 1.1.11.

As a consequence of the non-zero Chern number of the Haldane model, we have a zero
energy edge mode when the model is placed on the cylinder geometry. The more detailed
treatment of Hamiltonian on cylinder and the transfer matrix method for the edge state is
presented in Sec. 2.1. The zero net magnetic flux in the Haldane model of quantum anomalous
Hall effect demonstrates the Chern number as a more intrinsic property for the appearance
of the metallic edge mode.

In a general sense, if we have some function dz(k) = dzo(k)+dze(k) which is the coefficient
in front of the matrix τz, we call the odd parity part dzo(k) = −dzo(−k) the Haldane mass
and the even parity part dze(k) = dze(−k) Semenoff mass. These two notions will be useful in
chapter 4. Since the two valleys of the Dirac points have opposite helicity, dz(k) has to have
opposite sign in the two valley in order that the system is topological with non-zero Chern
number.

1.1.3 Kane-Mele Model and Z2 Topological Invariant

Besides Chern number, there exists also another topological invariant identifying the topology
of a system. Spin-orbit coupling can result from the hybridization of the higher angular
momentum orbit and it exerts, in fact, opposite magnetic fields upon electrons with opposite
spin polarizations, thus making the system two copies of Haldane model coupled together. We
introduce the Kane-Mele model consisting of electrons on graphene with spin-orbit coupling
[11, 12, 20].

HKM = −
∑

〈i,j〉,σ
tc†

iσdjσ − it′ ∑

〈〈i,j〉〉,σ,σ′

σz
σσ′(c

†
iσcjσ′ − d†

iσdjσ′) + h.c. (1.1.13)

Again, we can do the Fourier transformation and write down the spinor Ψ†
k = (c†

k↑, d†
k↑, c†

k↓, d†
k↓):

HKM =
∑

k

Ψ†
kHKM (k)Ψk HKM (k) =




t′gz(k) tg∗(k) 0 0
tg(k) −t′gz(k) 0 0

0 0 −t′gz(k) tg∗(k)
0 0 tg(k) t′gz(k)


 (1.1.14)
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in which g(k) =
∑

j eik·δj and gz(k) = (sin
√

3kx − 2 sin
√

3
2 kx cos 3

2ky). The energy levels are
all doubly degenerate:

E = ±
√

(t|g(k)|)2 + (t′gz(k))2 (1.1.15)

The Kane-Mele model respects the time-reversal symmetry, which is absent in the Haldane
model. If we denote the time-reversal operator as T , then for spinfull system, the time reversal
operator writes as:

T = iσyĈ & T 2 = −1

TX̂T −1 = X̂ T P̂T −1 = −P̂ T þ̂LT −1 = −þ̂L Tþ̂σT −1 = −þ̂σ
(1.1.16)

in which the operator Ĉ is the complex conjugate operator, and þ̂L the angular momentum
operator. We can see that the Kane-Mele model consists of actually two copies of Haldane
model with Haldane masses with opposite signs. In other words, the spin up model has a
Chern number +1 and the spin down model has a Chern number of −1 (see Fig. 1.7). On
one given edge, we have spin up transport in one direction and spin down transport in the
opposite direction. We can therefore construct the effective edge model for only 1 pair of edge
states :

Hedge(k) =

(
vF k 0

0 −vF k

)
= vF kσz (1.1.17)

Figure 1.7: The quantum spin Hall effect consists of electrons with opposite spin polarizations
travelling in opposite directions on the edge Figure from David Carpentier [139]. The theo-
retical model for such an effect is the Kane-Mele model which is actually 2 copies of Haldane
model with Haldane masses with opposite signs. The Kane-Mele model is protected by the
time-reversal invariant symmetry, which entails a Z2 symmetry.

We can see that any process that opens a gap involves a spin flip term proportional to σx,
σy which breaks the time-reversal symmetry. Therefore, the edge remains metallic for 1 pair
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of edge states, which is protected by the time-reversal symmetry. However, if we study the
effective Hamiltonian for 2 pairs of edge states, Chern number for spin up is +2 and Chern
number for spin down is −2. We can write down the effective Hamiltonian:

Hedge(k) = Ψ†
k




vF 1k 0 0 0
0 vF 2k 0 0
0 0 −vF 1k 0
0 0 0 −vF 2k


 Ψk Ψ†

k = (c†
1k↑, c†

2k↑, c†
1k↓, c†

2k↓) (1.1.18)

In this case, we can however have one spin scattering processes preserving the time-reversal
symmetry which opens the gap, making the edge an insulator, then the topological edge state
is not protected by the time-reversal symmetry.

Hedge(k) = Ψ†
k




vF 1k 0 0 m
0 vF 2k −m 0
0 −m −vF 1k 0
m 0 0 −vF 2k


 Ψk Ψ†

k = (c†
1k↑, c†

2k↑, c†
1k↓, c†

2k↓) (1.1.19)

In general, a system with odd number of time-reversal pairs has a metallic edge state
and system with even number of pairs can be smoothly deformed into a trivial insulator
everywhere gapped. The concerned topology is the Z2 topology: we can choose a phase such
that Ψk = Ψ∗

−k and for a TI we find that there is no way to define a wave function for every k

and the first Brillouin zone needs to be cut into different regions. The gauge transformations
around the boundaries of these regions defines a winding number. The Z2 invariant arises
from the calculation of the winding number of the gauge field around the first Brillouin zone:
if it is odd, the system is topological; if even, trivial.

In summary, we have shown several examples ranging from band electron problems such
as quantum (anomalous) Hall system and quantum spin Hall system to superconductivity
with p-wave symmetry. The quantum anomalous Hall effect can be viewed as a mapping
from the band or the first Brillouin zone to the SU(2) sphere in the sublattice isospin space.
The topology of the system refers to specifically the number of times that the mapping wraps
around the SU(2) sphere. The quantum spin Hall effect involves the Z2 symmetry, a residual
symmetry of the SU(2) symmetry related to the time-reversal symmetry. If we view the world
as an insulator separated from the topological system by the edges, then there is necessarily
band closure on the edge, since two systems with different topology cannot be connected to
each other without band closure.
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1.2 Mott Physics

Solids are made of atoms aligned in arrays whose hybridized electron orbitals enables electron
hopping from one atom to another, which is firstly described by band theories. Real world
materials can be classified according to band theories into four major categories: metal, semi-
metal, semi-conductor and insulators. We call the closest superior and inferior band to the
Fermi level respectively the conduction and valence band. If the Fermi level lies in the band
or the band is partially filled in other terms, we have the conducting metal in which electron
propagate in the form of Bloch waves. When the overlap of the conduction band and the
valence band is very small, we have a semi-metal with very limited density of states at the
Fermi level participating in the conduction. When the Fermi level lies in between the valence
and conduction band while the two bands are energetically not very far from each other, we
have a semi-conductor with electron and hole like excitation at finite temperature. And when
the Fermi level lies in between the two bands that are isolated from each other, we have an
insulator in which electron conduction is very hard.

Figure 1.8: From Kittel [5]: Band structure of metal, semi-metal, semi-conductor and insu-
lator.

In spite of its simplicity, the band theories do not manage to categorize the transitional
metal compounds, in which there are several orbitals participating in the hybridization. Due
to the Coulomb interaction between the electrons, there exists a non-negligible effect of cor-
relation in these transitional metal compounds. People have introduced the Hubbard model
in the first place to characterize the behavior of these materials[2]:

H = −
∑

〈i,j〉
t(c†

iσcjσ + c†
jσciσ) + U

∑

i

ni↑ni↓ (1.2.1)

in which electron hopping between nearest-neighbour sites is described by the first two terms
and the Hubbard onsite interaction depicts the electron-electron interaction on each given site
or in each atom. We discuss firstly the half-filled Hubbard model here.

When the Hubbard interaction is strong enough (the strongly correlated regime), we enter
the Coulomb blockade regime in which the Hubbard interaction forbids two electrons on the
same site, killing the electron hoppings since electrons exchanging their positions is energet-
ically penalized by the Hubbard interaction. The electron charges are therefore localized in
this regime making the material an insulator (Mott insulator) and injection of one electron or
hole will cost an energy in the order of U . The new origin of this insulating behavior makes
the Mott insulator different from the normal insulator in the frame of band theory. In the
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weakly correlated regime, the correlation renormalizes the conducting behavior predicted by
the band theory and this regime is baptized Fermi liquid and the injection of one electron
or hole cost nearly zero energy since the band is partially filled. Therefore, there exists a
transition between the weakly correlated regime with small Hubbard interaction described
largely by the band theory and the strongly correlated regime of Mott insulator vis-à-vis the
injection of one electron. This metal-insulator transition is baptized the Mott transition [4].
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Figure 1.9: Figure from thesis of Cyril Martins [115]: The spectral function of the Fermi
liquid in the upper panel, in which intermediate Hubbard interaction widen the spectral peak
around zero energy and the spectral function of the Coulomb blockade regime in the lower
panel when Hubbard interaction is significant enough.

We introduce the spectral function to describe the low energy excitation which corresponds
to adding one electron or hole to the system, that quantitatively characterizes the different
regimes described above[21, 22].

A(k, ω) =





∑
α | 〈Ψ0| ck |Ψα〉 |2δ(ω + µ + E

(N)
0 − E

(N+1)
0 ) (ω > 0)

∑
α | 〈Ψ0| c†

k |Ψα〉 |2δ(ω + µ + E
(N)
0 − E

(N+1)
0 ) (ω < 0)

(1.2.2)

in which the matrix elements 〈Ψ0| ck |Ψα〉 measure the overlap between the wave function
obtained by injection of one electron with momentum k into the ground state wave function
with N particles and the excitated state |Ψα〉 with N+1 particles.

Experimentally, the ARPES can measure the spectral function directly. In the Fermi
liquid regime, the density of states is concentrated around zero energy, while in the strongly
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correlated limit the density of states is concentrated around the energy scale of the Hubbard
interaction due to the Coulomb blockade as shown in Fig. 1.9. The Mott transition is
characterized by the splitting of peak at zero energy in the spectral function into two peaks
centering around the Hubbard interaction.

In the Mott insulator regime, electrons are localized because of the energy penalisation
of the Hubbard interaction. We have one electron per site incapable of propagating in the
material, however, virtual processes of electrons exchanging positions are allowed. Knowing
that the electron is composed of spin and electron charge, we have, as a result, the spin
exchanging places while the charges remain localized. The lowest order of the virtual electron
exchange is of second order, and by applying the second order perturbation theory based on
the infinite Hubbard limit, we can establish the effective theory for the spins. The effective
spin theory indicates us the magnetism in the Mott insulator. In the case of Hubbard model
in equation 1.2.1, we can derive the super-exchange Heisenberg model hosting the Néel order:

Hex =
∑

〈i,j〉
JSi · Sj (1.2.3)

We have shown in Fig. 1.10 the bipartite Néel order on the square lattice which minimizes
the classical energy of the anti-ferromagnetic Heisenberg model derived above. Spins for the
Néel order in the two sublattices point in the opposite direction for the ground state.

Figure 1.10: The bipartite Néel order on the square lattice which minimizes the classical
energy of the anti-ferromagnetic Heisenberg model.

In Fig. 1.11, we have shown the periodic table and this thesis is mainly dedicated to
the physics of iridates, the iridium-oxide compounds, which belongs to the transitional metal
elements, in which correlation plays an important role. Besides the complication of correlation,
the significant spin of the 4d and 5d elements leads to the essential intervention of the spin-
orbit coupling in this family of materials. Typical energy scales for this family of material
are very close to each other, W ≃ λ ≃ U in which W is the band width proportional to
the hopping amplitude t for the material, λ is the amplitude of the spin-orbit coupling while
U is the on site Hubbard interaction mimicking the Coulomb interaction between electrons.
The closeness of the three energy scale makes iridates an arena with several exotic phases in
competition.
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Figure 1.11: The periodic table of elements and the highlighted iridium in the class of tran-
sitional metal belonging to the 4d and 5d elements.

1.2.1 Doped Mott Insulators

The half-filled Mott insulator as explained previously hosts an anti-ferromagnetic order stem-
ming from the super-exchange processes while the charges are localized. However, if we dope
the system with holes or electrons, states with zero or two electrons on one site will be allowed
in the system. If we look at only the Heisenberg J coupling term, states with one surplus
electron or one surplus hole on one site contributes zero energy for the links connecting the
given site, while the coupling energy for the links connecting two sites both with one electron
gives energy −J (anti-ferromagnetism). In order to minimize the energy of the spin coupling
interaction JSi · Sj , doped electrons and holes tend to form pairs. The hopping terms which
are forbidden in the half-filled Mott insulator because of the energy penalisation will re-enter
into play in the doped system. The kinetic and coupling term cause respectively the motion
and formation of electron or hole pairs, leading to superconductivity in certain conditions.

One effective model for the doped Mott insulator is the t-J model in which the t kinetic
term allows for the motion of doped electrons and holes and the J spin-spin coupling favors
the coupling of the electron or hole pairs[23]:

HtJ = −
∑

〈i,j〉
t(c†

iσcjσ + c†
jσciσ) + J

∑

〈i,j〉
Si · Sj (1.2.4)

In Fig. 1.12, we have shown one representative phase diagram of doped Mott insulator,
which is indicative and not complete: we have not taken in account here all sophisticated
physics in the intermediate regime including the quadruple state, the spin and charge density-
wave, etc [26, 27, 189, 193, 194]. We merely try to highlight the fact that doping the Mott
insulator may give rise to superconductivity in certain conditions considering the intuitive
argument that we gave with the two-fold interplay of the kinetic term and the coupling term.
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Figure 1.12: Figure from Philip Phillips [19]: The phase diagram of the doped Mott insulator.

1.3 Frustrated Magnetism

We try to show in this section several elements of the magnetic frustration and its complica-
tion in a few magnetic orders more complicated than the Néel order (anti-ferromagnetism).
Frustration refers to spins in non-trivial positions with underlying conflicting couplings on the
lattice, which may lead to complex structures or a plethora of ground states. Some of them
exhibits a liquid behavior (alias spin liquid).

1.3.1 Geometrical Frustration

We show a brief formulation of various magnetic frustration scenarios in this section following
the review of J.T. Chalker [29]. The first category of frustration comes from the geometry: the
real lattice is composed by larger clusters in which antiferromagnetism cannot be satisfied on
every links. We define a cluster as a subset of the lattice in which one spin interacts with every
other spin in the same cluster. We give two examples here: the honeycomb or Kagomé lattices
are composed of triangles while the pyrochlore lattice is composed of tetrahedrons, and the
triangles and tetrahedrons satisfy the definition of cluster given above. The minimization of
the classical energy retracts to the minimization of the classical energy in the cluster rather
than a simple link. We start with the nearest-neighbour Heisenberg model on two different
lattices, the triangular and pyrochlore lattices:

H =
∑

〈i,j〉
JSi · Sj (1.3.1)

The classical energy minimization can be carried out in the following way: since the lattice
consists of clusters, it suffices to study the magnetism in one cluster, specifically we can rewrite
the cluster Heisenberg model :

Hc =
1

2
J [(

∑

i∈C
Si)

2 − NcS
2] (1.3.2)
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Figure 1.13: The geometrical frustration on the triangular and pyrochlore lattice. The figure
of the pyrochlore lattice from E. Choi et al. [140].

in which C denotes the cluster and Nc the number of spins in the cluster. And naturally we
have the condition of the ground state and the ground state energy of the cluster:

∑

i∈C
Si = 0 Ec0 = −JNc

2
S2 (1.3.3)

H

S

S S

S

θ φ

1 2

34

Figure 1.14: Figure from J.T. Chalker [29]: One realisation of the ground state of anti-
ferromagnetism on respectively the triangular and the pyrochlore lattice.

The condition in 1.3.3 gives a plethora of states for the ground state. We have shown in
Fig. 1.14 one realisation of the ground state on the triangular and pyrochlore lattice. The
ground state of the Heisenberg model on the triangular lattice is the 120 degree Néel state
with a rotational degree of freedom around the center of the triangle while the ground state of
anti-ferromagnetism on the pyrochlore lattice has two degrees of freedom described by angles
θ and φ. Geometrical frustration in clusters can bring about additional degeneracy (degrees
of freedom) in the system; one cluster consisting of N (N > 2) spins will have N − 2 degrees
of freedom.

1.3.2 Order by Disorder

Without losing any generality, we have seen in the previous section the emergence of de-
generacy due to the geometry of the lattice, specifically the frustration in the cluster. The
geometrical frustration gives us a plethora of ground states (the ground state manifold), in-
dicating that the system is plausibly disordered. However, these classical degenerate ground
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states may be situated in very different regimes: they experience different classical and quan-
tum fluctuations lifting the degeneracy among them. Thereafter, the ground state manifold
may be reduced to a smaller manifold or even simply several points. The system, instead
of disordered because of the degeneracy, is probably finally ordered due to the ground state
selection in the classical or quantum level [30, 31], which we call order by disorder.
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Figure 1.15: The J1 − J2 model on the square lattice with φ designating the angle between
the two copies of the tilted sublattices.

We give here a simple example of the J1 − J2 XY model in the two dimensional square
lattice, in which there exists a nearest-neighbour anti-ferromagnetic J1 coupling and a next-
nearest-neighbour anti-ferromagnetic J2 coupling. The J1 coupling favors the bipartite Néel
state while the J2 coupling favors a bipartite Néel state in the two tilted sublattices which
are also square lattice as shown in Fig. 1.15. The system is frustrated because of the conflict
between the two different scénarios. When J2 > J1/2, there is a continuous family of classical
ground states, notably the surplus degrees of freedom of the angle φ designating the angle
of the Néel order between the two copies of the tilted sublattices. However, if we take into
account the classical fluctuation of the Néel order in the tilted square sublattice, then the
classical fluctuation of the J1 − J2 (J2 > J1/2) model will select a subset of the ground state
manifold. Specifically, if we denote the two tilted square sublattices as A and B, and we
attribute a little variation on each sublattice such that the angle between the two antiparallel
spins is π + β instead of π, then in the limit of β → 0 the classical energy variation will be
proportional to:

∆EXY = [2J2 + J1 cos2 φ]β2 (1.3.4)

The classical variational energy is proportional to the entropy S, then the free energy is
F = E − TS. In order to minimize the free energy, the entropy should be maximized and the
maximum is reached at φ = 0, π. Instead of the whole U(1) symmetry of φ, the minimization
of the free energy reduces the ground state manifold from U(1) to two points.

We list below a number of possible ingredients that can break the degeneracy to trigger
the order by disorder phenomenon:

1. Further neighbour interactions (dipolar, exchange)

2. spin-orbit coupling & crystal fields

3. spin-phonon coupling
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4. multiple-spin terms.

The quantum fluctuations can be manifested through the spin wave analysis in the large
S limit: around the possible order, we apply a Holstein-Primakoff transformation: we define
the z axis as the direction of the order parameter Sz = S − a†a, S+ =

√
2Sa and S− =

√
2Sa†

thereafter, we describe the quantum fluctuation as a quantum harmonic oscillator problem
whose Casimir energy refers to the zero point fluctuation. We can therefore calculate the
expectation value of the spin Sz out of this quantum expansion. Specifically, we calculate
the value of the expectation value of the observable 〈Sz〉. In some frustrated magnetism
model, this value 〈Sz〉 will vanish indicating a total disordered state with a large number of
degeneracy [40].

1.3.3 Spin Liquid

Despite the order by disorder phenomenon, some frustrated magnetism model still retains a
large number of degeneracy, with soft Goldstone modes connecting various possible degenerate
states [32]. The disordered state with a liquid behavior is baptized a spin liquid. Emergence
of spin liquid is also closely related to the Mott physics: upon Mott transition electron charges
are localized while spins can still exchange their position. One point of view is the spin-charge
separation: the physical electrons are cracked into chargeon and spinon and there exists an
attractive force between the chargeon and spinon in the form of a gauge field. The spinon
has also a band structure: if the spinon band structure is gapless we will have possibly a spin
liquid. The gauge field as a clinging force between the chargeon and the spinon is also an
important factor in the emergence of spin liquid: if monopoles are confined, the spinons are
deconfined and we will probably have a spin liquid, while if the monopoles are deconfined,
the spinons are confined, and we will possibly have a long range order. People have proposed
a number of quantum spin liquid such as VBS, Z2 spin liquid, quantum dimer model, etc,
which we try not to elaborate here [192, 152, 153, 54].

1.3.4 Kane-Mele-Hubbard Model.

We present in this section a brief review of the Kane-Mele-Hubbard model, which describes the
physics of a correlated topological insulator [62]. We have the Hubbard interaction describing
the Coulomb interaction between electrons in equation 1.3.5. We try to explain in details
the phase diagram of this model and how different phases in the different region of the phase
diagram are connected together.

H =HKM + HI HI =
∑

i

Uni↑ni↓

HKM = −
∑

〈i,j〉,σ
tc†

iσdjσ − it′ ∑

〈〈i,j〉〉,σ,σ′

σz
σσ′(c

†
iσcjσ′ − d†

iσdjσ′) + h.c.
(1.3.5)

Deep in the strongly correlated region, the second order super-exchange processes mediates
the magnetism. As a result, we have the J1 − J2 model for the infinite U limit for the Kane-
Mele-Hubbard model:

HJ1J2 =
∑

〈i,j〉
J1

þSi · þSj +
∑

〈〈i,j〉〉
J2(Sz

i Sz
j − Sx

i Sx
j − Sy

i Sy
j ) (1.3.6)
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The J2 term stabilizes antiferromagnetism in the z component and ferromagnetism in the
xy direction while the J1 term favors antiferromagnetism on the bipartite lattice. Consequen-
tially, the magnetism is Néel order on the bipartite lattice with spins on the same sublattice
lying in the X − Y plane. Hartree-Fock approximation has been applied in [62] in order to
determine the critical value of the critical U that stabilizes the spin-density wave.
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Figure 1.16: The phase diagram of the Kane-Mele-Hubbard model from Rachel and Le Hur
[62] in which λ = t′/t. We have spin density wave in the strongly coupling limit , and
topological band insulator for the weakly correlated limit. The real dashed line is the limit of
the spin density wave phase (SDW) estimated using Hartree-Fock approximation. The Mott
transition line (blue) is obtained within the slave rotor mean-field approximation.

On the other side of the weakly coupling limit when U → 0, we have the phase of quantum
spin Hall effect, in which we have the Kane-Mele model with helical edge state. Two spin
current with opposite polarization along the z axis counter-propagate on the edge. The spin
observable Sz

i = c†
iσciσ′σz

σσ′ commutes with the Hamiltonian. We can therefore explore the
spin transport on the edge using the Kubo formula because of spin conservation.

The Mott physics is related to the separation of spin and charge, which are connected by
an emergent gauge field. The charge particle acquires a gap upon Mott transition, while the
spin particle are subject to the large gauge field fluctuation. In order to study the physics of
the Mott insulator, we can write down the following action for the spin particle:

Lf =
1

2
mz(f †

k↑fk↑ − f †
k↓fk↓) (1.3.7)

Under insertion of one 2π flux, it is equivalent to the transport of one spin up and the
transport of one spin down in the opposite direction by the Laughlin argument [144]. As a

result, the relevent operator is S+
k = f †

k↑fk↓, which designates the spin response under the flux

insertion. This operator S+
k corresponds to the magnetic order in the plane X − Y , which is

compatible with the magnetic coupling Sz
i Sz

j − Sx
i Sx

j − Sy
i Sy

j in the infinite U limit.
To summarize, we have the quantum spin Hall effect at the weakly correlation region, spin

density at the strongly correlated region. The two are connected together by the gauge field
argument all due to the conservation of the spin observable in the system.
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1.4 Introduction to Iridate System

Iridates have attracted the attention of condensed matter physicists because of the possibility
of the realisation of Kitaev spin liquid which has its implications in quantum computation.
As an introduction, we follow the presentation of the review paper by W. Witczak-Krempa
et al [42]. Apart from the Hubbard interaction and band structure elucidated in the previous
section, one particularity about iridate compound is the presence of the strong spin-orbit
coupling, another complication that might induce new phases. Spin-orbit coupling is normally
considered as a small perturbation to the system. However, such effect becomes significant
in heavy metals since it increases proportionally to Z4, in which Z is the atomic number.
Descending from 3d to 4d and to 5d series, the d orbitals become more extended, reducing
the Coulomb interaction or the Hubbard interaction in other terms. The increasing tendency
of the spin-orbit coupling also reduces the kinetic energy t via splittings between degenerate
and nearly degenerate bands. As a result, the energy scales of the three factors mentioned
above in the iridate compounds are very close W ≃ λ ≃ U , in which W is the band width.

1.4.1 Balents’ Diagram

We can write down the generic model Hamiltonian comprising all the three elements:

H =
∑

i,j,α,β

ti,j,α,βc†
iαcjβ + h.c. + λ

∑

i

Li · Si + U
∑

i,α

niα(niα − 1) (1.4.1)

where α is the orbital index and niα = c†
iαciα and λ is the amplitude of the spin-orbit coupling

with Li the orbital angular momentum and Si the electron spin. A schematic phase diagram
is given in Fig.1.17 in terms of the two ratios U/t and λ/t, and this phase diagram is figurative
in the sense that it is independent of lattice and band structure details.

When λ → 0, we have the conventional Hubbard model with two phases: the simple metal
or band insulator depending on the band structure detail when the Hubbard interaction is
small compared to the band width W ; and the Mott insulator when the Hubbard interaction
becomes bigger or comparable to the band width U ≥ W . Another simple limit is the free
fermion limit where U → 0. The increase of the spin-orbit coupling induces the emergence
of a semi-metal or topological insulator phase depending on whether the spin-orbit coupling
opens a gap in the spectrum. When spin-orbit coupling and Hubbard interaction are equally
significant, there are a plethora of exotic phases. We will proceed by listing a number of
effective interactions that the spin-orbit coupling might induce. Then, we will enumerate
various iridates exhibiting possibly different exotic phases.

1. The super-exchange processes of the spin-orbit coupling may induce a Kitaev-Heisenberg
coupling. If we write the spin-orbit coupling as: H ijα

SO = λc†
iσdjσ′σα

σσ′ , then the super-
exchange coupling is:

HKH = −H ijα
SO Hjiα

SO /U = J2(Sα
i Sα

j − Sβ
i Sβ

j − Sγ
i Sγ

j ) (β, γ Ó= α, J2 = 4λ2/U) (1.4.2)

2. The super-exchange processes of the spin-orbit coupling and the normal hopping term
may induce a Dzyaloshinskii-Moriya interaction. If we write the spin-orbit coupling as
H̃ ijα

SO = iλc†
iσdjσ′σα

σσ′ and the normal hopping as: H ij
0 = c†

iσdjσ, then the D-M interaction
originates from the second order processes consisting of electron hopping from site i to
j with normal hopping and hopping back from site j to i with spin-orbit coupling:

H ijα
DM = −H ij

0 H̃jiα
SO /U = J3eα · (Si × Sj) J3 = 4tλ/U (1.4.3)
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Figure 1.17: The Balents’ phase diagram of the instructive model in equation 1.4.1 describing
iridate materials. [42]

in which eα is a unity vector pointing along the α axis.

3. Zeeman interaction in 2D: H̃SO = HRashba + HDresselhaus = α(σxky − σykx) + γ(σxkx −
σyky) ≃ σ̂ · Beff the combination of a Rashba interaction and Dresselhaus interaction
will generate an effective Zeeman interaction that will split the degeneracy in the spin
subspace shifting the Fermi surface for the two spin species in the α polarization. The
mixed super-exchange processes of this term with the normal hopping will not generate
any exotic effective magnetic coupling.

We have included in table 1.1 different phases suggested by the figurative phase diagram
by Leon Balents identified in different materials. One crucial property of some of these phases
is topology induced by the essential ingredient of the spin-orbit coupling. The bulk is gapped
by the spin-orbit coupling while the surface state is metallic and topologically protected by
the time-reversal symmetry. Topological phases can only arise when correlation is not very
strong so as to localize electrons to single atoms. In the bulk, correlations may enhance the
gap in some cases, while on the surface, time-reversal symmetry may be spontaneously broken,
with the emergence of magnetism. In this scenario, Chern insulators may occur [89]. In the
presence of crystalline symmetries, notably inversion, the Z2 symmetry may reappear [90].
Such is the case with the axion insulator which is characterized by a quantized magnetoelectric
effect: the electric polarization P can be generated by applying a magnetic field B, P = θ

(2π)2 B

with θ = π such that the ratio P/B is universal and quantized [91].

Non-trivial topology can also emerge in gapless phases, such as Weyl semi-metals [94],
with a Fermi surface consisting of points, where only two bands meet linearly, as a three-
dimensional analog of Dirac fermions. Such phenomenon only appears at sufficiently large
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U where either TRS or inversion symmetry is broken, since all bands would be two-fold
degenerate otherwise. Around the band closure point, the band electron winds around the
Dirac points with certain orientation in the X − Y plane or chirality. The band touchings
always come in pairs with opposite chirality. An example of a Weyl fermion is given by the
following Bloch Hamiltonian:

H(k) = ±v(δkxσx + δkyσy + δkzσz) δk = k − kw (1.4.4)

where kw are the two band touching points and σα are Pauli matrices acting on the touching
point subspace. The two Weyl points behave like topological objects - monopoles or hedgehogs
in momentum space- they have opposite chiralities acting like positive and negative monopole
charges, contributing to the non-trivial bulk topology resulting in the non-trivial surface states
on certain boundaries.

