In this thesis, we investigate mainly the limiting spectral distribution of random matrices having correlated entries and prove as well a Bernstein-type inequality for the largest eigenvalue of the sum of self-adjoint random matrices that are geometrically absolutely regular.

We are interested in the asymptotic spectral behavior of sample covariance matrices and Wignertype matrices having correlated entries that are functions of independent random variables. We show that the limiting spectral distribution can be obtained by analyzing a Gaussian matrix having the same covariance structure. This approximation approach is valid for both short and long range dependent stationary random processes just having moments of second order.
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Résumé

Cette thèse porte essentiellement sur l'étude de la distribution spectrale limite de grandes matrices aléatoires dont les entrées sont corrélées et traite également d'inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes et géométriquement absolument réguliers.

On s'intéresse au comportement asymptotique de grandes matrices de covariances et de matrices de type Wigner dont les entrées sont des fonctionnelles d'une suite de variables aléatoires à valeurs réelles indépendantes et de même loi. On montre que dans ce contexte la distribution spectrale empirique des matrices peut être obtenue en analysant une matrice gaussienne ayant la même structure de covariance. Cette approche est valide que ce soit pour des processus à mémoire courte ou pour des processus exhibant de la mémoire longue, et on montre ainsi un résultat d'universalité concernant le comportement asymptotique du spectre de ces matrices.

Notre approche consiste en un mélange de la méthode de Lindeberg par blocs et d'une technique d'interpolation Gaussienne. Une nouvelle inégalité de concentration pour la transformée de Stieltjes pour des matrices symétriques ayant des lignes m-dépendantes est établie. Notre méthode permet d'obtenir, sous de faibles conditions, l'équation intégrale satisfaite par la transformée de Stieltjes de la distribution spectrale limite. Ce résultat s'applique à des matrices associées à des fonctions de processus linéaires, à des modèles ARCH ainsi qu'à des modèles non-linéaires de type Volterra.

On traite également le cas des matrices de Gram dont les entrées sont des fonctionnelles d'un processus absolument régulier (i.e. β-mélangeant). On établit une inégalité de concentration qui nous permet de montrer, sous une condition de décroissance arithmétique des coefficients de β-mélange, que la transformée de Stieltjes se concentre autour de sa moyenne. On réduit ensuite le problème à l'étude d'une matrice gaussienne ayant une structure de covariance similaire via la méthode de Lindeberg par blocs. Des applications à des chaînes de Markov stationnaires et Harris récurrentes ainsi qu'à des systèmes dynamiques sont données.

Dans le dernier chapitre de cette thèse, on étudie des inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes. Plus précisément, on établit une inégalité de type Bernstein pour la plus grande valeur propre de la somme de matrices auto-ajointes, centrées et géométriquement β-mélangeantes dont la plus grande valeur propre est bornée. Ceci étend d'une part le résultat de Merlevède et al. (2009) à un cadre matriciel et généralise d'autre part, à un facteur logarithmique près, les résultats de [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] pour des sommes de matrices indépendantes.

Our approach is based on a blend of a blocking procedure, Lindeberg's method and the Gaussian interpolation technique. We also develop new tools including a concentration inequality for the spectral measure for matrices having K-dependent rows. This method permits to derive, under mild conditions, an integral equation of the Stieltjes transform of the limiting spectral distribution. Applications to matrices whose entries consist of functions of linear processes, ARCH processes or non-linear Volterratype processes are also given.

We also investigate the asymptotic behavior of Gram matrices having correlated entries that are functions of an absolutely regular random process. We give a concentration inequality of the Stieltjes transform and prove that, under an arithmetical decay condition on the absolute regular coefficients, it is almost surely concentrated around its expectation. The study is then reduced to Gaussian matrices, with a close covariance structure, proving then the universality of the limiting spectral distribution. Applications to stationary Harris recurrent Markov chains and to dynamical systems are also given.

In the last chapter, we prove a Bernstein type inequality for the largest eigenvalue of the sum of selfadjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue. This inequality is an extension to the matrix setting of the Bernstein-type inequality obtained by Merlevède et al. (2009) and a generalization, up to a logarithmic term, of Tropp transpose of a matrix A Tr(A), Rank (A) trace and rank of a matrix A A , A 2 spectral and Frobenius norms of a matrix A 0 p,q zero matrix of dimension p × q 0 p zero vector of dimension p X p L p norm of a vector X , , ≺, matrix inequalities: A B means that B -A is positive semidefinite, whereas A ≺ B means that B -A is positive definite

Probability Theory

(Ω, F, P) probability space with σ-algebra F and measure P P probability σ(X) σ-algebra generated by X E(X), Var(X) expectation and variance of X Cov(X, Y ) covariance of X and Y X p L p norm of X X = D Y X and Y have the same distribution w -→ weak convergence of measures δ x the Dirac measure at point x Analysis Z, R, C set of integers, real and complex numbers Re(z), Im(z) real and imaginary parts of z

C + {z ∈ C : Im(z) > 0} 1 A indicator function of A [x]
integer part of x x the smallest integer which is larger or equal to x x ∧ y, x ∨ y min{x, y} and max{x, y} lim sup n→∞ x n limit superior of a sequence (x n ) n Chapter 1

Introduction

The major part of the thesis is devoted to the study of the asymptotic spectral behavior of random matrices. Letting X 1 , . . . , X n be a sequence of N = N (n)-dimensional realvalued random vectors, an object of investigation will be the N × N associated sample covariance matrix B n given by

B n = 1 n n i=1 X i X T i = 1 n X n X T n ,
where X n = (X i,j ) ij is the N × n matrix having X 1 , . . . , X n as columns.

The interest in describing the spectral properties of B n has emerged from multivariate statistical inference since many test statistics can be expressed in terms of functionals of their eigenvalues. This goes back to Wishart [START_REF] Wishart | The generalised product moment distribution in samples from a normal multivariate population[END_REF] in 1928, who considered sample covariance matrices with independent Gaussian entries. However, it took several years for a concrete mathematical theory of the spectrum of random matrices to begin emerging.

Letting (X i,j ) i,j be an array of random variables, another object of investigation will be the following n × n symmetric random matrix X n defined by:

X n := 1 √ n    X i,j if 1 ≤ j ≤ i ≤ n X j,i if 1 ≤ i < j ≤ n . (1.1)
Motivated by physical applications, that were mainly due to Wigner, Dyson and Mehta in the 1950s, symmetric matrices started as well attracting attention in various fields in physics. For instance, in nuclear physics, the spectrum of large size Hamiltonians of big nuclei was regarded via that of a symmetric random matrix X n with Gaussian entries. Being applied as statistical models for heavy-nuclei atoms, such matrices, known as Wigner matrices, were since widely studied.

Random matrix theory has then become a major tool in many fields, including number theory, combinatorics, quantum physics, signal processing, wireless communications, multivariate statistical analysis, finance, . . . etc. It has been used as an indirect method for solving complicated problems arising from physical or mathematical systems. For this reason, it is said that random matrix theory owes its existence to its applications. Moreover, it connects several mathematical branches by using tools from different domains including: classical analysis, graph theory, combinatorial analysis, orthogonal polynomials, free probability theory, . . . etc.

Consequently, random matrix theory has become a very active mathematical domain and this lead to the appearance of several major monographs in this field [3,[START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF][START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF][START_REF] Tao | Topics in random matrix theory[END_REF].

The major part of this thesis is devoted to the study of high-dimensional sample covariance and Wigner-type matrices. We shall namely study the global asymptotic behavior of their eigenvalues and focus on the identification and universality of the limiting spectral distribution. We shall investigate as well deviation inequalities of Bernstein type for the largest eigenvalue of the sum of self-adjoint matrices that are geometrically absolutely regular.

Limiting spectral distribution

We start by giving the following motivation: Suppose that X 1 , . . . , X n are i.i.d. centered random vectors with fixed dimension N and covariance matrix Σ := E(X 1 X T 1 ) = . . . = E(X n X T n ). We have by the law of large numbers

lim n→+∞ B n = E(B n ) = Σ almost surely.
A natural question is then to ask: how would B n behave when both N and n tend to infinity?

We shall see, in the sequel, that when the dimension N tends to infinity with n, the spectrum of B n will tend to something completely deterministic.

In order to describe the global distribution of the eigenvalues, it is convenient to introduce the empirical spectral measure and the empirical spectral distribution function: Definition 1.1. For a square matrix A of order N with real eigenvalues (λ k ) 1≤k≤N , the empirical spectral measure and distribution function are respectively defined by

µ A = 1 N N k=1 δ λ k and F A (x) = 1 N N k=1 1 {λ k ≤x} ,
where δ x denotes the Dirac measure at point x.

µ A is a normalized counting measure of the eigenvalues of A. It is simply a discrete random probability measure that gives a global description of the behavior of the spectrum of A.

A typical object of interest is the study of the limit of the empirical measure when N and n tend to infinity at the same order. The first result on the limiting spectral distribution for sample covariance matrices was due to Marcenko and Pastur [START_REF] Marčenko | Distribution of eigenvalues in certain sets of random matrices[END_REF] in 1967 who proved the convergence of the empirical spectral measure to the deterministic Marcenko-Pastur law; named after them. Theorem 1.2. (Marcenko-Pastur theorem, [START_REF] Marčenko | Distribution of eigenvalues in certain sets of random matrices[END_REF]) Let (X i,j ) i,j be an array of i.i.d. centered random variables with common variance 1. Provided that lim n→∞ N/n = c ∈ (0, ∞), then, almost surely, µ Bn converges weakly to the Marcenko-Pastur law defined by

µ M P (dx) = 1 - 1 c + δ 0 + 1 2πcx (b c -x)(x -a c )1 [ac,bc] (x)dx ,
where

a c = (1 - √ c) 2 , b c = (1 + √ c) 2 and (x) + = max(x, 0).
The original Marcenko-Pastur theorem is stated for random variables having moment of fourth order; we refer to Yin [START_REF] Yin | Limiting spectral distribution for a class of random matrices[END_REF] for the proof under moments of second order only.

The above theorem can be seen as an analogue of the law of large numbers in the sense that, almost surely, a random average converges to a deterministic quantity. It also reminds us of the central limit theorem in the sense that the limiting law is universal and depends on the distribution of the matrix entries only through their common variance.

Another way to describe the limiting spectral distribution is by identifying its Stieltjes transform.

Definition 1.3. The Stieltjes transform of a non-negative measure µ on R with finite total mass is defined for any z ∈ C + by

S µ (z) := 1 x -z µ(dx) ,
where we denote by C + the set of complex numbers with positive imaginary part.

A very important property of the Stieltjes transform is that it characterizes the measure µ via the following inversion formula: if a and b are two points of continuity of

µ, i.e. µ({a}) = µ({b}) = 0, then µ(]a, b[) = lim y 0 1 π b a ImS µ (x + iy) dx .
We also note that, for an N × N Hermitian matrix A, the Stieltjes transform of µ A is given for each z = u + iv ∈ C + by

S A (z) := S µ A (z) = 1 x -z µ A (dx) = 1 N Tr(A -zI) -1 ,
where I is the identity matrix. We shall refer to S A as the Stieltjes transform of the matrix A.

For a sequence of matrices A n , the weak convergence of µ An to a probability measure µ is equivalent to the point-wise convergence in C + of S An (z) to S µ (z):

µ An w ---→ n→∞ µ ⇔ ∀z ∈ C + , S An (z) ---→ n→∞ S µ (z) .
For instance, Theorem 1.2 can be proved by showing that, for any z ∈ C + , S Bn (z) converges almost surely to the Stieltjes transform S µ M P (z) of the Marcenko-Pastur law
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satisfying the following equation:

S µ M P (z) = 1 -z + 1 -c -czS µ M P (z)
.

The Stieltjes transform turns out to be a well-adapted tool for the asymptotic study of empirical measures and its introduction to random matrix theory gave birth to the well-known resolvent method, also called the Stieltjes transform method.

A brief literature review on covariance matrices with correlated entries

Since Marcenko-Pastur's pioneering paper [START_REF] Marčenko | Distribution of eigenvalues in certain sets of random matrices[END_REF], there has been a large amount of work aiming to relax the independence structure between the entries of X n . The literature is rich with results on this issue but we shall only mention certain ones that are somehow related to this thesis.

We start by the model studied initially by Yin [START_REF] Yin | Limiting spectral distribution for a class of random matrices[END_REF] and then by Silverstein [START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices[END_REF], who considered a linear transformation of independent random variables which leads to the study of the empirical spectral distribution of random matrices of the form:

B n = 1 n Γ 1/2 N X n X T n Γ 1/2 N . (1.2)
More precisely, in the latter paper, the following theorem is proved:

Theorem 1.4. (Theorem 1.1, [START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices[END_REF]) Let B n be the matrix defined in (1.2). Assume that:

• lim n→∞ N/n = c ∈ (0, ∞),
• X n is an N × n matrix whose entries are i.i.d. centered random variables with common variance 1,

• Γ N is an N × N positive semi-definite Hermitian random matrix such that F Γ N converges almost surely in distribution to a deterministic distribution H on [0, ∞) as N → ∞,
• Γ N and X n are independent.

Then, almost surely, µ Bn converges weakly to a deterministic probability measure µ whose Stieltjes transform S = S(z) satisfies for any z ∈ C + the equation

S = 1 -z + λ(1 -c -czS) dH(λ) .
The above equation is uniquely solvable in the class of analytic functions S in C + satisfying:

-1-c z + cS ∈ C + .
For further investigations on the model mentioned above, one can check Silverstein and Bai [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large-dimensional random matrices[END_REF] and Pan [54].

Another models of sample covariance matrices with correlated entries, in which the vectors X 1 , . . . , X n are independent, have been later considered. For example, Hachem et al [START_REF] Hachem | The empirical eigenvalue distribution of a gram matrix: from independence to stationarity[END_REF] consider the case where the entries are modeled by a short memory linear process of infinite range having independent Gaussian innovations.

Later, Bai and Zhou [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF] derive the LSD of B n by assuming a more general dependence structure: Theorem 1.5. (Theorem 1.1, [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF]) Assume that the vectors X 1 , . . . , X n are independent and that i. For all i, E(X ki X i ) = γ k, and for any deterministic matrix N × N , R = (r k ), with bounded spectral norm

E X T i RX i -Tr(RΓ N ) 2 = o(n 2 ) where Γ N = (γ k, ) ii. lim n→∞ N/n = c ∈ (0, ∞)
iii. The spectral norm of Γ N is uniformly bounded and µ Γ N converges in law to µ H .

Then, almost surely, µ Bn converges in law to a non random probability measure whose Stieltjes transform S = S(z) satisfies the equation :

for all z ∈ C + z = - 1 S + c t 1 + St dµ H (t) ,
where S(z) := -(1 -c)/z + cS(z).
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For the purpose of applications, Bai and Zhou prove, in Corollary 1.1 of [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF], that Assumption (i.) is verified as soon as

• n -1 max k = E X ki X i -γ k, 2 → 0 uniformly in i ≤ n • n -2 Λ E(X ki X i -γ k, )(X ik X i -γ k , ) 2 → 0 uniformly in i ≤ n where Λ = {(k, , k , ) : 1 ≤ k, , k , ≤ p}\{(k, , k , ) : k = k = = or k = = k = } .
They also give possible applications of their result and establish the limiting spectral distribution for Spearman's rank correlation matrices, sample covariance matrices for finite populations and sample covariance matrices generated by causal AR(1) models.

Another application of Bai and Zhou's result is the following: let (ε k ) k be a sequence of i.i.d. centered random variables with common variance 1 and let (X k ) k be the linear process defined by

X k = ∞ j=0 a j ε k-j ,
with (a k ) k being a linear filter of real numbers. Let X 1 , . . . , X n be independent copies of the N -dimensional vector (X 1 , . . . , X N ) T and consider the associated sample covariance matrix B n .

For this model, Yao [START_REF] Yao | A note on a Marčenko-Pastur type theorem for time series[END_REF] then shows that the hypotheses of Theorem 1.5 are satisfied if:

• lim n→∞ N/n = c ∈ (0, ∞),
• the error process has a fourth moment: Eε 4 1 < ∞,

• the linear filter (a k ) k is absolutely summable, ∞ k=0 |a k | < ∞,
and proves that, almost surely, µ Bn converges weakly to a non-random probability measure µ whose Stieltjes transform S = S(z) satisfies for any z ∈ C + the equation

z = - 1 S + c 2π 2π 0 1 S + 2πf (λ) -1 dλ , ( 1.3) 
where S(z) := -(1 -c)/z + cS(z) and f is the spectral density of the linear process (X k ) k∈Z defined by

f (λ) = 1 2π k Cov (X 0 , X k ) e ikλ for λ ∈ [0, 2π[.
Still in the context of the linear model described above, Pfaffel and Schlemm [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF] relax the equidistribution assumption on the innovations and derive the limiting spectral distribution of B n . They use a different approach than the one considered in [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF] and [START_REF] Yao | A note on a Marčenko-Pastur type theorem for time series[END_REF] but they still assume the finiteness of the fourth moments of the innovations plus a polynomial decay of the coefficients of the underlying linear process.

We also mention that Pan et al. [55] relax the moment conditions and derive the limiting spectral distribution by just assuming the finiteness of moments of second order. This result will be a consequence of our Theorem 2.2 and shall be given in Section 2.2.1.

We finally note that Assumption (i.) is also satisfied when considering Gaussian vectors or isotropic vectors with log-concave distribution (see [START_REF] Pajor | On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution[END_REF]); however, it is hard to be verified for nonlinear time series, as ARCH models, without assuming conditions on the rate of convergence of the mixing coefficients of the underlying process.

Sample covariance matrices associated with functions of i.i.d. random variables

An object of investigation of this thesis will be the asymptotic spectral behavior of sample covariance matrices B n associated with functions of i.i.d. random variables. Mainly, we shall suppose that the entries of X n = (X k, ) k consist of one of the following forms of stationary processes: Let (ξ i,j ) (i,j)∈Z 2 be an array of i.i.d. real-valued random variables and let (X k, ) (k, )∈Z 2 be the stationary process defined by

X k, = g(ξ k-i, ; i ∈ Z) , (1.4)
or by

X k, = g(ξ k-i, -j ; (i, j) ∈ Z 2 ) , (1.5)
where g is real-valued measurable function such that

E(X k, ) = 0 and E(X 2 k, ) < ∞ .
This framework is very general and includes widely used linear and non-linear processes. We mention, for instance, functions of linear processes, ARCH models and nonlinear Volterra models as possible examples of stationary processes of the above forms. We also refer to the papers [78,[START_REF] Wu | Asymptotic theory for stationary processes[END_REF] by Wu for more applications.

Following Priestley [START_REF] Priestley | Nonlinear and nonstationary time series analysis[END_REF] and Wu [78], (X k, ) (k, )∈Z 2 can be viewed as a physical system with the ξ i,j 's being the input, X k, the output and g the transform or data-generating mechanism.

We are interested in studying the asymptotic behavior of B n when both n and N tend to infinity and are such that lim n→∞ N/n = c ∈ (0, ∞). With this aim, we follow a different approach consisting of approximating B n with a sample covariance matrix G n , associated with a Gaussian process (Z k, ) (k, )∈Z 2 having the same covariance structure as (X k, ) (k, )∈Z 2 , and then using the Gaussian structure of G n , we establish the limiting distribution.

This shall be done by comparing the Stieltjes transform of B n by the expectation of that of G n . Indeed, if we prove that for any z ∈ C + ,

lim n→∞ |S Bn (z) -E(S Gn (z))| = 0 a.s.
then the study is reduced to proving the convergence of E(S Gn (z)) to the Stieltjes transform of a non-random probability measure, say µ.

We note that if the X k, 's are defined as in (1.4) then the columns of X n are independent and it follows, in this case, by Guntuboyina and Leeb's concentration inequality [START_REF] Guntuboyina | Concentration of the spectral measure of large Wishart matrices with dependent entries[END_REF] of the spectral measure that for any z ∈ C + , lim n→∞ |S Bn (z) -E(S Bn (z))| = 0 a.s. (1.6) which reduces the study to proving that for any

z ∈ C + , lim n→∞ |E(S Bn (z)) -E(S Gn (z))| = 0 . (1.7)
However, in the case where the matrix entries consist of the stationary process defined in (1.5), the independence structure between the rows or the columns of X n is no longer valid. Thus, the concentration inequality given by Guntuboyina and Leeb does not apply anymore.

The convergence (1.6) can be however proved by approximating first X n with an m n -dependent block matrix and then using a concentration inequality for the spectral measure of matrices having m n -dependent columns (see Section 3.7).

As we shall see in Theorems 2.1 and 3.5, the convergence (1.7) always holds without any conditions on the covariance structure of (X k, ) (k, )∈Z 2 . This shows a universality scheme for the limiting spectral distribution of B n , as soon as the X k, 's have the dependence structure (1.4) or (1.5), without demanding any rate of convergence to zero of the correlation between the matrix entries.

The convergence (1.7) can be achieved via a Lindeberg method by blocks as described in Sections 2.3.2.1 and 3.8. The Lindeberg method consists in writing the difference of the expectation of the Stieltjes transforms of B n and G n as a telescoping sum and using Taylor expansions. This method can be used in the context of random matrices since the Stieltjes transform admits partial derivatives of all orders as shown in Sections A.1 and A.2.

In the traditional Lindeberg method, the telescoping sums consist of replacing the random variables involved in the partial sum, one at a time, by Gaussian random variables. While here, we shall replace blocks of entries, one at a time, by Gaussian blocks having the same covariance structure.

The Lindeberg method is popular with these types of problems. It is known to be an efficient tool to derive limit theorems and, up to our knowledge, it has been used for the first time in the context of random matrices by Chatterjee [START_REF] Chatterjee | A generalization of the Lindeberg principle[END_REF] who treated random matrices with exchangeable entries and established their limiting spectral distribution.

As a conclusion, S Bn converges almost surely to the Stiletjes transform S of a nonrandom probability measure as soon as E(S Gn (z)) converges to S.

Gram matrices associated with functions of β-mixing random variables

Assuming that the X k 's are independent copies of the vector X = (X 1 , . . . , X N ) T can be viewed as repeating independently an N -dimensional process n times to obtain the X k 's. However, in practice it is not always possible to observe a high dimensional process several times. In the case where only one observation of length N n can be recorded, it seems reasonable to partition it into n dependent observations of length N , and to treat them as n dependent observations. In other words, it seems reasonable to consider the N × n matrix X n defined by

X n =         X 1 X N +1 • • • X (n-1)N +1 X 2 X N +2 • • • X (n-1)N +2 . . . . . . . . . X N X 2N • • • X nN        
and study the asymptotic behavior of its associated Gram matrix B n given by

B n = 1 n X n X T n = 1 n n k=1 X k X T k
where for any k = 1, . . . , n, X k = (X (k-1)N +1 , . . . , X kN ) T .

Up to our knowledge this was first done by Pfaffel and Schlemm [START_REF] Pfaffel | Limiting spectral distribution of a new random matrix model with dependence across rows and columns[END_REF] who showed that this approach is valid and leads to the correct asymptotic eigenvalue distribution of the sample covariance matrix if the components of the underlying process are modeled as short memory linear filters of independent random variables. Assuming that the innovations have finite fourth moments and that the coefficients of the linear filter decay arithmetically, they prove that Stieltjes transform of the limiting spectral distribution of

B n satisfies (1.3).
In chapter 4, we shall relax the dependence structure of this matrix by supposing that its entries consist of functions of absolutely regular random variables. Before fully introducing the model, let us recall the definition of the absolute regular or β-mixing coefficients:

Chapter 1. Introduction Definition 1.6. (Rozanov and Volkonskii [START_REF] Volkonskiȋ | Some limit theorems for random functions[END_REF]) The absolutely regular or the β-mixing coefficient between two σ-algebras A and B is defined by

β(A, B) = 1 2 sup i∈I j∈J P(A i ∩ B j ) -P(A i )P(B j ) ,
where the supremum is taken over all finite partitions (A i ) i∈I and (B j ) j∈J that are respectively A and B measurable.

The coefficients (β n ) n≥0 of a sequence (ε i ) i∈Z are defined by

β 0 = 1 and β n = sup k∈Z β σ(ε , ≤ k) , (ε +n , ≥ k) for n ≥ 1 (1.8)
and (ε i ) i∈Z is then said to be absolutely regular or β-mixing if β n → 0 as n → ∞.

We note that absolutely regular processes exist widely. For example, a strictly stationary Markov process is β-mixing if and only if it is an aperiodic recurrent Harris chain. Moreover, many common time series models are β-mixing and the rates of decay of the associated β k coefficients are known given the parameters of the process. Among the processes for which such knowledge is available are ARMA models [START_REF] Mokkadem | Mixing properties of ARMA processes[END_REF] and certain dynamical systems and Markov processes. One can also check [START_REF] Doukhan | Mixing[END_REF] for an overview of such results.

We shall consider a more general framework than functions of i.i.d. random variables and define the non-causal stationary process (X k ) k∈Z as follows: for any k ∈ Z let

X k = g(. . . , ε k-1 , ε k , ε k+1 , . . .) , (1.9) 
where (ε i ) i∈Z is an absolutely regular stationary process and g a measurable function from Z to R such that

E(X k ) = 0 and E(X 2 k ) < ∞ .
The interest is again to study the limiting spectral distribution of the sample covariance matrix B n associated with (X k ) k∈Z when N and n tend to infinity and are such that lim n→∞ N/n = c ∈ (0, ∞).

The first step consists of proving that, under the following arithmetical decay condi-
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tion on the β-mixing coefficients:

n≥1 log(n) 3α 2 √ n β n < ∞ for some α > 1 ,
the Stieltjes transform is concentrated almost surely around its expectation as n tends to infinity. This shall be achieved by proving, with the help of Berbee's coupling lemma [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF] (see Lemma A.16), a concentration inequality of the empirical spectral measure .

The study is then reduced to proving that the expectation of the Stieltjes transform converges to that of a non-random probability measure. This can be achieved by approximating it with the expectation of the Stieltjes transform of a Gaussian matrix having a close covariance structure. We shall namely prove for any

z ∈ C + , lim n→∞ |E(S Bn (z)) -E(S Gn (z))| = 0 , ( 1.10) 
with G n being the sample covariance matrix given by

G n = 1 n n k=1 Z k Z T k
and Z 1 , . . . Z n being independent copies of the Gaussian vector Z = (Z 1 , . . . , Z N ) T where (Z k ) k is a Gaussian process having the same covariance structure as (X k ) k .

The above approximation is again proved via the Lindeberg method by blocks and is done without requiring any rate of convergence to zero of the correlation between the entries nor of the β-mixing coefficients.

Therefore, provided that the β-coefficients satisfy the above arithmetical decay condition, we prove that B n , being the sum of dependent rank-one matrices, has the same asymptotic spectral behavior as a Gram matrix, being the sum of independent Gaussian rank-one matrices.

Finally, provided that the spectral density of (X k ) k exists, we prove that almost surely, µ Bn converges weakly to the non-random limiting probability measure whose Stieltjes transform satisfies equation (1.3).

The first chapters of this thesis are devoted to the study of the asymptotic global behavior of eigenvalues of different models of matrices with correlated entries, while the Chapter 1. Introduction last chapter is devoted to the study of deviation inequalities for the largest eigenvalue of the sum of weakly dependent self-adjoint random matrices.

Bernstein type inequality for dependent random matrices

As we have mentioned, the analysis of the spectrum of large matrices has known significant development recently due to its important role in several domains. Another important question is to study the fluctuations of a Hermitian matrix X from its expectation measured by its largest eigenvalue. Matrix concentration inequalities give probabilistic bounds for such fluctuations and provide effective methods for studying several models. For a family (X i ) i≥1 of d × d self-adjoint centered random matrices, it is quite interesting to give, for any x > 0, upper bounds of the probability

P λ max n i=1 X i ≥ x ,
where λ max denotes the maximum eigenvalue of n i=1 X i . In the scalar case, that is for d = 1, this is the probability that the sum of random variables trespasses a certain positive number x.

There are several kinds of inequalities providing exponential bounds for the probability of large deviations of a sum of random variables with bounded increments. For instance, the Bernstein inequality permits to estimate such probability by a monotone decreasing exponential function in terms of the variance of the sum's increments.

The starting point to get such exponential bounds is the following Chernoff bound: denoting by (X i ) i a sequence of real-valued random variables, we have for any x > 0

P n i=1 X i ≥ x ≤ inf t>0 e -tx • E exp t n i=1 X i .
(1.11)

The Laplace transform method, which is due to Bernstein in the scalar case, is generalized to the sum of independent Hermitian random matrices by Ahlswede and

Bernstein type inequality for dependent random matrices

Winter. They prove in the Appendix of [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF] that the usual Chernoff bound has the following counterpart in the matrix setting:

P λ max n i=1 X i ≥ x ≤ inf t>0 e -tx • ETr exp t n i=1 X i .
(1.12)

We note that the Laplace transform of the sum of random variables appearing in (1.11) is replaced by the trace of the Laplace transform of the sum of random matrices in (1.12). Obviously, the main problem now is to give a suitable bound for

L n (t) := ETr exp(t n i=1 X i ) .
As matrices do not commute, many tools, available in the scalar setting to get an upper bound of L n (t), cannot be straightforward extended. We give in Section A.4 some preliminary materials on some operator functions and some tools used in the matrix setting.

In the independent case, Ahlswede and Winter [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF] prove by applying the Golden-Thompson inequality [START_REF] Golden | Lower bounds for the Helmholtz function[END_REF][START_REF] Thompson | Inequality with applications in statistical mechanics[END_REF], Lemma A.12, that for any t > 0

L n (t) ≤ ETr e tXn • e t n-1 i=1 X i = Tr E(e tXn ) • E e t n-1 i=1 X i ≤ λ max (Ee tXn ) • ETr e t n-1 i=1 X i ≤ d • n i=1 λ max (Ee tX i ) ,
where we note that the equality in the first line follows by the independence of the X i 's.

Following an approach based on Lieb's concavity theorem (Theorem 6, [START_REF] Lieb | Convex trace functions and the wigner-yanase-dyson conjecture[END_REF]), Tropp improves, in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF], the above bound and gets for any t > 0

L n (t) = ETr exp t n i=1 X i ≤ Tr exp n i=1 log Ee tX i . (1.13)
This bound, combined with another one on Ee tX i , allows him to prove the following Bernstein type inequality for independent self-adjoint matrices: Theorem 1.7. (Theorem 6.3, [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF]) Consider a family {X i } i of independent self-adjoint random matrices with dimension d. Assume that each matrix satisfies

EX i = 0 and λ max (X i ) ≤ M a.s.
Then for any x > 0,

P λ max n i=1 X i ≥ x ≤ d • exp - x 2 /2 σ 2 + xM/3
,

where σ 2 := λ max n i=1 E(X 2 i ) .
Let us mention that extensions of the so-called Hoeffding-Azuma inequality for matrix martingales and of the so-called McDiarmid bounded difference inequality for matrixvalued functions of independent random variables are also given in [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF].

