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Abstract

This thesis presents searches for a charged Higgs boson (H±) in proton-proton col-

lisions with center-of-mass energies of 7 TeV and 8 TeV, using data collected by the

ATLAS experiment at the Large Hadron Collider at CERN. Multiple search channels

are used with the common characteristic of at least one charged lepton (electron or

muon) that effectively reduces the multi-jet background and is used for efficient trig-

gering. Charged Higgs bosons decaying to a tau lepton and a neutrino are searched

for using final states with two charged leptons, or one charged lepton and a hadroni-

cally decaying tau. A significant background originates from quark- or gluon-initiated

jets that may be misidentified as hadronic tau decays. Methods to estimate this back-

ground are presented, including a largely data-driven matrix method. Signal processes

with a charged Higgs boson mass below or above that of the top quark are considered.

With the dataset collected at a center-of-mass energy of 8 TeV, corresponding to an

integrated luminosity of 20.3 fb−1, upper limits at 95% confidence level are placed

on the branching fraction B(t → bH
±)×B(H±

→ τν) in the range 1.1–0.3% for

charged Higgs boson masses between 80 GeV and 160 GeV, as well as on the top-

quark associated H
± production cross section in the range 0.93–0.03 pb for charged

Higgs boson masses between 180 GeV and 1 TeV.

Résumé

Cette thèse présente la recherche d’un boson de Higgs chargé (H±) qui serait produit

dans les collisions proton-proton à des énergies de 7 TeV et 8 TeV, en utilisant les don-

nées recueillies par l’expérience ATLAS au LHC (Large Hadron Collider). Plusieurs

canaux de recherche sont utilisés, présentant la caractéristique commune de contenir

au moins un lepton chargé (électron ou muon) énergétique, ce qui réduit efficacement

le bruit de fond contenant des jets, tout en permettant un déclenchement efficace du

détecteur. Ici, le boson de Higgs chargé se désintègre en un lepton tau et un neutrino,

ce qui conduit à des états finaux avec deux leptons chargés, ou bien un lepton chargé et

un tau hadronique. Une source importante de taus mal identifiés provient de quarks et

de gluons, par l’intermédiaire des jets hadroniques qu’ils initient. Plusieurs méthodes

ont été développées pour estimer ce bruit de fond, l’une d’elles étant basée directement

sur les données. Des processus avec des bosons de Higgs chargés dont la masse est

soit en dessous soit au-dessus de celle du quark top sont considérés. Avec l’ensemble

de données recueillies à une énergie de 8 TeV, correspondant à une luminosité intégrée

de 20,3 fb−1, des limites avec un taux de confiance de 95% sont placées sur le rapport

de branchement B(t → bH
+)×B(H+

→ τν) entre 1,1 et 0,3% pour des masses du

boson de Higgs chargé entre 80 GeV et 160 GeV, et sur la section efficace de produc-

tion du boson de Higgs chargé en association avec un quark top entre 0,93 et 0,03 pb,

pour un boson de Higgs chargé ayant cette fois une masse comprise entre 180 GeV et

1 TeV.





To my parents.





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Part I: Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 The Standard Model of particle physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 The Higgs field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Limitations of the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Two-Higgs-Doublet Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 The Minimal Supersymmetric Standard Model . . . . . . . . . . . . 25
2.2.2 The MSSM Higgs sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 The charged Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Production at colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Effects on B-physics observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Part II: Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Experimental challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Run 1 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Discovery of the Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 SUSY and 2HDM searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 The ATLAS experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 Inner detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Muon system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Forward detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Trigger and data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.1 Detector control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.3 Reconstruction and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Run 2 preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7.1 SCT backplane resistance measurements . . . . . . . . . . . . . . . . . . . . . . 63
4.7.2 Heater pads control system upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Part III: Data analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Analysis techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1 Signal and background processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Data samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Simulated events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Hadronic tau decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.5 Removal of overlapping objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.6 Missing transverse energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 The matrix method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Description of the matrix method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Two misidentified objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Exclusion limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Searches for H+ → τν in 7 TeV data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Dilepton channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Lepton+tau channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Test of lepton universality in tt̄ events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Combinations and interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Searches for H+ → τν in 8 TeV data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.1 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Backgrounds with misidentified hadronic tau decays . . . . . . . . . . . . . . . 120
7.3 Other backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.6 Combination and interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Résumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Sammanfattning på svenska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Introduction

In 2012, a Higgs boson was discovered at the Large Hadron Collider (LHC)
at CERN, with properties in agreement with those predicted by the Standard
Model of particle physics. The question remains, however, if the discovered
particle is indeed the single Higgs boson predicted by the Standard Model or
if additional Higgs bosons exist. A straightforward extension of the Standard
Model Higgs sector is the Two-Higgs-Doublet Model, in which there are two
scalar doublet fields, compared to only one in the Standard Model. This exten-
sion also describes the Higgs sector of the Minimal Supersymmetric Standard
Model. With two scalar doublet fields, there are five physical Higgs bosons,
two of which are fundamentally different to the one predicted by the Standard
Model in that they carry electric charge.

This thesis describes several searches for charged Higgs bosons1 decaying
into a tau lepton and a neutrino, i.e. H+ → τν . The analyses are conducted
using data from proton-proton collisions at center-of-mass energies of 7 TeV
and 8 TeV, recorded by the ATLAS experiment at the LHC. Charged Higgs
boson masses below and above that of the top quark are considered. The
production modes are different in these two cases, but both involve at least
one top quark. Event topologies involving the Standard Model decay of a top
quark into a bottom quark, at least one neutrino, and an electron or a muon
are used, as such events are relatively easy to identify over the large multi-jet
background. Both leptonic and hadronic decay modes of the tau lepton arising
from the charged Higgs boson are investigated.

The theoretical framework and motivations are described in more detail in
Part I, including the Standard Model, its possible extensions in the form of
Two-Higgs-Doublet Models and Supersymmetry, as well as the production
and decay modes of charged Higgs bosons. Part II discusses the LHC and
the ATLAS experiment, and summarizes some important recent experimental
results of particular relevance to this thesis. Part III presents three analyses
of the 7 TeV dataset, with different strategies aimed at searching for charged
Higgs bosons, and finally also an analysis of the 8 TeV dataset, which builds
on a combination of lessons learned from the previous efforts. Results are
presented in the form of upper limits on charged Higgs boson production in
the decay of a top quark or in association with a top quark, and are interpreted
in benchmark scenarios of the Minimal Supersymmetric Standard Model.

1Charge-conjugate states will be implied in the notation used throughout this thesis. The
charged Higgs bosons may thus be denoted H+, with H− implied when applicable, and the
formula H+ → τν should be understood as both H+ → τ+ν and H− → τ−ν̄ .
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10



Part I: Theory





1. The Standard Model of particle physics

The idea that all matter is made of a set of fundamental (indivisible) particles
goes back to the early days of natural philosophy. Experimental support for
this hypothesis first appeared when it was found that chemical elements are
composed of atoms. Later, with the discoveries of the electron and of radioac-
tivity, it was realized that atoms themselves have an internal structure. Soon,
it was even found that they in fact consist mostly of empty space, with the
bulk of the atomic mass located in a tiny nucleus. And further investigations
revealed that the nucleus itself consists of individual nucleons. Following this,
as experiments were performed at higher and higher energies, a plethora of
new particles were discovered. In parallel, an understanding of radiation and
forces in terms of particles also emerged. Eventually, it was determined that
most of the new particles, including the nucleons, were themselves composite
objects – the myriad of subatomic particles could be reduced to a relatively
small set of elementary particles, which are today the smallest known con-
stituents of the universe.

The theoretical description of the known elementary particles is called the
Standard Model. It encompasses all observed particles and the interactions
that underlie all known microscopic phenomena. Many predictions of the
Standard Model, including the existence of previously unobserved particles,
have been tested with high experimental accuracy. In this chapter, a very brief
review of the Standard Model is given, with emphasis on the role of the re-
cently discovered Higgs boson. Finally, a number of limitations of the Stan-
dard Model are highlighted, explaining why, despite its remarkable success,
it is not considered a final theory of the universe. In the next chapter, pro-
posed extensions to the Standard Model, which aim at solving some of these
problems, will be presented.

1.1 Overview
The Standard Model treats particles as excitations of quantum fields. The so-
called matter particles are spin-1

2 fermions, which obey the Pauli exclusion
principle – meaning that two such particles can not simultaneously occupy
the same quantum state. By imposing certain local gauge symmetries on the
theory, the three fundamental forces of nature that are relevant at small length
scales – electromagnetism, the weak force and the strong force – emerge as
interactions with spin-1 gauge bosons. Gauge invariance initially requires both

13



Table 1.1. The fermions of the Standard Model, and their observed masses [1]. The

light quark masses are indicative only and depend on the calculation scheme.

Leptons Quarks

charged neutrino up-type down-type

Electric charge [e] −1 0 +2/3 −1/3
Weakly interacting yes yes yes yes
Strongly interacting no no yes yes

1st generation particle e (electron) νe u (up) d (down)
Mass [GeV] 5.1×10−4 <2×10−9 ≈ 0.002 ≈ 0.005

2nd generation particle µ (muon) νµ c (charm) s (strange)
Mass [GeV] 0.105 <1.9×10−4 ≈ 1.3 ≈ 0.095

3rd generation particle τ (tau) ντ t (top) b (bottom)
Mass [GeV] 1.78 <0.018 173 ≈ 4.2

Table 1.2. The bosons of the Standard Model and their masses [1]. The photon and

the gluons are assumed to be massless. Gravitation is not considered.

Interaction Particle Mass [GeV] Charge [e] Spin

Electromagnetic γ (photon) 0 0 1
Weak Z 91.2 0 1
Weak W+ 80.4 +1 1
Weak W− 80.4 −1 1
Strong g (gluon) ×8 0 0 1
Higgs H 125 0 0

fermions and bosons to be massless, but the fields are mixed into effectively
massive particles via interactions with a scalar Higgs field, which has a non-
zero vacuum expectation value. The physical particles of the Standard Model
are summarized in Tables 1.1 and 1.2.

There are two types of fermions: leptons and quarks. They are divided
into three generations, each containing two particles of each type and the cor-
responding antiparticles with identical masses but opposite internal quantum
numbers. All fermions carry weak isospin. Weak isospin is the charge of the
weak force, which is mediated by the massive spin-1 W and Z bosons. By
emitting or absorbing a W boson, a quark or lepton can be transformed into
its counterpart of the same type in the same generation, which has the oppo-
site weak isospin. Quarks may also to some extent be transformed into quarks
of other generations, a phenomenon known as Cabibbo-Kobayashi-Maskawa
(CKM) mixing. Due to the mass of the mediating particles, the weak force
has a limited range. In contrast, the electromagnetic force is mediated by the
photon, which also has a spin of 1 but no mass, hence it has an infinite range.
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Each generation of leptons consists of one electrically charged and one neu-
tral particle. They are the electron and the electron neutrino, the muon and
the muon neutrino, and the tau and the tau neutrino. For each particle, the
corresponding antiparticle has the opposite electric charge. As the electric
charge of the neutrinos is zero, it is currently unclear whether neutrinos and
anti-neutrinos are distinct particles. The tau is the heaviest lepton and has a
relatively short lifetime (0.3 ps). Over the time scales studied experimentally
in this thesis, the muon (with a lifetime of 2 µs) can be considered as a stable
particle together with the electron and the neutrinos.

As for the leptons, there are six flavors of quarks. Each generation consists
of one quark with electric charge +2

3 e and one with electric charge −1
3 e, as

well as their antiparticles. They are the up and down quarks, the charm and
strange quarks, and the top and bottom quarks. Quarks carry exactly one of
three different charges of the strong force, called colors, and anti-quarks carry
exactly one of three corresponding anti-colors. Gluons carry a mixture of color
and anti-color charges in eight linearly independent combinations. All three
colors mixed together, or one color and its anti-color, give a net color charge
of zero.

The strong force does not actually appear very strong over short distances.
Quarks in close proximity are said to be asymptotically free of its effects. The
gluon, however, is itself charged under the strong force since it also carries a
color quantum number, and this self-interaction creates a vacuum polarization
effect that amplifies the strength of the gluon field over increasing distances.
This leads to the peculiar phenomenon that the interaction between two col-
ored objects becomes stronger the farther apart they are. Quarks are therefore
usually found in close proximity to other quarks, with which they form color
neutral bound states called hadrons. Hadrons may have an electric charge but
no net color charge. Two of the most well known hadrons are the proton and
the neutron, both consisting of a mixture of three up and down quarks, which
together with the electron make up the atoms of ordinary matter.

An isolated quark will undergo a process called hadronization during which
the energy in the surrounding gluon field is transformed into quark-anti-quark
pairs, which arrange themselves into hadrons until there is no longer any un-
confined color charge. In collider experiments, the hadronization of individual
quarks and gluons emitted in a collision gives rise to collimated jets of hadrons
leaving the interaction point.

Of central interest in this thesis is the top quark, which has the largest mass
of all elementary particles, even larger than most atoms. It is so heavy, in
fact, that its lifetime is shorter than the time it would take for hadronization to
occur. This makes it possible to study top quark decays in relative isolation.
Its large mass also gives the top quark a special relationship with the Higgs
boson which, due to the nature of the Higgs field, couples more strongly to
heavier particles.
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The Higgs boson is electrically neutral and is the only known elementary
particle without spin. The confirmation of its existence is the most recent tri-
umph of the Standard Model (see section 3.2) – it was the long sought “missing
puzzle piece” predicted by the theory.

1.2 The Higgs field
The Higgs field generates the masses of all elementary particles. Historically,
it was first introduced [2–5] to explain how the mediating particles of the weak
force acquire their masses, which are needed to ensure the short-ranged nature
of the force. Descriptions of the weak interaction as a non-Abelian gauge
theory seemed to necessitate that the force carriers were massless. The first
clue to resolve this inconsistency came from solid state physics and the fact
that inside a superconductor, electromagnetism is a short-range force. The
breaking of a local gauge symmetry, when a metal becomes superconducting,
makes the photon massive. The same idea is applied [6] in the electroweak
part of the Standard Model by introducing the complex scalar doublet Higgs
field,

Φ(x) =

�

φ+(x)

φ 0(x)

�

, (1.1)

which has a Lagrangian density given by

L = (DµΦ)†(DµΦ)−V (Φ). (1.2)

The Higgs field is coupled to the electroweak gauge fields of weak isospin,
W a

µ , and of weak hypercharge, Bµ , via the covariant derivative:

(DµΦ) = (∂µ − igW a
µ τ

a/2− ig′Y Bµ/2)Φ, (1.3)

where τ1,2,3 are the Pauli matrices. The components of equation (1.1) are
eigenstates of τ3, with the eigenvalues T3 = ±1

2 giving their weak isospin
quantum numbers. The hypercharge quantum number Y connects the weak
force with electromagnetism via the relation Y ≡ 2(Q− T3), where Q is the
electric charge. The field Φ has hypercharge Y = 1.

The purpose of Φ is to break the gauge symmetry of the vacuum, which
corresponds to a field configuration with the lowest possible energy. This is
accomplished if Φ has a non-zero value in this vacuum state, for which at least
two self-interaction terms are needed. Renormalizability and gauge invariance
of the Lagrangian then require the minimal form of the potential to be:

V (Φ) =−µ2(Φ†Φ)+λ (Φ†Φ)2. (1.4)

A well-defined minimum of the potential exists if λ > 0. If µ2 > 0, it does
not occur at zero but when Φ†Φ = µ2/(2λ ), breaking the invariance under
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gauge transformations. Note that the gauge symmetry is spontaneously bro-
ken, meaning that the symmetry of the Lagrangian remains but is not manifest
at low energy.

The physical vacuum must correspond to one of the degenerate solutions.
Wishing to identify φ+ and φ 0 in equation (1.1) as the charged respectively
neutral components of the field, the vacuum expectation value of Φ that con-
serves electric charge is

�Φ�= 1√
2

�

0
v

�

, (1.5)

with v =
�

µ2/λ . Anticipating that the physical fields of the weak interaction
will be the linear combinations

W±
µ = (W 1

µ ∓W 2
µ )/

√
2, (1.6)

Zµ = cosθWW 3
µ − sinθW Bµ , (1.7)

with cosθW = g/
�

g2 +g′2 and sinθW = g′/
�

g2 +g′2, and then inserting
Φ = �Φ� in equation (1.3), the kinetic part of the Lagrangian can be written as

(Dµ�Φ�)†(Dµ�Φ�) = v2

8

�

g2(W+
µ )2 +g2(W−

µ )2 +
g2

cos2 θW

(Zµ)
2
�

, (1.8)

which confirms that these are massive fields. The remaining orthogonal com-
bination Aµ = cosθWW 3

µ + sinθW Bµ is the photon, which does not acquire a
mass term. The relationship between the W and Z boson masses,

m2
W/m2

Z = cos2 θW , (1.9)

was a very successful prediction of the Standard Model. Even without the
explicit values of these parameters, the vacuum expectation value of the Higgs
field is fixed by the Fermi coupling constant GF, which is precisely determined
from muon decay measurements [1]:

v =
2mW

g
=

�

1√
2GF

= 246 GeV. (1.10)

The second important role of the Higgs field is to generate fermion masses.
Quantum mechanics allows two kinds of spin-1

2 particles, with left- or right-
handed chirality. The distinction is important because they are treated differ-
ently in the Standard Model: only the left-handed fermions (and right-handed
anti-fermions) interact with W bosons. The left-handed fermions are therefore
represented as weak isospin doublets. The fermion fields of the first genera-
tion, for example, are:

lL =

�

νeL

eL

�

, qL =

�

uL

dL

�

(1.11)
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while the right-handed fields eR, uR and dR are singlets. Right-handed neu-
trinos have never been observed and are not included here. For the other
fermions, the left- and right-handed states can be connected with each other
via Yukawa couplings with the Higgs field:

L Yukawa =−yel̄LΦeR − yuq̄Liτ2ΦuR − ydq̄LΦdR +h.c+ · · · , (1.12)

where h.c. stands for the Hermitian conjugates of the preceding terms, and
similar terms for the second and third fermion generations are implied. For
reasons of charge conservation, a transformation of Φ is needed in the uR term.
In some extensions of the Standard Model, the up-type quarks may instead
couple to an entirely different Higgs field (as will be discussed in section 2.1).

Inserting the vacuum expectation value �Φ� of the Higgs field and collecting
the electron term and its Hermitian conjugate, equation (1.12) becomes:

L Yukawa =−ye

v√
2
(ēLeR + ēReL)+ · · ·=−ye

v√
2

ēe+ · · · (1.13)

This is a mass term for a so-called Dirac fermion, which is the physical elec-
tron. Masses for the muon, the tau and the quarks arise in the same way. For
the latter, terms involving left- and right-handed quarks of different genera-
tions can also be added. This is the origin of the CKM mixing: The quark
states of definite mass are actually combinations of more than one of the
weakly interacting fields.

The fermion masses depend on the vacuum expectation value of the Higgs
field, but also on the Yukawa couplings y, which are free parameters. Note
that such mass terms could not have been added without the Higgs field, pre-
cisely because the weak interaction treats the left- and right-handed compo-
nents differently. The masses arise from particles switching between left- and
right-handed states, which would not conserve weak isospin. Here, one unit
of weak isospin is carried away by the omnipresent non-zero φ 0.

The Higgs field can be parametrized by expanding around �Φ�:

Φ(x) = eiτaπa(x)
1√
2

�

0
v+h(x)

�

. (1.14)

The excitations πa(x) along the minimum of the potential are the Goldstone
bosons that necessarily appear whenever a continuous symmetry is sponta-
neously broken. However, they are coupled to the electroweak fields via the
covariant derivative and it is possible to choose a gauge, called the unitary
gauge, in which there is no explicit dependence on πa(x). The three degrees
of freedom which are thus eliminated compensate for those seemingly intro-
duced via the longitudinal polarizations of the massive vector bosons. The
excitation h(x) in the orthogonal direction remains as a physical particle – the
Higgs boson [4]. As can be seen by inserting the full expression (1.14) in
equations (1.2) and (1.12), h has three- and four-point interactions with the
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massive vector bosons (but not the photon) and three-point interactions with
the fermions, proportional in strength to the masses of these particles. From
the expression of the potential (1.4) it can be seen that the Higgs boson also
has three- and four-point interactions with itself, and that it has a non-zero
mass. This prediction of a massive scalar particle made it possible to experi-
mentally confirm the existence of the Higgs field. Its mass is a free parameter
of the theory but has been found to be 125 GeV (see section 3.2).

1.3 Limitations of the Standard Model
It is generally accepted that, despite its many successes, the Standard Model
is not and can not be a complete theory of nature. Problems with the Standard
Model include:
• It postulates that neutrinos are massless, which is incompatible with the

experimental observation of neutrino oscillations. If neutrino masses are
generated via Yukawa couplings to the Higgs field, the couplings must be
curiously small and require the existence of right-handed neutrinos that do
not participate in any other interaction.

• Even with massive neutrinos, the Standard Model can only account for a
small fraction of the dark matter in the universe. It also does not explain the
observed amount of dark energy.

• It does not include any mechanism that could have caused the rapid inflation

that appears to have taken place in the very early universe.
• It also does not include gravitation.
• The Charge-Parity (CP) symmetry violation allowed via the CKM mixing

of quarks can only account for a modest amount of baryogenesis. Unless CP
violation in the lepton sector is eventually observed, there is no explanation
for the apparent matter-antimatter asymmetry in nature.

• The couplings of the strong, weak and electromagnetic forces all notably
seem to converge at higher energies, but within the Standard Model there is
no point at which they are actually identical. The Standard Model therefore
fails to achieve grand unification of the forces.

• It has a number of free parameters with arbitrary values that can only be
determined experimentally. There is for example no explanation for the
large variation of masses between the fermion generations, or for the large
variation of mixing angles between the mass and weak eigenstates of the
quarks.

• There is also no explanation of why there are specifically three generations
of fermions, why charges are quantized, or why the strong interaction does
not seem to violate the CP symmetry, while the weak force does.

• The effective mass of the Higgs boson is largely influenced by loop correc-
tions, mainly involving virtual top quarks, which should drive it up to some
energy scale, possibly even the Planck scale, at which some new physics
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could be expected to cut off the effect. In order to preserve the observed
(low) Higgs boson mass, there must be a remarkably precise cancellation
between these corrections and the bare Higgs mass. This "unnatural" fine-
tuning of the Higgs boson mass is called the hierarchy problem.

Some of the problems listed above amount to direct contradictions with exper-
imental observations. Others are merely perceived inelegances of the model,
but are nevertheless irreconcilable with many physicists’ intuitions of a sound
theory. This motivates the search for new physics beyond the Standard Model!
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2. Beyond the Standard Model

2.1 Two-Higgs-Doublet Models
The Standard Model uses a minimal form of the so-called Brout-Englert-Higgs
mechanism to achieve electroweak symmetry breaking. There is no theoreti-
cal motivation for this, other than simplicity. Nature, however, have been less
economical in other respects (e.g. with the number of fermion generations).
Having established the existence of at least one Higgs field, we must now try
to find out if also the Higgs sector could in reality have a more complex struc-
ture. Arguably the most straightforward extension is to add a second Y = 1
complex scalar doublet to the theory, which then contains two fields Φ1 and
Φ2 with a total of eight degrees of freedom. This is called the Two-Higgs-
Doublet Model (2HDM) [7]. Specific motivations for the 2HDM include its
appearance in many attempts to solve some of the problems with the Standard
Model outlined in the previous chapter. Embedding the Standard Model in
a minimally supersymmetric theory (as will be discussed in the next section)
requires two Higgs doublets. Additional sources of CP violation in a 2HDM
could explain the matter-antimatter asymmetry of the universe. It is also an ef-
fective low-energy theory of Peccei-Quinn models [8, 9], which could explain
why the strong force is not seen to violate CP symmetry. Extensive reviews of
the 2HDM are available in e.g. Ref. [10] and, more recently, Ref. [11]. Here,
it will be briefly explored with the aim of demonstrating the appearance of
electrically charged Higgs bosons.

One of the most serious potential problems facing any model with an ex-
tended Higgs sector is the appearance of tree-level Flavor-Changing Neutral
Currents (FCNC), which are hard to reconcile with experimental data. It was
pointed out in section 1.2 that the quark states with definite masses appearing
via Yukawa interactions with the Standard Model Higgs field are mixtures of
the fields that interact with the W boson. Likewise, fields with well-defined
mass terms appearing via Yukawa interactions with one of the 2HDM Higgs
doublets may in the general case be mixtures of the fields that interact with
the other Higgs doublet. The Paschos-Glashow-Weinberg [12, 13] theorem
states that a necessary and sufficient condition for avoiding tree-level FCNC
is that all fermions of a given charge must couple to a single Higgs doublet.
A 2HDM in which all fermions couple to the same Higgs doublet is said to
be of Type I. If up-type quarks couple to one of the doublets while down-type
quarks and charged leptons couple to the other doublet, the model is said to
be of Type II. The cases in which either the charged leptons or the down-type
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quarks have unique couplings to one of the doublets are respectively called
“lepton-specific” and “flipped” 2HDMs. Conformance with the Type I criteria
can be achieved by requiring the model to be symmetric under the discrete Z2

transformation Φ1 →−Φ1. Type II can similarly be enforced with a symme-
try under the simultaneous transformations Φ1 → −Φ1 and dR → −dR, and
so on. The generic case, which does not avoid tree-level FCNC, is sometimes
referred to as Type III1. The different 2HDM categories are summarized in
Table 2.1, by convention Φ2 is always taken to be the doublet that couples to
up-type quarks.

Table 2.1. The different types of Two-Higgs-Doublet Models.

Model u,c, t couple to d,s,b couple to e,µ,τ couple to

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Lepton-specific Φ2 Φ2 Φ1

Flipped Φ2 Φ1 Φ2

Type III Φ1 and Φ2 Φ1 and Φ2 Φ1 and Φ2

The most general form of the 2HDM potential contains 14 parameters.
However, some simplifying assumptions can be made. It is usually assumed
that it conserves CP and that the global Z2 symmetry is, at most, softly broken.
The general form of a potential respecting these criteria is:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

�

Φ
†
1Φ2 +Φ

†
2Φ1

�

+
λ1

2

�

Φ
†
1Φ1

�2
+

λ2

2

�

Φ
†
2Φ2

�2
+λ3Φ

†
1Φ1Φ

†
2Φ2 +λ4Φ

†
1Φ2Φ

†
2Φ1 (2.1)

+
λ5

2

�

�

Φ
†
1Φ2

�2
+
�

Φ
†
2Φ1

�2
�

,

where Φ1 and Φ2 both have hypercharge 1 and all parameters are real-valued.
Minimizing the potential gives the vacuum expectation values:

�Φ1�=
1√
2

�

0
v1

�

, �Φ2�=
1√
2

�

0
v2

�

. (2.2)

Excitations around these minima can be parametrized as:

Φ1 =

�

φ+
1

(v1 +ρ1 + iη1)/
√

2

�

, Φ2 =

�

φ+
2

(v2 +ρ2 + iη2)/
√

2

�

, (2.3)

1There are unfortunately some notational inconsistencies in the literature, with “Type III” and
“Type IV” having been used to refer to the lepton-specific and flipped models, which are some-
times also called “Type X” and “Type Y”, respectively. Here, we use what appears to be the
most common names.
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consisting of scalar (ρ), charged scalar (φ+) and pseudoscalar (η) compo-
nents. Mass terms are then given by:

L φ mass =
�

m2
12 − (λ4 +λ5)v1v2

��

φ−
1 ,φ−

2

�

� v2
v1

−1
−1 v1

v2

��

φ+
1

φ+
2

�

+
�

m2
12/(v1v2)−2λ5

�

(η1,η2)

�

v2
2 −v1v2

−v1v2 v2
1

��

η1

η2

�

(2.4)

− (ρ1,ρ2)

�

m2
12

v2
v1
+λ1v2

1 λ345v1v2 −m2
12

λ345v1v2 −m2
12 m2

12
v1
v2
+λ1v2

2

�

�

ρ1

ρ2

�

,

with λ345 = λ3 + λ4 + λ5. The structure of the potential mixes the different
fields – to obtain physical states with definite masses, the matrices in equation
(2.4) must be diagonalized. The parameter α is defined to be the rotation an-
gle that performs the diagonalization of the mass-squared matrix of the scalars.
The parameter β is defined to be the rotation angle that diagonalizes the mass-
squared matrices of the charged scalars and of the pseudoscalars. These diag-
onalizations produce the following linear combinations of the fields:

h = ρ1 sinα− ρ2 cosα, H+ =−φ+
1 sinβ+ φ+

2 cosβ ,

H =−ρ1 cosα−ρ2 sinα, H− =−φ−
1 sinβ+ φ−

2 cosβ ,

A = η1 sinβ−η2 cosβ , G+ = φ+
1 cosβ+φ+

2 sinβ ,

G0 = η1 cosβ+η2 sinβ , G− = φ−
1 cosβ+φ−

2 sinβ .

(2.5)

The matrices connecting the charged scalars and the pseudoscalars each have
a zero eigenvalue. These correspond to the massless charged and pseudoscalar
Goldstone bosons G0 and G±. In a process of electroweak symmetry break-
ing analogous to the one described in section 1.2, they become the longitudi-
nal components of the W and Z bosons. In contrast to the Standard Model,
however, no less than five massive Higgs bosons now remain in the physical
spectrum. H and h are both neutral scalars, the former defined to be the heav-
ier of the two. The combination hsin(α − β )−H cos(α − β ) has couplings
identical to the Standard Model Higgs boson. The so-called alignment limit

cos(β −α) = 0 is therefore a special case in which h behaves according to the
Standard Model prediction. There is also a pseudoscalar Higgs boson A, and
two charged Higgs bosons H±. The scalars and pseudoscalars are only well-
defined if the potential indeed conserves CP (which requires v1 and v2 to be
real-valued), but the charged Higgs bosons are a general feature of any 2HDM.
Note also that diagonalization of the matrices in equation (2.4) implies that:

tanβ =
v2

v1
. (2.6)

The Higgs boson masses and the mixing angles can be taken as six free param-
eters of the model, together with the m12 parameter. The vacuum expectation
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values are then fixed by the relation v2
1 + v2

2 = v2, where v is the Standard
Model predicted value, and by the choice of tanβ .

2.2 Supersymmetry
Standard Model processes are symmetric under the following ten space-time
transformations: translations, rotations and Lorentz boosts in any of the three
spatial dimensions, and translation through time. In addition to these space-
time symmetries, which constitute the Poincaré group, the Standard Model
also exhibits the internal symmetries of weak hypercharge, weak isospin, and
color transformations that give rise to the interactions discussed in chapter 1.
Since symmetry principles have been so important for the successful con-
struction of the Standard Model, and indeed in physics in general, it would
be prudent to ask whether a more complete theory could include any type of
symmetry other than the internal symmetries and the Poincaré group. It turns
out that there is only one other possibility: symmetry under transformations
that change particle spin, i.e. turning bosons into fermions and vice versa [14].
Such a symmetry is called a Supersymmetry (SUSY), and the new particles
created by SUSY transformations of the Standard Model particles are called
their superpartners.