Phase Symmetry Correlation Property
Proposed
Materials

TI TRS W-I
Bulk gap, TME, protected
surface state

many

Axion
Insulator

P I
Magnetic Insulator, TME, no
protected surface state

R2Ir2O7

A2Os2O7

WSM
Not both
TRS & P

W-I
Dirac-like bulk states, surface
Fermi arcs, anomalous Hall

R2Ir2O7

HgCr2Se4

LAB
Semi-metal

cubic+TRS W-I non-Fermi liquid R2Ir2O7

Chern
Insulator

broken
TRS

I Bulk gap, QHE
Sr[Ir/T i]O3

R2[B/B′]207

FCI
Broken
TRS

I-S Bulk gap, FQHE Sr[Ir/T i]O3

FTI, TMI TRS S
Several possible phases.
Charge gap, fractional
excitations

Sr[Ir/T i]O3

QSL any S
Several possible phases.
Charge gap, fractional
excitations

(Na, Li)2IrO3

Ba2Y MoO6

Multiple
order

various S
Suppressed or zero magnetic
moments. Exotic order
parameters.

A2BB′O6

Table 1.1: Emergent quantum phases in correlated spin-orbit coupled materials. All phases
have U(1) particle-conservation symmetry – i.e. superconductivity is not included. Abbrevi-
ations are as follows: TME = topological magnetoelectric effect, TRS = time reversal sym-
metry, P = inversion (parity), (F)QHE = (fractional) quantum Hall effect, LAB = Luttinger-
Abrikosov-Beneslavskii, WSM=Weyl Semi-Metal. Correlations are W-I = weak-intermediate,
I = intermediate (requiring magnetic order, say, but mean field-like), and S = strong. [A/B]
in a material’s designation signifies a heterostructure with alternating A and B elements.
TI=topological insulator, FTI= fractional topological insulator, TMI=topological Mott insu-
lator, QSL=quantum spin liquid and FCI=fractional Chern insulator.

Correlations can also trigger exotic phases such as fractional Chern insulators which display
a fractional quantum Hall effect without an external magnetic field and topological Mott
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insulator which exhibits spin-charge separation and TI-like surface states composed of neutral
fermions [93].

1.4.2 The Honeycomb Iridates

The hexagonal iridates Na2IrO3 and Li2IrO3 realize a layered structure consisting of a hon-
eycomb lattice of Ir4+ ions, and they provide a concrete example of the full orbital degeneracy
lift with a maximally quantum effective spin-1/2 Hamiltonian. Both compounds appear to be
in the strong Mott regime. As shown by Jackeli and Khaliullin [43, 44], the edge sharing octa-
hedral structure and the structure of the entangled Jeff = 1/2 orbitals leads to a cancellation
of the usually dominant antiferromagnetic oxygen-mediated exchange interactions. A sub-
dominant term is generated by Hund’s coupling, which takes the form of a highly anisotropic
Kitaev exchange coupling:

HK = −K
∑

α=x,y,z

∑

〈i,j〉∈α

Sα
i Sα

j , (1.4.5)

where Si are the effective spin-1/2 operators and α = x, y, z labels both spin components and
the three orientations of links on the honeycomb lattice. This particular Hamiltonian realizes
the exactly solvable model of the quantum spin liquid phase proposed by Alexei Kitaev[15],
which describes the fractionalization of the spins into Majorana fermions, stemming from the
geometry and entanglement in the strong spin-orbit coupling limit. In Chapter 3 section 3.2,
we have shown how this geometry and orbital entanglement brings extra symmetry, endowing
the Kitaev model a self-duality point with extra symmetry. In antiferromagnets, spin-orbit
coupling will remove accidental degeneracy and favor order via the Dzyaloshinskii-Moriya
interaction, while the Kitaev model is a counterexample, in which spin-orbit coupling can
suppress ordering. The experimental studies through neutron scattering and other studies
show that the ground state of Na2IrO3 displays a collinear magnetic order, the zigzag state
with a four-sublattice structure, arising from possible Heisenberg coupling [116, 117]. However,
the Kitaev coupling might be much larger in Li2IrO3 and the system may be closer to the
quantum spin liquid phase. There has also been proposition in ultra cold atoms for the the
realization of the Kitaev model [46].

We have shown here the geometric configuration of the two honeycomb iridate compound
Na2IrO3 and Li2IrO3 in Fig. 1.18 from the paper [111, 122].
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Figure 1.18: The geometric structure of the two honeycomb iridates Na2IrO3 (left and middle
panel) and Li2IrO3 (right panel). (Figures from [111, 122])

The Na2IrO3 compound has one sodium atom in the center surrounded by 6 iridium
atoms, linked by oxygen atoms. The hybridization of orbitals is complicated: it is a mix-
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ture of overlap of d orbitals of the iridium atoms and the overlap of the oxygen p orbital
with the d orbital of the iridium atoms. A 90◦ overlap of the orbitals induces a Kitaev cou-
pling of Sγ

i Sγ
j and a 180◦ overlap of the orbitals induces a Heisenberg coupling of Si · Sj .

The Kitaev Heisenberg coupling favors a spin liquid phase [15], which is paramagnetic with
magnetic susceptibility obeying the Curie law χ ∼ 1

T while the Heisenberg coupling favors
Néel antiferromagnetism with a certain Néel temperature below which the sample is ordered
anti-ferromagnetically with finite susceptibility.

Figure 1.19: The magnetic susceptibility of the two honeycomb iridate compounds Na2IrO3

and α − Li2IrO3 [114].

We have shown the magnetic susceptibility in Fig. 1.19 given in the paper [114]. We spot
similar behavior of the two iridate compounds Na2IrO3 and Li2IrO3: (1) above the Néel tem-
perature TN , the magnetic susceptibility behaves according to the Curie law χ = χ0 + C

T −θ in
which θ is the Curie temperature; θ < 0 indicates that the interaction is antiferromagnetic.
(2) the two compounds share the same Néel temperature, at which the susceptibility sees an
anomaly, and the susceptibility remains finite below TN , which is related to the antiferro-
magnetic order at low temperature. One model describing the mixture of the two kinds of
magnetic couplings is given:

HHK = (1 − α)
∑

〈i,j〉
Si · Sj − 2α

∑

γ

Sγ
i Sγ

j (0 ≤ α ≤ 1) (1.4.6)

in which the antiferromagnetic Heisenberg term is on the links between nearest neighbours
while the spin component γ is in accordance with the link type denoted by γ. The Curie Weiss
temperature is found to be ≃ −120K for Na2IrO3 and ≃ −33K for Li2IrO3. The increase
of the Curie Weiss temperature indicates that Li2IrO3 is closer to paramagnetism indicating
an increase of the ferromagnetic Kitaev coupling. This is in agreement with the ab-initio
calculation [114] that the parameter α Li2IrO3 is found to be in the range of 0.6 ≤ α ≤ 0.7
which is quite close to the limit of Kitaev spin liquid phase α > 0.8.

One still pending debate is whether the Kitaev coupling γ is between nearest-neighbours or
the next-nearest-neighbours. On the one hand, the next-nearest-neighbour hopping comes into
play when the d orbitals hybridize with the sodium atom in the center of the six surrounding
iridium atoms and electrons can hop between the iridium atom generating an effective spin-
orbit coupling. On the other hand, the spinorial anisotropy from the d-orbitals and the
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hybridization of the iridium atoms with the oxygen atoms constitutes a nearest-neighbour
anisotropic coupling. In the paper [122], authors have argued that the nearest hopping term
is found to be ≃ 270meV and the next nearest neighbour hopping ≃ 75meV. The Kitaev
coupling is on the nearest-neighbour. This model is also confirmed by Chaloupka et al [43]
who predicted a zigzag order which is confirmed by experiments. However, in the theoretical
paper [101] and the experimental paper [127], people have identified a topological insulator
phase with time-reversal symmetry, which is only possible when the spin-orbit coupling is
between the next-nearest-neighbours.

In this thesis, we have taken into account both possibilities mentioned above: in chapter
2, we consider a model Hamiltonian with spin-orbit coupling between next-nearest-neighbors
hosting a correlated topological insulator phase, while in chapter 3, we consider the spin-
orbit coupling model on the nearest-neighbors hosting the zigzag magnetic order. We have
identified new exotic phases in the phase diagrams of both the two different models.

1.5 Doped Honeycomb Iridates

One model including this mixture of Kitaev coupling and Heisenberg coupling is the honey-
comb lattice model for iridate hosting the zig-zag order with both coupling on the nearest-
neighbour links [43]. Following the idea of equation 1.4.6, Chaloupka et al have written down
the Hamiltonian in the form:

HKH = A
∑

〈i,j〉
(2 sin ϕSγ

i Sγ
j + cos ϕSi · Sj) =

∑

〈i,j〉
(JKSγ

i Sγ
j + 2JHSi · Sj) (1.5.1)

in which A =
√

J2
K + 4J2

H and γ = x, y, z respectively on x, y and z links as shown in figure
1.20. With the change of the variable ϕ, we have different magnetic phases for the model: 1.
the zigzag phase. 2. the Néel phase. 3. the ferromagnetic phase. 4. the liquid phase around
JH → 0. It is worth noting that the Kitaev anyon liquid phase was located around JH → 0
while JK < 0.
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Figure 1.20: The Kitaev Heisenberg nearest-neighbour model on the honeycomb lattice with
Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j on different correspondent links in which α = x,y, z respectively on the

red, green and blue links and β, γ take other spin components than α.

We know that doping a spin liquid leads to superconductivity; for example, we can obtain
the d-wave superconductivity by doping the VBS spin liquid[192]. With this theoretical
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Figure 1.21: Left panel: The phase diagram of the Kitaev Heisenberg model with nearest-
neighbour magnetic coupling on the honeycomb lattice as function of the angle ϕ in the mag-
netic coupling model HKH = A

∑
〈i,j〉(2 sin ϕSγ

i Sγ
j +cos ϕSi ·Sj) from the paper of Chaloupka

et al [43]. Right panel: The phase diagram of the doped iridate system from Scherer et al [41]
in which the Kitaev coupling JK = −t0 is fixed to be ferromagnetic.

motivation, Scherer et al have studied the doped Kitaev-Heisenberg model with ferromagnetic
Kitaev coupling:

HScherer = −
∑

〈i,j〉
t0(c†

iσdjσ + d†
jσciσ) +

∑

〈i,j〉
(JKSγ

i Sγ
j + 2JHSi · Sj) (1.5.2)

in which they have fixed the Kitaev coupling JK = −t0 to be ferromagnetic in order to have
the Kitaev spin liquid in the limit of JH → 0. γ = x, y, z respectively on the x, y and z links.
The kinetic term proportional to t0 describes the motion of the holes. In accordance with the
model, they have found the corresponding phase diagram (Fig. 1.21) for the superconductivity
in which the emergent superconductivity is the p−wave phase with which when the doping is
beyond quarter filling, the superconductivity becomes topological. On the other limit where
JH ≫ JK , we have the d − wave superconductivity in the t0 − JH model on the honeycomb
lattice.

However, the Kitaev coupling in the iridate compounds has proved to be anti-ferromagnetic
in the experiments [125] and the half-filled Mott insulator hosts a zigzag magnetic order in
the quartet of JK > 0, JH < 0. This disparity between the doped iridates from a theoretical
point of view [41] and the experiment [125] motivates largely the study of doped iridate in
Chapter 3, in which we study the exotic superconductivity from doping the zigzag order.

1.6 Summary

Iridates (Iridium compounds) incorporate at the same time significant spin-orbit coupling
and Hubbard interaction. The iridate compound has attracted attention from condensed
matter physicists because of its possible realization in the real world material of Kitaev anyon
model [15]. The coexistence of different kinds of interaction along with the complication of
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geometrical factors of the lattice leads to different physics at different regimes: (1) Topological
insulator physics at the weak correlated regime, (2) Frustrated magnetism at the strongly
correlated regime (3) Exotic superconductivity in the doped Mott insulators.

Iridate compounds have been approached with different point of view: (1) Correlated topo-
logical insulators (2) frustrated magnetism. In analogy with traditional correlated systems,
the difficulties in the study of iridate compounds lie in the incorporation of different regimes.
The correlated topological insulator has been previously studied in the Kane-Mele-Hubbard
model [62], in which spin current along the z polarization is a well defined quantity. The
Polyakov gauge theory argument [146] allows for the connection of the topological insulator
phase to the magnetic phase, in which the gauge fluctuation triggers spin transport to the
bulk. However, spin observable is not a well defined observable in the context of iridates,
in that the anisotropic spin-orbit coupling renders the description of spin transport more
tricky than in the Kane-Mele model. The frustrated magnetism model has been studied by
Chaloupka et al [43], in which they identified different magnetic phases as a function of the
mixture of the Kitaev and Heisenberg magnetic coupling with enlarged unit cells. However,
the detailed analyses of the order by disorder of the frustrated magnetism are still absent.

The compound Na2IrO3 and Li2IrO3 are the two compounds on the honeycomb lat-
tice under investigation in this thesis. However, whether the spin-orbit coupling physics
reside between nearest-neighbours or next-nearest-neighbours is still an open question : dif-
ferent experimental groups have observed respectively delocalisation effect of electrons [127],
which indicates a topological insulator phase, and zigzag magnetic phase of 2D thin films
of Na2IrO3, which indicates anti-ferromagnetic Kitaev coupling and ferromagnetic Heisen-
berg coupling [43, 113]. Doped Mott phase has been previously studied with the theoretical
motivation with ferromagnetic Kitaev coupling [41] which is believed to be related to doped
iridate, however the ferromagnetic Kitaev coupling is in disparity with the experimental fact
showing anti-ferromagnetic Kitaev coupling.

In Chapter 2, we study a model with spin-orbit coupling between next-nearest neighbours
[101] with interaction. We used different approaches in different regions of the phase diagram.
In Chapter 3, we have presented our work of doped iridates, with anti-ferromagnetic Kitaev
coupling hosting the zigzag magnetic order at half-filling. We deduce the hopping term with
an itinerant magnetism point of view with which the second order super-exchange processes
induce an anti-ferromagnetic Kitaev-Heisenberg coupling. We focus on the regime around
quarter-filling, in which emergence of new symmetry centers of the Fermi surface leads to an
FFLO superconductivity. The Chapter 4 contains the study of one different model, which
is constituted with two fermion species. The RKKY interaction induced by the fast fermion
opens a gap for the slow species and attaches a Haldane mass to the slow fermion thus inducing
a topological phase.

The three different systems studied in these thesis incorporate all different aspects of Mott
physics, in which correlation plays different roles. In Chapter 2, the correlation modifies the
Fermi velocity of the edge mode in the topological insulator phase, and localizes charges
upon the Mott transition. Deep in the Mott phase, charges are totally localized and spins
are separated from the charges, inducing the super-exchange magnetism. In Chapter 3, the
magnetic coupling induced by correlation couples holes together in the doped regime and
brings about superconductivity. However, in Chapter 4, interaction plays a totally different
role and introduces topology into the system by opening a gap and inducing a Haldane mass
of the electron system on graphene lattice.

The spin-orbit coupling physics intervenes in the three model in different ways: in Chapter
2, the anisotropic spin-orbit coupling makes the spin current a non conserved observable, which



28 Chapter 1. Introduction

manifests different physical properties than the Kane-Mele Hubbard model. In Chapter 3,
the spin orbit coupling might induce other exotic superconductivity than the conventional
spin-singlet electron pairing with zero Cooper pair momentum. In Chapter 4, the spin-orbit
coupling is induced spontaneously by correlation. And this spin-orbit coupling then triggers
a topological phase in the system.



Chapter 2

Iridates on Honeycomb Lattice at Half-

filling

In this chapter we present our studies on one (sodium-iridate) model on the honeycomb
lattice (graphene lattice) with spin orbit coupling and the Hubbard on-site interaction. This
potentially describes 2D iridates with the motivation that experimental realisation of a thin
layer of such compounds reveals a topological insulator phase [127]. The hybridization of
orbitals between atoms gives a tight binding model with a mixture of normal electron hopping
between the nearest-neighbour (NN) similar to graphene, and spin-orbit coupling within the
next-nearest neighbours (NNN) which consists of a complex and anisotropic strength of it′σx,
it′σy and it′σz in the counter-clockwise direction as in Fig. 2.1. We include also a Hubbard
on-site interaction mimicking the Coulomb interaction of electrons within the orbitals of one
atom. The interplay of the above mentioned three elements may give rise to different exotic
phases in competition. Such a model is believed to be a good description of electrons behavior
in the correlated Na2IrO3 sodium iridate compound [101] and possibly to other materials with
spin-orbit coupling.
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Figure 2.1: Illustration of the tight-binding model on the honeycomb lattice with complex
next-nearest-neighbor spin-orbit couplings entailing hopping of it′σx on the x red link, it′σy

on the y green link, and it′σz on the blue z link, in which σw, w = x,y,z is the Pauli matrix
acting on the space of spins. The anisotropic spin-orbit coupling makes the spin no longer a
conserved quantity in the system.
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Specifically, the (sodium-iridate) model Hamiltonian is written as:

H0 =
∑

<i,j>

tc†
iσcjσ +

∑

≪i,j≫

it′σα
σσ′c

†
iσcjσ′

H = H0 + HI

HI =
∑

i

Uni↑ni↓,

(2.0.1)

where 〈i,j〉 denotes a sum over the nearest neighbor and ≪ i,j ≫ denotes a sum over the next-
nearest-neighbors, and σα

σσ′ is a Pauli matrix with α = x on the x link painted in red, α = y on
the y link painted in green and α = z on the z link painted in blue as in Fig. 2.1. To be precise,
the hopping strengths of electrons on the next-nearest-neighbor links are denoted it′σx on the
red link it′σy on the green link and it′σz on the z link (t′ is real). The free electron model
is a topological insulator [101]. Here, the electrons travel in a counterclockwise orientation.
The second nearest-neighbor hopping strengths pick a minus sign if electrons travel in the
clockwise orientation. This model has been previously studied in the context of Quantum
Spin Hall physics and magnetism [95, 101, 105], which respect the time-reversal symmetry.

Figure 2.2: Our Phase diagram [36]. When U < Uc (red line), the system is in the class of a
Z2 two-dimensional topological band insulator. The edge modes are embodied by a peculiar
spin texture as a result of the anisotropic spin-orbit coupling. We then refer to this phase
as Anisotropic Quantum Spin Hall (AQSH) phase. Above the Mott critical point Uc(t

′) as
function of the spin-orbit coupling amplitude t′, the spin texture now progressively develops
into the bulk when increasing the spin-orbit coupling strength. At large interactions U, we
identify two magnetic phases, the Néel and the Spiral phase.

Hereafter, combining theoretical and numerical procedures, our primary goal is to carefully
address the phase diagram summarized in Fig. 2.2 of the quite generic tight-binding model
in equation 2.0.1 at half-filling on the honeycomb lattice with an Hubbard on-site interaction
and next-nearest-neighbor anisotropic spin-orbit coupling. The difficulty of this anisotropic
spin-orbit coupling - Hubbard model lies in the non-conservation of the spin observable which
renders the spin current a not well defined quantity. This difficulty intervenes both in the
topological insulator physics and the intermediate interaction region where spin (spinon) are
subject to large gauge fluctuation.
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In section 2.1, we explain the physics of topological insulator situated in the lower area
of the phase diagram 2.2. The difficulty of the treatment in this regime comes from the non
conservation of spin observables, which makes the spin current a not well-defined quantity.
We used respectively transfer matrix and exact diagonalization of Schrödinger equation in
this regime to explicitly study the anisotropic spin transport on the edge. The anisotropy of
the transporting spin texture on the edge depends on the amplitude of the spin-orbit coupling
as shown in figure 2.6. The Hubbard interaction only modifies the fermi velocity of the
transporting edge states and shifts the effective chemical potential in the bulk.

In section 2.2, we explore the infinite U limit of the phase diagram 2.2: (1) Néel order at
J1 > J2 (2) Spiral order at J1 < J2. We carefully examine the phase diagram of the magnetic
coupling model given in figure 2.8, in which we have identified different results from Reuther
et al [105]. We study the classical ground state of the magnetism and study the frustration
phenomena through analyses of order by disorder in both the classical and quantum level
in addition to the magnetic phases already clarified in [105]. We also looked at the energy
variation on the basis of the spiral phase in the regime J2 > J1 and identified the first order
phase transition at J1 = J2. The frustration makes the goldstone mode (soft mode) disappear
in both phases, which we will explain in detail.

We study the Mott transition using the slave rotor formalism in section 2.3 which is
shown as the red line separating the colored Mott phase and the quantum spin Hall phase in
the weakly correlated regime in figure 2.2. Correlation localizes charges and spins can still
exchange position in the strongly correlated limit. Slave particle formalism aims to describe
the related physics by splitting the physical electrons into chargeons and spinons. Chargeons
acquire a gap upon Mott transition while spinons are subject to the emergent gauge field
serving as a glue between the two particles. At the limit of zero spin-orbit coupling, we have
the Mott transition of the traditional correlated system at Uc = 1.68t found by Lee and Lee
[132]. This value Uc ≃ 4.3t found within QMC [39] is underestimated by slave rotor theory
while it is overestimated by the slave spin approach (Uc ≃ 8t) [95]. There exists still a pending
debate on whether the emergent gauge field should be U(1) or Z2. In the U(1) phase, the
weakly correlated phase is in the ordered ‘superfluid’ phase with one well defined phase in
the whole system while the strongly correlated phase concerns a disordered phase for the
slave rotors. The emergent U(1) gauge field concerns a Maxwellian field in 2 + 1D. The Z2

representation describes the Mott transition using the image of Ising model and its ordered and
disordered phase, however the emergent Z2 gauge field exhibits different physical phenomena
regarding the Mott transition [95], in which there exist topological vison excitations. Here,
we choose the conventional U(1) representation which gives different Mott transition critical
value than the Z2 representation [95]. The anisotropic spin orbit coupling does not change
significantly the Mott transition value Uc compared to the Kane-Mele model, however the
spinons’ response to the fluctuating gauge field shows totally different behavior.

In Section 2.3.3, we address the problem of spinon response to the insertion of one
monopole in the emergent gauge field above the Mott transition in the parameter region
denoted as ‘spin texture’ in figure 2.2. Using the linear response formalism in the presence
of one and two monopoles, we showed that a spin texture takes form around the flux. Using
the Laughlin topological argument, we showed that the spin texture of the transporting edge
states is pumped around the fluctuating flux in the bulk. The spin texture embodies the
anisotropy analogously to the edge states: the dominant spin component on a given site coin-
cides with the type of links intersecting the line connecting the site and the core of the vortex.
And the anisotropy amplifies when spin-orbit coupling becomes more and more significant.
This anisotropic spin texture can be associated with the spiral phase in the infinite U limit.
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2.1 Topological Insulator Phase

In this section, we explore the physics in the weakly correlated regime, namely physics in
the limit of U ≪ t, t′. The normal hopping between nearest-neighbours (NN) with strength
t gives a graphene band structure with Dirac cones at the corners of the first-Brillouin zone,
while the spin-orbit coupling with strength t′ opens a gap for the band electrons at the Dirac
cones. The spin-orbit coupling introduces into the system opposite effective magnetic fields
for spins with opposite polarizations pointing along different directions on different links. In
the presence of time-reversal symmetry (TRS), Kramers Theorem states that system of spin
1/2 with time-reversal symmetry (TRS) is necessarily doubly degenerate, with one sector odd
under TRS, and another even under TRS. The symmetry group related to TRS is Z2, and
the gaplessness of the edge mode is ensured by the TRS in that any processes opening a gap
for the edge mode breaks the TRS. The topological aspect of the Kane-Mele model can be
easily illustrated by studying the spin transport on the edge knowing that the Pauli matrix σz

commutes with the Hamiltonian, indicating well-defined spin current along the Z direction,
in other words quantum spin Hall effect.

The anisotropic spin-orbit coupling model in the weakly correlated regime describes quan-
tum spin Hall effect with the same Z2 topological index as the Kane-Mele model. Neglecting
the Hubbard interaction in the first place, we diagonalize the tight binding model H0 by
Fourier transformation: 2.1.1:

H0 =
∑

<i,j>

tc†
iσcjσ +

∑

≪i,j≫

it′σα
σσ′c

†
iσcjσ′ =

∑

þk

Ψ†
þk
h(þk)Ψþk

(2.1.1)

in which the wave function in the momentum representation exhibits four components Ψ†
þk

=

(a†
þk↑, b†

þk↑,a†
þk↓,b†

þk↓) and the two sublattices of the honeycomb (A and B) give rise to the corre-

sponding electron creation operators a† and b†. We then identify

h(þk) = (τxℜe + τyℑm)g(þk) + (mxσx + myσy + mzσz)τz, (2.1.2)

where τx, τy and τz are Pauli matrices acting on the sublattice isospin A & B while σx, σy

and σz are Pauli matrices acting on the spin space ↑ and ↓.

For convenience, we have introduced the notations g(þk) =
∑

i teiþk·þδi and mx = 2t′ sin(þk ·
þRx), my = 2t′ sin(þk · þRy), mz = 2t′ sin(þk · þRz).

Here, þδ1 = (−
√

3
2 , − 1

2)a, þδ2 = (
√

3
2 , − 1

2)a and þδ3 = (0,1)a refer to vectors connecting the

nearest neighbours (see Fig. 2.1), while þRx = (−
√

3
2 ,− 3

2)a, þRy = (−
√

3
2 ,3

2)a and þRz = (
√

3,0)a
represent vectors connecting next nearest neighboring sites. Moreover, a is the closest inter-
atomic distance and we set it equal to 1 for convenience.

The Hamiltonian represents a two band system with the energy levels:

E(þk) = ±E0(þk) = ±
√

m2
x(þk) + m2

y(þk) + m2
z(þk) + |g(þk)|2. (2.1.3)

The system is an insulator with a gap ∆(k) = 2E0(k), in which E0(k) > 0 in the first Brillouin
zone.

Each band is doubly degenerate and it is convenient to introduce the band projectors
associated to the upper and lower band P± respectively:

P± =
1

2

[
1 ±

(
τxℜeg

E0
+

τyℑmg

E0
+

τz

E0
(mxσx + myσy + mzσz)

)]
. (2.1.4)
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We can illustrate the non-trivial topology by the Z2 invariant for system with inversion
symmetry [12] namely the product of the time-reversal polarization for the four time-reversal
and inversion symmetric points:

(−1)ν =
4∏

i=1

γi = −1; (2.1.5)

here, we have defined γi = −sgn(ℜeg(Γi)) and Γi = (0,0); (0,2π
3 ); (±π√

3
,2π

3 ). The Z2 topological

invariant depicts a twist of the rank 2 ground-state wave function in the first Brillouin zone.
The anisotropic spin-orbit coupling model in the weak correlated limit shares the same Z2

topological invariant as the Kane-Mele model, implying similar physical consequences on the
edge, however the sodium-iridate model differs from the Kane-Mele model in that spin is not
conserved and spin current is not a well-defined quantity because of the anisotropic spin-orbit
coupling. The spin physics depends on the edge configuration of the system and the ratio t′/t,
thus implicating an anisotropic quantum spin Hall effect.

To illustrate this point, we have studied the edge transport in the case of zigzag boundaries
as in Fig. 2.3 applying numerical diagonalization of the system on a cylinder in section 2.1.1
and the transfer matrix method summarized in section 2.1.2.
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Figure 2.3: Left panel: The lower edge of the semi-infinite system with edges parallel to
the x-type links. The system consists of layers of one-dimensional chains coupled together,
and the edge mode decays exponentially when moving into the bulk. Right panel: the chiral
edge transport corresponding to the boundary configuration. Two helical edge modes with
opposite spin polarization counter-propagate on the boundary of the system.

2.1.1 Numerical Diagonalization

As a result of the non-conservation of the spin of the anisotropic spin-orbit coupling model, the
spin polarization of the helical edge states is more sophisticated than in the Kane-Mele model.
To thoroughly analyze this point, we consider a system with two zigzag boundaries as layers
of one-dimensional chains coupled together as illustrated in Fig. 2.3. The existence of the two
edges breaks the translational symmetry along one direction leaving only one good quantum
number kx. Intuitively, the edges also break the equivalence of the three links connected by
π/3 rotation, triggering the helical emergent spin texture on the edge.

If we denote ψn
A/B as the wave function of the n th layer in A or B sublattice, then the
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Schrödinger equation of such a system takes the form:


 −it′(e−i

√
3

2
kxσz − ei

√
3

2
kxσy) −t

0 it′(e−i
√

3

2
kxσz − ei

√
3

2
kxσy)




(
ψn+1

A

ψn+1
B

)

+

(
E + 2t′ sin

√
3kxσx −2t cos

√
3

2 kx

−2t cos
√

3
2 kx E − 2t′ sin

√
3kxσx

) (
ψn

A

ψn
B

)

+


 it′(ei

√
3

2
kxσz − e−i

√
3

2
kxσy) 0

−t −it′(ei
√

3

2
kxσz − e−i

√
3

2
kxσy)




(
ψn−1

A

ψn−1
B

)
= 0.

