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ABSTRACT  
Atherosclerosis remains and continues to be the leading cause of death and disability in the 

world. The implication of Renin-angiotensin-aldosterone system (RAAS) in the development 

of the disease is well experimentally and clinically documented. However, due to the 

complexity of the system, these studies remain dispersed and give no clear global view of the 

association between the system and the disease. In this regard, we studied the functional 

organization of a set of 37 genes encoding classical and newly discovered RAAS participants, 

including substrate, enzymes and receptors. This set was called extended RAAS (extRAAS). 

Using statistical analysis of human carotid atheroma transcriptome involving gene clustering, 

we revealed special features of extRAAS expression associated with atheromatous 

remodeling. An important feature of this pattern was the coordination of 2 clusters of genes 

that are known to favor atheroma formation. The first cluster constitutes genes that encode 

for angiotensin peptidases, including ACE, CTSG, CTSD and RNPEP. Whereas the second 

encode for receptors (AGTR1, MR, GR and LNPEP). We hypothesized that the local pattern 

of extRAAS gene expression plays a key role in the development of atherosclerosis by 

orienting the metabolism of active peptides. 

However several important questions remain to be answered about the determinants and the 

biological importance of these co-expression patterns in atheroma development. Thus the aim 

of our project is to unmask the answers by investigating: 

1. Whether the organization we have obtained from carotid atherosclerotic lesion is 

reproducible in other types of atheroma (coronary, renal, peripheral) and if it is specific 

for atheroma. To prove that this organization is atheroma specific, we compared it to the 

organization of extRAAS in 23 normal human tissues (no normal artery) in addition to 

atherosclerotic and control aortas from Apo E -/- mice. 

2. Whether coordination of gene expression is a tissue or a cell property. This was addressed 

using primary vascular smooth muscle cells (VSMCs) in culture adopting different 

phenotypes related to atheroma (contractile, lipid storing and osteoblastic). The 

transcriptome of these cells will be analyzed in order to define extRAAS co-expression 

patterns related to these phenotypes. The results will compared to atheroma data to check 

whether either type of these cells is responsible for the co-expression pattern observed in 

atheroma. 



Abstract 
 

XIII 
 

3. What are the transcriptional mechanisms behind the organization obtained? Using 

bioinformatics tools and statistics we proposed candidate transcription factors that may 

play a role in the regulation of extRAAS gene expression. 

4. Whether and how the transcript clusters translate into protein and signaling peptide 

production? This question will be answered by tracking the enzymatic cleavage of 

Angiotensin-I in carotid atheroma tissue in vitro. The results will answer whether the 

transcribed extRAAS model observed in atheroma is translated into a biologically active 

model at the protein level. 

This study will pave the way to a better understanding of the biological significance and 

therapeutic regulation of a highly complex system locally in atheroma in a tissue- or process-

specific manner. 
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RESUME 
L’Athérosclérose est la principale cause de décès et d'invalidité dans le monde. L'implication 

du système rénine-angiotensine-aldostérone (RAAS) dans le développement de la maladie est 

expérimentalement et cliniquement bien documentée. Toutefois, en raison de la complexité 

du système, ces études ne donnent pas de vision claire sur l'association entre le système et la 

maladie. À cet égard, nous avons étudié l'organisation fonctionnelle d'un ensemble de 37 

gènes codant pour les composants classiques et nouvellement découverts du RAAS, y 

compris les substrats, les enzymes et les récepteurs. Cet ensemble a été appelé RAAS étendu 

(extRAAS). En utilisant une analyse statistique des données du transcriptome de l’athérome 

carotidien humain, nous avons révélé des caractéristiques spéciales de l'expression de 

l’extRAAS associées au remodelage athéromateux. Une caractéristique importante de ce 

modèle est la coordination de 2 groupes de gènes qui sont connus pour favoriser la formation 

de l’athérome. Le premier groupe est constitué de gènes codant pour les peptidases de 

l'angiotensine, y compris ACE, CTSG, CTSD et RNPEP. Le deuxième groupe est constitué 

des gènes codant pour les récepteurs AGTR1, MR, GR et LNPEP. 

On suppose que la structure locale de l'expression génique d’extRAAS joue un rôle important 

dans le développement de l'athérosclérose en orientant le métabolisme des peptides actifs. 

Ainsi, le but de notre projet est de comprendre : 

1. Si l'organisation que nous avons obtenue dans l'athérosclérose carotidienne est 

reproductible dans d'autres types d'athérome (coronaire, rénal, périphérique) et si elle est 

spécifique de l'athérome. Pour prouver la spécificité de cette organisation, nous l'avons 

comparée à l'organisation de extRAAS dans 23 tissus humains normaux, en plus des 

aortes athérosclérotiques de souris Apo E - / - et de souris contrôles. 

2. Si la coordination de l'expression des gènes est la propriété du tissu ou des cellules. Cela a 

été traitée en utilisant des cultures primaires de cellules musculaires lisses vasculaires 

humaines (CMLVh) et en leur faisant adopter différents phénotypes liés à l'athérome 

(contractile, adipocytique et ostéoblastique). Le transcriptome de ces cellules sera analysé 

afin de définir des motifs de co-expression du extRAAS en relation avec ces phénotypes. 

Les résultats seront comparés aux données d'athérome pour vérifier si le phénotype de ces 

cellules est responsable de l’organisation des transcrits observée dans l'athérome. 

3. Quels sont les mécanismes de transcription responsables de l'organisation obtenue? En 

utilisant des outils bioinformatiques et statistiques, nous avons proposé des facteurs de 
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transcription candidats qui peuvent jouer un rôle dans la régulation de l'expression 

génique de l’extRAAS. 

4. Comment la structure de l’expression transcriptomique se traduit en protéines et en 

production de peptides de signalisation? Cette question sera traitée par le suivi du clivage 

enzymatique de l'angiotensine-I dans le tissu de l'athérome carotidien in vitro. Les 

résultats montreront si le modèle d’organisation des transcrits d’extRAAS observé dans 

l'athérome est traduit en un modèle biologiquement actif au niveau protéique. Ces travaux 

devraient ouvrir la voie à une meilleure compréhension de la signification biologique et 

de la régulation transcriptionnelle d'un système complexe fonctionnant localement dans 

l’athérome, d'une manière spécifique au tissu vasculaire ou au processus athéromateux. 

Cette étude ouvre la voie à une meilleure compréhension de la signification biologique et de 

la régulation thérapeutique, d'une manière spécifique aux tissus ou au processus d'un système 

très complexe localisé dans l’athérome. 
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I.1 THE BLOOD VESSEL WALL 

The blood vessels are the part of the circulatory system that transports blood throughout the 

human body. They are made up of a lumen, through which blood flows, surrounded by the 

vessel wall. There are three major types of blood vessels1: the arteries, which carry the blood 

away from the heart; the capillaries, which enable the actual exchange of water and chemicals 

between blood and tissues; and the veins, which carry blood from the capillaries back toward 

the heart. Different types of vessels are discriminated by their vessel wall thickness and 

components. 

I.1.1 Layers of the vessel wall 

The vessel wall of arteries and veins consists of three main layers that differ in their cellular 

and extracellular matrix (ECM) constituents: the Intima, the Media and the Externa1 (Figure 

I.1). 

 
Figure I.1: the artery wall structure  (DOI:10.15347/wjm/2014.010). 

I.1.1.1 Tunica intima 

The tunica intima is the innermost layer of the vessel wall facing the lumen1,2. It is composed 

of endothelium and sub-endothelial connective tissue. The endothelium is composed of a 

continuous monolayer of endothelial cells (ECs), a specialized type of epithelial cells3, that 

rest on their own basement membrane4. The sub-endothelial layer consists of a delicate 

connective tissue with scattered macrophages, vascular smooth muscle cells (VSMCs) and 
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mast cells, which are known to be present in the normal intima since fetal life2. Capillaries 

consist only of a layer of endothelium and occasional connective tissue to facilitate exchange. 

I.1.1.2 Tunica Media 

The tunica media is the middle layer that provides structural support, vaso-reactivity and 

elasticity and is the thickest layer in arteries1. The tunica media is principally made of 

VSMCs that are embedded in their own basement membrane that is made of types I and III 

collagen and proteoglycans (PGs), in addition to a complex mixture of elastic fibers that are 

arranged into distinct layers4. The intima is separated from the media by a dense elastic 

membrane called the internal elastic lamina, which is considered a part of the media and 

consists of a network of elastic fibers, having principally a longitudinal direction1. 

Vasoconstriction or relax vasodilatation is controlled in VSMCs by autonomic nerves (nervi 

vasorum) and local metabolic factors that are mainly produced by ECs1. The media is 

separated from the adventitia by a dense elastic membrane called the external elastic lamina. 

Elastic fibers allow the vessel to expand with systole and contract with diastole, thereby 

propelling blood forward5.  

I.1.1.3 Tunica Externa 

The Tunica Externa, also called Tunica adventitia, is the outermost layer and is almost 

entirely made of connective tissue with scattered fibroblasts1,5. It also contains nerves that 

supply the vessel as well as nutrient capillaries (vasa vasorum) in the larger blood vessels. 

I.1.2 Major Components of the vessel wall 

The normal vascular tissue is a diverse population of cell types, including ECs, VSMCs, 

fibroblasts and other connective tissue cell types, all embedded in a complex ECM. 

I.1.2.1 Endothelial cells (ECs): 

ECs are simple squamous cells that line the interior surface of blood vessels and form a 

barrier between the blood in the lumen and the subsequent layers of the vascular wall6. They 

are the cells in charge of synthesizing and secreting their ECM and basal membrane 

components, such as fibronectin, laminins, PGs and collagen (mainly types I, III and V)2. 

ECs are joined by tight junctions, which prevent the passage of molecules between them from 

the blood into the vessel wall. However, ECs are permeable to almost all plasma proteins 

which pass into the vessel wall through transcytosis and intercellular junctions in the EC 

membrane, which allows a strict regulation of molecular transport from the circulation7. The 
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cell wall of ECs contains receptors for several ligands, including low density lipoprotein 

(LDL), insulin and histamine2. The cytoskeleton of ECs is made up mainly of microfilaments 

rich in F-actin and myosin, in addition to intermediate filaments and microtubules6. A special 

characteristic of ECs is the Weibel-palade bodies, which are storage granules that store and 

release two principal molecules, von Willebrand factor, involved in blood coagulation, and P-

selectin, involved in leukocytes recruitment and attachment to ECs, thus playing a dual role 

in hemostasis and inflammation6. Since they are the cells in contact with the circulating blood 

and reacting with physical and chemical stimuli, ECs have a major role in regulating 

hemostasis, vasomotor tone, and immune and inflammatory responses8. In addition, the 

endothelial cells are pivotal in angiogenesis and vasculogenesis6. ECs are a permeability 

barrier, but also form a multifunctional paracrine and endocrine organ. They are involved in 

the immune response, coagulation, growth regulation, production of extracellular matrix 

components, and are a modulator of blood flow and blood vessel tone6. In fact, endothelial 

injury, activation or dysfunction, loss of semi-permeable membrane function, and 

thrombosis6 are hallmarks of many pathologic states including atherosclerosis,. 

I.1.2.2 Vascular smooth muscle cells (VSMCs): 

VSMCs are the particular type of smooth muscle found within and composing the majority of 

the wall of blood vessels1. They are mainly present in the tunica media of vessel wall, with 

only few scattered cells present in the intima2. VSMCs are the cellular component of the 

normal blood vessel wall that provides structural integrity and regulates the diameter by 

contracting and relaxing dynamically in response to vasoactive stimuli9. Two major 

phenotypic forms of VSMCs are present in normal vessels: Contractile and synthetic2. The 

two forms are characterized by different morphology, expression levels of SMC marker 

genes, proliferative potential and migration properties. Contractile VSMCs are elongated, 

spindle-shaped cells, with low protein synthesis activity, manifested by the little rough 

endoplasmic reticulum (RER) and golgi apparatus2,10. These cells contain large amounts of 

connected contractile filaments rich in -actin. On the other hand, synthetic SMCs are less 

elongated and have a cobblestone morphology which is referred to as epithelioid or 

rhomboid2,10. As their name indicates, synthetic SMCs contain a high number of organelles 

involved in protein synthesis2. Moreover, synthetic and contractile SMCs have different 

proliferative and migratory characteristics. Generally, synthetic SMCs exhibit higher growth 

rates and higher migratory activity than contractile SMCs10. Phenotypic modulation of 

VSMCs, which is the ability to switch between different phenotypes, gives them the ability to 
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accurately adapt to external stimuli, either on the short-term by regulation of the vessel 

diameter, or on the long-term via structural remodeling by changing cell number and 

connective tissue composition10. 

I.1.2.3 Fibroblasts: 

A fibroblast is a type of cell that functions mainly in ECM synthesis. Fibroblasts are the most 

common cells in connective tissue and are present in low numbers in the three layers of the 

vascular wall2. 

I.1.2.4 The Extracellular matrix (ECM): 

ECM occupies a large proportion in the vessel wall, accounting for about 50% of the large 

vessel weight11. The elimination of VSMCs from large aortas does not alter the static 

mechanical properties of mature aortas, suggesting that ECM account for most of the 

mechanical characteristics of the vessel wall. The ECM of the vessel wall is produced by 

resident cells of the wall, mainly VSMCs and ECs12. Under normal conditions, ECM contain 

mostly collagen (mainly types I, III, IV, V, and VI), elastic fibers (elastin and fibrillin), 

fibulins, in addition to a complex set of PGs and glycoproteins (GPs)13. ECM plays a key role 

in vascular wall homeostasis by controlling tensile strength and vasoelasticity, nutrients 

transport, accumulation of products and metabolites, cellular phenotypes and attachment and 

migration of cells13. The ECM can adapt by changing quantity and quality under pathological 

conditions, such as age and atherosclerosis14. 

I.2 ATHEROSCLEROSIS 

I.2.1 Definition 

The most accepted definition of atherosclerosis is the one set by the world health organization 

(WHO) in 1958 as “a variable combination of changes in the intima of arteries (as 

distinguished from arterioles) consisting of focal accumulation of lipids, complex 

carbohydrates, blood and blood products, fibrous tissue and calcium deposits, and associated 

with medial changes”15. Indeed, this definition holds true until now as defined by the 

American heart association in 201416. These accumulations will lead with time to the 

formation of an “atherosclerotic plaque” that will continue to grow, thus narrowing the artery 

lumen and leading to cardiovascular complications (Figure I.2). 
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Figure I.2: normal versus atherosclerotic wall. Normal wall maintain 
normal blood flow; whereas atherosclerotic wall contains a plaque 
lipids, complex carbohydrates, blood and blood products, in addition 
to fibrous tissue and calcium deposits. This plaque will narrow the 
lumen and may lead to cardiovascular events. (Source: 
http://lafeber.com/vet/omega-3-fatty-acids-and-atherosclerosis-in-
birds/). 

I.2.2 Symptoms, diagnosis and treatment 

Atherosclerosis is usually not associated with signs and symptoms until it severely narrows or 

totally blocks an artery. The complications that are associated with atherosclerosis depend on 

the artery bed in which the plaque is formed and the downstream organs that are affected by 

the reduced oxygen and nutrition as a result of insufficient blood flow17. The arteries mainly 

associated with atheroma formation are the coronary arteries, carotid arteries, renal arteries 

and peripheral arteries (i.e. legs, arms and pelvis). Since coronary arteries supply the heart 

with oxygen and nutrients, a plaque that form in such arteries may lead to angina in the chest, 

shoulders, arms, neck, jaw, or back, in addition to shortness of breath and arrhythmias. As the 

plaque continues to grow, the shear force of the blood flow increases, which may eventually 

lead to plaque rupture, resulting in the formation of thrombus that plug the artery completely 

that will eventually lead to heart attack18. On the other hand, if the carotid artery is affected, 

this will lead to reduced blood flow into the brain, associated with headache, weakness, 

paralysis, loss of consciousness, dizziness, confusion and troubles in speech, even may lead 

to death by stroke in case of thrombus formation17. In the case of affected renal artery, an 

atherosclerotic plaque may lead to chronic kidney disease, characterized by tiredness, 

changes in frequency of urination, loss of appetite, nausea, swelling in the hands or feet, 
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itchiness or numbness, and trouble concentrating. Finally, if the atheroma plaque forms in a 

major peripheral artery, it may lead to numbness and pain in the affected organ17. 

A combination of several tests may be required to diagnose atherosclerotic patients to define 

the type and level of severity of the disease17. The doctor may first ask about family history, 

life style and associated symptoms in order to define the possible atherosclerosis type. After 

this, several tests should be done in order to define the type of lesion and its severity, 

including stethoscope examination, physical test, blood test, electrocardiogram (EKG), chest 

X-ray, echocardiography, Computed Tomography (CT) Scan, angiography, and 

ankle/brachial Index. In addition the doctor may ask for magnetic resonance imaging (MRI) 

and positron emission tomography (PET) to better view plaque buildup in the arteries. 

Based on the International Atherosclerosis Society Panel recommendations19, primary 

prevention of atherosclerosis involve lifestyle therapies to reduce atherogenic lipo-proteins by 

adhering to a heart-healthy diet, regular exercise habits, avoidance of tobacco products, and 

maintenance of a healthy weight etc. Secondary prevention emphasizes use of cholesterol-

lowering drugs to attain optimal levels of atherogenic lipoproteins. The Doctor may also 

prescribe certain drugs to manage other risk factors of atherosclerosis such as b-blockers or 

RAAS blockers to manage blood pressure19. However, drug therapy is only recommended for 

subjects at greater risk. Finally, if the patient has severe atherosclerosis, the doctor may 

recommend a medical procedure or surgery17. The latter includes percutaneous coronary 

intervention (PCI, or coronary angioplasty) to open blocked or narrowed coronary arteries 

(heart), coronary artery bypass grafting (CABG), which can also be used for peripheral 

atherosclerosis, or carotid endarterectomy to remove plaque buildup from the carotid arteries 

in the neck17. 

I.2.3 Epidemiology and risk factors 

Atherosclerosis remains and continues to be the main cause of death and morbidity in the 

world, mainly in developed countries20,21. Indeed, Ischemic heart disease and stroke, both 

mainly caused by atherosclerosis, have remained the top major causes of death during the 

past decade, each killing 48.6% and 13.2%, respectively22. Together they killed more than 14 

million individual in 2012, which is greater than the number of deaths caused by the 7 

subsequent leading causes of death in the same year. However, the burden of the disease has 

been decreasing during the last decade22 as a result of the better understanding of the disease 

and its treatment. Indeed, the identification and understanding of new atherosclerosis risk 
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factors, along with the classic risk factors, improve our ability to predict future risks and thus 

a better prevention of the disease23. Indeed, over 300 risk factors have been associated with 

atherosclerosis and its major complications, coronary heart disease and stroke21. 

Atherosclerosis develops over the course of years of an individual as a result of the 

combining effects of several intrinsic and extrinsic risk factors, including family history, 

hypertension, diabetes and insulin resistance, metabolic syndrome, hyperlipidemia, 

hypercholesterolemia, smoking, sedentary life, infection, in addition to several other 

factors21. 

I.2.4 Atheroma plaque initiation 

Although the histologic features of the different stages of atheroma plaque had been well 

described18,24, the mechanisms of initiation of plaque formation are not well understood. 

Indeed, the mechanism of atheroma plaque formation, mainly during the initial stages, has 

been the subject of debate for a long time and several hypotheses have emerged to explain the 

initial steps in atheroma development. This can be mainly due to the species- and spatial-

specificity of the mechanisms by which atheroma plaque develops25,26. The difficulty of 

obtaining early stage plaques from humans, obliged researchers to rely on animal studies for 

the study of atherosclerosis25. In fact, the recent advances in molecular biology improved our 

understanding of atherosclerosis and atheroma plaque development using special genetic 

animal models. However, mouse models may develop atherosclerosis to varying extents, in a 

time and diet dependent manner25. The choice of a mouse model should be based on the 

investigator’s specific needs as it relates to their hypothesis being tested. Although several 

hypotheses described the initial steps in atheroma plaque development27–30, here we discuss 

only two of them.  

In the “response-to-retention” hypothesis, atheroma plaque initiation is thought to rely mainly 

on lipid retention in the arterial wall30. This view relied on several in vivo and in vitro 

observations, which showed that lipid accumulation was the earliest step observed after LDL 

infusion into animal models31, even before vascular cell adhesion molecule 1 (VCAM-1) 

expression by ECs32–34 and macrophages accumulation in the sub-endothelial space35,36. In 

this hypothesis, macrophages are the principle cells that are involved in the initiation process, 

which are recruited by the modified (mainly by oxidization and esterification) LDL trapped 

in intima by matrix components24,30. Although lipid accumulation occurs in normal arteries, 

this may not initiate atheroma plaque formation unless reaching certain threshold that can 
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stimulate macrophages recruitment and expression of inflammatory markers2. The “response-

to-retention” hypothesis was originally the most accepted hypothesis describing atheroma 

plaque formation; however, recent advances in molecular biology shifted the view toward the 

“response-to-injury” hypothesis. 

In the “response-to-injury” hypothesis, atherosclerosis is defined as a non-resolving 

inflammatory condition, where inflammation is the key contributor to all stages of the 

disease, from initial lesions to plaque rupture37,38. The inflammatory reaction is initiated by 

vascular wall injury, mainly endothelial dysfunction39. Injury may be caused by 

hyperglycemia40,41, hypertension42, modified LDL33,43, inflammation and infection38, 

regardless of dyslipidemia44. One of the main supports for this hypothesis is that most 

mammals do not develop a prominent intimal physiological adaptations like humans, 

including mice, rats and rabbits44. In this hypothesis, VSMCs and macrophages contribute 

equally in the initial steps, and even VSMCs are thought to be activated before macrophages 

recruitment38. Indeed, ICAM-1, a macrophage adhesion molecule, was shown to be expressed 

on VSMCs in human atheroma-prone regions before monocytes infiltration45. 

I.2.4.1 Intimal physiological adaptations of the vascular wall: 

Intimal physiological adaptation (IPA) is a small thickness in the intima of the vessel wall 

that doesn’t obstruct the vascular lumen and has no clinical significance and is present in 

fetuses and infants36. IPA is usually formed as an adaptation to mechanical stress or wall 

tension as a result of increased tensile stress, or decreased wall shear2. IPA is composed of 

two layers: the upper layer is called the proteoglycan layer due to its rich ECM components 

with abundant PGs; and the lower layer is called the musculo-elastic layer because of the 

abundance of VSMCs and elastic fibers2,36. IPA is characterized by an increased turnover of 

ECs and low proliferative activity of VSMCs with anti-apoptotic phenotype46. In addition, 

IPA is characterized by a greater flow of LDL and plasma components, with greater amounts 

of macrophages and VSMCs2. The latter are most of the contractile phenotype that are 

present in the lower musculo-elastic intima near the media. Under mechanical stress, these 

VSMCs may migrate toward the upper layers of the intima and shift their form to become 

synthetic VSMCs characterized by RER-rich cytoplasm2. VSMCs are thought to play a major 

role in the stabilization of the IPA through the production of collagen and other ECM 

components, in addition to growth factors (GFs) that regulate cellular migration and 

proliferation. Moreover, these cells express thrombomodulin, which may contribute in 
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maintaining an anti-thrombotic effect in IPA26. In fact, there is a debate about the origin of 

VSMCs found in the IPA that can be summarized by 2 major hypotheses which were both 

tested and validated in vivo and in vitro: the first hypothesis claims that these VSMCs 

originate from the proliferation of precursor VSMCs that are known to be present in the 

normal intima in very low numbers since fetal life or that may originate from blood2,47. The 

second hypothesis propose that they originate from VSMCs of the media that migrate to and 

proliferate in the intima under stress conditions48. 

There are two types of IPA, diffuse and eccentric, which are usually contiguous and run into 

one another2. The eccentric thickening is usually associated to special geometric regions of 

the vascular system where mechanical stress is not uniformly distributed, usually at branches 

and orifices. This type of thickening is normally present in the arteries of babies since the 

first week of life2. On the other hand, the diffuse thickening is not associated with geometric 

regions of the arteries, with less thickening than eccentric thickenings2. Eccentric IPA is 

assumed to be as a precursor of atheroma plaques due to its association with atheroma prone 

regions that are characterized by an increased mechanical stress and LDL accumulation. 

Using human autopsy subjects who died between 36 weeks of gestation and 30 years of age, 

Nakashima et al. examined the distribution of IPA in systemic arteries and found that IPA 

was specifically present in atherosclerotic-prone arteries but not in the resistant arteries49. 

I.2.5 Atheroma plaque development 

The processes involved in atheroma initiation and progression are summarized in figure I.3. 

I.2.5.1 Endothelial dysfunction and LDL accumulation 

Vascular net activity depends in large part on the operation of endothelial cells50. In its 

physiological normal state, the endothelium balances the vasomotor activity of the vessel 

wall by secreting equal amounts of vasodilators and vasoconstrictors51. In addition, it protects 

against the infiltration of monocytes and LDL into the sub-endothelium which are known to 

be major drivers of atheroma formation8. Moreover, the normal endothelium creates a 

thrombo-resistant environment52 in the vessel wall through the production of anti-thrombotic 

molecules such as thrombomodulin, plasminogen activator and prostacyclin, in addition to 

the degradation of platelet aggregating agents, such as serotonin and prostaglandin F153. 

Endothelial dysfunction, also called endothelial injury or endothelial activation, is defined as 

new structural and functional properties in endothelial cells44. One of the main features of 
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endothelial dysfunction is an imbalance in production of vasoactive substances by the 

endothelium, characterized by an increase in the vasoconstrictors to vasodilators ratio51. This 

is accompanied with a decrease in nitric oxide (NO) production which may lead to vascular 

damage. The phenotypic switch of ECs into a secretory phenotype, manifested by increased 

RER and Golgi network, leads to the production of a multilayered basal lamina44 that entraps 

modified LDL and disrupts EC-EC tight junctions and EC-VSMCs gap junctions54. Activated 

ECs also express and secrete von Willebrand factor, which recruit platelets and initiate their 

adherence to ECs55,56. Activated platelets then start to secrete proinflammatory cytokines and 

chemoattractants (P-selectin, soluble CD-40 ligand and MMPs), leading to platelets-

monocytes interaction (P-selectin with PGL-1) and promotes the binding of monocytes to 

ECs via VCAM-149. 

The change in EC features is usually accompanied with increased permeability to lipoproteins 

and other plasma molecules44,57. One of these molecules is LDL, which is known to be a 

major player in atheroma lesion initiation and progression. In the subendothelial space, LDL 

accumulates and attach to ECM components through ionic interactions24. The accumulating 

LDL is then subjected to modifications in its protein component, mainly by oxidation. 

However, LDL modification may also occur in the plasma or when crossing the 

endothelium44. Although LDL oxidation is a passive process, it was shown that it is promoted 

in vitro in the presence of macrophages, ECs, VSMCs and PGs, which are major components 

in atheroma lesions39. The produced oxidized-LDL (oxLDL) induces expression of LOX-1 

scavenger receptor expression and EC apoptosis, which may favor endothelial dysfunction58. 

In addition, oxLDL induces proatherogenic gene expression, such as adhesion molecules59, 

inflammatory cytokines and MMPs60. Moreover, oxLDL is a potent chemoattractant for 

monocytes61, VSMCs62, T-lymphocytes63 and dendritic cells (DCs)64.  
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Figure I.3: atheroma stages and processes involved in atheroma development. 
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I.2.5.2 Monocytes infiltration and differentiation into macrophages 

ECs do not support leukocytes adherence under normal physiological conditions55. However, 

upon stimulation by certain factors such as asymmetric wall tension, LDL, interleukin-1 (IL-

1) and tumor necrosis factor (TNF), ECs start to express adhesion molecules, such as 

selectins, VCAM-1, intercellular adhesion molecule1 (ICAM-1), Platelet endothelial cell 

adhesion molecule (PECAM-1) and junctional adhesion molecules (JAMs)44, leading to 

capture, rolling, adhesion and diapedesis of monocytes into the intima. The expression of 

these adhesion molecules by ECs can be upregulated by various factors including oxLDL, 

smoking, hypertension, diabetes and mechanical stress65,66. In addition to adhesion molecules, 

ECs were shown to express monocytes chemoattractants MCP-1, IL-867, also T-lymphocytes 

and mast cells chemokines68. The recruitment of macrophages is a key step in atheroma 

plaque initiation and progression as been shown in ApoE-/- mice, where ICAM-1 or P-

selectin knockout offered resistance to atherosclerosis69. 

After entering the sub-endothelium, monocytes differentiate to macrophages in the presence 

of macrophage colony-stimulating factor (MCSF)70 and other factors, including oxLDL, 

advanced glycation end-products (AGEs), Angiotensin-II (Ang-II) and endothelin71. 

Studies have pointed toward the presence of two different phenotypes of macrophages in 

atherosclerosis70: pro-inflammatory (M1) phenotype and anti-inflammatory (M2) phenotype. 

The M1 phenotype can be activated by lipopolysaccharide and IFN- , leading to the 

production of high levels of IL-2, IL-23, IL-6, IL-1 & TNF 70. This type is also involved in 

foam cells formation72. On the other hand, the anti-inflammatory (M2) phenotype may 

differentiate in the presence of IL-4, IL-13 and IL-1, and produce large amounts of IL-1073. 

Like M1 macrophages, M2 macrophages express SRs and exhibit Scavenger activity and are 

thus involved in foam cells formation73. In fact, it was shown that M1/M2 balance of plaque 

macrophages reflects the pro-/anti- atherosclerotic conditions in vitro72; however, this needs 

to be also validated in vivo. 

I.2.5.3 VSMCs recruitment and phenotypic switching 

Macrophages in the plaque exert several effects on VSMCs in the vessel wall. Macrophages 

can induce VSMCs proliferation through platelet-derived growth factor (PDGF) secretion74. 

In addition, IL-6 and tumor necrosis factor alpha (TNF ) secreted by macrophages induce 

VSMCs to produce MMP-1, which may facilitate the degradation of VSMCs basal lamina 
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and thus enhance their migration75. Moreover, macrophages were shown to trigger VSMCs 

apoptosis by secreting TNF  and NO76. 

VSMCs in the intima of atheroma plaque can originate from bone marrow precursor cells, 

medial cells and resident VSMCs, and the latter is thought to be the main source of these 

cells44,77. Recent studies have shown that ICAM-1 and VCAM-1 were expressed on VSMCs 

in atheroma-prone regions before monocytes infiltration in both human45 and mouse78. In 

fact, VSMCs and macrophages can interact directly through ICAM-1 and VCAM-1 and 

chemokine (C-X3-C motif) ligand 1 (CX3CL1)78,79, which were shown to be expressed on 

VSMCs in different atheroma types (coronary, carotid and aorta), in both human and mice, 

but not in healthy medial VSMCs79. In addition, there is high association between VCAM-1 

expression on VSMCs and intimal macrophages number80. All these point toward the 

involvement of VSMCs in, not only progression of the atherosclerotic lesion, but also in its 

initiation through recruitment of macrophages.  

A prominent feature of VSMCs in atheroma is the phenotypic switch from the “quiescent” 

contractile phenotype to a proinflammatory synthetic phenotype81, which can be stimulated 

by several atherogenic stimuli including shear stress, ECM components (fibronectin, laminin 

and collagen IV)82,83, cytokines (PDGF and transforming gowth factor beta (TGF-b))84–86, 

reactive oxygen species (ROS)87 and lipids88. In their steady state, mature VSMCs4,81,89 are 

quiescent and proliferate at a very low rate and exhibit a low synthetic activity with high 

expression of contractile marker genes, ACTA1, SM22a, MHC, H1 calponin and 

smoothelin81,89. Mature VSMCs perform several functions including vaso-modulation, ECM 

synthesis, GFs production and injury repair (migration, proliferation and ECM production)77. 

Phenotypic switching is thought to be a normal response for injury repair, however, 

exaggerated in atherosclerosis due to continuous inflammation81,90.  

In addition to “intracellular” phenotypic switching, recent studies are showing that an “inter-

cellular” switch between VSMCs and macrophages could also occur. Indeed, this was 

validated both in vivo and in vitro91–93. Allahverdian et al. recently showed that cells 

expressing both CD68 and smooth muscle markers in lipid rich regions of atherosclerosis 

were identified both in grossly normal aortic areas and in atherosclerotic lesions (fatty streaks 

and atherosclerotic plaques)92. They also showed that more than 50% of the intimal cells in 

atherosclerotic lesions are lipid engorged and express alpha smooth muscle actin (aSMA). 

The incubation of VSMCs in cholesterol in vitro induced them to form macrophage-like cells 
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(MLCs) that express macrophage-specific markers and induced phagocytic and antigen-

presenting activity91. In addition, MLCs expressed high levels of proteolytic enzymes, 

suggesting a role for these cells in plaque instability. Similarly, the other way of trans-

differentiation was shown to be also true. Indeed, several groups identified SMC like cells 

(SLC) of monocytes origin94,95. In vitro studies have shown that some CD14/CD105 positive 

peripheral mononuclear cells can differentiate into aSMA positive cells93. In addition, 

cultured macrophages express of aSMA in the presence TGF-b and thrombin (Martin et al. 

2009; stewart et al. 2009). However, it is well accepted that most SMCs in the atherosclerotic 

plaque are of local origins and not hematopoietic origin96. Indeed, Allahverdian et al. 2014 

showed in vivo that 40% of CD68+ cells in atheroma are also CD45+92. However, these 

studies still have certain limitations. For instance, there is still no rigorous methods for the 

identification of cells of VSMCs origin after selective-marker genes go into undetectable 

levels89. In addition, several cell types of non-SMC origin, such as skeletal muscle cells, 

cardiomyocytes and fibroblasts, may also express VSMC marker genes like aSMA under 

certain conditions such as during development or wound repair97,98. 

I.2.5.4 Inflammation 

Activated macrophages in the lesion secrete multiple factors that may contribute to further 

plaque inflammation and growth99, including inflammatory cytokines (TNF  IL-1, MCP-1, 

MCSF), GFs for VSMCs and ECs (PDGF), chemotactic factors for VSMCs (Ang-II), 

Angiogenic factors and ROS through Nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase (Nox). 