SUSY is attractive not only for being the single non-internal symmetry not
yet observed in nature, it also offers elegant remedies to several of the previ-
ously discussed shortcomings of the Standard Model. It could directly elimi-
nate the hierarchy problem: as loops with bosons and fermions have opposite
signs, any Standard Model loop contributions to the Higgs boson mass could
be directly canceled by the superpartners. And if couplings that change baryon
number and lepton number are forbidden – so-called R-parity conservation –
then the Lightest Supersymmetric Particle (LSP) can not decay and would
therefore be a dark matter candidate. Grand unification is also achievable with
SUSY. For these reasons, SUSY models are among the theoretically most
studied extensions to the Standard Model.

An obvious problem immediate presents itself, however, in the fact that the
superpartners are supposed to have the same properties as the corresponding
Standard Model particles (including mass) except for spin – and no such par-
ticles have been observed. If SUSY is realized in nature, it must therefore be
a broken symmetry. The superpartners of the Standard Model particles could
then, in general, have any mass. A viable solution to the hierarchy problem
and the observationally favored mass of the LSP both mandate, however, that
they should start showing up around the TeV scale – i.e. at energies accessible
at the LHC.

24



2.2.1 The Minimal Supersymmetric Standard Model
The Minimal Supersymmetric Standard Model (MSSM) embeds the Standard
Model in an R-parity conserving, softly broken, supersymmetric theory with
a minimum number of new fields. For each chiral state of the Standard Model
fermions, the MSSM adds a spin-0 sfermion; namely the squarks q̃L,R, slep-

tons ℓ̃L,R, and sneutrinos ν̃ . The left- and right-handed sfermions of each type
interact with each other with a strength proportional to the mass of the corre-
sponding fermion. This may cause the superpartners of the heaviest fermions
(the stops, the sbottoms and the staus) to mix into new mass states. For each
Standard Model gauge boson, the MSSM adds a corresponding spin-1

2 gaug-

ino: the Bino B̃, three Winos W̃ , and eight gluinos g̃. For each Higgs field, there
is a corresponding spin- 1

2 Higgsino H̃. SUSY actually requires that there are at
least two Higgs fields, for two reasons. First, the charge conjugation operator
employed to give mass to the up-type quarks in equation (1.12) is not allowed
in a supersymmetric Lagrangian, which must be analytic. A separate Higgs
field is therefore needed to give mass to the up-type quarks in a SUSY theory.
Second, renormalizability requires [15, 16] the sum of fermionic hypercharges
to be zero. There must therefore be an even number of Higgs fields, so that
there can be an even number of Higgsinos with opposite hypercharges to make
this possible. As the MSSM is the minimal supersymmetric extension to the
Standard Model, it is constructed with exactly two Higgs fields, one of which
couples only to the up-type quarks. The MSSM is therefore a Type II 2HDM2.
As such it has the five massive Higgs bosons discussed in the previous session,
and four Higgsinos corresponding to the charged and neutral components of
the two Higgs fields. The Higgsinos mix with the Bino and Winos, creat-
ing four charginos χ̃±

1,2 and four neutralinos χ̃1,2,3,4. A neutralino is the most
likely LSP candidate.

2.2.2 The MSSM Higgs sector
Although the MSSM introduces the minimum number of new particles, there
is a large freedom of choice as to the exact mechanism of supersymmetry
breaking3 and, in total, the MSSM introduces no less than 105 free parame-
ters. In the Higgs sector, however, certain relations that are not present in the
generic Type II 2HDM offer considerable simplifications. At tree-level, the

2This is true at tree-level. When radiative corrections are taken into account, the MSSM effec-
tively becomes a Type III 2HDM. The approximate Type II behavior of the MSSM is assumed
throughout this thesis.
3The breaking of local supersymmetry also produces a new massless particle, which in this case
is a fermion: the Goldstino. It can be pointed out that for a complete theory, the hypothetical
mediator of gravity, the graviton, should also be included. Its superpartner, the gravitino, mixes
with the Goldstino and becomes massive.
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Higgs and vector boson masses can now be related via:

m2
H,h =

1
2

�

m2
A +m2

Z ±
�

(m2
A +m2

Z)
2 −4m2

Am2
Z cos2 2β

�

(2.7)

m2
H± = m2

A +m2
W (2.8)

The inadequacy of the tree-level prediction is immediately apparent, however,
as it requires mh < mZ , which is not compatible with experimental results. But
with higher order corrections taken into account, in particular from stop loops,
the mass of h can become much larger. With stop masses at the TeV scale as
indicated above, h can be compatible with the experimentally observed Higgs
boson. Another important constraint is the following relation between the
mixing angles of the charged and neutral scalars:

tan2α =
m2

A +m2
Z

m2
A −m2

Z

tan2β . (2.9)

Given equations (2.7)–(2.9), the Higgs sector of the MSSM can at tree-level
be fully specified by just two parameters. In the context of charged Higgs bo-
son searches, the free parameters can be conveniently chosen to be the charged
Higgs boson mass mH± and tanβ (which gives its couplings). Furthermore, a
number of benchmark scenarios have been defined that keep the low number
of parameters even when taking higher order corrections into account. The
mmax

h scenario [17, 18] is constructed to yield the highest possible h mass for a
given tanβ . Searches for CP-even neutral Higgs bosons therefore give conser-
vative exclusion limits on tanβ . Due to the ubiquity of search interpretations
in mmax

h , it is still commonly used (also in charged Higgs boson searches).
Now that a Higgs boson has been discovered, however, new benchmark sce-
narios have been proposed. These include the so-called mmod−

h and mmod+
h

scenarios4, in which h can be interpreted as the LHC signal in a large part of
the parameter space [19].

2.3 The charged Higgs boson
A key feature of all 2HDMs, including the MSSM, is the existence of charged
scalars that are the orthogonal states to the longitudinal components of the
W± bosons. The couplings of the charged Higgs bosons to vector bosons in
any CP-conserving 2HDM are summarized in Table 2.2. Couplings of the
form HH+H− and hH+H− are also allowed but are model-dependent. The

4The difference between mmod−
h

and mmod+
h

is the sign of the quantity Xt/MSUSY , where Xt

is a parameter that controls the amount of mixing between the stops and MSUSY is the overall
SUSY mass scale. In both cases, the absolute value of this quantity is lowered with respect to
the mmax

h scenario. This reduces the contributions from stop loops and therefore gives a lower
Higgs boson mass for a given tanβ .
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Table 2.2. The couplings of the charged Higgs bosons to vector bosons.

Couplings Allowed?

ZH+H− γH+H− yes
ZH±W∓ γH±W∓ no

H±W∓h H±W∓Zh H±W∓γh proportional to cos(β −α)
H±W∓H H±W∓ZH H±W∓γH proportional to sin(β −α)
H±W∓A H±W∓ZA H±W∓γA yes

Table 2.3. The couplings of the charged Higgs bosons to fermions. PL and PR are

projection operators for left- and right-handed fermions, u and d are any up-type and

down-type quarks and Vud is the strength of their CKM mixing.

Model H+ūd H+ℓRν̄ℓ

Type I Vud (mu cotβPL +md cotβPR) mℓ cotβ
Type II Vud (mu cotβPL +md tanβPR) mℓ tanβ
Lepton-specific Vud (mu cotβPL +md cotβPR) mℓ tanβ
Flipped Vud (mu cotβPL +md tanβPR) mℓ cotβ

couplings to fermions depend differently on α and β in the different types of
2HDMs and are summarized in Table 2.3. In a Type I 2HDM, all couplings
to fermions are suppressed if tanβ ≫ 1, yielding a “fermiophobic” charged
Higgs boson. Conversely, the charged Higgs boson in a lepton-specific model
is “quarkphobic” in this case. In the Type II and flipped models, charged
Higgs boson couplings to quarks are maximized for intermediate values of
tanβ , with lepton couplings increasing respectively decreasing with larger
tanβ . For a detailed discussion, see e.g. Ref. [11]. A comprehensive review
of Higgs bosons in the MSSM in particular can be found in Ref. [20]. In the
MSSM, the charged Higgs boson can also decay to SUSY particles, which is
not considered here. We now proceed to summarize some important H+ phe-
nomenology, focusing on the Type II 2HDM which is the most widely studied
model.

2.3.1 Decay modes
Figure 2.1 shows the branching fractions for charged Higgs boson decays into
Standard Model particles, for tanβ = 10 and tanβ = 50 in the three MSSM
benchmark scenarios introduced in the previous section [21]. The decays of
the charged Higgs boson to SUSY particles (charginos and neutralinos) were
taken into account in the calculation of these branching fractions but are not
shown in the plots. Their effects are visible at the kinks in the lines of the other
channels, in particular for tanβ = 10.
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The charged Higgs boson decays predominantly via H+ → tb when this
is kinematically allowed. Note that, as indicated in Table 2.3, the decays to
quarks are suppressed according to the CKM mixing of the daughters. Decays
into quarks of different generations are therefore disfavored and the dominant
mode when tb is kinematically forbidden is not cb, but τν . The preferred
decay mode into light quarks is instead cs. For the leptonic decay modes,
the relative branching fractions are directly proportional to the mass-squared
of the charged lepton. Decays into µν are therefore suppressed by a factor
1000 with respect to the τν mode (and eν is suppressed by over a million).
Depending on tanβ , the branching fraction into τν can still be sizable for
higher masses. Decays into SUSY particles can also compete with tb when
they become kinematically allowed.

2.3.2 Production at colliders
In e+e− collisions, charged Higgs bosons could be produced through a Drell-
Yan process e+e− → Z/γ∗ → H+H−. The LEP collaborations searched for
H+ decays to cs, τν , and WA. A combination of the search channels excludes
charged Higgs bosons with a mass below 80 GeV for Type II 2HDMs and
72.5 GeV for Type I 2HDMs [22]. At hadron colliders, it is convenient to
distinguish between searches for light charged Higgs bosons (mH+ � mt), and
heavy charged Higgs bosons (mH+ � mt).

Light charged Higgs boson production at hadron colliders

Light charged Higgs bosons would be readily produced in the decays of top
quarks via t → bH+. Top quarks are abundantly produced at both the Tevatron
and at the LHC in the form of tt̄ pairs. Charged Higgs boson production can
thus proceed at tree-level as shown in Figure 2.2. D0 has set an upper limit on
B(t → bH+) around 0.2 assuming B(H+ → τν)+B(H+ → cs) = 1, with
a somewhat stronger limit if instead B(H+ → τν) = 1, while CDF excluded
B(t → bH+) above 0.1 if B(H+ → cs) = 1 [23, 24].

Figure 2.3 shows the cross section for pp → tt̄ → bb̄W∓H± at 7 TeV in the
mmax

h scenario, and its dependence on mH+ and tanβ [25]. At the LHC, no
combined search has yet been performed, but the limits from the Tevatron on
individual H+ branching fractions have been significantly improved, as will
be shown in section 3.2.2.

Heavy charged Higgs boson production at hadron colliders

With the full 8 TeV LHC dataset available, focus has shifted towards searches
for heavy charged Higgs bosons. If mH+ > mt , any Standard Model particle
mediating the H+ production is necessarily off-shell. The main production
mode of a heavy charged Higgs boson is then in association with a top quark:
pp→ tH+(b). There are two ways of calculating this process. In a Five-Flavor
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Figure 2.1. Branching fractions of the charged Higgs boson in the MSSM mmax
h (top

row), mmod+
h (middle row), and mmod−

h (bottom row) scenarios with tanβ = 10 (left
column) and tanβ = 50 (right column) [21].
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Figure 2.2. Light charged Higgs boson production in the decay of top quarks. Top
quark pair production proceeds mainly via qq̄ fusion at the Tevatron and gluon-gluon
fusion at the LHC.
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Figure 2.4. Tree-level diagrams for the production of a heavy charged Higgs boson in
the 5FS (left) and 4FS (right).

Figure 2.5. Cross section for the process pp → tH±+X at 8 TeV in a Type II 2HDM,
with Santander matching [27].
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Scheme (5FS) calculation, the b quark is considered massless and is treated as
a constituent of the proton. It may therefore appear in the initial state, and
charged Higgs boson production can proceed via gb → tH+. If the process
takes place at such an energy scale that the b quark mass can not be ignored, a
Four-Flavor Scheme (4FS) should be used, in which there are only four mass-
less quarks in the proton and the b quark must itself be produced in the hard
process: gg → tH+b. This treatment gives a better description of the kine-
matics and is needed if the b quark receives a large pT, but is computationally
more challenging due to the higher particle multiplicity. A 5FS calculation
is also less convergent in a perturbation series due to potentially large loga-
rithms involving the ratio of the hard scale and the b quark mass appearing in
the splitting of gluons into collinear bb pairs, which are not summed to all or-
ders. The 4FS and 5FS tree-level processes are shown in Figure 2.4. It must be
stressed that they are not independent, but are different approximations of the
same underlying process, valid in the limits mH±/mb → 1 and mH±/mb → ∞,
respectively. In the intermediate region, so-called Santander matching [26] can
be used to interpolate between the 4FS and 5FS predictions. Figure 2.5 shows
the 4FS, 5FS, and matched cross sections at 8 TeV in a Type II 2HDM [27].

At the Tevatron, the D0 experiment performed a search for a heavy charged
Higgs boson with a mass in the range 180–300 GeV and decaying to tb, but
with limited sensitivity to a Type II 2HDM [28].

2.3.3 Effects on B-physics observables
Decays of B-mesons are sensitive to the presence of charged Higgs bosons.
A succinct review of the experimental situation is given in Ref. [29]. An
important example is the decay b → sγ shown in Figure 2.6, for which the
contribution of additional diagrams involving a charged Higgs boson may sig-
nificantly enhance the branching fraction. Measurements of the decays of the
B̄-meson, with the quark content d̄b, excludes charged Higgs bosons with a
mass below 360 GeV in a Type II 2HDM [30].

Tauonic decay modes of B-mesons, as illustrated in Figure 2.7, can be an-
other strong test for the presence of charged Higgs bosons thanks to the high
mass of the tau lepton. BABAR has measured the ratios

R(D) =
B(B → Dτν)

B(B → Dℓν)
= 0.440±0.058(stat)±0.042(syst), (2.10)

R(D∗) =
B(B → D∗τν)
B(B → D∗ℓν)

= 0.332±0.024(stat)±0.018(syst), (2.11)

where ℓ is either an electron or a muon [31]. These results have a combined
deviation of 3.4σ from the Standard Model values of

RSM(D) = 0.297±0.017, RSM(D∗) = 0.252±0.003. (2.12)
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Figure 2.7. B → D(∗)τν decay, mediated by a W boson (left) or a charged Higgs boson
(right).

Figure 2.8. Allowed regions (superimposed) in the tanβ , mH = mA = mH± param-
eter space of the Type II 2HDM, using constraints from b → sγ (yellow), B → Dτν
(green), B → τν (red), Bs → µ+µ− (orange), K → µν/π → µν (blue) and B → D∗τν
(black). The regions shown include theoretical uncertainties added linearly to the 2σ
experimental errors [33].
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This evidence for new physics is also supported by a 1.6σ deviation of
the branching fraction B(B → τν) [32]. Figure 2.8 shows the impact of a
number of flavor-physics results on the Type II 2HDM. The measurement
of R(D(∗)) is incompatible with the constraints from all other measurements
and can therefore not be explained within this model [33]. This conclusion
holds also for the MSSM. However, a generic Type III model could possibly
accommodate all constraints.
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Part II: Experiment





3. The Large Hadron Collider

The Large Hadron Collider (LHC) [34], built and operated by the European
Organization for Nuclear Research (CERN), is the world’s largest and most
powerful particle collider. It is designed to accelerate two beams of up to
2808 bunches of 1.15× 1011 protons with a 25 ns separation and to deliver
collisions with a center-of-mass energy of up to 14 TeV at a target luminosity
of 1034 cm−2s−1. The analyses presented in this thesis use data collected
during 2011 and 2012, when the LHC operated with several key parameters
below their design values and delivered proton-proton collisions with center-
of-mass energies of 7 TeV, respectively 8 TeV. These datasets nevertheless
present an opportunity to study physics processes at energies never probed
before in a laboratory setting. In addition to proton-proton collisions, the LHC
also performs heavy ion collisions, which are not discussed in this thesis.

The high bunch intensity required to meet the target luminosity excluded
the use of an anti-proton beam for the LHC. Counter-rotating beams of same-
charge particles, however, require two separate magnet systems. Due to the
limited space in the LHC tunnel, which previously housed the Large Electron-
Positron Collider (LEP), the machine uses a design with two sets of super-
conducting magnets and beamlines sharing the same cryostat. The magnets
are based on niobium-titanium coils, cooled to 1.9 K using superfluid helium
and generating magnetic fields of up to 8.3 T. Over 1600 main magnets are
used to control the beams. Although a hadron accelerator does not suffer pro-
hibitively large energy losses from synchrotron radiation and could ideally be
made nearly circular, the LHC follows the layout of the LEP tunnel with eight
straight sections and eight arcs for a total circumference close to 27 km.

The LHC is linked to the rest of the accelerator complex at CERN, which
provides it with 450 GeV protons. After their injection into the LHC, particles
are accelerated using 400 MHz superconducting cavities located in one of the
eight straight sections. Two other straight sections contain sets of beam clean-
ing collimators and a fourth is dedicated to the dumping system used to safely
extract the beams at the end of a run. The remaining four straight sections each
have an interaction point where the beams cross. This is where the main LHC
experiments are placed. These are the general-purpose experiments ATLAS
(which will be described in chapter 4) and CMS, and two more specialized
experiments: LHCb with the purpose to study B-physics, and the dedicated
heavy ion experiment ALICE. In LHCb and ALICE, the beams cross with re-
duced overlap, as the experiments are designed for lower luminosities, while
ATLAS and CMS make full use of the maximum possible luminosity provided
by the LHC.
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The LHC computing grid

The LHC experiments produce data at a truly massive scale – in total about
30 petabytes per year. The Worldwide LHC Computing Grid (WLCG) con-
nects more than 170 computing centers in 40 countries to provide the resources
needed for storing and analyzing the LHC data. A tiered architecture is used
by the WLCG: Tier 0, at CERN, safe-keeps a first copy of the raw data and per-
forms a first-pass reconstruction. Thirteen large Tier 1 centers with sufficient
storage capacity perform reprocessing of the data and also provide storage of
raw, reconstructed, and simulated data. Around 160 Tier 2 sites located in
universities and other scientific institutes provide additional storage, produce
simulated events, and run end-user analysis jobs.

3.1 Experimental challenges
Detectors at hadron colliders face challenges that are not present, or much
less severe, at e.g. an e+e− collider. The unprecedented collision energies and
luminosity provided by the LHC also come at a cost to the experiments.

Hadrons are composite objects and energies such as those provided by the
LHC are enough to resolve their internal structure, i.e. collisions can be seen
as taking place between individual partons (quarks and gluons). Each parton
carries an unknown fraction of the total hadron momentum. The 7, 8 or 14 TeV
center-of-mass energies mentioned throughout this thesis should therefore be
seen as upper bounds on the energy available in a collision, while the ac-
tual center-of-mass energy in an individual interaction between two partons is
unknown and varying from event to event. In particular, the longitudinal mo-
mentum is unknown, while the initial transverse momentum can be neglected.
When analyzing hadron collisions, one is therefore mainly concerned with
transverse variables. Accurate simulations of proton-proton collisions require
the use of experimentally determined Parton Distribution Functions (PDFs),
which give the probability for a certain type of parton to have a certain frac-
tion of the longitudinal momentum of the proton.

Physics processes in hadron collisions tend to be dominated by the strong
interaction, which mostly produces hadronic jets. Very high luminosities are
therefore needed in order to collect a sizable amount of “interesting” events
involving more elusive electroweak processes, Higgs boson production, or
new physics. Hadron collisions also tend to produce events with high particle
multiplicities. This not only makes the reconstruction process more complex,
but high collision rates and large event sizes also make it implausible to read
out and record the detector data in every event. High-luminosity experiments
therefore need a trigger system to make real-time decisions of which events to
save. Furthermore, detectors need to be designed to cope with a high-radiation
environment.
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The instantaneous luminosity increases quadratically with the number of
protons in each bunch and with the inverse of the bunch diameter, but only lin-
early with the number of bunches. At some point, the luminosity is therefore
most efficiently increased by having as tightly squeezed bunches and as many
protons per bunch as possible. This corresponds to increasing the mean num-
ber of individual proton-proton collisions taking place in every bunch crossing.
As the LHC experiments mainly search for very rare processes, at most one of
the collisions in each bunch crossing, called the primary interaction, is likely
to be of interest. The other collisions are referred to as pile-up and bring a
number of problems. The interaction region has a longitudinal extension of a
few centimeters and it is typically possible to associate tracks, and often even
photons and jets, with individual collision points. However, the increased am-
bient activity in the calorimeters makes it more challenging to determine the
correct jet energy scale and also affects the measurement of missing transverse
energy (see section 5.2.6). More particles in each event also means more data
to read out, process and store.

Considerations for charged Higgs boson searches

Charged Higgs bosons can be produced at the LHC in the decays of top quarks,
in particular in tt̄ pairs, or in association with top quarks. They may subse-
quently decay predominantly into τν or tb. The Standard Model decay of the
top quark occurs almost exclusively via Wb. Events involving charged Higgs
bosons would therefore have high jet multiplicities and require good jet recon-
struction. Furthermore, the tagging of b-jets and hadronic tau decays require
good tracking in the inner detector volume. The very large background of
multi-jet events can be reduced by selecting events in which a top quark de-
cays leptonically, i.e. with an electron or a muon in the final state. The lepton
can also be used for triggering, which is more straightforward than triggering
on jets. This is the strategy followed in the analyses presented in this the-
sis. Electron reconstruction can be performed with a combination of tracking
and calorimeter information, while muon reconstruction requires a dedicated
tracking system since muons are not absorbed in calorimeters and an inner
tracking system is typically not sufficient. To detect the presence of neutrinos
produced in association with electrons, muons, or tau leptons, a good recon-
struction of missing transverse energy is also required.

3.2 Run 1 summary
The first long near-continuous run of the LHC spanned over three years and
resulted in several major scientific achievements, including the discovery of
the Higgs boson, observations of the Ξ′−

b and Ξ∗−
b resonances and of the rare

B0
s → µ+µ− decay, new measurements of Standard Model processes, and

many searches for new physics.
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Figure 3.1. Cumulative luminosity versus time (left) and mean number of interactions
per bunch crossing (right) delivered to ATLAS during proton-proton collision data-
taking at 7 and 8 TeV center-of-mass energies in 2011 and 2012 [35]. Also shown in
the left plot are the fractions recorded (reflecting inefficiencies in the data acquisition
and the “warm start” of the detector after stable beams have been established) and
certified to be of good quality (meaning that all sub-detectors were fully operational).

Collisions between 3.5 TeV proton beams first took place in March 2010,
with much of the rest of that year dedicated to commissioning, reducing β ∗ and
slowly increasing the number of protons in each beam1. The year 2010 ended
with beams of a few hundred proton bunches with 150 ns separation, each
bunch consisting of 1.2×1011 protons – already slightly more than the design
value. A total integrated luminosity of 40 pb−1 was well received by ATLAS
and CMS, but was soon superseded by the much larger datasets collected over
the following two years.

Figure 3.1 shows the integrated luminosity delivered to ATLAS in 2011
and 2012. These are the datasets analyzed in this thesis. The beam energy
remained at 3.5 TeV in 2011, while the effort to increase the luminosity con-
tinued with a switch to a 50 ns bunch spacing. The number of bunches was
then methodically increased up to the maximum of 1380 for this separation.
This was followed by reduced emittances2 and β ∗ of the beams, as well as
a somewhat increased bunch intensity. By the end of the year, ATLAS and
CMS had each received around 5.6 fb−1 of proton-proton collisions. In 2012,
the beam energy was increased to 4 TeV. After β ∗ was further reduced to
0.6 m – close to its design value of 0.55 m – and with 200 days dedicated
to proton-proton physics, about 23 fb−1 of data was delivered to ATLAS and
CMS.

Overall, a high operational efficiency of this new accelerator was quickly
established, with more than a third of the time being spent with stable beams
and integrated luminosities of 1 fb−1 per week routinely delivered in 2012.

1 β ∗ is the value of the beta function of the beams at the interaction point. The transverse beam
size is equal to

�

εβ ∗ where ε is the emittance, a measure of the spread of transverse particle
coordinates in the position-and-momentum phase space.
2See footnote 1.
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The use of the 50 ns bunch spacing, as compared to the design value of 25 ns,
was somewhat compensated for by the higher bunch intensity and lower than
expected emittance. This made it possible to eventually reach an instantaneous
luminosity of 7.7× 1033 cm−2s−1, close to the target of 1× 1034 cm−2s−1.
The cost to the experiments was the high pile-up (as shown in Figure 3.1) with
the mean number of interactions per bunch crossing eventually reaching 37,
almost twice the design value.

In addition to the proton physics program, the LHC also produced lead-lead
collisions with an energy of 2.76 TeV per nucleon, with a total of 177 µb−1

accumulated in 2010 and 2011. Before the start of the first Long Shutdown
(LS1) in early 2013, the LHC also successfully delivered proton-lead colli-
sions.

During LS1 (2013–2015), the collider is being prepared for higher energies
and luminosities. Upgrades and consolidation works are also undertaken by
the experiments, and in the earlier stages of the CERN chain of accelerators.

3.2.1 Discovery of the Higgs boson
The most important result of the LHC Run 1 is the discovery of a Higgs boson
[36, 37], achieved independently by the ATLAS and CMS collaborations. The
most important channels to study the Standard Model-like Higgs boson are
its decay to two photons or two Z bosons that subsequently decay to electrons
and/or muons. Both channels offer the possibility to precisely measure all final
state particles and to reconstruct the Higgs boson mass with good resolution.
As the Higgs boson only couples to massive particles, its decay to two photons
proceeds at lowest order via a heavy fermion or boson loop. This decay mode
is therefore suppressed due to the additional vertex but is enhanced due to the
strong Yukawa coupling between the Higgs boson and the top quark, which is
the most important loop contribution. Other important Higgs decay channels
at the LHC are H → WW → lν lν (which has a large branching fraction but
poor mass resolution due to the presence of neutrinos) and H → ττ. The latter
channel offers, despite its lower resolution and large backgrounds, the best
direct measurement of Higgs couplings to fermions. The decay into a pair
of bottom quarks has the largest branching fraction of all decay modes for a
Higgs boson mass below 135 GeV and is also analyzed, but is very difficult
to isolate at a hadron collider due to the jet-rich background. Only production
modes in association with a vector boson or a tt̄ pair are therefore considered.

The mass of the Higgs boson is measured by combining the two high-
resolution channels in both of the experiments. The measured values are:

ATLAS : mH = 125.36±0.37(stat)±0.18(syst) GeV [38],

CMS : mH = 125.03+0.26
−0.27(stat)+0.13

−0.15(syst) GeV [39],

combination : mH = 125.09±0.21(stat)±0.11(syst) GeV [40].

(3.1)
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Figure 3.2. Signal strengths and mass of the Higgs boson with best-fit values to the
data and 68% (full) and 95% (dashed) confidence level contours indicated. The left
plot [44] shows the ATLAS measured signal strength (defined as cross section times
branching fractions, relative to the Standard Model expectation) for two groups of
production modes (gluon-gluon fusion and tt̄ associated production, and vector bo-
son fusion and Higgs-strahlung) in five different search channels. The right plot [39]
shows the CMS measured mass and the total signal strength in the two high mass
resolution channels (the relative signal strength for the two decay modes is set to the
Standard Model expectation).

A mass around 125 GeV is within 1.3σ of the expected value of 94+25
−22 GeV

obtained from a global fit of Standard Model parameters to electroweak pre-
cision data [41]. The observed decay modes and angular distributions of the
decay products are compatible with the particle having zero spin and positive
parity, as expected for the Standard Model Higgs boson, with alternative hy-
potheses strongly disfavored [42, 43]. The couplings (assessed by measuring
different production modes as well as decay channels) are found to agree with
the Standard Model predictions [39, 44], as illustrated in Figure 3.2.

3.2.2 SUSY and 2HDM searches
A large number of searches for SUSY particles have been undertaken at the
LHC, so far with negative results. Due to the proliferation of SUSY theo-
ries, searches target simplified models that focus on a single production mode
and one- or two-step decay chains. As an illustration, Figure 3.3 summarizes
the current status of SUSY searches in the ATLAS experiment. In particu-
lar, gluinos and first- and second-generation squarks should be produced with
large cross sections at the LHC and the lower limits on their masses approach
or exceed 1 TeV in many important benchmark models.

The most stringent constraints on the MSSM Higgs sector is offered by the
search for neutral Higgs bosons in the ττ final state, in particular at large tanβ .
Figure 3.4 shows the ATLAS exclusion limits interpreted in the mmax

h , mmod−
h ,
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Figure 3.3. A representative selection of ATLAS searches for Supersymmetry.
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and mmod+
h scenarios [45]. Similar results are available from CMS [46]. The

overall most sensitive search channel for 2HDMs is A → Zh. ATLAS has
searched for decays of h to ττ or bb together with Z decays to electron or
muon pairs, as well as h decays to bb together with Z decays to neutrinos [47].
Figure 3.5 shows the excluded parameter space in Type I, Type II, lepton-
specific and flipped 2HDMs, with the constraints from A → Zh indicated in
pink and the constraints from A → ττ indicated in blue. These plots are made
assuming that mh = 125 GeV and cos(β −α) = 0.1 (recall that small values
of this quantity correspond to SM-like couplings of h). Furthermore, it is
assumed that mA = mH = mH± . CMS searches for A → Zh are reported in
Refs. [48, 49].

The single most sensitive channel for charged Higgs boson searches at the
LHC is the all-hadronic final state including the hadronic decay of a tau lepton,
i.e. gg→ tt̄ → bb̄(W− → qq̄)(H+ → τ+ν) for a light charged Higgs boson and
gg → b(t̄ → qq̄b̄)(H+ → τ+ν) for a heavy charged Higgs boson. Interpreta-
tions of the ATLAS results, which set upper limits on the product of branch-
ing fractions B(t → bH+)×B(H+ → τ+ν) between 0.23% and 1.3% for
charged Higgs boson masses in the range 80–160 GeV and upper limits on
σ(pp → t̄H++X)×B(H+ → τ+ν) between 0.76 pb and 4.5 fb for charged
Higgs boson masses in the range 180–1000 GeV, are shown in Figure 3.6 for
the mmax

h , mmod−
h , and mmod+

h scenarios [50]. Similar results are available from
CMS [51]. For the decay H+ → cs̄, the experiments have placed upper limits
on B(t → bH+)×B(H+ → cs̄) between 1% and 7% for charged Higgs boson
masses in the range 80–160 GeV [52, 53]. CMS has also searched for heavy
charged Higgs bosons decaying to tb̄ in the dilepton final state, placing upper
limits on σ(pp → t̄H++X)×B(H+ → tb̄) in the range 0.4–4 pb for charged
Higgs boson masses in the range 180–600 GeV [54].
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Figure 3.4. 95% confidence level exclusion limits in the tanβ ,mA parameter space
from a search for neutral Higgs bosons decaying to ττ in ATLAS [45]. Results are
shown in the mmax

h (top), mmod+
h (middle), and mmod−

h (bottom) scenarios.
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Figure 3.6. 95% confidence level exclusion limits in the tanβ ,mH+ parameter space
from a search for H+ → τν in fully hadronic events in ATLAS [50]. Results are shown
in the mmax
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h (middle), and mmod−

h (bottom) scenarios.
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4. The ATLAS experiment

The ATLAS experiment [55] is a multi-purpose detector designed to make full
use of the rich LHC physics potential, especially in the search for the Standard
Model Higgs boson and new physics phenomena at the TeV scale. To cover
a wide range of interesting final states, it identifies and measures electrons,
photons, muons, Emiss

T , and jets, with tagging of hadronic tau decays and b-
jets. To be sensitive to rare processes, ATLAS takes advantage of the full
luminosity offered by the LHC, which means that all of its sub-detectors need
to be fast, radiation-hard, and able to handle large amounts of pile-up.

