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Abstract

This thesis is devoted to the study of different problems in ergodic theory and topo-
logical dynamics related to “cube structures”. It consists of six chapters.

In the General Presentation we review some general results in ergodic theory and
topological dynamics associated in some way to cubes structures which motivates this
thesis. We start by the cube structures introduced in ergodic theory by Host and Kra
(2005) to prove the convergence in L2 of multiple ergodic averages. Then we present its
extension to topological dynamics developed by Host, Kra and Maass (2010), which gives
tools to understand the topological structure of topological dynamical systems. Finally
we present the main implications and extensions derived of studying these structures, we
motivate the new objects introduced in the thesis and sketch out our contributions.

In Chapter 1 we give a general background in ergodic theory and topological dynamics
given emphasis to the treatment of special factors.

From Chapter 2 to Chapter 5 we develop the contributions of this thesis. Each one is
devoted to a different topic and related questions, both in ergodic theory and topological
dynamics. Each one is associated to a scientific article.

In Chapter 2 we introduce a novel cube structure to study the action of two commut-
ing transformations S and T on a compact metric space X. In the same chapter we study
the topological and dynamical properties of such structure and we use it to characterize
product systems and their factors. We also provide some applications, like the construc-
tion of special factors. In the same topic, in Chapter 3 we use the new cube structure
to prove the pointwise convergence of a cubic average in a system with two commuting
transformations.

In Chapter 4, we study the enveloping semigroup of a very important class of dynamical
systems, the nilsystems. We use cube structures to show connexions between algebraic
properties of the enveloping semigroup and the geometry and dynamics of the system. In
particular, we characterize nilsystems of order 2 by its enveloping semigroup.

In Chapter 5 we study automorphism groups of one-dimensional and two-dimensional
symbolic spaces. First, we consider low complexity symbolic systems and use special
factors, some related to the introduced cube structures, to study the group of automor-
phisms. Our main result states that for minimal systems with sublinear complexity such
groups are spanned by the shift action and a finite set. Also, using factors associated
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to the cube structures introduced in Chapter 2 we study the automorphism group of a
representative tiling system.

The bibliography is defer to the end of this document.
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Résumé

Cette thèse est consacrée à l’étude des différents problèmes liés aux « structures des
cubes », en théorie ergodique et en dynamique topologique. Elle est composée de six
chapitres.

La présentation générale nous permet de présenter certains résultats généraux en théo-
rie ergodique et dynamique topologique. Ces résultats, qui sont associés d’une certaine
façon aux structures des cube, sont la motivation principale de cette thèse. Nous com-
mençons par les structures de cube introduites en théorie ergodique par Host et Kra
(2005) pour prouver la convergence dans L2 de moyennes ergodiques multiples. Ensuite,
nous présentons la notion correspondante en dynamique topologique. Cette théorie, dé-
veloppée par Host, Kra et Maass (2010), offre des outils pour comprendre la structure
topologique des systèmes dynamiques topologiques. En dernier lieu, nous présentons les
principales implications et extensions dérivées de l’étude de ces structures. Ceci nous per-
met de motiver les nouveaux objets introduits dans la présente thèse, afin d’expliquer
l’objet de notre contribution.

Dans le Chapitre 1, nous nous attachons au contexte général en théorie ergodique et
dynamique topologique, en mettant l’accent sur l’étude de certains facteurs spéciaux.

Les Chapitres 2, 3, 4 et 5 nous permettent de développer les contributions de cette
thèse. Chaque chapitre est consacré à un thème particulier et aux questions qui s’y rap-
portent, en théorie ergodique ou en dynamique topologique, et est associé à un article
scientifique.

Les structures de cube mentionnées plus haut sont toutes définies pour un espace
muni d’une unique transformation. Dans le Chapitre 2, nous introduisons une nouvelle
structure de cube liée à l’action de deux transformations S et T qui commutent sur un
espace métrique compact X . Nous étudions les propriétés topologiques et dynamiques
de cette structure et nous l’utilisons pour caractériser les systèmes qui sont des produits
ou des facteurs de produits. Nous présentons également plusieurs applications, comme la
construction des facteurs spéciaux.

Le Chapitre 3 utilise la nouvelle structure de cube définie dans le Chapitre 2 dans une
question de théorie ergodique mesurée. Nous montrons la convergence ponctuelle d’une
moyenne cubique dans un système muni deux transformations qui commutent.

Dans le Chapitre 4, nous étudions le semigroupe enveloppant d’une classe très impor-
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tante des systèmes dynamiques, les nilsystèmes. Nous utilisons les structures des cubes
pour montrer des liens entre propriétés algébriques du semigroupe enveloppant et les
propriétés topologiques et dynamiques du système. En particulier, nous caractérisons les
nilsystèmes d’ordre 2 par une propriété portant sur leur semigroupe enveloppant.

Dans le Chapitre 5, nous étudions les groupes d’automorphismes des espaces sym-
boliques unidimensionnels et bidimensionnels. Nous considérons en premier lieu des sys-
tèmes symboliques de faible complexité et utilisons des facteurs spéciaux, dont certains
liés aux structures de cube, pour étudier le groupe de leurs automorphismes. Notre résul-
tat principal indique que, pour un système minimal de complexité sous-linéaire, le groupe
d’automorphismes est engendré par l’action du shift et un ensemble fini. Par ailleurs, en
utilisant les facteurs associés aux structures de cube introduites dans le Chapitre 2, nous
étudions le groupe d’automorphismes d’un système de pavages représentatif.

La bibliographie, commune à l’ensemble de la thèse, se trouve en fin document.
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Resumen

Esta tesis está consagrada al estudio de diferentes problemas en teoría ergódica y
dinámica topológica, relacionados a “estructuras de cubos”. Consta de seis capítulos.

En la presentación general entregamos resultados generales, ligados en cierta manera
a las estructuras de cubos que motivan esta tesis. Comenzamos por las estructuras de
cubos introducidas en teoría ergódica por Host y Kra para probar la convergencia en L2

de medias ergódicas múltiples. Luego presentamos su extensión a dinámica topológica,
desarrollada por Host, Kra y Maass (2010), que entrega herramientas para entender la
estructura topológica de sistemas dinámicos topológicos. Finalmente, mostramos las im-
plicancias y extensiones principales derivadas de estudiar estas estructuras, motivamos
los nuevos objetos introducidos en esta tesis y bosquejamos nuestras contribuciones.

En el Capítulo 1, entregamos antecedes generales en teoría ergódica y dinámica topo-
lógica, dando énfasis al estudio de ciertos factores especiales.

Desde el Capítulo 2 al Capítulo 5 desarrollamos las contribuciones de esta tesis. Ca-
da uno está consagrado a un tópico diferente y a sus problemáticas relacionadas, tanto
en teoría ergódica como en dinámica topológica. Cada uno está asociado a un artículo
científico.

En el Capítulo 2 introducimos una nueva estructura de cubos para estudiar la acción
de dos transformaciones S y T que conmutan, sobre un espacio métrico compacto X. En el
mismo capítulo estudiamos las propiedades topológicas y dinámicas de tales estructuras
y las usamos para caracterizar productos de sistemas y sus factores. También damos
algunas aplicaciones, como la construcción de factores especiales. En el mismo tema, en el
Capítulo 3 usamos esta nueva estructura para probar la convergencia casi segura de una
media cúbica en un sistema con dos transformaciones que conmutan.

En el Capítulo 4, estudiamos el semigrupo envolvente de una clase importante de
sistemas dinámicos, los nilsistemas. Usamos estructuras de cubos para mostrar relaciones
entre propiedades algebraicas del semigrupo envolvente con la geometría y dinámica de un
sistema. En particular, caracterizamos nilsistemas de orden 2 vía el semigrupo envolvente.

En el Capítulo 5 estudiamos grupos de automorfismos de sistemas simbólicos uno y
dos dimensionales. Primero consideramos sistemas simbólicos de baja complejidad y usa-
mos factores especiales, algunos ligados a estructuras de cubos, para estudiar el grupo de
automorfismos. Nuestro resultado principal establece que en sistemas minimales de com-

xi



plejidad sublineal, tales grupos son generados por el shift y un conjunto finito. También,
usando factores asociados a las estructuras de cubos del Capítulo 2, estudiamos el grupo
de automorfismos de un sistema de embaldosados representativo.

Las referencias bibliográficas aparecen al final del documento.
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General Presentation

This thesis document presents four research articles concerning different problems on a
common theme in ergodic theory and topological dynamics. It consists of six chapters and
we divide it into two parts. The first one is devoted to the study of cube structures and its
applications in ergodic theory and topological dynamics. The second part is centered on
automorphism groups in symbolic dynamics. From Chapter 2 to Chapter 5 we present our
research articles with their own introduction part. In this general presentation we motivate
the main objects we study and explain our contributions. We start by explaining briefly
the historical background and framework, and then we present our main contributions
and its motivations.

Cube structures in ergodic theory

A central problem in combinatorial number theory is to understand notions of “large-
ness”of a subset of the integer numbers and when such a notion implies the existence of
some prescribed patterns. In particular, the existence of arithmetic progressions has been
a widely considered object of study. A notion of largeness that has been very well studied
is the one of having positive upper density. The upper density of a subset of the integers
S is the quantity

lim sup
N→∞

](S ∩ [0, N − 1])
N

.

In 1975 Szemerédi [111] proved its celebrated theorem: any subset of the integers with
positive upper density contains arbitrarily long arithmetic progressions. Soon thereafter,
in 1976 Furstenberg [50] proved the same result by using ergodic methods. Namely, he
proved that if (X,X , µ, T ) is a measure preserving system and A ∈ X is a set of positive
measure then for every d ∈ N

lim inf
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA · · · ∩ T−dnA) > 0.

A correspondence principle allows then to translate this property into a combinatorial
property of a subset of the integers. This result established a deep connection between
combinatorics, number theory and ergodic theory which has been widely exploited in the
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last decades.
A fundamental question in ergodic theory that arise from Furstenberg’s result is the

convergence in L2 of the multiple averages

1
N

N−1∑
n=0

f1(T nx)f2(T 2nx) · · · fd(T dnx). (0.0.1)

The case d = 2 was solved by Furstenberg [50]. Several works by Lesigne [86], Conze
and Lesigne [24, 25, 26] and Host and Kra [65] dealt with the case d = 3. After more
than 20 years the convergence of the general case was finally solved by Host and Kra
[67]. Their proof is a consequence of a deep structural theorem for measure preserving
systems: they built a sequence of nested factors (Zd)d∈N which are measurably isomorphic
to inverse limits of ergodic nilsystems (translations on compact homogeneous spaces of
nilpotent Lie groups). Then, they reduced the study of the multiple average by looking at
Zd and its orthogonal complement. Moreover, they showed that the limit of the average
remains unchanged if one replaces one of the functions by its conditional expectation with
respect to the Zd factor. In Furstenberg terminology, this means that the factors Zd are
characteristic factors for multiple ergodic averages.

Given a probability space (X,X , µ) and a measure preserving transformation T : X →
X, their main idea is to build for any d ∈ N a “cube”measure µ[d] in X2d and a seminorm
|||·|||d on the set of bounded measurable functions on X which is useful to study multiple
ergodic averages. They describe the orthogonal complement of Zd by the relation

E(f |Zd) = 0 if and only if |||f |||d+1 = 0.

The more remarkable (and hard) result is their structure theorem, which states that
the Zd factors have a very nice algebraic structure.

Theorem 0.0.1 (Host-Kra structure theorem). For any d ∈ N, the factor Zd is measur-
ably isomorphic to an inverse limit of d-step nilsystems.

Therefore, nilsystems and their inverse limits are characteristic factors for multiple
averages.

The study of nilsystems as mathematical objects was considered from the 60’s, but
during the last years its study has been revitalized and has attracted the attention of sev-
eral researchers, mainly because of its applications in additive combinatorics and number
theory [49, 57, 58, 59, 60].

Moreover, the structure theorem has resulted to be very useful for the study of related
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convergence problems [14, 23, 44, 46, 47, 68, 71, 83], in the study of correlation sequences
[13, 69, 48, 45] and even for the study of pointwise convergence problems [2, 3, 4, 22, 76, 77].

The idea of cubes was also studied in topological dynamics. In 2010 Host, Kra and
Maass [70] explored the topological counterpart of the cube measures introduced in [67].
For a topological dynamical system (X,T ) they introduced the space of dynamical cubes
Q[d](X,T ) and studied its properties.

Roughly speaking, the space of topological dynamical cubes Q[d](X,T ) is a closed
subset of X2d and plays the role of the support of the measure µ[d] mentioned above.
They showed that some properties of the space of cubes can be translated into strong
dynamical properties of the system (X,T ). Namely, they introduced a relation they
called RP[d](X,T ) defined in terms of cubes which allows to characterize nilrotations.
Afterwards, Shao and Ye [110] proved that this relation is an equivalence one for general
minimal systems and the quotient of (X,T ) under this relation defines the maximal factor
of (X,T ) which is (topologically) isomorphic to a nilsystem. In other words, the factor
X/RP[d](X,T ) is the topological analogue of the Host-Kra factor Zd.

In recent years, numerous applications in ergodic theory and topological dynamics
have been found for the Host-Kra-Maass topological structural theory of nilsystems. It
ranges from the study of recurrence problems in topological dynamics [32, 72, 75] to,
surprisingly, the study of pointwise convergence of multiple ergodic averages [76, 77] (we
develop this topic later).

Objects like cube structures also appeared in the study of the convergence of averages
that generalize the ones considered by Host and Kra in [67], like

1
N

N−1∑
n=0

f1(T n1 x)f2(T n2 x) · · · fd(T nd x)

where we are considering a probability space (X,X , µ) and T1, . . . , Td are measure pre-
serving transformations on X such that Ti ◦ Tj = Tj ◦ Ti for every i, j = 1, . . . , d and
f1, . . . , fd are bounded functions.

The convergence of this average was first proved by Tao [112] using finitary methods.
Soon after, Townser [113], Austin [9] and Host [64] gave other proofs for the same result
using different strategies. The proof given by Towsner uses non-standard analysis and
only the proofs of Austin and Host belong to ergodic theory and try to follow the ideas of
structure theorems. In both Austin and Host proofs, the idea is to first find an extension
of the ergodic system with convenient properties. The extension given by Host is much
easier to manage so we focus our attention on that one. The main idea in Host’s proof
is to build an extension of X (magic in his terminology) such that it has a characteristic
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factor for the average that looks like the Cartesian product of single transformations. To
build such extension and factor, cube structures are introduced, analogous to the ones
in [67]. Recently, Walsh [115] proved the convergence of multiple averages for nilpotent
group actions but his proof follows the original idea of Tao and does not use ergodic
methods.

Contributions

Dynamical cubes in a system with two commuting transformations

Motivated by Host’s construction in [64] and the topological theory of cubes of Host,
Kra and Maass in [70] for one single transformation, in Chapter 2 we present our work
Dynamical cubes and a criteria for systems having product extensions [34], joint work
with Wenbo Sun, where we explore a topological counterpart of the cubes introduced
in [64] to see if one can characterize interesting properties of a system with commuting
transformations, as was done in [70] for one single transformation. Given a compact
metric space X and two commuting homeomorphisms S : X → X and T : X → X we
define the space of dynamical cubes QS,T (X) as

QS,T (X) = {(x, Snx, Tmx, SnTmx) : x ∈ X,n,m ∈ Z} ⊆ X4.

Using the space QS,T (X) we succeeded to characterize a simple class of systems,
namely products of minimal topological dynamical systems and their factors. A product
system is one of the form (Y ×W,σ × id, id × τ) where (Y, σ) and (W, τ) are topolog-
ical dynamical systems. The condition “to complete the last coordinate of a point in
QS,T (X) in a unique way”is equivalent to be a factor of a product system. More precisely,
if (x0, x1, x2, x3), (x0, x1, x2, y3) ∈ QS,T (X) then x3 = y3. We also provide several appli-
cations of these structures in topological dynamics, like the construction of “topological
magic”extensions and special factors. In what follows, further applications to the point-
wise convergence of some averages and automorphisms of symbolic systems are shown.

Pointwise convergence of cubic averages

The study of the cube structure QS,T (X) together with new results by Huang, Shao
and Ye [76] leads to prove an almost sure convergence of some cubic averages when
considering two commuting transformations. This is the joint work with Wenbo Sun A
pointwise cubic average for two commuting transformations [34].
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Cubic averages are part of a plethora of non-conventional ergodic averages that has
been considered since Furstenberg’s work, like the multiple ergodic average 0.0.1. From
all these studies it follows that the nature of the problem of pointwise convergence is
completely different from the one in L2.

Historically, in the 90’s Bourgain [16] studied and proved the convergence of the aver-
age

1
N

N−1∑
n=0

f1(T anx)f2(T bnx)

for integers a and b and bounded functions f1 and f2.
Little progress has been made since Bourgain’s result, mainly because the usual tech-

nique to deduce pointwise convergence uses maximal inequalities, which seems not to
work for d > 2. Very recently, a significant step towards the general solution was done by
Huang, Shao and Ye [76] who introduced a new technique to study the pointwise conver-
gence of ergodic averages. They deeply exploited the theory of topological cubes developed
in [70] and [110] to find convenient topological models for ergodic systems. Namely, they
found a topological model with a uniquely ergodic space of dynamical cubes (and another
structures that we do not discuss here). Then they were able to show, among other things,
that multiple ergodic averages converge in a measurable distal system. They also applied
this technique to deduce the pointwise convergence of cubic averages, that is, averages
like

1
N2

N−1∑
i,j=0

f1(T ix)f2(T jx)f3(T i+jx)

or like

1
N3

N−1∑
i,j,k=0

f1(T ix)f2(T jx)f3(T i+jx)f4(T kx)f5(T i+kx)f6(T j+kx)f7(T i+j+kx)

and their natural generalizations.
In the L2 setting, the first convergence result of a cubic average was given by Bergelson

[12] who showed the L2 convergence of

1
N2

N−1∑
i,j=0

f1(T ix)f2(T jx)f3(T i+jx). (0.0.2)

Host and Kra [67] generalized the L2 convergence to higher order averages using the
Zd factors (which are also characteristic for this kind of averages).
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When considering more transformations, one can consider different kind of averages.
For example, one can consider averages like,

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(Ri+jx) (0.0.3)

or like

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx) (0.0.4)

The pointwise convergence of the average 0.0.3 was proved by Assani [2]. Then, Chu
and Frantzikinakis [22] proved the pointwise convergence when one consider an arbitrary
number of transformations. More precisely, they proved the convergence of

1
N3

N−1∑
i,j,k=0

f1(T i1x)f2(T j2x)f3(T i+j3 x)f4(T k4 x)f5(T i+k5 x)f6(T j+k6 x)f7(T i+j+k7 x)

and its natural generalizations when considering 2d − 1 transformations. In their proof,
in fact no assumption of commutativity of the transformations was needed.

In the other hand, the average 0.0.4 may not converge if one does not have commuta-
tivity assumptions [81]. So averages 0.0.3 and 0.0.4 have a very different nature.

Interestingly, combining the cube structure introduced in Chapter 2, the Huang-Shao-
Ye strategy and the theory developed by Host in [64] we prove the pointwise convergence
of the average 0.0.4 provided that the transformations S and T commute.

Enveloping semigroups of nilsystems

Another independent application of the theory of topological cubes [70] is presented
in Chapter 4, which is based on the work Enveloping semigroups of system of order d [39].
Given a topological dynamical system (X,T ), its enveloping semigroup is the closure of
the set {T n : n ∈ N} in XX in the product topology. This object was introduced by
Ellis in the 60’s and has proved to be a very useful tool to understand the dynamics
of a system [7, 42] and properties and applications are still being found (see [56] for
example). A very important feature of the enveloping semigroup is the fact that one can
connect dynamical and geometrical properties of a system with algebraic properties of
its enveloping semigroup and vice versa. For example, a topological dynamical system
is a rotation on a compact abelian group if and only if its enveloping semigroup is an
abelian group and it is distal if and only if its enveloping semigroup is a group. When
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the enveloping semigroup is not abelian a few results are known, in particular when
the enveloping semigroup is nilpotent. This question was first studied by Glasner [53],
who proved, up to some details that we do not give to simplify the discussion, that for
systems who are torus extensions of equicontinuous systems the condition of having a 2-
step nilpotent enveloping semigroup is equivalent to be a homogeneous space of a 2-step
nilpotent Polish group. We extend this result, characterizing 2-step nilsystems through
the enveloping semigroup. We introduce the notion of topologically nilpotency which is
stronger than purely algebraic nilpotency and results more convenient in our context. We
show that a topological dynamical system is a 2-step nilsystem if and only if its enveloping
semigroup is a 2-step topologically nilpotent group. For higher orders of nilpotency the
questions are more intricate and certainly require to develop new machinery. In the non
abelian case, explicit computations of enveloping semigroups are rare and one can hope
to succeed in this task only in very particular cases. Some examples in the literature
of computations of enveloping semigroups can be found in [5, 6, 92, 99, 100, 104]. In
[99, 100, 104] the authors considered particular classes of nilsystems (affine nilsystems in
tori, where the dynamics is given by multiplication by particular matrices) and computed
their enveloping semigroups. Using the explicit description they got they were able to
deduce algebraic properties from the enveloping semigroups. Specially they deduce that
such enveloping semigroups are always nilpotent groups. Using the theory of dynamical
cubes introduced by Host, Kra and Maass we deduce algebraic properties of nilsystems
and their inverse limits. Namely, we prove that inverse limits of d-step nilsystems have
d-step nilpotent enveloping semigroups, without performing any explicit computation.
These results include the previous known examples.

Automorphism groups in symbolic dynamics

The second part of this thesis is devoted to the study of automorphism groups, which
is a classical topic in symbolic dynamics studied since the 70’s in different contexts and
that is now again under study. Even if this topic seems to be far from our previous
motivation and cube structures, we arrive to them from the study of cubes. In particular,
when looking for applications of our QS,T cubes and associated factors. Indeed, the way
we propose to study automorphisms groups for tilings and other symbolic systems is by
exploring in detail the fibers over these factors. We need to give a little background in
symbolic dynamics. Given a finite set A, a space shift or subshift over A is a closed
subset X ⊆ AZ (endowed with the product topology), invariant under the shift action
σ : X → X, (xi)i∈Z 7→ (xi+1)i∈Z. Subshifts are very important objects in ergodic theory
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and topological dynamics, see [87] for a nice survey about subshifts and their applications.
One associates to a subshift its automorphism group. An automorphism of a subshift

(X, σ) is a homeomorphism φ : X → X which commutes with σ (i.e. φ ◦ σ = σ ◦ φ). It
is a classical result by Curtis, Hedlund and Lyndon that such maps are given by a local
map φ̂ : A2r+1 → A such that

φ((xi)i∈Z)n = φ̂(xn−r, . . . , xn+r)

for any n ∈ Z. The map φ̂ is called the sliding block code associated to φ and the integer
r is the radius of φ. We let Aut(X, σ) denote the group of automorphisms of (X, σ)
and we refer to it as the automorphism group. The study of automorphism groups is
a fundamental tool to understand the complexity of the subshifts and provides a good
invariant for classifying them. Also, from a purely dynamical systems point of view, if φ is
an automorphism of (X, σ), the topological dynamical system (X, σ, φ) is a nice Z2 action
to be studied. This setting has been used to model the evolution of complex physical
systems.

Automorphism groups has been widely studied in symbolic dynamics, both in the
measurable and the topological setting. In ergodic theory, the group of measurable auto-
morphisms (i.e. measurable functions which commute with the shift almost everywhere
and preserve the measure) has been exhaustively studied for mixing systems of finite rank
[43]. Orstein [94] proved that for mixing rank one systems this group consists only in the
powers of the shift. Then del Junco [31] proved the same result for the rank one Chacon
subshift. Finally King and Thouvenot [79] proved that for mixing systems of finite rank
the group of measurable automorphisms is spanned by the powers of the transformation
and a finite set. The same result was also proved by Host and Parreau [74] for some
constant length substitutions.

In the topological setting, Boyle, Lind and Rudolph [17] describe the automorphism
group of a positive entropy mixing shift of finite type. They showed that it is a very large
object, it contains many subgroups. Recently, Hochman [62] proved similar results for
multidimensional shifts of finite type with positive entropy.

Nevertheless, little was known about the automorphism group of low complexity sub-
shifts. Here, by complexity we mean the increasing function PX : N→ N such that PX(n)
is the number of non-empty cylinders of length n appearing in the subshift. We remark
that the topological entropy of (X, σ) is nothing but the exponential growth rate of its
complexity function. For low complexity systems, the first result in the topological set-
ting is due to Hedlund [61], who described the automorphism group for a family of binary
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substitutions which includes the Thue-Morse system. He proved that Aut(X, σ) consists
in powers of the shift and a flip map (a map which interchanges zeros and ones). Recently,
some new results have appeared. Olli [93] proved that for Sturmian systems, Aut(X, σ) is
spanned by shift and Salo and Törmä [107] proved that for constant length or primitive
Pisot substitutions the group of automorphisms is spanned by σ and a finite set. In [107]
it is asked whether the same result holds for any primitive substitution or more generally
for linearly recurrent subshifts. In Chapter 5, we present our work On automorphisms
groups of minimal low complexity subshifts, joint with Fabien Durand, Alejandro Maass
and Samuel Petite [36]. We show, among other results that if the complexity is sublinear
in a subsequence, i.e. if

lim inf
n∈N

pX(n)
n

<∞

then Aut(X, σ) is spanned by the powers of σ and a finite set. The class of systems
satisfying this condition includes primitive substitutions, linearly recurrent subshifts [39]
and even some families with polynomial complexity (since we require just liminf and not
limsup). We show that this behaviour is still true in a wide variety of examples and we
illustrate methods to deduce such results. Our main tool is the study of classical and
new relations which are preserved under the action of any automorphism. Some of those
relations come from fibers associated to nilfactors, which impose severe restrictions to the
group of automorphisms.

Some of the main results in [36] were independently discovered by Cyr and Kra [30]
using different methods. They previously proved in [29] that for a subshift (X, σ) with
subquadratic growth (i.e. lim infn∈N pX(n)

n2 = 0) one has that Aut(X, σ)/〈σ〉 is a periodic
group. They came to this problem studying the Nivat conjecture, and they used a com-
binatorial argument for Z2 subshifts by Quas and Zamboni [101] that gives conditions to
have periodic directions in Z2 subshifts.

Finally, we come to the QS,T cubes and factors which provide an interesting application
to study automorphism groups of tiling systems.

The study of aperiodic tiling spaces is a topic considered by many people in very
different contexts: in logic they started to be studied to determine whether the plane
can be covered by a set of tiles satisfying adjacency rules (the Wang tiles); in geometry
they provided nice examples with interesting symmetry properties (the Penrose tilings)
and in physics they appeared in material science in the 80’s when studying the so called
quasicrystals.

At the end of Chapter 5 we consider a famous tiling space, the Robinson tiling, which
was introduced by Robinson in the 70’s [105] to study undecidability problems and that
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has been very useful in theoretical computer science. It is also a representative element
of the well studied class of hierarchical tilings. We use the theory of cubes introduced in
Chapter 2 to deduce that the group of automorphisms of the minimal Robinson tiling is
spanned by the shift actions. We claim that this technique can be used to prove the same
kind of results for well studied families of tilings, like hierarchical tilings or others like cut
and project family.
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Chapter 1

Background in ergodic theory and
topological dynamics

In this chapter we give basic definitions and background in ergodic theory and topo-
logical dynamics. We refer to [117] for definitions for measure preserving systems and [7]
for definitions for topological dynamical systems. We also introduce the notion of nilfac-
tors in ergodic theory and topological dynamics which is a central object of study in this
thesis. More specific definitions will be given in every particular chapter when needed.

1.1. General definitions

1.1.1. Measure preserving systems

A measure preserving system is a 4-tuple (X,X , µ,G), where (X,X , µ) is a probability
space and G is a group of measurable, measure preserving transformations acting on X.
When there is no confusion, we omit the σ-algebra X and assume without lose of generality
that the probability space is standard, meaning that it is isomorphic to [0,1] endowed with
the Borel σ-algebra and whose measure is a combination of the Lebesgue measure and
a countable or finite set of atoms. When we consider subsets of X, we always implicitly
assume that they are measurable. Similarly, functions on X are assumed to be measurable
and real valued.

For any two sub σ-algebras A and B of X, let A ∨ B denote the σ-algebra generated
by {A ∩ B : A ∈ A, B ∈ B}. It is the smallest σ-algebra containing A and B. If f is
a function on (X,X , µ) and A is a sub-algebra of X , let E(f |A) denote the conditional
expectation of f over A.

A measure preserving system (X,µ,G) is ergodic if any G-invariant set of X has
measure 0 or 1.

A factor map between the measure preserving systems (Y, ν,G) and (X,µ,G) is a
measure preserving map π : Y → X such that π ◦ g = g ◦ π for all g ∈ G. We say
that (X,µ,G) is a factor of (Y, ν,G) or that (Y, ν,G) is an extension of (X,µ,G). An
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equivalent definition of factor maps can be formulated via sub σ-algebras (here we need
to write the σ-algebra): a factor map of (Y,Y , ν, G) is an invariant sub σ-algebra of Y .
The equivalence of these definitions follows from considering the σ-algebra π−1(X ).

If π is a bi-measurable (almost everywhere defined) bijection, we say that π is an
isomorphism and that (Y, ν,G) and (X,µ,G) are isomorphic.

Some tools.

Ergodic decomposition of a measure:
Let (X,µ,G) be a measure preserving system and let I be the σ-algebra of G-invariant

sets. Let x → µx be a regular version of conditional measures with respecto to I. This
means that the map x 7→ µx is I-measurable and

E(f |I)(x) =
∫
fdµx µ-a.e. x ∈ X

The ergodic decomposition of µ under G is µ =
∫
X µxdµ(x) and µ-a.e. the system

(X,µx, G) is ergodic.

Conditional expectation and disintegration of a measure:
Let π : Y → X be a factor map between the measure preserving systems (Y, ν,G) and

(X,µ,G) and let f ∈ L2(ν). The conditional expectation of f with respect to X is the
function E(f |X) ∈ L2(µ) defined by the equation

∫
X
E(f |X) · gdµ =

∫
Y
f · g ◦ πdν for every g ∈ L2(µ).

The following result is well known (see [51], Chapter 5 for example)

Theorem 1.1.1. Let π : Y → X be a factor map between the measure preserving systems
(Y, ν,G) and (X,µ,G). There exists a unique measurable map X →M(Y ), x 7→ νx such
that

E(f |X)(x) =
∫
fdνx (1.1.1)

for every f ∈ L1(ν).

We say that ν =
∫
X νxdµ(x) is the disintegration of ν over µ.

1.1.2. Topological dynamical systems

A topological dynamical system is a pair (X,G), where X is a compact metric space
and G is a group of homeomorphisms of the space X into itself. We always use d(·, ·) to
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denote the metric in X and we let ∆X := {(x, x) : x ∈ X} denote the diagonal of X ×X.
Since we deal with both measure preserving systems and topological dynamical sys-

tems, we always write the measure for a measure preserving system to distinguish them.
A (topological)factor map between the topological dynamical systems (Y,G) and

(X,G) is an onto, continuous map π : Y → X such that π ◦ g = g ◦π for every g ∈ G. We
say that (Y,G) is an extension of (X,G) or that (X,G) is a factor of (Y,G). When π is
bijective, we say that π is an isomorphism and that (Y,G) and (X,G) are isomorphic. An
equivalent definition of a (topological) factor map is given through a closed equivalence
relation R ⊂ Y ×Y invariant under the diagonal G4 := {(g, g) : g ∈ G}. Given such a re-
lation one can build the quotient space Y/R and the canonical projection from Y onto this
quotient defines a natural factor map. Conversely, for any factor map π : Y → X one can
consider the invariant closed equivalence relation Rπ = {(y, y′) ∈ Y × Y : π(y) = π(y′)}
(see [7], Chapter 1 for further details). Building factors through invariant closed equiv-
alence relations is a very useful way to obtain interesting special factors (see section of
special factors for example).

We say that (X,G) is transitive if there exists a point in X whose orbit OG(x) :=
{gx : g ∈ G} is dense. Equivalently, (X,G) is transitive if for any two non-empty open
sets U, V ⊆ X there exists g ∈ G such that U ∩ g−1V 6= ∅.

A system (X,G) is weakly mixing if the Cartesian product X ×X is transitive under
the action of the diagonal of G. Equivalently, (X,G) is weakly mixing if for any four non-
empty open sets A,B,C,D ⊆ X there exists g ∈ G such that simultaneously A∩g−1B 6= ∅
and C ∩ g−1D 6= ∅.

We say that (X,G) is minimal if the orbit of any point is dense in X. Let (X,G) be a
topological dynamical system. A point x ∈ X is minimal or almost periodic if (OG(x), G)
is a minimal system. A system (X,G) is pointwise almost periodic if any x ∈ X is an
almost periodic point.

Let (X,G) be a topological dynamical system and (x, y) ∈ X ×X. We say that (x, y)
is a proximal pair if there exists a sequence (gi)i∈N in G such that

lim
i→∞

d(gix, giy) = 0,

and it is a distal pair if it is not proximal. We let P (X) denote the set of proximal pairs.
A topological dynamical system (X,G) is called distal if (x, y) is distal whenever x, y ∈ X
are distinct. Equivalently, (X,G) is distal if P (X) = 4X . Distal systems have a lot of
interesting properties which are stated later in the document when used.

In the following two sections, we focus our attention in the case where G is the cyclic
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group spanned by one single transformation T .

1.2. Classical special factors

A very classical and important factor associated to a measure preserving system is the
Kronecker factor. Thinking of σ-algebras, the Kronecker factor Z1 of a system (X,µ, T )
is the σ-algebra spanned by the eigenfunctions of the operator L2(µ) → L2(µ), f 7→
f ◦ T . It is also the smallest σ-algebra such that any invariant function of the system
(X×X,µ⊗µ, T ×T ) is measurable with respect to Z1⊗Z1. It is well known that Z1 has
a very nice algebraic structure: it is measurably isomorphic to a rotation on a compact
abelian group, meaning that it can be represented as (Z1,m, T ) where Z1 is a compact
abelian group, T is the rotation z 7→ τz for a fixed τ ∈ Z1 and m is the Haar measure of
Z1.

The topological analogue of the Kronecker factor is the maximal equicontinuous fac-
tor. For a topological dynamical system (X,T ) its maximal equicontinuous factor is the
largest factor of X where the family {T n : n ∈ Z} is an equicontinuous one. Similarly
to the measurable case, when (X,T ) is minimal the maximal equicontinuous factor is
(topologically) isomorphic to a rotation (Z1, T ) where Z1 is a compact abelian group and
T is the rotation by a fixed τ ∈ Z1. Rotations over compact abelian groups have many
good properties: for them, minimality, transitivity, ergodicity and unique ergodicity are
equivalent properties.

An important feature about the maximal equicontinuous factor is that it can be built
through the regionally proximal relation [7]. Two points x, y ∈ X are said to be regionally
proximal if for any δ > 0 there exist x′, y′ ∈ X and n ∈ Z such that

d(x, x′) < δ, d(y, y′) < δ and d(T nx′, T ny′) < δ.

We let RP(X) denote the set of regionally proximal pairs. It is clear that RP(X) is a
closed invariant relation on X. The non trivial fact is that is also an equivalence relation
when (X,T ) is minimal. Moreover, this relation characterizes being an equicontinuous
system: the quotient X/RP(X) is the maximal equicontinuous factor of (X,T ) [7].

1.3. Nilfactors

The study of nilsystems is classical in ergodic theory and topological dynamics [8, 53,
96, 116] but its relevance has grown in the last years, mainly because of its importance in
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the study of multiple ergodic averages [67], in the structure analysis of measurable and
topological systems [67, 70] and in the analysis of the existence of certain patterns in a
subset of the integers [57]. We introduce the general definitions.

1.3.1. Nilpotent groups, nilmanifolds and nilsystems

LetG be a group. For g, h ∈ G, we write [g, h] = ghg−1h−1 for the commutator of g and
h and for A,B ⊆ G we write [A,B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}.
The commutator subgroups Gj, j ≥ 1, are defined inductively by setting G1 = G and
Gj+1 = [Gj, G]. Let d ≥ 1 be an integer. We say that G is d-step nilpotent if Gd+1 is the
trivial subgroup. We remark that a subgroup of a d-step nilpotent group is also d-step
nilpotent, and any abelian group is 1-step nilpotent.

Let G be a d-step nilpotent Lie group and Γ a discrete cocompact subgroup of G. The
compact manifold X = G/Γ is called a d-step nilmanifold. The fundamental properties of
nilmanifolds were established by Malcev [88]. The group G acts on X by left translations
and we write this action as (g, x) 7→ gx. There exists a unique probability measure
invariant under the action of G, called the Haar measure of X.

Let τ ∈ G and T be the transformation x 7→ τx. Then (X,µ, T ) is called a d-step
nilsystem. We remark that (X,µ, T ) is also a topological dynamical system if we do not
consider the measure. In this case we just write (X,T ).

We show next some known examples of nilsystems.

Rotations:

Rotations over compact abelian groups are 1-step nilsystems.

The Heisenberg system :

Let G be the Heisenberg group

G =




1 x z

0 1 y

0 0 1

 : x, y, z ∈ R

 ,

and consider the cocompact subgroup

Γ =




1 n m

0 1 p

0 0 1

 : n,m, p ∈ Z


15



Then G/Γ is a 2-step nilmanifold. Fix an element

τ =


1 τ1 τ3

0 1 τ2

0 0 1


such that {1,τ1 ,τ2} are independent over Q. Then system (G/Γ, τ) is a 2-step minimal
nilsystem.

Affine nilsystems:
An important subclass of nilsystems is the class of affine nilsystems. Let d ∈ N and

let A be a d×d integer matrix such that (A−Id)d = 0 (such a matrix is called unipotent).
Let ~α ∈ Td and consider the transformation T : Td → Td, x 7→ Ax + ~α. Let G be the
group spanned by A and all the translations of Td. Since A is unipotent one can check
that G is a d-step nilpotent Lie group. The stabilizer of 0 is the subgroup Γ spanned by A
thus we can identify Td with G/Γ. The topological dynamical system (Td, T ) = (G/Γ, T )
is called a d-step affine nilsystem and it is proved in [96] that this system is minimal if
the projection of ~α on Td/ker(A− Id) defines a minimal rotation.

For example, consider A =
 1 1

0 1

 and ~α = (0, α)t. Then the transformation

(y, x) 7→ A(y, x)t+ ~α is nothing but the skew torus transformation (x, y) 7→ (x+α, y+x).

Nilsystems, like rotations, possess very nice properties and we state some of them here.
Most of them appear in the works of Auslander, Green and Hahn [8], Leibman [82, 83],
Lesigne [85] and Parry [96, 97]. We refer to [63] for a nice expository of the subject.

Theorem 1.3.1. Let (X,T ) be a d-step nilsystem. Then (X,T ) is a distal system.

Moreover we have,

Theorem 1.3.2. Let (X,µ, T ) be a d-step nilsystem. The following are equivalent:

1. (X,µ, T ) is ergodic.

2. (X,T ) is transitive.

3. (X,T ) is minimal.

4. (X,T ) is uniquely ergodic, meaning that the Haar measure is the unique invariant
measure.
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1.3.2. The cube measures, seminorms and Host-Kra factors

We now describe more in details the measurable cube construction of Host and Kra
[67] and the topological one of Host, Kra and Maass [70]. Let d ≥ 1 be an integer, and
write [d] = {1, 2, . . . , d}. We view an element of {0, 1}d, the Euclidean cube, either as a
sequence ε = (ε1, . . . , εd) of 0′s and 1′s; or as a subset of [d]. A subset ε corresponds to
the sequence (ε1, . . . , εd) ∈ {0, 1}d such that i ∈ ε if and only if εi = 1 for i ∈ [d]. For
example, ~0 = (0, . . . , 0) ∈ {0, 1}d is the same as ∅ ⊂ [d] and ~1 = (1, . . . , 1) is the same as
[d].

