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Summary 
 

The first small non-coding RNAs have been cloned in 1993, more than 20 years ago, but the 

study of their impact on diverse biological processes such as development, cellular 

differentiation, immune functions and fine-tuning of gene networks has only recently picked 

up pace with the introduction of next generation high-throughput sequencing. 

 

We now know that there are at least 3 major classes of non-coding small RNAs in animals: 

the microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs 

(piRNAs). Small RNAs are generally involved in negative regulation of complementary target 

RNA abundance, but each class has distinct mechanisms of biogenesis, target recognition, 

mechanisms of target regulation.  

 

Transposable elements are major components of eukaryotic genomes and make up 

approximately 12% of the total Drosophila genome sequence, 45% of the human genome 

and more than 85% of the maize genome. Transposable elements have been proposed as 

important drivers of gene network evolution, as they can move or “transpose” in their host 

genome, creating gene duplications, cause gene inactivation or alter gene function. 

Nevertheless, uncontrolled high-rate transposition leads to DNA damage and genomic 

instabilities, a signature often found in tumorous tissues, and is hence counteracted by 

multiple mechanisms, amongst which the generation of piRNAs and siRNAs that survey the 

expression of transposable element transcripts.  

 

To understand the role of piRNAs and siRNAs in the control of somatic transposons I have 

sequenced small RNA of wild type fly adult heads and compared these to the heads of piwi 

mutants. I found an increase of siRNAs against transposable elements, a remarkable finding 

considering the absence of Piwi in heads, suggesting an epigenetic effect of piwi mutation 

on the repertoire of small RNAs in the Drosophila head. RNA-sequencing of piwi mutant 

heads then revealed only minor changes of transposon expression, similar to the results we 

obtained with dicer-2 mutants. It was only in double mutants of piwi and dicer-2 that 

transposon levels increased significantly, leading me to suggest a model in which both 

piRNA and siRNA represent distinct and complementary layers of transposon repression in 

adult heads of Drosophila melanogaster. piRNAs establish transcriptional gene silencing 

during early development, and siRNAs may act later in the adult tissue through post-

transcriptional gene silencing. This may provide a rescue mechanism in case of failure to 

establish Transcriptional Gene Silencing (TGS) during early development or failure to 

maintain TGS. Importantly, we also observed a decreased lifespan of double mutants 
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compared to piwi or dicer-2 mutants, possibly due to an increased activity of transposons or 

as of yet unidentified effects on protein-coding gene expression. 

These results constitute a significant advance in understanding how transposons are 

repressed in somatic tissues. Since piwi’s main function in the repression of transposons is 

likely epigenetic in nature, it might be possible that age-dependent reduction of 

heterochromatin decreases the Piwi-mediated level of repression. Transposon-specific 

siRNAs then provide another layer of repression. 

  

My results might justify the investigation of Piwi-mediated repression of transposons in 

somatic tissues of mammalian organisms, as age-dependent diseases might be caused by 

an increased transposon burden. 

 

My work involved for a large part NGS analysis that I performed mostly within the Galaxy 

framework (http://usegalaxy.org). At the heart of Galaxy is a database that keeps track of 

data and data transactions, a web server, an architecture that allows the easy plugging of 

command-line tools into a user-friendly web-interface and a workflow engine that allows the 

execution of complex user-defined step-wise analyses. As the origin and treatment of all 

datasets is automatically traced, reproducibility of bioinformatic analyses is greatly 

facilitated, especially in the light of many papers involving complex genome-wide analyses 

that are difficult to reproduce partly due to undisclosed or incomplete method descriptions. A 

second important aspect of the Galaxy framework is the ease of use of bioinformatic utilities 

even for biologists that received no or little training on using the command line. Finally, 

Galaxy allows easy sharing of results with colleagues, thereby accelerating collaborative 

efforts.  

 

Together with my supervisor, Christophe Antoniewski, I set up a Galaxy server during my 

first year of thesis (http://lbcd41.snv.jussieu.fr/galaxy) that is heavily used by us and our 

collaborators. 

As this server was soon under heavy load we set up a second server, this time publicly 

available (http://mississippi.fr). Both servers are dedicated to small RNA and transcriptomic 

analysis, with many tools written by Christophe Antoniewski and myself. We will soon 

prepare a manuscript for the mississippi toolsuite, that is already released in the public 

testtoolshed of the Galaxy community (https://testtoolshed.g2.bx.psu.edu/). 

 

A current limitation of the Galaxy framework is that users are not completely free in the type 

of analysis that can be performed on a given Galaxy server. If the necessary tool is not 

installed, users must find another way to treat their data, negating the advantage Galaxy 
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provides for traceability and reproducibility of results. Similarly, power-users that regularly 

write their own analyses are forced to become Galaxy administrators and learn how to write 

Galaxy tools if they want to use their scripts and programs inside Galaxy. 

Lazarus and colleagues developed the Galaxy Tool Factory (Lazarus et al., 2012), which 

allows the execution of arbitrary scripts. However, the Galaxy Tool factory was limited to 

single input files, and most importantly, because any script can be executed, it is very 

insecure and should only be run by a Galaxy administrator.  

To circumvent these limitations, I modified this tool factory in a way that a secure and 

transient sandbox, based on Docker (https://www.docker.com/) containers, is created, to 

which user data is mounted. User scripts are executed inside the sandbox and cannot harm 

data outside of the sandbox. Once functional, scripts may be used in workflows, or simple 

tools can be generated, helping Galaxy administrators in deploying new, custom tools and 

opening the opportunity to use Galaxy as an Integrated Development Environment (IDE). 

This work is still in development and led to a manuscript draft for the DockerToolFactory, 

which will be sent for publication shortly. The tool can be downloaded from the Galaxy 

toolshed, and the sourcecode is also available at https://bitbucket.org/mvdbeek. 
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Introduction I: small RNA silencing 
 
Small RNAs are a relatively recent discovery for biologists, but not for evolution as small 

RNA expression is very widespread. Generally speaking, small RNAs are involved in 

negatively regulating RNA abundance. They play a fundamental role in regulating gene 

expression and discriminating parasitic from non-parasitic RNAs. 

Drosophila melanogaster, the model organism that I have been studying during my PhD 

work, expresses 3 classes of small RNAs, miRNA, siRNAs and piRNAs. These are 

genetically well-separated, making it possible to study only certain aspects of a single 

pathway. The goal of my thesis was to understand how the piRNA pathway and the siRNA 

pathway limit transposon expression in adult tissues. To aid the reader in understanding and 

placing my work into the current scientific background I will first describe these 3 small RNA 

pathways and how they might interact. 
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Figure 1: Drosophila small RNA pathways are genetically well-seperated. piRNA, siRNA and miRNA 
pathways utilize distinct protein machineries and differ in their target molecules 
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1. miRNA silencing 

  

a. Discovery of lin-4 and miRNAs 

  

The very first miRNA locus, lin-4, was cloned by (R. C. Lee, Feinbaum, and Ambros 1993), 

while studying factors that regulate the timing of LIN-14 Protein expression in 

Caenorhabditis elegans. It was known that the LIN-14 protein was present in late-stage 

embryos and L1 larvae, but barely detectable in L2 larvae, while lin-14 transcripts were 

constant throughout development. A lin-14 3’ UTR mutant mirrored the failure to down-

regulate LIN-14 protein seen in lin-4 mutants. Through cloning of the lin4 locus and genetic 

rescue using a small fragment of the lin4-containing intron Lee at al. ruled out the possibility 

that lin-4 was a protein. Instead they identified two 22 and 61nt transcripts originating from 

the lin-4 locus and predicted that they might form the now well-known miRNA stem-loop 

structure. They also speculated that the 22nt lin-4 might partially base pair with repeated 

sequences of the lin14 3’UTR to inhibit translation by hindering interaction between 3’ and 5’ 

ends of lin-14 mRNA. The base-pairing hypothesis was later confirmed by Ha and 

colleagues (Ha, Wightman, and Ruvkun 1996), and inhibition of translation elongation 

through lin-4 RNA paired to the 3’UTR of LIN-14 was confirmed by Olsen and Ambros 

(Olsen and Ambros 1999). The discovery of another miRNA, let-7 (Pasquinelli et al. 2000), 

allowed the recognition that miRNAs also exist in vertebrate, ascidian, hemichordate, 

mollusc, annelid and arthropod (Pasquinelli et al. 2000). 

  

b. miRNA biogenesis and function 
 

As most protein-coding genes, miRNA loci (with their own promoter or as introns inside 

another gene) are transcribed by RNA-polymerase II (PolII) into primary miRNA transcripts 

(Y. Lee et al. 2004) (see Figure 2a for a graphical miRNA biogenesis summary). These 

transcripts contain one or more stem-loop structures, which are recognized and cleaved at 

the base of the loop inside the nucleus by the Drosha and Pasha-containing microprocessor 

complex (Denli et al. 2004) into shorter 60-70 pre-miRNAs. Intronic miRNAs are processed 

co-transcriptionally before splicing (Figure 2b). 



 11 

 
 

Pol II

Pol II

Nature Reviews | Molecular Cell Biology

Microprocessor
(Drosha–DGCR8)

Commitment
complex

DNA

Spliceosome

Mature mRNA

Splicing

Splicing

Branched pre-mirtron
(excised intron)

Cropping

Dicing

pre-miRNA

pre-mRNA

Mature miRNA

b  Canonical intronic miRNAa  Biogenesis of canonical miRNA

c  Non-canonical intronic small RNA (mirtron)

Spliceosome

Mature mRNA

or

Trimming

pre-miRNA

Debranching

Dicing

Mature miRNA

AAAAA

pri-miRNA

pre-miRNA

Drosha

DGCR8 
(Pasha in flies)

m7G

Exportin 5–RanGTP

Cropping

Dicing

Loading

Export

Dicer
(Dicer 1 in flies)

Dicer
(Dicer 1 in flies)

TRBP or PACT
(LOQS-PB/PA in flies)

TRBP or PACT
(LOQS-PB/PA in flies)

miRNA

AGO1–4
(AGO1 in flies)

miRNA gene
Pol II

Transcription

AGO1–4
(AGO1 in flies)

Nucleus

Cytoplasm

AGO1–4
(AGO1 in flies)

 
Figure 2. miRNA biogenesis pathway. (a)  Canonical microRNA (miRNA) genes are transcribed by RNA polymerase II
(Pol II) to generate the primary transcripts (pri-miRNAs). The initiation step (cropping) is mediated by the
Drosha–DiGeorge syndrome critical region gene 8 (DGCR8; Pasha in Drosophila melanogaster and Caenorhabditis
elegans) complex (also known as the Microprocessor complex) that generates ~65 nucleotide (nt) pre-miRNAs.
Pre-miRNA has a short stem plus a ~2-nt 3’ overhang, which is recognized by the nuclear export factor exportin 5 (EXP5).
On export from the nucleus, the cytoplasmic RNase III Dicer catalyses the second processing (dicing) step to produce
miRNA duplexes. Dicer, TRBP (TAR RNA-binding protein; also known as TARBP2) or PACT (also known as PRKRA), and
Argonaute (AGO)1–4 (also known as EIF2C1–4) mediate the processing of pre-miRNA and the assembly of the RISC
(RNA-induced silencing complex) in humans. One strand of the duplex remains on the Ago protein as the mature miRNA,
whereas the other strand is degraded. Ago is thought to be associated with Dicer in the dicing step as well as in the RISC
assembly step. In D. melanogaster, Dicer 1, Loquacious (LOQS; also known as R3D1) and AGO1 are responsible for the
same process. In flies, most miRNAs are loaded onto AGO1, whereas miRNAs from highly base-paired precursors are
sorted into AGO2. The figure shows the mammalian processing pathways with fly components in brackets. (b)  Canonical
intronic miRNAs are processed co-transcriptionally before splicing. The miRNA-containing introns are spliced more
slowly than the adjacent introns for unknown reasons. The splicing commitment complex is thought to tether the introns
while Drosha cleaves the miRNA hairpin. The pre-miRNA enters the miRNA pathway, whereas the rest of the transcript
undergoes pre-mRNA splicing and produces mature mRNA for protein synthesis. (c)  Non-canonical intronic small RNAs
are produced from spliced introns and debranching. Because such small RNAs (called mirtrons) can derive from small
introns that resemble pre-miRNAs, they bypass the Drosha-processing step. Some introns have tails at either the 5’ end
or 3’ end, so they need to be trimmed before pre-miRNA export. m7G, 7-methylguanosine. Adapted from 
(Narry Kim et al., 2009).
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Alternatively, some pre-miRNAs are defined directly by the splicing machinery (Figure 2c, 

mirtron), and do not depend on processing by Drosha (Ruby, Jan, and Bartel 2007). pre-

miRNAs are exported through exportin-5 into the cytoplasm (Yi et al. 2003) where they are 

further processed into mature, 22nt miRNAs by Dicer (Y. Lee et al. 2002) (Dicer-1 in 

Drosophila, (Y. S. Lee et al. 2004)) in conjunction with the Loquacious (Loqs) isoforms PA or 

PB (Fukunaga et al. 2012; Förstemann et al. 2005).  

The miRNA duplex is then loaded by an ATP-dependent process into Ago1-containing 

ribonucleoprotein complexes (also called RNA-induced silencing complexes, RISCs), where 

the single stranded, mature miRNA is selected from the miRNA duplex on the basis of the 

thermodynamically less stable 5’ end base-pairing (Kawamata, Seitz, and Tomari 2009). The 

mature miRNA serves as a guide to scan the cellular mRNA pool. 

Once a mRNA with complementarity to the miRNA (the nt 2-8 seed region relative to the 5’ 

of the miRNA is most important) is found, the mRNA is retained in the RNA induced 

silencing complex (RISC), causing translation to halt (Chendrimada et al. 2007) or 

destabilization of the mRNA (Wu, Fan, and Belasco 2006). miRNA-mediated halt of 

translation and mRNA-destabilization both require binding of GW182 protein family 

members to Ago1 (Eulalio, Huntzinger, and Izaurralde 2008). miRNAs are thus post-

transcriptional regulators of gene expression. They function in a multitude of processes and 

are required for the development of Drosophila, as evidenced by early lethality in loss-of-

function (LOF) alleles of the core miRNA components (Kataoka, Takeichi, and Uemura 

2001; Y. S. Lee et al. 2004). A difficulty for identifying the targets of a miRNA, and thus their 

biological functions, lies in the fact that miRNAs pair imperfectly with their targets, and only 

short stretches of perfect complementarity in the 5’ seed (nt 2-8) seem to be requirements 

for target repression by a microRNA, that can only partially be compensated for by additional 

3’ complementarity (Brennecke et al. 2005). Predicting miRNA targets from the seed 

sequence alone results in a large number of false positive predictions. By classifying and 

limiting the potential targets to matches in the 3’ UTR, scoring additional matches in the 3’ 

supplementary regions, accounting for multiple repeated target sites in the 3’UTR and 

additional experiments such as CLIP-seq, the False Detection Rate can be improved but 

final proof for target repression by miRNAs still requires experimental assessment (Hausser 

and Zavolan 2014). 
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2. piwi interacting RNA (piRNA) silencing 

  

a. Drosophila-centric history of the piRNA pathway 

  

Even though retrospectively-linked piRNA-related phenomena such as co-suppression of 

endogenous genes by increasing copy-numbers of transgenes had been described in plants 

as early as 1990 (Lemieux, Jorgensen, and Napoli 1990), and co-suppression was found to 

occur in Drosophila in 1997 (M Pal-Bhadra, Bhadra, and Birchler 1997), it was only in 2001 

that endogenous ~25nt piRNAs from the Su(Ste) repeat locus were described by Aravin and 

Colleagues (Aravin et al. 2001). In 2003, a large-scale effort to systematically clone small 

RNAs during Drosophila development by Aravin and colleagues led to the identification of 

178 repeat associated small interfering RNAs (rasiRNA), originating from transposable 

elements, microsatellites and the 42AB locus (Aravin et al. 2003). 

RasiRNA abundance was strongest in early embryos and testes, suggestive of a biogenesis 

involving the germline-specific Argonaute proteins Ago3, Piwi and Aubergine. 

In 2006, Vagin and Sigova et al (Vagin et al. 2006) showed that rasiRNA production was 

independent of Dicer-1 and Dicer-2 and that rasiRNAs were resistant to beta-elimination and 

bind to Piwi and Aubergine in-vivo. 

Saito et al. also showed that Piwi does not bind miRNAs, and that siRNAs are not loaded 

inside Piwi in lysates of fly ovaries, but that Piwi pre-loaded with a synthetic siRNA contains 

target cleavage activity in-vitro (Saito et al. 2006). 

In 2007, the Siomi and Hannon Laboratories proposed a mechanism for the formation of the 

5’end of rasiRNA, hereafter called piRNAs and their role in limiting transposition. Through 

deep-sequencing of the Aubergine, Piwi, and Ago3-bound small RNAs, both teams 

independently found a preference for piRNAs with antisense complementarity to 

transposable element transcripts to be bound to Aubergine and Piwi, whereas Ago3-bound 

piRNAs in sense orientation showed a strong tendency to overlap by 10-nt from their 5’ end 

with complementary Aubergine or Piwi bound piRNAs. The model postulates that antisense 

piRNA transcripts, originating from genomic loci enriched for defective transposable element 

fragments, provide antisense piRNA precursor transcripts that after an initial processing step 

(detailed in the “piRNA precursor processing” chapter) guide Aubergine or Piwi to a sense 

transposable element transcript, which is cleaved between the 10th and 11th nucleotide and 

becomes a new piRNA that can be loaded in Ago3 to cleave a new antisense transcript, 
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thereby forming an amplification loop that effectively provides a surplus of antisense piRNAs  

that can degrade transposon transcripts in a post-transcriptional manner (Aravin, Hannon, 

and Brennecke 2007; Brennecke et al. 2007; Gunawardane et al. 2007). The biogenesis 

mechanism is also referred to as the “ping-pong” or secondary piRNA biogenesis (also see 

Figure 3).

These observations served as a central framework for understanding the function and mode 

of action of the piRNA pathway in the Drosophila germline. It was not clear yet which other 

Figure 3: Secondary ping-pong piRNA properties and biogenesis mechanism. (A) Features of 
Aubergine and AGO3-associated piRNAs in Drosophila. Indicated are the 5! U bias in Aub-bound piRNAs, the 
10A bias in AGO3-bound piRNAs, the 5! phosphate, and the 3! O-methylation. (B) Ping-Pong model of piRNA 
biogenesis in Drosophila. Primary piRNAs are generated by an unknown mechanism and/or are maternally 
deposited. Those with a target are specifically amplified via a Slicer-dependent loop involving AGO3 and Aub. 
From (Aravin et al., 2007) 
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genetic factors were important in primary piRNA biogenesis, how piRNA clusters work and 

what the relation of piRNA-mediated post-transcriptional silencing was with the previously 

described co-suppression effects that were shown to be regulated at the transcriptional 

level. 

  

b. Screening efforts provided an overview of piRNA pathway genes  

  

Knowledge from multiple, previously unrelated fields helped to define additional actors of the 

piRNA pathway (summarized in the introduction to Olivieri et al., 2010, (Olivieri et al. 2010)). 

Defects in piRNA biogenesis and function result in male and female sterility, transposon 

upregulation and egg patterning defects. Many genes and loci that cause these phenotypic 

defects turned out to be factors affecting piRNA biogenesis or function. Therefore mining of 

genes with similar phenotypes and (re-)characterizing mutant collections from genetic 

screens for these phenotypes led to the identification of many more genes involved in piRNA 

biology. 

Especially the de-repression of transposable elements proved to be a phenotype that is easy 

to follow in genome-wide RNAi knockdown screens and that led to the identification of 

candidate piRNA genes with good sensitivity and specificity. A number of reporter constructs 

were used either in the discovery or validation phase of these screens. The idea behind 

these reporter constructs is that when transcribed, the reporter RNA contains a piece of a 

transposable element sequence fused to a reporter gene (lacZ or NLS-lacZ fusion are most 

frequently used). The transposable element sequence is then subject to piRNA mediated 

silencing, and reporter gene expression is only detectable when the piRNA pathway is 

impaired and cannot target the reporter through homology with the transposable element 

sequence. 

Notably, the first screen (Olivieri et al. 2010; Handler et al. 2013) was performed in the 

Brennecke lab using the gypsy-lacZ reporter (Sarot et al. 2004), whose promoter is the 5’ 

LTR of the gypsy retrotransposon, and as such recapitulates the expression pattern of 

endogenous gypsy (see Figure 4). As gypsy is expressed most strongly in the somatic 

follicular cells of the ovaries, the screen aimed at identifying factors that affect the primary 

piRNA pathway that operates in the somatic follicular cells. In these cells only piwi-loaded 

piRNAs that do not show the 10nt overlap signature (ping-pong signature) are present. 
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The screen was conducted using the traffic-jam Gal4 (Tj-Gal4) driver combined with the 

gypsy-lacZ reporter crossed to available UAS-RNAi lines for genes expressed in the somatic 

ovarian  

cells. The screen has been estimated to have identified about 80 % of the protein-coding 

genes that act in the somatic primary piRNA pathway while factors exclusively involved in 

the germline cells would be missed by this screen (Handler et al. 2013).

A second screen targeted specifically germline piRNA factors, by knocking down germline 

expressed genes using UAS-RNAi lines driven by nanos-gal4 (nos-Gal4), which is 

expressed in the nurse cells and the oocyte. The readout of the screen was a multiplex 

qPCR assay for Het-A, TAHRE, blood and burdock transposon expression. A set of 74 

genes was found in this screen, among which 16 out of 17 known piRNA pathway genes 

(Czech et al. 2013). 

In parallel, a third screen was conducted in OSC cells (Ovarian Somatic Sheet Cells). OSC 

cells recapitulate the primary piRNA pathway in the ovarian somatic sheet cells (Lau et al. 

2009; Robine et al. 2009). Long double stranded RNA (dsRNA) that silence candidate genes 

were transfected into OSC cells and de-repression of endogenous gypsy was followed by 

qRT-PCR on the spliced subgenomic gypsy RNA (Muerdter et al. 2013). As expected, many 

candidate hits overlapped the screen performed using the gypsy-lacZ sensor. 

None of these genetic screens can identify genes that are in the same time involved in the 

piRNA pathway and essential for cell viability, and one can wonder whether genes required 

in both RNAi and piRNA pathways, should they exist, be identified in these screens, as a 

decreased knockdown efficiency might lower the chance to observe a de-repression. Still, it 

seems reasonable to assume that the majority of factors specific to the ovarian piRNA 

pathway have been found. 

  

Figure 4: gypsy-lacZ sensor is repressed by piRNAs in OSC cells and ovaries. (A) piRNA profiles 
against the canonical gypsy element are shown for wild type (upper panel) ovaries and OSC cells (middle 
panel). For comparison, the gypsy LTR portion of the lacZ sensor is indicated (lower panel). (B) beta-
galactosidase stainings of the gypsy-lacZ reporter in flamenco-restrictive and flamenco permissive  
background. flamenco-permissive strains shown strongly reduced levels of gypsy piRNAs. 
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c. The “life-cycle” of piRNAs 

  

By integrating data from these screens, together with data from protein-protein interaction 

studies, subcellular localization studies, transcriptome and chromatin profiling, a model is 

emerging for each of the phases of the ovarian “piRNA life-cycle”. 

  

Multiple partly overlapping phases in piRNA biogenesis and function can be defined: 

  

1.     The “initiator phase”: This includes the transcription of piRNA precursor molecules, its 

nuclear export and processing into a mature primary piRNA. 