An overview of the ATLAS experiment is shown in Figure 4.1. It is con-
structed with a forward-backward symmetric geometry consisting of a large
barrel cylinder surrounding the beamline around the collision point, and end-
cap plugs for near-hermetic coverage. Measuring 44 m in length and 25 m in
diameter, and weighing 7000 tons, it is the largest of the LHC experiments.

The design of the detector was largely driven by the choice of magnet sys-
tem, which consists of a thin superconducting solenoid surrounding the inner
detector and three sets of eight superconducting toroids integrated in the muon
system. The inner detector consists of semiconductor pixel and strip detectors,
and a straw tube transition radiation tracker, providing vertexing, momen-
tum measurement and particle identification capabilities. Outside the inner
detector and the solenoid magnet are liquid argon electromagnetic sampling
calorimeters, surrounded by hadronic calorimeters using scintillating tiles in
the barrel and liquid argon in the end-caps. The outermost and physically
largest part is the muon system, consisting of multi-wire chambers, single-
wire drift tubes and resistive plate chambers, with different technologies used
to provide both precision tracking and fast trigger capabilities.

Coordinate system

A right-handed Cartesian coordinate system with its origin at the center of the
detector (the nominal interaction point) is defined in ATLAS such that the z-
axis lies along the beam pipe, the y-axis points upwards and the x-axis points
towards the center of the LHC ring. Spherical coordinates are often used as
well, with φ being the azimuthal angle in the x-y plane and θ being the polar
angle in the y-z plane.

The pseudorapidity η is a function of θ such that

η =− ln tan

�

θ

2

�

. (4.1)
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Figure 4.1. The ATLAS detector [55].

In the low-mass limit, the pseudorapidity of a particle is a good approximation
of its rapidity,

yr =
1
2

ln

�

E + pz

E − pz

�

, (4.2)

which has the convenient property that rapidity differences Δyr are invariant
under Lorentz boosts along the z-axis, i.e. Δyr between two collision products
is independent of the unknown longitudinal momenta of the colliding partons.
The angular distance between two directions in the η-φ space is defined as

ΔR =
�

(Δφ)2 +(Δη)2. (4.3)

4.1 Inner detector
The purpose of the inner detector is to provide tracking and transverse mo-
mentum measurements of charged particles. It uses a combination of precision
trackers, which allow accurate vertexing and impact parameter measurements
for heavy-flavor and tau lepton tagging, and a larger gaseous tracking volume
that also provides electron identification capabilities via detection of transition
radiation. The arrangement of these detectors is shown in Figure 4.2, with the
highly granular semiconductor pixel and microstrip detectors covering the re-
gion |η | < 2.5 and the transition radiation tracker limited to |η | < 2.0. The
design resolution of the inner detector is σpT/pT = 0.05%pT ⊕1%. It is ulti-
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Figure 4.2. The ATLAS inner detector [55].

mately limited mainly by the effects of multiple scattering and degrades with
increasing pT as particles leave tracks with reduced curvature.

Pixel detector

The pixel detector is located closest to the interaction point. It consists of
silicon sensors finely segmented into rectangular elements for good spatial
resolution in two coordinates, with a total of over 80 million pixel elements.
The detector modules are grouped into three cylindrical shells in the barrel
region and three vertical discs in each end-cap, so that each track crosses three
pixel layers.

Semiconductor tracker

The SemiConductor Tracker (SCT) uses silicon microstrips oriented in the
beam direction in the barrel and radially in the end-caps to measure the coor-
dinate in the bending direction of the magnetic field. The detector modules are
installed in four cylindrical shells in the barrel region and nine vertical discs
in each end-cap, arranged so that a track passes through four modules. Each
module consists of two detector layers, with the strips in the second layer ro-
tated relative to the first to also allow reconstruction of the second coordinate.
The rotation angle is small (40 mrad) to keep a redundancy in the measurement
of the primary coordinate.
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Transition radiation tracker

The Transition Radiation Tracker (TRT) consists of densely packed thin straw
tubes interleaved with a transition radiation material. The straws are oriented
parallel to the beam axis in the barrel region and radially in the end-caps,
thereby providing R-φ respectively z-φ positioning only. The lower intrinsic
resolution of the straw tubes compared to the silicon detectors is compensated
for by a large number of hits (36 on average) and longer track length in the
TRT. This tracking device also provides electron identification thanks to the
emission and detection of transition radiation, with an average of 7–10 transi-
tion radiation hits expected from electrons with a transverse momentum above
2 GeV.

4.2 Calorimeters
The calorimeters, shown in Figure 4.3, are designed to measure the energy of
electrons and photons with a resolution of σE/E = 10%/

√
E ⊕0.7%, and of

hadronic jets with a resolution of σE/E = 50%/
√

E ⊕ 3% (which becomes
σE/E = 100%/

√
E ⊕ 10% above |η | = 3.2). The constant terms account

for local non-uniformities in the calorimeter response, the energy-dependent
stochastic terms correspond to statistical fluctuations, and the effects of elec-
tronic noise are negligibly small. Statistical fluctuations become less detri-
mental with increasing energy. In contrast to the inner detector, the resolution
therefore improves with increasing energy.

The high resolution is ensured by the thickness of the calorimeters, which
is more than 22 radiation lengths in the electromagnetic calorimeter and ap-
proximately 10 interaction lengths in the hadronic calorimeter, providing good
containment1. Together with the large η coverage (up to |η | = 4.9), this also
allows for a good Emiss

T measurement. The thickness of the calorimeters is also
crucial to prevent punch-through of hadrons into the muon system.

The electromagnetic (EM) calorimeter is a sampling calorimeter using lead
absorber plates and liquid argon as the active material. Liquid argon is used
due to its radiation tolerance and linear, time-stable, response. To ensure full
φ coverage, the absorbers and electrodes are folded in a zig-zag accordion
shape. The central part of the EM calorimeter consists of two half-barrels,
together covering the region |η | < 1.475. Each end-cap consists of an inner
and an outer wheel, together covering the region 1.375 < |η | < 3.2. In the
precision-measurement region matched to the inner detector, |η | < 2.5, the
EM calorimeter has three sampling layers, while it has two sampling layers in
the region 2.5 < |η | < 3.2. The innermost layer has the highest granularity,

1The radiation length is the mean distance which an electron travels before having lost a fraction
1− 1

e of its initial energy due to bremsstrahlung. The interaction length is the mean distance
which a hadron travels before undergoing an inelastic nuclear interaction. These numbers are
highly material-dependent.
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Figure 4.3. The ATLAS calorimeters [55].

with strip cells of size Δη ×Δφ = 0.003×0.1 in the central part. In the region
|η |< 1.8, the calorimeter is also complemented with a thin presampling layer
of liquid argon which is used to correct for energy lost in the material upstream
of the calorimeter (up to several radiation lengths).

ATLAS has three hadronic calorimeters: the tile calorimeter, the Hadronic
End-cap Calorimeter (HEC), and the Forward Calorimeter (FCal). The tile
calorimeter consists of a central barrel part and two extended barrels, seg-
mented in depth in three layers, and together covering the region |η | < 1.7.
It uses steel as absorbing material and scintillating tiles as active material. In
the HEC and FCal, covering larger rapidities, the liquid argon technology is
used, again because of its radiation tolerance. The HEC, covering the region
1.5 < |η |< 3.2, uses copper plates as absorbers and consists of two indepen-
dent wheels per end-cap, each divided into two segments in depth, for a total
of four layers in each end-cap. The FCal, covering the very forward region
3.1 < |η |< 4.9, consists of three modules in each end-cap. Copper is used as
absorbing material in the innermost module in each end-cap, while tungsten
is used in the other two in order to provide good containment in this relatively
small detector. The first module is optimized for electromagnetic measure-
ments, thereby complementing the EM calorimeter. For good coverage and
minimum radiation background in the muon spectrometer, both the HEC and
the FCal are integrated in the same cryostats as the EM end-cap calorimeters.
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Figure 4.4. The ATLAS muon system [55].

4.3 Muon system
The muon spectrometer is designed to measure the transverse momentum of
muons with a resolution of 10% at 1 TeV, independently of the inner detector.
The layout of the system is shown in Figure 4.4. It consists of separate trigger
and high-precision tracking chambers used to measure the deflection of muon
tracks in the field of the toroid magnets. The chambers are installed in three
cylindrical shells in the barrel region and three vertical wheels in the end-cap
regions.

The precision tracking chambers consist mainly of Monitored Drift Tubes
(MDTs) covering the full η range up to |η | = 2.7. Each MDT chamber con-
sists of three to eight layers of high-pressure (3 bar absolute) drift tubes ori-
ented to measure track coordinates in the bending direction. The use of sensor
wires isolated in individual tubes ensures reliable operation.

To handle the high occupancy at large rapidities, Cathode Strip Chambers
(CSCs) with high rate capability and time resolution are used in the central
parts of the innermost end-cap wheels, covering the region 2.0 < |η | < 2.7.
The CSCs are multi-wire chambers with cathodes segmented into orthogonal
strips, which allow both coordinates to be measured.

The read-out time of the precision chambers exceeds the minimum 25 ns
bunch crossing interval of the LHC. Trigger capabilities are therefore provided
by dedicated detectors which consist of Resistive Plate Chambers (RPCs) in
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the barrel and Thin Gap Chambers (TGCs) in the end-cap regions, together
covering the region |η | < 2.4. TGCs are multi-wire chambers characterized
by a wire-cathode distance smaller than the distance between wires. A RPC
has no wires, but parallel electrode plates separated by a narrow gas gap, with
the signal read out via capacitive coupling to metallic strips located outside
the resistive plates. In the TGCs, both the wire and the perpendicular cathode
strip signals are read out, and in the RPCs, two orthogonal sets of read-out
strips are used. In addition to triggering, these chambers therefore also allow
measurement of the second track coordinate not determined by the MDTs.

4.4 Forward detectors
Online monitoring of the luminosity delivered to ATLAS is provided by the
Cherenkov detector LUCID (LUminosity measurement using Cherenkov In-
tegrating Detector) located at ±17 m from the interaction point. The absolute
luminosity is determined by the ALFA (Absolute Luminosity For ATLAS)
detector, which uses Roman pots with scintillating-fiber trackers located at
±240 m from the interaction point. Besides the luminosity detectors, the
very forward region is also instrumented by the quartz-tungsten Zero-Degree
Calorimeter (ZDC) at ±140 m from the interaction point, used to determine
the centrality in heavy-ion collisions.

4.5 Trigger and data acquisition
The trigger system has three levels: L1, L2, and the event filter. The L1 trig-
ger is based on custom-made electronics, while L2 and the event filter, collec-
tively known as the high-level trigger, are implemented in software running
on commercial computers. Events are selected according to a “menu” of hun-
dreds of interesting signatures, with most of the bandwidth dedicated to the
most generic triggers. The analyses presented in this thesis make use of single
electron and single muon triggers, with minimum requirements on transverse
momentum and isolation, which together account for about one fourth of all
recorded events. Data corresponding to selected events are transferred by the
Data Acquisition (DAQ) system to the CERN computing center, written to
tape and distributed over the worldwide LHC computing grid.

The L1 trigger uses reduced-granularity information from the muon system
trigger chambers and from the calorimeters to search for high-pT muons, elec-
trons/photons, jets, hadronic decays of tau leptons, and Emiss

T . It also defines
Regions of Interest (RoI), i.e. parts of the detector where interesting features
are observed. The L1 decision time is less than 2.5 µs, during which the event
data is held in memories within the front-end electronics of each detector. Af-
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ter this time, if the event is accepted, it is read out and buffered by the DAQ
system. The bandwidth of this operation limits the L1 trigger rate to 75 kHz.

Data corresponding to the RoI identified by the L1 trigger (on average 2%
of the overall data in each event) is passed on to the L2 trigger, which uses this
extended information to refine the L1 selection and reduces the acceptance
rate to about 5 kHz. The L2 processing time is approximately 40 ms.

The final event selection is performed by the event filter, which uses offline
analysis procedures to perform a full event reconstruction and reduces the out-
put rate to approximately 400 Hz. The reconstruction takes about four seconds
per event and, at this point, the DAQ capacity is higher than the available pro-
cessing power. An additional 200 events per second (passing lower priority L2
triggers) are therefore stored in a “delayed stream” for reconstruction between
data-taking periods.

4.6 Software
4.6.1 Detector control system
The Detector Control System (DCS) provides a high-level interface for the op-
eration of the ATLAS detectors and associated technical infrastructure. This
includes the control and monitoring of equipment such as power supplies,
cooling, and environmental sensors. The DCS is responsible for safely tran-
sitioning the hardware between well-defined operational states and signaling
any problematic conditions. It monitors and records operational data, and also
handles communication with other systems such as the ATLAS DAQ and the
LHC beam information.

The base of the DCS software is WinCC, an industrial Supervisory Controls
And Data Acquisition (SCADA) product which provides, among other things,
a scripting facility, user interfaces in the form of alarm screens and fully pro-
grammable control panels, and a generic application programming interface
for extended functionality. A key feature of WinCC is its high scalability. This
is crucial for the ATLAS DCS, which needs to process data from over 200 000
sensors. Different WinCC instances, called “projects”, can be connected via
a LAN to form a distributed system allowing information exchange between
all connected projects. The ATLAS DCS comprises about 150 projects, each
of which is running on a dedicated server, organized in a three-layer archi-
tecture as illustrated in the top part of Figure 4.5. The first layer consists of
the so-called Local Control Stations (LCS), which are connected to the front-
end electronics of a set of related hardware. The second layer consists of
Sub-detector Control Stations (SCS), which integrate associated systems to
provide stand-alone control of each sub-detector. The third layer consists of
Global Control Stations (GCS), providing e.g. human interfaces in the ATLAS
control room for the high-level operation of the experiment.
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WinCC is oriented around the concept of "data points", which are data
structures used to read and write information to and from connected equip-
ment as well as between projects. An alarm mechanism is provided, with
configurable levels for each data point, and the options to mask known alarms
or require acknowledgement by the operator. Data point values are recorded
in an Oracle database for later analysis. Some of this information is also used
for physics reconstruction.

For the physical connection between front-end devices and control stations,
the industrial Controller Area Network (CAN) fieldbus and the CANopen pro-
tocol are used whenever possible. CAN is a high-speed network system which
prevents message collisions and provides good error detection and recovery. It
is also tolerant to strong magnetic fields, in contrast to e.g. Ethernet. In most
cases, the software interface to the SCADA system is composed of device-
specific server applications providing access to the equipment via the industry
standard OPC protocol, for which WinCC provides a client.

The DCS is modeled as a hierarchical Finite State Machine (FSM), which
allows homogeneous control of all connected systems. The lower level FSM
elements are managed by each LCS. They correspond to individual or groups
of devices, which may be structured into logical units according to purpose
or physical location. These are in turn grouped into representations of sub-
detectors and sub-detector partitions at the SCS level. A GCS contains the
top node of the hierarchy, which allows control of the complete experiment.
As an example, part of the FSM tree is illustrated in the lower part of Fig-
ure 4.5. Commands are propagated downwards and state changes are propa-
gated upwards in the hierarchy. The state is a property of each FSM element,
representing its condition and readiness for physics data-taking. Each element
automatically assumes the most severe state reported by any of its underly-
ing elements. Similarly, each element also has a status property indicating
the highest severity of alarms active for the underlying devices, allowing error
detection at any level of the hierarchy.

4.6.2 Simulation
Monte Carlo modeling is used to simulate physics processes in ATLAS. In the
first step, the interaction of two partons participating in a LHC proton-proton
collision is simulated. This is called the hard process, and it is simulated by
an event generator program. Different types of hard processes are typically
simulated separately. The order of a generator refers to the complexity of the
Feynman diagrams describing the type of hard process that the generator im-
plements. A Leading-Order (LO) diagram contains only the minimum number
of vertices through which a type of process can take place, while higher-order
diagrams can provide a more complete description, including the effects of
radiation and loop corrections.
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Figure 4.5. The ATLAS DCS architecture (top) and parts of its logical representation
as a Finite State Machine (bottom). This figure is reprinted from Ref. [56].
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Higher-order corrections involving the strong interaction that are not in-
cluded in the event generator are subsequently approximated in the parton

shower. This step gives an effective description of the large amounts of gluon
radiation emitted by partons involved in the large momentum transfers of the
hard interaction. The gluons themselves emit new partons, which produce
even more gluons, and so on, until hadronization occurs. Interactions of rem-
nants of the original protons, called the underlying event, and finally the decay
of unstable hadrons are also simulated.

A range of available programs are used depending on the process being
studied, and different programs may be used for different steps of the simu-
lation. The programs used to simulate the signal and background processes
studied in this thesis are listed in section 5.1.

Long-lived particles in the simulated events are propagated through a de-
tailed simulation of the ATLAS detectors, implemented using the GEANT4
toolkit [57]. Interactions with all active detector elements are recorded, and
the response of the experiment is approximated in a process called digitization,
in which the effects of noise and timing constraints of the readout electronics
and DAQ system are included. The result is a collection of hits, which are
then passed to the same reconstruction algorithms as real data from the de-
tectors. The full GEANT4 simulation is very detailed, and consequently rather
slow. An alternative simulation using parametrized descriptions of the ATLAS
detectors is occasionally used to trade precision for speed.

All simulation tasks, from event generation to detector simulation, are han-
dled by a central ATLAS software framework named ATHENA and take place
on the WLCG grid.

4.6.3 Reconstruction and analysis
The ATHENA software also handles reconstruction of physics objects (elec-
trons, muons, jets, etc.). Like simulation tasks, this is also typically done
in large coordinated campaigns on the WLCG grid. The reconstruction, in
which simulated events and real data are treated on equal footing, proceeds
in two steps. The first step is stand-alone reconstruction of primitive objects
within the different sub-systems of the experiment. Charged particle tracks are
formed from hits in the inner detector, energy clusters are formed from energy
depositions in the calorimeters, and muon tracks are formed from hits in the
muon system. This information is stored in Event Summary Data (ESD) files.

The second step is the combined reconstruction, during which informa-
tion from all sub-systems are combined to form high-level objects. Electrons
are formed from a track in the inner detector and an electromagnetic cluster.
Muons are reconstructed by matching a track in the muon spectrometer to a
track in the inner detector or to small energy depositions in the calorimeter.
Jets are formed by grouping energy clusters in the calorimeters, and tracking
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information from the inner detector is added to identify b-jets and hadronic tau
decays. Tracking information is also used to reconstruct the primary vertex.
Multiple algorithms exist for the reconstruction of each type of object. The
output of this step is therefore multiple collections of electrons, jets, etc. – all
with different definitions. In addition, tracks and energy deposits may at this
point be double-counted between different types of objects. An object pre-
selection is later performed in each analysis to ensure a self-consistent event
description. The output of the combined reconstruction are Analysis Object
Data (AOD) files.

Analysis tasks can also be performed within ATHENA, but are often instead
implemented as stand-alone applications based on ROOT [58] and using so-
called D3PD (from Derived Physics Data) files as input (this is also the case
for the analyses presented in this thesis). D3PD files contain selected subsets
of the AOD content, stored as primitive data types. During LS1, ATLAS is
transitioning to a new analysis model in which the (somewhat redundant) AOD
and D3PD files are replaced by a common, object-oriented, “xAOD” format.
This is foreseen to reduce the total storage space needed.

The EventLoop analysis framework

During the preparation of this thesis, the author has been involved in the de-
velopment and support of a light-weight and extensible ROOT-based analysis
framework called EVENTLOOP. The aim of the EVENTLOOP project is to
provide users with a truly uniform interface for configuring and running their
analysis jobs on different back ends, including one or multiple cores of a local
workstation, PROOF-farms [59], various batch systems, and the WLCG grid.
EVENTLOOP was partly used to produce the results presented in part III of this
thesis, and has been adopted as the officially supported analysis framework by
the ATLAS Analysis Software Group.

EVENTLOOP is based on the ROOTCORE build system, which defines a
structure for modular software packages. An analysis software consists of a
collection of packages, typically including a few core framework components,
ATLAS common tools for applying object corrections and evaluating uncer-
tainties, and the user provided code that defines the analysis task. The EVENT-
LOOP suite of packages includes SAMPLEHANDLER, and EVENTLOOP itself.

SAMPLEHANDLER manages references to the input files, which may be
located on a local disk or on remote resources, including the WLCG grid.
Collections of input files are defined based on e.g. the simulated physics pro-
cess or the data-taking period, and can be searched, split or joined based on
tags. Arbitrary meta-data based on key-value pairs can also be assigned to
each collection, and can be queried by the user’s code during execution.

EVENTLOOP is responsible for job management and steering the execution.
The analysis code is written as algorithms, which are C++ classes that define
the logic to be executed for each event, while EVENTLOOP manages input and
output streams (files or chains of files). Multiple algorithms may be added
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to a single job, and may produce any number of common or isolated output
streams.

EVENTLOOP has a modular architecture with optional packages provided
for optimized reading of D3PD and xAOD files, ROOT ntuple management,
“white board” services for inter-algorithm communication, or even parsing
plain text formulas for setting up simple analyses with no code at all. These
may be used as building blocks for a full analysis, or replaced with custom
solutions – EVENTLOOP is not tied to any specific input or output format
or type of analysis, the only requirement is that the user’s code operates on
individual events.

Jobs are configured by ROOT macros. Algorithm classes are instantiated
and can be manipulated during the configuration. Their state is then saved
to disk using a serialization mechanism provided by ROOT. The saved file is
shipped to the place of execution where the state of the algorithm is recovered.
This eliminates the need for auxiliary configuration files and command line
options. Instead, full and direct interaction with each algorithm is possible in
the job macro, including the setting of data members, function calls, and other
operations. This can also be performed interactively, if desired.

In the job macro, a driver object is instantiated. The driver handles the pro-
cess of submitting jobs to the desired processing system, as well as retrieving
and merging the output upon completion. Advanced drivers may also monitor
the job progress and resubmit problematic jobs. For long-running jobs, users
may log out from the local workstation and reconnect with running jobs at a
later point. On the processing back end, a worker object iterates over all input
data, feeding events to each algorithm, and manages the output. There are
driver-worker pairs for most popular platforms for ROOT-based analysis. The
most complex drivers are those interfacing to the ATLAS grid tools due to the
massive scale, range of configuration possibilities, and inherent unreliability
of such jobs. The grid worker also has special features for reporting errors
and job statistics to the ATLAS grid job management system. The following
example illustrates a typical EVENTLOOP job steering macro:
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/ / D e f in e a j o b t o p r o c e s s some d a t a s e t s
EL : : Job j o b ;
SH : : SampleHandler sh ;
SH : : scanDQ2 ( sh , " data12_8TeV . per iodA . phys ics_Muons / " ) ;
SH : : scanDQ2 ( sh , " mc12_8TeV . 1 1 7 0 5 0 . P o w h e g P y t h i a _ t t b a r / " ) ;
SH : : scanDQ2 ( sh , " mc12_8TeV . 1 0 5 9 8 6 . Herwig_ZZ / " ) ;
sh . s e t M e t a S t r i n g ( " n c _ t r e e " , " p h y s i c s " ) ;
j o b . s amp leHand le r ( sh ) ;

/ / C o n f i g u r e a s i n g l e a l g o r i t h m t o run i n t h e j o b
MuonAnalysis ∗ a l g = new MuonAnalysis ;
a lg −>maxMuonEta = 2 . 5 ;
a lg −> u s e T i g h t S e l e c t i o n = t r u e ;
TGoodRunsLis tReader ∗ g r l T o o l = new TGoodRunsLis tReader ( ) ;
g r l T o o l −>SetXMLFile ( " v61_PHYS_StandardGRL_All_Good . xml " ) ;
g r l T o o l −> I n t e r p r e t ( ) ;
a lg −>s e t G o o d R u n s L i s t ( g r l −>GetMergedGoodRunsList ( ) ) ;
j o b . a lgsAdd ( a l g ) ;

/ / Submit t h e j o b t o t h e g r i d
j o b . o p t i o n s ()−> s e t D o u b l e ( EL : : Job : : optMaxEvents , 5 0 0 ) ;
EL : : G r i d D r i v e r d r i v e r ;
d r i v e r . su bmi t ( job , " muonTestJob " ) ;

/ / Upon comple t i on , r e t r i e v e and p l o t some o u t p u t
SH : : SampleHandler s h H i s t o g r a m s ;
s h H i s t o g r a m s . l o a d ( " muonTestJob / h i s t " ) ;
TH1∗ h i s t = s h H i s t o g r a m s . g e t (

" data12_8TeV . per iodA . phys ics_Muons /")−> r e a d H i s t ( " p t " ) ;
h i s t −>Draw ( ) ;

4.7 Run 2 preparations
During LS1, a new silicon pixel detector layer was installed in ATLAS, the
Insertable B-Layer (IBL). It is now the innermost detector element, mounted
around a new, smaller, beam pipe. This additional layer will, thanks to its
proximity to the interaction region, offer improved tracking and vertexing. In
turn, future searches for charged Higgs bosons should benefit from improved
tagging of b-jets and hadronic tau decays.

In addition, the muon spectrometer coverage was improved, and a range of
technical infrastructure upgrades and other activities were performed during
LS1. Some projects that the author of this thesis has been involved in are
documented in this section.
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4.7.1 SCT backplane resistance measurements
During their installation in 2006 and 2007, it was found that some of the 4088
SCT modules exhibited unusually high resistance under forward bias. With
a 10 µA current sourced in the forward direction, the typical resistance was
around 35 kΩ. However, about 20% of the barrel modules and 5% of the end-
cap modules showed a significantly higher resistance. Fortunately, it was also
found that sourcing a larger current – or operating the module at higher than
normal reverse bias voltage (350 V instead of 150 V) – usually brings back
the higher resistances to normal levels. Concerns remained, however, that
the problem might get worse in the future. As the leakage current increases
with increasing bulk damage, a significant voltage drop may develop if the
resistance is too high. A maximum of 400 V can be supplied to the SCT.
If that is not enough to fully deplete the sensors, signal loss will occur. It
was therefore decided to repeat the measurements during LS1 to see how the
resistances had changed over time.

The SCT modules have two layers of sensors with 768 active strips and a
mean strip pitch of 80 µm, glued to either side of a 380 µm thick Thermal Py-
rolitic Graphite (TPG) base-board, which provides mechanical structure and
carries away heat. A Cu/polyimide flexible circuit hybrid reinforced with car-
bon fibre carries the front-end electronics. Figure 4.6 depicts a barrel module,
which consists of two such sensor pairs with a total active length of 126 mm
and one hybrid mounted on a common TPG base-board. The end-cap modules
use different variations of this design depending on their location in the outer,
middle or inner rings. Power is supplied to the sensors via the TPG base-
board, which is connected to the aluminized backplanes of the sensors by a
silver-loaded epoxy adhesive. The unusually high resistances were tentatively
attributed to problems with these connections.

Rack-mounted power supply crates located outside the ATLAS cavern con-
tain Low Voltage (LV) cards supplying power to the front-end electronics and
High Voltage (HV) cards providing bias voltage for the sensors. Each HV card
supplies eight SCT modules. To measure the module resistance under forward
bias, a HV card is replaced with a custom adapter card that allows connection
of a sourcemeter and a data acquisition unit directly to the bias circuit. The
measurement follows the procedure developed in 2006–2007:
1. A current of 10 µA is applied for 1 s and the resistance is measured.
2. If the resistance is above 40 kΩ, the current is increased to 100 µA for 3 s.
3. The resistance measurement is repeated with 10 µA.
4. If the resistance is above 40 kΩ, the current is increased to 100 µA for 10 s.
5. The resistance measurement is repeated with 10 µA.
This process is automated in a LabVIEW application for consistency and effi-
ciency.

New measurements have been performed on a sample of barrel and end-
cap modules in 2013. In total, more than a third of the SCT modules were
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measured. Contrary to what was originally feared, no increase in resistance
has been observed. While the mean resistance measured after installation was
35 kΩ for barrel modules and 32 kΩ for end-cap modules, it has decreased to
13 kΩ for both types of modules in 2013.

It was suggested that the high voltage applied to the circuits over long pe-
riods could have affected their conductive properties. However, a small num-
ber of end-cap modules have been installed but never powered due to cooling
problems and can therefore be used as a control sample in order to test this hy-
pothesis. The mean value of the resistances of these modules is 15 kΩ, close
to that of the modules which have been powered during Run 1.

Instead, the differences between the old and new measurements are most
likely due to the high radiation doses received during LHC operation. Radia-
tion damage causes changes in the effective doping concentration (including
type inversion) and is expected to alter the diode characteristic. This hypoth-
esis was confirmed by performing the same measurements on SCT modules
installed in the SR1 test facility at CERN. These modules have only been ex-
posed to natural radiation levels and show a mean resistance of around 37 kΩ.
Historical data are unfortunately not available for these modules but this num-
ber is compatible with the other measurements made in 2006–2007, suggest-
ing that it has remained constant throughout this time. The nominal resistance
of the bias circuit is about 12 kΩ. It appears that the strip diodes of the SCT
modules installed in ATLAS are fully turned on at 10 µA after irradiation,
while this was not the case before. No variation is observed between the four
SCT barrel layers that should have received different radiation doses.

The measurements of the barrel modules, the end-cap modules and the test
modules installed in SR1 are summarized in Figure 4.7. Some modules still
exhibit a higher than expected resistance at 10 µA. This prompted an inves-
tigation of the correlation between outliers in the old and new measurements.
As can be seen in Figure 4.8, the modules that exhibit unusually high resis-
tance are in general not the same in 2013 as in 2006–2007.

Even after having first applied a current of 100 µA for 10 s, four of the
tested barrel modules and two of the tested end-cap modules showed a resis-
tance higher than 40 kΩ (42–81 kΩ) at 10 µA in 2013. To test if these modules
could be “cured” by a larger current, 1 mA was applied before the measure-
ment was again repeated at 10 µA. The resistances had then been reduced to
between 12 kΩ and 17 kΩ. This is accounted for in Figures 4.7 and 4.8.

In conclusion, the new measurements most importantly show that the num-
ber of outliers has not increased over time and that modules with unusually
high resistance still can be returned to average levels by applying a higher
current. The backplane resistance therefore does not present an issue for the
future performance of the SCT detector.
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4.7.2 Heater pads control system upgrade
Electric resistance heating pads are used to maintain specific temperatures at
various points within the inner detector. The most critical region is the thermal
enclosure separating the SCT (which may be cooled to temperatures as low as
−25 ◦C) from the TRT (which is operated at room temperature). Acciden-
tal cooling would not only be detrimental to the operation of the TRT but it
could also physically damage the detector. To maintain the temperature differ-
ence while placing a minimum amount of material between the detectors, the
enclosure is actively heated.