Taking another direction, Mackey et al. [START_REF] Mackey | Matrix concentration inequalities via the method of exchangeable pairs[END_REF] extend to the matrix setting Chatterjee's technique for developing scalar concentration inequalities via Stein's method of exchangeable pairs [START_REF] Chatterjee | Concentration inequalities with exchangeable pairs[END_REF][START_REF] Chatterjee | Stein's method for concentration inequalities[END_REF], and established Bernstein and Hoeffding inequalities as well as other concentration inequalities. Following this approach, Paulin et al. [START_REF] Paulin | Efron-stein inequalities for random matrices[END_REF] established a socalled McDiarmid inequality for matrix-valued functions of dependent random variables under conditions on the associated Dobrushin interdependence matrix.

Geometrically absolutely regular matrices

We shall extend the above Bernstein-type inequality for a class of dependent matrices. We note that in this case, the first step of Ahlswede and Winter's iterative procedure as well as Tropp's concave trace function method fail. Therefore additional transformations on the Laplace transform have to be made.

Even in the scalar dependent case, obtaining sharp Bernstein-type inequalities is a challenging problem and a dependence structure of the underlying process has obviously to be precise. Consequently, obtaining such an inequality for the largest eigenvalue of the sum of n self-adjoint dependent random matrices can be more challenging and technical due to the difficulties arising from both the dependence and the non-commutative 1.2 Bernstein type inequality for dependent random matrices structure.

We obtain, in this thesis, a Bernstein-type inequality for the largest eigenvalue of partial sums associated with self-adjoint geometrically absolutely regular random matrices. We note that this kind of dependence cannot be compared to the dependence structure imposed in [START_REF] Mackey | Matrix concentration inequalities via the method of exchangeable pairs[END_REF] or [START_REF] Paulin | Efron-stein inequalities for random matrices[END_REF].

We say that a sequence (X i ) i of d × d matrices is geormetrically absolutely regular if there exists a positive constant c such that for any k ≥ 1

β k = sup j β(σ(X i , i ≤ j), σ(X i , i ≥ j + k)) ≤ e -c(k-1) (1.14)
with β being the absolute regular mixing coefficient given in Definition 1.6.

We note that the absolute regular coefficients can be computed in many situations. We refer to the work by Doob [START_REF] Doob | Stochastic processes[END_REF] for sufficient conditions on Markov chains to be geometrically absolutely regular or by Mokkadem [START_REF] Mokkadem | Propriétés de mélange des processus autorégressifs polynomiaux. (Mixing properties of polynomial autoregressive processes)[END_REF] for mild conditions ensuring ARMA vector processes to be also geometrically β-mixing.

Clearly, the dependence between two ensembles of matrices depends on the gap separating the σ-algebras generated by these ensembles. For geometrically β-mixing matrices, this dependence decreases exponentially with the gap separating them.

In Chapter 5, we prove that if (X i ) i is a sequence of d×d Hermitian matrices satisfying (1.14) and such that E(X i ) = 0 and λ max (X i ) ≤ 1 a.s. then for any x > 0

P λ max n i=1 X i ≥ x ≤ d exp - Cx 2 v 2 n + c -1 + x(log n) 2 ,
where C is a universal constant and v 2 is given by

v 2 = sup K⊆{1,...,n} 1 CardK λ max E i∈K X i 2 .
The full announcement of the above inequality is given in Theorem 5.1.

Chapter 1. Introduction

We note that for d = 1, we re-obtain the best Bernstein-type inequality so far, for geometrically absolutely regular random variables, proved by Merlevède et al. [START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF]. Therefore, our inequality can be viewed as an extension to the matrix setting of the Bernstein-type inequality obtained by Merlevède et al. and as a generalization, up to a logarithmic term, of Theorem 1.7 by Tropp from independent to geometrically absolutely regular matrices.

We note that an extra logarithmic factor appearing in our inequality, with respect to the independent case, cannot be avoided even in the scalar case. Indeed, Adamczak proves in Theorem 6 and Section 3.3 of [START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF] a Bernstein-type inequality for the partial sum associated with bounded functions of a geometrically ergodic Harris recurrent Markov chain. He shows that even in this context where it is possible to go back to the independent setting by creating random i.i.d. cycles, a logarithmic factor cannot be avoided.

Strategy of the proof

The starting point is still, as for independent matrices, the matrix Chernoff bound (1.12) which remains valid in the dependent case. However, the procedures used in [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF] and [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] fail for dependent matrices from the very first step and thus another approach should be followed.

The first step will be creating gaps between the matrices considered with the aim of decoupling them in order to break their dependence structure. As done by Merlevède et al. [START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF][START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF], we shall partition the n matrices in blocks indexed by a Cantor type set, say K n plus a remainder: 
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The above figure gives an idea on how the Cantor-type set K n is constructed. The first line of Figure 1.1 represents the set of indices {1, . . . , n}, whereas the last one represents K n which consists of the union of disjoint subsets of consecutive integers represented by the blue dashes. This construction is done in an iterative way and will be explained in details in Section 5.3.2 of the chapter 5.

The main step is then to control the log-Laplace transform of the partial sum on K n . By doing so, we are only considering blocks of random matrices separated by gaps of certain width. The larger the gap between two blocks is, the less dependent the associated matrices are. The remaining blocks of matrices, i.e. those indexed by i ∈ {1, . . . , n}\K n , are re-indexed and a new Cantor type set is similarly constructed. We repeat the same procedure until we cover all the matrices.

Having controlled the matrix log-Laplace transform of the partial sum on each Cantortype set, the log-Laplace transform of the total partial sum is then handled with the help of the following Lemma: Lemma 1.8. Let U 0 , U 1 , . . . be a sequence of d×d self-adjoint random matrices. Assume that there exist positive constants σ 0 , σ 1 , . . . and κ 0 , κ 

U k ≤ C d + (σt) 2 /(1 -κt),
where

σ = σ 0 + σ 1 + • • • + σ m and κ = κ 0 + κ 1 + • • • + κ m .
This lemma, which is due to Merlevède et al. in the scalar case, provides bounds for the log-Laplace transform of any sum of self-adjoint random matrices and thus allows us to control the total sum after controlling the partial sum on each Cantor set separately. So obviously, the main step is to obtain suitable upper bounds of the log-Laplace transform of the partial sum on certain Cantor-type sets:

log ETr exp t k∈K A X k
where K A denotes a Cantor-like set constructed from {1, . . . , A}.

To benefit from some ideas developed in [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF] or [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF], we shall rather bound the matrix log-Laplace transform by that of the sum of certain independent and self-adjoint random matrices plus a small error term. Lemma 5.7 is in this direction and can be viewed as a decoupling lemma for the Laplace transform in the matrix setting.

As we shall see, a well-adapted dependence structure allowing such a procedure is the absolute regularity structure. This structure allows, by Berbee's coupling lemma stated in Lemma A.17 a "good coupling" in terms of the absolute regular coefficients even when the variables take values in a high dimensional space. In fact, working with d × d random matrices can be viewed as working with random vectors of dimension d 2 .

For such dependence structures, the approach followed by Merlevède et al. [START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF][START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF] is well-performing; however, its extension to the matrix setting is not straight forward because several tools used in the scalar case are no longer valid in the non-commutative case.

For instance, this dependence structure allows the following control in the scalar case: consider any index sets Q and Q of natural numbers separated by a gap of width at least n; i.e., there exists p such that Q ⊂ [1, p] and Q ⊂ [n + p, ∞). Then for any t > 0,

E e t i∈Q X i e t i∈Q X i ≤ E e t i∈Q X i E e t i∈Q X i + ε(n) e t i∈Q X i ∞ e t i∈Q X i ∞ , (1.15)
where ε(n) is a sequence of positive real numbers depending on the dependence coefficients. The binary tree structure of the Cantor-type sets allows iterating the decorrelation procedure mentioned above to suitably handle the log-Laplace transform of the partial sum of real-valued random variables on each of the Cantor-type sets.

Iterating a procedure as (1.15) in the matrix setting cannot lead to suitable exponential inequalities essentially due to the fact that the extension of the Golden-Thompson inequality [START_REF] Golden | Lower bounds for the Helmholtz function[END_REF][START_REF] Thompson | Inequality with applications in statistical mechanics[END_REF], Lemma A.12, to three or more Hermitian matrices fails. This can add more difficulty to the non-commutative case and can complicate the proof because more coupling arguments and computations are required.

The decoupling lemma 5.7 associated with additional coupling arguments will then
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allow us to prove our key Proposition 5.6 giving a bound for the Laplace transform of the partial sum, indexed by Cantor-type set, of self-adjoint random matrices.

Organisation of the thesis and references

This thesis is organized as follows: in Chapter 2 we consider sample covariance matrices associated with functions of i.i.d. random variables and explain precisely the approach followed for deriving the limiting spectral distribution. The main steps of this approach were initiated in the following paper:

• M. Banna and F. Merlevède. Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes. Journal of Theoretical Probability, pages 1-39, 2013.

In Chapter 3, we study the asymptotic behavior of symmetric and Gram matrices whose entries, being functions of i.i.d. random variables, are correlated across both rows and columns. We investigate again, in Chapter 4, the limiting spectral distribution but by considering this time Gram matrices associated with functions of β-mixing random variables. The results of Chapters 3 and 4 are respectively contained in the following papers:

• M. Banna, F. Merlevède, and M. Peligrad. On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries. Stochastic Processes and their Applications, 125(7):2700-2726, 2015.

• M. Banna. Limiting spectral distribution of gram matrices associated with functionals of β-mixing processes. Journal of Mathematical Analysis and Applications, 433(1):416 -433, 2016.

In Chapter 5, we give a Bernstein-type inequality for the largest eigenvalue of the sum of geometrically absolutely regular matrices. This is the result of the recently submitted paper:

• M. Banna, F. Merlevède, and P. Youssef. Bernstein type inequality for a class of dependent random matrices. arXiv preprint arXiv:1504.05834, 2015.

Finally, we collect, in the Appendix, some technical and preliminary lemmas used throughout the thesis.

Chapter 2

Matrices associated with functions of i.i.d. variables

We consider, in this chapter, the following sample covariance matrix

B n = 1 n n k=1 X k X T k (2.1)
and suppose that X k 's are independent copies of the N -dimensional vector (X 1 , . . . , X N ) where (X k ) k∈Z is a stationary process defined as follows: let (ε k ) k∈Z be a sequence of i.i.d. real-valued random variables and let g : R Z → R be a measurable function such that, for any k ∈ Z,

X k = g(ξ k ) with ξ k := (. . . , ε k-1 , ε k , ε k+1 , . . .) (2.2)
is a proper random variable and

E(g(ξ k )) = 0 and g(ξ k ) 2 < ∞ .
We shall investigate the limiting spectral distribution of B n via an approach based on a blend of a blocking procedure, Lindeberg's method and the Gaussian interpolation
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technique. The main idea in our approach is to approximate B n with a Gaussian sample covariance matrix G n having the same covariance structure as B n and then use the Gaussian structure of G n to establish the limiting distribution.

We note that even though this model is a particular case of the models studied in Chapters 3 and 4, we shall treat it separately with the aim of giving a clearer proof enabling us to shed light on the main steps of the approximations and computations involved in this approach. Moreover, some of this chapter's contents will be useful materials for Chapter 4.

Main result

Let us start by describing precisely our the model. For a positive integer n, we consider n independent copies of the sequence (ε k ) k∈Z which we denote by (ε

(i) k ) k∈Z for i = 1, . . . , n. Setting ξ (i) k = . . . , ε (i) k-1 , ε (i) k , ε (i) k+1 , . . . and X (i) k = g(ξ (i) k ) , it follows that (X (1) k ) k , . . . , (X (n) 
k ) k are n independent copies of the process (X k ) k∈Z . Let N = N (n) be a sequence of positive integers and define for any i = 1, . . . , n, the vector

X i = (X (i) 1 , . . . , X (i) N ) T .
Let G n be the sample covariance matrix associated with a Gaussian process (Z k ) k∈Z having the same covariance structure as (X k ) k∈Z . Namely, for any k, ∈ Z,

Cov(Z k , Z ) = Cov(X k , X ) . ( 2.3) 
For i = 1, . . . , n, we denote by (Z

(i) k ) k∈Z an independent copy of (Z k ) k that is also independent of (X k ) k and we define the N × N sample covariance matrix G n by G n = 1 n Z n Z T n = 1 n n k=1 Z i Z T i , ( 2.4) 
where for any i = 1, . . . , n,

Z i = (Z (i) 1 , . . . , Z (i) N )
T and Z n is the matrix with Z 1 , . . . , Z n as columns.

Main result

We state now our main result. Theorem 2.1. Let B n and G n be the matrices defined in (2.1) and (2.4) respectively. Provided that lim n→∞ N/n = c ∈ (0, ∞) then for any z ∈ C + ,

lim n→∞ |S Bn (z) -E(S Gn (z))| = 0 a.s.
This approximation allows us to reduce the study of empirical spectral measure of B n to the expectation of that of a Gaussian sample covariance matrix with the same covariance structure without requiring any rate of convergence to zero of the correlation between the entries. Theorem 2.2. Let B n be the matrix defined in (2.1) and associated with (X k ) k∈Z . Let

γ k := E(X 0 X k ) and assume that k≥0 |γ k | < ∞ . (2.5)
Provided that lim n→∞ N/n = c ∈ (0, ∞) then , almost surely, µ Bn converges weakly to a probability measure µ whose Stieltjes transform S = S(z) (z ∈ C + ) satisfies the equation

z = - 1 S + c 2π 2π 0 1 S + 2πf (λ) -1 dλ , (2.6)
where S(z

) := -(1 -c)/z + cS(z) and f (•) is the spectral density of (X k ) k∈Z .
The proof of this Theorem will be postponed to Section 2.4.

Remark 2.3. The spectral density function f of (X k ) k∈Z is the discrete Fourier transform of the autocovariance function. Under the condition (2.5), the spectral density f of (X k ) k exists, is continuous and bounded on [0, 2π). Moreover, Yao proves in Proposition 1 of [START_REF] Yao | A note on a Marčenko-Pastur type theorem for time series[END_REF] that the limiting spectral distribution is in this case compactly supported.

Remark 2.4. Our Theorem 2.2 is stated for the case of short memory dependent sequences. We note that it remains valid for long memory dependent sequences adapted to the natural filtration. We refer to Section 3.5 in [START_REF] Merlevède | On the empirical spectral distribution for matrices with long memory and independent rows[END_REF] for the proof of the latter case.

In this section, we consider some examples of stationary processes that can be represented as a function of i.i.d. random variables and give sufficient conditions under which (2.5) is satisfied.

Linear processes

We shall start with an example of linear filters. Let (ε k ) k be a sequence of i.i.d. centered random variables and let

X k = ∈Z a ε k-, ( 2.7) 
with (a ) being a linear filter or simply a sequence of real numbers. The so-called noncausal linear process (X k ) k∈Z is widely used in a variety of applied fields. It is properly defined for any square summable sequence (a ) ∈Z if and only if the stationary sequence of innovations (ε k ) k has a bounded spectral density. In general, the covariances of (X k ) k might not be summable so that the linear process might exhibit long range dependence. Obviously, X k can be written under the form (2.2) and Theorem 2.1 follows even for the case of long range dependence.

We note now that for this linear process,

γ k = ε 0 2 2 ∈Z a a k-,
and thus we infer that (2.5) is satisfied if

ε 0 2 < ∞ and ∈Z |a | < ∞ .
Our Theorem 2.2 then holds improving Theorem 2.5 of Bai and Zhou [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF] and Theorem 1 of Yao [START_REF] Yao | A note on a Marčenko-Pastur type theorem for time series[END_REF], that require ε 0 to be in L 4 and gives the result of Theorem 1 of Pan et al.

[55].

Functions of linear processes

We focus now on functions of real-valued linear processes. Define

X k = h ∈Z a ε k--E h ∈Z a ε k- , ( 2.8) 
where (a ) ∈Z is a sequence of real numbers in 1 and (ε i ) i∈Z is a sequence of i.i.d. real-valued random variables in L 1 . We shall give sufficient conditions, in terms of the regularity of the function h, under which (2.5) is satisfied.

With aim we shall, we introduce the projection operator: for any k and j belonging to Z, let

P j (X k ) = E(X k |F j ) -E(X k |F j-1 ) , where F j = σ(ε i , i ≤ j) with the convention that F -∞ = k∈Z F k and F +∞ = k∈Z F k .
As we shall see in the sequel, the quantity P 0 (X k ) 2 can be computed in many situations including non-linear models and for such cases we shall rather consider the following condition:

k∈Z P 0 (X k ) 2 < ∞ .
(2.9)

We note that this condition is known in the literature as the Hannan-Heyde condition and is well adapted to the study of time series. Moreover, it implies the absolute summability of the covariance; condition (2.5). To see this fact, we start by noting that since

F -∞ = k∈Z F k is trivial then for any k ∈ Z, E(X k |F -∞ ) = E(X k ) = 0 a.s.
Therefore, the following decomposition is valid:

X k = j∈Z P j (X k ) . Since E(P i (X 0 )P j (X k )) = 0 if i = j,
then, by stationarity, we get for any integer k ≥ 0,

|E(X 0 X k )| = j∈Z E P j (X 0 )P j (X k ) ≤ j∈Z P 0 (X j ) 2 P 0 (X k+j ) 2 .
Taking the sum over k ∈ Z, we get that

k∈Z |E(X 0 X k )| ≤ k∈Z P 0 (X k ) 2 2 .
The Hannan-Heyde condition is known to be sufficient for the validity of the central limit theorem for the partial sums (normalized by √ n) associated with an adapted regular stationary process in L 2 . It is also essentially optimal for the absolute summability of the covariances. Indeed, for a causal linear process with non-negative coefficients and generated by a sequence of i.i.d. centered random variables in L 2 , both conditions (2.5) and (2.9) are equivalent to the summability of the coefficients. [START_REF] Dedecker | On the weak invariance principle for nonadapted sequences under projective criteria[END_REF] , the following conditions are together sufficient for the validity of (2.9):

Remark 2.5. Let us mention that, by Remark 3.3 of

k≥1 1 √ k E(X k |F 0 ) 2 < ∞ and k≥1 1 √ k X -k -E(X -k |F 0 ) 2 < ∞ . ( 2.10) 
We specify two different classes of models for which our Theorem 2.2 applies and we give sufficient conditions for (2.5) to be satisfied. Other classes of models, including non-linear time series such as iterative Lipschitz models, can be found in Wu [START_REF] Wu | Asymptotic theory for stationary processes[END_REF].

Denote by w h (•) the modulus of continuity of the function h on R, that is:

w h (t) = sup |x-y|≤t |h(x) -h(y)| . Corollary 2.6. Assume that k∈Z w h (|a k ε 0 |) 2 < ∞ , (2.11) or that k≥1 1 k 1/2 w h ≥k |a ||ε k-| 2 < ∞ and k≥1 1 k 1/2 w h ≤-k |a ||ε -k-| 2 < ∞ . (2.12) Then, provided that c(n) = N/n → c ∈ (0, ∞), the conclusion of Theorem 2.2 holds

Applications

for µ Bn where B n is the sample covariance matrix defined in (2.1) and associated with (X k ) k∈Z defined in (2.8).

Example 1. Assume that h is γ-Hölder with γ ∈]0, 1], that is: there is a positive constant C such that w h (t) ≤ C|t| γ . Assume that k∈Z |a k | γ < ∞ and E(|ε 0 | (2γ)∨1 ) < ∞ , then condition (2.11
) is satisfied and the conclusion of Corollary 2.6 holds.

Example 2. Assume ε 0 ∞ ≤ M where M is a finite positive constant, and that |a k | ≤ Cρ |k| where ρ ∈ (0, 1) and C is a finite positive constant, then the condition (2.12) is satisfied and the conclusion of Corollary 2.6 holds as soon as

k≥1 1 √ k w h M C ρ k 1 -ρ < ∞ .
Using the usual comparison between series and integrals, it follows that the latter condition is equivalent to

1 0 w h (t) t | log t| dt < ∞ . (2.13)
For instance if w h (t) ≤ C| log t| -α with α > 1/2 near zero, then the above condition is satisfied.

Proof of Corollary 2.6. To prove the corollary, it suffices to show that the condition (2.5) is satisfied as soon as (2.11) or (2.12) holds. Let (ε * k ) k∈Z be an independent copy of (ε k ) k∈Z . Denoting by E ε (•) the conditional expectation with respect to ε = (ε k ) k∈Z , we have that, for any k ∈ Z,

P 0 (X k ) 2 = E ε h ≤k-1 a ε * k-+ ≥k a ε k--h ≤k a ε * k-+ ≥k+1 a ε k- 2 . ≤ w h (|a k (ε 0 -ε * 0 )|) 2 
Next, by the subadditivity of w h (•),

w h (|a k (ε 0 -ε * 0 )|) ≤ w h (|a k ε 0 |) + w h (|a k ε * 0 |) . Whence, P 0 (X k ) 2 ≤ 2 w h (|a k ε 0 |) 2 .
This proves that the condition (2.9) is satisfied under (2.11).

We prove now that if (2.12) holds then so does condition (2.9). According to Remark 2.5, it suffices to prove that the conditions in (2.10) are satisfied. With the same notations as before, we have that, for any k ≥ 1,

E(X k |F 0 ) = E ε h ≤k-1 a ε * k-+ ≥k a ε k--h ∈Z a ε * k- .
Hence, for any non-negative integer k,

E(X k |F 0 ) 2 ≤ w h ≥k |a (ε k--ε * k-)| 2 ≤ 2 w h ≥k |a ||ε k-| 2 ,
where we have used the subadditivity of w h (•) for the last inequality. Similarly, we prove that

X -k -E(X -k |F 0 ) 2 ≤ 2 w h ≤-k |a ||ε -k-| 2 .
These inequalities entail that the conditions in (2.10) hold as soon as those in (2.12) do. This ends the proof of Corollary 2.6.

The proof of the universality result

We give in this section the main steps for proving Theorem 2.1 and we explain how the dependence structure in each column is broken allowing us to approximate the matrix with a Gaussian one via the Lindeberg method by blocks.

Since the columns of X n are independent, it follows by Guntuboyina and Leeb's concentration inequality [START_REF] Guntuboyina | Concentration of the spectral measure of large Wishart matrices with dependent entries[END_REF] of the spectral measure or by Step 1 of the proof of Theorem 1.1 in Bai and Zhou [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF] that for any z ∈ C + , lim n→∞ S Bn (z) -E(S Bn (z)) = 0 a.s.

The proof of the universality result

Hence, our aim is to prove that for any z ∈ C + ,

lim n→∞ E(S Bn (z)) -E(S Gn (z)) = 0 a.s.
The first step is to "break" the dependence structure of the coordinates of each column X i of X n . With this aim, we introduce a parameter m and construct mutually independent columns X1,m , . . . , Xn,m whose entries consist of 2m-dependent random variables bounded by a positive number M and separated by blocks of zero entries of dimension 3m. The aim of replacing certain entries by zeros is to create gaps of length 3m between some entries and benefit from their 2m-dependent structure. X1,m , . . . , Xn,m will then consist of relatively big blocks of non-zero entries separated by small blocks of zero entries of dimension 3m. We note that the non-zero blocks of entries are mutually independent since the gap between any two of them is at least 2m. We shall then approximate B n with the sample covariance matrix

Bn,m := 1 n n i=1 Xi,m XT i,m .
This approximation will be done in such a way that, for any

z ∈ C + , lim m→∞ lim sup M →∞ lim sup n→∞ E S Bn (z) -E S Bn,m (z) = 0 . (2.14)
We shall then construct a Gaussian sample covariance matrix

Ḡn,m := 1 n n i=1 Zi,m ZT i,m
having the same block structure as Bn,m and associated with a sequence of Gaussian random variables having the same covariance structure as the 2m-dependent sequence constructed at the first step. Bn,m is then approximated with Ḡn,m via the Lindeberg method which consists of replacing at each time a non-zero block by its corresponding Gaussian block that has eventually the same covariance structure. This method allows us to prove for any z ∈ C + , lim m→∞ lim sup

M →∞ lim sup n→∞ E(S Bn,m (z)) -E(S Ḡn,m (z)) = 0 . (2.15)
In view of (2.14) and (2.15), Theorem 2.1 will then follow if we can prove that, for any

z ∈ C + , lim m→∞ lim sup M →∞ lim sup n→∞ E(S Ḡn,m (z)) -E(S Ḡn (z)) = 0 . (2.16)
This will be achieved via a well-adapted Gaussian interpolation technique as described in Section 2.3.2

Breaking the dependence structure of the matrix

Assume that N ≥ 2 and let m be a positive integer fixed for the moment and assumed to be less than N/2. Set

k N,m = N m 2 + 3m , ( 2.17) 
where we recall that [ • ] denotes the integer part. We shall partition {1, . . . , N } by writing it as the union of disjoint sets as follows:

[1, N ] ∩ N = k N,m +1 =1 I ∪ J ,
where, for ∈ {1, . . . , k N,m },

I := ( -1)(m 2 + 3m) + 1 , ( -1)(m 2 + 3m) + m 2 ∩ N, (2.18 
)

J := ( -1)(m 2 + 3m) + m 2 + 1 , (m 2 + 3m) ∩ N ,
and, for = k N,m + 1,

I k N,m +1 = k N,m (m 2 + 3m) + 1 , N ∩ N ,
and

J k N,m +1 = ∅. Note that I k N,m +1 = ∅ if k N,m (m 2 + 3m) = N .
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Truncation and construction of a 2m-dependent sequence

Let M be a fixed positive number that depends neither on N , n nor m. Let ϕ M be the function defined by ϕ M (x) = (x ∧ M ) ∨ (-M ) . Now for any k ∈ Z and i ∈ {1, . . . , n}, let

X (i) k,m := X (i) k,M,m = E ϕ M (X (i) k )|ε (i) k-m , . . . , ε (i) k+m and set X(i) k,m = X (i) k,m -E X (i) k,m . (2.19) Notice that ( X(1) k,m ) k , . . . , ( X(n) k,m
) k are n independent copies of the centered and stationary sequence ( Xk,m ) k defined for any k ∈ Z by

Xk,m = X k,m -E X k,m where X k,m = E(ϕ M (X k )|ε k-m , . . . , ε k+m ). (2.20)
This implies in particular that for any i ∈ {1, . . . , n} and any k ∈ Z,

X(i) k,m ∞ = Xk,m ∞ ≤ 2M . ( 2.21) 
Moreover, for any i ∈ {1, . . . , n}, we note that ( X(i) k,m ) k∈Z forms a 2m-dependent sequence in the sense that

X(i) k,m and X(i) k ,m are independent if |k -k | > 2m.

Construction of columns consisting of independent blocks

For any i = 1, . . . , n , we let u i, be the row random vectors defined for any = 1, . . . , k N,m -1 by

u i, = ( X(i) k,m ) k∈I , 0 3m (2.22) 
and for = k N,m by

u i,k N,m = ( X(i) k,m ) k∈I k N,m , 0 r (2.23)
where r = 3m + N -k N,m (m 2 + 3m). We note that the vectors in (2.22) are of dimension

m 2 + 3m whereas that in (2.23) is of dimension N -(k N,m -1)(m 2 + 3m
). We also note that for any i = 1, . . . , n and = 1, . . . , k N,m , the random vectors u i, are mutually independent.

For any i ∈ {1, . . . , n}, we define now the random vectors Xi,m of dimension N by and we let Xn,m be the matrix whose columns consist of the Xi,m 's. Finally, we define the associated sample covariance matrix

Bn,m := 1 n Xn XT n = 1 n n i=1 Xi,m XT i,m . (2.25)

Approximation with the associated sample covariance matrix

In what follows, we shall prove the following proposition.

Proposition 2.7. Provided that lim n→∞ N/n = c ∈ (0, ∞), then for any z ∈ C + , lim m→∞ lim sup M →∞ lim sup n→∞ E S Bn (z) -E S Bn,m (z) = 0 .
Proof. By Proposition A.1 and Cauchy-Swharz's inequality, it follows that

E S Bn (z) -E S Bn,m (z) ≤ √ 2 v 2 1 N Tr(B n + Bn,m ) 1/2 1 1 N n Tr(X n -Xn,m )(X n -Xn,m ) T 1/2 1 . (2.26)
By the definition of B n and the fact that for each i, (X

(i) k ) k∈Z is an independent copy of the stationary sequence (X k ) k∈Z , we infer that 1 N E|Tr(B n )| = 1 nN n i=1 N k=1 X (i) k 2 2 = X 0 2 2 .

Now, setting

I N,m = k N,m =1 I and R N,m = {1, . . . , N }\I N,m , (2.27) 
then by using the stationarity of the sequence ( X(i) k,m ) k∈Z and the fact that Card(I N,m ) =
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m 2 k N,m ≤ N , we get 1 N E|Tr( Bn,m )| = 1 nN n i=1 k∈I N,m X(i) k,m 2 2 ≤ X0,m 2 2 . Noting that, X0,m 2 ≤ 2 X 0,m 2 ≤ 2 ϕ M (X 0 ) 2 ≤ 2 X 0 2 , ( 2.28) 
we infer that

N -1 E|Tr( Bn,m )| ≤ 4 X 0 2 2
. Now, by the definition of X n and Xn,m ,

1 N n E|Tr(X n -Xn,m )(X n -Xn,m ) T | = 1 nN n i=1 k∈I N,m X (i) k - X(i) k,m 2 2 + 1 nN n i=1 k∈R N,m X (i) k 2 2 .
Using the stationarity, the fact that Card(I N,m ) ≤ N and

Card(R N,m ) = N -m 2 k N,m ≤ 3N m + 3 + m 2 , ( 2.29) 
we get that

1 N n E|Tr(X n -Xn,m )(X n -Xn,m ) T | ≤ X 0 -X0,m 2 2 + (3(m + 3) -1 + m 2 N -1 ) X 0 2 2 .
Starting from (2.26), considering the above upper bounds, we derive that there exists a positive constant C not depending on (m, M ) such that lim sup

n→∞ E S Bn (z) -E S Bn,m (z) ≤ C v 2 X 0 -X0,m 2 + m -1/2 .
Therefore, Proposition 2.7 will follow if we prove that

lim m→∞ lim sup M →∞ X 0 -X0,m 2 = 0 . (2.30)
For this aim, let us introduce now the sequence (X k,m ) k∈Z defined as follows: for any Chapter 2. Matrices associated with functions of i.i.d. variables

k ∈ Z, X k,m = E X k |ε k-m , . . . , ε k+m .
With the above notation, we write that

X 0 -X0,m 2 ≤ X 0 -X 0,m 2 + X 0,m -X0,m 2 . (2.31)
As X 0 is centered then so is X 0,m and thus recalling the definition (2.20) of X0,m , we write

X 0,m -X0,m 2 = X 0,m -E(X 0,m ) -X0,m 2 = X 0,m -X 0,m -E(X 0,m -X 0,m ) 2 .
Therefore, it follows that

X 0,m -X0,m 2 ≤ 2 X 0,m -X 0,m 2 ≤ 2 X 0 -ϕ M (X 0 ) 2 = 2 (|X 0 | -M ) + 2 . (2.32) Since X 0 belongs to L 2 , lim M →∞ (|X 0 | -M ) + 2 = 0.
Therefore, to prove (2.30) and thus Proposition 2.7, it suffices to prove that lim m→∞ X 0 -X 0,m 2 = 0 .