Pro-inflammatory synthetic VSMCs are characterized by a marked decrease in contractile 

marker genes and increased proliferation, migration and production of ROS, ECM, proteases, 

GFs and cytokines77,81,100,101. Pro-inflammatory VSMCs express inflammatory genes, such as 

PDGF, Interferon gamma (IFN-g), TGFb, MCP-177,81. In addition, they can produce 

cytokines that attract and activate leukocytes, induce VSMCs proliferation, promote 

endothelial dysfunction and stimulate VSMCs components. 

An important mediator of the inflammatory reactions in atherosclerosis is ROS, which can be 

produced by VSMCs, macrophages, ECs and fibroblasts, mainly through NADPH oxidase77. 

Indeed, ApoE-/- deficient in NADPH-p47phox subunit showed decreased atherosclerotic 

lesions progression compared to control apoE-/- mice102. ROS is the major driver of LDL 

oxidation. Oxidized LDL (oxLDL)30 is a major driver of atheroma progression by promoting 
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several cellular mechanisms in atheroma lesions (see also part II.5.a). Indeed, oxLDL 

promotes inflammatory responses, induces macrophages and VSMCs growth, promote ECs 

apoptosis and enhance thrombosis. In addition, oxLDL interact with and damage DNA and 

proteins103 in the cell, leading to the formation of a necrotic core, which destabilizes the 

lesion and make it more susceptible for rupture60. Moreover, ROS interact with NO to 

produce peroxynitrite (a potent oxidant)104, which scavenges NO, leading to increased 

inflammation, platelet activation and vasoconstriction77. 

In addition to macrophages and VSMCs, other inflammatory cells are recruited to the 

atheroma lesion, which augment local inflammatory reactions and help in atheroma 

progression. Indeed, advanced lesions may contain T-lymphocytes, dendritic cells (DCs), 

neutrophils, mast cells and platelets105. T-helper and T-killer cells, in addition to antigen 

presenting dendritic cells were detected in pre-lesional stages of plaque formation44. In fact, 

various antigens in the plaque induce T-cells proliferation, including modified LDL105. 

Indeed, human atherosclerotic lesions contain both T-helper and T-killer cells that recognize 

oxLDL as an antigen106. T-helper cells are thought to play a key role in the progression of 

atheroma lesions by the secretion of several cytokines and cell-surface molecules that activate 

macrophages and potentiate local inflammation44, in addition to other effects, such as 

angiogenesis and the expression of adhesion molecules, chemokine and tissue factors39. 

Dendritic cells (DCs) are antigen presenting cells required for T-cells activation107. DCs are 

present in all stages of lesion development, particularly in the advanced lesion shoulders107. 

DCs are recruited to the lesion by binding to ECs under various atherogenic stimuli, 

including oxLDL and TNF 64. In addition to presenting antigens and activating macrophages, 

DCs were also shown to proliferate and form foam cells in the atherosclerotic lesions108. 

Neutrophils are also present in atherosclerotic lesions and there is a correlation between the 

number of neutrophils in blood and their presence in the vascular wall in coronary artery 

disease44. Activated neutrophils secrete superoxide and pro-inflammatory mediators, which 

aid in EC dysfunction and monocytes activation44. Neutrophils are thought to play a role in 

plaque destabilization by releasing a wide variety of mediators, most of which can contribute 

to lesion formation and progression, extracellular matrix degradation, and plaque erosion109. 

Mast cells are mainly present in advanced lesions of atherosclerosis18. It was shown in vitro 

that mast cells can be induced by oxLDL-IgG complexes to release contents of their 

cytoplasmic granules, including neutral proteases, GFs and pro-inflammatory cytokines 
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(TNF , IL-8 and MCP-1) that will act on ECM and lesion cells44 leading to lesion 

progression. 

I.2.5.5 Foam cells formation 

Foam cells formation is a prominent feature in early and advanced atheroma plaques. Foam 

cells can be formed by the different cell types present in the plaque24 and play a major role in 

the formation of the necrotic core in advanced atheroma plaques18. 

Macrophages are believed to be the major source of foam cells in atheroma lesions18,44. 

Macrophages preferentially take up oxLDL by recognizing the modified apoB part44. 

Macrophages express SRs for acetylated and oxLDL, such as LOX-1110, SR-AI, SR-AII and 

SR-B (CD36)44, which are involved in the uptake of oxLDL, AGEs, anionic phospholipids 

and apoptotic cells44. oxLDL uptaken by macrophages through SR is then hydrolyzed into 

free cholesterol and fatty acids in the endosomes44. Hydrolyzed cholesteryl esters and free 

cholesterol are then released from endosomes and transported outside the cells to apoA1 and 

HDL via ATP-binding cassette transporter (ABC) A1 (ABCA1) and ABCG1 or through 

passive diffusion into cholesterol-poor HDL44. Excess cholesterol in the cells will be 

esterified by ACAT and accumulate in the cytosol, leading to foam cells formation44. Free 

cholesterol accumulation in the plasma and endosomal compartment may enhance 

inflammatory signaling in macrophages, mainly through TLRs111, which upon activation 

leads to the production of inflammatory cytokines and NO and induction of DC 

maturation112. In addition, MFCs secrete cytokines, GFs, tissue factor, IFN-g, MMPs and 

ROS44, which contribute to plaque growth and destabilization. Macrophage-derived foam 

cells can also proliferate in the presence of MCP1 and MCSF29. 

The second source of foam cells in atheroma lesion is VSCMs. VSMCs express LOX-1110, 

SR type I and type II113, LDL receptor114, VLDL receptor115, CD36116 and CXCL16/SR-

PSOX117. This combination permits the uptake of unmodified and modified LDL in addition 

to other forms of cholesterol79. Lipid receptors can be induced by atherogenic cytokines57,114 

and LDL uptake118,119. Initial cholesterol loading by VSMCs is associated with upregulation 

of ABCA1 and ABCG1 and down-regulation of SMC marker genes. However, continued 

lipid uptake is associated with down- regulation of ABC transporters, which favors foam cell 

formation72,75. 
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In addition to macrophages and VSMCs, ECs may also contribute to foam cells formation by 

expressing scavenger receptors, mainly LOX-1120. LOX-1 can be induced by a variety of 

proinflammatory factors, including lipoplysaccharide, TNF , IL-1b, INF-g, oxLDL and shear 

stress81. EC derived foam cells (EFCs) usually occur in advanced lesions and are fragile and 

susceptible to erosion44. 

Lipid uptake by cells is considered beneficial during early lesions, where it may exert a 

protective role by clearance of oxLDL112. However, since lipid uptake is not inhibited by 

cellular cholesterol content44, it will exert pro-atherosclerotic role in advanced lesions by 

inducing apoptosis due to the toxic accumulations of free cholesterol121.  

I.2.5.6 Apoptosis 

At this stage, macrophages perform a double effect; a negative one through apoptosis and a 

positive one through efferocytosis. Macrophages apoptosis can be triggered by RER stress122, 

GFs deprivation, oxidative stress and death receptor activation, in addition to NFKB, IFN and 

TLR2/4 inhibition123. However, macrophages are not totally harmful. Indeed, one of the 

major roles of macrophages in stabilizing the atheroma plaque is efferocytosis122. In fact, 

plaque necrosis is defined by the balance between apoptosis and efferocytosis. Efferocytosis 

is the action of removing apoptotic bodies before their decomposition and release of toxic 

molecules122. This will trigger an IL-10 and TGFb-mediated anti-inflammatory response in 

efferocytes, which promotes cell survival of efferocytes with robust esterification and efflux 

of cholesterol and oxLDL122. 

In vitro studies have shown that macrophages and VSMCs co-culture prevents apoptosis124  

of macrophages and enhances IL-6 and MCP-1 production compared to single cultures of 

either cell type125. This can be a mechanism contributing to inflammation, foam cells 

formation and atheroma growth and progression. On the contrary, it was also shown that 

macrophage-derived NO upregulates Fas expression by VSMCs & Fas-L by macrophages, 

which may enhance VSMCs apoptosis71. This was supported by the fact that blockade of 

either NO or Fas abrogated VSMCs apoptosis. This interaction between VSMCs and 

macrophages could be a mechanism by which monocytes can be retained and survive in the 

intima124, thus augmenting inflammation, foam cells formation and atheroma growth and 

progression. 
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I.2.5.7 ECM remodeling 

ECM constitutes 60% of intima volume and plays an important role in maintaining cell-tissue 

structure and directing cell functions by binding to special receptors on cell membrane that 

induce specific signaling cascades within the cell126. Thus, a change in the ECM components 

will lead not only to structural changes in the acellular part of the wall, but also to critical 

changes at the cellular level. ECM remodeling in atherosclerosis is done both at the synthesis 

and degradation levels. 

In atherosclerosis, PGs of the ECM were shown to change and play different roles during 

atheroma development. One of the main roles of PGs in atherosclerosis is LDL trapping in 

the intima through ionic interactions between sulfated groups of PGs and the apoB 

component of LDL particles127. In addition to LDL trapping, sulfated PGs interact with LDL 

in the intima and favor their modification (oxidization and esterification)128 and 

internalization by macrophages129 and VSMCs130. In addition, sulfated PGs, cytokines and 

oxLDL were shown to induce VSMCs to produce sulfated PGs131, and thus providing a 

positive loop over LDL trapping, modification and internalization, which will favor atheroma 

plaque progression127. Dermatan sulfate was shown to have a high affinity to LDL under 

physiological conditions132 and to be positively correlated to apoB accumulation36. On the 

other hand, heparan sulfate, which is known to regulate cell proliferation, decrease with 

lesion severity, which can be a way of loss of control on cellular proliferation2. In advanced 

lesions, ECM of the intima changes from being mostly of collagen types I and III to become 

PG-rich with scattered collagen type I and fibronectin79. This is thought to be a molecular 

mechanism to stabilize the plaque by conferring tensile strength and vasoelasticity133. In 

addition, VSMCs basal lamina, which maintain their contractile phenotype and prevent their 

dedifferentiation, growth and proliferation, changes its composition during atheroma 

progression, with an increase in PGs, osteopontin and fibronectin134. The latter two are 

known to induce proinflammatory cascades in VSMCs through NF-KB and AP-1135,136. PGs 

induce proliferation by downregulation of cdk2 inhibitors (Doran et al. 2008). VSMCs 

proliferation under these ECM conditions may induce a positive loop by further degrading 

collagen and producing PGs and fibronectin79.  

In addition to the synthetic level, cells of the atherosclerotic lesion contribute to the changes 

in ECM by degrading its components. Macrophages contribute to ECM degradation by 

secreting MMPs, collagenases, elastases and PG degrading enzymes, which degrade the 
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fibrous cap connective tissue, leading to unstable plaque formation57. Collagen I polymers, 

which are known to inhibit VSMCs proliferation and migration137, are degraded by MMPs 

that are produced by several cell types under inflammatory conditions138, thus leading to 

VSMCs proliferation. In addition, the produced collagen monomers activate expression of 

VCAM-1 in VSMCs139 and induce their migration140. Moreover, Elastin products produced 

upon cleavage by macrophage- and VSMC-derived elastases are known to be highly 

chemotactic for macrophages. It was shown that synthetic VSMCs secrete 25 to 46 times 

more collagen than contractile VSMCs and exhibit higher lipid uptake with higher expression 

of LDL and scavenger receptors48,79. In fact, VSMCs secrete most of the ECM in complex 

atherosclerotic lesions24. The number of RER-rich synthetic VSMCs with dense basement 

membrane is associated with lesion severity and is found in advanced but not early lesions . 

Synthetic VSMCs are more frequent in the cap region of advanced lesions between the lipid 

core and the vascular lumen, where they are thought to provide a mechanical support to the 

lesion surface18. 

I.2.5.8 Calcification 

Calcification is a prominent feature in advanced stages of atheroma that favor plaque 

instability and subsequent rupture. Indeed, calcification serves as a surrogate marker for the 

disease, and predicts a higher risk of myocardial infarction and death141. Several hypotheses 

were proposed to explain atherosclerotic calcification142. However, the most supported 

hypothesis of calcification in atherosclerotic lesions is that VSMC are stimulated to adopt an 

osteogenic phenotype and become calcifying vascular cells142, which involve the normal 

process of biomineralization. Indeed, the chemical composition of calcified sites was 

identical to hydroxyapatite, the major inorganic component of bone143. Atherosclerotic aortas 

from post-mortem tissues showed a higher expression of biomineralization markers, such as 

osteopontin, BMP2, Osteonectin, osteocalcin and S100A9144. At the same time, these aortas 

possessed lower expression of calcification inhibitors, including osteoprotegerin, fetuin-A 

and matrix Gla protein. In addition, it was shown that senescent VSMCs can be induced to 

express Runt-related transcription factor 2 (RUNX2)144, an osteoblast master transcription 

factor, by oxLDL145, ROS146, b-glycerophosphate145 (Bear et al. 2008), FGF-2147. RUNX2 

induce BMP2 expression, which in turn can induce the expression of Pit-1, a type III sodium-

dependent P(i) cotransporter, and down-regulation of SMC markers148. Another cellular 

calcification marker, alkaline phosphatase (ALP), was shown to be induced in vitro in 

VSMCs incubated in macrophage-conditioned media149. 
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I.2.6 Stages of the atheroma plaque 

After describing the different processes involved in atherosclerotic lesion development, we 

are going to describe the different types (stages) of atherosclerotic lesions with their 

prominent features. Based on the American heart association (AHA) classification, 

atherosclerotic lesion formation could be divided into 8 stages that are discriminated by 

certain histologic and molecular characteristics and are usually correlated to the age of 

patients24. Types I and II lesions are the only types of lesions that can be found in children. 

Type III is an intermediate type between early and advanced lesions that usually evolve soon 

after puberty. Type IV lesion is considered the first advanced lesion type, it usually appear 

during the third decade of life and is usually not associated with clinical events18. Types V 

and VI are the advanced lesions associated with clinical events that occur in advanced ages 

and/or advanced patients after the 4th decade of life. The features of the different 

stages2,18,24,44,141 are represented in Figure I.4. 

I.2.7 The vulnerable plaque characteristics 

Plaque stability depends on several factors including plaque size, cellular composition, 

cellular mechanisms, ECM composition and inflammatory reactions18,44,150. Vulnerable 

plaques are advanced plaques (stages V, VI, VII or VIII) that are susceptible for erosion 

and/or rupture, thus leading to thrombus formation18. The large size thrombus with the plaque 

may locally block the lumen of the artery or detach, migrate and occlude a smaller artery 

downstream leading to acute cardiovascular syndromes and death. Vulnerable plaques are 

characterized by a large plaque and thin cap. The cap region provides a mechanical support to 

the plaque to prevent it from rupture, and the composition of the cap region is a major 

determinant in plaque vulnerability151. Indeed, thrombogenic potential does not depend on the 

stage of the lesion but rather on the composition of the lesion, since more advanced lesions 

are usually stabilized by the fibrous cap of collagen and VSMCs, while less advanced lesions 

(type IV and V) are more prone for destruction18. Increased macrophage to VSMC ratio in the 

cap region is associated with increased ECM degradation/synthesis ration, and thus weakness 

of the cap region44,151.  
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Figure I.4: The different stages of atheroma development. MFC, macrophage-derived foam 
cells; VSMC, vascular smooth muscle cell; VSMC-FC, vascular smooth muscle cell-derived foam 
cell. Adapted from https://commons.wikimedia.org/wiki/File%3AEndo_dysfunction_Athero.PNG. 

Fibrous cap of ruptured plaques have more macrophages, lymphocytes and mast cells than 

non-ruptured plaques152. Macrophages secrete inflammatory cytokines and proteases, mainly 

MMPs152, thus leading to ECM degradation. Also it was shown that the efferocytotic activity 

of macrophages decrease with plaque progression, which will help in apoptotic cells 

accumulation and thus increased pressure on the cap of the plaque122. In fact, accumulating 

apoptotic macrophages release excess inflammatory cytokines and ECM proteases, thus 

aiding in cap weakness. In addition, macrophages can induce VSMCs apoptosis by secreting 
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pro-apoptotic TNF  and NO, also by activating Fas pathway76. In fact, unstable plaques are 

usually associated with VSMCs apoptosis, which leads to thinning of the fibrous cap as a 

result of reduced cellular and matrix components153. Apoptotic cells may release IL-1a and 

IL-1b, which lead to the induction of MCP1, TNF  and IL-6 in non-apoptotic VSMCs and 

thus augmenting the inflammatory response in the lesion154. In apoE -/- mice, chronic low 

apoptosis was associated with two fold plaque growth with enhanced calcification, thickened 

fibrous cap and enlarged necrotic core155. In fact, the balance between VSMCs proliferation 

and apoptosis is a key determinant of atheroma progression156, with VSMCs apoptosis 

leading to unstable and calcic plaques155,157. 

In addition to the cellular components, Hemorrahge158, microcalcification in fibrous cap159, 

high shear stress160 and other factors are commonly associated with vulnerable plaques. 

Indeed, all these factors may lead to the formation of a thin cap fibroatheroma, which 

constitute a thin cap with few fibrous matrix and VSMCs (<65 m) and a large necrotic core 

constituting more than 30% of the plaque area39. This plaque may then be subjected to 

rupture (55-65%), erosion (30-35%) and/or calcified nodules formation (2-7%), which disrupt 

the endothelial layer and expose lipid core, collagen, tissue factors and other elements39. 

These factors may lead to disturbance in coagulation/fibrinolysis balance161 and subsequent 

thrombi formation that continue to enlarge and occlude the lumen within hours-days. A study 

done on 30-59 years old patients had shown that 38% of advanced lesions in the aorta had 

thrombi on their surface39. The formed thrombi constitute layers of platelets with variable 

amounts of fibrin, red blood cells and acute inflammatory cells18. Plaque rupture usually 

occurs at the shoulders where low VSMCs and high inflammatory cells are present39,157. In 

some cases, small surface ulcerations may lead to small thrombi that may form, recur and 

incorporate in the plaque over the years, thus leading to an increase in lesion size and 

subsequent narrowing of the lumen18. Ruptures may heal by VSMCs infiltration, 

accompanied with ECM accumulation, neovascularization, inflammation and surface re-

endothelialization18,39. 

I.2.8 Conclusion 

In conclusion, atherosclerosis is a complex disease with multiple players exerting multiple 

mechanisms, and the combination of these mechanisms over the time course results in the 

development of the highly complex atheroma plaque. Although many studies addressed the 

mechanisms involved in atheroma development, most of these studies were in vitro studies 
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targeting certain mechanisms of one player or the other. In this regard, the need to study 

atherosclerotic processes in a systems biology approach is needed. Indeed, this will need high 

throughput techniques that investigate multiple players at the “omics” level, such as 

transcriptomic microarrays to identify altered gene expression, ChiP-seq to identify 

epigenetic modifications involved in the phenotypic changes of cells, and proteomic 

techniques (i.e. protein chips, mass spectrometry) to identify the pool of proteins that are 

interacting and playing their roles in shaping the atherosclerotic process. 
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I.3 THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM (RAAS) 

I.3.1 Classical RAAS 

The renin angiotensin system was originally defined as a circulating hormonal cascade that 

functions in the homeostatic control of arterial, pressure, tissue perfusion, and extracellular 

volume162. The system was first discovered in a 1898 by Tigerstedt and Bergmann that 

demonstrated the existence of a heat-labile substance in crude extracts of rabbit renal cortex 

that caused a sustained increase in arterial pressure. They called this substance “renin”. Later 

on, studies had shown that the pressor activity of renin was indirect and resulted from its 

proteolytic action on a plasma substrate, “angiotensinogen”, to liberate a direct-acting pressor 

peptide “angiotensin”163. 

In its classical endocrine view, RAAS includes several components and enzymatic cascades 

resulting in the conversion of the “inactive” substrate of the system, angiotensinogen (AGT) 

into the active peptide angiotensin II (Ang-II), which binds to its specific membrane receptors 

and elicits cellular effects51. AGT, the “inactive” substrate of RAAS, is a glycoprotein 

constituting 452 amino acids long produced primarily and continuously in the liver. In 

addition AGT is expressed and differentially regulated in multiple other tissues, including 

heart, blood vessels, kidneys and adipose tissue51. In the plasma, AGT exists in 

concentrations lower than Michaelis-Menten constant of renin (<1 M), thus providing a 

repository for the rapid formation of Ang-I under certain physiological conditions164. AGT 

production can be induced by several stimuli, including inflammation, insulin, estrogen, 

glucocorticoids, thyroid hormone and Ang-II.  

In the plasma AGT is converted into the decapeptide angiotensin-I (1-10) (Ang-I) by the 

tightly regulated enzyme renin produced by the juxtaglomerular cells (JG) that line the 

afferent arteriole of the renal glomerulus162. In fact, this step is considered the rate limiting 

step of the system in the circulation162. Renin is synthesized from a 9 exons gene as a pre-pro-

hormone cleaved by microsomes to form the preform, prorenin, which contains a 43-amino-

acid prosegment peptide at its N-terminus165. Prorenin is then released as inactive precursor 

or can be converted by a variety of proteases into active intracellular renin that is stored in 

granules of the JG cells and is released by a stimulus-dependent exocytic process into the 

circulation162. Active renin secretion can be stimulated by 3 main inter-dependent factors: (1) 

a fall in perfusion pressure sensed by the renal baroreceptors of the afferent arteriole, (2) a 

fall in the delivery of NaCl to the macula densa cells of the distal tubule, and (3) sympathetic 
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nerve stimulation via beta-1 adrenergic receptors162. In addition, renin secretion can also be 

regulated by a negative feedback exerted by Ang-II on the JG cells166. 

Ang-I produced by renin is further processed by the angiotensin converting enzyme (ACE) 

which removes the C-terminal dipeptide to releases the octapeptide angiotensin II (1–8) 

(Ang-II). ACE was first described in horse plasma in 1956 as an enzyme that convert 

hypertensin I into hypertensin II; the latter two being the original names of Ang-I and Ang-II, 

respectively167. ACE is a membrane-bound exopeptidase localized on the plasma membranes 

of various cell types, mainly endothelial cells, and specifically those of the lungs and liver162. 

Indeed, ACE production is often used as an endothelial cell marker in vitro168. It is this 

membrane-bound ACE that is thought to be physiologically important. In addition, ACE can 

degrade a number of other vasodilating peptides, including Ang-(1-7), bradykinin and 

kallirein, thus playing a central role as a pressor enzyme51,162. Moreover, ACE can activate 

cellular signaling when bound to ACEi and bradykinin, leading to increased ACE and COX2 

production via c-Jun N-terminal kinase (JNK) signaling169. 

Ang-II is the biologically active peptide of the system, which elicits its cellular effects by 

binding to its membrane receptors. Ang-II mediates effects via complex intracellular 

signaling pathways that are stimulated following binding of the peptide to its cell-surface 

receptors, angiotensin type I (AT1R) and type II (AT2R) receptors170, which were identified 

as seven transmembrane receptors that share 34% of their nucleic acid sequence171. In the 

classical view, Ang-II is a circulating hormone that regulates blood pressure and electrolyte 

balance by acting on vascular tone, aldosterone secretion, renal sodium handling, thirst and 

water intake, sympathetic activity, and vasopressin release51. Indeed, all these effects are 

known to increase blood volume and pressure. However, molecular studies have shown that 

the activation of AT1R also exerts rapid (short term) and genetic (long term) effects at the 

cellular level172. By binding to the AT1R, Ang-II activates multiple intracellular signaling 

cascades, mainly mitogen-activated protein kinase cascades (MAPK) and tyrosine kinases, 

leading to cell growth, proliferation and migration173. In addition, AT1R activation leads to 

the activation of various transcription factors (TFs) that regulate genes coding for vasoactive 

hormones, growth factors, extracellular matrix components, cytokines, etc173. As a defense 

mechanism against extensive activation, AT1R undergoes rapid desensitization and 

internalization after agonist stimulation51. On the other hand, the AT2R acts mainly through 

Gi and tyrosine phosphatases to exert pre-dominantly inhibitory actions on cellular responses 
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mediated by the AT1 receptor, mainly by inhibition of cell growth and proliferation and 

promoting cell differentiation, in addition to vasodilation and reducing blood pressure174.  

One of the major effects of Ang-II is stimulating aldosterone synthesis and seretion by the 

adrenal cortex by stimulating the expression and activity of the aldosterone synthase, 

CYP11B2175. Aldosterone has emerged as the most important physiological regulator of 

extracellular fluid volume and blood pressure in mammals, and has been implicated in a 

variety of disease states in humans176. CYP11B2 production and activity can be regulated by 

several compounds, mainly the plasma potassium concentration, the activity of the renin-

angiotensin system) and Adrenocorticotropic hormone (ACTH)177. Aldosterone acts in a 

variety of tissues through its mineralocorticoid receptor (MR) to influence extracellular fluid 

volume, blood pressure, salt exchange, but may also lead to pathological consequences, 

mainly tissue fibrosis178. 

I.3.2 Extended RAAS 

Research in the last few decades supports the new concept of an extended RAAS (extRAAS) 

that includes multiple enzymatic pathways for the generation of different angiotensin 

peptides, with alternative enzymes and receptors that are expressed and exert their effects in a 

tissue- and condition-specific manner179. These effecrs may explain the dual role of the 

RAAS as both a circulating hormonal and tissue-specific regulatory system serving autocrine, 

paracrine and even intracrine functions. Based on literature and previous results obtained in 

our laboratory, extRAAS constitute 37 genes that could be obtained from the human renin-

angiotensin pathway (hsa04614) and the steroid hormones biosynthesis pathway (hsa00140) 

from the KEGG database (http://www.genome. jp/kegg/pathway.html), in addition to other 

participants previously linked to the system that are not included in either KEGG pathways. 

The genes participating in the different pathways with the corresponding references are 

present in Table I.1. 
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Table I.1: extended renin angiotensin sstem (extRAAS) participants. 

Pathway 
Participant 
(gene symbol) References 

Aldosterone CYP11B2 KEGG hsa00140 pathway 

GPER Gros R 2013180 

NR3C1 KEGG hsa04960 pathway 

NR3C2 KEGG hsa04960 pathway 
 ACE KEGG hsa04614 pathway 

Ang-(1-7) ACE2  KEGG hsa04614 pathway 

CPA3  KEGG hsa04614 pathway 

CTSA  KEGG hsa04614 pathway 

MME  KEGG hsa04614 pathway 

NLN  KEGG hsa04614 pathway 

PREP  KEGG hsa04614 pathway 

THOP1  KEGG hsa04614 pathway 
 MAS1  KEGG hsa04614 pathway 

Ang-I REN KEGG hsa04614 pathway 

CTSD  Naseem RH et al. 2005181 

IGF2R  Batenburg and Danser 2012182 

ATP6AP2  Batenburg and Danser 2012182 

Ang-II ACE KEGG hsa04614 pathway 

CMA1  KEGG hsa04614 pathway 

CTSG  KEGG hsa04614 pathway 

KLK1  Ideishi M et al. 1990183 

AGTR1 KEGG hsa04614 pathway 

AGTR2 KEGG hsa04614 pathway 

EGFR Okada H. 2012184 

Ang-III ENPEP  KEGG hsa04614 pathway 

AGTR1 KEGG hsa04614 pathway 

AGTR2 KEGG hsa04614 pathway 

Ang-IV ANPEP  KEGG hsa04614 pathway 

DPP3  Dhanda et al. 2008185 

RNPEP  Carrera MP et al. 2006186 



The renin-angiotensin-aldosterone system (RAAS) 
 

44 
 

AGTR1 Li et al. 2006 pathway187 

LNPEP  KEGG hsa04614 pathway 

Corticosteroids CYP11A1  KEGG hsa00140 pathway 

CYP17A1  KEGG hsa00140 pathway 

CYP21A2  KEGG hsa00140 pathway 

Cortisol AKR1C4  KEGG hsa00140 pathway 

AKR1D1  KEGG hsa00140 pathway 

CYP11B1  KEGG hsa00140 pathway 

HSD11B1 KEGG hsa00140 pathway 

HSD11B2 KEGG hsa00140 pathway 

NR3C1 KEGG hsa04960 pathway 

NR3C2  KEGG hsa04960 pathway 
 

I.3.2.1 Interaction between angiotensin and corticosteroids  

Several studies indicate that there is a reciprocal interaction between angiotensin and 

corticosteroids, mainly between Ang-II, aldosterone and their receptors, rather than just being 

Ang-II-induced aldosterone production188–191. Ang-II is the principal agonist of adrenal 

aldosterone synthesis and it maintains both the structure of the glomerulosa and the secretion 

of aldosterone, and at the same time, aldosterone-dependent sodium accumulation inhibits 

RAAS192; thus their levels and effects are tightly linked. In addition to systemic Ang-II, local 

RAAS can be a possible regulator of adrenal aldosterone production193. Local interaction 

between angiotensin and corticosteroids was described in several tissues, including the brain, 

VSMCs and ECs, and the myocardium194. More than 20 years ago it was shown that 

aldosterone stimulates expression of AT1R195. Similarly, Shelat et al. demonstrated that both 

activated MR and GR stimulated receptor specific binding of Ang-II to its AT1R in specific 

regions of the rat brain196. In addition to the AT1R, aldosterone treatment was also shown to 

activate ACE expression in cultured neonatal rat cardiomyocytes197. Thus it seems that 

aldosterone can alter both Ang-II generation and activity. Our team has recently shown that 

cortisol and angiotensin receptors are strongly correlated in the arterial wall, and that an auto-

amplification loop exists between angiotensin and cortisol, which favor atherogenic 

signaling198. Moreover, some of the signaling pathways activated by the AT1R are dependent 

on the MR and vice versa190. For example, Ang-II was shown to activate MR-mediated gene 

transcription in coronary artery VSMCs via AT1R signaling, independent of aldosterone 
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synthesis175. These and other findings indicate that there is a strong interaction between 

angiotensin and corticosteroids, which suggest that enzymes and receptors involved in the 

metabolism and response to angiotensin and corticosteroids should be studied 

simultaneously. 

I.3.3 Tissue RAAS 

The first demonstration for the presence of a local tissue RAAS was in 1971199, where a 

renin-like activity, independent of kidney and plasma renin, was found in the brain of dogs. 

This finding was then supported by the identification of peptides that are immunologically 

and pharmacologically similar to Ang-I with variable molecular weights in dog brain200. 

Since then, extensive studies were done to elucidate local angiotensin forming pathways and 

their physiological importance in different tissues. Indeed, local RAAS have been described 

in several organs and tissues51,194,201–203, including the heart, blood vessels, kidney, brain, 

adipose tissue, adrenal gland, pancreas, liver, reproductive system, lymphatic tissue, placenta  

and the eye. In these tissues, RAAS acts independent from systemic RAAS in a paracrine and 

autocrine manner, but it may also interact with the systemic RAAS to exert endocrine 

effects51. Alterations in local RAAS were found to be associated with several pathological 

conditions, and the pharmacological inhibition of RAAS actions are widely used in the 

treatment of various diseases, such as hypertension, congestive heart failure, left ventricular 

dysfunction, pulmonary and systemic edema, diabetic nephropathy, diabetes and insulin 

resistance, liver cirrhosis, scleroderma, and migraines204. Detailed reviews on local RAAS 

can be found for each tissue and pathological condition. 

The concept of tissue extRAAS is that a specific combination of extRAAS components is 

expressed locally in each tissue, even in each cell type, leading to the production of a 

specific quantitative and qualitative combination of peptides, which result in a balanced 

local paracrine/autocrine effect that play a role in tissue physiology. A change in the local 

expression of extRAAS components will lead to alteration in the balance obtained and thus 

may lead to pathophysiological consequences (figure I.6). In this regard, studies on extRAAS 

need to be shifted from the one peptide-one pathway approach toward a more general 

approach that take into account the different players and their respective interactions. Indeed, 

the knowledge obtained from the former approach may lead to an inconclusive view that may 

rely on the used protocol and model, with lack of information on other pathways that may 

balance the effect of the pathway in question. Therefore the use of high throughput 
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techniques such as Genomics, transcriptomics and metabolomics to measure the different 

components of extRAAS in a specific tissue/cell under a specific physiologic condition is of 

importance, specifically in the new era of systems biology. 

 
Figure I.5: tissue extRAAS play key roles in tissue homeostasis. ExtRAAS 
pathways exert antagonizing effects at the tissue level that balance each other to 
maintain tissue homeostasis. A change extRAAS components expression may 
shift the balance toward one direction, possibly leading to tissue physiopathology. 
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I.4.1 Introduction 

Atherosclerosis remains the main cause of death and morbidity in the world, mainly in 

developed countries20,21. According to the world health organization, ischemic heart disease 

and stroke, both mainly caused by atherosclerosis, were the major causes of death during the 

last decade, accounting for more than 50% of total death in the world22. Although many 

studies were done to elucidate the mechanisms by which atherosclerosis develop, many 

aspects of the disease remain unclear. This is mainly due to the high complexity of the 

disease, which is affected by a combination of direct local mechanisms that occur in the 

arterial wall, in addition to the effects and interactions of numerous risk factors such as life 

style, blood pressure, dyslipidemias, diabetes and metabolic syndrome205. However, the 

recent advances in molecular biology techniques has increased our knowledge in the disease 

and revealed many molecular bases of the different mechanisms involved in atherosclerosis 

development and progression206. One of the important systems that were found to be involved 

in and linking most of the atherosclerotic processes and risk factors is the renin-angiotensin-

aldosterone system (RAAS). 

RAAS is a complex bioactive peptidic system, involving different angiotensinogen 

metabolizing pathways leading to the generation and degradation of several bioactive 

peptides that may exert different cellular effects through molecular interactions with selective 

receptors. The specific combination of peptides and receptors defines the final response of a 

tissue toward the system. Initially thought as being just an endocrine system involved in 

blood pressure regulation and body electrolyte balance, RAAS is now considered a 

“ubiquitous” system present locally in various tissues207 and exerting multiple 

paracrine/autocrine effects at the tissue level. Indeed, RAAS was shown to be involved in 

numerous molecular mechanisms that play key roles in tissue homeostasis and remodeling, 

including cellular growth, proliferation, differentiation, migration and apoptosis, in addition 

to extra cellular matrix (ECM) remodeling and inflammation208. Importantly, each of these 

processes may play a major role in atherosclerosis formation and progression. 