2.     The “amplification phase”: In this cytoplasmic phase antisense piRNA populations are 

amplified in the previously described “ping-pong” cycle. 

3.  The “post-transcriptional effector phase”: This includes the post-transcriptional regulation of 

transposable elements in the cytoplasm, but also of genic targets. 

4.   A “transcriptional effector phase”: During this phase piRNA-loaded Piwi-complexes enter the 

nucleus to guide transcriptional silencing of TEs. 

5.     A “feedback phase”:  In addition to their negative transcriptional effect on TE insertions, 

piRNA are likely involved in a feedforward regulatory loop that triggers or enhances 

transcription of piRNA producing loci. 

.  

  

When aligning piRNAs to the genome, distinct clusters with an increased density of aligned 

piRNAs are found, and these regions also contain a high frequency of defective 

transposable element pieces. 

Through analysis of the small RNA content of ovaries, that contain a mix of somatic and 

germline tissues, early embryos, which essentially reflect the germline piRNA content, and 

small RNAs in the OSC cell line, which reflect the small RNA content of the somatic cells in 

the ovary, it has become clear that activity and biogenesis of germline piRNAs and clusters 

are distinct from their somatic counterparts. 

While the majority of germline piRNA clusters is bidirectionally transcribed and feeds into the 

“ping-pong” amplification cycle, somatic piRNA clusters are transcribed from only one strand 

and exclusively produce piRNAs that do not show a ping-pong pattern of biogenesis. 

  

In the following I will describe the initiator phase for somatic piRNAs and highlight 

differences with germline piRNA initiation. 
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d. Somatic piRNA precursor transcription 

  

The prototypical somatic piRNA cluster flamenco, (Malone et al. 2009; Brennecke et al. 

2007) had been shown to control expression and mobilization of the gypsy retrotransposon 

(Pelisson et al. 1994; Prud’homme et al. 1995). The flamenco locus contains many TE 

sequences (Robert et al. 2001) in antisense orientation with respect to its transcript (Mével-

Ninio et al. 2007; Brennecke et al. 2007). flamenco is expressed in the ovarian somatic 

follicle cells, as piRNAs produced from flamenco are present in a cell line derived from 

ovarian somatic sheet cells (OSS, (Lau et al. 2009)), but not in early embryos (Malone et al. 

2009). 

flamenco transcription by RNA Polymerase II (Pol II) requires the Cubitus Interruptus 

transcription factor and is followed by splicing (Goriaux et al. 2014) and export to the 

cytoplasm, which probably involves Nup54, Nup58, CG11092, Nup214, that were identified 

to be required for gypsy-lacZ repression (Handler et al. 2013). The splicing of flamenco is 

remarkable, as one of the requirements for piRNA production from germline dual-strand 

clusters is the repression of splicing discussed below, but in-line with a large number of 

splicing factors identified in the gypsy-lacZ somatic screen (Handler et al. 2013). 

  

e. Germline piRNA precursor transcription 

  

In contrast to somatic piRNA clusters, bidirectional germline clusters such as the model 

cluster 42AB are silent in OSS cells (Lau et al. 2009), and their proper processing in ovaries 

depends on a heterochromatic environment, which, strikingly, does not prevent transcription 

(Z. Zhang et al. 2014). This is accomplished by the germline specific proteins Eggless (a 

Histone Methyl Transferase (HMT) specific for H3K9 methylation) (Rangan et al. 2011), 

Rhino (a HP1 homolog), Deadlock, Cutoff (the last 3 proteins colocalize and have been 

termed the “RDC complex” (Z. Zhang et al. 2014; Thomas et al. 2014; Mohn et al. 2014), 

and UAP56 (F. Zhang et al. 2012). The RDC likely functions to repress splicing and 

transcription termination that would otherwise be induced by splice and transcription 

termination sites sites in the TE fragment sequences. Mutations in cuff, del, uap56 and rhino 

induce canonical, euchromatic splicing patterns and strongly reduce mature piRNA levels 

from germline clusters (Z. Zhang et al. 2014; Thomas et al. 2014; Mohn et al. 2014). 

The current model states that the RDC complex defines germline-specific dual-strand piRNA 

cluster transcripts. Cluster transcripts remain bound by UAP56, are exported through 

NUP154 and are handed over to the processing machinery in the nuage (see next section). 

Mutations in UAP56 and Rhino strongly reduce piRNA levels from dual-strand clusters and 

ablate the ping-pong signature, but a significant amount of piRNA-sized, cluster-mapping 
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small RNAs remains, so it is not clear whether UAP56 is also required for primary piRNA 

biogenesis. 

Additionally, Piwi might be involved in the specification of de-novo piRNA clusters (de 

Vanssay et al. 2012; Rozhkov, Hammell, and Hannon 2013; Thomas et al. 2014), although 

previous reports did not attribute a major role for Piwi in ovarian piRNA biogenesis (Malone 

et al. 2009; Brennecke et al. 2007). 

  

f. Processing of piRNA precursors 

  

i. In somatic cells of the ovary 

 

Processing of somatic piRNA precursor transcripts occurs in perinuclear structures called 

Yb-bodies. Intermediary flamenco transcripts and the piRNA pathway proteins Armi, Vret, 

SoYb, Shu, Fs(1)Yb and Piwi have been reported to be present in Yb-bodies (Murota et al. 

2014) or in nuclear space adjacent to Yb-bodies (Dennis et al. 2013), and each of its 

components are required for accumulation of mature piRNAs. Yb-bodies frequently co-

localize with Zucchini, a single-strand endoribonuclease, whose cleavage products bear a 5’ 

monophosphate (Nishimasu et al. 2012). Zucchini is a likely candidate for primary piRNA 5’-

end formation and localizes to the outer mitochondrial membrane. Knockdown of Zucchini 

leads to dispersion of the Yb-body (Murota et al. 2014), loss of mature piRNAs and an 

accumulation of longer than 25nt RNAs that hybridize to transposon probes on a Northern 

blot, which might be intermediate products of piRNA processing (piR-IL) (Saito et al. 2010; 

Nishimasu et al. 2012), but that lack a 5’ monophosphate. It has been demonstrated that 

piR-ILs undergo Mg2+-dependent 3’ trimming. This activity occurs after loading into Siwi 

(Silkworn Piwi) in Silkworm cell lysates, but the genes involved in this processing are still 

unknown (Kawaoka et al. 2011). Trimming activity is carried out by an insoluble exonuclease 

that recognizes the 3’ OH. Importantly, Siwi-loaded RNAs are more stable than naked 

RNAs, suggesting that their activity can be maintained for longer periods of time compared 

to the transcriptional activity of their genomic origin. After trimming Hen-1 catalyzes 

methylation of piRNA 3’ ends (Hen-1 also methylates siRNAs). This modification is thought 

to increase stability of the piRNA and is required for efficient TE silencing, however flies 

remain fertile (Saito et al. 2007; Horwich et al. 2007). 
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 ii. In germline cells 

  

Yb-bodies are absent in germline cells (Szakmary et al. 2009) and processing of exported 

piRNA precursor transcripts occurs likely in distinct, electron-dense perinuclear structures 

called nuage as piRNA precursor transcripts are detected in the nuage. The nuage is 

juxtaposed to nuclear UAP56 and Rhino signals, which mark dual-strand piRNA clusters (F. 

Zhang et al. 2012; Z. Zhang et al. 2014). 

Detailed studies of how primary piRNA biogenesis proceeds in germline cells are still 

lacking, but given that mutations in primary piRNA biogenesis factors that were studied in 

OSC cells generally lead to a collapse of the complete piRNA pool, it is likely that primary 

piRNA biogenesis occurs by a similar mechanism in the germline and somatic follicle cells. 

 

Conceptually, primary piRNA biogenesis is followed by either a 

·     an amplification phase in which sense transcripts (TE or other) are consumed, 

·     or post-transcriptional silencing of transcripts with piRNA complementarity, 

·    or re-import of Piwi-RISC complexes into the nucleus, where transcriptional silencing takes 

place. 

  

I will first describe the amplification phase and discuss targeting of transcripts with piRNA 

complementarity next. Finally I will turn to the nuclear functions attributed to Piwi. 

  

iii. Vasa organizes the nuage for piRNA amplification 

  

The elucidation of the piRNA amplification mechanism has been greatly facilitated by a 

Bombyx mori cell line that recapitulates the full ping-pong piRNA biogenesis. Of note, 

Bombyx mori is lacking Aubergine and ping-pong amplification is occurring between 

Silkworm Piwi (Siwi) and Ago3. After nuclear export, piRNA precursor molecules are 

scanned by piRNA-loaded Siwi. Upon recognition, the precursor enters DEAD box helicase 

Vasa, which acts as a scaffold for piRNA amplification (Xiol et al. 2014). Transcript-bound 

Vasa recruits Tudor and Papi which in turn recruit Ago3 and Aubergine (L. Liu et al. 2011). 

In Bombyx mori, a Vasa mutation in the DEAD box domain (DQAD) that prevents ATP 

hydrolysis stabilizes Vasa interaction with Siwi and Ago3. RNA Immunoprecipitation (RIP) 

from Vasa-DQAD yielded both small RNAs and longer sense transposon transcripts (Xiol et 

al. 2014) (Zhang et al., reported 42AB transcripts in wildtype Vasa RIP (F. Zhang et al. 

2012)). The ~30nt small RNAs species are constituted by molecules mostly antisense to 

transposons, whereas a second ~10-12nt species is thought to be the footprint of 

transposon transcripts that are present in Vasa and are degraded by cellular nucleases, 
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implicating Vasa as central part of the piRNA amplification and processing machinery that 

coordinates the turnover between ping-pong partners, hence it was termed the “amplifier 

complex” (Xiol et al. 2014). 

 

  

g. Post-transcriptional regulation of piRNA source and target loci 

  

i. Piwi is unlikely to act by a PTGS mechanism 

 

It is less clear how genic transcripts are targeted, and whether there is a role for Piwi-loaded 

primary piRNAs in the post-transcriptional regulation of both TEs and genic transcripts. 

When considering the evidence gathered in the OSC cell line, Piwi predominantly acts by 

nucleating heterochromatin on TE sequences in the genome, thereby preventing their 

expression. If Piwi was silencing transposons post-transcriptionally by a slicer mechanism 

like Aubergine and Ago3 do, mutation of the slicer motif should result in increased TE 

expression. Piwi slicer mutant flies however do not show increased TE expression, and are 

fertile (Sienski, Dönertas, and Brennecke 2012). Recombinant Piwi is capable of cleaving 

targets when loaded by single-stranded siRNAs (21nt and 30nt), as assayed by Saito and 

colleagues, however the level of detected cleaved target was comparable to Ago1, which is 

a weak slicer and in vivo rather regulates targets through the recruitment of decapping 

enzymes and /or translational inhibition. In addition, siRNAs are not enriched in piwi IPs from 

ovarian lysate incubated with siRNA duplexes (Saito et al. 2006). Altogether these data 

point against a role for Piwi in PTGS directly through its slicer mechanism. 

 

ii. Genic piRNAs as candidates for guiding PTGS 

 

While piRNAs are predominantly derived from TE sequences, a significant fraction also 

aligns to the 3’UTR of genic transcripts (22% as compared to TE-piRNAs reads, 30% as 

compared to microRNA reads, both in OSS cells) (Robine et al. 2009), such as piRNA 

originating from the 3’UTR of traffic jam (tj). Low levels of piRNAs are found on genes 

juxtaposed to TE sequences or other producers of piRNA (Mohn et al. 2014; Saito et al. 

2009; Robine et al. 2009; Shpiz et al. 2014), but in this case piRNA production seems to 

“bleed” from the TE sequences to the genic transcription unit, and these piRNAs are 

dependent on ping-pong amplification and the RDC complex (Mohn et al. 2014). 

Genic 3’UTR piRNAs are independent of secondary piRNA pathway factors (in fact relative 

3’UTR piRNA expression increases in most secondary piRNA pathway mutants, except 

Aubergine), they do not correlate with the expression level of the transcript from which they 
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derive, they have a 5’U bias, are strongly enriched in Piwi IPs and slightly enriched in 

Aubergine (Robine et al. 2009). It remains unknown how the piRNA biogenesis machinery 

selects genes for 3’UTR piRNA production, though genes with significant 3’UTR piRNAs 

show higher median expression levels than control genes in OSS cells, adult and 10 day 

post-partum mouse testes (Robine et al. 2009), suggesting that either high expression levels 

favor 3’UTR piRNA expression, or that 3’UTR piRNA expression facilitates high level 

expression or a combination of both. Genes from which 3’UTR piRNAs are produced (>1000 

transcripts, according to Lau and colleagues) do show significant enrichments in GO-terms, 

and these overlap significantly with mouse genes that are a source for 3’UTR piRNAs, 

suggesting a conserved function in the regulation of 3’UTR piRNAs (Robine et al. 2009). The 

enriched GO-terms for 3’UTR piRNA genes involve developmental processes. 

 

Most 3’UTR piRNAs are in sense orientation with respect to the transcript from which they 

derive, indicating that the mRNA is the initial substrate (or source locus) (Saito et al. 2009; 

Robine et al. 2009), but leaving open the question of whether the sense-piRNA loaded Piwi 

can in turn target the host mRNA in trans, or another, coding- or non-coding RNA with sense 

or antisense sequence homology. Piwi-negative mutant follicle clones show increased traffic 

jam protein levels, indicating that 3’UTR piRNAs cluster do have a role in repressing the host 

coding gene they derive from, but whether the observed derepression stems from decreased 

transcriptional or post-transcriptional cis- or trans-silencing has not been investigated. 

Recent work (Post et al. 2014) in OSC cells suggests that genic piRNAs have to be strongly 

expressed to target reporter gene silencing. Importantly reporter repression was effective 

above background only when the reporter fragment was in the opposite orientation to the 

piRNAs that induce reporter targeting. This is hence pointing against a role of genic piRNAs 

repressing their host gene in trans, as they share the same orientation. Furthermore, 

reporter expression was decreased when piRNA target sites were introduced as efficiently 

spliced introns, suggesting that piRNA-repression occurs on the nascent transcript prior to 

splicing. If one were to reconcile these finding with the increase of tj protein levels in Piwi 

mutant follicle cell clones, it seems likely that the cis processing of the tj transcript into 

piRNAs is responsible for lower tj protein levels observed, and not PTGS. Post and 

colleagues provide evidence for trans-silencing of their reporter through genic piRNAs, but 

they speculate that this is more likely to occur by TGS. These findings stem from OSC and 

OSS cells and likely reflect the piRNA pathway that is active in ovarian follicle cells, which do 

not express Aubergine and Ago3. It remains possible that genic piRNAs in germline cells 

and early embryos do act by PTGS. 
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iii. piRNA-directed PTGS through homology with TE sequences  

  

A first example of piRNA-guided post-transcriptional regulation of protein coding, non-TE 

genes is the piRNA-mediated degradation of maternally deposited nanos (nos) mRNA 

(Rouget et al. 2010). In the early embryo (0-1h after egg laying (AEL)) nos mRNA is 

ubiquitously located in the cytoplasm, and is successively degraded, except for the 

posterior-most region of the embryo. 

Proper Nos protein localization is required for head and thorax segmentation, as Nos, which 

localizes to the posterior of the embryo, locally repress hunchback mRNA translation, while 

ectopic presence of Nos at the anterior part of the embryo represses bicoid mRNA. 

Destabilization of nanos mRNA at the maternal-to-zygotic transition (MZT) depends, among 

other signals and pathways (Smaug-recognition element in the proximal-most part of the 

3’UTR, CCR4, Smg (Rouget et al. 2010)), on two sites in the nanos 3’UTR with partial 

complementary to roo and 412 TE piRNAs (piRNAs correspond to the antisense strand of 

roo and the sense strand of 412, respectively). 

Transgenes lacking piRNA homology sites show increased polyA-tail lengths, increased 

stability of nos mRNA in the bulk of the embryo cytoplasm and defects in head development 

resulting from lack of bicoid and hunchback mRNA repression in the anterior region of the 

embryo. 

Similar phenotypes were observed in piRNA mutant embryos and embryos injected with 

synthetic 2’O-methyl RNAs antisense to the roo and nos piRNAs (Rouget et al. 2010). This 

indicates that TE-derived piRNAs could in principle target genic mRNAs in trans, with the 

caveat that nanos regulation also depends on other sequence elements in its 3’UTR and 

that nanos-regulation occurs in the early embryo. The cytoplasmic distribution of Smg and 

the CCR4-Not complex, the proposed effectors of piRNA mediated nos mRNA degradation 

during the MZT, are disrupted in aubergine mutant embryos, indicating that piRNA could be 

globally involved in the MZT. 

Whether other genes with TE-derived piRNA complementarity could be subject to nanos-like 

piRNA-mediated repression is not clear. In addition it is not known whether piRNAs play a 

role in regulating gene expression after the MZT. 

Other examples of piRNA mediated-PTGS include [1] the post-transcriptional cleavage of a 

sex-determination factor in Bombyx mori guided by a female specific piRNA (Kiuchi et al. 

2014) and [2] the repression of approximately 40% of the mRNAs in elongating mouse 

spermatids by Miwi (Gou et al. 2014). Repression in this case is linked to the CCR4-Not 

complex, suggesting a similar PTGS mechanism as nanos mRNA degradation during the 

Drosophila MZT. 
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h. piRNA-mediated transcriptional gene silencing 

 

i. Nuclear function of Piwi 

  

The Drosophila piRNA pathway had been linked retrospectively to transcriptional gene 

silencing (TGS) via its role in co-suppression (M Pal-Bhadra, Bhadra, and Birchler 1997) 

suppression of variegation and Polycomb-mediated gene silencing (Grimaud et al. 2006) 

even before its molecular mechanisms were identified, but solid molecular evidence for this 

mode of silencing surfaced only recently. As mentioned before, piRNA-loaded Piwi (Piwi-

RISC) shuttles into the nucleus where it is localized in close proximity to chromatin. Piwi 

accumulates in the nucleus only when loaded with piRNAs (Saito et al. 2010), hence loss of 

piRNA biogenesis factors triggers delocalization of Piwi. A slight delocalization is also 

observed when knocking down Aubergine, suggesting that the ping-pong loop might provide 

piRNAs to Piwi (S. H. Wang and Elgin 2011). 

 

Piwi is guided to nascent RNA transcripts by its loaded piRNA and recruits HP1 in a RNase-

dependent fashion. HP1 in turn recruits Su(var)-3-9 via its chromo-shadow domain for the 

tri-methylation of H3K9 (Huang et al. 2013). This process is independent of Piwi catalytic 

activity and instead depends on its NLS. Similarly, Piwi catalytic mutants are fertile and show 

no obvious phenotypic defects, while Piwi-ΔNLS mutants have strongly increased TE levels, 

egg laying and fertility defects. 

 

 

ii. Piwi-mediated TGS of TE insertions define euchromatic H3K9me3 islands 

 

 Detailed analysis in OSC cells revealed that TE insertions are responsible for most (88%) 

euchromatic H3K9me3 islands (Sienski, Dönertas, and Brennecke 2012). Strikingly, PolII 

occupancy on these euchromatic H3K9me3 islands is very similar to random control 

windows regions, indicating that euchromatic H3K9me3 is compatible with substantial 

transcription. Upon knockdown of Piwi, a subset of TEs (“Group I”, defined by Piwi-

sensitivity) shows strong increases in nascent and steady-state RNA levels as well as a 

reduction of H3K9me3 levels and increases in PolII occupancy. Increased PolII levels were 

also found immediately downstream but not upstream of TE insertions, suggesting that PolII 

can “bleed” into flanking sequences. A low number of genes (34) in vicinity to “group I” TE 

insertions also showed increased expression levels, PolII occupancy and nascent RNA 

levels upon Piwi, Armitage or Maelstrom knockdown, suggesting that TE insertions can 

cause Piwi-dependent spread of a heterochromatic environment. Importantly, transcription-
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defective truncated TE fragments in intronic sequences also trigger nucleation of H3K9me3, 

but only if the insertion is in sense orientation of an active transcription unit and antisense 

piRNAs against the sense TE transcript exist in OSC cells. This suggests that recruitment of 

Piwi to target loci occurs through nascent transcripts, paradoxically requiring transcription for 

transcriptional gene silencing (Sienski, Dönertas, and Brennecke 2012; Post et al. 2014). In 

agreement with the finding that PolII is not depleted from euchromatic H3K9me3 islands, 

Sienski and colleagues also showed that in OSC cells Maelstrom knockdown leads to 

elevated TE steady-state RNA levels and PolII bleeding out of TE sequences, without 

affecting piRNA production or H3K9me3 levels on the TEs itself. In Drosophila Maelstrom 

thus functions downstream of piRNA biogenesis and H3K9me3 establishment to silence 

TEs. This again confirms that H3K9me3 is not preventing PolII transcription, and that histone 

modifications are likely not the endpoint of Piwi-mediated silencing (Sienski, Dönertas, and 

Brennecke 2012). This study did not address the role of HP1 in Piwi-mediated TGS, which 

Huang and colleagues proposed to be the initial silencing signal that is recruited by Piwi. 

One hypothesis might thus be that Piwi, through the action of Maelstrom, recruits other 

chromatin modifiers that reduce PolII transcription or target/signal transcripts for 

degradation.  
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Figure 4. A) Cartoon of a Drosophila ovariole with somatic cells in green and 
germline cells in beige. (B) Schematic representations of the Drosophila germline and 
somatic piRNA pathways focusing on the three PIWI family proteins and the 
biogenesis routes of their bound piRNAs. From (Handler et al., 2013). 
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iii. Maelstrom as an adapter molecule between heterochromatin and transcript 

degradation 

 

Maelstrom is a protein that contains a high mobility group [HMG] box, that is required for 

DNA binding in a number of proteins, and mutations in this domain lead to increase TE 

levels (Sienski, Dönertas, and Brennecke 2012). Maelstrom is conserved in mice and 

required for transposon silencing and fertility. In mice Maelstrom is in complex with Miwi and 

the Tudor-domain protein Tdrd6. Mouse Malestrom specifically binds pachytene piRNA 

precursors (Castañeda et al. 2014), and loss of Maelstrom strongly reduces pachytene 

piRNAs. Maelstrom function in this case was proposed to be a nucleo-cytoplasmic shuttling 

chaperone for piRNA cluster transcript, required for precursor handover to the nuage. 

A hypothesis on how to reconcile these apparently different roles (loss of pachytene piRNAs 

versus a step downstream of Piwi-mediated TGS) for Maelstrom in flies and mice was put 

forward by Pandey and Pillai, proposing that Maelstrom binds nascent TE transcripts and 

targets them to cytoplasmic degradation granules, which in mouse would result in piRNA 

production, whereas in fly this would result in decay of TE transcripts (Pandey and Pillai 

2014). 

This would however not explain the increased PolII transcription inside TE and flanking 

sequences upon Piwi knockdown (Sienski, Dönertas, and Brennecke 2012), unless nascent 

transcript binding by Maelstrom would terminate transcription. Clearly further work is 

required to understand how Maelstrom is targeted to nascent transcripts, and why it is 

required for pachytene piRNAs in mouse but not for piRNA production (neither 3’UTR or 

ping-pong) in Drosophila. 

