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Abstract

Never before have movies been as easily accessible to viewers, who can
enjoy anywhere the almost unlimited potential of movies for induc-

ing emotions. Thus, knowing in advance the emotions that a movie is
likely to elicit to its viewers could help to improve the accuracy of content
delivery, video indexing or even summarization. However, transferring
this expertise to computers is a complex task due in part to the subjective
nature of emotions. The present thesis work is dedicated to the automatic
prediction of emotions induced by movies based on the intrinsic proper-
ties of the audiovisual signal.

To computationally deal with this problem, a video dataset annotated
along the emotions induced to viewers is needed. However, existing
datasets are not public due to copyright issues or are of a very limited
size and content diversity. To answer to this specific need, this thesis ad-
dresses the development of the LIRIS-ACCEDE dataset. The advantages
of this dataset are threefold: (1) it is based on movies under Creative Com-
mons licenses and thus can be shared without infringing copyright, (2) it
is composed of 9,800 good quality video excerpts with a large content di-
versity extracted from 160 feature films and short films, and (3) the 9,800

excerpts have been ranked through a pair-wise video comparison proto-
col along the induced valence and arousal axes using crowdsourcing. The
high inter-annotator agreement reflects that annotations are fully consis-
tent, despite the large diversity of raters’ cultural backgrounds.

Three other experiments are also introduced in this thesis. First, af-
fective ratings were collected for a subset of the LIRIS-ACCEDE dataset
in order to cross-validate the crowdsourced annotations. The affective rat-
ings made also possible the learning of Gaussian Processes for Regression,
modeling the noisiness from measurements, to map the whole ranked
LIRIS-ACCEDE dataset into the 2D valence-arousal affective space. Sec-
ond, continuous ratings for 30 movies were collected in order develop
temporally relevant computational models. Finally, a last experiment was
performed in order to collect continuous physiological measurements for
the 30 movies used in the second experiment. The correlation between
both modalities strengthens the validity of the results of the experiments.

Armed with a dataset, this thesis presents a computational model to
infer the emotions induced by movies. The framework builds on the recent
advances in deep learning and takes into account the relationship between
consecutive scenes. It is composed of two fine-tuned Convolutional Neu-
ral Networks. One is dedicated to the visual modality and uses as input
crops of key frames extracted from video segments, while the second one
is dedicated to the audio modality through the use of audio spectrograms.
The activations of the last fully connected layer of both networks are con-
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catenated to feed a Long Short-Term Memory Recurrent Neural Network
to learn the dependencies between the consecutive video segments. The
performance obtained by the model is compared to the performance of a
baseline similar to previous work and shows very promising results but
reflects the complexity of such tasks. Indeed, the automatic prediction of
emotions induced by movies is still a very challenging task which is far
from being solved.

Keywords: Computational emotion modeling; Induced emotion; Video
dataset; Affective computing; Crowdsourcing.
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Résumé

Jamais les films n’ont été aussi facilement accessibles aux spectateurs
qui peuvent profiter de leur potentiel presque sans limite à susciter

des émotions. Savoir à l’avance les émotions qu’un film est susceptible
d’induire à ses spectateurs pourrait donc aider à améliorer la précision des
systèmes de distribution de contenus, d’indexation ou même de synthèse
des vidéos. Cependant, le transfert de cette expertise aux ordinateurs est
une tâche complexe, en partie due à la nature subjective des émotions.
Cette thèse est donc dédiée à la détection automatique des émotions in-
duites par les films, basée sur les propriétés intrinsèques du signal audio-
visuel.

Pour s’atteler à cette tâche, une base de données de vidéos annotées
selon les émotions induites aux spectateurs est nécessaire. Cependant, les
base de données existantes ne sont pas publiques à cause de problèmes de
droit d’auteur ou sont de taille restreinte. Pour répondre à ce besoin spéci-
fique, cette thèse présente le développement de la base de données LIRIS-
ACCEDE. Cette base a trois avantages principaux: (1) elle utilise des films
sous licence Creative Commons et peut donc être partagée sans enfreindre
le droit d’auteur, (2) elle est composée de 9,800 extraits vidéos de bonne
qualité qui proviennent de 160 films et courts métrages, et (3) les 9,800

extraits ont été classés selon les axes de “valence” et “arousal” induits
grâce un protocole de comparaisons par paires mis en place sur un site de
crowdsourcing. L’accord inter-annotateurs élevé reflète la cohérence des
annotations malgré la forte différence culturelle parmi les annotateurs.

Trois autres expériences sont également présentées dans cette thèse.
Premièrement, des scores émotionnels ont été collectés pour un sous-
ensemble de vidéos de la base LIRIS-ACCEDE dans le but de faire
une validation croisée des classements obtenus via crowdsourcing. Les
scores émotionnels ont aussi rendu possible l’apprentissage d’un proces-
sus gaussien par régression, modélisant le bruit lié aux annotations, afin
de convertir tous les rangs liés aux vidéos de la base LIRIS-ACCEDE en
scores émotionnels définis dans l’espace 2D valence-arousal. Deuxième-
ment, des annotations continues pour 30 films ont été collectées dans le
but de créer des modèles algorithmiques temporellement fiables. Enfin,
une dernière expérience a été réalisée dans le but de mesurer de façon
continue des données physiologiques sur des participants regardant les
30 films utilisés lors de l’expérience précédente. La corrélation entre les
annotations physiologiques et les scores continus renforce la validité des
résultats de ces expériences.

Equipée d’une base de données, cette thèse présente une modèle al-
gorithmique afin d’estimer les émotions induites par les films. Le sys-
tème utilise à son avantage les récentes avancées dans le domaine de
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l’apprentissage profond et prend en compte la relation entre des scènes
consécutives. Le système est composé de deux réseaux de neurones convo-
lutionnels ajustés. L’un est dédié à la modalité visuelle et utilise en entrée
des versions recadrées des principales frames des segments vidéos, alors
que l’autre est dédié à la modalité audio grâce à l’utilisation de spectro-
grammes audio. Les activations de la dernière couche entièrement connec-
tée de chaque réseau sont concaténées pour nourrir un réseau de neurones
récurrent utilisant des neurones spécifiques appelés “Long-Short-Term-
Memory” qui permettent l’apprentissage des dépendances temporelles
entre des segments vidéo successifs. La performance obtenue par le mod-
èle est comparée à celle d’un modèle basique similaire à l’état de l’art et
montre des résultats très prometteurs mais qui reflètent la complexité de
telles tâches. En effet, la prédiction automatique des émotions induites
par les films est donc toujours une tâche très difficile qui est loin d’être
complètement résolue.

Mots-clés : Modèle d’estimation des émotions ; Emotions induites ; Base
de donnée de vidéos ; Affective computing ; Crowdsourcing.
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First and foremost, I would like to start this introduction with a citation
from G. M. Smith who reminds us in [7] that:

“Films do not “make” people feel. A better way to think of
filmic emotions is that films extend an invitation to feel in par-
ticular ways. Individuals can accept or reject the invitation.
Those who accept the invitation can accept in a variety of ways,
just as people invited to a party can participate in very differ-
ent activities.”

1.1 Context and motivation

According to legend, when “L’arrivée d’un train en gare de La Ciotat”
directed and produced by Auguste and Louis Lumière was first screened
in 1896 (Figure 1.1), the audience was so terrified at the sight of the oncom-
ing locomotive that people screamed and tried to hide under their seats.
Nowadays, film-lovers are more hardened but still enjoy the almost unlim-
ited potential of movies for inducing emotions. And with the impressive
movie collection available online through popular on-demand streaming
media websites such as Netflix 1 or M-GO 2, increasing day after day, film
spectators can feel everywhere a large variety of emotions.

Under these circumstances, knowing in advance the emotions that a
movie is likely to elicit to its viewers is highly beneficial; not only to im-
prove the accuracy for video indexing, and summarization (e.g. [8], [9]),
but also for mood-based personalized content delivery [10]. While major

1. https://www.netflix.com/
2. http://www.mgo.com/

1
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Figure 1.1 – L’arrivée d’un train en gare de La Ciotat/Arrival of a Train at La Ciotat
directed and produced by Auguste and Louis Lumière (1895)

progress has been achieved in computer vision for visual object detection,
scene understanding and high level concept recognition, a natural fur-
ther step is modeling and recognition of affective concepts. This explains
why the affective video content analysis research topic has emerged and
attracted more and more attention during these last years.

1.2 Novelty and challenges

Affective video content analysis aims at automatic recognition of emo-
tions elicited by videos. This has received increasing interest from re-
search communities, e.g., computer vision, machine learning, with an over-
all goal of endowing computers with human-like perception capabilities.
Among the three perspectives dealing with affect in multimedia (namely,
intended, induced, and expected emotions, each related to specific emo-
tion detection 3), this thesis focuses on the induced, i.e., felt emotions. The
induced emotions are the emotions that arise as a result of the content in
most of its audience.

However, while human affective perception is highly subjective,
machine-based affective modeling and recognition require large amounts
of reliable ground truth data for training and testing. Unfortunately, the
subjective nature of “induced emotions” makes it hard to collect consistent
and large volumes of affective annotations suitable for the use as ground
truth, while the copyright issues concerning video clips prevent free dis-
tribution of existing annotated datasets. Most state of the art work uses a
private dataset of a very limited size and content diversity, thus making

3. A more comprehensive description of these three perspectives can be found in Sec-
tion 3.1.
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fair comparisons and results reproducibility impossible, and preventing
achievement of major strides in the field. To overcome the limitations of
the existing affective video datasets and foster research in affective video
content analysis, our first objective is to create a dataset consisting of a
large number of good quality video excerpts, with a large content diver-
sity, and that can be freely distributed without copyright issues.

Armed with a dataset, computational models of induced emotions can
be learned. Most of approaches for affective video content analysis have
so far featured a standard architecture. Low-level audiovisual features
that are known to be related to the emotions induced by movies are first
extracted. Then, the features are used to feed and train a machine learn-
ing model to finally predict the desired affective score. The performance
of state of the art emotion prediction models stagnates at moderate lev-
els. On the other hand, mainly due to the advances of deep learning, the
performances in scene and object recognition have been recently progress-
ing intensively. Our second objective is to outperform the performance of
standard baselines by benefiting from the recent breakthroughs in deep
learning.

1.3 Approach and contributions

As discussed above, affective video content analysis faces two chal-
lenges. Creating a large and robust dataset that can be shared among
researchers is the first challenge to solve in order to be able to improve the
performance of the computational models to estimate induced emotions,
which is the second challenge. Our contributions mainly focus on these
two aspects and can be summarized as follows.

1. Our first contribution lies in the public release 4 of the LIRIS-
ACCEDE dataset [11, 12]. LIRIS-ACCEDE has been designed to by-
pass the size and scope of related limitations of existing datasets for
affective video content analysis.
• We have extracted 9,800 good quality video excerpts with a large

content diversity from 160 feature films and short films. All ex-
cerpts are shared under Creative Commons licenses and can thus
be freely distributed without copyright issues. The 9,800 short
segmented video clips last between 8 and 12 seconds and have
been automatically segmented using a robust cut and fade in/out
detection so that it is very likely that each segment be perceived
by users as semantically coherent.
• We have collected affective annotations for the induced arousal

and valence axes using crowdsourcing through a pair-wise video
comparison protocol, thereby ensuring that annotations are fully
consistent, as testified by a high inter-annotator agreement, de-
spite the large diversity of raters’ cultural backgrounds.
• To enable fair comparison and landmark progresses of future af-

fective computational models using the LIRIS-ACCEDE dataset
in different ways, we have provided four reproducible experi-
mental protocols (i.e., predefined training/validation/test sets,

4. Available at: http://liris-accede.ec-lyon.fr/.
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leave-one-movie-out, leave-one-genre-out, and performance per
movie).
• We have designed another experiment to cross-validate the

crowdsourced annotations and to map the ranked database into
the 2D valence-arousal affective space. The converted affective
ratings make possible the comparison of the excerpts with other
video clips annotated with absolute valence and arousal values.
• We have collected continuous ratings for 30 movies to develop

psychologically relevant computational models taking into ac-
count the fact that previous scenes may reasonably influence the
emotion inference of future ones.
• Finally, we have also designed an experiment to collect physi-

ological annotations to extend the range of applications of the
dataset.

2. Our second contribution concerns the development of a computa-
tional model to estimate the emotions induced by movies.
• We introduced and evaluated a baseline, similar to what can be

found in the state of the art, for the prediction of induced emo-
tions using a large set of both visual and audio features. The
features described include, but are not limited to, colorfulness,
harmonization energy, length of scene cuts, audio zero-crossing
rate, and Mel-Frequency Cepstral Coefficients (MFCC).
• We have also developed and evaluated an audiovisual spatio-

temporal model in order to outperform the performance of the
baseline. The architecture of this model is based on two Con-
volutional Neural Networks (CNN), one dedicated to the visual
modality and the other to the audio modality through spectro-
grams. Finally, a Long-Short-Term-Memory Recurrent Neural
Network is used to model the dynamic of emotions induced by
movies which is a key aspect reflecting the essential nature of
emotions.

1.4 Organization

The remaining of this thesis is organized as follows:

Chapter 2 introduces the main concepts used throughout this thesis. In
particular, this chapter defines the concepts of aesthetic emotions
and emotion induction, as well as the Valence-Arousal (VA) dimen-
sional representation of emotions.

Chapter 3 presents previous discrete and continuous affective video con-
tent analysis work, including video emotion recognition and vio-
lence detection, and shows the limitations of current existing affec-
tive video databases.

Chapter 4 describes the LIRIS-ACCEDE dataset created to overcome the
limitations of existing datasets and foster research in affective video
content analysis.

Chapter 5 evaluates the reliability of the ratings of the LIRIS-ACCEDE
dataset through a cross-validation with affective scores collected in
a new experiment.
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Chapter 6 describes another experimental protocol in order to collect con-
tinuous affective self-assessments to make possible the learning of
models for long movies where previous scenes may reasonably in-
fluence the emotions induced by future ones.

Chapter 7 gives an introduction to physiological measurements and in
particular to the galvanic skin response.

Chapter 8 presents baselines for discrete and continuous affective movie
analysis and describes reproducible protocols using the LIRIS-
ACCEDE dataset to enable fair comparison between future work.

Chapter 9 develops the spatio-temporal framework to automatically esti-
mate the continuous affective curves of movies. This framework is
composed of two Convolutional Neural Networks dedicated to spe-
cific modalities and a Recurrent Neural Network to learn the tempo-
ral dependencies between consecutive scenes.

The last Chapter finally concludes the thesis, portrays the use of LIRIS-
ACCEDE dataset by the research community, and explores direc-
tions for future work.





Part I

State of the art

“Remember ! Souviens-toi, prodigue ! Esto memor !
(Mon gosier de métal parle toutes les langues.)"

— Charles Baudelaire, Les Fleurs du mal
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As stated by Scherer [13]:
“The number of scientific definitions [of the concept of emo-
tions] proposed has grown to the point where counting seems
quite hopeless (Kleinginna and Kleinginna already reviewed
more than one hundred in 1981).”

Kleinginna and Kleinginna proposed a consensus by suggesting the
following definition considered as one of the most comprehensive defini-
tions of emotions [14]:

“Emotion is a complex set of interactions among subjective
and objective factors, mediated by neural/hormonal systems,
which can (a) give rise to affective experiences such as feel-
ings of arousal, pleasure/displeasure; (b) generate cognitive
processes such as emotionally relevant perceptual effects, ap-
praisals, labeling processes; (c) activate widespread physiolog-
ical adjustments to the arousing conditions; and (d) lead to be-
havior that is often, but not always, expressive, goal-directed,
and adaptive.”

9
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2.1 Main psychological approaches

Decades of research driven by psychologists interested in the compre-
hension of emotions lead to three theoretical major approaches: “basic”,
“appraisal”, and “psychological constructionist” [15].

2.1.1 Basic emotions: Facial expression and emotion

Basic emotion theorists have been originally inspired by the ideas ex-
pressed by Darwin. In The Expression of the Emotions in Man and Animals,
Darwin demonstrated the universal nature of facial expressions. Thus, ba-
sic emotion models assume that several emotions are automatically trig-
gered by objects and situations in the same way everywhere in the world.
This idea of universality was reused by Ekman and Friesen to develop the
Facial Action Coding System, which is a technique to score all observable
facial movements [16]. Ekman considers emotions to be discrete states that
are associated to facial expressions. Consequently, he postulates that there
are a fixed number of emotions. The list of basic emotion defined by Ek-
man is often used in the literature to represent categorically the emotions.
The basic emotions defined by Ekman in [17] include fear, anger, sadness,
disgust, joy, and surprise.

2.1.2 Appraisal processes: the Component Process Model

Appraisal models assume that emotions are triggered by the interpre-
tation of stimulus events and thus can be seen as relevance detectors [18].

The Component Process Model (CPM) is Scherer’s major contribution
to the study of emotions. The CPM postulates that the emotion process
is a psychological construct driven by subjective appraisal and is the con-
sequence of synchronized changes in five components corresponding to
five distinctive functions [1]: cognitive appraisal (evaluation of objects and
events), physiological activation (system regulation), motivational tenden-
cies (preparation and direction of action), motor expression (communi-
cation of reaction and behavioral intention), and subjective feeling state
(monitoring of internal state and external environment). Figure 2.1 shows
the general architecture of the CPM organized into three modules: ap-
praisal, response patterning, and integration/categorization.

The CPM considers the experience of emotions as the result of the re-
cursive multilevel sequential evaluation checking of an emotional stimulus
or event. It is a response to the evaluation of a stimulus relevant to major
concerns of the organism. The first module, i.e., the appraisal module,
is the most important element in the CPM. It determines if an emotion
episode is elicited and its characteristics based on four major appraisal
objectives:
• Relevance — scan for salient events requiring attention
• Implication — estimation of implication, consequences
• Consequences — assessment of coping potential, i.e., actions
• Significance — compatibility with social norms and self-concept

These objectives are evaluated based on stimulus evaluation checks (SECs)
defined as novelty, intrinsic pleasantness, relevance to goals and needs,
cause, probable outcomes, failure to meet expectations, conduciveness to
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Figure 2.1 – Basic architecture of Scherer’s Component Process Model of emotion (origi-
nally published in [1])

goals and need, urgency, control, power, adjustment, internal standards,
and external standards. The results of the SECs are highly subjective and
are biased by individual differences, moods, cultural values, group pres-
sures, or other context factors [19]. This is why a stimulus may evoke dif-
ferent emotions to different people at different places: it is the evaluation
of the events, rather than the events, which determines the characteristics
of an emotional episode.

The result of the appraisal updates the motivational state that existed
before the occurrence of the emotional stimulus or event. Both the ap-
praisal results and motivational changes affect the automatic nervous sys-
tem and the somatic nervous system. All these components are continu-
ously updated as events and appraisal change. Scherer claims that, even
if most of these components are examined unconsciously through paral-
lel processing, some components may be evaluated consciously to allow
more controlled regulation processes [1].

2.1.3 A psychological constructionist model: the Core Affect

Psychological constructionist models presume that emotions can be
broken down into primitives that are also involved in other mental states
[15]. Contrarily to appraisal models which assume that it is the evalua-
tion of the stimulus that determines the characteristics of an emotional
episode, psychological constructionist models assume that an emotion
emerges when one’s internal state is consciously understood in relation
to an event.

Russell describes emotions as a part of a general component process
called Core Affect [20]. Core affect is a primitive, universal and simple
neurophysiological state that controls moods, when core affect is experi-
enced as free-floating, and emotions, when core affect can be attributed
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to some cause, whether based on reality or fiction. In the core affect
model, the raw feelings (the conscious experience) is a blend of two dimen-
sions: pleasure–displeasure (called pleasure or valence), and activation–
deactivation (called arousal or energy). Core affect is a continuous intro-
spection, mental but not cognitive or reflective.

Russell claims that an emotional episode is an event that counts as a
member of an emotion category. The prototypical emotional episode be-
gins with an antecedent event perceived in terms of its affective quality.
The core affect is altered and attributed to the antecedent to make possible
the perceptual cognitive processing of the antecedent with various mani-
festations: instrumental action, physiological and expressive changes, sub-
jective conscious experiences, and emotional meta-experience. The emo-
tional meta-experience is a self-perception: the emotional episode is no-
ticed by the person who categorizes the emotional episode. Emotion cate-
gories are subjective since they are mental representation of emotions.

For Russell, emotions respond to the continuous flow of events
(whether based on reality or fiction) and are influenced at the same time
by the background environment (weather, odors, noise) and the social en-
vironment [21].

2.1.4 Summary of the main psychological approaches

The three main psychological approaches introduced in the previous
sections, namely the basic, appraisal, and psychological constructionist
models, share common ideas.

All the three approaches emphasize that emotions are constructed
from universal basic biological or psychological parts. However, psycho-
logical constructionist and appraisal models differ from basic models to
the extent that they assume that the social context of the situation and/or
cultural differences have an effect on the experience of emotions [15].

Psychological constructionist models and appraisal models both con-
sider emotion as an act of making meaning. However, the meaning anal-
ysis differs for both approaches. Psychological constructionist models, in-
cluding Russell’s Core Affect [20], assume that an emotion arises when a
person’s internal state is understood. For appraisal models, emotions are
intentional states created by the evaluation of an original stimulus, and
not by the internal state of the body. The internal state is only affected by
this meaning analysis.

2.2 Emotions in multimedia

The theories introduced in the previous section model the emotions
regardless of the significant stimulus that provoked the emotions. The
stimulus could either be a natural phenomenon, the behavior of other
people or animals, or even one’s own behavior [13]. However, we are
interested in this thesis in the emotions that are induced by movies. Thus,
we focus in this section on a particular type of emotions: the aesthetic
emotions.
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2.2.1 Aesthetic emotions

An aesthetic emotion is an emotional response to a work of art (paint-
ings, pictures, but also songs, movies,. . . ) which can be described with
three characteristics [22]:
• Persons are involved, in the state of intense attention engagement,

and are strongly focused on a particular object.
• The viewer appraises the aesthetic objects as parts of virtual reality

and finally, has a strong feeling of unity with the object of aesthetic
appraisal.
• Aesthetic emotions are not oriented towards the satisfaction of bod-

ily needs.
In the literature, the aesthetic information processing models share

a common architecture: the emotional experience starts with a stimulus
input, continues with the appraisal of the stimulus (from low level char-
acteristics to deeper memorial instances) and ends with the evaluative
judgment of the stimulus and the emotional response.

Linking aesthetics and emotion, Leder et al. proposed a model of aes-
thetic and emotional experience of modern art in an artistic context [2].
The model, depicted in Figure 2.2, is composed of five stages resulting
in two distinct outputs: an aesthetic judgement which is the result of the
evaluation of the cognitive mastering stage and an aesthetic emotion based
on the affective state of satisfaction. Like Scherer, the model proposed by
Leder postulates both automatic and deliberate processing.

Each of the five stages is concerned with different cognitive analyses.
Processing during the first two stages is automatic and implicit. Features
such as complexity, contrast, symmetry, order, and grouping are percep-
tually analyzed on the perceptual analysis level. With the second stage, an
unconscious recall based on past experience begins. This implicit memory
integration stage is also influenced by features such as familiarity, pro-
totypicality, and peak-shift principle. Then, during the last three stages,
processing takes place consciously and forms a feedback-loop. The ex-
plicit classification and cognitive mastering, based on the analysis of the
style, content, and interpretation of the work of art, are also influenced by
previous evaluations that have not been subjectively experienced as suc-
cessful. Finally, the evaluation stage guides the aesthetic processing by
measuring its success and enters into social interaction discourses which
is going to be the input of another artistic evaluation.

However, the model of Leder is too simplified and only considers aes-
thetic experience as affectively positive and self-rewarding (successful pro-
cessing). It does not take into account the negative aspect, the antinomy,
and the variety of art experience [23]. Several works extended Leder’s
model to offer a more precise model of aesthetic processing. For exam-
ple, Marković created a model in which the aesthetic experience is closer
to arousal, i.e., the interest for the work of art, than other dimensions of
subjective experience [22]. In this multimodal model, the narrative con-
tent and the composition form both influence the aesthetic emotion (films
being more focused on the narrative content).
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Figure 2.2 – Leder’s model of aesthetic and emotional experience (originally published in
[2])

2.2.2 A sociological perspective

Aesthetic emotions, and more specifically, emotions provoked by
movies, can also be analyzed from a sociological perspective. Hochschild
was one of the first to study the sociology of emotions and how shared
norms can influence the way we want to try to feel emotions in given
social relations [24].

Wiley discussed the differences between the emotions people experi-
ence watching a movie, called “movie emotions” and those occurring in
our everyday life [25]. He explained that viewers split attention between
the movie and the physical environment which helps regulate distance
from the movie and creates an aura of safety and that the effects of movie
emotions tend to end with the movie or at least decrease. Furthermore,
the viewer is not the subject of the movie emotions, they happen because
an identification is built with the character. For Wiley, movie emotions
come with clear labels since narratives are written with precise emotional
scripts. They are included in the movie with dialogues, clearly structured
situations, transparent tendencies and musical cues. Movie emotions can
be anticipated since films tend to follow the usual stability-instability-
stability rule and because the music is geared to place the viewer in the
appropriate emotional channel. These arguments show that it makes sense
to investigate computational models based on multimodal features to pre-
dict the emotions provoked by movies.

For Wiley, movie emotions are desired: in watching a movie, the
viewer wants to feel frequent, dense and almost wall-to-wall emotions
[25]. This may result for example from a need to escape boredom or to
forget the troubles of the day. Movie emotions are also quite intense: the
viewers are dealing with more emotions than in a comparable period of
time of a typical day. Movie emotions can be increased with social aspects
(laughs of co-viewers). It is also easier to admit and talk about movie emo-
tions because they are just fantasy so nobody can be blamed for having
them.
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2.2.3 Types of emotional processes in response to multimedia

There are three types of emotional processes in response to multime-
dia: emotion induction, emotion contagion, and empathic sympathy [26].

The induced emotions are the emotions that viewers feel in response
to a multimedia content with respect to their goals and values. For ex-
ample, in the dataset presented in Chapter 4, the animation movie “Big
Buck Bunny” features an evil squirrel tearing up a butterfly. The situa-
tion is likely to elicit negative emotions to the viewers (disgust, anger,. . . ),
although the imaginary squirrel is enjoying the situation. The negative
response from the viewers, i.e. the induced emotion, is due to their per-
ception of the context according to their goals and values biased by the
identification built with one or several characters of the movie.

With the emotional contagion process, the viewer is affected by the
expressed emotion from a multimedia content without understanding in
detail how the emotional expression of the multimedia content may have
been developed. This process has to be distinguished from emotion per-
ception, which refers to the perception of emotions expressed by the mul-
timedia content without evoking affective responses in the viewers. Last
but not least, empathic sympathy occurs when the viewers are not affected
by the situation or event directly, but follow the appraisal steps leading to
the emotion experienced by the characters in the multimedia content.