The heater pads consist of thin (5–8 µm) copper tracks with a resistance of
32–65 Ω sandwiched between two polyimide sheets. The heater pads range
from 0.04 to 0.64 m2 in size and provide a power output between 12 and
120 W. There are in total 280 pads with a total heating capacity of 23 kW,
installed along the pixel detector support tube, the TRT barrel, the SCT bar-
rel and SCT end-caps, and the inner detector end-plates. They are operated
from a 48 V power source. With voltage drop across the cabling, there is
nominally 40 V across the pads. The relatively low voltage is chosen out of
safety concerns, as some heater pads are operated also during maintenance
access to the inner detector in order to keep temperatures above the cavern
dew-point. Heater pads are also equipped with 10 kΩ Negative Temperature
Coefficient (NTC) thermistors for monitoring the temperature in the vicinity
of each heater. Not all installed heater pads are currently used for active heat-
ing, but all available NTC thermistors are used to monitor the temperature
in various locations. Active heaters use the temperature readings to keep the
temperature at the desired level using Proportional-Integral-Derivative (PID)
regulation. Some heaters are configured in a master/slave fashion, in which
case multiple heaters follow the temperature readings of a single thermistor,
effectively linking them together to a larger heating element.

Heater power is controlled by current pulses of varying length. Switching
on and off is done over a period of about 1 ms to limit electromagnetic inter-
ference with sensitive detector elements. The switching is handled by custom
made switching cards, each of which contains switching elements controlling
16 channels, together with power handling electronics and an on-board con-
troller in the form of a CERN Embedded Logical Monitoring Board (ELMB).
The ELMB features an 8-bit microprocessor running at 4 MHz, multiple I/O
channels, and a CAN bus interface. The switching cards are installed in rack-
mounted crates in the relatively low radiation environment of the two under-
ground caverns located next to the experiment. In each location, there is also
a controller card. A number of safety features are in place to prevent damage
to the ATLAS detector in the event of a component failure causing a too high
power output, one of which is the controller cards. They can prevent current
flow through connected heater pads independently of the switching circuits.
The current is also limited by fuses in each switching element. Each ELMB
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continuously reports temperature readings, current output, and other data to
the Detector Control System. The DCS is in turn used to start and stop heaters
and configure switching parameters such as temperature set points and power-
ing schemes. The PID algorithm and other logic, however, is executed directly
on the switching card and can continue operation without an active connection
to the DCS.

During LS1, extensive upgrades of the ATLAS DCS infrastructure have
been performed, including the heater pad control system. The Windows op-
erating system has been replaced with Linux, the SCADA system has been
upgraded from PVSS II to WINCC 3.11 (which is a rebranded successor to
the former) and a transition from the use of the OPC Data Access protocol to
the modern OPC Unified Architecture (OPC UA) has been performed. The
underlying hardware has also been upgraded, with new computers and CAN
bus interfaces.

The adaption to the OPC UA standard proved especially non-trivial for the
heater pad system, which uses a non-standard ELMB firmware to implement
the PID functionality and has a different set of input and output parameters.
Customized XML descriptions of the I/O of the switching cards and control
cards for use with the OPC UA server was prepared together with an auto-
mated procedure to generate full server configurations for the installed system.

Special care was taken to ensure that the WINCC project is always recre-
atable with minimum manual effort beyond importing control scripts and user
interface panels into an empty project. This is to make sure that the project is
always in a reproducible state and that a new installation can be immediately
prepared in case of a system failure. To this end, a script is used to automati-
cally generate the WINCC datapoint structure (consisting of more than 10 000
elements), the corresponding OPC address mapping, and default configura-
tions to be written to each card upon reset from a plain-text file describing
the layout of the installed heater pads. It also sets up OPC UA subscription
groups for datapoints that are continuously read from the system. The change
to a “subscription” paradigm is a significant improvement introduced with the
move to OPC UA, in which the server monitors requested variables and no-
tifies the client only in the case of changes. This makes the system more
responsive and reduces the amount of inter-process communication compared
to continuous polling by the client.

A test system using a dummy load to simulate connected heater pads, which
was originally used during development of the control system, was recommis-
sioned and used to exercise the full migration process before implementing
changes in the production system. The test system now consists of:

• Dell PowerEdge R620 server with Scientific Linux CERN 6,
• Systec 8 port CAN bus controller,
• one controller card and one switching card,
• thermistors and resistors to emulate connected heater pads,

66



• WINCC 3.11 with a similar setup as on the production system (this instance,
however, is configured to run stand-alone while the production version is
part of a distributed system),

• OPC UA Server,
• UAEXPERT software for interactive communication with the OPC UA server,
• low level tools for frame-by-frame debugging of CAN communication.

After migration of the production system, this setup is used for continuing
work on the heater pad control system. During LS1, the software/hardware
mapping of heater pads was also verified and corrected, and additional up-
dates were made to the software, including control panel functions and alarm
status definitions. Documentation on how to handle hardware failures was also
assembled.
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Part III: Data analyses





5. Analysis techniques

5.1 Signal and background processes
This thesis presents searches for light and heavy charged Higgs bosons pro-
duced, respectively, in top quark decays and in association with a top quark.
Final states involving leptons (electrons and muons) and b quarks are used
in all analyses. The largest backgrounds thus come from Standard Model
processes with top quarks, in particular the process gg → tt̄ → bb̄W+W−,
and also from vector boson production in association with jets. The mod-
eling of signal events and the main backgrounds is performed with Monte
Carlo simulations. Some backgrounds are difficult to simulate correctly and
are therefore estimated using data-driven techniques. In particular, this is the
case for multi-jet processes. Such events can yield “fake” or non-prompt lep-
tons that are misidentified as electrons or muons from the hard process. This
background is always estimated using the matrix method, which will be de-
scribed in section 5.3. With the event selections considered in the follow-
ing, backgrounds with misidentified hadronic tau decays arise mainly from
tt̄ events. The misidentification probability is, however, not expected to be
well reproduced by the simulation. In analyses of the data collected in 2011,
this background is estimated using simulated events corrected to account for
the misidentification probabilities measured in the data. In analyses of the
data collected in 2012, this background is instead estimated with the matrix
method, which does not directly depend on simulated events.

5.1.1 Data samples
Only events recorded with stable proton beams and all ATLAS detectors fully
operational are used for the analyses presented here. The 2011 dataset with√

s = 7 TeV fulfilling these conditions corresponds to an integrated lumi-
nosity of 4.6 fb−1 with an uncertainty of 3.9%, while the 2012 dataset with√

s = 8 TeV corresponds to an integrated luminosity of 20.3 fb−1 with an un-
certainty of 2.8%. The analysis presented in section 6.1 is performed with only
the first 1.03 fb−1 of data collected in 2011. Events are only used for analysis
if they fulfill basic data quality criteria and also do not contain any jet con-
sistent with having originated from instrumental effects such as calorimeter
noise or non-collision backgrounds. Events are also required to have at least
five tracks with pT > 400 MeV associated to the primary vertex. The primary
vertex is the reconstructed vertex with the highest ∑ p2

T of associated tracks.
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In all analyses, events are triggered by unprescaled single-lepton (electron
or muon) triggers with the lowest threshold available in each data-taking pe-
riod. An OR condition with a trigger having a higher pT threshold but relaxed
isolation requirements allows for improved efficiency during the data-taking
of later periods in 2011 and during 2012.

5.1.2 Simulated events
The main samples of simulated events are summarized in Tables 5.1 and 5.2.
The listed cross sections depend on the exact generator settings, which often
include filters for “interesting” events containing high-pT leptons, and should
not be compared directly between e.g. samples of different center-of-mass en-
ergies. Details on each process are given in the sections below.

Signal processes

Three types of signal samples with light charged Higgs bosons have been used:
tt̄ → bb̄H+W−, tt̄ → bb̄H−W+, and tt̄ → bb̄H+H−, where the charged Higgs
bosons decays into τν . The cross sections of the signal processes depend
only on the total cross section for tt̄ production and on the branching fraction
B(H+ → τν). These events are simulated with PYTHIA 6 [60], using the
CTEQ6L1 PDF set [61]. For the analyses of 7 TeV data, samples are generated
with the charged Higgs boson mass mH+ between 90 GeV and 160 GeV, in
steps of 10 GeV. For the analyses of 8 TeV data, the mass range is increased
to 80 GeV ≤ mH+ ≤ 160 GeV.

Heavy charged Higgs bosons are only searched for in the analyses of 8 TeV
data, where the mass range 180 GeV ≤ mH+ ≤ 1 TeV is considered. Events
are generated with POWHEG [62], using the CT10 PDF set [63], according to
the 5FS process gb → tH+. The parton shower, hadronization, and underlying
event are simulated with PYTHIA 8 [64]. The charged Higgs boson decays
via H+ → τν . Samples are generated with mH+ at 180 GeV, 190 GeV, then
in steps of 25 GeV in the range 200–600 GeV, and finally at 750 GeV and
1 TeV. The ratio between the natural width of the charged Higgs boson and
its mass is 3.5% for a mass of 600 GeV in the Type II 2HDM with tanβ = 50,
and decreases rapidly with lower values of tanβ . As this is much smaller
than the experimental resolution, events are generated with the narrow-width
approximation ΓH+ = 0 in order to obtain model-independent results.

For charged Higgs bosons close to the mass of the top quark, there is inter-
ference between the two production mechanisms. Presently, no event genera-
tor approved for use in ATLAS takes this interference into account. This mass
region is also more difficult to study experimentally as one of the b quarks is
produced nearly at rest. Hence, this region is not included in the analyses.
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Table 5.1. Simulated events used for analysis of 7 TeV data. All processes except Wt

production are required to contain at least one lepton ℓ = e,µ,τ in the decay chain.

In the analysis of early data presented in section 6.1, MC@NLO is used also for the

t-channel production of single top quark events, and the V +heavyflavor samples are

not included. The W + c(c̄)+ jets samples are used only in section 6.3.

Process Generator Cross section [pb]

tt̄ MC@NLO 90.6
Single top quark (t-channel) ACERMC 20.9
Single top quark (s-channel) MC@NLO 1.5
Single top quark (Wt-channel) MC@NLO 15.7
W + jets ALPGEN 3.1×104

Wbb̄+ jets ALPGEN 1.3×102

Wcc̄+ jets ALPGEN 3.6×102

Wc+ jets ALPGEN 1.1×103

Z/γ∗+ jets (mℓℓ > 10 GeV) ALPGEN 1.5×104

Z/γ∗bb̄+ jets (mℓℓ > 30 GeV) ALPGEN 38.7
WW HERWIG 17.0
ZZ HERWIG 1.3
WZ HERWIG 5.5
tt̄ → bb̄H±W∓, tt̄ → bb̄H+H− with H+ → τν PYTHIA −

Table 5.2. Simulated events used for analysis of 8 TeV data. All processes except Wt

production are required to contain at least one lepton ℓ= e,µ,τ in the decay chain.

Process Generator Cross section [pb]

tt̄ POWHEG 137.3
Single top quark (t-channel) POWHEG 28.4
Single top quark (s-channel) POWHEG 1.8
Single top quark (Wt-channel) POWHEG 22.4
W + jets ALPGEN 3.6×104

Wbb̄+ jets ALPGEN 1.5×102

Wcc̄+ jets ALPGEN 4.8×102

Wc+ jets ALPGEN 1.7×103

Z/γ∗+ jets (mℓℓ > 10 GeV) ALPGEN 5.2×103

Z/γ∗bb̄+ jets (mℓℓ > 30 GeV) ALPGEN 60.7
Z/γ∗cc̄+ jets (mℓℓ > 30 GeV) ALPGEN 2.3×102

WW HERWIG 20.9
ZZ HERWIG 1.5
WZ HERWIG 7.0
tt̄ → bb̄H±W∓ with H+ → τν PYTHIA −
t̄H+ with H+ → τν POWHEG −
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Backgrounds with top quarks

In the analyses using 7 TeV data, the generation of Standard Model tt̄ and
single top quark events is performed with MC@NLO [65], with the exception
that in the analyses described in sections 6.2 and 6.3, ACERMC [66] is used
for t-channel single top quark production. The parton shower, hadronization,
and underlying event are simulated with HERWIG [67] and JIMMY [68] for
events generated with MC@NLO and with PYTHIA 6 for events generated
with ACERMC. In the analysis using 8 TeV data, the generation of SM tt̄

and single top quark events is performed with POWHEG. The parton shower,
hadronization, and underlying event are simulated with PYTHIA 8. The PDF
set used is CT10. The nominal simulations of tt̄ events are also compared with
alternative samples to evaluate the systematic uncertainty associated with the
choice of event generator and parton shower programs, as will be detailed in
the description of each analysis. The top quark mass is taken to be 172.5 GeV
in all samples. Inclusive cross sections are taken from approximate next-to-
next-to-leading-order (NNLO) calculations for tt̄ production at 7 TeV [69] and
8 TeV [70], and for single top quark production [71–73]. Overlaps in the final
states between the Wt and tt̄ samples are removed.

In the analyses using 8 TeV data, a reweighting scheme is applied to the tt̄

events based on the generator level pT of both the top quark and the tt̄ system.
The applied weights were derived to improve agreement between simulated
events and the measured tt̄ differential cross section at 7 TeV [74].

Backgrounds with vector bosons

Single vector boson production is simulated with ALPGEN [75], using the
CTEQ6L1 PDF set. In the analyses using 7 TeV data, the parton shower,
hadronization, and underlying event are added with POWHEG and JIMMY. In
the analyses using 8 TeV data, PYTHIA 8 is used. Inclusive W + jets and
Z/γ∗+ jets samples are formed by adding samples generated with up to five
additional partons. The so-called MLM parton-jet matching scheme [76] is
used to avoid overlap of parton configurations created by the event generator
and the parton shower. In most analyses, dedicated samples containing addi-
tional b and c quarks are used in order to have a larger fraction of such events.
Overlaps with events in the inclusive sample are removed. The cross sections
are normalized to NNLO predictions [77, 78]. Diboson (WW , ZZ, and WZ)
events are simulated with HERWIG and normalized to NLO predictions [79].

Pile-up, tuning, and charged leptons

All simulated events described above are overlaid with a variable number
of minimum-bias events in order to simulate the effect of multiple pp colli-
sions. PYTHIA 6 is used to generate these events for the 7 TeV samples, while
PYTHIA 8 is used for the 8 TeV samples. At an early stage in each analysis,
the simulated events are reweighted to match the distribution of the average
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Figure 5.1. Example of pile-up reweighting of a tt̄ Monte Carlo (MC) sample to
match the distribution of the average number of simultaneous pp collisions in data.
The reweighting is validated by comparing the normalized distributions of the number
of reconstructed vertices.

number of pp collisions per bunch crossing in the corresponding data sample,
as illustrated in Figure 5.1.

Some tools are tuned to describe ATLAS data. The AUET2 tune is used
with HERWIG and PYTHIA 6, except when interfaced to ACERMC, in which
case the AUET2B tune is used [80, 81]. The Perugia 2011 C tune [82] is used
with PYTHIA 8. In all cases, except with PYTHIA 8, TAUOLA [83] is used
to model the decays of tau leptons and PHOTOS [84] is used to model photon
radiation from charged leptons.

5.2 Particle identification
5.2.1 Electrons
Electrons traverse the inner detector and deposit most of their energy in the
electromagnetic calorimeter. Electron candidates are therefore reconstructed
by finding a cluster of energy deposits in the calorimeter that matches, both
in terms of position and energy, a track in the inner detector. The trans-
verse energy of the electron candidate is defined as ET ≡ Eclus/cosh(ηtrack),
combining the precision information on the track direction with the supe-
rior resolution of the calorimeter at high energies. The analyses presented
in this thesis require electrons to have ET larger than 15–25 GeV and to be
within |ηclus| < 2.47. In the transition region between the barrel and end-
cap calorimeters (1.37 < |ηclus|< 1.52), the electron identification and energy
resolution are degraded by the large amount of material in front of the instru-
mented layers. Electrons in this region are therefore excluded.

75



The electron identification is refined by a set of quality requirements on
calorimeter and track variables that include information on the shower shape,
the number of hits in the inner detector, and the longitudinal impact parameter
with respect to the primary vertex. The exact criteria used have evolved over
time but typically correspond to an electron efficiency of 70–80% given the
above mentioned ET thresholds. To favor prompt electrons over electrons pro-
duced inside jets, tracking- and calorimeter-based isolation requirements are
imposed within cones of radius R = 0.2 respectively 0.3 around the electron.
The thresholds used are ET- and η-dependent to give a flat efficiency of about
90% for true isolated electrons. The track-based isolation for electrons was a
later introduction and is not used in the analysis presented in section 6.1.

5.2.2 Muons
Muons penetrate all ATLAS detectors. All detector systems can therefore
contribute to the muon reconstruction and identification. The analyses doc-
umented in this thesis use muons reconstructed with a track in both the inner
detector and the muon spectrometer, with quality requirements on the number
of hits and on the longitudinal impact parameter with respect to the primary
vertex. Muons must therefore be in the range |η | < 2.5 covered by the inner
detector. The muon pT is obtained as a weighted combination of both tracks.
It is required to be at least 15 GeV in the analyses using data with

√
s = 7 TeV

and at least 25 GeV in the analyses using data with
√

s = 8 TeV. To reduce the
contribution of muons produced inside jets, isolation requirements are applied.
The analyses of 7 TeV data use fixed thresholds on the transverse momentum
of inner detector tracks and calorimeter energy deposits (excluding those orig-
inating from the muon itself) within cones of radius R = 0.2 respectively 0.3.
In the analysis of 8 TeV data, only the track-based isolation is used, but with a
pT-dependent cone size.

5.2.3 Jets
Jets are reconstructed from energy clusters in the calorimeters using the anti-
kt algorithm [85, 86] with a size parameter value R = 0.4. Two different
jet energy calibration schemes [87] are used in the analyses presented here.
The analyses of 7 TeV data use a scheme in which the (non-compensating)
calorimeter cells are initially calibrated at the electromagnetic scale appropri-
ate for energy deposits from electrons and photons. The energy of a recon-
structed jet is then first corrected for pile-up effects and then restored to the
hadronic energy scale based on correction factors derived from simulation.
The analysis of 8 TeV data use jets reconstructed with locally calibrated clus-
ters. In this scheme, which aims at reducing energy fluctuations, each cluster
is individually classified as either electromagnetic or hadronic based on shape
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variables. It is then calibrated accordingly, with additional corrections to ac-
count for energy lost out of clusters and in dead material. The anti-kt algorithm
is run over the locally calibrated clusters, and the reconstructed jets are cor-
rected for pile-up. Only jets with pT above 20–25 GeV are considered in the
analyses presented here. Furthermore, the use of b-tagging (see below), which
relies on tracking information, excludes the use of jets above |η |= 2.5.

Jet vertex fraction

To select jets originating from the hard-scatter interaction, the Jet Vertex Frac-
tion (JVF) method [88] is used. The JVF quantity is the fraction of the total
momentum of all charged particle tracks associated with the jet that originate
from the primary vertex (pv):

JVF(jet,pv) =
∑
i

pT(trk
jet
i ,pv)

∑
n

∑
j

pT(trk
jet
j ,vtxn)

(5.1)

In all analyses, except section 6.1, jets with pT < 50 GeV and |η | < 2.4 are
required to have JVF > 0.5 (jets that do not have any associated tracks are
assigned JVF = 1). This selection is shown to be insensitive to pile-up.

bbb-tagging

Jets that originate from a b quark can be identified by tagging the decay of a
B-hadron inside the jet. The large masses (> 5 GeV) and relatively long life-
times (1.5 ps) of B-hadrons can be exploited for this purpose. The b-tagging
methods used in the analyses presented here ultimately rely on three different
algorithms. The IP3D algorithm uses impact parameter significances in both
the longitudinal and transverse directions for all tracks within a jet. The SV1
algorithm attempts to explicitly reconstruct a secondary vertex. Finally, the
JetFitter algorithm seeks to reconstruct the full decay chain from a B-hadron
to a charm hadron to its decay products, i.e. the common flight path and the po-
sition of additional vertices along it. These methods are combined into highly
performant taggers using neural networks. The dilepton analysis in section 6.1
uses a b-tagger which combines information from JetFitter and IP3D, while
the other analyses in this thesis use a b-tagger that also includes information
from SV1. In both cases, the working point has been chosen such that the
tagging efficiency is approximately 70% in tt̄ events.

5.2.4 Hadronic tau decays
The tau lepton has a mean lifetime of only 0.3 ps, meaning that it decays very
close to the interaction point. In the case of leptonic decays, it is not possible
to reliably identify electrons or muons as originating from a tau. However,
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Table 5.3. Common decay modes of tau leptons [1].

Decay mode Branching fraction

Leptonic 35.2%
eν̄eντ 17.8%
µ ν̄µ ντ 17.4%

1-prong hadronic 50.1%
π−ντ 10.8%
π−π0ντ 25.5%
π−π0π0ντ 9.3%
other 4.5%

3-prong hadronic 14.6%
π−π−π+ντ 9.3%
π−π−π+π0ντ 4.6%
other 0.7%

approximately 65% of tau leptons decay to hadrons, and these decays have
rather characteristic signatures. Table 5.3 summarizes the most common tau
decay modes. The hadronic decay modes typically contain either one or three
charged pions, and are respectively referred to as 1-prong and 3-prong decays.

In order to reconstruct hadronically decaying tau leptons [89, 90], hence-
forth denoted τhad, all anti-kt jets constructed with the size parameter R = 0.4
are considered as τhad candidates if they have pT > 10 GeV and contain either
one or three tracks within the central cone of radius R = 0.2. This would be
consistent with the presence of one or three charged pions among the tau decay
products. Identification variables are then calculated and combined into multi-
variate discriminants used to reject τhad candidates originating from jets and
leptons. Variables related to the shower shape are used to discriminate between
real τhad candidates and jets, exploiting the fact that quark- or gluon-initiated
jets tend to be wider than jets from hadronic tau decays. The significance of
a reconstructed secondary vertex is also important, in particular for 3-prong
τhad candidates. Variables based on tracking information are relatively robust
against pile-up effects. To decrease the pile-up dependence of the calorimeter
based variables, only clusters within the central cone (R = 0.2) are considered
in the 2012 data (correspondingly R = 0.4 in 2011). Different sets of variables
are combined using either a projective Log-Likelihood function (LLH), which
assumes that the inputs are uncorrelated, or Boosted Decision Trees (BDT).
In the analyses presented in this thesis, the LLH-based identification is used
with the 2011 dataset, while the BDT is used with the 2012 dataset. Based on
pT- and η-dependent thresholds on the discriminant output, τhad candidates
are accepted with an efficiency of 30% for 1-prong and 35% for 3-prong τhad
candidates in the 2011 data. In the 2012 data, these numbers become 40%
and 35%, respectively. After rejection of a large fraction of τhad candidates
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originating from jets, the background from electrons may become important,
in particular for 1-prong τhad candidates. Electrons are rejected using a dedi-
cated BDT, with input variables sensitive to the transition radiation emitted by
an electron, as well as the shorter and narrower shower in the electromagnetic
calorimeter compared to hadronic tau decays. Finally, a cut-based veto is em-
ployed to suppress τhad candidates originating from an energetic calorimeter
cluster associated with a muon track in cases where the muon was not success-
fully reconstructed in the muon spectrometer.

The τhad energy is calculated based on calorimeter clusters within the cen-
tral cone, with a special calibration scheme appropriate for the specific mixture
of charged and neutral pions present in hadronic tau decays. Due to the use of
tracking information, the τhad reconstruction is limited to the region |η |< 2.5
covered by the inner tracker.

5.2.5 Removal of overlapping objects
When multiple objects overlap geometrically, the following steps are applied,
in this order:
1. a τhad object is removed if found within ΔR < 0.2 of a muon;
2. a τhad object is removed if found within ΔR < 0.2 of an electron;
3. a muon is removed if found within ΔR < 0.4 of a jet;
4. the single closest jet to an electron is removed if it is within ΔR < 0.2;
5. an electron is rejected if found within ΔR < 0.4 of a jet;
6. a τhad object is removed if found within ΔR < 0.4 of a b-tagged jet;
7. a jet is removed if found within ΔR < 0.4 of a τhad.
The procedures involving τhad objects are only applied in analyses using these
objects. The removal of a τhad object overlapping with a b-tagged jet is only
performed in the most recent analyses presented in section 6.3 and chapter 7,
and in the latter case, only 3-prong τhad objects are considered in this step.
Finally, in the rare case where an electron and a muon share a track in the
inner detector, the whole event is discarded.

5.2.6 Missing transverse energy
Neutrinos do not interact with any detector and hence are effectively invisible.
Their presence in an event can be inferred, however, from an apparent viola-
tion of momentum conservation in the transverse plane. The vector sum of
transverse momenta in an event is first constructed from all energy clusters in
the calorimeters, with the appropriate calibration of any associated high level
objects, and from muon tracks reconstructed in the muon spectrometer. En-
ergy deposited by muons in the calorimeter is taken into account with different
treatments of isolated and non-isolated muons. Energy deposits in calorimeter
cells not associated to any object are also included. The analyses presented
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in this thesis do not use any special treatment of τhad objects for this purpose,
they are treated as ordinary jets. The magnitude of the total transverse mo-
mentum is equal to that of the missing transverse momentum which would be
needed in the opposite direction in order to balance the total sum to zero. It
is denoted Emiss

T and would correspond to the transverse energy of a single,
massless, undetected particle in the event.

5.3 The matrix method
Non-negligible backgrounds arise from events with misidentified leptons or
hadronic tau decays. These include “fake” signatures of such objects and, in
the case of leptons, real but “non-prompt” leptons originating from hadronic
objects. Misidentified electrons arise from the semileptonic decays of b and c

quarks, photon conversion, and from jets that deposit a large fraction of their
energy in the electromagnetic calorimeter. Misidentified muons arise from
semileptonic decays of b and c quarks, in-flight decays of charged hadrons,
and from punch-through of energetic particles into the muon system. Misiden-
tified τhad objects are mainly caused by quark- or gluon-initiated jets, or from
electrons, and to a lower extent by energy deposits in the calorimeter coming
from passing muons.

In event selections requiring a single lepton, the largest such background is
from multi-jet events. In event selections requiring two leptons or one lepton
and a τhad, backgrounds with misidentified objects consist of tt̄ and W + jets
events with one real lepton and one misidentified lepton or τhad, and to a much
smaller extent, events with two misidentified objects.

These backgrounds are particularly challenging to simulate accurately, and
would in addition require very large samples of simulated events due to their
low probability to occur. Hence, they are estimated using data-driven tech-
niques. In the analyses presented here, the so-called matrix method is fre-
quently used for this purpose. This method uses object (mis)identification
probabilities measured in data, simulated events, or a mixture of both, and can
be used to assess the backgrounds of events with one or several misidentified
objects, both in terms of overall normalization and in the distributions of any
number of kinematic variables. It takes its name from a characteristic equation
appearing in its derivation, as will be shown below.

5.3.1 Description of the matrix method
Consider first the case where only one reconstructed object (electron, muon or
τhad) has a significant possibility of being misidentified. We define two event
selections, differing only in the isolation and/or identification criteria applied
to that type of object. The tight criteria correspond to the nominal object selec-
tion (i.e. as detailed in section 5.2) and supposedly select mainly real objects.
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The loose criteria select a larger fraction of events with misidentified objects
and are obtained by relaxing some of the requirements of the tight selection.
By construction, the loose selection is a superset of the tight selection.

A sample of N events passing the loose object selection contains NT events
in which the object fulfills the tight selection and NL events in which the object
fulfills the loose but not tight selection. It also contains Nr events with a real (r)
object and Nm events with a misidentifed (m) object: Nr+Nm = N = NL+NT.
We seek to determine the number of events in NT that are also in Nm, that is,
the amount of events passing the tight selection that contain a misidentified
object.

If we define pr and pm as the probabilities for a real or misidentified object,
respectively, to pass the tight criteria if it has already passed the loose criteria,
the following relations can be established:

�

NT

NL

�

=

�

pr pm

1− pr 1− pm

�

×
�

Nr

Nm

�

. (5.2)

The number of events, NT
m, in which the misidentified object passes the tight

selection can, after inverting the 2×2 matrix above, be written as:

NT
m = pmNm =

pm pr

pr − pm
NL +

pm(pr −1)
pr − pm

NT. (5.3)

This equation is, however, only valid if pr and pm are constants. This is typi-
cally not the case in a broad selection of events. Instead of directly calculating
NT

m for a whole selection of events, a weight is assigned to each individual
event and the total contribution of misidentified objects is obtained by sum-
ming over all events. The weights, denoted wT for events that pass the tight
selection and wL for events that pass the loose-but-not-tight selection, have the
form:

wL =
pm pr

pr − pm
, wT =

pm(pr −1)
pr − pm

, (5.4)

where pr and pm are now functions of the properties of the object of interest
(for example its pT). Note that the weight is negative for events in the tight
sample.

The (mis)identification probabilities must be measured, in the data or in
simulated events. If the available control sample is of limited size, a too fine
binning of pm and pr may introduce large statistical fluctuations of the mea-
sured values. This effectively limits the number of variables that can be used
in the parametrization of pm and pr. If pm and pr depend only on largely
uncorrelated variables, however, the situation simplifies. With n uncorrelated
variables xxx, pm and pr can be constructed by convoluting n one-dimensional
parametrizations. If �pm� and �pr� are the average values of pm respectively
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pr over the whole data sample, the final identification and misidentification
probabilities in each event are computed as:

pr = pr(x0)×
n−1

∏
i=1

pr(xi)

�pr�
, pm = pm(x0)×

n−1

∏
i=1

pm(xi)

�pm�
. (5.5)

This method is used in the matrix method for misidentified leptons.

5.3.2 Two misidentified objects
Having now established the strategy, the matrix method is easily generalized
to treat events with a larger number of potentially misidentified objects. Of
interest in this thesis are events with two leptons, or one lepton and one τhad.
In this case, we distinguish four classes of events, labeled rr, rm, mr, and
mm. They correspond to events with two real objects, events with one real
and one misidentified object (in two different combinations), and events with
two misidentified objects. For each object, a nominal, tight (T) selection and
a loose-but-not-tight (L) selection are defined.

A loose sample of events is again considered, consisting of the four subsets
NTT, NTL, NLT, and NLL. The composition of the loose sample in terms of
Nrr events with two real objects, Nrm (Nmr) events where the first (second)
object is real and the other one is misidentified, and Nmm events with two
misidentified objects, is not directly observable. The two sets of numbers are
however related by:








NTT

NTL

NLT

NLL









=









pr1 pr2 pr1 pm2 pm1 pr2 pm1 pm2

pr1 pr2 pr1 pm2 pm1 pr2 pm1 pm2

pr1 pr2 pr1 pm2 pm1 pr2 pm1 pm2

pr1 pr2 pr1 pm2 pm1 pr2 pm1 pm2
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Nrr

Nrm

Nmr

Nmm









(5.6)

where the numeric index distinguishes the two objects of interest, and the
short-hand notation p ≡ (1− p) is introduced to exhibit the regular structure
of the matrix.