We have recently proposed an extended RAAS (extRAAS)209 that includes all the angiotensin 

peptides generation pathways with their alternative metabolizing enzymes and receptors. In 

addition this system includes enzymes and receptors involved in the metabolism and response 

to the two corticosteroids aldosterone and cortisol, which are tightly linked and interact with 

the angiotensin system at the tissue level. The substrates, metabolizing enzymes and receptors 
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should be locally present in a tissue for extRAAS to be functionally active independent of the 

circulating system. Several lines of evidence support the expression of extRAAS components 

in the arterial wall and their alteration in atherosclerotic lesions, thus participating in the 

atherosclerotic process. Since the local effects of angiotensin peptides are extensively 

reviewed, this review will briefly mention these effects and discuss the local differential 

production of extRAAS during atheroma development and its participation in processes 

leading to atherosclerotic lesion development. 

I.4.2 The substrate angiotensinogen (AGT) 

Several AGT polymorphisms were shown to be associated with atherosclerotic events and 

atherosclerotic risk factors210–216. 

Both AGT mRNA and protein were detected in several normal arterial beds217–222 and their 

levels were found to be upregulated by balloon surgery-induced vascular injury219, increased 

sodium diet218 and bilateral nephrectomy217. The expression of extRAAS genes involved in 

the different pathways and their cellular distribution in atheroma is presented in Table I.2. In 

normal arterial mouse tissue, AGT is mainly expressed by medial VSMCs of the media and 

fibroblast cells of the adventitia218,219,221. Similar results were obtained by our team in carotid 

atherosclerotic lesions obtained by endarterectomy operation223. Since carotid samples 

contain no media and adventitia, AGT transcript was observed principally in the tunica media 

and in scattered cells of the subendothelial layer, whereas AGT immunoreactivity was mainly 

observed in the intimal layer, as well as in occasional vascular smooth muscle cells 

(VSMCs), suggesting that it is expressed by VSMCs and may be diffusing into the intimal 

layer from the blood stream. In order to investigate the functional aspects and due to the 

difficulty in obtaining normal human arterial tissue, we compared the results obtained from 

atheroma lesions to nearby macroscopically intact arterial tissue (MIT)224. Despite the fact 

that AGT expression in VSMCs could be influenced by risk factors of atherosclerosis such as 

type 2 diabetes (T2D), insulin resistance, and high cortisol224–226, we couldn’t observe 

significant difference in AGT expression between atheroma lesions and MIT223. 
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Table I.2: extRAAS components expression in atheroma. “X” indicate of 
presence of gene’s transcript/protein. “*” indicate that expression was validated in 
the same cell but in other organ. 
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I.4.3 Angiotensin (Ang)-I generating enzymes 

As we discussed in the previous section, AGT is expressed in the vascular wall, mainly in 

VSMCs, and its expression is increased in atherosclerosis and under the influence of 

atherosclerotic risk factors. Although AGT is biologically inactive, it can exert 

atherosclerotic effects by fueling the production of bioactive angiotensin peptides that are 

known to play a major role in atheroma development and progression. Indeed, the blockage 

of AGT metabolism using renin inhibitor was shown to decrease atheroma development in 

Ldlr-deficient mice227. Renin is considered the major Ang-I producing enzyme due to its high 

ligand affinity and specificity. Although a huge debate occurred on the local expression of 

renin in the vascular wall, several studies have detected renin mRNA, protein and activity in 

VSMCs228,229 and endothelial cells (ECs)230 of the arterial wall in several species. In addition, 

vascular renin/prorenin receptor (R/PR) protein was found to be associated to renin activity in 

VSMCs of rat aorta and mesenteric artery, but also in the sub-endothelial VSMCs of 

coronary and kidney arteries201,231,232, suggesting for another source of renin by recruitment 

from the circulation. Moreover, binding of prorenin to the R/PR was shown to directly 

enhance VSMCs proliferation via ROS generation and ERK1/2 activation233. Thus, this 

receptor may exert direct effects on atherosclerotic cells independent of Ang-II generation. 

However, the investigation of the direct effects of R/PR in atherosclerosis is still fresh and 

further studies to elucidate these effects and their mechanisms of action should be done. In 

addition to renin, alternative Ang-I-generating enzymes were also described in the vascular 

wall. Indeed, cathepsin D (CTSD), tonins and aspartyl proteases have been identifies in the 

vessel wall234. Although we were unable to detect renin mRNA in the vessel wall223, 

Kaschina et al. interestingly showed that renin, R/PR and CTSD proteins were upregulated in 

human atherosclerotic compared to normal aortic tissue235. This suggest that in human 

atherosclerosis, renin may be recruited from the circulation rather than being expressed in 

situ, and that Ang-I generation takes place by the recruited renin and locally expressed CTSD 

in the lesion. Moreover, CTSD protein was found to be increased in abdominal aortic 

aneurysm (AAA) compared to atherosclerotic tissue235, suggesting for an alternative role of 

this enzyme in the generation of AAA. 

Alternatively, the newly discovered Ang-(1-12) was also detected in the medial layer of 

coronary arteries and vascular endothelium236. ACE was identified as the primary enzyme 

accounting for Ang-(1-12) metabolism in the circulation of both normal and hypertensive 

rats237–239  and in isolated rat arteries240, including the aorta and right and left common carotid 
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arteries. ACE is found on endothelial cells of both normal and atherosclerotic arteries, but 

also prominently expressed by monocytes and T-lymphocytes in advanced atherosclerotic 

lesions241. Interestingly, Ang-(1-12) significantly constricted the descending thoracic aorta, 

right and left common carotid arteries, abdominal aorta and superior mesenteric artery, with 

little effect on the femoral and renal arteries240. These effects of Ang-(1-12) were attenuated 

when either ACE or chymase were inhibited, with chymostatin displaying lesser potency, 

indicating that these effects most likely result  fromAng-II production. Further information 

about ACE and its role in Ang-II generation will be discussed in the next section. 

I.4.4 Ang-II pathway 

Ang-II was initially thought to only exert indirect effects on atherosclerosis through 

hemodynamic actions; however, compelling evidence support that Ang-II can also act locally 

in atherosclerotic lesions where it exerts various effects leading to atheroma initiation and 

progression242–244. Several studies indicate that Ang-II blockage via ACE inhibitor (ACEi) or 

angiotensin type 1 receptor (AT1R) blockers (ARBs) inhibit the formation and progression 

and acute complications of atherosclerotic lesions independent of hypertension and other risk 

factors of atherosclerosis244–246. Ang-II was shown to play key roles in atherosclerotic lesion 

initiation by inducing endothelial dysfunction247–249  and macrophages recruitment250–255  to 

the vascular wall. In addition, Ang-II enhances VSMCs dysfunction77,81,124  by inducing 

constriction256, switching toward proinflammatory phenotype257, growth258, migration259, 

proliferation259–261 and survival262,263. Ang-II can also enhance foam cells formation by 

inducing low density lipoprotein (LDL) oxidation264–266 and LDL-receptors expression on 

ECs, VSMCs and macrophages267–271. Moreover, Ang-II was shown to be a key inducer of 

local inflammation in atherosclerosis243,272 by inducing local oxidative stress273–276 and the 

production of various inflammatory cytokines234,257,277,278and chemokines279, mainly through 

AT1R-mediated Nuclear factor kappa b (NFKB) activation243,253,255,257,272,277,280, in addition to 

downregulating anti-inflammatory pathways281. In addition, Ang-II induces vascular ECM 

remodeling282–288, apoptosis249,289, calcification290  and thrombosis278,291–293, which are key 

markers of advanced lesion rupture.  

Total Ang-II formation was shown to be significantly higher in atherosclerotic and 

aneurysmal lesions compared to normal aortas294,295. ACE is thought to be the major Ang-II 

producer in the intima of both normal and atherosclerotic vessels278,296. In healthy vessels, 

ACE was found to be restricted to both luminal and vasa vasorum ECs297. Whereas in 
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atherosclerotic lesions, ACE is predominantly expressed by macrophages, in addition to 

macrophage-derived foam cells (MFCs) and lymphocytes241,296,297. This was further 

supported by the expression of ACE by monocytes in vitro, which was upregulated during 

differentiation into macrophages and after LDL treatment241,298. Therefore, it seems that 

macrophages are the major source of ACE in atherosclerotic lesions, in addition to ECs, 

which may explain the increase in ACE levels during atheroma development223. However, 

vascular Ang-II production was shown not to be completely suppressed by ACEi, which 

suggested for the presence alternative Ang-II producing enzymes295. Indeed, ACE-

independent pathways were found to be functional and important in the physiology of normal 

human arteries299, with indication for the participation of non-ACE pathways for more than 

40% of Ang-II generation in the vessel wall300. Although Chymase is restricted to mast cells 

in the tunica adventitia, Ihara et al. demonstrated that most of Ang-II forming activity in vitro 

was chymase-dependent in both normal and atherosclerotic human aortas294. Similar results 

were obtained in patients undergoing coronary artery bypass operation and in Syrian hamsters 

fed a high cholesterol diet where a significant positive correlation between serum cholesterol 

levels and arterial chymase-dependent Ang-II-forming activity was found301. However, they 

didn’t observe any change in chymase levels between the two tissues294, suggesting that the 

increase in Ang-II generation observed in atheroma could be due to increased ACE 

expression as a result of macrophage infiltration and high serum cholesterol, which may 

trigger upregulation of vascular chymase activity and facilitate the development of 

atherosclerosis. Moreover, our team had shown that the mRNA levels of cathepsin G 

(CTSG), another enzyme involved in Ang-II generation, increased in atherosclerotic 

lesion223, possibly originating from infiltrating monocytes302, thus participating in the 

increased in Ang-II formation in atheroma lesions. 

To exert its effects, Ang-II acts through its two main receptors, angiotensin type 1 and type 2 

receptors (AT1Rand AT2R, respectively), which are known to exert opposite effects in the 

vessel wall, mainly on VSMCs physiology. While the AT1R is associated with pro-

atherogenic effects, the AT2R generally exerts athero-protective actions303–305, such as 

endothelial protection306–308, anti-inflamatory mechansims309, apoptosis and vasodilatation. In 

support of these effects of both receptors, our team223 previously showed that the AT1R 

expression decreases 2.5-folds in atherosclerotic compared to healthy vascular tissue. 

However, the AT2R remains very low310,311, even decreases312, during atherosclerotic lesion 

progression, although still exerting important effects in counterbalancing AT1R effects in 
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atheroma304. Thus, it seems that Ang-II exerts most of its effects through AT1R in the adult 

vasculature and in atherosclerosis313, which is mainly expressed on VSMCs, where it can be 

upregulated in diabetic patients224,225,314 and by LDL stimulation315,316. Therefore, the 

increased AT1R expression in atherosclerotic lesions can be explained by the LDL-induced 

production by proliferating VSMCs, in addition to infiltrating macrophages317  and 

platelets318 that were also shown to express the AT1R.  

I.4.5 The Ang-(1-7) pathway 

Although Ang-(1-7) pathway is considered the second main “arm” of RAAS, few studies 

were done to elucidate the expression of its components in the vessel wall. Indeed, the studies 

on the Ang-(1-7) in atherosclerosis started during the last decade, mainly focusing on the 

effects of this peptide in atherosclerosis rather than on its synthesis and presence in 

atherosclerotic lesions. Ang-(1-7) is a potential player in maintaining atherosclerotic lesion 

stability mainly by antagonizing the Ang-II/AT1R-mediated proatherogenic effects319. Ang-

(1-7) plays a major role in preventing atherosclerotic lesions initiation by ameliorating 

endothelial function mediated through oxidative protection51,319–322. In addition, Ang-(1-7) is 

associated with atherosclerotic lesion stability323–326, which can be mediated by inducing 

atheroprotective effects and inhibiting various pro-atherogenic effects, either directly or 

through Ang-II-dependent mechanisms326–329. Indeed, Ang-(1-7) treatment were associated 

with reduced vascular macrophages adhesion and recruitment330,331, VSMCs dysfunction332–

335, Foam cells formation336,337, inflammation338 and ECM remodeling332,339. All these effects 

were inhibited after ACE2324,326  or MasR329,340 defeciency/inhibition. Therefore, it seems that 

Ang-(1-7) is mainly produced by ACE2 in the vessel wall and mediates most of its effects 

through MasR or by interfering with Ang-II/AT1R-mediated effects. 

It seems that ACE2 is the major Ang-(1-7) producing enzyme in atherosclerosis314,341 as 

shown by various studies that investigated the effects of ACE2 and Ang-(1-7) deficiency on 

atherosclerotic lesion development in various animal models. Both ACE2-deficiency and 

Ang-(1-7) inhibition in atherosclerosis produced similar effects in multiple studies, where 

they both enhanced atherosclerotic plaques progression by enhancing contents of lipids, 

macrophages, VSMCs and collagens in late lesions, in addition to upregulation of cytokines 

and MMPs expression and activity324–326. ACE2 protein was found to be present in human 

veins, non-diseased mammary arteries and atherosclerotic carotid arteries and expressed in 

endothelial cells, smooth muscle cells and macrophages314,342,343. ACE2 showed a differential 
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regulation of its expression during atherosclerotic lesion development with higher activity in 

the stable advanced atherosclerotic lesions compared to early and ruptured atherosclerotic 

lesions. Ang-(1-7) can also be produced by various non-ACE2 enzymes319,344 including 

neurolysin, neprilysin, thimet oligopeptidase, prolyl-carboxypeptidase,prolyl-

endoxypeptidase and carboxy peptidase A3344–348. However, the levels and activity of these 

enzymes in atheroma are not clear. In addition, rat mesenteric arteries were shown to possess 

CPA-like enzymes that are able to convert Ang-I and Ang-II into Ang-(1-9) and Ang-(1-7) 

independent of ACE2 and CTSA, respectively349. However, the identity of these CPA-like 

enzymes and their respective levels in normal and atherosclerotic arteries need further 

investigations. This CPA activity was supported by other studies that showed CPA 

expression in mast cells of atherosclerotic lesions350. Cathepsin A (CTSA) that is known for 

its Ang-(1-9) generating activity, thus providing a substrate for Ang-(1-7) generation, was 

shown to be expressed in mast cells and upregulated in atherosclerotic lesions. Ang-(1-9) was 

shown to exert some effects independent of Ang-(1-7) generation by potentiating bradykinin 

action on its receptor, thus contributing vascular protection.  

Ang(1-7) generally performs its athero-protective roles in atheroma by binding mainly to its 

Mas receptor (MasR), and to a lower extent to the AT2R304,341. In the vessel wall, Ang-(1-7) 

was shown to bind both the Mas receptor (MasR) and AT2R on ECs under normal 

conditions331,351,352. Both receptors activation stimulates nitric oxide production and 

vasodilation351,352, therefore maintaining endothelial function. Despite the fact that AT2R was 

shown to be lowly expressed in atherosclerotic lesions310,311, to our knowledge, no data is 

available about the expression of MasR in this tissue. However, studies investigating the 

effects of MasR stimulation329,340,353 indicate that MasR may be present and active in 

atherosclerosis, but its levels and response to local Ang-(1-7) need to be validated. A recent 

study on upstream and downstream regions of internal carotid plaques, showed MasR 

upregulation in the downstream portions of human stable carotid plaques as compared to 

unstable lesions354. Thus it seems that MasR possess a differential expression in 

atherosclerotic lesions and that its expression and activity may play a role in stabilizing the 

plaque from rupture. Although it was shown that AT2R expression was increased in aortic 

segments from the cardiovascular patients355, its levels remain very low in both normal and 

healthy vessels310. AT2Rs have been detected in vessels such as mesenteric356,357 and 

uterine358,359 arteries. 
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Therefore, although both ACE2 and Ang-(1-7) levels may increase in atheroma, its 

atheroprotective effects remain overridden by the high Ang-II/AT1R proatherogenic 

activity314. Thus, the levels of Ang-(1-7) pathway components and its interaction with the 

Ang-II pathway should be further studies. 

I.4.6 Ang-III/IV pathway 

Although there is no clear evidence on the Ang-III and Ang-IV generation in normal and 

atherosclerotic vessels, studies have shown that both peptides treatment may exert local 

effects in the vessel wall. Ang-III mediates similar effects to Ang-II, such as vasopressor 

effects319, activation of the transcription factors NF-KB and AP-1 with an increase in the 

expression of related pro-inflammatory genes, such as MCP-1, IL-6, TNF, ICAM-1, and PAI-

1360,361. However, these effects were mainly mediated through Ang-III-mediated activation of 

AT2R242, which indicate that AT2R can perform opposite effects in a ligand-dependent 

manner. Ang-IV peptide was also shown to induce MAPK, ERK1/2, NFKB and AP-1 

activity via AT4R or AT1R activation in VSMCs or ECs187,243,362,363. On the contrary, Ang-

IV may also confer vasoprotective effects in both normal and atherosclerotic vessels by 

improving endothelial function through both the AT2R and the AT4R364–366. The latter was 

shown to be present on ECs, but not on VSMCs, in pulmonary arteries, where it can induce 

dose-dependent vasodilation upon Ang-IV stimulation364. On the other hand, studies on rabbit 

carotid arteries showed that normal arteries express AT4R in VSMCs and in the vasa 

vasorum of the adventitia that was upregulated following balloon injury, with very low 

receptor levels in ECs367. Thus, it seems that that Ang-IV may exert both protective and 

atherosclerotic effects in the vessel wall depending on the stimulated receptor and the 

activated intracellular pathways. In addition, this may suggest that some of the effects 

induced by Ang-II may be mediated through downstream angiotensin peptides. 

I.4.7 Corticosteroids 

Like Ang-II, the vascular effects of Aldosterone were originally accredited to renal MR-

mediated blood pressure elevation with secondary vascular consequences368. However, 

studies over the past years showed that aldosterone may also exert local effects on 

atherosclerotic cells independent of blood pressure. For example, several studies have shown 

that plasma aldosterone level is associated with atherosclerosis progression and subsequent 

cardiovascular events independent of blood pressure369–373. In addition, in the RALES374  and 

EPHESUS375 trials the doses of the MR antagonists used were below threshold for causing 
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significant renal effects. These findings support the direct local effects of aldosterone on the 

vasculature independent of hypertension. Aldosterone infusion, in the absence of vascular 

injury, had no significant effect on vascular remodeling, suggesting that aldosterone acts 

synergistically with mechanical endothelial damage to promote vascular remodeling376. Ex 

vivo treatment of mouse aortas with aldosterone identified 72 proatherogenic genes with 

enhanced Aldo-stimulated expression by MR and oxidative stress-dependent mechanism368. 

These genes are involved in regulating oxidative stress, vascular cell proliferation and 

angiogenesis, and extracellular matrix formation and degradation. Indeed, aldosterone in 

atherosclerosis contributes locally377,378 to endothelial dysfunction379,380, VSMCs 

dysfunction175,379,381,381–385, vascular inflammation380,386–388, oxidative stress379,389,390, 

calcification175,391,392 and ECM remodeling393,394; whereas MR antagonists inhibit these 

effects378,395,396. 

Compelling evidence support the local production of aldosterone in the vascular wall175,376. 

Both aldosterone synthase (CYP11B2) and aldosterone receptor (MR) mRNA and proteins 

were detected in ECs and VSMCs obtained from human pulmonary artery; however the 

levels of MR were less in ECs than VSMCs383,397,398. In addition, MR is expressed in 

macrophages, dendritic cells, and T and B lymphocytes399. However, the 11 -HSD2 should 

also be present and active for aldosterone to exert its effects freely on the MR that can also be 

bound by cortisol. Indeed, intact rat aortic rings were shown to express both functional 11 -

HSD1 and 11 -HSD2. The latter, was present in both ECs and VSMCs, whereas the former 

was expressed in ECs only175,398,400–402. This was in line with the results showing that VSMCs 

respond directly to exogenous aldosterone and may produce aldosterone locally in an Ang-II-

dependent and independent mechanisms175,203,382,403. This indicates that aldosterone is locally 

produced in in atherosclerotic lesions, and that the synthesis and response to aldosterone in 

atheroma may increase as a result of increased VSMCs proliferation and Ang-II production. 

In addition, aldosterone has been demonstrated to mediate part of its rapid non-genomic 

vascular effects via MR-independent pathways, which are yet to be determined404. Recent 

studies have shown that some of these MR-independent effects can be mediated via G-

protein-coupled estrogen receptor (GPER)180. Aldosterone-mediated GPER activation was 

shown to induce contraction and apoptosis in VSMCs via phosphatidylinositol 3-kinase 

(PI3K)-mediated extracellular signal-regulated kinase (ERK) activation180. Aldosterone was 

also able to activate ERK signaling in vascular EC model with persistent expression of GPER 

but no detectable MR expression, indicating that this effect of aldosterone in ECs could be 
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completely dependent on MR-independent mechanisms, most possibly through GPER 

activation180. However, aldosterone-mediated ERK activation was inhibited by both the MR-

selective antagonist, eplerenone, and the GPER-selective antagonist, G15, indicating that 

eplerenone could also inhibit aldosterone-mediated GPER activation through unknown 

mechanism. On the contrary, GPER agonist- or estradiol-mediated GPER effects induced 

differentiation and inhibit VSMCs proliferation by inhibiting ERK1/2 and Akt 

phosphorylation405, suggesting that this receptor may act in a ligand-depndent manner and 

that the conclusive atheroprotective effects406 of GPER should be carefully interpreted. 

Although the presences of 11 -HSD1 in the vessel wall support the local production of 

cortisol, there is no study that shows it ratio to 11 -HSD2, and thus cortisol 

production/degradation ratio. Nevertheless, the general view that 11 -HSD1-

deficiency/inhibition (lower cortisol level) is atheroprotective, whereas 11 -HSD2-

deficiency/inhibition (higher cortisol level) accelerates atherosclerosis independent of 

systemic risk factors, reflects modulation of cortisol actions and inflammation within the 

vasculature407. Indeed, treatment of ApoE/11 -HSD2 double knockout mice (these mice 

should have high cortisol content) with eplerenone, an MR antagonist, reduced plaque 

development and macrophage infiltration while increasing collagen and VSMCs content with 

increased VCAM-1 expression on VSMCs compared to Apoe(-/-) mice, without any effect on 

systolic blood pressure. Similarly, aldosterone increased VCAM-1 expression in mouse aortic 

ECs, an effect mimicked by corticosterone only in the presence of an 11 -HSD2 inhibitor, 

indicating that cortisol mediate atherogenic effects at high levels through MR activation. 

Similarly, it was shown that 11 -HSD1 gene expression increases in the ascending aorta 

tissue of metabolic syndrome patients with coronary artery disease408. In addition, we 

recently showed using carotid atheroma samples that 11 -HSD1 is up to 10 folds higher in 

advanced atherosclerotic plaques compared to nearby macroscopically intact tissue, which 

the latter is considered a very early stage of atheroma198. Similar results were also obtained in 

vitro in lipid storing VSMCs, which is a prominent feature of VSMCs in advanced lesions, 

compared to contractile VSMCs226. Thus it seems that 11 -HSD1 increases during 

atherosclerotic lesion development and may play a role during atherosclerotic lesion 

progression. 11 -HSD1 was shown to be expressed and upregulated upon inflammatory 

stimuli in vitro both in macrophages409 and VSMCs410, in addition to promoting macrophages 

phagocytic capacity411. 11 -HSD1 deficiency/inhibition in ApoE-/- mice attenuated 

atherosclerosis with reduced lesion size, lipids accumulation, foam cells formation and local 
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inflammation, independent of plasma lipids or glucose407,412,413.. However, cortisol may also 

exert atheroprotective effects through cortisol glucocorticoid receptor (GR) activation, which 

was shown to be expressed in atheroma398. In fact, glucocorticoids are assumed to act as 

antagonists of MR in kidney and heart, whereas in the vessel wall they act as agonists at high 

levels414. Recent studies demonstrated that GR exerts opposing effects to MR and that the 

balance between the two receptors may affect vascular remodeling. Indeed, In C57Bl/6J 

mice, neointimal proliferation was reduced by systemic or local glucocorticoid administration 

and by MR antagonist, whereas increased by the GR antagonist415. These effects were shown 

to be independent of 11 -HSD1 deficiency or antagonism402,415,416, suggesting for a role of 

other glucocorticoids (GCs) than cortisol in GR-mediated atheroprotective effects417. Loss of 

GR from atherosclerotic cells induced a GC-mediated decrease in cellular proliferation and 

increase in apoptosis and collagen synthesis, which may be explained by the effects of GC 

elicited through MR418. On the contrary, mice lacking the endothelial GR developed more 

severe atherosclerotic lesions in the aorta, brachiocephalic artery, and aortic sinus, as well as 

enhanced local inflammation as evidenced by increased macrophage recruitment in the 

lesions419. Similarly, mice having a macrophage-specific GR knockout showed less 

calcification within the vasculature. In vitro studies using conditioned media from 

macrophages which had been stimulated with dexamethasone demonstrated a dose-dependent 

increase in calcium deposition by VSMCs420, suggesting that GR may inhibit VSMCs 

calcification indirectly through macrophages. Moreover, GCs including cortisol have been 

shown to inhibit MCP-1 synthesis in a variety of cell types including arterial VSMC421. In the 

latter, GCs can also inhibit cell growth, migration, proliferation and lipid uptake in culture 

and in animal models of arterial injury422–425. In addition, GR activation inhibits oxLDL-

induced macrophage growth by suppressing the expression of granulocyte/macrophage 

colony-stimulating factor424. These findings indicate that cortisol level is tightly regulated in 

the vessel wall to exert atheroprotective effects, and that when cortisol reaches high levels it 

may bind MR and exert similar pro-atherogenic effects like aldosterone-MR activation426. 

Therefore, aldosterone should be always studied in relation to cortisol, MR and GR levels to 

give non-false positive results about its possible effects in atheroma. 

I.4.8 Pathways interactions 

Recent studies have shown that ACE2-Ang-(1-7) axis may be regulated by Ang-II-AT1R 

pathway. Indeed, several studies have shown that Ang-II induces a dose-dependent decrease 

in ACE2 mRNA and protein expression427–429, along with increased atherogenic reactions, 
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which can be restored by ARBs and Ang-(1-7) treatment430,431. AT1R blockade and Ang-(1-

7) treatment attenuated the decrease in ACE2 mRNA and increased AT2R mRNA but did not 

affect AT1R mRNA. This was accompanied with attenuated neointimal area, VSMC 

proliferation, increases in the mRNA levels of MCP-1, TNF- , and IL-1 , and ROS 

production in the injured artery. These effects of Ang-II/AT1R-axis on ACE2/Ang-(1-7)-axis 

were shown to be mediated by several mechanisms including the activation of signaling 

through ERK1/2, JNK and MAPK432,433. In addition, a very recent study had shown that 

ACE2 can also be inhibited by ROS derived from AT1-mediated proinflammatory signaling, 

which can be restored upon AT1R inhibition434. Therefore, Ang-II may exert a double effect 

in atherosclerosis by maintaining an atherogenic microenvironment in atherosclerotic lesions 

and at the same time it inhibits the Ang-(1-7)/MasR athero-protective effects. Thus, as the 

levels of Ang-II and its atherogenic effects in atherosclerotic lesions increase, the protecting 

arm of extRAAS that is known to counterbalance Ang-II atherogenic effects decreases, or 

may even be missing due to the loss of response through the Mas or AT1 receptors434. In 

contrast, the MasR was also shown to diminish Ang-II-induced inositol phosphates and 

mobilization of intracellular Ca2 by the forming a hetero-oligomeric complex with the AT1R. 

In vivo in mice, this inhibition was shown to regulate the Ang-II-mediated vasoconstriction in 

mesenteric microvessels435. Moreover, in human ECs, Ang-(1-7) negatively modulates Ang-

II/AT1R–activated c-Src and its downstream targets ERK1/2 and NAD(P)H oxidase320. 

There is a tight cross talk and mutual activation between MR and AT1R in VSMCs, leading 

to the regulation of atherogenic processes including increased vascular tone, inflammation, 

fibrosis and thrombosis436. Aldosterone and Ang-II synergistically stimulate migration in 

VSMCs via MR and AT1R signaling, respectively, through MEK and EGFR signalling188,190. 

In addition, aldosterone may act indirectly on the vessel wall by inducing Ang-II 

generation389,437. In vitro treatment of macrophages with aldosterone enhanced ACE 

expression and activity and increased their ROS production and LDL oxidation ability 389. 

Only co-treatment of eplerenone with ramipril or losartan completelyblocked the oxidative 

effects of aldosterone, which indicate that the MR-induced pro-oxidative effects may be 

mediated via Ang-II production. Similarly, Ang-II mediates some of its effects through 

aldosterone synthesis and MR activation438. In rat aortic VSMCs, Ang-II induced aldosterone 

synthesis and VSMCs proliferation via the AT1R. Ang-II-induced proliferation was inhibited 

by spironolactone, suggesting that locally generated aldosterone may mediate the effects of 

Ang-II/AT1R in stimulating rat aortic VSMC proliferation382,383. It was recently shown that 
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Ang-II and aldosterone synergistic effects depend partly on their newly assigned receptors 

EGFR and GPER439. However, the significance of the aldosterone-mediated effects of Ang-II 

in vivo is still controversial and need further validation. Indeed, Cassis et al. showed that 

aldosterone infusion or MR blockade in apoE-/- mice did not influence the Ang-II-induced 

vascular pathologies of atherosclerosis or abdominal aortic aneurysms formation, which 

indicate that aldosterone does not contribute significantly to Ang-II-induced atherosclerosis 

or abdominal aortic aneurysms (AAA) formation in hyperlipidemic mice440. This could be 

attributed to the high aldosterone concentration used in the study, since aldosterone-mediated 

Ang-II potentiation was shown to occur at nanomolar aldosterone concentration, but 

disappear at micromolar concentration439. At the same time, Ang-II was shown to mediate 

some of its effects by activating the MR independent of aldosterone-mediated MR activation. 

Michel et al. showed that AT1R blockade completely abrogated aldosterone pro-angiogenic 

effects in mice treated with aldosterone441. This was then validated in human VSMCs where 

Ang-II was shown to activate MR gene transcription through AT1R activation, independent 

of aldosterone-MR binding175. 

The different extRAAS pathways, their local effects and their interaction in atherosclerosis is 

summarized in Figure I.7. As can be seen in the figure, the same peptide/metabolite may 

exert both proatherogenic and atheroprotective effects depending on the receptor to which it 

binds and activate. On the contrary, the same receptor may also bind different 

peptides/metabolite, however, exerting similar effects. Therefore, the study of extRAAS 

effects in atherosclerosis should be shifted from the peptide/metabolite-specific effects to 

receptor-specific effects. In general, it seems that the atheroprotective effects mediated 

through AT2R, AT4R, MasR and GR are overridden by the proatherogenic effects mediated 

via the highly expressed and activated AT1R and MR. The latter are maintained by a positive 

loop that exerted between Ang-II/AT1R and aldosterone/MR mutual induction and 

activation. 

I.4.9 Summary and perspective 

In summary, all bioactive angiotensin peptides could be produced in the arterial wall, and 

their production is altered in atherosclerosis as a result of cell-specific differential expression. 

Angiotensin peptides may also exert different, even opposite, cell-specific responses in 

normal and atherosclerotic vascular wall. Therefore, the pattern of expression of extRAAS 

components and their cellular distribution in both normal and atherosclerotic walls should be 
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investigated. This will provide a global view on the possible mechanisms by which the 

system is altered and exert local effects in atherosclerosis, which will provide a more 

stringent basis for finding the most specific and efficient extRAAS-targeting therapeutics in 

the treatment of atherosclerosis. 

 

 
Figure I.6: interaction between angiotensin peptides in atherosclerosis. The final extRAAS outcome 
effects of extRAAS would be the result of the balance between its athero-protective and proatherogenic 
effects. The levels in atherosclerotic compared to normal vessel wall are indicated as follow: , 
decrease; , increase, (!), contreversial; (?), unknown. Arrows aith positive (+) or negative (-) signs 
indicate positive and negative correlations, respectively. 11bHSD1, 11b-Hydroxysteroid dehydrogenase 
type 1; 11bHSD2, 11b-Hydroxysteroid dehydrogenase type 2; Aldo, aldosterone; Ang, angiotensin; AGT, 
angiotensinogen; AT1R, Angiotensin-II type 1 receptor; AT2R, Angiotensin-II type 2 receptor; 
CYP11B2, aldosterone synthase; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; ; VSMC, 
vascular smooth muscle cell. 
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II. HYPOTHESIS AND OBJECTIVES 
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II.1 PRELIMINARY RESULTS 

Our team has been investigating extRAAS expression and effects in atherosclerotic lesions 

from carotid atheroma. The earlier work of the team showed the existence of such a system in 

the arterial wall and described its alteration in atherosclerosis in relation to T2D in human 

and mice223–226. Indeed, we have identified Ang-I converting enzymes, including cathepsin D, 

cathepsin G and kallikriens that localize the production of active angiotensin peptides in the 

atherosclerotic lesion. Due to the difficulty in obtaining normal human vascular tissue, and in 

order to identify their association with atherosclerotic lesion progression, we have been 

comparing gene expression between atherosclerotic lesion and nearby “macroscopically 

intact” tissue (MIT) that can be obtained from the same carotid sample (figure II.1). 

 
Figure II.1: human carotid atheroma as a study model of atheroma development. On the macroscopic view 
are drawn the dissections performed in a much remodeled carotid artery. Most often the three types of tissues, 
red: atheroma plaque, green: fatty streaks, and blue: macroscopically intact tissue, are more easy to delineate. 
Standard histological control confirms the grade of atherosclerotic remodeling higher than grade IV according to 
the classification of Stary for atheroma and lower than II for macroscopically intact tissue and tissues may be 
used for mRNA in situ hybridization and immunohistochemistry. From microscopically intact tissue, primary 
culture of vascular smooth muscle cells may be established and the responses are studied according to different 
phenotype in which cells can be conducted, “contractile” and “lipid storing.” Interindividual variability and 
reproducibility of biochemical parameters may be assessed both in situ from the different segments dissected 
and from primary cells (source: Bricca et al. 2015). 