(2.33)

Since (X 0,m ) m≥0 is a martingale with respect to the increasing filtration (G m ) m≥0 defined by G m = σ(ε -m , . . . , ε m ), and is such that ). This ends the proof of Proposition 2.7.

sup m≥0 X 0,m 2 ≤ X 0 2 < ∞ , ( 2 

Approximation with Gaussian sample covariance matrices via Lindeberg's method

After having broken the dependence structure of the initial matrix B n and reduced the study to the matrix Bn,m consisting of independent blocks, it is time to prove the uni-versality of limiting distribution by the approximation with a sample covariance matrix having the same block structure as Bn,m and associated with a Gaussian process having the same covariance structure as ( Xk,m ) k∈Z .

Construction of the Gaussian matrices

We shall first consider a sequence (Z k,m ) k∈Z of centered Gaussian random variables such that for any k, ∈ Z,

Cov(Z k,m , Z ,m ) = Cov( Xk,m , X ,m ) .
(2.34)

For i = 1, . . . , n, we then let (Z

(i)
k,m ) k be an independent copy of (Z k,m ) k and we define the

N × n matrix Z n,m = ((Z n,m ) k,i ) = (Z (i) k,m
). We finally define the associated sample covariance matrix

G n,m = 1 n Z n,m Z T n,m . (2.35) 
We define now for any = 1, . . . , k N,m the random vectors v i, in the same way as the We note now that the matrix Zn,m is constructed from Z n,m by replacing some of its entries by zeros so that it has the same block structure as Xn,m . This common block and covariance structure between Xn,m and Zn,m will allow us to prove, via the Lindeberg method, the following convergence: for any

u i, 's in (2.
z ∈ C + , lim n→+∞ E S Bn,m (z) -E S Ḡn,m (z) = 0 .
Having proved the above convergence, the study is reduced to approximating the Gaussian matrices. As Z n,m and Zn,m have the same entries up to a relatively small number of zero-rows, the Rank theorem (Theorem A.44 in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]) allows us to prove the In order to complete the proof of Theorem 2.1, it remains to prove for any z ∈ C + , lim m→∞ lim sup

M →∞ lim sup n→∞ E S Gn,m (z) -E S Gn (z) = 0 .
We note that these two matrices are associated with Gaussian processes having different covariance structures. The technique used for proving the above convergence is based on the Gaussian interpolation technique followed by a suitable control of the covariance.

Lindeberg method by blocks

In this section, we shall approximate Bn,m with the Gaussian matrix Ḡn,m . The Stieltjes transform can be expressed as a function f of the matrix entries admitting partial derivatives of all orders. The above convergence shall be proved via the Lindeberg method by blocks which consists of writing the above difference as a telescoping sum and replacing at each time a non-zero block of entries by its corresponding Gaussian one.

In order to develop this, we first give the following definition of the function f := f z allowing us to write, for any z ∈ C + , the Stieltjes transform of a sample covariance matrix in terms of its entries. Definition 2.9. Let x be a vector of R nN with coordinates

x = x T 1 , . . . , x T n
where for any i ∈ {1, . . . , n},

x i = x (i) k , k ∈ {1, . . . , N } T .
Let z ∈ C + and f := f z be the function defined from R nN to C by

f (x) = 1 N Tr A(x) -zI -1 where A(x) = 1 n n k=1 x k x T k , (2.37)
and I is the identity matrix.

The function f , as defined above, admits partial derivatives of all orders. Indeed, let u be one of the coordinates of the vector x and A u = A(x) the matrix-valued function of the scalar u. Then, setting G u = (A u -zI) -1 and differentiating both sides of the equality G u (A u -zI) = I, it follows that

dG du = -G dA du G (2.38)
(see the equality [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry, volume 37 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF] in Chatterjee [START_REF] Chatterjee | A generalization of the Lindeberg principle[END_REF]). Higher-order derivatives may be computed by applying repeatedly the above formula. Upper bounds for the partial derivatives of f up to the third order are given in Appendix A.1.

Proof. Using Definition 2.9 and the notations (2.24) and (2.36), we get that, for any

z ∈ C + , E S Bn,m (z) -E S Ḡn,m (z) = Ef XT 1,m , . . . , XT n,m -Ef ZT 1,m , . . . , ZT n,m . (2.39)
To continue the development of the Lindeberg method, we introduce additional notations. For any i ∈ {1, . . . , n} and ∈ {1, . . . , k N,m }, we define the random vectors U i, of dimension nN as follows: 

U i, = 0 (i-1)N , 0 ( -1)(m 2 +3m) , u i, , 0 r , 0 (n-i)N , ( 2 
k N,m =1 U i, = 0 N (i-1) , XT i,m , 0 (n-i)N
and

n i=1 k N,m =1 U i, = XT 1,m , . . . , XT n,m ,
where the Xi 's are defined in (2.24). Now, for any i ∈ {1, . . . , n}, we define the random vectors (V i, ) ∈{1,...,k N,m } of dimension nN , as follows: for any ∈ {1, . . . , k N,m },

V i, = 0 (i-1)N , 0 ( -1)(m 2 +3m) , v i, , 0 r , 0 (n-i)N ,
where r is precised in (2.41). With the above notations, the following relations hold: for any i ∈ {1, . . . , n},

k N,m =1 V i, = 0 N (i-1) , ZT i,m , 0 N (n-i)
and

n i=1 k N,m =1 V i, = ZT 1,m , . . . , ZT n,m .
We define now, for any i ∈ {1, . . . , n},

S i = i s=1 k N,m =1 U s, and T i = n s=i k N,m =1 V s, , (2.42) 
and any s ∈ {1, . . . , k N,m },

S i,s = s =1 U i, and T i,s = k N,m =s V i, . (2.43) 
In all the notations above, we use the convention that s k=r = 0 if r > s. Therefore, starting from (2.39), considering the above relations and notations, we get

E(S Bn,m (z)) -E(S Ḡn,m (z)) = n i=1 Ef (S i + T i+1 ) -Ef (S i-1 + T i ) = n i=1 k N,m s=1 Ef S i-1 + S i,s + T i,s+1 + T i+1 -Ef S i-1 + S i,s-1 + T i,s + T i+1 .
Therefore, setting for any i ∈ {1, . . . , n} and any s ∈ {1, . . . , k N,m },

W i,s = S i-1 + S i,s + T i,s+1 + T i+1 , ( 2.44) 
and

W i,s = S i-1 + S i,s-1 + T i,s+1 + T i+1 , (2.45) 
we are lead to

E(S Bn,m (z)) -E(S Ḡn,m (z)) = n i=1 k N,m s=1 E(∆ i,s (f )) -E( ∆ i,s (f )) , (2.46) 
where

∆ i,s (f ) = f (W i,s ) -f ( W i,s ) and ∆ i,s (f ) = f (W i,s-1 ) -f ( W i,s ) .
In order to continue the multidimensional Lindeberg method, it is useful to introduce the following notations: 

A ⊗ B =      a 1 B T . . . a d 1 B T      ∈ R d 1 d 2 .
For any positive integer k, the k-th transpose Kronecker power A ⊗k is then defined inductively by:

A ⊗1 = A T and A ⊗k = A A ⊗(k-1) T .
Notice that, here, A ⊗ B is not exactly the usual Kronecker product (or Tensor product) of A by B that rather produces a row vector. However, for later notation convenience, the above notation is useful. 

: R d → R is k-times differentiable, for any x ∈ R d , let D k h(x) = ∇ ⊗k h(x)
, and for any row vector Y of R d , we define D k h(x).Y ⊗k as the usual scalar product in R d k between D k h(x) and Y ⊗k . We write Dh for D 1 h.

Let z = u + iv ∈ C + and let us control the right-hand side of (2.46). We have by Taylor's integral formula

∆ i,s (f ) = Df W i,s .U ⊗1 i,s + 1 2 D 2 f W i,s .U ⊗2 i,s + 1 0 (1 -t) 2 2 D 3 f W i,s + tU i,s .U ⊗3 i,s dt and ∆ i,s (f ) = Df W i,s .V ⊗1 i,s + 1 2 D 2 f W i,s .V ⊗2 i,s + 1 0 (1 -t) 2 2 D 3 f W i,s + tV i,s .V ⊗3 i,s dt ,
Since for any i ∈ {1, . . . , n} and any s ∈ {1, . . . , k N,m }, U i,s and V i,s are two centered random vectors independent of W i,s , it follows that

E Df ( W i,s ).U ⊗1 i,s = E Df ( W i,s ) . E(U ⊗1 i,s ) = 0 and E Df ( W i,s ).V ⊗1 i,s = E Df ( W i,s ) . E(V ⊗1 i,s ) = 0 . Since in addition, E(U ⊗2 i,s ) = E(V ⊗2 i,s ), it also follows that E D 2 f ( W i,s ). U ⊗2 i,s = E D 2 f ( W i,s ) . E U ⊗2 i,s = E D 2 f ( W i,s ) . E V ⊗2 i,s = E D 2 f ( W i,s ). V (i) ⊗2 s .
Therefore, considering the above Taylor expansions and taking the expectation, we get

E(∆ i,s (f )) -E( ∆ i,s (f )) = E 1 0 (1 -t) 2 2 D 3 f W i,s + tU i,s .U ⊗3 i,s dt + E 1 0 (1 -t) 2 2 D 3 f W i,s + tV i,s .V ⊗3 i,s dt . (2.47)
Let us analyze the first term of the right-hand side of (2.47). Recalling the definition (2.40) of the U i,s 's, we get for any t ∈ [0, 1],

E D 3 f W i,s + tU i,s .U ⊗3 i,s ≤ k∈Is ∈Is j∈Is E ∂ 3 f ∂x (i) k ∂x (i) ∂x (i) j W i,s + tU i,s X(i) k,m X(i) ,m X(i) j,m ≤ k∈Is ∈Is j∈Is ∂ 3 f ∂x (i) k ∂x (i) ∂x (i) j W i,s + tU i,s 2 X(i) k,m X(i) ,m X(i) j,m 2 ,
where I s is defined in (2.18). Therefore, using (2.21), the stationarity and (2.28), it follows that, for any t ∈ [0, 1],

E D 3 f W i,s + tU i,s .U ⊗3 i,s ≤ 8M 2 X 0 2 k∈Is ∈Is j∈Is ∂ 3 f ∂x (i) k ∂x (i) ∂x (i) j W i,s + tU i,s 2 .
Notice that by (2.42) and (2.43),

W i,s + tU i,s = XT 1,m , . . . , XT i-1,m , w i (t), ZT i+1,m , . . . , ZT n,m ,
where w i (t) is the row vector of dimension N defined by

w i (t) = S i,s-1 + tU i,s + T i,s+1 = (u i,1 , . . . , u i,s-1 , tu i,s , v i,s+1 , . . . , v i,k N,m ) .
Therefore, by Lemma A.2 of the Appendix, (2.21) and the fact that (Z

(i) k,m
) k∈Z is distributed as the stationary sequence (Z k,m ) k∈Z , we infer that there exists a positive constant C not depending on (n, M, m) and such that, for any t ∈ [0, 1],

∂ 3 f ∂x (i) k ∂x (i) ∂x (i) j W i,s + tU i,s 2 ≤ C M + Z 0,m 2 v 3 N 1/2 n 2 + N 1/2 (M 3 + Z 0,m 3 
6 ) v 4 n 3 . Now, since Z 0,m is a Gaussian random variable, Z 0,m 6 6 = 15 Z 0,m 6 
2 . Moreover, by (2.3), Z 0,m 2 = X0,m 2 ≤ 2 X 0 2 . Therefore, there exists a positive constant C not depending on (n, M, m) and such that, for any t ∈ [0, 1],

E D 3 f W i,s + tU i,s .U ⊗3 i,s ≤ Cm 6 (1 + M 3 ) v 3 (1 ∧ v)N 1/2 n 2 .
We similarly analyze the "Gaussian part" in the right-hand side of (2.47) and we get

E D 3 f W i,s + tV i,s .V ⊗3 i,s ≤ Cm 6 (1 + M 3 ) v 3 (1 ∧ v)N 1/2 n 2 .
By the above bounds and the fact that m 2 k N,m ≤ N , we derive that there exists a positive constant C not depending on on (n, M, m) such that

n i=1 k N,m s=1 E ∆ i,s (f ) -E ∆ i,s (f ) ≤ C (1 + M 5 )N 1/2 m 4 v 3 (1 ∧ v)n .
Starting from (2.46) and considering the fact that lim n→∞ N/n = c ∈ (0, ∞), we get for any z ∈ C + , lim n→∞ E(S Bn,m (z)) -E(S Ḡn,m (z)) = 0 .

Approximation of the Gaussian matrices

As mentioned before, we shall now approximate the intermediate Gaussian matrices by proving the following convergence:

Proposition 2.12. Provided that lim n→∞ N/n = c ∈ (0, ∞) then for any z ∈ C + ,

lim m→∞ lim sup n→∞ E S Gn,m (z) -E S Ḡn,m (z) = 0.
Proof. To prove this proposition, we start by noticing that, for any

z = u + iv ∈ C + , E(S Gn,m (z)) -E(S Ḡn,m (z)) ≤ E 1 x -z dF Gn,m (x) - 1 x -z dF Ḡn,m (x) ≤ E F Gn,m (x) -F Ḡn,m (x -z) 2 dx ≤ π v F Gn,m -F Ḡn,m ∞ .
Hence, by Theorem A.44 by Bai and Silverstein [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF],

E(S Gn,m (z)) -E(S Ḡn,m (z)) ≤ π vN Rank Z n,m -Zn,m .
By definition of Z n,m and Zn,m , Rank Z n,m -Zn,m ≤ Card(R N,m ), where R N,m is defined in (2.27). Therefore, using (2.29), we get that, for any

z = u + iv ∈ C + , E(S Gn,m (z)) -E(S Ḡn,m (z)) ≤ π vN 3N m + 3 + m 2 ,
which converges to zero by letting n tend to infinity and then m. This ends the proof of Proposition 2.12.

In order to end the proof, it remains to approximate the Gaussian sample covariance matrices G n and G n,m . We note that these matrices have different covariance structure however they have the same block structure and do not contain zero entries.

We end the proof by proving the following convergence:

Proposition 2.13. Provided that lim n→∞ N/n = c ∈ (0, ∞) then for any z ∈ C + , lim m→∞ lim sup M →∞ lim sup n→∞ E S Gn (z) -E S Gn,m (z) = 0.
Proof. To prove this theorem, we shall rather consider the following symmetric matrices: let n = N + n and let G n and G n ,m be the symmetric matrices of order n defined by

G n = 1 √ n   0 n,n Z T n Z n 0 N,N   and G n ,m = 1 √ n   0 n,n Z T n,m Z n,m 0 N,N   .
Now as the non-zero eigenvalues of G n are plus and minus the singular values of Z n , it easily follows that for any

z ∈ C + , zS G 2 n (z 2 ) = S G n (z).
We note that the eigenvalues of G 2 n are the eigenvalues of n -1 Z T n Z n together with those of n -1 Z n Z T n . Since these two latter matrices have the same non-zero eigenvalues, the following relation holds:

for any z ∈ C + S Gn (z) = z -1/2 n 2N S G n (z 1/2 ) + n -N 2N z (see,
for instance, page 549 in Rashidi Far et al [START_REF] Rashidi Far | On slow-fading MIMO systems with nonseparable correlation[END_REF]). Similarly, the same relation also holds for the matrices G n,m and G n ,m and

S Gn,m (z) = z -1/2 n 2N S G n ,m (z 1/2 ) + n -N 2N z . Since n /N → 1 + c -1 , it is then equivalent to prove for any z ∈ C + , lim m→∞ lim sup M →∞ lim sup n→∞ E S G n (z) -E S G n ,m (z) = 0 . Noting that (G n ) k, = n -1/2 Z ( ) k-n 1 k>n 1 ≤n and (G n ,m ) k, = n -1/2 Z ( ) k-n,m 1 k>n 1 ≤n if 1 ≤ ≤ k ≤ n
and keeping in mind the independence structure between the columns, we apply Lemma A.5 of the Appendix and we get for any z ∈ C + ,

E(S G n (z)) -E(S G n ,m (z)) = n 2n n j=1 n+N k, =n+1 1 0 E(Z k-n Z -n ) -E(Z k-n,m Z -n,m ) E ∂ 2 f ∂x k,j ∂x ,j (g(t)) dt = N + n 2n n j=1 N k, =1 1 0 E(Z k Z ) -E(Z k,m Z ,m ) E ∂ 2 f ∂x k+n,j ∂x +n,j (g(t)) dt (2.48)
where, for t ∈ [0, 1],

g(t) = √ N + n √ t(G n ) k, + √ 1 -t(G n ,m ) k, 1≤ ≤k≤n
and f is the function that allows us to write the Stieltjes transform of a symmetric matrix in terms of its entries. For a precise definition of f for the case of symmetric matrices, see (A.17) in the Appendix.

Then, by using (2.3) and (2.34), we write the following decomposition

E(Z k Z ) -E(Z k,m Z ,m ) = E(X k X ) -E( Xk,m X ,m ) = E X k (X -X ,m ) + E X ,m (X k -Xk,m ) (2.49)
We shall decompose the right-hand side of (2.48) into two sums according to the decomposition (2.49) and treat them separately. Let us prove that there exists a constant C not depending on n and t such that

n j=1 N k, =1 E(X k (X -X ,m ))E ∂ 2 f ∂x k+n,j ∂x +n,j (g(t)) ≤ C N N + n X 0 2 X 0 -X 0,m 2 .
To do this, we note first that without loss of generality g(t) can be taken independent of (X k, ) and then

E(X k (X -X ,m ))E ∂ 2 f ∂x k+n,j ∂x +n,j (g(t)) = E X k (X -X ,m ) ∂ 2 f ∂x k+n,j ∂x +n,j (g(t)) .
On the other hand, Lemma A.4 by Merlevède and Peligrad [START_REF] Merlevède | On the empirical spectral distribution for matrices with long memory and independent rows[END_REF] allow us to control the
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second order partial derivative of f in the following manner:

n j=1 N k, =1 a k b ∂ 2 ∂x k+n,j ∂x +n,j f (g(t)) ≤ C N + n N k=1 a 2 k N =1 b 2 1/2
, where (a k ) k and (b k ) k are two sequences of real numbers and C is a universal constant depending only on the imaginary part of z. Applying the above inequality with

a k = X k and b = X -X ,m , we get for any z ∈ C + , n j=1 N k, =1 X k (X -X ,m ) ∂ 2 f ∂x k+n,j ∂x +n,j (g(t)) ≤ C N + n n k=1 X 2 k N =1 (X -X ,m ) 2 1/2
Thus by Cauchy-Schwarz's inequality and then by the stationarity of the variables, we infer for any z ∈ C + and any t ∈ [0, 1] that

n j=1 N k, =1 E X k (X -X ,m ) E ∂ 2 f ∂x k+n,j ∂x +n,j (g(t)) ≤ C N + n N k=1 E(X 2 k ) N =1 E(X -X ,m ) 2 1/2 = C N N + n X 0 2 X 0 -X0,m 2 .
We similarly prove that

n j=1 N k, =1 E X ,m (X k -Xk,m ) E ∂ 2 f ∂x k+n,j ∂x +n,j (g(t)) ≤ C N N + n X 0 2 X 0 -X0,m 2 .
Therefore, starting from (2.48), considering the decomposition (2.49) and the above upper bounds, we infer that

E(S G n (z)) -E(S G n ,m (z)) ≤ C N n X 0 2 X 0 -X0,m 2 .
Recalling that N/n → c ∈ (0, ∞) and taking the limit on n we get that

lim sup n→∞ E(S G n (z)) -E(S G n ,m (z)) ≤ C X 0 2 X 0 -X0,m 2 .
We end the proof by noting that by relations (2.31), (2.32) and (2.33) we have

lim m→∞ lim sup M →∞ X 0 -X0,m 2 = 0 .

The limiting Spectral distribution

In this section, we give a proof of Theorem 2.2 which according to Theorem 2.1 follows if we prove that for any z ∈ C + , lim n→∞ ES Gn (z) = S(z) .

(2.50)

with S satisfying Equation (2.6). This can be achieved by using Theorem 1.4 by Silverstein combined with arguments developed in the proof of Theorem 1 of Yao [START_REF] Yao | A note on a Marčenko-Pastur type theorem for time series[END_REF] (see also [START_REF] Wang | On limiting spectral distribution of large sample covariance matrices by varma (p, q)[END_REF]).

With this aim, we consider a sequence (y k ) k∈Z of i.i.d. real valued random variables with law N(0, 1), and then consider n independent copies of (y k ) k∈Z that we denote by (y

(1) k ) k∈Z , . . . , (y (n) k ) k∈Z .
For any i ∈ {1, . . . , n}, we define the row random vector

y i = y (i) 1 , . . . , y (i) N ,
and let Y n be the N × n matrix whose columns are the y T i 's. Finally, we consider its associated sample covariance matrix

Y n = 1 n Y n Y T n = 1 n n i=1 y i y T i . Set Γ N :=         γ 0 γ 1 • • • γ N -1 γ 1 γ 0 γ N -2 . . . . . . . . . . . . γ N -1 γ N -2 • • • γ 0        
, where we recall that γ k = Cov(X 0 , X k ) and that, by (2.3), we have for any i ∈ {1, . . . , n}

γ k = Cov(Z 0 , Z k ) = Cov(Z (i) 0 , Z (i) k ) .
Note that Γ N is bounded in spectral norm. Indeed, by the Gerschgorin theorem, the largest eigenvalue of Γ N is not larger than γ 0 + 2 k≥1 |γ k | which is finite.

Note also that the vector (Z 1 , . . . , Z n ) has the same distribution as

y 1 Γ 1/2 N , . . . , y n Γ 1/2 N where Γ 1/2
N is the symmetric non-negative square root of Γ N . Therefore, for any z ∈ C + ,

E S Gn (z) = E S An (z) ,
where

A n = Γ 1/2 N Y n Γ 1/2
N . The proof of (2.50) is then reduced to prove that, for any z ∈ C + , lim n→∞ E S An (z) = S(z) .

(2.51)

According to Theorem 1.4 by Silverstein [START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices[END_REF], if one can show that

F Γ N converges to a probability distribution H, ( 2.52) 
then (2.51) holds with S = S(z) satisfying the equation:

S = 1 -z + λ(1 -c -czS) dH(λ) . Setting S(z) = -(1 -c)/z + cS(z), this equation becomes z = - 1 S + c λ 1 + λS dH(λ) .
We note that S := S(z) is a Stieltjes transform and that Im(S) > 0. One can check Equations (1.1)-(1.4) in [START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices[END_REF] for more details.

Due to the Toeplitz form of Γ N and to the fact that k≥0 |γ k | < ∞ then the fundamental eigenvalue distribution theorem of Szegö for Toeplitz forms [START_REF] Grenander | Toeplitz forms and their applications[END_REF] allows to assert that (2.52) holds and that the empirical spectral distribution of Γ N converges weakly to a non-random distribution H that is defined via the spectral density of (X k ) k∈Z . More precisely, for any continuous and bounded function ϕ, we have

ϕ(λ) dH(λ) = 1 2π 2π 0 ϕ(2πf (λ))dλ .
To end the proof, it suffices to notice that the function ϕ(λ) := λ 1 + λS is continuous and bounded by 1/Im(S) and then combine the above relations to get (2.6).

Chapter 3

Symmetric matrices with correlated entries

The limiting spectral distribution of symmetric matrices with correlated entries has received as well a lot of attention in the last two decades. The starting point consists of deep results for symmetric matrices with correlated Gaussian entries by Khorunzhy and Pastur [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF], Boutet de Monvel and Khorunzhy [START_REF] Boutet De Monvel | On the norm and eigenvalue distribution of large random matrices[END_REF], Chakrabarty et al [START_REF] Chakrabarty | From random matrices to long range dependence[END_REF] among others.

There is also a sustained effort for studying linear filters of independent random variables as entries of symmetric matrices. For instance, Anderson and Zeitouni [3] treat symmetric matrices with entries that are linear processes of finite range having independent innovations. They find the limiting spectral distribution assuming that distant above-diagonal entries are independent but nearby entries may be correlated.

In this chapter, we consider symmetric random matrices whose entries are functions of i.i.d. real-valued random variables. Our main goal is to reduce the study of the limiting spectral distribution to the same problem for a Gaussian matrix having the same covariance structure as the underlying process. In this way we prove the universality and we are able to formulate various limiting results for large classes of matrices. We also treat large sample covariance matrices with correlated entries, known under the name of Gram matrices. This chapter is organized in the following way. Sections 3.1 and 3.2 contain respectively the main results for symmetric matrices and sample covariance matrices. As an intermediate step, we also treat in Section 3.4, matrices associated with K-dependent random fields, results that have interest in themselves. Applications to matrices whose entries are either linear random fields or nonlinear random fields as Volterra-type processes are given in Section 3.3. The main proofs are included in Sections 3.5 and 3.6, however Section 3.8 is devoted for the Lindeberg method by blocks. In Section 3.7 we prove a concentration inequality of the spectral measure for row-wise K-dependent random matrices.

Symmetric matrices with correlated entries

Let (X k, ) (k, )∈Z 2 be an array of real-valued random variables, and consider its associated symmetric random matrix X n of order n defined by

(X n ) i,j =    X i,j if 1 ≤ j ≤ i ≤ n X j,i if 1 ≤ i < j ≤ n . ( 3.1) 
Define then

X n := 1 √ n X n . (3.2)
We shall study the limiting spectral distribution of the symmetric matrix X n when the process (X k, ) (k, )∈Z 2 has the following dependence structure: for any (k, ) ∈ Z 2 ,

X k, = g(ξ k-i, -j ; (i, j) ∈ Z 2 ) , (3.3) 
where (ξ i,j ) (i,j)∈Z 2 is an array of i.i.d. real-valued random variables given on a common probability space (Ω, K, P), and g is a measurable function from R Z 2 to R such that E(X 0,0 ) = 0 and X 0,0 2 < ∞ .

A representation as (3.3) includes linear as well as many widely used nonlinear random fields models as special cases. Moreover, the entries on and below the diagonal are dependent across both rows and columns.

We shall prove a universality scheme for the random matrix X n as soon as the entries of the symmetric matrix √ nX n have the dependence structure (3.3). It is noteworthy to indicate that this result will not require rate of convergence to zero of the correlation between the entries.

With this aim, we shall first let (G k, ) (k, )∈Z 2 be a real-valued centered Gaussian random field, with covariance function given by

E(G k, G i,j ) = E(X k, X i,j
) for any (k, ) and (i, j) in Z 2 .

(3.4)

Let then G n be the symmetric random matrix defined by

(G n ) i,j =    G i,j if 1 ≤ j ≤ i ≤ n G j,i if 1 ≤ i < j ≤ n
and define its normalized matrix The importance of Theorem 3.1 is that it reduces the study of the limiting spectral distribution function of a symmetric matrix whose entries are functions of i.i.d. random variables to studying the same problem for a Gaussian matrix with the same covariance structure.

G n := 1 √ n G n . ( 3 
We recall now that the Lévy distance between two distribution functions F and G defined by

L(F, G) = inf{ε > 0 : F (x -ε) -ε ≤ G(x) ≤ F (x + ε) + ε}
and note that a sequence of distribution functions F n (x) converges to a distribution function F (x) at all continuity points x of F if and only if L(F n , F ) → 0.

We give the following corollary that is a direct consequence of our Theorem 3.1 together with Theorem B.9 in Bai and Silverstein [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]. One can also check the arguments on page 38 in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF], based on Vitali's convergence theorem. Corollary 3.2. Assume that X n and G n are as in Theorem 3.1. Furthermore, assume there exists a distribution function F such that

E F Gn (t) → F (t) for all continuity points t ∈ R of F . Then P(L(F Xn(ω) , F ) → 0) = 1 . (3.6)
For instance, Corollary 3.2 above combined with the proof of Theorem 2 in Khorunzhy and Pastur [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] concerning the asymptotic spectral behavior of certain ensembles with correlated Gaussian entries (see also Theorem 17.2.1 in [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF]), gives the following:

Theorem 3.3. Let X n be the symmetric matrix defined in (3.2). For any (k, ) ∈ Z 2 , let γ k, = E(X 0,0 X k, ). Assume that k, ∈Z |γ k, | < ∞ , (3.7)
and that the following holds: for any

(k, ) ∈ Z 2 , γ k, = γ ,k , (3.8) 
Then (3.6) holds, where F is a non-random distribution function whose Stieltjes transform S(z) is uniquely defined by the relations:

S(z) = 1 0 h(x, z)dx , (3.9)
where h(x, z) is a solution to the equation

h(x, z) = -z + 1 0 f (x, y)h(y, z)dy -1 with f (x, y) = k,j∈Z
γ k,j e -2πi(kx+jy) . (3.10) Equation (3.10) is uniquely solvable in the class F of functions h(x, z) with domain (x, z) ∈ [0, 1] ⊗ C\R, which are analytic with respect to z for each fixed x, continuous with respect to x for each fixed z and satisfying the conditions: lim v→∞ v Im h(x, iv) ≤ 1 and Im(z) Im h(x, z) > 0.

Remark 3.4. If condition (3.8) of Theorem 3.3 is replaced by: γ ,k = V ( )V (k) where V is an even function, then its conclusion can be given in the following alternative way: the convergence (3.6) holds where F is a non-random distribution function whose Stieltjes transform S(z) is given by the relation

S(z) = ∞ 0 dυ(λ) -z -λh(z) where υ(t) = λ{x ∈ [0, 1]; f (x) < t}, λ is the Lebesgue measure, for x ∈ [0, 1], f (x) = k∈Z V (k)e 2πikx
and h(z) is solution to the equation

h(z) = ∞ 0 λdυ(λ) -z -λh(z) , z ∈ C\R .
This equation is uniquely solvable in the class of analytic functions in C\R satisfying the conditions: lim x→∞ xh(ix) < ∞ and Im h(z) Im(z) > 0 for z ∈ C\R. (See Boutet de Monvel and Khorunzhy [START_REF] Boutet De Monvel | On the norm and eigenvalue distribution of large random matrices[END_REF]).