(2.1.6)

-4

-2

 0

 2

 4

E

(a) Theory

-1

 0

 1

 0  0.5  1  1.5  2  2.5  3  3.5

S
p
in

 P
o
la

ri
z
a
ti
o
n

Kx

(b)
Sx
Sy
Sz

Figure 2.4: The edge states of the anisotropic spin-orbit coupling model with zigzag boundary
and x links parallel to the boundary. (a): Spectrum of the system on a cylinder at t′/t = 0.5
obtained from numerical diagonalization of 70 layers of a one-dimensional system described
by the Schrödinger equation 2.1.6. The non-trivial Z2 topological invariants ensures an helical
edge states with opposite spin polarization. The energy dispersion obtained analytically using
transfer matrix in section 2.1.2 fits well the numerics. The discrepency is most pronounced
when the edge states enter the bulk band because of the finite scaling effect. (b): The different
components of the spin polarization measured on the lower edge of the state with the lowest
positive energy in the spectrum as a function of momentum, obtained from diagonalization
of the system. We observe that states with opposite Fermi velocities on both sides of kx =
π√
3

have opposite spin polarizations, thus implying helical spin transport on the edge. The

dominant spin component corresponds to the type of links parallel to the boundary.
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We then perform a numerical diagonalization of such a system with 70 layers of one-
dimensional chains (see Fig. 2.4) and a purely analytical transfer matrix approach is developed
in 2.1.2. We address a system with boundaries parallel to the x-type links and the resulting
spin polarization depends on how the system is cut and on the ratio t′/t. We observe that
there are two edge modes crossing the gap connecting the upper and lower bands according
to the results obtained from the numerical diagonalization presented in Fig. 2.4 (a). The
discrepency between the exact dispersion relation obtained theoretically and numerically from
exact diagonalization of the Schrödinger equation is most pronounced when the edge states
enters the bulk bands. This is due to the finite scaling effect, and we have checked that the
two dispersion relations tend to coincide in the thermal dynamic limit.

We have studied the spin polarization of one of the metalic edge state, which is the lowest
positive energy state, by measuring its spin polarization on the boundary: spin have opposite
components respectively at kx > π√

3
and kx < π√

3
; since the Fermi velocity in these two

intervals separated by kx = π√
3

are opposite as well, this implies two counter-propagating

states with opposite spin polarization. The energy dispersion of the edge state obtained
analytically in section 2.1.2 fits well the edge states plotted in the spectrum in Fig. 2.4. As
a result, we have two counter-propagating states with approximately linear dispersion in the
spectrum on both upper and lower edges: the state with one polarization propagating to the
left (right) on the lower (upper) edge and the state with the opposite polarization propagating
to the right (left) on the lower (upper) edge as in Fig. 2.3. The time-reversal symmetry forbids
the (elastic) backscattering, allowing for helical edge spin transport.
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Figure 2.5: Spin polarization of the lowest positive energy state for the exactly diagonalized
Hamiltonian on a cylinder with x links parallel to the boundary (see Fig. 2.3). kx refers to the
wavevector along the boundary. Spin polarization at the edge for (a) t′ = 0.2t, (b) t′ = 0.3t,
(c) t′ = 0.5t, (d) t′ = 1.0t. The x component becomes dominant when t′/t increases. The
spin polarization at the momentum kx with the maximal dominant component is shown in
Fig. 2.6 as a function of t′/t.
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Consequentially, the effective Hamiltonian on the lower edge can be described as a 1D
liquid, namely a helical Luttinger liquid with two types of wave functions |Ψ1〉, |Ψ2〉 with
opposite spin polarizations (see Fig. 2.3) [128]. The spin polarization of the two helical
states, which varies as a function of t′/t, is studied using exact diagonalization of the system
on a cylinder. As shown in Fig. 2.5 lower panel, when t′ ≪ t the helical states have equal
components in all spin polarizations; when t′/t increases the helical states have a x component
gradually dominating the spin polarization.

On the two edges of the system, we identify two counter-propagating helical spin states
with opposite polarizations as a reminiscence of the Kane-Mele model [11]. As shown in Fig.
2.6, when t′/t is small, the spin polarization has equal components in the x, y and z directions,
and when t′/t is large, one spin polarization component dominates and this dominant spin
polarization coincides with the type of next-nearest-neighbour links parallel to the boundary
(see Fig. 2.6), which implies that helical edge states point in x (y, z) direction if the two
edges are parallel to the x (y and z) type link, respectively.

At a mean-field level, the interaction adds an effective chemical potential:
∑

i Uni↑ni↓ =∑
kl µeff Ψ†

klΨkl and Ψkl are the wave function of the band electron in which l is the band
index, and µeff = U

2 and the AQSH phase is robust as long as the chemical potential does
not touch the conduction (valence) band: µeff < E0(k) [62].

At a general level, one can show either using a mean-field type argument or by invoking
the U(1) slave-rotor theory as explained in section 2.3.1, that such a Quantum Spin Hall phase
is robust towards finite to moderate interactions. The notion of topological invariants can also
been extended for an interacting system [134, 135, 136]. In section 2.3.1, we shall study in
more details the disappearance of the helical edge modes resulting from the Mott transition
in which Hubbard interaction localizes propagating edge electrons.
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Figure 2.6: In the weak interaction regime, the anisotropic spin-orbit model lies in the
phase of a topological band insulator on a cylinder, in which only the wave-vector kx is a
good quantum number. The two counter-propagating helical edge states protected by the Z2

topological invariant of the system have spin polarizations which explicitly depend on the ratio
t′/t. Here, we show the spin polarization components of the edge state with a wave-vector kx

where Sx is maximum, as a function of t′/t (see, for example, Fig. 2.5). Sx prevails over Sy

and Sz at large t′/t.
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2.1.2 Edge State Solution via Transfer Matrix

In this section, we provide an analytical solution of the edge states, in the non-interacting
limit at U = 0. We can view the system as semi-infinite with layers of one-dimensional two-
sublattice chains coupled together as in Fig. 2.3 [159, 160]. We note the wave function on the
n th layer as ψnJσ in which J designates the sublattice σ the spin, then we can write down
the Schrödinger equation of the system:

[
−it′(e−i

√
3

2
kxσz − ei

√
3

2
kxσy)τz − t

2
(τx + iτy)

]
ψn+1Jσ + EψnJσ

+

(
2t′ sin

√
3kxσxτz − 2t cos

√
3

2
kxτx

)
ψnJσ + [it′(ei

√
3

2
kxσz − e−i

√
3

2
kxσy)]ψn−1Jσ = 0

(2.1.7)

in which σx,y,z denote the Pauli matrices for spin subspace and τx,y,z the Pauli matrices
for the sublattice isospin subspace. Let us write down the wave function decaying when
penetrating into the bulk: ψnJσ =

∑
i λn

i uiJσ such that the wave function vanishes at the
edge ψ0 =

∑
i uiJσ = 0. Then the Schrödinger equation reads:

EuiJσ = [ci
xτx + ci

yτy + (mi
xσx + mi

yσy + mi
zσz)τz]uiJσ = MiuiJσ, (2.1.8)

in which

ci
x =

t

2

(
λi +

1

λi

)
− 2t cos

√
3

2
kx

ci
y =

it

2
(λi − 1

λi
)

mi
x = −2t′ sin

√
3kxσx

mi
y = it′(λie

i
√

3

2
kx − 1

λi
e−i

√
3

2
kx)

mi
z = −it′(λie

−i
√

3

2
kx − 1

λi
ei

√
3

2
kx).

(2.1.9)

We can diagonalize the matrix in Eq. 2.1.8 by squaring it:

E2 =t2 + 4t2 cos2

(√
3

2
kx

)
+ 4t′2 + 4t′2 sin2

√
3kx + 4t′2 cos

√
3kx

+ 2t2 cos

√
3

2
kx(λi +

1

λi
) − 2t′2 cos

(√
3kx

)
(λi +

1

λi
)2.

(2.1.10)

Eq. 2.1.10 is a second-order equation of λi + 1
λi

and a fourth order equation of λi. There are 4

roots of λi among which two of them satisfy |λi| < 1, and if λi is a root of the equation so is 1
λi

.
Therefore, we are allowed to write the wave function as a superposition of two eigenvectors:

ψn = u1λn
1 + u2λn

2 . (2.1.11)

The vanishing of the wave function at the edge gives that u1 = −u2 = u, then the wave
function shall be written as:

ψn = (λn
1 − λn

2 )u. (2.1.12)
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Equation 2.1.8 implies the fact that the two matrices E − Mi (i = 1,2) in Eq. 2.1.8 are
sharing a null-eigenvector, and this entails:

Det(E − M1) = Det(E − M2) = Det(a1(E − M1) + a2(E − M2)) = 0, (2.1.13)

in which a1,a2 are two arbitrary constants. This is equivalent to:

E2 = (c1
x)2 + (c1

y)2 + (m1
x)2 + (m1

y)2 + (m1
z)2 = (c2

x)2 + (c2
y)2 + (m2

x)2 + (m2
y)2 + (m2

z)2

= c1
xc2

x + c1
yc2

y + m1
xm2

x + m1
ym2

y + m1
zm2

z. (2.1.14)

Then we have:

(c1
x − c2

x)2 + (c1
y − c2

y)2 + (m1
x − m2

x)2 + (m1
y − m2

y)2 + (m1
z − m2

z)2 = 0, (2.1.15)

(λ1 − λ2)2

[
2t′2 cos

√
3kx

(
1 +

(
1

λ1λ2

)2
)

+
t2 + 4t′2

λ1λ2

]
= 0. (2.1.16)

λ1 = λ2 gives a trivial solution, then we can find λ1λ2 from the above equation. If we put
L = t2+4t′2

2t′2 cos
√

3kx
, then:

M = λ1λ2 =
−L ±

√
L2 − 4

2
. (2.1.17)

Since we must impose |λi| < 1 (i = 1,2), this implies that |λ1λ2| < 1. The first Brillouin zone
for the one-dimensional chain is [0, 2π√

3
], resulting in:





λ1λ2 = −L−
√

L2−4
2 kx ∈ [0, π

2
√

3
] ∪ [ 3π

2
√

3
, 2π√

3
]

λ1λ2 = −L+
√

L2−4
2 kx ∈ [ π

2
√

3
, 3π
2
√

3
].

(2.1.18)

From Eq. (2.1.8) we find:

λ1 +
1

λ1
+ λ2 +

1

λ2
= (1 +

1

λ1λ2
)(λ1 + λ2) =

t2 cos
√

3
2 kx

t′2 cos
√

3kx

. (2.1.19)

From λ1 + λ2 =
t2 cos

√
3

2
kx

t′2 cos
√

3kx(1+ 1

λ1λ2
)

= N we can work out the two eigenvalues λ1 and

λ2: λ1,2 = −N±
√

N2−4M
2 which gives us the penetration length: ξ1,2 = − ln(λ1,2). From the

relation:

(λ1 +
1

λ1
)(λ2 +

1

λ2
) =

(λ1 + λ2)2

λ1λ2
− 2 + λ1λ2 +

1

λ1λ2
(2.1.20)

=
E2 − (t2 + 4t2 cos2

√
3

2 kx + 4t′2 + 4t′2 sin2
√

3kx + 4t′2 cos
√

3kx)

2t′2 cos
√

3kx

We find the dispersion relation for the edge states and this fits well with the spectrum obtained
numerically in Fig. 2.7:

Eedge = ±

√√√√
4t2 cos2

√
3

2
kx + 4t′2 sin2

√
3kx − 4t′4 cos4

√
3

2 kx

t2 + 4t′2 − 4t′2 cos
√

3kx

. (2.1.21)

In order to find the wave function, we can use the projector:

P i
± =

1

2

(
1 ±

(
ci

x

E0
τx +

ci
y

E0
τy + (

mi
x

E0
σx +

mi
y

E0
σy +

mi
z

E0
σz)τz

))
(2.1.22)

that diagonalizes Eq. (2.1.8). The eigenvector u is the intersection of the two projected spaces
entailed by P 1,2

− .
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Figure 2.7: The numerical study of spin polarization magnitude as a function of layer in the
system of 70 layers of one-dimensional chains described by Eq. 2.1.7 at t′ = 0.5t.

2.2 The Frustrated Magnetism in Strong Coupling limit

In this section, we investigate the magnetism emerging in the limit of “infinite” interactions,
the possible magnetic orders and the phase transition(s) between these phases. Since the
electron-hole excitations in this limit would cost an energy proportional to U , electrons are
subject to virtual tunneling processes in which they exchange their positions while leaving
the filling unchanged. The induced super-exchange magnetism is a second-order process in
H0[92]:
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Figure 2.8: The magnetic phase diagram for the tight-binding model with anisotropic spin-
orbit coupling on the honeycomb lattice in the limit of infinite U described by Eq. 2.2.1. The
J1 − J2 model is highly frustrated because of the hexagonal geometry and the anisotropy of
the J2 coupling. We identify the bipartite Néel phase at J1 > J2, the Spiral phase with 24
sublattices at J1 < J2.

HJ1J2
= J1

∑

<i,j>

þSi · þSj + J2

∑

〈〈i,j〉〉
(Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j ) (2.2.1)

where J2 = 2t′2/U and J1 = 2t2/U .
The term with J2 indicates a next nearest-neighbor link in α spin polarization, with

α = x,y,z on respectively red, green and blue links in Fig. 2.1, β and γ are other spin
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polarizations than α. The frustration stems from several levels: the coexistence of first and
second neighbor couplings, the anisotropy in the next-nearest-neighbour coupling as well as
the lattice geometry. The minimization of the ground state energy will lead to different
scenarios like enlarged unit cells, disappearance of Goldstone modes and the reduction of
possible classical ground states manifold (degeneracy lift).

When evaluating the classical energy of the magnetic order, we identify two magnetic
phases: the Néel order at J1 > J2 and the two copies of locked Spiral order on the two
triangular sublattices at J1 < J2 with the critical point J1 = J2 as in Fig. 2.8. We also per-
formed a spin wave analysis based on the classical magnetic order. Analytical and numerical
investigations of the magnetism at all J1/J2 ratios are presented below, for completeness. We
recover the existence of a quantum phase transition at J1 ≈ J2.

2.2.1 Néel Phase for J1 > J2

In the J1 ≫ J2 regime, the Heisenberg coupling dominates over Kitaev-Heisenberg coupling
and the corresponding magnetic phase is the well-known bipartite Néel order on the bipartite
honeycomb lattice: þSA = −þSB and the classical energy of this state per site is ENéel =
−3J1

2
þS2 − J2

þS2. The SU(2) spin rotation symmetry is spontaneously broken for the Néel
state and in the absence of next-nearest-neighbor frustration, there exists a Goldstone mode
underlying the whole original continuous spin symmetry SU(2) on the unit sphere, restoring
the spontanesouly SU(2) symmetry. The energy of the Goldstone mode adds a quantum
correction to the ground state. At the level of this Néel order, we carried out a semiclassical
spin wave analysis in order to compute this correction to the energy of the Néel state, from
which we will see that the anisotropy in the J2 coupling lifts the degeneracy between the
different possible orientations of the Néel order parameter. Specifically, the vacuum energy will
become non-uniform on the SU(2) sphere selecting certain spin polarization which minimize
the vacuum energy.

In order to describe the quantum correction based on an arbitrary spin polarization, we
begin by writing the Holstein-Primakoff representation of the spin in the z polarization, then
we rotate the z quantization axis by the Euler rotation matrix in order to describe quantum
fluctuations in all the spontaneously broken symmetry cases: we rotate the z axis first around
the y axis by an angle θ then around z axis by an angle φ, resulting in

R(φ,θ) = Rz(φ)Ry(θ) =




cos θ − sin θ 0
cos φ sin θ cos φ cos θ − sin φ
sin φ sin θ sin φ cos θ cos φ


 (2.2.2)
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B0


 =




−S + b†b√
2S
2 (b† + b)√
2S
2i (b† − b)


 , (2.2.4)




Sz
A

Sx
A

Sy
A


 = R(φ,θ)




Sz
A0

Sx
A0

Sy
A0


 , (2.2.5)
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Sz
B

Sx
B

Sy
B


 = R(φ,θ)




Sz
B0

Sx
B0

Sy
B0


 . (2.2.6)

We insert the above semiclassical spin representation back into Eq. 2.2.1, then we will ob-
tain the Bogoliubov-De Gennes type effective Hamiltonian describing the quantum fluctuation
about the Néel state:

H =
∑

þq

Φ†
þqHþqΦþq − J1

2
NS2z − J2NS2, (2.2.7)

where Φ†
þq = (aþq,b†

−þq,a†
−þq,bþq), z = 3 is the coordinate number, N the number of sites, and we

define

Hq =




γz γ⋆
þq γ⋆

xy 0

γþq γz 0 γ⋆
xy

γxy 0 γz γ⋆
þq

0 γxy γþq γz


 , (2.2.8)

γþq = J1S
∑

i

exp(iþq · þδi)

γz = 3J1S + 2J2S − 2J2S[cos2 φ sin2 θ cos(þq · þRx) + sin2 φ sin2 θ cos(þq · þRy) + sin2 θ cos(þq · þRz)]

γxy = J2S[exp(iþq · þRz) sin2 θ + exp(iþq · þRx)(cos2 φ cos2 θ sin2 φ − i sin 2φ cos θ)

+ exp(iþq · þRy)(sin2 φ cos2 θ − cos2 φ + i sin 2φ cos θ)].

We apply the Bogoliubov-De Gennes method to diagonalize the Hamiltonian: αþq = u1aþq +

v1b†
−þq+u2a†

−þq+v2bþq, and [αþq, H] = ωþqαþq, then we will obtain the excitation energies for the spin
wave and the corresponding wave function αiþq; i = 1,2,3,4. Thereafter, we have diagonalized
the Hamiltonian with four energy levels:

ωiþq = ±
√

γ2
z − (|γþq| ± |γxy|)2 i = 1,2,3,4 (2.2.9)

H =
∑

þq

ωþq(α†
1þqα1þq + α2þqα†

2þq + α†
3þqα3þq + α4þqα†

4þq). (2.2.10)

By putting the Hamiltonian in ‘normal order’ (commuting α2þqα†
2þq and α4þqα†

4þq), we obtain the
energy of the vacuum:

E0 = 2
∑

þq

ωþq =
∑

þq

2
√

γ2
z − (|γþq| + |γxy|)2. (2.2.11)

Noticing that the vacuum energy depends on the two Euler angles θ and φ, the vacuum
quantum fluctuations shall choose an angle that minimizes E0. Numerically, we find that the
minimal vacuum energy is taken when the quantization axis coincides with the x y and z axis
(see Fig. 2.9). The Goldstone mode is no longer soft in this case, because when we shift from
one spontaneously broken symmetry vacuum to another, the variation of the vacuum energy
makes this ‘transversal’ mode energetic, thus destroying the Goldstone mode. Conclusively,
the spin wave analysis infers that the Néel phase in the limit of J1 > J2 loses its Goldstone
mode due to the anisotropy, and that the zero-point vacuum fluctuations select only Néel
orders pointing along the x, y and z directions.
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Figure 2.9: Color topography of the vacuum energy as a function of θ and φ in the Néel
order phase when J1 > J2, in which θ and φ indicate the Euler angles describing the order
parameter of the Néel order. The minimum of the vacuum energy is taken when the Néel
order parameter coincides with the x y and z direction. The next-nearest-neighbor anisotropic
coupling reduces the SU(2) symmetry of the vacuum states for a conventional Néel order to
a discrete symmetry of three possible order parameters of this frustrated Néel order.

2.2.2 Non-Colinear Spiral Phase for J1 < J2

Next, we focus on the Spiral phase of J1 < J2. If we only take into account the J2 magnetic
coupling, we can apply a global transformation to bring the spin model in Eq. 2.2.1 into
an SU(2) anti-ferromagnetic Heisenberg model on the triangular sublattices by introducing

4 patterns, namely: HJ2
= J2

∑ þ̃
Si · þ̃

Sj where Sl
i = ǫl

i · S̃l
i and l = x,y,z such that the global

transformation obeys the following condition:

ǫz
i ǫz

j = 1 ǫy
i ǫy

j = −1 ǫx
i ǫx

j = −1

ǫz
j ǫz

k = −1 ǫy
j ǫy

k = −1 ǫx
j ǫx

k = 1

ǫz
kǫz

i = −1 ǫy
kǫy

i = 1 ǫx
kǫx

i = −1, (2.2.12)

where ǫw
l = ±1 (l = i,j,k; w = x,y,z). We can thus find out the four solutions of




ǫx
i,j,k

ǫy
i,j,k

ǫz
i,j,k


:




ǫx
i

ǫy
i

ǫz
i


 =




1
1
1


�,




−1
−1
1


 △ ,




−1
1

−1


 © ,




1
−1
−1


 ♦. (2.2.13)

The x, y, z links are all transformed into Heisenberg anti-ferromagnetic links after the
global transformation but the introduced four patterns are paved to every sites. Then, the
classical ground state on the triangular lattices is obviously the coplanar 120◦ Néel order for
the transformed anti-ferromagnetic Heisenberg model, consisting of 3 sublattices (A, B, C or
1, 2, 3 in Fig. 10). The magnetic order will be a Spiral order with 12 sublattices on each
triangular sublattice with 4 patterns �♦ © △ paved according to the following constraints:
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1. X-link: �© or ♦△

2. Y-link: �♦ or △©

3. Z-link: �△ or ©♦.
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Figure 2.10: The global transformation brings the J2 anisotropic magnetic model to an anti-
ferromagnetic spin model on triangular lattices with four patterns: �♦ © △ with black
patterns on one sublattice and red patterns on the other. The nearest-neighbor J1 Heisenberg
coupling locks the angles between two copies of spiral orders and fixing the relative arrange-
ment of the 4 patterns between the two sublattices as shown in the figure. The sites on which
we studied the nearest-neighbor Heisenberg coupling namely the local fields þh1

△, þh2
� and þh3

©
in Eqs. 2.2.15, 2.2.16 and 2.2.17 are painted in red color with their number indicating the
sublattice for the transformed 120◦ Néel order. In Green, we depict the 12 sublattices (sites)
on each triangular sublattice with 4 patterns, which finally constitutes 24 sublattices for the
elementary cell of the magnetic order. We also represent the wave-vectors associated with the
Spiral phase (in blue) and with the Néel phase (in black). The grey hexagon connects the
Dirac points.

The magnetic order is spiral in that the 4 patterns �♦ © △ and the 3 spins of the 120◦

Néel order are alternating when moving in one direction on the lattice. It is important to
underline that in the Spiral phase, the spin order is non-colinear (see Fig. 2.11). We have
given the wave vectors of the spiral magnetic order in the right panel of figure 2.10, which
is not in agreement with the results obtained by Reuther et al by fermionic renormalization
group [105]. The wave vector of the magnetic phase seems to vary continuously as a function
of J2/J1 according to Reuther et al, which is not compatible with our analysis either.

In the absence of the J1 coupling, the two copies of spiral order can rotate with respect
to each other freely and the relative arrangement of the 4 patterns can be arbitrary between
the two sublattices.At the classical level, the J1 anti-ferromagnetic coupling shall impose the
choice of the 4 pattern paving on the alternative sublattice once the 4 pattern paving is fixed
in one triangular sublattice as in Fig. 2.10. Meanwhile, if we consider the J1 coupling in terms
of the 3 spins of the 120◦ Néel order after the global transformation, the two copies of the
transformed 120◦ spins would be mutually locked reducing the degree of freedom of the angle
between the two copies of the transformed 120◦ Néel order. The spiral order likewise the 120◦
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Figure 2.11: Here, we represent the orientations of the 12 black sites in the Green unit cell of
the Spiral phase.

Néel state has another degree of freedom, namely the direction of the Néel order parameter.
The energy of the J1 coupling would depend on the latter. The minimization with regard to
this degree of freedom would still reduce the possible choices of the Néel order parameter. We
shall clarify the minimization of J1 coupling energy with regard to these factors.

The 120◦ Néel state imposes that spins on the three vertices A, B and C of a triangle
þ̃
SA +

þ̃
SB +

þ̃
SC = 0. The J1 Heisenberg coupling is equivalent to a local magnetic field

produced by the three nearest neighbour spins of the alternative copy of the spiral order on
the other copy of the 4 sublattice spiral order:

HJ1
= J1

∑

i

(þhi△ · þSi△ + þhi� · þSi� + þhi♦ · þSi♦ + þhi© · þSi©), (2.2.14)

where the sum is carried out in terms of 4 sublattices. Considering the 3-sublattices Néel
order, we have to sum over 12 sites in order to get the classical energy of the J1 coupling.
However, when writing down the local magnetic field stemming from the J1 coupling, we found
that the 4 patterns could be simplified, and that we need only to sum over the 3 sublattices
of the 120◦ order.

The effective local magnetic fields due to the nearest-neighbor Heisenberg coupling on the
sites with numbers painted in red in Fig. 2.10 are:

þh1
△ = D�

þ̃
SA + D©

þ̃
SB + D♦

þ̃
SC = 2D△




S̃x
B

S̃y
C

S̃z
A


 (2.2.15)

þh2
� = D△

þ̃
SB + D©

þ̃
SA + D♦

þ̃
SC = 2D�




S̃x
C

S̃y
A

S̃z
B


 (2.2.16)

þh3
© = D♦

þ̃
SC + D�

þ̃
SB + D△

þ̃
SA = 2D©




S̃x
A

S̃y
B

S̃z
C


 (2.2.17)
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where D� =




1 0 0
0 1 0
0 0 1


, D△ =




−1 0 0
0 −1 0
0 0 1


, D© =




−1 0 0
0 1 0
0 0 −1


, D♦ =




1 0 0
0 −1 0
0 0 −1


 .

We found that the sum of the J1 coupling on these three sites is independent of the 4
patterns:

J1(þh1△ · þS1△ + þh2� · þS2� + þh3♦ · þS3♦)

=J1(D△
þ̃
h1D△

þ̃
S1 + D�

þ̃
h2D�

þ̃
S2 + D♦

þ̃
h3D♦

þ̃
S3)

=J1(
þ̃
h1 · þ̃

S1 +
þ̃
h2 · þ̃

S2 +
þ̃
h3 · þ̃

S3),

(2.2.18)

in which
þ̃
h1 = 2




S̃x
B

S̃y
C

S̃z
A


,

þ̃
h2 = 2




S̃x
C

S̃y
A

S̃z
B


 and

þ̃
h3 = 2




S̃x
A

S̃y
B

S̃z
C


. As a result, the J1 coupling

turns into:

HJ1
= J1

∑

i

þ̃
hi · þ̃

Si, (2.2.19)

in which the sum is carried over the 3 sublattices of the 120◦ Néel order and the transformed

local magnetic field
þ̃
h = DX

þhX (X = �♦©△) is independent of the choice of the 4 patterns.

We observe one property of these local fields that would allow us to simplify the analysis
in terms of the choice of the Néel order parameter of the 120◦ transformed Néel order and the
relative angle between the two copies of spiral order:

þ̃
h1 +

þ̃
h2 +

þ̃
h3 = 0. (2.2.20)

Then, the minimization of energy of the J1 nearest neighbor coupling in equation 2.2.19 can
be fulfilled by the use of Cauchy-Schwarz Inequality:

þ̃
h1 · þ̃

S1 +
þ̃
h2 · þ̃

S2 +
þ̃
h3 · þ̃

S3 ≥ −(||þ̃h1|| · ||þ̃S1|| + ||þ̃h2|| · ||þ̃S2|| + ||þ̃h3|| · ||þ̃S3||)

≥ −
√

3(||þ̃h1||2 + ||þ̃h2||2 + ||þ̃h3||2) = −6.

(2.2.21)

The two equalities in Eq. 2.2.21 are taken simultaneously when the norms of the three
local magnetic fields on the other copy of the triangular sublattice are equal as in Eq. 2.2.22:

||þ̃h1|| = ||þ̃h2|| = ||þ̃h3||
þ̃
S1 = −1

2
þ̃
h1

þ̃
S1 = −1

2
þ̃
h2

þ̃
S3 = −1

2
þ̃
h3.

(2.2.22)

Since all the spins are prone to align in the opposite direction to the local magnetic field
to lower the energy of the ground state, the equality of norms of the three magnetic field on

the alternative triangular sublattice coincidentally implies as well:
þ̃
S1 +

þ̃
S2 +

þ̃
S3 = 0, in other

words the 120◦ Néel state for
þ̃
S on the alternative sublattice.

Accordingly, the spiral order for þS on the alternative sublattice is favored when the energy
of the nearest-neighbor Heisenberg coupling is minimized, and the latter locks the angle
between the two copies of spiral order of the ground state obtained from further analysis of
Eq. 2.2.22. The fixing procedure of the relative arrangement between the two sublattices is
presented in Fig. 2.10. We will further study Eq. 2.2.22 to find out how the choice of the
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Néel order parameter for the 120◦ Néel order and the angle between the two copies of spiral
order are constrained for the minimization of the classical energy.

Eqs. 2.2.22 impose extra restrictions on the three 120◦ Néel vectors, and these supplemen-
tary restrictions to spins will reduce the SU(2) continuous symmetry for quantization axis
choice to a smaller group:





S̃x2
B + S̃y2

C + S̃z2
A = S̃x2

A + S̃y2
B + S̃z2

C = S̃x2
C + S̃y2

A + S̃z2
B = 1

||þ̃SA|| = ||þ̃SB|| = ||þ̃SC || = 1
þ̃
SA +

þ̃
SB +

þ̃
SC = 0.

