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Laboratoire ICube – UMR 7357
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Une thèse est rarement l’œuvre d’une seule personne, et celle-ci ne fait pas exception.
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de celle-ci.

i



Résumé

Avec le développement des applications temps-réel sur Internet, telles que la télévision,

la voix sur IP et les jeux en ligne, les fournisseurs d’accès à Internet doivent faire face

à des contraintes de plus en fortes quant aux performances de leurs services. Ces con-

traintes se traduisent sous la forme de conventions de service et définissent le niveau de

service attendu d’un opérateur via divers indicateurs, comme les pertes de paquets ou

la disponibilité du réseau. Les interruptions de service sont principalement causées par

des changements topologiques (ajout/suppression de lien ou de routeur, changement de

poids, . . . ), lesquels sont pourtant des événements courants dans les réseaux IP. D’une

part, la topologie du réseau peut être régulièrement modifiée en fonction des besoins des

opérateurs, pour procéder à des remplacements de matériel, des mises à jour système,

ou encore dans le cadre de politiques d’ingénierie de trafic. Une étude menée sur l’épine

dorsale du réseau Sprint rapporte que 20% des changements topologiques sont causés

par des opérations planifiées. De plus, d’autres études révèlent que de telles opérations

ont lieu fréquemment, mais celles-ci sont généralement effectuées de nuit, afin de lim-

iter leur impact sur le trafic. Cela représente néanmoins un coût supplémentaire pour

l’opérateur, et réduit sa capacité à améliorer le routage en fonction des fluctuations du

trafic. D’autre part, les changements topologiques imprévus, tels que les pannes de liens

ou de routeurs, sont également une source importante de problèmes de convergence.

Cependant, leur impact sur l’acheminement des données peut être limité grâce à des

techniques de re-routage rapide largement répandues.

Chacun de ces changements force les routeurs à recalculer leurs tables de routage, faisant

ainsi entrer le réseau dans un état transitoire durant lequel des perturbations peuvent

apparâıtre. Les spécifications des protocoles de routage à état des liens, Open Shortest

Path First (OSPF) et Intermediate System to Intermediate System (IS-IS), ne four-

nissent aucun contrôle sur l’ordre de mise à jour des tables de commutation des routeurs.

Cet ordre dépend à la fois des dynamiques de diffusion des messages de signalisation et

des capacités de calcul de chaque routeur. Ainsi, le plan de commutation global du

réseau peut être transitoirement incohérent, certains routeurs ayant déjà pris en compte

la modification tandis que d’autres, plus lents ou plus éloignés, considèrent toujours la

topologie initiale. Dans certains cas, les décisions de routages consécutives et antérieures

à un changement topologique peuvent être conflictuelles, de sorte que plusieurs routeurs

se considèrent alors l’un l’autre sur leur plus court chemin respectif vers une même

destination. Ce phénomène, connu sous le nom de boucle de routage, augmente les

délais d’acheminement des données et, selon le contexte de trafic, peut mener à des

problèmes de congestion voire des pertes de paquets. Une telle baisse de performance

est particulièrement regrettable lorsqu’elle survient à la suite d’une opération planifiée.
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Afin d’évaluer l’ampleur de ce problème sur un réseau de production, nous avons en-

gagé une collaboration avec l’opérateur Internet français RENATER. L’infrastructure

réseau nationale de RENATER inclut 72 routeurs fournissant un accès Internet à la

plupart des universités et organismes de recherche en France. Certaines de ces insti-

tutions participent au projet PlanetLab et, à ce titre, maintiennent des serveurs ap-

pelés nœuds PlanetLab que nous pouvons utiliser pour mener des opérations de mesures

du réseau. Néanmoins, ces nœuds ne fournissent pas une couverture suffisante pour

détecter efficacement la présence de boucles de routage. Comme première étape de

notre collaboration avec RENATER, nous avons donc déployé 10 cartes Raspberry Pi

pour compléter l’infrastructure PlanetLab existante. Ces appareils sont directement

connectés aux routeurs afin d’assurer la fiabilité des mesures. De plus, nous avons mis

en place un équipement supportant le protocole de routage IS-IS et capable d’établir une

relation d’adjacence avec l’un des routeur de RENATER. Ce listener nous permet ainsi

de détecter en temps réel et de maintenir un historique de l’ensemble des évènements

topologiques affectant le routage sur ce réseau.

Notre première campagne de mesures actives sur le réseau de RENATER a eu lieu du

6 au 27 juin 2014, soit une durée de 21 jours. Pendant cette période, le listener nous

a permis de détecter 1371 modifications topologiques dans le réseau, représentées par

la réception de messages de signalisation non sollicités sur le listener. En moyenne, 63

évènements logique ont donc eu lieu chaque jour sur le réseau. Ce chiffre peut sembler

très élevé, mais ne reflète pas nécessairement la fréquence des évènements physiques.

En effet, le retrait d’un lien physique entre deux routeurs engendre deux évènements

logiques, un pour chaque routeur. De même, l’extinction d’un routeur entrainera un

nombre d’évènements égal à son degré, chacun de ses voisins détectant la coupure de

son adjacence et émettant un message de signalisation pour en informer le reste du

réseau.

Pendant ce temps, nos 10 points de mesures s’échangeaient à haute fréquence des mes-

sages de type Internet Control Message Protocol (ICMP), dans le but de fournir des

données précises sur l’apparition et la durée des perturbations transitoires. Chaque

Raspberry Pi était configuré pour envoyer un message vers chacun des autres toutes les

10ms, tout en enregistrant des informations de temps et de time-to-live (TTL) pour tous

les messages émis et reçus. Les résultats obtenus permettent non seulement de montrer

que des boucles transitoires apparaissent réellement, mais surtout que celles-ci ont un

impact non négligeable sur le trafic, pouvant aller jusqu’à compromettre le respect des

Service Level Agreements (SLAs) établis entre l’opérateur et ses clients. Nous pouvons

conclure de cette campagne de mesures que les évènements topologiques, planifiés ou

non, peuvent mener à des interruptions de service d’une durée de l’ordre de la seconde.



iv

Afin de résoudre ce problème, ou d’en atténuer les effets, plusieurs solutions ont déjà

été proposées à l’IETF1. Néanmoins, toutes se présentent sous la forme d’extensions à

apporter aux protocoles existants, impliquant des modifications logicielles ou matérielles.

De telles extensions pourraient prendre des années avant d’être effectivement déployés

et utilisables. Pour pallier à ce manque, certains opérateurs ont défini des procédures

pour dévier en douceur le trafic hors d’un lien ou d’un nœud, sur base de poids pseudo

infinis, avant de déconnecter ce dernier. De telles procédures permettent d’éviter les

pertes de paquets liées à l’absence temporaire de connectivité, mais n’ont aucun effet

sur les boucles de routage transitoires.

En se basant sur des travaux de Francois et al.[FSB07], nous proposons des solutions

algorithmiques efficaces pour prévenir l’apparition de perturbations transitoires dans le

cas d’une modification planifiée sur un lien ou un routeur. Notre approche repose sur

les fonctionnalités de base des protocoles de routage à état des liens, et ne requière donc

aucune modification de ces derniers. Intuitivement, il s’agit de contrôler implicitement

l’ordre de mise à jour des routeurs, à travers une modification progressive du poids d’un

sous-ensemble de liens. Ainsi, des augmentations successives du poids d’un lien aura

pour effet de forcer les routeurs les plus éloignés de ce composant à se mettre à jour

avant les routeurs plus proches. Tout changement topologique peut être modélisé sous

la forme d’une reconfiguration des poids attribués à un ensemble de liens du réseau. Par

exemple, nous modélisons le retrait d’un lien par l’augmentation de son poids, depuis sa

valeur actuelle jusqu’à la valeur minimale à laquelle il n’est plus utilisé pour acheminer

des données dans le réseau (ou, plus simplement, jusqu’à la valeur maximale qu’il est

possible de lui attribuer). Celui-ci pourra ensuite être retiré du réseau sans impact sur

les décisions de routage. De la même manière, un nouveau lien peut se voir attribuée

un poids très élevé lors de son ajout dans le réseau, lequel sera ensuite réduit jusqu’à la

valeur prévue par l’opérateur. Le retrait d’un routeur peut également être précédé par

l’augmentation des poids attribués à l’ensemble de ses liens sortants. Ce routeur ne sera

alors plus utilisé comme transit, mais uniquement pour acheminer des données vers ou

depuis les réseaux feuilles qui lui sont directement connectés. Enfin, le procédé inverse

pourra être utilisé dans le cas de l’ajout d’un routeur. Pour prévenir l’apparition de

boucles de routage, notre approche consiste à diviser ces modifications de poids en une

séquence de mises à jour sûres, sans perturbations. Les mises à jour intermédiaires sont

calculées de sorte qu’aucune boucle transitoire ne puisse apparâıtre lors de leur applica-

tion, en supposant qu’elles soient appliquées dans l’ordre et séparées d’un intervalle de

temps suffisant. Une solution simple répondant à ces critères consisterait à augmenter,

ou diminuer, le poids de l’ensemble des liens affectés de 1 à chaque étape. Nous avons

prouvé que de telles modifications ne peuvent jamais mener à l’apparition de boucles,

1IETF: Internet Engineering Task Force
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et permettraient donc d’assurer une convergence sans incidents. Cette solution pourrait

néanmoins nécessiter un grand nombre d’étapes intermédiaires, obligeant l’opérateur

à attendre une durée considérable avant de pouvoir enfin effectuer l’opération prévue.

De plus, ce type de reconfiguration à également un impact au niveau inter-domaine,

forant les décisions de routage pour l’ensemble des préfixes BGP à être reconsidérés

après chaque modification topologique. Par conséquent, au delà de la seule prévention

des boucles, notre objectif est également de fournir les séquences de mises à jour les plus

courtes possibles.

Dans [2], nous proposons un algorithme pour calculer des séquences de mises à jour

de longueur minimale, prévenant toute boucle transitoire qui pourrait survenir lors de

la modification du poids d’un unique lien. Ce premier algorithme fonctionne sur un

mode essai-erreur, cherchant à maximiser l’amplitude de chaque modification tout en

assurant l’absence de boucle, et repose de valeurs pivots, appelées delta. Une valeur

delta est définie pour chaque routeur pour une destination donnée, comme la différence

entre les distances depuis ce routeur vers la destination avant et après le changement

topologique. Ainsi, un routeur dont les routes vers une destination ne sont pas affectées

par le changement topologique aura une valeur delta nulle pour cette destination. Pour

les autres routeurs, cette valeur représente la reconfiguration de poids minimum a appli-

quer au lien modifié pour que la décision de routage change, pour cette destination. Une

modification plus faible sera donc sans effet sur ce routeur, tandis qu’une modification

plus importante forcera le routeur à converger pour ne plus utiliser que ses nouveaux

chemins vers la destination. Enfin, une modification égale à la valeur delta mènera à un

état transitoire et à l’utilisation simultanée des chemins pre et post convergence. Dans

le cadre de notre algorithme, les valeurs delta permettent de réduire significativement

l’espace de recherche, le limitant à l’ensemble des valeurs delta, pour tous les routeurs

et toutes les destinations. Il est donc possible de calculer des séquences valides dans un

temps très limité (de l’ordre de la seconde sur du matériel de qualité standard), malgré

la nature näıve de notre algorithme. Nous avons prouvé qu’aucune boucle ne pouvait

survenir entre deux mises à jour successives de cette séquence, et que celle-ci était de

longueur minimale. Nos évaluations, menées sur des topologies représentant des réseaux

d’opérateurs réels, montrent que les séquences ainsi obtenues sont très courtes en pra-

tique. Même sur des réseaux de grande taille, approximativement 95% des opérations

de retrait de lien nécessitent en effet moins de 3 mises à jours intermédiaires.

Nous généralisons cette approche dans [1] et [3] aux modifications sur un routeur. Notre

nouvel algorithme, appelé Greedy Backward Algorithm (GBA), est en effet capable de

calculer des séquences de reconfigurations sans boucle pour n’importe modification sur

un sous-ensemble des liens sortants d’un routeur, incluant de fait le cas de l’ajout ou

du retrait du routeur entier. Notre algorithme fonctionne de la manière suivante. Dans
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un premier temps, il itère sur l’ensemble des destinations accessibles dans le réseau,

détectant pour chacune d’elles la potentialité de boucle transitoire. Si de telles boucles

sont détectées, l’algorithme extrait, sur base des valeurs delta des nœuds impliqués dans

chaque boucle, un ensemble de contraintes représentant les conditions nécessaires et

suffisantes pour prévenir celles-ci.

Ces conditions sont représentées sous la forme d’intervalles vectoriels, dont les com-

posantes représentent les reconfigurations de poids à appliquer sur chacun des liens

modifiés. La résolution de ce système de contraintes par une séquence de mises à jour

de taille minimale constitue donc un problème multidimensionnel. De plus, les bornes

de ces intervalles affichent un caractère asymétrique : s’il est nécessaire pour un vecteur

intermédiaire d’être supérieur à la borne inférieure de l’intervalle sur chacune des com-

posantes, il est en revanche suffisant que celui-ci soit inférieur à la borne supérieure

sur une seule composante pour satisfaire la contrainte. Cette asymétrie s’explique par

la réaction attendue des routeurs suite à l’application d’un vecteur intermédiaire satis-

faisant une contrainte. Afin de prévenir l’apparition de la boucle associée à la contrainte,

il est en effet nécessaire et suffisant que l’un des routeurs impliqués dans celle-ci se mette

à jour (celui-ci n’utilisera alors plus que ses chemins post-convergence pour atteindre la

destination), et qu’au moins l’un des autres routeurs de la boucle ne soit pas affecté

par le vecteur intermédiaire (celui-là utilise toujours ces chemins initiaux pour joindre

la destination). Dans la mesure o il suffit que le vecteur intermédiaire soit inférieur ou

égal au delta d’un routeur sur l’une des composantes pour que celui-ci utilise toujours

sont chemin initial vers la destination, la première condition nécessite que le vecteur

intermédiaire soit strictement supérieur sur toutes les composantes au plus petit delta

parmi les routeurs impliqués dans la boucle. A l’inverse, la seconde condition requière

qu’au moins l’une des composantes du vecteur soit strictement inférieure au plus grand

delta parmi les routeurs impliqués dans la boucle pour que celui-ci n’utilise aucun chemin

post-convergence.

Face à de telles contraintes, un algorithme de recherche en avant, tel que celui présenté

précédemment pour la reconfiguration d’un unique lien, serait confronté à un problème

d’indéterminisme lié au choix de la composante permettant de satisfaire chaque con-

trainte. En effet, un tel algorithme serait incapable de déterminer a priori quelle com-

posante devra rester inférieure à la borne supérieure de l’intervalle, afin d’obtenir une

séquence de longueur minimale. Pour pallier à ce problème, notre algorithme GBA

repose sur un mécanisme de recherche en arrière, partant de l’état final et cherchant

à chaque étape le plus petit vecteur strictement supérieur aux bornes inférieures des

contraintes restantes. Ce procédé permet d’obtenir une séquence de vecteurs de taille

minimale satisfaisant l’intégralité des contraintes.
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Nos évaluations montrent que les séquences produites par GBA pour le retrait d’un

routeur sont à peine plus longues que celles pour un unique lien. Ainsi, même dans

le cas d’un réseau d’opérateur de très grande taille, 90% des opérations de retrait de

routeur requièrent moins de 5 mises à jour intermédiaires. De plus, diverses améliorations

algorithmiques permettent de réduire la complexité temporelle de GBA en O(N4), voire

O(N3) si la taille des séquences est bornée, et de maintenir un temps de calcul des

séquences de l’ordre de quelques secondes au pire.

Cependant, l’application simultanée de mises à jour de poids d’amplitude différente sur

plusieurs liens du réseau, nécessaire pour garantir la minimalité de la séquence, requiert

de prendre en compte une nouvelle forme de perturbations transitoires. Ce type de mise

à jour, qui consiste à augmenter ou diminuer le poids sur certains liens modifiés plus que

d’autres, peut en effet mener à des phénomènes d’oscillation de routes, néfastes pour

le trafic, ainsi qu’à des boucles non prises en compte par notre algorithme. Dans [3],

nous présentons une heuristique modifiant légèrement les séquences produites par notre

algorithme afin de prévenir l’apparition de telles boucles. Nos analyses expérimentales

montrent que, bien que théoriquement plus longues, les séquences ainsi obtenues sont

en pratique très proches, et bien souvent de même longueur que celles produites par

GBA. Dans [1], nous étendons cette solution à l’ensemble des perturbations de routage,

éliminant du même coup toutes les oscillations de routes qui pourraient survenir lors

de l’application de la séquence de reconfigurations. Notre nouvel algorithme, nommé

Adjusted Greedy Backward Algorithm (AGBA), permet en effet de définir des conditions

nécessaires et suffisantes pour garantir la stabilité du routage malgré l’hétérogénéité des

mises à jour intermédiaires. Ces conditions se présentent sous la forme d’un degré

de liberté par rapport à une séquence uniforme, laquelle consisterait à appliquer des

modifications de même amplitude sur chacun des liens sortants du routeur à une étape

donnée. Nous avons prouvé que l’algorithme AGBA produit des séquences de taille

minimale considérant ces nouveaux paramètres.

En pratique, les séquences calculées par AGBA se révèlent généralement plus longues que

celles obtenues avec GBA, mais l’amplitude de ces différences se limite à 1 ou 2 éléments

dans la plupart des cas. En termes de temps de calcul, nous n’avons pas constaté de

différences significatives entre les performances des deux algorithmes. Ainsi, bien que

notre solution puisse être utilisée via un outil centralisé de management du réseau, nous

espérons que ces résultats pratiques encourageront son intégration directement dans les

logiciels de routage.
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Introduction

The growing popularity of real-time media services over Internet, such as TV broadcast,

voice or video over IP, and gaming have changed the requirements of Internet Service

Providers (ISPs) on the performance of routing protocols supporting those services.

Non-Internet IP based services such as VPNs have also led to ISPs facing ever more

stringent Service Level Agreements (SLAs), defining the performance of an ISP through

various metrics such as service availability, packet losses and latency. Breaches in service

availability are usually due to side effects of network topological changes, which are

common events in large IP networks. On the one hand, the topology can be regularly

reconfigured according to the needs of the operators, in order to perform hardware

replacement, software upgrades or to apply traffic-engineering policies. Several studies

reveal that such operations occur frequently. In particular, a study on the Sprint IP

backbone reports that a significant proportion of topological changes are caused by

scheduled operations. Maintenance tasks are mainly performed during nightly scheduled

windows in order to reduce their impact on the traffic. However, this increases the cost

of operating the network, and reduces its flexibility at the time when it is actually

most likely to undergo traffic-engineering issues. It is thus not currently possible for

operators to optimize routing policies according to traffic fluctuations. On the other

hand, unplanned changes such as link or router failures are also a great source of transient

convergence problems, yet their impact on the routing data plane can be limited thanks

to widely deployed fast-reroute techniques.

Each topological change compels the routers to recompute their shortest path informa-

tion, putting the network into an inconsistent state during which transient disruptions

may occur. Specifications of current link-state routing protocols, Open Shortest Path

First (OSPF) and Intermediate System to Intermediate System (IS-IS), provide no con-

trol over the routers update order. In practice, this order depends on flooding dynamics

of control plane signalization packets and processing capabilities of each router. As a

result, the global data plane of a network can be transiently inconsistent, some routers

having already applied the modification and forwarding packets according to the new

topology, while others still follow the initial one. In some cases, the routing decisions

1
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before and after the change may be conflicting, causing several routers to consider each

other on the shortest path towards a given destination. This phenomenon, known as a

routing loop, increases packet transmission delays and, depending on its duration and the

amount of traffic involved, may lead to congestions and packet losses. Such performance

drop during convergence is particularly unfortunate in the case of a scheduled operation,

with no failed component black-holing traffic. Several methods have been proposed in

the scientific literature and at the IETF to solve this problem. However, they require

extensions to the OSPF and IS-IS protocols, implying software and/or hardware modifi-

cations. Even in a favorable perspective, such changes would possibly take years before

being actually deployed. In the meantime, some ISPs have defined pragmatic procedures

to smoothly reroute the traffic out of a link or a router, using pseudo infinite weights,

before actually shutting it down. While efficiently preventing traffic black-holing due

temporary lack of connectivity, this method does not solve transient routing loops and

may exacerbate their impacts.

Based on previous works by Francois et al. [FSB07], we generalize the problem for-

malization and propose practical solutions to prevent transient disruptions caused by

operations on a link or a router. These may either be used directly for scheduled events,

or combined with fast-reroute technique to handle failures. Our approach only relies on

basic principles of link-state routing, thus not requiring any protocol extension. Intu-

itively, it consists in implicitly controlling the routers update order through progressive

weight modifications on a subset of links. For example, subsequent weight increments

will force routers farther away from the modified component to update before routers

close to it. Should the magnitude of these changes be finely tuned, it could spread the

update of routers potentially involved in a loop across multiple steps. That is, to make

a subset of the routers switch to their final routes, before they appear on the shortest

paths of the others, so that no routing loop occurs. This operation can be repeated until

the component is no longer used for transit in order to enable to its safe remove from

the network without any routing disruptions.

Let X and Y be two routers, and D be a destination such that X initially reaches D

through Y while the opposite holds after a topological change. If Y reacts first to the

change, it will start sending its traffic towards D to X, and X will loop it back to Y . In

this thesis, we demonstrate that there always exists an intermediate weight modification

such that only X updates its route towards D, while Y still follows the initial routing

plan. Hence, whatever the order in which X and Y process the modification, this loop

cannot occur.

More generally, for all link or router-wide modifications, which could cause transient
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routing loop if performed abruptly, we propose solutions to associate with any modifi-

cation a sequence of safe, loop-free weight updates. Intermediate updates are computed

such that no transient loop could appear as they are applied, provided that two subse-

quent updates are separated by a sufficient amount of time. A basic, provably correct,

solution would be to increase, or decrease, the weight on each affected link by 1 at each

step. However, such solution would require a large amount of intermediate updates, thus

potentially requiring the network operator to wait for a long time before the intended

operation is actually performed. Hence, aside from the safety requirement, we also aim

at providing update sequences of minimal length.

To this end, we define a theoretical framework for avoiding transient loops with sequences

of intermediate weight reconfigurations. This framework is based on a set of loop-

constraints, which represents necessary and sufficient conditions to prevent each loop

occurrence for all destinations in the network. That is, a sequence prevents a transient

loop if and only if it satisfies the associated constraint. These conditions allow us to

devise an efficient algorithm for computing sequences of minimal length that provably

prevent all transient loops for a given link or router modification. For any system of loop-

constraints, we prove that there always exists a minimal sequence whose elements are

strictly increasing or decreasing. However, aiming for minimality in the case of router-

wide or multi-link operations may require to simultaneously perform different weight

modifications on several outgoing links of the modified router. Such heterogeneous

updates may jeopardize routing stability, causing route diversions as well as additional

transient loops around the modified router that could not have occurred in case of an

abrupt operation, i.e. without intermediate updates. We propose several variations of

our minimization algorithm to address these problems with different tradeoffs between

disruption avoidance and sequence lengths.

In chapter 1, we present the networking context of this work. We first provide a general

overview of routing protocols by describing the three main families basics. Then we

focus on link-state protocols, which are the most used for intra-domain routing in ISP

backbones. We explain how these protocols react to topological changes, planned or not.

For each kind of disruption that may occur during the convergence period, we describe

existing solutions to prevent or mitigate the impact on the traffic. In particular, we

detail the circumstances in which transient routing loops may occur, and analyze their

impact on a real ISP network. We finally present the key idea proposed in [FSB07] to

prevent these loops in the case of a single link modification. In chapter 2, we explain

how this concept can be extended to handle router-wide modifications. We first con-

sider the simple case of uniform weight modifications, i.e. performing the same weight

modifications on each outgoing link of the router, whose calculation process is similar
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to single-link update sequences. We later generalize to the more challenging case of

heterogeneous modifications. Focusing on normal transient loops first, we detail our

main algorithm for computing minimal weight update sequences for any router-wide

modifications. We then provide several algorithmic and technical solutions to prevent

the additional inconsistencies related to the use of heterogeneous modifications. Finally,

we describe several algorithmic improvements to allow for an efficient implementation

of our solutions. In chapter 3, we thoroughly evaluate the performances of our solutions

on real and inferred network topologies. After having shown how much each evaluation

topology is affected by transient routing loops, we analyze and compare the length of

the sequences produced by each of our algorithms. We then focus on the time required

to compute such sequences, detailing the effects of each implementation improvement of

the computing time distribution. We show that both the length of computed sequences

and time necessary to obtain them are really limited on our set of evaluation topologies.

Based on these observations, we discuss several schemes for a practical deployment of

our solutions. Eventually, we conclude in chapter 4 and describe several possibilities to

extend and improve this work. In particular, we aim at evaluating the benefits of our

solution on real ISP networks.
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1 Routing protocol basics

Routing is the process of selecting best paths in a network to enable transmitting con-

tents from one or multiple sources to one or multiple destinations. Routing is performed

in many kinds of networks, including telephone networks, electronic data networks and

transportation networks. In the context of packet switching networks, routing is per-

formed by dedicated devices, called routers, which are in charge of computing best paths

according to a routing metric, such as bandwidth, delay, reliability or simply hop count.

Routers store best path information in routing tables, or Routing Information Bases

(RIBs), as a list of entries. Each entry associates a network destination with the path,

or route, towards it. Although they are generally constructed by routers running routing

protocols, additional entries denoted static routes can be manually supplied. Routing

tables are not used directly for traffic forwarding, but instead to populate forwarding

tables, or Forwarding Information Bases (FIBs), which are optimized for fast lookup.

Forwarding tables contain the minimal information necessary to transmit outgoing traf-

fic on the best interface. Each entry associates an address matching one or multiple

destinations with an identifier of the next routing capable equipment, or next-hop, on

the route towards them. In brief, the routing or control plane of a router draws a map of

the network, while the forwarding plane decides how to handle incoming data packets.

Several types of routing exist to be used in different contexts. Very small networks, for

example, may choose to rely on static routing, which consists in manually configuring

the routing table of each router with an entry for every destination in the network.

Fallback routes may also be specified in case the first ones become unavailable. This is

however not suited for large networks that serve dozens or hundreds of destinations, and

may frequently undergo topological modifications. Dynamic routing aims at solving this

problem by constructing routing tables automatically, based on topological information

carried by routing protocols. This allows the network to dynamically react to topological

modifications, attempting to avoid failures and blockages.

Routing protocols consider that each router has a priori knowledge of networks directly

attached to it, and define how this information is shared with the rest of the network.

Practically, local information of each router is embedded in signalization messages to be

transmitted to immediate neighbors. Upon receiving such message, a router updates its

view of the network accordingly and retransmits this information to its own neighbors.

Topological knowledge is thus recursively flooded throughout the network.

Based on the information they receive, routing protocols locally compute on each router

the best path towards every reachable destination and construct the routing table ac-

cordingly. Such a best path is not necessarily the one minimizing the number of routers

the packet has to cross. It may depend on speed or bandwidth available on each link,
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processing capabilities of routers, traffic flows passing through the network, as well as

specific needs of the operator. It is hence possible to influence the routing decisions by

configuring a strictly positive valuation, or weight, on each link. A best path between

two nodes is then defined as the one minimizing the sum of the weights on its constituent

links, rather than the number of link. These weights could be defined according to var-

ious criteria [FT03], such as the inversed capacity of each links. In this case, the more

capacity a link has, the more attractive it is.

In order to compute such best paths, routing protocols rely on operations research and

graph theory algorithms. The network is modelled as a directed weighted graph whose

nodes usually represent routers and edges are adjacencies between routers. However,

depending on the protocol, the information available on each node is not necessarily a

complete view of the network, but may also be aggregated distance information from

neighboring nodes. This information is used to compute the shortest paths for every

destination and set the corresponding routing table entry. In hop-by-hop routing proto-

cols, which are the most commonly used in IP networks, only the next-hop is actually

stored in the table, even if the router has enough information to compute the full path.

The optimality principle state that, if router J is on the optimal path from router I to

K, then the optimal path from J to K falls along the same route. A consequence of this

principle is that the routing decision the next-hop will make for a given destination will

match the one the current node would have opted for. In the following, we detail the

three major classes of routing protocols in IP networks. Distance-vector and link-state

protocols are designed for intra-domain routing, i.e. inside an autonomous system, while

a path-vector protocol is used for inter-domain routing.

1.1 Distance-vector routing

Distance-vector protocols do not require that routers have a complete knowledge on the

network. Instead, they are based on vectors containing the distance from a given node

to every destination in the network. Each router periodically informs its immediate

neighbors about potential topological changes, by transmitting its own distance vector.

While not having knowledge of the entire path for a destination, a router knows how

far the destination is from each neighbor and can select the closest one as next-hop.

Protocols based on distance vectors include Routing Internet Protocol (RIP) and Cisco’s

proprietary Interior Gateway Routing Protocol (IGRP).

In practice, best paths are computed using a distributed variant of the Bellman-Ford

algorithm. This algorithm is based on the principle of relaxation, in which an approx-

imation to the correct distance is gradually replaced by more accurate values, until
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eventually reaching the optimum solution. In a stable network, the approximate dis-

tance to each router is always an overestimate of the true distance, and it is updated at

each step with the minimum of its old value with the length of a newly found path. Ini-

tially, a router only knows the distance to its immediate neighbors, which is the weight

configured on each interface, and considers an infinite distance for all other destinations

in the network. As distance vectors are spread in the network, a router progressively

replaces infinite values with actual hop distances calculated from the vectors it receives.

Also, previously stored distances may be updated to lower values as alternate paths are

discovered. Every time a distance is modified, the neighbor that originated the message

is stored as the new next-hop for this destination. This algorithm has a worst case

complexity in O(|N | × |E|) when performed globally, but only requires k × (|N | − 1)

operations on each node, where k represents the degree of this node.