The number of events with two tight objects, where at least one of them is
misidentified, can be written as:

NTT
misid = NTT

rm +NTT
mr +NTT

mm = pr1 pm2Nrm + pm1 pr2Nmr + pm1 pm2Nmm. (5.7)

As before, solving equation (5.6) for Nmm, Nmr and Nrm gives the weights to
be applied to events passing the LL, LT, TL, respectively TT selections:

wLL =
−pr1 pr2 pm1 pm2

(pr1 − pm1)(pr2 − pm2)
, wTT = 1− pr1 pr2 pm1 pm2

(pr1 − pm1)(pr2 − pm2)
,

wLT =
pr1 pr2 pm1 pm2

(pr1 − pm1)(pr2 − pm2)
, wTL =

pr1 pr2(1− pm1)pm2

(pr1 − pm1)(pr2 − pm2)
.

(5.8)
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Similar weights can be derived for each of the indvidual NTT
rm , NTT

mr , and NTT
mm

contributions, which can reveal the sensitivity of the analysis to different com-
binations of misidentified objects. The weights in equation (5.8) can also be
conveniently expressed as functions of two sets of object-specific weights as
constructed in equation (5.4):

wLL =−wL
1 ×wL

2 , wTT = wT
1 +wT

2 −wT
1 ×wT

2 ,

wTL = (1−wT
1 )×wL

2 , wLT = wL
1 × (1−wT

2 ).
(5.9)

This form can have practical advantages if one wishes to combine the results
of two independently developed methods for different object types.

5.4 Hypothesis testing
All results are interpreted by testing the compatibility of the data with the
background-only and signal+background hypotheses using a modified fre-
quentist profile likelihood method which incorporates systematic uncertainties
as nuisance parameters and fits (profiles) them to the data. This procedure can
minimize the impact of systematic uncertainties on the search sensitivity by
taking advantage of background-dominated control regions.

5.4.1 Statistical model
Let m and n be the number of events that are expected respectively observed
to pass some selection criteria. The expected number of events m depends on
some parameter of interest µ , describing the strength of the signal process.
It is chosen such that µ = 0 corresponds to the background-only hypothesis
and larger values of µ correspond to increasing amounts of signal. Uncertain-
ties in the calculation of m are described by its additional dependence on a
set of nuisance parameters θθθ with unknown values. Each nuisance parameter
θi is, however, provided with a nominal estimate θ̃i and a Gaussian constraint
p(θ̃i|θi) which gives the estimated probability density of having obtained the
estimate θ̃i if the true value is in fact θi. A nuisance parameter could for exam-
ple be the integrated luminosity, in which case θ̃i is the measured luminosity
and the standard deviation of p(θ̃i|θi) is the uncertainty on the measurement.
The likelihood of the model parameters µ and θθθ having certain values given
the observed n events is equal to the probability of obtaining the observed n

events given those parameter values:

L (µ,θθθ) = Poisson(n|m(µ,θθθ))∏
i

p(θ̃i|θi). (5.10)

This likelihood function describes a simple event counting experiment. Typi-
cally, the search sensitivity is improved by examining the distribution of some
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discriminating variable among the selected events. A likelihood function can
then be built from the expected and observed number of events, m j and n j,
found in each bin j of the distribution of this variable.

Furthermore, an analysis may simultaneously use multiple event selections.
We call each event selection a Signal Region (SR) if it is expected to contain
a significant amount of events from the signal process, or a Control Region
(CR) if it mainly contributes to the sensitivity by constraining the nuisance
parameters. The resulting likelihood is then given by:

L (µ,θθθ) = ∏
k

∏
jk

Poisson(n jk |mjk(µ,θθθ))∏
i

p(θ̃i|θi), (5.11)

where each region k may use a different discriminating variable with jk bins,
or none (in which case jk has only one possible value and n jk corresponds to
all events found in that region).

Light charged Higgs boson

In searches for a light charged Higgs boson appearing in the decay of a top
quark, the parameter of interest is the branching fraction B ≡ B(t → bH+).
Varying this parameter changes not only the expected amount of signal but
also the expected amount of background from tt̄ → bb̄W+W− events. The
cross sections of the possible tt̄ decays are:

tt̄ → bb̄W+W− : σbbWW = σtt̄ × (1−B)2 (5.12)

tt̄ → bb̄H±W∓ : σbbHW = σtt̄ ×2B(1−B) (5.13)

tt̄ → bb̄H+H− : σbbHH = σtt̄ ×B2. (5.14)

As B is assumed to be small, the tt̄ → bb̄H+H− process is ignored in the
analyses presented here, unless otherwise stated. If an event selection has the
acceptance rates εW and εH for tt̄ → bb̄W+W− respectively tt̄ → bb̄H±W∓ (as
determined in the analysis), then the expected number of events m is given by:

m = mW +mH +mother = mtt̄

�

(1−B)2εW +2B(1−B)εH

�

+mother, (5.15)

where mtt̄ is the product of σtt̄ and the integrated luminosity, and mother ac-
counts for non-tt̄ backgrounds.

Heavy charged Higgs boson

At first order, the presence of a heavy charged Higgs boson does not affect the
backgrounds. The parameter of interest is therefore simply the cross section
for heavy charged Higgs boson production. This is similar to the case of the
Standard Model Higgs boson searches at the LHC, however in that case (see
Figure 3.2), µ is typically expressed in units of the cross section predicted by
the Standard Model. Here, the focus is on model-independent searches, hence
there is no predicted cross section and µ is a dimensionful quantity.
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5.4.2 Exclusion limits
If the data appears to be compatible with the background-only hypothesis, the
analysis proceeds by rejecting the signal hypothesis for various values of µ .
The test statistic used is the one-sided profile likelihood ratio [91],

q̃µ ≡































−2log
L (µ, ˆ̂

θθθ µ)

L (0, ˆ̂
θθθ 0)

µ̂ < 0,

−2log
L (µ, ˆ̂

θθθ µ)

L (µ̂, θ̂θθ)
0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(5.16)

It is constructed by fitting the model parameters to the data to find the values

θ̂θθ and µ̂ that maximize L (µ̂, θ̂θθ), as well as the nuisance parameter values ˆ̂
θθθ µ

that maximize L (µ, ˆ̂
θθθ µ) for a given µ . The test statistic is then a function

of µ alone and can be seen as a measure of the discrepancy between the data
and a given hypothesis about the value of µ: higher q̃µ values correspond to
an increasing disagreement. The difference is quantified by calculating the
probability, under the given hypothesis, of obtaining a value of q̃µ at least as
large as the observed value, q̃obs

µ .
If P(q̃µ ≥ q̃obs

µ |µ) < α , then this value of µ could be regarded as excluded
at a confidence level of 1−α . A problem with this approach, however, is
that it is susceptible to P(q̃µ ≥ q̃obs

µ |µ) dropping below α due to a statistical
fluctuation of q̃obs

µ . This may lead us to exclude a hypothesis to which the
experiment is not actually sensitive. In fact, in the limit where the amount of
signal is very small compared to the background, the probability for this to
happen approaches α . We therefore use the CLs method [92], which weights
the probability of obtaining q̃obs

µ under a given hypothesis about the value of µ

with the probability of obtaining qobs
0 under the background-only hypothesis,

µ = 0. The hypothesis is rejected at the confidence level 1−α if

CLs ≡
P(q̃µ ≥ q̃obs

µ |µ)
P(q̃µ ≥ q̃obs

µ |0) < α. (5.17)

The CLs method ensures that the signal hypothesis will not be excluded if
the data disagrees with both the signal and background-only hypotheses. In
particular, if the distributions of the test statistic are very similar for the two
hypotheses, then the CLs quantity always remains large – this means that no
exclusion is made if the experiment can not distinguish between the signal and
background-only hypotheses. Because the denominator in the definition of
CLs is a probability, it is never larger than one. The CLs method therefore pro-
duces exclusion limits that are more conservative than using P(q̃µ ≥ q̃obs

µ |µ)
directly.
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As is the convention1 at the LHC, α is chosen to be 0.05. The analysis is
then carried out by starting from the background-only hypothesis and increas-
ing µ until CLs reaches α . Upper limits on µ are thus obtained at the 95%
confidence level. Expected limits in the absence of signal are determined by
repeating the procedure while using an artificial “Asimov” dataset as input in-
stead of the actual data. The Asimov dataset is an estimate of what the data
would look like in the absence of statistical fluctuations, if the background-
only hypothesis was true. It is created by profiling the nuisance parameters
while fixing µ = 0 and then constructing a representative dataset from the cor-
responding expected m values. As the fitted values of θθθ are obtained while
forcing the background-only hypothesis, they are not necessarily close to their
true values if there is indeed some signal events present in the data. The ex-
pected limits can therefore be seen as somewhat conservative.

Asimov datasets also have another important use. In order to calculate
P(q̃µ ≥ q̃obs

µ |µ), one needs to know the probability density function of q̃µ .
It can be obtained from numerous Monte Carlo pseudo-experiments, but this
can be computationally expensive. We instead make use of the asymptotic
approximation that, in the large sample limit, q̃µ always follows a non-central
half χ2-distribution, the median of which can be estimated using an Asimov
dataset corresponding to that value of µ [91].

1 In the context of excluding a signal hypothesis. For the purpose of establishing a discovery

– which means rejecting the background-only hypothesis – a much smaller α , corresponding
to five standard deviations, is normally used. The reason for this is that multiple searches (in
different mass ranges, for example) are carried out simultaneously, which increases the risk of
false positives. When attempting to reject the signal hypothesis, however, increasing the search
range only makes it more difficult to exclude the signal everywhere.
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6. Searches for H+ → τν in 7 TeV data

In this chapter, three searches for a light charged Higgs boson decaying to

τν are presented, based on the 7 TeV dataset collected by ATLAS in 2011.

It is assumed that B(H+ → τν) = 100%. In all cases, the signal process

is characterized by the additional presence of a top quark that decays to an

electron or a muon. This high-pT lepton clearly distinguishes these events

from most of the multi-jet background, and is used for triggering.

The cleanest channel is the dilepton final state, where the tau originating

from the charged Higgs boson also decays leptonically. The dilepton chan-

nel was analyzed with the first 1.03 fb−1 of pp collision data recorded at√
s = 7 TeV. However, only modest sensitivity to a light charged Higgs boson

was achieved in this channel and the analysis was not repeated with the full

dataset.

Instead, focus was shifted to events where the tau lepton decays hadron-

ically (τhad). The hadronic decay modes of the tau have higher branching

fractions, and yield events with fewer neutrinos, but come with a challenging

background in the form of quark- or gluon-initiated jets that may be misiden-

tified as hadronic tau decays. Because the misidentification probability is not

expected to be well-modeled by Monte-Carlo simulations, it is measured in

control regions in the data. The lepton+τhad channel was analyzed using

the full 2011 dataset, corresponding to an integrated luminosity of 4.6 fb−1.

and upper limits on B(t → bH+) extracted using the Emiss
T distribution. The

data was then re-analyzed with a simultaneous treatment of the dilepton and

lepton+τhad channels. This analysis performed as a test of lepton universal-

ity in tt̄ events, in the form of an event-counting experiment, where the role of

the dilepton channel is primarily to constrain the uncertainties on the back-

grounds, rather than providing direct sensitivity to the signal. Events where

the reconstructed τhad has the same sign of charge as the lepton are subtracted

from the events where they have opposite charges, which cancels the contribu-

tions of gluons and b-jets misidentified as hadronic tau decays. The ratio of

lepton+τhad and dilepton events is found to be consistent with the Standard

Model prediction. Upper limits on B(t → bH+) are set in the range 3.2–4.4%

for H+ masses within 90–140 GeV. Combinations of these results with those

of other ATLAS searches for charged Higgs bosons, and interpretations in the

MSSM mmax
h scenario were also performed.

In this chapter, three searches for a light charged Higgs boson decaying to
τν are presented, based on the 7 TeV dataset collected in 2011. Here, it is
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assumed that B(H+ → τν) = 100%. In all cases, the signal process is char-
acterized by the additional presence of a top quark that decays to an electron
or a muon. This high-pT lepton clearly distinguishes these events from most
of the multi-jet background, and is used for triggering. The cleanest channel
(with the least amount of difficult-to-handle backgrounds with misidentified
objects) is the dilepton final state, where the tau originating from the charged
Higgs boson also decays leptonically. The dilepton channel was analyzed with
the first 1.03 fb−1 of pp collision data recorded at

√
s = 7 TeV. However, only

modest sensitivity to a light charged Higgs boson was achieved in this chan-
nel and the analysis was not repeated with the full dataset. Instead, focus
was shifted to events where the tau lepton decays hadronically (τhad). The
hadronic decay modes of the tau have higher branching fractions, and yield
events with fewer neutrinos, but come with a challenging background in the
form of quark- or gluon-initiated jets that may be misidentified as hadronic
tau decays. Methods for estimating this background, with decreasing reliance
on simulation, were developed. The lepton+τhad channel was analyzed using
the full 2011 dataset, corresponding to an integrated luminosity of 4.6 fb−1.
The data was then re-analyzed with a simultaneous treatment of the dilepton
and lepton+τhad channels. This analysis is cast as a test of lepton universality
in tt̄ events, in the form of an event-counting experiment, where the role of
the dilepton channel is primarily to constrain the uncertainties on the back-
grounds, rather than providing direct sensitivity to the signal.

The analyses presented in this chapter all use single-lepton triggers with
a pT threshold of 20–22 GeV for electrons and at 18 GeV for muons. With
these thresholds, electrons with ET > 25 GeV and muons with pT > 20 GeV
are guaranteed to be in the plateau region of the trigger efficiency curve.

6.1 Dilepton channel
With the first 1.03 fb−1 of ATLAS data collected at

√
s = 7 TeV in 2011, a

search for light charged Higgs bosons in tt̄ events was performed using final
states with two charged leptons (electrons or muons). This analysis is also
documented in Ref. [93]. Figure 6.1 illustrates the contribution from events
involving a charged Higgs boson. If some fraction of top quark decays happen
via t → bH+ and the charged Higgs boson decays solely into τν , a small
increase in the number of tt̄ events with two charged leptons in the final state
is expected, because the tau lepton decays leptonically more often than the W

boson does: B(H+ → τν → ℓ+3ν) = 35% while B(W → ℓ+Nν) = 25%,
where ℓ denotes either an electron or a muon. However, relying only on the
detection of a small excess of such events would give limited sensitivity to the
presence of a charged Higgs boson in tt̄ decays. Kinematic variables that can
further discriminate between events with and without charged Higgs bosons
have therefore been identified [94].
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Figure 6.1. Feynman diagram of a tt̄ event involving a charged Higgs boson, with two
charged leptons ℓ= e,µ in the final state.

Discriminating variables

One useful quantity is the invariant mass mbℓ of the b quark and the lepton
coming from the same top quark. It is used here in the form of the variable
cosθ ∗

ℓ defined as

cosθ ∗
ℓ =

2m2
bℓ

m2
t −m2

W

−1 ≈ 4pb · pℓ

m2
t −m2

W

−1 (6.1)

with pb · pℓ = EbEℓ(1− cosθbℓ), where pb,ℓ are the four-momenta of the b

quark and the lepton, and θbℓ is the angle between them. The approximation
in equation (6.1) is valid if the masses of the b quark and the lepton are ne-
glected so that m2

bℓ = 2pb · pℓ. Equation (6.1) contains only Lorentz invariant
products and can be computed in any reference frame. The use of cosθ ∗

ℓ in
analyses of top quark decays originates in measurements of W polarization,
where θ ∗

ℓ is the angle between the lepton momentum and the helicity axis in
the W rest frame. Here, the lepton is assumed to appear via the decay of a
tau, which dilutes the polarization information. The discriminating power of
cosθ ∗

ℓ instead comes from the fact that the lepton in this case receives a lower
momentum than if it would come directly from the decay of a W boson. This
reduction of the lepton momentum is somewhat counteracted if the charged
Higgs boson is heavier than the W , however that instead reduces the momen-
tum available to the b quark. Top quarks decaying via a charged Higgs boson
therefore produce cosθ ∗

ℓ values close to −1.
The generalized charged Higgs boson transverse mass mH

T2 [95] is also
used. This is the maximum charged Higgs boson mass allowed in an event,
given the known masses of the W boson and the top quark, as well as conser-
vation of momentum in the transverse directions. Following the notation of
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Figure 6.1, if one top quark decays into b̄W− and the other top quark decays
into bH+, then the following set of constraints apply:

(pH+
+ pb)2 = m2

t ,

(pℓ
−
+ pν̄ℓ)2 = m2

W ,

(pℓ
−
+ pν̄ℓ + pb̄)2 = m2

t , (6.2)

(pν̄ℓ)2 = 0,

�pT
H+ − �pT

ℓ+ + �pT
ν̄ℓ = �pT

miss.

Here, pH+
and pν̄ℓ represent the unknown quantities in the event. With the six

constraints of (6.2), there are two degrees of freedom over which the charged
Higgs boson mass is maximized to obtain mH

T2. Note that the decay products of
the charged Higgs boson are not explicitly included in these equations, as this
would not supply any additional constraint on the mass of the charged Higgs
boson. The charged Higgs boson can be replaced by a W+ and the constraints
of (6.2) hold even if there is no tau lepton in the event. The mH

T2 quantity is
therefore always the upper bound on the mass of the boson mediating the top
quark decay. By definition, it lies between the true mass of the charged Higgs
boson and the mass of the top quark: mH+ ≤ mH

T2 ≤ mt . This is true even if the
top quark radiates a gluon before it decays, as this can only lower the value of
mH

T2, which is nevertheless still bounded from below by mH+ .
The variable mH

T2 is called the generalized charged Higgs boson transverse
mass because of its relation to other transverse mass observables. The widely
used W transverse mass mW

T is defined as
�

mW
T

�2
= 2pℓTEmiss

T (1− cosΔφℓ,miss). (6.3)

In an event with a single charged lepton ℓ and a single neutrino, mW
T can be

obtained by minimizing the invariant mass of these objects subject to the con-
straint that the neutrino must be massless,

�

mW
T

�2
= min
{(pmiss)2=0}

�

�

pℓ+ pmiss
�2

�

. (6.4)

If the single charged lepton comes from the decay of a tau lepton, which could
in turn be the decay product of a charged Higgs boson, then the constraint
�

pmiss
�2

= 0 is not valid as there are three neutrinos in the event. One can
instead define the charged Higgs boson transverse mass mH

T by using a con-
straint on the top quark mass:

�

mH
T

�2
= max
{(pmiss+pℓ+pb)2=m2

t }

�

�

pℓ+ pmiss
�2

�

. (6.5)

Note that, while mW
T is obtained as the result of a minimization, mH

T is the result
of a maximization. Finally, in events with two charged leptons in the final
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state, there are neutrinos appearing in the decays of both top quarks. With the
set of constraints (6.2), the generalized charged Higgs boson transverse mass
mH

T2 can in turn be written as a maximization of mH
T ,

mH
T2 = max

{constraints}
[mH

T (�pT
H+

)]. (6.6)

The variable mH
T has an analytical expression,

�

mH
T (�pT

H+
)
�2

=

�
�

m2
t +(�pT

H+
+ �pT

b)2 − pb
T

�2

−
�

�pT
H+

�2
, (6.7)

while the maximization of mH
T2 over the remaining parameter must be done

numerically.

Event selection

In this analysis, events are selected if:
• There are exactly two oppositely charged leptons with ET > 15 GeV (elec-

trons) or pT > 15 GeV (muons).
• At least one of the leptons is matched to the single-lepton trigger object with

ET > 25 GeV (electron) or pT > 20 GeV (muon).
• There are at least two jets with pT > 20 GeV.
• Exactly two of the jets are b-tagged.
In order to compute cosθ ∗

ℓ and mH
T2, each of the two leptons and the two b-jets

must be assigned to either of the two top quarks, one of which is assumed to
have decayed via a charged Higgs boson. There is a four-fold ambiguity in
this assignment, which is resolved as follows. First, ℓ-b pairings that yield
unphysical cosθ ∗

ℓ values (i.e. larger than 1) are assumed to be incorrect and
are discarded. If both possible ℓ-b combinations in an event have cosθ ∗

ℓ < 1,
then the solution which minimizes ΔR(ℓ,b)pair1 +ΔR(ℓ,b)pair2 is chosen. The
efficiency of this procedure to find correct ℓ-b pairings is 66% in simulated
tt̄ events. Then, the ℓ-b pair with the smallest cosθ ∗

ℓ value is assigned to the
top quark decay involving the H+. The efficiency of this second assignment
is 62% in simulated tt̄ events with a 130 GeV charged Higgs boson.

To further reduce the contribution of non-tt̄ backgrounds, the following re-
quirements are also made:
• for µµ events with an azimuthal angle Δφµµ > 3.1, the impact parameters

of the muons with respect to the primary vertex must not exceed 0.5 mm in
order to rule out the presence of a cosmic muon,

• for ee and µµ events, the dilepton invariant mass mℓℓ must be larger than
15 GeV and must satisfy |mℓℓ−mZ|> 10 GeV, together with Emiss

T > 40 GeV,
to reduce the contribution of Z → ℓℓ events,

• for eµ events, the scalar sum of the transverse energies of the two leptons
and all selected jets must satisfy ∑ET > 130 GeV,
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• the event kinematics must fit the tt̄ hypothesis, i.e. the computation of mH
T2

must converge.
A signal region is then defined by requiring cosθ ∗

ℓ < −0.6 on the “H+ side”
of the event while a control region enriched with tt̄ → bb̄W+W− is defined by
requiring cosθ ∗

ℓ > −0.4. For the events falling in the signal region, the mH
T2

distribution is used to set an upper limit on B(t → bH+).

Background estimation

Contributions from Standard Model tt̄, single top quark, Z+ jets, and diboson
processes are estimated using simulated events. Among these, the background
from tt̄ → bb̄W+W− events is by far the largest. The Standard Model cross
section for this process is 165 pb, however this prediction is not valid in the
presence of a charged Higgs boson. For this reason, and in order to reduce
the impact of systematic uncertainties, a fiducial cross section σbbWW is deter-
mined using the control region cosθ ∗

ℓ > −0.4, which is mostly free of signal
events. The Standard Model tt̄ Monte Carlo sample is then normalized to the
value of σbbWW , which is fitted together with the signal cross section. With
the mH+ = 130 GeV signal hypothesis, the best fit value of σbbWW is 150.4 pb.

W + jets and multi-jet events with one or two misidentified leptons consti-
tute a small but non-negligible background. This background is estimated in
a data-driven way using the matrix method described in section 5.3. Loose

leptons are defined with relaxed identification criteria in the case of electrons
and relaxed isolation criteria in the case of muons. The lepton identification
probabilities pr are measured in Z → ℓℓ events with a dilepton invariant mass
in the range 86–96 GeV. The lepton misidentification probabilities pm are
measured in a control region enriched with multi-jet events, obtained by re-
quiring 5 GeV < Emiss

T < 20 GeV. The (mis)identification probabilities pm

and pr are parametrized as functions of the type of lepton (electron or muon),
its pseudorapidity, pT or ET, and the number of jets and b-jets in the event.
These dependencies are treated as uncorrelated and are convoluted using the
procedure described in section 5.3.

Systematic uncertainties

Table 6.1 summarizes the systematic uncertainties considered in this analysis.
These include uncertainties on the signal and background estimates, which are
further discussed below, as well as a 3.7% uncertainty on the measurement of
the integrated luminosity [96].

Systematic uncertainties on the detector simulation

A range of systematic uncertainties on the detector simulation are considered.
They are related to how well the simulated events reproduce the ATLAS data
in terms of trigger, reconstruction, and identification (ID) efficiencies, as well
as the energy or momentum scale and resolution of reconstructed objects. The
impact of each uncertainty is evaluated by performing the analysis again while
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shifting the relevant parameter by ±1 standard deviation, as listed in Table 6.1
(the methods used to derive these numbers are discussed in Ref. [93] and ref-
erences therein). The largest uncertainties are the jet energy scale (up to 14%)
and resolution (up to 30%), b-tagging efficiency (up to 16%) and misidentifi-
cation probability (up to 21%), where all quoted numbers depend on the pT

and η of the object in question. All shifts in the energy/momentum scale or
resolution of reconstructed objects are propagated to the reconstructed Emiss

T .

Systematic uncertainties on the tt̄ modeling

When this analysis was performed, no higher-order generator for H+ events
was available. Hence, in order to account for the inaccuracy of a leading-
order simulation, the relative acceptance difference between Standard Model
tt̄ events generated with MC@NLO and the (leading-order) ACERMC genera-
tor in the region cosθ ∗

ℓ <−0.6 is added as an uncertainty to the leading-order
H+ simulation made with PYTHIA. Uncertainties on the Standard Model tt̄

event generation and on the parton shower modeling are estimated by com-
paring the nominal prediction from MC@NLO interfaced to HERWIG/JIMMY

with the prediction from POWHEG interfaced to PYTHIA. Using ACERMC
interfaced to PYTHIA, the largest acceptance difference obtained when vary-
ing initial- and final-state radiation parameters within a range of values not
excluded by data is taken as an uncertainty on initial- and final-state radiation.
These uncertainties are all treated as variations of the normalization only.

Systematic uncertainties on the data-driven background estimation

The lepton misidentification probabilities are determined in a control region
dominated by gluon-initiated jets, but are used in data events with a higher
fraction of quark-initiated jets. This may introduce a bias on the estimate of
the background with misidentified leptons, which is evaluated by comparing
the misidentification probability in simulated multi-jet and Zbb events. The
misidentification probabilities computed with these two samples are found to
differ by up to 25%. The measurements of the misidentification probabilities
are also affected by the uncertainties on the detector simulation, which enter
via the subtraction of simulated events with true leptons. In addition, small
variations (1–5%) of the (mis)identification probabilities are observed when
varying the Z mass window and Emiss

T requirements used to define the con-
trol regions. A total uncertainty of 28% is assigned to the background with
misidentified leptons.

Results

Among the selected events, a mostly signal-free control region (CR) is defined
as containing the events with cosθ ∗

ℓ >−0.4. In contrast, the signal region (SR)
is defined as containing the events with cosθ ∗

ℓ <−0.6, which includes the bulk
of selected events with a charged Higgs boson. For further signal-background
discrimination, the distribution of the mH

T2 variable within the signal region
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Table 6.1. Main systematic uncertainties considered in the dilepton analysis.

Source of uncertainty Treatment in analysis

Electron trigger efficiency ± (0.4–1.0)%, depending on η .
Electron reco. efficiency ± (0.7–1.8)%, depending on η .
Electron ID efficiency ± (2.2–3.8)%, depending on ET and η .
Electron energy scale ± (0.3–1.8)%, depending on ET and η .
Electron energy resolution ± (0.5–2.4)%, depending on ET and η .

Muon trigger efficiency ± (0.5–7.9)%, depending on pT, η , φ , data period.
Muon reco. efficiency ± (0.4–0.8)%, depending on pT, η , φ .
Muon ID efficiency ± 0.4%.
Muon momentum scale Up to ± 1%, depending on pT and η .
Muon momentum resolution Up to ± 1%, depending on pT and η .

Jet energy resolution (JER) ± (10–30)%, depending on pT and η .
Jet energy scale (JES) ± (2.5–14)%, depending on pT and η .
JES (pile-up) Additional ± (2–7%), depending on pT and η .
Jet reconstruction efficiency Randomly drop jets (2%) and symmetrize.
b-tagging efficiency ± (5.7–15.5)%, depending on pT.
b-tagging mistag rate ± (10–21)%, depending on pT and η .
b-jet JES uncertainty Additional ± (1.1–3.2)%, depending on pT.

Emiss
T object dependence All scale and resolution shifts propagated.

Emiss
T (pile-up) ± 10%.

Generator + parton shower ± 6.2 (3.9)% bb̄W+W− (bb̄H±W∓) normalization.
Initial-/final-state radiation ± 7.7% tt̄ normalization.

Misid. e/µ ± 28% normalization.

Integrated luminosity ± 3.7%.

is examined. A profile likelihood statistical analysis is performed with the
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Table 6.2. Number of selected events in the dilepton analysis, for simulated processes

and 1.03 f b−1 of ATLAS data. Here, B(t → bH+) is assumed to be 10% and a fitted

value of 150.4 pb is used for σbbWW .

tt̄ Single Z+jets Diboson Misid. ∑ SM Data H+

(bbWW ) top quark leptons 130 GeV

864 18 1.5 0.3 40 924 992 115

branching fraction B ≡ B(H+ → τν) as the one parameter of interest and the
likelihood function given by:

L (B) = Poisson(nCR|mCR)∏
i

Poisson(ni|mi)∏
j

p(θ̃ j|θ j), (6.8)

where m and n indicate respectively the expected and measured number of
events in each region, and i indicates the bin of the mH

T2 distribution. Nuisance
parameters θ j incorporate the effects of the systematic uncertainties, with each
parameter having a nominal estimate θ̃ j and a Gaussian constraint p(θ̃ j|θ j) as
indicated in Table 6.1. The cross section σbbWW for the process tt̄ → bb̄W+W−

is included as an additional nuisance parameter that is only constrained by
the data. Depending on the signal mass point being studied, the fitted values
of σbbWW are between 0.78 and 1.06 times the Standard Model prediction,
with uncertainties of 5–25%. The cross section σbbHW for the signal process
tt̄ → bb̄H±W∓ is related to σbbWW and the branching fraction B via the relation

σbbHW = σbbWW × 2B

1−B
. (6.9)

Table 6.2 shows the number of events in the data that pass the event se-
lection, together with the predictions for Standard Model processes as well as
tt̄ events with a 130 GeV charged Higgs boson and B(t → bH+) = 10%.
The left-hand side plot of Figure 6.2 shows the full cosθ ∗

ℓ distribution of
these events, and the right-hand side plot shows the mH

T2 distribution of the
events in the signal region cosθ ∗

ℓ <−0.6. The contribution of tt̄ → bb̄W+W−

events is shown with a fitted value of 150.4 pb for σbbWW , as obtained with the
mH+ = 130 GeV signal hypothesis.

Upper limits on B(t → bH+) are set assuming B(H+ → τν) = 100%.
Figure 6.3 shows the expected and observed exclusion limits at the 95% con-
fidence level as a function of the charged Higgs boson mass. At the highest
mass point considered, 160 GeV, the b-jet coming from the decay t → bH+

usually receives a pT lower than 20 GeV. Such events do not pass the event
selection, leading to a severe loss of sensitivity for this mass point.
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Figure 6.2. The left-hand side plot shows the cosθ ∗
ℓ distribution of the dilepton events.

The arrow indicates the signal region cosθ ∗
ℓ <−0.6 and the right-hand side plot shows

the mH
T2 distribution of the events found in this region. The striped area indicates

the systematic uncertainties on the backgrounds and the grey histogram shows the
contribution of events with a 130 GeV charged Higgs boson with B(t → bH+)= 10%.
A fitted value of 150.4 pb is used for σbbWW .
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Figure 6.3. 95% confidence level upper limits on B(t → bH+) as a function of the
charged Higgs boson mass, obtained in the dilepton analysis. The solid black line
indicates the observed limit, while the dashed line indicates the expected limit with
the background-only hypothesis. The green and yellow shaded regions indicate the
1σ and 2σ error bands, respectively.
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6.2 Lepton+tau channel
This section describes a search for the process tt̄ → bb̄H±W∓ → bb̄τ±ℓ∓ν̄ν
carried out with the full 2011 dataset, i.e. an integrated luminosity of 4.6 fb−1.
Here, the tau lepton decays hadronically, in contrast to the analysis presented
in the previous section, which relied on the fully leptonic tau decay modes.
The use of a hadronically decaying tau lepton, τhad, introduces more difficult-
to-handle backgrounds but allows a higher overall search sensitivity. This
analysis, which is also documented in Ref. [97], relies on the theoretical tt̄

production cross section σtt̄ = 167+17
−18 pb [69] and uses the Emiss

T distribution
to extract upper limits on B(t → bH+).

