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Figure 1.5: Left panel: the erst Brillouin zone for the honeycomb lattice with Dirac cones at
two dilerent valleys K. in which + designates the valley.Right panel: the ,ux in the lattice
(proportional to the t' next-nearest-neighbour terms ) opens a gap at the Dirac cones on the
base of the graphene band structure.

in the clockwise and counterclockwise direction in thex - y plane or the opposite chirality.
The rotation orientation of a vector is also called chirality. For both graphene and Haldane

model, the total chirality is zero for the vector &h (k); however, we can deene the helicity or
the Chern number of the system as follows, which is zero for the graphene model, and non
zero for the Haldane model depending on the magnitude of the Semeno! mass.

C d?kdizn (K) - (B, dyn (K) - B, Bt (K)), (1.1.10)

2P gy
which is the generic Chern number of the mapping&(k). Speciecally, for the Haldane model
we have

| i i
signt’] IMs| < 3°t!

“= 0 IMg| > 33t

(1.1.12)
-

We remark that there exists a quantum phase transition namely when|Ms| < 3—23t',

the Chern number equalst 1 depending ,on ’the sign oft' regardless of its magnitude, while
the Chern number is zero when|Mg| > %t'. Graphically, the topological invariant (Chern

number) characterizes whether the unit sphere depicted b)b wraps around the origin in the
3D space as shown in right panel of Fig. 1.6.

Numerically, we can generalize the above Chern number calculation to any problem with
band electrons, because band projectors are inherently gauge invariant projectors which avoids
the ambiguity of the gauge at the border of the erst Brillouin zone. Speciscally, if we have
the band electron projector P;. for the electron band with index i which is under the Fermi
level, and the Chern number is:

1

= dzkg T P. i (R)(6k, P. i (R) - 6, P.i(R))] (1.1.12)
2Pi gz ’
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Mg/t

Figure 1.6: The Chern number of the Haldane model as a function of the Semeno! madd s
calculated numerically by the discretization of 100x 100 of the erst Brillouin zone. There is

a gquantum phase transition at [Mg| = 3—2§ti noted by the dashed line. The Chern number
counts whether the vector&h wraps around the origin.

The numerical calculation of the Chern number is shown in the right panel of Fig. 1.6 as
a function of the Semeno! massM g, which coincides with the prediction in equation 1.1.11.

As a consequence of the non-zero Chern number of the Haldane model, we have a zero
energy edge mode when the model is placed on the cylinder geometry. The more detailed
treatment of Hamiltonian on cylinder and the transfer matrix method for the edge state is
presented in Sec. 2.1. The zero net magnetic ,ux in the Haldane model of quantum anomalous
Hall elect demonstrates the Chern number as a more intrinsic property for the appearance
of the metallic edge mode.

In a general sense, if we have some functiod, (k) = d;o(k)+ dze(k) which is the coe"cient
in front of the matrix &, we call the odd parity part d,o(k) = - d;o(- k) the Haldane mass
and the even parity part d;e(k) = dze(- k) Semeno! mass. These two notions will be useful in
chapter 4. Since the two valleys of the Dirac points have opposite helicityd, (k) has to have
opposite sign in the two valley in order that the system is topological with non-zero Chern
number.

1.1.3 Kane-Mele Model and Z, Topological Invariant

Besides Chern number, there exists also another topological invariant identifying the topology
of a system. Spin-orbit coupling can result from the hybridization of the higher angular
momentum orbit and it exerts, in fact, opposite magnetic +elds upon electrons with opposite
spin polarizations, thus making the system two copies of Haldane model coupled together. We
introduce the Kane-Mele model consisting of electrons on graphene with spin-orbit coupling
[11, 12, 20].

@ g i & A 2 I
éjea éd,j eeaal

Again, we can do the Fourier transformation and write down the spinor$ ; = (¢, d,, Cea, dy):

, R
5 CQ t'g, (k) tgioe(k) 0 0
Hiaw = $%Hiw (S« Hiw (k)= § 90 - talg 0 0 a (1.1.14)

0 0 tg(k)  t'gz(k)
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Spin Polarization

Figure 2.4: The edge states of the anisotropic spin-orbit coupling model with zigzag boundary
and x links parallel to the boundary. (a): Spectrum of the system on a cylinder att'/t = 0.5
obtained from numerical diagonalization of 70 layers of a one-dimensional system described
by the Schrodinger equation 2.1.6. The non-trivialZ, topological invariants ensures an helical
edge states with opposite spin polarization. The energy dispersion obtained analytically using
transfer matrix in section 2.1.2 «ts well the numerics. The discrepency is most pronounced
when the edge states enter the bulk band because of the ¢nite scaling elect. (b): The dilerent
components of the spin polarization measured on the lower edge of the state with the lowest
positive energy in the spectrum as a function of momentum, obtained from diagonalization
of the system. We observe that states with opposite Fermi velocities on both sides df; =
1‘% have opposite spin polarizations, thus implying helical spin transport on the edge. The
dominant spin component corresponds to the type of links parallel to the boundary.


































































































































































































































