Finally, emotions, as defined above, have to be distinguished from
other affective phenomena such as feelings or moods. A feeling is a subjec-
tive experience of an emotional episode whereas moods are diffuse affect
states generally of low intensity, may last over hours or even days, and is
often not clearly linked to an event or specific appraisals [13].

2.3 Representations

Diverse representations for emotions have been proposed in the litera-
ture. They are derived from the theories introduced in Section 2.1.

2.3.1 Categorical

The categorical emotions approach is very natural since it goes back to
the origin of language and the emergence of words and expressions repre-
senting clearly separable states. Many discrete categorizations of emotions
have been proposed, such as the six basic universal emotions proposed by
Ekman in [17], already introduced in Section 2.1.1, or the eight primary
emotions defined by Plutchik [27]. Plutchik suggested eight emotions,
namely anger, fear, sadness, disgust, surprise, anticipation, trust, and joy.
Plutchik theorized that these basic emotions are biologically primitive and
have evolved in order to increase the reproductive fitness of the animal.
This categorical representation faces a granularity issue since the number
of emotion classes is too small in comparison with the diversity of emo-
tion perceived by film viewers. In case the number of classes is increased,
ambiguities due to language difficulties or personal interpretation appear.
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Figure 2.3 – Illustration of the parabolic 2D affect space (originally published in [3])

2.3.2 Dimensional

Dimensional approaches have also been proposed to model the emo-
tions as points in a continuous n-dimensional space. The most famous one
is the valence-arousal-dominance space, also known as pleasure-arousal-
dominance (PAD) space introduced by Russell and Mehrabian [28] and
extensively used in researches dealing with affective understanding. In
this space, each subjective feeling can be described by its position in a
three-dimensional space formed by the dimensions of valence, arousal,
and dominance. Valence ranges from negative (e.g., sad, disappointed)
to positive (e.g., joyous, elated), whereas arousal can range from inactive
(e.g., tired, pensive) to active (e.g., alarmed, angry), and dominance ranges
from dominated (e.g., bored, sad) to in control (e.g., excited, delighted).
Given the difficulty of consistently identifying a third dimension (such as
dominance, tension or potency) which differs from arousal, many stud-
ies, including this work, limit themselves to the valence and arousal (VA)
dimensions. Indeed, especially when dealing with emotions induced by
videos, valence and arousal account for most of the independent variance
[29, 30]. Moreover, psychophysiological experiments have revealed that
only certain areas of this two-dimensional space are relevant [3] and that
emotions induced by media can be mapped onto a parabolic space created
by the arousal and valence axes (see Figure 2.3).

However, this common two-dimensional space is questioned by
Fontaine et al. who demonstrated that two dimensions are not sufficient to
satisfactorily represent emotions [31]. They showed that using at least four
dimensions is more appropriate to represent the diversity of emotions (va-
lence, arousal, dominance, and predictability) but that the optimal number
of dimensions to be included in a model depends on the purpose of the
model.
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Summary

This chapter introduced the main concepts used throughout this the-
sis. Several psychological models of emotion, and more specifically of
aesthetic emotion, were first presented. Then, the types of emotional pro-
cesses in response to multimedia were described and in particular the
induced emotions. Finally, discrete and dimensional representations of
emotions were introduced.

Due to the objectives of this thesis defined in Chapter 1, several con-
cepts defined in this chapter are particularly important. First, we focus
in this thesis on the very specific type of emotions called aesthetic emo-
tions, defined in Section 2.2.1. More precisely, since we are interested in
the emotions that are felt by the viewers, we focus on a specific type of
emotional processes in response to multimedia content called emotion in-
duction defined in Section 2.2.3. To model the induced emotions, we will
use in this thesis the universal 2-dimensional VA representation described
in Section 2.3.2. Finally, for the design of our computational model, we
keep from these psychological models that the evaluation of an emotion
is an iterative process, and that aesthetic emotions are influenced by low-
level concepts (e.g., complexity, contrast or symmetry of the stimulus) as
well as higher-level concepts (e.g., style, content).
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Affective video content analysis aims at automatically predicting the
emotions elicited by videos. Work on affective video analysis can be

categorized into two subgroups: continuous affective video content anal-
ysis, which estimates an affective score for consecutive portions (e.g. each
frame or group of frames) of a video, and discrete affective video content
analysis, which assigns an affective score to a video. Some work represents
emotions in the 2D valence-arousal space or in the 3D valence-arousal-
dominance space, while other work represents emotions using discrete
categories. Furthermore, the models are sometimes dedicated to specific
video categories, i.e. music videos or a particular movie genre.

There are also studies on emotion assessment using physiological sig-
nals beyond audiovisual features. However, this topic is out of the scope
of this thesis, although we demonstrate correlations between perceived
emotions and physiological signals in Chapter 7.
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3.1 Affective video content analysis: the perspectives

The video investigated with respect to its affective content can be ei-
ther the stimulus eliciting emotions, it is called “affective movie content
analysis”, or a tool to investigate the emotions expressed by agents (“video
emotion recognition”). In this thesis we will focus on affective movie con-
tent analysis but both affective video content analysis fields are related
and will be presented in this chapter, with emphasis on previous affective
movie content analysis work.

Video emotion recognition work aims at automatically estimating the
emotion expressed by an agent from a video recording, in relation to an
emotion induced by a stimulus. Sometimes, these emotions are not real
but played by an actor [32]. The main goal of video emotion recognition
models is to make possible affective interaction between human beings
and computers. Such models are inherently different from affective movie
content analysis models. However, the temporal modeling of emotions of
such models may be useful for designing new continuous affective movie
content analysis frameworks. This is why video emotion recognition work
is discussed in Section 3.3.2.

Affective movie content analysis work focuses on the video which is
the stimulus of the emotion to be investigated. The emotion to be investi-
gated, related to the induced emotion defined in Chapter 2, is defined by
the perspective of the models. There are three perspectives for affective
movie content analysis work, each related to specific emotion detection:
intended, induced and expected emotion. The intended emotion is the
emotion the film maker wants to induce to the viewers. The induced emo-
tion is the emotion that viewers feel in response to the movie. The expected
emotion is the expected value of experienced (i.e. induced) emotion in a
population.

Due to the exciting new possibilities offered by such affective comput-
ing techniques, they can be naturally applied to help standard multimedia
systems [33]. Thus, affective movie content analysis work has a large num-
ber of applications, including mood based personalized content recom-
mendation [34] or video indexing [35], and efficient movie visualization
and browsing [36]. Beyond the analysis of existing video material, affec-
tive computing techniques can also be used to generate new content, e.g.,
movie summarization [37], or personalized soundtrack recommendation
to make user-generated videos more attractive [38]. Affective techniques
have even been used to enhance the user engagement with advertising
content by optimizing the way ads are inserted inside videos [39].

3.2 Affective multimedia databases

Creation of an affective database is a necessary step in affective com-
puting studies. While there are many databases composed of facial ex-
pression videos for emotion recognition, there are not many databases of
video clips annotated according to the emotions they induce in viewers.

Philippot [40], as well as Gross and Levenson [41], were the first to pro-
pose small sets of film excerpts assumed to elicit specific emotions in the
laboratory. To achieve this goal, they selected specific excerpts most likely
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Table 3.1 – Downloadable video datasets annotated using labels considering induced
emotion

Name Size Emotional labels

HUMAINE 50 clips from
5 seconds to 3

minutes long

Wide range of labels at a global
level (emotion-related states, con-
text labels, key events, emotion
words, etc.) and frame-by-frame
level (intensity, arousal, valence,
dominance, predictability, etc.)

FilmStim 70 film excerpts
from 1 to 7 min-
utes long

24 classification criteria: subjec-
tive arousal, positive and nega-
tive affect, a positive and nega-
tive affect scores derived from the
Differential Emotions Scale, six
emotion discreteness scores and
15 mixed feelings scores

DEAP 120 one-minute
music videos

Ratings from an online self-
assessment on arousal, valence
and dominance and physiologi-
cal recordings with face video for
a subset of 40 music videos

MAHNOB-HCI 20 film excerpts
from 35 to 117

seconds long

Emotional keyword, arousal,
valence, dominance and pre-
dictability combined with facial
videos, EEG, audio, gaze and pe-
ripheral physiological recordings

EMDB 52 non-auditory
film clips of 40

seconds long

Global ratings for the induced
arousal, valence, dominance di-
mensions

VIOLENT
SCENES
DATASET

25 full-length
movies

Annotations include the list of
the movie segments containing
physical violence according to
two different definitions and also
include 10 high-level concepts for
the visual and audio modalities
(presence of blood, fights, gun-
shots, screams, etc.)

LIRIS-ACCEDE 9,800 excerpts
from 8 to 12 sec-
onds long and
30 full movies

Discrete rankings and ratings for
arousal and valence dimensions,
continuous arousal and valence
self-assessments, and continuous
physiological recordings
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to elicit strong emotions, which thus do not represent the full range of
emotions that movies can potentially elicit. Even if increased efforts have
recently been made to standardize film clip databases, there are no mul-
timedia databases annotated along induced emotional axes dealing with
the full spectrum of emotions in movies that are large enough to be used
in machine learning and that do not suffer from copyright infringement.

The HUMAINE database [42] created by Douglas-Cowie et al. consists
of a subset of three naturalistic and six induced reaction databases. The
purpose of the database is to illustrate key principles of affective comput-
ing instead of applying it to machine learning. It is made up of 50 clips:
naturalistic and induced data ranging from 5 seconds to 3 minutes. These
have been annotated according to a wide range of labels detailed in Table
3.1.

Introduced by Schaefer et al. in [43], the FilmStim database consists of
70 film excerpts intended to elicit emotional states in experimental psy-
chology experiments. 10 films are selected per emotional category (i.e.
anger, sadness, fear, disgust, amusement, tenderness and neutral state)
and cut into clips ranging from 1 to 7 minutes. 364 participants rated each
film clip, and ranking scores were computed for 24 classification criteria
displayed in Table 3.1. Even if it is one of the biggest databases of videos
annotated along induced emotional labels, videos are labeled globally. Yet,
emotions are a relatively fast phenomenon lasting a few seconds from on-
set to end [44]. This is why a unique global label is not sufficient to build
ground truth data for induced emotion models.

The DEAP database is another publicly available database that has
been created recently by Koelstra et al. [45]. It is composed of 120 one-
minute long excerpts of music videos. Each one was rated by at least
14 volunteers from an online self-assessment based on induced arousal,
valence and dominance. Physiological signals were recorded from partic-
ipants, while they rated a subset of 40 of the above music videos in terms
of arousal, valence, like/dislike, dominance and familiarity levels. Music
videos protected by copyright are not available alongside the annotations.
Instead, the YouTube links are given, but some of them are no longer avail-
able on YouTube, sometimes due to copyright claims. This shows the need
for a database that does not depend on third parties to share its material
legally.

The same year, Soleymani et al. released MAHNOB-HCI [46] which is
a multimodal database composed of 20 short emotional excerpts extracted
from commercially produced movies and video websites. These stimuli
were selected in order to elicit 5 emotions (disgust, amusement, joy, fear
and sadness). Participants watching these fragments were asked to anno-
tate their own emotive state on a scale in terms of arousal and valence.
Facial videos, electroencephalograms (EEG), audio, gaze and peripheral
physiological recordings were also recorded for all 30 participants.

Carvalho et al. built in [47] the emotional movie database (EMDB)
made up of 52 non-auditory film clips. Film clips are extracted from com-
mercial films and last 40 seconds. They have been selected to cover the
entire affective space. 113 participants rated each film clip in terms of in-
duced valence, arousal and dominance on a 9-point scale. Non-auditory
clips were used to enhance the scope for future experimental manipula-
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tions. However, this clearly modifies how viewers perceive the video clips.
Furthermore, multimodal processing is not possible in this case.

Still more recently, the Violent Scene Dataset was made available by
Demarty et al. [48]. This is a collection of ground truth annotations based
on extraction of violent events in movies, together with high level au-
dio and video concepts. This dataset has been used since 2011 in the
MediaEval multimedia benchmarking affect task “Violent Scenes Detec-
tion”. Violent scene detection and prediction of induced emotions are
clearly related since they are both part of the affective content analysis
field. Violent scenes are most likely to be highly arousing and elicit neg-
ative emotions. Due to copyright issues, the 25 annotated movies cannot
be delivered alongside the annotations. However, the links to the DVDs
used for the annotation on the Amazon web site are provided.

Last but not least, it is worth mentioning the MIT dataset dedicated
to animated GIFs [49]. Such kinds of short video footage are becoming
increasingly popular by means of social networks. They are so widely
adopted that the MIT team is currently and seriously working on predict-
ing perceived emotions from such media support.

All these datasets, summarized in Table 3.1, either have different emo-
tional labels or are not representative of the whole range of emotions in
movies. Most of them only give global annotated emotions while they
should be typically time dependent. Thus, a huge database of videos an-
notated using induced emotional labels potentially suitable for research is
a requirement of the affective computing community.

3.3 Continuous affective video content analysis

This section presents previous work on continuous affective video con-
tent analysis, including movie content analysis and video emotion recog-
nition. To predict or classify emotions, previous work either directly
combines linearly audiovisual (AV) features extracted from the data, or
either uses machine learning models. The temporal information can be
included in the machine learning models, for example using Long Short-
Term Memory neural networks, or by simply applying a temporal smooth-
ing to the predicted values. A summary is given in Table 3.2.

3.3.1 Continuous valence and arousal movie content analysis

Hanjalic and Xu pioneered in [50] the analysis of affective movie con-
tent by directly mapping video features onto the valence-arousal space
to create continuous representations. Based on film theorists work, they
selected low-level features that are known to be related to arousal or va-
lence such as motion intensity, shots lengths, and audio features (loudness,
speech rate, rhythm, . . . ). They manually designed the functions modeling
arousal and valence for consecutive frames based on the selected features
and used a Kaiser window to temporally smooth the resulting curves.
However, they only offered a qualitative evaluation of their model.

Soleymani et al. introduced a Bayesian framework for video affec-
tive representation [51] using audiovisual features and textual features
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extracted from subtitles but also taking into account contextual informa-
tion (e.g. user’s personal profile, gender or age). However, their ground
truth being annotated by a single participant only, they did not study
the relevance of such contextual information and assumed the model to
be personalized for this participant. The arousal information of each
shot is obtained by computing linear weights by means of a Relevance
Vector Machine (RVM) using low-level features published in previous
work. Arousal estimation is then used as an arousal indicator feature
and merged with other content-based features for discrete scene affective
classification thanks to a Bayesian framework. Thus, their framework is a
trade-off between continuous and discrete affective video content analy-
sis. The Bayesian framework relies on two priors: the movie genre prior
and the temporal dimension prior consisting of the probability transition
between emotions in consecutive scenes. However, movies scenes are cate-
gorized into three emotional classes, which is too restrictive. Furthermore,
they only provided a qualitative evaluation of the continuous arousal es-
timation but achieved an accuracy of 63.9% for the classification of the
movie scenes among three emotional classes.

Malandrakis et al. also proposed in [52] a continuous affective video
content analysis relying on audiovisual features extracted on each video
frame, combined at an early stage and used by two Hidden Markov Mod-
els (HMMs). These two classifiers are trained independently to model
simultaneously the intended arousal and valence. However, HMMs pre-
dict discrete labels. Arousal and valence are thus discretized into seven
categories and the model only allows transitions between adjacent cate-
gories. They finally output time series of seven categories interpolated
into a continuous-valued curve via spline interpolation, but the continu-
ous curves are thus approximations and cannot recover the precision lost
by discretizing the affective space. Their discrete and continuous curves
are compared using the leave-one-movie-out approach to the ground truth
collected on 30-min video clips from 12 movies. The smoothed predicted
curves achieved an average correlation of 0.54 for arousal and 0.23 for
valence.

3.3.2 Video emotion recognition

As stated in Section 3.1, video emotion recognition models are inher-
ently different from affective movie content analysis models. While affec-
tive movie content analysis models aim at estimating the induced emotion
from the intrinsic properties of a movie, video emotion recognition models
aim at automatically estimating the emotion expressed by an agent from
a video recording, in relation to an emotion induced by a stimulus. Emo-
tion recognition models thus typically rely on facial characteristics such as
action units (AU) [55]. Since felt and expressed emotions are linked, the
temporal modeling of emotions of emotion recognition models may be
of interest for designing new continuous affective movie content analysis
frameworks.

Nicolaou et al. introduced in [53] a framework for continuous pre-
diction of spontaneous affect in the VA space based on facial expression,
shoulder gesture, and audio cues. They compared the performance of
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the bidirectional Long Short-Term Memory Recurrent Neural Networks
(LSTM-RNN) and Support Vector Machines for Regression (SVR) for con-
tinuous spontaneous affect prediction and proposed an output-associative
prediction framework. The output-associative framework is a modified
bidirectional LSTM-RNN taking into account the correlation between the
predicted valence and arousal dimensions: it depends on the entire se-
quence of intermediate output predictions of both dimensions to perform
the prediction. They showed that the bidirectional LSTM-RNN outper-
forms the SVR and that the output-associative prediction framework sig-
nificantly improves prediction performance. Inspired by such promising
results, LSTM-RNNs are used in Chapter 9 to continuously predict the
emotions induced by videos. However, to train and evaluate their models,
Nicolaou et al. used recordings made in a lab setting, using a uniform
background and constant lighting conditions. Their model is thus highly
sensitive to the recording conditions such as illumination and occlusions.

More recently, Kahou et al. designed a framework to assign one of
seven acted-out emotions to very short video clips (1 to 2 seconds long) ex-
tracted from Hollywood movies [54]. It was the winning submission in the
2013 emotion recognition in the wild challenge. Unlike [53], videos depict
acted-out emotions under realistic conditions (large degree of variation in
attributes such as pose and illumination). Their framework combines a
Convolutional Neural Network (CNN) focusing on capturing visual infor-
mation in detected faces, a Deep Belief Network for the representation of
the audio stream, a K-Means based model for extracting visual features
around the mouth region, and a relational autoencoder to take into ac-
count the spatio-temporal aspects of videos. To efficiently train the CNN,
they downloaded two large alternative image databases of facial expres-
sions for the seven emotion categories. The CNN is thus highly generaliz-
able and avoids overfitting issues. They assessed several methods for the
combination of cues from the modalities and the best result was obtained
with a random search over simple weighted averages. Thus, the final re-
sult is a concatenation of models based on a single modality. However, due
to the characteristics of the data provided for the challenge, emotional re-
lationships between consecutive video segments are not investigated. Us-
ing this temporal information, as Nicolaou et al. did through the use of
LSTM-RNNs [53], may help improving the prediction performance.

3.4 Discrete affective movie content analysis

This section focuses on previous work on discrete affective video con-
tent analysis, including valence and arousal estimation but also violence
detection. A summary is given in Table 3.3.

3.4.1 Discrete valence and arousal movie content analysis

Discrete affective video content analysis has been more frequently in-
vestigated than continuous affective video content analysis over the last
decade.

Kang [56] was the first to propose a model where classifiers are
adopted for affective analysis. He suggested detecting affective states in
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movies including “sadness", “joy" and “fear" from low-level features using
HMMs. The topology of the HMM is designed such that the only possible
transitions between consecutive affective states are the ones between the
neutral state and the other affective states. However, this topology is very
restrictive and not realistic.

Wang and Cheong introduced features inspired from psychology and
film-making rules [57]. One Support Vector Machine (SVM) is dedicated
to audio cues to obtain high-level audio information at scene level. Each
video segment is then classified with a second SVM to obtain probabilis-
tic membership vectors for seven discrete emotional states. Their training
data are made up of 36 full-length popular Hollywood movies divided
into 2,040 scenes labeled with one or two emotional states by only three
annotators. Due to the limited number of annotators, ambiguities arise
and make it necessary to assign some videos with two labels. Further-
more, they do not consider the relations between consecutive scenes.

In the work of Sun and Yu [58], movie units are first represented in dif-
ferent granularities using an excitement curve based on the arousal curve
introduced in [50]. Then, four HMMs are trained independently using
features extracted on these granularities to recognize one of the four emo-
tional states among “joy", “anger", “sadness" and “fear". Each HMM has
the same topology and is composed of two states: a neutral state, and a
state representing the emotion assigned to the HMM. Thus, each HMM
only computes for a given observation sequence, the state transition prob-
abilities between the neutral state and one of the four emotional states. As
in [56], this topology is restrictive and not realistic. Their ground truth
consists of 10 movies labeled at different levels by 30 annotators. Xu et
al. used a similar approach in [59] sharing the same disadvantages. How-
ever, to compute the emotion intensity level they used fuzzy clustering
instead of linearly combining audiovisual features, which is closer to hu-
man perception. Then, five HMMs are trained using emotion intensity
and low-level features to model five emotional classes with different lev-
els of valence. They evaluated the efficiency of their method for several
movie genres, where the highest accuracy was obtained for action movies.

Soleymani et al. [60] compared in the VA space the values obtained au-
tomatically from either physiological responses or from audiovisual fea-
tures. They showed significant correlations between multimedia features,
physiological features and spectators’ self-assessments for both valence
and arousal. Affective scores are estimated by a linear combination of
content-based features and compared to the estimation of affective scores
using a linear combination of physiological features only. They showed
that the performance of both models is the same and thus that none has
a significant advantage over the other. A dataset composed of 64 movie
scenes extracted from 8 Hollywood movies was created to assess the per-
formance of the model. To generate the results, 42 movies scenes were
randomly selected for the training set, and the remaining ones were used
in the test set. Movie scenes extracted from the same movie can thus be
part of the training set and also of the test set, questioning the reliability
of the results.

Zhang et al. developed in [35] a personalized affective analysis for
music videos composed of SVR-based arousal and valence models using
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both multimedia features and user profiles. In fact, two nonlinear SVRs
are learned for each user, taking into account the underlying relationships
between user’s affective descriptions and the extracted features. However,
SVRs are not able to model the temporal transition characteristics of emo-
tions. Their dataset of 552 music videos is used to train and update the
models based on user feedback.

Irie et al. [61] proposed an approach based on latent Dirichlet allocation
considering the temporal transition characteristics of emotions. Emotion-
category-specific audiovisual features are extracted and transformed into
affective audio-visual words using k-mean clustering. These higher level
features are then used to classify movie scenes using a latent topic driv-
ing model. The model considers the probability of emotional changes
between consecutive scenes based on the Plutchik’s wheel [27]. However,
these probabilities have not been estimated from a real dataset but empir-
ically defined by the authors. The rate of agreement of their model equals
85.5%. The good results obtained by their framework may be due to their
evaluation protocol. Their data, composed of 206 scenes from 24 movie
titles available as DVDs, were randomly selected to form the training and
test sets. Consequently, most films appear both in the training and the test
sets as in [60], which biases the results.

More recently, Acar et al. proposed the use of CNNs in order to learn
mid-level representations for the affective classification of music video
clips [62]. Two CNNs are learned to output mid-level representation of
5-second music video clips: one uses as input audio features (MFCC) and
the other one uses as input one color channel, i.e., red, green or blue color
channel, of the resized frame in the middle of the video segment. The
mid-level representations are then each used in a dedicated SVM, and
their predictions are fed to a final multi-class audiovisual SVM to output
the category of the video clip (one of the four quadrants of the valence-
arousal space). Their framework achieves an accuracy of 52.63% on the
DEAP dataset [45]. As stated in Section 3.5, since their framework extracts
basic features (MFCC and separated color channels), it lacks the ability of
CNN to use raw inputs to automatically learn mid-level representations.

3.4.2 Violence detection

Emotion detection is closely related to violence detection. Both work
presented in this section aim at detecting whether a video shot contains
violence, defined as a physical action that results in human injury or pain.

Penet et al. introduced a framework using both multimodal and tem-
poral information for violence detection [63]. For the temporal integra-
tion, their model uses the features extracted from the investigated video
excerpts but also contextual features extracted from the five previous and
next video shots. However, it not clear why they preferred fixed-length
time windows computing features for 10 consecutive video shots. The
audio features (audio energy, audio zero crossing rate, . . . ) , and video
features (shot duration, number of flashes, . . . ) are separately used in
two independent Bayesian networks. The two probabilities given by the
networks are finally fused using a late fusion approach.

One year later, to classify video excerpts as violent or non-violent, Ey-
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ben et al. fused by simple score averaging the predictions made by acous-
tic and visual linear kernel SVMs [64]. To capture temporal dynamics,
numerous statistics are computed for the features over windows of fixed
size. The authors also provided a detailed analysis of the features ex-
tracted from the audio and video modalities. They showed that some
features are particularly relevant for violence detection: color and opti-
cal flow for the video modality, and spectral distribution descriptors and
peak-based functional extraction for the audio channel.

While using short fixed-length time windows may be relevant for vio-
lence detection, estimating induced emotions requires considering longer-
term dependencies [65].

3.5 Issues with the existing work

The main approach for estimating the affective content of videos is to
use machine learning to build models such as HMMs [52, 58, 59], SVMs
or SVRs [35, 57, 64], RVMs [51, 66], and more recently CNNs [54, 62, 67],
trained on a given dataset.

Most of these models use as input a predefined set of handcrafted au-
diovisual features extracted from videos (see Tables 3.2 and 3.3). However,
building complex handcrafted features requires strong domain knowl-
edge, since the choice of the features is highly problem-dependent. Ob-
taining a satisfying feature extraction is thus hard to come by. On the other
hand, CNNs are a type of deep models that can use the raw inputs directly,
thus automating the process of feature construction. Nevertheless, CNNs
require a relatively large number of samples to be trained compared to
standard approaches, and there do not exist any public affective dataset
large enough to train reliable CNNs for affective movie content analy-
sis. To work around this problem, Kahou et al. trained a CNN for the
analysis of facial expressions within video frames using large static image
databases of facial expressions [54]. However, this model efficient to clas-
sify the emotions expressed by the primary human subject in videos may
not be as efficient to estimate the emotions induced by videos which may
not contain any face. Acar et al. chose to learn CNNs using MFCC feature
vectors and color values in the RGB space extracted from one music video
segment for affective music video classification [62]. By reducing the size
of the input layer through the use of low-level features, they can build
lighter CNNs that can be trained using smaller datasets, but they lack at
the same time the ability of CNNs to use raw inputs to automatically learn
mid-level representations.

Another issue is that a lot of existing work does not take into account
the fact that, as stated in Chapter 2, an emotional episode is a recursive
process. This is not the case for HMM-based [56, 58, 59] and RNN-based
[53] affective frameworks. Indeed, HMMs are statistical models of sequen-
tial data, inherently able to take into consideration consecutive emotional
changes through hidden state transitions. However, they are composed of
a specific number of discrete states and thus cannot be used to directly in-
fer dimensional scores. Malandrakis et al. converted discrete affective
curves obtained with HMMs into continuous curves using a Savitzky-
Golay filter [52], but the continuous curves are thus approximations and
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cannot recover the precision lost by discretizing the affective space. RNNs-
based affective frameworks are also able to take into account the temporal
transitions between consecutive emotions. Combined with LSTM cells,
they can learn efficiently long-term dependencies, as shown by Nicolaou
et al. for video emotion recognition [53].