If ~n = (n1, . . . , nd) ∈ Zd and ε ∈ {0, 1}d, we define ~n · ε =
n∑
i=1

ni · εi = ∑
i∈ε
ni.

If X is a set, we denote X2d by X [d] and we write a point x ∈ X [d] as x = (xε : ε ∈
{0, 1}d).

Let (X,X , T ) be a probability space and T an invertible measurable measure preserv-
ing transformation on X. For any d ∈ N let consider X [d] and let T [d] denote the diagonal
action T × T . . .× T (2d times) on X [d]. We remark that we can naturally identify X [d+1]

with X [d] ×X [d].
For d ∈ N, Host and Kra introduced the cube measure µ[d] on X [d]. These measures

are defined inductively as follows. For d = 0, µ[0] is just µ. If µ[d] is already defined, then
µ[d+1] is the relative independent product of (X [d], µ[d], T [d]) with itself over the sigma
algebra IT [d] of T [d]-invariant sets. This means that if F and F ′ are bounded functions on
X [d] then

∫
X[d+1]

F ⊗ F ′dµ[d+1] =
∫
X[d]

E(F |IT [d])E(F ′|IT [d])dµ[d].

These measures are then used to build seminorms. For a function f on X one can
define quantity

|||f |||d :=
 ∏
ε∈{0,1}d

f(xε)dµ[d]

1/2d

.

and it turns out to be a seminorm on L∞(µ) which is useful to control multiple
averages. More precisely, one has that

lim sup
N→∞

∥∥∥∥∥ 1
N

N−1∑
n=0

f1(T nx)f2(T 2nx) · · · fd(T dnx)
∥∥∥∥∥

2
≤ min

1≤j≤d
j |||fj|||

As mentioned before, the Host-Kra factors are defined with the relation

E(f |Zd) = 0 if and only if |||f |||d+1 = 0.
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The connexion between multiple averages and nilsystems is the Host-Kra structure
theorem:

Theorem 1.3.3. d-step nilsystems and their inverse limits are characteristic factors for
the multiple average

1
N

N−1∑
n=0

f1(T nx)f2(T 2nx) · · · fd(T dnx).

This means that one can replace any function by its conditional expectation with respect
to the Zd factor without affecting the limit.

1.3.3. Topological cubes and the regionally proximal relation of
order d

Let (X,T ) be a topological dynamical system and d an integer. We define Q[d](X,T )
to be the closure in X [d] = X2d of the elements of the form

(T ~n·εx : ε = (ε1, . . . , εd) ∈ {0, 1}d)

where ~n = (n1, . . . , nd) ∈ Zd and x ∈ X.
As examples, Q[2](X,T ) is the closure in X [2] of the set

{(x, T nx, Tmx, T n+mx) : x ∈ X,n,m ∈ Z}

and Q[3](X,T ) is the closure in X [3] of the set

{(x, T nx, Tmx, T n+mx, T px, T n+px, Tm+px, T n+m+px) : x ∈ X,n,m, p ∈ Z}.

An element in Q[d](X,T ) is called a cube of dimension d. When there is no confusion,
we just write Q[d](X) instead of Q[d](X,T ). As mentioned before, this cube structure of
a dynamical system was introduced in [70] as the topological counterpart of the theory of
cube measures developed in [67].

The following structure theorem relates the notion of cubes and nilsystems. It moti-
vates the objects introduced in Chapter 2 and is the main tool used in Chapter 4.

Theorem 1.3.4 ([70]). Assume that (X,T ) is a transitive topological dynamical system
and let d ≥ 1 be an integer. The following properties are equivalent:

1. If x,y ∈ Q[d+1](X) have 2d+1 − 1 coordinates in common, then x = y.
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2. If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d+1](X), then x = y.

3. X is an inverse limit of minimal d-step nilsystems.

We say that a minimal system (X,T ) is a system of order d if satisfies any of the
previous conditions.

The cube structure Q[d+1](X) also allow us to build the maximal factors of order
d. Let (X,T ) be a topological dynamical system and let d ≥ 1 be an integer. A pair
(x, y) ∈ X × X is said to be regionally proximal of order d if for any δ > 0 there exists
x′, y′ ∈ X and ~n = (n1, . . . , nd) ∈ Zd such that d(x, x′) < δ, d(y, y′) < δ and

d(T ε·~nx′, T ε·~ny′) < δ

for any ε = (ε1, . . . , εd) ∈ {0, 1}d \ {~0}.
The set of regionally proximal pairs of order d is denoted by RP[d](X,T ) (or just

RP[d](X) when there is no confusion), and is called the regionally proximal relation of
order d. We remark that when d = 1, RP[1](X) is nothing but the regionally proximal
relation RP(X).

The following theorem shows some properties of the regionally proximal relation of
order d.

Theorem 1.3.5 ([70], [110]). Let (X,T ) be a minimal topological dynamical system and
d ∈ N. Then

1. (x, y) ∈ RP[d](X) if and only if there exists a sequence (~ni) in Zd+1 such that
T ~ni·εx→ y for every ε 6= ∅.

2. RP[d](X) is an equivalence relation.

3. Let π : Y → X be a factor map between the minimal systems (Y, T ) and (X,T ) and
d ∈ N. Then π × π(RP[d](Y )) = RP[d](X).

Furthermore the quotient of X under RP[d](X) is the maximal d-step nilfactor and we
denote X/RP[d](X) = Zd(X). Particularly Z1(X) is the maximal equicontinuous factor.
It also follows that every factor of a system of order d is a system of order d.

In particular, (X,T ) is a system of order d if and only if the regionally proximal
relation of order d coincides with the diagonal relation.
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1.4. The Enveloping semigroup

The enveloping semigroup (or Ellis semigroup) E(X,G) of a topological dynamical
system (X,G) is defined as the closure in XX of the group G endowed with the product
topology. This notion was introduced by Ellis and has proved to be a fundamental tool in
studying topological dynamical systems. Algebraic properties of E(X,G) can be trans-
lated into dynamical and geometrical properties of (X,G) and vice versa. For example,
a topological dynamical system (X,G) is a rotation on a compact abelian group if and
only if E(X,G) is an abelian group and it is distal if and only if E(X,G) is a group.

So, usually an enveloping semigroup is not a group and multiplication is not a con-
tinuous operation. In any case, for an enveloping semigroup E(X,G), the applications
E(X,G)→ E(X,G), p 7→ pq and p 7→ gp are continuous for all q ∈ E(X,G) and g ∈ G.

If π : Y → X is a factor map between the topological dynamical systems (Y,G)
and (X,G), then π induces a unique factor map π∗ : E(Y,G) → E(X,G) that satisfies
π∗(u)π(y) = π(uy) for every u ∈ E(Y,G) and y ∈ Y .

In the following we introduce some algebraic terminology which results to have an im-
portant meaning in the enveloping semigroup. We refer to Auslander’s book [7], Chapters
3 and 6 for further details.

Let (X,G) be a topological dynamical system. We say that u ∈ E(X,G) is an idempo-
tent if u2 = u. By the Ellis-Nakamura Theorem, any closed subsemigroup H ⊆ E(X,G)
admits an idempotent. A left ideal I ⊆ E(X,G) is a non-empty subset such that
E(X,G)I ⊆ I. An ideal is minimal if it contains no proper ideals. An idempotent u
is minimal if u belongs to some minimal ideal I ⊆ E(X,G).

We summarize some results that connect algebraic properties of E(X,G) with dynam-
ical properties of (X,G). Some of those properties are useful when proving minimality of
a dynamical system and we use them in Chapter 2.

Theorem 1.4.1. Let (X,G) be a topological dynamical system and let E(X,G) be its
enveloping semigroup. Then

1. An ideal I ⊆ E(X,G) is minimal if and only if (I,G) is a minimal system. Partic-
ularly, minimal ideals always exist;

2. An idempotent u ∈ E(X,G) is minimal if and only if (OG(u), G) is a minimal
system;

3. An idempotent u ∈ E(X,G) is minimal if vu = v for some v ∈ E(X,G) implies
that uv = u;
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4. Let x ∈ X. Then (OG(x), G) is a minimal system if and only if there exists a
minimal idempotent u ∈ E(X,G) with ux = x.

Theorem 1.4.2. Let (X,G) be a topological dynamical system. Then

1. (x, y) ∈ P (X) if and only if there exists u ∈ E(X,G) with ux = uy;

2. Let x ∈ X and let u ∈ E(X,G) be an idempotent. Then (x, ux) ∈ P (X);

3. Let x ∈ X. Then there exists y ∈ X such that (x, y) ∈ P (X) and (OG(y), G) is
minimal.

4. If (X,G) is minimal, (x, y) ∈ P (X) if and only if there exists u ∈ E(X,G) a
minimal idempotent such that y = ux.

Proposition 1.4.3. Let (Y,G) and (X,G) be topological dynamical systems and let π : Y →
X be a factor map. If u ∈ E(X,G) is a minimal idempotent, then there exists a minimal
idempotent v ∈ E(Y,G) such that π∗(v) = u.

Proof. If u ∈ E(X,G) is a minimal idempotent, let v′ ∈ E(X,G) with π∗(v′) = u. Then
π∗(OG(v′)) = OG(u). Let J ⊆ OG(v′) be a minimal subsystem. Since (OG(u), G) is
minimal, we have that π∗(J) = OG(u). Let φ be the restriction of π∗ to J . Since u
is idempotent, we have that φ−1(u) is a closed subsemigroup of E(Y,G). By the Ellis-
Nakamura Theorem, we can find an idempotent v ∈ φ−1(u). Since v belongs to J we have
that v is a minimal idempotent.
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Part I

Cube structures in topological
dynamics
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Chapter 2

Dynamical cubes and a criteria for
systems having product extensions

This chapter is based on the joint work with Wenbo Sun Dynamical Cubes and a
criteria for systems having product extensions [34]. For minimal Z2-topological dynamical
systems, we introduce a cube structure and a variation of the regionally proximal relation
for Z2 actions, which allow us to characterize product systems and their factors. We also
introduce the concept of topological magic systems, which is the topological counterpart
of measure theoretic magic systems introduced by Host in his study of multiple averages
for commuting transformations. Roughly speaking, magic systems have a less intricate
dynamic and we show that every minimal Z2 dynamical system has a magic extension.
We give various applications of these structures, including the construction of some special
factors in topological dynamics of Z2 actions.

2.1. Introduction

We start by reviewing the motivation for characterizing cube structures for systems
with a single transformation, which was first developed for ergodic measure preserving
systems. To show the convergence of some multiple ergodic averages, Host and Kra [67]
introduced for each d ∈ N a factor Zd which characterizes the behavior of those averages.
They proved that this factor can be endowed with a structure of a nilmanifold: it is
measurably isomorphic to an inverse limit of ergodic rotations on nilmanifolds. To build
such a structure, they introduced cube structures over the set of measurable functions of
X to itself and they studied their properties. Later, Host, Kra and Maass [70] introduced
these cube structures into topological dynamics. For (X,T ) a minimal dynamical system
and for d ∈ N, they introduced the space of cubes Q[d+1](X) which characterizes being
topologically isomorphic to an inverse limit of minimal rotations on nilmanifolds. They
also defined the regionally proximal relation of order d, denoted by RP[d](X) which allows
one to build the maximal nilfactor. They showed that RP[d](X) is an equivalence relation
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in the distal setting. Recently, Shao and Ye [110] proved that RP[d](X) is an equivalence
relation in any minimal system and the quotient by this relation is the maximal nilfactor
of order d. This theory is important in studying the structure of Z-topological dynamical
systems and recent applications of it can be found in [39], [75], [77].

Back to ergodic theory, a natural generalization of the averages considered by Host and
Kra [67] are averages arise from a measurable preserving system of commuting transfor-
mations (X,B, µ, T1, . . . , Td). The convergence of these averages was first proved by Tao
[112] with further insight given by Towsner [113], Austin [9] and Host [64]. We focus our
attention on Host’s proof. In order to prove the convergence of the averages, Host built
an extension of X (magic in his terminology) with suitable properties. In this extension
he found a characteristic factor that looks like the Cartesian product of single transfor-
mations. Again, to build these objects, cubes structures are introduced, analogous to the
ones in [67].

2.1.1. Criteria for systems having a product extension

A system with commuting transformations (X,S, T ) is a compact metric space X
endowed with two commuting homeomorphisms S and T . The transformations S and T
span a Z2-action, but we stress that we consider this action with a given pair of generators.
Throughout Chapters 2 and 3, we always use G ∼= Z2 to denote the group generated by
S and T .

A product system is a system of commuting transformations of the form (Y ×W,σ ×
id, id × τ), where σ and τ are homeomorphisms of Y and W respectively (we also say
that (Y ×W,σ × id, id × τ) is the product of (Y, σ) and (W, τ)). These are the simplest
systems of commuting transformations one can imagine.

We are interested in understanding how “far”a system with commuting transforma-
tions is from being a product system, and more generally, from being a factor of a product
system. To address this question we need to develop a new theory of cube structures for
this kind of actions which is motivated by Host’s work in ergodic theory and that results
in a fundamental tool.

Let (X,S, T ) be a system with commuting transformations S and T . The space of
cubes QS,T (X) of (X,S, T ) is the closure in X4 of the points (x, Snx, Tmx, SnTmx), where
x ∈ X and n,m ∈ Z.

One of our main results is that this structure allows us to characterize systems with a
product extension:
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Theorem 2.1.1. Let (X,S, T ) be a minimal system with commuting transformations S
and T . The following are equivalent:

1. (X,S, T ) is a factor of a product system;

2. If x and y ∈ QS,T (X) have three coordinates in common, then x = y;

3. If (x, y, a, a) ∈ QS,T (X) for some a ∈ X, then x = y;

4. If (x, b, y, b) ∈ QS,T (X) for some b ∈ X, then x = y;

5. If (x, y, a, a) ∈ QS,T (X) and (x, b, y, b) ∈ QS,T (X) for some a, b ∈ X, then x = y.

Of course not any system is a factor of a product system. Nevertheless, the cube
structure QS,T (X) also provides us a framework for studying the structure of an arbitrary
system with commuting transformations. We introduce the (S, T )-regionally proximal
relation RS,T (X) of (X,S, T ), defined as

RS,T (X) := {(x, y) : (x, y, a, a), (x, b, y, b) ∈ QS,T (X) for some a, b ∈ X}.

We remark that in the case S = T , these definitions coincide with Q[2](X) and
RP[1](X) defined in [70]. When S 6= T , the relation RS,T (X) is included in the regionally
proximal relation for Z2 actions [7] but can be different. So RS,T (X) is a variation of
RP[1](X) for Z2 actions.

In a distal system with commuting transformations, it turns out that we can further
describe properties of RS,T (X). We prove that RS,T (X) is an equivalence relation and
the quotient of X by this relation defines the maximal factor with a product extension
(see Section 2.4 for definitions).

We also study the topological counterpart of the “magic extension”in Host’s work [64].
We define the magic extension in the topological setting and show that in this setting,
every minimal system with commuting transformations admits a minimal magic extension
(Proposition 2.2.11). Combining this with the properties of the cube QS,T (X) and the
relation RS,T (X), we are able to prove Theorem 2.1.1.

We provide several applications, both in a theoretical framework and to real systems.
Using the cube structure, we study some representative tiling systems. For example,
we show that the RS,T relation on the two dimensional Morse tiling system is trivial.
Therefore, it follows from Theorem 2.1.1 that it has a product extension.

Another application of the cube structure is to study the properties of a system having
a product system as an extension (see Section 2.5 for definitions), which include:
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1. Enveloping semigroup: we show that (X,S, T ) has a product extension if and only
if S and T are automorphic in the enveloping semigroup.

2. Disjoint orthogonal complement: we show that if (X,S, T ) is an S-T almost periodic
system, then (X,S, T ) is disjoint from systems with a product extension if and only
if both (X,S) and (X,T ) are minimal weakly mixing systems.

3. Set of return times: we show that in the distal setting, (x, y) ∈ RS,T (X) if and only
if the set of return time of x to any neighborhood of y is an B∗S,T set.

4. Topological complexity: we define a relative topological complexity of a system
with commuting transformations and show that in the distal setting, (X,S, T ) has
a product extension if and only if it has bounded topological complexity.

2.1.2. Organization of the Chapter

In Section 2.2, we formally define the cube structure, the (S, T )-regionally proximal
relation and the magic extension in the setting of systems with commuting transfor-
mations. We prove that every minimal system with commuting transformations has a
minimal magic extension, and then we use this to give a criteria for systems having a
product extension (Theorem 2.1.1). We also present properties of the relation RS,T (X) in
an arbitrary system with commuting transformations and discuss some connections with
equicontinuity and related notions.

In Section 2.3, we compute the RS,T (X) relation for some tiling systems and provide
some applications.

In Section 2.4, we study further properties of the RS,T (X) relation in the distal case.
In Section 2.5, we study various properties of systems with product extensions, which

includes the study of its enveloping semigroup, disjoint orthogonal complement, set of
return times, and topological complexity.

2.2. Cube structures and general properties

2.2.1. Cube structures and the (S, T )-regionally proximal rela-
tion

Definition 2.2.1. For a system (X,S, T ) with commuting transformations S and T , let
FS,T denote the subgroup of G4 generated by id× S × id× S and id× id× T × T (recall
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that G is the group spanned by S and T ). Write G∆ := {g× g× g× g ∈ G4 : g ∈ G}. Let
GS,T denote the subgroup of G4 generated by FS,T and G∆.

The main structure studied in this chapter is a notion of cubes for a system with
commuting transformations:

Definition 2.2.2. Let (X,S, T ) be a system with commuting transformations S and T .
We define

QS,T (X) = {(x, Snx, Tmx, SnTmx) : x ∈ X,n,m ∈ Z};

QS(X) = π0 × π1(QS,T (X)) = {(x, Snx) ∈ X : x ∈ X,n ∈ Z};

QT (X) = π0 × π2(QS,T (X)) = {(x, T nx) ∈ X : x ∈ X,n ∈ Z};

Kx0
S,T = {(Snx0, Tmx0, SnTmx0) ∈ X3 : n,m ∈ Z} for all x0 ∈ X,

where πi : X4 → X is the projection to the i-th coordinate in X4 for i = 0, 1, 2, 3.

We start with some basic properties of QS,T (X). The following proposition follows
immediately from the definitions:

Proposition 2.2.3. Let (X,S, T ) be a minimal system with commuting transformations
S and T . Then,

1. (x, x, x, x) ∈ QS,T (X) for every x ∈ X;

2. QS,T (X) is invariant under GS,T ;

3. (Symmetries) if (x0, x1, x2, x3) ∈ QS,T (X), then (x2, x3, x0, x1), (x1, x0, x3, x2) ∈
QS,T (X) and (x0, x2, x1, x3) ∈ QT,S(X);

4. (Projection) if (x0, x1, x2, x3) ∈ QS,T (X), then (x0, x1), (x2, x3) ∈ QS(X) and
(x0, x2), (x1, x3) ∈ QT (X);

5. If (x0, x1) ∈ QS(X), then (x0, x1, x0, x1) ∈ QS,T (X); If (x0, x1) ∈ QT (X), then
(x0, x0, x1, x1) ∈ QS,T (X);

6. (Symmetry) (x, y) ∈ QR(X) if and only if (y, x) ∈ QR(X) for all x, y ∈ X, where
R is either S or is T .

Remark 2.2.4. We remark that when S = T one has an additional symmetry, namely
(x0, x1, x2, x3) ∈ QS,T (X) if and only if (x0, x2, x1, x3) ∈ QS,T (X).

It is easy to see that (QS,T (X),GS,T ) is a topological dynamical system. Moreover, we
have:
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Proposition 2.2.5. Let (X,S, T ) be a minimal system with commuting transformations
S and T . Then (QS,T (X),GS,T ) is a minimal system. Particularly, taking R to be either
S or T , QR(X) is minimal under the action generated by id×R and g × g for g ∈ G.

Proof. We use results on the enveloping semigroups given in the Background Chapter.
The proof is similar to the one given in page 46 of [55] for some similar diagonal

actions. Let E(QS,T (X),GS,T ) be the enveloping semigroup of (QS,T (X),GS,T ). For
i = 0, 1, 2, 3, let πi : QS,T (X) → X be the projection onto the i-th coordinate and let
π∗i : E(QS,T (X),GS,T )→ E(X,G) be the induced factor map.

Let u ∈ E(QS,T (X), G∆) denote a minimal idempotent. We show that u is also a
minimal idempotent in E(QS,T (X),GS,T ). By Theorem 1.4.1, it suffices to show that if
v ∈ E(QS,T (X),GS,T ) with vu = v, then uv = u. Projecting onto the corresponding
coordinates, we deduce that π∗i (vu) = π∗i (v)π∗i (u) = π∗i (v) for i = 0, 1, 2, 3. It is clear that
the projection of a minimal idempotent to E(QS,T (X), G∆) is a minimal idempotent in
E(X,G). Since π∗i (v)π∗i (u) = π∗i (v), by Theorem 1.4.1 we deduce that π∗i (u)π∗i (v) = π∗i (u)
for i = 0, 1, 2, 3. Since the projections onto the coordinates determine an element of
E(QS,T (X),GS,T ), we have that uv = u. Thus we conclude that u is a minimal idempotent
in E(QS,T (X),GS,T ).

For any x ∈ X, (x, x, x, x) is a minimal point under G∆. So there exists a minimal
idempotent u ∈ E(QS,T (X), G∆) such that u(x, x, x, x) = (x, x, x, x). Since u is also
a minimal idempotent in E(QS,T (X),GS,T ), the point (x, x, x, x) is minimal under GS,T .
Since the orbit closure of (x, x, x, x) under GS,T is QS,T (X), we have that (QS,T (X),GS,T )
is a minimal system.

The fact that QR(X) is minimal follows immediately by taking projections.

We remark that Kx0
S,T is invariant under Ŝ := S × id× S and T̂ := id× T × T . We let

Fx0
S,T denote the action spanned by Ŝ and T̂ . We note that (Kx0

S,T ,Fx0
S,T ) is not necessarily

minimal, even if X is minimal (the minimality of Kx0
S,T implies the minimality of OS(x0)

under S and the minimality of OT (x0) under T , which does not always hold). See the
examples in Section 2.3.

The following lemma follows from the definitions:

Lemma 2.2.6. Let π : Y → X be a factor map between two minimal systems (Y, S, T )
and (X,S, T ) with commuting transformations S and T . Then π×π×π×π(QS,T (Y )) =
QS,T (X). Therefore, π × π(QS(Y )) = QS(X) and π × π(QT (Y )) = QT (X).

Associated to the cube structure, we define a relation in X as was done in [70] with
cubes associated to a Z-system. This is the main relation we study in this work:
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Definition 2.2.7. Let (X,S, T ) be a minimal system with commuting transformations
S and T . We define

RS(X) = {(x, y) ∈ X ×X : (x, y, a, a) ∈ QS,T (X) for some a ∈ X};

RT (X) = {(x, y) ∈ X ×X : (x, b, y, b) ∈ QS,T (X) for some b ∈ X};

RS,T (X) = RS(X) ∩RT (X).

It then follows from (3) of Proposition 2.2.3 that RS(X),RT (X),RS,T (X) are sym-
metric relations, i.e. (x, y) ∈ A if and only if (y, x) ∈ A for all x, y ∈ X, where A is
RS(X),RT (X) or RS,T (X). It is worth noting that in the case S = T , RS,T (X) is the
regionally proximal relation RP[1](X) defined in [70].

Using these definitions, our main Theorem 2.1.1 can be rephrased as (we postpone the
proof to Section 2.2.4):

Theorem. Let (X,S, T ) be a minimal system with commuting transformations S and T .
The following are equivalent:

1. (X,S, T ) is a factor of a product system;

2. If x and y ∈ QS,T (X) have three coordinates in common, then x = y;

3. RS(X) = ∆X ;

4. RT (X) = ∆X ;

5. RS,T (X) = ∆X .

Remark 2.2.8. In the case where (X,S, T ) = (Y ×W,σ × id, id× τ) is exactly a product
system, we have that

QS,T (X) = {((y1, w1), (y2, w1), (y1, w2), (y2, w2)) : y1, y2 ∈ Y, w1, w2 ∈ W} .

In this case,RS,T (X) = ∆X holds for trivial reasons. Suppose that ((y1, w1), (y2, w2)) ∈
RS,T (X) for some (y1, w1), (y2, w2) ∈ X. Since ((y1, w1), (y2, w2)) ∈ RS(X), there
exists a ∈ X such that ((y1, w1), (y2, w2), a, a) ∈ QS,T (X). Therefore w2 = w1 and
(y1, w2) = a = (y2, w2), which implies that y1 = y2. Thus RS,T (X) = ∆X .

2.2.2. Magic systems

We construct an extension of a system with commuting transformations which behaves
like a product system for use in the sequel. Following the terminology introduced in [64] in
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the ergodic setting, we introduce the notion of a magic system in the topological setting:

Definition 2.2.9. A minimal system (X,S, T ) with commuting transformations S and
T is called a magic system if RS(X) ∩RT (X) = QS(X) ∩QT (X).

We remark that the inclusion in one direction always holds:

Lemma 2.2.10. Let (X,S, T ) be a system with commuting transformations S and T .
Then RS(X) ∩RT (X) ⊆ QS(X) ∩QT (X).

Proof. Suppose (x, y) ∈ RS(X) ∩ RT (X). Then in particular (x, y) ∈ RS(X). So there
exists a ∈ X such that (x, y, a, a) ∈ QS,T (X). Taking the projections onto the first two
coordinates, we have that (x, y) ∈ QS(X). Similarly, (x, y) ∈ QT (X), and so RS(X) ∩
RT (X) ⊆ QS(X) ∩QT (X).

In general, not every system with commuting transformations is magic. In fact,
RS(X)∩RT (X) and QS(X)∩QT (X) may be very different. For example, let (T = R/Z, T )
be a rotation on the circle given by Tx = x+ α mod 1 for all x ∈ T, where α is an irra-
tional number. Then QT (T)∩QT (T) = T×T. ButRT (T)∩RT (T) = {(x, x) ∈ T2 : x ∈ T}
(here we take S = T ). However, we can always regard a minimal system with commuting
transformations as a factor of a magic system:

Proposition 2.2.11 (Magic extension). Let (X,S, T ) be a minimal system with commut-
ing transformations S and T . Then (X,S, T ) admits a minimal magic extension, meaning
it has an extension which is a minimal magic system.

Proof. We use some results of Section 4 of [54], where Glasner studied the so called
prolongation relation and its relation with closed orbits to propose a topological analogue
of the ergodic decomposition. By Lemmas 4.1 and 4.5 in [54], we can find a point x0 ∈ X
such that QS[x0] := {x ∈ X : (x0, x) ∈ QS(X)} and QT [x0] := {x ∈ X : (x0, x) ∈ QT (X)}
coincide with OS(x0) and OT (x0) respectively (moreover, the set of such points is a Gδ

set).
Let Y be a minimal subsystem of the system (Kx0

S,T , Ŝ, T̂ ), where Ŝ = S × id × S,
T̂ = id× T × T . Since the projection onto the last coordinate defines a factor map from
(Y, Ŝ, T̂ ) to (X,S, T ), there exists a minimal point of Y of the form ~z = (z1, z2, x0). Hence,
Y is the orbit closure of (z1, z2, x0) under Ŝ and T̂ . We claim that (Y, Ŝ, T̂ ) is a magic
extension of (X,S, T ).

It suffices to show that for any ~x = (x1, x2, x3), ~y = (y1, y2, y3) ∈ Y , (~x, ~y) ∈ Q
Ŝ
(Y ) ∩

Q
T̂

(Y ) implies that (~x, ~y) ∈ R
Ŝ
(Y ) ∩ R

T̂
(Y ). Since (~x, ~y) ∈ Q

Ŝ
(Y ) and the second
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coordinate of Y is invariant under Ŝ, we get that x2 = y2. Similarly, (~x, ~y) ∈ Q
T̂

(Y )
implies that x1 = y1.

We recall that d(·, ·) is a metric in X defining its topology. Let ε > 0. Since (~x, ~y) ∈
Q
Ŝ
(Y ), there exists ~x′ = (x′1, x′2, x′3) ∈ Y and n0 ∈ Z such that d(xi, x′i) < ε for i = 1, 2, 3

and that d(Sn0x′1, x1) < ε, d(Sn0x′3, y3) < ε. Let 0 < δ < ε be such that if x, y ∈ X and
d(x, y) < δ, then d(Sn0x, Sn0y) < ε.

Since ~x′ ∈ Y , there exist n,m ∈ Z such that d(x′1, Snz1), d(x′2, Tmz2), d(x′3, SnTmx0) <
δ. Then d(Sn0x′1, S

n0+nz1), d(Sn0x′3, S
n0+nTmx0) < ε.

Let 0 < δ′ < δ be such that if x, y ∈ X and d(x, y) < δ′, then d(Snx, Sny) < δ. Since
~z ∈ Kx0

S,T , we have that z1 ∈ QT [x0]. By assumption, there exists m0 ∈ Z such that
d(Tm0x0, z1) < δ′. Then d(SnTm0x0, S

nz1) < δ and d(Sn+n0Tm0x0, S
n+n0z1) < ε.

Denote ~z′ = (Snz1, T
mz2, S

nTmx0) ∈ Y . Then the distance between

(~z′, Ŝn0~z′, T̂m0−m~z′, Ŝn0T̂m0−m~z′)

and the corresponding coordinates of w = (~x, ~y, ~u, ~u) is smaller than Cε for some uniform
constant C > 0, where ~u = (x1, a, x1) for some a ∈ X (the existence of a follows by passing
to a subsequence). We conclude that (~x, ~y) ∈ R

Ŝ
(Y ). Similarly (~x, ~y) ∈ R

T̂
(Y ).

Moreover, if (X,S, T ) is a system with commuting transformations S and T and
(Y, Ŝ, T̂ ) is the magic extension described in Proposition 2.2.11, we have:

Corollary 2.2.12. If ((x1, x2, x3), (x1, x2, y3)) ∈ Q
Ŝ
(Y ), then ((x1, x2, x3), (x1, x2, y3)) ∈

R
Ŝ
(Y ).

The following lemma is proved implicitly in Proposition 2.2.11. We state it here for
use in the sequel:

Lemma 2.2.13. Let (X,S, T ) be a minimal system with commuting transformations S
and T . Let (Y, Ŝ, T̂ ) be the magic extension given by Proposition 2.2.11 and let ~x =
(x1, x2, x3), ~y = (y1, y2, y3) be points in Y . For R being either S or T , if (~x, ~y) ∈ R

R̂
(Y )

then x1 = y1, x2 = y2 and (x3, y3) ∈ RR(X).

2.2.3. Partially distal systems

We recall that a topological dynamical system (X,G) is distal if x 6= y implies that

inf
g∈G

d(gx, gy) > 0.
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We introduce a definition of partial distality, which can be viewed as a generalization
of distality, and is the main ingredient in the proof of Theorem 2.1.1.

Let (X,S, T ) be a minimal system with commuting transformations S and T . For R
being either S or T , let PR(X) be the set of proximal pairs under R.

Definition 2.2.14. Let (X,S, T ) be a minimal system with commuting transformations S
and T . We say that (X,S, T ) is partially distal if QS(X)∩PT (X) = QT (X)∩PS(X) = ∆X .

We remark that when S = T , partial distality coincides with distality. If QS(X) is an
equivalence relation on X, then the system (X,S, T ) being partially distal implies that
the quotient map X → X/QS(X) is a distal extension between the systems (X,T ) and
(X/QS(X), T ).

The following lemma allows us to lift a minimal idempotent in E(X,G) to a minimal
idempotent in E(X4,FS,T ). Recall that taking R to be either S or T , if u ∈ E(X,R) is
an idempotent, then (x, ux) ∈ PR(X) for all x ∈ X (Theorem 1.4.2).

Lemma 2.2.15. Let (X,S, T ) be a minimal system with commuting transformations S
and T , and let u ∈ E(X,G) be a minimal idempotent. Then there exists a minimal
idempotent û ∈ E(X4,FS,T ) of the form û = (e, uS, uT , u), where uS ∈ E(X,S) and
uT ∈ E(X,T ) are minimal idempotents. Moreover, if (X,S, T ) is partially distal, we have
that uSu = uTu = u.

Proof. For i = 0, 1, 2, 3, let πi be the projection from X4 onto the i-th coordinate and let
π∗i be the induced factor map in the enveloping semigroups. Hence π∗1 : E(X4,FS,T ) →
E(X,S), π∗2 : E(X4,FS,T )→ E(X,T ), and π∗3 : E(X4,FS,T )→ E(X,G) are factor maps.
By Proposition 1.4.3, we can find a minimal idempotent û ∈ E(X4,FS,T ) such that
π∗3(û) = u. Since the projection of a minimal idempotent is a minimal idempotent, û
can be written in the form û = (e, uS, uT , u), where uS ∈ E(X,S) and uT ∈ E(X,T ) are
minimal idempotents.

Now suppose that (X,S, T ) is partially distal. Let u ∈ E(X,G) and û = (e, uS, uT , u) ∈
(X4,FS,T ) be minimal idempotents in the corresponding enveloping semigroups. Note that
(ux, uSux, uTux, uux) = (ux, uSux, uTux, ux) ∈ QS,T (X) for all x ∈ X. So we have that
(ux, uSux) ∈ PS(X)∩QT (X) and (ux, uTux) ∈ PT (X)∩QS(X). Thus uSux = uTux = ux

for all x ∈ X since X is partially distal. This finishes the proof.

Corollary 2.2.16. Let (X,S, T ) be a partially distal system with commuting transforma-
tions S and T . Then for every x ∈ X, the system (Kx

S,T , Ŝ = S× id×S, T̂ = id×T ×T )
with commuting transformations Ŝ and T̂ is a minimal system. Moreover, (Kx

S,T , Ŝ, T̂ ) is
a magic extension of (X,S, T ).
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Proof. Since (X,S, T ) is a minimal system, there exists a minimal idempotent u ∈
E(X,G) such that ux = x. By Lemma 2.2.15, there exists a minimal idempotent
û ∈ E(X4,FS,T ) such that û(x, x, x) = (x, x, x), which implies that (x, x, x) is a minimal
point of Kx

S,T . The proof that (Kx
S,T , Ŝ, T̂ ) is a magic extension is similar to Proposition

2.2.11.

Corollary 2.2.17. Let (X,S, T ) be a partially distal system. Then (X,S) and (X,T ) are
pointwise almost periodic.

Proof. By Lemma 2.2.15, for any x ∈ X, we can find minimal idempotents uS ∈ E(X,S)
and uT ∈ E(X,T ) such that uSx = uTx = x. This is equivalent to being pointwise almost
periodic.

2.2.4. Proof of Theorem 2.1.1

Before completing the proof of Theorem 2.1.1, we start with some lemmas:

Lemma 2.2.18. For any minimal system (X,S, T ) with commuting transformations S
and T , QS(X) ∩ PT (X) ⊆ RS(X).

Proof. Suppose (x, y) ∈ QS(X) ∩ PT (X). Since (x, y) ∈ PT (X), there exists a sequence
(mi)i∈N in Z such that d(Tmix, Tmiy)→ 0. We can assume that Tmix and Tmiy converge
to a ∈ X. Since (x, y) ∈ QS(X), we have that (x, y, x, y) ∈ QS,T (X) and therefore
(x, y, Tmix, Tmiy)→ (x, y, a, a) ∈ QS,T (X). We conclude that (x, y) ∈ RS(X).

Lemma 2.2.19. Let (X,S, T ) be a minimal system with commuting transformations S
and T such that RS(X) = ∆X . Then for every x ∈ X, (Kx

S,T , Ŝ, T̂ ) is a minimal sys-
tem. Particularly, for every x ∈ X we have that (OS(x), S) and (OT (x), T ) are minimal
systems.

Proof. Since RS(X) = ∆X , by Lemma 2.2.18, we deduce that QS(X)∩PT (X) = ∆X . For
any x ∈ X, let u ∈ E(X,G) be a minimal idempotent with ux = x and let (e, uS, uT , u) ∈
E(X4,FS,T ) be a lift given by Lemma 2.2.15. Then (x, uSx, uTx, ux) = (x, uSx, uTx, x) ∈
QS,T (X). Projecting to the last two coordinates, we get that (uTx, x) ∈ QS(X). On
the other hand, (uTx, x) ∈ PT (X) as uT ∈ E(X,T ) is an idempotent. Since QS(X) ∩
PT (X) = ∆X , we deduce that x = uTx and thus (x, uSx, uTx, ux) = (x, uSx, x, x). Since
RS(X) = ∆X , we have that (uSx, uTx, ux) = (x, x, x) and this point is minimal.

The second statement follows by projecting Kx
S,T onto the two first coordinates.
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Lemma 2.2.20. Let (X,S, T ) be a minimal system with commuting transformations S
and T . If QS(X) ∩QT (X) = ∆X , then RS(X) = ∆X .

Proof. We remark that if (x, a, b, x) ∈ QS,T (X), then (x, a) and (x, b) belong to QS(X)∩
QT (X). Consequently, if (x, a, b, x) ∈ QS,T (X), then a = b = x. Now let (x, y) ∈ RS(X)
and let a ∈ X such that (x, y, a, a) ∈ QS,T (X). By minimality we can take two sequences
(ni)i∈N and (mi)i∈N in Z such that SniTmia → x. We can assume that Sniy → y′ and
Tmia→ a′, and thus (x, Sniy, Tmia, SniTmia)→ (x, y′, a′, x) ∈ QS,T (X). We deduce that
y′ = a′ = x and particularly Tmia→ x. Hence (x, y, Tmia, Tmia)→ (x, y, x, x) ∈ QS,T (X)
and therefore x = y.

We are now ready to prove Theorem 2.1.1:

Proof of Theorem 2.1.1.
(1) ⇒ (2). Let π : Y × W → X be a factor map between the minimal systems

(Y ×W,σ × id, id × τ) and (X,S, T ). Let (x0, x1, x2, x3) and (x0, x1, x2, x
′
3) ∈ QS,T (X).

It suffices to show that x3 = x′3. Since π4(Qσ×id,id×τ (Y ×W )) = QS,T (X), there exist
((y0, w0), (y1, w0), (y0, w1), (y1, w1)) and ((y′0, w′0), (y′1, w′0), (y′0, w′1), (y′1, w′1)) in Qσ×id,id×τ (Y
×W ) such that π(y0, w0) = x0 = π(y′0, w′0), π(y1, w0) = x1 = π(y′1, w′0), π(y0, w1) = x2 =
π(y′0, w′1), π(y1, w1) = x3 and π(y′1, w′1) = x′3.

Let (ni)i∈N and (mi)i∈N be sequences in Z such that σniy0 → y1 and τmiw0 → w1. We
can assume that σniy′0 → y′′1 and τmiw′0 → w′′1 so that ((y′0, w′0), (y′′1 , w′0), (y′0, w′′1), (y′′1 , w′′1)) ∈
Qσ×id,id×τ (Y ×W ). Since π(y0, w0) = π(y′0, w′0), we have that

π4((y′0, w′0), (y′′1 , w′0), (y′0, w′′1), (y′′1 , w′′1)) = (x0, x1, x2, x3).

Particularly, π(y′1, w′0) = π(y′′1 , w′0) and π(y′0, w′1) = π(y′0, w′′1). By minimality of (Y, σ)
and (W, τ), we deduce that π(y′1, w) = π(y′′1 , w) and π(y, w′1) = π(y, w′′1) for every y ∈ Y
and for every w ∈ W . Hence x3 = π(y′′1 , w′′1) = π(y′′1 , w′1) = π(y′1, w′1) = x′3.

(2) ⇒ (3). Let (x, y) ∈ RS(X) and let a ∈ X such that (x, y, a, a) ∈ QS,T (X). We
remark that this implies that (x, a) ∈ QT (X) and then (x, x, a, a) ∈ QS,T (X). Since
(x, x, a, a) and (x, y, a, a) belong to QS,T (X), we have that x = y.