(2.2.23)

The last two equations in Eqs. 2.2.23 is implied by the construction of three arbitrary vectors
in the space with 120◦ between each other by means of Olinde-Rodrigue formula:





þ̃
SA = cos(α)þu + sin(α)þv
þ̃
SB = cos(α + 2π

3 )þu + sin(α + 2π
3 )þv

þ̃
SC = cos(α − 2π

3 )þu + sin(α − 2π
3 )þv

(2.2.24)

The two vectors þu and þv indicate the plane in which the Néel order parameter of the black

sublattice lives: þu =




cos θ
sin θ

0


 þv =




− sin φ sin θ
sin φ cos θ

cos φ


, then þn is the normal vector to the

plane defined by (S̃A,S̃B,S̃C):

þn = þu ∧ þv =




sin θ cos φ
− cos θ cos φ

sin φ


 . (2.2.25)

þn plays the role of rotation axis of the three vectors composing the 120◦ Néel state.
Resolution of Eqs. 2.2.23 gives a group of solutions for θ and φ, therefore a family of

rotation axes of the 120◦ Néel state on the unitary sphere. More precisely, we obtain the
equations:
{

(cos α cos θ − sin α sin φ sin θ)2 + (cos(α + 2π
3 ) sin θ + sin(α + 2π

3 ) sin φ cos θ)2 + (sin(α − 2π
3 ) cos φ)2 = 1

(cos(α − 2π
3 ) cos θ − sin(α − 2π

3 ) sin φ sin θ)2 + (cos α sin θ + sin α sin φ cos θ)2 + (sin(α + 2π
3 ) cos φ)2 = 1.

(2.2.26)
The numerical solution gives that the rotational axis for the 120◦ Néel order (namely þn) takes
the form(s):

1√
3




−1
−1
−1


 ,

1√
3




1
−1
1


 ,

1√
3




1
1

−1


 ,

1√
3




−1
1
1


 , (2.2.27)

and the three 120◦ spins can rotate freely around these axes (α can take any value). Within our
choice of notations, the solution þn is equivalent to −þn because they describe the same ‘plane’
of solutions for the spins. We should notice that there exists a spin permutation symmetry σ
for the group formed by these axes and this symmetry is a reminiscence of symmetry group
preserved by the original model:

þn′ = σþn =




0 0 1
1 0 0
0 1 0


 þn. (2.2.28)
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By analogy with the case J1 > J2 phase, the vacuum quantum fluctuations would depend
on the rotational degrees of freedom α and the vacuum energy minimization would reduce the
group of symmetry for ground state from a continuous rotational group to a discrete group
similar to the J1 > J2 phase. The spin wave analysis, however, is not pursued here owing
to its complexity because of the large number of degrees of freedom, but we can infer the
absence of gapless Goldstone modes due to the quantum fluctuations in the presence of the
anisotropic magnetic frustration.

2.2.3 Phase Transition at J1 = J2

The classical energy per site for the Néel state is ENéel = −3J1

2 S2 − J2S2, and the classical

energy per site for spiral order is ESpiral = −3J2

2 S2 − J1S2. Apparently, a quantum phase
transition would occur in varying the ratio of J1/J2 and a first-order phase transition at the
critical point J1 = J2 where the ENéel = ESpiral.

The phase transition can be visualized by studying the deformation of the transformed
120◦ Néel order from the spiral phase. The deformation of the copies of the 120◦ Néel order
can be manifested by the following expressions:

þ̃
SA +

þ̃
SB +

þ̃
SC = þǫ

þ̃
S1 +

þ̃
S2 +

þ̃
S3 = þη,

(2.2.29)

in which þǫ and þη are vectors describing deformations of the three spins on respectively the
two triangular sublattices. The J2 coupling is

HJ2
=J2

∑
(
þ̃
S1 · þ̃

S2 +
þ̃
S2 · þ̃

S3 +
þ̃
S3 · þ̃

S1)

=
1

2
J2

∑
[(

þ̃
S1 +

þ̃
S2 +

þ̃
S3)2 − 3||þ̃S||2]

=
1

2
J2

∑
(þη2 − 3||þ̃S||2),

(2.2.30)

in which the sum is carried out over all the triangles of the sublattice. Then the energy
variation of the J2 coupling would be:

∆EJ2
=

1

2
J2

∑
(þǫ2 + þη2). (2.2.31)

For the J1 coupling, we can proceed with the similar analysis as Eqs. 2.2.15,2.2.16 and
2.2.17:

þh1
△ =




S̃x
A − S̃x

B + S̃x
C

S̃y
A + S̃y

B − S̃y
C

S̃z
A − S̃z

B − S̃z
C


 = D△(

þ̃
h1 − þǫ), (2.2.32)

þh2
� =




−S̃x
A − S̃x

B + S̃x
C

S̃y
A − S̃y

B − S̃y
C

−S̃z
A + S̃z

B − S̃z
C


 = D�(

þ̃
h2 − þǫ), (2.2.33)

þh3
© =




−S̃x
A + S̃x

B + S̃x
C

−S̃y
A + S̃y

B − S̃y
C

S̃z
A + S̃z

B − S̃z
C


 = D©(

þ̃
h3 − þǫ). (2.2.34)
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We also have:
þ̃
h1 +

þ̃
h2 +

þ̃
h3 = 2þǫ. (2.2.35)

We can pursue the same procedure as in Eq. 2.2.18 to get rid of the sum over 4 patterns and
obtain the J1 coupling:

HJ1
= J1

∑
((

þ̃
h1 − þǫ) · þ̃

S1 + (
þ̃
h2 − þǫ) · þ̃

S2 + (
þ̃
h3 − þǫ) · þ̃

S3)

= J1

∑
(
þ̃
h1 · þ̃

S1 +
þ̃
h2 · þ̃

S2 +
þ̃
h3 · þ̃

S3 − þǫ · þη).
(2.2.36)

The conditions in Eq. 2.2.22 are satisfied for both the Néel and Spiral orders, then the first
three terms in Eq. 2.2.36 is a constant. Thereafter we could obtain an expression of the
energy variation per site as a function of þǫ and þη:

∆ESpiral =
1

36
[J2(þǫ2 + þη2) + 2J1þǫ · þη]. (2.2.37)

The energy variation of the deformed 120◦ Néel triangle is a positive semi-definite form of
þǫ and þη when J1 < J2 on the one hand, the minimal energy variation ∆ESpiral = 0 is obtained
when þǫ = þη = 0; when J1 > J2 on the other hand, Eq. 2.2.37 is no more a positive semi-
definite form, the energy variation due to the deformation is capable of lowering the classical
energy, and the minimal energy is reached when þǫ = −þη and ||þǫ|| = ||þη|| = 3||þS||. Note that
here þǫ is large and we don’t have a small deformation. This implies that the spins on the
two sublattices are oriented in opposite directions and spins on the same sublattice point in a
unanimous direction, or the bipartite Néel order. We remark also ∆ESpiral = ESpiral − ENéel,
which signifies that the deformation energy of the 120◦ triangle exactly lowers the energy of
the spiral magnetic order to that of Néel order when J1 > J2.

Consequently, the magnetic order at all J1/J2 ratios is the bipartite Néel order when
J1 > J2 and the two copies of locked Spiral order when J1 < J2. This approach rather
suggests first order phase transition when J1 = J2. In both phases, Goldstone modes are
absent because of the vacuum quantum fluctuation selection.
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2.3 Intermediate Interaction Region - Mott Transition

When the Hubbard interaction becomes significant enough compared to the electron hopping
energy for a system with half-filling, electron charges tend to be gradually localized by the
interaction because the hopping processes bring about virtual states of a doubly occupied site,
which is energetically very costly. However, the second order processes in which two electrons
with different spins exchange their positions is allowed, and when the Hubbard interaction
approaches infinity compared to electron hopping, charges are completely localized while the
only reminiscent processes are the super-exchange processes of the spins, which gives rise to
the magnetic order, as if the charge and spin of the electrons were totally separated [34]. The
underlying physics describing this transition from free electrons to charge localization and
spin-charge separation is the Mott transition. One way to describe this transition is the slave
particle representation, in which electrons are represented as a charge particle (chargeon) and
a spin particle (spinon) glued together by a gauge field[35]. In the weak coupling limit, the
chargeon is in a gapless superfluid phase while at certain critical interaction strength Uc the
chargeon acquires a gap, and the correlation length of the chargeon decays exponentially [22].
However, for a topological insulator in which the bulk is a gapped insulator and the edge
is metallic, the bulk is gapped by the spin-orbit coupling in the weakly coupling limit and
gapped by the interaction in the Mott phase, and the Mott transition is manifested rather on
the edge by the disappearance of the helical edge modes[222]. The single-electron gap does not
close at the Mott transition and the density of states now centers around the Hubbard energy
in the spectral function [22], as an embodiment of the Coulomb blockade. A gauge field will
however emerge in this spin-charge separation physics describing the confining force between
the charge and the spin above the Mott transition. Gauge field in 2 + 1D has monopoles as
quantum tunneling processes or gauge fluctuations, and the particle corresponding to such
processes are instantons that can be described as a the classical plasma. By this analogy, there
exists a force between the monopoles. The nature of this confining force might determine
whether above the Mott critical point the system is in a spin liquid phase [95] or already in a
magnetically ordered phase. On the one hand, if the monopoles are confined, then gauge field
is in a dielectric phase with equal positive and negative topological charges for the monopoles,
spinons excitation are deconfined and the system is probably in the spin liquid phase; on the
other hand, when the monopoles are in the deconfined plasma phase, monopoles proliferate
and spinons are confined, leading to a long rang magnetic order.

In our model, the spin-orbit coupling gaps the band electrons and brings about the spin
transport on the edge in the weak coupling limit, and in the intermediate interactive Mott
phase, the spinons’ behavior is governed by the spin-orbit coupling in that the spin texture
on the edge would develop into the bulk in response to the gauge fluctuations. First, in
the anisotropic spin-orbit coupling model with an Hubbard on-site interaction defined in Eq.
2.0.1, the AQSH phase will disappear when the on-site Hubbard interaction will exceed a
certain critical value Uc, that needs to be determined. Then we shall only describe how the
pseudo spin-orbital texture will develop from the edges into the bulk at the Mott transition.

The Mott transition is characterized by the acquisition of a gap for the chargeon and the
localization of the charge particle. The critical value Uc of the Mott transition as a function of
the anisotropic spin-orbit coupling-Hubbard model will be proved in this Section to be exactly
the same as for the Kane-Mele-Hubbard model [62]: the chargeon effective Hamiltonian in
the spin-charge fractionalized representation is the same as in the Kane-Mele-Hubbard model
after doing the mean-field approximation. However, spinons that will be subject to the strong
gauge field fluctuations behave distinctly for the anisotropic spin-orbit coupling model. By
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attaching a gauge field [146, 147, 148, 25] to the chargeon to describe the residual degrees
of freedom in the phase of the localized chargeon, we will establish a gauge theory that will
incorporate the apparition and proliferation of monopoles [146]. The monopoles will affect the
spinons by insertion of fluxes, and the spinons respond to these fluxes by forming spin textures
around the inserted flux. The gauge fluctuations in this anisotropic spin-orbit coupling model
with on-site Hubbard interaction triggers anisotropic spin textures while the spin texture
would be homogeneous in the XY plane in the Kane-Mele Hubbard model above the Mott
critical point [62, 64, 150].

The U(1) slave-particle representation [130, 131] consists in cracking the physical electron
down to the fermionic spinon particle for the spin and the bosonic chargeon particle for the
charge. On each site of the system, there could be 4 electron states: |φ〉, |↑〉, |↓〉 and |↑↓〉, and
different representations in terms of slave particles use different descriptions of these 4 electron
states. Two representations are currently applied to describe the Mott transition, namely the
U(1) slave-rotor representation [130] and the Z2 slave-spin representation [141], [151]. In the
U(1) formulation, the ‘superfluid’ phase of the rotors is characterized by an ordered rotor
meaning the coherence of the wave function over the whole system. The ‘Mott’ phase, in
which electrons are rather localized on lattice sites (rather than in k-space), is characterized
by disordered rotors implying the loss of coherence of the wave function. The phase transition
is described by the gap acquisition of the rotors and the disappearance of the quasiparticle
poles in the electronic Green’s function.

In contrast, in the Z2 slave-spin representation, the ‘superfluid’ phase is represented by
ordered Ising spins of the quantum Ising model in a transverse field, and the Mott phase is
embodied by disordered Ising spins. The main difference between the two representations
lies in the gauge fluctuations: the Z2 effective gauge field predicts a phase with exotic vison
excitations [152, 153, 95, 154], while the U(1) Maxwellian gauge theory only implies magnetic
monopoles and is also widely used in the context of studies of Hubbard models [130, 131, 132,
155]. We choose here the U(1) rotor representation to study the Mott transition [130, 131],
since there has not been till this day experimental evidence of vison predicted by the Z2 gauge
field.

2.3.1 Slave Rotor Representation for the Mott Transition

The U(1) slave-rotor representation [130, 131] consists of labelling the 4 state Hilbert space by
angular momentum: |↑〉e = |↑〉s |0〉θ, |↓〉e = |↓〉s |0〉θ, |↑↓〉e = |↑↓〉s |1〉θ and |φ〉e = |φ〉s |−1〉θ.
The creation of a physical electron is the creation of a spin in the spinon Hilbert space
accompanied by raising the angular momentum in the rotor Hilbert space, while the measure
of the number of electron is the measure of the angular momentum:

c†
σ = f †

σeiθ cσ = fσe−iθ, (2.3.1)

in which f †
σ is a spinon creation operator with spin σ, and eiθ is an angular momentum raising

operator. The Hubbard interaction Hamiltonian turns into HI =
∑

i
U
2 (ni − 1)2 =

∑
i

U
2 L2

i ,
in which we used the fact that we consider the case of half filling.

Hence, we can write the Hamiltonian in the U(1) slave rotor representation as:

Hrotor =
∑

i

U

2
L2

i +
∑

〈i,j〉

∑

σ

tf †
iσfjσeiθi−iθj +

∑

≪i,j≫

∑

σ,σ′
it′f †

iσfjσ′σα
σσ′eiθi−iθj (2.3.2)

When applying the rotor formalism, we enlarge the Hilbert space, therefore an extra constraint
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needs to be imposed:

Li =
∑

σ

[
f †

iσfiσ − 1

2

]
. (2.3.3)

In the Hamiltonian formalism, we can replace eiθi−iθj and f †
iσfjσ by their mean-field ansatz,

and separate the spinon and chargeon. By working out the ground state mean value of these
replaced observables, we obtain the self-consistent equations to solve, or specifically:

Hf =
∑

<i,j>

tQf f †
iσfjσ +

∑

≪i,j≫
it′Q̃f σα

σσ′f
†
iσfjσ′ (2.3.4)

Hθ =
∑

<i,j>

tQx cos(θi − θj) +
∑

≪i,j≫
t′Q̃x cos(θi − θj) +

U

2
L2

i (2.3.5)





〈
eiθi−iθj

〉
〈i,j〉

= Qf

〈
eiθi−iθj

〉
≪i,j≫

= Q̃f〈
f †

iσfjσ

〉
〈i,j〉

= Qx

〈
iσα

σσ′f
†
iσfjσ′

〉
≪i,j≫

= Q̃x.
(2.3.6)

We can obtain an effective rotor Hamiltonian by making use of the mean field ansatz and
solving Eqs. 2.3.4, which is the anisotropic spin-orbit coupling model itself.

Hθ = −
∑

<i,j>

K cos(θi − θj) −
∑

≪i,j≫
G cos(θi − θj) +

∑

i

U

2
L2

i , (2.3.7)

where

K =
∑

þk

|Qf g(þk)|2

Ẽ0(þk)
(2.3.8)

G =
∑

þk

∑

α

(2Q̃f t′ sin(þk. þRα))2

Ẽ0(þk)

and

Ẽ0(þk) =

√
|Qf g(þk)|2 +

∑

α

(2Q̃f t′ sin(þk · þRα]))2. (2.3.9)

We recall that α = x,y,z. We observe that the effective rotor Hamiltonian is a non-frustrated
XY model with first and second neighbours on the honeycomb lattice. By resorting to the
one-site mean-field approximation as in Ref. [62], we can identify the critical interaction:

〈cos θ〉 = −2K

U

Uc =
4

NΛ

∑

þk

|g(þk)|
(2.3.10)

in which NΛ denotes the number of unit cells.
In order to do the mean field approximation in a more explicit way, we pursue here the

Lagrangian formalism of which we can carry out the saddle-point approximation more easily in
the path integral formulation. We keep the same notation for mean-field ansatz but they can
take different values in the Lagrangian formalism from those in the Hamiltonian formalism.

The Hubbard interaction U
2 L2

i in the rotor representation is a kinetic term, and the
constraint in Eq. 2.3.3 is now imposed through the addition of the Lagrangian multiplier
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∑
i hi

∑
σ(f †

iσfiσ − Li − 1
2) to the Lagrangian. By using i∂τ θi = ∂H

∂Li
, we then obtain the whole

action:

S =

ˆ β

0
dτ

[
∑

i

(iLi∂τ θi + f †
iσ∂τ fiσ) + H

]
(2.3.11)

=

ˆ β

0
dτ

[∑

i,σ

f †
iσ(∂τ + hi)fiσ +

1

2U

∑

i

(∂τ θi + ihi)
2 +

∑

i

(
h2

i

2U
− hi

)

+ t
∑

<i,j>,σ

f †
iσfjσeiθi−iθj + h.c. + it′ ∑

≪i,j≫

∑

σσ′
σα

σσ′f
†
iσfjσ′eiθi−iθj

]
, (2.3.12)

where

H = Hrotor +
∑

i

∑

σ

hi

[
f †

iσfiσ − Li − 1

2

]
(2.3.13)

such that the constraint in Eq. 2.3.3 is imposed at a mean-field level.
To solve the rotor model in the above action, firstly we shall replace the rotor eiθi by a O(2)

complex bosonic field Xi and treat the constraint |Xi|2 = 1 by a mean field self-consistent
equation (and formally treat the fermion f † as a complex field f⋆). The Lagrangian for the
rotors then takes the form:

Lx =
∑

þk

−g(þk)QxXa⋆
þk

Xb
þk

− g(þk)⋆QxXa
þk

Xb⋆
þk

+ Q̃x

∑

k

t′g2(þk)(Xa⋆
þk

Xa
þk

+ Xb⋆
þk

Xb
þk
) +

∑

þk

ρX⋆
þk
Xþk

=
∑

þk

−|g|QxX l⋆
þk

X l
þk

+ |g|QxXu⋆
þk

Xu
þk

+
∑

þk

Q̃xt′g2(þk)(X l⋆
þk

X l
þk

+ Xu⋆
þk

Xu
þk

) +
∑

þk

ρX⋆
þk
Xþk

,
(2.3.14)

in which g2(þk) = cos
(
þk · þRx

)
+ cos

(
þk · þRy

)
+ cos

(
þk · þRz

)
. We can derive the Green function

for the quantum rotor:

Gx =
1

ν2
n

U + ρ + ξþk

, (2.3.15)

in which ξþk
= −Qx|g(þk)| + t′Q̃xg2(þk), and νn is the Mastubara frequency.

Then we can use the self-consistent equation of the saddle-point for the rotor field
〈
|Xi|2

〉
=∑

þk
1

Gx
= 1 to determine the critical value of U:

1 =
U

NΛ

∑

þk

1√
∆2

g + 4U(ξþk
− minþk

(ξþk
))

, (2.3.16)

where ∆g = 2
√

U(ρ + mink(ξþk
)) describes the gap acquired by the rotors which turns to be

zero at the critical point due to the condensation of the rotors resulting in an extra constraint
on the Lagrangian multiplier ρ.

The rotor gap formally becomes non-zero in the Mott insulating phase. Then we get the
expression of the critical value Uc when ∆g = 0:

Uc =


 1

2NΛ

∑

þk

1√
ξþk

− minþk
(ξþk

)




−2

. (2.3.17)

We can numerically evaluate the Mott transition versus the spin-orbit coupling t′ and it
turns out that Uc increases monotonously when increasing t′, substantiating the spin-induced
induced Mott transition (see Fig. 2.2).
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2.3.2 Gauge Fluctuation Upon Mott Transition

When we break the physical electron down to the fermionic spinon and the bosonic rotor,
then emerges a U(1) gauge symmetry:

f †
i → f †

i eiφi , eiθi → eiθi−iφi (2.3.18)

that binds the chargeon and spinon together. In the Mott phase, the rotors become disor-
dered, and the local phase of the rotors fluctuates considerably. We describe this local gauge
fluctuations by attaching a field strength Ac simultaneously to the spinon and chargeons.
Then we can integrate out the rotors to get an effective action of the fluctuating gauge field
[132, 62] and describe the effects of the fluctuating gauge field on the spinons. The response
of the spinons to the fluctuating gauge field clarifies the emergence of a peculiar spin texture
in the bulk.

We first apply the Hubbard-Stratonovich transformation to decouple the rotor field and the
spinon field by using the complex Gaussian integral equality:

´

dzdz exp(−|z|2 + uz + wz) =
exp(uw) in which z and z are the auxiliary field and 〈z〉 = w and 〈z〉 = u are the saddle point.
For the anisotropic spin-orbit coupling model with an on-site Hubbard interaction, then this
results in the effective Lagrangian:

L =
∑

i

f †
iσ(∂τ + hi)fiσ +

1

2U
(∂τ θi + ihi)

2

+
∑

<i,j>

(−t|ηij |2 − t|ηji|2 + tf †
iσfjσηij + tf †

jσfiσηji + tei(θi−θj)η⋆
ij + tei(θj−θi)η⋆

ji)

+
∑

≪i,j≫
(−t′|ζij |2 − t′|ζji|2 + it′f †

iσfjσ′σα
σσ′ζij + it′f †

jσfiσ′σα
σσ′ζji + t′ei(θi−θj)ζ⋆

ij + t′ei(θj−θi)ζ⋆
ji),

(2.3.19)

where at the level of the saddle point solution ηij =
〈
ei(θi−θj)

〉
〈i,j〉

, η⋆
ij =

〈
f †

iσfjσ

〉
〈i,j〉

, ζij =
〈
ei(θi−θj)

〉
≪i,j≫

and ζ⋆
ij =

〈
if †

iσfjσ′σα
σσ′

〉
≪i,j≫

respectively on the nearest-neighbor and next-

nearest neighbor links, (similar relations of saddle points hold for ηji, η⋆
ji, ζji and ζ⋆

ji) and it
is worth noticing that ηij Ó= ηji and ζij Ó= ζji. At half-filling hi equals zero.

In the rotor ordered phase, ηij = η⋆
ji (same with ζij on the next-nearest-neighbours) and

the gauge fluctuation is suppressed, while in the rotor disordered phase ηij and ηji become
independent, and this can be described by attaching a field strength Ac

ij to the behavior of the
link variables ηij and ζij and the strong fluctuations of the gauge field elucidates the difference
for the link variable in the two phases for the rotors:

{
ζij → ζijeiAc

ij ζ⋆
ij → ζ⋆

ije−iAc
ij

ηij → ηijeiAc
ij η⋆

ij → η⋆
ije−iAc

ij
(2.3.20)

We explicitly introduce a temporal gauge field Aτc
i at site i in the action. We then obtain

the spinon and rotor Lagrangians:

Lf =
∑

i

∑
σ f †

iσ(∂τ − iAτc
i )fiσ + t

∑
<i,j> f †

iσfjσηijeiAc
ij + it′ ∑

≪i,j≫ ζijf †
iσfjσ′σα

σσ′e
iAc

ij

Lθ =
∑

i
(∂τ θi−Aτc

i )2

2U + t
∑

<i,j> ei(θi−θj−Ac
ij)η⋆

ij + t′ ∑
≪i,j≫ ζ⋆

ijei(θi−θj−Ac
ij). (2.3.21)
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Integrating out the rotor eiθ, we get a Maxwellian gauge theory with coupling constants
depending on the rotor gap with ∆g indicating the magnitude of the gauge fluctuations:

LAc =
∑

△

(
t′|ζij |
∆g

)3

cos(∇×Ac)+
∑

i

1

2U∆g
[(∂τ Aτc

i −∂xAτc
i )2 +(∂τ Aτc

i −∂yAτc
i )2], (2.3.22)

where the sum is carried out on all the triangle plaquettes; ∆g is the rotor gap and ∇ × Ac =
Ac

ij + Ac
jk + Ac

ki on one triangle (i,j,k are the three vertices of the triangle) and ∂xAτc
i =

Aτc
i − Aτc

j . In the rotor ordered phase, the rotor gap ∆g = 0, so it costs an infinite energy
to insert any magnetic flux into the system, namely the gauge field barely fluctuates. In
contrast, in the rotor disordered phase, the rotor gap ∆g becomes finite making the insertion
of the magnetic flux possible. Because the gauge field is compact, the insertion of a 2π flux
∇ × Ac = 2π leaves the Maxwellian gauge action invariant, which means the flux can tunnel
from 0 to 2π consisting a field of monopole. Monopoles in 2 + 1 dimensions are deconfined
[146]. This implies the proliferation of the monopoles in the space: the monopole correlation

function in the space
〈
m⋆(þr)m(þ0)

〉
is a constant, in which m⋆(þr) creates a 2π flux at þr. We

now address the spinon response to this adiabatic insertion of monopoles above the Mott
transition.

2.3.3 Spin Texture upon Insertion of Flux

The spinon Lagrangian under gauge fluctuation is the anisotropic spin-orbit coupling model
in Eq. 2.0.1 upon insertion of flux of 2π brought by the rotor gauge field Ac

ij . The spin-orbit
coupling implies the spin Hall physics elucidated in Sec. 2.1. In the context of Gedanken
experiment by Laughlin [144], the insertion of a U(1) flux leads to an edge charge transport
Q = σxyΦ. In the context of spin Hall effect, the insertion of a U(1) flux implies a contour in
the first Brillouin zone enclosing the time reversal points; this contour denotes an exchange
of Kramer pairs, therefore a Z2 spin pump [149]. In other words, flux insertion triggers spin
transport on the edge. The spinon of the anisotropic spin-orbit coupling system is a similar
system, and flux insertion should lead to spin transport in the system. Some spin ‘charge’
would be transported near the monopole core as the ‘edge’ of the system. However, several
difficulties are encountered in the anisotropic spin-orbit coupling model, in contrast to the
Kane-Mele-Hubbard model [62] which exhibits an XY spin order above the Mott transition:
1. the non conservation of spin number and the not-defined spin current would make the
Kubo formalism inapplicable here; 2. the insertion of the magnetic flux is local instead of
onto the whole system as in the case of Laughlin U(1) pump and the Z2 spin pump.

In order to study the spin behavior around the fluctuating gauge field, here we apply the
perturbation theory, and quantitatively describe how local spin observables on a given site
are affected when a 2π magnetic flux of the gauge field Ac is adiabatically inserted into the
spinon system. We describe the adiabatic insertion of a magnetic flux of the chargeon gauge
field by making the gauge field dependent on time Ac

ij(τ) = Ac
ijeητ , η > 0 in the time interval

of τ ∈] − ∞,0] and the gauge field with a field strength Ac
ij is inserted adiabatically within

this time interval. Considering the exceptional anisotropic properties of the system, we shall
investigate the lattice gauge field on each link around the flux, presuming that gauge fields on
different links X, Y or Z might have different influences on the spin polarization at a given
site that we measure. We expect that a certain spin texture might appear around the inserted
flux due to the spin-Hall nature of the system, which is the main subject here.
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We get back to the Hamiltonian formalism and apply the perturbation method. The
observable we measure is

Sα
M = f †

MJσfMJσ′σα
σσ′ , (2.3.23)

in which α is the spin polarization, þRM is the site at which we measure the spin and J = A,B
is the sublattice isospin of the corresponding site. Resorting to the time evolution operator,
we can express the spin polarization variation under the flux insertion perturbation δH =
(HS − H0

S) in which HS is the spinon Hamiltonian after the gauge insertion and H0
S is the

original spinon Hamiltonian:

δSα
M = e

´

0

−∞ iδHdτ Sα
M e−

´

0

−∞ iδHdτ − Sα
M (2.3.24)

=

[
i

ˆ 0

−∞
δHdτ,Sα

M

]
.

rI

rJ

di

Ri
rI

rJ

di

d jRi

Figure 2.12: The configuration of þrI , þrJ and þRi related to Eq. 2.3.26, in which þrI þrJ are
vectors connecting the plaquette centers to its vertices and |þrI −þrJ | denotes the first neighbour
link; þRi gives the coordinates of the studied plaquette. We have to pay special attention to
coordinates in Eq. 2.3.26: þri = þrI + þRi and þrj = þrJ + þRi. The sum over the coordinates of the

studied plaquette at þRi in Eq. (2.3.26) shall induce the momentum conservation þk − þk′ = þq
of the spinon excitations under the monopole insertion. The vectors þdI and þdJ are vectors
connecting the plaquettes for the configuration of gauge fields on the honeycomb lattice; see
section 2.4.