Gram matrices with correlated entries

Adapting the proof of Theorem 3.1, we can also obtain a universality scheme for large sample covariance matrices associated with a process (X k, ) (k, )∈Z 2 having the representation (3.3). So, all along this section (X k, ) (k, )∈Z 2 is assumed to be a random field having the representation (3.3). To define the Gram matrices associated with this random field, we consider two positive integers N and p and let X N,p be the N × p matrix defined by

X N,p = X i,j 1≤i≤N,1≤j≤p . (3.11)
Define now the symmetric matrix B N of order N by

B N = 1 p X N,p X T N,p := 1 p p k=1 r k r T k , ( 3.12) 
where

r k = (X 1,k , • • • , X N,k ) T is the k-th column of X N,p .
We note again that the entries of X N,p are dependent across both rows and columns. The matrix B N shall be referred to as the sample covariance matrix or also the Gram matrix associated with the process

(X k, ) (k, )∈Z 2 .
We shall approximate the Stieltjes transform of B N by that of the Gram matrix Therefore, if N, p → ∞ such that N/p → c ∈ (0, ∞) and if there exists a distribution function F such that

H N = 1 p G N,p G T N,p (3.13 
E F H N (t) → F (t) for all continuity points t ∈ R of F then P(L(F B N (ω) , F ) → 0) = 1 . (3.15)
Proof. To prove this theorem, we shall rather consider the following symmetric matrix: let n = N + p and consider the symmetric matrix X n of order n defined by

X n = 1 √ p   0 p,p X T N,p X N,p 0 N,N   .
Let Y n be defined as X n but with G N,p replacing X N,p . By the same arguments given in Proposition 2.13, the following relations hold: for any

z ∈ C + S B N (z) = z -1/2 n 2N S Xn (z 1/2 ) + p -N 2N z
and

S H N (z) = z -1/2 n 2N S Yn (z 1/2 ) + p -N
2N z (see, for instance, page 549 in Rashidi Far et al [START_REF] Rashidi Far | On slow-fading MIMO systems with nonseparable correlation[END_REF] for arguments leading to the above relations). Thus, we infer that since n/N → 1 + c -1 then it is equivalent to prove that for any z ∈ C + , lim n→∞ S Xn (z) -E S Yn (z) = 0 almost surely.

(3.16)

The proof of (3.16) shall be omitted because it is a simple adaptation of that of Theorem 3.1. Indeed, following the lines of the proof of Theorem 3.1, we can infer that its conclusion still holds even when the stationarity of entries of X n and G n is slightly relaxed as above. Theorem 3.5 together with Theorem 2.1 in Boutet de Monvel et al [START_REF] Boutet De Monvel | Limiting eigenvalue distribution of random matrices with correlated entries[END_REF] allow then to derive the limiting spectral distribution of large sample covariance matrices associated with a process (X k, ) (k, )∈Z 2 having the representation (3.3) and satisfying a short range dependence condition. Theorem 3.6. Let (X k, ) (k, )∈Z 2 be a real-valued stationary random field given by (3.3). Assume that (3.7) holds. Then, provided that N, p → ∞ such that N/p → c ∈ (0, ∞),

P(L(F B N (ω) , F ) → 0) = 1
where F is a non-random distribution function whose Stieltjes transform S(z), z ∈ C + is uniquely defined by the relations:

S(z) = 1 0 h(x, z)dx , where h(x, z) is a solution to the equation h(x, z) = -z + 1 0 f (x, s) 1 + c 1 0 f (u, s)h(u, z)du ds -1 , (3.17)
with f (x, y) given in (3.10).

Equation (3.17) is uniquely solvable in the class F of functions h(x, z) as described after the statement of Theorem (3.3).

We refer to the paper by Boutet de Monvel et al [START_REF] Boutet De Monvel | Limiting eigenvalue distribution of random matrices with correlated entries[END_REF] regarding discussions on the smoothness and boundedness of the limiting density of states. Note that condition (3.7) is required in the statement of Theorem 3.6 only because all the estimates in the proof of Theorem 2.1 in [START_REF] Boutet De Monvel | Limiting eigenvalue distribution of random matrices with correlated entries[END_REF] require it. However using arguments as developed in the paper by Chakrabarty et al [START_REF] Chakrabarty | From random matrices to long range dependence[END_REF], it can be proved that if the process (X k, ) (k, )∈Z 2 admits a spectral density then there exists a non-random distribution function

F such that P(L(F B N (ω) , F ) → 0) = 1 (if N/p → c ∈ (0, ∞)).
Unfortunately the arguments developed in [START_REF] Chakrabarty | From random matrices to long range dependence[END_REF] do not allow, in general, to exhibit the limiting equation (3.17) which gives a lot of information on the limiting spectral distribution.

Notice however that if we add the assumption that the lines (resp. the columns) of X N,p are non correlated (corresponding to the semantically (resp. spatially) "patterns" studied in Section 3 of [START_REF] Boutet De Monvel | Limiting eigenvalue distribution of random matrices with correlated entries[END_REF]), condition (3.7) is not needed to exhibit the limiting equation of the Stieltjes transform. Indeed, in this situation, the lines (resp. the columns) of G N,p become then independent and the result of Merlevède and Peligrad [START_REF] Merlevède | On the empirical spectral distribution for matrices with long memory and independent rows[END_REF] about the limiting spectral distribution of Gram random matrices associated to independent copies of a stationary process applies. Proving, however, Theorem 3.6 in its full generality and without requiring condition (3.7) to hold, remains an open question.

Proof. In view of the convergence (3.14), it suffices to show that when N, p → ∞ such that N/p → c ∈ (0, ∞), then for any z ∈ C + , E S H N (z) converges to

S(z) = 1 0 h(x, z)dx
where h(x, z) is a solution to the equation (3.17). This follows by applying Theorem 2.1 in Boutet de Monvel et al [START_REF] Boutet De Monvel | Limiting eigenvalue distribution of random matrices with correlated entries[END_REF] . Indeed setting HN = p N H N , this theorem asserts that if (3.7) holds then, when N, p → ∞ such that N/p → c ∈ (0, ∞), E S HN (z) converges to

m(z) = 1 0 v(x, z)dx ,

Examples

for any z ∈ C + , where v(x, z) is a solution to the equation

v(x, z) = -z + c -1 1 0 f (x, s) 1 + 1 0 f (u, s)v(u, z)du ds -1
.

This implies that E(S H N (z)) converges to S(z) as defined in the theorem since the following relation holds:

S(z) = c -1 m(z/c).

Examples

All along this section, (ξ k, ) (k, )∈Z 2 will designate a double indexed sequence of i.i.d. real-valued random variables defined on a common probability space, centered and in

L 2 .

Linear processes

Let (a k, ) (k, )∈Z 2 be a double indexed sequence of numbers such that

k, ∈Z |a k, | < ∞ . (3.18)
Let then (X i,j ) (i,j)∈Z 2 be the linear random field in L 2 defined by: for any (i, j) ∈ Z 2 ,

X i,j = k, ∈Z a k, ξ k+i, +j . (3.19)
Corollary 3.2 (resp. Theorem 3.5) then applies to the matrix X n (resp. B N ) associated with the linear random field (X i,j ) (i,j)∈Z 2 given in (3.2).

For the case of short dependence, based on our Theorem 3.6, we can describe the limit of the empirical spectral distribution of the Gram matrix associated with a linear random field. Corollary 3.7. Assume that X i,j is defined by (3.19) and that condition (3.18) is satisfied. Let N and p be positive integers, such that N, p → ∞, N/p → c ∈ (0, ∞) and let X N,p = X i,j 1≤i≤N,1≤j≤p

and

B N = N -1 X N,p X T N,p .
Then the convergence (3.15) holds for F B N , where F is a non-random distribution function whose Stieltjes transform satisfies the relations given in Theorem 3.6 with

γ k,j = ξ 0,0 2 2 u,v∈Z a u,v a u+k,v+j .
Concerning the Wigner-type matrix X n , we obtain by Remark 3.4, the following corollary, describing the limit in a particular case. 

X i,j = k, ∈Z a k a ξ k+i, +j
for any (i, j) ∈ Z 2 . Consider the symmetric matrix X n associated with (X i,j ) (i,j)∈Z 

Volterra-type processes

Other classes of stationary random fields having the representation (3.3) are Volterratype processes which play an important role in the nonlinear system theory. For any

k = (k 1 , k 2 ) ∈ Z 2 ,
define a second-order Volterra expansion as follows:

X k = u∈Z 2 a u ξ k-u + u,v∈Z 2 b u,v ξ k-u ξ k-v , ( 3.20) 
where a u and b u,v are real numbers satisfying

b u,v = 0 if u = v , u∈Z 2 a 2 u < ∞ and u,v∈Z 2 b 2 u,v < ∞ . (3.21)
Under the above conditions, the random field X k exists, is centered and in L 2 , and Corollary 3.2 (resp. Theorem 3.5) applies to the matrix X n (resp. B N ) associated with the Volterra-type random field. Further generalization to arbitrary finite order Volterra expansion is straightforward.

If we reinforced condition (3.21), we derive the following result concerning the limit of the empirical spectral distribution of the Gram matrix associated with the Volterra-type process: Corollary 3.9. Assume that (X k ) k∈Z 2 is defined by (3.20) and that the following additional condition is assumed:

u∈Z 2 |a u | < ∞ , v∈Z 2 u∈Z 2 b 2 u,v 1/2 < ∞ and v∈Z 2 u∈Z 2 b 2 v,u 1/2 < ∞ . (3.22)
Let N and p be positive integers, such that N, p → ∞, N/p → c ∈ (0, ∞). Let X N,p = X i,j 1≤i≤N,1≤j≤p and

B N = N -1 X N,p X T N,p .
Then (3.15) holds for F B N , where F is a non-random distribution function whose Stieltjes transform satisfies the relations given in Theorem 3.6 with

γ k = ξ 0,0 2 2 u∈Z 2 a u a u+k + ξ 0,0 4 2 u,v∈Z 2 b u,v (b u+k,v+k +b v+k,u+k ) for any k ∈ Z 2 . (3.23)
If we impose additional symmetric conditions to the coefficients a u and b u,v defining the Volterra random field (3.20), we can derive the limiting spectral distribution of its associated symmetric matrix X n defined by (3.2). Indeed if for any u = (u 1 , u 2 ) and

v = (v 1 , v 2 ) in Z 2 , a u = a u 1 a u 2 , b u,v = b u 1 ,v 1 b u 2 ,v 2 , ( 3.24) 
where the a i and b i,j are real numbers satisfying 

b i,j = 0 if i = j , i∈Z |a i | < ∞ and (i,j)∈Z 2 |b i,j | < ∞ , ( 3 
γ s,t = A(s)A(t) + B 1 (s)B 1 (t) + B 2 (s)B 2 (t)
where 

A(t) = ξ 0,0 2 i∈Z a i a i+t , B 1 (t) = ξ 0,0 2 2 (i 

Symmetric matrices with K-dependent entries

The proof of the main result, Theorem 3.1, shall be based on an approximation of the underlying symmetric matrix by another symmetric matrix whose entries are 2mdependent. We shall first prove a universality scheme for symmetric matrices with Kdependent entries and we note that this result has an interest in itself.

So the interest of this section will be proving a universality scheme for the limiting spectral distribution of symmetric matrices

X n = [X k, ] n k, =1 normalized by
√ n when the entries are real-valued random variables defined on a common probability space and satisfy a K-dependence condition (see Assumption A 3 ). As we shall see later, Theorem 3.11 below will be a key step to prove Theorem 3.1 .

Let us start by introducing some assumptions concerning the entries (X k, , 1 ≤ ≤ k ≤ n).

Symmetric matrices with K-dependent entries

A 1 For all positive integers n, E(X k, ) = 0 for all 1 ≤ ≤ k ≤ n, and

1 n 2 n k=1 k =1 E(|X k, | 2 ) ≤ C < ∞ . A 2 For any τ > 0, L n (τ ) := 1 n 2 n k=1 k =1 E(|X k, | 2 1 |X k, |>τ √ n ) → n→∞ 0 .
A 3 There exists a positive integer K such that for all positive integers n, the following holds: for all nonempty subsets

A, B ⊂ {(k, ) ∈ {1, . . . , n} 2 | 1 ≤ ≤ k ≤ n} such that min (i,j)∈A min (k, )∈B max(|i -k|, |j -|) > K
the σ-fields σ X i,j , (i, j) ∈ A and σ X k, , (k, ) ∈ B are independent.

Condition A 3 states that variables with index sets which are at a distance larger than K are independent.

In Theorem 3.11 below, we then obtain a universality result for symmetric matrices whose entries are K-dependent and satisfy A 1 and the traditional Lindeberg's condition A 2 . Note that A 2 is known to be a necessary and sufficient condition for the empirical spectral distribution of n -1/2 X n to converge almost surely to the semi-circle law when the entries X i,j are independent, centered and with common variance not depending on n (see Theorem 9.4.1 in Girko [START_REF] Girko | of Mathematics and its Applications[END_REF]). Theorem 3.11. Let X n = [X k, ] n k, =1 be a symmetric matrix of order n whose entries (X k, , 1 ≤ ≤ k ≤ n) are real-valued random variables satisfying conditions A 1 , A 2 and

A 3 . Let G n = [G i,j ] n
i,j=1 be a symmetric matrix of order n whose entries (G k, ) 1≤ ≤k≤n are real-valued centered Gaussian random variables with covariance function given by where

E(G k, G i,j ) = E(X k, X i,j ) . ( 3 
X n = n -1/2 X n and G n = n -1/2 G n .
The proof of this result, which is based on a blend of blocking procedure and Lindeberg's method, will be given in the last section of this chapter.

As we mentioned at the beginning of the section, this theorem will be an intermediate result allowing us to prove that, in the stationary and non triangular setting, the Kdependence condition can be relaxed and more general models for the entries can be considered.

However, the above theorem has also interest in itself. For instance, for the matrices with real entries, this theorem makes it possible to weaken the conditions of Theorems 2.5 and 2.6 in Anderson and Zeitouni [3]. More precisely, due to our Theorem 3.11, their assumption 2.2.1 (Ib) can be weakened from the boundedness of all moments to the boundedness of moments of order 2 only plus A 2 .

Furthermore their result can be strengthened by replacing the convergence in probability by the almost sure convergence. Indeed, our Theorem 3.11 shows that if their assumption 2.2.1 (Ib) is replaced by A 1 plus A 2 , then to study the limiting spectral distribution we can actually assume without loss of generality that the entries come from a Gaussian random field with the same covariance structure as the initial entries. If the X k, are Gaussian random variables then the boundedness of all moments means the boundedness of moments of order 2.

Proof of the universality result, Theorem 3.1

The proof of this theorem shall be divided into three major steps. With the aim of breaking the dependence structure of X n , we shall first approximate its Stieltjes transform by that of a symmetric matrix X (m) n whose entries X (m) k, form a 2m-dependent random field with m being a sequence of integers tending to infinity after n. Then applying Theorem 3.11, we approximate X (m) n by a symmetric matrix G (m) n associated with a 2mdependent Gaussian filed having the same covariance structure as (X

(m) k, ) k, .
Once this is done it remains to approximate the Gaussian matrices G n and G (m) n . This approximation is based on the Gaussian interpolation technique and a suitable control of the partial derivatives of the Stieltjes transform.

Approximation by a matrix having 2m-dependent entries

For m a positive integer (fixed for the moment) and for any (u, v) in Z 2 define

X (m) u,v = E X u,v |F (m) u,v , (3.28) 
where

F (m) u,v := σ(ξ i,j ; u -m ≤ i ≤ u + m, v -m ≤ j ≤ v + m).
Let X (m) n be the symmetric random matrix of order n associated with (X (m) u,v ) (u,v)∈Z 2 and defined by

(X (m) n ) i,j =    X (m) i,j if 1 ≤ j ≤ i ≤ n X (m) j,i if 1 ≤ i < j ≤ n .
Let X (m) n be the normalized symmetric matrix given by We have by Lemma A.3 of the Appendix, proved by Götze et al. [START_REF] Götze | Semicircle law for a class of random matrices with dependent entries[END_REF], that

X (m) n = n -1/2 X (m) n . ( 3 
S Xn (z) -S X (m) n (z) 2 ≤ 1 n 2 v 4 Tr X n -X (m) n 2 , where v = Im(z). Hence S Xn (z) -S X (m) n (z) 2 ≤ 2 n 2 v 4 1≤ ≤k≤n X k, -X (m) k, 2 .
Since the shift is ergodic with respect to the measure generated by a sequence of i.i.d. random variables and the sets of summations are on regular sets, the ergodic theorem entails that 

lim n→∞ 1 n 2 1≤k, ≤n X k, -X (m) k, 2 = E X 0,0 -X (m) 0,0 2 a.s. and in L 1 . Therefore lim sup n→∞ S Xn (z) -S X (m) n (z) 2 ≤ 2v -4 X 0,0 -X (m) 0,0 2 

Approximation by a matrix with 2m-dependent Gaussian entries

Let now (G

(m)
k, ) (k, )∈Z 2 be a real-valued centered Gaussian random field, with covariance function given by

E(G (m) k, G (m) i,j ) = E(X (m) k, X (m)
i,j ) for any (k, ) and (i, j) in Z 2 .

(3.33)

Note that the process (G

(m) k, ) (k, )∈Z 2 is then in particular 2m-dependent. Let now G (m)
n be the symmetric random matrix of order n defined by

(G (m) n ) i,j =    G (m) i,j if 1 ≤ j ≤ i ≤ n G (m) j,i if 1 ≤ i < j ≤ n ,
and set

G (m) n = G (m) n / √ n.
We shall prove that, for any 

z ∈ C + , lim n→∞ S X (m) n (z) -E S G (m) n (z) = 0,
(m) k, , 1 ≤ ≤ k ≤ n) satisfies its assumptions.
Note that the sigma-algebras

F (m) u,v := σ(ξ i,j ; u -m ≤ i ≤ u + m, v -m ≤ j ≤ v + m) and F (m)
k, are independent as soon as |u-k| > 2m or |v-| > 2m. From this consideration, we then infer that (X

(m) k, , 1 ≤ ≤ k ≤ n) satisfies the assumption A 3 of Section 3.4 with K = 2m.
On another hand, since X k, is a centered random variable then so is

X (m) k, . Moreover, X (m) k, 2 ≤ X k, 2 = X 1,1 2 . Hence (X (m) k, , 1 ≤ ≤ k ≤ n) satisfies the assumption A 1 of Section 3.4.
We prove now that the assumption A 2 of Section 3.4 holds. With this aim, we first notice that, by Jensen's inequality and stationarity, for any τ > 0,

E((X (m) k, ) 2 1 |X (m) k, |>τ √ n ) ≤ E(X 2 1,1 1 |X (m) 1,1 |>τ √ n ) .
Notice now that if X is a real-valued random variable and F is a sigma-algebra, then for any ε > 0, we have by Lemma 6.3 of [START_REF] Dedecker | A quenched weak invariance principle[END_REF] that

E X 2 1 |E(X|F)|>2ε ≤ 2 E X 2 1 |X|>ε .
Therefore,

E((X (m) k, ) 2 1 |X (m) k, |>τ √ n ) ≤ 2E(X 2 1,1 1 |X 1,1 |>τ √ n/2 ) which proves that (X (m) k, , 1 ≤ ≤ k ≤ n) satisfies A 2 because E(X 2 1,1 ) < ∞. Since (X (m)
k, , 1 ≤ ≤ k ≤ n) satisfies the assumptions A 1 , A 2 and A 3 of Section 3.4, applying Theorem 3.11, (3.34) follows.

Approximation of the Gaussian matrices

According to (3.30) and (3.34), the theorem will follow if we prove the following convergence: for any

z ∈ C + , lim m→∞ lim sup n→∞ E S Gn (z) -E S G (m) n (z) = 0 . (3.35)
With this aim, we apply Lemma A.5 from Section A.2 which gives

E S Gn (z) -E S G (m) n (z) = 1 2 1≤ ≤k≤n 1≤j≤i≤n 1 0 E(G k, G i,j ) -E(G (m) k, G (m) i,j ) E ∂ k ∂ ij f (g(t)) ,
where f is defined in (A.17) and , for t ∈ [0, 1],

g(t) = ( √ tG k, + √ 1 -tG (m) k, ) 1≤ ≤k≤n .
We shall prove that, for any t in [0, 1],

1≤ ≤k≤n 1≤j≤i≤n E(G k, G i,j ) -E(G (m) k, G (m) i,j ) E ∂ k ∂ ij f (g(t)) ≤ C X (m) 0,0 -X 0,0 2 X 0,0 2 . (3.36)
where C is a constant not depending on n and t. Integrating on [0, 1] and then taking into account that X 0,0 -X (m) 0,0 2 2 → 0 as m → ∞, (3.35) follows by letting n and then m tend to infinity.

To prove (3.36), using (3.33) and (3.4), we write now the following decomposition:

E(G k, G i,j ) -E(G (m) k, G (m) i,j ) = E(X k, X i,j ) -E(X (m) k, X (m) i,j ) = E(X k, (X i,j -X (m) i,j )) -E((X (m) k, -X k, )X (m) i,j ) . (3.37)
We shall decompose the sum on the left-hand side of (3.36) in two sums according to the decomposition (3.37) and analyze them separately as done in Proposition 2.13.

Next by Lemma A.4 from from Section A.2 applied with a k, = (X

(m) k, -X k, ) and b k, = X (m) k, gives: for any z = u + iv ∈ C + , 1≤ ≤k≤n 1≤j≤i≤n ((X (m) k, -X k, )X (m) i,j ) ∂ k ∂ ij f (g(t)) ≤ 2 v 3 n 2 1≤ ≤k≤n (X (m) k, -X k, ) 2 1/2 1≤j≤i≤n (X (m) i,j ) 2 1/2 .
Therefore, by Cauchy-Schwarz's inequality, we derive

1≤ ≤k≤n 1≤j≤i≤n E((X (m) k, -X k, )X (m) i,j )E (∂ k ∂ ij f (g(t))) ≤ 2 v 3 n 2 1≤ ≤k≤n E(X (m) k, -X k, ) 2 1≤j≤i≤n E(X (m) i,j ) 2 1/2 .
Using stationarity it follows that, for any z = u + iv ∈ C + and any t in [0, 1],

1≤ ≤k≤n 1≤j≤i≤n E((X (m) k, -X k, )X (m) i,j )E ∂ k ∂ ij f (g(t)) ≤ 2v -3 X (m) 0,0 -X 0,0 2 X 0,0 2 .
Similarly, we can prove that for any z = u + iv ∈ C + and any t in [0, 1],

1≤ ≤k≤n 1≤j≤i≤n E(X k, (X i,j -X (m) i,j ))E ∂ k ∂ ij f (g(t)) ≤ 2v -3 X (m) 0,0 -X 0,0 2 X 0,0 2 .
This leads to (3.36) and then ends the proof of the theorem.

Proof of Theorem 3.3

In order to establish Theorem 3.3, it suffices to apply Theorem 3.1 and to derive the limit of E(S Gn (z)) for any z ∈ C + , where G n is the symmetric matrix defined in Theorem 3.1. With this aim, we apply Proposition A.10 given in the Appendix.

Proposition A.10 is a modification of Theorem 2 in Khorunzhy and Pastur [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] (see also Theorem 17.2.1 in [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF]) since in our case, we cannot use directly the conclusion of their theorem: we are not exactly in the situation described there. Their symmetric matrix is defined via a symmetric real-valued centered Gaussian random field (W k, ) k, satisfying the following property:

W k, = W ,k for any (k, ) ∈ Z 2
and also (2.8) in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF].

In our situation, and if (3.8) is assumed, the entries (g k, ) 1≤k, ≤n of n 1/2 G n have the following covariances

E(g i,j g k, ) = γ i-k,j-(1 i≥j,k≥ + 1 j>i, >k ) + γ i-,j-k (1 i≥j, >k + 1 j>i,k≥ ) , ( 3.38) 
since by (3.4) and stationarity

g k, = G max(k, ),min(k, ) and E(G i,j , G k, ) = γ k-i, -j .
Hence, because of the indicator functions appearing in (3.38), our covariances do not satisfy the condition (2.8) in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF]. However, the conclusion of Theorem 2 in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] also holds for S Gn (z) provided that (3.7) and (3.8) are satisfied. We did not find any reference where the assertion above is mentioned so Proposition A.10 is proved with this aim.

Proposition 3.12. Let (X

(n)
k, ) 1≤ ≤k≤n be an array of complex-valued random variables defined on a common probability space. Assume that there exists a positive integer K such that for any integer u ∈

[1, n -K], the σ-fields σ X (n) i,j , 1 ≤ j ≤ i ≤ u and σ X (n) k, , 1 ≤ ≤ k , u + K + 1 ≤ k ≤ n
are independent. Define the symmetric matrix X n by (3.2). Then for every measurable function f : R → R of bounded variation, any n ≥ K and any r ≥ 0,

P f dν Xn -E f dν Xn ≥ r ≤ 2 exp - nr 2 160KV 2 f , ( 3.39) 
where V f is the variation of the function f .

Application to the Stieltjes transform. Assume that the assumptions of Proposition 3.12 hold. Let z = u + iv ∈ C + and note that

S Xn (z) = 1 x -z dν Xn (x) = f 1 (x)dν Xn (x) + i f 2 (x)dν Xn (x) ,
where

f 1 (x) = x-u (x-u) 2 +v 2 and f 2 (x) = v (x-u) 2 +v 2 . Now V f 1 = f 1 1 = 2 v and V f 2 = f 2 1 = 2 v .
Therefore, by applying Proposition 3.12 to f 1 and f 2 , we get that for any n ≥ K and any r ≥ 0,

P S Xn (z) -ES Xn (z) ≥ r ≤ 4 exp - nr 2 v 2 2560K . ( 3 

.40)

Proof of Proposition 3.12. It is convenient to start by considering the map A which "constructs" symmetric matrices of order n as in (3.2). To define it, let N = n(n + 1)/2 and write elements of R N as x = (r 1 , . . . , r n ) where r i = (x i,j ) 1≤j≤i . For any x ∈ R N , let A(x) = A(r 1 , . . . , r n ) be the matrix defined by

(A(x)) ij = 1 √ n    x i,j = (r i ) j if i ≥ j x j,i = (r j ) i if i < j . (3.41) For 1 ≤ i ≤ n, let R i = (X (n) i,j ) 1≤j≤i .
By definition, we have that

X n = A(R 1 , . . . , R n ) .
Let then h be the function from C N to R defined by

h(R 1 , . . . , R n ) = f dν A(R 1 ,...,Rn) . Let n ≥ K. Denoting by F k = σ(R 1 , . . . , R k ) for k ≥ 1,
and by F 0 = {∅, Ω}, we then write the following martingale decomposition:

f dν Xn -E f dν Xn = h(R 1 , . . . , R n ) -Eh(R 1 , . . . , R n ) = [n/K] i=1 E h(R 1 , . . . , R n )|F iK -E h(R 1 , . . . , R n )|F (i-1)K + E h(R 1 , . . . , R n )|F n -E h(R 1 , . . . , R n )|F K[n/K] := [n/K]+1 i=1 d i,n . Let R n = (R 1 , . . . , R n ) and R k, n = (R 1 , . . . , R k , 0, . . . , 0, R +1 , . . . , R n ) .
Note now that, for any i ∈ {1, . . . ,

[n/K]}, E h(R (i-1)K,(i+1)K n )|F iK = E h(R (i-1)K,(i+1)K n )|F (i-1)K . (3.42)
To see this it suffices to apply Lemma A.6 with

X = (R (i+1)K+1 , . . . , R n ) , Y = (R 1 , . . . , R (i-1)K )
and

Z = (R 1 , . . . , R iK ) .
Therefore, by taking into account (3.42), we get that, for any i ∈ {1, . . . ,

[n/K]}, E h(R n )|F iK -E h(R n )|F (i-1)K = E h(R n ) -h(R (i-1)K,(i+1)K n )|F iK -E h(R n ) -h(R (i-1)K,(i+1)K n )|F (i-1)K . (3.43)
We write now that

h(R n ) -h(R (i-1)K,(i+1)K n ) = (i+1)K j=iK+1 h(R iK,j-1 n ) -h(R iK,j n ) + iK j=(i-1)K+1 h(R j,(i+1)K n ) -h(R j-1,(i+1)K n ) , (3.44) since R n = R iK,iK n
. But if Y n and Z n are two symmetric matrices of size n, then

f dν Yn -f dν Zn ≤ V f F Yn -F Zn ∞
(see for instance the proof of Theorem 6 in [START_REF] Guntuboyina | Concentration of the spectral measure of large Wishart matrices with dependent entries[END_REF]). Hence, from Theorem A.43 in Bai and Silverstein [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF],

f dν Yn -f dν Zn ≤ V f n Rank Y n -Z n .
With our notations, this last inequality implies that for any 0 ≤ k ≤ ≤ n and 0

≤ i ≤ j ≤ n h R k, n -h R i,j n ≤ V f n Rank A(R k, n ) -A(R i,j n ) . (3.45)
Starting from (3.44) and using (3.45) together with

Rank A(R iK,j-1 n ) -A(R iK,j n ) ≤ 2 and Rank A(R j,(i+1)K n ) -A(R j-1,(i+1)K n ) ≤ 2 ,
we get that

h(R n ) -h R (i-1)K,(i+1)K n ≤ 4K n V f . (3.46)
Starting from (3.43) and using (3.46), it follows that, for any i ∈ {1, . . . ,

[n/K]}, E h(R n )|F iK -E h(R n )|F (i-1)K ≤ 8K n V f On another hand, since R K[n/K],n n is F K[n/K] -measurable, E h(R n )|F n -E h(R n )|F K[n/K] = E h(R n ) -h(R K[n/K],n n )|F n -E h(R n ) -h(R K[n/K],n n )|F K[n/K] . Now h(R n ) -h(R K[n/K],n n ) = n j=K[n/K]+1 h(R j,n n ) -h(R j-1,n n ) .
So, proceeding as before, we infer that

E h(R n )|F n -E h(R n )|F K[n/K] ≤ 4K n V f .
So, overall we derive that for any i ∈ {1, . . . ,

[n/K]} d i,n ∞ ≤ 8K n V f and d [n/K]+1,n ∞ ≤ 4K n V f .
Therefore, the proposition follows by applying the Azuma-Hoeffding inequality for martingales.

Proof of Theorem 3.11 via the Lindeberg method by blocks

By using inequality (3.40) together with the Borel-Cantelli lemma, it follows that, for any z ∈ C + , lim n→∞ S Xn (z) -E S Xn (z) = 0 almost surely.

To prove the almost sure convergence (3.27), it suffices then to prove that, for any

z ∈ C + , lim n→∞ E S Xn (z) -E S Gn (z) = 0 . (3.47)
We start by truncating the entries of the matrix X n . Since A 2 holds, we can consider a decreasing sequence of positive numbers τ n such that, as n → ∞,

τ n → 0 , L n (τ n ) → 0 and τ n √ n → ∞ . (3.48)
Let Xn = [ Xk, ] n k, =1 be the symmetric matrix of order n whose entries are given by:

Xk, = X k, 1 |X k, |≤τn √ n -E X k, 1 |X k, |≤τn √ n and define Xn := n -1/2
Xn . Using (3.48), it has been proved in Section 2.1 of [START_REF] Götze | Semicircle law for a class of random matrices with dependent entries[END_REF] that,

for any z ∈ C + , lim n→∞ E S Xn (z) -E SX n (z) = 0 .
Therefore, to prove (3.47) (and then the theorem), it suffices to show that, for any

z ∈ C + , lim n→∞ E SX n (z) -E S Gn (z) = 0 . (3.49)
The proof of (3.49) is then divided in three steps. The first step consists of replacing in (3.49), the matrix G n by a symmetric matrix Ḡn of order n whose entries are real-valued Gaussian random variables with the same covariance structure as the entries of Xn . The second step consists of "approximating" Xn and Ḡn by matrices with "big square independent blocks" containing the entries spaced by "small blocks" around them containing only zeros as entries. Due to the assumption A 3 , the random variables contained in two different big blocks will be independent. The third and last step consists of proving the mean convergence (3.49) but with Xn and G n replaced by their approximating matrices with independent blocks. This step will be achieved with the help of the Lindeberg method.