Our team has recently obtained the transcriptome data (Affymetrix gene chip gene 1.0 ST 

array, 28869 transcripts) of the atherosclerotic lesion (stage IV and superior) and 
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corresponding MIT (stages I and II) obtained from 32 patient carotid samples. Using these 

data they examined extRAAS gene correlations through hierarchical clustering of gene 

transcripts. Interestingly, the correlations were highly similar in atherosclerotic lesion and 

MIT with minor differences. Indeed, a group of 10 strongly clustered transcripts was found in 

both tissues. With the exception of IGF2R, this group constitutes genes coding for 

angiotensin metabolizing peptidases whose expression increases in the atheromatous plaque 

compared to MIT (Figure II.2). 

 
Figure II.2: dendrograms of 35 extRAAS transcripts in MIT (A) and ATH (B) of 32 patients. Hierarchical 
clustering used the “Cluster” package of R. The agglomerative coefficients were 0.71 in MIT and 0.75 in ATH. 
The dendrograms were cut in order to separate 5 clusters. 

A second group associates genes coding for MR, GR, AT1R and AT4R also shows similar 

strong correlation between their genes, and interestingly strong negative correlation with the 

genes of peptidases (figure II.2). The comparison of these results to previously published 

microarray dataset available on the gene expression Omnibus (GEO) database (accession 

number: GSE10000) obtained from normal aortas of Apolipoprotein E-deficient mice (Apo-E 

-/-) and control mice permitted the confirmation of the results in relation with the 

development of atherosclerosis. Interestingly, the correlations between extRAAS transcripts 

obtained from our carotid atheroma samples and from ApoE-/- aortas were different from 

those obtained from control mouse aorta. This indicates that the organization of extRAAS in 

atherosclerosis in the vessel wall is mainly regulated at the transcriptional level. Interestingly 
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our team had also shown that the expression of extRAAS genes was altered through the 

atherosclerotic process where there is a general increase in the expression of the coordinated 

angiotensin metabolizing enzymes; however, a decrease in the coordinated receptors that are 

known to favor atheroma formation (LNPEP, AGT1R and MR) (figure II.3). In addition, 

AGTR2 and MAS1, which are both known to encode receptors that antagonize AT1R were 

found to be lowly expressed, they were even not detected. All these data were validated using 

qPCR. This indicates that the organization of extRAAS in the arterial wall is altered during 

early stages of atherosclerotic lesion development (in MIT) and retained during lesion 

progression, thus participating in both lesion initiation and progression. 

 
Figure II.3: expression of 35 extRAAS genes in macroscopically intact tissue 
(MIT) and atheroma plaque (ATH) of 32 patients (mean ± SD). Genes having mean 
expression level higher than the median value over the microarray in the upper graph, 
whereas genes having mean expression level lower than the median value over the 
microarray are present in the lower graph. 

Therefore, we hypothesized that extRAAS has a specific organization in atheroma that plays 

a key role in atherosclerotic lesion development, and targeting this organization to get it back 

into its normal state through novel non-classical RAAS inhibitors may play a critical role in 

atherosclerosis treatment. However, the pharmaceutical targeting of this organization may 

affect the organization of extRAAS in other tissues, thus leading to side effects in these 
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tissues. Therefore, our objective in this study is to identify the tissue-specific characteristics 

of the organization of extRAAS in atherosclerotic lesion, which will allow a more specific 

and efficient treatment. 

II.2 OBJECTIVES AND EXPERIMENTAL STRATEGIES 

Objective1: Validate the tissue-specificity of extRAAS organization in atheroma 

Since extRAAS is known to be expressed in various other tissues than the arterial wall, we 

checked whether the organization we have obtained from carotid atherosclerotic lesion is 

reproducible in other types of atheroma (coronary, renal, peripheral) and if it is specific for 

atheroma.  

Objective 2: Identify the cellular source of extRAAS organization atheroma 

Because the coordinated transcripts are found in initial atherosclerotic lesion stages with 

almost absent inflammatory cells (MIT) and in ApoE-/- aortas in the absence of 

hypercholesterolemic diet, which allows excluding the role of absent inflammatory cells in 

these samples. In addition, since carotid endarterectomy tissue contains no adventitial tissue, 

this also excludes the role of adventitial cells. Thus it is thus more likely that this 

organization originate from VSMCs, which are present in much higher numbers than EC in 

MIT, human atherosclerotic lesions and ApoE-/- aortas. However, VSMC in atherosclerotic 

lesions may present with large phenotypic variability from typical medial contractile cells to 

synthetic, lipid storing and calcified cells as was discussed in the introduction. Therefore, 

extRAAS organization was investigated using primary human VSMCs conducted to adopt 

different phenotypes related to vascular remodeling in atheroma: contractile, lipid storing or 

osteoblastic. 

Objective 3: Identify the role of extRAAS organization in orienting the metabolism of active 

peptides in atheroma 

Whether and how the correlations observed at the mRNA level translates into protein and 

signaling peptide production is of upmost importance. Using mass spectrometry (MS) we are 

analyzing the flow of Ang-I metabolism in atheroma by measuring downstream peptides. In 

addition we are measuring the protein levels of extRAAS components in carotid 

atherosclerotic lesions that will be also subject for correlation and system network analsysi. 

Objective 4: Reveal the transcriptional regulatory mechanisms behind extRAAS organization 

in atheroma 
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Coordination between gene transcripts may rely on the activity of common TFs that may bind 

to the promoter of coordinated genes and simultaneously activate their transcription. Thus, 

we identified candidate TFs involved in extRAAS gene coordination using bioinformatics 

tools, that will need to be validated experimentally using molecular biology techniques in 

VSMCs. 
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III. EXPERIMENTAL APPROACHES
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III.1 OBJECTIVE 1: VALIDATE THE TISSUE-SPECIFICITY OF EXTRAAS 

ORGANIZATION IN ATHEROMA 

To check for the reproducibility of the organization of extRAAS in atheroma and its tissue-

specificity we used previously published transcriptomic data available on the gene expression 

omnibus (GEO) database. Since analysis was done on different datasets obtained using 

different experimental protocols, microarray platforms and were normalized differently, 

analysis was done based on the workflow presented in Figure III.1. Experimental procedures 

in each step of the workflow are detailed in the next sections. 

 
Figure III.1: workflow of the experimental approach to achieve objective 1. 
Microarrays were downloaded from the GEO database based on certain inclusion 
and exclusion criteria. Expression and coordination patterns were then extracted 
from each database. Results obtained from datasets of the same tissue were then 
joined and reproducible patterns of expression and coordination were identified. 
for each tissue, the identified reproducible patterns were then used to construct a 
map of extRAAS organization. 

III.1.1 Downloading microarray datasets 

Published microarray datasets were downloaded from the Gene Expression Omnibus 

database (http://www.ncbi.nlm.nih.gov/geo/). The search was done by tissue name and a filter 

was applied for organism (human or mouse), study type (expression profiling by array), 

attribute name (tissue) and sample count (>10). The results obtained were then checked for 

the study design used to check for the samples type (tissue, cells or explants), sample 

treatments (addition of exogenous substances, physical treatment) and their processing 

protocol. Only datasets with more than 10 normal tissue samples without any treatment that 
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are directly frozen or lysed for RNA extraction were retained. Atherosclerotic tissues were 

also retained. Since only normal samples were to be analyzed in other tissues than the 

vascular tissue, expression data of normal samples (usually control samples used in the study) 

were separated from the expression data of diseased samples in each dataset and saved into 

separate files. Except for atherosclerotic vascular tissue, all physio-pathological samples from 

each dataset were excluded and further analysis was only done on physiologically normal 

tissues. Age, gender, and ethnicity were not taken into account in selecting the datasets. 

III.1.2 Extracting expression levels and quality control 

After filtering, datasets were checked for the expression distribution of their individual 

samples. Datasets which showed large variability among samples were eliminated. Datasets 

were normalized by their authors using different methods including robust multichip average 

(RMA), GC-RMA or a global score method442; datasets lacking any transformation were log 

2-transformed. Since datasets were obtained using different microarray platforms and since 

they were normalized differently, and in order to compare expression data between different 

datasets, the centile rank of a gene was calculated using the R-software by normalizing its 

mean expression level relative to the mean expression data distribution over the microarray 

(figure III.2). As an example, a gene with a centile rank equals to 68 in a specific dataset 

means that its expression is higher than 68% of the genes in the same dataset.  

 
Figure III.2: the centile 
expression rank reflects the 
mRNA expression level of a 
gene relative to other genes of 
the genome. 
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III.1.3 Clustering of extRAAS genes per dataset 

The R software was used for statistical description and clustering of the 37 extRAAS gene 

transcripts in each dataset, using the “Cluster” R library. ExtRAAS gene transcripts were 

hierarchically clustered in each dataset using Pearson correlation distance and Ward’s 

agglomeration method443. Each of the obtained dendrograms was then cut at a given level to 

identify the gene clusters (figure III.3). The cut-off level was chosen on the basis of a balance 

between the level of clustering strength, assessed with the agglomerative coefficient and a 

minimum of 3 gene transcripts per cluster. 

 
Figure III.3: cutting the dendrogram. This is a typical dendrogram of a dataset containing 253 
subcutaneous (SC) adipose tissue samples. The cut-off level was chosen on the basis of a balance 
between the level of clustering strength, assessed with the agglomerative coefficient and a minimum of 3 
gene transcripts per cluster. By cutting this dendrogram at the level indicated by straight horizontal line, 
we obtain 7 clusters with a minimum of three genes (cluster 7). Cutting at a higher level will produce to 
larger clusters, however, with lower clustering strength. On the other hand, cutting at a lower level will 
produce clusters with strong gene correlations, however, the genes will be scattered into many clusters. 

III.1.4 Identifying local extRAAS co-expression modules in each tissue 

A co-expression module was defined as a set of 2 or more genes that were coordinated across 

datasets of a given tissue (Table III.1). In the beginning, a co-expression module was defined 

as the genes that are totally clustered in more than 50% of the datasets of a given tissue. 

However, this may underestimate other genes that are clustered with the genes of a given co-

expression module in some datasets. Therefore, co-expression modules were then extracted 

based on the average coordination rate (ACR) of genes within a module, which is the average 

percentage of coordinated genes within a module that were clustered across the different 

datasets in a specific tissue. For example, PREP in the first module in figure 3.x would have 

been eliminated from the module if co-expression modules were extracted based on the first 

method because it is clustered with all the genes of the module only in 3 of the 8 datasets 
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(<50% of datasets). However, based on the ACR method, it would be included because it is 

also clustered with other genes of the module in certain datasets. 

Table III.1: extraction of co-expression modules. Cluster patterns from the different datasets of a 
give tissue are arranged in a table like the one in the figure above. The table shows the level of 
coordination of genes across 8 datasets of subcutaneous adipose tissue. Colors indicate clustered genes 
and the bugs indicate non-clustered genes in a dataset. A module is a set of coordinated genes with an 
average coordination rate (ACR) greater than 55%. ACR was calculated as the average % of genes that 
are coordinated across datasets. For example, 81% of the first module genes are coordinated across 
datasets in adipose tissues. The non-clustered genes are those which have a low correlation with any 
other genes across datasets, thus they don’t belong to any module. 

 

ACR was calculated based on the following equation: 

ACR=  * 100 

Were n is the total number of datasets, 

x is the total number of coordinated genes in a dataset, 

e is the number sub-clusters in a dataset,  

and z is the total number of genes in a module. 

Therefore, ACR of module 1 in table III.1 would be calculated as follows: 
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In this case, the larger the modules across datasets, the fewer the sub-clusters, and thus, the 

higher the ACR would be. Therefore, ACR reflects the strength of correlations between genes 

across all datasets. A threshold of >55% was the criterion used to define gene modules that 

were representative for a specific tissue.  

III.1.5 Datasets quality control 

In our first trial on extracting co-expression modules, we found that in tissues with multiple 

datasets, such as subcutaneous adipose tissue, certain datasets showed a different clustering 

when compared to the bulk of datasets in the same tissue. So, we hypothesized that these 

datasets may have a different expression profile due to a large difference in experimental 

protocol used. So, we checked for the expression profiles of extRAAS genes in these datasets 

and found that indeed they showed a large difference in their expression profiles compared to 

other datasets of the same tissue (figure III.4). 

 
Figure III.4: expression profiles of extRAAS genes in all datasets of skeletal muscle before 
quality control. Each horizontal line corresponds to a the expression profile of one gene across the 
datasets. Each part of the horizontal axis corresponds to the expression of all genes within one 
dataset. A good profile in a dataset should have a consistent global change in its gene expression 
profile that leave the expression profile of individual genes parallel with the upstream and 
downstream dataset. In the graph above, the profile of GSE40231 is clearly different from all other 
datasets making deep changes in gene expression, with some increasing and the others decreasing. 

However, to minimize manual manipulation in our analysis, datasets of a given tissue were 

then hierarchically clustered based on the obtained centile rank of extRAAS gene expression 

based on the average linkage method using cluster 3.0 444 and Java TreeView 3.0445 

softwares. Non-clustered datasets were then eliminated from the study (figure III.5). 
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Figure III.5: quality control heatmap for 
skeletal muscle. The dendrogram was drawn 
based on the average linkage method (cluster 3.0 
software) using the logged and normalized mean 
centile expression rank of extRAAS genes. 
Colors correspond to the relative logged centile 
rank in each dataset. It is very clear that 
GSE40231 (last column on the right) is not 
clustered with the bulk of datasets. 

III.1.6 Statistical analysis 

For centile rank expression levels, one MCR value was computed per tissue and one mean 

MCR for all tissues. These MCR values were presented as (1) mean ± SD to show intra- and 
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inter-tissue variation in extRAAS gene expression and (2) mean ± SEM to describe specific 

gene expression. 

III.2 OBJECTIVE 2: IDENTIFY THE CELLULAR SOURCE OF EXTRAAS 

ORGANIZATION ATHEROMA 

A summary of the experimental approach used to achieve objective 2 is present in figure 

III.6. 

 
Figure III.6: workflow of the experimental approach to achieve objective 2. VSMCs obtained from 
MIT of carotid samples were stimulated to differentiated into lipid storing (adipocytic) and calcified 
(osteoblastic) phenotypes, in addition to a third set that are maintained with their contractile phenotype. 
RNA was then extracted from the each cell type and RNA with good quality and quantity was stored for 
microaaray hybridization. The obtained transcriptomic data will then be analyzed for extRAAS 
transcripts organization and compared to our previous data from atheroma so that we can identify the 
cellular source of extRAAS organization in atherosclerotic lesions. 
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III.2.1 Carotid samples preparation and storage. 

The investigations were carried out according to the principles outlined by the Declaration of 

Helsinki, all procedures were approved by the local ethical committee, and the patients gave 

written informed consent446. Fresh carotid samples were brought from the operation block of 

Hôpital Edouard Herriot within 2 hours after carotid endarterectomy. The atherosclerotic 

lesion (calcification, hemorrhage, fatty streak) part was carefully separated from the nearby 

macroscopically intact tissue (MIT) part in each sample. A 0.5 cm² fragment of each part was 

then put in 4% paraformaldehyde (PFA) solution to be sent for biochemical analysis. Another 

fragment of 1-2 cm² was taken from the MIT for VSMCs extraction. The rest of both the 

atherosclerotic lesion and MIT were snap frozen in liquid nitrogen then stored at -80°C for 

further analysis. 

III.2.2 VSMCs extraction from MIT 

The 1-2 mm part of MIT was cut into 1-2 mm² pieces that were spread in a 25 cm² Falcon™ 

tissue culture treated flasks using a Pasteur pipette. After separating the small pieces, the 

flask is incubated 10 minutes at 37°C in 5% CO2. The flask is then filled with 4-5 ml of 

complete Promocell medium for smooth muscle cell growth. (Promocell catalog number: C-

22162) containing 1% penicillin; 0.2% funjizon and 0.2% nystatin This medium was used as 

the control medium for further treatment. The medium is changed every 2-3 days. After 4-8 

weeks, when VSMCs grow and become more than 40% confluent, the cells are trypsinized 

and passed into another 25 cm² flask. These are considered passage 1 cells. 

III.2.3 VSMCs differentiation protocol 

VSMCs were obtained by an explant method originally described by Ross447. VSMCs in 

passage 3-5 were used in the protocol. After trypsinization, 1 x 105 cells were seeded per well 

in a 6 wells plate. The medium was changed every 2-3 days and treatment starts after the cells 

reach 70-80% of confluence. The lipid storing phenotype was stimulated using control 

medium with 1nM T3, 0.25mM IBMX, 1.2 M insulin and 100 nM dexamethasone448. On 

the other hand VSMCs calcification was done using control medium with containing 1% 

penicillin; 0.5% funjizon, 0.5% nystatin, 10 mM sodium pyruvate, 10 mM -

glycerophosphate, 1 M insulin, 50 g/ml ascorbic acid and 100 nM dexamethasone449 (in 

another protocol we used control medium containing a final phosphate concentration of 3.9 

mM). Control cells were left treated with control medium. For the 3 phenotypic treatments, 

the medium was changed every 2-3 days for 2 weeks. 
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III.2.4 Total RNA extraction using TRIZOL-phenol/chloroform 

Cells from each well were trypsinized and put into separate tubes. After lyzing the cells in 

500 l of TRIzol reagent, cell lysate was homogenized in 100 l of Choroform/Isoamyl 

alcohol with respective 24:1 ratio and incubated on ice for 5 minutes. The mixture was then 

centrifuged at 12000g for 10 min at 4°C, which result in 3 layers: an upper clear layer 

containing the RNA, an interphase containing proteins and the lower organic phase 

containing lipids and DNA. The upper clear phase containing RNA was transferred into a 

new tube, incubated overnight with an equal volume of 100% isopropanol, and then 

centrifuged at 14000g for 20 min at 4°C in order to precipitate the extracted RNA. The 

resulted RNA pellet was washed by 70% ethanol, left to dry out, and then reconstituted in 

50 l Diethylpyrocarbonate (DPEC) water. After that, RNA was treated with DNase-I to 

remove DNA traces and the DNase was deactivated by heating at 70°C for 10 min. RNA was 

precipitated again overnight with 0.1V of 2M acetate (18 l), 2.5V of cold 100% Ethanol and 

1.5 l glycogen then centrifuged at 14000g for 20 min at 4°C and the resulted RNA pellet was 

washed by 70% ethanol, left to dry out, and then reconstituted in 10-15 l 

Diethylpyrocarbonate (DPEC) water. RNA quantity and quality were measured using 

nanodrop and agilent bioanalyzer, respectively. The RNA quality is evaluated by the 

O.D260/O.D280  1.8 and O.D260/O.D230 relations. The absence of degradation was 

checked by the relation 18S/28S  1.6 and RIN > 6 (RNA integrity number) using the Agilent 

bio-analyzer. RNAs with quantity greater than 500 g and quality that verify all criteria were 

stored at -80°C to be sent to the molecular and cellular biology institute (IGMCB) in 

Strasbourg where microarray experimental protocol will be performed. 

III.2.5 Validation of lipid storing phenotype using RT-qPCR 

Contractile and lipid storing phenotype of VSMCs was validated using microscopic 

examination and quantitative measurement of the mRNA expression of key genes involved in 

each phenotype. Contractile phenotype was validated by the expression of smooth muscle 

cell actin ( -SMA). Lipid storing phenotype was tested by the expression of adipocyte fatty 

acid binding protein (FABP4/aP2) and FAT atypical cadherin 4 (FAT4). Table III.2 shows 

the sequence and features of primers used for these measurements. 
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Table III.2: primer sequences for the validation of adipocytic differentiation by RT-qPCR. 

Gene name Gene 
symbol 

Primers Amplicon 
size 

Melting 
Temp °C 

FAT atypical cadherin 4 FAT4 TAACACAGAGTCTGGATCGGG 93 58 
GTTCCAGTTCCAGTCAAGGC 

Fatty acid binding protein 4 FABP4 TGATGATCATGTTAGGTTTGGC 106 60 
TGGAAACTTGTCTCCAGTGAA 

Smooth muscle alpha actin a-SMA TGCCTGATGGGCAAGTGA 51 60 
CTGGGCAGCGGAAACG 

 

For quantitative measurements, 1 g of total mRNA were reverse transcribed using 200U 

Superscript II (Invitrogen_18064-014), 200ng random hexamers (Invitrogen_N8080127), 10 

nmole dNTPs, 250 nmole DTT and first strand buffer in a total volume of 25 l based on the 

suppliers protocol. iQ 96-well PCR plates (Cat#223-9441) and plate sealers(Cat#MSB-1001) 

were purchased from BioRad. Real-time polymerase chain reaction was performed in a MyIQ 

thermal cycler (Biorad) using iQ™ SYBR® Green Supermix (Cat #: 170-8882) and the 

appropriate set of primers based on the protocol of the iQ SYBR Green Supermix supplier. 

Briefly, 8 l of SYBR supermix were mixed with 4 l water, 100 pmol of forward primer, 100 

pmol of reverse primer and 1 l of sample. All samples were run in duplicate along with 

dilutions of known amounts of target sequence to obtain standard curve, in addition to 

negative controls without template DNA. Cycling parameters were done using the following 

program: 

Step # Cycles Temperature  Time 

Enzyme activation 1x 95°C 3 min 

Amplification 40x 95°C 10 sec 

Primers Tm 45 sec 

Fluorescence measurement 

Final elongation 1x 95°C 1 min 

55°C 1 min 

Melting curve 80x increasing steps of 0.5°C 

starting at 60°C 

10 sec 

 

qPCR results analysis was done using Bio-Rad, iCycler iQ Optical System Software. Cycle 

thresholds (Cts) were determined by the software automatically. By default, the baseline 
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cycles and the threshold are automatically calculated. The automatic threshold calculation is 

done to use standards defined on the experimental plate, the threshold is adjusted to attain the 

highest possible correlation coefficient value for the standard curve.  

Results were expressed as the target over 18S RNA concentration ratio. mRNA levels were 

compared with two way analysis of variance for cell experiments (phenotype and treatment). 

Pearson correlation was used to test the relationship between mRNA levels of genes of 

interest. P<0.05 was considered significant.  

III.2.6 Validation of VSMCs calcification by alkaline phosphatase assay or alizarin 

staining 

VSMCs calcification was validated using alkaline phosphatase (AP) assay or alizarin red 

staining. AP is highly expressed and play major role in VSMC calcification (Narisawa S et al. 

2007). Therefore, we tested for AP activity in ODM-treated VSMCs using BCIP/NBT 

(SigmaFastTM BCIP-NBT; Sigma Aldrich Cat #: B5655) as a substrate, which stains cells 

blue-violet when AP is present. After removing the medium, cells were washed once using 

PBS without calcium or magnesium (PBS-), then incubated in neutral buffered formalin 

(10%) for 1 minute (1 ml per one well of a 6-wells plate). The formalin was then removed 

and the cells were washed once with washing buffer (0.05% Tween 20 in PBS-). BCIP/NBT 

substrate solution was then added to cover the cellular monolayer (1ml per well) and 

incubated at room temperature in the dark for 5-10 minutes. The dark blue color should now 

be clear in calcified cells expressing AP. Finally, the substrate solution was carefully 

aspirated and cells were washed with washing buffer then incubated in PBS-. 

Mineral deposition in cultured VSMCs was assessed by alizarin red staining. Alizarine red 

solution was prepared by 2 g Alizarin Red S (Sigma Aldrich Cat #: A5533) in 100 ml 

distilled water, PH adjusted to 4.2, then filtered stored in the dark. The following protocol is 

set for cells in 24-wells plate. Cells were first washed once with PBS- then twice with 50% 

ethanol. After that, cells were incubated 5 minutes in 500 l of 50% ethanol, then 5 minutes 

in 500 l of 70% ethanol, and finally in 250 l of alizarin red solution. The solution was then 

removed and cells were washed once by 50% ethanol. Undifferentiated cells should be 

slightly reddish, whereas mineralized should be bright orange-red. 
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III.3 OBJECTIVE 3: IDENTIFY THE ROLE OF EXTRAAS ORGANIZATION IN 

ORIENTING THE METABOLISM OF ACTIVE PEPTIDES IN ATHEROMA 

Expression of extRAAS genes identified from the microarray data in atheroma and VSMCs 

(Objective 1 & 2) may provide an indirect view of the possible pathways favored in atheroma 

since they are analyzed at the mRNA level. However, to identify the expression of extRAAS 

in atheroma and their activity in orienting angiotensin metabolism we need to analyze the 

extRAAS components at the protein level. In this context, we will check the peptide flow of 

angiotensin metabolism by measuring the concentrations of downstream peptides obtained 

from a common labeled Ang-I (ang-I*) spiked into atheroma tissue explant. The label is 

incorporated on the fifth amino acid (DRVY-I*-HPFHL) which is present in all downstream 

peptides. This will insure that the measured peptides are all driven from the same initial Ang-

I peptide added with known concentration. 

A summary of the experimental approach used to achieve objective 3 is present in figure 

III.7. 

 
Figure III.7: workflow of the experimental approach to achieve objective 3. Fresh carotid sample 
is separated in to its constituent MIT and lesion, respectively. Each part is then devided into 
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two pieces: one piece will be used for total proteome measurement and the other piece will be used for 
the measurement of the kinetics of angiotensin metabolism. 

III.3.1 Samples preparation and treatment 

Fresh carotid samples are dissected to obtain respective MIT and advanced atherosclerotic 

lesions respectively. 10 mg of each tissue type is measured and washed 3 times in phosphate 

buffer saline (PBS). Each is then incubated in 1ml Krebs Hensleit solution (KHS: MgSO4 1.2 

mM, KH2PO4 1.2 mM, KCl 4.7 mM, NaCl 118 mM, CaCl2 2.5 mM, NaHCO3 25 mM) for 5 

minutes at room temperature and a 50 l of the solution is taken to measure background 

concentrations. Labeled Ang-I* (DRVY-I*-HPFHL, Tebu-bio, catalog# 1168) is then added 

to reach a final concentration of 1 M and another 50 l of the supernatants is taken directly 

to measure peptides concentrations at t0= min. The mixture is then incubated at 37°C in 5% 

CO2 and 50 l of supernatants is taken respectively after 10, 20, 40 and 80 minutes. 

Supernatants are stored directly at -80°C. After removing the remaining solution the tissue 

was allowed to dry then weighed and cut into small pieces. The pieces are then grinded into 

powder in liquid nitrogen and transferred into an Eppendorf tube. 500 l of lysis buffer (1% 

triton-X, PH= 7.4) was then added and the tissue was sonicated using a medial frequency 3 

times, each for 10 seconds on ice. Total protein was then measured using the Bradford 

method. Dry tissue weight and/or total protein are used for normalization. 

The rest of each of MIT and atherosclerotic lesions were used for proteomic measurements 

using mass spectrometry. 

III.3.2 Mass spectrometry measurements 

Frozen aliquots of supernatants obtained from treated tissues will then be thawed, filtered to 

eliminate strong background measurements. The samples will then be loaded directly on a 

reverse phase HPLC connected to electrospray ionization-mass spectrometry (LC-ESI-MS) 

for the measurement of produced angiotensin metabolites. This part of the work will be done 

in collaboration with Pr. Paulo Marcelo from CURS, CHU Amiens, France. We are still 

setting up the conditions for measurements. 

As for proteome measurements in MIT and atherosclerotic lesions, this part will be done 

using a time-of-flight mass spectrometer (TOFMS) in collaboration with Pr. Yehia Mechref 

from Texas Tech University, USA. 
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III.4 OBJECTIVE 4: REVEAL THE TRANSCRIPTIONAL REGULATORY 

MECHANISMS BEHIND EXTRAAS ORGANIZATION IN ATHEROMA 

Because at least part of the determinism of correlations must lie within the sequence of the 

mRNA or of its gene DNA, we will be first looking for the possible causes of extRAAS 

genes co-expression through TF binding to the majority of extRAAS genes promoters and/or 

identifying how genes coordinate with extRAAS in the studied tissue. This was conducted 

using Genomatix Software Suite450 which offers numerous tools that will allow the 

identification of promoter sequences of extRAAS genes and corresponding TFs that regulate 

their expression. After that we scanned for candidate TFs that have common TF binding sites 

(TFBS) in the promoter of coordinated genes in atheroma. From these candidate TFs we are 

going to choose the 3-4 most relevant TFs to be validated by molecular biology techniques, 

such as siRNA transfection to knockdown a target TF and check for its effects on the 

expression of extRAAS genes. 

A summary of the experimental approach used to achieve objective 4 is present in figure 

III.8. 

 
Figure III.8: workflow of the experimental approach to achieve objective 4. We are going to use 
the Genomatix software suite in order to identify candidate TFs that may simultaneously bind 
promoters of coordinated extRAAS genes in atheroma and regulate their expression. The Genomatix 
tools will allow the identification of TFBSs present in the promoter of coordinated genes with their 
corresponding TFs. From these TFs we are going to choose the most relevant ones to be validated 
experimentally in VSMCS using molecular biology techniques such as down-regulation using 
siRNA or overexpression using mammalian expression vectors. The choice of the relevant TFs will 
rely on the results obtained from objective 2 in addition to the transcriptional levels and coordination 
of these TFs to extRAAS genes. 
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III.4.1 Identification of candidate TFs using bioinformatics 

The bioinformatics approach used for the identification of candidate TFs is written in the 

materials and methods of enclosed Scientific manuscript I. The different methods used will 

be explained in more details in the following sections. 

III.4.1.1 Promoter analysis of coordinated extRAAS genes 

Transcription start clusters (TSC) were identified using SwissRegulon genome map451. 

Alternatively, dbTSS database452 was used to extract individual TSS in the region of active 

transcription for certain genes for which no TSC could be extracted. A TSC or TSS is 

considered active when the expression of downstream exons is >1.5 folds greater than the 

upstream exon. An example on AGT transcript is presented in figure III.9. 

 
Figure III.9: AGT exon expression profile and transcription start sites. As can be seen in the figure 
that there are several transcription start clusters (TSCs) and transcription start site (TSSs). The first three 
clusters (on the right side, in blue oval shape) are close and seems to be active. Therefore, one common 
promoter was extracted for them. In addition, there is a sharp increase at a specific start site in the second 
last exon of the transcript, thus another promoter was extracted around this TSS. 

Exon expression levels were obtained from raw expression data of the GSE43292 dataset 

obtained in our lab. After defining active TSCs, promoter sequences were extracted using the 

Genomatix database450 and SwissRegulon human genome database. A promoter was defined 

by the sum of consecutive promoter sequences obtained by Genomatix around a specific TSC 

obtained from SwissRegulon. If no Genomatix promoter sequence could be obtained for a 

specific active TSC, then the promoter is considered as the 100-500 bp downstream and 400-

700 bp upstream of the TSC in SwissRegulon genome viewer. For TSS obtained from the 

dbTSS, a promoter region of 600 bp is extracted, with 500 bp upstream and 100 bp 
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downstream the TSS using the NCBI genome viewer. An example of the latter case is 

presented in figure III.10. Promoter sequences of coordinated extRAAS genes were then 

analyzed simultaneously using the commonTF tool from Genomatix using default options in 

order to identify enriched transcription factor binding sites (TFBSs) in the promoters of 

coordinated genes. All of the position-weight matrices (each one associated with one TFBS) 

having at least one match in the studied promoters were obtained with their enrichment p-

value in the group of studied promoters. One TFBS was taken as significantly enriched if its 

adjusted p-value (p-value/total number of position-weight matrices having at least one match 

in the studied promoters) was less than 0.05. 

 
Figure III.10: ATP6AP2 exon expression profile and transcription start sites. There are several 
transcription start clusters (TSCs) and transcription start site (TSSs). The first three clusters (on the left 
side, in blue oval shape) are close and seems to be active. Therefore, one common promoter was extracted 
for them. In addition, there is a sharp increase in the fourth exon of the transcript. However, no TSC or 
TSS is present around this exon on SwissRegulon or on Genomatix. Therefore, the TSS for this point was 
extracted from the dbTSS and the corresponding promoter was extracted using the NCBI genome viewer. 

III.4.2 Identification of relevant TFs 

The identification of relevant TFs was done based on their transcriptional correlations with 

the coordinated extRAAS genes in atheroma (see Scientific manuscript I). The methods used 

to achieve this goal were the same as those used to achieve objective 1 but with the candidate 

TFs coding genes (obtained by applying methods in section 3.4.1) included. 

III.4.3 Experimental validation of relevant TFs 

Relevant TFs are to be validated using molecular biology techniques, specifically by TF 

knockdown using siRNA and TF overexpression using mammalian expression vectors. At 

this level, we are still setting up the experiments of siRNA transfection. 
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III.4.4 Setting-up siRNA transfection 

In order to check for the relation between candidate TFs and coordinated extRAAS genes, we 

tried to knockdown a specific TF in VSMCs in vitro using small interfering RNA (siRNA) 

and check for its effect on extRAAS genes expression. Since IRF5 had been recently 

correlated to atherosclerotic lesion development453, our first TF knockdown trial was done on 

IRF5 gene. IRF5 knockdown was done using Silencer® Select pre-designed siRNA against 

IRF5 supplied by Thermo Fisher Scientific (Cat. # 4392420). siRNA transfection was done 

using INTERFERin® transfection reagent (supplied by Polyplus TransfectionTM) according 

to the manufacturer's instructions (Figure III.11). 

 
Figure III.11: siRNA transfection protocol using 
Transferrin transfection reagent. 150000 cells/well were 
seeded in 2 ml of control medium in a six well plate one day 
before the transfection. The next day, the desired amount (W) 
of siRNA to obtain the final desired concentration in 2 ml was 
diluted in 200 l of serum-free medium. The siRNA mix was 
then mixed with a specific volume of Transferrin, vortexed and 
stored 10 minutes at room temperature. The transfection 
mixture was then added into the cells in culture. The medium 
was changed 4 hours after transfection to reduce toxicity. Gene 
expression measurement was done 48 hours after transfection. 
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To set up the transfection protocol, transfection was done on 150000 cells in 6 wells plate 

using the following combinations of siRNA concentration and transfection reagent volume 

(IRF5-siRNA, INTERFERin): (5nM; 8 l) and (10nM; 12 l). Control cells were transfected 

with scrambled random siRNA (Cat. # sc-37007) using the same conditions. The transfection 

protocol is presented in figure 3.4. The different volumes of the reagents used are presented 

in Table III.3. 

Table III.3: the different amounts of reagents used for siRNA transfection. 