The original and the perturbed spinon Hamiltonians are explicitly given by:

H0
S(τ) =

∑

〈i,j〉
tQf f †

iσ(τ)fjσ(τ) + it′ ∑

≪i,j≫
Q̃f f †

iσ(τ)fjσ′(τ)σw
σσ′

HS(τ) =
∑

〈i,j〉
tQf f †

iσ(τ)fjσ(τ)eiAc
ij + it′ ∑

≪i,j≫
Q̃f f †

iσ(τ)fjσ′(τ)σw
σσ′e

iAc
ij

(2.3.25)
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such that δH(τ) = HS − H0
S becomes equal to:

≈
∑

þk,þk′,þq

∑

σσ′

f†
Iσ(þk,τ)fI′σ′(þk′,τ)

( ∑

〈þri,þrj〉
þρ=þri−þrj

itQf (τx
II′ℜe + τy

II′ℑm)1σσ′Ac
ρ(þq) exp(−iþk · þri + iþk′ · þrj + iþq · þRi)

− t′Q̃f

∑

≪ri,rj≫
þρw=þri−þrj

τz
II′σw

σσ′Ac
ρw

(þq)
[
exp(−iþk · þri + iþk′ · þrj + iþq · þRi) + exp(−iþk · þrj + iþk′ · þri + iþq · þRi)

] )

τ ∈] − ∞,0],

(2.3.26)

in which þri = þRi + þrI and þrj = þRi + þrJ are coordinates on which spinon excitations due
to the gauge field is considered. þrI and þrJ are vectors connecting the center of the studied
plaquette and the corresponding sites indicated in Fig. 2.12. In Eq. 2.3.26, we add up
by hand the two terms of hopping on the next-nearest-neighbour links in order to avoid the
ambiguity of ±i when electrons hop along or against the link orientation. Though the lattice is
translational invariant, the gauge field is not, rendering the problem of Fourier transformation
more sophisticated. We apply the Fourier transformation to derive the spinon response:

fiIσ(τ) =
1√
N

∑

þk,τ

eiþk·þrifIσ(þk,τ), (2.3.27)

The spinon system has also two gapped bands as a reminiscence of AQSH phase. The
energy of the bands of the spinon system and the band projectors are given explicitly by:

ǫþk
=

√
|Qf g(þk)|2 + (Q̃f )2(m2

x(þk) + m2
y(þk) + m2

z(þk)) (2.3.28)

P±(þk)II′σσ′ =
1

2
[1 ± 1

ǫþk

[Qf g(þk)(τx
II′ℜe + τy

II′ℑm)1σσ′ + Q̃f τ z
II′(σx

σσ′mx + σy
σσ′my + σz

σσ′mz)]].

(2.3.29)

The configuration of the lattice gauge field is explained in section 2.4 using the loop variable
method and Ac(þq) is the Fourier transformed form of the lattice gauge field. The idea of loop
variable construction is to write the gauge field on a given link as the difference of the loop
variables on the two juxtaposing plaquettes so that ∇ · Ac = 0 is automatically satisfied. If
φþRi

and φþRi+þdj
are two loop variables on the plaquettes centered at þRi and þRi + þdj , then

the gauge field along the link vector þρ juxtaposed by these two neighbouring plaquettes is:
Ac

ρ = φþRi
− φþRi+þdj

and the link vector þρ is in the counterclockwise orientation with regard to

the center plaquette at þRi.

The commutator of the four fermions in Eq. 2.3.24 generates the band projectors indicat-
ing the excitations of particle-hole pairs, and the spinon response is proportional to the flux
inserted. The sum over the center plaquette coordinates þRi in Eq. 2.3.26 imposes the momen-
tum conservation of þk − þk′ = þq which means that the gauge fluctuations excite particle-hole
pairs with the momentum exchange þq equal to the momentum of the fluctuating gauge field.
It is convenient to introduce the notations:

δH(τ) =
1

N

∑

þk,þk′

∑

σσ′
f †

Iσ(þk,τ)fI′σ′(þk′,τ)δHS
II′σσ′(τ). (2.3.30)

Then, in Eq. 2.3.31, the spin polarization variation is written as a trace over spin space
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Figure 2.13: The anisotropic spin texture developing into the bulk above the Mott critical
point Uc as a function of t′/t could be associated with the spin physics on the edge by invoking
the U(1) pump argument to a system on a cylinder by Laughlin [144]: the centered plaquette
with flux inserted could be viewed as one edge and the infinity of the system as another. The
different sites in Table 2.3.3 are labeled in the figure. The spin physics of insertion of flux
could be mapped to the edge spin transport on a cylinder under the insertion of flux and the
emergent spin texture could be viewed as ‘spin charge’. When the gauge field fluctuations
insert monopoles (flux in 2+1 dimensions) into the system, the U(1) spin pump would induce
a spin texture around the ‘edges’, namely the core of the monopoles. The spin texture (See
Fig. 2.14) as a spin response summed over all momenta shared similar configurations as the
spin transport in Sec. 2.1: when t′/t ≪ 1 the three components are comparable while t′/t ≫ 1
one dominant component of spin polarization will appear. The dominant spin polarization
depends on the type of links intersected by the line connecting the measured site and the
monopole core. It resembles the dependence of the dominant spin polarization component on
the types of links to which the boundary is parallel in the context of edge spin physics in the
AQSH phase.
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of the matrix product measured on the Hilbert space of the sublattices |J〉:

δSα
M =

1

N
lim
η→0

∑

þk1,þk′

1

þk2,þk′

2

ˆ 0

−∞

dτ

[
f†

Jσ(þk1,τ)fJσ′(þk′
1,τ)σα

σσ′e−i(þk1−þk′

1
) þRM ,f†

Iσ̃(þk2)fI′σ̃′(þk′
2)

δHS
II′σ̃σ̃′

(τ)

ǫþk2

− ǫþk′

2

− iη

]

(2.3.31)

=
1

N
lim
η→0

∑

þk,þk′

Trσ(〈J | [
P−(þk′)δHsP+(þk)σα

ǫþk
+ ǫþk′

− iη
exp(−i(þk − þk′). þRM ) +

P−(þk)δHsP+(þk′)σα

ǫþk′
+ ǫþk

− iη
exp(i(þk − þk′). þRM )] |J〉).

The evaluation of the quantity in Eq. 2.3.31 is not so simple because of the integral over
the whole first Brillouin zone and therefore we have done this numerically. The anisotropy is
manifested by the spin texture dependence on the site þRM on which we measure the spin. A
table of numerical results of δSα

M is listed; see Table 2.1.
The spin texture is very localized around the inserted flux, and numerical studies shows

that the spin texture becomes Sα ≈ 1.0 × 10−3 on the sites that are third neighbours to the
center O in Fig. 2.13. Therefore, we focus on sites around the core of the inserted flux.

site 1 2 3 a b c

Sx 0.0302 0.0302 -0.142 0.142 -0.0302 -0.0302
Sy 0.0302 -0.142 0.0302 -0.0302 0.142 -0.0302
Sz -0.142 0.0302 0.0302 -0.0302 -0.0302 0.142

site A1 B1 A2 B2 A3 B3

Sx 0.0314 -0.0314 0.0378 -0.0378 0.0378 -0.0378
Sy 0.0378 -0.0378 0.0314 -0.0314 0.0378 -0.0378
Sz 0.0378 -0.0378 0.0378 -0.0378 0.0314 -0.0314

Table 2.1: Spin texture on the plaquette of inserted flux when t = t′ = 1. The row represents
the spin polarization in the x, y and z component and the column represents the sites labeled
in Fig. 2.13.

From Table 2.1, we observe certain symmetries in the spin texture and these symmetries
are in fact inherent to the original spinon system in Eqs. 2.3.4 and 2.3.21. Specifically,
the symmetry of a combination of 2π/3 rotation around the core of the inserted flux and
spin polarization permutation. We denote the 2π/3 rotation around the core of the inserted
monopole as R(2π

3 ) under which different sites are connected:




R(2π
3 )þR1 = þR2; R(2π

3 )þR2 = þR3; R(2π
3 )þR3 = þR1

R(2π
3 )þRa = þRb; R(2π

3 )þRb = þRc; R(2π
3 )þRc = þRa

R(2π
3 )þRA1 = þRA3; R(2π

3 )þRA3 = þRA2; R(2π
3 )þRA2 = þRA1

R(2π
3 )þRB1 = þRB3; R(2π

3 )þRB3 = þRB2; R(2π
3 )þRB2 = þRB1

(2.3.32)

The spin polarization permutation σ is defined as follows:




σ(Sz) = Sy

σ(Sy) = Sx

σ(Sx) = Sz.

(2.3.33)

If we write the symmetry operator as U = R(2π
3 )σ, which commutes with the spinon

Hamiltonian in Eq. 2.3.4, then the spin texture response on different sites will be related by
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Figure 2.14: Spin texture in the intermediate U regime induced by the fluctuating gauge field
within the U(1) slave-rotor theory. The spin polarization on site 1 in Fig. 2.1 as a function of
t′/t. When t′/t ≪ 1, the subordinate spin polarization is in the same order as the dominant
spin polarization Sx,Sy ≈ −0.6Sz (see Fig. 2.15). When t′/t > 1 the subordinate spin
polarization becomes (much) smaller in front of the dominant polarization: Sx,Sy ≈ −0.2Sz.
The spin texture above the Mott quantum critical point seems to evolve very gradually. Site 1
is facing the z type links in the system and it acquires a dominant z spin component. The spin
texture on other different sites carries a symmetry which is a combination of a 2π/3 rotation
around the core of the fluctuating flux and a spin permutation, a symmetry inherent to this
anisotropy model.

this symmetry operator. Thus, we confirm the numerical results that Sz
1 = Sy

2 = Sx
3 , Sy

1 =
Sx

2 = Sz
3 and Sx

1 = Sz
2 = Sy

3 , etc. Another symmetry is that spin texture on corresponding sites
on different sublattices have opposite signs: Sα

1 = −Sα
c , Sα

2 = −Sα
b ,Sα

3 = −Sα
a , (α = x,y,z) and

identically for the sites A1 & B1, A2 & B2, A3 & B3, etc. This symmetry is also present in the
original spinon Hamiltonian in that iσα is changed into −iσα for the next-nearest-neighbour
hopping on different sublattices.

The anisotropy is manifested by one dominant component of the spin polarization on
different types of sites: Sz

1 = Sy
2 = Sx

3 on site 1, 2 and 3. The lines linking these sites and the
monopole core intersect respectively the z, y and x links, so the dominant spin polarization
are Sz

1 = Sy
2 = Sx

3 on site 1, 2 and 3. Accordingly, the dominant spin polarization component
on one site corresponds to the type of links intersected by the line linking the monopole
core and the site under investigation. The subordinate components and dominant component
on each site change differently when t′/t varies, thus generating two different types of spin
texture above the Mott critical point as in figure 2.14. At small t′/t, the spin texture tends
to zero (proportional to t′) because the appearance of spin textures is due to the effective
spin-orbit coupling in the spinon sector; the subordinate components are Sx = Sy = −0.6Sz

on site 1, for example. At large t′ > t, the subordinate components are small compared to the
dominant components Sx = Sy ≈ −0.2Sz. The ratio between the subordinate components
and the dominant components is analyzed in Fig. 2.15. This shows that the peculiar spin
texture substantially develops by increasing the ratio t′/t.

As mentioned earlier, the analogy between the edge spin physics in the AQSH phase and
the spin texture in the bulk in the intermediate interaction regime can be fleshed out using the
argument of Laughlin [144], the U(1) pump of a system on a cylinder with 2 edges, in which
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Figure 2.15: The ratio of Sx/Sz on site 1 in Fig. 2.13 as a function of t′/t. This indicates
that there are two spin textures when varying t′/t: 1. The subordinate spin polarization have
an opposite component as the dominant polarization Sx = Sy = −0.6Sz when t’ is small
compared to t; and 2. Sz ≫ (Sx, Sy) when t′ > t.

‘charge’ transport on the edges would be induced under insertion of flux of such topological
system on cylinder. However, the ‘charge’ in this anisotropic spin-orbit coupling model is the
‘spin charge’. Fig. 2.13 illustrates how the spin physics in the two different contexts, edges
versus bulk, are related. The sites around the monopole core are analogous to one edge and
the infinity to another, the spin texture on different sites are then ‘spin charge’ transported
around under the insertion of a fluctuating flux. The anisotropy factor in the context of edge
states of the AQSH effect is related to the type of links to which the boundary is parallel,
and in the context of spin texture in the bulk, it is the type of links intersected by the line
linking the monopole core and the corresponding site. These anisotropy factors determine the
dominant spin polarization component when t′ > t.

The spinon response is influenced by a plasma of monopoles rather than simply the inser-
tion or destruction of one monopoles or two. Different from the Kane-Mele-Hubbard model
in which the correlation of two monopoles separated far enough could trigger a homogeneous
long-range magnetic order, the spin texture in this anisotropic spin-orbit model beyond the
Mott critical point entails the coordination of several spin textures distributed around the
monopole plasma; the real magnetic structure in this regime has to be considered as a statis-
tical average of these spin textures, which remains to be explored in terms of difficulties such
as frustration between spin texture induced by two juxtaposed monopoles and confinement of
the U(1) monopole plasma, etc.

The spin texture of two adjacent monopoles and one pair of adjacent monopole-antimonopole
is provided in section 2.5. The results are heuristic and the spin-texture induced by two adja-
cent monopole-antimonopole seems to be in good agreement with the spiral order: when the
monopole-antimonopole pair is positioned along the x (y or z) links the spin texture on the
sites shared by the two plaquetttes with fluxes penetrated would be in the Y Z (XZ or XY )
plane. This result tends to agree with the super-exchange Hamiltonian in Eq. (2.2.1) when
J2 ≫ J1.

It is important to underline that the emergent magnetism induced by the Mott transition
will break the time-reversal symmetry and the Kramers pairs which enables the edge spin
transport to disappear.
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2.4 Lattice Gauge Field by Construction of Loop Variables

Loop variables is a tool to trace out the lattice gauge field configuration by attaching a loop
variable to each plaquette. We follow the notations of section 2.3.3, except that the gauge
field is renamed A (instead of Ac) for simplicity.

Then the gauge field on the links as the difference of left hand side and the right hand side
loop variables when one is oriented along the gauge field direction on the link or ∇ × φ = A
in the continuous limit. The advantage of this construction is the automatic satisfaction of
∇ · A =

∑
j AOj = 0 on a given site O. Then the equation ∇ × A = Φm is translated into the

Laplacian equation after doing the Fourier transformation:

∇×A = zφ(þRo)−
∑

j

φ(þRo+þrj) =
∑

þq

φ(þq)(z−
∑

j

exp(iþq ·þrj)) exp(iþq · þRo) = ΦmδþRo, þO, (2.4.1)

where z is the coordinate number, þrj are vectors connecting neighbours and þRo is the center of
a plaquette. Now we look at the gauge field configuration for honeycomb lattice in Fig. 2.16.
If we note h(þq) =

∑
j exp(iþq · þrj), then making use of the fact that center of the hexagonal

plaquettes form a triangular lattice which is a Bravais lattice, we can implement the Fourier
transformation naturally enough.

A1a = φo − φa2
=

ˆ

dq exp(iþq · þRo)Φm
1 − exp(iþq · þra2

)

6 − h(þq)

Aa2 = φo − φa1
=

ˆ

dq exp(iþq · þRo)Φm
1 − exp(iþq · þra1

)

6 − h(þq)

A2c = φo − φc2
=

ˆ

dq exp(iþq · þRo)Φm
1 − exp(iþq · þrc2

)

6 − h(þq)

Ac3 = φo − φc1
=

ˆ

dq exp(iþq · þRo)Φm
1 − exp(iþq · þrc1

)

6 − h(þq)

A3b = φo − φb2
=

ˆ

dq exp(iþq · þRo)Φm
1 − exp(iþq · þrb2

)

6 − h(þq)

Ab1 = φo − φb1
=

ˆ

dq exp(iþq · þRo)Φm
1 − exp(iþq · þrb1

)

6 − h(þq)
. (2.4.2)

The field strength on vectors connecting next-nearest-neighbors are more complicated since
the loop variables defined in the center of the triangular lattice are not on a Bravais lattice,
and therefore in order to obtain the right configuration we need an extra constraint between
the two sublattices to ‘massage’ the above construction into the right Fourier transformed
expression. To take the example of the sublattice of a,b,c in Fig. 2.13, we apply the following
constraints derived from ∇ × A = 0:

3φa = φ0 + φa1
+ φa2

3φb = φ0 + φb1
+ φb2

3φc = φ0 + φc1
+ φc2

. (2.4.3)
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Then we get eventually:

A12 = φ0 − φa =

ˆ

dqΦm
2 − exp(iþq · þra1

) − exp(iþq · þra2
)

6 − h
exp(iþq · þRo)

A23 = φ0 − φc =

ˆ

dqΦm
2 − exp(iþq · þrc1

) − exp(iþq · þrc2
)

6 − h
exp(iþq · þRo)

A31 = φ0 − φb =

ˆ

dqΦm
2 − exp(iþq · þrb1

) − exp(iþq · þrb2
)

6 − h
exp(iþq · þRo)

Aac = φ0 − φ2 =

ˆ

dqΦm
2 − exp(iþq · þra1

) − exp(iþq · þrc2
)

6 − h
exp(iþq · þRo)

Acb = φ0 − φ3 =

ˆ

dqΦm
2 − exp(iþq · þrc1

) − exp(iþq · þrb2
)

6 − h
exp(iþq · þRo)

Aba = φ0 − φ1 =

ˆ

dqΦm
2 − exp(iþq · þra2

) − exp(iþq · þrb1
)

6 − h
exp(iþq · þRo). (2.4.4)

a

1

b

2

c

3

a1

a2 b1

b2

c1
c2

O

Figure 2.16: The lattice gauge field configuration on the honeycomb lattice. On each triangu-
lar and each honeycomb plaquette, a lattice loop variable is defined. The gauge field on the
counterclockwise oriented links are defined as loop variables on the left hand side minus loop
variables on the right hand side of the link when travelling parallel to the link orientation. For
example, Aa2 = φ0 − φa1. The loop variable construction satisfies automatically ∇ · A = 0,
and ∇ × A = ΦmδþRo, þO is expressed by a Laplace equation in Eq. 2.4.1, in which Φm is the
magnetic flux penetrating the center of the plaquette.
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2.5 Spin Texture under Two Adjacent Monopoles

We limit ourselves to the linear response regime in our study of the spin texture under insertion
of two adjacent monopoles , considering that gauge fluctuation has less pronounced effect on
sites that are third neighbour to the vortex core and that the U(1) gauge theory has always
confined phase with monopole-antimonopole pairs very close to each other. The spin texture
in this case is most prominent on the link shared by two plaquettes onto which monopole and
anti-monopole are inserted.
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Figure 2.17: The spin texture under the monopole-antimonople pair (two monopoles) on
two adjacent plaquettes: (a) the spin texture on site 1 when the monopole-antimonopole are
respectively inserted on plaquette O and b1 Fig. 2.16. (b) the spin texture on site 3 when the
monopole-antimonopole are respectively inserted on plaquette O and c1. (c) the spin texture
on site 1 when two monopoles are inserted on plaquette O and b1. (d) the spin texture on
site 3 when two monopoles are inserted on plaquette O and c1.

We can see from Fig. 2.17 (a) and (b) that when monopole-antimonopole pair is inserted,
the dominant spin texture on the sites on the shared link of the two adjacent plaquettes has
dominant polarization other than the type of link parallel to the segment connecting plaquettes
centers with the monopole-antimonopole pair. In the case of (a) the site has dominant spin
polarization in Y and Z direction with the bond connecting the monopole-antimonopole pair
parallel to X links, while in the case of (b) the site has dominant spin polarization in X and
Z direction, with the segment connecting the plaquettes with monopole-antimonopole pair
parallel to Y links. The other two dominant spin polarization has opposite direction with
SY

1 = −SZ
1 and SX

3 = −SZ
3 .

When two monopoles are inserted, the dominant spin texture is still these other than the
type of link parallel to the segment connecting the plaquette centers with the monopoles pair.
However, the other two dominant spin component has the same direction (See Fig. 2.17 (c)
and (d)).

Sites other than those on the shared links of the two plaquettes with gauge fluctuation
have also important spin texture contribution (See Fig. 2.18). The dominant spin polarization
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Figure 2.18: The spin texture on site 1 when the monopole-antimonopole pair (left panel) or
the two monopoles are respectively inserted on plaquette O and b2 (right panel).

corresponds to the type of link parallel to the segment connecting plaquette centers with the
pair. Monopole-antimonopole pair induces spin texture more pronounced than that induced
by monopole-antimonopole pair.

2.6 Conclusion

In this chapter, we take the point of view that the spin-orbit coupling is the on the next-
nearest-neighbour [101], which is supported by the experiment of thin films of Na2IrO3 [127],
and studied the anisotropic spin-orbit coupling - Hubbard interaction model which contains a
correlated topological insulator phase. Though the topological insulator phase is in the same
class as the Z2 Kane-Mele model, spin current is not well defined in the anisotropic spin-orbit
coupling model, which requires finer treatment. As a result, we try to address the phase
diagram in figure 2.2.

We have first clarified the edge transport properties of the topological insulator phase in the
weak correlated limit in section 2.1 using both diagonalization of the Schrödinger equation and
transfer matrix. The edge current has dominant spin component in accordance with the type
of links that are parallel to the zigzag boundary. Then we carefully examined the magnetic
phase diagram at the limit of infinite U in section 2.2, in which magnetic couplings result from
second order super-exchange processes of the hopping terms. We have identified the Néel and
spiral magnetic order and analyzed the frustration in the two phases. We have analyzed the
order-by-disorder phenomenon in both classical magnetic phases. However, processes of higher
order might lead to other intermediate magnetic phase than the Néel and zigzag magnetic
order in the J1 − J2 model in equation 2.2.1, which we haven’t explored here yet. We then
concentrated on the Mott physics in the intermediate U regime in section 2.3, in which charges
are localized and spin are fractionalized from the physical electron particles. We have used
the slave-rotor formalism, in which charge particles (chargeons) acquire a mass upon Mott
transition and the spin particles (spinons) are subject to large gauge fluctuation. In order
to study the spin physics beyond the Mott transition, we studied the spin response under
insertions of flux resulting from the gauge fluctuation. Upon Mott transition, we used the
Laughlin topological pump argument to prove that the anisotropic spin texture on the edge
develops into the bulk around fluxes and the transport edge states disappear. This anisotropic
spin texture seems to be in connection with the spiral order in the infinite U limit, however,
this complicated regime with proliferation of monopoles requires more precise treatment in
the future beyond the linear response formalism used here.



Chapter 3

Doping Iridates on the Honeycomb Lat-

tice - t − J Model

3.1 Introduction

Half-filled Mott insulator can host magnetic order and spin liquid while doping such a Mott
insulator will lead to pairings of electrons or holes, in other words high Tc superconductiviy[23,
142, 189, 190, 191, 192, 193, 195, 196, 215]. The related theoretical model is the t − J model,
in which the t kinetic term describes the motion of the holes and J term couples the holes and
electrons. The kinetic term and magnetic coupling term shares the same origin, according to
the super-exchange magnetism point of view: in the half-filled Mott insulator, one electron
per site constitutes the ground state with charge localized and spin can exchange their places
inducing the magnetic coupling. The ground state of the system of the induced magnetic
coupling corresponds to the magnetic order. Recent theoretical and experimental advances
show that in the strong spin-orbit coupling the magnetic coupling is short ranged, existing
between the nearest-neighbour atoms in the honeycomb lattice [43, 44]. The nearest-neighbour
magnetic coupling contains a mixture of Heisenberg and Kitaev coupling, which is essential
for the occurence of the zigzag order. This is in accordance with the experiment [114] and
the ab initio calculation [122]. The half-filled Mott insulator of the iridate can host different
magnetic order depending on the mixture of the Kitaev and Heisenberg coupling as shown in
Fig. 3.1. The magnetic model can be written as function of one parameter ϕ representing the
mixture of the two kinds of magnetic coupling in the half-filled Mott insulator[43]:

HKH(ϕ) =A
∑

〈i,j〉
(2 sin ϕ Sγ

i Sγ
j + cos ϕ Si · Sj)

=
∑

〈i,j〉
(JKSγ

i Sγ
j + JHSi · Sj)

(3.1.1)

In Fig. 3.1, filled and empty circles represent spins in opposite directions. The Néel order
exists in the first and part of the fourth quadrant (antiferromagnetic Heisenberg coupling), the
zigzag order in part of the second quadrant (ferromagnetic Heisenberg and antiferromagnetic
Kitaev coupling), ferromagnetism in part of the second and third quadrant (ferromagnetic
Heisenberg coupling and ferromagnetic or small antiferromagnetic Kitaev coupling) and stripy
order in the fourth quadrant (ferromagnetic Kitaev coupling and antiferromagnetic Heisenberg
coupling). Experiments manifest evidences of the zigzag order in the iridates on honeycomb
lattice [113, 114] in the Na2IrO3 compound, which corresponds to JK > 0 and JH < 0.

65
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This is different from the theoretical motivation to dope the Kitaev anyon spin liquid with
ferromagnetic Kitaev magnetic coupling JK < 0 [41].
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Figure 3.1: Left panel: The phase diagram of the Kitaev Heisenberg model with nearest-
neighbour magnetic coupling on the honeycomb lattice as function of the angle ϕ in the mag-
netic coupling model HKH = A

∑
〈i,j〉(2 sin ϕSγ

i Sγ
j +cos ϕSi ·Sj) from the paper of Chaloupka

et al [43]. Right panel: The Kitaev Heisenberg nearest-neighbour model on the honeycomb

lattice with Sα
i Sα

j − Sβ
i Sβ

j − Sγ
i Sγ

j and the spin-orbit coupling c†
iσdjσ′σα

σσ′ on different corre-
spondent links in which α = x,y, z respectively on the red, green and blue links and β, γ take
other spin components than α.

In accordance with the experimental fact that JK > 0 and JH < 0, we can write down
the kinetic terms generating the Kitaev Heisenberg model following the super-exchange mag-
netism point of view in which magnetic coupling originates from second order super-exchange
processes of the kinetic terms, and in order to establish the correspondance between the nor-
mal hopping inducing the Heisenberg coupling and the spin-orbit coupling inducing a certain
mixture of Kitaev-Heisenberg coupling HKH(3π

4 ), we write down the Kitaev-Heisenberg model
in a different J1 − J2 language on the basis of equation 3.1.1:

HDKH = − t
∑

〈i,j〉
Pi[c

†
iσdjσ + d†

jσciσ]Pj − t′ ∑

〈i,j〉
Pi[c

†
iσdjσ′σα

σσ′ + d†
iσcjσ′σα

σσ′ ]Pj

+ J1

∑

〈i,j〉

þSi · þSj + J2

∑

〈i,j〉
[Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j ]

(3.1.2)

in which JK = 2J2 and JH = J1 − J2 and J1, J2 > 0 so that the Kitaev coupling JK is
always positive. For simplicity, we will call the term J2

∑
〈i,j〉[S

α
i Sα

j − Sβ
i Sβ

j − Sγ
i Sγ

j ] the J2

Kitaev-Heisenberg coupling.
When both the normal hopping t and the spin-orbit coupling t′ are present, the realness

of the spin-orbit coupling is important in order not to induce the Dzyaloshinskii-Moriya inter-
action

∑
〈i,j〉 J3þeα · (þSi × þSj) (J3 = 4t · t′/U) stemming from the cross term of the kinetic term

t and t′. It is perhaps worth noticing that this real spin-orbit coupling breaks time-reversal
symmetry in this case. However, when the normal hopping t and the Heisenberg coupling J1

are absent, the spin-orbit coupling can take imaginary amplitude t′ ∈ C. The extreme case is
t′ = it1 (t1 ∈ R), where the time-reversal symmetry is restored and the J2 Kitaev-Heisenberg
coupling remains unchanged.
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The magnetic coupling constants are J1 = 4t2

U , J2 = 4t′2

U and the spin component in the

spin-orbit coupling σα
σσ′ and the J2 Kitaev-Heisenberg coupling J2(Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j ) α

takes x, y, z component for red, green and blue links as shown in the right panel of Fig. 3.1.
β, γ take other components than α. We note the Gutzwiller projectors as Pi = (1−∑

σ c†
iσciσ)

or Pi = (1 − ∑
σ d†

iσdiσ) according to the sublattice [185, 198, 199]. As shown in Fig. 3.1

right panel, we have the three vectors connecting the nearest-neighbours rx = −(
√

3
2 , 1

2),

ry = (
√

3
2 , −1

2) and rz = (0, 1); and the three vectors connecting the next-nearest-neighbours

Rx = (−
√

3
2 , 3

2), Ry = (−
√

3
2 , −3

2) and Rz = (
√

3, 0). In the half-filled limit, the Gutzwiller
projection will cancel the kinetic terms because of the forbiddance of the doubled filled state
on one site. We could observe the presence of the Kitaev anyon spin liquid model when t = t′

for the half filling system.

As mentioned above, one interesting limit is the pure spin-orbit coupling limit t, J1 → 0,
when the Heisenberg coupling is absent, where we have the J2 Kitaev-Heisenberg model
hosting the zigzag order. The complexity of the model involves the band structure of the spin-
orbit coupling model, the intricated mixture of spin-singlet and spin-triplet electron pairing
when doped away from half-filling and the frustration from the highly anisotropic J2 coupling.

Figure 3.2: The phase diagram of the doped iridate model from the super-exchange magnetism
point of view as written in equation 3.1.2. δ represents the doping of the system from half-
filling.