Step 1. Let Ḡn = [ Ḡk, ] n k, =1 be the symmetric matrix of order n whose entries ( Ḡk, , 1 ≤ ≤ k ≤ n) are real-valued centered Gaussian random variables with the following covariance structure: for any 1 ≤ ≤ k ≤ n and any 1 ≤ j ≤ i ≤ n, E( Ḡk, Ḡi,j ) = E( Xk, Xi,j ) .

(

3.50)

There is no loss of generality by assuming in the rest of the proof that the σ-fields

σ( Ḡk, , 1 ≤ ≤ k ≤ n) and σ(X k, , 1 ≤ ≤ k ≤ n) are independent.
Letting Ḡn = 1

√ n Ḡn , we shall prove that, for any

z ∈ C + , lim n→∞ E SḠ n (z) -E S Gn (z) = 0 . (3.51)
Applying Lemma A.5, we get (3.52) where v = Im(z). Recall now that

E SḠ n (z) -E S Gn (z) ≤ 2 v 3 n 2 1≤ ≤k≤n 1≤j≤i≤n |E(G k, G i,j ) -E( Ḡk, Ḡi,j )| ,
E(G k, G i,j ) = E(X k, X i,j
) and E( Ḡk, Ḡi,j ) = E( Xk, Xi,j ) .

Hence, setting b

n = τ n √ n, we have E(G k, G i,j ) -E( Ḡk, Ḡi,j ) = Cov X k, , X i,j -Cov X k, 1 |X k, |≤bn , X i,j 1 |X i,j |≤bn . Note that Cov X k, , X i,j -Cov X k, 1 |X k, |≤bn , X i,j 1 |X i,j |≤bn = Cov X k, 1 |X k, |≤bn , X i,j 1 |X i,j |>bn + Cov X k, 1 |X k, |>bn , X i,j 1 |X i,j |>bn + Cov X k, 1 |X k, |>bn , X i,j 1 |X i,j |≤bn implying, by Cauchy-Schwarz's inequality, that Cov X k, , X i,j -Cov X k, 1 |X k, |≤bn , X i,j 1 |X i,j |≤bn ≤ 2b n E |X i,j |1 |X i,j |>bn + 2b n E |X k, |1 |X k, |>bn + 2 X i,j 1 |X i,j |>bn 2 X k, 1 |X k, |>bn 2 ≤ 3 E |X i,j | 2 1 |X i,j |>bn + 3 E |X k, | 2 1 |X k, |>bn .
Note also that, by assumption A 3 ,

Cov X k, 1 |X k, |≤bn , X i,j 1 |X i,j |≤bn -Cov X k, , X i,j = 1 i∈[k-K,k+K] 1 j∈[ -K, +K] Cov X k, 1 |X k, |≤bn , X i,j 1 |X i,j |≤bn -Cov X k, , X i,j .
So, overall,

E(G k, G i,j ) -E( Ḡk, Ḡi,j ) ≤ 3 E |X i,j | 2 1 |X i,j |>bn 1 k∈[i-K,i+K] 1 ∈[j-K,j+K] + 3 E |X k, | 2 1 |X k, |>bn 1 i∈[k-K,k+K] 1 j∈[ -K, +K] .
Hence, starting from (3.52) and taking into account the above inequality, we derive that

E SḠ n (z) -E S Gn (z) ≤ 12 n 2 v 3 (2K + 1) 2 n k=1 k =1 E |X k, | 2 1 |X k, |>bn .
which converges to zero as n tends to infinity, by assumption A 2 . This ends the proof of (3.51).

Step 2: Reduction to matrices with independent blocks.

Let p := p n such that p n → ∞, p n /n → 0, and τ n p 4 n → 0. Clearly we can take p n > K, p n + K ≤ n/3, and set

q = q n = n p + K -1 . (3.53) Let I = (p + K) + 1 , (p + K) + p ∩ N and E k, = {(u, v) ∈ I k × I -1 } . (3.54)
For any k = 1, . . . , q n and any = 1, . . . , k, we define now the real matrices B k, of size p × p whose entries consist of all the Xu,v for (u, v) ∈ E k, . More precisely,

B k, := b k, (i, j) p i,j=1
where b k, (i, j) = Xk(p+K)+i,( -1)(p+K)+j .

(3.55)

Similarly, we define the real matrices B * k, of size p × p whose entries consist of all the Ḡu,v for (u, v) ∈ E k, . Therefore,

B * k, := b * k, (i, j) p i,j=1
where b * k, (i, j) = Ḡk(p+K)+i,( -1)(p+K)+j .

(3.56)

Using the blocks B k, we construct now an n × n matrix, X n , by inserting 0's. Actually we start from the matrix X n , keep the blocks B k, and B T k, and replace all the other variables by 0's. For the sake of clarity we describe the south-western part of the matrix X n below, the other part being constructed by symmetry.

X n :=                           0 p,p ... 0 K,p 0 K,K ... B 1,1 0 p,K 0 p,p ... 0 K,p 0 K,K 0 K,p 0 K,K ... B 2,1 0 p,K B 2,2 0 p,K 0 p,p ... ... ... ... ... ... ... ... ... ... B q-1,1 0 p,K B q-1,2 0 p,K B q-1,3 ... 0 K,p 0 K,K 0 K,p 0 K,K 0 K,p ... 0 K,K B q,1 0 p,K B q,2 0 p,K B q,3 ... B q,q 0 p,p 0 m,p 0 m,K 0 m,p 0 m,K 0 m,p ... 0 m,K 0 m,p 0 m,m                           , ( 3.57) 
where m = m n = n -q(p + K) -p. G n is constructed as X n with the B * k, in place of the B k, .

Proof of Theorem 3.11 via the Lindeberg method by blocks

In what follows, we shall prove that, for any z ∈ C + ,

lim n→∞ E SX n (z) -E S Xn (z) = 0 and lim n→∞ E SḠ n (z) -E S Gn (z) = 0 , (3.58) with X n := n -1/2 X n , G n := n -1/2 G n .
To prove it we first introduce two other symmetric n×n matrices

X n = [ X k, ] n k, =1 and G n = [ G k, ] n k, =1
constructed from Xn and Ḡn respectively, by replacing the entries by zeros in square blocks of size p around the diagonal. More precisely, for any 1 ≤ i, j ≤ n, X i,j = 0 if (i, j) ∈ ∪ qn =0 E , +1 and X i,j = Xi,j otherwise and

G i,j = 0 if (i, j) ∈ ∪ qn =0 E , +1 and G i,j = Ḡi,j otherwise
where we recall that the sets E , +1 have been defined in (3.54). Denote now

X n = 1 √ n X n and G n = 1 √ n G n .
By Lemma A.3, we get, for any z = u + iv ∈ C + , that

E SX n (z) -E S Xn (z) 2 ≤ E SX n (z) -S Xn (z) 2 ≤ 1 n 2 v 4 E Tr ( Xn -X n ) 2 .
Therefore,

E SX n (z) -E S Xn (z) 2 ≤ 1 n 2 v 4 qn =0 (i,j)∈E , +1 E(| Xi,j | 2 ) . But Xi,j ∞ ≤ 2τ n √ n. Hence, E SX n (z) -E S Xn (z) 2 ≤ 4 n 2 v 4 (q n + 1)p 2 n τ 2 n n ≤ 4 v 4 τ 2 n p n .
By our selection of p n , we obviously have that τ 2 n p n → 0 as n → ∞. It follows that, for any z ∈ C + , lim

n→∞ E SX n (z) -E S Xn (z) = 0 . (3.59)
With similar arguments, we get that, for any z = u + iv ∈ C + ,

E SḠ n (z) -E S Gn (z) 2 ≤ 1 n 2 v 4 qn =0 (i,j)∈E , E(| Ḡi,j | 2 ) .
But Ḡi,j 2 = Xi,j 2 . So, as before, we derive that for any z ∈ C + ,

lim n→∞ E SḠ n (z) -E S Gn (z) = 0 . (3.60)
From (3.59) and (3.60), the mean convergence (3.58) follows if we prove that, for any

z ∈ C + , lim n→∞ E S Xn (z) -E S Xn (z) = 0 and lim n→∞ E S Gn (z) -E S Gn (z) = 0 , (3.61)
Integrating by parts and applying Theorem A.43 in Bai and Silverstein [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF], we get as in Proposition 2.12 that

S Xn (z) -S Xn (z) ≤ π vn Rank X n -X n .
But, by counting the numbers of rows and of columns with entries that can be different from zero, we infer that

Rank X n -X n ≤ 2(q n K + m n ) ≤ 2(np -1 K + p + 2K) .
Therefore,

S Xn (z) -S Xn (z) ≤ 2π v (Kp -1 + pn -1 + 2Kn -1 ) .
With similar arguments, we get

S Gn (z) -S Gn (z) ≤ 2π v (Kp -1 + pn -1 + 2Kn -1
) .

Since p = p n → ∞ and p n /n → 0, as n → ∞, (3.61) (and then (3.58)) follows from the two above inequalities. Therefore, to prove that the mean convergence (3.49) holds, it suffices to prove that, for any z ∈ C + ,

lim n→∞ E S Xn (z) -E S Gn (z) = 0 . (3.62)
This is done in the next step.

Step 3: Lindeberg method.

To prove (3.62), we shall use the Lindeberg method. Recall that the σ-fields σ( Ḡk, , 1 ≤ ≤ k ≤ n) and σ(X k, , 1 ≤ ≤ k ≤ n) are assumed to be independent. Furthermore, by the hypothesis A 3 , all the blocks (B k, ) and (B * k, ) 1 ≤ ≤ k ≤ q are independent. We shall replace one by one the blocks B k, by the "Gaussian" ones B * k, with the same covariance structure. So, starting from the matrix X n = X n (0), the first step is to replace its block B qn,qn by B * qn,qn , this gives a new matrix. Note that, at the same time, B T qn,qn will also be replaced by (B * qn,qn ) T . We denote this matrix by X n (1) and re-denote the block replaced by B( 1) and the new one by B * (1).

At the second step, we replace, in the new matrix X n (1), the block B(2) := B qn,qn-1 by B * (2) := B * qn,qn-1 , and call the new matrix X n (2) and so on. Therefore, after the q n -th step, in the matrix X n we have replaced the blocks B(q n -+ 1) = B qn, , = 1, . . . , q n (and their transposed) by the blocks B * (q n -+ 1) = B * qn, , = 1, . . . , q n (and their transposed) respectively. This matrix is denoted by X n (q n ).

Next, the q n + 1-th step will consist of replacing the block B(q n + 1) = B qn-1,qn-1 by B * qn-1,qn-1 and obtain the matrix X n (q n + 1). So finally after q n (q n + 1)/2 steps, we have replaced all the blocks B k, and B T k, of the matrix X n to obtain at the end the matrix X n (q n (q n + 1)/2) = G n .

Therefore we have

E S Xn (z) -E S Gn (z) = kn k=1 E S Xn(k-1) (z) -E S Xn(k) (z) . (3.63)
where k n = q n (q n + 1)/2.

Let k in {1, . . . , k n } and notice that X n (k -1) and X n (k) differ only by the variables in

Proof of Theorem 3.11 via the Lindeberg method by blocks

By taking into account that

E(| Xi,j | 3 ) ≤ 2τ n √ nE(|X i,j | 2 )
and also

E(| Ḡi,j | 3 ) ≤ 2 E(| Ḡi,j | 2 ) 3/2 = 2 E(| Xi,j | 2 ) 3/2 ≤ 4τ n √ nE(|X i,j | 2 ) ,
it follows from (3.63) and (3.64) that, for a constant C depending only on Im(z),

E S Xn (z) -E S Gn (z) ≤ C p 4 n 2 τ n 1≤j≤i≤n E(|X i,j | 2 )
which converges to 0 by A 1 and the selection of p n . This ends the proof of (3.62) and then of the theorem.

to Stieltjes transform of a non-random probability measure. This will be achieved in Theorem 4.2 which allows approximating the expectation of the Stieltjes transform by that of a Gaussian matrix having a close covariance structure. Finally, provided that the spectral density of (X k ) k exists, we give in Theorem 4.3 the equation satisfied by the Stieltjes transform of the limiting distribution.

This chapter shall be organized as follows: In Section 4.1, we specify the models studied and state the limiting results. The proofs shall be deferred to Sections 4.3 and 4.4, whereas applications to examples of Markov chains and dynamical systems shall be introduced in Section 4.2.

Main results

Let N := N (n) be a sequence of positive integers and consider the N × n random matrix X n defined by

X n = ((X n ) i,j ) = (X (j-1)N +i ) =         X 1 X N +1 • • • X (n-1)N +1 X 2 X N +2 • • • X (n-1)N +2 . . . . . . . . . X N X 2N • • • X nN         ∈ M N ×n (R) (4.2)
and note that its entries are dependent across both rows and columns. Let B n be its corresponding Gram matrix given by

B n = 1 n X n X T n . (4.3)
In what follows, B n will be referred to as the Gram matrix associated with (X k ) k∈Z . We note that it can be written as the sum of dependent rank one matrices. Namely,

B n = 1 n n i=1 X i X T i ,
where for any i = 1, . . . , n, X i = (X (i-1)N +1 , . . . , X iN ) T .

We are interested in the study of the limiting distribution of the empirical spectral

Main results

measure µ Bn defined by

µ Bn (x) = 1 N N k=1 δ λ k ,
where λ 1 , . . . , λ N are the eigenvalues of B n . The main purpose of this chapter is to break the dependence structure of the matrix and use then approximation techniques from Chapter 2.

As a first step, we start by showing that if the β-mixing coefficients decay arithmetically then the Stieltjes transform of B n concentrates almost surely around its expectation as n tends to infinity . Theorem 4.1. Let B n be the matrix defined in (4.3) and associated with (X k ) k∈Z defined in (4.1).

If lim n→∞ N/n = c ∈ (0, ∞) and n≥1 log(n) 3α 2 n -1 2 β n < ∞ for some α > 1 , (4.4)
the following convergence holds: for any z ∈ C + , S Bn (z) -E(S Bn (z)) → 0 almost surely, as n → +∞ .

As the X i 's are dependent, classical arguments as those in Theorem 1 (ii) of Guntuboyina and Leeb [START_REF] Guntuboyina | Concentration of the spectral measure of large Wishart matrices with dependent entries[END_REF] or on page 34 of [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF] are not sufficient to prove the above convergence. In fact, we shall use maximal coupling for absolutely regular sequences in order to break the dependence structure between the columns allowing us to prove a concentration inequality of the associated empirical spectral measure. The proof of Theorem 4.1 shall be postponed to Section 4.3.

In the following Theorem, we shall approximate the expectation of the Stieltjes transform of B n with that of a sample covariance matrix G n which is the sum of i.i.d. rank one matrices associated with a Gaussian process (Z k ) k∈Z having the same covariance structure as (X k ) k∈Z . Namely, for any k, ∈ Z,

Cov(Z k , Z ) = Cov(X k , X ) . (4.5)
Denoting, for i = 1, . . . , n, by (Z

(i)
k ) k∈Z an independent copy of (Z k ) k that is also independent of (X k ) k , we then define the N × N sample covariance matrix G n by

G n = 1 n Z n Z T n = 1 n n k=1 Z i Z T i , ( 4.6) 
where for any i = 1, . . . , n,

Z i = (Z (i) 1 , . . . , Z (i) N )
T and Z n is the matrix whose columns are the Z i 's. Namely, Moreover, if (X k ) k∈Z admits a spectral density f , then with probability one, µ Bn converges weakly to a probability measure µ whose Stieltjes transform S = S(z) (z ∈ C + ) satisfies the equation

Z n := ((Z n ) u,v ) = (Z (v) u ).
z = - 1 S + c 2π 2π 0 1 S + 2πf (λ) -1 dλ , (4.8)
where S(z

) := -(1 -c)/z + cS(z).
Check, for instance, Remarks 2.3 and 2.4. Now, we shall consider the case where the Gram matrix is the sum of independent rank-one matrices whose entries are functionals of absolutely regular sequences. More
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precisely, we consider the sample covariance matrix

A n := 1 n n k=1 X k X T k , (4.9)
with the X k 's being independent copies of (X 1 , . . . , X N ) T and (X k ) k∈Z the process defined in (4.1). Remark 4.5. Since the X k 's are mutually independent, then, by Theorem 1 (ii) in [START_REF] Guntuboyina | Concentration of the spectral measure of large Wishart matrices with dependent entries[END_REF] or the arguments on page 34 in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF], we can approximate directly S An (z) by its expectation and there is no need of any coupling arguments as in Theorem 4.1 and thus of the arithmetic decay condition (4.4) on the absolutely regular coefficients. So it suffices to prove that for any z ∈ C + ,

lim n→∞ |E S An (z) -E S Gn (z) | = 0
which can be exactly done as in Theorem 4.2 after simple modifications of indices. For this reason, its proof shall be omitted.

Applications

In this section we shall apply the results of Section 4.1 to a Harris recurrent Markov chain and some uniformly expanding maps in dynamical systems.

Harris recurrent Markov chain

We start by recalling that a stationary Markov chain is aperiodic and Harris recurrent if and only if it satisfies absolute regularity, i.e. β n → 0 as n → ∞. For more details, one can see [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF][START_REF] Orey | Recurrent Markov chains[END_REF].

The following example is a symmetrized version of the Harris recurrent Markov chain defined by Doukhan et al. [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF]. Let (ε n ) n∈Z be a stationary Markov chain taking values in E = [-1, 1] and let K be its Markov kernel defined by

K(x, .) = (1 -|x|)δ x + |x|ν ,
with ν being a symmetric atomless law on E and δ x denoting the Dirac measure at point x.

Assume that θ = E |x| -1 ν(dx) < ∞ then (ε n ) n∈Z is positively recurrent and the unique invariant measure π is given by

π(dx) = θ -1 |x| -1 ν(dx) .
We shall assume in what follows that ν satisfies for any x ∈ [0, 1], dν dx (x) ≤ c x a for some a , c > 0 . (

Now, let g be a measurable function defined on E such that

X k = g(ε k ) (4.12)
is a centered random variable having a finite second moment.

Corollary 4.6. Let (X k ) k∈Z be defined in (4.12). Assume that ν satisfies (4.11) and that for any

x ∈ E, g(-x) = -g(x) and |g(x)| ≤ C|x| 1/2
with C being a positive constant. Then, provided that N/n → c ∈ (0, ∞), the conclusions of Theorems 4.2 and 4.4 hold and the limiting measure µ has a compact support. In addition, if (4.11) holds with a > 1/2 then Theorems 4.1 and 4.3 follow as well.

Proof. Doukhan et al. prove in Section 4 of [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF] that if (4.11) is satisfied then (ε k ) k∈Z is an absolutely regular sequence with

β n = O(n -a ) as n → ∞ .
Thereby, Theorems 4.2 and 4.4 follow. Now, noting that g is an odd function we have

E(g(ε k )|ε 0 ) = (1 -|ε 0 |) k g(ε 0 ) a.s.
Therefore, by the assumption on g and (4.11), we get for any k ≥ 0,

γ k := E(X 0 X k ) = E g(ε 0 )E(g(ε k )|ε 0 ) = θ -1 E g 2 (x)(1 -|x|) k |x| -1 ν(dx) ≤ c C 2 θ -1 E x a+1 |x| (1 -|x|) k dx .
By the properties of the Beta and Gamma functions,

|γ k | = O(k -(a+1) ) which implies k |γ k | < ∞
and thus the spectral density f is continuous and bounded over [0, 2π) and the limiting measure µ has a compact support (see Remark 2.3). However, if in addition a > 1/2 then (4.4) is also satisfied and Theorems 4.1 and 4.3 follow as well.

Uniformly expanding maps

Functionals of absolutely regular sequences occur naturally as orbits of chaotic dynamical systems. For instance, for uniformly expanding maps T : [0, 1] → [0, 1] with absolutely continuous invariant measure ν, one can write

T k = g(ε k , ε k+1 , . . .)
for some measurable function g : R Z → R where (ε k ) k≥0 is an absolutely regular sequence. We refer to Section 2 of [START_REF] Hofbauer | Ergodic properties of invariant measures for piecewise monotonic transformations[END_REF] for more details and for a precise definition of such maps (see also Example 1.4 in [START_REF] Borovkova | Limit theorems for functionals of mixing processes with applications to U -statistics and dimension estimation[END_REF]).

Hofbauer and Keller prove in Theorem 4 of [START_REF] Hofbauer | Ergodic properties of invariant measures for piecewise monotonic transformations[END_REF] that the mixing rate of (ε k ) k≥0 decreases exponentially, i.e.

β k ≤ Ce -λk , for some C, λ > 0 , ( 4.13) 
and thus (4.4) holds. Setting for any k ≥ 0,

X k = h • T k -ν(f ), (4.14) 
where h : [0, 1] → R is a continuous Hölder function, the Theorems in Section 4.1 hold for the associated matrices B n and A n . Moreover, Hofbauer and Keller prove in Theorem 5 of [START_REF] Hofbauer | Ergodic properties of invariant measures for piecewise monotonic transformations[END_REF] that k |Cov(X 0 , X k )| < ∞ which implies that the spectral density f exists, is continuous and bounded on [0, 2π) and that the limiting measure µ is compactly supported.

Concentration of the spectral measure

In this Section, we give a proof of Theorem 4.1 with the help of a concentration inequality of the spectral measure. For absolutely regular sequences Let m be a positive integer (fixed for the moment) such that m ≤ √ N /2 and let (X k,m ) k∈Z be the sequence defined for any k ∈ Z by,

X k,m = E(X k |ε k-m , . . . , ε k+m ) := g k (ε k-m , . . . , ε k+m ) , ( 4.15) 
where g k is a measurable function from R 2m+1 to R. Consider the N × n matrix X n,m = ((X n,m ) i,j ) = (X (j-1)N +i, m ) and finally set

B n,m = 1 n X n,m X T n,m . (4.16) 
The proof will be done in two principal steps. First, we shall prove that We note that by Lemma A.1 we have, for any z = u + iv ∈ C + ,

S Bn (z) -S Bn,m (z) 2 ≤ 2 v 4 1 N Tr(B n + B n,m ) 1 N n Tr(X n -X n,m )(X n -X n,m ) T . ( 4.19) 
Recall that mixing implies ergodicity and note that as (ε k ) k∈Z is an ergodic sequence of real-valued random variables then (X k ) k∈Z is also so. Therefore, by the ergodic theorem,

lim n→+∞ 1 N Tr(B n ) = lim n→+∞ 1 N n N n k=1 X 2 k = E(X 2 0 ) a.s. (4.20) 
Similarly,

lim n→∞ 1 N Tr(B n,m ) = E X 2 0,m a.s. (4.21) 
Starting from (4. [START_REF] Chatterjee | Concentration inequalities with exchangeable pairs[END_REF]) and noticing that E(X 2 0,m ) ≤ E(X 2 0 ), it follows that (4.17) holds if we prove

lim m→+∞ lim sup n→+∞ 1 N n Tr(X n -X n,m )(X n -X n,m ) T = 0 a.s. (4.22) 
By the construction of X n and X n,m and again the ergodic theorem, we get

lim n→∞ 1 N n Tr(X n -X n,m )(X n -X n,m ) T = lim n→∞ 1 N n N n k=1 (X k -X k, m ) 2 = E X 0 -X 0,m 2 a.s. 
(4.22) follows by applying the usual martingale convergence theorem in L 2 , from which we infer that lim

m→+∞ X 0 -E(X 0 |ε -m , . . . , ε m ) 2 = 0 .
We turn now to the proof of (4.18). With this aim, we shall prove that for any z = u + iv and x > 0,

P S Bn,m (z) -ES Bn,m (z) > 4x ≤ 4 exp - x 2 v 2 N 2 (log n) α 256 n 2 + 32 n 2 (log n) α x 2 v 2 N 2 β n (log n) α N , (4.23) 
for some α > 1. Noting that

n≥2 (log n) α β n 2 (log n) α < +∞ is equivalent to (4.4)
and applying Borel-Cantelli Lemma, (4.18) follows from (4.4) and the fact that lim n→∞ N/n = c. Now, to prove (4.23), we start by noting that

P S Bn,m (z) -E S Bn,m (z) > 4x ≤ P Re S Bn,m (z) -E Re S Bn,m (z) > 2x + P Im S Bn,m (z) -E Im S Bn,m (z) > 2x
For a row vector x ∈ R N n , we partition it into n elements of dimension N and write x = x 1 , . . . , x n where x 1 , . . . , x n are row vectors of R N . Now, let A(x) and B(x) be respectively the N × n and N × N matrices defined by

A(x) = x T 1 | . . . |x T n and B(x) = 1 n A(x)A(x) T .
Also, let h 1 := h 1,z and h 2 := h 2,z be the functions defined from R N n into R by

h 1 (x) = f 1,z dµ B(x) and h 2 (x) = f 2,z dµ B(x) ,
where

f 1,z (λ) = λ -u (λ -u) 2 + v 2 and f 2,z (λ) = v (λ -u) 2 + v 2
and note that S B(x) (z) = h 1 (x) + ih 2 (x). Now, denoting by X T 1,m , . . . , X T n,m the columns of X n,m and setting A to be the row random vector of R N n given by

A = (X 1,m , . . . , X n,m ), we note that B(A) = B n,m and h 1 (A) = Re S Bn,m (z) .
Moreover, letting q be a positive integer less than n, we set

F i = σ(ε k , k ≤ iN + m) for 1 ≤ i ≤ [n/q]
q with the convention that F 0 = {∅, Ω} and that F s = F n for any s ∈ {[n/q]q, . . . , n}. Noting that X 1,m , . . . , X i,m are F i -measurable, we write the following decomposition:

Re S Bn,m (z) -E Re S Bn,m (z) = h 1 (X 1,m , . . . , X n,m ) -Eh 1 (X 1,m , . . . , X n,m ) = [n/q] i=1 E(h 1 (A)|F iq ) -E(h 1 (A)|F (i-1)q ) .
Now, let (A i ) i be the vectors of R N n defined for any i ∈ {1, . . . , [n/q] -1} by

A i = X 1,m , . . . , X (i-1)q,m , 0 N , . . . , 0 N 2q times , X (i+1)q+1,m , . . . , X n,m ,
and for i = [n/q] by A [ n q ] = X 1,m , . . . , X ([n/q]-1)q,m , 0 N , . . . , 0 N . Noting that E h 1 (A [n/q] )|F n = E(h 1 A [n/q] )|F ([n/q]-1)q , we write Re S Bn,m (z) -E Re S Bn,m (z) = [n/q] i=1 E h 1 (A) -h 1 (A i )|F iq -E h 1 (A) -h 1 (A i )|F (i-1)q + [n/q]-1 i=1 E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q := M [n/q], q + [n/q]-1 i=1 E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q .
Thus, we get

P Re S Bn,m (z) -E Re S Bn,m (z) > 2x ≤ P |M [n/q], q | > x + P [n/q]-1 i=1 E(h 1 (A i )|F iq ) -E(h 1 (A i )|F (i-1)q ) > x .
(4.24)

Note that (M k,q ) k is a centered martingale with respect to the filtration (G k,q ) k defined by G k,q = F kq . Moreover, for any k ∈ {1, . . . , [n/q]},

M k,q -M k-1,q ∞ = E(h 1 (A) -h 1 (A k )|F kq ) -E(h 1 (A) -h 1 (A k )|F (k-1)q ) ∞ ≤ 2 h 1 (A) -h 1 (A k ) ∞
Noting that f 1,z 1 = 2/v then by integrating by parts, we get

|h 1 (A) -h 1 (A k )| = f 1,z dµ B(A) -f 1,z dµ B(A k ) ≤ f 1,z 1 F B(A) -F B(A k ) ∞ ≤ 2 vN Rank A(A) -A(A k ) , (4.25) 
where the second inequality follows from Theorem A.44 in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]. As for any k ∈ {1, . . . ,

[n/q]- 1}, Rank A(A) -A(A k ) ≤ 2q and Rank A(A) -A(A [n/q] ) ≤ q ,
then overall we derive that almost surely

M k,q -M k-1,q ∞ ≤ 8q vN and M [n/q],q -M [n/q]-1,q ∞ ≤ 4q vN
and hence applying the Azuma-Hoeffding inequality for martingales we get for any x > 0,

P |M [n/q], q | > x ≤ 2 exp - x 2 v 2 N 2 128 q n . ( 4.26) 
Now to control the second term of the right-hand side of (4.24), we have, by Markov's inequality and orthogonality, for any x > 0,

P [n/q]-1 i=1 E(h 1 (A i )|F iq ) -E(h 1 (A i )|F (i-1)q ) > x ≤ 1 x 2 [n/q]-1 i=1 E(h 1 (A i )|F iq ) -E(h 1 (A i )|F (i-1)q ) 2 2 . (4.27)
Let i be a fixed integer in {1, . . . , [n/q]-1}. To give an upper bound for E(h

1 (A i )|F iq )- E(h 1 (A i )|F (i-1)q ) 2
, we first notice that by Berbee's maximal coupling lemma [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF], one can construct a sequence (ε k ) k∈Z distributed as (ε k ) k∈Z and independent of

F iq = σ(ε k , k ≤ iqN + m) such that P(ε k = ε k , for some k ≥ + iqN + m) = β . (4.28)
Let (X k,m ) k≥1 be the sequence defined for any k ≥ 1 by

X k,m = g k (ε k-m , . . . , ε k+m ) ,
with g k being defined in (4.15) and let X i,m be the row vector of R N defined by

X i,m = (X (i-1)N +1,m , . . . , X iN,m ) .
Finally, we define for any i ∈ {1, . . . , [n/q] -1} the row random vector A i of R N n by

A i = X 1,m , . . . , X (i-1)q,m , 0 N , . . . , 0 N 2q times , X (i+1)q+1,m , . . . , X n,m .
As X (i+1)q+1,m , . . . , X n,m are independent of F iq then

E(h 1 (A i )|F iq ) = E(h 1 (A i )|F (i-1)q ) .

Thus we write

E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q = E h 1 (A i ) -h 1 (A i )|F iq -E h 1 (A i ) -h 1 (A i )|F (i-1)q .
and infer that

E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q 2 ≤ E h 1 (A i ) -h 1 (A i )|F iq 2 + E h 1 (A i ) -h 1 (A i )|F (i-1)q 2 ≤ 2 h 1 (A i ) -h 1 (A i ) 2 .
Similarly as in (4.25), we have

h 1 (A i ) -h 1 (A i ) ≤ 2 vN Rank(A(A i ) -A(A i )) ≤ 2 vN n =(i+1)q+1 1 {X ,m =X ,m } ≤ 2n vN 1 {ε k =ε k , for some k≥ (i+1)qN +1-m} .
Hence by (4.28), we infer that

h 1 (A i ) -h 1 (A i ) 2 2 ≤ 4n 2 v 2 N 2 β qN +1-2m ≤ 4n 2 v 2 N 2 β (q-1)N , (4.29) 
Starting from (4.27) and taking into account the above upper bounds, it follows that

P [n/q]-1 i=1 E(h 1 (A i )|F iq ) -E(h 1 (A i )|F (i-1)q ) > x ≤ 16n 3 x 2 v 2 q N 2 β (q-1)N . ( 4.30) 
Therefore, considering (4.24) and gathering the upper bounds in (4.26) and (4.30), we get

P Re(S Bn,m (z)) -E Re(S Bn,m (z)) > 2x ≤ 2 exp - x 2 v 2 N 2 128 q n + 16n 3 x 2 v 2 q N 2 β (q-1)N .
Finally, noting that P Im S Bn,m (z) -E Im S Bn,m (z) > 2x also admits the same upper bound and choosing q = [n/(log n) α ] + 1, (4.23) follows. This ends the proof of Theorem 4.1.