Despite a fairly low complexity, distance-vector protocols come with significant draw-

backs that prevent them from being used in large networks. These include a slow con-

vergence as well as the chance of a long lasting routing loop being triggered after a

failure renders a destination unreachable for the rest of the network. Indeed, depending

on the signalization messages ordering, multiple routers may consider one another on

the shortest path towards the unreachable destination. They gradually increase their

distance for this destination until it reaches a pseudo-infinity value (16 in the case of RIP

version 1), at which point the algorithm corrects itself, due to the relaxation property

of Bellman-Ford.

1.2 Link-state routing

The purpose of link-state routing protocols was, at first, to overcome the limitations

of distance-vector routing. Whenever a router is initialized, it floods the state of its

links throughout the entire network, not only to its immediate neighbors. With such

information, each router can draw a connectivity map of the network, showing how

routers are connected to each other and which weight is configured on every link. Each

node then independently computes the best path from itself to every possible destination

in the network, and stores the next-hop for each path in its routing table. Also, if any

router notices a topological change, a updated link-state message is sent to all other

routers in the network, so that they can adjust their routing tables accordingly. The

most commonly used link-state routing protocols are Open Shortest Path First (OSPF),

which is supported by the Internet Engineering Task Force (IETF), and Intermediate

System to Intermediate System (IS-IS), developed by the International Organization

for Standardization (ISO). For the sake of simplicity, we use in the following OSPF
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OSPF IS-IS

Link Circuit

Host End System (ES)

Router Intermediate System (IS)

Packet Protocol Data Unit (PDU)

Hello packet IS-to-IS Hello (IIH) PDU

Link-state advertisement (LSA) Link-state PDU (LSP)

Table 1.1: Link-state protocols terminology

terminology to denote network components and interactions. Equivalences with IS-IS

terms are given in Table 1.1.

Link-state protocols paths calculation relies on Dijkstra’s algorithm. A router maintains

three data structures: a tree containing routers that are “done”, a set of unvisited routers

and a tentative distance for each router in the network. The algorithm starts with the

tree structure and the set of unvisited routers empty. Then, the initial router, on which

the algorithm is performed, is added as the root of the tree and its tentative distance

is set to zero. All other routers are marked as unvisited with a tentative distance set

to infinity. Considering the initial router as the first current router, the algorithm

repeatedly does the following:

• Update the tentative distance of each unvisited neighbor of the current router.

Its new value is equal to the minimum of the old value with the distance via the

current router. Also, if the tentative distance was modified, attach the neighbor

to the current router in the tree (and remove any previous attachment).

• Select the unvisited router having the smallest tentative distance. Remove this

router from the unvisited list and mark it as current.

These two steps are repeated until there is no more router left unvisited. When the algo-

rithm ends, the shortest path from the initial router to any destination in the network is

indicated by a path in the tree. Such a tree is known as Shortest Path Tree (SPT). The

complexity of this algorithm mainly comes from extracting the smallest tentative dis-

tance, which may require cycling through all elements in the list. If used with a standard

list, as in the original version, Dijkstra’s algorithm runs in O(|N |2). However, efficient

implementations usually rely on more sophisticated priority queues. The asymptotically

fastest known variant is based on a Fibonacci heap and runs in O(|E|+ |N |log|N |).

Figure 1.1 represents the IP backbone of Internet2 Network [Int], which is freely available

online. This network, operated by the not-for-profit organization Internet2, provides net-

work services for many U.S. educational, research and government institutions. Interior
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SEAT

LOSA

SALT

HOUS

KANS

CHIC

ATLA

WASH

NEWY

1342

913

1303

1705

1329

818

1385

689

1045

905

1000

699

277

Figure 1.1: Internet2 IP network with IGP metrics (2009)

SEAT

LOSA

SALT

HOUS

KANS

CHIC

ATLA

WASH

NEWY

Figure 1.2: Shortest Path Tree rooted at Atlanta

Destination Next-hop Distance

SEAT CHIC 3976

LOSA HOUS 3090

SALT CHIC 3063

HOUS HOUS 1385

KANS CHIC 1734

CHIC CHIC 1045

ATLA – 0

WASH WASH 699

NEWY WASH 976

Table 1.2: Routing table computed by the router at Atlanta
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Gateway Protocol (IGP) weights, or metrics, configured on this network are directly

based on fiber route kilometers, so that best paths calculated by routing algorithms

minimize the actual geographic distance traveled by the signal. We chose to illustrate

routing mechanisms on this topology for that particular reason; as it is easier the grasp

the idea behind shortest path routing with link metrics being euclidean distances. The

SPT obtained by running Dijkstra’s algorithm on the router located in Atlanta, Georgia,

and the associated routing table are represented on Fig. 1.2 and Table 1.2. The routing

table states that packets processed at Atlanta that are headed towards Seattle, Salt Lake

City or Kansas City shall be forwarded to the router at Chicago, while packets towards

Los Angeles are to be sent to Houston and those towards New York City to Washington

D.C.

OSPF and IS-IS protocols implement an extension for multi-path routing. This extension

is called Equal-Cost Multi-Path (ECMP) and enable packet forwarding over multiple

best paths that share the same shortest distance for a given destination. Multi-path

routing potentially offers substantial increases in bandwidth by load-balancing traffic

over multiple paths. Equal-cost paths may however differ on a variety of other metrics,

such as Maximum Transmission Unit (MTU), latency and available bandwidth. This

may impact the traffic if a single flow is split across several paths, as packets may be

reordered and undergo constantly changing maximum size. Multi-path routing is thus

generally performed on a per-flow basis. Routers calculate a hash over the packet header

fields that identify a flow and forward to the same next-hop packets having the same

resulting key.

Routers running link-state protocols having complete knowledge of the network topology,

count-to-infinity and routing loops problems cannot occur the way they do with distance-

vector protocols. However, it requires all routers to calculate their best paths based on

exactly the same view of the network.

1.3 Path-vector routing

Distance-vector and link-state protocols are both designed for intra-domain routing.

They are used to compute routing paths inside an Autonomous System (AS), but are not

suited for inter-domain routing. Distance-vector protocols quickly become impractical

as the number of routers increases, and even link-state ones show limitations when it

comes to thousands of routers. Routing table calculations for such very large networks

would require huge amount of resources, not to mention the heavy traffic load generated

by signalization messages. Most of all, routing policies between ASes, maintained by

Internet Service Providers (ISPs) of different types and countries, must consider various
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parameters aside from arithmetic shortest paths. Compared to intra-domain, inter-

domain routing relies on a different perspective of the network. Instead of a plain graph

of routers, the Internet is viewed as a hierarchical graph of ASes divided into tiers. Tier-

1 networks are at the top of the routing hierarchy. They span across multiple continents

and are all interconnected to each other via peering agreements. Tier-2 ASes buy transit

from these Tier-1 networks to reach remote parts of the Internet, but may also establish

peering relationships with other ASes of the same tier. These tier-2 networks provide

Internet access to lower tier ASes and end users.

Path-vector protocols provide mechanisms to deal with these complex interactions and

compute compute routing paths through the whole Internet. Similarly to distance-

vector, every AS advertises its view of each prefix to its neighbors, except that routing

table entries contain full paths towards each destination AS rather than a simple metric.

The concept of routing metric as a global level of attractiveness does not make sense for

inter-domain routing, for the attractiveness of a relationship varies across ASes. It indeed

depends on commercial agreements between ASes as well as geopolitical considerations.

Routing decisions of an AS are hence taken based on the full paths announced by

neighboring ASes, and are shared by all routers within the AS.

Border Gateway Protocol (BGP) is the most widely deployed protocol for inter-domain

routing in the Internet. It is often classified as a path-vector routing protocol, even

though it does not completely satisfy the principles described above. In particular,

routing tables of a given AS are only partially shared with the neighbors, based on

commercial relationships.
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2 Convergence of link-state protocols

We now focus on link-state protocols and, in particular, the convergence period that

follows each modification of the network topology. These changes can be caused by

network failures but also maintenance operations. For example, a study on the Sprint

IP backbone [MIB+08] reports that 20% of topological changes are caused by main-

tenance operations. In IP over optical networks, the topology can be regularly recon-

figured according to the need of the operators [PDRG02]. Another possible kind of

topological change is the intentional modification of IGP weights for traffic engineering

purposes [FT02] in order to optimize routing according to traffic fluctuations.

Formally, we denote as topological change any modification in the network that could

have an impact on the intra-domain routing tables calculated by routers within this

network. Such change can be a reconfiguration of the IGP weight associated to a router

interface, or the addition, or loss, of an adjacency relationship between routers. In

the following, we denote the former as a link weight reconfiguration, or simply weight

reconfiguration. We also use the terms of weight increment and decrement so as to specify

the direction of the modification. As for the latter, we split up the definition in different

sub-cases. If an adjacency relationship is simultaneously established between one or

several routers in to network with a new router, that was not part of the network before

the change, we use the term node startup. Respectively, we denote as node shutdown, the

simultaneous loss of all adjacency relationships with a given router. Finally, we denote

as link startup, respectively shutdown, the addition, or loss, of an adjacency relationship

between two routers that does not change the total number of routers in the network.

In networks running link-state protocols, topological changes always triggers a reaction

in the control plane of the routers. New Link-State Advertisements (LSAs) are flooded

and routers update their RIBs accordingly. However, the actual impact of a topological

change on the data plane, thus on the traffic, depends on the nature of this change

and the conditions in which it occurs. If it results from a logical modification that has

no impact on the global network connectivity, the router being modified can instantly

start spreading updated information to the rest of the network. For example, an operator

decides to reconfigure the IGP weight associated to an interface of a given router. At the

time the command is passed (or with no significant delay), the router starts recalculating

its shortest paths and sends to its neighbors an LSA containing the updated information.

In practice, both actions are performed at the same time by separate processes. Until

new paths have been calculated and pushed to the FIB, traffic keeps on being forwarded

along the initial paths.
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Hard shutdown [ ][ ][ ]
Failure detection Path calculation RIB/FIB update

Soft shutdown [ ][ ]
Path calculation RIB/FIB update

Weight reconf. [ ][ ]
Path calculation RIB/FIB update

Topological change

Initial paths New paths Silent loss Dest. unreach.

Figure 1.3: Traffic forwarding on a router undergoing a local topological change

On the other hand, link or router failures (hard shutdown) are not instantly detected by

surrounding devices. In OSPF [Moy98, CFML08], an existing adjacency is considered

down only if no Hello packet is received within the Router Dead Interval. By default

it is equal to four times the Hello Interval, which is itself of either 10 or 30 seconds,

depending on the network type. In IS-IS [ISO02], an adjacency is removed if a neighbor

is not heard of within the Holding Time interval, by default equal to three times the

Hello Timer (3 or 10 seconds). As long as the logical adjacency exists, traffic continues

to be normally sent through the link. This phenomenon is referred to as a transient

black-hole, as it may cause a large amount of traffic to be lost with no error being

triggered.

Once an adjacency comes down on a router, be it due to a component failure or the result

of a configuration command issued on this router, every entry relying on it is removed

from the RIB and FIB. LSAs are then sent to announce this change to the rest of the

network and new paths are calculated for each affected destination. In the meanwhile,

further packets received by the router and headed towards such a destination are dropped

by the router, which notifies senders with Internet Control Message Protocol (ICMP)

destination unreachable error messages. Normal traffic forwarding is only resumed when

new entries have been pushed to the FIB, assuming that a path towards the destination

still exists in the network. The duration between the removal of the initial entries and

the addition of the new ones is mainly characterized by two factors: the new paths

calculation, which depends on the number of routers in the network; and the RIB/FIB

update time, depending on the number of prefixes affected by the change.

The traffic forwarding states, towards an affected destination, on a router that undergoes

a local topological modification is summarized on Fig 1.3. In the following sections 2.1
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and 2.2 we present existing solutions that aim at reducing the traffic loss period (silent

loss and destination unreachable) after a link or node shutdown.

2.1 Fast failure detection

From the explanation provided in the previous section, the delay before a failure is

detected directly depends on the interval between Hello packets. Sending more frequent

Hello packets would hence naturally speed up failure detections. However, this also

means increasing the signalization traffic. A Hello interval too narrow can increase the

probabilities of network congestion, possibly causing several consecutive Hello packets

to be lost. False breakdowns resulting from this situation may be more harmful for the

network than a slower detection of actual failures. When an adjacency goes down, every

further data packet that ought to be forwarded on it is dropped and new routes are

calculated. False positives thus increase the CPU load on the routers and cause traffic

losses. The problem of finding better Hello interval values, which would provide both

fast failure detection and low chances of network congestion, has been investigated in

[AJY00] and [GRcF03]. The authors state that Hello intervals can be reduced to much

lower values than those specified in protocols standards. Even though optimal values

depend on the physical constraints of each link, such solution makes it possible to detect

link failures within a few seconds in most cases.

Alternatively, failure detection can rely on the link layer in certain circumstances, hence

avoiding the need of heavier signalization traffic. Synchronous Digital Hierarchy (SDH)

and Synchronous Optical Networking (SONET), which are commonly used in optical

networks, provide inbuilt alarm mechanisms that triggers if either no bit transitions are

detected (Loss of Signal (LOS)), or the received data does not match the framing pattern

(Loss of Frame (LOF)) during a given time interval. The router linecard can thus detect

a failure in less than 10 milliseconds and transmit the information to the main CPU.

Experiments performed by Francois et al. [FFEB05] show that the total detection delay

is lower than 20ms in most cases, and barely exceeds 50ms for worst cases.

Finally, failure detection can be performed with low signalization overhead on any type

of network using Bidirectionnal Forwarding Detection (BFD) ([KW10a, KW10b]), a ded-

icated protocol recently standardized by the IETF. BFD relies on encapsulation to allow

for a rapid detection of link failures at any layer and over any media. It was primarily

designed to provide faster notification of failing adjacencies for routing protocols, but

also has many other use cases, which include virtual circuits, tunnels and MPLS Label

Switched Paths. BFD has no neighbor discovery mechanism, but establishes point-to-

point sessions between pre-defined systems. When used in conjunction with a routing
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protocol, BFD sessions are established upon request by the IS-IS or OSPF implemen-

tation. Depending on their ability to quickly proceed BFD packets, both systems then

agree on the operating mode to be used in the session. BFD has two operative modes,

Asynchronous and Demand, that can be used independently in both directions and

modified in real time in order to handle unusual situations. In Asynchronous mode, the

systems periodically transmit BFD control packets to one another. If a system does not

receive any packet for given duration, it assumes that the link broke down. While this

mode is similar to the inbuilt failure detection method of routing protocols, it differs in

its capacity to dynamically adapt to specific constraints of each link. In Demand mode,

it is assumed that there exists another way to ensure the connectivity in this session,

and no more control packets are sent after the session is established. Either system may

still request the connection to be explicitly verified by sending BFD control packets.

In addition to these operating modes, BFD also provides an Echo function that may

be called at any moment, independently of the current mode. This function makes the

system transmit a stream of BFD Echo packets in such a way that the remote one sends

them back through its forwarding plane. If too few of these packets are received, the

link is considered down. Overall, BFD might not be as fast as a SDH/SONET alarms,

but allows for more flexibility and is usable in any environment.

2.2 Fast reroute mechanisms

When a router detects the failure of an adjacency, it initializes a notification process by

sending updated LSAs to its neighbors, and starts calculating new shortest paths. Until

these new path are computed and the corresponding entries updates in the FIB, packets

for destinations that were previously reached through the failed component are dropped

by the router. The amount of lost traffic hence directly depends on the time required to

recompute the SPT. As mentioned in Sec. 1.2, an implementation of Dijkstra’s algorithm

has a computational complexity of O(|E| + |N |log(|N |)) at best. Such complete SPT

calculation can delay the convergence by a few seconds in large networks, and causes

more incoming packets to be dropped by the router. However, in the case of a link

or router failure, most of the network topology remains the same. It is thus possible

to re-use the previous SPT in order to speed up the convergence. This algorithmic

optimization to shortest path calculation is known as Incremental Shortest Path First

(ISPF) [MRR79]. ISPF analyses the impact of the topological change on the previously

computed SPT in order to minimize the amount of additional computation required. For

example, if a link that belongs to the previous SPT goes down, ISPF limits the shortest

path computation to the impacted subgraph, and re-uses the non-impacted region of

the previous SPT. Also, if the link is not used in the previous SPT, then the whole
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Figure 1.4: Loop-free alternate

shortest path calculation can be skipped as the old SPT is still valid. ISPF can thus

greatly reduce the time required to compute new shortest paths towards each affected

destination. In addition, recent works on multipath routing [MFB+11] have devised

even more efficient algorithms.

In order to further reduce the unreachability period, it is also possible to rely on pre-

determined backup paths. If a failure occur on a link or router for which a backup

path exists, further traffic that should be forwarded via the failed component is sent

along the backup path instead. This procedure is known as fast reroute, as it prevents

the traffic from being dropped while new shortest paths are computed. An alternative

paths avoiding a failed component is called a repair path, and component for which

such a repair path exits are said to be protected. Such protection mechanisms are often

local, which means that the repair paths for a given protected component originate at

the router immediately upstream of that component. This is motivated by the fact

that packets continue to be forwarded along the initial forwarding path until a new one

has been computed. Hence, it is sufficient that the last router before the failure has

a backup solution to reach the destination in order to prevent any packet from being

dropped. Local protection is not necessarily optimal in terms of routing, but it limits

the number of repair paths to be computed, and still provides a decent alternative to

dropping packets. In practice, repair paths can be classified into three main categories:

purely local, single-hop and multi-hop.

Purely local repair paths are ECMPs that do not contain the failed component. Such

paths are both straightforward and optimal repair paths. They should be used whenever

available for they do not require any additional computation and match the new paths

that will be calculated by the routing algorithm, thus preventing any further disruption.

Loop-free alternates

If no safe equal-cost path exits on the router adjacent to the failure, but a direct neighbor

has a shortest path that does not include the failed component, incoming traffic could

be forced towards this neighbor. A direct neighbor providing a single-hop repair path is

called a Loop-Free Alternate (LFA) [AZ08]. Considering the simple topology on Fig 1.4,
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when router s computes its shortest path towards d, it determines to use router e as its

primary next-hop. If LFA is enabled, s looks for an alternate next-hop to reach d, and

determines that it could also send its traffic towards d through its link to n. Router

s thus adds n as its next-hop for destination d. Then, if the adjacency between s and

e comes down, s stops sending the traffic towards s to e and immediately switches to

the alternate next-hop n. The traffic continues to be forwarded to n until a new SPT

is computed and the FIB entries are updated. However, such a suitable LFA does not

always exist. It depends on the topology and the component to be protected. Should

the weight configured the link from n to d have been 20 instead of 3, using n as an

alternate next-hop would have caused the traffic to loop between s and n.

[AZ08] defines inequalities to verify whether or not a given neighbor is a valid LFA. Let

C(A,B) denote the shortest distance between two arbitrary routers A and B, a neighbor

N provides link protection for the primary next-hop E of router S towards destination

D if and only if:

C(N,D) < C(N,S) + C(S,D) (1.1)

This first inequality states that no shortest path from an alternate next-hop N towards

D traverses router S.

Besides, the same neighbor N also provides node protection for E if and only if:

C(N,D) < C(N,E) + C(E,D) (1.2)

This second equation ensures that the shortest paths from N to D do not include

router E either. Note that, in the example on Fig 1.4, C(n, d) < C(n, e) + C(e, d) <

C(n, s)+C(s, d), so that n protects both link (s, e) and node e. In terms of calculation,

retrieving the distances mentioned above requires to compute an additional Shortest

Path DAG (SPDAG) from the perspective of each direct neighbor of S, which can be

done efficiently using techniques presented in [MFB+11]. The applicability of this LFA

mechanism is further discussed in [FFS+12]. Besides, real use case illustrations and

operational management requirements are provided in [LDF+].

ECMP and LFA offer the simplest repair paths and are usually preferred over any other

fast reroute mechanism whenever they are available. [SB10b] indicates that around 80%

of failures on real-world IGP networks can be covered using only these two methods. For

the remaining 20%, multi-hop repair paths are required. These involve more complex

mechanisms, both to compute the repair paths and to forward the traffic along them.

U-turn Alternates[Atl06] is an extension to LFA that aims at increasing the failure

coverage by looking for LFAs one hop further away. In addition to its primary next-

hops, a router S computes for each prefix an alternate next-hop to be used if the primary
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Figure 1.5: U-turn alternate

one fails. This alternate next-hop can either be an LFA or, if no such neighbor exists, a

U-turn alternate. A U-turn alternate does not satisfy inequality 1.1, hence uses S as a

primary next-hop towards the destination prefix, but has itself a node-protecting LFA

for its primary next-hop, i.e. router S. This mechanism requires U-turn alternates to

support U-turn themselves, in order to forward U-turn traffic coming from S to their

own LFA, rather than sending it back to S. Identification of U-turn traffic, by a U-

turn alternate, may be either implicit or explicit. Implicit identification requires no

modification to the packets. If a U-turn capable router receives a packet headed towards

a given destination from its primary next-hop for this same destination, it identifies

the packet as a U-turn packet and forwards it to its LFA. On the other hand, explicit

identification requires U-turn packets to be marked as such by the router sending them

to the U-turn alternate. Explicit packet marking is used when hardware restrictions or

particular deployment conditions make implicit identification unrealistic.

In Fig 1.5, router s has no LFA to protect its next-hop for destination d, because its only

other neighbor n uses s as its primary next-hop. However, if both s and n support the

U-turn mechanism, s could use n as a U-turn alternate. Then, if its primary next-hop e

fails, s can forward the traffic towards d to n, which will send it to m, its LFA protecting

s for destination d. Note that the node-protecting condition on the LFA of the U-turn

alternate ensures that the traffic never loops back to s. It does not however guarantee

that n is a node protecting U-turn alternate for s. For a U-turn alternate to also provide

node protection for the primary next-hop e of s, it is necessary to ensure that e is not

on the shortest path towards d of the U-turn alternate’s LFA.

[SB10b] states that U-turn alternates, and 2-hops repair paths in general, increase the

coverage to around 98% of link or node failures in real-world IGP networks.

Bryant et al. [BFP+14] proposed a new extension to LFA, called Remote Loop-Free Al-

ternate (RLFA). RLFA increases the coverage of LFA against link failures by providing

additional virtual links to the repairing node. These virtual links are in fact tunnels,

based on IP-in-IP [Sim95, HLFT94] or MPLS-LDP [AMT07, RTF+01] encapsulation,

which carry the rerouted traffic to some staging point in the network. Such points are

selected so that, in the absence of concurrent failures, the traffic will travel from the

staging point to its destination over normal forwarding paths without looping back.

Formally, staging points satisfy the LFA inequality 1.1, whence the term of remote LFA.
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If no normal LFA exist, a set of suitable staging points is calculated based on the fol-

lowing criteria: a staging point must be reachable from the repairing router S without

traversing the failed link; and the shortest paths from a staging point to the destination

D must not include the failed link. The set of nodes satisfying the first criterion is

denoted extended P-space of S, while the nodes that meet the second are in the Q-space

of D. The intersection of the extended P-space and the Q-space thus represents the

set of valid staging points. In practice, the Q-space of the primary next-hop of S is

used as a substitute for the Q-space of each destination reached through that next-hop.

This approximation strongly reduces the complexity of calculating staging points, at the

expense of potentially suboptimal repair paths. Any valid staging point, satisfying both

criteria, can be chosen as a RLFA. However, it is recommended that the closest one from

the repairing router is selected, as this maximizes the load balancing possibilities for the

traffic exiting the tunnel.

RLFA extension brings a complete coverage against link failure in symmetrically weighted

networks. Since RLFAs do not necessarily satisfy inequality 1.2, protection against node

failures is not ensured. Hence, if RLFA is used to provide a repair path in case of node

failure, the rerouted traffic may loop. Several hints are given in [BFP+14] as to mini-

mize the probability of a loop, and the problem is further discussed in [SGH+14] and

[BFPS07].

More recently, the development of source routing with the segment routing frame-

work [FPB+14] has opened new possibilities in terms of repair paths. Using a list

of segments, it is possible establish repair paths following the natural backup paths that

would be used after the convergence, thus providing complete link and node protection

for any topology [FFB+14].

Other fast reroute mechanisms

Failure Insensitive Fast Rerouting (FIFR) [NLY+07] takes the idea behind fast-reroute

approaches from a different perspective. Since most of the topological changes due to link

failures are transient events, it is likely that the topology will eventually fall back to its

initial state, so that accelerating routing convergence would only cause more instability.

Hence, instead of providing temporary forwarding paths while the network converges

to its new routing state, FIFR prevents the convergence and forwards the traffic along

backup paths until the topology returns to normal. This makes the network virtually

insensitive to failures, as long as backup paths exist.

In practice, FIFR is similar to a local fast reroute mechanism, but for its ability to hold

the LSA a router would transmit upon detecting a failure on an adjacency. This prevents

the rest of the network from knowing about the change, and thus from converging. Traffic
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forwarding along backup paths relies on implicit failure detection. Upon receiving a

rerouted packet, a router can infer a failure based on the unusual interface the packet

came through. This router thus forwards the packet using a precomputed, interface-

specific, backup table along a repair path. If the failed adjacency comes up again within

a reasonable delay, denoted suppression interval, forwarding resumes over the recovered

link, otherwise an LSA is propagated so that the network can converge to the new

optimal routing state.

FIFR comes with roughly the same limitations as U-turn implicit packet identification.

It requires the network to span over a single routing area, with point-to-point links and

symmetric IGP weight assignments. Besides, FIFR only provides protection against link

failures.

Fast-reroute mechanisms generally assume that only the neighbors of the failed compo-

nent are aware of that failure. Hence, in order to provide a repair path, these routers

have to steer the traffic around the failure despite other routers being unaware of its

nature and location. Even though it could be possible for a router to implicitly infer

the location of the failure in some situations, such solution limits the applicability of the

fast-reroute mechanism. The idea behind Not-Via [BPS13] is to overcome this limitation

by explicitly identifying the network component to be avoided. This method relies on a

single level on encapsulation adding to each rerouted packet a special address, denoted

Not-Via address. The Not-Via address indicates both the component that the repair

path must avoid and the end of this repair path, which is the router directly downstream

of the failed component on the shortest path towards the destination. At that point,

the encapsulation is removed and the packet reaches its destination using normal for-

warding paths. Since the decapsulating router is always closer to the destination than

the encapsulating router, the packet will not loop.

Consider the network shown in Fig. 1.6 with a uniform valuation on the links. Upon

detecting a failure of router e, router s can no longer forward the traffic towards d via

its primary next-hop for this destination. Instead, it encapsulates every further packet

headed to d with the address xe, which is a special address of router x that cannot be

reached from e. Provided that the network is not partitioned due to the failure of e, the

encapsulated packets will reach router x through the best path from s that does not in-

clude router e, that is s → n → m → x. At router x, these packets will be decapsulated
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and normally forwarded to d.

The Not-Via mechanism can protect against any link or node failure in the network,

as long as the network is still connected after the failure. Rerouted packet are encap-

sulated to the address of the router just behind the failure that is not reachable from

the previous router on the shortest path to the destination. Let us denote as A the

primary next-hop of router S towards destination D, and B the primary next-hop of A

for the same destination. If router A fails, the rerouted traffic from S is sent to BA, the

address of router B that is not reachable from A. On the other hand, if only the link

(S,A) breaks down while router A itself is still available, the traffic can be steered to

AS instead, thus avoiding only the failed link. This mechanism however requires that

all routers on a repair path have a route to the Not-Via address. Every router hence has

to compute N − 1 additional SPDAG, one for the case of each other router having to

be avoided. These SPDAGs can be calculated efficiently using ISPF, but still represent

significant extra computations.

The above solutions aim at providing repair paths for IP traffic passing through the

network. However, more and more ISPs now rely on ingress-to-egress Label Switching

Path (LSP) tunnels to carry transiting traffic throughout their network. Since these

tunnels usually have different service level requirements, it may be interesting to have

specific backup paths that ensure continuity of the service level in case of failure.

An example of protection tunnel for the LSP from A to E is shown on Fig 1.7. If a

failure occurs on link (B,C), router B will encapsulate the traffic associated to this LSP

and send it on the backup tunnel (green dashed line) through F and G. Upon reaching

D, the traffic is decapsulated and transmitted to E along the normal LSP. The start

point of such a backup tunnel, which is router B in this example, is referred to as the

Point of Local Repair (PLR) and the end point is called Merge Point (MP).

The IETF defined procedures to establish backup LSP tunnels for local repair of LSP

tunnels [PSA05]. These procedures are based on two repair methods. The first method

is called one-to-one backup. A backup LSP is established that intersects the original

LSP downstream of the point of link or node failure. On each router providing a point

of local repair, a separate backup LSP is established for each LSP that is backed up.

The second method is called facility backup. It takes advantage of the Multiprotocol

Label Switching (MPLS) label stack in order to back up multiple LSPs with a single

repair LSP tunnel, called a bypass tunnel. Such a bypass tunnel can provide fast-reroute

for all LSPs that pass through the point of local repair and through a common router

downstream of the failed component. In both cases the repair paths can either be defined

manually by a network operation, or computed using a Contrained Shortest Path First

(CSPF) algorithm [Zie12].
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Figure 1.7: MPLS fast reroute

Protection schemes have also been investigated in various contexts aside from fast

reroute. Optical switching networks, for example, have their own survivability mecha-

nisms implemented at the physical layer [RSS09]. SONET/SDH architectures rely on 1:1

protection mechanisms, known as ring-based schemes, to provide quick recovery times

in case of failure. Ring-based schemes however require that half the network capacity

be dedicated to protection. Other protection mechanisms include mesh-based schemes,

offering better capacity efficiency at the expense of slower recovery times, and pre-

configured protection cycles [GS98, KAJ09], denoted p-cycles, which aims at combining

the benefits of both ring- and mesh-based techniques. These mechanisms complement

routing layer protection, for they provide fast and efficient failure recovery in most cases

without being, however, able to handle all types of failure.
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3 Transient routing loops

As we showed in the previous section, various solutions exist on the forwarding plane

to overcome failure events, providing temporary path to safely carry the traffic while

the routing plane converges to a new stable topology. However, the distributed na-

ture of link-state routing protocols may lead to transient traffic disruptions during the

convergence period [HMMD02].