(3)⇒ (1). By Lemma 2.2.19, for every x0 ∈ X, we can build a minimal magic system
(Kx0

S,T , Ŝ, T̂ ) which is an extension of (X,S, T ) whose factor map is the projection onto
the last coordinate. We remark that if ~x = (x1, x2, x3) and ~y = (y1, y2, y3) are such that
(~x, ~y) ∈ R

Ŝ
(Kx0

S,T ), then by Lemma 2.2.13, x1 = y1, x2 = y2 and (x3, y3) ∈ RS(X). Hence,
if RS(X) coincides with the diagonal, so does R

Ŝ
(Kx0

S,T ).
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Let φ : Kx0
S,T → OS(x0)×OT (x0) be the projection onto the first two coordinates. Then

φ is a factor map between the minimal systems (Kx0
S,T , Ŝ, T̂ ) and (OS(x0) ×OT (x0), S ×

id, id × T ) with commuting transformations. We remark that the latter is a product
system.

We claim that the triviality of the relation RS(X) implies that φ is actually an iso-
morphism. It suffices to show that (a, b, c), (a, b, d) ∈ Kx0

S,T implies that c = d. By min-
imality, we can find a sequence (ni)i∈N in Z such that Snia → x0. Since RS(X) = ∆X ,
we have that limSnic = b = limSnid. So lim Ŝni(a, b, c) = lim Ŝni(a, b, d) and hence
((a, b, c), (a, b, d)) ∈ P

Ŝ
(Kx0

S,T ). Since R
Ŝ
(Kx0

S,T ) is the diagonal, by Lemma 2.2.19 applied
to the system (Kx0

S,T , Ŝ, T̂ ) we have that every point in Kx0
S,T has a minimal Ŝ-orbit. This

implies that (a, b, c) and (a, b, d) are in the same Ŝ-minimal orbit closure and hence they
belong to Q

Ŝ
(Kx0

S,T ). By Proposition 2.2.11, since they have the same first two coordi-
nates, we deduce that ((a, b, c), (a, b, d)) ∈ R

Ŝ
(Kx0

S,T ), which is trivial. We conclude that
(Kx0

S,T , Ŝ, T̂ ) is a product system and thus (X,S, T ) has a product extension.
(2) ⇒ (4) is similar to (2) ⇒ (3); (4) ⇒ (1) is similar to (3) ⇒ (1); (3) ⇒ (5) is

obvious.
(5) ⇒ (1). By Proposition 2.2.11, we have a magic extension (Y, Ŝ, T̂ ) of (X,S, T )

with Y ⊆ Kx0
S,T for some x0 ∈ X. The magic extension satisfies Q

Ŝ
(Y ) ∩ Q

T̂
(Y ) =

R
Ŝ
(Y ) ∩R

T̂
(Y ). Since RS(X) ∩RT (X) is the diagonal, by Lemma 2.2.13, we have that

R
Ŝ
(Y ) ∩R

T̂
(Y ) = Q

Ŝ
(Y ) ∩Q

T̂
(Y ) is also the diagonal. By Lemma 2.2.20, we have that

R
Ŝ
(Y ) coincides with the diagonal relation. Therefore, (Y, Ŝ, T̂ ) satisfies property (3) and

we have proved above that this implies that (Y, Ŝ, T̂ ) (and consequently (X,S, T )) has a
product extension. This finishes the proof.

We remark that if (X,S, T ) has a product extension, then Theorem 2.1.1 gives us an
explicit (or algorithmic) way to build such an extension. In fact, we have:

Proposition 2.2.21. Let (X,S, T ) be a minimal system with commuting transformations
S and T . The following are equivalent:

1. (X,S, T ) has a product extension;

2. There exists x ∈ X such that the last coordinate of Kx
S,T is a function of the first

two coordinates. In this case, (Kx
S,T , Ŝ, T̂ ) is a product system;

3. For any x ∈ X, the last coordinate of Kx
S,T is a function of the first two coordinates.

In this case, (Kx
S,T , Ŝ, T̂ ) is a product system.
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Proof. (1) ⇒ (3). By Theorem 2.1.1, when (X,S, T ) has a product extension, then the
last coordinate of QS,T (X) is a function of the first three ones, which implies (3).

(3)⇒ (2). Is obvious.
(2)⇒ (1). Let Y ⊆ Kx

S,T be a minimal subsystem and let (x1, x2, x3) ∈ Y . We remark
that (Y, Ŝ, T̂ ) is an extension of (X,S, T ) and that the last coordinate of Y is a function of
the first two coordinates. Hence, the factor map (x′1, x′2, x′3)→ (x′1, x′2) is an isomorphism
between (Y, Ŝ, T̂ ) and (OS(x1)×OT (x2), S × id, id× T ), which is a product system.

We can also give a criterion to determine when a minimal system (X,S, T ) with
commuting transformations S and T is actually a product system:

Proposition 2.2.22. Let (X,S, T ) be a minimal system with commuting transformations
S and T . Then (X,S, T ) is a product system if and only if QS(X) ∩QT (X) = ∆X .

Proof. Suppose that (X,S, T ) = (Y ×W,σ× id, id× τ) is a product system and (y1, w1),
(y2, w2) ∈ Qσ×id(Y × W ) ∩ Qid×τ (Y × W ). Then ((y1, w1), (y2, w2)) ∈ Qid×τ (Y × W )
implies that y1 = y2, and ((y1, w1), (y2, w2)) ∈ Qσ×id(Y × W ) implies that w1 = w2.
Therefore, QS(Y ×W ) ∩QT (Y ×W ) = ∆Y×W .

Conversely, suppose that QS(X) ∩QT (X) = ∆X . By Lemma 2.2.20, Theorem 2.1.1
and Proposition 2.2.21, we have that for any x0 ∈ X, (Kx0

S,T , Ŝ, T̂ ) is a product extension of
(X,S, T ). We claim that these systems are actually isomorphic. Recall that the factor map
π : Kx0

S,T → X is the projection onto the last coordinate. It suffices to show that (x1, x2) =
(x′1, x′2) for all (x1, x2, x), (x′1, x′2, x) ∈ Kx0

S,T . Let (ni)i∈N and (mi)i∈N be sequences in Z
such that SniTmix → x0. We can assume that Snix1 → a1, Snix′1 → a′1, Tmix2 → b1

and Tmix′2 → b′1. Therefore, (x0, a1, b1, x0) and (x0, a
′
1, b
′
1, x0) belong to QS,T (X). Since

QS(X)∩QT (X) = ∆X , we have that a1 = b1 = a′1 = b′1 = x0. We can assume that Snix→
x′ and thus (x0, S

nix1, x2, S
nix) → (x0, x0, x2, x

′), (x0, S
nix′1, x

′
2, S

nix) → (x0, x0, x
′
2, x
′).

Moreover, these points belong to QS,T (X). Since RS(X) is the diagonal, we conclude
that x2 = x′ = x′2. Similarly, x1 = x′1 and the proof is finished.

2.2.5. Equicontinuity and product extensions

Let (X,S, T ) be a system with commuting transformations S and T . Let suppose that
(X,S, T ) has a product extension. In this section we show that one can always find a
product extension where the factor map satisfies some kind of equicontinuity conditions.

We recall the definition of equicontinuity:
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Definition 2.2.23. Let (X,G) be a topological dynamical system, whereG is an arbitrary
group action. We say that (X,G) is equicontinuous if for any ε > 0, there exists δ > 0
such that if d(x, y) < δ for x, y ∈ X, then d(gx, gy) < ε for all g ∈ G. Let π : Y → X

be a factor map between the topological dynamical systems (Y,G) and (X,G). We say
that Y is an equicontinuous extension of X if for any ε > 0, there exists δ > 0 such that
if d(x, y) < δ and π(x) = π(y) then d(gx, gy) < ε for all g ∈ G.

The following proposition provides the connection between equicontinuity and the
property of being a factor of a product system:

Proposition 2.2.24. Let (X,S, T ) be a minimal system with commuting transformations
S and T . If either S or T is equicontinuous, then (X,S, T ) has a product extension.

Proof. Suppose that T is equicontinuous. For any ε > 0, let 0 < δ < ε be such
that if two points are δ-close to each other, then they stay ε-close under the orbit of
T . Suppose (x, y) ∈ RS(X). Pick x′, a ∈ X and n,m ∈ Z such that d(x, x′) < δ,
d(Snx′, y) < δ, d(Tmx′, a) < δ, d(SnTmx′, a) < δ. By equicontinuity of T , we have
that d(T−mSnTmx′, T−ma) < ε, d(T−mTmx′, T−ma) < ε. Therefore d(x, y) < 4ε. Hence,
RS(X) coincides with the diagonal and (X,S, T ) has a product extension.

Specially, when S = T we have:

Corollary 2.2.25. Let (X,T ) be a minimal system. Then (X,T ) is equicontinous if and
only if (X,T, T ) has a product extension.

Under the assumption that QT (X) is an equivalence relation, we have a better crite-
rion:

Proposition 2.2.26. Let (X,S, T ) be a minimal system with commuting transformations
S and T . Suppose that QT (X) is an equivalence relation. Then the system (X,S) is an
equicontinuous extension of (X/QT (X), S) if and only if (X,S, T ) has a product extension.

Proof. Suppose that (X,S, T ) has no product extensions. By Theorem 2.1.1, we can pick
x, y ∈ X, x 6= y such that (x, y) ∈ RT (X). Denote ε = d(x, y)/2. For any 0 < δ < ε/4,
there exist z ∈ X,n,m ∈ Z such that d(z, x), d(Tmz, y), d(Snz, SnTmz) < δ. Let
x′ = Snz, y′ = SnTmz. Then (x′, y′) ∈ QT (X), d(x′, y′) < δ and d(S−nx′, S−ny′) =
d(z, Tmz) > ε−2δ > ε/2. So (X,S) is not an equicontinuous extension of (X/QT (X), S).

On the other hand, if (X,S) is not an equicontinuous extension of (X/QT (X), S), then
there exists ε > 0 and there exist sequences (xi)i∈N, (yi)i∈N in X and a sequence (ni)i∈N

39



in Z with d(xi, yi) < 1/i, (xi, yi) ∈ QT (X), and d(Snixi, Sniyi) ≥ ε. By passing to a sub-
sequence, we may assume (Snixi)i∈N, (Sniyi)i∈N, (xi)i∈N and (yi)i∈N converges to x0, y0, w

and w respectively. Then x0 6= y0. For any δ > 0, pick i ∈ N such that d(Snixi, x0),
d(Sniyi, y0), d(xi, w), d(yi, w) < δ. Since (xi, yi) ∈ QT (X), we can pick z ∈ X,m ∈ Z
such that d(z, xi), d(Tmz, yi), d(Sniz, Snixi), d(SniTmz, Sniyi) < δ. So the distance be-
tween the corresponding coordinates of (Sniz, z, SniTmz, Tmz) and (x0, w, y0, w) are all
less than Cδ for some uniform constant C. So (x0, y0) ∈ RT (X), and (X,S, T ) has not a
product extension.

In the following we relativize the notion of being a product system to factor maps.

Definition 2.2.27. Let π : Y → X be a factor map between the systems of commuting
transformations (Y, S, T ) and (X,S, T ). We say that π is S-equicontinuous with respect
to T if for any ε > 0 there exists δ > 0 such that if y, y′ ∈ Y satisfy (y, y′) ∈ QT (Y ),
d(y, y′) < δ and π(y) = π(y′), then d(Sny, Sny′) < ε for all n ∈ Z.

Lemma 2.2.28. Let (X,S, T ) be a minimal system with commuting transformations S
and T , and let π be the projection to the trivial system. Then π is S-equicontinous with
respect to T if and only if (X,S, T ) has a product extension.

Proof. If π is not S-equicontinuous with respect to T , there exists ε > 0 such that for
any δ = 1

i
> 0 one can find (xi, x′i) ∈ QT (X) with d(xi, x′i) < δ and ni ∈ Z with

d(Snixi, Snix′i) ≥ ε. For a subsequence, (xi, Snixi, x′i, Snix′i) ∈ QS,T (X) converges to a
point of the form (a, x, a, x′) ∈ QS,T (X) with x 6= x′. We remark that this is equivalent
to (x, a, x′, a) ∈ QS,T (X) and hence (x, x′) ∈ RS(X). By Theorem 2.1.1 (X,S, T ) has no
product extension.

Conversely, if (X,S, T ) has no product extension, by Theorem 2.1.1 we can find x 6=
x′ with (x, x′) ∈ RS(X). Let 0 < ε < d(x, x′) and let 0 < δ < ε/4. We can find
x′′ ∈ X and n,m ∈ Z such that d(x′′, x) < δ, d(Snx′′, x′) < δ and d(Tmx′′, SnTmx′′) < δ.
Writing w = Tmx′′, w′ = SnTmx′′, we have that (w,w′) ∈ QS(X), d(w,w′) < δ and
d(T−mw, T−mw′) > ε/2. Hence π is not S-equicontinuous with respect to T .

A connection between a magic system and a system which is S-equicontinuous with
respect to T is:

Proposition 2.2.29. For every minimal system with commuting transformations (X,S, T ),
the magic extension constructed in Theorem 2.2.11 is S-equicontinuous with respect to T .

Proof. Let (X,S, T ) be a minimal system with commuting transformations S and T .
Recall that the magic extension Y of X is the orbit closure of a minimal point (z1, z2, x0)
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under Ŝ and T̂ , and the factor map π : Y → X is the projection onto the last coordinate.
Let ~x = (x1, x2, x3), ~y = (y1, y2, y3) ∈ Y be such that π(~x) = π(~y) and (~x, ~y) ∈ Q

T̂
(Y ).

Then we have that x1 = y1 and x3 = y3. Since Ŝn~x = (Snx1, x2, S
nx3) and Ŝn~y =

(Snx1, y2, S
nx3), we conclude that Ŝ preserves the distance between ~x and ~y.

A direct corollary of this proposition is:

Corollary 2.2.30. Let (X,S, T ) be a minimal system with commuting transformations
S and T . If (X,S, T ) has a product extension, then it has a product extension which is
S-equicontinuous with respect to T .

Proof. If (X,S, T ) has a product extension, by Theorem 2.1.1, we can build a magic
extension which is actually a product system. This magic extension is S-equicontinuous
with respect to T .

2.2.6. Changing the generators

Let (X,S, T ) be a system with commuting transformations S and T . We remark that
QS,T (X) depends strongly on the choice of the generators S and T . For instance, let
(X,S) be a minimal system and consider the minimal systems (X,S, S) and (X,S, id)
with commuting transformations. We have that (X,S, id) has a product extension, but
(X,S, S) does not (unless (X,S) is equicontinous). However, there are cases where we
can deduce some properties by changing the generators. Let (X,S, T ) be a minimal
system with commuting transformations S and T . Denote S ′ = T−1S, T ′ = T . We
have that (X,S ′, T ′) is a minimal system with commuting transformations S ′ and T ′.
Suppose now that (X,S ′, T ′) has a product extension. By Proposition 2.2.21, for any
x ∈ X we have that (Kx

S′,T ′ , Ŝ
′, T̂ ′) is an extension of (X,S ′, T ′) and it is isomorphic

to a product system. We remark that (Kx
S′,T ′ , T̂

′Ŝ ′, T̂ ′) is an extension of (X,S, T ) and
it is isomorphic to (Y × W,S × T, T × T ), where Y = OS′(x) and W = OT ′(x). It
follows that (X,S, T ) has an extension which is the Cartesian product of two systems
with commuting transformations with different natures: one of the form (Y, S, id) where
one of the transformations is the identity, and the other of the form (W,T, T ) where the
two transformations are the same.

2.3. Examples

In this section, we compute the RS,T (X) relation in some minimal symbolic systems
(X,S, T ). We start by recalling some general definitions.
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Let A be a finite alphabet. The shift transformation σ : AZ → AZ is the map (xi)i∈Z 7→
(xi+1)i∈Z. A one dimensional subshift is a closed subset X ⊆ AZ invariant under the shift
transformation. When there is more than one space involved, we let σX denote the shift
transformation on the space X.

In the two dimensional setting, we define the shift transformation σ(1,0) : AZ2 → AZ2 ,
(xi,j)i,j∈Z 7→ (xi+1,j)i,j∈Z and σ(0,1) : AZ2 → AZ2 , (xi,j)i,j∈Z 7→ (xi,j+1)i,j∈Z. Hence σ(1,0)

and σ(0,1) are the translations in the canonical directions. A two dimensional subshift is a
closed subset X ⊆ AZ2 invariant under the shift transformations. We remark that σ(1,0)

and σ(0,1) are a pair of commuting transformations and therefore if X ⊆ AZ2 is a subshift,
(X, σ(1,0), σ(0,1)) is a system with commuting transformations σ(1,0) and σ(0,1).

Let X ⊆ AZ2 be a subshift and let x ∈ X. If B is a subset of Z2, we let x|B ∈ AB

denote the restriction of x to B and for ~n ∈ Z2, we let B+~n denote the set {~b+~n : ~b ∈ B}.
When X is a subshift (one or two dimensional), we let AX denote its alphabet.

In the following we compute the relation Rσ(1,0),σ(0,1)(X) in the Morse Tiling and then
we state a general criteria for a Z2 shift space to have a product extension. See [103] for
more background about tiling and substitutions.

2.3.1. The Morse tiling

Consider the Morse tiling system given by the substitution rule:

One can iterate this substitution in a natural way:

Figure 2.1: first, second and third iteration of the substitution
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We identify 0 with the white square and 1 with the black one. Let Bn = ([−2n−1, 2n−1−
1]∩Z)×([−2n−1, 2n−1−1]∩Z) be the square of size 2n centered at the origin. Let (xn)n∈N
be a sequence in {0, 1}Z2 such that the restriction of xn to Bn coincides with the nth-
iteration of the substitution. Taking a subsequence we have that (xn)n∈N converges to a
point x∗ ∈ {0, 1}Z2 . Let XM ⊆ {0, 1}Z

2 be the orbit closure of x∗ under the shift actions.
We point out that XM does not depend on the particular choice of x∗ (we refer to Chapter
1 of [103] for a general reference about substitution tiling systems). Moreover, the Morse
system (XM , σ(1,0), σ(0,1)) is a minimal system with commuting transformations σ(1,0) and
σ(0,1).

Proposition 2.3.1. For the Morse system, Rσ(1,0)(XM) = Rσ(0,1)(XM) = ∆XM . Conse-
quently, the Morse system has a product extension.

Proof. Note that for x = (xi,j)i,j∈Z ∈ XM , we have that xi,j+xi+1,j = xi,j′+xi+1,j′ mod 2
and xi,j + xi,j+1 = xi′,j + xi,j+1 mod 2 for every i, j, i′, j′ ∈ Z. From this, we deduce that
if x0,0 = 0 then xi,j = xi,0 +x0,j for every i, j ∈ Z. From now on, we assume that x∗0,0 = 0.

For N ∈ N, let BN denote the square ([−N,N ] ∩ Z) × ([−N,N ] ∩ Z). Suppose
(y, z) ∈ Rσ(1,0)(XM) and let w ∈ XM be such that (y, z, w, w) ∈ Qσ(1,0),σ(0,1)(XM). We
deduce that there exist n,m, p, q ∈ Z such that

σp(1,0)σ
q
(0,1)x

∗|BN = y|BN ;

σp+n(1,0)σ
q
(0,1)x

∗|BN = z|BN ;

σp(1,0)σ
q+m
(0,1)x

∗|BN = σp+n(1,0)σ
q+m
(0,1)x

∗|BN = w|BN .

Since σp(1,0)σ
q+m
(0,1)x

∗|BN = σp+n(1,0)σ
q+m
(0,1)x

∗|BN , we deduce that x∗p+c,0 = x∗p+n+c,0 for all c ≤ N .
This in turn implies that y|BN = σp(1,0)σ

q
(0,1)x

∗|BN = σp+n(1,0)σ
q
(0,1)x

∗|BN = z|BN . Since N is
arbitrary we deduce that y = z. ThereforeRσ(1,0)(XM) = ∆XM and thus (XM , σ(1,0), σ(0,1))
has a product extension.

Remark 2.3.2. In fact, let (Y, σ) be the one dimensional Thue-Morse system. This is
the subshift generated by the one dimensional substitution 0 7→ 01, 1 7→ 10 (see [102]).
Then we can define π : Y × Y → XM by π(x, x′)n,m = xn + x′m and it turns out that
this is a product extension of the two dimensional Morse system. Moreover, we have that
(Kx∗

S,T , Ŝ, T̂ ) is isomorphic to (Y ×Y, T×id, id×T ), where the isomorphism φ : Kx∗
S,T → Y ×

Y is given by φ(a, b, c) = (a|A, b|B), where A = {(n, 0) : n ∈ Z} and B = {(0, n) : n ∈ Z}.
We show in the next subsection that this is a general procedure to build symbolic systems
with a product extension.
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2.3.2. Building factors of product systems

Let (X, σX) and (Y, σY ) be two minimal one dimensional shifts and let AX and AY
be the respective alphabets.

Let x ∈ X and y ∈ Y . Consider the point z ∈ (AX ×AY )Z2 defined as zi,j = (xi, yj)
for i, j ∈ Z and let Z denote the orbit closure of z under the shift transformations. Then
we can verify that (Z, σ(1,0), σ(0,1)) is isomorphic to the product of (X, σX) and (Y, σY )
(and particularly (Z, σ(1,0), σ(0,1)) is a minimal system).

Let A be an alphabet and let ϕ : AX × AY → A be a function. We can define
φ : Z → W := φ(Z) ⊆ AZ2 such that φ(z)i,j = ϕ(zi,j) for i, j ∈ Z. Then (W,σ(1,0), σ(0,1))
is a minimal symbolic system with a product extension and we write W = W (X, Y, ϕ) to
denote this system. We show that this is the unique way to produce minimal symbolic
systems with product extensions.

Proposition 2.3.3. Let (W,σ(1,0), σ(0,1)) be a minimal symbolic system with a product
extension. Then, there exist one dimensional minimal subshifts (X, σX) and (Y, σY ) and
a map ϕ : AX ×AY → AW such that W = W (X, Y, ϕ).

Proof. We recall that AW denotes the alphabet of W . For n ∈ N we let Bn denote
([−n, n]∩Z)× ([−n, n]∩Z). Let w = (wi,j)i,j∈Z ∈ W . By Proposition 2.2.21, the last co-
ordinate in Kw

σ(1,0),σ(0,1)
(W ) is a function of the two first coordinates. Since Kw

σ(1,0),σ(0,1)
(W )

is a closed subset of X3 we have that this function is continuous. Hence, there exists n ∈ N
such that for every i, j ∈ Z, wi,j is determined by w|Bn , w|Bn+(i,0) and w|Bn+(0,j). Let
AX = {w|Bn+(i,0) : i ∈ Z} and AY = {w|Bn+(0,j) : j ∈ Z}. Then AX and AY are finite
alphabets and we can define ϕ : AX×AY → AW such that ϕ(w|Bn+(i,0),w|Bn+(0,j)) = wi,j.

We recall that since (W,σ(1,0), σ(0,1)) has a product extension, (Kw
σ(1,0),σ(0,1)

(W ), σ̂(1,0),
σ̂(0,1)) is a minimal system. Let φ1 : Kw

σ(1,0),σ(0,1)
(W )→ AZ

X and φ2 : Kw
σ(1,0),σ(0,1)

(W )→ AZ
Y

defined as φ1(w1, w2, w3) = (w1|Bn+(i,0))i∈Z and φ2(w1, w2, w3) = (w2|Bn+(0,j))j∈Z. Let
X = φ1(W ) and Y = φ2(W ). Then (X, σX) and (Y, σY ) are two minimal symbolic
systems and W = W (X, Y, ϕ).

The previous proposition says that for a minimal symbolic system (W,σ(1,0), σ(0,1)),
having a product extension means that the dynamics can be deduced by looking at the
shifts generated by finite blocks in the canonical directions.

Remark 2.3.4. It was proved in [91] that two dimensional rectangular substitutions are
sofic. It was also proved that the product of two one dimensional substitution is a two
dimensional substitution and therefore is sofic. Moreover, this product is measurably
isomorphic to a shift of finite type. Given Proposition 2.3.3, the natural question that
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one can formulate is what properties can be deduced for the subshifts (X, σX) and (Y, σY )?
For example, what happens with these subshifts when (W,σ(1,0), σ(0,1)) is a two dimensional
substitution with a product extension? We do not know the answer to this question.

2.4. RS,T (X) relation in the distal case

2.4.1. Basic properties

This section is devoted to the study of the RS,T (X) relation in the distal case. We do
not know if RS,T (X), RS(X) and RT (X) are equivalence relations in the general setting.
However, we have a complete description of these relations in the distal case.

Recall that a topological dynamical system (X,G) is distal if x 6= y implies that

inf
g∈G

d(gx, gy) > 0.

Distal systems have many interesting properties (see [7], chapters 5 and 7). We recall
some of them:

Theorem 2.4.1.

1. The Cartesian product of distal systems is distal;

2. Distality is preserved by taking factors and subsystems;

3. A distal system is minimal if and only if it is transitive;

4. If (X,G) is distal and G′ is a subgroup of G, then (X,G′) is distal.

The main property about distality is that it implies that cubes have the following
transitivity property:

Lemma 2.4.2. Let (X,S, T ) be a distal minimal system with commuting transformations
S and T . Suppose that R is either S or is T . Then

1. If (x, y), (y, z) ∈ QR(X), then (x, z) ∈ QR(X);

2. If (a1, b1, a2, b2), (a2, b2, a3, b3) ∈ QS,T (X), then (a1, b1, a3, b3) ∈ QS,T (X).

Proof. We only prove (1) since the proof of (2) is similar. Let (x, y), (y, z) ∈ QR(X).
Pick any a ∈ X. Then (a, a) ∈ QR(X). By Proposition 2.2.5, there exists a sequence
(gn)n∈N = ((g′n, g′′n))n∈N in GR such that gn(x, y) = (g′nx, g′′ny) → (a, a), where GR is the
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group generated by id × R and g × g, g ∈ G. We can assume (by taking a subsequence)
that g′′nz → u and thus (g′′ny, g′′nz) → (a, u) ∈ QR(X). Since (g′n, g′′n)(x, z) → (a, u), by
distality we have that (x, z) is in the closed orbit of (a, u) and thus (x, z) ∈ QR(X).

Remark 2.4.3. It is worth noting that this transitivity lemma fails in the non-distal case,
even if S = T (see [114] for an example).

The following proposition gives equivalent definitions of RS,T (X) in the distal case:

Proposition 2.4.4. Let (X,S, T ) be a distal system with commuting transformations S
and T . Suppose x, y ∈ X. The following are equivalent:

1. (x, y, y, y) ∈ QS,T (X);

2. There exists a, b, c ∈ X such that (x, a, b, c), (y, a, b, c) ∈ QS,T (X);

3. For every a, b, c ∈ X, if (x, a, b, c) ∈ QS,T (X), then (y, a, b, c) ∈ QS,T (X);

4. (x, y) ∈ RS,T (X);

5. (x, y) ∈ RS(X);

6. (x, y) ∈ RT (X).

Particularly, RS(X) = RT (X) = RS,T (X).

Proof. (1)⇒(3). Suppose that (x, a, b, c) ∈ QS,T (X) for some a, b, c ∈ X. By (3),(4) and
(5) of Proposition 2.2.3, (x, a, b, c) ∈ QS,T (X) implies that (a, x, a, x) ∈ QS,T (X), and
(x, y, y, y) ∈ QS,T (X) implies that (x, x, y, x) ∈ QT,S(X). By Lemma 2.4.2, (a, x, a, x),
(x, x, y, x) ∈ QS,T (X) implies that (x, a, y, a) ∈ QS,T (X). Again by Lemma 2.4.2,
(x, a, b, c), (x, a, y, a) ∈ QS,T (X) implies that (b, c, y, a) ∈ QS,T (X) and thus (y, a, b, c) ∈
QS,T (X).

(3)⇒(2). Obvious.
(2)⇒(1). Suppose that (x, a, b, c), (y, a, b, c) ∈ QS,T (X) for some a, b, c ∈ X. Then

(b, c, y, a) ∈ QS,T (X). By Lemma 2.4.2, (x, a, y, a) ∈ QS,T (X). By (4) and (5) of
Proposition 2.2.3, (y, a, y, a) ∈ QS,T (X). Hence (x, y, a, a), (y, y, a, a) ∈ QT,S(X) and
(a, a, y, y) ∈ QT,S(X). By Lemma 2.4.2, (x, y, y, y) ∈ QT,S(X) which is equivalent to
(x, y, y, y) ∈ QS,T (X).

(1)⇒(4). Take a = y and b = y.
(4)⇒(5) and (4)⇒(6) are obvious from the definition.
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(5)⇒(1). Suppose (x, y, a, a) ∈ QS,T (X) for some a ∈ X. By (4) and (5) of Proposition
2.2.3, (y, y, a, a) ∈ QS,T (X). By Lemma 2.4.2, (x, y, y, y) ∈ QT,S(X) and thus (x, y, y, y) ∈
QS,T (X).

(6)⇒(1). Similar to (4)⇒(2).

We can now prove that RS,T (X) is an equivalence relation in the distal setting:

Theorem 2.4.5. Let (X,S, T ) be a distal system with commuting transformations S and
T . Then QS(X), QT (X) and RS,T (X) are closed equivalence relations on X.

Proof. It suffices to prove the transitivity of RS,T (X). Let (x, y), (y, z) ∈ RS,T (X). Since
(y, z, z, z) and (x, y) ∈ RS,T (X), by (4) of Proposition 2.4.4, we have that (x, z, z, z) ∈
QS,T (X) and thus (x, z) ∈ RS,T (X).

We also have the following property in the distal setting, which allows us to lift an
(S, T )-regionally proximal pair in a system to a pair in an extension system:

Proposition 2.4.6. Let π : Y → X be a factor map between systems (Y, S, T ) and
(X,S, T ) with commuting transformations S and T . If (X,S, T ) is distal, then π ×
π(RS,T (Y )) = RS,T (X).

Proof. The proof is similar to Theorem 6.4 of [110]. Let (x1, x2) ∈ RS,T (X). Then there
exist a sequence (xi)i∈N ∈ X and two sequences (ni)i∈N, (mi)i∈N in Z such that

(xi, Snixi, Tmixi, SniTmixi)→ (x1, x1, x1, x2).

Let (yi)i∈N in Y be such that π(yi) = xi. By compactness we can assume that yi → y1,
Sniyi → a, Tmiyi → b and SniTmiyi → c. Then (y1, a, b, c) ∈ QS,T (Y ) and π4(y1, a, b, c) =
(x1, x1, x1, x2). Particularly, (y1, a) ∈ QS(Y ). By minimality we can find gi ∈ G and pi
such that (giy1, giS

pia) → (y1, y1). We can assume that gib → b′ and giS
pic → c′, so

that (y1, y1, b
′, c′) ∈ QS,T (Y ) and π4(y1, y1, b

′, c′) = (x1, x1, x1, x
′
2), where x′2 = lim giS

pix2.
Recall that (x1, x

′
2) ∈ OG∆(x1, x2), where G∆ = {g × g : g ∈ G}. Since (y1, b

′) ∈ QT (Y ),
we can find (g′i)i∈N in G and (qi)i∈N in Z such that (g′iy1, g

′
iT

qib′) → (y1, y1). We can
assume without loss of generality that g′iT qic′ → c′′ so that (y1, y1, y1, c

′′) ∈ QS,T (Y )
and π4(y1, y1, y1, c

′′) = (x1, x1, x1, x
′′
2), where x′′2 = lim g′iT

qix′2. Recall that (x1, x
′′
2) ∈

OG∆(x1, x′2). So (x1, x
′′
2) ∈ OG∆(x1, x2). By distality, this orbit is minimal and thus we can

find (g′′i )i∈N in G such that (g′′i x1, g
′′
i x
′′
2)→ (x1, x2). We assume without loss of generality

that g′′i y1 → y′1 and g′′i c
′′ → y′2. Then (y′1, y′1, y′1, y′2) ∈ QS,T (Y ) and π4(y′1, y′1, y′1, y′2) =

(x1, x1, x1, x2). Particularly (y′1, y′2) ∈ RS,T (Y ) and π × π(y′1, y′2) = (x1, x2).
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These results allow us to conclude that cubes structures characterize factors with
product extensions:

Theorem 2.4.7. Let (X,S, T ) be a minimal distal system with commuting transforma-
tions S and T . Then

1. (X/RS,T (X), S, T ) has a product extension, where X/RS,T (X) is the quotient of
X under the equivalence relation RS,T (X). Moreover, it is the maximal factor with
this property, meaning that any other factor of X with a product extension factorizes
through it;

2. For any magic extension (Kx0
S,T , Ŝ, T̂ ), (Kx0

S,T/RŜ,T̂
(Kx0

S,T ), Ŝ, T̂ ) is a product system.
Moreover, both (Kx0

S,T , Ŝ, T̂ ) and (Kx0
S,T/RŜ,T̂

(Kx0
S,T )) are distal systems.

We have the following commutative diagram:

(Kx0

S,T , Ŝ, T̂ ) (X,S, T )

(Kx0

S,T /RŜ,T̂ (Kx0

S,T ), Ŝ, T̂ ) (X/RS,T (X), S, T )

Proof. We remark that if (Z, S, T ) is a factor of (X,S, T ) with a product extension,
then π × π(RS,T (X)) = RS,T (Z) = ∆X , meaning that there exists a factor map from
(X/RS,T (X), S, T ) to (Y, S, T ). It remains to prove that X/RS,T (X) has a product ex-
tension. To see this, let π be the quotient map X → X/RS,T (X) and let (y1, y2) ∈
RS,T (X/RS,T (X)). By Proposition 2.4.6, there exists (x1, x2) ∈ RS,T (X) with π(x1) = y1

and π(x2) = y2. Since (x1, x2) ∈ RS,T (X), y1 = π(x1) = π(x2) = y2. SoRS,T (X/RS,T (X))
coincides with the diagonal. By Theorem 2.1.1, (X/RS,T (X), S, T ) has a product exten-
sion. This proves (1).

We now prove that the factor of the magic extension is actually a product sys-
tem. By Theorem 2.4.5, we have that Q

Ŝ
(Kx0

S,T ),Q
T̂

(Kx0
S,T ) are equivalence relations

and by Theorem 2.2.11 and Proposition 2.4.4, we have that Q
Ŝ
(Kx0

S,T ) ∩ Q
T̂

(Kx0
S,T ) =

RS,T (Kx0
S,T ). Consequently (Kx0

S,T/RŜ,T̂
(Kx0

S,T ), Ŝ, T̂ ) is isomorphic to (Kx0
S,T/QT̂

(Kx0
S,T ) ×

Kx0
S,T/QŜ

(Kx0
S,T ), Ŝ × id, id× T̂ ), which is a product system.

Since (X,S, T ) is distal, the distality of (Kx0
S,T , Ŝ, T̂ ) and (Kx0

S,T/RS,T (Kx0
S,T ), Ŝ, T̂ ) fol-

lows easily from Theorem 2.4.1.
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2.4.2. Further remarks: The RS,T (X) strong relation

Let (X,S, T ) be a system with commuting transformations S and T . We say that x and
y are strongly RS,T (X)-related if there exist a ∈ X and two sequences (ni)i∈N and (mi)i∈N
in Z such that (x, y, a, a) = lim

i→∞
(x, Snix, Tmix, SniTmix), and there exist b ∈ X and two

sequences (n′i)i∈N and (m′i)i∈N in Z such that (x, b, y, b) = lim
i→∞

(x, Sn′ix, Tm′ix, Sn′iTm′ix).
It is a classical result that when S = T , the RT,T (X) relation coincides with the strong

one (see [7], Chap 9). We show that this is not true in the commuting case even in the
distal case, and give a counter example of commuting rotations in the Heisenberg group.
We refer to [8] and [81] for general references about nilrotations.

Let H = R3 be the group with the multiplication given by (a, b, c) · (a′, b′, c′) = (a +
a′, b + b′, c + c′ + ab′) for all (a, b, c), (a′, b′, c′) ∈ H. Let H2 be the subgroup spanned by
{ghg−1h−1 : g, h ∈ H}. By a direct computation we have that H2 = {(0, 0, c) : c ∈ R}
and thus H2 is central in H. Therefore H is a 2-step nilpotent Lie group and Γ = Z3 is
a cocompact subgroup, meaning that XH := H/Γ is a compact space. XH is called the
Heisenberg manifold. Note that T3 is a fundamental domain of XH .

Lemma 2.4.8. The map Φ: XH → T3 given by

Φ((a, b, c)Γ) = ({a}, {b}, {c− abbc})

is a well-defined homomorphism between XH and T3. Here bxc is the largest integer which
does not exceed x, {x} = x − bxc, and T3 is viewed as [0, 1)3 in this map. Moreover,
(a, b, c)Γ = ({a}, {b}, {c− abbc})Γ for all a, b, c ∈ R.

Proof. It suffices to show that (a, b, c)Γ = (a′, b′, c′)Γ if and only if ({a}, {b}, {c−abbc}) =
({a′}, {b′}, {c′ − a′bb′c}). If (a, b, c)Γ = (a′, b′, c′)Γ, there exists (x, y, z) ∈ Γ such that
(a′, b′, c′) = (a, b, c) · (x, y, z) = (x+ a, y + b, z + c+ ay). therefore,

x = a′ − a, y = b′ − b, z = c′ − c− a(b′ − b).

Since x, y ∈ Z, we have that {a} = {a′}, {b} = {b′}. So b− b′ = bbc − bb′c. Then

(c′ − a′bb′c)− (c− abbc) = (c′ − c− a(b′ − b))− (a′ − a)bb′c = z − xbb′c ∈ Z.

So ({a}, {b}, {c− abbc}) = ({a′}, {b′}, {c′ − a′bb′c}).
Conversely, if ({a}, {b}, {c− abbc}) = ({a′}, {b′}, {c′ − a′bb′c}), suppose that

x = a′ − a, y = b′ − b, z = c′ − c− a(b′ − b).
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Then (a′, b′, c′) = (a, b, c) · (x, y, z). It remains to show that (x, y, z) ∈ Γ. Since {a} =
{a′}, {b} = {b′}, we have that x, y ∈ Z and b− b′ = bbc − bb′c. Then

(c′ − a′bb′c)− (c− abbc) = (c′ − c− a(b′ − b))− (a′ − a)bb′c = z − xbb′c ∈ Z

implies that z ∈ Z.
The claim that (a, b, c)Γ = ({a}, {b}, {c− abbc})Γ for all a, b, c ∈ R is straightforward.

Let α ∈ R be such that 1, α, α−1 are linearly independent over Q. Let s = (α, 0, 0) and
t = (0, α−1, α). These two elements induce two transformations S, T : XH → XH given
by

S(hΓ) = shΓ, T (hΓ) = thΓ,∀h ∈ H.

Lemma 2.4.9. Let XH , S, T be defined as above. Then (XH , S, T ) is a minimal distal
system with commuting transformations S and T .

Proof. We have that st = (α, α−1, α+1) and ts = (α, α−1, α) and by a direct computation
we have that they induce the same action on XH . Therefore ST = TS.

It is classical that a rotation on a nilmanifold is distal [8] and it is minimal if and
only if the rotation induced on its maximal equicontinuous factor is minimal. Moreover,
the maximal equicontinuous factor is given by the projection on H/H2Γ which in our
case is nothing but the projection in T2 (the first two coordinates). See [81] for a general
reference on nilrotations.

Since ST (hΓ) = (α, α−1, α) · hΓ for all h ∈ H, we have that the induced rotation on
T2 is given by the element (α, α−1). Since 1, α and α−1 are linearly independent over Q,
by the Kronecker Theorem we have that this is a minimal rotation. We conclude that
(XH , ST ) is minimal which clearly implies that (XH , S, T ) is minimal.

In this example, we show that the relation RS,T (X) is different from the strong one:

Proposition 2.4.10. On the Heisenberg system (XH , S, T ), we have that

RS,T (XH) =
{(

(a, b, c)Γ, (a, b, c′)Γ
)
∈ XH ×XH : a, b, c, c′ ∈ R

}
.