Proof of Theorem 4.2

The proof, being technical, will be divided into three major steps (Sections 4.4.1 to 4.4.3).

A first approximation

Let m be a fixed positive integer and set p := p(m) = a m m with (a n ) n≥1 being a sequence of positive integers such that lim n→∞ a n = ∞. Setting

k N = N p + 3m ,
we write the subset {1, . . . , N n} as a union of disjoint subsets of N as follows:

[1, N n] ∩ N = n i=1 [(i -1)N + 1, iN ] ∩ N = n i=1 k N +1 =1 I i ∪ J i ,
where, for i ∈ {1, . . . , n} and ∈ {1, . . . , k N },

I i := (i -1)N + ( -1)(p + 3m) + 1 , (i -1)N + ( -1)(p + 3m) + p ∩ N, J i := (i -1)N + ( -1)(p + 3m) + p + 1 , (i -1)N + (p + 3m) ∩ N ,
and, for = k N + 1, I i k N +1 = ∅ and

J i k N +1 = (i -1)N + k N (p + 3m) + 1 , iN ∩ N .
Note that for all i ∈ {1, . . . , n},

J i k N +1 = ∅ if k N (p + 3m) = N .
Now, let M be a fixed positive number not depending on (n, m) and let ϕ M be the function defined by ϕ M (x) = (x ∧ M ) ∨ (-M ). Setting

B i, = (ε (i-1)N +( -1)(p+3m)+1-m , . . . , ε (i-1)N +( -1)(p+3m)+p+m ), (4.31) 

Proof of Theorem 4.2

Proof. By Lemma A.1and Cauchy-Schwarz's inequality, it follows that

E S Bn (z) -E S Bn,m (z) ≤ √ 2 v 2 1 N Tr(B n + Bn,m ) 1/2 1 1 N n Tr(X n -Xn,m )(X n -Xn,m ) T 1/2 1 . (4.39)
By the definition of

B n , N -1 E Tr(B n ) = X 0 2 2 .
Similarly and due to the fact that pk N ≤ N and (4.33),

1 N E Tr( Bn,m ) = 1 N n n i=1 k N =1 k∈I i Xk,m 2 2 ≤ 4 X 0 2 2 . (4.40)
Moreover, by the construction of X n and Xn,m , we have

1 N n E|Tr(X n -Xn,m )(X n -Xn,m ) T | = 1 N n n i=1 k N =1 k∈I i X k -Xk,m 2 2 + 1 N n n i=1 k N +1 =1 k∈J i X k 2 2 .
Now, since X k is centered, we write for k ∈ I i ,

X k -Xk,m 2 = X k -X k,m -E(X k -X k,m ) 2 ≤ 2 X k -X k,m 2 ≤ 2 X k -E(X k |B i, ) 2 + 2 X k,m -E(X k |B i, ) 2 . (4.41) 
Analyzing the second term of the last inequality, we get

X k,m -E(X k |B i, ) 2 = E(X k -ϕ M (X k )|B i, ) 2 ≤ X k -ϕ M (X k ) 2 = (|X 0 | -M ) + 2 . (4.42) As X 0 belongs to L 2 , then lim M →+∞ (|X 0 | -M ) + 2 = 0. Now, we note that for k ∈ I i , σ(ε k-m , . . . , ε k+m ) ⊂ σ(B i, ) which implies that X k -E(X k |B i, ) 2 ≤ X k -E(X k |ε k-m , . . . , ε k+m ) 2 = X 0 -E(X 0 |ε -m , . . . , ε m ) 2 = X 0 -X 0,m 2 , ( 4.43) 
where the first equality is due to the stationarity. Therefore, by (4.42), (4.43), the fact that pk N ≤ N and

Card n i=1 k N +1 =1 J i ≤ N n -npk N , we infer that 1 N n E|Tr(X n -Xn,m )(X n -Xn,m ) T | ≤ 8 X 0 -X 0,m 2 2 + 8 (|X 0 | -M ) + 2 2 + (3(a m + 3) -1 + a m mN -1 ) X 0 2 2 .
Thus starting from (4.39), considering the above upper bounds, we derive that there exists a positive constant C not depending on (n, m, M ) such that lim sup

M →∞ lim sup n→∞ E S Bn (z) -E S Bn,m (z) ≤ C v 2 X 0 -X 0,m 2 2 + 3 a m 1/2 .
Taking the limit on m, Proposition 4.7 follows by applying the martingale convergence theorem in L 2 and that fact that a m converges to infinity.

Approximation by a Gram matrix with independent blocks

By Berbee's classical coupling lemma [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF], one can construct by induction a sequence of random variables (ε * k ) k≥1 such that:

• For any 1 ≤ i ≤ n and 1 ≤ ≤ k N , B * i, = (ε * (i-1)N +( -1)(p+3m)+1-m , . . . , ε * (i-1)N +( -1)(p+3m)+p+m )
has the same distribution as B i, defined in (4.31).

• The array (B * i, ) 1≤i≤n, 1≤ ≤k N is i.i.d.

• For any 1

≤ i ≤ n and 1 ≤ ≤ k N , P(B i, = B * i, ) ≤ β m .
(see page 484 of [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] for more details concerning the construction of the array (B * i, ) i, ≥1 ). We define now the sequence ( X * k,m ) k≥1 as follows:

X * k,m = h k (B * i, ) if k ∈ I i , ( 4.44) 
where the functions h k are defined in (4.36). We construct the N

× n random matrix X * n,m = (( X * n,m ) i,j ) = ( X * (j-1)N +i, m ). Note that the block of entries ( X * k,m , k ∈ I i ) is independent of ( X * k,m , k ∈ I i ) if (i, ) = (i , ). Thus, X *
n,m has independent blocks of dimension p separated by null blocks whose dimension is at least 3m. Setting

B * n,m := 1 n X * n,m X * T n,m , (4.45) 
we approximate Bn,m by the Gram matrix B * n,m as shown in the following proposition. Proof. By Lemma A.1 and Cauchy-Schwarz's inequality, it follows that

E S Bn,m (z) -E S B * n,m (z) ≤ √ 2 v 2 1 N Tr( Bn,m + B * n,m ) 1/2 1 1 N n Tr( Xn,m -X * n,m )( Xn,m -X * n,m ) T 1/2 1 (4.47) Notice that X * k,m 2 = h k (B * i, ) 2 = h k (B i, ) 2 = Xk,m 2 ≤ 2 X 0 2 ,
where the second equality follows from the fact that B * i, is distributed as B i, whereas the last inequality follows from (4.33). Thus, we get from the definition of B * n,m and the fact that pk N ≤ N , 

1 N E Tr( B * n,m ) = 1 N n n i=1 k N =1 k∈I i X * k,m 2 2 ≤ 4 X 0 2 2 . ( 4 
M →+∞ lim sup n→+∞ 1 N n E Tr( Xn,m -X * n,m )( Xn,m -X * n,m ) T = 0 . (4.49)
By the construction of Xn,m and X * n,m , we write

1 N n E Tr( Xn,m -X * n,m )( Xn,m -X * n,m ) T = 1 N n n i=1 k N =1 k∈I i Xk,m -X * k,m 2 2 . (4.50) 
Now, let L be a fixed positive real number strictly less than M and not depending on (n, m, M ). To control the term Xk,m -X * k,m 2 2 , we write for k

∈ I i , Xk,m -X * k,m 2 2 = (h k (B i, ) -h k (B * i, ))1 B i, =B * i, 2 2 ≤ 4 h k (B i, )1 B i, =B * i, 2 2 = 4 Xk,m 1 B i, =B * i, 2 2 ≤ 12 Xk,m -E(X k |B i, ) 2 2 + 12 E(X k |B i, ) -E(ϕ L (X k )|B i, ) 2 2 + 12 E(ϕ L (X k )|B i, )1 B i, =B * i, 2 2 . Since P(B i, = B * i, ) ≤ β m and ϕ L (X k ) is bounded by L, we get E(ϕ L (X k )|B i, )1 B i, =B * i, 2 2 ≤ L 2 β m .
Moreover, it follows from the fact that X k is centered and (4.42) that

Xk,m -E(X k |B i, ) 2 2 ≤ 4 X k,m -E(X k |B i, ) 2 2 ≤ 4 (|X 0 | -M ) + 2 2
and

E(X k |B i, ) -E(ϕ L (X k )|B i, ) 2 2 ≤ X k -ϕ L (X k ) 2 2 = (|X 0 | -L) + 2 2 .
Hence gathering the above upper bounds we get

Xk,m -X * k,m 2 2 ≤ 48 (|X 0 | -M ) + 2 2 + 12 (|X 0 | -L) + 2 2 + 12L 2 β m . ( 4.51) 
As pk N ≤ N , the right-hand-side of (4.50) converges to zero by letting first M , then m and finally L tend to infinity. Therefore, (4.49) and thus the proposition follow.

Approximation with a Gaussian matrix

In order to complete the proof of the theorem, it suffices, in view of (4.38) and (4.46), to prove the following convergence: for any

z ∈ C + , lim m→+∞ lim sup n→+∞ E S B * n,m (z) -E S Gn (z) = 0. (4.52) 
With this aim, we shall first consider a sequence (Z k,m ) k∈Z such that for any k, ∈ {1, . . . , N },

Cov(Z k,m , Z ,m ) = Cov( X * k,m , X * ,m ) (4.53) 
and let (Z

(i)
k,m ) k , i = 1, . . . , n, be n independent copies of (Z k,m ) k . We then define the N × n matrix Z n,m = ((Z n,m ) u,v ) = (Z (v) u,m ) and finally set 

G n,m = 1 n Z n,m Z T n,m . ( 4 
Z (i) k,m =      Z (i) k,m
if k ∈ I for some ∈ {1, . . . , k N } 0 otherwise .

We define now the N × n matrix Z n,m = (( Z n,m ) u,v ) = ( Z (v) u,m ) and we note that Z n,m , as X * n,m , consists of independent blocks of dimension p separated by null blocks whose dimension is at least 3m. We finally set We don't give a proof of this proposition because it is the same as that of Proposition 2.8. Indeed, X * n,m has a similar structure as the matrix Xn,m considered in the Chapter 2 and consists as well of independent blocks separated by blocks of zero entries. Therefore, following the lines of Proposition 2.8 gives for any z

G n,m = 1 n Z n,m Z T n,m . ( 4 
= x + iy ∈ C + , |E S B * n,m (z) -E S Gn,m (z) | ≤ Cp 2 (1 + M 3 )N 1/2 y 3 (1 ∧ y)n
which converges to 0 as n tends to infinity since lim n→∞ N/n = c ∈ (0, ∞).

To end the proof of Theorem 4.2, it remains to prove the following convergence. Proof. Let n = N + n and G n and G n ,m be the symmetric matrices of order n defined by

G n = 1 √ n   0 n,n Z T n Z n 0 N,N   and G n ,m = 1 √ n   0 n,n Z T n,m Z n,m 0 N,N   .
We recall that since n /N → 1 + c -1 then it is equivalent to prove for any z ∈ C + , lim m→∞ lim sup

M →∞ lim sup n→∞ E S G n (z) -E S G n ,m (z) = 0 .
Following the lines of Proposition 2.13, we infer that for any z ∈ C + ,

E(S G n (z)) -E(S G n ,m (z)) 2 ≤ C n 2 N k=1 X k 2 2 + X * k,m 2 2 N =1 X -X * ,m 2 2 . 
In view of (4.41), (4.42), (4.43) and (4.51), we get

X -X * ,m 2 ≤ 2 X -X ,m 2 + 2 X ,m -X * ,m 2 ≤ 16 X 0 -X 0,m 2 2 + 112 (|X 0 | -M ) + 2 2 + 24 (|X 0 | -L) + 2 2 + 24L 2 β m ,
where L is a fixed positive real number strictly less than M and not depending on (n, m, M ). Taking into account the stationarity of (X k ) k and (4.33), we then infer that

E(S G n (z)) -E(S G n ,m (z)) 2 ≤ CN 2 n 2 X 0 -X 0,m 2 2 + (|X 0 | -M ) + 2 2 + (|X 0 | -L) + 2 2 + L 2 β m ,
which converges to zero by letting first n, then M followed by m and finally L tend to infinity. This ends the proof of the proposition.

Chapter 5

Bernstein Type Inequality for Dependent Matrices

In this chapter, we prove a Bernstein type inequality for the sum of self-adjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue.

This inequality can be viewed as an extension to the matrix setting of the Bernsteintype inequality obtained by Merlevède et al. [START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF] in the context of real-valued bounded random variables that are geometrically absolutely regular. It can be also viewed as a generalization, up to a logarithmic term, of the Bernstein-type inequality obtained by Tropp [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] from independent to geometrically absolutely regular matrices. This chapter shall be organized as follows: we shall start by describing the matrices and the dependence structure and then announce our Bernstein-type inequality (Theorem 5.1). A subsection shall be also devoted to some examples of matrix models where this Bernstein-type inequality applies. Moreover, Section A.4 of the Appendix will be devoted to a brief introduction on some operator functions in addition to some tools and lemmas that will be useful to the proof given in Section 5.3.

A Bernstein-type inequality for geometrically βmixing matrices

For any d × d matrix X = [(X) i,j ] d i,j=1 whose entries belong to K = R or C, we associate its corresponding vector X in K d 2 whose coordinates are the entries of X i.e.

X = (X) i,j , 1 ≤ i ≤ d 1≤j≤d . Therefore X = X i , 1 ≤ i ≤ d 2 where X i = (X) i-(j-1)d,j for (j -1)d + 1 ≤ i ≤ jd ,
and X will be called the vector associated with X. Reciprocally, given X = X ,

1 ≤ ≤ d 2 in K d 2 we shall associate a d × d matrix X by setting X = (X) i,j n i,j=1
where (X) i,j = X i+(j-1)d .

The matrix X will be referred to as the matrix associated with X.

All along this chapter, we consider a family (X i ) i≥1 of d × d self-adjoint random matrices whose entries are defined on a probability space (Ω, A, P), taking values in K, and that are geometrically absolutely regular in the following sense. Let

β 0 = 1 and β k = sup j≥1 β(σ(X i , i ≤ j), σ(X i , i ≥ j + k)) , for any k ≥ 1, (5.1) 
where β(A, B) is the absolute regular coefficient introduced in Definition 1.6. The β k 's are usually called the coefficients of absolute regularity of the sequence of vectors (X i ) i≥1 and we shall assume in this chapter that they decrease geometrically in the sense that there exists c > 0 such that for any integer k ≥ 1,

β k = sup j≥1 β(σ(X i , i ≤ j), σ(X i , i ≥ j + k)) ≤ e -c(k-1) . (5.2)
We shall assume that the underlying probability space (Ω, A, P) is rich enough to contain a sequence ( i ) i∈Z = (δ i , η i ) i∈Z of i.i.d. random variables with uniform distribution 5.1 A Bernstein-type inequality for geometrically β-mixing matrices over [0, 1] 2 , independent of (X i ) i≥0 .

Our aim is to give a probabilistic bound for λ max ( n i=1 X i ) with (X i ) i being a sequence of dependent centered self-adjoint random matrices with a uniformly bounded largest eigenvalue and satisfying (5.2) 

with the suprimum being taken over all the non-empty subsets K ⊆ {1, . . . , n}.

Theorem 5.1. Let (X i ) i≥1 be a family of self-adjoint random matrices of size d. Assume that (5.2) holds and that there exists a positive constant M such that for any i ≥ 1, E(X i ) = 0 and λ max (X i ) ≤ M almost surely.

(5.5)

Then for any t such that 0 < tM < 1/γ(c, n), we have

log ETr exp t n i=1 X i ≤ log d + t 2 n 15v + 2M/ √ cn 2 1 -tM γ(c, n) , ( 5.6) 
where γ(c, n) and v are defined in (5.3) and (5.4). In terms of probabilities, there exists a universal positive constant C such that for any x > 0 and any integer n ≥ 2,

P λ max n i=1 X i ≥ x ≤ d exp - Cx 2 v 2 n + c -1 M 2 + xM γ(c, n) .
The bound (5.6) on the matrix log-Laplace allows us to control the expectation of the maximum eigenvalue:

Corollary 5.2. Under the conditions of Theorem 5.1,

Eλ max n i=1 X i ≤ 30v n log d + 4M c -1/2 log d + M γ(c, n) log d
where γ(c, n) and v are defined in (5.3) and (5.4) respectively.

Proof. We proceed as in Section 4.2.4 of [START_REF] Mackey | Matrix concentration inequalities via the method of exchangeable pairs[END_REF] and get for any 0 < t <

1 M γ(c,n) Eλ max n i=1 X i = 1 t E log e λmax t n i=1 X i = 1 t E log λ max e t n i=1 X i ≤ 1 t E log Tr exp t n i=1 X i ≤ 1 t log ETr exp t n i=1 X i .
The first inequality follows from the fact that the matrix exponential is positive definite and thus its largest eigenvalue is bounded by the trace, whereas the second one follows from Jensen's inequality and the concavity of the matrix logarithm. Considering the bound on the log-Laplace transform in (5.6) and taking the infimum on t, we get

Eλ max n i=1 X i ≤ inf 0<tM <1/γ(c,n) 1 t log d + t 2 n(15v + 2M/ √ cn) 2 1 -tM γ(c, n) .
Thanks to a personal communication with professor W. Bryc, we notice that the problem can be reduced to inf

0<t<1 b log d t + at b(1 -t)
where a = n(15v + 2M/ √ cn) 2 and b = M γ(c, n). The latter function is convex on t ∈ (0, 1) and thus the minimum is attained at the unique zero of the derivative giving the desired upper bound.

In the following section, we give examples of matrices for which Theorem 5.1 can be applied.

Applications

Let (τ k ) k be a stationary sequence of real-valued random variables such that τ 1 ∞ ≤ 1 a.s. Consider a family (Y k ) k of d × d independent self-adjoint random matrices which is independent of (τ k ) k . For any i = 1, . . . , n, let X i = τ i Y i and note that in this case

β k = β(σ(τ i , i ≤ 0), σ(τ i , i ≥ k)) .
Corollary 5.3. Assume that there exists a positive constant c such that β k ≤ e -c(k-1) for any k ≥ 1 and suppose that each random matrix Y k satisfies

EY k = 0 , λ max (Y k ) ≤ M and λ min (Y k ) ≥ -M almost surely.
Then for any t > 0 and any integer n ≥ 2,

P λ max n k=1 τ k Y k ≥ t ≤ d exp - Ct 2 nM 2 E(τ 2 0 ) + M 2 + tM (log n) 2 ,
where C is a positive constant depending only on c.

Proof. The above corollary follows by noting that for any K ⊆ {1, . . . , n}

Σ K := E k∈K τ k Y k 2 = k∈K E(τ 2 k )E(Y 2 k ) = E(τ 2 0 ) k∈K E(Y 2 k ),
which, by Weyl's inequality, implies that λ max (Σ K ) ≤ M 2 Card(K)E(τ 2 0 ). Therefore, we infer that v 2 ≤ M 2 E(τ 2 0 ). We consider now another model of matrices. Let (X k ) k∈Z be a geometrically absolutely regular sequence of real-valued centered random variables. That is, there exists a positive constant c 0 such that for any k ≥ 1, sup ∈Z β σ(X i , i ≤ ), σ(X i , i ≥ k + ) ≤ e -c 0 (k-1) .

(5.7)

For any i = 1, . . . , n, let X i be the d × d random matrix defined by

X i = C i C T i -E(C i C T i )
where C i = (X (i-1)d+1 , . . . , X id ) T . Note that n i=1 X i = XX T -E(XX T ), where X is the d × n matrix given by

X =         X 1 X d+1 • • • X (n-1)d+1 X 2 X d+2 • • • X (n-1)d+2 . . . . . . . . . X d X 2d • • • X nd        
.

We also note that in this case, for any k ≥ 1,

β k = sup ∈Z β σ(C i , i ≤ ), σ(C i , i ≥ + k) = sup ∈Z β σ(X i , i ≤ d), σ(X i , i ≥ (k + -1)d + 1)
≤ e -c 0 d(k-1) .

Corollary 5.4. Assume that (X k ) k satisfies (5.7). Suppose in addition that there exists a positive constant M satisfying sup k X k ∞ ≤ M a.s. Then, for any x > 0 and any integer n ≥ 2

P λ max n i=1 X i ≥ x ≤ d exp - Cx 2 ndM 4 + dM 4 + xM 2 (d log n + log 2 n) ,
where C is a positive constant depending only on c 0 .

Proof. As 0 C i C T i for any i ∈ {1, . . . , n}, it follows by Weyl's inequality that almost surely,

λ max (X i ) ≤ λ max (C i C T i ) ≤ Tr(C i C T i ) .
Thus we infer that λ max (X i ) ≤ dM 2 a.s. To get the desired result, it remains to control v 2 . We have for any K ⊆ {1, . . . , N },

Σ K := E i∈K X i 2 = i,j∈K Cov(C i C T i , C j C T j )
and we note that the (k, ) th component of Σ K is

(Σ K ) k, = E i∈K X i 2 k, = i,j∈K d s=1
Cov X (i-1)d+k X (i-1)d+s , X (j-1)d+s X (j-1)d+ .

Therefore we infer by Gerschgorin's theorem that

λ max Σ K ≤ sup k d =1 |(Σ K ) k, | ≤ sup k i,j∈K d =1 d s=1
Cov X (i-1)d+k X (i-1)d+s , X (j-1)d+s X (j-1)d+ .

This is controlled by Ibragimov's covariance inequality:

Lemma 5.5. ( [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF]) Let X and Y be two almost surely bounded random variables. Then

|Cov(X, Y )| ≤ 2 X ∞ Y ∞ α(σ(X), σ(Y )) .
As for any two σ-algebras A and B, 2α(A, B) ≤ β(A, B) then

|Cov(X, Y )| ≤ X ∞ Y ∞ β(σ(X), σ(Y )) .
After tedious computations involving the above inequality, we infer that v 2 ≤ c 1 dM 4 where c 1 is a positive constant depending only on c 0 . Applying Theorem 5.1 with these upper bounds ends the proof.

Proof of the Bernstein-type inequality

The proof of Theorem 5.1 being very technical, is divided into several steps. In Section 5.3.1, we give the main ingredient to prove our Bernstein-type inequality, namely: a bound for the Laplace transform of the partial sum, indexed by a suitable Cantortype set, of the self-adjoint random matrices under consideration (see Proposition 5.6 and Section 5.3.2 for the construction of this suitable Cantor-set). As quoted in the introduction, this key result is based on a decoupling lemma which is stated in Section 5.3.3. The proof of Theorem 5.1 is completed in Section 5.3.5.

A key result

The next proposition is the main ingredient to prove Theorem 5.1. For a given positive integer A, it is based on a suitable construction of a subset K A of {1, . . . , A} for which it is possible to give a good upper bound for the Laplace transform of i∈K A X i . Its proof is based on the decoupling Lemma 5.7 below that allows comparing ETr exp t i∈K A X i with the same quantity but replacing i∈K A X i with a sum of independent blocks of matrices.

Proposition 5.6. Let (X i ) i≥1 be as in Theorem 5.1. Let A be a positive integer larger than 2. Then there exists a subset K A of {1, . . . , A} with Card(K A ) ≥ A/2, such that for any positive t such that tM ≤ min 1 2 , c log 2 32 log A ,

log ETr exp t i∈K A X i ≤ log d + 4 × 3.1t 2 Av 2 + 9(tM ) 2 c exp - 3c 32tM , ( 5.8) 
where v 2 is defined in (5.4).

The proof of this proposition is divided into several steps. First, we shall construct a Cantor-type set K A from {1, . . . , A} and then we prove a fundamental decoupling lemma of the matrix log-Laplace before giving the full proof of Proposition 5.6.

Construction of a Cantor-like subset K A

As in [START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF] and [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF], the set K A will be a finite union of 2 disjoint sets of consecutive integers with same cardinality spaced according to a recursive 'Cantor"-like construction. Let

δ = log 2 2 log A and := A = sup k ∈ N * : Aδ(1 -δ) k-1 2 k ≥ 2 .
Note that ≤ log A/ log 2 and δ ≤ 1/2 (since A ≥ 2). Let n 0 = A and for any j ∈ {1, . . . , },

n j = A(1 -δ) j 2 j
and d j-1 = n j-1 -2n j .

(5.9)

For any non-negative x, we denote by x the smallest integer which is larger or equal to x and we note that x ≤ x < x + 1. Note that for any j ∈ {0, . . . , -1},

d j ≥ Aδ(1 -δ) j 2 j -2 ≥ Aδ(1 -δ) j 2 j+1 , ( 5.10) 
where the last inequality follows from the definition of . Moreover,

n ≤ A(1 -δ) 2 + 1 ≤ A(1 -δ) 2 -1 , ( 5.11) 
where the last inequality follows from the fact that

Aδ(1 -δ) -1 2 × 1 -δ δ ≥ 2 
by the definition of and the fact that δ ≤ 1/2.

To construct K A we proceed as follows. At the first step, we divide the set {1, . . . , A} into three disjoint subsets of consecutive integers: I 1,1 , I * 0,1 and I 1,2 . These subsets are such that Card(I 1,1 ) = Card(I 1,2 ) = n 1 and Card(I * 0,1 ) = d 0 . At the second step, we divide I 1,1 and I 1,2 into three disjoint subsets of consecutive integers as follows: for

i = 1, 2, I 1,i = I 2,2i-1 ∪ I * 1,i ∪ I 2,2i
where Card(I 2,2i-1 ) = Card(I 2,2i ) = n 2 and Card(I * 1,i ) = d 1 . Iterating this process, we have constructed, after j steps (1 ≤ j ≤ A ), a family {I j,i , i = 1, . . . , 2 j } of 2 j sets of consecutive integers each of cardinal n j such that for any i = 1, . . . , 2 j-1 ,

I j-1,i = I j,2i-1 ∪ I * j-1,i ∪ I j,2i ,
where I * j-1,i = {b j,2i-1 + 1, . . . , a j,2i -1}, a j,i = min{k ∈ I j,i } and b j,i = max{k ∈ I j,i }. After steps we have then constructed 2 sets of consecutive integers, I ,i , i = 1, . . . , 2 , each of cardinal n such that I ,2i-1 and I ,2i are spaced by d -1 integers. The set of consecutive integers K A is then defined by

I1,2 I2,2 I2,4 I1,1 I2,1 I2,3 I 3,1 I 3,2 I 3,3 I 3,4 I 3,5 I 3,6 I 3,7 I 3,8 d 1 d 1 d 2 d 0 d 2 d 2 d 2 1 A K A
K A = 2 k=1 I ,k . Note that {1, . . . , A} = K A ∪ (∪ -1 j=0 ∪ 2 j i=1 I * j,i ) Therefore Card({1, . . . , A} \ K A ) = -1 j=0 
2 j i=1 Card(I * j,i ) = -1 j=0 2 j d j = A -2 n . But A -2 n ≤ A 1 -(1 -δ) = Aδ -1 j=0 (1 -δ) j ≤ Aδ ≤ A 2 .
(5.12)

Therefore A ≥ Card(K A ) ≥ A/2.
In the rest of the proof, the following notation will be also useful: for any k ∈ {0, 1, . . . , } and any j ∈ {1, . . . , 2 k }, let

K k,j := K A,k,j = j2 -k i=(j-1)2 -k +1 I ,i (5.13) { { { K 1,2 K 1,1 } } } K 0,1 = K A Figure 5.2 -Illustration of K 0,1 , K 1,1 and K 1,2
Therefore K 0,1 = K A and, for any j ∈ {1, . . . , 2 }, K ,j = I ,j . Moreover, for any k ∈ {1, . . . , } and any j ∈ {1, . . . , 2 k-1 }, there are exactly d k-1 integers between K k,2j-1 and K k,2j .

We include the following figure for a better illustration of the notation that we adopt all along the chapter.

A fundamental decoupling lemma

We start by introducing some notations that we adopt all along this chapter, then we state the decoupling Lemma 5.7 below which is fundamental to prove Proposition 5.6.

For any positive integer A, let K A be defined as in Subsection 5.3.2. For any integer m ∈ {0, . . . , }, (V (m) j ) 1≤j≤2 m will denote a family of 2 m mutually independent random vectors defined on (Ω, A, P), each of dimension s d, ,m := d 2 Card(K m,j ) = d 2 2 -m n and such that

V (m) j = D (X i , i ∈ K m,j ) .
(5.14)

The existence of such a family is ensured by the Skorohod lemma [66]. Indeed, since (Ω, A, P) is assumed to be large enough to contain a sequence (δ i ) i∈Z of i.i.d. random variables uniformly distributed on [0, 1] and independent of the sequence (X i ) i≥0 , there exist measurable functions f j such that the vectors

V (m) j = f j (X i , i ∈ K m,k ) k=1,.
..,j , δ j , j = 1, . . . , 2 m , are independent and satisfy (5.14).

Let π

(m) i be the i-th canonical projection from K s d, ,m onto K d 2 , namely: for any vector

x = (x i , i ∈ K m,j ) of K s d, ,m , π (m) i (x) = x i . For any i ∈ K m,j , let X (m) j (i) = π (m) i (V (m) j ) and S (m) j = i∈K m,j X (m) j (i) , ( 5.15) 
where X (m) j (i) is the d×d random matrix associated with X (m) j (i). Recall that this means that the (k, )-th entry of X (m) j (i) is the (( -1)d + k)-th coordinate of the vector X (m) j (i). With the above notations, we have

ETr exp t i∈K A X i = ETr e t S (0) 1 .
(5.16)

We are now in position to state the following lemma which will be a key step in the proof of Proposition 5.6 and allows decoupling when we deal with the Laplace transform of a sum of self adjoint random matrices. Lemma 5.7. Assume that (5.5) holds. Then for any t > 0 and any k ∈ {0, . . . , -1},

ETr exp t 2 k j=1 S (k) j ≤ 1 + β d k +1 e tM n 2 -k 2 k ETr exp t 2 k+1 j=1 S (k+1) j
, where (S (k) j ) j=1,...,2 k is the family of mutually independent random matrices defined in (5.15). This is a decoupling lemma in the sense that, for a given k ∈ {0, . . . , -1}, we can compare the Laplace transform of the sum of the 2 k independent matrices S (k) j 's associated with the blocks K k,j 's, by that of the 2 k+1 independent matrices S (k+1) j 's associated with the smaller blocks K k+1,j 's.