Event Selection

Events are selected for further analysis if these requirements are fulfilled:
• The event contains exactly one electron or muon with ET > 25 GeV (elec-

tron) or pT > 20 GeV (muon).
• The lepton must be matched to the single-lepton trigger object.
• The event contains exactly one τhad with pT > 20 GeV, |η | < 2.3, and an

electric charge opposite to that of the lepton.
• The event contains at least two jets with pT > 20 GeV.
• At least one of the jets is b-tagged.
• The collection of tracks originating from the primary vertex must satisfy

Σptrack
T > 100 GeV.

Only τhad objects passing the LLH identification and other criteria listed in
section 5.2.4 are considered. Tracks that enter the computation of Σptrack

T must
have at least pT > 1 GeV, at least one hit in the pixel detector and at least
six hits in the SCT. The requirement on a minimum amount of transverse mo-
mentum in the event reduces the amount of multi-jet events otherwise passing
the selection. As this quantity is constructed using tracks originating from the
primary vertex, it is less sensitive to pile-up than the sum of transverse energy
deposits in the calorimeter used in e.g. the dilepton analysis. The efficiency
of the full event selection is 23–40% (19–32%) for signal events in the muon
(electron) channel, reaching a maximum value at a charged Higgs boson mass
around 110 GeV.

Backgrounds with a misidentified lepton

As in the dilepton analysis, misidentified leptons constitute a background that
must be estimated in a data-driven way. However, this background is slightly
more severe in this case, as each event now contains only a single electron
or muon. Similarly to the dilepton analysis, the amount of events with a
misidentified lepton passing the event selection is estimated using the matrix
method, with lepton identification probabilities measured in Z → ℓℓ events and
misidentification probabilities measured in low-Emiss

T multi-jet events. The
(mis)identification probabilities are parametrized as functions of the type of
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lepton (electron or muon), its pseudorapidity, the distance ΔR to the closest
jet, the number of b-tagged jets, the number of τhad objects, the pT of the
leading jet, and the data-taking period. The (mis)identification probabilities
do vary slightly between data-taking periods as the pT threshold of the trigger
changed during the year.

Backgrounds with misidentified hadronic tau decays

Monte Carlo simulations are used to estimate the Standard Model backgrounds
with a real lepton. These include events with top quark pairs, single top quarks,
W and Z bosons produced in association with jets, and diboson pairs. Only
about 44% of the identified τhad objects in the simulated events are matched
to a hadronically decaying tau lepton at the generator level. However, the
τhad misidentification probability is not expected to be well modeled in the
simulation. The simulated events must therefore be corrected based on τhad
misidentification probabilities measured in data.

Jets misidentified as hadronic tau decays

The probability for a jet to be misidentified as a τhad is measured in data using
a control sample enriched in W + jets events. These events are required to
pass the same lepton selection criteria as used in the main event selection.
In addition, events must have a τhad candidate and Emiss

T > 40 GeV, but no b-
tagged jets. The τhad candidates are not required to pass the LLH identification
criteria but must have pT > 20 GeV and |η |< 2.3, and they must not be within
ΔR < 0.2 of an electron or muon. About 0.5% of the selected events contain
a true τhad. Simulated events with a true τhad (which are assumed to be well
modeled) are subtracted from the data in order to remove this component.

Like the dominant tt̄ background, the control sample contains events where
high-pT jets mainly originate from quarks instead of gluons. It does, however,
contain a much smaller fraction of b-jets. The probability for a b-jet to be
misidentified as a τhad is lower than for a jet originating from a light quark, as
the track multiplicity in a b-jet is higher. The visible mass measurement used
in the τhad identification also offers some discrimination between a b-jet and
a τhad object. The difference between the tt̄ and W + jets enriched regions is
treated as a systematic uncertainty and is evaluated using simulation.

Having subtracted the events with a true τhad, the jet → τhad misidentifi-
cation probability is defined as the number of τhad candidates passing the tau
LLH identification criteria divided by the total number of τhad candidates. It
is measured as a function of pT, η , and the number of associated tracks. The
misidentification probability is found to be on average 7% for 1-prong taus
and 2% for 3-prong taus.

In order to construct an estimate of the background with jets misidentified
as hadronic tau decays, the measured jet → τhad misidentification probability
is applied as a weight to all τhad candidates in simulated tt̄, single top quark,
W + jets, Z/γ∗+ jets and diboson events. The τhad candidate is then treated as
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Table 6.3. Number of events with jets misidentified as hadronic tau decays, as pre-

dicted using the misidentification probabilities measured in data, and compared with

the result of applying the LLH algorithm to the simulated events. The uncertainties

are statistical only, related to the number of data events in the control region and to

the limited number of simulated events passing the LLH criterion, respectively.

Sample Nominal estimate Simulation only

tt̄ 900±15 877±6
W + jets 150±3 145±9
Single top quark 81±1 61±2
Z/γ∗+ jets 44±1 69±4
Diboson 6±1 8±1

if it had passed the tau identification, the corresponding jet is removed, and the
modified event is passed through the nominal event selection. If it is accepted,
it is kept with the weight given by the jet → τhad misidentification probability
measured in data. The corresponding event yields are shown in Table 6.3.
Misidentified τhad objects also appear in multi-jet events. To pass the event
selection, however, such events must also contain a misidentified lepton and
are therefore accounted for in the data-driven estimation of that background.

Electrons misidentified as hadronic tau decays

Electrons misidentified as hadronic tau decays constitute a comparably small
background. It is estimated in a similar manner as the jet → τhad background,
using e → τhad misidentification probabilities measured in Z → ee events [98].
The average misidentification probability is 0.2%. In this case, the misidenti-
fication probability is the same in tt̄ events as it is in the control region.

Backgrounds with real hadronic tau decays

The remaining backgrounds are tt̄, single top quark, W + jets, Z/γ∗ + jets,
and diboson events with a real lepton and a real τhad object. Nominally, these
backgrounds are estimated using simulation only.

A data-simulation hybrid embedding method is used to cross-check the
background simulations. This method consists of selecting events in data that
match the nominal event selection, except for having a muon in place of the
τhad object. This muon is then replaced with a τhad simulated with TAUOLA.
This way, most features of the event, including the underlying event, pile-up
effects, jet distributions, and overall normalization, are obtained directly from
the data. The embedding of the simulated τhad takes place at the detector level,
meaning that individual tracks and calorimeter energy deposits of the muon
are replaced. The momentum of the tau is rescaled with respect to the muon
to take into account its higher mass. When selecting events for the embedding
procedure, the pT threshold of the muon is lower than that used for the τhad
in the analysis to avoid biasing the event selection. This sample constructed
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using embedding reproduces both the overall normalization and the shape of
the simulated backgrounds within statistical uncertainties, which provides a
validation of the Monte Carlo simulation.

Systematic uncertainties

Table 6.4 lists the systematic uncertainties considered in this analysis. Un-
certainties related to the simulation of signal and background processes are
treated similarly as in the dilepton analysis. The largest uncertainties are the
jet energy scale (up to 14%) and resolution (up to 30%). Additional uncer-
tainties are also introduced in this analysis, related to the τhad identification
efficiency (up to 7%) and energy scale (up to 5%).

The different jet composition (the fractions of jets initiated by light quarks,
b quarks, or gluons) between the W + jets dominated region used to measure
the jet → τhad misidentification probability and the tt̄ dominated signal region
is treated as a systematic uncertainty on the background estimation, and is
evaluated using simulation. It is found to affect the estimation of this back-
ground by up to 11%. A further 2% uncertainty is contributed by the statistical
uncertainty on the control sample. In the case of e → τhad misidentification,
systematic uncertainties arise from the subtraction of electroweak and multi-
jet backgrounds and from correlations between tag and probe objects in the
determination of the misidentification probability in Z → ee events.

Systematic uncertainties on the estimate of misidentified leptons have a
larger impact than in the dilepton analysis. They arise mostly from instru-
mental uncertainties entering via the subtraction of simulated events with true
leptons in the computation of the misidentification probability, and from the jet
composition (39%, evaluated by comparing the misidentification probability
in simulated multi-jet and Zbb events).

Results

The observed number of events in the data after applying the event selection is
shown in Table 6.5, together with the predictions under the background-only
hypothesis, as well as for an alternative scenario where B(t → bH+) = 5%
and mH+ = 130 GeV. The backgrounds with real and misidentified hadronic
tau decays are scaled to match the change in B(tt̄ → bb̄W+W−) in the pres-
ence of a charged Higgs boson, while the total tt̄ cross section is constrained
to its theoretical value σtt̄ = 167+17

−18 pb, to which an additional 6% uncertainty
is added to account for possible supersymmetric loop corrections [99].

The Emiss
T distributions in the e + τhad and µ + τhad channels are shown

in Figure 6.4. The data is found to be compatible with the background-only
hypothesis. Upper limits on the branching fraction B(t → bH+) are there-
fore extracted with the profile likelihood method, using the Emiss

T distribution
(combined from both channels) as a discriminating variable. The expected
and observed limits at 95% confidence level according to the CLs definition
are shown in Figure 6.5.

100



Table 6.4. Main systematic uncertainties considered in the lepton+τhad analysis with

7 TeV data. The “shape” uncertainty refers to the relative shift of the mean value of

the Emiss
T distribution.

Source of uncertainty Treatment in analysis

Electron trigger efficiency Up to ±1.0%, depending on ET, η , data period.
Electron reco. efficiency ± (0.6–1.1)%, depending on η .
Electron ID efficiency ± (2.8–3.5)%, depending on ET and η .
Electron energy scale ± (0.5–2.4)%, depending on ET and η .
Electron energy resolution Up to ±1%, depending on ET and η .

Muon trigger efficiency ± (0.5–6.0)%, depending on η , φ , data period.
Muon reco. efficiency ± (0.4–0.8)%, depending on pT, η , φ .
Muon ID efficiency ± (0.3–1.2)%, depending on the data period.
Muon momentum scale Up to ±1%, depending on pT, η and the charge.
Muon momentum resolution Up to ±1%, depending on pT, η and the charge.

Jet energy resolution (JER) ± (10–30)%, depending on pT and η .
Jet energy scale (JES) ± (2.5–14)%, depending on pT and η ,
JES (pile-up) Additional ± (2–7)%, depending on pT and η ,
Jet reconstruction efficiency Drop 2% of jets and symmetrize.
b-tagging efficiency ± (5–17)%, depending on pT and η .
b-tagging mistag rate ± (12–21)%, depending on pT and η .
b-jet JES uncertainty Additional (up to) ± 2.5%, depending on pT.

Emiss
T object dependence All scale and resolution shifts propagated.

Emiss
T (pile-up) ± 6.6%.

Emiss
T (additional) <1% from soft jets + ambient.

Tau ID efficiency ± (4–7)%, depending on ntracks.
Tau energy scale ± (2.5–5.0)%, depending on pT, η , ntracks.

jet → τhad (stat.) ±2% normalization.
jet → τhad (jet composition) ±11% normalization.
jet → τhad (detector related) ±23% normalization, ±3% shape.
e → τhad ±20% normalization.

Misid. e/µ (pr region) ±5% normalization.
Misid. e/µ (pm region) ±4% normalization.
Misid. e/µ (JES) ±14% normalization.
Misid. e/µ (JER) ±4% normalization.
Misid. e/µ (jet composition) ±39% normalization.

Generator+parton shower ±2% (±5%) bb̄W+W− (bb̄H±W∓) normalization.
Initial-/final-state radiation ±13% tt̄ normalization.

Integrated luminosity ±3.9%.
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Table 6.5. Expected event yields in the e+τhad and µ+τhad channels, and comparison

with the observed number of events in the data. The numbers in the last two rows are

obtained assuming B(t → bH+) = 5%. All other rows correspond to the background-

only hypothesis. Statistical and systematic uncertainties are indicated, in this order.

Sample Events (e+τhad) Events (µ +τhad)

Real lepton+τhad 430±14± 59 570±15± 75
Misidentified jet → τhad 510±23± 86 660±26±110
Misidentified e → τhad 33± 4± 5 34± 4± 6
Misidentified leptons 39±10± 20 90±10± 34
Total background 1010±30±110 1360±30±140
Data 880 1219
t → bH+ (130 GeV) 220± 6± 29 310± 7± 39
Signal+background 1160±30±100 1570±30±130
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Figure 6.4. Emiss
T distribution in e+ τhad (left) and µ + τhad events (right). The indi-

vidual contributions of both the signal and the tt̄ background are scaled to match the
prediction in the presence of a 130 GeV charged Higgs boson with B(t → bH+)= 5%
and B(H+ → τν) = 100%. The Standard Model prediction is shown as a dashed line,
with the hatched area indicating its total uncertainty.
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90 and 160 GeV, and with the assumption B(H+ → τν) = 100%, as obtained in the
analysis of lepton+τhad events in 7 TeV data.
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6.3 Test of lepton universality in tt̄ events
The analysis presented here uses an alternative technique for charged Higgs
boson searches in tt̄ events. As W bosons decay with equal branching fractions
to all leptons, whereas charged Higgs bosons decay predominantly to τν , the
presence of charged Higgs bosons can be detected by searching for a violation
of the lepton universality in top quark decays. This analysis uses the full
2011 dataset of pp collisions at

√
s = 7 TeV, with an integrated luminosity

of 4.6 fb−1, and it uses both dilepton events and lepton+τhad events. Lepton
universality in tt̄ decays is tested by comparing the ratio of the number of
lepton+τhad events to the number of dilepton events found in the data to the
value of that ratio predicted by the Standard Model. There are two motivations
for the use of a ratio. First, while tau leptons decay leptonically more often
(35% of the time) than W bosons (25% of the time), their decay products
usually have a lower pT than if they would come directly from a W boson
and are therefore less likely to be detected. The number of observed dilepton
events is therefore expected to decrease in the presence of a charged Higgs
boson decaying to τν , while the number of lepton+τhad events is expected to
increase. The ratio of the two event yields is therefore more sensitive to the
presence of a charged Higgs boson than either of the two channels alone. In
addition, many systematic uncertainties affect both channels in the same way
and their effects are therefore expected to cancel out when the ratio of event
yields is computed. This analysis is also documented in Ref. [100].

Event selection

The following event selection is applied in order to select a sample enriched
in tt̄ events:
• The event must contain at least one electron or muon, having ET > 25 GeV

(electron) or pT > 25 GeV (muon).
• The lepton must be matched to the single-lepton trigger object.
• The event must contain at least two b-tagged jets with pT > 20 GeV.
• The event must have Emiss

T > 40 GeV and a solution for mH
T2 > 0.

In addition, lepton+τhad events must satisfy the following requirements:
• There must be no additional charged lepton in the event.
• The event must have exactly one τhad with pT > 25 GeV and |η |< 2.3.
Dilepton events are instead selected by requiring:
• There must be exactly one additional charged lepton in the event.
• The second lepton also has ET > 25 GeV (pT > 25 GeV).
• The two leptons have different flavors.
The τhad or non-trigger matched lepton is forced to be on the “H+side” in the
calculation of mH

T2. Two b-tagged jets are required in order to select a pure
tt̄ sample. This leads to a lower acceptance for charged Higgs boson masses
close to that of the top quark, when one of the b quarks receive very little
transverse momentum. However, the aim of this search is mainly to improve
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the sensitivity in the low end of the considered mass range, i.e. close to the
W mass, where the previous searches did not offer a strong discrimination
between signal and background events. The selected events are categorized
based on whether they fire the single-electron trigger or the single-muon trig-
ger, and each category contains both lepton+τhad and dilepton events. In the
following, the lepton appearing first in a final state designation corresponds to
the trigger used to select the event. The category of electron-triggered events
therefore consists of e+τhad and e+µ events. The category of muon-triggered
events consists of µ + τhad and µ + e events. Dilepton events firing both the
electron trigger and the muon trigger are assigned to both categories. This
overlap of categories is accounted for when the exclusion limits are computed.

Backgrounds with misidentified objects

Backgrounds with misidentified leptons

The contributions of backgrounds with misidentified leptons are estimated
with the matrix method. The same implementation as in section 6.2 is used.
Neither the requirement of two b-tagged jets nor the presence of a second lep-
ton is found to have a significant impact on the predictive power of the method.
It is validated by comparing the distributions of kinematic variables, including
the lepton pT and Emiss

T , between the data and the total background prediction
in e+ jets, µ + jets, e+µ , and µ +e events without τhad or b-jet requirements,
and no significant deviations are found.

Backgrounds with misidentified hadronic tau decays

In simulated tt̄ events, about 51% of τhad objects passing the lepton+ τhad
selections correspond to a true tau lepton at the generator level, and 3% of
τhad objects originate from electrons or muons. The contribution of events
where an electron or a muon is misidentified as a τhad in data is estimated by
applying scale factors to simulated events as described in section 6.2. The
remaining 46% of events (according to simulation) contain jets misidentified
as τhad objects. This component is also determined by correcting simulated
events with scale factors measured in data, as described below.

A new technique to reduce the uncertainty on the jet → τhad misidentifi-
cation probability is introduced in this analysis. In the lepton+ τhad analy-
sis presented in section 6.2, the largest contribution to this uncertainty is the
difference in jet composition between W + jets events, where the misidentifi-
cation probability is measured, and tt̄ events, where it is applied. This comes
from the fact that the jet→ τhad misidentification probability depends on which
type of parton (light quark, heavy quark, or gluon) originally initiated the jet.
However, contributions from jets other than those initiated by light quarks can
be effectively eliminated by classifying events based on whether the electric
charge of the τhad has the opposite sign (OS) or same sign (SS) compared to
that of the lepton. Except for a few rare cases of charge misidentification,
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real τhad objects in tt̄ and signal events all belong to the OS category. Instead
of considering only OS events as in section 6.2, however, the SS events are
now retained as well, but are assigned a negative weight. The final event yield
corresponds to the number of OS events minus the number of SS events (OS-
SS). Gluons do not carry electric charge and are therefore equally likely to be
misidentified as τhad objects of either charge, and b quarks tend to be produced
in pairs (in particular in tt̄ events). Both contributions are therefore expected
to cancel in the OS-SS procedure. Light-quark initiated jets in tt̄ events with
leptons are largely dominated by the fully hadronic decay of a top quark and
are therefore not charge-symmetric. They contribute more to the OS category
and are thus not eliminated. The procedure is demonstrated in Figure 6.6,
based on a control region enriched in W +>2 jets events, selected as follows:
• The event contains exactly one electron or muon, having ET (electron) or pT

(muon) larger than 25 GeV.
• The lepton is matched to the single-lepton trigger object.
• The event contains at least one τhad candidate, which is not required to pass

the LLH identification.
• There are at least two jets in addition to the τhad candidate.
• No jet is b-tagged.
• The event has Emiss

T > 40 GeV and mT > 30 GeV.
The requirement on the W transverse mass mT, defined as in equation (6.3),
aims at reducing the contribution of Z + jets events with real tau leptons. As
in tt̄ events, light-quark jets in these events are predominantly produced with
an opposite sign of charge compared to the lepton. Figure 6.6 shows that
contributions from jets initiated by gluons and b quarks are removed by the
OS-SS subtraction, which therefore has two important effects. It reduces the
total amount of misidentified hadronic tau decays, and it makes the misiden-
tification probability more uniform between different event selections by only
leaving jets initiated by light quarks.

Scale factors used to weight events with jets misidentified as τhad candidates
in the simulation are then derived from the W+> 2jets event selection in data.
It can be seen in Figure 6.6, which includes τhad candidates with one or three
tracks, that there are more such τhad candidates in the simulated events than
in the data. It was found that the track multiplicities of jets misidentified as
τhad candidates are not well modeled by the simulation. Track multiplicity
scale factors for τhad candidates are therefore computed. For this purpose,
the track multiplicity (ranging from 1 to 9) distributions of misidentified τhad
candidates in data and in simulation are separately normalized to the same
unit area, and scale factors needed to correct the shape of the distribution in
the simulated events to that in the data are computed. Only 1-track and 3-track
τhad candidates are eventually used in the analysis, the corresponding scale
factors are 0.71±0.03 for 1-track τhad candidates and 0.92±0.03 for 3-track
τhad candidates, where the uncertainties are statistical in nature.
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Figure 6.6. Distributions of mT after applying the W+ > 2jets event selection (the
requirement mT > 30 GeV is not applied in these plots). The colors correspond to the
type of highest-energy generator-level particle found within a cone of radius R = 0.2
around the τhad candidate. The left-hand side plot shows OS and SS events with
positive respectively negative weights, while the right-hand side plot shows the result
of subtracting the SS events from the OS events.

The probability for a light-quark initiated jet to also pass the τhad identifi-
cation criteria is then measured in the data, also using the W+ > 2jets event
selection. This misidentification probability is binned in pT and the number of
tracks, Ntrack

τ , of the τhad candidate, as well as in the number of tracks, Ntrack
iso ,

in the τhad isolation cone, defined as the volume 0.2 < ΔR < 0.4 around the
τhad object. The parametrization of the misidentification probability by Ntrack

iso
is a new feature in this analysis, as it was found that this corrects well for
residual differences between W + jets events and tt̄ events. The misidentifi-
cation probabilities are shown in Figure 6.7, with two different binnings. A
full parametrization in all three variables is used in the analysis. The track
multiplicity scale factors and misidentification scale factors are applied to all
simulated OS-SS events with τhad candidates matched to jets. A combined
probability of p1(1− p2)+ p2(1− p1) is assigned to events with two τhad can-
didates, where p1 and p2 are the individual misidentification probabilities.

Systematic uncertainties

The same systematic uncertainties on the detector simulation and the event
generators as discussed in section 6.2 are evaluated. However, in most cases,
they are expected to have a smaller impact in this analysis, as they largely
cancel in the ratio calculation. The distributions of the number Ntrack

τ of asso-
ciated τhad tracks and the number Ntrack

iso of tracks in the isolation cone of jets
misidentified as τhad candidates in the alternative tt̄ samples are reweighted in
a correlated way to match those of the nominal tt̄ sample before applying the
Ntrack
τ scale factors measured in data, which are found to well reproduce the
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Figure 6.7. Probabilities for a jet initiated by a light quark to be misidentified as a
τhad with one or three tracks, measured in OS-SS events in data using the W+> 2jets
event selection, as a function of pT (left) and of the number of tracks Ntrack

iso in the
isolation cone (right).

track multiplicity distributions in the signal region in the data (simultaneously
correcting both Ntrack

τ and Ntrack
iso in the nominal sample, instead of only Ntrack

iso ,
would result in less than a 1% change of the lepton+ τhad event yields). The
uncertainty on both the modeling of tt̄ events and the parton shower leads to
uncertainties on the lepton+τhad and dilepton event yields of 6–8% and 1–2%,
respectively. The uncertainty on initial- and final-state radiation leads to un-
certainties on the lepton+ τhad and dilepton event yields of 11%, respectively
8%.

The uncertainties on the track multiplicity scale factors are estimated by
varying the requirement on the jet multiplicity, as well as propagating the un-
certainties on the number of τhad candidates arising from electrons, muons, or
real taus present in the W+> 2jets selection. They are found to be 7% for 1-
track τhad candidates and 11% for 3-track τhad candidates. The jet → τhad
misidentification probability is also sensitive to the amount of τhad candi-
dates arising from electrons, muons, or real taus in the control sample, and
is also sensitive to statistical fluctuations in the number of objects passing the
τhad identification. In addition, the relative difference between the jet → τhad
misidentification probability obtained in simulation for either the W+> 2jets
region or the tt̄ selection is included as an uncertainty on the measured value.
Using the already established upper limits on B(t → bH+), the effect of a pos-
sible contamination of the W+ > 2jets region with real hadronic tau decays
from signal events is considered and found to change the measured jet → τhad
misidentification probability with less than 1%.

The uncertainty on the estimate of the background due to misidentified lep-
tons is mainly driven by the different jet composition in tt̄ events compared
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to the control region where the lepton misidentification probabilities are de-
rived. In total, the uncertainty on the background with misidentified leptons
is 38% for electron-triggered events and 49% for muon-triggered events. As
this background is relatively small, however, the effect on the total event yield
ratios is only 3.5% and 4.3%, respectively.

Results

The observed OS-SS event yields N in each of the e+ τhad, e+ µ , µ + τhad,
and µ +e selections are shown in Table 6.6 together with the predicted values
for the background-only hypothesis or in the presence of a 130 GeV charged
Higgs boson. The event yields are used to compute the ratios:

Re =
N (e+τhad)

N (e+µ)
and Rµ =

N (µ +τhad)

N (µ + e)
. (6.10)

Figure 6.8 shows the dependence of Re and Rµ on B(t → bH+) for a H+

mass of 130 GeV, assuming B(H+ → τν) = 100%. Electrons and muons
produced via t → bH+ → bτν → bℓννν typically have lower pT than those
produced via t → bW → bℓν . They are therefore less likely to pass the event
selection requirements. Despite the fact that the branching fraction of H+ into
electrons and muons via the above mentioned process is higher than that of the
W boson, the event yields in the dilepton final states decrease in the presence of
a charged Higgs boson, thereby contributing to the increase of Re and Rµ . For
a charged Higgs boson mass of 160 GeV, the rate at which Re and Rµ change
with B(t → bH+) is five times times lower and the analysis is correspondingly
less sensitive. At this point, both the lepton+τhad and dilepton event yields
decrease with B(t → bH+) because the b-jet coming from t → bH+ receives
a low pT, but the dilepton event yield decreases faster.

Table 6.7 shows the predicted and observed values of Re and Rµ . The data
are found to be compatible with the Standard Model expectation. Note that
the relative uncertainties on the expected ratios are smaller than the sum of
the uncertainties on the corresponding event yields. This is because many sys-
tematic uncertainties are correlated across the lepton+τhad and dilepton event
selections, leading to Re and Rµ being largely insensitive to them. Table 6.8
shows the sensitivity of Re and Rµ to individual uncertainties.

Exclusion limits

Upper limits on the branching fraction B(t → bH+) at 95% confidence level
according to the CLs criterion are determined using the profile likelihood
method described in section 5.4, with one important modification. The quan-
tities Re and Rµ are ratios of two Poisson variables, the probability density
function of which is unknown. However, the quantity Nℓℓ′ +Nℓτ is also Pois-
son distributed with a rate mℓℓ′ +mℓτ, and 0 ≤ Nℓℓ′ ≤ Nℓℓ′ +Nℓτ. Nℓℓ′ must
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Table 6.6. Expected event yields and comparison with the observed number of events

in the data. Combined statistical and systematic uncertainties are shown. The num-

bers in the last two rows are obtained assuming B(t → bH+) = 3% with a charged

Higgs boson mass of 130 GeV. All other rows correspond to the background-only

hypothesis. Here, V denotes a vector boson.

Sample N (e+τhad) N (e+µ) N (µ +τhad) N (µ + e)

Misid. leptons −0.8± 3.0 94 ± 37 0.2± 1.0 74 ± 37
V +jets, VV 2.1± 0.9 0.7± 0.4 2.6± 1.6 0.7± 0.4
Single top 3.3± 0.8 24 ± 4 4.6± 0.9 18 ± 3
tt̄ 111 ±25 980 ±200 131 ±28 740 ±150
Total bkg. 116 ±25 1100 ±210 138 ±29 830 ±160

Data 144 1247 153 929

t → bH+ 30 ± 4 27 ± 4 35 ± 4 20 ± 3
Signal+bkg. 139 ±28 1070 ±200 166 ±32 810 ±150

Table 6.7. Predicted and observed event yield ratios.

Ratio Re Rµ

Standard Model prediction 0.105±0.012 (stat+syst) 0.166±0.017 (stat+syst)
Measured value 0.115±0.010 (stat) 0.165±0.015 (stat)
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Figure 6.8. The predicted relative change of the event yields N (e + τhad) and
N (e+µ), and of their ratio Re (left) and the predicted relative change of the event
yields N (µ +τhad) and N (µ + e), and of their ratio Rµ (right). The plots show the
dependence of these variables on the branching fraction B(t → bH+) in the presence
of a charged Higgs boson with a mass of 130 GeV.
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Table 6.8. Relative variations of the ratios Re and Rµ when changing a particular

parameter within its uncertainty. When evaluating the ratios, the Standard Model

hypothesis is assumed.

Systematic uncertainty ΔRe ΔRµ

Electron trigger efficiency 0.1% N/A
Electron reconstruction and ID efficiencies 0.2% 1.9%
Electron energy resolution 0.1% <0.1%
Electron energy scale 0.1% 0.3%

Muon trigger efficiency N/A 0.1%
Muon reconstruction and ID efficiencies 1.0% 0.1%
Muon momentum resolution <0.1% <0.1%
Muon momentum scale 0.1% <0.1%

Tau ID efficiency 3.9% 3.9%
Tau energy scale 2.9% 3.0%

Jet energy scale 0.7% 0.5%
Jet energy resolution 0.4% <0.1%
Jet reconstruction efficiency 0.1% 0.4%
Jet vertex fraction 0.1% 0.4%
b-tagging 1.9% 2.3%

Emiss
T 0.3% 0.1%

Jet → τhad (number of associated tracks) 2.1% 2.1%
Jet → τhad (true τhad contamination) 0.2% 0.2%
Jet → τhad (H+ signal contamination) 0.6% 0.6%
Jet → τhad (jet composition) 1.3% 1.2%
Jet → τhad (statistical uncertainties) 3.3% 3.2%
e → τhad 0.6% 0.3%

Misid. e/µ 3.5% 4.3%

tt̄ cross section 0.7% 0.6%
Generator + parton shower 5.7% 4.4%
Initial- and final-state radiation 3.6% 3.7%

Integrated luminosity 0.3% 0.3%

Total (added in quadrature) 10.3% 10.1%
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therefore follow a binomial distribution:

P(Nℓℓ′ = k|Nℓℓ′ +Nℓτ = n) =

�

n

k

�

pk(1− p)n−k, p ≡ mℓℓ′

mℓℓ′ +mℓτ
. (6.11)

The parameter p can also be written as a function of the expected ratio rℓ,

p(rℓ) =
1

1− rℓ
. (6.12)

Furthermore, the binomial distribution is well approximated by:

Gauss
�

np(rℓ),
�

np(rℓ) [1− p(rℓ)]
�

. (6.13)

By dividing by n, it follows that the observed quantity p(Rℓ) is also normally
distributed with mean p(rℓ) and standard deviation σ =

�

p(rℓ) [1− p(rℓ)]/n.
The likelihood function used to calculate upper limits on B ≡ B(t → bH+) is
therefore given by:

L (B,θθθ) = Gauss(p(Rℓ)|p(rℓ),σ(rℓ,n))∏
i

p(θ̃i|θi). (6.14)

Limits are set both separately for electron-triggered events and muon-triggered
events, and for all events together using the combined ratio:

Re+µ =
N (e+τhad)+N (µ +τhad)

N (e+µ ∪µ + e)
(6.15)

where N (e+µ ∪µ + e) is the number of dilepton events that pass either the
e+ µ or µ + e selections. The fraction of events passing both the e+ µ and
µ + e selections is about 42% and is not counted twice. Figure 6.9 shows the
limits derived using Re and Rµ . Figure 6.10 shows the limits derived using the
global event yield ratio Re+µ , with numerical values given in Table 6.9. Using
the global ratio, upper limits on B(t → bH+) can be set in the range 3.2–4.4%
for H+ masses within 90–140 GeV. Limits were also extracted using the mH

T2
distribution in e+ τhad and µ + τhad events and found to be less performant,
except in the vicinity of the top quark mass.