 

iv. Loss of Piwi function affects rate of TE transcription and stability 

 

TGS installed by Piwi was also found to be the predominant mode of TE silencing in ovarian 

somatic follicular cells, as tissue-specific RNAi using the traffic jam Gal4 driver caused loss 

of H3K9me3, increased steady-state and nascent RNA levels (Rozhkov, Hammell, and 

Hannon 2013). While this is also true for nanos-Gal4 driven germline knockdown, steady-

state TE RNA levels in this case increased much stronger than nascent RNA levels. It is 

thus likely that in germline cells both transcriptional rate and transcript stability of TEs 

increases. This difference between somatic and germline cells might be linked to the role 

that Piwi might play on th specification of piRNA clusters (discussed in “Germline piRNA 

precursor transcription”). Thus, if the clusters fuel less piRNA biogenesis upon piwi 

knockdown, Ago3 and Aubergine are less active on TE transcripts, explaining the apparent 

increase of TE transcript stability. In line with this, piRNAs specific for TEs that show 
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stronger increases in steady-state RNA decreased in abundance. The effect was particularly 

strong for the telomeric TEs HetA, TART and TAHRE. These are not found in the classical 

piRNA clusters described by Brennecke (Brennecke et al. 2007), and instead acts as “mini-

clusters” whose primary piRNAs are derived from the same loci that are targeted for 

repression. 

Remarkably, none of these studies (Thomas et al. 2013; Rozhkov, Hammell, and Hannon 

2013) reported significantly up regulated protein-coding genes except for those involved in 

cellular stress and DNA-damage signaling. These genes are likely activated as a 

consequence of increased transposition, as opposed to being direct targets of transcriptional 

silencing by Piwi. 
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3. siRNA silencing 

 

The Drosophila siRNA pathway (often synonymously called RNAi) is well separated from the 

miRNA pathway, as the key genes involved are distinct from those of the miRNA pathway, 

contrary to the situation in mammals, aiding in dissecting the function of each pathway 

Soon after Mello and Fire’s demonstration of RNAi in C.Elegans (Fire et al. 1998), long 

exogenous dsRNA was injected into Drosophila embryos to study gene function (Kennerdell 

and Carthew 1998; Misquitta and Paterson 1999) and their principal molecular actors Dicer-

2 and Ago2 were identified (Bernstein et al. 2001; Hammond et al. 2001)). 

The discovery that soaking long dsRNA in the supernatant of cultured Drosophila cells could 

knock down homologous genes in a fast, cheap and easy fashion allowed very powerful 

reverse genetic RNAi screens. These were later extended to in -vivo screens when 

transgenic collection of hairpin lines were established by a number of consortia (VDRC and 

DRSC, (Dietzl et al. 2007; Ni et al. 2008) ) 

As RNAi is cell-autonomous in Drosophila, even large scale tissue and cell-type specific 

screens are possibe (Roignant et al. 2003) as long as a Gal4 driver for the cells of interest 

are available. Strikingly, this also led to the identification of additional miRNA, siRNA and 

piRNA factors (Zhou et al. 2008; Carré et al. 2013; Czech et al. 2013; Olivieri et al. 2010; 

Handler et al. 2013) 

The Drosophila siRNA pathway has been first and foremost involved in the defense against 

viral infections (van Rij et al. 2006; Zambon, Vakharia, and Wu 2006), maintenance of TE 

repression (Ghildiyal et al. 2008), establishment and/or maintenance of heterochromatin 

(Fagegaltier et al. 2009), heat shock responses (Lucchetta, Carthew, and Ismagilov 2009), 

promoter pausing (Cernilogar et al. 2011), mitotic progression, chromatin looping 

(Moshkovich et al. 2011), splicing (Taliaferro et al. 2013) and polycomb-mediated silencing 

(Grimaud et al. 2006; Moshkovich et al. 2011), although many of these reports are 

contradictory and often lack a clear molecular mechanism.  

I will first summarize the well-defined mechanism of PTGS induced by canonical long 

dsRNAs and then discuss the various function attributed to the siRNA pathway. 
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a. Molecular view of the siRNA pathway 

  

The principal source molecules of the siRNA pathway are stretches of complementary and 

annealed RNA, or more simply put, double-stranded RNA molecules (dsRNA). Long dsRNA 

is  

processed into 21-nt siRNA duplexes by the endoribonuclease Dicer-2 (Dcr-2). In contrast to 

Dicer-1 which lacks the DExD/H domain, Dicer-2 contains a subdivided amino-terminal 

helicase domain with a DExD/H helicase domain and a HELIc helicase domain, followed by 

dsRNA binding domain (dsRBD), a Piwi-Argonaute-Zwille (PAZ) domain, two tandem 

RNAseIII domains and a C-terminal dsRBD. Dicer-2 cleaves both short (30nt) and long 

(>30nt) dsRNA molecules. Dicer-2 is a processive enzyme, with the initiation being the rate-

limiting step. Its translocation along longer dsRNA molecules hydrolyzes approximately 21 

molecules of ATP per siRNA duplex and depends on the helicase activity (Cenik et al. 2011; 

Welker et al. 2011). The two RNAseIII domains pair intramolecularly to form the active site 

necessary to cleave the two strands of the dsRNA with 2nt overhangs at the 3’end. The PAZ 

domain binds the 3’ overhangs, and the distance by between the PAZ domain and the active 

site determines the precise 21 nt length of siRNA duplexes (Zamore et al. 2000; Elbashir et 

al. 2001; Nykänen, Haley, and Zamore 2001; MacRae, Zhou, and Doudna 2007). Finally, the 
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dsRBD domains are thought to enhance the affinity for dsRNAs. In vivo, the loquacious 

isoform D (loqs-PD) and Ars2 enhance processing of dsRNA substrates, while R2D2 

interacts with the helicase domain of Dicer-2 and is required for efficient loading of 21nt 

dsRNA duplexes into Ago2 (known as the RISC-loading complex or RLC). In the absence of 

R2D2 siRNAs are preferentially loaded in Ago1, indicating that R2D2 is required for proper 

sorting of siRNAs in Ago2, as siRNAs loaded in Ago1 have decreased capability to cleave 

targets and might cause silencing in a more miRNA-like mechanism. R2D2 might do so by 

sensing the 1st nucleotide (strong bias for U) and central structure of the siRNA duplex, as 

R2D2 mutants show altered nucleotide biases at position 1, 9 and 10 (Marques et al. 2010; 

Okamura et al. 2011; Mirkovic-Hösle and Förstemann 2014).  

 

b. Processing of dsRNA is enhanced in D2 bodies 

 

Assembly of the RLC probably occurs in distinct cytoplasmic structures termed D2 bodies, 

whose principal components are Dicer-2, R2D2, while Ago2 is found transiently in D2 

bodies. D2 bodies partially colocalize with P-bodies but are distinct from them, and they are 

also distinct from stress granules. D2 bodies are present in S2 cells and OSC cells, ovarian 

follicle cells but are absent from nurse cells and oocytes (Nishida et al. 2013). Interestingly, 

efficient RNAi knockdown in nurse cells and and oocytes requires overexpression of Dicer-2 

(S. H. Wang and Elgin 2011) possibly due to the absence of D2 bodies. 

Knocking down R2D2 leads to disruption of D2 bodies and misloading of endo-siRNAs into 

Ago1, while artificial siRNA duplexes are still loaded into Ago2 independently of D2 bodies. 

As Dicer-2 mutants lacking the dsRNA binding domain do not localize to D2 bodies, Nishida 

and colleagues proposed a model in which D2 bodies are the sites of Ago2 loading. Dicer-2 

with siRNA duplexes would localize to D2 bodies, where the local concentration of loading 

factors are high, allowing efficient loading in Ago2, that can nevertheless take place outside 

of D2 bodies. Upon loading, Dicer-2/R2D2 complexes would leave the cytosol to associate 

with dsRNA duplexes and relocalize to D2 bodies (Nishida et al. 2013). 

 

c. Strand selection and target cleavage 

 

Dicer-2/R2D2 complexes as part of the RLC are thought to bind the thermodynamically less 

stable 3’end of the siRNA duplex, followed by an exchange of the Dicer-2/R2D2 complex 

with Ago2 (Tomari, Du, and Zamore 2007). ATP-mediated “stretching” of the Ago2 

conformation by the chaperones HSP90 and Hsc70 is required for efficient transfer of the 

duplex into Ago2 (Iwasaki et al. 2010; Miyoshi et al. 2010). Ago2-loaded siRNA duplexes are 

termed pre-RISC, and conversion of pre-RISC into RISC requires hydrolysis of the 
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phosphodiester bond between nucleotides 9 and 10 of the passenger strand by the 

endonucleolytic activity of the Piwi domain. Nicked passenger strands are subsequently 

degraded by the endonucleolytic activity of the translin-TRAX complex (known also as 

C3PO), yielding active Ago2-RISC loaded with a single strand 21 nt siRNA, ready to cleave 

complementary target RNAs (Tian et al. 2011). Hen-1 further increases the stability of the 

mature siRNA by transferring a methyl group from S-adenosyl methionine (SAM) to 3’ OH 

group, thereby protecting the siRNA from uridylation and other modifications that decrease 

small RNA stability (Sement et al. 2013; Ji and Chen 2012). Target RNA cleavage is a 

multiple-turnover catalytic process, whose rate-limiting step is the release of cleaved mRNA 

which is facilitated by the autoantigen protein La (Haley and Zamore 2004; J. Liu et al. 2004; 

Martinez et al. 2002; Rivas et al. 2005).  

 

d. The siRNA pathway controls viral infections. 

 

The primary function attributed to the siRNA pathway is in the defense against RNA viruses 

and TEs. The function of the siRNA pathway in antiviral immunity is linked to the cleavage of 

viral dsRNA, as well as targeting of viral single-strand RNA by virus-derived siRNAs 

(vsiRNA) loaded in Ago2, leading to destabilization and/or degradation of viral RNA. There is 

a multitude of potential viral dsRNA sources, depending on whether the viral genome is 

double-stranded, single-stranded with messenger RNA transcribed from the RNA that is 

packaged in the virion (+ strand) or whether the messenger RNA is transcribed after RdRP 

transcription (- strand). During infection with double-stranded RNA viruses, the viral genome 

itself is the target of Dicer-2 cleavage, wheres for + strand RNA viruses the most likely 

substrate are the dsRNA replication intermediates. This is supported by approximately equal 

abundance of vsiRNA mapping to the + and - strand, even though the + strand is 10-100 fold 

more abundant. Similar to + strand viral infections, during - stand viral infections vsiRNA 

abundance is also balanced between + and - strand, with no enriched regions, indicating 

again that the replication intermediates serve as substrates for the RNAi machinery. Recent 

reports also suggest targeting of the DNA viruses IIV-6 by the siRNA machinery, with 

vsiRNA matching to regions transcribed from both strands of the viral genome (Kemp et al. 

2013; Bronkhorst et al. 2014). 

The importance of antiviral RNAi in Drosophila is highlighted by the increased sensitivity of 

siRNA pathway mutants (dicer-2, r2d2 and ago2) to viral infections which show higher viral 

titers as well as increased mortality (van Rij et al. 2006; Galiana-Arnoux et al. 2006; X.-H. 

Wang et al. 2006). Indeed viruses have independently evolved strategies to evade their 

hosts’ antiviral siRNA system by means of proteins that either inhibit siRNA pathway 

proteins or that shield double-stranded RNA from processing by Dcr-2 or Ago2 (Van Rij and 
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Andino 2008). As opposed to plants, the Drosophila RNAi pathway is lacking a RdRP that 

could amplify siRNAs and acts cell autonomously (Roignant et al. 2003; Lipardi and 

Paterson 2009; Yoshikawa et al. 2005; Xie et al. 2005; Gasciolli et al. 2005). During viral 

infections however, a protective vsiRNA response can be detected in uninfected cells, which 

depends on endocytic uptake of long dsRNA emitted from infected cells, possibly from lysed 

cells during infection or an unknown trigger sensitive to viral infections (Saleh et al. 2009). 

 

e. The siRNA pathway represses TEs 

 

The siRNA pathway has also been implicated in the defense against TEs. Unlike piRNA 

pathway mutants, which are generally sterile, siRNA pathway mutants do not show strong 

fertility defects (Wen et al. 2014). Nevertheless, strongly increased steady-state TE RNA 

levels have been reported for Dcr-2, r2d2, Hen-1 and Ago2 mutants in S2 cells, adult heads 

and carcasses (Horwich et al. 2007; Ghildiyal et al. 2008; Czech et al. 2008; Ameres et al. 

2010; Mirkovic-Hösle and Förstemann 2014; Li et al. 2013). Most transcriptionally active TEs 

are targeted by 21-nt sense- and antisense siRNAs along their sequence, suggesting active 

degradation similar to viral restriction. Depending on the abundance of piRNAs in the tissue 

under study, different TE families may be targeted predominantly by siRNAs, piRNAs, or a 

combination of siRNAs and piRNAs. 

As for viruses, multiple potential sources of dsRNA exist. This includes bidirectional 

transcription of transposable element sequences, pairing of transcripts from piRNA clusters 

with active full length copies distributed throughout the genome and secondary structures of 

transposable element RNA. 

Importantly, the increases in transposable element RNA in mutants of the siRNA pathway 

are rather modest (<20 fold) (Ghildiyal et al. 2008; Mirkovic-Hösle and Förstemann 2014) as 

compared to knockdown of Piwi in ovaries ( >100 fold) (Rozhkov, Hammell, and Hannon 

2013) or OSC cells (Sienski, Dönertas, and Brennecke 2012), but the actual fold changes 

depend on the TE family, tissue, genotype and technique (qRT-PCR or cDNA sequencing) 

under consideration. In general it appears that measured fold changes of TE expression 

upon knockdown of RNAi factors in cell lines are stronger than mutants of the same factor in 

ovaries. It also appears that TE levels in Piwi NLS mutants ovaries are only moderately 

increased, while follicle and germline knockdown result in strongly increased TE levels 

(Klenov et al. 2014). This is in apparent contradiction with (Sienski, Dönertas, and 

Brennecke 2012), however Sienski and colleagues have tested only 2 TEs with a single 

normalization to act5C, a gene that appears downregulated in my datasets. 

Given the proposed function of Piwi in TGS, it might be reasonable to assume that TEs 

remain transcriptionally repressed, and only few TE insertions are actively transcribed and 



 33 

repressed post-transcriptionally by the siRNA pathway, hence the lower de-repression 

observed in siRNA pathway mutants. Whether the siRNA pathway is involved in the 

repression of TEs by establishment or maintenance of TGS has not been explored 

extensively and results are contradictory (Fagegaltier et al. 2009; Moshkovich and Lei 2010). 

For Ago2, Dicer-2, and r2d2 mutations and viral proteins that suppress nuclear RNAi 

Fagegaltier and colleagues found a strong redistribution of HP1 and H3K9me2 marks along 

chromosomes, while Moshkovich and Lei showed little changes of HP1 on the status of 

piRNA clusters in Ago2 mutant heads. This is not necessarily a contradiction, as piRNA 

clusters were not specifically tested by Fagegaltier and colleagues. 

 

 

f. Multiple links between piRNA and siRNA pathway 

 

Both piRNA and siRNA pathway have been reported to suppress variegation of variegation 

reporters (Manika Pal-Bhadra et al. 2004; Fagegaltier et al. 2009; Gu and Elgin 2013), such 

as white-mottled-4 (wm4) (Muller 1930) and stubble-variegated (SbV) (Lewis, E.B. (1956). 

This is interesting also as a demonstration of Piwi having an effect on an adult somatic 

tissue. 

In addition, piRNAs and siRNAs frequently co-occupy transposable element insertions and 

piRNA clusters. piRNA and siRNAs share methylation at their 3’ end by Hen1, and loss of 

both pathways leads to an increased of TE expression. Furthermore, Ago2 and piwi co-

immunoprecipitate with CP190 in early embryos, suggesting that Ago3 and Piwi in part 

occupy similar genomic regions (Moshkovich et al. 2011). However chromatin association of 

Ago2 has been found even for catalytic mutants of Ago2 that are unable to cleave targets, 

so its chromatin binding function is likely independent of guidance by siRNAs, as Ago2 

binding sites also show an inverse correlation with siRNA abundance (Moshkovich et al. 

2011). Furthermore an increase of siRNAs against TEs was found when piwi was knocked 

down either in ovarian somatic cells or germline cells (Rozhkov, Hammell, and Hannon 

2013). One TE that showed increased levels (6-fold) of siRNAs upon piwi knockdown was 

ZAM. Strikingly, nascent ZAM RNA increased 3 fold stronger than ZAM steady-state RNA, 

suggesting that this siRNA response limits further increases in ZAM transposon levels. 

Lastly, piRNAs and siRNAs can both target viral infections (Sindbis Virus and Rift Valley 

Fever Virus (RVFV), respectively) (Vodovar et al. 2012; Léger et al. 2013), with the a 

stronger siRNA response against RVFV during early infection time points and increasing 

levels of piRNA production during later infection.  
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Results I 
 
Before starting the project that led to the article draft below, I tried to perform Chromatin 

Immunoprecipitation followed by DNA sequencing (ChIP-seq) for Dicer-2. This project was a follow-up 

to a previous publication of our laboratory that showed a redistribution of silent chromatin marks in 

mutations of siRNA pathway genes and when nuclear-targeted viral suppressors of RNAi were 

expressed (Fagegaltier et al. 2009). As Ago2 had been shown to associate to Chromatin 

independently of its catalytic activity (Moshkovich et al. 2011), and Dicer-2 had been shown to be 

chromatin-associated at the Hsp70 locus (Cernilogar et al. 2011) and to colocalize with Polycomb 

protein Polyhomeotic (PH) (Grimaud et al. 2006), I focused on Dicer-2. 
I did however not manage to consistently detect transgenic Flag-tagged Dicer-2 at the Hsp70 locus in 

embryos and the S2 cell line. Doubt arose when immunofluorescence microscopy suggested that 

Dicer-2 

! 

was more likely to be cytoplasmic (confirmed by (Nishida et al. 2013)). Finally I performed subcellular 

fractionation experiments (which were shown in Supplemental Figure S1a to (Cernilogar et al. 2011)) 

and found the exact opposite result with the same cell line and with KC cells (Figure 7). Treatment 

with Leptomycin B, an inhibitor of nuclear export (Kudo et al. 1998), did not cause nuclear retention of 

Dicer-2, which does have a potential Nuclear Export Sequence (NES). While this is not a definitive 

demonstration that Dicer-2 does not have a nuclear function, I abandoned the project after 

consultation with my thesis committee in January 2013 and I started to focus on the somatic, non-

gonadal function of the piRNA pathway. It is currently debated whether piRNAs exist outside of the 

gonads and what their function might be. It appears that piRNA-like molecules can be detected in the 

heads of adult flies (Yan et al. 2011; Ghildiyal et al. 2008; Mirkovic-Hösle and Förstemann 2014), but 

also in the central nervous system (CNS) of Aplysia (Rajasethupathy et al. 2012) and the mouse 

hippocampus (E. J. Lee et al. 2011). In Aplysia neurons piRNAs appeared to be abundant with a 

specific set of piRNA enriched as compared to the ovotestis. Moreover, overexpressed Piwi proteins 

accumulated in the nucleus of sensory neurons and piRNAs are implicated in memory formation via 

Figure 6: Subcellular fractionation experiments reveal preferential localization of Dicer-2 in the 
cytoplasm. Equal amounts of whole cell lysate (W), Cytoplasmic (C) and Nuclear (N) extract were loaded, 
except in the last panel for the lane 2XN, where twice the amount of nuclear extract was loaded. Tubulin 
served as a cytoplasmic marker and Lamin served as a nuclear marker. 
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methylation of the CREB2 promoter. In the mouse hippocampus piRNAs represented about 12% 

(11% >24 nt, and 1% corresponding to known Miwi-bound piRNAs) of the total sequenced small 

RNAs, Miwi-bound piRNAs could be immunoprecipitated from brain, and Miwi was found to colocalize 

with piRNAs in the cytoplasm of cultured hippocampal neurons. In contrast, Drosophila piRNA-like 

molecules in the head have not yet been ascribed a specific function, and have not been 

immunoprecipitated with a Piwi-class proteins. While the secondary piRNA pathway members Ago3 

and Aubergine can be detected by Immunofluorescence in the brain (Perrat et al. 2013), they 

colocalize only in a limited subset of neurons. In addition, Piwi could not be detected in the brain, 

possibly because the Piwi locus is actively repressed by the l(3)mbt transcriptional repressor 

(Blanchard et al. 2014) . 
 On the other hand, mutants of the piRNA pathway are clearly affecting somatic tissues, as embryos 

devoid of maternally deposited piRNA complexes are arrested early in development (Mani, Megosh, 

and Lin 2014; S. H. Wang and Elgin 2011). Furthermore mutations in piRNA pathway genes have 

been shown to affect Position Effect Variegation (PEV) of the wm4 sensor and distribution of 

chromatin marks (Manika Pal-Bhadra et al. 2004; Gu and Elgin 2013). The observed phenotypes of 

piwi mutations in the head were the starting point of the project that led to the following article draft.  
We started the project by sequencing small RNAs in the embryos, early larvae and heads of flies in 

the wm4 background, to determined whether closeby small RNAs might be responsible for the 

observed suppression of variegation in dicer-2 (Fagegaltier et al. 2009) and piwi (Gu and Elgin 2013; 

Manika Pal-Bhadra et al. 2004) mutants. Unfortunately we did not find evidence for small RNAs that 

might be at the root of wm4 variegation, but by the summer of 2013 we saw an effect of piwi mutation 

on gypsy, and to a lesser extent on other TEs derived siRNA. This was the first hint that piwi was 

implicated in TE regulation in adult non-gonadal soma. In September 2013 we discovered that (Gu 

and Elgin 2013) had also worked on the somatic effect of piwi mutation. In their paper, Gu and Elgin 

found that maternal deposition of piwi was required for heterochromatin formation over PEV loci and 

TE sequences, as HP1 levels decreased slightly in piwi mutants. We then continued and asked 

whether piwi and dicer-2 mutation would also affect TE transcript levels, given that the siRNA levels 

changed in both mutants. As both had only minor effects, except for gypsy expression, we 

hypothesized that both siRNA and piRNA pathways might represent complementary layers of TE 

repression, and so we recombined both mutant alleles and performed RNA-seq in heads, and indeed, 

the TE transcript levels were significantly elevated in double mutants. These results are presented in 

the following manuscript draft. 
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Abstract 

 

Whether the piRNA pathway plays a functional role in adult, non-gonadal tissues has not 

been definitively answered to date. We have sequenced the small RNA content of adult 

Drosophila melanogaster heads of wild type and piwi mutants to address whether piwi loss 

of function would affect piRNA-like molecules that can be detected in wild type heads. We 

find that loss of piwi does not affect these molecules. Instead, we observe increased siRNA 

levels against the majority of Drosophila transposable element (TE) families. To determine 

the effect of this siRNA response to piwi loss, we sequenced the transcriptome of wild type, 

piwi, dicer-2 and piwi, dicer-2 double-mutants. We find that the expression levels of the 

majority of TE families in piwi and dicer-2 mutants remain unchanged and that TE 

expression increases significantly in piwi, dicer-2 double-mutants. Concordantly, we 

observed a significantly decreased lifespan for piwi, dicer-2 double-mutants. These results 

lead us to suggest a dual-layer model for TE repression in somatic tissues. piwi-mediated 

transcriptional silencing (TGS) established during early development constitutes the first 

level of TE repression. In addition, dicer-2-dependent siRNA-mediated post-transcriptional 

gene silencing (PTGS) provide a backup mechanism to repress TEs that escape silencing 

by piwi-mediated TGS. 