However, for any c ∈ R\Z, Γ and (0, 0, c)Γ are not strongly RS,T (XH)-related.

Proof. Suppose that ((a, b, c)Γ, (a′, b′, c′)Γ) ∈ RS,T (XH). Then ((a, b, c)Γ, (a′, b′, c′)Γ) ∈
RT (XH). Projecting to the first coordinate, we have that ({a}, v, {a′}, v) ∈ QS,id(T) for
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some v ∈ T, where in the system (T, S, id), Sx = x+α for all x ∈ T (we regard T as [0,1)).
Since the second transformation is identity, we have that {a} = {a′}. Similarly, {b} = {b′}.
So in order to prove the first statement, it suffices to show that ((a, b, c)Γ, (a, b, c′)Γ) ∈
RS,T (XH) for all a, b, c, c′ ∈ R. Since (XH , S, T ) is minimal, there exist a sequence (gi)i∈N
in G and a sequence (ci)i∈N in R such that

lim
i→∞

gi((0, 0, 0)Γ) = (a, b, c), lim
i→∞

gi((0, 0, ci)Γ) = (a, b, c′).

Since RS,T (XH) is closed and invariant under g × g, g ∈ G, it then suffices to show
that Γ and (0, 0, c)Γ are RS,T (XH)-related for all c ∈ R. Fix ε > 0. Let ni → +∞ be such
that |{niα}| < ε and c

niα
< ε. Let xi = (0, c

niα
, 0)Γ. Then d(xi,Γ) < ε and by Lemma

2.4.8, we have that

Snixi = (niα,
c

niα
, c)Γ = ({niα},

c

niα
, {c− niαb

c

niα
c})Γ = ({niα},

c

niα
, c)Γ.

So d(Snixi, (0, 0, c)Γ) < 2ε. We also have that d(Sni(0, 0, c)Γ, (0, 0, c)Γ) < ε. Let
δ > 0 be such that if d(hΓ, h′Γ) < δ, then d(SnihΓ, Snih′Γ) < ε. Since the rotation on
(α, α−1) is minimal in T2, we can find mi large enough such that 0 < {miα}+ c

ni
< δ and

|{miα
−1} − c| < δ. Hence, d(Tmixi, (0, 0, c)Γ) < δ and thus d(SniTmixi, (0, 0, c)Γ) < 2ε.

It follows that for large enough i, the distance between (Γ, (0, 0, c)Γ, (0, 0, c)Γ, (0, 0, c)Γ)
and (xi, Snixi, Tmixi, SniTmixi) is less than 6ε. Since ε is arbitrary, we get that

(Γ, (0, 0, c)Γ, (0, 0, c)Γ, (0, 0, c)Γ) ∈ QS,T (XH)

and thus Γ and (0, 0, c)Γ are RS,T (XH)-related. This finishes the proof of the first state-
ment.

For the second statement, let h = (h1, h2, h3) ∈ H with hi ∈ [0, 1) for i = 1, 2, 3.
We remark that SnΓ = (nα, 0, 0)Γ = ({nα}, 0, 0)Γ. So if (Γ, hΓ) are RS,T (XH)-strongly
related, then h2 = h3 = 0. Hence for c ∈ (0, 1), Γ and (0, 0, c)Γ are not RS,T (XH)-strongly
related.
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2.4.3. A Strong form of the RS,T (X) relation

We say that (x1, x2) ∈ X × X are R∗S,T (X)-related if there exist (ni)i∈N and (mi)i∈N
sequences in Z such that

(x1, S
nix1, T

mix1, S
niTmix1)→ (x1, x1, x1, x2).

Obviously, R∗S,T (X) ⊆ RS,T (X).
In this subsection, we prove that the relation generated by R∗S,T (X) coincides with

the RS,T (X) relation. We start with some lemmas:

Remark 2.4.11. It is shown in [114] that, even in the case S = T , the relation generated
by R∗S,T (X) may not coincide with the RS,T (X) relation in the non-distal setting. In fact,
there exists a system with R∗T,T = ∆X 6= RT,T .

Lemma 2.4.12. Let (X,S, T ) be a minimal distal system with commuting transformations
S and T . Then RS,T (X) = ∆X if and only if R∗S,T (X) = ∆X .

Proof. We only prove the non-trivial direction. Suppose that R∗S,T (X) coincides with the
diagonal. Fix x0 ∈ X and consider the system (Kx0

S,T , Ŝ, T̂ ). Let R
Ŝ,T̂

[(x0, x0, x0)] be the
set of points that are R

Ŝ,T̂
related with (x0, x0, x0). Pick (x1, x2, x3) ∈ R

Ŝ,T̂
[(x0, x0, x0)].

By definition, we have that x1 = x2 = x0. Hence (x0, x0, x3) ∈ Kx0
S,T and thus (x0, x3) be-

longs to R∗S,T (X). We conclude that #R
Ŝ,T̂

[(x0, x0, x0)] = 1. By distality and minimality,
the same property holds for every point in Kx0

S,T and thus R
Ŝ,T̂

(Kx0
S,T ) coincides with the

diagonal relation. Particularly, (Kx0
S,T , Ŝ, T̂ ) has a product extension and consequently so

has (X,S, T ). This is equivalent to saying that RS,T (X) = ∆X .

Let R(X) be the relation generated by R∗S,T (X). We have:

Lemma 2.4.13. Let π : Y → X be the factor map between two minimal distal systems
(Y, S, T ) and (X,S, T ) with commuting transformations S and T . Then π × π(R(Y )) ⊇
R∗S,T (X).

Proof. Similar to the proof of Proposition 2.4.6.

We can now prove the main property of this subsection:

Proposition 2.4.14. Let (X,S, T ) be a distal minimal system with commuting transfor-
mations S and T . Then R(X) = RS,T (X).
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Proof. We only need to prove that RS,T (X) ⊆ R(X). Let π : X → X/R(X) be the
projection map. By Lemma 2.4.13, ∆X = π × π(R(X)) ⊇ R∗S,T (X/R(X)). By Lemma
2.4.12, RS,T (X/R(X)) = ∆X and then (X/R(X), S, T ) has a product extension. By
Theorem 2.4.7 (X/RS,T (X), S, T ) is the maximal factor with this property and therefore
RS,T (X) ⊆ R(X).

2.5. Properties of systems with product extensions

In this section, we study the properties of systems which have a product extension.
We characterize them in terms of their enveloping semigroup and we study the class of
systems which are disjoint from them. Also, in the distal case we study properties of
recurrence and topological complexity.

2.5.1. The enveloping semigroup of systems with a product ex-
tension

Let (X,S, T ) be a system with commuting transformations S and T , and let E(X,S)
and E(X,T ) be the enveloping semigroups associated to the systems (X,S) and (X,T )
respectively. Hence E(X,S) and E(X,T ) are subsemigroups of E(X,G). We say that
(X,S, T ) is automorphic (or S and T are automorphic) if for any nets uS,i ∈ E(X,S)
and uT,i ∈ E(X,T ) with lim uS,i = uS and lim uT,i = uT , we have that lim uS,iuT,i =
uSuT . Equivalently, S and T are automorphic if the map E(X,S)×E(X,T )→ E(X,G),
(uS, uT ) 7→ uSuT is continuous.

The following theorem characterizes the enveloping semigroup for systems with pro-
duction extensions:

Theorem 2.5.1. Let (X,S, T ) be a system with commuting transformations S and T .
Then (X,S, T ) has a product extension if and only if S and T are automorphic. Particu-
larly, E(X,G) = E(X,S)E(X,T ) := {uSuT : uS ∈ E(X,S), uT ∈ E(X,T )}, and E(X,S)
commutes with E(X,T ).

Proof. First, we prove that the property of being automorphic is preserved under factor
maps. Let π : Y → X be a factor map between the systems (Y, S, T ) and (X,S, T ) and
suppose that (Y, S, T ) is automorphic. Suppose that (X,S, T ) is not automorphic. Then
there exist nets uS,i ∈ E(X,S) and uT,i ∈ E(X,T ) such that uS,iuT,i does not converge
to uSuT . Taking a subnet, we can assume that uS,iuT,i converges to u ∈ E(X,G). Let
π∗ : E(Y,G)→ E(X,G) be the map induced by π and let vS,i ∈ E(Y, S) and vT,i ∈ E(Y, T )
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be nets with π∗(vS,i) = uS,i and π∗(vT,i) = uT,i. Assume without loss of generality
that vS,i → vS and vT,i → vT . Then vS,ivT,i → vSvT . So uS,iuT,i → uSuT = u, a
contradiction. On the other hand, since a product system is clearly automorphic, we get
the first implication.

Now suppose that S and T are automorphic.
Claim 1: E(X,S) commutes with E(X,T ).
Indeed, let uS ∈ E(X,S) and uT ∈ E(X,T ) . Let (ni) be a net such that Sni → uS.

Then SniuT → uSuT . On the other hand, since S commutes with E(X,T ) we have that
SniuT = uTS

ni for every i and this converges to uTuS by the hypothesis of automorphy.
Claim 2 : For any x ∈ X, Kx

S,T = {(uSx, uTx, uSuTx) : uS ∈ E(X,S), uT ∈
E(X,T )}.

We recall that Kx
S,T in invariant under S× id×S and id×T ×T . Since Kx

S,T is closed
we have that is invariant under uS × id× uS and id× uT × uT for any uS ∈ E(X,S) and
uT ∈ E(X,T ). Hence (uS × id× uS)(id× uT × uT )(x, x, x) = (uSx, uTx, uSuTx) ∈ Kx

S,T .
Conversely, let (a, b, c) ∈ Kx

S,T . Let (mi)i∈N and (ni)∈N be sequences in Z such that
Smix → a, T nix → b and SmiT nix → c. Replacing these sequences with finer filters, we
can assume that Smi → uS ∈ E(X,S) and T ni → uT ∈ E(X,T ). By the hypothesis of
automorphy, SmiT ni → uSuT and thus uSuTx = c and (a, b, c) = (uSx, uTx, uSuTx). The
claim is proved.

Let (a, b, c) and (a, b, d) ∈ Kx
S,T . We can take uS, u′S ∈ E(X,S) and uT , u′T ∈ E(X,T )

such that (a, b, c) = (uSx, uTx, uSuTx) and (a, b, d) = (u′Sx, u′Tx, u′Su′Tx). Since E(X,S)
and E(X,T ) commute we deduce that c = uSuTx = uSb = uSu

′
Tx = u′TuSx = u′Ta =

u′Tu
′
Sx = d.
Consequently, the last coordinate of Kx

S,T is a function of the first two ones. By
Proposition 2.2.21, (X,S, T ) has a product extension.

2.5.2. Disjointness of systems with a product extension

We recall the definition of disjointness:

Definition 2.5.2. Let (X,G) and (Y,G) be two dynamical systems. A joining between
(X,G) and (Y,G) is a closed subset Z of X ×Y which is invariant under the action g× g
for all g ∈ G and projects onto both factors. We say that (X,G) and (Y,G) are disjoint
if the only joining between them is their Cartesian product.

Definition 2.5.3. Let (X,S, T ) be a minimal system with commuting transformations S
and T . We say that a point x ∈ X is S-T almost periodic if x is an almost periodic point
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of the systems (X,S) and (X,T ). Equivalently, x is S-T almost periodic if (OS(x), S)
and (OT (x), T ) are minimal systems. The system (X,S, T ) is S-T almost periodic if every
point x ∈ X is S-T almost periodic.

Remark 2.5.4. We remark that if (Kx
S,T , Ŝ, T̂ ) is minimal, then x is S-T is almost periodic.

Consequently, if (X,S, T ) has a product extension we have that (Kx
S,T , Ŝ, T̂ ) is minimal

for every x ∈ X and then (X,S, T ) is S-T almost periodic.

The main theorem of this subsection is:

Theorem 2.5.5. Let (X,S, T ) be an S-T almost periodic system. Then (X,S) and (X,T )
are minimal and weak mixing if and only if (X,S, T ) is disjoint from all systems with
product extension.

We begin with a general lemma characterizing the relation of transitivity with the
cube structure:

Lemma 2.5.6. Let (X,T ) be a topological dynamical system. Then (X,T ) is transitive
if and only if QT (X) = X ×X.

Proof. Let x ∈ X be a transitive point. We have that X × X is the orbit closure of
(x, x) under T × T and id× T . Since QT (X) is invariant under these transformations we
conclude that QT (X) = X ×X.

Conversely let U and V be two non-empty open subsets and let x ∈ U and y ∈ V .
Since (x, y) ∈ QT (X), there exist x′ ∈ X and n ∈ Z such that (x′, T nx′) ∈ U × V . This
implies that U ∩ T−nV 6= ∅.

We recall the following lemma ([98], page 1):

Lemma 2.5.7. Let (X,T ) be a topological dynamical system. Then (X,T ) weakly mixing
if and only if for every two non-empty open sets U and V there exists n ∈ Z with U ∩
T−nU 6= ∅ and U ∩ T−nV 6= ∅.

The following lemma characterizes the weakly mixing property in terms of the cube
structure:

Lemma 2.5.8. Let (X,T ) be a topological dynamical system. The following are equiva-
lent:

1. (X,T ) is weakly mixing;

2. QT,T (X) = X ×X ×X ×X;
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3. (x, x, x, y) ∈ QT,T (X) for every x, y ∈ X.

Proof. (1)⇒ (2). Let suppose that (X,T ) is weakly mixing and let x0, x1, x2, x3 ∈ X. Let
ε > 0 and for i = 0, 1, 2, 3 let Ui be the open balls of radius ε centered at xi. Since (X,T )
is weak mixing there exists n ∈ Z such that U0 ∩ T−nU1 6= ∅ and U2 ∩ T−nU3 6= ∅. Since
(X,T ) is transitive we can find a transitive point in x′ ∈ U0∩T−nU1. Let m ∈ Z such that
Tmx′ ∈ U2 ∩ T−nU3. Then (x′, T nx′, Tmx′, T n+mx′) ∈ U0 × U1 × U2 × U3 and this point
belongs to QT,T (X). Since ε is arbitrary we conclude that (x0, x1, x2, x3) ∈ QT,T (X).

(2)⇒ (3). Clear.
(3) ⇒ (1). Let U and V be non-empty open sets and let x ∈ U and y ∈ V . Since

(x, x, x, y) ∈ QT,T (X), there exist x′ ∈ X and n,m ∈ Z such that (x′, T nx′, Tmx′, T n+mx′) ∈
U ×U ×U ×V . Then x′ ∈ U ∩T−nU and Tmx′ ∈ U ∩T−nV and therefore U ∩T−nU 6= ∅
and U ∩ T−nV 6= ∅. By Lemma 2.5.7 we have that (X,T ) is weak mixing.

Remark 2.5.9. When (X,T ) is minimal, a stronger results hold [110], Subsection 3.5.

The following is a well known result rephrased in our language:

Proposition 2.5.10. Let (X,T ) be a minimal system. Then RT,T (X) = X × X if and
only if (X,T ) is weakly mixing.

Proof. If (X,T ) is minimal we have that (x, y) ∈ RT,T (X) if and only if (x, x, x, y) ∈
QT,T (X) [70], [110].

Remark 2.5.11. If (X,T ) is not minimal, it is not true that RT,T (X) = X × X implies
that (X,T ) is weakly mixing. For instance, let consider the set X := {1/n : n > 1} ∪
{1 − 1/n : n > 2} ∪ {0} and let T be the transformation defined by T (0) = 0 and for
x 6= 0, T (x) is the number that follows x to the right. If x and y are different from 0,
then (x, x, x, y) ∈ QT,T implies x = y and thus (X,T ) is not weakly mixing. On the
other hand, if x and y are different from 0, then there exists n ∈ Z with y = T nx. Then
lim
i→∞

(x, T nx, T ix, T n+ix) = (x, y, 0, 0) meaning that (x, y) ∈ RT,T (X). Since RT,T (X) is
closed we have that RT,T (X) = X ×X.

Lemma 2.5.12. Let (X,S, T ) be a minimal system with commuting transformations S
and T . If S is transitive, then RT,T (X) ⊆ RS,T (X) ⊆ RS,S(X).

Proof. Suppose (x, y) ∈ RS,T (X). For ε > 0, there exist z ∈ X, n,m ∈ Z such that
d(x, z) < ε, d(y, Snz) < ε and d(Tmz, SnTmz) < ε. Pick 0 < δ < ε such that d(x′, y′) < δ

implies d(Snx′, Sny′) < ε for all x′, y′ ∈ X. Since S is transitive, there exist z′ ∈ X, r ∈ Z
such that d(z, z′) < δ and d(Tmz, Srz′) < δ. So d(Snz, Snz′) < ε and d(SnTmz, Sn+rz′) <
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ε. Thus d(x, z′) < 2ε, d(y, Snz′) < 2ε and d(Srz′, Sr+nz′) < 3ε. Since ε is arbitrary,
(x, y) ∈ RS,S(X).

Suppose (x, y) ∈ RT,T (X). Then there exists a ∈ X such that for any ε > 0, there
exists z ∈ X,m, n ∈ Z such that d(x, z), d(y, Tmz), d(a, T nz) and d(a, T n+mz) < ε.
Pick 0 < δ < ε such that d(x′, y′) < δ implies d(T nx′, T ny′) < ε for all x′, y′ ∈ X. Since
S is transitive, there exists z′ ∈ X, r ∈ Z such that d(z, z′) < δ and d(Tmz, Srz′) <
δ. So d(T nz, T nz′) < ε and d(T n+mz, T nSrz′) < ε. Thus d(x, z′) < ε, d(y, Srz′) <

ε, d(a, T nz′) < ε, d(a, T nSrz′) < 2ε. Since ε is arbitrary, (x, y, a, a) ∈ QS,T (X). Similarly,
(x, b, y, b) ∈ QS,T (X) for some b ∈ X. So (x, y) ∈ RS,T (X).

Lemma 2.5.13. Let (X,S, T ) be a system with commuting transformations S and T such
that both S and T are minimal. Then RS,T (X) = X ×X if and only if both (X,S) and
(X,T ) are weakly mixing.

Proof. If both (X,S) and (X,T ) are weakly mixing, then RS,S(X) = X × X and T is
transitive. By Lemma 2.5.12, RS,T (X) = X ×X.

Now suppose that RS,T (X) = X × X. For any x, y ∈ X, since (x, y) ∈ RS,T (X),
we may assume that (x, a, y, a) ∈ QS,T (X) for some a ∈ X. For any ε > 0, there exists
z ∈ X, n,m ∈ Z such that d(x, z) < ε, d(a, Snz) < ε, d(y, Tmz) < ε, d(a, SnTmz) < ε.
Pick 0 < δ < ε such that d(x′, y′) < δ implies d(Snx′, Sny′) < ε for all x′, y′ ∈ X. Since
(z, Tmz) ∈ RS,T (X), there exist z′ ∈ X, r ∈ Z such that d(z, z′) < δ, d(Tmz, Srz′) <
δ. So d(Snz, Snz′) < ε, d(SnTmz, Sn+rz′) < ε. Thus d(x, z′) < 2ε, d(a, Snz′) <

2ε, d(y, Srz′) < 2ε and d(a, Sn+rz′) < 2ε. Since ε is arbitrary, (x, y) ∈ RS,S(X). So
RS,S(X) = X×X and since S is minimal we have that (X,S) is weakly mixing. Similarly,
(X,T ) is weakly mixing.

Shao and Ye proved [110] the following lemma in the case when S = T , but the same
method works for the general case. So we omit the proof:

Lemma 2.5.14. Let (X,S, T ) be a system with commuting transformations S and T such
that both S and T are minimal. Then the following are equivalent:

1. (x, y) ∈ RS,T (X);

2. (x, y, y, y) ∈ Kx
S,T ;

3. (x, x, y, x) ∈ Kx
S,T .

Remark 2.5.15. We remark that a transformation is minimal if and only if it is both
almost periodic and transitive.
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Lemma 2.5.16. Let (X,S, T ) be a system with commuting transformations S and T such
that (X,S) and (X,T ) are minimal and weak mixing. Let (Y, S, T ) be a minimal system
with commuting transformations S and T such that (Y, S, T ) has a product extension. Let
Z ⊂ X×Y be a closed subset of X×Y which is invariant under S = S×S and T = T×T .
Let π : Z → X be the natural factor map. For x1, x2 ∈ X, if there exists y1 ∈ Y such
that z1 = (x1, y1) ∈ Z is a S-T almost periodic point, then there exists y ∈ Y such that
(x1, y), (x2, y) ∈ Z.

Proof. By Lemma 2.5.14, (x1, x2, x2, x2) ∈ Kx1
S,T . So there exists a sequence (Fi)i∈N ∈ FS,T

such that

lim
i→∞

Fi(x1, x1, x1, x1) = (x1, x2, x2, x2).

Recall that z1 = (x1, y1) ∈ π−1(x1) . Without loss of generality, we assume that

lim
i→∞

Fi(y1, y1, y1, y1) = (y1, y2, y3, y4);

lim
i→∞

F i(z1, z1, z1, z1) = (z1, z2, z3, z4),

where F i = Fi × Fi and z2 = (x2, y2), z3 = (x2, y3), z4 = (x2, y4) are points in Z.
Since (x1, y1) is S-T almost periodic, there exists a sequence of integers (ni)i∈N such
that limi→∞ S

niz2 = z1. We can assume that limi→∞ S
niz4 = z′4 = (x1, y

′) ∈ Z. Then

lim
i→∞

(id× S × id× S)ni(z1, z2, z3, z4) = (z1, z1, z3, z
′
4).

This implies that (y1, y1, y3, y
′) ∈ QS,T (Y ) by Theorem 2.1.1 since RS(Y ) = ∆X we have

that y′ = y3. Therefore z′4 = (x1, y3) and z3 = (x2, y3) belong to Z.

We are now finally able to prove the main theorem of this subsection:

Proof of Theorem 2.5.5. Let (X,S, T ) be a system such that (X,S) and (X,T ) are min-
imal weak mixing and let (Y, S, T ) be a system with a product extension. Suppose
Z ⊆ X × Y is closed and invariant under S = S × S, T = T × T . We have to show that
Z = X × Y . Let W = {Z ⊆ X × Y : Z is closed invariant under S = S × S, T = T × T}
with order Z ≤ Z ′ if and only if Z ′ ⊂ Z. Let {Zi}i∈I be a totally ordered subset ofW and
denote Z0 = ∩i∈IZi. It is easy to see that Z0 ∈ W . By Zorn’s Lemma, we can assume Z
contains no proper closed invariant subset.

For any x ∈ X, denote Fx = {y ∈ Y : (x, y) ∈ Z}. Then Fx ⊆ Y is a closed set of Y .
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For any g ∈ G, let Zg = {(x, y) ∈ X × Y : y ∈ (Fx ∩ gFx)}. Then Zg ⊆ Z is closed
invariant. Since Z contains no proper invariant subset, either Zg = ∅ or Zg = Z. Denote
U = {x ∈ X : ∃y ∈ Y, (x, y) is an almost periodic point of Z}. For any x0 ∈ U , suppose
z0 = (x0, y0) ∈ Z is an S-T almost periodic point. For any g ∈ G, (x0, gx0) ∈ RS,T (X).
By Proposition 2.5.16, there exists y ∈ Y such that (x0, y), (gx0, y) ∈ Z. So Fx0 ∩ Fgx0 =
Fx0 ∩ gFx0 6= ∅. Therefore Zg 6= ∅. So Zg = Z for all g ∈ G. Thus Fx = gFx for every
x ∈ U . Since g is arbitrary, Fx is closed invariant under G for every x ∈ U . Since (Y,G)
is minimal, and Fx 6= ∅ we get that Fx = Y for all x ∈ U .

It suffices to show that U = X. Fix x ∈ X. Since x is S-T -almost periodic, there
exist minimal idempotents uS ∈ E(X,S) and uT ∈ E(X,T ) such that uSx = x = uTx.
These idempotents can be lifted to minimal idempotents in E(Z, S) and E(Z, T ) which
can be projected onto minimal idempotents in E(Y, S) and E(Y, T ). We also denote
these idempotents by uS and uT . By Theorem 2.5.1, these idempotents commute in
E(Y,G). So for y ∈ Y such that (x, y) ∈ Z, we have that uSuT (x, y) = (x, uSuTy) ∈ Z,
and uS(x, uSuTy) = (x, uSuTy), uT (x, uSuTy) = (x, uSuTy). This means that the point
(x, uSuTy) ∈ Z is S-T -almost periodic. Hence U = X and therefore Z = X × Y .

Conversely, let (X,S, T ) be a system disjoint from systems with product extension. Let
U and V be non-empty open subsets ofX and let x ∈ U and y ∈ V . Since X is S-T almost
periodic, we have that (OS(x), S) and (OT (x), T ) are minimal systems. By hypothesis,
(X,S, T ) is disjoint from (OS(x)×OT (x), S × id, id× T ). Since (x, (x, x)) and (y, (x, x))
belong toX×(OS(x)×OT (x)), we have that there exist sequences (ni)i∈N and (mi)i∈N in Z
such that (SniTmix, (Snix, Tmix)) → (y, (x, x)). Particularly (x, Smix, Tmix, SniTmix) ∈
QS,T (X) and this point converges to (x, x, x, y) ∈ QS,T (X). This implies that (x, y) ∈
QS(X), (x, y) ∈ QT (X) and (x, y) ∈ RS,T (X) and since x and y are arbitrary we deduce
that QS(X) = QT (X) = RS,T (X) = X × X. By Lemma 2.5.6 we deduce that S and
T are transitive and since (X,S, T ) is S-T almost periodic we deduce that S and T are
minimal. By Lemma 2.5.13 we deduce that (X,S) and (X,T ) are minimal and weak
mixing.

2.5.3. Recurrence in systems with a product extension

We define the sets of return times in our setting:

Definition 2.5.17. Let (X,S, T ) be a minimal distal system with commuting trans-
formations S and T , and let x ∈ X. Let x ∈ X and U be an open neighborhood
of x. We define the set of return times NS,T (x, U) = {(n,m) ∈ Z2 : SnTmx ∈ U},
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NS(x, U) = {n ∈ Z : Snx ∈ U} and NT (x, U) = {m ∈ Z : Tmx ∈ U}.
A subset A of Z is a set of return times for a distal system if there exists a distal

system (X,S), an open subset U of X and x ∈ U such that NS(x, U) ⊆ A.
A subset A of Z is a Bohr0 set is here exists an equicontinuous system (X,S), an open

subset U of X and x ∈ U such that NS(x, U) ⊆ A.

Remark 2.5.18. We remark that we can characterize Z2 sets of return times of distal
systems with a product extension: they contain the Cartesian product of sets of return
times for distal systems. Let (X,S, T ) be a minimal distal system with a product extension
(Y ×W,σ × id, id× τ), and let U be an open subset of X and x ∈ U . By Theorem 2.4.7
we can assume that the product extension is also distal. Let π denote a factor map
from Y × W → X. Let (y, w) ∈ Y × W such that π(y, w) = x and let UY and UW

be neighborhoods of y and w such that π(UY × UW ) ⊆ U . Then we have that that
Nσ(y, UY )×Nτ (w,UW ) ⊆ NS,T (x, U).

Conversely, let (Y, σ) and (W, τ) be minimal distal systems. Let UY and UW be non-
empty open sets in Y and W and let y ∈ UY and w ∈ UW . Then Nσ(y, UY )×Nτ (w,UW )
coincides with Nσ×id,id×τ ((y, w), UY × UW ).

Denote by BS,T the family generated by Cartesian products of sets of return times for
a distal system. Equivalently BS,T is the family generated by sets of return times arising
from minimal distal systems with a product extension.

Denote by B∗S,T the family of sets which have non-empty intersection with every set in
BS,T .

Lemma 2.5.19. Let (X,S, T ) be a minimal distal system with commuting transformations
S and T , and suppose (x, y) ∈ RS,T (X). Let (Z, S, T ) be a minimal distal system with
RS,T (Z) = ∆Z and let J be a closed subset of X × Z, invariant under T × T and S × S.
Then for z0 ∈ Z we have (x, z0) ∈ J if and only if (y, z0) ∈ J .

Proof. We adapt the proof of Theorem 3.5 [75] to our context. Let W = ZZ and
SZ , TZ : W → W be such that for any ω ∈ W , (SZω)(z) = S(ω(z)), (TZω)(z) = T (ω(z)),
z ∈ Z. Let ω∗ ∈ W be the point satisfying ω(z) = z for all z ∈ Z and let Z∞ = OGZ (ω∗),
where GZ is the group generated by SZ and TZ . It is easy to verify that Z∞ is minimal
distal. So for any ω ∈ Z∞, there exists p ∈ E(Z,G) such that ω(z) = pω∗(z) = p(z) for
any z ∈ Z. Since (Z, S, T ) is minimal and distal, E(Z,G) is a group (see [7], Chapter 5).
So p : Z → Z is surjective. Thus there exists zω ∈ Z such that ω(zω) = z0.

Take a minimal subsystem (A, S × SZ , T × TZ) of the product system (X × Z∞, S ×
SZ , T×TZ). Let πX : (A, S×SZ , T×TZ)→ (X,S, T ) be the natural coordinate projection.
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Then πX is a factor map between two distal minimal systems. By Proposition 2.4.6, there
exists ω1, ω2 ∈ W such that ((x, ω1), (y, ω2)) ∈ RS′,T ′(A), where S ′ = S×SZ , T ′ = T×TZ .

Let z1 ∈ Z be such that ω1(z1) = z0. Denote π : A→ X × Z, π(u, ω) = (u, ω(z1)) for
(u, ω) ∈ A, u ∈ X and ω ∈ W . Consider the projection B = π(A). Then (B, S×S, T×T )
is a minimal distal subsystem of (X × Z, S × S, T × T ) and since π(x0, ω

1) = (x, z0) ∈ B
we have that J contains B. Suppose that π(x, ω2) = (x, z2). Then ((x, z0), (y, z2)) ∈
RS×S,T×T (B) and thus (z0, z2) ∈ RS,T (Z). Since RS,T (Z) = ∆Z×Z we have that z0 = z2

and thus (y, z0) ∈ B ⊆ J .

Theorem 2.5.20. Let (X,S, T ) be a minimal distal system with commuting transforma-
tions S and T . Then for x, y ∈ X, (x, y) ∈ RS,T (X) if and only if NS,T (x, U) ∈ B∗S,T for
any open neighborhood U of y.

Proof. Suppose N(x, U) ∈ B∗S,T for any open neighborhood U of y. Since X is dis-
tal, RS,T (X) is an equivalence relation. Let π be the projection map π : X → Y :=
X/RS,T (X). By Theorem 2.4.7 we have that RS,T (Y ) = ∆Y . Since (X,S, T ) is dis-
tal, the factor map π is open and π(U) is an open neighborhood of π(x). Particularly
NS,T (x, U) ⊆ NS,T (π(x), π(U)). Let V be an open neighborhood of π(x). By hypothesis
we have that NS,T (x, U) ∩ NS,T (π(x), π(U)) 6= ∅ which implies that NS,T (π(x), π(U)) ∩
NS,T (π(x), V ) 6= ∅. Particularly π(U) ∩ V 6= ∅. Since this holds for every V we have that
π(x) ∈ π(U) = π(U). Since this holds for every U we conclude that π(x) = π(y). This
shows that (x, y) ∈ RS,T (X).

Conversely, suppose that (x, y) ∈ RS,T (X), let U be an open neighborhood of y and let
A be a B∗S,T set. Then, there exists a minimal distal system (Z, S, T ) with RS,T (Z) = ∆Z ,
an open set V ⊆ Z and z0 ∈ V such that NS,T (z0, V ) ⊆ A. Let J be orbit closure of
(x, z0) under S × S and T × T . By distality we have that (J, S × S, T × T ) is a minimal
system and (x, z0) ∈ J . By Lemma 2.5.19 we have that (y, z0) ∈ J and particularly, there
exist sequences (ni)i∈N and (mi)i∈N in Z such that (SniTmix, SniTmiz0) → (y, z0). This
implies that NS,T (x, U) ∩NS,T (z0, V ) 6= ∅ and the proof is finished.

Corollary 2.5.21. Let (X,S, T ) be a minimal distal system with commuting transforma-
tions S and T . Then (X,S, T ) has a product extension if and only if for every x ∈ X

and every open neighborhood U of x, NS,T (x, U) contains the product of two set of return
times for a distal system.

Proof. We prove the non-trivial implication. Let suppose that there exists (x, y) ∈
RS,T (X) \ ∆X and let U, V be open neighborhoods of x and y respectively such that
U ∩ V = ∅. By assumption NS,T (x, U) is a BS,T set, and by Theorem 2.5.20 NS,T (x, V )
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has nonempty intersection with NS,T (x, U). This implies that U ∩V 6= ∅, a contradiction.
We conclude that RS,T (X) = ∆X and therefore (X,S, T ) has a product extension.

Specially, when S = T we get

Corollary 2.5.22. Let (X,T ) be a minimal distal system. Then (X,T ) is equicontinuous
if and only if for every x ∈ X and every open neighborhood U of x, NT (x, U) contains the
sum of two sets of return times for distal systems.

Proof. Suppose (X,T ) is equicontinuous, then the system (X,T, T ) with commuting
transformations T and T has a product extension. So for every x ∈ X and every open
neighborhood U of x, we have that NT,T (x, U) contains a product of two sets A and B.
In terms of the one dimensional dynamics, this means that NT (x, U) contains A+B.

Conversely, if NT (x, U) contains the sum of two sets of return times for distal systems
A and B, we have that NT,T (x, U) contains the set A×B. By Corollary 2.5.21, (X,T, T )
has a product extension and by Corollary 2.2.25 (X,T ) is an equicontinuous system.

Question 2.5.23. A natural question arising from Corollary 2.5.22 is the following: is
the sum of two set of return times for a distal system a Bohr0 set?

2.5.4. Complexity for systems with a product extension

In this subsection, we study the complexity of a distal system with a product extension.
We start recalling some classical definitions.

Let (X,G) be a topological dynamical system. A finite cover C = (C1, . . . , Cd) is a
finite collection of subsets of X whose union is all X. We say that C is an open cover if
every Ci ∈ C is an open set. Given two open covers C = (C1, . . . , Cd) andD = (D1, . . . , Dk)
their refinement is the cover C ∨ D = (Ci ∩Dj : i = 1, . . . , d j = 1, . . . , k). A cover C is
finer than D if every element of C is contained in an element of D. We let D � C denote
this property.

We recall that if (X,S, T ) is a minimal distal system with commuting transformations
S and T then QS(X), QT (X) and RS,T (X) are equivalence relations.

Let (X,S, T ) be a minimal distal system with commuting transformations S and T ,
and let πS be the factor map πS : X → X/QS(X). Denote IS = {π−1

S y : y ∈ X/QS(X)}
the set of fibers of πS.

Given a system (X,S, T ) with commuting transformations S and T , and given a finite
cover C, denote CT,n0 = ∨n

i=0 T
−iC. For any cover C and any closed Y ⊂ X, let r(C, Y ) be

the minimal number of elements in C needed to cover the set Y . We remark that D � C
implies that r(D, Y ) ≤ r(C, Y ).
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Definition 2.5.24. Let C be a finite cover of X. We define the S-T complexity of C to
be the non-decreasing function

cS,T (C, n) = max
Y ∈IS

r(CT,n0 , Y ).

Proposition 2.5.25. Let (X,S, T ) be a distal system with commuting transformations S
and T . Then (X,S, T ) has a product extension if and only if cS,T (C, n) is bounded for any
open cover C.

Proof. Suppose first that RS,T (X) = ∆X . Since QS(X) is an equivalence relation, by
Proposition 2.2.26, we have that πS : (X,T ) → (X/QS(X), T ) is an equicontinuous ex-
tension. Let ε > 0 be the Lebesgue number of the finite open cover C, i.e. any open ball
B with radius ε is contained in at least one element of C. Then there exists 0 < δ < ε

such that d(x, y) < δ, πS(x) = πS(y) implies that d(T nx, T ny) < ε for all n ∈ Z. For
any Y ∈ IS, by compactness, let x1, . . . , xk ∈ Y be such that Y ⊂ ⋃k

i=1B(xi, δ). Then
T j(B(xi, δ)∩Y ) ⊂ B(T jxi, ε)∩Y ⊂ B(T jxi, ε) for any j ∈ N (since QS(X) is invariant un-
der T×T ). Let Ui,j be an element of C containing B(T jxi, ε). Then T j(B(xi, δ)∩Y ) ⊂ Ui,j.
So B(xi, δ) ∩ Y ⊂

⋂n
j=0 T

−jUi,j. Thus {⋂nj=0 T
−jUi,j : 1 ≤ i ≤ k} is a subset of CT,n0 cov-

ering Y with cardinality k. Therefore r(CT,n0 , Y ) is bounded by the quantity of balls of
radius δ needed to cover Y .

Suppose that cS,T (C, n) is not bounded. For Y, Y ′ ∈ IS, let dH(Y, Y ) be the Hausdorff
distance between Y and Y ′. Since the factor map X → X/QS is open, for any ε′ > 0,
there exists δ′ > 0 such that if y, y′ ∈ X/QS and d(y, y′) < δ′, then dH(π−1y, π−1y′) < ε′.

Let y ∈ Y and let C ′ ⊆ C be a subcover of Y = π−1(y). Let ε′ > 0 be such that if
d(x, Y ) < ε′, then x is covered by C ′ . We can find δ′ > 0 such that if d(y, y′) < δ′, then
dH(π−1y, π−1y′) < ε′. Thus C ′ is also an open covering of Y ′ = π−1(y′).

If π−1y ⊂ ⋃k
i=1 B(xi, δ), then there exists δ′ > 0 such that d(y, y′) < δ′ implies that

π−1y′ ⊂ ⋃k
i=1B(xi, δ). If cS,T (C, n) is not bounded, there exists yi ∈ Y such that π−1(yi)

can not be covered by i balls of radius δ > 0. We assume with out loss of generality that
yi → y (by taking a subsequence). Since π−1y can be covered by a finite number K of
balls of radius δ, we get that for large enough i, π−1yi can also be covered by K balls of
radius δ, a contradiction. Therefore cS,T (C, n) is bounded.

Conversely, let suppose that cS,T (C, n) is bounded for every open cover C and suppose
that RS,T (X) 6= ∆X . We remark that if C is an open cover and Y ∈ IS then

r(CT,n−n , Y ) := r(
n∨

i=−n
T−iC, Y ) = r(T n

2n∨
i=0

T−iC, T nT−nY ) = r(
2n∨
i=0

T−iC, T−nY ).
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Since T commutes with S we have that T−nY ∈ IS and thus the condition that cS,T (C, n)
is bounded implies that r(∨ni=−n T−iC, Y ) is bounded for any Y ∈ IS.

Since RS,T (X) 6= ∆X by Proposition 2.2.26, there exist ε > 0 and x ∈ X such that
for any δ > 0, one can find y ∈ X and k ∈ Z such that d(x, y) < δ, πS(x) = πS(y) and
d(T kx, T ky) > ε. Pick any Y ∈ IS and let C ′ be a finite cover of open balls with radius
ε/4. Let C be the finite covering made up of the closures of the elements of C ′. Since
C ≺ C ′ we have that r(CT,n−n , Y ) is also bounded.

By a similar argument of Lemma 2.1 of [15], there exist closed sets X1, . . . , Xc ⊂ X

such that Y ⊂ ⋃c
i=1Xi, where each Xi can be written as Xi = ⋂∞

j=−∞ T
−jUi,j, with

Ui,j ∈ C. Then y, z ∈ Xi implies that d(T jy, T jz) < ε/2 for any j ∈ Z.
Let (δn)n∈N be a sequence of positive numbers such that limn→∞ δn = 0. For any n ∈ N

we can find yn ∈ X and kn ∈ Z with d(x, yn) < δn, πS(x) = πS(yn) and d(T knx, T knyn) > ε.
By taking a subsequence, we may assume that all yn belong to the same set Xi. Since Xi

is closed, x ∈ Xi. Thus d(T jx, T jyn) < ε/2 for any j, n ∈ N, a contradiction.
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Chapter 3

A pointwise cubic average for two
commuting transformations

This chapter is based on the joint work with Wenbo Sun A pointwise cubic average
for two commuting transformations [35]. Huang, Shao and Ye recently studied pointwise
multiple averages by using suitable topological models. Using the notion of dynamical cubes
introduced in Chapter 2, the Huang-Shao-Ye strategy and the Host machinery of magic
systems, we prove that for an ergodic system (X,µ, S, T ) with commuting transformations
S and T , the average

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

converges a.e. as N goes to infinity for any f1, f2, f3 ∈ L∞(µ).