Conditions 
(siRNA 
concentration, 
Transferrin volume) 

# cells 
seeded 

Volume of 
siRNA from 
a 5 M stock 

Volume of 
serum-
free 
medium 

INTERFERin 
Volume 

Final 
culture 
volume 

(5nM; 8 l) 150000 2.2 200 8 2.2 

(10nM; 12 l) 150000 4.4 200 12 2.2 

Gene expression measurement using RT-qPCR was done 48 hours after transfection for the 

following genes: 18S, IRF5, GR, MR, AGTR1, CTSA, ACE and MME. Results were 

expressed as the target over 18S RNA concentration ratio. The primer sequences used for 

gene measurement are presented in Table III.4. 

Table III.4: primer features for measurement of extRAAS genes after IRF5 knockdown. 

Gene symbol Primers Amplicon size Melting Temp °C 

MAX GAACGAAAACGTAGGGACCA 152 60 

AAGGTGTGGCATTTCTGCAT 

ETS1 TTGGAAAAGCAAAACGCTCT 174 60 

CCCCGAGAATCCACTGATAA 

NR3C1 TAAGGACGGTCTGAAGAGCCA 122 60 

GATAAAACCGCTGCCAGTTCT 

CTSA GTGCCCAGCCATTTTAGGTA 160 60 

AAGCAGCTGTTGTGTTGGTG 

MME ACAGTCCAGGCAATTTCAGG 208 60 

CCTAGGGCCCATTTTCTTTC 

EP300 CAGATTGATCCCAGCTCCAT 215 60 
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GAAAGAAGACTCGGCGTTTG 

LNPEP TGAGTGACAAAGACCGAGCC 135 60 

CTTCGGTGATGGGTGCAGTA 

NR3C2 TTGCCTTGAGCTGGAGATCG 125 60 

GTGCATCCCCTGGCATAGTT 

SMAD1 AGCCGATGGACACAAACATG 74 60 

TAAGCAACCGCCTGAACATC 

AGTR1 TTTTCGTGCCGGTTTTCAGC 100 60 

TGCAACTTGACGACTACTGC 

IRF5 AGTGGATTTGGGCCAAGAAG 120 60 

TGCTCATGGCTGAATTTCCC 

ACE GTGTGGAACGAGTATGCCGA 106 60 

GGGTGTGGTTGGCTATTTGC 
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IV.1 SCIENTIFIC ARTICLE I 

Tissue distribution of renin-angiotensin-aldosterone system (RAAS) has attracted much 

attention because of its physiological and pharmacological implications; however, a clear 

definition of what is a tissue RAAS is still missing. The response of a tissue to the system is 

defined by the local organization of RAAS favoring specific pathways. Based on the 

hypothesis that a tissue-specific RAAS organization will refer to the co-expression of genes 

coding for specific subset of the potential participants, we investigated using public 

microarray data such organization of an extended RAAS (extRAAS) across 24 different 

normal human tissues. We defined extRAAS as the set of 36 genes encoding classical and 

newly discovered RAAS participants including substrate, enzymes and receptors. Microarray 

datasets were downloaded from the GEO database then filtered for normal samples (not 

diseased, no infection, not post-mortem). Only those containing more than 10 normal samples 

were retained. The R software was used to extract the mean expression levels and to cluster 

the 36 extRAAS genes (hierarchical clustering using correlation and Ward’s agglomeration 

method) in each dataset. Reproducibility of gene clusters between the different datasets 

within each tissue was used to extract the extRAAS co-expression modules. Maps of the 

tissue-specific organization of extRAAS were constructed for each of the 24 tissues based on 

expression levels and coordination data. Our analysis included 152 datasets representing 24 

different tissues (2 to 32 datasets per tissue) containing overall 5252 samples fulfilling the 

inclusion criteria. Expression data provided an overview of the local participants and thus the 

possible physiological response in a specific tissue. Gene coordination indicates the 

existence, at the mRNA level, of tissue specific modules organized or not around core groups 

of transcripts. Two core groups are composed of peptidases: 1) Cathepsin A and Cathepsin D, 

with or without other enzymes, and 2) Cathepsin G, Carboxypeptidase A3 and Chymase. The 

existence of these clusters of peptidases suggests that the coordinated expression may exert a 

strong effect in orientating the metabolism of angiotensin I. One core group involves 

receptors (GR, MR with AGTR1) that may orientate cell sensitivity. The latter core group 

may show certain negative coordination with the groups of enzymes in certain tissue (i.e. 

adipose). Using publicly available data with simple and robust statistical analysis applied to 

several independent large samples of human material, we propose a preliminary atlas of the 

organization of RAAS across 24 different normal human tissues. These maps showing 

expression levels and coordination of genes may help understand tissue specific effects of 
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RAAS and its targeting drugs. Tissue-specific modules indicate transcriptional coordination 

that may provide a frame for the identification of tissue specific modulators of RAAS.
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Tissue renin-angiotensin-aldosterone system (RAAS) has attracted much attention because of its 

normal human tissues. A set of 37 genes encoding classical and novel RAAS participants including 

sets containing more than 10 normal tissues were downloaded from the GEO database. R software 

Since the identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin-aldosterone 
system (RAAS) has been extensively studied. It is a major therapeutic target in cardiovascular diseases 
(CVD) due to its important role in maintaining cellular and tissue physiology1,2.

In its classical endocrine view, angiotensinogen (AGT), produced by the liver, is cleaved in the plasma 
by the tightly regulated renin, produced by the kidney. This results in the release of the amino terminus 
decapeptide angiotensin I (1–10) (Ang I). Ang I is further processed by the angiotensin converting 
enzyme (ACE) which releases the active (1–8) octapeptide angiotensin II (Ang II). The latter binds to 
its specific membrane receptors and elicit cellular effects. The system is currently characterized by an 
increased complexity, with the discovery of new functional components such as the receptors for renin, 
for the heptapetide angiotensin (1–7) and for the hexapeptide angiotensin IV (3–8), in addition to the 
enzymes leading to the production of active angiotensin peptides from Ang I. Until recently, renin was 
thought to be the rate limiting factor for the production of these active peptides due to its high speci-
ficity and affinity for angiotensinogen. However, the recent discovery of the angiotensin (1–12) peptide 
as a potential alternative of Ang I for cleavage by ACE, chymase or neprilysin raised the possibility of 
alternative renin-independent pathway(s) for the generation of active peptides from AGT3,4. Moreover, 
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the known activity of cathepsin D, cathepsin G and tissue kallikrein to directly accept angiotensinogen, 
as a substrate to release Ang I or Ang II, further strengthens this hypothesis5. Altogether, this leads to 
the concept of tissue RAAS that was shown to act at the paracrine and autocrine levels, independently 
from the circulating RAAS.

Tissue RAAS has attracted much attention because of its physiological, pharmacological and thera-
peutic implications6. In fact, tissue RAAS is often investigated in the context of expression of specific 
enzymes or receptors, pharmacological responses to specific peptides, or pharmacological inhibition of 
specific enzymes. However, very few studies simultaneously compared several components of RAAS 
in several tissues7,8. We have compared the expression of several components of RAAS in the ather-
oma plaque relative to nearby low grade remodeling tissue. Indeed, we found that a specific pattern of 
expression modifications of both receptors and enzymes was found to be associated with the remodeling 
process9,10. Moreover, we showed that the trans-differentiation of vascular smooth muscle cells (VSMCs) 
could establish a positive loop between angiotensin II and corticosteroids signaling, thus functionally 
linking both systems11. In addition, this suggested that along with the expression levels, correlations 
between transcripts could hold a tissue- or process-specific property.

Based on literature and results obtained in our laboratory, we defined an extended renin- 
angiotensin-aldosterone system (extRAAS) which includes 37 gene products3,11–15. The extRAAS sys-
tem contains the classical systemic RAAS participants (AGT-REN-ACE-AGTR1) in addition to novel 
enzymes and receptors13,16 described at the tissue level (Fig. 1, see also Supplementary Table S1).

Our hypothesis is that a tissue-specific extRAAS organization should refer to the co-expression of 
genes coding for specific subsets of potential participants. In this study, we aimed to address the organ-
ization of extRAAS components in several human tissues. Owing to the availability of large public tran-
scriptomic databases, we established the first atlas of tissue extRAAS in a large set of human tissues. 
Using this atlas, we showed that tissue specificity could be achieved through a specific pattern of expres-
sion and coordination of transcripts.

Material and Methods
Microarray data sets. Published microarray data sets of different human tissues were downloaded 
from the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). Data sets were then 
filtered for normal tissues, by excluding cell culture samples, post mortem tissues, diseased tissues (can-
cer or other), and tissues from pharmacologically treated individuals. Age, gender, and ethnicity were 
not taken into account in selecting the data sets. Only data sets with more than 10 normal samples were 
retained. Affymetrix microarray data sets were exclusively selected and only those containing all the 
probe sets were included for further analysis. The detailed procedure is shown in Fig. 2.

After filtering, data sets were checked for the expression 
distribution of their individual samples. Data sets which showed large variability among samples were 
then eliminated. Data sets were normalized by their authors using different methods including robust 
multichip average (RMA), GC-RMA or a global score method17. Since data sets were obtained from dif-
ferent experiments, the data sets lacking any transformation were log2-transformed. In order to compare 
expression data between different data sets, the centile rank of a gene was calculated using R-software by 
normalizing its mean expression level relative to the mean expression data distribution over the microar-
ray. As a quality control step to remove outliers, data sets of a given tissue were then hierarchically 
clustered based on the obtained centile rank of extRAAS gene expression (Cluster 3.0 software using the 
average linkage method, http://bonsai.hgc.jp/~mdehoon/software/cluster/, and Java TreeView 3.0, http://
jtreeview.sourceforge.net free software tools)18. Non-clustered data sets were then eliminated from the 
study.

In order to reflect the 
relative abundance of extRAAS transcripts in a given tissue, the mean expression centile rank (MCR) of 
genes was calculated across data sets. After log transformation of MCR, a tissue dendrogram was built 
by hierarchical clustering of tissues based on the correlation between MCR profiles of extRAAS (Cluster 
3.0 and TreeView 3.0). Principle component analysis (PCA) was also applied on tissues based on stand-
ardized MCR values, using the R software (ade4 package). Projection of tissues on the 3 principal axes 
(rgl package) was used to disclose specific groups of tissues19.

The R software was used for statistical description and 
clustering of the 37 extRAAS gene transcripts in each data set, using the “Cluster” R library. ExtRAAS 
gene transcripts were hierarchically clustered in each data set using Pearson correlation distance and 
Ward’s agglomeration method20. Each of the obtained dendrograms was then cut at a given level to iden-
tify the gene clusters. The cut-off level was chosen on the basis of a balance between the level of clustering 
strength, assessed with the agglomerative coefficient and a minimum of 3 gene transcripts per cluster.

For a given tissue, a co-expression module 
was defined as a set of 2 or more genes that were coordinated across data sets. The average coordination 
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rate of genes within a module was calculated as the average percentage of coordinated genes within a 
module that were always clustered together across the different data sets in a specific tissue. A threshold 
of > 55% was the criterion used to define gene modules that were representative for a specific tissue.

Figure 1. Extended Renin Angiotensin Aldosterone System (ExtRAAS). The metabolic cascades of 
angiotensin peptides, and cortico-and gluco-corticoid pathways have been represented using symbols of 
genes coding for the substrate, the enzymes and the receptors involved in the pathway. Angiotensin peptides 
and steroid hormones are represented in grey using their usual abbreviation. Ang, Angiotensin; Preg, 
Pregnanolone; Prog, Progesterone; DOC, deoxycortisol; 17-OHP, 17-OH Progesterone; ACE, angiotensin 
I converting enzyme; ACE2, angiotensin I converting enzyme type 2; AGTR1, angiotensin II type 1 
receptor; AGTR2, angiotensin II type 2 receptor; AKRIC4, aldo-keto reductase family 1, member C4; 
AKRID1, aldo-keto reductase family 1, member D1; ANPEP, alanyl-aminopeptidase; ATP6AP2, prorenin/
renin receptor; CMA1, chymase 1; CPA3, carboxypeptidase A3; CTSA, cathepsin A; CTSD, cathepsin 
D; CTSG, cathepsin G; CYP11A1, cytochrome P450, family 11, subfamily A, polypeptide 1; CYP11B1, 
cortisol synthase; CYP11B2, aldosterone synthase; CYP17A1, cytochrome P450, family 17, subfamily 
A, polypeptide 1; CYP21A2, cytochrome P450 enzyme, family 21, subfamily A, polypeptide 2; DPP3, 
dipeptidyl-peptidase 3; ENPEP, glutamyl aminopeptidase (aminopeptidase A); GR, glucocorticoid receptor; 
HSD11B1, hydroxysteroid (11-beta) dehydrogenase 1; HSD11B2, hydroxysteroid (11-beta) dehydrogenase 2; 
IGF2R , insulin-like growth factor 2 receptor; KLK1, tissue kallikrein; LNPEP, leucyl/cystinylaminopeptidase; 
MAS1, MAS1 proto-oncogene; MME, membrane metallo-endopeptidase; MR, mineralocorticoid receptor; 
NLN, neurolysin (metallopeptidase M3 family); PREP, prolylendopeptidase; REN, renin; RNPEP, arginyl 
aminopeptidase (aminopeptidase B); THOP1, thimetoligopeptidase 1. Images of IGF2R36, ATP6AP237, MR38, 
GR39, G-protein coupled receptors (AGTR1, AGTR2, GPER and MAS1)40 and LNPEP41 were obtained from 
the Protein Data Bank in Europe (PDBe) with respective PDBe IDs: 2YDO, 3LBS, 1P93, 4P8Q, 2AA2. Image 
of EGFR42 was obtained from Protein Data Bank DOI:10.2210/rcsb_pdb/mom_2010_6.
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Statistical analysis. For centile rank expression levels, one MCR value was computed per tissue and 
one mean MCR for all tissues. These MCR values were presented as (1) mean ± SD to show intra- and 
inter-tissue variation in extRAAS gene expression and (2) mean ± SEM to describe specific gene expres-
sion.

Results
Microarray data sets. Following filtering and applying the exclusion criteria, normalization of the 
data sets for normal tissues was done as described in Fig. 2. After quality control, 77 outlier data sets were 
removed from a total of 220. The retained 143 data sets contained a total of 4933 samples corresponding 
to 23 different tissues (Table 1, see detailed list in Supplementary Table S2). These tissues belong to dif-
ferent systems and have different physiological functions and embryological origins. The total number 
of data sets was variable between tissues and ranged between 2 (thyroid) and 17 (whole blood), whereas 
the total number of samples per tissue ranged between 54 (embryo) and 774 (whole blood). The average 
number of data sets per tissue was 6 ± 4, whereas that of samples per tissue was 214 ± 178. Some tissues, 
such as adrenal gland, vascular wall or brain, were absent from this study because it was impossible to 
obtain non post-mortem normal samples from these tissues.

Among the 37 extRAAS genes, neurolysin peptidase (NLN) was 
excluded from the analysis since it was not represented by any probe set in most of the microarray plat-
forms. The MCR expression level of the remaining 36 extRAAS genes in each tissue was then calculated 
as the mean centile rank (MCR) of a gene transcript across data sets; thus supplying a complete and 
comparative assessment of mRNA abundance across tissues (Supplementary Table S3 and Supplementary 
Fig. S1). Using the MCR data, distribution of gene expression across tissues displayed the previously 
known classical RAAS features. The highest expression levels of key markers were found in their respec-
tive tissues1, such as AGT in the liver, renin in the kidney, and ACE in the lung (Fig. 3a, 3b and 3c,  
respectively). Moreover, aldosterone sensitive tissues such as the kidney and the colon, along with skin 
and thyroid gland, contained the highest levels of HSD11B2 transcript (Fig. 3f). The MCR data revealed 
novel features for other extRAAS gene expression. For instance, the glucocorticoid receptor (GR) and 
the two potential prorenin and renin receptors, ATP6AP2 and IGF2R, were among the most abundant 
mRNAs in all tissues (Figs. 3g, 4a and 4b, respectively). Tissue-specific features could also be identified 
for the first time at the signal response level through AGTR2, MAS1, LNPEP-IRAP (Fig. 4d–f), GPER 
and EGFR (see Supplementary Fig. S1). In fact, MAS1 (Fig. 4e) and ACE2 (Fig. 4c) were highly expressed 
in the kidney and skeletal muscle while the LNPEP-IRAP (Fig. 4f) receptor was abundantly present in 
the omental adipose tissue, heart and pancreas, but not in the kidney. Similarly, this systematic compar-
ison demonstrated new features such as the higher level of AGTR2 mRNA (Fig. 4d) in the large airways 
epithelium (bronchi) compared to small airways epithelium (bronchioles). On the other hand, HSD11B2 
was expressed at relatively low levels in both types of airway tissues (Fig. 3f). Notably, lymphocytes were 

Figure 2. Experimental workflow. Microarray data sets obtained from tissue samples were downloaded 
from the Gene Expression Omnibus (GEO) database; then filtered for normal samples based on exclusion 
criteria. The data sets passing quality control were selected and their expression data were normalized by 
centile rank transformation. Each of the data sets was then submitted for extRAAS hierarchical clustering 
and expression profiling. The resulting dendrograms were then used to assess the level of reproducibility of 
the different clusters across different data sets obtained from the same tissue. Genes that were most often 
clustered together in different data sets of the same tissue were annotated as tissue-specific modules. For 
each tissue, a co-expression map was elaborated using both expression level and tissue-specific module 
belonging of each extRAAS gene.
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the only circulating blood cells found to contain high amounts of all angiotensin, renin and mineralo-
corticoid receptors mRNAs.

Tissue dendrogram was drawn using 
MCR of extRAAS genes per tissue (Fig.  5). Interestingly, tissues belonging to the same system were 
clustered together. For example, peripheral blood mononuclear cells, whole blood cells, leukocytes and 
lymphocytes were found to be grouped with bone marrow. In addition, the epithelia from large and small 
respiratory airways were very close, as were omental and subcutaneous adipose tissues. On the other 
hand, the thyroid gland showed an extremely different expression profile and was not clustered with any 
of the other tissues. Finally, aldosterone-sensitive tissues (e.g. skin, colorectal and kidney), found to have 
high levels of HSD11B2 mRNAs, were not closely clustered. Similar results were obtained using PCA 
(data not shown).

Hierarchical clustering of extRAAS genes in each data 
set indicated that all 36 genes could be strongly clustered with a mean agglomerative coefficient above 
0.7, by default between 0 and 1, for all of the data sets in all tissues except lymphocytes, skeletal muscles 
and small airways. This showed that a clustering structure clearly exists within extRAAS transcripts.

Local extRAAS modules of co-expressed genes were then 
identified by calculating the average coordination rates of gene sets across data sets within tissues. Table 2 
shows extRAAS co-expression modules and the corresponding gene expression levels for the kidney, 
heart, skin, and omental adipose tissues. A minimum of 5 modules per tissue was found in the kidney, 
omental adipose and total blood tissues, and a maximum of 8 modules was found in 10 tissues including 
the thyroid gland, liver, lung and subcutaneous adipose tissues (Supplementary Table S4). The largest 
module, comprising 11 transcripts, was found in the kidney. This module contained AGT, REN, ACE and 
ACE2 along with transcripts of other enzymes involved in the metabolism of angiotensin.

By comparing the modules in the different tissues, we found 3 types of transcript groups: (1) the first 
type comprised modules that were based on the presence of a “core group” of transcripts correlated in 

Organ system Tissue Data sets Samples

Urinary system Kidney 4 84

Cardiovascular system Heart 4 140

Adipose tissue Sub-cutaneous adipose 9 474

Omental adipose 4 86

Respiratory system Large airways epithelium 5 101

Small airways epithelium 8 357

Lung 5 210

Reproductive system Ovary 5 55

Fetal Embryo 3 54

Digestive system Colorectum 8 171

Esophagus 3 83

Liver 5 93

Pancreas 3 100

Oral mucosa 4 193

Blood Lymphocytes 4 142

Leukocytes 4 222

PBMC 11 303

Whole Blood 17 774

Other organ systems Skin 7 222

Thyroid 2 66

Skeletal muscle 14 556

Breast 6 239

Bone marrow stem cells 8 208

Total 23 143 4933

Table 1.  List of the studied human tissues. The final list of data sets obtained after filtering for normal 
samples and quality control. All selected data sets were obtained on the Affymetrix microarrays platform.
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Figure 3. mRNA expression profile of classical RAAS and Corticosteroid system (COS) across tissues. 
The relative abundance of gene transcripts in each tissue is expressed as the mean expression centile rank 
(MCR) across data sets (Mean ± SEM). Classical RAAS genes (a-d): AGT, angiotensinogen; REN, renin; 
ACE, angiotensin converting enzyme; AGTR1, angiotensin II type 1 receptor. COS genes (e-h): HSD11B1, 
11beta hydroxysteroid dehydrogenase type 1; HSD11B2, 11beta hydroxysteroid dehydrogenase type 2; GR, 
glucorticoid receptor; MR, mineralocorticoid receptor; PBMC, peripheral blood mononuclear cells; SAE, 
small airways epithelium; LAE, large airways epithelium; Omental, Omental adipose tissue; Subcut, sub-
cutaneous adipose tissue; Sk. Muscle, Skeletal muscle.
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more than 50% of tissues. A total of 3 such modules were isolated, 2 of which were proteolytic enzymes 
modules. The first proteolytic module is based on CTSA and CTSD core group. These 2 transcripts were 
found to be coordinated with other proteolytic enzymes in numerous tissues, including the kidney. In 
fact, these 2 transcripts were coordinated with 9 other transcripts in the kidney and omental adipose 
tissue, making them the two largest modules detected. This module never contained receptors with the 
exception of the pancreas where both prorenin-renin receptors, ATP6AP2 and IGF2R, together with GR 
were associated (Supplementary Table S4). The second module of proteolytic enzymes was based on the 
core group of CPA3, CTSG, and CMA1 transcripts, which were often clustered together without any 
other genes (Table 2). This module was typically found in the subcutaneous adipose tissue, pancreas and 
skin. Interestingly, this module lacks CMA1 in the heart, which is replaced by ACE and included AGTR1. 
The third core group-based module contained receptor-coding transcripts: AGTR1, MR and GR (Table 2 
and Supplementary Table S4). This cluster of receptors often contained only GR and MR.

Figure 4. mRNA expression profile of key components of extRAAS across tissues. The relative abundance 
of gene transcripts in each tissue is expressed as the mean expression centile rank (MCR) across data sets 
(Mean ± SEM). (a-b). Renin receptors: ATP6AP2, ATPase, H + transporting, lysosomal accessory protein 
2; IGF2R, insulin-like growth factor 2 receptor. c. ACE2, angiotensin converting enzyme type 2. (d-e). 
Angiotensin peptides receptors: AGTR2, angiotensin II type 2 receptor; MAS1, Ang (1–7) receptor; LNPEP, 
angiotensin IV receptor. PBMC, peripheral blood mononuclear cells; SAE, small airways epithelium; LAE, 
large airways epithelium; Omental, Omental adipose tissue; Subcut, sub-cutaneous adipose tissue; Sk. Muscle, 
Skeletal muscle. Expression profiles for the other investigated tissues are provided in  supplemental data.
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(2) The second type of transcripts group constituted co-expression modules detected only in a sin-
gle tissue. For example, only the heart tissue contained the IGF2R-MME-HSD11B1-AKR1D1 module 
(Table 2). At least one such module was detected in each tissue (Supplementary Table S4).

Figure 5. ExtRAAS-based tissue clustering. The tissue dendrogram was drawn based on the average 
linkage method (cluster 3.0 software) using the logged and normalized mean centile expression rank 
of extRAAS genes. Colors of the heatmap correspond to the relative log (MCR) in each tissue. PBMC, 
peripheral blood mononuclear cells.
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(3) The last type of transcripts group comprised the non-clustered transcripts. Their number could 
vary according to tissues, ranging between 4 in the kidney and up to 22 in the skin. Each of the extRAAS 
transcripts was found in this group in at least one tissue, except omental adipose which had all extRAAS 
genes included in co-expression modules.

extRAAS maps were built for each tissue using expression levels and 
co-expression modules (Supplementary Atlas S1). Degradation pathways leading to angiotensin peptides 
with no known activity, such as angiotensin (5–10) and angiotensin (1–5) pathways, in addition to the 
angiotensin (1–12) pathway, were not included in the maps. These maps clearly displayed different tran-
scriptional organization between tissues, with only few strong similarities. As shown in Fig. 6, although 

Tissues (data 
sets, samples) Module 1 Module 2 Module 3 Module 4 Module 5 Module 6

Kidney (4, 84) 84% 88% 85% 94% 80%

CTSA 99 ATP6AP2 99 CTSG 59 THOP1 48 PREP 74

ANPEP 98 GR 90 AGTR2 39 CYP11B2 34 CPA3 60

ENPEP 97 MR 88 MAS1 38 CYP21A2 32 HSD11B1 54

MME 97 AGTR1 82 AKR1C4 19 CMA1 26 LNPEP 31

ACE2 92 AKR1D1 11 CYP11A1 21

CTSD 92

AGT 90

CYP17A1 85

KLK1 84

REN 75

ACE 56

Heart (4, 140) 77% 75% 80% 100% 81% 81%

CTSA 94 GR 92 CTSG 64 EGFR 54 KLK1 68 IGF2R 93

AGT 94 ENPEP 69 AGTR1 63 REN 33 CMA1 41 MME 64

CTSD 88 CPA3 59 MAS1 32 HSD11B2 35 HSD11B1 59

DPP3 74 ACE 57 CYP11B1 20 AKR1D1 8

THOP1 67 AKR1C4 11

Skin (7, 222) 81% 57% 90% 71% 57% 71%

GPER 54 AGTR1 84 CPA3 78 THOP1 44 GR 96 ATP6AP2 98

ACE 44 MR 75 CTSG 70 REN 24 HSD11B2 73 ACE2 28

CYP11B2 16 CMA1 60

Omental 
adipose (4, 86) 91% 83% 83% 85% 75%

ATP6AP2 96 GR 97 ACE 67 AGT 51 PREP 74

CTSA 95 MME 96 KLK1 57 ACE2 38 LNPEP 72

CTSD 89 AGTR1 93 CYP11B2 46 REN 24

RNPEP 86 IGF2R 93 CYP21A2 44 MAS1 20

HSD11B1 77 ENPEP 88 CYP11A1 37 AKR1D1 9

CPA3 75 GPER 75 HSD11B2 37

DPP3 72 MR 73 CYP17A1 36

CTSG 65 ANPEP 67 CYP11B1 33

THOP1 62 EGFR 67 AGTR2 18

CMA1 51

AKR1C4 49

Table 2.  ExtRAAS tissue modules. This table represents extRAAS co-expression modules (module 1–6) in 
the kidney, heart, skin and omental adipose tissues (data sets, samples). At the top of each module the average 
coordination rate is expressed as a percentage shown at the top of each module (average percentage of genes 
within a module that are always coordinated across the different data sets of a specific tissue). The mRNA 
abundance of each gene is present next to the gene symbol and is expressed in the mean MCR (mean centile 
rank, the percent level of the transcript within the transcriptome). Core-groups transcripts are in bold.
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the kidney and the skin are both aldosterone sensitive tissues linked to water and salt homeostasis, their 
extRAAS maps showed different patterns of expression and coordination. Not only different expression 
patterns were observed, with the absence of MAS1, AGTR2, ACE2, REN and CYP17A1 transcripts in 
the skin compared to the kidney, but also the transcripts present in both tissues had different patterns of 
co-expression. The kidney showed a large CTSA-CTSD-based module associating highly expressed pro-
teolytic enzymes and including the highly expressed AGT transcript (Fig. 6a, genes in red). In contrast, 
none of the genes of the red module in the kidney was found to be coordinated in the skin. On the other 
hand, the smaller proteolytic CTSG-CPA3-CMA1 module was present in the skin, but not in the kidney 
(Fig. 6b, genes in green). Similarly, the AGTR1-MR-GR-based receptor module was present in the kidney 
(Fig. 6a, genes in blue), but not in the skin.

In the same way, both the heart and the adipose tissues, which are known for their active local 
RAAS, showed abundant levels of angiotensin metabolizing enzymes and receptors mRNAs. However, 
there were large differences in clustering patterns between both tissues. In the heart, the CTSG and 
CPA3 core transcripts were coordinated with ACE, rather than CMA1 (Fig.  7a). In addition, the 
CTSA-CTSD proteolytic module was present in the heart (Fig.  7a), including the AGT transcript 

Figure 6. ExtRAAS maps in the kidney (a) and the skin (b). The number of data sets, samples and 
modules are represented between brackets (data sets, samples, modules) below tissue name in the upper 
left corner of the figure. Gene transcripts are represented by the corresponding official symbols. Genes are 
represented based on their coordination (same color = same module) and mean centile expression rank 
(MCR, different font size). Non-clustered genes are represented in black color. Gene transcripts below the 
first tertile (MCR < 33.3) in each tissue were excluded for simplicity. Angiotensin peptides and corticosteroid 
metabolites are represented in gray italics. Images of IGF2R36, ATP6AP237, MR38, GR39, G-protein coupled 
receptors (AGTR1, AGTR2, GPER and MAS1)40 and LNPEP41 were obtained from the Protein Data Bank in 
Europe (PDBe) with respective PDBe IDs: 2YDO, 3LBS, 1P93, 4P8Q, 2AA2. Image of EGFR42 was obtained 
from Protein Data Bank DOI:10.2210/ rcsb_pdb/mom_2010_6. Maps for the other investigated tissues are 
provided in supplemental data. 
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and two other enzymes transcripts DPP3 and THOP1). On the other hand, the CTSA-CTSD and the 
CTSG-CPA3-CMA1 proteolytic modules were combined in the omental adipose tissue (Fig. 7b), forming 
a larger module that included up to 11 gene transcripts. Moreover, the omental adipose tissue had the 
largest receptor-containing module which included the GR-MR-AGTR1 core group, GPER, IGF2R and 
EGFR gene transcripts, in addition to three enzyme-coding transcripts, MME, ENPEP and ANPEP. On 
the contrary, co-expression of receptor-coding gene transcripts was not detected in the heart.

Although similarities in patterns of expression can be detected between tissues, co-expression simi-
larities were mainly limited to the core group-transcripts. For instance, the omental and adipose tissue 
were very similar in their expression patterns; however, they had very different patterns of coordination.

Discussion
In this study, we propose for the first time an extensive atlas of the mRNA organization of extRAAS across 
23 different normal human tissues. These maps were generated using a large amount of publicly available 

Figure 7. ExtRAAS maps in the heart (a) and the omental adipose tissue (b). The number of data 
sets, samples and modules are represented between brackets (data sets, samples, modules) below tissue 
name in the upper left corner of the figure. Gene transcripts are represented by the corresponding official 
symbols. The genes are represented based on their coordination (same color = same module) and mean 
centile expression rank (MCR, different font size). Non-clustered genes are represented in black color. Gene 
transcripts below the first tertile (MCR < 33.3) in each tissue were excluded for simplicity. Angiotensin 
peptides and corticosteroid metabolites are represented in gray italics. Images of IGF2R36, ATP6AP237, MR38, 
GR39, G-protein coupled receptors (AGTR1, GTR2, GPER and MAS1)40 and LNPEP41  were obtained from 
the Protein Data Bank in Europe (PDBe) with respective PDBe IDs: 2YDO, 3LBS, 1P93, 4P8Q, 2AA2. Image 
of EGFR42 was obtained from Protein Data Bank DOI:10.2210/rcsb_pdb/mom_2010_6. Maps for the other 
investigated tissues are provided in the supplemental data.
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transcriptomic data in combination with a statistical meta-analysis, based on hierarchical clustering. 
Using expression levels and coordination of genes, tissue maps were generated for all 23 tissues. These 
maps displayed the tissue-specific features and may represent a reference for the analysis of pathological 
situations. Indeed, we showed that tissue specificity of extRAAS may be achieved through a specific 
pattern of expression and coordination of transcripts. When comparing the different maps, it appears 
that tissue-specific co-expression patterns are achieved through the combination of: (1) tissue-specific 
patterns of mRNA abundance; (2) modules of co-expressed transcripts; and (3) a specific combination 
of expression and coordination patterns.

Because this study was performed only at the mRNA level, it exclusively explored the gene expression 
properties of cells composing each tissue. It indicated the existence, at the mRNA level, of tissue-specific 
modules organized or not around core groups of transcripts. Two such core groups were enzymatic 
groups of peptidases suggesting that their coordinated expression could exert a strong effect in ori-
enting the metabolism of angiotensin I. The other core group was a receptor group involving GR-MR 
with AGTR1 which may orient cell sensitivity. It is important to note that the substrate AGT mRNA is 
abundant in almost all tissues, as previously reported21. However, it is clustered only in the kidney and 
the heart, where it associates within the CTSA-CTSD module. The key quantitative role of AGT gene 
expression in determining blood pressure has been demonstrated both in humans and animals22,23. Our 
maps suggest that this effect may be associated with increased activity of specific components of the 
extRAAS in the heart and kidney tissues while the increased AGT expression in other tissues would fuel 
independent enzymatic pathways.

For each tissue, the meta-analysis included 2 to 17 data sets fulfilling the inclusion criteria. The number 
of data sets and the number of observations greater than 10 within each data set allowed robust estimation 
of gene expression levels and robust identification of co-expression modules. The mapping was found to 
fit perfectly with most known tissue distribution of transcript levels when a threshold was applied at the 
first tertile of the microarray expression distribution (MCR < 33 taken as non-expressed, Supplementary 
Atlas S1)3,24. In addition, we provide here a primary information in tissues where only scarce information 
was available, such as the ovary, thyroid gland, pancreas, skeletal muscle, circulating cells, and airways 
epithelia25,26 (Supplementary Atlas S1). Interestingly, bone marrow cells showed almost the same map 
as total blood cells, leukocytes, or peripheral blood mononuclear cells indicating that the transcriptional 
coordination may be preserved during “cell lineage”. Moreover, although the expression patterns were sim-
ilar in subcutaneous and omental fat, there were important differences between the coordination patterns 
of both these tissues. This suggests that the differences observed between the two adipose tissues in obese 
patients27 may likely be due to local differences in expression regulatory mechanisms.