For a better understanding of this zooming process, we recall that for any j ∈ {1, . . . , 2 k }, K k,j = K k+1,2j-1 ∪ K k+1,2j and we write

S (k) j = i∈K k,j X (k) j (i) = i∈K k+1,2j-1 X (k) j (i) + i∈K k+1,2j X (k) j (i) .
The lemma replaces S , where we recall that S (k+1) 2j-1 and S (k+1) 2j are independent and have respectively, by (5.14), the same distribution as

i∈K k+1,2j-1 X (k) j (i) and i∈K k+1,2j X (k) j (i) .
However, the replacement of each S (k) j is done up to an error depending on β d k +1 and Card(K k,j ) = Card(K k,1 ) = n 2 -k . We recall that β d k +1 ≤ e -cd k ; so the larger the gap d k is, the smaller β d k +1 and the error eventually are. The Cantor-like set K A is constructed, in Subsection 5.3.2, in such a way that for each k ∈ {0, . . . , -1}, β d k +1 compensates e tM n 2 -k in order to get at the end satisfying error bounds.

We give now the proof, which explains how this process is done and how, for the replacement of each S (k) j , the factor 1 + β d k +1 e tM n 2 -k appears.

Proof of Lemma 5.7. As mentioned before: for any k ∈ {0, . . . , -1} and any j ∈ {1, . . . ,

2 k }, K k,j = K k+1,2j-1 ∪ K k+1,2j
where the union is disjoint. Therefore, we set the following notation

S (k) j = S (k) j,1 + S (k) j,2 and V (k) j = (V (k) j,1 , V (k) j,2 ) ,
where

S (k) j,1 := i∈K k+1,2j-1 X (k) j (i) , S (k) j,2 := i∈K k+1,2j X (k) j (i), V (k) j,1 := X (k) j (i) , i ∈ K k+1,2j-1 and V (k) j,2 := X (k) j (i) , i ∈ K k+1,2j .
Note that there are exactly d k integers separating K k+1,2j-1 and K k+1,2j and that for any

i ∈ {1, . . . , 2 k+1 }, Card(K k+1,i ) = Card(K k+1,1 ) = 2 -(k+1) n .
Recall that the probability space is assumed to be large enough to contain a sequence (δ i , η i ) i∈Z of i.i.d. random variables uniformly distributed on [0, 1] 2 independent of the sequence (X i ) i≥0 . Therefore according to the remark on the existence of the family (V (m) j ) 1≤j≤2 m made at the beginning of Section 5.3.3, the sequence (η i ) i∈Z is independent of (V (m) j ) 1≤j≤2 m . Lemma A.17 allows the following coupling: there exists a random vector V

(k) 1,2 of size d 2 Card(K k+1,2 ) measurable with respect to σ(η 1 ) ∨ σ(V (k) 1,1 ) ∨ σ(V (k) 1,2 ) such that 1. V (k) 1,2 has the same distribution as V (k) 1,2 , 2. V (k) 1,2 is independent of σ(V (k) 1,1 ), 3. P( V (k) 1,2 = V (k) 1,2 ) ≤ β d k +1 .
We note that by Lemma A.17, P(

V (k) 1,2 = V (k) 1,2 ) = β σ(V (k) 1,1 ), σ(V (k) 1,2
) which, by relation (A.26), depends only on the joint distribution of (V

(k) 1,1 , V (k)
1,2 ). Therefore, by (5.14),

β σ(V (k) 1,1 ), σ(V (k) 1,2 ) = β σ(X i , i ∈ K k+1,1 ), σ(X i , i ∈ K k+1,2 ) ≤ β d k +1 . Note that by construction, V (k) 1,2 is independent of σ V (k) 1,1 , (V (k) j ) j=2,...,2 k . 123
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For any i ∈ K k+1,2 , let

X (k) 1,2 (i) = π (k+1) i ( V (k) 1,2 ) and S (k) 1,2 = i∈K k+1,2 X (k) 1,2 (i) , where X (k) 1,2 (i) is the d × d random matrix associated with the random vector X (k) 1,2 (i).
With the notations above, we have

ETr exp t 2 k j=1 S (k) j = E 1 V (k) 1,2 =V (k) 1,2 Tr exp t 2 k j=1 S (k) j + E 1 V (k) 1,2 =V (k) 1,2 Tr exp t 2 k j=1 S (k) j ≤ ETr exp tS (k) 1,1 + t S (k) 1,2 + t 2 k j=2 S (k) j + E 1 V (k) 1,2 =V (k) 1,2 Tr exp t 2 k j=1 S (k) j . (5.17) (With usual convention, 2 k j= S (k) j
is the null vector if > 2 k ). By Golden-Thompson inequality, we have Tr exp t

2 k j=1 S (k) j ≤ Tr e tS (k) 1 • e t 2 k j=2 S (k) j . Since σ V (k) j , j = 2, . . . , 2 k is independent of σ V (k) 1,1 , V (k) 1,2 , V (k) 1,2 , we get E 1 V (k) 1,2 =V (k) 1,2 Tr exp t 2 k j=1 S (k) j ≤ Tr E 1 V (k) 1,2 =V (k) 1,2 e t S (k) 1 • E exp t 2 k j=2 S (k) j .
Note now the following fact: if U is a d × d self-adjoint random matrix with entries defined on (Ω, A, P) and such that λ max (U) ≤ b a.s., then for any Γ ∈ A, 1 Γ e U e b I d 1 Γ a.s. and so λ max E 1 Γ e U ≤ e b P(Γ) .

Therefore if we consider V a d × d self-adjoint random matrix with entries defined on (Ω, A, P), the following inequality is valid:

Tr E(1 Γ e U )E(e V ) ≤ e b P(Γ) • ETr(e V ) .
(5.18)

Notice now that (X

(k) 1 (i) , i ∈ K k,1
) has the same distribution as (X i , i ∈ K k,1 ). Therefore λ max (X (k) 1 (i)) ≤ M a.s. for any i, implying by Weyl's inequality that

λ max (t S (k) 1 ) ≤ tM Card(K k,1 ) = tM 2 -k n a.s. Hence, applying (5.18) with b = tM 2 -k n , Γ = { V (k) 1,2 = V (k) 1,2 } and V = t 2 k j=2 S (k)
j , and taking into account that P(Γ) ≤ β d k +1 , we obtain

E 1 V (k) 1,2 =V (k) 1,2 Tr exp t 2 k j=1 S (k) j ≤ β d k +1 e tn 2 -k M ETr exp t 2 k j=2 S (k) j . ( 5 

.19)

Note now that if V and W are two independent random matrices with entries defined on (Ω, A, P) and such that E(W) = 0 then ETr exp(V) = ETr exp E V + W|σ(V) .

Since Tr • exp is convex, it follows from Jensen's inequality applied to the conditional expectation that

ETr exp(V) ≤ E E Tr e V+W |σ(V) = E T r e V+W . (5.20) Since E(X (k) 1 (i)) = E(X i ) = 0 for any i ∈ K k,1 and since σ(S (k) 1,1 , S (k) 
1,2 ) and σ(S (k) j , j = 2, . . . , 2 k ) are independent, we can apply the inequality above with W = t(S

(k) 1,1 + S (k) 1,2 ) and V = t 2 k j=2 S (k) j .
Therefore, starting from (5.19) and using (5.20), we get

E 1 V (k) 1,2 =V (k) 1,2
Tr exp t

2 k j=1 S (k) j ≤ β d k +1 e tn 2 -k M ETr exp t S (k) 1,1 + S (k) 1,2 + 2 k j=2 S (k) j . (5.21)
Starting from (5.17) and considering (5.21), it follows that

ETr exp t 2 k j=1 S (k) j ≤ (1 + β d k +1 e tn 2 -k M ) ETr exp t S (k) 1,1 + S (k) 1,2 + 2 k j=2 S (k) j . (5.22) Having replaced S (k) 1 by S (k) 1,1 + S (k)
1,2 , the proof of Lemma 5.7 will then be achieved after having iterated this procedure 2 k -1 times more. For the sake of clarity, let us explain the way to go from the j-th step to the (j + 1)-th step.

At the end of the j-th step, assume that we have constructed with the help of the coupling Lemma A.17, j random vectors V (k) i,2 , i = 1, . . . , j, each of dimension d 2 Card(K k+1,1 ) and satisfying the following properties: for any i in {1, . . . , j},

V (k) i,2 is a measurable function of (V (k) i,1 , V (k) i,2 , η i ), it has the same distribution as V (k) i,2 , is such that P( V (k) i,2 = V (k) i,2 ) ≤ β d k +1 , is independent of V (k) i,1 and it satisfies ETr exp t 2 k j=1 S (k) j ≤ 1 + β d k +1 e tn 2 -k M j • ETr exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+1 S (k) i , (5.23) 
where we have implemented the following notation:

S (k) i,2 = r∈K k+1,2i X (k)
i,2 (r) .

(5.24)

In the notation above, X

i,2 (r) is the d × d random matrix associated with the random vector X

(k) i,2 (r) of K d 2 defined by X (k) i,2 (r) = π (k+1) r ( V (k) i,2 ) for any r ∈ K k+1,2i .
Note that the induction assumption above has been proved at the beginning of the proof for j = 1. Since, for any m ∈ {1, . . . , }, (V (m) j ) 1≤j≤2 m is a family of independent random vectors, then for any i ∈ {1, . . . , j}, V

(k) i,2 is also independent of σ (V (k) ,1 ) =1,...,i , ( V (k) ,2 ) =1,...,i-1 , (V (k) ) =i+1,...,2 k .
Now to show that the induction hypothesis also holds at step j + 1, we proceed as follows. By Lemma A.17, there exists a random vector V

(k) j+1,2 of size d 2 Card(K k+1,1 ), measurable with respect to σ(η j+1 ) ∨ σ(V (k) j+1,1 ) ∨ σ(V (k) j+1,2 ) such that: 1. V (k) j+1,2 has the same distribution as V (k) j+1,2 , 2. V (k) j+1,2 is independent of σ(V (k) j+1,1 ), 3. P( V (k) j+1,2 = V (k) j+1,2 ) ≤ β d k +1 .
The inequality in the last item above comes again from (5.14) and the equivalent definition (A.26) of the β-coefficients. Note that 2) are independent by construction. With the notation (5.24), we have the following decomposition:

σ (V (k) i,1 ) i=1,...,j+1 , ( V (k) i,2 ) i=1,...,j , (V (k) i ) i=j+2,...,2 k and σ( V (k) j+1,
ETr exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+1 S (k) i ≤ ETr exp t j+1 i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+2 S (k) i + E 1 V (k) j+1,2 =V (k) j+1,2 Tr exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+1 S (k) i . (5.25) Using Golden-Thompson inequality, we have Tr exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+1 S (k) i ≤ Tr exp t S (k) j+1 • exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+2 S (k) i .
Since the sigma algebra generated by (V

(k) i,1 ) i=1,...,j , ( V (k) i,2 ) i=1,...,j , (V (k) i ) i=j+2,...,2 k is in- dependent of that generated by V (k) j+1,1 , V (k) j+1,2 , V (k) j+1,2 , we get E 1 V (k) j+1,2 =V (k) j+1,2 Tr exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+1 S (k) i ≤ Tr E 1 V (k) j+1,2 =V (k) j+1,2 e t S (k) j+1 • E exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+2 S (k) i . (5.26) By Weyl's inequality, λ max t S (k) j+1 ≤ t r∈K k,j+1 λ max (X (k) j+1 (r)) a.s. As V (k) j+1 = D (X i , i ∈ K k,j+1
) and λ max (X i ) ≤ M a.s. for any i, it follows that

λ max t S (k) j+1 ≤ tM Card(K k,j+1 ) = tM 2 -k n k a.s. Moreover, as V (k) j+1,2 = D V (k) j+1,2 and V (k) j+1 = D (X i , i ∈ K k,j+1 ), then E(S (k) j+1,1 + S (k) j+1,2 ) = 0 .
We also notice that S

(k) j+1,1 + S (k) j+1,2 is independent of j i=1 (S (k) i,1 + S (k) i,2 ) + 2 k i=j+2 S (k) 
i . Therefore, starting from (5.26), an application of inequality (5.18) 

with b = tM 2 -k n , Γ = { V (k) j+1,2 = V (k) j+1,2 } and V = t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+2 S (k) i ,
followed by an application of inequality (5.20) 

with W = t(S (k) j+1,1 + S (k) j+1,2 ), gives E 1 V (k) j+1,2 =V (k) j+1,2 Tr exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+1 S (k) i ≤ β d k +1 e tn 2 -k M × ETr exp t j+1 i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+2 S (k) i . (5.27)
Therefore, starting from (5.25) and using (5.27), we get

ETr exp t j i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+1 S (k) i ≤ 1 + β d k +1 e tn 2 -k M × ETr exp t j+1 i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+2 S (k) i , which combined with (5.23) implies that ETr e t 2 k j=1 S (k) j ≤ 1 + β d k +1 e tn 2 -k M j+1 × ETr exp t j+1 i=1 (S (k) i,1 + S (k) i,2 ) + t 2 k i=j+2 S (k) i ,
proving the induction hypothesis for the step j + 1. Finally 2 k steps of the procedure lead to

ETr exp t 2 k j=1 S (k) j ≤ 1 + β d k +1 e tn 2 -k M 2 k × ETr exp t 2 k i=1 (S (k) i,1 + S (k) i,2 ) . (5.28)
To end the proof of the lemma it suffices to notice the following facts: the random vectors V

(k) i,1 , V (k) i,2 , i = 1, . . . , 2 k , are mutually independent and such that V (k) i,1 = D V (k+1) 2i-1 and V (k) i,2 = D V (k+1) 2i
. In addition, the random vectors V (k+1) i , i = 1, . . . , 2 k+1 , are mutually independent. This obviously implies that

ETr exp t 2 k i=1 (S (k) i,1 + S (k) i,2 ) = ETr exp t 2 k+1 i=1 S (k+1) i ,
which ends the proof of the lemma.

Proof of Proposition 5.6

Having proved the decoupling Lemma 5.7, we are now ready to prove Inequality (5.8) with K A defined in Section 5.3.2.

Let us prove it first for the case where 0 < tM ≤ 4/A. We recall that E(X i ) = 0 for any i ∈ K A and we note that by Weyl's inequality,

λ max i∈K A X i ≤ i∈K A λ max X i ≤ AM a.s.
Hence, applying Lemma A.13 applied with K = {1} and U 1 = i∈K A X i , we get for any

t > 0, ETr exp t i∈K A X i ≤ d exp t 2 g(tAM )λ max E i∈K A X i 2 .
Therefore, we get by the definition of v 2 , the fact that g is increasing, tAM < 4 and

g(4) ≤ 3.1, that ETr exp t i∈K A X i ≤ d exp(3.1 × At 2 v 2 ) ,
proving then (5.8).

We prove now Inequality (5.8) for the case where 

(t) = inf k ∈ Z : A(1 -δ) k 2 k ≤ min κ (tM ) 2 , A .
(5.29)

Note that if t 2 M 2 ≤ κ/A then k(t) = 0 whereas k(t) ≥ 1 if t 2 M 2 > κ/A. In addition by the selection of A , A((1 -δ)/2) < 4/δ. Therefore k(t) ≤ A since (tM ) 2 ≤ cδ/32.
Taking into account (5.16) and that

K A = K 0,1 = K 1,1 ∪ K 1,2 , we apply Lemma 5.7 for k = 0, ETr exp t i∈K A X i = ETr e tS (0) j ≤ 1 + β d 0 +1 e tM n 2 ETr e tS (1) 1 +tS (1) 2 
, where we note that S 2 are independent and have respectively the same distribution as i∈K 1,1 X i and i∈K 1,2 X i as explained in (5.14) and (5.15).

Considering the selection of k(t) in (5.29) and applying Lemma 5.7 up to k(t) -1, we Let m q,p = [q/(2p)]. For any j ∈ {1, . . . , 2 k(t) }, we divide K k(t),j into 2m q,p consecutive intervals (J (k(t)) j,i , 1 ≤ i ≤ 2m q,p ) each containing p consecutive integers plus a remainder interval J (k(t)) j,2mq,p+1 containing r = q -2pm q,p consecutive integers. Note that this last interval contains at most 2p -1 integers. Let X (k(t)) j (k) be the d × d random matrix associated with the random vector X (k(t)) j (k) defined in (5.15) and define 

Z j,i := Z (k(t)) j,i = k∈K k(t),j ∩J (k(t)) j,i X (k(t)) j (k) . ( 5 
U j,i := U (k(t)) j,i = X (k(t)) j (k) , k ∈ K k(t),j ∩ J (k(t)) j,i
(5.34) and

W j := W (k(t)) j = U j,i , i ∈ {1, . . . , 2m q,p + 1} .
Proceeding by induction and using the coupling lemma A.17, one can construct random vectors U * j,2i , j = 1, . . . , 2 k(t) , i = 1, . . . , m q,p , that satisfy the following properties:

(i) (U * j,2i , (j, i) ∈ {1, . . . , 2 k(t) } × {1, . . . , m q,p }) is a family of mutually independent random vectors, (ii) U * j,2i has the same distribution as U j,2i , (iii) P(U * j,2i = U j,2i ) ≤ β p+1 .

Let us explain the construction. Recall first that (Ω, A, P) is assumed to be rich enough to contain a sequence (η i ) i∈Z of i.i.d. random variables with uniform distribution over [0, 1] independent of (X i , δ i ) i∈Z where we recall that the sequence (δ i ) i∈Z has been used to construct the independent random matrices S (k(t)) j , j = 1, . . . , k(t), involved in inequality (5.30).

For any j ∈ {1, . . . , 2 k(t) }, let U * j,2 = U j,2 , and construct the random vectors U * j,2i , i = 2, . . . , m q,p , recursively from (U * j,2 , 1 ≤ ≤ i -1) as follows. According to Lemma A.17, there exists a random vector U * j,2i such that U * j,2i = f i,j (U * j,2 ) 1≤ ≤i-1 , U j,2i , η i+(j-1)2 k(t) (5.35) where f i,j is a measurable function, U * j,2i has the same law as U j,2i , is independent of σ U * j,2 , 1 ≤ ≤ i -1 and

P(U * j,2i = U j,2i ) = β σ U * j,2 , 1 ≤ ≤ i -1 , σ(U j,2i ) ≤ β p+1 .
By construction, for any fixed j ∈ {1, . . . , 2 k(t) }, the random vectors U * j,2i , i = 1, . . . , m q,p , are mutually independent. In addition, by (5.35) and the fact that (W j , j = 1, . . . , 2 k(t) ) is a family of mutually independent random vectors, we note that (U * j,2i , (i, j) ∈ {1, . . . , m q,p }× {1, . . . , 2 k(t) }) is also so. Therefore, Items (i) and (ii) above are satisfied by the constructed random vectors U * j,2i i = 1, . . . , m q,p , j = 1, . . . , 2 k(t) . Moreover, by (5.35), we have

σ U * j,2 , 1 ≤ ≤ i -1 ⊆ σ U j,2 , 1 ≤ ≤ i -1 ∨ σ η +(j-1)2 k(t) , 1 ≤ ≤ i -1 .
Since (η i ) i∈Z is independent of (X i , δ i ) i∈Z , we have

β σ U * j,2 , 1 ≤ ≤ i -1 , σ(U j,2i ) ≤ β σ U j,2 , 1 ≤ ≤ i -1 , σ(U j,2i ) .
By relation (A.26), the quantity β(σ(U j,2 , 1 ≤ ≤ i -1), σ(U j,2i )) depends only on the joint distribution of ((U j,2 ) 1≤ ≤i-1 , U j,2i ). By the definition (5.34) of the U j, 's, the definition (5.15) of the X (k(t)) j

(k)'s and (5.14), we infer that

β σ U j,2 , 1 ≤ ≤ i -1 , σ(U j,2i ) = β σ X k , k ∈ ∪ i-1 =1 K k(t),j ∩ J (k(t)) j,2
, σ X k , k ∈ K k(t),j ∩ J (k(t)) j,2i

≤ β p+1 .

So, overall, the constructed random vectors U * j,2i i = 1, . . . , m q,p , j = 1, . . . , 2 k(t) , satisfy also Item (iii) above.

Denote now

X * j,2i ( ) = π (U * j,2i )
where π (m) i is the -th canonical projection from K pd 2 onto K d 2 , namely: for any vector x = (x i , i ∈ {1, . . . , p}) of K pd 2 , π (x) = x . Let X * j,2i ( ) be the d × d random matrix associated with X * j,2i ( ) and define, for any i = 1 . . . , m q,p ,

Z * j,2i = ∈K k(t),j ∩J (k(t)) j,2i
X * j,2i ( ) .

Recalling the definition of Z j,2i in (5.32), we observe that by Item (ii), Z * j,2i = D Z j,2i , and that by Item (i), the random matrices Z * j,2i , i = 1, . . . , m q,p , j = 1, . . . , 2 k(t) , are mutually independent.

The aim now is to prove that the following inequality is valid: λ max X k ≤ 2tm q,p pM ≤ tqM .

ETr exp 2t
(5.39) Therefore, applying (5.18) with b = tqM , Γ = {∃i ∈ {2, . . . , m q,p } : U ,2i = U * ,2i } and Starting from (5.38) and taking into account (5.40), inequality (5.37) follows and so does inequality (5.36).

V = 2t
With the same arguments as above and with obvious notations, we infer that ETr exp 2t

2 k(t)
j=1 m q,p+1 i=1 Z j,2i-1 ≤ 1 + m q,p e 2qtM β p+1

2 k(t)
ETr exp 2t

2 k(t)
j=1 m q,p+1 i=1 Z * j,2i-1 . (5.41)

Proof of the Bernstein-type inequality

Note that to get the above inequality, we used instead of (5.39) that, almost surely,

λ max 2t m q,p+1 i=1 Z ,2i-1 ≤ 2t m q,p+1
i=1 k∈K k(t), ∩J (k(t)) ,2i-1 λ max X k ≤ 2M t(m q,p p + q -2pm q,p ) = 2M t(q -pm q,p ) ≤ M t(q + 2p) ≤ 2tqM .

Starting from (5.30) and taking into account (5.33), (5.36) Note that the random vectors (Z * j,2i-1 ) i,j are mutually independent and centered. Moreover, 2λ max (Z * j,2i-1 ) ≤ 2M p ≤ 4 t a.s.

Therefore by using Lemma A.13 together with the definition of v 2 and the fact that 2 k(t) (m q,p + 1)p ≤ 2 k(t) q ≤ A , we get

ETr exp 2t where we have used that A/2 ≤ q for the second inequality, and that log 2 A ≤ c/(32tM ),

A ≥ 2 and e -3c/(16tM ) ≤ 16tM/(3c) for the last one.

Either (tM ) 2 > κ/A and in this case k(t) ≥ 1 and by using (5.12) and the definition of k(t), we have

q ≥ A 2 k(t)+1 ≥ κ 4(tM ) 2 .
(5.46)

If in addition q ≥ 4/(tM ) then p = [2/(tM )] ≥ 1/tM , and by (5.11) and the definition of k(t), q ≤ 2A (1 -δ) 2 k(t) ≤ 2κ (tM ) 2 . 

Proof of the Bernstein-type inequality

1 + β d k +1 e tM n 2 -k 2 k ≤ k(t)-1 k=0 2 k exp -c Aδ(1 -δ) k 2 k+1 + 2tM A(1 -δ) 2 k ≤ k(t)-1 k=0 2 k exp -c Aδ(1 -δ) k 2 k+2 ≤ 2 k(t) exp - Acδ(1 -δ) k(t)-1 2 k(t)+1 .
By the definition of k(t), we have A (1 -δ) k(t)-1 2 k(t)-1 > κ (tM ) 2 . Therefore 2 k(t) ≤ 2A (tM ) 2 κ .

Moreover Therefore Inequality (5.8) also holds in the case where 4/A < tM ≤ min 1 2 , c log 2 32 log A . This ends the proof of the proposition.

Acδ (1 -δ) k(t)

Proof of the Bernstein Inequality

Let A 0 = A = n and Y (0) (k) = X k for any k = 1, . . . , A 0 . Let K A 0 be the discrete Cantor type set as defined from {1, . . . , A 0 } in Section 5.3.2. Let A 1 = A 0 -Card(K A 0 ) and define for any k = 1, . . . , A 1 , Y (1) (k) = X i k where {i 1 , . . . , i A 1 } = {1, . . . , A} \ K A . Now for i ≥ 1, let K A i be defined from {1, . . . , A i } exactly as K A is defined from {1, . . . , A}. Set A i+1 = A i -Card(K A i ) and {j 1 , . . . , j A i+1 } = {1, . . . , A i } \ K A i . Define now Noting that, for any i ∈ {0, . . . , L-1}, the self-adjoint random matrices (Y (i) (k)) k satisfy the condition (5. 

Y (i+1) (k) = Y (i)
σ i = 2 √ n 2 i/2 2v + √ 3 × 2 i M n √ c for 0 ≤ i ≤ L -1 and σ L = v √ 2 .
By the above choice of L, we get The proof follows by considering (A.1) and (A.2) together with inequalities (A.4) and (A.5).

L i=0 κ i ≤ M L-1 i=0 1 h(c,

Control of the partial derivatives of the Stieltjes transform of Gram matrices

We recall from Definition 2.9 that the Stieltjes transform of a Gram matrix can be written as a function f of the matrix entries:

f (x) = 1 N Tr A(x) -zI -1
, where

A(x) = A(x T 1 , . . . , x T n ) = 1 n n k=1
x k x T k .

In this section, we give some upper bounds for the partial derivatives of f and we show how they can be computed. We start by introducing some notations: space but taking values in R m . Assume in addition that Z is independent of X and Y. Then, for any permutation π : R d+m → R d+m , we have By taking the expected value and taking into account the hypothesis of independence and the fact that X and Y are centered at expectations and have the same covariance structure, we obtain, for all 1 ≤ j ≤ d E((X j -Y j ) ∂ j f (0 d , Z)) = (EX j -EY j ) E∂ j f (0 d , Z) = 0 and, for all 1 ≤ k, j ≤ d, It remains to note that the result remains valid for any permutation of variables (X, Z). The variables in X, Z can hold any positions among the variables in function f since we just need all the derivatives of order three to be uniformly bounded. The difference in the proof consists only in re-denoting the partial derivatives; for instance instead of ∂ j we shall use ∂ k j where k j , 1 ≤ k j ≤ d + m denotes the index of the variable X j in f (x 1 , x 2 , ..., x d+m ). 

E(X k X j -Y k Y j )∂ j ∂ k f (0 d , Z) = (E(X k X j ) -E(Y k Y j ))E∂ j ∂ k f (0 d , Z) = 0 .
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 11 Figure 1.1 -Construction of the Cantor-type set K n

Chapter 2 .

 2 Matrices associated with functions of i.i.d. variables setting Xi,m = u i, , = 1, . . . , k N,m T (2.24)

  22) and (2.23) but by replacing each X(i) k,m by Z (i) k,m . For any i ∈ {1, . . . , n}, we then define the random vectors Zi,m of dimension N , as follows: Zi,m = (v i, , = 1, . . . , k N,m ) T . (2.36) Let now Zn,m = Z1,m | . . . | Zn,m and Ḡn,m = 1 n Zn,m ZT n,m .

Chapter 2 .

 2 Matrices associated with functions of i.i.d. variables following convergence: for any z ∈ C + , lim m→∞ lim sup n→∞ E S Ḡn,m (z) -E S Gn,m (z) = 0.

Proposition 2 . 8 .

 28 Provided that lim n→∞ N/n = c ∈ (0, ∞) then for any z ∈ C + , lim n→+∞ E S Bn,m (z) -E S Ḡn,m (z) = 0 .

Definition 2 . 10 .

 210 Let d 1 and d 2 be two positive integers. Let A = (a 1 , . . . , a d 1 ) and B = (b 1 , . . . , b d 2 ) be two real valued row vectors of respective dimensions d 1 and d 2 . We define A ⊗ B as being the transpose of the Kronecker product of A by B. Therefore

. 5 ) 3 . 1 .

 531 Theorem Let X n and G n be the symmetric matrices defined in (3.2) and (3.5) respectively. Then, for any z ∈ C + , lim n→∞ S Xn (z) -E S Gn (z) = 0 almost surely.

Theorem 3 . 5 .

 35 ) associated with a real-valued centered Gaussian random field (G k, ) (k, )∈Z 2 , with covariance function given by(3.4). Let B N be defined by(3.12) and H N by (3.13) Then, provided that N, p → ∞ such that N/p → c ∈ (0, ∞), for any z ∈ C + , lim n→∞ S B N (z) -E(S H N (z) = 0 almost surely.(3.14) 

Corollary 3 . 8 .

 38 Let (a n ) n∈Z be a sequence of numbers such that k∈Z |a k | < ∞ and define

2

 2 and defined by (3.2). Then (3.6) holds, where F is a non-random distribution function whose Stieltjes transform satisfies the relation given in Remark 3.4 with f (x) = ξ 0,0 2 k∈Z j∈Z a j a j+k e 2πikx .

,r)∈Z 2 bB 2 ( 2 b

 222 i,r b i+t,r+t and i,r b r+t,i+t .

. 26 )

 26 Then, for any z ∈ C + , lim n→∞ S Xn (z) -E(S Gn (z) = 0 almost surely,(3.27) 

. 29 )

 29 We first show that, for any z ∈ C + , lim m→∞ lim sup n→∞ S Xn (z) -S X

2 →

 2 0 as m → ∞ , (3.32) which combined with (3.31) proves (3.30).

Theorem 4 . 2 .Theorem 4 . 3 .

 4243 Let B n and G n be the matrices defined in (4.3) and (4.6) respectively. Provided that lim n→∞ N/n = c ∈ (0, ∞) and lim n→∞ β n = 0, then for any z ∈ C + ,lim n→∞ |E(S Bn (z)) -E(S Gn (z))| = 0.The above Theorem allows us to reduce the study of the expectation of the LSD of B n to that of a Gram matrix, being the sum of independent rank-one matrices associated with a Gaussian process, without requiring any rate of convergence to zero of the correlation between the entries nor of the β-mixing coefficients. Let B n and G n be the matrices defined in (4.3) and (4.6) respectively. Provided that lim n→∞ N/n = c ∈ (0, ∞) and that (4.4) is satisfied, then for any z ∈ C + , lim n→∞ |S Bn (z) -S Gn (z)| = 0 a.s. (4.7)

Theorem 4 . 4 .

 44 Provided that lim n→∞ N/n = c ∈ (0, ∞) and lim n→∞ β n = 0, then for any z ∈ C lim n→∞ |S An (z) -S Gn (z)| = 0 a.s. (4.10) Moreover, if (X k ) k∈Z admits a spectral density f , then, with probability one, µ An converges weakly to a probability measure whose Stieltjes transform S = S(z) (z ∈ C + ) satisfies equation (4.8).

S

  Bn (z) -S Bn,m (z) = 0 a.s. (4.17) and then lim n→∞ S Bn,m (z) -E S Bn,m (z) = 0 a.s. (4.18)

Proposition 4 . 8 .