 

Introduction 

Transposable element (TEs) activity is thought to be an important force in genome evolution, 

as TE integration and excision can result in gene duplication, deletion, and the modification 

of gene signaling networks (Tubio et al. 2014). However, uncontrolled integration into host 

genes might be detrimental to individuals, potentially creating harmful mutations that 

decrease lifespan and fertility. Therefore a low frequency of TE mobilization is beneficial to 

both host and TE, whereas high TE activity decreases host fitness and adversely affects 

vertical transfer of the TE. 

In Drosophila melanogaster, the siRNA and the piRNA pathways are important negative 

regulators of TE expression in somatic (Li et al. 2013; Ghildiyal et al. 2008) and gonadal 
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tissues (Vagin et al. 2006), respectively. Both pathways are active in the gonads, while the 

siRNA pathway is thought to be active in all somatic tissues. Dicer-2, the central 

endonuclease of the siRNA pathway operates on double-stranded RNA molecules by 

processively sliding along the molecule and cutting every 21st nucleotide. After the initial 

processing, these 21nt duplexes with 3’OH overhangs are rebound by Dicer-2 and r2d2 to 

be loaded into Ago2. Ago2 then cleaves the passenger strand and can engage in multiple 

rounds of endonucleolytic cleavage of transcripts with mature siRNA complementarity. Loss 

of functional siRNA pathway results in increased levels of TE expression and mobilization (Li 

et al. 2013; Xie, Donohue, and Birchler 2013; Czech et al. 2008; Ghildiyal et al. 2008), but 

fertility is not affected. Ago2 has also been implicated in splicing (Taliaferro et al. 2013) and 

identified as a TrxG group gene, but this function appears to be independent of its cleavage 

activity (Moshkovich et al. 2011).  

The Drosophila piRNA pathway is well characterized for its role in maintaining genome 

integrity in the gonads and is therefore required for fertility. Its key components are 3 

germline Argonaute-family proteins Piwi, Aubergine (Aub) and Ago3. piRNA production is 

initiated from piRNA cluster transcripts, which contain antisense TE sequences. After 

processing of these transcripts by the piRNA biogenesis machinery, primary antisense 

piRNAs are loaded into Piwi or Aub in germline cells. piRNA-loaded Aub slice sense TE 

transcripts between the tenth and 11th position, which will become the 5’ end of a new TE 

sense piRNA. Sense piRNAs are then loaded into Ago3, which in turn slices complementary 

antisense TE sequences between the 10th and 11th position. This cytoplasmic cyclic PTGS 

process (also termed secondary piRNA amplification) leaves a detectable “ping-pong” 

signature, in which 5’ and 3’ ends of piRNAs tend to overlap by 10 nucleotides. 

piRNA-loaded Piwi complexes can re-enter the nucleus, where piRNAs guide Piwi towards 

complementary nascent transcripts. Piwi then recruits factors (presumably Maelstrom, 

SuVar3-9, dSETDB1 and HP1) that establish H3K9me3 at the surrounding genomic vicinity 

of TE insertion sites, that may or may not, include protein coding genes and hence functions 

in TGS (Sienski, Dönertas, and Brennecke 2012; Brower-Toland et al. 2007; Wang and 

Elgin 2011; Rangan et al. 2011). 

Of note, zygotic piwi expression has been detected ubiquitously in early embryos up to the 

14th nuclear division (~2h after egg laying) (Mani, Megosh, and Lin 2014; Rouget et al. 

2010), depletion of Piwi in nurse cells and oocytes results in early arrest of embryonic 

development (Mani, Megosh, and Lin 2014; Wang and Elgin 2011), and piwi acts as a 

suppressor of variegation in the eye (Gu and Elgin 2013; Pal-Bhadra et al. 2004), suggesting 

an important function for Piwi during early development of somatic tissues. However the 

function of Piwi in other somatic tissue is quite ambiguous as Piwi has both been reported to 

be present (Brower-Toland et al. 2007) and absent (Thomas et al. 2013) in 3rd instar larval 
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salivary glands. In contrast, Aubergine and Ago3 have been found in non-overlapping cells 

of the adult central nervous system (Perrat et al. 2013).  

In order to unravel the role of piRNA pathway in TE control in somatic adult tissues, we 

analyzed small RNA profile in wild type, piwi and dicer-2 mutant fly. We provide evidence 

that previously reported ping-pong pairs in adult heads likely result from contamination with 

testicular RNA, suggesting that secondary piRNA amplification does not play a major role in 

adult heads. Small RNA sequencing of piwi mutant heads did not reveal a reduction of 

piRNA-like molecules. Instead increased levels of siRNAs against most TE families were 

detected. RNA-sequencing of piwi mutant heads and dicer-2 mutant heads showed only 

minor upregulation of transposable elements, whereas double-mutants of piwi and dicer-2 

showed increased TE levels and a strong decrease of lifespan. Our results suggest a dual-

layer model of TE repression in somatic tissues. The first layer of TE repression is 

established by Piwi at the chromatin level during early development. When TEs escape to 

epigenetic piwi silencing, PTGS triggered by dicer-2 and siRNAs, mediates TE degradation 

to decrease TE burden and allow flies survival. 

 

Results 

 
Secondary piRNA biogenesis is not detectable in adult heads 

 

It is well established that a “ping-pong signature”, a strong tendency for individual piRNA-

sized reads to overlap by 10 nucleotides with another piRNA-sized read of the opposite 

orientation, can be found when analyzing small RNA libraries prepared from ovaries 

(Brennecke et al. 2007; Gunawardane et al. 2007) and testes (Nagao et al. 2010). This 

signature collapses in Ago3 and Aub mutants. Of note, Zheng and colleagues, Ghildiyal and 

colleagues as well as Mirkovic and Förstemann (Yan et al. 2011; Ghildiyal et al. 2008; 

Mirkovic-Hösle and Förstemann 2014) previously reported the existence of piRNA-like 

molecules in the head, based on their size and ping-pong-signature which is in line with the 

fact that Ago3 and Aubergine can be detected in the optic lobe of the Drosophila central 

nervous system (Perrat et al. 2013). If Ago3 and Aubergine were actively producing piRNAs, 

as they do in the germline, we reasoned that we should be able to find a ping-pong pattern 

in small RNA libraries of adult heads. To do so we re-analyzed 24 small RNA sequencing 

libraries prepared from adult male heads (Reinhardt et al. 2012) and aligned them to the 

Drosophila genome. The majority of reads were in the size range of miRNAs (22-23 nt) and 

siRNAs (21 nt), but we observed a fraction of reads in each library (mean 7.5%, interquartile 

range 5.6-10.4%; Supplemental Fig. S1A,S1B) compatible with the size of piRNAs in 

Drosophila. 
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In the 24-28 nt fraction of reads we searched for ping-pong partners for each of the 24 small 

RNA sequencing libraries. We detected a clear but infrequent ping-pong signature (>20 

pairs, zscore >2 compared to 5-15 nt overlap) in 5 libraries (Supplemental Fig. S1C).  

The genotype of any of the analyzed libraries was not expected to differentially affect piRNA 

metabolism, suggesting that the signature we found might be due to contaminating RNA 

introduced during the RNA extraction. To investigate this possibility, we performed 

differential expression testing of miRNAs between ping-pong positive libraries and ping-pong 

negative libraries, under the assumption that RNA introduced from contaminating tissues 

would include tissue-specific miRNAs that are not normally expressed in heads, and that 

should thus be absent in ping-pong negative libraries and present in ping-pong positive 

libraries. 

A set of 27 miRNAs was significantly enriched in ping-pong positive libraries relative to ping-

pong negative libraries at an adjusted P-value (Benjamini-Hochberg) of 0.01 (Supplemental 

Table S1). Since we analyzed male heads, contaminating RNA might stem from the testis. 

To investigate this possibility we randomly added reads from testicular small RNA libraries 

(Toledano et al. 2012; Rozhkov et al. 2010) to ping-pong negative head libraries. We find 

that a contamination of ~ 2% for a total library size of 2.5*106 reads is sufficient to detect a 

ping-pong signature (Supplemental Fig. S1D). If the observed ping-pong signature was due 

to contamination with testicular RNA, we should find a strong overlap of differentially 

expressed miRNAs between between ping-pong positive and ping-pong negative libraries on 

the one hand, and differentially expressed miRNAs in the above simulation. 

Therefore we performed differential expression testing between the ping-pong negative 

libraries and ping-pong negative libraries with 2% of testicular reads added. The 10 most 

significantly changed miRNAs found in this manner are also significantly changed (9 

miRNAs with p<0.01, 1 miRNA with p<0.025; Supplemental Table S1) when comparing 

ping-pong positive and ping-ping negative libraries (see also Supplemental Figure 1E), 

confirming that the most likely origin of the ping-pong signature that we can detect is RNA 

contamination by testicular RNA. 

The ping-pong signature is thus currently not detectable in male adult head small RNA 

libraries that do not show signs of contamination with gonadal small RNAs, suggesting that 

Aubergine and Ago3 are either not actively producing secondary piRNAs, or do so in very 

low amounts or in isolated cell-populations. 

 
piRNA-sized small RNAs in adult heads are not piwi-dependent 

 

Since somatic ping-pong pairs of small RNAs were not detectable in our initial analysis, we 

next tested whether Piwi is required for the piRNA-sized reads we observed. It was shown 
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before that Piwi, but not the secondary piRNA biogenesis machinery, is required for piRNA 

biogenesis in ovarian follicle cells, in which ping-pong pairs are not detectable (Lau et al. 

2009; Robine et al. 2009; Saito et al. 2009). As the main function of Piwi has been proposed 

to induce transcriptional repression of TEs in ovaries (Sienski, Dönertas, and Brennecke 

2012; Rozhkov, Hammell, and Hannon 2013), we focused on small RNA reads aligning to 

TEs. We sequenced small RNA libraries of wild type (+/+), piwi heterozygous (piwi +/- ) and 

piwi homozygous (piwi -/- ) mutant heads as well as dicer-2 helicase (dicer-2 G31R/-) and 

dicer-2 loss of function (dicer-2 -/-) mutant heads. 

We observed that for wild type, piwi heterozygous and piwi homozygous mutant heads the 

24-28 nucleotide reads show a slight bias for aligning to the sense strand of TEs (Figure 1A, 

inset), that is even more pronounced in dicer-2 mutant flies. This is in contrast to piRNAs in 

gonads that predominantly align to the antisense strand of TEs. Importantly, the fraction of 

24-28 nucleotide antisense to TEs seemed to increase slightly in piwi homozygous mutant 

heads, suggesting that these reads are not piwi-dependent (Fig 1B).  

 
Piwi mutation unmasks a TE-specific siRNA response 

 

We next examined whether loss of piwi would affect siRNAs that target TEs in the head. As 

expected, in both wild type and piwi mutant heads we detect a substantial amount of 21 

nucleotide sense and antisense reads, which appears to increase in homozygous piwi -/- 

mutant heads (Figure 1A, 1B). Importantly, these reads are strongly reduced in dicer-2 

mutants, confirming that these TE-aligned reads are siRNAs. We consistently observed the 

same trend in symmetric increase of 21 nucleotide sense and antisense RNAs in piwi 

homozygous mutant heads when considering TE families that had on average more than 20 

aligned reads per 10 million matched reads (“cp10m”). To quantify the increase of siRNAs 

we only considered the fraction of 21 nucleotide reads that aligns to the TE complementary 

strand, in order to minimize quantification of partially degraded TE transcripts, which would 

be expected to align to the sense strand with little size specificity (discussed in (Malone et al. 

2009)). We further restricted analysis to TE families that had on average 5 or more 21 

nucleotide antisense reads per library after correction for sequencing depth. By doing so, we 

determined that in piwi mutants, 27 out of 62 transposable element families show >2 fold 

increases of siRNAs, with an overall median fold change of 1.69 compared to a 0.92 fold 

change for piwi heterozygous mutant heads (P-value 1.03e-05, Mann-Whitney U). 
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Figure	
  1.	
   	
  Loss	
  of	
  Piwi	
  repression	
  leads	
  to	
  an	
  increase	
  of	
  TE-­‐targe8ng	
  siRNAs.	
  (A)	
  Overview	
  of	
  the	
  size	
  (x-­‐axis)	
  and	
  amount	
  (y-­‐
axis,	
  in	
  counts	
  per	
  10	
  million	
  mapped	
  reads)	
  of	
  small	
  RNA	
  reads	
  that	
  align	
  to	
  TEs	
  in	
  adult	
  heads	
  of	
  the	
  indicated	
  genotype.	
  Zoom	
  of	
  the	
  
24-­‐28	
  nt	
  frac8ons	
  are	
  shown	
  as	
  insets.	
  (B)	
  Sense	
  or	
  an8sense	
  reads	
  of	
  24	
  to	
  28	
  nt	
  were	
  summed	
  for	
  each	
  indicated	
  genotype	
  (x-­‐axis).	
  
(C).	
  ScaPerplots	
  displaying	
  the	
  abundance	
  of	
  21	
  nt	
  an8sense	
  reads	
  in	
  mutant	
  (y-­‐axis)	
  and	
  wild	
  type	
  (x-­‐axis)	
  heads.	
  Red	
  dots	
  in	
  the	
  first	
  
panel	
  indicate	
  the	
  transposon-­‐specific	
  21	
  nt	
  an8sense	
  reads	
  that	
  increased	
  more	
  than	
  2	
  fold	
  in	
  piwi	
  homozygous	
  mutant	
  heads.	
  These	
  
dots	
  are	
  shown	
  for	
  comparison	
  in	
  the	
  second	
  and	
  third	
  panel.	
  (D)	
  Boxplots	
  showing	
  the	
  distribu8on	
  of	
  21	
  nt	
  an8sense	
  fold	
  changes	
  (y-­‐
axis)	
   between	
  wild	
   type	
   and	
   the	
   indicated	
  mutants	
   (x-­‐axis).	
   Significance	
   of	
   differences	
   between	
   the	
   distribu8ons	
  was	
   assessed	
  with	
  
Mann-­‐Whitney	
  U	
  test.	
  (E)	
  as	
  (C),	
  but	
  for	
  wildtype	
  1st	
  instar	
  larvae	
  	
  (homozygous	
  piwi	
  mutant	
  vs	
  wild	
  type).	
  (F)	
  as	
  (D),	
  but	
  for	
  wild	
  type	
  1st	
  
instar	
  larvae	
   	
  (homozygous	
  piwi	
  mutant	
  vs	
  wild	
  type).	
  (G)	
  Mismatches	
  of	
  21	
  nt	
  reads	
  aligning	
  to	
  reference	
  genome	
  TE	
  inser8ons	
  with	
  1	
  
mismatch	
  allowed.	
  Iden8ty	
  of	
  mismatch	
  is	
  indicated	
  on	
  the	
  x-­‐axis,	
  and	
  the	
  frac8on	
  of	
  all	
  reads	
  with	
  this	
  mismatch	
  iden8ty	
  over	
  all	
  TE	
  
matches	
  is	
  indicated	
  on	
  the	
  y-­‐axis.	
  In	
  all	
  panels,	
  the	
  index	
  of	
  sample	
  duplicate	
  is	
  indicated	
  aZer	
  the	
  genotype	
  when	
  appropriate. 	
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While most TE siRNAs were hence moderately increased, gypsy siRNA expression was 

increased more than 45 fold (Figure 1C). 

We also investigated if the observed changes would occur at earlier time points in 

development. We observed a 2.8 fold increase of gypsy-specific siRNA in piwi -/- mutant first 

instar larvae as compared to +/+ first instar larvae, however the majority of TE family siRNAs 

remained unchanged at this stage (p-value 0.83, Mann-Whitney U, Figure 1D).  

Together, these results suggested that increased TE siRNA levels upon Piwi loss is a 

response that is strongest in adult heads at the adult stage. In addition to the previously 

reported suppression of variegation of wm4 in adult eyes and mild decrease of HP1 

occupancy at TEs in 3rd instar larvae, somatic loss of Piwi also induces an increased 

production of TE-specific siRNAs. 

 
The siRNA response likely originates from Dicer-2-mediated TE transcript processing in adult 

heads 

 

We then investigated the origin of the increased of TE derived siRNA in piwi mutant. One 

simple hypothesis is that siRNA response might be a direct consequence of increased TE 

transcription upon absence of Piwi, that would in turn result in increased Dicer-2-mediated 

processing of TE transcript into siRNAs. Alternatively, the elevated levels of TE-siRNAs 

might originate from piRNA clusters, which produce both piRNAs and siRNAs in the 

germline. If this were to be the case we should be able to detect an increase of specific 21-

nucleotide RNAs originating from piRNA clusters.  

As most piRNA clusters are transcribed bi-directionally we quantified both 21 nt sense and 

antisense RNAs that map exclusively to piRNA clusters (defined by (Brennecke et al. 2007)). 

We thereby excluded sequences shared with TE insertions elsewhere in the genome, 

allowing us to separate production of siRNAs originating from clusters and those originating 

from TE insertions. We observed a low quantity of cluster-specific 21 nt reads in both piwi -/- 

and control heads (between 2% and 3,5% of total TE reads, Supplemental table 2). These 

cluster-derived 21 nucleotide RNAs increased slightly in piwi mutant heads (Supplemental 

Figure 2), the increase however was lower than the increase of 21 nt antisense TE reads 

(1.44 fold vs 2.15 fold, Supplemental table 2). The increase of TE-specific siRNAs in piwi -/- 

mutant heads was thus unlikely to be caused by an increase in Dicer-2-mediated processing 

of piRNA cluster transcripts, favoring a hypothesis in which increased transcription of 

euchromatic TE insertions leads to an increase in TE-specific siRNA production. In principle 

the increase in TE-specific siRNAs could be maternally inherited or stably maintained from 

early development. We took advantage of the fact that mature Ago2-loaded siRNAs are 

single-stranded and that stretches of base-paired RNAs, among which the substrate of 
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Dicer-2, are frequently deaminated through the action of adenosine deaminase acting on 

RNA (ADAR) enzyme, which converts adenosine (A) to inosine (I) (Keegan et al. 2005; 

Palladino et al. 2000; Wu, Lamm, and Fire 2011). This change manifests in a A to G 

mismatches in RNA sequencing datasets as compared to the reference DNA sequence. We 

therefore determined the frequency of all nucleotide mismatches for all FlyBase-listed TE 

insertions in our small RNA sequencing datasets (Figure 1E). The amount of A to G 

mismatches is not elevated over other mismatches in early embryos (1.5 % of all 21 

nucleotide reads matching to TE insertions). We detect a similar frequency of A to G 

mismatches (1.2 to 1.4%) in first instar larvae, however no other mismatches were preferred, 

suggesting that ADAR might be active at low level in 1st instar larvae. We do detect a higher 

frequency of A to G mismatches in wild type heads (3.6-4.1%) that, despite a >2-fold 

increase of 21 nt RNA, further increases in piwi mutants (5.7 %), indicating that processing 

of the double-stranded precursor by Dicer-2 occurs after the onset of ADAR activity, 

suggesting that TE-targeting siRNAs are actively produced from double-stranded RNAs in 

adult heads and are not inherited from earlier developmental stages. 
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Neither loss of Piwi nor Dicer-2 leads to strong upregulation of TEs  

 

To determine whether the observed increase of siRNA production efficiently counteracts any 

increased TE transcription caused by a lack of Piwi-mediated TGS, we sequenced the head 

transcriptome of piwi mutants, dicer-2 mutants and piwi, dicer-2 double-mutants and 

compared these to wild type head transcriptome. In piwi mutants, transcript levels of most 

TEs remain unchanged, with the notable exception of gypsy, whose level increases about 5-

fold (Figure 2A). gypsy is also the TE against which we observed the strongest increase of 

siRNA levels, suggesting that the transcription of TEs is indeed increased in piwi mutant 

heads and correlates with siRNA production. 

Similarly, most TEs are are not ureguted in dicer-2 mutants, except for 297, which produces 

a significant amount of siRNA in wild type heads, perhaps indicating inefficient Piwi-

mediated TGS for this TE family. We conclude that piwi and dicer-2 are redundant in adult 

heads for the maintenance of TE repression for most TE families and that Piwi-mediated 

TGS and Dicer-2-mediated PTGS both can efficiently repress TEs. 

 
Piwi and Dicer-2 compensatory mechanism revealed in double-mutant 

 

To confirm our hypothesis that the siRNA response compensates for piwi loss, we analyzed 

RNA libraries from piwi, dicer-2 double-mutant heads. We find that the majority of TE 

families is significantly upregulated in piwi, dicer-2 double-mutant heads compared to single 

piwi or dicer-2 mutants (Figure 2 A,B, C). 

Furthermore we detect a significant positive correlation of siRNA production changes and 

increase in steady-state TE transcripts in piwi, dicer-2 double-mutant heads (Supplemental 

Figure 2). By excluding the TE families that are upregulated already in piwi mutant heads, 

we also find a significant negative correlation between the siRNA production and the TE 

transcript level, highlighting the efficiency of the siRNA response (Figure 2E). In agreement, 

we did not detect any significant increase of sense TE transcripts in piwi mutant heads, but 

we did detect a significant increase in antisense transcripts (Figure 2B), that might form 

transient duplexes with sense TE transcripts, serving as a substrate for Dicer-2-mediated 

siRNA processing. 

Together this suggests a double layer expression control of Piwi-mediated TGS and Dicer-2-

mediated PTGS to firmly repress TE levels in the adult soma. 



●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

−2

−1

0

1

2

+/
+ 

vs
 D

ic
er

2 
+/

−

+/
+ 

vs
 D

ic
er

2 
−/

−

+/
+ 

vs
 P

iw
i +

/−

+/
+ 

vs
 P

iw
i −

/−

+/
+ 

vs
 P

iw
i −

/−
, D

ic
er

2 
−/

−

Piw
i −

/−
 v
s 
Piw

i −
/−

, D
ic
er

2 
−/

−

fo
ld

 c
h
a
n
g
e
 (

lo
g
2
)

Control genes, n= 12871

Genes that produce piRNAs from their UTRs, n= 109
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Piwi and Dicer-2 do not restrict expression of genes that contain TEs in their genomic loci  

 

Piwi has previously been shown to silence genes adjacent to TE insertions and genes that 

carry TEs in their boundaries (Sienski, Dönertas, and Brennecke 2012). Our transcriptomic 

data does not support a significant trend of upregulation of genes that contain TE insertions 

in their genomic boundaries, whether we consider all TE families, or only those that are 

upregulated in piwi, dicer-2 or piwi, dicer-2 double-mutants (Figure 3A). Piwi has also been 

shown to repress genes that produce traffic jam class piRNAs from their 3’UTR (Robine et 

al. 2009). Again, we detect no expression bias for these genes in any of our mutant 

conditions.  

A hallmark of TE activation in ovarian piwi mutations is DNA-damage and the resulting 

increase of DNA-damage signalling is easily detectable in transcriptome sequencing. We do 

not find an upregulation of the DNA damage signaling pathway, suggesting that either TE 

mobilization is not as severe as in the germline, or that an increased DNA damage response 

occurs with aging (we sequenced 1 day old adults). 