112



 [GeV]+
H

m

90 100 110 120 130 140 150 160

+
 b

H
→

t 
B

0

0.05

0.1

0.15

0.2

0.25

0.3

Observed 95% CL
Expected

σ 1±
σ 2±

ATLAS  Data 2011

 = 7 TeVs

-1
Ldt = 4.6 fb∫

eR

 [GeV]+
H

m

90 100 110 120 130 140 150 160

+
 b

H
→

t 
B

0

0.05

0.1

0.15

0.2

0.25

0.3

Observed 95% CL
Expected

σ 1±
σ 2±

ATLAS  Data 2011

 = 7 TeVs

-1
Ldt = 4.6 fb∫

µR

Figure 6.9. Expected and observed 95% confidence level upper limits on B(t → bH+)
for H+ masses between 90 and 160 GeV and assuming B(H+ → τν) = 100%, using
the event yield ratios Re (top) and Rµ (bottom).
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Figure 6.10. Expected and observed 95% confidence level upper limits on B(t → bH+)
for H+ masses between 90 and 160 GeV and assuming B(H+ → τν) = 100%, using
the event yield ratio Re+µ .

Table 6.9. Observed and expected 95% confidence level upper limits on B(t → bH+)
as a function of mH+ , derived from the event yield ratio Re+µ and assuming that

B(H+ → τν) = 100%.

mH+ [GeV] 90 100 110 120 130 140 150 160

observed limit 3.3% 3.6% 3.2% 3.4% 3.6% 4.4% 7.3% 18.3%
expected limit 3.1% 3.3% 3.0% 3.1% 3.3% 4.0% 6.7% 16.8%
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Figure 6.11. 95% confidence level upper limits on B(t → bH+), with the assumption
that B(H+ → τν) = 100%, as obtained in the lepton+ jets channel [93] (left) and
with a combination of the lepton+ jets and dilepton channels (right) using early 2011
data.

6.4 Combinations and interpretations
In parallel with the dilepton analysis, another search for charged Higgs bosons
in events with a leptonically decaying tau was also performed by ATLAS,
using the lepton+ jets final state (in this case, the top quark on the “W side” of
the event is assumed to decay hadronically). This analysis is also documented
in Ref. [93], and the resulting exclusion limits are shown in the left-hand side
plot of Figure 6.11. The right-hand side plot shows the result of a combination
of the lepton+ jets and dilepton (see Figure 6.3) channels. As the dilepton
channel contributes very little additional sensitivity, the decision was made to
exclude it from future analyses.

The analysis of the lepton+ jets channel was however repeated with the
full 2011 dataset, together with the lepton+τhad channel (see section 6.2) and
the all-hadronic τhad + jets channel [97]. The limits obtained for the lepton+
jets and τhad + jets channels are shown in Figure 6.12 (see Figure 6.5 for the
lepton+τhad result). The result of a combination of all three channels is shown
in Figure 6.13, in the form of model-independent upper limits on B(t → bH+)
as well as their interpretation in the MSSM mmax

h scenario.
The individually most sensitive channel is τhad+ jets. Figures 6.14 and 6.15

show the result of a combination of the τhad+ jets analysis with the test of lep-
ton universality (Figure 6.9). As expected, exclusion limits are particularly
improved for low charged Higgs boson masses where the latter has more sen-
sitivity. The direct search in the lepton+τhad channel has comparable sensi-
tivity to the τhad + jets channel for low masses, but can not easily be included
in this combination as it is not statistically independent from the test of lepton
universality.
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Figure 6.12. 95% confidence level upper limits on B(t → bH+), with the assumption
that B(H+ → τν) = 100%, as obtained in the lepton+ jets channel (left) and in the
τhad + jets channel (right) [97].
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Figure 6.13. 95% confidence level upper limits on B(t → bH+), with the assump-
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Figure 6.14. 95% confidence level upper limits on B(t → bH+), with the assumption
that B(H+ → τν) = 100%, obtained with a combination of the direct search in the
τhad + jets channel and the event yield ratio Re+µ .
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7. Searches for H+ → τν in 8 TeV data

With the data collected at
√

s = 8 TeV in 2012, corresponding to an integrated
luminosity of 20.3 fb−1, the lepton+τhad and dilepton channels are analyzed
simultaneously. As in the test of lepton universality in tt̄ decays presented in
section 6.3, this allows for many systematic uncertainties to be constrained by
the background-rich dilepton channel. In contrast to the strategy used in the
7 TeV analysis, however, the full distribution of a transverse mass variable is
now used to achieve higher sensitivity for charged Higgs boson masses fur-
ther away from that of the W boson. The search is also extended to consider
charged Higgs bosons with masses of up to 1 TeV, i.e. heavy charged Higgs
bosons (see section 2.3.2), produced in association with a top quark. The
transverse mass variable used to discriminate between signal and background
among lepton+τhad events is

mT =
�

2pτTEmiss
T (1− cosΔφτ,miss), (7.1)

where Δφτ,miss is the azimuthal angle between the τhad and the missing trans-
verse momentum. Note that, here, mT is an effective quantity which in addition
to the decay products of the charged Higgs boson also contains a contribution
from a neutrino that is produced in association with the electron or muon in
the leptonic decay of the associated top quark. Nevertheless, it offers good
separation between signal and background, in particular for high masses, as
shown in Figure 7.1. Dilepton events are binned in the maximum mT value
constructed with either of the leptons in place of the τhad in equation (7.1).

7.1 Event selection
Single-lepton triggers with an ET threshold of 24 GeV or 60 GeV for electrons
and a pT threshold of 24 GeV or 36 GeV for muons are used. Events are then
selected in the lepton+τhad channel, labeled as the Signal Region (SR), if they
fulfill the following criteria:
• The event must contain exactly one loose lepton with ET > 25 GeV (elec-

tron) or pT > 25 GeV (muon).
• The lepton must be matched to the single-lepton trigger object.
• The event must also contain exactly one loose τhad with pT > 25 GeV and
|η |< 2.3.

• The lepton and the τhad object must have electric charges of opposite signs.
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signal samples correspond to B(t → bH+) = 10% or a production cross section of
10 pb, respectively.

• The event must have Emiss
T > 25 GeV.

• The event must contain at least one jet with pT > 25 GeV.
• Exactly one or two jets must be b-tagged.
• The lepton and the τhad must also pass the tight criteria.
The first steps are performed with loose selection criteria for all leptons and
τhad objects. Loose electrons and muons are defined with relaxed identification
and isolation criteria, respectively. For the τhad identification, the BDT-based
identification is used. Loose τhad objects are defined with a relaxed require-
ment on the BDT score. Events with a τhad in the region 1.37 < |η | < 1.52,
corresponding to the transition regions between the barrel and the end-caps,
are discarded. A reliable electron identification is not available in this region
and the e → τhad misidentification probability is increased, as such objects are
not removed due to overlapping reconstructed electrons.

Dilepton events, labeled as the Control Region (CR), are selected if they
fulfill the following criteria:
• The event must contain exactly one loose electron with ET > 25 GeV and

exactly one loose muon with pT > 25 GeV.
• At least one of the leptons must be matched to a single-lepton trigger object.
• The leptons must have electric charges of opposite signs.
• The event must have Emiss

T > 25 GeV.
• The event must contain zero, one, or two b-tagged jets with pT > 25 GeV.
• Both leptons must also pass the tight criteria.
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7.2 Backgrounds with misidentified hadronic tau decays
With the tight BDT-based τhad identification, 69% of the τhad objects in sim-
ulated tt̄ events passing the SR selection are matched to a real hadronic tau
decay at the generator level. Meanwhile, 28% of the τhad objects are matched
to a quark- or gluon-initiated jet, and the remaining 3% are matched to an
electron or a muon. The background with jets misidentified as hadronic tau
decays is estimated in a data-driven way with the matrix method. With this
method, not only are the misidentification probabilities measured in data, but
the distributions of τhad candidates are also taken from the data itself rather
than from simulation. The loose and tight τhad selections used to define the
(mis)identification probability are here defined with different thresholds on
the output of the BDT-based τhad identification. In contrast, in the previously
presented analyses, the loose definition included all τhad candidates, i.e. with-
out any requirement on the LLH or BDT identification criteria. It was found
that, by retaining some requirement on the BDT score, a large fraction of τhad
candidates matched to jets initiated by b quarks and gluons can be eliminated.
The misidentification probabilities for the remaining jets initiated by b quarks
and gluons are also closer to that of jets initiated by light quarks than if all τhad
candidates were included in the loose sample. This strategy therefore ensures
a more uniform jet → τhad misidentification probability pm across samples of
events with different fractions of jets initiated by light quarks, b quarks, or
gluons, hence there is no need for the OS-SS procedure of section 6.3.

The identification probability for real hadronic tau decays, pr, is computed
using simulated events of Standard Model processes. The BDT-based τhad
identification is designed to give an approximately flat identification probabil-
ity of real τhad objects with respect to pT and η [90]. A small pT-dependence
is nevertheless observed and pr is therefore computed as a function of pT. It is
also determined separately for 1-prong and 3-prong τhad objects. In the com-
putation of pr, a small contribution of electrons and muons reconstructed as
τhad objects are included. These backgrounds are determined separately, and
are therefore not considered as misidentified τhad objects in the context of the
matrix method, but are included in the definition of real τhad objects.

The jet → τhad misidentification probability pm is measured in the data,
using an event selection enriched in W + jets events, where the W boson decays
to an electron or a muon. These events are selected as follows:
• The event must contain exactly one loose lepton with ET > 25 GeV (elec-

tron) or pT > 25 GeV (muon).
• The lepton must be matched to the trigger object and also pass the tight

criteria.
• The event must contain exactly one loose τhad with pT > 25 GeV.
• The lepton and the τhad object must have electric charges of opposite signs.
• The event must not contain any b-tagged jets.

• The event must have mW
T =

�

2pℓTEmiss
T (1− cosΔφℓ,miss)> 50 GeV.
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Figure 7.2. The τhad (mis)identification probabilities used in the matrix method.

The contamination arising from events where the τhad originates from a real
hadronic tau decay, an electron, or a muon is subtracted using simulated events.
The misidentification probability pm is then computed as the rate at which the
loose τhad object, assumed to originate from a quark- or gluon-initiated jet,
also passes the tight τhad identification. It is measured separately for 1-prong
and 3-prong τhad objects, and as a function of pT. For 1-prong τhad objects,
pm is also measured separately for the low (|η |< 1.37) and high (|η |> 1.52)
pseudorapidity regions. Here, the pT- and η-dependencies are not treated as
uncorrelated. Instead, a two dimensional binning of pm is used. For 3-prong
τhad objects, the difference between the misidentification probabilities in the
two regions of |η | is found to be small and within the statistical uncertainties.
The η-dependence of pm for 3-prong τhad objects is therefore ignored. The
distributions of pm and pr used in the matrix method are shown in Figure 7.2.
The dependence of pm and pr on other variables, including the flavor of the
associated lepton and the number of b-tagged jets, was investigated and found
to be negligible.

As in the previously presented analyses, the background with electrons
and muons misidentified as hadronic tau decays are estimated using simu-
lated events. In the case of electrons, scale factors are applied to match the
misidentification probabilities measured in data.
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7.3 Other backgrounds
In the dilepton channel, the matrix method is used in order to estimate the
backgrounds with one or two misidentified leptons. For this purpose, the re-
sults of Ref. [101] are used directly. For electrons, the (mis)identification
probabilities are parametrized as functions of the electron η , the distance ΔR

to the closest jet, the pT of the leading jet, the number of b-tagged jets, and the
isolation requirement of the trigger. For muons, the (mis)identification proba-
bilities are parametrized as functions of the muon η and pT, the distance ΔR

to the closest jet, and the isolation requirement of the trigger.
Very few events with a real τhad and a misidentified lepton are expected, and

this is also confirmed by simulation. The estimate of events with misidentified
τhad objects therefore also includes the only sizable contribution of misidenti-
fied lepton in the lepton+τhad channel. The nominal analysis therefore does
not consider any additional background arising from misidentified leptons in
this channel. Hence, no additional background arising from misidentified lep-
tons is considered in this channel. As a cross-check, the matrix method treat-
ment of two potentially misidentified objects was used to confirm that the
background component with a real τhad and a misidentified lepton is consis-
tent with zero.

Backgrounds with real leptons and real hadronic tau decays, including tt̄,
single top quark, Z/γ∗+jets and diboson production, are estimated with Monte
Carlo simulations. The POWHEG tt̄ sample is reweighted to better match the tt̄

pT spectrum in data, as described in section 5.1.2. In addition, the pT spectrum
of the Z/γ∗+ jets sample is also reweighted, and events with a Z boson pro-
duced in association with bb̄ or cc̄ are initially given a higher weight, in order
to match previous measurements by ATLAS [102]. In the final fit, the cross
sections for tt̄ production, Z boson production in association with light quarks,
and Z boson production in association with bb̄ or cc̄ pairs are left floating and
are constrained by the dilepton regions with zero, one, or two b-jets.

7.4 Systematic uncertainties
Systematic uncertainties on the measured luminosity, the simulation of the
electron and muon triggers, the reconstruction and identification of electrons,
muons, jets, and hadronic tau decays, as well as the energy or momentum scale
and resolution of those objects, and of the missing transverse momentum are
treated similarly to the previous analyses. Jet-related uncertainties have among
the largest impacts on the result and are now given a more detailed treatment:
the uncertainties on the jet energy scale and b-tagging are each broken down
into 22 different components that are varied separately, compared to only one
or two effective components used in the analyses of the 7 TeV data. Tables 7.1
to 7.4 summarize the impact of the detector-related systematic uncertainties
on the Standard Model tt̄ and signal event yields in the signal region.
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The systematic uncertainties arising from both the generation and parton
shower model in tt̄ events and in signal events are evaluated by comparing the
results obtained using POWHEG interfaced to PYTHIA 8 with MC@NLO inter-
faced to HERWIG. The systematic uncertainties originating from initial- and
final-state radiation are evaluated for the tt̄ background and low mass signal
events using Standard Model tt̄ samples generated with ACERMC interfaced
to PYTHIA 6, in which parameters controlling the jet production rate are var-
ied. For the high mass signal, this uncertainty is evaluated by varying scale
parameters in dedicated signal samples generated with POWHEG interfaced
to PYTHIA 8. An additional uncertainty coming from the difference between
the calculation of heavy charged Higgs boson production based on 4FS or
5FS is considered and is evaluated with MADGRAPH interfaced to PYTHIA 8.
Table 7.5 summarizes the impact of the generator-related systematic uncer-
tainties on the Standard Model tt̄ and signal event yields.

All systematic uncertainties are propagated through the matrix method used
to estimate the background arising from misidentified hadronic tau decays. As
this background is relatively large, this is preferred over the use of an effective
uncertainty that would not have the proper correlations with the correspond-
ing variations of the simulated backgrounds. Uncertainties on the simulation
affect the measurement of the misidentification probability pm in data via the
subtraction of events with real taus, needed to obtain a pure sample of misiden-
tified hadronic tau decays in the data. The uncertainties on the tau identifica-
tion and electron-veto BDTs also affect the identification probability pr, which
is computed using simulated events.

Additional uncertainties on the background with misidentified hadronic tau
decays arise from the statistical uncertainties on pm and pr, and from the dif-
ference in jet composition between the region used to measure pm and the
signal region. The statistical uncertainty on each bin of pm and pr is consid-
ered separately. The uncertainty related to the jet composition is evaluated
using simulation. The misidentification probability is computed using simu-
lated events passing the same selection as used to measure pm in data, and
using simulated events passing the signal selection. The relative difference
(computed separately for each bin) is taken as an uncertainty on the values
of pm measured in the data. Tables 7.6 and 7.7 summarize the impact of the
main systematic uncertainties on the background arising from misidentified
hadronic tau decays in the signal region with one or two b-tagged jets.

To simplify the fitting procedure, systematic uncertainties that have negligi-
ble effects are pruned from the model and the corresponding nuisance param-
eters are instead fixed to their nominal values. Normalization uncertainties are
removed if the impact on the event yield is less than 0.5%. Uncertainties that
affect the shape of the fitted histograms are removed if the relative variation is
less than 0.5% in each bin.
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Table 7.1. The effects of systematic uncertainties on the final Standard Model tt̄ event

yield in the e+τhad and µ +τhad channels with 1 b-tagged jet.

Event yield shift
Source of uncertainty e+τhad µ +τhad

b-jet (mis)tag efficiency 0.6% 0.7%
Jet energy scale (baseline) 0.3% 0.5%
Jet energy scale (flavor) < 0.1% 0.3%
Jet energy scale (b-jet specific) 0.2% 0.1%
Jet vertex fraction < 0.1% 0.7%
Emiss

T soft terms resolution < 0.1% < 0.1%
Emiss

T soft terms scale 0.1% 0.2%
Tau electron-veto 0.3% 0.2%
Tau energy scale 2.5% 2.6%
Tau identification 1.9% 2.0%
Lepton ET/pT scale 0.3% < 0.1%
Lepton ET/pT resolution 0.1% < 0.1%
Lepton trigger and identification < 0.1% 1.9%

Table 7.2. The effects of systematic uncertainties on the final Standard Model tt̄ event

yield in the e+τhad and µ +τhad channels with 2 b-tagged jets.

Event yield shift
Source of uncertainty e+τhad µ +τhad

b-jet (mis)tag efficiency 5.1% 5.0%
Jet energy scale (baseline) 1.4% 1.2%
Jet energy scale (flavor) 0.2% 0.3%
Jet energy scale (b-jet specific) 0.7% 1.0%
Jet vertex fraction 0.3% 0.2%
Emiss

T soft terms resolution < 0.1% 0.1%
Emiss

T soft terms scale 0.1% 0.1%
Tau electron-veto 0.2% 0.2%
Tau energy scale 2.7% 2.9%
Tau identification 1.9% 1.9%
Lepton ET/pT scale 0.2% < 0.1%
Lepton ET/pT resolution 0.1% < 0.1%
Lepton trigger and identification < 0.1% 1.9%
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Table 7.3. The effects of systematic uncertainties on the final signal event yield in the

e+ τhad and µ + τhad channels with 1 b-tagged jet, assuming a charged Higgs boson

mass of 200 GeV.

Event yield shift
Source of uncertainty e+τhad µ +τhad

b-jet (mis)tag efficiency 1.9% 2.2%
Jet energy scale (baseline) 1.3% 1.0%
Jet energy scale (flavor) 0.1% 0.2%
Jet energy scale (b-jet specific) 0.8% 0.6%
Jet vertex fraction 0.3% 0.6%
Emiss

T soft terms resolution 0.2% 0.4%
Emiss

T soft terms scale < 0.1% 0.2%
Tau electron-veto < 0.1% < 0.1%
Tau energy scale 0.6% 0.6%
Tau identification 1.8% 1.9%
Lepton ET/pT scale 0.3% 0.1%
Lepton ET/pT resolution 0.2% 0.3%
Lepton trigger and identification < 0.1% 1.8%

Table 7.4. The effects of systematic uncertainties on the final signal event yield in the

e+τhad and µ +τhad channels with 2 b-tagged jets, assuming a charged Higgs boson

mass of 100 GeV.

Event yield shift
Source of uncertainty e+τhad µ +τhad

b-jet (mis)tag efficiency 5.2% 4.9%
Jet energy scale (baseline) 1.4% 2.8%
Jet energy scale (flavor) 0.2% 0.8%
Jet energy scale (b-jet specific) 0.1% 1.7%
Jet vertex fraction 0.2% 0.5%
Emiss

T soft terms resolution 0.6% 0.8%
Emiss

T soft terms scale 0.1% 0.3%
Tau electron-veto < 0.1% 0.1%
Tau energy scale 2.2% 2.4%
Tau identification 1.9% 2.1%
Lepton ET/pT scale 0.7% 0.2%
Lepton ET/pT resolution 0.2% 0.3%
Lepton trigger and identification < 0.1% 1.8%
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Table 7.5. The effects of systematic uncertainties arising from Standard Model (SM)

tt̄ and signal event modeling on the overall normalization of each sample.

Source of uncertainty Total event yield shift

Generator and parton shower (SM and low-mass H+) 3.2%
Generator and parton shower (high-mass H+) 5.4%
Initial- and final-state radiation (SM and low-mass H+) 7.7%
Initial- and final-state radiation (high-mass H+) < 1%
High-mass H+production (4FS vs 5FS) < 1%

Table 7.6. The effects of systematic uncertainties on the final event yield predicted

by the matrix method used to estimate the jet → τhad background in the e+ τhad and

µ +τhad channels with 1 b-tagged jet.

Event yield shift
Source of uncertainty e+τhad µ +τhad

Jet energy scale (baseline) 1.8% 1.6%
Jet energy scale (flavor composition) 1.9% 1.7%
Emiss

T soft terms 3.8% 3.7%
Tau electron veto 2.2% 2.4%
Tau energy scale 2.6% 2.4%
Jet → τhad pm (jet composition) 1.7% 1.7%
Jet → τhad pm, pr (stat) 1.8% 2.0%

Table 7.7. The effects of systematic uncertainties on the final event yield predicted

by the matrix method used to estimate the jet → τhad background in the e+ τhad and

µ +τhad channels with 2 b-tagged jets.

Event yield shift
Source of uncertainty e+τhad µ +τhad

b-jet (mis)tag efficiency 1.0% 1.0%
Jet energy scale (baseline) 1.8% 1.9%
Jet energy scale (flavor composition) 1.8% 1.8%
Emiss

T soft terms 3.6% 3.8%
Tau electron veto 2.7% 2.5%
Tau energy scale 2.4% 2.6%
Jet → τhad pm (jet composition) 1.5% 1.6%
Jet → τhad pm, pr (stat) 2.6% 2.4%

126



7.5 Results
The analysis is performed using separate categories of events with zero, one,
or two b-tagged jets in the control region, while the signal region is merged
to contain events with either one or two b-tagged jets. This is done in order
to reduce the uncertainty on the b-jet multiplicity arising from the choice of
calculation scheme for the high mass signal process. Figure 7.3 shows the ex-
pected and observed distributions of the lepton pT, the pT of the τhad object,
and Emiss

T in the signal region. Figure 7.4 shows the expected and observed dis-
tributions of the dilepton invariant mass in the control regions. When comput-
ing exclusion limits, the electron- and muon-triggered events are merged. The
normalization of the background from Standard Model tt̄ events with real lep-
tons and hadronic tau decays is allowed to float freely and is constrained by the
mostly signal-free dilepton channel. The predicted and observed distributions
of (maximum) mT in the signal region and the control regions, used as inputs
to the limit computation, are shown in Figure 7.5. The best-fit values of the
nuisance parameters under the background-only hypothesis, with their profiled
uncertainties, are shown in Figure 7.6. The data favors a tt̄ cross section about
11% lower than the theoretical prediction, calculated at NNLO in QCD includ-
ing resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon
terms [70] for a top quark mass of 172.5±1 GeV with PDF and αs uncertain-
ties determined using the PDF4LHC prescription [103]. The theoretical cross
section with its uncertainties is 252.89+6.39

−8.64(scale)+7.58
−7.33(mt)

+11.67
−11.67(PDF+αs)

pb. If the fit is performed under the signal hypothesis, the best-fit value of the
signal strength becomes slightly negative – which does not correspond to a
physically meaningful scenario – but is consistent with zero within its uncer-
tainty.

The effect of systematic uncertainties is important only for light charged
Higgs bosons. For high H+ masses, the statistical uncertainty is dominant.
Figures 7.7 and 7.8 show the pulls on the nuisance parameters for signal
masses of 130 GeV and 250 GeV. The ±1σ error bars indicated in red are
the estimated uncertainties on the nominal values of these nuisance parameters
as inserted in the fit. An unconditional fit is performed, leaving all nuisance
parameters floating. The fit is then repeated for each uncertainty, leaving the
parameter of interest floating while all others are fixed to their best-fit values.
The black points represent the shift of the best-fit value with respect to the
original value of each parameter, in units of the original uncertainty, and the
black error bar represents the new uncertainty. If the black error bar is smaller
than the red error band, then the computed uncertainty is smaller than the one
used as input to the fit, and vice versa. The yellow and hatched blue bands rep-
resent the pre-fit and post-fit impact of each nuisance parameter on the fitted
value of the signal strength. The nuisance parameters are ranked according
to their post-fit impact on the signal strength. Only the most important nui-
sance parameters are shown. The dominating uncertainties are related to the
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jet energy scale and to the modeling of tt̄ events. The single largest uncer-
tainty is related the effect of the jet composition on the jet energy scale. It is
a centrally derived value that is designed to be applicable to any analysis of
ATLAS data and therefore assumes completely unknown fractions of quark-
and gluon-initiated jets.

The expected and observed limits are shown in Figures 7.9 and 7.10. Upper
limits are set on the branching fraction B(t → bH+)×B(H+ → τν) in the
range 1.1–0.3% for 80 GeV ≤ mH+ ≤ 160 GeV, and on the signal cross section
times B(H+ → τν) in the range 0.93–0.03 pb for 180 GeV ≤ mH+ ≤ 1 TeV.
Alternative strategies using the OS-SS weighting, the ratio Re+µ , or the mH

T2
variable for the limit setting were explored but were not found to significantly
improve the result. The observed limit presents a downward deviation with
respect to the expected limit along the whole mass range. This effect is driven
by the electron channel, where the deviation is maximal in the signal mass
range 110–250 GeV. It can be traced to a deficit of events in the region
100 GeV < mT < 200 GeV as well as in the high mass region mT > 300 GeV.
Excluding these problematic bins and recomputing the limits would improve
the compatibility between the observed and expected limits to within one stan-
dard deviation, while strongly reducing the sensitivity.

7.6 Combination and interpretation
The results presented here are complementary to the search performed with the
τhad+ jets final state, which has also been updated with the 8 TeV dataset [50].
The lepton+τhad channel is less sensitive than the τhad + jets channel, due to
the lower branching fraction, and in the case of a light charged Higgs boson,
the presence of an additional neutrino in the event which significantly worsens
the resolution of the transverse mass. A combination of the two channels can
nevertheless improve upon the τhad + jets result, in particular in the very low
mass region mH+ < 100 GeV where the expected exclusion limit is improved
by up to 35%. The downward fluctuation observed in the data further improves
the observed limits, which are up to 40% lower in the low mass region for the
combination than for τhad + jets alone, and up to 20% lower in the high mass
region. The combined limits are shown in Figure 7.11. The observed upper
limits on the product of branching fractions B(t → bH+)×B(H+ → τν) vary
in the range 0.6–0.15% for 80 GeV ≤ mH+ ≤ 160 GeV, while the observed
upper limits on the production cross section are in the range 0.43–0.004 pb for
180 GeV ≤ mH+ ≤ 1 TeV. Figure 7.12 shows an interpretation of this result in
the updated mmax

h , mmod+
h , and mmod−

h benchmark scenarios of the MSSM.
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Conclusion

This thesis has described searches for charged Higgs bosons decaying to a tau
lepton and a neutrino, performed using data recorded by the ATLAS experi-
ment in 2011 and 2012. Final states with two charged leptons, or with one
charged lepton and a hadronically decaying tau were used, and charged Higgs
boson masses below and above that of the top quark were considered. Simu-
lated backgrounds with real leptons and hadronic tau decays were normalized
to data using control regions, and backgrounds with misidentified leptons or
hadronic tau decays were estimated from the data itself. With 20.3 fb−1 of data
collected at a center-of-mass energy of 8 TeV, upper limits at 95% confidence
level are placed on the branching fraction B(t → bH+)×B(H+ → τ+ν) in
the range 1.1–0.3% for charged Higgs boson masses between 80 GeV and
160 GeV, and on the top-quark associated charged Higgs boson production
cross section in the range 0.93–0.03 pb for charged Higgs boson masses be-
tween 180 GeV and 1 TeV. Both the expected and observed limits are the best
obtained to date in this search channel. A combination of these results with
a search performed using the fully hadronic final state yields corresponding
limits of 0.6–0.15% for the low mass range and 0.43–0.004 pb for the high
mass range.

During the preparation of this thesis, a Higgs boson was observed for the
first time by the ATLAS and CMS collaborations. This proves the existence
of at least one scalar field and encourages further searches for additional Higgs
bosons. The focus of future searches for charged Higgs bosons will undoubtedly
be on the high mass regime. The decay mode of the charged Higgs boson
into a tau lepton and a neutrino remains a search channel of high interest due
to the relatively clean event signatures and its sizable branching fraction in
large parts of the parameter space. The analysis of the lepton + τhad final
state presented in this thesis is less sensitive than the previously published
analysis of the τhad + jets final state, and should be seen as complementary to
that search. However, its importance will increase as higher mass ranges are
probed, when the relative importance of the missing transverse momentum
contributed by the neutrino appearing in the Standard Model leptonic decay of
the top quark is reduced. With 20.3 fb−1 of 8 TeV data, the sensitivity of the
analysis is limited by statistical uncertainties. When more data is collected
during Run 2 of the LHC, the sensitivity of this channel can therefore be
expected to increase. Interesting prospects for improving the analysis strategy
include the use of tau polarization information as the charged Higgs boson and
the W boson have a different spin.
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Figure 7.3. The lepton pT (top), the pT of the τhad object (middle), and the Emiss
T

(bottom) in e+ τhad (left) and µ + τhad (right) events passing the SR selection. In all
plots, the last bin includes overflow.
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Figure 7.4. The eµ invariant mass in dilepton events passing the CR selection with 0
b-tagged jets (top), 1 b-tagged jet (bottom left) or 2 b-tagged jets (bottom right). In all
plots, the last bin includes overflow.
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Figure 7.5. The inputs to the fit: the maximum transverse mass of dilepton events
passing the CR selection with 0 b-tagged jets (top left), 1 b-tagged jet (top right), and
2 b-tagged jets (bottom left), as well as the transverse mass of lepton+τhad events
passing the SR selection with one or two b-tagged jets. In all plots, the last bin includes
overflow.
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Figure 7.6. Post-fit plots of the maximum transverse mass of dilepton events passing
the CR selection with 0 b-tagged jets (top left), 1 b-tagged jet (top right), and 2 b-
tagged jets (bottom left), as well as the transverse mass of lepton+τhad events passing
the SR selection with one or two b-tagged jets. In these plots, the best-fit values of all
nuisance parameters under the background-only hypothesis, and their uncertainties,
are shown. The last bin includes overflow.
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value in units of one standard deviation (red) as indicated on the bottom axis, while the
yellow and hatched blue bands respectively show the pre- and post-fit impacts on the
fitted signal strength as indicated on the top axis. The 15 most important parameters
are shown. Some of the uncertainties related to the jet energy scale (JES) or b-tagging
are split into several effective components.
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Figure 7.8. Pull distribution for the mH+ = 250 GeV hypothesis. The black markers
indicate the shift of the best-fit value of each parameter with respect to its nominal
value in units of one standard deviation (red) as indicated on the bottom axis, while the
yellow and hatched blue bands respectively show the pre- and post-fit impacts on the
fitted signal strength as indicated on the top axis. The 15 most important parameters
are shown. Some of the uncertainties related to the jet energy scale (JES) or b-tagging
are split into several effective components.
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Figure 7.9. Expected and observed 95% confidence level upper limits on light
charged Higgs boson production, obtained with electron-triggered events (top), muon-
triggered events (middle) and a combination of both (bottom).
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Figure 7.10. Expected and observed 95% confidence level upper limits on heavy
charged Higgs boson production, obtained with electron-triggered events (top), muon-
triggered events (middle) and a combination of both (bottom).
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Figure 7.11. Expected and observed 95% confidence level upper limits on charged
Higgs boson production in the low (top) and high (bottom) mass range, obtained with
a combination of the lepton+τhad and τhad + jets channels.