 48 Let Bn,m and B * n,m be defined in (4.37) and (4.45) respectively. Assuming that lim n→∞ N/n = c ∈ (0, ∞) and lim n→∞ β n = 0 then for any z ∈ C + , lim m→+∞ lim sup M →+∞ lim sup n→+∞ E S Bn,m (z) -E S B * n,m (z) = 0. (4.46)

  .54) Now, we shall construct a matrix Z n,m having the same block structure as the matrix X * n,m . With this aim, we let for = 1, . . . , k N ,I = {( -1)(p + 3m) + 1, . . . , (-1)(p + 3m) + p} and let Z (i) k,m be defined for any 1 ≤ i ≤ n and 1 ≤ k ≤ N by

Proposition 4 . 9 .

 49 .55) Provided that lim n→∞ n/N = c ∈ (0, ∞), we have by Proposition 4.2 in [8] that for any z ∈ C + , lim m→∞ lim sup n→∞ E S Gn,m (z) -E S Gn,m (z) = 0. In order to prove (4.52), we shall prove for any z ∈ C + , lim n→+∞ E S B * n,m (z) -E S Gn,m (z) = 0 and then lim m→∞ lim sup M →∞ lim sup n→∞ E S Gn (z) -E S Gn,m (z) = 0 . The technique followed to prove the first convergence is based on Lindeberg's method by blocks, whereas, for the second, it is based on the Gaussian interpolation technique. Provided that N/n → c ∈ (0, ∞), then for any z = x + iy ∈ C + , lim n→+∞ E S B * n,m (z) -E S Gn,m (z) = 0. (4.56)

Proposition 4 . 10 .E

 410 Provided that lim n→∞ N/n = c ∈ (0, ∞) and lim n→∞ β n = 0 then for any z ∈ C + , S Gn (z) -E S Gn,m (z) = 0.
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Y

  (j k ) for k = 1, . . . , A i+1 , and setL = L n = inf{j ∈ N * , A j ≤ 2} . Note that, for any i ∈ {0, . . . , L -1}, A i > 2 and Card(K A i ) ≥ A i /2. Moreover A i ≤ n2 -i . With this choice of L, we have L ≤ log n -(i) (k) for 0 ≤ i ≤ L -1 and U L = A L k=1 Y (L) (k) ,For any positive x, let h(c, x)

2 ≤ 2 1 / 2

 212 Tr(AA T ) + Tr(BB T ) Hoffman-Wielandt's inequality, Corollary 7.3.8 in[START_REF] Horn | Matrix analysis[END_REF],N ∧n k=1 |s k -sk | 2 ≤ Tr(A -B)(A -B) T . Therefore, N ∧n k=1 |λ k -λk | ≤ 2 1/2 Tr(AA T ) + Tr(BB T )

3 ≤ L 3 p 2 6 p j=1 |a j | 3 + |b j | 3 .a 3 ≤ L 3 p 2 6 p j=1 |a j | 3 .(

 33333 |Ef (π(X, Z)) -Ef (π(Y, Z))| ≤ L j | 3 ) .The proof of this lemma is based on the following Taylor expansion for functions of several variables:Lemma A.8. Let g be a three times differentiable function from R p to R with continuous third partial order derivatives and such that|∂ i ∂ j ∂ k g(x)| ≤ L 3 for all i, j, k and x .Then, for any a = (a 1 , . . . , a p ) and b= (b 1 , . . . , b p ) in R p , g(b) -g(a) = p k=1 (b j -a j )∂ j g(0) b k -a j a k )∂ j ∂ k g(0) + R 3 (a,Proof of Lemma A.8. We use Taylor expansion of second order for functions with bounded partial derivatives of order three. It is well-known thatg(a) -g(0 p ) = p j=1 a j ∂ j g(0 p ) j a k ∂ j ∂ k g(0 p ) + R 3 (a) ,By writing a similar expression for g(b) -g(0 p ) and subtracting them the result follows.Proof of Lemma A.7. For simplicity of the notation we shall prove it first for f ((X, Z)) -f ((Y, Z)). We start by applying Lemma A.8 to real and imaginary part of f and obtainf (X, Z) -f (Y, Z) = d j=1 (X j -Y j )∂ j f (0 d , X k X j -Y k Y j ) ∂ j ∂ k f (0 d , Z) + R 3 ,

  It follows thatEf (X, Z) -Ef (Y, Z) = E(R 3 ) , with |E(R 3 )| ≤ L 3 d 2 3 d j=1 E(|X j | 3 ) + d j=1 E(|Y j | 3 ) .

E 2 |

 2 S Gn (z) -E S Wn (z) ≤ 2 n Im(z)| 3 1≤ ≤k≤n 1≤j≤i≤n |γ k-j, -i | .Using(3.8) and noticing that by stationarity γ u,v = γ -u,-v for any (u, v) ∈ Z 2 , we get1≤ ≤k≤n 1≤j≤i≤n |γ k-j, -i | ≤ 2 1≤ ≤k≤n 1≤j≤i≤k |γ k-j, -i | .Let m n be any positive integer less than n and write the following decomposition|γ k-j, -i | ,with the convention that u=k = 0 if k > . Straightforward computations lead to |γ k-j, -i | + n × m n n p=0 mn q=-mn |γ k-j, -i | . So overall, for any z ∈ C\R, E S Gn (z) -E S Wn (z) ≤ 4 | Im(z)| 3 |γ p,q | + p≥mn q∈Z |γ p,q | , for any z ∈ C\R. The lemma then follows by taking into account (3.7) and by selecting m n such that m n → ∞ and m n /n → 0. Proof of Proposition A.10. The Borel-Cantelli lemma together with Theorem 17.1.1 in [56] imply that, for any z ∈ C\R, lim n→∞ |S Gn (z) -E S Gn (z) | = 0 and lim n→∞ |S Wn (z) -E S Wn (z) | = 0 a.s.

  's inequality (2012) by relaxing the independence hypothesis.

	Notations	
	Acronyms	
	a.s.	almost surely
	i.i.d.	independent and identically distributed
	LSD	limiting spectral distribution
	Linear Algebra	
	I d , I d	identity matrix of order d
	A T	

  .33) follows by the martingale convergence theorem in L 2 (see for instance Corollary 2.2 in Hall and Heyde[34]

  Definition 2.11. Let d be a positive integer. If ∇ denotes the differentiation operator given by ∇ = ∂ ∂x 1 , . . . , ∂ ∂x d acting on the differentiable functions h : R d → R, we define, for any positive integer k, ∇ ⊗k in the same way as in Definition 2.10. If h

  . With this aim, we use the matrix Chernoff bound (1.12) and control the matrix Laplace transform

						n
		ETr exp t	X i
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	to get the following Bernstein type inequality. Let
		γ(c, n) =	log n log 2	max 2,	32 log n c log 2	.	(5.3)
	and	v 2 = sup K⊆{1,...,n}	1 CardK	λ max E

i∈K X i 2

  Obviously, this can be done by induction if we can show that, for any in {1, . . . , 2 k(t) }, ,2i =U * ,2i Tr exp(C -1, (t)) + E 1 ∃i∈{2,...,mq,p} : U ,2i =U * ,2i Tr exp(C -1, (t)) ≤ ETr exp(C , +1 (t)) + E 1 ∃i∈{2,...,mq,p} : U ,2i =U * ,2i Tr exp(C -1, (t)) . (5.38) Note that the sigma algebra generated by the random vectors ,2i ) i∈{1,...,mq,p} . This fact together with the Golden-Thomson inequality give E 1 ∃i∈{2,...,mq,p} : U ,2i =U * ,2i Tr exp C -1, (t) By Weyl's inequality and (5.14), we infer that, almost surely,

	To prove the inequality above, we set	
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									j=1	i=1	j=	i=1
	and we write						
	ETr exp(C -1, (t))					
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(U * (k) j,2i ) i∈{1,...,mq,p},j∈{1,..., -1} and (U

(k) j,2i ) i∈{1,...,mq,p}, j∈{ +1,...,2 k(t) } is independent of σ (U (k) ,2i , U * (k) × E 1 ∃i∈{2,...,mq,p} : U ,2i =U * ,2i exp 2t
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E(Z * ,2i ) = E(Z ,2i ) = 0 ,

then an application of inequality (5.20) yields E 1 ∃i∈{2,...,mq,p} : U ,2i =U * ,2i Tr exp(C -1, (t) ≤ β p+1 (m q,p -1)e qtM ETr exp(C , +1 (t)) .

(5.40) 
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  ≤ d exp(4 × 3.1 × At 2 v 2 ) .Several situations can occur. Either (tM ) 2 ≤ κ/A and in this case k(t) = 0 implying that A/2 ≤ q ≤ A ≤ κ/(tM ) 2 . If in addition q ≥ 4/(tM ) then p = [2/(tM )] ≥ 1/tM (since tM ≤ 1) and Since log 2 A ≤ c/(32tM ), A ≥ 2, and e -3c/(8tM ) ≤ 8tM/(3c), we get
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If otherwise q < 4/(tM ) then p = [q/2] ≥ q/4. Hence, since 2tM ≤ c/16 (since log A ≥ log 2) and tM > 4/A,

  where we have used that log 2 A ≤ c/(32tM ), A ≥ 2 and e -c/(4tM ) ≤ 4tM/c for the last inequality. Now if q < 4/(tM ) then p = [q/2] ≥ q/4. Hence, using again the fact that 2tM ≤ c/16 combined with (5.46), we get where we have used that log 2 A ≤ c 2 /(32tM ) 2 and A ≥ 2 for the last inequality. +1 e tM n 2 -k 2 k only in the case where (κ/A) 1/2 < tM , otherwise this term is equal to one. By taking into account (5.2), (5.10),(5.11) and the fact that tM ≤ cδ/8, we have
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	We handle now the term 1+β d k log k(t)-1 k=0 k(t)-1	
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  where we have used the fact that log 2 A ≤ c/(32tM ). So, overall, starting from (5.42) and considering the upper bounds (5.43), (5.44), (5.47) and (5.48), we getlog ETr exp t i∈K A X i ≤ log d + 4 × 3.1At 2 v 2 + 9(tM ) 2

			2 k(t)+1	-1	>	cκδ 4(tM ) 2 ≥	2κ tM	,
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  2) with the same constant c, we can apply Proposition 5.6 and get for any positive t satisfying tM < h(c, n/2 i ),log ETr exp(tU i ) ≤ log d + 4 × 3.1A i t 2 v 2 + 9(tM ) 2Recalling that A i ≤ n2 -i and noting that exp(-3c 32tM ) < (2 i /n)4 for tM < h(c, n/2 i ), we getlog ETr exp(tU i ) ≤ log d + 16t 2 v 2 nHence by the definition of v 2 , for any positive t such that tM < 1, we get log ETr exp(tU L ) ≤ log d + 2t 2 v 2 ≤ log d + 2t 2 v 2
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				c	exp -	3c 32tM	.	(5.50)

λ max U L ≤ M A L ≤ 2M .

Therefore by using Lemma A.13, for any positive t,

ETr exp(tU L ) ≤ d exp t 2 g(2tM )λ max E(U 2 L ) . i ) for 0 ≤ i ≤ L -1 and κ L = M and

  Taking into account (5.51) and (5.52), we get overall by Lemma A.15, that for any positive t such that tM < 1/γ(c, n),To end the proof of the theorem, it suffices to notice that for any positive x
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i ≥ x ≤ inf t>0 : tM ≤1/γ(c,n) exp -tx + γ n (t) ,

where γ n (t) is defined in

(5.53)

.
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the block B(k) replaced at the step k. Define then the vector X of R p 2 consisting of all the entries of B(k), the vector Y of R p 2 consisting of all the entries of B * (k) (in the same order we have defined the coordinates of X). Denote by Z the vector of R N -p 2 (where N = n(n + 1)/2) consisting of all the entries on and below the diagonal of X n (k -1) except the ones that are in the block matrix B(k). More precisely if (u, v) are such that B(k) = B u,v , then X = (b u,v (i, j)) j=1,...,p , i = 1, . . . , p and Y = (b * u,v (i, j)) j=1,...,p , i = 1, . . . , p where b u,v (i, j) and b * u,v (i, j) are defined in (3.55) and (3.56) respectively. In addition,

where E u,v is defined in (3.54). The notations above allow to write

where f is the function from R N to C defined by (A.17) and π : R N → R N is a certain permutation. Note that, by our hypothesis A 3 and our construction, the vectors X, Y and Z are independent. Moreover X and Y are centered at expectation, have the same covariance structure and finite moments of order 3. Applying then Lemma A.7 of the Appendix and taking into account (A.18), we derive that, for a constant C depending only on Im(z), Chapter 4

So overall,

Matrices associated with functions of β-mixing processes

In this chapter, we study the model of Gram matrices considered in [START_REF] Pfaffel | Limiting spectral distribution of a new random matrix model with dependence across rows and columns[END_REF] as well as sample covariance matrices. But we shall consider a more general setting in which the matrix entries come from a non-causal stationary process (X k ) k∈Z defined as follows: let (ε i ) i∈Z an absolutely regular process with β-mixing sequence (β k ) k≥0 and let g : R Z → R be a measurable function such that X k , which is defined for any k ∈ Z by

is a proper centered random variable having finite moment of second order; that is,

We first give a concentration inequality of the spectral measure allowing us to prove that, under an arithmetical decay condition on the β-mixing coefficients, the Stieltjes transform is concentrated almost surely around its expectation as n tends to infinity. This is a main step allowing us to replace the Stieltjes transform by its expectation.

Having this is done, the problem is reduced to proving that the latter converges we define the sequences ( X k,m,M ) k≥1 and ( Xk,m,M ) k≥1 as follows:

To soothe the notations, we shall write X k,m and Xk,m instead of X k,m,M and Xk,m,M respectively. Note that for any k ≥ 1,

where the last equality in (4.33) follows from the stationarity of (X k ) k . As Xk,m is σ(B 

with the usual convention that -1 k=0 a k = 1.

Note that in the inequality above, (S

is a family of mutually independent random matrices defined in (5.15). They are then constructed from a family (V t) mutually independent random vectors that satisfy (5.14). Therefore we have that, for any j ∈ 1, . . . ,

Moreover, according to the remark on the existence of the family (V

) 1≤j≤2 k(t) made at the beginning of Section 5.3.3, the entries of each random matrix S (k(t)) j are measurable functions of (X i , δ i ) i∈Z .

The rest of the proof consists of giving a suitable upper bound for

With this aim, let p be a positive integer to be chosen later such that 2p ≤ Card(K k(t),j ) := q .

(5.31)

Note that q = 2 -k(t) n and by (5.12)

Therefore if k(t) = 0 then q ≥ A/2 implying that q ≥ 2 (since we have 4/A < tM ≤ 1). Now if k(t) ≥ 1 and therefore if t 2 M 2 > κ/A, by the definition of k(t), we have q ≥ κ (tM ) 2 and then q ≥ 2 since (tM ) 2 ≤ κ/2. Hence in all cases, q ≥ 2 implying that the selection of a positive integer p satisfying (5.31) is always possible.

Appendix A

Technical Lemmas

In this Appendix, we collect some technical lemmas in addition to some preliminary materials and tools.

A.1 On the Stieltjes transform of Gram matrices

Proposition A.1. Let A and B be two N × n random matrices, we have for any

Proof. For any z = u + iv ∈ C + , we get by integrating by parts

Now, |F AA T (x) -F BB T (x)|dx is nothing but the Wasserstein distance of first order between the empirical measures of AA T and BB T . To be more precise, if λ 1 ≥ . . . ≥ λ N denote the eigenvalues of AA T and λ1 ≥ . . . ≥ λN denote those of BB T , then setting

we have that

where the infimum runs over the set of couples of random variables (X, Y ) on R × R such that X ∼ η n and Y ∼ ηn . Arguing as in Remark 4.2.6 in Chafaï et al. [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry, volume 37 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF], we have that

where π is a permutation belonging to the symmetric group S N of {1, . . . , N }. By standard arguments, involving the fact that if x, y, u, v are real numbers such that x ≤ y and u > v, then Therefore,

Since λ k = s 2 k and λk = s2 k where the s k 's and the sk 's are respectively the singular values of A and B, we get by Cauchy-Schwarz's inequality, Let i ∈ {1, . . . , n} and consider for any j, k ∈ {1, . . . , N }, the notations ∂ j instead of

k and so on. We shall also write A instead of A(x), f instead of f (x), and define G = (A -zI) -1 .

Lemma A.2. Let x be a vector of R nN with coordinates

where for any i ∈ {1, . . . , n},

Then, for any i ∈ {1, . . . , n} and any j, k, , m ∈ {1, . . . , N }, the following inequalities hold true:

Proof. To prove the lemma, we shall proceed as in Theorem 1.3 of Chatterjee [START_REF] Chatterjee | A generalization of the Lindeberg principle[END_REF] but with some modifications since his computations are made in case where A(x) is a Wigner matrix of order N .

Note that ∂ j A is the matrix with

as the j th row, its transpose as the j th column, and zero otherwise. Thus, the Hilbert-Schmidt norm of ∂ j A is bounded as follows:

Now, for any m, j ∈ {1, . . . , N } such that m = j, ∂ 2 mj A has only two non-zero entries which are equal to 1/n, whereas if m = j, it has only one non-zero entry which is equal to 2/n. Hence,

Finally, note that ∂ 3 lmj A ≡ 0 for any j, m, l ∈ {1, . . . , N }. Now, by using (2.38), it follows that, for any j ∈ {1, . . . , N },

In what follows, the notations {j ,m }={j,m} , {j ,m , }={j,m, } and {j ,m , ,k }={j,m, ,k} mean respectively the sum over all permutations of {j, m}, {j, m, } and {j, m, , k}. Therefore the first sum consists of 2 terms, the second one of 6 terms and the last one of 24 terms. Starting from (A.10) and applying repeatedly (2.38), we then derive the following cumbersome formulas for the partial derivatives up to the order four: for any j, m, , k ∈ {1, . . . , N },

We start by giving an upper bound for ∂ 2 mj f . Since the eigenvalues of G 2 are all bounded by v -2 , then so are its entries. Then, as Tr(G(∂ 

For a proof of these facts, one can check pages 55-58 in [START_REF] Wilkinson | The algebraic eigenvalue problem[END_REF].

Using the properties of the Hilbert-Schmidt norm recalled above, the fact that the eigenvalues of G are all bounded by v -1 , and (A.8), we then derive that

(A.14)

Starting from (A.11) and considering (A.13) and (A.14), the first inequality of Lemma A.2 follows.

Next, using again the above properties a. and b., the fact that the eigenvalues of G are all bounded by v -1 , (A.8) and (A.9), we get that

and

The same last bound is obviously valid for |Tr(G(

Hence, starting from (A.12) and considering (A.15) and (A.16), the second inequality of Lemma A.2 follows.

A.2 On the Stieltjes transform of symmetric matrices

A.2 On the Stieltjes transform of symmetric matrices

The following lemma is proved by Götze et al. allowing us to compare the Stieltjes transforms of two symmetric matrices.

Lemma A.3. (Lemma 2.1, [START_REF] Götze | Semicircle law for a class of random matrices with dependent entries[END_REF]) Let A n and B n be two symmetric n × n matrices. Then, for any z ∈ C\R,

where

On the partial derivatives of the Stieltjes transform of symmetric matrices

All along this section, we shall also use the fact that the Stieltjes transform of symmetric matrices is a smooth function of its entries. Indeed, let N = n(n + 1)/2 and write elements of R N as x = (x ij ) 1≤j≤i≤n . For any z ∈ C + , let f := f z be the function defined from R N to C by

where I n is the identity matrix of order n and A(x) is the matrix defined

The function f admits partial derivatives of all orders. In particular, denoting for any u ∈ {(i, j) , 1 ≤ j ≤ i ≤ n}, ∂ u f for ∂f n /∂x u , the following upper bounds hold: for any z = x + iy ∈ C + and any u, v, w in {(i, j) ,

One can check the equalities ( 20) and ( 21) in [START_REF] Chatterjee | A generalization of the Lindeberg principle[END_REF] together with the computations on pages 2074-2075 of the same paper.

We state now the following lemma by Merlevède and Peligrad [START_REF] Merlevède | On the empirical spectral distribution for matrices with long memory and independent rows[END_REF] allowing us to control the second order partial derivative of f : Lemma A.4. (Lemma 13, [START_REF] Merlevède | On the empirical spectral distribution for matrices with long memory and independent rows[END_REF]) Let z = x + iy ∈ C + and f := f z be defined by (A.17). Let {a ij , 1 ≤ j ≤ i ≤ n} and {b ij , 1 ≤ j ≤ i ≤ n} be two families of real numbers. Then, for any subset

.

A.2.1 On the Gaussian interpolation technique

Next lemma is a consequence of the well-known Gaussian interpolation trick.

Lemma A.5. Let (Y k, ) (k, )∈Z 2 and (Z k, ) (k, )∈Z 2 be two centered real-valued Gaussian processes. Let Y n be the symmetric random matrix of order n defined by

√ n Y n and define similarly the symmetric matrix Z n associated with (Z k, ) k, . Then, for any z = x + iy ∈ C + ,

where, for t ∈ [0, 1],

Moreover, we have for any z = x + iy,

Proof. Using the definition of f , we first write

Equality (A. [START_REF] Chatterjee | Concentration inequalities with exchangeable pairs[END_REF]) then follows from the usual interpolation trick (for an easy reference we cite Talagrand [START_REF] Talagrand | Mean field models for spin glasses[END_REF] Section 1.3, Lemma 1.3.1.). To obtain the above upper bound, it suffices then to take into account (A.18).

A.3 Other useful lemmas

We give now the following well-known lemma: Lemma A.6. If X, Y, Z are three random vectors defined on a probability space (Ω, K, P), such that X is independent of σ(Z) and σ(Y) ⊂ σ(Z). Then, for any measurable function g such that g(X, Y) 1 < ∞,

E(g(X, Y)|Z) = E(g(X, Y)|Y) a.s.

(A.20)

A.3.1 On Taylor expansions for functions of random variables

We give now the Taylor expansion for functions of random variables convenient for the Lindeberg method.

Lemma A.7. Let f be a three times differentiable function from R d+m to C, with continuous and bounded third order partial derivatives, i.e. there exists a constant L 3 such that

Let X and Y be two random vectors defined on a probability space (Ω, K, P) taking values in R d . Assume that both vectors belong to L 3 (R d ), are centered at expectation and have the same covariance structure. Let Z be a random vector defined on the same probability

A.3.2 On the behavior of the Stieltjes transform of some Gaussian matrices

We provide next a technical lemma on the behavior of the expected value of Stieltjes transform of symmetric matrices with Gaussian entries. In Lemma A.9 and Proposition A.10 below, we consider a stationary real-valued centered Gaussian random field (G k, ) (k, )∈Z 2 with covariance function given by: for any (k, ) ∈ Z 2 and any (i,

satisfying (3.7) and (3.8). We define then two symmetric matrices of order n,

where the entries g k, and W k, are defined respectively by

Lemma A.9. For any z ∈ C\R the following convergence holds:

As a consequence of this lemma and Theorem 2 in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF], we obtain the following result concerning the limiting spectral distribution of both G n and W n .

Proposition A.10. For any z ∈ C\R, S Gn (z) and S Wn (z) have almost surely the same limit, S(z), defined by the relations (3.9) and (3.10).

Proof of Lemma A.9. According to Lemma A.5, for any z ∈ C\R,

Taking into account (3.8), we get

Therefore, the proposition follows by Lemma A.9 combined with Theorem 2 in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] applied to E S Wn (z) . Indeed the entries (W k, ) 1≤k, ≤n of the matrix n 1/2 W n form a symmetric real-valued centered Gaussian random field whose covariance function satisfies (A.21). Hence relation (2.8) in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] holds. In addition, by (3.7) , condition (2.9) in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] is also satisfied. At this step, the reader should notice that Theorem 2 in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] also requires additional conditions on the covariance function γ k, (this function is denoted by B(k, ) in this latter paper), namely γ k, = γ ,k = γ ,-k . In our case, the first holds (this is (3.8)) but not necessarily γ ,k = γ ,-k since by stationarity we only have γ ,k = γ -,-k . However a careful analysis of the proof of Theorem 2 in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF] (and in particular of their auxiliary lemmas) or of the proof of Theorem 17.2.1 in [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF], shows that the only condition required on the covariance function to derive the limiting equation of the Stieljes transform is the absolute summability condition (2.9) in [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF]. It is noteworthy to indicate that, in Theorem 2 of [START_REF] Khorunzhy | On the eigenvalue distribution of the deformed Wigner ensemble of random matrices[END_REF], the symmetry conditions on the covariance function γ k, must only translate the fact that the entries of the matrix form a stationary symmetric real-valued centered Gaussian random field, so γ k, has only to satisfy

A.4 On operator functions

As matrices do not commute, certain tools available in the scalar setting cannot be straightforward extended. We shall recall in the first part of this section some preliminaries on the matrix exponential and logarithm.

A.4.1 On the matrix exponential and logarithm

We denote by 0 the zero matrix and by I d the d × d identity matrix. For a symmetric matrix A, we use the curly inequalities to denote the semi-definite ordering and we write 0 A if A is positive semi-definite and 0 ≺ A if A is positive definite. We recall that the matrix exponential is the operator mapping defined for any d × d self-adjoint matrix A by

and the matrix logarithm is defined as its inverse; i.e. log(e A ) := A. The matrix logarithm is operator monotone. Namely, for any two self-adjoint matrices A and B, 0 ≺ A B =⇒ log(A) log(B) .

Moreover, we note that the matrix logarithm is operator concave: for any t ∈ [0, 1] and any self-adjoint matrices A and B

We also note that the matrix exponential is positive but it is neither operator monotone nor convex. For more details on this issue, we refer to [START_REF] Bhatia | Matrix analysis[END_REF] and [START_REF] Hansen | Jensen's inequality for operators and Löwner's theorem[END_REF]. Having recalled the above functions, we can introduce now the following theorem, due to Lieb, on the concavity of the trace.

Theorem A.11. (Theorem 6, [START_REF] Lieb | Convex trace functions and the wigner-yanase-dyson conjecture[END_REF]) Let B be a self-adjoint matrix. The operator mapping

is concave on the positive definite cone.

The fact that the matrix exponential does not convert sums into products unless the matrices commute makes many properties of the exponential function inextensible to the matrix setting. However, the following Golden-Thompson inequality allows us to compare the Trace exponential function of the sum of two matrices by the trace of the product. More precisely, Lemma A.12. [START_REF] Golden | Lower bounds for the Helmholtz function[END_REF], [START_REF] Thompson | Inequality with applications in statistical mechanics[END_REF]) Let A and B be two self-adjoint matrices, then Tr e A+B ≤ Tr e A e B .

We note that this lemma fails for more than two matrices (see [START_REF] Bhatia | Matrix analysis[END_REF]).

We recall now some properties on the expectation of matrices. The trace and the expectation commute and for any random matrices A and B that are independent,

Moreover, the expectation preserves the semi-definite ordering:

and every operator convex function admits an operator Jensen's inequality (see [START_REF] Hansen | Jensen's inequality for operators and Löwner's theorem[END_REF]). In particular, applying Jensen's inequality for the Trace exponential function yields Tr exp(EA) ≤ ETr exp(A) .

A.4.2 On the Matrix Laplace Transform

In this subsection, we collect some technical preliminary lemmas that are necessary for the proof in Section 5.3.

We start by the following lemma which is due to Tropp [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] and controls the matrix Laplace transform of the sum of independent centered self-adjoint matrices having uniformly bounded largest eigenvalues. Lemma A.13. ( [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF]) Let K be a finite subset of positive integers. Consider a family (U k ) k∈K of d × d self-adjoint random matrices that are mutually independent. Assume that for any k ∈ K,

where B is a positive constant. Then for any t > 0,

where g(x) = x -2 (e x -x -1).

Under the form stated above, it is a combination of (1.13) and the following lemma that shows how the bound on the largest eigenvalue serves to control the Laplace transform of a zero-mean random matrix.

Lemma A.14. (Lemma 6.7, [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF]) Let U be a self-adjoint matrix satisfying EU = 0 and λ max (U) ≤ 1 a.s.

Then

Ee tU exp (e t -t -1) • E(U 2 ) .

Proof of Lemma A. [START_REF] Borovkova | Limit theorems for functionals of mixing processes with applications to U -statistics and dimension estimation[END_REF]. By the above lemma, we have for any k ∈ K,

Noting that the Trace exponential and the matrix logarithm are operator increasing, we plug the above bound in (1.13) and get

where the last inequality follows from the fact the trace is bounded by d times the largest eigenvalue.

We restate the following lemma and give its proof:

Lemma A. 

Proof. For any i = 1, . . . , m, we define the functions γ i by

The proof follows by induction on m. Considering the case m = 1, we let for any t ≥ 0,

and notice that by the Golden-Thompson inequality and the monotony of the matrix logarithm, L(t) ≤ log ETr e t U 0 e t U 1 . (A.23)

We recall now the non-commutative Hölder inequality: if A and B are d × d self-adjoint random matrices then, for any 1 ≤ p, q ≤ ∞ with p -1 + q -1 = 1,

where

are respectively the p-Schatten and q-Schatten norms of A and B. We refer on this issue to exercise 1.3.9 in [START_REF] Tao | Topics in random matrix theory[END_REF].

Starting from (A.23) and applying (A.24) with A = e t U 0 and B = e t U 0 , we derive that for any t > 0 and any p ∈]1, ∞[

which gives by applying Hölder's inequality

Observe now that since U 0 is self-adjoint

and similarly e t U 1 q S q = Tr e tq U 1 . So, overall, L(t) ≤ p -1 log ETr e tp U 0 + q -1 log ETr e tq U 1 . (A.25)

For any t in [0, 1/κ[, take

where we note that in this case, κ = κ 0 + κ 1 and σ = σ 0 + σ 1 . With this choice 

A.4.3 Berbee's Coupling Lemmas

In this Section, we recall Berbee's maximal and classical coupling lemmas [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF]. We start by the former one for random variables satisfying a β-mixing condition:

Lemma A.16. (Berbee's maximal coupling lemma, [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF]) Let A be a σ-field in (Ω, A, P) and X be a random variable with values in some Polish space. Let δ be a random variable with uniform distribution over [0, 1], independent of the σ-field generated by X and A.

Then there exists a random variable X * , with the same law as X, independent of X, such that P(X = X * ) = β(A, σ(X)) .

Furthermore, X * is measurable with respect to the σ-field generated by A and (X, δ).

We state now Berbee's classical coupling lemma [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF]:

Lemma A.17. (Berbee's classical coupling lemma, [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF]) Let X and Y be two random variables defined on a probability space (Ω, A, P) and taking values in Borel spaces B 1 and B 2 respectively. Assume that (Ω, A, P) is rich enough to contain a random variable δ with uniform distribution over [0, 1] independent of (X, Y ). Then there exists a random variable Y * = f (X, Y, δ), where f is a measurable function from We finally note that the β-mixing coefficient β(σ(X), σ(Y )) has the following equivalent definition: β(σ(X), σ(Y )) = 1 2 P X,Y -P X ⊗ P Y , (A. [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF] where P X,Y is the joint distribution of (X, Y ) and P X and P Y are respectively the distributions of X and Y and, for two positive measures µ and ν, the notation µ -ν denotes the total variation of µ -ν.