 
The lifespan of piwi, dicer-2 double-mutants is severely decreased 

 

To test whether the fitness of piwi, dicer-2 double-mutants would be affected, we tested their 

survival. Piwi and dicer-2 mutations do not affect lifespan strongly while the lifespan of piwi, 

dicer-2 double-mutants is shorter than any of the other conditions tested (Figure 3A). This 

might be due to an increased load of TE transcription and deleterious TE mobilization, the 

effect of misregulated gene expression (1490 genes differentially expressed exclusively in 

piwi, dicer-2 double-mutants) or an unknown genetic interaction between piwi and the siRNA 

pathway. Additional efforts are required to determine the cause of the observed lifespan 

reduction. 

 

Discussion 

 
Origin and function of piRNA-like molecules in somatic tissues 

 

Through the analysis of a large number of small RNA sequencing libraries we are 

questioning previous reports of the presence the secondary piRNA biogenesis signature in 

adult heads (Yan et al. 2011; Ghildiyal et al. 2008; Mirkovic-Hösle and Förstemann 2014). 

Based on our analysis it is likely that these observations result from a small contamination 

with gonadal RNA, that can easily occur when collecting heads by vortexing frozen flies and 

filtering fly-parts by sieving. A contamination with gonadal RNA would be in agreement with 
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the miRNA signature we detected between head libraries that correlate with the presence of 

ping-pong signature. Our results also highlight the importance of controlling the purity of 

RNA preparations. Considering the enormous increase of TE expression in piRNA mutant 

ovaries, often reaching more than 1000 fold upregulation, best practice for analysis should 

be a control that clearly shows the degree of tissue specificity of the RNA preparation. We 

show that we cannot detect the secondary piRNA biogenesis pattern in heads, which is a 

very sensitive readout. This is not completely unexpected, since Perrat and colleagues show 

that Aubergine and Ago3 do not colocalize extensively, though both are expressed in 

gamma-neurons. While this is not a proof for the absence of secondary piRNA amplification, 

we would not expect this process to contribute much to the global repression of TEs in the 

adult head. We further show that the 24-28 nucleotide fraction of small RNA reads is not 

sensitive to loss of Piwi. This means that either these piRNA-like molecules are primary 

piRNAs produced independently of Piwi or that they are degradation products. Their sense 

bias and the low activity of piRNA clusters in heads indicates that most likely these piRNA-

like molecules are degradation products. 

 
Piwi likely exerts its function in adult heads through chromatin compaction 

 

Piwi has been known to act as a suppressor of variegation, providing a first link between the 

piRNA pathway and heterochromatin formation (Pal-Bhadra et al. 2004). A recent report by 

the Elgin laboratory (Gu and Elgin 2013) confirmed this and also showed that Piwi mutant 

3rd instar larvae had slightly decreased levels of HP1 chromatin binding over some, but not 

all TE sequences. Gu and Elgin also showed that eye-lineage specific knockdown of HP1 

but not Piwi suppresses variegation. Importantly, the eye-lineage-specific promoter that was 

used is active only after late embryogenesis, suggesting that Piwi-mediated TGS can be 

maintained in the absence of Piwi expression after early embryogenesis and that Piwi might 

not be present in the adult eye. These findings are in line with our results as we did not see 

a reduction of piRNA-sized molecules antisense to TEs, we did not detect significant levels 

of piwi RNA and we did not succeed in detecting Piwi by Western blotting (data not shown). 

We thus favor a hypothesis wherein Piwi exerts TGS during early zygotic development, but 

cannot exclude the possibility that very low amounts of Piwi protein, with or without loaded 

piRNAs, would remain in the proximity of the chromatin to continuously repress TEs by a 

TGS mechanism. Of note, we found that loss of piwi has little effect on steady state RNA 

levels for most TE families in our data, while depletion of su(var-3-9) and Histone H1 in 

salivary glands of 3rd instar larvae was shown to lead to much higher TE levels (15-1000 

fold) (Lu et al., 2013). Together with reports of early embryonic lethality of embryos laid by 

mothers that were depleted for Piwi in the oocyte (Cox et al. 1998; Wang and Elgin 2011) 
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this might indicates that, while we abolish zygotic expression of Piwi, maternal inheritance of 

Piwi might be sufficient to setup a baseline level of TGS. This is likely to be less strong than 

what can be achieved in wild type flies and hence it is possible that we are underestimating 

the epigenetic effect that Piwi-mediated TGS might have.  

 
Repression of TEs in the absence of siRNAs 

 

We found that dicer-2 mutations caused a strong loss of TE-specific siRNAs, but this loss 

did not result in major changes of TE expression for most TE families in adult heads, with 

the exception of 297, whose expression increased about 4.8 fold compared to the wild type 

or 7.8 fold compared to the dicer-2 heterozygote library. This suggests that transcriptional 

repression by piwi is highly efficient at restricting TE expression, but also that some TEs can 

escape repression by Piwi. We currently do not know why 297, but not other TEs can 

escape efficient TGS by Piwi, but our results are in line with the results of Gildyal et al., who 

found 297 expression to be strongly increased in heads of dicer-2 mutants, and Xie et al., 

who demonstrated increased somatic transposition of 297 in dicer-2 mutants.  

 
A dual layer-repression by small RNAs 

 

As defects in the repression of TEs in the soma might cause severe fitness disadvantages, 

TE expression should be under tight control. We demonstrate here that loss of Piwi alone 

does not lead to strong changes in TE expression for most TE families, and neither does 

loss of Dicer-2, while double-mutants showed increased expression of TEs across a large 

panel of TE families. Loss of Piwi is however accompanied by increased production of 

siRNAs and antisense TE RNA, which suggests that the transcription of TE insertion 

increases and leads to a feedback loop in which Dicer-2 processes double-stranded RNA-

molecules to produce siRNA-duplexes that in turn efficiently reduce steady-state levels of 

sense TEs.  

The double-stranded RNA molecules that are substrates for Dicer-2 could originate from 

secondary structures of the TE transcript or alternatively from pairing of sense transcripts 

with antisense transcripts or piRNA cluster transcripts or from promoter-proximal RNAs that 

are produced by erroneous transcription initiation. We consider the latter to be unlikely, as 

we would expect strong enrichments of siRNA production near the transcriptional start of 

TEs, but visual inspection does not support elevated levels of promoter-proximal siRNA 

mapping. It is a mystery to us why we observe a symmetric increase of sense- and 

antisense siRNAs in piwi mutants, yet the level of TE antisense transcripts appears to 

increase significantly. We would expect the increased accumulation of both transcript 
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senses to be symmetrical in piwi mutants or to favor sense transcription, since in general 

TEs produce higher levels of sense than antisense transcripts. One explanation could be 

that siRNA-mediated PTGS occurs mainly through single-strand siRNA loaded in Ago2. 

Dicer-2-mediated processing of sense and antisense transcripts into 21nt RNAs leads to 

symmetric amount of 21nt sense and antisense RNAs, but only antisense RNAs efficiently 

degrade sense RNA, while for an unknown reason, sense siRNAs do not reduce steady-

state levels of antisense TE transcripts. This might be a mechanism to ensure a steady 

production of siRNA duplexes, as siRNAs that efficiently degrade antisense RNAs also limit 

the amount of double-strand transcripts that can be processed into siRNAs. 

Altogether, we propose a model in which Piwi ensures transcriptional silencing guided by 

piRNAs. This repression is strong and maintained independently of Piwi. TE-specific siRNAs 

and TE transcripts can nevertheless be detected in wild type fly heads. We propose that one 

function of the siRNA pathway is to prevent accumulation of sufficient levels of TEs that lead 

to transposition events, by targeting TE transcripts through PTGS. This might be especially 

important for TEs that can escape Piwi-mediated repression, such as 297, or TEs that do not 

produce piRNAs as they have not yet been integrated into a piRNA cluster. In evolutionary 

terms, this failsafe mechanism provides an advantage to both TE and host: a TE that causes 

sterility of it’s host will not propagate to the next host generation. We propose that in somatic 

tissues the siRNA pathway recognizes the invading TE, either through stretches of 

homologous sequences that pair with endogenous transcripts, or more akin to viral 

infections, through the secondary structure of the TE transcripts. siRNA-mediated PTGS 

then maintains a tolerable load of the TE, so that the organism can survive until the TE has 

integrated into a piRNA cluster and developing germ cells survive until the point fertility is 

restored, hence benefiting both TE and host.  

 
Decreased life-span due to transposition or gene expression changes? 

 

Compared to piwi knockdown in gonadal tissues (Rozhkov, Hammell, and Hannon 2013) or 

OSC cells (Sienski, Dönertas, and Brennecke 2012), somatic TE expression increases are 

rather weak even in the double-mutant. Increases in the double-mutant rather resemble the 

increases found in piwi-mutants defective for nuclear localization of Piwi. In general, whether 

a TE will be transcribed in any given cell depends both on the ability of the set of available 

transcription factors to support transcription from the TE’s promoter and the strength by 

which its expression is counteracted. This implies that the net contribution to the steady-

state RNA level is difficult to detangle. In addition, zygotic loss of Piwi will probably not fully 

reveal the effect that Piwi has on adult somatic tissue homeostasis (maternal depletion 

results in early embryonic arrest of development), but still allow us to understand its 
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epigenetic function. We demonstrate increased TE expression in piwi, dicer-2 double-

mutants, which and itthis correlates with shortened life-span, raising the possibility that 

increased TE transcript levels lead to harmful transposition events. While we did not attempt 

to quantify increased transposition in this paper, it will be an important future step to confirm 

the relevance of the complementarity of piRNA-guided TGS and siRNA-mediated PTGS that 

we described in this paper. We note that we have performed all RNA-sequencing in heads of 

1 day young adult male flies, and expression changes of TEs might be more significant in 

aged mutant individuals. We further did not find any evidence for the activation of DNA 

damage signalling pathways, a signature very abundant in RNA-sequencing of piwi mutants 

ovaries. We can however not rule out that DNA damage occurs later in aged individuals, or 

that only few cells accumulate DNA damage by transposition, but that loss of few cells in the 

adult brain leads to the observed lethality. 

 

Material and Methods 

 
Stocks and fly husbandry 

 

Flies 

 

Flies were grown on standard Drosophila food at 25°C. All flies were brought into the wm4 

background (Muller 1930). dicer-2R416X and dicer-2L811fsx alleles were described in (Lee et al. 

2004). piwi2 and piwi3 alleles were published in (Cox et al. 1998). Double-mutants were 

generated by crossing virgin female dcr2R416X/CyO-GFP to male piwi3/CyO-GFP flies. 

Offspring virgin dcr2R416X/piwi3 flies were then crossed to male wm4;Ln2R Gla, wgGla1, Bc1/ 

CyO-GFP to establish wm4;piwi2, dicer-2R416X/CyO-GFP stocks. Stocks were then screened 

by PCR for the presence of the piwi mutation. The same procedure was applied to generate 

wm4;piwi3, dicer-2L811Fsx/CyO-GFP stocks. The table below provides the detailed genotype of 

all mutant combinations used. 

 

Indicated 
name 

Full genotype Maternal genotype Paternal genotype 

+/+ wm4;+/+ wm4;+/+ wm4;+/+ 

dicer-2 +/- wm4;dcr2L811Fsx/CyO-GFP wm4;dcr2L811Fsx/CyO-GFP wm4;+/+ 

dicer-2 -/- wm4;dcr2L811Fsx/dcr2R416X wm4;dcr2L811Fsx/CyO-GFP wm4;dcr2R416X/CyO-GFP 

piwi +/- wm4;piwi2/+ wm4;piwi2/CyO-GFP wm4;+/+ 

piwi -/- wm4;piwi2/piwi3 wm4;piwi2/CyO-GFP wm4;piwi3/CyO-GFP 
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dicer-2, piwi -/+ wm4;piwi2, dicer-2R416X/CyO-GFP wm4;piwi2, dicer-
2R416X/CyO-GFP 

wm4;+/+ 

dicer-2, piwi -/- wm4;piwi2, dicer-2R416X/piwi3, dicer-
2L811Fsx 

wm4;piwi2, dicer-
2R416X/CyO-GFP 

wm4;piwi3, dicer-
2L811Fsx/CyO-GFP 

 
RNA extraction and sequencing 
 

One to two day old flies were anesthetized, sorted by sex and genotype, transferred into 15 

ml Falcon tubes and frozen in liquid nitrogen. The procedure was repeated multiple days 

until pools of 50 to 100 flies were obtained per biological replicate. Heads were separated 

from bodies by vortexing, followed by sieving and selecting heads from splintered thoraces 

and legs on a cooled metal plate. Heads were collected into 2 ml Precellys tubes for hard 

tissues and covered by 1ml Trizol. Heads were homogenized in two rounds of 5000 rpm for 

30 seconds using a Precellys24 Tissue Homogenizer. Homogenate was centrifuged for 30 

seconds at 13000 rpm and supernatant transferred into a new 2 ml tube, 200µl of 

Chloroform was added and tubes were thoroughly vortexed. Further purification was as in 

(Rio et al. 2010). Remaining DNA was removed using Fermentas DNase I, RNase-free 

following the manufacturers instructions.  

Small RNA library preparation and sequencing was performed on an Illumina HiSeq 2500 at 

Fasteris Life Sciences SA (Plan-les-Ouates, Switzerland) using the Drosophila small RNA 

track based on the Illumina TruSeq protocol. 

RNA-seq was performed in biological triplicates for +/+, piwi -/+, piwi -/-, dicer-2 -/+ and 

dicer-2 -/-, with one replicate per condition sequenced in paired-end mode (2 * 101) and two 

replicates sequenced in single-read mode (1*51). piwi -/-, dicer-2 -/- samples were 

sequenced in biological duplicates in single-read mode. Total RNA was depleted of rRNA 

using Ribo-Zero™ Gold Kit (Epicentre). Directional RNA-seq library preparation and 

sequencing was performed at the Genomic Paris Centre (Paris, France) using the Epicentre 

ScriptSeq™ v2 RNA-Seq Library Preparation Kit on an Illlumina HiSeq 2000 instrument. 

 
Computational Analysis 
 

The complete computational analysis pipeline was run on our in-house Galaxy server. All 

necessary workflows and tools will be publicly available at http://mississippi.fr/galaxy . 

All small RNA libraries were quality controlled, sequencing adapter-clipped and converted 

to fasta reads. All reads that aligned to ribosomal RNA were discarded. All small RNA 

alignments were done using bowtie 0.12.7, allowing 1 mismatch between sequenced read 

and reference sequence (Langmead et al. 2009). To produce Supplemental Figure 1, fasta 
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reads were aligned to the Drosophila genome (FlyBase release 5.49) (St Pierre et al. 2014), 

randomly placing reads that align equally well in multiple genomic locations (multimapper) 

using the bowtie option “-M 1”. Size distribution and ping-pong signature were calculated 

using the mississippi toolsuite 

(https://testtoolshed.g2.bx.psu.edu/view/drosofff/mississipi_toolsuite_beta). The ping-pong 

signature was calculated by counting the number of pairs that overlap between 5 to 15 

nucleotides between sense- and antisense aligned reads and transforming the obtained 

counts into z-scores (each count subtracted by the mean and divided by the standard 

deviation). Ping-pong positive libraries were selected by having a z-score higher than 2 and 

more than 20 pairs overlapping by 10 nucleotides. Ping-pong negative libraries were 

selected by having a negative z-score. To obtain a list of differentially expressed miRNA 

between ping-pong positive and ping-pong negative libraries reads were matched to the 

Drosophila pre-miRNAs of the miRBase 20 release (Griffiths-Jones 2004; Griffiths-Jones et 

al. 2006; Griffiths-Jones et al. 2008; Kozomara and Griffiths-Jones 2011; Kozomara and 

Griffiths-Jones 2014). Differential expression profiling between ping-pong positive and ping-

pong negative libraries was performed using edgeR_3.8.2 (Robinson, McCarthy, and Smyth 

2010; McCarthy, Chen, and Smyth 2012) with standard settings. For simulating 

contamination with testis RNA 2 testis-libraries (accessions SRX135547, SRX023726) were 

downsampled to 10 million reads, pooled and 50000 randomly selected reads were added 

to 2.45 *106 randomly selected reads from ping-pong negative libraries. piRNA signature 

was calculated as before. Differential miRNA expression was calculated between simulated 

libraries and ping-pong negative libraries of equal size (randomly downsampled to 2.5 * 

106), with libraries that were sampled from the same initial ping-pong negative library paired 

as a blocking factor. This allows for obtaining an accurate list of miRNAs (contamination 

signature) that should be expected to be to significantly change in abundance if a 

contamination occurred. Size distribution for small RNAs that align to TEs (Figure1A, 1B) 

was calculated from reads that matched any of the canonical TE sequences with 1 

mismatch allowed, excluding reads that matched to ribosomal RNA, tRNA or abundant 

insect viruses. Abundance of 21 nt antisense RNA for each TE family was calculated by 

filtering reads to 21 nt length and aligning reads to canonical TE sequences, allowing only 

unique reads using the bowtie option “-v 1”. Only antisense reads were counted, and only 

TEs with on average 20 reads per library were analyzed. Between-library normalized 21 

nucleotide antisesene TE counts were obtained by pooling these with miRNA reads 

(obtained as before) and calculating a normalization factor using the DESeq (Anders and 

Huber 2010) function estimateSizeFactors. log2 fold changes were calculated by dividing 

normalized reads of mutants by normalized reads of controls and taking the logarithm. 

Difference of the population of log2 fold changes were tested using a two-tailed Mann-
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Whitney-U test. To calculate mismatch frequencies for 21 nucleotide small RNA, ribosomal, 

non-coding RNA and viral reads were filtered out. Remaining reads were aligned to the 

collection of TE insertions (FlyBase version 5.49), allowing 1 mismatch. Each possible 

mismatch was counted and divided by the total number of 21 nucleotide reads aligned to 

the collection of TE insertions. 

For gene expression profiling, reads were quality-filtered using the FASTX toolkit with a 

Quality cut-off of 30 for 90% of the read. For the paired-end libraries only the R1 read of the 

pair was used and trimmed to 51 nucleotides. Reads were then aligned to the Drosophila 

genome release 5 (dm3) using Tophat2 (Kim et al. 2013). Default parameters were used, 

except that we supplied Gene Model annotations from UCSC genome browser for dm3 

(http://support.illumina.com/sequencing/sequencing_software/igenome.html). Read 

counting was performed using featureCounts (Liao, Smyth, and Shi 2014) guided by the 

aforementioned Gene Model file. 

For TE expression profiling reads were further trimmed to 30 nucleotides and aligned to 

canonical TEs using bowtie 0.12.7, allowing 2 mismatches and only uniquely matching 

reads. Sense and antisense reads were counted and merge with gene counts. Differential 

expression profiling was performed using edgeR (Robinson, McCarthy, and Smyth 2010; 

McCarthy, Chen, and Smyth 2012). Genes with less than 5 reads on average across 

libraries were discarded from the analysis. Diverging from the default, we used Full Quantile 

between-library normalization as implemented by the EDAseq package (Risso et al. 2011) 

and removed unwanted variation using replicate samples with the RUVs function (choosing 

k=2) implemented in the RUVseq package (Risso et al. 2014). Library sequencing method 

(paired-end vs. single-read) was introduced together with gene-wise Full Quantile 

normalization offsets and gene-wise RUVs offsets as covariates in the edgeR design 

formula. All libraries were tested for differential gene expression against the wild type, and 

in addition the double-mutant was also tested against the piwi -/- mutant. Proportional Venn 

Diagrams in Figure 2C and Figure 2D were drawn using the Vennerable package (http://r-

forge.r-project.org/projects/vennerable). The spearman rank correlation and corresponfing 

P-value between log2 fold changes in TE 21 nucleotide antisense RNA (log2 fold change 

calculated from data underlying Figure 1C) and sense TE transcript expression was 

calcuated with the rcorr function in the Hmisc R package (http://cran.r-

project.org/web/packages/Hmisc/). All graphs were plotted using ggplot2 

(http://ggplot2.org/). GO terms for DNA damage and genes with TE insertions were 

retrieved from FlyBase (St Pierre et al. 2014).  
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Survival test 

60 flies of the indicated genotype were split in 6 tubes of 5 males and 5 females. Tubes 

were flipped every second day and dead flies were counted.  
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Supplemental Figure 2.  (A) Scatterplots displaying the abundance of cluster-derived 21 nt reads in mutant (y-
axis) and wild type (x-axis) heads. Red dots in the first panel indicate the cluster-specific 21 nt antisense reads that 
increased more than 2 fold in piwi -/- mutant heads. These dots are shown for comparison in the second and third panel. (D) 
Boxplots showing the distribution of 21 nt read fold changes (y-axis) between wild type and the indicated mutants (x-axis). 
Significance of differences between the distributions was assessed with Mann-Whitney U test. (B) Related to Figure 2E. 
Scatterplot displaying the correlation between log2 fold changes of 21 nt antisense RNA in piwi homozygous mutant heads 
compared to wild type heads on the x-axis and log2 fold changes of sense TE transcripts for the genotype comparisons 
indicated above each panel. All TE families that passed a threshold of on average five 21 nucleotide antisense reads over all 
small RNA libraries were analysed. The blue line is a fit produced by the lmfit function, and the grey area delimits the 
corresponding confidence interval. 
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a. Conclusion and future work 
 
The above article represents a first draft of my work, and has to be changed in a number of 

key points prior to publication.  

 

[1.] Most importantly, there is a replicate missing for the small RNAs in piwi -/- mutant heads. 

This is due to an intermediate hypothesis we had after the Publication of Gu and Elgin (Gu 

and Elgin 2013) and the fact that we started both small RNA sequencing and RNA-

sequencing without replicates; As we saw equally strong increases of gypsy transcript levels 

in piwi +/- mutant RNA-seq (without replicate) and by qRT-PCR, we decided to focus on the 

effect that a reduction of piwi-dose though maternal contribution would have (we sequenced 

the offspring of piwi +/- mothers crossed to wild type fathers). Therefore we replicated only 

wild type and piwi +/- libraries, for which, at the time, we did not have any library at all. 

However, we did not see the general trend for all TEs to have higher siRNA levels in piwi +/- 

mutant heads as compared to wild type heads, and qRT-PCR between piwi +/-; dicer-2 -/- 

and piwi -/-; dicer-2 -/- flies showed that TE levels were further increased when zygotic 

expression of piwi was abolished.  

 

[2.] Furthermore I could harden the hypothesis of testicular contamination in heads by 

testing whether testis-specific suppressor of stellate (Su(ste)) small RNAs correlate with the 

piRNA signature. 

 

[3.] The manuscript could be further improved by investigating whether the observed A to G 

mismatches are specific to certain classes of TEs. The same is true for the increases seen 

in the different mutants, e.g. is there a class of TEs that responds preferentially to loss of 

Piwi or loss of Dicer-2? Does the number of known reference insertions correlate with TE 

expression in any of the mutants? 

 

[3.] Another interesting observation is that gypsy appears to evade repression by Dicer-2, 

while 297 appears to evade repression by piwi. In fact, gypsy levels decrease in dicer-2 -/- 

compared to +/+, and piwi, dicer-2 -/- compared to piwi -/-. What could be the origin of this 

observation? 