In a stable situation, the shortest paths used by each router are consistent with the rest

of the network, for they are computed based on exactly the same map of this network,

represented as a Link-state Database (LSDB). Whenever a topological change occurs,

the new information is flooded in the network using LSAs and integrated to the LSDB of

each router. Yet these LSA are subject to the same propagation delays as any other data

packet passing through the network, and do not spread instantly to every other router.

Different versions of the LSDB may thus simultaneously exist in the network. Besides,

the time required to recompute the RIBs and update the FIBs may vary across routers,

some having more processing capabilities than others. As a result, a subset of the routers

may forward their traffic according to the new topology, while the rest still follow the

initial one. Depending the update order among affected routers, this situation may lead

to routing loops. These are often referred to as transient loops for they disappear as

soon as the last router involved has converged to the new topology [GSB+12].

A transient routing loop is characterized by several routers, in different update states,

considering each other on the shortest path towards a given destination. Traffic headed

for the same destination that comes through one of these routers may thus be caught

into the loop. At best, that is if the routers involved in the loop update their FIBs fast

enough, the traffic will reach the destination with a delay. However, the time-to-live

(TTL) of affected packets, whose value is decremented for each router traversed, will

quickly reach 0 and cause the packet to be dropped. Moreover, looping packets increase

the load on links and routers, eventually causing congestion issues that will also affect

the traffic towards other destinations [PZMH07, ZMMW07, WMW+06].

3.1 Illustration

Let us consider again the Internet2 network (Fig. 1.1) and describe step-by-step how a

transient loop could occur between Chicago and Atlanta for the traffic headed to Seattle.

Initially, the router at Atlanta forwards its traffic towards Seattle on the shortest path

passing through Chicago, Kansas City and Salt Lake City. If the link between Chicago

and Kansas City breaks down, or if its weight is sufficiently increased, a different path
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Figure 1.8: Shortest Path Tree rooted at Atlanta

Destination Next-hop Distance

SEAT HOUS 4432

LOSA HOUS 3090

SALT HOUS 3532

HOUS HOUS 1385

KANS HOUS 2203

CHIC CHIC 1045

ATLA – 0

WASH WASH 699

NEWY WASH 976

Table 1.3: Routing table computed by the router at Atlanta

has to be calculated. Since Kansas City can no longer be directly reached from Chicago,

the new path from Atlanta to Seattle necessarily implies using Houston as next-hop.

Then, traffic may either be sent back to Kansas City, as there is still a link between

Houston and Kansas City, and forwarded along the initial best path via Salt Lake City,

or continue to Los Angeles. Finally, the traffic may reach Seattle either directly from

Los Angeles, or via Salt Lake City. In order to select the new best path, we have to

compare the respective distances associated to these paths. Passing through Houston,

Kansas City and Salt Lake city puts Seattle at a distance of 4445 from Atlanta, while

the path through Houston and Los Angeles is only 4432 units long. Intuitively enough,

making a detour via Salt Lake City rather than using the direct link from Los Angeles

to Seattle further increases the total distance. Routing paths towards Kansas City and

Salt Lake City, which contained that same link, are also modified. Eventually, the

router at Atlanta only forwards on its link to Chicago the traffic directly headed there.

The new SPT and corresponding routing table are presented on Fig 1.8 and Table 1.3,

respectively, with the modification compared to the initial routing plan appearing in

green.
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(b) Routing modifications caused by link (chic,kans) failure

Figure 1.9: Shortest Path Trees rooted at Chicago

We now change our perspective and consider this same event from the router located at

Chicago. As shown on Fig. 1.9a, this router initially forwards traffic along its direct link

to Kansas City for most of the destinations in the network. Should it break down, all this

traffic would have to be rerouted through another link. Aside from Kansas City, every

route heading to the west cost necessarily goes through Atlanta. Besides, the distance

using the direct link from Chicago to Atlanta is shorter than the one via Washington, a

fortiori via New York. The router at Atlanta would thus be the new next-hop for these

destinations. Modifications on the shortest paths from Chicago and their effects on the

routing table are reported on Fig. 1.9b and Table 1.4.

By now, one may have noticed that a routing inconsistency could appear as the network

converges to a new routing plan. Three destinations, that are Kansas City, Salt Lake

City and Seattle, are initially reached from Atlanta through Chicago, while the contrary

holds after the link modification. That is, Chicago reaches them via Atlanta. The

router at Chicago being closer to the modified link, it will likely be aware of the change

before the one at Atlanta. It would then recompute the shortest paths and update
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Destination Next-hop Distance

SEAT KANS ⇒ ATLA 2931 ⇒ 5477

LOSA KANS ⇒ ATLA 3231 ⇒ 4135

SALT KANS ⇒ ATLA 2018 ⇒ 4577

HOUS KANS ⇒ ATLA 1507 ⇒ 2430

KANS KANS ⇒ ATLA 689 ⇒ 3248

CHIC – 0

ATLA ATLA 1045

WASH WASH 907

NEWY NEWY 1000

Table 1.4: Routing table computed by the router at Chicago
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Figure 1.10: Merged Reverse Shortest Path Tree towards Seattle

its forwarding information while the router at Atlanta still forwards traffic along the

initial routing plan, thus forming a transient routing loop between Chicago and Atlanta.

New data packets arriving at Chicago and headed to any of these three destinations are

transmitted to Atlanta, and from Atlanta back to Chicago. This phenomenon appears

clear on a representation of the union of the shortest paths towards Seattle before and

after the modification, as in Fig. 1.10. Black arrows represent the links that are used to

reach Seattle both before and after the topological change. Red arrows are initial links

towards this destination that are no longer used after the link (chic,kans) becomes

unavailable, whereas green ones are new links, only used after the change. The transient

routing loop appears on this graph as a cycle between the routers at Chicago and Atlanta.

A graph of the shortest paths towards a given node from all other nodes is denoted as

a Reverse Shortest Path Tree (RSPT), or a Reverse Shortest Path DAG (RSPDAG)

if we consider the use of ECMP. In a networking context, such a graph represents the

paths that are used by every router to reach a particular destination. By definition,

this graph contains no cycle in a stable situation, when the shortest paths from all

routers are calculated based on consistent network maps. However, this is not the case
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during a convergence period, and the paths used by each router depends on whether

this router has already updated its forwarding decision or not. When a router detects a

change in the network, it starts recalculating its shortest paths and, at the same time,

sends to its neighbors link-state messages containing the updated information. These

neighbors will read the content of the message, see that it contains new information and

forward it to their own neighbors (except the one they received it from). Signalization

messages are thus flooded within the network, gradually spreading this new information

to every router. These messages do not necessarily follow the shortest paths calculated

by routers, but are still subject to propagation delays and may be slowed down due

to congestion issues. Last but not least, the time required for a router to process new

link-state information and modify its forwarding decisions may vary, depending on its

internal processing capabilities and its current load. Even though routers closer to a

topological change are more likely to update first, it is thus commonly assumed that

routers update order is not controlled. When evaluating the routing states in a network

during a convergence period, we have to consider that each router may either be in its

initial state, based on the network map before the topological change, or in its final state,

having taken the new link-state information into account. In order to detect potential

routing inconsistencies that could occur for a given destination, one should thus compute

the shortest paths towards this destination that all routers may use before and after the

change. We represent this transient routing state as a merged RSPT, or a merged

RSPDAG if we consider the use of ECMP. Each cycle appearing on this graph denotes

a potential transient routing loop that could occur during network convergence.

3.2 Evaluation of routing loops on a real ISP network

We recently started a collaboration with RENATER [REN], the French ISP for education

and research.The first objectives of our collaboration are to measure the frequency and

the impact of transient loops on a real ISP network, while long-term goals include the

evaluation of the benefits of our solutions for preventing these loops.

The national network infrastructure of RENATER includes 72 routers providing Internet

access to most academic institutions in France. Some of these institutions participates in

the PlanetLab project1 and, as such, maintain server-class machines, called PlanetLab

nodes, that we can use to perform network measurements. Yet these nodes do not

provide a sufficient coverage of the network to efficiently detect transient routing loops.

Besides, this platform suffers from several virtualization limitations preventing from

a fined-grained networking control. To start our collaboration, we thus deployed 10

Raspberry Pi devices to complement the PlanetLab nodes already in place (Fig. 1.11).

1http://www.planet-lab.eu/

http://www.planet-lab.eu/
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Figure 1.11: Measurement infrastructure on RENATER national network

These devices are directly connected to the routers in order to allow for more accurate

measurements. In addition, we deploy an IS-IS-capable equipment in the network to

establish an adjacency relationship with a RENATER router located in Paris in order

to record every topological modification that has an impact on the routing protocol.

This listener is based on a program developed by Richard Mortier for a similar study

on the Sprint network [HMMD02].

As a preliminary campaign, we performed a first series of active measurements using

only our 10 Raspberry Pi vantage points for a period of 21 days, from June, 6th to

June, 27th 2014. Over this period, thanks to the listener, we detected 1371 topological

modifications in the network, represented by unexpected LSAs modifying the LSDB of

the listener. In average, more than 63 logical events have thus occurred every day (or

2.6 every hour). This frequency may seem very large, but does not necessarily reflects

the physical events. For example, if a physical link is removed between two routers, the

adjacency breaks down in both direction and triggering the transmission of two LSAs,

one from each router. This is considered as two logical events, even though only one

physical event occurred. In addition, note that routing events are not uniformly dis-

tributed across RENATER routers but rather follow a power law distribution according

to their locations.

In the meantime, our 10 vantage points were exchanging ICMP messages at high fre-

quency in order to provide accurate results as for the occurrence and duration of transient
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disruptions. Each vantage point was configured to transmit a message to every other

with a period of 10 ms, while storing time and TTL information about all incoming and

outgoing message. Note that each probe injected in the network is analyzed in a directed

fashion, i.e., we do not rely on round trip measurements. This allows us to measure the

variations in terms of number of hops on a given path and the one-way delay between

the vantage points provided that the NTP synchronization provided by the RENATER

server is sufficiently accurate. Each direction can be studied independently to finely

understand the behavior on each path. This process allowed us to detect numerous

transient loops in spite of the short duration of our experimentation. We present in the

following two of the most interesting and typical cases we extracted from our data.

Initial path Final path

Unaffected / common path

Besancon

DST

brest

lannion

lorient
nantes

Quimper

SRC

rennes

stbrieuc

vannes

×

(a) Shortest paths to Besancon

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

Time (s)

Err.

8

10

12

14

16

H
o
p

s
/
D

e
la

y
(m

s)

Number of hops

One-way delay

TTL exceeded

(b) Traffic disruptions between Quimper and Besancon

Figure 1.12: Loops from Quimper to Besancon after the removal of link (Vannes, Nantes)

On Fig 1.12 we represent a transient loop that disrupted the traffic flows from Quimper to

Besancon after the link between Vannes and Nantes went down. Initially, the traffic from

our vantage point at Quimper was sent through Lorient, Vannes and Nantes (Fig. 1.12a),

traversing a total of 7 routers in about 12 ms on its path to Besancon (Fig. 1.12b).

However, when the router at Vannes lost its adjacency with Nantes, the traffic delivery

was interrupted for about 720 ms, before a new path, through Brest, Lannion, Saint-

Brieuc and Rennes was available. During the first 600ms of the interruption, the packets

were lost without our vantage points being notified of any event through ICMP error

messages. Though it is not possible with limited information to be positive about the

exact course of events, we can still make a conjecture. This period is likely to depict the

time before a new route to Besancon was available on the router at Vannes. Yet, due to

the low rate limit on Destination Unreachable ICMP messages (one message per 500 ms

by default on Cisco routers), we cannot distinguish the failure detection delay from the

computing time of the new route. After this period of silent losses, TTL exceeded ICMP

error messages were received successively from the routers at Lorient, Quimper and

Brest. Note that experiments we conduct on a small Cisco platform shows us that the

rate limit on TTL exceeded ICMP error messages is about 20 messages every 500 ms.
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The exact interfaces where the messages were received from are represented by gray

arrows on Fig. 1.12a. This indicates at least two transient loops. A first one must have

occurred between the routers at Lorient and Quimper, the former being up-to-date and

forwarding the packets along its new path to Besancon, while the latter was not. Once

the router at Quimper had updated its FIB, the loop was shifted to Brest, and packet

losses continued until this last router had removed Quimper from its list of next-hops

for Besancon. Then, the traffic delivery returns to normal, with a slightly larger delay

caused by the longer path. To summarize, this first example shows two consecutive

loops whose cumulated duration is greater than or equal to 120 ms although the traffic

is disrupted during 720 ms.
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(b) Traffic disruptions between Toulouse and Quimper

Figure 1.13: Loops from Toulouse to Quimper after the removal of link (Bordeaux, Nantes)

Fig. 1.13 shows a more complex routing loop scenario that occurred between Toulouse

and Quimper. In this case, the traffic flow initially reaching Quimper through Bordeaux,

Nantes, Vannes and Lorient, was disrupted after the removal of the adjacency from

Bordeaux to Nantes. After this link failure, one can observe that there exists in theory

up to 8 equal cost paths between the source and the destination. The silent loss period

here barely exceed 100 ms (Fig. 1.13b), which tends to indicate that the router at

Bordeaux detected the change and spread the information to the rest of the network

within a very short delay. We can deduce from the collected TTL exceeded messages,

received only from Montpellier and Marseille (Fig 1.13a), that the routers at Toulouse

and Montpellier quickly updated their routes. The router at Marseille was however not

so fast, and started forwarding its traffic along the new route almost one second later.

Then, the traffic can reach the destination again, but the hop distance and the delay

from Toulouse to Quimper are twice as large as before.

Besides, we can observe that the router at Toulouse only forwards the packets generated

by our vantage point to Montpellier, despite the presence of an equal-cost alternate path
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through Bordeaux. Otherwise, some packets would have eventually reached Quimper or

triggered TTL exceeded messages from Bordeaux, Clermont-Ferrand or Lyon.

These results not only indicate that transient loops actually occur, but also that they can

cause non-negligible disruptions in traffic delivery, and jeopardize the respect of Service

Level Agreements (SLAs). Generally speaking, we can conclude that a routing event

such as a failure leads to significant disruptions whose durations are on the order of one

second. Depending on the nature of the event (planned or not, adding or removing a

component) and detection/processing delays, the shares between the black hole period

and the loop one vary. For example, if the operator forces the modified component to

flood a pseudo-infinte weight before a link removal (a common best practice), then the

disruption duration is only made of the loop period. In the next-section, we present

some of the solutions that have been developed to tackle disruption problems due to

changes in the network.
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4 Towards loop-free convergence

Over the past decade, several solutions [SB10a] have been proposed to address the

problem of transient forwarding loops occurring during the convergence of link-state

routing protocols. These solutions aim at ensuring loop-free convergence from an initial

topology to a target one, assuming that both are entirely available during the whole

process. Therefore, they are well suited to handle maintenance events such as weight

reconfigurations or scheduled link or router state modifications. In case of failure, they

could theoretically be combined with fast-reroute mechanisms (see section 2.2) to pro-

vide smooth transition from repair paths to the new topology. In such case, the failed

component is still considered to be available, and traffic that should be sent through

is forwarded along a repair path instead. However, the practical interactions between

transient loop prevention and fast-reroute techniques are yet to be evaluated.

The solutions we describe in this section are extensions to routing and forwarding proce-

dures that could be used for link and node-wide modifications. Some of them also apply

to the more general case of a Shared Risk Link Group (SRLG), i.e. a set of seemingly

independent links at the routing layer, but sharing properties at the physical or link

layer.

4.1 Mitigating the effects of transient loops

Loop mitigation techniques aim at reducing the potentiality and effects of transient

loops occurring in the network after a topological modification. They cannot guarantee

that no loop would appear, but may reduce negative impacts on the traffic passing

through the network. Since transient loops may only arise during a convergence period,

speeding up the network convergence would be a straightforward solution to reduce the

duration of loops, and thus mitigate their impact. Another possibility is to rely on a

dedicated mechanism, such as Path Locking via Safe Neighbors (PLSN) [Zin05] or local

delay [LDFF14].

Path Locking via Safe Neighbors (PLSN)

The PLSN method proposed in [Zin05] defines a general safety condition for each neigh-

bor N of a given router S that has just been notified of a topological change in the

network. In a symmetrically weighted network, N is a safe neighbor of S for a destina-

tion D if and only if both following statements hold:

1. N is a loop-free neighbor of S before the change, and
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2. N is a downstream neighbor of S after the change

The first statement is similar to the LFA condition defined by equation 1.1 and simply

ensures that the neighbor N does not use S to reach D in the initial topology. The

second statement is more restrictive, as it requires that the distance from N to D in

the new topology be strictly lower than the one from S. This is to ensure that S and

N do not consider each other as safe neighbors. In an asymmetric network, N is a safe

neighbor S only if this second criterion also holds before the change.

Each router classifies the destinations based on the safety degree of its neighbors into

three categories:

• Type A: Destinations for which switching to the new primary next-hops cannot

lead to a transient loop. Such destinations may either be completely unaffected

by the change (type A1) or be reached through safe next-hops with respect to the

above criteria.

• Type B: Destinations for which the new primary next-hops are not safe, but at

least one other neighbor meets the safety condition.

• Type C: All remaining destinations.

The FIB is then updated according to the category of each destination. The routes

for type A destinations are immediately modified to use the new next-hops, and FIB

entries corresponding to type B destinations are updated to temporarily forward the

traffic through their safe neighbors. In the meantime, traffic towards type C destination

continues to be sent through the initial next-hops. These entries are only updated once

all routers have changed their routes for type A and B destinations, using respectively

new and temporary next-hops. Finally, the entries corresponding to type B destinations

are updated to send the traffic to their new next-hops.

PLSN applies identically for any kind of topological modification, be it a single link

reconfiguration, a router shutdown or startup, or even an SRLG failure. By ordering

FIB entries updates and forcing routers to use safe, though not necessarily optimal, next-

hops, this technique makes transient routing loops less likely to occur during network

convergences. However, some loops may still arise when routers update their entries for

type B and C destinations.

Local convergence delay

Litkowski et al. recently proposed in [LDFF14] a new method for transient loop mitiga-

tion in case of single link reconfigurations. This method is based on the assumption that
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most of the transient loops arising during network convergence are local to the modified

component. Such local loops may arise after a link is shut down in one direction if the

link source node updates its FIB, and starts using its new next-hops, before its neighbors

do. This is likely to happen, as the source node notices the modification first. On the

contrary, a local loop could occur when a new link is added if the neighbors update their

FIBs before the link source node.

The solution presented in [LDFF14] aims at preventing these loops by introducing a

convergence delay between the router detecting the event and the rest of the network.

For link “down” events, the local node normally advertises its neighbors of the event,

but a positive delay makes it wait before updating its own FIB. The neighbors would

thus converge to the new forwarding state before the local node, so that no transient

loop may occur when the local finally updates its routes. This behavior is reversed link

“up” events. The local node immediately starts its convergence process, and delays the

flooding of the new LSA (negative delay) to ensure that its neighbors do not converge

first.

This transient loop mitigation technique is often referred to as local delay. Simulations

show that implementing this method may prevent more than half the potential transient

loops in case of link down events, and up to 80% in some topologies. Local delay can

also be extended to prevent local loops for router-wide modifications and SRLG failures.

4.2 Preventing the effects of transient loops

The following methods completely negate the impact of transient routing loops by pro-

viding safe forwarding paths during the network convergence. These mechanisms can be

classified into three categories: tunnel-based solutions, packet marking, and FIB update

control.

Tunneling

Tunnel-based methods [SB10a] require that routers be notified about the topological

modification before the convergence begins. Each router may thus determine which

destinations are affected by the change and build tunnels to forward the corresponding

traffic along static, safe paths instead. When the modification is actually advertised in

the network, all routers may normally converge to their new routing state, without the

traffic being disrupted. These methods do not prevent routing tables to be temporarily

inconsistent but, since any packet that could potentially have been affected is carried

within a safe tunnel, no transient loop may occur. Once all routers have converged, these
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loop preventing tunnels are removed and the normal forwarding resumes for all destina-

tions. It is worth noting that the order in which tunnels are established and withdrawn

is not important as long as they are in place for the duration of the convergence.

Different variations exist as for how safe tunnels are to be established. Nearside tunnels

use normal routing to carry the traffic to the closest router adjacent of the failure, where

it is forwarded through the modified link, or through a repair path in case of a failure.

Each router hence only need to compute a single tunnel for all affected destinations.

On the other hand, farside tunnels bring affected traffic to the far side of the modified

component. These tunnels cannot use normal routing, since this would mean passing

through the modified component, and must rely on repair paths provided by mechanisms

such as Not-Via (see section 2.2). While this may appear as a drawback, using repair

paths actually lighten the load on routers affected by the change, allowing for a more

uniform distribution of the tunneled traffic. Besides, in the case of a node-wide modifi-

cation, the decapsulation load is shared by the neighbors of the modified router rather

than being held by this router alone. The last variation, denoted distributed tunnels,

relies on repair paths computed by each router. The traffic headed to destinations that

are affected by the change is tunneled along a repair path to an unaffected router, from

where it is normally forwarded to the destination.

Packet marking

Packet marking [SB10a] is one of the most straightforward mechanisms to prevent tran-

sient loop. During the convergence period, packets transiting in the network are marked

by the first router they cross and assigned to either the old or the new topology. Other

routers are then forces to forwarded these packets along the topology they are marked

for.This method however requires that a marking bit is available, for example in the Type

of Service (TOS) field of IP packets, and that each router maintains two concurrent FIBs

for the old and new forwarding states.

FIB update control

The methods described above do not really prevent transient loops, but rather their

effects on the traffic. Should one consider only the normal forwarding state of the

network, transient loops may still appear during the convergence. What prevents the

packets from looping is specific processing performed by the routers, which does not,

or not only, involve the normal FIB. Such special treatment however demands more

computing capabilities from the routers and may slow down traffic delivery. It would
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thus be more efficient to only rely on normal forwarding, and control the update process

to ensure that no transient loop could arise.

The ordered FIB (oFIB) approach, originally presented by Francois and Bonaventure

in [FB05] and later developed in [FB07, SBP+13], relies on an analysis of the network

topology to provide a FIB update ordering that provably prevents transient loops. In

the case of down event, that is a link or router being shut down, or a link weight being

increased, oFIB ensures that any router R updates its FIB only after all routers sending

traffic via R and the modified component did. Providing that all routers affected by

the change are oFIB-capable, packets sent by a router that has not yet updated its FIB

are thus forwarded to the destination along initial paths only, and cannot loop. Also,

the traffic sent by updated routers may may either reach the destination using only

final paths, or (in asymmetrically weighted networks) pass through a router that is not

up-to-date at some point and be forwarded according to the initial topology the rest of

the way. In both cases, packets will reach the destination without being caught in a

loop. In the case of an up event, the condition is reversed, forcing a router R to update

its FIB before any other router that may use R to reach the modified component.

This transient loop-free FIB update ordering is ensured the following way. Upon being

notified by IGP signalization of a down even, a router R computes an RSPDAG rooted

at the modified component and based on the initial topology. Router R then waits for

a duration that is a multiple of its rank in the RSPDAG before updating its FIB, where

the rank is defined as the maximum length of a branch heading to R. Similarly, if R is

notified of an up event, it computes an RSPDAG routed at the modified component in

the new topology and wait for a multiple of its rank. In this second case, the rank is

equal to the maximum length of a path from R to the modified component.

Due to the use of conservative timers, the process described above can be quite slow. It

is possible to accelerate the convergence by replacing timers with completion messages.

According to the RSPDAG, each router R computes the list of neighbors it must wait

for before updating its FIB. Upon receiving a completion message from one of these

neighbors, R removes the neighbor from the list. Once the waiting list is empty, R

updates its FIB and sends a completion message to the neighbors that are waiting for

it.

Ships-in-the-Night

Ships-in-the-Night (SITN) [VVP+12] is a recent technique designed for network-wide

migration of link-state IGPs. Compared to other loop prevention techniques, SITN al-

low for simultaneous modification of multiple components all around the network, and
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even the replacement of one IGP with another. The technique relies on two concurrent

routing processes, corresponding to the initial and final IGP configurations, running at

the same time on each router. A priority system is used to determine which route is to

be installed in the FIB. Initially, the lowest possible priority is assigned to the final IGP

configuration, ensuring that no route from this process is installed in the FIB. Once the

final IGP configuration has converged on every router in the network, those are pro-

gressively migrated according to a pre-computed, loop-free order. Eventually, the initial

IGP configuration can be removed from all routers with no impact on the network.

The authors prove that the problem of finding a router migration ordering that pre-

vents transient loops is NP -complete in the general case. However, an efficient and

correct heuristic algorithmic would consist in computing sufficient ordering constraints

separately for each destination. These constraints could then be considered together in

order to determine a global ordering.
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5 Metric-increment approach

5.1 Presentation

In the previous section, we presented efficient solutions to deal with the problem of

transient forwarding loops. However, they all rely on non-standard behavior of IGPs,

thus requiring extensions to protocol specifications. As a result, none of these transient

loop prevention mechanisms is currently available for network operators, nor is likely to

be in the near future.

An alternative approach to prevent transient loops in the case of a single link modifica-

tion, using only the core functionality of link-state routing protocols, has been proposed

in [IIOY03] and [FSB07]. This approach, often referred to as metric-increment, is based

on the idea of controlling FIB updates in an implicit fashion, as opposed oFIB explicit

ordering. It relies on successive link weight reconfigurations to progressively adjust the

attractiveness of the modified link. It is apparent enough that increasing (resp. de-

creasing) the weight configured on a link makes it more (resp. less) likely to be used

to forward traffic, however careful weight tweaking allows for a fine control of routers

update process. An interesting property of shortest path routing is that nodes further

away from the link are more sensitive than closer ones to weight increments, while the

opposite holds for weight decrements. It is thus possible to compute a sequence of link

weight updates that forces some routers to update first, while others still follow the

initial routing plan.

Practically, the approach requires to model link addition or withdrawal operations as

IGP weight reconfigurations. A link removal is thus considered as an increment from

its current weight to the maximum possible one, known as MAX METRIC, in both

directions. Assuming that the network is 2-edges-connected, this operation will result in

the link not being used anymore to reach any destination in the network. It may then be

safely removed with no impact on the routing decisions. Similarly, the addition of a new

link could be done by first adding it in the network with a weight of MAX METRIC,

and then decreasing it to the one specified by the operator. The approach then consists

in splitting this weight modification, which could cause transient routing loops, into

a sequence of safe weight updates. Intermediate updates are computed such that no

transient loop could appear as they are applied, provided that two consecutive updates

are separated by a sufficient amount of time. In the case of a single link whose weight is

to be modified in both directions, two different sequences are required. However, both

sequences may be computed independently and applied at the same time.
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Also note that loop-free sequences are reversible. An update sequence preventing tran-

sient loops during the convergence for the reconfiguration of a link weight from X to

Y can be applied in reverse order for the reconfiguration from Y to X. We thus often

focus on weight increment operations, without loss of generality.

As an illustration, consider a scheduled withdrawal of the link from Chicago to Kansas

City on Internet2 network (Fig.1.14). In section 3.1, we showed that a direct removal,

or a weight increment to MAX METRIC, leads to a potential transient loop between

Atlanta and Chicago. In particular, if the router at Chicago updates its FIB before the

one at Atlanta, it will start forwarding its traffic towards Seattle on its link to Atlanta,

while the router at Atlanta still reaches Seattle through Chicago.
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Figure 1.14: Merged RSPDAG towards Seattle for the removal of link (CHIC,KANS)

Using the metric-increment approach, this transient loop can be prevented by insert-

ing an intermediate state before configuring the weight on link (CHIC, KANS) to

MAX METRIC.

On Fig. 1.15, we consider a first increment of 1000 that brings the weight on this link

from 689 to 1689. From the perspective of the router at Atlanta, Seattle is now at a

distance of 4976 through Chicago, which is more than the distance via Houston. The

routing protocol running on the router reacts to this change by recomputing its shortest

paths and replaces Chicago with Houston in the FIB entry for Seattle. The other routers

at Chicago, New York City and Washington also recompute their routing tables, but

the paths going through link (Chic, Kans) remain the shortest ones after the change, so

that no modification is pushed to the FIB. The router at Atlanta being the only one to

change its routing decision for Seattle, no transient loop can occur during the transition.

Then, when the link weight is configured to MAX METRIC, the router at Chicago

can safely reroute to Atlanta, as no transient loop could occur during the transition (see

Fig. 1.16). The potential transient loop between Chicago and Atlanta has been prevented
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Figure 1.15: Merged RSPDAG for the weight increment from 689 to 1689 on (CHIC,KANS)

by making the router at Atlanta update its FIB at a previous step, so that it no longer

sent its traffic toward Seattle via Chicago when the target weight was configured.
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Figure 1.16: Merged RSPDAG for the weight increment from 1689 to MAX METRIC

Table 1.5 shows the state of the routing table entries for Seattle at each step of the

convergence. In the initial state (1.5a), the router at Chicago uses Kansas City as it

next-hop towards Seattle, while the ones at Atlanta, Washington and New York City

go via Chicago. When the weight of link (CHIC,KANS) is first modified (1.5b), the

next-hop at Atlanta is modified and the distance is updated accordingly. The weight

increment is also reflected on the three other routers using the link, but it is not sufficient

to modify their routing decision. Their next-hop is only modified when MAX METRIC

is configured on the link (1.5c).

5.2 Loop-free update sequences

In [FSB07], the authors prove that increasing a link weight by 1 cannot lead to a transient

loop during the convergence. It is thus theoretically possible to safely perform any weight
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Source

SEAT

LOSA

SALT

HOUS

KANS

CHIC

ATLA

WASH

NEWY

Next-hop Distance

– 0

SEAT 1342

SEAT 913

LOSA 3047

SALT 2242

KANS 2931

CHIC 3976

CHIC 3836

CHIC 3931

(a) Initial state

Next-hop Distance

– 0

SEAT 1342

SEAT 913

LOSA 3047

SALT 2242

KANS 3931

HOUS 4432

CHIC 4836

CHIC 4931

(b) Intermediate state

Next-hop Distance

– 0

SEAT 1342

SEAT 913

LOSA 3047

SALT 2242

ATLA 5477

HOUS 4432

ATLA 6176

WASH 6453

(c) Final state

Table 1.5: Routing table entries of each router towards Seattle

modification as a succession of +1 or −1 operations, provided that two consecutive

operations are separated by a sufficient amount of time. Such solution is however not

realistic in practice, as it would require far too much time in most cases.