138





At the time of writing, the restart of the LHC at
√

s = 13 TeV is imminent.
This will mark the beginning of a new chapter of Higgs physics. Up to now,
the discovered Higgs boson appears to be consistent with that predicted by
the Standard Model. Establishing or disproving this fact will be a key task
for the LHC in the years to come. With higher collision energies than ever
before, and higher integrated luminosity, we can expect detailed measurements
of the discovered Higgs boson, and increased sensitivities in many searches for
additional Higgs bosons. This will either validate the last unexplored sector of
the Standard Model, or possibly let us discover something completely new.
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Résumé en français

1. Le Modèle Standard de la physique des particules
La physique des particules est l’étude des composants microscopiques élé-
mentaires présents dans notre Univers. Toute structure de cet Univers, que ce
soit un atome, un grain de poussière ou une galaxie, est formée de particules
dites élémentaires. Les atomes, par exemple, qui composent toute la matière
terrestre, comportent des électrons qui orbitent autour d’un noyau, qui est lui-
même assemblé à partir de protons et de neutrons, lesquels sont formés de
quarks up et down. L’électron a deux frères plus lourds: le muon et le tau. Pour
chacune de ces particules, il existe un neutrino correspondant. Les neutrinos
sont des particules électriquement neutres presque sans masse qui interagis-
sent très faiblement avec toute la matière. Ces particules forment les leptons.
Les quarks up et down ont aussi des frères plus lourds: les quarks charmé
et top, et les quarks étrange et bottom. Les leptons et les quarks sont tous
des fermions de spin 1

2 . Chaque fermion a aussi une anti-particule de charge
électrique opposée. Nous ne savons toujours pas si l’anti-neutrino est une
particule différente du neutrino. Les fermions interagissent les uns avec les
autres en échangeant d’autres particules de spin entier qui sont par conséquent
des bosons. À l’échelle microscopique, les forces résultent de ces échanges:
la force électromagnétique est transmise par les photons, l’interaction forte
provient de l’échange de gluons, et la force faible est convoyée par les bosons
W± et Z. La force forte, qui agit entre les quarks, forme des systèmes liés
appelés hadrons (le proton et le neutron sont des exemples de hadrons).

Le Modèle Standard est une théorie quantique qui décrit toutes les partic-
ules élémentaires connues et leurs interactions. L’une des hypothèses sous-
jacentes du Modèle Standard est que les lois de la nature doivent être invari-
antes sous certaines transformations, dites transformations de jauge. Une con-
séquence de ceci est que les particules élémentaires ne devraient pas avoir
de masse. Leur masse apparaît par le biais d’interactions avec un champ de
Higgs, qui est un champ scalaire qui possède aujourd’hui une valeur moyenne
non nulle dans le vide. Ces interactions produisent également le mélange des
états massifs et d’interaction des neutrinos et des quarks. Le champ de Higgs
du Modèle Standard donne lieu à une nouvelle particule, le boson de Higgs,
qui a été découverte en 2012 au CERN par les collaborations ATLAS et CMS.

Le Modèle Standard est une théorie du monde microscopique dont pra-
tiquement toutes les prédictions ont été confirmées expérimentalement. Pour-
tant, il est largement admis que ce ne peut être une théorie complète de la

141



nature. En effet, le Modèle Standard est incapable d’expliquer l’asymétrie
matière-antimatière de l’univers, la nature microscopique de la matière noire
observée par ses effets gravitationnels, et de nombreux autres phénomènes
cosmologiques tels l’expansion accéléré de notre Univers. Dans le Modèle
Standard, la masse du boson de Higgs est en principe sujette à de grandes
corrections quantiques, exigeant du point de vue de la théorie des annulations
anormalement fines afin de préserver une valeur finie de l’ordre de 125 GeV.
Tous ces points motivent la recherche de nouveaux processus physiques mi-
croscopiques allant au-delà du Modèle Standard.

2. Au-delà du Modèle Standard
Le Modèle Standard utilise une forme minimale du mécanisme dites Brout-
Englert-Higgs pour atteindre une brisure de symétrie électrofaible. Il n’y a pas
de motivation théorique pour cela à part de juste sa simplicité. Or, la réalité
peut être plus compliquée. De nombreuses extensions possibles du Modèle
Standard ont été proposées, dont certaines comprennent des champs de Higgs
supplémentaires. Dans un modèle à deux Higgs-Doublet (2HDM) il ya deux
champs scalaires de doublet valeurs complexes, par rapport à un seul dans le
Modèle Standard. Le secteur de Higgs du Modèle Standard Supersymétrique
Minimum (MSSM), qui peut résoudre un nombre des problèmes évoqués dans
le chapitre précédent, est un 2HDM. En tout 2HDM, il ya cinq bosons de
Higgs: La CP-même h et H, le CP-odd A et H± chargée électriquement. Cette
thèse présente des recherches pour les bosons de Higgs chargés.

Dans le MSSM, un boson de Higgs chargé se désintègre principalement par
H+ → tb ou en particules supersymétriques lorsque cela est permis cinéma-
tiquent. La désintegration en quarks de différentes générations est défavorisée
et le mode dominant quand tb est interdit cinématiquement n’est pas cb, mais
τν . Le mode de désintégration préféré dans quarks légers est la place cs. Pour
les modes de désintégration leptoniques, les fractions de branchement rela-
tives sont directement proportionnelles à la masse au carré du lepton chargé.
Une désintégration en µν et eν ne sont alors pas possibles par plusieurs ordres
de grandeur.

Dans un collideur de hadrons, des bosons de Higgs chargés peuvent être
produites dans les désintégrations de quarks top, qui sont produites princi-
palement dans la forme de tt̄ paires. Si les bosons de Higgs chargés sont
plus lourdes que les quark top, ils seraient plutôt fabriqués en association avec
un quark top. Dans le premier cas, le boson de Higgs chargé se désintègre
principalement dans un tau et un neutrino, alors que dans le dernier cas, il se
désintègre principalement dans un quark top et un quark bottom.
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3. Le Grand collisionneur de hadrons
Le Large Hadron Collider (Grand collisionneur de hadrons, LHC), situé au
CERN à Genève, en Suisse, est le collisionneur de particules le plus puissant
du monde. Le LHC est un accélérateur synchrotron, près de 27 km de circon-
férence, équipés de plus de 1600 aimants supraconducteurs fonctionnant à 1,9
K et capable de générer des champs magnetique de jusqu’à 8,3 T. Il accélère
deux faisceaux tournant en sens inverse de particules de la même charge à
l’aide de 400 MHz cavités supraconductrices. Il y a des installations expéri-
mentales où les faisceaux se croisent à quatre points le long de la machine.

Les analyses présentées dans cette thèse utilisent des données recueillies en
2011 et 2012, lorsque le LHC a livré des collisions proton-proton à des éner-
gies de 7 TeV et 8 TeV dans le centre de masse. Une luminosité instantanée de
7,7×1033 cm−2s−1 a été atteint, et des lunminosities intégrés jusqu’à 6 fb−1

(23 fb−1) de 7 TeV (8 TeV) ont été delivrés le nombre de collisions à des ex-
périences. Ces données présentent une opportunité pour étudier les processus
de physique à des énergies jamais sondé auparavant dans un environnement
de laboratoire.

Le résultat le plus important de la première manche du LHC a été la dé-
couverte d’un boson de Higgs avec une masse de 125 GeV. Cela confirme
l’existence d’au moins un champ de Higgs. Les mesures des accouplements,
de spin et la parité de la particule découverte sont compatibles avec les prédic-
tions du modèle standard. Les expériences du LHC ont aussi cherché, entre
autres choses, les particules supersymétriques et bosons de Higgs supplémen-
taires mais ils n’ont pas trouvé une preuve de l’existence de telles particules.

4. L’expérience ATLAS
Le détecteur ATLAS a été conçu pour explorer l’intégralité du potentiel de
physique offert par le LHC. Au centre d’ATLAS, se trouve un trajectomètre
qui mesure la quantité de mouvement des particules chargées, avec une réso-
lution de σpT/pT = 0,05%pT ⊕1%. Du centre vers l’extérieur, cet instrument
est subdivisé en un détecteur à pixels de silicium, suivi d’un détecteur à bandes
de semi-conducteur (SCT), et d’un détecteur de traces composé de tubes à ray-
onnement de transition (TRT). Ce trajectomètre est plongé dans un solénoïde
supraconducteur développant un champ magnétique axial de 2 T.

Le calorimètre d’ATLAS utilise la technologie à argon liquide dans un
rayon de 2 m autour de l’axe du faisceau, et à tuiles scintillantes au-delà.
L’énergie des électrons et des photons est mesurée avec une résolution de
σE/E = 10%/

√
E ⊕ 0.7%. Celle des jets hadroniques est obtenue avec une

résolution de σE/E = 50%/
√

E ⊕3%.
Tout à l’extérieur d’ATLAS, on trouve le spectromètre à muons qui se com-

pose séparément de chambres à dérive de précision et de détecteurs gazeux
assurant le déclenchement. Le champ magnétique de déviation est fourni
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par trois ensembles d’aimants toroïdaux supraconducteurs. Le spectromètre
à muons peut mesurer la quantité de mouvement transverse de muons avec
une résolution de 10 % à 1 TeV, indépendamment du détecteur interne.

ATLAS est équipé d’un système de déclenchement à trois niveaux qui est
utilisé pour réduire le taux d’événements à environ 400 Hz.

Dans le cadre des préparatifs pour la deuxième campagne de prise de don-
nées du LHC, l’auteur a contribué à des améliorations du système de contrôle
qui maintient la séparation thermique entre le SCT et le TRT . Des mesures de
la résistance des modules du SCT sous une polarisation directe ont également
été réalisées. Aucune augmentation significative de cette résistance depuis la
mise en service d’ATLAS n’a été observée.

Le logiciel d’ATLAS, qui comprend le système de contrôle-commande,
d’acquisition de données, les programmes de simulation, de reconstruction
et d’analyse des événements, est également décrit dans ce chapitre, en mettant
l’accent sur les contributions personnelles de l’auteur.

5. Les techniques d’analyse
Le premier lot de données enregistrées en 2011 par ATLAS à

√
s = 7 TeV

correspond à une luminosité intégrée de 4,6 fb−1. Le deuxième lot recueilli en
2012 à

√
s = 8 TeV totalise une luminosité intégrée de 20,3 fb−1.

Les électrons sont reconstruits en faisant correspondre les dépôts d’énergie
groupés en amas dans le calorimètre électromagnétique à des traces recon-
struites dans le trajectomètre. Les muons induisent des traces observées dans
le trajectomètre et dans le spectromètre à muons. Les jets hadroniques sont
mesurés dans les calorimètres en utilisant l’algorithme de reconstruction anti-
kt avec un rayon de gerbe de 0,4. Les données mesurées dans le trajectomètre
permettent l’identification des jets hadroniques provenant de vertex primaires
ainsi que des jets initiés par un quark b. Les désintégrations hadroniques des
leptons tau sont reconstruites à partir des jets possédant une ou trois traces
associées, et à l’aide d’algorithmes multivariés destinés à éliminer ceux qui
parmi eux proviennent de jets initiés par des quarks ou des gluons.

Cette thèse présente la recherche de bosons de Higgs chargés, légers lorsque
ceux-ci sont produits dans la désintégration de quarks top, ou lourds lorsqu’ils
sont générés en association avec un quark top. Les bruits de fond princi-
paux proviennent alors des processus du Modèle Standard avec production
de quarks top, et en particulier du processus gg → tt̄ → bb̄W+W−, ainsi que
de la production de bosons vecteurs en association avec des jets. La modélisa-
tion des événements de signal et des processus de bruit de fond principaux est
réalisée par simulation Monte Carlo.

Certains bruits de fond, en particulier ceux qui découlent de faux leptons
tau mal identifiés, sont difficiles à simuler correctement et sont donc estimés
en utilisant des techniques basées sur les données réelles. La méthode de la

144



matrice est l’une de ces techniques. Elle utilise les probabilités d’identification
correcte et erronée mesurées dans les données réelles, sur des événements
simulés, ou dans un mélange des deux. Elle peut être utilisée pour évaluer
la normalisation et les distributions – fonctions de variables cinématiques –
d’événements de bruit de fond avec un ou plusieurs objets mal identifiés.

Tous les résultats des analyses présentées dans cette thèse sont interprétés
en testant la compatibilité des données avec tout d’abord l’hypothèse du Mod-
èle Standard uniquement, et ensuite l’hypothèse du Modèle Standard avec un
signal de boson de Higgs chargé, le tout en utilisant une méthode fréquentiste
de vraisemblance profilée modifiée qui intègre des incertitudes systématiques
traitées comme des paramètres de nuisance ajustés aux données. Cette méth-
ode permet de minimiser l’impact des incertitudes systématiques sur la sensi-
bilité de recherche en tirant profit de régions de contrôle dominées par le bruit
de fond.

6. Recherche d’un boson de Higgs chargé se
désintégrant en un lepton tau et un neutrino tau dans les
données prises à 7 TeV
Dans ce chapitre, sont présentées trois recherches d’un boson de Higgs chargé
et léger, qui serait généré dans la désintégration de quarks top et qui se désin-
tégrerait en τν . Elles font appel aux données recueillies par ATLAS en 2011 à
7 TeV. Toutes ces analyses partent de l’hypothèse que B(H+ → τν) = 100%.
Dans tous les cas, le signal est caractérisé par la présence additionnelle d’un
quark top (produit par paires) qui se désintègre en un électron ou un muon. Ce
lepton de haut pT permet de distinguer clairement ces événements de la plupart
des fonds multi-jets, et est en conséquence utilisé pour le déclenchement.

En principe, le canal le plus propre est l’état final dilepton, où le tau prov-
enant du boson de Higgs se désintègre d’une manière leptonique. Le canal
dilepton a été analysé sur les premières données de collisions pp enregistrées à√

s = 7 TeV, correspondant à une luminosité intégrée de 1,03 fb−1. Les résul-
tats montrent que cette analyse a une sensibilité modeste à l’observation d’un
boson de Higgs chargé et léger. Elle n’a donc pas été répétée sur l’ensemble
des données.

Au vu de ce constat, l’accent a été mis sur le canal où le lepton tau se
désintègre hadroniquement (τhad). Les modes de désintégration hadronique
du lepton tau ont des fractions de branchement plus élevées, et conduisent à
des événements qui comportent moins de neutrinos. Cependant, ce canal est
entaché d’un bruit fond difficile à estimer, provenant de jets initiés par des
quark ou des gluons, qui peuvent être à tort identifiés comme des désintégra-
tions hadroniques de leptons tau. Puisque cette probabilité de confusion est
très difficile à modéliser précisément par des simulations Monte-Carlo, elle
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a été mesurée dans des régions de contrôle sur les données réelles. Le canal
lepton+τhad a été analysé sur l’ensemble complet des données acquises en
2011, correspondant à une luminosité intégrée de 4,6 fb−1. En l’absence de
signal observé, des limites supérieures sur le rapport de branchement B(t →
bH+) on été extraites en utilisant la distribution Emiss

T de l’énergie transverse
manquante.

Par ailleurs, les données ont été réanalysées avec un traitement simultané
des canaux dileptonique et lepton+τhad. Cette analyse qui se présente sous la
forme d’un comptage d’événements, a été conçue comme un test de l’universal-
ité leptonique dans les événements tt̄. Ici le rôle du canal dileptonique consiste
principalement à contraindre les incertitudes sur les bruits de fond, plutôt que
de fournir une sensibilité directe au signal. Les événements dans lesquels le
τhad reconstruit a le même signe de charge que le lepton sont soustraits des
événements dans lesquels ils ont des signes de charges opposés, ce qui annule
les contributions des jets de gluons et de quarks bottom feignant une désin-
tégration hadronique d’un lepton tau. Le nombre d’événements lepton+τhad
et dileptoniques est finalement mesuré comme étant conforme à la prévision
du Modèle Standard. Des limites supérieures sur B(t → bH+) sont alors
déduites. Elles vont de 3,2 à 4,4% pour des masses de H+ allant de 90 à 140
GeV.

La combinaison de ces résultats avec ceux obtenus par d’autres recherches
menées au sein d’ATLAS au sujet de bosons de Higgs chargés, ainsi que leur
interprétation dans le scénario mmax

h du MSSM sont également présentées.

7. Recherches d’un boson de Higgs chargé décroissant
en un lepton tau et un neutrino dans les données acquises
à 8 TeV
Les données recueillies à

√
s = 8 TeV en 2012, correspondant à une lumi-

nosité intégrée de 20,3 fb−1, ont fait l’objet d’une analyse simultanée des
canaux lepton+τhad et dilepton. Comme lors du test de l’universalité lep-
tonique dans la désintégration des quarks top présenté dans le chapitre précé-
dent, l’adjonction du canal dileptonique permet de réduire les incertitudes
systématiques du bruit de fond. Cependant, à la différence de ce qui avait
été fait à 7 TeV, le test de présence d’un signal est mené sur la distribution
d’une variable de masse transverse, laquelle permet d’améliorer la sensibilité
d’observation d’un boson de Higgs chargé pour des masses plus grandes que
celle du boson W . Cette recherche a été conduite pour une masse du boson de
Higgs chargé allant jusqu’à 1 TeV, qui serait produit dans ce cas en association
avec un quark top.

Le bruit de fond provenant de l’erreur d’identification de jets hadroniques
qui sont parfois confondus avec des désintégrations hadroniques de leptons
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tau, est estimé par l’usage de la technique dite de la matrice, appliquée sur les
données réelles. Cette méthode permet de mesurer les probabilités d’erreurs
d’identification directement dans les données réelles, en utilisant de vraies
désintégrations hadroniques de leptons tau plutôt que celles fournies par la
simulation.

Les principales incertitudes systématiques de cette analyse sont liées à
l’étalonnage de l’énergie des jets et à la modélisation des événements tt̄. Dans
la région de contrôle dileptonique dominée par le bruit de fond, l’analyse est
effectuée à l’aide de catégories distinctes d’événements avec zéro, un, ou deux
jets étiquetés b, tandis que la région où l’on attend un signal est fusionnée pour
contenir les événements avec un ou deux jets étiquetés b, ceci dans le but de
réduire l’incertitude sur la multiplicité des jets étiquetés b, découlant du choix
du schéma de calcul pour les signaux de masse élevée. Des limites supérieures
sont obtenues sur le rapport d’embranchement B(t → bH+)×B(H+ → τν)
qui varie de 1,1 à 0,3% pour 80 GeV ≤ mH+ ≤ 160 GeV, et sur la section ef-
ficace du signal fois B(H+ → τν) qui va de 0,93 à 0,03 pb pour 180 GeV ≤
mH+ ≤ 1 TeV. Ces limites observées sont légèrement plus basses que celles
auxquelles on s’attendait.

Ces résultats sont complémentaires avec ceux obtenus par la recherche ef-
fectuée dans l’état final τhad + jets , qui a également été refaite sur l’ensemble
des données acquises à 8 TeV. La combinaison des résultats de ces deux anal-
yses repoussent les limites obtenues par le canal τhad + jets seul, en particulier
dans la région de très faible masse mH+ < 100 GeV où l’amélioration de la
limite d’exclusion va jusqu’à 35%. La fluctuation négative observée dans les
données réelles améliore encore les limites observées: jusqu’à 40% de mieux
dans la région de faible masse pour les résultats combinés par rapport à ce
qui est obtenu avec le canal τhad + jets seul, et jusqu’à 20% de mieux dans
la région de masse élevée. Les limites supérieures observées sur le produit
du rapport d’embranchement B(t → bH+)×B(H+ → τν) varient de 0,6 à
0,15% pour 80 GeV ≤ mH+ ≤ 160 GeV, tandis que les limites supérieures ob-
servées sur la section efficace de production sont de l’ordre de 0,43 à 0,004 pb
pour 180 GeV ≤ mH+ ≤ 1 TeV. Ces résultats sont également interprétés dans
le cadre du MSSM.

Conclusion
Cette thèse a décrit la recherche d’un boson de Higgs chargé se désintégrant en
un lepton tau et un neutrino à l’aide des données enregistrées par l’expérience
ATLAS en 2011 et 2012. Dans cette étude, nous avons considéré les états
finaux comportant soit deux leptons chargés, ou un lepton chargé et une dés-
intégration hadronique d’un lepton tau. Deux cas de figures de production de
bosons de Higgs chargés ont été considérés: pour un boson de Higgs chargé
dont la masse serait inférieure à celle du quark top, celui-ci serait produit dans
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la désintégration des quarks top; dans le cas inverse, le boson de Higgs chargé
serait produit en association avec un quark top.

Les bruits de fond comportant de vrais leptons et de vraies désintégrations
hadroniques de leptons tau ont été simulés, puis ont été normalisés aux don-
nées en utilisant des régions de contrôle où le signal attendu est par nature
très faible. Les bruits de fond incluant des leptons ou des désintégrations
hadroniques de lepton tau mal identifiés ont été estimés à partir des don-
nées elles-mêmes. Avec 20,3 fb−1 de données enregistrées à une énergie
de 8 TeV dans le centre de masse des collisions, des limites supérieures à
un niveau de confiance de 95% sont placées sur le rapport d’embranchement
B(t → bH+)×B(H+ → τ+ν). Leurs valeurs vont de 1,1 à 0,3% pour une
masse du boson de Higgs chargé allant de 80 GeV à 160 GeV. Pour une
masse du boson de Higgs chargé comprise entre 180 GeV et 1 TeV, ces limites
concernent la section efficace de production d’un boson de Higgs chargé en
association avec un quark top. Leurs valeurs varient de 0,93 à 0,03 pb sur le
domaine de masse afférant. Les limites présentées dans cette thèse sont les
meilleures obtenues à ce jour dans ce canal de recherche. Une combinaison
de ces résultats avec une autre recherche effectuée en exploitant l’état final
entièrement hadronique conduit à des limites allant de 0,6 à 0,15 % pour un
boson de Higgs chargé léger (mH+ < mt), et de 0,43 à 0,04 pb pour le cas
d’un boson de Higgs lourd (mH+ > mt).

Lors de la préparation de cette thèse, un boson de Higgs neutre a été ob-
servé pour la première fois par les collaborations ATLAS et CMS. Ceci prouve
l’existence d’au-moins un champ scalaire fondamental et nous encourage à
poursuivre les recherches de bosons de Higgs supplémentaires. Le future des
recherches dans ce domaine résidera sans aucun doute dans le régime de masse
élevée: mH+ > mt . Le mode de désintégration du boson de Higgs chargé dans
un lepton tau et un neutrino restera un canal de recherche d’un grand intérêt
en raison de sa signature expérimentale relativement propre et de son rapport
d’embranchement important dans certaines parties de l’espace des paramètres.

L’analyse de l’état final lepton+ τhad présentée dans cette thèse est moins
sensible que l’analyse précédemment publiée qui exploitait l’état final τhad +
jets, et doit être considérée comme complémentaire pour ce type de recherche.
Néanmoins, son importance augmentera dès lors que des domaines de masse
plus élevés seront explorés, puisque l’importance relative de l’impulsion trans-
verse manquante emportée par le neutrino apparaissant dans la désintégra-
tion standard du quark top sera réduite. Avec 20,3 fb−1 de données recueil-
lies à 8 TeV, la sensibilité de l’analyse est limitée par les incertitudes statis-
tiques. Lorsque plus de données seront enregistrées lors de la deuxième péri-
ode d’exploitation du LHC, la sensibilité de ce canal pourrait augmenter. Des
perspectives intéressantes pour l’amélioration de cette analyse résident dans
l’utilisation des informations de polarisation du lepton tau, car le boson de
Higgs chargé et le boson W portent des spins différents: 0 et 1.
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Au moment de l’écriture de ce document, le redémarrage du LHC à
√

s =
13 TeV est imminent. Cela marquera le début d’un nouveau chapitre de la
physique du boson de Higgs. Jusqu’à présent, le boson de Higgs découvert
semble être compatible avec celui prédit par le modèle standard. Confirmer
ou réfuter ce fait sera la tâche essentielle du LHC pour les années à venir.
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Sammanfattning på svenska

Inom partikelfysiken studeras universums minsta byggstenar. Allting, från
dammkorn till galaxer, består på en fundamental nivå av elementarpartiklar.
Atomer, som bygger upp all materia här på jorden, består till exempel av elek-
troner som kretsar kring en kärna bestående av neutroner och protoner, som i
sin tur består av upp-kvarkar och ned-kvarkar. Elektronen har två tyngre släk-
tingar: myonen och tauonen. För var och en av dessa finns också en neutrino.
Neutrinerna är närapå masslösa partiklar som interagerar väldigt svagt med
sin omgivning. Upp- och ned-kvarkarna har också tyngre släktingar: charm-
och topp-kvarkarna, respektive sär- och botten-kvarkarna. Dessa partiklar ut-
gör tillsammans fermionerna. Varje fermion har också en anti-partikel med
motsatt elektrisk laddning. Fermionerna växelverkar med varandra genom
att utbyta andra partiklar som kallas för bosoner. På så vis uppstår krafter
mellan partiklarna: den elektromagnetiska kraften som förmedlas av fotonen,
den starka kraften som förmedlas av gluonerna, och den svaga kraften som
förmedlas av W±- och Z-bosonerna. Den starka kraften, som verkar mel-
lan kvarkarna, binder ihop dessa till sammansatta objekt som kallas hadroner
(protonen och neutronen är exempel på hadroner).

Standardmodellen är en kvantfältteori som beskriver alla kända elemen-
tarpartiklar och deras växelverkan genom de tre nämnda krafterna. Standard-
modellen bygger i stor utsträckning på att fysikens lagar måste vara invarianta
under vissa lokala transformationer (så kallade gaugetransformationer) och
detta förutsätter att elementarpartiklarna från början är masslösa. De får istäl-
let sina massor genom interaktioner med ett Higgsfält. Higgsfältet har den
speciella egenskapen att dess styrka inte är noll när dess energi är som lägst.
Även i vakuum genomsyras rymden därför av ett starkt Higgsfält och genom
kontakt med detta fält får partiklarna sina massor. Higgsfältet ger också up-
phov till en ny partikel, den så kallade Higgsbosonen. Genom upptäckten av
Higgsbosonen vet vi att Higgsfältet existerar och att den teoretiska beskrivnin-
gen av hur partiklarna får sina massor verkar stämma med verkligheten.

Det finns vissa problem som inte kan förklaras inom standardmodellen och
det står klart att den förr eller senare måste utvidgas till en större teori. I
många föreslagna utvidgningar av standardmodellen förekommer mer än ett
Higgsfält, och därmed också mer än en Higgsboson. I den enklaste utöknin-
gen lägger man helt enkelt till ett extra Higgsfält liknande det som beskrivs
av standardmodellen. Då uppstår totalt fem Higgsbosoner, varav tre är elek-
triskt neutrala och två är elektriskt laddade. Det är jakten på dessa laddade
Higgsbosoner som är ämnet för den här avhandlingen.
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För att hitta spår av nya partiklar studerar man hur högenergetiska partiklar
interagerar med varandra. Den stora hadronkollideraren LHC (Large Hadron
Collider) vid forskningslaboratoriet CERN i Genève, Schweiz, är världens
kraftfullaste partikelaccelerator. Hadronerna som kollideras är oftast protoner.
När två protoner – eller rättare sagt, kvarkar och gluoner inuti protonerna –
kolliderar, omvandlas deras rörelseenergi till nya partiklar. Många partiklar
är instabila och sönderfaller snabbt till andra partiklar, till exempel elektroner,
myoner eller hadroner. Utmaningen är sedan att detektera dessa och försöka
återskapa vilka sorts partiklar som från början bildades i kollisionen.

ATLAS är ett stort experiment vid LHC, som bland annat är utrustat med
spårdetektorer och kalorimetrar för att mäta olika egenskaper hos olika par-
tiklar. I den här avhandlingen beskriver jag analyser av data från ATLAS
i syfte att hitta tecken på existensen av laddade Higgsbosoner. Detta görs
genom att studera proton-proton kollisioner där topp-kvarkar bildas. Eftersom
topp-kvarken är den tyngsta av alla elementarpartiklar så har den en särskilt
stark koppling till Higgsbosonerna. Om de laddade Higgsbosonerna är lättare
än topp-kvarken så kan topp-kvarken därför sönderfalla till en laddad Higgs-
boson och en botten-kvark. Om de laddade Higgsbosonerna däremot är tyngre
än topp-kvarken så produceras en laddad Higgsboson vid LHC oftast tillsam-
mans med en topp-kvark. I båda fallen så antas den laddade Higgsbosonen
här sönderfalla till en tauon – som är den tyngsta av leptonerna – och en neu-
trino. Tauonen sönderfaller i sin tur till en eller flera neutriner tillsammans med
antingen en elektron, en myon, eller en smal “jet” av hadroner. Analyser som
utnyttjar det hadroniska sönderfallet av tauonen har visat sig ha störst käns-
lighet för laddade Higgsbosoner. Hadroniska sönderfall av tauoner är dock
svåra att skilja från de andra typer av jets som bildas i stort antal vid proton-
proton kollisioner. Det är dessutom svårt att simulera hur ofta andra typer av
jets felidentifieras som hadroniska sönderfall av tauoner. Särskilt fokus i detta
arbete har därför lagts på att utveckla metoder för att estimera hur stor den här
bakgrunden är.

Med antagandet att en laddad Higgsboson alltid sönderfaller till en tauon
och en neutrino kan man på 95% konfidensnivå konstatera att om en topp-
kvark kan sönderfalla till en botten-kvark och en laddad Higgsboson med en
massa1 mellan 80 och 160 GeV så måste detta ske för mindre än 1% av alla
topp-kvarkar, samt att om en laddad Higgsboson med en massa mellan 180 och
1000 GeV produceras tillsammans med en topp-kvark så måste tvärsnittet2 för
den processen vara mindre än 1 pb.

1Inom partikelfysiken används ett system av enheter där naturkonstanten c, ljusets hastiget i
vakuum, har värdet 1 och massa kan uttryckas i Giga-elektronvolt (GeV). En elektronvolt är
den energi som krävs för att flytta en elektron över en potentialskillnad på en Volt. Protonen
väger 0,94 GeV och topp-kvarken väger ca 173 GeV.
2Tvärsnittet är ett mått på hur ofta en viss process inträffar vid en partikelkollision. Med ett
tvärsnitt på 1 pico-barn (pb) skulle det finnas ca 20000 händelser med laddade Higgsbosoner i
den data som ATLAS samlat in under 2012.
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