3.1. Introduction

3.1.1. Pointwise convergence for cube averages

A system (X,X , µ, S, T ) with two commuting transformations S and T is a proba-
bility space (X,X , µ) endowed with two commuting measure preserving transformations
S, T : X → X. In this chapter, we study the pointwise convergence of a cubic average in
such a system.

The existence of the limit in L2 of the averages

lim
N→∞

1
N2

N−1∑
i,j=0

f1(T ix)f2(T jx)f3(T i+jx) (3.1.1)

was proved by Bergelson [12] and was generalized in [66] and [67] to higher orders averages.

There are two possible generalizations of these averages to systems with commuting
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transformations: one is to study averages of the form

lim
N→∞

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(Ri+jx) (3.1.2)

for commuting transformations S, T and R. Another is to study averages of the form

lim
N→∞

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx) (3.1.3)

for commuting transformations S and T .
The existence of the pointwise limit of (3.1.2) was proved by Assani [2] for three

transformations and it was generalized to an arbitrary number of transformations by Chu
and Frantzikinakis [22]. It is worth noting that in fact no assumption of commutativity of
the transformations is required. In contrast, the average (3.1.3) has a very different nature.
Leibman [81] showed that convergence of (3.1.3) fails (even in L2) without commutativity
assumptions. When the transformations commute, the L2 convergence of (3.1.3) (and
its higher order versions) was proved by Chu [20] based on the work of Host [64] which
follows the works of Tao [112] and Austin [7]. In order to prove this result, Host introduced
the notion of magic extensions, which allows one to study such averages in an extension
system with convenient properties. It is natural to ask if the averages in (3.1.3) converges
in the pointwise sense. In this chapter, we prove:

Theorem 3.1.1. Let (X,µ, S, T ) be an ergodic measure preserving system with commuting
transformations S and T . Then the average

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

converges a.e. as N goes to infinity for any f1, f2, f3 ∈ L∞(µ).

Recently Huang, Shao and Ye [77] proved the pointwise convergence of multiple av-
erages for a single transformation on a distal system. So a natural question arises from
Theorem 3.1.1: If (X,µ, S, T ) is an ergodic measure preserving system with commuting
transformations S and T , does the average

1
N

N−1∑
i=0

f1(Six)f2(T ix)

converge in the pointwise sense as N goes to infinity? The case when S and T are powers
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of some ergodic transformation was solved by Bourgain [16] but no further results were
given until Huang, Shao and Ye result.

3.1.2. Strict ergodicity for dynamical cubes

The main ingredient in proving Theorem 3.1.1 is to find a suitable topological model
for the original system. This means finding a measurable conjugacy to a space with
a convenient topological structure. Jewett-Krieger’s Theorem states that every ergodic
system has a strictly ergodic model (see Section 3.2 for definitions) and it is known that
one can add some additional properties to the topological model.

In this chapter, we are interested in the strict ergodicity property of the cube structure
introduce in Chapter 2 of a topological model. Let X be a compact metric space and
S, T : X → X be two commuting homeomorphisms. We recall that QS,T (X) is defined to
be

QS,T (X) = {(x, Six, T jx, SiT jx) : x ∈ X, i, j ∈ Z}.

This object was introduced in [34] motivated by Host’s work [64] and results in a useful
tool to study products of minimal systems and their factors. A classical argument using
Birkhoff Ergodic Theorem (see, for example, the proof of Theorem 3.5.1) shows that
the strict ergodicity property of QS,T (X) is connected to pointwise multiple convergence
problems such as Theorem 3.1.1 and Theorem 3.5.1. We ask the following question:

Question 3.1.2. For any ergodic system (X,µ, S, T ) with two commuting transformations
S and T , is there a topological model (X̂, Ŝ, T̂ ) of X such that (QS,T (X̂),G

Ŝ,T̂
) is strictly

ergodic? Here G
Ŝ,T̂

is the group of action generated by id × Ŝ × id × Ŝ, id × id × T̂ × T̂
and R̂× R̂× R̂× R̂, where R̂ = Ŝ or T̂ .

Huang, Shao and Ye [75] gave an affirmative answer to this question for the case
S = T . Although this question remains open in the general case, such a model always
exists in an extension system of the original one. We prove the following theorem, which
is the main tool to study Theorem 3.1.1:

Theorem 3.1.3. For any ergodic system (X,µ, S, T ) with two commuting transforma-
tions S and T , there exists an extension system (Y, ν, S, T ) of X and a topological model
(Ŷ , Ŝ, T̂ ) of Y such that (QS,T (Ŷ ),GS,T ) is strictly ergodic.

It is worth noting that since every measurable function on the original system can be
naturally lifted to a function on the extension system, this result is already sufficient for
our purposes.
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3.1.3. Proof Strategy and organization

Conventions and background material are in Section 3.2. To prove Theorem 3.1.3, we
refine the technique of Host in [64] to find a suitable magic extension of the original system
in Section 3.3. Then we use the method of Huang, Shao and Ye [75] to find a desired
model for this extension system in Section 3.4. The announced pointwise convergence
result (Theorem 3.1.1) follows from Theorem 3.1.3, and we explain how this is achieved
in Section 3.5.

3.2. Background Material

We start recalling some classical concepts. Let (X,G) be a topological dynamical
system. The Krylov-Bogolyubov Theorem states that this systems always admits an
invariant measure. When this measure is unique, we say that (X,G) is uniquely ergodic.
In addition, we say that (X,G) is strictly ergodic if it is minimal and uniquely ergodic.

We state here a well known theorem for the case when G is spanned by d commuting
transformations T1, . . . , Td.

Theorem 3.2.1. Let (X,G) be a topological dynamical system. The following are equiv-
alent

1. (X,G) is uniquely ergodic.

2. For any continuous function f , the average

1
Nd

∑
i1,...,id∈[0,N−1]

f(T i11 · · ·T
id
d x)

converges uniformly to
∫
fdµ as N goes to infinity.

A deep connection between measure preserving systems and topological dynamical
systems is the Jewett-Krieger Theorem [78, 80] which asserts that every ergodic system
(X,µ, T ) is isomorphic to a strictly ergodic topological dynamical system (X̂, µ̂, T̂ ), where
µ̂ is the unique ergodic measure of (X̂, T̂ ). We say that (X̂, T̂ ) is a topological model for
(X,µ, T ).

Further refinements have been given to the Jewett-Krieger Theorem. We state the
one which is useful for our purposes.

Definition 3.2.2. Let (X,µ,G) be a measure preserving system. We say thatG acts freely
on X (or the system (X,µ,G) is free) if for any non-trivial g ∈ G the set {x ∈ X : gx = x}
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has measure 0. If (X,µ,G) is ergodic and G is abelian and this is equivalent to say that
any non-trivial g ∈ G defines a transformation different from the identity transformation
on X.

Particularly, we say that an ergodic system (X,µ, S, T ) with commuting transforma-
tions is free if SiT j is not the identity transformation on X for any (i, j) 6= (0, 0).

Theorem 3.2.3 (Weiss-Rosenthal [118]). Let G be an amenable group and let π : Y → X

be a factor map between two measure preserving systems (Y, ν,G) and (X,µ,G). Suppose
that (X,µ,G) is free and (X̂, Ĝ) is a strictly ergodic model for (X,µ,G). Then there exits
a strictly ergodic model (Ŷ , G) for (Y, ν,G) and a topological factor map π̂ : Ŷ → X̂ such
that the following diagram commutes:

Y Ŷ

X X̂

π

Φ

π̂

φ

Here we mean that Φ and φ are measure preserving isomorphisms and π ◦ Φ = φ ◦ π̂.

In this case, we say that π̂ : Ŷ → X̂ is a topological model for π : Y → X.

3.2.1. Host magic extensions

The Host magic extension was first introduced in [64] to prove the L2 convergence
of multiple ergodic averages for systems with commuting transformations. Then Chu
[21] used this tool to study the recurrence problems in the same setting of systems. We
recall that this construction is valid for an arbitrary number of transformations, but for
convenience we state it only for two transformations S and T .

Convention 3.2.4. We recall that we implicitly assume that all functions are measurable
and real valued but we remark that similar results hold for complex valued functions.

The Host measure

Definition 3.2.5. For any measure preserving transformation R of the system (X,X , µ),
we let IR denote the σ-algebra of R-invariant sets.
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Let X∗ denote the space X4. Let µS be the relative independent square of µ over IS,
meaning that for all f0, f1 ∈ L∞(µ) we have

∫
X2
f0(x0)f1(x1)dµS =

∫
X
E(f1|IS)E(f1|IS)dµ,

where E(f |IS) is the conditional expectation of f on IS. It is obvious that µS is invariant
under id× S and g × g for g ∈ G.

Let µS,T denote the relative independent square of µS over IT×T . Hence for all
f0, f1, f2, f3 ∈ L∞(µ) we have that

∫
X4
f0(x0)f1(x1)f2(x2)f3(x3)dµS,T =

∫
X2

E(f0 ⊗ f1|IT×T )E(f2 ⊗ f3|IT×T )dµS.

The measure µS,T is invariant under id×S× id×S, id× id×T ×T and under g×g×g×g
for all g ∈ G.

Let S∗ and T ∗ denote the transformations id×S×id×S and id×id×T×T respectively.
Then (X∗, µS,T , S∗, T ∗) is a system with commuting transformations S∗ and T ∗. Let π
denote the projection (x0, x1, x2, x3) → x3 from X∗ to X. Then π defines a factor map
between (X∗, µS,T , S∗, T ∗) and (X,µ, S, T ). We remark that the system (X∗, µS,T , S∗, T ∗)
may not be ergodic even if (X,µ, S, T ) is ergodic.

The Host seminorm

Let f ∈ L∞(µ). The Host seminorm [64] is defined to be the quantity

|||f |||µ,S,T =
(∫

X4
f(x0)f(x1)f(x2)f(x3)dµS,T

)1/4
.

We have

Proposition 3.2.6 ([64], Proposition 2).

1. For f0, f1, f2, f3 ∈ L∞(µ), we have
∫
X4
f0 ⊗ f1 ⊗ f2 ⊗ f3dµS,T ≤ |||f0|||µ,S,T |||f1|||µ,S,T |||f2|||µ,S,T |||f3|||µ,S,T

2. |||·|||µ,S,T is a seminorm on L∞(µ).

We recall some standard notation. For any two σ-algebras A and B of X, let A ∨ B
denote the σ-algebra generated by {A∩B : A ∈ A, B ∈ B}. If f is a measurable function
on (X,X , µ) and A is a sub-algebra of X , let E(f |A) denote the conditional expectation
of f over A.
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Definition 3.2.7. Let (X,µ, S, T ) be a measure preserving system with commuting trans-
formations S and T . We say that (X,µ, S, T ) is magic if

E(f |IS ∨ IT ) = 0 if and only if |||f |||µ,S,T = 0.

The connection between the Host measure µS,T and magic systems is:

Theorem 3.2.8 ([64], Theorem 2). The system (X∗, µS,T , S∗, T ∗) defined in Section 3.2.1
is a magic extension system of (X,µ, S, T ).

3.2.2. Dynamical cubes

The following notion of dynamical cubes for a system with commuting transformations
was introduced and studied in [34] and presented in Chapter 2. We recall the definitions
here.

Definition 3.2.9. Let (X,S, T ) be a topological dynamical system with commuting trans-
formations S and T . We let GS,T denote the subgroup of G4 generated by id×S× id×S,
id× id× T × T and g × g × g × g, g ∈ G. For any R ∈ G, let GR denote the subgroup of
G2 generated by id×R and g × g, g ∈ G.

Definition 3.2.10. Let (X,S, T ) be a topological dynamical system with commuting
transformations S and T and let R ∈ G. We define

QS,T (X) = {(x, Six, T jx, SiT jx) : x ∈ X, i, j ∈ Z};

QR(X) = {(x,Rix) ∈ X : x ∈ X, i ∈ Z}.

3.3. The existence of free magic extensions

In this section, we strengthen Theorem 3.2.8 for our purposes by requiring the magic
extension to be also ergodic and free. We remark that there are a lot of interesting
systems with commuting transformations where the action is not free. For example, the
system (X,µ, S, Si), where S is an ergodic measure preserving transformation of X and
i ∈ Z, i 6= 1. However, we have

Theorem 3.3.1. Let (X,µ, S, T ) be an ergodic system with commuting transformations
S and T . Suppose that Si and T j are not the identity for any i, j ∈ Z \ {0}. Then there
exists a magic extension (X̂, ν, S∗, T ∗) where the action of Z2 is free and ergodic.
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Remark 3.3.2. By Theorem 3.2.8, (X∗, µS,T , S∗, T ∗) is a magic extension of X, but since
(X∗, µS,T , S∗, T ∗) may not be ergodic, we need to decompose the measure µS,T in order
to get an ergodic magic extension of X.

Proof. Consider the measure µS,T on X∗ = X4. We claim that µS,T ({~x : S∗iT ∗j~x 6= ~x}) =
1 for every i, j ∈ Z. Let A∗i,j denote the set {~x : S∗iT ∗j~x 6= ~x}. Then the complement of
A∗i,j is included in the union of the sets X × A × X × X and X × X × B × X, where
A = {x : Six = x} and B = {x : T jx = x}. Since the projection of µS,T onto any
coordinate equals µ, we have that µS,T (A∗ci,j) ≤ µ(A) + µ(B) = 0. Therefore, writing
A∗ = ⋂

i,j∈ZA
∗
i,j, we have that µS,T (A∗) = 1.

Let
µS,T =

∫
µS,T,~xdµS,T (~x)

be the ergodic decompositions of µS,T under S∗ and T ∗. Then we have that µS,T,~x(A∗) = 1
for µS,T -a.e. ~x ∈ X∗. By Proposition 3.13 of [21], for µS,T -almost every ~x ∈ X∗, the system
(X∗, µS,T,~x, S∗, T ∗) is a magic extension of (X,µ, S, T ). Hence, we can pick ~x0 ∈ A∗ such
that (X∗, µS,T,~x0 , S

∗, T ∗) is a magic extension. This is a magic ergodic free extension of
(X,µ, S, T ).

We prove some properties for later use. In the rest of this section, we assume that
(X,µ, S, T ) is a free magic ergodic measure preserving system. LetW denote the σ-algebra
IS ∨ IT and let ZS,T be the factor associated to this σ-algebra.

Lemma 3.3.3. ZS,T is isomorphic to the product of two ergodic systems.

Proof. Let A ∈ IT and B ∈ IS. We have that limN→∞
1
N2
∑N−1
i,j=0 1A ◦ Si ◦ T j converges

in L2(µ) to µ(A). Since A is invariant under T , we have that limN→∞
1
N

∑N−1
j=0 1A ◦ Sj

converges to µ(A). Similarly limN→∞
1
N

∑N−1
j=0 1B ◦ Sj converges to µ(B). It follows that

lim
N→∞

1
N2

N−1∑
i,j=0

1A∩B ◦ Si ◦ T j = lim
N→∞

1
N2

N−1∑
i,j=0

1A1B ◦ Si ◦ T j = µ(A)µ(B).

Since (X,µ, S, T ) is ergodic, this limit equals µ(A∩B) and therefore µ(A∩B) = µ(A)µ(B).
We conclude that the map A∩B → A×B defines a measure preserving isomorphism

between (X, IT ∨ IS, µ, S, T ) and (X ×X, IT ⊗ IS, µ⊗ µ, S × id, id× T ).

For convenience, we write (ZS,T , S, T ) = (Y ×W,σ × id, id× τ).

Lemma 3.3.4. The σ-algebra of (T × T )-invariant sets on (X2, µS) is measurable with
respect to W2.
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Proof. We follow the proof of Proposition 4.7 of [67]. It suffices to show that

E(f0 ⊗ f1|IT×T ) = E(E(f0|W)⊗ E(f1|W)|IT×T ).

It suffices to prove this equality when E(fi|W) = 0 for i = 0 or 1. By Proposition
3.2.6, we have that

∫
f0 ⊗ f1 ⊗ f0 ⊗ f1dµS,T =

∫
|E(f0 ⊗ f1|IT×T )|2dµS ≤ |||f0|||2µ,S,T |||f1|||2µ,S,T ,

which implies that E(f0 ⊗ f1|IT×T ) = 0 whenever |||fi|||µ,S,T = 0 for i = 0 or 1. Since the
system is magic, this is equivalent to E(fi|W) = 0 for i = 0 or 1, and we are done.

3.4. Strict ergodicity for dynamical cubes

This section is devoted to the proof of Theorem 3.1.3. By Theorem 3.3.1, it suffices
to prove the following theorem:

Theorem 3.4.1. For any free ergodic magic system (X,µ, S, T ) with two commuting
transformations S and T , there exists a topological model (X̂, Ŝ, T̂ ) of X such that (QS,T (X̂),
GS,T ) is strictly ergodic.

3.4.1. A special case: product systems

We start by proving a special case of Theorem 3.4.1.

Lemma 3.4.2. Let (Y, σ) and (W, τ) be two strictly ergodic systems with unique measures
ρY and ρW . Then (Y ×W,σ × id, id× τ) is strictly ergodic with measure ρY ⊗ ρW .

Proof. Let λ be an invariant measure on Y×W . Since Y is uniquely ergodic, the projection
onto the first coordinate of λ is ρY . Using the disintegration with respect to Y , we have
that

λ =
∫
Y
δy × λydρY .

Since λ is invariant under id× τ , we have that

(id× τ)λ = λ =
∫
Y
δy × τλydρY .
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By the uniqueness of the disintegration, we get that τλy = λy ρY -a.e. Since (W, τ) is
uniquely ergodic, a.e. we have that λy = ρW and therefore

λ =
∫
Y
δy × ρWdρY = ρY ⊗ ρW .

The next corollary follows similarly.

Corollary 3.4.3. Let ((Xi, Ti))ni=1 be strictly ergodic systems with measures (ρi)ni=1. For
j = 1, . . . , n let T̃j be the transformation on ∏

Xi defined as (T̃j)i = idXi if i 6= j and
(T̃j)j = Tj. Then the system (∏Xi, T̃1, . . . , T̃n) is strictly ergodic with measure ⊗ρi.

We are now ready to prove Theorem 3.4.1 for the case when the system is a product:

Proposition 3.4.4. Let (Y, σ) and (W, τ) be two strictly ergodic systems with unique
measures ρY and ρW . Then Qσ×id,id×τ (Y ×W ) is uniquely ergodic with measure νσ×id,id×τ ,
where ν = ρY ⊗ ρW . Particularly, (Qσ×id(Y ×W ),Gσ×id) is strictly ergodic with measure
νσ×id.

Proof. By definition, we deduce that

Qσ×id,id×τ (Y ×W ) = {((y, w), (y′, w), (y, w′), (y′, w′)) : y, y′ ∈ Y,w,w′ ∈ W}

and Gσ×id,id×τ is the group spanned by

(σ × id)× (σ × id)× (σ × id)× (σ × id)

(id× τ)× (id× τ)× (id× τ)× (id× τ)

(id× id)× (σ × id)× (id× id)× (σ × id)

(id× id)× (id× id)× (id× τ)× (id× τ).

We may identify Qσ×id,id×τ (Y ×W ) with Y × Y ×W ×W under the map φ

((y, w), (y′, w), (y, w′), (y′, w′)) 7→ (y, y′, w, w′).

We remark that Gσ×id,id×τ is mapped to the group spanned by

σ × σ × id× id, id× id× τ × τ, id× σ × id× id and id× id× id× τ.
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This is the same as the group spanned by

σ × id× id× id, id× id× τ × id, id× σ × id× id and id× id× id× τ.

By Corollary 3.4.3, this system is uniquely ergodic with measure ρY ⊗ ρY ⊗ ρW ⊗ ρW .
Since νσ×id,id×τ is an invariant measure on Qσ×id,id×τ (Y ×W ), we have that it is the unique
invariant measure and it coincides with φ−1(ρY ⊗ ρY ⊗ ρW ⊗ ρW ).

3.4.2. Proof of the general case

Throughout this section, we consider (X,µ, S, T ) as a fixed system which is magic,
ergodic and free, and we follow the notations in the previous section. By Lemma 3.3.3,
the factor associated to the σ-algebra W = IS ∨ IT has the form (Y ×W,σ × id, id× τ),
where (Y, σ) and (W, τ) are ergodic systems.

Lemma 3.4.5. There exists a strictly ergodic topological model for the factor map π : X →
Y ×W .

Proof. By the Jewett-Krieger Theorem, we can find strictly ergodic models (Ŷ , σ̂) and
(Ŵ , τ̂) for (Y, σ) and (W, τ), respectively. Let ρY and ρW denote the unique ergodic
measures on these systems. By Lemma 3.4.2, (Ŷ × Ŵ , σ̂ × id, id× τ̂) is a strictly ergodic
model for (Y ×W,σ × id, id× τ) with unique invariant measure ρY ⊗ ρW .

By Theorem 3.2.3, there exists a strictly ergodic model π̂ : X̂ → Ŷ × Ŵ for π : X →
Y ×W .

We are now ready to prove Theorem 3.4.1:

Proof of Theorem 3.4.1. For any free ergodic magic system (X,S, T ), let π : X → (Y ×
W,σ× id, id×τ) be the factor map associated to the σ-algebraW = IS∨IT . Let π̂ : X̂ →
Ŷ × Ŵ be the topological model given by Lemma 3.4.5. We claim that (QS,T (X̂),GS,T )
is strictly ergodic.

To simplify the notation, we replace X̂, Ŵ , Ŷ , etc by X, W , Y etc. It was proved in
Proposition 3.14 of [34] that (QS,T (X),GS,T ) is a minimal system. So it suffices to show
unique ergodicity.

Claim 1: (QS(X),GS) is uniquely ergodic with measure µS.
We recall that the factor of X corresponding to IS is (W, id, τ).
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Suppose that the ergodic decomposition of µ under S is

µ =
∫
W
µωdρW (ω).

Then

µS =
∫
W
µω × µωdρW (ω).

Let πW : X → W be the factor map and let λ be a GS-invariant measure on QS(X).
For i = 0, 1, let pi : (QS(X),GS) → (X,G) be the projection onto the i-th coordinate.
Then piλ is a G-invariant measure of X. Therefore, piλ = µ. Hence we may assume that

λ =
∫
X
δx × λxdµ(x)

is the disintegration of λ over µ. Since λ is (id× S)-invariant, we have that

λ = (id× S)λ =
∫
X
δx × λSxdµ(x).

The uniqueness of disintegration implies that λSx = λx for µ-a.e. x ∈ X. So the map

F : X →M(X) : x 7→ λx

is an S-invariant function. Hence we can write λx = λπW (x) for µ-a.e. x ∈ X.
Then we have

λ =
∫
X
δx × λxdµ(x) =

∫
X
δx × λπW (x)dµ(x)

=
∫
W

∫
X
δx × λωdµω(x)dρW (ω)

=
∫
W

(
∫
X
δxdµω(x))× λωdρW (ω)

=
∫
W
µω × λωdρW (ω).

Recall that Qid(W ) = ∆W and Gid is spanned by (τ, τ). Therefore (Qid(W ),Gid) is
isomorphic to (W, τ). Particularly, it is uniquely ergodic and for convenience we let PW
denote its invariant measure.

Let π2
Y : (QS(X),GS)→ (Qid(W ),Gid) be the natural factor map.

We have that
π2
W (λ) = PW .
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Thus

π(µω) = π(λω) = δω. (3.4.1)

On the other hand, p1(λ) = p2(λ) = µ implies that

µ =
∫
W
µωdρW (ω) =

∫
W
λωdρW (ω). (3.4.2)

By (3.4.1), (3.4.2) and the uniqueness of disintegration, we have that λω = µω, ρW -a.e.
ω ∈ W . So

λ =
∫
W
µω × µωdρW (ω) = µS.

This finishes the proof of Claim 1.

Claim 2: (QS,T (X),GS,T ) is uniquely ergodic with unique measure µS,T .

Let λ be a GS,T -invariant measure on QS,T (X). Let p1, p2 : (QS,T (X),GS,T )→ (QS(X),
GS) be the projection onto the first two and last two coordinates, respectively. Then piλ
is a GS-invariant measure of QS(X) and therefore, piλ = µS. Hence we may assume that

λ =
∫

QS(X)
δx × λxdµS(x)

is the disintegration of λ over µS. Since λ is (id× id× T × T )-invariant, we have that

λ = (id× id× T × T )λ =
∫

QS(X)
δx × λ(T×T )xdµS(x).

The uniqueness of disintegration implies that λ(T×T )x = λx for µS-a.e. x ∈ QS(X). So
the map

F : QS(X)→M(X4) : x 7→ λx

is a (T × T )-invariant function and therefore F is IT×T -measurable.

Let (ΩS,T , P ) be the factor of (X ×X,µS) corresponding to the subalgebra IT×T and
let φ denote the corresponding factor map. Suppose that the ergodic decomposition of
µS under T × T is

µS =
∫

ΩS,T
µS,ωdP (ω).
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Then

µS,T =
∫

ΩS,T
µS,ω × µS,ωdP (ω).

Hence we can write λx = λφ(x) for µS-a.e. x ∈ QS(X). Then we have

λ =
∫

QS(X)
δx × λxdµS(x) =

∫
QS(X)

δx × λφ(x)dµS(x)

=
∫

ΩS,T

∫
QS(X)

δx × λωdµS,ω(x)dP (ω)

=
∫

ΩS,T
(
∫

QS(X)
δxdµS,ω(x))× λωdP (ω)

=
∫

ΩS,T
µS,ω × λωdP (ω).

Recall that π : X → Y ×W is the factor map. Let

π4 : (QS,T (X),GS,T )→ (Qσ×id,id×τ (Y ×W ),Gσ×id,id×τ )

be the natural factor map. By Lemma 3.3.4, there exists a factor map α : (Y ×W )2 → ΩS,T

such that α ◦ π2 = φ2.

Let ν = ρY ⊗ ρW denote the unique invariant measure on Y ×W . By Proposition
3.4.4, we have that (QS,T (Y ×W ), Gσ×id,id×τ ) is uniquely ergodic and νS,T is its unique
invariant measure.

Suppose that the ergodic decomposition of νS under T × T is

νS =
∫

ΩS,T
νS,ωdP (ω).

Then we have
νS,T =

∫
ΩS,T

νS,ω × νS,ωdP (ω).

Since π4λ is an invariant measure on Qσ×id,id×τ (Y ×W ), we have that

π4(λ) = νS,T =
∫

ΩS,T
νS,ω × νS,ωdP (ω).

Since φ2 = α ◦ π2, we have that

φ2(µS,ω) = φ2(λω) = α(νS,ω) = δω. (3.4.3)
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On the other hand, p1(λ) = p2(λ) = µ implies that

µS =
∫

ΩS,T
µS,ωdP (ω) =

∫
ΩS,T

λωdP (ω). (3.4.4)

By (3.4.3), (3.4.4) and the uniqueness of disintegration, we have that λω = µS,ω, P -a.e.
ω ∈ ΩS,T . So

λ =
∫

ΩS,T
µS,ω × µS,ωdP (ω) = µS,T .

Thus (QS,T (X),GS,T ) is strictly ergodic with unique measure µS,T .

3.5. Applications to pointwise results

We apply results in previous sections to deduce some convergence results. We remark
that if Si is the identity for some i 6= 0, the averages we consider in this section reduce
to the Birkhoff ergodic theorem. So the difficult case is when the systems (X,µ, S)
and (X,µ, T ) are free, and we make this assumption throughout this section. Since the
averages we consider can be deduced by proving them in an extension of X, by Theorem
3.3.1 we may assume that (X,µ, S, T ) is a magic free ergodic system. By Theorem 3.4.1,
we may take a strictly topological model (X̂, Ŝ, T̂ ) for X such that (QS,T (X̂),G

Ŝ,T̂
) is

strictly ergodic. So (omitting the symbol ̂ to simplify notation), throughout all this
section we assume that (X,µ, S, T ) is a magic free ergodic system and that (QS,T (X),GS,T )
is strictly ergodic.

Theorem 3.5.1. Let f0, f1, f2, f3 ∈ L∞(µ). Then

lim
N→∞

1
N4

N−1∑
i,j,k,p=0

f0(SiT jx)f1(Si+kT jx)f2(SiT j+px)f3(Si+kT j+px)

converges almost everywhere to
∫
f0 ⊗ f1 ⊗ f2 ⊗ f3dµS,T .

Proof. Recall that GS,T is a Z4-action spanned by S×S×S×S, T×T×T×T , id×S×id×S
and id× id× T × T .

Let f0, f1, f2, f3 ∈ L∞(µ) and fix ε > 0. Let f̂0, f̂1, f̂2, f̂3 be continuous functions on X
such that ‖fi − f̂i‖1 < ε for i = 0, 1, 2, 3. We can assume that all functions are bounded
by 1 in L∞ norm. For simplicity, denote

I(h0, h1, h2, h3) =
∫
h0 ⊗ h1 ⊗ h2 ⊗ h3dµS,T
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and

EN(h0 ⊗ h1 ⊗ h2 ⊗ h3)(x) = 1
N4

N−1∑
i,j,k,p=0

h0(SiT jx)h1(Si+kT jx)h2(SiT j+px)h3(Si+kT j+px)

for x ∈ X, h0, h1, h2, h3 ∈ L∞(µ).
By the telescoping inequality

|EN(f0 ⊗ f1 ⊗ f2 ⊗ f3)(x)− I(f0, f1, f2, f3)|

≤
∣∣∣EN(f0 ⊗ f1 ⊗ f2 ⊗ f3)(x)− EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)

∣∣∣
+
∣∣∣EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)− I(f0, f1, f2, f3)

∣∣∣
≤ 1
N2

∑
i,j

|f0(SiT jx)− f̂0(SiT jx)|+ 1
N3

∑
i,j,k

|f1(Si+kT jx)− f̂1(Si+kT jx)|

+ 1
N3

∑
i,j,p

|f2(SiT j+px)− f̂2(SiT j+px)|+ 1
N4

∑
i,j,k,p

|f3(Si+kT j+px)− f̂3(Si+kT j+px)|

+
∣∣∣EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)− I(f̂0, f̂1, f̂2, f̂3)

∣∣∣+ ∣∣∣I(f0, f1, f2, f3)− I(f̂0, f̂1, f̂2, f̂3)
∣∣∣ .

Since (QS,T (X),GS,T ) is uniquely ergodic, we have that
∣∣∣EN(f̂0 ⊗ f̂1 ⊗ f̂2 ⊗ f̂3)(x)− I(f̂0, f̂1, f̂2, f̂3)

∣∣∣
converges to 0 for every x ∈ X as N goes to infinity.

On the other hand, by Birkhoff ergodic theorem, we have that the four first terms of
the last inequality converge a.e. to ‖f0 − f̂0‖1, ‖f1 − f̂1‖1, ‖f2 − f̂2‖1 and ‖f3 − f̂3‖1,
respectively.

Finally, using again the telescoping inequality and the fact that the marginals of µS,T
are equal to µ we deduce that
∣∣∣I(f0, f1, f2, f3)− I(f̂0, f̂1, f̂2, f̂3)

∣∣∣ ≤ ‖f0 − f̂0‖1 + ‖f1 − f̂1‖1 + ‖f2 − f̂2‖1 + ‖f3 − f̂3‖1.

Therefore, we can find N large enough and a subset XN ⊂ X with measure larger
than 1− ε such that for every x ∈ XN ,

|EN(f0 ⊗ f1 ⊗ f2 ⊗ f3)(x)− I(f0, f1, f2, f3)| ≤ 13ε.

Since ε is arbitrary, we conclude that EN(f0⊗f1⊗f2⊗f3) converges to I(f0, f1, f2, f3)
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a.e. as N goes to infinity.

Since (QS,T (X),GS,T ) is uniquely ergodic, we also have:

Lemma 3.5.2. Let f̂0, f̂1, f̂2, f̂3 be continuous functions on X. Then

1
N4

N−1∑
i,j=0

N−1−i∑
k=−i

N−1−j∑
p=−j

f̂0(SiT jx)f̂1(Si+kT jx)f̂2(SiT j+px)f̂3(Si+kT j+px)

converges to I(f̂0, f̂1, f̂2, f̂3).

Proof. Suppose that the averages does not converge to I(f̂0, f̂1, f̂2, f̂3). Then there exist
x ∈ X, a sequence Nm → ∞ and ε > 0 such that the Nm-average at x and the integral
differs at least ε. Take any weak∗-limit of the sequence

1
N4

Nm−1∑
i,j=0

Nm−1−i∑
k=−i

Nm−1−j∑
p=−j

(SiT j × Si+kT j × SiT j+p × Si+kT j+p)δ(x,x,x,x).

Such a limit is clearly invariant under GS,T and therefore it equals to µS,T by unique
ergodicity. Hence,

1
N4
m

Nm−1∑
i,j=0

Nm−1−i∑
k=−i

Nm−1−j∑
p=−j

f̂0(SiT jx)f̂1(Si+kT jx)f̂2(SiT j+px)f̂3(Si+kT j+px)

converges to I(f̂0, f̂1, f̂2, f̂3) as m goes to infinity, a contradiction.

For any N ∈ N, denote

AN := {(i, j, k, p) ∈ Z4 : i, j ∈ [0, N − 1], k ∈ [−i, N − 1− i], p ∈ [−j,N − 1− j]}.

Let (X,µ, S, T ) be a measure preserving system with commuting transformations S and
T . For any f ∈ L∞(X) and any x ∈ X, denote

SN(f, x) :=
∣∣∣∣ 1
N4

∑
(i,j,k,p)∈AN

f(SiT jx)f(Si+kT jx)f(SiT j+px)f(Si+kT j+px)
∣∣∣∣.

Lemma 3.5.3. Let (X,µ, S, T ) be a measure preserving system with commuting transfor-
mations S and T and let f1, f2, f3 ∈ L∞(X) with ‖fi‖∞ ≤ 1, i = 1, 2, 3. Then there exists
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a universal constant C, such that for any x ∈ X and any N ∈ N, we have that

( 1
N2

N−1∑
i=0

N−1∑
j=0

f1(Six)f2(T jx)f3(SiT jx)
)4
≤ C|SN(f3, x)|.

Proof. By Cauchy-Schwartz inequality and the boundedness of f1, the expression inside
the parenthesis on the left hand side is bounded by a multiple of the square of

1
N

N−1∑
i=0

( 1
N

N−1∑
j=0

f2(T jx)f3(SiT jx)
)2

= 1
N3

N−1∑
j=0

N−1−j∑
p=−j

N−1∑
i=0

f2(T jx)f2(T j+px)f3(SiT jx)f3(SiT j+px).
(3.5.1)

By Cauchy-Schwartz inequality and the boundedness of f2, the square of (3.5.1) is bounded
by a multiple of

1
N

N−1∑
j=0

1
N

N−1−j∑
p=−j

( 1
N

N−1∑
i=0

f3(SiT jx)f3(SiT j+px)
)2

= 1
N

N−1∑
j=0

1
N

N−1−j∑
p=−j

1
N

N−1∑
i=0

1
N

N−1−i∑
k=−i

f3(SiT jx)f3(SiT j+px)f3(Si+kT jx)f3(Si+kT j+px)

= SN(f3, x).

Now we are able to prove the main result:

Theorem. Let f1, f2, f3 ∈ L∞(µ). Then

lim
N→∞

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

converges a.e.

Proof. Wemay assume without loss of generality that all the functions are bounded by 1 in
L∞ norm. Suppose first that f3 = h3h

′
3, where h3 is measurable with respect to IT and h′3

is measurable with respect to IS. In this case, we have that f3(SiT jx) = h3(Six)h′3(T jx)
and thus

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx) = 1
N2

N−1∑
i,j=0

f1(Six)h3(Six)f2(T jx)h′3(T jx),
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and so the average converges by Birkhoff Theorem. Therefore the average converges
a.e. for any f3 in the subspace L spanned by those kind of functions. Any function f3

measurable with respect toW can be approximated in the L1 norm by functions in L. So,
for f3 measurable with respect to W we can take a sequence (gk)k∈N in L that converge
to f3 in L1 norm. By Birkhoff Theorem, there exists a set A of full measure such that

lim sup
N→∞

∣∣∣∣∣∣ 1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)(f3(SiT jx)− gk(SiT jx))

∣∣∣∣∣∣ ≤ ‖f3 − gk‖1

for every x ∈ A and k ∈ N. Again by Birkhoff Theorem, let B be a set of full measure
such that the average

1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)gk(SiT jx)

converges for all x ∈ B and all k ∈ N. It is easy to check that for x ∈ A ∩ B, the
sequence AN = 1

N2
∑N−1
i,j=0 f1(Six)f2(T jx)f3(SiT jx) forms a Cauchy sequence and therefore

it converges.
We then suppose that E(f3|W) = 0. Let ε > 0 and let f̂3 be a continuous function on

X such that ‖f3 − f̂3‖1 < ε. We have that
∣∣∣∣∣∣ 1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)(f3(SiT jx)− f̂3(SiT jx))

∣∣∣∣∣∣ ≤ 1
N2

N−1∑
i,j=0

∣∣∣f3(SiT jx)− f̂3(SiT jx)
∣∣∣ .

(3.5.2)
By Birkhoff Theorem, the right hand side converges a.e. to ‖f3 − f̂3‖1 as N goes to
infinity. On the other hand, by Lemma 3.5.3, we have

( 1
N2

N−1∑
i=0

N−1∑
j=0

f1(Six)f2(T jx)f̂3(SiT jx)
)4
≤ |SN(f̂3, x)|.

By Lemma 3.5.2, the right hand side converges to

∣∣∣∣∣∣∣∣∣f̂3

∣∣∣∣∣∣∣∣∣4
µ,S,T

≤
(∣∣∣∣∣∣∣∣∣f̂3 − f3

∣∣∣∣∣∣∣∣∣
µ,S,T

+ |||f3|||µ,S,T
)4
≤ ‖f3 − f̂3‖4

1 ≤ ε

as N goes to infinity. We deduce that a.e.

lim sup
N→∞

∣∣∣∣∣∣ 1
N2

N−1∑
i,j=0

f1(Six)f2(T jx)f3(SiT jx)

∣∣∣∣∣∣ ≤ 2ε.

Since ε is arbitrary, we have that this average goes to 0 a.e.
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Chapter 4

Enveloping semigroups of systems of
order d

This chapter is based on the work Enveloping semigroups of systems of order d [33],
published in the journal Discrete and Continuous Dynamical Systems. We study the Ellis
semigroup of a d-step nilsystem and the inverse limit of such systems. By using the
machinery of cubes developed by Host, Kra and Maass, we prove that such a system has
a d-step topologically nilpotent enveloping semigroup. In the case d = 2, we prove that
these notions are equivalent, extending a previous result by Glasner.

4.1. Introduction

In this chapter we consider a topological dynamical system (X,T ), meaning that
T : X → X is a homeomorphism of the compact metric space X to itself.

Several aspects of the dynamics of (X,T ) can be deduced from algebraic properties
of its enveloping semigroup E(X,T ). In particular, a topological dynamical system is a
rotation on a compact abelian group if and only if its enveloping semigroup is an abelian
group. Other interesting applications can be found in [7], [42] and [56].

In recent years the study of the dynamics of rotations on nilmanifolds and inverse
limits of this kind of dynamics has drawn much interest. In particular, we point to the
applications in ergodic theory [67], number theory and additive combinatorics (see for
example [57]).