The authors thus present an algorithm to compute short loop-free weight update se-

quences for any single link removal operation. A sequence is called loop-free if no tran-

sient loop may arise during the convergence between two subsequent updates. A loop-

free sequence relies on special weight values, denotes as key metrics, which represent

the minimum weight to be configured on the modified link in order to force a node into

using a new path that does not pass through the modified link for a given destination.

Such key metrics are computed by comparing the shortest path distance between a node

and the destination in the initial and final topologies. Formally, given a modified link

(a, b) and a destination d, the key metric associated to node x is equal to

w0(a, b) + C ′(x, d)− C(x, d)

where w0(a, b) represents the initial weight configured on link (a, b), and C(x, d) and

C ′(x, d) respectively represent the shortest path distance between x and d in the initial

and final topologies.

Bringing together in a sorted sequence the key metrics of all nodes in the topology is

however not sufficient to ensure a loop-free convergence. In addition, a reroute metric

sequence includes intermediate metrics that are equal to key metrics plus one. While key

metrics are the lowest weights such that a node starts using a new path, intermediate

ones represent the minimum weights such that the node stops using a path through the

modified link. It has been proven that a reroute metric sequence computed for a given

destination is always loop-free for this destination. However, such sequence may contain

unnecessary metrics that are not required to prevent transient loops, and can be pruned

from the sequence using a trial-and-error approach. Eventually, it is possible to obtain



Chapter 1. Context 43

for each destination an optimal reroute metric sequence containing the least number of

intermediate update to ensure a loop-free convergence.

In order to provide loop-freeness for every destination, optimal reroute metric sequences

are merged into a global metric sequence. Since it can be proven that inserting interme-

diate updates in a loop-free sequence preserves the loop-freeness property, global metric

sequences, defined as the sorted union of per-destination sequences, provably prevent

transient loops for all destinations in the network. Global sequences may contain redun-

dant values and can be reduced as well using the same procedure as for per-destination

sequences. Finally, it is possible to obtain short global metric sequences that allow for a

transient loop free convergence of the network.

5.3 Limitations

The metric-increment approach makes it possible to prevent transient loops for any single

link modification. However, the algorithms presented in [FSB07] come with certain lim-

itations. Among those, the time required to compute loop-free sequences grows rapidly

with the size of the topology. This is mostly due to the reduction algorithm, which

requires testing each intermediate metric in order to prune redundant ones. During the

first reduction phase that is performed for every per-destination reroute metric sequence,

an SPDAG representing the intermediate forwarding state is to be calculated for each

element of the sequence and compared with the final state. As for the global reduction

phase, each remaining increment is to be tested that way for every destination. Hence,

the more destinations there is in the network, the more time is required to compute a

sequence.

Also, while optimized reroute metric sequences are proved of minimal length, there is

no guarantee that the global sequence, after the reduction stage, shares this property.

Ironically enough, the reason why global sequences may not be of minimal length is

because of the per-destination reduction. From a pure algorithmic point of view, this

first sequence optimization is in fact unnecessary, as redundant metrics would be pruned

by the global sequence reduction anyway. It is performed in practice to reduce the total

time required to compute a sequence, metric pruning coming for cheaper when it only

needs to be tested for one destination. It would thus be possible to ensure global

minimality at the expense of longer computing times.

We developed this solution in [CMP+14], providing a new algorithm to compute minimal

global sequences. This algorithm is based on the notion of loop-free metric intervals,

representing necessary and sufficient conditions to prevent transient loops. Even though

enumerating each potential transient loop to obtain the associated interval is impractical
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in large networks, we devised efficient methods to extract enough information about these

intervals and compute minimal sequences in reasonable time.

Another possible limitation of this approach is the risk of negative interactions with

BGP. In [VVCB13], Vanbever et al. discuss the impact of graceful IGP operations

on certain BGP configuration. Since BGP decisions are partly based on IGP routing,

each IGP reconfiguration forces BGP enabled routers to recompute their best paths and

possibly update their forwarding table entries. The authors show that, on networks using

multiple layers of BGP route reflectors, such changes may also trigger BGP forwarding

loops. Fortunately, sufficient conditions can be met to ensure that no such loop could

occur. In particular, network-wide packet encapsulation, which is widely used in transit

networks, provably prevents IGP reconfigurations from triggering BGP anomalies.

6 Conclusion

In this chapter, we presented the general context of our work. We first described the

basis of IP routing and gradually focused on the problem of transient routing loops in

network running link-state protocols. Based on measurement we conducted on a real ISP

network, we showed that such loops could cause significant traffic disruptions. Several

solutions have been proposed in the past to prevent the occurrence or the effects of

transient loops, yet all but one require extensions the protocol specifications, hindering

a practical deployment. On the other hand, the metric-increment approach entirely relies

on basic functionalities of link-state routing, making it both practical and, in a sense,

incrementally deployable on any ISP network. However, current algorithms are limited

to reconfigurations of a single link. We generalize this approach in the next chapter,

detailing how to efficiently compute minimal loop-free sequences for any router-wide

operation.
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This chapter provides algorithms and formal proofs that demonstrate how our solutions

are able to prevent any type of disruption during the convergence of link-state intra-

domain routing protocols. These solutions are designed to help network administrators

perform scheduled operations on their network, by preventing transient inconsistencies

that impact the traffic. Our contributions extend the metric-increment approach de-

scribed in the previous chapter with more efficient algorithms and additional use cases.

In particular, our new algorithms provides minimal reconfiguration sequences for any

modification on a single link, in both directions, but also on a whole router or a subset

of its outgoing links. A single link operation may either consist in adding a new link to

the network, removing or shutting down an existing one, or reconfiguring the Interior

Gateway Protocol (IGP) weight associated to the link. As for router-wide operations,

our approach supports the addition or withdrawal of a whole router, as well as any

positive weight increment or decrement on a subset of its outgoing links.

It is considered best current practice that the removal of an entire router is only per-

formed after having configured the weight on each transit link to MAX METRIC. This

results in the router not being used anymore as a transit node, while stub networks

remain normally reachable. On networks running Intermediate System to Intermedi-

ate System (IS-IS) protocol, the same behavior can be obtained without modifying link

weights, by setting the overload bit [McP02] in outgoing Link-State Advertisements

(LSAs). This method avoids transient traffic black-holing that usually occur when a

router is being abruptly shut down. Similarly, routers should be started up with the

overload bit set, or MAX METRIC configured on transit links, in order to prevent for-

warding paths from being modified until the router is completely operational. Based on

the assumption that these guidelines are respected, our algorithms compute sequences

of vectorial weight updates preventing transient inconsistencies that could occur during

the convergence from the initial to the final routing state.

Vectorial updates represent weight reconfigurations to be applied simultaneously on

several outgoing links of the router. As a consequence, it is a requirement for our solu-

tion that routers software supports the simultaneous weight reconfiguration of multiple

outgoing links, and effectively advertises such modification in a single LSA. This be-

havior varies among router operating systems as it depends on Open Shortest Path

First (OSPF) and IS-IS implementations. To the best of our knowledge, simultaneous

modifications are currently supported on Juniper’s Junos OS and Cisco’s IOS XR.

For the sake of simplicity, we focus in this chapter on the case of a router being shut

down. Router additions can be simply performed by reversing the shutdown process,

while operations on a subset of links only require to ignore unmodified links. Since

we aim at rerouting the traffic out of the router, we do not consider reconfigurations

that would make it, or a subset of its links, more attractive than they initially were.
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Intermediate weight updates may thus not decrease a link weight below its initial value.

To emphasize this aspect, we refer to weight reconfigurations as increments, even though

we allow for weight decrements that satisfy the above property.
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1 Weight increment basics

Using the weight increment approach, a first, naive way to safely shut down a router

is to consider the problem as a set of single-link shutdown operations. One single-

link increment sequence could be computed and applied for each outgoing link of the

router. Such technique does not however benefit from the opportunity of simultaneously

modifying the weight on multiple links. Moreover, since increasing the weight on one

outgoing link of a router can make the traffic be rerouted through another outgoing link

of the same router, the order in which link weights are increased may have an impact on

the total number of intermediate steps. In other words, the weight increment sequence

to be performed on one link could depend on the previously applied sequences. Our

experiments show that this approach leads to very long sequences that are not realistic

for practical use. We thus devised solutions specifically tuned for node-wide operations.

We present here the basics of our node-wide approach, explaining how it can be used

to prevent transient forwarding loops in the case of a router shutdown operation, and

discussing the main properties it relies on. We also show that, while it is necessary

to achieve feasible sequence lengths, aiming for short update sequences through non-

uniform weight modifications may lead to a different kind of transient disruptions.

1.1 Distance increments and uniform sequences

We consider the problem of shutting down a router in the network without incurring

transient forwarding loops during the convergence. Using our approach, safely perform-

ing such operation requires to progressively increase the distance of passing through this

router, in order to make it less and less attractive as a transit node. Contrary to links,

routers have no internal weights, so that it is not possible to directly vary the distance

via a given router. However, the same effect can be obtained by uniformly modifying the

weights configured on each outgoing link of this router. For example, let us consider that

the weights on all outgoing links of a router are increased by an arbitrary value u. The

costs of all paths in the network are hence increased by this value for every occurrence

of such a modified link. Since it is a property of shortest paths that each router can be

traversed no more than once, and the weights are only increased in one direction, the

distance of all shortest paths through this router is thus increased by exactly u. In this

section, we rely on such uniform increments to explain how progressively increasing the

distance through a router enables to prevent transient loops.
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Definitions and Notations

In link-state IGPs, forwarding paths are computed based on a weighted graph G =

(N,E,w), such that N is the set of routers, E is the set of IGP adjacencies between

routers, and w : E → N maps each oriented link to its integer weight as defined by the

IGP configuration. Note that we consider adjacency relationships to be symmetrical, i.e.

if A is adjacent to B then B is adjacent to A, but a different weight may be associated

with each direction. Also, point-to-multipoint adjacencies are represented as a collection

of point-to-point links between adjacent devices.

P (x, d) denotes the set of shortest paths linking node x to node d while C(x, d) refers to

the cost of paths in P (x, d). RSPDAG(d) is the Reverse Shortest Path DAG (RSPDAG)

rooted at d, which contains the shortest paths towards d from all other nodes in N .

Our theoretical framework is based on Directed Acyclic Graphs (DAGs), rather than

trees, to support Equal-Cost Multi-Path (ECMP) routing. That is, simultaneously

using for a single destination multiple shortest paths having the same cost. Although,

for IP networks, destinations are prefixes in practice, which would correspond to the

edges of our graph, we choose instead to consider the nodes in N as the destinations.

Such representation is more intuitive, especially for people who are not familiar with IP

routing, and remains realistic if we consider routing paths towards loopback addresses

configured on each router. Besides, most of the traffic passing through an Internet

Service Provider (ISP) network is actually headed to destinations outside of this network.

When the distance through a node inG is modified, we respectively denote the RSPDAGs

of d before and after the change as RSPDAG(d) and RSPDAG′(d). We say that a

change is loopfree for destination d if no forwarding loops can occur during the conver-

gence triggered by the change, whatever the order of router updates. Such forwarding

loops can be detected by merging RSPDAG(d) with RSPDAG′(d). If the merged

graph RSPDAG(d)
⋃

RSPDAG′(d) contains cycles, then forwarding loops may occur.

More generally, we say that a change is loopfree if it is loopfree for all destinations in

the network.

Considering a given destination d ∈ N , let Gr(d) ⊂ RSPDAG(d) ⊂ G be the subgraph

impacted by the distance modification on router r. Each node in Gr(d) is affected by

the change on r, either because its shortest paths towards d are modified to avoid r or

because their cost is increased. Note that Gr(d) forms an RSPDAG rooted at r, which

contains all the paths in RSPDAG(d) ending at r.

Since we often consider a single destination d, we simplify our notation when there is no

possible ambiguity. We use P (x) and P ′(x) to respectively refer to P (x, d) and P ′(x, d),

the set of shortest paths used by node x to reach destination d after the change. Similarly,
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G(N,E,w) Directed weighted graph

Gr(d) Subgraph impacted by a distance increment
through router r for destination d

λ Smallest distance increment that can be applied

RSPDAG(d) RSPDAG rooted at d before the change

P (x, d), P (x) Set of paths from x to d in RSPDAG(d)

C(x, d), C(x) Cost of the paths in P (x, d)

RSPDAG′(d) RSPDAG rooted at d after the change

P ′(x, d), P ′(x) Set of paths from x to d in RSPDAG′(d)

C ′(x, d), C ′(x) Cost of the paths in P ′(x, d)

Table 2.1: General notations

C(x) and C ′(x) are simplified notations to denote their respective costs. Table 2.1

summarizes all the notations described above.

Illustration on a gadget

To illustrate how intermediate distance increments can prevent transient forwarding

loops in the case of a router shutdown, let us consider the network represented in Fig. 2.1.

For the sake of clarity, the nodes in this graph are labeled with a mixed set of digits

and letters. Node 0 represents the router to be shutdown, nodes 1 to 4 are destinations

for which transient loop occur during the operation, and nodes a to e are source nodes

that could be involved in these loops. On the left-hand side figure (2.1a), we represent

the initial forwarding paths towards destination 1, namely RSPDAG(1). The target

forwarding paths, that are used after router 0 is shut down, are represented on the

right-hand side figure (2.1c). The central figure (2.1b) represents the merging of the

initial and target paths. This figure shows that, if the shutdown operation is performed

directly, whether or not a MAX METRIC or overload bit mechanism is used, transient

loops can potentially occur on links (a, b) and (b, c).

Let us now show that there exists a sequence of uniform distance increments for node 0

that enables to shut it down without incurring any transient loop. Consider that, at the

first step, the distance through 0 is only increased by 7, i.e. the IGP weight configured

on each outgoing link of 0 is increased from 1 to 8. After the modification, the distance

for reaching 1 by traversing 0, which initially was equal to 2 whatever the source and

destination (1 to go to 0 and 1 more to get out), becomes of 9. The cost to enter 0

is still 1, but exiting the router now has a cost of 8. Such increment may lead some

of the routers whose shortest paths go through 0 to reconsider their routing decision.

In particular, the distance from router a to 1 through 0 is now equal to 11, which is

larger than the cost through the direct link (a, 1). Router a thus updates its Forwarding
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Information Base (FIB) and replaces b with 1 as its next-hop towards 1. The other

routers also receive the LSA, but their initial paths for this destination remain the most

attractive. The modifications this first increment brings to the forwarding paths towards

1 are shown on Fig 2.2a.

At the second step, we increase the distance by 9 compared to the initial state (plus two

compared to the first step), making the cost for traversing 0 equal to 11. This change

has no effect on the routing decisions of node a, for it was not using 0 anymore, but

routers 2, 3 and b now have better paths not via 0 to reach 1, as represented in Fig 2.2b.

Node 2 can use its direct link to 1 for a cost of 10, instead of 11 if through 0. Node 3

switches 0 with 4 in its FIB entry, and b reroutes its traffic for destination 1 through

node a. Finally, a third increment of 11 makes node c reroute through b for a distance

of 12, compared to 13 via 0. After this last step, no more node but itself uses 0 to reach

destination 1, and the router can be safely shutdown.

Let us now focus on the potential transient loops that we mentioned before. According
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Figure 2.1: Forwarding paths towards destinations 1 before and after the removal of node 0.
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Figure 2.2: Progressive increment of the distance through node 0
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to the merged RSPDAG, one could have occurred on the link (a, b) in the case router b

rerouted before a. However, if the distance through 0 is progressively incremented as we

advised, router a stops forwarding its traffic via b at the first step, while b only starts

using a at the second step. Consequently, if a sufficient delay separates the execution

of these two steps to allow for router a to converge, this transient loop cannot occur.

The same holds for the other loop on link (b, c), whose involved routers respectively

reroute at the second and third step. The sequence {7, 9, 11} thus prevents all possible

transient loops that could arise for destination 1 when router 0 is being shut down.

In the following, we refer to such a sequence as a loopfree uniform distance increment

sequence. In practice, that last increment of 11 can be replaced with MAX METRIC,

or any other technique that would prevent 0 from being used for transit.

Just as for single link operations, similar sequences are to be computed for each desti-

nation in the network that is affected by the node shutdown operation. In our example,

other affected destinations include routers 2, 3 and 4, whose associated loopfree distance

increment sequences are represented on Fig. 2.3. Destinations 2 and 3 each require a

single intermediate increment, which is respectively equal to 10 and 8, while the distance

for destination 4 has to be successively increased by 7 and 8. In order to ensure global

loopfree convergence, it is thus sufficient to merge together these destination-oriented

sequences. Considering the network represented in Fig 2.1, the sequence {7, 8, 9, 10, 12}

thus prevents any transient forwarding loop that could occur due to the removal of router

0.
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Figure 2.3: Destination-oriented and global distance increment sequences

Existence of loopfree distance increment sequences

To prove that there always exists a global loopfree increment sequence for any router

shutdown operation, we demonstrate that uniformly increasing the distance through a

node by λ, where λ represents the smallest distance increment that can be applied on

a router, never causes transient loops. Hence, progressively increasing this distance, at
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worst by repeated increments of λ, can make a router not being used for transit anymore,

without incurring transient loops.

Note that, since distance increments correspond to weight increments applied on the

outgoing links of the router, we have λ = 1 in practice.

Theorem 1.1. In a stable network, incrementing the distance through a router by λ

leads to a loop-free convergence process.

Proof. Let us assume by contradiction that a forwarding loop occurs, for a destination

d, between nodes n1, n2, . . . , ni, . . . , np = n1 during the convergence following an incre-

ment of the distance through router r by λ. Consistently with the notations previously

introduced, we respectively denotes as C(ni) and C ′(ni), the shortest path distance

from ni to d before and after the change. We also note C (ni) the distance according to

which ni is forwarding packets for destination d at the time a packet is forwarded by ni

along the loop. We will show that this loop cannot possibly occur, for it would require

C (n1) > C (n1).

The cost of the shortest paths to d can either remain the same after the distance through

r has been increased, meaning that the paths from ni to d do not include r anymore,

or it can be increased by λ, if the shortest paths still include r. Formally, we have

C ′(ni) = C(ni) or C
′(ni) = C(ni)+λ, so that C ′(ni) ≥ C (ni). Besides, either node ni is

not yet up-to-date at the time it forwards a packet along the loop, and C (ni) = C(ni),

or it is and C (ni) = C ′(ni). We then have the two following properties:

(P1): If ni is updated, then it forwards its packets towards neighbors that lie on its post-

convergence paths towards d. From properties of shortest paths, this means that the

post-convergence distance of these neighbors is strictly lower than the post-convergence

distance of ni. We thus have C ′(ni) > C ′(ni+1) when ni is updated, which gives C (ni) >

C (ni+1).

(P2): If ni is not updated, ni is forwarding to neighbors lying along its old shortest

paths towards d, which gives C(ni) > C(ni+1), as per properties of shortest paths.

Hence C(ni) ≥ C(ni+1) + λ. By definition of C(ni+1), C(ni+1) + λ ≥ C ′(ni+1) and, by

definition of C (ni+1), we have C ′(ni+1) ≥ C (ni+1). This gives C (ni) ≥ C (ni+1), when

ni is not updated.

From (P1) and (P2), we know that C (ni) ≥ C (ni+1). Note that C (ni) = C (ni+1) only

when ni is not updated while ni+1 is updated and has increased its distance towards d.

If C (ni) = C (ni+1) we then have C (ni+1) > C (ni+2). Besides, if ni+1 is updated we

have (P1) for i+ 1, thus a strict inequality. Therefore we have C (ni) > C (ni+k), ∀k ≥
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2, ∀i+k ≤ p which is in contradiction with the initial loop statement. Also, no transient

loop can occur for p = 2 and k = 1, since a node cannot select itself as its next hop.

When a router has to be shut down, the length of paths traversing it can thus be pro-

gressively increased by λ until it becomes sufficiently large to make it unused. However,

such a technique can be inefficient, as a large number of increments would have to be

issued when a wide range of metrics is used across the network. For example, the weights

assigned to the links of the European Research Network GEANT [gea] are taken from

the interval [1, 20000]. In theory, the original specification of IS-IS [ISO02] allows for

link weights up to 26 − 1 (63) by default, but this limit can be increased to 224 − 1

(16, 777, 215) on networks supporting wide metrics [SL04, Par04]. In OSPF [Moy98],

only one type of metric exists, which supports link weights as large as 216 − 1 (65, 535).

In order to overcome this limitation, we propose to perform larger distance increments

when they are known to provide loopfree convergence.

Computing short distance increment sequences

Before introducing the methodology, we first discuss some properties among the nodes

using each other to reach a destination d, before and after the application of a distance

increment. For each path (n1, . . . , ni, . . . , nj , . . . , nm) in Gr(d), ∀i < j, ni is an upstream

node of nj and reciprocally nj is a downstream node of ni.

These properties are based on a pivot increment, denoted ∆
r
d(x), that we define as

follows:

∀x ∈ N, ∆
r
d(x) = C ′(x)− C(x)

Note that this notation depends on the destination and the considered distance increment

operation, however, for the sake of clarity, we ignore those cumbersome indexes when

there is no possible ambiguity. ∆r
d(x) is the minimum distance increment to be performed

on r, such that there exists a shortest path from x to d that does not include r. A distance

increment of ∆(x) triggers an intermediate change in the forwarding plane of x for d. It

forces node x into an ECMP transient state where it uses both its initial and final paths

towards d. For example, in Fig. 2.1, nodes 2, 3 and b enter an ECMP transient state

when the distance through 0 is increased by 8. They use respectively the outgoing edges

(2, 0) and (2, 1), (3, 0) and (3, 1), and (b, c) and (b, a). If the distance is increased by any

larger value, e.g. ∆(x) + λ, node x is in a final state and its shortest paths towards d

no longer include r. Note that ∆(x) = 0 for all nodes not in G(d), but a node x ∈ G(d)

may also verify ∆(x) = 0. A node x verifies ∆(x) = 0 if at least one of its initial shortest

paths to d does not include r. Either x does not use r at all to reach d, or some of its

equal-cost shortest paths do not contain r. This is the case for node 4 in Fig. 2.1.
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Let us now introduce three fundamental properties related to delta differences. We call

an PRE (respectively POST ) edge an edge (x, y) that starts a subset of paths in P (x, d)

but not in P ′(x, d) (respectively starts P ′(x, d) but not P (x, d)). When an edge (x, y)

starts a subset of paths P ∈ P (x, d), we have P = (x, y) ◦ P (y, d) (it is the same for

P ′). A COMMON edge starts both a path in P (x, d) and one in P ′(x, d) (the two paths

may differ further). Let (x, y) be an edge in G, we have the three following properties:

Property 1.1. If (x, y) is an PRE-edge then ∆(x) < ∆(y).

Proof. On the one hand, if node x is not updated and continues to use its PRE neighbor

y, we have by definition C(x) = C(y) + w(x, y). On the other hand, if node x does not

use y anymore once updated we have C ′(x) < C ′(y) + w(x, y).

Thus, ∆(x) = C ′(x)−C(x) = C ′(x)−(C(y)+w(x, y)) < C ′(y)+w(x, y)−C(y)−w(x, y) =

∆(y).

Property 1.2. If (x, y) is a POST-edge then ∆(x) > ∆(y).

Proof. When node x updates its path towards d and decides to go through a POST

neighbor y, we have by definition C ′(x) = w(x, y) + C ′(y). We also have C(x) <

C(y) + w(x, y): x was not using y as a next hop towards d before the update.

Thus, ∆(x) = C ′(x)−C(x) = w(x, y)+C ′(y)−C(x) > C ′(y)−(C(y)+w(x, y))+w(x, y) =

∆(y).

Property 1.3. If (x, y) is a COMMON-edge then ∆(x) = ∆(y).

Proof. When node x updates its path towards d and still uses its PRE neighbor y towards

d, we have by definition C ′(x) = w(x, y) + C ′(y). We also have C(x) = C(y) + w(x, y):

x was using y as a next hop towards d before the update.

Thus, ∆(x) = C ′(x)−C(x) = w(x, y)+C ′(y)−C(x) = C ′(y)−(C(y)+w(x, y))+w(x, y) =

∆(y).

Fig. 2.1 illustrates such properties. Along the PRE-path a → b → c, we have ∆(a) =

6 < ∆(b) = 8 < ∆(c) = 10. Reciprocally, we notice ∆(c) < ∆(b) < ∆(a) along the

POST forwarding path towards d. We also have ∆(3) > ∆(4) = 0 on the POST-edge

(3, 4), since node 3 is not in Gr(d). Finally, on a common edge such as (d, c), we have

∆(d) = ∆(c).

A first interesting consequence of such properties is that delta values are increasing

along paths in Gr(d) (PRE and COMMON edges). Hence, sorting all delta values for

nodes in Gr(d) yields a list of strictly increasing weight increments for each pair (r, d).
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Formally, we denote as ∆i + λ sequence, the sorted union of ∆(x) + λ for each node

x in Gr(d). From an edge perspective, such a sequence ensures that each PRE-edge

(x, y) connecting an upstream node x to a downstream one y stops being used before

a POST, or transient (containing at least one POST-edge), sub-path re-links y to x,

thus creating a cycle. This sequence makes it possible to update upstream nodes strictly

before downstream ones, or in the same convergence period if (i) they share a common

delta value, or (ii) if their delta values only differ by λ (∆(y) = ∆(x) + λ).

∆i and ∆i+1 being two consecutive delta values in the sequence, a routing change occurs

only once between ∆i + λ and ∆i+1. Precisely, POST-edges start being used as the

distance increment reaches ∆i+1, but PRE ones used for ∆i+λ and ∆i+1 are the same.

Thus, if a loop occurs during the transition from ∆i + λ to ∆i+1 + λ, it also occurs

during the transition from ∆i+1 to ∆i+1 + λ. From Theorem 1.1, we know that no loop

can occur while incrementing the cost of a path by λ, so that the transition from ∆i+1

to ∆i+1+λ is loop free, as well as from ∆i+λ to ∆i+1+λ. Therefore, using the ∆i+λ

sequence for a pair (l, d) provides a loop free convergence towards d, provided that the

network completely converges between two consecutive increments. Such properties on

delta values are also the basis of the algorithms we propose in the next sections. Since

removing one edge from an elementary cycle is a sufficient condition to avoid it, we can

deduce a necessary condition to avoid a transient loop. At least one node in the cycle

has to be fully updated, no longer using its PRE edges, before the distance through r is

increased by a value greater than or equal to the maximum delta value of all nodes in

the cycle.

We showed in this section that a loop-free sequence of uniform distance increments exists

for any router shutdown operation. However, the ∆i+λ sequence may contain elements

that are not necessary to avoid transient loops. Such unnecessary elements may result

from the union of ∆i + λ value of distinct sub-shortest paths upstream of the modified

router. Intermediate increments for different destinations could also be merged within

the limits of distance increment intervals. Finally, performing non-uniform increments

could open more combinations and allow for even shorter sequences.

1.2 Towards non-uniform multi-link increments

Applying a sequence of uniform distance increments practically means that the IGP

weights configured on the outgoing links of the router have to be increased by the same

value at each step. This constraint prevent from computing minimal sequences, and also

makes it more difficult to finely tune the final link weights.

This is not a problem if the router, or a subset of its links, has to be shut down. As
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Figure 2.4: paths towards destination 4

long as the modified components are not used for transit anymore, their actual IGP

weights do not really matter. However, if the weights have to be set to specific values,

it could be necessary to compute and successively apply multiple distance increment

sequences. Each sequence would increase the weights configured on all but the links

that are already set at their final value, by the smallest required increment minus the

sum of those previously performed. For example, consider a node having three outgoing

links with the same initial weight of 1. If the weights on these links have to be set to 10,

16 and 25, respectively, three successive increment sequences would have to be applied.

This first one would increase the weights on all links by 9, setting them all to 10. The

second sequence would increase the weights on the second and third links by 6, so that

the weight on the tree links would respectively be equal to 10, 16 and 16. Finally, the

last sequence would increase the weight on the third link to 25.

Most of all, uniformity represents a non necessary constraint added to the problem that

prevents from achieving minimality in terms of sequence length, even without a specific

final case.

In order to compute minimal weight increment sequences we thus have to consider simul-

taneous and non-uniform multi-link increments. Computing such minimal sequences is

challenging for two main reasons. First, all the destinations in the network must be taken

into account, as our goal is to minimize the number of steps across them. This problem

also exists when aiming for minimality considering distance increments. However the

solution space is scalar in such case, while it is k-dimensional when considering non-

uniform multi-link increments on a node of degree k. Second, applying several weight

increments in a single LSA may lead to the use of next-hops that do not correspond to

either initial nor final ones. It is then not sufficient to only rely on those two end point

states to capture every intermediate next-hop change that may occur in the network

while the sequence is applied. Considering the example on Fig. 2.4, the updated node

0 may transiently use node 2 as one of its next hops towards 4 during the convergence

if the weights on links (0, 1), (0, 2) and (0, 3) are respectively set to 4, 2 and 4, which
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are the minimal values to avoid the loop between c and d. Those intermediate next-hops

possibly lead to additional transient loops. In the initial state given in Fig. 2.4, the

shortest paths from 2 to destination 4 include 0 as an ECMP next hop. Hence, when

applying the increment suggested above, a transient loop can occur between 0 and 2,

which depends on the values in the LSA sent to avoid the initial loop. We call such

a loop an intermediate forwarding loop, for it is triggered by intermediate forwarding

changes. Note that loops are not a necessary consequence of intermediate next-hops.

They only occur in specific circumstances that we describe in section 3.