The last issue presented in this section concerns benchmarking previ-
ous work. Due to the constraints on databases presented in Section 3.2,
most state of the art work about affective movie content analysis uses a pri-
vate dataset of a very limited size and content diversity, designed accord-
ing to their goals and needs (see Tables 3.2 and 3.3). Thus, it makes fair
comparisons and results reproducibility impossible, preventing achieve-
ment of major strides in the field. For example, some work represents
emotions in the 2D VA space or in the 3D valence-arousal-dominance
space [35, 8], while other work represents emotions using discrete cate-
gories [57]. Furthermore, the models are sometimes dedicated to specific
video categories, i.e., music videos [35, 62] or a particular movie genre
[68]. Horvat et al. showed in a survey [69] that, for researchers in the af-
fective science field, current emotionally annotated databases lack at least
some stimuli inducing a particular emotion. Participants additionally in-
dicated that they would greatly benefit from large emotionally annotated
databases composed of video clips. Soleymani et al. also expressed this
major need and defined in [70] the specifications to be considered to al-
low standardized evaluation and to bypass the size and scope of related
limitations of existing databases used to train and evaluate computational
models in the field of affective content analysis.

Thus, the needs to build a comprehensive affective dataset include:
representative videos, self-assessments annotated along a universal repre-
sentation, a large number of video samples to make possible its use for
machine learning processes, no copyright issues. An efficient computa-
tional model should be trained and tested using such a dataset, should
not use handcrafted features, and should model the emotional relation-
ships between consecutive video segments.

Summary

This chapter presented previous work on continuous and discrete af-
fective video content analysis, including video emotion recognition and
violence detection that are related to the induced affect estimation from
audiovisual features. It appears from previous work that the main ap-
proach to analyze the affective content of videos is to use machine learning
to build, using a dataset, models such as HMMs, SVRs, and CNNs.

Many studies such as [69] or [71] deplore the lack of a standard af-
fective video database which, combined with the lack of standard evalu-
ation protocols, decreases the efficiency of the affective research commu-
nity [70]. Indeed, benchmarking and reproducibility both make it easier
to know how computational models perform with respect to the state of
the art, and to focus on promising research avenues. This is why we intro-
duce LIRIS-ACCEDE and define reproducible protocols in the following
chapters.





Part II

Affective Dataset

Development

“Photography is truth. And cinema is truth twenty-
four times per second."

— Jean-Luc Godard, Le Petit Soldat
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A large and publicly available dataset of quality video excerpts with
high content diversities, along with ground truth affective annota-

tions is needed by the research community to overcome the limitations of
the existing affective video datasets and foster research in affective video
content analysis. This second part of this thesis is thus dedicated to the
creation of a dataset, built to be as universal as possible, annotated with
complementary ground truths, each collected using a specific experimen-
tal protocol designed to take into account the specificities of the modality
to be collected. In this way, the second part of this thesis is composed of
four chapters, each describing an experiment adding a new modality to
the publicly available dataset released in this thesis: the LIRIS-ACCEDE
dataset.

In this chapter, ground truth affective annotations are collected from
a wide variety of raters through crowdsourcing. The proposed dataset,
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Table 4.1 – Composition of LIRIS-ACCEDE

Type Data Emotional labels

Discrete
annotations

9,800 excerpts from 8 to
12 seconds long extracted
from 160 movies shared
under Creative Commons
licenses

Crowdsourced induced
arousal and valence rank-
ings, estimated arousal
and valence ratings, and
violence ratings

Continuous
annotations

30 full movies selected
from the 160 movies used
in the discrete part of the
dataset

Continuous induced
arousal and valence
self-assessments, and
continuous physiological
recordings

namely LIRIS-ACCEDE, contains 9,800 video excerpts shared under Cre-
ative Commons licenses, making it possible to release the database with-
out copyright issues. The dataset was first introduced in [11] and then
fully described in [12].

4.1 Specifications of LIRIS-ACCEDE

How can a large and reliable dataset be built that could serve the
community as a reliable benchmark? Crowdsourcing is often the rec-
ommended solution for creating a large dataset representing a condition.
This makes it possible to reach a large number of remunerated annota-
tors, while also guaranteeing reliability of annotators’ answers via specific
mechanisms. In this chapter, we will show that ranking approaches are
more suited than rating approaches in crowdsourced experiments since
it is more difficult to ensure that the affective scale is used consistently in
crowdsourced experiments. This is why in this chapter, we take advantage
of crowdsourcing to reach a large number of annotators to collect affective
ranks for short video segments. These crowdsourced affective ranks are
converted into affective scores in Chapter 5 thanks to a complementary
experiment in a more controlled laboratory environment. Both affective
scores and affective ranks can be used in discrete affective video content
analysis work 1.

Continuous affective movie content analysis work has not been over-
looked. Continuous affective self-assessments and physiological measure-
ments have been collected in a laboratory environment from participants
watching long movies, respectively in Chapters 6 and 7. Contrarily to the
discrete annotations, these continuous annotations make possible to create
models taking into account the fact that previous movies scenes may rea-
sonably influence the emotions induced by future ones. The composition
of the LIRIS-ACCEDE dataset is summarized in Table 4.1.

LIRIS-ACCEDE uses the widely employed 2D valence-arousal space
to collect the affective self-assessments. However, as the database is freely
shared, everyone is free to add new modalities, thus enhancing the range

1. Discrete violence annotations have also been released publicly.



4.2. Discrete database description 37

of possible applications. Furthermore, this database is very large and di-
versified, unlike most of the databases presented in the previous sections.
As a consequence, we think it could be general enough to be used as a
reference in the future.

4.2 Discrete database description

The discrete part of LIRIS-ACCEDE is made up of 9,800 excerpts ex-
tracted from 160 feature films and short films. It is the largest video
database currently in existence annotated by a broad and representative
population using induced emotional labels.

4.2.1 Movies used in LIRIS-ACCEDE

One of the main requirements of LIRIS-ACCEDE was that it should be
freely available to the research community. That is why the 160 movies
used for creating the database are shared under Creative Commons li-
censes. Creative Commons is a non-profit corporation providing stan-
dardized free copyright licenses to mark a creative work with the freedom
the creator wants it to convey. The CC BY license known as “Attribution" is
the most accommodating license since users can reuse the original creation
as long as they credit the creator. Three modules adding more restrictive
conditions can be combined. The SA module (ShareAlike) requires that
works based on other works shared using this module, have to be licensed
under identical terms. The NC module (NonCommercial) prevents origi-
nal works from being reused for commercial purposes. Last but not least,
the ND module (No Derivative Works) prohibits altering, transforming,
or building upon original works. To create the database, we have used
only movies shared under a Creative Commons license that do not con-
tain the ND module, because our goal was to modify the selected movies
by extracting several excerpts from them. Thus, using videos shared un-
der Creative Commons licenses makes it possible to share the database
publicly without copyright issues.

Most of the 160 movies used for creating LIRIS-ACCEDE come from
the video platform VODO. This references best free-to-share feature films
and short films that have been submitted on the website and makes them
easily available to millions of people. It is important to notice that free-
to-share films do not mean User Generated Contents with low expertise
levels. Movies referenced on VODO have been created by filmmakers
with excellent technical expertise. Many films in the database have been
screened during film festivals including, but not limited to, “RIP! A remix
manifesto" directed by Brett Gaylor (Special Jury Prize at the “Festival du
Nouveau Cinéma in Montreal"), “Emperor" directed by Juliane Blockand
(winner of the Feature Category at the Portable Film Festival) and “Pio-
neer One" produced by Josh Bernhard and Bracey Smith (winner of the
Best Drama Pilot at the New York Television Festival). The “Home" doc-
umentary directed by Yann Arthus-Bertrand included in the database is a
special case since it is a big budget movie distributed by 20th Century Fox
that has no copyright.
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In brief, 40 high quality feature films and 120 short films shared un-
der Creative Commons licenses have been collected to create the 9,800

excerpts making up LIRIS-ACCEDE. The total time of all 160 films is 73

hours, 41 minutes and 7 seconds. A list of 9 representative movie genres
describes the movies: Comedy, Animation, Action, Adventure, Thriller,
Documentary, Romance, Drama and Horror. By displaying the normal-
ized distribution of movies by genre in LIRIS-ACCEDE compared to the
normalized distribution of movies by genre referenced on IMDB 2 and
on ScreenRush 3, it can be observed that distributions appear to be sim-
ilar. Thus, movies used in LIRIS-ACCEDE are representative of today’s
movies. Languages are mainly English with a small set of French, Ger-
man, Icelandic, Hindi, Italian, Norwegian, Spanish, Swedish and Turkish
films, subtitled in English. Note that 14 movies are silent movies.

4.2.2 Characteristics of LIRIS-ACCEDE

The database is made up of 9,800 excerpts extracted from the 160 se-
lected movies listed in Appendix A.

1,000 excerpts have been manually segmented because they were part
of the pilot test to ensure the reliability of the annotations. Subsequently,
the other excerpts have been automatically segmented using a robust cut
and fade in/out detection, implemented based on the algorithms de-
scribed in [72]. Because all the segmented excerpts start or end with a
cut or a fade, it is very likely that each segment be perceived by users as
semantically coherent.

The 9,800 segmented video clips last between 8 and 12 seconds, and
the total time of all 9,800 excerpts is 26 hours, 57 minutes and 8 seconds.
Even if the temporal resolution, or granularity, of emotions is still under
debate, most of psychologists agree that they are part of a complex but
very rapid process [73]. They are phenomena with onsets and ends over
seconds [44]. Indeed, the length of extracted segments in LIRIS-ACCEDE
is large enough to obtain consistent excerpts, making it possible for the
viewer to feel emotions. For example Gross and Levenson successfully
elicited emotions in the laboratory using short excerpts lasting a few sec-
onds [41]. Moreover, Metallinou and Narayanan have shown in [74] that
global ratings of perceived emotion for movies lasting a few minutes are
not simple averages over time, but rather are more influenced by highly
arousing events with low valence. By using short excerpts, we greatly
minimize the probability that annotations are a weighted average of con-
secutive emotions felt during successive events.

Despite the short duration of excerpts, most are composed of several
video-editing features (e.g., shot cuts, dissolves, digital zooming). This
is essential since many previous studies, including [50] and [75], have
shown that the arousal dimension was correlated to editing features such
as the shot cut rate or the presence of dissolves. Only 1,760 excerpts do not
include any scene cut or fade in/out. On average excerpts are composed of
2.8 video-editing features (this statistic does not count the editing features
on the boundaries).

2. http://www.imdb.com/
3. http://www.screenrush.co.uk/
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More generally, we achieved a great variety of excerpts reflecting the
variety of selected movies. The excerpts contain scenes of violence, sexual-
ity, murders, but also more common scenes such as landscapes, interviews
and many positive scenes of daily life. This variety is confirmed thanks
to another experiment we conducted using crowdsourcing where work-
ers had to annotate the context of the videos according to four categories
(indoor, urban, nature and other). 6,441 excerpts (65.7%) have been catego-
rized as Indoor scenes, 1,060 as Nature and 2,008 as Urban. The remain-
ing ones correspond to 291 excerpts labeled as Other (screen captures,
texts,. . . ). LIRIS-ACCEDE is currently the only video database annotated
along induced emotions that includes such a large range of contexts.

4.3 Discrete data annotation

4.3.1 Experimental design

The annotation process aims at sorting the 9,800 excerpts indepen-
dently along the induced valence and arousal axes. Crowdsourcing is an
appropriate choice for achieving this goal requiring a huge amount of an-
notations, and has proved to be useful in various annotation studies (e.g.
[76, 77, 78]). To annotate LIRIS-ACCEDE data, video excerpts were pre-
sented to annotators, also known as workers, on CrowdFlower. 4

Rating-by-comparison experiments, i.e., ranking approaches, are more
suited than rating approaches in experiments conducted on crowdsourc-
ing platforms. Plausibly, asking for pairwise comparisons seems less com-
plex than asking for an absolute value. Indeed, ratings require that an-
notators understand the range of an emotional scale, which is a sizable
cognitive load [79], and it is quite difficult to ensure that the scale is used
consistently. Russell and Gray [80] showed that raters using rating scales
tend to only use a small subset of the range, while Ovadia [81] pointed
out that inter-annotators ratings, i.e., ratings from different annotators,
and even intra-annotator ratings, i.e., ratings from the same annotator,
may not be consistent. By choosing pairwise comparisons instead of rat-
ings, the consistency of the annotations is improved, as annotators tend to
agree more when describing emotions in relative terms than in absolute
terms [74]. Pairwise comparisons are also more appropriate detectors of
user states, discarding the subjectivity of rating scales and implicit effects
linked to the order of annotations [82]. Yang and Chen also showed in
[79] that pairwise comparisons enhance the reliability of the ground truth
compared to rating approaches, and simplify emotion annotation. This
simplification also makes tasks more attractive and interesting to annota-
tors. From an involved annotator’s point of view, because the amount of
money they earn is proportional to the quality of their answers and the
amount of time they spend on the task, the simpler a task is, the more
they are disposed to annotate additional comparisons.

4. While we conducted the experiments (summer 2013), CrowdFlower was distributing
tasks over 50 labor channel partners, including Amazon Mechanical Turk and TrialPay.
Since late 2013, the number of its labor channel partners has been considerably reduced.
For example, CrowdFlower does not offer task distribution on Mechanical Turk anymore
and it is no longer possible to choose on which labor channel the tasks are distributed.
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Accordingly, the choice of a rating-by-comparison experiment to anno-
tate LIRIS-ACCEDE stands out. For each pair of video excerpts presented
to workers on CrowdFlower, annotators had to select the one which con-
veyed most strongly the given emotion in terms of valence or arousal. The
advantage of forced choice pairwise comparisons is that annotators must
come to a decision. Forced choice pairwise comparisons enhance the re-
liability of experiments compared to other protocols such as displaying
a single stimulus and a categorical rating scale [83] and encourage more
thorough processing of response options [84].

If all possible comparisons had been generated and annotated by three
crowdworkers, the experiments would have cost US$2,880,906 each. Thus,
it was essential to choose an algorithm to select carefully and efficiently
the comparisons judged by the annotators. The quicksort algorithm [85]
was used to generate the comparisons and rank the video excerpts accord-
ing to the annotations gathered from CrowdFlower. This is one of the most
efficient sorting algorithms. Indeed, the average computational complex-
ity of this algorithm is O(n log n), where n is the number of data to sort.
In the worst case, complexity is O(n2), but this performance is extremely
rare and in practice the quicksort is often faster than other O(n log n) al-
gorithms [86]. As the cost of the sorting operation is proportional to the
number of comparisons, the quicksort seems the best choice for reducing
costs to sort the whole database compared with other sorting algorithms.
In practice, the quicksort algorithm allows costs to be reduced to approx-
imately US$10,000 for ranking of the whole dataset along one axis. The
principle of the quicksort algorithm is to choose an element, called a pivot,
to which all other elements are compared. Thus, two subgroups of un-
sorted elements are created, one with a higher value than the pivot and
the other with a lower value. Each subgroup is then sorted recursively in
the same way until every element of each group is sorted.

The subgroups generated by the quicksort algorithm depend on the
annotations gathered for a particular task. Consequently, the pivot and
the comparisons vary from one axis to another. That is why the annota-
tion process of LIRIS-ACCEDE was divided into two experiments: one for
annotation of valence and another for annotation of arousal. The experi-
mental protocol was virtually the same for each axis and is described in
Section 4.3.2.

4.3.2 Experimental setup

The annotation of the database along the arousal axis was performed
three months after the annotation along the valence axis. Meanwhile, a
new interface for displaying tasks to workers had been released on Crowd-
Flower. This explains why there are few changes in both protocols to adapt
the experimental setup to the new interface.

Given a pair of video excerpts, annotators had to select the one that
conveys “the most positive emotion" (for valence) or “the calmest emo-
tion" (for arousal). The words “valence" and “arousal" were not used since
they might be misunderstood by the annotators. They were asked to focus
on the emotion they felt when watching the video clips, i.e. the induced
emotion, and not on that of the characters. As the arousal axis was more
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Figure 4.1 – Interface displayed to workers for annotation of the arousal axis.

challenging to annotate, the arousal axis of the Self-Assessment Manikin
and an example were displayed at the beginning of the task to make sure
that annotators had understood the task properly. The Self-Assessment
Manikin [87] is a powerful pictorial system used in experiments to repre-
sent emotional valence, arousal and dominance axes. Its non-verbal design
makes it easy to use regardless of age, educational or cultural background.
The interface displayed to workers for annotation of LIRIS-ACCEDE along
the arousal axis is shown in Figure 4.1.

Video clips were displayed with a size of 280× 390 pixels for annota-
tion of the valence dimension and with a size of 189× 336 pixels for the
arousal dimension, to comply with the width of the new interface and use
a more common aspect ratio. These clips were displayed using an embed-
ded video player, meaning that workers were free to play each video clip
as many times as they wanted. Workers were paid US$0.05 for answering
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five comparisons but could exit the task at any time. Despite the low re-
ward for completing tasks, feedback on specialized crowdsourcing forums
was very positive. Workers pointed out that the tasks were very easy, fun
and enjoyable. Here are a few of their comments: “That’s awesome!", “I
did that last time, want to do that again, very easy :)".

To ensure the accuracy of annotations, 100 unnoticeable test questions,
also called “gold units", were created for each axis and randomly inserted
throughout the tasks. This made it possible to test and track annotators’
performance by regularly testing them to ensure that they take the video
clips comparisons seriously. The gold units correspond to unambiguous
pairs of easily comparable video clips. If a wrong answer was given,
a small paragraph was displayed explaining the reason why the answer
was the other one. Workers were able to question the reason and send a
message to explain their point of view. This system made it possible to
forgive them when their protest was well-founded and to modify accord-
ingly several gold units that were too subjective. However, if a worker
gives too many wrong answers to gold units, none of his answers are con-
sidered, he receives no remuneration and his trust level on CrowdFlower
drops. Thus, annotators are well aware that they must not answer the
questions at random. For annotation of the arousal axis that took place
3 months after the annotation of the valence axis, a new advanced tool
called “Quiz Mode" was available on CrowdFlower: annotators first have
to answer six test questions and achieve an accuracy threshold of 70% in
order to pass the quiz and work on the job. This ensures that only higher
performing annotators are allowed to work on the tasks. Test questions
were also randomly inserted to test annotators that passed the quiz on an
on-going basis as they worked through the job.

In concrete terms, the quicksort algorithm was used in both annotation
experiments to generate the comparisons. First, an initial video excerpt
was randomly chosen to be the first pivot. All the other clips from the
database were compared to this excerpt meaning that 9,799 pairwise com-
parisons were generated for the first iteration. Each pair was displayed to
workers until three annotations were gathered. We found this was a good
compromise between the cost and the accuracy of the experiment. Once
three annotations per comparison were made for all the comparisons, all
the annotations were collected. In each comparison, the pivot was con-
sidered as inducing the most positive emotion for valence or the calmest
emotion for arousal if at least two annotators selected the pivot during
the annotation process. The final rank of the pivot was thus computed.
Assuming that the pivot does not induce the lowest or the highest valence
or arousal, this process splits the database into two subgroups. For the
second iteration, one pivot was selected in each subgroup and the two
pivots were compared to the other video clips inside their subgroup, gen-
erating 9,797 new comparisons. For the next iteration, four pivots were
selected and so on. The process was repeated until a rank was assigned to
all the 9,800 video excerpts. Finally, each video excerpt is accompanied by
two discrete values ranging from 0 to 9,799 representing its arousal and
valence ranks.
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Figure 4.2 – Countries of the annotators for both the valence (external circle) and arousal
(internal circle) annotation experiments. Countries accounting for less than 1% of the
total in both experiments are classified as “Others".

4.3.3 Annotation statistics

For annotation of the valence axis, more than 582,000 annotations for
about 187,000 comparisons were gathered from 1,517 trusted annotators
from various countries. Annotators from 89 countries participated in the
experiment, reflecting a huge diversity in cultural background. The ma-
jority of workers originated from India (18%), USA (16%), Romania (4%)
and Vietnam (4%). A more detailed distribution of countries is displayed
in Figure 4.2. Over 90% of data come from 530 of these annotators. The
1,517 trusted annotators showed an accuracy of 94.2% on test questions,
whereas this accuracy was about 42.3% for untrusted annotators.

More iterations were needed to fully rank the database along the
arousal axis. More than 665,000 annotations for around 221,000 unique
comparisons were gathered from 2,442 trusted annotators also from 89

countries. As displayed in Figure 4.2, the countries of annotators are also



44 Chapter 4. LIRIS-ACCEDE: A Video Database for Affective Content Analysis

diversified but different since most of the workers are American (33%),
Vietnamese (16%), Indian (10%) and British (5%). As a point of compari-
son, this time over 90% of data come from 830 annotators. The accuracies
on test questions for trusted and untrusted annotators were approximately
the same as for those annotating the database along the valence axis. How-
ever, the number of untrusted annotators was slightly lower than for the
first experiment thanks to the Quiz Mode.

When creating crowdsourcing tasks, ethical concerns have to be con-
sidered and the anonymity of the crowdworkers must be preserved. It is
worth mentioning that, in our experiments, crowdworker privacy has been
protected since the annotations that led to the ranking of the excerpts are
not published. Only the final ranks for valence and arousal are released.

Combination of valence and arousal annotations shows convincing re-
sults. Dietz and Lang have shown in [3] that arousal and valence are
correlated and that certain areas of this space are more relevant than oth-
ers. Figure 4.3 shows the two-dimensional quantized histogram of ranks
computed from annotations in the 2D valence-arousal space. Each cell in-
dicates the number of video clips with a ranking for valence and arousal
between the values represented on both axes. For example the top-left cell
shows the number of excerpts with a ranking between 0 and 700 for va-
lence and between 9,100 and 9,800 for arousal. Similarly to other studies
such as [3] and [52], Figure 4.3 shows that there are relatively few stim-
uli eliciting responses annotated as low arousal and negative valence and
that there are also less excerpts eliciting high arousal and neutral valence.
Note that, the values displayed in Figure 4.3 are the relative positions of
excerpts in the valence-arousal space and not their absolute position.

4.3.4 Inter-annotator reliability

Inter-annotator reliability is an indication of how independent annota-
tors participate in an experiment and reach the same conclusion despite
the subjectivity of the task. It is essential to evaluate the consistency of
the annotations to detect whether the scale is defective or whether the an-
notators need to be re-trained. Several measures of inter-annotator agree-
ment are used in the literature such as percent agreement, Fleiss’ kappa
[88] and Krippendorff’s alpha [89]. Percent agreement is widely used
and intuitive but overestimates inter-annotator reliability since it does not
take into account the agreement expected by chance. Most of the annota-
tors who answered randomly have been discarded using gold data, which
is why this measure will also be considered in Table 4.2. Fleiss’ kappa
and Krippendorff’s alpha both take into account observed disagreement
and expected disagreement but are sensitive to trait prevalence: they con-
sider that annotators have a priori knowledge of the quantity of cases that
should be distributed in each category [90] (e.g. “Excerpt 1" or “Excerpt
2" conveys most strongly the given emotion). The result is that, especially
using binary answers which is the case here, if a value is very rare, re-
liability is low even if there are few mistakes in the annotations. In our
annotation process this is a problem because the rarity of a category (the
shot that conveyed most strongly a given emotion) greatly depends on the
choice of pivots in the quicksort algorithm. For example, if a pivot with
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Figure 4.3 – Joint quantized histogram of ranks for the 9,800 excerpts in the valence-
arousal space. For example, the bottom-left cell shows the number of video clips with a
valence and an arousal rank between 0 and 700.



46 Chapter 4. LIRIS-ACCEDE: A Video Database for Affective Content Analysis

Table 4.2 – Inter-annotator reliability

Measure Arousal Valence

Percent agreement 0.862 0.835

Fleiss’ κ 0.190 0.179

Krippendorff’s α 0.191 0.180

Randolph’s κ f ree 0.452 0.375

a high valence is selected, most annotators will answer that the pivot (al-
ways displayed as “Excerpt 2") has the highest valence. This will result in
a low reliability using Fleiss’ kappa and Krippendorff’s alpha measures.
Randolph’s multirater kappa free [90] is not subject to prevalence because
it does not depend on how many values are in each category. All these
reliability coefficients are displayed in Table 4.2 to ensure a point of com-
parison. Appendix B lists the formulas used to compute these reliability
coefficients.

Both kappa values need a fixed number of annotators per compari-
son to be computed. However, comparisons can be annotated by different
annotators. For this reason, all comparisons that have been annotated
by more than three people are discarded to compute both kappa values,
corresponding to 7,459 units discarded for valence and 1,539 for arousal.
Krippendorff’s alpha is more flexible and allows missing data (compar-
isons can be annotated by any number of workers), thus no comparisons
are discarded to compute this measure. The inter-annotator reliabilities
for these subsamples are displayed in Table 4.2. Their values can range
from 0 to 1 for percent agreement and from -1 to 1 for the other measures.
For Fleiss’ kappa, Krippendorff’s alpha and Randolph’s kappa, a value
below 0 indicates that disagreements are systematic and exceed what can
be expected by chance, a value equal to 0 indicates the absence of reliabil-
ity, and a value higher than 1 indicates an agreement between annotators
(1 for perfect reliability). In Table 4.2, all values are positive, which means
that agreement is slightly better than what would have been expected by
chance and is similar to other emotion annotation studies such as [52] or
[78]. The percent agreement indicates that annotators agreed on 83.5%
and 86.2% of comparisons. Randolph’s kappa, which is robust against
prevalence, yields the best reliability value compared to Fleiss’ kappa and
Krippendorff’s alpha. This is not surprising since it is the only measure
that is not influenced by the proportion of answers in each category, as
the value of the arousal experiment is higher than the value of the valence
experiment. For Randolph’s kappa measure, Landis and Koch [91] sug-
gest that a score of 0.375 indicates a fair agreement and that a score of
0.452 corresponds to a moderate agreement. Thus, these results show that
annotators have fully understood the tasks and achieved good agreement
despite the subjectivity of both annotation experiments.
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4.4 Testing protocols

The goal of this section is to introduce several protocols to assess the
performance of computational models using LIRIS-ACCEDE in different
ways. These reproducible protocols will allow fair comparisons between
future discrete models and the baseline described in Chapter 8.

Protocol A: Predefined subgroups — In this protocol, the training and
test sets have been manually defined to make sure that they each
include 4,900 excerpts from 80 films. In this way, the excerpts ex-
tracted from the same film are only in one of the sets, either the
training set or the test set. Insofar as possible, we tried to distribute
movies equally in the sets according to their genres. We also defined
a validation set, should it be needed in future studies, by dividing
the training set into two subgroups, each made up of 2,450 excerpts
extracted from 40 films. The list of excerpts in each set is available
alongside the database and the annotations.

Protocol B: Leave-One-Movie-Out — This protocol is a standard protocol
used in numerous studies in affective analysis. It consists in selecting
the excerpts of one movie for testing while using the rest for training.
This process is repeated for the 160 movies in the database.