We have given the figurative ’state of the art’ phase diagram of the doped Kitaev-
Heisenberg model in Fig. 3.2 as function of the doping δ and the amplitude of the normal
hopping t (the spin-orbit coupling t′ = 1 − t). At half-filling, we have respectively the Néel
order and the zigzag order at the Heisenberg limit J2 → 0 and the J2 Kitaev-Heisenberg limit
J1 → 0, while the spin liquid is present when J1 = J2. In section 3.2, we will reformulate the
hidden SU(2) symmetry in order to relate the limit J1 = 0 and J2 = 0 [43]. Doped sufficiently
away from the magnetic orders and the spin liquid at half-filling, we have superconductivity
of different types: When the Heisenberg coupling is dominant over the J2 Kitaev-Heisenberg



68 Chapter 3. Doping Iridates on the Honeycomb Lattice - t − J Model

coupling J1 ≫ J2, we have the d-wave superconductivity in which the superconductor pairing
has non-zero angular momentum: the pairing picks up a phase of e±i 2π

3 after a π/3 rotation
[197, 220, 221, 222]. At the J2 Kitaev-Heisenberg limit J2 ≫ J1, we have one critical point at
quarter-filling, at which the system of holes has conic band structure and very little density
of electrons participates the superconductivity pairing. In section 3.4, we will show that the
spin-orbit coupling endows the holes around quarter-filling a particular band structure with
fermi surface which has new symmetry centers at non trivial momenta. In section 3.5, we will
show how these new symmetry centers lead to superconducting pairing with electron pairs
symmetric with regard to these symmetry centers with non-trivial momenta or the FFLO
superconductivity. We have also conducted the intuitive exact diagonalization on one pla-
quette in section 3.3 to show that the J2 Kitaev-Heisenberg coupling actually favors different
triplet pairings on correspondent links, which is also confirmed by the intuitive procedure ap-
plying the hidden SU(2) symmetry as developped in section 3.2.2. Finally, we have provided
numerical proofs through exact diagonalization of the FFLO superconductivity in section 3.6.

The interesting limit is the J2 Kitaev-Heisenberg limit when t = J1 = 0, in which the
FFLO superconductivity is also existent even with the time-reversal symmetry, since if t′ =
it1 the physics does not change. This demonstrates that the essential ingrediant for FFLO
superconductivity is symmetry centers of the Fermi surface at non-trivial momenta instead of
Zeeman field which breaks time-reversal symmetry. In this chapter, we only limit ourselves
close to this limit in the phase diagram 3.2.

We have put question marks on the unclear transitional region in which there is compe-
tition between the magnetic order and superconductivity. The superconductivity has several
bands very close to each other making the calculation of the Chern number difficult. The
topological aspect of the superconductivity is still under investigation.
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3.2 Duality between Heisenberg and Kitaev-Heisenberg model

3.2.1 Duality at Half-filling

We write here the so-called hidden SU(2) symmetry in another language [43, 45]. Here, we
will study the magnetic order of the Kitaev-Heisenberg model using a spin transformation,
for the half-filled Mott insulator. The spin transformation connects the pure J1 Heisenberg
model to the pure J2 Kitaev-Heisenberg model, thereafter the transformation connects the
two ground state wave functions. Specifically, we have:

HKH = J1

∑

〈i,j〉

þSi · þSj + J2

∑

〈i,j〉
[Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j ] (3.2.1)

The super-exchange coupling consists of a mixture of Heisenberg antiferromagnetic cou-
pling and J2 antiferromagnetic Kitaev-Heisenberg coupling. We have found a global transfor-
mation graphically represented in figure 3.3 which connects the two super-exchange coupling
together. The idea of the global transformation is to introduce the particle-hole pseudospinor(

c↑
c†

↓

)
and

(
c↓
c†

↑

)
, together with the spinor up and down, we end up having the tensor.

Ψi =

(
ci↑ ci↓

(−1)rc†
i↓ −(−1)rc†

i↑

)
r = 0 if i ∈ sublattice A; r = 1 if i ∈ sublattice B

(3.2.2)
A matrix product with an SU(2) matrix on the right hand side gives a spin rotation while

the matrix product on the left hand side would give a SU(2) pseudospin rotation. The spin

rotation on the SU(2) sphere is represented as Ψαβ
i → Ψαγ

i gβ
γ while the SU(2) isospin rotation

in the particle hole space is represented as Ψαβ
i → gγ

αΨγβ
i and gαβ = exp(i

∑
γ σγ

αβθγ) is the

transformation expressed in terms of the Pauli matrix σγ
αβ in which γ is the index for the

Pauli matrix while αβ are the matrix indices. The spin observable in this language would be
expressed as: Sα = Tr(σT

α Ψ†
i Ψi) and the hopping term would be expressed as Tr(Ψ†

i Ψj) and

the spin orbit coupling as Tr(σT
α Ψ†

i Ψj).
In this SU(2) language, we introduce here a local spin SU(2) rotation on the site i, which

we denote as Tsi, and the local spin observable will be transformed as:

Ψ̃i = ΨiTsi Sα
i = Tr(σT

α Ψ†
i Ψi) → S̃α

i = Tr(Tsiσ
T
α T †

siΨ̃i
†
Ψ̃i) (3.2.3)

In other words in the projected SU(2) Fermionic Hilbert space, the spin transforms in the

following way: σ̃α
i = Tsiσ

α
i T †

si. In the spin subspace, we introduce a unitary transformation
Gi in correspondance with the transfromation Tsi which applies on the spin operator in the
following way: Gi = exp(i

∑
γ Sγ

i θγ) then the spin transforms as S̃i = G†
i SiGi. We have

shown the graphic representation of the global transformation in Fig. 3.3 with the notation:
G• = 1, G� = Sx, GN = Sy, G� = Sz and spin observable under their action will experience
respectively the identity transformation, the π/2 rotation around the x, y and z axis.

On each type of link, there are two different global transformations sending the Heisenberg
coupling to the Kitaev-Heisenberg coupling:

S̃i · S̃j = GT
i SiGi · GT

j SjGj =





Sx
i Sx

j − Sy
i Sβ

j − Sz
i Sz

j X links with • �orN�

Sy
i Sy

j − Sz
i Sz

j − Sx
i Sx

j Y links with • Nor��

Sz
i Sz

j − Sx
i Sx

j − Sy
i Sy

j Z links with • �or�N.

(3.2.4)
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Figure 3.3: The global transformation bringing the anti-ferromagnetic Heisenberg model to
the anti-ferromagnetic Kitaev-Heisenberg model and vice versa.

Under this global transformation G =
∏

i Gi the super-exchange Hamiltonian has the
coefficients J1 and J2 exchanged,

H̃J =G†HJG

=G†{J1

∑

〈i,j〉
Si · Sj + J2

∑

〈i,j〉
[Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j ]}G

=J2

∑

〈i,j〉
S̃i · S̃j + J1

∑

〈i,j〉
[S̃α

i S̃α
j − S̃β

i S̃β
j − S̃γ

i S̃γ
j ]

(3.2.5)

From this global transformation, we know that there exists a mapping from the Heisenberg
model to the J2 Kitaev-Heisenberg model and vice-versa. The anti-ferromagnetic Kitaev
model when J1 = J2 is the self duality point, at which the spin flip of the global transformation
sends the Hamiltonian back to itself, namely:

HKitaev =
∑

〈i,j〉
Sγ

i Sγ
j [HKitaev, G] = 0 (3.2.6)

The transformation G relates the two model as shown in equation 3.2.4. If |Ψs〉 is the (spin)
ground state wave function for the Heisenberg model, then GS |Ψs〉 is naturally the ground
state wave function for the Kitaev Heisenberg model. Using this global transformation, we
can identify the zigzag order by applying the transformation to the Néel order. For example,
we have shown in Fig. 3.4, one state of Néel order in the y direction, with spin oriented
in the opposite direction along the y axis on the two different sublattices. Under the global
transformation G, we obtain on the right the zigzag order with antiferromagnetism along the
y links and ferromagnetism along the x and z links.

|ΨZigzag〉 = G |ΨNéel〉 (3.2.7)

The numerical exact diagonalization of the J2 Kitaev-Heisenberg model corroborates the
global transformation and the correspondence between the Heisenberg model and J2 Kitaev-
Heisenberg model at half-filling. We have carried out exact diagonalization of the Heisenberg
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Figure 3.4: The global transformation maps the Néel state along the y polarization, which
is one of the symmetry broken ground state for Heisenberg model, to the zigzag order with
anti-ferromagnetism on the y links, which is one of the ground state for the Kitaev Heisenberg
model.

and J2 Kitaev-Heisenberg model on a 2 by 2 plaquette on the torus geometry. In figure 3.5,
we have the spectrum of the zigzag order hosted by the J2 Kitaev-Heisenberg model on the
left with the singlet ground state at k = 0 and triplet 1st excited state in momentum sectors
(1, 0), (0, 1) (1, 1); while we have the spectrum of the Néel order hosted by the Heisenberg
model on the right with the singlet ground state and the triplet 1st excited state all in the
momentum sector of k = 0. The energy levels of the two system are numerically exactly the
same and the gaps of the two systems behave both as S(S + 1) S = 0, 1, 2....
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Figure 3.5: Spectrum of spins for 2 × 2 plaquettes on torus at half filling when t = 0 = J1

on the left (the Kitaev-Heisenberg limit) and t′ = 0 = J2 on the right (Heisenberg limit).

J1 = 4t2

U , J2 = 4t′2

U , U = 6. The momentum space is composed of momentum sectors (0, 0),
(1, 0), (0, 1) and (1, 1), which correspond to momentum (0, 0), (π, 0), (0, π) and (π, π).

The different momentum sector for the 1st excited state for the Heisenberg and J2 Kitaev-
Heisenberg model (Fig. 3.5) is related to the 4 sublattice patterns introduced by the global
transformation shown in Fig. 3.3.

3.2.2 Duality beyond Half-filling

The Heisenberg and J2 Kitaev-Heisenberg duality relates the two different systems at half-
filling by a global spin rotation in the space enlarging the primitive lattice to a four plaquette
unit cells, and numerical corroborations have been provided. If we adapt this strong coupling
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limit result to the t − J model, we will have an educated guess of the superconductivity order
parameter.

We know that the doped Heisenberg model has spin singlet superconductor pairings at the
mean-field level: ∆̂0 = ci↑dj↓ − ci↓dj↑ and uniform particle density pattern χ̂0 = c†

iσdjσ [215].
In order to understand the superconductivity of the J2 Kitaev-Heisenberg model, we use this
global transformation which sends this singlet pairing to three different spin triplet pairings
on the correspondent links. On the x, y and z links, the triplet pairings are respectively:

∆̂0
ij = ci↑dj↓ − ci↓dj↑

Ts∆̂0
ijT −1

s =





∆̂x
ij = ci↑dj↑ − ci↓dj↓; ri − rj = rx

∆̂y
ij = −i(ci↑dj↑ + ci↓dj↓); ri − rj = ry

∆̂z
ij = −(ci↑dj↓ + ci↓dj↑); ri − rj = rz

(3.2.8)

χ̂0
ij = c†

iσdjσ

Tsχ̂0
ijT −1

s =





χ̂x
ij = c†

iσdjσ′σx
σσ′ + h.c. ri − rj = rx

χ̂y
ij = c†

iσdjσ′σy
σσ′ + h.c. ri − rj = ry

χ̂z
ij = c†

iσdjσ′σz
σσ′ + h.c. ri − rj = rz

(3.2.9)

Thereafter, we can do the Hubbard-Stratonovich transformation to the J1 − J2 terms,
from which we will obtain two channels: the superconductor pairing term and spin (charge)
density wave term:

J1

∑

〈i,j〉
Si · Sj + J2

∑

〈i,j〉
[Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j ]

=
3J1N

4
(|∆0|2 + |χ0|2) +

3J2N

4
(|∆α|2 + |χα|2) −

∑

〈i,j〉
[J1∆0∆̂0 + J1χ0χ̂0

+ J2∆α∆̂α + J2χαχ̂α] + h.c.,

(3.2.10)

in which ∆α =
〈
∆̂α

〉
, χα = 〈χ̂α〉 are expectation values of the corresponding operators. We

will try to verify numerically this mean-field decomposition that we have written down in the
next section.

Though the global transformation provides us with an educative guess of the supercon-
ductivity pairing for J2 > J1 and t′ > t, such a global transformation loses its validity when
doped away from half-filling in the establishment of the correspondance between the t − J1

model with pure Heisenberg coupling and the t′−J2 model with the pure J2 Kitaev-Heisenberg
coupling. When we consider the spin-orbit coupling in the SU(2) language, the hopping terms
describing the motion of Cooper pairs will bring new problems of fluxes into the system:

Ht = −t
∑

〈i,j〉
[c†

iσdjσ + d†
jσciσ] − t′ ∑

〈i,j〉
[c†

iσdjσ′σα
σσ′ + d†

iσcjσ′σα
σσ′ ] (3.2.11)

Specifically, the spin-orbit coupling c†
iσdjσ′σα

σσ′ = Tr(σT
α Ψ†

ciΨdj) can either be sent to

±i Tr(Ψ̃†
ciΨ̃dj) or Tr(Ψ̃†

ciΨ̃dj) since σασβσγ = iǫαβγ and 1σασα = 1. The global transformation
will send the spin-orbit coupling and normal hopping into each other with a periodic π phase.
However, the global transformation can offer us a guess of the superconductor pairing of the
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Figure 3.6: Applying the global spin transformation to the spin-orbit coupling model, we
obtain a model with uniform π fluxes. Arrows represent a π flux attached to the hopping in
the correspondent direction. The primitive cell is enlarged to 4 plaquettes with uniform π
fluxes to the plaquettes.

pure J2 Kitaev-Heisenberg model knowing that we have singlet pairing for the pure Heisenberg
t − J1 model.

In Fig. 3.6, we have shown the emergent periodic fluxes after applying the global trans-
formation to the spin-orbit coupling terms of the model t′σα

σσ′c
†
iσdjσ′ + h.c.. The arrows

represent a π flux of the hopping terms along the corresponding direction ic̃†
iσd̃jσ + h.c. while

the transformed hopping terms on other links without arrows is just the normal kinetic term
c†

iσdjσ + h.c.. The transformed kinetic Hamiltonian will be written as:

H̃t = G†HtG (3.2.12)

= −t
∑

〈i,j〉
[c̃†

iσd̃jσ′σα
σσ′ + h.c.] − t′ ∑

<i,j>∈plain line

[c̃†
iσd̃jσ + h.c.] − t′ ∑

<i,j>∈arrow line

[ic̃†
iσd̃jσ + h.c.]

From Fig. 3.6, we see that the transformation brings periodic fluxes π into the system (4
sublattice). The total net magnetic flux is zero, but the time-reversal symmetry is broken.
The primitive cell is enlarged twice in the two directions, with 4 plaquettes consisting the
primitive cell. In the primitive cell there is one plaquette with π flux going into the paper
and three other plaquettes with π flux coming out of the paper. π ≡ −π mod (2π), the
transformed Hamiltonian consists of a model with uniform π fluxes.

An intuitive understanding is that the spin-orbit coupling breaks the time-reversal sym-
metry alternating bringing magnetic fluxes into the system. A thorough understanding of the
flux configuration and its frustration in the superconductivity is presented in the following sec-
tion via various theoretical and numerical approaches complementing the intuition obtained
from the global transformation.
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3.3 Exact Diagonalization on one Plaquette - Triplet Pairings

We present in this section the numerical diagonalization of a Hamiltonian on one plaquette
of the doped Kitaev-Heisenberg model. First, we look at half-filling (6 electrons) where the
kinetic terms cancel because of the Gutzwiller projection, which entails a spin 1/2 system.

3.3.1 Half-filling

In order to study the magnetism in this highly entangled system, we have to use the density
matrix to extract information: We diagonalize the system and compute the reduced density
matrix for the X, Y and Z links respectively. For example, if the ground state is |Ψ6〉, (the
subscript signifies that there are 6 electrons on the plaquette) the reduced density matrix for
the X link 1 − 2 would be: ρ12 = Tr3456 |Ψ6〉 〈Ψ6|
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Figure 3.7: Left panel: Exact diagonalization of system on one plaquette with sites 1, 2, 3,
4, 5 and 6. Right panel:The 4 eigenvalues of the reduced density matrix of the ground state
wave function for one link (identical on different links) as a function J1, and J2 = 1 − J1 is
fixed accordingly.
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Figure 3.8: The weight of spin states of |↑i↑j〉 − |↓i↓j〉, |↑i↑j〉 + |↓i↓j〉, |↑i↓j〉 − |↓i↑j〉 and
|↑i↓j〉 + |↓i↑j〉 respectively on (a) X links , (b) Y links and (c) Z links for the ground state
wave function as a function of J1, and J2 = 1 − J1 is fixed accordingly.

The reduced density matrix size is 4 × 4, since for the spin 1
2 system on link 1-2 a base

for the Hilbert space is |↑1↑2〉, |↑1↓2〉, |↓1↑2〉 and |↓1↓2〉, in which the subscripts denote the
sites. As shown in Fig. 3.7 & 3.8 for the half filling system, we found that the eigenvector
with the biggest statistical weight in the reduced density matrix for one link corresponds to
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(1) the spin-triplet in accordance with the type of link on which it sits when J1 < J2 or (2)
the singlet pairing when J1 > J2. By spin triplets, we mean: (1) triplet X: |↑i↑j〉 − |↓i↓j〉
for the x link connecting sites i and j, (2) triplet Y |↑i↑j〉 + |↓i↓j〉 for the Y links connecting
the sites i and j and (3) triplet Z |↑i↓j〉 + |↑i↓j〉 for the Z links connecting the sites i and j.
One interesting property of the three spin triplet state is that the total spin of the states is

zero 〈Ψ6| ∑
i

þ̂Si |Ψ6〉 = 0, and the operators to characterize them are the bilinear operators
〈Ψ6| ∑

〈i,j〉 Ŝα
i Ŝα

j |Ψ6〉 Ó= 0. They are often referred to as polar states. We also observe the
perfect symmetry between the left side of t < t′ (J1 < J2) and the right side of t > t′ (J1 > J2),
which is due to the duality explained in the previous section. The coefficients in front of the
Heisenberg and J2 Kitaev-Heisenberg coupling will exchange their places.

3.3.2 Doped System

In order to study the pairing order parameter for such a system, it is useful to study the
distribution of the holes when the system is doped with 2 holes, which corresponds to δ = 1/6.
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Figure 3.9: Exact diagonalization results for two-holes doped from half-filling on one plaquette:
(a) The lowest energy levels and (b) the modulus of the spin triplet |∆α

ij | (α = x,y,z) and
singlet on one link as a function of J1 and J2 when 2 holes are doped from half filling. (c): the
relative phase (angular momentum) between order parametres on two adjacent links sharing
one site. For the phase J2 > J1, the ground state is unique, and the relative phase is zero,
while for the phase J1 > J2 the two lowest energy states are quasi-degenerate and their angular
momentum corresponds respectively to d ± id (4π

3 &2π
3 ).
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With the parametrization of t, t′ = 1 − t, J1 = 4t2/U, J2 = 4t′2/U(U = 6), we diagonalize
the system with two holes (4 electrons on 6 sites), and we extract the ground state wave
function which we note as |Ψ4〉. In Fig. 3.9 left panel (a), we have shown the spectrum of
one plaquette with two holes doped (4 electrons) as a function of t. We see that the ground
state is unique when t > t′, J1 > J2 while there is a quasi-degeneracy when t′ > t, J2 > J1.
The system becomes completely degenerate when J1 → 0 which corresponds to the d ± id
symmetry.

The half filling wave function |Ψ6〉 and two holes doped wave function |Ψ4〉 are connected
by the spin singlet and spin triplet operators ∆α

ij on the link connecting sites i and j; amplitudes
|∆α

ij | and phases of these singlet and triplet operators give us an idea of the pairing order
parametre and the symmetry of the ground state wave function:

∆α
ij = 〈Ψ4| ∆̂α

ij |Ψ6〉 = |∆α
ij |eiθ (3.3.1)

in which the pairing operator ∆α
ij are defined in equation 3.2.8. We have calculated the

expectation of the pairing order using equation 3.3.1 as shown in Fig. 3.9 left panel (b) and
right panel. We have found that the singlet pairing order parameter is dominating when
J1 > J2 and the spin singlet pairing order parameter ∆0

ij is constant on different links.
When J2 > J1 the spin triplet order parameter ∆α

ij is dominant on the link α with the
condition ri − rj = rα and the amplitude of ∆α

ij is constant on different correspondent links
α (α = x,y, z). The phase of the pairing order parameter is arbitrary as the eigenvector from
the exact diagonalization, however, the relative phase between the pairing order parameter
on two adjacent links is well defined. It signifies actually the angular momentum of the
superconductivity, specifically:

eiθ =

{
∆β

ij/∆α
jk |∆α

ij |(ri − rj = rα) = |∆β
jk|(rj − rk = rβ) Triplet

∆0
ij/∆0

jk ∆0 = |∆0
ij | = |∆0

jk| ∀i, j, k
(3.3.2)

in which ij and jk are two adjacent links with a counterclockwise rotation symmetry around
the common site j.

(1) When t > t′, J1 > J2 the lowest two quasi-degenerate state have d ± id symmetry
(degeneracy lifted by the t′ spin-orbit coupling which breaks the time-reversal symmetry):
the angular momentum of these two quasi-degenerate wave functions

∣∣Ψ1
4

〉
&

∣∣Ψ2
4

〉
: ∆0

12 =

ei 4π
3 ∆0

23, ∆0
23 = ei 4π

3 ∆0
34.... are θ = 4π

3 for the lowest energy level and ∆0
12 = ei 2π

3 ∆0
23,

∆0
23 = ei 2π

3 ∆0
34.... θ = 2π

3 for the 1st excited state. If we denote the wave function of the
d ± id symmetry respectively as |Ψ+〉 and |Ψ−〉, they are then related by the time-reversal
operator: |Ψ+〉 = T |Ψ−〉. When the spin-orbit coupling is absent t′ = 0, the Hamiltonian
commutes with the time-reversal operator. However the spin-orbit coupling breaks the time
reversal symmetry Tσα

σσ′c
†
iσdjσ′T −1 = −σα

σσ′c
†
iσdjσ′ , which lifts the degeneracy between the

|Ψ+〉 and |Ψ−〉 making the superconductivity chiral.
(2) When t < t′, J1 < J2 we are situated in the spin triplet phase, the ground state is

unique and the wave function symmetry is p-wave: ∆x
12 = ∆y

23 = ∆z
34 = ∆x

45 = ∆y
56 =

∆z
61. By noticing that the spin triplet order parametre is antisymmetric ∆α

ij = −∆α
ji (unlike

the symmetric property for singlets ∆0
ij = ∆0

ji), this fixes a certain chirality for the order
parametres on one plaquette.

To sum up, the exact diagonalization result on one plaquette confirms the intuition ob-
tained from the global transformation presented in the previous section: when t′ > t, J2 > J1

the spin triplet pairing are in one to one correspondance with the spin singlet pairing ∆α
ij =

Ts∆0
ijT −1

s as explained in equation 3.2.8. Nevertheless, one question arises naturally from the
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calculation of the angular momentum of the pairing order parameter on one plaquette: the
antisymmetric p-wave superconductivity imposes a certain chirality on one plaquette; we can
imagine that two juxtaposed plaquettes have opposite chirality, however, the dual lattice of
the honeycomb latice is a triangular lattice, which is frustrated if we wish to alternate between
the two chiralities (+ and -). We have also mentionned in the previous section that if we apply
the same global spin transformation to the kinetic terms and spin-orbit coupling, we have a
model with periodic fluxes. We will inspect carefully the band structure of the spin-orbit
system in the next section to understand the peculiarity of this model and the coordination
of chirality in a 2D doped system.

3.4 Band Structure of the Spin-Orbit Coupling System

From the previous sections, we see that the spin-orbit coupling brings complicated flux con-
figurations into the system. It is thus worth having a careful investigation of the free electron
model of the system, which has been previously studied in the cold atom context [200]. We
have now the spin-orbit coupling model consisting of a mixture of normal hopping and spin-
orbit coupling.

Hs =
∑

〈i,j〉
(tδσσ′ + t′σα

σσ′)c
†
iσdjσ′ + h.c. − µc

∑

i

(c†
iσciσ + d†

iσdiσ) (3.4.1)

We can diagonalize the problem by applying the Fourier transformation, and we write
down the spinor Ψsk = (ck↑, ck↓, dk↑, dk↓).

Hs =
∑

k

Ψ†
skHs(k)Ψsk (3.4.2)

Hsk =




−µc 0 tg(k)∗ + t′gz(k)∗ t′[gx(k)∗ − igy(k)∗]
0 −µc t′[gx(k)∗ + igy(k)∗] tg(k)∗ − t′gz(k)∗

tg(k) + t′gz(k) t′[gx(k) − igy(k)] −µc 0
t′[gx(k) + igy(k)] tg(k) − t′gz(k) 0 −µc




in which g(k) =
∑

α=x,y,z eik·rα and gα(k) = eik·rα (α = x, y, z). There are four bands for
such a model:

E(k) = ±Ep(k) = ±
√

3t′2 + t2|g(k)|2 + p
√

(cx(k))2 + (cy(k))2 + (cz(k))2 (3.4.3)

in which p = ±1 and

cα(k) = 2t′2 sin k · Rα + 2tt′[1 + cos k · Rβ + cos k · Rγ ] (α Ó= β Ó= γ) (3.4.4)

We have plotted the band structure along the circuit M → O → K → K ′ → M in Fig.
3.10 in the spin-orbit coupling limit. We see that there are four bands at the limit t = 0,
touching at point M and O between the third and fourth band and the first and second band
has the mirror symmetry with regard to zero energy level. When t Ó= 0, the normal hopping
lifts the degeneracy at the conic band structure at point M and O while leaving the conic
degeneracy structure between the second and third band.
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Figure 3.10: (a) the first Brillouin zone of the honeycomb lattice with three symmetry centers
of the Fermi surface at non-trivial wave vectors ±qα (α = x, y, z). The band structure
Ep(k) expressed in equation 3.4.3 of the spin-orbit coupling model at t = 0, t′ = 1 (b) and
t = 0.1, t′ = 0.9 (c).

The geometric characteristics of the band is very particular at the pure spin-orbit coupling
limit. As a matter of fact, when t = 0 we have new symmetry centers for the band structure
at the following points:

qx = ±(
π

2
√

3
,
π

6
), qy = ±(

π

2
√

3
, −π

6
), qz = ±(0,

π

3
), q0 = (0, 0)

Ep(k) = Ep(2qα − k) (α = x, y, z), (3.4.5)

which means at a certain Fermi level, electrons with momentum k and 2qα − k are both on
the Fermi surface. The new symmetry centers are related to spatial modulation of π phase.
If we define the wave vectors Qα = 2qα, we have:

Qα · Rβ = π − πδαβ (3.4.6)

in which δαβ is the kronecker symbol and α, β = x, y, z. This embedded flux in the spin
subspace attributes actually a topological characteristic to the system. To illustrate this
point, we can write the Hamiltonian in the form of:

Hs(k) =

(
µc Σ†

k

Σk µc

)
Σk = tg(k) + t′ ∑

α

gα(k)σα (3.4.7)

and diagonalization of this Hamiltonian involves the calculation of the following matrix prod-
uct:

Σ†
kΣk = 3t′2 + t2|g(k)|2 + þ̂c(k) · þσ, (3.4.8)

in which þc(k) = (cx(k), cy(k), cz(k)) and þ̂c(k) is the unit vector on the SU(2) sphere, and
þσ = (σx, σy, σz) is a vector composed of Pauli matrices in the spin subspace. The topology is

manifested by the wrapping of the vector þ̂c(k) around the SU(2) sphere when k sweeps around
the first Brillouin zone. Mathematically speaking, the Chern class is the characterization of
degree of the mapping þc(k) = (cx(k), cy(k), cz(k)) : FBZ → S2.

Without losing any generality, we can calculate the Chern number using the band projec-
tors. The eigenvalues of the Hamiltonian can be written as:

(
vp(k)

eχkvp(−k)

)
(3.4.9)
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in which χk is a phase to be determined and the vector vp(k) is determined by:

Psp(k) =
1

2
[1 − pþ̂c(k) · þσ] (3.4.10)

The projectors Ps± projects to the bands E± (p = ±1) with respectively the eigenvectors
vp(k). These projectors act in the spin subspace.

If we denote PI(k) as the band projector for the band I with energy level EI(k), then we
have generically the Chern number for the band I as:

CI =
1

2πi

ˆ

F BZ
d2k Tr[PI(k)(∂kx

PI(k) − ∂ky
PI(k))] =

p

2π

ˆ

F BZ
d2kþ̂c(k) · [∂kx

þ̂c(k) − ∂ky
þ̂c(k)]

(3.4.11)
in which in the second equality we have substituted PI(k) by Psp±(k). Thereafter, we can
implement a numerical calculation of the Chern number.

In the spin-orbit coupling model, the tricky part of the Chern number numerical calculation
comes from the fact that the second and the third band touches at several points making the
Chern number senseless for the second and third band. In order to cope with this difficulty,
we can define the Chern number for the second and third band. If |Ψ2〉 and |Ψ3〉 are the
eigenvectors of the second and third band from the exact diagonalization, we do the Gram-
Schmidt reorthogonalization to these two eigenvectors, then we have the band projectors to
the second and third band:

˜|Ψ2〉 =
1

N2
|Ψ2〉

˜|Ψ3〉 =
1

N3
(|Ψ3〉 − 〈Ψ2| Ψ3〉

〈Ψ2| Ψ2〉 |Ψ3〉)

P23 = ˜|Ψ2〉〈̃Ψ2| + ˜|Ψ3〉〈̃Ψ3|

(3.4.12)

in which N2 and N3 are the renormalization of the vector |Ψ2〉 and |Ψ3〉 so that ˜|Ψ2〉 and ˜|Ψ3〉
form orthonormal bases. The Chern number for the spin orbit coupling model is defined when
there is the normal kinetic term t that opens a gap. The vector þ̂c(k) has singular behavior
around qα and q0. It wraps around the unit sphere once when covering the first Brillouin
zone. As a result, the Chern number for the bands are depending on the index p. The first
and fourth band has Chern number equal to 1 (p = +1) while the Chern number of the second
plus the third band is −2 (p = −1). The actual Chern number of the system is determined
by the Fermi level, by summing the Chern number of all the bands below the Fermi level.