In the next section, we put this last problem aside and present an algorithm to compute

minimal weight increment sequences, preventing non-intermediate transient loops for any

node removal operation. We address the problem of intermediate next-hops and loops

in section 3, proposing several solutions to prevent either all intermediate next-hops or

only the loops they may induce. We also show that, in practice, intermediate forwarding

loops can be prevented even without modifying the weight increment sequences, by using

additionnal local mechanisms.
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2 Computing minimal weight increment sequences

This section aims at providing a theoretical framework for non-uniform weight increment

sequences. We model a weight increment as a vector v, having k = |v| components. For

any weight increment v, a given component v[i] corresponds to the weight increment

applied to the i-th outgoing link of the modified router. For simplicity, we often refer to

the component of a vector using the identifier of the neighbor at the far end of the link.

We also define a partial order relationship between vectors the same size. Thus, we say

that two vectors v1 and v2 of size k > 0 are equal, i.e., v1 = v2, if ∀ i ∈ !1, k", v1[i] = v2[i].

Similarly, >, ≥, <, ≤ relationships, hold on vectors if they hold on all the corresponding

components. In addition, given two vectors v1 and v2 (such that |v1| = |v2| = k), we say

that v1 is positively greater than v2, and note v1 >
+ v2, if

∀ i ∈ !1, k",

{

v1[i] > v2[i] (if v2[i] ∈ N)

v1[i] ≥ 0 (if v2[i] ∈ Z<0)

This new relationship is later used to define the positive intermediate vectors that con-

stitute a weight increment sequence. It reflects our assumption that the weight of any

link outgoing from r is always greater than or equal to its initial weight. That is, since

we aim at offloading traffic from the router to be removed, we do not consider sequences

including weight decrements with respect to the initial state, as this would make r more

attractive. Nevertheless, we admit negative components in weight increments, e.g., if

following positive increments. Note that the conditional statements in parenthesis are

implicit in the inequalities, and merely provided for information.

2.1 Defining necessary constraints for loop avoidance

We now define the concept of loop-constraint to formalize the property a weight incre-

ment sequence must satisfy to provably avoid transient loops. More precisely, we define

a loop-constraint, or simply constraint, as the weight increment interval associated to

a single loop. For any given transient loop L, a loop-constraint l is a pair of vectors

l := (l, l̄). Vectors l and l̄ have one component per outgoing link of the modified router

r (i.e., |l| = |l̄| = k, where k is the degree of router r), and respectively represent the

lower and upper bounds of the constraint associated with L. To compute the actual

bounds of loop-constraints, we rely on a vectorial variant of the delta values previously

introduced, which we refer to as delta vectors. Given a router x ̸= r and a destination

d, we denote as ∆d(x) the vector of weight increments such that the shortest paths from

x to d include both the initial and final paths (as computed in G and G′, resp.). Let

C ′(x, d) be the cost of the shortest paths from x to d in G′, li be the i-th link outgoing
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Figure 2.5: Delta and constraint vectors calculation

from 0, and C(x, li, d) be the cost of the shortest path from x to r plus the cost of the

shortest simple path from r to d via li in G. Delta vectors are formally defined as

∆
r
d(x)[i] = C ′(x, d)− C(x, li, d)

Then, the loop-constraint l associated to a loop L to a destination d is defined as

l := (l := min
∀x∈L

(∆r
d(x)), l̄ := max

∀x∈L
(∆r

d(x)))

Note that, for a given destination d, the set of vectors ∆d(x)∀x ∈ N is totally ordered

and can be assimilated to scalars. Indeed, for any router x, we have C(x, li, d) =

C(0, li, d)−C(0, d)+C(x, d). In other words, for a given destination the offsets between

the delta vector components are the same for every router.

By definition of delta vectors, the vector vx verifying ∀ i ∈ !1, k", vx[i] = max(∆d(x)[i]+

1, 0) is the smallest set of increments to be configured on the outgoing interfaces of router

r, such that router x switches to its final state and no longer uses r to reach d. Hence, in

order to satisfy a loop-constraint l such that l = ∆d(z) and l̄ = ∆d(y), an intermediate

vector v must be positively greater than ∆d(z), but not greater than or equal to ∆d(y).

An illustration of delta and constraint vectors calculation is provided on Fig. 2.5. In this

example, ∆4(c) = (4 2 4 − 2) and ∆4(d) = (2 0 2 − 4), where components respectively

map to links (0, 1), (0, 2), (0, 3), and (0, c). Since C ′(c, 4) = 11 and C(c, (0, 1), 4) = 7,

we have ∆4(c)[1] = 4. This value indicates that adding 4 to the weight configured on

link (0, 1) makes the path from c to 4 through (0, 1) as long as the final ones. Similar

calculations are performed for every other component of ∆4(c) and ∆4(d). According

to those calculations, forwarding paths from c (resp., d) are ensured not to include 0 if

weight increments greater than ∆4(c) (resp., ∆4(d)) are applied to the outgoing links of
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0. Besides, the constraint l associated to the loop L between c and d is formalized as

l = (∆4(d),∆4(c)).

By definition of l, applying weight increments positively greater than l (resp. l̄) will

cause the shortest paths from at least one router (resp. all the routers) in L not to

traverse r anymore. In the previous example, applying a weight increment positively

greater than l = ∆4(d) will cause d, but not necessarily c, to switch to its final shortest

paths. Both c and d are guaranteed to switch to their respective final paths when the

weight increments is positively greater than l̄ = ∆4(c). To provably avoid a transient

loop, we must then force weight increments changing only to forwarding paths of d, e.g.

a relative increase of (3 1 3 0), before applying the final weights.

To formally state the problem of finding such intermediate weight increments, we intro-

duce the following terminology. We say that a weight increment v meets a constraint

(l, l̄) if v >+ l and ∃ i ∈ !1, k" | v[i] < l̄[i]. We also say that a weight increment v precedes

a constraint l if ∃ i ∈ !1, k" | v[i] ≤ l[i], and that v follows l if ∀ i ∈ !1, k" | v[i] ≥ l̄[i].

Given a constraint l and a sequence of weight increments {v0, . . . , vn}, where v0 = 0⃗

is the initial state of node r and vn = ∞⃗ represents the final routing state of r (after

MAX METRIC or an overload bit has been configured), a pair of consecutive vectors

vi and vi+1 constitutes an unsafe transition if either i) vi precedes l and vi+1 follows l̄;

or ii) vi follows l̄ and vi+1 precedes l. Trivially, a pair of consecutive vectors is said to

form a safe transition with respect to a given constraint if it is not unsafe.

In the previous example, setting router 0 directly in its final state, which we repre-

sent as the sequence {⃗0, ∞⃗}, is an unsafe transition with respect to constraint l =

{(2 0 2 0), (4 2 4 0)}. On the contrary, both transitions in sequence {⃗0, (3 1 3 0), ∞⃗} are

safe with respect to l, since the intermediate vector (3 1 3 0) meets l. Loop-constraints

and intermediate vectors can be graphically represented as in Fig. 2.6. For the sake of

clarity, we show only two dimensions that correspond to links (0, 1) and (0, 2) (the first

two indices in the vectors). A constraint is represented as a colored L-shape, whose arms

are the intervals of possible vector values. Any vector whose representation is within

the L-shape meets the constraint, while vectors outside the L-shape either precede or

follow the constraint. In this example, v1 and v2 precede l for their representations are

respectively on the left and below the L-shape corresponding to constraint l. On the

opposite, v6 follows l because it is represented on the right above the constraint. Only

v3, v4 and v5 are within the L-shape and actually meet l.

From the definition of delta vectors and loop constraints, we can deduce the following

properties. We refer to an arbitrary loop L considering a given destination d, its corre-

sponding constraint l, and a given weight increment v applied to links outgoing from 0.
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Figure 2.6: Graphical representation of constraints and vectors

For any router x, we denote its successors in RSPDAG(d,G) and RSPDAG(d,G′) as

its PRE and POST next-hops to d, respectively.

Property 2.1. Given a constraint l, ∀i ∈ !1, |l|", l̄[i] ≥ l[i] + 2.

Property 2.2. If v meets l, there exist at least two routers x, z ∈ L such that (i) x

uses its POST next-hops y1, . . . , yn to d, with y1, . . . , yn ̸∈ L because ∆d(x) = l; and

(ii) z uses its PRE next-hops w1, . . . , wn to d, with w1, . . . , wn ̸∈ L because ∆d(z) = l̄.

Property 2.3. All routers x ∈ L use their respective (i) PRE next-hops to d if v precedes

l, and (ii) their POST next-hops to d if v follows l.

We leverage these properties to prove that loop-constraints are necessary and sufficient

conditions to prevent transient loops.

Theorem 2.1. A weight sequence s avoids a loop L if and only if s contains only safe

transitions with respect to the constraint corresponding to L.

Proof. Let l = (l, l̄) and d respectively be the loop constraint and the destination asso-

ciated to loop L. We prove the statement in two steps.

• if s includes an unsafe transition (vi vi+1) for l, then s does not prevent L. Indeed,

by definition of unsafe transition, we have two cases: (i) vi precedes l and vi+1

follows l̄, and (ii) vi follows l and vi+1 precedes l̄. All the routers in L will switch
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from their PRE to their POST next-hops to d in the first case, and from their

POST to their PRE next-hops in the second case. In both cases, the transition

from vi to vi+1 can cause L to occur by definition of transient loop.

• if s only includes safe transitions for l, then s prevents L. Indeed, by definition

of safe transition, for each pair of weight increments vi and vj , where vi precedes

l, vj follows l and j > i, there must exist a vector vk such that i < k < j and

vk meets l. By Property 2.2, this means that each time routers in L switch from

their PRE to their POST next-hops, there is an intermediate step (corresponding

to vk) in which some routers switch before others in such a way that the possible

loop is prevented. A symmetric argument can be applied to the case in which vi

follows l and vj precedes l.

The two cases prove the statement.

Theorem 2.1 implies that, for each constraint (l, l̄), at least one vector must meet the

constraint for each transition from weight increments smaller than l to those greater

than l̄, and vice versa. Always increasing sequences thus seem a natural candidate for

targeting minimality, as each constraint would have to be met only once. Note that we

define as always increasing any sequence s = {v0, . . . , vm} verifying ∀ i ∈ !1,m", vi−1 ≤

vi. A simplified version of Theorem 2.1 holds for always increasing sequences.

Theorem 2.2. An always increasing weight sequence s avoids a loop L if and only if s

contains at least one vector meeting the constraint corresponding to L.

Proof. Let l = (l, l̄) be the constraint corresponding to any loop L. By definition of

always increasing sequence, s is a concatenation of three subsequences, s = l m h, where

l is composed by vectors preceding l, m contains vectors meeting l, and h includes

vectors following l̄. By hypothesis, m cannot be empty. Thus, s does not contain unsafe

transitions for l. The statement then follows by Theorem 2.1.

Constraint extraction

In practice, there exists several methods to retrieve the list of all loop-constraints as-

sociated to a given operation. The most intuitive one is to enumerate, for every des-

tination, the elementary circuits in the merged RSPDAG, and extract the minimum

and maximum delta vectors among the nodes in each circuit. However, the worst-

case time complexity of the best enumeration algorithm to our knowledge [Joh75] is in

O((|N | + |E|)(c + 1)), where c is the number of elementary circuits. Since there can
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be up to
∑|N |−1

i=1

( |N |
|N |−i+1

)

(|N | − i)! circuits in a complete directed graph, using this

algorithm might lead to very long computing times on large networks. Fortunately, it

is not necessary in our situation to accurately enumerate each cycle in order to retrieve

the associated constraint. Another solution consists in computing a transitive closure

[Dij59, Flo62] of the merged RSPDAG for each destination, and detecting cycles as a

path existing between two nodes in both directions. This method needs to be slightly

tuned in practice, in order to extract the minimum and maximum delta values, yet it

yields the best results in terms of computing time to our knowledge. For a given des-

tination, the actual number of constraints is indeed limited by the combinations of two

different delta values, which are at most equal to |N | × (|N | − 1)/2. Besides, in the

case of overlapping constraints, only the most restrictive one has to be considered. This

further reduces the maximum number of constraints to be considered for one destination

to |N |.

On Fig. 2.7, we show the constraints associated to each transient loop that could possi-

bly occur when router 0 is shut down. Constraints l1 and l5 correspond to two potential

transient loops for destination 1, while l2, l3 and l4 respectively map loops for destina-

tions 2, 3 and 4. Since we do not allow for negative increments with respect to the initial

weights, the graphical representation appears truncated for constraints whose first two

components include negative values. Constraints l1 and l5, which have positive values

only on their first components, are thus represented as vertical strips on the figure. This

means that they can only be met by a vector whose first value is between the bounds of

the constraint, regardless of the other components. One the contrary, l3 is depicted by

a horizontal strip for it may not be satisfied on the first index.

In this context, we study the problem of finding minimal safe sequences with respect

to all constraints. In particular, we present algorithms to compute always increasing

sequences, that are provably minimal and safe. This also implies that restricting to

always increasing sequences does not limit our ability to optimally solve the safe router

update problem. That is, for every router shutdown operation, there exists at least one

minimal safe sequence which is always increasing.

2.2 A greedy backward algorithm for computing minimal sequences

In order to minimize the operational impact of our approach, it is necessary to mini-

mize the number of intermediate weight increments to be performed. We designed an

algorithm that aims at computing a sequence of vectors satisfying both the safety and

the minimality properties. That is, (i) no transient loop could appear in the network

between successive updates or at either end of the sequence, and (ii) there exists no
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Figure 2.7: Loop-constraints for all destinations affected by the removal of router 0

shorter sequence satisfying this property. However, while the first property is easily met

once all the constraints have been extracted, the second one is more challenging due to

the partial order relationship among vectors. Since a vector only needs to be lower than

the upper bound of a constraint on one component, a forward based greedy algorithm

(similar to the one presented in [FSB07] and [CMP+14]) would have to decide, at each

step, which components are to remain below the upper bound of the lowest constraint

and which are to be increased, in order to meet multiple constraints. Thus, several

combinations of constraints could be possible at each step, which does not necessarily

lead to sequences of the same length.

Let us consider the constraints represented on Fig 2.7. Based on the graphical repre-

sentation and the vector values, we notice that l4 is to be met first. This constraint

can be combined together with either l2 and l3 (that is combined with l2 on the third

component), or l1, but not the three of them. A greedy option would thus be to meet

three constraints, l2, l3 and l4 with a single intermediate vector, denoted v1 on the fig-

ure. This leaves two constraints, l1 and l5, unsatisfied. Since they cannot combine, two

additional vectors, v2 and v3, are required to complete the sequence. Another option

would consist in combining only two constraints, l1 and l4, at the first step. While this

may appear less interesting, it would enable the three remaining ones to be met together

at a second step, making the final sequence {v′1, v3} one vector shorter than the greedy

option. We illustrate the sequence calculation process on Fig. 2.8, graphically showing

how intermediate vectors meet each loop-constraint and form safe sequences.
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Constraint l3 is not represented for it is
combined with l2 on the third component.

Figure 2.8: Sequence calculation on a forward mode

In this example, there is only one choice to be made, and one can easily compute

and compare both possibilities. However, on larger graphs such case could appear at

several steps, with possibly more than two options each time. A brute-force algorithm

could definitely find the minimal solution by exploring each constraint combination and

returning one of the shortest resulting sequences. Yet the solution would come at a

significant cost, as the number of possibilities can be combinatorial. This minimization

problem comes from the flexibility of the upper bound of the constraints. A typical

forward mode algorithm would in fact increase the vector values as much as possible,

considering predefined constraints. Contrary to scalar increments, though, it is unclear

which values are to be increased, and by how much, and which are not.

On the other hand, the lower bounds of loop-constraints are strict. That is, an interme-

diate vector can meet a constraint only if all of its components are larger than the lower

bound. It is sufficient that one component of the vector be below the lower bound for the

vector to precede the constraint. Hence, vector values can be greedily pushed towards

this bound without implying any decision process. In other words, when looking at the

constraints on a backward mode, there is only one possible lowest vector that does not

precede any of them. Each component of this vector is equal to the lowest possible value

meeting the constraint with the largest lower bound. The vector is computed such that

decrementing any component necessarily leads to at least one constraint being preceded.

Besides, we can show that this minimal vector meets at least one constraint. By Prop-

erty 2.1, this vector is indeed lower on at least one component than the upper bound
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Figure 2.9: Sequence calculation on a backward mode

of each constraint whose lower bound was used to compute the vector. Thus, since the

vector is positively greater than the lower bounds of these constraints and lower than

their upper bounds on at least one component, it necessarily satisfies these constraints.

The same process can then be repeated considering only the constraints that the first

vector left unsatisfied.

As an example, on Fig. 2.7, the constraints having the largest upper bounds are c5

on the first component, c2 on the second and third, and c3 on the third. The lowest

possible vector is thus equal to (9 10 8 0), which satisfies all three constraints. Then, by

repeating the same process with unsatisfied constraints, we obtain a second vector equal

to (7 1 3 0), which satisfies all the remaining constraints. Considering that constraints

c1 and c5 cannot possibly be satisfied by the same intermediate vector, the resulting

sequence {(7 1 3 0), (9 10 8 0)} is of minimal length. On Fig. 2.9, we illustrate this

backward calculation process, representing for each step the constraint precedence limit

as a red line.

The algorithm derived from this principle is called Greedy Backward Algorithm (GBA)

and presented in Alg. 1. From a set of loop-constraints L, which we assume have been

extracted beforehand, it consists in finding, at each iteration, the lowest possible vector

that is positively greater than the lower bound of every constraint l ∈ L. Formally,

each of its components is calculated as the maximum value among the lower bounds

of unsatisfied constraints plus one (ll. 4-9). Each constraint this vector satisfies is then
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removed from the set (ll. 10-16), and the process is repeated until there is no more

unsatisfied constraints (l. 3).

Algorithm 1 GBA Core

1: function GreedyBackwardAlgorithm(L)
2: sequence ← ∅

3: while L not ∅ do
4: vector ← 0⃗
5: for l ∈ L do
6: for i ∈ 1 . . . k do
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Compute the current vector
7: vector[i] ← max(vector[i], l[i] + 1)
8: end for
9: end for

10: for l ∈ L do
11: for i ∈ 1 . . . k do
12: if vector[i] ≤ l̄[i] then

⎫
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Remove satisfied constraints

13: L.remove (l)
14: end if
15: end for
16: end for
17: sequence.append (vector) ◃ Add the new vector to the sequence
18: end while
19: return sequence ◃ Return a minimal loop-free sequence
20: end function

Safety and minimality

We now prove that GBA computes weight sequences that prevent convergence loops.

And, most of all, that these weight sequences are of minimal length. Formally, we show

that GBA optimally solves the following problem.

Problem 2.1. Minimal Loop-free Problem (MLP): Given a set L of loop-constraints,

compute a minimal weight increment sequence that contains no unsafe transition for any

constraint in L.

In our proofs, we use the term before iteration j to denote all previous iterations consid-

ering a backward sequence building. We also say that a constraint is unsatisfied (resp.

satisfied) at an iteration j if it is not met (resp. it is met) by any vector computed

by GBA before j. Our proofs leverage the following properties of GBA that hold by

definition of the algorithm.

Property 2.4. At each iteration j, GBA computes a vector v such that v >+ l for all

the constraints l = (l, l̄) still unsatisfied before j.
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Property 2.5. At each iteration j, GBA computes a vector v such that, for each

component i, a constraint l = (l, l̄) still unsatisfied before j exists that meets v[i] =

max(l[i] + 1, 0).

Property 2.6. GBA computes always increasing sequences.

Property 2.7. GBA stops as soon as all the constraints are met.

Properties 2.4 and 2.5 are ensured by the greedy vector computation. Property 2.6 is

the result of both vector computation and constraint removal. Property 2.7 derives from

the constraint removal mechanism.

These properties are used to show that, given any initial set of constraints, GBA always

terminates and produces a sequence of minimal length.

Lemma 2.1. At each iteration, GBA computes a vector v that meets at least one con-

straint not met before.

Proof. Consider any iteration j of GBA. Let L be the set of unsatisfied constraints at

the beginning of iteration j, and let v the vector computed by the algorithm during the

iteration j. By Properties 2.4 and 2.5, there must exist at least one constraint l ∈ L

such that l = (l, l̄), v >+ l and ∃i|v[i] = l[i] + 1. By Property 2.1, then ∃i|v[i] < l̄[i].

This means that l is met by v, hence the statement.

We now leverage Lemma 2.1 to prove that GBA always terminates in a finite number

of iterations, bounded by |L| < |N |2.

Theorem 2.3. For any MLP instance I =< L >, GBA always terminates in O(|L|)

iterations.

Proof. By Property 2.7, GBA stops when all the initial constraints L are met. Hence,

the statement directly follows by Lemma 2.1.

We also show that the sequences computed by GBA are guaranteed to be safe.

Theorem 2.4. The weight sequences computed by GBA prevent all transient loops.

Proof. Let I be any MLP instance, and let s be the sequence computed by GBA on I.

By Property 2.6, s is an always increasing sequence. By Lemma 2.1, each constraint is

met by at least one vector in s. Thus, the statement follows by Theorem 2.2.

Eventually, we prove the minimality of the sequences computed by GBA.
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Lemma 2.2. Let I =< L > be any MLP instance, s = (s1 . . . sn) be any sequence

solving I, and g = (g1 . . . gm) be the sequence computed by GBA on I, with possibly

n ̸= m. The last vectors of the sequences verify sn ≥ gm.

Proof. Assume by contradiction that sn[i] < gm[i] for a given component i. By Prop-

erty 2.5, there must exist at least one constraint l = (l, l̄) ∈ L, such that gm[i] = l[i] + 1.

This implies that sn[i] ≤ l[i], hence l is not met by sn. This means that s contains an

unsafe transition for l, since sn is the last weight increment in s and the final weight

assignment is greater or equal than l̄. Theorem 2.1 implies that s does not solve I,

contradicting the hypothesis and yielding the statement.

Lemma 2.3. Let I =< L > be any MLP instance, s = (s1 . . . sn) be any sequence

solving I, and g = (g1 . . . gm) be the sequence computed by GBA on I, with possibly

n ̸= m. All the loop-constraints met by sn are also met by gm.

Proof. Assume by contradiction that a constraint l is met by sn, but not by gm. By

Property 2.4, gm >+ l. Hence, for gm not to meet l, it must be gm >+ l̄. Also, in

order for sn to meet l, it must exist a component i such that sn[i] < l̄[i]. As a result,

sn[i] < l̄[i] < gm[i]. This contradicts Lemma 2.2, hence yielding the statement.

Theorem 2.5. GBA computes a minimal sequence solving any given MLP instance.

Proof. Consider an MLP instance I =< L >. Let s = (s1 . . . sn) and g = (g1 . . . gm),

with n ≤ m, be respectively any minimal solution of I and the sequence computed by

GBA on I. If m = 1, n must be equal to 1 as well, and the statement directly follows.

Otherwise, we know by Lemma 2.3 that if gm meets a set L1 ⊆ L of loop constraints,

then sn meets a subset of constraints in L1. Consider now the sequences (s1 . . . sn−1) and

(g1 . . . gm−1). Again by Lemma 2.3, gm−1 meets at least the same set of constraints as

sn−1. This implies that the sequence (gm−1 gm) meets at least the same constraints met

by (sn−1 sn). By iterating the same argument, we can show that (gm−n+1 . . . gm) meets

at least the same set of constraints as (s1 . . . sn). Thus, by definition of s, (gm−n+1 . . . gm)

meets all the constraints in L. Also, Property 2.7 ensures that GBA stops at gm−n+1.

Hence, it must be m− n = 0 and |g| = |s|, yielding the statement.

Theorem 2.4 and 2.5 respectively prove the safety and minimality of the weight se-

quences computed by GBA. These imply that, among the set of minimal positive weight

increment sequences, there exists at least one that is always increasing. In other words,

restricting to always increasing sequences does not limit our ability to optimally solve

the node shutdown problem, as long as only positive increments are considered. Con-

sidering negative increments (within the limit of positive IGP weights), in particular at
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the beginning of a sequence, would enable to re-balance the traffic between the outgoing

links of the router to be shut down. This could allow for additional constraint combi-

nations, thus leading to shorter sequences. However, it might not be realistic from a

practical networking perspective, as it would imply rerouting traffic through links that

may not be provisioned enough, and possibly even attract more traffic into a router that

we want to shut down. Besides, we show in the next section that modifying the set of

next-hops used by the modified router may lead to another kind of inconsistencies.
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3 Preventing disruptions caused by intermediate updates

Although permitting to further reduce the length of a sequence, the opportunity of

simultaneously applying non-uniform weight updates to several links comes with a new

kind of transient inconsistencies to deal with. Contrary to uniform updates, which

modify the distance towards each destination without affecting the attractiveness of

any outgoing link of node 0, heterogeneous ones may change its set of next-hops with

each new update. Such phenomenon leads to traffic flows being repeatedly disturbed

as successive diversions are applied to their routes. Indeed, route diversions increase

the probability of out-of-order packet delivery, in addition to delay and time-to-live

(TTL) variations, which may have a negative impact on connection based transport

layer protocols. Moreover, these inconsistencies may also cause transient forwarding

loops involving edges that are used neither in the initial nor in the final routing graph;

hence not appearing when merging the RSPDAGs.

Let us illustrate this problem with a simple example. On the network represented on

Fig. 2.10, we consider the shutdown operation of router 0 and the associated sequence

computed by GBA.
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In order to prevent a potential transient loop between routers c and d, the first vector

of this sequence forces d to shift to its final path, while c still follows its initial one.

However, this weight increment also has an impact on the routing decisions of node 0,

forcing it to update its shortest paths to 4 (Fig. 2.10b). More precisely, 0 starts using
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Figure 2.10: Illustration of intermediate inconsistencies for destination 4.
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nodes 2 and 3 instead of 1 and 3 as next-hops, and forwarding traffic on path (0 2 3 4),

which it does not use either in G nor in G′. Note that, contrary to final paths that

are expected to be used after the modification, such an intermediate path may not be

sufficiently provisioned to carry new flows, hence leading to congestion issues. In this

example, node 3 may act as a bottleneck on the paths used by 0 to 4, which are no longer

disjoint. Even worse, a transient loop can occur between 0 and 2, since 2 was initially

using 0, as highlighted by the red arrow from 2 to 0. Such a loop can also appear during

the intermediate convergence resulting from the application of second vector (Fig. 2.10c).

Indeed, the weight increment makes router 0 use c as a next-hop towards 4, while the

edge (c, 0) was used in the previous state to reach the same destination.

We define as intermediate forwarding change such a modification in the set of forwarding

paths used by 0, which does not coincide with its initial or final set of paths. In certain

cases, intermediate forwarding changes may cause intermediate transient loops, as the

ones presented on Fig. 2.10. Those loops always include router r and depend on the

shortest paths on intermediate forwarding graphs obtained by applying non-uniform

weight increments. As such, they do not correspond to cycles in the merged graph

RSPDAG(d)∪RSPDAG′(d). Due to their nature, intermediate transient loops induce

two complications. First, they are not considered by GBA, as shown by the example

in Fig. 2.10. Second, they map to dynamic constraints depending on the increment

sequence itself, as opposed to GBA constraints that can be computed through a static

analysis on the initial and final RSPDAG.

In this section, we propose several solutions to deal with intermediate forwarding changes

and transient loops. In Sec. 3.1, we describe our Adjusted Greedy Backward Algorithm

(AGBA) that computes provably minimal sequences preventing all kinds of intermediate

disruptions. In Sec. 3.2, we present a heuristic algorithm, called Dynamic Greedy Back-

ward Heuristic (DGBH), which only focuses on intermediate transient loop prevention

in order to provide shorter sequences. Finally, in Sec. 3.3, we discuss a technical al-

ternative to DGBH, preventing intermediate transient loops while using standard GBA

sequences.

3.1 Algorithmic solution to prevent intermediate forwarding changes

Since the root cause of intermediate next-hops leading to loops and new forwarding paths

is induced by local changes on node r, a sufficient condition to avoid any intermediate

edge consists in enforcing that r maintains its initial next-hops throughout the IGP

convergence.
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As a preamble to the description of our intermediate change prevention mechanism, let

us introduce some new notations and definitions. We denote the component of a vector

v associated to a link (r, x) as v[x].

Definition 3.1. A node s is called initial successor of r to d if (r, s) is the first edge

of a path in RSPDAG(d,G). We denote the set of initial successors of r to d as S∗(d).

Intuitively, initial successors are next-hops used by r to reach d in G. In the example in

Fig. 2.10, nodes 1 and 3 are initial successors of r for destination 4, while 2 and c are

not.

Definition 3.2. Let d be a destination and x a neighbor of router r. We define the

offset value of x towards d as

offsetrd(x) = C(r, x, d)− C(r, d)

where C(r, x, d) represents the cost of the shortest elementary path in G from r to d via

link (r, x).

This offset value reflects the attractiveness of a neighbor compared to the initial next-

hops of r to d. Note that, if x ∈ S∗(d) then C(r, x, d) = C(r, d) and offsetd(x) = 0. The

purpose of such an offset is to retrieve the distance increment towards d represented by a

vector component. Indeed, the less a neighbor is attractive the lower the corresponding

component of a vector would have to be, in order to increase the distance from r to d

by any given value.

Definition 3.3. Let d be a destination, s∗ be an initial successor of r to d, and v be a

weight increment. We define the intermediate forwarding Change Prevention Conditions

(CPCs) as the set of inequalities

v[s] = v[s∗]

v[x] > v[s∗]− offsetd(x)

for each initial successor s ∈ S∗(d) of r, and for each other neighbor x of r such that

x ̸∈ S∗(d).

As an illustration, consider again Fig. 2.10 and let s∗ = 1. The CPCs for destination 4

consists of inequalities v[1] < v[2]+2 and v[1] = v[3]. Observe that CPCs are formulated

with respect to a single initial successor (i.e., 1 in the example above). However, the

correctness of the CPCs does not depend on the considered initial successor.