All tissues appeared to have abundant mRNAs coding for GR and the two potential prorenin-renin 
receptors ATP6AP2 and IGFR2. Receptors mRNAs were all found to be abundant only in colorectal 
mucosa, skeletal muscle and lymphocytes. In all other tissues, at least one angiotensin peptide receptor 
was expressed confirming the very high tissue specificity of the responses through the combined acti-
vation of the different subsets of receptors. Interestingly, although there was often a strong coordination 
between angiotensin signaling receptors and steroid receptors, the metabolic pathways appeared to be 
structured only for the angiotensin proteases, with rare association with one or the other enzymes of the 
steroid pathway. The maps also suggest that the “active” metabolic pathways could lead to a dead-end 
with no receptors for peptides such as LNPEP-IRAP receptor in the kidney, or MAS1 receptor in the 
heart.

Altogether our results suggest that the extRAAS signaling pathways are regulated at the mRNA level 
in different tissues according to the 3 following targets that seem to be independent. First, the sub-
strate AGT had scarce and limited coodination, except in the heart and kidney, suggesting that it is 
involved in other independent regulation(s). Second, the signal generation where the peptidic cascades 
showed 2 almost independent coordinated modules around CTSA-CTSD and CTSG-CMA1-CPA3, pos-
sibly orienting peptide flow. Third, the cell response where there was a strong core group of receptors 
GR-MR-AGTR1 which provide cell sensitivity. Although strong inter-relationships have been previously 
described for receptors28–31, it is the first time that these relationships are detected for extRAAS enzymes. 
A major difference also appeared between peptide and steroid hormones. While the peptidic angiotensin 
cascade displayed high tissue organization, few and dispersed coordination was observed in the steroid 
biosynthetic pathway. Most of the local steroid synthesis regulation seemed to rely not only on CYP11B1 
and CYP11B2 but mostly on both HSD11B1 and HSD11B2. On the other hand, the complete aldosterone 
synthetic pathway was present in adipose tissue, as expected from Biones et al.32, as well as most of the 
features of local corticoid generation and metabolism33. Finally, the non-clustered transcripts, or those 
with dispersed coordination across tissues, were also of interest because they could represent bottle necks 
in the pathways and/or be linked to other cellular functions or pathways.

The identified modules of gene transcripts may hold a great functional importance. Their correlations 
may result from tissue and intercellular properties, but also from intracellular properties. It has been 
hypothesized from transcriptomic analysis that co-expressed genes may share common regulation either 
on the transcriptional side or the RNA degradation one. Indeed, we recently showed, in the field of TGFβ 
regulation in the human arterial wall, that the coordination between transcripts could be reproduced in 
cell culture as the result of common transcription factors activation34. Using a different approach, Zhou 
et al.35 recently showed, in a human proximal tubular cell line, that different ligands of the Wnt/β-catenin 
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pathway could stimulate the expression of several classical RAAS genes simultaneously. Indeed, all these 
transcripts were included in the large specific module identified in the kidney. This raises several ques-
tions, first about the fate of other members of the coordinated groups in the cellular model, and second 
about the role of β-catenin pathway in the coordination observed in situ. Whatever the responses are, 
this strengthens the hypothesis that gene co-expression observed in situ has a cellular origin, and that it 
may result from the actions of transcription factors, which can be identified and tested.

In conclusion, our meta-analysis made possible the emergence of conserved results for each tissue 
and across data sets that are robust by definition. This study allowed extracting three levels of infor-
mation. First, the expression levels revealed the features of the “endocrine RAAS” and permitted to get 
new insights of tissue distribution among the alternative players, such as MAS1, prorenin and renin 
receptors, and LNPEP-IRAP. A second level of information was the identification of core modules of 
transcripts that were robustly identified in several tissues, such as CTSA-CTSD, CTSG-CMA1-CPA3 
and GR-MR-AGTR1. These clusters seemed to dissociate signal production from signal reception path-
ways, and could also orient the peptide cascade. A third level was about tissue-specific coordination 
of extRAAS transcripts, which built up by combining tissue-specific clusters, with modification and/or 
combination of the core modules.

The atlas we have established in this study provides the basis for further more elaborate studies that 
would take into account the variability in each tissue, due to age, gender or ethnicity. In addition, cellular 
and molecular mechanisms within this organization need to be elucidated, as well as how they translate 
into enzymatic activity, peptide production and signaling. Finally, the extensive atlas of the extRAAS 
organization across normal human tissues that we propose here will considerably help understand the 
tissue-specific effects of extRAAS and of its targeting drugs.
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Gene 
Symbol 

Gene Description GeneID 

RAS ACE  angiotensin I converting enzyme (peptidyl-dipeptidase A) 1  1636 

RAS ACE2  angiotensin I converting enzyme (peptidyl-dipeptidase A) 2  59272 

RAS AGT  angiotensinogen (serpin peptidase inhibitor, clade A, member 8)  183 

RAS AGTR1  angiotensin II receptor, type 1  185 

RAS AGTR2  angiotensin II receptor, type 2  186 

RAS ANPEP  alanyl (membrane) aminopeptidase  290 

RAS ATP6AP2  ATPase, H+ transporting, lysosomal accessory protein 2  10159 

RAS CMA1  chymase 1, mast cell  1215 

RAS CPA3  carboxypeptidase A3 (mast cell)  1359 

RAS CTSA  cathepsin A  5476 

RAS CTSD  cathepsin D  1509 

RAS CTSG  cathepsin G  1511 

RAS DPP3  dipeptidyl-peptidase 3  10072 

RAS EGFR epidermal growth factor receptor 1956 

RAS ENPEP  glutamyl aminopeptidase (aminopeptidase A)  2028 

RAS IGF2R  insulin-like growth factor 2 receptor  3482 

RAS KLK1  kallikrein 1  3816 

RAS LNPEP  leucyl/cystinyl aminopeptidase  4012 

RAS MAS1  MAS1 oncogene  4142 

RAS MME  membrane metallo-endopeptidase  4311 

RAS NLN  neurolysin (metallopeptidase M3 family)  57486 

RAS PREP  prolyl endopeptidase  5550 

RAS REN  renin  5972 

RAS RNPEP  arginyl aminopeptidase (aminopeptidase B)  6051 

RAS THOP1  thimet oligopeptidase 1  7064 

COS AKR1C4  aldo-keto reductase family 1, member C4 1109 

COS AKR1D1  aldo-keto reductase family 1, member D1  6718 

COS CYP11A1  cytochrome P450, family 11, subfamily A, polypeptide 1  1583 

COS CYP11B1  cytochrome P450, family 11, subfamily B, polypeptide 1  1584 

COS CYP11B2  cytochrome P450, family 11, subfamily B, polypeptide 2  1585 

COS CYP17A1  cytochrome P450, family 17, subfamily A, polypeptide 1  1586 

COS CYP21A2  cytochrome P450, family 21, subfamily A, polypeptide 2  1589 

COS GPER G protein-coupled estrogen receptor 1 2852 

COS HSD11B1  hydroxysteroid (11-beta) dehydrogenase 1  3290 

COS HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 3291 

COS NR3C1  nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)  2908 

COS NR3C2  nuclear receptor subfamily 3, group C, member 2  4306 

Nehme et al: Atlas of Tissue Renin-Angiotensin-Aldosterone System (RAAS) in Human
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Supplementary Figure S1: ExtRAAS Genes Expression Profiles Across 
Studied Tissues 

Supplementary Figure S1: ExtRAAS genes expression profiles across studied tissues. The 

expression profile of each of the extRAAS genes across all studied tissues represented in a 

bar-graph as mean expression centile rank (MCR) ± SEM. A horizontal cut-off line was drawn 

at the MCR level 33.3. 

Nehme et al: Atlas of Tissue Renin-Angiotensin-Aldosterone System (RAAS) in Human
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Supplementary Atlas S1: ExtRAAS Maps in All Studied Tissues 

Supplementary Atlas S1: ExtRAAS maps in in all studied tissues. Gene transcripts are represented 

by the corresponding official symbols. The genes are represented in the map based on their 

coordination (same color = same cluster) and mean centile expression rank (MCR, 4 level each with 

different font size). Genes below the first tertile (MCR  33) in each tissue were omitted for 

simplicity. Angiotensin peptides and corticosteroid metabolites are represented in gray italics. Below 

each map the expression profile of all genes within the corresponding tissue are represented using a 

bar graph. Tissues are arranged based on the tissue dendrogram of figure 5 in the article (see figure 

below). 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Omental Adipose 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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Enzymatic cleavage Binding 
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IV.1.1 Summary of Scientitific article 1 

In this work we used simple, but robust, statistical analysis of previously published data 

available on the GEO database. The atlas of tissue-RAAS can be a reference of extRAAS for 

scientists that are interested in the system in one or the other tissue. Indeed, we were the first 

to publish such a huge set of data on extRAAS, including both expression and coordination 

patterns for all participants in a wide range of tissues. The consistency between the 

expression centile ranks and the previously known data on RAAS supports the robustness of 

our methodology and its possible use as a reference method in such large scale meta-analysis. 

The expression and coordination patterns allows for a better prediction of favored pathways 

of extRAAS and their interactions in each tissue. The reprocibility of the patterns of 

expression and coordination across datasets of a given tissue, and their tissue-specific 

features provides a  better chance for finding the most specific and efficient RAAS-targeting 

drugs to treat a particular tissue pathophysiology, overcoming inter-individual variabilities. 

The coordination patterns may also provide the basis for developing new therapeutics that 

can modulate the expression of a subset of genes simultaneously, thus providing a more 

efficient way for the modulation of extRAAS activity. Nevertheless, further studies should be 

done on extRAAS in each particular tissue to validate the reproducibility of these results at 

the protein level to better understand how the system contributes to local tissue homeostasis 

and how alterations in the local organization of the system may contribute to tissue 

pathophysiology. 
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IV.2 SCIENTIFIC MANUSCRIPT I 

The implication of the renin-angiotensin-aldosterone system (extRAAS) in atheroma 

development has been well described. However, a complete view of the extRAAS and its 

regulation in atheroma is still missing. Therefore, we use transcriptomic data analysis to map 

the transcriptional organization of the extended extRAAS (extRAAS), which includes 37 

genes coding for classical and novel extRAAS participants. We also propose the potential 

transcriptional regulators of extRAAS genes in atheroma. Five microarray datasets containing 

a total of 590 human samples representing carotid and peripheral atheroma were downloaded 

from the GEO database. Correlation-based hierarchical clustering (R software) of extRAAS 

genes within each dataset allowed the identification of modules of co-expressed genes. 

Reproducible co-expression modules across datasets were then extracted. Transcription 

factors (TFs) having common binding sites (TFBSs) in the promoters of coordinated genes 

were identified using the Genomatix software and analyzed for their correlation with 

extRAAS genes in the microarray datasets. Expression data revealed the expressed extRAAS 

components and their relative abundance displaying the favored pathways in atheroma. Three 

co-expression modules with more than 80% reproducibility across datasets were extracted. 

Two of them (M1 and M2) contained genes coding for angiotensin metabolizing enzymes 

involved in different pathways: M1 included ACE, MME, RNPEP, and DPP3, in addition to 

7 other genes; and M2 included CMA1, CTSG, and CPA3. The third module (M3) contained 

genes coding for receptors known to be implicated in atheroma (AGTR1, MR, GR, LNPEP, 

EGFR and GPER). M1 and M3 were negatively correlated in 3 of the 5 datasets. We 

identified 19 TFs that have enriched TFBSs in the promoters of M1 genes, two TFs for M3, 

but none was found for M2. Among the extracted TFs, IRF5, MAX and ETV5 showed 

significant positive correlations with peptidase-coding genes from M1 (p<0. 01). In addition, 

ETS1 and SMAD1 were positively correlated to receptor coding genes from M3. In 

conclusion, the three co-expression modules display the transcriptional organization of local 

extRAAS in human carotid atheroma. The identification of several TFs potentially associated 

with extRAAS genes may provide a basis for the discovery of atheroma-specific modulators 

of extRAAS activity.  
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IV.2.1 Introduction 

Atherosclerosis remains and continues to be the leading cause of death and disability in 

developed countries22. The importance of the renin-angiotensin-aldosterone system (RAAS) 

as a key player in both atherosclerotic risk factors development and local atherosclerotic 

remodeling has been experimentally and clinically documented208,454,455. In fact, systemic 

RAAS is a key factor in the non-specific amplification of atherosclerotic remodeling and its 

treatment plays a major role in reducing the risk factors of vascular remodeling454. In addition 

to systemic RAAS, local components of RAAS in the vessel wall act at the paracrine level to 

regulate vascular wall homeostasis224,456.  

Many studies have investigated the implication of RAAS in atherosclerosis. Studies have 

shown that angiotensin peptides and aldosterone play major roles in atherosclerotic lesion 

development by exerting local effects in the vessel wall that modulate local processes that 

drive lesion initiation and progression208,454. However, these studies remain scattered and 

provide no clear view of the global organization of system with its increasing complexity. 

Indeed, studies investigating the effects of RAAS in atherosclerosis usually target one 

pathway without testing the simultaneous impact of the other pathways. In fact, different 

RAAS pathways exert different, even opposite, effects and the final action of RAAS in a 

tissue depends on the final balance between the different components of the system, favoring 

certain pathways over the others457. This rule also apply in the vascular wall, where the local 

balance between the different pathways play a key role in maintaining vessel wall 

physiology, and a change in this balance may lead to a pathophysiological state, such as 

atherosclerosis458. Therefore, investigating RAAS at the tissue level should be done in a 

system biology approach that provide a global view of the local organization of the system, 

which will provide a more clear view of the various active pathways and their interaction in 

the tissue, and thus a better prediction of the final effects on the tissue.    
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We have been studying over the last decade the expression and activity of multiple RAAS 

components in the arterial wall and described their alteration in atherosclerosis in relation to 

T2D in human and animals223–226. We have recently defined, based on literature and results 

obtained in the laboratory, an extended extRAAS (extRAAS) which includes 38 participants. 

Using a meta-analysis on transcriptomic data we showed that this system possesses a tissue-

specific organization characterized by specific patterns of expression and coordination209.  

In this study and using the same approach we constructed a map of the extRAAS in atheroma 

plaque, which shows extRAAS mRNA organization both at the expression and coordination 

levels. We further analyzed the promoters of coordinated extRAAS genes to identify 

candidate TFs that may regulate this organization.   
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IV.2.2 Methods 

Patients and tissue samples: The investigation conforms to the principles outlined in the 

declaration of Helsinki446. All procedures were approved by the local ethical committee and 

the patients gave informed consent. Thirty two patients who underwent carotid 

endarterectomy at the university hospital of Lyon (Hôpital Edouard Herriot) were included in 

the study. The carotid endarterectomy samples were collected in the surgery room and 

immediately dissected in two fragments: the atheroma plaque (ATH) and the macroscopically 

intact tissue (MIT). Each fragment was further divided: one part was immediately frozen in 

liquid nitrogen for RNA analysis and the other was used for histological examination. To 

avoid the inherent problems of control tissue collection, we made intra-patient comparison of 

the transcript profiles.  

Total RNA extraction: mRNA was extracted from tissues using Trizol (Invitrogen,USA) 

following the manufacturer’s instructions, then treated with DNAse (Qiagen, FRANCE), and 

purified using the RNeasy MiniElute TM clean up kit (Qiagen, FRANCE) according to the 

manufacturer’s instructions. Quantification and estimation of RNA purity was performed 

using NanoDrop (Nanodrop, USA). Finally, RNA integrity was assessed using Agilent 2100 

Bioanalyzer (Agilent Technologies, USA) in order to measure RNA integrity number (RIN).  

Constructing extRAAS: The genes involved in the RAAS system were taken from the 

renin-angiotensin human pathway (hsa04614) of the KEGG database (http://www.genome. 

jp/kegg/pathway.html). It included 25 genes potentially contributing to the activity of the 

system, including the precursor angiotensinogen (AGT), angiotensin metabolizing enzymes, 

and receptors. We added to this system 12 genes of the steroid hormones biosynthesis 

pathway (hsa00140) obtained from the KEGG database, including those coding for enzymes 

involved in de novo synthesis and degradation of corticoids, in addition to the gluco- and 

mineralo-corticoid receptors GR and MR and the G protein-coupled estrogen receptor 1 
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(GPER). Grouping together these two pathways resulted in the extended RAAS (extRAAS) 

constituting 37 genes (supplementary table 1).  

Microarray experiments and statistical analysis: Samples of high quality were transferred 

to the platform of the Strasbourg Genopole for labeling and hybridization with Affymetrix 

Human GeneChip Gene 1.0 ST Arrays (Affymetrix, Santa Clara, CA, USA) according to the 

manufacturer’s protocol. Each mRNA sample was hybridized to its own microarray resulting 

in 64 arrays from 32 patients). Data were normalized with Affymetrix Expression Console 

software using the robust multiarray average (RMA) method and were log2 transformed. The 

data were uploaded to the Gene Expression Omnibus database (http://www.ncbi. 

nlm.nih.gov.gate2. inist.fr/geo/query/acc.cgi?acc=GSE43292). No expression threshold was 

imposed, but expression of genes emerging from our computations was checked, bearing 

interest only at genes with mean expression higher than the first tertile of its distribution 

(MIT and ATH, log2 of expression > 5. 04). Comparison between MIT and ATH used paired 

tests corrected for multiple comparisons (Significance Analysis of Microarrays software). We 

considered only significant differences with q-value = 0. Among extRAAS genes, CYP21A2 

was targeted by 3 probe sets on the array; the most expressed one was selected.  

Clustering of extRAAS genes: Clustering: We first studied the internal organization of the 

extRAAS by means of a hierarchical clustering of the genes using their log2 expression 

values across the 32 patients. It was based on the Pearson correlation distance and the Ward 

agglomerative method (R software, package cluster). The resulted dendrogram was cut in 

order to identify 5 gene clusters, thus defining the cutting height (0.85 for both MIT and 

ATH). The 2 best clusters were selected for further analysis.  

Downloading microarray datasets: Published microarray datasets containing expression 

data for human and mouse atheroma were downloaded from the GEO database. Age, gender, 
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and ethnicity were not taken into account in selecting the datasets. Expression data of 

atherosclerotic samples in each dataset were then extracted into a separate file for further 

analysis. Only datasets with more than 10 atheroma samples were retained for further 

analysis.  

Extraction of expression levels of extRAAS genes: After filtering, the datasets were 

checked for the expression distribution of their individual samples and those that showed 

large variability between samples were eliminated. Datasets were normalized by their authors 

using different methods including the robust multichip average (RMA), GC-RMA or a global 

score method442; those lacking any transformation were log 2-transformed. Expression levels 

of genes were expressed using the centile rank in order to compare expression data between 

different datasets. The centile rank of a gene was calculated using the R-software by 

normalizing its mean expression level relative to the mean expression data distribution over 

the microarray. The ECR values were presented as (1) mean ± SD to show intra- and inter-

tissue variation in gene expression and (2) mean ± SEM to describe specific gene expression.  

Gene clustering and co-expression modules extraction: The R software was used for 

statistical description and clustering of extRAAS transcripts in each dataset using the 

“Cluster” R library. Gene transcripts were hierarchically clustered in each dataset using 

Pearson correlation distance and Ward’s agglomeration method459. Each of the dendrograms 

obtained was then cut at a given level to identify gene clusters. The cut-off level was chosen 

on the basis of a balance between the level of clustering strength, assessed with the 

agglomerative coefficient and a minimum of 3 gene transcripts per cluster. Reproducible co-

expression modules of clustered genes were then extracted. These were defined as sets of 2 or 

more genes coordinated across datasets. The average coordination rate (ACR) of genes within 

a module was calculated as the average percentage of coordinated genes, which were 

clustered together across the different datasets in a specific tissue. A threshold of >55% was 
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the criterion used to define representative gene modules. The average inter-cluster 

correlations were also calculated the correlation coefficients between individual genes. They 

were further visually checked with scatter plots.  

Promoter analysis of coordinated genes: transcription start clusters (TSC) were identified 

using the SwissRegulon database451. Alternatively, the dbTSS database452 was used to extract 

individual TSS in the region of active transcription for certain genes for which no TSC could 

be extracted. A TSC or TSS is considered active when the expression of downstream exons is 

>1.5 folds greater than the upstream exon. Exon expression levels were obtained from raw 

expression data of the GSE43292 dataset obtained in our lab. After defining active TSCs, 

promoter sequences were extracted using the Genomatix database450 and the SwissRegulon 

human genome database. A Promoter was defined by the sum of promoter sequences 

obtained by Genomatix around a specific TSC obtained from SwissRegulon. If no Genomatix 

promoter sequence could be obtained for a specific active TSC, then the promoter is 

considered as the 100-500 bp downstream and 400-700 bp upstream of the TSC in 

SwissRegulon genome viewer. For TSS obtained from the dbTSS, a promoter region of 600 

bp is extracted, with 500 bp upstream and 100 bp downstream the TSS using the NCBI 

genome viewer. Consecutive promoters for adjacent TSCs were joined in one promoter. 

Promoter sequences of coordinated extRAAS genes were then analyzed simultaneously using 

the commonTF tool from Genomatix using default options in order to identify enriched 

transcription factor binding sites (TFBSs) in the promoters of coordinated genes. All of the 

position-weight matrices (each one associated with one TFBS) having at least one match in 

the studied promoters were obtained with their enrichment p-value in the group of studied 

promoters. One TFBS was taken as significantly enriched if its adjusted p-value (p-

value/total number of position-weight matrices having at least one match in the studied 

promoters) was less than 0.05. Extraction of ECR for transcription factors in the datasets was 
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done as previously mentioned. Gene clustering and co-expression modules expression of 

extRAAS genes with TFs was also done in order to identify gene coordination between TFs 

and extRAAS genes.   
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IV.2.3 Results 

ExtRAAS genes expression levels and clusters from our lab data: Figure 1A shows the 

expression level of 35 extRAAS genes in ATH compared to MIT. There was significant 

increase in the expression of multiple genes coding for angiotensin metabolizing enzymes, 

including CTSA, CTSD, RNPEP, ANPEP, DPP3, CPA3, MME and ACE, in addition to that 

coding for the renin/prorenin receptor IGF2R. On the contrary, AGTR1, LNPEP, and NR3C2 

transcripts showed a significant decrease in their expression levels. Figure 1B shows the 

dendrogram obtained in MIT and ATH samples. Two of the 5 clusters identified were very 

similar in both low grade  and advanced atheroma lesions. The first cluster found in both 

stages of atheroma groups 10 strongly associated transcripts with mean correlations of 0.66 in 

MIT and 0.71 in ATH. It differs only by the replacement of the PREP transcript present in 

MIT by the THOP1 transcript in ATH. With the exception of IGF2R, this group contains 

only transcripts coding for angiotensin metabolizing peptidases whose expression increases in 

the atheromatous plaque compared to MIT. The second group, also isolated from both low 

grade and advanced atheroma, associates transcripts coding for the receptors MR, GR, AT1R 

and AT4R also shows strong correlation between its components (mean r = 0.49 in MIT and 

0.42 in ATH). In ATH, this cluster included ENPEP and AGT, the AGTR1 transcript being 

less strongly correlated with the other receptor transcripts. These genes (except NR3C1) had 

significantly lower expression in ATH compared to MIT. In addition, strong negative 

correlations were detected between the genes of these 2 clusters in both conditions (mean r = 

-0.53 in MIT and -0.52 in ATH).  

Downloaded Microarray datasets: In order to check for the reproducibility of our results in 

other datasets and other atheroma lesion types (coronary, peripheral), the expression and 

coordination of extRAAS genes was also analyzed in previously published datasets available 

on the GEO database. A total of 10 microarray datasets with 1111 samples were downloaded 
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from the GEO database, including our dataset (GSE43292). Table 1 shows the features of the 

downloaded datasets. The total number of samples per sub-dataset ranged between 18 and 

290, whereas that per tissue ranged between 18 and 539. The maximum number of datasets 

was 4, corresponding to human atherosclerotic lesions. The datasets were obtained using 

Affymetrix (GEO accessions: GPL570, GPL571, GPL6244, GPL1261 and GPL8759) and 

Rosetta/Merck (GEO accessions: GPL4372, 10687) platforms. Due to the limited number of 

mice datasets, sub-datasets containing less than 10 samples were retained for analysis.  

Expression of extRAAS transcripts in downloaded human datasets: The workflow for 

analysis of GEO datasets is present in Figure 2. Downloaded datasets were normalized as 

described in materials and methods. Expression levels of gene transcripts were calculated in 

each dataset using the expression centile rank (ECR) (figure 3 and supplementary table 2). 

Figure 3 shows extRAAS co-expression modules and the corresponding transcript ECR 

levels in both normal human vessels and human atheroma.  

In normal human mammary vessels, ECR ranges between 1, for AKR1D1, and 97, for 

ATP6AP2, with a mean= 40 ± 28 (figure 3a). Interestingly, the main genes of the Ang (1-7) 

pathway possess low ECR. Indeed, the ECR of ACE2, AGTR2, and Mas1 are all below the 

first tertile, with ECR equals to 13, 29 and 18, respectively (figure 3a). Similarly, REN 

(ECR= 34) and ACE (ECR= 7) possess a low ECR. However, AGTR1 transcript (67) is more 

than two folds higher than that of AGTR2 (29) and Mas1 (18) (figure 3a). In addition, all 

receptors, except AGTR2 and MAS1, have relatively high expression levels with ECR 

ranging between 50 (EGFR) and 90 (GR) (figure 3a).  

On the other hand, the mean ECR across the different datasets in human atheroma ranges 

between 12 ± 7 for AKR1D1, and 99 ± 2 for CTSD, with an average of 55 ± 23 (figure 3b). 

Interestingly, AGT is highly expressed across all datasets in both normal vessels and 
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atheroma, with an ECR= 85 (figure 3a) in normal vessels and mean ECR (MCR) of 85 ± 6 

(figure 3b) across atheroma datasets. Compared to normal vessels, there is a strong increase 

in the ECR of both ANPEP and HSD11B2 with respective 7-folds and 5-folds increase 

(figure 3). In addition, the ECR of CMA1, LNPEP, MAS1, KLK1 and THOP1 nearly double 

in atheroma compared to normal vessels (figure 3). CTSD also doubles and become the 

highest expressed gene in atheroma. Both CYP11B1 and CYP11B2 increase by 1.6 folds in 

atheroma, although CYP11B1 still have its ECR below the first tertile. In contrast, both 

AGTR1 and MR decrease by 1.3- and 1.4-folds, respectively.  

Clustering of ExtRAAS transcripts in downloaded human datasets: Hierarchical 

clustering of extRAAS genes in each dataset showed that all the 37 extRAAS genes could be 

strongly clustered with a mean agglomerative coefficient above 0.7 (not shown) across 

datasets (by definition between 0 and 1). This indicates that a strong correlation clearly exists 

within extRAAS. Since atheroma contained 6 datasets, local extRAAS modules of co-

expressed genes were identified by calculating the ACR of gene sets across datasets. Gene 

clusters/modules with gene expression levels (ECR) are included present in supplementary 

table 4.  

In normal human vessels, 3 large clusters with agglomeration coefficient equals to 86 were 

identified (Figure 3a). The first cluster contains 10 genes encoding both enzymes (CTSA, 

CTSD, RNPEP and ENPEP) and receptors (AGTR1, MR, GR, GPER, ATP6AP2 and 

IGF2R). Apart from ENPEP which possesses ECR= 2, all genes of this module have an ECR 

greater than 50, with mean ECR equals to 67 ± 16 (ENPEP excluded). The second cluster 

contains 11 genes (Figure 3a), including AGT, REN and the two receptors EGFR and 

LNPEP, in addition to other genes coding for enzymes involved in angiotensin metabolism 

and corticosteroids biosynthesis. The expression of genes within this cluster ranges 

considerably between 23 (CYP17A1) and 85 (AGT). The third cluster contains 15 genes with 
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low expression levels, the highest being CPA3 with ECR=49 (Figure 3a). Indeed the mean 

ECR for this module is equal to 19 ± 14. This module includes the two Ang (1-7) generating 

enzymes (ACE2 and MME) and receptors (AGTR2 and Mas1). Interestingly, it also includes 

ACE and CMA1. In addition, it includes the two key corticosteroid enzymes CYP11B1 and 

CYP11B2.  

Interestingly, clustering of extRAAS genes in the downloaded atheroma datasets was very 

similar to that obtained in our lab. By joining the different clustering patterns from the 

different datasets, including our dataset, 5 modules could be extracted from the 6 atheroma 

datasets with ACR greater than 80, except for one module, which includes only two genes 

and possess an ACR of 67 (Figure 3b). The first atheroma module includes genes with high 

centile rank ranging between 47 ± 11 (MME) and 99 ± 2 (CTSD) with an average ECR equal 

to 76 ± 18 (Figure 3b). It contains 9 genes coding for angiotensin-metabolizing enzymes, 

including ACE, MME, CTSA and CTSD, in addition to the two R/PRs ATP6AP2 and 

IGF2R. The second module contains the receptor-coding genes, AGTR1, GR, MR, LNPEP, 

EGFR and GPER, in addition to AGT (Figure 3b). Interestingly, all the transcripts in this 

module possess a high expression level in atheroma, with an intra-cluster mean ECR equals 

to 59 ± 11. The third module includes only the three genes: CPA3, CTSG and CMA1 (Figure 

3b). Interestingly, this module is 100% reproducible across the 6 datasets. The expression 

levels of the three genes are 65 ± 13, 49 ± 10 and 31 ± 7, for CPA3, CTSG and CMA1, 

respectively. The fourth module includes 11 genes with medial to low expressed genes, with 

ECR ranging between 22 (ACE2) and 61 (KLK1), and MCR= 38 ± 11 (Figure 3b). The fifth 

module only includes ENPEP and HSD11B1 with ECR of 29 ± 6 and 70 ± 9, respectively.  

Interestingly, Inter-cluster correlations revealed a general negative correlation between the 

first and the second modules of atheroma in 5 of the 6 datasets, corresponding to 810 of 876 

samples (data not shown). This is opposite to what is found in normal vessels where the 
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receptors are clustered and positively correlated to CTSA and CTSD and their companion 

enzymes (Figure 3a). In addition, ACE changes from being lowly expressed and coordinated 

with ACE2 and Ang (1-7) receptors in normal vessels to being highly expressed and 

coordinated with the first module in atheroma (Figure 3b).  

ExtRAAS maps: extRAAS maps were built for each tissue using expression levels and co-

expression modules (Supplementary Figures A-F). Degradation pathways leading to 

angiotensin peptides with no known activity, such as the angiotensin (5-10) and angiotensin 

(1-5) pathways, in addition to the angiotensin (1-12) pathway, were not included in the maps. 

As shown in figure 4, the substrate of the system, AGT, is highly expressed in both normal 

and atherosclerotic human vessels, and it can be metabolized into the three major bioactive 

peptides of the system, Ang-II, Ang-IV and Ang (1-7). However, it looks like the expression 

of angiotensin metabolizing enzymes in atheroma (figure 4b) is higher and more coordinated 

than in normal vessels (figure 4a). In addition, the corticosteroid system seems to be more 

expressed in atheroma compared to normal human vessels. Interestingly, there exist strong 

correlations between the receptors in both normal and atherosclerotic vessels. Indeed, 7 and 6 

receptor transcripts are coordinated in normal human vessels (figure 4a) and in atheroma ( 

figure 4b), respectively. On the same hand, cortisol production is favored over its degradation 

in both tissues, which is manifested by the high expression of HSD11B1 and the absence of 

HSD11B2 (figure 4a and 4b). An interesting feature that can be seen in both tissues is the 

absence of transcripts coding for ACE2, AGTR2 and MAS1, which are known to be the 

players in the Ang (1-7) pathway. In addition, the Ang-IV pathway much more active in 

atheroma compared to normal human vessels, manifested by the presence of both the receptor 

LNPEP and the enzyme ANPEP in high levels in atheroma (figure 4b), and their absence in 

normal vessels (figure 4a). Moreover, ACE, which is known to be the major Ang-II 
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producing enzyme is expressed at high levels and coordinated with other peptidases in 

atheroma (figure 4b), but surprisingly missing in normal vessels (figure 4a).  

Mouse datasets: 3 datasets were retained from the downloaded mouse datasets. The larger 

dataset was GSE38120 containing expression data from 188 normal mouse aortas. The 

second dataset (GSE10000) contain 18 samples. This dataset was separated into two tissue-

datasets from 9 wt normal aortas and 9 apoE-deficient “normal” aortas; although the two 

tissue-datasets obtained from GSE10000 possess a number of samples that was lower than 

our threshold (10 samples), these were kept to compare between normal and apoE-deficient 

aortas from the same experiment. The last dataset (GSE38574) contained 29 samples from 

atherosclerotic aortas. In the latter dataset there was high variability in the expression 

between samples, which can be separated into 3 sets: The first set included 2 samples with 

extremely high expression levels among all genes was eliminated. Another set included 9 

genes with high, but not extreme, expression levels was also eliminated since the number of 

samples was lower than in the third dataset, which contained 18 samples with medial 

expression levels and was retained for further analysis. All mouse datasets were missing 

probe sets for Akr1C4, Cyp21A2, Gper, Ren, Slc2A4Rg and Znf76.  

ExtRAAS expression and coordination in mouse: For normal mouse aortas, GSE38120 

was missing 5 genes, Agtr1a, Agtr1b, Cyp11b1, Lnpep, Nr3c2, and thus it was analyzed for 

the rest of the extRAAS genes (Supplementary table 4 and supplementary figure D). Centile 

ranks of extRAAS and TF transcripts and their coordination are present in supplementary 

tables 3 and 6, respectively. 

An interesting feature that can be seen when comparing between human and mouse atheroma 

(Figures 3b and 3c, see also Supplementary table 4) is the presence of a large modules that is 

very similar in atheroma from both species and containing mainly angiotensin metabolizing 
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enzymes. These modules comprising 11 transcripts in both species included CTSA, CTSD, 

ACE, PREP, RNPEP, ANPEP and DPP3. In addition to the angiotensin metabolizing 

enzymes, this module includes the renin/prorenin receptors ATP6AP2 and IGF2R, in addition 

to MME and NLN in human; whereas in mouse it includes and Cma1, Cpa3, Thop1 and the 

receptor Egfr. Another important feature is the presence of a module that constitutes mainly 

coordinated receptors in both human and mouse atheroma (Figures 3b and 3c, see also 

supplementary table 4). Indeed, the module contains the three receptors MR, GR and LNPEP 

in both species atheroma. In human these are also coordinated with AGTR1, EGFR and 

GPER and AGT. whereas in mouse atheroma, these are coordinated with the two R/PR 

receptors, Atp6ap2 and Igf2r, and the two enzymes Mme and Enpep. Interestingly, similar 

module is also present in apoE-deficient (Supplementary table 4) mouse aortas, but neither in 

wt mouse aortas or normal human vessels.  