A very interesting hypothesis for the evasion of 297 to transcriptional repression is linked to 

the proposed biological function of Piwi-mediated transcriptional repression and siRNA-

mediated post-transcriptional repression as redundant layers involved in TE defense. 297, 

while being an exception in the above manuscript, might recapitulate what happens when a 

new TE invades a species. If fhe new TE is mobile it likely causes extensive DNA damage,  
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Figure 7: Maternal deposition of piRNAs based on TE family and piRNA cluster. (A) The tendency for 
small RNA to be maternally deposited is depicted, based on the relative abundance between ovaries and 
embryonic small RNA libraries. Small RNAs of TE famliies that are enriched in embryos (log2 ratio above 
1) are likely to be deposited by the mother. (B) similar to (A) but for piRNA clusters. Note the bias for 297 
and 42AB small RNAs to be maternally deposited, while gypsy and flamenco small RNAs appear to not be 
maternally deposited. (C) TE composition of 42AB and flamenco. Note the absence of 297 from 42AB and 
flamenco in the Drosophila melanogaster species group. Adapted from (Malone et al., 2009). 
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eventually leading to reproductive arrest. The presence of TE RNA in the cell might be 

sufficient to induce a siRNA response, as occurs during viral infections (297 is classified as a 

putative errantivirus). This siRNA response, while not sufficient to completely clear the new 

TE, might be sufficient to prevent early lethality, allowing the TE to jump into a piRNA cluster 

and henceforth to be targeted by piRNAs. 

The question then is why 297 can escape piwi-mediated TGS in the adult soma, even 

though ping-pong piRNAs are produced against 297? It appears that 297 fragments are 

absent from the somatic flamenco cluster in the Drosophila Melanogaster, but not in the 

Drosophila Erecta group. Perhaps the deposited 297 ping-pong piRNAs are not capable to 

induce transcriptional silencing on 297 insertions. It is generally believed that small RNAs 

are deposited bound to an Argonaute-class protein, and 297 piRNAs are strongly enriched in 

Aubergine and Ago3, which have not been demonstrated to be invlolved directly in 

transcriptional repression. Lack of TGS on 297 could therefore be explained by the absence 

of 297 piRNAs in Piwi. This is in agreement with the finding by (Xie et al., 2014) who found 

297 to be fixed in the reference genome strain (10+ years after the sequencing project), but 

that 297 can transpose in somatic cells of dicer-2 -/- mutants. 

gypsy on the other hand is present in the flamenco cluster, and appears to be efficiently 

repressed by Piwi also in dicer-2 -/- mutants. A straightforward explanation would be that 

dicer-2 -/- mutants are devoid of functional gypsy insertions. This is however not likely, as 

gypsy is not strongly derepressed in piwi -/-, dicer-2 -/- mutants, which were the result of 

recombination between piwi - and  dicer-2 – chromosomes. 

Elucidating the underlying biology of these evasion phenoma clearly deserves further 

attention. 

 

[4.] A further question that I did not address is whether piwi and/or dicer-2 do play roles in 

splicing and/or transcriptional pausing in the soma?  

Dicer-2 had previously been implicated in promoter-proximal pausing at the Hsp70 locus 

(Cernilogar et al. 2011). 

 

[5.] Finally, the significance of the manuscript could be further elevated if we could explain 

the decreased lifespan of piwi -/-, dicer-2 -/- flies. One hypothesis put forward in the paper is 

that there is a constant increase of somatic transposition that ultimately leads to a decrease 

in life span. We would therefore need to test whether the increase in TE levels that we have 

seen corresponds to an increase of transposition with age. 

If we were to assay this on a genome-wide scale, we could also test whether there is a 

correlation between the presence of a TE insertion in proximity a gene and its increase in 

abundance in piwi mutants, as (Sienski, Dönertas, and Brennecke 2012) have done for Piwi 
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knockdown in OSC cells. In fact, it appears that non-reference genome TE insertions had 

stronger effects on neighboring gene expression (Annex 2). 

 

b. Methods for detecting TE insertion events 
 
It would be very beneficial if we could assess whether increased TE transcript levels in our 

studied mutants really result in increased somatic transposition, and whether this happens 

during aging. Such hypothetical transposition events are expected to occur at random places 

in single cells, making it difficult to detect these in the DNA isolated from a large cell 

population, such as wings or heads. 

Multiple methods have been developed to follow transposition events, such as the gypsy-

TRAP reporter by Li et al. (Li et al., 2013), Southern blots, transposon-display, or fluorescent 

in-situ hybridizations and more recently high-throughput sequencing. 

Southern blotting is the oldest of these methods, but likely lacks sensitivity for somatic 

transposition events that occurred in a, supposedly, small fraction of cells. A newer 

development is the transposon-display technique, where genomic DNA is digested, ligated 

with a specific adapter and amplified in one or two rounds of PCR with primers specific to 

the ligated adapter and an outwards pointing TE primers (Waugh et al., 1997, Melayah et al., 

2001), and new insertions are identified by amplified fragment length polymorphisms 

(AFLPs). 

In my case it would hence be possible to isolate wing DNA after eclosion (wing removal 

does not significantly affect lifespan in Drosophila), to identify a base-level of TE insertion 

heterogeneity in young adults, as well as DNA from aged heads, to determine whether the 

level of somatic TE insertions increases on a per genotype basis with aging. 

I have tried the gypsy-TRAP reporter (Li et al., 2013), where a gypsy landing-site separates 

the promoter of gal80 cassette from its coding sequence. If gypsy integration did not occur, 

gal80 is active and represses and gal4-driver activity. If gypsy integrates at the landing site, 

gal80 transcription is shut off and a gal4 reporter is activated. I could not detect transposition 

events in aged adult brain as was described in the accompanying paper. This lack of 

transposition detection may be due to the fact that I used a different UAS-GFP and gal4 

driver from what was used in the paper. In any case, due to the choice of a preferential 

gypsy integration site from the ovoD locus, this sensor is limited to gypsy insertion events.  

Fluorescent in situ hybridization (FISH) constitutes a viable alternative to detect single cell 

TE insertion events for salivary gland cells isolated from 3rd instar larvae, as demonstrated 

by Xie and Birchler (Xie and Birchler, 2014). This is however laborious, as it requires good 

knowledge of polytene chromosomes and can only be performed for 2 TE families at a time. 

In addition, it would not be suitable for analysing the differences in transposition activity 
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during aging. Alternatively, the procedure might be adapted to work on adult tissues, but 

positional information such as available in polytene chromosomes would be lost and only 

total fluorescence per cell could be evaluated as a surrogate for copy number alterations for 

the specific TE under study. 

The newest and likely most powerful, but also most expensive method to detect TE 

insertions is genome re-sequencing. Multiple methods exist to detect new TE insertions of 

known TE family members in genome-resequencing data. A powerful approach to determine 

position and frequency of new TE insertion is to align reads, preferentially from paired-end 

libraries with large insert sizes, to the known genome (Zhuang et al. 2014). Reads that do 

not span a new TE insertion will align with little to no mismatches to the genome, and the 

genomic distance of the mate pairs will correspond approximately to the insert size of the 

library (~300-600 nucleotides for Illumina DNA sequencing libraries). Variations will arise 

when the sequenced sample contains a non-reference TE insertion (Figure 8a), or when a 

reference TE insertion is absent in the sequenced sample (Figure 8b). Based on reads that 

either span insertion or deletion sites, or reads that disparately map to a non-TE sequence 

and a TE sequence, one can determine the insertion (or deletion) site. By taking into 

account the local coverage and reads that align perfectly to the reference genome at the 

same position one can also determine the frequency of the insertion in the studied sample. 

To confidently detect somatic transposition events from a pool of cells a sufficient 

sequencing coverage is needed to identify all homozygous (detection frequency near 100% 

for a given locus) and heterozygous (detection frequency near 50%) TE insertions in an 

individual, as those likely reflect TE insertions inherited through the parental germline. To 

classify human variants in exome sequencing data as heterozygous, an allele frequency 

between 14% and 86% with a minimum coverage of 20X has been suggested as 

criterium(Heinrich et al. 2012; Bell et al. 2011). For an estimation of somatic TE insertion 

frequency in Drosophila it is likely sufficient to sequence to 50X depth. 

For Drosophila melanogaster, whose haploid genome size is about 122*106 nucleotides, a 

50X coverage for a single sample with paired-end reads and insert sizes of about 500 

nucleotides would require a sequencing depth of 61*108/500=12*106 reads, or about 6% of a 

lane on a HiSeq2000 sequencer, assuming an output of 2*108 reads per lane and equal 

coverage. To distinguish the impact of piwi mutation, dicer-2 mutation and piwi, dicer-2 

double mutation on transposition rate, we should sequence young and old wild type 

samples, as well as young and old sample from all mutations, preferably in replicates. For 3 

replicates per genotype and time-point we would need to sequence 24 samples, requiring 2 

lanes on a HiSeq2000, which would, at current, cost about 400 euros, excluding library 

preparation, which adds significant costs as well. 
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Alternatively, we could reduce the cost of the analysis using Restriction site associated 

DNA-sequencing (RADseq). In RADseq genomic DNA is digested with a restriction enzyme, 

barcoded adapters are ligated to the restricted DNA, followed by DNA shearing to obtain 

typical NGS insert size of about 300 nucleotides. The sheared DNA is then end-repaired and 

the opposite sequencing primer is annealed. RADseq allows the interrogation of a smaller 

selection of genomic sites with higher sequencing depth. In addition protocols have been 

developed in which the DNA is digested with a 6-bp cutter and a more frequent 4-bp cutter 

(ddRADseq), omitting the lossy steps of DNA shearing and end-repair, as the restriction 

enzymes can be chosen to yield NGS library compatible insert sizes. The higher efficiency of 

ligation to sticky restriction digest ends also allows using lower amounts of starting material, 

but the double digestion protocol might lead to preferential loss of loci with or without TE 

insertions, making estimates of TE insertion frequency more difficult. 

 

 
 
 

 
 

Figure 8: Diagrams depicting presence (a) and absence (b) of TEs and how the integration site of these can be 
identified at base-pair resolution for presence (c) and absence (d) of insertion events. Taken from (Zhuang et al. 2014) 
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2. Article: Isolation of Small Interfering RNAs Using Viral Suppressors of 
RNA Interference 

 
Published as 
 
Van den Beek, Marius, Christophe Antoniewski, and Clément Carré. 2014. “Isolation of 
Small Interfering RNAs Using Viral Suppressors of RNA Interference.” Methods in Molecular 
Biology 1173: 147–55. 
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Abstract  
 
 
 

The tombusvirus P19 VSR (viral suppressor of RNA interference) binds siRNAs with 
high affinity, whereas the Flockhouse Virus (FHV) B2 VSR binds both long double 
stranded RNA (dsRNA) and siRNAs. Both VSRs are small proteins and function in 
plant and animal cells. Fusing a Nuclear Localization Signal (NLS) to the N-terminus 
shifts the localization of the VSR from cytoplasmic to nuclear, allowing researchers 
to specifically probe the subcellular distribution of siRNAs, and to investigate the 
function of nuclear and cytoplasmic siRNAs. This Chapter provides a detailed 
protocol for the immunoprecipitation of small interfering RNAs (siRNAs) bound to 
epitope-tagged VSR and subsequent analysis by 3'-end-labelling using cytidine-3',5'-
bis phosphate ([5'-32P]pCp ) and northern blotting. 
 
 
 
 
Key words: RNAi, siRNA, endo-siRNA, Immunoprecipitation, Viral supressor of 
RNAi, B2, P19, RNA purification, pCp labeling, RNA detection, Drosophila. 
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1. Introduction 
 
Small interfering RNAs (siRNAs) are implicated in a variety of processes such as 
Transposable Elements (TE) repression1, maintenance of pericentric 
heterochromatin2 and antiviral defense3. In Drosophila, the biogenesis of siRNAs 
starts with the cleavage of a long double-stranded RNA (dsRNA) precursor by the 
Dicer-2 endonuclease into a 21 nucleotide RNA duplex structure with 2nt 3’OH 
overhangs4. Following cleavage, the siRNA duplex is loaded into an Argonaute (Ago) 
containing RNA-induced silencing complex, where the duplex is unwound and the 
strand bearing the thermodynamically more stable 5’ end (passenger strand) is 
cleaved by the central RISC protein Argonaute (Ago2 in flies)5,6. The remaining 
strand (guide strand) is 2'-O-methylated by Hen1 at its 3’ end and guides the 
recognition and subsequent cleavage of complementary single-stranded target 
RNAs7.  
 
As antiviral RNAi limits viral replication, many viruses evolved suppressors of RNAi8 
(VSRs). Depending on the VSR, RNAi suppression may occur through the binding of 
long dsRNA substrates and/or siRNA duplexes (B2, P19, DCV1A), thereby limiting 
substrate availability for Dicer and Argonautes, or through the direct inhibition of 
Argonaute proteins (VSR-1A of Cricket Paralysis Virus9). In general, VSRs that act 
through binding to dsRNA or siRNAs are active in both plants and animals. 
 
The tombusvirus P19 VSR is a 19kD protein that forms a head-to-tail homodimer 
and localizes to the cytoplasm when expressed as a transgene in Drosophila S2 
cells and salivary glands2. P19 binds 21 nucleotide dsRNAs10,11, thereby 
suppressing siRNA-mediated Post-Transcriptional Gene Silencing (PTGS) in 
plants12, insects13 and mammalian cells14,15, leading to a de-repression of 
endogenous siRNA (endo-siRNA) targeted transposable elements. We have shown 
that fusing P19 to the NLS of the transformer (tra) protein efficiently re-localizes it to 
the nucleus2. 
 
FHV B2 is 12kD in size and forms a four-helix bundle that binds to one face of an A-
form RNA duplex, independent of its length, thereby both limiting the processing of 
long dsRNA by Dicer and siRNA duplex incorporation into RISC16. Additionally, B2 
has been reported to bind to the conserved PAZ domain of Dicer family proteins17. 
B2 immunoprecipitates efficiently long dsRNA, but not siRNAs, likely due to the 
inhibition of siRNA biogenesis. When expressed in Drosophila salivary glands B2 
localizes to nucleoli, the nucleoplasm and the cytoplasm2. 

 
Through the immunoprecipitation of a nuclear-targeted P19 we were able to pull 
down siRNAs that localize to the nucleus without prior biochemical fractionation and 
to compare them to siRNAs that were pulled down by immunoprecipitating 
cytoplasmic P19 or the dsRNAs that co-precipitate with B22. RNAi against mRNAs is 
not suppressed by the NLS-P19 transgene, indicating that the bulk of siRNA-
mediated PTGS is not occurring inside the nucleus. Instead, a redistribution of 
H3K9me2 and Heterochromatin Protein-1 (HP1) is observed when expressing NLS-
P19 but not unmodified P19. This mirrors the redistribution of repressive chromatin 
marks observed in mutants of the RNAi pathway and links endo-siRNAs to the 
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maintenance of chromatin organization2. This also highlights the potential for 
nuclear-engineered VSRs in dissecting the contribution of RNAi to heterochromatin 
maintenance. 
 
Here we describe the use of the V5-tagged VSRs P19, NLS-P19 and B2 to 
immunoprecipitate bound siRNAs for experiments such as 3'-end-labelling using [5'-
32P]pCp, northern blot detection or high-throughput sequencing (see Antoniewski. C 
chapter: Computing siRNA and piRNA overlap signatures in this book).  
  
  



 74 

 2. Materials 

2.1 Immunoprecipitation. 
1. Mouse Monoclonal anti-V5 (Invitrogen, cat. no R960-25) and/or rat anti-HA High 
Affinity antibodies (Roche, cat. no 11867423001). 
2. Gammabind-G sepharose (GE Healthcare).  
3. Phosphate Buffered saline (PBS) (10X stock): 1.37M NaCl, 27 mM KCl, 100 mM 
Na2HPO4. Adjust to pH 7.4 with HCl; autoclave. Store at room temperature. 
4. Lysis buffer: 50 mM Tris-HCl pH 7.5, 150mM NaCl, 2.5 mM MgCl2, 250 mM 
sucrose, 0.05% Nonidet P-40, 0.5% Triton X-100. Before use, adjust to 1 mM 
Dithiothreitol (DTT), 1 x protease inhibitor mixture cocktail (Roche). Store at 4°C. 
Before use add 40U per ml of RNase inhibitor. 
5. RNase inhibitor: RNase OUT (Invitrogen). 
6. Wash buffer: 50mM Tris-HCl pH 7.5, 150mM NaCl, 2.5mM MgCl2, 250mM 
sucrose, 0.05% Nonidet P-40, 0.5% Triton X-100. Store at 4°C. Before use add 1 
mM Dithiothreitol (DTT), 1 x protease inhibitor mixture cocktail and 40U per ml of 
RNase OUT. 
7. RNA Loading Dye (2X) (New England Biolabs). Store at -20°C. 
8. 2X Laemmli Buffer: 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% 
bromophenol blue, 0.125 M Tris-HCl pH 6.8 . Store at -20°C. 
9. 100 mM CuSO4 solution in distilled water. Store at 4°C. 
10. Rotating wheel. 
 

2.2 RNA extraction & pCp labelling. 
1. Nuclease free water. 
2. Isopropanol. 
3. Chloroform. 
4. Phenol/Chloroform/Isoamyl alcohol pH 4.5 
5. 80% Ethanol (in RNase-free water). 
6. TRIzol reagent (Sigma). 
7. RNA carrier (glycogen or home made linear acrylamide). 
8. 3M NaAcetate (NaAc), pH 5.2. 
9. T4 RNA ligase (Roche). 
10. pCp (Cytidine 5′-triphosphate disodium salt), [5’-32P]- 3000Ci/mmol 10 mCi/ml 
(PerkinElmer, ).  
11. Dimethyl sulfoxide (DMSO). 
12. G50 MicroSpin columns (GE Healthcare). 
13. 15 % acrylamide denaturing gel: 1X TBE buffer (89 mM Tris-borate, 2 mM 
EDTA), 15% acrylamide/bisacrylamide (19:1), 7 M urea, TEMED and 10% APS fresh 
solution. 
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3. Methods 

The use of epitope-tagged P19, NLS-P19 and B2 to immunoprecipitate small 
RNAs was described by us and others (see introduction). Depending on the amount 
required for the small RNA analysis one might use transient transfection or establish 
a stable cell line. To analyse small RNAs by northern blotting or 32P-pCp 3' end-
labelling, transient transfection are sufficient and take less time. To 
immunoprecipitate large amounts of small RNAs for deep-sequencing or to detect 
low-abundant RNAs, stable transfections are more suitable but require more time. 
We provide instructions for the immunoprecipitation from transient and stable 
transfections (Note 1). Entry clones and expression vectors may be obtained from 
the authors and were described previously by Fagegaltier et al.2. 

3.1 Immunoprecipitation of small RNAs bound to epitope-tagged VSR in 
Drosophila S2 cells. 
3.1.1. Using transient expression of the VSRs. 
1. Transfect 4 µg of pMT-DEST48 control plasmid, pMT-B2-V5, pMT-P19-V5, or 
pMT-NLSP19-V5 in 3*106 S2 cells with Effectene Reagent (Invitrogen) according to 
the manufacturer’s instructions. 
2. Depending on the number of conditions tested, cells can be split 2 days after 
transfection and cultured for an additional two days.  
3. Induce construct expression with 500 µM CuSO4 for 24 hours. 
4. Equilibrate 70 µl of beads for 10 min in lysis buffer at 4°C on a rotating wheel, 15 
rpm. 
5. Harvest cells, wash twice in cold 1 x PBS and lyse on ice for 30 min in 1 ml of lysis 
buffer. 
6. Centrifuge at 14000 rpm for 15 min at 4 °C to pellet insoluble cell debris.  
7. Transfer 10% of supernatant to a new microcentrifuge tube. This will be the input 
sample for the analysis of the IPs. 
8. Pre-clear the extract: Transfer the remaining supernatant to a new tube and add 
20 µl of equilibrated beads (from step 4). Incubate for 1 h at 4 °C on a rotating wheel, 
15 rpm. 
9. Centrifuge the pre-clearing mix for 5 min at 4 °C, 800 rpm and transfer the cleared 
supernatant to a new microcentrifuge tube. 
10. Add 5 µg of mouse anti-V5 antibody (Note. 3) and 50 µl of fresh equilibrated 
Gammabind-Plus resin slurry (from step 4) to the pre-cleared supernatant and 
incubate overnight at 4 °C on a rotating wheel (15 rpm). 
11. Centrifuge the samples at 4 °C and 800 rpm for 5 min. 
12. Keep the supernatant as the unbound fraction. 
13. Wash the beads 5 times in 1 ml of wash buffer (Note. 2). 

Continue with section 3.2.1, Purification of immunoprecipitated RNAs. 
 
 

3.1.2. Immunoprecipitation from stable cell line expressing a VSR.  
It is also possible to establish blasticidin or hygromycin-resistant S2 cell lines 

stably transformed with the appropriate vector (in our case pAWH-P19 or 
pAWHNLS-P19 constructs) using Effectene Reagent (Invitrogen) according to the 
manufacturer’s instructions (see http://www.flyrnai.org/DRSC-PRL.html for specific 



 76 

S2 stable cell line establishment).  
 
1. Harvest cells from ten to fifteen 75 cm2 plates at 80% confluency (Note. 4), wash 
twice in cold PBS 1 x, and lyse the cells on ice for 30 min in lysis buffer. 
2. Centrifuge at 14000 rpm for 15min at 4°C to pellet insoluble cell debris.  
3. Transfer 10% of supernatant to a new microcentrifuge tube. This will be the input 
sample for the analysis of the IPs. 
4. Pre-clear the extract: Transfer the remaining supernatant to a new tube and add 
50 µl of equilibrated beads for 1 h at 4 °C on a rotating wheel, 15 rpm (Note. 6). 
5. After centrifugation at 800 rpm for 5 min at 4 °C add 400 µl of equilibrated 
Gammabind-Plus resin (see step 4 of 3.1.1) and 20 µg of the appropriate antibody 
(here: rat anti-HA High Affinity) to the pre-cleared supernatant and incubate for 2 h at 
4 °C on a rotating wheel at 15 rpm. 
6. After centrifugation at 800 rpm for 5 min at 4 °C wash beads five times in wash 
buffer. 
 

3.2.1. Purification of immunoprecipitated RNAs. 
1. Dilute 25 % of the beads in 1 x Laemmli buffer for protein analysis by western 
blotting. Store the sample at -20 °C. 
2. Wash the remaining beads in wash buffer without proteinase inhibitors. 
3. Incubate beads with 20 µl of proteinase K for 2 h (20 µg with an activity of 
30U/mg).  
4. Add 400 µl of TRIzol and 100 µl of chloroform directly to the beads.  
5. Vortex the mix for 15 sec. 
(at this step, sample can be stored at -80°C if needed) 
6. Incubate sample at room temperature for 3 min. 
7. Centrifuge at 14000 rpm at 4 °C for 15 min. 
8. Carefully pipette aqueous phase (upper phase) into a clean microcentrifuge tube 
and discard the lower phase. 
9. Add an equal volume (around 140 µl) of isopropanol and mix by gentle inversion 
(1 µl of glycogen (20 µg/µl) or linear acrylamide (5 µg) carrier facilitates precipitation 
and visualization of the RNA pellet). 
10. Incubate sample at room temperature for 10min. 
11. Centrifuge tubes at 14000 rpm at 4 °C for 15min.  
12. Discard the supernatant without touching the pellet and wash with 80 % ethanol, 
vortex briefly to detach the pellet from the tube.  
13. Centrifuge at 14000 rpm at 4 °C for 10 min.  
14. Carefully remove the ethanol and air-dry the pellet for about 5 to 8 min (a visible 
white pellet should disappear during the drying). 
15. Add 30 µl of RNase-free water to the pellet and resuspend by gently pipetting up 
and down. 
 