Moreover, for each neighbor x ̸∈ S∗(d), it must be C(r, d) < C(r, x, d) by definition of

initial successors. Hence, offsetd(x) > 0, and the following property holds.
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Algorithm 2 AGBA-1 : Minimal Constraints Initialization

1: function agba init(n,D, offset)
2: M ← ∅ ◃ Minimal constraints matrix
3: for d in N do
4: S∗ ← ∅ ◃ Initial next-hops of router n
5: for x in n.succ() do
6: offset[d][x] ← w(n, x) + C ′(x, d)− C(n, d)
7: if offset[d][x] = 0 then
8: S∗.append(x)
9: end if

10: end for
11: for s in S∗ do
12: for x in n.succ() do
13: M [s][x] ← min (M [s][x], offset[d][x])
14: end for
15: end for
16: end for
17: end function

Algorithm 3 AGBA-2 : Greedy Vector Adjustment

1: function agba adjust(M,n, gv)
2: indexes ← n.succ()
3: while indexes ̸= ∅ do
4: p ← pop max index (indexes, gv)
5: for x in n.succ() do
6: if M [p][x] = 0 then
7: gv[x] ← gv[p]
8: else if gv[x] ≤ gv[p]−M [p][x] then
9: gv[x] ← gv[p]−M [p][x] + 1

10: end if
11: end for
12: end while
13: return gv
14: end function

Property 3.1. Any CPC inequality can be written as v[s∗] ≤ v[x] +m, with m ≥ 0.

Intuitively, CPCs impose that, for a given destination, paths via initial successors of r

should be shorter than any other paths via a non initial successor. That is, we aim to

control weight increments such that no intermediate forwarding change occur. Hence,

verifying CPCs for a destination d guarantees that the shortest paths from r to d remain

the same. This implies the following theorem.

Theorem 3.4. If a weight increment v satisfies the CPCs for all destinations, no for-

warding change occurs when v is applied.
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Proof. Assume by contradiction that a forwarding change occurs for a destination d

when v is applied, even if v verifies all the CPCs for d. By definition of forwarding

change, a node x̄ must exist such that one of its shortest paths to d after the application

of v is not included either in the initial nor in the final ones. Since only the weights of

the links outgoing from r are changed by v, the paths from x̄ to r are the same as the

initial ones. This means that r must also have changed its shortest paths to d.

By definition of CPCs, all the paths from r to d via initial successors have the same

length after the application of v. Thus, for a forwarding change on r to occur, there

must exist a path (r x . . . d) shorter than or equal to the shortest paths from r to d via

any initial successor s∗. Since only the weights of the links outgoing from r are changed

by v, this means that v[s∗] + C(r, d) ≥ v[x] + C(r, x, d), i.e., v[s∗] ≥ v[x] − offsetd(x).

This inequality contradicts the hypothesis that all CPCs are verified by v, thus proving

the statement.

Since intermediate transient loops cannot occur in the absence of forwarding changes,

the following corollary holds.

Corollary 3.5. If a weight increment v satisfies the CPCs for all destinations, no

intermediate transient loop occurs.

We now present a variation of GBA, called AGBA, that guarantees prevention of inter-

mediate edges by enforcing accommodation of CPCs for all network destinations. More

precisely, AGBA solves the following problem.

Problem 3.1. Minimal intermediate Change-free and Loop-free Problem (MCLP): Given

a set L of loop-constraints and a set A of CPCs, compute a minimal weight increment

sequence that contains no unsafe transition for any constraint in L, and no weight in-

crement that violate any condition in A.

Provided that all the loop-constraints and the CPCs are correctly computed, solving

an MCLP instance implies preventing all possible convergence loops and forwarding

changes in the corresponding network as per Theorems 2.1 and 3.4.

To solve the MCLP problem AGBA post-processes each weight increment gv as com-

puted by GBA. To this end, AGBA adds two main algorithmic steps to each iteration

of GBA. One in its initialization, the other within the main loop iteration to adjust the

greedy vector.

First, AGBA computes every offset values and optimizes them across all destinations,

as shown in Alg. 2. In particular, for each destination, it computes all the offsets and
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identifies the initial successors (ll. 5–8 in Alg. 2). Moreover, for each pair initial successor

and neighbor of r, it only keeps the smallest offset (ll. 9-11 in Alg. 2), as it corresponds

to the most constraining CPCs.

Second, AGBA modifies the greedy vector gv as computed by GBA, applying the follow-

ing operations. 1) vector sorting, in which the components of gv are considered from

the biggest to the smallest one (this corresponds to consider all the CPCs in decreasing

order). The goal is to retrieve the up to date pivot component p (line 4 in Alg. 3); and

2) vector adjusting, in which the current component of gv is modified to satisfy all the

sorted CPCs. AGBA enforces the CPCs by imposing:

v[s] = md

v[x] = md − offsetd(x) + 1

where s ∈ S∗(d), x /∈ S∗(d), and md = max∀s∈S∗(d)(v[s]). That is, given a weight incre-

ment, AGBA calculates the maximum component corresponding to an initial successor,

which we call pivot component, and imposes that all the other components of the vector

must enforce the CPCs with respect to such a pivot component. We formally define this

particular component as follows.

Definition 3.6. Given a vector v and a set of CPCs, we denote as pivot component the

largest component of v appearing in the left hand side of any unsatisfied CPC inequality.

Consider again the example in Fig. 2.10. The pivot component of the shown weight

increment v is v[1] and m4 = 7. AGBA imposes that v[1] = v[3] = 7, v[2] = 6 and

v[c] = 2. Eventually, the complete sequence computed by AGBA on the network in the

figure is

SAGBA =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩
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⎜

⎜

⎜

⎜

⎜

⎝

3

2

3

3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

7

6

7

7

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

8

7

8

8

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

9
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9

9

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

As shown on Fig 2.11, this sequence has no impact on the routing decisions of node 0.

Remember that weight increments only apply on the outgoing links of 0. In particular,

the cost of edge (0, c) is not modified by the sequence. For destination 4, the first vector

only makes node d reroute through link (d, 4) (Fig. 2.11b), while node c alone updates its

next-hop with the second one (Fig. 2.11c). The two subsequent vectors have no impact

at all on the shortest paths towards 4.

This sequence is two vectors longer than the one produced by GBA, yet one shorter

than a minimal uniform sequence {3, 7, 8, 9, 10} for the same operation. Although it
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may appear a large sequence length overhead in this particular case, our experiments

show that sequence stretching remains marginal in many realistic situations (see Ch. 3).

Correctness and optimality proofs

Intuitively, AGBA is correct and optimal because CPCs are static conditions, in the same

vein as transient loop-constraints. The greedy behavior of GBA is then still ensured with

respect to an additional kind of static constraints, i.e., the “minimal” resolution of a

linear inequality system.

In our proofs, we use the term before iteration j to denote all iterations that are lower

than j. We also say that a constraint is unsatisfied (resp., satisfied) at an iteration j if it

is not met (resp., it is met) by any vector computed by AGBA before j. For simplicity,

we restrict to the case of a single pivot component per vector. However, lemmas and

theorems can be easily generalized to multiple pivot components.

AGBA being a variation of the GBA, it inherits of the same properties, but for some

minor modifications. Besides, the proofs of two statements related to minimality are

also exactly the same as GBA.

Property 3.2. At each iteration j, AGBA computes a vector v such that v >+ l for all

the constraints l = (l, l̄) still unsatisfied before j.

Property 3.3. Given any AGBA iteration j, let v be the vector that AGBA computes

before the adjusting phase. For each component i of v, a constraint l = (l, l̄) still unsat-

isfied before j exists such that v[i] = max(l[i] + 1, 0).

Property 3.4. AGBA computes always increasing sequences.

Property 3.5. AGBA stops as soon as all the constraints are met.
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Figure 2.11: Illustration of AGBA sequence for destination 4.



Chapter 2. Algorithmic contributions 79

Properties 3.2 and 3.3 are ensured by the greedy vector computation, plus the fact that

AGBA only increases some components of the vector during the adjusting phase. Prop-

erty 3.4 is the result of both vector computation and constraint removal. Properties 3.5

derives from the constraint removal mechanism.

First of all, we show that AGBA always terminates.

Lemma 3.1. For any AGBA iteration, the pivot component of the computed vector

remains bigger than any component appearing in the left side of any CPC inequality

during the adjusting phase.

Proof. The statement hold at the beginning of the adjusting phase by definition of pivot

component.

Now, assume by contradiction that the statement holds until a given step s during the

adjusting phase, but not after s. That is, at step s AGBA computes a vector in which

at least one component m is bigger than the pivot component j, and m appears in the

left side of some CPCinequalities. Let w and z be the vectors computed by AGBA

respectively before and after step s. By hypothesis, ∀i w[i] ≤ w[j] while z[m] > z[j].

This hypothesis implies that AGBA has increased the m-th component of w at step s.

By definition, AGBA increases a component only if it appears in the right side of an

CPC inequality. Thus, the inequality considered by AGBA in s must be v[l] ≤ v[m]+k,

with k ≥ 0 and l ̸= m. To accommodate this inequality, by definition, AGBA enforces

z[l] = z[m] + k, that is, z[l] ≥ z[m] since k ≥ 0. All the other components are left

unmodified, hence z[l] = w[l] and z[j] = w[j].

We have two cases. If l = j, then z[l] ≥ z[m] implies z[j] ≥ z[m], which contradicts the

definition of z. Otherwise, if l ̸= j, then it must be w[l] = z[l] ≥ z[m] > z[j] = w[j] ,

i.e., w[l] > w[j], which contradicts the definition of w. In both cases, we contradict the

hypothesis, which yields the statement.

Lemma 3.2. The pivot component is never modified by AGBA during the adjusting

phase.

Proof. Let p be any vector before the adjusting phase, and let p[j] be its pivot compo-

nent. We now show that AGBA never modifies p[j].

In the adjusting phase, AGBA iterates once on the sorted set of CPC inequalities,

considering one inequality at the time and increasing some components of the vector if

needed. Consider any step s in this iteration. Let w be the vector at the beginning of

s. The following cases apply to the CPC inequality that AGBA considers at s.
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• v[j] does not appear in the inequality, hence it is not modified, by definition of

AGBA.

• v[j] appear in the left side of the inequality, which has the form v[j] ≤ v[i] + k,

with i ̸= j and k ≥ 0. If the inequality is satisfied, AGBA will not modify any

component of w. Otherwise, by definition, AGBA will only increase the value of

w[i] while not modifying w[j].

• v[j] appear in the left side of the inequality, which has the form v[l] ≤ v[j]+q, with

l ̸= j and q ≥ 0. By Lemma 3.1, it must be w[l] < w[j]. Hence, the inequality is

already satisfied by w, and by definition, AGBA does not modify any component

of w.

In all the cases, AGBA does not modify w[j]. The statement follows by applying the

same argument to all the steps performed by AGBA during the adjusting phase.

Lemma 3.2 implies that at least one constraint is satisfied by AGBA at each step.

Lemma 3.3. At each iteration, AGBA computes a vector v that meets at least one

constraint not met before.

Proof. Consider any AGBA iteration i. Let L be the set of unsatisfied constraints at the

beginning of i, let v be the computed vector before the adjusting phase, and let v[j] be

its pivot component. By Property 3.2 and 3.3, one constraint l = (l, l̄) ∈ L must exist

such that v >+ l and v[j] = l[j] + 1. By Property 2.1, it must also be v[j] < l̄[j], that

is, l is met by v. The statement follows by noting that v[j] is unmodified by AGBA in

the adjusting phase, by Lemma 3.2.

We now leverage Lemma 3.3 to prove that AGBA always terminates in a finite number

of iterations.

Theorem 3.7. For any MCLP instance I =< L,A >, AGBA always terminates in

O(|L|) iterations.

Proof. By Property 3.5, AGBA stops when all the initial constraints L are met. Hence,

the statement directly follows by Lemma 3.3.

We now show that the sequences computed by AGBA are guaranteed to be safe and to

avoid intermediate edges.

Lemma 3.4. In AGBA, adjusting a vector according to a given CPC does not invalidate

previously satisfied CPCs.
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Proof. Assume by contradiction that AGBA invalidates a previously satisfied CPC in-

equality (1) v[l] ≤ v[m] + k to satisfy another CPC inequality (2) v[i] ≤ v[j] + q. By

definition of CPC, k, q ≥ 0. Let w and z be the vectors computed during the adjusting

phase immediately before and immediately after considering (2), respectively. Our as-

sumption translates to having w[l] ≤ w[m] + k, z[i] ≤ z[j] + q, and z[l] > z[m] + k. One

of the following cases must hold.

• w is already compliant with (2). Then, by definition, AGBA does not modify

any component of the current vector w, hence z[l] = w[l] and z[m] = w[m]. By

definition of w, this means that it must be z[l] ≤ z[m] + k, which contradicts the

assumption.

• w is not compliant with (2) and j ̸= l. By definition, AGBA only increases the j-th

component of w, i.e., z[j] > w[j] but z[l] = w[l] and z[m] = w[m]. By definition of

w, this implies that z[l] ≤ z[m] + k, which contradicts the assumption.

• w is not compliant with (2) and j = l. Since (1) has been considered by AGBA

before (2), then it must be w[l] = w[j] > w[i] by definition of the sorting phase

in AGBA. This means that (2) has been already satisfied by w, contradicting the

hypothesis of this case.

All cases lead to a contradiction, yielding the statement.

Theorem 3.8. The weight sequences computed by AGBA prevent both transient loops

and intermediate edges.

Proof. Let I be any MCLP instance, and let s be the sequence computed by AGBA on

I. By Property 3.4, s is an always increasing sequence. By Lemma 3.3, each constraint

is met by at least one vector in s. Thus, Theorem 2.2 ensures the prevention of transient

loops. Moreover, by definition of the AGBA adjusting phase and by Lemma 3.4, all

the CPCs inequalities are satisfied by each weight increment in s. Hence, Theorem 3.4

guarantees the prevention of intermediate edges.

Finally, we prove the minimality of the sequences computed by AGBA.

Lemma 3.5. Let I be any MCLP instance, s = (s1 . . . sn) be any sequence solving I,

and g = (g1 . . . gm) be the sequence computed by AGBA on I, with possibly n ̸= m. The

last vectors of the sequences verify sn ≥ gm.

Proof. Let I =< L,A >. Assume by contradiction that sn[i] < gm[i] for a given

component i. We have two cases.
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• AGBA did not modify the i-th component in the adjusting phase of its first itera-

tion. Then, by Property 3.3, there must exist at least one constraint l = (l, l̄) ∈ L

such that gm[i] = l[i] + 1. This implies that sn[i] < l[i] + 1, hence l is not met by

sn.

• AGBA modified the i-th component in the adjusting phase of its first iteration.

Then, by definition of adjusting phase, A must include an CPC inequality v[j] ≤

v[i] + y. Since i-th component was actually adjusted by hypothesis, it must be

y > 0, and AGBA enforced gm[j] = gm[i] + y, i.e., gm[j] < gm[i]. Moreover, for s

to prevent intermediate edges, sn[j] ≤ sn[i] + y. Since sn[i] < gm[i] by hypothesis,

it must be sn[j] < gm[i] + y, hence sn[j] < gm[j].

In the second case, we can iterate the argument above starting from j-th component.

Each time the second case applies, we end up with a component of gm strictly bigger

than the previously considered one. Thus, the second case can hold until we reach

the biggest component of gm that appears in the left side of any CPC inequality. By

Lemma 3.1, this component is the pivot component. Thus, Lemma 3.2 ensures that the

first case eventually applies.

Hence, at least one constraint l is not met by sn. This means that s contains an unsafe

transition for l, since sn is the last weight increment in s and the final weight assignment

is greater or equal than l̄. Theorem 2.1 implies that s does not solve I, contradicting

the hypothesis and yielding the statement.

Lemma 3.6. Let I be any MCLP instance, s = (s1 . . . sn) be any sequence solving I,

and g = (g1 . . . gm) be the sequence computed by AGBA on I, with possibly n ̸= m. All

the loop constraints met by sn are also met by gm.

Proof. Same as Lemma 2.3, using Property 3.2 and Lemma 3.5.

Theorem 3.9. AGBA computes a minimal sequence solving any given MCLP instance.

Proof. Same as Theorem 2.5, using Lemma 3.6 and Property 3.5.

Note that AGBA is minimal even if the MCLP instance allows relative weight modifi-

cation in Z while GBA ensures minimality for the MLP only if globally relative weight

modifications stays in N.
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3.2 Algorithmic solution to prevent intermediate transient loops

AGBA enforces strong consistency guarantees during IGP convergence at the cost of

increasing the sequence length. In this section, we explore a trade-off between routing

consistency and sequence length. In particular, we investigate the opportunity of relax-

ing the CPCs, allowing for intermediate next-hop changes as long as they do not lead

to transient loops.

As opposed to CPCs that only depend on the initial routing state, our new requirements

are defined for a transition, which may either be between two intermediate vectors, or

between a vector and an extremity state. In both cases, the conditions to be satisfied

depend on the intermediate vector themselves. Intuitively, let us consider a weight

increment sequence s = {s0, . . . , si−1, si, . . . , sm}, such that the application of vector si

triggers an intermediate next-hop change that would lead to an intermediate transient

loop, with respect to the routing state induced by vector si−1. On one hand, it is possible

to modify si to prevent the intermediate forwarding change, so that no loop occur when

applying the vector. This is the most intuitive solution, as it follows in the same spirit as

AGBA. However some constraints initially satisfied at step si with GBA can be shifted

to next iterations ≤ i − 1 such that it may possibly increase the sequence length. On

the other hand, we could also deal with the intermediate loop as a normal transient one,

i.e. by encoding it as a static loop-constraint. In practice, it will then consist in forcing

si−1 to be larger than the lower bound of the associated constraint.

In order to explore this new compromise, we first need to characterize intermediate

transient loops. By definition, such a loop may occur due to an intermediate forwarding

change, that is, when an intermediate weight increment makes node r consider as next-

hop a neighbor that is not part of its initial or final set of next-hops. However, a

transition making node r use an intermediate next-hop does not necessarily lead to

an intermediate transient loop. Indeed, some neighbors of r may be considered safe,

allowing node r to use them as next-hops without triggering intermediate transient

loops. For instance, neighbors that do not reach d through node r before the change

cannot be involved in any transient loop for this destination, thus being safe according

to this definition. Since all other neighbors initially reach destination d through r, their

safety status may depend on the transition, in particular their state before and after

the transition. We thus define the circumstances leading GBA to result in intermediate

transient loops as follows.

Definition 3.10. Let d be a destination and, v1, v2 be two weight increment vectors

such that v1 < v2. An intermediate transient loop can occur for destination d during

a transition between v1 and v2, if v2 makes node r consider as next-hop towards d a

neighbor that is not in its final state after v1.
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Let us denote as p a neighbor of r meeting the condition described in the definition above.

If p is not in its final state after v1, there necessarily exists in this state a shortest path

P1 = (p, . . . , r, . . . d). Besides, if v2 makes r consider p as a next-hop towards d, a shortest

path P2 = (r, p, . . . , d) exits in this second state. Hence, a transient loop (p, . . . , r, p)

may indeed occur during the transition.

Let us now introduce some new notations and definitions for this problem.

Definition 3.11. A node p is called initial predecessor of r to d if the edge (p, r) is

in RSPDAG(d,G). We denote the set of initial predecessors of r as P ∗
r (d).

In addition, we extend the distance notations C(x, d) and C(x, li, d) to consider interme-

diate graphs resulting from the application of a weight increment v, using respectively

Cv(x, d) and Cv(x, li, d).

Definition 3.12. Let d be a destination and v1, v2 be two weight increments such that

v1 < v2. We define the Dynamic Loop Constraints (DLCs) as follows:

∀ p∗ ∈ P ∗(d) | Cv2(r, p
∗, d) = Cv2(r, d), v1 >

+
∆d(p

∗)

In order to prevent intermediate transient loops, such DLCs are to be satisfied by each

vector in the sequence. Should we consider that the larger vector, v2, cannot be modified,

a DLC could be compared to a static loop-constraint l = (∆d(p
∗), v2).

In the following, we denote the set of dynamic loop-constrants related to a given vector as

C and individual constraints as c. Besides, we define as follows the minimal satisfaction

of a CPC.

Definition 3.13. If a vector v1 verifies v1 >+
∆d(p

∗) and ∃ i | v1[i] = ∆d(p
∗)[i] + 1,

we say that the vector v1 < v2 minimally satisfies the dynamic loop-constraint c =

(∆d(p
∗), v2) .

Minimal CPC satisfication represents a sufficient property for the lower bound of a

dynamic constraint to no longer appear at any subsequent iteration of a GBA-based

algorithm. That is, if a vector v1 minimally satisifies a CPC c = (∆d(p
∗), v2), no inter-

mediate transient loop involving both p∗ and r could occur for any transition between

vectors lower than v1. Indeed, no lower weight increment could make r consider p∗ as a

next-hop towards d: p∗ is no longer to be considered as a lower bound of a DLC.

More generally, DLCs impose that any initial predecessor of r, for a given destination d,

be in its final state at least one step before being used by r on a shortest path towards d.

These constraints could be satisfied by increasing the values in v1 as mentioned above,
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but also by adjusting the values in v2 to ensure to no initial predecessor of r that is not

in its final state after v1 is used on a shortest path. One way or the other, verifying the

DLCs for two weight increment vectors guarantees that no intermediate transient loop

could occur during the transition. This implies the following theorem.

Theorem 3.14. If two weight increments v1 and v2, such that v1 < v2 satisfy the DLCs

for all destinations, then no intermediate transient loop may occur when v2 is applied

after v1.

Proof. Assume by contradiction that an intermediate transient loop may occur for a

destination d when v2 is applied, even though v1 and v2 satisfy the DLCs. By defini-

tion 3.10, an initial predecessor p∗ of r must exist such that r is on a shortest path from

p∗ to d before the convergence, while the opposite holds after the change. This means

that p∗ is not in its final state before v2 is applied, that is, after v1.

By definition of DLCs, if a shortest path from r to d include p∗ after v2 is applied, then

v1 >+
∆d(p

∗). Thus, by definition of delta vectors, p∗ is in its final state after v1. This

contradicts the hypothesis, and yield the statement.

Although we can show that any sequence computed using AGBA satisfies the DLCs,

such sequence is not necessarily of minimal length with respect to these conditions. We

thus define as follows the problem of optimally satisfying the DLCs.

Problem 3.2. Minimal Intermediate Loop-free Problem (MILP): Given a set L of loop-

constraints, compute a minimal weight increment safe sequence that does not result in

any intermediate transient loop on 0.

Finding such a minimal sequence, which satisfies conditions based of the sequence itself,

seems a complex problem. An algorithm similar to AGBA would have to adjust the

values of intermediate vectors in order to prevent intermediate transient loops for every

transition. The difference compared to AGBA is that DLCs depend on the state before

the transition, which can be induced by a previous vector, rather than an initial, fixed,

state. It is thus possible to satisfy these conditions by modifying either the current

vector, the previous one, or both. A choice has to be made, which could impact the

length of the resulting sequence. Modifying the values of an intermediate weight vector,

in order to prevent intermediate transient loops for a given transition, might lead to

more intermediate transient loops to deal with at the next transition or many static

constraints being left unsatisfied. Even a choice that appears wise at one step may

impact the sequence in such a way that more intermediate steps would be required in

the end to satisfy all constraints.
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Algorithm 4 DGBH Greedy Vector Adjustment

1: function dgbh adjust(r, d, v1, v2)
2: for i in r.succ() do
3: if i.is final (v1) then
4: v2 incr = min (v2 incr, v2[i] + offset[d][j])
5: end if
6: end for
7: for i in r.succ() do
8: if not i.is final (v1) and v2[j] + offset[d][j] ≤ v2 incr then
9: v1 adj = max (v1 adj,∆[d][i] + 1)

10: end if
11: end for
12: if v1 adj > 0 then
13: for i in r.succ() do
14: v1[i] = max (v1[i], v1 adj − offset[d][i])
15: end for
16: end if
17: end function

Exploring every possibility to satisfy the DLCs would no doubt permit to solve the

MILP. Such a combinatorial exploration however comes with a theoretical complexity

too high to be practical for real life usage. Besides, from a practical point of view the

minimality of a sequence matters less than its actual length. For example, knowing that

a 50-vectors long sequence is minimal does not make it usable. On the other hand, we

could use a sequence containing 4 intermediate vectors, even if it is one vector longer

than a minimal one. In this perspective, we designed a heuristic to efficiently compute

short weight increment sequences, provably preventing both normal and intermediate

transient loops.

In order to deal with the DLCs, our greedy heuristic, called DGBH, potentially adds

dynamic loop constraints at each iteration. In practice, it simply extends GBA to

retrieve the dynamic constraints associated to cycles including node r before each greedy

vector is computed. This way it computes the lower bounds of last constraints related

to intermediate loops. Note that those additional operations neither require any extra

information nor dedicated computation process, keeping a time efficiency similar to the

original GBA.

Function dgbh adjust, presented in Alg 4, ensures that no intermediate transient loop

appears, for destination d, during the transition between two greedy vectors, v1 to

v2 (v1 < v2), computed by GBA. Such intermediate transient loops are prevented by

considering v2 as an invariant and modifying the values in v1 to satisfy the DLC for d.

This function first extracts from v2 the lowest distance increment from r to d via any

neighbor that is in its final state after v1, formally min({v2[i]+offsetd(i) : i ∈ P v1
r (d)})
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(lines 2–6).

For practicality purposes, we rely on function n.is final(v) to check whether a node n

is in its final state after vector v. This could easily be done for every node having a

strictly positive delta value by comparing this value with the distance increment for v:

min({v[i] + offsetd(i) : i ∈ Sv
r (d)}). Such a node is in its final state if the distance

increment of v is strictly greater than the delta value associated to n. However, this

statement does not necessarily hold for nodes having a delta value equal to 0. Although

we know for sure that such a node n has at least one shortest path to d not going

through r in the initial state, it is unsure whether or not it also has one via r. If it has,

then a distance increment of at least one is required for it to be in its final state and

the previous statement holds. On the contrary, if no shortest path from this node to d

goes through r, the node is already considered in its final state, even before any weight

increment is performed.

The second step of dgbh adjust function aims at detecting a potential intermediate

transient loop (lines 7–11) by comparing the distance increment to d, via neighbors that

are not in their final state after v1, with the lowest distance increment, via any other

neighbor, previously computed. This test makes it possible to retrieve the maximum

delta value, plus one, among the neighbors that do not satisfy the DLC, hence involved

in potential intermediate transient loops occurring during the transition from v1 to v2.

The resulting value represent the lowest possible distance increment towards d such that

every unsafe neighbor of r, not satisfying the DLC, is in its final state and does not use

r to reach d. The final step thus consists in increasing the values in v1 so that they

carry at least this distance increment (lines 12–16). Eventually, every neighbor that

would have been involved in a potential intermediate transient loop is forced in its final

state by v1, so that no intermediate transient loop may appear during the transition

from v1 to v2. Note that some of the static constraints previously held by v1 might

be left unsatisfied as its values are increased, and additional intermediate vectors could

be required. In particular, if v1 = 0⃗, the initial weight assignment, a modification of

the vector would actually mean a new intermediate vector. In practice, this function is

meant to be added in the main GBA loop, as would agba adjust, in order to adjust

on-the-fly the latest vector computed by GBA. At the first iteration, v1 would thus be

the first computed intermediate vector (or the last to be applied), while v2 would be the

final weight assignment. It is also worth mentioning that, since DLCs of all destinations

cannot be aggregated beforehand, this adjustment function is to be called for every

destination.
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Figure 2.12: Illustration of DGBH sequence for destination 4.

Let us illustrate these principles for the removal operation of router 0 from the network

on Fig. 2.10, whose associated DGBH sequence is
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For destination 4, the first vector in this sequence, (1 0 1 0), prevents the intermediate

loop between 0 and 2 by forcing node 2 to stop using 0 as a next-hop (Fig 2.12a). Hence,

the intermediate forwarding change triggered by the second vector cannot lead to a loop

(Fig 2.12b). The convergence to the third vector is also safe with respect to intermediate

transient loops, because the weight increments on links (0, 2) and (0, 3) are not sufficient

for node 0 to reroute towards c (Fig 2.12c).

Proof of correctness

We now prove the correctness of DGBH as a heuristic for the MILP problem. That

is, we show that our algorithm produces a sequence of intermediate weight increments

preventing both transient loops and intermediate transient loops, which is not necessarily

of minimal length.

Our proofs leverage the following properties of DGBH that hold by definition of the

algorithm.

Property 3.6. At each iteration j, DGBH computes a vector v such that v >+ l for all

the constraints l = (l, l̄) still unsatisfied before j.
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Property 3.7. Given any iteration j, let v be the vector that DGBH computes before

the adjusting phase. For each component i of v, a constraint l = (l, l̄) still unsatisfied

before j exists such that v[i] = max(l[i] + 1, 0).

Property 3.8. DGBH computes always increasing sequences.

Property 3.9. DGBH stops as soon as all the static constraints are met and the set of

dynamic constraint is empty between the initial state and the first vector.

Property 3.10. Given any iteration j, let v be the vector that DGBH computes before

the adjusting phase, and v′ > v be the modified version of v after the adjustment phase.

v′ minimally satisfies at least one DLC.

Properties 3.6 to 3.9 are ensured by the greedy behavior of DGBH, the vector computa-

tion and constraints removal, plus the fact that DGBH only increases the vector during

the adjusting phase. Property 3.10 derives from lines 9 and 14 of Alg. 4. It allow us to

prove the progression of DGBH on DLCs.

Let us now prove that DGBH terminates and produces sequences that satisfy the CPCs.

Lemma 3.7. At each iteration, DGBH computes a vector v that meets at least one

static or dynamic constraint not met before.

Proof. Consider any DGBH iteration j. Let L be the set of unsatisfied static constraints

at the beginning of j, let C be the set of DLCs at j, and let v be the vector computed

after the adjusting phase. We differentiate two cases.

• If C is empty, v is not modified during the adjustment phase. By Properties 3.6

and 3.7, one constraint l = (l, l̄) ∈ L must exist such that v >+ l and ∃ i | v[i] =

l[i] + 1. By Property 2.1, it must also be v[i] < l̄[i], that is, l is met by v.