Promoter analysis: Promoters were extracted only for genes that belong to coordination 

modules obtained from human atheroma. The features of the extracted promoters are shown 

in supplementary table 5. A total of 38 promoters for 32 genes were extracted. The number of 

extracted TSCs per gene ranged between 1 and 19 (IGF2R), with a mean of 3 ± 4. For certain 

genes like KLK1, CYP11B2 and CPA3, no TSC could be extracted from SwissRegulon 

database, yet at least one TSS could be extracted from dbTSS database. On the same hand, 

two active promoters could be extracted for certain genes, such as CPA3, CYP11A1, EGFR, 

IGF2R, KLK1, LNPEP and PREP. Promoters’ length ranged between 587 bp with one TSC 

for EGFR and IGF2R, and 2609 with 7 TSC for CTSA. The mean promoter length was 1162 

± 454 bp. The promoter GC content ranged between 29% with 635 bp and 1 TSC for LNPEP, 

and 75% with 1014 bp and 18 TSC for IGF2R, with a mean GC content of 55 ± 12%. After 

extracting promoter sequences, Common TFBSs that are enriched in the promoter of 

coordinated genes, were extracted using the CommonTF tool in Genomatix suite. A total of 
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21 TFBS were extracted; 19 were found to be enriched in the promoters of module 1 genes 

and 2 for module 2 genes. No TFBS could be extracted for modules 3 and 4. Interestingly, for 

each of modules 1 & 2, the extracted TFBS were found to be enriched in more than 80% of 

the promoters of corresponding genes. Indeed, for module one, the TFBSs were found to be 

enriched in the promoter of at least 9 genes of the 11 genes of this module (82%). On the 

same hand, both the TFBSs for IRF5 and IRF6 were found to be enriched in the promoters of 

5 of the 6 genes of module 2 (83%). The extracted TFBSs with their corresponding TFs are 

shown in Table 2. Of the extracted TFs, EGR1 and IRF5 were previously described in 

atherosclerosis453,460,461.  

TFs expression levels: similarly to extRAAS genes, the ECR was also used to express the 

levels of TF transcripts (supplementary tables 2 and 3). Of the 22 TFs obtained using the 

commonTF Genomatix tool, CDF1 and ZBTB14 were excluded from further analysis since 

they were not represented by any probe set in most of the microarray platforms. Interestingly, 

all TFs have ECR higher than the first tertile in human atheroma except for SPIB (ECR= 32) 

(table 3 and supplementary table 2). However, in human normal vessels, genes with 

transcripts less than the first tertile include SMAD1, MAX, ETS1 and FOXN1. Indeed, the 

genes that seem to be positively regulated with a fold change greater than 1.5x in human 

atheroma compared to normal human vessels include SMAD1 (2 folds), MAX (4.4 folds), 

ETS1 (5 folds) and FOXN1 (3.5 folds), in addition to ETV5 (1.8 folds) and IRF5 (1.8 folds). 

On the other hand, genes with 1.5-fold decrease include SPIB (1.6 folds), IRF6 (1.5 folds) 

and SLC2A4RG (1.6 folds). Similarly in mouse, all TFs have ECR greater than the first 

tertile in mouse atheroma and both wt and apoE-deficient normal aortas except for Foxn1 and 

Pax9 (supplementary table 3). There was no important change in the expression of TFs 

between normal aorta from wt and apo-E-deficient mice. When comparing the expression 

level of TFs between normal (mean of GSE10000 and GSE38120) and atherosclerotic aortas 



Results 
 

177 
 

of mouse, only Etv5 showed a 2 fold greater expression in atherosclerotic aorta, with very 

low, if any, change in expression of the rest of TFs.  

ExtRAAS and TF transcripts clustering: Clustering of extRAAS with TFs gave very 

similar results to those obtained when clustering extRAAS alone in both human and mouse. 

In human, the first module included the same set of enzymes and receptors as module 1, with 

HSD11B1 and the 4 TFs ELF1, ETV5, IRF5 and MAX (table 3). All the transcripts in this 

module possess expression levels higher than 50, except PREP, which had an ECR of 34 ± 3. 

In mouse similar module was obtained; however, it also includes Cpa3 and Cma1, with the 

three TFs Elk3, Egr1 and Egr3, which constitute a separate module (module 3) in human 

atheroma (Supplementary table 6). On the other hand, it excluded Elf1, Hsd11b1, Nln, 

Atp6ap2, Igf2r and Mme. The latter three were coordinated with the second module of 

receptors in mouse atheroma, which included the same set of receptors obtained when 

clustering extRAAS genes alone. In human atheroma, the same module of receptors (module 

2) was obtained; however, without GPER; but with AGT and ENPEP (table 3). It also 

includes 6 TFs, which are CTCF, ELK4, ETS1, IRF6, PAX9 and SMAD1 (table 3). The ECR 

of these genes ranged between 25 ± 2 for ENPEP and 87 ± 2 for AGT, with a mean ECR= 57 

± 20. Similar module was obtained in mouse atheroma but without Pax9, Agt, and Egfr. The 

latter two being coordinated with the first module of peptidases. The fourth module in human 

atheroma contain 19 genes (table 3), which is similar to another one in mouse 

(Supplementary table 6); however, without Elk1, Thop1, Cyp11b2, Ren, Gper, Slc2a4rg, 

Cyp21a2 and Akr1c4. The latter 5 are missing in the GSE38574 dataset. Interestingly, the 

results obtained in both human and mouse atherosclerotic aortas were highly different to their 

normal counterparts, both at coordination within TFs or between TFs and extRAAS 

(Supplementary table 6). For example, the TFs ETV5, MAX, IRF5 and ELF1, which are 

coordinated with the module of peptidases in both human and mouse atheroma are distributed 
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over the different clusters in normal vessels, with only ELF1 coordinated with the peptidases 

(Supplementary table 6). In normal mouse aortas, only the Irf5 and Ets1 are coordinated with 

the large module of angiotensin metabolizing enzymes (Supplementary table 6).  

Since modules 1, 2 and 3 of extRAAS obtained in human atheroma bear some similarities to 

those previously obtained in normal human kidney and omental adipose tissue209, we 

obtained their coordination patterns of extRAAS and TF transcripts (Supplementary table 6) 

and compared it to atheroma. In both human kidney and adipose tissues, all TFs possess an 

ECR greater than the first tertile except Pax1 and SpIb (Supplementary table 6). The mean TF 

ECR of 65 ± 22 and 67 ± 22 was obtained for the kidney and adipose, respectively. 

Compared with the kidney, little, if any, similarities could be obtained in the coordination 

patterns (Supplementary table 6). On the other hand in omental adipose, 4 of the 6 TFs that 

were coordinated with the module 2 in human atheroma were also coordinated with the 

highly similar set of transcripts in normal omental adipose (Supplementary table 6). Indeed, 

both normal adipose and human atheroma include a module constituting AGTR1, LNPEP, 

NR3C1, NR3C2, ENPEP, SMAD1, CTCF, ETS1 and ELK4. In atheroma it also includes 

AGT, EGFR, PAX9 and IRF6, while in adipose it includes ELK1, IGF2R, MAX and ELF1; 

the latter three being coordinated with module 1 in human atheroma.   
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IV.2.4 Discussion 

Although many studies were done to elucidate extRAAS’s participation in local atheroma 

development, these remain disperse and give no clear global view of the different arms of the 

system in the disease. In this study we describe for the first time the local expression of 37 

extRAAS genes in atheroma at the mRNA level. The results are presented in map that shows 

the favorable pathways of extRAAS in atheroma (figure 4, see also supplementary figures A-

F). We also reveal potential transcription factors that play a role in the transcriptional 

regulation of extRAAS genes in atheroma.  

Despite the fact that this study only showed the expression of extRAAS genes in atheroma at 

the mRNA level, the latter may provide stronger indication of the local expression of 

extRAAS components. Indeed, in contrast to proteins that could be imported from the 

circulation, mRNAs are mainly intracellular molecules that are almost totally generated by 

local cellular transcription.  

The map of extRAAS shows that the substrate of the system, AGT, is expressed at high levels 

and could be metabolized to produce all the known bioactive angiotensin peptides in 

atheroma. The low levels of Agt in mouse compared to human atheroma suggest that 

angiotensin peptides production is driven by locally expressed AGT in human atheroma, 

whereas in mouse it could be driven by AGT imported from the circulation. The results in 

mouse were also in contrast to other studies detecting AGT mRNA in the media and 

adventitia of several mouse arterial beds218,219,221. Thus further investigations should be done 

to clarify these contradictions. Although renin transcript is very low in atheroma, its Ang-I 

generating activity could be compensated by the very high levels of CTSD, and the 

expression of other Ang-I generating enzyme such as cathepsin G and kallikrein-1, in 

addition to Ang-(1-12), which should be further investigated. It may also be imported from 
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the circulation by its highly expressed receptors, ATP6AP2 and IGF2R, which are both 

known to bind and activate prorenin and enhance renin activity201,462. 

The coordination of angiotensin metabolizing enzymes involved in generation of all 

angiotensin peptides indicate that angiotensin peptide generation is tightly regulated in 

atheroma thus leading to a balance in the antagonistic pathways. Thus, it seems that the local 

effects of the different bioactive pathways of the system are most probably differentiated at 

the response level by the differentially expressed receptors. Indeed, this can be clearly seen 

by the high coordination and medial expression of the pro-atherogenic receptor transcripts, 

AGTR1, MR, GPER and EGFR, and the very low levels of AGTR2 and Mas transcripts. The 

positive correlation between the pro-atherogenic receptors and AGT indicate that the system 

maintain a pro-atherogenic state by the substrate, which fuel the production of the different 

peptides that exert their effects on these receptors. Despite the very high levels of the cortisol 

receptor GR in both human and mouse atheroma, which is known for its athero-protective 

effects, the high 11 -HSD1/11 -HSD2 in both species’ atheroma may support the pro-

atherogenic effects of cortisol, which is known to bind MR at high levels and exert pro-

atherogenic effects414. Although, cortisol binding to MR may reduce the binding capacity of 

aldosterone, the latter may still be able to bind to GPER, which is expressed at sufficient 

levels (MCR in human atheroma= 62 ± 2).  

Extensive studies have been done on the effects of Ang-II, Ang-(1-7) and aldosterone in 

atheroma. However, our results suggest that the Ang-IV pathway could also play a major role 

in atheroma as suggested by the high expression of its enzymes and receptors. Thus further 

studies on the effects of this pathway on atherosclerosis and its differential expression 

between normal and atherosclerotic wall should be done.  

Several studies investigated the common transcriptional regulation of multiple RAAS 

genes463,464. However, these studies focused on classical RAAS participants, mainly AGT, 
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REN, ACE and AGTR1. In this study we propose multiple TFs that could be candidates for 

the regulation of multiple extRAAS genes. In addition, the comparison of the extRAAS and 

TF modules between different tissues (atheroma, kidney and adipose) indicate that the global 

tissue-specific organization of extRAAS could be in part related to tissue-specific 

transcriptional mechanisms. One of the relevant receptors obtained by our analysis is IRF5, 

which is positively correlated to angiotensin metabolizing enzymes in atheroma (table 3) and 

negatively correlated to the coordinated receptors (Table 4, module 2 in human atheroma), 

which strongly support the role of this TF in the extRAAS organization obtained in human 

atheroma. Although IRF5 is known to be a pro-inflammatory TF and upregulated by 

inflammation465, a recent study showed opposite effects of IRF5 deficiency which resulted in 

atheroma regression 453. This could be indirectly related to its negative correlation to the 

receptors. However, this needs to be validated both in vitro and in vivo.  

The correlation of TFs to extRAAS genes with no promoter-enriched TFBSs indicates that 

there could be a DNA-independent link between TFs and extRAAS genes. For example, no 

common TF could be extracted for module 3 in human atheroma, which includes the 3 genes 

CPA3 and CMA1 and CTSG. For the latter, only 1 TSC could be extracted, whereas no TSC 

could be extracted for CPA3 and CMA1. Thus it seems that the expression of these genes is 

most probably regulated by post-transcriptional mechanisms such as miRNA binding. The 

correlation of these genes with certain TFs that was reproducible in both human and mouse 

atheroma may indicate that these post-transcriptional mechanisms are under the control of 

these TFs. This could be similar to correlations obtained between the TFs associated with 

extRAAS receptors. Indeed, despite that only TFBS matrices for IRF5 and IRF6 were found 

to be enriched in the promoters of the receptor module genes, 6 TFs were coordinated with 

these receptors, including IRF6. However, one should keep in mind that these TFs may bind 
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to enhancer sequences that are several Kb away from the gene TSS466 and thus may not be 

present in the promoter region we have analyzed.  

ExtRAAS organization, and its correlation with specific TFs was very similar in human and 

mouse atheroma. Indeed, only minor changes could be observed. For example, module 3 in 

human atheroma that constitutes the 3 TFs EGR1, EGR3 and ELK3 and the 3 extRAAS 

CPA3, CMA1 and CTSG was totally joined into module 1 in mouse atheroma, indicating a 

stringent correlation between these genes that it could be atheroma related. Indeed, although 

we have previously CPA3, CMA1 and CTSG are highly coordinated in omental adipose209, 

this study showed that they are coordinated with different TFs than those in atheroma 

(supplementary table 2). Therefore, it seems that organization of extRAAS obtained in 

atheroma and despite certain similarities with the organizations obtained in other tissues, it 

might be regulated by specific mechanisms than that in other tissues.  

In summary, our results indicate that the organization of extRAAS in atheroma is beyond the 

arterial bed of the atherosclerotic lesion, but also beyond inter-individual variability. 

However, cellular distribution of extRAAS needs to be elucidated, as well as how they 

translate into enzymatic activity, peptide production and signaling. The high similarity in the 

organization of extRAAS between human and mouse atheroma suggests that mouse could be 

used as a model for studying extRAAS in atheroma. In addition, we have shown that the 

correlation of genes and TFs at the transcriptional level may be used as a way to predict 

potential TFs that regulate the expression of proteins involved in a certain pathway. Although 

these TFs are not validated in vivo or in vitro, we recently showed that the coordination 

between transcripts could be reproduced in cell culture as the result of common transcription 

factors activation467. Thus, in vitro and in vivo studies on these TFs should be done to 

investigate their pharmacological relevance. The specificity of the correlations between 

extRAAS organization and the extracted TFs may provide the basis for the development of 
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new pharmaceuticals that can target extRAAS in atheroma without affecting its organization 

in other tissue.  
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IV.2.5 Tables and Figures Legends 

Table 1: Downloaded datasets features. 

Table 2: The transcription factor binding sites (TFBS) matrices obtained by Genomatix. 

TF, transcription factor. In the first column are the modules from which the TFBS was 

extracted. Matrix families are written as annotated by Genomatix. The corresponsing 

transcription factor and gene ID were extracted from the NCBI database. TFBS having at 

least one match in the studied promoters were obtained with their enrichment p-value in the 

group of studied promoters. 

Table 3: ExtRAAS co-expression modules in human atheroma. The corresponding 

number of data sets, samples and modules is present in brackets under tissue name. At the top 

of each module the average coordination rates are expressed in percentage. The mRNA 

abundance of each gene is present next to the gene symbol and is expressed in centile rank. 

black = enzymes; blue = receptors; and red = transcription factors. 

Figure 1: Expression and coordination of 35 extRAAS genes in macroscopically intact 

tissue (MIT) and atheroma plaque (ATH) of 32 patients. (A) log2 mRNA levels of 

extRAAS genes was calculated as mean ± SD. Genes having mean expression level higher 

than the median value over the microarray are present in the upper graph, whereas genes 

having mean expression level lower than the median value over the microarray are present in 

the lower graph. (B) Dendrograms of 35 extRAAS transcripts. Hierarchical clustering used 

the “Cluster” package of R. The agglomerative coefficients were 0.71 in MIT and 0.75 in 

ATH. 

Figure 2: Experimental work flow for the analysis of extRAAS genes expression in the 

downloaded datasets. Microarrays were downloaded from the GEO database then filtered 

based on certain inclusion and exclusion criteria. Expression and coordination patterns of 

extRAAS genes were then extracted from each dataset. Results obtained from datasets of the 

same tissue were then joined and reproducible patterns of expression and coordination were 

identified. for each tissue, the identified reproducible patterns were then used to construct a 

map of extRAAS organization. Promoter sequences of coordinated extRAAS genes were 

extrated then analyzed for enriched common transcription factor binding sites (TFBSs). The 

corresponding TFs were then analyzed for their expression and coordination with extRAAS 

genes. 
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Figure 3: The level of expression of extRAAS genes and their coordination in normal 

human vessels (A), human atheroma (B) and mouse atheroma (C). Colores indicate 

coordinated genes. ECR, expression centile rank. 

Figure 4: ExtRAAS maps in human normal human vessels (A) and atheroma (B). Below 

tissue name the number of data sets, samples and modules are represented between brackets 

(data sets, samples, modules). Gene transcripts are represented by the corresponding official 

symbols. The genes are represented based on their coordination (same color = same module) 

and mean centile expression rank (MCR, different font size). Non-clustered genes are 

represented in black color. Gene transcripts below the first tertile (MCR < 33.3) in each tissue 

were excluded for simplicity. Angiotensin peptides and corticosteroid metabolites are 

represented in gray italics.  
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IV.2.6 Tables 

Species Tissue Datasets 
accession 

Platform 
accession 

Samples/ssub-
dataset 

Datasets/Tissue Samples/Tissue 

Human Normal 
mammary 
artery 

GSE13760 GPL571 37 1 37 

 Carotid 
atheroma 

GSE21545 GPL570 126 4 300 

 GSE28829 GPL570 29  
 

 GSE43292 GPL6244 32  
 

 GSE24495 GPL10687 113  
 

 Peripheral 
atheroma 

GSE24702 GPL10687 290 2 539 

 GSE37824 GPL4372 249   

Mouse Normal aorta GSE10000 GPL1261 9 2 206 

 GSE10000 GPL1261 9   

 GSE38120 GPL8759 188   

 Atherosclerotic 
aorta 

GSE38574 GPL1261 29 1 18 

Table 1: Downloaded datasets features. 
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Module 
# enriched 

promoters 

Matrix 

family 
Matrix TF Gene ID p-value 

1 11 V$CTCF V$CTCF.01 CTCF 10664 2.8018E-05 

11 V$EGRF V$EGR1.01 EGR1 1958 2.819E-06 

11 V$ETSF V$ETV5.01 ETV5 2119 4.1533E-05 

11 V$ETSF V$CETS1P54.01 ETS1 2113 6.2052E-05 

11 V$ETSF V$ELK4.01 ELK4 2005 7.7327E-05 

11 V$SMAD V$GC_SBE.01 SMAD1 4086 4.579E-05 

11 V$WHNF V$WHN.01 FOXN1 8456 2.039E-05 

10 V$CDEF V$CDE.01 CDF1 832368 3.2529E-05 

10 V$CTCF V$CTCF.02 CTCF 10664 9.4871E-05 

10 V$EBOX V$MAX.03 MAX 4149 4.3658E-05 

10 V$EGRF V$EGR3.01 EGR3 1960 7.283E-05 

10 V$ETSF V$SPIB.01 SPIB 6689 1.9407E-05 

10 V$ETSF V$ELK3.01 ELK3 2004 4.922E-05 

10 V$ETSF V$ELF1.01 ELF1 1997 5.1331E-05 

10 V$PAX9 V$PAX9.01 PAX9 5083 1.3268E-05 

10 V$STAF V$ZNF76_143.01 ZNF76 7629 2.5613E-05 

10 V$ZF5F V$ZF5.03 ZBTB14 7541 2.1672E-05 

9 V$ETSF V$ELK1.02 ELK1 2002 3.2004E-05 

9 V$HDBP V$HDBP1_2.01 SLC2A4RG 56731 5.3282E-05 

2 5 V$IRFF V$IRF6.01 IRF6 3664 1.5376E-05 

5 V$IRFF V$IRF5.01 IRF5 3663 3.0845E-05 

Table 2: The transcription factor binding sites (TFBS) matrices obtained by Genomatix. 
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Tissues 
(datasets, samples) 

Module 1 Module 2 Module 3 Module 4 Module 5 

Human atheroma 91% 86% 89% 90%   

(7, 876, 4) CTSD 98 AGT 88 EGR1 82 ELK1 74     

 
CTSA 97 CTCF 83 ELK3 75 GPER 62 

  

 
ATP6AP2 93 ETS1 83 CPA3 64 KLK1 56 

  

 
ETV5 90 NR3C1 75 EGR3 64 THOP1 54 

  
  IGF2R 89 ELK4 69 CTSG 49 SLC2A4RG 53     

  MAX 89 LNPEP 69 CMA1 30 CYP11B2 46     

  RNPEP 89 EGFR 67 
  

CYP21A2 46     

  ANPEP 86 SMAD1 66 
  

CYP17A1 39     

  DPP3 81 IRF6 50   CYP11A1 37     

  ELF1 80 AGTR1 49     AGTR2 36     

  PREP 78 NR3C2 45     FOXN1 35     

  IRF5 75 PAX9 35     SPIB 32     

  HSD11B1 66 ENPEP 29     HSD11B2 30     

  MME 64       REN 27     

  NLN 59 
  

    CYP11B1 23     

  ACE 56 
  

    ACE2 22     

  
  

        AKR1C4 21     

  
  

        MAS1 20     

  
  

        AKR1D1 11     

Table 3: ExtRAAS co-expression modules in human atheroma.  
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IV.2.7 Figures 

 

Figure 1: Expression and coordination of 35 extRAAS genes in macroscopically 

intact tissue (MIT) and atheroma plaque (ATH) of 32 patients. 
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Figure 2: Experimental work flow for the analysis of extRAAS 

genes expression in the downloaded datasets. 
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Figure 3: The level of expression of extRAAS genes and their coordination in 

normal human vessels (A), human atheroma (B) and mouse atheroma (C). 
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Figure 4: ExtRAAS maps in human normal human vessels (A) and atheroma 

(B). 
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Supplementary Table S1: Extended renin-angiotensin-aldosterone 

system (ExtRAAS) gene. 

Supplementary Table S1: Extended renin-angiotensin-aldosterone system (ExtRAAS) gene. 

ExtRAAS constitute 37 genes; 25 encode for the renin-angiotensin system (RAS) components 

corresponding to angiotensinogen (AGT) 17 enzymes and 7 receptors; and 12 genes encode for 

corticosteroid system (COS) proteins corresponding to 9 enzymes and 3 receptors.  Classical 

RAAS genes are annotated by an asterisk. RAS, renin-angiotensin system; COS, corticosteroid 

system; GeneID, gene refseq ID. 
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System Gene Symbol Gene Description GeneID
RAS ACE* angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 1636
RAS ACE2 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 59272
RAS AGT* angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 183
RAS AGTR1* angiotensin II receptor, type 1 185
RAS AGTR2 angiotensin II receptor, type 2 186
RAS ANPEP alanyl (membrane) aminopeptidase 290
RAS ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2 10159
RAS CMA1 chymase 1, mast cell 1215
RAS CPA3 carboxypeptidase A3 (mast cell) 1359
RAS CTSA cathepsin A 5476
RAS CTSD cathepsin D 1509
RAS CTSG cathepsin G 1511
RAS DPP3 dipeptidyl-peptidase 3 10072
RAS EGFR epidermal growth factor receptor 1956
RAS ENPEP glutamyl aminopeptidase (aminopeptidase A) 2028
RAS IGF2R insulin-like growth factor 2 receptor 3482
RAS KLK1 kallikrein 1 3816
RAS LNPEP leucyl/cystinyl aminopeptidase 4012
RAS MAS1 MAS1 oncogene 4142
RAS MME membrane metallo-endopeptidase 4311
RAS NLN neurolysin (metallopeptidase M3 family) 57486
RAS PREP prolyl endopeptidase 5550
RAS REN* renin 5972
RAS RNPEP arginyl aminopeptidase (aminopeptidase B) 6051
RAS THOP1 thimet oligopeptidase 1 7064
COS AKR1C4 aldo-keto reductase family 1, member C4 1109
COS AKR1D1 aldo-keto reductase family 1, member D1 6718
COS CYP11A1 cytochrome P450, family 11, subfamily A, polypeptide 1 1583
COS CYP11B1 cytochrome P450, family 11, subfamily B, polypeptide 1 1584
COS CYP11B2* cytochrome P450, family 11, subfamily B, polypeptide 2 1585
COS CYP17A1 cytochrome P450, family 17, subfamily A, polypeptide 1 1586
COS CYP21A2 cytochrome P450, family 21, subfamily A, polypeptide 2 1589
COS GPER G protein-coupled estrogen receptor 1 2852
COS HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 3290
COS HSD11B2* hydroxysteroid (11-beta) dehydrogenase 2 3291
COS NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 2908
COS NR3C2* nuclear receptor subfamily 3, group C, member 2 4306
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Supplementary Table S2: Expression centile profiles of extRAAS genes 

in human 

Supplementary Table S2: Expression centile profiles of extRAAS genes in human. MIT, 

macroscopically intact tissue. 
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Group Gene Normal MIT Atheroma
RAS ACE 7 46 56 ± 2
Enzyme ACE2 13 22 22 ± 3
Substrate AGT 85 67 88 ± 2
Receptor AGTR1 67 50 49 ± 5
Receptor AGTR2 29 10 36 ± 8
COS AKR1C4 6 13 21 ± 2
COS AKR1D1 1 15 11 ± 3
RAS ANPEP 12 69 86 ± 1
Receptor ATP6AP2 97 98 93 ± 1
RAS CMA1 16 19 30 ± 2
RAS CPA3 49 58 64 ± 5
TF CTCF 80 88 83 ± 4
RAS CTSA 90 96 97 ± 0
RAS CTSD 57 99 98 ± 0
RAS CTSG 49 34 49 ± 4
COS CYP11A1 11 28 37 ± 2
COS CYP11B1 13 44 23 ± 2
COS CYP11B2 29 38 46 ± 3
COS CYP17A1 23 20 39 ± 3
COS CYP21A2 31 37 46 ± 1
RAS DPP3 56 67 81 ± 1
Receptor EGFR 50 75 67 ± 3
TF EGR1 93 92 82 ± 7
TF EGR3 88 53 64 ± 6
TF ELF1 75 95 80 ± 5
TF ELK1 88 70 74 ± 3
TF ELK3 53 78 75 ± 3
TF ELK4 58 74 69 ± 3
RAS ENPEP 2 33 29 ± 2
TF ETS1 16 91 83 ± 4
TF ETV5 50 80 90 ± 1
TF FOXN1 10 33 35 ± 2
Receptor GPER 54 49 62 ± 2
COS HSD11B1 51 32 66 ± 4
COS HSD11B2 6 43 30 ± 2
Receptor IGF2R 88 93 89 ± 2
TF IRF5 41 59 75 ± 2
TF IRF6 75 45 50 ± 3
RAS KLK1 34 50 56 ± 3
Receptor LNPEP 24 95 69 ± 5
Receptor MAS1 18 9 20 ± 2
TF MAX 20 73 89 ± 2
RAS MME 36 46 64 ± 4
RAS NLN 63 59 ± 2
Receptor NR3C1 90 93 75 ± 4
Receptor NR3C2 68 67 45 ± 4
TF PAX9 42 48 35 ± 1
RAS PREP 62 72 78 ± 1
RAS REN 34 24 27 ± 2
RAS RNPEP 61 86 89 ± 1
TF SLC2A4RG 86 62 53 ± 2
TF SMAD1 33 66 66 ± 5
TF SPIB 52 47 32 ± 2
RAS THOP1 30 57 54 ± 2
TF ZNF76 64 64 67 ± 4
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Supplementary Table S3: Expression centile profiles of extRAAS genes 

in mouse 

Supplementary Table S3: Expression centile profiles of extRAAS genes in mouse. Wt, wild 

type aortas in GSE10000; apoE, apoE-deficient aortas in GSE10000. 
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Group Gene Normal wt atheroma apoE
RAS Ace 64 96 83 96
Enzyme Ace2 31 28 17 16
Substrate Agt 48 9 21 10
Receptor Agtr1a 71 71 69
Receptor Agtr1b 63 36 63
Receptor Agtr2 1 8 9 4
COS Akr1d1 2 12 10 15
RAS Anpep 44 56 44 71
Receptor Atp6ap2 78 96 93 98
RAS Cma1 61 72 76 71
RAS Cpa3 61 74 67 71
TF Ctcf 69 89 82 89
RAS Ctsa 90 94 97 97
RAS Ctsd 98 99 100 100
RAS Ctsg 13 14 15 20
COS Cyp11a1 8 34 36 34
COS Cyp11b1 49 43 34
COS Cyp11b2 23 48 28 44
COS Cyp17a1 12 18 12 16
RAS Dpp3 69 76 89 77
Receptor Egfr 47 85 78 86
TF Egr1 85 99 96 99
TF Egr3 40 68 68 74
TF Elf1 52 55 65 53
TF Elk1 42 51 63 52
TF Elk3 63 86 82 90
TF Elk4 87 93 92 93
RAS Enpep 69 91 84 89
TF Ets1 75 92 88 93
TF Etv5 15 65 77 71
TF Foxn1 12 48 26 46
COS Hsd11b1 98 92 96 92
COS Hsd11b2 23 47 41 45
Receptor Igf2r 85 90 87 91
TF Irf5 39 57 69 70
TF Irf6 30 77 67 76
RAS Klk1 23 15 16 14
Receptor Lnpep 94 92 94
Receptor Mas1 1 7 3 4
TF Max 70 69 72
RAS Mme 59 50 39 44
RAS Nln 62 60 74 64
Receptor Nr3c1 88 96 89 96
Receptor Nr3c2 71 70 67
TF Pax9 22 29 31 30
RAS Prep 73 79 80 79
RAS Rnpep 75 75 85 79
TF Smad1 72 94 92 93
TF Spib 55 52 57 60
RAS Thop1 51 31 71 36
COS Akr1C4 missing missing missing missing
COS Cyp21A2 missing missing missing missing
COS Gper missing missing missing missing
RAS Ren missing missing missing missing
TF Slc2A4Rg missing missing missing missing
TF Znf76 missing missing missing missing
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Supplementary Table S4: ExtRAAS co-expression modules 

Supplementary Table S4: ExtRAAS co-expression modules. Below each tissue the number of 

datasets, samples and clusters/modules are represented as (datasets, samples, 

clusters/modules). At the top of each module of human atheroma the average the 

coordination rate is expressed in percentage (average percentage of genes within a module 

that are always coordinated across the different datasets of a specific tissue). Next to each 

gene symbol the abundance of the mRNA is expressed in centile rank. Black = enzymes; blue = 

receptors. 
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Normal Vessels
(1, 11, 3) ATP6AP2 97 AGT 85 CPA3 49

CTSA 90 PREP 62 MME 36
NR3C1 90 DPP3 56 KLK1 34
IGF2R 88 HSD11B1 51 AGTR2 29
NR3C2 68 EGFR 50 CYP11B2 29
AGTR1 67 CTSG 49 MAS1 18
RNPEP 61 REN 34 CMA1 16
CTSD 57 CYP21A2 31 ACE2 13
GPER 54 THOP1 30 CYP11B1 13
ENPEP 2 LNPEP 24 ANPEP 12

CYP17A1 23 CYP11A1 11
ACE 7
AKR1C4 6
HSD11B2 6
AKR1D1 1

Macroscopically CTSD 99 LNPEP 95 ATP6AP2 98 AGT 67 THOP1 57
intact tissue CTSA 96 NR3C1 93 CPA3 58 ENPEP 33 GPER 49
(GSE 43292) IGF2R 93 EGFR 75 KLK1 50 HSD11B1 32 CYP11B1 44
(1, 32, 5) RNPEP 86 NR3C2 67 CTSG 34 ACE2 22 HSD11B2 43

PREP 72 AGTR1 50 CYP11A1 28 AKR1C4 13 CYP11B2 38
ANPEP 69 REN 24 MAS1 9 CYP21A2 37
DPP3 67 CYP17A1 20 AGTR2 10
NLN 63 CMA1 19
ACE 46 AKR1D1 15
MME 46

Human atheroma
(7, 876, 5) CTSD 98 AGT 88 CPA3 64 KLK1 56 HSD11B1 66

CTSA 97 NR3C1 75 CTSG 49 THOP1 54 ENPEP 29
ATP6AP2 93 LNPEP 69 CMA1 30 CYP11B2 46
IGF2R 89 EGFR 67 CYP21A2 46
RNPEP 89 GPER 62 CYP17A1 39
ANPEP 86 AGTR1 49 CYP11A1 37
DPP3 81 NR3C2 45 AGTR2 36
PREP 78 HSD11B2 30
MME 64 REN 27
NLN 59 CYP11B1 23
ACE 56 ACE2 22

AKR1C4 21
MAS1 20
AKR1D1 11

Mouse normal aorta Ctsd 98 Nr3c1 88 Prep 73 Hsd11b1 98 Agtr1a
(1, 188, 4) Ctsa 90 Igf2r 85 Cma1 61 Cyp11b2 23 Agtr1b

Rnpep 75 Atp6ap2 78 Cpa3 61 Ctsg 13 Cyp11b1
Dpp3 69 Enpep 69 Thop1 51 Cyp17a1 12 Lnpep
Ace 64 Nln 62 Ace2 31 Cyp11a1 8 Nr3c2
Agt 48 Mme 59 Hsd11b2 23 Akr1d1 2
Egfr 47 Klk1 23 Agtr2 1
Anpep 44 Mas1 1

Tissues
(datasets, samples) Module 1 Module 2 Module 3 Module 4 Non-

clustered Module 5

88% 82% 100% 85% 67%
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Mouse atheroma Ctsd 100 Atp6ap2 93 Hsd11b1 96 Agtr1b 36
(1, 18, 4) Ctsa 97 Lnpep 92 Nln 74 Cyp11a1 36