The Chern number is independent of the magnitude of t and t′. As a consequence of
the Chern number, there is an edge mode connecting the lowest band and the medium band
(the second plus the third band) and there is also another edge mode connecting the highest
band and the medium band, and these two edge modes propagates in the opposite direction.
We have also spoted the particle-hole symmetry in terms of the Chern number. As a result,
the spin-orbit coupling model at the limit of t → 0 is topological when the Fermi level lies
beteween the 3rd and 4th band. We have identified new symmetry center of the free electron
band in this section, and we will try to use these new symmetry properties to inspect the
particularity of the superconductivity when we dope around quarter-filling δ = 0.25.
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3.5 FFLO Superconductivity

We have shown the particularity of the band structure of the spin-orbit coupling model in the
previous section and identified new symmetry centers. When the system is doped away from
half-filling, holes (or electrons) will form pairs inducing superconducting instability at not
too large couplings. Superconductivity is a property that depends only on the Fermi surface
rather than the bulk of the electron bands. In the BCS theory, electrons with momentum k

and −k form Cooper pairs due to the electron-phonon coupling, which opens a superconduc-
tivity gap. In the context of high-Tc superconductor, most electron band structure has the
inversion symmetry so that when the Fermi level is fixed, electrons with momentum k and
−k form also pairs thanks to the correlation opening a superconductivity gap and the Cooper
pair momentum is therefore zero. When there are other symmetry centers at wave vector
qα, electrons with momentum k and 2qα − k will also form Cooper pairs with Cooper pair
momentum Qα = 2qα to be in competition with the previous one.

Figure 3.11: Elementary superconductivity excitations of the Fermi surface engage not only
electron pairs with momentum k and −k but also electron pairs with momentum k and
Qα − k. (α = x, y, z.)

Apart from the inversion symmetry around the point O in the first Brillouin zone, we
have supplementary symmetry centers for the band structure of the spin-orbit coupling model
(See Fig. 3.11). Hence, we have also electron pairs with momentum k and Qα − k both
at the Fermi surface α = x, y, z. There are actually 4 pairs of electrons in competition
for the superconductivity instability, one for each Qα and one at zero momentum. We can
measure the spin of the 4 electron pairs by using the projector introduced in equation 3.4.10

as 〈Sk〉 = Tr(Psp(k)ŜPsp(k)). Around the symmetry center Qα, we have 〈Sα
k 〉 = −

〈
Sα

Qα−k

〉

and
〈
Sβ

k

〉
=

〈
Sβ

Qα−k

〉
for α Ó= β and α, β = x, y, z while around the inversion center O, we

have 〈Sk〉 = − 〈S−k〉.




〈Sx
k〉 = −

〈
Sx

Qx−k

〉 〈
Sy

k

〉
=

〈
Sy

Qx−k

〉
〈Sz

k〉 =
〈
Sz

Qx−k

〉

〈
Sy

k

〉
= −

〈
Sy

Qy−k

〉
〈Sx

k〉 =
〈
Sx

Qy−k

〉
〈Sz

k〉 =
〈
Sz

Qy−k

〉

〈Sz
k〉 = −

〈
Sz

Qz−k

〉
〈Sx

k〉 =
〈
Sx

Qz−k

〉 〈
Sy

k

〉
=

〈
Sy

Qz−k

〉

〈Sk〉 = − 〈S−k〉

(3.5.1)
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We can see obviously from equation 3.5.1 that electron pairs around symmetry center Qα min-
imize the coupling in the form of J2 Kitaev-Heisenberg J(Sα

k Sα
Qα−k −Sβ

kSβ
Qα−k −Sγ

kSγ
Qα−k) =

−JS2
k and the electron pairs around the inversion center O minimize the coupling in the form

of Heisenberg JSk · S−k = −JS2
k. In the language of wave function, we can interpret the

above as (we denote |↑x,y,z〉 as spin up in the x, y and z polarization, etc):

〈Sx
k〉 = −

〈
Sx

Qx−k

〉
:

|Ψx〉 = |↑x〉k |↓x〉Qx−k + |↓x〉k |↑x〉Qx−k

=
1

2
[(|↑z〉k − |↓z〉k)(|↑z〉Qx−k + |↓z〉Qx−k) + (|↑z〉k + |↓z〉k)(|↑z〉Qx−k − |↓z〉Qx−k)]

= |↑z〉k |↑z〉Qx−k − |↓z〉k |↓z〉Qx−k

〈
Sy

k

〉
= −

〈
Sy

Qy−k

〉
:

|Ψy〉 = |↑y〉k |↓y〉
Qy−k + |↓y〉k |↑y〉

Qy−k

=
1

2
[(|↑z〉k − i |↓z〉k)(|↑z〉Qy−k + i |↓z〉Qy−k) + (|↑z〉k + i |↓z〉k)(|↑z〉Qy−k − i |↓z〉Qy−k)]

= |↑z〉k |↑z〉Qy−k + |↓z〉k |↓z〉Qy−k

〈Sz
k〉 = −

〈
Sz

Qz−k

〉
:

|Ψz〉 = |↑z〉k |↓z〉Qz−k + |↓z〉k |↑z〉Qz−k

(3.5.2)

If we express the creation operator of electron pairs in accordance with the spin behavior
in equation 3.5.1, we have:





∆̂xQx(k) = ck↑dQx−k↑ − ck↓dQx−k↓
∆̂yQy (k) = i(ck↑dQy−k↑ + ck↓dQy−k↓)

∆̂zQz (k) = −(ck↑dQz−k↓ + ck↓dQz−k↑)

∆̂0O(k) = ck↑d−k↓ − ck↓d−k↑

(3.5.3)

At the mean-field level, we can decompose the J2 Kitaev-Heisenberg coupling as:

J2

∑

〈i,j〉
[Sα

i Sα
j − Sβ

i Sβ
j − Sγ

i Sγ
j ]

=
3J2N

4
|∆α|2 −

∑

〈i,j〉
J2[∆α

ij∆̂α
ijδri−rj ,rα + ∆α⋆

ij ∆̂α†
ij δri−rj ,rα − ∆0

ij∆̂0
ij − ∆0∗

ij ∆̂0†
ij ] + h.c.,

(3.5.4)

In equation 3.2.8, we have guessed the triplet pairing operators in the direct space, and
we try to link them with the triplet pairings in the momentum space that we have obtained in
equation 3.5.3. If we denote the mean value of the triplet pairing operators in the momentum

space as ∆αQα =
〈
∆̂αQα

〉
then we can do the Fourier transformation to the terms for the
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pairing operators
∑

〈i,j〉 ∆α
ij∆̂α

ijδri−rj ,rα :

∑

〈i,j〉
∆α

ij∆̂α
ijδri−rj ,rα

=
1

N

∑

k,〈i,j〉
∆α

ijiσy
σσ1σα

σ1σ′ckσd−k+Qσ′eik·(ri−rj)eiQ·rj δri−rj ,rα

=
∑

k

∆αQigα(k)σy
σσ1σα

σ1σ′ckσd−k+Qσ′

∆αQ =
1

N

∑

〈i,j〉
eiQ·rj ∆α

ij ,

(3.5.5)

in which ∆αQ denotes the spin-triplet pairing α with the spatial modulation eiQ·rj and gα(k) =
eik·rα . We can see that when Q = Qα, the spatial modulated order parameter ∆αQ concurs
with the triplet pairing order parameter in the momentum space:

∑

〈i,j〉
∆α

ij∆̂α
ijδri−rj ,rα =

∑

k

∆αQα∆̂αQα(k)gα(k) (3.5.6)

∆αQα =
1

N

∑

〈i,j〉
eiQα·rj ∆α

ij (3.5.7)

and ∆αQα , the order parameter of electron pairing around the symmetry center Qα equals
the modulated order parameter ∆α

ij with a momentum Qα. It is worth noticing that around
the inversion symmetry center O, the spin singlet operator ∆0O is uniform with zero electron
pair momentum.

Consequentially, there are four types of electron pairs: (1) ∆αQα three spin triplet pairings
with electron pair momentum Qα (α = x, y, z) which has the spatial modulation of the
order parameter with momentum Qα and (2) ∆0O the singlet electron pairing with zero
pair momentum which has uniform order parameter. The four electron pairs form bosons
constituting four types of condensates, and we will endeavor to understand the competition
among the four condensates by calculating the superconductivity susceptibility and pursue
the subsequent Landau expansion to study the interaction between the four condensates.

In order to simplify the discussion, we see that a little normal hopping t added to the spin-
orbit coupling model opens a gap at the quarter-filling. When the chemical potential is fixed
at quarter-filling within the gap, the electron pair density is zero making the superconductivity
absent. Doped away from quarter-filling in the weak-coupling limit, the electron pair density
becomes non-zero inducing the superconductivity. There are complexities around the half-
filling with charge and spin density wave χ0

ij and χα
ij as well as the mean-field treatment of

the Gutzwiller projection. The study of the superconductivity around quarter-filling avoids
all these technicalities since χ0

ij and the Gutzwiller projectors disappears around this filling
in the weak coupling limit.

We write down the Gor’kov-Green function whose diagonal blocks consist of the free
electron Green function for respectively particles and holes and the non-diagonal blocks consist
of the four kinds of different superconductivity pairing discussed above, specifically if we admit
the Nambu spinor as Φk = (Ψsk, Ψ†

sQα−k) and Ψsk = (ck↑, ck↓, dk↑, dk↓), the Gor’kov Green
function Gα(ω, k, Q) with electron pair momentum Q and the color index α (α = 0, x, y, z)
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for respectively the spin singlet and spin triplet pairing writes as:

G−1
α (ω, k, Q) =

(
G−1

0 (ω, k) −HαQ(k)

−HαQ(k)H −G−1
0 (ω, −k + Q)

)

G0(ω, k) =
1

iω − (H0(k) − µ)
=

PI(k)

iω − (ǫI(k) − µ)

H0(k) =

(
−µ −tg(k)∗ − t′ ∑

α gα(k)∗σα

−tg(k) − t′ ∑
α gα(k)σα −µ

)

HαQ(k) =(J2 − J1)∆αQ

(
0 −igα(−k + Q)σασy

igα(k)σασy 0

)

H0Q(k) =(J1 − J2)∆0Q

(
0 −iσyg(−k + Q)

iσyg(k) 0

)

(3.5.8)

in which G0(ω, k) is the Green function for the band electron with momentum k; ǫI(k) and
PI(k) are respectively the band energy and band projector for the band with the index I. H0(k)
is the Hamiltonian for the free spin-orbit coupling model and HαQ(k) is the Hamiltonian for
the triplet pairing α with momentum Q. σα are the Pauli matrices for the spin subspace. We
notice that when α = 0 and Q = 0 we have the normal BCS Green function. Then we can
calculate the free energy for the superconductivity and expand the free energy by taking the
superconductivity HαQ(k) as a perturbation:

F (Q, µ, T ) = −kBT ln Z(Q, µ, T ) = −kBT
∑

ω,k

Tr ln[G−1
α (ω, k, Q)]+

3N

4
(J1+J2)(|∆0|2+|∆α|2)

(3.5.9)
Using the fact that ln(1 + x) = x − 1

2x2 − ... − 1
nxn − .... the lowest order non zero term is the

second order Landau expansion, which represents the 1-loop corrrection.

F α
BCS(Q, µ, T )

= −
∑

ω,k

kBT Tr[G0(ω, k)HαQ(k)G0(−ω, −k + Q)HH
αQ(k)] +

3N

4
(J1 + J2)(|∆0|2 + |∆α|2)

= lim
η→0

∑

ω,k,I,J

1 − nf (ǫI(k) − µ) − nf (ǫJ(−k + Q) − µ)

ǫI(k) + ǫJ(−k + Q) − 2µ + iη
Tr[PI(k)HαQ(k)PJ(−k + Q)HH

αQ(k)]

+
3N

4
(J1 + J2)(|∆0|2 + |∆α|2),

(3.5.10)

in which I, J and ǫI(k), ǫJ(−k+Q) are the indices and energies for the bands, and PI(k), PJ(−k+
Q) the correspondent band projectors and nf (ǫI(k) − µ) is the Fermi-Dirac distribution.

3.5.1 The Spin-Orbit Coupling Limit t = J1 = 0

We consider at the first place the J2 Kitaev-Heisenberg limit in which t = 0, t′ Ó= 0, and to
the second order the free energy behaves as:

F α
BCS(Q, µ, T )t=0 = −χα(Q, µ, T )t=0|∆αQ|2 (3.5.11)

We show in figure 3.12 the spin triplet susceptibility χα(Q, µ, T ) as a function of q = Q
2 in

the first Brillouin zone at temperature kBT = 0.01t′ for t = 0, t′ = 1, in which we can remark
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Figure 3.12: Triplet susceptibility χα(Q, µ, T )t=0 α = x, y, z as a function of q = Q
2 in the

first Brillouin zone at quarter-filling. The susceptibility of spin triplet pairing (a) ∆x, (b) ∆y

and (c) ∆z at temperature kBT = 0.01t′ for t = 0, t′ = 1.

the spin-triplet Cooper pairs condensates. The spin-triplet condensates ∆αQ susceptibility
χα(Q, µ, T ) peaks at wave vector qα = Qα

2 which coincides with the symmetry centers of
the spin-orbit coupling model shown in Fig. 3.10 left panel. We observe the π/3 symmetry
among the three condensate profile in their superconductivity susceptibility which is related
to the inherent symmetry of a combination of spin rotation and spatial rotation of the original
model.
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Figure 3.13: Pure spin-orbit coupling limit (t = J1 = 0): (a) The susceptibility peak of Cooper
pair χz(Qz, µ, T ) for spin triplet pairing ∆z as a function of temperature at different dopings.
(b): the susceptibility of singlet Cooper pair χ0(0, µ, T ) ∆0 as a function of temperature at
different dopings.

At quarter-filling, the Fermi surface has particularly the conic structure with very limited
density of electron pairs rendering the spin-triplet susceptibility finite at low temperature.
Specifically, we can study the behavior of the susceptibility peak as a function of temperature
at different doping by taking the representative susceptibility χz(Qz, µ, T ) for the spin-triplet
∆zQ as shown in the left panel of Fig. 3.13. We see that the susceptibility remains finite at
quarter-filling δ = 0.25, while it tends to diverge at zero temperature when the doping diverts
from quarter-filling where Fermi surface becomes arcs instead of mere points. We have also
computed the singlet Cooper pair susceptibility as a function of temperature as shown in right
panel of Fig. 3.13. The singlet susceptibility around the inversion symmetry center remains
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negative at all temperature, indicating that the spin singlet pairing is not favored.
We have checked that the singlet susceptibility remains negative in the spin-orbit limit

t = 0 in the first Brillouin zone indicating that the spin-singlet pairing is not favored at this
limit as shown in Fig. 3.13 right panel.

Still limited to the limit t = 0, we study the mutual interaction effects of the three
condensates and we have calculated the box diagram by extending the Landau expansion to
the fourth order, which designates the interaction of two Cooper pairs. We have the three
kinds of bosons:

b†
xq =

∑

k

c†
k↑d†

−k+q↑ − c†
k↓d†

−k+q↓

b†
yq = −i

∑

k

(c†
k↑d†

−k+q↑ + c†
k↓d†

−k+q↓)

b†
zq = −

∑

k

(c†
k↑d†

−k+q↓ + c†
k↓d†

−k+q↑)

(3.5.12)

The lowest order in the Feyman diagram with conserved particle number is the 4th order
box diagram.

bαQα b̄αQα

b̄βQβ
bβQβ

p

p+Qα p+Qα

p−Qα +Qβ

Figure 3.14: The Feyman diagram for two pairs of Cooper pairs which describes the interaction
processes of the bosons from the three spin-triplet condensates in the pure spin-orbit limit of
t = J1 = 0.

In the box diagram describing the Cooper pair interaction, we can notice that there are
two pairs of electrons entering the box and two leaving the box. Since the Cooper pair
momentum is fixed to Qα, the only possible terms from the 4th order expansion are |∆xQx |4
and |∆xQx∆yQy |2. Thereafter, we have the Landau expansion of the superconductivity to the
4th order:

F (µ, T )t=0 = − χx(Qx, T )|∆xQx |2 − χy(Qy, T )|∆yQy |2 − χz(Qz, T )|∆zQz |2 (3.5.13)

+ C1(|∆xQx |4 + |∆yQy |4 + |∆zQz |4) + C2(|∆xQx∆yQy |2 + |∆xQx∆zQz |2 + |∆yQy ∆zQz |2),

in which C1 and C2 are positive numbers obtained from the calculation of the box diagram.
Specifically the 4th order terms are:

ˆ

dωd2p
kBT

4
Tr[G0(ω, p)HαQα(p)G0(−ω, −k + Qα)HH

βQβ
(p)

G0(ω, p − Qα + Qβ)HβQβ
(p)G0(−ω, −p + Qα)HH

αQα
(p)]

(3.5.14)
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When α = β we obtain the coefficient C1 and when α Ó= β we obtain the coefficient C2.
From the positiveness of the coefficient C2, we deduce that mixing of the three bosons is
not energetically favorable, and there is phase separation among the three type of bosons.
Consequentially, wave function with one sole spin-triplet pairing ∆αQα lowers the free energy
(α = x, y,z.), namely the ground state wave function at zero temperature is three times
degenerate in the real space represented in figure 3.15, in which the triplet pairings ∆̂α

ij are
represented by bold and dashed lines. (Red for X, green for Y and blue for Z) and dashed lines
represents a π phase for the pairing. It is worth noticing that q·Rx+q·Ry +q·Rz ≡ 0 mod 2π
for any vector q. The Cooper pair momentum and the spatial modulation shown in figure
3.15 are related through the relation:

Qα · Rβ = π − πδαβ (α, β = x, y, z), (3.5.15)

in which δαβ is the Kronecker symbol.

Figure 3.15: The graphical representation of the 3 times degenerate ground state for the wave
function of the FFLO superconductivity. The bold line signifies a spin-triplet pairing on the
link with the spin triplet type in correspondence with the type of the link ((a)X red, (b)
Y green and (c) Z blue). The dashed line represents the same pairing but with a π phase
attached. (opposite sign in the wave function)

In conclusion, the new symmetry centers of the band structure has brought into the
superconductivity pairing a spatial modulation of π phase at the spin-orbit coupling limit
t = J1 = 0.

3.5.2 Near the Spin-Orbit Coupling Limit t, J1 → 0

Now, we inspect the effect of the normal hopping term proportional to t on the spin-orbit
coupling which will make the centric symmetry around qα (α = x, y, z) fade away gradually.
The singlet condensate will also come into play because of the J1 Heisenberg coupling favoring
the singlet pairing. The normal hopping term will also open two gaps between the first and
second as well as the third and fourth band, altering the conic structure around quarter-filling.
The electron pair density at exact one quarter-filling is zero in this scenario, and one has to
dope further more for the emergence of the superconductivity because of the gap opened by
normal hopping. If we compare Fig. 3.16 with Fig. 3.12, we find that the triplet condensate
in the pure spin-orbit limit is deeper than the triplet condensate with t,J1 Ó= 0 in the model.

The spin-singlet susceptibility is a negative in the first Brillouin zone, when the normal t
hopping is turned on, a well around the inversion symmetry center O begins to form. This
well constitutes a condensate around t = 0.2 (t′ = 0.8) (See Fig. 3.17). With the increase of
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Figure 3.16: The suceptibility of the spin-triplet condensates when t = 0.1, t′ = 0.9 and
T = 0.01(t + t′) of the spin triplet superconductivity order parameter ∆x on the left, ∆y in
the middle, ∆z on the right.

the t term, the condensate turns deeper and deeper and the susceptibility becomes gradually
positive, rendering the spin-singlet Cooper pairs stable. The condensate of the spin-singlet
Cooper pair centers around (0, 0) the inversion symmetry center indicating the singlet order
parameter is uniform in space. Two spin-singlet condensate profiles are shown in Fig. 3.17
for t = 0,1; t′ = 0.9 and t = 0.2; t′ = 0.8.

The bosonic Cooper pair creation operator is written as:

b†
0 =

∑

k

c†
k↑d†

−k↓ − c†
k↓d†

−k↑ (3.5.16)

Figure 3.17: The suceptibility of the spin-singlet condensates when t = 0.1, t′ = 0.9 (on the
left) and t = 0.2, t′ = 0.8 (on the right) and T = 0.01(t + t′).

With the presence of spin-singlet Cooper pairs, another effect that comes into play is the
entanglement between the four different condensates: the three spin-triplet condensates and
the spin singlet condensates. The spin-singlet condensate is gradually formed, and a new
box-diagram becomes relevant. Since the sum of the Cooper pair momentum of the three
condensates is zero, the new related processes involve the three triplet condensates and the
singlet condensate which satisfies momentum conservation since Qx + Qy + Qz = 0. The

processes involve the creation of one singlet Cooper pair b†
0 and one triplet Cooper pair b†

αQα

and the destruction of Cooper pairs of two other triplet types bβ−Qγ
and bγ−Qγ , entailing a

crossing term of the form ∆0∆αQα∆̄β−Qβ
∆̄γ−Qγ (α Ó= β Ó= γ).

We will not pursue the Landau expansion here because of the complexity, but the conse-
quence of this triplet-singlet mixture manifests in the fact that on a certain type of link there
will be a coexistence of the modulated spin triplet pairing ∆αQα and the uniform spin-singlet
pairing ∆0.
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Figure 3.18: The Feyman diagram for two pairs of Cooper pairs which describes the interaction
processes of the bosons from the three spin-triplet condensates and the singlet condensate
when t, J1 Ó= 0. (α Ó= β Ó= γ)

The t term will open up a gap to the Dirac band structure around quarter-filling making
the dispersion relation parabolic rather than linear at the pure spin-orbit limit t = J1 = 0.
This will changes the density of states around quarter filling and affect the Cooper pair
susceptibility for the spin triplet pairing as shown in figure 3.19. The susceptibility remains
finite and decreases when t is turned on gradually.
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Figure 3.19: The susceptibility peak of Cooper pair χα(Qα, T ) as a function of temperature
at δ = 0.3 with different value of t and t′ = 1 − t.

3.6 Numerical Proofs of the FFLO Superconductivity

We have done exact diagonalizations for the Kitaev-Heisenberg model with different values of
t, t′ at different dopings and we fix the parametrization J1 = 4t2

U , J2 = 4t′2

U . (This numerical
section is done in collaboration with Cécile Repellin and Nicolas Regnault.) We seek the trace
of the FFLO superconductivity through the numerical spectra of the doped system on torus
in the momentum space.
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Figure 3.20: The geometric configuration of the exact diagonalization on torus with the
primitive vectors noted as a1 and a2.

The geometry configuration of the system on torus is plotted in Fig. 3.20, with primitive
wave vectors in the direct and reciprocal space denoted respectively as ai (i=1, 2) and a′

i

(i=1, 2). We numerically diagonalized the doped system and plot the energy levels in the
different momentum sectors. On the discretized system of Nx × Ny plaquettes on torus, we
will have thereafter Nx momentum sectors in the base of a′

1 and Ny momentum sectors in the
base of a′

2, which leads to a total of Nx × Ny sectors. To represent the 2D numerical spectra
in 1D, we adopt the Quantum Hall spectrum convention with the energy levels as a function
of kx + Nxky in which Nx is the number of plaquettes in the x direction.

We can apply the Bloch theorem to analyze the footprints of the FFLO superconductivity.
If we denote the three degenerate ground state with one Cooper pair as |Ψx〉, |Ψy〉 and |Ψz〉
for the spin-triplet x, y and z, we have:





T1 |Ψx〉 = − |Ψx〉 T2 |Ψx〉 = − |Ψx〉 T1T2 |Ψx〉 = |Ψx〉
T1 |Ψy〉 = − |Ψy〉 T2 |Ψy〉 = |Ψy〉 T1T2 |Ψy〉 = − |Ψy〉
T1 |Ψz〉 = |Ψz〉 T2 |Ψz〉 = − |Ψz〉 T1T2 |Ψz〉 = − |Ψz〉

(3.6.1)

We have: Ti |Ψ〉 = eiq·ai |Ψi〉 in which q is the momentum corresponding to the momentum
sector of the ground state, we can therefore identify the three ground state Ansätze Ψx, Ψy

and Ψz: qx = (π, π), qy = (π, 0) and qz = (0, π). In the system with Nx × Ny plaquettes, Nx

and Ny need to be even numbers so that the FFLO superconductivity is not frustrated and
the three momentum sectors for the ground state wave function will be in qx = (Nx/2, Ny/2),
qy = (Nx/2, 0) and qz = (0, Ny/2). For example in Fig. 3.21, we have the ground state in
the momentum sector (1, 1), (1,0) and (0,1) for 2 and 6 particles while the spectrum with 4
particles is at quarter filling.

We can also calculate the pairing order parameter by diagonalizing the Hamiltonian nu-
merically respectively for the half-filling system and the 2 holes doped case:

∆α = 〈ΨN | ∆̂α |ΨN+2〉 χα = 〈ΨN | χ̂α |ΨN 〉 α = 0, x, y, z, (3.6.2)

in which the subscript N and N+2 are the number of electrons for the wave function. Using
this procedure, we have calculated the superconductor pairing order parameter on different
links. For the numerical leading order (other order parameters are at least ten times smaller),
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Figure 3.21: Spectrum of 2×2 plaquettes on torus when t = 0, t′ = 1 with 2, 4 and 6 particles.

we have: 



∣∣Ψ1
6

〉
= (∆̂x

16 − ∆̂x
52 + ∆̂x

34 − ∆̂x
70) |Ψ8〉

∣∣Ψ2
6

〉
= (∆̂y

03 − ∆̂y
21 + ∆̂y

65 − ∆̂y
47) |Ψ8〉

∣∣Ψ3
6

〉
= (∆̂z

01 − ∆̂z
23 + ∆̂z

45 − ∆̂z
67) |Ψ8〉

(3.6.3)

in which |Ψ6〉 is the wave function for the 2 holes doped system and |Ψ8〉 is the half-filling
(δ = 0) system and the numerotation of the sites is represented in Fig. 3.15. It is worth noting
that the spin triplet pairing operators are antisymmetric: ∆̂α

ij = −∆̂α
ji. The expectation value

of the superconductor pairing order parameter and the density order parameters are shown
in figure 3.22, in which we parametrize as t′ = 1 − t, J1 = 4t2

U , J2 = 4t′2

U , U = 6. The numerical
results confirm the emergence of triplet superconductivity with alternative patterns with π
phase in the direct space when t < t′.
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Figure 3.22: Order parameter calculated by equation 3.6.2 for the 4 plaquette system with
periodic conditions: The sum of module square of the order parameter as a function of t.
t, t′ = 1 − t, J1 = 4t2

U , J2 = 4t′2

U , U = 6. on different links. The triplet pairing when t < 1/2
and singlet when t > 1/2.

The number of Cooper pairs in the system is also influential on the ground state momentum
sector when the system is bigger. For odd number of Cooper pairs, the total momentum for
the FFLO wave function is: Q2n+1 = (2n + 1)qx,y,z ≡ qx,y,z mod2π while for even number of
Cooper pairs the total momentum is Q2n = 2nqx,y,z ≡ 0 mod2π. We can spot this effect of
the number of Cooper pairs in the spectrum of exact diagonalization on the 4 × 2 plaquettes
on torus shown in Fig. 3.23.

We see from Fig. 3.23 that the ground state momentum sectors are (2, 0), (2,1) and (0, 1)
in the spectra of 2, 6, 10 and 14 particles with the degeneracy lifted because of the asymmetry
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Figure 3.23: Exact diagonalization spectrum for 2, 4, 6, 10, 12 and 14 particles (np as number
of particles) on the 4×2 plaquettes on torus at the pure spin-orbit coupling limit t = 0, t′ = 1.

of the system. The side with 4 plaquettes is longer than the side with 2 plaquettes elevating
the energy level of the momentum sector (2, 0) compared to sectors (0, 1) and (2, 1). The
spectra of 4 and 12 particles have ground state momentum sector in (0, 0) with even number
of Cooper pairs. The degeneracy-lift because of the elongated geometry is restored for the
geometry with 4 × 4 plaquettes on torus as shown in Fig. 3.24 whose numerical degeneracy is
exact for the states in the momentum sector (2, 0), (0, 2) and (2, 2).
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Figure 3.24: Exact diagonalization spectrum for 2 and 6 particles on the 4 × 4 plaquettes on
torus with ground state momentum sector (2, 0), (0, 2) and (2, 2).

One striking effect that we observe is the two very close energy levels in each of the three
ground state momentum sectors for FFLO states in 6 particle spectrum for the 4×2 and 4×4
plaquette system on torus. This quasi-degeneracy exists for systems beyond quarter-doping
while such phenomenon is absent for system below quarter doping. In order to clarify this
point, we have studied the first gap as a function of the coupling constant J2 as shown in Fig.
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Figure 3.25: The first and second gap as a function of J2 for doping 2 holes (left) and doping 2
electrons (right) from quarter-filling from diagonalisation of 2×2 plaquettes on torus geometry.

3.25 in the momentum sector of (0, π) in the limit of pure spin-orbit coupling t = J1 = 0.
When J2 is very big with regard to t′ (we have fixed t′ = 1), we are close to the infinite-
correlated limit in which holes are bound together by the J2 term. When J2 is small, the
kinetic terms dominate the system, and the motion of the doped holes are determined by
the band electron validating the theoretical Cooper pair susceptibility analysis provided in
the previous section. We see that around J2 = 0.67(U = 6), there is a gap closure for the
superconductivity, separating the two limits. Whether this band closure is related to the
change of topology of the superconductivity is still an open question because of the existence
of several bands separated by small gaps in the Bogoliubov De Gennes spectrum.