• If C is not empty, v minimally satisfies at least on dynamic constraint by Prop-

erty 3.10.

These two cases prove the statement.

We now leverage Lemma 3.7 to prove that DGBH always terminates in a finite number

of iterations.

Theorem 3.15. For any MILP instance I =< L >, DGBH always terminates in

O(|L|+ k × |N |) iterations.
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Proof. By Property 3.9, DGBH stops when all the static constraints in L are met and

there is no dynamic constraints between the initial state and the first weight increment.

Since there is at most as many dynamic constraints to be met as the number of delta

vectors for all neighbors of r, the statement directly follows by Lemma 3.7.

Theorem 3.16. The weight sequences computed by DGBH prevent both normal and

intermediate transient loops.

Proof. Let I be any MILP instance, and let s be the sequence computed by DGBH on

I. By Property 3.8, s is an always increasing sequence. By Lemma 3.7, each constraint

is met by at least one vector in s. Thus, Theorem 2.2 ensures the prevention of transient

loops. Moreover, by definition of the DGBH adjusting phase all the DLCs are satisfied

by each weight increment in s. Hence, Theorem 3.14 guarantees the prevention of

intermediate transient loops.

While sequences computed by DGBH are correct, they are not guaranteed to be minimal.

In fact, considering again the removal of 0 on Fig. 2.10, a sequence of the same length

as GBA’s exists that does not incur intermediate transient loops. This sequence is thus

an optimal solution for the MILP.
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Compared to the solution produced by GBA, the first vector of this sequence differs only

on the second component, which is one weight unit larger. Albeit slight, this difference

prevents node 0 from using 2 as a next-hop towards destination 4, hence the loop that

could have occurred between the two nodes (Fig. 2.13b). Similarly, the second vector is

the same as the original GBA sequence, but for an increment of 3 on the last component

that avoids the use of edge (0, c) (Fig. 2.13c).

Generally speaking, in order to target minimality from a GBA-based perspective, two

strategies can be adopted to prevent intermediate loops, namely, 1) modify the current

greedy vector to avoid the intermediate change at r; OR 2) add a dynamic constraint to

the computation of the next greedy vector, to force another predecessor node participat-

ing in the loop to not use r before it switches. Unfortunately, none of the two strategies

always leads to minimal sequences when applied independently. While the presence of

alternative strategies at each step seems to force a combinatorial space exploration, the

theoretical problem of efficiently solving MILP is left open. However, our evaluations



Chapter 2. Algorithmic contributions 91

show that a heuristic based only on the second strategy, i.e., DGBH, computes sequences

as short as GBA in the vast majority of our experiments performed on real-world IGP

networks.

3.3 Technical workaround for intermediate transient loops

It is worth noticing that, even though transient loops might affect a large amount of traf-

fic flows transiting in the network, such inconsistencies are always due to route changes

performed by the node whose weights are being modified. Besides, local modifications

are already required on this node in order to apply the update sequence. We thus

consider a technical solution limited to this node to be a reasonable possibility. Our

technical workaround relies on the local convergence delay mechanism [LDFF14], which

is currently under standardization process at the IETF but already available in latest

Cisco IOS (XR) releases. This mechanism introduces a delay between the convergence of

the local router and the rest of the network. The delay is positive in case of a weight in-

crement, so that Link-State Packets (LSPs) are flooded normally while the local shortest

paths computation is slightly delayed. As a result, the local router will converge after its

neighbors, preventing it from being implied in any transient forwarding loops. On the

other hand, a negative delay is used for weight decrement operations, causing LSPs to

be flooded after a short time, while shortest paths are computed normally on the local

router. When enabled on a router, this mechanism is triggered on every local weight

reconfiguration.

In our situation, local delay would be triggered for every intermediate update, effectively

preventing local transient loops with no impact on the update sequence computed by

GBA. However, the router undergoing the modification would still converge according
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Figure 2.13: Illustration of a sequence optimally solving the MILP for destination 4.
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to the last intermediate update before the next one is processed. As a result, inter-

mediate route diversions, together with their other negative effects, are not prevented.

Intermediate forwarding changes could theoretically be avoided by extending the desyn-

chronization period between the Routing Information Base (RIB) and FIB to cover the

application of the whole sequence. Such solution cannot be used in practice, though,

because preventing the forwarding plane from reacting to concurrent topological modi-

fications could be much more harmful for the network.

Table 2.2 shows a comparison of the sequence lengths achieved by the different variation

of GBA on our running example, with their respective guarantees in terms of intermedi-

ate disruption avoidance. Note that minimal link-by-link and minimal intermediate loop

free sequences are only provided for informative purposes, since we do not have, at the

present time, an efficient algorithms for either of them. All of the methods in this table

are safe with respect to both static and intermediate transient loops, but only uniform

and AGBA sequences ensure the absence of intermediate forwarding changes. Since re-

peated modifications of the packet forwarding paths may have a negative impact on the

control mechanisms implemented at the transport layer, increment sequences meeting

the CPCs should be preferred whenever possible. As such, AGBA is the best possible

choice, for it provides provably minimal sequences for problem 3.1. However, should

these sequences appear too long, DGBH could be used instead as a decent compromise

between routing stability and sequence length. Although this heuristic often yields se-

quences of the same length as GBA in practice, it may occur that longer sequences are

produced in some rare cases. A feature such as local-delay could then serve as a technical

workaround to prevent intermediate transient loops. If temporary routing instability is

not a problem, and this feature is available, combining local-delay with sequences com-

puted by GBA appears the most efficient solution to prevent any potential transient

loops that could arise during network convergence.

Sequence length for Intermediate disruptions avoidance
the removal of 0 Transient loops Forwarding instabilities

Minimal link-by-link 5 ✓ ✗

Minimal uniform 5 ✓ ✓

AGBA 4 ✓ ✓

DGBH 4 ✓ ✗

Minimal int. loop free 2 ✓ ✗

GBA with local delay 2 ✓ ✗

Table 2.2: Sequence lengths for the removal of 0 on Fig. 2.10 and intermediate disruption
avoidance levels
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4 Towards an efficient implementation

In this section, we describe an efficient implementation of our main algorithm, GBA.

Although the actual code that we are using for our experiments is written in C for

performance purposes1, we show here an higher level representation based on Python-

like syntax, which is easier to read and explain.

Our implementation mainly relies on one core structure, which is specific to each desti-

nation and contains the merging of the initial and the final RSPDAG. The primary goal

of this structure, that we often denote as mdag for merged DAG, is to exhibit poten-

tial transient loops that could occur in case of an abrupt modification. Besides, it also

enables to manipulate the forwarding paths resulting from any intermediate weight in-

crement performed on the modified router. The properties of delta values indeed makes

it unnecessary to re-calculate any intermediate RSPDAG, for they are only a combina-

tion of PRE and POST edges that belong to either one of the two extremity RSPDAGs.

For a given intermediate weight increment, a node simply uses its initial next-hops if the

distance increment is lower than or equal to the delta value of this node, and its final ones

if the increment is greater than or equal to the delta value. This reduces the complexity

of constructing an intermediate RSPDAGs from O(|N |× log(|N |)+ |E|) to O(|N |) Note

that we use scalar delta values for every such destination-oriented operation, and rely on

offsets vectors (Def. 3.2) for global calculations. Aside from improving the readability of

the algorithms, this minor enhancement decreases both the memory consumption and

the computing time. All this information is computed for each destination during the

initialization stage (Function 1).

4.1 Constraint extraction and removal

Unlike the solutions proposed in Section 2.1, our implementation does not rely on a

preliminary extraction of all loop-constraints. Instead, relevant constraint values are

calculated on-the-fly at each iteration of GBA. That is, for each destination, only the

largest lower bound among the unsatisfied constraints is captured. Due to the total

order existing among delta vectors, and thus constraints, for a given destination, it is

indeed sufficient for the greedy vector calculation to consider only one lower bound per

destination. In addition, the removal of satisfied constraints is made implicit by the

evolving behavior of our mdag structure. This graph is designed to constantly reflect

the potential forwarding inconsistencies that could occur during a convergence from the

initial routing state to the one induced by the last computed vector. As the sequence

calculation progresses, the graph is thus pruned of all nodes that may no longer be

1http://sourceforge.net/projects/metric-incr/

http://sourceforge.net/projects/metric-incr/
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1 def mdag_init (G, r, d):

2 # Compute PRE and POST DAGs

3 DAG_PRE, SR = G.shortest_paths (d, r)

4 G_POST = G.copy().remove_node (r)

5 DAG_POST = G_POST.shortest_paths (d, SR)

6

7 # Compute Delta values

8 mdag.Delta = [ DAG_POST.shortest_path_len (s,d) - \

9 DAG_PRE.shortest_path_len (s,d) for s in SR ]

10

11 # Compute offset values

12 mdag.offset = [ G.weight (r,s) + DAG_POST.shortest_path_len (s,d) - \

13 DAG_PRE.shortest_path_len (r,d) for s in G.successors (r) ]

14

15 # Merge PRE and POST DAGs

16 mdag = compose (DAG_PRE, DAG_POST, SR)

17

18 # Initialize ’roots’ list

19 mdag.roots = DAG_PRE.predecessors (r)

20

21 # Initialize ’swallow_list’

22 swallow_list = [ u for u in mdag.nodes () \

23 if not mdag.predecessors (u) or not mdag.successors (u) ]

24

25 # Compute the first increment for this destination

26 mdag.popMax (swallow_list)

27

28 # Ignore the destination if there is no possible loop

29 if next_increment == 0:

30 mdag = None

31

32 # Return the newly created DAG

33 return mdag

Function 1: Initialization

involved in a transient loop. We denote this process as graph swallowing, for it consists

in progressively ignoring safe parts of the graph, that may no longer contain any transient

loop, in order to focus on the portion containing unresolved inconsistencies. If, at any

iteration, the graph is completely swallowed, i.e. all remaining nodes are removed, this

indicates that the current sequence is loop-free for this destination. Obviously, if this

happens before any vector has been computed, then no transient loop could occur for

the destination. The graph swallowing thus serves both as an efficient cycle detection

mechanism, with a time complexity in O(|E|), a constraint extraction technique, and an

implicit method to remove satisfied constraints. Indeed, cycles corresponding to satisfied

constraints simply do not appear at the next iteration.

Graph swallowing for cycle detection

The first, most intuitive usage for the graph swallowing technique is to detect the pres-

ence of cycles in a directed graph. As such, the algorithm consists in progressively
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removing from the graph the nodes that cannot possibly be involved in a cycle. It starts

from the list of nodes that have no predecessors in the graph, a.k.a. root nodes, and

thus may be involved in no cycle. Each node in this swallow list is successively removed

from the graph, or swallowed, along with all its outgoing edges. That may cause some

of its successors to become roots themselves, for their last predecessor has just been

removed. Since these nodes hence cannot be involved in a cycle either, they are added

in the swallow list. Recursively, every such node is thus removed from the graph. The

algorithm ends when the swallow list is empty. At that time, if all nodes have been

swallowed, and the graph is empty as well, then it contained no cycle. Otherwise, there

is at least one cycle that is located in the remaining part of the graph. Indeed, it means

that every remaining node has at least one predecessor, which is only possible in case of

a cycle.

This algorithm has a time complexity in O(|E|) plus the cost of retrieving the initial

swallow list. In the case of a merged RSPDAG, the list can be calculated in O(1), for it

contains only the destination node.

Note that this process can also be performed in the other direction. That is, starting

from leaves and progressively swallowing nodes that have no more successors. It is even

possible, with no extra cost, to swallow from both directions at the same time, as in

Function 2, to better pinpoint the area of the graph where inconsistencies linger.

Graph swallowing on intermediate graphs

Another usage of the graph swallowing technique is to monitor the effects of intermediate

vectors on a merged RSPDAG. More precisely, to perform the cycle detection considering

a transition from the initial state to the one induced by a given intermediate vector,

without having to actually compute the associated intermediate graph. Once again,

this technique relies on the properties of delta values, which imply that, if the distance

increment produced by the intermediate vector towards the destination is lower than the

delta value of a node, then this node is still in its initial routing state. It thus cannot

possibly be involved in a transient loop when considering a convergence from the initial

state.

Starting from the result of a previous swallowing operation, which has been stopped early

because of a cycle, the algorithm simply consists in resuming the swallowing process after

having removed every node whose delta value is larger than the distance increment of

the vector. This causes any cycle involving one of these nodes to be disregarded. Hence,

only transient loops that could occur during a convergence from the initial routing state

to the one produced by the vector are considered.
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Graph swallowing for extracting constraints

The principle of GBA states that, at each iteration, the greedy vector to be computed

must be positively greater than the lower bound of all remaining constraints. It is thus

necessary to retrieve, for every destination, the largest lower bound among the remaining

loop-constraints. That is, the smallest delta such that the convergence from any larger

vector to the last computed vector is loop-free.

This smallest delta can be extracted from a reduced version of a merged RSPDAG con-

sidering the convergence between the initial and current state, which can be computed

as described in the previous section. The process consists in repetitively swallowing the

graph after having removed the nodes with the smallest delta, until the graph can be

completely emptied. The largest lower bound is equal to the delta vector of the nodes

removed at the last step. In practice, this delta is extracted as a scalar and denoted

next increment.

1 def swallow (mdag, swallow_list):

2 # While there is nodes to swallow

3 while swallow_list:

4 # Pop the first node in the list

5 LF = swallow_list.pop (0)

6

7 # Remove its outgoing links

8 for s in mdag.successors (LF):

9 mdag.predecessors (s).remove (LF)

10 if not mdag.predecessors (s):

11 # Add new leaves at the end of the list

12 swallow_list.append (s)

13

14 # Remove its incoming links

15 for p in mdag.predecessors (LF):

16 mdag.successors (p).remove (LF)

17 if not mdag.successors (p):

18 # Add new roots at the end of the list

19 swallow_list.append (p)

20

21 # Update max Delta

22 mdag.max_delta = max (mdag.max_delta, mdag.Delta[LF])

23

24 # Remove the current node from ’roots’

25 mdag.roots.remove (LF)

26

27 # Add its predecessors in the PRE graph to the ’roots’ list

28 mdag.roots.append (mdag.pred_old (LF))

29

30 # Remove the current node from the DAG

31 mdag.remove (LF)

Function 2: Graph swallowing



Chapter 2. Algorithmic contributions 97

4.2 Algorithmic improvements

Affected destinations retrieval

When a topological modification on a single link or router is performed, only part of

the flows passing through the network are impacted. The proportion of impacted flows

depends on the centrality of the modified component. For many operations, it is thus

possible that no flow towards a subset of destinations are impacted. No transient loop

could occur for these destinations and they do not have to be considered in the process

of computing a weight increment sequence. Using GBA, such destinations are quickly

set aside as no cycle is detected in their merged RSPDAG. However, this requires com-

puting two RSPDAGs and running a cycle detection algorithm, which represents a time

complexity in O(|E| + |N | log(|N |)), for each destination. It would be interesting to

decrease this cost by reducing the set of destinations given as input to GBA to those

whose routes are actually affected.

On the one hand, in the case of a modification on a single link, these affected destinations

can be easily identified. They are those the modified link source node reaches through

this link, considering the initial routes in the case of a weight increment (or link removal)

operation and the final routes in the case of a weight decrement (or link addition).

More formally, let us denote as wi and wt respectively the initial and target weights

of the modified link l = (a, b). The set of affected destination Dl is equal to N ∩ Gl,

where Gl represents the set of nodes downstream of b in RSPDAG(a) if wi < wt and

RSPDAG′(a) if wi > wt.

1 def affected_destinations_link (

2 G, # Initial network graph

3 H, # Final network graph

4 lsrc, # Link source node

5 ldst # Link destination node

6 ):

7

8 if G.edge[lsrc][ldst][’weight’] < H.edge[lsrc][ldst][’weight’]:

9 dag = G.shortest_paths(lsrc)

10 else:

11 dag = H.shortest_paths(lsrc)

12

13 return dag.subgraph(ldst).nodes()

Function 3: Computing the set of affected destination for single link modifications

On the other hand, retrieving the set of destination affected by a node-wide modification

is more complex. The only sure thing is that the source node (i.e. the one to be

shut down or the source of all modified links) cannot be part of the set of affected

destinations. Indeed, the weight of the links towards this node remain unchanged, and

so does the routing graph. As for the remaining nodes, it depends on whether or not
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the modified node is to be considered as a source. If it is, e.g. in the case of arbitrary

weight modifications on its outgoing links, then the set of affected destinations can be

computed using a slight variation of the algorithm used for single link operations. We

consider as affected each destination reached from the source node through any of the

modified links. As a consequence, if all outgoing links of the node are modified, each

other node in the network is an affected destination. However, in the case of a shutdown

or startup operation, it can be reasonably assumed that the modified node is not a source

while the weight update sequence is being applied. Only transiting traffic, coming from

other nodes in the network and passing through the modified node is to be taken into

account. Thus, affected destinations are those reached through the modified node from

any source other than this node. Though such definition would require to compute a

Shortest Path DAG (SPDAG) for every node, but the modified one, in the network, it

can be reduced to the SPDAG of the predecessors of the updated node. Indeed, if the

path from a given source to a destination goes through the modified node, then there is

at least one predecessor of the updated node such that the path from this predecessor

to the destination goes through the node. Formally, the set of affected destinations is

the union of the nodes downstream of the modified node in the routing graphs of each

predecessor of this node. Eventually, in order to handle the general case of an arbitrary

subset of the outgoing links of a node being modified, we use a combination of the

previous mechanisms as described in Function 4.

1 def affected_destinations (

2 G, # Network graph

3 r, # Source node

4 ll # List of outgoing links of ‘r’ to be modified

5 ):

6

7 D = set ()

8

9 for pred in G.predecessors (r):

10 dag = G.shortest_paths (pred)

11

12 for link in ll:

13 if link.head in dag.successors (r):

14 D |= dag.subgraph(link.head).nodes()

15

16 return D

Function 4: Computing the set of affected destination in the general case

Subgraph reductions

Aside from the set of destinations, it is also possible to improve several aspects of graph-

related calculations. In particular, by considering only a subset of nodes at some points

in the algorithm. The first improvement consists in reducing the set of source nodes to
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be considered, for each destination, to those initially reaching the destination through

the modified component. Indeed, only these nodes may be involved in a transient loop.

In practice, affected sources are marked as such during the initial RSPDAG calculation

(Fn 1, line 3). The final and merged RSPDAGs are then computed considering only this

subset of nodes (Function 1, lines 5 and 17).

The second improvement aims at enhancing the performances of the satisfied constraints

removal. Rather than iterating over every remaining node in the mdag to check whether

its delta value is larger than the distance increment of the current greedy vector, it is

possible to consider only a subset of these nodes. More precisely, the predecessors in the

initial RSPDAG of already removed nodes, for they hold the largest delta values among

the remaining nodes. This set of potential roots is filled in the swallowing function

(Function 2, line 28) and used to construct the list of nodes to removed in Function 7.

The third improvement consists in skipping the next increment extraction phase if the

greedy vector computed at the current iteration of GBA has no impact at all on the

mdag for a given destination. This situation may occur when the distance increment

produced by this vector is larger than any delta value among the remaining nodes in the

mdag. In that case, no constraint may have been satisfied for this destination, and the

largest lower bound of a constraint is the same as the previous iteration. The largest

delta value is extracted at the same time as the next increment, within the swallowing

function (Function 2, line 22).

4.3 Sequence calculation

Let us now specifically describe each function involved in our efficient GBA implemen-

tation.

The core GBA function (Function 5) starts by computing the set of affected destinations

as the nodes that are reached through 0 by at least one source (other than 0 itself).

Indeed, if node 0 is not used by any source to reach a given destination, no transient loop

could appear for that destination. Then, for each affected destination d, our algorithm

computes mdag(d), the merging of the initial and final forwarding graphs towards d. At

this stage, the popMax function checks whether transient loops could appear and, if so,

computes the next increment. If the returned increment is greater than 0, i.e., if there is

at least one constraint, an offset value is then computed for each outgoing link of node

0. Otherwise, it means that no transient loop could possibly appear for this destination.

Eventually, the mdag(d) is added to the global MDags set.
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Once the MDags set is computed, our algorithm enters the second phase. At each round

of the global loop, a new greedy vector v is computed (and added to the sequence S)

as the smallest one that is safe with respect to the next increment for all subgraphs in

the MDags set. Then, for each destination d, the actual distance update m associated

to this vector is computed, and function upMax is called in order to extract the next

increment from each impacted mdag. This function modifies the graph, now considering

v as the final weight assignment, and prunes all nodes that cannot be involved in any

cycle. It then extracts the next increment, if any, and returns 0 otherwise. If there are

no more constraints to be satisfied for this destination, it is removed from the MDags

set. The main loop iterates this way until MDags is empty, meaning that all constraints

are satisfied by the sequence S.

Function swallow (Function 2) iterates over nodes in the prepared swallowing list, re-

moving from the mdag each node in the list and, recursively, all their neighbors that

have either no successors or no predecessors when removing them from the current mdag.

In addition, the function maintains a variable with the largest delta value among the re-

moved nodes (l. 22) and a list of roots containing, for each removed node, its predecessors

in the initial routing graph that are still in mdag (l. 28).

Function popMax (Function 6) starts by permanently pruning from the mdag all nodes

that are not, or no longer, involved in any transient loop (l. 7). Then, this function clones

this current state of the mdag (l. 10) and repeatedly performs swallowing operations on a

temporary copy in order to extract the next increment. At each iteration, the minimum

delta value among the remaining nodes in the copy is extracted (l. 15) and the associated

nodes are added to the next swallowing list (l. 18). It iterates this way until no cycles

appear. Eventually, the minimum delta value computed at the last step is stored as the

next increment to be considered by GBA (l. 25).

Function upMax (Function 7) initializes the next swallowing list with every node in

roots whose associated delta value is greater than m (l. 6–7). Besides, the predecessors

in the initial routing graph of each node to be swallowed are added to the root list (l. 8).

upMax iterates this way until all its elements have been treated.
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1 def GBA (

2 G, # Network graph

3 r, # Source node

4 ll, # List of outgoing links of ‘r’ to be modified

5 wl # List of weights to be applied

6 ):

7

8 Seq = [] # Vector sequence

9 MDags = [] # Set of Pre-Post graphs

10

11 # Initialization

12 for d in D:

13 mdag = mdag_init (G, ll, wl, d)

14 if mdag.next_increment > 0:

15 MDags.append (mdag)

16

17 # Main GBA loop

18 while MDags is not []:

19 # Add the new greedy vector to the sequence

20 Seq.append ([

21 max ([

22 mdag.next_increment - mdag.offset[succ]

23 for mdag in MDags

24 ])

25 for succ in G.successors (r)

26 ])

27

28 for mdag in list (MDags):

29 # Compute the distance increment

30 m = min ([

31 S[-1][s] + dag.offset[s]

32 for s in G.successors (r)

33 ])

34

35 # Check whether this increment would have an impact on the nodes in ’mdag’

36 if m < mdag.max_delta:

37 # Load new constraints

38 mdag.upMax (m)

39

40 # Remove completed destinations

41 if mdag.next_increment == 0:

42 del (mdag)

43

44 return Seq

Function 5: Sequence calculation

The worst case time complexity of this implementation of GBA is determined as follows:

• The complexity of the initialization is held by the calculation of the merged

RSPDAG and the extraction of the first increment. Considering all destinations,

this stage would have a cost of O(|N |× (|N |log2(|N |) + |E|) with a priority queue

system based on a Fibonacci heap. However, we rely in practice on a binary heap

having a larger worst case complexity, in O(|E|log2(|N |)), but allowing for shorter

computing times on realistic ISP topologies;
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1 def popMax (mdag, swallow_list):

2 # Reset ’next_increment’ and ’max_delta’ variables

3 mdag.next_increment = 0

4 mdag.max_delta = 0

5

6 # Swallow the DAG considering the current vector

7 mdag.swallow (swallow_list)

8

9 # Create a copy of the DAG

10 GF = mdag.copy ()

11

12 # Completely swallow this copy in order to extract the next increment

13 while GF:

14 # Extract the min Delta value among the nodes in GF

15 GF.next_increment = min ([ GF.Delta[i] for i in GF.nodes ]) + 1

16

17 # Retrieve the nodes associated to the min value

18 min_nodes = [ i for i in GF.nodes if GF.Delta[i] == GF.next_increment ]

19

20 # Swallow the graph from these nodes

21 GF.swallow (min_nodes)

22

23 # Retrieve ’max_delta’ and ’next_increment’ from the copy

24 mdag.max_delta = GF.max_delta

25 mdag.next_increment = GF.next_increment

Function 6: Satisfied constraints removal

1 def upMax (mdag, m):

2 new_roots = []

3 swallow_list = []

4 while mdag.roots:

5 current_node = mdag.roots.pop (0)

6 if mdag.Delta[current_node] > m:

7 swallow_list.append (current_node)

8 mdag.roots.append (mdag.pred_old (current_node))

9 else:

10 new_roots.append (current_node)

11 mdag.roots = new_roots

12 mdag.popMax (swallow_list)

Function 7: Next increment extraction

• The number of iteration of the main loop corresponds to the length of the resulting

sequence, and may thus be equal to |N |2 at worst. Yet it can be limited in practice

to a reasonable length, denoted p. This main loop hence comes at the cost of:

– O(p × k × |N |), where k is the degree of node r, for the calculation of the

greedy vector;

– and O(min(p×|N |×|E|, |N |2×|E|)) for the extraction of the next increment.

Eventually, GBA has a worst case complexity in O(|N |4) if node r has a degree of k = |N |

(or if |E| ≈ |N |2 in general). However, in practice p can be picked as an arbitrary low

value, such as p ≤ 5, to limit the complexity of GBA to O(|N |3).
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5 Conclusion

In this chapter, we first presented the basics of our approach, explaining how it can be

used to prevent transient forwarding loops in the case of a router-wide modification.

We also show that aiming for short update sequences through heterogeneous weight

modifications may lead to a different kind of transient disruption. We then detailed our

Greedy Backward Algorithm (GBA) for computing weight increment sequences that

prevent normal transient loops. In particular, we proved that GBA yields sequences of

minimal length for this problem. As for intermediate disruptions caused by heteroge-

neous weight increments, we proposed several solutions associated with different level of

routing stability. The Adjusted Greedy Backward Algorithm (AGBA) is a variation of

GBA producing sequences that prevent changes in the set of next-hops used by the mod-

ified router, thus ensures the absence of any intermediate disruption. We then described

a relaxed solution, called Dynamic Greedy Backward Heuristic DGBH, that focuses on

preventing transient loops caused by intermediate forwarding changes. This solution

enables to compute shorter sequences at the expense of lower guarantees in terms of

routing stability. We also show that it is possible to achieve the same effect without

modifying the sequences produces by GBA, by temporarily disabling the synchroniza-

tion between the control and data-plane of the modified router. Finally, we presented

an efficient implementation of GBA, discussing several improvements we made in order

to lower the time complexity and keep the computing time within reasonable limits, as

we will show in the next chapter.



Chapter 3

Evaluations

Contents

1 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . 105

1.1 Graph characteristics . . . . . . . . . . . . . . . . . . . . . . . . 105

1.2 Transient loop evaluations . . . . . . . . . . . . . . . . . . . . . 107

2 Sequence lengths . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.1 GBA sequences length . . . . . . . . . . . . . . . . . . . . . . . 110

2.2 Comparison with GBA alternatives . . . . . . . . . . . . . . . . 113

3 Computing times . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.1 GBA performances . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.2 Algorithmic improvements evaluation . . . . . . . . . . . . . . 119

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

104



Chapter 4. Evaluations 105

In this chapter, we provide thorough evaluation of our algorithms on real and inferred

network topologies, in order to assess the practicality of our approach in a realistic

environment. We first give some insight about the graphs we are working on, presenting

their intrinsic properties and showing how much each of them could be affected by

transient forwarding loops. In a second part, we analyze the length of the sequences

produced by Greedy Backward Algorithm (GBA)-based algorithms, and compare them

with single-link based solutions. We show that, while GBA and its variations produce

short enough sequences in most cases, uniform and link-by-link solutions are not suited

for router-wide operations. Finally, we evaluate the computing time performances of our

implementation. In particular, we show that the time required to compute a sequence

remains reasonable even on very large topologies, and detail the effects of each of our

algorithmic optimization. We also discuss some schemes for a practical deployment of

our solutions.

1 Evaluation setup

1.1 Graph characteristics

Table 3.1 presents the main properties of our real Internet Service Provider (ISP) topolo-

gies. Internet2 [Int] and GEANT [gea] networks are two well-known networks whose

weighted graphs are freely available. RENATER is the Internet provider for education

and research institutions in France. Although we are not authorized to disclose their

weighted topology, which we were provided as part of a research collaboration, a plain

topology (without Interior Gateway Protocol (IGP) weights) is available online [REN].

The last six networks are real ISPs that we anonymized for confidentiality reasons. Num-

bers of links and nodes are also rounded for the same reason.

Note that our evaluation topologies have symmetric weights, i.e. the weight configured

for the adjacency A → B is the same as the one for B → A. This is not a requirement

of our solutions, but seems a common practice in ISP networks.

We evaluated our algorithms on a wide set of real and inferred IP network topologies of

various shape and size. Networks in table 3.2 are Rocketfuel inferred topologies obtained

with traceroute campaigns [SMW02, MSWA02]. Using the popular route discovery tool,

the authors gathered a large set of network traces from multiple vantage points all

around the world. Then, they isolated each Autonomous System (AS) based on the

routers IP addresses and domain names and used alias resolution mechanisms to retrieve

the routing-layer topology. Finally, they assigned weights to the links according to a

system of constraints, which was obtained by assuming that network traces represent
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Network |N | |E| Diameter Max. degree Weight space

Internet2 9 26 4 4 [277, 1705] (13)

GEANT 22 72 4 6 [1, 20050] (18)

RENATER 70 230 11 13 [1, 1000] (14)

ISP 1 25 55 6 6 [1, 11] (4)

ISP 2 55 200 5 20 [10, 50000] (8)

ISP 3 110 350 11 8 [1, 9999] (32)

ISP 4 150 400 13 9 [1, 9999] (32)

ISP 5 200 800 13 14 [1, 66666] (55)

ISP 6 1200 4000 12 56 [1, 100010] (105)

Table 3.1: Real ISP graph properties

shortest path with respect to IGP weights. Such a technique allows for a reasonable

approximation of the routing topology of a given AS. However, it is not possible to ensure

that the whole network has been discovered, nor that the inferred weights are correct.