Dpp3 89 Nr3c1 89 Agtr1a 71 Ctsg 15
Rnpep 85 Igf2r 87 Cyp11b1 43 Akr1d1 10
Ace 83 Enpep 84 Hsd11b2 41 Agtr2 9
Prep 80 Nr3c2 70 Cyp11b2 28 Mas1 3
Egfr 78 Mme 39 Agt 21
Cma1 76 Ace2 17
Thop1 71 Klk1 16
Cpa3 67 Cyp17a1 12
Anpep 44

ApoE-deficient aorta Ctsd 100 Nr3c1 96 Ace 96 Igf2r 91

(1, 9, 4) Atp6ap2 98 Lnpep 94 Hsd11b2 45 Egfr 86
Ctsa 97 Enpep 89 Thop1 36 Cyp11b2 44
Hsd11b1 92 Prep 79 Ctsg 20 Cyp11a1 34
Rnpep 79 Agtr1a 69 Akr1d1 15 Cyp11b1 34
Dpp3 77 Nr3c2 67 Mas1 4 Ace2 16
Anpep 71 Agtr1b 63 Agtr2 4
Cma1 71 Mme 44
Cpa3 71
Nln 64
Cyp17a1 16
Klk1 14
Agt 10

Mouse normal aorta 
(GSE10000) Ctsd 99 Ctsa 94 Atp6ap2 96 Nr3c1 96
(1, 9, 4) Ace 96 Lnpep 94 Enpep 91 Agtr1b 63

Hsd11b1 92 Prep 79 Igf2r 90 Anpep 56
Dpp3 76 Rnpep 75 Egfr 85 Cyp11b1 49
Cpa3 74 Mme 50 Agtr1a 71 Ctsg 14
Cma1 72 Cyp11a1 34 Hsd11b2 47
Nr3c2 71 Mas1 7 Agtr2 8
Nln 60 Cyp11b2 48
Cyp17a1 18 Thop1 31
Klk1 15 Ace2 28
Akr1d1 12
Agt 9
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Supplementary Table S5: Extracted promoters feature 

Supplementary Table S5: Extracted promoters feature. TSC, transcription start cluster; bp, 

base pairs. 
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Gene Genomic location origin TSC Length (bp) GC content
ACE chr17: 61553922 - 61555393 swissregulon (hg19) 4 1471 72%
ACE2 chrX: 15619037 - 15620922 swissregulon (hg19) 0 1885 39%
AGTR1 hr3: 148415071 - 148416062 swissregulon (hg19) 1 991 55%
AGTR2 chrX: 115301419 - 115302515 swissregulon (hg19) 1 1096 33%
ANPEP chr15: 90348503 - 90349103 swissregulon (hg19) 3 600 64%
ATP6AP2 chrX: 40439340 - 40440770 swissregulon (hg19) 3 1430 56%
CMA1 chr14: 24976606 - 24978063 swissregulon (hg19) 0 1457 47%
CPA3 chr3: 148595651 - 148596378 swissregulon (hg19) 0 727 35%
CPA3 chr3: 148582445 - 148583580 swissregulon (hg19) 0 1135 42%
CTSA chr20: 44519091 - 44521700 swissregulon (hg19) 7 2609 62%
CTSD chr11: 1784627 - 1785999 swissregulon (hg19) 7 1372 68.50%
CTSG chr14: 25045045 - 25046070 swissregulon (hg19) 1 1025 46%
CYP11A1 chr15: 74659443 - 74660581 swissregulon (hg19) 1 1138 52%
CYP11A1 chr15: 74658138 - 74659053 swissregulon (hg19) 1 915 60%
CYP11B1 chr8: 143960828 - 143961762 swissregulon (hg19) 0 934 54%
CYP11B2 chr8: 143998916 - 143999759 swissregulon (hg19) 0 843 57%
CYP17A1 chr10: 104596660 - 104597820 swissregulon (hg19) 1 1160 53%
CYP21A2 chr6: 32005542 - 32006628 swissregulon (hg19) 0 1086 55%
DPP3 chr11: 66246984 - 66248360 swissregulon (hg19) 4 1376 63.50%
EGFR chr7: 55212393 - 55212980 swissregulon (hg19) 1 587 56%
EGFR chr7: 55086215 - 55087472 swissregulon (hg19) 3 1257 72%
GPER chr7: 1125943 - 1126989 swissregulon (hg19) 1 1046 56%
HSD11B2 chr16: 67464055 - 67465454 swissregulon (hg19) 8 1399 71%
IGF2R chr6: 160463689 - 160464276 swissregulon (hg19) 1 587 45%
IGF2R chr6: 160389631 - 160390645 swissregulon (hg19) 18 1014 75%
KLK1 chr19: 51326617 - 51327543 swissregulon (hg19) 0 926 61%
KLK1 chr19: 51324005 - 51324605 swissregulon (hg19) 0 600 63%
LNPEP chr5: 97011700 - 97012335 NCBI (GRCh38) 1 635 29%
LNPEP chr5: 96293655 - 96294582 swissregulon (hg19) 1 927 41%
MAS1 chr6: 160327481 - 160328500 swissregulon (hg19) 0 1019 45%
MME chr3: 154860913 - 154862242 swissregulon (hg19) 2 1329 34%
NLN chr5: 65017219 - 65018665 swissregulon (hg19) 2 1446 65%
NR3C1 chr5: 142782323 - 142784741 swissregulon (hg19) 11 2418 68%
NR3C2 chr4: 149362850 - 149364154 swissregulon (hg19) 4 1304 60%
PREP chr6: 105285468 - 105286099 swissregulon (hg19) 1 631 45%
PREP chr6: 105850259 - 105851499 swissregulon (hg19) 8 1240 68%
REN chr1: 204134950 - 204135783 swissregulon (hg19) 0 833 55%
RNPEP chr1: 201951000 - 201952699 swissregulon (hg19) 6 1699 63%
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Supplementary Table S6: ExtRAAS and TFs co-expression modules 

Supplementary Table S6: ExtRAAS and TFs co-expression modules. Below each tissue the 

number of datasets, samples and clusters/modules are represented as (datasets, samples, 

clusters/modules). At the top of each module of human atheroma the average the 

coordination rate is expressed in percentage (average percentage of genes within a module 

that are always coordinated across the different datasets of a specific tissue). Next to each 

gene symbol the abundance of the mRNA is expressed in centile rank. Black = enzymes; blue = 

receptors; and red = transcription factors. 
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Normal Human ATP6AP2 97 ELK1 88 IRF5 41 ZNF76 64 EGR1 93
Vessels CTSA 90 IRF6 75 MME 36 PREP 62 EGR3 88
(1, 11, 3) NR3C1 90 SPIB 52 KLK1 34 ELK4 58 AGT 85

IGF2R 88 EGFR 50 SMAD1 33 DPP3 56 ELK3 53
SLC2A4RG 86 CPA3 49 AGTR2 29 HSD11B1 51 ETV5 50
CTCF 80 CTSG 49 CYP11B2 29 REN 34
ELF1 75 PAX9 42 MAX 20 THOP1 30
NR3C2 68 CYP21A2 31 MAS1 18 LNPEP 24
AGTR1 67 CYP17A1 23 CMA1 16
RNPEP 61 ETS1 16 ACE2 13
CTSD 57 CYP11B1 13 ANPEP 12
GPER 54 CYP11A1 11
ENPEP 2 FOXN1 10

ACE 7
AKR1C4 6
HSD11B2 6
AKR1D1 1

Human CTSD 99 LNPEP 95 ATP6AP2 98 ELK1 70 EGR1 92
Macroscopically CTSA 96 NR3C1 93 ETS1 91 KLK1 50 ZNF76 64
Intact Tissue (MIT) ELF1 95 CTCF 88 MAX 73 GPER 49 SLC2A4RG 62
(GSE 43292) IGF2R 93 EGFR 75 AGT 67 SPIB 47 THOP1 57
(1, 32, 5) RNPEP 86 ELK4 74 SMAD1 66 CYP11B1 44 EGR3 53

ETV5 80 NR3C2 67 CPA3 58 HSD11B2 43 CYP11B2 38
ELK3 78 AGTR1 50 PAX9 48 CYP21A2 37 AGTR2 10
PREP 72 IRF6 45 CTSG 34 FOXN1 33
ANPEP 69 ENPEP 33 CYP11A1 28
DPP3 67 HSD11B1 32 REN 24
NLN 63 ACE2 22 CYP17A1 20
IRF5 59 CMA1 19
ACE 46 AKR1D1 15
MME 46 AKR1C4 13

MAS1 9
Human
Atheroma CTSD 98 AGT 87.5 EGR1 82 ELK1 74 ZNF76 67
(7, 876, 4) CTSA 97 CTCF 83 ELK3 75 GPER 62

ATP6AP2 93 ETS1 83 CPA3 64 KLK1 56
ETV5 90 NR3C1 75 EGR3 64 THOP1 54
IGF2R 89 ELK4 69 CTSG 49 SLC2A4RG 53
MAX 89 LNPEP 69 CMA1 30 CYP11B2 46
RNPEP 89 EGFR 67 CYP21A2 46
ANPEP 86 SMAD1 66 CYP17A1 39
DPP3 81 IRF6 50 CYP11A1 37
ELF1 80 AGTR1 49 AGTR2 36
PREP 78 NR3C2 45 FOXN1 35
IRF5 75 PAX9 35 SPIB 32
HSD11B1 66 ENPEP 29 HSD11B2 30
MME 64 REN 27
NLN 59 CYP11B1 23
ACE 56 ACE2 22

AKR1C4 21
MAS1 20
AKR1D1 11

Module 6Tissues
(datasets, samples) Module 1 Module 2 Module 3 Module 4 Non-clustered 

genesModule 5

91% 86% 89% 90%
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Normal Human
Kidney ACE2 AGTR1 CTSG CPA3 AGTR2 CMA1 ACE
(4, 84, 6) AGT ATP6AP2 EGR3 ELF1 CYP11A1 CTCF EGFR

ANPEP NR3C1 ETV5 ELK4 CYP11B1 CYP11B2 AKR1C4
CTSA NR3C2 IRF5 ETS1 EGR1 CYP21A2 IRF6
CYP17A1 PREP SPIB HSD11B1 FOXN1 ELK3 ELK1
DPP3 ZNF76 LNPEP HSD11B2 IGF2R CTSD
ENPEP SMAD1 MAS1 GPER
KLK1 PAX9 AKR1D1
MME THOP1 MAX
REN
RNPEP
SLC2A4RG

Normal Human
Omental Adipose ANPEP LNPEP ACE2 AGT RNPEP EGR1
(4, 86, 6) ATP6AP2 ELK4 ZNF76 AKR1D1 THOP1 EGR3

CMA1 AGTR1 EGFR CYP11B2 AKR1C4
CPA3 CTCF ELK3 CYP17A1
CTSG ETS1 PREP HSD11B2
HSD11B1 IGF2R ACE KLK1
CTSA MAX GPER SPIB
CTSD ELF1 SLC2A4RG AGTR2
DPP3 ENPEP MME CYP11B1
ETV5 NR3C1 FOXN1
CYP11A1 SMAD1 REN
PAX9 ELK1 CYP21A2

NR3C2 IRF6
IRF5
MAS1

Mouse normal aorta Ctsd 98 Nr3c1 88 Hsd11b1 98 Agtr1a

(1, 188, 3) Ctsa 90 Elk4 87 Igf2r 85 Agtr1b
Egr1 85 Atp6ap2 78 Enpep 69 Cyp11b1
Rnpep 75 Ets1 75 Nln 62 Lnpep
Dpp3 69 Prep 73 Cma1 61 Max
Ace 64 Smad1 72 Cpa3 61 Nr3c2
Elk3 63 Ctcf 69 Mme 59 Akr1C4
Spib 55 Elf1 52 Ace2 31 Cyp21A2
Thop1 51 Irf6 30 Gper
Agt 48 Cyp11b2 23 Ren

Egfr 47 Pax9 22 Slc2A4Rg

Anpep 44 Cyp11a1 8 Znf76
Elk1 42 Agtr2 1
Egr3 40
Irf5 39
Hsd11b2 23
Klk1 23
Etv5 15
Ctsg 13
Cyp17a1 12
Foxn1 12
Akr1d1 2
Mas1 1

83%

92% 90% 92% 92% 92% 100%

90% 79% 85% 86% 75%
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Mouse atheroma Ctsd 100 Atp6ap2 93 Hsd11b1 96 Akr1C4
(1, 18, 4) Ctsa 97 Elk4 92 Nln 74 Cyp21A2

Egr1 96 Lnpep 92 Elf1 65 Gper
Dpp3 89 Smad1 92 Spib 57 Ren

Rnpep 85 Nr3c1 89 Cyp11b1 43
Slc2A4Rg

Ace 83 Ets1 88 Hsd11b2 41 Znf76
Elk3 82 Igf2r 87 Agtr1b 36
Prep 80 Enpep 84 Cyp11a1 36
Egfr 78 Ctcf 82 Pax9 31
Etv5 77 Agtr1a 71 Foxn1 26
Cma1 76 Nr3c2 70 Ace2 17
Thop1 71 Irf6 67 Klk1 16
Irf5 69 Mme 39 Ctsg 15
Max 69 Cyp11b2 28 Cyp17a1 12
Egr3 68 Akr1d1 10
Cpa3 67 Agtr2 9
Elk1 63 Mas1 3
Anpep 44
Agt 21

Mouse normal aorta Ctsd 99 Ctsa 94 Atp6ap2 96 Enpep 91 Nr3c1 96 Akr1C4

(GSE10000) Egr1 99 Lnpep 94 Smad1 94 Igf2r 90 Anpep 56 Cyp21A2
(1, 9, 5) Ace 96 Prep 79 Elk4 93 Agtr1a 71 Elf1 55 Gper

Ets1 92 Rnpep 75 Ctcf 89 Foxn1 48 Cyp11b1 49 Ren
Hsd11b1 92 Max 70 Egfr 85 Thop1 31 Ctsg 14 Slc2A4Rg
Elk3 86 Elk1 51 Agtr1b 63 Ace2 28 Znf76
Irf6 77 Mme 50 Hsd11b2 47 Agtr2 8
Dpp3 76 Cyp11a1 34 Cyp17a1 18
Cpa3 74 Pax9 29 Klk1 15
Cma1 72 Mas1 7 Akr1d1 12
Nr3c2 71
Egr3 68
Etv5 65
Nln 60
Irf5 57
Spib 52
Cyp11b2 48
Agt 9

ApoE aorta Ctsd 100 Nr3c1 96 Smad1 93 Egr1 99 Akr1C4
(GSE10000) Atp6ap2 98 Lnpep 94 Igf2r 91 Ace 96 Cyp21A2
(1, 9, 4) Ctsa 97 Elk4 93 Egfr 86 Ctcf 89 Gper

Ets1 93 Enpep 89 Foxn1 46 Rnpep 79 Ren
Hsd11b1 92 Prep 79 Ace2 16 Cpa3 71 Slc2A4Rg
Elk3 90 Irf6 76 Agtr2 4 Cyp11b2 44 Znf76
Dpp3 77 Agtr1a 69 Thop1 36
Egr3 74 Nr3c2 67 Cyp11a1 34
Max 72 Agtr1b 63 Cyp11b1 34
Anpep 71 Elf1 53
Cma1 71 Elk1 52
Etv5 71 Hsd11b2 45
Irf5 70 Mme 44
Nln 64 Ctsg 20
Spib 60 Akr1d1 15
Pax9 30 Mas1 4
Cyp17a1 16
Klk1 14
Agt 10
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Supplementary Atlas S1: ExtRAAS maps in all studied tissues 

Supplementary Atlas S1: ExtRAAS maps in all studied tissues. For each tissue, the number of 

datasets, samples and modules are represented as (datasets, samples, modules) below the 

tissue name. Gene transcripts are represented by the corresponding official symbols. The 

genes are represented in the map based on their coordination (same color = same cluster) and 

mean expression centile rank (MCR, 4 levels, larger font size= higher expression level). Genes 

below the first tertile (MCR  33) in each tissue were omitted for simplicity. Non-clustered 

genes are colored in black. Angiotensin peptides and corticosteroid metabolites are 

represented in gray italics. Expression profiles of ExtRAAS genes in each tissue are represented 

using their MCR in a bar graph. Colors in the bar graphs represent coordinated genes. 
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IV.2.9 Summary of scientific manuscript I 

In this manuscript we established a model of extRAAS organization at the mRNA level in 

human atheroma. Using transcriptomic data obtained in our lab, we revealed the patterns of 

expression and coordination of extRAAS in human carotid atheroma. In atheroma, there is a 

general increase of coordinated angiotensin metabolizing enzyme-coding genes compared to 

nearby MIT, whereas at the same time, a decrease in highly coordinated receptor-coding 

genes, including AGTR1, MR and LNPEP. The similarity in the coordination patterns 

between atheroma lesions and MIT and its difference from that in normal vacscular tissue 

indicates that the system is altered during initial stages of atheroma development, which is454 

consistent with previously known roles of RAAS in atheroma initiation and progression. The 

patterns of extRAAS in atheroma lesions were validated in 5 other microarray datasets, 

including 807 carotid and peripheral atheroma samples. We further validated extRAAS 

organization in atheroma lesions of apoE-deficient mice, an animal models for the study of 

atherosclerosis in vivo.  Indeed, the patterns of extRAAS were highly conserved in apoE-

deficient mice atheroma lesions, but also similar to normal aortas from this animal model. 

Interestingly, they were different from the patterns of extRAAS in normal aortas of wild-type 

mice, which further supports that the patterns of extRAAS obtained in atheroma are related to 

atheroma initiation and development. After establishing the map of extRAAS in atheroma,we 

did further analysis in order to identify candidate TFs that could be involved in the regulation 

of the expression extRAASgenes in atheroma. By analyzing the promoters of extRAAS genes 

we identified 19 TFs that have common binding sites in the promoters of coordinated 

peptidases, and 2 TFs for the coordinated receptors (p< 0.05).  By identifying the co-

expression patterns we found that there are specific correlations between certain TFs and 

extRAAS co-expression modules, which were reproducible across human atheroma datasets 

and in mouse atherosclerotic aortas. However, these correlaions need further validation in 

vitro and in vivousing molecular biology techniques such as knocking down or 

overexpressing TFs and checking for the effects on extRAAS genes. The validation of these 

TFs may open the way for the development of new RAAS-targeting drugs that can modulate 

the global organization of extRAAS in atheroma.  
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IV.3 RNA SAMPLES FOR MICROARRAY HYBRIDIZATION 

We started with 88 MIT samples obtained from 95 carotid samples obtained by carotid 

endarterectomy. Out of these 88 MIT, only 34 samples yielded VSMCSs. Each VSMCS sample 

was then splitted into 3 duplicates that were treated by the convenient differentiation medium: 

basal medium to retain contractile phenotype, ADM to obtain lipid-storing phenotype and ODM 

to obtain calcified phenotype. At the end of the differentiation protocol we obtained 21 

contractile VSMCs samples, 20 with lipid storing phenotype and only 18 with the calcified 

phenotype. RNA was then extracted from each sample using TRIZOL reagent. After quality 

control (experimental approach for objective 2), only 41 samples met with the inclusion criteria. 

Table IV.1 shows the list of RNA samples with quality and quantity suitable for microarray 

analysis. 

Table IV.1: list of RNA samples suitable for a future microarray analysis.  

 

IV.4 PHENOTYPIC VALIDATION OF VSMCS 

The Shift from contractile to the other phenotypes can be seen on microscope. In the case of lipid 

storing phenotype there is a change in the shape of VSMCs from spindle shaped to a more 

rounded shape with extensions and the accumulation of lipid droplets in the cytoplasm. 

However, in the calcified phenotype cells become dense and form accumulations. RT-qPCR 

measurements showed 1.5-fold decrease in a-SMA expression in lipid storing phenotype 

compared to control phenotype. On the contrary, neither FABP4, nor FAT4 showed significant 

change in their expression levels between the two phenotypes (data not shown). On the other 

hand, significant calcification and mineralization was detected in calcified VSMCs using AP 
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assay (figure IV.1A) and alizarin red staining (figure IV.1B), respectively. Negative results were 

obtained using both assays in control phenotype (figure IV.1). 

 
Figure IV.1: validation of VSMCs calcification and mineralization. Alkakline 
Phospahtase assay AP assay results in dark violet color in calcified VSMCs, whereas 
no staining in controls. On the other hand, alizarine satining result in red coloration of 
mineralized VSMCs, but faint blue color in control cells. 

IV.5 FIRST SIRNA TRANSFECTION TRIAL 

See Scientific manuscript I for the results concerning promoter analysis and relevant TFs 

identification. After identifying relevant TFs, their effects on target extRAAS genes should be 

validated (Figure 3.8). Inspired by the recent study showing an association between IRF5 

expression and atherosclerotic lesions development453 (Watkins AA et al. 2015), our first trial 

was on IRF5 knockdown. 

As a first trial, IRF5 gene knockdown was done using two different combinations of siRNA 

concentration and transfection reagent volume. 5 nM and 10 nM of siRNA was transfected using 

8 l and 12 l of transferrin, respectively. Control cells were transfected with scrambled random 

siRNA (CA) using the same conditions. RT-qPCR measurement was done for 18S, IRF5, GR, 
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MR, AGTR1, CTSA, ACE and MME 48 hours after transfection. The results of this trial are 

presented in Figure IV.1. 

 
Figure IV.2: results of the first trial of IRF transfection. Transfection was done using 2 different combinations of 
siRNA concentration and transfection reagent volume (siRNA concentration, TRANSFERRin volume) using both 
control (CA) and IRF5 siRNA. 7 genes were measured after siRNA transfection. 

IRF5 knockdown resulted in a 2-folds reduction in IRF5 transcript in both conditions, 

accompanied with a change in the expression of the other measured genes. However, the change 

in the measured extRAAS gave different results between the two conditions. CTSA and MME 

transcripts increased in both conditions; however, the fold change was greater for both transcripts 

in the 10nM IRF5-siRNA condition. In addition, there were certain contradictions between the 

results of the two conditions, which can be seen from the levels of MR, GR and AGTR1 

transcripts. The levels of these genes decreased with 5 nM IRF5-siRNA transfection, whereas 

they increased decreased with 10 nM IRF5-siRNA transfection. This could be due to off target 

knockdown accompanied with the 10 nM transfected siRNA in the second condition. However, 

this is just a first trial and further validation and setting up should be done.  
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V. GENERAL DISCUSSION 
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Most studies on tissue extRAAS focus on the local production of peptides in a specific tissue or 

the response to exogenous peptides treatment, with rare studies investigating both levels 

simultaneously. In both cases this will provide an inconclusive results on the actual effects of the 

system in a tissue as these results rely on a level that depends on the presence of the other one. 

For instance, the local production of a bioactive molecule in a tissue does not necessitate that this 

molecule will exert its effects in that tissue. Indeed, the favorable microenvironment should be 

available for a molecule to effectively exert its effects. This microenvironment could be 

characterized by the expression of the receptors of the molecule and the molecular pathways that 

can transduce the signal from the receptor to the final effectors, in addition to the absence of the 

antagonizing pathways that may inhibit the action of this molecule. In fact, this should be the 

basis for discussing the local effects of extRAAS at the tissue level. Indeed, all bioactive 

peptides and molecules of extRAAS rely on the presence their corresponding receptors as well as 

on the presence and levels of synergistic and antagonistic molecules to exert their effects in a 

specific tissue. Similarly, an expressed receptor cannot exert any effects without being bound 

and activated by its ligand. The issue is even more complex in extRAAS as each peptide or 

molecule may bind to different receptors and vice versa, thus leading to different, even opposite, 

effects. Moreover, seveal studies showed that certain effects induced by certain angiotensin 

peptides could be exerted by other downstream peptides. For example, the Ang-(1-7)-induced 

inhibitory effects on the energy-dependent solute transport in proximal tubules of the rat kidney 

were shown to be mediated by the metabolism of Ang-(1-7) into Ang (3-7), which binds to the 

AT4R, leading to a decrease in energy-dependent solute transport468. Such results may raise 

questions about the previously described “direct” effects of certain peptides.  Therefore, studies 

investigating RAAS in a specific tissue should take into account the local expression and activity 

of both enzymes and receptors, which will provide a more clear view on the possible bioactive 

molecules produced locally in the tissue and their interaction with the corresponding receptors. 

Our lab has been studying extRAAS implication in atheroma during the last decade by 

measuring the expression of multiple extRAAS components. Based on our studies and on the 

literature we have joined the different pathways of extRAAS, with their component enzymes and 

receptors, into one system including classical and newly discovered enzymes and receptors. In 

this study, we aimed to identify the organization of extRAAS in the atherosclerotic lesion at the 
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mRNA level. To achieve this objective, we relied on transcriptomic data obtained in our lab, in 

addition to publicly available microarray datasets available on the GEO database.

V.1 EXTRAAS ORGANIZATION IN ATHEROMA 

The presence of similar organization in MIT and advanced lesions, which was different from that 

in normal vascular tissue, indicates that the organization is established at early stages of 

atheroma and may be involved in lesion initiation and progression.  

The extRAAS map in atheroma indicates that a highly expressed AGT could fuel the production 

of all angiotensin peptides by locally expressed angiotensin metabolizing enzymes. However, 

our results also suggest that only Ang-II and Ang-IV could exert their effects on their expressed 

receptors, whereas Ang-(1-7) despite its production may not be active due the very low 

expression levels of its receptor transcripts Mas1 and AGTR2. Despite the high levels of the 

corticosteroid receptors coding transcripts, their effects might be limited by the low production 

of their ligands, aldosterone and cortisol, as suggested by the very low levels of both aldosterone 

synthase (CYP11B2) and cortisol synthase (CYP11B1) transcripts. However, we can’t exclude 

that aldosterone could be imported from the circulation, and at the same time it may exert its 

effects by binding to its receptor that is mainly present on epithelial cells facing the lumen of the 

vessel. On the same hand, it seems from the map that cortisol is mainly produced from cortisone 

by the action of 11b-HSD1. However, further investigations should be done in order to identify 

the source of cortisone in the vessel wall. Although there were modest correlations between the 

angiotensin and the corticosteroid system at the enzymatic level, there was strong correlation 

between both systems at the receptor levels. Thus, it seems that the signal generation in the two 

systems is regulated independently in atheroma, whereas they are tightly correlated at the signal 

response level, which will allow for a stronger synergy that will produce stronger effects as we 

have discussed in the introduction (See review manuscript I). 

Despite the fact that mRNA expression does not provide any support for functional relevance of 

this organization, it may be an evidence for the local expression of the different components in 

the vessel wall and atheroma. Further support for these results at the protein and metabolic 

levels, will indicate if the system could be globally modulated at all levels by pharmacologically 
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targeting it at the transcriptional level. This will better allow targeting multiple pathways 

simultaneously by targeting their expression instead of using enzymatic or receptor inhibitors 

that target one enzyme or pathway, without affecting other alternative enzymes that can still 

support the production of the targeted peptide. An example of this issue is ACE inhibitors, which 

were shown to be not totally effective in certain cases where alternative Ang-II enzymes 

overcome its actions in inhibiting Ang-II generation469. 

V.2 TISSUE-SPECIFICITY OF EXTRAAS ORGANIZATION IN ATHEROMA 

By comparing the organization of extRAAS obtained from atheroma and the other 23 normal 

human tissues, we can see that extRAAS possesses a tissue-specific organization that is 

characterized by a specific pattern expression and coordination. Expression pattern provide an 

indication on the locally favored extRAAS pathways in a specific tissue, whereas coordination 

pattern informs about the interaction of the different pathways and how the system is balanced at 

the tissue level. In addition, the correlations of the extracted TFs to extRAAS genes were also 

specific to atheroma when comparing it to that obtained from the kidney and adipose tissues. The 

importance of these findings in our study is that the tissue-specific organization of extRAAS in 

atheroma compared to other tissues indicates that atheroma possesses specific characteristics that 

could be manipulated in order to modulate the system’s local organization in atheroma without 

affecting its organization in other normally functioning tissues. In addition, the reproducibility of 

this organization across multiple human datasets that include a total of more than 800 human 

atheroma samples from different arterial beds independent of inter-individual variability further 

support the role of correlation of this organization to atherosclerotic lesion processes. Thus, this 

will provide an easier way for future pharmacological approaches as it will not rely on 

personalized treatments. Moreover, the similarity of the organization between human and apoE-

deficient mice atheroma suggest that we can use this animal model to further study the 

organization of this system in vivo. Since the organization of extRAAS in normal vascular tissue 

was obtained from only one dataset, the need for other datasets on normal vascular tissue is of 

importance to validate the reproducibility of the organization obtained and its difference from 

atheroma organization. 
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V.3 CANDIDATE TFs 

We have extracted 21 candidate TFs that have enriched TFBSs in the “core” promoters of 

coordinated extRAAS genes. Interestingly, we found that these TFs were highly correlated to 

extRAAS organization at the mRNA level as was obtained by the analysis of transcriptomic data. 

Indeed, specific TFs were coordinated with co-expression modules in atheroma with 

reproducible results obtained from the 8 human atheroma datasets. The reproducibility of the 

correlations between TFs and extRAAS in mouse atheroma further support the role of these TFs 

in extRAAS regulation in atheroma. However, further support of these correlations need to be 

provided both in vitro and in vivo. This could be done through molecular biology techniques by 

modulating the levels of one or more TFs then checking for the effects on extRAAS genes 

expression. Indeed, we have started in setting up the knockdown experiments of IRF5 in primary 

VSMCs, which are major players in atheroma development and progression. 

Interestingly, these TFs were found to be correlated to other genes than those which we extracted 

their TFBSs from. Thus, it seems that these TFs are regulating the expression of these genes by 

mechanisms not involving the promoter regions we have identified. TFs may act on a gene by 

binding to enhancer sequences outside the core promoter that could be several Kbs away from 

the TSS470,471. However, this may raise questions about other TFs that act from a distance that we 

couldn’t extract from promoter sequences we analyzed. Thus further study of the correlation of 

extRAAS genes with all known TFs to check for other correlated ones should be done. Indeed, 

we recently established a new method that could extract external genes in the genome that are 

significantly correlated to multiple extRAAS genes in a microarray dataset based on their 

transcript levels. Thus we may use this method by doing targeted analysis on TF transcripts 

rather than analyzing the whole transcriptome. In addition, a TF may act indirectly on a gene 

through post-transcriptional mechanisms or by regulating other genes that have impact on the 

expression of coordinated extRAAS genes. Thus further investigations on the mechanisms by 

which these TFs may regulate extRAAS genes expression should be done. 

V.4 RELEVANT TFs 

From the extracted TFs we propose certain relevant TFs that could play a major role in extRAAS 

organization in atheroma and could be candidate for pharmacological studies. These relevant TFs 
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include those that are coordinated with modules 1, 2 and 3 of extRAAS co-expression modules 

in human atheroma, which we will call set1, set 2 and set 3 respectively. Set 1 includes the 3 TF-

coding genes ELF1, ETV5, IRF5 and MAX. This set is interesting for two main reasons: (1) it is 

positively correlated to the largest module that includes 10 angiotensin peptidases that are 

involved in all angiotensin pathways, in addition to the two R/PR receptor-coding genes 

(ATP6AP2 and IGF2R), which are known to enhance renin activity in tissues462; and (2) it is 

negatively correlated to module 2, which comprises the major receptors of the system. Thus, by 

targeting this set of TFs we may alter gene expression of extRAAS in atheroma both at the signal 

generation and signal response levels. However, since it is oppositely correlated to the two 

modules, its modulation may exert no additional effects as the final change in the signal 

generation will be buffered by an opposite change in signal response. Since inhibition or 

downregulation is more likely achieved than stimulation or overexpression from the 

pharmacological point of view, set 2 of TFs seems to be a promising pharmacological target. 

Importantly, this set is positively correlated to the module of receptors in atheroma that contain 

AGTR1 and NR3C2 (MR-coding gene), which are known for their key role in enhancing 

atheroma development, in addition to EGFR and GPER. Thus, downregulation of these receptors 

may lead to a profound impact by “shutting down” the pro-atherogenic effects of locally 

produced peptides. In addition, downregulating this set of TFs may also drain the local source of 

the peptides by downregulating AGT expression, which is also correlated to this set of TFs. 

However, before moving forward in any pharmacological approach, we need to validate the 

impact of these TFs and investigate their mechanisms of action on extRAAS genes. The third set 

(set 3) of TFs is interesting since it is correlated to 3 genes that are coordinated in 80% of the 

tissues we analyzed in this study209. Further studying this set will provide an explanation on the 

possible mechanisms by which TFs are correlated to non-TFBSs containing genes. Indeed, 3 TF-

coding genes were coordinated with module 3 genes despite that we couldn’t extract any 

enriched TFBSs in the promoter of these genes. 

In summary, the one pathway investigation lead to the huge knowledge we have today about the 

impact of extRAAS on atherosclerosis development. However, these data should be now 

connected to the global organization of extRAAS in atheroma by using systems biology 

approaches. This will provide more elaborate information on how the organization of the system 

is altered in atherosclerotic lesions and thus a more clear view on the actual actions of the system 
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in the lesion in vivo. Therefore, this will allow for a more specific and efficient targeting of 

extRAAS in the disease by using the most efficient combination of therapeutics that target 

specific enzymes and receptors, which gets the system back into its normal balanced state (figure 

V.1). In addition, understanding by which the organization is altered and maintained in 

pathological states will provide the basis for the discovery of new therapeutics that may 

modulate the global organization rather than targeting one enzyme or pathway. The TFs that we 

have extracted in this study could provide a relevant pharmacological target for the modulation 

of multiple extRAAS genes in atheroma, which will provide a way to manipulate multiple 

extRAAS arms in order to obtain a more balanced response to the system in the vascular wall. 

Therefore, our results provide the basis for further elaborate studies on the global organization of 

extRAAS in atherosclerosis and other tissues. 

 
Figure V.1: conclusion and perspectives. ExtRAAS transcriptional regulation in a tissue leads 

to specific patterns of expression and coordination of extRAAS transcripts. These are then 

translated into proteins, which define the local favored pathways that will interact leading 

to final tissue response. An alteration in either transcriptional regulation or in the activity 

of translated proteins may lead to pathological tissue response. Understanding the 

mechanisms leading to this alteration may provide the opportunity for targeting the global 

organization of the system, thus getting it back to its normal balanced state.  
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