We recall that a minimal topological dynamical system is a system of order d if it is
either a d-step nilsystem or an inverse limit of d-step nilsystems. It is revealed in [70] that
they are a natural generalization of rotations on compact abelian groups and they play an
important role in the structural analysis of topological dynamical systems. Particularly,
systems of order 2 are the correct framework to study Conze-Lesigne algebras [67].

In this chapter we are interested in algebraic properties of the enveloping semigroup of
a system of order d. A first question one can ask is if an enveloping semigroup is a d-step
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nilpotent group. Secondly, a deeper one : Does the property of having an enveloping
semigroup that is a d-step nilpotent group characterize systems of order d?

Even when E(X,T ) is a compact group, multiplication needs not to be a continuous
operation. For this reason we introduce the notion of topologically nilpotent group, which
is a stronger condition than algebraically nilpotent, and it is more convenient to establish
a characterization of systems of order d.

Using the machinery of cubes developed by Host, Kra and Maass [70], we prove:

Theorem 4.1.1. Let (X,T ) be a system of order d. Then, its enveloping semigroup is a
d-step topologically nilpotent group and thus it is a d-step nilpotent group.

Let A be an integer unipotent matrix (this means that (A− I)k = 0 for some k ∈ N)
and let α ∈ Td. Let X = Td and consider the transformation Tx = Ax + α. We recall
that the topological dynamical system (X,T ) is an affine d-step nilsystem. In [99] it was
proved that affine d-step nilsystems have nilpotent enveloping semigroups, and an explicit
description of those semigroups was given. Theorem 4.1.1 generalizes this for more general
systems, though does not give the explicit form of the enveloping semigroup.

The second question is more involved and has been tackled before by Glasner in [53].
There, in the case d = 2, he proved that when (X,T ) is an extension of its maximal
equicontinuous factor by a torus K, the following are equivalent:

1. E(X,T ) is a 2-step nilpotent group;

2. There exists a 2-step nilpotent Polish group G of continuous transformations of X,
acting transitively on X and there exists a closed cocompact subgroup Γ ⊆ G such
that: (i) T ∈ G, (ii) K is central in G, (iii) [G,G] ⊆ K and the homogeneous space
(G/Γ, T ) is isomorphic to (X,T ).

The assumption that K is a torus can be removed, but one only obtain an extension
of the system (X,T ) where condition (2) is satisfied.

We proved that systems satisfying condition (2) are actually systems of order 2 (but
not every system of order 2 needs to satisfy condition (2)). More generally we prove:

Theorem 4.1.2. Let (X,T ) be a minimal topological dynamical system. Then the fol-
lowing are equivalent:

1. (X,T ) is a system of order 2;

2. E(X,T ) is a 2-step topologically nilpotent group;
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3. E(X,T ) is a 2-step nilpotent group and (X,T ) is a group extension of an equicon-
tinuous system;

4. E(X,T ) is a 2-step nilpotent group and (X,T ) is an isometric extension of an
equicontinuous system.

We do not know if the condition of having a 2-step nilpotent enveloping semigroup by
itself is enough to guarantee that (X,T ) is a system is of order 2.

The natural question that arises from this result is the converse of Theorem 4.1.1 in
general:

Question 4.1.3. Let (X,T ) be a system with a d-step topologically nilpotent enveloping
semigroup with d > 2. Is (X,T ) a system of order d?

We recall a classical definition concerning factor and group extensions. Let (X,T )
be a topological dynamical system and suppose that we have a compact group U of
homeomorphism of X commuting with T (where U is endowed with the topology of
uniform convergence). The quotient space Y = X\U = {Ux : x ∈ X} is a metric
compact space and if we endow it with the action induced by T we get a topological
dynamical system. By definition, the quotient map from X to Y defines a factor map.
We say that (X,T ) is an extension of (Y, T ) by the group U .

Let (X,T ) and (Y, T ) be minimal topological dynamical systems and let π : X → Y

be a factor map. We say that (X,T ) is an isometric extension of (Y, T ) if for every y ∈ Y
there exists a metric dy in π−1(y)× π−1(y) with the following properties:

(i) (Isometry) If x, x′ ∈ π−1(y) then dy(x, x′) = dTy(Tx, Tx′).

(ii) (Compatibility of the metrics) If (xn, x′n) ∈ π−1(yn) and (xn, x′n)→ (x, x′) ∈ π−1(y)
then dyn(xn, x′n)→ dy(x, x′).

Since we work with groups which are also topological spaces (but not necessarily
topological groups), we can also consider a topological definition of nilpotent which is
more suitable for our purposes. Let G be a topological space with a group structure. For
A,B ⊆ G, we define [A,B]top as the closed subgroup spanned by {[a, b] : a ∈ A, b ∈ B}.
The topological commutators subgroups Gtop

j , j ≥ 1, are defined by setting Gtop
1 = G

and Gtop
j+1 = [Gtop

j , G]top. Let d ≥ 1 be an integer. We say that G is d-step topologically
nilpotent if Gtop

d+1 is the trivial subgroup.
Since Gj ⊆ Gtop

j for every j ≥ 1, we have that if G is d-step topologically nilpotent,
then G is also d-step nilpotent. In this sense Theorem 4.1.1 has stronger conclusions than
the previous known particular cases.

87



For a distal system, we let (Etop
j (X,T ))j∈N denote the sequence of topological com-

mutators of E(X,T ).
Let (X,T ) and (Y, T ) be topological dynamical systems and π : X → Y a factor map.

We recall that there is a unique continuous semigroup homomorphism π∗ : E(X,T ) →
E(Y, T ) such that π(ux) = π∗(u)π(x) for all x ∈ X and u ∈ E(X,T ).

Note that if π : X → Y is a factor map between distal systems, we have that

π∗(Etop
j (X,T )) = Etop

j (Y, T ) for every j ≥ 1.

4.2. Enveloping semigroups of systems of order d

In this section we prove Theorem 4.1.1. We introduce some notation.
Let d ≥ 1 be an integer. For 0 ≤ j ≤ d, let J ⊂ [d], with cardinality d − j and let

η ∈ {0, 1}J . The subset

α = {ε ∈ {0, 1}d : εi = ηi for every i ∈ J} ⊆ {0, 1}d

is called a face of dimension j or equivalently, a face of codimension d− j.
Given u : X → X, d ∈ N and α ⊆ {0, 1}d a face of a given dimension, we define

u[d]
α : X [d] → X [d] as

u[d]
α x =

 (u[d]
α x)ε = uxε, ε ∈ α;

(u[d]
α x)ε = xε, ε 6∈ α.

Our theorem follows from the following lemma.

Lemma 4.2.1. Let (X,T ) be a distal topological dynamical system and let E(X,T ) be its
enveloping semigroup. Then, for every d, j ∈ N with j ≤ d and u ∈ Etop

j (X,T ), we have
that Q[d](X) is invariant under u[d]

α for every face α of codimension j.

Proof. Let d ∈ N. Let u ∈ E(X,T ) and let (ni) be a net with T ni → u pointwise. Let
α be a face of codimension 1. Since Q[d](X) is invariant under T [d]

α , it is also invariant
under (T niα )[d] for every i. Since Q[d](X) is closed and (T niα )[d] → u[d]

α we get that Q[d](X)
is invariant under u[d]

α . Let 1 < j ≤ d and suppose that the statement is true for every
i < j. Let α be a face of codimension j. We can see α as the intersection of a face
β of codimension j − 1 and a face γ of codimension 1. Let uj−1 ∈ Etop

j−1(X,T ) and
v ∈ E(X,T ) and remark that [uj−1, v][d]

α = [(uj−1)[d]
β , v

[d]
γ ]. Since (uj−1)[d]

β and v[d]
γ leave

invariant Q[d](X), so does [uj−1, v][d]
α .
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As Q[d](X) is closed, Eα = {u ∈ E(X,T ) : u[d]
α leaves invariant Q[d](X)} is a closed

subgroup of E(X,T ) and contains the elements of the form [uj−1, v] for uj−1 ∈ Etop
j−1(X,T ),

v ∈ E(X,T ). We conclude that Etop
j (X,T ) ⊆ Eα, completing the proof.

We use this to prove Theorem 4.1.1:

Proof of Theorem 4.1.1. Let (X,T ) be a system of order d. Recall that E(X,T ) is a
group since (X,T ) is a distal system. Let u ∈ Etop

d+1(X,T ) and x ∈ X. By Lemma 4.2.1
we have that (x, . . . , x, ux) ∈ Q[d+1](X) and by Theorem 1.3.4 we have that ux = x. Since
x and u are arbitrary, we conclude that Etop

d+1(X,T ) is the trivial subgroup.

4.3. Proof of Theorem 4.1.2

We start with some lemmas derived from the fact that E(X,T ) is topologically nilpo-
tent.

Lemma 4.3.1. Let (X,T ) be a distal minimal topological dynamical system. Then the
center of E(X,T ) is the group of elements of E(X,T ) which are continuous.

Proof. Since T commutes with every element of E(X,T ) it is clear that every continuous
element of E(X,T ) belongs to the center of E(X,T ). Conversely, let u be in the center of
E(X,T ) and x0 ∈ X. We prove that u is continuous at x0. Suppose this is not true, and
let xn → x0 with u(xn)→ x′ 6= u(x0). By minimality, we can find un ∈ E(X,T ) such that
un(x0) = xn. For a subnet we have that un → v and v(x0) = x0. Since u is central, we
have u(xn) = u(un(x0)) = un(u(x0))→ v(u(x0)) = u(v(x0)) = u(x0), a contradiction.

Recall the following classical theorem:

Theorem 4.3.2. (See [7], Chapter 4) Let G be a group of homeomorphisms of a compact
Hausdorff space X and suppose that G is compact in the pointwise topology. Then, the
action of G on X is equicontinuous.

A direct consequence is:

Corollary 4.3.3. Let (X,T ) be distal topological dynamical system. If E(X,T ) is d-step
topologically nilpotent, then Etop

d (X,T ) is a compact group of automorphisms of (X,T ) in
the uniform topology.
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Proof. If E(X,T ) is d-step topologically nilpotent, then Etop
d (X,T ) is a compact group (in

the pointwise topology) and by definition is included in the center of E(X,T ), meaning
that every element is an automorphism of (X,T ). By Theorem 4.3.2, Etop

d (X,T ) is a
compact group of automorphisms in the uniform topology.

If a system has a 2-step topologically nilpotent enveloping semigroup we can describe
the extension of its maximal equicontinuous factor.

For this, first we give a short proof of [106] in our context.

Theorem 4.3.4. Let π : X → Y be a distal finite-to-one factor map between the min-
imal systems (X,T ) and (Y, T ). Then (Y, T ) is equicontinuous if and only if (X,T ) is
equicontinuous.

Proof. We prove the non trivial direction by studying the regionally proximal relation on
X. We denote by dX and dY the metrics on X and Y . We can assume that T is an
isometry on Y . Since π is open and finite-to-one, there exists ε0 > 0 such that for every
y ∈ Y every ball of radius 2ε0 in X intersects π−1(y) in at most one point. Let ε1 < ε0

such that T (B(x, ε1)) ⊆ B(Tx, ε0). Since π is open, there exists δ > 0 with the property
that if y, y′ ∈ Y are such that dY (y, y′) < δ then there exists x, x′ ∈ X with dX(x, x′) < ε1

and π(x) = y, π(x′) = y′. Let 0 < ε < ε1 such that π(B(x, ε)) ⊆ B(π(x), δ). Let (x, x′)
be a regionally proximal pair, and let x′′ ∈ X and n0 ∈ N satisfying dX(x, x′′) < ε and
dX(T n0x′, T n0x′′) < ε. We have that dY (T nπ(x), T nπ(x′′)) = dY (π(T nx), π(T nx′′)) < δ

for every n ∈ N and by openness, we can find xn ∈ X such that π(xn) = π(T nx) and
dX(xn, T nx′′) < ε1.

We claim that xn = T nx. We proceed by induction. For n = 0 we have dX(x0, x) <
2ε0, π(x) = π(x0) and thus x = x0. Suppose now that xn = T nx. We have that
dX(T nx, T nx′′) < ε1 and then dX(T n+1x, T n+1x′′) < ε0. We conclude that dX(xn+1, T

n+1x)
< 2ε0, and since they have the same projection, they are equal. This proves the claim.

Particularly, for n = n0, we have dX(T n0x, T n0x′) < 2ε0 and since they are regionally
proximal, they have the same projection and thus x = x′. We conclude that the regionally
proximal relation is trivial and (X,T ) is equicontinuous.

Lemma 4.3.5. Let (X,T ) be a topological dynamical system with a 2-step topologically
nilpotent enveloping semigroup. Then, it is an extension of Z1(X) by the compact abelian
group Etop

2 (X,T ). Moreover, Etop
2 (X,T ) is connected.

Proof. By Corollary 4.3.3 we have that Etop
2 (X,T ) is a compact group of automorphisms

of (X,T ) and by Lemma 4.2.1 it acts trivially in every equicontinuous factor, meaning
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that there exists a factor map from Z = X\Etop
2 (X,T ) to Z1(X). Denote by π the factor

map from X to Z and note that if u ∈ Etop
2 (X,T ), then π(x) = π(ux) = π∗(u)π(x) for

every x ∈ X and therefore π∗(u) is trivial. Since e = π∗(Etop
2 (X,T )) = Etop

2 (Z, T ), we
conclude that Z has an abelian enveloping semigroup and thus it is an equicontinuous
factor. By maximality Z1(X) = X\Etop

2 (X,T ).
If Etop

2 (X,T ) is not connected, there exists an open (hence closed) subgroup U ⊆
Etop

2 (X,T ) such that Etop
2 (X,T )/U is isomorphic to Z/nZ for some n > 1. Note thatX\U

is a finite-to-one extension of Z1(X) and therefore by Theorem 4.3.4 it is an equicontinuous
system. By maximality we get that X\U = Z1(X), a contradiction.

This lemma establish the implication (2) ⇒ (3) of Theorem 4.1.2. A direct corollary
is:

Corollary 4.3.6. Let (X,T ) be a system of order 2. Then, it is an extension of its
maximal equicontinuous factor by the compact connected abelian group Etop

2 (X,T ).

We now prove the main implication in Theorem 4.1.2, namely implication (2)⇒ (1).

Proof of implication (2)⇒ (1) . We divide the proof into four parts. The first two parts
follow, with some simplifications, the scheme proposed in [53], but the second two parts
are new.

Step 1: Building a suitable extension of (X,T ).
Let (X,T ) be a topological dynamical system with a 2-step topologically nilpotent

enveloping semigroup. By Lemma 4.3.5, (X,T ) is an extension of (Z1(X), T ) by the
compact abelian group Etop

2 (X,T ). We denote this factor map by π. In order to avoid
confusions, we denote the element of Z1(X) defining the dynamics by τ (instead of T ).
Let Ẑ1 be the dual group of Z1(X). Since {τn : n ∈ Z} is dense in Z1(X) every χ ∈ Ẑ1

is completely determined by its value at τ and thus we can identify Ẑ1 with a discrete
subgroup of S1. Consider Ẑ∗ = {λ ∈ S1 : ∃n ∈ N, λn ∈ Ẑ1}, the divisible group generated
by Ẑ1. It is a discrete subgroup of S1, and we can consider its compact dual group Z∗ = ̂̂

Z∗.
Since Ẑ∗ is a subgroup of the circle, Z∗ is a monothetic group with generator the identity
character τ ∗: Ẑ∗ → S. Since Ẑ1 ⊆ Ẑ∗, there exists a homomorphism φ : Z∗ → Z1(X).
Since τ ∗ is projected to τ , φ also defines a factor map from (Z∗, τ ∗) to (Z1(X), τ). Consider
(X∗, T × τ ∗) a minimal subsystem of

({(x, z∗) ∈ X × Z∗ : π(x) = φ(z∗)}, T × τ ∗).
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It is an extension of (X,T ) and (Z∗, τ ∗) and we can see E(X∗, T × τ ∗) as a subset of
E(X,T ) × E(Z∗, τ ∗) = E(X,T ) × Z∗. It follows that Etop

2 (X∗, T × τ ∗) = Etop
2 (X,T ) ×

{e} and E(X∗, T × τ ∗) is 2-step topologically nilpotent. By Lemma 4.3.5 we have that
Z1(X∗) = X∗\Etop

2 (X∗, T × τ ∗) = Z∗.

Step 2: Finding a transitive group in X∗.
For simplicity we denote the transformation on X∗ by T ∗. Let (x0, x1) ∈ X∗ × X∗.

We construct a homeomorphism h of X∗ such that h(x0) = x1. For this, define Y as the
closed orbit of (x0, x1) under T ∗ × T ∗. Since (X∗, T ∗) is distal, (Y, T ∗ × T ∗) is a minimal
distal system and E(Y, T ∗ × T ∗) = E(X∗, T ∗)4 := {(u, u) : u ∈ E(X∗, T ∗)} (and we can
identify E(X∗, T ∗) and E(Y, T ∗×T ∗)). It follows that E(Y, T ∗×T ∗) is 2-step topologically
nilpotent and by Lemma 4.3.5 Z1(Y ) = Y \Etop

2 (Y, T ∗ × T ∗) = Y \Etop
2 (X∗, T ∗)4.

We obtain the following commutative diagram:

(Y, T ∗ × T ∗)
pY
��

π1
// (X∗, T ∗)
pX∗

��
(Z1(Y ), τY ∗) ρ

// (Z∗, τ ∗)

Since Z∗ has a divisible dual group, we can identify Z1(Y ) as a product group Z∗×G0

and we can write pY (x, x′) = (pX∗(x),Θ(x, x′)) with Θ(x, x′) ∈ G0. Since Z1(Y ) is a
product group, there exists g0 ∈ G0 such that τ ∗Y = τ ∗ × g0. We remark that if (x, x′)
and (x, x′′) ∈ Y then (x, x′) = u(x, x′′) for some u ∈ E(X∗, T ∗). Writing x′ = vx for
v ∈ E(X∗, T ∗) we deduce that x′′ = [u, v]x′. From this, we deduce that G0 = {id × u :
u ∈ Etop

2 (X∗, T ∗), (id× u)Y = Y }.
For x ∈ X∗, define h(x) as the unique element in X∗ such that

(x, h(x)) ∈ Y and pY (x, h(x)) = (pX∗(x), e). (4.3.1)

By multiplying the second coordinate by a constant, we can suppose that pY (x0, x1) =
(pX∗(x), e) and thus h(x0) = x1.

Claim 1: h is a homeomorphism of X∗:

If xn → x ∈ X∗, then pY (xn, h(xn)) = (pX∗(xn), e)→ (pX∗(x), e) = pY (x, h(x)) and
h is continuous (if pY (x, x′) = pY (x, x′′) then x′ = x′′).

If h(x) = h(x′) then (x, h(x)) and (x′, h(x)) belong to Y and then x′ = ux for
u ∈ Etop

2 (X∗, T ∗). We have that pY (x′, h(x)) = (pX∗(x), e) = pY (x, h(x)) and thus
x = x′.
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If x′ ∈ X∗, we can find x ∈ X such that (x, x′) ∈ Y and pY (x, x′) = (pX∗(x),Θ(x, x′)).
It follows that pY (x, x′) = (id × Θ(x, x′))(pX∗(x), e) and pY (Θ−1(x, x′)x, x′) =
(pX∗(Θ−1(x, x′)x), e). By definition h(Θ−1(x, x′)x) = x′ and therefore h is onto.
This proves the claim.

Claim 2: h commutes with Etop
2 (X∗, T ∗):

For u ∈ Etop
2 (X∗, T ∗) we have that pY (ux, uh(x)) = pY (x, h(x)) = (pX∗(x), e) =

(pX∗(ux), e) = pY (ux, h(ux)) and we deduce that h commutes with Etop
2 (X∗, T ∗).

Claim 3: [h, T ∗] = g0 ∈ Etop
2 (X∗, T ∗):

By a simple computation we have that

pY (T ∗x, T ∗h(x)) = τ ∗Y (pY (x, h(x))) = (pX∗(Tx), g0) = (pX∗(T ∗x), g0h(T ∗x))

and T ∗h = g0hT
∗. This proves the claim.

Define G as the group of homeomorphisms h of X∗ such that

[h, T ∗] ∈ Etop
2 (X∗, T ∗) and h commutes with Etop

2 (X∗, T ∗). (4.3.2)

Then, for every pair of points in X∗ ×X∗ we can consider a homeomorphism h as in
(4.3.1) and this transformation belongs to G. Thus G is a group acting transitively on
X∗.

Let Γ be the stabilizer of a point x0 ∈ X∗. We can identity (as sets) X∗ and G/Γ.

Step 3: The application g → gx0 is open
Claim 4: There exists a group homomorphism p : G → Z∗ such that p(g)pX∗(x) =

pX∗(gx).
Since Etop

2 (X∗, T ∗) is central inG, we have gpX∗(x) = gEtop
2 (X∗, T ∗)x= Etop

2 (X∗, T ∗)gx
and so the action of g ∈ G can descend to an action p(g) in X∗\Etop

2 (X∗, T ∗) = Z∗. By
definition this action satisfies p(g)pX∗(x) = pX∗(gx) and p(T ∗) = τ ∗. From this, we can
see that p(g) commutes with τ ∗ and thus p(g) belongs to Z∗. Particularly, if h1, h2 ∈ G,
we have that p([h1, h2]) is trivial and then [h1, h1]x0 = ux0 for some u ∈ Etop

2 (X∗, T ∗).
By (4.3.2), [h1, h2] commutes with T ∗ and thus [h1, h2] coincides with u in every point.
Therefore [G,G] ⊆ Etop

2 (X∗) and thus G is a 2-step nilpotent Polish group. Since G is
transitive in X∗ we can check that p is an onto continuous group homomorphism. This
proves the claim.

Since G and Z∗ are Polish groups and p is onto, we have that p is an open map and
the topology of Z∗ coincides with the quotient topology of G/Ker(p) = G/Etop

2 (X∗, T ∗)Γ
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(see [11], Chapter 1, Theorem 1.2.6).
Now we prove that the map g → gx0 is open. Consider a sequence gn ∈ G such that

gnx0 is convergent in X∗. Projecting to Z∗ we have that p(gn)pX∗(x0) is convergent and
taking a subsequence we can assume that p(gn) is convergent in Z∗. Since p is open,
we can find a convergent sequence hn ∈ G such that p(gn) = p(hn). This implies that
pX∗(gnx0) = pX∗(hnx0) and therefore there exists un ∈ Etop

2 (X∗, T ∗) such that gnx0 =
unhnx0. By the compactness of Etop

2 (X∗, T ∗) we can assume that un is convergent and
unhn is convergent too. This proves that the map is open.

Step 4: Cubes of order 3 in X∗ are completed in a unique way.
Let consider a sequence ~ni = (ni,mi, pi) ∈ Z3 such that T ∗~ni·εx0 → x0 for every ε 6= ~1.

We prove that T ∗~ni·~1x0 → x0. We see every transformation T ∗~ni·ε as an element of G.
Since the application g → gx0 is open, taking a subsequence, we can find hi, h′i, h′′i in G,
converging to h, h′, h′′ ∈ G such that T ∗nix0 = hix0, T ∗mix0 = h′ix0 and T ∗pix0 = h′′i x0.

We have that

T ∗ni+mix0 = T ∗nih′ix0 = [T ∗ni , h′i]h′ihix0

T ∗ni+pix0 = T ∗nih′′i x0 = [T ∗ni , h′′i ]h′′i hix0

T ∗mi+pix0 = T ∗mih′′i x0 = [T ∗mi , h′′i ]h′′i h′ix0

T ∗ni+mi+pix0 = [T ∗mi , h′′i ][T ∗
ni , h′′i ][T ∗

ni , h′i]h′′i h′ihix0.

Since [G,G] is included in Etop
2 (X∗, T ∗), by taking a subsequence we can assume

that [T ∗ni , h′i] → g1, [T ∗ni , h′′i ] → g2 and [T ∗mi , h′′i ] → g3 and these limits belong to
Etop

2 (X∗, T ∗). Taking limits we conclude that g1x0 = g2x0 = g3x0 = x0 and since these
transformations commute with T ∗, we have that they are trivial.

We conclude that lim
i→∞

T ∗ni+mi+pix0 = x0 and thus (x0, x0, x0, x0, x0, x0, x0) ∈ (X∗)7

can be completed in a unique way to an element of Q[3](X∗). If π2 is the factor map
from X∗ to Z2(X∗), we have that #π−1

2 (π2(x0)) = 1 and since (X∗, T ∗) is distal, the
same property holds for every element in X∗. We conclude that X∗ = Z2(X∗) and thus
(X∗, T ∗) is a system of order 2.

Since being a system of order 2 is a property preserved under factor maps, (X,T ) is
a system of order 2.

We have established (1)⇔ (2) and (2)⇒ (3). Since implication (3)⇒ (4) is obvious,
we only have to prove (4)⇒ (2).

For this, we first prove the following lemma:
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Lemma 4.3.7. Let π : X → Y be an isometric extension between the minimal distal
systems (X,TX) and (Y, TY ). Then, there exists a minimal distal system (W,TW ) which
is a group extension of X and a group extension of Y . If E(X,TX) is d-step nilpotent
then E(W,TW ) is also d-step nilpotent.

Proof. Fix y0 ∈ Y and let F0 = π−1(y0). Define

Z̃ = {(y, h) : y ∈ Y, h ∈ Isom(F0, π
−1(y))}

It is compact metrizable space and we can define T
Z̃

: Z̃ → Z̃ as T
Z̃

(y, g) = (TY (y), TX ◦
h). We remark that (Z̃, T

Z̃
) is a distal system and we can see E(Z̃, T

Z̃
) as a subset of

E(Y, TY )× E(X,TX). It follows that E(Z̃, T
Z̃

) is d-step nilpotent.
Let H denote the compact group of isometries of F0 which are restrictions of elements

of E(X,TX). We define the action of H on Z̃ as g(y, h) = (y, h ◦ g−1) and we define the
maps πY (y, h) = y and πX(y, h) = h(x0) from Z̃ to X and Y . Define W as the orbit of
(y0, id) under T

Z̃
and let TW denote the restriction of T

Z̃
to W . Since (Z̃, T

Z̃
) is a distal

system, (W,TW ) is a minimal system and therefore the restrictions of πY and πX define
factor maps from (W,TW ) to (Y, TY ) and (X,TX). Since (X,TX) is a distal system we have
that (E(X,TX), TX) is a minimal system and we have that {y0} ×H ⊆ W . We conclude
that (W,TW ) is an extension of (Y, TY ) by the group H and thus it is an extension of
(X,T ) by the group H0 = {h ∈ H : h(x0) = x0}. Since (W,TW ) is a subsystem of (Z̃, T

Z̃
),

we also have that E(W,TW ) is d-step nilpotent. The lemma is proved.

Now we prove the implication (4)⇒ (2).

Proof of implication (4)⇒ (2). Let (X,T ) be system with a 2-step nilpotent enveloping
semigroup and let π : X → Y be an isometric extension of the equicontinuous system
(Y, T ). By Lemma 4.3.7 we can find (W,T ) which is an extension of (Y, T ) by a group H
and such that E(W,T ) is a 2-step nilpotent group. By Lemma 4.2.1, for u ∈ E2(W,T )
and w ∈ W we have that uw and w have the same projection on Y and therefore there
exists hw ∈ H such that uw = hww. Since u and hw are automorphisms of the minimal
system (W,T ), they are equal. Thus we have that E2(W,T ) is a subgroup of H and
therefore Etop

2 (W,T ) is just the closure (pointwise or uniform) of E2(W,T ). We conclude
that Etop

2 (W,T ) is included in H and therefore is central in E(W,T ). Since (X,T ) is a
factor of (W,T ), Etop

2 (X,T ) is also central in E(X,T ). This finishes the proof.
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4.4. Some further comments

We finish with some remarks about the structure of systems having topologically
nilpotent enveloping semigroups.

Let (X,T ) be a topological dynamical system and let d > 2. Suppose that E(X,T ) is
a d-step topologically nilpotent group. By Corollary 4.3.3 Etop

d (X,T ) is a compact group
of automorphisms of (X,T ) and thus we can build the quotient Xd−1 = X\Etop

d (X,T ).

Lemma 4.4.1. Xd−1 has a (d − 1)-step topologically nilpotent enveloping semigroup.
Moreover it is the maximal factor of X with this property and consequently (Xd−1, T ) is
an extension of (Zd−1(X), T )

Proof. Denote by π : X → Xd−1 the quotient map. If u ∈ Etop
d (X,T ), by definition we

have that π(x) = π(ux) = π∗(u)π(x) and thus π∗(u) is trivial. Since π∗(Etop
d (X,T )) =

Etop
d (Xd−1, T ) we have that Etop

d (Xd−1, T ) is trivial.
Let (Z, T ) be a topological dynamical system with a (d−1)-step topologically nilpotent

enveloping semigroup and let φ : X → Z be a factor map. Since φ∗(Etop
d (X,T )) = e, for

u ∈ Etop
d (X,T ) we have that φ(ux) = φ∗(u)φ(x) = φ(x) and therefore φ can be factorized

through Xd−1.
As Zd−1(X) has a (d − 1)-step enveloping semigroup, we have that (Xd−1, T ) is an

extension of (Zd−1(X), T ).

Iteratively applying Lemma 4.4.1, we construct a sequence of factors Xj, for j ≤ d−1
with the property that Xj is an extension of Zj(X) and is an extension of Xj−1 by the
compact abelian group Etop

j (Xj, T ).
By Theorem 4.1.2, the factors X2 and Z2(X) coincide and we obtain the following

commutative diagram:

(X, T ) //

��

(Xd−1, T )

��

// · · · // (X3, T )

&&NN
NNN

NNN
NNN

����
(Zd(X), T ) // (Zd−1(X), T ) // // · · · // (Z3(X), T ) // (Z2(X), T ) // (Z1(X, T )

We conjecture that the factor Xj and Zj(X) also coincide for j > 2.
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Part II

Automorphism groups of symbolic
systems
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Chapter 5

Automorphism groups of low
complexity symbolic systems

This chapter is mostly based on the article On automorphism groups of low complex-
ity minimal subshifts [36], joint work with Fabien Durand, Alejandro Maass and Samuel
Petite, accepted for publication in the journal Ergodic Theory and Dynamical Systems.
We study the automorphism group Aut(X, σ) of a minimal subshift (X, σ) of low word
complexity. In particular, we prove that Aut(X, σ) is virtually Z for aperiodic minimal
subshifts with affine complexity on a subsequence, more precisely, the quotient of this group
by the one generated by the shift map is a finite group. In addition, we provide examples
to show that any finite group can be obtained in this way. The class considered includes
minimal substitutions, linearly recurrent subshifts and even some minimal subshifts with
polynomial complexity. In the case of polynomial complexity, first we prove that for min-
imal subshifts with polynomial recurrence any finitely generated subgroup of Aut(X, σ) is
virtually nilpotent. Then, we describe a variety of examples where we illustrate how to
apply the methods we propose in this work to study automorphism groups. Some of the ex-
amples have polynomial complexity and are obtained by coding some nilrotations. Another
ones are subshifts with subaffine complexity on a subsequence, but with a superpolynomial
complexity. In all these examples we get a virtually Z group of automorphisms. The
main technique in this work relies on the study of classical relations among points used in
topological dynamics, in particular asymptotic pairs.

In the last section we present a section of the article presented in Chapter 2, where
we use the QS,T cubes to study the group of automorphisms of the minimal part of the
Robinson tiling.

5.1. Introduction

We recall that an automorphism of a topological dynamical system (X,T ), where
T : X → X is a homeomorphism of the compact metric space X, is a homeomorphism
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from X to itself which commutes with T . We call Aut(X,T ) the group of automorphisms
of (X,T ). There is a similar definition for measurable automorphisms when we consider
an invariant measure µ for the system (X,T ) or a general measure preserving system.
The group of measurable automorphisms is historically denoted by C(T ) that stands for
the centralizer group of (X,µ, T ).

The study of automorphism groups is a classical and widely considered subject in
ergodic theory. The group C(T ) has been intensively studied for mixing systems of finite
rank. We refer to [43] for an interesting survey. Let us mention some key theorems.
Ornstein proved in [94] that a mixing rank one dynamical system (X,µ, T ) has a trivial
(measurable) automorphism group: it consists of powers of T . Later, del Junco [31]
showed that the famous weakly mixing (but not mixing) rank one Chacon subshift also
shares this property. Finally, for mixing systems of finite rank King and Thouvenot proved
in [79] that C(T ) is virtually Z. That is, its quotient by the subgroup 〈T 〉 generated by
T is a finite group.

In the non weakly mixing case, Host and Parreau [74] proved, for a family of constant
length substitution subshifts, that C(σ) is also virtually Z and equals to Aut(X, σ), where
σ is the shift map. Concomitantly, Lemańczyk and Mentzen [84] realized any finite group
as the quotient of C(σ) by 〈σ〉 with constant length substitution subshifts.

Priorly to these results, in the topological setting Hedlund in [61] described the auto-
morphism groups for a family of binary substitutions including the Thue-Morse subshift.
Precisely, he proved that Aut(X, σ) is generated by the shift and a flip map (a map which
interchanges the letters). In the positive entropy situation, Boyle, Lind and Rudolph
[17] obtained that the group of automorphisms of mixing subshifts of finite type contains
various subgroups, so this group is large in relation to previous examples.

In this work we focus on the group of automorphisms Aut(X, σ) of minimal subshifts of
subaffine complexity and, more generally, on zero entropy subshifts without assuming any
mixing condition. All evidence described before in the measurable and topological context
shows that we must expect that low complexity systems have a simple automorphism
group. This is one of the main questions we want to address in this paper. Here, by
complexity we mean the increasing function pX : N → N that for n ∈ N counts the
number of words of length n appearing in points of the subshift.

Recently Salo and Törmä in [107] proved that for subshifts generated by constant
length or primitive Pisot substitutions the group of automorphisms is virtually Z. This
generalizes a result of Coven for constant length substitutions on two letters [28]. In [107]
is asked whether the same result holds for any primitive substitution or more generally
for linearly recurrent subshifts. In this paper we answer positively this question, proving
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the following more general theorem whose proof is given in Section 5.3.

Theorem 5.1.1. Let (X, σ) be an aperiodic minimal subshift. If

lim inf
n∈N

pX(n)
n

<∞

then Aut(X, σ) is virtually Z.

The class of systems satisfying the condition of Theorem 5.1.1 includes primitive sub-
stitutions, linearly recurrent subshifts [39] and more generally subaffine complexity sub-
shifts or even some families with polynomial complexity (see Section 5.4). In addition, we
illustrate this by realizing any finite group as the quotient group Aut(X, σ)/〈σ〉, where
(X, σ) is a substitutive subshift. We observe that this result can be obtained combining
the main results of [74] and [84] but we prefer to present here a different and straightfor-
ward proof.

Extending Theorem 5.1.1 for subshifts of polynomial complexity seems to be more
intriguing. Nevertheless, several classes of examples still show that Aut(X, σ) has small
growth rate. Indeed, in Sections 5.3 and 5.4 we give classes of minimal subshifts with
polynomial complexity where Aut(X, σ) is virtually nilpotent (Theorem 5.3.8) and in
most cases the finite group is abelian. Also, very recently, Cyr and Kra [29] proved the
fact that for transitive subshifts with subquadratic complexity Aut(X, σ)/〈σ〉 is periodic,
meaning that any element in this group has finite order.

Their proof translates the question into a coloring problem of Z2 and uses a deep com-
binatorial result of Quas and Zamboni [101]. Our results arise from obstructions related
to some classical and some less classical equivalence relations associated to fibers of special
topological factors. This idea was already used by Olli in [93] to prove that Aut(X, σ) of
Sturmian subshifts consists only in powers of the shift by studying the irrational rotation
defining the subshift. Here, we consider the maximal nilfactor ([70],[110]) of a minimal
subshift to find a class of examples with arbitrarily big polynomial complexity whose
group of automorphisms is virtually Z.
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5.2. Preliminaries, notation and background

5.2.1. Topological dynamical systems

Let (X,T ) be a topological dynamical system. We say that x, y ∈ X are proximal if
there exists a sequence (ni)i∈N in Z such that

lim
i→+∞

d(T nix, T niy) = 0.

A stronger condition than proximality is asymptoticity. Two points x, y ∈ X are said to
be asymptotic if

lim
n→+∞

d(T nx, T ny) = 0.

Nontrivial asymptotic pairs may not exist in an arbitrary topological dynamical system
but it is well known that a nonempty aperiodic subshift always admits one [7].

Let π : (Y, T ) → (X,T ) be a factor map. We say that (Y, T ) is a proximal extension
of (X,T ) if for y, y′ ∈ Y the condition π(y) = π(y′) implies that y, y′ are proximal. For
minimal systems, (Y, T ) is an almost one-to-one extension of (X,T ) via the factor map
π : (Y, T ) → (X,T ) if there exists x ∈ X with a unique preimage for the map π. The
relation between these two notions is given by the following folklore lemma.

Lemma 5.2.1. Let (Y, T ) be an almost one-to-one extension of (X,T ) via the factor map
π : (Y, T )→ (X,T ). Then, (Y, T ) is a proximal extension of (X,T ).

Proof. Let x0 ∈ X be a point with a unique preimage by π and consider points y, y′ ∈ Y
such that π(y) = π(y′). By minimality of (X,T ), there exists a sequence (ni)i∈N in Z
such that T ni(π(y)) (= T ni(π(y′))) converges to x0 as i goes to infinity. By continuity
of π and since T commutes with π, the sequences (T niy)i∈N and (T niy′)i∈N converge to
the same unique point in the preimage of x0 by π. This shows that points y and y′ are
proximal.

We recall that an automorphism of the topological dynamical system (X,T ) is a
homeomorphism φ of the space X such that φ ◦ T = T ◦ φ. We let Aut(X,T ) denote the
group of automorphisms of (X,T ). We have,

Lemma 5.2.2. Let (X,T ) be a minimal topological dynamical system. Then, the action
of Aut(X,T ) on X is free, meaning that every nontrivial element in Aut(X,T ) has no
fixed points.
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Proof. Take φ ∈ Aut(X,T ) and x ∈ X such that φ(x) = x. Since φ commutes with T

and is continuous, by minimality we deduce that φ(y) = y for all y ∈ X. Thus φ is the
identity map.

Lemma 5.2.3. Let (X,T ) be a minimal topological dynamical system. Let x ∈ X and
φ ∈ Aut(X,T ). Then x and φ(x) are proximal if and only if φ is the identity map.

Proof. We prove the nontrivial direction. Let x ∈ X and φ ∈ Aut(X,T ) such that x
and φ(x) are proximal points. By definition, there exists a sequence (ni)i∈N in Z such
that limi→+∞ d(T nix, T niφ(x)) = 0. We can assume that T nix converges to some y ∈ X.
Therefore d(y, φ(y)) = 0. By Lemma 5.2.2 φ is the identity map.

Let π : (Y, T ) → (X,T ) be a factor map between the minimal systems (Y, T ) and
(X,T ), and let φ be an automorphism of (Y, T ). We say that π is compatible with φ if
π(y) = π(y′) implies π(φ(y)) = π(φ(y′)) for all y, y′ ∈ Y . We say that π is compatible
with Aut(Y, T ) if π is compatible with all φ ∈ Aut(Y, T ).

If the factor map π : (Y, T ) → (X,T ) is compatible with Aut(Y, T ) we can define the
projection π̂(φ) ∈ Aut(X,T ) by the equation π̂(φ)(π(y)) = π(φ(y)) for all y ∈ Y . We
have that π̂ : Aut(Y, T )→ Aut(X,T ) is a group morphism.

Notice that π̂ might not be onto or injective. Indeed, for an irrational rotation of the
circle, the group of automorphisms is the whole circle but for its Sturmian extension the
group of automorphisms is Z [93]. We will show in Lemma 5.2.10 that this factor map
is compatible, hence π̂ is well defined but is not onto. On the other hand, the map π̂

associated to the projection on the trivial system cannot be injective.
In the case of proximal extension between minimal systems we have.