Protocol C: Same genre — It could also be interesting to focus on specific
genres to study the efficiency of models and the effect of features
depending on the movie genre. The protocol is the leave-one-movie-
out protocol for movies that share the same genre.

Protocol D: Same movie — The purpose of this last protocol is to gain
insight into the regularity of the movie in terms of affective impact.
Indeed, by learning on samples from the first half of a movie and
testing on the remaining excerpts, the results can provide informa-
tion on how well the first part of a movie is able to model and to be
generalized to the induced valence and arousal of the whole movie.

4.5 Discussion

One of the main limitations of the proposed database lies in the fact
that the video clips have been ranked relatively to each other. Thus, the
rankings provide no information on distribution of the database in the 2D
valence-arousal space. In other words, it is uncertain whether the extreme
cases with the lowest or highest ranks elicit extreme emotions. Further-
more, these ranks are relative to this particular database, which prevents
comparison with other video clips annotated with absolute valence and
arousal scores. To address this limitation, we have carried out a comple-
mentary experiment described in Chapter 5.

Several other unknown factors can potentially affect the ratings and
would require further research.

First, crowdworkers were asked to focus on what they felt in response
to the video excerpts. Contact with the crowdworkers was quite limited.
As such, it was not possible to ascertain that annotators were annotating
the induced emotion and not the perceived emotion or even the emotion
they thought they should feel, since it is possible to make judgments on
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the basis of conventional characteristics without experiencing any emotion
[92]. If some crowdworkers did not distinguish between felt and perceived
emotions, noisiness could potentially be introduced in our data as Zenter
et al. showed that ratings of perceived emotion differ significantly from
ratings of felt emotion [93]. The distinction between ratings of perceived
or felt emotion is outside the scope of this thesis. Thus, in this work, we
do not try to distinguish ratings of felt emotion from ratings of perceived
emotion.

Second, there was no way to make sure that crowdworkers really
turned on the volume to judge the videos. While creating the gold data,
sound was taken into consideration. Thus, we assume that most work-
ers passing the gold data turned the volume on. Furthermore in Chapter
5, the correlation between affective ratings collected in a controlled envi-
ronment where the sound was turned on and crowdsourced rankings is
significantly high. As a consequence, we hypothesize that most crowd-
workers turned the volume on to rate the pairwise comparisons.

Third, the crowdworkers made the annotations in various uncontrolled
environments under different conditions. However, elicitation of an emo-
tion is a subtle process depending on a large number of factors (e.g.
listener, performance or contextual features) [94]. Despite this, inter-
annotator reliability indicates that an overall agreement was achieved
among crowdworkers and that annotations tend to be stable. Moreover,
these results have been compared in Chapter 5 to ratings gathered in con-
trolled conditions in order to validate the annotations made in uncon-
trolled conditions and to detect potential outliers. The correlation be-
tween affective ratings and crowdsourced rankings is significantly high,
thus cross-validating the overall database for future uses in research work.
These affective ratings also make it possible to enhance the range of ap-
plications for automatic approaches capable of predicting the affective im-
pact. Indeed, it will be easier to create new evaluation protocols, such
as separating data to create two or more meaningful categories to evalu-
ate the efficiency of classifiers for which precise affective ratings are not
necessary.

Summary

This chapter has addressed the lack of large video databases for af-
fective video analysis, as current existing databases are limited in size
and not representative of today’s movies. We proposed LIRIS-ACCEDE, a
large video database freely shared to be used by the research community.
The database is made up of 9,800 excerpts lasting from 8 to 12 seconds,
extracted from 160 diversified movies. All the 160 movies are shared un-
der Creative Commons licenses, thus allowing the database to be shared
publicly without copyright issues. It is available at: http://liris-accede.ec-
lyon.fr/.

All the excerpts have been ranked along the induced valence and
arousal axes by means of two experiments conducted on a crowdsourc-
ing platform. Both experiments were highly attractive. A large number
of annotators performed each experiment, making it possible to collect
large volumes of affective responses from a wide diversity of annotators
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and from a large spectrum of contexts. With this experimental design,
high inter-annotator reliabilities were achieved considering the subjectiv-
ity of the experiments. We also introduced standard protocols using the
database in an attempt to perform standardized and reproducible evalua-
tions to fairly compare future work within the field of affective computing.
Four protocols were proposed corresponding to different goals and needs.
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The previous chapter introduced LIRIS-ACCEDE, a dataset in which
9,800 video excerpts have been annotated with pairwise comparisons

using crowdsourcing along the induced dimensions of the 2D valence-
arousal emotional space. All the video clips being ranked along both
dimensions, the rankings provide no information about the distances be-
tween them. However, the pairwise annotations made in various uncon-
trolled environments have not been validated yet. Furthermore, these
ranks are relative to this particular database which prevents the compar-
ison with other video clips annotated with absolute valence and arousal
values.

This is why the goal of this chapter is to cross-validate and to enrich
the LIRIS-ACCEDE database by providing absolute video ratings in addi-
tion to video rankings that are already available. The new absolute video
ratings are generated thanks to a regression analysis, allowing to map
the ranked database into the 2D valence-arousal affective space. Gaus-
sian Processes for Regression were preferred over other existing regres-
sion techniques since they can model the noisiness from measurements
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and thus take into account the subjectivity of emotions. The proposed re-
gression analysis is performed using rating values collected on a subset of
the database.

5.1 Controlled rating experiment

To cross-validate the annotations gathered from various uncontrolled
environments using crowdsourcing and to provide absolute video ratings
for the whole dataset, another experiment has been created to collect rat-
ings for a subset of the database in a controlled environment.

5.1.1 Selecting stimuli from the LIRIS-ACCEDE dataset

Eliciting emotional reactions from test participants in laboratory ex-
periments is quite tricky, that is why it is crucial to select most effective
stimuli. Therefore, Krippendorff’s alpha measure has been computed to
select a subset of the dataset to be used in the user study 1. It ensures that
the highest reliable film clips in eliciting induced emotions are selected.
Krippendorff’s alpha reliability coefficient is a generalization of several
known reliability measures [89]. It applies to any number of observers,
any number of categories, any metric, incomplete or missing data, and
large or small sample sizes not requiring a minimum. The reliability of
the excerpt i ∈ {0, . . . , 9799} for arousal or valence is defined as:

αi = 1− Di
0

Di
e

(5.1)

where Di
0 is the observed disagreement among values assigned to pairwise

comparisons in which one of the two compared excerpts is the excerpt i
and Di

e is the expected disagreement when the annotations are attributable
to chance:

Di
0 =

1
ni

∑
c

∑
k

oi
ck · δ2

ck (5.2)

Di
e =

1
ni (ni − 1) ∑

c
∑

k
ni

c · ni
k · δ2

ck (5.3)

with c and k the categories of annotations’ values, ni the number of
pairable annotations, i.e. ni = ∑c ∑k oi

ck, and ni
c, ni

k the number of
pairable annotations with value c and k respectively, i.e. ni

c = ∑k oi
ck and

ni
k = ∑c oi

ck. The coincidence matrix oi
ck is defined as:

oi
ck = ∑

u∈Ui

Number of c - k pairs in comparison u
mu − 1

(5.4)

with Ui the subset of the pairwise comparisons for which one of the two
compared excerpts is the excerpt i and mu the number of annotations for
comparison u.

1. In Chapter 4, we mentioned that the Krippendorff’s alpha measure was subject to
prevalence and thus it was difficult to analyze the value computed by the Krippendorff’s
alpha. However, it is still a reliable measure to compare the reliabilities of the excerpts, in
particular it does not discard any data since it allows missing data.
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Actually, the LIRIS-ACCEDE dataset has been annotated using forced-
choice pairwise comparisons [11] so that each video excerpt is accom-
panied by two discrete values ranging from 0 to 9,799 representing its
arousal and valence ranks. In concrete terms, a comparison between two
video clips was displayed to workers until three annotations were gath-
ered, i.e. mu = 3, ∀u ∈ Ui, ∀i ∈ {0, . . . , 9799}. The crowdworkers had to
select the excerpt that conveyed the most the given emotion in terms of
valence or arousal. Thus, c and k values in eq. (5.4) represent the excerpt
selected by a crowdworker and can be equal to “excerpt 1” or “excerpt 2”.
The δ2 coefficient for nominal data is defined as:

δ2
ck =

{
0 if c = k
1 if c 6= k (5.5)

In other words, for each excerpt, eq. (5.1) is used to compute its Krippen-
dorff’s alpha coefficient for valence using the crowdsourced annotations
of valence and its Krippendorff’s alpha coefficient for arousal using the
crowdsourced annotations of arousal. These values are used to select 20

excerpts per axis (valence and arousal) that are regularly distributed in
order to get enough excerpts to represent the whole dataset in the 2D
valence-arousal space while being relatively few to create an experiment
of acceptable duration. For each axis, the 20 excerpts that form a perfect
regular distribution are the ones so that their rank equals to 9800

19 × n with
n ∈ {0, . . . , 19}. These ranks are called the optimum ranks. Thus, for
each axis and each optimum rank, we select the excerpt i with αi ≥ 0.6
as close as possible to the optimum rank. This process ensures that the
40 selected film clips have different levels of valence and arousal and thus
are representative of the full dataset. They are also representative of the
agreement among the crowdworkers since just half of the video clips are
highly reliable in eliciting valence or arousal, i.e. the 20 video clips that are
highly reliable in eliciting valence may not be highly reliable in eliciting
arousal and vice versa.

5.1.2 Experimental protocol

One of the objectives of this user study is to provide ratings of arousal
and valence for each of the 40 film clips selected in the previous section.

28 volunteers participated in the experiment (8 females and 20 males),
aged between 20 and 52 (mean = 34, 93± 8, 99). All the participants are
working at Technicolor as researchers, PhD candidates or trainees. Of
these individuals, 23 are French and the others are Bangladeshi, Chinese,
Ethiopian, Romanian or Vietnamese. 8 out of the 28 participants par-
ticipated in the experiment in the morning. They were asked to read a
set of instructions informing them of the protocol of the experiment and
the meaning of the two different scales used for self-assessments (see Fig.
5.1(a)). Following the procedure of Philippot [40], participants were in-
structed to report what they actually felt while watching the video ex-
cerpts, rather than what they thought they should feel. They were also
asked to focus on what they felt at the time they watched the film clips,
rather than their general mood of the day. Moreover, they were told that
they were free to withdraw from the test at any time. Five test video
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clips from the LIRIS-ACCEDE dataset, but different from the 40 videos se-
lected for this experiment in Section 5.1.1, were shown to the participants
to make them understand the type of stimuli they could see during the
test. An experimenter was also present at the beginning to answer any
questions.

In addition to the 40 film clips selected in the previous section, 6 videos
from these film clips were repeated twice in order to measure the intra-
rater reliability. Consequently, 46 film clips (but 40 unique videos) were
shown to the participants. The videos were presented in a dark room on
a 22-inch screen (1,920 ×1,200, 60 Hz) in S-RGB mode and all film clips
were displayed with a resolution height of 780px, the width depending on
the ratio of each video. Participants were seated approximately 1 meter
from the screen. The stereo Sennheiser PXC 360 BT headphone was used
and the volume was set at a comfortable level.

The scale to report the ratings was the Self-Assessment Manikin (SAM)
[87]. Affective ratings were made on the discrete 5-point scale versions for
valence and arousal. Instructions were adapted from Lang et al. [30] (see
Fig. 5.1(a)). The experiment took place in two rounds. During the first
round, participants performed a self-assessment of their level of valence
directly after viewing each film clip. All the videos were presented in a
random order and the participant was asked to rate immediately “How
negative is the emotion that the video clip elicits to you?” (see Fig. 5.1(b)).
For the second round, participants performed a self-assessment of their
level of arousal according to “How calm is the emotion that the video clip
elicits to you?” (see Fig. 5.1(c)), all the videos being also presented in a
random order. The video excerpts were run only once but participants
had unlimited time to rate the videos. The next video started immediately
once the participant hit the “OK” button. The vocabulary used in this
test to describe the valence and arousal is the same than the one used to
annotate the whole dataset in Chapter 4. Valence has been intentionally
annotated before arousal because it is intuitively easier to assess and thus
more encouraging and motivating.

5.1.3 Analysis of the Annotations

Fig. 5.2 shows the distribution of the ratings of valence and arousal,
suggesting that negative film clips were rated as more arousing than pos-
itive ones. This correlation is not surprising since Lang et al. showed
that only specific areas of the 2D valence-arousal space are relevant [95].
The distribution displayed in Fig. 5.2 is also similar to those depicted in
previous works dealing with the affective impact of multimedia content
[50, 30, 52] , except that the distributions illustrated in these works show
much more data eliciting positive and arousing emotions (see Section 5.2.2
for further discussion).

Globally, the mean standard deviation of the ratings is higher for
arousal (SD = 0.771) than for valence (SD = 0.631), indicating that par-
ticipants agreed more when assessing valence. It is confirmed by the
Krippendorff’s alpha, measuring the inter-annotator agreement, which is
higher for the self-assessment of the level of valence (α = 0.282) than for
the self-assessment of their level of arousal (α = 0.225). Both values are



5.1. Controlled rating experiment 55

(a) Instructions given before the self-assessment for valence

(b) Round 1: Valence

(c) Round 2: Arousal

Figure 5.1 – Screenshots of the interface used for the experiment.
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Figure 5.2 – Distribution of the 46 film clips in the affective space (mean values for
valence and arousal).

positive which indicates that there is an agreement between annotators
despite the subjectivity of the experiment and are comparable to other
studies dealing with affective computing [52, 78]. A two-factor (Women,
Men) ANOVA failed to reveal significant gender differences. It is interest-
ing to mention that another two-factor (AM, PM) ANOVA revealed that
participants who started the experiment in the afternoon tend to report
greater levels of arousal (F = 30.1, p = 1.79× 10−6). This observation is
consistent with the findings of Soleymani et al. indicating that average
arousal ratings in response to videos increase with time of day [70].

The intra-rater reliability can also be computed thanks to the six film
clips that have been annotated twice by each annotator. The mean-square
error (MSE) of the ratings of the duplicated film clips is very low for va-
lence (MSE = 0.002) as well as for arousal (MSE = 0.021) meaning that
the repeatability of the experiment is high for a short period of time and
consequently that annotators understood the scales and did not answer at
random. To qualify these high intra-rater reliabilities, it is worth consid-
ering that due to the short duration of the experiment, some participants
could have remembered the score given to the first occurrence of the video
clip, thus reducing the impact of this criterion. Nevertheless, it is consis-
tent to use these ratings to validate the crowdsourced annotations of the
LIRIS-ACCEDE dataset.

5.2 Cross-validation & bias of LIRIS-ACCEDE

The results from the controlled rating experiment presented in this
chapter allow to cross-validate the dataset that has been previously ranked
in the affective space thanks to numerous crowdsourced pairwise anno-
tations gathered in Chapter 4 from various uncontrolled environments.
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Figure 5.3 – Correlation between rankings (horizontal axis) and ratings (vertical axis) for
both arousal and valence for the 46 films clips. A distinction is made between the 23 film
clips selected for arousal, i.e., the excerpts that are highly reliable in eliciting arousal based
on their Krippendorff’s alpha computed using the crowdsourced annotations of arousal,
and the 23 others selected for valence that are highly reliable in eliciting valence.

They also allow to better understand the distribution and the bias of the
dataset in the affective space.

5.2.1 Cross-validation

A t-test revealed that the Spearman’s rank correlation coefficient
(SRCC) between the rankings of the 46 film clips in the LIRIS-ACCEDE
dataset and the ratings collected in this experiment exhibits a statistically
highly significant correlation for both arousal (SRCC = 0.751, t(44) =
7.635, p < 1 × 10−8) and valence (SRCC = 0.795, t(44) = 8.801, p <
1× 10−10). It indicates that the annotations gathered in an uncontrolled
environment using crowdsourcing are highly correlated with the ratings
gathered in a controlled environment. Fig. 5.3 shows that the excerpts
selected for a specific axis are even more correlated with this axis than the
other excerpts. Consequently, this new experiment in a controlled envi-
ronment validates the annotations gathered using crowdsourcing that lead
to the ranking of the LIRIS-ACCEDE dataset.

5.2.2 Discussion

The results from the experiment also exhibit a bias in the dataset. In-
deed, the distribution of the ratings for valence (see Fig. 5.2) shows that
there are no film clips inducing high valence, which could be due to sev-
eral factors.

First, it has been shown in previous work [96, 97] that positive evalu-
ations were more subjective than negative ones. As a consequence, peo-
ple agree more when they rate negative emotions than positive emotions.
The plot of valence self-assessments corroborates the tendency that video
clips that make people feel negative emotions elicit more consistent ratings
than those that make people feel positive emotions (see Fig. 5.4). Since
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Figure 5.4 – Standard deviations for both arousal and valence ratings for the 46 films
clips and the associated best third-degree polynomial fitting curves. The coefficient of
determination of the trend-lines is also indicated.

the ground truth is obtained by averaging subjects’ ratings, the larger the
standard deviation, the smoother the final value to a neutral value. In con-
trast to valence, Fig. 5.4 shows that the standard deviations of the ratings
of the video clips eliciting extreme arousal (calm or excited) are lower than
neutral ones.

Second, this bias may also be due to the fact that no movie induces
high valence. However, 15% of the excerpts (1,477 film clips) in LIRIS-
ACCEDE have been extracted from 25 comedy films. Major genres rep-
resented in the dataset are drama (28%), action/adventure films (16%),
comedies (15%) and documentaries (14%) which are representative of
current most popular movie genres. Contrarily to other affective video
databases [45, 43], the excerpts in the dataset have been automatically seg-
mented and thus have not been preselected in order to cover the whole
affective space. But it seems highly unlikely that no excerpt or at least no
scene in the selected movies induces high valence. Finally, another expla-
nation of this bias is that it may be more challenging to induce very posi-
tive emotions in a short time than negative emotions. Indeed, the length of
excerpts in the LIRIS-ACCEDE dataset varies from 8 to 12 seconds which
may not be sufficient to elicit very positive emotions.

The rating experiment also reveals that the dataset suffers from another
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bias to the extent that there are less film clips with positive valence induc-
ing high arousal, making the dataset asymmetrical. This bias can be found
in other databases such as the EMDB dataset introduced by Carvalho et
al. [47] that claimed that it is related to the existence of stronger response
and attentional allocation to negative stimuli [98]. However, Lang et al.
showed that the sexual stimuli included in the IAPS dataset elicited the
most arousing and positive emotional reactions [95]. Because of ethical
concerns, such sexual content is not included in the publicly available
LIRIS-ACCEDE dataset, which might also partially explain the lack of
highly arousing and positive content in the dataset.

5.3 Regression analysis

The goal of this section is to use the rankings and ratings available for
the 40 video clips annotated in Section 5.1 to perform a regression analysis
between the rankings and the ratings to convert the relative rankings into
absolute scores.

Among all existing regression models, we used the Gaussian Processes
for Regression as they can model the noisiness from measurements and
thus take into account the subjectivity of emotions.

Two different Gaussian Process Regression Models are learned in this
part, one for the valence axis and a second one for arousal. From the
rank given as input (ranging from 0 to 9,799), the goal of the models is
to predict its affective rating for the dedicated axis (ranging from 1 to
5). To learn the models, we will use the crowdsourced ranks and the
corresponding affective ratings gathered in Section 5.1. The variance of
the annotations gathered in this controlled rating experiment will be used
to provide guidance to learn the models. Thus, these variances will be
needed only during the learning step and will no longer be necessary to
predict new affective ratings.

Knowing the rank x for valence or arousal of a video clip in the
database, the goal of the Gaussian Processes regression models is to es-
timate the score g(x) of the video clip in the affective space.

Knowing the rank x for valence or arousal of a video clip in the
database, the goal of the Gaussian Processes regression models is to es-
timate the score g(x) of the video clip in the affective space. Rasmussen
and Williams [99] define a Gaussian Process (GP) as a collection of random
variables, any GP finite number of which have a joint Gaussian distribu-
tion. The predictions from a GP model take the form of a full predictive
distribution:

g(x) = f (x) + h(x)T β, with f (x) ∼ GP(0, k(x, x′)) (5.6)

where f (x) is a zero mean GP, h(x) are a set of fixed basis functions, and
β are additional parameters. For valence we used linear basis functions
whereas quadratic basis functions were selected for arousal.

We used the squared exponential kernel for which, during interpola-
tion at new values, distant observations will have negligible effect:

k(x, x′) = σ2
f × exp

(
−(x− x′)2

2l2

)
+ σ2

nδ(x, x′) (5.7)
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(a) Valence

(b) Arousal
Figure 5.5 – Mahalanobis distances between the 40 video clips and the estimated center
of mass, with respect to the estimated covariance in the ranking/rating space. Red points
are the video clips considered as outliers.

where the length-scale l and the signal variance σf are hyperparameters,
σn is the noise variance and δ(x, x′) is the Kronecker delta. All the pa-
rameters are estimated using the maximum likelihood principle. In this
work, σn values are not hyperparameters since they represent the known
variance of annotations gathered in the controlled rating experiment de-
scribed in section 5.1. They are added to the diagonal of the assumed
training covariance. As a consequence, the GP is also able to model the
subjectivity of emotions from this experiment.

5.4 Outlier detection

To perform a regression analysis on clean data, the first step is to detect
outliers.

The Minimum Covariance Determinant (MCD) estimator introduced
by Rousseeuw in [100] is a highly robust estimator for estimating the cen-
ter and scatter of a high dimensional data set without being influenced by
outliers. Assuming that the inlier data are Gaussian distributed, it con-
sists in finding a subset of observations whose empirical covariance has
the smallest determinant. The MCD estimate of location µ is then the
average of the “pure” observations in the selected subset and the MCD
estimate of scatter is their covariance matrix Σ. In this work, we used the
fast MCD algorithm implemented in [101] to estimate the covariance of the
40 video clips defined in section 5.1, described in the 2D ranking/rating
space by their rank and rating score.

Once the center and covariance matrix have been estimated, the Ma-
halanobis distance of centered observations can be computed. It provides
a relative measure of an observation from the center of mass taking into
account the correlation between those points. The Mahalanobis distance
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Figure 5.6 – Box plot of the Mahalanobis distances for valence and arousal. The whiskers
show the lowest and highest values still within the 1,5 IQR. Red points are the video clips
considered as outliers.

of a video clip xi is defined as:

d(µ,Σ)(xi)
2 = (xi − µ)Σ−1(xi − µ) (5.8)

where µ and Σ are the estimated center of mass and covariance of the
underlying Gaussian distribution. Figure 5.5 shows the shape of the Ma-
halanobis distances for the valence and arousal data sets.

By considering the covariance of the data and the scales of the different
variables, the Mahalanobis distance is useful for detecting outliers in such
cases. As a rule of thumb, a video clip xi is considered as an outlier if
d(µ,Σ)(xi) < Q1 − 1.5 × IQR or if d(µ,Σ)(xi) > Q3 + 1.5 × IQR with Q1
and Q3 the first and third quartiles and IQR the Inter-quartile Range. The
boxplots showing the outliers detected for valence and arousal during this
process are illustrated in Figure 5.6.

In our experiments, two video clips are categorized as outliers for va-
lence and three video clips for arousal. Thus, these video clips are re-
moved from the data sets in order to perform a regression analysis only
on “clean” data sets. As a consequence, 38 video clips are used to per-
form the regression analysis for valence while for arousal the data set is
composed of 37 video clips.

5.5 Results

To measure the prediction power of the learned regression models de-
picted in Figure 5.7, we calculated in addition to the well-known con-
ventional squared correlation coefficient R2, the predictive leave-one-out
squared correlation coefficient Q2

loo defined as:

Q2
loo = 1−

N
∑

i=1

(
ypred(N−1)

i − yi

)2

N
∑

i=1

(
yi − yN−1,i

mean

)2
(5.9)
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Figure 5.7 – Gaussian Process Models learned for valence and arousal converting ranks
(horizontal axis) into ratings (vertical axis). Black bars show the variance of the annota-
tions.

with yi the true rating value of the video clip i and ypred(N−1)
i the prediction

of the model learned with the initial training set from which the video
clip i was removed. Note that the arithmetic mean used in equation (5.9),
yN−1,i

mean , is different for each test set and calculated for the observed values
comprised in the training set.

R2 measures the goodness of fit of a model while Q2
loo computed using

the leave-one-out cross-validation technique measures the model predic-
tion power. Both values for valence and arousal are shown in Table 5.1.

These results are remarkably high considering that we are modeling
crowdsourced ranks and affective ratings that are both subject to the sub-
jectivity of human emotions. Thus, our proposed regression models suc-
cessfully learned to fit input observations. Furthermore, Q2

loo values show
that the models are also able to provide valid predictions for new obser-
vations.



5.5. Results 63

Table 5.1 – Performance of the Gaussian Process Models learned predicting valence and
arousal.

Measure Valence Arousal

R2
0.657 0.632

Q2
loo 0.621 0.586

Summary

This chapter addressed the validation of the LIRIS-ACCEDE affective
video dataset and showed that it is possible to estimate absolute values
in the emotional space using affective ranks while taking into account the
subjectivity of emotions.

First, we have proposed an experimental protocol consisting in collect-
ing ratings for a subset of the dataset using the Self-Assessment Manikin
(SAM) scales in a controlled setup. This subset consists of 40 excerpts that
have been carefully selected based on their reliability to induce emotions
during the crowdsourced experiment. The results have shown that the
correlation between affective ratings and crowdsourced rankings is signif-
icantly high thus validating the overall dataset for future uses in research
works.

Based on these results, we have been able to enrich the LIRIS-ACCEDE
database by providing in addition to video rankings that were already
available, video ratings thanks to a regression analysis that allows map-
ping all the 9,800 video clips included in the dataset into the 2D valence-
arousal affective space. The Gaussian process regression models, taking
into account the variance of the annotation of the absolute scores, achieved
a good performance, confirming our intuition that absolute scores in the
affective space can be estimated using relative ranks.
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LIRIS-ACCEDE, the dataset presented in Chapter 4, proposes 9,800 ex-
cerpts extracted from 160 movies. However, these 9,800 excerpts have

been annotated independently, limiting their use for learning models for
longer movies where previous scenes may reasonably influence the emo-
tion inference of future ones.

Thus, we set up a new experiment where annotations are collected
on long movies, making possible the learning of more psychologically
relevant computational models.

6.1 Movie Selection

The aim of this new experiment is to collect continuous annotations on
whole movies. To select the movies to be annotated, we simply looked at
the movies included in the LIRIS-ACCEDE dataset 1 since they all share
the desirable property to be shared under Creative Commons licenses and
can thus be freely used and distributed without copyright issues as long
as the original creator is credited. The total length of the selected movies
was the only constraint. It had to be smaller than eight hours to create an
experiment of acceptable duration.