3.7 Conclusion

In this chapter, we have studied a model in which the spin-orbit coupling lies on the nearest-
neighbours according to [43, 113] as shown in equation 3.1.2. The concerned model hosts a
zigzag magnetic order with anti-ferromagnetic Kitaev coupling and ferromagnetic Heisenberg
coupling, which is different from the previously studied model by Scherer et al [41], in which
they have taken the Kitaev coupling to be ferromagnetic and they have found p − wave
superconductivity.

The strong spin-orbit coupling endows the electron a band structure with new symmetry
centers apart from the one which corresponds to the inversion symmetry and this property
holds even when the time-reversal symmetry is observed at the pure spin-orbit coupling limit
t = J1 = 0. Electrons around these new symmetry centers form spin-triplet superconductivity
pairing, and the condensation of these superconductor Cooper pairs around the non-trivial
Cooper pair momentum in correspondance with these new symmetry centers results in a spa-
tial modulation of the superconductivity order parameter. We have analyzed the Cooper pair
susceptibility of these spin triplets states around quarter-filling and have obtained the profile
of the triplet Cooper pair condensates. Numerical evidences of the FFLO superconductivity
have also been provided using exact diagonalization. The spectral low energy hierarchy in the
momentum space coincides with the predicted FFLO wave function through the analysis by
the Bloch theorem. Therefore, iridates provide a possible realization of the FFLO supercon-
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ductivity other than the cold atom system[188] without breaking the time-reversal symmetry.
The separation of the three spin-triplet condensates in the momentum space leads to the three
times degenerate ground state.

The open question is the topology of such superconductivity, which is difficult to tackle
because of several Bogoliubov De Gennes bands separated by small gaps. The spin-1 triplet
superconductivity brings also possibilities of emergence of Majorana fermions in such systems.
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Chapter 4

Engineering Topological Mott Phases

The quest of topological phases in the absence of a net uniform magnetic field, has attracted a
great attention recently in the field of condensed matter physics, in connection with the spin-
orbit coupling and artificial gauge fields [173, 174, 175, 176]. The realization of topological
phases has become important due to their physical properties such as the edge transport and
potential applications for spintronics [177]. The HgTe quantum well and three-dimensional
Bismuth analogues have been a perfect area for the quantum spin Hall effect and topological
band insulators [11, 13, 14, 178]. In addition, the quantum anomalous Hall effect and its
version on the honeycomb lattice, the Haldane model [10], have been observed with photons
[179, 180], cold atom systems [181] and magnetic topological insulators [182]. Engineering
topological phases through interactions is also interesting on its own. An example of topo-
logical band insulators induced by interactions, resulting in topological Mott insulators, has
also been proposed by Raghu et al. [202] on the honeycomb lattice. This scenario requires
however that the next-nearest-neighbour interaction exceeds the nearest-neighbour repulsion
[202, 203, 204, 205]. In this chapter, we propose a possible realisation of the topological Mott
phase in a Fermion-Fermion mixture. A similar two-fluid model has been previously proposed
on the honeycomb lattice [225], however our model insists on the honeycomb band structure
of the fast fermion: this leads to an RKKY interaction connecting the Dirac points in the
first Brillouin zone, which will open a gap around Dirac points of the slow fermion inducing
potentially a topological phase. (See figure 4.1)

4.1 RKKY Interaction

Nuclear spins interact with each other via the conduction electrons in metals and the correla-
tion energy between the two nuclear spins is referred to as Ruderman-Kittel-Kasuya-Yosida or
RKKY interaction [214]. Since the conduction electron has the behavior of Bloch wave func-
tions, the RKKY interaction has an oscillating profile. We try to make use of this interaction
for the engineering of a topological Mott phase [202]. We consider here a system consisting
of two Fermion species on the honeycomb lattice coupled together by an on-site interaction,
with one fast species and one slow species. The fast species plays effectively the same role as
the conduction electrons, while the slow species plays the role of the nuclear spins. The fast
species will induce an effective interaction between the electrons of the slow species, with the
nature of RKKY interaction. Specifically, we can write down the Hamiltonian of the system:

H = −tc

∑

〈i,j〉
c†

i cj + µc

∑

i

c†
i ci − tf

∑

〈i,j〉
f †

i fj + gcf

∑

i

c†
i cif

†
i fi (4.1.1)
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in which the fermion c is the fast species and the fermion f the slow species characterized
by the fact that tc ≫ tf . The on-site interaction between the two copies of the fermions is
proportional to g2

cf . In order to work out the RKKY interaction for the fermion, we diagonalize
firstly the fermion c. We write down the Green function for c particles with the projector
Pc(k):

Gc(ω, k) =
Pc(k)

ω − (ǫc(k) − µc) + iη
Pc(k) =

1

2
(1 + τx cos θk + τy sin θk)

θk = arctan g(k) g(k) =
∑

j

eik·δj ǫc(k) = −tc|g(k)|,
(4.1.2)

in which δ1 = (
√

3
2 , 1

2), δ2 = (−
√

3
2 , 1

2) and δ3 = (0, −1) are the three vectors connecting the
nearest-neighbours and τx, τy are the Pauli matrices in the sublattice subspace. We have the
band structure of the graphene here. Thereafter, we write down the interaction between the

two species and substitute c†
kck by its mean value

〈
c†

kck

〉
= Gc(ω, k). Specifically, if we denote

I J as sub-lattice index and τα as Pauli matrices for the sub-lattices, then after the Fourier
transformation, we will have:

gcf

∑

i

c†
i cif

†
i fi = gcf

∑

k1,k2,p

c†
k1Ick1+pIf †

k2Ifk2−pI (4.1.3)

To the second order, we can treat the interaction as :

g2
cf

∑

k,k1,k2,q

c†
kIck+qIc†

k+qJckJf †
k1Ifk1−qIf †

k2Jfk2+qJ

=g2
cf

∑

ω1,ω2

∑

k,k1,k2,q

1

ω1 − (ǫc(k) − µc) + iη

1

ω2 − (ǫc(k + q) − µc) − iη
αIJ(k,q)f †

k1Ifk1−qIf †
k2Jfk2+qJ

=g2
cf

∑

ω

∑

k,k1,k2,q

nf (ǫc(k + q)) − nf (ǫc(k))

ω + ǫc(k + q) − ǫc(k) + iη
αIJ(k,q)f †

k1Ifk1−qIf †
k2Jfk2+qJ

αAA = αBB = 1 αAB = ei(θk+q−θk) αBA = e−i(θk+q−θk)

(4.1.4)

in which q is the momentum transfer, and second order perturbation is actually a one-loop
expansion. We can write down the dynamical RKKY interaction:

χIJ(Ω, q, µc) = lim
η→0

∑

k

nf (ǫc(k + q)) − nf (ǫc(k))

Ω + ǫc(k + q) − ǫc(k) + iη
αIJ(k,q), (4.1.5)

in which nf (ǫc(k)) is the Fermi-Dirac distribution nf (ǫc(k)) = 1
1+exp(β(ǫc(k)−µc)) . We denote

the susceptibility on the same sublattice as χII(Ω, q, µc) = χAA(Ω, q, µc) = χBB(Ω, q, µc) and
the sublattice on different lattice as χAB(Ω, q, µc) = χBA(Ω, q, µc)

∗.

We have plotted in Fig. 4.1 the static RKKY susceptibility on the same sublattice
χII(Ω, q, µc) at three different chemcial potential (µc = 0.6tc, µc = 0.8tc, µc = 0.9tc, µc = tc

in each row) as a function of Q = q
2 in the first Brillouin zone. We see that at quarter filling

µc = tc, the RKKY interaction has its peaks around the nesting vectors for the Van Hove
singularity. These vectors are:

Q1 = (0,
4π

3
) Q2 = (

2π√
3

,
2π

3
) Q3 = (

2π√
3

, −2π

3
) (4.1.6)
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When doping is lower than quarter-filling (µc = −0.6tc and µc = −0.8tc ), we spot
peaks smeared around the Dirac cones. Near the quarter-filling µc = −0.9tc the smeared
patterns around Dirac cones connects together forming smeared patterns around the nesting
vectors. The RRKY interaction will connect electrons for the Fermion f around Dirac cones
together, we will show that this RKKY interaction profile opens a gap around Dirac cones,
then attaching a topological non-trivial property to the system.

 

 
 

Figure 4.1: The RKKY susceptibility χII(q, µc, η) as a function of Q = q
2 with µc = −0.6tc

(left upper panel), µc = −0.8tc (right upper panel), µc = −0.9tc (left down panel) and
µc = −tc (right down panel).

4.2 Haldane Mass Induced by the RKKY Interaction.

In order to study the influence of RKKY interaction upon the fermion f, we apply the La-
grangian formalism to describe the behavior of the slow fermion species f . The bare Green
function of the fermion f is the propagator of electrons in graphene system, and the RKKY
interaction might add correction to the Green function.

Lf =
∑

k

Ψ†
fk[ωf − tf (τxℜe + τyℑm)g(k) − µf ]Ψfk

− i
g2

cf

2

∑

ω1,ω2,Ω,k1,k2,q

χIJ(Ω, q, µc)f
†
ω1k1Ifω1−Ωk1−qIf †

ω2k2Jfω2+Ωk2+qJ

(4.2.1)



98 Chapter 4. Engineering Topological Mott Phases

in which Ψfk = (f †
kA, f †

kB).
We first look at the effect of the self-interaction in the adjustment of the chemical potential

namely terms proportional to the Fermion density nkI = f †
kIfkI : when q → 0 and I = J we

have the first contribution g2
cf χ(0, 0, µc)

∑
k Ó=k′ nknk′ , when k = k′ + q we have the second

contribution g2
cf

∑
k,q Ó=0 χ(0, q, µc)nk(1 − nk−q). We have the effective chemical potential:

µ̃f = µf − g2
cf [χ(0, 0, µc) − 1

N

∑

q Ó=0,µc,η

χ(0, q, µc)] 〈nk〉 +
g2

cf

2N

∑

k,q

χ(0, q, µc) (4.2.2)

in which 〈nk〉 is the expectation value of the electron density. The modification to the potential
is negligible when gcf < 20

√
tctf , then the chemical potential modification is (|µ̃f − µf | <

0.2tf ). We can try to choose a filling for the electron f so that µ̃f = 0 so that the fermi
surface excitations are around the Dirac cones (Fermi surface of the half-filled graphene).

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.5  0.6  0.7  0.8  0.9  1  1.1

δ
µ

f/
t f

µc/tc

Figure 4.2: δµf /tf = (µ̃f − µf )/tf as a function of µc/tc when gcf = 20
√

tctf which is much
bigger than the critical value of gcf for the instability threshold.

Now we do the Fock approximation to the interaction term, namely replacing the four-
body interaction term by the Green functions. We can thereafter write down the Dyson
equation which entails the self-consistent equation:

Gf (ω, k)−1
IJ = G0(ω, k)−1

IJ − i
∑

Ω,q

g2
cf

2
χ(Ω, q, µc)IJGf (ω + Ω, k + q)JI

G0(ω, k)−1 = ω − tf (τxℜe + τyℑm)g(k)

(4.2.3)

We can make an adiabatic approximation for the dynamical RKKY susceptibility by re-
placing it with the static susceptibility:

χ(Ω, q, µc)IJ ≃ χ(0, q, µc)IJ (4.2.4)

We can then simplify the self-consistent equation:

Gf (ω, k)−1
IJ = G0(ω, k)−1

IJ +
∑

q

g2
cf

2
χIJ(0, q, µc)[2PfJI(k + q) − δJI ] (4.2.5)
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We can write down an Ansatz of the Green function Gf (ω, k) such that:

Gf (ω, p)−1 = ω − a(p)τx − b(p)τy − c(p)τz a(p), b(p), c(p) ∈ R

Gf (ω, p) =
P−(p)

ω + E(p) + iη
E(p) =

√
a2(p) + b2(p) + c2(p)

P−(p) =
1

2
[1 − a(p)τx + b(p)τy + c(p)τz

E(p)
]

(4.2.6)

Then we can write down the self-consistent equations for the real functions a(p), b(p), c(p):

a(p) =tf ℜeg(p) +
g2

cf

2

∑

q

χAB(0, q, µc)a(p + q)

E(p + q)

b(p) =tf ℑmg(p) +
g2

cf

2

∑

q

χAB(0, q, µc)b(p + q)

E(p + q)

c(p) =
g2

cf

2

∑

q

χII(0, q, µc)c(p + q)

E(p + q)

(4.2.7)

We substitute the a(p) and b(p) by tf ℜeg(p) and tf ℑmg(p) on the right hand side of the
above equations to linearize the equations, then we will have first order perturbation theory:

a(p) =tf ℜeg(p) +
g2

cf

2

∑

q

χAB(0, q, µc)ℜe(tf g(p + q))

E(p + q)

b(p) =tf ℑmg(p) +
g2

cf

2

∑

q

χAB(0, q, µc)ℑm(tf g(p + q))

E(p + q)

c(p) =
g2

cf

2

∑

q

χII(0, q, µc)

E(p + q)
c(p + q)

(4.2.8)

In the equations for the function a(p) and b(p), the RKKY interaction renormalizes the
graphene band structure, and we have checked that the modification is of one order smaller
than the function a(p) and b(p). However in the equation for the function c(p), the RKKY
interaction opens a gap in the system with the function c(p).

We place ourselves at the onset of the instability onset that is to say c(p) → 0. We have
the self-consistent equation for the function c(p):

c(p) =
g2

cf

2

∑

q

χII(0, q, µc)√
(a(p + q))2 + (b(p + q))2

c(p + q) (4.2.9)

We see that the equations for the function c(p) form a linear equation set. c(p) = 0
is obviously always a trivial solution of the equation 4.2.9 while there will be a non-trivial
solution for the function c(p) when gcf is big enough. The non-trivial solution designate a
spontaneous instability which opens a gap based on the graphene system. In order to resolve
equation numerically, we can think of the function c(p) with certain momentum as a real
vector c(p) = V cip

, in which ip is the discretized index for the momentum p. The ip th
component of the vector V c is the value of the function c(p) at momentum p. Then the real
function c(p) constitutes a vector with the dimension of the number of discretization in the
first Brillouin zone. We can therefore write down the matrix with the discretizied indices:

Mχ[ip][jp+q] =
g2

cf χII(0, q, µc)

2tf |g(p + q)| (4.2.10)
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in which ip and jp+q are the discretized index for momentum p and p + q. Then equation
4.2.9 with the vector [V c] writes as :

[V c] = Mχ[V c] (4.2.11)

Due to the property that χII(0, q, µc) = χII(0, −q, µc), we find that the matrix Mχ[i][j]
respect the symmetry p ↔ −p. Thereafter, we can write the matrix in the following block
form in the odd subspace c(p) = −c(−p) and the even subspace c(p) = c(−p):

Mχ[ip][jp+q] =

(
Meven 0

0 Modd

)
(4.2.12)

And we implement the Pauli matrix ζx which send c(p) to c(−p). Then we have the two
projectors to the even and odd sector: Podd = 1

2(1 − ζx) and Peven = 1
2(1 + ζx) and:

Meven = PevenMχ[ip][jp+q]Peven Modd = PoddMχ[ip][jp+q]Podd (4.2.13)

and we can check that PevenMχ[ip][jp+q]Podd = 0. We can write down the function c(p) as
a sum of an even and an odd function, of which the former is the Semenoff mass while the
latter is the Haldane mass:

c(p) = fo(p) + fe(p)

fo(−p) = −fo(p) fe(p) = fe(−p)
(4.2.14)

Equation 4.2.11 then turns into two equations in the two subspaces:

Vo = ModdVo Ve = MevenVe (4.2.15)

The stability competition between the emergence of τz term in the odd sector (Haldane
mass) and the even sector (Semenoff mass) is mediated by the chemical potential of the fast
species of fermion c. We find that the minimal critical value gcf is reached when µc = 0.992tc

as shown in Fig. 4.3 left pane: (gcf )c = 4.64
√

tctf .

If we denote the renormalized eigenvector for the biggest eigenvalue of the matrix Mχ in
the odd parity sector as V Oχ, then beyond the instability threshold gcf > (gcf )c the Haldane
mass should have the similar behavior as the non-trivial solution of Eq. 4.2.9:

c(p) = λV Oχ(p). (4.2.16)

The amplitude of the Haldane mass λ is to be determined by minimizing the following energy
as a function of λ deduced from the action 4.2.1:

E0(λ) = −
∑

p

√
[a(p)]2 + [b(p)]2 + [λV Oχ(p)]2 + g2

cf

∑

p,q

χIJ(0, q, µc)
λ2V Oχ(p)V Oχ(p + q)

E(p)E(p + q)
,

(4.2.17)
in which E0(λ) is the energy of the half-filled fermion f under the RKKY interaction. In the
left panel of Fig. 4.4, we show the amplitude of the Haldane mass λ as a function of gcf /

√
tctf

after minimization of E0(λ) with regard to λ.

Therefore, we have engineered a quantum anomalous Hall effect using the RKKY inter-
action. We have the critical value for the onset of the quantum anomalous Hall effect as a
function of the chemical potential µc for fermion c shown in Fig. 4.3 left panel.
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Figure 4.3: Left panel: The critical value gcf as a function of µc so that equation 4.2.9 has
a non trivial solution for the odd c(p) = −c(−p) (Haldane mass) and even parity subspace
c(p) = c(−p) (Semenoff mass). Right panel: The static RKKY interaction susceptibility
χII(0, q, µc = 0.992tc) as a function of Q = q

2 in the first Brillouin zone. This susceptibility
triggers the emergence of the topological phase.

4.3 Mott Transition Induced by the RKKY Interaction.

Next, we also consider the case of spins-1/2 f-fermions with µc = 0.992tc:

Hf =
∑

p

[(a(p) + ib(p))f †
apσfbpσ + (a(p) − ib(p))f †

bpσfapσ]

+
∑

p,I

cI(p)(f †
apσfapσ′ − f †

bpσfbpσ′)σI
σσ′ + HI

HI =Uf

∑

i

f †
i↑fi↑f †

i↓fi↓.

(4.3.1)

The function a(p) and b(p) are renormalised hopping amplitude which is insensible to
spins, while besides the spontaneous charge density wave c0(p) (the Haldane mass discussed
above) there could be spin density wave cI(p) resulting from the instability triggered by
the RKKY interaction. We define here σµ = (1, σx,σy,σz) in terms of the Pauli matrices.
Again, we adjust to zero the renormalised chemical potential of the f-fermions. Physically, if
c0(q) Ó= 0 then we are in a QAH phase, whereas when cI(q) Ó= 0 with I = (x,y,z) then we are
in a QSH phase. Through a careful analysis of the quantum fluctuations [202], one establishes
that the QSH phase is always favored compared to the QAH phase for spinful fermions, due
to the presence of Goldstone modes appearing from the breaking of the continuous rotational
symmetry in the QSH phase. Therefore, we only take into account the order parameter cI(p).
This conclusion has been reinforced by a Functional Renormalization Group analysis [202].
We have solved similar self-consistent equation as 4.2.9, and found that for Uf = 0, the critical
threshold (gcf )c = 4.64

√
tctf as the spinless case.

We can do the spin-charge separation f †
apσ = f †

aspσX∗
ap and introduce the mean-field

ansatz Qx = 〈X⋆
kaXkb〉, Q′

x = 〈X⋆
kaXka〉 = 〈X⋆

kbXkb〉, Qf = 〈f⋆
kaσfkbσ〉 and the ansatz
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Figure 4.4: (Color online) Left panel: The amplitude of the spontaneous spin-orbit coupling
λ as a function of gcf calculated from the minimization of the energy in Eq. 4.2.17 when
µc = 0.992tc. Right panel: The critical Mott transition threshold Uc as a function of λ for the
case of spin-1/2 fermions.

for the emergent spin-orbit coupling Q′
f =

〈
σI

σσ′(f⋆
kaσfkaσ′ − f⋆

kbσfkbσ′)
〉

for the rotor and

spinon order parameter on the same and different sublattices. Then we can work out the
spectrum for the rotor ξ(k) in the same way as [62], and rotor acquires a gap upon the Mott
transition, therefore we can determine the critical interaction U as a function of gcf for the
Mott transition.

Qx =
1

3tf N

∑

k

|a(k)|2 + |b(k)|2√
|a(k)|2 + |b(k)|2 + [c(k)]2

Q′
x = − 1

6N

∑

k

[c(k)]2√
|a(k)|2 + |b(k)|2 + [c(k)]2

,

(4.3.2)

from which we can calculate the mean-field ansatz Qx and Q′
x.

ξ(k) = −Qx

√
(a(k))2 + (b(k))2 + Q′

xc(k)

U(gcf ) = [
1

2N

∑

k

1√
ξ(k) − min(ξ(k))

]−2
(4.3.3)

in which functions a(p) and b(p) are functions that can be determined as a function of gcf as
in equation 4.2.8. The function c(p) is determined by equation 4.2.16 in the previous section.
As a result, we have the phase diagram in the right panel of figure 4.4.

In the Mott phase, the super-exchange magnetism results in a J1 − J2 model [40], and J2

comes from higher order of exchange processes. The RKKY interaction will only reinforce the
amplitude tf and the order parameter χI is destroyed in the Mott phase in two dimensions
[62]

HM = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (4.3.4)

with J1 = 4t2
f /U and J2 = 4t4

f /U3. The resulting magnetic order is the bipartite Néel order.
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4.4 Conclusion

In this chapter, we have introduced a Fermion-Fermion mixture in graphene-type lattices,
with one fast component characterized by a large tunneling strength. We have shown that
the interaction produced on the other species allows to implement in realistic conditions a
Quantum Anomalous Hall phase or a Quantum Spin Hall phase. This gives the opportunity
to observe topological Mott insulators in ultracold mixtures of 6Li and 40K.
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Chapter 5

Conclusion

We have studied in this thesis condensed matter problems that are beyond band theories: on
the one hand, topology in condensed matter physics with non-trivial topological invariants
which is embodied in the non-trivial transport characteristics on edge; on the other hand, sys-
tems with strong correlation, in other words, the Mott physics in which correlation localizes
electric charges and spins constitute a magnetic insulator. These two aspects are introduced
to the system on the one hand by spin-orbit coupling physics, which brings to the system
non-trivial topology; on the other hand by the Hubbard interaction, which triggers the Mott
transition and the super-exchange magnetism in the infinite Hubbard interaction limit. Irid-
ium oxides, or iridates, form a good arena with all these aspects intertwined with numerous
exotic phases in competition. We have focused our attention on iridates on the honeycomb
lattice, specifically the Na2IrO3 and α − Li2IrO3 compound. Another interesting ingredient
in iridate is the anisotropic Kitaev coupling. In the pure Kitaev coupling model there exists
a spin liquid phase called Kitaev anyon model[15], which motivates theoretical physicists to
study iridates.

There exists still a pending debate on whether the Kitaev coupling lies on the nearest-
neighbour or next-nearest-neighbour links. Experiments have shown the evidence of a topo-
logical insulator phase [127] in the thin film of Na2IrO3 compound and a zigzag magnetic
order phase [113] in the A2IrO3 (A = Na, Li) system. Taking into account both possibili-
ties for the real world materials, we studied the physics of the correlated topological insula-
tor with next-nearest-neighbour spin-orbit coupling in Chapter 2 and we studied the doped
iridate with spin-orbit coupling and Kitaev-Heisenberg magnetic coupling between nearest-
neighbours which hosts a zigzag magnetic phase at half-filling in Chapter 3.

In chapter 2, we take the former point of view and consider a model with anisotropic spin-
orbit coupling between next-nearest-neighbours hosting a topological insulator phase in the
weak correlated regime. The non conservation of spin observables here constitutes the major
difficulty and also the main difference from the Kane-Mele Hubbard model [62]. We have
explored the anisotropic spin texture on the edges in the topological insulator phase which is
associated to edge spin transport. The existence of the edge breaks the 2π/3 rotation and the
symmetry among the three spin components, and the dominant spin component of the edge
states coincides with the type of links parallel to the edge. In this weakly correlated phase,
the interaction only modifies the Fermi velocity of the transporting edge states. We apply
the slave-rotor formalism to study the Mott transition, in which the rotor is in an ordered
‘superfluid’ phase below the Mott transition and the rotor is in a disordered phase above the
Mott transition. We have also given arguments that the spin texture on the edge for the
spin transport disappears and develops into the bulk upon Mott transition, using the Laugh-
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lin topological pump argument [144] where gauge fluctuation becomes considerable. This
anisotropic spin texture may be associated with the spiral phase analyzed in the infinite inter-
action limit in which super-exchange processes consists of a mixture of Kitaev and Heisenberg
magnetic couplings. A more proper description of the edge Luttinger liquid is desirable in
the future, complementing the results obtained from transfer matrix and diagonalization of
Schrödinger equation developped in this thesis. In order to treat properly the instanton gas
emerged from the gauge field fluctuation, a more complete statistical analysis of monopoles
is required instead of the naive study of spinon response to one simple monopole developped
in this thesis.

In chapter 3, we have taken the latter point of view and studied a model with anisotropic
spin-orbit coupling between the nearest neighbours hosting a zigzag magnetic order at half-
filling. The previous theoretical study of doped iridate and the entailed superconductivity has
fixed the Kitaev magnetic coupling to be ferromagnetic [41], in which case Scherer et al has
identified p-wave topological superconductivity beyond quarter-filling. Here, we have fixed the
Kitaev magnetic coupling to be antiferromagnetic and the Heisenberg coupling ferromagnetic.
We have also taken an super-exchange magnetism point of view in which magnetic couplings
stem from second order super-exchange processes of the normal hopping term and the spin-
orbit coupling. The spin-orbit coupling gives a band structure with symmetry centers at
non-trivial momenta. Superconductivity is most prominent around symmetry centers of the
Fermi surface since every electron pairs with momentum k and −k + Q contribute to the
superconductivity, with Q the momentum designating the symmetry center. The condensation
of Cooper pairs around these non-trivial momenta leads to an FFLO superconductor when the
system is doped away from half-filling close around quarter-filling. The J2 Kitaev-Heisenberg
coupling introduces into the system triplet pairing of the electrons. The separation of the
three triplet Cooper pair condensates in the momentum space results in the three times
degenerate ground states in the system with respective spatial modulation of the pairing
order parameters. At pure spin-orbit coupling limit t = J1 = 0, the spin-orbit coupling
can observe the time-reversal symmetry, which shows that the key ingredient to the FFLO
superconductivity is the symmetry centers at non trivial momenta instead of the Zeeman field
which breaks the time-reversal symmetry. This result proposes a possiblity to observe for the
first time the FFLO superconductivity in real materials. However, the topological aspects of
the superconductivity concerning explicitly the Chern number of the Bogoliubov De Gennes
band are still unclear. And the spin-1 superconductivity may bring the problem of Majorana
fermions into the system, which remains to be explored [226].

The chapter 4 presents a different system but also with the interplay of topology and
correlation. We studied a two species fermion model in which the induced RKKY interaction
from the fast species onto the slow species opens a gap around the Dirac points. By adjusting
the chemical potential of the fast species, we can tune the system into a regime so that a
Haldane mass is favored thus inducing a topological phase. The competition between the
charge density wave and the topological phase is a big issue in the system [202] and the long
range interaction in the RKKY interaction destablize the charge density wave favoring the
topological phase.



Chapter A

Annexe

A.1 Loop Variables Construction: Curl and Divergence on a Lattice

As a generalization of section 2.4, we present here the loop variable construction respectively
for curl free and divergence free field on a square lattice. We consider a suqare lattice and its
dual, where the sites of the first lattice are identified by the coordinates (i, j) while those of
the dual by the coordinates (i+ 1

2 , j + 1
2). Suppose that there are some variables defined along

the links of the original lattice: denote by ρi+ 1

2
,j the variable defined along the horizontal

segment that links (i, j) to (i, j + 1) (see Fig. A.1). If the circulation along the perimeter S
of the elementary cell of the lattice is zero, we have:

ρi+ 1

2
,j + ρi+1,j+ 1

2

− ρi+ 1

2
,j+1 − ρi,j+ 1

2

= 0 ↔ ∇ × ρ = 0 (A.1.1)
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Figure A.1: The loop variables defined on the lattice sites φi,j on the links ρi+ 1

2
,j and plaquettes

Ψi+ 1

2
,j+ 1

2

This is the discrete version of the curl-free field equation. This can be identically satisfied
in terms of a variable φi,j defined on the sites of the original lattice, by imposing:

ρi+ 1

2
,j = φi+1,j − φi,j

ρi,j+ 1

2

= φi,j+1 − φi,j

(A.1.2)
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Vice versa, the discrete version of the divergence-free condition is given by:

ρi+ 1

2
,j − ρi− 1

2
,j + ρi,j+ 1

2

− ρi,j− 1

2

= 0 ↔ ∇ · ρ = 0 (A.1.3)

This can be satisfied by expressing the variables ρ in terms of a discrete curl of a variable
ψi+ 1

2
,j+ 1

2

defined on the dual lattice:

ρi+ 1

2
,j = ψi+ 1

2
,j+ 1

2

− ψi+ 1

2
,j− 1

2

ρi,j+ 1

2

= −ψi+ 1

2
,j+ 1

2

+ ψi− 1

2
,j+ 1

2

(A.1.4)
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