Lemma 5.2.4. Let π : (Y, T )→ (X,T ) be a proximal extension between minimal systems
and suppose that π is compatible with Aut(Y, T ). Then π̂ : Aut(Y, T ) → Aut(X,T ) is
injective.

Proof. It suffices to prove that π̂(φ) = idX , where idX is the identity map on X, implies
that φ = idY . Let φ be an automorphism with π̂(φ) = idX . For y ∈ Y we have that
π(φ(y)) = π̂(φ)π(y) = π(y). Since π is proximal, then y and φ(y) are proximal points.
From Lemma 5.2.3 we conclude that φ is the identity map.

5.2.2. Subshifts

Let A be a finite set or alphabet. Elements in A are called letters or symbols. The set
of finite sequences or words of length ` ∈ N in A is denoted by A` and the set of twosided
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sequences (xn)n∈Z in A is denoted by AZ. Also, a word w = w1 . . . w` ∈ A` can be seen
as an element of the free monoid A∗ endowed with the operation of concatenation. The
length of w is denoted by |w| = `.

The shift map σ : AZ → AZ is defined by σ((xn)n∈Z) = (xn+1)n∈Z. To simplify nota-
tions we denote the shift map by σ independently of the alphabet, the alphabet will be
clear from the context.

A subshift is a topological dynamical system (X, σ) where X is a closed σ-invariant
subset of AZ (we consider the product topology in AZ). For convenience, when we state
general results about topological dynamical systems we use the notation (X,T ), and to
state specific results about subshifts we use (X, σ).

Let (X, σ) be a subshift. The language of (X, σ) is the set L(X) containing all words
w such that w = xm . . . xm+`−1 for some (xn)n∈Z ∈ X, m ∈ Z and ` ∈ N. We say that w
appears in the sequence (xn)n∈Z ∈ X. We denote by L`(X) the set of words of length ` in
L(X). The map pX : N→ N defined by pX(`) = ]L`(X) is called the complexity function
of (X, σ).

In the proof of Theorem 5.1.1 we will need the following well-known notion that is
intimately related to the concept of asymptotic pairs. A word w ∈ L(X) is said to be left
special if there exist at least two distinct letters a and b such that aw and bw belong to
L(X). In the same way we define right special words.

Let φ : (X, σ) → (Y, σ) be a factor map between subshifts. By the Curtis-Hedlund-
Lyndon Theorem, φ is determined by a local map φ̂ : A2r+1 → A in such way that φ(x)n =
φ̂(xn−r . . . xn . . . xn+r) for all n ∈ Z and x ∈ X, where r ∈ N is called a radius of φ. The
local map φ̂ naturally extends to the set of words of length at least 2r + 1, and we also
denote this map by φ̂.

5.2.3. Equicontinuous systems

We recall that a topological dynamical system (X,T ) is equicontinuous if the family of
transformations {T n;n ∈ Z} is equicontinuous. Let (X,T ) be an equicontinuous minimal
system. It is well-known that the closure of the group 〈T 〉 in the set of homeomorphisms
of X for the uniform topology is a compact abelian group acting transitively on X (see
[7]).

When X is a Cantor set, the dynamical system (X,T ) is called an odometer. In this
case one shows that X is a profinite group. More precisely, there exists a nested sequence
of finite index subgroups . . . ⊂ Γn+1 ⊂ Γn ⊂ · · · ⊂ Γ0 ⊂ Z with trivial intersection such
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that X is isomorphic to the inverse limit

lim
←n

(Z/Γn, πn) = {(xn)n∈N;xn ∈ Z/Γn, xn = πn(xn+1) ∀n ≥ 0},

where πn : Z/Γn+1 → Z/Γn denotes the canonical projection. The addition in this group
is given by

(xn)n∈N + (yn)n∈N = (xn +n yn)n∈N

for (xn)n∈N, (yn)n∈N ∈ lim←n(Z/Γn, πn), where +n stands for the addition in Z/Γn. The
group Z is a dense subgroup through the injection i : k 7→ (k mod Γn)n∈N. The action T
is then given by the addition by i(1) in the group X. It is a minimal and uniquely ergodic
action on X.

5.2.4. Nilsystems

The class of nilsystems will allow us to compute the automorphism group of some
interesting subshifts of polynomial complexity of arbitrary degree.

5.2.5. Automorphism group of d-step nilsystems

In this section we prove that the automorphism group of a proximal extension of a
system of order d (and thus of a d-step nilsystem) is d-step nilpotent. This will be used
later in the chapter to construct subshifts of polynomial complexity whose automorphism
groups behave like subaffine complexity subshifts. Before we need some preliminary lem-
mas.

Let π : (Y, T ) → (X,T ) be a factor map between minimal systems. For d ≥ 1 recall
that πd : Y → Zd(Y ) and π̃d : X → Zd(X) are the quotient maps induced by the regionally
proximal relations of order d in each system. Since (Zd(Y ), T ) is the maximal d-step
nilfactor of (Y, T ) and (Zd(X), T ) is a system of order d and a factor of (Y, T ), then by
Theorem 1.3.5 there exists a unique factor map ϕd : (Zd(Y ), T )→ (Zd(X), T ).

Lemma 5.2.5. Let π : (Y, T ) → (X,T ) be an almost one-to-one extension between min-
imal systems. Then, for any integer d ≥ 1 the canonical induced factor map ϕd :
(Zd(Y ), T ) → (Zd(X), T ) is a topological conjugacy (or the maximal d-step nilfactors
of (Y, T ) and (X,T ) coincide).

Proof. Let πd : Y → Zd(Y ) and π̃d : X → Zd(X) denote the quotient maps as above. First
we prove that ϕd : (Zd(Y ), T )→ (Zd(X), T ) is an almost one-to-one extension.
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Let y ∈ Y be such that π−1{π(y)} = {y}. We claim that ϕ−1
d {ϕd(πd(y))} = {πd(y)}.

Let y′ ∈ Y be such that ϕd(πd(y)) = ϕd(πd(y′)). Then π̃d(π(y)) = π̃d(π(y′)) and thus
(π(y), π(y′)) ∈ RP[d](X). By Theorem 1.3.5, there exists a sequence (~ni)i∈N in Zd+1

such that T ~ni·επ(y′) converges to π(y) for every ε ∈ {0, 1}d+1 \ {(0, . . . , 0)}. Taking a
subsequence we can assume that T ~ni·εy′ converges to y, the unique point in π−1{π(y)},
for every ε ∈ {0, 1}d+1 \ {(0, . . . , 0)}. Then, by Theorem 1.3.5, we deduce that (y, y′) ∈
RP[d](Y ). This implies that πd(y) = πd(y′) and then ϕd is an almost one-to-one extension.

Finally, by Lemma 5.2.1, πd is a proximal extension. But (Zd(Y ), T ) is a distal system,
so there are no proximal pairs. We conclude that ϕd must be a topological conjugacy.

We deduce that,

Corollary 5.2.6. Let π : (Y, T ) → (X,T ) be an almost one-to-one extension between
minimal systems. If (X,T ) is a system of order d, then it is the maximal d-step nilfactor
of (Y, T ).

For instance, since any Sturmian subshift is an almost one-to-one extension of a ro-
tation on the circle [39], this rotation is its maximal 1-step nilsystem or more classically
its maximal equicontinuous factor. Similarly, Toeplitz subshifts are the symbolic almost
one-to-one extensions of odometers [37]. These odometers are hence their maximal 1-step
nilsystems.

The next result is a characterization of the group of automorphisms of an equicontin-
uous system. In particular, we get that it is abelian.

Lemma 5.2.7. Let (X,T ) be an equicontinuous minimal system. Then Aut(X,T ) is the
closure of the group 〈T 〉 in the set of homeomorphisms of X for the topology of uniform
convergence. Moreover, Aut(X,T ) is homeomorphic to X.

Proof. Let G denote the closure in the set of homeomorphisms of X of the group 〈T 〉
for the topology of uniform convergence. Clearly G ⊆ Aut(X,T ). Moreover, by Ascoli’s
Theorem it is a compact abelian group.

Now we prove that Aut(X,T ) ⊆ G. Consider a point x ∈ X and an automorphism
φ ∈ Aut(X,T ). By minimality, there exists a sequence of integers (ni)i∈N such that
(T nix)i∈N converges to φ(x). Taking a subsequence we can assume that the sequence of
maps (T ni)i∈N converges uniformly to a homeomorphism g in G. Combining both previous
facts we get that φ(x) = g(x) and thus g−1 ◦ φ(x) = x. Since g−1 ◦ φ ∈ Aut(X,T ), by
Lemma 5.2.2 we conclude that φ = g and consequently φ ∈ G.
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To finish remark that Lemma 5.2.2 ensures that the map from G to X sending g ∈ G
to g(x) ∈ X is a homeomorphism onto its image Y ⊂ X. Since Y is T invariant and T is
minimal we get that Y = X. This proves that Aut(X,T ) is homeomorphic to X.

We generalise previous result for systems of order d for any d ∈ N.

Theorem 5.2.8. Let (X,T ) be a system of order d. Then, its automorphism group
Aut(X,T ) is a d-step nilpotent group.

To prove this theorem, we need to introduce some notation. Given a function φ : X →
X, for k = 1, . . . , d we define the k-face transformation associated to φ asφ[d],k(x) =

(φ[d],kx)ε = φxε, εk = 1;
(φ[d],kx)ε = xε, εk = 0.

For example, for d = 2 the face transformations associated to φ : X → X are φ[2],1 = id×
φ×id×φ and φ[2],2 = id×id×φ×φ. When φ = T , the transformations T [d],1, T [d],2, . . . , T [d],d

are called the face transformations. We let Fd denote the group spanned by the face
transformations. We remark that Q[d](X) is invariant under Fd and under the diagonal
transformation T × T · · · × T (2d times). We denote by Gd the group spanned by Fd and
the diagonal transformation.

We relate cube structures and automorphisms with the following lemma.

Lemma 5.2.9. Let (X,T ) be a minimal topological dynamical system and let φ ∈ Aut(X,T).
Then for every d ∈ N, any face transformation φ[d],k, k = 1, . . . , d, leaves invariant
Q[d](X).

Proof. Let x ∈ Q[d](X) and k ∈ {1, . . . , d}. By definition of Q[d](X), we can find x ∈ X
and a sequence (gi)i∈N in Gd such that gix[d] → x. We remark that by minimality of (X,T ),
there exists a sequence (ni)i∈N in Z such that T nix → φ(x). Therefore (T [d],k)ni(x[d]) →
φ[d],k(x[d]) and thus φ[d],k(x[d]) ∈ Q[d](X). Since φ commutes with T we have that φ[d],k

commutes with Gd and thus φ[d],kgi(x[d]) = giφ
[d],k(x[d]) ∈ Q[d](X). Taking the limit we

conclude that φ[d],kx ∈ Q[d](X) and then φ[d],k leaves invariant Q[d](X).

Proof of Theorem 5.2.8. Let φ1, . . . , φd+1 ∈ Aut(X,T ). Using Lemma 5.2.9 we have that
φ

[d+1],i
i leaves invariant Q[d+1](X) for every i = 1, . . . , d + 1. Therefore, their iterated

commutator [· · · [φ[d+1],1
1 , φ

[d+1],2
2 ], · · · , φ[d+1],d

d ], φ[d+1],d+1
d+1 ] also leaves invariant Q[d+1](X).

Let h = [· · · [φ1, φ2], · · · , φd], φd+1] be the iterated commutator of φ1, . . . , φd+1. A simple
computation shows that

[· · · [φ[d+1],1
1 , φ

[d+1],2
2 ], · · · , φ[d+1],d

d ], φ[d+1],d+1
d+1 ] = id× id · · · × id× h.
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Therefore, we have that id × id · · · × id × h(x[d]) = (x, x, . . . , x, hx) ∈ Q[d+1](X) for
every x ∈ X. By Theorem 1.3.5 we get that hx = x for every x ∈ X. We conclude that
h is the identity automorphism.

On the other hand, by definition of the regionally proximal relation of order d and the
continuity of an automorphism we have that,

Lemma 5.2.10. Let (X,T ) be a minimal topological dynamical system. Let φ ∈ Aut(X,T ).
Then (x, y) ∈ RP[d](X) if and only if (φ(x), φ(y)) ∈ RP[d](X). Consequently, the projec-
tion πd : X → Zd(X) from X to its maximal d-step nilfactor is compatible with Aut(X,T ).

Combining Theorem 5.2.8, Lemma 5.2.10 and Lemma 5.2.4 we get,

Corollary 5.2.11. Let (X,T ) be a proximal extension of a minimal system of order d.
Then, Aut(X,T ) is a d-step nilpotent group.

Since Sturmian and Toeplitz subshifts are almost one-to-one extensions of their maxi-
mal equicontinuous factors, they are also proximal extensions (Lemma 5.2.1). We obtain
as a corollary that their automorphism groups are abelian. More precisely, Lemma 5.2.10
and Lemma 5.2.4 imply that their automorphism groups are subgroups of the automor-
phism group of their maximal equicontinuous factors, characterized in Lemma 5.2.7. In
addition, it is not difficult to construct minimal symbolic almost one-to-one extensions of
d-step nilsystems by considering codings on well chosen partitions. An example will be
developed in Section 5.4.

5.3. On the automorphisms of subshifts with polyno-
mial complexity

In this section we prove the main results of this paper. We start by proving Theorem
5.1.1 and in a second part we give new proofs of byproduct results from [74, 84]. Namely,
a characterization of the automorphisms of bijective constant length substitutions and
the realization of any finite group as the quotient Aut(X,T )/〈T 〉. We end this section by
presenting a tentative generalization of Theorem 5.1.1 to polynomial complexity by using
a result on the growth rate of groups.

For the sequel, we recall that a group G satisfies virtually a property P (e.g., nilpotent,
solvable, isomorphic to a given group, ...) if there is a finite index subgroup H ⊂ G

satisfying the property P.
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5.3.1. Proof of Theorem 5.1.1

Let (X,T ) be a topological dynamical system. It is clear from the definition that
for any proximal (asymptotic) pair (x, y) ∈ X × X and for any φ ∈ Aut(X,T ) we have
that (φ(x), φ(y)) is a proximal (asymptotic) pair. We say that the asymptotic pairs (x, y)
and (x′, y′) belong to the same class if they are in the same orbit, meaning that there
exists n ∈ Z such that (x′, y′) = (T nx, T ny). A class of asymptotic pairs is a (non closed)
T × T -invariant subset of X ×X. We denote by [(x, y)] the class of the asymptotic pair
(x, y). We say that two classes [(x, y)], [(x′, y′)] are equivalent if there is an asymptotic
pair (x′1, y′1) ∈ [(x′, y′)] such that x = x′1 or x and x′1 are asymptotic. This defines
an equivalence relation and any class is called an asymptotic component. We denote
by AS [(x,y)] the asymptotic component of the class [(x, y)] and by AS the collection of
asymptotic components.

It is also plain to check for φ ∈ Aut(X,T ) and two equivalent asymptotic classes
[(x, y)] and [(x′, y′)], that classes [(φ(x), φ(y))] and [(φ(x′), φ(y′))] are also equivalent. So
the automorphism φ induces a permutation j(φ) on the collection AS of asymptotic
components of (X,T ). By denoting PerAS the set of such permutations, formally we
have the group morphism

j : Aut(X,T ) → PerAS (5.3.1)

φ 7→
(
AS [x,y] 7→ AS [(φ(x),φ(y))]

)
.

In the case of subshifts, the following lemma is a key observation which relates the
complexity of the subshift with asymptotic classes. The proof relies in classical ideas from
[102].

Lemma 5.3.1. Let (X, σ) be a subshift. If (X, σ) has a sublinear complexity, then there
is a finite number of asymptotic classes. More generally, if the complexity pX(n) satisfies

lim inf
n→+∞

pX(n)
n

< +∞ ,

then there is a finite number of asymptotic classes.

In particular, this lemma provides a sufficient condition to bound the number of asymp-
totic components.

Proof. For the first statement see [102] Lemma V. 22. For the second claim we proceed as
follows. The hypothesis implies the existence of a constant κ and an increasing sequence
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(ni)i∈N in N such that pX(ni + 1)− pX(ni) ≤ κ. Indeed, if not, for any A > 0 and for any
integer n large enough we have pX(n+ 1)− pX(n) ≥ A. It follows that pX(n)− pX(m) =∑n−1
i=m pX(i+ 1)− pX(i) ≥ (n−m)A for any n ≥ m enough large. From here we get that

lim infn→+∞
pX(n)
n
≥ A which is a contradiction since A is arbitrary.

Hence, the number of left special words of length ni (see Section 5.2.2 for the definition)
is bounded by κ. Any asymptotic pair defines a sequence with arbitrarily long special
words, so there are at most κ asymptotic classes.

A second main ingredient for proving Theorem 5.1.1 is the following direct corollary
of Lemma 5.2.3. We recall that an asymptotic pair is proximal and that the map j used
in the following corollary has been defined in (5.3.1).

Corollary 5.3.2. Let (X,T ) be a minimal topological dynamical system with at least one
asymptotic pair. We have the following exact sequence

1 // 〈T 〉 Id // Aut(X,T ) j // PerAS,

where PerAS denotes the set of permutations on the collection of asymptotic components
of (X,T ). Moreover, for any automorphism φ, the permutation j(φ) has a fixed point if
and only if φ is a power of T .

As a byproduct of this result and Lemma 5.3.1 we get Theorem 5.1.1 that we recall
and extend here.

Theorem. Let (X, σ) be a minimal aperiodic subshift with lim inf
n→+∞

pX(n)
n

< +∞. Then,

1. Aut(X, σ) is virtually isomorphic to Z.

2. The quotient group Aut(X, σ)/〈σ〉 is isomorphic to a finite subgroup of permutations
without fixed points. In particular, ]Aut(X, σ)/〈σ〉 divides the number of asymptotic
components.

Proof. Only the second part of statement (2) is not straightforward from Corollary 5.3.2.
The group Aut(X, σ)/〈σ〉 acts freely on the finite set of asymptotic component AS: the
stabilizer of any point is trivial. Thus, AS is decomposed into disjoint Aut(X, σ)/〈σ〉-
orbits, and any such orbit has the same cardinality as Aut(X, σ)/〈σ〉.

Statement (2) of the theorem enables us to perform explicit computations of the au-
tomorphism group for easy cases. A first example comes from Sturmian subshifts. It
is well-known that this system admits just one asymptotic component, so any automor-
phism is a power of the shift map. A bit more general case is when the number of
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asymptotic components is a prime p (e.g., 2 for the Thue-Morse subshift), then the group
Aut(X, σ)/〈σ〉 is a subgroup of Z/pZ: either the trivial one or Z/pZ. In particular, since
the Thue-Morse subshift admits an automorphism which is not the power of the shift
map, then the quotient automorphism group is isomorphic to Z/2Z.

One could ask whether the automorphism group is computable algorithmically, at
least for substitution subshifts, or explicitly by theoretical arguments for some families of
subshifts. This will be achieved in [41] for substitutive and linearly recurrent subshifts.

Statement (2) is not a real restriction. Given any finite group G, it acts on itself by
left multiplication Lg(h) = g · h for g, h ∈ G. The map Lg defines then a permutation on
the finite set G without fixed points. So G is a subgroup of elements of the permutation
group on ]G elements which verifies statement (2) in the theorem. Thus, it is natural to
ask whether we can realize any finite group as Aut(X,T )/〈T 〉 or if we can characterize
those finite groups. This is done in the next subsection.

Finally, notice that the complexity condition of Theorem 5.1.1 is compatible with
lim supn→+∞ pX(n)/n = +∞. In Section 5.4.4 we construct a minimal subshift with
subexponential complexity satisfying

lim inf
n→+∞

pX(n)/n < +∞ and lim sup
n→+∞

pX(n)/nd = +∞ for every d > 1.

Thus, in this case, the automorphism group is virtually Z by Theorem 5.1.1.

5.3.2. A characterization of Aut(X, σ)/〈σ〉 for constant length
substitutions

In this section, by using the results of Section 5.3.1, we provide a characterization of the
automorphism group for subshifts given by a constant length substitution τ : A → A∗ on
a finite alphabet A. Our characterization follows from the one of asymptotic components.
We deduce then new and direct proofs of two already known results. The first one is
due to Host and Parreau [74] on the characterization of the automorphism group of
bijective constant length substitutions. The second one is a combination of results in
[84] and [74], giving an explicit example of a substitutive minimal subshift (X, σ) such
that Aut(X, σ)/〈σ〉 is isomorphic to an arbitrary finite group G. Notice that in [84] the
authors have a similar statement but in the measurable setting.

We recall that a substitution τ : A → A∗ is of constant length ` > 0 if any word τ(a)
for the letter a ∈ A is of length `. A substitution of constant length is bijective if the
corresponding letters at position i ∈ {0, . . . , `− 1} of all τ(a)’s are pairwise distinct. We
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denote by Xτ the subshift

Xτ = {x ∈ AZ; any word of x appears in τn(a) for some n ≥ 0 and a ∈ A}.

For constant length substitution, it is well known (e.g. see [102]) that the subshift (Xτ , τ)
is minimal if and only if the substitution τ is primitive, that is, for some power p ≥ 0 and
any letter a ∈ A, the word τ p(a) contains all the letters of the alphabet. Recall that the
substitution τ is aperiodic if and only if Xτ is infinite.

Lemma 5.3.3. Let τ be a primitive aperiodic bijective constant length substitution. Let
(x, y) = ((xn)n∈Z, (yn)n∈Z) ∈ X2

τ be an asymptotic pair with xn = yn for any n ≥ 0 and
x−1 6= y−1. Then, there exists an asymptotic pair ((x′n)n∈Z, (y′n)n∈Z) ∈ X2

τ with x′n = y′n

for any n ≥ 0 and x′−1 6= y′−1, such that

τ((x′n)n∈Z) = (xn)n∈Z and τ((y′n)n∈Z) = (yn)n∈Z.

Proof. Let ` be the length of the substitution τ . By the classical result of Mossé [89, 90]
on recognizability, the substitution τ : Xτ → τ(Xτ ) is one-to-one. Moreover, the collection
{σkτ(Xτ ) : k = 0, . . . , ` − 1} is a clopen partition of Xτ . So, there are x′ = (x′n)n∈Z, y′ =
(y′n)n∈Z ∈ Xτ and 0 ≤ kx, ky < ` such that σkxτ(x′) = x and σkyτ(y′) = y.

We claim that we have kx = ky = 0. Since the sequences x and y are asymptotic,
there are integers n ≥ 0, k′ ∈ {0, . . . , ` − 1} such that σn(x), σn(y) ∈ σk

′(τ(Xτ )). The
substitution τ is of constant length `, so we have σ` ◦ τ = τ ◦ σ. Therefore, we get x and
y are in the same clopen set σk(τ(Xτ )) for some k ∈ {0, . . . , ` − 1}. Let us assume that
k ≥ 1. The words x−1x0 . . . xk−1, y−1y0 . . . yk−1 are then prefixes of the words τ(x′−1) and
τ(y′−1) respectively. Since the substitution τ is bijective and x0 = y0, we have x′−1 = y′−1.
In particular, we get x−1 = y−1: a contradiction.

To finish the proof, notice that the substitution τ is injective on the letters, so we
obtain x′n = y′n for any n ≥ 0 and x′−1 6= y′−1.

Lemma 5.3.4. Let τ be a primitive aperiodic bijective constant length substitution. Then,
there exists an integer p ≥ 0 such that for any asymptotic pair ((xn)n∈Z, (yn)n∈Z) ∈ X2

τ

the one-sided infinite sequences

(xn+n0)n≥0, (yn+n0)n≥0 are equal for some n0 ∈ Z and fixed by τ p.

Proof. Shifting the indices if needed by some σn0 , we can assume that for the asymptotic
pair (x, y) = ((xn)n∈Z, (yn)n∈Z) we have xn = yn for any integer n ≥ 0 and x−1 6= y−1.
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Let p ≥ 0 be an integer such that for any letter a ∈ A, any word in {τ pn(a)}n≥1 starts
with the same letter. Hence, the sequence of sequences (τ pn(aa · · · ))n≥0 converges to a
one-sided infinite word fixed by τ p.

Applying inductively Lemma 5.3.3 to the substitution τ p, we get a sequence of asymp-
totic pairs ((x(i), y(i)))i≥0 verifying the conclusions of the lemma and such that τ p(x(i+1)) =
x(i), τ p(y(i+1)) = y(i), x(0) = x and y(0) = y. By the definition of p, all sequences x(i) and
also y(i), i ≥ 0, share the same letter a at index 0. The conclusion of the lemma follows
straightforwardly since we assume that τ pn(a · · · ) converges to a one-sided infinite word
fixed by τ p.

Thanks to this lemma we can obtain another proof of the following result due to Host
and Parreau.

Theorem 5.3.5. [74] Let τ be a primitive bijective constant length substitution. Then,
any automorphism of the subshift Xτ is the composition of some power of the shift with
an automorphism φ of radius 0. Moreover, its local rule φ̂ : A → A satisfies

τ ◦ φ̂ = φ̂ ◦ τ. (5.3.2)

Conversely, notice that a local map satisfying (5.3.2) defines an automorphism of the
subshift. Hence we obtain an algorithm to determine in this case the group of automor-
phisms since there is just a finite number of local rules of radius 0.

Proof. Notice first that when Xτ is finite, it is reduced to a finite orbit. Hence any
automorphism is a power of the shift map by Lemma 5.2.7.

Let us assume now that the substitution τ is aperiodic and let x = (xn)n∈Z, y =
(yn)n∈Z ∈ Xτ be two asymptotic sequences. Lemma 5.3.4 provides a power p ≥ 0 such
that, shifting the sequences if needed by some σn0 , we can assume that (xn)n≥0 and (yn)n≥0

coincide and are fixed by τ p.
Let φ be an automorphism of the subshift (Xτ , σ). The pair (φ(x), φ(y)) is also an

asymptotic pair. Again, Lemma 5.3.4 ensures that for some integer n1 ∈ Z, the sequences
(φ(x)n+n1)n≥0 and (φ(y)n+n1)n≥0 coincide and are also fixed by τ p (observe as stated in
Lemma 5.3.4, we can use the same power p for any couple of asymptotic pairs). In the
following, we will consider the automorphism φ′ = σn1 ◦φ, thus by definition, the sequence
(φ′(x)n)n≥0 is also fixed by τ p.

Let r and φ̂′ denote the radius and the local map of φ′ respectively. Taking a power of
τ p if needed, we can assume that the length ` of τ p is greater than 2r+1. Suppose now that
xn = xm for some n,m ≥ 0. We have φ′(x)m`+r = φ̂′(xm` . . . xm`+2r) = φ̂′(τ p(xm)[0,2r]) =
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φ̂′(τ p(xn)[0,2r]) = φ′(x)n`+r, where for a word u = u0 . . . u`−1, u[0,2r] stands for the prefix
u0 . . . u2r. Since φ′(x)n`+r and φ′(x)m`+r are the r+1th letters of the words τ p(φ′(x)n) and
τ p(φ′(x)m) respectively, and the substitution τ is bijective, we obtain that φ′(x)n = φ′(x)m.

Hence, we can define the local map ψ̂ : A → A by ψ̂(xn) = φ′(x)n for any n ≥ 0. This
provides a shift commuting map ψ : AZ → AZ such that for any word w in the language
L(Xτ ), we have that ψ(τ p(w)) = τ p(ψ(w)). Thus ψ(Xτ ) ⊂ Xτ . Since the substitution
τ is bijective we also get relation (5.3.2). In the same way, using φ′−1 instead of φ′ we
obtain that ψ is invertible. By construction, we have that ψ−1φ′(x) is asymptotic to x,
so by Lemma 5.2.3, ψ = φ′ = σn1 ◦ φ.

A second consequence of Lemma 5.3.4 is the realization of any finite group as the
group Aut(X, σ)/〈σ〉 for a substitutive subshift of constant length.

Proposition 5.3.6. Given a finite group G, there is a substitutive minimal subshift (X, σ)
such that Aut(X, σ)/〈σ〉 is isomorphic to G.

Proof. The Fibonacci subshift is both a substitutive and a Sturmian subshift, then by
previous discussion the quotient group Aut(X, σ)/〈σ〉 is trivial. Then, let us assume that
the finite group G is not trivial. We choose an enumeration of its elements G = {g0, g1,

. . . , gp−1} with p ≥ 2 where g0 denotes the neutral element.
For an element h ∈ G, we denote by Lh : G → G the bijection g 7→ hg. We consider

the alphabet G, viewed as a finite set, and define the substitution τ from the set of letters
G into the set of words G∗, by

τ : g 7→ Lg(g0)Lg(g1) · · ·Lg(gp−1).

Since the map Lg is a bijection on G, the substitution τ of constant length is primitive
and bijective. Thus the associated subshift (Xτ , σ) is minimal.

Moreover observe that for any letter g ∈ G, the word τ(g) starts by the letter g, so
any sequence (τn(gg · · · ))n≥1 converges to a τ -invariant infinite word.

We claim that the subshift (Xτ , σ) is not periodic, i.e., not reduced to a periodic
orbit. To show this it suffices to give an example of an asymptotic pair. The word g0g1

belongs to the language L(Xτ ) of the subshift Xτ . Hence the words τ(g0)τ(g1) and its
sub-word gp−1g1 (which is different from the word g0g1) also belong to L(Xτ ). It follows
for any integer n ≥ 0 that the words τn(g0).τn(g1) and τn(gp−1).τn(g1) are also in the
language. Taking a subsequence if needed, these words converge as n goes to infinity to
two sequences x and y ∈ Xτ that are, by construction, asymptotic.
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Given an element g ∈ G we extend the definition of the map Lg to G∗ by defining
for a word w = h1 . . . hn, Lg(w) := Lg(h1) . . . Lg(hn). By concatenation, it defines a left
continuous G-action on GZ. It is important to note that we have the relation for any
g, h ∈ G

Lg(τ(h)) = τ(Lg(h)). (5.3.3)

Hence any map Lg preserves the subshift Xτ and we have a left action of G on Xτ . It
is plain to check that L : g 7→ Lg defines an injection of G into Aut(Xτ , σ). Actually, we
claim that we have a converse which allows to finish the proof.

Lemma 5.3.7. For the subshift Xτ defined above the map

ϕ : Z×G → Aut(Xτ , σ)

(n, g) 7→ σn ◦ Lg

is a group isomorphism.

Proof of Lemma 5.3.7. To show the injectivity of the map ϕ let us assume there are g ∈ G
and an integer k such that Lg(x) = σk(x) for any x ∈ X. Necessarily k = 0, otherwise
the infinite sequence Lg

(
limn→+∞ τ

n(g−1g−1 · · · )
)
, which is equal to limn τ

n(g0g0 · · · ) by
formula (5.3.3), is ultimately periodic. This is impossible since the subshift Xτ is not
periodic. The injectivity of the map L implies finally that the map ϕ is injective.

To show it is also onto, it is enough to prove that any automorphism φ ∈ Aut(Xτ , σ)
may be written as a power of the shift composed with a map of the kind Lg. Let (x, y) be
an asymptotic pair. By Lemma 5.3.4 up to shift x, y and compose φ with a power of the
shift map, there exist g1, g2 ∈ G such that the sequences x, y are positively asymptotic
to limn→+∞ τ

n(g1), and φ(x), φ(y) are positively asymptotic to limn→+∞ τ
n(g2g2 · · · ). It

follows from (5.3.3) that the points x and Lg1(g−1
2 ) ◦ φ(x) are asymptotic. So, by Lemma

5.2.3 the maps φ and (Lg1(g−1
2 ))−1 = Lg2(g−1

1 ) coincide.

5.3.3. Recurrence and growth rate of groups

We try to extend Theorem 5.1.1 to subshifts with higher complexity. For this, we need
to introduce a stronger condition. We define, for a topologically transitive subshift (X, σ)
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and an integer n ≥ 1, a local recurrence time:

NX(n) := inf{|w|; w ∈ L(X) contains any word of X of length n}.

Clearly, this value is well defined and satisfies NX(n) ≥ pX(n) + n. For instance, it is
well-known that any primitive substitutive subshift is linearly repetitive meaning that
supn≥1

NX(n)
n

< +∞. We obtain the following result.

Theorem 5.3.8. Let (X, σ) be a transitive subshift such that supn≥1
NX(n)
nd

< +∞ for
some d ≥ 1. Then, there is a constant C depending only on d, such that any finitely
generated subgroup of Aut(X, σ) is virtually nilpotent of step at most C.

Proof. Let S = 〈φ1, . . . , φ`〉 ⊂ Aut(X, σ) be a finitely generated group. Let r be an upper
bound of the radii of the local maps associated to all generators φi of S and their inverses.
For n ∈ N consider

Bn(S) = {φs1i1 · · ·φ
sm
im ; 1 ≤ m ≤ n, i1, . . . , im ∈ {1, . . . , `}, s1, . . . , sm ∈ {1,−1}} .

Let w be a word of length NX(2nr + 1) containing any word of length (2nr + 1) of X.
If φ, φ′ ∈ Bn(S) are different then φ(w) 6= φ′(w). Then, Bn(S) can be injected into the set
of words of length NX(2nr + 1)− 2r (the injection is just the valuation of φ on w). This
implies that ]Bn(S) ≤ pX(NX(2nr+1)−2r). We deduce from the hypothesis on NX that
]Bn(S) ≤ nd

2+1 for all large enough integers n ∈ N. Therefore, by the quantitative result
of Shalom and Tao in [109] generalizing Gromov’s classical result on the growth rate of
groups, we get the conclusion.

Notice that the constant C may be given explicitly in the result of [109]. It is clear
that a subshift of polynomial local recurrence complexity has a polynomial complexity.
The converse is not clear, but an additional possible condition is that the subshift has
bounded repetitions of words. The natural question here is whether the automorphism
group of a minimal subshift of polynomial local recurrence complexity, or just polynomial
complexity, is finitely generated.

5.4. Gallery of examples

We present here examples of subshifts with various complexities. The first two ex-
amples are substitutive subshifts with superlinear complexity. Even if we can not apply
straightforwardly the main results of the paper (e.g., the substitutions are not primitive),
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we study their asymptotic components to prove their automorphism groups are isomor-
phic to Z. Next, we define a coding of a nil-translation with a polynomial complexity of
arbitrary high degree but having an automorphism group which is virtually Z. To enlarge
the zoology of automorphism groups we provide a subshift whose automorphism group
is isomorphic to Zd. We end with a subshift whose complexity is, for infinitely many
integers, subaffine and superpolynomial. Theorem 5.1.1 applies in this case.

5.4.1. Substitutions with superlinear complexity

Recall that substitutive subshifts have a prescribed complexity: with growth bounded
or equivalent to n, n log log n, n log n, or to n2 (see [95]). Below we give two examples hav-
ing a unique asymptotic component. This is enough to conclude that their automorphism
groups are isomorphic to Z.

A n log log n complexity substitutive subshift

Let A = {a, b} and consider the substitution τ1 : A → A∗ defined by

τ1(a) = aba and τ1(b) = bb.

We set

Xτ1 = {x ∈ {a, b}Z; any word of x appears in some τn1 (c), n ≥ 0, c ∈ {a, b}}.

It can be checked that (Xτ1 , σ) is a non minimal transitive subshift. Moreover, it is proven
in [18] that its complexity is equivalent to n log2 log2 n.

In the sequel we need some specific notations. For a sequence x ∈ {a, b}Z we set
x− = · · · x−2x−1, x+ = x0x1 · · · and x = x−.x+. Let b+∞ = bbbbb . . . ∈ AN and b−∞ =
. . . bbbbb ∈ AZ<0 , where Z<0 is the set of negative integers. Thus the sequence x =
. . . bb.bb . . . ∈ {a, b}Z can be written b−∞.b+∞. In the same spirit we put τ+∞

1 (c) for
limn→+∞ τ

n
1 (cc . . .), when it exists in {a, b}N, and, τ−∞1 (c) for limn→+∞ τ

n
1 (· · · cc), when it

exists in {a, b}Z<0 .

Let us ckeck (Xτ1 , σ) has a unique asymptotic component. We show that asymptotic
points should end with b+∞.
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Let (x, y) be an asymptotic pair. We can suppose, shifting if needed, that

x = x−a.x+ = · · · x−−4x
−
−3x

−
−2a.x

+
0 x

+
1 x

+
2 · · ·

y = y−b.x+ = · · · y−−4y
−
−3y

−
−2b.x

+
0 x

+
1 x

+
2 · · · .

Observe that x+
0 = b because aa does not belong to L(Xτ1):

x = · · · x−−4x
−
−3x

−
−2a.bx

+
1 x

+
2 x

+
3 · · ·

y = · · · y−−4y
−
−3y

−
−2b.bx

+
1 x

+
2 x

+
3 · · · .

Suppose x+
1 = a. Then, we should have x+

2 x
+
3 = bb because aba is necessarily followed

by bb. Thus, bbabb should appear in some element of x which is not the case. Therefore
x+

1 = b:

x = · · · x−−4x
−
−3x

−
−2a.bbx

+
2 x

+
3 x

+
4 · · ·

y = · · · y−−4y
−
−3y

−
−2b.bbx

+
2 x

+
3 x

+
4 · · · .

Suppose x+ begins with b2n+1a for some n ≥ 1. Then, abab2n+1aba should belong to the
language of Xτ1 . But it should appear in some τ1(u) and then we must have abab2n+1aba =
τ1(ava) for some word v ∈ L(Xτ1), hence b2n+1 = τ1(v), which is not possible. Thus, x+

begins with b2na for some n ≥ 1 or it is equal to b+∞. Suppose we are in the first situation:

x = · · · x−−4aba.b
2nabax+

2n+3 · · ·

y = · · · y−−4y
−
−3y

−
−2b.b

2nabax+
2n+3 · · · .

It can be checked that τ1 is one-to-one on Xτ1 . Consequently, there are two unique
sequences

x(1) = x(1−)a.bnabax(1+) and y(1) = y(1−)b.bnabax(1+) (5.4.1)

belonging to Xτ1 such that

x = τ1(x(1−)a).τ(bnabax(1+)) and y = τ1(y(1−)b).τ(bnabax(1+)).

Thus, (x(1), y(1)) is also an asymptotic pair. From the observation made before, n should
be even and we can obtain a new asymptotic pair (x(2), y(2)) having the shape given by
(5.4.1). Of course n is decreasing at each step and we can continue until n = 1: we get
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an asymptotic pair (x(k), y(k)) such that

x(k) = · · · a.baba · · ·

y(k) = · · · b.baba · · · .

But ababa does not belong to L(Xτ1). Consequently x+ = b+∞ and (Xτ1 , σ) has a
unique asymptotic component.

Furthermore, it can be checked, using already used arguments, that z−.b+∞ is in
Xτ1 \ {b−∞.b+∞} if and only if z− = τ−∞1 (a)bn for some non-negative integer n. Hence, if
(x, y) is an asymptotic pair then x and y belong to

{b−∞.b+∞, σi(τ−∞(a).b+∞); i ∈ Z}.

A n2 complexity substitutive subshift

Below we use the notation of the previous section. Consider the substitution τ2 : A →
A∗ defined by

τ2(a) = aab and τ2(b) = b.

It is easy to check that the subshift (Xτ2 , σ) is transitive but not minimal. Moreover,
from [95] its complexity is of the order n2. Before showing it has a unique asymptotic
component, let us introduce some key concepts for the treatment of this example.

Let x be a sequence of BN, where B is an alphabet. We denote by L(x) the set of
words having an occurrence in x. A return word to u ∈ L(x) is a word w ∈ L(x) such
that wu belongs to L(x), contains exactly two occurrences of u and has u as a prefix. We
denote by Rx(u) the set of return words to u.

In [19] is defined the notion of sparse sequence on the alphabet B. It is an element x
of BN satisfying:

∃b ∈ A, ∀n ∈ N, bn ∈ L(x) and #Rx(bn) = 2.