For instance, equal-cost and backup paths that are no used by traceroute probes may not

be detected during the measurement campaign. Also, the linear program obtained from

the shortest path constraints does not have a unique solution. In particular, multiplying

all inferred weights by the same factor leads to an equally valid solution.

Network |N | |E| Diameter Max. degree Weight space

Exodus 79 294 10 12 [1, 22] (17)

Ebone 87 322 11 11 [1, 16] (14)

Telstra 108 306 8 18 [1, 7] (6)

AboveNet 141 748 8 20 [1, 20] (14)

Tiscali 161 656 10 29 [1, 22] (20)

Sprint 315 1944 10 45 [1, 16] (15)

Table 3.2: Inferred graph properties

Similar works have been recently conducted in [MDP+11, MMD+11] to provide the net-

working community with more accurate and up-to-date ISP topologies. MERLIN com-

bines mrinfo [PMDB10] and paris-traceroute [VAC+08] probing in order to improve the

network coverage. The former relies on Internet Group Management Protocol (IGMP)

to collect the list of adjacencies of multicast-capable routers, including backup and un-

used links that would not have been discovered otherwise, while the latter is an improved

version of traceroute designed to detect load-balancing and retrieve alternate routes.

Due to the large variations in terms of size and shape within our set of evaluation

topologies, representing on the same figure the results obtain for all topologies may lead

to loss of readability. We thus often split our evaluation sample as follows.

• Small ISPs (less than 100 nodes): Internet2, GEANT, RENATER, ISP1 and ISP2;
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• Large and very large ISPs (100 to 1200 nodes): ISP 3 to 6;

• Rocketfuel inferred graphs: Exodus, EBone, Telstra, AboveNet, Tiscali and Sprint.

We perform our evaluations considering the removal operations of a single link or router

from our topologies. As we mentioned before, our techniques also apply to link/router

addition as well as any addition, removal, positive weight increment or decrement of

any subset of the outgoing links of a single router. However, studying such extended

use cases would require arbitrary decisions that may not represent realistic scenarii. In

particular, we would have to choose which routers are to be connected by a new link and

assign a weight to this link, bringing the network in a state it is no likely to ever take

in practice. We thus limit our evaluations to operations that we know may happen.

1.2 Transient loop evaluations

On Fig. 3.1, we show the distribution of transient forwarding loops that could poten-

tially occur for each link (left-hand side figures) and node (right-hand side figures)

shutdown operations. For a given operation, we enumerate the elementary cycles on the

graph resulting from the merging of the initial and final Reverse Shortest Path DAGs

(RSPDAGs) for every destination, and compute the ratio of the number of cycles over

the total number of links in the initial topology. Since our evaluation topologies are

symmetrically weighted, all elementary cycles in the merged graphs are of size 2, so that

the loop ratio presented in the figures represents the proportion of links on which the

traffic may loop during the network convergence.

These figures are interesting for two reasons. On the one hand, they indicate the per-

centage of operations that are safe with respect to transient loops. Safe operations may

not lead to transient forwarding loops during the convergence of the network, whatever

the routers update order. On all but one topology, more than half of single link and

node shutdown operations could be safely performed without requiring any intermedi-

ate update. Such safe components are, for one part, backup links or leaf nodes that

are not used for transit, and can be removed from the network with few impact, if any,

on the routing decisions. For the other part, they are surrounded by routers having a

local backup solution. That is, their alternate shortest path to the destination does not

involve sending the traffic backward.

The proportion of safe operations tends to be even larger for router removals, with five

topologies (Internet2, ISP2, ISP6, Sprint and Telstra) above 80%. The main reason

behind this phenomenon is that the outgoing links of the removed router are considered

down in the final state. Hence no transient loop could occur in the direct vicinity of
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(a) Link shutdown operations on small ISPs (b) Node shutdown operations on small ISPs

(c) Link shutdown operations on large ISPs (d) Node shutdown operations on large ISPs

(e) Link shutdown operations on Rocketfuel graphs (f) Node shutdown operations on Rocketfuel graphs

Figure 3.1: Impact of shutdown operations on real and inferred ISP networks
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the router. In practice, these links should not be taken down directly, for this could

cause packet losses due to temporarily unreachable destinations, but the behavior can

be mimicked using special routing configurations such as overload bit. The router posi-

tioning an overload bit continues to forward its traffic according to the initial topology,

while the rest of the network should recompute new routing paths avoiding this router.

Some ISPs topologies may also be more or less prone to transient loops. Overall, ISP6

(Fig .3.1c and 3.1d) is the safest topology, with 88% of link and 83% of node removals,

while RENATER (Fig .3.1a and 3.1b) has the least proportion of safe operations, with

37% and 40%, respectively for links and nodes removals. Such a disparity can be ex-

plained by specific graph patterns. For example, topologies displaying high local re-

dundancy are more likely to have local backup paths available, and thus less potential

transient loops. On the contrary, ring patterns can require to go a long way backward

before leaving the impacted subgraph, leading to many potential loops.

On the other hand, these figures also indicate how much the routing graph could be

impacted by a shutdown operation. Although we only show potentialities of loops that

may never arise in practice, the highest proportion of links can undergo transient loops,

the more traffic is likely to be delayed or lost. The figures show that, on most networks,

transient loops usually affect a very small part of the topology, representing between 1

and 2% of the links, and remains below 10% even for worst cases. They may however

have a much greater impact on other networks, such as ISP1, ISP2, RENATER and

Exodus, where transient loops can occur on more than 15% and up to 30% of the links.

Interestingly enough, these are all small networks, with less than a hundred routers.

While it is unlikely that the size alone has such an impact on how much the network

is affected by transient inconsistencies, it is possible that small ISPs focus on coverage

at the expense of less redundancy in their networks. This could result in more ring

patterns where transient loops could occur. It is also worth mentioning that router

removals, which represent more significant modifications to the network compared to

single link shutdowns, result in more potential perturbations.
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2 Sequence lengths

In chapter 2 we proved that our main algorithms, GBA and Adjusted Greedy Backward

Algorithm (AGBA), compute sequences of minimal length in their respective categories.

Such theoretical results take however no account of the practical limitations related to

our approach. In particular, the time required for a sequence to be applied in the net-

work, which directly depends on its length, may quickly become prohibitive in practice.

While it seems realistic to delay a maintenance operation by a few seconds in order

to apply a short sequence, processing a hundred updates long sequence may seriously

hinder network management and increases the risk of concurrent modifications.

In this section, we evaluate the length of intermediate update sequences produced by

our algorithms on real and inferred network configurations, showing how short they

are in most cases. We first present the results yield by our standard GBA algorithm,

assuming that intermediate inconsistencies are handled by an external mechanism. Then

we compare these results with alternative sequence-based mechanisms, link-by-link and

uniform, as well as GBA variations, AGBA and Dynamic Greedy Backward Heuristic

(DGBH). Note that the results we present in this section, in particular the percentage of

sequences of a given length, are always computed relatively to the number of non-empty

sequences.

2.1 GBA sequences length

On Fig. 3.2, we show the cumulative length distribution of sequences computed for single

link and node shutdown operations on each topology. As in the previous section, we

split our set of evaluation topologies for the sake of clarity. For the same reason, we also

limit the maximum length of sequences displayed on our figures to 11. This information

can be found in Table 3.3, together with other relevant statistical data.

At first glance, these figures show that most sequences produced by GBA are short. On

small ISP networks, more than half unsafe operations requires only 1 or 2 intermediate

updates, while even the longest sequences contain no more than 5 elements for link-

shutdown operations (Fig. 3.2a) and 6 for node-shutdowns (Fig. 3.2b).

GBA sequences are only slightly longer for Rocketfuel topologies (Fig. 3.2e and 3.2f).

Worst case shutdown operations may require a few more updates, yet 50% of the routers,

and even 85% of the links, can be safely shut down with a couple of intermediates

updates. With up to 9 elements, longest sequences are produced for Exodus network,

which is one of our smallest topologies. This tends to indicate that sequences length

does not directly depends on the size of the network.
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(b) Node shutdown operations on small ISPs
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(c) Link shutdown operations on large ISPs
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(d) Node shutdown operations on large ISPs
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(e) Link shutdown operations on Rocketfuel graphs
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(f) Node shutdown operations on Rocketfuel graphs

Figure 3.2: GBA sequences lengths for shutdown operations on real and inferred ISP networks
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|S| ≤ 5 |S| ≤ 10 max

100 % 100 % 1

100 % 100 % 5

100 % 100 % 4

100 % 100 % 3

100 % 100 % 4

89.55 % 99.25 % 11

89.78 % 99.27 % 11

85.35 % 95.12 % 39

84.62 % 91.74 % 61

92.86 % 100 % 9

100 % 100 % 5

100 % 100 % 2

100 % 100 % 5

99.29 % 100 % 6

99.68 % 100 % 6

(a) Link shutdown

|S| ≤ 5 |S| ≤ 10 max

100 % 100 % 1

100 % 100 % 3

100 % 100 % 4

100 % 100 % 3

96.67 % 100 % 6

77.78 % 100 % 10

78.26 % 100 % 10

60.44 % 84.62 % 33

57.30 % 76.76 % 57

78.38 % 100 % 9

100 % 100 % 5

100 % 100 % 3

97.73 % 100 % 7

100 % 100 % 5

98.46 % 100 % 6

(b) Node shutdown

Int. FC Int. TL

0 % 0 %

37.50 % 12.50 %

50 % 0 %

40 % 30 %

50 % 6.67 %

82.22 % 24.44 %

80.43 % 26.09 %

80.22 % 18.68 %

81.08 % 35.14 %

91.89 % 8.11 %

62.16 % 2.70 %

78.57 % 14.29 %

56.82 % 2.27 %

74.51 % 9.80 %

81.54 % 15.38 %

Table 3.3: GBA sequence lengths and possible disruptions

However, Fig. 3.2c and 3.2d show that shutdown operations on large networks may

require very long sequences with up to 61 intermediate updates. Fortunately, such

extreme cases only happen for a few operations and our investigations give us reason to

believe that they are due to inconsistencies in the network at the moment the snapshot

was taken. In most cases, shutdown operations can be safely performed after a reasonable

number of intermediate updates. Five updates are sufficient for more than 55% of node

and 80% of link shutdowns, while ten cover respectively 75 and 90% of the operations.

One may also notice on these figures that the results produced for ISP3 and ISP4 are

very close to each other. Indeed, both topologies actually represent two versions of the

same network, which vary in terms of node and edges, but still exhibit the same network

patterns.

Longer sequences may not be usable in practice, for they would require the actual

operation to be overly delayed. Since our algorithms produce sequences of minimal

length, it is not possible to shorten them without causing potential transient loops to

no longer be covered. However, we could consider some transient loops more important

than others and assign priority levels based on how impactful they might be for the

traffic passing through the network. For example, transient loops located at the edge

of the network, which are less likely to heavily disturb the traffic, could be assigned a

lower priority than those involving more central routers. Such system could be included

within the sequence computation process, making the constraints associated with lowest

priority loops to be automatically ignored if the number of intermediate vectors grows

too large. Similarly, it is also possible to exclude the least used prefixes from the list
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of destinations, making the associated transient loops not to be considered by GBA.

Because all these decisions depend on the needs and concerns of each operator we did

not however perform thorough evaluation of this approach.

The last two columns on Table 3.3 respectively present the proportion of node shutdown

sequences that incur intermediate forwarding changes (FC) and transient loops (TL).

These results show that at least one intermediate forwarding change occur for about 80%

of node shutdown sequences on most networks. Besides, a significant part of non-empty

sequences could lead to intermediate transient loops. This proportion tends to increase

with the size of the topology, with more than 35% of affected sequences on ISP6, and

emphasizes the need for intermediate disruption avoidance mechanisms.

2.2 Comparison with GBA alternatives

Since we proved that GBA yields sequences of minimal length, different algorithms,

whether or not they are based on GBA, may only produce longer, or equally long,

sequences. It could however be interesting to determine how longer these sequences are

compared to GBA, in order to evaluate if it could be worth relaxing the property of

minimality to benefit from other properties held by these alternatives, such as routing

stability or computing efficiency. In this section, we present the length of sequences

computed for node shutdown operations by alternative algorithms. Table 3.4 shows

statistical information for all topologies, while thorough comparison on our largest real

evaluation network is provided in Fig 3.3 and 3.4.

The link-by-link heuristic (Table 3.4a) consists in safely shutting down one after the

other the outgoing links of the router to be removed, using either GBA or any other

algorithm producing minimal update sequences for single link operations. Contrary to

other router modification algorithm, this method does not benefit from the opportunity

of simultaneously modifying the weight configured on multiple links. It is thus not

affected by the intermediate transient loop problem. The traffic may be forwarded

through intermediate next-hops when the weight on one link is increased, yet the loops

that could arise from this situation will be considered as normal transient loops. On

the other hand, intermediate update sequences are much longer than those produced

by multi-link update based algorithms. Our evaluations report that the proportion of

shutdown operations requiring 5 intermediate updates or less is 20 percentage points

lower with this method compared to standard GBA and worst case sequence are more

than 3 times as long.

The sequences used to produce these results were obtained considering the removal of

the links in an arbitrary order. In most cases, this order has an impact on the final
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Internet2

Geant

ISP1

ISP2

Renater

ISP3

ISP4

ISP5

ISP6

Exodus

EBone

Telstra

AboveNet

Tiscali

Sprint

|S| ≤ 5 max

100 % 3

72.73 % 9

70.00 % 13

45.45 % 22

72.97 % 19

53.57 % 26

55.93 % 26

56.00 % 66

49.62 % 174

61.82 % 21

72.58 % 17

83.87 % 8

80.23 % 20

71.88 % 20

74.05 % 23

(a) Link-by-link

|S| ≤ 5 max

100 % 1

100 % 5

100 % 4

70.00 % 7

90.00 % 8

55.56 % 21

56.52 % 21

41.76 % 63

50.27 % 147

70.27 % 11

91.89 % 7

100 % 4

97.73 % 7

94.12 % 6

95.38 % 9

(b) Uniform

|S| ≤ 5 max

100 % 1

100 % 3

100 % 4

100 % 3

96.67 % 6

57.78 % 14

58.70 % 14

50.55 % 41

54.05 % 67

70.27 % 10

94.59 % 7

100 % 4

97.73 % 7

98.04 % 6

98.46 % 6

(c) AGBA

|S| ≤ 5 max

100 % 1

100 % 3

100 % 4

100 % 3

96.67 % 6

73.33 % 11

73.91 % 11

60.44 % 33

57.30 % 57

78.38 % 9

100 % 5

100 % 3

97.73 % 7

100 % 5

98.46 % 6

(d) DGBH

Table 3.4: Lengths of node shutdown sequences produced by GBA alternatives

sequence length, and it may be possible to devise an algorithm finding the best possible

order in all situation. Such algorithm could be based, for example, on the initial weights

of the links to be modified, choosing to remove backup links first or, on the contrary, to

keep them for last. Such sequences could not however be shorter than those produced by

GBA, and would involve intermediate next-hop changes. We thus chose not to further

investigate this approach.

The uniform algorithm works by increasing (or decreasing) the weight of all outgoing

links of the modified by the same value at each step. It is somehow similar to a single

link modification sequence applied at the granularity of a router and such sequences

can be computed using the same algorithms. Uniform sequences naturally preserves the

initial routing decisions of the modified node, thus preventing intermediate next-hop

changes. Fig 3.3 shows that the overhead in terms of sequence length compared to GBA

is usually smaller than the link-by-link heuristic. The gap between GBA and uniform

is very narrow for short sequences, but it grows larger for longer sequences (Fig. 3.4).

Eventually, worst case sequences reported on Table 3.4b are almost as long as those

produced by the link-by-link heuristic.

AGBA adds additional constraints to GBA vectors in order to ensure the same property

as uniform updates on intermediate next-hop changes. In a sense, AGBA tends to uni-

formize GBA sequences, while keeping the possibility to perform non-uniform updates

as long as it does not impact the routing stability. In fact, Fig 3.4 shows that the dis-

tribution of AGBA sequence lengths often is mid-distance between GBA and uniform
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sequences. Longest sequences are also much shorter compared to those computed by

the two previous algorithms. According to Table 3.4c, AGBA produces almost the same

proportion of short enough sequences as GBA on most networks, making it a realis-

tic alternative to GBA for network operators concerned about intermediate next-hop

changes.

Contrary to GBA and AGBA, DGBH does not necessarily yield sequences of minimal

length, so that shorter sequences may exist that ensure the same property, namely the

absence of intermediate transient loops. However, our results show that this heuristic

performs well in practice. More than 99% of all sequences, for every single router shut-

down operation and every topology, are of exactly the same length as those produced

by GBA (Table 3.4d). Besides, among the sequences whose length is increased, 65%

only contain one extra intermediate update, 23% have 2 more elements, and the most

stretched sequences, which represent the 12 remaining percent, are increased by 4 addi-

tional elements. These could be considered a negligible overhead compared to the total

length of the sequences.

Seeing these results, we would recommend that practical deployment of our solutions

be based on AGBA, for it offers the best trade-off between sequence length and routing

stability. However, should sequence lengths be a problem, DGBH would be an acceptable

reduced solution that still prevents any kind transient loops.
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Figure 3.3: Sequence length overhead compared to standard GBA
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Figure 3.4: Length distribution of sequences produced by GBA alternatives
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3 Computing times

We showed in the previous section that most intermediate sequences computed using

variations of GBA are short enough for practical application. This is however not suffi-

cient to make our approach a realistic solution to be used in production networks. Our

algorithms indeed involve heavy graph calculations that could lead to long computing

times. In this section, we show that in spite of a polynomial time worst case complexity,

actual computing times are very small, and they remain reasonable even on our largest

evaluation networks. We also assess the efficiency of the implementation improvements

presented at the end of Chapter 2, detailing how each individual improvement affects

global performances. These results were obtained using a standard desktop computer

architecture based on an Intel Core 2 Duo (E7200) CPU with a clock rate of 2.53 GHz.

Since GBA variations, AGBA and DGBH, have a negligible impact on computing times,

we focus here on the performances of the basic GBA algorithm. We also merge together

the computing times obtained for link and node shutdown operations, for they present

no significant differences.

3.1 GBA performances

Table 3.5 displays various statistical information on the time required to compute shut-

down sequences. On all but the three largest topologies, worst-case sequences are com-

puted in only a few milliseconds. This duration increases to some tens of milliseconds

for ISP5 and Sprint networks, which respectively contain 200 and 315 routers. For ISP6,

any sequence can be computed within a couple of seconds, which remains a reasonable

duration considering that the topology belongs to one of the biggest Tier-1 Internet

providers in the world. Besides, operations for which no transient loop may occur are

ignored in these results. Such cases are detected after a few microseconds, even on ISP6,

and cause an empty sequence to be generated. We thus envision a practical deployment

of our solutions according to one of the following schemes.

• A network management tool pre-computes and stores a sequence for every pre-

dictable event. These include links and routers shutdowns, as well as any other

operation pre-configured by the operator. When one of these operation, or any

other whose associated sequence could be deduced from a stored one, is to be

performed in the network, the corresponding sequence could either be automati-

cally applied on the router using a reconfiguration script, or be displayed for the

operator to execute it manually.
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Min Median Max Mean 3rd quartile 9th decile

Internet2 0.06 ms 0.06 ms 0.06 ms 0.06 ms 0.06 ms 0.06 ms

Geant 0.21 ms 0.29 ms 0.35 ms 0.28 ms 0.30 ms 0.33 ms

ISP1 0.34 ms 0.39 ms 0.51 ms 0.41 ms 0.47 ms 0.51 ms

ISP2 1.43 ms 1.98 ms 2.68 ms 1.96 ms 2.08 ms 2.67 ms

Renater 0.35 ms 1.33 ms 2.68 ms 1.28 ms 1.48 ms 1.78 ms

ISP3 0.49 ms 6.08 ms 10.91 ms 6.08 ms 7.25 ms 7.75 ms

ISP4 0.99 ms 10.17 ms 18.04 ms 10.18 ms 12.07 ms 12.95 ms

ISP5 0.64 ms 26.58 ms 49.63 ms 23.80 ms 30.01 ms 34.64 ms

ISP6 3.63 ms 1.59 s 2.15 s 1.40 s 1.70 s 1.77 s

Exodus 0.88 ms 3.16 ms 5.32 ms 3.15 ms 3.90 ms 4.69 ms

EBone 0.33 ms 4.17 ms 7.41 ms 3.87 ms 4.91 ms 6.04 ms

Telstra 5.01 ms 6.42 ms 9.20 ms 6.61 ms 7.53 ms 8.81 ms

AboveNet 0.49 ms 11.13 ms 16.68 ms 10.45 ms 12.37 ms 15.82 ms

Tiscali 0.91 ms 15.31 ms 22.68 ms 14.56 ms 17.26 ms 19.87 ms

Sprint 1.71 ms 68.42 ms 109.47 ms 62.77 ms 76.30 ms 80.17 ms

Table 3.5: Computing time statistics for all node and link shutdown operations

• Sequences are pre-computed and stored on a distributed mode, each router being

in charge of its own modifications. Then, when a command is passed on the router

that would cause a topological modification, the associated sequence is applied.

• Sequences are computed on-the-fly by the router itself at the time a command

is passed, and directly processed. This option seems realistic at least on small

networks considering how low the computing times are.

3.2 Algorithmic improvements evaluation

Fig. 3.5 shows how much computing time was saved by each of our algorithmic im-

provements on the three largest topologies. It appear on these figures that, for a given

topology, a basic GBA implementation computes most of the intermediate update se-

quences in a nearly constant time. This duration is of about 9 ms, 25 ms and 1.5 s,

respectively for ISP 4, 5 and 6, and corresponds to the time required to check whether

transient loop could occur for each destination in the network.

The affected destinations improvement lightens this detection phase by pruning from the

set of destinations to be checked all nodes that were not initially sending traffic via the

modified component. This results in a strong decrease of the computing time for more

than 10%, 40% and 35% of the operations for ISP 4, 5 and 6, respectively. However,

for operations affecting a large proportion of the destinations, the overhead involved by

the preliminary phase may exceed the benefits it provides, having thus slight negative

effects in some worst cases.

On another hand, the subgraph reductions improves almost all graph related calculations,
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accelerating both the initial transient loop detection phase and the merged graph update

that is performed at each iteration of GBA. As a result, this algorithmic improvement

reduces the constant detection time for all operations by 10 to 20%, but also the actual

sequence computation time based on how long the sequence is and how complex graph

calculation are. It is thus generally more effective on worst cases, as one may notice on

Fig 3.5c were the maximum computing times are almost halved.

Eventually, both improvements can be used together to combine their positive effects

(combination), while the overhead of computing impacted destinations fades away as it

is also affected by the subgraph reductions.

4 Conclusion

In this chapter, we evaluated various aspects of our solutions on real and inferred ISP

topologies or different shapes and sizes. First, we showed that transient loops could oc-

cur for a large proportion of link and node shutdown operations. Although these loops

are usually limited to a few links, our results reveal that the removal of key components

may have a much wider impact on some networks. We then assessed the practicality of

GBA, compared to single-link based algorithms. It appears that sequences produced by

GBA enable to perform most link and router removal operations with only a few interme-

diate updates, while link-by-link and uniform sequences are impractical for router-wide

reconfigurations. In addition, we compared the sequence lengths achieved by GBA with

its more constrained variations. For almost all operations, DGBH computes sequences

of exactly the same length as GBA, ensuring at no cost the absence of intermediate tran-

sient loops. On the other hand, the prevention of intermediate forwarding changes, with

AGBA, requires a few extra weight increments. Yet these sequences remain significantly

shorter than uniform ones. Finally, we evaluated the computing time efficiency of our

implementation of GBA. Our results show that, on common hardware, most sequences

are computed within tens of milliseconds, while worst cases barely exceed 2 seconds.

Such promising results open the way for a deployment of our solutions on production

networks.
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Figure 3.5: Evaluation of implementation improvements on computing time distribution



Conclusion

Over the past decades, the development of the Internet has led to the emergence of

real-time applications such as voice over IP, videoconferences and online gaming. These

usages raised new concerns regarding the quality of service achieved by Internet Service

Providers (ISPs), leading to more and more stringent Service Level Agreements (SLAs).

However the protocols currently used to direct and carry traffic through the Internet

have been designed in a best effort perspective, and do no allow to guarantee high

service availability in the presence of topological changes due to routing events. In

particular, the distributed nature of link-state routing protocols implies that transient

routing loops may occur after each topological change. The duration of such loops is

about one second in practice, increasing transmission delays, and causing congestions as

well as packet losses.

In order to enable network operators to perform maintenance operations, and adapt their

routing policies in real time according to traffic fluctuations, we proposed practical and

incrementally deployable solutions to prevent transient disruptions in case of router-

wide modifications. Our proposals do not require any protocol modification, as they

only rely on basic functionalities of link-state routing protocols. The approach consists

in progressively reconfiguring the weights on the outgoing links of the modified router.

Through fine tuning of these weights we may indeed implicitly control the order in which

routers impacted by the change update their forwarding decisions, and prevent transient

loops. We presented a theoretical framework for this approach, proving that a transient

loop free sequence always exists, and defining necessary and sufficient constraints to

ensure the prevention of each loop. Based on this framework, we provided an algorithm

to compute weight update sequences of minimal length, such that no transient loop can

occur between two subsequent updates.

This aim for minimality may jeopardize routing stability, possibly causing transient loops

around the modified router that could not have occurred otherwise. To deal with these

side effects of our approach, we devised several solutions that achieve several tradeoffs

between the level of disruption avoidance and the sequence lengths. While the use of

122
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local delay, in conjunction with sequences computed by our Greedy Backward Algorithm

(GBA), allows to effectively prevent any potential transient loop, it is also possible

to adjust the sequences themselves by considering additional constraints during the

calculation process. These conditions may either only focus on transient loop avoidance,

or enforce routing stability by preventing the use of intermediate forwarding paths. That

is, to ensure that intermediate vectors may only lead to the use of PRE or POST edges.

We proposed two variations of GBA, respectively called Dynamic Greedy Backward

Heuristic (DGBH) and Adjusted Greedy Backward Algorithm (AGBA), to compute

short sequences satisfying either set of conditions, along with static loop-constraints.

In order to assess the practicality of our approach in a production network, we evaluated

various aspects of the solutions we propose on real and inferred ISP topologies. Our

results show that transient loops could occur for a large proportion of link and node

shutdown operations, and may affect a significant part of the network. This emphasizes

the need for efficient means to solve this problem. As such, our proposal performs

decently, allowing to safely proceed to most link and router removal operations with

only a few intermediate updates, while single-link based algorithms appear impractical

to handle router-wide reconfigurations. In addition, we compared the sequence lengths

achieved by GBA with its more constrained extensions. For almost all operations, the

algorithmic prevention of intermediate transient loops comes at no cost, the length of a

sequence computed with DGBH being exactly the same as the one produced by GBA.

These sequences could thus be applied regardless of the availability of a local-delay

feature on the modified router. Although the sequence stretching caused by the use of

AGBA is not negligible, final sequences often remain significantly shorter than minimal

uniform ones, while achieving the same guarantees in terms of path stability. Besides,

thanks to various algorithmic improvements, we have been able to develop a time-efficient

implementation of our solutions. Our evaluations of this implementation show that most

sequences can be computed within tens of milliseconds, even on large networks, and the

few worst cases do not exceed a couple of seconds. In practice, our algorithms could

be implemented in a network management tool, and sequences computed offline before

being manually applied on the modified router. Yet we hope that such performances,

combined with the need for transient loop avoidance mechanisms in ISP networks, will

allow for our solutions to be eventually integrated in router software.

Perspectives

Even though we claim our approach to be easily deployable in practice, its actual im-

pact on a production network is yet to be evaluated. For example, practical aspects
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of link-state routing that we approximated in our theoretical framework, such as net-

work destinations and multipoint links, may complicate the deployment of our solutions.

Short-term goals on this subject should thus include extensive analysis in real environ-

ments. Currently, one of the main concerns raised by operators regarding this approach

is the possible negative interaction with inter-domain routing. That is, the effects of

successive ISP weight reconfigurations on Border Gateway Protocol (BGP) convergence.

This aspect will be paid a particular attention during the measurement and evaluation

campaign we recently started in collaboration with RENATER, as it may also influence

the delay between two subsequent updates and the maximum length of a sequence. As

for longer sequences, thorough analysis based on real traffic matrices is required to deter-

mine which conditions could be relaxed, or which constraints could be ignored, with the

least impact on the network. On the contrary, it could also be possible to adapt the net-

work topology itself. In particular, enforcing logical and physical patterns that increase

fast re-routing coverage and decrease sequence length. Another source of long sequences

is the prevention of intermediate changes, whose practical impact on connection-based

transport layer protocols remains unknown. It would thus be interesting to compare the

throughput of a TCP-like flow subject to several intermediate route deflections with the

one achieved in case of a direct rerouting.

On a more theoretical perspective, and especially if intermediate forwarding changes

have a negligible impact on network performances, future works could take interest

in formally studying the complexity of the Minimal Intermediate Loop-free Problem

(MILP) and, if MILP is in P , finding a P -time algorithm to optimally solve it. Long-

term objectives to provide ever shorter sequences would also include investigating the

opportunity of performing weight updates of opposite sign to the intended modification.

For example, considering link weight decrements before applying an always increasing

sequence may, in certain cases, enable to reduce its overall length. In the same spirit,

it could be possible to perform weight reconfigurations on links farther away from the

modified router. Finally, the approach could be further extended to the more general use

cases of Shared Risk Link Groups (SRLGs) and arbitrary k-links modifications anywhere

in the network. Again, the formal analysis of the computational complexity of such

minimization problems is left open for future works.
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