1. An exhaustive list of the movies included in the LIRIS-ACCEDE dataset as well as
their credits and license information is listed in Appendix A

65
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The selection process ended with the choice of 30 movies so that their
genre, content, language and duration are diverse enough to be repre-
sentative of the original LIRIS-ACCEDE dataset. The selected videos are
between 117 and 4,566 seconds long (mean = 884.2sec± 766.7sec SD). The
total length of the 30 selected movies is 7 hours, 22 minutes and 5 seconds.
The list of the 30 movies included in this experiment is detailed in Table
6.1.

6.2 Experimental Design

The annotation process aims at continuously collecting the self-
assessments of arousal and valence that viewers feel while watching the
movies.

6.2.1 Annotation tool

To collect continuous annotations, we have used a modified version of
the GTrace program originally developed by Cowie et al. [102]. GTrace
has been specifically created to collect annotations of emotional attributes
over time. However, we considered that the design of the original GTrace
interface during the annotation process is not optimal: the video to be
rated is small, the annotation scale is far from it, and other elements may
disrupt the annotator’s task. That is why we modified the interface of
GTrace in order to be less disruptive and distract annotators’ attention
from the movie as little as possible.

First, we redesigned the user-interface so that the layout is more intu-
itive for the annotator. During the annotation process, the software is now
in full screen and its background is black. The video is bigger, thus more
visible, and the rating scale is placed below the video (Figure 6.1(b)).

Second, we used the possibility offered by GTrace to create new scales.
We designed new rating scales for both arousal (Figure 6.1(a)) and va-
lence (Figure 6.1(b)). Under both scale, the corresponding SAM scale is
displayed [87].

Third, instead of using a mouse, the annotator used a joystick to move
the cursor which is much more intuitive. To link the joystick to GTrace, we
used a software that simulates the movement of the mouse cursor when
the joystick is used.

6.2.2 Protocol

In the experimental protocol described below, each movie is watched
by an annotator only once. Indeed, the novelty criterion that influences
the appraisal process for an emotional experience should be taken into
consideration [103].

Annotations were collected from ten French paid participants (seven
female and three male) ranging in age from 18 to 27 years (mean =
21.9± 2.5 SD). Participants had different educational backgrounds, from
undergraduate students to recently graduated master students. The exper-
iment was divided into 4 sessions, each took place on a different half-day.
The movies were organized into 4 sets (Table 6.1). Before the first session,
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(a) Screenshot before the annotation along the arousal axis

(b) Screenshot during the annotation along the valence axis

(c) Modified GTrace menu

Figure 6.1 – Screenshots of the modified GTrace annotation tool. Nuclear Family is
shared under a Creative Commons Attribution-NonCommercial 3.0 Unported United
States License at http://dominicmercurio.com/nuclearfamily/.
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Table 6.1 – List of the 30 movies on which continuous annotations have been collected

Sets Duration Movies

A 01:50:14 Damaged Kung Fu, Tears of Steel, Big Buck Bunny,
Riding The Rails, Norm, You Again, On time, Chatter,
Cloudland & After The Rain

B 01:50:03 Barely Legal Stories, Spaceman, Sintel, Between View-
ings, Nuclear Family, Islands, The Room of Franz
Kafka & Parafundit

C 01:50:36 Full Service, Attitude Matters, Elephant’s Dream,
First Bite, Lesson Learned, The Secret Number & Su-
perhero

D 01:51:12 Payload, Decay, Origami, Wanted & To Claire From
Sonny

participants were informed about the purpose of the experiment. They
had to sign a consent form and fill a questionnaire (Appendix C). Partic-
ipants were trained to use the interface thanks to three short videos they
had to annotate before starting the annotation of the whole first session.
The participants were also introduced to the meaning of the valence and
arousal scales.

Participants were asked to annotate the movies included in the first
two sessions along the induced valence axis and the movies in the last
two sessions along the induced arousal axis. This process ensures that
each movie is watched by an annotator only once. The order of the sets
with respect to the four sessions was different for all the annotators. For
example, the first participant annotated the movies from sets A and B
along the induced valence axis and the movies from sets C and D along
the induced arousal axis whereas the second participant annotated the
movies from sets B and C along the induced valence axis and the movies
from sets D and A along the induced arousal axis. Furthermore, the videos
inside each session were played randomly. After watching a movie, the
participant had to manually pull the trigger of the joystick in order to play
the next movie.

Finally, each movie is annotated by five annotators along the induced
valence axis and five other annotators along the induced arousal axis.

6.3 Post-processing

Defining a reliable ground truth from continuous self-assessments
from various annotators is a critical aspect since the ground truth is used
to train and evaluate emotion prediction systems. Two aspects are par-
ticularly important: there are annotator-specific delays amongst the anno-
tations and the aggregation of the multiple annotators’ self-assessments
must take into account the variability of the annotations [74].

Several techniques have been investigated in the literature to deal with
the synchronisation of various individual ratings. In this work, we com-
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bine and adapt the approaches proposed by Mariooryad and Busso [104]
and by Nicolaou et al. [53] to deal with both the annotation delays and
variability.

First, the self-assessments recorded at a rate of 100 values per second
are down-sampled by averaging the annotations over windows of 10 sec-
onds with 1 second overlap (i.e. 1 value per second). This process removes
most of the noise mostly due to unintended moves of the joystick. Further-
more, due to the granularity of emotions, one value per second is enough
for representing the emotions induced by movies [105, 74].

Then, each self-assessment is shifted so that the τ-sec-shifted anno-
tations maximize the inter-rater agreement between the τ-sec-shifted self-
assessment and the non-shifted self-assessments from the other raters. The
inter-rater agreement is measured using the Randolph’s multirater kappa
free [90]. Similarly to Mariooryad and Busso [104], the investigated de-
lay values τ range from 0 to 10 sec. However, in practice, τ ranged from
0 to 6 sec and the largest values (5 or 6 sec) were rarely encountered
(mean = 1.47± 1.53 SD). As suggested by Landis and Koch [91], the av-
erage Randolph’s multirater kappa free shows a moderate agreement for
the shifted arousal self-assessments (κ = 0.511± 0.082 SD), as well as for
the shifted valence self-assessments (κ = 0.515± 0.086 SD).

Finally, to aggregate the different ratings we use an approach similar
to the one proposed in [53]. The inter-coder correlation is used to obtain
a measure of how similar are one rater’s self-assessments to the annota-
tions from the other participants. The inter-coder correlation is defined
as the mean of the Spearman’s rank correlation coefficients (SRCC) be-
tween the annotations from the coder and each of the annotations from
the rest of the coders. The SRCC has been preferred over other correlation
measures since it is defined as the Pearson correlation coefficient between
the ranked variables: the SRCC is computed on relative variables and
thus ignores the scale interpretation from the annotators. The inter-coder
correlation is used as a weight when combining the multiple annotators’
annotations. The inter-coder correlation is higher in average for valence
(mean = 0.313± 0.195 SD) than for arousal (mean = 0.275± 0.195 SD).

Figure 6.2 shows the raw ratings and post-processed ones for both
induced arousal and valence scales for the movie Spaceman. The bold
curves are the weighted average of the continuous annotations computed
on the raw ratings or on the smoothed and shifted ones.

To conclude, this post-processing assigns two values at each 1-second
segment of a movie: one represents the induced arousal and the other
the induced valence. Both values are rescaled so that they range from 0

to 1. More precisely, 26,525 1-second segments are extracted from the 30

movies.

Summary

This chapter introduces a new dataset composed of 30 movies contin-
uously annotated along the induced valence and arousal axes split into
26,525 1-second length video segments. The use of both joysticks and of a
modified version of the GTrace annotation tool has improved the user ex-
perience of the experiment in order to be less disruptive. The annotations
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(a) Raw and post-processed annotations for arousal

(b) Raw and post-processed annotations for valence

Figure 6.2 – Annotations collected for the movie “Spaceman”. Both subfigures show at
the top the raw annotations and at the bottom post-processed annotations for (a) arousal
and (b) valence. The shaded area represents the 95% confidence interval of the mean.
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have been post-processed to take into account the annotator-specific de-
lays and the variability of the annotations when aggregating the multiple
annotators’ self-assessments.

In the second part of this thesis, the LIRIS-ACCEDE dataset will be
used to compute the first baseline in Chapter 8. The continuous annota-
tions for the 30 full-length movies presented in this chapter will be used
to compute the next four baselines in Chapter 8, as well as the spatio-
temporal model introduced in Chapter 9.
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The recording of physiological signals is an alternative to the direct af-
fective self-assessment of each viewer for which the continuous data

collection is not realistic for large scale consumer applications. Indeed,
physiological signals are associated with the felt emotions. Hence, phys-
iological signals can be used to cross-validate affective self-assessments,
and can also be used as an additional modality to help emotion detection.

In order to cross-validate the continuous annotations collected in
Chapter 6, and to extend the range of applications of the LIRIS-ACCEDE
dataset, we present in this chapter an experiment we conducted to collect
physiological measurements, i.e. the Galvanic Skin Response, from partic-
ipants. In this experiment, participants watched the same 30 movies used
in the previous chapter to collect continuous affective self-assessments,
with sensors attached to their fingers. In particular, one potential appli-
cation of the use of these physiological signals for emotion detection is
the automatic implicit tagging of videos, which is more robust using a
physiological-based tagging than a content-based tagging only [106], but
also more obtrusive since users have to wear specific sensors.
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Figure 7.1 – The Bodymedia armband used to record the GSR of participants (illustration
from http://www.bodymedia.com/)

7.1 The experiment

7.1.1 Physiological signals

Many physiological signals are known to be correlated with the emo-
tional state, such as the EEGs, the heart rate variability, or the Galvanic
Skin Response (GSR) [45, 107]. However, collecting physiological signals
is often obtrusive. Some are easier to measure, less obtrusive and thus
more appropriate for experiments dealing with a large number of partici-
pants. To study the emotional impact of a movie on an audience, Fleureau
et al. measured the GSR of a total of 128 audience members [108]. GSR
was chosen among other physiological measures because it can be mea-
sured in a non-obtrusive way thanks to compact sensors, and is known to
be related to the level of arousal [95, 60]. For these reasons, we also mea-
sure in this chapter the GSR of participants watching a set of 30 movies
from the LIRIS-ACCEDE dataset in order to offer new possibilities to the
users of the dataset. The GSR, also known as the electrodermal activity,
measures the variations in the electrical characteristics of the skin. These
fluctuations vary with the state of the sweat glands in the skin.

To measure the GSR, we used the Bodymedia armband illustrated in
Figure 7.1. We used this armband because it is user friendly, thus users
rapidly understand how to wear the armband by themselves before the
experiments. Users only have to place the armband on their fingers. In
contact with the palm area, the armband turns on automatically and starts
recording the GSR of the participants. This device allowed us to record, in
addition to the GSR, the motion of the fingers and skin temperature. How-
ever these two supplementary measures are not analyzed in the following
sections but may be used by future researchers using this dataset.

7.1.2 Experimental protocol

In this new experiment, we reused the 30 movies that have been contin-
uously annotated in the previous chapter along the induced valence and



7.2. Correlation with arousal self-assessments 75

arousal dimensions. The 30 movies are between 117 and 4,566 seconds
long (mean = 884.2sec± 766.7sec SD), and the total length is 7 hours, 22

minutes and 5 seconds. The movies are fairly distributed among four sets.
The list of the 30 movies for each set is detailed in Table 6.1.

The goal of this new experiment is to record physiological signals (in
particular the GSR) from spectators. Annotations were collected from 13

French paid participants (11 female and 2 male) ranging in age from 22 to
45 years (mean = 36.1± 6.7 SD). The experiment was divided into four
sessions, each took place on a different half-day to reduce the cognitive
load of the participants. Each of these sessions lasted approximately two
hours, including the setup of the armbands. Before the first session, partic-
ipants had to sign a consent form similar to the one in Appendix C. They
were informed that the device used to record the signals was perfectly safe
and that their anonymity would be protected.

The physiological signals were recorded simultaneously from the 13

participants watching the videos in a darkened air-conditioned amphithe-
ater. They were free to select their own position in the room. Before the
first session, an armband sensor was placed on the tops of two of their fin-
gers. Instructions were given so that participants could setup the device
by themselves at the beginning of the three last sessions.

7.2 Correlation with arousal self-assessments

As pointed out by Fleureau et al. [108], the GSR signal must be pro-
cessed to remove the misleading information before being compared to
the continuous arousal self-assessments.

7.2.1 Post-processing of the GSR signals

To process the GSR signals from the 13 participants and for the 30

movies, we used the algorithm described in [108] with minor changes:

1. First, for a given participant and a given movie, a low-pass filtering is
applied (Finite Impulse Response filter with a 2Hz cutoff frequency)
and the signal is derived.

2. As in [108], a thresholding is computed in order to remove the neg-
ative values of the derivative of the signal and to focus only on the
positive segments. Indeed, positive values represent the increase of
the skin conductance measured by the armband due to an increase
of sweating, usually related to highly-arousing emotions [109].

3. The signal is temporally filtered and sub-sampled using a 10 seconds
time window with 5 seconds overlap to obtain a time resolution of
5 seconds. The time resolution is similar to previous studies [110]
and smaller than the one used in [108] to make it compliant with the
shorter duration of the movies used in this experiment.

4. Finally, the signal is normalized to remove the user-dependent part
related to the amplitude of the derivative of the GSR.

Using the same terminology as Fleureau et al. [108], the resulting signal
for each user i, 1 ≤ i ≤ N (with N = 13, the number of participants), is
called individual GSR profile and termed pi

n.
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7.2.2 Weighted mean GSR profile

Once the raw signals are post-processed, outliers can be detected more
easily. There are several factors that could have affected the reliability
of the signals measured with the armbands. Indeed, an experimenter
checked if the armbands were correctly set up on the fingers at the be-
ginning of each session. However, it is possible that during the sessions
some participants moved their armband, although participants were in-
structed not to touch or interact with the device. Some signals may also
be too noisy due to repeated moves of the hand on which the armband
was fastened. For example, it is tempting for a participant to check his
smartphone and reply to a text message if the movie is boring.

For each movie, the Spearman’s rank correlation coefficient (SRCC) ρij

between the individual GSR profiles pi
n and pj

n of two users are computed.
The agreement αi of an annotator i for a single movie is defined as:

αi =
1

N − 1

N

∑
j=1,j 6=i

ρij (7.1)

A participant i is considered as an outlier if its agreement αi is smaller than
µa − 1

2 σa, with µa and σa respectively the mean and standard deviation of
the SRCCs between each of the participants and all the other participants,
i.e.:

µa =
1

N(N − 1)

N

∑
i=1

N

∑
j=1,j 6=i

ρij (7.2)

σa =

√√√√ 1
N(N − 1)

(
N

∑
i=1

N

∑
j=1,j 6=i

ρ2
ij

)
− µ2

a (7.3)

In average, 4 participants are discarded per movie. As mentioned by
Grimm and Kroschel [111], as the remaining noise influences might be dif-
ferent for the different participants, it is reasonable to compute the mean
GSR signal using an individual confidence score. Finally, the weighted
mean GSR profile p̂n for a movie is thus defined as:

p̂n =
1

∑
i∈V

ci

(
∑
i∈V

ci pi
n

)
(7.4)

with V the set of the participants that are not considered as outliers, Nv
the number of participants in V, and ci the confidence score generated
similarly to [111] by computing the Pearson’s correlation between the in-
dividual affective profile pi

n, and the mean GSR profile p̄n = 1
Nv

∑
i∈V

pi
n.

7.2.3 Derived GSR and arousal peaks

Based on the intuition that the weighted mean GSR profile, gener-
ated using the derivative of the GSR measurements, should be temporally
correlated with the increase or decrease of arousal, we first computed
the temporal correlation between the weighted mean GSR profile and the
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Figure 7.2 – Example of the computation of arousal peaks from the mean arousal self-
assessments for the movie Big Buck Bunny

mean of the arousal self-assessments described in Chapter 6. However, re-
sults were not as good as expected since the mean between these Person’s
correlations for the 30 movies is rather low (r = 0.070). By introduc-
ing a threshold to compute these correlations only for the most intense
parts of the movies, we show in this section that for most of the movies,
the weighted mean GSR profile is in fact correlated with the arousal self-
assessments during the most arousing scenes.

The most intense parts of a movie, called “arousal peaks” in the re-
maining of this chapter, are defined as the highest scores of the mean
arousal self-assessments with respect to a threshold T. T is the percent-
age of the smallest values to be removed from the process. The continu-
ous mean of the arousal self-assessments of the 30 movies has been sub-
sampled using an overlapping time window to match the time resolution
of 5 seconds of the weighted mean GSR profile p̂n. Figure 7.2 shows the
arousal peaks (red circles) for the movie Big Buck Bunny for T = 40%,
i.e. 60% of the greatest values have been kept. The blue stars indicate
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Table 7.1 – Pearson’s r and SRCC between the arousal peaks for T = Tmax and the
corresponding values from the weighted mean GSR profile for the 30 movies used in the
experiment. Significant correlations (p < 0.05) according to the t-test are indicated by
stars.

Movie Tmax r SRCC Movie Tmax r SRCC

Damaged
Kung-Fu

88% 0.364
∗

0.435
∗ Big Buck

Bunny
66% 0.552

∗
0.643

∗

Chatter 64% 0.416
∗

0.537
∗ Cloudland 36% 0.032 0.081

After The Rain 86% 0.236 0.272 Norm 24% 0.214 0.314
∗

On Time 84% 0.626
∗

0.705
∗ Islands 50% 0.094 0.323

Tears of Steel 42% 0.389
∗

0.459
∗ You Again 10% 0.231

∗
0.188

∗

Barely Legal
Stories

70% 0.183 0.291
∗ Between

Viewings
84% 0.516

∗
0.466

∗

Riding the
Rails

84% 0.542
∗

0.653
∗ The Room of

Franz Kafka
34% 0.149 -0.240

Parafundit 88% 0.350 0.361 Sintel 88% 0.252
∗

0.284
∗

Lesson Learned 90% 0.754
∗

0.461
∗ Nuclear Family 88% 0.513

∗
0.357

∗

Attitude
Matters

76% 0.262 0.490
∗ Elephants

Dream
18% 0.238

∗
0.141

∗

First Bite 84% 0.349 0.333 Full Service 74% 0.293
∗

0.399
∗

Spaceman 0% -0.026 0.061 Superhero 38% 0.446
∗

0.472
∗

The Secret
Number

88% 0.359
∗

0.318 To Claire From
Sonny

0% 0.183
∗

0.282
∗

Origami 22% 0.143 0.008 Payload 0% 0.002 0.064

Decay 0% 0.341
∗

0.441
∗ Wanted 66% 0.629

∗
0.670

∗

the scores of the weighted mean GSR profile corresponding to the arousal
peaks for T = 40%.

The Pearson’s correlation between the continuous mean of the arousal
self-assessments and the weighted mean GSR profile p̂n for a given movie
k, 1 ≤ k ≤ 30, and for a given threshold T is termed rk

T. Table 7.1 shows,
for each movie, the threshold Tmax (in %) maximizing rk

T. The SRCC for
each selected Tmax is also indicated. 18 movies, i.e., 60% of the movies,
share a Pearson’s r higher than 0.25, but this correlation is significant for
14 of them. In terms of SRCC, the correlation of 18 movies exceeds 0.25

with an associated p-value below 0.05. However, 5 movies in particu-
lar show low correlation values that are not significant in terms of both
Pearson’s r and SRCC. These movies are: Cloudland, Origami, Payload,
The Room of Franz Kafka, and Spaceman. Representative screenshots for
these movies are shown in Figure 7.3. This lack of correlation could be
in part due either to the quality of the movie (e.g., Cloudland is a con-
catenation of short scenes without any direct link between each other),



7.3. Discussion 79

or to their movie style (e.g., The Room of Franz Kafka is a short abstract
experimental film, Origami is an animation movie with a design inspired
by traditional Japanese art, and Payload and Spaceman are science fiction
movies). Based on these observations, it seems reasonable to assume that
two factors can make uncomfortable the observers: a non-conventional
storytelling, such as for Cloudland and an artistic or abstract style, such
as for the other ones. Indeed, such media may produce different physio-
logical responses depending on the experimenters’ sensitivity.

More globally, the weighted average r̂Tmax
of the Pearson’s correlations

for all the movies is defined as:

r̂Tmax
=

1
30
∑

k=1
lk
Tmax

(
30

∑
k=1

lk
Tmax

rk
Tmax

)
(7.5)

with rk
Tmax

the Pearson’s correlation between the arousal peaks for T = Tmax
and the corresponding values from the weighted mean GSR profile of the
kth movie, and lk the number of values in the arousal peaks of the kth

movie for T = Tmax.
The average weighted Pearson’s correlation r̂Tmax

equals 0.264 and the
average weighted SRCC, generated in the same way using the SRCC val-
ues for each movie, is equal to 0.336. These correlations confirm that
arousal and GSR are correlated, but foremost validate the reliability of
both the arousal self-assessments and GSR measurements.

7.3 Discussion

In the previous section, a correlation between the arousal self-
assessments and GSR measurements was found. The strength of this con-
clusion lies in the cross-validation of two modalities temporally collected
in two distinct experimental protocols. To the best of our knowledge, it is
the first time that a temporal correlation is demonstrated between the av-
erage of arousal self-assessments and the average of post-processed GSR
measurements from different participants watching videos and collected
in two different experiments.

This correlation is the average of the correlations of each movie com-
puted using the threshold Tmax which is thus different among movies.
However, it is possible to analyze the effect of this threshold on the global
average weighted correlation by using the same threshold T for all the
movies. Figure 7.4 shows the variation of the weighted Pearson’s r with
respect to the threshold T when T is identical for the 30 movies. Surpris-
ingly, the variation is very smooth. We assumed that the correlation would
have increased with the threshold T but in fact this statement is true only
for T < 46%. Actually, a global maximum (r = 0.128) is achieved for
T = 46%, then for T > 60% the global weighted correlation starts de-
creasing rapidly. It seems to indicate that the values near the most intense
arousal peaks are essential to find a correlation between arousal and GSR
measurements and that the smallest arousal values may not be correlated
with GSR measurements. This sounds reasonable since for movie scenes
inducing low arousal, the constant (or lack of) sweat is not a good indica-
tor of the level of arousal experienced by the participant.
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(a) Cloudland

(b) Origami

(c) Payload

(d) The Room of Franz Kafka

(e) Spaceman

Figure 7.3 – Representative screenshots for the 5 movies for which the weighted mean
GSR profile is not correlated with the arousal peaks. Credits and license information can
be found in Appendix A.
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Figure 7.4 – Evolution of the average weighted Pearson’s r with respect to the selected
threshold T for the 30 movies

Summary

We presented in this chapter an experiment to collect physiological
measurements, including the GSR, from 13 participants. As for all the
other experiments presented in this second part of this thesis, these phys-
iological measurements are publicly available at: http://liris-accede.ec-
lyon.fr/. A correlation has been observed between the derivative of
the GSR-based signal and the most intense segments of the mean of
the arousal self-assessments described in Chapter 6. This confirms that
arousal and GSR are correlated, and validates the reliability of both the
continuous arousal self-assessments and GSR measurements.





Part III

Estimating Induced Emotions

“I am fine tuning my soul
To the universal wavelength"

— Björk Guõmundsdóttir, Atom Dance
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To enable fair comparison between future work using the 9,800 excerpts
of LIRIS-ACCEDE presented in Chapter 4, in which four testing proto-

cols were proposed, we introduce a baseline using a large set of visual and
audio features for discrete affective movie content analysis. We also pro-
pose four baselines for continuous affective movie content analysis using
30 films continuously annotated presented in Chapter 6. The reproducible
protocols allow fair comparisons between state of the art models described
below and our different implementations in Chapter 9.

As explained in Chapter 3, existing models use a private dataset mak-
ing benchmarking and results reproducibility impossible. But there are
also neither baselines nor common protocols for assessing the perfor-
mance of emotion prediction models. This chapter contributes to har-
monize the test protocols and lays the foundations for future and fair
comparisons. Thus, we aim not at maximizing absolute performance in
this chapter, but rather at studying and comparing the performance of
five state of the art architectures for the prediction of affective dimensions.

8.1 Baseline for discrete affective movie content

analysis

In this section, a baseline is presented to estimate the crowdsourced
valence and arousal affective ranks for the 9,800 excerpts of the dataset.

85
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8.1.1 Regression framework

SVM for regression [112], also known as SVR, has demonstrated good
performance in many machine learning problems and, more specifically,
in affective content analysis work such as [113], [35], or more recently [34].
SVR models construct a hyperplane by mapping vectors from an input
space into a high dimensional feature space such that they fall within a
specified distance of the hyperplane. Since the formulation of SVM is a
convex optimization problem, it guarantees that the optimal solution is
found. Two independent ε-SVRs [114, 115] are used for this baseline to
model arousal and valence separately. The Radial Basis Function (RBF) is
selected as the kernel function and a grid search is run to find the C, γ
and p parameters. Since the 9,800 excerpts of the LIRIS-ACCEDE database
are ranked along the induced arousal and valence axis, the ground truth
is made up of these raw ranks, initially ranging from 0 to 9,799, which
are uniformly rescaled to a more common [−1, 1] range. All features are
normalized using the standard score before being used in the learning
step.

8.1.2 Feature selection

A large number of features have been investigated and extracted from
three modalities: audio, still image and video features.

Audio features are extracted using 40 ms windows with 20 ms overlap.
Many audio features were considered: MFCC, energies, flatness, standard
deviation and mean of the quadratic spline wavelet coefficients of the au-
dio signal computed using the fast algorithm described in [116], asymme-
try, zero-crossing rate, etc. all averaged over the signal. The audio energy
contains information about the volume of the signal. The spectrum flat-
ness measures the noisiness character of the spectrum. It is defined as
being the ratio of the geometric mean and the arithmetic mean of the
spectrum. The zero-crossing rate is the rate of sign-changes along the au-
dio signal. Lastly, the asymmetry is a measurement of the symmetry of
the spectrum around its mean value (centroid).

Still image features are extracted from a key frame of the excerpts.
This latter is automatically selected as being the frame with the closest
RGB histogram to the mean RGB histogram of the whole excerpt using the
Manhattan distance. We considered many features, which have proven to
be efficient in affective image analysis, as well as more uncommon ones
including color harmony and aesthetic features related to the composition
of the key frame. Video features contain information about the composi-
tion (number of scene cuts, fades, etc.) and motion.