RNA concentration and quality can be checked using a nanodrop 
spectrophotometer (expected concentration for IPs using the indicated amount of 
cells and proteins is around 10 (transient expression protocol) to 100 ng/µl (stable 
expression protocol). The RNA can be used immediately or stored at -80 °C (avoid 
repeated freezing/unfreezing cycles). 

For total RNA analysis (input or supernatant after IPs), RNA should be 
extracted with TRIzol Reagent (Invitrogen) according to the manufacturer’s 
instructions, except that RNA washes are performed in 80% ethanol. 
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At this point, RNA from the IPs can be used for standard RNA analysis (RT-

qPCR or northern blotting for example). However, in this chapter we focus on [5'-
32P]pCp labelling followed by northern blotting.  

 

3.2.2.  32P-pCp 3' End-labelling RNA. 
 

RNA molecules can be 3'-end-labeled using [5'-32P]pCp (cytidine-3',5'-bis 
phosphate) and RNA ligase. The RNA to be labelled must have a free 3'-hydroxyl 
end for better results. It was shown however that pCp labelling is efficient enough to 
label small RNA (piRNA) although they are 2’-O-methylated at their 3’-OH end (Saito 
et al, Genes & Dev 2006). Using this protocol, we aimed at detecting endo-siRNAs 
IP with VSRs proteins. This class of small RNA are 2’O-methylated at their 3’-
extremity after their passage into the Ago2-RISC complex. The 2’O-methylation at 
the 3’-OH end could affect the efficiency of the pCp 3’-end labelling due to the 
inaccessibility of the 2’ end of small RNAs. However and importantly, the VSRs used 
to precipitate the siRNAs in this protocol capture them as a duplex before entry into 
the Ago2-RISC complex and subsequent 2’O-methylation. 

 
1. Pipette 4µl of RNA in a new microcentrifuge tube. This corresponds to around 
10% of the immunoprecipitated RNA. More RNA may be labelled if the signal obtains 
is too low.  
2. Add 2.5µl, 100 µCi of [5'-32P]pCp. 
3. Add 3µl 10X RNA ligase buffer. 
4. Add 3µl DMSO (Note. 7) 
5. Add water to 29.5µl total volume. 
6. Add 0.5µl T4 RNA ligase (10U). 
7. The 30µl reactions are then incubated overnight at 4°C (Note. 8).  
At this step, samples can be stored several days at -20°C. 
 
8. Add 100µl of H2O to the pCp labelled samples.  
9. Remove unincorporated nucleotides using a G50-column (GE Healthcare).  
10. Pipette 40µl of 3M NaAc, 260µl H2O and 2µl of glycogen to the samples.  
11. Add 400µl of Phenol/Chloroform/Isoamyl alcohol and proceed to RNA classical 
extraction. Carefully pipette aqueous phase (upper phase) into a clean eppendorf 
tube and precipitate with 1ml of EtOH for 2hr at -20°C. Centrifuge 30min at 4°C, 
14000 rpm. Wash with 70% ethanol and let the tubes dry at room temperature (Note. 
9). 

12. Add 12µl of loading RNA buffer 1X. 
13. Denature the samples for 4 min at 
95°C and load them onto a 7M urea 
denaturing 15% polyacrylamide gel. 
14. Signals are visualized by 
autoradiography (see Figure. A and 
Note. 5&6). 
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P19 and B2 respectively sequester endogenous TE-matching siRNAs or 
longer precursors in S2 cells. (A) Immunoprecipitated P19 and NLS-P19 
sequester 21nt RNAs that migrate as 22–23nt species after 3’end-pCp 
labelling (arrowhead) whereas larger RNA species are sequestered 
exclusively by B2 (*). Control immunoprecipitation (pMT) (Note. 10) was 
performed using S2 cells transfected with the empty expression vector pMT-
DEST48 (from Fagegaltier et al, PNAS, 2009). 

 
 

Northern blot analysis of IP RNAs was able to confirm the presence of endo-
siRNA from the HMS-Beagle retrotransposon. Briefly, twenty micrograms of total 
RNAs isolated from transfected cells (Input), or 90% of the immunoprecipitated 
RNAs (IP) were resolved by electrophoresis onto 7M urea denaturing 15% 
polyacrylamide gels. Classical northern blot analysis was performed in PerfectHyb 
Plus (Sigma) with sense 5’-32P end-labelled oligonucleotide probe: HMS-Beagle 5’-
32P-TCCCGACATTCCATAGGCATTTA-3’. 

 
 
 
 
(B) A sense HMS-Beagle probe revealed 
enriched endo-siRNAs in Northern blots of 
P19 and NLS-P19 RNAs immunoprecipitates 
(IP) and longer RNA species (*) in B2 RNA 
immunoprecipitate. I, corresponds to total 
RNA input material (From Fagegaltier et al, 
PNAS, 2009). 

Notes. 
 

1. IP experiments were done successfully with less material. However, this 
depends strongly on the efficiency of the antibody to immunoprecipitate the 
corresponding protein. 

 
2. Salt concentration in the wash buffer is 150mM NaCl. If background problems 

occur salt concentration can be raised up to 800mM KCl.  
 

3. Here, monoclonal anti-V5 antibody (Invitrogene) and anti-HA (Roche) were 
used. However, others appropriate tag antibodies such anti-Flag as well as 
specific antibodies against VSRs can be used.  

 
4. The number of 75cm2 plate used from stable cell line depends on the 

expression of each individual stable cell line. In our hands, RNA IP of 15 
plates was always sufficient for a good pCp labelling reaction using the VSRs 
described in this chapter.  

 
5. Small RNAs immunoprecipitated from S2 cells (control) and stably 

transformed P19 and NLS-P19 S2 cells were previously cloned for 
sequencing using the DGE-Small RNA Sample Prep Kit and the Small RNA 
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Sample Prep v1.5 Conversion Kit from Illumina, following manufacturer 
instructions (see Fagegaltier et al, PNAS 2009).  

 
6. Pre-clearing can be done overnight to decrease background due to non-

specific protein binding to the beads.  
 

7. DMSO seems to improve end-labelling especially with difficult to label RNAs. 
However, higher concentration of DMSO considerably inhibits ligase activity. 

 
8. For the pCp reaction, 4°C is the recommended temperature. However, 

reaction can be done at 37°C during 4 hours if needed.  
 

9.  The pCp reaction as described above should give several million cpm of 
labelled RNA. 

 
10.  Empty vector control is absolutely recommended to detect unspecific or 

artifactual signal of pCp reaction (see pMT-DEST48 line in Figure. A). 
 
 
Outline of the methods described in this chapter: 

● Transfection (transitory) and induction of VSR constructs (4-5 days). 
● Isolation of co-immunoprecipitated RNA (1 day). 
● Analysis by [5'-32P]pCp 3’ end labelling and/or Northern Blot (2 days). 
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Introduction II: reproducible computational analysis with Galaxy 
 
1. Development of Galaxy tools linked to data analysis 
 
Before I joined the laboratory, Christophe Antoniewski wrote and published a number of 

commandline analysis pipelines for miRNA analyses (Vandormael-Pournin et al. 2012; 

Reinhardt et al. 2012), profiling of viral small RNA reads (Antoniewski 2011), endo-siRNA 

(Fagegaltier et al. 2009) and the detection of small RNA signatures (Antoniewski 2014). 

During the first year of my PhD we set up a Galaxy server in the lab, and in the course of my 

PhD we adapted and improved the aforementioned analysis pipelines within the Galaxy 

framework. This work served as a basis for a number of collaborations, as the ease of using 

bioinformatic pipelines within Galaxy allowed for individual biologists to perform complex 

analyses autonomously. 

Early during this process I participated mostly in administrating the system, as I had very 

little programming background, which changed during my 2nd year of the PhD. I 

nevertheless presented my work of designing the backup mechanism at the Galaxy Days in 

December 2013 (http://www.ifb-galaxy.org/4dec2013.html). This also involved the 

development of scripts for the automatic creation of Virtual Machines from these Backups. 

While these scripts are still at work in our environment, and I heavily used these Virtual 

Machine Images to develop tools for small RNA visualization, I never pushed these scripts to 

publication level, as I was more involved in the analysis of my own data and I felt that these 

scripts were not flexible enough and that other, new technologies would be more suitable for 

the task. Nevertheless, I became more familiar with how Galaxy and virtualization works. 

Chronologically, we first received small RNA samples from heads. As mentioned in the 

introduction to the first article manuscript, we were initially interested to see whether we 

could detect small RNAs near the white gene that might explain variegation in the wm4 

background strain. Following the realization that only few small RNAs were present, we 

nevertheless made an interesting observation. It appeared that siRNAs that aligned to TEs 

were upregulated. To efficiently analyse which TEs were upregulated, in which library and 

whether there were any hotspots for all 121 canonical TEs, I modified and combined existing 

scripts that address this question separately. We managed to generalize these analyses 

using the R lattice package. The development of these tools allowed me to get a good grasp 

on Galaxy tool development (detailed in part 4) and the difficulties associated with this. I 

presented the resulting code in a Lightning Talk during the Galaxy Community Conference 

2014 (A poster is hosted here: 

https://wiki.galaxyproject.org/Documents/Posters/GCC2014?action=AttachFile&do=view&tar

get=P6vandenBeek.pdf, and a video of the lightning talk is available here: 
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http://jh.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9fed7061-735f-4c3a-93a3-

95b7ff51dd35 ). 

Around the same time I made first steps in understanding and writing python code, while 

working on a small script that clusters small RNAs. When exploring the RNA-seq data for the 

first article, I got more familiar with the python language, writing simple, interactive analysis 

notebooks (an interesting example is in Annex 2) using IPython (Pérez and Granger 2007) 

almost every day, but I never integrated these analyses in Galaxy, as writing complete, 

universal tools would have taken too much time for an analysis that would be performed only 

once or twice and will almost certainly not lead to any publication.  

However I learned about containerization using Docker at the Galaxy Community 

Conference, and later during the summer I realized that containerization could be combined 

with the Galaxy Tool Factory (Lazarus, Kaspi, and Ziemann 2012) to archive these run-once 

analyses side-by-side with their input data in Galaxy, thereby maintaining the analysis code 

directly with the input-data. Beyond this purpose, the DockerToolFactory also allows the 

generation of simple Galaxy tools, which can be installed from the Galaxy toolshed 

(Blankenberg, Von Kuster, et al. 2014) (a system similar to commercial app stores, but for 

Galaxy tools). Finally it is possible to chain these simple tools together in workflows, allowing 

any arbitrary operation to be executed, without risk of damage through intentional or 

unintentional malicious code execution. Therefore I have written an article that describes this 

enhancement to the original Galaxy ToolFactory (Lazarus, Kaspi, and Ziemann 2012) (van 

den Beek and Antoniewski, in preparation). 

 
2. The cornerstones of reproducible research  
 
Computational methods have become a cornerstone of many research projects in the life 

sciences, especially in genomics, but also in proteomics, metabolomics and microscopy and 

personalized medicine, and this true also for my thesis project. In the field of genomics 

microarrays and next generation sequencing have changed in many ways how research is 

being done, enabling projects that were not possible before. However, these projects 

generate datasets that are far too large and complex to be handled in a simple spreadsheet 

software. Their proper analysis poses multiple challenges at different levels. An overview of 

these is listed in the introduction to (Goecks et al. 2010). The challenges can be broken 

down in 3 major categories: Accessibility, Reproducibility and Transparency.  

The Accessibility challenge manifests itself for researchers that need to use computational 

approaches, but have little or no informatics or programming expertise. Hurdles here are the 

use of command line tools, their installation, configuration and maintenance, as well as the 

selection of parameters suitable to the problem at hand and the access to sufficiently 
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powerful computing environments. This is further complicated if multiple analysis steps have 

to be chained together. 

Reproducibility is another major challenge, as it takes considerable experience, stringency 

and organization effort to document all datasets, analysis steps, tools and parameters used. 

Although most researcher keep careful track of their wet-lab experiments in lab journals, the 

sheer mass of tools often used during the exploratory data analysis phase makes proper 

documentation of all details challenging and time consuming. 

Transparency is perhaps the most important aspect of any large scale data analysis. While 

it is beneficial to be able to reproduce an analysis, it is far more important to document 

analyses in a way that they can be understood, adopted and modified at any level of detail 

by fellow scientists. 

 

 

 

3. The Galaxy framework 

  

A huge number of efforts exists to address these problems, that reach from online 

communities dedicated to sequencing experiments (http://seqanswers.com/), to more 

general question sites (http://stackoverflow.com/, https://www.biostars.org/) and specialised 

mailing lists. There are specialised software repositories that provide a common syntax 

(Bioconductor, Biopython, Bioperl, scipy, scikit-learn) and interactive web-based integrated 

development environments (IDE) (Rstudio, IPython) that facilitate sharing analyses. And 

then there are high level reproducible research systems (RRS) such as Mobyle (Néron et al. 

2009), GenePattern (Reich et al. 2006), Illumina BaseSpace, Taverna (Wolstencroft et al. 

2013) and Galaxy (Giardine et al. 2005), that aim to “glue” together different parts of an 

analysis pipeline in a user-friendly interface, while automatically tracking input files, output 

files, used tools and their parameters (to aid reproducibility). Finally, RRSs should provide 

means to disseminate and annotate analyses, so that the intent and methods of the analysis 

can be easily understood (aiding transparency). 

Of the before-mentioned RRSs, Galaxy appears to be one of the more feature-rich platforms 

with strong, active development and a large community, hence we decided to provide the 

tools that we developed for our own research or for collaborative efforts inside the Galaxy 

environment. I will not go into the details of how Galaxy works, as the authors did a much 

better job than I could possibly do ((Goecks et al. 2010) and https://usegalaxy.org), and so I 

will limit myself to pointing out the tool-relevant parts and highlight some current limitations, 

and how I propose to lift these. 
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4. Galaxy tool development 

 

Any piece of software that can be operated on the command line can be integrated into 

galaxy. To do so, a wrapper is needed that, using a number of key-words, “describes” to 

Galaxy what the user-interface should look like, where the input datasets are expected 

during the construction of the command line, the type of input data that can be used, the 

number and type of output datasets, and many more things. These wrapper differ in their 

complexity and are written in the XML standard. A typical, simple wrapper might look like the 

following: 

 
1	
  <tool	
  id="mismatch_analyzer"	
  name="Mismatch	
  Analyzer"	
  version="0.0.1"	
  hidden="false"	
  > 
2	
  	
  	
  	
  	
  	
  	
  	
  <description>Analyze	
  mismatches	
  in	
  BAM/SAM	
  alignments</description> 
3	
  	
  	
  	
  	
  	
  	
  	
  <command	
  interpreter="python">mismatch_analyzer.py	
  -­‐-­‐input 
4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #for	
  i	
  in	
  $rep 
5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  "$i.input_file" 
6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #end	
  for 
7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐-­‐name 
8	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #for	
  i	
  in	
  $rep 
9	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  "$i.input_file.name" 
10	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #end	
  for 
11	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐-­‐output_pdf	
  $output_pdf	
   
12	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐-­‐output_tab	
  $output_tab	
   
13	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐-­‐min	
  $min_length	
   
14	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐-­‐max	
  $max_length 
15	
  	
  	
  	
  	
  	
  	
  	
  </command> 
16	
  	
  	
  	
  	
  	
  	
  	
  <inputs> 
17	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <repeat	
  name="rep"	
  title="alignment	
  files"> 
18	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <param	
  name="input_file"	
  type="data"	
  format="bam,sam"	
  label="Alignment	
  
file"	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  help="The	
  input	
  alignment	
  file(s)	
  for	
  which	
  to	
  analyze	
  the	
  
mismatches."/> 
19	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  </repeat> 
20	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <param	
  name="min_length"	
  type="text"	
  value="21"/> 
21	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <param	
  name="max_length"	
  type="text"	
  value="21"/> 
22	
  	
  	
  	
  	
  	
  	
  	
  </inputs> 
23	
  	
  	
  	
  	
  	
  	
  	
  <outputs> 
24	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <data	
  format="pdf"	
  name="output_pdf"	
  /> 
25	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <data	
  format="tabular"	
  name="output_tab"	
  /> 
26	
  	
  	
  	
  	
  	
  	
  	
  </outputs> 
27	
  </tool> 
 

I wrote and used this wrapper to analyse the mismatches as in Figure 1G of the first article. 

The purpose of this wrapper is to provide the correct command line options to the 

“mismatch_analyzer.py” script (lines 3-15), based on the options selected by a Galaxy user 

(lines 16-22). 

If the script was operated directly on the command line the user would have to type the 

following line: 
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>2$/%1! +',+-$./0-1-&2345:>2! DD'1>E$! U+2! '1>E$:N-+V! DD1-+4! U+2! '1>E$V! DD%E$>E$0>(;! U+2!

%E$>E$:>(;V! DD%E$>E$0$-N! U+2! %E$>E$:$-NV! DD+'1! U="V! DD+-O! U="V:! Instead, the wrapper 

instructs Galaxy to provide a tool form, where the user can add one or more alignment files, 

and where he can select the length of the reads to investigate (with 21 as a default value). 

Galaxy will then take care to inject the user-selected values at the right place in the 

command line. 

 

 

All instructions for Galaxy are contained within the tool tagset. tagsets start with a keyword, 

e.g. “<command” and end with “/>”, or if a tagset spans multiple lines, the keyword is 

repeated, e.g. </command>. Tagsets can be nested, for example the “input” tagset contains 

a “repeat” tagset, which contains a “param” tagset. 

 

A list of available keywords and options can be found in the Galaxy wiki 

(https://wiki.galaxyproject.org/Admin/Tools/ToolConfigSyntax). These xml forms can quickly 

become very long and unreadable, and they are sensitive to missing or invalid options. This 

often makes tool development a trial-and-error process. Nevertheless, it also provides 

Figure 9. The Mismatch Analyzer tool form, as defined in in the above xml wrapper. 
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traceability, as the options are “fixed”. When tools are run, the user-selected values are 

stored in a database, and can be retrieved when necessary. If for example, in the next 

version of mismatch_analyzer.py the option to specifiy the miminal readlength to analyse 

would change from “-­‐-­‐min”	
  to	
  “-­‐-­‐minimum_readlength”,	
   line 13 would need to be adapted to 

read “-­‐-­‐minimum_readlength	
   $min_length”.	
   Users that now wish to redo an old 

analysis with the same parameters as before can do so, as the value stored in the database 

is linked to the parameter "min_length"	
  defined in the wrapper.  

Subjectively speaking, it does take a bit of experience to write a good Galaxy wrapper. Once 

a wrapper is finished, it has to be either added to a toolshed, or referenced to in a Galaxy 

configuration file, and finally Galaxy needs to be restarted (in the latter case) or the tool 

needs to be installed from the toolshed. These processes can only be performed by Galaxy 

administrators, and so Galaxy users are limited by the choice of tools that are currently 

installed on the server. This might be a serious drawback for users that wish to take 

advantage of the Galaxy Platform, and that at the same time know how to write analysis 

code themselves. 

 

5. DockerToolFactory in the light of current limitations 

 

The problems I addressed with the DockerToolFactory tool are:  

[1] Galaxy tool development is slow, error-prone and requires good knowledge of available 

options. 

[2] Only Galaxy administrators can install new tools. 

[3] Experienced users cannot run custom analysis scripts. 

 

As mentioned before, DockerToolFactory is based on the Galaxy Tool Factory (Lazarus, 

Kaspi, and Ziemann 2012). The original Galaxy Tool Factory addressed point [1], as it was 

possible to generate new galaxy tools, based on a user-supplied script. However the Galaxy 

Tool Factory could be executed only as a galaxy administrator, as any script could be 

executed, which raises security concerns. I modified the Galaxy Tool Factory in a way that 

only data that belong to the current galaxy user are available to the script, and these data 

can only be read, but not modified. Scripts run completely isolated from the rest of the 

system. For the isolation I made use of containerization using Docker 

(https://www.docker.com/). Containerization allows running multiple operating systems 

(“containers”) side by side, with very little overhead. All that is shared with the host system (= 

the Galaxy server, or the computing node, if tools are executed on a computing cluster) is 

the kernel. In simplified terms, the kernel is responsible for communicating operations 

between the physical hardware and the software.  
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By isolating (sometimes called “sandboxing”) the execution of scripts in a container, it is now 

not a security problem anymore to let users run arbitrary code. Therefore, galaxy 

administrators can now allow users to execute arbitrary scripts, and using the 

DockerToolFactory, these scripts can be converted into galaxy tools, or used directly in 

interactive analyses, or as an intermediary step in a workflow. 

In addition I extended the Galaxy Tool Factory for multiple input files, and allowed the 

specification of output types. These modifications have been incorporated back into the 

original Galaxy Tool Factory. 

This approach turned out to be quite powerful, and I am routinely using the 

DockerToolFactory in situations where I would like to do simple data transformations, or 

when I need to plot data in a way that is difficult to generalize as a multi-purpose galaxy tool. 

As an example, all Figures except Figure 3A in my first article have been made using the 

DockerToolFactory. Annex 3 contains a table with links to the Galaxy histories and 

workflows used to construct these Figures.  
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Results II: Running arbitrary user code on Galaxy using 
DockerToolFactory 
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Marius van den Beek, Christophe Antoniewski 
Drosophila Genetics and Epigenetics ; Université Pierre et Marie Curie 9, Quai St Bernard 

Building C – 5th floor – Room 517 ; 75252 Paris cedex 05 ; Phone: +33 1 44 27 34 39 
 

 

Motivation: Galaxy is a software framework that enables reproducible research for data 

intensive applications. Drawbacks are that (1) for the integration of new tools or scripts, one 

needs administrator access, (2) the Galaxy tool generation is slow, error-prone process and 

is not very well documented. 

 

Results: DockerToolFactory is a regular Galaxy tool installable from the Galaxy toolshed. 

Once installed by a Galaxy administrator, it allows the execution of arbitrary scripts, and the 

generation of new Galaxy tools for sharing on the public Galaxy toolshed (GTS). Secure 

execution of code is achieved by running code in a secure and isolated Docker container. 

DockerToolFactory is a fork of The Tool Factory. 

 

Availability and implementation: The Galaxy administrative interface supports automated 

installation from the main GTS. Source code and support are available at the project 

website, https://bitbucket.org/mvdbeek/dockertoolfactory. The DockerToolFactory is 

implemented as an installable Galaxy tool. 

 
Contact: mvandenb@snv.jussieu.fr 

 

1. Introduction 

 

Galaxy (Giardine et al. 2005; Blankenberg et al. 2010; Goecks et al. 2010; Nekrutenko and 

Taylor 2012) is a web framework that is centered around enabling reproducible research. 

This includes genomics, epi-genomics, proteomics, metabolomics, statistics, and medical 

research, which tend to be very data-intensive. Galaxy is not limited to any kind of analysis, 

given that a command line version of the analysis can be produced. It provides users the 

ability to run tools that would require extensive knowledge of the command line. Through its 

workflow engine and Galaxy Pages, analyses can be easily repeated and shared, thereby 

allowing users to obtain results quickly and reproducibly, including almost publication grade 

Documentation. 
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A serious limitation to these goals is a recurrent theme among software packages that aim to 

simplify biological analyses: If a required intermediate step in the analyses is not provided by 

the software package, the user has to obtain the intermediate file and treat it on his own or 

with the help of a (bio-) informatician.  

In the case of Galaxy this means that the workflow is interrupted, the user has to manually 

download a file, treat it on his workstation and re-upload it to Galaxy to continue the 

analysis. In the best case scenario the user documented the data treatment well and 

provides a script when the resulting paper is published. In the worst case scenario the user 

introduces an error during his analysis, especially if a large number of files need to be 

treated, does not provide a script and so the error will be left unnoticed and the analysis 

cannot be reproduced, or the user decides to abandon Galaxy altogether and relies on 

classical script development with all its advantages and disadvantages. 