It is proven that px(n) (the number of words of length n appearing in x) is less than
or equal to (n2 + n + 2)/2 whenever x is sparse. In Example 4.7.67 of [19] it is claimed
that x = τ+∞

2 (a) is sparse. Using Lemma 4.5.15 in [19] one can deduce that for all n ≥ 1,

Rx(bn) = {b, bnu}, where τn2 (a) = ubn. (5.4.2)

We show (Xτ2 , σ) has a unique asymptotic component. Let (x, y) be an asymptotic
pair. It suffices to prove that x and y end with b+∞. We can suppose that x = x−.x+

0 ax
+
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and y = y−.y+
0 bx

+. We set x+ = x+
2 x

+
3 · · · .

Suppose that x+
2 = a. Then the only possibility to have bax+

3 in L(Xτ2) is x+
3 = a.

Consequently, aaa would belong to L(Xτ2), which is not the case. Therefore, x+
2 = b and

necessarily x−−1x
−
0 = ba:

x = · · · x−−1b.aabx
+
3 x

+
4 x

+
4 · · ·

y = · · · y−−2y
−
−1.y

+
0 bbx

+
3 x

+
4 x

+
5 · · · .

Suppose we are in the following situation:

x = · · · x−−1b.aab
naax+

n+4 · · ·

y = · · · y−−2y
−
−1.y

+
0 bb

naax+
n+4 · · · .

From (5.4.2) one gets that

x = · · · x−−1b.aab
nτn+1

2 (a) · · ·

y = · · · y−−2y
−
−1.y

+
0 bb

nτn+1
2 (a) · · · .

Then, using (5.4.2) again, x would have an occurrence of w = τn2 (a)τn2 (a)τn2 (a), but
w does not belong to L(Xτ2). Indeed, if it was the case, by a finite recurrence we prove
that aaa should belong to L(Xτ2), which is not the case. Hence, x+

3 x
+
4 x

+
4 · · · = b+∞ and

(Xτ2 , σ) has a unique asymptotic component.

Observe that (σ−n(τn2 (a−∞)).b+∞) converges in Xτ2 . Let z denote its limit. We can
check that if (x, y) is an asymptotic pair then x and y belong to

{b−∞.b+∞, σi(z); i ∈ Z}.

We finish this section by proving that in both examples (Xτ1 , σ) and (Xτ2 , σ) the group
of automorphisms is isomorphic to Z.

Lemma 5.4.1. Let τ denote either the substitution τ1 or τ2. Then, the group Aut(Xτ , σ)
is generated by the shift map σ.

Observe that the main result of [29] gives only that the group Aut(Xτ1 , σ) is a periodic
group.
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Proof. Let us first recall that for any asymptotic pair (x, y) of (Xτ , σ), x and y belong to

{b−∞.b+∞, σi(z); i ∈ Z},

for some z ∈ Xτ .
Notice that (Xτ , σ) has a unique minimal subsystem, namely ({b−∞.b+∞}, σ). More-

over, it is clear that an automorphism φ of the subshift (Xτ , σ) maps any minimal sub-
system onto a minimal subsystem, so φ fixes the sequence b−∞.b+∞. The morphism φ

mapping asymptotic pairs onto asymptotic pairs, σi(z) should be mapped to some σj(z).
The orbit {σk(z); k ∈ Z} being dense in Xτ one deduces that φ ◦ σi = σj. Thus, φ is a
power of the shift map.

5.4.2. Coding a nil-translation

We introduce a class of examples of symbolic systems with polynomial complexity of
arbitrarily high degree and with a group of automorphisms which is virtually Z. We build
these systems as symbolic extensions of minimal nilsystems.

We start by stating some general results we need and then review some generalities
about the coded systems.

Let (X,T ) be a minimal topological dynamical system and let U = {U1, . . . , Um} be a
finite collection of subsets of X. We say that U covers X if ⋃mi=1 Ui = X. For two covers
U = {U1, . . . , Um} and V = {V1, . . . , Vp} of X we let U ∨ V denote the cover given by
{Ui ∩ Vj; i = 1, . . .m, j = 1, . . . p}.

Let U = {U1, . . . , Um} be a finite cover of X and let A denote the set {1, . . . ,m}. We
say that ω = (wi)i∈Z ∈ AZ is a U -name of x if x ∈ ⋂

i∈Z
T−iUwi . Let XU denote the set

{ω ∈ AZ;
⋂
i∈Z

T−iUwi 6= ∅} ⊆ AZ.

It is easy to check that XU is closed when each Ui is closed and if we let U denote the
collection {U1, . . . , Um} we have that XU ⊂ XU . For N ∈ N, let

UN =
N∨

i=−N
T−iU .

We say that the cover U separates points if every ω ∈ XU is a name of exactly one
x ∈ X. If U separates points in X, we can build a factor map π between (XU , σ) and
(X,T ) where π(ω) is defined as the unique point in ⋂

i∈Z
T−iUwi .
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Lemma 5.4.2. Let (X,T ) be a minimal topological dynamical system and let U =
{U1, . . . , Um} be a partition which covers and separates points in X. Suppose that for every
N ∈ N every atom of UN has non-empty interior, then (XU , σ) is a minimal system.

Proof. Let ω, ω′ ∈ XU and let N ∈ N. We denote x = π(ω) and x′ = π(ω′). By definition
we have that ⋂N−N T−iUwi 6= ∅ and therefore it has non-empty interior. Since (X,T )
is minimal, there exists n ∈ Z such that T nx′ ∈ int(⋂N−N T−iUwi). This implies that
w′[n−N,n+N ] = w[−N,N ] and the proof is finished.

Now we compute the automorphism groups of symbolic extensions of some nilsystems.
First we recall the construction of the systems studied in [1]. Let us consider the infinite
matrix A = (ai,j)i,j∈N where ai,j =

(
j
i

)

A =



1 1 1 1 1 · · ·
1 2 3 4 · · ·

1 3 6 · · ·
1 4 · · ·

1 · · ·
· · · · · ·


.

It is proven in Section 4 of [1] that for all i ∈ N, Ai is well defined and

Ai =



1 i i2 i3 i4 · · ·
1 2i 3i2 4i3 · · ·

1 3i 6i2 · · ·
1 4i · · ·

1 · · ·
· · · · · ·


.

Let α ∈ [0, 1] be an irrational number. For any d ∈ N, consider Ad+1 the restriction
of A to (d + 1) × (d + 1) coordinates. We let Td : Td → Td denote the function that
maps (x0, . . . xd−1) to the d first coordinates of Ad+1(x0, . . . , xd−1, α)t. For example, T2

is the function (x0, x1) 7→ (x0 + x1 + α, x1 + 2α) and T3 is the function (x0, x1, x2) 7→
(x0 + x1 + x2 + α, x1 + 2x2 + 3α, x2 + 3α).

We can represent the transformation Td as Td(x) = Adx+ ~α where ~α is the restriction
to the first d-coordinates of the last column of Ad+1 multiplied by α. This is the classical
presentation of an affine nilsystem.

Fix d ∈ N and for i, n ∈ Z let Hi,n be the plane given by the equation∑d−1
k=0 i

kxk+idα =
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n. It can be proven that Hi,n = T−id H0,n and for a fixed value of i, the planes Hi,n are
projected in Td to the same plane Ĥi. We remark that

Ĥ0 = {(0, x1, . . . , xd−1); (x1, . . . , xd−1) ∈ Td−1}.

We refer to Section 4 of [1] for further details.
We consider the partition U given by the cells generated by the planes Ĥ0, . . . , Ĥd−1.

The partition ∨n+d−1
i=0 T−id U coincides with the cells generated by the planes Ĥ0, . . . , Ĥn+d−1

(see Section 6 of [1]). Let (x0, . . . , xd−1) and (y0, . . . , yd−1) be different points in Td and
let k = max{k;xk 6= yk}. Then the difference (in R) between ∑d−1

k=0 i
kxk + idα and∑d−1

k=0 i
kyk + idα grows to infinity as i goes to infinity since this difference behaves like

ik(xk − yk). This implies that for big enough N , (x0, . . . , xd−1) and (y0, . . . , yd−1) lie on
different cells of ∨Ni=−N T−id U since for big enough i these points are separated by the cells
generated by Ĥi.

We recall that (XU , σ) is the subshift associated to U . By Lemma 5.4.2, one can
see that (XU , σ) is a minimal system and it is an extension of (Td, Td) since U separates
points. Moreover, the complexity function of (XU , σ) is given by

p(n) = 1
V (0, 1, . . . , d− 1)

∑
0≤k1<k2<···<kd≤n+d−1

V (k1, k2, · · · , kd)

where V (k1, k2, · · · , kd) = ∏
1≤i<j≤d

(kj − ki) is a Vandermonde determinant. We remark

that varying d ∈ N we get an arbitrarily large complexity with a polynomial growth.
By construction and Corollary 5.2.6 we also get:

Lemma 5.4.3. The maximal d-step nilfactor of (XU , σ) is the nilsystem (Td, Td).

Proposition 5.4.4. The group Aut(XU , σ) is virtually Z.

Proof. Let φ be an automorphism of (XU , σ) and let π : XU → Td be the natural factor
map. Let W = {ω ∈ X; #π−1{π(ω)} ≥ 2} be the set of points where π is not one-
to-one. Since φ preserves the regionally proximal pairs of order d, we have that W is
invariant under φ. We remark that the projection of W under π are the points which fall
in F := Ĥ0 ∪ Ĥ1 ∪ · · · ∪ Ĥd−1 under some power of T , which is nothing but ⋃j∈Z T jF =⋃
j∈Z T

jĤ0. We have that the projection π̂(φ) is an automorphism that commutes with
the affine ergodic transformation T which has eigenvalues equal to 1. By Theorem 2 and
Corollary 1 in [116] we have that π̂(φ) has the form (x0, . . . , xd−1)t 7→ B(x0, . . . , xd−1)t+β

where B is an integer matrix and β ∈ Td. Since W is invariant under φ we get that
the projection π̂(φ) leaves invariant ⋃j∈Z T jĤ0. Particularly, since Ĥ0 is the restriction
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of a plane to Td, so is its image under π̂(φ) and therefore there exists j ∈ Z such that
π̂(φ)Ĥ0 = T jĤ0. Hence, the automorphism T−jπ̂(φ) leaves invariant Ĥ0. So we are
left to study the automorphisms of (T, Td) which leave invariant Ĥ0. Let ϕ be such an
automorphism. By [116] we can assume that ϕ has the form

ϕ


x0

x1
...

xd−1

 = B


x0

x1
...

xd−1

+


β0

β1
...

βd−1


where the matrix B = (bj,k)j,k=1...,d has integer entries and ~β = (β0, . . . , βd−1)t ∈ Td.
Since ϕ commutes with T we have that B commutes with Ad (as real matrices) and
(B − Id)~α = (Ad − Id)~β in Td.

Since ϕ(0, x1, . . . , xd−1) ∈ Ĥ0, for any (x1, . . . , xd−1) ∈ Td−1 we deduce that b1,2 =
· · · = b1,d = 0 = β0. Since AidB = BAid for any i ∈ N, by looking at the first row of these
matrices we deduce that for any j = 1, . . . , d and any i ∈ N

d∑
k=1,k 6=j

(bj,k)ik−1 + (bj,j − b1,1)ij−1 = 0.

Since the vectors (1, i, i2, . . . , id−1) are linearly independent for different values of i we
deduce that B = b1,1Id. Therefore, (Ad − Id)β = (B − Id)~α = (b1,1 − 1)~α. Since Ad is
upper triangular with ones in the diagonal, this condition implies that (b1,1 − 1)α ∈ Q
and thus b1,1 = 1. We conclude that B is the identity matrix and then ϕ is the rotation
by ~β := (0, β1, . . . , βd−1)t and (Ad − Id)~β ∈ Zd. We can write this system as



0 1 1 1 1 · · ·
0 2 3 4 · · ·

0 3 6 · · ·
0 4 · · ·

0 d

· · · 0





0
β1

β1
...

βd−1


∈ Z.

This implies that dβd−1 ∈ Z and this is possible for finitely many βd−1 ∈ T. Inductively,
we deduce that there are finitely many (and rational) solutions ~β = (0, β1, . . . , βd−1)t in
Td. This means that the group of automorphisms that leaves invariant Ĥ0 is a finite group
of rational rotations. Therefore, π̂(Aut(XU , σ)) is spanned by Td and a finite set. Since
the map π̂ : Aut(XU , σ)→ Aut(T, Td) is an injection we have that Aut(XU , σ) is spanned
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by σ and a finite set. The result follows.

5.4.3. Example of a larger automorphism group

We remark that the statement of Theorem 5.1.1 is no longer valid for an arbitrary
polynomial complexity, as the following shows.

Proposition 5.4.5. For any d ∈ N, there exists a minimal subshift (X, σ) with complexity
satisfying limn→+∞ pX(n)/nd+1 = 0 and where Aut(X, σ) is isomorphic to Zd.

Proof. Let α1, . . . , αd ∈ R \Q be rationally independent numbers. For every i = 1, . . . , d,
let (Xi, σi) be the Sturmian extension of the rotation Rαi by the angle αi on the circle S1,
and let X = X1×X2 · · ·×Xd and σ = σ1×σ2 · · ·×σd. We remark that for any i = 1, . . . , d,
on (Xi, σi) the proximal relation and the regionally proximal relation coincide and thus
the proximal relation is an equivalence relation. Since the maximal equicontinuous factor
of (Xi, σi) is (S1, Rαi) via the factor map πi, by [7], Chapter 11, theorems 7 and 9, we
have that (X, σ) is a minimal system and the product system ((S1)d, Rα1 × · · · × Rαd) is
its maximal equicontinuous factor.

The complexity function of any (Xi, σi) is n+1, so we get that the complexity function
of (X, σ) is (n+1)d. On the other hand, we observe that φ1×· · ·×φd belongs to Aut(X, σ)
for any choice of φi ∈ Aut(Xi, σi). Since for every i, Aut(Xi, σi) is Z, we conclude that
Zd can be embedded as a subgroup of Aut(X, σ).

We claim this embedding is actually an isomorphism. To prove this, recall that the
Sturmian subshift Xi is an almost one-to-one extension of a rotation on the circle via an
onto map πi : Xi → S1 that it is injective except on the orbit of the unit ORαi (1), where
any point has two pre-images (e.g., see [39]). By Lemma 5.2.10, for any automorphism
φ ∈ Aut(X, σ), the automorphism π̂(φ) preserves the set of points in (S1)d having a
maximum number (namely 2d) of pre-images for the factor map π = π1 × · · · × πd. This
set is the product set ORα1

(1) × · · · × ORαd (1). Clearly, the group of automorphisms of
the form π̂(σn1

1 × · · · × σndd ), n1, . . . , nd ∈ Z, acts transitively on this set. Since the group
Aut((S1)d, Rα1×· · ·×Rαd) acts freely and the morphism π̂ is injective (Lemma 5.2.4), we
get that any automorphism φ ∈ Aut(X, σ) may be written as a product of automorphisms
in Aut(Xi, σi).

5.4.4. Subshift with subexponential complexity

In this section we give an example of a minimal subshift (X, σ) generated by a uni-
formly recurrent sequence x ∈ {0, 1}Z such that:
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There exists C such that for infinitely many n’s one has pX(n) ≤ Cn.

For any subexponential function φ there are infinitely many n’s such that pX(n) ≥
φ(n), where subexponential means that limn→+∞ φ(n)/αn = 0 for all α ∈ R.

As for subshifts pz(n) will stand for the number of words of length n occurring in the
sequence z ∈ {0, 1}Z or z ∈ {0, 1}N.

The proofs of the two following lemmas are left to the reader.

Lemma 5.4.6. Let ξ be a substitution on {0, 1}∗ of constant length L and τ be an endo-
morphism of {0, 1}∗ having all words of length 2 in its images. Let x ∈ {0, 1}N. Then,
for any y ∈ {0, 1}N having occurrences of all words of length 2 and 0 ≤ l ≤ L we have

pξ◦τ(x)(l) = pξ(y)(l).

Below ρ stands for the Morse substitution: ρ(0) = 01 and ρ(1) = 10.

Lemma 5.4.7. Let ξ be a substitution on {0, 1}∗ of constant length L. Let x ∈ {0, 1}N.
We have

pξ◦ρ3(x)(2L) ≤ 6L.

Below, when a substitution τ is of constant length L we set |τ | = L. Let us construct
inductively the sequence x. In fact, we will construct two increasing sequences of integers
(ai)i≥1 and (bi)i≥1, and a sequence of morphisms (τi)i≥1 such that

1. x = limi→∞ ρ
3τ1 . . . ρ

3τi(0∞), where 0∞ = 00 · · · ,

2. a1 < b1 < a2 < b2 < . . .,

3. px(ai) ≤ 3ai, i ∈ N and

4. px(bi) ≥ φ(bi), i ∈ N.

We start fixing a1 = 2. Let x(1) = ρ3(0∞). Then, px(1)(a1) = 4, which is less than 3a1.
Let k1 be such that 2k1 ≥ φ(k1|ρ3|) (observe it is always possible because φ has a

subexponential growth) and τ1 be a substitution of {0, 1}∗ of length L1 = 2m1 such that
τ1(0) starts with 0 and the number of words of length k1 in τ1(0) and τ1(1) is 2k1 . We set

b1 = k1|ρ3| and y(1) = ρ3τ1(0∞).

One gets
py(1)(b1) ≥ φ(b1).
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Moreover, notice that from Lemma 5.4.6 one has that

py(1)(l) = px(1)(l)

for all l ≤ |ρ3|. Now consider x(2) = ρ3τ1ρ
3(0∞). Then from Lemma 5.4.7

p(2|ρ3τ1|) ≤ 6|ρ3τ1|.

Setting a2 = 2|ρ3τ1|, one gets px(2)(a2) ≤ 3a2.
Let k2 ≥ k1 be such that 2k2 ≥ φ(k2|ρ3τ1ρ

3|) and τ2 be a substitution of {0, 1}∗ of
length L2 = 2m2 such that the number of words of length k2 in τ2(0) and τ2(1) is 2k2 . We
set

b2 = k2|ρ3τ1ρ
3| and y(2) = ρ3τ1ρ

3τ2(0∞).

One gets that py(2)(b2) is greater than φ(b2). Moreover, notice that from Lemma 5.4.6
one has that

py(2)(l) = px(2)(l) ∀l ≤ |ρ3τ1ρ
3|,

px(2)(l) = py(1)(l) ∀l ≤ |ρ3τ1|,

py(1)(l) = px(1)(l) ∀l ≤ |ρ3|.

Thus, py(2)(a1) ≤ 3a1, py(2)(b1) ≥ φ(b1) and py(2)(a2) ≤ 3a2.
Now suppose we have constructed:

1. morphisms τi of constant length such that τi(0) starts with 0, 1 ≤ i ≤ n,

2. x(i) = ρ3τ1 . . . τi−1ρ
3(0∞),

3. y(i) = ρ3τ1 . . . τi−1ρ
3τi(0∞), 1 ≤ i ≤ n,

4. a1 < b1 < a2 < · · · < an < bn, such that

a) ai = 2|ρ3τ1 . . . ρ
3τi−1|,

b) bi ≥ |ρ3τ1 . . . ρ
3τi−1ρ

3|,

c) x(i)[0, |ρ3τ1 . . . τi−1ρ
3|] is a prefix of y(i),

d) y(i)[0, |ρ3τ1 . . . τi−1ρ
3τi|] is a prefix of x(i+1),

e) py(i)(l) = px(i)(l) for all l ≤ |ρ3τ1 . . . τi−1ρ
3|,

127



f ) py(n)(ai) ≤ 3ai, 1 ≤ i ≤ n, and,

g) py(n)(bi) ≥ φ(bi), 1 ≤ i ≤ n− 1.

We have seen this construction is realizable for n = 2. Proceeding as we did for the
first cases, it is not difficult to see that it can be achieved for every n ≥ 1.

To conclude, it suffices to observe that (y(n))n≥1 converges to the sequence x we are
looking for. Indeed, the convergence follows from (4c) and (4d). Also observe that y(n)

is a prefix of x. It is a classical exercise to show that x is uniformly recurrent. From (4g)
we get that px(bi) ≥ φ(bi) for all i ∈ N. For the last point, px(ai) ≤ 3ai for all i ∈ N, it
comes from (4f ) because it is true for all n ≥ 1.

5.5. Comments and open questions

A standard question related to automorphisms is to determine if the transformation
T has a root. That is, does it exist a transformation U such that Up = T for some
integer p ≥ 0. A classical way to deal with this problem is to notice that a root is an
automorphism.

The automorphism group is also related to the collection of conjugacy maps between
two systems. If π1 and π2 are two conjugacy maps between the same systems, then π1◦π−1

2

is an automorphism. Hence, a characterization of when the automorphism group is trivial,
i.e. Aut(X,T ) is generated by T , implies rigidity results in both problems.

5.5.1. Automorphisms and nilfactors

We have shown that a large family of minimal subshifts, either with sublinear or
other type of polynomial complexity, have automorphisms groups that are virtually Z.
Even in the case of minimal subshifts obtained as extensions of minimal systems whose
automorphism group is much complex (the case of extensions of nilsystems). So a natural
question is whether this behaviour is generally true just because the fibres over particular
topological factors are constrained.

5.5.2. Eigenvalues, roots of T and automorphisms.

We obtain, in the good cases, that the group of automorphisms is a subgroup of the
corresponding one of a maximal nilfactor. This proves that there are connections between
automorphisms and continuous eigenvalues. To study these relations we can focus on
rational eigenvalues. So it is natural to ask: does a Cantor minimal system (X,T ) admit
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a non trivial automorphism with finite order or have some roots, are there constraints on
the rational continuous eigenvalues of (X,T ) ?

Classical examples of Toeplitz sequences with a unique asymptotic component (so
Aut(X, σ) is generated by σ) show that the converse is false: a system may have rational
eigenvalues and no automorphisms of finite order.

5.5.3. Complexity versus group of automorphisms

The results of [29] and of this paper show a relation between complexity and the growth
rate of the groups. Is it possible to be more precise ? For instance, is it true that for a
transitive subshift with a subquadratic complexity the group Aut(X, σ)/〈σ〉 is finite? Very
recently, Salo [108] showed a Toeplitz subshift with subquadratic complexity and whose
automorphism group is not finitely generated, answering negatively this question. So, in
the polynomial complexity case one cannot expect to have always virtually Z groups of
automorphisms. It is an interesting question to describe automorphism groups of subshifts
with polynomial complexity.

5.5.4. Measurable versus continuous automorphisms

The main result in [74] shows a rigidity result, any measurable automorphism is almost
everywhere continuous for bijective constant length substitutions. Is it possible to enlarge
this class of subshifts with the same rigidity property ? A first answer is negative: This
is not true for substitution of non-constant length and even for Pisot substitution on the
alphabet {0, 1}. Consider the two substitutions τ and ξ defined by τ(0) = 010, τ(1) = 01,
ξ(0) = 001 and ξ(1) = 10. Let (Xτ , σ) and (Xξ, σ) be the subshift they generate. It
can be shown that they are both measure theoretically isomorphic to (S1, Rα) (see [10]),
where Rα is the rotation of angle α = (1 +

√
5)/2, and, thus (Xτ , σ) and (Xξ, σ) are

measure theoretically isomorphic. But they cannot be topologically isomorphic because
their dimension groups are not isomorphic (see [38] for their computations).

5.5.5. Realization of automorphism groups

By the Curtis-Hedlund-Lyndon theorem, the collection of automorphisms of a subshift
is countable. We leave open the realization of any countable group as an automorphism
group. More precisely,

Question. Given a countable group G (not necessarily finitely generated). Does it
exist a minimal subshift (X, σ) such that Aut(X, σ)/〈σ〉 is isomorphic to G ?
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Notice that Toeplitz sequences can also be realized on residually finite groups [27].
A priori, they may provide interesting solutions in this class. But, as stated in the
remark below Corollary 5.2.11, their automorphism group is abelian. This kills any non
commutative group realization by this way.

If we restrict to some families of subshifts (e.g. Sturmian or Toeplitz sub shifts), we
prove that their automorphism groups are subgroups of their maximal equicontinuous
factors. Can we characterize these groups for the Sturmian and Toeplitz cases ?

5.6. Computing the group of automorphisms of tilings
by using cubes

In this section we show an application of the cubes introduced in Chapter 2 to study
automorphism groups of two dimensional tilings. Even if one wants to understand the
automorphism group of a one dimensional subshift, the study of the two (or higher)
dimensional setting could provide useful information for the one dimensional one. The
work of Cyr and Kra [29] illustrates this fact.

In what follows, we compute a special factor (built using cubes) of the minimal part
of the Robinson tiling. The Robinson tiling was introduced by Robinson [105] in the 70’s
to study undecidability problems and showed how to tile the plane in a nonperiodical
way. This tile has been well studied in symbolic dynamics, specially in the context of
theoretical computer science. We refer to [103] and [52] for further details.

We give a useful general result and then we briefly introduce the Robinson tiling.

Lemma 5.6.1. Let (X,S, T ) be a minimal system with commuting transformations S and
T , and let φ be an automorphism of (X,S, T ). Then φ×φ×φ×φ(QS,T (X)) = QS,T (X).
Particularly, if (x, y) ∈ RS(X) (or RT (X) or RS,T (X)), then (φ(x), φ(y)) ∈ RS(X) (or
RT (X) or RS,T (X)).

Proof. We recall that G denotes the Z2 action spanned by S and T . Let x ∈ QS,T (X)
and let x ∈ X. There exist sequences (gi)i∈N in G and (ni)i∈N, (mi)i∈N in Z such that
(gix, giSnix, giTmix, giSniTmix) → x. Since (φ(x), φ(x), φ(x), φ(x)) ∈ QS,T (X) we have
that

(giφ(x), giSniφ(x), giTmiφ(x), giSniTmiφ(x)) ∈ QS,T (X)

=(φ(gix), φ(giSnix), φ(giTmix), φ(giSniTmix)) ∈ QS,T (X)

→(φ× φ× φ× φ)(x) ∈ QS,T (X).

130



Hence φ× φ× φ× φ(QS,T (X)) = QS,T (X).
If (x, y) ∈ RS(X), then there exists a ∈ X with (x, y, a, a) ∈ QS,T (X) and thus

(φ(x), φ(y), φ(a), φ(a)) ∈ QS,T (X). This means that (φ(x), φ(y)) ∈ RS(X). The proof for
the cases RS(X) and RS,T (X) are similar.

Remark 5.6.2. In general we do not know if RS(X) (or RT (X) or RS,T (X)) is an equiv-
alence relation. In any case, if σ(RS(X)) is the smallest closed and T × T -invariant
relation generated by RS(X) one easily check that (x, y) ∈ σ(RS(X)) if and only if
(φ(x), φ(y)) ∈ σ(RS(X)). Therefore the factor map π : X → X/σ(RS(X)) is compatible
with Aut(X,T ).

5.6.1. The Robinson Tiling

Consider the following set of tiles and their rotations and reflections:

Figure 5.1: The Robinson Tiles (up to rotation and reflection). The first tile and its
rotations are called crosses.

Let A be the set of the 28 Robinson tiles. Let Y ⊆ AZ2 be the subshift defined by the
following rules:

1. The outgoing arrows match with the ingoing arrows;

2. There exists ~n ∈ Z2 such that there is a cross in every position of the form {~n +
(2i, 2j)} for i, j ∈ Z ( this means that there is a 2-lattice of crosses).

This system is not minimal but it has a unique minimal subsystem [52]. We let XR

denote this unique minimal subsystem. Then (XR, σ(1,0), σ(0,1)) is a minimal system with
commuting transformations σ(1,0) and σ(0,1) and we call it the minimal Robinson system.
For n ∈ N we define supertiles of order n inductively. Supertiles of order 1 correspond
to crosses and if we have defined supertiles of order n, supertiles of order n + 1 are
constructed putting together 4 supertiles of order n in a consistent way and adding a
cross in the middle of them (see Figure 5.6.1). We remark that supertiles of order n have
size 2n − 1 and they are completely determined by the cross in the middle. Particularly,
for every n ∈ N there are four supertiles of order n. It can be proved [52], [103] that for
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every x ∈ XR, given n ∈ N, supertiles of order n appear periodically (figure 5.3 illustrates
this phenomenon).

Figure 5.2: A supertile of order 3. The four 3x3 squares of the corners are supertiles of
order 2.

Let x ∈ XR. A horizontal line in x is the restriction of x to a set of the form
{(i, j0) : i ∈ Z} where j0 ∈ Z. Similarly, a vertical line in x is the restriction of x to a
set of the form {(i0, j) : j ∈ Z} where i0 ∈ Z. We remark that a line passing through
the center of a supertile of order n has only one cross restricted to the supertile. The
presence of supertiles of any order, forces the the existence of lines (vertical or horizontal)
with at most one cross that are called fault lines. A point x ∈ XR can have 0,1 or 2
fault lines. When x is a point with two fault lines, then these lines divide the plane in
four quarter planes (one line is horizontal and the other is vertical). On each one of these
quarter planes the point is completely determined. The tile in the intersection of two
fault lines determines completely the fault lines and therefore this tile determines x. See
[103], Chapter 1, Section 4 for more details.

Given a point x ∈ XR and n ∈ N, supertiles of order n appear periodically, leaving
lines between them (which are not periodic). We remark that the center of one of the
supertiles of order n determines the distribution of all the supertiles of order n. We
say that we decompose x into supertiles of order n if we consider the distribution of its
supertiles of order n, ignoring the lines between them.

Let Bn := ([−2n−1, 2n−1]∩Z)× ([−2n−1, 2n−1]∩Z) be the square of side of size 2n + 1.
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Recall that x|Bn ∈ ABn is the restriction of x to Bn. Then, looking at x|Bn , we can
find the center of at least one supertile of order n, and therefore we can determine the
distribution of supertiles of order n in x. We remark that if x and y are points in X such
that x|Bn = y|Bn , then we can find the same supertile of order n in the same position in
x and y, and therefore x and y have the same decomposition into tiles of order n.

We study the Rσ(1,0),σ(0,1)(XR) relation in the minimal Robinson system. We have:

Proposition 5.6.3. Let (XR, σ(1,0), σ(0,1)) be the minimal Robinson system. Then (x, y) ∈
Rσ(1,0),σ(0,1)(XR) if and only if they coincide in the complement of its fault lines. Particu-
larly, points which have no fault lines are not related to any point by Rσ(1,0),σ(0,1)(XR).

Proof. We start computing the Rσ(1,0)(XR) relation. Let x, y ∈ Rσ(1,0)(XR) with x 6= y

(the case Rσ(0,1)(XR) is similar). Let p ∈ N be such that x|Bp 6= y|Bp and let x′ ∈ X,
n,m ∈ Z and z ∈ XR with x′|Bp = x|Bp , σn(1,0)x

′|Bp = y|Bp , σm(0,1)x
′|Bp = z|Bp and

σn(1,0)σ
m
(0,1)x

′|Bp = z|Bp . Then σn(1,0)σ
m
(0,1)x

′|Bp = σm(0,1)x
′|Bp and thus σn(1,0)σ

m
(0,1)x

′ and σm(0,1)x
′

have the same decomposition into supertiles of order p, which implies that x and y have
also the same decomposition. Particularly, the difference between x and y must occur in
the lines which are not covered by the supertiles of order p (we remark that these lines
have at most one cross). Let Lp be such a line on x. For q larger than p, we decompose
into tiles of order q and we conclude that Lp lies inside Lq. Taking the limit in q, we
deduce that x and y coincide everywhere except in one or two fault lines.

Now suppose that x and y coincide everywhere except in fault lines. For instance,
suppose that x and y have two fault lines and let n ∈ N. We can find z ∈ XR with no
fault lines and p ∈ Z such that z|Bn = x|Bn and σp(1,0)z|Bn = yBn . Then, we can find
a supertile of large order containing z|Bn and σp(0,1)z|Bn . Hence, along the horizontal we
can find q ∈ Z such that σq(0,1)z|Bn = σq(0,1)σ

p
(1,0)z|Bn . Since n is arbitrary, we have that

(x, y) ∈ Rσ(1,0)(XR).
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Figure 5.3: For an arbitrary n ∈ N, the colored squares represent tiles of order n. In this
picture we illustrate how points with two fault lines, with different crosses in the middle
are related.

Let π : XR → XR/Rσ(1,0),σ(0,1)(XR) be the quotient map. Then in the minimal Robin-
son system we can distinguish three types of fibers for π: fibers with cardinality 1 (tilings
with no fault lines), fibers with cardinality 6 (tilings with one fault line), and fibers with
cardinality 28 (tilings with 2 fault lines).

Corollary 5.6.4. The group of automorphisms of the minimal Robinson system is spanned
by σ(1,0) and σ(0,1).

Proof. Let π : XR → XR/Rσ(1,0),σ(0,1)(XR) be the quotient map. By Proposition 5.6.3 and
Lemma 5.2.4 we have that that π̂ : Aut(XR, σ(1,0), σ(0,1))→ Aut(XR/Rσ(1,0),σ(0,1)(XR)) is an
injection. Let φ be a automorphism of the minimal Robinson system and let F be a fiber
with maximum cardinality. Since π is a compatible factor map, we have that φ(F ) is also
a fiber with maximum cardinality, but there is only one (up to shift) fiber with maximum
cardinality. This implies that φ(F ) = σn(1,0)σ

m
(0,1)(F ) and therefore π̂(φ) = π̂(σn(1,0)σ(0,1)).

Since π̂ is an injection we get the result.

The Robinson tiling is a tiling space which has a “hierarchical structure”, meaning
that patterns that “look similar”appear with an arbitrary big size. This concept has
not been mathematically formalized but many people use it when describing this kind
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of phenomenon. We believe our methods can be used to study automorphism groups of
other tilings, or families of tilings having this property.
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Chapter 6

Perspectives

In this Chapter we present some open questions and comments that stem from the
discussion in this thesis document. All these problems conform a future plan of research.

In Chapter 2 and 3 we have derived applications from introducing cube structures for
a dynamical system given by two commuting transformations. The results discovered in
this case let us think in the natural generalization of the new cubes when one introduce
a larger number of transformations. There is a natural, and even obvious, way to do this:
suppose that X is a compact metric space and that T1, . . . , Td : X → X are commuting
transformations on X (i.e. Ti ◦ Tj = Tj ◦ Ti for i, j = 1, . . . , d). We should define the
space of dynamical cubes QT1,...,Td(X) as the closure of the points

{(T ε1n1
1 · · ·T εdndd x)ε∈{0,1}d : x ∈ X, n1 . . . , nd ∈ Z}.

The space QT1,...,Td(X) is a topological dynamical system as well. It is invariant under
the diagonal transformations T̃i := Ti × · · · × Ti (2d times), i = 1, . . . , d and under the
face transformations T̂i, i = 1, . . . , d defined as

T̂i(x) =

 (T̂ix)ε = Tixε, εi = 1;
(T̂ix)ε = xε, εi = 0.

For example, for three commuting transformations T1, T2, T3 on X, QT1,T2,T3(X) is the
closure of the set

{(x, T n1 x, Tm2 x, T n1 Tm2 x, T
p
3 x, T

n
1 T

p
3 x, T

m
2 T

p
3 x, T

n
1 T

m
2 T

p
3 x) : x ∈ X, n,m, p ∈ Z}.

Having proposed this space of dynamical cubes, beyond natural topological properties,
the main question to be understood is “what means to deduce the last (or any) coordinate
of a dynamical cube looking at the other ones ?”. The answer to this property must
reflect the topological structure of the underlying dynamical system together with its
structural factors. Then, the next step is to use the cube structures to build invariant
closed relations and use them to build factors. Hopefully, those factors will have the
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property that a coordinate in a cube is determined by the other ones and thus it will have
an understandable topological structure.

A second very involving question is whether the study of these cube structures could
help to deduce other pointwise convergence results, as shown in Chapter 3. Given a prob-
ability space (X,X , µ) and measure preserving commuting transformations T1, . . . , Td, the
structure QT1,...,Td(X) (defined in a suitable topological representation of X) should help
to study the average

1
Nd

∑
0≤n1,...,nd<N

∏
ε∈{0,1}d\{~0}

fε(T ε1n1
1 · · ·T εdndd x)

for bounded functions fε, ε ∈ {0, 1}d \ {~0}.

For example, the cube structure QT1,T2,T3 should help to understand the average

1
N3

∑
0≤n<N
0≤m<N
0≤p<N

f1(T n1 x)f2(Tm2 x)f3(T n1 Tm2 x)f4(T p3 x)f5(T n1 T
p
3 x)f6(Tm2 T

p
3 x)f7(T n1 Tm2 T

p
3 x)

for bounded functions f1, f2, f3, f4, f5, f6, f7.

This of course requires to have a better understanding in the measure theoretical
situation. For example, in order to study pointwise convergence of higher order cubic
averages, one should study the sigma algebra ∨ ITi in a convenient extension of the original
system, like Host’s magic extensions in [64]. Up to now, it is not clear what is the structure
of this σ-algebra, and no topological representations are known. This is because at the
time they were studied, they were used to get L2 convergence of multiple averages and no
representations were needed to achieve this result.

A very ambitious question that remained open during this thesis is the study of the
pointwise convergence of the average

1
N

N−1∑
i=0

f1(Six)f2(T ix), (6.0.1)

where (X,µ, S, T ) is an ergodic system with commuting transformation S and T . This
question appeared naturally when studying the convergence of averages in Chapter 3. In
fact, the hope was to use the new cubes or some modifications to solve the problem. Nev-
ertheless, it was clear that we need to have a better understanding of another structures.
In order to study the average 6.0.1 we propose to study the structure NS,T (X) defined as
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the closure in X3 of
{(x, Six, T ix) : x ∈ X, i ∈ Z}.

Then translate the strategy proposed by Huang, Shao and Ye in [76] to this setting.
That is, produce a topological representation of the system where our new structure is
uniquely ergodic. Here we remark that the structure NS,T (X) is a topological dynamical:
the transformations S×S×S, T ×T ×T and id×S×T act on it. In order to get unique
ergodicity of NS,T (X) we have to understand several σ-algebras like IS ∨ IT ∨ IS−1T ,
IS ∨ IT , IT ∨ IS−1T and IS ∨ IS−1T . This is work in progress and we do not present
further details here.

Another direction of research derived from Chapter 2 is to look for more applications
of the QS,T cubes to the theory of tiling systems, as was done at the end of Chapter 5.
A first step is to pass from Z2 actions to R2 actions (mainly because people interested in
tiling theory consider R2 actions instead of Z2 actions). Then we will explore examples
or classes of examples where the structure of fibers over the special factors produced by
cubes can shed light of the structure of their automorphism groups.

In Chapter 4, we study the enveloping semigroup of a system of order d. We left open
the converse of Theorem 4.1.1, namely: Does some property of the enveloping semigroup
characterize systems or order d? We think we need some new tools coming from a pure
topological analogue of the theory developed by Host and Kra [67] in measure preserving
setting. Here we remark that the result by Host, Kra and Maass [70] uses results from the
measure preserving context. To make a pure topological proof of the structure theorem
in [70] does not seem to be an easy task. Very recently Gutman, Manners and Varjú have
claimed to have a purely topological proof of the Host-Kra-Maass structure theorem, so
we expect to apply some of their methods in the resolution of our problem.

Another problem we would like to tackle is to understand the automorphism group
of one dimensional minimal subshifts with polynomial complexity. In this direction Cyr
and Kra showed that a better understanding of the dynamics of multidimensional sub-
shifts helps to deduce results about the automorphism group of one dimensional ones.
Because of this, we are also interested in the study of asymptoticity and related notions
in multidimensional subshifts. For example, we are interested in study relations given by
special factors built through cube structures, as was done in Chapter 2. Many of these
relations may result proximal (meaning that two points that are related need to be prox-
imal) which is the case when the factor defined by the relation is an almost one-to-one
extension. As was shown in Chapter 5 these kind of results allow to inject the group
of automorphisms into the group of automorphisms of the factor and then one can have
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a better understanding by studying properties in the factor. In this topic we will also
study what kind of countable groups can appear as the automorphism group of a minimal
subshift. In particular, which groups are automorphisms groups of Toeplitz subshifts. In
Chapter 5 we have shown that such groups are always abelian, but we do not know if any
abelian group can be realized in this way.
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