We created two feature sets, one for each axis, made up of the most effi-
cient features. Best features are selected by hierarchically merging the best
performing ones as long as the mean-square error (MSE) decreases. Using
this process, a set of 17 features is obtained for valence and 12 features for
arousal. Rejected features were not necessarily inefficient features but fea-
tures that were strongly correlated with more efficient ones. The 10 best
performing features for estimating arousal and valence are summarized
in Table 8.1.
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Figure 8.1 – Harmonious templates on the hue wheel for a given angle (originally pub-
lished in [4]). The complete collection of harmonious templates is obtained by rotating all
templates.
Table 8.1 – 10 best performing features for estimating arousal and valence dimensions

Arousal Valence

1. Global activity
2. Number of scene cuts per
frame
3. Standard deviation of the
wavelet coefficients of audio
signal
4. Median lightness
5. Slope of the power spectrum
6. Lighting
7. Colorfulness
8. Harmonization energy [4]
9. Length of scene cuts
10. Audio flatness envelop

1. Colorfulness [117]
2. Hue count [118]
3. Audio zero-crossing rate
4. Entropy complexity [119]
5. Disparity of most salient
points
6. Audio asymmetry envelop
7. Number of scene cuts per
frame
8. Depth of field
9. Compositional balance [120]
10. Audio flatness

Color features performed well for detecting valence, as five features
out of the 17 features were color-related. For valence, colorfulness [117]
was the best performing feature followed by “hue count" [118]. Colorful-
ness is computed based on the distribution of the key frame pixels in the
RGB color space. The other features in this set, from the third best per-
forming feature to the least efficient feature are: audio zero-crossing rate,
entropy complexity [119], disparity of most salient points (standard de-
viation of normalized coordinates), audio asymmetry envelope, number
of scene cuts per frame, depth of field (using the blur map computed in
[121]), compositional balance [120], audio flatness, orientation of the most
harmonious template [4], normalized number of white frames, the color
energy and color contrast [57], scene complexity (area of the bounding box
that encloses the top 96.04% of edge energy [118]), number of maximum
values in the saliency map and, finally, number of fades per frame.

Unsurprisingly related to arousal, motion and energy features were
the best performing ones for modeling arousal. The selected features are
global activity (average size of motion vectors), standard deviation of the
wavelet coefficients of audio signal, the energy corresponding to the most
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Table 8.2 – Performance for Protocols A (Predefined subgroups) and B (Leave-One-
Movie-Out) for the discrete emotion prediction baseline. Ground truth and estimated
scores range from -1 to 1

Protocol A Protocol B

Metric Arousal Valence Arousal Valence

MSE 0.303 0.302 0.326 0.343

Pearson’s r 0.308 0.310 0.242 0.221

SRCC 0.302 0.305 0.245 0.219

Table 8.3 – Performance for Protocol C (Same genre) for the discrete emotion prediction
baseline

Genre Arousal MSE Valence MSE

Action 0.278 0.326

Adventure 0.389 0.363

Animation 0.336 0.335

Comedy 0.297 0.295

Documentary 0.326 0.308

Drama 0.313 0.327

Horror 0.331 0.364

Romance 0.324 0.361

Thriller 0.355 0.337

harmonious template [4], the slope of the power spectrum, median light-
ness, the lighting feature [120], length of scene cuts and the audio flatness
envelope. As arousal and valence are correlated, it is not surprising that
four features selected among the best performing ones for valence have
also been selected for arousal. These features are the number of scene cuts
per frame, colorfulness, the normalized number of white frames, and the
orientation of the most harmonious template.

There are ten harmonious templates defined in the HSV color space
(Figure 8.1) [122, 4]. For a given template at a given angle, grey areas
represented in Figure 8.1 enclose hues that form a harmonious set. In
other words, an image where the histogram is strictly enclosed in the grey
area is considered as harmonious. The most harmonious template is the
template minimizing a statistical distance between the histograms of the
key frame and the harmonious template [4].

8.1.3 Regression results

The purpose of this section is to run the baseline introduced in this
chapter for the standard protocols defined in Chapter 4 (Section 4.4). The
MSE, Pearson’s r, and Spearman’s Rank Correlation Coefficient (SRCC)
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Table 8.4 – Performance for Protocol D (Same movie) for the discrete emotion prediction
baseline

Movie Arousal MSE Valence MSE

20 Mississippi 0.305 0.317

Dead Man Drinking 0.309 0.274

Decay 0.330 0.321

Home 0.176 0.401

Lionshare Legacy 0.443 0.273

Monolog 0.290 0.395

Sweet Hills 0.206 0.197

The Master Plan 0.303 0.344

You Again 0.089 0.098

are computed to quantify the performance of each protocol. The MSE for
regression models is widely used to quantify the difference between esti-
mated values and the true values estimated. It measures the amount by
which the estimated values differ from the ground truth and assesses the
quality of the regression in terms of its variation and degree of bias. The
Pearson product-moment correlation coefficient (or Pearson’s r) is a mea-
sure of the linear correlation between estimated and true values, while the
SRCC assesses to what extent the relationship between these two variables
can be described using a monotonic function.

The MSE, Pearson’s r and SRCC for protocol A “Predefined sub-
groups” and the final averaged results for protocol B “Leave-one-movie-
out” using our baseline model are shown in Table 8.2. For protocol C
“Same genre”, the final averaged MSE for each genre, still using the same
sets of features defined in Section 8.1.2, is shown in Table 8.3. The results
for protocol D “Same movie”, applied to some movies of the database, are
displayed in Table 8.4.

The results are promising given the huge variety of movies in the
database. They indicate that regression models perform well in modeling
of both induced valence and arousal, but with varying degrees of success
depending on which protocol is used. Globally, MSE values are signif-
icantly smaller than MSE values computed using random sets (around
0.667 and estimated by generating large random samples made up of val-
ues between -1 and 1). As pointed out in previous chapters, it is not pos-
sible to directly compare the performance of our model to previous state
of the art models. They use different test sets and, in most cases, different
performance metrics and output scales. On the other hand, researchers
using one of the protocols defined in Chapter 4 will be able to know how
their model performs not only with respect to this baseline but also to all
future work using one of these protocols.
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8.2 Baselines for continuous emotion prediction

In this section, four baselines are presented to estimate the continuous
valence and arousal scores for 30 movies described in Chapter 6.

In the last few years, breakthroughs in the development of Convo-
lutional Neural Networks (CNN) have led to impressive state of the art
improvements in image categorization and object detection. These break-
throughs are a consequence of the convergence of more powerful hard-
ware, larger datasets, but also new network designs, and enhanced algo-
rithms [5, 6]. Is it possible to benefit from these progresses for the affective
movie content analysis? In this section, we benchmark four state of the art
architectures for the prediction of dimensional affective scores: fine-tuned
CNN, CNN learned from scratch, SVR and transfer learning.

8.2.1 Convolutional Neural Networks and Kernel Methods

As mentioned in Section 8.1.1, SVR is one of the most prevalent kernel
methods in machine learning. The model learns a non-linear function by
mapping the data into a high-dimensional feature space, induced by the
selected kernel. As detailed in Chapter 3, SVRs have been extensively
used in the affective computing field for music emotion recognition [123],
as well as spontaneous emotion recognition in videos [124], and affective
video content analysis [113, 34].

Beginning with LeNet-5 [125], CNNs have followed a classic structure.
Indeed, they are composed of stacked convolutional layers followed by
one or more fully connected layers. So far, best results on the ImageNet
classification challenge have been achieved using CNN-based models [5,
6]. CNNs have been mostly used in the affective computing field for facial
expression recognition [126]. Recently, Kahou et al. trained a CNN to
recognize facial expressions in video frames [54]. Its prediction was then
combined with the predictions from three other modality-specific models
to finally predict the acted-out emotional category in short video clips.

The CNN approach disrupts the field of machine learning and has sig-
nificantly raised the interest of the research community for deep learning
frameworks. Generally applied for object recognition, its use will be natu-
rally extended to any recognition task. The contributions using CNNs in
the affective computing field will likely show up in the coming months.

8.2.2 Regression Frameworks for Emotion Prediction

In this section, we describe the four frameworks that are compared
in Section 8.2.3. All the models presented in this section output a single
value: the predicted valence or arousal score. Thus, they all need to be
learned twice: either for predicting induced arousal scores, or for predict-
ing induced valence scores.

Deep Learning

Two models using CNNs to directly output affective scores are inves-
tigated in this work. Both take as input the key frame of the video seg-
ment for which an arousal or valence score is predicted. The key frame
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Figure 8.2 – Illustration of the architecture of the CNN introduced by Krizhevsky et al.
(originally published in [5])

is defined as the frame with the closest RGB histogram to the mean RGB
histogram of the whole excerpt using the Manhattan distance.

We used data augmentation to enlarge artificially the training set. As
in [5], the model was trained using random 224× 224 patches (and their
horizontal reflections) extracted from the 256× 256 input images. These
input images were the center crop of the key frames extracted from the
video segments in the training set and resized so that the original aspect
ratio is preserved but their smallest dimension equals 256 pixels. The
training is stopped when the Mean Square Error (MSE), measured every
500 iterations using a validation set, increases for five consecutive mea-
surements. At validation and test time, the network makes a prediction
by extracting the 224× 224 center patch.

We present two approaches: one exploiting previously learned mod-
els, and the second one that attempts to learn completely a new model
randomly initialized.

Fine-tuning: This first framework is based on the fine-tuning strategy.
The concept of fine-tuning is to use a model pretrained on a large
dataset, replace its last layers by new layers dedicated to the new
task, and fine-tune the weights of the pretrained network by con-
tinuing the back-propagation. The main motivation is that the most
generic features of a CNN are contained in the earlier layers and
should be useful for solving many different tasks. However, later
layers of a CNN become more and more specific to the task for which
the CNN has been originally trained.
In this work, we fine-tune the model proposed in [5] composed
of five stacked convolutional layers (some are followed by local re-
sponse normalization and max-pooling), followed by three fully con-
nected layers. This model is illustrated in Figure 8.2. To adapt this
model to our task, the last layer is replaced by a fully connected
layer composed of a unique neuron scaled by a sigmoid to produce
the prediction score. The loss function associated to the output of
the model is the Euclidean loss. Thus, the model minimizes the
sum of squares of differences between the ground truth and the pre-
dicted score across training examples. All the layers of the pretrained
model are fine-tuned, but the learning rate associated to the origi-
nal layers is ten times smaller than the one associated with the new
last neuron. Indeed, we want the pretrained layers to change very
slowly, but let learn faster the new layer which is initialized from a
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zero-mean Gaussian distribution with standard deviation 0.01. This
is because the pretrained weights should be already relatively mean-
ingful, and thus should not be distorted too much. We also tried to
fine-tune the last three layers only, i.e., the learning rate associated
to the first layers is set to zero, but the prediction performance was
much worse.
We trained the new fine-tuned models using the reference imple-
mentation provided by Caffe [127] using stochastic gradient descent
with a batch size of 256 examples, momentum of 0.9, base learning
rate of 0.0001, and weight decay of 0.0005.

Learning From Scratch: We also built and learned from scratch a CNN
based on the architecture of [5] but much simpler since our training
set is composed of 16,065 examples.
The model is made of two convolutional layers and three fully con-
nected layers. As in [5], the first convolutional layer filters the
224 × 224 × 3 input key frame with 96 kernels of size 11 × 11 × 3
with a stride of 4 pixels. The second convolutional layer, connected
to the first one, uses 256 kernels of size 5× 5× 96. The outputs of
both convolutional layers are response-normalized and pooled. The
first two fully connected layers are each composed of 512 neurons
and the last fully connected layer is the same as the last one added
to the fine-tuned model in the previous section. The ReLU non-
linearity is applied to the output of all the layers. All the weights are
initialized from a zero-mean Gaussian distribution with standard
deviation 0.01. The learning parameters are also the same as those
used for the fine-tuning strategy.

SVR

This model is similar to the baseline framework presented in Section
8.1: two independent ε-SVRs are learned to predict arousal and valence
scores separately. The RBF is selected as the kernel function and a grid
search is run to find the C, γ and p parameters. The SVR is fed using the
early fusion scheme with the features detailed in Section 8.1.2, i.e., audio,
color, aesthetic, and video features. All features are normalized using the
standard score.

Transfer Learning: CNN as a feature extractor

The approach is the same as in the previous section except that the
4,096 activations of the second fully connected layer called “FC7” of the
original model learned in [5] are normalized using the standard score
and used as features to feed the SVR using the early fusion scheme, in
addition to the features detailed in Section 8.1.2. Thus, the CNN is treated
as a feature extractor and is used to, hopefully, improve the performance
of the SVR.
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8.2.3 Performance Analysis

In this section, the performance of the four well-known state of the art
architectures introduced in Section 8.2.2 is compared and discussed using
the continuous annotations introduced in Chapter 6.

The Importance of Correlation

The common measure generally used to evaluate regression models is
the Mean Square Error (MSE). However, the performance of the models
cannot be analyzed using simply this measure. As a point of comparison,
on the test set, the MSE between the ground truth (ranging from 0 to 1)
for valence and random values generated between 0 and 1 equals 0.113,
whereas the linear correlation (Pearson’s r correlation coefficient) is close
to zero. However, the ground truth is biased to the extent that a large
portion of the data is neutral (i.e. its valence score is close to 0.5) or is
distributed around the neutral score. This bias can be seen from Figure
6.2. Thus, if we create a uniform model that always outputs 0.5, its per-
formance will be much better: its MSE is 0.029. However, the correlation
between the predicted values and the ground truth will be also close to
zero. The performance for the random and uniform baselines is indicated
in Table 8.5. For the random distribution, we generate 100 distributions
and report the average MSE and correlation.

To analyze the results and the performance of the computational mod-
els, the linear correlation has the advantages not to be affected by the range
of the scores to be predicted and to measure the relationship between the
predicted values and the ground truth.

Experimental Results

To learn and evaluate the various frameworks, the dataset presented
in Chapter 6 and composed of 26,525 1-second segments extracted from
30 movies is distributed into a training set, a validation set and a test set.
Approximately 60% of the data is assigned to the training set and 20% of
the data is assigned to both the validation and test sets. More precisely,
16,065 1-second segments extracted from 15 movies are assigned to the
training set, 5,310 segments from 8 movies to the validation set and finally,
5,150 segments from 7 movies to the test set. This distribution makes also
sure that the genre of the movies in each set is as diverse as possible.

Table 8.5 presents the results of using CNNs (fine-tuned and learned
from scratch), SVR and transfer learning for the prediction of valence and
arousal dimensions based on the MSE and the Pearson’s r correlation co-
efficient. For the four frameworks, the predicted scores as well as the
ground truth for valence and arousal range from 0 to 1. Table 8.5 shows
that for valence and arousal, the highest correlation is obtained by the
transfer learning approach. Once again, this result reveals that CNNs pro-
vide generic mid-level image representations that can be transferred to
new tasks, including the transfer from the classification of 1,000 ImageNet
classes to the prediction of the valence and arousal affective scores. Trans-
fer learning improves by 50% the performance in terms of correlation of
the second best performing framework for predicting valence, and by 17%



94 Chapter 8. Baselines

Table 8.5 – Prediction results for the continuous emotion prediction baselines for valence
and arousal dimensions (MSE: Mean Square Error, r: Pearson correlation coefficient)

System
Arousal Valence

MSE r MSE r

Random 0.109 0.0004 0.113 -0.002

Uniform 0.026 -0.016 0.029 -0.005

CNN – Fine-tuned 0.021 0.152 0.027 0.197

CNN – From scratch 0.023 0.157 0.031 0.162

SVR – Standard 0.023 0.287 0.035 0.125

SVR – Transfer learning 0.022 0.337 0.034 0.296

for arousal. However, no clear gain is obtained for MSE. For valence, the
MSE is even higher than the MSE of the uniform strategy.

The fine-tuned CNN outperforms the other models in terms of MSE
for both valence and arousal. The gain in terms of MSE is more impor-
tant for valence. For arousal, the MSE value is close to the performance
obtained by the transfer learning strategy. However, for both arousal and
valence, the correlation is much lower than the performance obtained with
transfer learning. Deeper analyses have shown that deep learning predic-
tions are noisy. Post-processing the predictions using a simple temporal
Gaussian smoothing greatly improves the performance of the fine-tuned
CNN for both arousal and valence, outperforming the transfer learning
strategy. These results are presented in the next chapter. Nevertheless, it
is a promising result given that the performance of this model on the train-
ing set indicates that, despite the use of a validation set to stop learning
when the performance on the validation set increased for 5 consecutive
measurements, the size of the dataset is not big enough to prevent over-
fitting. Indeed, previous work has shown that overfitting and training set
size are closely related [128]. For example, the performance of the fine-
tuned model on the training set for the prediction of valence is much better
(MSE = 0.012, r = 0.79). It may also explain why the performance of the
CNN learned from scratch is lower than the performance of the fine-tuned
CNN.

Regarding the arousal dimension, it is interesting to note that the corre-
lation of the SVR is almost twice the correlation of the pure deep learning
frameworks. This could be explained by the fact that both deep learning
models lack audio and motion information, unlike the SVR framework
which uses as input a combination of features extracted from both the au-
dio signal and from statistics for consecutive frames of a video segment.
However, Nicolaou et al., among others, showed that the prediction of
arousal is greatly enhanced by the use of audio and motion cues [53]. This
is why we investigate in the next chapter the use of audio cues in CNN
frameworks to produce more accurate affective predictions for videos and
to take into account more than one frame to predict the induced affective
score of a 1-second length video segment.
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Summary

In this chapter, we introduced standard protocols using the database
in an attempt to perform standardized and reproducible evaluations to
fairly compare future work within the field of affective computing.

We implemented a baseline for discrete affective movie content anal-
ysis and assessed its performance using four protocols, corresponding to
different goals and needs, and showing promising results. Note that all
the audio and visual features used for the baseline are also released along-
side the LIRIS-ACCEDE database.

We also introduced four baselines for continuous emotion prediction.
We found that the fine-tuned CNN framework is a promising solution for
emotion prediction. However, the limited size of the training set (16,065

samples) prevents the pure CNN-based frameworks to obtain good per-
formances in terms of correlation. Nevertheless, intermediate layers, orig-
inally trained to perform image recognition tasks, are generic enough to
provide mid-level image representations that can greatly improve the pre-
diction of affective scores in videos.

However, these four baselines do not take into account the temporal
information for continuous emotion prediction. Based on these promising
results, we introduce in the next chapter a more psychologically relevant
CNN-based spatio-temporal framework, modeling the effect that previous
scenes may reasonably influence the emotion inference of future ones.
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Based on the promising results of the baselines for continuous emo-
tion prediction introduced in the previous chapter, we introduce in

this chapter a more psychologically relevant CNN-based spatio-temporal
framework. First, a static model is proposed using CNNs to predict an af-
fective score for a given short video segment based on several key frames
and audio spectrograms. A multi-level data-augmentation is also intro-
duced to improve the prediction accuracy.

As mentioned in Chapter 2, psychologists suggest that the evaluation
of an emotion is an iterative process. For example, Russell states to define
the Core Affect that [20]:

“Emotional life consists of the continuous fluctuations in core
affect, in pervasive perception of affective qualities, and in the
frequent attribution of core affect to a single Object, all inter-
acting with perceptual, cognitive, and behavior processes.”

This process of recursive and continuous evaluations is also the core
of the appraisal evaluation postulated by Scherer [1]:

97



98 Chapter 9. The Spatio-Temporal Model

“In the case of humans, the CPM postulates that the recursive
checking process repeats the sequence continuously, constantly
updating the appraisal results that change rapidly with chang-
ing events and evolving [emotional] evaluation until the mon-
itoring subsystem signals termination of or adjustment to the
stimulation that originally elicited the appraisal episode.”

Thus, this key aspect of emotions has to be considered in affective com-
putational models. In our innovative approach, we propose to introduce
psychological insights for the computational modeling of emotions. This
is characterized by addressing the temporal dimension of the video inputs.
In other words, previous induced emotions have to be taken into account
and introduced recursively into the model. This is why in this work mid-
level image representations are extracted from the static model to feed a
bidirectional Long Short-Term Memory Recurrent Neural Network which
is able to model the emotional relationships between consecutive video
segments. This spatio-temporal transfer learning approach outperforms
all the baselines for the prediction of the induced valence and arousal
scores.

9.1 Advanced static model

Based on the promising results of the fine-tuning strategy presented
in Chapter 8, we aim in this section to maximize the performance of the
static model, i.e. the model estimating induced arousal or valence scores
for 1-second movie segments.

9.1.1 Multi-level data-augmentation

Karpathy et al. developed several CNN architectures for video classifi-
cation [129]. They found that the single-frame multi-resolution framework
was the best performing architecture in terms of classification accuracy per
clip. Based on this result, to improve the performance of the fine-tuned
deep learning model, we also adopt in this chapter a single-frame CNN-
based architecture.

However, the complex architecture of CNNs is particularly prone to
overfitting due to its large number of parameters relative to the number
of observations. Augmenting the size of input data is thus an appropriate
technique to reduce overfitting. However, it is often time consuming to
reliably collect new ground truth from annotators. This is why artificially
augmenting the size of the datasets is often the preferred solution to pre-
vent overfitting. To combat overfitting by artificially enhancing the size of
the training set, a multi-level data-augmentation (MLDA) is described and
variability in the training ground truth to take into account the variations
of the self-assessments is introduced.

Training methodology

For the fine-tuned baseline described in Chapter 8, we will refer to as
“Fine-tuned AlexNet”, a single key frame was extracted and resized from
each 1-second movie segment. Then, random 224× 224 crops (and their
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horizontal reflections) extracted from the resized key frame were used
during training.

We adopt here a more aggressive MLDA strategy illustrated in Figure
9.1 inspired by the strategy used by Szegedy et al. who extracted crops for
different resolutions [6]. First, 5 key frames are extracted for each 1-second
video segment. A frame is defined as a key frame if its YUV histogram
is the closest, using the Manhattan distance, to a cluster computed by the
k-mean clustering algorithm (with k = 5). For each key frame, a first patch
is extracted corresponding to the 256× 256 patch maximizing the salience
of the key frame. The saliency map is computed for the considered pic-
ture from the visual attention model of [130]. The saliency map provides a
representation of the most visually attractive pixels. Then, the key frames
are resized so that the original aspect ratio is preserved but their smallest
dimension equals 1.1× 256 pixels. Five 256× 256 patches are extracted
from the resized key frames corresponding to the top-left, top-right, cen-
ter, bottom-left, and bottom-rights squares. The model is finally trained
using random 224× 224 crops (and their horizontal reflections) extracted
from the 256× 256 input patches. In this multi-level data-augmentation,
5× 6 = 30 patches are used for training instead of a single one for the
fine-tuned AlexNet baseline presented in the previous chapter.

We also introduce variability for the ground truth associated to the 30

patches of a segment to combat overfitting. Indeed, the dropout method
has demonstrated that adding noise to the states of hidden units in a neu-
ral network helps preventing overfitting [128]. This is why in this work
we investigate the addition of noise to the ground truths, in relation to the
variability of the affective self-assessments used to generate the ground
truth. Ground truths for the training set are no longer associated to the
arousal or valence score corresponding to the 1-second video segments.
Indeed, the ground truth associated to a patch is considered as a random
variable generated using a Normal distribution. The mean of the distri-
bution is the affective score (either valence or arousal) corresponding to
the 1-second segment and its standard deviation equals a quarter of the
standard deviation corresponding to the 1-second segment and generated
from the continuous self-assessments (either valence or arousal) of the 10

participants (Figure 6.2).

Test strategy

At test time, the center 224× 224 crop for the 30 patches is extracted.
The final prediction is obtained by averaging the 30 scores generated by
the model for each patch. A simple averaging approach was preferred
over alternative approaches since Szegedy et al. [6] found that, using their
cropping approach, the best performance was obtained with simple aver-
aging.

Results

To analyze the performance of the test strategy, we also computed the
final predictions by averaging only the predicted scores for the 5 center
patches extracted from the resized key frames. We also analyzed the ef-
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Table 9.1 – Performance for the fine-tuned AlexNet with three multi-level data-
augmentation test strategies

System and test strategy
Arousal Valence

MSE r MSE r

Fine-tuned AlexNet (1 crop) 0.021 0.152 0.027 0.197

Fine-tuned AlexNet with
MLDA (30 patches averaging)

0.021 0.143 0.028 0.283

Fine-tuned AlexNet with
MLDA (5 center patches

averaging)

0.022 0.111 0.030 0.222

Fine-tuned AlexNet with
MLDA (all but salience-based

patches averaging)

0.021 0.134 0.029 0.253

fect of the saliency-based patches. The results are indicated for the fine-
tuned AlexNet in Table 9.1. For valence, the MLDA and 30 patches av-
eraging strategy greatly improves the performance in terms of correlation
(+43%) compared to the fine-tuned AlexNet baseline. However, the MSE
is slightly higher (+4%). The salience-based patch, which is a contribution
of this thesis, greatly improves the performance of the MLDA: it provides
a full-resolution zoom on the most meaningful part of the key frames. For
arousal, the results are more mitigated. They show that a single crop ex-
tracted from a well-chosen key frame is good enough to predict arousal
scores. In fact, previous work has shown that arousal is more related to
audio or temporal features than visual features [50, 59, 52]. In Section
9.1.3, we show that audio features moderately improve the prediction per-
formance for arousal. Indeed, it is the use of the temporal information in
Section 9.2 which will greatly enhance the prediction accuracy for arousal.

9.1.2 Fine-tuning GoogleNet

To surpass the performance of the fine-tuned AlexNet baseline, we
fine-tune in this section the GoogleNet model introduced by Szegedy et
al. that became in 2014 the new state of the art performance on the Im-
ageNet dataset. The GoogleNet architecture is illustrated in Figure 9.2.
GoogleNet is much deeper than AlexNet, but uses 12× fewer parame-
ters even if the computational cost is increased by a factor of two. It uses a
concatenation of nine similar “Inception” networks. An Inception network
consists in 1× 1, 3× 3, and 5× 5 convolutions stacked upon each other,
with max-pooling layers to reduce the resolution. Another key aspect of
GoogleNet is that all the convolutions, including those inside the Inception
modules, use rectified linear activation. Given the depth of the network,
two auxiliary losses are connected to intermediate layers to increase the
back-propagated gradient and to prevent the vanishing gradient problem.
During training, the auxiliary losses are added to the total loss of the net-
work with a discount weight. At test time, the auxiliary losses are no
longer needed and are thus removed from the network. In our fine-tuning
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Figure 9.2 – Illustration of the architecture of GoogleNet introduced by Szegedy et al.
(originally published in [6])

Figure 9.3 – Examples of resized spectrograms used as input by the audio-based CNNs

approach, the two auxiliary and the final softmax activations are replaced
by a fully connected layer composed of a unique neuron scaled by a sig-
moid to produce the prediction score. As for the fine-tuned AlexNet, the
loss functions associated to the model are the Euclidean loss.

The performance for the fine-tuned GoogleNet with MDLA is surpris-
ingly lower than the performance of the fine-tuned AlexNet with MDLA
(Table 9.2). The GoogleNet model is more computationally expensive and
requires more memory. Thus, the batch size of the GoogleNet is almost
six times smaller than the batch size used for fine-tuning AlexNet (44 in-
stead of 256), in order to fit in the GeForce GTX980 with 4GB of dedicated
graphics memory. It may explain why the efficiency of the fine-tuned
GoogleNet is not as good as expected.

However, the last fully connected layer provides a more compact mid-
level representation (1,024 neurons) than the last fully connected layer
from the fine-tuned AlexNet (4,096 neurons). This compactness may be
a significant advantage to transfer mid-level representations to the tempo-
ral model in Section 9.2.