 

To remedy the situation Lazarus et al. developed the Galaxy Tool Factory (Lazarus, Kaspi, 

and Ziemann 2012), which is a tool that can be used to rapidly and easily transform existing 

single input/output scripts into Galaxy tools. Because the user can potentially execute 

malicious code, installation on production instances was strongly advised against, and thus 

a private instance of a Galaxy server was a requirement. 

 

To improve the situation, we developed DockerToolFactory. It is a fork of The Tool Factory 

that allows the secure execution of scripts and can treat multiple input/output files. Execution 

of code is secured using Docker. Generated tools can be uploaded to the Galaxy toolshed 

(Blankenberg et al. 2014), or scripts can be run interactively or in workflows. 

 

2. Methods 

 

DockerToolFactory is a fork of Tool Factory and is implemented in Python. By using Docker 

containers, secure and lightweight sandbox are established on-the-fly during script 

execution. 

DockerToolFactory requires the docker daemon to be running and accessible to the system 

user under which Galaxy is run. 

As in the original Galaxy Tool Factory, the user is presented with a standard Galaxy tool 

screen, where he can paste his executable script. In addition it is now possible to select 

multiple input files, specify their file format and the file format of the output files. 

When the user executes a script within DockerToolFactory, a container is created using the 

supplied Dockerfile. The Dockerfile specifies which system-wide software is available to the 

user running his script and can be easily adapted by the Galaxy administrator. 
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Input files, output files and intermediate scripts are then bind-mounted to the container. The 

user-supplied script can thus only access the files that are selected as input for the 

DockerToolFactory tool, limiting potential security issues to the user’s own files. 

By allowing arbitrary shell, python, R and perl scripts users can install software not available 

on the Galaxy instance or in the specified Dockerfile. 

When the script has terminated or has hit the configurable resource limit, the docker 

container is stopped and terminated. Outputs appear in Galaxy as regular outputs and can 

be embedded in workflows and can be re-run. In addition, the user may choose to generate 

a tool from his script. The generated tool is compatible with the Galaxy toolshed and may be 

installed by a Galaxy administrator on any Galaxy instance. Scripts may accept multiple 

inputs and write multiple outputs of different file formats, or, if a script writes many output 

files, output files can be collected and linked within an html file. 

 

3. Results 

 

Non-administrator users of local Galaxy instances can now execute arbitrary pieces of code 

and install software packages in their Galaxy environment, containing all of their previously 

generated datasets. Through an admin-interface panel administrators can adjust the 

resources available to run docker containers. 

 

4. Discussion 

 

The Galaxy environment is very appealing to novice users, as it allows to run complex multi-

step analysis pipelines without taking care of installing all necessary software packages, 

assembling complex pipelines and maintaining them. In addition it is very easy to develop, 

share and reproduce analyses with collaborators. However, “intermediate users” of Galaxy 

are often comfortable in writing simple scripts. To run these scripts in Galaxy, knowledge in 

the quite complex xml format is a prerequisite, as are administrator rights on a Galaxy 

instance. The installation and maintenance of a Galaxy instance, physically or in the cloud, 

is again time- and resource consuming. This might lead “intermediate users”, which could be 

valuable tool developers, to back away from the Galaxy environment. In addition, they might 

also advise novice users to develop their analysis pipelines on their local machines. 

By making it possible to run user-supplied scripts, this target audience might be convinced to 

follow the Galaxy approach of reproducible science. 
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Furthermore, the approach to have users be able to run scripts and generate tools 

themselves minimizes the need for separate Galaxy instances that only exist because users 

want to run tools not available in their institute’s local Galaxy instance.  

The generated tools serve as a good starting point for developers to add more complex xml 

tool syntax. Together with the recent efforts to integrate Docker-based IPython sessions in 

Galaxy, Galaxy itself is becoming a serious alternative to local Integrated Development 

Environments (IDE). 

Currently the docker container is running as the system’s Galaxy user, and inside the 

container the user’s script is executed as a non-privileged user, so software that requires 

root access cannot be executed. 

The Docker development team is currently working on the possibility to run docker 

containers in user namespace. When this feature will become available, users might be 

allowed to upload their own Dockerfiles to Galaxy and become the root user inside these 

images. This means that users could upload their own Dockerfiles, specifying exactly which 

software should be available for their scripts.  

 

5. Availablilty 

 

The DockerToolFactory is installable through the Galaxy administrative interface from the 

GTS. Source code is available at the project homepage 

https://bitbucket.org/mvdbeek/dockertoolfactory. 

Galaxy&

DockerToolFactory-User%supplied++
script+

Input-file(s)-

script-

Input-file(s)-

script-

Output-file(s)--
op8onal-galaxy-tool-

Output-file(s)--
op8onal-galaxy-tool-

Immutable&docker&container&

Fig.-1. -User>supplied-script-can-be-pasted-into-the-DockerToolFactory-tool,-installed-in-Galaxy.-When-
the-user-runs-the-tool,-a-new-immutable-container-is-created.-The-supplied-script-and-input-files-are-
mounted- into- the- created- container- and- the- script- is- executed.-When- script- execu8on-finishes,- the-
containers-are-stopped-and-removed,-while-output-files-appear-in-the-users’-history----
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Furthermore, the approach to have users be able to run scripts and generate tools 

themselves minimizes the need for separate Galaxy instances that only exist because users 

want to run tools not available in their institute’s local Galaxy instance.  

The generated tools serve as a good starting point for developers to add more complex xml 

tool syntax. Together with the recent efforts to integrate Docker-based IPython sessions in 

Galaxy, Galaxy itself is becoming a serious alternative to local Integrated Development 

Environments (IDE). 

Currently the docker container is running as the system’s Galaxy user, and inside the 

container the user’s script is executed as a non-privileged user, so software that requires 

root access cannot be executed. 

The Docker development team is currently working on the possibility to run docker 

containers in user namespace. When this feature will become available, users might be 

allowed to upload their own Dockerfiles to Galaxy and become the root user inside these 

images. This means that users could upload their own Dockerfiles, specifying exactly which 

software should be available for their scripts.  

 

5. Availablilty 

 

The DockerToolFactory is installable through the Galaxy administrative interface from the 

GTS. Source code is available at the project homepage 

https://bitbucket.org/mvdbeek/dockertoolfactory. 

!"#"$%&

!"#$%&'""()*#+"&,-

!"#"$%&

!"#$%&'""()*#+"&,!"#$%"&''()#*++
",$)'-+

./01+-2(%345-./01+-2(%345-

4#&60+-4#&60+-4#&60+-

./01+-2(%345-./01+-2(%345-

4#&60+-4#&60+-

./01+-2(%345-

71+01+-2(%345--
"08"/*(-9*(*:,-+""(-

71+01+-2(%345--
"08"/*(-9*(*:,-+""(-

'(()*"+#,&-./0,1&/.2*"32,1&

!"#$%&'""()*#+"&,

)69;-<; -=4%&>4100(6%?-4#&60+-#*/-@%-0*4+%?-6/+"-+A%-!"#$%&'""()*#+"&,-+""(B-6/4+*((%?-6/-C*(*:,;-DA%/-
+A%-14%&-&1/4-+A%-+""(B-*-/%E-6FF1+*@(%-#"/+*6/%&-64-#&%*+%?;-'A%-4100(6%?-4#&60+-*/?-6/01+-2(%4-*&%-
F"1/+%?- 6/+"- +A%- #&%*+%?- #"/+*6/%&- */?- +A%- 4#&60+- 64- %:%#1+%?;-DA%/- 4#&60+- %:%#18"/-2/64A%4B- +A%-
#"/+*6/%&4-*&%-4+"00%?-*/?-&%F"G%?B-EA6(%-"1+01+-2(%4-*00%*&-6/-+A%-14%&4H-A64+"&,----



 93 

 

5. References 

 

Blankenberg, Daniel, Gregory Von Kuster, Emil Bouvier, Dannon Baker, Enis Afgan, 
Nicholas Stoler, Galaxy Team, James Taylor, and Anton Nekrutenko. 2014. 
“Dissemination of Scientific Software with Galaxy ToolShed.” Genome Biology 15 (2): 
403. 
Blankenberg, Daniel, Gregory Von Kuster, Nathaniel Coraor, Guruprasad Ananda, Ross 
Lazarus, Mary Mangan, Anton Nekrutenko, and James Taylor. 2010. “Galaxy: A Web-
Based Genome Analysis Tool for Experimentalists.” Current Protocols in Molecular 
Biology / Edited by Frederick M. Ausubel ... [et Al.] Chapter 19 (January): Unit 19.10.1–
21. 
Giardine, Belinda, Cathy Riemer, Ross C Hardison, Richard Burhans, Laura Elnitski, 
Prachi Shah, Yi Zhang, et al. 2005. “Galaxy: A Platform for Interactive Large-Scale 
Genome Analysis.” Genome Research 15 (10): 1451–55. 
Goecks, Jeremy, Anton Nekrutenko, James Taylor, and Galaxy Team. 2010. “Galaxy: A 
Comprehensive Approach for Supporting Accessible, Reproducible, and Transparent 
Computational Research in the Life Sciences.” Genome Biology 11 (8): R86. 
Lazarus, Ross, Antony Kaspi, and Mark Ziemann. 2012. “Creating Reusable Tools from 
Scripts: The Galaxy Tool Factory.” Bioinformatics  28 (23): 3139–40. 
Nekrutenko, Anton, and James Taylor. 2012. “Next-Generation Sequencing Data 
Interpretation: Enhancing Reproducibility and Accessibility.” Nature Reviews. Genetics 
13 (9): 667–72. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 94 

Perspectives for DockerToolFactory 
 
All aspects I have mentioned in the above article draft are implemented, work and can stand 

on its own, but I would like to introduce a few additional features that further augment the 

utility of the DockerToolFactory before submitting the manuscript to a journal. 

 

I am planning to extend the DockerToolFactory with the following features: 

 

1. Multiple output files 

2. The possibility to use reference data stored in Galaxy’s tool-data tables 

3. Split the DockerToolFactory in 4 modules: run-script, wrapper-only, wrapper-

modification, tool-dependency generation 

4. Automatic upload into galaxy toolshed and code-repositories 

 

 

1. Multiple output files 

 

Currently, only a single output file is appearing in the history, in addition to an optional HTML 

file. At present the only way to produce multiple output files is using the HTML-output mode. 

In that case all files that are written by the users’ scripts are collected and placed as 

downloadable links within the HTML file. These output files are not available to further 

treatment in Galaxy, unless they are downloaded and re-uploaded. Allowing the generation 

of multiple output files could be in the form of repeat elements, as is done for multiple input 

files. However, the user then needs to take care of which variables represent input and 

which files are output files. Alternatively, all files could be automatically collected and placed 

in the history, but this would break workflows, as the number and order of outputs are not 

known to the workflow engine before the tool has finished. At present I would prefer the 

former solution. To aid script authors one could prefill the text box in which the script is 

pasted with instructions of how to reference input and output files and other optional 

parameters. In addition I would like to add textboxes to specify “name” and “help” tagsets to 

all input and parameter fields. 

 

2. Make Galaxy’s reference data available 

 
Galaxy provides the possibility to centrally store reference data, so that all users 

automatically have access to these data when necessary. Reference data includes genome 

sequences, reference indexes in different formats for different read aligners, blast databases 

and so on. These are organized in tool-data tables (Blankenberg, Johnson, et al. 2014). It 
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would useful to be able to select from these reference data sources in the 

DockerToolFactory. 

 

 

3. Split the DockerToolFactory in task-specific modules 

 

Adding the above-mentioned options would add more complexity to the tool form, that would 

not be required if one was only interested in running simple scripts. Therefore, a simpler 

script-only tool could be generated that is used only for adding input files, the script to be 

executed and specifying the type of output file. 

In addition, it might be possible to first generate a basic wrapper, which is stored in the 

history. Details, like tool-data table entries, help texts, repeats, conditionals, and others 

could be added in an interactive visualization process. One can then make use of java-

script to render previews of the generated tools. This mode could also be used to modify 

existing wrappers. Finally, it would be possible to have a mode that would be used to install 

dependencies. Right now it is possible to install R and python packages during script 

execution, but this process would be repeated every time the script is run. Instead, it would 

be possible to install the dependencies, and to make a snapshot of the container for later 

use. 

 

4. Automatic upload into galaxy toolshed and code-repositories 

 

To facilitate the process of script-development and versioning, I plan to implement an 

automatic upload to the galaxy toolshed and to code repositories like github 

(https://github.com/) and bitbucket (https://bitbucket.org). All of these support automatic 

upload through an Application Programming Interface (API). A hurdle here is to store API 

keys, perhaps in the user-preferences panel of galaxy.  
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Annex 1 
 
Supplemental table S1 
 
Original	
  data:	
  http://lbcd41.snv.jussieu.fr/galaxy/u/marius-­‐ged/h/compare-­‐simulation-­‐with-­‐real-­‐differences	
  
Differential	
  expression	
  testing	
  using	
  EdgeR	
  between	
  ping-­‐pong	
  negative	
  and	
  ping-­‐pong	
  positive	
  libraries	
  

The	
  top	
  10	
  differentially	
  detected	
  miRNA	
  between	
  ping-­‐pong	
  negative	
  libraries	
  	
  
  and ping-pong negative libraries supplemented with 2% testicular reads are highlighted in red (Sheet 2) 

Name logFC logCPM LR PValue adj.p.value Dispersion totreads 

dme-mir-31b 2.57E+00 6.10E+00 6.44E+01 
1.03E-

15 2.25E-13 1.34E-01 3.86E+03 

dme-mir-959 3.76E+00 3.61E+00 4.95E+01 
1.98E-

12 2.16E-10 3.19E-01 6.71E+02 

dme-mir-991 2.51E+00 3.22E+00 3.81E+01 
6.59E-

10 4.79E-08 1.85E-01 4.96E+02 

dme-mir-983-2 2.78E+00 2.65E+00 3.62E+01 
1.75E-

09 9.56E-08 2.18E-01 3.22E+02 

dme-mir-961 2.99E+00 2.69E+00 3.44E+01 
4.40E-

09 1.92E-07 2.85E-01 3.38E+02 

dme-mir-310 3.81E+00 5.06E-01 3.18E+01 
1.68E-

08 5.36E-07 1.80E-01 5.40E+01 

dme-mir-963 3.28E+00 2.01E+00 3.18E+01 
1.72E-

08 5.36E-07 3.20E-01 1.95E+02 

dme-mir-960 2.72E+00 4.18E+00 3.15E+01 
2.04E-

08 5.56E-07 2.97E-01 1.03E+03 

dme-mir-985 3.86E+00 3.66E+00 2.99E+01 
4.65E-

08 1.13E-06 5.82E-01 6.96E+02 

dme-mir-2494 4.26E+00 6.81E-02 2.79E+01 
1.28E-

07 2.65E-06 1.59E-01 3.20E+01 

dme-mir-983-1 2.48E+00 2.54E+00 2.78E+01 
1.34E-

07 2.65E-06 2.32E-01 2.92E+02 

dme-mir-982 1.88E+00 3.77E+00 2.63E+01 
2.85E-

07 5.00E-06 1.61E-01 7.42E+02 

dme-mir-312 2.18E+00 3.18E+00 2.63E+01 
2.98E-

07 5.00E-06 2.09E-01 4.84E+02 

dme-mir-iab-8 3.52E+00 5.98E-01 2.37E+01 
1.12E-

06 1.74E-05 3.05E-01 5.80E+01 

dme-mir-375 1.21E+00 9.09E+00 2.27E+01 
1.94E-

06 2.57E-05 9.16E-02 3.04E+04 

dme-mir-977 2.70E+00 3.42E+00 2.26E+01 
1.97E-

06 2.57E-05 4.01E-01 5.84E+02 

dme-mir-976 2.92E+00 5.33E-01 2.26E+01 
2.00E-

06 2.57E-05 1.86E-01 5.40E+01 

dme-mir-984 1.94E+00 2.56E+00 2.20E+01 
2.73E-

06 3.31E-05 1.86E-01 3.05E+02 

dme-mir-956 3.35E+00 8.13E+00 2.06E+01 
5.75E-

06 6.59E-05 7.09E-01 1.58E+04 

dme-mir-314 3.66E+00 7.04E+00 1.94E+01 
1.04E-

05 1.13E-04 8.74E-01 7.46E+03 

dme-mir-962 2.67E+00 5.17E-01 1.84E+01 
1.79E-

05 1.86E-04 2.14E-01 5.20E+01 

dme-mir-4966 2.82E+00 9.68E-02 1.74E+01 
3.01E-

05 2.92E-04 1.58E-01 3.30E+01 

dme-mir-974 1.84E+00 1.61E+00 1.74E+01 
3.08E-

05 2.92E-04 1.70E-01 1.42E+02 

dme-mir-1015 2.91E+00 3.39E-01 1.50E+01 
1.06E-

04 9.62E-04 3.74E-01 4.50E+01 

dme-mir-311 2.16E+00 3.77E+00 1.48E+01 
1.19E-

04 1.04E-03 4.11E-01 7.50E+02 

dme-mir-4914 2.90E+00 
-2.59E-

01 1.32E+01 
2.84E-

04 2.38E-03 1.62E-01 2.10E+01 
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dme-mir-973 2.03E+00 8.04E-01 1.09E+01 
9.60E-

04 7.75E-03 3.15E-01 6.90E+01 
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Annex 2 
 

 

How important is it to know the transposon insertion
sites?

I will focus on the OSC data from the Sienski et al (2012, Cell) paper. I will look at the trend for
overexpressed genes to have transposon insertions. On the one hand i will just take the group1
transposon insertions from the Dmel-5.49 genome ('group1_flybase.bed'), and compare it with the
group1 insertions as sequenced in the paper (group1_wo_het.bed).

In [1]: cd /home/marius/ipython_coding/DESeq_results/

In [2]: from metaseq.results_table import DESeqResults
from gffutils.helpers import FeatureNotFoundError
import matplotlib
import gffutils
import pandas
import os
import pybedtools

def convert_ids(list):
    name_list=[]

    for id in list:
        try:
            gene=d.db[id]

            name=str(gene['Name'][0])

            name_list.append(name)

        except FeatureNotFoundError:
            name_list.append(id)

    return name_list

fbgn.db is a gffutils database constructed from fbgn.gff (Dmel-5.49-all-no-analysis.gff), which contains all gene

annotations, positions etc. OSC.txt is the result of a DESeq differential expression for the RNAseq in piwi and

GFP knockdown OSC cells.

In [3]: if not os.path.exists('fbgn.db'):
    gffutils.create_db(data='fbgn.gff', dbfn='fbgn.db')

d = DESeqResults('OSC.txt', db='fbgn.db')

TEs_flybase=pybedtools.BedTool('group1_flybase.bed')

TEs_brennecke=pybedtools.BedTool('group1_wo_het.bed')

Now I'll filter out extreme values from the DESeq results

/home/marius/ipython_coding/DESeq_results
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In [4]: pandas.options.mode.chained_assignment = None

d=d[d.data['foldChange'] > 0]

d=d[d.data['foldChange'] != -inf]

d=d[d.data['foldChange'] != inf]

d=d[d.data['baseMean'] > 20]

Let's implement a filter to look at genes with fold2 Change higher than 4 (what brennecke used in the paper ...)

and group1 transposon insertions inside the gene (according to the flybase transposon gff).

In [5]: up=(d.data['foldChange'] > 4)*1

with_insertion=d.genes_with_peak(TEs_flybase)*1

up_with_insertion=up+with_insertion == 2

In [6]: up_names=d[up_with_insertion].data.index.tolist()

up_names=convert_ids(up_names)

#down_names=d[d.downregulated(0.001)].data.index.tolist()
#down_names=convert_ids(down_names)
genes_to_highlight=[(d.downregulated(0.05), dict(color='0.75', alpha=0.5,

 names=[], marker="s")),

        (d.upregulated(0.1), dict(color='0.75', alpha=0.5, names=[], mark

er="s")),

        (d.genes_with_peak(TEs_flybase), dict(color='r', names=up_names, 

alpha=1),)];

In [7]: fig=figure(figsize=(16,10))

In [8]: ax=fig.add_subplot(111)

In [9]: fig=d.scatter(

    ax=ax,

    x='baseMean',

    y='foldChange',

    xfunc=log1p, yfunc=log2,

    general_kwargs=dict(color='0.75', alpha=0.1, ),

    #-----------------------------------------------------
    genes_to_highlight=genes_to_highlight,

    label_kwargs=dict(style='italic', fontsize=10));

fig.set_title(label='Piwi KD vs GFP KD');

fig.axhline(0, color='k', linestyle='--')

<matplotlib.figure.Figure at 0x54de1d0>

Out[9]: <matplotlib.lines.Line2D at 0x563e990>
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In [10]: fig.get_figure()

In [11]: upregulated=d[d.data['foldChange'] > 4]

len(upregulated.data)

In [12]: upregulated_with_insertion_table=d[up_with_insertion]

upregulated_with_insertion_table.data[['baseMean', 'foldChange', 'padj']]

OK, of the 119 genes that are more than 4fold upregulated in PIWI knockdown only 4 contain a group 1 TE.

Let's repeat the analysis, but use the mapped insertion sites for group1 transposons that brennecke has

generated by DNA resequencing for his paper (genes containing group1 TEs are green now).

Out[10]:

Out[11]: 119

Out[12]: baseMean foldChange padj

id

FBgn0037171 259.730780 28.611308 7.153039e-08

FBgn0036851 127.560828 217.143743 1.341933e-06

FBgn0004870 591.982064 7.727221 2.500602e-06

FBgn0037766 40.521548 4.330502 1.000000e+00

4 rows × 3 columns
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In [13]: plt.close('all')

up=(d.data['foldChange'] > 4)*1

with_insertion=d.genes_with_peak(TEs_brennecke)*1

up_with_insertion=up+with_insertion == 2

up_names=d[up_with_insertion].data.index.tolist()

up_names=convert_ids(up_names)

genes_to_highlight=[(d.genes_with_peak(TEs_flybase), dict(color='r', name

s=[], alpha=1)),

                    (d.genes_with_peak(TEs_brennecke), dict(color='g', na

mes=up_names, alpha=1)),

         ];

fig=d.scatter(

    ax=ax,

    x='baseMean',

    y='foldChange',

    xfunc=log1p, yfunc=log2,

    general_kwargs=dict(color='0.75', alpha=0.1, ),

    genes_to_highlight=genes_to_highlight,

    label_kwargs=dict(style='italic', fontsize=10));

fig.get_figure()

So indeed, it seems to be very important to know exactly where the transposon insertions are located,
because it can change the interpretation of the results a lot. In particular, without having the transposon
data available, I would have said that transposon insertions in genes are not important to determine
whether a genes is repressed by a piwi-based mechanism (3% of overexpressed genes contain group 1
transposons). However, when we intersect the overexpressed genes with TE insertions, a nice
percentage (27%) does have TE insertions, meaning that genes with TE insertion are likely to be
repressed by a piwi-based mechanism. In conclusion: Yes it is important to know the exact integration
site, as it can change the interpretation.

Out[13]:
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dme-mir-973 2.03E+00 8.04E-01 1.09E+01 
9.60E-

04 7.75E-03 3.15E-01 6.90E+01 
 
 

  