9.1.3 Audio modality

The fine-tuned AlexNet and GoogleNet presented in the previous sec-
tions only use as input the frames of the 1-second video segments. How-
ever, the audio channel is also important to predict the affective impact of
movies, and in particular to predict arousal scores [59, 52].

Spectrograms

Audio spectrograms are a visual representation of the spectrum of fre-
quencies in a sound. These visual representations have been naturally
used in previous work to successfully learn CNNs for speech emotion
recognition, or musical onset detection [131, 132].
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Table 9.2 – Performance for the unimodal static architectures, i.e., for the visual fine-
tuned AlexNet and GoogleNet models, and for the audio-based CNN

Model
Arousal Valence

MSE r MSE r

Fine-tuned AlexNet with MLDA
(30 patches averaging)

0.021 0.143 0.028 0.283

Fine-tuned GoogleNet with MLDA
(30 patches averaging)

0.022 0.136 0.027 0.274

Fine-tuned audio-based CNN 0.020 0.145 0.029 0.213

The left and right channels of the time-domain audio signal, extracted
from a 1-second length video segment, are first converted into spectro-
grams using short-time Fourier transform [133]. The spectrogram has a
40 ms window size with a 20 ms overlap, windowed with a Hamming
window. Both spectrograms are then summed and the resulting image is
resized so that its size equals 256× 256 pixels. Examples of three resized
spectrograms used as inputs by the audio-based CNN presented in the
next section are shown in Figure 9.3.

Audio-based CNN

Similarly to the baselines for continuous emotion prediction, several
architectures are tested among: learning a lighter CNN from scratch, fine-
tuning AlexNet or fine-tuning GoogleNet with spectrograms. The train-
ing strategy is also the same as the one introduced in Chapter 8, e.g., no
data augmentation similar to the MLDA is performed on the audio signal.
Instead, random 224× 224 patches (and their horizontal reflections) are
extracted from the 256× 256 input spectrograms to feed the audio-based
CNN. Surprisingly, the best performance has been achieved by fine-tuning
AlexNet for both valence and arousal. We did not expect such a result
since AlexNet has been originally trained using standard pictures from
the ImageNet dataset to detect objects. It seems that mid-level represen-
tations learned by the original AlexNet are general enough to embody
spectrograms to predict induced emotions.

The performance of the audio-based CNN is detailed in Table 9.2.
Compared to the performance of the visual-based CNNs, the audio-based
CNN achieves slightly better results for the prediction of the induced
arousal. For valence, the visual-based CNNs still achieve the best per-
formance in terms of both MSE and correlation. Again, it is consistent
with previous work showing that arousal is more related to audio fea-
tures, while valence is more related to visual features [60, 134].

9.1.4 Multimodal results

The multimodal static framework is the combination between predic-
tions from a visual-based CNN (i.e., the fine-tuned AlexNet or GoogleNet)
and from the audio-based CNN (i.e., the fine-tuned AlexNet).
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Table 9.3 – Performance for the multimodal static fusions

Fusion Models
Arousal Valence

MSE r MSE r

(a) Fine-tuned AlexNet and
audio-based CNN

0.040 0.124 0.027 0.349

(b) Fine-tuned AlexNet and
audio-based CNN

0.018 0.170 0.028 0.291

(a) Fine-tuned GoogleNet
and audio-based CNN

0.040 0.129 0.026 0.345

(b) Fine-tuned GoogleNet
and audio-based CNN

0.018 0.161 0.027 0.281

Two techniques are evaluated to combine the 30 predictions from the
CNN based on the visual modality and those from the CNN based on
the audio modality. Either (a) the final prediction is the mean between
the average of the visual predictions from the 30 patches extracted from
the key frames and the prediction from the audio-based CNN, or (b) the
final prediction is the mean between the visual predictions from the 30

visual patches with the prediction from the audio-based CNN. Results for
both fusions are detailed in Table 9.3. Fusion (a) is more efficient to com-
bine valence predictions, while fusion (b) gives better results for arousal.
Furthermore, the performance using the fine-tuned AlexNet instead of
the fine-tuned GoogleNet is not significantly higher. In fact, next section
shows that the fine-tuned GoogleNet model is more appropriate to be
used in a transfer learning approach.

9.2 Advanced temporal model

The multimodal static framework presented in the previous section
misses crucial information to model the emotions induced by videos: the
temporal information. Based on the static framework, we introduce in
the following sections a temporal model to predict induced emotions for
consecutive 1-second video segments.

9.2.1 LSTM-RNNs

Recurrent Neural Networks (RNNs) are powerful networks that are
able to model input sequences of different lengths thanks to the idea of
parameters that are shared over different parts of the network. It can
be trained using the Back-Propagation Through Time (BPTT) algorithm, a
generalization of the back-propagation algorithm. The main problem with
the BPTT algorithm is that the gradients propagated over many stages
tend most of the time to vanish exponentially with the number of time
steps. Thus, the long-term dependencies tend to be hidden by the small-
est fluctuations arising from the short-term dependencies [135]. Learning
efficiently long-term dependencies remains an unsolved problem.



9.2. Advanced temporal model 105

sigm 

sigm 

sigm 

 𝑠𝑡+1,𝑖 
 

𝜎 
 

tanh 

x 

x 

x 

ℎ𝑡+1,𝑖 

𝑥𝑡 
ℎ𝑓

𝑡,𝑖 

ℎ𝑜
𝑡,𝑖 

𝑥𝑡 

𝑠𝑡 

𝑥𝑡 

𝑥𝑡 

ℎ𝑖
𝑡,𝑖 

Figure 9.4 – Schema of a LSTM unit. The red circle represents the state cell and the three
green circles represent the input, forget and output gates.

The Long-Short-Term-Memory (LSTM) units have been created in or-
der to better capture long-term dependencies [136]. They replace the usual
hidden units of neural networks and have the ability to learn when to re-
member and when to forget past dependencies. LSTM-RNNs have been
used in several works dealing with affective computing. They have been
used to predict continuous scores of spontaneous affect for multiple cues
[53, 137], to predict asynchronous valence and arousal scores based on
audiovisual and physiological features [134], to continuously estimate the
emotions felt by participants watching videos using EEG signals and facial
expressions [138], and for the task of on-line continuous-time music mood
regression [139]. That is why we believe in the capacity of LSTM-RNNs to
model the temporal aspect of induced emotions.

The LSTM unit used in this thesis follows the one introduced by Graves
[140]. The LSTM unit is illustrated in Figure 9.4. The memory of the LSTM
unit i for time step t is managed through three sigmoidal gates: the input
gate hi

t,i, the forget gate h f
t,i, and the output gate ho

t,i. The gates are activated
by passing their input through the sigmoid function. The most important
component of the LSTM unit is the state cell st that has a linear self-loop
weighted by the forget gate. The output of the state cell is passed through
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a tanh non-linearity and can be shut off with the output gate. These values
are computed as follows:

h f
t,i = sigmoid(b f

i + ∑
j

U f
ijxt,j + ∑

j
V f

ij st,j + ∑
j

W f
ij ht,j) (9.1)

st+1,i = h f
t,ist,i + hi

t,iσ(bi + ∑
j

Uijxt,j + ∑
j

Wijht,j) (9.2)

hi
t,i = sigmoid(bi

i + ∑
j

Ui
ijxt,j + ∑

j
Vi

ijst,j + ∑
j

W i
ijht,j) (9.3)

ho
t,i = sigmoid(bo

i + ∑
j

Uo
ijxt,j + ∑

j
Vo

ijst,j + ∑
j

Wo
ijht,j) (9.4)

ht+1,i = tanh(st+1,i)ho
t,i (9.5)

where xt is the current input vector, ht is the current hidden layer vector,
σ is the neural non-linearity (e.g., sigmoid or tanh), b f , bi, bo are the biases
for the gates, U f , Ui, Uo are the input weights for the gates, and V f , Vi,
Vo, W f , W i, Wo are the recurrent weights for the three gates.

9.2.2 Architecture

Considering the great performance of the transfer learning approach
in Chapter 8, we have chosen to use this technique to build the temporal
computational model. The temporal model is thus built using mid-level
representations extracted from an audio-based CNN and from a visual-
based CNN that are used as input by a bidirectional LSTM-RNN [141].

A bidirectional LSTM-RNN is the combination of the concepts of
LSTM-RNNs detailed in the previous section, and of bidirectional RNNs
[142]. A bidirectional RNN has access to all past and all future inputs
through the use of two distinct input layers processing the data forward
or backward. The outputs from both hidden layers are connected to the
same output layer. Bidirectional LSTM-RNNs can thus access long-range
dependencies in both input directions.

The general architecture of the advanced spatio-temporal model is
shown in Figure 9.5. The steps to create an affective curve for a movie
are:

1. The movie is first segmented into consecutive 1-second length video
segments.

2. An audio spectrogram and a patch extracted from a key frame are
computed from the first 1-second length segment of the movie. The
selection of the kth patch to be used among the 30 available visual
patches allows to artificially augment the training data in Section
9.2.4.

3. Then, the spectrogram is used to feed the audio-based CNN trained
in Section 9.1.3 for arousal or valence depending on the affective
curve to be generated.

4. In parallel, the kth visual patch feeds the visual-based CNN trained
in Section 9.1.2 based on GoogleNet. This CNN framework has been
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Table 9.4 – Performance for the temporal model fed with the visual fine-tuned AlexNet
or the fine-tuned GoogleNet

Model
Arousal Valence

MSE r MSE r

LSTM-RNN using visual fine-tuned
AlexNet activations

0.021 0.097 0.029 0.349

LSTM-RNN using visual fine-tuned
GoogleNet activations

0.021 0.135 0.025 0.458

preferred over the fine-tuned AlexNet described in Section 9.1.1. In-
deed, using the fine-tuned GoogleNet instead of Alexnet increases
the performance, in terms of correlation, by approximately 31% for
valence, and 39% for arousal (Table 9.4).

5. Mid-level representations are extracted from the activations of the
neurons of both unimodal CNNs. Their dimension is reduced using
Principal Component Analysis (PCA). Both modalities are then com-
bined to form a single multimodal compact mid-level representation
of the short video segment (see Section 9.2.3).

6. The multimodal compact mid-level representation feeds the bidirec-
tional LSTM-RNN trained in Section 9.2.4 to output the affective
score.

7. Steps 2 to 5 are repeated for the next 1-second length video segment
until the last segment of the movie is reached.

8. Finally, the resulting affective curve, representing the induced va-
lence or arousal, is smoothed using a Gaussian filter.

9.2.3 Combination of visual and audio modalities

For the spatio-temporal model, a feature-level fusion is adopted in-
stead of a decision-level fusion, i.e., the mid-level representations for the
audio and visual modalities are concatenated before being used by the
bidirectional LSTM-RNN. This decision has been made experimentally
since preliminary results have shown that a feature-level fusion was more
efficient. It also makes sense that both audio and visual modalities should
be considered all at once to predict the emotions induced by videos.

However, the dimensions of both mid-level representations, i.e., the
activations of the last fully connected layers from the CNNs, are non-
negligible. For the audio modality, the last fully connected layer of the
CNN based on AlexNet is composed of 4,096 neurons, while for the visual
modality, the last fully connected layer of the CNN based on GoogleNet
is composed of 1,024 neurons. If no data reduction is performed, the di-
mension of the input (5,120 values) is too large compared to the size of
the limited training set composed of 15 temporal sequences only, i.e., 15

movies, which causes overfitting and thus poor performances for the test
set. Three techniques for dimensionality reduction are mainly used: PCA,
Linear Discriminant Analysis, and Independent Component Analysis. No
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claim can be made about which is the most efficient reduction technique
[143, 144]. However, PCA seems more robust compared to the other tech-
niques [145]. Thus, PCA is used in this work to reduce separately the
dimensions of the visual and audio mid-level representations.

Two independent PCAs are learned on the training set. Audio and vi-
sual mid-level representations are first computed for the training set and
standardized (i.e., normalized to zero mean and unit variance). Then two
PCAs are learned on the standardized values: one to reduce the dimension
of the audio mid-level representation, and the second one for the visual
mid-level representation. Both compact representations are then concate-
nated to feed the LSTM-RNN. These PCAs are applied to reduce the di-
mension of the mid-level representations for the validation and test sets,
previously standardized using the mean and variance computed from the
training set. Several reduced dimensions were investigated (dimension
reduced to 128, 256, . . . , 1024, i.e., no data reduction is performed for the
visual representations for this last value). Best performance was achieved
using a dimension reduced from 1,024 to 896 for the visual mid-level rep-
resentations, and from 4,096 to 128 for the audio mid-level representa-
tions, for both valence and arousal. Using these new dimensions, 98% of
the variance in original data in the training set is explained for the visual
mid-level representations, while this percentage equals 99% for the audio
mid-level representations despite the drastic reduction in size. In fact, the
audio mid-level representations are very sparse. For example, if its di-
mension is reduced to 512, 99,9% of the variance of the original data is
still explained.

In the following sections, a compact multimodal mid-level represen-
tation of size 1,024 is used to feed the bidirectional LSTM-RNN. Figure
9.5 summarizes the main steps used to generate the compact multimodal
mid-level representations.

9.2.4 Data-augmentation

As for CNNs in Section 9.1.1, LSTM-RNNs are also prone to overfitting
and can benefit from a data-augmentation technique, especially since the
training set is composed of only 15 temporal sequences corresponding to
the consecutive compact mid-level representations for the 15 movies of the
training set.

Training methodology

To artificially augment the number of temporal sequences, several se-
quences are generated per movie, each using the center 224 × 224 crop
from a different 256 × 256 patch extracted in Section 9.1.1 to generate
visual mid-level representations. As in Section 9.1.1, the ground truth
associated to each 1-second video segment inside a temporal sequence is
considered as a random variable using the parameters previously defined.
Thus, the temporal sequences generated for a single movie show different
compact-mid-level representations and slightly different ground truths.

In Section 9.1.1, six patches were extracted from five key frames. 30

temporal sequences could thus be generated per movie. However, the
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temporal sequences need to be written in the NetCDF file format to be
used by the tool to train LSTM-RNNs. The NetCDF file format requires
that all the data to be written should fit at the same time in a single table in
memory. Since 24GB of memory were available for the experiments, due
to memory constraints five temporal sequences only have been generated
per movie using the most representative patches, i.e., the center 256 ×
256 patch k of the five key frames, with k ∈ {1, 2, 3, 4, 5} the number
of the key frame from with the kth patch has been extracted. In other
words, for each movie, for each 1-second length video segment, the center
crop of the center patch extracted from the first key frame (k = 1) is
used to generate a compact multimodal representation. The consecutive
compact multimodal representations form the first temporal sequence for
the movie. Four other sequences are generated using the center crop of
the center patch extracted from either the second, third, fourth, or fifth key
frame. Finally, 75 temporal sequences are used to train the bidirectional
LSTM-RNN for valence or arousal.

Batch learning by BPTT [146] is used to train the bidirectional LSTM-
RNNs with mini batches of 20 sequences. The training is performed with
the CURRENNT library 1 [147]. To prevent overfitting, Gaussian noise
with standard deviation 0.1 is applied to the input sequences of the train-
ing set (it is not applied to validation and test sets). The steepest descent
optimizer is used with momentum 0.9 and learning rate 1e-6. Several ar-
chitectures for the bidirectional LSTM-RNN have been investigated. The
best performing architecture is composed of two hidden layers with re-
spectively 156 and 32 bidirectional LSTM cells. Each layer is fully con-
nected. The output layer consists of a single linear summation unit to
predict the induced affective score (arousal or valence).

The networks are trained for a maximum of 1,000 epochs. The network
weights are initialized randomly using a normal distribution with mean 0

and standard deviation 0.1. The training is stopped if no improvement of
the performance in terms of Sum of Squared Error is observed for more
than 30 epochs on the validation set, evaluated at each epoch. The best
network for the validation set is saved and its performance is computed
for the test set.

Test strategy

To compute the performance of the advanced spatio-temporal model
on the test set with respect to the continuous ground truth (for valence or
arousal), five affective curves are generated using the same patches as in
the data-augmentation of the training methodology. Please note that the
ground truth of the validation and test set is the “raw” ground truth: it is
no longer considered as composed of random variables. To combine these
five affective curves, two strategies are compared. The first strategy is a
simple averaging:

ŷi =
5

∑
k=1

ˆyk,i (9.6)

1. http://sourceforge.net/projects/currennt/
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with ŷi the final affective score assigned to the ith fragment of a movie,
and ˆyk,i the affective score generated by the model using the kth patch
(represented in Figure 9.5).

The second strategy is to compute the weights of a weighted average
maximizing the performance for the validation set. Then, these weights
are used to combine the five curves of the test set:

ŷi =
5

∑
k=1

wk ˆyk,i (9.7)

with wk the weight of the kth affective curve.
But how the number of the key frame from which the center patch

used to generate the visual-based mid-level representations could impact
the performance of the affective curve? In other words, why the affective
curve created using the mid-level representations generated using for ex-
ample the center patch from the first key frames could be more or less
reliable than the affective curve generated using the center patch from
the other key frames? To try to answer to this question, we first need to
go back to the key frame generation in Section 9.1.1. A frame is defined
as a key frame if its YUV histogram is the closest, using the Manhattan
distance, to a cluster computed by the k-mean clustering algorithm (with
k = 5). The implementation of the k-mean algorithm biases the number
of the key frame to the extent that black key frames are often labeled with
the first or last labels. Thus, if a black frame exists in a 1-second length
video segment, it is more likely that it will be the first or fifth key frame
of the segment.

Once combined, the predicted curves for the movies are smoothed
to improve the performance of the model using a Gaussian function and
compared to the ground truth. Indeed, Malandrakis et al. have shown that
smoothing continuous predicted curves can improve the performance of
continuous models [52]. Again, the Gaussian parameters maximizing the
performance for the validation set are computed and applied to smooth
the predicted curves for the test set. The results for both combination
strategies are detailed in Table 9.5 and discussed in the next section.

9.3 Experimental results

In this thesis, several computational models for continuous movie
content analysis have been proposed, all learned and evaluated using a
dataset composed of 30 movies annotated along the continuous induced
valence and arousal axes (Chapter 6). These models are compared in this
section.

9.3.1 Performance analysis

In the previous chapter, a baseline based on SVR and transfer learn-
ing has been proposed. In this chapter, a multimodal static model has
first been achieved (Section 9.1.4) which predicts the induced valence or
arousal for 1-second length video segments. An efficient way for such
a static model to consider the consecutive video segments together is to
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Table 9.5 – Performance for the advanced temporal multimodal model compared to the
static models

Model
Arousal Valence

MSE r MSE r

Random 0.109 0.0004 0.113 -0.002

Uniform 0.026 -0.016 0.029 -0.005

SVR with transfer learning
baseline

0.022 0.337 0.034 0.296

Multimodal static model (best
fusions)

0.018 0.170 0.027 0.349

Multimodal static model with
Gaussian smoothing

0.020 0.208 0.025 0.489

LSTM-RNN (simple average) 0.018 0.289 0.024 0.559

LSTM-RNN (best weights) 0.017 0.361 0.024 0.559

apply a smoothing function on the consecutive scores that have been pre-
dicted independently. For example, Hanjalic and Xu applied a Kaiser
smoothing window to merge neighboring predicted local arousal and va-
lence values [50]. Finally, a spatio-temporal model has been proposed in
the previous section using bidirectional LSTM-RNN to output continuous
affective curves. Table 9.5 details the performance for all these models.

First, Table 9.5 shows that a simple Gaussian smoothing significantly
improves the performance of the multimodal static model for valence pre-
dictions (-7% for MSE and +40% for r). The correlation for arousal is also
better but is still limited and far to be as good as the performance in terms
of correlation of the SVR with transfer learning baseline for arousal. How-
ever, the multimodal static model, with and without Gaussian smoothing,
outperforms the baseline for the prediction of the induced valence values.

The advanced spatio-temporal model with simple averaging as well as
with the best weights approach outperforms the multimodal static model.
However, with the simple averaging approach, the performance in terms
of correlation is still smaller than the baseline. It is the best weights ap-
proach that makes possible for the spatio-temporal model to outperform
the baseline for both valence and arousal and in terms of both MSE and
correlation. The best weights selected to combine the five predicted curves
using for each consecutive video segment the center patch extracted from
one of the key frames shows that for valence the five curves are all equally
relevant. This is why the results are the same for valence for the sim-
ple average and best weights approaches. However, for arousal the best
weights show that the first and fifth predicted curves using the patches
from the first or fifth key frames are less relevant. Indeed, the five weights
selected to combine the five predicted curves are respectively, for the first
to the last curve: 0.07, 0.22, 0.35, 0.34, and 0.02. As stated in the previous
sections, black key frames are more likely to be assigned as the first or
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fifth key frame. It seems from these results that they are less meaningful
to predict induced arousal scores.

Even if the performance of the spatio-temporal model outperforms all
the other models and is significantly better than the performance obtained
by chance or from a uniform model, the performance for arousal is still
limited. First, we may surmise that the architecture of the model is not
optimal to predict arousal scores. Temporal information is considered
once independent compact mid-level representations are generated. To
enhance the prediction performance for arousal, temporal mid-level rep-
resentations based on motion intensity maps for consecutive video frames
could probably help. Second, since temporal information is very impor-
tant to accurately predict arousal scores, we can also suppose that the
temporal granularity (1Hz) is not precise enough and that using finer
temporal granularities, e.g., one affective score per video frame, could
help improving the performances. Finally, we can assume that ground
truth for arousal is not as reliable as ground truth for valence. Indeed,
in Chapter 6, we mentioned that the inter-coder correlation of the self-
assessments for valence (mean = 0.313± 0.195 SD) was higher than for
arousal (mean = 0.275 ± 0.195 SD). Actually, valence is a concept eas-
ier to understand than arousal, at least for French participants. It was
thus easier for them to self-assess their level of valence than their level of
arousal. Consequently, the mean of the self-assessments for arousal may
be less representative of the emotions actually felt by participants than
for valence. To conclude, it is more likely a combination of these factors
that influences the performance of the predicted arousal curves for the
spatio-temporal model. The last chapter of this thesis proposes further
discussion as perspectives for future research work.

9.3.2 Affective curves

The results given in the previous section are global results that do
not explicitly indicate how generated affective curves temporally fit with
the ground truth. This is why in this section, a qualitative evaluation
is performed for affective curves generated for three movies. Affective
curves for arousal and valence, generated by the multimodal static model
and by the spatio-temporal model, are shown for the movies Big Buck
Bunny, Full Service, and Payload, respectively in Figures 9.6, 9.7, and 9.8.

Globally, the multimodal static model seems closer to neutral values
for arousal and valence while the spatio-temporal model fits more closely
the trends of the ground truth. However, it seems that none of the models
is able to accurately model the rapid but short increases or decreases of
arousal or valence. Raw predictions from the multimodal static model are
also very noisy due to the fact that it takes into account individually the
consecutive video segments extracted from the movies.

Summary

In this chapter, a static model based on two unimodal fine-tuned CNNs
has been presented first. The MLDA, combined with the ground truth con-
sidered as random variables, artificially augments the size of the training
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Figure 9.6 – Predicted affective curves for Big Buck Bunny
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Figure 9.7 – Predicted affective curves for Full Service
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Figure 9.8 – Predicted affective curves for Payload

set to prevent overfitting for the visual-based CNN. For the audio-based
CNN, spectrograms are extracted from the audio signal. The activations
of the last fully connected layers from both CNNs are used as mid-level
representations. Then, the size of these mid-level representations is re-
duced using PCA. The compact multimodal mid-level representations are
used by a bidirectional LSTM-RNN to predict continuous affective curves,
taking into account the past and future long-term dependencies between
the video segments. The five affective curves generated per movies are
finally combined using a weighted average to compute the final affective
curve.

A correlation of 0.559 is achieved for valence between the ground truth
and the final affective curves for the seven movies of the test set. This
correlation is equal to 0.361 for arousal. The spatio-temporal model sig-
nificantly outperforms the baselines from Chapter 8.





Conclusions

The work conducted in this thesis focused on the automatic predic-
tion of emotions induced by movies. Two main problems were ad-

dressed: the creation of a large and robust dataset that can be shared
among researchers, and the automatic estimation of the emotions induced
by movies using a reliable computational model.

This chapter concludes this thesis, summarizing the main contribu-
tions and results. Specific highlights are also emphasized. Beyond this
work, perspectives are detailed for future affective movie content analysis
work.

Achievements

In the first part of this thesis, Chapters 2 and 3 gave an overview
of emotion theories, emotion representations, as well as computational
models and existing datasets for affective video content analysis. A re-
view of previous work developing computational models to infer emo-
tions showed that they mostly suffer from one or more of these issues:
• They represent emotions using discrete categories. However, a dis-

crete representation is subject to ambiguities and do not cover the
whole range of emotions elicited by movies.
• They rely on a predefined set of handcrafted audiovisual features

extracted from videos. However, building complex handcrafted
features requires strong domain knowledge and is highly problem-
dependent. Obtaining a satisfying feature extraction is thus not a
trivial issue.
• They do not take into account the fact that an emotional episode is

a recursive process.
• They use private datasets to evaluate their performance, thus mak-

ing fair comparisons and results reproducibility impossible, and
preventing achievement of major strides in the field.

This is why in the second part of this thesis, a public affective dataset
is developed as a first key contribution shared with the community. In
Chapters 4, 5, 6, and 7, the LIRIS-ACCEDE dataset is introduced. It is
composed of 9,800 video segments extracted from 160 movies shared un-
der CC licenses. 30 from these 160 movies have also been continuously
annotated. The use of movies shared under CC licenses make it possible
to share the database publicly without copyright issues. Details about the
use of this dataset by the research community are given in the next section.

First, the 9,800 excerpts have been annotated using crowdsourcing to
reach a large number of remunerated annotators. The 9,800 excerpts have
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been ranked along the induced valence and arousal axes using pairwise
comparisons to improve the consistency of annotations. Comparisons
were generated using the quicksort algorithm to reduce costs. To rank
the 9,800 excerpts along the induced valence axis, more than 582,000 an-
notations for about 187,000 comparisons were gathered from 1,517 trusted
annotators from 89 countries, while for arousal, more than 665,000 anno-
tations for around 221,000 unique comparisons were gathered from 2,442

trusted annotators also from 89 countries. Four reproducible protocols us-
ing these 9,800 excerpts were defined to allow fair comparisons between
future computational models for discrete movie content analysis. How-
ever, the ranks provide no information on distribution of the dataset in
the 2D VA space. To address this limitation, we carried out a comple-
mentary experiment to collect in a controlled environment absolute video
ratings from 28 volunteers for a subset of 40 excerpts from the dataset. The
significant correlation for both arousal (SRCC = 0.751, t(44) = 7.635, p <
1× 10−8) and valence (SRCC = 0.795, t(44) = 8.801, p < 1× 10−10) be-
tween crowdsourced ranks and the ratings collected in the controlled envi-
ronment validated the annotations gathered using crowdsourcing. Using
Gaussian Processes for Regression that can model the noisiness from mea-
surements, affective scores were also estimated for all the 9,800 excerpts
of the database.

Second, another experiment was performed to collect continuous rat-
ings for 30 movies. Using joysticks and a modified version of the GTrace
annotation tool [102], 10 French paid participants continuously annotated
half of the movies along the induced valence axis and the other half along
the induced arousal axis. Continuous ratings were post-processed in or-
der to generate the average continuous emotions induced by the movies
in terms of valence and arousal. Finally, the GSR response from 13 par-
ticipants watching these movies was also recorded. A positive temporal
Pearson’s r correlation of 0.264 was found between the mean of the contin-
uous arousal self-assessments and the post-processed GSR measurements.
This correlation confirmed that arousal and GSR are correlated, but fore-
most validated the reliability of both the arousal self-assessments and GSR
measurements.

Armed with a dataset, a baseline was proposed in Chapter 8 for dis-
crete affective movie content analysis using the protocols defined for the
LIRIS-ACCEDE dataset. Four baselines for continuous affective movie
content analysis were also proposed in Chapter 8 based on SVRs, CNNs,
or the combination of both machine learning techniques, and trained us-
ing as ground truth the continuous self-assessments for the 30 movies of
LIRIS-ACCEDE. The promising performance achieved by these four base-
lines paved the way for the creation of an advanced spatio-temporal com-
putational model described in Chapter 9. This model predicts affective
scores for consecutive 1-second length segments extracted from a movie.
Two fined-tuned CNNs generate mid-level representations. One is ded-
icated to the visual modality and uses patches extracted from the key
frames of the video segment, while the second one is dedicated to the
audio modality and uses as input an audio spectrogram generated using
the audio signal of the video segment. The size of both mid-level rep-
resentations is then reduced. The concatenation of both representations,
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named compact multimodal mid-level representation, is then used by a
bidirectional LSTM-RNN modeling long-term dependencies between the
consecutive video segments from the same movies. A correlation between
predicted curves and ground truths of 0.361 was obtained for arousal. For
valence, the correlation was considerably higher: 0.559. The performance
of the spatio-temporal model outperforms all the other baselines and is
significantly better than the performance obtained by chance.

However, even if these correlations are satisfying for the automatic
prediction of the emotions induced by movies, the corresponding compu-
tational model is not reliable enough to be used in commercial systems.
For example, this performance for the prediction of induced emotions is
far to be as good as those for emotion recognition (correlations of 0.73

,0.74, 0.75, and 0.76 were achieved in 2014, respectively for the recogni-
tion of the session independent expressed valence, arousal, power, and
expectation [148]), or less subjective detections such as object recognition
(classification error rate of 6.7% was achieved in 2014 for the image clas-
sification task of the ImageNet Large Scale Visual Recognition Challenge
[149]). There is still room for improvement and significant breakthroughs
need to be developed before the large-scale use of such automatic affective
movie content analysis models.

Highlights

As of summer 2015, the LIRIS-ACCEDE dataset has been downloaded
more than 70 times from various research centers all around the world and
has been already used in published papers [150, 151]. LIRIS-ACCEDE was
one of the recommended dataset for the “Emotional Response to Multime-
dia Content” grand challenge at ACM MM 2014

2 and it is the only dataset
used for the MediaEval 2015 “Affective Impact of Movies (including Vio-
lent Scenes Detection)” task 3.

Perspectives

The automatic prediction of emotions induced by movies is a very
challenging task. The framework developed in this thesis is quite general
and may prove useful in a variety of video processing applications. How-
ever, leads can be followed up to solve the limitations and drawbacks of
the proposed methodology.

The performance of computational models to predict induced emo-
tion is closely tied to the difficulty of collecting large and reliable affect
datasets. In particular, collecting continuous dimensional affective self-
assessments is not easy and experimental protocols should be designed
very carefully. The continuous annotations within the LIRIS-ACCEDE
dataset have shown that it is possible to collect and release publicly
such annotations. However, its size is still quite limited for current ma-
chine learning techniques and should be extended by collecting new self-
assessments for new movies along new affective dimensions such as dom-

2. http://acmmm.org/2014/call_mm_grnd_chlng_sol.html
3. http://www.multimediaeval.org/mediaeval2015/affectiveimpact2015/
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inance. This again shows the importance to design reproducible exper-
imental protocols to benefit from the contributions of various research
teams to build a large and representative affective dataset that can be
shared among researchers.

The difficulty of collecting reliable affective ground truth is another
remaining challenge. The word “ground truth” should be taken with a
grain of salt in affective multimedia analysis work. Indeed, the affective
self-assessments collected in the experiments presented in this thesis, but
also in all the other work dealing with the emotions induced by multi-
media content, are intrinsically biased to the extent that they represent
the interpretation of the emotional experience that the annotator is cur-
rently feeling, which may be different from the emotion felt by the an-
notator. Recording the facial expression of the annotators and collecting
physiological signals, such as the skin conductance, the heart rate, or even
the electroencephalogram signals, could help to improve the reliability
of the affective self-assessments. However, the correlation between such
modalities and felt emotions is still a work in progress [152]. The contin-
uous ground truth presented in Chapter 6 is also biased because of the
post-processing steps to take into account the annotator-specific delays
amongst the annotations, and because it is the result of the aggregation
of the multiple annotators’ self-assessments. To tackle these issues, future
work should start investigating individual emotional differences to design
personalized models. To summarize, the continuous “ground truth” pre-
sented in this thesis, but also the “ground truth” used in most affective
multimedia analysis work, does not represent the emotions that an an-
notator has felt during an experiment, but rather represents the emotions
that most annotators say they have experienced while watching movies
during an experiment.

Many extensions and improvements can also be envisaged to improve
the reliability of the continuous spatio-temporal models proposed in this
thesis:
• First, psychological theories and computational models barely rely

on each other. Future computational models should be designed to
be closer to psychological models.
• Predicting intermediate dimensions, such as predictability or nov-

elty, may be of interest to help estimating valence and arousal in-
duced by movies. Psychological theories have shown that these
two dimensions are important characteristics of the emotional ex-
perience [153].
• The proposed continuous spatio-temporal model is quite limited

to the extent that it only uses the information provided by key
frames and the audio signal. Motion, text (subtitles), or even more
advanced concepts (e.g., relations among movie characters [154])
should improve the reliability of the model.
• Arousal and valence are correlated. It thus makes sense to predict

these affective scores using a single computational model.
• Predicting the emotions that most people feel while watching

movies is extremely difficult to be solved with a universal solu-
tion. Personalized solutions should also be considered to improve
the accuracy of computational models, which will be made possible
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by collecting self-assessments across highly diverse viewer groups
with different cultural and socio-demographical backgrounds.

This concluding discussion shows that the future tasks in this area of
research are challenging and need to be addressed by close collaboration
of experts in psychology, sociology, vision science and image processing.
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Appendix A: List of the

Movies in LIRIS-ACCEDE

Name Credits Length License

20 Mississippi Barnett Brettler 00:58:38 20 Mississippi shared under CC BY-NC 3.0 Unported license at
http://vimeo.com/20043857

21 Below Robbie Stauder 01:31:17 21 Below shared under CC BY 3.0 Unported license at http://vimeo.com/38939998

52 Films/52 Weeks Renee Ronceros, Samantha
Simmonds & Javier Ronceros

03:01:55 52 Films/52 Weeks: a year of filmmaking shared under CC Public Domain 3.0 license at
http://www.52films52weeks.com/52films52weeks/Welcome.htm

After The Rain Hits Enterprises & Video 00:09:49 After The Rain shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/40104084

Attitude Matters Marco Luca & Laura Aloi 00:22:52 Attitude Matters shared under CC BY 3.0 Unported license at
http://vimeo.com/17778716

Barely Legal Stories Jonathan Musset 00:16:28 Barely Legal Stories shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/30344973

Best Nice Monster 00:07:56 Best shared under CC BY 3.0 Unported license at http://vimeo.com/44163644

Between Viewings Raphael Biss 00:14:46 Between Viewings shared under CC BY 3.0 Unported license at
http://vimeo.com/43763789

Big Buck Bunny Sacha Goedegebure 00:09:56 Big Buck Bunny shared under CC BY 3.0 license at http://www.bigbuckbunny.org/

Boiling Point Jack Leigh 00:14:04 Boiling Point shared under CC BY-SA 3.0 Unported license at
http://vimeo.com/24169479

Burgundies Boys Steve Galley 01:18:43 Burgundies Boys shared under CC BY-NC 3.0 Unported license at
http://vodo.net/boys

California Dreaming Bregtje van der Haak 00:49:13 California Dreaming shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/californiadreaming

Capitalism
Communism: Is this

love?

FILS-PRODUC-TION 00:07:27 Capitalism Communism Is this love? shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/53307142

Chatter Leo Resnes 00:08:29 Chatter shared under CC BY-NC 3.0 Unported license at http://vodo.net/Chatter

Clickin’ For Love Pablo Pappano 01:28:39 Clickin’ For Love shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/clickinforlove

Climate Cycle Paul O’Connor 00:21:41 Climate Cycle shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/ccycle

Cloudland LateNite Films 00:11:41 Cloudland shared under CC BY 3.0 Unported license at http://vimeo.com/17105083

Cold Bahadir Karasu 00:21:23 Cold shared under CC BY-SA 3.0 Unported license at http://vimeo.com/41402223

Copyright is for
losers

Ninotchka Art Project 00:24:39 Copyright is for losers shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/2026149

Couchsurf Georg Boch 00:18:51 Couchsurf shared under CC BY-NC-SA 3.0 Unported License license at
http://vodo.net/couchsurf

Crooked Features Mike Peter Reed 01:25:01 Crooked Features shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/crookf

Damaged Kung-Fu Juliane Block 00:16:54 Damaged Kung-Fu shared under CC BY-SA 3.0 license at
http://www.filmannex.com/movie/damaged-kung-fu/30279

Dead Man Drinking Rohan Harris 01:28:26 Dead Man Drinking shared under CC BY-NC-SA 3.0 Unported license at
http://www.deadmandrinking.com/

Decay CERN by physics PhD students 01:16:06 Decay shared under CC BY-SA 3.0 Unported license at http://vimeo.com/55157792

Deceived Winkler Pictures 01:31:01 Deceived shared under CC BY 3.0 Unported license at http://vimeo.com/39057892

Dimensional
Meltdown

Ofer Pedut 00:07:34 Dimensional Meltdown shared under CC BY-NC 3.0 Unported license at
http://vodo.net/dimensional

Down With the King Michael Wolcott 00:30:33 Down With the King shared under CC BY-NC 3.0 Unported license at
http://vodo.net/dwtk

Elephant’s Dream Bassam Kurdali 00:10:53 Elephant’s Dream shared under CC BY 3.0 license at http://orange.blender.org/

Emperor Juliane Block & Adrian Lai 01:35:56 Emperor shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/emperor

END:CIV Franklin Lopez 01:16:45 END:CIV shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/endciv

Fall and Love Jordan Baker 00:12:43 Fall and Love shared under CC BY 3.0 Unported license at
http://vimeo.com/52084858

First Bite Dead Flower Productions 00:10:40 First Bite shared under CC BY 3.0 Unported license at http://vimeo.com/23980578
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Name Credits Length License

Four Eyed Monsters Arin Crumley & Susan Buice 01:11:57 Four Eyed Monsters shared under CC BY-SA 3.0 Unported license at
http://vodo.net/foureyedmonsters

Full Service Ian Quill 00:18:41 Full Service shared under CC BY 3.0 Unported license at
http://vimeo.com/22719579

Good Boys go to
Heaven and Bad

Boys go to Europe

Fabrice Renucci 01:08:37 Good Boys go to Heaven and Bad Boys go to Europe shared under CC BY 3.0License
license at http://vodo.net/goodboys

Here. My
Explosion...

Jeffery Davis, Eleese Longino &
Seth Burnham

01:14:50 Here. My Explosion... shared under CC BY-SA 3.0 Unported license at
https://www.createspace.com/267787

Home Yann Arthus-Bertrand 01:33:17 Home shared under CC BY-SA 3.0 Unported license at
http://archive.org/details/Home2009

How Fear Came Anais Caura & Bulle Tronel 00:10:06 How Fear Came shared under CC BY-NC 3.0 Unported license at
http://vimeo.com/42690350

Interferencies Debt Observatory (ODG) and
Quepo

01:13:49 Interferencies shared under CC BY-NC-SA 3.0 Unported license at
http://www.interferencies.cc/

Iron Sky Teaser 3:
We Come In Peace

Stealth Media Group 00:01:00 Iron Sky Teaser 3 We Come In Peace shared under CC BY-SA 3.0 Unported license at
http://www.ironsky.net/

Islands Diego Contreras 00:02:53 Islands shared under CC BY 3.0 Unported license at http://vimeo.com/50512824

Je suis ce que je vois Simon Bonneau 00:02:21 Je suis ce que je vois shared under CC BY-NC-SA 3.0 license at
http://www.youtube.com/user/TheChivteam

Jiminy Jakk in the Box 00:08:49 Jiminy shared under CC BY 3.0 Unported license at http://vimeo.com/21791346

L.U.C.K Daniel Cooper 00:10:31 L.U.C.K shared under CC BY 3.0 Unported license at http://vimeo.com/37041387

Le Fear Jason Croot 01:01:32 Le Fear shared under CC BY 3.0 Unported license at http://vodo.net/lefear

Lesson Learned Fritz Joseph 00:12:58 Lesson Learned shared under CC BY-SA 3.0 Unported license at
http://vimeo.com/40539260

The Lionshare Josh Bernhard 01:08:16 The Lionshare shared under CC BY-NC 3.0 Unported license at
http://vodo.net/lionshare

Lo que tu Quieras
Oir

Guillermo Zapata 00:10:15 Lo que tu Quieras Oir shared under CC BY-NC-SA 3.0 Unported license at
http://creativecommons.org/weblog/entry/7537

Lusty Little Heart of
Mine

Martin Heuser 00:18:30 Lusty Little Heart of Mine shared under CC BY-NC 3.0 Unported license at
http://vodo.net/lusty

Monolog Eray Dinc 01:17:36 Monolog shared under CC BY 3.0 Unported license at http://vimeo.com/20235811

Nasty Old People Hanna Skold 01:24:25 Nasty Old People shared under CC BY-NC-SA 3.0 Unported license at
http://nastyoldpeople.blogspot.fr/

Norm Elle Marsh 00:06:30 Norm shared under CC BY 3.0 Unported license at http://vimeo.com/43513380

Nuclear Family Dominic Mercurio 00:28:20 Nuclear Family shared under CC BY-NC 3.0 Unported license at
https://www.facebook.com/nuclearfamilymovie

Oceania Harry Dehal 00:54:19 Oceania shared under CC BY-NC-SA 3.0 United StatesLicense license at
http://www.hdehal.com/filmandvideo.php

Of Games and
Escapes

Bevan Klassen 01:17:05 Of Games and Escapes shared under CC BY-NC 3.0 Unported license at
http://vodo.net/GamesEscapes

On Time Todd Wiseman 00:05:11 On Time shared under CC BY-NC-SA 3.0 Unported license at
http://www.youtube.com/watch?v=8zI2JRLFQoE

Origami ESMA MOVIES 00:08:20 Origami shared under CC BY 3.0 Unported license at http://vimeo.com/52560308

Parafundit Riccardo Melato 00:13:10 Parafundit shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/50060660

Payload Stu Willis 00:17:55 Payload shared under CC BY 3.0 Unported license at http://vimeo.com/50509389

Pennipo-tens Heather Freeman 00:17:38 Pennipotens shared under CC BY-NC-SA 3.0 Unported license at
http://pennipotens.blogspot.fr/

Pioneer One Bracey Smith 03:43:36 Pioneer One E01-06 shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/pioneerone

Point Of Departure Matthias Merkle 01:33:19 Point Of Departure shared under CC BY-NC-SA 3.0 Unported license at
http://wiki.creativecommons.org/Point_Of_Departure

Riding the Rails Juan Soto 00:15:00 Riding the Rails shared under CC BY 3.0 Unported license at
http://vimeo.com/17465105

Riflessi Emanuela Ponzano 00:20:52 Riflessi shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/31900322

RIP! A Remix
Manifesto

Girl Talk, Lawrence Lessig,
Gilberto Gil & Cory Doctorow

01:27:20 RIP! A Remix Manifesto shared under CC BY-NC 3.0 Unported license at
http://creativecommons.org/tag/rip-a-remix-manifesto

Rising Tide Philip Shotton & Dawn Furness 01:18:52 Rising Tide shared under CC BY-NC-SA 3.0 Unported License license at
http://www.risingtidethemovie.com/

Roskilde The
Experience

Per Tore Holmberg 00:22:15 Roskilde The Experience shared under CC BY-NC-SA 3.0 Unported license at
http://www.roskilde-experience.com/

Santa Cruz Beach
Boardwalk

Eugenia Loli 00:04:54 Santa Cruz Beach Boardwalk shared under CC BY 3.0 Unported license at
http://vimeo.com/2886954

Scum-babies Joseph R. Lewis 01:31:03 Scumbabies shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/scumbabies

Seven Desmond Bowles & Dave
Dornbrack

00:16:40 Seven shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/55103414

Sintel Martin Lodewijk 00:14:48 Sintel shared under CC BY 3.0 license at www.sintel.org

Sita Sings the Blues Nina Paley 01:21:31 Sita Sings the Blues shared under CC BY-SA 3.0 Unported license at
http://www.sitasingstheblues.com/
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Name Credits Length License

Sky in Slow motion:
Fetch!

Jenifer Avila 00:03:59 Sky in Slow motion: Fetch! shared under CC BY-NC 3.0 Unported license at
http://www.youtube.com/watch?v=aG6R771H1FQ

Solace Daniel Cooper 00:10:05 Solace shared under CC BY 3.0 Unported license at http://vimeo.com/42505454

Spaceman Jono Schaferkotter & Before
North

00:15:29 Spaceman shared under CC BY-NC 3.0 Unported License license at
http://vodo.net/spaceman

Steal this film The League of Noble Peers 00:51:30 Steal this film shared under CC BY 3.0 Unported license at http://vodo.net/stf

Sugar Andrew John Rainnie 00:22:27 Sugar shared under CC BY-NC-SA 3.0 Unported license at http://vodo.net/Sugar

Superhero Langley McArol 00:19:01 Superhero shared under CC BY 3.0 Unported license at http://vimeo.com/23423341

Suspicious Minds Tizaster Productions 00:08:07 Suspicious Minds shared under CC BY 3.0 Unported license at
http://vimeo.com/8833583

Sweet Hills Not Working Films 00:16:48 Sweet Hills shared under CC BY-NC 3.0 Unported license at
http://vimeo.com/51445616

Tears of steel Ian Hubert & Ton Roosendaal 00:12:14 Tears of steel shared under CC BY 3.0 Unported license at
http://www.tearsofsteel.org/

The Box BK 00:27:47 The Box shared under CC BY 3.0 Unported license at http://vimeo.com/3610952

The Cosmonaut
(Trailer)

Nicolas Alcala 00:02:21 The Cosmonaut (Trailer) shared under CC BY-NC-SA 3.0 Unported (CC BY-NC-SA 3.0)
license at http://www.thecosmonaut.org/

The Dabbler Reid Gershbein 00:59:59 The Dabbler shared under CC BY-SA 3.0 Unported license at
http://www.royalbaronialtheatre.com/blog/
the-dabbler-film-details-2wkfilm.html

The frame of the
dead

Samuel Sebastian 01:48:37 The frame of the dead shared under CC BY 3.0 Unported license at
http://vodo.net/framedead

The Graduates Ryan Gielen 01:31:08 The Graduates shared under CC BY-NC 3.0 Unported license at
http://vodo.net/thegraduates

The Great
Commandment

Maurice Moscovitch 01:20:12 The Great Commandment shared under Public Domain License license at
http://www.youtube.com/watch?v=keOrz7n7ETo

The idea Berthold Bartosch 00:25:21 The idea shared under Public Domain License license at http://vimeo.com/20866713

The Immortals Matthias Merkle & Antje
Borchardt

01:34:59 The Immortals shared under CC BY-NC-SA 3.0 Unported license at
http://wiki.creativecommons.org/The_Immortals

The Manifesto Mr Nobody 01:30:32 The Manifesto shared under CC BY-SA 3.0 Unported License license at
http://vodo.net/Manifesto

The Mapmaker Twisty-Headed Man Company 00:26:17 The Mapmaker shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/mapmaker

The Master Plan Aron Campisano 01:44:20 The Master Plan shared under CC BY-NC-SA 3.0 Unported license at
http://themasterplanfilm.com/

The room of Franz
Kafka

Fred. L’Epee 00:04:09 The room of Franz Kafka shared under CC BY-NC-SA 3.0 Unported license at
http://vimeo.com/14482569

The secret number Colin Levy 00:15:31 The secret number shared under CC BY-NC 3.0 Unported license at
http://vimeo.com/43732205

Time Expired Nick Lawrence & Rachel Tucker 00:32:42 Time Expired shared under CC BY-NC 3.0 Unported license at
http://vodo.net/timeexpired

To Claire From
Sonny

Ennui Pictures 00:06:54 To Claire From Sonny shared under CC BY-NC-SA 3.0 Unported license at
http://www.youtube.com/watch?v=8rKW-VRFczA

To Kill A King Run Productions 00:21:01 To Kill A King shared under CC BY-NC 3.0 Unported license at
http://vimeo.com/30847762

Torno Subito Simone Damianiunder 01:29:07 Torno Subito shared under CC BY-NC 3.0 Unported license at
http://creativecommons.org/tag/torno-subito

Valkaama Tim Baumann 01:33:13 Valkaama shared under CC BY-SA 3.0 Unported license at
http://www.valkaama.com/

Viaje a la tierra del
Quebracho

TEMBE Cooperativa 00:11:53 Viaje a la tierra del Quebracho shared under CC BY-SA 3.0 Unported license at
http://vodo.net/quebracho

Waldo the Dog Kris Canonizado 02:00:39 Waldo the Dog shared under CC BY-NC-SA 3.0 Unported license at
http://vodo.net/WaldotheDog

Wanted Ezel Domanic 00:01:57 Wanted shared under CC BY 3.0 Unported license at
http://www.filmannex.com/movie/wanted/30133

When Rabbits Fly Helgi Johannsson 00:28:18 When Rabbits Fly shared under CC BY 3.0 Unported license at
http://vimeo.com/58619416

You Again Lauren Teng 00:14:30 You Again shared under CC BY 3.0 Unported license at http://vimeo.com/33454078
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Appendix B: Formulas for

Computing Inter-Rater

Reliability

Appendix B lists all the formulas to compute the inter-rater reliability
coefficients used throughout this thesis. In the following, N stands

for the number of items to be annotated by the raters (also known as
the number of subjects in the state of the art), n represents the number of
annotations per item, k is the number of categories into which assignments
are made, and nij represents the number of raters who assigned the jth

category to the ith item.

Percent Agreement

The percent agreement Pa is defined as:

Pa =
1

Nn

N

∑
i=1

max
j

(nij) (B.1)

Fleiss’ κ

Fleiss’ κ can be computed for any number of annotators giving cate-
gorical ratings to a fixed number of items [88]. All forms of kappa are
defined as:

κ =
P̄− P̄e

1− P̄e
(B.2)

where P̄− P̄e measures the degree of agreement actually achieved above
chance and 1 − P̄e gives the maximum proportion of possible chance-
adjusted agreement. Fleiss defines P̄ and P̄e as:

P̄ =
1

Nn(n− 1)

N

∑
i=1

k

∑
j=1

(
n2

ij − Nn
)

(B.3)

P̄e =
k

∑
j=1

(
1

Nn

N

∑
i=1

nij

)2

(B.4)

Fleiss’ kappa is thus influenced by prevalence since it varies as a function
of symmetry of marginal distributions.
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Randolph’s κ f ree

Randolph’s κ f ree is subject to the same restrictions as Fleiss’ κ and is
based on the same equation (B.2) [90]. However, Randolph defines P̄e as:

P̄e =
1
k

(B.5)

Thus, Randolph’s κ f ree varies as a function of the number of categories
and is thus not affected by prevalence.

Krippendorff’s α

Krippendorff’s α can be applied to any number of annotators, each
assigning one value to one item, to incomplete data (i.e., n is not fixed),
and to any number and type of categories [89]. In Chapter 5, equations
to compute the Krippendorff’s α for a single excerpt i were detailed. The
general equations are very similar and are thus not repeated here. The δ2

coefficient for nominal categories was also defined in Chapter 5. Similarly,
the δ2 coefficient can be defined for ordinal, interval, ratio, polar, and
circular categories.



Appendix C: Consent Form

and Questionnaire

 

Personal Information 

Please fill this paper before the first part of the experiment 

 
 
 
All data will be coded so that your anonymity will be protected in any research papers and 
presentations that result from this work. 
 
 
 
 

Name 
 

___________________________ 

Age 
 

___________________________ 

Sex 
 

☐ Male ☐ Female 

Nationality 
 

___________________________ 

Level of 
education 
 

☐ “Collège” 

☐ Bachelor 

☐ Master 

☐ Doctor and above 

 
Other: _____________________ 
 

Profession 
 

___________________________ 

Favorite 
movie 
genre 

☐ Comedy ☐ Romance 

☐ Thriller ☐ Drama 

☐ Action ☐ Horror 

☐ Adventure ☐ Documentary 
 
Other: _____________________ 
 

How often 
do you 
watch 
movies? 

☐ Never 

☐ Once a month 

☐ Once a week 

☐ Several times a week 
 
Other: _____________________ 
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132 Appendix C: Consent Form and Questionnaire

Continuous annotations experiment 

Consent form 

 
1. Experiment Purpose & Procedure 

 
The purpose of this experiment is to annotate 30 movies using a Joystick. 
 
The experiment consists of 4 parts, during which you will be asked to watch movies and indicate the 
emotion you feel in response to the movie. 
 
Before the experiment, you will be asked to complete a questionnaire. 
 
Please note that none of the tasks is a test of your personal intelligence or ability. The objective is to 
collect ground-truth for research purposes. 
 

2. Confidentiality 
 
The following data will be recorded: age, sex, nationality, genre preference, annotations data. 
 
All data will be coded so that your anonymity will be protected in any research papers and 
presentations that result from this work. 
 
(If data is to be recorded that would identify the participant, for example photographs, audio or video, 
and if there is any intention to use this material in any publication or presentation, a separate release 
statement should be obtained after the recording has been made). 
 

3. Record of Consent 
 
Your signature below indicates that you have understood the information about the annotation 
experiment and consent to your participation. The participation is voluntary and you may refuse to 
answer certain questions on the questionnaire and withdraw from the study at any time with no 
penalty. This does not waive your legal rights. You should have received a copy of the consent form for 
your own record. If you have further questions related to this research, please contact the researcher. 
 
 
 

Participant 
 
 
_________________________ 
 

Date 
 
 
_________________________ 
 

Signature 
 
 
_________________________ 
 

 
 
 

  

Researcher 
 
 
_________________________ 
 

Date 
 
 
_________________________ 
 

Signature 
 
 
_________________________ 
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